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Introduction

In June of 2012, the LHC experiment |1, 2| has finally completed the spectrum of the Stan-
dard Model with the discovery of the Higgs boson, predicted in the 60’s by Higgs [3, 4],
Englert, Brout [5], Guralnik, Hagen and Kibble [6]. However, the structure and the physics
behind the Higgs sector are not completely clear and this represents a possible gateway to the
manifold conceivable extensions of the Standard Model (SM). One of the simplest renormal-
izable enlargement of the Higgs sector is constructed by adding to the SM Lagrangian one
additional spinless real electroweak singlet, which develops its own vacuum expectation value
[7,8,9, 10, 11, 12, 13, 14].

Beside being easy to implement, the physics of a scalar singlet has received a lot of attention
in the recent years for several reasons; among them, it can help in solving the issues related to
the metastability of the electroweak vacuum [15, 16] if the Higgs potential receives a correction
due to new physics which modify it at large field values [17] and it could provide a door to
hidden sectors [18] to which it is coupled. The singlet model has the advantage of depending
on relatively few parameters and this implies a feasible experimental study at the LHC for
the analysis of the new physic effects in the Higgs boson couplings, searches for heavy SM-like
Higgs bosons [19, 20| and direct searches for resonant di-Higgs production [21, 22, 23]; in
the absence of linear and triple self-interactions, this model possesses a Zo-symmetry and the
singlet can be a viable candidate for dark matter, although for masses somehow larger than
500 GeV [24, 25] the couplings of the dark matter to the known particles occur only through
the mixing of the singlet field with the SM Higgs boson. Without a Zs-symmetry a strong
first order electroweak phase transition is allowed and additional sources of CP violation occur
in the scalar potential. In this thesis we limit ourselves to a situation where the new singlet
s" communicates with the SU(2); doublet ¢ only via a quartic interaction of the form,

5 (616)()2.
This implies that the would-be Higgs boson of the SM mixes with the new singlet leading to
the existence of two mass eigenstates, the lighter of which (H) is the experimentally observed
Higgs boson whereas the heaviest one (S) is a new state not seen so far in any collider
experiments. We call this model the Singlet Extension of the SM (SSM). Since only ¢ is
coupled to ordinary matter, the main production mechanisms and decay channels of H and

S are essentially the same as those of the usual SM Higgs particle, with couplings rescaled
by quantities which depend on the scalar mixing angle, called o, whose bounds have been
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discussed in details in [10, 11, 26, 27|. For masses larger than 2 200 GeV, the most important
decay channels of the heavy state S are those to a pair of vector bosons S — V'V and, when
kinematically allowed (mg > 2my), to a pair of lighter scalars and top quarks, S — HH, tt.
With the run II at LHC, the exploration of the scalar sector is expected to reveal more
details. So, the comparison between theory and data requires precise predictions obtained
through higher-order calculations. To this aim, we evaluated the radiative corrections to the
main decay rates I'(S — ZZ, WW~, tt, HH) and studied in details their dependence on
the singlet mass mg as well as on the mixing angle o and the singlet vev w. Interestingly
enough, the SSM scalar sector implies no natural way of defining the renormalized scalar
mixed mass (or alternatively, the scalar mixing angle) and the non-diagonal fields through a
physically motivated renormalization scheme. As a consequence, it is possible to construct
different prescriptions to renormalize the non-diagonal scalar sector; nevertheless, we have
to pay attention to their definitions since some of them manifest a gauge dependence in the
physical observables. To compute the next-to-leading order (NLO) EW decay rates, we use
the "improved on-shell" renormalization scheme which is totally gauge-invariant [29]. To
give a comment on the gauge dependence effect on the renormalized decay widths we also
consider a second scheme, called "minimal field", which exhibits a gauge dependence [29]. The
minimal field scheme is defined by renormalization conditions which need the introduction of
a renormalization scale ur. We prove that it is possible to obtain a gauge independent result
by fixing this scale at p% = (m% + m%)/2 since, for this specific value, the improved on-shell
and the minimal field schemes are equivalent.

The main result of this thesis is that for the singlet scalar mass range 200 < mg < 1000
GeV the gauge independent EW corrections to the decay widths reach a maximum of O(6%) in
the W~ channel, O(5%) in the ZZ channel and O(4%) in the HH, tt channels for masses
lower than 450 GeV and almost independently on the mixing angle o (the HH channel is
the only one to show a more pronounced mixing dependence in the mass region for which
its NLO correction is maximal), whereas for larger masses (mg 2 700 GeV) these corrections
take negative values. Besides, we discuss the impact of the QCD corrections on the S — ¢t
channel which can be directly deduced by the SM QCD one-loop contributions to the Higgs
decay into a top quark pair. For the total decay width I'(S — all), we obtain a maximum
correction of O(6%) for mg ~ 200 GeV. Finally, we have analyzed the impact of the gauge
dependence on the decay rates with respect to ug for two fixed values of mg = 400, 1000 GeV
and found that it causes a variation on the NLO decay widths which is less than < |3|% in
all decay channels.

The structure of the thesis is as follows: in Chap.1 we recall the relevant features of the
SSM and its theoretical and experimental constraints; in Chap.2, we describe and analyze the
full set of the leading-order (LO) expressions of the scalar singlet decay widths; in Chap.3 we
illustrate the details of our renormalization procedure that we apply in Chap.4 to discuss the
structure of the I'(S — ZZ, WTW ™ tt, HH, all) renormalized decay widths. The radiative
corrections to these decay rates are numerically computed in Chap.5; the last chapter is
devoted to our conclusions.



Chapter 1
Model Setup

In this chapter we describe the singlet extension of the Standard Model (we will use the short
notation, SM and SSM, to indicate the Standard Model and its singlet extension, respectively).
In comparison with the SM, the SSM is characterized by adding one real spinless scalar
field which transforms as a singlet under SU(3)c x SU(2), x U(1)y and affects the same
Lagrangians where the SM Higgs field appears. The full SSM Lagrangian is defined as,

ﬁSSM = Egauge + £ferrnions + £QCD + ﬁscalars + EYukawa + £GF + £ghosts . (11)

The first three terms, which include the gauge and fermionic kinetic parts, the couplings be-
tween fermions and gauge bosons and the full quantum chromodynamics (QCD), are given by
the respective SM expressions [28]. On the other hand, the remaining terms (the Lagrangians
of the scalars, the Yukawa interactions, the gauge-fixing and ghosts terms) contain the new
scalar singlet field and need a more detailed discussion which will be the subject of the next
sections.

1.1 The Scalar Lagrangian

The scalar sector is defined by
ﬁscalars = (DM¢)T(DM¢) + (auso)(auso) - VSSM(¢7 SO) ) (12)

where D* is the SM covariant derivative and Vsgu (¢, s°) is the scalar potential which is made
up of the usual SM Higgs potential, with ¢ representing the SM scalar field, augmented with
the new contributions due to quadratic and quartic terms of the new scalar field, represented
by s, and a portal interaction among s and ¢ as specified below:

Vesn(9, ") =12(070) + M¢'9)* + pi2 ()7 + p (s°)* + K (679) (s°)?,

where s’ is a true isospin singlet (with hypercharge Y = 0), ¢ = [nT, ¢ +ins/v/2]", ¢° = (v +
h)/v/2 (the value of v is obtained as a function of the Fermi constant G, v = (v2Gp) Y2 =
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246.22 GeV) and n* = (g & iny)/v/2 and 73 are the Goldstone bosons. Notice that the
potential Vssn(¢, s°) exhibits a Zo-symmetry under which s — —s° so that linear and
trilinear terms in s° are not allowed.

Beside the vev of the ¢ field, we also consider the possibility that s acquires a non-zero
vacuum expectation value (vev) w, and thus the expansion of the field around its classical
minimum is set as s’ = (w+s)/v/2. The full expansion around the vevs of Vsgy(¢, s°) involves

the linear terms for the scalar fields, h and s, from which we can define the tadpole relations:

Vw3k R

T, = uv® +v3\+ 5 , To = paw® +wp + 5 (1.3)

The minimization conditions of the scalar potential are given by: Ty, Te = 0 '. The most
immediate consequence of the potential Vsgyi(¢, s°) is that a non-diagonal mass matrix is
generated for the two neutral states h and s that, in the gauge basis, has the following form:

2% Kvw
2 _
Mgauge - (m}w 2pw2) : (14)

Considering all couplings as real parameters, the positivity of the mass matrix is ensured

requiring that [17]
2

K
A>— , A, p>0. 1.5
™ p (1.5)
To have physical propagating particles in the SSM, it is necessary to consider eigenstates with
specific masses. The physical scalar masses can be achieved through the following orthogonal
rotation:

Ula) - M2, .. -Ula)™! = diag(m3;, m3), (1.6)

gauge

where my g are the physical masses and U(«) is the rotation matrix whose action on the

scalar fields as follows:
H h cosa —sina h
(S) o U(a)<s> o (sina cosa) (s) ’ (1.7)

with a € [—m/2,7/2]. After the orthogonal transformation, the tree-level masses of the
particles in the mass basis are given by [17, 29]:

pw? — \v?

2 2 2
m =\ + pw” F 1.8
H,S P cos 2av ) ( )
!Notice that the potential is stationary at:
o _App? = 2kpl o AMS = 26p?
K2 —4)\p K2 —4\p



and, in turn, a mapping between the Lagrangian states and the physical fields H and S is
realized:

0 1 . 0 1 .
¢’ =—=@w+ Hcosa+ Ssina) , s =—=(w— Hsina+ Scosa). (1.9)

V2 V2
In the rest of this thesis we will consider the H field as the lightest mass eigenstate and we
identify it with the Higgs boson whose mass of 125 GeV has been already measured at LHC
[31], so we always consider sign (pw? — M?) x sign (cos2a) > 0. While the mass of the light
scalar field is kept fixed, we will limit ourselves to the mass range 200 < mg < 1000 GeV

(which corresponds to the bound 0.018 < |sina| < 0.36 [29]). The mixing angle a can be
expressed in terms of the model parameters and vevs so that,
Kow

tan 2a0 = m (110)

Notice that in the limit (v/w) < 1, the expressions for the masses and mixing are well
approximated by:

2 2 K 2 2 2 K
my ~ 2v )\—4—p =20\ \qm , Mg~ 2pw” + %

2,2 KU

i ~ — 1.11
Csinax £ (1)

which clearly show that the SM quartic coupling Ay, receives a correction proportional to the
ratio among the portal coupling x and the quartic of the s° field [16].

Now, the couplings of the H and S fields with gauge bosons arising from the covariant
derivative in eq.(1.2) are similar to the SM Higgs ones rescaled by an appropriate mixing
factor:

. OGrri Y
D¢ — |0, + ngWM(x) + nggBu(x)

+
n
(%(U+Hcosa+Ssina+in3)>’ (1.12)

where g and ¢’ are the electroweak constants, WZL (¢ =1,2,3) and B, are the gauge boson
fields in the gauge basis of SU(2), and U(1)y respectively, while the Pauli matrices o; and
the hypercharge Y are the generators of the respective groups. In addition, the scalar singlet

field insertion gives no contributions to the gauge boson squared masses which get the same
SM form:

1 7 ; Y f . . Y
(D) (D) = 5(0 ) (g%{/[/uz_l_g/EBu) (Q%Wi +9'§BM) (2) _
102
27 {QQ(WW + g (W) + (—gWi + g’Bp)ﬂ - (1.13)



As usual the fields W;*?, B, can be shifted in the mass basis through the orthogonal trans-
formation defined in terms of the Weinberg mixing angle 6y :

Yo = (sin Oy W2 + cos Oy By,) with m? =0, (1.14)
2 2Y,,2
Zy = (cosOw W, —sin by B,) with m7, = W, (1.15)
Wl >W2 2,,2
wWE = WV, W) with m2, = L. (1.16)

NG 4

The pure scalar interactions are obtained by expanding Vssu(¢, s°) in terms of the physical
scalar fields so that the trilinear and quartic couplings can be schematically written as 2:

Vssm (9, 5%) D Cs, 585 S18283 + Cs, 8,555, S18283S4 (1.17)

where S can be one among H, S, 13 and n*. Below we report a list of the coefficients Cg,s,s,
and 0313233342

Csss = —3icasa(cat + sqw)k — 6i(s2v\ + cwp) , (1.18)
Crug = —3iCaSa(5a0 — cow)k — 6i(cEv\ — s3wp) (1.19)
Cuss = —i[cav(cd —282) + sqw(2c2 — 2)|k — 6i(cas2vA — c28awp) (1.20)
Cuus = —i[Sa (32 —262) + cqw(c® — 252)]k — 6i(cE 5,0\ — cosiwp), (1.21)
CHpgns = —1(2c,0\ — SqwK) , (1.22)
Chprn- = —i(2¢40\ — squK), (1.23)
Csngns = —i(CaWk + 25,0N) , (1.24)
Copry- = —i(cqwk + 25,0N) , (1.25)
Cunnn = —6i(cI\+Asik+stp), (1.26)

Cssss = —6i(cip+ cAsih+st)), (1.27)

Cruss = —i(ct —4c2s2 + 52k — 6ic2s2 (A + p), (1.28)

Cuuns = —6i(C28a\ — CaS2p) + 3iCaSaConk , (1.29)

Chsss = —3iCaSaCoak — 6i(Casi\ — 2 sap), (1.30)

ChHngys = —i(s2Kk+22N), (1.31)

Cssngns = —i(c2k + 2520, (1.32)

Cusnsys = —180aCa(2X — k), (1.33)

Crmyrn- = —i(s2k+2¢2N), (1.34)

Cospin- = —i(cEk+2s2N), (1.35)

Chsyrn- = —iSaCa(2X — k), (1.36)

*We generated all Feynman rules for the SSM model using FEYNRULES [30].
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with s, = sina and ¢, = cosa. It is important to observe that, starting from the mass
matrix in the gauge basis (see eq.(1.4)), we can define the quartic couplings at tree-level (LO)
in terms of the physical scalar masses and the mixing angle and, in the case of higher order
calculations, these also become functions of the tadpoles in the mass basis ? T m,s and the
(symmetric) off-diagonal element of the physical mass matrix, called dm?;g:

Ty/v 0 _ m2 dm?
Miage + ( ¢0/ Tso/w> = Ula)™- ((5mgs mgs) Ula) =

_ [ mich Fmgsh +0mEgsa  OMEglan + Sala(mi —miy) (1.38)
M3 Co0 + SaCa(mi —m%)  m%s: + mick — dm¥gsan | '
Using the definition of Méauge shown in eq.(1.4), the quartic couplings are given by:
m? m? Codly + 8.1 dm?
N=o2y DS TolM T lelS | TS, (1.39)
202 202 203 202
m? m? cals — 5Ty Om?
p = —E;si + —h; — 3 - %Ssm, (1.40)
2w 2 2w 2w
m2 — m? om?
ko= Mg 4 —HS) (1.41)
2vw w

with Ty, Ts, 0m%g = 0 at tree-level. A fundamental feature of the SSM potential is that,
at large mg values, the portal interaction between the scalar singlet and the SU(2), doublet
leads to a positive tree-level threshold correction for the Higgs quartic coupling, which allows
to avoid the potential instability of the Standard Model electroweak vacuum. The renormal-
ization group equations (RGEs) for the portal (k) and quartic (A and p) couplings above the
scale mg are given by [16, 17],

or 3 “+g7)? 43

(47r)2d1w =7 gt + g 29 ) — 6y + 12 yf——g TN+ 2402 + &2,
) [ 243

(471')26“/{ = 3|y’ — g+ K+ 26(3X + 2p) + 287, (1.42)
n 1

0

where p is the RGE running scale and y; is the yukawa coupling associated with the top quark
(the contributions due to the other fermions is negligible [32]). We observe that A receives

3The tadpoles T} o are rotated in the mass basis as

Tg\ (cosa —sina) ([ Ty
<T5> a (sina cosa) <T80> ’ (1.37)



a linear and positive contributions in terms of x2, which prevent it from becoming negative
under the following conditions:

o mgs < Ajgs ~ 101 GeV where Ay, is the SM instability scale [32].

o (1x/87)?In(Ajpst/ms) has to be quite large.

().15 T T T T
Q A(my) = Agpy () =0.12879
e 2(my)=0.04
- x (my) =0.06
< 0.10} !
£
-~
- — A(p)
= o N o T Y IS Asm(p)
OOO [ o sm
E" \ — p(n)
= k()
g
g 0007 e-<.____ Instability Region ]
104 108 10%2 10%6 10%°
u [GeV]

Figure 1.1: Running of the quartic couplings for representative parameter choice: mg = 108
GeV, X(my) = Asm(my) = 0.12879, p(m;) = 0.04 and x(m;) = 0.06.

We show in Fig.(1.1) an example of running quartic couplings which is obtained for fixed values
of A, Asm, K, p at a scale my = 173.21 GeV, namely A\(m;) = Agm(my) = 0.12879, p(m,) = 0.04
and k(m;) = 0.06, and mg = 10® GeV. We can see that, thanks to the positive threshold at
the singlet mass (for large values of mg we have A ~ A\, + k*/4p), the quartic coupling A
never enters into the instability region 4.

1.2 The Yukawa Lagrangian

The Yukawa Lagrangian includes the complete set of fermionic mass terms and interactions
of the fermions and scalar bosons in the SSM. As discussed above, the kinetic terms of the
fermions (Lfermions) are the same of the SM:

/Cfermions = Z MZJ(DM’YM)@Zja (143)

fermions

4Notice that we chose as initial condition x > 0. However, the stabilization mechanism becomes more
complicated when the running quartic couplings are analyzed with respect to negative x values. In this case
the stability condition is given by —r(u) < [A(u)p(1)]'/? and with the positive shift of X it is essentially
canceled out. This implies that the stability condition is much more constraining than in the case k > 0 (see
[16] for more details).
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where 1) = ¢T7? | 1 is the fermionic spinor field and the sum runs over all fermions, which
are divided in three generations. In Tab.(1.1), the spinor fields are classified in terms of five
representations of SU(3)c x SU(2)p x U(1)y.

Spinor Field ! [color, weak iso-spin, hypercharge]
LH leptons Li[1,2,—1]
RH leptons I [1,1,2]
LH quarks Q4 [3,2,+1/3]
RH up-type quarks uy 3,1, +4/3]
RH down-type quarks dn[3,1,—2/3]

Table 1.1: Spinor field as representations of SU(3)c x SU(2)r x U(1)y. Here, i = 1,2,3 is
the flavor index and LH, RH stand for the left- and right-handed fermions, respectively.

We consider for simplicity the neutrinos to be massless and this implies that these exist in a
LH state only. It is well known in the SM that a term like —m ) = —m (Vg + Yribr)
is not invariant under an SU(2); x U(1)y transformation and the absence of such a term
implies massless fermions. Considering the complex Higgs doublet ¢, which in the notation
of Tab.(1.1) is a [1,2,1] state, one can construct an invariant SU(2), x U(1)y interaction
term as: —y;1Ur¢Yr, where y; is the Yukawa coupling. When the Higgs field acquires the
vev after the spontaneous symmetry breaking, we obtain the fermion masses proportional to
the respective Yukawa coupling. However, this mechanism only gives mass to the "down"
fermions. It is possible to write a new term in the Lagrangian which is gauge invariant and
gives mass to the "up" fermions as follows: —yfingbC@bR, where ¢¢ = ioe¢’. So, in the most
general case, the expression for the Yukawa Lagrangian is written as,

—Lyvikawa = YQuody +YQp0%up + YLy ol + hec, (1.44)

J

where now Y4, Y} and Y}; are arbitrary 3 x 3 complex matrices which include all Yukawa
couplings arising from the three fermionic generations of leptons and quarks.

In addition, we can observe that it is not possible to construct a mass terms for the fermions
by substituting the Higgs doublet ¢ with the new scalar singlet s° since the Yukawa inter-
actions, written in terms of the singlet field, are not gauge invariant under SU(2), x U(1)y
transformations. This implies that the new insertion of the scalar singlet gives no contri-
butions to the fermion masses but appears only in the interaction terms between the Higgs

doublet and the fermionic fields, with proportionality to s,:

- T nr j
Y;ij <\/L§('U + HCQ + SSa + “73)>wR (145)
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1.3 Gauge-Fixing and Ghost Lagrangian

In this section we describe the structure of the remaining Lagrangians, Lor and Lghosts, and
their dependence on the scalar singlet field. Generally, Lgr and Lghosts are needed to quantize
the Yang-Mills theories which contains the gauge bosons expressed as vector fields [28|. Since
the degrees of freedom corresponding to the vector fields exceed those of the physical gauge
fields, the quantization of the full SSM Lagrangian requires the choice of a specific gauge in
order to remove the additional unphysical degrees of freedom. It is well-known that in this
type of model the gauge-invariance plays a fundamental role in the renormalization procedure.
This implies that the gauge-fixing becomes useful to check the gauge independence of higher
order calculations, as it was discussed for the SSM in [29]. In order to define Lgp, we introduce
the F' functions defined as:

L = <6M F ie&AM F 19 cos 0W522M> W=

- z{{,v% (v + 03H + 6,8 + i5~5773) 0, (1.46)
! g N N
_ 1 _J
Fr = 0,2 + &5 o (v 4 OsH + (57S> . (1.47)
F = 9,A", (1.48)

where e is the electromagnetic coupling constant, é; is the non-linear gauge parameters while
& and & (1 = v, Z, W) are the linear gauge parameter related to the gauge and Goldstone
bosons, respectively. Notice that the non-linear case is described by the F' functions non-
linearly dependent on the scalar and gauge fields 5. The gauge-fixing Lagrangian is defined
in the following form:

1 1 1
Lop = ——|F > — —|F,|>? - —F. F_. 1.49
GF 2£7| 'Y’ 2£Z‘ Z| é-w + ( )

We recover the linear gauge fixing (usually indicated with R¢) by setting up 6 = 0 (with
i = 1 we define the 't Hooft- Feynman gauge). In addition, we can fix iy , = {w,z in order
to cancel the mixing terms n*W* and 732 arising from Lqp , thus avoiding the presence of
new unnecessary and intricate interaction terms at tree-level. On the other hand, the insertion
in Lgr of the additional non-linear gauge parameters o (1 = 1,...,7) modifies the Feynman
rules which become more complicated. We could also tune the 5; values to reduce the number
of diagrams and simplify some of the vertices (for instance, with 6, = 1, the vertex WEnFy
is canceled out and W*WT~ assumes a more simple form). In order to fix the gauge in
the non-Abelian Yang-Mills theories we have to introduce a new set of anticommuting fields,

called ghost (proposed by L. Faddeev and V. Popov [36]). The main feature of the these fields

5The definitions of the F functions and the treatment of the non-linear gauge fixing in the SM can be
found in [34, 35].
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is that their quantum excitations have the wrong relation between spin and statistic to be a
physical particles. Besides, the ghosts can appear as virtual states described by the following
Lagrangian [28]:

Laposts = @(—"DPYus = @l (—926° — g f*° AL Y, (1.50)

where D/‘jb is the covariant derivate, ¢ is the gauge constant, f®° are the structure constants
of the gauge group (which can be SU(2) or SU(3) for the vector boson and gluon fields,
respectively), A, are the gauge fields of the respective gauge groups and w; (w;) (with ¢ =
+, 7, v) are the Faddeev-Popov ghosts (anti-ghosts). Thus, we can write for a general non-
Abelian gauge theory a complete Lagrangian (Lpp) which includes all of the gauge-fixing
effect as [28]:

1 vaa 1 a T —a a c
Lrp = —ZF“ L, + i\@“/l“]? + (1D, — m)Y + @ (—8“Dub)ui , (1.51)
where [0"A%|?/2¢ can get additional terms which are non-linearly dependent on the scalar
and gauge fields, as mentioned above. With the insertion of the ghost Lagrangian, Lrp shows
a new symmetry, called BRST symmetry [37]|, which is defined in terms of an infinitesimal
anticommuting parameter c:

N a a 1 aoc
OprsT AL = e Dy, OprsT ¥ = igeuaty, Oprsru’ = —595f “uue
dprsT U* =€ BY, oprsT B* =0,
where t* are the generators of the gauge group considered and B is an auxiliary field which

has to be introduced to get the BRST-invariance of Lpp ¢. Considering the non-linear gauge
fixing, the BRST transformations can be also defined for the scalar fields [29]:

g _ _
5 _9 t4optu) — H+ s, 1.52
BRST 'l = 5 {(77 ut+nTu”) c0s Oy (v+coH + s S)] ) (1.52)
) in 20 20
SprsTNT = ng uF (v 4 coH + 8,5 F ing) + S Ow y + €05 bw , (1.53)
2 cos 20y
9Ca | ., _ _ Uz
1) H ==— Tyt 1.54
BRST 5 [@(77 ut —nTu )+COSQW773} : (1.54)
9Sa | ., _ _ Uz
) S === t_pt . 1.55
BRST 5 [1(77 U nTuT) + cos@wng} ( )

Notice that these BRST transformations depend on the S field only with proportionality to
54. The results of this thesis have been obtained in the linear R, gauge imposing 6, =0, §; =1

6As discussed in [28], the introduction of the new auxiliary field B® is given by the following substitution:
|8“AZ|2/2§ — £|BY)?/2 + B*or AY,.
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and considering the gauge-dependence analysis in the SSM renormalization procedure (which
we will treat in detail in the next sections) performed in [29]. There, the authors work with
bi # 0 in order to define a gauge independent renormalization scheme for the mixing scalar
sector which must provide equivalent results with both 6 = 0 and 4, # 0.

