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Abstract

In this Ph.D. thesis we will study the issue of renormalizability of gravitation in the
context of the renormalization group (RG), employing both perturbative and non-
perturbative techniques. In particular, we will focus on different gravitational models
and approximations in which a central role is played by a scalar degree of freedom,
since their RG flow is easier to analyze. More specifically, we will consider two types of
situations: on the one hand, we will study scalar field theories obtained as conformally
reduced toy models of gravity, that is, by neglecting the contribution of the spin-2 de-
grees of freedom of the metric in the quantization procedure. On the other hand, we
will study scalar-tensor theories as dynamically equivalent theories of higher derivative
models.

We restrict our interest in particular to two quantum gravity approaches that have
gained a lot of attention recently, namely the asymptotic safety scenario for gravity
and the Hořava-Lifshitz quantum gravity. In the so-called asymptotic safety conjecture
the high energy regime of gravity is controlled by a non-Gaussian fixed point which
ensures non-perturbative renormalizability and finiteness of the correlation functions.
We will then investigate the existence of such a non trivial fixed point using the func-
tional renormalization group, a continuum version of the non-perturbative Wilson’s
renormalization group. In particular we will quantize the sole conformal degree of free-
dom, which is an approximation that has been shown to lead to a qualitatively correct
picture. The use of such a scalar toy model, moreover, will help us to investigate in
a non-perturbative way the role that non-local operators have in the emergence of a
symmetry-broken phase in the infrared.

The question of the existence of a non-Gaussian fixed point in an infinite-dimensional
parameter space, that is for a generic f(R) theory, cannot however be studied using
such a conformally reduced model. Hence we will study it by quantizing a dynamically
equivalent scalar-tensor theory, i.e. a generic Brans-Dicke theory with ω = 0 in the
local potential approximation. We will then debate the breaking of the equivalence at
a quantum level.

Finally, we will investigate, using a perturbative RG scheme, the asymptotic free-
dom of the Hořava-Lifshitz gravity, that is an approach based on the emergence of an
anisotropy between space and time which lifts the Newton’s constant to a marginal
coupling and explicitly preserves unitarity. In particular we will evaluate the one-loop
correction in 2+1 dimensions quantizing only the conformal degree of freedom. For this
dimensionality it is in fact the only physical one. We obtain in this way the first results
on the RG flow of the model in the ultraviolet.
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Sommario

In questa tesi di dottorato studieremo la rinormalizzabilità di teorie gravitazionali nel
contesto del gruppo di rinormalizzazione (RG), impiegando sia tecniche perturbative
che non perturbative. In particolare, ci concentreremo su diversi modelli gravitazionali
ed approssimazioni in cui un ruolo centrale viene svolto da una grado di libertà scalare;
il flusso di rinormalizzazione di questi modelli risulta infatti più semplice da analizzare.
Più nello specifico prenderemo in considerazione due situazioni: in una studieremo teorie
di campo scalari ottenute come riduzioni conformi di teorie gravitazionali, ovvero mod-
elli semplificati in cui non vengono quantizzati i gradi di libertà tensoriali della metrica,
nell’altra studieremo teorie scalare-tensore come teorie dinamicamente equivalenti di
modelli contenenti operatori con derivate di ordine superiore.

In particolare, ci limiteremo allo studio di due approcci di gravità quantistica che
recentemente hanno ricevuto molta attenzione, ovvero lo scenario di asymptotic safety
per la gravità e la gravità quantistica di Hořava-Lifshitz. Secondo la congettura nota
come asymptotic safety l’interazione gravitazionale è controllata ad alte energie da un
punto fisso non Gaussiano il quale garantisce la rinormalizzabilità non perturbativa
della teoria e la finitezza delle funzioni di correlazione. Studieremo quindi l’esistenza di
tale punto fisso utilizzando il gruppo di rinormalizzazione funzionale, ovvero una ver-
sione funzionale del gruppo di rinormalizzazione di Wilson, quantizzando in particolare
soltanto il grado di libertà conforme. E’ stato infatti dimostrato come tale semplifi-
cazione conduca ad un diagramma di fase della teoria qualitativamente corretto. L’uso
di questo modello approssimato, inoltre, ci permette di studiare in maniera non per-
turbativa il ruolo che operatori non locali svolgono nell’emergenza di una fase rotta
nel limite infrarosso. La questione dell’esistenza di un punto fisso non Gaussiano in
uno spazio dei parametri infinito dimensionale, ovvero per una generica teoria f(R),
non può essere, tuttavia, indagata utilizzando un modello conformalmente ridotto. Per
questo motivo quantizzeremo una teoria dinamicamente equivalente, ovvero una teoria
di Brans-Dicke con ω = 0 nell’approssimazione di potenziale locale, e discuteremo la
non equivalenza delle due teorie a livello quantistico.

Per concludere, utilizzando tecniche perturbative studieremo la libertà asintotica
della gravità di Hořava-Lifshitz, un approccio basato sull’emergenza di una anisotropia
tra spazio e tempo, a causa della quale promuove la costante di Newton viene promossa
a parametro marginale, preservando simultaneamente l’unitarietà. In particolare, cal-
coleremo in 2+1 dimensioni l’azione effettiva ad un loop, quantizzando il solo grado
di libertà conforme (l’unico fisico per questa dimensionalità) ottenendo cosí i primi
risultati sul flusso di rinormalizzazione del modello ad alte energie.
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Zusammenfassung

In dieser Doktorarbeit werden wir das Renormierungsproblem von Gravitationstheo-
rien im Kontext der Renormierungsgruppe (RG) unter Anwendung von perturbativen
und nicht-perturbativen Methoden untersuchen. Insbesondere werden wir uns auf ver-
schiedene Gravitationsmodelle und Näherungen konzentrieren, in welchen die zentrale
Rolle von einem skalaren Freiheitsgrad eingenommen wird, da sein RG Fluss einfacher
zu analysieren ist. Wir werden zwei Fälle genauer betrachten: einerseits werden wir
skalare Feldtheorien aus konform reduzierten vereinfachten Gravitationsmodellen un-
tersuchen, indem der Beitrag der Gravitonen bei der Quantisierung vernachlässigt wird.
Andererseits untersuchen wir Skalar-Tensortheorien als dynamische Äquivalentstheorie
zu höheren Ableitungstheorien.

Wir konzentrieren uns besonders auf zwei Ansätze für Quantengravitation, die in let-
zter Zeit viel Aufmerksamkeit erhalten haben, nämlich den asymptotisch sicheren Fall
der Gravitation und die Hořava-Lifshitz Quantengravitation. Das Prinzip der Asymp-
totischen Sicherheit beruht auf der Annahme, dass das hochenergetische Gravitation-
sregime von einem nicht-Gaußschen Fixpunkt bestimmt wird, der nicht-perturbative
Renormierung und Endlichkeit der Korrelationsfunktionen sicherstellt. Wir werden die
Existenz eines solchen nicht-trivialen Fixpunktes mit Hilfe der funktionalen Renormie-
rungsgruppe, einer kontinuierlichen Version der nicht-perturbativen Wilson Renormie-
rungsgruppe, untersuchen. Insbesondere werden wir den einzigen konformen Freiheits-
grad quantisieren. In diesem Fall konnte gezeigt werden, dass dies eine qualitativ gute
Näherung darstellt. Diese skalare Feldtheorie hilft uns auf nicht-perturbative Weise
die Rolle der nicht-lokalen Operatoren zu verstehen, die diese bei der Entstehung einer
Symmetrie-gebrochenen Phase im Infraroten haben.

Die Frage nach der Existenz eines nicht-Gaußschen Fixpunktes in einem unendlich-
dimensionalen Parameterraum, das heißt für eine generische f(R)-Theorie, kann jedoch
nicht mit einem solchen konform reduzierten Model analysiert werden. Deshalb werden
wir es untersuchen, indem wir eine skalare dynamische Äquivalentstheorie, das heißt eine
generische Brans-Dicke Theorie in der lokal-Potential Näherung mit ω = 0, quantisieren.
Wir werden dann die Äquivalenzbrechung auf dem Quantenlevel debattieren.

Schließlich werden wir mittels einer perturbativen RG Methode die asymptotische
Freiheit der Hořava-Lifshitz Gravitationstheorie analysieren. Diese Gravitationstheorie
beruht auf der Entstehung einer Anisotropie zwischen Raum und Zeit, die Newtons
Konstante zu einer marginalen Koppelung werden lässt und explizit die Unitarität be-
wahrt. Insbesondere werden wir die Einschleifenkorrektur in 2+1 Dimensionen berech-
nen, indem wir nur den konformen Freiheitsgrad, den einzigen physikalischen für diese
Dimensionalität, quantisieren. Wir erhalten somit die ersten Resultate über den RG
Fluss dieses Models im ultravioletten Regime.
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Introduction

The search for a theory of quantum gravity is one of the most intriguing unsolved puzzles
in theoretical physics. Over the years, quantum field theory has shown a remarkable
success in describing the physics of electromagnetic, strong and weak interactions. Its
application to the description of gravity at the quantum level, however, has encountered
many obstacles of both technical and fundamental nature. A naive quantization of
general relativity leads in fact to a perturbatively non-renormalizable theory. Although
the issue of renormalizability can be cured by adding higher-derivative operators, such
models suffer from a lack of unitarity. For this reason, the scientific community tends
nowadays to consider other frameworks, e.g. string theory, as more eligible candidates
for a theory of quantum gravity.

Quantum field theory, however, has still not been ruled out. Two approaches in
particular, namely the asymptotic safety scenario for gravity and the Hořava-Lifshitz
quantum gravity, have recently received a lot of attention for their attempt to reconcile
quantum field theory and gravity.

In this Ph.D. thesis we will study the issue of the renormalizability in those two
approaches in the context of the renormalization group (RG), employing both pertur-
bative and non-perturbative techniques. More specifically, we will focus on the study
of gravitational models and approximations in which a central role is played by a scalar
degree of freedom. Their RG flow is in fact easier to analyze, and this will allow us to
investigate important issues otherwise difficult to examine.

We will consider two types of situations: on the one hand, we will study scalar
field theories as toy models obtained by conformal reductions of gravitational theories.
That is, models of gravity in which we neglect the contribution of the spin-2 degrees of
freedom of the metric in the quantization procedure. On the other hand, we will study
scalar-tensor theories as dynamically equivalent theories of higher-derivative models.

The asymptotic safety scenario for gravity is a conjecture proposed in the 70s by
Weinberg [1, 2, 3, 4, 5]. In this approach the gravitational interaction is assumed to
flow in the ultraviolet towards a strongly coupled regime, where gravity is controlled
by a non-Gaussian fixed point which ensures non-perturbative renormalizability and
finiteness of the correlation functions. The theory assumes then the form of an effective
field theory in which just a finite number of relevant parameters needs to be fine tuned.
The existence of this non-trivial fixed point has been confirmed in four dimension for
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various truncations of the effective action.
We will concentrate on the study of a scalar toy model of gravity obtained by a

conformal reduction of the Hilbert-Einstein action. In this toy model we will quantize
the sole conformal degree of freedom of the metric, thus neglecting the quantum con-
tributions coming from spin-2 modes. Previous results have shown that the use of this
approximation leads to a qualitatively correct picture [6, 7], making it an interesting
model with which to test ideas and techniques.

We will hence inquire about the existence of the non-Gaussian fixed point by us-
ing the functional renormalization group (fRG) [8, 9, 10], a continuum version of the
non-perturbative Wilson’s renormalization group, that has been widely employed in
statistical mechanics and quantum field theory to study strongly interacting theories.
Specifically, we will examine the phase diagram of the toy model using a fRG proper
time scheme, that has shown in literature a high precision in the evaluation of universal
quantities. The use of such a scalar toy model, moreover, will permit us to investigate in
a non-perturbative way the role that non-local operators (e.g. powers of the spacetime
volume) have in the emergence of a symmetry-broken phase in the infrared. Hence, we
will examine more in detail the ultraviolet fixed-point structure of conformally reduced
asymptotically safe quantum gravity for a non-polynomial truncation.

The question of the existence of a non-Gaussian fixed point for a generic f(R) the-
ory cannot be studied, however, using such a scalar toy model. Hence we will study the
non-perturbative renormalizability of a classical dynamically equivalent model, that is
a generic Brans-Dicke theory with ω = 0 in the local potential approximation. Besides
the relation to f(R) theory, the study of the strongly coupled regime of the Brans-
Dicke theory is interesting by itself. Scalar-tensor theories are in fact an example of
dilaton gravity, i.e. a theory in which the gravitational interaction is mediated by the
metric field and a supplementary scalar field, and are one of the oldest modifications of
general relativity. Furthermore, they find several applications in cosmology and quan-
tum gravity. Using the functional renormalization group, and in particular the exact
RG equation, we will then derive a flow equation for the effective potential on a flat
spacetime, integrating all the degrees of freedom of the theory. In particular, the flow
equation will be evaluated for a more general class of scalar-tensor theories with ω left
as a free parameter. For the sake of consistency, we will evaluate the RG equation
employing two different gauges, namely a Landau and a Feynman gauge. We will then
focus on the fixed point structure for ω = 0, in light of the classical equivalence between
the Brans-Dicke and the f(R) theory. Thus we analyze the results and discuss the im-
plications of the approximations we have taken into account, as well as the breaking of
the equivalence of the two theories at the quantum level.

Finally, we will investigate the high energy behaviour of Hořava-Lifshitz gravity
[11, 12], and examine whether the model features asymptotic freedom or not. In Hořava-
Lifshitz gravity a scale anisotropy between time and space emerges at the Planck scale.
Lorentz invariance, one of the pillars of quantum field theory, is then lost in the ultra-
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violet and supposed to be recovered in the low energy regime. At the price of losing
general covariance, anyway, the model gains explicit unitarity and perturbative renor-
malizability. In the presence of anisotropy we can have higher-order spatial derivatives
while keeping the number of time derivatives unchanged. Therefore, for a sufficiently
high order of spatial derivatives the model features perturbative renormalizability, be-
ing now the Newton constant a marginal coupling, while the absence of higher time
derivatives avoids the presence of unphysical poles in the propagator.

Although the renormalizability is the most appealing feature of this model, it is also
its less studied property. One of the reasons is the technical difficulty of working on
curved anisotropic backgrounds, and the large number of terms that the model contains
in its most general action in 3+1 dimensions. We will thus try to give a first answer
about the asymptotic freedom of the model by taking in consideration an easier case,
namely the Hořava-Lifshitz gravity in 2+1 dimensions. For this dimensionality, in fact,
we have the simplification of having no gravitons and a smaller number of invariants in
the action. What we will investigate is then the high energy regime of a scalar toy model
obtained by a conformal reduction of the theory. We expect indeed this toy model to
be a good approximations of the full theory, being the scalar the only physical degree
of freedom for this dimensionality. We will evaluate the β-function for the coupling at
one-loop and examine the renormalization group flow of the interaction. Hence we will
interpret our results in order to give a first answer about the ultraviolet behaviour of
the higher-dimensional model.
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• This Ph.D. thesis is structured in the following way.

We will summarize in the first chapter the basics of the renormalization group. In
particular, we will introduce perturbative and non-perturbative techniques, concentrat-
ing on the functional renormalization group.

We will focus in the second chapter on the applications of the renormalization group
to quantum gravity and the basics of the quantization of gravitational theories (e.g.
the background field method, Ward identities, etc.). We introduce then the asymptotic
safety scenario for gravity and the Hořava-Lifshitz quantum gravity, and list few well
enstablished results.

We will investigate in the third chapter the high energy regime of the Einstein-
Hilbert action employing a proper time RG scheme in the context of the functional
renormalization group. Hence, we will study the RG flow of a scalar toy model, i.e. a
conformally reduced Einstein-Hilbert action, on a spherical and flat topology. We will
then study this scalar toy model in a local potential approximation in flat spacetime,
and investigate the role of non-local operators in having a broken phase in the infrared
regime of the theory. This chapter is bases on the publication A. Bonanno, F. Guarnieri,
Universality and Symmetry Breaking in Conformally Reduced Quantum Gravity, arxiv:
1206.6531, published on Physical Review D, DOI: 10.1103/PhysRevD.86.105027.

We will study in the fourth chapter a generic Brans-Dicke theory in the local po-
tential approximation within the context of the functional renormalization group. We
will derive a renormalization group equation for the Brans-Dicke potential keeping the
parameter ω arbitrary and using two different gauge choices. We will search then for
fixed point solutions fixing ω = 0, in light of the equivalence with a f(R) theory. Hence
we will compare the results obtained in the two gauges. This chapter is based on the
publication D. Benedetti, F. Guarnieri, Brans-Dicke theory in the local potential ap-
proximation, arxiv: 1311.1081, accepted for publication on New Journal of Physics.

We will investigate in the fifth chapter the asymptotic freedom of the conformal
reduction of projectable Hořava-Lifshitz quantum gravity in 2+1 dimensions without
detailed balance. We present the evaluation of the one loop correction to the bare action
and solve the β-functions of the couplings. We will then investigate the high energy
behaviour of such a toy model and discuss their implications for the full theory. This
chapter is based on the publication D. Benedetti, F. Guarnieri, One-loop renormaliza-
tion in a toy model of Horava-Lifshitz gravity, arxiv: 1311.6253, published on Journal
of High Energy Physics, 10.1007/JHEP03(2014)078.

http://arxiv.org/abs/arXiv:1206.6531
http://prd.aps.org/abstract/PRD/v86/i10/e105027
http://arxiv.org/abs/arXiv:1311.1081
http://arxiv.org/abs/arXiv:1311.6253
http://link.springer.com/article/10.1007%2FJHEP03%282014%29078


Chapter 1

Basics of renormalization group

In physics the notion of universality is referred to the characteristic of different the-
ories to posses the same power law behaviour of the correlation functions in the long
range regime (despite of the microscopic details of the theory). If theories with dif-
ferent microscopic interactions posses the same set of power law behaviours (i.e. the
critical exponents) it is said that they belong to the same universality class. One his-
torical example of universality class is given by the set of power law behaviours of the
thermodynamical quantities in second order phase transitions, like the paramagnetic-
ferromagnetic transition.

Finding applications in different contexts, the concept of universality assumes in
modern physics various facets. While on the one hand it is applied to low energy
physics (e.g. critical phenomena and condensed matter) to classify all possible second
order phase transitions, it is, on the other hand, employed in high energy physics to
take the continuous limit of theories on a lattice.

This diversification in the application of the same concept is due to the historical par-
allel (but detached) understanding, in both statistical mechanics and particle physics,
of the relevance of scale invariance in field theory. On the one hand, Feynman, Dyson,
Tomonaga and Schwinger where developing in the 40s perturbative techniques to regu-
larize and renormalize the divergencies appearing in the Feynman diagrams of quantum
electrodynamics (QED). Applying those techniques they noted that the observable pa-
rameters of the theory where changing with the energy scale. That is, scale invariance
is generally not a property of a quantum theory. On the other hand, the study of those
perturbative techniques led Wilson, later in the 70s, to grasp that the key to under-
stand the universal behaviour in phase transitions was given by a non-perturbative scale
analysis of the partition function. He hence discovered that universality is a property
of the linearized system around the scale invariant theory.

Besides the fact that both the perturbative and non-perturbative techniques devel-
oped so far find still nowadays disjoined applications, their ensemble goes nonetheless
under the same name, the renormalization group (RG), from the landmark paper of
Stueckelberg and Petermann [13].
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1.1 Gell-Mann Low equation

The idea behind the perturbative renormalization group in particle physics is to express
the n-point correlation functions (which are functions of the physical, i.e observed, pa-
rameters) by renormalizing the divergencies appearing when expanding the correlation
functions in powers of a bare perturbative parameter. The divergencies are regularized
by means of a regulator1, which is removed after the renormalization. The n-point
correlation functions in Fourier space can then be defined in terms of the bare one as

G
(n)
R (p1, · · · , pn; gR, µ) =

(√
Z
)n

2 G
(n)
B (p1, · · · , pn; gB,Λ) , (1.1)

where p1, · · · , pn are external momenta, gR and gB are, respectively, the sets of renor-
malized and bare couplings, µ is a renormalization (observational) scale, Λ is an ultra-
violet cutoff and Z a renormalization function. The masses are here treated as coupling
constants.

The perturbative renormalization group equation can be built stating the indepen-
dence of the n-point renormalized correlation function from the regulator, or even the
independence of the bare function from the renormalization scale. Following the latter
prescription leads to a renormalization group flow equation which reads

µ ∂µG
(n)
B = µ ∂µ

(
Z(gR, µ)

n
2 G

(n)
R

)
= 0 . (1.2)

Equation (1.2) can be recasted in terms of the flow equation for the i-th bare coupling
gB,i, called β-function, by defining

gB,i(Λ) = gR,i(µ) Zi(gb, µ,Λ) , (1.3)

where the calligraphic Zi is now a renormalization factor which can be constructed by
summing counterterms coming from loop corrections, i.e.

Zi(gB, µ,Λ) =

(
1 +

∞∑

k=1

fk(gB,Λ, µ)

)
. (1.4)

The functions fk in (1.4) contains polynomial or at least logarithmic divergencies in
Λ. A renormalization group equation can be achieved from equation (1.3) by assuming
that the bare coupling does not depend on the renormalization scale µ, obtaining

µ ∂µ gB,i(Λ) = 0

= µ ∂µ (gR,i(µ)Zi(gB, µ,Λ))

= (µ ∂µ gR,i(µ))Zi(gB, µ,Λ) + (µ ∂µZi(gB, µ,Λ)) gR,i(µ) ,

(1.5)

1We will employ here a sharp momentum cutoff for the sake of simplicity. No other regularization
scheme is introduced (Pauli-Villars, ζ-function, etc.), except for the dimensional regularization, treated
in the subsection 2.2.1.
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which, introducing the so-called anomalous dimension

η = −µ ∂µZZ , (1.6)

and dividing both members of (1.5) by Z, leads to the elegant flow equation

βgi = µ ∂µ gR,i = η gR,i , (1.7)

where the bare couplings in Z have been rewritten in terms of the renormalized one,
and which takes the name of Gell-Mann Low equation [14]. Note that the β-function
in (1.7) holds for a dimensionless coupling, for which the running is controlled by the
sole anomalous dimension η. In the case of a dimensionful parameter of classical mass
dimension dg the flow is, instead, dominated in the perturbative regime by a term
proportional to its classical dimension2.

Since the β-function (1.7) does not depend explicitly on the regulator anymore it is
then possible to remove it, i.e. take the limit Λ→∞, and solve the differential equation
for the i-th renormalized coupling gR,i, thus obtaining the running of the renormalized
coupling varying with the observational scale µ.

Typically, the β-function for a dimensionless coupling can assume three generic
behaviours, depicted in Fig. 1.1, depending on the sign of loop corrections and the
non-linear dependence on the coupling of the anomalous dimension η.

β(g)

g

β(g) g

Λ → ∞ gM

�
b log Λ

M

�−1

Ii[φ] η(g) = Cgn

C n gM

gΛ

ZΛ

ZM

=





�
log Λ

M

�−C/b
n = 1

exp
�
− C

bn(1−n)

�
log Λ

M

�1−n
�

n > 1
.

g∗

g < g∗

M ∼ Λ|g∗ − gΛ|ν ν = − 1

β�(g∗)
.

ν

Λ → ∞ M

ZΛ ∼ Λ−η(g∗) ,

Figure 1.1: Three general behaviours for the beta function of a coupling.

In particular, in a perturbative regime (g � 1) the sign of η is defined by that of the
one loop correction, being it the dominant contribution. Consequently, for η > 0 the

2The renormalization of a dimensionful coupling will be treated more in detail in chapter 2
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β-function is positive (upper curve in Fig. 1.1) and the coupling strength increases at
higher energies (as is the case of QED and the scalar field theory) reaching, however,
a Landau pole at a certain energy scale µ ∼ µ∗, thus being the perturbative approxi-
mation not reliable anymore. For a decreasing β-function (lower curve in Fig. 1.1) the
interaction runs to zero, leading in the UV to a non-interacting theory. In this case, for
example in non-abelian SU(N) gauge QFTs, the theory is perturbatively renormalizable
and said to be asymptotically free.

The remaining case depicted in Fig. 1.1, that is a β-function with a non-trivial zero,
emerges whenever subsists a competition between loop orders. Apart from particular
cases in which the zero is defined for a small coupling, so that perturbation theory can
be applied (e.g. the Caswell-Banks-Zaks fixed point for SU(N) theory in the N → ∞
limit [15, 16]), non-trivial fixed points often live in a non-perturbative regime which
cannot be studied with the RG scheme so far defined, which takes the name of minimal
substraction (MS) scheme3. The flow of the above scheme is, moreover, not accurate
for theories with IR instabilities (i.e. UV massless theories) for which arises an ulterior
constraint m2

dyn � p2, being m2
dyn a mass dynamically generated by loop corrections,

since the presence of a mass influences consistently the flow already in the intermediate
regime p2 ∼ m2

dyn.
In the case of a non-trivial fixed point non-perturbative techniques need to be em-

ployed, since they take in consideration the contribution of operators that are irrelevant
in the perturbative regime but can become relevant at the non-trivial fixed point.

1.2 Functional renormalization group

The philosophy behind the development of non-perturbative RG techniques is based on
the renowned study of blocking transformations on a lattice which led to the Wilson’s
renormalization group [17]. What Wilson noted was that whenever we perform a coarse
graining of a theory on a lattice, i.e. we average the field on blocks of a finite size, the
effective low energy action for the averaged field contains the original operators but for
renormalized couplings, as well as new irrelevant (and relevant) operators generated
by the coarse graining procedure. The reiteration of the blocking transformation leads
then to a non-perturbative flow in which are generated (and run) all the operators
compatible with the symmetries of the action. Following the above idea, a consistent
strategy to follow in order to construct a non-perturbative RG scheme is to translate
for continuos fields the coarse graining procedure defined on a lattice.

To do this, we start by considering the definition of an averaged action on a lattice
of step Λ−1 for a block size of length k−1

e−Sk[Ψ] =

∫
D[ψ]

∏

x

δ
(
ψk −Ψ

)
e−SΛ[ψ] , (1.8)

3Where minimal entails that in (1.4) has not been subtracted the finite part of loop corrections.
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where ψ(x) is a generic field (or superfield), Ψ(x) an effective field at scale k, SΛ and
Sk respectively the bare action at lattice scale Λ and an effective action at scale k, and
ψk(x) is an averaged field on the lattice given by

ψk(x) =
∑

y

ψ(y) ρk(y, x) , (1.9)

being ρk(x, y) an arbitrary smearing function. The generalization of the definition of
average field on continuos spacetime is obtained by simply substituting the sum over
lattice sites with an integral

ψk(x) =

∫
ddy ψ(y) ρk(y, x) , (1.10)

where the smearing function satisfies the properties of being

• i) symmetric: ρk(x, y) ≡ ρk(y, x) ,

• ii) normalized:
∫
ddy ρk(y, x) = 1 ,

• iii) idempotent:
∫
ddy ψk(y) ρk(y, x) = ψk(x) .

The last relation simply implies that the average of an average field is again an average
field. The smearing function also satisfies a composition rule (here in Fourier space)

ρk1(q) ρk2(q) = ρk(q) , (1.11)

where k ≡ k(k1, k2) < min(k1, k2). The effective action defined in (1.8) contains however
a product over lattice sites x ∈ Rd which makes sense only on a lattice because of the
presence of the δ-functions. A continuos version [18] can then be defined by substituting
the product of deltas with a constraint operator Pk[ψk,Ψ], so that (1.8) now reads

e−Sk[Ψ] =

∫
D[ψ]Pk[ψ,Ψ] e−SΛ[ψ] . (1.12)

The constraint operator should be defined in such a way to satisfy a composition rule
at different k, that reads

∫
D[ψ̃]Pk1 [ψ, ψ̃]Pk2 [ψ̃,Ψ] = Pk[ψ,Ψ] , (1.13)

where k comes from (1.11), and to be renormalized, i.e.
∫
D[Ψ]Pk[ψ,Ψ] = 1 ,

1

ξ

∫ ∞

−∞
D[Ψn]Pk,n[ψn,Ψn] = 1 , (1.14)

being ξ a renormalization factor and Pk[ψ,Ψ] =
∏

n Pk,n[ψn,Ψn], with n the Fourier
number of the n-th mode. Since the bare field ψ is univocally defined by the field
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ψk (up to a q2-dependent wavefunction renormalization) by means of the averaging
procedure (1.9), in the case the operator Pk acts as an identity between ψk and Ψ
we would then end up with a simple variable change and no coarse graining would be
actually performed. We ask then the two fields to differ for a certain quantity. A choice
is to employ a Gaussian operator such that in the q � k regime, being q the Fourier
mode of the bare field, it behaves like

Pk ≈ C e− ν
∫
ddx |ψk(x)−Ψ(x)|2 , (1.15)

being ν the mean deviation between ψk(x) and Ψ(x) and C ≡ C(ξ, ν,Ω) a constant
which depends on the renormalization ξ, the mean deviation ν and the volume Ω of
the system. The Wilsonian action Sk can then be considered as the expectation value
of the constraint operator

Sk[Ψ] = − log (〈Pk 〉Z) , (1.16)

or it can otherwise be considered as the partition function of a non-local constrained
action

Sconst[ψ; Ψ] = SΛ[ψ]− logPk[ψk,Ψ] , (1.17)

defined in terms of a background field Ψ, and well defined for all the modes of the field
since the constraint operator Pk is strictly positive for every q.

Although the latter is, however, obviously difficult to implement in parameter space
it makes feasible the application of the steepest-descend method to the calculation of
Sk. For a correct evaluation of the Wilsonian action it is in fact necessary to be sure that
we are integrating the fluctuation around the correct ground state of the theory. This
is a well-known problem for theories in the broken phase, since loop contributions are
not well defined in the inner zone of a double-well bare potential, being the logarithm
not well defined for negative values (the inner zone of the potential).

An example is given by the Coleman-Weinberg potential [19] in the broken phase for
an N-component scalar field theory [20], which is known to be not well defined in that
region4. The problem is solved by computing the average potential at a certain scale k
and noticing that in the inner zone the action is minimized by a spin-wave solution (i.e.
a field configuration with a preferred momentum direction) instead of an homogenous
field, and the integration of the fluctuations around that non-trivial ground state leads
to a globally analytic average potential. As a consequence of the coarse graining,
however, the Poincaré symmetry is broken down to the Lorentz symmetry and restored
just in the limit k → 0+. The loss of symmetries, both extern and/or internal, is a
common drawback of the implementation of the coarse graining. As we will see for the
in the section (1.2.2) for the so-called exact renormalization group equation (ERGe)
the explicit introduction of an infrared cutoff in momentum space breaks the gauge

4Since we assume to be in the broken phase the second derivative of the potential in the inner
region φinn ≈ 0 takes negative values. The one loop correction, however, contains a logarithm of the
second derivative, which is not defined for negative values. Therefore the one loop correction in the
inner region is ill-defined.
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invariance of the system and modified Ward identities are required in order to ensure
BRST symmetry at the level of the effective action at k = 0.

Going back to definition (1.16), the Wilsonian action so far defined is not the func-
tional generator of 1PI connected correlation functions we are interested in, so that a
flow equation constructed from (1.16) would not furnish a connection with the pertur-
bative RG schemes. To construct a functional generator from the action Sk we can
start by noting that for a generic observable O(x) holds [18]

O[ψ] =

∫
D[Ψ]Ok[Ψ]Pk[ψ,Ψ] , (1.18)

that is, O[ψ] and Ok[Ψ] have the same expectation value. This translates in terms of
the fields Ψ and ψk as

〈Ψ 〉 =

∫
D[Ψ(x)] e−Sk[Ψ(x)] Ψ(x) =

∫
D[Ψ(x)]D[ψ(x)]Pk [ψk(x),Ψ(x)] e−SΛ[ψ(x)] Ψ =

∫
D[ψ(x)] e−SΛ[ψ(x)] ψk(x) = 〈ψk(x) 〉 ,

(1.19)

where now the expectation value 〈Ψ 〉 is defined by means of a functional derivative of
the generator of connected one particle correlation functions Wk as

〈Ψ 〉 =
∂Wk[J ]

∂J(x)

∣∣∣
J=0

, (1.20)

being J(x) an auxiliary external source, so that in the end

Wk[J ] =

∫
ddx {J(x) Ψ(x)− Sk[Ψ]} . (1.21)

The correlation functions at the observed scale k can then be evaluated by means of
functional derivatives respect to the external sources. Finally, to obtain the β-function
of the couplings we need to invert the source as a function of the expectation value
〈Ψ 〉 ≡ Ψ̃, that is J ≡ J(x, Ψ̃(x)), and perform a Legendre transform of the functional
Wk, obtaining

Γk[Ψ̃] = −Wk[J ] +

∫
ddx Ψ̃(x) J(x, Ψ̃(x)) . (1.22)

Expanding the action Γk in a basis of local operators Oi(x) built from the field Ψ̃ and
its derivatives, the β-function for the dimensionful i-th running coupling gi,k is obtained
as

βgi = k ∂k gi,k = k ∂k
δ Γk
δ Oi

∣∣∣
Ψ̃=0

. (1.23)

The comparison between the perturbative and non-perturbative schemes until now de-
scribed (that is, equations (1.7) and (1.23)) is however not so straightforward. While
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the β-functions in the MS scheme show a simple dependence on the relevant parameters,
the contributions to the running of the coupling in the non-perturbative approach come
from all the operators present in the truncation of the effective action, and an infinite
number of operators are required5. The β-functions in the fRG schemes, βg,fRG(k), and
the β-function in the MS, βg,MS(µ), have then to be compared around k ≈ µ where it
holds

βfRG(k ≈ µ) = βMS(k) +M (gj, µ) g2
MS(µ) +O(g3

MS) , (1.24)

where M (gj, µ) is some function depending on the other coupling and the renormal-
ization scale µ.

Moreover, differently from the perturbative schemes in which we start from finite-
valued bare correlation functions and construct the renormalized functions by regu-
larizing the divergent contributions coming from loop corrections, in this scheme the
correlation functions at k = 0 are assumed to be finite functions of the “dressed” cou-
plings by definition6, and no divergences explicitly appear during the flow (as, after all,
also in the Wilson’s RG). The absence of ultraviolet singularities can then be re-casted
in the statement that the flow equation, starting from k = 0, automatically flows in the
ultraviolet limit k →∞ into an ultraviolet attractive fixed point of the renormalization
group equation. This fixed point, however, does not identifies the bare action, which
is indeed defined at a ultraviolet scale Λ, since there is no scale definition for a scale
invariant action.

The construction in parameter space until now proposed is mostly explicative, and
instrumental to the introduction of the different schemes, since it evidently does not lead
to any scheme directly applicable. Practical schemes can be constructed in momentum
space by a proper definition of a smearing function. We will introduce in the next
sections the schemes most used in literature, starting with the sharp cutoff scheme.

1.2.1 Sharp cutoff equation

A sharp cutoff flow equation can be constructed by employing in the definition of the
average field (1.9) a sharp smearing function in momentum space [23], i.e. by considering

ψk(x) =

∫
ddq

(2π)d
ei qµ x

µ

ρk(q)ψ(q) , (1.25)

being ρk(q) a sharp cutoff function

ρk(q) = Θ(k − q) . (1.26)

5For a more detailed comparison between RG schemes see [21, 22].
6In a non-perturbative RG context the effective action (i.e. the generator of renormalized Green

functions) is a point in theory space that is finite-valued by definition for physical theories. Conse-
quently, also the Green functions are finite functions of the infrared couplings.
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As a consequence of the use of such a cutoff the original field gets decomposed in fast
and slow modes

ψ(x) = ψ̄(x) + ξ(x) , (1.27)

where the field ψ̄ belongs to the space Fk of functionals with non-vanishing Fourier
modes 0 < p < k, and ξ belongs to the space FΛ/Fk, i.e. contains just the fast modes
k < p < Λ. The evaluation of the Wilsonian action Sk[ψ̄] assumes in this case a rather
simple expression, since we now need to integrate out only the fast modes (that is,
integrating out just ξ), which reads

e−Sk[ψ̄] =

∫
D[ξ] e−SΛ[ψ̄+ξ] . (1.28)

A renormalization group equation can be constructed by reiterating the field decompo-
sition (1.27) and integrating out only an infinitesimal momentum shell δk of the modes
of ψ̄, obtaining

e−Sk−δk[ψ̄′] =

∫
D[ζ] e−Sk[φ̄′+ζ], (1.29)

where we used the decomposition ψ̄(x) = ψ̄′(x) + ζ(x), being ψ̄′(x) ∈ Fk−∆k and
ζ(x) ∈ Fk/Fk−∆k. Since the flow equation is given by the derivative of the Wilsonian
action respect to the blocking scale k, our aim is then to evaluate the limit δk → 0 of
(1.29). Before we do that we expand the right hand term of (1.29) in a Taylor series
around ψ̄′, retaining up to the quadratic (one loop) contribution

e−Sk−δk[ψ̄′] =

∫
D[ζ] e

−
{
Sk[ψ̄′]+

∫
ddxS

(1)
k [ψ̄′] ζ(x)+ 1

2

∫
ddy ζ(y)S

(2)
k [ψ̄′] ζ(x)+O(ζ4)

}
, (1.30)

where S(2)
k [ψ̄′] is the second functional derivative of the blocked action, id est

S
(1)
k [ψ̄′] =

(
δ Sk[ψ̄

′ + ζ]

δζ(x)

)

ζ=0

, S
(2)
k [ψ̄′] =

(
δ2 Sk[ψ̄

′ + ζ]

δζ(x)δζ(y)

)

ζ=0

. (1.31)

Inasmuch as the one loop term is quadratic in the fields it can then be evaluated by
means of a Gaussian integral. Taking the logarithm of both sides, equation (1.32) reads

Sk−δk[ψ̄
′] = Sk[ψ̄

′] +
1

2
STr’ (log(S

(2)
k [ψ̄′])) +

1

2

∫ ′
dy S

(1)
k (S

(2)
k )−1S

(1)
k + ..., (1.32)

where we have used the relation log(det(S(2))) = STr(log(S(2))), being STr a functional
supertrace over the field content of ψ and where the prime means that both the trace
and the integral are performed in Fourier space integrating only the modes between
k and k − δk. Taking now the limit δk → 0 it can be seen that appears a new term
δk/k which plays the role of a small dimensionless parameter. In particular, since
every loop integration gives a volume term δk, every higher n-loop contribution will be
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suppressed (when taking the limit) by a factor (δk/k)n−1, leading then to an exact one
loop renormalization group equation

k ∂k Sk[ψ̄
′] = −k lim

δk→0
(Sk−δk[ψ̄

′]− Sk[ψ̄′]) =

− lim
δk→0

k

δk

{
1

2
STr’(log(S

(2)
k [ψ̄′])) +

1

2

∫ ′
ddy S

(1)
k (S

(2)
k )−1 S

(1)
k

}
,

(1.33)

which takes the name of Wegner-Houghton equation [24].
Contrariwise to the perturbative scheme (1.7) which furnishes a set of coupled or-

dinary differential equations (ODE), the flow equation (1.33) is a partial differential
equation (PDE) which is intended to be solved for the whole Wilsonian action Sk, i.e.
is a functional renormalization group equation (fRGe).

As any other fRG equation, however, the scheme (1.33) consists in an integro-
differential equation which cannot be solved exactly but only through the use of trun-
cations of the coarse grained action in the parameter space. The truncation, however,
can highly affect the calculation of universal quantities whenever we neglect the contri-
butions of the relevant operators in the ultraviolet regime. Of course the choice of the
truncation depends on the model under investigation and, for example, if the theory
is at or out equilibrium. In problems of equilibrium critical phenomena (which is one
of historical targets of application of the non-perturbative renormalization group) the
dependence of the vertices from the external momentum can be neglected and it can be
considered as a good approximation of the full exact solution to solve the flow equation
employing an homogeneous field configuration, that it to solve it for the sole potential.
The latter is the leading order approximation, the so-called local potential approxima-
tion (LPA), of a derivative expansion of the average action, i.e. an expansion in powers
of derivatives of the field.

Considering, for example, a scalar field theory with Z2 symmetry, which belongs
to the same universality class of the Ising model, the leading order of the derivative
expansion is defined by the action

Sk[φ] =

∫
ddx

{
1

2
∂αφ ∂

αφ+ Uk(φ)

}
, (1.34)

where φ(x) is a real scalar field. In (1.34) the radiative corrections to the wavefunction
renormalization have been discarded and the only running function is the potential, and
we used as convention squared parentheses for functionals and rounded for functions.
In the next-to-leading order the running of the wavefunction renormalization is taken
in consideration and is promoted to a running function of the field, i.e. Z ≡ Zk(φ),
so that we end up with a coupled system of partial differential equations. In the next
order we consider the running of the field-dependent coupling of the operator ∂4φ, and
so on.

The accuracy of such a hierarchy of truncations has shown a surprisingly precision in
the evaluation of the critical exponents (in particular the anomalous dimensions of the
operators φ and φ2, that is the critical exponents η and ν) already at the leading order
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(1.34) for the scalar action in d = 3. The sharp RG flow equation for such a theory
can be obtained inserting (1.34) in (1.33). Then, choosing a constant field φ(x) = Φ =
const we note that only term which contributes to the running of the potential is the
logarithmic one [25]. Hence, we obtain a flow equation for the sole potential

k ∂k Uk(Φ) = − lim
δk→0

k

δk

{
1

2
Tr′(log(p2 + U

(2)
k (Φ)))

}
, (1.35)

which, performing the integral and taking the limit leads to the flow equation

k ∂k Uk(Φ) = −Ωd

2
kd log

(
k2 + U

(2)
k (Φ)

)
, (1.36)

where Ωd = 2(4π)−d/2

Γ(d/2)
is a d-dimensional solid angle.

The solution of the RG equation (1.36), besides being the lower order approximation
in the derivative expansion, leads to a qualitatively correct phase diagram and a precise
numerical evaluation of the universality class of the Ising model [26, 27, 28]. Being an
approximated solution it shows however a certain dependence from the shape of the
cutoff function, affecting then the numerical value of the critical exponents. The latter
will converge (with a certain speed, depending on the cutoff function chosen) to their
exact values as we reduce the entity of the approximation.

The matter is that a reduction of the entity of the approximation leads often to
cumbersome calculations which makes technically difficult to improve the precision in
the calculation of the universal quantities. The sharp cutoff equation itself, despite
its exactness and clear structure, does not show an elevated speed of convergency and
moreover the use of a sharp cutoff often brings technical difficulties which makes it not
favorable as a scheme for technical purposes. For example, equation (1.36) fails in the
reproduction of the discontinuity in the second derivative of the effective potential in
the broken phase (that is, integrating the dimensionful equation down to k → 0) which
characterizes the magnetic susceptibility at first order transitions belonging to the Ising
universality class (as for example the gas-vapor transition) [29]. For those reasons has
not been widely used in the study of physical systems.

The property of the exact solution to be independent on the choice of the cutoff
function, however, translated in the freedom to employ a generic smooth cutoff function.
On the one hand this grants us the possibility to select a cutoff function featured with a
convergence rate higher than that of the sharp cutoff, allowing us to work with leading
order approximations, while on the other one gives us the freedom to construct the
cutoff in such a way that the computation of the functional traces is simplified. Those
schemes where developed mostly in the ’90 and the most common scheme nowadays
used in literature is the so-called exact renormalization group (ERG).
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1.2.2 Exact equation

The exact renormalization group equation (ERGe) [30, 31] is a functional RG scheme
in which the coarse graining procedure is implemented by cutting the modes of the field
by introducing a local cutoff operator ∆kS in the partition function, i.e. we evaluate
the Wilsonian action for a constrained action of the type

Sconst[ψ] = SΛ[ψ]−∆kS[ψ] , (1.37)

being SΛ[ψ] the bare action and ∆kS[ψ] a cutoff operator quadratic in the field which
reads

∆kS =
1

2

∫
ddxψ(x)Rk[−�]ψ(x) =

∫
ddp

(2π)d
ψ(p)Rk(p

2)ψ(p) . (1.38)

This procedure resembles the definition of the constrained action in (1.17), besides in
this case we do not have a non local parameter space implementation of the coarse
graining due to the introduction of a background field. The coarse graining is in fact
here introduced in Fourier space by means of the substitution p2 → p2 + Rk(p

2/k2) in
the propagator, where the dimensionful cutoff function Rk reads

Rk(p
2) = k2R(0)

(
p2/k2

)
, (1.39)

being R(0) an arbitrary dimensionless cutoff function. The integration of the only modes
with eigenvalue p2 > k2 is ensured by choosing the cutoff function in such a way that
interpolates between 0 and 1 respectively for p2/k2 > 1 and p2/k2 < 1, so that infrared
modes are suppressed with a constant mass term k2 and small wavelength modes are
unaffected.

