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Introduction

In June of 2012, the LHC experiment [1, 2] has finally completed the spectrum of the Stan-
dard Model with the discovery of the Higgs boson, predicted in the 60’s by Higgs [3, 4],
Englert, Brout [5], Guralnik, Hagen and Kibble [6]. However, the structure and the physics
behind the Higgs sector are not completely clear and this represents a possible gateway to the
manifold conceivable extensions of the Standard Model (SM). One of the simplest renormal-
izable enlargement of the Higgs sector is constructed by adding to the SM Lagrangian one
additional spinless real electroweak singlet, which develops its own vacuum expectation value
[7, 8, 9, 10, 11, 12, 13, 14].
Beside being easy to implement, the physics of a scalar singlet has received a lot of attention
in the recent years for several reasons; among them, it can help in solving the issues related to
the metastability of the electroweak vacuum [15, 16] if the Higgs potential receives a correction
due to new physics which modify it at large field values [17] and it could provide a door to
hidden sectors [18] to which it is coupled. The singlet model has the advantage of depending
on relatively few parameters and this implies a feasible experimental study at the LHC for
the analysis of the new physic effects in the Higgs boson couplings, searches for heavy SM-like
Higgs bosons [19, 20] and direct searches for resonant di-Higgs production [21, 22, 23]; in
the absence of linear and triple self-interactions, this model possesses a Z2-symmetry and the
singlet can be a viable candidate for dark matter, although for masses somehow larger than
500 GeV [24, 25] the couplings of the dark matter to the known particles occur only through
the mixing of the singlet field with the SM Higgs boson. Without a Z2-symmetry a strong
first order electroweak phase transition is allowed and additional sources of CP violation occur
in the scalar potential. In this thesis we limit ourselves to a situation where the new singlet
s0 communicates with the SU(2)L doublet φ only via a quartic interaction of the form,

κ (φ†φ)(s0)2 .

This implies that the would-be Higgs boson of the SM mixes with the new singlet leading to
the existence of two mass eigenstates, the lighter of which (H) is the experimentally observed
Higgs boson whereas the heaviest one (S) is a new state not seen so far in any collider
experiments. We call this model the Singlet Extension of the SM (SSM). Since only φ is
coupled to ordinary matter, the main production mechanisms and decay channels of H and
S are essentially the same as those of the usual SM Higgs particle, with couplings rescaled
by quantities which depend on the scalar mixing angle, called α, whose bounds have been
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discussed in details in [10, 11, 26, 27]. For masses larger than & 200 GeV, the most important
decay channels of the heavy state S are those to a pair of vector bosons S → V V and, when
kinematically allowed (mS > 2mH), to a pair of lighter scalars and top quarks, S → HH, t̄t.
With the run II at LHC, the exploration of the scalar sector is expected to reveal more
details. So, the comparison between theory and data requires precise predictions obtained
through higher-order calculations. To this aim, we evaluated the radiative corrections to the
main decay rates Γ(S → ZZ, W+W−, t̄t, HH) and studied in details their dependence on
the singlet mass mS as well as on the mixing angle α and the singlet vev w. Interestingly
enough, the SSM scalar sector implies no natural way of defining the renormalized scalar
mixed mass (or alternatively, the scalar mixing angle) and the non-diagonal fields through a
physically motivated renormalization scheme. As a consequence, it is possible to construct
different prescriptions to renormalize the non-diagonal scalar sector; nevertheless, we have
to pay attention to their definitions since some of them manifest a gauge dependence in the
physical observables. To compute the next-to-leading order (NLO) EW decay rates, we use
the "improved on-shell" renormalization scheme which is totally gauge-invariant [29]. To
give a comment on the gauge dependence effect on the renormalized decay widths we also
consider a second scheme, called "minimal field", which exhibits a gauge dependence [29]. The
minimal field scheme is defined by renormalization conditions which need the introduction of
a renormalization scale µR. We prove that it is possible to obtain a gauge independent result
by fixing this scale at µ2

R = (m2
H +m2

S)/2 since, for this specific value, the improved on-shell
and the minimal field schemes are equivalent.
The main result of this thesis is that for the singlet scalar mass range 200 ≤ mS ≤ 1000
GeV the gauge independent EW corrections to the decay widths reach a maximum ofO(6%) in
the W+W− channel, O(5%) in the ZZ channel and O(4%) in the HH, t̄t channels for masses
lower than 450 GeV and almost independently on the mixing angle α (the HH channel is
the only one to show a more pronounced mixing dependence in the mass region for which
its NLO correction is maximal), whereas for larger masses (mS & 700 GeV) these corrections
take negative values. Besides, we discuss the impact of the QCD corrections on the S → t̄t
channel which can be directly deduced by the SM QCD one-loop contributions to the Higgs
decay into a top quark pair. For the total decay width Γ(S → all), we obtain a maximum
correction of O(6%) for mS ∼ 200 GeV. Finally, we have analyzed the impact of the gauge
dependence on the decay rates with respect to µR for two fixed values of mS = 400, 1000 GeV
and found that it causes a variation on the NLO decay widths which is less than . |3|% in
all decay channels.
The structure of the thesis is as follows: in Chap.1 we recall the relevant features of the
SSM and its theoretical and experimental constraints; in Chap.2, we describe and analyze the
full set of the leading-order (LO) expressions of the scalar singlet decay widths; in Chap.3 we
illustrate the details of our renormalization procedure that we apply in Chap.4 to discuss the
structure of the Γ(S → ZZ, W+W−, t̄t, HH, all) renormalized decay widths. The radiative
corrections to these decay rates are numerically computed in Chap.5; the last chapter is
devoted to our conclusions.
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Chapter 1

Model Setup

In this chapter we describe the singlet extension of the Standard Model (we will use the short
notation, SM and SSM, to indicate the Standard Model and its singlet extension, respectively).
In comparison with the SM, the SSM is characterized by adding one real spinless scalar
field which transforms as a singlet under SU(3)C × SU(2)L × U(1)Y and affects the same
Lagrangians where the SM Higgs field appears. The full SSM Lagrangian is defined as,

LSSM = Lgauge + Lfermions + LQCD + Lscalars + LYukawa + LGF + Lghosts . (1.1)

The first three terms, which include the gauge and fermionic kinetic parts, the couplings be-
tween fermions and gauge bosons and the full quantum chromodynamics (QCD), are given by
the respective SM expressions [28]. On the other hand, the remaining terms (the Lagrangians
of the scalars, the Yukawa interactions, the gauge-fixing and ghosts terms) contain the new
scalar singlet field and need a more detailed discussion which will be the subject of the next
sections.

1.1 The Scalar Lagrangian
The scalar sector is defined by

Lscalars = (Dµφ)†(Dµφ) + (∂µs0)(∂µs
0)− VSSM(φ, s0) , (1.2)

where Dµ is the SM covariant derivative and VSSM(φ, s0) is the scalar potential which is made
up of the usual SM Higgs potential, with φ representing the SM scalar field, augmented with
the new contributions due to quadratic and quartic terms of the new scalar field, represented
by s0, and a portal interaction among s0 and φ as specified below:

VSSM(φ, s0) =µ2(φ†φ) + λ(φ†φ)2 + µ2
s (s0)2 + ρ (s0)4 + κ (φ†φ)(s0)2 ,

where s0 is a true isospin singlet (with hypercharge Y = 0), φ = [η+, φ0 + iη3/
√

2]T , φ0 = (v+
h)/
√

2 (the value of v is obtained as a function of the Fermi constant GF , v ≡ (
√

2GF )−1/2 =
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246.22 GeV) and η± = (η1 ± iη2)/
√

2 and η3 are the Goldstone bosons. Notice that the
potential VSSM(φ, s0) exhibits a Z2-symmetry under which s0 → −s0, so that linear and
trilinear terms in s0 are not allowed.
Beside the vev of the φ field, we also consider the possibility that s0 acquires a non-zero
vacuum expectation value (vev) w, and thus the expansion of the field around its classical
minimum is set as s0 = (w+s)/

√
2. The full expansion around the vevs of VSSM(φ, s0) involves

the linear terms for the scalar fields, h and s, from which we can define the tadpole relations:

Tφ = µv2 + v3λ+
vw2κ

2
, Ts0 = µsw

2 + w3ρ+
v2wκ

2
. (1.3)

The minimization conditions of the scalar potential are given by: Tφ, Ts0 = 0 1. The most
immediate consequence of the potential VSSM(φ, s0) is that a non-diagonal mass matrix is
generated for the two neutral states h and s that, in the gauge basis, has the following form:

M2
gauge =

(
2λv2 κvw
κvw 2ρw2

)
. (1.4)

Considering all couplings as real parameters, the positivity of the mass matrix is ensured
requiring that [17]

λ >
κ2

4ρ
, λ , ρ > 0. (1.5)

To have physical propagating particles in the SSM, it is necessary to consider eigenstates with
specific masses. The physical scalar masses can be achieved through the following orthogonal
rotation:

U(α) · M2
gauge · U(α)−1 = diag(m2

H ,m
2
S) , (1.6)

where mH,S are the physical masses and U(α) is the rotation matrix whose action on the
scalar fields as follows: (

H
S

)
= U(α)

(
h
s

)
=

(
cosα − sinα
sinα cosα

)(
h
s

)
, (1.7)

with α ∈ [−π/2, π/2]. After the orthogonal transformation, the tree-level masses of the
particles in the mass basis are given by [17, 29]:

m2
H,S = λv2 + ρw2 ∓ ρw2 − λv2

cos 2α
, (1.8)

1Notice that the potential is stationary at:

v2 =
4ρµ2 − 2κµ2

s

κ2 − 4λρ
, w2 =

4λµ2
s − 2κµ2

κ2 − 4λρ
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and, in turn, a mapping between the Lagrangian states and the physical fields H and S is
realized:

φ0 =
1√
2

(v +H cosα + S sinα) , s0 =
1√
2

(w −H sinα + S cosα) . (1.9)

In the rest of this thesis we will consider the H field as the lightest mass eigenstate and we
identify it with the Higgs boson whose mass of 125 GeV has been already measured at LHC
[31], so we always consider sign (ρw2 − λv2)× sign (cos 2α) > 0. While the mass of the light
scalar field is kept fixed, we will limit ourselves to the mass range 200 ≤ mS ≤ 1000 GeV
(which corresponds to the bound 0.018 ≤ | sinα| ≤ 0.36 [29]). The mixing angle α can be
expressed in terms of the model parameters and vevs so that,

tan 2α =
κvw

ρw2 − λv2
. (1.10)

Notice that in the limit (v/w) � 1, the expressions for the masses and mixing are well
approximated by:

m2
H ' 2v2

(
λ− κ2

4ρ

)
= 2v2λsm , m2

S ' 2ρw2 +
κ2v2

2ρ
, sinα ' κv

2ρw
, (1.11)

which clearly show that the SM quartic coupling λsm receives a correction proportional to the
ratio among the portal coupling κ and the quartic of the s0 field [16].
Now, the couplings of the H and S fields with gauge bosons arising from the covariant
derivative in eq.(1.2) are similar to the SM Higgs ones rescaled by an appropriate mixing
factor:

Dµφ→

[
∂µ + ig

σi
2
W i
µ(x) + ig′

Y

2
Bµ(x)

](
η+

1√
2
(v +H cosα + S sinα + iη3)

)
, (1.12)

where g and g′ are the electroweak constants, W i
µ (i = 1, 2, 3) and Bµ are the gauge boson

fields in the gauge basis of SU(2)L and U(1)Y respectively, while the Pauli matrices σi and
the hypercharge Y are the generators of the respective groups. In addition, the scalar singlet
field insertion gives no contributions to the gauge boson squared masses which get the same
SM form:

(Dµφ)†(Dµφ)→ 1

2

(
0 v

)(
g
σi
2
W µi + g′

Y

2
Bµ

)†(
g
σj
2
W j
µ + g′

Y

2
Bµ

)(
0
v

)
=

=
1

2

v2

4

[
g2(W 1

µ)2 + g2(W 2
µ)2 + (−gW 3

µ + g′Bµ)2

]
. (1.13)
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As usual the fields W 1,2,3
µ , Bµ can be shifted in the mass basis through the orthogonal trans-

formation defined in terms of the Weinberg mixing angle θW :

γµ = (sin θWW
3
µ + cos θWBµ) with m2

γ = 0 , (1.14)

Zµ = (cos θWW
3
µ − sin θWBµ) with m2

Z =
(g2 + g′2)v2

4
, (1.15)

W±
µ =

(W 1
µ ∓ iW 2

µ)
√

2
with m2

W =
g2v2

4
. (1.16)

The pure scalar interactions are obtained by expanding VSSM(φ, s0) in terms of the physical
scalar fields so that the trilinear and quartic couplings can be schematically written as 2:

VSSM(φ, s0) ⊃ CS1S2S3 S1S2S3 + CS1S2S3S4 S1S2S3S4 , (1.17)

where S can be one among H,S, η3 and η±. Below we report a list of the coefficients CS1S2S3

and CS1S2S3S4 :

CSSS = −3icαsα(cαv + sαw)κ− 6i(s3
αvλ+ c3

αwρ) , (1.18)
CHHH = −3icαsα(sαv − cαw)κ− 6i(c3

αvλ− s3
αwρ) , (1.19)

CHSS = −i[cαv(c2
α − 2s2

α) + sαw(2c2
α − s2

α)]κ− 6i(cαs
2
αvλ− c2

αsαwρ) , (1.20)
CHHS = −i[sαv(s2

α − 2c2
α) + cαw(c2

α − 2s2
α)]κ− 6i(c2

αsαvλ− cαs2
αwρ) , (1.21)

CHη3η3 = −i(2cαvλ− sαwκ) , (1.22)
CHη+η− = −i(2cαvλ− sαwκ) , (1.23)
CSη3η3 = −i(cαwκ+ 2sαvλ) , (1.24)
CSη+η− = −i(cαwκ+ 2sαvλ) , (1.25)

CHHHH = −6i(c4
αλ+ c2

αs
2
ακ+ s4

αρ) , (1.26)
CSSSS = −6i(c4

αρ+ c2
αs

2
ακ+ s4

αλ) , (1.27)
CHHSS = −i(c4

α − 4c2
αs

2
α + s4

α)κ− 6ic2
αs

2
α(λ+ ρ) , (1.28)

CHHHS = −6i(c3
αsαλ− cαs3

αρ) + 3icαsαc2ακ , (1.29)
CHSSS = −3icαsαc2ακ− 6i(cαs

3
αλ− c3

αsαρ) , (1.30)
CHHη3η3 = −i(s2

ακ+ 2c2
αλ) , (1.31)

CSSη3η3 = −i(c2
ακ+ 2s2

αλ) , (1.32)
CHSη3η3 = −isαcα(2λ− κ) , (1.33)

CHHη+η− = −i(s2
ακ+ 2c2

αλ) , (1.34)
CSSη+η− = −i(c2

ακ+ 2s2
αλ) , (1.35)

CHSη+η− = −isαcα(2λ− κ) , (1.36)

2We generated all Feynman rules for the SSM model using FeynRules [30].
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with sα = sinα and cα = cosα. It is important to observe that, starting from the mass
matrix in the gauge basis (see eq.(1.4)), we can define the quartic couplings at tree-level (LO)
in terms of the physical scalar masses and the mixing angle and, in the case of higher order
calculations, these also become functions of the tadpoles in the mass basis 3 TH,S and the
(symmetric) off-diagonal element of the physical mass matrix, called δm2

HS:

M2
gauge +

(
Tφ/v 0

0 Ts0/w

)
= U(α)−1 ·

(
m2
H δm2

HS

δm2
HS m2

S

)
· U(α) =

=

(
m2
Hc

2
α +m2

Ss
2
α + δm2

HSs2α δm2
HSc2α + sαcα(m2

S −m2
H)

δm2
HSc2α + sαcα(m2

S −m2
H) m2

Hs
2
α +m2

Sc
2
α − δm2

HSs2α

)
. (1.38)

Using the definition ofM2
gauge shown in eq.(1.4), the quartic couplings are given by:

λ =
m2
H

2v2
c2
α +

m2
S

2v2
s2
α −

cαTH + sαTS
2v3

+
δm2

HS

2v2
s2α, (1.39)

ρ =
m2
H

2w2
s2
α +

m2
H

2w2
c2
α −

cαTS − sαTH
2w3

− δm2
HS

2w2
s2α, (1.40)

κ =
m2
S −m2

H

2vw
s2α +

δm2
HS

vw
c2α , (1.41)

with TH , TS, δm
2
HS = 0 at tree-level. A fundamental feature of the SSM potential is that,

at large mS values, the portal interaction between the scalar singlet and the SU(2)L doublet
leads to a positive tree-level threshold correction for the Higgs quartic coupling, which allows
to avoid the potential instability of the Standard Model electroweak vacuum. The renormal-
ization group equations (RGEs) for the portal (κ) and quartic (λ and ρ) couplings above the
scale mS are given by [16, 17],

(4π)2 ∂λ

d lnµ
=

3

4

[
g4 +

(g2 + g′2)2

2

]
− 6y4

t + 12

[
y2
t −

g′2 + 3g

4

]
λ+ 24λ2 + κ2,

(4π)2 ∂κ

d lnµ
= 3

[
y2
t −

g′2 + 3g

4

]
κ+ 2κ(3λ+ 2ρ) + 2κ2, (1.42)

(4π)2 ∂ρ

d lnµ
= 2κ2 + 20ρ2 ,

where µ is the RGE running scale and yt is the yukawa coupling associated with the top quark
(the contributions due to the other fermions is negligible [32]). We observe that λ receives

3The tadpoles Tφ,s0 are rotated in the mass basis as(
TH
TS

)
=

(
cosα − sinα
sinα cosα

)(
Tφ
Ts0

)
. (1.37)
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a linear and positive contributions in terms of κ2, which prevent it from becoming negative
under the following conditions:

• mS < Λinst ∼ 1010 GeV where Λinst is the SM instability scale [32].

• (κ/8π)2 ln(Λinst/mS) has to be quite large.

Figure 1.1: Running of the quartic couplings for representative parameter choice: mS = 108

GeV, λ(mt) = λsm(mt) = 0.12879, ρ(mt) = 0.04 and κ(mt) = 0.06.

We show in Fig.(1.1) an example of running quartic couplings which is obtained for fixed values
of λ, λsm, κ, ρ at a scale mt = 173.21 GeV, namely λ(mt) = λsm(mt) = 0.12879, ρ(mt) = 0.04
and κ(mt) = 0.06, and mS = 108 GeV. We can see that, thanks to the positive threshold at
the singlet mass (for large values of mS we have λ ∼ λsm + κ2/4ρ), the quartic coupling λ
never enters into the instability region 4.

1.2 The Yukawa Lagrangian
The Yukawa Lagrangian includes the complete set of fermionic mass terms and interactions
of the fermions and scalar bosons in the SSM. As discussed above, the kinetic terms of the
fermions (Lfermions) are the same of the SM:

Lfermions =
∑

fermions

iψ̄(Dµγµ)ψ , (1.43)

4Notice that we chose as initial condition κ > 0. However, the stabilization mechanism becomes more
complicated when the running quartic couplings are analyzed with respect to negative κ values. In this case
the stability condition is given by −κ(µ) < [λ(µ)ρ(µ)]1/2 and with the positive shift of λ it is essentially
canceled out. This implies that the stability condition is much more constraining than in the case κ > 0 (see
[16] for more details).
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where ψ̄ = ψ†γ0 , ψ is the fermionic spinor field and the sum runs over all fermions, which
are divided in three generations. In Tab.(1.1), the spinor fields are classified in terms of five
representations of SU(3)C × SU(2)L × U(1)Y .

Spinor Field ψI [color, weak iso-spin, hypercharge]

LH leptons LiL [1, 2,−1]
RH leptons liR [1, 1, 2]
LH quarks Qi

L [3, 2,+1/3]
RH up-type quarks uiR [3, 1,+4/3]

RH down-type quarks diR [3, 1,−2/3]

Table 1.1: Spinor field as representations of SU(3)C × SU(2)L × U(1)Y . Here, i = 1, 2, 3 is
the flavor index and LH, RH stand for the left- and right-handed fermions, respectively.