1.4 Theoretical and Experimental Constraints

The SSM is subject to many constraints which are of a theoretical or experimental nature.
These constraints have been explicitly discussed in the literature and we briefly have summa-
rized them here.

1.4.1 Theoretical Constraints

e Perturbative Unitarity:
The tree-level perturbative unitarity, which emerges purely from theoretical aspects of
electroweak symmetry breaking, has to be preserved. To this aim, it is sufficient that
the scalar sector fulfills the following sum rules for the couplings between fermion, vector
and scalar particles, which we call g,ss and g,y for scalar-fermion and scalar-vector
interactions, respectively [38]:

Z Gavv = g?{smvv ) Z InVV Gnff = JHnVVIHem fFf 5 (1.56)

where n = H,S and Hg, is the SM Higgs field. Notice that the SSM exhibits the
sum rules giVGH above since gavV, Hff = Ca YHem ff, Hsm [ f and 9Gsvv,Hff = Sa 9Ssmff, Hsmff>
thus preserving the unitarity constraints. Besides, we can set a constraint on the SSM
scalar masses via a relation on the partial wave amplitudes a;(s), associated with 2 — 2
processes given by [8]:

|Reay(s)| < =. (1.57)

N | —

This allows us to find a (mg-my - @) subspace where the perturbative unitarity is valid
up to any energy scale. We therefore need to calculate the tree-level amplitudes for
the 2, x, — Y, yp process, where z, x, and y, y, can be {ZZ, W*W~ HH, SS, HS}.
Calculating the normalized five dimensional scattering matrix and imposing eq.(1.57)
to each eigenvalues, one obtains, for small mixing angle (s, ~ 0), the element of the
scattering matrix associated with SS — 5SS is decoupled from the other SM matrix
elements and an lower limit on w is posed:

for ag(SS — SS) < (1.58)

N | —

160
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However, in the case of large s, values, all partial wave contributions needs to be
considered to determine a valid prediction of the lower limit on the allowed heavy scalar
mass.

e Potential Stability and Perturbativity of the scalar couplings:
Typically, the stability of the scalar potential is described by the conditions in eq.(1.5)
while the perturbativity of a general coupling = requires that:

|[2(p)] < 4m, (1.59)

which, for the SSM, are x = (A, K, p). At the electroweak scale, y = v, we have no
additional constraints in the (s,, w)- parameter space when we test the perturbative
unitarity condition. So, it is instructive to understand what are the energy scales for
which the perturbativity of the scalar couplings and the potential stability remain valid.
To achieve this goal, we have to consider eq.(1.5) and eq.(1.59) valid at an arbitrary
scale p and the renormalization group equations (reported in eq.(1.42)) are needed to
evaluate the coupling A\(u), x(x) and p(p). By fixing a reference value for pgsy larger
than ugy we can study the conditions arising from the perturbativity of the coupling
and the stability of the scalar potential up to this benchmark scale so that we can define
the (s,, w)-parameter space for which these are verified [8, 10|. By the perturbativity
of k, we can determine a restriction in the large w and s, regions while, if we analyze
the perturbativity of A and p, we obtain an upper limit on s, and w, respectively. For
instance, we report the conditions on s, and w (discussed in [10]) obtained for fixed
values of mg and pggy, namely mg = 600 GeV and pgsar = 2.7 x 1019 GeV: |s,| < 0.3
and w 2 2v.

1.4.2 Experimental Constraints

e The W boson mass:
The experimental value of the W boson mass is given by [39, 40, 41|:

my = 80.385 £ 0.015 GeV. (1.60)

The computation of the electroweak precision parameter Ar 7 imposes limits on the
SSM parameter space when it is confronted with the experimental W boson mass mea-
surement. The introduction of Ar implies that the theoretical expression of the W

"Following the standard conventions in the literature, the Ar definition is obtained matching the muon

lifetime expression in the four fermions Fermi interaction to the equivalent calculation performed within the
SM:

2
2 (1= 1w o Tem g A 1.61
iy (1- 2 ) = Zoem 1 ), (161

where ., is the fine structure constant at zero momentum (aem (0) = €2/47).
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boson mass is shifted as my — my (1 + Amy /my,) with,

Amy st Ar

~J

mw sty —ch 2

: (1.62)

with sy = sin Ay and ¢y = cos . For Ar = 0 one gets the theoretical tree-level value
miBO = 80.94 GeV. In the SM case, the best-fit value of Ar is given by Argy ~ 0.038,
which shifts the value of the W boson mass to (mil)sy = 80.36 GeV, a roughly 20
MeV away from the experimental result in eq.(1.60). The calculation of Ar include
new physics effects could be relevant to impose parameter space constraints but also to
explain the SM difference |(mil)sm — myY| ~ 20 MeV. For the SSM, this analysis has
been performed in [26] and its conclusions are the following:

i) Defining Argsy = Argy + 0rssm, the SSM deviation from SM value (drggy) is not
large and generates a variation amounting to a maximum of O(10%). The tension with
the experimental result is reduced by the fact that Arggy > Argm which implies that
(mip)ssm < (mip)sm (with [(mii)sv — (mip)ssm| ~ 1 — 70 MeV).

ii) The SSM contributions to Ar and my are dependent on the scalar mixing angle
and it is possible to derive upper bounds on |s,| (especially for mg = 300 GeV) by
comparing the (mi)ssm with my;*. For example, the upper bound on |s,| associated
with mg = 1000 GeV is ]3a|maX: 0.19 (more upper bounds associated with different
values of the singlet scalar mass are listed in Table.II of [26]).

Electroweak Parameters S,T and U:
Similarly to the case discussed above, we can obtain other constraints on mg and s,

from the electroweak precision observables (EWPO) which are the oblique parameters
S, T and U defined as:

Qom £77(m7) — 577(0) 7 ZT(0)  BEE(mE)
- ) Aem L = - ;
4s%,c3, m? ’ mé, m?
o W (2 ) _ SWW () $2Z(m2) — S2Z(()
az U — (mW)2 ( ) o CI2/V (mZ) - ( ) 7 (163)
4syy, miy my,

where the =YV (k?) denotes the purely singlet model contributions to the gauge boson
self-energy. However, the next-to-leading order (NLO) EWPO corrections generate
weaker constraints on the mixing angle than the bounds obtained from the Ar analysis
and do not contribute to new limits on w values being independent from it [10, 26].

Signal Strength of the Higgs Boson:
The Higgs signal strength |u| is defined in the general "beyond-SM" case (bSM) as:

o Ce ) (1.64)
osm  Alsm(mp) + 52T hidden (M)

I
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where I'sy1 hidden are the decay widths of the Higgs boson in the SM and in a possible
hidden sector. In the SSM we have ugsy = ¢2. Concerning the Higgs signal strength,
we can use the following values [42, 43]:

pire = 1.30 £ 018, piows = 0.80 £0.14 = T, = 1.05£0.11. (1.65)

As a consequence of the comparison between pssy and fig,, up to 20-level deviations,
the upper (lower) limits are obtained: |s,| < 0.42 (]s,| 2 0.91).

1.4.3 Global Constraints

It is interesting to analyze the unification of the full sets of constraints discussed above. In
Fig.(1.2) and in Tab.(1.2), which are educed from Figure I and Table I of [29] (in the Figure
I, the scalar singlet mass is indicated with my instead of mg), we report the allowed values
of s, and w associated with the mass range of our interest, 200 < mg < 1000 GeV, which
will be used in our numerical analysis. From Tab.(1.2), we note that the mixing angle values
can be included in the global range 0.018 < |sina| < 0.36 while the lower bound on the
singlet vev is w,,;, = 0.85v. On the other hand, it is interesting to identify the values of
w and |s,| which are valid for every choice of mg. The minimum value of w increases as
mg increases. This automatically implies that w,,;,, = 4.34v is a good choice for the mg
values of our interest. In a similar way, the range of |s,| is restricted to the following interval:
|50 € [|5a| 57200 GV |5, [ms 1000 GeV] — 10,09, 0.17]. As a result, the study of the physical

max

observables as a function of mg requires:

|sa] €0.09,0.17] and w > 4.34v. (1.66)
mg [GGV] |Sa| Wnin, [Gev]
200  [0.09,0.36]  0.85 v

300  [0.067,0.31]  1.25 v
400 [0.055,0.27]  1.69 v
500 [0.046,0.24] 213w
600  [0.038,0.23]  2.56 v
700 [0.031,0.21]  3.03 v
800  [0.027,0.21]  3.45v
900  [0.022,0.19]  3.85 v
1000 [0.018,0.17]  4.34w

Table 1.2: Values of mg considered in our numerical analysis, the ranges of |s.| and the
corresponding Wy,,. Table extracted from Table I of [29].
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200 300 400 500 600 700 800 900 1000
my [GeV]

Figure 1.2: Summary of the constraints as a function of |sina| and mg. This figure is ex-
tracted from [29] and we directly report the original caption in terms of our notation and
bibliography: "Mazimal allowed values for |sinal in the high mass region, for a heavy bo-
son mass in the range mg € [130,1000] GeV, from the following constraints: i) W boson
mass measurement (red, solid) [26]; ii) electroweak precision observables tested via the oblique
parameters S, T and U (orange, dashed); iii) perturbativity, of the RG-evolved coupling A
(blue, dotted), evaluated for an exemplary choice w = 10v, ) perturbative unitarity (grey,
dash-dotted), v) direct LHC searches (green, dashed), and vi) Higgs signal strength measure-
ment (magenta, dash-dotted). For masses mg € [300,800] the W boson mass measurement
yields the strongest constraint [26]. The present plot corresponds to an update of figure 8 from
[10], where the latest constraints from the combined signal strength [44] have been taken into
account.”

1.5 Parameter Values

Here, we give a summary of the input parameter values which will be needed in our analysis.
The SM central values are taken from [50]:

¢ Fine structure constant
The fine structure constant ey, is given at @* = 0 (Thompson limit):

o = Qe (0) = 1/137.035999139 .

At Q? = m?y, it becomes aepy(m%) &~ 1/128.
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Fermi constant
The experimental value of the Fermi constant is:

Gr = 1.1663787 x 10~°> GeV 2.

Weinberg mixing
The experimental value of sy is:

sw = v/0.23155. (1.67)

Strong coupling constant
We define the strong coupling constant as o, and its experimental value at Q% = m? is:

as(my) = 0.1182.

Higgs and Gauge boson masses
The scalar and gauge boson masses are fixed to:

my = 125.09 GeV | my = 80.385 GeV |, myz = 91.1876 GeV .

Fermion masses
We have only considered ¢, b, c and 7 since the other fermions have comparably negligible
masses:

my = 173.21 GeV |, my, =4.18 GeV , m,. =127 GeV , m, = 1776.86 MeV .

CKM matrix element

In the computation of the singlet decay rates no Cabibbo-Kobayashi-Maskawa matrix
elements (Voxm) are involved at LO. At the NLO we have verified that it is a good
approximation to fix the mixing to the quark sector to be vanishingly small. For com-
pleteness, report here the best fit values of the quark mixing:

Vida Vus Vp 0.97417  0.2248 4.09 x 1073
Vekm = | Vea Vs Vo | = 0.22 0.995 40.5 x 1073 (1.68)
Vie Vis Vi 8.2x 1073 0.04 1.009

Scalar mixing angle, singlet mass and vev
The full set of constraints on the SSM parameters gives us the range of the mixing angle,
|sa| € [0.09,0.17], and the minimum value of w, w,;, = 4.34v, which are allowed for

every choice of the singlet mass values included in the following range: 200 < mg < 1000
GeV.
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We have to fix a set of independent variables in the scalar sector needed for the numerical
analysis. We choose w, mg and « and express at tree-level A, p and k according to egs.(1.39
- 1.41):

2 2 2.2 2 2 2 .2 2 2
)= miy s + mese, Mg, +myss, B (mg —m3;)Saa 169
_ MGt Mste o, Mt Mate S ey)

202 2uw? 20w

In Tab.(1.3) we give an numerical values of A, p and x computed for representative parameter
choices: s, = (0.1, 0.35), w = (5v, 10wv) and mg = (300, 500, 700, 1000) GeV.

w=5v s,=0.1 Sq = 0.35
mgs A K p A K p
300 0.135 0.024 0.029 0.204 0.08 0.0267
500 0.148 0.077 0.082 0.366 0.253 0.073
700 0.168 0.156 0.16 0.608 0.513 0.142
1000 0.21 0.323 0.327 1.124 1.065 0.29
w=10v s,=0.1 sq = 0.35
mg A K p A K p
300 0.135 0.012 0.007 0.204 0.04 0.007
500 0.148 0.038 0.02 0.366 0.127 0.018
700 0.168 0.078 0.04 0.608 0.257 0.036
1000 0.21 0.162 0.082 1.124 0.532 0.073

Table 1.3: Example of A,k and p values for representative parameter choices.
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Chapter 2

Singlet Decay Widths at Tree-Level

It is interesting to determine whether and how the new scalar boson can be produced at the
LHC experiments and what the process topologies will be. To make predictions of physical
observables, we should connect the results of calculations, evaluated through a field theory
(e.g decay amplitudes) with experimental data at a collider (e.g decay widths). The main
scope of this thesis is the computation of the dominant singlet decay rates at the NLO. First
of all, we clearly need the LO formulas for all partial decay widths of the new scalar boson
which we consider to be heavier than any other SM particle. In the SSM, since the singlet
mixes with the Higgs field, we can parametrize the total decay rate in the following form:

THO(S —All) = TH0(S — HH) + s2 TV (Han — 99,77, 27, ZZ,WW, [ f), (2.1)

where T™°(H,,, — ...) have to be evaluated in terms of mg instead of my. In the next
paragraphs we will list a summary of all partial LO decay widths of the processes S — 7 j
which can be evaluated using the general expression for the two body decay rate given by the
integration of the squared amplitude over the two-body Lorentz-invariant phase space and
defined as [28]:

4 4 4 2 )2 2,2 2
\/mS +my; +m; — 2mgm; — 2mgms — 2m;m;

2
.. J 2
IS —ij)= 63 it Z (M7, (2.2)

’ d.o.f

where M is decay amplitude, the summation is performed over all degrees of freedom (d.o.f)
corresponding to the physical particles in the process, n; ; is the number of identical particles
in the final state and m; ; are the masses of the decay products.
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2.1 LO Decay Width to Gauge Bosons

The decay rate of the scalar .S into two real gauge bosons gets contributions from longitudinally
(L) and transversally (+4) polarized gauge bosons. The LO amplitude is given by,

2

MMO[S(k) = V(p,a)V(g,b)] =e sa X [g" €l (p)en(q)], (2.3)

Swmw

where V' = W*,Z and (p,q), (a,b) are the four-momenta of the vector bosons and their
polarizations, respectively. A straightforward computation of the decay width gives [45]:

ol -vv) = 16(\;/% mesa (14 0v)v1 —day (1 — 4y + 1227) (2.4)
™

where 7y = m? /m% and dy = 0,1 for V = Z, W=, respectively. The longitudinally and
transversally polarized decay rates to gauge boson pair are given by:

{T*O(S — VV)}*F = (I Os = vV)** = 0, (2.5)
IS = VV)}*F* = 16?/%ngs§(1 + 0 )V1 — dxy x (422, (2.6)
(IS = V) = Gr mis2 (14 0v)v1 —day x (1 — 4wy +4x7)) . (2.7)

C16v2r

We can note the dominance of the longitudinal vector bosons in the decay of a heavy scalar
singlet (zy — 0),
oS — V4 V5) z} /2

[0S 5 Vi) [1— a3 2P (28)

where this implies that, for high mg values (TeV scale), the total contribution due to the sum
of vector boson decay rates can be expressed as,

Gr
oW = Vvv) ~ 1+ dy)m? . 2.9
(5 VV) = L1+ by (2:9)
For completeness, we also report the case with a virtual gauge boson in the final state (my <
ms < 2my ); summing over all decay channels available of the virtual W* or Z* the widths
are given by [46]:

ro(g * _ 3g'ms 2
(S = W*'W) = =123 so F(mw /mgs), (2.10)
4 40s%, | 160sf;,
LO * _ g'ms T— =%+ —5 2
(S —=2"Z) = 50183 a soF(mz/ms), (2.11)
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where,

F2) 3 — 2422 4 602t 3x2 —1 N
= r —
x T arccos 53

(2.12)

4722 —13 1
+ (3 — 1822 + 122Y)|Inz| — |1 — 27| (‘”— ) .

+_
2 2

2.2 LO Decay Width to Fermions

Since the coupling of S to fermions is proportional to the fermion mass (my) and the mixing
angle (s,), the fermionic decay width will be proportional to sim? and the matrix element
takes the following form:

em?

MO[S(k) = f(p)flq)] =iU(p) sa V(q), (2.13)

2SWmW
where U,V are the spinors of the fermions with momenta p and ¢. Using eq.(2.2) we get [47],

2
[0S Ff) = NS gy )32 9.14

where my is the mass of the fermion, z; = m? /m% and N. = 1,3 for leptons and quarks,
respectively.

2.3 LO Decay Width to Higgs Bosons

When kinematically accessible, the heavy scalar decay to Higgs boson pair is guaranteed by
the tree-level interaction Cypg of eq.(1.21):

2 4 2
FLO(S — HH) = M 1 — mzH ‘ (215)
32mmpy mg

2.4 LO Decay Width to massless Gauge Bosons

Since neither S+ nor Sgg interactions are present at the LO, the decay rates S — vy, Z7v, gg
are defined through loops of gauge bosons and /or fermions. Thus, these decays are suppressed
by the loop factor a?em,s) /167% and this implies that the branching ratios are relatively small,
of the order of 107%. Starting from S — ~v, we have (for the SM Higgs boson, the decay
width into two photons was calculated in [48]):

: (2.16)

2 2 3
2 g™ Mg

IS —yy) =
(5=77) = Saqgoum m2,

Z Nci Q?A;W(TZ)
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where i = n*, f, W=, 7, = 4m?/m?% and A} (7;) is defined as:

AZ’Y(TH) = 7—5 [7—77_1 - f(Tn)] ) (2.17)
AP (y) = =21 [1+ (L= 71) f(7)] (2.18)

i arcsin[/1/7]? it 7>1,
f(r) = ; (2.20)

—% (1n%—iw> if 7<1.

In the case of S — Z~, the calculation is similar to the two-photons case and the decay width
given by [49]:

2 2.3 2\ 3
[0S — Zry) = 2 Jemd s (4 Mz ) 429 Ik 9221
( ’}/) Sa 51273 m{%{/ m% | (TV7Tf7 Vs f)‘ ) ( )

where \; = 4m?/m?, and,

AZ’Y(TVW Tf, )\V7 )\f) =

2N, 2 — T3
> 1@ Qs 7)1 3 ) = D(ryoa) -

Swew
f

- %{4(3 — ) L, Aw) + {

(2+7—W)t%/[/_2

T™w

- 5} I (tw, )\W)} , (2.22)

with the parametric integrals given by the following expressions:

BN = 5o+ oy o) o+ AT
Ir.A) = Q(TT—iA)[f(T)—f(A)], (2.24)

VT —Tarcesin(y/1/7) if 7>1,
9(r) = (2.25)
%\/1—7' <lni\/—7ﬁ::—m> if 7<1.

Notice that, for S — vy and Z~, the W-loop contributions is ~ 5 times t-loop contributions.
Finally, the S — gg can be obtained from egs.(2.16-2.20) by neglecting the (W=, n*)-loops
and using the substitution, a2, NZ; Q* — 2aZ, so that:

2

2.2 3
2 959 Ms , (2.26)

ro(s =
(5 —=99) 5051973 m2,

S AY(ry)
o\
Wlth A‘jcg(Tf) = A}V(Tf).
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2.5 LO Total Decay Width and Branching Fractions

Disregarding for the moment what we have discussed in the previous section about mg, s,
and w we analyze here the behavior of the LO decay rates with respect to s,, w and mg.
Calling for simplicity I'"O(S — All) = T'ror, we report it in the left panel of Fig.(2.1) as a
function of mg for different values of (s,, w) = (0.1,5v) and (0.2,10v), while in the right
panel I'tor is displayed in the s, —w plane for two fixed values of mg: mg = 400, 1000 GeV.

400 GeV
o
1000 GeV
8

ot [GeV]
S
[
D

=

[

=]
T

0.05+

Fror [GeV] for mg
bo .
Mot [GeV] for mg

0. | —

200 400 600 800 1000
mg [GeV]

Figure 2.1: Left plot: TO(S — All) as a function of the mg for the two fized sets of pa-
rameters: s, = 0.1, w = 5v (black line) and s, = 0.2, w = 10v (blue line). Right plot:
LS — All) in the so — w plane for two fized values of mg, namely mg = 400,1000 GeV.

We observe that I'ror increases as s, and w increase. In particular, the s,-dependence is
much stronger than the w-dependence since the full set of partial decay widths within I'ror
are proportional to s? (only Cgg is a non-trivial function of s,) while w only appears in the
partial decay width T*©(S — H H) suppressed by the typical small values characterizing x and
p (see Tab.(1.3)). In order to quantify this small dependence on w, we illustrate in Fig.(2.2) an
example where the ratios TS50 % /T and Tig?? /TS ! are computed for two different
values of w, namely w = 5v,10v. Neglecting the Higgs boson decay channel, the red lines
confirm that Tror is fully proportional to s? (see eq.(4.45)): [t /T5oY! = (51/0.1)2. In
this respect, the difference between the red (solid) and black (solid and dashed) curves is en-
tirely due to the w and s, dependences in eq.(1.21) which produce a variation for the defined
ratios with s, = 0.2 and s, = 0.35 reaching a maximum of O(1%) and O(6%), respectively.

Now, we can analyze the branching fractions of all partial decay channels. Defining Bng?j =
I'9(S — ij)/Tror, we illustrate in Fig.(2.3) the dominant (right plot) and the rare decays
(left plot) computed for the representative values s, = 0.2 and w = 5v. In addition, we
have studied in Tab.(2.1), for fixed mg = 400 GeV, and in Tab.(2.2), for fixed mg = 1000
GeV, the s,- and the w- dependences of all decay channels choosing three values of s, and
w: S = 0.1,0.2,0.35 and w = 5v,10v,15v. We also calculate BRI}“I% for negative s, values
(sa = —0.1,—0.2,—0.35) since I'(S — HH) is the only decay width not symmetric under a
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Figure 2.2: T5502 /Tt (left plot) and TG [Tsey ! (right plot) as a function of the mg
for two fized values w = 5v (solid) and w = 10v (dashed). The red line shows the considered
ratios without the partial decay width T¥°(S — HH).
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Figure 2.3: Dominant (left plot) and rare (right plot) decay channels computed for s, = 0.2
and w = 5v. Notice the different scale on the vertical axes.

sign flip of kind s, — —s,. In the left plot of Fig.(2.3), we can observe at mg = 2my ~ 250
GeV the decrease of BRYS 7. sww since I'ror receives the new contribution related to the decay
mode S — HH which becomes kinematically accessible at these mass values. Neglecting the
behavior of BRSW for mg 2 600 GeV, the BRSU depicted in the right plot of Fig.(2.3) show a
global decrease for larger mg values. In Tab.(2.1) and Tab.(2.2), we see that BRES,,,, BRED,
and BRES) grow almost entirely with s, while BRY%,, decreases as |s,| increases, especially
for negative s,. In addition, BRLS,; grows with w for positive s, values but it decreases as
w increases in the negative mixing case.
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sa>0 sa<0 sa>0 20 sa>0
|sa]  w/v BRSHH SHH LO WW BRSZZ BRStt
0.1 ) 31.7 30.0 43.8 20.5 3.9
0.2 5 31.3 27.9 44.1 20.6 3.9
0.35 5 28.8 23.1 45.7 21.3 4.0

| |

| |

| |
01 10 313 | 304 | 441 206 39
02 10 304 | 287 | 447 209 40

| |

| |

| |

| |

0.35 10 274 24.5 46.6 21.8 4.1
0.1 15 31.2 30.6 44.2 20.6 3.9
0.2 15 30.1 29.0 44.8 20.9 4.0
035 15 26.9 25.0 46.9 21.9 4.2

Table 2.1: Branching fractions of all decay channels computed for fixed values: |so| =
0.1,0.2,0.35, w = 5v,10v,15v and mg = 400 GeV. The BRﬁ% is computed for positive
and negative s, values while the other branching fractions are only computed for s, > 0.

sa>0 s <0 S0 >0 a0 sa>0
o]  w/v BRSHH BRSHH BRSWW BRSZZ BRStt
0.1 5) 25.8 24.3 47.2 23.3 3.7
0.2 5 25.4 22.4 47.5 23.5 3.7
035 5 23.2 18.3 48.8 24.1 3.8
0.1 10 25.4 24.6 474 23.5 3.7

| |
| |
| |
| |
0.2 10 246 | 231 | 479 23.7 3.7
| |
| |
| |
| |

0.35 10 22.0 19.5 49.6 24.5 3.8
0.1 15 25.3 24.8 47.5 23.5 3.7
02 15 24.4 234 48.1 23.8 3.7
0.35 15 21.6 19.9 49.9 24.7 3.9

Table 2.2: Branching fractions of all decay channels computed for fixed values: |s,| =
0.1, 0.2, 0.35, w = 5v,10v,15v and mg = 1000 GeV. The BRE% 15 computed for positive
and negative s, values while the other branching fractions are only computed for s, > 0.
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Finally, the branching fractions corresponding to the rare decay channels are totally inde-
pendent from s, and w (considering the s, and w values reported in Tab.(2.1) and Tab.(2.2))
and give:

e For mg = 400 GeV:
BR, = 0.02%, BRSCC 0.002%, BRg), = 0.06%, BRg> - = 0.001%, BRgY, =
0.002% and BRg.., = 0.0003%;

e For mg = 1000 GeV:
BR{;?b = 0.003%, BRscc = 0.0002% , BRSgg = 0.01%, BRST+T = 0.0002%, BRSZ7 =
0.00006% and BRS,w = 0.00003%.