Starting with the action (1.37) it is then possible to define an average functional
generator of n-point connected Green functions using the standard Schwinger formalism,
id est

Zk[J ] = eWk[J ] =

∫
D[ψ] e−SΛ[ψ]−∆kS[ψ]+

∫
ddx J(x)ψ(x) . (1.40)

where J(x) is an auxiliary external source. The effective average action (1.22) (EAA)
can then be obtained by performing a Legendre transform of the functional Wk[J ], by
introducing an effective field

Ψ = 〈ψ 〉k =
δWk[J ]

δJ(x)
, (1.41)

and solving (1.41) for the source in terms of the effective field Ψ(x), that is J ≡
Jk(x,Ψ(x)), and then taking the transform

Γk[Ψ] + ∆kS[Ψ] = −W [Jk[x,Ψ]] +

∫
ddx Jk[x,Ψ] ·Ψ(x) . (1.42)
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Note that now holds
δΓk[Ψ]

δΨ
+
δ∆kS[Ψ]

δΨ
= −δW [Jk]

δΨ
+

∫
ddx

δ(Jk[x] ·Ψ(x))

δΨ

= −δW [Jk]

δJ

δJ

δΨ
+ J(x) +

∫
ddx

δJk[x]

δΨ
Ψ = J(x) .

(1.43)

Because of the presence of the cutoff operator in the partition function the Legendre
transform of the generator Wk[J ] is Γk[Ψ]+∆kS[Ψ], thus the expression of the effective
average action Γk reads

Γk[Ψ] = −W [Jk[x,Ψ]]−∆kS[Ψ] +

∫
ddx Jk[x,Ψ] ·Ψ(x) . (1.44)

Moreover, not being a Legendre transform, (1.44) needs not to be a convex functional
of the field, as it also happens for the Wilsonian action.

In order to build a functional renormalization group equation for the effective aver-
age action (1.44) it is convenient to rewrite the action in its functional form

e−Γk[Ψ] =

∫
D[χ] e

−S[Ψ+χ]−∆kS[Ψ+χ]+∆kS[Ψ]+
∫
ddx

(
δΓk[Ψ]

δΨ
+
δ∆kS[Ψ]

δΨ

)
χ
, 〈χ〉 = 0 , (1.45)

where we used (1.43) to rewrite the source, in combination with the procedure presented
in Appendix A for the standard effective action. Using the feature of the operator ∆kS
to be quadratic in the field we can expand it in powers of the field around ψ = Ψ,
obtaining

−∆kS[Ψ + χ] + ∆kS[Ψ] +

∫
ddx

δ∆kS[Ψ]

δΨ
χ

=

(
−∆kS[Ψ]− δ∆kS[Ψ]

δΨ
χ− δ2∆kS[Ψ]

δΨ δΨ
χ2

)
+ ∆kS[Ψ] +

∫
ddx

δ∆kS[Ψ]

δΨ
χ

= −1

2

δ2∆kS[Ψ]

δΨ δΨ
χ2 = −∆kS[χ] ,

(1.46)

so that (1.45) is rewritten as

e−Γk[Ψ] =

∫
D[χ] e−S[Ψ+χ]−∆kS[χ]+

∫
ddx

δΓk[Ψ]

δΨ
χ , 〈χ〉 = 0 , (1.47)

Taking the derivative of (1.47) respect to the RG time t = log(k/k0) we obtain

∂t e
−Γk[Ψ] = −(∂t Γk[Ψ]) e−Γk[Ψ]

=

∫
D[χ]

(
−∂t ∆kS[χ] +

∫
ddx ∂t

δΓk[Ψ]

δΨ
χ

)
e−S[Ψ+χ]−∆kS[χ]+

∫
ddx

δΓk[Ψ]

δΨ
χ ,

(1.48)

which, using (1.40), can be written in terms of expectation values as

∂t Γk[Ψ] = 〈∂t∆kS[χ]〉 =
1

2

∫
ddx
√
g (∂tRk,AB) 〈χAχB〉 , (1.49)
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where in (1.49) we used the fact that 〈χ〉 = 0. Taking now the functional derivative of
(1.41) and (1.43) respectively to J and Ψ we can now note that the twice derivated gen-
erator Wk[J ] is the inverse of the second functional derivative of its Legendre transform
Γk[Ψ] + ∆kS[Ψ], that is

(
δ2Wk[J ]

δJ δJ

)
=

(
δ2(Γk[Ψ] + ∆kS[Ψ])

δΨ δΨ

)−1

, (1.50)

so that in the end the two point correlation function of the field χ can be written as

〈χAχB〉 =

(
δ2(Γk[Ψ] + ∆kS[Ψ])

δΨ δΨ

)−1

=

(
δ2Γk[Ψ]

δΨ δΨ
+Rk

)−1

, (1.51)

which leads to the exact equation

∂t Γk[Ψ] =
1

2
STr

[
(∂tRk,AB)

(
δ2Γk[Ψ]

δΨA δΨB

+Rk,AB

)−1
]
. (1.52)

The above equation, like also the Wegner-Houghton equation (1.33), is said to be exact
in the sense that no approximations have been used in its derivation. Being exact, it
reproduces the effective action in the limit k → 0+, i.e. that in the infrared regime
all the fluctuation are correctly integrated out, besides their structure resembles that
of a simple one loop correction. Driven by this one loop structure a diagrammatic
representation of equation (1.52) is presented in Fig. 1.2.Finite-Temperature Spectral Functions from the FRG Ralf-Arno Tripolt

Figure 1: (color online) Diagrammatic representation of the flow equation for the effective action. Dashed
(solid) lines represent bosonic (fermionic) propagators and circles the respective regulator insertions ∂kRk.

In the following we employ the quark-meson model, which serves as a low energy effective
model for QCD with Nf = 2 light quark flavors and yields the following Ansatz for the effective
average action, in the lowest order derivative expansion where only the effective potential carries a
scale dependence,

Γk[ψ̄,ψ,φ ] =
�

d4x
�

ψ̄
�
/∂ +h(σ + i�τ ·�πγ5)

�
ψ + 1

2(∂µ�φ)2 +Uk(φ 2)− cσ
�

, (2.2)

with φi = (σ ,�π)i and φ 2 = σ2 +�π2. The effective potential Uk(φ 2) allows for spontaneous breaking
of chiral symmetry while the explicit breaking term cσ accounts for a non-vanishing pion mass.

Inserting Eq. (2.2) into the flow equation for the effective action, Eq. (2.1), evaluated for
constant fields and using the three-dimensional analogues of the LPA-optimized regulator functions
[32], gives for the flow equation of the effective potential

∂kUk = 1
2 I(1)

σ + 1
2(N −1)I(1)

π −NcNfI
(1)
ψ . (2.3)

Therein the loop functions I(i)
α are defined as

I(i)
α = Trq

�
∂kRk(q)Gα,k(q)i� , (2.4)

with α ∈ {σ ,π,ψ}, Gα,k(q) the full (scale-dependent) Euclidean propagator and Rk(q) chosen
appropriately for bosonic and fermionic fields. The flow equations for the inverse mesonic 2-point
functions are now obtained by taking two functional derivatives of Eq. (2.1),

∂kΓ(2)
σ ,k = JB

σσ (Γ(0,3)
σσσ )2 +(N −1)JB

ππ(Γ(0,3)
σππ )2 − 1

2 I(2)
σ Γ(0,4)

σσσσ − (N−1)
2 I(2)

π Γ(0,4)
σσππ −2NcNfJF

σ , (2.5)

∂kΓ(2)
π,k = (JB

σπ + JB
πσ )(Γ(0,3)

σππ )2 − 1
2 I(2)

σ Γ(0,4)
σσππ − 1

2 I(2)
π (Γ(0,4)

ππππ +(N−2)Γ(0,4)
πππ̃π̃)−2NcNfJF

π , (2.6)

with π �= π̃ ∈ {π1,π2,π3} and N = 4 in our O(4) case, see Fig. 2 for a graphical representation.
The bosonic and fermionic loop functions are defined as

JB
αβ (p) =Trq

�
∂kRk(q)Gα,k(q− p)Gβ ,k(q)2� , (2.7)

JF
α (p) =Trq

�
∂kRk(q)Gψ,k(q)Γ(2,1)

ψ̄ψαGψ,k(q− p)Γ(2,1)
ψ̄ψαGψ,k(q)

�
, (2.8)

for α ∈ {σ ,π} and at external momentum p. All vertices are taken to be momentum independent in
our present truncation and are obtained by appropriate functional derivatives of the effective action
for the quark-meson model, given by Eq. (2.2).

3

Figure 1.2: Diagrammatic representation of the exact renormalization group equation. The two
loops characterize the bosonic (dashed) and fermionic (solid) content of the field ψ, with a - 2 term for
coming from the trace over complex Grassmannian variables. The blue and red dots are respectively
the cutoff insertions for bosonic and fermionic operators.

By means of field derivatives, equation (1.52) can be recasted in terms of a infinite
hierarchy of flow equations for the n-point correlation functions, of which the first
terms are

k ∂k Γk =
1

2
STr

[
(k ∂k Rk)Gk

]
,

k ∂k Γ
(1)
k,x = −1

2
STr

[
(k ∂k Rk)Gk Γ

(3)
k Gk

]
,

k ∂k Γ
(2)
k,y = STr

[
(k ∂k Rk)Gk Γ

(3)
k Gk Γ

(3)
k Gk

]
− 1

2
STr

[
(k ∂k Rk)Gk Γ

(4)
k Gk

]
,

(1.53)
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where Gk is the modified inverse propagator

Gk = (Γ
(2)
k +Rk)

−1 . (1.54)

The solution for the two point function permits to solve the flow equation for generic
external momenta, and results to be a more appropriate framework in the applications
to problems in dynamical critical phenomena. The hierarchy of n-point flow equations
needs, however, to be truncated by means of some approximation in the momentum
dependence of the higher order vertices Γ

(3)
k and Γ

(4)
k [32, 33, 34]. An other interesting

application of the two point flow equation comes in the so-called LPA’ approximation
[35], that is an optimization of the standard local potential approximation in which
the radiative correction to the renormalization function are taken in consideration in
the proper vertices, without requiring then to promote the renormalization function to
a function of the field how it happens in the next to leading order of the derivative
expansion.

There is a considerable freedom in the choice of the cutoff function. The most used
in literature are the mass-like, the exponential and the so-called optimized [36], which
read respectively

Rk(z)mass = k2 ,

Rk(z)exp =
z

e
z
k2 − 1

,

Rk(z)opt = (k2 − z2) Θ(k2 − z2) ,

(1.55)

being z the eigenvalue of the operator we want to cut the modes and where the Θ
is the Heaviside function. Since the β-functions are solved most of the time using
numerical techniques, it is convenient to employ a cutoff function which does not lead
to a complicated expression of the flow equation. The optimized cutoff (that is the one
we will use in chapter (4)) has been widely used for his well-know feature to simplify
considerably the functional trace. Since the cutoff operator is defined in terms of a step
function the derivative with respect to the RG scale returns

k ∂k k
2Rk(z)opt = 2 k2 Θ

(
k2 − z2

)
+ 2

z

k2
(k2 − z2) δ

(
k2 − z2

)
, (1.56)

which reduces to the sole Heaviside function using the property of the distributional
product of the delta function with its argument to be zero. Because of the step func-
tion, the trace reduces to a momentum integral between 0 and k, thus automatically
rendering the functional traces UV finite.

The ERGe has been applied with success to many branches in modern physics,
among which gauge theories [37], fermionic systems [38], superconductivity [39], statis-
tical mechanics [40] and quantum gravity, as we will see in the next chapter. Aside of
the broad application of the ERGe, the freedom of the cutoff function to do not lend
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to this scheme, anyway, a considerable speed of convergency of the universal quantities
to their exact counterpart.

The last equation that we propose in this work is a renormalization group scheme
in which the coarse graining is not implemented by means of a cut of modes of the
field in Fourier space but by regulating the proper time integral of the heat kernel
operator associated to the inverse propagator of the theory. Such a scheme has shown
in literature the highest speed convergency, although it is not an exact scheme.

1.2.3 Proper time equation

The idea behind the construction of a proper time renormalization group flow consists
in the implementation of the coarse graining procedure not as a cut of modes in Fourier
space (that is, by regularizing IR divergencies by means of a momentum cutoff) but
at the level of proper time representation of the heat kernel of the inverse propagator,
regularizing then the proper time integral (the heat kernel itself is divergences-free
operator).

A RG scheme can be built from both the momentum space schemes introduced
in this chapter, namely the Wegner-Houghton equation (1.33) and the ERG equation
(1.52), but for for the sake of discussion we will construct it from the proper time rep-
resentation of the sharp cutoff equation and propose a comparison with proper time
ERG schemes afterward.

We start by introducing the notion of heat kernel operator associated to a generic
differential operator A as the operator H such that

H(x, x′, s;A) = 〈x | e−sA |x′ 〉 , (1.57)

where s is a proper time variable and H satisfies the generalized heat diffusion equation

(∂s +Ax)H(x, x′, s;A) = 0 , (1.58)

with boundary condition

lims→0+H(x, x′, s;A) = δd(x− x′) , (1.59)

being d the dimension of the space (statistical mechanics) or spacetime (quantum field
theory). The heat kernel comes in help since we can rewrite functions of the opera-
tor A, i.e. powers or logarithms, in terms of their integral representation. Since we
are interested in a logarithmic one loop structure lets then take in consideration the
representation

ln(A) = −
∫ ∞

0

ds

s
e−sA = −

∫ ∞

0

ds

s
H(s;A) , (1.60)

where the above definition holds up to a diverging quantity. The trace of the left hand
term on (1.60) can then be calculated by evaluating the trace of the heat kernel operator
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and then performing the proper time integral associated to its representation. Since the
trace of H is well defined (because of its exponential structure, UV and IR divergencies
are mapped respectively on the eigenvalues 0 and 1 of the heat kernel) the divergencies
coming from the trace of the logarithm are translated in divergencies in the proper time
integral, which needs now to be regularized. The easier way to regularize it is by means
of a sharp cutoff, which reads

Tr[ ln(A) ]reg = −
∫ 1/k2

1/Λ2

ds

s
TrH(s;A) , (1.61)

being Λ2 and k2 respectively an ultraviolet and infrared momentum cutoff. The sharp
cutoff for a certain class of operators actually corresponds to a sharp momentum cutoff,
but as we will see afterward this is not generally true. As it happens in momentum
space, the regularization of divergencies of the proper time integral can be obtained by
using a generic smooth or sharp cutoff function ρ(s, k,Λ) such that

lim
s→∞

ρk 6=0,Λ(s) = 0 ,

lim
k→Λ

ρk,Λ(s) = 0 ,

lim
Λ→∞

ρk=0,Λ(s) = 1 ,

(1.62)

and such that lims→0 ρk=0,Λ(s) = 1 in order to ensure that the UV behavior remains
unaffected by the introduction of the cutoff. The regularized trace of (1.60) now reads

Tr[ ln(A) ]reg = −
∫ ∞

0

ds

s
ρk,Λ(s)TrH(s;A) . (1.63)

Since we are interested in the definition of an RG equation, i.e. we want to obtain
the variation respect to an infinitesimal change k → k + δk, we consider the derivative
respect to the RG scale of the regularized trace which translates in the derivative of the
only k-dependent object present in the right hand term of (1.63), i.e. the derivative of
the cutoff function

k ∂k Tr[ ln(A) ]reg = −
∫ ∞

0

ds

s
(k ∂k ρk(s))TrH(s;A) , (1.64)

where, since the dependence from the ultraviolet cutoff is lost, we can now send Λ→∞.
Following the philosophy of the Wegner-Houghton equation (1.36) we can now use (1.64)
to construct a one loop flow equation for the Wilsonian action Sk as

k ∂k Sk[ψ] =
1

2
k ∂k STr[ ln(S

(2)
k ) ]reg = −1

2

∫ ∞

0

ds

s
(k ∂k ρk(s)) STrH(s;S

(2)
k (ψ)) .

(1.65)
The above equation may seem not rigorous since in (1.64) we discarded a derivative
respect to the operatorA, which is now a scale dependent operator, A ≡ S

(2)
k . The latter
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has to be considered in terms of an optimization, that is we operated the substitution
SΛ → Sκ in the one loop term as to provide a partial resummation of the perturbation
expansion. In spite of that it can be proved that by means of a proper choice of the
cutoff function ρk(s) the proper time equation (1.65) can be mapped on the Wegner-
Houghton equation in the local potential approximation. To show it consider the sharp
cutoff equation for the scalar field theory (1.36), in which we subtract a vacuum term
in order to have a well defined proper time integral representation

k ∂k Uk(Φ) = −Ωd

2
kd log

(
k2 + U

(2)
k (Φ)

k2 + U
(2)
k (Φ0)

)
=

Ωd

2
kd
∫ ∞

0

ds

s
e
−s k

2+U
(2)
k

(Φ))

k2+U
(2)
k

(Φ0) , (1.66)

where Φ0 is the absolute minimum of the bare potential UΛ(Φ). The vacuum contri-
bution can be removed once performed the proper time integral, obtaining the stan-
dard sharp cutoff expression. We can now compare (1.66) to (1.65), being S(2)

k [Φ] =∫
ddx {−�+ U

(2)
k (Φ)}, obtaining then

Ωd

2
kd
∫ ∞

0

ds

s
e−s k

2
(
e−sU

(2)
k (Φ) − e−sU(2)

k (Φ0)
)

= −1

2

∫ ∞

0

ds

s
(k ∂k ρk(s))

(
e−sU

(2)
k (Φ) − e−sU(2)

k (Φ0)
)
TrH(s;−�) .

(1.67)

Now, since the trace of the heat kernel in the right hand term of (1.67) gives

TrH(s;−�) = Trx〈x | e−s(−�) |x 〉

=

∫
ddx

∫ ∞

0

dp pd−1 2

(4 π)
d
2 Γ
(
d
2

) e−s p2

=

∫
ddx

1

(4 π s)
d
2

,
(1.68)

we can insert (1.68) in (1.67) and solve respect to k ∂k ρk obtaining the expression

k ∂k ρk(s) = − 2

Γ
(
d
2

)(s k2)
d
2 e−s k

2

. (1.69)

We can now integrate (1.69) over k obtaining the proper time representation of the
sharp momentum cutoff, which reads

ρk,Λ(s) =
Γ
(
d
2
; s k2

)
− Γ

(
d
2
; sΛ2

)

Γ
(
d
2

) , (1.70)

being Γ(a; b) the incomplete Euler Gamma function. Note that the proper time regu-
lating function (1.70) leads to the Wegner-Houghton equation just in the local potential
approximation, so does not map to an exact sharp equation (1.33) . As already stated,
since the sharp equation does not exhibit an high precision in the evaluation of crit-
ical exponents we can take advantage of the freedom to choose a smooth functions
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and use (1.70) as a starting point to define a one parameter family of cutoff functions
parametrized by a cutoff parameter n, which reads

ρk(s, n) =
Γ
(
d
2

+ n; s k2
)
− Γ

(
d
2

+ n; sΛ2
)

Γ
(
d
2

+ n
) , (1.71)

where n ∈ [0,∞). The flow equation for the above family of cutoff functions can be
computed taking the derivative of (1.71), namely

k ∂k ρk(s, n) = − 2

Γ
(
d
2

+ n
)(s k2)

d
2

+n e−s k
2

, (1.72)

which, inserting (1.72) in (1.65), leads to

k ∂k Uk(Φ) = −Ωd

2
kd Γ

(
d

2

)
Γ (n)

Γ
(
n+ d

2

)
(

1

1 + U
(2)
k /k2

)n

. (1.73)

The above equation is however ill-defined for large n because of the presence of the
cutoff parameter in the argument of the gamma functions. Taking the limit n→∞ we
see in fact that the ratio of gamma functions approaches a term

lim
n→∞

Γ (n)

Γ
(
n+ d

2

) = n−
d
2 , (1.74)

which suppressed the flow equation for large n. A finite limit can be obtained by
considering a reparametrization of the RG scale, i.e. by inserting

k2 → n k2 , (1.75)

in (1.73), which furnishes a factor nd/2 that ensures the finiteness of the flow equation.
The RG equation for the reparametrized equation reads then

k ∂k Uk(Φ) = −Ωd

2
kd Γ

(
d

2

)
Γ (n)n

d
2

Γ
(
n+ d

2

)
(

1

1 + U
(2)
k /(n k2)

)n

, (1.76)

and the limit for large n of equation (1.76) can now be taken noting that the limit of
the propagator appearing in (1.76) is a well known limit

lim
n→∞

(
1 +

U
(2)
k

k2 n

)−n
= e−

U
(2)
k
k2 , (1.77)

so that we end up with the exponential expression

lim
n→∞

k ∂k Uk(Φ) = −Ωd

2
kd Γ

(
d

2

)
e−

U
(2)
k
k2 . (1.78)
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Equation (1.78) is nonetheless the RG equation obtained by employing a sharp proper
time integral (analogous to (1.61)).

The exponential fRG equation has shown so far the highest precision in the evalua-
tion of the critical exponents for the scalar field theory [41, 42], besides, how we will see
afterwards in this work, the large n limit is not always the regime in which the proper
time cutoff results to be more accurate. Furthermore, it has been applied in gauge field
theories [43, 44].

A well known issue of the proper time scheme constructed from the cutoff (1.71)
is, however, its exactness. i.e. the reproduction of the correct effective action while
integrating down to k → 0. The use of the proper time regulator (1.71) in perturbation
theory leads to correct results at two loop only when employing a linear dependence on
the propagator (that is, n = 1 in (1.76)), while a logarithmic or non linear dependence on
the propagator gives wrong combinatorial factors in diagram summation. The linearity
in the propagator as an essential ingredient in the construction of an exact equation is
moreover already expressed on the linear dependence of the ERG equation (1.49) from
the 2-point correlation function. The relation between the scheme (1.65) and the exact
equation (1.52) is made clear by rewriting the denominator of (1.52) in its proper time
representation

1

2
STr

[
k ∂k Rk

Γ
(2)
k +Rk

]
= −1

2
STr

[
(k ∂k Rk)

∫ ∞

0

ds e−s (Γ
(2)
k +Rk)

]
, (1.79)

and then de-entangling the cutoff function Rk from the heat kernel of Γ
(2)
k by means of

a Baker-Campbell-Hausdorff expansion. In particular, using the Zassenhaus formula

e−s (A+B) = e−sA e−sB
∞∏

i=2

e−s
i Ci , (1.80)

being Ci operators made by linear combination of i commutators of the generic non-
commuting operators A and B, we obtain

e−s (Γ
(2)
k +Rk) = e−sΓ

(2)
k e−sRk

{
1− s

2
[Γ

(2)
k , Rk] +O(s2)

}
≡ e−sΓ

(2)
k Fk[sRk; sΓ

(2)
k ],

(1.81)
where Fk is now a proper time cutoff function built from the ERG cutoff function Rk.
The exact renormalization group equation reads now

k ∂k Γk = −1

2
STr

[∫ ∞

0

ds

s
{s Fk[sRk; sΓ

(2)
k ] (k ∂k Rk)} e−sΓ

(2)
k

]
, (1.82)

and the comparison between the proper time flow equation and the ERG equation is
then straightforwardly characterized by the identity

∂t ρk,Λ(s) = s Fk[sRk; sΓ
(2)
k ] (k ∂k Rk) . (1.83)
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Generally, there is no momentum independent cutoff equation ρk,Λ(s) which satisfies
equation (1.83), since the dependence on Γ

(2)
k of Fk encodes the correct loop summation.

Anyway, it is still possible that the two functions coincide under certain approxima-
tions, like it happens for the sharp cutoff equation. An other possibility is to use a
spectrally adjusted cutoff, i.e. to build a cutoff operator Rk which cuts the modes of
the whole effective action, Rk ≡ Rk[Γ

(2)
k ], so that the commutators appearing in (1.80)

disappear. It can be demonstrated that using such a cutoff in the background field
method the proper time equation for n = 1 actually corresponds to the ERGe obtained
using the optimized cutoff (for more details see [45]).

Concluding, we briefly introduced in this chapter the perturbative and non-perturbative
renormalization group schemes which we will employ of in the next chapters, although
the introduction of the Wegner-Houghton equation was here mostly instrumental (to in-
troduce the proper time equation) and nonetheless historical, since the renormalization
group equation was obtained independently by Wegner and Wilson [46].

In particular, after an introducing in chapter 2 the application of the renormalization
group to quantum gravity, we will work in chapter 3 in the proper time framework to
investigate the scheme-dependence of the conformally reduced Hilbert-Einstein action,
then we will apply the ERG equation to the quantization of the Brans-Dicke theory in
chapter 4 and finally we will employ the MS scheme in the study of the reduced model
of Hořava-Lifshitz gravity in chapter 5.
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Chapter 2

Renormalization group in quantum gravity

The identification of a theory of quantum gravity is surely one of the most important
unsolved puzzles in modern physics. Now that the landmarking success of quantum
field theory to unify the strong, weak and electromagnetic interactions in a gauge field
theory, that is the Standard Model, has been acclaimed by the recent discovery of a
scalar particle at the LHC [47, 48], the identification of a quantum theory for gravita-
tion assumes new facets, since it has now to satisfy the constraints coming from the
Higgs mass and the disposal of minimal supersimmetric models.

While such a theory is still missing, it is not clear whenever it will be a string theory
or a quantum field theory, if it will feature a unification of all the four fundamental
interactions or it will instead describe separately quantum gravity. It is, however, very
probable that particle physics at very high energy is profoundly altered by quantum
gravitational effects.

Various approaches to quantum gravity, for example, suggest the existence of com-
pactified dimensions already at the TeV scale, or that the spacetime exhibits some sort
of quantum fuzziness at Planckian energies, featured in loop quantum gravity by the
quantization of the area operator (which has a discrete spectrum) and in string theory
by the presence of a generalized uncertainty principle, characterized by coordinates non
commutativity. We expect some of these non-trivial properties to be part of the correct
theory of quantum gravity.

Many insights are recently coming from different approaches to the quantization of
gravity (among which asymptotic safety [1, 2], CDT [49], Hořava-Lifshitz [11] and loop
quantum gravity [50]) which are making progress towards the definition of a consistent
theory. Interestingly, some of them (besides being based on different philosophies and
techniques) are converging towards analogous results1, raising the possibility of being

1One of the most known results we refer here to is the value of the microscopic spectral dimension,
which has been found to be equal to 2 in many different approaches of quantum gravity, among which
asymptotic safety [51], CDT [52], Hořava-Lifshitz gravity [53], loop quantum gravity [54] and double
special relativity [55].
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grasping different details of the same microscopic theory.
Hence, before give up on quantum field theory as a possible candidate for a ultravi-

olet completion of general relativity it is indeed necessary to completely grasp how the
gravitational fluctuations interact; also while assuming that at a certain energy scale
gravity is defined by some other more fundamental theory, it is, in fact, still reasonable
to consider QFT as a possible intermediate state, that is, an effective quantum theory.

2.1 Renormalizability and unitarity

The fulfillment of the requests of unitarity and renormalizability is, however, a necessary
but not sufficient condition for the identification of the correct theory. The issues of
renormalizability, in particular, is the historical problem which arose since the first
attempt to quantize Einstein’s theory. By employing a simple dimensional analysis, the
method of the power counting, it was shown that Einstein’s theory was likely to be not
renormalizable, being the Newton’s constant a negative dimensional parameter.

According to the method of power counting the perturbative renormalizability of a
theory can be deduced by the scaling dimension of the couplings. Whenever a coupling
a has a scale dimension da, the β-function of the dimensionless coupling ã, ã = µ−da a,
takes at tree level a term proportional to its scale dimension, i.e. being µ a mass

µ ∂µ ãµ = µ ∂µ (µ−da aµ) = −da ãµ +O(}) . (2.1)

Equation (2.1) is the generalization of the Gell-Mann Low equation (1.7) for a dimen-
sionful parameter, where the term O(}) is proportional to the anomalous dimension
(containing thus loop corrections).

Now, whenever we are in a perturbative regime and the dimensionality of the cou-
pling is positive the leading term of the β-function leads the coupling to zero in the
high energy limit, realizing asymptotic freedom. The coupling in this case is said to be
super renormalizable or relevant. For da = 0, that is the standard case of gauge field
theories, the running of the coupling is dominated entirely by the loop corrections and
such a coupling is said to be strictly renormalizable or marginal. The last case is the
one with da < 0 which leads to a positive β-function, so that the coupling is catalogued
as non renormalizable.

The non renormalizability of theories with negative dimensional interaction param-
eters can also be understood in terms of perturbation theory, since the divergences
appearing in the diagrams of the n-th order in the perturbative expansion have now
to compensate the negative dimension of the coupling (elevated to n). Hence, in order
to built counterterms to absorb the divergencies in the bare couplings we need to add
to the bare action invariant of positive mass dimension da n, for each order n. We end
up then with an infinite number of higher dimension operators in the bare action, and
since we now need to fine tune an infinite number of parameters the theory loses its
predictable value.
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Let us focus now on the Einstein-Hilbert action

S[gµν ] = − 1

16π G

∫
ddx
√
g {R(g)− 2 Λ} , (2.2)

where G is the Newton constant, R(g) is the Ricci scalar constructed from the metric g
and Λ is the cosmological constant. Being d the dimensionality of the volume element,
the inverse of the coupling associated to the operator√g R, i.e. the Newton constant G,
has mass dimension 2− d; the gravitational interaction is then marginal (at tree level)
in two dimensions (where the theory is however topological) and non renormalizable
for d > 2. We expect then to receive divergent contributions from loop corrections.

The perturbative renormalizability has been investigated at a quantum level by ’t
Hooft and Veltman in ’74 [56], whom discovered that at one loop the divergencies (which
are proportional to the squared Ricci scalar and two contracted Ricci tensors) vanish
on shell, granting renormalizability to the theory. The hope that divergencies would
cancel also at higher orders disappeared when Goroff and Sagnotti proved in ’85 that
the theory contains non-vanishing divergencies already at two loops [57].

Hence, one of the first historical proposal to cure the UV behavior of general rel-
ativity was to employ higher derivative operators. Using the power counting it can
be seen that operators built contracting two Riemann tensors (or tensors of the same
dimension, like the Weyl tensor) are marginal operators, since their couplings are di-
mensionless in d = 4. There were then many attempts to define an UV completion of
gravity by regularizing the high energy behavior of diagrams by inserting in the bare
action marginal operators built from the Ricci tensor, like the Weyl-Eddington action

S[gµν ]hd = − 1

16π G

∫
ddx
√
g {R− γ R2 − β Rµν R

µν − 2Λ} , (2.3)

where γ and β are respectively the couplings of the squared Ricci scalar and contracted
Ricci tensor. However, an other serious issue emerged, that is the loss of unitarity [58].

The higher derivative action (2.3), in fact, leads to an effective propagator for the
spin-2 modes

1

p2 − β Gp4
, (2.4)

that runs to zero fast enough for p → ∞ to ensure the absence of divergencies in
the Feynman diagrams but contains an unphysical pole (the so-called poltergeist) at
p2 = (β G)−1 which violates the Kallen-Lehmann theorem and spoils the unitarity of
the theory.

It is, however, an old debate whether the ghost really implies a loss of unitarity or
not. It can happen that employing an RG improvement in the perturbative expansion
the unphysical poles move to complex values and cancel their contributions from the
S matrix [59], restoring the unitarity of graviton-graviton amplitudes, or that gravity
is strongly coupled in the high energy regime and that the contributions of irrelevant
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(higher derivative) operators push the pole to infinity, saving the physical value of the
theory. The latter assumption, and in particular the assumption of non-perturbative
renormalizability of gravity, has been conjectured by Weinberg in the ’70 and goes
under the name of the asymptotict safety scenario for quantum gravity [1, 2, 3, 4, 5].

2.2 Asymptotic safety scenario

The insight that gravity flows in the ultraviolet to a non-perturbative regime is a simple
consequence of the β-function (2.1) for the Newton constant G, which in d = 4 reads

k ∂k G̃(k) = 2 G̃(k) +O(}) , (2.5)

where G̃ is the dimensionless Newton constant and k a renormalization scale2. The
solution of the tree term of (2.5), that is G̃(k) = k2G, entails that, starting from a
perturbative regime G̃ � 1, the Newton constant grows for large k towards a non-
perturbative regime, but, unfortunately, in a divergent way so that also the correlation
functions diverge. In that regime, however, loop corrections can became of the same
order of the tree term and the contribution of irrelevant interaction can become relevant
and not anymore negligible. It can then happen that the fluctuations take control of
the UV flow of the theory and keep correlation functions finite at all the scales. Hence,
the theory is said to be asymptotically safe.

In terms of β-function the last definition can be casted in the following way. Lets
consider an expansion of the microscopic gravitational action in local operators Oi(x),
that is

S[gµν ] =

∫
ddx
√
g
N=∞∑

i=1

aiOi(x, g) . (2.6)

The scale dependence of the above action is encoded in a system of coupled β-functions
for the dimensionless couplings ãi, namely





k ∂k ã1(k) = β1(ã1, ã2, · · · )
k ∂k ã2(k) = β2(ã1, ã2, · · · )

· · ·
, (2.7)

that of course can be solved only if we truncate the action (2.6) to a finite N . The
requirement of asymptotic freedom translates then in the existence of a trivial fixed
point of the system (2.7), i.e. a common zero of the β-functions at vanishing couplings
(except for the redundant couplings). The theory is, instead, said to be asymptotically

2Note that we changed notation from µ to k for the renormalization parameter, since we will work
now in a non-perturbative framework. The identification of the two renormalization scales has already
been done in the chapter 1 and it will be used also in the others chapters.
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safe whenever the system (2.7) admits a non-trivial fixed point solution, thus a common
zero of the β-functions 




β1(ã∗1, ã
∗
2, · · · ) = 0

β2(ã∗1, ã
∗
2, · · · ) = 0

· · ·
, (2.8)

for a set of non-zero couplings {a∗j}. The latter fixed point is also said non-Gaussian
(NGFP), as opposite to the trivial Gaussian fixed point, since it identifies a scale in-
variant interacting field theory. Hence, the assumption we make is that such a fixed
point is strongly interactive and attractive in the UV direction, so that the flow of the
Newton’s constant is controlled, once in the high energy regime, by the presence of the
fixed point and in the UV limit we get

lim
k→∞

G̃(k) = G̃∗ , (2.9)

being G̃∗ the dimensionless Newton’s constant at the fixed point. Consequently, since
the couplings stay finite along all the flow, the correlation functions are also finite and
the theory is renormalizable in a non-perturbative sense.

To investigate the existence of such a non-perturbative non-Gaussian fixed point,
however, perturbative RG techniques like the MS scheme are not appropriate, since a
large number of loops would be eventually required to reproduce the non-trivial zero of
the β-function. In the ultraviolet regime, in fact, fluctuations can be dominant respect
to tree contributions so that irrelevant parameters can become relevant, and vice versa.
It is thus necessary to employ non-perturbative techniques.

As mentioned in chapter 1, an appropriate non-perturbative framework is the Wil-
son’s renormalization group, since the coarse graining automatically generates the cou-
pled flow of an infinite number of parameters. The search for a non-Gaussian solution
of the systems (2.8) translates then in the search for a non-trivial solution of the RG
equation for the whole effective action, i.e.

k ∂k Γk[gµν ] = 0 , (2.10)

that interpolates between the full gravitational effective action Γ[g] ≡ Γk=0[g] and the
Einstein-Hilbert action SΛ[g] ≡ Γk=Λ[g] at our energy scale (depicted in Fig. 2.1).
The statement of renormalizability can then be formulated as the existence of an RG
trajectory that, taking the limit Λ→∞, connects the bare action SΛ ≡ Γk=Λ to a scale
invariant ultraviolet action S∗ ≡ Γk=∞, that is the fixed point we want to investigate
about.

Although the theory space is now infinite dimensional, that is we need to fine tune
an infinite number of couplings in order to select a trajectory in parameter space, we
assume that we need to fine tune just a finite number of relevant parameters in the
correlation functions, that is to say, the ultraviolet critical surface is finite dimensional
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Figure 2.1: Renormalization group trajectories in theory space.

(illustrated in Fig. 2.2). Moreover, since the correlation functions depend just on the
tuning of a finite set of couplings, the theory (besides in the form of an effective field
theory) has still predictable value.

The dimensionality of the ultraviolet critical surface depends itself on the number
of attractive directions in the linearized flow around the fixed point. Being a∗i the fixed
point value of the i-th coupling, the linearized running of the coupling in a neighborhood
of the fixed point can be written as

ai(k) = a∗i +
∑

A

kλA CA V
A
i , (2.11)

where A is an index over the parameter space (like i), CA are arbitrary coefficients,
λA are the critical exponents and Vi are perturbation vectors. Attractive directions
are then characterized by negative critical exponents λA, since in the limit k →∞ the
perturbation goes to zero and the coupling reaches the fixed point, ai(k) → a∗i , while
for λA > 0 it runs away from a∗i . The spectra of critical exponents λA is simply the
spectra of eigenvalues of the stability matrix B, being defined as

Bij =
∂ βi
∂ aj

∣∣∣
{ai}={a∗i }

, (2.12)

where the β-functions in (2.12) has been defined in (2.7). The eigenvectors of this
matrix are the vectors Vi in (2.11), for which it holds

∑

j

BijVj = λi Vi . (2.13)

The dimensionality of the ultraviolet critical surface is then simply given by the number
of negative eigenvalues of the stability matrix, which are the only parameters we need
to fine tune in the correlation functions, assumed that the physical theory is described
by a trajectory which lies on the critical surface.
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SUV

Λ → ∞
SUV

d−2+η(g∗)
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Λ → ∞
Λ

g∗
i

Λ
d

dΛ
δgi = Mij δgi ,

Mij

Figure 2.2: Trajectories out of the critical surface characterize non renormalizable theories since in
the limit k → ∞ they get pushed away from the fixed point by diverging contributions of irrelevant
operators.

Despite the fact that the expression of the β-functions depends on the regulator (or
scheme) used, the spectra of the B matrix is scheme-independent, since it encodes the
informations about the linear behaviour or the flow around the fixed point, that is, the
universality class of the theory.

Before applying the functional RG to an effective theory of gravity it is still, however,
intriguing to investigate the existence of a non-Gaussian fixed point in a perturbative
regime, that is when the Newton’s constant is circa marginal, dG ≈ 0. As it often
happens in statistical mechanics, the non-trivial fixed point collapses on the Gaussian
for d → dc, where dc is the critical dimension3 of the coupling, dc = 2 in the case of
Newton’s constant. We can then start by studying the phase diagram of gravity in 2+ε
dimensions, being ε an infinitesimal parameter, employing the ε-expansion developed
by Wilson and Kogut [46].

2.2.1 Gravity in 2 + ε dimensions

To study the quantization of Einstein’s gravity in 2 + ε dimensions we employ here the
dimensional regularization. Let us consider a bare dimensionless coupling ãi(D), where
D is the dimensionality of spacetime, and rewrite it in terms of a renormalized coupling

3The critical dimension dc is defined by means of the Ginzburg criterion as the dimension at which
the critical exponents agree with mean field theory, and the coupling becomes marginal.
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ãi(k,D) plus counterterms as

ãi(D) = ai(D) k−di(D) = ãi(k,D) +
∑

s

∞∑

ν=1

1

(D −Ds)ν
b

(s)
ν,i (ã(k,D)) , (2.14)

where di is the scale dimension of the coupling ai(D), k is a renormalization scale, and,
as usual in dimensional regularization, divergencies are parametrized by inverse powers
of the parameter ε = D − Ds. The parameters s and ν characterize respectively the
set of critical dimensions and the order of the loop expansion, and bν,i contains the
quantum corrections. The idea behind the dimensional regularization is to regularize
divergencies by means of analytic continuation of the spacetime dimension D, where
the scaling dimension of the coupling is considered to be some linear function

di(D) = σi + ρiD , (2.15)

being σi and ρi two coefficients which depend on the theory.
The i-th β-function is then simply obtained stating the independence of the dimen-

sionless bare coupling from the renormalization scale k, which leads to

βi(ã, D) = βi(ã(k), D) +
∑

j

∑

s

∞∑

ν=1

1

(D −Ds)ν
b

(s)
ν,i,j βj(ã(k), D) = 0 , (2.16)

where the coefficients b(s)
ν,i,j are

b
(s)
ν,i,j(a) =

∂ b
(s)
ν,i

∂ aj
. (2.17)

The left hand term of (2.16) gets a contribution only from the dimension of the coupling,
so that we have

βi(ã, D) = −di ãi . (2.18)

Hence, we can put (2.15) and (2.14) in (2.18) and rewrite the bare coupling in term
of renormalized coupling and counterterms, and separate the contributions linear in D
from those divergent (i.e. given by counterterms with ν > 1). Since we expect the
divergent part of both left and right side of (2.16) to cancel out, we end up with an
analytic β-function linear in D, in which just the one loop contribution is present, i.e.

βi(ã, D) = −ρiDãi − σi ãi −
∑

s

b
(s)
1 i (ã)ρi +

∑

sj

b
(s)
1ij(ã) ρj gj . (2.19)

In the gravitational case we are interested to study the running of the sole Newtons’s
constant, so that we have Ds = 2 and D = 2 + ε. The mass dimension of the Newton’s
constant G is then dG = −ε, which means σ = −2 and ρ = 1. In terms of the
renormalized parameter the bare coupling reads

G̃ = G(ε) kε = G̃(k) +
∞∑

ν=1

1

εν
bν(G̃(k)) , (2.20)
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and the b-function (2.19) for the Newton’s constant reads

β(G̃, ε) = ε G̃+ b1(G̃)− G̃∂ b1

∂ G̃
. (2.21)

Since we are interested in a non-trivial fixed point nearly degenerate with the Gaussian
one, we can considered G̃ to be really small. In this approximation we can expect the
loop correction b1 to be proportional to the squared of the Newton’s constant, that is

b1(G̃) = b G̃2 +O(G̃3) , (2.22)

being b a certain coefficient depending on the matter field coupled to gravity, so that
putting (2.22) in (2.21) we obtain a β-function

β(G̃, ε) = ε G̃− b G̃2 +O(G̃3) . (2.23)

The spectra of fixed point depends now on the sign of b. For b < 0 we find only the
Gaussian fixed point, G̃∗ = 0, while assuming b > 0 the beta function (2.23) admits a
non-trivial solution of the form

G̃∗ =
ε

b
+O(ε2) . (2.24)

The calculation of the parameter b has been performed by many group [60] [61] and
leads to

b =
38

3
+ 4NV −

1

3
NF −

2

3
NS , (2.25)

where NV , NF and NS are respectively the number of vectorial, fermionic and scalar
fields coupled to gravity. In particular, as it can be seen in (2.25), b is positive unless
we add too many fermionic fields; the latter is however not a pathology of the theory
since it is well known that also non abelian gauge field theories are not asymptotically
free anymore after a certain number of fermionic fields.

Proven that there exist a non-Gaussian fixed point for an infinitesimal ε the question
is if the fixed point survives while taking the limit ε→ 2. Generally, it happens that the
non-Gaussian fixed point moves aways from the gaussian for D > Dr but disappears
at a certain upper value of the dimension. In the Gross-Neveu model, which is an
example of theory with a non-Gaussian fixed point in 2 + ε dimensions, the non-trivial
fixed point evolves when varying D but disappear at D = 4, hence the theory is non
renormalizable.

The ε-expansion is anyway not the correct tool to use in order to investigate the
existence of a non-trivial fixed point in d = 4 gravity. To study gravity in 4 dimensions
we need then to employ the non-perturbative renormalization group, whose implemen-
tation is, however, not so straightforward. The concept of coarse graining is in fact not
a priori defined in a gravitational context, since the length of the block we intend to
use to average the field is defined by the field itself, that is the metric.
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The implementation of the concept of coarse graining must also satisfy another of
the key features of general relativity, that is, background independence. We expect in
fact the coarse graining to be independent on the choice of the background we adopt,
since otherwise we would end up with a set of β-functions which will depend on the
field itself; quite an undesirable situation.

One way to solve this situation, and realize a coarse graining procedure which is
consistent with the requirement of background independence, is by employing the back-
ground field method, which we will use as a general framework for all the calculations
in this work.