We consider for simplicity the neutrinos to be massless and this implies that these exist in a
LH state only. It is well known in the SM that a term like −mf ψ̄ψ = −mf (ψ̄LψR + ψ̄RψL)
is not invariant under an SU(2)L × U(1)Y transformation and the absence of such a term
implies massless fermions. Considering the complex Higgs doublet φ, which in the notation
of Tab.(1.1) is a [1, 2, 1] state, one can construct an invariant SU(2)L × U(1)Y interaction
term as: −yf ψ̄LφψR, where yf is the Yukawa coupling. When the Higgs field acquires the
vev after the spontaneous symmetry breaking, we obtain the fermion masses proportional to
the respective Yukawa coupling. However, this mechanism only gives mass to the "down"
fermions. It is possible to write a new term in the Lagrangian which is gauge invariant and
gives mass to the "up" fermions as follows: −yf ψ̄Lφ̃cψR, where φ̃c = iσ2φ

†. So, in the most
general case, the expression for the Yukawa Lagrangian is written as,

−LYukawa = Y d
ijQ̄

i
Lφd

j
R + Y u

ij Q̄
i
Lφ̃

cujR + Y l
ijL̄

i
Lφl

j
R + h.c , (1.44)

where now Y d
ij , Y u

ij and Y l
ij are arbitrary 3 × 3 complex matrices which include all Yukawa

couplings arising from the three fermionic generations of leptons and quarks.
In addition, we can observe that it is not possible to construct a mass terms for the fermions
by substituting the Higgs doublet φ with the new scalar singlet s0 since the Yukawa inter-
actions, written in terms of the singlet field, are not gauge invariant under SU(2)L × U(1)Y
transformations. This implies that the new insertion of the scalar singlet gives no contri-
butions to the fermion masses but appears only in the interaction terms between the Higgs
doublet and the fermionic fields, with proportionality to sα:

Yijψ̄
i
L

(
η+

1√
2
(v +Hcα + Ssα + iη3)

)
ψjR . (1.45)
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1.3 Gauge-Fixing and Ghost Lagrangian
In this section we describe the structure of the remaining Lagrangians, LGF and Lghosts, and
their dependence on the scalar singlet field. Generally, LGF and Lghosts are needed to quantize
the Yang-Mills theories which contains the gauge bosons expressed as vector fields [28]. Since
the degrees of freedom corresponding to the vector fields exceed those of the physical gauge
fields, the quantization of the full SSM Lagrangian requires the choice of a specific gauge in
order to remove the additional unphysical degrees of freedom. It is well-known that in this
type of model the gauge-invariance plays a fundamental role in the renormalization procedure.
This implies that the gauge-fixing becomes useful to check the gauge independence of higher
order calculations, as it was discussed for the SSM in [29]. In order to define LGF, we introduce
the F functions defined as:

F± =
(
∂µ ∓ ieδ̃1Aµ ∓ ig cos θW δ̃2Zµ

)
W±

± iξ′W
g

2

(
v + δ̃3H + δ̃4S ± iδ̃5η3

)
η± , (1.46)

FZ = ∂µZ
µ + ξ′Z

g

2 cos θW

(
v + δ̃6H + δ̃7S

)
η3 , (1.47)

Fγ = ∂µA
µ , (1.48)

where e is the electromagnetic coupling constant, δ̃i is the non-linear gauge parameters while
ξi and ξ′i (i = γ, Z, W ) are the linear gauge parameter related to the gauge and Goldstone
bosons, respectively. Notice that the non-linear case is described by the F functions non-
linearly dependent on the scalar and gauge fields 5. The gauge-fixing Lagrangian is defined
in the following form:

LGF = − 1

2ξγ
|Fγ|2 −

1

2ξZ

|FZ |2 −
1

ξW

F+F− . (1.49)

We recover the linear gauge fixing (usually indicated with Rξ) by setting up δ̃i = 0 (with
ξi = 1 we define the ’t Hooft- Feynman gauge). In addition, we can fix ξ′W,Z = ξW,Z in order
to cancel the mixing terms η±W± and η3Z arising from LGF , thus avoiding the presence of
new unnecessary and intricate interaction terms at tree-level. On the other hand, the insertion
in LGF of the additional non-linear gauge parameters δ̃i (i = 1, ..., 7) modifies the Feynman
rules which become more complicated. We could also tune the δ̃i values to reduce the number
of diagrams and simplify some of the vertices (for instance, with δ̃1 = 1, the vertex W±η∓γ
is canceled out and W±W∓γ assumes a more simple form). In order to fix the gauge in
the non-Abelian Yang-Mills theories we have to introduce a new set of anticommuting fields,
called ghost (proposed by L. Faddeev and V. Popov [36]). The main feature of the these fields

5The definitions of the F functions and the treatment of the non-linear gauge fixing in the SM can be
found in [34, 35].
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is that their quantum excitations have the wrong relation between spin and statistic to be a
physical particles. Besides, the ghosts can appear as virtual states described by the following
Lagrangian [28]:

Lghosts = ūai (−∂µDabµ )uci = ūai (−∂2δac − g∂µfabcAbµ)uci , (1.50)

where Dabµ is the covariant derivate, g is the gauge constant, fabc are the structure constants
of the gauge group (which can be SU(2) or SU(3) for the vector boson and gluon fields,
respectively), Aµ are the gauge fields of the respective gauge groups and ui (ūi) (with i =
±, Z, γ) are the Faddeev-Popov ghosts (anti-ghosts). Thus, we can write for a general non-
Abelian gauge theory a complete Lagrangian (LFP) which includes all of the gauge-fixing
effect as [28]:

LFP = −1

4
F µν aF a

µν +
1

2ξ
|∂µAaµ|2 + ψ̄(iDµγµ −m)ψ + ūai (−∂µDabµ )uci , (1.51)

where |∂µAaµ|2/2ξ can get additional terms which are non-linearly dependent on the scalar
and gauge fields, as mentioned above. With the insertion of the ghost Lagrangian, LFP shows
a new symmetry, called BRST symmetry [37], which is defined in terms of an infinitesimal
anticommuting parameter ε:

δBRSTA
a
µ = εDabµ ub , δBRST ψ = ig ε uat

aψ , δBRST u
a = −1

2
g ε fabcubuc ,

δBRST ū
a = εBa , δBRST B

a = 0 ,

where ta are the generators of the gauge group considered and B is an auxiliary field which
has to be introduced to get the BRST-invariance of LFP

6. Considering the non-linear gauge
fixing, the BRST transformations can be also defined for the scalar fields [29]:

δBRST η3 =
g

2

[
(η−u+ + η+u−)− uZ

cos θW
(v + cαH + sαS)

]
, (1.52)

δBRST η
± = ∓ig

2

[
u±(v + cαH + sαS ∓ iη3) +

sin 2θW uγ + cos 2θW
cos 2θW

η±
]
, (1.53)

δBRSTH =
gcα
2

[
i(η−u+ − η+u−) +

uZ
cos θW

η3

]
, (1.54)

δBRST S =
gsα
2

[
i(η−u+ − η+u−) +

uZ
cos θW

η3

]
. (1.55)

Notice that these BRST transformations depend on the S field only with proportionality to
sα. The results of this thesis have been obtained in the linear Rξ gauge imposing δ̃i = 0, ξi = 1

6As discussed in [28], the introduction of the new auxiliary field Ba is given by the following substitution:
|∂µAaµ|2/2ξ → ξ|Ba|2/2 +Ba∂µAaµ.
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and considering the gauge-dependence analysis in the SSM renormalization procedure (which
we will treat in detail in the next sections) performed in [29]. There, the authors work with
δ̃i 6= 0 in order to define a gauge independent renormalization scheme for the mixing scalar
sector which must provide equivalent results with both δ̃i = 0 and δ̃i 6= 0.

1.4 Theoretical and Experimental Constraints
The SSM is subject to many constraints which are of a theoretical or experimental nature.
These constraints have been explicitly discussed in the literature and we briefly have summa-
rized them here.

1.4.1 Theoretical Constraints

• Perturbative Unitarity:
The tree-level perturbative unitarity, which emerges purely from theoretical aspects of
electroweak symmetry breaking, has to be preserved. To this aim, it is sufficient that
the scalar sector fulfills the following sum rules for the couplings between fermion, vector
and scalar particles, which we call gnff and gnV V for scalar-fermion and scalar-vector
interactions, respectively [38]:∑

n

g2
nV V = g2

HsmV V ,
∑
n

gnV V gnff = gHsmV V gHsmff , (1.56)

where n = H,S and Hsm is the SM Higgs field. Notice that the SSM exhibits the
sum rules given above since gHV V,Hff = cα gHsmff,Hsmff and gSV V,Hff = sα gSsmff,Hsmff ,
thus preserving the unitarity constraints. Besides, we can set a constraint on the SSM
scalar masses via a relation on the partial wave amplitudes aJ(s), associated with 2→ 2
processes given by [8]:

|ReaJ(s)| ≤ 1

2
. (1.57)

This allows us to find a (mS -mH -α) subspace where the perturbative unitarity is valid
up to any energy scale. We therefore need to calculate the tree-level amplitudes for
the xa xb → ya yb process, where xa xb and ya yb can be {ZZ, W+W−, HH, SS, HS}.
Calculating the normalized five dimensional scattering matrix and imposing eq.(1.57)
to each eigenvalues, one obtains, for small mixing angle (sα ∼ 0), the element of the
scattering matrix associated with SS → SS is decoupled from the other SM matrix
elements and an lower limit on w is posed:

w2 &
3m2

S

16π
, for a0(SS → SS) ≤ 1

2
. (1.58)
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However, in the case of large sα values, all partial wave contributions needs to be
considered to determine a valid prediction of the lower limit on the allowed heavy scalar
mass.

• Potential Stability and Perturbativity of the scalar couplings:
Typically, the stability of the scalar potential is described by the conditions in eq.(1.5)
while the perturbativity of a general coupling x requires that:

|x(µ)| ≤ 4π , (1.59)

which, for the SSM, are x = (λ, κ, ρ). At the electroweak scale, µ = v, we have no
additional constraints in the (sα, w)- parameter space when we test the perturbative
unitarity condition. So, it is instructive to understand what are the energy scales for
which the perturbativity of the scalar couplings and the potential stability remain valid.
To achieve this goal, we have to consider eq.(1.5) and eq.(1.59) valid at an arbitrary
scale µ and the renormalization group equations (reported in eq.(1.42)) are needed to
evaluate the coupling λ(µ), κ(µ) and ρ(µ). By fixing a reference value for µSSM larger
than µSM we can study the conditions arising from the perturbativity of the coupling
and the stability of the scalar potential up to this benchmark scale so that we can define
the (sα, w)-parameter space for which these are verified [8, 10]. By the perturbativity
of κ, we can determine a restriction in the large w and sα regions while, if we analyze
the perturbativity of λ and ρ, we obtain an upper limit on sα and w, respectively. For
instance, we report the conditions on sα and w (discussed in [10]) obtained for fixed
values of mS and µSSM, namely mS = 600 GeV and µSSM = 2.7× 1010 GeV: |sα| . 0.3
and w & 2 v.

1.4.2 Experimental Constraints

• The W boson mass:
The experimental value of the W boson mass is given by [39, 40, 41]:

mexp
W = 80.385± 0.015 GeV. (1.60)

The computation of the electroweak precision parameter ∆r 7 imposes limits on the
SSM parameter space when it is confronted with the experimental W boson mass mea-
surement. The introduction of ∆r implies that the theoretical expression of the W

7Following the standard conventions in the literature, the ∆r definition is obtained matching the muon
lifetime expression in the four fermions Fermi interaction to the equivalent calculation performed within the
SM:

m2
W

(
1− m2

W

m2
Z

)
' παem√

2GF
(1 + ∆r) , (1.61)

where αem is the fine structure constant at zero momentum (αem(0) = e2/4π).
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boson mass is shifted as mW → mW (1 + ∆mW/mW ) with,

∆mW

mW

∼ s2
W

s2
W − c2

W

∆r

2
, (1.62)

with sW = sin θW and cW = cos θW . For ∆r = 0 one gets the theoretical tree-level value
mth LO
W = 80.94 GeV. In the SM case, the best-fit value of ∆r is given by ∆rSM ' 0.038,

which shifts the value of the W boson mass to (mth
W )SM = 80.36 GeV, a roughly 20

MeV away from the experimental result in eq.(1.60). The calculation of ∆r include
new physics effects could be relevant to impose parameter space constraints but also to
explain the SM difference |(mth

W )SM −mexp
W | ' 20 MeV. For the SSM, this analysis has

been performed in [26] and its conclusions are the following:
i) Defining ∆rSSM = ∆rSM + δrSSM, the SSM deviation from SM value (δrSSM) is not
large and generates a variation amounting to a maximum of O(10%). The tension with
the experimental result is reduced by the fact that ∆rSSM > ∆rSM which implies that
(mth

W )SSM < (mth
W )SM (with |(mth

W )SM − (mth
W )SSM| ∼ 1− 70 MeV).

ii) The SSM contributions to ∆r and mW are dependent on the scalar mixing angle
and it is possible to derive upper bounds on |sα| (especially for mS & 300 GeV) by
comparing the (mth

W )SSM with mexp
W . For example, the upper bound on |sα| associated

with mS = 1000 GeV is |sα
∣∣
max

= 0.19 (more upper bounds associated with different
values of the singlet scalar mass are listed in Table.II of [26]).

• Electroweak Parameters S,T and U:
Similarly to the case discussed above, we can obtain other constraints on mS and sα
from the electroweak precision observables (EWPO) which are the oblique parameters
S, T and U defined as:

αem

4s2
W c

2
W

S =
Σ̄ZZ(m2

Z)− Σ̄ZZ(0)

m2
Z

; αem T =
Σ̄WW (0)

m2
W

− Σ̄ZZ(m2
Z)

m2
Z

;

αem

4s2
W

U =
Σ̄WW (m2

W )− Σ̄WW (0)

m2
W

− c2
W

Σ̄ZZ(m2
Z)− Σ̄ZZ(0)

m2
Z

, (1.63)

where the Σ̄V V (k2) denotes the purely singlet model contributions to the gauge boson
self-energy. However, the next-to-leading order (NLO) EWPO corrections generate
weaker constraints on the mixing angle than the bounds obtained from the ∆r analysis
and do not contribute to new limits on w values being independent from it [10, 26].

• Signal Strength of the Higgs Boson:
The Higgs signal strength |µ| is defined in the general "beyond-SM" case (bSM) as:

µ ≡ σbSM

σSM

=
c4
αΓSM(mH)

c2
αΓSM(mH) + s2

αΓhidden(mH)
, (1.64)
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where ΓSM, hidden are the decay widths of the Higgs boson in the SM and in a possible
hidden sector. In the SSM we have µSSM = c2

α. Concerning the Higgs signal strength,
we can use the following values [42, 43]:

µLHC = 1.30± 0.18 , µCMS = 0.80± 0.14 ⇒ µexp = 1.05± 0.11 . (1.65)

As a consequence of the comparison between µSSM and µexp up to 2σ-level deviations,
the upper (lower) limits are obtained: |sα| . 0.42 (|sα| & 0.91).

1.4.3 Global Constraints

It is interesting to analyze the unification of the full sets of constraints discussed above. In
Fig.(1.2) and in Tab.(1.2), which are educed from Figure I and Table I of [29] (in the Figure
I, the scalar singlet mass is indicated with mH instead of mS), we report the allowed values
of sα and w associated with the mass range of our interest, 200 ≤ mS ≤ 1000 GeV, which
will be used in our numerical analysis. From Tab.(1.2), we note that the mixing angle values
can be included in the global range 0.018 ≤ | sinα| ≤ 0.36 while the lower bound on the
singlet vev is wmin = 0.85 v. On the other hand, it is interesting to identify the values of
w and |sα| which are valid for every choice of mS. The minimum value of w increases as
mS increases. This automatically implies that wmin = 4.34 v is a good choice for the mS

values of our interest. In a similar way, the range of |sα| is restricted to the following interval:
|sα| ∈ [|sα|mS=200 GeV

min , |sα|mS=1000 GeV
max ] = [0.09, 0.17]. As a result, the study of the physical

observables as a function of mS requires:

|sα| ∈ [0.09, 0.17] and w ≥ 4.34 v . (1.66)

mS [GeV] |sα| wmin [GeV]

200 [0.09,0.36] 0.85 v
300 [0.067,0.31] 1.25 v
400 [0.055,0.27] 1.69 v
500 [0.046,0.24] 2.13 v
600 [0.038,0.23] 2.56 v
700 [0.031,0.21] 3.03 v
800 [0.027,0.21] 3.45 v
900 [0.022,0.19] 3.85 v
1000 [0.018,0.17] 4.34 v

Table 1.2: Values of mS considered in our numerical analysis, the ranges of |sα| and the
corresponding wmin. Table extracted from Table I of [29].
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Figure 1.2: Summary of the constraints as a function of | sinα| and mS. This figure is ex-
tracted from [29] and we directly report the original caption in terms of our notation and
bibliography: "Maximal allowed values for | sinα| in the high mass region, for a heavy bo-
son mass in the range mS ∈ [130, 1000] GeV, from the following constraints: i) W boson
mass measurement (red, solid) [26]; ii) electroweak precision observables tested via the oblique
parameters S, T and U (orange, dashed); iii) perturbativity, of the RG-evolved coupling λ
(blue, dotted), evaluated for an exemplary choice w = 10 v, iv) perturbative unitarity (grey,
dash-dotted), v) direct LHC searches (green, dashed), and vi) Higgs signal strength measure-
ment (magenta, dash-dotted). For masses mS ∈ [300, 800] the W boson mass measurement
yields the strongest constraint [26]. The present plot corresponds to an update of figure 8 from
[10], where the latest constraints from the combined signal strength [44] have been taken into
account."

1.5 Parameter Values
Here, we give a summary of the input parameter values which will be needed in our analysis.
The SM central values are taken from [50]:

• Fine structure constant
The fine structure constant αem is given at Q2 = 0 (Thompson limit):

αem = αem(0) = 1/137.035999139 .

At Q2 = m2
W , it becomes αem(m2

Z) ≈ 1/128.
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• Fermi constant
The experimental value of the Fermi constant is:

GF = 1.1663787× 10−5 GeV−2 .

• Weinberg mixing
The experimental value of sW is:

sW =
√

0.23155 . (1.67)

• Strong coupling constant
We define the strong coupling constant as αs and its experimental value at Q2 = m2

Z is:

αs(m
2
Z) = 0.1182 .

• Higgs and Gauge boson masses
The scalar and gauge boson masses are fixed to:

mH = 125.09 GeV , mW = 80.385 GeV , mZ = 91.1876 GeV .

• Fermion masses
We have only considered t, b, c and τ since the other fermions have comparably negligible
masses:

mt = 173.21 GeV , mb = 4.18 GeV , mc = 1.27 GeV , mτ = 1776.86 MeV .

• CKM matrix element
In the computation of the singlet decay rates no Cabibbo-Kobayashi-Maskawa matrix
elements (VCKM) are involved at LO. At the NLO we have verified that it is a good
approximation to fix the mixing to the quark sector to be vanishingly small. For com-
pleteness, report here the best fit values of the quark mixing:

VCKM =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

 =

 0.97417 0.2248 4.09× 10−3

0.22 0.995 40.5× 10−3

8.2× 10−3 0.04 1.009

 (1.68)

• Scalar mixing angle, singlet mass and vev
The full set of constraints on the SSM parameters gives us the range of the mixing angle,
|sα| ∈ [0.09, 0.17], and the minimum value of w, wmin = 4.34 v, which are allowed for
every choice of the singlet mass values included in the following range: 200 ≤ mS ≤ 1000
GeV.
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We have to fix a set of independent variables in the scalar sector needed for the numerical
analysis. We choose w, mS and α and express at tree-level λ, ρ and κ according to eqs.(1.39
- 1.41):

λ =
m2
Hc

2
α +m2

Ss
2
α

2v2
, ρ =

m2
Sc

2
α +m2

Hs
2
α

2w2
, κ =

(m2
S −m2

H)s2α

2vw
. (1.69)

In Tab.(1.3) we give an numerical values of λ, ρ and κ computed for representative parameter
choices: sα = (0.1, 0.35), w = (5 v, 10 v) and mS = (300, 500, 700, 1000) GeV.

w = 5v sα = 0.1 sα = 0.35

mS λ κ ρ λ κ ρ

300 0.135 0.024 0.029 0.204 0.08 0.0267
500 0.148 0.077 0.082 0.366 0.253 0.073
700 0.168 0.156 0.16 0.608 0.513 0.142
1000 0.21 0.323 0.327 1.124 1.065 0.29

w = 10v sα = 0.1 sα = 0.35

mS λ κ ρ λ κ ρ

300 0.135 0.012 0.007 0.204 0.04 0.007
500 0.148 0.038 0.02 0.366 0.127 0.018
700 0.168 0.078 0.04 0.608 0.257 0.036
1000 0.21 0.162 0.082 1.124 0.532 0.073

Table 1.3: Example of λ , κ and ρ values for representative parameter choices.
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Chapter 2

Singlet Decay Widths at Tree-Level

It is interesting to determine whether and how the new scalar boson can be produced at the
LHC experiments and what the process topologies will be. To make predictions of physical
observables, we should connect the results of calculations, evaluated through a field theory
(e.g decay amplitudes) with experimental data at a collider (e.g decay widths). The main
scope of this thesis is the computation of the dominant singlet decay rates at the NLO. First
of all, we clearly need the LO formulas for all partial decay widths of the new scalar boson
which we consider to be heavier than any other SM particle. In the SSM, since the singlet
mixes with the Higgs field, we can parametrize the total decay rate in the following form:

ΓLO(S →All) = ΓLO(S → HH) + s2
α ΓLO(Hsm → gg, γγ, Zγ, ZZ,WW, f̄f) , (2.1)

where ΓLO(Hsm → ...) have to be evaluated in terms of mS instead of mH . In the next
paragraphs we will list a summary of all partial LO decay widths of the processes S → i j
which can be evaluated using the general expression for the two body decay rate given by the
integration of the squared amplitude over the two-body Lorentz-invariant phase space and
defined as [28]:

Γ(S → i j) =

√
m4
S +m4

i +m4
j − 2m2

Sm
2
i − 2m2

Sm
2
j − 2m2

im
2
j

16πm3
S ni!nj!