28



Chapter 3

Renormalization of the SSM

It is typical of quantum field theories to contain divergent amplitudes (in terms of Ultraviolet
"UV" and/or Infrared "IR" divergences) when higher order corrections are taken into account.
At the tree-level, the parameters in the Lagrangian (called "bare") are directly connected
to the experimental quantities. As a consequence of the higher order corrections, the bare
quantities differ from the corresponding physical ones for the UV- and /or IR-divergent factors
which arise from the loop integral calculations. However, the so-called regularization procedure
ensures that these integrals become convergent and allows us to isolate their divergent terms.
We consider an example of UV-divergent loop integral to introduce the regularization concept:

Zlk,m) = /(%4 (kz—ml2+z'g)2’ (3-1)

where k£ is the momentum associated with the internal propagator, m is the mass of the
particle which circles in the loop and +ie indicates the loop Feynman prescription [28]. Two
of the most used regularization processes are: i) the Pauli-Villars regularization [51]; ii) the
Dimensional regularization [52|. The first one subtracts the same loop integral with a much
larger mass, called A (regulator), as follows:

d*k 1 regularized d*k 1 1
1702 2 2 2 2 021 2\2 (B2 _ A2 L i\2 ] <3'2)
(2m)* (k2 — m? + i) (2m)? | (k? —m? + ie) (k2 — A2 +ie)

where the subtracted piece needed to regulate UV divergence is regarded as a contribution of
another massive field (Pauli-Villar field) with the same quantum numbers and opposite statis-
tics as the original field. This method has the benefit of maintaining the Lorentz invariance in
the momentum space. As a result, the propagator for large momenta decreases faster, which
ensures the convergence of the integrals. After the Wick rotation, the divergences manifest
themselves as logs and powers of A? and Z(k, m) gives:

regularized Z m2
Z(k,m) — T In (F) . (3.3)
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Even though Pauli-Villar approach works for the photon at one-loop order, it fails in more
complicated scenarios like non-Abelian gauge theories (violation of the gauge invariance) or
multi-loop calculations (many Pauli-Villar fields have to be introduced).

On the contrary, the dimensional regularization (which will be used throughout the rest of
this thesis) avoids these problem. The main feature is the integration over the loop momenta
in D dimension, defined as D = 4 — 2¢, where € is a small parameter which works as regulator.
In this approach, the usual divergent form is given in terms of e as follows [28]:

/ dPk 1 1 1 ) m? i (3.4)
= ——In|— :
(2m)P (k? — m? 4 ig)? 1672 | e 47 TEM|

where gy is the Eulero-Mascheroni constant ygy ~ 0, 5772 [53].

A regularized quantum field theory is obtained thanks to the remormalization which is the
fundamental technique to consistently identify and remove the "infinities". As soon as all
divergences are regulated, they have to be canceled against each other in a consistent way in
order to obtain a finite result for each physical quantity. In this thesis, we have used for the
renormalization procedure the so-called counterterm approach by which the bare Lagrangian
parameters X are expressed as the sum of finite renormalized quantities X and the divergent
renormalization constants §.X, called counterterms:

Xo— X 46X (3.5)

These are fixed by the renormalization conditions which connect the physical and renormalized
parameters and can be arbitrarily defined, as we will illustrate in the next section. Notice that
the radiative corrections modify the normalization factor of the fields by adding an infinite
part. This causes that the Green functions could be divergent, even if we obtain finite S-
matrix elements, and implies that the fields also have to be renormalized in order to get finite
propagators and vertices. Consistently to the Lagrangian parameters, a bare field ¢y can be
renormalized by a similar procedure:

52,

¢o=¢7¢¢~(l+7>¢, (3.6)

where Zy is called field renormalization constant.
Let us introduce the renormalized quantities and counterterms of our interest:

e Gauge Sector:
The gauge boson masses my (with V' = Z, W), the Weinberg angle fy, and the electric
charge e counterterms are defined in the following way:

(mi)o = my +omi,
(Qw>0 - 0W + 56[/{/ 5
€y — (1 + 526)6 .
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Obviously, the insertion of §6y, implies that the relations between the mass and gauge
basis in eq.(1.14) and eq.(1.15) are not valid to all orders. We also need the field
renormalization constants for W+, Z° and ~ defined as:

1
Wi = (1 - 552W> W, (3.10)

Zo 14 %2 Y2 59, (7
_ 3.11
<,}/0> <5Z72 +59W 1+ §Z.Y v ) ( )

where in the last line we explicitly show the counterterms entering in the mixing matrix
of the neutral gauge bosons. Notice that we can rewrite 60y as ds%,/(2swew) using:
80w = dsw/cw and sy = 0y, /(25w ).

Typically, the gauge-fixing and the ghost Lagrangian, Lgr and Lgnests, are considered in
terms of already renormalized quantities [29, 35]. In this way, no additional counterterms
have to be introduced for the linear (&)o, (£/)o gauge parameters: (&;)o, (£)o = &, &

e Fermion Sector:
The fermion mass counterterms and the left and right -handed fermionic fields are
defined through:

(mf)o = mf+(5mf, (312)
R = (@J + 525:3) £, (3.13)
where fUR = PLRf with PLR = (15 +5)/2.

e Higgs Sector:
Considering Lgealar of €q.(1.2) expressed in the gauge basis, we have that the bare pa-
rameters, the scalar masses and the vevs counterterms are shifted as:

Ao = A+, (3.14)

po = p+dp, (3.15)

Ko = Kk + 0K, (3.16)

po = p* 4 op?, (3.17)

(1s)y = 13 +0p2, (3.18)

vo =v+0v, (3.19)

wy = w+ 0w, (3.20)

while the gauge field renormalization constants and the tadpole counterterms are given
by:

0z, 0Z,
¢o = (1+—¢’) ¢, (% = (1+ 2°> s°, (3.21)
(Ty)o =Ty + 0ty , (Tw)o = Teo + g (3.22)
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We can also define the counterterms in the mass basis where the mixing angle and the
scalar masses arise (after the diagonalization «, mg and my become functions of the
scalar Lagrangian parameters):

ap = a+da, (3.23)
(m3)o = my +omi;, (3.24)
(m%)o = m% + omz. (3.25)

Notice that, differently from the approach of [29], we have introduced the mixing angle
counterterm do instead of the mixed mass counterterm dm?g. The insertion of da
corresponds to shift the rotation matrix as

Ula) = U'(a+ da) = U(a) + U(da),

where the application of U’(« + da) now diagonalizes the loop corrected mass matrix.
However, the two approaches are related as follows !

dmig = (mz —my)da (3.27)

As a consequence of such a relation, the full set of counterterms associated with the
mixing scalar sector are defined according to the choice of dm? ¢ or da.

Promoting eq.(1.7) to be valid to all orders (ap = «), we obtain the following field
renormalization constants associated with the scalar physical fields,

Hy\ (1+%z Zus \ [q
B0 B e

and the mixed mass counterterm dm?¢ has to be used.

On the other hand, we can also avoid to promote the mixing angle to be fixed to
all orders, as it was previously stated for 66y, and this implies that the two physical
scalar fields are shifted to the renormalized fields and the wave function renormalization

constants as
0Zy  9Zps _
) (g T o oey () (3.29)
So s y 6o 14+ % )\ S

ITo determine the relation which links the two approaches, we have required the off-diagonal terms of the
following matrix are zero:

U'(a+ da) - U+ 6a)~t = diag(m3;, m%). (3.26)

2
omirg My

<m2 dm? )
Ular)™- 5 491 U(e)
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In this case dm?%¢ has to be replaced by da as described in eq.(3.27).
The tadpoles in the mass basis (T and T’s) are related to those in the gauge basis (7}

and Ty) by the mixing,
TH [ Ca —Sa T¢
<Ts> a (Sa Ca> <T50> ’ (330)
0 0

where T, and Ty follow the relations in eq.(3.22).

e Three-point Vertex:
We define the vertex counterterms as,

Vo =V(1+46V), (3.31)

where Vj is a short-hand notation for a generic coupling.

3.1 Renormalization Schemes

The choice of the renormalization scheme involves the counterterm definitions which are nec-
essary to absorb the UV-divergent contributions from higher order amplitudes. We will fix
the renormalization constants for the masses and fields through the so-called on-shell scheme
(OS)? which allows us to choose the counterterms such that the physical and the finite renor-
malized parameters are the same to all orders of perturbation theory. For the counterterms
associated with the scalar mixed mass (or alternatively, the scalar mixing angle) and non-
diagonal fields, we can construct a set of schemes which are not necessarily bound to the OS
conditions since there is no natural way of defining these counterterms through a physically
motivated renormalization scheme. In this regard, we have to pay attention to the definitions
of these schemes since some of them manifest a gauge dependence in the physical observ-
ables. We will introduce the renormalization of the mixing scalar sector through two different
schemes, called minimal field (MF) and improved on-shell (10S), where the first one contains
gauge-dependent counterterms while the second one is completely gauge-invariant [29].

Now, we clarify the formulation of the OS renormalization conditions discussing an exam-
ple where only one spinless self-interacting scalar particle is considered (for example, it can
get trilinear or quartic self-couplings as shown in lower panel of Fig.(3.1)), described by the
bare field Ty and bare mass mg, and working on the propagator and two-point correlation
function definitions. The bare definitions corresponding to this scalar field are shifted as:
Yo — (1+8Z¢/2)Y and m3 — m? + dm?. The treatment concerning the MF and iOS renor-
malization conditions can be described subsequently.

2This renormalization scheme was proposed for the first time in [54].
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The bare propagator of the T field, which we call Gy(p?), can be defined as [28]:
o) = [t QT To(a 502 =

=7 [/d‘*m (Q|T Y (2)Y*(0)|Q)e'P" | \/Zy =
= VZ: S0 )/ 7y, (3.32)

where the integral is computed over all space-time configurations x, ‘Q> is the vacuum state of
this scalar toy theory, T is the time-ordering operator and Q(pz) is the renormalized propagator
(the quantities () to be renormalized will be denoted through the "hat” symbol, Q)

The bare propagator Gy(p?) can also be defined as the sum of all one-particle irreducible
(1PI) contributions to the self energy of the scalar field T, indicated with i3p1(p?) (see
Fig.(3.1)) |28]:

) i i oy i i —Zapi(?) )"
_ N —_— 4 .. -
g0<p ) p2 — mg + p2 _ m% (Z 1P1(p )) pQ _ mg + + p2 _ m(% ( p2 — mg
RITRNE ST E T
— 2 _ 2 2 _ 2 2 —m? B
i 1 é
B _ ’ 3.33
pP—mg |14+ -i—zp_‘ﬁi? p? — mg + Tipr(p?) .
0

where n represents the infinite 1PI loop-levels. By comparing eq.(3.32) and eq.(3.33), we

\ 1 » s \ 1 ” .
. ; . ] ’ “ L s »
iYp1(p?) = (1) = “~o' + . o+t e+ e

Figure 3.1: Upper plot: 1PI-loop structure of the propagator Go(p?); lower plot: examples of
loops contained in the 1PI contribution to the self-energy; the "black dots" depict the positions
where the external propagators have to be connected.

3These contributions are described by the complete set of self energy loop-contributions which cannot be
separated into two distinct diagrams by a cut of one internal line. As shown in Fig.(3.1), the tadpoles (which
can be separated into two distinct diagrams by a single cut) are excluded for simplicity since it is possible to
assume an appropriate renormalization condition which removes them [28].
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obtain the following renormalized propagator in terms of the physical quantities:

N 7
G(p*) = ~
\/ Z% [pg —m? —om?2 + Elpl(p2)} \/ Zy
~ L , (3.34)
p? —m? + Xip1(p?)

and this automatically implies that f]lpl(p2) is given by,

574 + 5ZT> 52

. (3.35)

Sipi(p?) = Lipr(p?) + (p* — m?) (

with \/ Z%, \/ Zr expanded as eq.(3.6). Using these compact results, the two-point correlation
function (the inverse of the propagator) can be directly defined as:

D(p?) = i[p* — m* + Sipi(p?)] =~

‘ oy (p?)
—_~ 2 2 1PI
~ Z(p —m )(1 + é?—pQ

o (p?)
op?

, (3.36)

p2=m2

) =it (i)

p2=m2

where the last row is obtained after an expansion around the pole of the propagator at
p? = m?

At this point, the formulation of the OS renormalization conditions, which requires that
physical and finite renormalized parameters are equivalent to all orders of perturbation theory,
becomes more intuitive by considering two main assumptions:

i) The renormalized mass parameter of the physical particle is fixed by imposing that it is
equal to the physical mass and by the fact that the real parts of the pole of the corresponding
propagator is equivalent to the zero of the 1PI self energy contributions:

Re{(—)T(m»)} =0 — Re{Sipi(m?)}=0; (3.37)

ii) The physical field T is properly normalized through fixing the residue of the propagator

at its pole to 7:
0% 1pr(p?
=1 — Re —1P12(p )
p2=m?2 @p

or (p?
. { )
In our toy model these conditions are equivalent to:

} =0; (3.38)
p2=m?2

dm? = ReXipr(m?) and 87y = —ReX\p(m?), (3.39)

op?

where Y is a short-hand notation for ¥'(p?) = 93(p?)/0p®. It is important to point out
that, in the case where the scalar field develops a non-zero vacuum expectation value, the
renormalization condition for the tadpole Ty has to be considered.

35



3.2 Renormalization Conditions and Counterterms

We will apply the same treatment discussed above to the SSM Lagrangian fields in order to
determine the renormalization conditions through their respective propagators or two-point
correlation functions *. For the two-point correlation functions we have:

DYV (p%) = —ig" (p* — m2)6" —

. PR oy i WY PHpY &
— 1 (g“ — ?) E}{V (pZ) — Z?Ezv(p2) y (340)
fzfj(p) =i(p —m)dy +
+i[p(PrELt + PRSL™ 4 (my PY + my ;PR)SES (3.41)
D9 (p?) = i(p® — m2)855 +i255 (p?). (3.42)

Here, the functions corresponding to the gauge bosons are defined in the 't Hooft-Feynman
gauge which will be used throughout the rest of this work; furthermore, ¥p; is now indicated
as ¥, mg/y is the mass of the incoming particle and (VV',SS’) can be one of the combinations
{WW,ZZ ,yy,vZ,Z~} and {HH,SS, HS, SH}, respectively. i¥v’ and XAJXV/ are the trans-
verse and longitudinal contributions to the self-energies while the superscripts i)f-;?L, ilf]ﬁR and
EA]{]S stand for the left-handed, right-handed and scalar parts of the renormalized self-energies.
The definitions of 3(p?) are given by [29, 33]:

ReXYW (p*) = ReXYW (p?) + 6 Zw (p* — miy) — omiy, (3.43)
ReX2%(p?) = ReX2%(p?) + 625 (p* — m%) — om% (3.44)
ReX)(p?) = ReXP (p?) + p*6 2, , (3.45)
RESF (1) = ReS(07) + 507,2(20° — i) + mituy (3.46)

ReX/ (p°) = ReX{(p*) + RS (p7) (3.47)

ReXHH(p?) = ReXHH (p?) + 625 (p? — m%) — dm?, (3.48)
ReX% (p?) = ReX¥ (p?) + 6 Zs(p* — m%) — om?, (3.49)
ReSHS(p?) = ReX51 (p?) = ReXH5(p?) 4 (m?% — m%)da+

s gp i+ e )| (50

where Re takes the real part of the loop integrals only and it does not remove the imaginary
parts arising from the various couplings of the theory (e.g. from complex CKM matrix
elements; if these coupling are chosen to be real, the replacement Re — Re is valid at the

4The only three-point function needed is associated with ete~~ vertex. This fixes 6 Z..
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one-loop order) while f]{f A(P?) in eq.(3.47) are defined as:

~

S{(p?) :ZZ’Z{/(Z?Q) +(p—my)dZpv + mySL(p?) — omy, (3.51)
L@ = = prs(SL0P) + 0Z5) (3.52)
with 0Z; v A = (5ZL + 5ZR)/2 and Ev A= (ZfL + ZfR)/Q‘

We can impose the followmg conditions on the renormalized self-energy functions in the OS
scheme [33, 55

Rex™ (m3) = 0, ReX™H(p*)],omp2 =0, (3.53)
Rex%¥(m%) = 0, ReX(p’)],emp2 =0,
ReSYY(miy) = 0, ReSP™(0?)]emna, =0,
ReSF7(m7y) = 0, ReSZZ(p%)|pemmy =0,
ReS7(0) = 0, Rei’mﬁ)yp 0_0
Rei?(m%) 0, Rei%z(())
ReS{(m3) = 0, f?ei’JA(p?np mt = 0.

Notice that no renormalization condition for the mixing scalar sector is fixed. These conditions
are set up in the MF and iOS schemes as:

e Improved on-shell (iOS)
This scheme requires that loop-induced S — H or H — S transitions vanish for on-shell
external scalar states:

Ref]HS(pQ)}pQZW% =0 , Ref]HS(pQ)’ , = 0. (3.54)

p2:m5
e Minimal field (MF):
Here, the off-diagonal renormalized self-energies are canceled out at an arbitrary renor-
malization scale, called pg:

ReiHS(pzﬂpL , =0. (3.55)

7MR

As a consequence of eq.(3.55), we can note that for u% # m?, m% the physical H and
S states can oscillate when we compute vertices with scalar legs on their mass shell

p° = m3, myg) since the off-diagonal terms in the propagator matrix, which we ca
2 2., m%) since the off-diagonal t in th gat trix, which 11
AL are different from zero:

scalar?

—1
scalar

_ (P mE AR B0, ) (3.56)
ME S5 ()] p* —mg + X% (p?)

pP=u3
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Thus, these vertices need the following additional finite terms (for any scalar leg) which
compensate the residual S — H or H — S loop contributions [29, 56]:

ReX 5 (m?))

2 2

R SHS (12
L By = RETmy) (3.57)

Zns = —
mg — mi

Obviously, the diagonal fields depend on the OS conditions and this implies that Zy =
Zs=1.

3.2.1 Explicit Form of the OS Counterterms

From the full set of OS renormalization conditions in eq.(3.53) and eqs.(3.43-3.49) we can
extract the following counterterms:

e Mass Counterterms:
omy = myRe[S{(m3) + S(m})], (3.58)
omy = ReX™(m3), (3.59)
om% = ReX(m%), (3.60)
5m%,[, = ReEQWW(m%,V) , ( )
(3.62)

dm% = ReXZ?%(m%).

e Field Renormalization Constants:

0Z;v = —ReS{(m?) — 2m3Re(SY () + 2 (%)) - (3.63)

0Z;n = —ReX(m3) - 2m?c}f%ve§]g(p2)|p2:m§ , (3.64)

62y = —ReZIHH(p2)|p2:m%I : (3.65)

62 = —ReZlSS(pQ)‘pgzmg, (3.66)

§ 2y = —J?GE;WW<p2)|p2:m€V , (3.67)

0Zz = —ReSi?(10%)] o (3.68)

02y = _R€E¥W<p2)|p2:07 (3.69)

67, = 2Re Ziéo) t ;:iVW | (3.70)

e Tadpoles:

Ty = Ty , 0Ty = —Ts. (3.71)
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e Derived Quantities:

C
82w = 67 + %5272 : (3.72)
dm? dm?
6s2, = —ock, =, | —£ — — X 3.73
Sw Cw CW( mQZ m%v ) ( )
1 ReX)Z(0
62, = =502, + Z_Zem—T?H , (3.74)
A

where the constant 07, is obtained by requiring the electric charge to be equal to the
full ff~-vertex in the Thompson limit and imposing that all corrections to the ff~y
coupling vanish on-shell and for zero momentum transfer (we use f to be more general
since this result is independent on the fermion species) [33] ®. Concerning the correction
to the electric charge (6Z.) we need to clarify the appearance of ambiguities associated
with the definition of the mass singularities due to light fermions (quarks and leptons)
in In(m3/m%). The first approach is related to the fine structure constant cem(q?),
at Q% = m?%, which has to be imposed as input parameter. This choice modifies the
definition of 0Z, as [33]:

1
0Ze| gy = 62l g — 5Am(m) (3.75)

where Aem(m?%) depends on the light-fermion contributions only (denoted with the
index "light"):

. ReX1 (m2) e
Atem(my) = —(52;,%}“ + <#) )

~ (3.76)

Notice that these light-terms are canceled out when eq.(3.74) and eq.(3.76) are inserted
in eq.(3.75).
The second approach is based on the so-called modified on-shell mass scheme (MOMS)
[57], in which the electric charge is replaced by the Fermi constant Gp via

G F 62 1

= : (3.77)
V2 8sZ,m¥, 1 — Ar

The quantity Ar represents finite corrections to Gg; these are well known and up to
O(a?,) are given by [57, 58]:

ReSYW(0)  tem K 7

2 2 2
miy sy, |\ 287

Ar =

— 2) In C%/V + 6:| + O((STSSM) , (378)

®Our expression of §Z, differs from the one quoted in [33] because of a different sign convention in the
definition of the covariant derivative, see eq.(1.12).
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where }f%vef]jvy W(p?) is the renormalized transverse self-energy of the W boson at mo-
mentum transfer p defined in eq.(3.43); the second term is due to the vertex-box loop
corrections in the muon decay process and O(drssy) includes the negligible contribu-
tions arising from the insertion of the scalar singlet field ©.

The use of G instead of the electric charge amounts to shift 7, — 67, = §Z, — Ar/2;
if in Ar we use the "derived form" of 6 Zy of eq.(3.72) then the cancellation of the 0Z,,
in the final counterterm expression is guaranteed and no problem arises from the light
fermion loop contributions. This is verified as follows:

Nz RoSWW
(5Z:3 = 5Z€ — H = <_%6Z7”/ + S_WRezT (O)> + <_R€ET (0) . Cmuon> _

2 cw omy 2ma, 2
1 ReXIZ (0 ReSYW(0)  6Zw  6m2%  Cumuon
2 cw  my 2miy, 2 2miy, 2
sw ReXZ (0 RexWW (0 c dm? Crouon
_ _W_TQ() + - T2(>+ Y52y + i — , (3.79)
cw  my 2miy, 2sw 2myy, 2

where 07, is defined in eq.(3.70) and Cyuon represents the vertex-box loop corrections
described by second term in eq.(3.78) (by substituting the numerical values of its pa-
rameters we obtain: Cupuon ~ 0.0066). Thus, the full expanded form of §Z! is given
by:

sm2, 852, N ReSF(0)  ReSFY(0)  Cunuon

- . (3.80)

67, =
e 2 2 2 2
2my, 28y, swewmy, 2myy, 2

It is important to observe that, differently from the a.,-approach where we have my,
and myz as input values, in the MOMS scheme my, is not an input parameter. It is
replaced by G in the following way:

2
5 my AT oy 1 }
m2 = —Z (14 ,/1- , 3.81
W 2 ( V2Gpm {1-&« > (3:81)

with Ar ~ 0.04.

3.2.2 Explicit Form of the iOS Counterterms

The iOS definitions of §Z% g5 (we indicate with the superscript "ios" the counterterm of the
mixing scalar sector arising from the iOS renormalization conditions) are determined using
eq.(3.50) and eq.(3.54). These equations lead to [29],

§Zks  ReXHS(m2) 57k RexfS(m%)

— e = — Jals . 3.82
2 m2 — m? o m% —m? “ (3.82)

In the SSM, the new contributions to Ar generates a maximum variation of O(0.1)% for |s,| ~ 0.2 [26].
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On the other hand, the mixed mass (mixing angle) counterterm is defined in the following
way [29]:

om%S = (m% —m%)da'® = ReX"5(p*?) e (3.83)
p*2 5

where p*? is fixed to the average mass. The reason for such a choice of p*? lies on the fact
that the mixed scalar self-energy at p*? is independent on the gauge-fixing scheme. The
gauge independence of the iOS scheme is also discussed in [59] where it is shown how the
mixed scalar self energy at p*> = (m?% + m%)/2 coincides with the gauge invariant part of
the same quantity obtained through the so-called pinch technique, which generally allows the
construction of off-shell Green’s functions in non-Abelian gauge [60] or extended scalar [61]
theories that are independent of the gauge-fixing parameter. For example, in [61] the authors
calculate the NLO corrections to the Higgs boson couplings based on the OS renormalization
scheme by using the pinch technique to remove the gauge dependence. The cancellation of the
gauge dependence is also directly proven in the Higgs boson two-point functions computed
in the linear R, gauge by adding "pinch-terms" which are extracted from vertex corrections
and box diagrams of a fermionic scattering process of the type ff — ff.