2.2.2 Background field method

The background field method is a technique often employed in QFT to quantize the
theory without losing gauge invariance [62].

The main idea behind this formalism consists in a decomposition of the field4 in a
classical background plus a quantum fluctuation, ψ(x) = ψ̃(x) + B(x), being B(x) the
classical background field. The expression of B(x) is never fixed in the calculations,
nor the fluctuation ψ̃(x) is intended to be such, so that it is not required to be small.

The partition function for a theory with bare action S[ψ] in presence of an back-
ground field reads

Z̃[J ;B] = ei W̃ [J ;B] =

∫
D[ψ̃] ei S[ψ̃(x)+B(x)] + i

∫
ddx J(x) ψ̃(x) , (2.26)

and the expectation value of the fluctuating field ψ̃ in presence of the background B
and of the external source J is defined in the standard way as

〈 ψ̃(x) 〉 =
δ W̃ [J ;B]

δ J(x)
= −i δ

δJ(x)
ln Z̃[J ;B] . (2.27)

The effective action in presence of the background field is obtained then by defining the
variable Ψ̃ = 〈ψ̃〉J and taking a Legendre transform of the functional W [J ;B] as

Γ̃[Ψ̃, B] = −W̃
[
J [Ψ̃, B];B

]
+

∫
ddxJ [Ψ̃, B] Ψ̃ . (2.28)

Expressing now the fluctuation ψ̃(x) in terms of the original field ψ(x), i.e. ψ̃(x) =
ψ(x)−B(x), equation (2.26) now reads

Z̃[J ;B] = ei W̃ [J ;B] =

∫
D[ψ] ei S[ψ] + i

∫
ddx J(x)ψ(x) e− i

∫
ddx J(x)B(x) , (2.29)

4We will continue to call the field ψ(x) following the notation used in the chapter 1.
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which can be recasted as

Z̃[J ;B] = Z[J ] e− i
∫
ddx J(x) ·B(x) = eiW [J ] e− i

∫
ddx J(x) ·B(x). (2.30)

where Z[J ] is the partition function for the original action S[ψ] in absence of a back-
ground field. Equation (2.30) entails that

W̃ [J ;B] = W [J ] −
∫
ddx J(x)B(x) , (2.31)

which, using (2.27), leads to the relation between the expectation value of the field ψ
with and without background field. Taking indeed a derivative of (2.31) respect to J(x)
we obtain

Ψ̃(x) =
δ W̃ [J,B]

δ J(x)
=
δ W [J ]

δ J(x)
− δ (

∫
ddx J(x) ·B(x))

δ J(x)
= Ψ(x)−B(x) , (2.32)

where Ψ(x) = 〈ψ(x)〉J . Using now (2.31) and (2.32) in (2.28) it can hence be shown
that

Γ̃[Ψ̃, B] = −W̃ [J,B] +

∫
ddx J(x) · Ψ̃(x)

= −(W [J ]−
∫
ddx J(x) ·B(x)) +

∫
ddx J(x) · (Ψ(x)−B(x))

= −W [J ] +

∫
ddx J(x) ·Ψ(x) = Γ[Ψ] ,

(2.33)

which leads to
Γ[Ψ] = Γ[Ψ̃ +B] = Γ̃[Ψ̃, B] . (2.34)

Equation (2.34) signifies that the effective action Γ̃[Ψ̃, B] in presence of a background
field is equivalent (intended as a generator of correlation functions) to the standard
effective action Γ[Ψ] but where the effective field has been decomposed as Ψ(x) =
Ψ̃(x) +B(x). In particular, setting Ψ̃(x) = 0 we obtain the identity

Γ̃[0, B] = Γ[B] . (2.35)

Equation (2.35) now states that the 1PI connected Green functions can be calculated
by summing the vacuum diagrams of the effective action Γ̃[0, B] in presence of the back-
ground field. This features is particularly useful for gauge field theories. In the latter
case the gauge-fixing for the fluctuating field is built using the background field in such
a way to preserve invariance under simultaneous transformations of the background
and fluctuation fields. Upon the identification (2.35), such invariance is translated in
the gauge invariance of the standard effective action Γ[B].

Now, in order to quantize gravity in the background field formalism we decom-
pose the microscopic metric tensor γµν (we will use gµν for the effective field) as



52 RENORMALIZATION GROUP IN QUANTUM GRAVITY

γµν = ḡµν+hµν , being ḡµν the classical background, ḡµν = 〈ḡµν〉, and hµν the fluctuation.
Furthermore, we will work in Euclidean signature in order to avoid the complications
present in Lorentzian signature. Although there is no Wick-rotation on a general back-
ground, we expect the β-functions to be independent of the signature. The partition
function for gravity reads then

Z̃[Jµν ; ḡµν ] = e− W̃ [Jµν ;ḡµν ] =

∫
D[hµν ] e

−S[ḡµν+hµν ] +
∫
ddx
√
ḡ Jµν hµν , (2.36)

where the expectation value of the fluctuation is obtained as

h̄µν(x) = 〈hµν(x) 〉J =
∂ W̃ [Jµν ; ḡµν ]

∂ Jµν(x)
. (2.37)

The 1PI n-point correlation functions can then be evaluated by taking functional deriva-
tives of the effective action Γ̃[h̄µν ; ḡµν ] respect to the fluctuation h̄µν and then removing
external legs from diagrams by fixing h̄µν = 0, since it holds

Γ[ḡµν ] = Γ̃[0; ḡµν ] . (2.38)

Consequently, the background field method is an appropriate framework for the for-
mulation of coarse graining on gravity: we can in fact use the background metric ḡ
to construct the renormalization scale k and average the fluctuations of the field hµν
with p̄2 < k2, being p̄2 the eigenvalue of the mode of the Laplacian operator ∇̄2 con-
structed employing the background metric ḡ, i.e. ∇̄2 ≡ ∇(ḡ)2. Since the fluctuation
nor the background are fixed during the calculation the requirement of background
independence is automatically satisfied.

To perform consistently the path integral we need now to define a gauge fixing (and
the associated ghost sector) for the partition function (2.36).

2.2.3 Gauge fixing and ghosts

The gauge fixing is introduced following the standard Popov-Fadeev techniques, which
consists in the removing of the gauge degrees of freedom from the path integral by
constraining it with a generic gauge fixing condition Fµ = Cµ, being Cµ(x) an auxiliary
operator. The constraint is introduced as δ-function in the path integral so that, since
Cµ(x) is a gauge invariant function, we can then integrate the δ-function over the
configurations of Cµ(x) as

∫
D[Cµ] δ(Fµ − Cµ) e−

1
2α

∫
ddx
√
gTr (Cµ Cµ) = e−

1
2α

∫
ddx
√
gTr (Fµ Fµ) . (2.39)

The gauge fixing constraint takes then the form of an action term in the path integral,
and in the background field method it reads

Sgf [h; ḡ] =
1

2α

∫
ddx
√
ḡFµ(h; ḡ)Fµ(h; ḡ) , (2.40)
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that is by fixing the gauge freedom of the fluctuating field hµν on the background field
ḡµν , being α a gauge fixing parameter. The different gauge choices can be taken by fixing
the value of α after field rescaling. In particular, the Landau gauge can be obtained in
the limit α→ 0 while the Feynman for α→ 1. The gauge condition Fµ is constructed
in the BFM as a function of the fluctuating field hµν and is convenient to consider it
linear in the field. Hence it takes the general form

Fµ(h; ḡ) =
√

2Fαβµ (ḡ) hαβ , (2.41)

where Fαβµ [ḡ] is an operator built using the background metric. A common choice is
the harmonic (de Donder) gauge fixing, for which it holds

Fαβµ [ḡ] = δβµ ḡ
αγ ∇̄γ −

1

2
ḡαβ ∇̄µ , (2.42)

being ∇̄ the covariant derivative built using the background metric. The introduction of
the gauge fixing term in the path integral can be balanced by noting that the variation of
the gauge condition Fµ under an infinitesimal gauge transformation, in the gravitational
case the coordinate reparameterization xµ → xµ + ξµ, can be rewritten as an operator
M(h)µ

ν ξν , being M the Fadeev-Popov operator. The integration of the δ-function
over the gauge group gives then the inverse of the determinant of the operatorM, i.e.

∫
dξ δ(Fµ(h; ḡ)) =

∫
dξ δ(Mµ

ν ξν) =
1

detM . (2.43)

Since in the background field method the variation of the background field is null, and
the function C(x) is invariant, then we have

δξ(Fµ(ḡ, h)− C) = Fµ(ḡ, δξh) = Fαβµ (ḡ) δξhαβ , (2.44)

where it holds for the variation of the fluctuation

δξhµν = δ(γµν − ḡµν) = Lξ γµν = ξα ∂α γµν + γµα ∂ν ξ
α + γνα ∂µ ξ

α = Q(γ)αµν ξα , (2.45)

being Lξ the covariant Lie derivative respect to the vector ξµ. The variation of the
gauge fixing condition then reads

δξFµ(ḡ, h) = Fαβµ (ḡ)Q(γ)ναβ ξν , (2.46)

so that the Popov-Fadeev operator readsMµ
ν(γ, ḡ) = Fαβµ (ḡ)Q(γ)ναβ. The determinant

ofM can then expressed in terms of a Gaussian integral of an action term quadratic in
auxiliary complex anticommuting variables Cµ ad C̄µ, i.e. the ghost fields, which reads

Sgh = −
√

2

∫
ddx
√
ḡ CµMν

µ C̄ν , (2.47)

where the explicit expression of the operatorMν
µ in the gauge (2.42) is

Mν
µ(γ, ḡ) = ḡµρ ḡσλ ∇̄λ (gρν ∇σ + gσν ∇ρ)− ḡρσ ḡµλ ∇̄λ gσν ∇ρ . (2.48)
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Inserting the gauge fixing (2.40) and ghost action (2.47) in the path integral, the par-
tition function (2.36) now reads

Z[J ; ḡ] =

∫
D[hµν ]D[Cµ]D[C̄µ] e−S[ḡ+h]−Sgf [h;ḡ]−Sgh[C,C̄,h;ḡ]+

∫
ddx
√
ḡ {tµν hµν+σ̄µ Cµ+σµ C̄µ},

(2.49)
being σµ and σ̄µ the sources associated respectively to C̄µ and Cµ. The total action in
(2.49) is invariant under the local transformations

δshµν = εLC γµν , δs ḡµν = 0 ,

δsC
µ = ε Cν δν C

µ , δs C̄µ =
ε

α
Fµ ,

(2.50)

were LC is the Lie derivative respect to the ghost field Cµ, ε is an anticommuting
parameter and s is the charge associated to the invariance of the action under (2.50),
which takes the name of BRST symmetry [63]. In particular, the invariance under the
BRST symmetry group leads to Ward identities for the correlation functions which are
called Slavnov-Taylor identities and read

∫
ddx

1√
ḡ

{ δ Γ′

δ h̄µν

δ Γ′

δ βµν
+
δ Γ′

δ ξµ

δ Γ′

δ τµ

}
= 0 , (2.51)

being Γ′k ≡ Γk − Sgf [h̄, ḡ] and βµν and τµ respectively the sources associated to the
BRST variations δshµν and δsCµ.

Provided a consistent path integral formulation for the quantization of gravity, it is
then possible to build a non-perturbative renormalization group equation by defining a
proper cutoff operator.

2.2.4 Exact equation for gravity

We want now to write an exact RG equation for gravity in which the cutoff operator
∆kS[h; ḡ] is built in such a way to perform the coarse graining in a background inde-
pendent way. In the background field formalism such an operator is quadratic in the
fluctuation hµν and in its generic form reads

∆k S[h,C, C̄; ḡ] =
1

16 π Gk

∫
ddx
√
ḡ hµνRgrav

k [ḡ]µνρσ hρσ +
√

2

∫
ddx
√
ḡ C̄µRgh

k [ḡ]Cµ ,

(2.52)
where Rgrav and Rgh are respectively matrices in field space for the metric tensor and
ghosts. The cutoff Rk is then constructed in such a way to cut the modes of the
fluctuating fields (h and the ghosts) with eigenvalues of the Laplacian p̄2 < k2, being p̄2

the momentum built from the background metric ∇2(ḡ). Its generic expression reads

Rk[ḡ] = Zk k2R(0)
(
−∇̄

2

k2

)
, (2.53)
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where Zk is a renormalization function in field space, and where the dimensionless
function R(0) interpolates between R(0)(0) = 1 and R(0)(∞) = 0, as already introduced
in the subsection 1.2.2.

By defining the field ψ = {hµν , Cµ, C̄µ} and source J = {tµν , σ̄µ, σµ} the average
partition function at the scale k can then be written as

Zk[J ; ḡ] = e−Wk[J ;ḡ] =∫
D[ψ] exp

{
−S[ḡ + h]− Sgf [h; ḡ]− Sgh[ψ; ḡ]−∆k S[ψ; ḡ] +

∫
ddx
√
ḡ ψ(x)J(x)

}
,

(2.54)

where D[ψ] = D[hµν ]D[Cµ]D[C̄µ]. The effective average action Γk[h; ḡ] is then obtained
in the standard way, by introducing Ψ(x) = 〈ψ 〉J , being Ψ = {h̄µν , ξ̄µ, ξµ} and

h̄µν =
1√
ḡ

δWk

δtµν
, ξ̄µ =

1√
ḡ

δWk

δσ̄µ
, ξ̄µ =

1√
ḡ

δWk

δσµ
, (2.55)

and by performing a Legendre transform

Γk[Ψ; ḡ] = −Wk[J ; ḡ] +

∫
ddx
√
ḡ J ·Ψ−∆k S[Ψ; ḡ] . (2.56)

The exact renormalization equation (1.52) can be casted in its generic form for the
effective action (2.56) as

k ∂k Γk[Ψ] =
1

2
STr

[
k ∂k Rk

Γ
(2)
k +Rk

]
, (2.57)

where now Str identifies a functional supertrace over the metric fluctuation and the
ghost fields, and the cutoff operator Rk follows from (2.52). Because of the presence of
the cutoff operator modified Ward identities which read

∫
ddx

1√
ḡ

{ δ Γ′

δ h̄µν

δ Γ′

δ βµν
+
δ Γ′

δ ξµ

δ Γ′

δ τµ

}
= Yk , (2.58)

being Γ′k ≡ Γk − Sgf [h̄, ḡ] and Yk an integral operator whose expression is reported in
[64]. Since the term Yk takes contribution from operators proportional to the cutoff
function, and since it comes from the same exact equation that leads to the effective
action in the limit k → 0, it entails that Yk also runs to zero in that limit, recovering
then the standard Slavnov-Taylor equation (2.51). Being this a property of the exact
solution, it does not hold however for approximated solutions. As already mentioned,
equation (2.57) cannot be solved exactly but just by means of approximation, so that
a consistent strategy in the definition of a hierarchy of truncations needs then to be
employed. As a first approximation we can neglect the running of the ghosts5, thus
considering

Γk[h̄; ḡ] ≡ Γk[h̄, 0, 0; ḡ] . (2.59)
5After having evaluated the flow equation, since their contribution to the second variation survives

and affects the RG flow of the other couplings.
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A second approximation consists in separating in the action the contributions com-
ing from the operators depending on g = h̄ + ḡ from those which shows a separate
dependence on the fluctuation and the background, i.e. to consider

Γk[h̄; ḡ] = Γ̄k[g = h̄+ ḡ] + Γ̂k[h̄; ḡ] + Sgf [h̄; ḡ] , (2.60)

where Γ̄ encodes the contributions from g = ḡ and Γ̂ the deviations g 6= ḡ. We can then
take in consideration to fix Γ̂k = 0 along all the flow, identifying then

Γk[g] = Γk[h = g − ḡ = 0; ḡ] , (2.61)

To justify the assumption (2.61) we can note that putting (2.60) in (2.58) we find he
action (2.61) to satisfy the standard Ward identities. and that Yk gets contributions
only from Γ̂k. The approximation (2.61) entails then that we neglect Yk, which is
acceptable since Yk is an higher loop term. The RG equation for the action (2.61) is
a non-perturbative functional integro-differential equation that is however still difficult
to solve. A common approximation is thus to restrict our parameter space to a finite
dimensional one, that is, to take in consideration a polynomial truncation of the effective
action.

2.2.5 Polynomial truncations

The simplest polynomial truncation which can be taken in consideration is the Einstein-
Hilbert truncation, which reads

Γk[g] = − 1

16π Gk

∫
ddx
√
g {R(g)− 2Λk} , (2.62)

being Gk the renormalized Newton constant, and such that Gk=Λ = Ḡ with Ḡ the bare
coupling. Putting (2.62) in (2.57) we have on the left hand side

k ∂k Γk[g] = − 1

16π

∫
ddx
√
g

{(
k ∂k

1

Gk

)
R(g)− k ∂k

(
Λk

Gk

)}
, (2.63)

while on the right hand side the supertrace splits in a trace over the metric degrees of
freedom and the ghosts,

1

2
STr

[
k ∂k Rk

Γ
(2)
k +Rk

]
=

1

2
Tr

[
(k ∂k R̂k)h̄h̄

(Γ
(2)
k + R̂k)h̄h̄

]
− Tr

[
(k ∂k R̂k)ξ̄ξ

(Γ
(2)
k + R̂k)ξ̄ξ

]
, (2.64)

where the latter term takes a factor −2 from the trace over Grassmannian complex
structure. The trace over the ghost sector has a trace over a vector space, and

(Γ
(2)
k + R̂k)ξ̄ξ = −M[g, ḡ] +Rgh

k [ḡ] , (2.65)
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beingM[g, ḡ] the Fadeev-Popov operator (2.48). The trace over the metric degrees of
freedom can be evaluated by means of a traceless decomposition of the fluctuation

h̄µν = ĥµν +
1

d
ḡµν h̄ , (2.66)

being h̄ the trace of h̄µν , namely h̄ = h̄µν ḡ
µν , and where ĥµν is a traceless tensor, so

that it satisfies ĥµν ḡµν = 0. In term of this field decomposition the second functional
derivative reads

(Γ
(2)
k )h̄h̄ =

1

16 π Gk

∫
ddx
√
ḡ

{
1

2
ĥµν

(
−∇̄2 − 2 Λ̄k + R̄

)
ĥµν

−
(
d− 2

4 d

)
h̄

(
−∇̄2 − 2 Λ̄k +

(
d− 4

d

)
R̄

)
h̄− R̄µν ĥ

νρ ĥµρ

+R̄αβνµ ĥ
βν ĥαµ +

(
d− 4

d

)
h̄ R̄µν ĥ

µν

}
.

(2.67)

The evaluation of the trace and the expression of the resulting beta functions depends
on the choice of the cutoff operator (see [65] for the exponential operator and [51] for
the optimized) and the spectra can be summed using heat kernel techniques on curved
spacetime, i.e. collecting Seeley-Gilkey coefficients for the operators present in (2.67).
The technical details about the calculation of the trace are however here omitted, since
they will be discussed in detail in chapter 3.

Once evaluated the traces in (2.64) it is possible to expand the result in powers
of the Ricci scalar and discard terms O(R̄2), so to match the operators present in
(2.63). Writing then both sides of the equation in terms of dimensionless couplings
Gk = gk k

2−d, Λk = λk k
2, a set of coupled β-functions for the two couplings can be

obtained as {
βg(g, λ) = k ∂k gk

βλ(g, λ) = k ∂k λk
. (2.68)

Scale invariant theories can then be searched by looking for common zeroes of the
system (2.68).

Although the results show a certain dependence on the shape of the cutoff function
both sets of β-functions show a trivial repulsive Gaussian fixed point, {λ∗ = 0, g∗ = 0},
and a non-Gaussian fixed point for non-zero values of the couplings.

The ultraviolet stability of the NGFP, that is, the dimensionality of the ultraviolet
critical surface, can be investigated by analyzing the spectra of eigenvalues of the B
matrix, which reads

B =

(
∂g βg(g, λ) ∂λ βg(g, λ)
∂g βλ(g, λ) ∂λ βλ(g, λ)

) ∣∣∣∣∣
{g,λ}={g∗,λ∗}

. (2.69)
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The matrix (2.69) has, for the NGFP, a couple of complex conjugated eigenvalues
θ± = −θ1 ± θ2, being the physical critical exponents respectively minus the real part
and the imaginary part of the eigenvalue, and we have in d = 4 for both cutoff functions

g∗ λ∗ g∗λ∗ θ1 θ2

exp 0.272 0.359 0.098 1.422 4.307
opt 1.178 0.250 0.294 1.667 4.308

(2.70)

As it can be seen in (2.70) both RG schemes lead to positive critical exponents, en-
tailing the UV-attractive behaviour of the non-Gaussian fixed point and assuring the
dimensionality of the critical surface to be at least equal to two.

The system of equation (2.68) is a coupled pair of non linear ordinary differential
equation (ODE) which can be integrated from a certain initial scale k0 just by giving
an initial conditions gk0 = g0 and λk0 = λ0. In Fig. 2.3 is depicted the results of an
integration for an interesting range in the parameter space.

!→1/2. Furthermore one sees that the singularity of "N
sc at

g!"6#/5 results in a separation between trajectories show-
ing a screening and anti-screening behavior of the Newton
constant gk in the IR. This resembles the behavior found for
the exponential cutoff in Sec. III.
In a first step of classifying the trajectories found in Fig.

13, we project the renormalization group trajectories of the
full system onto the g-axis. The results are displayed in Fig.
14. According to their limit for k→0 or t!ln(k/k̂)→"$
three different classes of trajectories can be distinguished:

%i& Trajectories with limt→"$g(t)→$ . They form the
‘‘strong coupling region’’.

%ii& Trajectories with limt→"$g(t)!0. They form the
‘‘weak coupling region’’.

%iii& Trajectories with limt→"$g(t)#0. They form the
‘‘negative coupling region’’.
Note the oscillating behavior of g(t) before the trajecto-

ries adopt their asymptotic value. This is caused by the non-
zero imaginary part of the stability coefficients found for the
non-trivial fixed point.2
In a second step we classify the trajectories shown in Fig.

13 according to their starting and end points. Figure 15
shows the resulting phase space regions, which are distin-
guished by a different kind of dashing of their trajectories.
The characteristics of each region are summarized in Table
III which contains the classification of all trajectories occur-
ring in the Einstein-Hilbert truncation. Table III is organized
as follows: The first column labels the type of the trajectory
as it is marked in the phase space diagram Fig. 15. %Only the
single trajectories of Type IIa and IIb separating the regions
Ia and IIIa and Ib and IIIb, respectively, are not marked
explicitly in this diagram.& The columns labeled ‘‘UV-’’ and
‘‘IR-behavior’’ indicate the characteristic features of the tra-
jectories, ‘‘UV’’ referring to the end point of the trajectories
for k→$ and ‘‘IR’’ relating to k→0. These limits do not
exist for all the classes. The aborting of the trajectory at a
finite value of k in either the UV or the IR is indicated by
‘‘Sing.’’ The values of !,g given in the table indicate where
the corresponding RG trajectories end.
In the column ‘‘UV-behavior’’ the label ‘‘NGFP’’ means

that the trajectory runs into the non-Gaussian fixed point.

2A plot of g(t) similar to Fig. 14 has been given in Ref. '8(, see
Fig. 2 there. In this reference the running of ! has been disregarded,
however. As a consequence, no oscillations were found.

FIG. 12. Part of the parameter space with its RG flow. The arrows along the trajectories point in the direction of the renormalization
group flow, i.e. towards decreasing values of k. The flow pattern is dominated by a non-Gaussian fixed point in the first quadrant and a trivial
one at the origin.

FIG. 13. Full phase structure of the Einstein-Hilbert truncated
theory. On the bold horizontal line "N

sc diverges.
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065016-15

Figure 2.3: Phase diagram of quantum gravity in the Einstein-Hilbert truncation.

The spiral behaviour of the trajectories is caused by the complex character of the critical
exponents. We can identify in Fig. 2.3 two kind of interesting trajectories emanating
from the fixed point. One bundle goes to negative values of the cosmological constant,
while the other one has a slow transient near the Gaussian fixed point and is then
pushed away from it by the relevant direction of the cosmological constant. The latter
bundle of trajectories, besides having a good semiclassical regime, encounters anyway a
singularity in the infrared regime at λ = 1/2, attributed so far to the Einstein-Hilbert
truncation.

Interestingly, not only the UV fixed point survives from d = 2 up to d = 4, but it
happens to exist also for higher dimensions, where the critical value of the spacetime
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dimension at which the fixed point disappears shows for this truncation a strong depen-
dence on the cutoff used. Moreover, reducing the dimensionality to d = 2 + ε the ERGe
gives for the β-function of the Newton’s constant the same results (2.25) obtained by
the ε-expansion, for all number of matter fields equal to zero.

It is then relevant to ask whenever the fixed point is an artifact of the truncation or
whenever it survives enlarging the parameter space. In literature it has been proposed
a polynomial truncation in power of the Ricci scalar, that reads

Γk[gµν ] =

∫
ddx
√
g

N∑

i=0

gi(k)R(g)i , (2.71)

being g0(k) = Λk/Gk and g1(k) = Gk. The present truncation is not a truncation in
powers of the field, i.e. the metric, which enters non polynomially in the curvature, but
is still a quite natural way to organize a truncation in invariants of the symmetry.

The powers of the Ricci scalars in the polynomial ansatz have been increased in
the program of a systematic study, N = 2 [66, 67], N = 6 [68, 69], N = 8 [70],
N = 10 [71] and N = 35 [72], showing all the other directions to be irrelevant, and
critical exponents to quickly converge after N = 3 to their exact values. In [73, 74]
the RG flow has been studied adding a squared Weyl tensor CµνρτCµνρτ to the O(R2)
truncation. A particularity of the flow equation in the case of Weyl tensor is that
the critical exponent become real, losing then the characteristic spiral of the linearized
behavior around the fixed point.

2.2.6 Non-polynomial truncations

One of the drawbacks of using a polynomial truncations is anyway the appearance
of spurious solutions, i.e. unphysical zeroes of the β-functions which are artifacts of
the approximation. Altough those artifacts can be present for both infinite and finite
dimensional truncations, the artifacts obtained solving the β-functions often disappear
when we extend the dimension of the parameter space from finite to infinite.

It is then legitimate to wonder whether the NGFP for gravity is an artifact of the
polynomial truncation (2.71) or not, which automatically translates in asking if it exists
a non-trivial solution in an infinite dimensional parameter space truncation for the for
the gravitation action.

One possibility is to investigate the existence of a non-trivial solution for the analo-
gous for the Ricci scalar of the local potential approximation defined for the scalar field
theory (1.34), which reads

Γk[g] =
1

16π Gk

∫
ddx
√
g f(R) . (2.72)

The latter can in fact be considered as the simpler functional truncation of the effective
action since it contains just one degree of freedom more then general relativity, that
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is a quartic derivative of the metric trace, which in general relativity is not a dynamic
degree of freedom. Sixth or higher derivatives for the traceless sector of the Hessian
arise just from derivatives of the Ricci tensor, like R∇2R or Rµν∇2Rµν .

Different versions of the flow equation for the action (2.72) have been obtained in
[69, 70, 75] for a spherical topology and further studied in [76, 77] for d = 4 and in [78]
for d = 3. The identification of a NGFP fixed point consist then in the resolution of a
partial differential equation

k ∂k f̃k(R̃) = 0 , (2.73)

where f̃k(R̃) is a dimensionless function defined as

f̃k(R̃) = k−d fk(k
2R̃) , (2.74)

being R̃ the dimensionless Ricci scalar. However, the identification of a non-trivial
solution f̃ ∗ is itself not trivial. A functional RG flow equation introduces in fact a
certain number of complications not present in the β-function approach and which
make difficult to find global solutions (a detailed discussion about the strategy to solve
(2.73) is left for the chapter 4).

The RG equation (2.73) is a partial differential equation of third order in the function
f̃(R̃), so that it can be rewritten in normal form as

f ′′′(R̃) =
N (f̃ , f̃ ′, f̃ ′′, R̃)

P(R̃)D(f̃ , f̃ ′, R̃)
, (2.75)

where N , P and D are polynomials in their arguments, and we assume that D has
no zeroes in R for generic f and f ′. A fixed point solution is then a global solution
of equation (2.75), which can be found by studying the solution in the large R̃ behav-
ior and integrating it back to R̃ = 0. Being a third order equation, equation (2.75)
normally accept a 3-parameter family of solutions parametrized by the three initial
conditions. However, most of the solutions will encounter a fixed or movable singu-
larity and diverge, so that just a discrete set of initial conditions will lead to global
solutions. Movable singularities are singularities of the solutions of (2.75) that occur
at some value R = Rc which depends on the initial conditions, and they are due to the
non-linearity of the equation. Fixed singularities are instead zeroes of the polynomial
P(R̃), and they entail that the space of solution is constrained by supplementary ana-
lyticity conditions. Those conditions, however, reduce the number of free global degrees
of freedom, hence reducing the dimensionality of the space of solution. Nonetheless,
equation (2.75) posses a continuos set of solutions.

Although the result in [75, 77] is encouraging, it is however not definitive. A physical
solution, to be such, should be a global solution in the whole R̃ field space, which means
that should be prolongable to the R < 0 region without encountering a singularity; we
expect then just a discrete set of physical solutions to satisfy this condition. A flow
equation for hyperbolic geometries, however, has still not been obtained.
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An important extension of the result in [75, 77] would be, for example, to consider
the contribution of a generic function of the Weyl tensor Cµνρσ, that is f(CµνρσC

µνρσ),
since in [73] it has been shown how the contribution of such a tensor influences largely
the universality class of the theory (in particular the critical exponents, that now become
real) and the unitarity, since the massive pole is supposed to move to infinity in the
UV regime.

2.3 Hořava-Lifshitz gravity

Although there is a strong evidence that gravitation can be renormalizable at a non-
Gaussian fixed point, it is however not easy to give a definitive statement about its
unitarity. Nonetheless, it is also possible that in the higher energy regime gravitation
develops some kind of mechanism which shows explicitly the unitary of the microscopic
theory; for example the emergence of a spacetime anisotropy. The incurrence of a scaling
anisotropy between space and time, in fact, would lift the power of spatial derivatives,
granting then the perturbative renormalizability typical of the higher derivative the-
ories, while keeping the maximum number of time derivatives to two, hence avoiding
the presence of ghost poles in the effective propagator. The price to pay, however, is to
lose Lorentz invariance, which thus emerges as an accidental symmetry in the infrared
limit.

2.3.1 Spacetime anisotropy

The way the spacetime anisotropy is introduced in quantum gravity mimic the way it
is used in critical phenomena. In the latter, in fact, anisotropy is a common feature of
condensed matter systems, especially those which exhibit spatially modulated phases.
The first application dates back to 1975 [79], where it was introduced to characterize
the modulated phase in ferromagnetism by employing a Landau free energy density of
the type

F (φ) = c (∇mφ)2 + (∇2
mφ)2 + (∇nφ)2 + r φ2 + λφ4 , (2.76)

being φ a scalar field, c a coupling constant, and ∇m and ∇n are spatial gradients with
dimensionality m and n = d−m, being d the dimension of the space. The modulated
phase occurs when c becomes negative and it is the result of the stabilization that
the higher derivative operator exerts on the unstable m-dimensional second derivative
operator. As a consequence of this anisotropy the phase diagram present three phases
which encounter at a multi-critical point which takes the name of Lifshitz critical point,
and the degree of anisotropy is characterized by the dynamical critical exponent z (z = 2
in (2.76)).

In the same way is it possible to define a non-relativistic free field theory for a
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Lifshitz scalar field in d+ 1 dimensions (that is, n = 1 in (2.76)), whose action reads

S[φ] =

∫
dt ddx

{
−φ(t,x) (∂2

t − ∂2 z
x )φ(t,x)

}
. (2.77)

The scaling of the action (2.77) is controlled by the critical exponent z so that space
and time scale according to their mass (classical) dimensions

[x] = −1, [t] = −z , [∂x] = 1, [∂t] = z , (2.78)

and the differential operator entering in (2.77) is marginal. For such an action with
z > 1 the operator

c2

∫
dt ddxφ(t,x) ∂2

x φ(t,x) , (2.79)

acts as a relevant deformation, being c2 a dimensionful speed of light, which becomes
important in the infrared limit, when the operator ∂2z

x becomes irrelevant. The effective
propagator of the theory, i.e.

1

ω2 − c2k2 −G(k2)z
, (2.80)

where k is the spatial momentum and G a coupling, can be considered in fact as a low
energy perturbation of the ultraviolet propagator, that is

1

ω2 − c2k2 −G(k2)z
=

1

ω2 −G(k2)z
+

1

ω2 −G(k2)z
c2k2 1

ω2 −G(k2)z
+ . . . . (2.81)

2.3.2 Anisotropic gravitational actions

An action for the ultraviolet gravitational theory for a generic critical exponent z can
be built using the ADM decomposition [11, 12]. Employing this formalism the time and
space components of the full metric tensor decompose in a clear way, i.e. the microscopic
d+1 dimensional metric tensor γµµ is decomposed in a spatial metric tensor gµν plus
a lapse function N and shift vector Nµ. The standard ADM splitting techniques is
briefly summarized in the appendix B. For a generic z the scaling dimensions of the
ADM variables read

[gij] = 0, [Ni] = z − 1, [N ] = 0 , (2.82)

and the diffeomorfisms group Diff(M) is broken and substituted with a foliation pre-
serving group DiffF(M) which consists of the coordinate reparametrization

x̃i = x̃i(xj, t), t̃ = t̃(t) . (2.83)

In the local coordinate set the generators of the algebra of DiffF(M) are given by

δxi = ζ i(t,x), δt = f(t) . (2.84)
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A natural spacetime topology in presence of a foliation is

M = N × Σ , (2.85)

where we will consider Σ to be S1 in order to avoid problems coming from non compact
manifolds, and where N is a generic spatial d-dimensional Riemannian manifold. The
fields N and N i can then be seen as Legendre multipliers related, respectively, to
the time and space reparameterization in (2.84). Both fields have to be intended as
spacetime dependent, i.e. N ≡ N(t,x), N i ≡ N i(t,x), altough this general dependence
may introduce many difficulties in the quantization procedure. It makes then sense to
restrict our interest, whenever necessary, to the study of a projectable scenario, where
with the term projectable we mean that an operator takes the same value over all the
leafs Σt (i.e. are function of the sole time variable). The projectable scenario is then
simply defined taking a lapse function constant over the leaf, N(t,x) = N(t).

The ADM variables transform under the new symmetry group as

δgij = ∂iζ
kgjk + ∂jζ

kgik + ζk∂kgij + f ġij ,

δNi = ∂iζ
jNj + ζj∂jNi + ζ̇jgij + ḟ Ni + f Ṅi ,

δN = ζj∂jN + ḟ N + f Ṅ .

(2.86)

To define an action for the anisotropic model we need then to build invariants under the
reparameterization (2.84). The kinetic term must be constructed using time derivative
of the metric, and it can be proved that the only invariant can be built from the extrinsic
curvature tensor Kij, which reads

Kij =
1

2N
(ġij −DiNj −DjNi) , (2.87)

being Di the spatial covariant derivative and where the dot stands for time derivative.
The most generic kinetic action is then given by contractions of the extrinsic curvature,
i.e.

SK [N,N i, gij] =
2

κ2

∫
dt ddx

√
g N

(
KijK

ij − λK2
)
, (2.88)

being λ a dimensionless coupling and κ = 32π G, with G the Newton’s constant. Both
operators in (2.88) are separately invariant under DiffF(M), so that the value of λ
is left free and acquires its own running due to quantum corrections, differently from
general relativity in which symmetry imposes a value λ = 1. Since general relativity
is expected to be recovered in the infrared, however, it must flow to λIR = 1. The
presence of the parameter λ appears now also in the DeWitt’s "metric on the space of
metrics", which reads

Gijk` =
1

2

(
gikgj` + gi`gjk

)
− λgijgk` . (2.89)

Note that in the kinetic action (2.88) the critical exponent z does never enter in the
expression of the operators but just in the dimension of the integration measure, that
is

[dt ddx] = −d− z , (2.90)
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that is the key feature of the model, since now the Newton’s constant has dimension

[κ] =
z − d

2
. (2.91)

The coupling κ is then marginal for z = d and the theory is power counting strictly
renormalizable.

In the full action, however, we have to include all the terms that are invariant under
DiffF(M) with dimension equal or less than the kinetic operator, that is [K2] = 2z.
Although there are no other invariants that can be built from time derivatives, we can
still take into account many spatial operator built contracting spatial Riemann tensors,
and that define the interacting content of the theory, i.e. a potential term

SV [N,N i, gij] =
2

κ2

∫
dt ddx

√
g N V (gij) , (2.92)

so that the full action reads

S[N,N i, gij] =
2

κ2

∫
dt ddxN

√
g
{
KijK

ij − λK2 + V (gij)
}
. (2.93)

For d = 3 and z = 3, for example, the action (2.92) will contain marginal operators like

R3 , Rij Rjk R
k
i , RRijR

ij , (2.94)

that being cubic in the curvature represent pure interaction terms, then additional
relevant terms as

D2R2 , DkRD
iR , DkRij D

kRij , D4R , (2.95)

and so on. The number of invariants, anyway, grows fast with the spacetime dimension,
and already for d = 3 and z = 3 it leads to a scenario in which the quantization involves
rather difficult calculations. One way to reduce the number of free parameters is to
assume that the action, for example, satisfies a detailed balance condition.

2.3.3 Detailed balance condition

The detailed balance condition is a further symmetry shared by many systems in critical
phenomena which simplifies the study of the renormalization properties of a system in
higher dimensions. Normally, the renormalization of a d-dimensional system are sim-
pler than those of a d + 1-dimensional one, because of the higher number of relevant
parameters. When the theory satisfies the detailed balance condition the renormaliza-
tion of the d + 1-dimensional system can be put in relation to the renormalization of
the lower dimensional system. It the context of Lifshitz gravity it can be casted as the
assumption that the potential action (2.92) can be written as

SV [N,N i, gij] =
2

κ2

∫
dt ddx

√
gN EijGijk`E

k` , (2.96)
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where the tensor Eij comes from some variational principle

√
g Eij =

δW [gk`]

δgij
, (2.97)

being W some d-dimensional action. The detailed condition implies here that the
renormalization of the coupling contained in the potential can be reduced to study the
renormalization of the simpler action W , plus the quantum corrections coming from
the kinetic operator (2.88). In d = 3 in order to have a z = 3 theory in the UV we
need then the tensor Eij to contain third order spatial derivatives, and the only tensor
which satisfies all the symmetries is the Cotton tensor

Cij = εik`∇k

(
Rj

` −
1

4
Rδj`

)
, (2.98)

which exhibits many properties, as being

• i) symmetric and traceless, Cij = Cji , gijC
ij = 0 ,

• ii) transverse, ∇iC
ij = 0 ,

• iii) conformal, with conformal weight −5/2.

The latter entails that, under local spatial Weyl transformations

gij → eφ(x) gij , (2.99)

the Cotton tensor transforms as

Cij → e−
5
2
φ(x) Cij, (2.100)

with no terms containing derivatives of φ(x). The fact that the Cotton tensor is in-
variant under spatial Weyl rescaling can also suggest the full action to be classically
covariant under some kind of engineered anisotropic Weyl transformation.

2.3.4 Anisotropic Weyl invariance

It can be proved6 that the full action with Eij = Cij and λ = 1
3
is invariant under a

scaling transformation of the spatial metric

gij → eφ(t,x) gij , (2.101)

where now φ(t,x) is a function of both time and space coordinates, and rescaling of
shift and lapse as

N → e
3
2
φ(t,x) N , Ni → eφ(t,x) Ni . (2.102)

6See appendix F for the proof.
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As a consequence of (2.102), however, the anisotropic conformal invariance is not ob-
tained in the projectable case, in which case the lapse function is space-independent, so
that the conformal invariance reduces to classical scale symmetry, defined for φ = const
and N gauged to one (that is, on a flat background). We expect anyway Weyl invariance
to be violated by quantum corrections.

Restricting now our interest to the action (2.93), we can assume the ultraviolet
behavior of the theory as described by three couplings, namely κ, λ and the (inverse)
coupling of the marginal operator in the potential, that we will call w. Of those three
couplings, however, just one, i.e. w, controls the interaction strength in the perturbative
expansion. The asymptotically free limit of the theory consist then in taking the limit
w → 0, while keeping constant λ and the ratio

γ =
w

k
. (2.103)

This defines a priori a two-dimensional manifold of free fixed points in parameter space,
so that we expect the theory to flow from the interacting regime to a free theory
parameterized by λ and γ. The identification of such a point depends of course on
quantum corrections, since the Newton’s constant is now a marginal operator.

The quantization of the theory follows the one proposed in the section 2.2 for the
Lorentz-invariant theory, besides differs from it for the gauge fixing sector . The detailed
description of the quantization procedure is anyway left for the chapter 5, where we
will present the flow of couplings in a lower dimensional case.



Chapter 3

Asymptotic safety in conformal gravity

The strong evidence of the existence of a NGFP for gravity has led the community to
focus more on the mechanism behind the presence of such a fixed point. For example,
the authors of [80] have studied the separate contributions of paramagnetic (potential)
and diamagnetic (kinetic) interactions to the RG flow (in the sense of Nielsen [81]), and
they found the paramagnetic one to be the one responsible for the presence of a fixed
point in d = 4. Interestingly, in [6, 7] it has also been found that the fixed point survives
when neglecting the graviton’s contribution to the RG flow, that is by considering the
RG flow of the sole conformal sector.

Although the conformal degree of freedom of the metric does not propagate in
general relativity, thus being a pure gauge degree of freedom, a renormalization group
study of the flow equation for the sole conformal sector has led to a phase diagram
that is qualitatively correct and describes surprisingly well the universality class of
the full theory. The importance of the scalar sector can, moreover, be understood
in the f(R) theory [75], in which the scalar sector of the fRG equation is the only
one containing f ′′′(R), granting then the third order character to the PDE and the
existence of a continuos set of fixed point solutions. As we will see in this chapter,
the study of the conformally reduced Einstein-Hilbert action (CREH) has emphasized
the importance of the requirement of background-independence in the quantization of
gravitational theories. The scalar sector of the Einstein-Hilbert action assumes, in
fact, the form of a kinetically unstable massive λφ4 scalar field theory, being here
φ(x) a dimensionless Weyl rescaling field. The non-perturbative quantization of the
theory with the requirement of background-independence leads to a phase diagram
which presents an attractive NGFP; hence quite a different scenario from that of the
standard λφ4 theory, which it is well known to have no non-trivial fixed points in d = 4.

The conformally reduced case can then be considered as a scalar toy model useful
to investigate gravity in an easier context, since the field space is now one dimensional
and the action can be projected on a flat background metric. The opportunity to work
on a flat spacetime allows us to avoid the use of complicated heat kernel techniques,
and, as we will see in chapter 4, this is also the reason why we will try to find f(R)
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non-perturbative fixed point solutions by solving instead the flow equation for a sim-
pler scalar-tensor model, namely the Brans-Dicke theory, though in this case we will
quantize all the degrees of freedom of the theory.

In this chapter we will study the scalar toy model in the proper time RG scheme
introduced in 1.2.3, and in particular the RG flow equation for the CREH action, fo-
cusing on the analysis of the dependence of the universality class from the variation of
the cutoff parameter n. We will then extend our analysis to a non-polynomial trun-
cation, i.e. a local potential approximation, integrating the Wilsonian potential down
to k → 0+ (where it coincides with the effective potential) and study the possibility
to have a broken phase in the infrared regime, that cannot be investigated within the
CREH truncation1.

In order to propose a comparison with the results obtained for the full gravitational
action we propose here a study of the RG equation for the Einstein-Hilbert action using
a proper time scheme, generalizing to arbitrary d dimensions what has been done in
[82] for d = 4.