∑
d.o.f

|M|2 , (2.2)

whereM is decay amplitude, the summation is performed over all degrees of freedom (d.o.f)
corresponding to the physical particles in the process, ni, j is the number of identical particles
in the final state and mi,j are the masses of the decay products.

21



2.1 LO Decay Width to Gauge Bosons
The decay rate of the scalar S into two real gauge bosons gets contributions from longitudinally
(L) and transversally (±±) polarized gauge bosons. The LO amplitude is given by,

MLO
[
S(k)→ V (p, a)V (q, b)

]
= e

m2
V

sWmW

sα × [gµνεaµ(p)εbν(q)] , (2.3)

where V = W±, Z and (p, q), (a, b) are the four-momenta of the vector bosons and their
polarizations, respectively. A straightforward computation of the decay width gives [45]:

ΓLO(S → V V ) =
GF

16
√

2π
m3
Ss

2
α(1 + δV )

√
1− 4xV

(
1− 4xV + 12x2

V

)
, (2.4)

where xV = m2
V /m

2
S and δV = 0, 1 for V = Z,W±, respectively. The longitudinally and

transversally polarized decay rates to gauge boson pair are given by:

{ΓLO(S → V V )}±L = (ΓLO(S → V V ))±± = 0 , (2.5)

{ΓLO(S → V V )}±± =
GF

16
√

2π
m3
Ss

2
α(1 + δV )

√
1− 4xV × (4x2

V ) , (2.6)

{ΓLO(S → V V )}L =
GF

16
√

2π
m3
Ss

2
α(1 + δV )

√
1− 4xV ×

(
1− 4xV + 4x2

V

)
. (2.7)

We can note the dominance of the longitudinal vector bosons in the decay of a heavy scalar
singlet (xV → 0),

ΓLO(S → V±V∓)

ΓLO(S → VLVL)
=

x2
V /2

[1− x2
V /2]

2 , (2.8)

where this implies that, for high mS values (TeV scale), the total contribution due to the sum
of vector boson decay rates can be expressed as,

ΓLO(S → V V ) ' GF

16
√

2π
(1 + δV )m3

S . (2.9)

For completeness, we also report the case with a virtual gauge boson in the final state (mV <
mS < 2mV ); summing over all decay channels available of the virtual W ∗ or Z∗, the widths
are given by [46]:

ΓLO(S → W ∗W ) =
3g4mS

512π3
s2
αF(mW/mS) , (2.10)

ΓLO(S → Z∗Z) =
g4mS

2048π3

7− 40 s2W
3

+
160 s4W

9

c4
W

s2
αF(mZ/mS) , (2.11)
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where,

F(x) =
3− 24x2 + 60x4

√
4x2 − 1

arccos

(
3x2 − 1

2x3

)
+

+ (3− 18x2 + 12x4)| lnx| − |1− x2|
(

47x2 − 13

2
+

1

x2

)
. (2.12)

2.2 LO Decay Width to Fermions
Since the coupling of S to fermions is proportional to the fermion mass (mf ) and the mixing
angle (sα), the fermionic decay width will be proportional to s2

αm
2
f and the matrix element

takes the following form:

MLO
[
S(k)→ f̄(p)f(q)

]
= i U(p)

em2
f

2sWmW

sα V (q) , (2.13)

where U, V are the spinors of the fermions with momenta p and q. Using eq.(2.2) we get [47],

ΓLO(S → f̄f) = s2
αNc

mSm
2
f

16πv2
(1− 4xf )

3/2 , (2.14)

where mf is the mass of the fermion, xf = m2
f/m

2
S and Nc = 1, 3 for leptons and quarks,

respectively.

2.3 LO Decay Width to Higgs Bosons
When kinematically accessible, the heavy scalar decay to Higgs boson pair is guaranteed by
the tree-level interaction CHHS of eq.(1.21):

ΓLO(S → HH) =
(CHHS)2

32πmH

√
1− 4m2

H

m2
S

. (2.15)

2.4 LO Decay Width to massless Gauge Bosons
Since neither Sγγ nor Sgg interactions are present at the LO, the decay rates S → γγ, Zγ, gg
are defined through loops of gauge bosons and/or fermions. Thus, these decays are suppressed
by the loop factor α2

(em,s)/16π2 and this implies that the branching ratios are relatively small,
of the order of 10−4. Starting from S → γγ, we have (for the SM Higgs boson, the decay
width into two photons was calculated in [48]):

ΓLO(S →γγ) = s2
α

α2
emg

2

1024π3

m3
S

m2
W

∣∣∣∣∣∑
i

Nc iQ
2
iA

γγ
i (τi)

∣∣∣∣∣
2

, (2.16)
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where i = η±, f,W±, τi = 4m2
i /m

2
S and Aγγi (τi) is defined as:

Aγγη (τη) = τ 2
η [τ−1

η − f(τη)] , (2.17)
Aγγf (τf ) = −2τf [1 + (1− τf )f(τf )] , (2.18)

AγγW (τW ) = 2 + 3τW [1 + (2− τW )f(τW )] , (2.19)

with

f(τ) =


arcsin[

√
1/τ ]2 if τ ≥ 1 ,

−1
4

(
ln 1+

√
1−τ

1−
√

1−τ − iπ
)2

if τ < 1 .

(2.20)

In the case of S → Zγ, the calculation is similar to the two-photons case and the decay width
given by [49]:

ΓLO(S → Zγ) = s2
α

α2
emg

2

512π3

m3
S

m2
W

(
1− m2

Z

m2
S

)3 ∣∣AZγ(τV , τf , λV , λf )∣∣2 , (2.21)

where λi = 4m2
i /m

2
Z and,

AZγ(τV , τf , λV , λf ) =
∑
f

2NcfQf (2QfsW − T 3
f )

sW cW
[I1(τf , λf )− I2(τf , λf )]−

− cW
sW

{
4(3− t2W )I2(τW , λW ) +

[
(2 + τW ) t2W − 2

τW
− 5

]
I1(τW , λW )

}
, (2.22)

with the parametric integrals given by the following expressions:

I1(τ, λ) =
τλ

2(τ − λ)
+

τ 2λ

(τ − λ)2

[
g(τ)− g(λ) +

λ(f(τ)− f(λ))

2

]
, (2.23)

I2(τ, λ) =
τλ

2(τ − λ)

[
f(τ)− f(λ)

]
, (2.24)

g(τ) =


√
τ − 1 arcsin

(√
1/τ

)
if τ ≥ 1 ,

1
2

√
1− τ

(
ln 1+

√
1−τ

1−
√

1−τ − iπ
)

if τ < 1 .

(2.25)

Notice that, for S → γγ and Zγ, the W -loop contributions is ∼ 5 times t-loop contributions.
Finally, the S → gg can be obtained from eqs.(2.16-2.20) by neglecting the (W±, η±)-loops
and using the substitution, α2

emN
2
c f Q

4 → 2α2
s , so that:

ΓLO(S →gg) = s2
α

α2
sg

2

512π3

m3
S

m2
W

∣∣∣∣∣∑
i

Aggf (τf )

∣∣∣∣∣
2

, (2.26)

with Aggf (τf ) = Aγγf (τf ).
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2.5 LO Total Decay Width and Branching Fractions
Disregarding for the moment what we have discussed in the previous section about mS, sα
and w we analyze here the behavior of the LO decay rates with respect to sα, w and mS.
Calling for simplicity ΓLO(S → All) = ΓTOT, we report it in the left panel of Fig.(2.1) as a
function of mS for different values of (sα, w) = (0.1 , 5 v) and (0.2 , 10 v), while in the right
panel ΓTOT is displayed in the sα−w plane for two fixed values of mS: mS = 400, 1000 GeV.

Figure 2.1: Left plot: ΓLO(S → All) as a function of the mS for the two fixed sets of pa-
rameters: sα = 0.1, w = 5 v (black line) and sα = 0.2, w = 10 v (blue line). Right plot:
ΓLO(S → All) in the sα − w plane for two fixed values of mS, namely mS = 400, 1000 GeV.

We observe that ΓTOT increases as sα and w increase. In particular, the sα-dependence is
much stronger than the w-dependence since the full set of partial decay widths within ΓTOT

are proportional to s2
α (only CHHS is a non-trivial function of sα) while w only appears in the

partial decay width ΓLO(S → HH) suppressed by the typical small values characterizing κ and
ρ (see Tab.(1.3)). In order to quantify this small dependence on w, we illustrate in Fig.(2.2) an
example where the ratios Γsα=0.2

TOT /Γsα=0.1
TOT and Γsα=0.35

TOT /Γsα=0.1
TOT are computed for two different

values of w, namely w = 5 v, 10 v. Neglecting the Higgs boson decay channel, the red lines
confirm that ΓTOT is fully proportional to s2

α (see eq.(4.45)): Γsα=s1
TOT /Γsα=0.1

TOT = (s1/0.1)2. In
this respect, the difference between the red (solid) and black (solid and dashed) curves is en-
tirely due to the w and sα dependences in eq.(1.21) which produce a variation for the defined
ratios with sα = 0.2 and sα = 0.35 reaching a maximum of O(1%) and O(6%), respectively.
Now, we can analyze the branching fractions of all partial decay channels. Defining BRLO

S ij =
ΓLO(S → ij)/ΓTOT, we illustrate in Fig.(2.3) the dominant (right plot) and the rare decays
(left plot) computed for the representative values sα = 0.2 and w = 5 v. In addition, we
have studied in Tab.(2.1), for fixed mS = 400 GeV, and in Tab.(2.2), for fixed mS = 1000
GeV, the sα- and the w- dependences of all decay channels choosing three values of sα and
w: sα = 0.1, 0.2, 0.35 and w = 5 v, 10 v, 15 v. We also calculate BRLO

HH for negative sα values
(sα = −0.1,−0.2,−0.35) since Γ(S → HH) is the only decay width not symmetric under a
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Figure 2.2: Γsα=0.2
TOT /Γsα=0.1

TOT (left plot) and Γsα=0.35
TOT /Γsα=0.1

TOT (right plot) as a function of the mS

for two fixed values w = 5 v (solid) and w = 10 v (dashed). The red line shows the considered
ratios without the partial decay width ΓLO(S → HH).

Figure 2.3: Dominant (left plot) and rare (right plot) decay channels computed for sα = 0.2
and w = 5 v. Notice the different scale on the vertical axes.

sign flip of kind sα → −sα. In the left plot of Fig.(2.3), we can observe at mS = 2mH ∼ 250
GeV the decrease of BRLO

SZZ, SWW since ΓTOT receives the new contribution related to the decay
mode S → HH which becomes kinematically accessible at these mass values. Neglecting the
behavior of BRLO

Sγγ for mS & 600 GeV, the BRLO
Sij depicted in the right plot of Fig.(2.3) show a

global decrease for larger mS values. In Tab.(2.1) and Tab.(2.2), we see that BRLO
SWW , BRLO

SZZ

and BRLO
Stt grow almost entirely with sα while BRLO

SHH decreases as |sα| increases, especially
for negative sα. In addition, BRLO

SHH grows with w for positive sα values but it decreases as
w increases in the negative mixing case.
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|sα| w/v
sα>0

BRLO
SHH

sα<0

BRLO
SHH

sα>0

BRLO
SWW

sα>0

BRLO
SZZ

sα>0

BRLO
St̄t

0.1 5 31.7 30.0 43.8 20.5 3.9

0.2 5 31.3 27.9 44.1 20.6 3.9

0.35 5 28.8 23.1 45.7 21.3 4.0

0.1 10 31.3 30.4 44.1 20.6 3.9

0.2 10 30.4 28.7 44.7 20.9 4.0

0.35 10 27.4 24.5 46.6 21.8 4.1

0.1 15 31.2 30.6 44.2 20.6 3.9

0.2 15 30.1 29.0 44.8 20.9 4.0

0.35 15 26.9 25.0 46.9 21.9 4.2

Table 2.1: Branching fractions of all decay channels computed for fixed values: |sα| =
0.1, 0.2, 0.35, w = 5 v, 10 v, 15 v and mS = 400 GeV. The BRLO

HH is computed for positive
and negative sα values while the other branching fractions are only computed for sα > 0.

|sα| w/v
sα>0

BRLO
SHH

sα<0

BRLO
SHH

sα>0

BRLO
SWW

sα>0

BRLO
SZZ

sα>0

BRLO
St̄t

0.1 5 25.8 24.3 47.2 23.3 3.7

0.2 5 25.4 22.4 47.5 23.5 3.7

0.35 5 23.2 18.3 48.8 24.1 3.8

0.1 10 25.4 24.6 47.4 23.5 3.7

0.2 10 24.6 23.1 47.9 23.7 3.7

0.35 10 22.0 19.5 49.6 24.5 3.8

0.1 15 25.3 24.8 47.5 23.5 3.7

0.2 15 24.4 23.4 48.1 23.8 3.7

0.35 15 21.6 19.9 49.9 24.7 3.9

Table 2.2: Branching fractions of all decay channels computed for fixed values: |sα| =
0.1, 0.2, 0.35, w = 5 v, 10 v, 15 v and mS = 1000 GeV. The BRLO

HH is computed for positive
and negative sα values while the other branching fractions are only computed for sα > 0.
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Finally, the branching fractions corresponding to the rare decay channels are totally inde-
pendent from sα and w (considering the sα and w values reported in Tab.(2.1) and Tab.(2.2))
and give:

• For mS = 400 GeV:
BRLO

Sb̄b = 0.02% , BRLO
Sc̄c = 0.002% , BRLO

Sgg = 0.06% , BRLO
Sτ+τ− = 0.001% , BRLO

SZγ =

0.002% and BRLO
Sγγ = 0.0003%;

• For mS = 1000 GeV:
BRLO

Sb̄b = 0.003% , BRLO
Sc̄c = 0.0002% , BRLO

Sgg = 0.01% , BRLO
Sτ+τ− = 0.0002% , BRLO

SZγ =

0.00006% and BRLO
Sγγ = 0.00003%.
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Chapter 3

Renormalization of the SSM

It is typical of quantum field theories to contain divergent amplitudes (in terms of Ultraviolet
"UV" and/or Infrared "IR" divergences) when higher order corrections are taken into account.
At the tree-level, the parameters in the Lagrangian (called "bare") are directly connected
to the experimental quantities. As a consequence of the higher order corrections, the bare
quantities differ from the corresponding physical ones for the UV- and/or IR-divergent factors
which arise from the loop integral calculations. However, the so-called regularization procedure
ensures that these integrals become convergent and allows us to isolate their divergent terms.
We consider an example of UV-divergent loop integral to introduce the regularization concept:

I(k,m) =

∫
d4k

(2π)4

1

(k2 −m2 + iε)2
, (3.1)

where k is the momentum associated with the internal propagator, m is the mass of the
particle which circles in the loop and +iε indicates the loop Feynman prescription [28]. Two
of the most used regularization processes are: i) the Pauli-Villars regularization [51]; ii) the
Dimensional regularization [52]. The first one subtracts the same loop integral with a much
larger mass, called Λ (regulator), as follows:∫

d4k

(2π)4

1

(k2 −m2 + iε)2

regularized

−→
∫

d4k

(2π)2

[
1

(k2 −m2 + iε)2
− 1

(k2 − Λ2 + iε)2

]
, (3.2)

where the subtracted piece needed to regulate UV divergence is regarded as a contribution of
another massive field (Pauli-Villar field) with the same quantum numbers and opposite statis-
tics as the original field. This method has the benefit of maintaining the Lorentz invariance in
the momentum space. As a result, the propagator for large momenta decreases faster, which
ensures the convergence of the integrals. After the Wick rotation, the divergences manifest
themselves as logs and powers of Λ2 and I(k,m) gives:

I(k,m)
regularized

−→ − i

16π2
ln

(
m2

Λ2

)
. (3.3)
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Even though Pauli-Villar approach works for the photon at one-loop order, it fails in more
complicated scenarios like non-Abelian gauge theories (violation of the gauge invariance) or
multi-loop calculations (many Pauli-Villar fields have to be introduced).
On the contrary, the dimensional regularization (which will be used throughout the rest of
this thesis) avoids these problem. The main feature is the integration over the loop momenta
in D dimension, defined as D = 4−2ε, where ε is a small parameter which works as regulator.
In this approach, the usual divergent form is given in terms of ε as follows [28]:∫

dDk

(2π)D
1

(k2 −m2 + iε)2
=

i

16π2

[
1

ε
− ln

(
m2

4π

)
+ γEM

]
, (3.4)

where γEM is the Eulero-Mascheroni constant γEM ∼ 0, 5772 [53].

A regularized quantum field theory is obtained thanks to the renormalization which is the
fundamental technique to consistently identify and remove the "infinities". As soon as all
divergences are regulated, they have to be canceled against each other in a consistent way in
order to obtain a finite result for each physical quantity. In this thesis, we have used for the
renormalization procedure the so-called counterterm approach by which the bare Lagrangian
parameters X0 are expressed as the sum of finite renormalized quantities X and the divergent
renormalization constants δX, called counterterms:

X0 → X + δX . (3.5)

These are fixed by the renormalization conditions which connect the physical and renormalized
parameters and can be arbitrarily defined, as we will illustrate in the next section. Notice that
the radiative corrections modify the normalization factor of the fields by adding an infinite
part. This causes that the Green functions could be divergent, even if we obtain finite S-
matrix elements, and implies that the fields also have to be renormalized in order to get finite
propagators and vertices. Consistently to the Lagrangian parameters, a bare field φ0 can be
renormalized by a similar procedure:

φ0 =
√
Zφ φ ∼

(
1 +

δZφ
2

)
φ , (3.6)

where Zφ is called field renormalization constant.
Let us introduce the renormalized quantities and counterterms of our interest:

• Gauge Sector:
The gauge boson masses mV (with V = Z,W ), the Weinberg angle θW and the electric
charge e counterterms are defined in the following way:

(m2
V )0 = m2

V + δm2
V , (3.7)

(θW )0 = θW + δθW , (3.8)
e0 = (1 + δZe)e . (3.9)
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Obviously, the insertion of δθW implies that the relations between the mass and gauge
basis in eq.(1.14) and eq.(1.15) are not valid to all orders. We also need the field
renormalization constants for W±, Z0 and γ defined as:

W±
0 =

(
1 +

1

2
δZW

)
W±, (3.10)(

Z0

γ0

)
=

(
1 + δZZ

2

δZZγ
2
− δθW

δZγZ
2

+ δθW 1 + δZγ
2

)(
Z
γ

)
, (3.11)

where in the last line we explicitly show the counterterms entering in the mixing matrix
of the neutral gauge bosons. Notice that we can rewrite δθW as δs2

W/(2sW cW ) using:
δθW = δsW/cW and δsW = δs2

W/(2sW ).
Typically, the gauge-fixing and the ghost Lagrangian, LGF and Lghosts, are considered in
terms of already renormalized quantities [29, 35]. In this way, no additional counterterms
have to be introduced for the linear (ξi)0, (ξ′i)0 gauge parameters: (ξi)0, (ξ′i)0 ≡ ξi, ξ

′
i.

