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Abstract

The concept of data security is traditionally associated with cryptography: we are taught to

use cryptographic algorithms to protect our digital data, similarly to how we use locks to safe-

guard our real-life goods. Indeed, in most application settings, properly designed cryptographic

tools allow to: (i) protect private information from unauthorized access, (ii) conceal confidential

communications to everyone but the intended recipients, and (iii) prove/verify data integrity and

authenticity.

In recent times, however, innovative paradigms were introduced for information collection, pro-

cessing, and storage, that expose data to novel and challenging threats. The proposed models

become more and more pervasive in the society, relying on emerging technologies to address

an increasing number of scenarios and problems, and to design new solutions for data han-

dling. It is extremely common nowadays to rely on automated information systems and services

for: military operations, environmental and industrial process monitoring, health care, alarm

systems, remote data storage and elaboration. Many of these application settings impose to im-

plement highly distributed functionalities, to deal with untrusted third parties, and to rely on

resource-constrained and physically exposed devices. Traditional security mechanisms are not

only hardly feasible, but often even unable to provide the intended protection. Nevertheless,

beneficiaries of such services demand reliability, security and efficiency to be comparable to, or

better than, standard solutions. To provide a suitable trade-off among these three requirements

is the fundamental purpose of most of contemporary research work.

There are two main scenarios that recently attracted the attention of the research community:

automated sensing systems, and cloud storage and computing. The application settings are

innumerable and of primary importance. The former provide low cost solutions to a variety of

military and civilian applications, from home to industrial automation, from harbor to border

protection, from health care to wildlife monitoring. The latter permit to enhance reliability

without incurring in excessive maintenance costs, and allow big companies to store and process

big data in spite of the lack of the necessary infrastructures, as well as private users to securely

access and share their data only relying on handheld devices.
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In this thesis, we address some aspects of the aforementioned information systems which strad-

dle security and performance issues. We describe innovative techniques able to efficiently pro-

vide, at once, service reliability, and data integrity, confidentiality and privacy. First, we propose

a secure and efficient data handling scheme for Distributed Sensor Networks (DSNs), where lo-

cal data sharing is combined with a clever usage of sensors mobility to diffuse information in

the most favorable way. Then, we introduce data-access time as one of the main problematics

of Cloud Storage systems, and show how a detailed analysis of the components of the system

allows to efficiently verify the performances of the storage medium used at the server side, in

conjunction with data integrity. Both solutions proposed clearly point the way for future re-

search in the area, highlighting the importance of distributed error/erasure correcting codes for

data security in DSNs, and of ensuring other aspects of service reliability, other than just data

integrity, in cloud storage applications.
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Introduction

The work presented in this thesis is organized into two major parts: in Part I, we discuss secure

data handling in Distributed Sensor Networks (DSNs), while in Part II we address privacy and

service integrity in Cloud Storage (CS) applications. The two considered scenarios, DSNs and

CS, are very different from each other, the former being a model for automated environmental

monitoring, and the latter being a paradigm for remote storage services. However, the charac-

teristics of DSNs and CS make the analysis of security, privacy and efficiency concerns in the

two contexts somehow similar. In both cases, in fact, many security aspects cannot be addressed

with standard techniques, mainly due to data physical exposure, to the limited resources of the

devices involved, and to the many hardly predictable variables involved (e.g., the random and

ever-changing topology of a DSN, and the performances of providers’ hardware and network

traffic in CS). The most reasonable approach is to put perfect security aside, and to implement

probabilistic protocols, whose reliability strongly depends on a careful analysis of the system

model. Information security in these contexts requires a well-balanced combination of tech-

nological awareness and mathematical background: while in similar scenarios the design of

security mechanisms often consists in a clever combination of cryptographic tools (whose indi-

vidual security is already well established), in DSNs and CS systems it is necessary to precisely

model the application setting, to understand what features can be disregarded because of their

negligible impact, and to identify how instead the focus of the analysis depends on all relevant

parameters.

Since the thesis is divided into two main segments, we will separately introduce the two scenar-

ios at the beginning of each part, instead of providing a communal portrait here. In both cases,

we will describe in detail the application setting, motivate the requirement for novel approaches,

and explain why our solution differentiates from past ones and provides a new and remarkable

contribution.

In the remainder of this general introduction, let us instead depict the road map of the thesis,

and recap the contributions provided by the candidate during his PhD studies.

1



2 Introduction

RoadMap

The thesis is organized upon two main pillars:

• data security in DSNs, discussed in Part I, and

• service reliability in CS systems, discussed in Part II.

Each of these two parts further develops along three chapters. For what concerns Part I:

• Chapter 1 presents an overview of information security in Wireless Sensor Networks

(WSNs), the most known paradigm in the literature for automated data sensing;

• Chapter 2 discusses the problematics introduced by Unattended WSNs (UWSNs), Mobile

WSNs (MWSNs), and Participatory Sensing (PS), which flow together in the more general

model of Distributed Sensor Networks (DSNs), characterized by two main features: lack

of a centralized control, and (randomly) mobile sensors;

• Chapter 3 describes in detail the proposed solution for data security in DSNs, based on

the concepts of information sharing and diffusion.

Part II consists of the following steps:

• Chapter 4 discusses the main issues of Cloud Storage applications, and the solutions pro-

posed so far;

• Chapter 5 introduces the concept of Provable Storage Medium (PSM), as a complemen-

tary aspect of the general problem of Provable Data Possession (PDP), describing what

features of the system model are particularly relevant for its purposes;

• Chapter 6 describes the solution we propose to efficiently address, at once, PSM and PDP.

Finally, Chapter 7 concludes the thesis, presenting a brief summary of the contributions pro-

vided, and delineating promising and stimulating future lines of research.

Contributions of the Candidate

The two main parts of this thesis correspond to the two main research fields explored by the can-

didate during his PhD studies. In the following, we try to summarize the contributions provided

in each of them.
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Distributed Sensor Networks In the field of automated sensing systems, the contributions

provided by the candidate can be summed up as follows.

• Most of the content of Chapters 1 and 2 is an extract of the paper [1], recently submit-

ted to the Elsevier Computer Communications. The paper provides a survey of security

issues and countermeasures of wireless ad-hoc networks, focusing in particular on five

main paradigms: Wireless Sensor Network (WSN), Unattended Wireless Sensor Network

(UWSN), Wireless Mesh Network (WMN), Delay Tolerant Network (DTN), and Vehicu-

lar Ad-hoc Network (VANET).

• Chapter 3 anticipates an extension of the papers [2] and [3]. To concurrently address data

confidentiality and availability in DSNs, in [2] and [3] we propose to share data locally as

soon as they are sensed, and to leverage nodes mobility to efficiently diffuse the generated

pieces of information. In this extension, we show that the proposed solution can as well

enhance the level of protection against fake-data injection and information traceability.

Further, we discuss more deeply the impact of the characteristics of the mobility model of

the sensors on the viability and effectiveness of the proposed solution.

• The candidate also addressed a slightly different scenario: Unattended Wireless Sensor

Networks (UWSNs), and in particular all settings where confidentiality is of minor im-

portance with respect to sensed data availability, and therefore replication is the most

reasonable approach. In this case, we propose an analysis of information survivability

based on the mathematics of epidemic models, and show how the replication rate can be

properly tuned to limit energy consumption without affecting information recovery. The

study builds on [4], which sensibly extends and improves.

Cloud Storage For what concerns the security of remote storage and computing facilities, the

contributions provided by the candidate can be summed up as follows.

• The content of Chapters 5 and 6 composes a substantial work able to introduce, analyze

and address the new problem of Provable Storage Medium (PSM) in data storage out-

sourcing. The work has been recently submitted to the IEEE Transactions on Services

Computing, and we are expecting a response soon. In this contribution, we stress that

in many cloud storage systems users cannot be simply pleased with Provable Data Pos-

session (PDP), because data access time is as important as data integrity. Consequently,

we introduce the concept of PSM, and show how previous PDP solutions can be properly

adjusted so as to enable to efficiently check, contextually to data integrity, that data are

stored on a storage medium whose performances comply with what stated in the Service

Level Agreement (SLA).
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• Finally, the candidate worked on an innovative approach to cloud computing applications.

Even if the idea can be easily extended to many other types of computations, in this

contribution we focus on a privacy preserving scheme for the outsourcing of modular

exponentiations by a resource-constrained device. In particular, we show how privacy

can be enforced by simply feeding the service provider with a large input, where the real

input variable is somehow hidden, but such that the desired result can be easily extracted

from the output returned by the provider. The security analysis of the proposed protocol

is extremely technical, and based on advanced probabilistic tools.

List of ResearchWorks of the Candidate

Works accepted for publication:

1. R. Di Pietro, and S. Guarino. Confidentiality and Availability Issues in Mobile Unattended
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1
Security in Wireless Sensor Networks

A wireless network makes use of radio signals to exchange data between two or more physical

devices, usually called “nodes” of the network. The lack of wires permits to overcome most

limitations of traditional wired networks, allowing deployment in hostile environments or mo-

bile scenarios. When nodes do not depend on any preexisting infrastructure, wireless networks

take the name of wireless ad-hoc networks. In this case, communications rely on the ability of

the nodes to form a multi-hop radio network.

Pervasive mobile and low-end wireless technologies make the wireless scenario exciting and

in full transformation. Relying on such emerging technologies, new paradigms were recently

introduced to automatically interact with the environment. One of the main challenges currently

addressed by the research community consists in designing systems able to model information

sensing and elaboration. To reduce deployment and managing costs, it is highly desirable to

devise solutions that do not rely on constant centralized control, or that do not even require the

deployment of specific networks. However, to fully unleash the potential of similar solutions in

the industry and society, there are two pillars that cannot be overlooked: security and privacy.

Both properties are especially relevant if we focus on ad-hoc wireless networks, where devices

are required to (distributedly) cooperate – e.g. from routing to the application layer – to attain

their goals.

Among wireless ad-hoc networks, the Wireless Sensor Network (WSN) paradigm plays a pre-

dominant role. The nodes of a WSN have sensing capabilities and are appointed to monitor and

collect information from the environment. This first chapter presents a survey of emerging and

7
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established technologies for WSNs, with particular attention paid to their security and privacy

features and deficiencies. In Section 1.1, we present a precise description of the WSN model,

summarizing the main vulnerabilities and security requirements imposed by the severe resource

constraints and the physical exposure of the sensors. In Section 1.2, we propose a compre-

hensive classification of known attacks to WSNs, and we delineate the main countermeasures

proposed so fare in the literature. It is worth to underline the primary importance of this chapter,

because many of the attacks and of the challenges discussed for WSNs represent a threat in most

other automated sensing systems as well.

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of sensors-equipped nodes, called motes or simply

sensors, sensing the environment and reporting the collected data to one or more trusted gateway

nodes, called sinks. In traditional scenarios, at least one sink is always on-line and alive, and

the sensors collaborate to promptly send all sensed data to such sink. Indeed, to preserve the

information even in the presence of sensors malfunctioning or failure, it is preferable to get the

data off the sensors as quickly as possible. The persistent presence of the sink is fundamental

in many high failure-rate environments (e.g., fire or evacuation systems), where there might be

very little time between the detection of an event and the destruction of the sensors that observed

it [6]. In similar settings, an adversary has only few chances to erase or to compromise the sensed

data before they are received by the sink. Constantly present sinks may also play a coordination

role. In general, however, the frequency and impact of the sinks’ presence in the network is

highly variable according to the setting [7], so motes are often required to self-organize in a

distributed way.

WSNs are usually sensibly (sometimes even orders of magnitude) larger than similar ad-hoc net-

works, and are often deployed in hostile environments and over wide geographic areas. Motes

have limited computational power, memory and energy supply, which, together with the adverse

working conditions, make them particularly prone to failures. Despite many energy harvesting

solutions proposed so far, recharging is still considered hardly feasible, and motes are usually

regarded as “disposable” devices. Due to the complexity of replacement and management oper-

ations, maximizing lifetime and productivity is of paramount importance. In essence, WSNs are

ad-hoc networks with additional and more stringent constraints. They need to be more energy-

efficient and scalable than other ad-hoc networks, which exacerbates the security challenges.

Initially, the development of WSNs was mainly motivated by military purposes, but nowadays

WSNs are becoming pervasive systems, used in several fields, from home automation to border

monitoring. However, military applications, together with automated medical systems, still rep-

resent the context where security aspects are more relevant. In both cases, the network handles
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critical information, hence to ensure data availability is crucial. Further, classified military data

and private patients health-status information, raise the concern for confidentiality and privacy.

WSN applications need to contrast most security issues communal to conventional networks,

like message injection, eavesdropping, impersonation, etc. However, the design of a security

infrastructure in WSNs must pervade any layer of the system, from the application layer to the

physical layer (that is often considered secure in conventional settings). Further, mainly because

of their limited resources, standard techniques such as tamper-proof hardware, secure routing,

public-key cryptography, etc., do not suit WSNs. Specific solutions for WSNs are required, that

must be conceived with these low-end devices in mind.

There are two specifications available for WSN communication: IEEE 802.15.4 [8] and Zig-

Bee [9]. The first is a standard for low-rate wireless personal area networks that was developed

by IEEE (Institute of Electrical and Electronics Engineers) and contains a number of security

suites. Basically, it provides access control, integrity, confidentiality and replay protection; how-

ever, it does not deal with authentication or key exchange. IEEE 802.15.4 defines a communica-

tion layer at level 2 in the OSI (Open System Interconnection) model and its main purpose is to

allow communication between two devices. ZigBee is built upon IEEE 802.15.4. This standard

defines a communication layer at level 3 and above in the OSI model. Its main purpose is to

create a network topology (hierarchy) to let a number of devices communicate among them, and

to add extra communication features such as authentication, encryption and association. The

ZigBee network layer natively supports star, tree and generic mesh networks.

1.1.1 Vulnerabilities of WSNs

Generally speaking, several vulnerabilities can be identified in WSNs. At a very abstract level

they can be related to one of the following issues, which can be more generally associated to

most ad-hoc networks:

Vulnerability of the channel Messages can be eavesdropped and fake messages can be in-

jected or replayed into the network, without the hurdle of needing physical access to network

components.

Vulnerability of the nodes Nodes may not be physically protected, and are therefore more

prone to capture and tamper attacks. If an adversary gets full access to a node, he can: (i)

steal sensitive information, (ii) reprogram the node and change its behavior, or (iii) physically

damage hardware to terminate the node. Due to nodes vulnerability, secret keys cannot be

simply issued when the network is deployed, but a secure and efficient key management scheme
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is crucial.1 The limited communication, storage, and processing capacities of the sensors, as

well as their scant energy supply, represent further sources of vulnerabilities that an adversary

can conveniently leverage. In fact, several attacks can be designed with the scope of depleting

the resources of the nodes, so as to obstruct the normal functioning of the network.

Absence of infrastructure Many WSNs are supposed to operate independently of any fixed

infrastructure. This makes most classical security solutions, based on certification authorities

and on-line servers, inapplicable. Security and privacy de facto rely on distributed cooperation

among (possibly uncooperative) nodes. Uncooperative nodes can be categorized as faulty, ma-

licious, and selfish. Malicious and selfish nodes deliberately interfere with the normal behavior

of the network: while the former aim at disrupting the normal functionalities of the network, the

latter try to increase their own revenue, at the expenses of the other nodes.2 Faulty nodes are

simply nodes that do not behave as expected due to some malfunctioning, and can be considered

a minor sub-case of the previous ones.

Dynamically changing topology The topology of a WSN is potentially ever and quickly

changing. Sophisticated routing protocols are often needed, but they may introduce new prob-

lems that need to be carefully evaluated. Indeed, incorrect routing information can be generated

by compromised nodes, or as a result of some topology changes.3

1.1.2 Security Requirements of WSNs

Due to their application constraints, WSNs pose more security requirements than traditional

networks. In (some) order of importance, such requirements can be listed as follows.

Availability The services provided by the network must be always available (often in a timely

manner), despite of any malfunctioning of the system. Resource depletion attacks are the main

class of attacks aiming at subverting this property. Resistance to such attacks is therefore of

primary importance.

Integrity Any accidental or malicious alteration to the information stored and exchanged in

the network must be (promptly) detected, and possibly thwarted.

1The reader can refer to [10] for a survey on key management protocols.
2For an overview on the problems introduced by selfishness, the reader can refer to [11].
3For a survey of secure routing protocols specific to ad-hoc networks, we suggest [12, 13].
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Confidentiality Secret information stored and exchanged in the network must not be divulged

to unauthorized parties. In some cases, even the existence itself of a communication between two

end-points must be hidden. Cryptographic tools are the typical, but not unique, countermeasure

to confidentiality threats. In dynamically changing systems, where nodes can join or leave the

network, so-called forward and backward secrecy need to be addressed as well. Forward secrecy

means to deny access to any future communication to nodes that left the network. Conversely,

backward secrecy means to ensure that new nodes are not able to access any message sent before

they joined the network.

Privacy Private (meta)data–not strictly necessary for the network purposes–must be concealed

to everyone, including the network authority. Privacy and confidentiality must not be confused:

while the latter concerns hiding to outer entities data used by the network to provide the intended

services, the former refers to avoiding that the network becomes excessively intrusive, gathering

information that it is not allowed to access.

Authorization Only authorized nodes must be able to gain access to the network, and only

authorized entities must be able to enjoy the services provided by the network.

Authentication It must be always possible to verify the identity of the sender of any message

exchanged in the network. Unless it is in control of a corrupted node, no attacker should be able

to forge a message, though making it indistinguishable from a legitimate message.

Non-repudiation To be able to find and separate compromised nodes, it must be impossible

for the sender of a message to successfully challenge the authorship of that message.

Freshness It must be always possible to verify the newness of data exchanged in the network,

to prevent any adversary to re-use old messages to mislead network services.

1.2 Classifications of Attacks to WSNs

At a high level, attacks against WSNs can be classified based on the status of the attacker, on its

behavior, and on the purpose of the attack.

Status The first classification is based on whether the attacker is an outsider or an insider.

Outsider attackers are entities that do not belong to the network but want to disrupt the provided

service. Insider attackers are legitimate nodes behaving in a malicious way.
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Behavior The second classification distinguishes between passive and active attacks. The for-

mer only consist in eavesdropping communications, and monitoring and analyzing the behavior

of the network, without interfering with it. The latter include physical access to a portion of the

network, and attempts to modify the normal behavior of the network.

Purpose The third categorization depends on the purpose of the attack. Attacks on network

availability and service integrity, aim at disrupting the services provided by the network. Many

denial-of-service, routing and physical attacks fall within this category. Attacks against privacy

and confidentiality are attacks that try to gain insight on data exchanged in the network and on the

network topology. Finally, attacks against data integrity try to alter the data that are transmitted.

Malicious nodes can inject false messages, modify existing ones, replicate old packets or entire

nodes, etc.

In the following, we will provide a more precise categorization of the attacks that can be

mounted against WSNs. We will describe in detail several threats, and we will point out the

existing countermeasures. Table 1.1 summarizes the attacks that we will take into consideration,

their categorization according to the above classifications, and the corresponding countermea-

sures.

1.2.1 Attacks Against Network Availability and Service Integrity

Attacks against network availability and service integrity are often referred to as denial-of-

service (DoS) attacks: an adversary attempts to disrupt, subvert or destroy the services provided

by the network. DoS attacks can have as a target any layer of the sensor network. Indeed,

known attacks perform on the physical, the data link, the network and the transport layers. In

this section, we will analyze existing DoS attacks layer by layer.

Physical Layer

In WSNs, attacks to the physical layer can target the communication channel or the sensors. In

the first case we speak of jamming attacks, while in the second of tampering attacks.

Jamming A jamming attack can be seen as noise created by an attacker with the aim of par-

tially or entirely disrupting a legitimate signal. Such noise is generated using a device called

jammer, able to interfere with the radio frequencies used by the sensors. The jamming activity

is effective only if the signal-to-noise ratio is less than 1. Depending on its transmission power,

the jammer may disturb the entire network or a smaller portion of it. If ignored in the initial
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Table 1.1: Attacks against Wireless Sensor Networks



14 Chapter 1. Security in Wireless Sensor Networks

WSN design, a jamming attack can easily disrupt a network, regardless of higher level security

mechanisms. Jamming can be classified as follows [14]:

• Spot jamming is the simplest jamming technique. The attacker directs all its compromis-

ing power against a single frequency. It is usually effective, but it may be avoided by

changing the frequency used.

• Sweep jamming targets multiple frequencies in quick succession, by rapidly shifting the

target frequency. Since the activity of the attacker is not continuous, the effectiveness of

this type of attack is limited. However, in WSNs it can force many retransmissions due to

packet loss.

• Barrage jamming concurrently targets a range of frequencies. However, as the attacked

range grows, the output power of jamming is reduced proportionally.

• Deceptive jamming consists in fabricating or replaying valid signals on the channel in-

cessantly, thereby occupying the available bandwidth and trying to destroy the network

service. It can be applied to a single frequency or a set of frequencies.

First generation sensor nodes used single-frequency radios, and were therefore vulnerable to

narrowband noise, whether unintentional or malicious.4 More recent motes use direct-sequence

spread spectrum to reduce vulnerability to noise.5 More generally, several countermeasures can

be used against the various jamming attacks. Frequency-Hopping Spread Spectrum (FHSS),

Direct Sequence Spread Spectrum (DSSS), Hybrid FHSS/DSSS, Ultra Wide Band (UWB) tech-

nology, antenna polarization, directional transmission, and regulation of the transmission power

are a few examples [15–17]. However, they do not defeat an adversary with knowledge of the

spreading codes or hopping sequence. Indeed, these are not secret, but either standardized (in

IEEE 802.15.4) or derivable from node addresses (in Bluetooth).

Existing security schemes that address jamming attacks in WSNs can be broadly classified as

follows:6

• Detection techniques aim at instantly detecting jamming attacks. As observed in [18],

signal strength, carrier sensing time or packet delivery ratio individually are unable to

conclusively detect the presence of a jammer. To improve detection, the authors of [18]

introduce the notion of consistency checking, where the packet delivery ratio is used to

classify a radio link as having poor utility, and then a consistency check is performed to

classify whether poor link quality is due to jamming.

4e.g., Mica2 and prior motes used the Chipcon CC1000 transceiver, operating at 433 or 900MHz.
5e.g., MICAz and Telos motes use the Chipcon CC2420, which operates at 2.45 GHz.
6For a comprehensive summary of counteractions against jamming in WSNs, we remand the reader to [14].
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• Proactive countermeasures make a WSN immune to jamming attacks rather than reac-

tively respond to such incidents. An example is DEEJAM, a protocol proposed to defend

against stealthy jammers using IEEE 802.15.4-based hardware [19]. To contrast adver-

saries that use hardware with same capabilities as the deployed nodes, it uses four defen-

sive mechanisms altogether:

– Frame masking defends against attackers jamming only when their radio captures a

multibyte preamble and a Start of Frame Delimiter (SFD) sequence.

– Channel hopping defends against attackers that try to detect radio activity by period-

ically sampling the Radio Signal Strength Indicator (RSSI), and start jamming when

RSSI is above a programmable threshold.

– Packet fragmentation consists in breaking each packet into short fragments, trans-

mitted separately on different channels and with different SFDs. If the transmission

frequency changes fast enough, the attacker cannot start jamming on the right fre-

quency in time.

– Redundant encoding tackles an attacker that blindly jams a single channel using

short pulses. It allows packet recovery even if a fragment is corrupted, but energy

and bandwidth usage are increased.

• Reactive countermeasures enable reaction only upon the incident of a jamming attack. A

perfect example is the JAM algorithm proposed in [20], which enables the detection and

mapping of jammed regions to increase network efficiency. In practice, nodes near the

border of a jammed region notify their neighbors, which start mapping the region that is

currently jammed by exchanging mapping messages. When the jammer moves or simply

stops the attack, the jammed nodes recover and notify this change to their neighbors.

• Mobile agent-based countermeasures leverage Mobile Agents (MAs), i.e., autonomous

programs that can move from host to host and act on behalf of users towards the com-

pletion of an assigned task. An example is the JAID protocol presented in [21], where

MAs explore the network incrementally fusing the data as they visit the nodes. Firstly,

to identify near-optimal itineraries for the MAs, JAID separates the network into multi-

ple groups of nodes, calculates local near-optimal routes through each group, and assigns

these itineraries to individual agent objects. Then, such itineraries are modified using

the JAM algorithm, so as to avoid jammed areas, while not harming the efficient data

dissemination performed by normally working sensors.

Tampering A wide range of active attacks, generally carried out by outsiders, all rely on a

communal approach: gaining physical access to a subset of sensors by tampering with their

hardware. DoS attacks are only one of the possible ways an adversary can leverage tamper-

ing. More generally, the purpose may be to modify the behavior of the nodes, to replace them
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with malicious sensors under the control of the attacker, or to steal confidential data and crypto-

graphic material [22–24]. To provide a clearer exposition, here we will only discuss resilience

to tampering itself. Higher-level countermeasures to attacks for which physical access to the

sensors in only a prerequisite will be discussed in the pertaining section. The primary de-

fense against physical tampering focuses on building tamper-resistant sensors [25]. However,

although tamper-resistant hardware is becoming cheaper, in most cases it is not a feasible op-

tion. As an alternative, softwares were specifically designed to detect tampering attempts, and

promptly delete sensitive data (such as cryptographic keys) before executing a self-termination

protocol. Tampering with current sensor node hardware has been investigated in [26]. The au-

thors show that attacks that can be executed without interruption of the regular node operation

usually have a minor impact. All most serious attacks, which result in full control over a sensor

node, require the absence of the node from the network for a substantial amount of time. There-

fore, simply monitoring sensor nodes for periods of long inactivity can be considered a good

defensive strategy.

Link Layer

In WSNs, several attacks can be mounted on the data-link layer. All such attacks share two

main objectives: (i) depleting the energetic resources of the sensors, relying on the fact that

most energy consumption in WSNs is due to communication, and (ii) degrading the timeliness

of the service.

Link Layer Collision This attack is very similar to jamming in the physical layer. It occurs

when an attacker uses his radio to identify the frequency used by the WSN, and, as soon as

he hears the start of a legitimate message transmission, he sends a signal for as little as one

octet (or byte) in order to corrupt the entire message [27]. The only evidence of the attack is

the reception of an incorrect message, which is detected when a link layer frame fails a cyclic

redundancy code (CRC) check. In that case, the link layer automatically discards the entire

packet, thereby causing energy and bandwidth waste. A possible countermeasure is provided by

forward error-correcting codes (FEC), able to reactively recover lost information [28].

Link Layer Exhaustion This attack occurs when the attacker manipulates protocol efficiency

measures and causes nodes to expend additional energy. Providing a rate limitation by allowing

nodes to ignore excessive network requests from a node is an effective countermeasure against

this attack.
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Unfairness In an unfairness attack, the adversary transmits a large number of packets when

the medium is free, to prevent honest sensors from transmitting legitimate packets. As a result,

the quality of service degrades and real-time deadlines are possibly missed. However, this attack

is usually considered a weak form of DoS, because it can be limited by using smaller frames, in

such a way that the channel is only captured for a small amount of time.