3.2.3 Explicit Form of the MF Counterterms

To fix the non-diagonal scalar field renormalization 675 (the superscript "mf" indicates the
counterterm of the mixing scalar sector arising from the MF renormalization conditions) are
determined using eq.(3.50) and eq.(3.54), we consider the renormalization factor for the bare
scalar doublet (¢)o and singlet fields (s")y in the gauge basis (reported in eq.(3.21)). This
prescription is very similar to the renormalization procedure of the Higgs sector used in SM
extensions like the 2HDM [62] and the MSSM [56]. Using the same orthogonal transformation
introduced for the mass eigenstates, the physical wave functions for the scalar fields can be
expressed in terms of the gauge basis ones 674 0 as [29]:

SZp = 2672y + 262y, (3.84)
623 = A6 20 + 5207, (3.85)
1
021 s = 5aCal6Zy — 620) = §t2a(5Z§‘f — 6z, (3.86)

with s, = tan2a. These relations simplify in the so-called "MS scheme" where 52;\6[75 =07
[29]:

02 =267y , 0ZE = 8262y , OZ5S sy = SaCa(0ZF —6287). (3.87)

"The use of the MS scheme also allows us to neglect the counterterm dw in the physical definition of
w, which is promoted to be an independent input parameter. Thus, no singlet vev counterterm appears

in the one-loop calculations: SwMS = 0. Since dZs does not appear in the iOS scheme prescription, the

MS _

renormalization condition on Jw can be automatically imposed: dw;):
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Notice that 6Z2L is not an independent counterterm; in addition the mixed mass (mixing
angle) counterterm is obtained by imposing the renormalization condition in eq.(3.55). In
doing so, we have:

2 2
omAat = (m% — m?%)oa™ = ReX®5(u%) + 6 Z5L (u% - %) : (3.88)

3.2.4 Equivalence of the MF and iOS Schemes

Assuming p*? = p% = (m?% + m%)/2, we can prove the equivalence of the MF and the iOS
schemes at this scale 8. To this aim, it is enough to take into account a three-point interaction
where there is at least one of the SSM scalar fields.

Let us consider a generic S — ij interaction described by the LO coupling gs;;, where i
and j can be any possible fields which interact with the S field. For simplicity, we neglect
only the S — HH channel which implies a more complicated NLO coupling structure (the
equivalence which we will discuss below can be easily proven for the S — HH case). The
counterterms associated with MF and iOS schemes only appear in the renormalized coupling
at the NLO (g5;;°) which is described by the generic Feynman diagrams reported in Fig.(3.2)
and assumes the following form (for simplicity we use the dm? ¢ prescription where no mixing
angle counterterm arises):

075+ 87+ 67, gmy (Zns - 5si;
9550 = gsiy |1+ = “i:?( QHS+ZSH)+ 994
)

+ 5V5ij1 , (3.89)
gsij
where Zg ; ; are the renormalization constants associated with the three external fields, gp;;
represents the general Hij coupling which multiplies the counterterms due to the mixing of
S — H, 0gs;; can be expressed in terms of the counterterms which depend on the parameters
contained in the gg;; expanded form and dVg;; is associated with the vertex correction. The

only terms, which have different definitions in the two renormalization schemes, are those in
eq.(3.89) inside the parenthesis (...) :

A = 3.90
2 st > T m3 —m% (3.90)

(5ZHS ; ) _ 6Zus | ReSMS(m3)
with Zgy = 0 for the i0S renormalization condition (see eq.(3.54)). Therefore, we can verify
the equivalence of these schemes discussing the following relation:

0Zigy 7 5Z§§+Reiﬂs(m§) (3.91)

2 2
2 2 mi — myg

8Obviously, the equivalence of these schemes implies that the gauge dependence of the MF scheme disap-
pears only if u% = (m2%, +m?%)/2.
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Figure 3.2: Feynman diagrams associated with the NLO corrections to the LO coupling gsi;
with ij # HH.

where the renormalized mixed scalar self energy, ReX 5 (p?), is defined in eq.(3.50) and has
to be expanded only in terms of the MF counterterms. Now, we must consider the following
aspects of MF renormalization scheme: i) the definition of dm%%f, shown in eq.(3.88); ii)
the relation between the mixed field renormalization constants: 6Z%% = §ZZf. Using such

definitions, eq.(3.50) becomes:
ReSHS (1) = Res S (%) — ResS(12) + 67850 — i) (3.92)
Introducing eq.(3.82), eq.(3.83) and eq.(3.92) into eq.(3.91), we get:

ReXHS(m2) — ReX S (p*?) ? ReXHS(m2) — ReXHS (12) N

m2 —m?% m2 —m%
VA m2 +m?% )
— . 3.93
m2 —m?% 2 Pr (3.93)

This equivalence is confirmed by substituting p** = p% = (m% +m%)/2; in fact the last term
is cancelled out and the remaining terms become identical.

Hereafter,
we will treat the NLO decay rates of our interest in terms of the iOS counterterms
preserving the gauge invariance in the physical observables. On the other hand, we
separately give a comment on the gauge-dependent results using the MF prescription for
fixed values of % # p*? in order to roughly analyze the impact of the gauge dependence
on the decay rates.
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Chapter 4

Singlet Decay Widths at the
Next-to-Leading Order

In order to calculate the NLO decay widths, we have to absorb the higher order contributions
in the absolute square of the process amplitudes (|M§}jo\2):

NLO |2 LO L |2 LO *
with ¢, j generic fields entering the process under study (the superindices "1L" and "2L"
stand for "one-loop" and "two-loops", respectively). Notice that we are neglecting the "2L"

- orders (NNLO). We can define the amplitudes M52 in the following way:
Sij
M) = gsij A0, MY, = gsiy AV SAMN (4.2)

where gg;; is the interaction coupling, A includes the polarization or spinorial structures (in
the scalar case AY© = 1) and AL represents all possible NLO correction terms. Following
eq.(2.2), IO becomes proportional to g&; >4, |A*|*> and the decay rate at NLO assumes
the following form:

IO~ O 1+ 26AM]. (4.3)

The one-loop corrected decay width may also receive a supplementary contribution due to real
corrections which occur when some of the external particles are charged. These additional
contributions are typically called "brems-strahlung" and "gluons-strahlung" processes (we
will discuss in details these contributions for S — WTW ™, ff decay rates) in the case of
photon and gluon emissions, respectively. As a consequence of the external charged states,
SAL is affected by infrared (IR) divergences since photon or gluon propagators may appear in
the loops. In this case, the role of the brems- and gluons- strahlung processes is to regularize
these divergences and we generally have:

FNLO ~ FLO [1 + 25A1L:| + Fbrems + Fgluon ’ (44)
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where the last term represents the photon and the gluon emission contributions to the process.
We will determine in the next sections the NLO decay widths for the dominant S decay
channels.

4.1 NLO Decay Width to Gauge Bosons

In this section we apply the renormalization procedure described in Sect.3.2 to the vertex of
the scalar field S with two gauge bosons. The tree-level amplitude for the S — V'V decays
(with V. = W%, Z) is given by:

MICLS(k) = V(p,a)V(q.b)] = Mgdy = —ipy x [¢"e(p)ey(a)] . (4.5)

I

Figure 4.1: Fig.(a): S field contributions to the scalar self-energies; Fig.(b): S field contri-
butions to the mized scalar self-energies; Fig.(c): S field contributions to the W boson self
energies; Fig.(d): S field contributions to the Z boson self energies; Fig.(e): S field contribu-
tion to the SVV vertex.
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Here py is the SSM bare coupling ! defined as

2
my,

py =e Se - (4.7)

Swmw
The related Feynman diagrams associated with the NLO corrections are reported in Fig.(4.1);
we only show the contributions due to the insertion of the S field in the loops since diagrams
with external S fields are similar to those of the SM quoted in [57] with the external Higgs
replaced by S.
The bare coupling and the one-loop corrections to the SV'V vertex can be put in the following
form [57]:

V= VYt oy T (4.8)

where py has been defined in eq.(4.7) and VJ* = pyg"’. The generic expansion of T} in
terms of 2-index tensors is given by [57]:

Ty = AvkME” + Bygtq” + Cuktq” + Dy 'k + Evg" + iFve" " kyq, , (4.9)

where k and ¢ are the four-vectors of the external gauge bosons. The coefficient Ay, ..., Fy
have to be ultra-violet (UV) finite whereas the term proportional to the antisymmetric tensor
€"P? vanishes due to the charge conjugation invariance for external Z bosons and also if the
gauge bosons are on the mass-shell. We decide to set the external squared momenta [p?, k2, ¢?|
in the S(k)V (k,a)V (q,b) vertex as [m%, m?,, m¥,]. We take real gauge bosons, so that only the
coefficients Dy and &, become relevant. Since the counterterms arising from the quantities
in eq.(4.7) are included in the coefficient &y, we put it in the form &, = dpy + JV;&, where
the symbol 0V indicates the three point function at the one loop level and dpy’s are:

om3,  dsi 025  co [(0Z3% , dsios

Spw = — — W o Ty + 07, + 2 + 2 =HS 5ol 2 4.10

pw 2m3,  2sy, + 04w+ + 2 * So < 2 @ * S (4.10)
) 2 5 2 5 2 VA . 5 ios - 5 ios

Spy = oZ - W BW 7 4 67, 4+ oSy S [ 2EHS _ gpjes) | Do (g )
ms  2mi,  2siy, 2 sa\ 2 Sa

Notice that we obtain dpy independent from the mixing angle counterterm using the follow-
ing substitution: s = c,da'*. The other counterterms entering the previous expressions
have been listed in Subsect.(3.2.1-3.2.2). To avoid the explicit presence of the light fermions
contributions to the NLO results, we use the MOMS scheme which means that 07, — 67,

'Notice that for the lightest mass eigenstate H the following replacement applies in eq.(4.41):

S(k) = H(k) = pv = pvca/sa- (4.6)
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(discussed below eq.(3.78)).
dpy which now we call dpy":

Performing the MOMS shift, we determine a compact form of

5PV/ — 5ZV + % + C_Oéé }3?9 6m%/ _ RGE'IWW(O)

2 Sq 2

ReX4%(0
+ ‘ T<2)_Cmu0n-
Swew My

4.12
m%/ 2m%,V ( )
The coefficient &, is UV-finite both for Z and W external boson pairs, as it can be explicitly
verified from the expressions of the bosonic and fermionic divergent parts quoted in Tab.(4.1)
for all counterterms (which are divided by a common factor g*/(1672 €)). Regarding the finite

gW gZ Uvbosonic vaermionic
6 Zw v X 19/6 —4
57, X v 71+2tj‘,+180‘é‘, 720+4gc%‘,7320‘é‘,
w w
2 (2¢2,4+1) 52 3 Nem?
6Zg/2 v/  SalatD _ Sa 2y Nemy
4c? 4m?,
w w
. 2 (9.2 N.m
ios cg, (2¢ci,+1) 2 3o p Nem?
Ca(SZHS/QSa / / W 4m€V
2 2 6—31c%, X Nemd
dmiy, /miy v X 5 4 prn
2 /.9 7+10c3, —42ch,  20—40cd, +32¢, 2y Nemj
5mZ/mZ x ‘/ 60‘2” 30%/1, o 2m‘2,v
—~ 2 >N, m2
—ReS¥YW(0)/2m3, =
w w
ReX4%2(0)/swewm? -2 —
2
£ —3+10c, 25 Nemi
5VW ‘/ x 46‘2/‘/ 2m€v
—3—6¢%,+16¢% S Nem?
SVE L L
w w
Cmuon / /

Table 4.1: Coefficients of the bosonic and fermionic UV divergent parts of the relevant coun-
terterms (which are divided by the common factor g*/(16w%¢€)). The symbol ¥ (X) indicates
that the corresponding counterterm is present (absent) in Ew,z.

parts, we know that the S field gives negligible contributions to the corrections of the muon
decay and since there is no S field dependence in X44(0) [26], the new scalar contributions
only affect the bosonic parts of ReSWW (0), m%, 62z, 6Zg, 671% and 6VE. The fermionic
contributions of %Zy W(0), dm%, 6Z7 and 6V are identical to those associated to the HV'V
vertex in the SM; in addition, their contributions to §Zs and 6Z%% can be determined from
the fermion loop terms in the SM 67y expression but now multiplied by s and c,s, and
with external momenta fixed to m% (the definition of §Z19% also contains the mixed two-point
function with external momenta fixed to (m% + m%)/2).
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Notice that the renormalization of the vertex SW*W ™ is more complicated than the SZZ
vertex since contributions due to the photons in the loop integrals, which are plagued by
infrared (IR) singularities when the W bosons are on-shell, must be taken into account. The
IR-cancellation is obtained considering soft-photon bremsstrahlung contributions [63] which,
for the model under discussion, are shown in Fig.(4.2).

Figure 4.2: Feynman diagrams of the photon bremsstrahlung associated to the first-order ra-
diative corrected SWTW ™ (v) vertex.

We call the external photon momenta as ¢, whose maximum value is ¢5'** = mg(1 — daw)/2.
In addition, to regularize the IR-divergences it is necessary to assign a virtual mass m. to
the photon which works as an infrared regulator. Typically, a bremsstrahlung photon can be
a soft or a hard photon. Differently from hard photons which are detected in the final state,
the soft photons have typical energies smaller than the energy threshold of the experiment
and they are not detected. To set an ideal boundary between the soft and hard region, we
introduce a cutoff A, in such a way that the soft region corresponds to m, < ¢, < A, while
the hard region to A, < ¢, < ¢7**. The total photon-bremsstrahlung decay rate is then given

by the sum of the soft and hard contributions:
r = T + Tl = CiR 6 + ol (113

where we generally have I';; = I'(S — ii) and the correction factors & and 513 are extracted
from [63]:

4A2
goft = O‘;m {No In (m—;) + (M +1) {AA - } } (4.14)

aq 2r —1

Y

2
hard _ Crem m% No (Ng+ 1) 4t 1
e = W{Noln(zlAg)Jr o - 1 . 1 ; +

3
1 |ag—ay 1 t 1 t 4t — 1
S e B (5 S IR R (LA Y .
+/\/3[ 2r2 ( r>+3r t( 7")( T )]
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with,

No = [ar (2= 1/r)/(V1-1/r)] - 1,

N1 = Liy(c®) +a; (a; —2b_) — (72/6),

Ny = Liy((c_dy)?) — Lig((c_d_)?) + Lig(c_)* +4a, (a; — by) +
+2a5 In[(1 — (c—d4)*)(1 = (c-d_)*)] = (7%/6),

Ny = VT=T/r [1- (1) + (3/4%)]

a; = In(cy),a = In(dy),by = In(cy £c),

ey = VrEVr—1,dp = VitVi—1.

and r = m%/dm},, t = r(1 — 2q,/mg) *

The m, and A, dependencies show up in §Zy, §Vi, & and 5t as detailed in Tab.(4.2).

The function N is defined in App.A.

m~ (IR regulator) A, (IR cutoff)
6Zw %=l (”;—W) —

SViE @ [N+ 1]In (m—) -

w

m2 4A2
5%}& a;mNO In ( W) oz:rm'/\/b In va

2
hard Qem ms
d w p ./\/0 In 1 A?Y

Table 4.2: IR-dependence on m., and A, in 6 Zys, OVi§, 639f and &b,

Finally, the NLO total decay width which we call TY%° can be defined as:

G
IO = b1+ ) VI= Ty (1~ day -+ 1213) x
m

m% (1 — 6xzy + 822
x S 1+2[6py +0VE + =2 ) sVP Sy Ty 4.22
ZNotice that for ¢, = gy, eq.(4.15) is reduced to,
2 2
hard _ Oem mg ' _ M Nt D T R
e = - {Nohl <4A?Y) 4b_ + 3 + o Lig(c—) 5 +4aq (a1 — by) ol g
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where 6V/? are the corrections from the coefficient Dy and oy = 0,1 for V = Z, W* respec-
tively. Notice that the first row of eq.(4.22) is the LO decay width of eq.(2.4). Now, two
comments are in order:

i) using the m.-dependent contributions, reported in Tab.(4.2), we can verify the cancellation
of the IR-divergences:

Otem AN
(T hr = {Dhw [14 650" +2(6Zw + 6Viy)] hr o {1 + —MN;In (m—;ﬂ ; (4.23)

n w

ii) the combination of all terms in Tab.(4.2) is A,-independent at O(aesm,)-

4.2 NLO Decay Width to Fermions

The dominant decay channel with fermionic final state is S — tt. The tree-level amplitude of
this process is given by:

MIC[S(k) = tp)t(a) ] = Mg?; = —~iU(p)pV(9), (4.24)
where p; has the following form:
my
=e—Sq- 4.2
Pr ¢ 28WmW S ( 5)

Following the same treatment for the Feynman diagrams discussed in the previous section,
we only report in Fig.(4.3) the contributions due to the insertion of the S field in the loops
since loops with the SM fields are equivalent to those quoted in [64] with the external Higgs
leg replaced by the new scalar singlet.

Figure 4.3: Fig.(a): S field contributions to the top quark self-energy; Fig.(b): S field contri-
butions to the Stt vertex.

The bare coupling and the one-loop corrections to the Stt vertex can be expressed as:
V= p(14+ 1), (4.26)
with T} given by

Ti=A+ Bk +Cod +Difd+Evs+Fikvs+Gedvs+Hikds, (4.27)
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where k and ¢ are the four-momenta of the external top quarks. Obviously, the coefficients
Ay, ..., H; which appear in the T} expression have to be UV-finite. In addition, it is possible
to verify that the loop corrected decay rate is not affected by the v5-terms at the NLO for
the parity conserving [28]. The coupling counterterm dp; is enclosed in A; while all three-
point functions are included in the remaining terms. We call the full set of NLO three-point
corrections as 0V;. As set for the SVV case, we fix the external squared momenta in the
S(p)t(k)t(q) vertex as: [p* k* ¢*] — [m%,m?,m?]. Notice that this decay channel is also
affected by QCD corrections. Therefore, we separately discuss the QCD-only contributions
(denoted with a superscript "QCD") and the remaining electroweak corrections ("EW"). This
distinction is needed for the counterterms dmy, 6Z;v, V.

e EW Correction:
We rewrite the EW expression of dp; as:

EW 2 2
omy omi,  OSyy

EW _ EW
5pt — mt - 2m12/v - 28%[/ + 5Ztv + 5Ze+
0Zs o (02355 - 5108
— + —( === - a'*® — . 4.28
+ 2 + Sq ( 2 « + Sq ( )

We can note the independence from the mixing angle counterterm which is eliminated
by substituting §si = ¢,da°. By comparison with the gauge boson decay channel, the
new counterterms are given by dm; and dZ;yv which are defined in Subsect.(3.2.1-3.2.2).
The application of the MOMS shift implies that 6pFW — 6pFW " which is then given by:

0Zs | cadZify  Omi™ ReXWW (0) N Rex4%(0)

EW/ __ EW
oy = 0%+ 2 Sq 2 my 2m?, Swew m%

- Cmuon .

(4.29)

As a consequence of the external charged particles in the final state, the Stt vertex
shows IR-divergences which are canceled by soft-photon bremsstrahlung contributions
corresponding to the process S — tt(y) (shown in Fig.(4.4)) [64]. Using the (m., A,)-
prescription, the total photon bremsstrahlung decay rate is given by:

rem soff ar O/ ¢sof ar
F?t EW :Ftt tEW+Ftht dEW :1—\1_2 ((57& tEW_'_é? dEW)’ (430)

where 05°MEW and PardEW 3 are extracted from [64]:

3For 0y = gy, eq.(4.32) is reduced to,

2

em 2 72
gherd EW O:T{NOIH<Z\S2)4b—+ 6r 9+
gl

— r 7T2 'r'2— r =
§ O DCZ ey gy oy by - BB B
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T ap 2r—1

4N?
s = oL () s e [A0 0 2T (4.31)
il
m§)+N2(N0+1)+N4 26r — 29

5hardEW — aﬂ 1
t R 1A2 a T8 —D
1-— (C7d+)2 t
—2In | ———" | +4 | —ag—b_ 4.32
n(l—(c_d_)2 + Ta2 9 ( 3 )
with,
1

N4 = m(ag./\f5+a1./\f(; +N7) 5 (433)
N5 = 8t + 16tr — 32r® — 32t + 40r — 3, (4.34)
Ng = 8 —8r+3, (4.35)
N7 = (9t — 2t — 24¢r)\/1 — 1/t, (4.36)

and the remaining quantities are the same mentioned for S — W*W~(v) and defined
below eq.(4.15). Notice that all these factors (listed in eqs.(4.16-4.21) and eqs.(4.33-
4.36)) now have to be expressed in terms of r = m%/4m?.

Figure 4.4: Feynman diagrams of the photon bremsstrahlung associated to the first-order ra-
diative corrected Stt(y) verter.

e QCD Correction:
The total QCD corrections can be defined as:

5mQCD 5soft QCD 5hard QCD
AV = 52870 + —— 4+ 6P 4+ 2 + 2 , (4.37)
my 2 2
where §°" QP and 649D gtand for the soft and hard gluon emission corrections,

respectively. These can be directly derived by 6°EW and §P*4EW ysing the following
replacements: ey Q7 — 4ag/3, my, — my, and A, — A, (with m, and A, acting
as gluon mass regulator and cutoff energy). Notice that the scale of the momentum
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transfer () in the process is indicative of the effective strength of the strong interactions
and this affects the running of « which is given at one-loop order by [50]:

6 1
Oés(Q2) = 33 — 2nf ]n(QQ/A?QCD) ,

where () is the typical scale related to the scalar singlet decay processes, ny = 6 is the
number of flavors when mg > 2m; and Aqep ~ 217 MeV represents the basic QCD
scale.

Since the only difference between Hy,, — tt(g) and S — tt(g) processes lies in defining
the external scalar field, we observe that the QCD one-loop factors corresponding to
the SM and SSM cases (in terms of the respective scalar masses) are totally equivalent.
These corrections are known in the SM and we report the results up to order O(a?)

[65]:
& _ St Cn (S
ayaen _ Crasnd) [Mor 17 (5] 21138 () 328 ()
! T 23 16 3233 ’
(4.38)
where 8 = /1 —4m?/m%, ¢, = mg =+ /m% —4m} and Nj is defined as,
/ / / 2
_ 2 e - Cy C+ B

Therefore, the NLO total decay width T'NYO with the EW and QCD corrections is as follows:
2 Am2\ 32
Iy = 2apN, S (1 - ";t) x
47\/2

Mg
% {1 + 2 |:5pE)W/ + 5V;EW + A‘/;QCD:| } + Iw;%rem7 EW ‘ (440)

The definition of TN is UV- and IR- finite and this can be explicitly verified looking at
the divergent parts of all counterterms. Some of these counterterms are in common with the
SW*W ™ vertex and their divergent parts have been previously listed in Tab.(4.1) while for
the remaining ones (6my, 6Z;v, 6V;, 6% EW and ¢PardEW) the UV- and IR- divergent parts
are separately quoted in Tab.(4.3) and Tab.(4.4).

Here, Cr = 4/3, Q; = +2/3 is the top quark charge and the function Ny (see eq.(4.16)) has
to be defined in terms of = m?/4m?%. Notice that the sum of all terms in Tab.(4.4) are A,
and A, -independent at O(aey) and O(as), respectively.

It is important to specify that the EW and the QCD corrections exhibit a threshold divergence
if mg — 2m; = 346.68 GeV; this is of the type (tem s/3) where [ is defined below eq.(4.38)
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UVEW UVEW AV A OAVAsict

bosonic fermionic bosonic fermionic
_5 _ 11 _3mitm _Cr -
0Zyv 36 T2c3, 8m? 3
7 5 3mf—3m2
ome/me 35— 24¢Z, sy ’ —Cr
1, % mj 4
Vi s T 36c2, 2m?2, 5CF

Table 4.3: Coefficients of the bosonic and fermionic UV divergent parts (EW and QCD) of
the new counterterms introduced for the Stt vertex. The EW and QCD coefficients are divided
by the common factors g?/(16m%€) and ag/(m€), respectively.

m, (IR regulator) A, (IR cutoff) my, (IR regulator) A, (IR cutoff)

2 m m
(SZtV 0em@7 In m—fy Cras In m—;
™ ™
5V aemQ?[No+1] In :nn—: CrasNo+1] In %

' 2/\7; mg 2N/ In 22 /\7 mt Ny In 229
§ooft Gom@iNo 7y cem@iNo In T CrasNo In 50 Crasho In 704
ghard i 2emQ@iNo 0 53, - COrocho In oxy

t T 2m

Table 4.4: EW and QCD IR-dependence on m., , and A, , of 6 Zsv, 6Vi, 8° and 629,

and represents the velocity of either fermion in the center-of-mass frame. For instance, the
AV,RP term is reduced to AV2P ~ (72/28) — 1. Although this singularity is tamed by the
LO factor 32 (see eq.(2.14)) it, nevertheless, implies the breakdown of the perturbation theory
at the threshold value. In this case, the NLO prediction can be improved by the resummation
of all terms proportional to (em,s/3)" which imply n-photon or gluon exchanges between
the top and the antitop states. For the EW corrections, this procedure corresponds to use a
non-relativistic Coulomb potential to describe the electromagnetic interactions between the
decay products [66, 67]. On the other hand, this potential assumes a more complicated
form for the QCD corrections but, in any case, we can avoid these singularities following
alternative approaches, as those described in [68, 69]). However, we neglect the new NLO
finite contributions arising from the procedure to cancel these threshold divergences since they
are associated with the LLO decay width results which are strongly suppressed for mg ~ 2m;.
Following [66, 69], we have verified that our results for the EW and QCD corrections become
reliable once we exceed the physical threshold by more than 10 GeV. Therefore, we will perform
the numerical analysis of the NLO corrections to the top quark final state for mg > 360 GeV.
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4.3 NLO Decay Width to Higgs Bosons

The three-level amplitude corresponding to the S — H H decay channel is simply due to the
definition of the coupling Cppgg in eq.(1.21):

MMO[S(k) = H(p)H(q)] = M5Qy = pu with py = Cuus. (4.41)

Therefore, the coupling pg is a function of A\, k, p and s,, w, v. Notice that X\, s, p, can
be defined in terms of my, mg, dm%g, Ty and Ts as mentioned in eqs.(1.39-1.41). As a
consequence, the correction factor to the SHH coupling dpy will include the counterterms
dm3;, dm%, om3% (6a'%), Ty, Ts and the Higgs vev counterterm dv which can be expressed
in terms of 0Z,, dmy, dsw (using v = 2my sy /e).