• Fermion Sector:
The fermion mass counterterms and the left and right -handed fermionic fields are
defined through:

(mf )0 = mf + δmf , (3.12)

fL,R
0 i =

(
δij +

1

2
δZL,R

f ij

)
fL,R
j , (3.13)

where fL,R = P L,Rf with P L,R = (1∓ γ5)/2.

• Higgs Sector:
Considering Lscalar of eq.(1.2) expressed in the gauge basis, we have that the bare pa-
rameters, the scalar masses and the vevs counterterms are shifted as:

λ0 = λ+ δλ , (3.14)
ρ0 = ρ+ δρ , (3.15)
κ0 = κ+ δκ , (3.16)
µ2

0 = µ2 + δµ2 , (3.17)
(µs)

2
0 = µ2

s + δµ2
s , (3.18)

v0 = v + δv , (3.19)
w0 = w + δw , (3.20)

while the gauge field renormalization constants and the tadpole counterterms are given
by:

φ0 =

(
1 +

δZφ
2

)
φ , (s0)0 =

(
1 +

δZs0

2

)
s0 , (3.21)

(Tφ)0 = Tφ + δtφ , (Ts0)0 = Ts0 + δts0 . (3.22)
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We can also define the counterterms in the mass basis where the mixing angle and the
scalar masses arise (after the diagonalization α, mS and mH become functions of the
scalar Lagrangian parameters):

α0 = α + δα , (3.23)
(m2

H)0 = m2
H + δm2

H , (3.24)
(m2

S)0 = m2
S + δm2

S . (3.25)

Notice that, differently from the approach of [29], we have introduced the mixing angle
counterterm δα instead of the mixed mass counterterm δm2

HS. The insertion of δα
corresponds to shift the rotation matrix as

U(α)→ U ′(α + δα) = U(α) + U(δα) ,

where the application of U ′(α + δα) now diagonalizes the loop corrected mass matrix.
However, the two approaches are related as follows 1:

δm2
HS = (m2

S −m2
H)δα (3.27)

As a consequence of such a relation, the full set of counterterms associated with the
mixing scalar sector are defined according to the choice of δm2

HS or δα.
Promoting eq.(1.7) to be valid to all orders (α0 ≡ α), we obtain the following field
renormalization constants associated with the scalar physical fields,(

H0

S0

)
=

(
1 + δZH

2
δZHS

2
δZSH

2
1 + δZS

2

)(
H
S

)
, (3.28)

and the mixed mass counterterm δm2
HS has to be used.

On the other hand, we can also avoid to promote the mixing angle to be fixed to
all orders, as it was previously stated for δθW , and this implies that the two physical
scalar fields are shifted to the renormalized fields and the wave function renormalization
constants as (

H0

S0

)
=

(
1 + δZH

2
δZHS

2
− δα

δZSH
2

+ δα 1 + δZS
2

)(
H
S

)
. (3.29)

1To determine the relation which links the two approaches, we have required the off-diagonal terms of the
following matrix are zero:

U ′(α+ δα) ·

[
U(α)−1 ·

(
m2
H δm2

HS

δm2
HS m2

S

)
· U(α)

]
U ′(α+ δα)−1 = diag(m2

H , m
2
S) . (3.26)
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In this case δm2
HS has to be replaced by δα as described in eq.(3.27).

The tadpoles in the mass basis (TH and TS) are related to those in the gauge basis (Tφ
and Ts0) by the mixing, (

TH
TS

)
0

=

(
cα −sα
sα cα

)(
Tφ
Ts0

)
0

, (3.30)

where Tφ and Ts0 follow the relations in eq.(3.22).

• Three-point Vertex:
We define the vertex counterterms as,

V0 = V (1 + δV ) , (3.31)

where V0 is a short-hand notation for a generic coupling.

3.1 Renormalization Schemes
The choice of the renormalization scheme involves the counterterm definitions which are nec-
essary to absorb the UV-divergent contributions from higher order amplitudes. We will fix
the renormalization constants for the masses and fields through the so-called on-shell scheme
(OS)2 which allows us to choose the counterterms such that the physical and the finite renor-
malized parameters are the same to all orders of perturbation theory. For the counterterms
associated with the scalar mixed mass (or alternatively, the scalar mixing angle) and non-
diagonal fields, we can construct a set of schemes which are not necessarily bound to the OS
conditions since there is no natural way of defining these counterterms through a physically
motivated renormalization scheme. In this regard, we have to pay attention to the definitions
of these schemes since some of them manifest a gauge dependence in the physical observ-
ables. We will introduce the renormalization of the mixing scalar sector through two different
schemes, called minimal field (MF) and improved on-shell (iOS), where the first one contains
gauge-dependent counterterms while the second one is completely gauge-invariant [29].

Now, we clarify the formulation of the OS renormalization conditions discussing an exam-
ple where only one spinless self-interacting scalar particle is considered (for example, it can
get trilinear or quartic self-couplings as shown in lower panel of Fig.(3.1)), described by the
bare field Υ0 and bare mass m0, and working on the propagator and two-point correlation
function definitions. The bare definitions corresponding to this scalar field are shifted as:
Υ0 → (1 + δZΥ/2)Υ and m2

0 → m2 + δm2. The treatment concerning the MF and iOS renor-
malization conditions can be described subsequently.

2This renormalization scheme was proposed for the first time in [54].
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The bare propagator of the Υ0 field, which we call G0(p2), can be defined as [28]:

G0(p2) =

∫
d4x

〈
Ω
∣∣T Υ0(x)Υ∗0(0)

∣∣Ω〉ei p·x =

=
√
Z∗Υ

[ ∫
d4x

〈
Ω
∣∣T Υ(x)Υ∗(0)

∣∣Ω〉ei p·x]√ZΥ =

=
√
Z∗Υ Ĝ(p2)

√
ZΥ , (3.32)

where the integral is computed over all space-time configurations x,
∣∣Ω〉 is the vacuum state of

this scalar toy theory, T is the time-ordering operator and Ĝ(p2) is the renormalized propagator
(the quantities Q to be renormalized will be denoted through the "hat" symbol, Q̂).
The bare propagator G0(p2) can also be defined as the sum of all one-particle irreducible 3

(1PI) contributions to the self energy of the scalar field Υ0, indicated with iΣ1PI(p
2) (see

Fig.(3.1)) [28]:

G0(p2) =
i

p2 −m2
0

+
i

p2 −m2
0

(iΣ1PI(p
2))

i

p2 −m2
0

+ ...+
i

p2 −m2
0

(
−Σ1PI(p

2)

p2 −m2
0

)n
=

=
i

p2 −m2
0

[
1 +

(
−Σ1PI(p

2)

p2 −m2
0

)
+ ...+

(
−Σ1PI(p

2)

p2 −m2
0

)n]
=

=
i

p2 −m2
0

 1

1 + Σ1PI(p2)

p2−m2
0

 =
i

p2 −m2
0 + Σ1PI(p2)

, (3.33)

where n represents the infinite 1PI loop-levels. By comparing eq.(3.32) and eq.(3.33), we

Figure 3.1: Upper plot: 1PI-loop structure of the propagator G0(p2); lower plot: examples of
loops contained in the 1PI contribution to the self-energy; the "black dots" depict the positions
where the external propagators have to be connected.

3These contributions are described by the complete set of self energy loop-contributions which cannot be
separated into two distinct diagrams by a cut of one internal line. As shown in Fig.(3.1), the tadpoles (which
can be separated into two distinct diagrams by a single cut) are excluded for simplicity since it is possible to
assume an appropriate renormalization condition which removes them [28].
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obtain the following renormalized propagator in terms of the physical quantities:

Ĝ(p2) =
i√

Z∗Υ

[
p2 −m2 − δm2 + Σ1PI(p2)

]√
ZΥ

≈

≈ i

p2 −m2 + Σ̂1PI(p2)
, (3.34)

and this automatically implies that Σ̂1PI(p
2) is given by,

Σ̂1PI(p
2) = Σ1PI(p

2) + (p2 −m2)

(
δZ∗Υ + δZΥ

2

)
− δm2 , (3.35)

with
√
Z∗Υ,

√
ZΥ expanded as eq.(3.6). Using these compact results, the two-point correlation

function (the inverse of the propagator) can be directly defined as:

Γ̂(p2) = i[p2 −m2 + Σ̂1PI(p
2)] ≈

≈ i(p2 −m2)

(
1 +

∂Σ̂1PI(p
2)

∂p2

∣∣∣∣
p2=m2

)
= i(p2 −m2)(−i)∂Γ̂(p2)

∂p2

∣∣∣∣
p2=m2

, (3.36)

where the last row is obtained after an expansion around the pole of the propagator at
p2 = m2.
At this point, the formulation of the OS renormalization conditions, which requires that
physical and finite renormalized parameters are equivalent to all orders of perturbation theory,
becomes more intuitive by considering two main assumptions:
i) The renormalized mass parameter of the physical particle is fixed by imposing that it is
equal to the physical mass and by the fact that the real parts of the pole of the corresponding
propagator is equivalent to the zero of the 1PI self energy contributions:

Re{(−i)Γ̂(m2)} = 0 → Re{Σ̂1PI(m
2)} = 0 ; (3.37)

ii) The physical field Υ is properly normalized through fixing the residue of the propagator
at its pole to i :

Re

{
∂Γ̂(p2)

∂p2

∣∣∣∣
p2=m2

}
= i → Re

{
∂Σ̂1PI(p

2)

∂p2

∣∣∣∣
p2=m2

}
= 0 ; (3.38)

In our toy model these conditions are equivalent to:

δm2 = ReΣ1PI(m
2) and δZΥ = −ReΣ′1PI(m

2) , (3.39)

where Σ′ is a short-hand notation for Σ′(p2) = ∂Σ(p2)/∂p2. It is important to point out
that, in the case where the scalar field develops a non-zero vacuum expectation value, the
renormalization condition for the tadpole TΥ has to be considered.
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3.2 Renormalization Conditions and Counterterms
We will apply the same treatment discussed above to the SSM Lagrangian fields in order to
determine the renormalization conditions through their respective propagators or two-point
correlation functions 4. For the two-point correlation functions we have:

Γ̂VV
′

µν (p2) =− igµν(p2 −m2
V)δVV

′ −

− i
(
gµν − pµpν

p2

)
Σ̂VV

′

T (p2)− ip
µpν

p2
Σ̂VVL (p2) , (3.40)

Γ̂fij(p) = i(/p−m)δij +

+ i
[
/p(P

LΣ̂f,L
ij + PRΣ̂f,R

ij ) + (mf, iP
L +mf, jP

R)Σ̂f, S
ij

]
, (3.41)

Γ̂SS
′
(p2) = i(p2 −m2

S)δSS
′
+ iΣ̂SS

′
(p2) . (3.42)

Here, the functions corresponding to the gauge bosons are defined in the ’t Hooft-Feynman
gauge which will be used throughout the rest of this work; furthermore, Σ1PI is now indicated
as Σ, mS/V is the mass of the incoming particle and (VV ′,SS ′) can be one of the combinations
{WW,ZZ, γγ, γZ, Zγ} and {HH,SS,HS, SH}, respectively. Σ̂VV

′
T and Σ̂VV

′
L are the trans-

verse and longitudinal contributions to the self-energies while the superscripts Σ̂f,L
ij , Σ̂f,R

ij and
Σ̂f, S
ij stand for the left-handed, right-handed and scalar parts of the renormalized self-energies.

The definitions of Σ̂(p2) are given by [29, 33]:

R̃eΣ̂WW
T (p2) = R̃eΣWW

T (p2) + δZW (p2 −m2
W )− δm2

W , (3.43)

ReΣ̂ZZ
T (p2) = ReΣZZ

T (p2) + δZZ(p2 −m2
Z)− δm2

Z , (3.44)

ReΣ̂γγ
T (p2) = ReΣγγ

T (p2) + p2δZγγ , (3.45)

ReΣ̂γZ
T (p2) = ReΣγZ

T (p2) +
1

2
δZγZ(2p2 −m2

Z) +m2
ZδθW , (3.46)

ReΣ̂f (p2) = ReΣ̂f
V(p2) +ReΣ̂f

A(p2) , (3.47)

ReΣ̂HH(p2) = ReΣHH(p2) + δZH(p2 −m2
H)− δm2

H , (3.48)

ReΣ̂SS(p2) = ReΣSS(p2) + δZS(p2 −m2
S)− δm2

S , (3.49)

ReΣ̂HS(p2) = ReΣ̂SH(p2) = ReΣHS(p2) + (m2
H −m2

S)δα+

+

[
δZHS

2
(p2 −m2

H) +
δZSH

2
(p2 −m2

S)

]
, (3.50)

where R̃e takes the real part of the loop integrals only and it does not remove the imaginary
parts arising from the various couplings of the theory (e.g. from complex CKM matrix
elements; if these coupling are chosen to be real, the replacement R̃e → Re is valid at the

4The only three-point function needed is associated with e+e−γ vertex. This fixes δZe.
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one-loop order) while Σ̂f
V,A(p2) in eq.(3.47) are defined as:

Σ̂f
V(p2) = /pΣ

f
V(p2) + (/p−mf )δZf V +mfΣ

f
S(p2)− δmf , (3.51)

Σ̂f
A(p2) = − /pγ5

(
Σf

A(p2) + δZf A

)
, (3.52)

with δZf V,A = (δZL
f ± δZR

f )/2 and Σf
V,A = (Σf L ± Σf R)/2.

We can impose the following conditions on the renormalized self-energy functions in the OS
scheme [33, 55]:

ReΣ̂HH(m2
H) = 0 , ReΣ̂

′HH(p2)|p2=m2
H

= 0 , (3.53)

ReΣ̂SS(m2
S) = 0 , ReΣ̂

′SS(p2)|p2=m2
S

= 0 ,

R̃eΣ̂WW
T (m2

W ) = 0 , R̃eΣ̂
′WW
T (p2)|p2=m2

W
= 0 ,

ReΣ̂ZZ
T (m2

Z) = 0 , ReΣ̂
′ZZ
T (p2)|p2=m2

Z
= 0 ,

ReΣ̂γγ
T (0) = 0 , ReΣ̂

′γγ
T (p2)|p2=0 = 0 ,

ReΣ̂Zγ
T (m2

Z) = 0 , ReΣ̂γZ
T (0) = 0 ,

R̃eΣ̂f
V(m2

f ) = 0 , R̃eΣ̂
′f
V,A(p2)|p2=m2

f
= 0 .

Notice that no renormalization condition for the mixing scalar sector is fixed. These conditions
are set up in the MF and iOS schemes as:

• Improved on-shell (iOS)
This scheme requires that loop-induced S −H or H − S transitions vanish for on-shell
external scalar states:

ReΣ̂HS(p2)
∣∣
p2=m2

H
= 0 , ReΣ̂HS(p2)

∣∣
p2=m2

S
= 0 . (3.54)

• Minimal field (MF):
Here, the off-diagonal renormalized self-energies are canceled out at an arbitrary renor-
malization scale, called µR:

ReΣ̂HS(p2)
∣∣
p2=µ2

R
= 0 . (3.55)

As a consequence of eq.(3.55), we can note that for µ2
R 6= m2

H , m
2
S the physical H and

S states can oscillate when we compute vertices with scalar legs on their mass shell
(p2 = m2

H , m
2
S) since the off-diagonal terms in the propagator matrix, which we call

∆−1
scalar, are different from zero:

∆−1
scalar

∣∣
MF

=

(
p2 −m2

H + Σ̂HH(p2) Σ̂HS(p2)
∣∣
p2=µ2

R

Σ̂SH(p2)
∣∣
p2=µ2

R
p2 −m2

S + Σ̂SS(p2)

)
. (3.56)
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Thus, these vertices need the following additional finite terms (for any scalar leg) which
compensate the residual S −H or H − S loop contributions [29, 56]:

ẐHS = −ReΣ̂
HS(m2

H)

m2
H −m2

S

, ẐSH = −ReΣ̂
HS(m2

S)

m2
S −m2

H

. (3.57)

Obviously, the diagonal fields depend on the OS conditions and this implies that ẐH =
ẐS = 1.

3.2.1 Explicit Form of the OS Counterterms

From the full set of OS renormalization conditions in eq.(3.53) and eqs.(3.43-3.49) we can
extract the following counterterms:

• Mass Counterterms:

δmf = mf R̃e[Σ
f
V(m2

f ) + Σf
S(m2

f )] , (3.58)

δm2
H = ReΣHH(m2

H) , (3.59)
δm2

S = ReΣSS(m2
S) , (3.60)

δm2
W = R̃eΣWW

T (m2
W ) , (3.61)

δm2
Z = ReΣZZ

T (m2
Z) . (3.62)

• Field Renormalization Constants:

δZf V = −R̃eΣf
V(m2

f )− 2m2
f R̃e

(
Σ
′f
V (p2) + Σ

′f
S (p2)

)∣∣
p2=m2

f

, (3.63)

δZf A = −R̃eΣf
A(m2

f )− 2m2
f R̃eΣ

′f
A (p2)

∣∣
p2=m2

f

, (3.64)

δZH = −ReΣ′HH(p2)
∣∣
p2=m2

H
, (3.65)

δZS = −ReΣ′SS(p2)
∣∣
p2=m2

S
, (3.66)

δZW = −R̃eΣ′WW
T (p2)

∣∣
p2=m2

W
, (3.67)

δZZ = −ReΣ′ZZT (p2)
∣∣
p2=m2

Z
, (3.68)

δZγγ = −ReΣ
′γγ
T (p2)

∣∣
p2=0

, (3.69)

δZγZ = 2Re
ΣγZ
T (0)

m2
Z

+
δs2

W

sW cW
. (3.70)

• Tadpoles:

δTH = −TH , δTS = −TS . (3.71)
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• Derived Quantities:

δZW = δZγγ +
cW
sW

δZγZ , (3.72)

δs2
W = −δc2

W = c2
W

(
δm2

Z

m2
Z

− δm2
W

m2
W

)
, (3.73)

δZe = −1

2
δZγγ +

sW
cW

ReΣγZ
T (0)

m2
Z

, (3.74)

where the constant δZe is obtained by requiring the electric charge to be equal to the
full f̄fγ-vertex in the Thompson limit and imposing that all corrections to the f̄fγ
coupling vanish on-shell and for zero momentum transfer (we use f to be more general
since this result is independent on the fermion species) [33] 5. Concerning the correction
to the electric charge (δZe) we need to clarify the appearance of ambiguities associated
with the definition of the mass singularities due to light fermions (quarks and leptons)
in ln(m2

Z/m
2
f ). The first approach is related to the fine structure constant αem(q2),

at Q2 = m2
Z , which has to be imposed as input parameter. This choice modifies the

definition of δZe as [33]:

δZe
∣∣
Q2=m2

Z
= δZe

∣∣
Q2=0

− 1

2
∆αem(m2

Z) , (3.75)

where ∆αem(m2
Z) depends on the light-fermion contributions only (denoted with the

index "light"):

∆αem(m2
Z) = −δZ light

γγ +

(
ReΣγγ

T (m2
Z)

m2
Z

)light

. (3.76)

Notice that these light-terms are canceled out when eq.(3.74) and eq.(3.76) are inserted
in eq.(3.75).
The second approach is based on the so-called modified on-shell mass scheme (MOMS)
[57], in which the electric charge is replaced by the Fermi constant GF via

GF√
2

=
e2

8s2
Wm

2
W

1

1−∆r
. (3.77)

The quantity ∆r represents finite corrections to GF ; these are well known and up to
O(α2

em) are given by [57, 58]:

∆r =
R̃eΣ̂WW

T (0)

m2
W

+
αem

4πs2
W

[(
7

2s2
W

− 2

)
ln c2

W + 6

]
+O(δrSSM) , (3.78)

5Our expression of δZe differs from the one quoted in [33] because of a different sign convention in the
definition of the covariant derivative, see eq.(1.12).
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where R̃eΣ̂WW
T (p2) is the renormalized transverse self-energy of the W boson at mo-

mentum transfer p defined in eq.(3.43); the second term is due to the vertex-box loop
corrections in the muon decay process and O(δrSSM) includes the negligible contribu-
tions arising from the insertion of the scalar singlet field 6.
The use of GF instead of the electric charge amounts to shift δZe → δZ ′e = δZe−∆r/2;
if in ∆r we use the "derived form" of δZW of eq.(3.72) then the cancellation of the δZγγ
in the final counterterm expression is guaranteed and no problem arises from the light
fermion loop contributions. This is verified as follows:

δZ ′e = δZe −
∆r

2
=

(
−1

2
δZγγ +

sW
cW

ReΣγZ
T (0)

m2
Z

)
+

(
−R̃eΣ̂

WW
T (0)

2m2
W

− Cmuon

2

)
=

=

(
−1

2
δZγγ +

sW
cW

ReΣγZ
T (0)

m2
Z

)
+

(
−R̃eΣ

WW
T (0)

2m2
W

+
δZW

2
+
δm2

W

2m2
W

− Cmuon

2

)
=

=

(
sW
cW

ReΣγZ
T (0)

m2
Z

)
+

(
−R̃eΣ

WW
T (0)

2m2
W

+
cW
2sW

δZγZ +
δm2

W

2m2
W

− Cmuon

2

)
, (3.79)

where δZγZ is defined in eq.(3.70) and Cmuon represents the vertex-box loop corrections
described by second term in eq.(3.78) (by substituting the numerical values of its pa-
rameters we obtain: Cmuon ∼ 0.0066). Thus, the full expanded form of δZ ′e is given
by:

δZ ′e =
δm2

W

2m2
W

+
δs2

W

2s2
W

+
ReΣγZ

T (0)

sW cWm2
Z

− R̃eΣWW
T (0)

2m2
W

− Cmuon

2
. (3.80)

It is important to observe that, differently from the αem-approach where we have mW

and mZ as input values, in the MOMS scheme mW is not an input parameter. It is
replaced by GF in the following way:

m2
W =

m2
Z

2

(
1 +

√
1− 4παem√

2GF m2
Z

[
1

1−∆r

] )
, (3.81)

with ∆r ' 0.04.