Sleep Deprivation Torture In WSNs, a sleep mechanism is used by the nodes to adjust their

operation mode and extend their lifetime. At full power, a sensor can run for approximately

two weeks before exhausting its power resources. To the contrary, if nodes remain in sleep

mode and activate as little as possible (e.g., around 1% of the time), their batteries can last even

more than a year. As the name suggests, the “Sleep Deprivation Torture” or “denial-of-sleep”

attack, firstly introduced in [29], aims at preventing a sensor from sleeping. According to how

sleeplessness is induced, it can be classified into two categories [30]: (i) service request power

attacks, which intensively repeat usual service requests, and (ii) benign power attacks, which so-

licit power-intensive operations on the device under attack. In [31], the authors proposed three

ways to lessen the effect of these attacks: strong link-layer authentication, anti-replay protec-

tion, and broadcast attack protection. Strong link-layer authentication prevents the attackers to

send trusted MAC-layer traffic, and is probably the most important component of denial-of-sleep

defense. Existing options for implementing link-layer authentication in WSN include TinySec,

which is incorporated into current releases of TinyOS, and the authentication algorithms built

into IEEE 802.15.4-compliant devices. Anti-replay protection is usually achieved by maintain-

ing a neighbor table of packet sequence numbers. Unfortunately, such a table can become un-

wieldy even in moderately sized networks. However, network layer neighbor information can be

leveraged to limit the number of neighbors that must be tracked to those from which legitimate

traffic is expected. In particular, the authors of [32] suggest to use a protocol called CARP that

bounds the size of the neighbor table according to the maximum node degree and the number

of clusters that are previously configured. Finally, broadcast attack protection allows to detect a

denial-of-sleep broadcast attack based on measurements of the ratio of legitimate to malicious

traffic, along with the percentage of time that the device is able to sleep.

Network and Routing Layer

At the network layer, many attacks can disrupt the network availability. We will describe them

one by one, together with specific countermeasures. However, it is worth taking into account

that in general security at the network layer highly depends on authentication. Due to resource

constraints, authentication in WSNs cannot rely on public key cryptography. Based on symmet-

ric keys and hash functions, Zhang and Subramanian [33] proposed a message authentication

approach which adopts a perturbed polynomial-based technique to simultaneously accomplish
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the goals of lightweight and resilience to a large number of node compromises, immediate au-

thentication, scalability, and non-repudiation.

Direct Attacks on Routing Information A direct attack against the routing layer can try to

spoof, alter, or replay routing information. By subverting this information the adversary can

change to his favor the data flow. An effective countermeasure against the first two problems

is to use a message authentication code (MAC). Counters or timestamps can be used to defend

against replay attacks [34]. More generally, the authors of [35] proposed two techniques that

mitigate the effects of routing misbehavior: the watchdog and the pathrater. The first is used

to identify misbehaving nodes, while the second helps routing to avoid these nodes. Similar

countermeasures can as well contrast most of the attacks exposed afterwards.

Hello Flooding Hello messages are often used to discover neighboring nodes and automati-

cally create a network. Many protocols which use this mechanism make the naive assumption

that the sender is within radio range. However, an adversary with a high powered transmitter can

corrupt a sensor and make other sensors believe that such a malicious node is in their neighbor-

hood. Data packets routed to the malicious sensor will be indeed sent into oblivion [36], causing

both data loss and energy wasting. Fig. 1.1a illustrates such an attack. Generally, a simple coun-

termeasure to the hello flooding attack is to check for bi-directionality of each transmission link.

In [37] a method based on signal strength has been proposed to detect and prevent hello flooding

attacks.

Black/Sink Hole Attack The black hole attack works by inducing the sensors to route all the

traffic through a set of compromised nodes, that can then drop (or access) all the routed packets.

This attack can be detected by listening to and monitoring transmissions by neighbors, and can

be tackled using advanced routing algorithms such as REWARD [38]. Black hole attacks can be

even more dangerous when the attacker knows the position of the sink, and tries to become the

node used by all other nodes to reach the sink. In this case the attack is called Sink Hole Attack,

depicted in Fig. 1.1b. To detect sink holes, the authors of [39] proposed an algorithm that firstly

finds a list of suspect nodes, and then identifies the intruder in the list through a network flow

graph. However, the sink must flood the network with a request message containing the IDs of

the affected nodes, and then these nodes have to answer with specific information regarding the

correct path, making the algorithm burdensome. In [40] and [41], two other routing protocols

against the sink hole attack have been proposed. However, they are respectively based on the Ad-

hoc On-demand Distance Vector (AODV) and the Dynamic Source Routing (DSR) protocols,

both not very suitable for WSNs. In [42], an intrusion detection system called MintRoute was

proposed. It detects sink hole attacks and can be used with the most widely used routing protocol

in sensor network deployments.



Chapter 1. Security in Wireless Sensor Networks 19

Wormhole Attack The wormhole attack leverages a fast and powerful connection (often a

wired one) between two faraway compromised nodes to subvert routing information. The ad-

versary can tunnel data between the locations of the two nodes, so as to convince other sensors

that they know the quickest path to reach the other side of the network. Fig. 1.1c shows this

attack. Most existing ad-hoc network routing protocols, without some specific defensive mech-

anism, will be severely disrupted by this simple attack. A general solution for detecting and

countering wormhole attacks has been introduced in [43], based on packet leashes. A leash is

any information that is added to a packet in order to restrict its validity. Two types of leashes

are proposed: geographical and temporal. The former ensure that the recipient of the packet

is within a certain distance from the sender, while the latter establishes an upper bound on the

packet’s lifetime.

(a) Hello Flooding (b) Sink Hole Attack (c) Wormhole attack

Figure 1.1: Some examples of attacks at the network and routing layer

Selective Forwarding When a malicious node does not follow the routing protocol, but acts

as a filter forwarding certain messages and dropping others, we face a selective forwarding

attack [36]. The black hole attack can be seen as a special case of selective forwarding, where

all the packets are dropped. In [44] a centralized intrusion detection scheme based on Support

Vector Machines (SVMs) and sliding windows is proposed to tackle selective forwarding. In the

scheme presented in [45], instead, detection occurs in both the base station and the source nodes,

with alarms raised based on multi-hop acknowledgements from intermediate nodes. Finally,

selective forwarding can be tackled using redundant schemes like multipath routing [36, 46]: the

same packet is sent along multiple paths to increase the probability of reaching its destination.

Sybil A Sybil attack consists in a malicious node claiming multiple identities. It was first in-

troduced in peer-to-peer networks [47], but Karlof and Wagner [36] showed it can be a threat in

WSNs as well. Fault tolerant schemes, routing and distributed storage algorithms can be easily

affected by such an attack. A taxonomy of possible variants of Sybil attacks in WSNs was pre-

sented in [48], together with several defensive mechanisms. The main countermeasures are: (i)

radio resource testing, that is, asking all nodes to transmit at the same time in a different channel,

(ii) key validation for random key pre-distribution, that is, verifying that a node possesses the
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keys associated to the identity it claims to have, and (iii) position verification, that is, identify

Sybil nodes based on the fact that they will appear exactly at the same position.

Transport Layer

All transport layer protocols can be classified into those that provide congestion control mecha-

nisms, and those that provide reliability [49] of the data transfer. The latter are the most relevant,

and their main purpose is to guarantee that every packet loss is detected, and that lost packets

are retransmitted until they reach their destination. A reliable transport layer protocol can only

detect packet losses if there is some kind of feedback in the system. A scheme can use two

types of acknowledgements (ACKs): explicit, when a node sends back a confirmation for any

packet received, or implicit, when each node verifies the delivery of a packet to a neighbor by

overhearing that that neighbor is forwarding the packet. Further, a protocol can use negative ac-

knowledgements (NACKs) if nodes are somehow able to realize the non-reception of a packet,

and they explicitly send a request for retransmission.

Several transport layer protocols have been explicitly designed for WSNs (e.g., Fusion [50],

CODA [51], CCF [52], Siphon [53], ARC [54], Trickle [55], STCP [56], ESRT [57], GARUDA [58],

PSFQ [59], DTC [60], RBC [61]).7 Unfortunately, most of such protocols were designed to en-

sure reliable communications in the presence of unintentional errors, and not when the network

is under attack. Indeed, they fail to provide end-to-end reliability and are subject to increased

energy consumption in the presence of an adversary that can replay or forge control packets.

When considering attacks at the transport layer, however, we need to assume that the adversary

cannot delete both control and data packets (e.g., by jamming), because it would make theoret-

ically impossible to ensure reliable communication [63]. An attack is considered successful if

either a packet loss remains undetected or the attacker can permanently prevent the delivery of

the packet. Both ACK and NACK-based schemes are vulnerable to injected control packets, but

in general ACK-based protocols cannot even ensure reliability, while NACK-based protocols

are only vulnerable to energy depleting attacks. Since the latter type of attacks are in prac-

tice less relevant, NACK schemes (i.e., PSFQ [59], [58]) may be preferred to ACK schemes

(i.e., [60], [61]). NACK schemes are also more suitable for multi-hop communication, but they

have two intrinsic weaknesses. On the one hand, the last fragment of a message is theoreti-

cally not protected. This problem is in reality easy to solve, by including the total number of

fragments in the first transmitted fragment. More importantly, NACK schemes offer no defense

against the loss of the whole message, and there is no satisfactory solution at the moment for

this problem [64]. Providing authentication at lower layers can solve many of the above cited

problems. At least, by authenticating control packets, it would be more difficult for an attacker

7A detailed description of all existing protocols is out of the scope of this paper. We remand the interested readers
to the corresponding references or to the surveys [49, 62].
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to deplete the batteries of the sensors, and thus, to decrease the lifetime of the network. In the

following, we will analyze the two main type of attacks to the transport layer [25]: flooding and

desynchronization.

Flooding Flooding attacks exhaust the memory resources of a sensor, by sending many con-

nection establishment requests to the victim, which consequently allocates resources that main-

tain state for that connections. To reduce the severity of these attacks, client puzzles have been

introduced [65]: when a client requires the access to a resource, the server answers with a puzzle

that the client has to solve in order to gain the required access. Even if puzzles involve a pro-

cessing overhead, this is often acceptable with respect to excessive communication. A protocol

based on client puzzles and suitable for WSNs has been proposed in [66]. It mitigates DoS at-

tacks against broadcast authentication by leveraging a weak authentication mechanism that uses

a key chain.

Desynchronization In a desynchronization attack, the adversary forges messages containing

bogus sequence numbers or control flags to disrupt an existing connection between two end-

points. By continuously causing retransmission requests, this attack can eventually prevent

the end-points from exchanging any useful information, other than quickly drain all the power

resources of the attacked nodes. The typical and effective countermeasure to this attack is au-

thentication, whether of the header or of the whole packet.

1.2.2 Attacks Against Confidentiality and Privacy

The more WSNs become pervasive, the more confidentiality and privacy represent two primary

concerns. For example, in military applications confidentiality is a must. On the other hand,

in participatory sensing privacy is usually considered a priority with respect to confidentiality.

In many other contexts, like automatic health monitoring or commercial applications, privacy

and confidentiality are both fundamental [67]. Data confidentiality needs to be enforced through

access control policies, to prevent misuse of information by unintended parties. Privacy must be

addressed when sensors are not property of the central authority, or in general every time data

gathering may involve contextual information which monitored entities do not want to share with

the network authority. Confidentiality and privacy issues involve even ethical or legal aspects.

However, we will only discuss the technological solutions to enforce such security requirements

in WSNs.

Eavesdropping If end-to-end communications are not protected, anyone is able to discover

the communication content by simply eavesdropping on the network’s radio frequency range.
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This way, even passive outsider adversaries can steal private or sensitive information. The stan-

dard approach to face this basic attack is cryptography: data are encrypted so that only intended

recipients can decrypt the message. Some non-cryptographic approaches have been discussed

in the literature [68], but their interest is limited when the adversary can only eavesdrop. Be-

cause of sensors having limited computational power, symmetric-key encryption is preferable

to public-key. The most used and cited scheme based on symmetric keys is SPINS, introduced

in [34]. SPINS is a suite of security protocols optimized for WSNs and consisting of two build-

ing blocks: the first assures data confidentiality, two-party data authentication and data fresh-

ness, while the second provides an efficient broadcast authentication mechanism. Usual key

management schemes for symmetric protocols are unfeasible in many WSNs applications, so

most encryption schemes rely on key pre-distribution. When two sensors want to communicate

securely, they must first execute a key-discovery phase, to find out which keys they share, and

then compute a session key based on such shared keys [69, 70]. However, the authors of [71]

highlight a major problem of keys pre-distribution: an attacker can easily obtain a large number

of keys by capturing a small fraction of nodes, and leverage such keys to disrupt the authen-

tication mechanism. In particular, if the sink is mobile and cannot therefore be identified by

its position, the adversary can deploy a replicated sink preloaded with the compromised keys,

which many sensors will confuse with the legitimate sink. To address this issue, the authors

propose a new framework relying on two separate key pools, one for the mobile sink to access

the network, and one for pairwise key establishment between the sensors. Finally, in WSNs

data collected by sensors are usually processed and aggregated at each intermediate node before

they reach the sink, to achieve power efficiency by reducing data redundancy and minimizing

bandwidth usage. Data aggregation is unfortunately in conflict with data confidentiality. The

former requires encryption between the originating node and the sink, but apparently interme-

diate nodes need to access the cleartext, in order to aggregate data. Homomorphic encryption

is the natural solution to overcome this impasse, as proposed in [72] and [73].8 The scheme

presented in [72] allow to aggregate data in a confidential and efficient way, relying on a simple

but provably secure homomorphic encryption function. The scheme in [73] is able to provide

both confidentiality and integrity of the aggregated data.

Traffic Analysis Encryption alone is not enough to assure secrecy in a broader sense. An

adversary can analyze overheard data traffic to gain important information about the network

topology and the sensed events. Just leveraging traffic analysis, the adversary can identify sen-

sors with special roles [75], or run targeted attacks designed to maximize harm. Deng et al. pro-

posed countermeasures against traffic analysis attacks that seek to locate the base station [75].

Recently, Wadaa et al. proposed schemes to randomize communications during the network

set-up phase, to protect anonymity of sensor network infrastructure [76].

8We suggest [74] for a review of aggregation techniques enforcing confidentiality in WSNs.



Chapter 1. Security in Wireless Sensor Networks 23

1.2.3 Attacks Against Data Integrity

Data integrity is violated when the adversary corrupts records, and the sink is not able to restore

the original sensed data, or at least to detect that data have been manipulated. The simplest attack

to compromise sensed data is data erasure, that is, delete any trace of a specific information

before it reaches the sink. However, in our classification of security requirements, we considered

data survivability (the common way to denote resilience to data erasure) a segment of service

integrity, rather than data integrity. In standard WSNs, data are off-loaded to the sink as soon

as possible, so data erasure requires either compromising the originating sensor before it sends

the target information, or intercepting such information along the routing path towards the sink.

The former strategy can be easily tackled by letting routing start as soon as data are gathered.

The latter is usually implemented using black/sink hole attacks, which can be countered as

described in Section 1.2.1. To face more subtle threats to data integrity, tamper-resistance and

authentication represent the two basic approaches. On the one hand, if the adversary gains full

control of a sensor, fake data injected by that sensor will look legitimate to the sink. On the other

hand, if authentication is not used at all, any outsider adversary can alter messages exchanged in

the network by simply implementing a man-in-the-middle attack. In general, the success rate of

an attack to data integrity depends on the ability of the adversary to capitalize on its resources to

circumvent authentication mechanisms. Along this line, node replication is the main approach

to maximize the impact of sensors corruption. Other active attacks are instead based on packet

injection, replication, and alteration.

Node Replication When an adversary captures a sensor without being detected, he can use

that sensor to inject authenticated, but fake, data. Even if sensors used in typical WSNs are not

tamper-proof (mainly for cost reasons), in most application settings the number of sensors that

an adversary can concurrently control is however limited. To boost the attack, the adversary

can clone the corrupted sensors and insert the replicas in the network. Even if the adversary

compromises a single node, he can generate enough replicas to subvert voting or data aggrega-

tion protocols. To contrast replication, the network should realize that two different nodes are

claiming the same identity. Unfortunately, the distributed nature of most WSNs makes detection

challenging when clones of the same sensor are deployed faraway from each other. Centralized

monitoring [70, 77] can be a solution: all nodes in the network periodically transfer to a cen-

tral entity a list of their neighbors, including nodes ID and location. If the same node claims

two (or more) conflicting locations, the sensor is considered corrupted and all its credentials

are revoked. However, centralized approaches have two drawbacks: the introduction of a sin-

gle point of failure, and the communication overhead incurred by the nodes that surround the

central entity. Emergent properties have been used in contrast to centralized monitoring in [78].
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The authors proposed two algorithms extremely resilient to active attacks, and both trying to

minimize power consumption by limiting communication.

Packet Injection, Replication and Alteration To modify data gathered by the network, the

adversary has three main alternatives: inject completely false data, replicate previously captured

packets, or intercept messages and alter their content. All these attacks can be easily run by in-

siders, but if the adversary is an outsider they require to break the authentication mechanisms to

varying degrees. Injection requires forging from scratch a message that must be indistinguish-

able from legitimate ones. Replication uses already authenticated massages, but counters or

timestamps used to avoid replay attacks need to be counterfeited. Alteration is in general as dif-

ficult as injection, but it can result sensibly easier when homomorphic encryption/authentication

is used (e.g., for data aggregation). Generally, standard asymmetric authentication protocols are

not suitable for WSNs, and are replaced by schemes relying on symmetric keys [70, 77, 79, 80].

In particular, µTESLA [34] is the “micro” version of the Timed Efficient Stream Loss-tolerant

Authentication (TESLA) scheme proposed in [81]. It is based on TESLA, but key update and

initial authentication are modified to fit for WSNs. The main idea of µTESLA is to use a one-

way hash function F to form an “inverse” key chain: the sender chooses the last key Kn of

the chain randomly, and applies F repeatedly to compute “previous” keys as Ki = F(Ki+1), for

i = n − 1 down to 1. A key is published some time after the corresponding message is sent

(therefore, µTESLA requires loosely synchronization between the sensors and the base station,

and that each node knows an upper bound on the maximum synchronization error). Since previ-

ous keys can be verified through the current key, while the current key cannot be computed from

previous keys, an attacker cannot forge keys and authenticate messages. The authors use MD5

as the one-way hash function in TESLA and µTESLA. However, when the adversary corrupts

a number of sensors, he can inject fake data which will be correctly authenticated, regardless

of the robustness of the cryptographic schemes used. In [82], the authors propose BECAN,

a bandwidth-efficient cooperative authentication scheme for filtering injected false data. Such

scheme is able to detect the majority of fake data during the routing path to the sink with minor

extra overheads at the en-route nodes, obtaining a remarkable reduction of the burden of the

sink. Finally, things become even harder when data are aggregated during the routing path. In

this case, the authors of [83] propose a secure extension of the robust (against unintentional fail-

ures) but insecure (against fake data injection) synopsis diffusion algorithm presented in [84].

In particular, the extension is based on a novel lightweight verification algorithm by which the

base station can determine if the computed aggregate includes any false contribution.
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1.3 Summary

In this chapter, we introduced the WSN paradigm, describing its main features, vulnerabilities

and security requirements. Then, we discussed the main security threats and countermeasures in

WSNs, classifying attacks according to their target. Depending on the service provided, secure

WSNs need defensive mechanisms to protect: (i) network availability and service integrity, (ii)

data confidentiality and privacy, and/or (iii) data integrity. When dealing with network and

service reliability, it is particularly useful to distinguish the threats based on the attacked layer,

which sensibly affects the nature of the attack (and of the corresponding responses). Security

mechanisms must perform at each layer, from the physical, to the link, the network, and the

transport layer. The profound attention paid to WSN is due to its relevance in the scenario

of automated environmental sensing and monitoring: most of the issues discussed for WSNs

extend to DSNs and other more specific models, which however (as we will see in the next

chapters) introduce additional and specific security requirements.





2
Security in Distributed Sensor

Networks

Designing systems able to automatically interact with the environment is one of the main chal-

lenges currently addressed by the research community. When dealing with sensing systems, the

principal paradigm in the literature is the Wireless Sensor Network (WSN), comprehensively

discussed in Chapter 1. Thanks to their ability to offer low cost solutions to a huge variety of

real problems, WSNs are frequently used for a wide range of civilian, industrial and military ap-

plications [7]. However, the WSN model is not flexible enough to capture characteristics proper

to many application settings. In particular, there are two main features that demand considerable

attention: the degree of attendance of the sink, and the level of mobility of the nodes. Unattended

Wireless Sensor Networks (UWSNs) were specifically introduced to describe all contexts where

the assumption of an always present sink would be unrealistic. Similarly, Mobile Wireless Sen-

sor Networks (MWSNs) model those WSNs whose sensors are free to roam in the monitored

environment. When the network is, at the same time, both mobile and unattended, it is usually

referred to ad Mobile Unattended Wireless Sensor Network (MUWSN).

To reduce deployment and managing costs, it is highly desirable to devise monitoring solutions

that do not require the deployment of specific networks. Along this line, relying on emerg-

ing technologies, new paradigms were recently introduced to model collaborative information

sensing and elaboration in urban scenarios. The rationale is to leverage the mass diffusion of

sensor-equipped devices (e.g., smartphones and tablets) to subsidize users collaboration to the

27
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process of data gathering, so as to make now feasible and low-cost tasks considered futuris-

tic only a few years ago [85]. In this context, the referential model is Participatory Sensing1

(PS) [86–88], which, generally speaking, refers to the ensemble of technologies and algorithms

enabling a community to contribute to the process of sensing and collecting information from

the environment, to form a (shared) body of knowledge.

A Distributed Sensor Network (DSN) is a general model capturing the communal issues and

requirements of mobile unattended sensing systems, such as MUWSN and PS. DSNs are in fact

defined as ad-hoc mobile unattended networks that include sensor nodes with limited computa-

tion and communication capabilities [89]. In this chapter, we present a detailed description of

DSNs, underlining the main reasons that make security in DSNs a stimulating and challenging

task. In particular, in Section 2.1 we focus on UWSNs, to provide a comprehensive overview

of the main issues related to the lack of a central control. In UWSNs, sensed information can-

not be promptly offloaded to any trusted entity, but must be securely stored in the network in

a distributed way. This model offers potentialities that centralized networks fail to provide, but

poses stimulating security challenges. Then, in Section 2.2, we describe how mobility and users

collaboration in MUWSNs and PS introduce further problematics, but also represent potential

resources for the development of novel security schemes. We explain why the more general

model of DSNs captures characteristics communal to both paradigms, and we summarize the

requirements of such networks, to pave the way for the solution proposed in Chapter 3.

2.1 Unattended Wireless Sensor Networks

Unattended Wireless Sensor Networks (UWSNs) were introduced in 2007 [90], to capture all

settings where the assumption of a constant data sink would be unrealistic. A simple analysis of

contemporary applications of WSNs immediately highlights the importance of this more specific

model. In many cases, the inaccessibility of the monitored area, and the technical problems

that arise to connect the sink with the sensors, are themselves sufficient reasons not to allow

the use of a constantly available sink. Perfect examples in this sense are all underground or

submarine networks, involved in the monitoring of critical infrastructures (e.g., in oil pipelines,

a network can be required to monitor that the pumps are working correctly and that leakages

of oil are not present [91]). In most military applications, from the exploration of a battlefield,

to the surveillance of a harbor, the deployment scenario is not only hardly accessible, but even

extremely dangerous. Finally, in some cases, like wildlife monitoring (where the network is

appointed to control animals health status and detect poaching), the size of the protected area,

and the difficulty of hiding a sink, can motivate the requirement for an itinerant sink [92]. In all

1PS is sometimes referred to as people-centric, urban, or opportunistic sensing.
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these cases, an intermittent sink is often the only viable alternative, and an UWSN can be used

to keep tabs on an infrastructure that cannot be monitored by traditional systems.

The absence of a constant, trusted, central authority, able to both monitor the network and gather

sensed data in (quasi) real time, makes data security in UWSNs more challenging than in tra-

ditional WSNs. In Chapter 1, we saw that data integrity and confidentiality in WSNs depend

primarily on intrusion detection, encryption, authentication, and multipath routing. In fact, in

WSNs the sink can supervise the network and (almost) continuously check for sensors malfunc-

tioning or capture. Sensed data are promptly sent to the sink, and do not need to be securely

stored in the network. To the contrary, in UWSNs it is natural to assume that the adversary can

leverage the absence of the sink to compromise sensors, read, delete or alter sensed and stored

information, and disappear without leaving any evidence of its illegal behavior (e.g., in the case

of pipeline monitoring, an adversary can steal oil from the pipeline, and corrupt data collected

by the nearest monitoring sensors). In other words, intrusion resistance is unfeasible, and the at-

tention is moved to intrusion detection and recovery. Real-time delivery of the sensed data may

not be critical, but it is fundamental that the sink can indeed collect the sensed data, and that it re-

ceives such data as soon as possible. Even when the sink cannot gain direct access to the sensor

that actually detected an event, the sensors must therefore collaborate to not only avoid data loss,

but also to facilitate data collection. Data sensed while the sink is away are particularly exposed,

and it is necessary to enforce data survivability, confidentiality and authentication using secure

distributed data processing and storage schemes. If a security mechanism is not provided, the

sink, and therefore the monitoring system, will not ever know that a piece of information has

been deleted or compromised by an adversary. However, because of the limited resources of

sensor nodes, this must be done without incurring in excessive energy consumption.

2.1.1 Security Threats to UWSNs

Before discussing more in detail security threats and countermeasures for UWSNs, let us better

discuss the adversary model, the cryptographic techniques that can be used, and the security

requirements to ensure.

Adversary Model As we already pointed out, in UWSNs it is natural to assume the presence

of an active outsider attacker, able to compromise nodes during the absence of the sink without

leaving traces. However, the number of sensors that the adversary can corrupt in each interval is

limited, since otherwise it could gain complete control of the network and irreparably threaten

security. For a similar active but limited adversary, it is fundamental to distinguish between

mobile or stationary attacks. Independently from the fact that the network itself is mobile or sta-

tionary, the distinction between mobile and stationary adversaries aims at capturing the ability
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of the attacker to compromise different sets of sensors. Depending on the adopted model, a mo-

bile adversary can physically move and compromise sensors deployed around him, or somehow

“jump” from a set of sensors to another one. A stationary attacker instead chooses a subset of

sensors at the very beginning of his attack without changing his target thereafter.

Cryptographic Techniques As in more general WSNs, symmetric encryption is usually used

for data confidentiality and authentication purposes. Simple cryptographic functions are prefer-

able, like one-way hash functions [93] and efficient symmetric schemes such as AES [94] or

Skipjack [95]. Skipjack is in particular used for WSNs in the TinySec scheme [96] due to its

power efficiency. However, the more stringent security requirements sometimes push towards

public key cryptography, which gives more guarantees at the cost of a major resource consump-

tion.