3.1 RG flow equation for the Einstein-Hilbert action

We start here directly from the RG equation in the proper time formalism, since a
detailed description of the background field method and gauge fixing sector has already
been presented in section 2.2. The proper time RG equation (1.65) reads for gravity

k ∂k Sk[h; ḡ] = −1

2

∫ ∞

0

ds

s
(k ∂k ρk(s)) STrH(s;S

(2)
k [h; ḡ]) . (3.1)

where Sk[h; ḡ] is the Wilsonian gravitation action at scale k, being h the metric fluc-
tuation and ḡ the background metric and ρk(s) a cutoff function. The heat kernel
H(s;S

(2)
k [h; ḡ]) has matrix elements

H(s, x, x′;S(2)
k [h; ḡ]) = 〈x | e−s S(2)

k [h;ḡ] |x′〉 , (3.2)

where S(2)
k [h; ḡ] = δ2S

(2)
k [h; ḡ]/(δh δh), being δ2S

(2)
k [h; ḡ] is the second variation of the

action in the background field formalism. The action Sk in (3.1) is the full action,
S ≡ SEH + Sgf + Sgh, where SEH is the Einstein-Hilbert action

SEH [ḡ] =
1

16π G

∫
ddx
√
ḡ {−R(ḡ) + 2 Λ} , (3.3)

1As it has been mentioned in the subsection 2.2.4, the bundle of physically interesting RG trajec-
tories in the Einstein-Hilbert truncation encounters in the infrared a singularity at λ = 1/2. Hence,
the spontaneous breaking of diffeomorphism symmetry (i.e. a non-zero minimum of the potential at
k = 0) cannot be studied in a Einstein-Hilbert context. The singularity at λ = 1/2, moreover, persists
in the conformally reduced case.
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and where the gauge fixing and ghost action are those introduced in 2.2.3. The super-
trace in (3.1) is intended over the field content of the theory, so that employing the
traceless decomposition (2.66) the flow equation is rewritten as

k ∂k Sk[h; ḡ] = −1

2

∫ ∞

0

ds

s
(k ∂k ρ)TrT H(s;S

(2)
k [h; ḡ])ĥ ĥ

−1

2

∫ ∞

0

ds

s
(k ∂k ρ)TrSH(s;S

(2)
k [h; ḡ])h̄ h̄

+

∫ ∞

0

ds

s
(k ∂k ρ)TrV H(s;S

(2)
k [h; ḡ])CC̄ ,

(3.4)

where the appendices ĥ, h̄ and C means that we take the heat kernels of respectively
the traceless, trace and ghost part of the Hessian, and where the ghost term takes a
term -2 from the trace over the Grasmannian complex variables. The various traces
contain a trace over the field structure, yielding

1

V Tr 1S = 1 ,
1

V Tr 1V = d ,
1

V Tr 1T =
(d− 1)(d+ 2)

2
, (3.5)

where V =
∫
ddx
√
g and where the diagonalized Hessians on a maximally symmetric

background read

S
(2)
k [h; ḡ]ĥ ĥ = τk {−∇̄2 − 2λ+ CT R(ḡ)]} ,

S
(2)
k [h; ḡ]h̄ h̄ = τk Z{−∇̄2 − 2λ+ CS R(ḡ)} ,

S
(2)
k [h; ḡ]CC̄ = τk {−∇̄2 + CV R(ḡ)} ,

(3.6)

being τk = (−16π Gk)
−1, Z = −(d− 2)/2 and

CT =
(d− 3)d+ 4

(d− 1)d
, CS =

d− 4

d
, CV = −1

d
. (3.7)

The cutoff function ρk(s) in (3.4) is a generalized version of the family of n-parameter
cutoff functions (1.71) which reads

ρk(s) ≡ ρnk(s,Z) =
Γ(n, sZ n k2)− Γ(n, sZ nΛ2)

Γ(n)
, (3.8)

being Λ an UV cutoff, and where Z is a constant which has to be adjusted to make sure
that the eigenvalues of −∇2 are cut off around ∼ k2 rather than ∼ k2/Z. Looking at
the Hessians (3.6) we can see that Z = (−16π Gk)

−1 for the vector and tensor sectors
and Z = Z (−16π Gk)

−1 for the scalar sector. In (3.8) we already took in consideration
the cutoff rescaling k2 → n k2, introduced in the subsection 1.2.3, and for convenience
we shift2 n→ n−d/2 in the cutoff (1.71) so to have the first argument of the incomplete

2Note that n can be freely shifted without requiring to shift also the parameter n present in the
rescaling k2 → nk2.
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Euler function in (3.8) directly equal to n. After the shift, then, we have that n > d/2
and the RG flow becomes logarithmic for n→ d/2. The derivative k ∂k ρnk(s,Z) in (3.1)
then explicitly reads

k ∂k ρ
n
k(s) = − 2

n!
(Z s k2 n)n e−Z s k

2 n . (3.9)

The traces contained in (3.4) can be evaluated by using heat kernel techniques, that is
by expanding the trace of the heat kernel operator in powers of the proper time s, i.e.

TrH(s;S
(2)
k [h; ḡ]) =

∑

i

siEi , (3.10)

where Ei are operators built from the invariants of the symmetries of the action Sk[h, ḡ]
(e.g. powers of R, contractions of Riemann tensors, etc.). A more detailed introduction
to heat kernel techniques can be found in the appendix D.

Since the Hessians (3.6) contain a Laplacian operator which commutes with the
remaining part it is possible to take the latter out of the trace, i.e.

TrH
(
s;S

(2)
k [h; ḡ] = Z {−∇̄2 + B}

)
= e−sZ B TrH(s;−Z ∇̄2) , (3.11)

where B is the non-derivative part of the Hessian and Z the coefficient of the Laplacian,
and then use the well known heat kernel expansion for the operator −∇2 on a generic
metric g, (D.42), up to the first order in the Ricci scalar, i.e.

TrH(s;−∇2) =

∫
ddx
√
g

1

(4 π s)
d
2

{
1 + s

R(g)

6
+O(R2)

}
, (3.12)

so that the three traces written in (3.4) yield

TrT H(s;S
(2)
k [h; ḡ])ĥ ĥ =

(d− 1)(d+ 2)

2

1

(4 π τk s)
d
2

∫
ddx
√
ḡ

{
1 + s τk

R(ḡ)

6
+O(R2)

}
e−s τk (−2λ+CT R(ḡ)) ,

(3.13)

TrSH(s;S
(2)
k [h; ḡ])h̄ h̄ =

1

(4 π Z τk s)
d
2

∫
ddx
√
ḡ

{
1 + sZ τk

R(ḡ)

6
+O(R2)

}
e−sZ τk (−2λ+CS R(ḡ)) ,

(3.14)

TrV H(s;S
(2)
k [h; ḡ])CC̄ =

d

(4 π τk s)
d
2

∫
ddx
√
ḡ

{
1 + s τk

R(ḡ)

6
+O(R2)

}
e−s τk CV R(ḡ) ,

(3.15)
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where the heat kernel expansion has been performed using the background metric
ḡ. We can then perform the integral over the proper time and collect operators linear
in R and of 0-th order in R. The β-functions can be obtained matching powers of R in
the right and left hand side of the flow equation (3.1), where the left hand side reads

k ∂k Sk[ḡ] = − 1

16 π

∫
ddx
√
ḡ

{
k ∂k

1

Gk

R− 2 k ∂k
Λk

Gk

}
. (3.16)

The fixed point structure can then be investigated by using dimensionless quantities,
that is

gk = kd−2Gk , λk = Λk k
−2 , R̃ = Rk−2 . (3.17)

In particular, the β-function of the Newton’s constant can be obtained by defining the
anomalous dimension

η = k ∂k lnGk , (3.18)
so that we have

βg(g, λ) ≡ k ∂k gk = ∂k (Gk k
d−2) = (d− 2 + η) gk . (3.19)

The β-function of the dimensionless cosmological constant can be obtained from the
dimensionful equation

Gk

(
k ∂k

Λk

Gk

)
= k ∂k Λk + Λk η = k2 (k ∂k λk + 2λk + η λk) . (3.20)

The anomalous dimension can be evaluated by collecting the linear term in the Ricci
scalar from the left hand term of (3.1) and reads

η(g, λ) =
gk

(
−d (5 d− 7)nn+1 (n− 2λk)

d
2
−n−1 − 4 (d+ 6)nd/2

)
Γ
(
−d

2
+ n+ 1

)

3 2d−2 π
d
2
−1 Γ(n+ 1)

,

(3.21)
using which we obtain the set of coupled β-functions, which in d = 4 read

βg = gk

(
gk (−13nn (n− 2λ)1−n − 10n)

3 π (n− 1)
+ 2

)
,

βλ =
gk (5nn (n− 2λk)

2 − 4n2(n− 2λk)
n) (n− 2λk)

−nΓ(n− 2)

πΓ(n)

+λk

(
gk (−13nn (n− 2λk)

1−n − 10n)

3π (n− 1)
− 2

)
.

(3.22)

The expression of the β-functions for a generic dimension d, for the cutoff function (3.8)
and in the limits n→∞ and n→ d

2
are listed in the appendix C, together with a table

of universal quantities at varying d and n.
As it can be seen by comparing the universal quantities evaluated in the proper time

RG scheme and the ERG scheme, respectively Tab. 2.70 and Tab. C.1, the use of the
proper time scheme leads to results in general agreement with the ERG calculation for
all values of n, underling the robustness of the NGFP under RG scheme change.
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3.2 Conformally reduced action

We will now restrict our attention to the quantization of the sole conformal degree of
freedom, studying the reduced action as a scalar toy model of quantum gravity. To
build such a conformally reduced model we start with the Einstein-Hilbert (EH) action

SEH
k [gµν ] = − 1

16 π Gk

∫
ddx
√
g
(
R(g)− 2 Λk

)
, (3.23)

and we restrict the metric to belong to a class of conformal metrics, i.e. metrics which
differ only by a conformal factor, i.e.

gµν = φ(x)2 ν(d) ĝµν , (3.24)

being ĝµν a reference metric, and where ν(d) is a generic function of the spacetime
dimension. The Ricci scalar for this class of metrics reads

R(g) = φ(x)2 ν(d)
{
R(ĝ)− 2 ν (d− 1)

1

φ(x)
∇̂2 φ(x)

+
(
2 ν (d− 1)− ν2 (d− 1) (d− 2)

) 1

φ(x)2
ĝµν (∂µφ(x)) (∂νφ(x))

}
,

(3.25)

where R̂ is the Ricci scalar of the reference metric, R̂ ≡ R(ĝ), while for the determinant
we have √

g = φ(x)d ν(d)
√
ĝ , (3.26)

so that for the operator √gR we have
∫
ddx
√
g R =

∫
ddx

√
ĝ φ(x)(d−2) ν

{
R(ĝ)+ν2 (d−1) (d−2)

1

φ(x)2
ĝµν (∂µφ(x)) (∂νφ(x))

}
.

(3.27)
We can set ν(d) = 2/(d− 2) in order to fix the relative factor of the kinetic operator to
the standard value 1/2, so that, inserting (3.24) in (3.23), it yields the scalar action

SCREH [φ] =

∫
ddx

√
ĝZk

(
1
2
ĝ µν∂µφ ∂νφ+ 1

2
A(d) R̂ φ2 − 2A(d) Λk φ

2d
(d−2)

)
, (3.28)

where
Zk = − 1

2 π Gk

d− 1

d− 2
, A(d) =

d− 2

8 (d− 1)
. (3.29)

For such a choice of ν(d) the conformally reduced Einstein-Hilbert (CREH) action (3.28)
reads

SCREH = − 3

4 π G

∫
d4x
√
ĝ
{1

2
ĝµν(∂µφ(x)) (∂νφ(x)) +

1

12
R(ĝ)φ(x)2 − 1

6
Λφ(x)4

}
,

(3.30)
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that is a λφ4 scalar field theory, but with a wrong kinetic sign which entails an instability
of the action. This instability, however, is believed to be a drawback of the sole Einstein-
Hilbert truncation and to be cured adding higher derivative operators to the bare action.
In [83], has in fact been studied the stabilization mechanism of an higher derivative
action of the type

S[φ] =

∫
ddx {(∂2

µφ)2 − (∂µφ)2 + V (φ)} , (3.31)

which bare propagator contains unstable modes for p2 < 1. Interestingly, it has been
proved that once averaged the fluctuations the effective propagator does not contain
unstable modes anymore, and the effective theory is well defined.

To quantize the scalar toy model in the background field formalism let us then
consider a microscopic scalar field χ(x) (we will use φ(x) for the effective field) and
decompose it as χ(x) = χB(x) + f(x), being f a fluctuation and χB the background.
The path integral of the CREH action (3.28) reads then

Z =

∫
D[f ] e−S[f+χB ] , (3.32)

and we will assume that no unstable mode are present in the effective theory.
The coarse graining for such a theory can be built in the same way introduced in sec-

tion 1.2 but where the averaged field (1.9) now depends on a generic scalar background
χB(x) which we will use to define the block length, i.e.

fk(x) =

∫
ddy

√
ĝ f(y) ρk(y, x;χB) , (3.33)

where the function ρk(x, y;χB) is a smearing kernel satisfying the same conditions of
the function (1.10), but generalized on a curved background (see [84] for a general
discussion on smearing kernels in Riemannian spaces). Its explicit expression in terms
of χB dependence does not need to be specified at this level.

In this formalism χ plays the same role of the microscopic metric γµν in the full
theory and the expectation values f̄ ≡ 〈f〉 and φ ≡ 〈χ〉 = χB + f̄ are the analogs of
h̄µν ≡ 〈hµν〉 and gµν = 〈γµν〉 = ḡµν + h̄µν in the full theory, although f̄ and h̄µν cannot
be directly compared because of the non linearity in φ in the Weyl rescaling (3.24).

The central idea of the conformal field quantization is to employ the background
metric

ḡµν ≡ χ2ν
B ĝµν , (3.34)

in constructing the smearing function ρk̄(x, y) ≡ ρk(x, y;χB) via the spectrum of −∇̄2,
being k̄ and k ≡ k̂, respectively the momentum operators built with the background
metric ḡµν and the fixed metric ĝµν . The reference metric ĝµν plays no dynamical
role in this process but it is fixed to perform the actual calculation, while all the
dynamical fields are spectrally decomposed using the basis of the −∇̄2 eigenfunctions
whose eigenvalues satisfy

k̄2 = χ−2 ν
B k2 , (3.35)
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in the case of a constant χB.
The proper time RG flow equation (3.1) for the toy model reads then

∂t Sk[f̃ ;χB] = −1

2

∫ ∞

0

ds

s
(k ∂k ρk)TrH(s;S

(2)
k [f̃ ;χB]) , (3.36)

where we will use as cutoff function ρk(s) the same family of cutoff function used in the
gravitational case, i.e. (3.8), adapted to the background case, that is

ρk(s) = ρnk̄(s,Z) =
Γ(n, sZ n k2 χ2ν

B )− Γ(n, sZ nΛ2 χ2ν
B )

Γ(n)
, (3.37)

where we we used the relation (3.35).Therefore, the derivative k ∂k ρnk in (3.36) explicitly
reads

k ∂k ρ
n
k = − 2

n!
(Z s k2 nχ2ν

B )n e−Z s k
2 nχ2ν

B , (3.38)

with n > d/2. For n = d/2 the kernel (3.38) does not regulate completely the UV
because the proper time integral requires a field independent (vacuum) contribution to
be subtracted from the right-hand side of equation (3.36).

The important difference between the flow equation (3.36) and the flow equation
for the standard scalar field theory (but also the gravitation theory) is that besides the
action (3.28) is defined for a reference metric ĝ as background, and not ḡ, the coarse
graining still requires the modes p̄, and not p ≡ p̂, to be cut. Hence, the trace over
the reference metric in (3.36) has to be here computed by means of the representation
provided by the spectrum of the Laplacian3 operator −∇2, i.e. using the relation

− ∇̂2 = −∇̄2 χ2 ν
B , (3.39)

we have
TrH(s;−∇̂2) ≡ TrH(s;−∇̄2 χ2 ν

B ) , (3.40)

where

TrH(s;−∇̄2 χ2 ν
B ) ≡

∫
ddx
√
ḡ 〈x|e−s(−∇̄2 χ2 ν

B )|x〉 =

∫
ddx

√
ĝ χdνB 〈x|e−s(−∇̄

2 χ2 ν
B )|x〉 ,

(3.41)
where we expressed the background volume in terms of reference volume using the
relation

√
ḡ =
√
ĝ χdνB .

3.3 Polynomial truncations

In this section we shall discuss the structure of the NGFP obtained by the flow equation
(3.36) as a function of the cutoff parameter n for different reference topologies.

3Note that the action (3.28) contains an operator ∇̂2 and not ∇̄2.
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It is important to remark that, at variance with the well-known definition of the
path integral for quantum gravity based on the sum over all possible metric/topologies,
in our case the use of different topologies is only a technical device to project an infinite-
dimensional functional flow equation in a finite dimensional theory space where only the
flow of the operators √gR and √g is considered. From this point of view the projection
to different topologies has nothing to do with a calculation performed in the Gibbons-
Hawking spirit. Neither are we expanding the graviton propagator in inverse powers
of momentum/curvature. On the contrary the (unprojected) functional flow equation
is, by construction, independent on the topology and the same property is shared by
the flow equation for the conformal factor. However because the irrelevant operators
of the NGFP have a different impact on the renormalized flow at the zeroth order of
the gradient expansion (spherical projection) and at first order (flat projection), the
universal quantities will show this residual scheme dependence.

Let us then assume that the field dependence of the Wilsonian action Sk is com-
pletely encoded in a relation of the type φ = χB + f̃ , i.e. the approximation (2.61), so
that Sk is a local function of φ. In particular, the second functional derivative of (3.28)
reads

S
(2)
k [φ] = Zk

(
− ∇̂2 + 2A(d) R̂− 2A(d)B(d) Λk φ

2d
(d−2)

−2
)
, (3.42)

being

B(d) =
2d

d− 2

(
2d

d− 2
− 1

)
. (3.43)

3.3.1 Sd topology

Let us first consider the topology of the d dimensional sphere Sd. In this case the
curvature of the reference metric ĝµν is constant and the running of the dimensionless
coupling gk = Gk k

d−2 can be obtained from the φ2 term projecting the flow equation
on the background field, i.e. fixing f̃ = 0 and χB(x) equal to a constant in action (3.28),
so that the kinetic term vanishes and we get

SS
d

k [χB] =

∫
ddx

√
ĝ Zk

(
1
2
A(d) R̂ χ2

B − 2A(d) Λk χ
2d

(d−2)

B

)
. (3.44)

The evaluation of the trace can then be performed using the heat kernel techniques
already introduced, combined with the background-independent trace condition (3.40),
so that

TrH(s;S
(2)
k [f̃ ;χB]) = e

−sZk
(

2A(d) R̂−2A(d)B(d) Λk φ
2d

(d−2)
−2

)
TrH(s;−Zk ∇̄2 χ2 ν

B ) , (3.45)

where

TrH(s;−Zk ∇̄2 χ2 ν
B ) =

∫
ddx
√
ĝ

χd νB

(4 πZk s χ2 ν
B )

d
2

{
1 + sZk χ2 ν

B

R̂

6
+O(R̂2)

}
,

(3.46)
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and where we used the heat kernel expansion (3.12) for the Laplacian operator.
We can then expand (3.45) in powers of R̂ and discard terms O(R̂2), then insert the

result in the flow equation (3.36) together with (3.38) and evaluate the integral over the
proper time. The coefficients of the operators χ2

B and χ2d/(d−2)
B are then easily identified

selecting the term proportional to
√
ĝµν R(ĝµν) and

√
ĝµν on the right hand side of the

flow equation. At last the β-functions for the dimensionless running Newton constant
gk and the dimensionless cosmological constant λk = Λk k

2 can be obtained with the
introduction of the anomalous dimension η ≡ k ∂k lnGk, so that

βg(g, λ) ≡ k ∂k gk = (d− 2 + η) gk . (3.47)

Given the anomalous dimension

η(g, λ) ≡ ηpot(g, λ) = −22−d (d− 2) π1− d
2 gk n

n Γ
(
−d

2
+ n+ 1

)

(d− 1) Γ(n)

(
n− d( 2d

d−2
−1)λk

2 (d−1)

)n− d
2

+1
, (3.48)

where the pot implies that we evaluated the running of the Newton’s constant from the
potential, in four dimensions we have

βg = gk

(
2− gk

(n− 2λk)n−1

nn Γ[n− 1]

6π Γ(n)

)
, (3.49a)

βλ = λk

(
−2− gk

(n− 2λk)n−1

nn Γ[n− 1]

6π Γ(n)

)
+

+
gk

(n− 2λk)n−2

nn Γ[n− 2]

2π Γ(n)
. (3.49b)

The expressions for the d dimensional β-functions are listed in the appendix C, together
with the limiting cases n→ d/2 and n→∞.

3.3.2 Rd topology

In the case of a flat Rd topology the scalar curvature of the reference metric vanishes,
constraining the operator χ2

B in the action (3.28) to be zero. In order to extract the β-
functions from the flow equation (3.36) it is convenient to consider a general truncation
of the type

Sk[φ] =

∫
ddx

√
ĝ
(

1
2
ĝ µν Zk ∂µ φ ∂ν φ + Vk(φ)

)
, (3.50)

where Vk(φ) = Zk Uk(φ), and employ a derivative expansion around an homogeneous
background plus a fluctuation, so that φ(x) = χB + f̃(x). In this case we have

Sk[φ] =

∫
ddx
√
ĝ
{
− 1

2
Zk f̃(x) ∇̂2 f̃(x) + Vk(χB) + (3.51)

+V ′k(χB) f̃(x) +
1

2
V ′′k (χB) f̃(x)2 +O(f̃(x)3) +O(∂4 f̃)

}
.
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Therefore,

k ∂k Sk[f̃(x)] = −1

2

∫
ddx

√
ĝ χd νB

∫
ds

s
(k ∂kρ

n
k) 〈x | e−s (K+δK) |x 〉 , (3.52)

where

K = −Zk �̂+ V ′′k (χB) , δK = V ′′′k (χB)f̃(x) +
1

2
V ′′′′k (χB) f̃(x)2 . (3.53)

The trace in (3.52) can be evaluated in a background-independent way by means of
an integration in momentum space over the eigenvalues p̄2 of the Laplacian built from
the background metric ḡµν , inserting in (3.52) the identity

∫
ddp̄ | p̄ 〉〈 p̄ | = 1 (2 π)d and

using in (3.53) the substitution −∇̂2 → −∇̄2 χ2 ν
B . In order to disentangle the trace in

(3.52) a Baker-Campbell-Hausdorff expansion of the heat kernel is performed, so that

k ∂k Sk[f̃(x)] = −1

2

∫
ddx

√
ĝ χd νB

∫
ddp̄

(2 π)d

∫
ds

s
(k ∂kρ

n
k) 〈x | p̄ 〉〈 p̄ | e−sKB|x 〉 ,

(3.54)
being

B(K, δK) =

(
1− s δK +

s2

2!
{[δK,K] + δK2}+ . . .

)
, (3.55)

where the dots stand for the higher order terms in the s expansion of the exponential
and

〈x | p̄ 〉 = e−i p̄ x . (3.56)

The matrix elements of the expanded heat kernel can then be calculated ordering the
operators by means of the commutation rule

[p̄µ, f̃(x)] = −i ∂µ f̃(x) . (3.57)

It is then straightforward to identify the coefficients of the Vk and Zk terms, obtaining
the following set of coupled equations:

k ∂k Vk = M (k2 χ2 ν
B )

d
2

(
1 +

V ′′k (χB)

k2 nZk χ2
B

) d
2
−n

, (3.58a)

k ∂k Zk = N (k2χ2 ν
B )

d
2
−3 (V ′′′k /Zk)2

(
1 +

V ′′k (χB)

k2 nZk χ2
B

) d
2
−3−n

, (3.58b)

where

M =
( n

4π

) d
2 Γ(n− d

2
)

Γ(n)
, (3.59a)

N =
(d− 2 (n+ 1))(d− 2 (n+ 2))

24 d n2

( n
4π

) d
2 Γ(n− d

2
)

Γ(n)
. (3.59b)
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The β-functions for the dimensionless couplings of the CREH truncation are then ob-
tained introducing a polynomial ansatz for the dimensionful potential Uk of the type

Uk(χB) = − k2 λk
6
χ4

B , (3.60)

so that using the anomalous dimension calculated from the kinetic term

η(g, λ) ≡ ηkin(g, λ) = − 22−d d2 (d+ 2)2 π1− d
2 gk λ

2
k n

n Γ
(
−d

2
+ n+ 3

)

3 (d− 2)3 (d− 1)3 Γ(n)

(
n− d ( 2 d

d−2
−1)λk

2 (d−1)

) 1
2

(−d+2n+6)
, (3.61)

one obtains in four dimensions the coupled set of equations

βg = gk

(
2− 2

gk λ
2
k

(n− 2λk)n−1

Γ(n+ 1)nn

9π Γ(n)

)
, (3.62a)

βλ =
gk

(n− 2λk)n−2

Γ(n− 2)nn

2π Γ(n)
+ (3.62b)

+λk

(
−2− 2

gk λ
2
k

(n− 2λk)n−1

Γ(n+ 1)nn

9 π Γ(n)

)
.

3.3.3 Fixed points and linearized flow

The β-functions (3.49) and (3.62) vanish both at the Gaussian fixed point located at
λ∗ = g∗ = 0, and at a NGFP defined at λ∗ 6= 0, g∗ 6= 0. The properties of the linearized
flow around the NGFP are, as already said, determined by the stability matrix B which
for the non trivial fixed point owns a pair of complex eigenvalues θ1,2 = −θ′ ± iθ′′. A
negative real part of the eigenvalues, i.e. a positive θ′ (we will refer to it as the
first Lyapunov exponent, following the standard notation used in dynamical systems),
implies the stability of the fixed point, while the imaginary part characterizes the spiral
shape near the fixed point. Our results d = 4 and generic d dimensions are summarized,
respectively, in Table C.1 and Table C.2 in the Appendix C.

It is clear from Table C.1 that also the theory defined by the CREH approximation
is asymptotically safe, although the scaling properties are rather different from those
obtained from the full Einstein-Hilbert action in the section 3.1. For instance, the
critical exponents θ′ and θ′′ display an n-dependence which is stronger in the case of
the CREH action than for the non-reduced theory, although the quantity λ∗ g∗ is rather
stable in both cases.

We can quantify the impact of the Einstein-Hilbert conformal reduction with respect
to the full EH theory by defining a χ2-type of “distance" in the space of the “universal”
quantities, by means of

χ2(n) =
(λ∗g∗(C)− λ∗g∗(E))2

λ∗g∗(C)2 + λ∗g∗(E)2
+

(θ′(C)− θ′(E))2

θ′(C)2 + θ′(E)2
+

(θ′′(C)− θ′′(E))2

θ′′(C)2 + θ′′(E)2
, (3.63)
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where “C" and “E" stands for the conformally reduced (CREH) and gravitational (EH)
theories, respectively.

A plot of this quantity as a function of n is depicted in the upper panel of Fig.(3.1),
for the S4 projection (solid line) and the R4 projection (dashed line) where it is clear
that the minimum is attained for n = 4 in both cases. On the other hand, in the case of
the Rd projection the scaling properties are much less sensitive to the cutoff parameter
n, and the n =∞ limit is as good as the n = 4 case.

Of particular interest is the n = ∞ limit for the Sd topology, in which the first
Lyapunov exponent vanishes. In this case the theory is still UV finite although not
asymptotically safe anymore, since now the linearized system is defined by pure imag-
inary eigenvalues ±θ′′ and every perturbation of the NGFP will evolve in a cyclic
trajectory.

It is also interesting to discuss the scaling properties of the theory in the Sd pro-
jection as the dimension is changed. This is shown in the middle panel of Fig.(3.1) for
n = 4 for θ′, θ′′ and for the dimensionless quantity τd ≡ λ∗ g∗2/(d−2) = ΛkG

2/(d−2)
k .

The first Lyapunov exponent θ′ vanishes for a critical dimension value dc so that the
fixed point undergoes an Hopf bifurcation as the dimension d crosses dc (represented in
Fig.(3.2)).

As it is shown in Fig.(3.3), for d → 2 the cycle collapses on the λ = 0 line. In this
regime it shows a non homogeneous running due to the low transient of the trajectory
near the Gaussian fixed point, while it becomes an homogenous slow transient around
the NGFP in the limit d→ dc.

Notice that the critical dimension is a function of n, dc ≡ dc(n), and while for
n = ∞ the critical dimension is dc = 4, generally holds dc(n) < 4 for a finite value
of the parameter n. At d = dc the UV behavior is regulated by a limit cycle whose
behavior resembles the one of the Van der Pol oscillator.

For d < dc (see left panel of Fig.(3.2)) the theory space is now divided in two regions.
The first is the set of points in parameter space outside the cycle, which trajectories
flow towards the UV to the limit cycle and hit in the IR the singularity λ = n/2 (or
flow towards λ = −∞). Those are the trajectories which survive for d > dc and that
require higher-order operators in order to cure the IR sector. The second region is the
set of points inside the cycle which flow towards it in the UV and towards the NGFP
in the IR. The latter case leads to a new interesting scenario in which the UV and IR
critical manifolds coincide and the EH truncation is finite at every energy scale.

For this scenario to be plausible we require the cyclic trajectory to be close enough
to the Gaussian fixed point, so that it shows a semiclassical regime. Unfortunately, as
can be seen from Fig.(3.3), in the best case (dc = 4 for n = ∞) a limit cycle with a
good semiclassical regime occurs only for d ≈ 3. It is also important to stress that the
limit cycle never approaches the singularity λ = n/2, where the EH truncation stops
to work.

Since the Hopf bifurcation is not present in the Rd projection for the CREH action,
also for small values of the dimension, we analyzed the behavior of the linearized flow
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Figure 3.1: Top: the quantity χ2(n) as a function of the cutoff parameter n in the case of S4

projection (solid line) and R4 (dashed line). Middle and bottom: the quantity τd (solid line), θ′

(dashed line) and θ′′ (dotted-dashed line) as a function of the dimension d for n = 4 in the case of S4

(middle) and R4 (bottom) projections.
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near the NGFP in the case of the full EH truncation, to verify if the Hopf bifurcation is
still present in the Sd projection for some value of the parameter n. Numerical results
and the β-functions are collected in Table C.2 in appendix C. As it can be seen from
Table C.2 the full theory presents a stable NGFP in the whole n − d plane, which
means that the contribution of spin-2 degrees of freedom lower the value of the critical
dimension under the “critical" value d = 2.

Although such a non trivial behavior in the UV region seems to be a direct conse-
quence of the strong dependence of the flow in the Sd projection on the cutoff parameter
n, it is interesting to notice that recent investigations based on “tetrad only" theory
spaces [85], and on the minisuperspace approximation of the EH truncation [86], also
show the presence of limit cycles in the UV and IR limit, respectively. In the latter case,
however, the limit cycle originates by an Hopf bifurcation of a specific cutoff parameter,
while in our case the bifurcation is governed by the spacetime dimension, so that our
limit cycle is UV and not IR.

The intriguing possibility of such a non trivial UV completion, however, was first
pointed out by Wilson in a seminal paper (before the discovery of asymptotic freedom),
in the context of QCD [87]. In particular it was argued that, at the experimental level,
the presence of a limit cycle would show up in perpetual oscillations in the e+ − e−

total hadronic cross section in the limit of large momenta. In the case of gravity the
natural arena to discuss this type of phenomenon is the physics of the early Universe,
for which an effective Lagrangian Leff (R) embodying the properties of the limit cycle
can be determined by using the strategy outlined in [88]. In the case at hand we expect
that Leff (R) ∝ cos(R/µ2) where µ is a renormalization scale. On the other hand, dis-
cussing the detailed physical implications of this model is beyond the scope of this work.

As already mentioned in section 2.2.5 the infrared regime of both Einstein-Hilbert
and CREH actions is plagued by a singularity4 in the β-functions at λ = 1

2
. It is

supposed that such a singular behavior can be cured by adding other irrelevant operators
at the bare action, so that an appropriate framework for investigating the IR regime
would be, for example, that of a local potential approximation.

3.4 Non-polynomial truncations

In this section we are interested in studing an RG equation for the scalar toy model in a
local potential approximation, which, moreover, allows us to investigate the possibility
of having a transition to a phase of broken diffeomorphism invariance at low energy
(which has already been studied in an ERG context, see [7]).

We hence aim at solving numerically the equation (3.58a), that is a LPA equation
for a generic potential Vk(φ) of the conformal factor for a flat spacetime, and study

4Note that the singularity occurs at λ = n
2 while using the reparameterized proper time cutoff.



82 ASYMPTOTIC SAFETY IN CONFORMAL GRAVITY

0.5 1.0 1.5 2.0 2.5
Λ

2

4

6

8

10

g

0.5 1.0 1.5 2.0 2.5
Λ

2

4

6

8

10

g

0.5 1.0 1.5 2.0 2.5
Λ

2

4

6

8

10

g

Figure 3.2: Flows in d dimension for the CREH Sd projection. Left: the limit cycle at d < dc, the
dashed line is the repulsive internal flow. Middle: the limit cycle at the critical dimension d = dc.
Right: the flow of the UV attractive NGFP at d > dc. The red line is the location of the FP as a
function of the dimension d. The plots have been obtained setting n =∞ and, starting from the left,
for d = 3.9, d = 4, d = 4.1.
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Figure 3.3: The Hopf bifurcation as a function of the dimension d for n =∞ in the g-λ plane. The
solid line is a cycle for an initial value near the FP at dc = 4, the other cycles plotted are at d = 3.9

(dotted line), d = 3.6 (dotted-dashed line), d = 3.3 (dashed line) and d = 2.9 (long dashed line). The
red line is the location of the FP as a function of the dimension d.

the evolution of an initial ultraviolet condition towards the infrared regime. Equation
(3.58a), however, contains a dependence from the running renormalization function
Zk (the Newton’s contant) which cannot be taken in account in an LPA context, but
rather, for instance, in the so-called LPA’ truncation, solving then the RG equation for
the two point correlation function. We will however fix the running of the dimensionful
coupling Zk by hand; the solution of the coupled problem (3.58) is, in fact, beyond the
aim of this work, and we will here just present a successful numerical strategy to deal
with (3.58a) which we hope can eventually be extended to treat the coupled system
(3.58a) and (3.58b) beyond the simple LPA truncation.

In particular, as we will see ahead, we shall investigate the role played by higher
powers of volume operators of the type V = (

∫
ddx
√
g) in providing a transition to a

phase of broken diffeomorphism invariance.

In order to carry out the numerical integration of (3.58a), it is useful to “linearize"
the evolution equation for the potential by defining the quantity

W (χ) = χ4

(
1 +

V ′′

n k2Z χ2

)−γ
, (3.64)

being χ ≡ χB and with γ = n − 2 > 0, that diverges at +∞ as the “spinodal line”
n k2Z χ2 ν

0 + V ′′(χ0) = 0 is approached, but it behaves as a power law for large values
of the field outside the “coexistence" region where n k2Z χ2

0 + V ′′(χ0) < 0. In terms of
this new variable equation (3.58a)) reads

(2 + η)n k2Z χ2(W− 1
γ χ

4
γ − 1)−n k2Z χ 4

γ
+2γ−1W− 1

γ
−1 k ∂kW = An k

4 ∂2
xxW , (3.65)
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where An is a volume element. The advantage of this manipulation is that Eq. (3.65)
is now linear in the second derivative.

Ideally we would like to evolve an initial data Win defined at the cutoff scale kin =
ΛUV along the RG direction towards the infrared. This is usually achieved by defining
the RG time t via

k

ΛUV

= e−t , (3.66)

with t > 0. Since the PDE (3.65) is a boundary value problem the Cauchy problem is
then fully determined once we give an initial condition at the UV scale, W (χ, tin = 0),
and we fix as a boundary condition the value of W for an asymptotic value χout of the
field, i.e. W (χout, t), where χout � 1 in actual calculations. However, if we intend to
do so, we immediately run into the difficulty that as Z < 0, equation (3.65) belongs
to the restricted élite of the backward-parabolic equations, i.e. a class of diffusion-type
partial differential equation with a negative diffusion constant. As it is well known, in
this case the Cauchy problem is not “well-posed" and the existence of the solution for
generic initial data is not guaranteed even for an infinitesimal time step.

To integrate the PDE it is therefore necessary to treat the question as a sort of
inverse problem and to consider an integration in the UV direction instead of the IR,
that is by defining the RG time as

k

ΛUV

= et , (3.67)

with t > 0. Doing so in fact the equation becomes a backward-parabolic equation, and
consequently the Cauchy problem is well posed and the solution is unique. Clearly,
once the solution in the deep UV is found it is possible to ask whether that solution is
an admissible initial data for a non singular IR flow or not. However, also in the case
of the UV evolution, due to its strong nonlinearities, a proper numerical strategy is to
implement a fully implicit predictor-corrector numerical scheme on an uniform spatial
and temporal grid.

In solving the flow equation the predictor step is computed at times t = (j+1/2) ∆t
so that we can discretize (3.65) according to the scheme

1

h2
δ2
xWi,j+1/2 =

nZi,j
An

(2 + η) e−2 t (ih)2

(
W
− 1
γ

i,j (ih)
4
γ − 1

)

−nZi,j
An γ

e−2 t(ih)
4
γ

+2W
− 1
γ
−1

i,j

2

q

(
Wi,j+1/2 −Wi,j

)
, (3.68)

being h = 1/∆χ the spatial grid spacing, q = 1/∆t the temporal grid spacing and, as
usual, δ2

xWi = Wi−1 − 2Wi +Wi+1. The corrector step is instead given by

1

2h2
δ2
x [Wi,j+1 +Wi,j] =

nZi,j+1/2

An
(2 + η) e−2 t(ih)2

(
W
− 1
γ

i,j+1/2(ih)
4
γ − 1

)

−nZi,j+1/2

An γ
e−2 t(ih)

4
γ

+2 W
− 1
γ
−1

i,j+1/2

1

q
(Wi,j+1 −Wi,j) , (3.69)
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and the solution at j + 1/2 in (3.69) is obtained from (3.68) from the solution of the
linear tridiagonal system problem in the predictor step. As a consequence (3.69) also
reduces to a linear problem for the j+ 1 time step which can be conveniently solved by
standard tridiagonal solvers. The method is thus unconditionally stable and O(h2 +q2)
accurate.

About the boundary condition, at the inner boundary 0 < χinit � 1 we set a von
Neumann type condition ∂xW (χinit, t) = 0, and we have checked that our results are
rather insensitive to the choice of χinit that could then be set arbitrarily close to zero
in all calculations (note however that, strictly speaking, χ > 0 always). At the outer
boundary χout � 1 the function W is assumed to behave as a power low, like in the
more familiar scalar field theory [29], which depends on the expression of the initial
boundary condition Win. A CREH truncation for the infrared potential, i.e.

V (χ, 0) =
λ

6
χ4 , (3.70)

is however not appropriate, since it is an exact5 polynomial truncation of the LPA
equation (3.58a). Obviously the potential (3.70) cannot be used to characterize the
emergence of a broken phase in the infrared regime, so that the problem cannot be
investigated in a CREH context.

An assumption for the infrared potential can then be

V (χ, 0) =
λ

6
χ4 + σ χ6 + ω χ8 , (3.71)

where the bare values of λ, σ and ω have been chosen in order to display a non-zero
minimum as an initial condition. Since a Weyl rescaling of powers of the Ricci scalar
do not produce any operator in the potential that is not already present in the CREH
action, looking at (3.26) it can be argued that such operators are generated by powers
of the volume element

∫
ddx
√
g.

In addition, we have also considered the coupling to be negative in order to have
a real function W for large values of the field. In fact, unless ω = σ ≡ 0 no consistent
initial condition can be given in all the real line for the potential, as the threshold
functions (the denominator in (3.58a)) become complex at a finite value of χ for ω > 0;
the infrared potential need to be lower unbounded in order to be a good initial condi-
tion. The latter is a simple consequence of the hyperbolic character of the equation:
working in a ”inverted picture" in which the instability of the kinetic sector is moved to
the potential (the kinetic operator is stable and the CREH potential is unstable), the
condition ω < 0 is actually a requirement of global stability of the action.

5Here with exact we mean that employing a polynomial truncation of the LPA equation (3.58a) all
the β-functions of higher powers of the field are equal to zero.
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Figure 3.4: The dimensionless initial potential as a function of the RG time t for an initial condition
with λ = −1/2, σ = 0.05 and ω = −0.00714. Left: the early RG evolution is showed: t = 0 (dashed
line), t = 0.02, (dotted-dashed line) and t = 0.8 (solid line). Right: the deep UV fixed point is
presented: t = 6 (solid line) and t = 8 (dashed line). Further increase in t did not show significant
changes in V .

Figure 3.5: Left: dimensionless initial potential as a function of the RG time t for an initial condition
with λ = −6, σ = ω = −1 and n = 5: t = 8 (solid line), t = 32 (dashed line). Right: corresponding
evolution of the function W is shown.
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In solving (3.65) close to the NGFP, we have set η ≈ −2 and Z ≈ −k2/g∗ in d = 4
as we are interested in the UV evolution, but not changes has been observed while
changing the value of η.

Our results are then summarized in Fig.(3.4): in the left panel a symmetry breaking
initial state evolves towards a convex potential as the UV evolution is followed. The
final, fixed point state, is then reached already for t = 6 as it can be seen in the right
panel. Note the flat bottom of the potential and the almost exponential suppression at
large values of the field in the final solution. We found that the appearance of a fixed
point potential of the type shown in Fig.(3.4) seems to be quite generic if the initial
condition is changed.

In Fig.(3.5) another example of the UV evolution is shown for n = 5 and for a
different set of initial conditions. Note in particular that using instead the UV potential
at t = 32 and integrating towards the IR, a symmetry breaking vacuum appears at low
energy.

It is particularly interesting to note that the large field behavior of the fixed point
potentials we found is characterized by an inverse power behavior, signaling then the
presence of non local invariants in the fixed point potential. This result is however not
surprising, since we expect the large field behavior of the potential to be defined by the
sole quantum fluctuation (being the field dimensionless). The different initial conditions
seems, moreover, to lead to slightly different fixed point solutions, suggesting than the
existence for this toy model of a more complex fixed point structure than that found
in the CREH truncation, and unaccessible using the standard β-functions approach.
Regarding the connection with the gravitational case, it has to be said that this class
of fixed points solutions have no relation with the set of scale invariant f(R) functions,
since for the flat topology the f(R) is identically null.
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Chapter 4

Brans-Dicke theory in the LPA

As usual in quantum field theory and critical phenomena, the use of the functional
renormalization group to study the fixed point structure of a theory is based on the
definition of a consistent strategy in truncating the effective action. Results can then be
trusted when, reducing systematically the entity of the truncation, little improvement
of the results is gained by new refinements. Such a strategy often requires to employ a
hierarchy of infinite dimensional truncations of the effective action in parameter space,
inasmuch as the use of finite dimensional truncations can lead to spurious fixed point
solutions. For the scalar field theory, for example, it consists in taking the derivative ex-
pansion, whose leading order is the local potential approximation (see equation (1.34)).

The definition of such a hierarchy of truncations for gravity is more subtle, since the
theory has a more complicated structure. A very natural option is to organize the action
as if it was an expansion around a maximally symmetric background. For the latter the
only non-zero component of the Riemann tensor is the Ricci scalar R, which is constant:
we have ∇µR = Sµν = Cµνρσ = 0, where Sµν is the traceless Ricci tensor, and Cµνρσ is
the Weyl tensor. The analogue of the derivative expansion can then be an expansion
in Sµν , Cµνρσ and their derivatives (by the Bianchi identity ∇µR = 2d

d−2
∇νSµν), with

arbitrary dependence on R at each order. In the leading order of such an expansion we
are left with an f(R) theory, whose study in such spirit was begun in [75, 78, 76, 89, 77],
and which has been briefly introduced in 2.2.6.

As compared to the LPA for scalar field theory, in the f(R) approximation for
gravity we face a number of additional technical complications, in particular a larger
number of contributions to the functional renormalization group equation, with a more
complicated dependence on the unknown function, and the challenge of evaluating
functional traces on a curved background. The latter in particular introduces some
subtleties related to the presence of zero modes in compact backgrounds and to the
staircase nature of the results obtained for the traces when using cutoffs with step
functions [75].

Also for these reasons, progresses from the recent results obtained for the f(R) has
been slow in this direction, and it is desirable to find alternative ways to study the same
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problem. One way, already introduced in chapter 3, is to study reduced models, i.e. by
neglecting the contributions of some degrees of freedom in the quantization procedure.
The study of toy models, however, leads to approximated results which are physically
interesting just in particular cases (as we will see in chapter 5).

One other possible way, which we will explore in this chapter, is to study dynamically
equivalent formulations of the theory we are interested in.

4.1 Scalar-tensor theories

Two theories are dynamically equivalent (at a classical level) when by means of a vari-
ational principle they lead to the same equation of motion. It is a well known classical
property of the f(R) theory to be dynamically equivalent to a scalar-tensor theory (see
[90, 91] for references).