3.2.2 Explicit Form of the iOS Counterterms

The iOS definitions of δZ ios
HS ,SH (we indicate with the superscript "ios" the counterterm of the

mixing scalar sector arising from the iOS renormalization conditions) are determined using
eq.(3.50) and eq.(3.54). These equations lead to [29],

δZ ios
HS

2
=

ReΣHS(m2
S)

m2
H −m2

S

+ δαios ,
δZ ios

SH

2
=

ReΣHS(m2
H)

m2
S −m2

H

− δαios . (3.82)

6In the SSM, the new contributions to ∆r generates a maximum variation of O(0.1)% for |sα| ∼ 0.2 [26].
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On the other hand, the mixed mass (mixing angle) counterterm is defined in the following
way [29]:

δm2 ios
HS = (m2

S −m2
H) δα ios = ReΣHS(p∗2)

∣∣∣∣
p∗2=

m2
H

+m2
S

2

, (3.83)

where p∗2 is fixed to the average mass. The reason for such a choice of p∗2 lies on the fact
that the mixed scalar self-energy at p∗2 is independent on the gauge-fixing scheme. The
gauge independence of the iOS scheme is also discussed in [59] where it is shown how the
mixed scalar self energy at p∗2 = (m2

H + m2
S)/2 coincides with the gauge invariant part of

the same quantity obtained through the so-called pinch technique, which generally allows the
construction of off-shell Green’s functions in non-Abelian gauge [60] or extended scalar [61]
theories that are independent of the gauge-fixing parameter. For example, in [61] the authors
calculate the NLO corrections to the Higgs boson couplings based on the OS renormalization
scheme by using the pinch technique to remove the gauge dependence. The cancellation of the
gauge dependence is also directly proven in the Higgs boson two-point functions computed
in the linear Rξ gauge by adding "pinch-terms" which are extracted from vertex corrections
and box diagrams of a fermionic scattering process of the type f̄f → f̄f .

3.2.3 Explicit Form of the MF Counterterms

To fix the non-diagonal scalar field renormalization δZ mf
HS (the superscript "mf" indicates the

counterterm of the mixing scalar sector arising from the MF renormalization conditions) are
determined using eq.(3.50) and eq.(3.54), we consider the renormalization factor for the bare
scalar doublet (φ)0 and singlet fields (s0)0 in the gauge basis (reported in eq.(3.21)). This
prescription is very similar to the renormalization procedure of the Higgs sector used in SM
extensions like the 2HDM [62] and the MSSM [56]. Using the same orthogonal transformation
introduced for the mass eigenstates, the physical wave functions for the scalar fields can be
expressed in terms of the gauge basis ones δZφ,s0 as [29]:

δZ mf
H = c2

αδZφ + s2
αδZs0 , (3.84)

δZ mf
S = c2

αδZs0 + s2
αδZφ , (3.85)

δZ mf
HS, SH = sαcα(δZφ − δZs0) =

1

2
t2α(δZ mf

H − δZ mf
S ) , (3.86)

with t2α = tan 2α. These relations simplify in the so-called "MS scheme" where δZMS
s0 = 0 7

[29]:

δZ mf
H = c2

αδZφ , δZ mf
S = s2

αδZφ , δZ mf
HS, SH = sαcα(δZ mf

H − δZ mf
S ) . (3.87)

7The use of the MS scheme also allows us to neglect the counterterm δw in the physical definition of
w, which is promoted to be an independent input parameter. Thus, no singlet vev counterterm appears
in the one-loop calculations: δwMS = 0. Since δZs0 does not appear in the iOS scheme prescription, the
renormalization condition on δw can be automatically imposed: δwMS

ios = 0 .

41



Notice that δZ mf
HS is not an independent counterterm; in addition the mixed mass (mixing

angle) counterterm is obtained by imposing the renormalization condition in eq.(3.55). In
doing so, we have:

δm2 mf
HS = (m2

S −m2
H)δαmf = ReΣHS(µ2

R) + δZ mf
HS

(
µ2
R −

m2
H +m2

S

2

)
. (3.88)

3.2.4 Equivalence of the MF and iOS Schemes

Assuming p∗2 = µ2
R = (m2

H + m2
S)/2, we can prove the equivalence of the MF and the iOS

schemes at this scale 8. To this aim, it is enough to take into account a three-point interaction
where there is at least one of the SSM scalar fields.
Let us consider a generic S → ij interaction described by the LO coupling gSij, where i
and j can be any possible fields which interact with the S field. For simplicity, we neglect
only the S → HH channel which implies a more complicated NLO coupling structure (the
equivalence which we will discuss below can be easily proven for the S → HH case). The
counterterms associated with MF and iOS schemes only appear in the renormalized coupling
at the NLO (gNLO

Sij ) which is described by the generic Feynman diagrams reported in Fig.(3.2)
and assumes the following form (for simplicity we use the δm2

HS prescription where no mixing
angle counterterm arises):

gNLO
Sij = gSij

[
1 +

δZS + δZi + δZj
2

+
gHij
gSij

(
δZHS

2
+ ẐSH

)
+
δgSij
gSij

+ δVSij

]
, (3.89)

where δZS, i, j are the renormalization constants associated with the three external fields, gHij
represents the general Hij coupling which multiplies the counterterms due to the mixing of
S → H, δgSij can be expressed in terms of the counterterms which depend on the parameters
contained in the gSij expanded form and δVSij is associated with the vertex correction. The
only terms, which have different definitions in the two renormalization schemes, are those in
eq.(3.89) inside the parenthesis (...) :(

δZHS
2

+ ẐSH

)
=

δZHS
2

+
ReΣ̂HS(m2

S)

m2
H −m2

S

, (3.90)

with ẐSH = 0 for the iOS renormalization condition (see eq.(3.54)). Therefore, we can verify
the equivalence of these schemes discussing the following relation:

δZ ios
HS

2
?
=

δZmf
HS

2
+
ReΣ̂HS(m2

S)

m2
H −m2

S

, (3.91)

8Obviously, the equivalence of these schemes implies that the gauge dependence of the MF scheme disap-
pears only if µ2

R = (m2
H +m2

S)/2.

42



Figure 3.2: Feynman diagrams associated with the NLO corrections to the LO coupling gSij
with ij 6= HH.

where the renormalized mixed scalar self energy, ReΣ̂HS(p2), is defined in eq.(3.50) and has
to be expanded only in terms of the MF counterterms. Now, we must consider the following
aspects of MF renormalization scheme: i) the definition of δm2 mf

HS , shown in eq.(3.88); ii)
the relation between the mixed field renormalization constants: δZmf

HS = δZmf
SH . Using such

definitions, eq.(3.50) becomes:

ReΣ̂HS(p2) = ReΣHS(p2)−ReΣHS(µ2
R) + δZmf

HS(p2 − µ2
R) . (3.92)

Introducing eq.(3.82), eq.(3.83) and eq.(3.92) into eq.(3.91), we get:

ReΣHS(m2
S)−ReΣHS(p∗2)

m2
H −m2

S

?
=

ReΣHS(m2
S)−ReΣHS(µ2

R)

m2
H −m2

S

+

+
δZmf

HS

m2
H −m2

S

(
m2
H +m2

S

2
− µ2

R

)
. (3.93)

This equivalence is confirmed by substituting p∗2 = µ2
R = (m2

H +m2
S)/2; in fact the last term

is cancelled out and the remaining terms become identical.

Hereafter,
we will treat the NLO decay rates of our interest in terms of the iOS counterterms
preserving the gauge invariance in the physical observables. On the other hand, we
separately give a comment on the gauge-dependent results using the MF prescription for
fixed values of µ2

R 6= p∗2 in order to roughly analyze the impact of the gauge dependence
on the decay rates.
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Chapter 4

Singlet Decay Widths at the
Next-to-Leading Order

In order to calculate the NLO decay widths, we have to absorb the higher order contributions
in the absolute square of the process amplitudes (|MNLO

Sij |2):∣∣MNLO
Sij

∣∣2 =
∣∣MLO

Sij +M1L
Sij

∣∣2 ≈ ∣∣MLO
Sij|2 + 2Re[MLO

SijM1L∗
Sij ] +O2L , (4.1)

with i, j generic fields entering the process under study (the superindices "1L" and "2L"
stand for "one-loop" and "two-loops", respectively). Notice that we are neglecting the "2L"
- orders (NNLO). We can define the amplitudesMLO, 1L

Sij in the following way:

MLO
Sij = gSij ALO , M1L

Sij = gSij ALO δA1L , (4.2)

where gSij is the interaction coupling, ALO includes the polarization or spinorial structures (in
the scalar case ALO = 1) and δA1L represents all possible NLO correction terms. Following
eq.(2.2), ΓLO becomes proportional to g2

Sij

∑
d.o.f |ALO|2 and the decay rate at NLO assumes

the following form:

ΓNLO ≈ ΓLO
[
1 + 2δA1L

]
. (4.3)

The one-loop corrected decay width may also receive a supplementary contribution due to real
corrections which occur when some of the external particles are charged. These additional
contributions are typically called "brems-strahlung" and "gluons-strahlung" processes (we
will discuss in details these contributions for S → W+W−, f̄f decay rates) in the case of
photon and gluon emissions, respectively. As a consequence of the external charged states,
δA1L is affected by infrared (IR) divergences since photon or gluon propagators may appear in
the loops. In this case, the role of the brems- and gluons- strahlung processes is to regularize
these divergences and we generally have:

ΓNLO ≈ ΓLO
[
1 + 2δA1L

]
+ Γbrems + Γgluon , (4.4)
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where the last term represents the photon and the gluon emission contributions to the process.
We will determine in the next sections the NLO decay widths for the dominant S decay
channels.

4.1 NLO Decay Width to Gauge Bosons
In this section we apply the renormalization procedure described in Sect.3.2 to the vertex of
the scalar field S with two gauge bosons. The tree-level amplitude for the S → V V decays
(with V = W±, Z) is given by:

MLO
[
S(k)→ V (p, a)V (q, b)

]
= MLO

SV V = −i ρV ×
[
gµνεaµ(p)εbν(q)

]
, (4.5)

where p and q are the four momenta of the vector bosons and a, b their polarizations.

Figure 4.1: Fig.(a): S field contributions to the scalar self-energies; Fig.(b): S field contri-
butions to the mixed scalar self-energies; Fig.(c): S field contributions to the W boson self
energies; Fig.(d): S field contributions to the Z boson self energies; Fig.(e): S field contribu-
tion to the SV V vertex.
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Here ρV is the SSM bare coupling 1 defined as

ρV = e
m2
V

sWmW

sα . (4.7)

The related Feynman diagrams associated with the NLO corrections are reported in Fig.(4.1);
we only show the contributions due to the insertion of the S field in the loops since diagrams
with external S fields are similar to those of the SM quoted in [57] with the external Higgs
replaced by S.
The bare coupling and the one-loop corrections to the SV V vertex can be put in the following
form [57]:

Vµν = Vµν0 + ρV T
µν
V , (4.8)

where ρV has been defined in eq.(4.7) and Vµν0 = ρV g
µν . The generic expansion of T µνV in

terms of 2-index tensors is given by [57]:

T µνV = AV kµkν + BV qµqν + CV kµqν +DV qµkν + EV gµν + iFV εµνρσkρqσ , (4.9)

where k and q are the four-vectors of the external gauge bosons. The coefficient AV , ...,FV
have to be ultra-violet (UV) finite whereas the term proportional to the antisymmetric tensor
εµνρσ vanishes due to the charge conjugation invariance for external Z bosons and also if the
gauge bosons are on the mass-shell. We decide to set the external squared momenta [p2, k2, q2]
in the S(k)V (k, a)V (q, b) vertex as [m2

S,m
2
V ,m

2
V ]. We take real gauge bosons, so that only the

coefficients DV and EV become relevant. Since the counterterms arising from the quantities
in eq.(4.7) are included in the coefficient EV , we put it in the form EV = δρV + δV EV , where
the symbol δV indicates the three point function at the one loop level and δρV ’s are:

δρW =
δm2

W

2m2
W

− δs2
W

2s2
W

+ δZW + δZe +
δZS

2
+
cα
sα

(
δZ ios

HS

2
− δαios

)
+
δsios

α

sα
, (4.10)

δρZ =
δm2

Z

m2
Z

− δm2
W

2m2
W

− δs2
W

2s2
W

+ δZZ + δZe +
δZS

2
+
cα
sα

(
δZ ios

HS

2
− δαios

)
+
δsios

α

sα
. (4.11)

Notice that we obtain δρV independent from the mixing angle counterterm using the follow-
ing substitution: δsios

α = cαδα
ios. The other counterterms entering the previous expressions

have been listed in Subsect.(3.2.1-3.2.2). To avoid the explicit presence of the light fermions
contributions to the NLO results, we use the MOMS scheme which means that δZe → δZ ′e

1Notice that for the lightest mass eigenstate H the following replacement applies in eq.(4.41):

S(k)→ H(k) =⇒ ρV → ρV cα/sα . (4.6)
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(discussed below eq.(3.78)). Performing the MOMS shift, we determine a compact form of
δρV which now we call δρV ′:

δρV
′ = δZV +

δZS
2

+
cα
sα

δZ ios
HS

2
+
δm2

V

m2
V

− R̃eΣWW
T (0)

2m2
W

+
ReΣAZ

T (0)

sW cW m2
Z

− Cmuon . (4.12)

The coefficient EV is UV-finite both for Z and W external boson pairs, as it can be explicitly
verified from the expressions of the bosonic and fermionic divergent parts quoted in Tab.(4.1)
for all counterterms (which are divided by a common factor g2/(16π2 ε)). Regarding the finite

EW EZ UVbosonic UVfermionic

δZW 3 7 19/6 −4

δZZ 7 3 −1+2c2W+18c4W
6c2W

−20+40c2W−32c4W
3c2W

δZS/2 3 3 s2α(2c2W+1)

4c2W
− s2α

∑
f Ncm

2
f

4m2
W

cαδZ
ios
HS/2sα 3 3 c2α(2c2W+1)

4c2W
− c2α

∑
f Ncm

2
f

4m2
W

δm2
W/m

2
W 3 7 6−31c2W

6c2W
4−

∑
f Ncm

2
f

2m2
W

δm2
Z/m

2
Z 7 3 7+10c2W−42c4W

6c2W

20−40c2W+32c4W
3c2W

−
∑
f Ncm

2
f

2m2
W

−R̃eΣWW
T (0)/2m2

W 3 3 2c2W−1

2c2W

∑
f Ncm

2
f

4m2
W

ReΣAZ
T (0)/sW cWm

2
Z 3 3 −2 —–

δV EW 3 7 −3+10c2W
4c2W

∑
f Ncm

2
f

2m2
W

δV EZ 7 3 −3−6c2W+16c4W
4c2W

∑
f Ncm

2
f

2m2
W

Cmuon 3 3 —– —–

Table 4.1: Coefficients of the bosonic and fermionic UV divergent parts of the relevant coun-
terterms (which are divided by the common factor g2/(16π2 ε)). The symbol 3(7) indicates
that the corresponding counterterm is present (absent) in EW,Z.

parts, we know that the S field gives negligible contributions to the corrections of the muon
decay and since there is no S field dependence in ΣAZ

T (0) [26], the new scalar contributions
only affect the bosonic parts of R̃eΣWW

T (0), δm2
Z , δZZ , δZS, δZ ios

HS and δV EV . The fermionic
contributions of R̃eΣWW

T (0), δm2
Z , δZZ and δV EV are identical to those associated to the HV V

vertex in the SM; in addition, their contributions to δZS and δZ ios
HS can be determined from

the fermion loop terms in the SM δZH expression but now multiplied by s2
α and cαsα and

with external momenta fixed to m2
S (the definition of δZ ios

HS also contains the mixed two-point
function with external momenta fixed to (m2

H +m2
S)/2).
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Notice that the renormalization of the vertex SW+W− is more complicated than the SZZ
vertex since contributions due to the photons in the loop integrals, which are plagued by
infrared (IR) singularities when the W bosons are on-shell, must be taken into account. The
IR-cancellation is obtained considering soft-photon bremsstrahlung contributions [63] which,
for the model under discussion, are shown in Fig.(4.2).

Figure 4.2: Feynman diagrams of the photon bremsstrahlung associated to the first-order ra-
diative corrected SW+W−(γ) vertex.

We call the external photon momenta as qγ whose maximum value is qmax
γ = mS(1− 4xW )/2.

In addition, to regularize the IR-divergences it is necessary to assign a virtual mass mγ to
the photon which works as an infrared regulator. Typically, a bremsstrahlung photon can be
a soft or a hard photon. Differently from hard photons which are detected in the final state,
the soft photons have typical energies smaller than the energy threshold of the experiment
and they are not detected. To set an ideal boundary between the soft and hard region, we
introduce a cutoff Λγ in such a way that the soft region corresponds to mγ ≤ qγ ≤ Λγ while
the hard region to Λγ ≤ qγ ≤ qmax

γ . The total photon-bremsstrahlung decay rate is then given
by the sum of the soft and hard contributions:

Γbrem
WW = Γsoft

WW + Γhard
WW = ΓLO

WW (δsoft
W + δhard

W ), (4.13)

where we generally have Γii = Γ(S → ii) and the correction factors δsoft
W and δhard

W are extracted
from [63]:

δsoft
W =

αem

π

{
N0 ln

(
4Λ2

γ

m2
γ

)
+ (N0 + 1)

[
N1

a1

+
2

2r − 1

]}
, (4.14)

δhard
W =

αem

π

{
N0 ln

(
m2
S

4Λ2
γ

)
+
N2 (N0 + 1)

a1

+
14

3

(
1− t

r

√
1− 1

t

)
+

+
1

N3

[
a2 − a1

2r2

(
2− 1

r

)
+

t

3r

√
1− 1

t

(
1− t

r

)(
2− 4t− 1

r

)]
−

− 2 ln

(
1− (c−d+)2

1− (c−d−)2

)
+ 4

(
t

r
a2 − b−

)}
, (4.15)
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with,

N0 = [ a1 (2− 1/r)/(
√

1− 1/r) ]− 1 , (4.16)
N1 = Li2(c2

−) + a1 (a1 − 2b−)− (π2/6) , (4.17)
N2 = Li2((c−d+)2)− Li2((c−d−)2) + Li2(c−)4 + 4a1 (a1 − b+) +

+ 2a2 ln[(1− (c−d+)2)(1− (c−d−)2)]− (π2/6) , (4.18)

N3 =
√

1− 1/r
[

1− (1/r) + (3/4r2)
]
, (4.19)

a1 = ln(c+) , a2 = ln(d+) , b± = ln(c+ ± c−) , (4.20)

c± =
√
r ±
√
r − 1 , d± =

√
t±
√
t− 1 . (4.21)

and r = m2
S/4m

2
W , t = r(1− 2qγ/mS) 2.

The mγ and Λγ dependencies show up in δZW , δV EW , δsoft
W and δhard

W , as detailed in Tab.(4.2).
The function N0 is defined in App.A.

mγ (IR regulator) Λγ (IR cutoff)

δZW
αem
2π

ln

(
m2
W

m2
γ

)
—–

δV EW
αem
2π

[N0 + 1] ln

(
m2
γ

m2
W

)
—–

δsoft
W

αem
π
N0 ln

(
m2
W

m2
γ

)
αem
π
N0 ln

(
4Λ2

γ

m2
W

)
δhard
W —– αem

π
N0 ln

(
m2
S

4Λ2
γ

)
Table 4.2: IR-dependence on mγ and Λγ in δZW , δV EW , δsoft

W and δhard
W .