Security Requirements The three main security requirements in UWSNs are: Data Surviv-

ability and Confidentiality, Intrusion Detection and Recovery, and Data Authentication. Since

data cannot be off-loaded to the sink in real time, they reside in the network for a longer time

than in typical WSNs. This exposes data, raising concern for their integrity and confidential-

ity. In particular, data survivability becomes a major issue because the main objective of an

adversary is often to delete sensed data before they reach the sink. Intervals between successive

sink visits represent periods of vulnerability, and therefore they give a boost to the activities of

an adversary. Frequent intrusions become a necessary assumption, and it is fundamental to be

able to detect when nodes are not working as intended, or (even better) to recover compromised

sensors. In particular, self healing schemes are a remarkable mechanism to restore secure com-

munication with previously corrupted nodes. Finally, the attention paid to data authentication in

UWSNs is mainly due to a simple observation: UWSNs cannot use standard data authentication

mechanisms that rely on a centralized entity, otherwise, with sufficient time between sink visits,

an adversary could easily compromise sensors collected data. In the sequel, we will categorize

the main threats based on the security requirements they affect, and describe the corresponding

solutions proposed in the literature.

2.1.1.1 Data Survivability and Confidentiality

In UWSNs, sensors inability to directly off-load data to the sink makes it easy for an adversary

to perform focused attacks aimed at deleting certain target data. Further, the fact itself that

UWSNs are often deployed in hostile environments means that it is extremely reasonable that

the network is performing some sort of surveillance duties. Consequently, data survivability is

usually considered the main concern. In this scenario, it is normal to assume a mobile adversary
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who is actively hunting a certain data item, and who is not afraid to delete/erase any other data

he/she finds.

In [90], the authors proposed a better characterization of the adversary as:

• Lazy, when the attacker is stationary, and at the beginning of the protocol chooses k nodes

to compromise, without ever changing his target thereafter;

• Frantic, when the attacker is mobile, and captures a different subset of k randomly chosen

nodes each time the sink leaves the network;

• Smart, when the attacker is mobile, but only skips between two pre-selected sets of nodes,

each of size k.

In the paper, three simple non-cryptographic survival strategies were studied:

• DO-NOTHING is the trivial survival strategy, where each sensor simply stores its own

sensed data, waiting for the sink arrival;

• MOVE-ONCE prescribes that data are moved just once to a new sensor randomly picked

among the whole network;

• KEEP-MOVING requires that data are continuously and randomly moved from sensor to

sensor.

The analysis of all possible attack-survival strategy combinations conducted in [90] highlights

that: (i) the DO-NOTHING survival strategy is useless, (ii) when MOVE-ONCE is imple-

mented, a FRANTIC adversary is the most advantaged, and (iii) when KEEP-MOVING is used,

a SMART attacker is the most effective one. In [97], resilience to an adversary dubbed ERASER,

who wants to indiscriminately erase any information, is analyzed. Surprisingly, the best survival

strategy results the DO-NOTHING: moving data only helps the ERASER to encounter and erase

all data faster. However, the authors investigated the effects of data replication, showing that

with replication the KEEP-MOVING strategy becomes the best solution against an ERASER.

In [98], encryption is used to hide contextual information (e.g., the origin and time of collection

of a packet), other than the content of sensed data. The rationale is to prevent the adversary

from recognizing target data, forcing him to erase data blindly (like the ERASER attacker). An

interesting additional result of this analysis is that public key cryptography allows to obtain the

same level of security of continuously moving data, by combining moving data just once and

re-encrypting them. Replication is deeply discussed in [4], where a pure controlled epidemic

technique is used to provide a trade-off between data survivability, optimal usage of sensor re-

sources, and a fast and predictable collecting time. The authors prove that by estimating the
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maximal power of an attacker it is possible to set up a probabilistic bound on the survivability

of the data. Despite the very interesting approach, the results exhibited in [4] were however

partially incomplete. We carried on a more comprehensive analysis of the application of epi-

demic models to the survivability of information in UWSNs. As described in the Introduction,

the work, where we show how to set system parameters so as to perfectly tune data replication

rate, will be submitted soon.

Apart from the necessity of limiting energy consumption, replication poses a more serious chal-

lenge: while enforcing survivability, replicating data harms data confidentiality. In fact, the more

replicas of a data are generated, the more easy is for an active adversary to find (and compro-

mise) a sensor which is storing one of such replicas. Alternative non-cryptographic solutions for

secure and distributed storage in UWSNs were investigated in [99]. The authors proposed two

algorithms: DS-PADV, to protect against adversaries which do not know where the target infor-

mation is stored, and DS-RADV, a more secure but burdensome scheme to defend from reactive

adversary which choose nodes after identifying the target. However, the most promising solution

to ensure both survivability and confidentiality of sensed data in UWSNs is represented by secret

sharing based schemes. In [100], the authors showed how a similar solution can maximize com-

munication and storage efficiency and data survival degree. They also introduced an enhanced

scheme based on network coding to further improve the power consumption efficiency of com-

munication. However, the aforementioned papers did not fully clarify the importance of secret

sharing schemes for distributed secure storage in UWSNs. For this reason, in [3] and [2] we

proposed a detailed analysis of secret sharing schemes in Distributed Sensor Networks (DSNs),

which will be presented in detail in Chapter 3. In [3], probabilistic bounds are introduced to

predict the amount of sensed data that can be reconstructed, only based on the shares stored by

a given portion of the network. Such bounds show that secret sharing can indeed provide the

desired trade-off between survivability and confidentiality in UWSNs.

2.1.1.2 Intrusion Detection and Recovery

In our definition of the adversary model, we stated that it is necessary to assume that the ca-

pabilities of the adversary are limited, in that it can only capture a small number of sensors

during each period of absence of the sink. However, if the adversary can keep control of sensors

captured previously, he will eventually gain control of the whole network in any case. For this

reason, it is fundamental to detect intrusions, and to try to recover as many corrupted sensors

as possible. Data stored in a corrupted sensor are irremediably lost. However, we can restore

a secure keyring to prevent the adversary to access data sensed or received by that sensor in

the future/past, or to forge new authenticated data. In other words, we are interested in back-

ward and forward secrecy of the keys. Forward secrecy can be easily obtained through periodic

key evolution [101]. In contrast, backward secrecy is much harder to attain since it relies on a
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source of randomness that the adversary must not control. Solutions based on asymmetric key

pre-distribution have been proposed [102], but their feasibility is limited due to the computa-

tional cost of asymmetric cryptography. In [103], the authors introduced scheme called DISH,

based on symmetric keys. It leverages sensor collaboration to recover from compromise, and

maintains the secrecy of collected data. It provides both backward and forward secrecy using

a “sponsor” technique: healthy nodes sponsor sick nodes to make them healthy again. Spon-

sorship in this context means to supply a pseudo-random value to the sponsored node, which

the latter uses to renew cryptographic keys. More precisely, in each round, each node requires

values from t sponsors, and it uses these values in the next round to update its own symmetric

key. The authors consider a mobile adversary that can compromise up to k nodes in each time

interval. Two possible strategies are analyzed: the Trivial Adversary and the Smart Adversary.

The former tries to compromise in each time interval a new set of randomly selected sensors that

are not yet compromised. The latter selects the subset of nodes to be compromised in such a way

to disrupt the sponsor mechanism, preferring to compromise the sponsors of a sick node in order

to maintain it sick. DISH successfully mitigates the effect of sensor compromise. However, it

requires many messages to be exchanged in each round. To overcome this issue POSH was

presented in [104]. The idea is similar to DISH, but it differs in one main feature: sponsors push

instead of being pulled. In other words, instead of nodes explicitly requiring the contribution of

t sponsor nodes, the latter voluntarily send their contributions. In this way, the request messages

are no longer used, hence decreasing the overall energy consumption.

Previously cited schemes consider an attacker that can compromise up to a fixed number of

sensors in each round, randomly picked in the whole network. A more realistic hypothesis is

an adversary that can compromise only sensors within its communication or action range. This

adversary is analyzed in [105], where the attacker can control a fixed portion of the network

deployment area, and compromise all sensors that move within it following a particular mobility

model, such as the random way point, or the random jump. The proposed scheme is based on

public key cryptography, but it uses an evolution mechanism based on node collaboration to

generate one-time symmetric random keys. In particular, the scheme leverages the mobility of

the nodes in a way similar to the push mechanism used in POSH. In each round, nodes broadcast

a “contribution” that is then used by their neighbors to calculate the next one-time symmetric

random key. Another scheme that uses sensor mobility is the one proposed in [106]. However,

in this work a different adversary is analyzed, able to roam the network and choose in each round

a new portion of the deployment area to compromise. The proposed protocol is similar to the

one presented in [105], but the mobility of the adversary leads to different results. The authors

show that the proposed scheme depends on: (i) the portion of the deployment surface controlled

by the adversary, (ii) sensors mobility model, and (iii) the density of the network. Analyses and

simulations show that the best self-healing performances are achieved when adopting a sensor

mobility model that provides high variability in sensors neighborhoods.
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2.1.1.3 Authentication

Authentication for unattended sensors was first investigated in [107], where the authors intro-

duced a technique for data aggregation providing forward-secure authentication. However, the

scenario analyzed in [107] in not really a network, since communications among sensors are

not considered at all. The first scheme that explicitly provides authentication in UWSNs was

proposed in [108]. The authors consider a mobile adversary that attempts to replace authentic

data with data of his choice. They introduce two techniques that leverage sensor cooperation,

and that rely on symmetric cryptography: Co-MAC and ExCo. In Co-MAC, which stands for

“Cooperative MAC”, each information is authenticated either by the node that sensed it, and

by a set of co-authenticators. The co-authenticators are selected using a Pseudo Random Num-

ber Generator (PRNG), and are required to keep the MACs of all data they authenticated. The

PRNG relies on a secret seed shared with the sink, which consequently knows which sensors

store the MACs corresponding to any data sensed at any round. ExCo stands for “Extensive

Cooperation”, and uses a different approach: sensors do not send their data, but they send the

MAC of their data to the co-authenticators. When sensors serve as co-authenticator for multi-

ple MACs, it can bundle all such MACs into a single authentication tag. In both Co-MAC and

ExCo, to alter authenticated data, the mobile adversary needs to compromise both the originat-

ing sensor and all the co-authenticators. The authors show that the probability of a successful

attack rapidly drop as the number of the co-authenticators grows. ExCo was finally extended

in [109], introducing a mechanism to dynamically adapt the number of co-authenticators.

2.2 Mobility in Sensing Systems: Introducing Distributed Sensor
Networks

The first model proposed to describe monitoring activities performed by mobile sensors is the

Mobile Wireless Sensor Network (MWSN). In [110], the authors surveyed the security chal-

lenges posed by MWSNs, underlining a lack of specific literature, and that mobility is often

treated as an obstruction to the design and analysis of security schemes. Yet, mobile networks

are fairly common nowadays and, with properly designed protocols, mobility can help increas-

ing connectivity [111], improving coverage and energy saving in WSNs [112], or enhancing

security in general in Ad-Hoc networks [113]. The mobility of the nodes may depend on a

precise design choice, but is often imposed by the intrinsic characteristics of the network. This

happens particularly in unattended contexts, such as wildlife monitoring, where sensors are at-

tached to alive animals, or underwater networks, whose nodes are subject to wave motion and

currents.
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One of the main models characterized by both unpredictable movements of the sensors, and

absence of any centralized control is Participatory Sensing (PS). The implementation of PS is

in fact conditioned by a main limitation: sensors are not property of a single entity. This means

that nodes behavior and position cannot be fully predicted, sensors are not trusted, coordination

is harder, and users privacy must be guaranteed to subsidize their collaboration. The state of the

art in PS security is well surveyed in several papers, which summarize possible issues [114],

applications and solutions [85]. As reported in [115], security challenges in PS are usually con-

sidered different from those posed by MUWSNs. The attention of most researchers [116–120]

is mainly paid to schemes enforcing privacy among the parties of the sensing infrastructure.

In particular, the central authority should not acquire any sensitive information about the data

collectors and the queriers. The main topics of our analysis, data confidentiality and availabil-

ity, are often reputed of minor importance in PS, because of the general superior energy and

communication technologies available to smartphones and similar devices with respect to tra-

ditional sensor nodes. Some papers do recognize that, PS networks being unattended, nodes

can be attacked, sensed data can be revealed, and malicious nodes can inject fake data into the

system. Along this line, in [116] the authors propose negative surveys2 to reliably reconstruct

the probability density function of the original sensed data, in a privacy-preserving way resilient

to data poisoning. With similar goals – ensure integrity of the aggregated data, while still pro-

viding users privacy – the authors of [117] suggest homomorphic message authentication codes

and data slicing and mixing among nodes. However, standard security protocols are usually

considered feasible in PS, and real-time record of the sensed data is only traded-off against pri-

vacy requirements (direct communication of the sensed data to the central authority may expose

information about the users). Nevertheless, especially when sensors are asked to collect data

continuously, it is naive to enforce data security based on sensors real-time response. Long-

range communication technologies require both energy consumption and bandwidth utilization,

and data elaboration and transmission would affect the performances of the sensing devices in

an intrusive way for the users. Treating security in PS similarly to the more general context of

DSNs allows to optimize both efficiency and security, helping PS to become transparent to the

users. Further, a similar approach opens the way to the involvement of a wider range of devices

to the process of data gathering.

Distributed Sensor Networks (DSNs) are composed by mobile untrusted sensors, and character-

ized by the absence of any centralized control. Similarly to UWSNs, one or more trusted entities,

called sinks, sporadically access the network to retrieve as much sensed information as possi-

ble. DSNs are vulnerable to several security threats, particularly because of their distributed

nature and of sensor nodes having limited usable resources. The main issues, together with

2In a negative survey, sensors report a random value picked in the complement set of the actually sensed value.
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possible counteractions, have been widely studied and are surveyed in a number of works [121–

123]. The resources available to sensors can sensibly vary according to the specific applica-

tion setting. However, information security in DSNs cannot rely on standard techniques, such

as tamper-proof hardware (which cannot be installed in low-cost or non proprietary sensors),

standard secure routing protocols (that would extinguish sensors’ batteries too fast, due to the

considerable energy required by data transmission and reception), or public-key cryptography

(which involves excessive computational costs). Thus far, the research community separately

addressed secure key-management algorithms needed to enforce symmetric-key cryptography,

distributed intrusion and capture detection schemes able to limit active attacks, or carefully de-

signed energy-efficient routing protocols [121]. Unfortunately, the solutions proposed so far do

not seem to be rooted on some general principles that could provide all security requirements

at once. DSN requires a new and deep understanding of information handling, going beyond

traditional security mechanisms which require large computation and communication overhead.

Our purpose is exactly to show how a high-level, distributed, light-weight information handling

scheme can ensure data confidentiality and availability, as well as enhance the level of protection

against fake data injection and information traceability. Designing a similar resource-saving se-

cure data storage scheme is crucial to enable very heterogeneous types of networks to contribute

to environmental monitoring activities, without sacrificing security.

Finally, let us give a brief overview of how location privacy in DSNs has been addressed so

far in the literature. The authors of [124] present a useful survey on privacy preservation in

DSNs, where location privacy is divided into two main categories according to what we want

to protect: data source or data sink. In DSNs, the sink can follow two different strategies:

randomly explore the network at every round, or periodically cover the same path. In mobile

contexts, not even the latter approach exposes the sink, because information about the past

behavior of the sink can hardly be deduced by traffic analysis. The attention is therefore totally

directed to source-location privacy, enforced based on two major techniques. The first strategy

consists in confusing the information available to the adversary by routing fake packets mixed

with the real ones. This is mainly implemented through dummy injection [125, 126] or fake data

sources [127]. The second strategy relies on making a routing path difficult to track back. It is

primarily realized through flooding schemes, where each sensor broadcasts the data it senses or

receives to all of its neighbors, deterministically [128] or probabilistically [125]. All the former

techniques could in principle be applied in DSNs, but they require a remarkable amount of

unnecessary messages, with consequent power consumption, though having a limited efficacy.

Our solution is based on the same concepts, confusing the source and reducing the correlation

between the current and original position of data, but it is realized in a much more efficient way,

which only relies on local communication and nodes mobility.
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2.3 Summary

In this chapter, we introduced information security in DSNs. Since the main features of DSNs

are the absence of a (constantly available) central authority, and the (random) mobility of the

sensor nodes, we described the main models of unattended and/or mobile sensing systems con-

sidered in the literature. We started with a characterization of UWSNs, to underline all threats

and security requirements associated to unattended networks, and to summarize the solutions

proposed so far. We delineated more precisely how the intermittent presence of the sink affects

the typical capabilities of the attacker, and the range of feasible cryptographic techniques. Then

we focused on MWSNs and PS, which represent two fundamental paradigms for mobile and dis-

tributed sensing applications, where nevertheless the potential benefits of mobility were rarely

directly addressed. The study of UWSNs, MWSNs and PS allowed us to identify the main goals

and limitations that must be taken in mind when designing a secure data handling scheme for

DSNs. In particular, we observed that security cannot really rely on cryptography when the net-

work is constantly exposed and the topology of the network is continuously changing, but that

important results can be obtained through distributed collaboration and storage. This analysis

paves the way for our solution, presented in the next chapter.





3
Information Sharing and Diffusion in

Distributed Sensor Networks

Secret sharing schemes [129] represent probably the most interesting solution proposed so far

for DSNs security. They respond to the idea that sensed data must be available after a number of

nodes have offloaded their data, and not as soon as one of them gathered them. This means that

data can be elaborated, exchanged and diffused, with the aim to maximize the amount of infor-

mation that the provider can deduce after re-elaborating everything it collected. Secret sharing

was already introduced for MANETs in [130], and firstly applied to UWSNs in [131], provid-

ing resilience to data invalidation. In [132] and [133], the authors defined two new schemes

for distributed data storage and retrieval in UWSNs, based on the combination of secret shar-

ing and encryption. However, all the described approaches lack of a comprehensive analysis of

how other characteristics of the network, mobility over all, can be leveraged to improve the ef-

ficiency and effectiveness of the scheme. More importantly, all those papers restrict themselves

to a discussion of the idea and the expected results, sometimes supported by simulations and

experiments, but never by a deep theoretical analysis of the effectiveness of the scheme, which

instead is what we do in this chapter.

In the following, we describe a novel solution that takes advantage of mobility to efficiently

implement a secure and distributed data storage scheme. Based on a local implementation of se-

cret sharing and on information diffusion, our protocol addresses, at once, all the security needs

of DSNs. In particular, to handle the delicate but necessary trade-off between data availability

39
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and confidentiality, we exhibit precise bounds binding the accessed fraction of the network to

the amount of information recovered by both the sink and the adversary. The performances of

the network under three different mobility models are compared both analytically and through

extended simulations.

The purpose of this chapter is to introduce and enforce the idea that a secure information han-

dling scheme should consider the information sensed by the whole network as a unique entity,

instead of focusing on the data sensed by each node individually. Along this line, we propose a

solution based on the concepts of information sharing and diffusion. To limit energy and band-

width consumption, we rely on distributed collaboration (data are elaborated and shared only

locally), and cleverly leverage nodes mobility. More precisely, we suggest that, right after infor-

mation detection, each node locally implements a (k, n) threshold secret sharing scheme [129]

on the sensed data, deriving n shares such that any k of them are necessary and sufficient to

reconstruct such data. All sensors instantly send the n generated shares to as many randomly

selected neighbors, so that each sensor receives and stores approximately n shares of different

sensed data. Since sensors continue to roam freely in the monitored area, as time goes by their

position says less and less about what pieces of information they carry. Quantitatively, any node

carries more information than is contained in any of the sensed data (to reconstruct which only k

shares are necessary), though it actually carries no information (but only pieces of information,

that are meaningless by themselves). On the whole, the quantity and the content of the informa-

tion that can be recovered from a given fraction of the network now only depends on the size of

that fraction, and not on which nodes are concretely involved. A similar approach is expected

to enforce availability without sacrificing confidentiality, relying on the righteous assumption

that the sinks can access a sensibly larger portion of the network than any realistic adversary.

Similarly, information sharing enhances resistance against fake data injection, provided that the

workload of the sinks can be tuned on the estimated counterfeiting ability of the adversary. Fi-

nally, the more information is shared and the faster the nodes move, the harder it becomes for

the adversary to infer on data source location.

3.1 System Model

Before we discuss our solution in detail, we need to better characterize our system model. We

will separately describe our network model (Section 3.1.1), our adversary model (Section 3.1.2),

and our goals (Section 3.1.3).
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3.1.1 The Network

We assume that N sensor nodes, denoted s1, . . . , sN , are randomly deployed in an L × L square

area A. Each node si moves randomly in A, monitoring the environment in a radius r around

it. The data sensed by si at time t are denoted as D(i, t) ∈ Fq, for a suitable q. In general, the

number of sinks and their behavior (passive/active, static/mobile, periodic/random path, etc.)

could sensibly vary. To simplify the analysis, we assume that sensed data are collected by a

single mobile trusted sink, which sporadically explores a random portion of A, and recovers all

the data stored by the nodes in its communication range.

The only feature of the network that poses serious modeling issues is sensors mobility. It is

natural to assume that sensors move randomly and independently from each other, but it is very

challenging to describe their movements in a way that offers a reasonable trade-off between

realism and ease of treatment. Our choice came down on comparing three different mobility

models, confident to provide an acceptable and synthetic overview of the possible application

settings. Such models, much used in the literature [110–113], are the following:

IID In the IID mobility model, time is discretized into rounds, and the positions occupied by

a sensor over time are independent identically distributed (i.i.d.) random variables. In other

words, at regular intervals the location of each sensor is updated by a draw from the same

probability distribution P over A. We will take P as the uniform distribution over A, as it is

common practice. The IID is the simplest possible model, and serves as a benchmark to which

the other models can be compared.

Random Walk The simple two dimensional RW is a discrete-time mobility model. If (xt
i, y

t
i)

are the coordinates of node si at time t, its position (xt+1
i , yt+1

i ) at time t + 1 is uniformly picked

among the four points (xt
i ± l, yt

i) or (xt
i, y

t
i ± l). l is a parameter of the scheme, used to define the

speed of the sensors.

Random WayPoint The RWP is the most realistic mobility model we consider. Time is con-

tinuous, and sensors motion is simulated by a sequence of independent rectilinear movements.

The RWP uses two parameters vmin and vmax to describe the minimum and maximum speed to

which nodes can move. For each movement, a destination point Q and a speed v are uniformly

picked in A and in the interval (vmin, vmax), respectively. The node moves at speed v until it gets

to Q, then new destination and speed are randomly selected, and so forth.
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3.1.2 The Adversary

Our network model imposes to assume the presence of an active mobile adversary µADV [92].

µADV is not only able to eavesdrop the communications between any two nodes of the network,

but can even corrupt a number of nodes and gain access to all the data and key material they

store. However, we make some conservative assumptions to limit the impact of such a pow-

erful adversary. Firstly, we assume that a secure symmetric key protocol is implemented for

node-to-node communications [122] – hence, sensed data are encrypted – so that the adversary

can only access data received and stored by the corrupted nodes, for which it has access to the

key. Secondly, since in our scheme data are only exchanged locally, we assume that the effect

of traffic analysis is negligible. In particular, the adversary has no access to even contextual

information about shares stored by non corrupted nodes – even if such shares are exchanged

using wireless communication. Thirdly, and most importantly, we assume that the number of

contemporaneously corrupted nodes is a small fraction of the number of nodes accessed by the

sink in a data gathering operation. Indeed, if the amount of sensed, plaintext, data available to

the adversary is the same available to the sink, no scheme can provide both availability and con-

fidentiality. A similar assumption relies on advanced functionalities like healing schemes [104]

(able to recover previously captured nodes) and proactive secret sharing [134] (used to periodi-

cally update the shares). Such primitives, supported by the inability of the adversary to operate

continuously and/or on the whole network to elude detection, allow to assume that only data

stored by recently corrupted sensors are actually accessible to any attacker.

3.1.3 Design Goals

The purpose of our analysis is to show that local information sharing, combined with nodes

mobility, can: (i) provide an optimal trade-off between data availability and confidentiality, (ii)

enhance the level of protection against fake-data injection and information traceability, improv-

ing data integrity and source-location privacy, and (iii) avoid heavy computations and energy-

expensive routing protocols. To enforce data availability means to minimize the amount of data

lost as a consequence of nodes failure or capture. To provide data confidentiality means to avoid

that stored data are exposed to unauthorized entities. These two security requirements are usu-

ally in conflict, because availability can only be ensured introducing some sort of redundancy,

which often ends up exposing confidential data. To address data integrity, means to ensure that

the data reconstructed by the sink coincide with those originally sensed by the nodes, and were

not modified by the attacker. Finally, with source-location privacy we refer to concealing all in-

formation related to the origin of the sensed data. On the whole, our analysis wants to stress the

positive impact of information diffusion on all the former security requirements. In unattended

networks, it must be conciliated with energy saving, and we aim at showing that this is feasible
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leveraging secret sharing and nodes mobility. However, our main goal is to precisely describe

how a proper adjustment of system parameters can concurrently optimize the data recovery pro-

cess and minimize the risk of information leakage. To this end, we will state a (probabilistic)

lower bound on the number of secrets that the sink can reconstruct, based on the total amount of

shares it is able to access, and an analogous upper bound for the adversary.

3.2 Scheme Description

We are now ready to formally describe our scheme. After a recap of threshold secret sharing

schemes (Section 3.2.1), we will exhibit our proposal based on an efficient implementation of

information sharing and diffusion (Section 3.2.2).

3.2.1 Preliminaries: Secret Sharing

Assume a user u knows a secret D. A (k, n)-threshold secret sharing scheme allows u to choose

two positive integers n and k ≤ n and to generate n pieces of information, such that any k out

of them are necessary and sufficient to recover D. Sharing schemes were formally introduced

independently by Shamir [129] and Blakley [135]. We will use Shamir’s definition, based on

polynomial interpolation and readily applicable, but the two schemes are de facto equivalent.