Let us consider a (Euclidean) f(R) theory with the metric field minimally coupled
to a matter sector

S[gµν , ψ] =

∫
ddx
√
g f(R) + SM [gµν , ψ] , (4.1)

being ψ is a generic matter field and where SM defines the matter sector of the theory.
An equivalent theory can be obtained by taking a Legendre transform of f(R), that is
by defining1 a scalar field φ and a potential V (φ) such that

φ = −f ′(R) , V (φ) = f(R(φ)) + φR(φ) , (4.2)

where the prime in f ′(R) means derivative with respect to the Ricci scalar, and where
as usual holds the regularity condition f ′′(R) 6= 0, so that we have

S[gµν , φ, ψ] =

∫
ddx
√
g {V (φ)− φR}+ SM [gµν , ψ] , (4.3)

that is a scalar-tensor theory corresponding to the Jordan frame of the action of a
Brans-Dicke theory with ω = 0 and generic potential V (φ).

The Brans-Dicke theory is one of the oldest modification of general relativity [92],
and an example of dilaton gravity, i.e. a theory in which the gravitational interaction
is mediated by the metric field and a supplementary scalar field φ(x), called scalaron
or dilaton. The scalar field φ(x) can be though as a spacetime generalization of the
Newton’s constant G, now promoted to field, φ ≡ G−1, so that the Einstein action now
reads

SBD[gµν , φ] =
1

16 π

∫
ddx
√
g

{
−φR +

ω

φ
(∂µ φ)(∂µ φ)

}
, (4.4)

where the kinetic term for φ (not present in the Einstein action) has been added so that
the scalar field propagate according to the Klein-Gordon equation. The action (4.3)

1The signs in the Legendre transform are chosen in order to have a positive sign for the potential.
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is then a simple generalization of the Brans-Dicke action (4.4) for ω = 0 and with a
general potential V (φ).

The equivalence of the scalar-tensor and f(R) theory can be easily checked by
looking at the equation of motion: the variation of (4.3) with respect to the metric
leads to

δ S

δ gµν
= +φGµν −

1

2
gµν V (φ) +

1

φ
(∇µ∇ν − gµν ∇2)φ− κTµν = 0 , (4.5)

where
Tµν = − 2√

g

δSM
δgµν

, (4.6)

while the variation with respect to φ gives

R =
d V

d φ
. (4.7)

Solving the latter for φ(R), substituting it in (4.5), and defining f(R) = V (φ(R)) −
φ(R)R, leads to the equation of motion of an f(R) theory. If on the contrary we wish
to eliminate R, we can take the trace of (4.5), use (4.7), and obtain

3∇2φ+ 2V (φ)− φdV
d φ

= −κT . (4.8)

The scalar field acquires then a kinetic term from the coupling with the Ricci scalar
(which contains derivatives of the metric tensor) also not having any kinetic sector in
the action (4.3), and as usual with the trace of the energy momentum tensor acting as
source. In particular, by performing a conformal transformation the Jordan frame can
be rewritten in an equivalent frame, the so-called Einstein frame (actually an infinite
number of classically equivalent conformal frames [93]), which contains a kinetic term,
in countercheck that the absence of a kinetic operator in (4.3) does not imply the non
propagation of φ.

Dynamically equivalent theories depends moreover on the variation chosen, since
the same equations of motion for the f(R) can be obtained by employing different
variations starting from different actions. The f(R) theory (4.1) is said to be a metric
f(R), since the variation of the action is performed respect to the sole metric tensor.
Equations of motion can also be obtained in different formalisms, like for example the
Palatini formalism [94], in which the metric and the connection are separate variables,
so that the Riemann and Ricci tensor are built from the independent connection and
the variation (called Palatini variation) is performed respect to the metric and the
connection. In particular, the equivalent scalar-tensor theory for the Palatini f(R) is
not (4.3) but [95]

S[gµν , φ]Pal =

∫
ddx
√
g

{
V (φ)− φR +

3

2φ
(∂µ φ)(∂µ φ)

}
, (4.9)
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that is, a Brans-Dicke theory with generic potential and ω = 3
2
.

From a RG perspective the advantage of working with a scalar-tensor formulation
is then clear: we can study the running of f(R) by investigating instead the running of
the potential V (φ) by projecting the fRG equation on a flat background, thus sidestep-
ping all the complications of curved backgrounds2. In particular, the projection on
a flat background allows us to study such theory without truncating the potential to
a polynomial form, thus performing an analysis similar to that of pure scalar theory
[25, 99, 100, 101].

Of course, at a quantum level the two theories might be inequivalent. They are
both perturbatively nonrenormalizable, and standard perturbative reasonings could
only apply at an effective field theory level. When looking for a UV completion in
the form of a nontrivial fixed point, we study the RG equations in two different theory
spaces, and in the full theory the scalar field might couple to other geometric invariants,
or acquire its own dynamical term. As a consequence, if fixed points were to be found in
both formulations, they might describe different physics. It might also happen that one
formulation admits an asymptotic safety scenario and the other does not.3 However, we
also do not know a priori whether the quantum theories are equivalent or not, and only
a direct comparison (which we can at least do at the level of truncations) will allow to
settle the question.

In any case, given that in asymptotic safety we are in principle allowing for extra
degrees of freedom, there seems to be no reason to consider only pure metric theories
of gravity, and the study of scalar-tensor theories is of interest in its own. The Brans-
Dicke theory itself, together with its variations and generalizations, finds plenty of
applications in cosmology [102], and in quantum gravity (e.g. [103, 104, 105]), and we
will focus our interest toward the study a more general class of scalar-tensor theories,
namely

S[gµν , φ] =

∫
ddx
√
g

{
V (φ)− φR +

ω

φ
∂µφ ∂

µφ

}
. (4.10)

2Note that in the context of asymptotic safety, Brans-Dicke theory with ω = 0 was considered in
[96] as a RG improvement of the Einstein-Hilbert truncation, in which the running gravitational and
cosmological constants were promoted to fields as a result of an identification of scales with spacetime
points. Clearly our work differs substantially from [96], as we study the RG equations directly for the
Brans-Dicke theory. In a sense our work relates to [96] like the general f(R) studies [75, 78, 76, 89, 77]
relate to the f(R) actions obtained by improvement of the Einstein-Hilbert truncation [88, 97, 98].

3In addition, we should also notice that often in the cosmology literature other “frames” are con-
sidered, in which a new metric field is defined via a conformal map, often together with a redefinition
of the scalar field as well. Again, at the classical level these are all equivalent theories (although there
has been some confusion on the issue in the past [93]), but they are probably inequivalent at the full
quantum level. We will not study here those versions, having always in mind the original pure metric
theory, whose metric we assume to define the coupling to ordinary matter.



4.2 Quantization procedure 93

Since in the end we are interested to invert our results to an f(R) theory, we will
keep to a large extent ω general, only to concentrate on the specific case ω = 0 for
our numerical analysis (studying the running of ω would require using a non-constant
background, or looking at the 2-point function, which is beyond the aim of this work).
Note that (4.10) differs from other scalar-tensor theories studied in the asymptotic
safety literature [106, 107, 108] in two important aspects: it is not invariant under
φ→ −φ (and of course φ is not restricted to be positive), and the kinetic term (when
present, that is, when ω 6= 0) contains an inverse of the field.

4.2 Quantization procedure

In a fRG context we intend to study the action (4.10) as a local potential approximation
for the effective action, i.e.

Γ̄k[g, φ] =

∫
ddx
√
g

{
Vk(φ)− φR +

ω

φ
∂µφ ∂

µφ

}
, (4.11)

where the potential Vk is the only running object, and that only to next order we
would promote ω and the function coupled to R to general running functions of φ,
i.e. ω ≡ ωk(φ) and Z ≡ Zk(φ), where we have set Z = φ in (4.11). Although, as we
explained, we will then project the RG flow equation for (4.11) on a flat background
and study only the running of the potential, we present however for future reference the
results of variations and gauge fixing for a general maximally symmetric background
metric and constant background scalar field.

The background field formalism is set up by introducing the background splitting

gµν → gµν + ε hµν , φ→ φ+ ε ϕ , (4.12)

being ε a perturbative parameter that will be set to unity afterwards. We make the
usual approximation for the effective average action (see (2.60)) which reads

Γk[h, ϕ; g, φ] = Γ̄k[g + ε h, φ+ ε ϕ] + Sgf [h, ϕ; g, φ] + Sgh[C̄, C, h, ϕ; g, φ] , (4.13)

where Γ̄k[g + ε h, φ+ ε ϕ] is the action (4.11) and we neglect the running of the gauge-
fixing and ghost actions, Sgf and Sgh.

For the fRG equation we will need the second variation of the effective average
action, therefore we expand in powers of ε, i.e.

Γ̄[g + ε h, φ+ ε ϕ] = Γ̄[g, φ] + ε δ(1)Γ̄[h, ϕ; g, φ] + ε2δ(2)Γ̄[h, ϕ; g, φ] +O(ε3) , (4.14)

and find (omitting from now on the field dependencies of the action functionals) for the
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second variation

δ(2)Γ̄k =

∫
ddx
√
g
{
ϕ

(
−ω
φ
∇2 +

1

2
V ′′k (φ)

)
ϕ

+ ϕ

(
∇2h−∇µ∇νhµν +

2− d
2d

Rh+
1

2
V ′k(φ)h

)
+ Vk(φ)

(
1

8
h2 − 1

4
hµνhµν

)

+
1

8
φhµν

(
− (gµρgνσ + gµσgνρ − 2gµνgρσ)∇2 + 4 gρµ∇ν∇σ − 4 gρσ∇µ∇ν

)
hρσ

+ φR
(d (d− 3) + 4

4 d (d− 1)
hµνhµν −

d (d− 5) + 8

8 d (d− 1)
h2
)}

.

(4.15)

We can exploit then the gauge-fixing freedom to simplify the Hessian operator, adding
to the original action the gauge-fixing term

Sgf =
1

2α

∫
ddx
√
gFµGµνFν , (4.16)

for some choice of gauge-fixing constraint Fµ and of a non-degenerate operator Gµν .
Physical results should be independent of the gauge choice, however, it is well known
that the off-shell effective action is not gauge independent, and furthermore, the ap-
proximations we employ in the fRG equation lead to additional gauge dependences. It
is then important to test our analysis against different choices of gauge. We present in
the following the two types of gauge which we will use in the forthcoming sections.

4.2.1 Feynman gauge

First we consider a Feynman de Donder-type gauge (α = 1) with

F (F )
µ = ∇ν

(
hµν −

1

2
gµνh

)
− 1

φ
∇µϕ , (4.17)

and
G(F )µν = φ gµν . (4.18)

Including the contribution of the gauge fixing The total quadratic action becomes

δ(2)Γ̄k + S
(F )
gf =

∫
ddx
√
g
{1

2
ϕ
(
− 1 + 2ω

φ
∇2 + V ′′k (φ)

)
ϕ

+
1

2
ϕ
(
∇2 +

2− d
d

R + V ′k(φ)
)
h

− 1

8
hµν

(
(gµρgνσ + gµσgνρ − gµνgρσ)(φ∇2 + Vk(φ))

)
hρσ

+ φR
(d (d− 3) + 4

4 d (d− 1)
hµνhµν −

d (d− 5) + 8

8 d (d− 1)
h2
)}

,

(4.19)
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which, employing a traceless decomposing of the metric fluctuation, i.e. hµν = ĥµν +
1
d
gµνh, with gµν ĥµν = 0, yields finally

δ(2)Γ̄k + S
(F )
gf =

∫
ddx
√
g
{1

2
ϕ
(
− 1 + 2ω

φ
∇2 + V ′′k (φ)

)
ϕ

+
1

2
ϕ
(
∇2 +

2− d
d

R + V ′k(φ)
)
h

− 1

4
ĥµν
(
φ∇2 − d (d− 3) + 4

d (d− 1)
φR + Vk(φ)

)
ĥµν

+
d− 2

8 d
h
(
φ∇2 − d− 4

d
φR + Vk(φ)

)
h
}
.

(4.20)

We note that via the gauge-fixing procedure we have introduced a kinetic term for the
auxiliary field ϕ even in the case ω = 0. The kinetic term disappears for ω = −1/2,
which is a special value for the Brans-Dicke theory in this gauge.

For the gauge sector we employ a standard Fadeev-Popov determinant which we
rewrite in terms of a quadratic integral over complex Grassmann fields Cµ and C̄µ. For
constant background scalar field, the ghost action reads

Sgh[C, C̄] =

∫
ddx
√
g

{
C̄µ

(
∇2 +

R

d

)
Cµ

}
. (4.21)

4.2.2 Landau gauge

As an alternative choice of gauge, we consider a Landau gauge (α = 0) with

F (L)
µ = ∇ν

(
hµν −

1

d
gµν h

)
, (4.22)

and
G(L)µν = gµν . (4.23)

The interesting aspect of such gauge is that it does not modify the kinetic term of ϕ,
and in particular it does not introduce one for ω = 0.

In this case, in order to simplify the non-minimal operators that appear in the sec-
ond variation, we use the transverse-traceless decomposition of the metric fluctuations,
namely

hµν = hTµν +∇µ ξν +∇ν ξµ +∇µ∇ν σ +
1

d
gµν (h−∇2 σ) , (4.24)

with the component fields satisfying

gµν hTµν = 0 , ∇µhTµν = 0 , ∇µ ξµ = 0 , h = gµν h
µν . (4.25)

In the α→ 0 limit, the ξµ and σ field components decouple completely from the rest of
the Hessian, and their contribution to the fRG equation cancels exactly with the ghost
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contribution, when properly implemented [109]. We thus write the second variation of
the action directly omitting the contribution of the longitudinal components:

δ(2)Γ̄k + S
(L)
gf =

∫
ddx
√
g
{1

2
ϕ
(
− 2ω

φ
∇2 + V ′′k (φ)

)
ϕ

+ ϕ
(d− 1

d
∇2 +

2− d
2 d

R +
1

2
V ′k(φ)

)
h

− 1

4
hT µν

(
φ∇2 − d (d− 3) + 4

d (d− 1)
φR + Vk(φ)

)
hTµν

+
d− 2

8 d
h
(

2
d− 1

d
φ∇2 − d− 4

d
φR + Vk(φ)

)
h
}
.

(4.26)

Because of the change of variables (4.24), in this case there is also a Jacobian to keep
track of, which we do by introducing auxiliary fields (see [109] for references). The
Jacobian for the gravitational sector leads to the auxiliary action

Saux−gr =

∫
ddx
√
g
{

2 χ̄T µ
(
∇2 +

R

d

)
χTµ +

(d− 1

d

)
χ̄
(
∇2 +

R

d− 1

)
∇2χ

+ 2 ζTµ
(
∇2 +

R

d

)
ζTµ +

(d− 1

d

)
ζ
(
∇2 +

R

d− 1

)
∇2ζ

}
,

(4.27)

where the χTµ and χ are complex Grassmann fields, while ζTµ and ζ are real bosonic
fields. The Jacobian for the transverse decomposition of the ghost action is given by

Saux−gh =

∫
ddx
√
g η∇2 η , (4.28)

with η a real scalar field.

4.3 The flow equation

We write here an RG flow equation employing the exact renormalization group (ERG)
introduced in 1.2.2, which takes the generic form

∂t Γk[Ψ] =
1

2
STr

[(
Γ

(2)
k +Rk

)−1

∂tRk

]
, (4.29)

being

Γ
(2)
k (x, y) =

δ2Γk
δΨi(x) δΨj(y)

, (4.30)

and where Ψ is a superfield collecting all the fields involved in the quantum action, i.e.
Ψ ≡ {ϕ, hµν , · · · }, Rk is a generic cutoff operator, t ≡ log(k) is the RG running scale
and STr identifies a functional supertrace, carrying a factor 2 for complex fields and a
factor −1 for Grassmann fields.
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We will construct the cutoff operator in such a way to implement the substitution
rule

−∇2 → Pk ≡ −∇2 + k2r(−∇2/k2) , (4.31)

being r(z) a dimensionless smearing function. That is, we choose a cutoff of the form

Rk = Γ
(2)
k |−∇2→Pk − Γ

(2)
k . (4.32)

A convenient choice of smearing function, leading to a considerable simplification of
the functional traces, and which we will therefore use here, is the so-called “optimized"
cutoff [36] which reads

r(z) = (1− z)Θ(1− z) , (4.33)

where Θ(x) is a Heaviside step function.

4.3.1 Feynman gauge

The Hessian of the effective action is mostly diagonal in field space, with the only
exception of the {h, ϕ} sector, thus the supertrace in (4.29) can be easily decomposed
into standard functional traces. In the Feynman gauge we obtain

∂t Γk[Φ] =
1

2
Tr
[
(Hk)

−1 ∂tRk

]
h,ϕ

+
1

2
Tr
[
(Hk)

−1 ∂tRk

]
hT ,hT

− Tr
[
(Hk)

−1 ∂tRk

]
C̄,C

,

(4.34)
where Hk is the modified inverse propagator, namely Hk = Γ

(2)
k +Rk. The evaluation

of the first trace requires to invert the h-ϕ matrix, which is trivial since the matrix
elements commute. The ghost term takes a factor of minus two with respect to the
other terms, because of the complex Grassmannian nature of the ghost fields.

The trace over a generic Riemannian manifold can be evaluated by means of a heat
kernel expansion, but since we are interested in projecting the flow equation on a flat
background we can evaluate the trace over modes as a simple integral over momenta.
The derivative of the cutoff operator with respect to the RG time returns

∂t k
2r

(
p2

k2

)
= 2 k2 Θ

(
1− p2

k2

)
+ 2

p2

k2
(k2 − p2) δ

(
1− p2

k2

)
, (4.35)

which reduces to the sole Heaviside step function using the property that the distri-
butional product of the delta function with its argument is zero. Because of the step
function, moreover, the trace reduces to a momentum integral between 0 and k, thus
automatically rendering the functional traces UV finite, a well-known feature of the
FRGE. Performing the trace we obtain

1

2
Tr
[
(Hk)

−1 ∂tRk

]
h,ϕ

=
21−dπ−

d
2

dΓ
(
d
2

) kd+2NF

DF

, (4.36)
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1

2
Tr
[
(Hk)

−1 ∂tRk

]
hT ,hT

=

(
d (d+ 1)

2
− 1

)
21−d π−

d
2

dΓ
(
d
2

) kd+2 φ

(k2φ− V (φ))
, (4.37)

Tr
[
(Hk)

−1 ∂tRk

]
C̄,C

=
22−dπ−

d
2

Γ
(
d
2

) kd , (4.38)

where

NF = φ
{

4 k2(dω + d− 2ω − 1) + (d− 2)φV ′′(φ)− 2 d V ′(φ)
}

+

(2− d)(2ω + 1)V (φ) ,

DF = (2− d)V (φ)(k2 (2ω + 1) + φV ′′(φ)) + φ
{
k2(2 k2(dω + d− 2ω − 1) +

(d− 2)φV ′′(φ))− 2 d k2V ′(φ) + d V ′(φ)2
}
.

The trace over the tensor structure gives the factor d(d+1)/2−1 for the hTµν contribution
and a factor d for the ghosts, counting the number of their independent components.
Since we are working on a flat manifold and constant background field both the Ricci
scalar and the kinetic operator vanish, so that equation (4.34) reduces to an RG flow
equation for the dimensionful potential. We cast the equation in an autonomous form,
i.e. with no explicit dependence on k, by introducing the dimensionless quantities

φ̃ = φ k2−d , Ṽ (φ̃) = V (kd−2φ̃) k−d , (4.39)

in terms of which we obtain

∂t Ṽk(φ̃) = Ttree + T (F )
quant , (4.40)

where
Ttree = −d Ṽ (φ̃) + (d− 2) φ̃ Ṽ ′(φ̃) , (4.41)

is the classical part of the equation, which is linear in the potential, and

T (F )
quant =

21−dπ−
d
2

dΓ
(
d
2

)



−2 d+

(
1
2

(d2 + d)− 1
)
φ̃(

φ̃− Ṽ (φ̃)
) +

ÑF

D̃F



 , (4.42)

with

ÑF = φ̃
{

4 (dω + d− 2ω − 1) + (d− 2) φ̃ Ṽ ′′(φ̃)− 2 d Ṽ ′(φ̃)
}

+

(2− d)(2ω + 1)Ṽ (φ̃) , (4.43)

D̃F = (2− d)Ṽ (φ̃)((2ω + 1) + φ̃Ṽ ′′(φ̃)) + φ̃
{

(2 (dω + d− 2ω − 1) +

(d− 2) φ̃ Ṽ ′′(φ̃))− 2 d Ṽ ′(φ̃) + d Ṽ ′(φ̃)2
}
,

is the quantum part, which contains all the loop contributions, and which is responsible
for the nonlinear character of the equation. Note also that the second order character
of the partial differential equation is given by the presence of second derivatives of the
potential in the scalar h− ϕ sector of the Hessian.
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4.3.2 Landau gauge

Working in the Landau gauge the supertrace in (4.29) reads

∂t Γk[Φ] =
1

2
Tr
[
(Hk)

−1 ∂tRk

]
h,ϕ

+
1

2
Tr
[
(Hk)

−1 ∂tRk

]
hTT ,hTT

+
1

2
STr

[
(Hk)

−1 ∂tRk

]
aux

,

(4.44)
where the contributions of ghosts and longitudinal modes have been omitted, since they
exactly cancel each other as explained before.

After performing the integral over momenta we obtain

1

2
Tr
[
(Hk)

−1 ∂tRk

]
h,ϕ

=
22−dπ−

d
2

dΓ
(
d
2

) kd+2NL

DL

, (4.45)

1

2
Tr
[
(Hk)

−1 ∂tRk

]
hTT ,hTT

=

(
d (d+ 1)

2
− d− 1

)
21−dπ−d/2

dΓ
(
d
2

) kd+2 φ

(k2φ− V (φ))
,

(4.46)
1

2
STr

[
(Hk)

−1 ∂tRk

]
aux

= −21−dπ−d/2

Γ
(
d
2

) kd , (4.47)

being

NL = (d− 1)φ
{

4 k2(dω + d− 2ω − 1) + (d− 2)φV ′′(φ)− 2 d V ′(φ)
}

+

(2− d) dω V (φ) ,

DL = φ {d2 V ′(φ)2 + 2 (d− 1) k2
(
2 k2(dω + d− 2ω − 1) + (d− 2)φV ′′(φ)

)
+

−4 (d− 1) d k2V ′(φ)}+ (2− d) d V (φ)(2 k2ω + φV ′′(φ)) .

The RG flow equation for the dimensionless potential in such a gauge reads then

∂t Ṽk(φ̃) = Ttree + T (L)
quant , (4.48)

where the classical part Ttree is the same as in (4.41), and the quantum part reads

T (L)
quant =

21−dπ−
d
2

dΓ
(
d
2

)



−d+

(
1
2

(d2 + d)− d− 1
)
φ̃(

φ̃− Ṽ (φ̃)
) + 2

ÑL

D̃L



 , (4.49)

with

ÑL = (d− 1) φ̃
{

4 (dω + d− 2ω − 1) + (d− 2) φ̃ Ṽ ′′(φ̃)− 2 d Ṽ ′(φ̃)
}

+

(2− d) dω Ṽ (φ̃) , (4.50)

D̃L = φ̃ {d2 Ṽ ′(φ̃)2 + 2 (d− 1)
(

2 (dω + d− 2ω − 1) + (d− 2) φ̃ Ṽ ′′(φ̃)
)

+

−4 (d− 1) d Ṽ ′(φ̃)}+ (2− d) d Ṽ (φ̃)(2ω + φ̃ Ṽ ′′(φ̃)) .
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4.4 Analytical study of the equation

We want now to search for fixed point solutions of equation (4.40) and (4.48), i.e. to
search for scale invariant solutions Ṽ ∗k such that ∂t Ṽ ∗k = 0, requiring them to be globally
analytic, i.e. defined for φ̃ ∈ (−∞,+∞) [25, 110, 100]. The latter requirement has a
well understood physical and mathematical justification, being a necessary condition
for the existence of the average effective action at all values of k, and hence of the full
effective action in the limit k → 0 (which in d > 2 requires the existence of the solution
for φ̃→ ±∞, see (4.39)). In addition, the condition of global analyticity is expected to
reduce the continuous set of solutions to a discrete subset of acceptable ones.

For ∂t Ṽk = 0, both partial differential equations (4.40) and (4.48) reduce to second
order ordinary differential equations, thus we expect 2-parameter families of local so-
lutions, parametrized by the initial value conditions, Ṽ (0) and Ṽ ′(0). Extending such
local solutions to global ones, we generally have to impose constraints coming from
the analyticity requirement and from the symmetries of the problem. In our case we
do not have any constraints originating from symmetries (e.g. we have no φ̃ → −φ̃
symmetry, hence Ṽ ′(0) 6= 0 in general), and we will have to study the equation on the
full real line imposing asymptotic boundary conditions at φ̃ ∼ ±∞. The latter, due
to the non-linear nature of the equations, could contain less than two free parameters,
implying that global solutions would also necessarily be parametrized by less than two
degrees of freedom. Other explicit constraints can originate from fixed singularities
of the equation, requiring analyticity conditions (e.g. [111]), and it is hoped that the
equation does not have too many such fixed singularity, which would require an over
constraining of the solutions [75, 76].

We will apply the following strategy to select solutions:

• i) we look for singularities of the equations, either fixed or movable, and study
the behavior of the solution in a neighborhood of the singularity,

• ii) we study the large field asymptotic solutions of the equation and count the
degrees of freedom of each class of solutions,

• iii) we numerically look for global solutions satisfying all the constraints.

The study of the large field asymptotic solutions is important also for other two reasons,
namely, the derivation of the full effective action at the fixed point [75], and the relation
to the f(R) theory, as we will explain later.

We will present most of the analysis for the case ω = 0, although occasionally we
will refer to other values. As in the Landau gauge the ω = 0 value is a critical value,
analogous to the ω = −1/2 value for the Feynman gauge, we will treat separately the
two gauges, starting with the Feynman gauge. Most of our considerations apply to
generic dimension d > 2, although we will most often specialize to d = 4. In appendix
E.2 we will treat the special case d = 2.
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4.4.1 Feynman gauge

Fixed singularities

In order to look for fixed singularities, we search for poles of the denominator of the
scale invariant flow equation ∂t Ṽk = 0 written in normal form, i.e.

Ṽ ′′(φ̃) =
N (Ṽ , Ṽ ′, φ̃)

D(Ṽ , Ṽ ′, φ̃)
, (4.51)

where N and D are polynomial functions obtained from (4.40). For d > 2 the only zero
we find is at φ̃ = 0, while for d = 2 the equation reduces to a first order equation with
no fixed singularities. To test the consequences of such singularity in d > 2 we impose
analyticity, and study the equation in a Laurent expansion.

Locally, imposing analyticity means requiring the existence of a Taylor expansion of
the solution, in other words we make the ansatz Ṽ (φ̃) =

∑
n≥0 vnφ̃

n, and after plugging
it into the equation we expand the latter in a Laurent series centered at the origin. At
leading order, the equation in the Feynman gauge reduces to

0 = (2ω + 1)

(
2

2d πd/2 d2 v0 Γ(d/2) + 4 d
− 1

)
, (4.52)

which vanishes either restricting to ω = −1/2 (the analogous case in Landau gauge will
be ω = 0, see 4.4.2), or fixing the potential in the origin to

v0 ≡ Ṽ (0) = − 21−d (2 d− 1)

πd/2 d2 Γ(d/2)
. (4.53)

As a consequence for d > 2 and ω 6= −1/2 we have one constraint, thus reducing
the number of degrees of freedom at the origin to one. For technical reasons, when
integrating the equation numerically, we need to start from an arbitrary small value
of the field ε. The boundary condition at ε can then be parametrized in terms of the
derivative of the field in zero

Ṽ (ε) = Ṽ (ε; Ṽ (0), τ), Ṽ ′(ε) = Ṽ ′(ε; Ṽ (0), τ) , (4.54)

being τ = Ṽ ′(0) the free parameter, and evaluated by means of a MacLaurin series

Ṽ (ε) = −21−d(2 d− 1)π−d/2

d2 Γ(d/2)
+ τ ε+ v2(τ) ε2 +O(ε3) , (4.55)

where for example

v2(τ) =
dΓ(d/2) {d2 ((d− 1) d (2ω + 1)− 4ω)− 2 d2 τ 2 − 4 (d− 2) (2 d− 1)(2ω + 1) τ}

(4 π
1
2 ) 8 (d− 2) (2d− 1)

,

and higher order coefficients are likewise obtained solving the equation order by order
in ε.
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Movable singularities

The constrained differential equation admits now a one parameter family of local solu-
tions parametrized by τ . Still, because of the non linearity of the equation, we expect
most of the solutions to end at a movable singularity, i.e. at a singularity whose location
depends on the initial condition. We want to study the behavior of solutions in the
neighborhood of such singularities, in order to confirm analytically the existence of such
singularities and be able to recognize them in the numerical integrations, as well as to
discuss possible interpretations in the terms of the f(R) theory. We will present in the
next section the results of our search for a set of values of τ for which the singularity
goes to infinity.

Hence, let φ̃c be the value of the field at which the singularity occurs, and suppose
that the singular behavior is such that there exists an n0 ≥ 0 such that Ṽ (n)(φ̃c) ∼ ∞
for every n ≥ n0. In order to understand what values of n0 can occur for our equation,
it is convenient to recast the equation (4.40) in the following form

− d Ṽ (φ̃) + (d− 2) Ṽ ′(φ̃) φ̃+
1

2d d πd/2Γ(d/2)

P1(Ṽ ′′, Ṽ ′, Ṽ , φ̃)

P2(Ṽ ′′, Ṽ ′, Ṽ , φ̃)
= 0 , (4.56)

where the Pi are two polynomials containing the same monomials but with different
coefficients. As the polynomials Pi have the same structure we deduce that for φ̃→ φ̃c
their ratio will in general go to a constant for any value n0. Special situations can
arise when some cancellation occurs in P2 which does not happen in P1, and such cases
will have to be discussed separately. As a consequence, in the general case the linear
part of the equation cannot diverge, otherwise it could not be balanced by the rational
part, i.e. both the potential and its first derivative do not diverge at the singularity,
restricting the possible value of n0 to n0 > 1. At this stage, we can assume that in the
neighborhood of φ̃c the potential can be written as

Ṽ (φ̃) =(φ̃− φ̃c)γ
{
A+ A1 (φ̃− φ̃c) +O((φ̃− φ̃c)2)

}

+ u0 + u1 (φ̃− φ̃c) +O((φ̃− φ̃c)2) ,
(4.57)

and that γ > 1 (so that n0 > 1), and we can try to determine the value of γ by means
of the method of dominant balance.

In order to do so we can start with the guess that the second derivative is divergent
at φ̃c, that is 1 < γ < 2. In such case, by studying the balance of terms we arrive at
the equation

γ − 1 = −γ + 2 , (4.58)

leading to
γ = 3/2 , (4.59)

in accordance with our guess. Plugging (4.57) with γ = 3/2 into (4.56), we can iter-
atively work out all the coefficients in the expansion as functions of the parameter u0
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and of the singular field value φ̃c. For example, in d = 4 we find

u1(u0) =
4u0

(
16 π2(u0 − φ̃c) + 1

)
+ φ̃c

32π2 φ̃c (u0 − φ̃c)
, (4.60)

A(u0, u1) = −

(
u2

0(−(2ω + 1)) + 2u0(2ω + 3)φ̃c + 2u1φ̃c

(
u1φ̃c − 2u0

)
− (2ω + 3)φ2

c

) 1
2

6π φ̃c (u0 − φ̃c)
√

2
,

for the leading order terms. The subleading corrections can be computed iteratively,
and the next-to-leading are reported for both gauges in appendix E.

Other singular behaviors are possible if P2 has a zero. Such situations are more easily
uncovered by studying the equation written in normal form, (4.51). Assuming that the
first derivative of the potential is divergent (or more divergent than the potential itself)
at φ̃ ∼ φ̃c, we obtain the equation

Ṽ ′′(φ̃) ∼ −2
Ṽ ′(φ̃)2

φ̃c − Ṽ (φ̃)
, (4.61)

leading to a simple pole solution Ṽ (φ̃) ∼ (φ̃ − φ̃c)
−1, which is consistent with the

assumption. Subleading corrections can be worked out, confirming the possibility that
such type of singular behavior can appear in a solution of the fixed point equation.

Behavior at large field values

We apply here the method of dominant balance to study the large field regime of the
differential equation (4.40).

We have already seen in (4.56) that whatever is the leading term (for φ̃→∞ in this
case) the quantum part of the equation in general goes as a constant plus subleading
corrections, hence we have two possibilities: either the potential diverges at infinity,
and the classical part of the equation defines the leading order, or the potential goes to
a constant, and there must be some balance between linear and nonlinear part. In the
first case, in the φ̃→∞ limit the solution goes as

Ṽ (φ̃) ∼ A φ̃
d
d−2 + subleading terms , (4.62)

where A is a free parameter. Subleading terms can be calculated by solving iteratively
the differential equation for an ansatz of the type

Ṽ (φ̃) ∼ A φ̃
d
d−2

(
1 +

∑

n>0

an(A) φ̃−n
)
. (4.63)

For d = 4, for example, the first few coefficients an(A) are

a1(A) = 0 , a2(A) = − 1

16 π2
, a3(A) =

−2ω − 61

1152π2A
, a4(A) =

−4ω2 − 4ω − 337

9216π2A2
.

(4.64)
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The coefficients are all inversely proportional to the bare parameter A, so that this
expansion cannot be continued to A = 0, and that case must be treated separately.
The asymptotic solution so far constructed defines a one-parameter family of solutions
parametrized by the variable A, but as the equation is second order, we can ask if the
asymptotic solutions have more degrees of freedom. In order to answer such question
(following [100, 76]) we perturb the flow equation in the neighborhood of the solution
we just found, i.e. we introduce a perturbation to the potential,

Ṽ (φ̃)→ Ṽ (φ̃) + ε δṼ (φ̃) , (4.65)

substitute it into (4.40), and expand to linear order in ε. Replacing Ṽ (φ̃) with (4.63),
and keeping only the leading terms in the coefficients of the linear operator acting on
the perturbation, in d = 4 we obtain the linear equation

(−2ω − 1) δṼ ′′(φ̃)

1152π2A2 φ̃
+ 2 φ̃ δṼ ′(φ̃)− 4 δṼ (φ̃) = 0 , (4.66)

which allows a solution which goes asymptotically like

δṼ (φ̃) ∼ B1 φ̃
2 +B2 e

768π2 A2

2ω+1
φ̃3

, (4.67)

where B1 and B2 are two integration constants. Note that eq. (4.66) seems to reduce
to a first order equation for ω = −1/2, but as we will see for the Landau gauge for
ω = 0 (which is the analogue of the case ω = −1/2 in the Feynman gauge) for that
critical value of ω we simply need to include the subleading correction of the coefficient
of δṼ ′′(φ̃).

Whereas the power-law solution in (4.67) merely shifts A in (4.63), the exponential
solution would seem to be a new degree of freedom. However, for positive φ̃ (and
ω > −1/2, otherwise the role of positive and negative φ̃ are interchanged) it grows
faster than the solution it is perturbing, contradicting our asymptotic analysis, hence
it must be discarded. On the other hand, for negative φ̃ it is an exponentially small
perturbation, hence it is acceptable. As the perturbation is smaller than any power at
large φ̃, while the leading solution (4.63) contains only powers, it is not difficult to see
that the full equation decomposes in a hierarchy of equations, according to powers of
the exponential correction, that is, the exponential acts like an ε parameter and we can
iteratively solve the equation to obtain

Ṽ (φ̃) ∼
∑

m≥0

(
B eZ(φ̃,A,ω)

)m
Ṽ[m](φ̃, A, ω) , (4.68)

where Ṽ[0](φ̃, A, ω) is the leading solution (4.63), while for ω = 0 we find

Z(φ̃, A, 0) = 768 π2A2φ̃3 + 4224 π2A φ̃2 + 64
(
24A+ 769 π2

)
φ̃ , (4.69)

Ṽ[1](φ̃, A, 0) = φ̃
48(329A+5568π2)

A

(
1− 5712A2 + 747937 π2A+ 8739072 π4

6π2A2
φ̃−1 +O

(
φ̃−2
))

,

(4.70)
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and so on, leaving A and B as free parameters.
The presence of a new degree of freedom at φ̃ ∼ −∞ creates an interesting situation,

as we already know that we have an analyticity constraint at φ̃ = 0, hence if we had
just one-parameter families of solutions at both plus and minus infinity it would be
unlikely to have a global solution.4

There remains to consider the special case A = 0, which we now proceed to examine
for d = 4 and ω = 0. From the previous discussion of dominant balance we would
expect in such case a solution that asymptotes to constant. Nevertheless, we should
be careful as in that analysis we have excluded special cases leading to cancellations in
the denominator of the quantum part of the equation. By plugging into the equation
an ansatz of the type

Ṽ (φ̃) ∼ A1 φ̃+
∑

n≥0

bn φ̃
−n , (4.71)

we find at leading order the equation A1 = 0, in accordance with the previous analysis.
However, a careful look at the higher orders of the expansion reveals the presence of
poles at A1 = 1 and A1 = 3/2, meaning that for those values the general expansion is
not valid, and a separate treatment is needed. In fact, we find that such special values of
A1 also lead to solutions that are solvable with an iterative algorithm.5 In all three cases
(A1 = 0, 1 and 3/2) we find no free parameter in the expansion (4.71), but by studying
the linear perturbations we discover the presence of exponentially small corrections at
negative φ̃ for A1 = 0, exponentially small corrections at both positive and negative φ̃
for A1 = 1, and a non-integer power correction at negative φ̃ for A1 = 3/2. It is quite
easy to see that exponentially small corrections always carry one new degree of freedom,
while the analysis in the case of the non-integer power is slightly more tedious and we
have not pushed it further (also because in our numerical analysis we saw no evidence
of the A1 = 3/2 asymptotic behavior for the Feynman gauge). Just as an example of
the type of results, for A1 = 0 we find that the coefficients in (4.71) read

b0 =
3

128 π2
, b1 =

7

6144π4
, b2 =

985

18874368π6
, b3 =

4793

1811939328π8
, (4.72)

4Suppose that we start integrating at large positive φ̃ with initial conditions dictated by (4.63),
and that reaching φ̃ = 0 we compute Ṽ (0) and τ+ = Ṽ ′(0) as functions of A. Upon imposition of
the analyticity condition we expect to find a discrete set of solutions for A. As A was the only free
parameter, τ is now completely fixed by it. If at this point we repeat the same procedure but starting
from large negative φ̃, and if also in this case the asymptotic solutions form a one-parameter family,
we will end up with a new fixed value τ− = Ṽ ′(0). It is very unlikely to find that τ+ = τ−. On the
contrary, if the asymptotic expansion at negative φ̃ forms a two-parameter family, we could obtain in
that case a continuum of values for τ−, and chances would be higher to find a global solution, as that
would only require that τ+ be in the range of τ−.

5For each of the special values of A1 we find also poles in b0, which however do not correspond to
other solutions. Therefore we believe that we have exhausted the set of possible asymptotic solutions.
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etc., and that the exponential perturbation at φ̃ ∼ −∞ leads to a solution of the form

Ṽ (φ̃) ∼
∑

m≥0

(
B e192π2φ̃

)m
Ṽ[m](φ̃) , (4.73)

where Ṽ[0](φ̃) is the perturbed solution with coefficients (4.72), and

Ṽ[1](φ̃) = φ̃8

(
1− 233

128 π2
φ̃−1 +O

(
φ̃−2
))

, (4.74)

Ṽ[2](φ̃) = φ̃17

(
6144π4 − 463

128 π2
φ̃−1 +O

(
φ̃−2
))

, (4.75)

and so on, leaving B as the only free parameter.
In conclusion, we found four isolated sets of solutions at φ̃ → ±∞. As we will

explain later, from the point of view of the f(R) theory the most interesting solutions
are those in the first class, i.e. (4.62), for which we have found the presence of two
degrees of freedom at φ̃→ −∞ and one at φ̃→ +∞ (or the opposite for ω < −1/2).

4.4.2 Landau gauge

Fixed singularities

We repeat here the analysis of the analyticity of the differential equation for the Landau
gauge, starting with the study of the fixed singularity in φ̃ = 0. Following 4.4.1, we
recast the differential equation in its normal form (4.51) and then we expand it in a
Laurent series employing a Taylor expansion for the potential. In this gauge we find
that at leading order the equation reduces to

0 = −4ω
2d πd/2 d Ṽ (0)Γ(d/2 + 1) + d− 1

d (2d d πd/2 Ṽ (0) Γ(d/2) + 2)
, (4.76)

which vanishes constraining the potential at the origin as

v0 ≡ Ṽ (0) = −2−d (d− 1) π−d/2

dΓ(d/2 + 1)
, (4.77)

or restricting to ω = 0, which is the case we are interested in. Comparing (4.76) with
(4.52) we note once more that the case ω = 0 in the Landau gauge is analogous to the
case ω = −1/2 in the Feynman, so that the analytic properties of the equation in the
two gauges are the same for those two particular values.

For ω = 0 we have now an equation free of singularities. As a consequence, since
the equation is unconstrained, we have (for d > 2) two degrees of freedom at the origin,
Ṽ (0) and Ṽ ′(0), and at least one at φ̃±∞, the parameter A of the asymptotic solution,
so that it seems more likely to find global solutions. On the technical side, the absence of
a singularity at φ̃ = 0 also means that in this case it is possible to integrate numerically
from the origin without employing a MacLaurin expansion.
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Movable singularities

As in the Feynman gauge we expect the non linearity of the equation to involve the
presence of movable singularities. Since the polynomials Pi in equation (4.56) contain
the same monomials in both gauges, the analysis carried out in the subsection 4.4.1
with the method of the dominant balance still holds and we find in general the singular
behavior (4.57) with γ = 3/2. However, because of the gauge dependence of the off-
shell effective action, we end up with different coefficients for both the analytic and
divergent part. For example, for d = 4 and generic ω we obtain

u1(u0) =
1

64

(
128u0

φ̃c
+

1

π2

(
5

u0 − φ̃c
+

3

2u0 − 3 φ̃c
+

4

φ̃c

))
(4.78)

A(u0, u1) = −(−3 φ̃2
c (6ω − 4u2

1 + 9) + 12u0 φ̃c (2ω − 2u1 + 3)− 8ω u2
0)

1
2

6 π φ̃c (3 φ̃c − 2u0)
√

2
,(4.79)

et cetera (see appendix E.1 for next-to-leading coefficients.). Also similar to the Feyn-
man gauge is the presence of simple pole singularities, with (4.61) replaced by

Ṽ ′′(φ̃) ∼ −4
Ṽ ′(φ̃)2

3 φ̃c − 2 Ṽ (φ̃)
. (4.80)

Behavior at large field values

Since the method of the dominant balance leads to similar conclusions for both gauge
choices, we expect also for the Landau gauge to find generically an asymptotic solutions
of the form

Ṽ (φ̃) ∼ A φ̃
d
d−2

(
1 +

∑

n>0

an(A) φ̃−n
)
. (4.81)

We can iteratively solve the differential equation for this ansatz, obtaining in d = 4

a1(A) = 0 , a2(A) = − 1

32 π2
, a3(A) =

−2ω − 39

1152π2A
, a4(A) =

−4ω2 − 207

9216π2A2
, (4.82)

and so on. As for the other gauge, we see that the coefficients are inversely proportional
to A, so that also in this gauge we have to treat separately that case. Before studying
those other solutions we focus on the number of free parameters of (4.81), by introducing
a perturbation δṼ . We then linearize the equation for the perturbation and study the
leading terms, obtaining the equation

− ω δṼ ′′(φ̃)

576π2A2 φ̃
+ 2 φ̃ δṼ ′(φ̃)− 4 δṼ (φ̃) = 0 . (4.83)
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For ω 6= 0 the analysis is similar to the one we presented for the Feynman gauge. For
ω = 0 the coefficient of δṼ ′′(φ̃) vanishes; hence we need to include the next order term
in the coefficient of δṼ ′′ and consider instead the equation

δṼ ′′(φ̃)

128π2A3φ̃2
+ 2 φ̃ δṼ ′(φ̃)− 4 δṼ (φ̃) = 0 , (4.84)

which admits solutions with the asymptotic behavior

δṼ (φ̃) ∼ B1 φ̃
2 +B2 e

−64A3 π2 φ̃4

. (4.85)

The novelty here is that the leading power in the exponent is fourth rather than third
order (a consequence of the different power of φ̃ in the coefficient of δṼ ′′ in (4.84) with
respect to (4.83)), so that the solution does not discriminate positive from negative
φ̃, but rather leads to constraints on A. For A < 0, the solution (4.85) contains an
exponential degree of freedom which grows faster then the perturbed function in both
positive and negative field regimes, so that we must discard it. Interestingly such sector
is the unphysical one, since negative A defines the asymptotic behavior of an unbounded
potential. On the other hand, for A > 0 the perturbation is exponentially small both
at positive and negative φ̃, hence it is always acceptable, and we can work out the
subleading corrections as done before for the Feynman case. The higher power in the
exponent means that we have to solve more iteration steps before getting to the power-
law corrections, but as we do not gain any qualitative insight from such analysis, we
do not report further on that, the main message being that now we have two degrees
of freedom at both plus and minus infinity.