X H H H
= HjSa"" RS S [P
--g,—-r{;:[ f " _.;'_:_. ;Hfb T e ?-u, --gl--{hé v
f- HfS™® - Ui = e BRI
H H H H
H/s H. voH- e A
e e S0 o
ol el 3 Sy Yy
H._fa;- = 1” 5 Trea 5 el
2 H H H H
v H . H ‘ H
S, b P e .-
A © 4
T - [ P _"fr Ly
S _';L\x‘:. _h S }}':"\‘51 S {\ﬁ I
. 2 i -
H H H

Figure 4.5: Feynman diagrams associated to the SHH wvertex corrections; u; are the Ghosts

and n; = ny, 1= are the Goldstone bosons associated to the diagrams with v = Z, W=, respec-
tively.

Including the field renormalization constant §Zg, §Zg, 629%, 62, we can generally write
dpy as:

opg = ¢ 5m§ + e 0m3; + c3 5m%}§s +c40Tg + c56TH + (4.42)
Im? 552 A 2C 857195 + C VA
+eq ( Tw 2w 626) 67y + 228 | Zonnn 0Zus T+ onss 0%sh
2my,  2syy, 2 2CHus

where the trilinear couplings Cyypy, Cyss are given in eqs.(1.19-1.20) and the coefficients
¢ (i=1,...,6) are defined as follows:
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1 Ca Sa (V2 + w?)

“a = 2m2 +m%’ “= 3vw(2m§q +mZ)(cow + Sqv)
B 2 B Cq W — Su U
@ = 2m2, +m%’ “ = vw(2m3 +m3)’
SaW — Ca ¥+ (W/sy) — (v/cy) Co W
Gy = ) C6 =

(2m3% + m%)(caw + S4 V) SaV+ Cow

Notice that we have chosen the mixed mass counterterm prescription in terms of dm?%g to
simplify the structure of dpy. After the application of the MOMS shift §Z, — 07/, we get:

Spr’ = c10m3 + cadmy + c3ImAY + ¢y Ty+ (4.43)
ReSWW(0)  ReX3Z(0)  Couon
+c55T5+c6< 6T2()— GT(2)+ >+
2miy, Swewmy, 2

0Zg n 2Cymy 5Z}g%« + CHgs 52359[3

YA
Tosn 2 2Chus

Defining the three-point function corrections related to the SH H vertex as 0Vg, whose Feyn-
man diagrams are depicted in Fig.(4.5), we obtain the UV-divergence cancellation by the
following sum: dpy’ + 6Vy. This can be directly verified through the UV-divergence coeffi-
cients reported in Tab.(4.5).

In conclusion, the NLO total decay width I'}} is described by:

Crus)? 4m?
pao _ (Cuns)” [y Hx{1+2[5 ’+5VH. 4.44
HH 32mmpy m% PH a ( )

4.4 NLO Total Decay Width

The NLO corrections to the total decay width of the scalar singlet particle can be expressed
as the sum below:
L6y = D + 1250 + TR + I + > Ti°, (4.45)
]
where we only consider the LO contributions for the rare decays, represented by ij =
(99,77, Z~,bb, ec, 3s,uu,dd, 7H7~, ut =, ete”), being these channels already suppressed by
the loop factor or the small fermion masses.

It is interesting to observe that we can define the NLO signal cross section at proton center-
of-mass energy /s corresponding to the resonant process pp — S — XY in terms of the
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Table 4.5: Coefficients of the bosonic and fermionic UV divergent parts of the counterterms
associated with the SHH wvertex. These are divided by the common factor 1/(167%¢€). In
this table {ij, nm, kl} can be one of the combinations ij = {HH, SS, HS, nn~, n°n°},
nm = {HH, SS, ntn~, "°n°} and kIl = {n™n~, n°n°}. Besides, 8;j nm.u are equal to 1 for
{HH, SS, ,n°n°} and to 0 for {HS, n*n~}. The parenthesis (...) indicates the quantity in
eq.(4.43) which multiplies the coefficient cg.

partial and total decay width expressions as,

olpp— S = XY) ~

Z ckker] YO, (4.46)

—1NLO .
mg FTOT S

where k = g, v, b, ¢, s, u, d are the partons, XY are all possible decay channels of the particle
associated with the resonance state and Cf;, are the dimensionless partonic integrals defined
as follows [71]:

72 [l dx
Cyy = §/2/ o —Py(x )Pg(mg/sx), (4.47)
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C,, =8 y ?PW(:E)PA,(m%/sx), (4.48)
m%/s?
42 (Y dx
Cuo =55 [ 5 R P sm) + P i) (1.49)
m?% /s?

Numerical examples of Cy;,, computed using the MSTW2008NLO set of pdfs (Py) at the scale
Q =mg = 750 GeV and /s = 8, 13 TeV, are given in Tab.(4.6) *.

\/g CI;b CEC C§ S C(id Cﬁ Cg g C’yw
&8TeV 1.07 2.7 7.2 8§89 158 174 11
13 TeV 153 36 83 627 1054 2137 54

Table 4.6: List of parton luminosity factors Cy. at the scale Q = mg = 750 GeV and \/s =
8, 13 TeV.

The higher order QCD corrections to the processes gg, q¢ — S can be roughly expressed
in terms of the so-called K-factors: Cyy 40 = Kyg 3¢Cag.qq With Ky, =~ 2 and Kz, ~ 1.2 (cf.
[73, 74]).

4.5 NLO Application of the MF renormalization scheme

By applying the MF scheme prescription, we observe two main differences in the definitions
of the I'NLO previously discussed. The first one is related to the mixing scalar sector coun-
terterms and can be described by the following shifts: §219% — 5255 and dm2ie (5ai*) —
dm2f (5a™). The second one lies in the insertion of the finite wave function corrections to
the external scalar legs needed to absorb the residual factor which can be generated by the
the H — S or S — H oscillation if u% # (m?%, m%). Therefore, we must apply the following
substitutions in order to obtain all NLO decay rates S — ZZ, WTW ™, tt, HH as a function

of the MF counterterms:
5pi (02355 ,60'°%) — 6pi (0235 6a™) 4+ 6" . (4.50)

Here, p"F (with ¢ = Z, W, t, H) are defined in the following way:

o s Cunrn 5. Cuiss 5
Spt =dpnt =op)F = s_ZSH , Sppt = #IIZZSH +QC§ZiZHS, (4.51)

4We obtain the same results of Cg;, quoted in [72].
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where Zgy g are expressed in eq.(3.57). Using eq.(3.88) and eq.(3.92), we explicitly get:

ca ReSHS (1) — ReSHS(3) + 5255 (3 — 1)

R e @)
1

opy" = 2Cuss — Cunn)[ReX™® (1) + pkd Zits)+

P = Cmelmd =) {(2Chss — Cran)| (HR) + HROZ] ]
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Chapter 5

Numerical Results

In this chapter, we will illustrate the numerical results for the NLO corrections to the scalar
singlet decay rates discussed analytically in the previous chapters. It has to be specified that
all amplitudes are computed with FEYNARTS [75] while their analytical processing was done
with FORMCALC [75]. The outputs, written in terms of standard loop integrals |76, 77|, have
been evaluated with the help of PACKAGE-X [78].
In the evaluation of the corrections to the NLO decay rates we make use of the following
quantity:

RESM — [(PNLO/[LO) _ 1], (5.1)

with i = WW, ZZ, HH, tt and TOT (which includes all decay channels). For the decay to
top quarks, we will indicate whether the "EW + QCD" or only EW corrections are considered.

5.1 Dependence on s, and w

We start evaluating RZSSM as a function of s, for different values of mg and w. It has to be
considered that the maximally allowed ranges for |s,| depend on the assumed singlet mass
and such informations are summarized on Tab.(1.2). The numerical results are reported in
Fig.(5.1). In the four panels we show separately the gauge boson channels V' = Z, W; in the
case of V' = W we fixed the momenta of the emitted photon-bremsstrahlung to its maximal
value, ¢, = ¢;"**. For the considered final states we choose four fixed values of ms: a high
mass region with mg = (900,1000) GeV and a low mass region with mg = (200, 300) GeV,
ms = (300,400) GeV and mg = (400, 500) GeV for RPN, RIH and REM, respectively. In
order to roughly analyze the dependence on w, in the same plots we also show R computed
for two different values of the singlet vev w: the smallest one (solid lines) is chosen according
to the minimum reported in Tab.(1.2) while the largest is kept fixed at w = 6.67v (dashed
lines), which is a value used in [29] to determine the allowed intervals of s, and, according to
Tab.(1.2), valid for every mg.
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Figure 5.1: RYM as a function of s., for different values of ms (and the corresponding vev
maxr

w). The range of s, is the one deduced from Tab.(1.2). Rﬁ%‘ﬁtt are computed with ¢, = qy
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e Low Mass Region
We clearly see that the dependence on w corresponding to the gauge final states is
not dramatic. For instance, the variation with w for both RSM and RPN amount
to a maximum of O(8%) when mg = 300 GeV and s, ~ —0.3. For the fermionic
final state we can note that the larger w-variations are associated with small correction
values of |R3SM| which does not exceed O(2%); an example is given by REM(w =
2.130)/R¥M(w = 6.67v) ~ 0.3 for mg = 500 GeV, s, ~ —0.25 and the corresponding
correction values RESM ~ (—0.1%, —0.3%) for w = 2.13v and 6.67 v, respectively. On
the other hand, the ratio R3"M shows a pronounced w-dependence especially in the case
of s, negative. This is due the fact that some of the loop contributions can be directly
proportional to w and not strongly suppressed by the mixing.
We can also observe a dependence on s, and its sign; in particular, the ratio R3>) shows
large variations with s, as expected for a process with mixed scalar fields as external
particles; to be more quantitative: when O(3%) < |REN| < O(4%), for mg = 400
GeV and w = 1.69v, the ratio Ry (s, = 0. 055)/RSSM(3a = 0.27) ~ 0.75 and in
the case of O(1%) < |RPM| < O(2%), for mg = 300 GeV and w = 1.25v, we get
REM (s, = 0. O67)/RSSM(SCY = 0.31) ~ 0.2. Regarding the ratios R{}), ;5. these are
weakly dependent on the mixing for mg < 300 GeV while for R$SM this dependence
is not totally negligible; for example, for mg = 400 GeV and w = 1.69v, the ratio
RIM (s, = —0.055) /RIM (s, = —0.27) ~ 0.4.
The reasons for such dependences on w and s, are:

1. The loop interactions can be directly proportional to w and s,.

2. The parameters x, A and p, entering R?"M can be expressed as a function of w and
S according to eq.(1.69).

On the other hand, the reason of different behaviors with respect to sign(s,) has to be
ascribed to those diagrams which contain odd powers of the coupling x whose sign is
only determined by sign(s,). Typical Feynman diagrams with such a structure and that
contribute to the mixing angle dependence of RY5M are depicted in Fig.(5.2). Neglecting
the loop integrals and using the approximate expressions in eq.(1.11) for simplicity, the
couplings evaluated up to O(v?/w?) are the following:

Fig.(5.2a,5.2b) »  (SSH) ~ kv , (HVY) x X | (SVR') o $0l. ~
v v

2pw
. — my = my Ry
Fig.(5.2¢c) — SSH) ~ Htt — Stt a—— "~ ;
i8.(5.20) & (SSH)~mv  (HI) o T (ST ocsa Tt ~ G

Fig.(5.2d) —»  (SHH) ~ kw , (HHH) < A, , (SSH) x &,
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which in turn imply an overall dependence given by:

K2 m?

(SSH) x (SVn") x (HVn') o 2pwv ~ py K, (5.2)
2 2

(SSH) x (SH) x (Hft) o« 0 o pyse, (5.3)

(SSH) x (SHH) x (HHH) < £*Asm®W ~ pg Asm K, (5.4)

where A\g, ~ A + k2/4p and i = (3, %) for V = Z, W=, respectively.

z W
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Figure 5.2: Examples of the Feynman diagrams contributing to the mixing angle dependence
of R7SM.

e High Mass Region

In the region of larger masses, the w dependence in R is more evident; for example,
for mg = 900 GeV and s, ~ 0.2, the ratio RSSM(w = 6. 67@)/RSSM(w = 3.85v) ~
(0.6,0.8) for V.= Z W, respectively. For the top quark final state, the w dependence
becomes pronounced when |R5°M| > O(3%); for instance, it reaches the maximum
variation, which is at the level of O(15%), when mg = 900 GeV and s, ~ 0.2. The ratio
REPM confirms the dependence on w, s, and sign(s,) discussed in the low mass case;
the maximum s,-variation of RN is of O(35%) for mg = 900 GeV and w = 6.67v
while the dependence on w reaches the maximum when mg = 900 GeV and s, ~ —0.2:
REM(w = 6.67v)/RPM(w = 3.850) ~ 0.8. Interestingly enough, in the high mass
region the sign of the ratios RY5M is negative for every choice of s, and w.

5.2 Dependence on mg

In this section we will scrutinize more in detail the dependence of R¥*M on the singlet mass for
fixed values of s, and w. In the upper plots of Fig.(5.3) we show the behavior of RIS (V = W
on the left, V' = Z on the right) as a function of mg for a fixed s, = 0.17 and w = 4.34v.
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For the sake of comparison, we also computed the same ratio R$AL = [(IV°/TEY) — 1] in the
SM (red line) leaving the Higgs mass as a free parameter (in practice, the SM with a heavy
Higgs) and for which we obtained the same behaviors as those discussed in |57, 63]. In the
plots, on the common x-axis we use the label mycaars to indicate either my or mg.
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Figure 5.3: Upper plots: RN (red line) and R{M (blaek line) as a function of the scalar
Mass Msealars- We fizved s, = 0 17, w = 4.34v and ¢, = gy . Lower left plot: EW and QCD
contributions to Ry°M (thick and dashed black lines, respectively) and total contributions to
REM (red line) computed to s, = 0.17, w = 4.34v and ¢, = qy'**. Lower right plot: behavior
of ReM for fized values: s, = 0.17, w = 4.34v (black line) and Sq = 0.17, w = 6.67v (red
line).

We observe three main differences between the red and the black lines:

e Finite peak at mg = 2my:
this appears in RSN due to the new coupling SHH which is obviously absent in the
SM. These peaks are generated by the By 1(p* m? m?) functions (reported in App.D)
and their derivative with respect to p? which present a maximum (B, and B} ) and
minimum (B; and B} ) for p = 2m.
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e Different peaks at mg = 2m;:
in this case the main contributions are given by the fermionic loops which appear in § Zg
and 5V5’D. Differently from the SM ratio (red lines), in the SSM case these fermionic
expressions contain an overall s? factor which induces the suppression of the considered
peak.

e High mass region behavior:
it is clearly visible a different behavior for large values of mg. This is mainly due to
the new scalar contributions arising from the coefficient Dy (see [57] for an explicit
evaluation in the SM). For example, setting the mass of the heavy scalars to mgcajars =
1000 GeV and considering V = Z, we have:

{6VPPM ~ (331 -0.16 \) x 107° >0,

2

2 s/ 202 Instead, in the case of

whose positivity is determined by the fact that A = m
the SSM, we get:

{SVPYSM (497 =227 A —2.07 p—13.95 k) x 107° < 0

due to A, p and x which are all positive parameters for s, = 0.17 and w = (4.34,6.67) v,
see eq.(1.69).

In the lower plots of Fig.(5.3) we show the behavior of Rtssl\éH as a function of mg when
(80, w) = (0.17, 4.34v), for REM | and (s,,w) = (0.17, 4.34v) and (0.17, 6.67v), for RIH.
In the case of the top quark final state, the QCD and EW contributions are represented by
the dashed and the solid black lines, respectively, while the total sum (QCD plus EW) is
depicted by the red line. We observe that the QCD contributions remain larger than the EW
part for mg < 800 GeV and dominate the region of mg < 450 GeV. The EW contributions
of REM are no larger than O(5%) in all mass range and become negative for mg > 400
GeV. This implies a cancellation between the EW and QCD contributions in the mass range
400 < mg < 750 GeV while for larger masses these become totally negative driving toward
negative values the global correction due to R$5M. Concerning R3pa, we note that it remains
positive for 300 < mg < 700 GeV reaching a maximum value of order O(3.5%) at mg ~ 400
GeV. At mg = 2mp, we can observe that Ry shows a similar behavior as the one mentioned
for RISM. An additional slight variation of the curves is visible when mg ~ 470 GeV. This
variation arises exactly from the loop integral By(p*, m?, m?) which appear in the definition
of dm2}% defined at p*?> = (m% + m?%)/2. As a consequence, the peak-condition becomes,

2 2
o= 1/mHTJ”’”S = 2m; = mg = 1/8mZ—m2 ~ 470GCeV . (5.5)

It is important to stress that we are not totally in agreement with the results obtained in [29].
In Tab.(5.1), we compare our results for R3°M with the numerical values of the corresponding
quantity computed by the authors of [29]. To this aim, we only refer to the results collected
in Tab.(6) of [29] calculated in the MOMS ! and iOS schemes for the following fixed values:

n [29], the results obtained in the MOMS scheme are indicated by ¢,
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Figure 5.4: Ratio R5°M as a function of the singlet mass mg for the three fized values s, =

—0.09, -0.13 and —0.17. Ratio Rﬁ;q%,tt are computed for g, = q;'*".

mg = 300, 500, 700 GeV, s, = 0.1, 0.2, 0.3 and w = 5v. The deviations between our results
and the ones of [29] seem to be roughly the same in all mass range, for each fixed value
of s4, at the level of O(3%). Thus, the factor which generates this disagreement is almost
completely independent on the singlet scalar mass. The reason for this discrepancy is still
under investigation.

As it was shown in Fig.(5.1), the ratio R?*M depend on the sign and the assumed value of
Sq and the variation with sign(s,) is more evident when s, < 0; to be more quantitative we
also study in detail the region of negative s,. In Fig.(5.4), we show R?*M as a function of the
singlet mass mg for three fixed values of s,, namely s, = —0.09, —0.17 (which are the two ex-
tremes of the considered range) and its central value s, = —0.13. Notice that the dependence
on the scalar mixing angle starts to be significant for all ratios RY*M for mg 2> 400 GeV while
it can be neglected for smaller masses. In addition, RS becomes negative when the scalar
mass is roughly larger than 800 GeV, R when mg = 400 GeV and RPN for mass values
in the interval 300 < mg < 800 GeV, as it was the case for s, > 0 (see plots of Fig.(5.3)).
As far as we know, the NLO corrections to the decay widths I'(S — ZZ), T(W*W~(v)) and
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Set of Parameters | REN(%] | da (%)

w=>5v | Our Results | Results of [29]
s, = 0.1 0.164 2.990
mg = 300 GeV s, = 0.2 0.343 3.100
S = 0.3 0.616 3.278
Sq = 0.1 2.593 5.236
mg = 500 GeV s, = 0.2 2.959 5.518
S = 0.3 3.599 6.012
So = 0.1 —0.304 2.473
mg = 700 GeV s, = 0.2 0.326 3.071
So = 0.3 1.424 4.195

Table 5.1: Comparison between the results of the NLO corrections to the decay rate I'(S —
HH) obtained in this thesis and those reported in Tab.(6) of [29] (called d¢,.) for fived values:
mg = 300, 500, 700 GeV, s, = 0.1, 0.2, 0.3 and w = 5v.

10

10

WW-(7) WW-(7)

(S -XY) [GeV]

=
~
T

200 400 600 800 1000 200 400 600 800 1000
mg [GeV] mg [GeV]

Figure 5.5: Leading order (dashed line) and next-to-leading order (solid line) results for I'(S —
XY) with XY = ZZ, WW~ (), tt, HH for s, = 0.17 (left plot), s, = —0.17 (right plot)
and w = 4.34v. In the case XY = WTW™(y) and tt, we have fizved q, = ¢7'*".

,3

['(S — tt(7)) have not been numerically computed before 23. In order to briefly summa-

2 Although we are not in agreement with the results in [29], they have shown for the first time the numerical
results of the NLO corrected decay rate I'(S — HH). Concerning the QCD-only corrections to S — gq(g),
these do not receive any new loop contributions beyond the SM results in [65].

3 Analytical expressions of the NLO couplings SVV, Sff and SHH can be extracted by the amplitudes
for the Higgs boson vertices in [55, 70|, which are discussed for the SSM without Zgs-symmetry. In [55, 70],
the numerical analysis is performed only for the corrections to the couplings HVV, Hf f and SHH.
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rize the NLO EW results for the dominant decay channels obtained in this thesis, we list in
Tab.(5.2) for fixed (s, w) = (0.17, 4.34v) the ratios RS computed for mg = 1000 GeV
which involves the larger values of all NLO decay rates and for those singlet masses which
give rise to the maximum correction values (R3%M ). namely mg ~ 200 GeV (R o),

7T max

mg =~ 252 GeV (RIDM ), mg ~ 360 GeV (RISM ) and mg ~ 406 GeV (RPN ).

tt max

Sq = 0.17 and w=4.34v
ms [GeV] Ry (%] REP%]  REY %] (EW) REM (%]

200 6.277 4.876 — —
252 5.685 5.088 -0.065 —
360 4.523 2.923 2.657 4.229
406 3.952 2.172 3.256 0.676
1000 -2.239 -1.494 -3.857 -2.792

Table 5.2: Results of REM (%] (withi =W, Z, H and t) for fived values: s, = 0.17, w = 4.34v
and mg = 200, 252, 360, 406 and 1000 GeV. The bold numbers correspond to the maximum

SSM

values of the ratios R;>" for the representative choice of variables.

Finally, in Fig.(5.5) we summarize our results for the decay widths I'(S — XY) (with
XY = ZZ, WTW~(~), tt, HH) as a function of mg for the selected values w = 4.34v and
Sq = £0.17 . As expected from our previous considerations, the NLO results (solid line) are
above the LO behavior (dashed line) in the small mass region but becomes generally smaller
in the region of larger masses (mg 2 750 GeV).

Having discussed the full set of quantities entering in the NLO total decay rate I'(S — All)
(see eq.(4.45)), we are now in the position to compute the ratio Ryon that we report in
Fig.(5.6) for fixed values w = 4.34v and s, = £0.17. It can be useful for the considerations

below to rewrite RYom in terms of the other single ratios as:

Rior = BRgwwRiwvw + BRsZ,R77" + BRepu Ry +BR& Ry (5.6)

We observe that the variation with s, starts to be relevant for mg = 250 GeV. Since the

dependence on the scalar mixing angle of Ry, ;5 ,, become relevant for mg 2 400 GeV (see
for example Fig.(5.4)), this implies that the variation of RY34. with s, and its sign for the
mass range 250 < mg < 400 GeV is mainly due to R}y which is the only one that presents
a not negligible mixing angle dependence in the low mass region. The behavior of the shapes

depicted in Fig.(5.6) can be briefly analyzed in different mass regions:

e 200 < mg < 2mpy GeV: this region is only affected by the gauge boson decay channels
since the other processes are absent being kinematically not accessible. Notice that the
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Figure 5.6: Behavior of RYI% computed for fived values, namely s, = 0.17 (black and red
dashed lines), so = —0.17 (black solid line) and w = 4.34v. The photon momenta in RyZY
are fited to g, = ¢"* and the QCD corrections of RIM are only taken into account in the

black lines.

WW branching fraction at the LO is larger than ZZ final state at the fixed values
w = 4.34v and s, = £0.17; this implies that RIYL are mainly influenced by the ratio
R In addition, the ratio REo%- tends to decrease following the behavior of RFSM in
the low mass region. Notice that the smooth peak at mg ~ 225 GeV (near to the other
one at mg = 2my) is due to the loop integrals in §m?/2* when p* = 2m.

e 2my < mg < 2my GeV: in this range, the correction to the total decay width is
characterized by the additional contribution proportional to Ris". The loop functions
entering in the counterterms Zg and 0Vy z w generate the peaks at the extreme values
mg = 2mpy, 2m; while the variation of the curve at mg ~ 330 GeV is due to the function
By(p*?,m3;, m3;) appearing in the counterterm dm3;e.

o 2m; < mg < 1000 GeV: here, the R3°™ contribution appears. Notice that the QCD
effects are not negligible even though the LO decay rate of S — tt is smaller then the
other dominant decay widths for mg > 400 GeV. We observe that RSDE tends to be
negative in the high mass region according to the behavior of the individual ratios R$M
discussed above. Since the counterterm dm?2* appears in all expressions of partial decay
rate corrections, we observe the slight variations of the RSO% shapes at mg ~ 470 GeV
due to the function By(p*?, m?, m?) computed for p* = 2my.