Assume the secret is represented as an element of some finite field Fq. Shamir’s scheme relies

on the secrecy of the polynomial of degree k − 1

f (x) = D + α1x + · · · + αk−1xk−1 ∈ Fq[X]

in which the free term is set equal to D, while the k − 1 coefficients α1, . . . , αk−1 are picked

uniformly at random in Fq. Knowing any k points of the curve defined by f (x), anyone can

recover f (x), and thus D. However, given any k′ < k points, the uncertainty about both f (x)

and D is maximal. The n pieces of information d1, . . . , dn, denoted shares, are therefore defined

as couples d j = (d j,1, d j,2), such that d j,2 = f (d j,1). The first component d j,1 can be defined

implicitly and omitted1, so that each share has the same size of the secret D, making Shamir’s

scheme a so-called minimal scheme. The scheme is also perfect: with less than k shares, anyone

of the possible q values for D is exactly equally likely, and no information about D is leaked. A

minimal and perfect scheme like Shamir’s is called an ideal scheme. The user u that generates

and distributes the shares is called the dealer.
1In our scenario, for instance, the share d j destined to sensor si j can be defined using the unique index i j as

d j,1 = i j.
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3.2.2 Scheme Details

In our scheme, whenever a node s senses some relevant data D, it acts as a dealer of the depicted

(k, n) threshold secret sharing scheme. Including itself among the participants, s distributes

n − 1 shares to as many randomly picked neighboring nodes si1 , . . . , sin−1 , and keeps the last

one for itself. Eventually, s securely deletes D, which is then shared among s, si1 , . . . , sin−1 . In

Section 5.4.2, we denoted with D(i, t) ∈ Fq the data sensed by node si at a given time t. Since our

analysis only focuses on the time window between t and the arrival of the sink or the adversary,

in the remainder of the chapter we will ease the notation and refer D(i, t) as D(i). Formally, our

scheme consists of the following steps, executed independently by each sensor si in each round:

Shares Generation si applies a (k, n) secret sharing scheme to the sensed information D(i) ∈

Fq, obtaining the n shares d1(i), . . . , dn(i).

Local Distribution si randomly selects n − 1 neighboring nodes si1 , . . . , sin−1 , sends d j(i) to

si j , saves dn(i) in its own storage facilities, and securely deletes D(i).

Information Diffusion Each secret D(i) is now shared among the nodes si, si1 , . . . , sin−1 , which

means that all nodes now store shares received by different neighboring sensors. Using sensors

random movements as a diffusion medium, the sensed information gets spatially spread in A.

Data Collection The sink starts exploring A at time t + τS . As a node enters the sink’s com-

munication range, all the shares the node stores are offloaded to the sink and promptly deleted

from the memory of the sensor. As soon as it meets a predetermined number of sensors mS , the

sink leaves the network.

Remark 3.2.1 (Behavior of the adversary). We assume that the adversary starts exploring A at

time t + τA, trying to corrupt as many nodes as possible. However, as discussed in Section 3.1.2,

the adversary must leave the network quickly to evade detection, and can corrupt a number

of nodes mA remarkably smaller than mS . Relying on primitives like healing schemes [104]

or proactive secret sharing [134], we assume that only data stored by the mA newly corrupted

sensors are accessible to the adversary.

Remark 3.2.2 (Connectivity). Our scheme implicitly requires (n − 1)-connectivity: each node

needs at least n − 1 neighbors to share the sensed information with. The precise configuration

of the network at any specific time is unpredictable, but the topology of the network can be

modeled as a random geometric graph [136], whose characteristics depend on the density and

communication range of the nodes. In particular, for any arbitrarily small ε, it is possible to
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identify the largest n ensuring (n − 1)-connectivity with probability at least 1 − ε. Indeed, it

holds [137]

Pr[degmin ≥ n0] =

1 − n0−1∑
i=0

(ρB)i

i!
e−ρB


N

(3.1)

where degmin denotes the minimum degree of the network, N the total number of nodes, ρ the

node density, and B the average communication area of the nodes.2 Consequently, we can define

nmax = max{n0 : Pr[degmin ≥ n0] > 1 − ε} (3.2)

and impose n = nmax + 1.

In the unlucky circumstance that deg(si) < n − 1 for some sensor si, si can ask some neighbors

to route the exceeding shares to their own neighbors. Using a similar approach does not affect

the total number of messages sent by the network, as long as multiple shares can be included

in the same message. It just causes a slight imbalance in the workload of the sensors, because

routers must compensate for the minor number of messages sent by si. Fig. 3.1 shows how nmax

varies, based on network size N and communication range r. We assume that the monitored

area is the [0, 1] × [0, 1] unitary square, and, assuming constant density to simplify, we deduce

it from N.Instead of fixing an absolute threshold ε, we let it vary with N as ε = 1/20N.3 The

function plotted in Fig. 3.1 is

nmax = max{n0 : Pr[degmin ≥ n0] > 1 − 1/20N}

as r and N vary. In particular, we invite the reader to observe (it will be useful later) that when

N = 500, r = 0.15 implies nmax = 4 and r = 0.2 implies nmax = 9.

Figure 3.1: Minimum connectivity of the network.

We implemented the formerly described “route-when-necessary” strategy in all of our 72000

simulations (discussed in Section 3.6). The network was composed of N = 500 nodes, and

2If A has a toroidal topology (no “border-effects”), and r denotes the communication range of the nodes, it simply
holds B = πr2.

3In other words, we are are bounding to 1/20 < 1 (an arbitrary value) the expected number of nodes which need
routing to deliver the shares.
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nmax was set according to (3.2), with ε = 10−4. Table 3.1 summarizes how much routing was

needed to complete the shares distribution: as expected, routing was de facto non-necessary or

negligible.

No. of extra
0 1 2 3 > 3

messages

Times they
71006 682 262 43 7

were necessary

Perc. of the
98.72% 0.95% 0.36% 0.06% 0.01%

simulations

Table 3.1: Required Routing in Shares Distribution

Finally, it is worth to mention a simpler and more effective strategy. As already observed in the

literature [111], mobility can be leveraged to improve the connectivity of the network. Along

the same line, the requirement of (n − 1)-connectivity can be relaxed, by simply establishing

that the shares are not distributed instantly, but each sensor can wait until meets at least n − 1

different nodes. This way, the scheme can be adapted to any kind of mobility model without

ever requiring routing of the shares. However, to deal with a more predictable sharing process

and simplify the analysis, we will not discuss this possibility any further.

3.3 Predicting Information Recovery in Sharing Protocols

In this section, we present the core of our work: a thorough analysis of the information-recovery

process, able to describe the probabilistic dependence of the amount of information recon-

structed on the number of sensors accessed. To enhance readability, we separately expose the

main results (Section 3.3.1) and the proofs (Section 3.3.2).

3.3.1 Main Results

In the following, let Poiλ(E) and Binl,p(E) denote the probability of event E for a Poisson of

mean λ and a Binomial of parameters l and p, respectively.

Theorem 3.3.1. Assume each sensor si shares the secret D(i) with other n−1 randomly selected

neighbors, as described in Section 3.2. Let us pick m nodes of the network uniformly at random,

and define the random variable Rec(m) counting the number of secrets that can be reconstructed

only based on the shares stored by such m sensors. The following probabilistic bounds hold:

Pr[Rec(m) ≤ h] ≤2BinN,p(m) ([0, h]) (3.3)

Pr[Rec(m) ≥ h] ≤2BinN,p(m) ([h,N]) (3.4)
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where µ(m) = mn/N denotes the expected number of shares collected for any D(i), and p(m) =

Poiµ(m) ([k,+∞)).

�

Corollary 3.3.2. Assume that the sink gathers all the shares stored by mS randomly selected

nodes of the network. Let Rec(mS ) denote the random variable counting the number of secret

sensed data that the sink can reconstruct only based on the shares stored by such mS sensors.

Then:

Pr[Rec(mS ) ≤ h] ≤ 2BinN,p(mS ) ([0, h]) (3.5)

As a consequence, for all h < N p(mS ),

Pr[Rec(mS ) ≤ h] ≤ 2
(

N p(mS )
h

)h

e−(N p(mS )−h) (3.6)

�

Corollary 3.3.3. Assume that the adversary gathers all the shares stored by mA randomly se-

lected nodes of the network. Let Rec(mA) denote the random variable counting the number of

secret sensed data that the sink can reconstruct only based on the shares stored by such mA

sensors. Then:

Pr[Rec(mA) ≥ h] ≤ 2BinN,p(mA) ([h,N]) (3.7)

As a consequence, for all h > N p(mA),

Pr[Rec(mA) ≥ h] ≤ 2
(

N p(mA)
h

)h

e−(h−N p(mA)) (3.8)

�

(3.6) and (3.8) provide weaker bounds than (3.5) and (3.7), but they show more explicitly the

exponential drop of the tails Pr[Rec(mS ) ≤ h] and Pr[Rec(mA) ≥ h]. To permit a better under-

standing of (3.5) and (3.7), we plot such bounds in Figs. 3.2 and 3.3, letting the parameters

k, mS and mA vary. The size of the network and the communication range of the sensors are

set as N = 500 and r = 0.15, respectively. Consequently (see Remark 3.2.2), we impose

n = nmax + 1 = 5. In Figs. 3.2a and 3.3a, we fix mS /N = 0.6 and mA/N = 0.1, and compare

the bounds for different values of k. In Figs. 3.2b and 3.3b we do the opposite, fixing k = 3 and

letting mS /N and mA/N vary.

By a look at the plots, we observe that: (i) the proposed scheme is very effective, with respect

to a scenario where each sensor keeps its own data, and (ii) the consequences of statistical fluc-

tuations are negligible, with the distribution of the number of recovered secrets being sharply
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concentrated around its expected (and most probable) value. To better motivate the latter state-

ments, let us momentarily focus on the case of a network using a (3, 5) secret sharing scheme.

Fig. 3.2a shows that, accessing 60% of the network, the sink can almost surely reconstruct a

percentage between 50% and 60% of the sensed data. Similarly, Fig. 3.3a shows that, corrupt-

ing 10% of the network, the adversary can almost surely reconstruct a percentage between 2%

and 3% of the sensed data. If each sensor kept its own data, the percentage of sensed data

collected would simply equal the accessed (or corrupted) percentage of the network. In other

words, the effects of a (3, 5) scheme are not only highly predictable, but also highly desirable:

while the sink’s performances only slightly degrade (the expected percentage of information re-

covered decreases from 60% to approximately 55%), the consequences of an attack are reduced

of approximately 75% (the expected percentage of information stolen decreases from 10% to

approximately 2.5%). Summing up, the scheme provides a remarkable trade-off between confi-

dentiality and availability.

(a) mS /N = 0.6, varying k. (b) k = 3, varying mS /N.

Figure 3.2: Percentage of data recovered by the sink, according to (3.5).

(a) mA/N = 0.1, varying k (for clarity, only
h/N ∈ (0, 1/2) is shown).

(b) k = 3, varying mA/N.

Figure 3.3: Percentage of data recovered by the adversary, according to (3.7).

3.3.2 Proofs

In this section, we will prove Theorem 3.3.1, Corollary 3.3.2 and Corollary 3.3.3. The proof of

Theorem 3.3.1 relies on a deeper analysis of the information-recovery process, mostly inspired

by the well-known balls into bins process and by the work [138] by Mitzenmacher and Upfal.
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Corollaries 3.3.2 and 3.3.3 follow easily from Theorem 3.3.1 and from well known tail bounds

from the literature.

Before going through the details of the proofs, let us state some general considerations. In our

scheme, each node sends its shares to n − 1 randomly chosen neighbors and keeps the last share

for itself. Since sensors are randomly deployed, if N is sufficiently large, the number of shares

stored by each node is sharply concentrated around the expected value n. Indeed, a Chernoff-

like bound for the number of shares stored by each node could be easily stated, leveraging that

sensors pick the addressees of the shares uniformly at random, and independently from each

other. For the sake of simplicity, our theoretical analysis relies on the assumption that every

node si stores exactly n shares. Particularly since we analyze events that involve a large number

of nodes altogether, we are confident that this assumption approximates the reality sufficiently

precisely not to invalidate our results. The simulations presented in Section 3.6 will prove us

right.

Summing up, our model can be described as follows:

• When the sink or the adversary access a node, they obtain n shares originated by n different

randomly picked nodes of the network.

• The sink and the adversary select the sensors uniformly at random, therefore there is no

correlation between the shares stored by any two of the accessed nodes.

In reality, as well as in our simulations, the sink and the adversary roam in A and retrieve data

from the first sensors they meet. In Section 3.4 we will discuss in details in which circumstances

the model is realistic and can be used to accurately describe concrete application settings.

3.3.2.1 Proof of Theorem 3.3.1

The shares-recovery process consists in choosing m nodes uniformly at random and gathering

all the shares they store. Such a procedure can be modeled by m independent iterations of the

following experiment: you start with a set of n balls (corresponding to the n shares stored by a

node) and always with the same set of N bins (corresponding to the N nodes of the network);

then you throw the balls one by one into a random bin, removing each time the bin where the

last thrown ball felt; at the end, the n balls necessarily felt into n different bins (the nodes that

generated the corresponding n shares). The two processes only differ by one aspect: in the

network, any node generates n shares in total; at the end of the m balls-into-bins experiments, if

m > n, there can potentially be some bins that contain more than n balls. However, for N much

larger than n, the event of hitting the same bin more than n times has a negligible probability,

hence the balls-into-bins experiments model the process perfectly fine. The relationship between
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the number m of experiments and the number of bins that contain at least k balls is now a model

of the relationship between the number of accessed nodes and the number of recovered secrets.

Let us start with a bit of notation and some initial considerations. We denote yi = { j1, . . . , jn}

the outcome of the ith experiment, meaning that the balls felt into bins j1, . . . , jn. Accordingly,

we write j ∈ yi to say that bin j was hit during the ith experiment, and define 1 j∈yi as the

indicator function of the event { j ∈ yi}. The outcome of each experiment is a randomly chosen

selection of the
(

N
n

)
different ways of choosing n bins out of N. By construction, every such

choice is equally likely and its probability is then 1/
(

N
n

)
. The probability of a bin j getting hit

is equal to the ratio between the number of choices involving that particular bin and the total

number of choices. Once a bin is fixed, there remain N − 1 bins available and n − 1 bins to

pick, i.e., Pr[1 j∈yi = 1] =
(

N−1
n−1

)
/
(

N
n

)
= n

N . Observe that 1 j∈yi and 1 j′∈yi are not independent

for any j , j′. In fact, for the same experiment, knowing that a ball felt into bin j decreases

the probability that a ball felt into bin j′ as well, and vice versa. To the contrary, the results of

different experiments are independent by construction, that is, 1 j∈yi and 1 j∈yi′ are independent

for any i , i′. Consequently, if we denote Y j(m) =
∑m

i=1 1 j∈yi the variable counting how many

balls are in the jth bin after m experiments, we know that Y j(m) d
∼ Binm,n/N . If m and N are

sufficiently large with respect to n and h, it holds Binm,n/N ≈ Poiµ(m), where µ(m) = m · n/N and

where the approximation error is known to be asymptotically bounded by n/N (see, e.g., [139]).

It follows that

Pr[Y j(m) ≥ k] ≈ Poiµ(m) ([k,+∞)) = p(m)

The problem when studying the properties of the vector variable Y(m) = (Y1(m), . . . ,YN(m)), is

that, as for the variables 1 j∈yi , the components Y j(m) are not mutually independent. However,

in [138], the authors discuss some technicalities that allow to elude the dependence and obtain

a very handy bound. Let Ŷ1, . . . , ŶN be i.i.d. Poiµ(m) variables. The distribution of the vector

variable Ŷ = (Ŷ1, . . . , ŶN) conditioned to the event F =
{∑N

j=1 Ŷ j = C
}
, where C is a constant,

is identical to the distribution of Y(C), regardless of n. By studying how the distribution of Ŷ

changes when we condition on F, the following theorem can be proved:

Theorem A (5.14 in [138]). If f (z1, . . . , zN) is a non-negative function such that E[ f (Y(m))] is

monotonically increasing or decreasing with the number of experiments m, then

E[ f (Y(m))] ≤ 2E[ f (Ŷ)]

�

Now, take any event E(z1, . . . , zN) such that Pr[E(Y(m))] is monotonically increasing or decreas-

ing with m. The most interesting consequence of Theorem A is that Pr[E(Y(m))] ≤ 2 Pr[E(Ŷ)],

that is, the probability of the event E in the case of the bins-into-balls process is not greater than
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twice the probability of E in the case of the i.i.d. Poisson variables. In fact, if f is taken as

the indicator function of the event E, then f is non-negative and E[ f ] = Pr[E] is monotonous,

satisfying the hypothesis of the theorem. Theorem A hence provides a way to estimate the rela-

tion between accessed nodes and recovered secrets, studying the more manageable case of i.i.d.

Poisson variables.

Finally, we can define the indicator functions 1Y j(m)≥k and 1Ŷ j≥k of the events {Y j(m) ≥ k} and

{Ŷ j ≥ k}, respectively. The variable Rec(m) we defined to count the number of secrets success-

fully recovered after m nodes have been met can now be expressed as Rec(m) =
∑N

j=1 1Y j(m)≥k

that is, as the number of bins that, after m experiments, already contain at least k balls. Analo-

gously, for the i.i.d. Poisson variables, let us define the variable R̂ec =
∑N

j=1 1Ŷ j≥k. First of all,

from the linearity of expectation, we know that E[Rec(m)] = N p(m). Further, since the number

of bins with at least k balls is clearly non decreasing as the number of experiments increases, we

know that Pr[Rec(m) ≤ h] is monotonically decreasing, and Pr[Rec(m) ≥ h] is monotonically

increasing. Consequently, Theorem A provides the bounds:

Pr[Rec(m) ≤ h] ≤2 Pr[R̂ec ≤ h]

Pr[Rec(m) ≥ h] ≤2 Pr[R̂ec ≥ h]

Since the variables Ŷ j are i.i.d. Poiµ(m), the indicator functions 1Ŷ j≥k are i.i.d. Bernoulli variables

of parameter p(m) and their sum R̂ec is a BinN,p(m). As a consequence, we finally obtain the

desired bounds:

Pr[Rec(m) ≤ h] ≤2BinN,p(m) ([0, h])

Pr[Rec(m) ≥ h] ≤2BinN,p(m) ([h,N])

3.3.2.2 Proof of Corollary 3.3.2

As we already observed, the position of a node at time t+τS being independent from its position

at time t, whatever is the strategy used by the sink to roam in A and choose the sensors, it is de

facto equivalent to a random pick of mS nodes of the network. This means that we can directly

apply Theorem 3.3.1 to obtain the first bound for the sink:

Pr[Rec(mS ) ≤ h] ≤ 2BinN,p(mS ) ([0, h])

Now, it only remains to apply the well known (e.g., see [138]) Chernoff’s bound for the tail of

the Binomial distribution, to get

Pr[Rec(mS ) ≤ h] ≤ 2
(

N p(mS )
h

)h

e−(N p(mS )−h)
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for all h < N p(mS ) = E[Rec(mS )].

3.3.2.3 Proof of Corollary 3.3.3

As for the adversary, similar considerations to those made for the sink are valid: if the position of

each node at time t +τA is independent from its position at time t, any line of attack is equivalent

to corrupting mA randomly picked sensors. Once again, we can directly apply Theorem 3.3.1 to

obtain the first bound for the adversary:

Pr[Rec(mA) ≥ h] ≤ 2BinN,p(mA) ([h,N])

Again, using Chernoff’s bound for the tail of the Binomial distribution, we finally get

Pr[Rec(mA) ≥ h] ≤ 2
(

N p(mA)
h

)h

e−(h−N p(mA))

for all h > N p(mA) = E[Rec(mA)].

3.4 Can We Predict the Effects of Random Mobility?

In DSNs, sensors can move according to very different motions. The way they explore the

environment is a very important parameter, which affects how (fast) information get diffused. A

very flexible and realistic mobility model would be preferable, but it would result very difficult

to analyze, preventing any explicit result. As a consequence (as commonly done in the literature

with significant results [110–113]), we chose to compare three models, IID, RW and RWP, easy

to define and analyze, though able to provide a comprehensive overview of possible application

settings. One of the purposes of this section is to formally describe the properties of these

three models, using the apparatus of notations and results of the theory of stochastic processes

(Section 3.4.1). However, we will subsequently (Section 3.4.2) show that to study the properties

of the mobility model is not enough: on their own, they cannot capture how other parameters,

which describe the processes of information sharing and recovery, affect the time required for

the performances of the network to become predictable.

3.4.1 Mobility Models Are Stochastic Processes

A stochastic process is a family of random variables {Xt, t ∈ T ⊂ R+}, indexed by a parameter

t (usually denoting time), defined over the same sample space Ω, and taking values in a set S

called state space of the process. A stochastic process is called a Markov process if it has “no

memory”: given Xt = x, the transition probability P(Xt′ = x′) for all t′ > t does not depend on
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the history of the process, but only on x (and possibly t). In our scenario, the position at time t

of a sensor s can be modeled as a Markov process Xt taking values in A, to which a probability

distribution νt can be associated. When the state space S is finite (i.e., nodes can be located

only in a finite number of points of A), νt can be represented as a vector of dimension |S |, where

for every x ∈ S the coordinate νt(x) is the probability Pr[Xt = x]. Otherwise, the probability

distribution is expressed through a probability density function φt(x) such that, for any W ⊂

S , it holds νt(W) =
∫

W φt(x)dx. Under suitable conditions [140], verified by any reasonable

mobility model, a Markov process admits a limiting distribution ν, such that limt→∞ νt = ν.

ν is usually referred to as the stationary distribution of the process, since, once the process

reaches the distribution ν, it keeps the same distribution thereafter. The mixing time of a Markov

process measures the time necessary for the distribution of a process to get sufficiently close

to stationarity. Given a distance d for probability measures, and an arbitrary constant ε < 1/2,

the mixing time tmix(ε) of the process Xt is defined as tmix(ε) := min{t > 0 : d(νt, ν) ≤ ε}. It

can be shown that the order of magnitude of the mixing time does not depend on ε, thus it is

normal practice to use tmix(1/4), usually denoted just as tmix. Observe that, since the stationary

distribution is independent from the initial conditions, the mixing time can be equivalently seen

as a measure of the time necessary for Xt to lose correlation with its starting location X0.4

In short, the stationary distribution tells us how the position of a node will tend to distribute,

while the mixing time tells us after how much time the actual distribution will be “close” to

the asymptotic one, independently from the initial distribution. IID and RW are two examples

of mobility models whose asymptotic probability distribution is uniform, but represent the two

extreme cases for the time necessary to approach stationarity. In the IID model, by definition,

mixing is instantaneous, while the RW mixes very slowly: its tmix is in O(|A|/l2 ln
(
|A|/l2

)
) [136],

that is, quadratic in the number of states.5 The RWP, on the other hand, is an example of a

mobility model whose stationary distribution is not uniform, unbalanced toward the center and

almost centrally symmetrical. Its tmix is a middle ground between those of IID and RW, being

in O(
√
|A|/l) [142].6 For this reason, the three models considered, even if rather simple in their

definition, represent an interesting snapshot of the possible behaviors of the network.

3.4.2 What Parameters Do Affect Our Model?

Theorem 3.3.1, presented in section 3.3.1, is the main result of this work. It enables to predict the

effects of information sharing, by estimating the amount of sensed data that can be reconstructed

only using the shares stored by m sensors. Theorem 3.3.1 relies on two main assumptions that

allow us to completely overlook mobility concerns: (i) that m sensors are picked uniformly at

4For a complete dissertation on these and similar subjects, we remand the interested reader to [141] or [140].
5|A|/l2 is the number of vertexes of a 2D square lattice over A, if l is the distance between any two adjacent

vertexes.
6Here l = (vmin + vmax)/2 is the average unitary displacement of a node.
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random, and (ii) that to meet a sensor is equivalent to collect n shares generated by n sensors

chosen uniformly at random. Our simplified model relies on the following rationale: after the

sensors moved randomly for enough time, spatial constraints are no longer influential, neither

for what concerns the way data are gathered, nor for what concerns the way data were shared.

In [3], to quantify how much time is enough, we proposed to use the mixing time of the mobility

model. In fact, the mixing time describes how quickly a sensor loses correlation with its starting

position – that is, with the origin of the shares it stores. Unfortunately, the mixing time is unable

to capture how other parameters affect the time necessary for our model to precisely describe

the real performances of the network, and it often results a too loose upper bound on the time

actually needed. In the following, we will briefly highlight the impact of the number m of

sensors accessed, of the communication range r, and of the total number n of shares generated

from any sensed data on the ability to reliably predict the features of the data recovery process.

Our purpose for future work is to provide an analysis, even more comprehensive than the one

presented in Section 3.3, able to capture the relation among mobility features, time, and system

parameters. We are nevertheless confident that the analytical and experimental results presented

in this chapter provide a remarkable insight on the settings that allow information sharing and

diffusion to yield the best benefits.

In the following, we denote Xt(i) the position of sensor si at time t. To ease notation, we assume

that data were shared at time 0 and are collected at time τ. We also assume that the system

already reached stationarity at time 0, meaning that, for all i ∈ {1, . . . ,N} and x ∈ A, Pr[X0(i) =

x] = ν(x), where ν is the stationary distribution of the mobility model of the sensors. Observe

that, if at time 0 the process already reached stationarity, then the distribution at time t will also

be stationary, for all t > 0. However, we will sometimes need to analyze the position Xτ( j)

of a sensor s j at time τ with respect to its position X0( j) at time 0, and to consider how the

distribution of Xτ( j) depends on X0( j). Finally, we remark that the distribution of the sensors

can be seen as a density: the number Zt(R) of sensors in a region R ⊂ A has expected value

E[Zt(R)] = N Pr[Xt(i) ∈ R] = Nνt(R)

and the larger is N, the more Zt(R) will be sharply concentrated around its mean.

Impact of m

Assume that m = N, that is, the sink (or, equivalently, the adversary) gathers the shares stored

by all sensors. In this case, it is clear that the time past from data sensing to data recovery

is not relevant. Indeed, the sensors could even not move at all, and all sensed data would be

reconstructed anyway. This (extreme) example serves to show that the size of the portion of

the network accessed can sensibly affect the impact of nodes mobility. More precisely, in our
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model we assumed that the set of nodes accessed is equivalent to a selection of m sensors chosen

uniformly at random, regardless of the strategy used to explore the network. In other words, we

assumed that τ is large enough to ensure that

max
R⊂A:

ν(R)= m
N

∣∣∣∣∣∣∣∣Pr
[
∀ j = 1, . . . ,m : Xτ( j) ∈ R | X0( j) d

∼ ν
]
−

1(
N
m

)
∣∣∣∣∣∣∣∣ < ε (3.9)

for some sufficiently small ε. Indeed, (3.9) says that, if we explore any region R ⊂ A such that

ν(R) = m/N (i.e., where we expect to find m sensors), for any m sensors whose starting positions

X0(1), . . . , X0(m) are picked according to ν, the probability to find such m sensors in R is close

to the probability of picking them when drawing uniformly at random among the N sensors of

the network. One of the possible ways to define tmix(ε) is as the minimum t such that

max
R⊂A

∣∣∣∣∣Pr
[
Xt(i) ∈ R | X0(i) d

∼ ν
]
− ν(R)

∣∣∣∣∣ < ε (3.10)

If we compare (3.9) and (3.10), it is easy to realize that, while the latter does not depend on m, in

the former the size of R grows with m, with a twofold effect: (i) the set on which we maximize

is reduced, and (ii) as m tends to N, the two probabilities tend both to 1, regardless of τ.