Finally, the NLO total decay width which we call ΓNLO
V V can be defined as:

ΓNLO
V V =

GF

16
√

2π
m3
Ss

2
α(1 + δV )

√
1− 4xV

(
1− 4xV + 12x2

V

)
×

×
{

1 + 2

[
δρV

′ + δV EV +
m2
S

2

(
1− 6xV + 8x2

V

1− 4xV + 12x2
V

)
δV DV

]}
+ δV Γbrem

WW , (4.22)

2Notice that for qγ = qmax
γ , eq.(4.15) is reduced to,

δhard
W =

αem

π

{
N0 ln

(
m2
S

4Λ2
γ

)
− 4b− +

14

3
+

(N0 + 1)

a1

[
Li2(c−)4 − π2

6
+ 4a1 (a1 − b+)− 2a1

4r2 − 4r + 3

]}
.
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where δV DV are the corrections from the coefficient DV and δV = 0, 1 for V = Z,W± respec-
tively. Notice that the first row of eq.(4.22) is the LO decay width of eq.(2.4). Now, two
comments are in order:
i) using the mγ-dependent contributions, reported in Tab.(4.2), we can verify the cancellation
of the IR-divergences:

{ΓNLO
WW}IR = {ΓLO

WW

[
1 + δsoft

W + 2(δZW + δV EW )
]
}IR ∝

[
1 +

αem

π
N0 ln

(
4Λ2

γ

m2
W

)]
; (4.23)

ii) the combination of all terms in Tab.(4.2) is Λγ-independent at O(αem).

4.2 NLO Decay Width to Fermions
The dominant decay channel with fermionic final state is S → t̄t. The tree-level amplitude of
this process is given by:

MLO
[
S(k)→ t̄(p)t(q)

]
= MLO

Sf̄f = −i U(p) ρt V (q) , (4.24)

where ρt has the following form:
ρt = e

mt

2sWmW

sα . (4.25)

Following the same treatment for the Feynman diagrams discussed in the previous section,
we only report in Fig.(4.3) the contributions due to the insertion of the S field in the loops
since loops with the SM fields are equivalent to those quoted in [64] with the external Higgs
leg replaced by the new scalar singlet.

Figure 4.3: Fig.(a): S field contributions to the top quark self-energy; Fig.(b): S field contri-
butions to the St̄t vertex.

The bare coupling and the one-loop corrections to the St̄t vertex can be expressed as:

V = ρt(1 + Tt) , (4.26)

with Tt given by

Tt = At + Bt /k + Ct /q +Dt /k /q + Et γ5 + Ft /k γ5 + Gt /q γ5 +Ht /k /q γ5 , (4.27)
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where k and q are the four-momenta of the external top quarks. Obviously, the coefficients
At, ...,Ht which appear in the Tt expression have to be UV-finite. In addition, it is possible
to verify that the loop corrected decay rate is not affected by the γ5-terms at the NLO for
the parity conserving [28]. The coupling counterterm δρt is enclosed in At while all three-
point functions are included in the remaining terms. We call the full set of NLO three-point
corrections as δVt. As set for the SV V case, we fix the external squared momenta in the
S(p)t̄(k)t(q) vertex as: [p2, k2, q2] → [m2

S,m
2
t ,m

2
t ]. Notice that this decay channel is also

affected by QCD corrections. Therefore, we separately discuss the QCD-only contributions
(denoted with a superscript "QCD") and the remaining electroweak corrections ("EW"). This
distinction is needed for the counterterms δmt, δZtV, δVt.

• EW Correction:
We rewrite the EW expression of δρt as:

δρEW
t =

δmEW
t

mt

− δm2
W

2m2
W

− δs2
W

2s2
W

+ δZEW
tV + δZe+

+
δZS

2
+
cα
sα

(
δZ ios

HS

2
− δαios

)
+
δsios

α

sα
. (4.28)

We can note the independence from the mixing angle counterterm which is eliminated
by substituting δsios

α = cαδα
ios. By comparison with the gauge boson decay channel, the

new counterterms are given by δmt and δZtV which are defined in Subsect.(3.2.1-3.2.2).
The application of the MOMS shift implies that δρEW

t → δρEW
t
′ which is then given by:

δρEW
t

′
= δZEW

tV +
δZS

2
+
cα
sα

δZ ios
HS

2
+
δmEW

t

mt

− R̃eΣWW
T (0)

2m2
W

+
ReΣAZ

T (0)

sW cW m2
Z

− Cmuon .

(4.29)

As a consequence of the external charged particles in the final state, the St̄t vertex
shows IR-divergences which are canceled by soft-photon bremsstrahlung contributions
corresponding to the process S → t̄t(γ) (shown in Fig.(4.4)) [64]. Using the (mγ, Λγ)-
prescription, the total photon bremsstrahlung decay rate is given by:

Γbrem EW
tt = Γsoft EW

tt + ΓhardEW
tt = ΓLO

tt (δsoft EW
t + δhardEW

t ), (4.30)

where δsoft EW
t and δhardEW

t
3 are extracted from [64]:

3For qγ = qmax
γ , eq.(4.32) is reduced to,

δhardEW
t =

αem

π

{
N0 ln

(
m2
S

4Λ2
γ

)
− 4b− +

26r − 29

8(r − 1)
+

+
(N0 + 1) (2− 1/r)

a1

[
Li2(c−)4 − π2

6
+ 4a1 (a1 − b+)− (8r2 − 8r + 3)a1

8r(r − 1)

]}
.
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δsoft EW
t =

αem

π

{
N0 ln

(
4Λ2

γ

m2
γ

)
+ (N0 + 1)

[
N1

a1

+
2

2r − 1

]}
, (4.31)

δhardEW
t =

αem

π

{
N0 ln

(
m2
S

4Λ2
γ

)
+
N2 (N0 + 1) +N4

a1

+
26r − 29

8(r − 1)
+

− 2 ln

(
1− (c−d+)2

1− (c−d−)2

)
+ 4

(
t

r
a2 − b−

)}
, (4.32)

with,

N4 =
1

8r(r − 1)
(a2N5 + a1N6 +N7) , (4.33)

N5 = 8t2 + 16tr − 32r2 − 32t+ 40r − 3 , (4.34)
N6 = 8r2 − 8r + 3 , (4.35)

N7 = (9t− 2t2 − 24tr)
√

1− 1/t , (4.36)

and the remaining quantities are the same mentioned for S → W+W−(γ) and defined
below eq.(4.15). Notice that all these factors (listed in eqs.(4.16-4.21) and eqs.(4.33-
4.36)) now have to be expressed in terms of r = m2

S/4m
2
t .

Figure 4.4: Feynman diagrams of the photon bremsstrahlung associated to the first-order ra-
diative corrected St̄t(γ) vertex.

• QCD Correction:
The total QCD corrections can be defined as:

∆V QCD
t = δZQCD

tV +
δmQCD

t

mt

+ δV QCD
t +

δsoftQCD
t

2
+
δhardQCD
t

2
, (4.37)

where δsoftQCD
t and δhardQCD

t stand for the soft and hard gluon emission corrections,
respectively. These can be directly derived by δsoft EW

t and δhardEW
t using the following

replacements: αem Q
2
t → 4αs/3, mγ → mg and Λγ → Λg (with mg and Λg acting

as gluon mass regulator and cutoff energy). Notice that the scale of the momentum
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transfer Q in the process is indicative of the effective strength of the strong interactions
and this affects the running of αs which is given at one-loop order by [50]:

αs(Q
2) =

6

33− 2nf

1

ln(Q2/Λ2
QCD)

,

where Q is the typical scale related to the scalar singlet decay processes, nf = 6 is the
number of flavors when mS ≥ 2mt and ΛQCD ' 217 MeV represents the basic QCD
scale.
Since the only difference between Hsm → t̄t(g) and S → t̄t(g) processes lies in defining
the external scalar field, we observe that the QCD one-loop factors corresponding to
the SM and SSM cases (in terms of the respective scalar masses) are totally equivalent.
These corrections are known in the SM and we report the results up to order O(α2

s )
[65]:

∆V QCD
t =

CFαs(m
2
S)

π

N8 + 17 ln
(

c′+
c′−

)
2β

+
21− 13β ln

(
c′+
c′−

)
16

−
3
[
2β − ln

(
c′+
c′−

)]
32β3

 ,

(4.38)

where β =
√

1− 4m2
t/m

2
S, c

′
± = mS ±

√
m2
S − 4m2

t and N8 is defined as,

N8 = (1 + β2)

[
4Li2

(
c′+
c′−

)
+ 2Li2

(
−

c′+
c′−

)
− ln

c′+
c′−

ln
β2

(1 + β)3

]
. (4.39)

Therefore, the NLO total decay width ΓNLO
tt with the EW and QCD corrections is as follows:

ΓNLO
tt = s2

αGFNc
mSm

2
t

4π
√

2

(
1− 4m2

t

m2
S

)3/2

×

×
{

1 + 2

[
δρEW

t

′
+ δV EW

t + ∆V QCD
t

]}
+ Γbrem,EW

t̄t . (4.40)

The definition of ΓNLO
tt is UV- and IR- finite and this can be explicitly verified looking at

the divergent parts of all counterterms. Some of these counterterms are in common with the
SW+W− vertex and their divergent parts have been previously listed in Tab.(4.1) while for
the remaining ones (δmt, δZtV, δVt, δsoft EW

t and δhardEW
t ) the UV- and IR- divergent parts

are separately quoted in Tab.(4.3) and Tab.(4.4).
Here, CF = 4/3, Qt = +2/3 is the top quark charge and the function N0 (see eq.(4.16)) has
to be defined in terms of r = m2

t/4m
2
S. Notice that the sum of all terms in Tab.(4.4) are Λγ

and Λg -independent at O(αem) and O(αs), respectively.
It is important to specify that the EW and the QCD corrections exhibit a threshold divergence
if mS → 2mt = 346.68 GeV; this is of the type (αem, s/β) where β is defined below eq.(4.38)
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UVEW
bosonic UVEW

fermionic UVQCD
bosonic UVQCD

fermionic

δZtV − 5
36
− 17

72c2W
−3m2

t+m
2
b

8m2
W

−CF
3

——

δmt/mt
7
12
− 5

24c2W

3m2
t−3m2

b

8m2
W

−CF ——

δVt
1
18

+ 25
36c2W

m2
b

2m2
W

4
3
CF ——

Table 4.3: Coefficients of the bosonic and fermionic UV divergent parts (EW and QCD) of
the new counterterms introduced for the St̄t vertex. The EW and QCD coefficients are divided
by the common factors g2/(16π2 ε) and αs/(π ε), respectively.

mγ (IR regulator) Λγ (IR cutoff) mg (IR regulator) Λg (IR cutoff)

δZtV

αemQ2
t ln

mt
mγ

π
—–

CFαs ln
mt
mg

π
—–

δVt
αemQ2

t [N0+1] ln
mγ
mt

π
—–

CFαs[N0+1] ln
mg
mt

π
—–

δsoft
t

αemQ2
tN0 ln

mt
mγ

π

αemQ2
tN0 ln

2Λγ
mγ

π

CFαsN0 ln
mt
mg

π

CFαsN0 ln
2Λg
mg

π

δhard
t —–

αemQ2
tN0 ln

mS
2Λγ

π
—–

CFαsN0 ln
mS
2Λg

2π

Table 4.4: EW and QCD IR-dependence on mγ, g and Λγ, g of δZtV, δVt, δsoft
t and δhard

t .

and represents the velocity of either fermion in the center-of-mass frame. For instance, the
∆V QCD

t term is reduced to ∆V QCD
t ' (π2/2β)− 1. Although this singularity is tamed by the

LO factor β3 (see eq.(2.14)) it, nevertheless, implies the breakdown of the perturbation theory
at the threshold value. In this case, the NLO prediction can be improved by the resummation
of all terms proportional to (αem, s/β)n which imply n-photon or gluon exchanges between
the top and the antitop states. For the EW corrections, this procedure corresponds to use a
non-relativistic Coulomb potential to describe the electromagnetic interactions between the
decay products [66, 67]. On the other hand, this potential assumes a more complicated
form for the QCD corrections but, in any case, we can avoid these singularities following
alternative approaches, as those described in [68, 69]). However, we neglect the new NLO
finite contributions arising from the procedure to cancel these threshold divergences since they
are associated with the LO decay width results which are strongly suppressed for mS ' 2mt.
Following [66, 69], we have verified that our results for the EW and QCD corrections become
reliable once we exceed the physical threshold by more than 10 GeV. Therefore, we will perform
the numerical analysis of the NLO corrections to the top quark final state for mS ≥ 360 GeV.
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4.3 NLO Decay Width to Higgs Bosons
The three-level amplitude corresponding to the S → HH decay channel is simply due to the
definition of the coupling CHHS in eq.(1.21):

MLO
[
S(k)→ H(p)H(q)

]
= MLO

SHH = ρH with ρH = CHHS . (4.41)

Therefore, the coupling ρH is a function of λ, κ, ρ and sα, w, v. Notice that λ, κ, ρ, can
be defined in terms of mH , mS, δm2

HS, TH and TS as mentioned in eqs.(1.39-1.41). As a
consequence, the correction factor to the SHH coupling δρH will include the counterterms
δm2

H , δm2
S, δm2 ios

HS (δαios), TH , TS and the Higgs vev counterterm δv which can be expressed
in terms of δZe, δmW , δsW (using v = 2mW sW/e).

Figure 4.5: Feynman diagrams associated to the SHH vertex corrections; ui are the Ghosts
and ηi = η0, η

± are the Goldstone bosons associated to the diagrams with v = Z, W±, respec-
tively.

Including the field renormalization constant δZS, δZH , δZ ios
HS, δZ ios

SH , we can generally write
δρH as:

δρH = c1 δm
2
S + c2 δm

2
H + c3 δm

2 ios
HS + c4 δTS + c5 δTH + (4.42)

+ c6

(
δm2

W

2m2
W

+
δs2

W

2s2
W

− δZe
)

+ δZH +
δZS

2
+

2CHHH δZ
ios
HS + CHSS δZ

ios
SH

2CHHS

,

where the trilinear couplings CHHH , CHSS are given in eqs.(1.19-1.20) and the coefficients
ci (i = 1, ..., 6) are defined as follows:
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c1 =
1

2m2
H +m2

S

, c4 = 3
cα sα (v2 + w2)

v w(2m2
H +m2

S)(cαw + sα v)
,

c2 =
2

2m2
H +m2

S

, c5 = 3
cαw − sα v

v w(2m2
H +m2

S)
,

c3 =
sαw − cα v + (w/sα)− (v/cα)

(2m2
H +m2

S)(cαw + sα v)
, c6 =

cαw

sα v + cαw
.

Notice that we have chosen the mixed mass counterterm prescription in terms of δm2
HS to

simplify the structure of δρH . After the application of the MOMS shift δZe → δZ ′e, we get:

δρH
′ = c1 δm

2
H + c2 δm

2
S + c3 δm

2 ios
HS + c4 δTH+ (4.43)

+ c5 δTS + c6

(
R̃eΣWW

T (0)

2m2
W

− ReΣγZ
T (0)

sW cWm2
Z

+
Cmuon

2

)
+

+ δZH +
δZS

2
+

2CHHH δZ
ios
HS + CHSS δZ

ios
SH

2CHHS

.

Defining the three-point function corrections related to the SHH vertex as δVH , whose Feyn-
man diagrams are depicted in Fig.(4.5), we obtain the UV-divergence cancellation by the
following sum: δρH ′ + δVH . This can be directly verified through the UV-divergence coeffi-
cients reported in Tab.(4.5).
In conclusion, the NLO total decay width ΓNLO

HH is described by:

ΓNLO
HH =

(CHHS)2

32πmH

√
1− 4m2

H

m2
S

×
{

1 + 2

[
δρH

′ + δVH

]}
. (4.44)

4.4 NLO Total Decay Width
The NLO corrections to the total decay width of the scalar singlet particle can be expressed
as the sum below:

ΓNLO
TOT ' ΓNLO

WW + ΓNLO
ZZ + ΓNLO

t̄t + ΓNLO
HH +

∑
ij

ΓLO
ij , (4.45)

where we only consider the LO contributions for the rare decays, represented by ij =
(gg, γγ, Zγ, b̄b, c̄c, s̄s, ūu, d̄d, τ+τ−, µ+µ−, e+e−), being these channels already suppressed by
the loop factor or the small fermion masses.
It is interesting to observe that we can define the NLO signal cross section at proton center-
of-mass energy

√
s corresponding to the resonant process pp → S → XY in terms of the
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UVbosonic UVfermionic

δm2
S

s2αg
2[9m2

Z(1+2c4W )−2m2
S(1+2c2W )]−2c2W

[∑
ij

2C2
ijS

1+δij
+
∑
nmm2

nCSSnm

]
4c2W

s2αg
2
∑
f Nc(m

2
fm

2
S−6m4

f )

2m2
W

δm2
H

c2αg
2[9m2

Z(1+2c4W )−2m2
H(1+2c2W )]−2c2W

[∑
ij

2C2
Hij

1+δij
+
∑
nmm2

nCHHnm

]
4c2W

c2αg
2
∑
f Nc(m

2
fm

2
H−6m4

f )

2m2
W

δmios 2
HS

s2αg2[9m2
Z(1+2c4W )−2p∗2(1+2c2W )]−4c2W

[∑
ij

2CHijCijS
1+δij

+
∑
nmm2

nCHnmS

]
8c2W

s2αg2
∑
f Nc(m

2
fp
∗2−6m4

f )

4m2
W

δTS
−3sαg(1+2c4W )+c4W

∑
nm CSnmm

2
n

2c4W

2sαg
∑
f Ncm

4
f

mW

δTH
−3cαg(1+2c4W )+c4W

∑
nm CHnmm

2
n

2c4W

2cαg
∑
f Ncm

4
f

mW

c6 (...) c6
2c2W+1

2c2W
−c6

∑
f Ncm

2
f

4m2
W

δZH
c2αg

2(2c2W+1)

2c2W
− c2αg

2
∑
f Ncm

2
f

2m2
W

δZS
s2αg

2(2c2W+1)

2c2W
− s2αg

2
∑
f Ncm

2
f

2m2
W

δZ ios
HS

cαsαg2(2c2W+1)

2c2W
− s2αg2

∑
f Ncm

2
f

4m2
W

δZ ios
SH

cαsαg2(2c2W+1)

2c2W
− s2αg2

∑
f Ncm

2
f

4m2
W

δVH
cαg
2

∑
kl
sαCHkl+cαCklS
[1+δkl(2c

2
W−1)]

−
∑

ij
2CHijCHijS+CijSCHHij

1+δij
−3c2αsα

∑
f Ncm

4
f

m3
W

Table 4.5: Coefficients of the bosonic and fermionic UV divergent parts of the counterterms
associated with the SHH vertex. These are divided by the common factor 1/(16π2 ε). In
this table {ij, nm, kl} can be one of the combinations ij = {HH, SS, HS, η+η−, η0η0},
nm = {HH, SS, η+η−, η0η0} and kl = {η+η−, η0η0}. Besides, δij, nm, kl are equal to 1 for
{HH, SS, , η0η0} and to 0 for {HS, η+η−}. The parenthesis (...) indicates the quantity in
eq.(4.43) which multiplies the coefficient c6.

partial and total decay width expressions as,

σ(pp→ S → XY ) ' 1

mS ΓNLO
TOT s

[∑
k

Ck̄kΓ
NLO
k̄k

]
ΓNLO
XY , (4.46)

where k = g, γ, b, c, s, u, d are the partons, XY are all possible decay channels of the particle
associated with the resonance state and Ck̄k are the dimensionless partonic integrals defined
as follows [71]:

Cgg =
π2

8

∫ 1

m2
S/s

2

dx

x
Pg(x)Pg(m

2
S/sx) , (4.47)
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Cγγ = 8π2

∫ 1

m2
S/s

2

dx

x
Pγ(x)Pγ(m

2
S/sx) , (4.48)

Cq̄q =
4π2

9

∫ 1

m2
S/s

2

dx

x

[
Pq(x)Pq̄(m

2
S/sx) + Pq̄(x)Pq(m

2
S/sx)

]
. (4.49)

Numerical examples of Ck̄k, computed using the MSTW2008NLO set of pdfs (Pk) at the scale
Q = mS = 750 GeV and

√
s = 8, 13 TeV, are given in Tab.(4.6) 4.