Regarding the case A = 0, making the ansatz (4.71) we find again (d = 4 and ω = 0)
the same three special values A1 = 0, 1 and 3/2, as in the Feynman gauge. The main
difference appears in the case A1 = 3/2, for which the expansion (4.71) now contains
one degree of freedom, i.e. b1 is a free parameter in terms of which all the other bn are
expressed:

b0 = − 3

64π2
, b2 = − b1

8 π2
, b3 =

b1(11− 1024π4b1)

1024π4
, etc. (4.86)

By perturbing around such solution we find that in order to discover new solutions we
have to include at least the next-to-leading order coefficients for large φ̃ in the linear
equation, yielding

(
64π4b1 − 1

2π2b1

φ̃3 − φ̃4

b1

)
δṼ ′′(φ̃) +

(
−512 π4b1 − 3

4π2b1

φ̃2 − 2 φ̃3

b1

)
δṼ ′(φ̃)

+

(
64π2φ̃+

4

3

)
δṼ (φ̃) = 0 ,

(4.87)

whose asymptotic solutions are a superposition of a solution that simply perturbs (4.86),
and a series of logarithmic corrections,

δṼ (φ̃) ' c1 log φ̃

(
φ̃−1 − φ̃−2

8π2
+O

(
φ̃−3
))

, (4.88)
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that carries a second degree of freedom, namely the free parameter c1.

4.5 Numerical results

In order to find global solutions we integrate out from φ̃ = 0 and search for a set of
initial conditions τ such that the movable singularity goes to infinity in both the positive
and negative field region. The numerical integrations has been performed implicit
methods (backward differentiation formula) with maximal stepsize and precision fixed
accordingly to avoid stiffness issues. We present here our analysis for both gauges for
ω = 0 and d = 4, starting with the Feynman gauge.

4.5.1 Feynman Gauge

We start a numerical integration at the origin (actually at φ̃ = ±ε, ε ∼ 10−10, as
explained in the subsection 4.4.1), and similarly to what done in [100], we plot the
location at which we hit a singularity, as a function of the free parameter τ = Ṽ ′(0).
When we see a spike in such a plot, we interpret it as a hint of a possible global solution.
Since spikes can occur as artifacts due to the scale of the plot, ending instead at a finite
value, the next step is to show that such spike can be made arbitrarily long by increasing
the numerical precision and by refining the mesh. In addition, in our case we have to
produce such type of plots at both positive and negative φ̃, looking for spikes that occur
at the same value of τ in both ranges.

At negative φ̃ the plot of the singularities looks like in Fig. 4.1. We apparently find
a spike in the negative region for an initial condition τ ∼ 1.638, which however, when
zooming in, reveals a richer fine structure, actually three peaks being present (only two
of which are shown in the right panel of Fig. 4.1).

Such triple peak can be understood in terms of transition between different types of
singular behavior. The most clear explanation is obtained in terms of the numerator
and denominator of the normal equation, N and D in (4.51), which we plot in Fig. 4.2
for four representative cases. We find that for τ . 1.638534 and τ & 1.638597 both
N and D diverge, together with their ratio, at some φ̃c thus signaling the pole type
of singularity found in (4.61). In the range between those two values we find that D
vanishes at some φ̃c, reaching zero with an infinite slope; at the same N reaches a finite
value, and we deduce that we are hitting a singularity of the type (4.57) with γ = 3/2.
The transitions between γ = −1 and γ = 3/2 coincide with two of the peaks observed
in the fine structure of Fig. 4.1. We interpret the remaining spike at τ ∼ 1.638591 as
signaling a transition (as τ increases) from a regime in which N is always positive, to
one in which it changes sign twice before hitting hitting φ̃c. As seen in the zoomed plot
in Fig. 4.1, spikes can be pushed farther away from the origin, however, high precision
is needed and we have not tried to reach much beyond φ̃c ∼ −0.1. In fact, it turns out
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Figure 4.1: The critical field value φc in the negative domain, as a function of the initial condition
τ = Ṽ ′(0), for d = 4 and ω = 0 in the Feynman gauge. In the right panel is a blow up of the spike,
showing two spikes discussed in the text. A third spike at τ ∼ 1.638534 is not shown here.

that a more detailed investigation of the spikes is not worth, as the remaining part of
the plot, for positive φ̃, turns out to be quite disappointing. Integrating in the positive
field region, including the neighborhood of τ ∼ 1.638, we encounter a singularity for
any initial condition, as can be seen in Fig. 4.3, so that we would have not in any case
a global solution. Only one type of singular behavior is found in the positive domain, a
typical example of which is shown in Fig. 4.4, and from which we recognize a behavior
consistent with (4.57) and γ = 3/2.

We did not find other spikes in both negative and positive region for other values of τ
(outside the plot range in Fig. 4.3), so that in the end we conclude that there are no
global solutions in d = 4 and ω = 0 in the Feynman gauge.

4.5.2 Landau Gauge

The search of global solutions is more complicated in the Landau gauge since we have
two degrees of freedom at the origin. In order to search for fixed points we adopted
the following strategy: i) we integrate numerically from the origin (since there is no
fixed singularity we can directly impose initial conditions at φ̃ = 0) for a fixed value of
Ṽ (0) varying the initial condition τ = Ṽ ′(0), ii) we repeat the integration for a discrete
set of positive and negative values of Ṽ (0). As for the Feynman gauge we restrict our
research to ω = 0 and d = 4.

We start with Ṽ (0) > 0, for which we illustrate a representative outcome at negative
φ̃ in Fig. 4.5. In this case we find a spike at τ = 1.5 and a continuum set of analytic
solutions occurring for τ < τc, where τc is a critical value which depends on the initial
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Figure 4.2: A table of plots of N (dashed) and D (solid) as functions of φ̃, at four values of τ (from
top to bottom, left to right, τ = −5, τ = 1.63855, τ = 1.6385965 and τ = 1.7) corresponding to the
four different regimes we observed when integrating at negative φ̃. Plots are not to scale, typically D
is several orders of magnitude smaller than N .



112 BRANS-DICKE THEORY IN THE LPA

-20 -10 10 20
Τ

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

ΦC

Figure 4.3: The critical field φc in the positive domain, as a function of the initial condition τ = Ṽ ′(0),
for d = 4 and ω = 0 in the Feynman gauge.

condition Ṽ (0), i.e. τc ≡ τc(Ṽ (0)). The peak at τ = 1.5 actually corresponds to an
exact solution of the differential equation in normal form, which for generic d > 2 is
given by the simple linear function

Ṽ (φ) = A+
2 (d− 1)

d
φ̃ , (4.89)

being A = Ṽ (0) a free parameter. However, we should be careful about such solution,
as in the original equation it corresponds to a zero of both numerator and denominator
of the h-ϕ trace, leading to an undetermined expression. The reason for the zero in
the denominator is easily found by looking back at the second variation (4.26), and
taking ω = 0 and a linear function for V (φ): the ϕ-ϕ component immediately vanishes,
while the h-ϕ component does so once we implement the rule (4.31) in combination
with (4.33) and we choose the linear function as in (4.89) (the h-h component vanishes
only for A = 0). As a consequence, the h-ϕ matrix is not invertible in such case. We
also cannot use a limiting procedure to attribute to (4.89) the status of solution of the
original equation, as perturbing the solution, i.e.

Ṽ (φ) = A+
2 (d− 1)

d
φ̃+ ε v(φ̃) , (4.90)

and expanding in ε we find that the zeroth order term in ε does not vanish, leading
instead to a nonlinear differential equation for v(φ̃) (implying also that (4.89) does not
admit linear perturbations). We are thus led to deem (4.89) unacceptable.

Regarding the continuum set at negative φ̃, we find it for an initial conditions τ
smaller then a critical value τc which, as we already mentioned, depends on the value
of the initial condition Ṽ (0). Varying Ṽ (0) we observed the value of τc to oscillate
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Figure 4.4: Typical plots of solutions hitting a singularity in the positive domain. We show here the
case d = 4, ω = 0 for Feynman gauge with τ = 1.5. The left panel shows the potential (rescaled by
a factor 103) together with its first and second derivative (rescaled by a factor 10−3), respectively in
dotted, dashed and continuous lines. The right panel shows the behavior of N (dashed) and 103 ×D.
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Figure 4.5: The critical field φc as a function of the initial condition τ = Ṽ ′(0) for Ṽ (0) = 0.1, d = 4

and ω = 0 in the Landau gauge.

between a minimum value τmin ∼ 0.96 and a maximum τmax ∼ 1.12. By increasing
the numerical precision we were able to prolong at will the entire group of solutions
and we found all of them to behave asymptotically as A φ̃2, being A a function of the
initial conditions. A typical solution is illustrated in Fig. 4.6. The seemingly sharp edge
in the second derivative is actually an optical artifact: working at high precision, and
zooming around the edge one finds that the curve is smooth, as depicted in Fig. 4.7.
We can understand the presence of such a short-scale transition as the rapid vanishing
at large φ̃ of the exponential part of the solutions we discussed in section 4.4.2 (it can
be deduced from Fig. 4.6 that A > 0, hence the exponential corrections are possible).

As it can be seen in Fig. 4.5 all the numerical integrations performed using with initial
conditions τ > τc lead (with the exception of τ = 3/2) to a singularity, which we found
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Figure 4.6: Plot of a typical global solution in the Landau gauge (τ = 0.5, Ṽ (0) = 0.1, d = 4 and
ω = 0). In the upper, central and bottom panel are plotted respectively the potential, its first and its
second derivative.

to be characterized by the exponent γ = 3/2. An acurate analysis reveals a transition in
the way the solutions behave before reaching the movable singularity (i.e. the large field
regime of the solution), from Ṽ (φ̃) ∼ Aφ2 at τ ∼ τc, to Ṽ (φ̃) ∼ 3

2
φ̃ at τ ∼ 3/2. Such

transition, together with the spurious solution (4.89), makes the equation particularly
stiff around τ = 3/2, as it can be seen from the noise in Fig. 4.5. However, because of
the presence of a singularity we did not put much effort on a more precise numerical
integration of this group of solutions.

Integrating towards positive φ̃ we discover an interesting situation: for Ṽ (0) > 0 no
solutions meet any singularity. We were able to push the integration to arbitrarily large
φ̃ > 0 without encountering singularities for all values τ , and we found solutions with
τ < 3/2 to behave asymptotically like Ṽ (φ̃) ∼ 3

2
φ̃, and solution with τ > 3/2 to go as

Ṽ (φ̃) ∼ A φ̃2. Combining our findings for positive and negative φ̃ we conclude that the
solutions with Ṽ (0) > 0 and τ < τc form a continuous set of global solutions.

At φ̃ = 0 and Ṽ (0) = 0 the equation is singular. Imposing an analyticity condition
at the origin we find that τ = (1±

√
19)/4. We did not study these special solutions in
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Figure 4.7: Plot of the second derivative of the potential in the range of the exponential transition
to the asymptotic solution Ṽ (φ̃) ∼ A φ̃2 in the Landau gauge (τ = 0.5, Ṽ (0) = 0.1, d = 4 and ω = 0).

detail.
For Ṽ (0) < 0 the typical situation is depicted in Fig. 4.8. All the singular solutions

we found, for both positive and negative field values, diverge with exponent γ = 3/2.
We found in the positive field region a continuum of solutions which do not end on a
movable singularity for τ > 3/2, while at negative φ̃ we met no singularity for τ < 3/2,
in both cases with an asymptotic behavior Ṽ (φ̃) ∼ 3

2
φ̃. The two sets have no overlap,

hence there are no global solutions in this case.
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Figure 4.8: The critical field φc as a function of the initial condition τ = Ṽ ′(0) for Ṽ (0) = −0.1,
d = 4 and ω = 0 in the Landau gauge.

In conclusion, in the Landau gauge in d = 4 and ω = 0, we found a two parameter
family of global solutions for Ṽ (0) > 0 and τ < τc(Ṽ (0)). Such result could have been
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expected to some extent, as in the Landau gauge we have no fixed singularity at the
origin, and we have at least two classes of asymptotic behavior with two degrees of
freedom each at both positive and negative φ̃. The global solutions we found behave
asymptotically as Ṽ (φ̃) ∼ A φ̃2 for φ̃ → −∞, and as Ṽ (φ̃) ∼ 3

2
φ̃ for φ̃ → +∞. The

latter is an indication of an unusual character of such solutions, as that type of asymp-
totic behavior is the result of a balance between the classical and quantum parts of the
RG equation, to be contrasted to the usual situation, where for k → 0 (i.e. the large
field regime) only the classical part survives.

Comparing now the results obtained in the Feynman and Landau gauges we can thus
argue whenever the dynamical equivalence with the metric f(R) holds at quantum lever
or not.

4.6 Quantum equivalence

While some gauge dependence was expected (due to the approximations employed and
to the fact of working off-shell), we would have expected that the qualitative features
of the fixed point structure, like the number of fixed points and the associated rele-
vant directions, would be gauge independent (in principle together with any observable
quantity, but in practice this property is expected to hold only approximately due to
the approximations used). Being the results in our two gauges so different even at a
qualitative level, we are led to infer some inconsistency of the model under considera-
tion in the present approximation. Motivated by the relation to f(R) gravity we did
not analyze the case ω 6= 0 in detail, and in particular we did not include its running,
but we can identify the freezing of the Brans-Dicke parameter to ω = 0 as the culprit
of the inconsistent scenario we uncovered6. We expect the strong gauge dependence to
be lifted once the Brans-Dicke parameter is promoted to a running coupling ωk, in the
sense that in any gauge there will be some critical value ωc where something special
happens (e.g. a discrete or continuous set of fixed points appears), the value of ωc
being gauge dependent, but not so the overall picture (i.e. the theory at criticality)7.
For example, we already know that in the Feynman gauge the value ω = −1/2 gives
very similar results to the Landau gauge at ω = 0, and it would be interesting to test
whether such critical values correspond to fixed points of ωk for the two gauges, reached
either in the UV or in the IR.

In view of our results and of the possible solution we just outlined, we can draw an
important conclusion: due to its renormalization group flow, the Brans-Dicke theory at

6Note that the inconsistency is given by having neglected the running of ω and not by setting it
specifically to zero. Studying the case ω = − 1

2 (for which the theory is not equivalent to an f(R)), in
fact, leads to the same issues.

7Our hypothesis is partially supported by the d = 2 case, in which the flow equations turn out to
be ω-independent, and give similar results in the two gauges. See appendix E.2.
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the quantum level needs a running coupling ωk 6= 0 in order to be consistent. Since in
such case the equivalence with the f(R) theory is broken, we conclude that Brans-Dicke
theory and f(R) gravity are inequivalent at the quantum level.

We should point out another aspect which also hints to a non-equivalence of Brans-
Dicke theory and f(R) gravity at the quantum level. As we explained, the condition
for a solution of the FRGE to be a valid fixed point is that it should be a global
solution. While it is quite clear from our analysis that, at least within the present
approximation, no nontrivial fixed point can be found for the Brans-Dicke theory at
ω = 0 in the Feynman gauge, we should be careful in translating such statement back
into f(R) gravity. Due to the nonlinearity of the Legendre transform it could happen
that a problematic singularity in one theory would turn into a harmless one in the
other, or vice versa. We should indeed remember that the following relations hold (here
in dimensionless variables):

R̃ = Ṽ ′(φ̃) , f̃ ′(R̃) = −φ̃ . (4.91)

As a consequence, if a singular point |φ̃c| < ∞ is such that the first derivative of the
potential is divergent, then in the f(R) theory it simply means that φ̃c is mapped to
R̃c = ±∞, depending on the sign of Ṽ ′(φ̃c). Although that would correspond to a
strange situation in which f̃ ′(R̃) does not diverge at infinity (usually the asymptotic
behavior is a power law dictated by the tree level part of the equation [75, 76, 89],
implying that at infinity f̃ ′(R̃) diverges for any d > 2), that would not be something we
can discard as unacceptable. This is precisely what happens in reverse for the Landau
gauge: we found global solutions for Ṽ (φ̃), but their first derivative is such that asymp-
totically Ṽ ′(φ̃) ∼ 3/2 for φ̃ → +∞, and thus their transform would lead to an f(R)
theory valid only up to R̃c = 3/2. On the other hand, if the potential is such that only
its derivatives of order greater or equal to two are divergent, then the singular point
is mapped to |R̃c| < ∞, and thus also the transform of the potential is not a global
function. The latter is precisely the case for the Feynman gauge, for which we saw that
the singularities at positive φ̃ are characterized by an exponent γ = 3/2, that is, they
have a finite first derivative at the singular point.

Regardless of its connection to the f(R) approximation, the study of Brans-Dicke
theory is interesting in its own, as being a non renormalizable theory, and it is natural to
wonder whether an asymptotic safety scenario applies to it. From such point of view, we
should emphasize that what we have presented here is the result of the leading order
in an approximation which should be systematically improved. The local potential
approximation we employed can be considered, in fact, as a “double LPA” since we
neglected both the renormalization of the coupling Z of the operator φR (having set
from the start Z = 1) and of the parameter ω. Both could be promoted to functions
Z(φ) and ω(φ), thus leading to a next-to-leading order approximation which could
uncover an anomalous scaling of φ and the existence of nontrivial fixed points.
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Chapter 5

Hořava-Lifshitz gravity in 2+1 dimensions

Up to now, the asymptotic safety program has obtained convincing results about the
existence of a stable ultraviolet non-Gaussian fixed point. It is then conceivable that
gravity could be strongly coupled and non-perturbatively renormalizable in the ultravi-
olet regime, despite the possible lack of unitarity. It is however still reasonable to think
that perturbative renormalizability can be featured by some non-trivial property of the
spacetime at the Planck-scale.

This is what happens for example in the Hořava-Lifshitz quantum gravity, which we
have already introduced in section 2.3. In this theory Lorentz symmetry is broken at
the Planck scale by the presence of a preferred foliation of the spacetime, which grants
the theory with power counting renormalizability and explicit unitarity.

Despite the obvious drawback of lost Lorentz invariance, which in particular forces
such models to face big observational challenges and fine tuning problems [112], the
appealing feature of a renormalizable model of gravity in the usual sense has made
Horava-Lifshitz gravity an intensely studied topic. Motivations are found, for example,
in cosmology [113], or in the context of AdS/CFT as a candidate for the holographic
dual description of non relativistic field theories. An other motivation comes from
the relation to causal dynamical triangulations (CDT) [53, 114, 115], that is a quantum
gravity approach in which the path integral is evaluated numerically summing over con-
figurations which are obtained gluing tetrahedra related by a causality constraint. The
phase diagram of CDT, in fact, shows a multicritical Lifshitz point whose universality
class is conjectured to coincide with that of the model proposed by Hořava.

Oddly, the renormalization properties of Hořava-Lifshitz gravity, arguably their
main motivation and the object under investigation in this chapter, are to date their
least explored feature, with few important exceptions (see [116, 117, 118, 119]). Almost
nothing is known about loop corrections to the Hořava-Lifshitz action, and a full proof
of renormalizability is still missing. In particular, we do not know yet whether the the-
ory is asymptotically free or if it suffers from triviality; neither do we know whether the
theory flows towards general relativity in the infrared under the influence of relevant
perturbations.

The reasons for the scarcity of results on the renormalization of Hořava-Lifshitz
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gravity are easily identifiable in the complexity of the calculations required, due to the
lack of covariance (or equivalently the need to introduce a unit timelike vector [120]),
as well as to the large number of terms present in the action of the most general model,
i.e. the non-projectable model without detailed balance [121]. A very common strategy
in trying to make progresses in similar situations is then to identify some essential fea-
tures of the model we aim at, and study a simplified version of it in which such essential
features are maintained while most of the complications are set aside.

One first simplification which can be made, and that we will adopt in this chapter,
is to reduce the number of spacetime dimensions. In classical general relativity, four
is the smallest number of dimensions in which the theory has propagating degrees of
freedom, but three dimensional quantum gravity has nevertheless been a very active
field of research, due to the fact that it shares many problematics with its higher-
dimensional version [122]. In the case of Hořava-Lifshitz gravity, the three dimensional
theory can be even more interesting than the isotropic one, because, while gravitons
are still absent the new anisotropic scalar degree of freedom associated to the breaking
of full diffeomorphism invariance is still present and propagates, contrariwise to the
isotropic case in which is a pure gauge.

We can then study Hořava-Lifsthiz gravity in 2+1 dimensions, with dynamical ex-
ponent z = 2 in order to ensure power counting renormalizability, and focus on the
quantization of the sole conformal degree of freedom, freeing ourself from the complica-
tions coming from taking in account the contributions of gravitons; and for this reason,
in fact, lower dimensional models of Hořava-Lifshitz gravity have already received some
attention [12, 123, 124, 125].

5.1 The action in 2+1 dimensions

As already mentioned in the subsection 2.3.2 there are two main versions of Hořava-
Lifsthiz gravity, respectively known as projectable and non-projectable version, which
differ respectively by selecting a spatially constant lapse function, i.e. N = N(t), or
a general space dependent function N = N(t,x). We will here assume a spacetime
topology R × Σ, with Σ a closed two-dimensional manifold, and we choose Euclidean
signature for the spacetime metric, which we will decompose according to the standard
ADM splitting, keeping the spacetime nomenclature despite the Euclidean signature.

In the non-projectable case the number of invariants quickly grows with the spatial
dimensionality because of the spatial dependence of the lapse function, so that already
in two dimensions we end up with twelve couplings [124]. In fact, the most general
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action in 2+1 dimensions and with z = 2 reads

S[N,Ni, gij] =

∫
dt d2xN

√
g
{ 2

κ2

(
λK2 −KijK

ij − 2 Λ + cR + γ R2
)

+ c1D
2R

+ c2 ai a
i + c3 (ai a

i)2 + c4Rai a
i + c5 ai a

iDj aj

+ c6 (Dj aj)
2 + c7 (Di aj)(D

i aj)
}
,

(5.1)

where ai = Di lnN is the acceleration vector, beingDi the spatial covariant derivative, g
is the determinant of the spatial metric, R its Ricci scalar, Kij the extrinsic curvature of
the leaves of the foliation and K its trace. The coupling κ2 is proportional to Newton’s
constant, κ2 = 32π G, and Λ is the cosmological constant, while λ and γ characterize
the deviations from full diffeomorphisms invariance (λ = 1 and γ = 0 corresponding to
general relativity in 2+1 dimensions1).

The value of λ defines a one-parameter family of deformed DeWitt supermetrics

Gijkl =
1

2

(
gikgjl + gilgjk

)
− λ gijgkl , (5.2)

such that
Gijmn Gmnkl =

1

2

(
δi

(k δj
l)
)
, (5.3)

where round parenthesis identify commutation of indices with unitary weight and where

Gijkl =
1

2
(gik gjl + gil gjk)− λ̃ gij gkl , λ̃ =

λ

2λ− 1
. (5.4)

In terms of the DeWitt metric the kinetic action can be rewritten in the more elegant
form ∫

dt d2x
√
gN (KijK

ij − λK2) =

∫
dt d2x

√
gN (Kij GijklKkl) , (5.5)

which leads to the standard case for λ = 1. For the particular value λ = 1
2
the kinetic

term becomes invariant under the anisotropic Weyl transformations (2.101) and (2.102)
[12, 126] (see appendix F for the proof) so that we might already expect such value to
play a special role in the RG flow of the theory.

The non-projectable case in 2+1 dimensions has already been studied with detailed
balance [12], in which case the number of couplings is drastically reduced, since the
action has no potential anymore. In fact, assuming the presence of detailed balance,
the potential terms can be casted in the form (2.97), that is

V (gij) = Eij GijklEkl , Eij =
1√
g

δW [gij]

δ gij
, (5.6)

1Note that we have chosen the sign of the kinetic term in such a way that the quadratic action for
the conformal mode has the correct sign for λ = 1, unlike in general relativity. This makes sense in
2 + 1 dimensions because there are no gravitons.
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where Eij comes from the variation of a two-dimensional action W [gij] which, in order
to have z = 2, should contain only up to two derivatives of gij. The unique such
action is the Einstein-Hilbert action, which however is topological in d = 2, and hence
Eij = 0, leading to no potential in the 2+1 dimensional case. We will then study
here the more interesting case without detailed balance, which was also considered in
[123, 124], reducing then to the more simple projectable case.

The projectable version of the theory in 2+1 dimensions and z = 2 action reads

S =
2

κ2

∫
dt d2xN

√
g
{
λK2 −KijK

ij − 2 Λ + cR + γ R2
}
, (5.7)

where, as a consequence of the Gauss-Bonnet theorem, we have also to take in account
the further simplification

∫
dt d2xN

√
gR =

∫
dtN

∫
d2x
√
g(2)R = 4π χ

∫
dtN , (5.8)

with χ the Euler characteristic of the spatial manifold Σ.
However, it turns out that in order to study the running of all the couplings, even in

three dimensions and for the simple z = 2 projectable model, some technical problems
persist when evaluating the trace of the second variation of the anisotropic action (5.7).

In order to simplify the calculation as much as possible, and to get a glimpse over
the questions about the renormalization of the theory, we will adopt one second main
simplification, i.e. after having gauge-fixed lapse and shift, we will quantize only the
conformal mode of the spatial metric, i.e. we will study a conformally reduced toy
model analogous to that studied in chapter 3.

It is actually somewhat surprising that anything can be learned from such a reduc-
tion in the case of standard isotropic gravity, as in general relativity the scalar mode is
not a propagating degree of freedom. Quite on the contrary, in the case of 2+1 dimen-
sional Hořava-Lifshitz gravity, the scalar mode is the only physical degree of freedom,
as gravitons are absent and the longitudinal modes of the spatial metric are killed by
the constraints (as we will explain), and therefore we might expect the conformally
reduced model to be much closer to the full theory.

5.2 Metric decomposition and gauge fixing

For the quantization of the action (5.7) we will make use of the background field method,
which entails the linear splitting

gij → gij + ε hij ; N → N + ε n ; Ni → Ni + ε ni , (5.9)

where {hij, n, ni} are the quantum fluctuations, {gij, N,Ni} the background fields and
ε is a perturbative parameter which we will set at a later stage. The background fields
are in principle generic and off-shell; however, for practical purposes it suffices to choose
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a background that will allow us to discern the invariants of interest. In our case, it will
be enough to consider a generic spatial background gij and to restrict the background
lapse and shift respectively to N = 1 and Ni = 0.

Concerning the fluctuating fields, it is convenient to use the trace-traceless decom-
position for the spatial metric fluctuation, i.e.

hij = ĥij +
1

2
gij h , (5.10)

with gijĥij = 0. In general dimension, the traceless metric fluctuation ĥij can be
further decomposed in transverse and longitudinal components, but in two dimensions
it is well known that transverse traceless tensors form a finite dimensional vector space.
In particular, on a closed manifold of genus g there are precisely (6g− 6) independent
transverse traceless tensors for g > 1, just two for g = 1, and no such tensors for
g = 0. In other words, we just recalled the well-known fact that any metric on a
2-dimensional manifold is conformal to a diffeomorphism-equivalent class of constant
curvature metrics

gij = e2φ(x)g̃ij , (5.11)

where g̃ij is a reference metric of constant curvature, and the ensemble of such metrics
modulo diffeomorphism is known as the moduli space of the manifold, which has the
same dimension as the vector space discussed above, which actually is the cotangent
space at g̃ij to the moduli space. Hence, once we fix the topology, the metric g̃ij carries
only gauge degrees of freedom plus a finite number of global degrees of freedom. We
can then choose a topology with genus g = 0 for the spatial slices, like a a spherical
topology, and forget about the traceless components.

The two decompositions (5.9-5.10) and (5.11) obviously coincide at the linear level,
upon the identification φ = h/4, while at higher orders they lead to inessential differ-
ences in the off-shell effective action. The approximation we will employ in the following
consists in discarding all the quantum fluctuations associated to the metric g̃ij, which
then will be treated as a background quantity, or equivalently, in discarding the traceless
fluctuations ĥij.

To do that, we can use a time-dependent diffeomorphism to gauge-fix n = ni =
0, so that we remain in this case with a residual symmetry corresponding to time-
independent spatial diffeomorpishms ζ i = ζ i(x), which could be fixed by a de Donder-
type gauge fixing on a single slice. A standard canonical analysis [12] shows that
the constraints of the theory preserve such gauge fixing under time evolution, thus
killing the longitudinal components of the metric fluctuations, and leaving us with only
the scalar mode. However, in a correct path integral quantization, the longitudinal
modes should be integrated over without restrictions (at most just imposing the single-
slice gauge-fixing as in [127]). Our conformal reduction will consist in not performing
such functional integration, thus freezing the longitudinal modes as if they had been
eliminated by the constraints.
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In order to implement the gauge condition we add the gauge-fixing action

Sgf =
1

2α2

∫
dt

∫
d2x
√
g n2 +

1

2 β2

∫
dt

∫
d2x
√
g ni n

i , (5.12)

where we have already fixed N = 1, and take the limit α→ 0 and β → 0, which leads
to a complete decoupling of n and ni.

Since the fluctuations of lapse and shift transform linearly in the time derivative,
the Fadeev-Popov operator simply readsM = ∂t. In order to avoid problems inherent
to the non positivity of such an operator (that of course are solved taking its square) we
employ for the ghost sector the square root of the determinant of the squared Fadeev-
Popov operator, namely

√
det(−M2), which also leads to better properties under the

RG flow (see [109]). The corresponding ghost action reads then

Sgh =

∫
dtN

∫
d2x
√
g
{
c̄ ∂2

t c+ c̄i ∂
2
t c

i + b ∂2
t b+ bi ∂

2
t b

i
}
, (5.13)

being ci and c Grassmannian complex fields and bi and b real bosonic fields. The limit
α → 0 and β → 0 can be performed at the level of the second variation of the action,
after the rescaling n→ αn and ni → β ni. It is clear that in such limit the fields n, and
ni will only survive in the gauge-fixing term, and we can set them to zero when writing
the variation of S. The gauge-fixing action is clearly non-dynamical and its integration
in the path integral will only give an ultralocal contribution to the action (proportional
to δ(3)(0)) which we do not keep track of. Concerning the ghosts, they will produce
a determinant of the operator −∂2

t to some power, which can only contribute to the
renormalization of the cosmological constant term, which flow we are not interested to
follow.

5.3 Setup of the one-loop calculation

Since we are interested to understand whenever the theory is asymptotically safe or not,
we want to evaluate the β-functions of the dimensionless coupling κ, λ and γ, in order
to study their renormalization group flow. Since we are in a perturbative framework we
will limit us to a one-loop calculation and hence evaluate the one-loop effective action,
which can be written as2

Γ[hij; gij] = Stot[hij; gij] + }S1−loop[hij; gij] +O(}2) , (5.14)

being
Stot[hij; gij] = S[gij + ε hij] + Sgf [hij; gij] + Sgh[c, c̄, b; gij] , (5.15)

and where S1−loop is the one-loop correction to the bare action, i.e.

S1−loop[h; gij] =
1

2
STr lnS

(2)
tot [h; gij] , (5.16)

2Occasionally we display Planck’s constant } as a loop expansion parameter.
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where S(2) indicates the second functional derivative respects to the fields and STr is a
supertrace (which as usual includes a factor two for complex fields and a factor minus
for Grassmann fields).

As generally happens in QFT, the one-loop correction S1−loop will contain some UV
divergences, which, being the theory power counting renormalizable, we will be able to
absorb in a renormalization of the bare couplings. The dependence of the renormalized
couplings upon the renormalization scale will determine the β-functions.

The first step of the one-loop calculation is the evaluation of the second functional
derivative of the action. To that end, we use the splitting (5.9), under which the action
decomposes as

S[gij + ε hij] = S[gij] + ε δS[gij;hij] + ε2 δ2S[gij;hij] +O(ε3) . (5.17)

The Hessian operator

S(2)[gij] =
δ(2)S

δhkl δhmn

∣∣∣
|h=0

, (5.18)

can easily be read off from the second variation δ2S[gij;hij] by stripping off the fluctu-
ation fields. As we already discussed, we will use the decomposition (5.10) and discard
the traceless contributions ĥij, thus having simply hij = 1

2
gijh. Expanding up to the

second order in the fluctuations, we first note that in d = 2 the variation of the metric
determinant

√
g → √g

(
1 + ε

1

2
h+O(ε3)

)
, (5.19)

has no part which is quadratic in the trace mode, and thus the bare cosmological
constant will not enter in the one-loop correction of the action. And due to (5.8), also
the coupling c in (5.7) will not appear in S1−loop.

Finally, as we are not interested here in discussing the renormalization of the cos-
mological constant, and as the gauge-fixing and ghost term can only contribute to that
operator, we will forget both about the lapse and shift fluctuations as well as about the
ghosts.3 We are thus left with a second variation depending only on the trace mode,
namely

δ2S[gij;hij] =
1

2κ2

∫
dt d2x

√
g

{(
λ− 1

2

)
(∂th)2 + γ h (D4 + 2RD2 +R2)h

}
.

(5.20)
When perturbatively quantizing general relativity, the perturbative expansion param-
eter ε is chosen to be equal to κ, so that the kinetic term for the graviton will be
canonically normalized. In the present case we see that such choice is not enough, as
the operator in (5.20) depends on the two couplings λ and γ, and there is no choice by
which we could remove both of them. We should notice however that from a canonical

3Note that this is not an approximation: we have discussed the gauge-fixing and ghosts in the section
5.2 precisely in order to show that they cannot contribute to the renormalization of the dimensionless
couplings.
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point of view what should be normalized to one half is really the coefficient of (∂t h)2,
all the rest being part of the potential. Restricting our analysis to the case λ > 1

2
(for

λ < 1
2
the operator has the wrong sign, we should start again from (5.7) and flip the

signs of the extrinsic curvature terms) we thus conclude that the effective perturbative
coupling is

ε =
κ

(λ− 1
2
)

1
2

. (5.21)

Absorbing ε into the second variation, and integrating by parts, equation (5.20) can
now be rewritten as

δ2S =
1

2

∫
dt d2x

√
g hD h , (5.22)

being

D = − 1√
g
∂t
√
g ∂t +

γ

λ− 1
2

(D2 +R)2 . (5.23)

5.4 Divergences and β-functions

The supertrace in (5.14) reduces in our case to a single trace over the conformal modes
of the spatial metric, which we will evaluate by means of a heat kernel expansion. First,
we regulate the trace of the logarithm by regulating its proper time representation, that
is4

S1−loop =
1

2
Tr ln(D) = −1

2

∫ +∞

1
Λ4

ds

s
TrH(x, s;D) , (5.24)

being H(x, s;D) the diagonal part of the heat kernel operator

H(x, x′, s;D) =< x| e−sD |x′ > , (5.25)

which satisfies the heat kernel equation (D.3) with boundary condition (D.4), and where
D is the differential operator (5.23), s a proper time variable, and Λ a ultraviolet cutoff
of mass dimension one (note that [s] = −4 due to the unusual mass-dimension of the
time coordinate), not to be confused with the cosmological constant, which from now
on will not appear anymore in our calculations. If the operator D has zero or negative
modes, then expression (5.24) will need also an infrared cutoff 1/µ4, being µ an IR
mass, on the upper extreme of the proper time integration.

A well known feature of the heat kernel (see appendix D) is that it admits in the
limit s→ 0+ an expansion series in powers of s, which in the present case reads

H(x, s;D) =
∞∑

n=0

s
n
2
−1 an(x;D) , (5.26)

4A more rigorous procedure for regularizing the functional trace would consist in using a ζ-function
regularization [128], however, as the final result is the same, we stick here to this more simplistic
regularization scheme.
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the an coefficients being scalars built out of geometric tensors and their derivatives.
Plugging (5.26) into (5.24), and exchanging sum and integral, we immediately find that
for n > 2 we can safely take the Λ → ∞ limit, and that all the UV divergences are
contained in the first three terms of the expansion (since the heat kernel operator is
dimensionless by definition). By simple dimensional analysis we expect the logarithmic
divergences to be proportional to a2, and we expect the latter to be a linear combination
of the squares of the intrinsic and extrinsic curvatures of the spatial slices.

5.4.1 Heat kernel expansion

As a result of the heat kernel expansion, we write

1

2
Tr ln(D) =− 1

2

∫ 1
µ4

1
Λ4

ds

s
TrH(x, s;D) =

− 1

2

∫ 1
µ4

1
Λ4

ds

s2

∫
dt d2x

√
ĝ
{
a0 + s

1
2 a1 + s a2 +O(s

3
2 )
}
,

(5.27)

where we have introduced also an IR cutoff µ on the proper time integral, which in the
Wilsonian picture plays the role of a renormalization scale.

Whereas in the isotropic case the an coefficients of the corresponding heat kernel ex-
pansion have been worked out by many different means and for many different operators
(in particular for higher derivative operators, see appendix D), very little is available
about the anisotropic case. For the case at hand fortunately we can take advantage of
the computations done in [129] for an anisotropic action in d = 2 with z = 2 of the type

S[φ; gij] =
1

2

∫
dt d2x

√
ĝ Nφ

{
− 1

N
√
ĝ
∂t

1

N

√
ĝ ∂t +D4

}
φ , (5.28)

where φ ≡ φ(t,x) is a generic Lifshitz field. In fact, we can recognize that the action
(5.22) is almost the same as the action (5.28), the only differences (beside our back-
ground choice N = 1 which is unimportant) being the replacement D2 → D2 + R and
the presence of the coupling γ/(λ− 1

2
), both of which are easily taken care of.

Concerning the presence of the coupling, we can simply notice that it can be dealt
with by introducing the auxiliary spatial metric

ĝij =

(
λ− 1

2

γ

) 1
2

gij , (5.29)

so that (5.22) now reads

δ2S[h; gij] =
1

2

(
γ

λ− 1
2

) 1
2
∫
dt d2x

√
ĝ h

{
− 1√

ĝ
∂t
√
ĝ ∂t + (D̂2 + R̂)2

}
h , (5.30)
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where D̂ is the spatial covariant derivate constructed from the auxiliary metric ĝij,
and R̂ the associated curvature. The coefficient (γ/(λ − 1

2
))1/2 in front of the integral

decouples when taking the logarithm of the second functional derivative, giving an ultra-
local contribution which can then be discarded. We thus are left with the operator

D̂ = − 1√
ĝ
∂t
√
ĝ ∂t + (D̂2 + R̂)2 , (5.31)

for which we can use the results of [129], in combination with the heat kernel results
for a generalized second order partial differential operators reported in (D.50) (see [130]
for more details).

From [129] we can directly borrow the extrinsic curvature terms in a2, as the R̂ term
in (5.31) cannot contribute to those. For the terms depending only on the spatial Ricci
scalar, we observe that the time derivatives cannot contribute to those and hence we
can ad hoc choose a time-independent metric and use the standard results from [130].
Putting things together, we find

a2 = − 1

64π

(
K̂ij K̂

ij − 1

2
K̂2

)
. (5.32)

The coefficient (5.32) does not contain powers of the expected R̂2 term since the orderR2

coefficient of the heat kernel expansion vanishes for any operator of the type (D2 +X)2

in d = 2, in agreement with the X = 0 case of [129]. The vanishing of the spatial part of
the coefficient a2 can be checked by inserting d = 2, Vµν = 2 gµν R, Bµ = 0 and X = R2

in the coefficient E4 in (D.50) (see also [130]). As a consequence, we can deduce that
no renormalization of the overall coupling of R2 will take place. Similarly using (D.50)
we can also obtain

a0 =
1

16 π
, a1 =

7

48π3/2
R̂ . (5.33)

Note that with respect to (D.50) the expansion coefficients get an extra factor (4π)−1/2

because of the extra (time) dimension in the trace.
Plugging (5.32) into (5.27) and integrating over the proper time we find

1

2
T̂r ln(D̂) =− 1

2

∫
dt d2x

√
ĝ
{

(Λ4 − µ4)
1

16π
+ (Λ2 − µ2)

14

48 π3/2
R̂

+ ln

(
Λ

µ

)
1

16 π

{
− K̂ij K̂

ij +
1

2
K̂2

}
+O

(
1

Λ2

)}
.

(5.34)

The only term of our interest is the logarithmic divergence, which we can now rewrite
as

S1−loop
log =

1

32 π

(
λ− 1

2

γ

) 1
2

ln

(
Λ

µ

) ∫
dt d2x

√
g

{
KijK

ij − 1

2
K2

}
, (5.35)

having used (5.29) to express it in terms of the original metric gij.
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5.4.2 β-functions

Since we are in a perturbative setting we will evaluate the β-functions employing the MS
scheme introduced in section 1.1. We can then reabsorb the logarithmic divergencies
by rewriting the bare couplings as

gb,i = gR,i + δgi , (5.36)

being gb,i the bare coupling of the i-th local operator present in the action, δgi a coun-
terterm chosen so to cancel the divergences and gR,i the renormalized coupling. More
specifically, we define the renormalized couplings as
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(5.37)

We can now solve the first of (5.37) obtaining the expression of the renormalized cou-
pling κ2

R, which reads

κ2
R =

κ2

(
1− κ2

64π

(
λ− 1
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γ

) 1
2

ln
(

Λ
µ

)) , (5.38)

that, once expanded in powers of } using the binomial expansion and discarding higher
loop orders, leads to
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64π
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+O(}2) . (5.39)

Hence, using (5.39) back in (5.37) we obtain
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(5.40)

Thus, the β-functions can be evaluated by stating the independence of the bare coupling
from the renormalization scale µ, i.e. µ ∂µ gb = µ ∂µ gR + µ ∂µ δg = 0, which leads to
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the system of β-functions

βκ2 = µ ∂µ κ
2
R = − κ4
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(5.41)

Since the right-hand side of (5.41) are O(}) we can substitute the bare couplings with
the renormalized one everywhere in the β-functions. Then we can use (5.41) to note
that

µ ∂µ

(
λR − 1

2

γR

)
=

1

γR
βλ −

λR − 1
2

γ2
R

βγ = 0 , (5.42)

so that (
λR − 1

2

γR

)
= b , (5.43)

being b a constant. Inserting (5.43) in the first of (5.41) we can solve the differential
equation for κ2

R, obtaining the RG flow of the coupling κ2
R, which reads

k2
R(µ) =

64π

b1/2 (ln µ
µ0

+ C)
, (5.44)

where C is an integration constant fixed by the boundary condition at some initial scale
µ = µ0. Using (5.43) and (5.44) in (5.41) we can integrate the remaining two β-functions
obtaining the flow of the renormalized couplings λR and γR, which respectively read

λR(µ) =
1

2
+

C1

ln µ
µ0

+ C
, (5.45)

γR(µ) =
C2

ln µ
µ0

+ C
, (5.46)

being C1 and C2 other two integration constants. Moreover, inserting (5.45) and (5.46)
in (5.43) we can see that b = C1/C2.

We observe, then, that the running coupling (5.44) has the standard behavior of
an asymptotically free coupling, running to zero for µ → ∞. However, we note that
also λR − 1

2
and γR have the same behavior, a fact which leads to a problem for the

perturbative treatment of Hořava-Lifshitz gravity. We have argued before that the
effective perturbative coupling is ε, and substituting (5.46) and (5.45) in (5.21), we find
the renormalized coupling to be

ε2R =
κ2
R

λR − 1
2

=
64 π C

1/2
2

C
3/2
1

, (5.47)
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so that it does not run to zero in the ultraviolet limit, but instead it remains constant
along the renormalization group flow. That is, the coupling ε is marginal at one-loop
order. Since the parameter ε characterizes the interaction strength of the theory, we are
then in a situation in which the strength of the interaction remains finite at all scales,
in particular meaning that the theory is not asymptotically free.