Impact of r

Assume that the network enjoys full visibility, so that any sensed data D(i) are shared among

n sensors picked uniformly at random among all N sensors. In that case, the hypotheses of

Theorem 3.3.1 are clearly immediately verified. In any realistic setting, we cannot assume

full visibility, but, intuitively, the larger is r, the less correlation exists between the starting

position of a node and the shares it stores, hence the faster a local exploration of the network

will provide the same result of accessing nodes uniformly at random. Let us try to give a deeper

insight. In a sense, we assumed that the probability that a sensor s j stores a share of D(i) can

be approximated by n/N, regardless of i and Xτ( j). Let us denote B(i) = Br(X0(i)) the area

covered by the transceiver of si at time 0, and |B(i)| the number of nodes in B(i) (including si).

For the sake of simplicity, let us assume that all n shares d j1(i), . . . , d jn(i) are sent to sensors in

B(i) picked independently and uniformly at random. Now, the probability that s j stores one of

the d jh(i) is given by the probability that s j was in B(i) at time 0, times the probability that s j

was one of the n nodes selected, that is

Pr[X0( j) ∈ B(i) | Xτ( j)] ·
n
|B(i)|

We can estimate |B(i)| with its expected value

E[|B(i)|] = Nν(B(i))
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Further, by Bayes Theorem we have

Pr[X0( j) ∈ B(i) | Xτ( j)] = Pr[Xτ( j) | X0( j) ∈ B(i)] ·
ν(B(i))
ν(Xτ( j))

Putting pieces together, we have

Pr[s stores one of the d jh(i)] = Pr[Xτ( j) | X0( j) ∈ B(i)] ·
ν(B(i))
ν(Xτ( j))

·
n

Nν(B(i))

=
Pr[Xτ( j) | X0( j) ∈ B(i)]

ν(Xτ( j))
·

n
N

This makes pretty clearly our point: if B(i) coincides with A (full visibility), the numerator and

denominator of the leftmost fraction coincide, because with no information at all on the starting

location of s j, its position at time τ is distributed as ν; in general, the larger is B(i), the less

conditioned is X0( j), and consequently the faster the distribution of Xt( j) tends to ν.

Impact of n

To understand the impact of n, let us start by a comparison of two extreme cases. First, assume

n = 1 (and therefore k = 1 as well). In this case, no sharing scheme is actually implemented,

but data are simply moved to a sensor different from the one that sensed them, similarly to

the MOVE-ONCE scheme introduced in [90]. This means that, regardless of how much time

elapsed from data sensing to data recovery, and of how far sensors moved in the meanwhile,

accessing m sensors allows to collect exactly m sensed data. On the contrary, assume that the

network enjoys full visibility (or data are routed) and n = N. In this case, each sensor stores a

share of each sensed data, and data recovery only depends on how many sensors are met, and

not on mobility features. More generally, the larger is n, the more likely it is that shares of the

same data can be quickly found far away from each other. More precisely, let

νt(x) = Pr[Xt( j) = x | X0( j) ∈ B(i)]

denote the probability that a sensor s j is in x at time t, given that it was in B(i) at time 0. For any

region R ⊂ A, we can compute the expected number of shares of data D(i) that can be found in

R at time τ as nντ(R), and the larger is n, the more likely the actual number will be close to its

expected value. Therefore, if we want to find at least k of them, we must impose nντ(R) ≥ k, or

equivalently

ντ(R) ≥
k
n

(3.11)

If R is somewhat far from B(i), νt(R) is increasing in t, for all t ≤ tmix. For any fixed k, the

larger is n, the less mixed the network needs to be, hence the smaller τ can be, for (3.11) to be

nevertheless satisfied.
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3.5 Integrity and Source-Location Privacy Evaluation

In this section, we evaluate how and to which extent the proposed scheme enforces data integrity

and source-location privacy. For what concerns the resilience against data poisoning, we will see

that the properties of secret sharing itself allow to identify fake shares injected by the adversary,

provided that enough legitimate shares are collected (Section 3.5.1). As for source-location

privacy, we will instead stress that it is the specific nature of our scheme, which avoids routing

combining information sharing and nodes mobility, to make very hard for the adversary to track

data back to their source (Section 3.5.2).

3.5.1 Data Integrity

Protect data integrity means to defend from fake-data injection, that is, an attack consisting in

poisoning the sensed information with arbitrary counterfeit data. To avoid that such fake data are

promptly rejected by the sink, without even being considered, the adversary must authenticate

them, so as to make them look as they were legitimately generated by an authorized node of

the network. Consequently, a similar attack does indeed represent a threat only if the adversary

injects fake data into the network through some corrupted sensors it is currently controlling. In

this context, we need to distinguish between two possible scenarios:

Fake-Secret Injection (FSeI) FSeI refers to the possibility that the adversary generates a

counterfeit datum D̂, and uses a corrupted sensor ŝ to inject D̂ into the network. ŝ behaves

as if it actually sensed D̂, generating and distributing n shares from the secret D̂. Since such

shares are obtained exactly as if D̂ was indeed sensed by ŝ, it is impossible for the sink to detect

that D̂ was counterfeit, unless it somehow detects that ŝ was corrupted. In other words, it is

impossible to defend from FSeI, since it would require to be able to distinguish data generated

by corrupted and legitimate sensors.

Fake-Shares Injection (FShI) FShI refers to the possibility that the adversary uses a cor-

rupted sensors ŝ to inject into the network fake shares, which look as they were legitimately

generated. In other words, if ŝ received a share dŝ of the secret D sensed by an honest sensor

s, ŝ can arbitrarily modify dŝ into d̂ŝ. This way, if the sink meets ŝ after the adversary left the

network, the sink will consider d̂ŝ as a legitimate share and reconstruct a wrong secret D̂ , D.

Since FSeI cannot be prevented nor tackled, we will only focus on FShI. However, contrarily to

FSeI, FShI is not a real threat in many scenarios. In fact, if the shares are signed and/or encrypted

with an end-to-end symmetric algorithm before being diffused, a corrupted node cannot modify

shares generated by any honest node, without being detected by the sink. However, we will
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conservatively assume that this is not the case, and discuss what level of protection against FShI

can be guaranteed by the implementation of threshold secret sharing.

In Section 3.2.1, we discussed threshold secret sharing schemes, recalling that, for any choice

of k ≤ n, n shares d1, . . . , dn can be generated from a secret D, such that any k out of them are

necessary and sufficient to recover D. Since no information at all about D can be obtained from

less than k shares, if the sink is not able to recover at least k of the d j, it will not even try to

recover D. Therefore, let us assume that the sink recovers r shares d j1 , . . . , d jr of the same secret

D, with k ≤ r ≤ n. If r = k, the sink has no other option than using the k shares recovered to

reconstruct D. In that case, it is sufficient that one of the k shares recovered is counterfeit, to

ensure that the sink reconstructs a secret D̂ , D. To the contrary, if r > k, the sink knows that

the r points corresponding to the r shares recovered should all be on the curve of the polynomial

f (x) = D + α1x + · · · + αk−1xk−1, which univocally determines the secret D. The sink has
(

r
k

)
ways to choose k of the r shares to recover f (x), and thus D, from. The recovered secret will

be correct if and only if all the k chosen shares are legitimate. Inspired by the latter line of

reasoning, we propose the following secret reconstruction strategy to optimize the behavior of

the sink:

Detection of fake shares First, the sink picks any k shares and uses them to reconstruct f (x).

Then, it checks each one of the remaining r − k shares against f (x), verifying that the corre-

sponding points satisfy the equation of f (x). If all the shares pass the test, there are only two

alternatives: or the shares are all valid, or they are all counterfeit. In both cases, the sink has no

other option but accepting the recovered secret as valid, and halts. To the contrary, if there exists

at least one share which is inconsistent with f (x), then the sink has detected the presence of at

least one fake share, and goes on with the following step.

Maximum likelihood secret reconstruction If the sink verified that at least one of the r shares

is fake, it can try to probabilistically distinguish between counterfeit and legitimate shares.

Since, by hypothesis, the adversary can only corrupt a limited number of nodes, we assume

that a share is more likely to be real than fake. Accordingly, following a strategy inspired by

the well known maximum likelihood decoding, the sink simply recognizes the most probable

secret as follows: (i) for each of the
(

r
k

)
subsets of cardinality k of the set {d j1 , . . . , d jr }, the sink

reconstruct the secret corresponding to those k shares; (ii) the value that appears more frequently

among the
(

r
k

)
results is assigned to the secret D (if there are more than one value appearing with

the same, maximum frequency, one of them is picked uniformly at random). Since the values

reconstructed using at least one counterfeit share are uniformly distributed over Fq, it can be

easily proved that this strategy returns the correct secret D, provided that there are at least k + 1

legitimate shares, and that there is a majority of legitimate shares in the set {d j1 , . . . , d jr }.
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3.5.2 Source-Location Privacy

Concerning source-location privacy, the first remarkable improvement provided by our scheme,

with respect to protocols relying on data routing for information dissemination, is that the im-

pact of traffic analysis is completely nullified, so the protocol is perfectly secure against passive

eavesdroppers. In fact, apart from very unlucky circumstances (see Remark 3.2.2 in Section 3.2),

no message is ever forwarded, hence there are no data paths that a traffic analysis can highlight.

More generally, we will distinguish the concept of source-location privacy into two different

security requirements. Usually, the concept of source-location privacy refers to the level of

secrecy concerning the place where some data were originated, rather than the identity of the

node that actually sensed them. In static networks, the two notions are equivalent, because the

location of an event automatically identifies the nodes able to observe it. In our context, however,

due to nodes mobility, an adversary can recover a piece of information very far from where it

was originally generated. As a consequence, we distinguish source-location privacy into:

Source-Node Privacy (SNP) SNP, discussed in Section 3.5.2.1, refers to what the adversary

can deduce about the sensor that generated some intercepted pieces of information.

Source-Position Privacy (SPP) SPP, treated in Section 3.5.2.2, refers to what the adversary

can deduce about the place where the datum corresponding to the intercepted pieces of infor-

mation was originally sensed.

The remainder of this section relies on the following assumptions. The adversary captured l

(with l ≤ n) sensors storing a share of the same datum D. The adversary is able to recognize that

those shares were indeed generated from the same secret D, and wants to deduce information

about the source-node and source-position of D. No information about the source of D are ac-

cessible in clear-text from less than k shares (e.g., no such information are included in the header

of the shares), otherwise source-location privacy would be obviously and fatally compromised.

However, other than the sensed datum itself, the secret D also contains all the information about

where and by which node that datum was sensed. This means that, if l ≥ k, the source-node and

source-position of D are known to the adversary.

3.5.2.1 Source-Node Privacy

Any sharing protocol, similarly to data replication, introduces at least a basic level of protection

with respect to an adversary aiming to identify which node sensed some data D: the n nodes

carrying the shares of D are indistinguishable from the adversary point of view, providing what

is called n-anonymity. The purpose of this section is to better quantify the level of source-node
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privacy provided by a (k, n) threshold sharing scheme, by introducing SNP metrics, depending

on k, n, N and the number l of shares recovered by the adversary.

By hypothesis, if l ≥ k, the source-node of D is fatally leaked. To the contrary, if l = 0, all the

N nodes are equally likely the source of D. In all middle ground cases, that is, when 0 < l < k,

from the perspective of the attacker, each one of the l corrupted nodes storing one of the shares

of D is the source node with probability 1/n, while any other node is the source node with

probability (n − l)/n(N − l). Let ν(l) be the latter probability distribution over the N sensors. A

SNP metric can be naturally induced by any way to measure the level of uncertainty associated

to ν(l).

For instance, we can use Shannon’s Entropy [143], (usually denoted with the letter H) and define

SNPH(l, k, n,N) =

N∑
i=1

Pr[si] log
1

Pr[si]
,

where Pr[si] denotes the probability that si is the source node. It is straightforward to verify that

SNPH(l, k, n,N) =


0 if l ≥ k

l
n log n + n−l

n log n(N−l)
n−l if 0 < l < k

log N if l = 0

Alternatively, the Total Variation (TV) distance [136] between two probability distributions can

be used as a metric, comparing ν(l) to the uniform distribution ν(0) over the N nodes obtained

when l = 0. In this case, we can define

SNPTV(l, k, n,N) = 1 − ||π − ν(l)||TV ,

and it can be easily verified that

SNPTV(l, k, n,N) =


1
N if l ≥ k

1 − l
(

1
n −

1
N

)
if 0 < l < k

1 if l = 0

In both cases, as expected, the SNP is minimized when l ≥ k, and maximized when l = 0.

We assumed that l ≥ k gives the adversary complete knowledge about the source-node. If, to

the contrary, the source-node is not specified in D (e.g., it may not be interesting for the sink to

know the source-node, but just the source-position), the case l ≥ k does not represent a special
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case anymore. In this setting, we would only have, for all 0 ≤ l ≤ n,

SNPH(l, k, n,N) =
l
n

log n +
n − l

n
log

n(N − l)
n − l

,

SNPTV(l, k, n,N) = 1 − l
(
1
n
−

1
N

)
.

Finally, it is important to underline that source-node privacy can be further improved (and be

always maximized, if D does not contain information on the source-node), upon the requirement

of a slightly stronger connectivity, and at the cost of a slightly greater energy consumption. In

fact, if the source-node forwards all the n shares to as many neighboring sensors, none of the

node carrying shares of D actually sensed D, and there is absolutely no identifiable correlation

between the possession of the shares and their generation.

3.5.2.2 Source-Position Privacy

More realistically, instead of the source-node, the adversary could be interested in identifying

the place where some data were sensed. The best strategy the attacker can adopt is very well

described in [144]. In their model, the network is static and sensors are deployed over a 2D

lattice. Whenever a node senses some data, it generates n replica and diffuses them through the

network, each replica being independently routed according to a RW on the lattice. The authors

of [144] show that the coordinate median of the locations of the intercepted replica provides a

good approximation of the source-location, suggesting that the adversary should progressively

attack the nodes closer to the identified point.

Apparently, the analysis performed in [144] can be exactly replicated for our scheme, at least if

sensors move according to a 2D RW. In fact, the only difference is that the replica (or shares)

are carried by mobile nodes, instead of being routed through a static network, but this does

not affect the way the information about the source-position is diffused through the network.

More generally, under most random mobility models, the idea that the most probable source-

position of a sensed datum is the coordinate median of the points where the corresponding

shares were recovered may sound extremely reasonable. However, such an insight, which can

be theoretically and empirically proved under the hypothesis that the shares did not get too far

from their starting location, turns out as completely misleading when such an assumption is not

satisfied.

To understand why this it true, we can just think to a very important property of all random

processes: the mixing time (see Section 3.4). As soon as the time elapsed from the shares

distribution till the nodes capture is of the same order of magnitude of the mixing time of the

diffusion model, by definition, there is only a very small correlation between the positions of the

nodes carrying the shares and the position where the shares were generated. Consequently, any
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possible source-position is (almost) equally likely, no matter where the shares are found. The

analysis in [144] makes sense only because, in static networks, the n replicas are necessarily

routed for a predetermined small number of hops, due to the constraint that the length of the

routing path must be traded-off against energy saving. In our scenario, to the contrary, the shares

are carried by continuously moving nodes, whose position will eventually become independent

from where data were sensed, making all probabilistic considerations about the source-position

meaningless. A similar attack can be applied to our scenario only for fresh data, that is, data

generated sufficiently recently. For all the so-called historical data, the privacy of the place

where data were sensed is maximal, no matter what strategy the adversary adopts.

According to the former line of reasoning, we can introduce the following metric for the SPP. We

define ν the stationary distribution of the mobility model of the network, and νt(x) the probability

distribution at time t of the position of a node which was in point x ∈ A at time zero. If xD is the

place where D was sensed, we define

SPP(t) = 1 − ||ν − νt(xD)||TV

as the complementary of the TV distance between νt(xD) and ν. When t = 0, the distance

between νt(xD) and ν is maximized, so the SPP is minimized, according to the idea that inter-

cepting a share when it was just generated gives complete information about the source-position.

To the contrary, the more time passes, the more νt(xD) will tend to ν, so the SPP will tend to 1,

according to the idea that after a sufficiently large time the uncertainty about the source-position

is maximal. Summing up, as expected, the SPP strongly depends on the relation between the

time past from the shares generation and the level of mobility of the network.

3.6 Simulations and Discussions

In this section, we show and discuss some plots describing the information recovery phase.

First, we compare theoretical and experimental plots to further validate the analytical bounds

presented in Section 3.3. Then, we show how the recovery phase is affected by information

diffusion, by comparing the experimental plots obtained for different values of the time interval

τ between the distribution and the recovery of the shares.

The simulations involve the entire process of information diffusion and data recovery and ev-

ery plot is obtained averaging the results of 1000 independent simulations. The experimental

settings can be summed up as follows. N = 500 nodes are randomly deployed in the unitary

square [0, 1] × [0, 1], that simulates the monitored area A. Sensors’ communication range is set

as r = 0.15 and, according to Remark 3.2.2 in Section 3.2, we fix n = 5. We compare the replica-

tion scheme, which corresponds to setting k = 1, with the two threshold schemes corresponding
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to k = 3 and k = 4. Assuming each sensor acquired some data D at time t, we simulate the

random distribution of the shares among the neighbors. Then, the nodes start moving according

to one of the three mobility models proposed. For the RW, we set l = 0.01, so that A contains

a grid composed by 10000 vertices. For the RWP, we set vmin = 0.005 and vmax = 0.015, so

that the average unitary displacement of a node is again l = 0.01. At time t + τ, the sink, or

analogously the adversary, explores the network with rectilinear movements, each one from a

randomly chosen access point on the border of A to a randomly chosen exit point. They stop

when they meet a fixed fraction of the network, that is the 60% (300 nodes) for the sink and

the 10% (50 nodes) for the adversary, and we compute the number of secrets they successfully

recover.

Figs. 3.4 and 3.5 show a comparison between the upper bounds (3.5), (3.6), (3.7) and (3.8)

and the empirical plots for the three mobility models. τ is set of the same order of magnitude

of its mixing time for the RWP, while we set τ = |S | (S is the state space of the process,

see Section 3.4.1) for the RW, i.e., a time interval actually shorter than the known bound on

its mixing time. What can be observed is that the amount of secrets recovered by the sink is

remarkably larger than what (3.5) suggests for both k = 1 (Fig. 3.4a) and k = 3 (Fig. 3.4b),

while the amount of secrets recovered by the adversary is remarkably smaller than what (3.7)

suggests for both k = 3 (Fig. 3.5b) and k = 4 (Fig. 3.5c). In the remaining two cases, we observe

a slightly different behavior. The rationale is that the two extreme cases k ≈ n and k � n are

more susceptible to the gap between the theoretical model and the experimental setting, and

the consequences emerge in particular when we try to lower bound the amount of information

recovered if k is large, and when we try to upper bound it if k is small. Nevertheless, our bounds

(3.5) and (3.7) still provide a very tight approximation, while the exponential bounds (3.6) and

(3.8) remain valid.

In Figs. 3.6 and 3.7 for the RW and Figs. 3.8 and 3.9 for the RWP, we analyze how time affects

the information-recovery process. The plots show exactly what we expected. Firstly, as long

as τ is small, the process shows high variance, since it is very unpredictable whether or not

the nodes are already well spread into A. Secondly, information diffusion generally improves

both availability and confidentiality of the sensed data. The insight is that, as long as the shares

are locally concentrated, the sink cannot find enough shares of data sensed in farther regions

of the monitored area. To the contrary, if information is not diffused, the adversary can easily

find enough shares of the same secrets though corrupting only a small number of nodes. The

only two cases that show a different behavior concern the sink when k = 4, and the adversary

k = 1. In this case, the rationale is that, when k = 4, the task of recovering 4 out of 5 shares of

any secret becomes difficult for the sink as well, and it can profit from low diffusion (Figs. 3.6c

and 3.8c). On the other hand, when only 1 share is needed, capturing many nodes which carry

the same shares turns into an useless effort, which is particularly relevant for an adversary that

can only capture a limited amount of sensors (Figs. 3.7a and 3.9a). Summing up, the analysis of
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(a) k = 1.

(b) k = 3. (c) k = 4.

Figure 3.4: Data recovery process for the sink meeting the 60% of the network:
theoretical vs. empirical comparison.

(a) k = 1.

(b) k = 3. (c) k = 4.

Figure 3.5: Data recovery process for an adversary capturing the 10% of the network:
theoretical vs. empirical comparison.
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the time impact underlines that the choice of the relation between the parameters k and n should

strongly depend on the mobility level of the network.

(a) k = 1.

(b) k = 3. (c) k = 4.

Figure 3.6: Time impact on the data recovery process for the sink meeting the 60% of the
network, under the RW model.

3.7 Summary

The work presented in this chapter provides a novel approach to information security in Dis-

tributed Sensor Networks (DSNs). We showed that a secure and efficient data handling scheme

can be realized simply based on a local implementation of secret sharing, and leveraging sensors

mobility to diffuse the pieces of information generated. The rationale was to make the content of

information shared by the nodes somehow independent from their position, so that the amount

of data that can be recovered accessing a fraction of the network only depends on the size of

that fraction. We bounded the amount of information retrievable by the sink and by the adver-

sary, as a function of the parameters k and n of the secret sharing scheme and of the number of

accessed nodes. This way, we proved that secret sharing and shares spatial diffusion allow to pe-

nalize adversaries that can only capture a small number of nodes, while favoring an intermittent

sink that sporadically explores a significant portion of the monitored area. In other words, our

work permits to tune the parameters of the scheme so as to obtain the desired trade-off between

availability and confidentiality of the sensed data, which are the two primary concerns in DSNs.

Further, we empirically showed the importance of the time past between data sensing and collec-

tion, and how its impact can be predicted based on the characteristics of the mobility model the
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(a) k = 1.

(b) k = 3. (c) k = 4.

Figure 3.7: Time impact on the data recovery process for an adversary capturing the 10% of
the network, under the RW model.

(a) k = 1.

(b) k = 3. (c) k = 4.

Figure 3.8: Time impact on the data recovery process for the sink meeting the 60% of the
network, under the RWP model.
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(a) k = 1.

(b) k = 3. (c) k = 4.

Figure 3.9: Time impact on the data recovery process for an adversary capturing the 10% of
the network, under the RWP model.

nodes of the network are subject to. However, we underlined that other parameters (primarily

n, the sensors communication range r, and the number m of sensors accessed by the sink) can

affect the speed to which information “mixes”, and must therefore be taken into account when

analyzing the performances of the system. Finally, we discussed how our scheme enhance the

level of protection against fake-data injection and data traceability, introducing specific metrics

for the data integrity and source-location privacy. Extensive simulation results supported all of

our above findings.
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4
Storing Data on the Cloud: Security

and Privacy Issues

In modern network and computing applications, a common practice is to move services to the

cloud. Recent technologies indeed offer to both common users and big companies the possibility

to rely on external cloud servers for the outsourcing of both data storage and onerous computa-

tions on such data, on a pay-per-use base. Motivations for companies and private users to rely

on these services vary from increased service availability, to higher reliability, lower mainte-

nance cost, etc. [145]. Further, cloud computing often allows to perform operations and data

elaborations which would be unfeasible otherwise.

The more this class of services becomes popular, the more the subscribers of these services need

guarantees. In fact, the other side of the coin of cloud storage and computing applications is

security: what happens to our data? Can we rely on our service providers? And are we able to

conceal private information, without harming the performances of the service?

The straightforward approach to cloud services, where a client simply provides an online server

with the data that must be stored and/or elaborated, relies on the assumptions that the service

provider is trusted in two different senses. On the one hand, the user must be confident that

the provider reliably stores his/her data, and carries out the required computations correctly.

Unintentional errors or malicious behaviors (due, for instance, to economical reasons) could in

fact affect the integrity of the data stored and/or elaborated at the server side, often in a way

71
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hardly detectable by the client. On the other hand, all outsourced data would be revealed to the

provider, while they often contain information that the owner would like to keep confidential.

The main problem is that these two requirements are apparently conflicting: the natural solution

to enforce data confidentiality is cryptography, which however makes much harder to efficiently

verify the integrity of the outsourced data and the correctness of the computations.

In the remainder of the chapter, we will focus on cloud storage applications, and discuss the main

security concerns they pose. The main issue is to allow any customer to check the integrity of the

outsourced data, while keeping them secret to the provider. To preserve both the performances

of the system and the benefits of the end user, this features must be provided with the client

directly retaining little or no information at all. Some solutions have been recently proposed to

address this problem [146–149], denoted in the literature as Provable Data Possession (PDP).

However, PDP is not the only concern, as we will motivate in the remainder of the chapter.

In particular, we will underline the importance of the performances of the storage media used

to store clients’ data at the server side. To show how to efficiently verify the compliance of

such performances to the clauses stated in the Service Level Agreement will be the purpose of

Chapters 5 and 6.

4.1 Cloud Storage Main Issue: Provable Data Possession

The security requirements related to outsourcing the storage of private data to the cloud have

been extensively investigated in the literature. To remotely check the integrity of such data was

soon identified as one of the main concerns, but the first proposed approaches [150, 151] were

very inefficient, requiring the server to exponentiate the whole file to produce the integrity proof.

As a consequence, several researchers tried to design schemes not requiring access to the entire

file. Golle et al. [152] introduced the concept of enforcing data storage complexity. Relying

on the assumption that a server may behave dishonestly only to reduce the complexity of its

tasks, they proposed efficient schemes able to verify that the server is storing a file of the same

size of the originally remotely stored file, but not necessarily the original file itself. Schwarz

et al. [153] proposed a scheme based on algebraic signatures. Unfortunately, the scheme is

unfeasible if the stored file is large, because the amount of data that the server must access is

linear in the total size of the remotely stored file. Finally, Juels and Kaliski [154] introduced

the notion of Proof of Retrievability (PoR), which leverages error-correcting codes to ensure the

possession and retrievability of a previously remotely stored file. However, PoR schemes can

only be applied to encrypted files, and can only handle a limited number of queries, fixed in

advance [155].
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In the seminal paper [146], Ateniese et al. formally introduced the notion of Provable Data

Possession (PDP), and proposed the first two schemes able to efficiently verify the integrity

of a remotely stored file. Both schemes enforce probabilistic PDP, that is, to only check the

integrity of a few randomly chosen blocks, instead of the whole file. Regardless of which and

how many blocks are challenged, thanks to so-called homomorphic verifiable tags, the client is

only required to store a constant amount of data to verify the proof. Both schemes are provably-

secure, and provide support for public verifiability, that is, to enable any authorized third party

to perform the verification.

4.2 Extending Provable Data Possession

The work [146] somehow moved the target for all researchers in the area, that were not anymore

asked to provide a brand new solution for PDP, but rather to extend or modify the idea used in

[146].

The first concern became to improve the efficiency, both in terms of communication and com-

putation overhead. Along this line, Ateniese et al. [147] proposed a light-weight PDP scheme,

based on cryptographic hash functions, that also enables dynamic data operations. In [156], the

authors proposed a solution whose maximum running time can be chosen at set-up time and

traded off against client storage.