For completeness, we conclude reporting in Tab.(5.3) an example of the cross section values
at proton center-of-mass energy /s corresponding to the resonant process pp — S — XY
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(defined in eq.(4.46)) for XY = ZZ, W*W ™, tt, HH and fixed values, namely mg = 750 GeV,
So = £0.17 and w = 4.34v. First of all, we note that the QCD corrections to the partonic

| ms =750 GeV , w=4.34v | So = 0.17 | sa=—017 |

| without K, 4 | LO [fb] | NLO [fb] | LO [fb] | NLO [fb] |
o TV (pp = S - WHW~) | 1.179 1.183 1.226 1.231
oSV (pp = S — ZZ7) 0.578 0.582 0.601 0.606
oSTV(pp — S — 1t) 0.141 0.137 0.147 0.146

o8TV(pp - S — HH) 0.676 0.672 0.600 0.594

oBTV(pp — S — WHW) | 5485 | 5502 | 5705 | 5.726
BTV (pp — S — Z7) 2680 | 2709 | 2797 | 2.821

oB3TV(pp — S — 1t) 0.657 0.639 0.683 0.668

oB3TV(pp - S — HH) 3.147 3.127 2.792 2.763
with Ky 5 | LO [f0] | NLO [f0] | LO [f0] | NLO [f3] |

o TV (pp = S - WHW~) | 1.179 2.364 1.226 2.460

o8V (pp = S — Z7Z) 0.578 1.164 0.601 1.212

oSTV(pp — S — tt) 0.141 0.275 0.147 0.287

o3V (pp — S — HH) 0.676 | 1.344 | 0.600 | 1.187

oBTV(pp — § — WHW-) | 5485 | 10.996 | 5.705 | 11.444
BTV (pp — S — Z2) 2.680 | 5413 | 2797 | 5.637
BTV (pp — S = Tt) 0.657 | 1278 | 0.683 1.334
oBTV(pp S — HH) | 3.147 | 6250 | 2.792 | 5.521

Table 5.3: LO and NLO Cross sections o®B3 ™V (pp — S — WTW =, ZZ tt, HH) at proton
center-of-mass energy \/s = 8 and 13 TeV computed for fived values, namely mg = 750 GeV,
Sq = £0.17 and w = 4.34 v.

process I'(gg — S) (numerically given by the K-factor, K4 ~ 2) affect the NLO cross section
values for /s = 8, 13 TeV: onro(pp — S — XY)/oro(pp — S — XY) ~ 2. Neglecting
the Ky, contributions, the corrections to the scalar singlet decay rates imply that the NLO
cross section oxie " (pp — S — XY) reaches a maximum variation of O(2%) for each XY
final states. Obviously, the process pp — S — XY is a simple case to roughly quantify the
impact of the NLO scalar singlet decay widths in the cross section corresponding to a scalar
resonance but is not phenomenologically interesting since these effects are much smaller than
the QCD corrections to the resonance production processes, mainly due to gg — S. The
corrections to the scalar singlet decay widths could become relevant in EW processes with

leptons in the final states, like pp(gq) — SZ — XY Il, in the hadron colliders (see Fig.(5.7)).
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Figure 5.7: Feynman diagram related to the process gqg — SZ — XY Il.

5.3 A Comment on the Gauge Dependence

It has been verified by the authors of [29] that the physical quantities computed in the MF
scheme prescription show a gauge-dependence for each possible value of the renormalization
scale ugr. As discussed in Sect.3.2.4, we demonstrated that the iOS and the MF schemes are
equivalent at p*? = p% = (m% 4+ m%)/2 and this would imply that the results obtained in
terms of the MF counterterms is only gauge-independent if p% = (m% + m%)/2. This is not
totally in agreement with the results of [29] which show different values computed in the i0OS
scheme at p*? = (m% + m%)/2 and in the MF scheme p% = (m% + m?%)/2. Since the two
renormalization schemes should give equivalent results for p* = ug, we are not able to explain
the reason of the difference between the results computed in the MF and the iOS schemes of
the Tab.(6) in [29]. To get an estimate of the gauge-dependence impact in the NLO decay
rates, we define the following variable:

(CYios — (TF )t

AT; = oy with i = ZZ,WW,tt, HH , (5.7)

where (I'NO); and (TNEO),r are the NLO decay widths computed in the iOS and MF pre-
scription, respectively. The analysis of the gauge dependence is performed in terms of different
values of gz which we fix in the following range: my < pur < mg with mg = 400, 1000 GeV.
We can directly obtain the NLO decay rates in the MF scheme from those performed in the
i0OS scheme following the treatment described in Sect.4.5. As it is shown in Fig.(5.8), the
gauge dependence generates AI'; included in the range [—2, +3]% for mg = 400 GeV and 1000
GeV for each channel. Notice that the QCD corrections are pg-independent and survive only
in the denominator of Al'y;. Since the QCD corrections are positive for mg < 800 GeV, their
insertion reduces the gauge-dependence effects in the case of mg = 400 GeV and vice versa
for mg = 1000 GeV. In addition, we clearly observe the peaks at p = ugr = 2my, 2mg, 2my
and the increasing gauge dependence effects as pg increases.
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Figure 5.8: Ratio Al'; with 1 = ZZ, WW,HH, tt as a function of the renormalization scale
wr for fized values s, = 0.17, w = 4.34v and mg = 400 GeV (upper plot), 1000 GeV (lower
plot). The ATy are analyzed with (solid line) and without (dashed line) the QCD corrections.

At ur = 296.35 GeV (for mg = 400 GeV) and 712.62 GeV (for mg = 1000 GeV), we nu-
merically found that AT; = 0 which implies that (I'N©),,s = (TNE9) . These pr values
correspond exactly to the average geometrical mass (m% + m?%)/2 computed for mg = 400
GeV and 1000 GeV. Therefore, we confirm that the MF and the iOS prescriptions converge

to i} = (m3 + m3),/2
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Conclusions

In this thesis we have studied in details an extension of the SM which involves the presence of
a new real scalar field s°, singlet under the SM gauge group. Its main effect is to mix with the
SM-like scalar doublet ¢ via a quartic interaction of the form r|g|?|s°|?, giving rise to two mass
eigenstates that we call H (the lighter) and S (the heaviest). We have limited our interests
here to the study of the dominant decay rates of S to a pair of gauge bosons Z and W, to top
quarks t and to lighter scalar bosons H; as far as we know, the amplitudes of such vertices can
be extracted by the one-loop self energies and vertex corrections quoted in [55, 70] but the
one-loop corrections to the dominant heavy scalar decays have not been computed explicitly
before (in the literature we only found the analysis of the one-loop corrections to S — HH
[29, 70]). In order to ensure the gauge-independence in the NLO decay width results, we use
the improved on-shell renormalization scheme (iOS) which gives a gauge-invariant expression
for the counterterms corresponding to the mixed scalar sector, as it is shown in [29]. In the
mass range analyzed in this thesis, 200 < mg < 1000 GeV which corresponds to mixing angles
in the range |s,| € [0.09,0.17], the decay rates of S — ZZ, WTW ™ it, HH are kinematically
accessible and we estimated that their EW one-loop corrections can be as large as O(6%) in
the W*W~ channel, O(5%) in the ZZ channel and O(4%) in the HH and ¢t channels. The
['(S — tt) also receive the QCD loop contributions which for mg < 400 GeV can be larger
than O(50%). Interestingly enough, the sign of the NLO corrections is not fixed a priori: for
300 < mg < 700 GeV, the quantity RPSM = [(TNMO/TEO) — 1] with i+ = ZZ, WW, tt, HH
is always positive for every values of a (if RP™™M also includes the QCD corrections) while
for larger masses RY5M can also become negative (the precise turning point depends on the
assumed values of o and w). In addition, R3H is the only ratio which becomes negative
for mg < 300 GeV. Regarding the dependence on « and its sign, R?"M exhibits different
behaviors in the mass range taken into account. In fact, these dependences are almost totally
confined in the high mass region for masses somehow larger than 400 GeV. We have also
studied the dependence of RY°M on the singlet vev w; we found that it is practically absent
for masses mg < 400 GeV whereas in the higher mass range it is not negligible (see for example
the ratio R¥PM in Fig.(5.3)); this condition becomes not completely reliable if we take a w
value lower than 4.34v; to give an example, for mg = 300 GeV and s, = 0.17 the ratio
REM(w = 4.340) /REN (w = 1.25v) ~ 0.35. The NLO corrections to the total decay width
reach a maximum of O(6%) for mg = 200 GeV and its s, dependence becomes clearly visible
for masses larger than mg 2 350 GeV. For fixed values (s,,w) = (0.17, 4.34 v), the maximal
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value of the difference between the ratio R3on including the EW and QCD corrections and

the same EW-only quantity amounts to O(2%) when mg = 400 GeV.

Finally, we give a comment on the gauge-dependence defining the following variables: AI'; =
[((TNEO), 0 — (TNEO) )]/ (TNEO), o, where (TNEO) ¢ represents the NLO decay width computed
in terms of the counterterms associated with "minimal field" renormalization scheme (which
needs the introduction of a renormalization scale ur and gives gauge-dependent results for
physical observables if up # /(m% + m%)/2). For fixed mg values, we observe that the
gauge dependence for the scale range my < ugr < mg generates Al'; included in the range
[—2, +3]% when mg = 400 GeV and 1000 GeV for each channel. Besides, for jup = 296.35 GeV
(when mg = 400 GeV) and 712.62 GeV (when mg = 1000 GeV) we found AI'; = 0 and this
implies that (TN29);,s = (TNYO) ¢ Since these ug values correspond exactly to the average
geometrical mass (m% + m%)/2 computed for mg = 400 GeV and 1000 GeV, we confirm
the equivalence of the MF and the iOS prescriptions when p% = (m% + m?%)/2 (analytically
proven in Sect.3.2.4).
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Appendix

In this appendix we explicitly quote all contributions to the two and three-point functions
needed to evaluate the NLO order corrections for the scalar singlet decay channels discussed
in this thesis. We work in the t’Hooft-Feynman gauge and give the amplitudes in terms of
the Passarino-Veltman integrals. Besides we can generally decompose the self-energies and
the three-point functions as follows:

e Self-Energies of the Bosonic (B) and Fermionic Fields (F)
SPE(p?) = {ZPP (%) ber + {27 (1) Foos
S (p?) = mrXg (07) + P2y (%) + prs2i (07)
e Three-Point Functions with Bosonic (B) and Fermionic Final States (F)

5VB = {5VB}fer + {5VB}bOSa
SV, = VA +OVE R+ 6VE G+ VP R+ 0VEvs + V.7 Frs + 6V dys + Vi kg s

where "fer" and "bos" stand for fermionic and bosonic loop contributions.
A - SSM Tadpole Amplitudes

Tadpole for the H Field

2 5 ,
= 12”2 m%/v{3vm§caA0 (m5) + Ao (i) ( — v casy + SRV W 50—

3 3 1 3
— Z)\v:gci + Zpﬁwsi) + Ao (m3) <Z/€v30asi - Z—l)\USCasi—

1 3 1 1 3
— Zmﬂwcisa + zlpvzwcisa — gf-w?’ci + gﬁv2w5i> + Ao (miy) ( - §vcam§V—

1 1 vcami, sty 3
- 5)\1)30& + ij2w5"‘) + Ay (m%) < - % — évcam%,vsf/v—
W
3 2 2 L 3 Lo, 2 2 2 2
- Zvcacwmw — Z)\U Ca + g/ﬂ} WS, | + 3vcami Ag (mt) + veami Ay (mT) +

(8)
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VCa M, m2s% 1
+ 3vcamz¢40 (mz) + % + Ucoém%/[/mQZ + ém?‘/vvca} ) (9)
W

Tadpole for the S Field

2 1 3
0Ty = #mfy{i’)vmgsa.ﬁlg (mg) + Ay (mfi) <4m)302 Soq — Z)\U o = Sat

1 3 1 1
- Zm;gwcasi — —pv*wey st — gm)2wc — gmf’s >+
3 3
+ Ay (m ) (— “KvP A5, — gm)chasz — va we? —
1 3 1
) +A ( — Zlﬂ)cha — §vm%,vsa — 5)\v3sa) +
3 o 3 1 3
+ Ao (m < UWZZS S _ Zvc%[,m%,vsa — gmﬂwca — §vma/sasa/—
W

_ —)\v sa) + 3umZsa Ao (m?) + 3vmisaAg (m]) + vmZsaAg (m2) +

vmiymysasty 1
Z5a 2 2 2 2 2. 2 4
50 SUEW MMz 5q + vmyymyse Sy + mwvsa} . (10)

B - SSM Self-Energy Amplitudes
Self-Energy for the W Boson

2
(S () }eor = o 2{ — 6By (p*, miz, m7) — 6Boo (p*,0,m2) — 2By (p*, 0, m2) —

- 10800 (p 707 0) - 3]9281 (p27 ml%?m?) +3 (m? - p2) BO (p27m§7m?) -
= 3p°By (p°,0,m) + 3 (mZ — p*) By (p°,0,m) + p°By (p*,0,m3) +

1 557B, (5%,0,0) + 340 (m2) + Ay (m2) } |

2
#{cib’oo (p*, myy, m3;) + (8¢ + 1) Boo (p°, miyy, m3,) +

{EIWW (p2>}bos =
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+ 52 Boo (p°, miy, m&) + 8syyBoo (p°, 0, myy ) — camiyy Bo (p°, miy, miy) +
Bo (p*, miy, m%) (ciy (2m5 + 3p*) — swmiy)
iy
— miyysaBo (P, m%, miy) + 2p%syy By (p°,0,myy) — sy (miy, — 5p°) Bo (p°,0,miy) —

1, 2 2 1 2 1, 2 3 2 2]92
— ZCQAO (mH) + —3CW — Z_l A() (mZ) — ZSaAO (m5> - 5./40 (mW) + ? . (13)

_|_

— 2p%cly By (p*, miy, m%) —

Self-Energy for the Z Boson

77 2 g9’ (32¢yy, — 40cqy, + 17) (Boo (p?, mZ, m2) + Boo (p°, m7, m7))
{ET ( )}fer = 6 - +

3¢k,
82, 5 4 5

+ (=T = o) Boo (% md) — ( =8¢k — o +12) Boo (07, m?,m?) +
3 33 '3 &

2 2 2 2
+ (—32C§V _zZ, 40) Buo (1,0,0) + B0 (P ) <4p2c%V Lo 2ﬂ) x
Gy

2¢2, 3 6cz, 3
By (3%, i ) + P32k = 0y + 17) (51 (02, md md) B (g% e o)
W
m2By (p?,m2, m?)  m2B, (p?, m?
Bolp i), B | (42 4 - 62 ) B (i) +
3m?2B, (p?, mZ,m? 11
+ CO(;)C%M )+Bl(p 00)(6 2+ p_2 > (Ao (m7) + Ay (m?)) x
166 17 20\ (dch , 5 ,
X( 3 ‘l‘@_?)‘{‘( )AO mb <4CW+E_6 A0<m7) ,
(14)
{ZZZ( )} _ 2 Cilgoo <p2> m2Z7 m%{) + 83800 (pZ’ m227 m%‘) +
r bos 167?2 i i
1 2,,2 B 2 2 2
(126 + 2 =) Buo (i) — PR BP0
W w
m%s2Bo (p°, mg, m%) 2 Ay (m2)
_ "z 0124/ s, Mz +2p2012/v81(p27m%wm%v)_WH+
2m? 2 4 2
(20 g i) o i) — )
iy 2y
Ag (m? 1 2
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Self-Energy for the Zy Mixing

2
(0 e = gt {(2—8cW) Boo (%, w2, mi2) + (20 — 32¢3,) Boo (4, m?, m?) +

+ (18 — 24CW) Boo (p m ,m ) + (20 320W) Boo (p m m?) +

+ (60 — 96CW) Boo (p°,0,0) + (4p°cy, — p )81 (p*, my,m;) +

+ (16p CW — 10p )Bl (p mf,mt) + (12p cW —9p ) B (p2,mz,m3) +
+(1ch 10p)B (p m? )+Bl(p OO)(48pc‘2;V—3Op2)—I—
+ (4cfy — 1) Ay (m3) + (160W —10) Ao (m7) + (12¢§, — 9) Ao (m2) +

- 2(8¢3 — 5) Ay (m2) } , (16)

2
9 Sw
8 () o = W@{ (12¢iy — 2) Boo (p*, miy, may) + 2p%cy B (9%, miy, iy ) +

2
+ (5p°cyy +2miy) By (p*,miy, miy) + (1 — 6cjy) Ao (miy) + gpgc%,v} . (17)

Self-Energy for the v Boson

2

453
{E%’y(pz)}fer = 1571'2 TW{ - 2800 (p2, mg, mg) - 8800 (p2, mi, mz) —

- 6800 (p27 m?—a m72—) - 24800 (p27 07 O) +p2Bl (p27 m§7 mg) - 8600 (p27 m?) mf) +
+4p* By (p*,mg, m?) +4p°By (p°, mi, mi) + 3p*By (p?, m2,m?) +

+ 12p%B; (pz, 0, 0) + Ao (mg) +4A, (mz) +4A, (mf) + 3A, (mi) } , (18)

2
{7 (%) boos = 16 =5 {12500 (p*, miy, miy) + 5p°Bo (p°, miy, miy) +

2 2
+ 2p*B; (pQ,m%,V, m%/v) — 64, ( ) + %} (19)
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Self-Energy for the H Boson
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+42+42+42A0(mH)+82—22+
My my My My m
2y 2 .2 2.2 .2 4 2y .2 2,2
3v2As2c? 3vPpsicd viksh A ( ) n v7Ac, n 3c n VRS ) 4 ( 9 )+
am? am?,8my, )TN T\ oz, T e Ty, ) O
W W My W W
3mic: AN v?ks? 9INEE 93wk As.cd  9vPw?kEsicl
T\ Tz, T e 8m? A () om2,  2m? 8ms?
W w W W W W
4,3 2 4 3,123 o3 303 4,24 2 12
WiKkAsae,  CwRTs e JudwApsic 9ik?stc?  Pwkpsic
2 2 2 2
2miy, dmy, miy 8myy, 2m3,
I3wkpsdc, — IPw?p?sd 5 o o VwiR’e),  vwr?sac),
- 2 2 2 2 BO (p 7mH7 mH) + 4 2
My My miy my
3 5 4,22 4 2,2,2.2 4 1)2g2 (A 4,32 4 204
BVTWRASC, | VIRTSRC,  VTWIRTSGe, | UTATSLe,  BuTkAs C, L 3v?w?kpsie
2 2 2 2 2
My My My miy My My
Svdwr?sdcd  6vdwrAsdcd  6vdwrpsdcd  18vdwApsdcd  vik?sic?
- 2 o 2 2 - 2
2mW miy, miy miy miy,
22,2 2,2 2 4,y A2 2,02, 42 3,1,:205
vw?r?sicr vt p?st 3UTKAs . BUTwiKps, e, vPwk saca+
2 2 2
miy miy My My My
3vdwrpsdc,  vik2sS 9 o o vik2S vdwk?s,cd
+ 5 + By (p*, m¥;, m%) + S o
My miy My My
3 4,22 4 2,2,2.2 4 2,2 2 4,y 2 4
v WHPSaCD L UIRTSAC, | VTWIRTSC, | JvTwp s2 3UTKASGC,
2 2 2
2myy, 2m?, 2miy, 2mW 2myy,
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2,02, 002 A 3,023 3 3 3.3 3 3.3 3 3.3
_ BUTWIRPSLC,  DVTWRTSLC, | BUCwRAS | BUCwRpsge,  QutwAps,ce

2 2 2 2 2
miy dmyy, miyy miyy, miy,
4,24 2 2,,2,2.4 2 4y2.4 .2 4\ od 2 2,02, o4 2 3,02 65
VRS, Cq  VTWIRTS,C, U Nsocz v RAS,C,, U W Kps,cs VWK Sala
2 2 2 2 2 2
2myy, 2myy, 2myy, miy 2miy, 2miy,
3v3wrAsSc,  vPw?k2sS 5 o o A2Evt wrAc S0P wikZsEu?
T o2 + Sm2 By (p*, mig, mg) + 2 2 T2
My My My My My
2.2, 4 3 2,2.2,2
_122+32 2\ By (52, midy mily) + ATCUT WRACASaV” | WIRTSQU
2p Ca CamW o (P 7mW7mW 2m2 2m2 8m2
w w w
32mi  p2Em?
oMz oMz 2 2 2 2 2 2 2 2
9 2 - 4 2 BO (p 7mZ7mZ) +p Calgl (p amWamW) ) (21)
My My

Self-Energy for the S Boson

2 4 2,2 2 2,2 2,2 2
g 6m; By (p7, m;, m 3pm; By (p7, m;, m
{ESS(p2)}Cr Si{ o b 0( b b) o b 1( b )_

1672 m%,V m%v
4 2,2 9 2. 9 2 .2 9 2 2
B 6m; By (p°, m;, mi) _3p miB (p*, mi, mi) _ 3mi Ao (mt)_
2 2 2
myy myy myy
4 2.2 .2 2. 2 2.2 9 2 2
o QmTBO (p » M, mT) o p Tn’r[))1 (p » Mz, mT) . m’TAO (m7> .
2 2 2
My my My
4 2.2 9 29, 9 2 2 9 2 2
o 6m080 (p y M, mc) o 3p Cachl (p y M, mc) i gchO (mc) N
2 2 2
myy myy My,
2 2
3mi Ao (mj) 99
- 2 ) ( )
my
2 2.4 2.2 2 2 9 2 2.4 2,..2.2
{ESS( 2)} . g . 38amZ p SaBl (p 7mZ7mZ) my . 3m2 82 + V”KC, . V"KS,Cp
P )gbos = 1672 2m? 2m? Woa 8m? 2m?
w w w w
3vAs2c2 3vPpsiE viksh ) 3v?pct  3viksicE 3viAsi
4 2 + 4 2 + 8 2 'AO (mH) + 4 2 + 4 2 + 4 2 X
myy myy myy myy myy myy
2.9 2y 2 2 2.9 2 .2 2y 2
VKC VNS 3s VKC 3mss VNS
2 2 Z
on(mS)—l—(4 2a—|—2 20‘+—20‘)Ao(mw)+< 20‘—|—4 2a—|—4 <)
miy, miy, 8myy, miy miy,
2,22 6 3,,,.2. .5 3 5 4,22 4 2..9.2.2 4
Ay (m2z) (U WR™C, VWK SACy, JviwrAsyco,  viKSSC | VTWIRTS,C,
2 2 2 2 2
8myy, 2myy, 2myy, 2myy, 2myy,
JuiNZsicl  3vtkAsiet  3vPwikpsicl  Buvdwr?s e 3vdwrAsicd
2 - 2 2 2 - 2 -
2miy, miy 2miy, dmy, miy
(23)
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3vdwrpsdcd  IdwApsdcd  vikZsicr vPw?k?sicE 9vPw?p?sicr 3ulkAstc?
mé, mé, 2m?, 2mé, 2mé, 2m?,
3vwikpstic?  vdwk?sdce,  3vdwrpsdc,  v'k2sS 9 9 o vtk2c8
- 2 T T o2 om2 = | Bo (0%, iy, miy) + 5 T
miy miy, miy 8myy, dmy,
Vwk?s,®  3vdwrpsacd  vik?siel  vwikis2el tw?p?siel BvlkAsicl
2 - 2 o 2 2 2 2 -
My My My My My My
6v2w?kpsicl  B5vdwk?sdcd  6vdwrAsdcd  6vdwrpsdicd  18vdwApsicd
mi, 2m3, mé, mé, mi,
vik?stcr  v?w?ksicE 9vtA\istcr GutkAsicl 3vPwirpsicd vdwk?sie,
2 - 2 2 - 2 2 2 -
My My My My W My
3vdwrAsdc,  vw?k?s8 B (02 m2 m2 902w? it 9Pwrpsacd  utksZcl
a m? 4m? o (7" iy ms) + 2m? 2m? 8m?
W W w W W
92w?kpsict  PwkrsPcE dwpsdicd  twikisic? Yutkdsic?
2ma, amz, mé, 8ms, 2m?,
93wrAsdc,  virZst 5 9 9 Ns2vt wrACsavd Wik v?
Bo (p*, mg, m%) +
2m? 2m? T m? m3 4m?
W w w w w
1, 5 o s o o Ns2vt  wRACsavd wrkEE? 3mis?
— =p“ss + 3myy,ss | By (p miy, m ) + —
2" e Woe W W 2m? 2m? 8m? 2m?
w W w w
2,2 2
b mzSa 2 2 2 2.2 2 2 2
- 4m2 BD (p y Mz, mZ) + p SaBI (p » My s mW) ) (24)
w