Looking back at (5.20), we can interpret the origin of such situation as a competition
between the would-be asymptotic freedom of Newton’s constant κ2, and the strong
coupling phenomenon that occurs when approaching λ = 1/2. The latter is indeed a
singular limit, in which the scalar mode is non-propagating (since the kinetic term in
the second variation vanishes for λ = 1/2. A similar strong-coupling phenomenon was
pointed out in [131] in relation to the supposed IR limit λ → 1 of the full Hořava-
Lifshitz theory, and it can be generically expected that some form of strong coupling
or discontinuity will be associated to the disappearance of degrees of freedom due to
enhanced symmetry, as for example in the massless limit of gravitons [132, 133]. In our
case, the enhanced symmetry could be traced back to the anisotropic version of Weyl
invariance at λ = 1/2 and γ = 0 [12].

In analogy to the isotropic case, where scale invariance and unitarity of a quantum
field theory imply conformal invariance (up to anomalies) in two dimensions (see [134])
and seemingly four dimensions5 (see [138, 139]), we might expect to have anisotropic
Weyl invariance at a fixed point of the renormalization group equations in Hořava-
Lifsthiz gravity (but, also in this case, it holds up to anomalies, which we expect
[140, 129, 126]), and we can thus conjecture that our conclusion will apply also to the
full theory, at least for what concerns the running of the parameter λ.

As we have restricted our theory to the projectable case, however, Weyl invariance
cannot be effectively realized since the transformations (2.102) would require the lapse
function to be space-dependent, but anisotropic Weyl invariance could be still realized
at a fixed point with γ 6= 0 for the more general non-projectable model.

An important point to emphasize in the analysis of our result is about the dimension-
ality of the fixed point structure. Besides in 2.3.4 we mentioned that a two-parameter
family of free fixed points can be correctly identified, what we found here means that
only one of them is reached by the interacting theory.

In order to better explain such point, it might be useful to look at a similar situation,
by recalling what happens for a massless scalar field theory in four dimensional curved
spacetime with non-minimal coupling ξ R φ2. Being quadratic in the scalar field, we
could include the non-minimal coupling term in the free action, and as ξ is dimensionless
we deduce that it defines a one-parameter family of fixed points. However, the β-
function for the quartic self-interaction coupling g and the coupling ξ in theMS-scheme

5With maybe the interesting exception of limit cycles, for whose the existence of a current associated
to scale invariance does not imply a conserved current for conformal invariance. For an example in
4− ε dimensions see [135, 136, 137].
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read respectively [141, 142]

βg =
3 g2

(4 π)2
, βξ =

g

(4π)2

(
ξ − 1

6

)
, (5.48)

and integrating them from a negative initial condition for the coupling g (so that it
runs to zero in the ultraviolet limit, instead of hitting a Landau pole) we find that
ξ(µ) → 1/6 for µ → ∞, independently on the initial value g(µ0) < 0. In this case
ξ = 1/6 is the value at which the theory shows conformal invariance at the classical
level, and so analogously to our situation it is a value which is preferred by the flow
trajectories, being the only one among the line of Gaussian fixed points that can be
reached by the interacting theory. Of course the analogy is limited to this observation,
the scalar theory being truly asymptotically free (albeit unbounded from below), and
not loosing any degree of freedom as a consequence of Weyl invariance.

For completeness, we should point out that whereas for the reasons just discussed we
expect the one-loop approach to the anisotropic Weyl invariant action to be a feature
that the full theory will share with our toy model, we have no argument to support
an analogous situation with the approach being such that the effective perturbative
coupling ε remains finite. Furthermore, even in our toy model, ε might cease to be
marginal at two loops or beyond. Only an explicit calculation can of course tell us
whether the additional degrees of freedom of the full higher dimensional model, or
maybe the effects of higher loop corrections, might change the qualitative picture we
found. The one-loop result obtained for the conformally reduced theory, however, is a
first calculation which shows the existence of potential troubles associated to the strong
coupling regime.



Conclusions

In this Ph.D. thesis we have investigated the renormalizability of quantum gravity
approaches in the framework of the renormalization group (RG) employing both per-
turbative and non-perturbative schemes. In particular, we restricted our interest to the
quantization of gravitational theories in which a central role is played by a scalar degree
of freedom, since their RG flow is easier to analyze. We made use of scalar theories in
a two-fold way: on the one hand we used scalar field theories as toy models of gravity,
that is, conformal reductions of the full theories in which we neglect gravitons in the
quantization procedure. On the other hand we have studied scalar-tensor models as
dynamically equivalent theories of higher-derivative models.

The first approach we studied is Weinberg’s asymptotic safety conjecture for gravity.
In this approach it is suggested that the gravitational interaction flows in the high energy
regime to a non-Gaussian fixed point (NGFP) which ensures the renormalizability of
the theory and the finiteness of the n-point correlation functions. The existence of the
NGFP has been widely investigated in the context of the functional renormalization
group (fRG) revealing the presence of a non-trivial fixed point for numerous ansatz of
the effective action, both finite- and infinite-dimensional in the parameter space. Since
the fRG equation cannot be solved exactly, but just by means of an approximation
of the effective action, the approximated solution shows then a dependence on the
RG scheme. In order to check the robustness of the results obtained within a certain
approximation it is then necessary to study the RG flow using different schemes.

For this reason we have investigated in the section 3.1 the existence of the NGFP for
the simpler Einstein-Hilbert (EH) truncation employing a proper time RG scheme in
which the coarse graining is introduced at the level of the proper time representation.
For this truncation, in fact, the universality class has been analyzed only in the context
of the exact renormalization group (ERG), using different cutoff functions [65, 51]. The
results derived in the section 3.1 are a generalization for generic spacetime dimension
of the results already obtained for d = 4 in [82]. Our calculation shows the existence
of a NGFP with a universality class (e.g. the critical exponents θ′ and θ′′) in general
agreement with that found in [65] for d = 4, and rather stable under the variation of
the cutoff parameter n. Lowering the dimensionality d, however, we encounter a new
situation in which the cosmological constant vanishes at d = 3, in coincidence with the
vanishing of the critical exponent θ′′. As a consequence, for d < 3 the NGFP is defined
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for a negative cosmological constant and by real critical exponents. The characteristic
spiral behavior of the RG flow is then lost. If we continue to lower the dimensionality
we observe the non-trivial fixed point to collapses on the Gaussian fixed point at d = 2,
as expected by a dimensional analysis.

We employed in section 3.3 the proper time scheme to study the RG flow of a
simplified scalar toy model of gravity, i.e. a conformal reduction of the Einstein-Hilbert
action (CREH). It has in fact been proved [6, 7] that the quantization of the sole
conformal degree of freedom of the metric leads to a flow qualitatively in agreement
with that of the full theory. We have then evaluated the proper time RG flow equation
for such a scalar toy model, projecting the flow on a spherical topology Sd and a flat
one, Rd. We found for both topologies and d = 4 a non-Gaussian fixed point in general
agreement with [6] regarding the numerical values of the universal quantities.

We have then defined a χ2(n) function in the ”universal quantities space” to displays
the distance, varying n, of the universality class of the full theory from that of the toy
model for d = 4. We compared then the two χ2 functions, one for each topology, looking
for a minimum of both functions. Interestingly we found both minima to coincide at
nmin = 4, which in the parametrization used in chapter 3 corresponds to a quadratic
dependence on the propagator, thus near to the linear dependence owned by the ERG
equation (n = 3). We are then tempted to interpret nmin as an optimized value,
following the so-called principle of minimum sensitivity (PMS). For this value in fact
the distance between the two universality classes is invariant under an infinitesimal
transformation of the cutoff parameter. Hence, at the optimized value the RG flow
dependence on the approximation is supposed to be minimized.

Interestingly, this optimized value of n emerges only when comparing the universal-
ity classes of the full and approximated theory. When looking at the sole universality
class of the CREH action, in fact, the critical exponents grown monotonically by vary-
ing n, so that there is no minima. The principle of minimum sensitivity cannot thus be
applied, and no optimized value of n can be estimated. This is also what happens for
the standard scalar theory in d = 3 (see [41, 42]). In that case the critical exponents
grow monotonically when increasing n, reaching their most precise value in the limit
n → ∞. The proper time scheme for n = ∞, interestingly, exhibits an high precision
already at the leading order of the derivative expansion; the same level of precision is
reached by the ERG equation only at the next order [143]. The surprising high precision
shown by a non-exact RG scheme in the ultraviolet sector of the standard scalar field
theory was indeed one of reasons which motivated us towards its use in gravity. What
has been found for the standard scalar theory, however, is not in agreement with what
we found here, where for n = 4 the use of the ERG equation is as good as the proper
time equation, at least for d = 4.

For d < 4 the differences between the ERG and the proper time scheme are more
consistent. Using a spherical topology, in fact, for d < dc(n), being dc a critical di-
mension, we encounter a Hopf bifurcation which entails the emergence of an UV limit
cycle. Although we are led to consider it as an artifact of the conformal reduction, it
opens the intriguing possibility of having a limit cycle as an ultraviolet (or infrared)
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completion of the RG flow. Such a situation, perhaps atypical in quantum field theory,
was however already suggested by Wilson for the ultraviolet regime of QCD [87].

In section 3.4, we have then extended our analysis from the simple CREH trun-
cation to a more general non-polynomial effective action. We built then a functional
RG flow equation for the conformal potential on a flat topology, i.e. we studied the
conformally reduced toy model of gravity in the local potential approximation. Since
we are working in a flat spacetime we expect all the contributions to the conformal
potential that are coming from powers of the Ricci scalar to vanish. The only opera-
tors which contribute are then, for example, non-local operators of the type of powers
of the spacetime volume. Starting from a symmetric phase at the UV fixed point we
have numerically integrated the dimensionful equation back to k = 0, investigating the
possibility of having a broken phase in the infrared regime. Studying the problem as
an inverse problem (that is, integrating from k = 0 to k =∞) we found not only that a
broken phase in the infrared is possible, but also that the instability issue of the confor-
mal factor is automatically cured, and that the ultraviolet fixed point structure is richer
that that found in the CREH truncation. Those results, however, have been found by
fixing the running of the Newton’s constant along the flow, as normally happens in the
LPA. We would then expect to gain a more precise determination of the fixed point
structure taking in consideration the flow of Newton’s constant, a work that we leave
for the future.

The local potential approximation for the conformally reduced theory has been ob-
tained, however, only on a flat topology. Consequently, this toy model cannot be used
to investigate the existence of fixed point solutions for scalar approximations of more
general infinite-dimensional truncations of the gravitation action, like a f(R) theory.
For this reason in chapter 4 we have quantized a dynamically equivalent theory to the
f(R) action, i.e. a Brans-Dicke theory with ω = 0 in the local potential approxima-
tion. We have then derived a RG flow equation for a generic Brans-Dicke potential,
working on a flat topology and keeping the parameter ω arbitrary. In order to test
the self-consistency of our results, we quantized the theory using two different gauges,
respectively a Landau and a Feynman gauge. Once obtained the RG equation we fo-
cused on the fixed point solution for d = 4 and for a fixed parameter ω = 0, in light
of the equivalence with the f(R) theory. We employed then a consistent numerical
strategy to look for scale-invariant solutions. That is, we counted the number of free
parameters of the differential equation at the origin, finding one degree of freedom in
the Feynman gauge and two in the Landau. Then we studied the asymptotic behaviour
of the equations, finding in both gauges four different behaviours. Hence, we integrated
numerically from the origin towards φ = ±∞, by varying the free parameters at the
origin. Because of the strong non-linearity of the equation we found all the solutions in
the Feynman gauge to end at a movable singularity. We found instead a 2-parameter
family of globally analytic solutions in the Landau gauge.

Although we expect a certain dependence of the universal quantities from the gauge
choice, we also request the basic features of the fixed point structure (like its dimen-
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sionality) to be independent from it. Consequently, we deemed the local potential
approximation as inconsistent, and that the running of the parameter ω has to be
taken into account in order to correctly characterize the universality class of the theory.

The latter statement can also be understood by noting that for ω = −1/2 we found
the general picture to be inverted. For ω = −1/2, in fact, we found a 2-dimensional
family of global solutions for the Feynman gauge and no one in the Landau.

Including the running of ω we expect then the fixed point structure to be defined by
a set of fixed point values ω∗, which sets the qualitative features of the universality class
in a gauge-independent way. Still, we will expect the values of ω∗ to show a dependence
on the gauge choice.

An important point to discuss is the equivalence of the theories at a quantum level.
The equations of motion for φ, in fact, are no longer algebraic once we take in consid-
eration the running of ω, since in general ωk 6= 0; thus if we solve them we no longer
obtain a simple φ(R) and the resulting theory is not a f(R). We are then led to deem
Brans-Dicke and f(R) as theories not equivalent at a quantum level. Our result, how-
ever, should not surprise. At a non-perturbative level there is not way to say a priori
whenever two theories would be equivalent at a quantum level or not. The flows of the
two theories are, in fact, defined in two different theory spaces. It can happen that the
scalar field couples with some invariant in one theory theory space and not in the other.
Consequently, also if we find a class of fixed points in both theories they can describe
different physics, and only a direct comparison between the universality classes would
say if they are equivalent or not. Our does not want to be, however, a proof of the non
equivalence, but only the logical interpretation of our results.

As already mentioned, all those important question cannot be answered within the
local potential approximation we employed, but our calculation can be seen as the lead-
ing order of an approximation series that can be systematically improved. We leave the
next-to-leading order for future work.

In chapter 5 we have investigated the asymptotic freedom of Hořava-Lifshitz quan-
tum gravity. In this approach Lorentz invariance is lost at the Planck scale, by the
emergence of a scale anisotropy between space and time. The microscopic action be-
comes thus invariant under a foliation-preserving diffeomorfism group and general co-
variance is supposed to be restored in the infrared limit. Interestingly, thanks to the
loss of general covariance it is possible to obtain simultaneously explicit unitarity and
power counting renormalizability. Because of the anisotropy, in fact, we can build a
microscopic action containing operators with at most two time derivatives, while the
spatial derivates are raised to higher orders. Consequently the propagator runs fast
enough to zero at large momenta, thus ensuring perturbative renormalizability, while
the absence of higher-order time derivatives avoids the presence of unphysical poles in
the propagator.

Being the renormalizability the key feature of this model, it is also its less studied
feature, because of the complexity of the calculations and the high number of invari-
ants in the more general case, i.e. the non-projectable case without detailed balance.
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We have then here studied a simplified case, i.e. the projectable case without detailed
balance in 2+1 dimensions with z = 2, in order to give a first answer about the asymp-
totic freedom of the model. For this dimensionality, in fact, there are no gravitons,
and the only physical degree of freedom is the scalar one. As a first step towards a
more complete analysis, we simplified further our model, neglecting the longitudinal
modes of the spatial metric and quantizing the sole conformal sector. The toy model
we investigated is then a conformal reduction of the theory, analogous to that studied
in chapter 3 for the asymptotic safety scenario. However, differently from the isotropic
case in which the scalar degree of freedom is a pure gauge one, the conformal factor is
a physical degree of freedom in the anisotropic case. We expect then the RG flow of
the scalar toy model to be a good approximation of the full theory.

Using a heat kernel expansion for anisotropic higher-order operators we evaluated
then the one-loop correction of the action. Hence, we obtained the one-loop order
β-functions of the dimensionless parameter of our interest in the MS scheme. After
calculating the running of Newton’s constant, the anisotropic parameter λ and the
R2 coupling, we studied then the high energy regime of the theory. What we found
is that while Newton’s constant tends to flow to zero, realizing asymptotic freedom,
the coupling λ tends to its Weyl invariant value λ = 1/2. The interaction coupling,
however, is not defined by Newton’s constant alone, but by its ratio with λ − 1/2, as
a consequence of the anisotropic character of the model. Since we found λ and the
Newton’s constant to run with the same speed, we obtained the interaction strength
to be constant along the flow, spoiling then the asymptotic freedom of the theory. As
already said, being the scalar degree of freedom the only physical one we expect the
one-loop marginal behaviour of the interaction strength to be a feature shared with
the full model. This results, however, can in principle change at two loop, hence a
higher-loop calculation is needed in order to answer about the true marginality of the
interaction coupling.

Our result, being based on a one-loop correction of a toy model, should be seen just
as a first step towards the understanding of the high energy regime of the full model.
At least, perhaps, we gave an hint about the true fixed point structure of the theory.
Assuming asymptotic freedom, in fact, it can be found a two-parameter family of fixed
points characterized by λ and the dimensionless ratio of the Newton’s constant and
the R2 coupling. What we found is that, starting from an interacting theory, just the
conformal (Weyl) invariant point is reached, as a consequence of the running of the
parameter λ. Such a situation is not unusual in QFT, since something similar happens
for the standard scalar field theory non-minimally coupled to gravity. Also in that case,
in fact, the request of conformal invariance reduces the number of UV fixed points to
the sole conformal one. We expect the Weyl invariant point to be a fixed point also of
the full model.
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Appendix A

Functional representation of the effective action

We present in this appendix the procedure to rewrite the effective action Γ[Ψ] in its
functional formulation starting from its definition in terms of Legendre transform of
the functional generator of connected correlation functions W [J ].

We start by briefly remind the standard definition of the effective action. Consider
then a bare (or classical) action S[ψ]; the partition function is defined as

Z =

∫
D[ψ] e−S[ψ] . (A.1)

The functional generator W [J ] is defined by coupling the bare field with a fictitious
source as

Z[J ] = eW [J ] =

∫
D[ψ] e−S[ψ]+

∫
ddxJ(x)ψ(x) , (A.2)

thus being W [J ] = logZ[J ]. Connected correlation function can then be obtained by
functional differentiating W [J ]. For example the expectation value of the field reads

〈ψ(x)〉 = Z[0]−1

(
δZ[J ]

δJ(x)

) ∣∣∣
J=0

=
δW [J ]

δJ(x)

∣∣∣
J=0

, (A.3)

while more generally for an n-point correlation function holds

〈ψ(x1) · · · ψ(xn)〉 =
δnW [J ]

δJ(xn) · · · δJ(x1)

∣∣∣
J=0

. (A.4)

We can now define the expectation value of the field in presence of the source J(x) as

〈ψ(x)〉J = Z[J ]−1

(
δZ[J ]

δJ(x)

)
=
δW [J ]

δJ(x)
. (A.5)

and define a new effective field Ψ(x)J = 〈ψ(x)〉J as the Legendre conjugated of the
source J(x). We can then resolve (A.5) respect to J as a function of the effective
variable ΨJ , that is J = J [x,ΨJ ], and perform the Legendre transform of the generator
W [J ], i.e.

Γ[Ψ] = −W [J [x,Ψ]] +

∫
ddx J [x,Ψ] Ψ(x) , (A.6)
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where Γ[Ψ] is the effective action, that is the functional generator of 1PI connected
correlation functions. Note that

δΓ[Ψ]

δΨ(y)
= −δW [J ]

δΨ(y)
+

∫
ddx

δ(J [x,Ψ] Ψ(x))

δΨ(y)

= −
∫
ddx

δW [J ]

δJ(x)

δJ(x)

δΨ(y)
+

∫
ddx

δJ [x]

δΨ(y)
Ψ(x) + J [x,Ψ] δ(x− y)

= J(y) ,

(A.7)

where we used (A.5) in the last passage. To write the effective action in terms of a
Schwinger functional we exponentiate both members of (A.6), obtaining

e−Γ[Ψ] = eW [J ]−
∫
ddx J(x)Ψ(x) = eW [J ]−

∫
ddx

δΓ[Ψ]
δΨ

Ψ(x) , (A.8)

where in (A.8) we used (A.7) to rewrite the source in terms of the effective action. Since
the two operators in the exponential on the right hand side commute, we can rewrite
it as a product of two exponentials and using (A.2) we arrive to

e−Γ[Ψ] = e−
∫
ddx

δΓ[Ψ]
δΨ

Ψ(x)

∫
D[ψ] e−S[ψ]+

∫
ddxJ(x)ψ(x) . (A.9)

Since the path integral is defined over the configurations of the bare field ψ(x) we can
bring inside the first exponential obtaining

e−Γ[Ψ] =

∫
D[ψ] e−S[ψ]+

∫
ddx

δΓ[Ψ]
δΨ

(ψ(x)−Ψ(x)) (A.10)

where we used once more (A.7). Finally, we can perform a shift of the bare field as
ψ(x) = χ(x)−Ψ(x) so that equation (A.10) is rewritten as

e−Γ[Ψ] =

∫
D[χ] e−S[χ+Ψ]+

∫
ddx

δΓ[Ψ]
δΨ

χ(x) (A.11)

being 〈χ(x)〉 = 0. It is easy to see then that the on shell partition function can be
obtained from the generalized principle of minimum action, which reads

δΓ[Ψ]

δΨ(x)

∣∣∣
Ψ=Ψ∗

= 0 , (A.12)

being Ψ∗(x) the configuration which minimizes the effective action, so that equation
(A.11) now reads

e−Γ[Ψ∗] =

∫
D[χ] e−S[χ+Ψ∗] . (A.13)

That is to say that the effective action at the minimum simply furnishes the expression
of the partition function without external source, i.e. Γ[Ψ∗] = − logZ[0].
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Arnowitt-Deser-Misner splitting

We summarize in this appendix the standard ADM splitting techniques in d+ 1 dimen-
sions. The convention here employed it taken from Carroll’s book [144].

Let us consider a generic d+ 1 dimensional manifoldM equipped with a spacetime
metric γµν , and a signature (ε,+,+,+, ...), ε = ±1. Greek indices will be used for the
d+ 1 dimensional manifold

µ, ν, ... = 0, 1, ..., d , (B.1)

and latin indices for the spatial one

i, j, ... = 1, ..., d . (B.2)

The spacetime manifold is equipped with a Levi-Civita connection ∇µ such that

[∇µ,∇ν ]Aρ = Rρ
σµν Aσ , (B.3)

being Aµ a generic d+ 1 vector and where Rα
µβν is the Riemann tensor built from the

metric γµν . The Ricci tensor and the Ricci scalar are defined from the Riemann tensor
as

Rµν = Rρ
µρν , R = Rµν γ

µν . (B.4)

We thus define a time function t and a time vector tµ such that they satisfy the com-
patibility condition

tµ∇µt = 1 . (B.5)

Hence we can define a foliation F over the manifoldM which leafs are hypersurfaces
Σt at constant time coordinate t. We can then define a unitary vector nµ, i.e.

γµν n
µ nν = ε , (B.6)

which is othogonal to the slice Σt, that is

nµAµ = 0 , (B.7)
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where Aµ is a generic spatial vector Aµ ∈ TΣt, being TΣt the tangent vector space to
the leaf Σt. Using the definition (B.6) the spacetime metric γµν can be split in two
terms

γµν = ε nµnν + gµν , (B.8)

where gµν is an induced metric over the leaf, which reads in its contravariant form

gµν =

(
0 0
0 gij

)
. (B.9)

Using the decomposition (B.8) we can split the time vector tµ as

tµ = N nµ +Nµ , (B.10)

being N and Nµ respectively the lapse function and shift vector, for which hold

N = ε γµν t
µ nν , Nµ = gµν t

ν . (B.11)

The index of the shift vector is raised and lower using the full metric and it is by
definition orthogonal to the vector nµ, that is

Nµ = gµν N
ν = γµνN

ν , Nµ nν γµν = 0 . (B.12)

Since the contravariant vectors have components

tµ =

(
1

0

)
, Nµ =

(
0

N i

)
, nµ = 1

N

(
1

εN i

)
, (B.13)

using (B.13) and (B.9) in (B.8) we get for the contravariant spacetime metric

γµν =




ε

N2

N j

N2

N i

N2
gij + ε

N iN j

N2


 . (B.14)

To obtain the components of the covariant spacetime metric γµν we can rewrite the
various vectors in covariant form, i.e.

tµ =

(
εN2 +N iNi

Ni

)
, Nµ =

(
N j Nj

gij N
j

)
, nµ =

(
εN

0

)
, (B.15)

which leads to

γµν =

(
εN2 +N iN j gij gijN

i

gijN
j gij

)
, gµν =

(
gijN

iN j gijN
i

gijN
j gij

)
. (B.16)
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By using the induced metric gµν we can define a projector operator P which projects
tensors on the leafs of the foliation, i.e.

P(T µ1···µn
ν1···νm) = gµ1α1 · · · gµnαn gν1

β1 · · · gνmβm Tα1···αn
β1···βm , (B.17)

that acts by contracting every free index with the induced metric gµν . From (B.17) we
can define the notion of induced covariant derivative as

Dµ T
µ1···µn

ν1···νm = P(∇ρ T
µ1···µn

ν1···νm)

= gµ1
α1 · · · gµnαn gν1

β1 · · · gνmβm (gσρ ∇σ T
α1···αn

β1···βm) .
(B.18)

and introduce the notion of spatial curvature as

[Dµ, Dν ]A
ρ = Rρ

σµν A
σ , (B.19)

being Rρ
σµν the spatial Riemann tensor and Aµ a spatial vector, Aµ nµ = 0. The

intrinsic curvature of the hypersurface Σt is given by the induced Ricci scalar, that is
R = gµν Rα

σαν and a notion of extrinsic curvature can be introduced by defining the
acceleration vector aµ as

aµ = nν ∇ν nµ , (B.20)

and the extrinsic curvature tensor Kµν , which reads

Kµν =
1

2
Ln gµν = ∇µ nν − ε nµ aν =

1

2N
(ġµν −DµNν −Dν Nµ) , (B.21)

where Ln is the covariant Lie derivative respect to the vector nµ and the dot stands
for the time derivate. The tensor (B.21) is a spatial tensor, i.e. Kµνn

ν = 0, so that
the extrinsic curvature is obtained contracting (B.21) with the induced or spacetime
metric, i.e.

K = γµν Kµν = gµν Kµν . (B.22)

The spacetime Riemann tensor R is related to the spatial Riemann tensor R and the
extrinsic curvature tensor by the Gauss-Codazzi equations

Rρ
σµν = gρα g

β
ρ g

γ
µ g

δ
νRα

βγδ + ε (Kρ
µKσν −Kρ

ν Kσµ) ,

D[µK
µ
ν] =

1

2
gσν Rρσ n

ρ .
(B.23)

Using (B.23) and (B.17) it can be verified that the following identities hold

R = R+ ε (K2 −Kµν Kµν − 2Rµν n
µ nν) , (B.24)

Rµν n
µ nν = K2 −Kµν Kµν +∇µ (aµ − nµK) . (B.25)
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Appendix C

CREH: Critical exponents and β-functions

C.1 Critical exponents and universal quantities

Table C.1: The fixed point values and the critical exponents obtained in four dimensions from the
β-functions (3.49a) and (3.49b) for various values of the cutoff parameter n compared with those
obtained from the full EH gravity, on the right.

CREH-S4 CREH-R4 Full EH-S4

n λ∗ g∗ λ∗g∗ θ′ θ′′ λ∗ g∗ λ∗g∗ θ′ θ′′ λ∗ g∗ λ∗g∗ θ′ θ′′

3 1.125 1.571 1.767 3 4.795 0.800 2.084 1.670 8.580 0 0.355 0.388 0.138 1.835 1.300
4 1.2 1.810 2.171 1.5 4.213 0.837 2.666 2.234 5.721 2.928 0.265 0.472 0.125 1.770 1.081
5 1.25 1.885 2.356 1 3.873 0.867 2.914 2.528 5.000 3.428 0.230 0.517 0.119 1.750 1.000
6 1.285 1.914 2.461 0.75 3.665 0.889 3.041 2.706 4.578 3.627 0.211 0.546 0.115 1.742 0.959
8 1.333 1.930 2.574 0.5 3.427 0.921 3.159 2.910 4.102 3.788 0.191 0.582 0.111 1.734 0.916
10 1.364 1.931 2.633 0.375 3.295 0.941 3.209 3.023 3.839 3.850 0.181 0.603 0.109 1.731 0.894
15 1.406 1.923 2.703 0.230 3.129 0.971 3.253 3.161 3.511 3.903 0.169 0.630 0.106 1.727 0.868
20 1.428 1.914 2.735 0.167 3.050 0.987 3.265 3.225 3.356 3.919 0.163 0.644 0.105 1.725 0.856
30 1.451 1.904 2.764 0.107 2.974 1.004 3.271 3.285 3.206 3.929 0.158 0.658 0.104 1.723 0.846
50 1.470 1.894 2.785 0.062 2.914 1.018 3.271 3.331 3.089 3.933 0.154 0.668 0.103 1.722 0.837
100 1.485 1.886 2.800 0.030 2.871 1.028 3.269 3.364 3.003 3.934 0.152 0.676 0.102 1.721 0.831
300 1.495 1.880 2.810 0.010 2.842 1.036 3.266 3.385 2.948 3.934 0.150 0.682 0.102 1.721 0.828
∞ 1.5 1.880 2.815 0 2.820 1.040 3.265 3.396 2.920 3.923 0.103 0.685 0.070 1.720 0.826
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Table C.2: The fixed point values and the critical exponents obtained in for the cutoff parameter
n = 4 from the β-functions (3.49a) and (3.49b) for various values of the dimension compared with
those obtained from the full EH gravity, on the right.
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C.2 β-functions

In this section are listed the explicit expressions of the β-functions in d dimensions for
different choices of the cutoff function. The β-functions obtained using the cutoff (3.37)
will be referred as smooth proper time cutoff, where the limits n → d/2 and n → ∞
will be called respectively sharp momentum cutoff and sharp proper time cutoff.

C.2.1 The projection on Sd

• CREH - Smooth proper time cutoff

βg = gk


d− 2− 22−d (d− 2) π1− d

2 gk n
n Γ
(
−d

2
+ n+ 1

)
(
n− d( 2d

d−2
−1)λk

2 (d−1)

)n− d
2

+1

(d− 1) Γ(n)


 , (C.1)

βλ =
23−d π1− d

2 gk n
n Γ
(
n− d

2

)

Γ(n)

(
n− d ( 2 d

d−2
−1)λk

2 (d−1)

)n− d
2

+ λ


−2− 22−d (d− 2) π1− d

2 gk n
n Γ
(
−d

2
+ n+ 1

)
(
n− d( 2d

d−2
−1)λk

2 (d−1)

)n− d
2

+1

(d− 1) Γ(n)


 ,

(C.2)

• CREH - Sharp proper time cutoff

βg = gk

(
d− 2− 22−d (d− 2) π1− d

2 gk
d− 1

e
d( 2 d

d−2
−1)λk

2(d−1)

)
, (C.3)

βλ = 23−d π1− d
2 gk e

d( 2 d
d−2
−1)λk

2 (d−1) + λk

(
−2− 22−d (d− 2) π1− d

2 gk
d− 1

e
d( 2 d

d−2
−1)λk

2(d−1)

)
,

(C.4)

• CREH - Sharp momentum cutoff

βg = gk


d− 2 +

23− 3 d
2 (d− 2)π1− d

2 dd/2 gk

(d− 1)

(
d ( 2 d

d−2
−1)λk

d−1
− d
)

Γ
(
d
2

)


 , (C.5)
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βλ =


−2 +

23− 3 d
2 (d− 2) π1− d

2 dd/2 gk

(d− 1)

(
d ( 2 d
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− d
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Γ
(
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 λk −

23− 3 d
2 dd/2 gk ln
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1− ( 2 d
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−1)λk
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Γ
(
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)
π
d
2
−1

,

(C.6)

• FULL EH - Smooth proper time cutoff

βg = gk


d− 2 +

gk

(
−d (5 d− 7)nn+1 (n− 2λk)

d
2
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(C.7)
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n
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(C.8)

• FULL EH - Sharp proper time cutoff

βg = gk

(
d− 2− 1

3
22−d π1− d

2 gk
(
d (5 d− 7) e2λk + 4 (d+ 6)

))
, (C.9)

βλ =
22−d d

π
d
2
−1
gk
(
(d+ 1) e2λk − 4

)
+

(
−2− gk2

2−d

3π
d
2
−1

(d(5 d− 7) e2λk + 4 (d+ 6))

)
λk ,

(C.10)

• FULL EH - Sharp momentum cutoff

βg = gk

(
d− 2− 23−d dd/2 π1− d

2 2−d/2 gk (3 d ((d− 1) d+ 4)− 2 (d2 + d+ 24) λk)

3 (d− 4λk) Γ
(
d
2

+ 1
)

)

(C.11)

βλ =
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−2− dd/2 π1− d

2 2−d/2 gk (3 d ((d− 1) d+ 4)− 2 (d2 + d+ 24) λk)

3 (d− 4λk) Γ
(
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+ 1
)

2d−3

)
λk+

+
−22−d (d+ 1) π1− d

2 2−d/2 d
d
2

+1 gk ln
(
1− 4

d
λk
)

Γ
(
d
2

) . (C.12)
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C.2.2 The projection on Rd

• CREH - Smooth proper time cutoff

βg = gk


d− 2− 22−d d2 (d+ 2)2 π1− d

2 gk λ
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k n
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) 1
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(C.13)
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• CREH - Sharp proper time cutoff

βg = gk
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2
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, (C.15)
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(C.16)

• CREH - Sharp momentum cutoff

βg = gk
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Appendix D

Heat kernel techniques

Heat kernel techniques play an important role in the evaluation of the effective action in
quantum field theory, in particular in the case of gauge field theories and field theories on
curved manifolds. The evaluation of loop corrections depends in fact on the calculation
of functional traces of differential operators, that is the Hessians, and such traces have
to be expanded on the basis of local operators of the action in order to have information
about the divergencies of the theory, anomalies and various asymptotic behaviors of the
effective action.

A useful way to evaluate such traces consists in rewriting the propagator in its
integral representation

1

S(2)
=

∫ ∞

0

ddsH(x, s;S(2)) , (D.1)

where s is a proper time variable and H(x, s;S(2)) is an operator with matrix elements

H(x, x′, s;S(2)) = 〈x | e−s S(2) |x′ 〉 , (D.2)

being S(2) the inverse propagator. The operator (D.2) is called heat kernel since it
satisfies the heat equation

(∂s + S(2)
x )H(x, x′, s;S(2)) = 0 , (D.3)

with the following boundary condition at s→ 0+

lim
s→0+

H(x, x′, s;S(2)) = δd(x− x′) . (D.4)

As noted first by Fock [145] and later by Schwinger [146], the study of the heat kernel,
instead of the propagator itself, makes clearer many issues about the renormalizability
and gauge invariance of the theory under investigation. The trace of the heat ker-
nel (D.2), in fact, has many interesting properties. For example, for positive s it is
divergencies-free, thanks of its exponential structure, and it admits a series expansion,
which in the limit s→ 0+ reads

TrH(x, s;S(2)) = Tr 〈x | e−s S(2) |x 〉 =
∞∑

n=0

En(x;S(2)) s
n−d
α , (D.5)
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where the operators En contain polynomials of the local invariants of the action, d is the
dimensionality of spacetime and α is a parameter which depends on the order of the
highest-derivative differential operator contained in the Hessian (that is the highest-
derivative operator is built from α derivatives). In the case of curved background
the coefficients En, which are usually called Seeley-Gilkey (occasionally Seeley-Gilkey-
DeWitt) coefficients, contain invariants built from the Riemann, Weyl tensors et cetera,
which means that we can obtain informations about the geometry of the background
by summing the spectra of eigenvalues of differential operators defined on it.

The most known technique is the one introduced by DeWitt in [147], which is based
on the resolution of the heat kernel equation on a generic curved manifoldM using an
ansatz of the type

H(x, x′, s;D) = H(x, x′, s;D)0

∞∑

n=0

an(x;D) sn , (D.6)

where D is now a second order non-minimal differential operator and H(x, x′, s;D)0 is a
straightforward generalization of the heat kernel for the simple Laplacian in flat space
M0 = Rd,

H(x, x′, s;−∂2)0 =
1

(4 π s)
d
2

e
(x−x′)2

4 s , (D.7)

where the squared euclidean distance (which is not a covariant quantity) is replaced by
the Synge’s biscalar of geodesic distance η(x, x′), which reads

η(x, x′) =
1

2
(τ ′′ − τ ′)

∫ τ ′′

τ ′
dτgµν

d xµ(τ)

d τ

d xν(τ)

d τ
. (D.8)

The coefficients an in (D.6) are then corrections containing invariants under diffeomor-
phisms built contracting Riemann tensors and their derivatives. To evaluate them, we
can insert the ansatz (D.6) in the heat kernel equation (D.3), thus obtaining a hierarchy
of iterative equations organized by the powers of the proper time which can be solved
iteratively for the coefficients an.

Although this method has the advantage of being explicitly covariant, the ansatz
(D.6) assumes a complicated expression in the case of non-minimal and higher-order
differential operators which makes this approach not appropriate for general use (al-
tough still possible, see [148, 149] for its higher derivative application). In the case of
higher derivative operators, for example, the flat spacetime solution is a hypergeometric
function, whose main drawback consists in its non analytic dependence on the proper
time variable.

A more suitable approach is based on the method of the pseudodifferential operators,
which does not fix the form of the ansatz but instead translate the evaluation of the
Seeley-Gilkey coefficients to the evaluation of their pseudodifferential symbols. The
drawback of this method, however, is the lack of invariance under general coordinate
transformation and gauge choice, which issue has been solved in [130].
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D.1 Pseudodifferential operators

We introduce here the basics of the pseudodifferential method, and later its application
to the heat kernel. Let us consider a linear differential operator σ(D) defined as

σ(D) =
∑

α

cαD
α , (D.9)

being Dα a derivative operator1, Dα = ∂α1 · · · ∂αn , being α a multi-index on the tangent
space, α = {α1, · · · , αn}, and cα are matrix coefficients, so that

cαD
α ≡ cα1···αn ∂

α1 · · · ∂αn . (D.10)

Consider now the differential operator (D.9) acting on a local function u(x), x ∈ M,
with compact support on Rd. The way it acts can be defined in Fourier space as

σ(D)u(x) =
1

(2π)d

∫ ∫
ei (x−y) k σ(k)u(y) dy dk , (D.11)

where the polynomial σ(k) is said symbol and reads

σ(k) =
∑

α

cα k
α . (D.12)

The operator (D.12) is related to (D.9) by an inverse Fourier transform, and in particular
it holds

σ(D)x e
i (x−y) k = ei (x−y) k σ(k) . (D.13)

A pseudodifferential operator σ(x,D) is a generalization of the differential operator
(D.9) such that the coefficients cα are now non-homogeneous functions, cα ≡ cα(x), so
that the symbol is now coordinate-dependent, and (D.11) reads

σ(x,D)u(x) =
1

(2π)d

∫ ∫
ei (x−y) k σ(x, k)u(y) dy dk . (D.14)

The above definition can be generalized for compact manifolds equipped with a metric
gµν by substituting the derivative in (D.9) with the covariant derivative ∇, and by
choosing a covariant Fourier base, as we will see in a later stage. An example of
pseudodifferential operator on a curved manifold, often used in QFT, is obtained by
considering a second order operator with the metric tensor as coefficient of the principal
part, so that the principal part is scalar (such operator is called minimal, we will not
treat here non-minimal operators), i.e.

σ(x,∇) = −gµν(x)∇µ∇ν − cµ(x)∇µ + b(x) , (D.15)

where the covariant derivative ∇µ contains not only the affine connections but also spin
and gauge connections.

1We will take in consideration just partial differential operators, i.e. differential operators with
integer exponent.
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D.1.1 Heat kernel expansion

Given a pseudodifferential operator D we can now represent its matrix elements in
terms of its symbol as

〈x | D |x′ 〉 =

∫
ddk

(2π)d
√
g(x′)

ei kµ (x−x′)µ σ(x, x′, k;D) , (D.16)

For example, for the operator (D.15) we obtain on a flat space

σ(x, x′, k;D) = gµν(x) kµ kν + cµ(x) kµ + b(x) . (D.17)

The symbol for the heat kernel of the operator D can be written by using the Cauchy
representation of its exponential, i.e.

e−sD = −
∮

C

dΛ

2πi

e−sΛ

(D − Λ)
, (D.18)

where the contour path C encircles the spectrum of D. Hence, using (D.16) and (D.18)
the pseudodifferential symbol of the heat kernel operator H(x, x′, s;D) is defined as

H(x, x′, s;D) = 〈x | e−sD |x′ 〉 =
∫

ddk

(2π)d
√
g(x′)

∮

C

dΛ

2πi
e−sΛ ei kµ (x−x′)µ σ(x, x′, k; (D − Λ)−1) ,

(D.19)

where the operator σ(x, x′, k; (D − Λ)−1) satisfies the Green equation

(Dx − Λ)

(∫
ddk

(2π)d
√
g(x′)

ei kµ (x−x′)µ σ(x, x′, k; (D − Λ)−1)

)
=
δd(x− x′)√

g(x′)
, (D.20)

and where the expression of the δ-function reads

δd(x− x′)√
g(x′)

=

∫
ddk

(2π)d
√
g(x′)

ei kµ (x−x′)µ . (D.21)

From (D.19) it is then clear that a strategy to calculate the Seeley-Gilkey coefficients
involves the evaluation of the symbol σ(x, x′, k; (D − Λ)−1).
The lack of general covariance of plane waves ei kµ (x−x′)µ can be solved by the intro-
duction of a covariant phase l(x, x′, k) which reduces to kµ (x− x′)µ in the limit of flat
manifold. The connection with the DeWitt covariant method can then be established
writing

l(x, x′, kµ) = kµ η(x, x′);µ , (D.22)

where η(x, x′);µ is the covariant derivative of the Synge’s biscalar (D.8), for which holds

η(x, x′)µ η(x, x′)µ = 2 η(x, x′) . (D.23)
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From (D.22) we can see that

∂

∂kµ
l(x, x′, k) = η(x, x′);µ , (D.24)

that reduces to the Euclidean distance vector (x − x′)µ on a flat spacetime. As a
consequence of the properties of the Synge’s geodesic distance (see [147]) many features
of the covariant phase can be understood, as its linearity in kµ and xµ once x′µ has
been fixed, that reads

∂

∂xµ
l(x, x′, k)

∣∣
x=x′ = kµ l(x, x′, k)|x=x′ = 0 , (D.25)

and that the symmetrized covariant derivatives vanish in the coincidence limit x = x′

for m > 2, that is

{∇µ1 ∇µ2 · · · ∇µm} l(x, x′, k)|x=x′ ] ≡ (D.26)

[{∇µ1 ∇µ2 · · · ∇µm} l(x, x′, k)] = 0 ,

where we used squared parenthesis to characterize the coincidence limits. Using (D.22)
it is then possible to evaluated the coincidence limits for the non-symmetrized covariant
derivatives starting from the coincidence limits of covariant derivatives of η(x, x′) [147],
i.e.

[l(x, x′, k)] = 0 , (D.27)

[∇µ l(x, x
′, k)] = kµ ,

[∇µ∇ν l(x, x
′, k)] = 0 ,

[∇µ∇ν ∇λ l(x, x
′, k)] = −2

3
kαR

α
(λµν) ,

· · ·

and so on, where Rαλµν is the Riemann tensor associated to the connection ∇µ and the
parenthesis stands for symmetrization with respect to outer indices with weight 1

2
.

The covariant generalization of equation (D.19) reads then

H(x, x′, s;D) = 〈x | e−sD |x′ 〉 =
∫

ddk

(2π)d
√
g(x′)

∮

C

dΛ

2πi
e−sΛ ei l(x,x

′,k) σ(x, x′, k; (D − Λ)−1) .
(D.28)

In the case of manifold with a fibre bundle the Green equation (D.20) for the symbol
σ(x, x′, k; (D − Λ)−1) becomes

(D(x,∇x)− Λ)
(
ei l(x,x

′,k) σ(x, x′, k; (D − Λ)−1)
)

= ei l(x,x
′,k) I(x, x′) (D.29)
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where I(x, x′) is the biscalar of parallel transport, which coincidence limits read

[I(x, x′)αβ] = 1αβ , (D.30)

[∇µ I(x, x′)] = 0 ,

[∇µ∇ν I(x, x′)] =
1

2
Wµν ,

[∇µ∇ν ∇λ I(x, x′)] = −2

3
∇(µWλν) ,

· · ·

being α, β bundle indices and where W is the bundle curvature.