√
s Cb̄b Cc̄c Cs̄s Cd̄d Cūu Cgg Cγγ

8 TeV 1.07 2.7 7.2 89 158 174 11

13 TeV 15.3 36 83 627 1054 2137 54

Table 4.6: List of parton luminosity factors Ck̄k at the scale Q = mS = 750 GeV and
√
s =

8, 13 TeV.

The higher order QCD corrections to the processes gg, q̄q → S can be roughly expressed
in terms of the so-called K-factors: Cgg, q̄q → Kgg, q̄qCgg, q̄q with Kgg, ' 2 and Kq̄q ' 1.2 (cf.
[73, 74]).

4.5 NLO Application of the MF renormalization scheme
By applying the MF scheme prescription, we observe two main differences in the definitions
of the ΓNLO

i previously discussed. The first one is related to the mixing scalar sector coun-
terterms and can be described by the following shifts: δZ ios

HS → δZmf
HS and δm2 ios

HS (δαios) →
δm2 mf

HS (δαmf). The second one lies in the insertion of the finite wave function corrections to
the external scalar legs needed to absorb the residual factor which can be generated by the
the H − S or S − H oscillation if µ2

R 6= (m2
H , m

2
S). Therefore, we must apply the following

substitutions in order to obtain all NLO decay rates S → ZZ,W+W−, t̄t, HH as a function
of the MF counterterms:

δρi
′(δZ ios

HS , δα
ios)→ δρi

′ (δZmf
HS , δα

mf) + δρWF
i . (4.50)

Here, δρWF
i (with i = Z, W, t, H) are defined in the following way:

δρWF
Z = δρWF

W = δρWF
t =

cα
sα
ẐSH , δρWF

H =
CHHH

CHHS

ẐSH + 2
CHSS

CHHS

ẐHS , (4.51)

4We obtain the same results of Ck̄k quoted in [72].
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where ẐSH,HS are expressed in eq.(3.57). Using eq.(3.88) and eq.(3.92), we explicitly get:

δρWF
Z = δρWF

W = δρWF
t =

cα
sα

ReΣHS(m2
S)−ReΣHS(µ2

R) + δZmf
HS(m2

S − µ2
R)

m2
H −m2

S

, (4.52)

δρWF
H =

1

CHHS(m2
H −m2

S)

{
(2CHSS − CHHH)[ReΣHS(µ2

R) + µ2
RδZ

mf
HS]+

+ CHHH [ReΣHS(m2
S) +m2

SδZ
mf
HS]− 2CHSS[ReΣHS(m2

H) +m2
HδZ

mf
HS]
}
. (4.53)
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Chapter 5

Numerical Results

In this chapter, we will illustrate the numerical results for the NLO corrections to the scalar
singlet decay rates discussed analytically in the previous chapters. It has to be specified that
all amplitudes are computed with FeynArts [75] while their analytical processing was done
with FormCalc [75]. The outputs, written in terms of standard loop integrals [76, 77], have
been evaluated with the help of Package-X [78].
In the evaluation of the corrections to the NLO decay rates we make use of the following
quantity:

RSSM
i = [(ΓNLO

i /ΓLO
i )− 1] , (5.1)

with i = WW, ZZ, HH, tt and TOT (which includes all decay channels). For the decay to
top quarks, we will indicate whether the "EW + QCD" or only EW corrections are considered.

5.1 Dependence on sα and w

We start evaluating RSSM
i as a function of sα for different values of mS and w. It has to be

considered that the maximally allowed ranges for |sα| depend on the assumed singlet mass
and such informations are summarized on Tab.(1.2). The numerical results are reported in
Fig.(5.1). In the four panels we show separately the gauge boson channels V = Z, W ; in the
case of V = W we fixed the momenta of the emitted photon-bremsstrahlung to its maximal
value, qγ = qmax

γ . For the considered final states we choose four fixed values of mS: a high
mass region with mS = (900, 1000) GeV and a low mass region with mS = (200, 300) GeV,
mS = (300, 400) GeV and mS = (400, 500) GeV for RSSM

V V , RSSM
HH and RSSM

tt , respectively. In
order to roughly analyze the dependence on w, in the same plots we also showRSSM

i computed
for two different values of the singlet vev w: the smallest one (solid lines) is chosen according
to the minimum reported in Tab.(1.2) while the largest is kept fixed at w = 6.67v (dashed
lines), which is a value used in [29] to determine the allowed intervals of sα and, according to
Tab.(1.2), valid for every mS.
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Figure 5.1: RSSM
i as a function of sα, for different values of mS (and the corresponding vev

w). The range of sα is the one deduced from Tab.(1.2). RSSM
WW,tt are computed with qγ = qmax

γ .
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• Low Mass Region
We clearly see that the dependence on w corresponding to the gauge final states is
not dramatic. For instance, the variation with w for both RSSM

ZZ and RSSM
WW amount

to a maximum of O(8%) when mS = 300 GeV and sα ∼ −0.3. For the fermionic
final state we can note that the larger w-variations are associated with small correction
values of |RSSM

tt | which does not exceed O(2%); an example is given by RSSM
tt (w =

2.13 v)/RSSM
tt (w = 6.67 v) ∼ 0.3 for mS = 500 GeV, sα ∼ −0.25 and the corresponding

correction values RSSM
tt ∼ (−0.1%, −0.3%) for w = 2.13 v and 6.67 v, respectively. On

the other hand, the ratio RSSM
HH shows a pronounced w-dependence especially in the case

of sα negative. This is due the fact that some of the loop contributions can be directly
proportional to w and not strongly suppressed by the mixing.
We can also observe a dependence on sα and its sign; in particular, the ratioRSSM

HH shows
large variations with sα as expected for a process with mixed scalar fields as external
particles; to be more quantitative: when O(3%) . |RSSM

HH | . O(4%), for mS = 400
GeV and w = 1.69 v, the ratio RSSM

HH (sα = 0.055)/RSSM
HH (sα = 0.27) ∼ 0.75 and in

the case of O(1%) . |RSSM
HH | . O(2%), for mS = 300 GeV and w = 1.25 v, we get

RSSM
HH (sα = 0.067)/RSSM

HH (sα = 0.31) ∼ 0.2. Regarding the ratios RSSM
WW,ZZ , these are

weakly dependent on the mixing for mS . 300 GeV while for RSSM
tt this dependence

is not totally negligible; for example, for mS = 400 GeV and w = 1.69 v, the ratio
RSSM
tt (sα = −0.055)/RSSM

tt (sα = −0.27) ∼ 0.4.
The reasons for such dependences on w and sα are:

1. The loop interactions can be directly proportional to w and sα.

2. The parameters κ, λ and ρ, entering RSSM
i can be expressed as a function of w and

sα according to eq.(1.69).

On the other hand, the reason of different behaviors with respect to sign(sα) has to be
ascribed to those diagrams which contain odd powers of the coupling κ whose sign is
only determined by sign(sα). Typical Feynman diagrams with such a structure and that
contribute to the mixing angle dependence of RSSM

i are depicted in Fig.(5.2). Neglecting
the loop integrals and using the approximate expressions in eq.(1.11) for simplicity, the
couplings evaluated up to O(v2/w2) are the following:

Fig.(5.2a, 5.2b)→ (SSH) ∼ κv , (HVηi) ∝ mV

v
, (SVηi) ∝ sα

mV

v
∼ κmV

2ρw
,

Fig.(5.2c)→ (SSH) ∼ κv , (Ht̄t) ∝ mt

v
, (St̄t) ∝ sα

mt

v
∼ κmt

2ρw
,

Fig.(5.2d)→ (SHH) ∼ κw , (HHH) ∝ λsm , (SSH) ∝ κ ,
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which in turn imply an overall dependence given by:

(SSH)× (SVηi)× (HVηi) ∝ κ2m2
V

2ρw
∼ ρV κ , (5.2)

(SSH)× (St̄t)× (Ht̄t) ∝ κ2m2
t

2ρw
∼ ρt κ , (5.3)

(SSH)× (SHH)× (HHH) ∝ κ2λsmw ∼ ρH λsm κ , (5.4)

where λsm ∼ λ+ κ2/4ρ and i = (3,±) for V = Z,W±, respectively.

Figure 5.2: Examples of the Feynman diagrams contributing to the mixing angle dependence
of RSSM

i .

• High Mass Region
In the region of larger masses, the w dependence in RSSM

V V is more evident; for example,
for mS = 900 GeV and sα ∼ 0.2, the ratio RSSM

V V (w = 6.67v)/RSSM
V V (w = 3.85v) ∼

(0.6 , 0.8) for V = Z,W , respectively. For the top quark final state, the w dependence
becomes pronounced when |RSSM

tt | & O(3%); for instance, it reaches the maximum
variation, which is at the level of O(15%), when mS = 900 GeV and sα ∼ 0.2. The ratio
RSSM
HH confirms the dependence on w, sα and sign(sα) discussed in the low mass case;

the maximum sα-variation of RSSM
HH is of O(35%) for mS = 900 GeV and w = 6.67 v

while the dependence on w reaches the maximum when mS = 900 GeV and sα ∼ −0.2:
RSSM
HH (w = 6.67v)/RSSM

HH (w = 3.85v) ∼ 0.8. Interestingly enough, in the high mass
region the sign of the ratios RSSM

i is negative for every choice of sα and w.

5.2 Dependence on mS

In this section we will scrutinize more in detail the dependence ofRSSM
i on the singlet mass for

fixed values of sα and w. In the upper plots of Fig.(5.3) we show the behavior ofRSSM
V V (V = W

on the left, V = Z on the right) as a function of mS for a fixed sα = 0.17 and w = 4.34 v.
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For the sake of comparison, we also computed the same ratio RSM
V V = [(ΓNLO

V V /ΓLO
V V )− 1] in the

SM (red line) leaving the Higgs mass as a free parameter (in practice, the SM with a heavy
Higgs) and for which we obtained the same behaviors as those discussed in [57, 63]. In the
plots, on the common x-axis we use the label mscalars to indicate either mH or mS.

Figure 5.3: Upper plots: RSM
V V (red line) and RSSM

V V (black line) as a function of the scalar
mass mscalars. We fixed sα = 0.17, w = 4.34 v and qγ = qmaxγ . Lower left plot: EW and QCD
contributions to RSSM

tt (thick and dashed black lines, respectively) and total contributions to
RSSM
tt (red line) computed to sα = 0.17, w = 4.34 v and qγ = qmaxγ . Lower right plot: behavior

of RSSM
HH for fixed values: sα = 0.17, w = 4.34 v (black line) and sα = 0.17, w = 6.67 v (red

line).

We observe three main differences between the red and the black lines:

• Finite peak at mS = 2mH:
this appears in RSSM

V V due to the new coupling SHH which is obviously absent in the
SM. These peaks are generated by the B0, 1(p2,m2,m2) functions (reported in App.D)
and their derivative with respect to p2 which present a maximum (B0 and B′0 ) and
minimum (B1 and B′1 ) for p = 2m.
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• Different peaks at mS = 2mt:
in this case the main contributions are given by the fermionic loops which appear in δZS
and δV E,DV . Differently from the SM ratio (red lines), in the SSM case these fermionic
expressions contain an overall s2

α factor which induces the suppression of the considered
peak.

• High mass region behavior:
it is clearly visible a different behavior for large values of mS. This is mainly due to
the new scalar contributions arising from the coefficient DV (see [57] for an explicit
evaluation in the SM). For example, setting the mass of the heavy scalars to mscalars =
1000 GeV and considering V = Z, we have:

{δV DZ }SM ∼ (3.31− 0.16 λ)× 10−5 > 0 ,

whose positivity is determined by the fact that λ = m2
scalars/2v

2. Instead, in the case of
the SSM, we get:

{δV DZ }SSM ∼ (4.97− 2.27 λ− 2.07 ρ− 13.95 κ)× 10−5 < 0

due to λ, ρ and κ which are all positive parameters for sα = 0.17 and w = (4.34, 6.67) v,
see eq.(1.69).

In the lower plots of Fig.(5.3) we show the behavior of RSSM
tt,HH as a function of mS when

(sα, w) = (0.17, 4.34 v), for RSSM
tt , and (sα, w) = (0.17, 4.34 v) and (0.17, 6.67 v), for RSSM

HH .
In the case of the top quark final state, the QCD and EW contributions are represented by
the dashed and the solid black lines, respectively, while the total sum (QCD plus EW) is
depicted by the red line. We observe that the QCD contributions remain larger than the EW
part for mS . 800 GeV and dominate the region of mS . 450 GeV. The EW contributions
of RSSM

tt are no larger than O(5%) in all mass range and become negative for mS & 400
GeV. This implies a cancellation between the EW and QCD contributions in the mass range
400 . mS . 750 GeV while for larger masses these become totally negative driving toward
negative values the global correction due to RSSM

tt . Concerning RSSM
HH , we note that it remains

positive for 300 . mS . 700 GeV reaching a maximum value of order O(3.5%) at mS ∼ 400
GeV. At mS = 2mH , we can observe that RSSM

HH shows a similar behavior as the one mentioned
for RSSM

V V . An additional slight variation of the curves is visible when mS ∼ 470 GeV. This
variation arises exactly from the loop integral B0(p2,m2

t ,m
2
t ) which appear in the definition

of δm2 ios
HS defined at p∗2 = (m2

S +m2
H)/2. As a consequence, the peak-condition becomes,

p∗ =

√
m2
H +m2

S

2
= 2mt =⇒ mS =

√
8m2

t −m2
H ∼ 470 GeV . (5.5)

It is important to stress that we are not totally in agreement with the results obtained in [29].
In Tab.(5.1), we compare our results for RSSM

HH with the numerical values of the corresponding
quantity computed by the authors of [29]. To this aim, we only refer to the results collected
in Tab.(6) of [29] calculated in the MOMS 1 and iOS schemes for the following fixed values:

1In [29], the results obtained in the MOMS scheme are indicated by δGF
.
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Figure 5.4: Ratio RSSM
i as a function of the singlet mass mS for the three fixed values sα =

−0.09,−0.13 and −0.17. Ratio RSSM
WW, tt are computed for qγ = qmaxγ .

mS = 300, 500, 700 GeV, sα = 0.1, 0.2, 0.3 and w = 5 v. The deviations between our results
and the ones of [29] seem to be roughly the same in all mass range, for each fixed value
of sα, at the level of O(3%). Thus, the factor which generates this disagreement is almost
completely independent on the singlet scalar mass. The reason for this discrepancy is still
under investigation.
As it was shown in Fig.(5.1), the ratio RSSM

i depend on the sign and the assumed value of
sα and the variation with sign(sα) is more evident when sα < 0; to be more quantitative we
also study in detail the region of negative sα. In Fig.(5.4), we show RSSM

i as a function of the
singlet mass mS for three fixed values of sα, namely sα = −0.09,−0.17 (which are the two ex-
tremes of the considered range) and its central value sα = −0.13. Notice that the dependence
on the scalar mixing angle starts to be significant for all ratios RSSM

i for mS & 400 GeV while
it can be neglected for smaller masses. In addition, RSSM

V V becomes negative when the scalar
mass is roughly larger than 800 GeV, RSSM

tt when mS & 400 GeV and RSSM
HH for mass values

in the interval 300 . mS . 800 GeV, as it was the case for sα > 0 (see plots of Fig.(5.3)).
As far as we know, the NLO corrections to the decay widths Γ(S → ZZ), Γ(W+W−(γ)) and
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Set of Parameters RSSM
HH [%] δGF [%]

w = 5 v Our Results Results of [29]

sα = 0.1 0.164 2.990
mS = 300 GeV sα = 0.2 0.343 3.100

sα = 0.3 0.616 3.278

sα = 0.1 2.593 5.236
mS = 500 GeV sα = 0.2 2.959 5.518

sα = 0.3 3.599 6.012

sα = 0.1 −0.304 2.473
mS = 700 GeV sα = 0.2 0.326 3.071

sα = 0.3 1.424 4.195

Table 5.1: Comparison between the results of the NLO corrections to the decay rate Γ(S →
HH) obtained in this thesis and those reported in Tab.(6) of [29] (called δGF ) for fixed values:
mS = 300, 500, 700 GeV, sα = 0.1, 0.2, 0.3 and w = 5 v.

Figure 5.5: Leading order (dashed line) and next-to-leading order (solid line) results for Γ(S →
XY ) with XY = ZZ, W+W−(γ), t̄t, HH for sα = 0.17 (left plot), sα = −0.17 (right plot)
and w = 4.34 v. In the case XY = W+W−(γ) and t̄t, we have fixed qγ = qmax

γ .

Γ(S → t̄t(γ)) have not been numerically computed before 2,3. In order to briefly summa-
2Although we are not in agreement with the results in [29], they have shown for the first time the numerical

results of the NLO corrected decay rate Γ(S → HH). Concerning the QCD-only corrections to S → q̄q(g),
these do not receive any new loop contributions beyond the SM results in [65].

3Analytical expressions of the NLO couplings SV V, Sf̄f and SHH can be extracted by the amplitudes
for the Higgs boson vertices in [55, 70], which are discussed for the SSM without Z2-symmetry. In [55, 70],
the numerical analysis is performed only for the corrections to the couplings HV V, Hf̄f and SHH.
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rize the NLO EW results for the dominant decay channels obtained in this thesis, we list in
Tab.(5.2) for fixed (sα, w) = (0.17, 4.34 v) the ratios RSSM

ii computed for mS = 1000 GeV
which involves the larger values of all NLO decay rates and for those singlet masses which
give rise to the maximum correction values (RSSM

iimax), namely mS ' 200 GeV (RSSM
WW max),

mS ' 252 GeV (RSSM
ZZmax), mS ' 360 GeV (RSSM

ttmax) and mS ' 406 GeV (RSSM
HH max).

sα = 0.17 and w = 4.34 v

mS [GeV] RSSM
WW [%] RSSM

ZZ [%] RSSM
HH [%] (EW) RSSM

tt [%]

200 6.277 4.876 — —
252 5.685 5.088 -0.065 —
360 4.523 2.923 2.657 4.229
406 3.952 2.172 3.256 0.676
1000 -2.239 -1.494 -3.857 -2.792

Table 5.2: Results of RSSM
ii [%] (with i = W,Z,H and t) for fixed values: sα = 0.17, w = 4.34 v

and mS = 200, 252, 360, 406 and 1000 GeV. The bold numbers correspond to the maximum
values of the ratios RSSM

ii for the representative choice of variables.

Finally, in Fig.(5.5) we summarize our results for the decay widths Γ(S → XY ) (with
XY = ZZ, W+W−(γ), t̄t, HH) as a function of mS for the selected values w = 4.34 v and
sα = ±0.17 . As expected from our previous considerations, the NLO results (solid line) are
above the LO behavior (dashed line) in the small mass region but becomes generally smaller
in the region of larger masses (mS & 750 GeV).

Having discussed the full set of quantities entering in the NLO total decay rate Γ(S → All)
(see eq.(4.45)), we are now in the position to compute the ratio RSSM

TOT that we report in
Fig.(5.6) for fixed values w = 4.34 v and sα = ±0.17. It can be useful for the considerations
below to rewrite RSSM

TOT in terms of the other single ratios as:

RSSM
TOT = BRLO

SWWRSSM
WW + BRLO

SZZRSSM
ZZ + BRLO

SHHRSSM
HH + BRLO

SttRSSM
tt . (5.6)

We observe that the variation with sα starts to be relevant for mS & 250 GeV. Since the
dependence on the scalar mixing angle of RSSM

WW,ZZ, tt become relevant for mS & 400 GeV (see
for example Fig.(5.4)), this implies that the variation of RSSM

TOT with sα and its sign for the
mass range 250 . mS . 400 GeV is mainly due to RSSM

HH which is the only one that presents
a not negligible mixing angle dependence in the low mass region. The behavior of the shapes
depicted in Fig.(5.6) can be briefly analyzed in different mass regions:

• 200 . mS . 2mH GeV: this region is only affected by the gauge boson decay channels
since the other processes are absent being kinematically not accessible. Notice that the
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Figure 5.6: Behavior of RSSM
TOT computed for fixed values, namely sα = 0.17 (black and red

dashed lines), sα = −0.17 (black solid line) and w = 4.34 v. The photon momenta in RSSM
WW, tt

are fixed to qγ = qmax
γ and the QCD corrections of RSSM

tt are only taken into account in the
black lines.