Self-Energy for the HS Mixing

{EHS(p2)} _ ? s.c . GmZLBo (pQ? 7712, mf) . 3p2m261 (p2> mz, mg) .
fer ]_671'2 ata m%/[/ m%/[/

6my By (p*, mi,my)  3pPmiBy (p*, mi,mi)  3miAg (mf)
miy miy miy

C2mpBy (pPomim?)  pPmIBi (pPmEim?)  mlAg (m2)
miy miy miy

_ 6meBy (p*,mZ,m?)  3p*cmiBy (pP,mE,m2)  3miAg (m?)
miy miy miy

 3mjAy (mf)

2
myy,

(25)

b
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2 4 2 2 2 2y, 2
3caSamy P casaBi (p?,my,my)m
SHS (2, — 9 _ 9CaSallly aSa 2 N2 M2) 2 3. 2 s +
e = 36 2m2, 2m3, v
3v2K85,C3  3vPAsac 3viksdc,  3vPpsie, 3v2KS5,C3
+(_ Sm2 2 2 2 >A0<m%1)+< 2
miy dmy, 8myy, dmy, 8myiy,

37)2p8a0i 31)2/182{0(1 SUQASica 9 KCaSal?  ACaSal?  3CuSa
- Ao (m3) + | - X

4m?, 8m?, 4m?, 4m3, 2m3, 2

KCoSaV?  ACaSa¥?  3cam2s, 3v3wrAcd
x Ay (miy) + <— + + 2 )Ao (m%) + (—“—

2 2 2 2
8myiy, 4dmy, dmy, dmy,
302wk2s0cd 90INZs, . Butkdsacd  9vdwr?sicl 15vdwrAsicl
o 2 2 o 2 2 o 2
8myy, 2myy, 2myy, 8myy, dmy,
3 2 4 4,2.3 3 2,,2,2.3 .3 4,133 2,2, .33
Y wApsacy  BUTRTs | BUTwIRTs e, | BUTRAsLe,  BvTwiRps,c,
2 2 2 2 2
2myy, dmy, dmy, miy miy
I3wr?sic?  15vdwrpsicr  dwApsicd  3vik?sic,  Pw?p?sic,
o 2 2 o 2 2 o 2
8myy, 4myy, 2miy, 8myy, 2my,
2,2, .5 3 6 3,12 6 4,2, .5
v W kps,Cco  JVTWEPS,, B (022 m2 VWK C, VK S,C)
9 2 - 4 2 o \P Mg, Mg + 4 2 - 2 2
My My My My
Vwrk2s,0  3utkAsacd 3 wikpsacd  203wk?stcl  9vdwrAsicl
2 2 o 2 o 2 2
2myy, 2miy, 2miy, miy 2myy,
9v3wrpsich B 93wApsiet  Hutk?sdcd B Sv?w?K?s3 3 92)4/\2836‘3_
2 2 2 2 2
2miy, miy dmyy, dmy, miy
92w?p?sicd  GutkAsicd  6viwirpsdicd  203wk?sic?  YvdwrAstc?
o 2 - 2 2 2 o 2 -
miy miy miy, miy 2myy,
3 4.2 3 4.2 4,25 2,,2,.2.5 4,3 5
_ WCwRPSC, | WTWAPS,C,  UTRTSCa | VTWTKTS Ca | BUTRAS Ca
2 2 2 2 2
2miy, miy 2miy, 2myiy, 2myy,
3vw?kpsdc,  viwr?s® 5 o o 3vdwrpc  3vtkis,cd
- o2 T Tam2 Bo (p*,my, mg) + A2 SmZ.
My my My My
92w?p?s,cd  3vPwikpsacd  dwr?sicl  15vdwrpsicl  dvdwApsicl
o 2 2 2 o 2 2 o
2miy, 2miy, 8myiy dmy, 2miy,
4,2.3 3 2,,2,2.3 .3 4.\ ¢33 2,2, .33 3,24 2
O BUTRTspe, | BUvTwIRTs e BUTRAsRe,  ButwiRpsae,  Y0CWRTS, G
2 2 2 2 2
dmy, 4dmy, miy miy 8myy,
150%wrAsic2  9vdwipsic? 30w’k sSc,  IN2SPe,  ButkAsie,
2 o 2 o 2 2 o 2 o
dmy, 2myy, 8myy, 2miy, 2miy,
3v3wrAs® 5 o o Acasavt wrAsEvd wrAE v
T T am2 By (p*,mig, m§) + 2 9.2 omz.
My My My My
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WK 8,0* N 1, s 9 o Neysqut wrASE
— ——— " + 3camiy Sa — =P CaSa | Bo (7, miy, miy) + -

am3, 2 2m?%, 4m?,
WRACV?  wW?K2Ca5q02  3cambsa 2CaMZ Sy
oL Lo BRI ) 6y () +
dmy, 8myy, 2myy, dmy,
T PeasaBs (i, miy) } , (27)

Self-Energies for the Top Quark

Zt( 2) _ 92 { ¢ mtBO (p qu,mf) _ m?SZBO (pz,m%,mf)

+ By (pz, 0, m?) X

1672 4mi, 4mi,
16mv%as  16m3, 16 m?  4m?  16m¥ 20 5 o o
8 ( 3m%,  9m2 ?) <4mt2 9m? 9mZ 3) Bo (", mi, m7) =
1% z w w zZ
2 2
_ 8mvtas  2my 2 ’ (28)
3m2,  9md, 9
S (p?) = 9 _ € ami By (p*,mi, my;) _ misaBi (P, mi,mg)  1Tmj, 4 1—1—
v 1672 4m3, 4m3, S 2mi, 9
8mvia,  8my, 8 8rvias  8mY, 8
B 2 O 2 s w = B 2 0 2 s w -
* O(p”mt)(?)mgv omz "9) " (v, 0,mi) 3m%,  om2 9) "
2 2 2 2
m; 17m7  8myy 10 dmva
L - B oY as 29
* ( 2 3om3, omg g ) BrPhmimz) =Sy (29)
2 2 5m? 5m> 1
Tt (2) — 9 s Z \ B, (2. m2. m2) — Z L 30
AlP) 167r2{ (3 Tamz, ) B 7 memz) — g T3 (30)

C - SSM Three Point Functions

One-Loop Corrections to SZZ Vertex

2

1
5V€ 2 k,? 2 o = g
{ Z (p ) g )}f ]_67T2 12m12/V

(16¢y — 20cy, + 13) m2 x By (¢°, mZ, m?) + (64m;cyy, — 80micyy, + 52m;) x

{4 (4cky — 262 +7) Bo (¢ m2, m2) mi+

(31)
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x By (¢*,mi,m}) + (48m2cy, — 72m2cy, + 36m2) By (¢*, m2,m2) + (8/{:2mbcw+
+p*mich, — 8¢*micy, — 4k*mich, — 4p*mich, + 4¢*mich, + 36my + 5kPmi+

+ 5p*mj — 5q2m§>CO (K*,¢*. p*, mg, mg, m;) + (32k2m iy + 32p*mich—

— 32¢°m2cy, — A0K*m2cy, — A0p*micy, + 40> m2cyy + 36mi + 17k*m?2 + 17p*m?2—

—17¢*m )CO (k: 2 ptm2 m2 m ) (32k2mfcfjv + 32p*micy, — 32¢*mich, —
— A0K*mic, — 40p*mich, + 40¢°mich, + 36m; + 17k*m? + 17p*m? — 17q mt)
x Co (kz, ¢, p*,mZ,m?, m?) + (24k2m CW + 24p*mZ ey, — 24q2mfcf‘,v — 36k*m2cy—

— 36p*m2cyy + 36g°m2cy, + 12mt + 15m2(k* + p* — q2))C0 (K, ¢%, p*,m2,m2,m2) +

( 64mjcly + 32micy, — 40mb) Coo (k2, ¢, p*,my, mg,mz) + (— 256m2cyy,+

+ 320m2cy, — 136m )COO (K*,¢%,p°,mZ2,mZ,m?) + (—256m; ¢y, + 320mjcy, — 136m;) x

x Coo (K?, q2 p*,my,mi,mi) + (—192¢y, + 288¢y, — 120) m2Coo (K, ¢*, p*, m2, m2,m2) +
(32k2mbcw — 16k*mipcyy + 29k°m; + 9p*mi; — 9¢°m3) C1 (K*, 4%, p°, mg, mg, my) +
(128k2m cy — 160k*m?2c, + TTk*m?2 + 9p°m? — 9¢°m )C1 (k’Z,q ,p,mZ, m? m2) +
+ (128k°mjicy, — 160k*m;cyy + TTk*m; + 9p? mt —9¢°m;) Ci (K, ¢*, p°, mf, my,m;) +
(96k2m cly — 144k*m2cl, + 63k*m? + 3p*m? — 3¢°m )Cl (k:2 @, p*,m? mf,mi) +

+my (16k:2 + 16p?cy, — 16¢°cy, — Sk*cy — 8pcyy + 8¢°chy + 10k + 28p* — 10q2> X
X Co (k’ G2, P, m%,m%,mb) (64k:2m iy + 64p*mZcl, — 64¢Pm>cy, — 80K mich, —

— 80p*m2cyy + 80¢*micy, + 34k*m?2 + 52p*m?2 — 34q2mc>C2 ( 2 p?,m2, m2, m?) +
+mj (64k%cy, + 64p°cy, — 64¢°cy, — 80k ¢y, — 80p2c%V + 80¢°cyy, + 34k* + 52p* — 34¢%) x
X Cq (k;2, q2,p2,mf,mf, m?) + (48k2m cW + 48p*m2cy, — 48¢°m2cy, — T2k m2ch, —

— 72p2mzc%‘, + 72¢°m2 ey 4 30k*m?2 + 36p*m?2 — 30¢*m )C2 ( 2 ¢ p*,m2, mi,mi) } ,
(32)
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2
g 1
{6VZD(p2> k27 q2)}fer = 1672 W{ (SCW - 4CW + 5) Co (k p mb, mb, mb) mg—

- 9C; (/{:2, q2,p2,m§,m§, mg) 2 _ (320?,{, — 400%,[, + 17) 36’0 (]f2, q2,p2,mg, mg, mz) —
— (32mfcyy, — 40micyy, + 17mt) Co (K*, ¢, p°, m?, mf,mf) —m?2 (24cy, — 36¢5, + 15) X
x Cy (]CQ,QQ pr,m2 m2 m ) — 9m?2C, (kQ,q ,pA,mZ m2 m ) —3m2C, (kZ,q ,p*,m? mi,mi) —

— 9th1 (k’g,q P2, mf,m?,mf) — (32mch - 16mch + 20mb) Cio (k‘Q,q , D ,mg,mg,mg) -

— (128mZcy, — 160m2cy, + 68m?) Cis (K, ¢%, p°, m2, mZ, m2) — (128mtcw 160m2cy, +

+ 68mf)Clg (K*,¢%, p*,m;,m{,m}) —m? (96cy, — 144cjy, + 60) Cra (K2, ¢%, p*, m2, m2, m2) —

— (32mycyy, — 16macyy, +20m;) Co (K, 4%, p*, mi, my, my) — m? (128¢y, — 160@124/ +68) x

X Cy (kQ,q ,pQ,mc,mg,mc) (128mtcw — 160m2cy, + 68mt) Co (kZ,q D2, mf,mt,mt)

— (96mZcy, — 144m2cy, + 60m2) Co (K*, ¢*, p°, m2, m2, m2) — m; (32c;lv —16¢3, + 20) X

X Ca (kQ, ¢, p*,my,my, mg) —m? (1280?,‘, — 160c3;, + 68) Coo (kQ, ¢, p*,m2, mg,mi) —
— my (128¢yy, — 160cj, + 68) Coz (K, ¢*, p°, mi, mi, m}) — m?2 (96cy, — 144c3, + 60) x

X C22 (k2>q2>p27m72—7m35m3) } ’ (33)
0,2 1.2 2 g’ 1 1 2
{VZ (p 7k , q )}bos = 1672 Sm%;[/SaCéV — mZ 4SaC Bo (k mH,mZ) mW+
4 2 aB 2 2 4 4 36 2 2 2 4
T e
mz my

2 2 2 1.2 2 2 2 4 3 2 2 12 2 2 2 4
_8Ca5aCO (p 4 7k 7m27mZ7mH) mW_SSQCO (p 4 7k 7mZ7mZ7mS) My —

2 . 8 2 . 6 2 . 4 2 2 2 4 5
— (SmWsacW — 16myysacyy + SmWsacW) By (k s My, mw) — (vwkacwca—

2 4 4 4 3 2
— 202Ky SaCh + 6V ACy 54Ch — 2uwkchysEed 4 BuwpctysAe + v ke s e )x

x By (p°, mi;, my;) — ( 20wk CySaCyy — APKCESS il + 120° A2 83 ¢y + dvwkcd s2 ey —
— 12vwpcl s2 ey + 20k sacw) By (p mH,mS) (67)2)\0%52 + 3vwkChCash+

+ 3vPkclycl st + 6vac%vcisi> Bo (p*, m3, m%) — (8vwlicac§,‘, + 48miysachy+ (34)
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+ 160° A5 Chy — SVwheacly — 1602 \s4Ch, + 20wk, + 4212)\3010?4,) By (p°, miy, miy) —
— (vw/fcacév + 21}2)\sacév) Bo (pQ, my, mQZ) — (—Sm%,vsac?,v — 32miy5aChy + Sm%,vsacﬁv) X

x By (q2, miy, ma/) — (4vw/-ic%,vm%,vcz — 8V KCTy My SaC + 240 Nl MYy Sl —

— Suwkchymiys2c + 2dvwpcy,miyysied 4 dvtkchymiy st e )CO ( 2 g, my, may, qu) —

(4v KOy My SaCh + SVWKCH M, 8200 — 24vwpciymiy, sacs — Svikenymiy, st e+

+ 2403 Aejymiy sEch — dvwkcy,miyse ca> Co (K*,p°, ¢*,m%, mi;, m3) — <24v2)\c%4,m%vsz+

2

+ 12vwkcyy camiy se + 120° ke c2miy, st + 24vwpch,comiy,s2, )CO (K*,p*, ¢°, m%y, m%, mg) —

— iy (SUcham%,VcW 40K* M3y oy + 48D° My sacly — 40P My sacly + 1602 Ay sacy —
— 16vwrcamiy Chy — 48miy 8aChy — Sk*miy sachy — 16p° My sachy + 8¢° My 50 Ciy—

— 320°Am3y s4Chy + SVwrCyMEy, + 16miy s, + 161}2)\m%,[,3a) Co (kQ, 0%, myy, miy, m%,v) —

(4@ KO My S0 Co 4 SUWKCH My S2C0 — 24vwpchymiy, s2cd — 8vPkciymiy, 3 e+
+ 24v2 \eqymiy st e — dvwkcsymiy s ca) Co (q 2 k% my, miy, mS) ( — dvwkcy,cd +
+ 8V Ky Sach — 240\l 84 + SvwrchysEcd — 24vwpcy,sEed — dvkey, st el | x
wSal wSa w Plw w

X Coo (k2,p2, ¢, my,my, m%,) (4vw/<;ca84 ey + 8v?ke sicw — 24v% M2 s %,V

— Svwkc, 2cW + 24vwpcd s C%V — 4v2mcisac§fv)C00 (k‘Q,pQ, ¢, my, my, m?g) —
— CW ( 24"02)\5 — 12vw/<aca — 1202 /fC — 24vacisi) Coo (kQ,pQ, ¢, m%, m%, m%) -

— ( — BQUchac%V — 192m%,vsac§,v — 641)2)\sac§/v + 32vw/icac?,v + 64m12/vsac€V + 64v2)\sac€v—
— SVWKCLCly — 16m3ys4Ch — 16@2)\sacw> Coo (K*, 4%, p*, myy, miy,myy,) — ( dvwked cly—

2y .2, 4 2.2 . 2 2 22 2 2 2 2y 3 4
— 8V e, Sl — SCamWSQCW)CQO (p .q k ,mZ,mZ,mH) — (— SUAS, c—
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2 4 3 .2 2 2 2
— dvwkcaStcly — Smiy st e )Cgo (p* ¢, k*, my, m3,m¢) — <4vw/<;cas i+

+ 82k s3 cly — 2402 A2 53 ¢y — Svwred 2y + 24vwpcd 8% ey — 4v /ﬁc4sacév> X
8

X Coo (q2,p2, k{m%,mi],m%) — < 8k2 My saCyy — 8PP My SaCly + 8¢ My Sachy —

— 32k2m%,vsac?,v>cl (/{:2, @, P, m%,v,m%,[,,m%,[,) — (— 16p* mwsacw 16k2mwsacw

— 16p*miysachy + 16q2m%,vsac€v)c2 (kJQ, 0%, myy, miy, m%v) } , (35)
2 1 45,C1 (K%, ¢, p*, m¥,, m3,, m¥,) mi
(SVD 2 k?2 2 . = g [e] J J J W W w w
{ Z (p ; » q )}bo 167?'2 Zm%,vc%,vsa mQZ +

4(8chy —Ach, + 1) 54Co (K, ¢, p*, miy, miy, miy) miy

2 2 22 2 2 9 2
m2 +20aSaCO (p7Q:k 7mZ7m27mH)mW+
Z
3 2 0272 2 2 2\ 2 2 2 22 2 2 2 2
+ 2SaCO (p 4 7k 7mZ7mZamS) mW + 20a8a62 (p »q 7k 7mZ7mZ7mH) mW+
+ 2526’2 (p2 ¢,k m%,m%, m?g) m%,v + (vw/@c%,vc?’ + 21)2)\0%,‘/sac2 + Qm%/vsaci) X

x Cq ( N mZ,mZ,mH) + s (21}2)\cwsa + ZmWsa + vwﬁcwca) Cy ( .2, k2,m2z,m2z,m?g) +

+ (vwrey ) 4+ 20P Ay sach + 2miysac) Cin (p°, ¢°, k2 m3, m%, my;) + (21)2)\ch +

2 2 2 2 5 2,2 . 4
+ 2miy, 82+ VWKCHCoS )CH (p >k mZ,mZ,mS)#—(—Uw/@chajLQv KClySaCa—

— 6V Ay SaCh + 20wkch s2cd — 6vwpchysicd — vikelysie )Clz (k’Q,p ¢, mZZ,mlzq,qu) +

+ ( V2K Chy SaCa — 20WKCH S5Co + Buwpchys2cs 4+ 20 ke, st e — 61}2)\ch 2+ vwKCHSh ca) X
x Cia (k2,p . q ,mZ,mH,mS) ( 6vAACEy s — SVWkCH Cast — 3V ke, Cl st — Gvwpcy, 2) X

X Ci2 (kQ,pQ, q*,my,m3, m?q) + 3y (8vw/<acacév + 48m?, sty + 16v2)\sacév — SUWhCCly—
— 16m3y sachy — 1603 As4chy + 20WkCy, + 4miysq + 4@2)\3a) Ci2 (kQ, 0%, myy, miy, m%v) +
+ (vwrey ) 4+ 20PNy sach + 2miysacs) Cia (p°, 47, k2 m3, m%, my;) + (2@2)\0124,3:;’;1—

+ 2miy, 83 + VWKCHCoS )C12 (p*, ¢, k*, m%, m3, m&) + (— V2 RCYy Sl — 20WKCH,SEC +
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2 2

+ 6vwpcyy,s2cd + 202 ke s e — 6v Ay st el + vw/{c%/s‘lca) Ci2 (¢°, 9, K*,m%, m7,, m%) +

<8vw/£cacw 4 48mi, 54ty + 1603 As,c5, — SvwkcaCly — 16miysachy — 1602 \s4 o+

+ 20wkcaChy + Amiy Sach, + 402)\5&0‘2,[/) Co (kQ, 0%, myy, miy, m%v) + (81)w/£cac€v+

+ 48m 84Sy + 1602 \s,c5 — SvwkcaCly — 16miy,sachy — 1602 \s4Chy + 20WkCo Coy+

+ Am3y s Chy + 4v2)\sac%,V>C22 (kz, 0%, M, miy, m?,v) } . (36)

One-Loop Corrections to SWW Vertex

g 1
1672 m3,
3m?  3m? Imt  3k?
+m2By (¢*,0,m2) + (—2b + Zt) myy Bo (¢, mj, m7) + ( - — C) mi, X

4
XCo(kz,pQ,qz,O,mz,mi)er%v(m—{ > o (K*,0%,¢%,0,m2,m2) +

myy
Im} 3k m? E*m?  3p*m?2  3¢°m?
(m%,;_ m%Vt>m%VC0(k,p 7, mb,mt,mt (3m + b+ 1 b _ 1 b)x
x Co (p ¢,k mb,mg,mt) 6m2C00 (kQ,p 7,0, m c) — 2mTC00 (k2,p2,q2,0,m3,m3) —

—15k* — 3p* + 3
o 6thOO ( q mb7mt7mt) + < 4p a mgcl (k?27292,q2707m37mz) +

B2m2 p2m2 15k 2, 2 2, 2
+(_5 mT—me—l—qm)Cl(kQ,p 2.0,m?, 5 mt Bpmt_'_3qmt>><

(VS5 K ) Y = { — 6Coo (p*, ¢°, k*, my, my, m7) my + 3m?2Boy (¢*,0,m2) +

4 4 4 4 4

WCI p q k? mb7mbamt2)+

3k*m2 3 3
my pmb ¢*mj m
( 3k*m?  3p*m? q2m3>
Y. X

x C (k27p27q27m§7m37m§) + ( 2 + - )
+

2myy, QmW

9k2 2 92 2 32 2
—i—(— 4mc—|— p4mc_ q4mc)62(k2,p q*,0,m?,

4
9k*m?2  9p*m?  3¢°m?
2 2 9 2 2 ¢ ¢ ¢ 2 2.2 2 92 92 9
XCQ(k,p,Q,O,mﬂmT)—i-(— im2, m?, — 3, mWCQ(k,p,q,mb,mt,mt)—i—
15k*m?  3p*m?  3¢*mi\
o Co (02 a2 k2. m2. m2. m2 37
( 4m12/v + 4m%/[/ 4m%[/ mW 2(p yq 7mb7mb7mt) 9 ( )
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2

g 1 3

{ViP (0* K, ¢*) e = 62 m2. {— §m§CO (p*, 4% k>, my,mz, m7) —
w

3
_6mbC1 (p q k2 mbvmgamt)_’_Q

+ §m261 (kQ,p2 ¢*,0,m? m2) + —m261 (k2,]o2 ¢*,0,m? m2) —
(v

mtcl (k27p q mb’mfvm?) +

—6mbC11 P’ q% k2 my,my,m}) — 6m;Cis (p°, 4%, k%, my, my, my) +

+ 6mt612 ( 7p »q 7mg7mfamt) +6m3612 (k27p »q 707mc7mz) +
3
+ 2m72—612 (k:27p27 q27 07m72—7m72—) - §m1362 (p27 q27 kQa mga mgﬂ”?) +

3 3
+ §m§CQ (k27p27 q27 m12;7 m?a m?) + §m362 (k27p27 q27 07 m§7m3) +

1
g (02,0, ) | (38)

2
g 1
{6‘/‘/?/(1)27 ka q2>}bos = 167 2§{ — 4B (k27 m%{v mIQ/V) C?x — 4By (q27m§{7m12/1/) Ci - 8m‘2/V><

x Coy (p q k? mw,m%ﬁ/,m%) c, — 43WBO (k:2 0 mw) — 45° =By (k‘z mS,m%,V) +

4 VWKCE
4 8 — B, (k2 , — a
() B (i) (e B B 2

3 2,2 .2 2,. 4 3 3
Gvwps,c,,  VTKSLCH B (2. 2 m2 2v°Kke,  4dvwks,co,  12vwps,c,
— — 3 0 (p , MYy, mH) + | — - 3 =+

2 3
202 kct _ by At 20WKSaC,

miy W miy myy miy
d’ks2c? 12022 2vwksic, 9 o o 6v2Ast  Bvwkc,sd
m2 T2 m2 By (p 7mvas) 1 - 2 2 -
W w W w w
3v /<;02 2 6vacisa A ?  2wkcav
— — 5 By (p2, me, m%) + = — —24 ) By (p2, miy, m%v) +
mi, myy, myy, My Sa
2002 wWKCL
+ (— s B 24) By (p mZ,mZ) + 2053, By (q 0 mW) — 452 B, (q mS,mW) +
W wSa

4
+ (20c’€v +16 — T) By (¢°, miy, m%) + <8civk2 — 8k? — 12p* + 16¢° + 12p*ch, —
Cyy

4 2 o 4 .
— 16622 + SUPAE, — 24c2my + 24m, — 8P\ + — W e FUIORC )

Sa Sa

4
x Co (kJQ,pQ, 7, O,m%,v, ml%v) + (— vwhcy + 8 ket — 2402\t + Svwrs, e — 24vwps,c —

Sa
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— 4vg/<asici)co (K*,p*, ¢*, miy, m¥, my;) + ( — 40Kl — 8vwkSLC + 24vwpsacl +

+ 8vksicl — 24v A\s2 e + 4vw/€sica) Co (kQ,pQ, q*, my,, my, m?g) + ( — 240° \st —