D.1.2 The Laplacian operators

As an example we present here the evaluation of the well known Seeley-Gilkey coeffi-
cients for the Laplacian operator acting on a scalar field; thus considering D φ(x), where
φ is a scalar field and D is the differential operator

D(x,∇µ) = −gµν(x)∇µ∇ν . (D.31)

Inserting (D.31) in the Green equation (D.29), it now becomes

(−gµν(x)∇µ∇ν − Λ)
(
ei l(x,x

′,k) σ(x, x′, k; Λ)
)

= ei l(x,x
′,k) I(x, x′) , (D.32)

where from now on for convenience we will rename σ(x, x′, k; Λ) ≡ σ(x, x′, k; (D−Λ)−1).
By applying the covariant derivate on the phase, equation (D.32) can be rewritten as

(−(∇µ + i∇µ l)(∇µ + i∇µ l)− Λ) σ(x, x′, k; Λ) = I(x, x′) . (D.33)

To obtain the recursive relations it is then convenient to work in dimensionless quanti-
ties, keeping the proper time variable as an organizing mass dimension. Thus we rescale
the covector kµ in the expression (D.22) of the biscalar l(x, x′, k), and we will keep just
the covariant derivatives with their mass dimensions, so that

l(x, x′, k)→ l(x, x′, k) s−
1
2 , (D.34)

where we remind that s has the dimension of the inverse of D, [s] = −[D], since the
heat kernel is dimensionless by definition. Hence, we expand the symbol σ(x, x′, k) in
a series of powers in the proper time s (still, using it as a mass parameter), i.e.

σ(x, x′, k; Λ) =
N=∞∑

n=0

σn(x, x′, k,Λ) s1+n
α , (D.35)
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where α is the order of the principal part of the operator D (α = 2 for the Laplacian
operator) and N is set to a finite value for actual calculations, and finally we rescale
the resolvent Λ as

Λ→ Λ s−1 . (D.36)
Isolating the terms with same powers of s the following equations are found

((∇µl)(∇µl)− Λ) σ0 = I(x, x′) , (D.37)

((∇µl)(∇µl)− Λ) σ1 − i (∇µ∇µl + 2 (∇µl)∇µ) σ0 = 0 ,

((∇µl)(∇µl)− Λ) σn − i (∇µ∇µl + 2 (∇µl)∇µ) σn−1 −∇2 σn−2 = 0, n > 2 ,

where ∇2 is the Laplacian operator, ∇2 ≡ gµν ∇µ∇ν . Once solved consecutively the
system of equations (D.37) respect to the symbols σn and have taken their coincidence
limits [σn] the Seeley-Gilkey coefficients En(x;D) in (D.5) can be evaluated by means
of the integral

En(x;D) =

∫
ddk

(2π)d [
√
g(x′)]

∮

C

dΛ

2πi
e−Λ [σn(x, x, k; Λ)] , (D.38)

which can be computed using the standard integral
∫

ddk

(2π)d
√
g(x′)

kµ1 kµ2 · · · kµ2Q

∮

C

dΛ

2πi

e−Λ

(k2 − Λ)P
=

=
1

(4π)
d
2

1

2Q Γ(P )
g{µ1 µ2 ···µ2Q} (D.39)

where Γ is the Euler gamma function and g{µ1 µ2 ···µ2Q} is the symmetrized product of
metric tensors gµ1µ2 · · · gµ2Q−1 µ2Q

with weight one, i.e.

g{µνρλ} = gµν gλρ + gµρ gλν + gµλ gνρ . (D.40)

The integral (D.39) vanishes for an odd number of kµ vectors so that the trace of heat
kernel gets contributions only from the even terms

H(x, x, s;−∇2) =
∞∑

n=0

E2n(x;−∇2) sn−
d
2 . (D.41)

The computation of the lower coefficients gives

E0(x;−∇2) =
1

(4π)
d
2

, (D.42)

E2(x;−∇2) =
1

(4π)
d
2

R

6
,

E4(x;−∇2) =
1

(4π)
d
2

{R2

72
− 1

180
Rµν R

µν +
1

180
RµνρλR

µνρλ +
1

30
∇2R

}
.

The same calculation can be repeated for higher-order pseudodifferential operators with-
out the drawbacks present in the DeWitt method.
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D.1.3 The squared Laplacian operators

We briefly present here the evaluation of the heat kernel expansion for an higher-order
operator, that is the squared Laplacian operator applying on a scalar field, where D
reads in this case

D(x,∇x) = (−gµν(x)∇µ∇ν)
2 . (D.43)

Inserting (D.43) in (D.29) we obtain this time the Green equation

((∇µ + i∇µ l)(∇µ + i∇µ l)(∇ν + i∇ν l)(∇ν + i∇ν l)− Λ) σ(x, x′, k; Λ) = I(x, x′) .
(D.44)

We then apply the rescaling kµ → kµ s
− 1

4 in the expression of the biscalar l(x, x′, k),
and for the resolvent Λ→ Λ s−1. Hence, after having performed an expansion in powers
of s of the symbol, as done in (D.35) but with α = 4, the recursive relations can be
found by equating equations with the same powers of the proper time parameter. The
number of terms contained in the recursive relations grows quickly with the order of
the differential operators, so that for display purposes we present just the first two
equations

(
(∇µl∇µl)2 − Λ

)
σ0 = I(x, x′) , (D.45)

(
(∇µl∇µl)2 − Λ

)
σ1 − 2 i

(
∇2l∇µl∇µl + 2∇µl∇νl∇µ∇νl + 2∇µl∇µl∇νl∇ν

)
σ0 = 0 ,

· · ·

The above calculation is explained more in details in [130]. Once the expressions of the
symbols σn and their coincidence limits has been evaluated, the heat kernel expansion
can be obtained setting α = 4 in the general expression (D.5), so that

H
(
x, x, s; (∇2)2

)
=
∞∑

n=0

E2n

(
x; (∇2)2

)
s
n
2
− d

4 . (D.46)

The expression of the Seeley-Gilkey coefficients is still given by (D.38) while in the
higher derivative case the actual calculation requires the use of the generalized integral
for operators of order α, which reads

∫
ddk

(2π)d
√
g(x′)

(k2)H kµ1 kµ2 · · · kµ2Q

∮

C

dΛ

2πi

e−Λ

(kα − Λ)P
=

=
1

(4π)
d
2

Γ( d
α

+ (Q+H)
α

)

2Q α
2

Γ(P ) Γ(d
2

+Q)
g{µ1 µ2 ···µ2Q} . (D.47)

Because of the form of integral (D.47) the coefficients will now exhibit a non trivial
dependence on the dimensionality d of the manifold. The lower computed coefficients
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are

E0(x; (∇2)2) =
1

(4π)
d
2

Γ(d
4
)

2 Γ(d
2
)
,

E2(x; (∇2)2) =
1

(4π)
d
2

dΓ( (d+2)
4

)

2 Γ( (d+2)
2

)

R

6
, (D.48)

E4(x; (∇2)2) =
1

(4π)
d
2

Γ( (d+4)
4

)

Γ( (d+2)
2

)
(d− 2)

{R2

72
− 1

180
Rµν R

µν +
1

180
RµνρλR

µνρλ +
∇R
30

}
.

D.1.4 Other results

The method introduced in this section is a general covariant technique which can be eas-
ily applied to any differential operator which principal part is minimal (for non-minimal
operators see [150, 151, 152]) and can moreover be generalized to manifold with torsion
and fiber bundles. As for the DeWitt method, one of the most interesting features of
this technique is its iterative structure, so that it can be implemented in a computer
program (for example in C language). Seeley-Gilkey coefficients can then be system-
atically computed. The results reported above have been reproduced by implementing
the iterative structure in a Mathematica notebook, using in particular the tensorial
formalism package xAct (www.xact.es). Perhaps, the use of recursive relations has the
drawback that the number of terms quickly grows with the order of the operator (in
the recursive relations like also in the coincidence limits of the biscalar l(x, x′, k)) so
that, apart of simplifications, computation time and memory usage quickly overcome
the machine capability. Hence, less brute-force methods are preferred (see in particular
[153] and [154] for a general overview of heat kernel techniques). An other drawback
of this class of methods is, ironically, their explicit covariance. In the case of manifolds
with a foliation the use of a non-relativistic frameworks (like the ADM splitting for
the metric) entails that the coincidence limits for the full dimensional geodesic distance
(and then the biscalar l(x, x′, k)) cannot be used anymore. In this case, however, there
is no prescription given a priori to construct the Fourier phase l(t, t′,x,x′, ω,k), since
we have now to define a time and space geodesic distance, respectively ηt(t, t

′,x,x′)
and ηx(t, t′,x,x′). Also defining those two distances, however, we could not obtain the
correct results for the coincidence limits of their mixed time and space derivatives. As
a consequence of our analysis we concluded that the covariant DeWitt’s method cannot
be applied to the anisotropic case. In particular, since we have to rescale separately the
time and space Fourier conjugated variable, ω and ki, to work in dimensionless quanti-
ties (in order to find in the n-th symbols σn the extrinsic and spatial curvature tensors
according to their anisotropic dimensions), it is not possible nor convenient anymore to
use a biscalar of phase argument, and we need instead to work directly with the two
Synge’s geodesic distances.

www.xact.es
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We conclude this appendix by reporting in this and the following pages few results
obtained with the Mathematica notebook developed2 using the package xAct that has
been mentioned before. In particular, we have reproduced the first coefficients of the
heat kernel expansion for respectively a second and fourth order minimal differential
operators for a generic compact d dimensional Riemann manifolds. The coefficients
that have been reproduced are those that have been used in chapters 3, 4 and 5.

To show the versatility and the potentialities of such notebook (and the potentialities
of xAct) we present furthermore the first Seeley-Gilkey coefficients for a general minimal
second order partial differential operator on a Cartan-Riemann manifold. One of the
coefficients, E4, is to the best of our knowledge not present in literature. The technique
can be easily generalized to the evaluation of higher-order operators, but at the price
of longer computational time. Because of the quickly growing number of invariants
that can be built from the torsion tensor and Cartan-Riemann tensor (151 independent
invariants of order O(R2) in d = 4 [155], and probably in the order of thousands at the
next order) the Seeley-Gilkey coefficients En with n > 4 are out of the reach of this
program.

Riemannian manifold: D1 = −gµν(x)∇µ∇ν +Bµ(x)∇µ +X(x)

E0(x;D1) = 1

(4π)
d
2

, (D.49)

E2(x;D1) = 1

(4π)
d
2

{
−1

4
BαB

α + 1
6
R[∇]−X + 1

2
OαB

α
}
,

E4(x;D1) = 1

(4π)
d
2
{ 1

32
BαB

αBβB
β − 1

180
R[O]αβR[O]αβ − 1

24
BαB

αR[O]

+ 1
72
R[O]2 + 1

180
R[O]αβγδR[O]αβγδ + 1

4
BαB

αX − 1
6
R[O]X

+1
2
X2 + 1

12
R[O]OαB

α − 1
2
XOαB

α − 1
36
BαOαR[O]

+ 1
30
OαO

αR[O]− 1
6
OαO

αX

+ 1
12
OαOβO

βBα − 1
8
BαB

αOβB
β + 1

8
OαB

αOβB
β

+ 1
18
BαOβR[O]α

β − 1
12
OβOαO

βBα − 1
12
BαOβO

βBα

+ 1
12
OβO

βOαB
α − 1

24
OαBβO

βBα − 1
24
OβBαO

βBα} .

2We would like to sincerely thank Dr. Thomas Bäckdahl for the assistance with the use of the
package xAct.
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Riemannian manifold: D2 = (−gµν(x)∇µ∇ν)
2 + V µν(x)∇µ∇ν +Bµ(x)∇µ +X(x)

E0(x;D2) = 1

(4π)
d
2

Γ(d
4
)

2 Γ(d
2
)
,

E2(x;D2) = 1

(4π)
d
2

Γ
(

1
4
(2 + d)

)

12Γ
(
1 + 1

2
d
) {dR[O] + 3Vα

α} , (D.50)

E4(x;D2) = 1

(4π)
d
2

Γ(1 + 1
4
d)

720Γ(2 + 1
2
d)

{
(−20 + 5d2)R[O]2 + 2

(
−4 + d2

)
R[O]αβγδR[O]αβγδ

+30dR[O]V α
α + 45VαβV

αβ − 2
(
2 + d

)
R[O]αβ

(
(−2 + d)R[O]αβ

+30V αβ
)

+ 45V αβVβα + 45V α
αV

β
β − 720

Γ
(
2 + 1

2
d
)

Γ(1 + 1
4
d)
X + 360OαB

α

+180dOαB
α − 48OαO

αR[O] + 60R[O]V α
α − 60dOβOαV

αβ

+12d2OαO
αR[O]− 60OαOβV

αβ − 60dOαOβV
αβ − 60OβOαV

αβ

+120OβO
βV α

α + 30dOβO
βV α

α

}
.

Cartan-Riemannian manifold: D1 = −gµν(x)HµHν +Bµ(x)Hµ +X(x)

We report here the first coefficients for the most generic non-minimal second order
partial differential operator in the case of Cartan-Riemann manifolds, without listing the
coincidence limits of the biscalar function l(x, x′, k) which are long and not particularly
interesting (the first coincidence limits can be found in [150]). In the following we use
Hµ for the Cartan-Riemann connection and respectively Tµνρ and Rαβγδ for the torsion
and Cartan-Riemann tensor, being the torsion tensor defined as the non symmetric part
of the Christoffel’s symbol. We follow the convention used in [150].

E0(x;D1) = 1

(4π)
d
2

, (D.51)

E2(x;D1) = 1

(4π)
d
2
{−1

4
BαB

α + 1
6
R[H]− 1

24
T [H]αβγT [H]αβγ − 1

12
T [H]αβγT [H]βαγ

− 1
12
T [H]αα

βT [H]γβγ −X + 1
2
HαB

α − 1
6
HβT [H]αα

β} ,

E4(x;D1) = 1

(4π)
d
2

Ẽ4 ,

where Ẽ4 is a long expression which comprehends all the invariants of mass dimension
four built contracting the Cartan-Riemann tensor and the torsion tensor, and reads
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Ẽ4 = 1
32
BαB

αBβB
β + 7

216
R[H]αβR[H]αβ − 1

216
R[H]αβR[H]βα − 1

24
BαB

αR[H] + 1
72
R[H]2

− 1
36
R[H]αβγδR[H]αβγδ + 1
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R[H]αγβδR[H]αβγδ − 1

54
R[H]αβγδR[H]γδαβ

− 1
18
BαR[H]βγT [H]αβγ − 1

144
R[H]T [H]αβγT [H]αβγ − 1

18
BαR[H]βγT [H]βαγ

− 1
72
R[H]T [H]αβγT [H]βαγ + 1

48
BαBβT [H]α

γδT [H]βγδ − 1
72
R[H]αβT [H]α

γδT [H]βγδ

+ 25
432
R[H]αγδζT [H]αβγT [H]β

δζ − 53
432
R[H]αδγζT [H]αβγT [H]β

δζ

− 7
144
R[H]γδαζT [H]αβγT [H]β

δζ − 1
144
R[H]δζαγT [H]αβγT [H]β

δζ − 1
72
BαR[H]αβγδT [H]βγδ

+ 1
72
BαR[H]αγβδT [H]βγδ − 5

72
BαR[H]βγαδT [H]βγδ − 5

72
BαR[H]γδαβT [H]βγδ

+ 1
96
BαB

αT [H]βγδT [H]βγδ − 1
72
R[H]αβT [H]β

γδT [H]γαδ − 1
24
R[H]αβT [H]α

γδT [H]γβδ

+ 1
48
BαB

αT [H]βγδT [H]γβδ − 1
144
T [H]α

δζT [H]αβγT [H]βδ
ηT [H]γζη − 1

24
BαR[H]α

βT [H]γβγ

+ 1
24
BαR[H]βαT [H]γβγ − 1

72
R[H]T [H]αα

βT [H]γβγ − 1
144
R[H]βγδζT [H]αα

βT [H]γδζ

− 1
144
R[H]βδγζT [H]αα

βT [H]γδζ − 5
144
R[H]γδβζT [H]αα

βT [H]γδζ

− 1
144
R[H]δζβγT [H]αα

βT [H]γδζ − 11
144
BαT [H]βα

γT [H]γ
δζT [H]δβζ

− 1
18
BαT [H]α

βγT [H]β
δζT [H]δγζ − 1

72
T [H]α

δζT [H]αβγT [H]βγ
ηT [H]δζη

+ 83
2160

T [H]αβ
δT [H]αβγT [H]γ

ζηT [H]δζη + 83
2160

T [H]αβγT [H]βα
δT [H]γ

ζηT [H]δζη

+ 7
720
T [H]αα

βT [H]γ
ζηT [H]γβ

δT [H]δζη + 1
72
R[H]αβT [H]γαγT [H]δβδ

+ 1
36
R[H]αγδζT [H]αβγT [H]δβ

ζ + 1
24
R[H]αδγζT [H]αβγT [H]δβ

ζ

+ 1
36
R[H]αζγδT [H]αβγT [H]δβ

ζ + 1
72
R[H]γζαδT [H]αβγT [H]δβ

ζ

− 1
72
R[H]αβT [H]αβ

γT [H]δγδ + 1
48
BαB

αT [H]ββ
γT [H]δγδ − 11

216
R[H]αβT [H]γαβT [H]δγδ

− 1
384
T [H]αβγT [H]αβγT [H]δζηT [H]δζη + 1

144
T [H]αα

βT [H]γβγT [H]δζηT [H]δζη

− 161
2160

T [H]αβγT [H]β
δζT [H]γδ

ηT [H]ζαη + 53
432
T [H]αβγT [H]βγ

δT [H]δ
ζηT [H]ζαη

+ 1
48
BαT [H]βα

γT [H]δβ
ζT [H]ζγδ + 67

540
T [H]α

δζT [H]αβγT [H]βδ
ηT [H]ζγη

+ 2
45
T [H]αα

βT [H]γβ
δT [H]δ

ζηT [H]ζγη − 4
45
T [H]αβ

δT [H]αβγT [H]γ
ζηT [H]ζδη

+ 1
120
T [H]αβγT [H]βα

δT [H]γ
ζηT [H]ζδη − 7

720
T [H]αα

βT [H]β
γδT [H]γ

ζηT [H]ζδη

+ 1
48
T [H]αα

βT [H]γ
ζηT [H]γβ

δT [H]ζδη − 1
288
T [H]αβγT [H]αβγT [H]δζηT [H]ζδη

+ 1
96
T [H]αα

βT [H]γβγT [H]δζηT [H]ζδη + 1
24
BαT [H]βα

γT [H]δβδT [H]ζγζ

− 1
80
T [H]αβ

δT [H]αβγT [H]ζδηT [H]ζγ
η + 31

720
T [H]αα

βT [H]γβ
δT [H]ζδηT [H]ζγ

η

+ 1
36
BαT [H]α

βγT [H]δβγT [H]ζδζ − 1
36
BαT [H]βα

γT [H]δβγT [H]ζδζ

− 37
540
T [H]αβγT [H]β

δζT [H]δγ
ηT [H]ηαζ + 1

36
T [H]α

δζT [H]αβγT [H]βδ
ηT [H]ηγζ

+ 1
48
T [H]α

δζT [H]αβγT [H]βγ
ηT [H]ηδζ − 1

90
T [H]αβ

δT [H]αβγT [H]ζγ
ηT [H]ηδζ

− 1
180
T [H]αβγT [H]βα

δT [H]ζγ
ηT [H]ηδζ − 29

720
T [H]αα

βT [H]γβ
δT [H]ζγ

ηT [H]ηδζ

− 1
192
T [H]α

δζT [H]αβγT [H]ηδζT [H]ηβγ − 1
160
T [H]α

δζT [H]αβγT [H]ηγζT [H]ηβδ
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− 3
80
T [H]αα

βT [H]β
γδT [H]γδ

ζT [H]ηζη − 7
720
T [H]αα

βT [H]γδ
ζT [H]γβ

δT [H]ηζη

− 7
720
T [H]αα

βT [H]γβ
δT [H]δγ

ζT [H]ηζη + 1
288
T [H]αα

βT [H]γβγT [H]δδ
ζT [H]ηζη

− 29
2160

T [H]αα
βT [H]β

γδT [H]ζγδT [H]ηζη + 1
4
BαB

αX − 1
6
R[H]X + 1

24
T [H]αβγT [H]αβγX

+ 1
12
T [H]αβγT [H]βαγX + 1

12
T [H]αα

βT [H]γβγX + 1
2
X2 + 1

12
R[H]HαB

α − 1
2
XHαB

α

+ 1
12
R[H]αβHαBβ + 1

18
T [H]αβγHαR[H]βγ + 1

72
BαT [H]βγδHαT [H]γβδ

+ 49
2160

T [H]αβγT [H]β
δζHαT [H]γδζ − 37

360
T [H]αβγT [H]δβ

ζHαT [H]γδζ

− 17
216
R[H]αβHαT [H]γβγ + 77

1080
T [H]αβγT [H]β

δζHαT [H]δγζ − 1
24
BαT [H]ββ

γHαT [H]δγδ

− 1
36
T [H]αβγT [H]βγ

δHαT [H]ζδζ + 1
36
HαH

αR[H]− 1
6
HαH

αX

− 1
36
HαHβR[H]αβ + 1

12
HαHβH

βBα + 1
12
T [H]αβγHαHγBβ

+ 7
90
T [H]αβγHαHγT [H]δβδ − 1

18
HαHγHβT [H]αβγ + 1

180
T [H]αβγHαHδT [H]βγ

δ

− 1
180
T [H]αβγHαHδT [H]δβγ − 1

12
R[H]αβHβBα − 1

8
BαB

αHβB
β + 1

8
HαB

αHβB
β

− 1
18
BαHβR[H]α

β + 1
18
BαHβR[H]βα − 1

36
T [H]αα

βHβR[H] + 7
108
R[H]αβγδHβT [H]αγδ

− 1
72
BαT [H]βγδHβT [H]αγδ − 1

36
R[H]HβT [H]αα

β + 1
6
XHβT [H]αα

β

− 1
72
BαT [H]βγδHβT [H]γαδ + 1

40
T [H]αα

βT [H]γδζHβT [H]γδζ + 5
54
R[H]αβHβT [H]γαγ

+ 7
180
T [H]αα

βT [H]γδζHβT [H]δγζ + 1
6
T [H]αα

βHβX + 1
12
HβHαR[H]αβ

− 1
12
HβHαH

βBα − 1
12
BαHβH

βBα + 1
12
HβH

βHαB
α − 1

12
T [H]αα

βHβHγB
γ

+ 1
36
T [H]αα

βHβHδT [H]γγ
δ − 1

24
HαBβH

βBα + 1
12
HαT [H]γβγH

βBα

− 1
24
HβBαH

βBα − 1
12
HβT [H]γαγH

βBα + 1
12
BαT [H]ββ

γHγBα − 1
12
BαT [H]α

βγHγBβ

+ 1
18
T [H]αβγHγR[H]βα − 1

72
T [H]αα

βHγR[H]β
γ − 1

24
T [H]αα

βHγR[H]γβ

− 1
72
R[H]αβHγT [H]αβ

γ + 43
540
T [H]αβγT [H]β

δζHγT [H]αδζ

+ 1
360
T [H]αβγT [H]δβ

ζHγT [H]αδζ − 1
30
T [H]α

δζT [H]αβγHγT [H]βδζ

+ 3
80
T [H]αα

βT [H]γδζHγT [H]βδζ + 1
24
BαB

αHγT [H]ββ
γ − 1

12
HαB

αHγT [H]ββ
γ

+ 7
216
R[H]αβHγT [H]γαβ + 1

6
HβBαHγT [H]γαβ + 227

2160
T [H]αβγT [H]β

δζHγT [H]δαζ

− 1
90
T [H]αα

βT [H]γδζHγT [H]δβζ + 1
24
BαT [H]ββ

γHγT [H]δαδ

− 1
18
BαT [H]α

βγHγT [H]δβδ + 5
72
BαT [H]βα

γHγT [H]δβδ

− 1
180
T [H]αα

βT [H]γβ
δHγT [H]ζδζ − 1

18
BαHγHαT [H]ββ

γ

− 1
30
T [H]αβγHγHαT [H]δβδ − 1

36
HγHαHβT [H]αβγ + 1

12
T [H]αβγHγHβBα

+ 1
12
BαHγHβT [H]α

βγ + 1
18
BαHγHβT [H]βα

γ + 1
72
T [H]αβγHγHβT [H]δαδ

− 1
36
HγHβHαT [H]αβγ + 1

36
HγHβH

γT [H]αα
β − 1

18
BαHγH

γT [H]βαβ

− 1
36
HγH

γHβT [H]αα
β − 1

180
T [H]αβγHγHδT [H]αβ

δ − 1
72
T [H]αβγHγHδT [H]βα

δ

− 1
45
T [H]αα

βHγHδT [H]γβ
δ + 1

180
T [H]αβγHγHδT [H]δαβ

+ 5
108
HβT [H]δγδH

γT [H]αα
β − 31

540
HγT [H]δβδH

γT [H]αα
β

− 1
24
T [H]αβγT [H]δβγHδBα − 1

12
T [H]αα

βT [H]β
γδHδBγ − 1

48
T [H]αβγT [H]αβγHδB

δ
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− 1
24
T [H]αβγT [H]βαγHδB

δ − 1
24
T [H]αα

βT [H]γβγHδB
δ − 5

72
T [H]αβγHδR[H]αβγ

δ

− 1
72
T [H]αβγHδR[H]α

δ
βγ − 1

72
T [H]αβγHδR[H]βγα

δ − 1
72
T [H]αβγHδR[H]β

δ
αγ

+ 1
54
R[H]αβγδHδT [H]αβγ + 7

72
BαT [H]βγδHδT [H]αβγ + 1

360
HβT [H]αβγHδT [H]αγ

δ

+ 1
36
T [H]αβγT [H]δβ

ζHδT [H]αγζ − 1
120
HαT [H]αβγHδT [H]βγ

δ

− 1
72
HγT [H]αα

βHδT [H]βγ
δ − 1

12
R[H]αβγδHδT [H]γαβ + 1

72
BαT [H]βγδHδT [H]γαβ

− 1
18
BαT [H]ββ

γHδT [H]γα
δ + 1

72
HβT [H]αβγHδT [H]γα

δ

+ 13
360
T [H]αβγT [H]δβ

ζHδT [H]γαζ − 1
72
BαT [H]βα

γHδT [H]γβ
δ

+ 1
180
HγT [H]αα

βHδT [H]γβ
δ + 1

72
HβT [H]αα

βHδT [H]γγ
δ

− 1
24
BαT [H]ββ

γHδT [H]δαγ − 1
72
BαT [H]α

βγHδT [H]δβγ + 1
72
BαT [H]βα

γHδT [H]δβγ

− 1
135
HαT [H]αβγHδT [H]δβγ − 7

540
HγT [H]αα

βHδT [H]δβγ

− 1
40
T [H]αβγT [H]βγ

δHδT [H]ζαζ − 17
720
T [H]αβγT [H]δβγHδT [H]ζαζ

+ 1
60
T [H]αα

βT [H]γγ
δHδT [H]ζβζ − 1

180
T [H]αβ

δT [H]αβγHδT [H]ζγζ

− 1
180
T [H]αβγT [H]βα

δHδT [H]ζγζ + 19
270
T [H]αα

βT [H]β
γδHδT [H]ζγζ

− 13
720
T [H]αα

βT [H]γβ
δHδT [H]ζγζ − 1

45
T [H]αβγHδHαT [H]βγ

δ

− 1
180
T [H]αβγHδHαT [H]δβγ + 1

20
T [H]αβγHδHγT [H]αβ

δ

+ 1
36
T [H]αα

βHδHγT [H]β
γδ + 1

180
T [H]αα

βHδHγT [H]γβ
δ

− 11
120
T [H]αβγHδHγT [H]δαβ − 1

30
T [H]αβγHδH

δT [H]αβγ

− 17
360
T [H]αβγHδH

δT [H]βαγ + 1
180
T [H]αα

βHδH
δT [H]γβγ

− 37
540
HαT [H]βγδH

δT [H]αβγ − 1
135
HαT [H]δβγH

δT [H]αβγ

− 17
270
HγT [H]αβδH

δT [H]αβγ − 13
216
HγT [H]βαδH

δT [H]αβγ

+ 11
540
HδT [H]αβγH

δT [H]αβγ + 17
1080
HδT [H]βαγH

δT [H]αβγ

+ 23
135
T [H]αβγT [H]β

δζHζT [H]αγδ − 13
180
T [H]αβγT [H]δβ

ζHζT [H]αγδ

− 1
60
T [H]αβγT [H]δβγHζT [H]αδ

ζ + 1
180
T [H]α

δζT [H]αβγHζT [H]βγδ

+ 7
180
T [H]αα

βT [H]γδζHζT [H]βγδ + 13
720
T [H]αα

βT [H]γγ
δHζT [H]βδ

ζ

+ 37
270
T [H]αβγT [H]β

δζHζT [H]γαδ + 5
144
T [H]αβγT [H]δβ

ζHζT [H]γαδ

+ 1
60
T [H]αα

βT [H]γδζHζT [H]γβδ + 2
45
T [H]αβ

δT [H]αβγHζT [H]γδ
ζ

− 23
720
T [H]αβγT [H]βα

δHζT [H]γδ
ζ − 1

30
T [H]αα

βT [H]β
γδHζT [H]γδ

ζ

− 1
180
T [H]αα

βT [H]γβ
δHζT [H]γδ

ζ − 257
2160

T [H]αβγT [H]β
δζHζT [H]δαγ

− 1
90
T [H]αβγT [H]βγ

δHζT [H]δα
ζ − 1

120
T [H]αα

βT [H]γδζHζT [H]δβγ

− 1
40
T [H]αα

βT [H]γβ
δHζT [H]δγ

ζ + 1
144
T [H]αβγT [H]αβγHζT [H]δδ

ζ

+ 1
72
T [H]αβγT [H]βαγHζT [H]δδ

ζ + 1
72
T [H]αα

βT [H]γβγHζT [H]δδ
ζ

−11
90
T [H]αβγT [H]βγ

δHζT [H]ζαδ + 2
135
T [H]αα

βT [H]β
γδHζT [H]ζγδ

− 7
360
T [H]αα

βT [H]γβ
δHζT [H]ζγδ . (D.52)



Appendix E

Other results for the scalar-tensor model

E.1 Subleading corrections to singular behavior

We list here the coefficients A1 and u2 of the firsts subleading corrections in the Taylor
expansion of the solution around the singularity, for d = 4 and generic ω.
In the Feynman gauge

A1(A, u0, u1, u2) =

{−864A4π2φ̃7
c + 27A4(128π2u0 + 1)φ̃6

c − 18A2(3A2u0(96π2u0 + 1)−
4(2ω + 3))φ̃5

c + (27u2
0(128π2u0 + 1)A4 − 288(2ω + 3)u0A

2 + 16(2ω + 3)3)φ̃4
c−

8u0(108π2u3
0A

4 − 9(10ω + 11)u0A
2 + 16(ω + 1)(2ω + 3)2)φ̃3

c − 16(2ω + 1)u2
0(9A2u0−

4(2ω + 3)(3ω + 4))φ̃2
c − 64(2ω + 1)2(2ω + 3)u3

0φ̃c − 4(32φ̃3
cu

6
1 − 64φ̃2

c(2φ̃c + u0)u5
1+

16φ̃c((2ω + 11)φ̃2
c + 4(φ̃c − u0)u2φ̃

2
c + 20u0φ̃c − (2ω + 1)u2

0)u4
1 + φ̃c(−63A2φ̃3

c+

(63A2φ̃c − 256(ω + 3))u0φ̃c + 128(u0 − φ̃c)(φ̃c + u0)u2φ̃c + 128(2ω + 1)u2
0)u3

1 + ((33(3A2φ̃c − 8)−
32ω(ω + 7))φ̃3

c + 32(2ω + 3)(2ω + 11)u0φ̃
2
c − (99φ̃cA

2 + 32ω(5ω + 23) + 328)u2
0φ̃c+

32(u0 − φ̃c)u2((u0 − φ̃c)u2φ̃
2
c + u0(−2ωφ̃c − 13φ̃c + 2ωu0 + u0))φ̃c + 16(2ω + 1)2u3

0)u2
1+

(32(2ω + 3)2φ̃3
c + (−9(4ω + 25)φ̃cA

2 − 16(2ω + 3)(14ω + 17))u0φ̃
2
c + (9(8ω + 27)φ̃cA

2+

128(4ω(ω + 2) + 3))u2
0φ̃c − 2(u0 − φ̃c)u2(−9A2φ̃3

c + (9u0A
2 + 64ω + 96)φ̃2

c − 96(2ω + 3)u0φ̃c+

32u0(u0 − φ̃c)u2φ̃c + 64(2ω + 1)u2
0)φ̃c − 6(2ω + 1)(3φ̃cA

2 + 16ω + 8)u3
0)u1+

2(u0 − φ̃c)u2((8(2ω + 3)2 − 9A2u0)φ̃3
c + u0(9A2u0 − 8(2ω + 3)(6ω + 7))φ̃2

c+

24(4ω(ω + 2) + 3)u2
0φ̃c − 8(u0 − φ̃c)((2ω + 3)φ̃2

c − 2(2ω + 3)u0φ̃c + (2ω + 1)u2
0)u2φ̃c−

8(2ω + 1)2u3
0))φ̃c + 16(2ω + 1)3u4

0}/(45Aφ̃2
c(u0 − φ̃c)2((−24A2π2φ̃2

c + 2ω + 3)φ̃2
c+

2(24A2π2φ̃2
c − 2ω − 3)u0φ̃c − 2u1(φ̃cu1 − 2u0)φ̃c + (−24A2π2φ̃2

c + 2ω + 1)u2
0)) .

(E.1)
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u2(A, u0, u1) =

{−4u0φ̃
2
c(9A

2φ̃c + 8ω(3ω + 8) + 42)− u1φ̃c(φ̃
2
c(−9A2u0(192π2u0 + 1) + 64ω + 96)+

96u0φ̃c(6π
2A2u2

0 − 2ω − 3) + 9A2(192π2u0 + 1)φ̃3
c − 576π2A2φ̃4

c+

16u1(2u1φ̃c(u1φ̃c − 2(u0 + φ̃c))− u0(2ωu0 − (2ω + 13)φ̃c + u0)) + 64(2ω + 1)u2
0)+

12u2
0φ̃c(3A

2φ̃c + 8ω(ω + 2) + 6)− 8(2ω + 1)2u3
0 + 8(2ω + 3)2φ̃3

c}/{16φ̃c(u0−
φ̃c)(2u0φ̃c(36π2A2φ̃2

c − 2ω − 3) + u2
0(−36π2A2φ̃2

c + 2ω + 1) + φ̃2
c(−36π2A2φ̃2

c+

2ω + 3)− 2u1φ̃c(u1φ̃c − 2u0))} ,
(E.2)

In the Landau gauge

u2(A, u0, u1) =

{16(φ̃c − u0)2(−27u0φ̃
2
c(3A

2φ̃c + 8ω2 + 20ω + 12) + 18u2
0φ̃c(3A

2φ̃c + 4ω(2ω + 3))−
32ω2u3

0 + 27(2ω + 3)2φ̃3
c) + 3u1φ̃c(2u0(u0(φ̃2

c(9(19A2φ̃c(192π2φ̃c + 1)− 480)− 3392ω)−
2u0(128u0(6π2A2u0φ̃c − 39π2A2φ̃2

c + 2ω) + φ̃c(3A
2φ̃c(4288π2φ̃c + 11)− 1088ω − 864)))+

9φ̃3
c(A

2(−φ̃c)(2304π2φ̃c + 11) + 256ω + 384)) + 9φ̃4
c(3(A2φ̃c(384π2φ̃c − 1)− 64)− 128ω))−

256u0u
2
1φ̃c(φ̃c − u0)2(3(ω + 9)φ̃c − 2ωu0)− 768u4

1φ̃
3
c(φ̃c − u0)2 + 768u3

1φ̃
2
c(φ̃c − u0)2(2u0+

3φ̃c)}/{32φ̃c(3φ̃c − 2u0)(φ̃c − u0)2(3φ̃2
c(108π2A2φ̃2

c − 6ω + 4u2
1 − 9) + 12u0φ̃c(−36π2A2φ̃2

c+

2ω − 2u1 + 3)− 8u2
0(ω − 18π2A2φ̃2

c))} ,
(E.3)

A1(A, u0, u1, u2, u3) =
{(
− 4(3φ̃c(2ω + u2φ̃c − 2u1 + 3)− 2ωu0)(φ̃c(6ω + 6u2φ̃c + 4(u1 − 3)u1 + 9)− 4u0(ω + u2φ̃c))

2

27π2A3φ̃3
c(3φ̃c − 2u0)3

+

2(φ̃c(6ω + 6u2φ̃c + 4(u1 − 3)u1 + 9)− 4u0(ω + u2φ̃c))
3

9π2A3φ̃2
c(3φ̃c − 2u0)4

+
3φ̃c(5A

2 + 4u3(3φ̃c − 2u0)− 16u2)

16π2A(3φ̃c − 2u0)2
+

2ωu1 − 9u3φ̃
2
c + 12u2φ̃c

36π2Aφ̃2
c − 24π2Au0φ̃c

− (7u1 − 12)(φ̃c(6ω + 6u2φ̃c + 4(u1 − 3)u1 + 9)− 4u0(ω + u2φ̃c))

2π2A(3φ̃c − 2u0)3
+

(7u1 − 12)(3φ̃c(2ω + u2φ̃c − 2u1 + 3)− 2ωu0)

6π2Aφ̃c(3φ̃c − 2u0)2
+

4u0(ω + u2φ̃c)− φ̃c(6ω + 6u2φ̃c + 4(u1 − 3)u1 + 9)

π2Aφ̃c(3φ̃c − 2u0)2
−

5Aφ̃c

32π2(φ̃c − u0)2
− 8u1(ω − 3u2φ̃c)

16π2A(3φ̃c − 2u0)2
4A
)

24π2A2φ̃c(3φ̃c − 2u0)2
}
/{5(3φ̃2

c(72π2A2φ̃2
c − 6ω+

4u2
1 − 9) + 12u0φ̃c(−24π2A2φ̃2

c + 2ω − 2u1 + 3)− 8u2
0(ω − 12π2A2φ̃2

c))} .
(E.4)
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E.2 The two-dimensional case

In two dimensions the fixed point equations in both gauges reduce to ω-independent
first order equations. The analysis is thus quite different in this case, it is actually much
easier, and we can proceed mostly by analytical means.

Explicitly, the equations in d = 2 reduce to

Ṽ (φ̃) + (φ̃− 2Ṽ (φ̃))Ṽ ′(φ̃)

2π(φ̃− Ṽ (φ̃))
(

1− Ṽ ′(φ̃)
) − 2Ṽ (φ̃) = 0 , (E.5)

for the Feynman gauge, and to

Ṽ ′(φ̃)

2π
(

1− Ṽ ′(φ̃)
) − 2Ṽ (φ̃) = 0 , (E.6)

for the Landau gauge. Both equations can be easily integrated, leading to algebraic
equations implicitly defining the solution Ṽ (φ̃). As equation (E.5) is slightly more
complicated to study than equation (E.6), but at the end it leads to very similar results,
we will present the explicit analysis only for the Landau gauge.

Equation (E.6) can be integrated to give the algebraic relation

Ṽ − y0 +
1

4π
log
(
Ṽ /y0

)
= φ̃− φ̃0 , (E.7)

whose solution is by definition expressed in terms of the Lambert function W ,

Ṽ (φ̃) =
W
(

4 π eC+4π φ̃
)

4π
. (E.8)

The constant of integration C = 4π(v0−φ̃0)+log y0 parametrizes a one-parameter family
of global solutions, which hence are all acceptable fixed points. Some typical plots of
such solutions are presented in Fig. E.1. The asymptotic behavior of the Lambert
function is such that Ṽ (φ̃) ∼ φ̃ for φ̃→ +∞, and Ṽ (φ̃) ∼ e4πφ̃+C for φ̃→ −∞. We can
study the linear perturbations around such fixed points, by writing as usual

Ṽk(φ̃) = Ṽ (φ̃) + εv(φ̃)e−λt , (E.9)

with Ṽ (φ̃) given by (E.8). Expanding to first order in ε, we find the eigenvalue equation

(2− λ)v(φ̃) =

(
1 +W

(
4πeC+4πφ̃

))2

2π
v′(φ̃) , (E.10)

whose solutions are

v(φ̃) = A




W
(

4πeC+4πφ̃
)

W
(
4πeC+4πφ̃

)
+ 1




2−λ
2

= A

(
d

dφ̃
Ṽ (φ̃)

) 2−λ
2

, (E.11)
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Figure E.1: Fixed point solutions (E.8) for d = 2 in the Landau gauge for C = 10

(dashed), C = 0 (solid) and C = −10 (dot-dashed).

A being an arbitrary normalization constant, which we can fix to one. Given the
exponential fall-off at φ̃ ∼ −∞ of the fixed point solution Ṽ (φ̃), we see that we must
impose the constraint λ ≤ 2 in order to avoid exponentially growing perturbations.
Indeed the asymptotic behavior of the eigenperturbations is v(φ̃) ∼ 1− 2−λ

2
(4πφ̃)−1 for

φ̃ → +∞, and v(φ̃) ∼ (4π)
2−λ

2 e
2−λ

2
(4πφ̃+C) for φ̃ → −∞. Apart from the upper bound

on λ, we do not have other restrictions, hence the perturbations form a continuous
spectrum.



Appendix F

Anisotropic Weyl invariance

Anisotropic Weyl invariance for a generic anisotropic theory in d dimensions and general
dynamical critical exponent z = d is defined as the invariance of the action under the
set of anisotropic transformations ((2.101) and (2.102)) which read

gij → e2φ(t,x) gij , N → ez φ(t,x) N , Ni → e2φ(t,x) Ni , (F.1)

where g is the spatial metric, N is the lapse function and Ni the shift vector, and
φ(t,x) an arbitrary local function. The transformations (F.1) defines a symmetry group
Weylz(M,F), being M the d + 1 dimensional manifold and F the foliation, which
extends the foliation-preserving diffeomorphisms group DiffF(M) into a semi-direct
product

Weylz(M,F) oDiffF(M) , (F.2)

which algebra is defined by the non commutation of the generators of the two groups
group, respectively the generator of diffeomorphisms δf,ζi , being f and ζ i the time and
space reparameterization functions defined in (2.84), and the generator of anisotropic
conformal transformation δφ, where the commutation leads to another infinitesimal
Weyl transformation

[δf,ζi , δφ] = δf ∂t φ+ζi ∂i φ . (F.3)

Since the transformations (F.1) requires the lapse function N to be space-dependent,
Weyl invariance is not obtained in the projectable case, in which the lapse function is
a constant function over the leaf.

It can be demonstrated that Weyl invariance requires the parameter λ in the kinetic
part of the action to be equal to

λ =
1

d
. (F.4)

To prove it, let us consider the kinetic action written in terms of the DeWitt metric

SK [N,Ni, gij] =

∫
dt d2x

√
gN (Kij GijklKkl) , (F.5)
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where the extrinsic curvature tensor Kij reads

Kij =
1

N
(∂t gij +DiNj +Dj Ni) . (F.6)

Using δφ gij = 2φ gij we have for the time derivative of the spatial metric

δφ (∂t gij) = 2 (∂t φ) gij + 2φ ∂t gij . (F.7)

Contracting the first operator in the right hand term of (F.7) with the DeWitt tensor
(2.89) we obtain

2 (∂t φ) gij Gijk` = 2 (∂t φ) gij

{
1

2

(
gikgj` + gi`gjk

)
− λgijgk`

}
= 2 (∂t φ) (1− λ d) gk` .

(F.8)

For the covariant derivative of the shift vector, using δφNi = 2φNi, we have

δφ (DiNj) = δφ

(
∂iNj +

1

2
Nk (∂j gik + ∂i gjk − ∂k gij)

)

= 2φDiNj +Nj ∂i φ−Ni ∂j φ+ gij g
klNk ∂l φ ,

(F.9)

that contracting with the DeWitt metric leads to

Gijk` δφ (DiNj) = 2φGijk`DiNj + (1− d λ) gk` gij Ni ∂jφ . (F.10)

It is then easy to see from (F.8) and (F.10) that for λ = 1/d all the derivatives of the
local function φ vanish, enhancing anisotropic conformal symmetry, at least at classical
level. We expect in fact quantum contribution to break conformal symmetry, i.e. that
the quantized theory contains an anisotropic Weyl anomaly which characterizes the
non invariance under a Weyl transformation of the effective action. In the case of the
Lifshitz scalar in d = 2 and z = 2 the Weyl anomaly has already been evaluated at one
loop in [129].
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