To deal with dynamic data operations (in opposition to append-only ones), in [149], based on

a variant of authenticated dictionaries [157], rank information is used to organize dictionary

entries. Zhu et al. used hash index hierarchies in [158], and simple index hash tables in [159].

Yang et al. [160] proposed a PDP scheme based on Merkle Hash Trees (MHTs) (already used

for dynamically changing data in [161]) and on bilinear signatures, which minimizes both com-

munication and computation overhead, and is suited for resource constrained mobile devices.

Some researchers investigated the possibility to enable privacy preserving third party verifica-

tion [162, 163]. Hao et al. [162] used RSA-based homomorphic verifiable tags, while Wang et

al. [163] proposed randomly masked homomorphic verifiable tags. Both schemes use previous

solutions ([151] and [161], respectively) as a building block, inheriting from them the support

for dynamic data operations.

Finally, among the advanced features that a PDP can support, resilience to data loss or corrup-

tion is for sure one of the priorities. To mitigate small file alterations, Ateniese et al. [155]

proposed to use forward error correction (FEC) on the outsourced files, while Chen et al. [164]

proposed to encode the outsourced data using Reed Solomon (RS) codes based on Cauchy matri-

ces [165]. To protect against Byzantine failures (crashes, failing to receive or send requests, etc.)

[166], several researchers proposed PDP schemes relying on multiple replicas [145, 148, 167].
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Curtmola et al. [148] modified the generating process of the homomorphic verifiable tags pro-

posed in [146], so that a single set of tags can be used to verify any number n of replicas,

being resilient to n − 1 failing servers. More generally, Wang et al. [145] proposed to first ap-

ply an (m, k) RS-code, and then compute the homomorphic tags on the encoded file, which is

distributed over n = m+k different servers. This way, resilience to at most k failures is provided.

In the context of multiple replica support, the protocol proposed by Bowers et al. [167] deserves

a particular mention. Assuming that the Service Level Agreement (SLA) stipulated by the client

and the service provider establishes that the provider will store several copies of the file on

different disks, the solution described in [167] allows the client to verify that his/her outsourced

data are indeed replicated on multiple disks. To the best of our knowledge, [167] is the only

paper in the area not focusing on improved PDP solutions, but rather trying to emphasize the

concept that data possession and integrity are not the only requirements that a client might need

to prove.

Summing up, the PDP problem was addressed thoroughly in the literature, and many important

features were added to try to make future cloud storage services as fulfilling as possible for the

user. Nevertheless, there are many aspects of the problem that still deserve attention from the

research community. In particular, (almost) all the aforementioned works focused on verifying

whether the server is actually storing (somewhere/somehow) the remotely stored data. We argue

that, beyond the data possession itself, a very important problem is the actual storage media used

to keep the data at the server side. In fact, in most cases where data storage is outsourced is also

very important that the data are actually accessible in a “short" time (this being defined in the

SLA between the client and the server). This problem was raised in [168], showing that such a

malicious behavior at the server side is indeed practicable. Unfortunately, so far there was still

no solution in the literature that addressed the problem of detecting this malicious behavior in

an efficient way. The purpose of Chapters 5 and 6 will be exactly to fill this gap.

4.3 PDP Protocol Description

This section is dedicated to the description of the PDP protocol originally proposed in [147].

The protocol is composed of two phases. The setup phase (presented in 4.3.1) consists of pre-

liminary operations performed only once, concurrently to the outsourcing of the data to the

server. The challenge/response phase (presented in 4.3.2), is the part of the protocol where the

correct behavior of the service provider is actually verified. To describe this protocol in detail

is particularly important, because the solution described in Chapters 5 and 6 is built upon this

scheme. However, here we will only focus on how U can generate the challenge and check

whether the response received is correct, hence obtaining PDP.
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4.3.1 Setup Phase

During the setup phase, U splits the file F into n blocks F[1], . . . , F[n]. It has to decide the

maximum number m of challenges it wants to be able to perform and the number r of blocks to

include in each challenge. U then has to randomly generate each challenge and the correspond-

ing verification tokens.

Let f and g be two keyed pseudorandom functions with

f : {0, 1}α × {0, 1}µ → {0, 1}β ,

g : {0, 1}β × {0, 1}ν → {0, 1}ν ,

where µ = log2 m and ν = log2 n. In words, f takes as inputs the index i ∈ {1, . . . ,m} correspond-

ing to one of the challenges and a α-bits key (h) and returns a β-bits pseudorandom key (k); g is

a pseudorandom permutation of the set of the indexes {1, . . . , n}, depending on a β-bits key (k).

To distinguish between the keys and the real inputs to the functions, we will write fh(i) to denote

f (h, i) and gk( j) to denote g(k, j). U has three α-bits keys: W,Z and K. For each challenge Ci,

U first uses W to generate the key ki = fW(i) used to obtain the pseudorandom permutation gki ,

which determines the indexes of the blocks included in Ci. The pseudorandom permutation gki

is simply used to permit a smaller challenge, which includes only the session key ki and not all

the blocks indexes. Then,U uses Z to generate a pseudorandom value ci = fZ(i) included in the

challenge to prevent P from precomputing all possible tokens. The token corresponding to the

challenge Ci is computed as

vi = H(ci, F[gki(1)], . . . , F[gki(r)]) ,

where H is a cryptographic hash function.

Finally, K is used to encrypt the token with a symmetric encryption scheme EK , obtaining

v′i = EK(i, vi). The set V of all tokens is eventually sent to P together with the file F. The setup

phase is shown in Algorithm 1.

4.3.2 Challenge/Response Phase

Once the setup phase has been performed, the challenge/response phase can be carried out in a

rather straightforward way.

Assume i − 1 < m iterations of the protocol have already been performed. To generate the

challenge Ci, U computes the key ki, necessary for P to select the correct blocks of F, and the

nonce ci that P has to include in the computation: the challenge is Ci = (ki, ci). P can now



76 Chapter 4. Storing Data on the Cloud: Security and Privacy Issues

Algorithm 1: U’s Setup Phase
Data: File F = F[1], . . . , F[n]
Result: Data to be stored by P
begin

Choose the number m of challenges;
Set ν = log2 n and µ = log2 m;
Choose security parameters α, β and functions f , g;
Choose the number r of indexes per challenge;
Generate randomly the master keys W,Z,K ∈ {0, 1}α;
for i← 1 to m do

Generate ki = fW(i) and ci = fZ(i);
Compute vi = H(ci, F[gki(1)], . . . , F[gki(r)]);
Compute v′i = EK(i, vi);

end
Set V = {(i, v′i) : 1 ≤ i ≤ t};
Send to P: (F,V, g);

end

compute the token z = H(ci, F[gki(1)], . . . , F[gki(r)]), take the corresponding encrypted token

v′i and send the response Ri = (z, v′i) back to U. Let DK = E−1
K denote the decryption function

corresponding to EK . To verify that Ri is valid, U decrypts v′i , computing DK(v′i) = (i, vi), and

checks if (i, vi) = (i, z). The challenge/response and verification phase is shown in Algorithm 2.

Algorithm 2: Challenge/Response Phase

begin Protocol iteration i
begin Challenge
U computes ki = fW(i) and ci = fZ(i);
U sends to P: Ci = (ki, ci);

end
begin Response
P computes z = H(ci, F[gki(1)], . . . , F[gki(r)]);
P sends toU: Ri = (z, v′i);

end
begin Verification
U computes (i, vi) = DK(v′i);
if (i, vi) = (i, z) then

Verification passed successfully;
else

Verification failed;
end

end
end

We underline once again that the PDP protocol we just described is basically the same proposed

in [147], where the authors present a complete analysis of the security of the scheme.
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4.4 Summary

In this chapter, we provided an overview of the security and privacy issues related to Cloud

Storage (CS) applications. In particular, we identified Provable Data Possession (PDP) as the

main concern for end users, who need to be able to verify the integrity of the remotely stored

data, without revealing the content of such data to the service provider, and directly retaining

little or no information at all. Secure and practical solutions to address PDP have been recently

proposed in the literature. In particular, we detailedly described the scheme proposed in [147],

which is extremely computationally efficient on the server side, and therefore allows to generate

integrity proofs very rapidly. The research community realized that PDP itself is not the only

concern in CS systems: users can be particularly subsidized to rely on remote storage services if

such services allow to perform dynamic data operations, to enable privacy preserving third party

verification, or to recover from data loss or corruption. However, there are still many aspects of

CS that need to be investigated. In particular, we stressed that to be only able to verify that the

remotely stored data are correctly stored (somewhere, somehow) may not be enough in many

application settings, and that data access time may be a critical aspect for many users to rely

on CS. In the following chapters, we will therefore develop the concept of Provable Storage

Medium (PSM), which responds to the idea that the minimum performances of the storage

media used on the server side might be a fundamental part of the Service Level Agreement

(SLA), which any user should be able to verify.





5
Introducing Provable Storage Medium

Delays in the retrieval time of remotely stored data can cause economic losses to the data owners

(e.g., when the remotely stored data are the content of an e-commerce website). It is therefore

natural to assume that the Service Level Agreement, stipulated by clients and providers of any

storage service, includes a clause stating that data will be stored in RAM. In this chapter, we

define the concept of Provable Storage Medium (PSM), to denote the ability to verify the storage

medium used by the provider. We further show how PSM strongly depends on a careful analysis

of the system model, and on an accurate evaluation of all parameters and variables involved. The

thorough analysis provided in this chapter will be the stepping stone for the scheme introduced

in Chapter 6.

5.1 Introduction

As discussed in Chapter 4, the first concern of any costumer of a cloud storage service is to be

able to check the integrity of the outsourced data. A straightforward approach would be to let

the client downloads a full copy of the data stored at the server side, and compare them with

a copy of the same data stored locally. A similar solution would however sacrifice one of the

main features of cloud storage: the client being able to directly retain little or no information at

all. The problem of making integrity checks both secure and efficient is usually denoted in the

literature as Provable Data Possession (PDP). Many solutions have been recently proposed to

address PDP [146–149], and are comprehensively surveyed in Section 4.1.

79
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More generally, as recently observed in the literature [168], while complying to the data posses-

sion, a cloud provider might not respect other aspects of the Service Level Agreement (SLA).

In particular, a key feature of these outsourced services is usually that the data must be available

online (e.g., being accessed through the Web) to the data owner, or in general to authorized

users. In many situations, data access time is almost as important as data integrity. For instance,

think to financial data needed to drive real-time share trading, or to retailer websites, whose cus-

tomers are not willing to wait for the requested data more than 2–4 seconds [169, 170]. Delay

introduced by violating the agreement could result in a direct financial loss in the former sce-

nario, or in loosing possible customers in the latter one—that is, a financial loss as well—hence

the compensatory measures introduced by a SLA.

However, it could happen that data retrieval takes more time than expected, because of circum-

stances independent from the behavior of the provider (e.g., network overload). What can be

included in the SLA are the technical measures that the provider commits to adopt, in order to

fulfill the desired goals. In particular, what mainly affects data retrieval time is the mass storage

used: different storage media exhibit very different access times. Consequently, we assume that

the SLA states that the service provider faithfully maintains two copies of the remotely stored

data, one on disk (to enhance reliability) and the other one in RAM (to ensure fast access), and

that it precisely specifies the characteristics of the hardware used by the provider.

Similarly to PDP, the problem is how to enable the client to efficiently verify, ideally with any

portable, resource-constrained device, that the provider is adhering to the SLA. We refer to

this ability as Provable Storage Medium (PSM). Observe that the storage provider could be

motivated by economic reasons to store data on some second level storage—indeed, disks and

tapes are much cheaper than RAM. This could be applied in particular to the portion of data

that is requested more rarely (e.g., information for non popular items in online shops). The

solution we propose is to embed an efficient and secure PDP scheme [147] with a check on the

response time. We will show that the client can rightfully expect, and consequently require,

that the response to a PDP challenge is delivered within a predictable time limit. Even if the

unfaithful provider could adopt smart strategies to reduce the chances that its misbehaviors are

detected, the underlying PDP scheme prevents it to simply delete a portion of the data, because

data integrity violation would be (probabilistically) detected.

To the best of our knowledge, the work in the literature most similar to ours is the protocol

introduced by Bowers et al. in [167]. Assuming that the SLA establishes that the provider will

store several copies of the file on different disks, the authors deal with the problem of enabling

the client to remotely and efficiently verify that the provider is actually adhering to that clause

of the SLA. Similarly to our scheme, the protocol relies on time measurements for the time

necessary to locate, retrieve, and deliver a random block stored on a drive. Since using multiple

disks the server can perform many tasks in parallel, from the time required to return a response to
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a challenge, the client can infer the number of disk drives used by the service provider. However,

not only the purpose of the two papers is completely different, but there are several reasons why

our work is sensibly superior to [167]: (i) the authors consider a weaker attacker model, (ii)

they require the client to store a local copy of the file, and, most importantly, (iii) they do not

provide any theoretical framework for setting the decision threshold in general, but only explain

experimentally how to set the threshold in some specific cases.

5.2 Scenario and Protocol Outline

In this section we describe the basic model of our system, namely its main functions, the main

actors, their roles, and their interactions. We also delineate the threat model and sketch the

outline of the proposed protocol, which will be discussed in detail in Section 4.3

5.2.1 Scenario

In our system, depicted in Fig. 5.1, a Service Provider (P) offers a remote storage service to a

User (U). Potentially, multiple users could concurrently use the storage facilities of P, but for

the extents of our analysis only the interactions between a single U and P are relevant. The

service is regulated by a set of clauses listed in a SLA. The most relevant clause states that P

must store the files ofU, and must have them ready in RAM at any time. U’s aim is to increase

reliability, and to make data quickly available on-line, leveraging the sensible performance gap

between RAM and HDD in terms of data retrieval time. U does not have direct access neither

to the RAM nor to the HDDs of P. However, U and P can communicate at any time through

a network channel, whose characteristics play an important role in the design of our scheme.

In particular, we assume that the average network delay and its variance can be determined by

users prior to contracting the service, and included in the SLA.

Figure 5.1: System Model: U sends a file F to P and the latter stores it in its HDDs and
uploads it into RAM.
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5.2.2 Threat model

The service provider P is not trusted, indeed P is exactly the attackerU wants to defend from.

P could misbehave and not adhere to the SLA signed with the users for several reasons, and in

several ways. However, assuming that P’s main purpose is to reduce the costs and increase its

revenue, we observe two main attacks that P can mount to try to foolU:

1. Erasure attack: P deletes a portion h ∈ [0, 1] of the file and stores only the remaining

fraction 1 − h in its storage facilities. This way, the provider could save some space and

accept more clients without additional costs.

2. Storage medium attack: P stores a portion δ ∈ [0, 1] of the file only in the HDDs and the

remaining fraction 1 − δ also in RAM. This way, the provider can save money because

RAM is more expensive than HDDs.

The parameters h and δ describe the attacks level, that directly reflect their impact. To stress

the importance of δ as a measure of the relevance of a storage medium attack, we introduce the

concept of δ-malicious provider, to denote a provider P which mounts a storage medium attack

of parameter δ. P is honest if δ = 0, and totally dishonest if δ = 1.

5.2.3 Goals and Desiderata

Our goal is to enforce what in the Introduction we defined as Provable Data Possession (PDP)

and Provable Storage Medium (PSM). With the newly introduced notation, PDP can be defined

as the ability to detect an erasure attack, so as to verify the integrity of the copy of the file F

stored by P. Similarly, PSM can be defined as the ability to detect a storage medium attack, that

is, to determine whether P is storing a copy of F in RAM, or F is only kept on disk and loaded

on demand.

We want to achieve the aforementioned goals, without requiring U to locally store a copy of

F. U only needs to store a limited amount of data, whose size is proportional to the number of

allowed challenges.

5.2.4 Protocol Outline

To enforce both PDP and PSM, we propose to enrich a challenge/response based PDP scheme

with response-time measurement. Even if the main idea can righteously be expected to apply to

a wide range of possible PDP solutions, to permit a more precise theoretical and experimental

analysis we focused on a specific PDP implementation. The PDP scheme we considered is de
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facto the same defined in [147], and it is described in details in Section 4.3. In short, the idea is

to divide the stored file F into n blocks F[1], . . . , F[n], and to let U challenge P by indicating

a random selection of r blocks. The required response is the hash of the concatenation of such

blocks. Correct responses for all allowed challenges are precomputed during a setup phase, so

thatU can verify the correctness of the response without storing, nor entirely retrieving, a copy

of the blocks involved. Since the block size is an important parameter in our construction, we

specify that each block consists of 512KB of data, exactly as done in [147]. Time measurements

performed on the user side cannot affect the security of the underlying PDP scheme, therefore

the resilience to erasure attacks of our protocol is inherited by [147].

To implement PSM, we propose a very straightforward solution: Pmeasures the time T elapsed

between the challenge transmission and the response reception, and check whether T exceeds a

predetermined threshold τ. Similarly to the underlying PDP scheme, the protocol is probabilis-

tic, in the sense that a single iteration only involves a fraction r/n of the file F, and only verifies

the correct storage of the particular selected blocks. However, there is a fundamental difference

between PSM and PDP. If the challenge involves a deleted block, to escape detection P can only

try to make an educated guess of the content of that block. Consequently, the success ratio of a

PDP scheme only depends on the parameters n, h and r. On the contrary, a PSM scheme must

consider other technical aspects, in particular hardware specifications and network latency.

5.3 RAM and HDD Concepts

Our analysis is based on the different performances of RAM and HDD, in particular on the time

necessary to retrieve y randomly scattered 512KB blocks of data from these two storage media.

In this section, we therefore accurately describe our RAM and HDD model.

5.3.1 RAM

In RAM, the minimum unit of data that can be read or written is called block;1 while depending

on architecture, it typically consists of 4KB. Any number of consecutive blocks can be accessed

in a single operation: using the address bus, the processor sends to the RAM the physical address

of the first block to access; the requested piece of data is accessed directly, independently of its

location; finally, data are delivered to the processor through the data bus. The timing setting and

the bus speed of the RAM memory module can be used to compute an upper-bound for the time

needed to access a specific 4KB block, usually denoted as access time (AT), and whose order

of magnitude is 10−8 seconds, that is, some tenths of nanoseconds (ns). The time necessary to

1Blocks of RAM and HDD must not be confused with the blocks of the scheme defined in 4.3: their sizes are
very different (2-4KB vs. 512KB).
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retrieve any number m of consecutive 4KB blocks scales approximately linearly with m as m·AT.

Consequently, to retrieve a single 512KB block, that is, 128 consecutive 4KB blocks, it takes

tRAM = 128AT. Further, if the host needs to access y randomly scattered data pieces from a RAM

module, it needs to send y independent requests. Thanks to direct access, independently on the

location of the desired blocks, if all the pieces have the same size, each request takes the same

time, and the total time required scales again linearly with y. In other words, the time needed to

retrieve y pieces of information, each one composed of 512KB (128 consecutive 4KB blocks),

can be accurately approximated by y · tRAM.

5.3.2 HDD

With respect to RAM, Hard Disk Drives (HDDs) work in a much more complicated way, where

several factors may influence the time needed to recover a set of data blocks. HDDs are data

storage devices with random access capabilities,2 used to store and retrieve digital information

using non-volatile memory. A HDD consists of several components, depicted in Fig. 5.2:

• Platters. Rotating disks covered by a coat of magnetic material from which data can be

read and written. Platters rotate around a spindle that determines the rotation speed by us-

ing an electrical motor. Typically, rotation speed ranges from 4,200 to 15,000 revolutions

per minute (rpm).

• Heads. Read/write devices mounted on moving actuator arms appended to an actuator
axis. Heads are used to read/write magnetic information from/to the platters.

Figure 5.2: Main components of a hard disk drive.

Data stored in a HDD are typically organized into small chunks of 512B, called sectors. The

minimum unit of data that a HDD can read or write is called block, and is usually composed

of 4 sectors. Since information stored on platters is written and read by heads while platters
2In opposition to sequential access typical of tapes.
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are spinning, sectors are stored along concentric circles called tracks. The radial speed of a

platter is constant, but the linear speed gets clearly higher and higher from the innermost to the

outermost border of the platter. If writing and reading frequencies were constant for the whole

surface of the platter, tracks would all be composed of the same number of sectors, regardless of

their length. Consequently, data density would not be the same on all tracks, with a remarkable

loss of space efficiency due to data in outer tracks being sparser than data in inner tracks. For

this reason, tracks of a platter in modern HDDs are divided into concentric zones: in each zone,

tracks contain a different number of sectors, and data are correspondingly written and read at a

different frequency. The number of zones, of tracks per zone, and of sectors per track for each

zone may vary according to the size of the HDD and to design choices. However, a track is

typically composed of 600 to 1200 sectors, corresponding to 300KB to 600KB of storage.

A good measure of the performance of a disk is the amount of data that it can send to the host

computer in a second. This is generally indicated by the Maximum Sustainable Transfer Rate
(MaSTR), measured as MB/s, that mainly depends on two factors (depicted in Fig. 5.3):

• Average Seek Time (AST): Measured in milliseconds (ms), is the average time it takes

for the head to move to the track of the disk where data will be read or written.3 The

AST is computed as the weighted average of measured seek times of all possible seek

combinations. Each seek time is measured from the start of the actuator’s motion to the

start of a read or write operation.

• Rotation Speed (RS): Measured in rpm, is the speed to which the platters of a HDD

rotate. Based on the rotation speed, the Revolution Time (RT), that is, the time for

a complete rotation measured in ms, can be easily computed. Similarly, the Average
Rotation Latency (ARL), is computed by averaging over all possible rotation lengths.

The ARL represents the average time it takes the head, once it is on the right track, to

move to the sector where the data have to be read or written.

Figure 5.3: Graphical representation of the rotation and seek latencies.

To give an idea of the order of magnitude of the formerly introduced parameters for HDDs, in

Table 5.1 we present real values taken from the datasheets of some common models of fast disks.
3We do not consider the controller overhead (which could add about 1ms to the seek time).
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The current most important manufacturers of HDDs are Western Digital,4 Seagate,5 Toshiba,6

Maxtor,7 and Hitachi.8 For each of the mentioned brands, we present the specifics of one or

more models.

Model AST RS RT ARL MaSTR
(ms) (rpm) (ms) (ms) (MB/s)

Seagate Cheetah 3.4 15,000 4.0 2.0 20415K.7 SAS
Seagate Savvio 2.9 15,000 4.0 2.0 20215K.3 SAS

Seagate n.a. 7,200 8.33 4.16 149Barracuda XT
Maxtor 3.2 15,000 4.0 2.0 74.5Atlas 15K

Western Dig. n.a. 7,200 8.33 4.17 182WD RE
Western Dig. n.a. 10,000 6.0 3.0 204WD XE
Western Dig. n.a. 10,000 6.0 3.0 200VelociRaptor

Toshiba 3.7 10,500 5.7 2.8 n.a.AL13SEL
Toshiba 2.9 15,000 4.0 2.0 n.a.MBE2147RC

Hitachi Ultrastar 3.4 15,000 4.0 2.0 123-72
15K300 SAS (zone 0-19)

Table 5.1: Values for some HDDs on the market.

Summing up, the number of sectors per track in modern HDDs is variable, but when many (ran-

domly selected) blocks are considered altogether, all tracks can be assumed to store exactly S

sectors, where S is the average number of sectors per track. Assuming that the delay introduced

by writing and reading operations is negligible with respect to the RT, the time to read a single

sector is RT/S . Since storing a 512KB block of data requires 103 sectors, we can denote the

time needed to read a block of data as tR = 103RT/S .9 To ease notation, let us also denote with

tS the AST. We conservatively assume that the head is initially already on the track where the

first block to retrieve is stored, but to retrieve a bunch of blocks, the head needs to jump from

the end of a block to the beginning of the following one. Consequently, to retrieve y randomly

scattered blocks from a HDD, it takes y · tR + (y − 1) · tS . Finally, we must consider the eventu-

ality that P stores N copies of the file F on N HDDs. This way, P can concurrently retrieve one

block from each one of the N disks in parallel in time tR. If P must retrieve y blocks in total,

P must nevertheless sequentially retrieve dy/Ne blocks from the same disk. In other words, N

disks accessible in parallel allow P to retrieve y blocks in time dy/NetR + (dy/Ne − 1)tS . Observe

4http://www.wdc.com/en/
5http://www.seagate.com/gb/en/
6http://www.toshiba.com
7http://www.maxtor.com
8http://www.hitachi.com
9We are assuming that a block is stored in consecutive sectors, that is the most favorable disposition for P.
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that all the former assumptions are de facto granting greater capabilities to a malicious provider,

increasing its chances to produce a correct response sufficiently fast to avoid detection.

5.4 Hashing and Network Metrics

As we will see in Sections 6.1 and 6.2, the distribution of the hashing time, denoted tH , and of

the network delay, denoted tnet, can sensibly affect the reliability of the scheme. Unfortunately,

tH and tnet do not depend on design choices, nor they can be deduced by any hardware speci-

fication. Therefore, as part of the preliminary analysis presented in this chapter, we conducted

extensive experiments to realistically model these two components.

5.4.1 Hashing Experiments

To get a realistic estimate for tH , we studied the hash computation time over inputs of different

size. In particular, we denoted tH(r) the time measured for the hashing of the concatenation of r

512KB blocks, for r varying in {1, 10, 100, 1000, 10000} (corresponding to challenges involving

up to 4GBs of data). For each r, we randomly created an input file containing exactly r 512KB

blocks, and repeated the hash computation 1000 times. The experiments were executed by

a C-program, developed using the OpenSSL crypto library version (1.0.1c).10 The results of

the 1000 iterations for a specific r were elaborated to compute the statistical mean µH(r) and

standard deviation σH(r). We report the results of the experiments in Table 5.2.

As expected, both the mean value µH(r) and the standard deviation σH(r) grow approximately

linearly with r. In particular, µH(r) ≈ 2.2r ms and σH(r) ≈ 2.5r µs represent two very accurate

approximations, especially for large values of r. The occurrence of a positive variance can

be explained by the fact that during each run of the hash computation the load of the CPU is

different, resulting in a slightly different computation time. However, Table 5.2 underlines that,

for each value of r, σH(r) is three orders of magnitude smaller than tH(r). Therefore, we can

conclude that σH(r) is negligible.

r µH(r) (µs) σH(r) (µs)
1 2226.811000 2.065739

10 22233.837000 26.620940
100 241835.252000 258.316431

1000 2219026.408000 2510.661525
10000 22189821.320000 25044.320500

Table 5.2: The results of the hashing experiment

10http://www.openssl.org/source/openssl-1.0.1c.tar.gz
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5.4.2 Network Delay Experiments

To find a realistic estimate for tnet, we let four different clients,11 located at the Amazon data-

centers in Northern-Virginia, Sao-Paulo, Sydney, and Tokyo, measure the network access time

to several web sites at different geographic locations. For this purpose, we chose four university

domains: Cornell University (NY, USA, GMT-5), Kyoto University (Japan, GMT+9), Univer-

sity of Milan (Italy, GMT+1), and Berkeley University (CA, USA, GMT-8). To execute the

experiment, we created at each one of our clients a cron job, running a script which calls the

fping utility and directs the output to a data file. The fping utility measures the Round Trip

Delay (RTD) of a Internet Control Message Protocol (ICMP) [171] echo packet directed to the

four university websites. More precisely, over a whole week, on each day and on every hour,

cron executed the script calling fping, which sent two hundred ICMP echo requests to the

four university websites and measures their RTDs. To tune the packet payload size to simulate a

message of the PSM protocol, the fping command was used with the “-b” option. The results

of this experiment are illustrated in Figs. 5.4 and 5.5.