8 4
— 120wk, ss — 120% ke s — 24vw,ocisa>co (K>, p%, ¢*, mjy,, m&, mg) + ( — TZQLZ—F
W
2 2 2 2 | 16miy, 2 2.2 2 2 2 2
+ 16my + 4k* — 20p* + 20q +— —8myy |Co (K, p°, 4%, miy, m%y, my) —
W

— 8miys2Co (p2, >,k miy, miy, m%) + (280%,[,/{2 — 4k — 8p* + 4q® — 8pPcyy, + 1247 —

Avwkcyc Svwkc dvwke v\
— 802\, + 24c%,m?, — 8m2, + 1602\ — Ve 4 L - >
Sa Sa CWSa CW

x Cp (pQ, K mi,, miy, mQZ) + ( — 4vPkck — Suwks, e + 24vwpsac + 8vPksich—

— 240° N2+ 4vw/~fszca)Co (qz,pz, k2, miy, mi;, m%) + 6453,Coo (kQ,pQ, ¢*,0,m¥y, m%,v) +

8] (] [

(4vwmc5 8ulkct 2402t Buwks,cd  24vwps,cd 41}2,%3303)

mi,sq mi, mé, mi, mé, mé,
2,4 3 3 2,22
O (202 o 9 9 dvre,  Bvwksyc,  24vwps,c,  SUTKSLCE
X Coo \R™5 P75 g7 My, My, Mg 2 2 - 2 N 2
my, muy, my My

240 As2c2 4vw/isica)coo (K2, 52, %,y mi2) (241)2)\si 12vwkcysd

2 2 2 2
myy myy myy myy

120%kc2 52 24vwpc s, 8A\?  dwkc,v 8
— + Za )Cgo (/{:Q,pQ,qQ,m%,V,m%,m%)—i—( — +— —|—T+64> X
miy myy, miy My Sa Ciy
dvwked  SviAc?
X COO (kzapzaqgvm%/vamQZ>m2Z) + < 2 = + 2 = +802> COO (P27q27k27m12/1/7m%1/>m§{) +
My Sa miy,
802 )\s, dvwkc, 8A\?  dwkc,v
+ 54 ( — + 854 + —2) Coo (P°, %, K>, miy, myy,, m%) + ( —+— + 64ci,+
miy miy miy My Sa
A%ket  Svwks,cd  24vwps,cd 8vPksAc?
+8)COO (p27q27k:2am12/l/'7m12/l/7m2z) + ( 2 = 2 < — é) < — 201 <
myy myy myy, myy

2402 \s2c2 dvwksde
3 El— CX)Coo (qz,pQ, k2, m%/, m%, m%) + (36012,[,162 — 36k — 4p* + 4%+
w W

+ 46%/[/(}72 - q2))cl <k27p27 q27 0’ mIQ/V? mIQ/V) +4 <_5k2 - p2 + q2) Cl (k2ap27 q27m%/Va m227 mQZ) +

+ (160%,[,]4:2 — 8k? — 8p? + 8¢7 + 24p*ch, — 16q20124/) Cy (pQ, > kA me,, méy, mQZ) +
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+ (206%[,/62 — 20k 4 20p* — 12¢* — 20p*cyy + 12¢%¢c ) Cs (k:2,p ¢, 0 mW,mW) +
+ (—12/{:2 +12p* — 4q2) Cs (l{:Z,pz, >, miy, mZ,mZ) +4 (96Wk2 — 4k* + pPcly — q%?,v) X

X C2 (p27q27 k27m%/[/7m12/{/7m2Z) } ) (39)

2

1
{OViP (", K, ") bvos = 76— 22{200 (%, ¢* K%, my,,myy,, m3;) 2+

+ 262 (anQQa k27m%/[/7mWamH) C(Qy + 8CO (k 7p q mW7m2Z’mZ> + 28 X
x Cp (pQ,QQ, k:Q,mIZ,V,m%,,m?g) + (8012,‘/ + 2) Co (p . q ,kQ,mW,m%,V,mQZ) + (80%,[, - 8) X
2) 2C, (K%, p*, ¢*, méy,, m%, m%) N (vw/ﬁzcz N 202\2 +oe )

X Cl (k2ap2aq2a07m%/(/amw 2
Cyy
21}2)\53 VWKCo Sy,
X Cl (p27q2:k27m12/117m12/1/7m%{) + ( 2 +253+—2> Cl (p27q2:k27m12/1/7m12/1/7m§) +
myy, myy

My Sa mW

2002 wKCLv vwred  20°\2
2 2 2 72 2 2 2 2
+ + +16cj, + 2 ) C1 (p*, ¢, K, miy, miy,, m3) + =+ @42 ) x
2 2 w w w Z 2 2 o
my,  MiySa My Sa miy
C 2 2 1.2 02 2 2 20 \s3, 942 VWKCaSa C 2 2 12 02 2 2
X C11 (p yq 7mW>mW7mH) + 2 + Sa+ P} 11 (p yq 7mW7mW7mS)+
myy myy
2002 wKCLv
2 2
m m
W wSa
5 9 5 5 9 vwred 202k 60PNt 2uwksadd 6vwps,cd
Xcl2<kapaQa0amW7mW)+ - 3 + 2 2 2 - 2 o
MiySa miy, miy miy miy
VRS2 Cor (K202 02 2 12 m2 ViREE  20wks,cd  Buwpsacd 20%ksEE
- 12 ( P g My, Mgy, M ) + - - + + -
m2 ws My, My m2 m2 m2 m2
w W W w W
2y o2 .2 3 2y o4 3
6vAsics,  VWKS,Cq C (kg 9 9 9 o 2) (- 6v°As,  Bvwkcas,
2 2 12 D@ My, Mg, Mg m2 m2
W w W w
3U /<ac2 32 Guvwpc: s 2002 wKCL 2
— P2a = )Cis (kQ,pQ,qQ,m%V,mé,m?q) T\ =7z — 2 . — 5 16
mi, miy myy,  MiySa Gy
3 2y .2
VWKC, 207 \c
2.2 2 2 2 2 o o 2 2 272 2 2 2
XCIQ (k P q 7mW7mZ7mZ)+ <m2 s + m2 +20a) C12 (p 4 7k 7mW7mWamH)+
wa %
202 \s2 VWKCy, S 2002 wkCLv
+ ( &+ 250 + ——— ) Cia (p%, ¢, K, miy, myy, m3) + —+ —— + 16¢§, + 2 | x
miy myy, w MySa
o 919 9 o5 o vikel  2uwksacd Gvwpsacd 20%ks%c2
xClg(p,q,k,mW,mW,mZ)+ -2 2 2 2 N
myy myy myy myy

6v2Ns2cr  vwksde,
D) 2 612 (q27p27k27m12/v7m%{7m§') + (SCIZ/V _8) CZ (k27p27q2707m%/[/7m%/v) -
My My
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202( q mW7mZamZ)

2 +252Cy (p°, ¢, K>, miy, myy, m%) + (8¢, — 6) x
%

X Co (9%, 4%, K2, iy, iy, ) } | (40)

One-Loop Corrections to SHH Vertex

2 2
9 Ca
{0V (0*, K, %) }ier = 1672 o CHHS{ — 185,8By (¢°, my, mj ) my—
w

— 18m?saBo (q%, m2,m2) — 18mys. By (¢°, mi, m7) — 6mirs By (¢°, m2,m?) — (24mb—|—
+ 3Ky, + 3p*my, — 3q2m§) saCo (K, ¢, p*, mis, my, mj) — (24m§ + 3k m + 3pPmg—

— 3q2mﬁ> 5aCo (k2, ¢, p*,m2,m2, mz) (24mt + 3k2mt + 3p? mt 3q mt) Sa X

x Cy (/{;Q,qz,pQ,mf,mf,mf) —ml (8m2 + k2 4+ p? — q2) 5aCo ( 2 @ mz,m2 m2) —

— (18k2m§ + 6p2mb 6q mb) ENG (k:Q,q P2, mg,mg,mb) (18k2m + 6p*m?t — 6¢°m ) aX

x Cq (l{;z,qQ pr,m?Am?m ) (18k2mt + 6p? mt 6q mt) 5aC1 (kQ,q P2, mtz,m?,mf)
(6k2m + 2p*m? — 2¢°m )sacl (k:2,q ,p2,m2, m2,m ) (6l€2mb + 18p? mb 6q mb) Sa X

X Cy (/{:Q,q P2, mg,mg,mb) (6/<:2m + 18p*m? — 6¢°m )SaCQ (kQ,q ,pr,m2 m? m2) —
(6k2mt + 18p*m;} — 6q mt) SaCa (/{:2,q P2, mf,mf,mt) (2k2m + 6p*mt — 2¢*m ) X

X C2 <k27q27p27m72-7m37m3) } ) (41)
2 CQ
{(SVH(p27 ]{2’ C]Q)}bos = g 5 a — 48cisamév — 24637’11%804 + UchHHCHHHSX
1672 vmyy, Crps

x By (k‘Q, m3, m%,) +203CrusCrussBo (/{:Q,m%,mé) + v3CrssCrsssBo (kJQ, m%, m%) +
+ (32033am§V + 21)3CH577+777 CHnﬂ,f) By (k:2, m%/V, m%/v) + (160§samé + U3CH773773CH57,37,3) X
x By (k‘2, m2Z7m2Z) + v3CuunuCrusBo (pZ,m%,,m%,) + 20°CrarsCrssBo (pQ,m%,,m?g) +
+ v*CyrssCsssBo (pQ, m?g, m?g) + (32028am§§, + 21)3CHH,,+7,7 CSn*n) By (pQ, m?,v, m%,) +

+ (1662 samy + v’ Crmnyny Conans ) Bo (0%, m%, m%) + v*CaunCruusBo (¢, m¥y, mi;) +

+ 20°CrasCrussBo (q2,m§{, m?g) + 1v*CrssCrsssBo (q{m%,m%) + (SCisam%/V—

2 2 2 3 2 2 2
— 4ve, Coprnmiyy — 8vca Crprnsamyy + 20°Crgptn- CHn*n) By (q , My, mW) +
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2vc2m?,C dve,m?, C s
o'W~ Snsns all'y Y Hngnz O a 2 2 2
- BO (q Mz, mZ) +

+ (4Cisam% + UBCH%%CHS%% - 2
Cw Cw
+ 2U3C§-[HSCSSSCO (k27p27 q27 m?—b m%’; m%‘) + 2U3C?{HHCHHSCO (k27 q27p27 m%{? m?—[? m?—[) +
+ 20°CunuCrusCussCo (K2, ¢°, p*, mi;, mip, m%) + 20°CruusChgsCo (K2, ¢, p°, my;, ma, me) +

+ 20°C344Css5Co (K2, ¢, p*, m&, m%, m3) + <960§5am€‘, — 42 Cpp-miy — 20k%C2 s0myy, —
— 20p*cEsamiy — 12¢°c2 samiyy — 8vca Cyptn- SaMiy + 4p2vcngn+n—m%,V — 4q27jciCsn+n—m12/V—
— 4> VCaC gyt samw — 8p? 0o Cppptn- SaMiy + 4¢° 0o Cppptn- samW + 4USCH,]+77 CSn+n‘) X

2 6 2, .2 2 2, .2 2
2 2 ) (GOCaSamW 4 2p*vcg Csngns My _ 2q UCaCSnermW_

2 2 2 2
XCO(k7Q7p7mW7mW7mW 6 2 2
‘w ‘w ‘w

2,2 2 2 2 2 2 2 2

2ue,myCspans iy 4vcamZzCrpgnsSamiy  2k°0caCrpgny Samiy  40"0CaCrpgns SaMiy

2 2 2 2
Gy G Cw G
2020Ca CHpans Sam
nanzSallliy 32 2.6 22 4 22 4
= + 20°Clppn, Csngns — 12¢,my s — 10k7c,my s, — 10p°comiy s —
W

— 6q¢°%c sta)Co (kQ, ., mQZ,mQZ,mZZ) + 2v3CHH5C12qSSC0 (p2, k2, q2,m§{, m?g, m%) +
+ 2'U?)C?[){HAS'CO (p27 q27 k27 m%{> m%{a m%’) + 2U3CHHHCHHSCHSSCO (QZ:PZ: k27 mjztla m12‘I7 m%) +
+ ( 24Kk2C2 somiyy, — 8P samiy + 8¢ chsamyy, + 4k*vc Caypey-miy — 4p*ves Cgprn-miy+
+ 4q*vc2 Cayrg-miy — 16k2vcaCHn+n—sam12,V> C (K, ¢, p*, miy, miy, miy) + ( — 12k%*c% sm—

2,022 2,22 2,22
2k~ vegmiyy Cspang o 2p vegmiy Csnsns + 2q”vegmiy Csngny -

2 2 4 2 2 4
—dp e samy +4q°cLsamy +

2 2 2
Cw Cyy Cw
8k*ve,mz,C s
W~ H @ 2 2 2 2 2 2 2 22
— 5 1573 Cy (/f NN ,mZ,mZ,mZ) +miy | — 8kPcEsamiy — 24pclsamiy+
c
w

+ 8¢%2 samiy + 4k*vc2 Cayry- — 4p°vCaCopin- — 44702 Capg- — 82 0o Crpypt - Sa—
— 8p2vcaCHn+n7 Sa + 8qzvcaCHn+n7 sa>Cg (k2, >, p%,mi, miy, m%v) + ( — 4kt samy—

2,2 00,2 2,2 ,,,2 2,2 ,,,2
g, 2kveamiyCopany — 2070eamiyCssny 2¢7vcgmiy Csngny

— 12p°Esamy + 4¢°cEsamy + 3 5
‘w ‘w ‘w
2 2 2 2 2 2
_AETveamiy CrygngSa Ap~vcamiy Cngys Sa . 4q vcamWCH%%sa) "
2 2 2
‘w ‘w ‘w
2 2 2 2 2 2
x Cy (k 4 7p7mZ7mZ7mZ)}‘ (42)
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One-Loop Corrections to Stt Vertex

g 1
1672 144m3,
— 1252Co (p°, ¢, K*, m{, m{, m%) my — 3628y (¢, mi;,m;) mi — 36528y (¢°, m&, my) m;+

VAR K ) = { —72¢2Co (P*, ¢°, K2, mi,mi, my;) mi—

+ 32m3), — 32m7 — 384mv e, — 256 (—3masv® — miy sy ) Bo (¢°,0,m7) + (36m?+

+ 256¢5,m3, — 320m3y, + 100m22> Bo (¢°, mi,m%) + (3847Tq2a5112 + 1536mm?a v
— 384k * Tav? — 384p°mav? — 128k*miy, — 128p*miy, + 128¢°m3y, + 128Kk*ciymiy+
+128p°ciymy, — 128¢°ciymiy, — 512k ,mimy, + 512mfm124/) Co (kQ,pZ, q*,0,m?, m?) +

36 2.5
+ ( _ 2O G + 7202 kmich — 21602 Amich + T2vwrm?sacd — 216vwpm?2s,ch—

Sa

— 36v2f<amfsic§>co (kQ,pQ, ¢, mi,miy, qu) + mf( — 36vKcl — T20wkKSC +

+ 216vwpsace, + 7207 ks2 e — 216V As2 e + 36vwrs? ca>C0 ( g%, mi,may, m%) +
+m; (—216v°As), — 108vwrcys? — 108v°kcls2 — 216vwpc) s, ) Co (K2, p°, 4%, mi, m%, m3) +

36vwrcam?
+ (512mév — 640mymyy, + 164my + 72v2Am§ — 36k*m3, + M) «

Sa

x Cy (k:Q,pQ, ¢*,m?i,m%, mQZ) + (72m;1 + 512ck,mi,m? — 640m3,ym? + 128m2me) X

x Cy (p27q27k2,mf,mf,m22) + ( 36v an 4 — 720w/<mfsac + 21€vapmtsoécJr

+ 720%km?s2 ¢ — 2160 Am?s>c + 36vwrm?s] ca) Co (¢, p* K>, mi, m¥,,m%) +

+ (3847rq2a5112 — 384k mav? — 384pPTagw® — 128k*mi, — 128p*mi, + 128¢°méy +

+ 128k cqymiy + 128p°ciymy, — 128q2c%4,m12,v) Ci (kZ,p2, q*,0,m?, m?) + (9k2m22—

— 9p2m2z + 9q2m22) Cq (/{;Q,p2,q2,mf,m22,m2z) ( 36k3c2 mt 36p°c? mt 36¢%c mt) X

x C1 (p*, % K mf,mf7mH) — 36m; s, (k2+p2+q2)C (0, ¢, K mi, mf, m%) +
+ (36k*m; + 36p°m; + 36¢°m; — 320p°my, + 256p°cy,my, + 64p*m7) x
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x C4 (p ¢,k mt,mf,mz) + (3847rq a,v® — 384K maw? + 384p*mav? — 128miy (kQ
+p* + ¢+ Ky — pieyy — q2012/v)>62 (K, 0%, ¢*,0,m;,m}) + ( —27k*m% + 27p*m7—
— 63q2m2Z>C2 (k’Q,pQ, ¢, mi,my, mQZ) + (—54k2cimf — 18p*cEm? + 18q2cimf) X

X Cy (p2, @,k mf,mf,m%) — 18m?s? (3/{:2 +p? — q2) Cy (p2, Q¢ k* m2, m?,m%) +

(54k2mt +18p°m7 — 18¢*m? — 160k*m3;, — 160p°m3y, + 160¢*my, + 128k cqymay, +

+ 128p? chW — 128¢> chW + 32k*m% + 32p*m3, — 32q2m2Z)C2 (p2, ¢, k* m2 m?, mQZ) } ,
(43)

2
V) = i {186 (K i )
+ 1833C0 (pQ, @,k mf, m?, m?g) mf + 36CZC1 (pQ, k% m?, mf, m%,) mf+
+ 3652C, (pQ, @ kA mE m?, m%) my — 64 (—37‘['(151)2 — m%,vs%v) Co (kQ,pQ, ¢*,0,m2, m?) my—
— 9mQZC0 (k:z,pQ, ¢, mf, mQZ, mZZ) my + (18mf + 64c%ﬁ,m%,vmt — 80m%,vmt + 34m2th) X

x Co (p*,¢°, k%, mi,m;,m%) + (36m; + 128¢j,miyym; — 160m3,m; + 68m7m;) x

x Cq (p2, ¢, k% m?, m?, mQZ) + < — 18v2mmtci — 361}wlimtsaci + 108vamtsaci+
+ 361}2/fmtsici - 108v2)\mt320 + 18vwrmys ca) Cy (q 2L kP mt,mH, ms) +

5
18vwkmyc),

+ (384mmyav® — 128¢,mymyy, + 128mymyy, ) Co (K2, 0%, ¢°,0,m;, mj) + ( —
Sa

+ 36@2/<;th§ — 1081}2)\th§ + 361)w/£mtsacz — 108vamtsaci — 18@2/<:mtsici) X

X Co (kQ,p2, 7, mtz, qu, qu) + ( — 18v2/fmtc4a — 36vwr<cmtsaci + 10811wpmtsaci+

+ 36v2kmysicl — 108v2 Amys2c2 + ISmemtsica>C2 (k:2,p2, ¢, m?, ma, mfg) +

+ my (—1081}2)\3 541}10/{0CY — 5402 mc — 108vac sa) Cy (k:Q,pQ, q2,mf,m25,m§) +

N (_ 128my;, N 160mzmi,  68my 18mtm2Z 3602y — 18vw/£camt) y

x Cy (K, p*,¢*,mi, m%, m%) } (44)
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2 1
VG Ia") = i { 1620 (. 2 )
w

+ 18326’0 (pQ, @,k mf, mf, m%) mf + 3603C1 (p2, 7,k th, m?, m%l) mf-I—
+ 368iC1 (pQ, @,k mf, mf, m%) mf + 3603C2 (p2, 7,k mf, mf, qu) mf—i—

+ SGSiCQ (pQ, @,k mf, mf, m%) mf + 64m, (—37?0451)2 — m%vs%,v) Co (kg,pg, ¢, 0, mf, mf) +
+ 9mQZC’0 (k‘Q,pQ, q, mf, mQZ, mZZ) my + (18mf + 640%,Vm12,vmt — 80m%,vmt + 34mQth) X
2 2 2

x Co (p2, q2, k2, mt,mt,mz) — 128my (37?&8112 — s%,vm%,v) Cy (k:g,pQ, q2, 0, mf,m?) +

18 o
+ my (M — 36v°kck + 108V Ak — 36vwrs,c + 108vwpsacl + 181)%@3&02) X

[0}

X Cq (k‘2,p2, ¢, mf, m2;, qu) + <18v2mmtci + SGUmetsaci - 108vamtsaci—

— 36v kmysZc + 1082 mys2 e — 18vw/<:mtsica) Ci (K, p% ¢*,mi,m¥;, m%) +
+ my (108v2)\si + bdvwkcy s + 5dv ke s% + 108vacisa) Ci (/cQ,pQ, q*,mi,m%, m%) +

128ms) 160m%m3, ~ 68m; 18 o
+ ( Tw _ gMw 20Tz 18mym3, + 36v°Am; + UL mt) X
my my my Sa

x Ci (K, p°, ¢%, mi, my,m%) + (36m] + 128¢5,my,m;, — 160mj,m, + 68mym;) x
x Ci (p*, ¢°, k*,mi,m;, m%) + (36m; + 128c;,miymy — 160mi,my; + 68m7m;) x

x Cy (p2, >k me m?, mZZ) + my (181}2/104& + 36vwks,CE — 108vwpsacd — 36v ks 2+

+ 108v*As2c? — 181}10552%) Cs (qz,pQ, k*,m?, m3;, m%) } , (45)

2 1
VPG RE) = 1 { = ey (8P )+
w

2,2 2 2 1.2 2 2 2 2.2 2 2 1.2 2 2 2
+26amt62 (p 4 7k 7mt7mtamH) +2mt5ac2 (p 4 7k 7mt7mt7m5’)_

- 2m§CZ (an q2a k27m?7 th’ m2Z> - 3m22(”2 (kzvpzv q27 m?a mQZa m2Z> } ) (46)

g 1
VEW R ) = 48m%V{ (8¢ciy —5) mz (— (K* + 3p” — 3¢%)) x

)

)

X Cl (kQ,p2, q27m?7 mQZ?mQZ) o (8012/1/ - 5) m2Z (3k2 - 3p2 - q2) CQ (k27p27 q27 m?? m2Z> m2Z) }
(47
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2
g 1 2 2 2 2 2 2 9 2
5V]:(p27k2aq2) = {_ 8CVV_5 mthCO k yP»q My, My, My +
! 1672 24m?, ( ) ( ! )
+2 (8¢ — 5) mumZCo (p*, ¢, k*,mi, mi, m%) + 4 (8¢, — 5) mym3 x
8¢k, — 5)m% (2¢k,m? + 4m3y,) Co (K2, p%, ¢?, m?, m%, m%) }

mymi,

2 2 12 2 2 2
x Cy (p »d >k 7mt?mt>mZ) o

(48)

2 1
VW) = (s { (5ch =) manCo (82, i ) +
w

2

8 2 -5 4 2 2 2 4 2
42 (8, — 5) mimCo (9 4%, K2, ., ) - B N Cowmi & Amiv)

myma,

x Cy (K, p?, ¢%,mi, my,m%) +

+4 (8cfy — 5) mimzCy (p?, 4%, k°,mi, mi, m%) + 4 (8¢, — 5) mm5Cy (p°, ¢, k2, mi, m;, m%) } :

(49)
Ho 2 12 2 92 1 2 2 2 2 9 2 9 2
5‘/15 (p 7k ,Q) = 167?224m2 {(8CW_5)mzcl (k yD 54 amt7mvaZ)_
w
- (86%/1/ - 5) mZZCQ (1{32,]?2, q27m?7 mQvaQ) } . (50)

D - Loop Integral Expressions: Ay, By, By, B

Now let us report the loop integrals which are expressed in the MS renormalization scheme:

Alp?] = %Jrlog {Z—z] (51)

Klp, may ] = \Jmi -+ (mf = p?)2 = 2m3(m? + p?) (52)

4m2 2 4m?2
Qlp,m] = 1/1—pﬂ21og [1—%(1+ 1—p—”§>], (53)
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Ao(m?) = m*(1 + A[m?)), (54)
Bo(p?,0,0) = 2+ A[-p?, (55)
Bo(p?,m*,m?) = 2+ Alm* - Qlp,m], (56)
Bo(p?,0,m?) = 2+ Al-m?] + (1 — 7;—22) log {m;"—_zpz} (57)
Bo(p®,mi,my) = 2+ Almj] + Elp. Z;a,mb] lo [mg ) _2;7;(1_771}1%[29’ ma,mb]]
Buo(p*.0.0) = —p* (3 + A[l_f]) (59)
Boo(p?,m ) = 2 " ] 47) LA™ Q] — A, (60
Boo(p?,0,m?) = T—; (7 — Z—;) — %pQ + (#) Alm?]+
L 212—;2)3 oz {ijpQ} 7 (61)
Sty < TS (nd )
Bi(p?,0,0) = —1— A[;pﬂ (63)
Biptm?m?) = —1+ 2 ’m]z_ A7) (64)
Bi(p*,0,m*) = —1+ 2%22 — A[;nz] — (m22;4p2)2 log {mQ—_ZpQ} , (65)
Byt me ) = —1— 2L Qipg{m% g 2 ’f;[p s 100] 1o {%}
- Kl o [ S |0
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