Fig. 5.4 shows the daily RTDs to Milan, averaged over the hours of the day. The measured

values are pretty stable, with deviations always at least one order of magnitude smaller than

the corresponding average: 15 ms vs. 100 ms from Northern-Virginia, 1 ms vs. 200 ms from

Sao-Paulo, 10 ms vs. 287 ms from Tokyo, and 1 ms vs. 335 ms from Sydney.
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Figure 5.4: Daily average and standard deviation for the RTD to the website of the University
of Milan

From Fig. 5.5, we can observe that the RTDs from all pinging locations (i.e., Northern-Virginia,

Sao-Paulo, Sydney, and Tokyo) to all the university websites (i.e., www.cornell.edu, www.kyoto-

u.ac.jp, www.unimi.it, and www.berkeley.edu) show a trend similar to what seen for Milan: the

RTD time from each pinging location to each one of the university websites is stable around a

specific value with a low standard deviation. These results indeed confirm the assumptions we

made in Section 6.1, concerning the predictability of tnet (i.e., RTD), and permit to accurately

foresee its distribution.
11Precise specification of the clients used in the experiments, which are not needed for the comprehension of this

section, will be given in Section 6.5.1.
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Figure 5.5: Daily average and standard deviation for the RTD, for all combinations of source
and destination.

5.5 Summary

In this chapter, we introduced the concept of Provable Storage Medium (PSM), to describe the

ability of a user of a Cloud Storage (CS) service to (probabilistically) verify that the perfor-

mances of the storage media used by the provider comply with those stated in the Service Level

Agreement (SLA). To address this novel problem represents a fundamental aspect of designing

a reliable CS system, in particular as the pace of life is speeding upper and upper, and in many

cases data must be retrievable in a very short time not to incur in dangers or economic losses.

Contrarily to a proof of possession, whose success only depends on whether the remotely stored

data are correctly stored or not, to provide PSM many variables need to be taken into account.

The purpose of this chapter was exactly to delineate the system model, and in particular to un-

derstand: (i) what different strategies a dishonest provider can adopt, (ii) what are the typical

performances of HDD and RAM modules, and (iii) if the network delay and the time needed to

compute the proof of possession (in our case, hash functions) may conceal the delay introduced

by a slower storage medium. The careful analysis provided in this chapter will be the starting

point for the PSM scheme described in the next chapter.





6
Enforcing Provable Storage Medium

In this chapter, we finally show how probabilistic Provable Storage Medium (PSM) can be

enforced, based on the rationale that network delay and RAM access are negligible, with respect

to the time to retrieve data from disk (or other slower media). The proposed PSM protocol,

built on a previous Provable Data Possession (PDP) solution, also checks for the integrity of the

remotely stored data, requiring neither the local storage, nor the download from the provider,

of such data. The thorough analysis of the system model presented in Chapter 5, together with

a deep study of all the variables involved allow to tune the parameters of our scheme so as to

obtain the desired false positive and false negative rates. An extensive simulation campaign

confirms the quality and viability of our proposal.

6.1 Data Retrieval Time

In our scheme, to enforce PSM, U measures the time elapsed between the challenge transmis-

sion and the response reception. The total delay observed can be substantially decomposed into

three main components:

tnet: Is the network delay time, sum of the time needed for the challenge to get to P and for the

response to get back toU.

tret: Is the information retrieval time, employed to retrieve the requested blocks F[i1], . . . , F[ir]

from memory.

91
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tH: Is the hash computation time, required forP to compute the value z = H(ci, F[i1], . . . , F[ir])

that must be included in the response.

tnet and tH are not influenced by the storage medium used by P to store the requested blocks

of the file F. tnet only depends on external factors like network congestion. tH depends on the

size r of the challenge, and might vary according to the current load of the CPU while the hash

is being computed1. On the contrary, the distribution of tret strongly depends on P’s behavior.

Assuming that hardware specifications and challenge size r are clear from the context, we denote

tret(δ) the time needed by a δ-malicious provider for the data retrieval operation.

The two extreme cases can be easily analyzed, based on the HDD and RAM model described in

Section 5.3. We denoted tRAM = 128AT the time needed to access one of the 512KB blocks F[i]

of the remotely stored file F, where AT is the RAM access time for a 4KB data block. When P

is honest, and stores the whole file F in RAM, we have δ = 0, and tret(0) = r · tRAM. Therefore,

the total time necessary for an honest provider to get the challenge, compute the response and

send it back toU is

Thon = rtRAM + tH + tnet

When P is completely violating the SLA, not storing any block of F in RAM, we have δ = 1. If

N is the number of copies of F stored by P on different HDDs, we know that the time necessary

to retrieve the requested blocks is tret(1) = dr/NetR + (dr/Ne − 1)tS . Therefore, the total time

necessary for a 1-malicious provider to get the challenge, compute the response and send it back

toU is

Tmal = dr/NetR + (dr/Ne − 1)tS + tH + tnet

The general case δ ∈ (0, 1) is more difficult to deal with. In fact, if δ ∈ (0, 1), the time

Tδ = tret(δ) + tH + tnet

necessary for P to get the challenge, compute the response and send it back to U, cannot be

determined a priori, because, for a random challenge, it is impossible to know how many of

the required blocks are only stored on disk. The following section discusses the distribution of

tret(δ) more in details.

6.1.1 Distribution of tret(δ)

Let us define fRAM(X) = (r−X)tRAM, fHDD(X) = (tR + tS )dX/Ne− tS , f (X) = max{ fRAM(X), fHDD(X)},

and g(X) = (tR + tS )X/N − tS (see Fig. 6.1).
1For the sake of readability, and without loss of generality, we omit the dependency of tH on r, apart where

strictly necessary. We basically use the notation tH(r) only in Section 5.4, where we empirically show that tH(r)
grows approximately linearly with r.
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Figure 6.1: Graphical representation of fRAM(X), fHDD(X), f (X) and g(X).

tret(δ) is precisely determined by the number YD of blocks included in a challenge that are only

stored on disk. In fact, if P works in parallel on N disks storing a full copy of the file F, P

must retrieve r − YD blocks from RAM, and at least dYD/Ne blocks from one of the HDDs. In

other words, P needs time fRAM(YD) to retrieve data from RAM, and time fHDD(YD) to retrieve

data from disk, so that tret(δ) = f (YD).

If δ ∈ (0, 1), YD is a random variable2, and so is tret(δ), which is distributed as

Pr[tret(δ) ≤ z] = Pr[ f (YD) ≤ z]

If we denote x0 = min{X : f2(X) ≥ f1(X)}, we have Pr[ f (YD) ≤ z] = 0 for all z < (r − x0)tRAM.

More generally, the case z ≤ rtRAM is not very interesting, because rtRAM is the time needed by an

honest provider to retrieve the requested blocks. Even if P is not storing F as agreed with U,

there is no reason to try (and it is impossible) to detect a malicious provider whose equipment

allows to retrieve r blocks faster than for an honest provider. Consequently, let us focus on the

case z > rtRAM, which means

Pr[tret(δ) ≤ z] = Pr[YD ≤ f −1
HDD(z)]

Observe that f −1
HDD(z) is a slight abuse of notation, because fHDD(X), being a step function, is not

invertible3. However, we observe that fHDD(X) ≥ g(X), so g(YD) is a continuous lower bound for

tret(δ), and

Pr[tret(δ) ≤ z] ≤ Pr[g(YD) ≤ z] (6.1)

Even if we are sacrificing some precision, this bound permits to easily translate the dependency

of YD on δ and the other parameters into the dependency of tret(δ) on the same variables.

2The distribution of YD clearly depends on δ, but here and later in the paper we omit such a dependence to ease
notation.

3For every z, either z has no preimages, or z has multiple preimages: all the integer values in the interval(
z−tR

tR+tS
, z−tR

tR+tS
+ 1

]
.
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6.1.2 Predicting the Value of YD

We just showed that tret(δ) is completely determined by YD, that is, the random variable mea-

suring the number of blocks of the challenge that P stores only on disk. In order to predict

the value of YD, we can divide the n blocks of F into δn good blocks, corresponding to blocks

only stored on disk, and (1 − δ)n bad blocks, corresponding to those also stored in RAM. A

random challenge C can be described as a random extraction of r blocks without replacement

from such a population of n blocks, and YD is distributed as the number of good blocks picked.

In other words, YD is distributed as a Hypergeometric of parameters (n, δn, r), and has mean

E[YD] = δr. The following theorem provides a Chernoff-like bound for the tail YD ≤ y. To

improve readability, we defer the proof to Section 6.3.1.

Theorem 6.1.1. Assume that, for δ ∈ (0, 1), P stores δn blocks ofU’s file F only on disk. IfU

randomly chooses r blocks to include in a challenge C, and if YD denotes the number of such

blocks which are only stored on disk, it holds, for all y < δr,

Pr[YD ≤ y] ≤ exp
[
−

2
r

(δr − y)2
]

(6.2)

�

Observe that, based on Theorem 6.1.1, the minimum r such that Pr[YD ≤ y] ≤ ε, for any

negligible ε, can be found imposing

exp
[
−

2
r

(δr − y)2
]
≤ ε

which, under the condition y < δr, is satisfied for

r ≥ δ−1y +
δ−2 ln ε−1

4

1 +

√
1 +

8δy
ln ε−1

 (6.3)

6.2 Parameters Setting for PSM

Our protocol works on a challenge/response basis, where, if U receives a wrong response, it

concludes that P deleted a portion of F. Reasonably, this is the most serious possible violation

to the SLA. Therefore, when focusing on PSM, we can assume thatU received a valid response

to its challenge, since otherwise U would not be interested in the storage media actually used

by P.

To verifyP’s compliance to the SLA,U measures the time T required to obtain a valid response.

Based on T ,U must be able to distinguish if the response was computed upon data only stored
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in RAM, or upon data at least partially stored on disk. The PSM scheme works as a statistical

hypothesis test, relying on the assumption that an honest provider retrieves data faster than a

malicious one: U sets a threshold τ and considers P honest if T < τ, while malicious otherwise.

U sets the test up according to a threshold δmax, which corresponds to the maximum degree to

whichU is willing to tolerate a violation to the SLA. This could seem counterintuitive, but it is

indeed necessary, because the time needed byP to retrieve data varies continuously as a function

of δ, so to fix a threshold for the response time corresponds to fix a threshold for the choice of δ

as well. In this section, we show howU can tune the challenge size r and the threshold τ so as to

be able to distinguish whether P is honest or malicious (indeed, δ-malicious, for δ ≥ δmax), with

negligible false positive and false negative probabilities. As expectable, the success rate of our

PSM scheme turns out to depend on the difference E[tret(δmax)] − rtRAM between the expected

retrieval time of a δmax-malicious and an honest provider, respectively. In particular, U needs

to ensure that such a distance is sufficiently large with respect to the variance of tH and tnet.

Luckily, experiments run in Section 5.4 will show that the latter two variables are indeed highly

predictable.

6.2.1 Test Description

As already outlined, the scheme relies on a standard statistical hypothesis test: to decide which

one of two alternative hypotheses H0 and H1 (P being honest vs. P being malicious) is correct,

identify a variable (T ) which behaves differently under H0 and H1, and check if the measured

occurrence of such a variable is more compatible with H0 or H1. Let Thon and Tδ be defined as

in Section 6.1. Formally, the two statistical hypotheses are:

H0: P is honest and the time needed to get back the response is distributed as Thon.

H1: P is δmax-malicious and the time needed to get back the response is distributed as Tδmax .

To infer about P’s behavior, U sets a threshold τ and considers P honest if it can return the

response within time τ, and malicious otherwise. The probability of a false positive, that is, to

wrongly accuse an honest provider, is given by pfp = Pr[Thon ≥ τ]. On the other hand, the

probability of a false negative, that is, not to detect a malicious provider, is pfn = Pr[Tδmax < τ].

Contrarily to the former, the latter strongly depends on δmax: for any fixed τ, to obtain the

desired pfn, the smaller is δmax, the larger must be the size r of the challenge. Since all the

possible challenges, and hence their size r, are defined at setup time, for any choice of pfn, only

δ-malicious providers with δ larger than δmax will be detected with probability at least 1 − pfn.

Therefore, we assume that maximum accepted values pfpmax, pfnmax, and δmax are set byU at

setup time. Fig. 6.2 gives a graphical representation of the strategy we propose. Note that it is
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only a clarifying example, since the PDFs (probability density functions) of Thon and Tδ were

drawn arbitrarily.

E[Thon] τ E[Tδmax]

H0
H1
pfp
pfn

Figure 6.2: Graphical representation of the statistical hypothesis test.

Apparently, pfp and pfn cannot be both bounded at will, since, by decreasing τ, pfp decreases

but pfn increases, and vice versa. However, leveraging that tRAM is typically 5 orders of mag-

nitude smaller than tR and tS (tenths of ns vs. some ms), in Section 6.4 we will show that, by

realistically increase r, it is possible to distance the two Gaussian bells corresponding to H0 and

H1, until the two tails are very slightly overlapping. This way, τ can be set so as to make pfp
and pfn negligibly small at the same time.

6.2.2 Tuning the Parameters of the Test

In Section 5.4, we will experimentally analyze the distribution of tH and tnet. For the time

being, let us simply assume that tH
d
∼ N(µH(r), σ2

H(r)) and tnet
d
∼ N(µnet, σ2

net).
4 Now, let

µ(r) = µH(r) + µnet and σ2(r) = σ2
H(r) + σ2

net, so that

tH + tnet
d
∼ N(µ(r), σ2(r))

In the following, in all steps of the analysis where the dependency on r is not relevant, for the

sake of clarity we will denote µ = µ(r) and σ = σ(r).

The following theorem describes how the parameters of the statistical hypothesis test should be

set, so as to obtain the desired false positive and false negative rates. Again, for the sake of

readability, we defer the proof to Section 6.3.2.

Theorem 6.2.1. AssumeU implements the statistical hypothesis test described in Section 6.2.1,

with hypotheses H0 and H1.

4N(µ, σ2) denotes a Normal variable of mean µ and variance σ2.
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(a) If τ denotes the threshold used for the test, the false positive and false negative probabili-

ties satisfy

pfp = 1 − Φ

(
τ − rtRAM − µ(r)

σ(r)

)
pfn ≤

ρ√
4rσ2(r) + ρ2

· exp
[
−

2r ((δmaxρ − tS + µ(r)) − τ)2

4rσ2(r) + ρ2

]

where ρ = r(tR + tS )/N, and Φ is the CDF of the Standard Normal distribution.

(b) For any pfpmax, pfnmax ∈ (0, 1), both conditions

pfp ≤ pfpmax pfn ≤ pfnmax

hold concurrently, provided thatU sets r such that τmax(r) ≥ τmin(r), and τ ∈ [τmin(r), τmax(r)],

where

τmin(r) = rtRAM + σ(r)Φ−1(1 − pfpmax) + µ(r)

τmax(r) = (δmaxρ − tS + µ(r)) −

√√
4rσ2(r) + ρ2

2r
ln

 ρ

pfnmax
√

4rσ2(r) + ρ2


�

The minimum acceptable value for r is the one realizing τmax(r) = τmin(r), in which caseU has

to set τ = τmin(r) = τmax(r). Otherwise, τ can be taken in the whole interval [τmin(r), τmax(r)]: a

smaller τ means to prioritize pfn, while a larger τ means to favor pfp.

Since τmax(r) grows faster than τmin(r) (as we will verify in Section 6.5), there always exists an

r large enough to ensure τmax(r) ≥ τmin(r). However, it may happen that such an r is too large

for realistic applications. In that case, U has two choices. The first is to increase δmax, which

allows to decrease r though maintaining the same false negative probability pfn. The second

option is to make a choice between false positives and false negatives, that is, to choose if it is

more important to identify a malicious provider or to avoid to wrongly accuse an honest one. If

(reasonably)U decides to put false negatives first,U sets the threshold as τ = τmax(rmax), where

rmax is the maximum possible dimension of the challenge. The corresponding false positive

probability will be given by

pfp = 1 − Φ

(
τmax(rmax) − rmaxtRAM − µ(r)

σ(r)

)
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6.2.3 Multiple Challenges

In the previous sections, we showed that the effectiveness of the scheme strongly depends on

two parameters: the number r of blocks of file included in a challenge, and the maximum degree

δmax to which the user U is willing to tolerate a violation to the SLA. In some circumstances,

to correctly infer on the honesty of the provider P with a single challenge/response iteration,

U may need to excessively increase r and/or δmax. With the aim to provide a comprehensive

analysis of our approach, in this section we describe an alternative strategy to improve the ef-

fectiveness of the scheme without increasing r or δmax. The approach consists in performing

multiple challenges to the same provider, and draw a conclusion on its behavior based on the

outcomes of the different iterations altogether.

AssumeU performs m iterations of the scheme and let ti, i = 1, . . . ,m, denote the time elapsed

from the transmission of the i-th challenge to the reception of the corresponding response. For

each iteration, U checks if ti ≤ τ is satisfied. In this case, U must choose an integer l ≤ m

and decide whether P is honest based on whether at least l of the ti’s satisfy ti ≤ τ. The false

negative probability, that is, the probability that at least l out of the m responses are delivered

within time τ given statistical hypothesis H1, becomes then

Pfn =

m∑
k=l

(
m
k

)
pk
fn(1 − pfn)m−k

where pfn denotes the false negative probability of a single iteration. Pfn < ε, for any choice of

ε, can be obtained increasing m, or decreasing l for m fixed. The corresponding false positive

probability is given by

Pfp =

m∑
k=m−l+1

(
m
k

)
pk
fp(1 − pfp)m−k

Observe that the challenges must be separated from each other by a sufficiently large time inter-

val. This is to avoid that P retrieves the whole file F when it gets the first challenge and keeps

it in RAM until the last challenge arrives. In fact, while doing it only for a short time can be

considered a way to cheat, if P behaves this way for challenges delivered very far away one

from the other in time, then P is substantially behaving honestly.

6.3 Proofs

In this section, we provide the proofs to the main results of this chapter: Theorem 6.1.1 and

Theorem 6.2.1
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6.3.1 Proof of Theorem 6.1.1

First of all, let us recall a result by R. Impagliazzo and V. Kabanets [172], which is a general-

ization of the well known Chernoff Bound for dependent, but negatively correlated, variables.

Application of Theorem B will be the essential step for the proof of Theorem 6.1.1.

Theorem B (1.1 in [172]). Let Xi ∈ {0, 1}, i = 1, . . . ,m, be boolean variables such that, for

some 0 ≤ p ≤ 1, and for every subset Ω ⊂ {1, . . . ,m}, it holds

Pr[∧i∈ΩXi = 1] ≤ p|Ω|

Then, for any p ≤ γ ≤ 1, it holds

Pr

 m∑
i=1

Xi ≥ γm

 ≤ exp
[
−mDKL(γ||p)

]
≤ exp

[
−2m(γ − p)2

]
(6.4)

�

DKL(γ||p) denotes the Kullback-Leibler Divergence. For binary probability distributions it is

defined as

DKL(γ||p) = γ ln
γ

p
+ (1 − γ) ln

1 − γ
1 − p

with 0 ln 0 interpreted as 0, since limx→0 x ln x = 0. The condition DKL(γ||p) ≥ 2(γ − p)2, used

in (6.4), follows easily from the convexity of DKL(γ||p).

For i = 1, . . . , r, let Yi be the Bernoulli variable which indicates whether the ith block of the

challenge is only stored on disk (Yi = 1) or it is stored in RAM as well (Yi = 0), so that

YD =
∑r

i=1 Yi. Since blocks are picked without replacement, the Yi’s are not independent, reason

why YD is a Hypergeometric and not a Binomial.

Let Xi = 1−Yi, so that Pr[Xi = 1] = 1−δ is the ratio of blocks stored in RAM over total number

of blocks. The Yi’s being mutually dependent, the Xi’s are dependent too. In particular, if i′ , i,

Pr[Xi′ = 1|Xi = 1] < 1− δ, since, once we pick a block stored in RAM, the ratio of blocks stored

in RAM decreases. As a consequence, for every Ω ⊂ {1, . . . , r},

Pr[∧i∈ΩXi = 1] < (1 − δ)|Ω|

and we can apply Theorem B with γ = 1 − δ + α, to obtain

Pr

 r∑
i=1

Xi ≥ (1 − δ)r + αr

 ≤ exp
[
−2rα2

]
(6.5)
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Now, if we observe that

r∑
i=1

Xi =

r∑
i=1

(1 − Yi) = r −
r∑

i=1

Yi = r − YD

we see that the events

r∑
i=1

Xi ≥ (1 − δ)r + αr and YD ≤ δr − αr

are equivalent, and (6.5) can be restated as

Pr[YD ≤ δr − αr] ≤ exp
[
−2rα2

]
Finally, if we impose y = δr − αr, we obtain

Pr[YD ≤ y] ≤ exp
[
−2r

(
δ −

y
r

)2
]

for all y < δr = E[YD], which is equivalent to the desired bound

Pr[YD ≤ y] ≤ exp
[
−

2
r

(δr − y)2
]

by just explicating the dependency on the distance between y and E[YD]. �

6.3.2 Proof of Theorem 6.2.1

We will separately prove statements (a) and (b) of the theorem.

Proof of statement (a)

We start with the easier case, that is, computing pfp. We recall that

Thon = rtRAM + tH + tnet

Consequently

pfp = Pr[Thon > τ] = Pr[tH+tnet > τ−rtRAM] = 1−Pr[tH+tnet ≤ τ−rtRAM] = 1−Φ

(
τ − rtRAM − µ(r)

σ(r)

)

Now, let FX(x) and fX(x) denote, respectively, the CDF and the PDF of a random variable X. To

bound pfn, we need the following theorem.
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Theorem C . Let U d
∼ N(µU , σ

2
U) be normally distributed with mean µU and variance σ2

U . Let

V be a random variable which satisfies, for all v < E[V], and for suitable parameters a and A,

FV (v) ≤ exp
[
−a(A − v)2

]
If W = U + V, then the CDF of W satisfies

FW(w) ≤
1√

2aσ2
U + 1

exp
−a((A + µU) − w)2

2aσ2
U + 1

 (6.6)

Proof. It is well known that

fU(u) =
1

σU
√

2π
exp

− (u − µU)2

2σ2
U


and that, if W = U + V , it holds

FW(w) =

∫ +∞

−∞

FV (w − u) fU(u)du

By hypothesis, then, we have

FW(w) ≤
1

σU
√

2π

∫ +∞

−∞

exp
−a(A − (w − u))2 −

(u − µU)2

2σ2
U

 du (6.7)

For the sake of simplicity, let us define

α = a +
1

2σ2
U

=
2aσ2

U + 1

2σ2
U

β =
a

a + 1
2σ2

U

=
2aσ2

U

2aσ2
U + 1

γ =

1
2σ2

U

a + 1
2σ2

U

=
1

2aσ2
U + 1

φ =

a · 1
2σ2

U

a + 1
2σ2

U

=
a

2aσ2
U + 1

After some computations, (6.7) can be restated as

FW(w) ≤
1

σU
√

2π

∫ +∞

−∞

exp
[
−φ((A + µU) − w)2 − α(u − (β(A − w) + γµU))2

]
du

=
1

σU
√

2α
exp

[
−φ((A + µU) − w)2

]
·

∫ +∞

−∞

√
α

π
exp

[
−α(u − (β(A − w) + γµU))2

]
du

The expression in the integral is the density of a Normal variable W with mean µW = β(A−w) +

γµU and variance σ2
W = 1/2α, so the integral evaluates to 1. Finally, we have

FW(w) ≤
1

σU
√

2α
exp

[
−φ((A + µU) − w)2

]
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and, recalling the definition of α and φ, we obtain the desired result

FW(w) ≤
1√

2aσ2
U + 1

exp
−a((A + µU) − w)2

2aσ2
U + 1


�

In Section 6.1.1, we defined

g(X) =
tR + tS

N
X − tS

and showed that tret(δ) ≥ g(YD). Consequently, if we define

T ′δ = g(YD) + tH + tnet

we know that

Tδ = tret(δ) + tH + tnet ≥ T ′δ

and that

Pr[Tδ ≤ τ] ≤ Pr[T ′δ ≤ τ]

From (6.2), we know that

Pr[g(YD) ≤ z] = Pr[YD ≤ g−1(z)] ≤ exp
[
−

2
r

(
δr − g−1(z)

)2
]

= exp

− 2N2

r(tR + tS )2 ·

((
δr(tR + tS )

N
− tS

)
− z

)2
For the sake of clarity, let us define

ρ = ρ(r, tR, tS ,N) =
r(tR + tS )

N
= (tR + tS ) ·

r
N

ρ can be seen as the product of the time to retrieve a block from a disk (tR + tS ), times the average

number of blocks of challenge per disk (r/N), that is, as the average time necessary to recover

all the blocks of a challenge. Now, we can restate the CDF of g(YD) as

Pr[g(YD) ≤ z] ≤ exp
[
−

2r
ρ2 ((δρ − tS ) − z)2

]

Recalling that tH + tnet
d
∼ N(µ, σ2), we can apply Theorem C with U = g(YD) and V = tH + tnet,

so that W = T ′δ. The parameters are set as

a =
2r
ρ2 A = δρ − tS µY = µ σ2

Y = σ2
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and (6.6) affirms that

Pr[T ′δ ≤ τ] ≤
ρ√

4rσ2 + ρ2
exp

[
−

2r ((δρ − tS + µ) − τ)2

4rσ2 + ρ2

]

Finally, we get

pfn = Pr[Tδmax ≤ τ] ≤ Pr[T ′δmax
≤ τ] ≤

ρ√
4rσ2(r) + ρ2

· exp
[
−

2r ((δmaxρ − tS + µ(r)) − τ)2

4rσ2(r) + ρ2

]
(6.8)

�

Proof of statement (b)

U wants to choose τ and r such that the system
pfp ≤ pfpmax

pfn ≤ pfnmax

(6.9)

is satisfied. Thanks to statement (a), for the first inequality,U imposes

pfpmax ≥ 1 − Φ

(
τ − rtRAM − µ(r)

σ(r)

)
(6.10)

which is equivalent to

τ ≥ τmin(r) (6.11)

if we impose

τmin(r) = rtRAM + σ(r)Φ−1(1 − pfpmax) + µ(r)

Again from statement (a), for the second inequality,U imposes

pfnmax ≥
ρ√

4rσ2(r) + ρ2
· exp

[
−

2r ((δmaxρ − tS + µ(r)) − τ)2

4rσ2(r) + ρ2

]

which is equivalent to

((δmaxρ − tS + µ(r)) − τ)2 ≥
4rσ2(r) + ρ2

2r
· ln

 ρ

pfnmax
√

4rσ2(r) + ρ2

 (6.12)

Under the hypothesis τ < E[Tδmax], (6.12) is satisfied if

τ ≤ τmax(r) (6.13)
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if we impose

τmax(r) = (δmaxρ − tS + µ(r)) −

√√
4rσ2(r) + ρ2

2r
· ln

 ρ

pfnmax
√

4rσ2(r) + ρ2


As a consequence, if r is set such that τmax(r) ≥ τmin(r), any τ ∈ [τmin(r), τmax(r)] ensures that

system (6.9) is satisfied. �

6.4 Real-life Applications

In this section we show some examples of the application of our scheme in real-life, discussing

how the main design parameters affect the effectiveness of the protocol. First, we need to identify

realistic values for all system parameters that are not tunable byU: the hash computation time

tH , the network delay tnet, and the parameters tS , tR and tRAM describing the performances of the

storage media used by P.

As shown in Section 5.4, tH can be accurately approximated by a Normal variable, of mean

µH(r) = 2.2r ms = 2.2r × 10−3 s, and deviation σH(r) = 2.5r µs = 2.5r × 10−6 s. The precise

distribution of tnet varies according to the specific locations of the client and the server, but the

experiments of Section 5.4.2 underline how such differences are minimal. As a conservative

assumption, we take the maximum mean and deviation among those measured for all pinging

locations, that are, µnet = 335 ms = 3.35 × 10−1 s, and σnet = 15 ms = 1.5 × 10−2 s.

The HDDs average seek time tS , and the times tR and tRAM to read a 512KB block from disk and

from RAM, respectively, depend on the specific model, but their order of magnitude is typically

invariant. To make the analysis coherent with the extensive simulations presented in Section 6.5,

we set tS , tR and tRAM according to the specifics of the hardware used to run the simulations. The

HDD model used is the Hitachi Ultrastar 15K300 SAS, for which tS = 3.4 ms = 3.4 × 10−3 s,

and tR = 4.7 ms = 4.7 × 10−3 s. The RAM model used is the Kingston DDR2-667 PC2-5300,

whose access time can be estimated as AT= 45 ns, so that tRAM = 5.76 µs = 5.76 × 10−6 s.5

In Section 6.2.2, and in particular in Theorem 6.2.1, we showed how U can design the test

so as to concurrently bound the false positive probability below pfpmax and the false nega-

tive probability below pfnmax. In particular, once U chose r such that the necessary condition

τmax(r) − τmin(r) ≥ 0 holds,U can set the threshold τ of the test as any τ ∈ [τmin(r), τmax(r)].

Even plugging into the expressions of τmin(r) and τmax(r) the realistic values identified before for

all system parameters, the general dependency of such bounds on r, pfpmax, and pfnmax remains

hardly intelligible. For this reason, in the remainder of this section we analyze several possible

5All values are computed based on the discussion presented in Section 5.3, and on the specifics of the hardware
used (e.g., 850 sectors per track on average).
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scenarios, where we fix the number of HDDs N and the threshold δmax, and we assume that a

symmetrical false positive and false negative probability p is admitted. Plotting the extrema τmin

and τmax as p and r vary, we highlight how r can be chosen once p is fixed, so as to ensure that

pfn and pfp are both bounded by p. If r is fixed as the minimum size able to satisfy the latter

requirement, the value of the threshold τ that must be used for the statistical hypothesis test is

automatically and univocally determined.

However, before we discuss specific examples, let us exhibit some general considerations. Intu-

itively, we want the distance ∆ = E[tret(δmax)] − rtRAM between the expected value of Tδmax and

Thon to be sufficiently large with respect to the standard deviation σ(r) of Thon. We can therefore

focus on the ratio

Θ(r) =
∆

σ(r)
≈ 0.54r

δmax

N

and consequently infer that the order of magnitude of r must be 10Nδ−1
max. Observe that, for

realistic values of N and δmax, a similar value for r is very reasonable. For instance, if P has

N = 10 HDDs storing a whole copy of the file F, U can detect if P is storing more than

δmax = 0.1 of F only on disk, by setting r ≈ 1000. This corresponds to any challenge/response

iteration involving 512MB of data.

Case 1: N = 1, δmax = 0.5. Let us start from a scenario very favorable to U. In this case,

since Nδ−1
max = 2, we expect a challenge composed of some tents of blocks to be sufficient to

detect that P is dishonest. Fig. 6.3a confirms this intuition is indeed true: r ≈ 60 is sufficient

to make the false positive and false negative rates both negligible (≈ 4.5 × 10−5). The amount

of data involved in the response computation is only ≈ 30MB, and the threshold τ can be set as

approximately half a second.

Case 2: N = 2, δmax = 0.3. In this case, Nδ−1
max ≈ 6.7, so we expect to need a challenge approx-

imately three times larger than the previous case to detect that P is dishonest. Fig. 6.3b once

again confirms what we expect: r ≈ 190 is necessary to obtain the same confidence (pfn and pfp
both ≈ 4.5 × 10−5) about the reliability of our scheme. In this case, the amount of data involved

in the response computation is ≈ 95MB, and the threshold τ must be set as approximately 0.7 s.

Case 3: N = 4, δmax = 0.3. With Nδ−1
max ≈ 13.4, we expect to need a challenge approximately

twice as large as in Case 2. Even in this case, our prediction is confirmed by the plots, shown

in Fig. 6.3c. r ≈ 320 is necessary to obtain error rates of ≈ 4.5 × 10−5. This means to involve

≈ 160MB of data in each challenge/response iteration, and that the threshold τ must be set as

approximately 0.9 s.

Case 4: N = 8, δmax = 0.5. Since, with respect to Case 3, we increased N and (almost)

proportionally increased δmax, we need approximately the same r, as shown in Fig. 6.3d, and

as expected. More precisely, r ≈ 325 is necessary to obtain error rates of ≈ 4.5 × 10−5, and
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(d) Case 4: N = 8, δmax =

0.5.
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τmax(p, r)
τmin(p, r)

1e-4
5e-4

1e-3p 1600 2200 2800 3400
r

4.5
5.5
6.5
7.5
8.5

1e-4
5e-4

1e-3p 1600 2200 2800 3400
r

2700
2800
2900
3000
3100
3200

1e-06 3e-06 5e-06 7e-06 9e-06

r

p

τmax(p, r) = τmin(p, r)

(f) Case 6: N = 8, δmax = 0.1.

Figure 6.3: Real-life applications examples. In all cases: the upper plot shows τmax(p, r) and
τmin(p, r), where p is the maximum accepted error rate, and r is the size of the challenge; the

lower plot shows a zoom on the points (p, r) such that τmax(p, r) = τmin(p, r).
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≈ 165MB of data are involved in each challenge/response. Also in this case, the threshold τ

must be set as approximately 0.9 s.

Case 5: N = 1, δmax = 0.1. In this case, since Nδ−1
max = 10 is a middle ground between Case

2 and Case 3, we expected r ≈ 250 to be sufficient to detect P with false positive and false

negative rates ≈ 4.5 × 10−5. On the contrary, Fig. 6.3e shows that a much larger challenge

composed of r ≈ 800 blocks is required. The rationale we identified is that decreasing N and

δmax increases the variance of the time Tδmax needed by a δmax-malicious provider to return the

response, thus making more difficult to upper bound pfn. It is worth to underline how this means

that δmax has a heavier impact on the scheme than N: it is harder to detect P if it behaves more

honestly, rather than if it (proportionally) increases the number of copies of F available on disk.

Finally, this scenario requires P to compute the response over ≈ 400MB of data, andU to set τ

as approximately 1.5 s.

Case 6: N = 8, δmax = 0.1. Even if this case is very challenging forU, Fig. 6.3f shows that our

scheme is definitely feasible, though a bit more resource-demanding. In particular, r ≈ 2900

is necessary to obtain the same error rates of the previous cases (≈ 4.5 × 10−5). Accordingly,

the amount of data involved in the response computation becomes ≈ 1450MB, which is not

particularly large for a high-performance server. Finally, in this case the threshold τ must be set

as approximately 6 s.

The purpose of this discussion was to show in detail how the scheme can be implemented so as

to infer the behavior of the provider, keeping the false positive and false negative rates under the

desired thresholds. To further help the reader to capture the effectiveness of our scheme, in the

next section we will exhibit more plots, showing how the expectation of Tδ varies as a function

of δ and N, for r = 3000 fixed. A comparison of the expectations of Tδ and Thon, and of the

different order of magnitude of the corresponding standard deviations, immediately shows why

the scheme is indeed very effective.

6.5 Experimental Results

To further validate our PSM protocol, we implemented a prototype consisting of a client and

server program implemented in C. Since the purpose of the experiments is mainly to verify

the viability of the scheme, we fixed r = 3000, which is sufficiently large even for difficult

cases. For the purpose of our experiments, we created a 10GB file F filled with random data,

which therefore consists of 20480 512KB data blocks, numbered from 0 to 20479. We first

run experiments of the PSM protocol with an honest server (i.e., δ=0). Afterwards, we run

experiments of the PSM protocol with a malicious provider, using two levels (δ=0.3 and δ=0.5)

of dishonesty. For a malicious provider, we also let the number of HDDs N vary in {1, 2, 4, 8}.
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Finally, even though it is not explicitly considered in our theoretical framework, we needed

to take into account a common feature of modern operating systems (OSs) (e.g., Linux and

Microsoft Windows) called file system caching. File system caching is an integral part of the OS,

used to boost read performances, and cannot be disabled. This feature makes educated guesses

about the next couple of blocks a program might read, and preloads these blocks into the RAM.

Tuning the parameter CR in our simulations, we experimentally evaluated its influence on the

response time. More specifically, we compared the case CR=0%, or Direct Input Output (DIO),

where caching is not used, to the cases CR=5%, 10%, 15%, 100%. CR=x% means that P’s

HDDs can only cache x% of the file.

Using the configuration options discussed above (i.e., δ, N, and CR), there are one possible con-

figuration for the honest case, and 2 (δ) × 4 (N) × 5 (CR) = 40 possible configurations for the

malicious case. Each experiment was run once from each client location (i.e., Northern-Virginia,

Sao-Paulo, Sydney, and Tokyo), summing up to 4 experiments for the honest configuration and

160 for the dishonest configurations. Finally, for each of such configurations, we performed

1000 independent runs of the PSM challenge/response scheme, and computed the average re-

sponse time over the 1000 runs.

6.5.1 Experimental Settings

Before entering the details of the experiments performed to support the theoretical analysis, we

need to clarify the experimental settings, that is, to provide the specifications of the server and

clients used in the experiments.

Server The server we used has two 64-bit Intel Xeon E5345 processors. Each one of these

processors has 4 cores, runs at a 2.33 GHz clock speed with a 1333 MHz front side bus, and

has 8 MB L2 cache. The server has 16 GB DDR2-667 PC2-5300 fully buffered and registered

ECC RAM installed. The installed RAM has a clock cycle of 3 nanoseconds and a 5-5-5 tim-

ing.6 Moreover, the server comes equipped with eight Hitachi Ultrastar 15K300 SAS (Serially

Attached SCSI) hard disks drives. This HDD model is characterized by 147 GB capacity and 16

MB of cache, while its performance specifications are summarized in Table 5.1. These HDDs

are connected to the system via a LSI MegaRAID SAS 8480E7 based smart array disk controller.

Each one of the eight installed hard disk drives contains an ext4 file system with a default 4KB

block size. Furthermore, the server runs Ubuntu Server 12.0.4 GNU/Linux.
6A 5-5-5 timing means that 45 nanoseconds (i.e., 15 clock cycles) elapse between issueing the request for a piece

of data and actually getting it.
7http://www.lsi.com/downloads/Public/Obsolete/Obsolete%20Common%20Files/mr_sas_stor_ug.pdf
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Clients We use four clients for our experiments, and each one of these clients is a Virtual

Machine provided by the Amazon Elastic Cloud 2 (EC2). Each client has 1 64-bit core, 600

MB of RAM, and runs Amazon Linux AMI 2013.03.1. Furthermore, each client is located in a

datacenter site at a different geographic location. More specifically, we have one client at each

of the following Amazon datacenter sites: (i) Northern-Virginia, (ii) Sao-Paulo, (iii) Sydney,

and (iv) Tokyo.

6.5.2 Experimental Results with an Honest Server

The experimental results with an honest server, shown in Fig. 6.4, exhibit an average response

time of approximately 7 s for all four clients at different geographic locations. Small differences

can be observed among different clients, which can be attributed to differences in the corre-

sponding network delay time. To clarify, let us have a closer look at Fig. 6.4, compared with

Fig. 5.4. The difference in the average response time between the clients in Tokyo and Northern-

Virginia is 209.168 ms, and the difference in the weekly average network delay to Milan between

the same sites is 197.735 ms. This confirms that the difference in the average response time is

mainly due to the difference in the values of tnet.

Let us observe that the statistical deviation of the response time is very small. Clients in Sao-

Paulo and Tokyo show a definitely negligible deviation of 0.0065118847 s and 0.0058800772 s,

respectively. Even in the case of the client located in Sydney, which exhibits the largest devia-

tion, this value is 0.117622897 s (i.e., 117.622 ms), that is, an order of magnitude smaller than

the average response time. In other words, the distribution of the response time for an honest

provider is very concentrated around its mean, and the average measured response time can be

used as basis to detect dishonest providers.
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Figure 6.4: Average measured response time from an honest server.
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6.5.3 Experimental Results with a Dishonest Server

Fig. 6.5 describes the average response time for the dishonest configurations, allowing a direct

comparison of our theoretical predictions (Figs. 6.5a and 6.5b) and our experimental measure-

ments (Figs. 6.5c, 6.5d, 6.5e, 6.5f). In the previous sections we described several strategies that

a malicious provider can adopt to reduce the response time and try to fool the user. However, our

analysis, confirmed by the experiments, ensure that even the most advantageous combination of

parameters cannot prevent a dishonest provider from being detected. To see why, we need to

discuss Fig. 6.5 more in detail.
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Figure 6.5: Average response time: comparison of theoretical predictions and experimental
measurements.

For each of the four client locations, we exhibit a plot of the experimental measurements with

ten bars for each number of HDDs. Each bar represents the average response time measured

in correspondence of a specific combination of δ and CR. First, the plots confirm that (for any
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specific configuration) the response times measured from a 0.3-malicious provider are indeed

lower than those for a 0.5-malicious provider. For instance, Fig. 6.5c shows that the client at

Northern-Virginia, if CR=5% and N = 1, experiences an increase in the average response time

from 14.9803 s to 20.0137 s when δ passes from 0.3 to 0.5. Similarly, increasing the number of

HDDs used results in reduced response times, but the benefit of adding more HDDs decreases

with the number of HDDs. To properly evaluate the influence of the number of HDDs, we

consider the simulation results corresponding to CR=0%, which is the only case when we can

isolate the impact of N. If we focus on the simulation results of the client in Sydney (Fig. 6.5e),

for δ=0.3 and CR=0%, we see that the response time is 16.7557 s for N=1, 12.2033 s for N=2,

10.2683 s for N=4, and 9.2432 s for N=8, with a sub-linear drop. Finally, increasing the cache

size does have the intended effect of boosting read performances, hence reducing the average

response time. For instance, focusing on the client in Sao-Paulo, from Fig. 6.5d we see that,

for N=1 and δ=0.3, the average response time is 15.2866 s for CR=5%, 14.0356 s for CR=10%,

12.9302 s for CR=15%, and 8.5798 s for CR=100%.

However, in all the configurations considered, a malicious provider can be detected even if it

combines all the previous strategies. To show why, let us focus on the case of a client located

in Sidney, comparing Figs. 6.4 and 6.5e. The client in Sidney is the most vulnerable, since

it shows both the highest average response time in the honest configuration, and the highest

standard deviation. However, we can easily see that this is not enough to conceal a cheating

provider. The average response time for Sidney is 7.4479 s if the provider is honest, and at least

8.6133 s (using the best configuration: δ=0.3, N=2, and CR=100%) if the provider is malicious.

The difference between the two average response times is at least 1.1654 s, which is 9.8 times

the standard deviation. This means that the two cases are easily statistically distinguishable.

Finally, let us focus on the theoretical plots. Figs. 6.5a and 6.5b show the approximation

E[Tδ] ≈
δr
N

(tR + tS ) + µ(r) =

(
δ

N
· 24.3 + 6.935

)
s

of the average response time, obtained (according to Section 6.4) setting r = 3000, tR = 4.7 ms,

tS = 3.4 ms, and µ(r) = (2.2r + 335) ms. In particular, Fig. 6.5a shows the plot as a function of

N, for both δ = 0.3 and δ = 0.5, while Fig. 6.5b shows the plot as a function of δ, for N = 2

and N = 8. As the reader can check, our theoretical predictions almost perfectly match the

simulation results. The trend of the predicted and measured response times is the same, with

experimental results for all four client locations being 1 to 2 s slower than the expected response

times.

Such a difference can be explained considering that our theoretical framework necessarily fails to

capture some very technological aspects. However, the fact that simulated dishonest providers

are slower than our prediction confirms that our model is more conservative than reality. In

particular, we assumed that a block is always read within a specified amount of time, while this
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is not the case in many practical settings. In fact, we did not take into account the processing

delay introduced by code within the kernel that must be executed between the moment a program

makes a read system call, and the moment the actual read takes place. The model does not even

consider the processing delays due to several other software (e.g., processing delays introduced

by device drivers and firmware) and hardware components (e.g., transmission delay over several

shared buses, and processing delay introduced by controllers) on the execution path of a read

system call. Summing up, the almost constant time difference observed between the estimated

and measured response times is caused by several processing delays that, if taken into account,

would have made our theoretical model too hard to handle.

6.6 Summary

In this chapter, we addressed the problem of verifying the compliance of outsourced storage

service providers to the Service Level Agreement (SLA) stipulated with the client. In particular,

we focused on verifying (probabilistically) whether the client’s data are indeed stored on the

agreed storage medium. In Chapter 5, we defined this problem as Provable Storage Medium

(PSM), which is a concept more restrictive than the one of Provable Data Possession (PDP), that

only aims at verifying the integrity of the data at the server side.

We proposed a PSM scheme where, based on a statistical hypothesis test, the provider is consid-

ered dishonest if it fails to provide the response to a data request within a given time constraint.

A detailed analysis of the involved variables (network delay, disk and RAM access time) allows

us to accurately predict the false positive and false negative rates of the test. We also run an

extensive experimental campaign, whose results support the correctness of our analysis, as well

as the viability of our proposal.



7
Conclusions

In this thesis, we presented two main contributions provided by the candidate during his PhD

studies. We addressed two topics of primary importance in the security community: Distributed

Sensor Network (DSN) and Cloud Storage (CS).

DSN is a model for environmental sensing and monitoring, characterized by three main assump-

tions: (i) the network is unattended and relies on distributed functionalities, (ii) sensors are free

to randomly roam in the environment, and (iii) sensors have limited storage, computational and

energetic resources. Similar features make the design of a secure and efficient data handling

scheme at the same time extremely important and particularly challenging. Being able to iden-

tify a reliable and practical framework means to address at the same time the requirements of a

wide range of military, civilian and industrial applications.

CS is recently establishing itself as the reference paradigm for data storage. Everyone, from big

companies to private users, currently relies on remote storage services for her most important

data, especially because CS is generally considered very reliable. However, the compliance of

service providers to the Service Level Agreement (SLA) should not be given for granted, as

shown by the considerable attention raised in the literature by the problem of Provable Data

Possession (PDP). In a world where the pace of life is becoming ever faster, data access time

becomes a primary concern. With this in mind, PDP cannot be the only concern considered

when stipulating a SLA: minimum performances of the storage media used in the cloud must be

stated, and therefore compliance to this novel aspect of SLAs must be remotely verifiable.
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7.1 Contributions and Future Work – Part I

In Part I, we presented a survey of security issues and countermeasures for DSNs, and proposed

a solution able to provide, at once, all the security requirements of this type of networks. The

survey is itself of remarkable interest, especially because it concerns very recent technologies

and research work, which, at least partially, still needed to be assembled in a unified body.

However, the main contributions provided by Part I can be found in Chapter 3, and can be

summarized as follows:

A We introduced a very energy-efficient scheme that provides data availability and confiden-

tiality without relying on any cryptographic primitive, but only on local secret sharing and nodes

mobility.

B We provided analytic bounds able to accurately predict, under precise assumptions, the

amount of sensed data accessible by both the sink and the adversary as a function of their capa-

bilities and of system parameters.

C We discussed the assumptions used to derive our bounds, showing that their correctness is

only a matter of time: the faster information gets diffused by nodes mobility, the earlier system

performances become predictable. Since information sharing improves diffusion, high network

density can compensate for slowly moving sensors.

D We introduced metrics able to describe to which extent our scheme can enforce data integrity

and source-location privacy, based on the ability of the sink to detect fake data injected by the

adversary, and on the chances of the adversary to correctly infer the origin of some sensed data.

E We ran an extensive simulation campaign, which broadly confirms the accuracy of our anal-

ysis, though providing some remarkable insights on the relevance of information diffusion, and

on the limited dependency of our theoretical predictions on the application setting.

Altogether, our solution represents at the same time: (i) a proof of concept for the fact that a

proper information handling and mobility leveraging can provide security for DSNs, and (ii)

a general framework suited for a lot of different scenarios, which can be easily adapted to the

specific features of the network under analysis. We provide precise indications about how the

parameters of the sharing scheme should be chosen according to the density and mobility degree

of the network, to the capabilities of the sink and the adversary and to the desired trade-off

between different security requirements.
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We envisage two main lines to extend our work in the next future:

• We highlighted how the mobility model of the network plays a fundamental role in an-

swering whether we can predict the behavior of the network, and to which extent. A more

general analysis, able to merge the contributions of Sections 3.3 and 3.4, would allow to

quantify the level of confidentiality and availability ensured by information sharing and

diffusion, in a comprehensive way that considers, at the same time, the impact of all rele-

vant parameters, such as: the number of shares generated from each piece of information,

and those necessary to recover it; the amount of nodes accessed; the density of the net-

work, in respect to the communication range; the speed and randomness of the sensors

movements; etc. A similar study requires a profound knowledge of the theory of stochas-

tic processes and, more generally, a considerable familiarity with advanced probabilistic

tools.

• We considered secret sharing as the most straightforward approach to concurrently pro-

vide confidentiality and reliability, in particular when the shares can be diffused efficiently

leveraging sensors movements. However, there is a whole body of knowledge about error

and erasure correcting codes, that can be rightfully expected to perform much better than

secret sharing. In fact, if we associate erasures with data loss, and errors with fake-data

injection, any combination of data integrity, availability and confidentiality can be prov-

ably obtained simply choosing the proper code. Based on the rationale that data routing

should be avoided (or, at least, minimized), we believe that the most promising approach

would be to use Low Density Parity Check (LDPC) codes, with parameters induced by

the temporary network topology, so as to be able to exchange parity bits only locally. To

this end, a detailed analysis of the mobility model of the network is once again necessary.

In fact, predicting how the topology of the network evolves allows to understand which

parity bits a sensors is expected to hold. This information is crucial, since the main source

of data loss or poisoning are captured sensors, and a single captured sensor may generate

a huge amount of corrupted data.

7.2 Contributions and Future Work – Part II

Part II was dedicated to the problematics introduced by remotely storing private data on the

cloud. In Chapter 4, we discussed the main requirement in this context: to enable any user to

verify the integrity of her data, while locally storing little or no information at all. This property,

usually referred to as Provable Data Possession (PDP), must be ensured while preventing any

access of the provider to the clear-version of the user’s data, which she might want to keep

confidential. More generally, we believe that any CS infrastructure should enable its users to
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verify all main aspects of the SLA, not just data integrity. For this reason, in Chapters 5 and 6

we provided the following contributions:

A We introduced the concept of Provable Storage Medium (PSM), to denote the ability of the

users to verify that the storage medium used by the provider to store their data is the one that

gives at least the performances agreed in the SLA.

B We proposed a scheme based on time measurements for challenge/response interactions

between the client and the server, able to concurrently provide PDP and PSM. The computational

cost and memory utilization at the client side are very limited, and can be easily implemented in

a mobile resource constrained device such as a smartphone.

C We performed a thorough analysis of both the system model and the possible behaviors of

the provider, showing that the chances for the service provider not to comply with the SLA while

being not detected can be made negligible by a proper choice of the parameters. In particular,

we specified what explicit agreement about the response delivery time can be introduced in the

SLA, to ensure that data are indeed stored in RAM, or on any storage medium with better access

performances.

D We performed extensive experiments that involve real client and server instances. The ex-

perimental results do support the quality and viability of our solution.

We underline once again that what we are pursuing is not simply the answer to a security cu-

riosity, but the solution to possible real-life issues. In fact, think to websites that require very

low delays, or to real-time recovery of critical systems. In those and many other contexts, not

respecting a pre-determined response time could result in remarkable financial losses or in sig-

nificant security threats.

Future work could consist in both improving or generalizing our work. In particular, we identify

two main research directions:

• Our PSM solution was built upon a previous PDP scheme. Even if the main idea can

be righteously expected to generalize to a wide range of PDP protocols, our analysis is

partially related to the specific scheme considered. In fact, we needed to quantify the time

necessary to compute the proof of possession, so we considered a very efficient scheme

where the proof is obtained by applying a hash function to the challenged blocks of data.

However, other schemes in the literature implement other desirable properties (e.g., ho-

momorphic tags that allow the client to store a fixed amount of data, independent from
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the number of possible challenges [146]), at the cost of a slightly larger computational

burden at the server side. It would be appreciable to generalize our protocol so as to make

it adjustable to any PDP scheme. Alternatively, it would be of secure interest to formally

introduce PSM among the desiderata of PDP schemes: if we identify the maximum com-

putational time of a PDP proof that allows to concurrently address PSM, we would be

able to state how PSM can be traded-off against other requirements of a CS application.

• Our work opens a new perspective towards SLA compliance in CS systems. Previous

works (almost) only considered the problem of checking the integrity of the remotely

stored file. However, there are other clauses than can be included in the SLA, and that the

user may be therefore willing to verify. Among them, the most interesting are probably the

number of copies of the file, and the location of the server(s) that store them, because both

may affect the time to retrieve data, the likelihood of server failures, and the resilience to

such an eventuality. The former property was briefly discussed in [167], which however

completely lacks a general and theoretical framework. A possible and interesting line of

research is therefore to investigate such issues more deeply.
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