WW branching fraction at the LO is larger than ZZ final state at the fixed values
w = 4.34 v and sα = ±0.17; this implies that RSSM

TOT are mainly influenced by the ratio
RSSM
WW . In addition, the ratio RSSM

TOT tends to decrease following the behavior of RSSM
V V in

the low mass region. Notice that the smooth peak at mS ∼ 225 GeV (near to the other
one at mS = 2mH) is due to the loop integrals in δm2 ios

HS when p∗ = 2mZ .

• 2mH . mS . 2mt GeV: in this range, the correction to the total decay width is
characterized by the additional contribution proportional to RSSM

HH . The loop functions
entering in the counterterms δZS and δVH,Z,W generate the peaks at the extreme values
mS = 2mH , 2mt while the variation of the curve atmS ∼ 330 GeV is due to the function
B0(p∗2,m2

H ,m
2
H) appearing in the counterterm δm2 ios

HS .

• 2mt . mS . 1000 GeV: here, the RSSM
tt contribution appears. Notice that the QCD

effects are not negligible even though the LO decay rate of S → t̄t is smaller then the
other dominant decay widths for mS & 400 GeV. We observe that RSSM

TOT tends to be
negative in the high mass region according to the behavior of the individual ratios RSSM

i

discussed above. Since the counterterm δm2 ios
HS appears in all expressions of partial decay

rate corrections, we observe the slight variations of the RSSM
TOT shapes at mS ∼ 470 GeV

due to the function B0(p∗2,m2
t ,m

2
t ) computed for p∗ = 2mt.

For completeness, we conclude reporting in Tab.(5.3) an example of the cross section values
at proton center-of-mass energy

√
s corresponding to the resonant process pp → S → XY
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(defined in eq.(4.46)) forXY = ZZ, W+W−, t̄t, HH and fixed values, namelymS = 750 GeV,
sα = ±0.17 and w = 4.34 v. First of all, we note that the QCD corrections to the partonic

mS = 750 GeV , w = 4.34 v sα = 0.17 sα = −0.17

without Kgg, q̄q LO [fb] NLO [fb] LO [fb] NLO [fb]

σ8 TeV(pp→ S → W+W−) 1.179 1.183 1.226 1.231
σ8 TeV(pp→ S → ZZ) 0.578 0.582 0.601 0.606
σ8 TeV(pp→ S → t̄t) 0.141 0.137 0.147 0.146
σ8 TeV(pp→ S → HH) 0.676 0.672 0.600 0.594

σ13 TeV(pp→ S → W+W−) 5.485 5.502 5.705 5.726
σ13 TeV(pp→ S → ZZ) 2.689 2.709 2.797 2.821
σ13 TeV(pp→ S → t̄t) 0.657 0.639 0.683 0.668
σ13 TeV(pp→ S → HH) 3.147 3.127 2.792 2.763

with Kgg, q̄q LO [fb] NLO [fb] LO [fb] NLO [fb]

σ8 TeV(pp→ S → W+W−) 1.179 2.364 1.226 2.460
σ8 TeV(pp→ S → ZZ) 0.578 1.164 0.601 1.212
σ8 TeV(pp→ S → t̄t) 0.141 0.275 0.147 0.287
σ8 TeV(pp→ S → HH) 0.676 1.344 0.600 1.187

σ13 TeV(pp→ S → W+W−) 5.485 10.996 5.705 11.444
σ13 TeV(pp→ S → ZZ) 2.689 5.413 2.797 5.637
σ13 TeV(pp→ S → t̄t) 0.657 1.278 0.683 1.334
σ13 TeV(pp→ S → HH) 3.147 6.250 2.792 5.521

Table 5.3: LO and NLO Cross sections σ8, 13 TeV(pp → S → W+W−, ZZ, t̄t, HH) at proton
center-of-mass energy

√
s = 8 and 13 TeV computed for fixed values, namely mS = 750 GeV,

sα = ±0.17 and w = 4.34 v.

process Γ(gg → S) (numerically given by the K-factor, Kgg ' 2) affect the NLO cross section
values for

√
s = 8, 13 TeV: σNLO(pp → S → XY )/σLO(pp → S → XY ) ∼ 2. Neglecting

the Kgg contributions, the corrections to the scalar singlet decay rates imply that the NLO
cross section σ8 ,13 TeV

NLO (pp → S → XY ) reaches a maximum variation of O(2%) for each XY
final states. Obviously, the process pp → S → XY is a simple case to roughly quantify the
impact of the NLO scalar singlet decay widths in the cross section corresponding to a scalar
resonance but is not phenomenologically interesting since these effects are much smaller than
the QCD corrections to the resonance production processes, mainly due to gg → S. The
corrections to the scalar singlet decay widths could become relevant in EW processes with
leptons in the final states, like pp(q̄q)→ SZ → XY l̄l, in the hadron colliders (see Fig.(5.7)).
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Figure 5.7: Feynman diagram related to the process q̄q → SZ → XY l̄l.

5.3 A Comment on the Gauge Dependence
It has been verified by the authors of [29] that the physical quantities computed in the MF
scheme prescription show a gauge-dependence for each possible value of the renormalization
scale µR. As discussed in Sect.3.2.4, we demonstrated that the iOS and the MF schemes are
equivalent at p∗2 = µ2

R = (m2
S + m2

H)/2 and this would imply that the results obtained in
terms of the MF counterterms is only gauge-independent if µ2

R = (m2
S + m2

H)/2. This is not
totally in agreement with the results of [29] which show different values computed in the iOS
scheme at p∗2 = (m2

S + m2
H)/2 and in the MF scheme µ2

R = (m2
S + m2

H)/2. Since the two
renormalization schemes should give equivalent results for p∗ = µR, we are not able to explain
the reason of the difference between the results computed in the MF and the iOS schemes of
the Tab.(6) in [29]. To get an estimate of the gauge-dependence impact in the NLO decay
rates, we define the following variable:

∆Γi =
(ΓNLO

i )ios − (ΓNLO
i )mf

(ΓNLO
i )ios

with i = ZZ,WW, tt,HH , (5.7)

where (ΓNLO
i )ios and (ΓNLO

i )mf are the NLO decay widths computed in the iOS and MF pre-
scription, respectively. The analysis of the gauge dependence is performed in terms of different
values of µR which we fix in the following range: mH ≤ µR ≤ mS with mS = 400, 1000 GeV.
We can directly obtain the NLO decay rates in the MF scheme from those performed in the
iOS scheme following the treatment described in Sect.4.5. As it is shown in Fig.(5.8), the
gauge dependence generates ∆Γi included in the range [−2,+3]% for mS = 400 GeV and 1000
GeV for each channel. Notice that the QCD corrections are µR-independent and survive only
in the denominator of ∆Γtt. Since the QCD corrections are positive for mS . 800 GeV, their
insertion reduces the gauge-dependence effects in the case of mS = 400 GeV and vice versa
for mS = 1000 GeV. In addition, we clearly observe the peaks at p = µR = 2mZ , 2mH , 2mt

and the increasing gauge dependence effects as µR increases.
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Figure 5.8: Ratio ∆Γi with i = ZZ,WW,HH, tt as a function of the renormalization scale
µR for fixed values sα = 0.17, w = 4.34 v and mS = 400 GeV (upper plot), 1000 GeV (lower
plot). The ∆Γtt are analyzed with (solid line) and without (dashed line) the QCD corrections.

At µR = 296.35 GeV (for mS = 400 GeV) and 712.62 GeV (for mS = 1000 GeV), we nu-
merically found that ∆Γi = 0 which implies that (ΓNLO

i )ios = (ΓNLO
i )mf . These µR values

correspond exactly to the average geometrical mass (m2
S + m2

H)/2 computed for mS = 400
GeV and 1000 GeV. Therefore, we confirm that the MF and the iOS prescriptions converge
to µ2

R = (m2
S +m2

H)/2.
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Conclusions

In this thesis we have studied in details an extension of the SM which involves the presence of
a new real scalar field s0, singlet under the SM gauge group. Its main effect is to mix with the
SM-like scalar doublet φ via a quartic interaction of the form κ|φ|2|s0|2, giving rise to two mass
eigenstates that we call H (the lighter) and S (the heaviest). We have limited our interests
here to the study of the dominant decay rates of S to a pair of gauge bosons Z and W , to top
quarks t and to lighter scalar bosons H; as far as we know, the amplitudes of such vertices can
be extracted by the one-loop self energies and vertex corrections quoted in [55, 70] but the
one-loop corrections to the dominant heavy scalar decays have not been computed explicitly
before (in the literature we only found the analysis of the one-loop corrections to S → HH
[29, 70]). In order to ensure the gauge-independence in the NLO decay width results, we use
the improved on-shell renormalization scheme (iOS) which gives a gauge-invariant expression
for the counterterms corresponding to the mixed scalar sector, as it is shown in [29]. In the
mass range analyzed in this thesis, 200 ≤ mS ≤ 1000 GeV which corresponds to mixing angles
in the range |sα| ∈ [0.09, 0.17], the decay rates of S → ZZ,W+W−, t̄t, HH are kinematically
accessible and we estimated that their EW one-loop corrections can be as large as O(6%) in
the W+W− channel, O(5%) in the ZZ channel and O(4%) in the HH and t̄t channels. The
Γ(S → t̄t) also receive the QCD loop contributions which for mS . 400 GeV can be larger
than O(50%). Interestingly enough, the sign of the NLO corrections is not fixed a priori: for
300 . mS . 700 GeV, the quantity RSSM

i = [(ΓNLO
i /ΓLO

i ) − 1] with i = ZZ,WW, tt,HH
is always positive for every values of α (if RSSM

tt also includes the QCD corrections) while
for larger masses RSSM

i can also become negative (the precise turning point depends on the
assumed values of α and w). In addition, RSSM

HH is the only ratio which becomes negative
for mS . 300 GeV. Regarding the dependence on α and its sign, RSSM

i exhibits different
behaviors in the mass range taken into account. In fact, these dependences are almost totally
confined in the high mass region for masses somehow larger than 400 GeV. We have also
studied the dependence of RSSM

i on the singlet vev w; we found that it is practically absent
for massesmS . 400 GeV whereas in the higher mass range it is not negligible (see for example
the ratio RSSM

HH in Fig.(5.3)); this condition becomes not completely reliable if we take a w
value lower than 4.34 v; to give an example, for mS = 300 GeV and sα = 0.17 the ratio
RSSM
HH (w = 4.34 v)/RSSM

HH (w = 1.25 v) ∼ 0.35. The NLO corrections to the total decay width
reach a maximum of O(6%) for mS = 200 GeV and its sα dependence becomes clearly visible
for masses larger than mS & 350 GeV. For fixed values (sα, w) = (0.17, 4.34 v), the maximal
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value of the difference between the ratio RSSM
TOT including the EW and QCD corrections and

the same EW-only quantity amounts to O(2%) when mS = 400 GeV.
Finally, we give a comment on the gauge-dependence defining the following variables: ∆Γi =
[(ΓNLO

i )ios− (ΓNLO
i )mf)]/(Γ

NLO
i )ios, where (ΓNLO

i )mf represents the NLO decay width computed
in terms of the counterterms associated with "minimal field" renormalization scheme (which
needs the introduction of a renormalization scale µR and gives gauge-dependent results for
physical observables if µR 6=

√
(m2

H +m2
S)/2 ). For fixed mS values, we observe that the

gauge dependence for the scale range mH ≤ µR ≤ mS generates ∆Γi included in the range
[−2,+3]% whenmS = 400 GeV and 1000 GeV for each channel. Besides, for µR = 296.35 GeV
(when mS = 400 GeV) and 712.62 GeV (when mS = 1000 GeV) we found ∆Γi = 0 and this
implies that (ΓNLO

i )ios = (ΓNLO
i )mf . Since these µR values correspond exactly to the average

geometrical mass (m2
S + m2

H)/2 computed for mS = 400 GeV and 1000 GeV, we confirm
the equivalence of the MF and the iOS prescriptions when µ2

R = (m2
S + m2

H)/2 (analytically
proven in Sect.3.2.4).
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Appendix

In this appendix we explicitly quote all contributions to the two and three-point functions
needed to evaluate the NLO order corrections for the scalar singlet decay channels discussed
in this thesis. We work in the t’Hooft-Feynman gauge and give the amplitudes in terms of
the Passarino-Veltman integrals. Besides we can generally decompose the self-energies and
the three-point functions as follows:

• Self-Energies of the Bosonic (B) and Fermionic Fields (F)
ΣBB(p2) = {ΣBB(p2)}fer + {ΣBB(p2)}bos ,
ΣF (p2) = mFΣF

S (p2) + /pΣF
V(p2) + /pγ5ΣF

A(p2)

• Three-Point Functions with Bosonic (B) and Fermionic Final States (F)
δVB = {δVB}fer + {δVB}bos ,
δVt = δV At + δV Bt /k + δV Ct /q + δV Dt /k /q + δV Et γ5 + δV Ft /k γ5 + δV Gt /q γ5 + δV Ht /k /q γ5 ,

where "fer" and "bos" stand for fermionic and bosonic loop contributions.

A - SSM Tadpole Amplitudes

Tadpole for the H Field

δTH =
g2

16π2
m2
W
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3vm2

bcαA0
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+

(8)

75
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2
cA0

(
m2
c

)
+
vcαm

2
Wm

2
Zs

4
W

2c2
W

+ vcαm
2
Wm

2
Z +

1

2
m4
Wvcα

}
, (9)

Tadpole for the S Field
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B - SSM Self-Energy Amplitudes

Self-Energy for the W Boson
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Self-Energy for the Z Boson
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Self-Energy for the Zγ Mixing
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Self-Energy for the γ Boson
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Self-Energy for the H Boson
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Self-Energy for the S Boson
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2
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2
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, (27)

Self-Energies for the Top Quark

Σt
S(p2) =

g2

16π2

{
− c2
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W
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×
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+
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−
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+
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V(p2) =
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+
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W
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Z
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+

+
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Σt
A(p2) =
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3
− 5m2

Z

12m2
W

)
B1

(
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+
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}
, (30)

C - SSM Three Point Functions

One-Loop Corrections to SZZ Vertex

{δV EZ (p2, k2, q2)}fer =
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t c
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×
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× B0

(
q2,m2

t ,m
2
t

)
+
(
48m2

τc
4
W − 72m2

τc
2
W + 36m2

τ

)
B0

(
q2,m2

τ ,m
2
τ
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+
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τ
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τ
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+
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,
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One-Loop Corrections to SWW Vertex
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k2, p2, q2,m2

W ,m
2
H ,m

2
S

)
+

(
24v2λs4

α

m2
W

+
12vwκcαs

3
α

m2
W

+

+
12v2κc2

αs
2
α

m2
W

+
24vwρc3

αsα
m2
W

)
C00

(
k2, p2, q2,m2

W ,m
2
S,m

2
S

)
+

(
8λv2

m2
W

+
4wκcαv

m2
W sα

+
8

c2
W

+ 64

)
×

× C00

(
k2, p2, q2,m2

W ,m
2
Z ,m

2
Z

)
+

(
4vwκc3

α

m2
W sα

+
8v2λc2

α

m2
W

+ 8c2
α

)
C00

(
p2, q2, k2,m2

W ,m
2
W ,m

2
H

)
+

+ sα

(
8v2λsα
m2
W

+ 8sα +
4vwκcα
m2
W

)
C00

(
p2, q2, k2,m2

W ,m
2
W ,m

2
S

)
+

(
8λv2

m2
W

+
4wκcαv

m2
W sα

+ 64c2
W+

+ 8

)
C00

(
p2, q2, k2,m2

W ,m
2
W ,m

2
Z

)
+

(
4v2κc4

α

m2
W

+
8vwκsαc

3
α

m2
W

− 24vwρsαc
3
α

m2
W

− 8v2κs2
αc

2
α

m2
W

+

+
24v2λs2

αc
2
α

m2
W

− 4vwκs3
αcα

m2
W

)
C00

(
q2, p2, k2,m2

W ,m
2
H ,m

2
S

)
+

(
36c2

Wk
2 − 36k2 − 4p2 + 4q2+

+ 4c2
W (p2 − q2)

)
C1

(
k2, p2, q2, 0,m2

W ,m
2
W

)
+ 4

(
−5k2 − p2 + q2

)
C1

(
k2, p2, q2,m2

W ,m
2
Z ,m

2
Z

)
+

+
(
16c2

Wk
2 − 8k2 − 8p2 + 8q2 + 24p2c2

W − 16q2c2
W

)
C1

(
p2, q2, k2,m2

W ,m
2
W ,m

2
Z

)
+
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+
(
20c2

Wk
2 − 20k2 + 20p2 − 12q2 − 20p2c2

W + 12q2c2
W

)
C2

(
k2, p2, q2, 0,m2

W ,m
2
W

)
+

+
(
−12k2 + 12p2 − 4q2

)
C2

(
k2, p2, q2,m2

W ,m
2
Z ,m

2
Z

)
+ 4

(
9c2
Wk

2 − 4k2 + p2c2
W − q2c2

W

)
×

× C2

(
p2, q2, k2,m2

W ,m
2
W ,m

2
Z

)}
, (39)

{δV DW (p2, k2, q2)}bos =
g2

16π2

1

2

{
2C0

(
p2, q2, k2,m2

W ,m
2
W ,m

2
H

)
c2
α+

+ 2C2

(
p2, q2, k2,m2

W ,m
2
W ,m

2
H

)
c2
α + 8C0

(
k2, p2, q2,m2

W ,m
2
Z ,m

2
Z

)
+ 2s2

α×
× C0

(
p2, q2, k2,m2

W ,m
2
W ,m

2
S

)
+
(
8c2
W + 2

)
C0

(
p2, q2, k2,m2

W ,m
2
W ,m

2
Z

)
+
(
8c2
W − 8

)
×

× C1

(
k2, p2, q2, 0,m2

W ,m
2
W

)
− 2C1 (k2, p2, q2,m2

W ,m
2
Z ,m

2
Z)

c2
W

+

(
vwκc3

α

m2
W sα

+
2v2λc2

α

m2
W

+ 2c2
α

)
×

× C1

(
p2, q2, k2,m2

W ,m
2
W ,m

2
H

)
+

(
2v2λs2

α

m2
W

+ 2s2
α +

vwκcαsα
m2
W

)
C1

(
p2, q2, k2,m2

W ,m
2
W ,m

2
S

)
+

+

(
2λv2

m2
W

+
wκcαv

m2
W sα

+ 16c2
W + 2

)
C1

(
p2, q2, k2,m2

W ,m
2
W ,m

2
Z

)
+

(
vwκc3

α

m2
W sα

+
2v2λc2

α

m2
W

+ 2c2
α

)
×

× C11

(
p2, q2, k2,m2

W ,m
2
W ,m

2
H

)
+

(
2v2λs2

α

m2
W

+ 2s2
α +

vwκcαsα
m2
W

)
C11

(
p2, q2, k2,m2

W ,m
2
W ,m

2
S

)
+

+

(
2λv2

m2
W

+
wκcαv

m2
W sα

+ 16c2
W + 2

)
C11

(
p2, q2, k2,m2

W ,m
2
W ,m

2
Z

)
+
(
16c2

W − 16
)
×

× C12

(
k2, p2, q2, 0,m2

W ,m
2
W

)
+

(
− vwκc5

α

m2
W sα

+
2v2κc4

α

m2
W

− 6v2λc4
α

m2
W

+
2vwκsαc

3
α

m2
W

− 6vwρsαc
3
α

m2
W

−

− v2κs2
αc

2
α

m2
W

)
C12

(
k2, p2, q2,m2

W ,m
2
H ,m

2
H

)
+

(
− v2κc4

α

m2
W

− 2vwκsαc
3
α

m2
W

+
6vwρsαc

3
α

m2
W

+
2v2κs2

αc
2
α

m2
W

−

− 6v2λs2
αc

2
α

m2
W

+
vwκs3

αcα
m2
W

)
C12

(
k2, p2, q2,m2

W ,m
2
H ,m

2
S

)
+

(
− 6v2λs4

α

m2
W

− 3vwκcαs
3
α

m2
W

−

− 3v2κc2
αs

2
α

m2
W

− 6vwρc3
αsα

m2
W

)
C12

(
k2, p2, q2,m2

W ,m
2
S,m

2
S

)
+

(
−2λv2

m2
W

− wκcαv

m2
W sα

− 2

c2
W

− 16

)
×

× C12

(
k2, p2, q2,m2

W ,m
2
Z ,m

2
Z

)
+

(
vwκc3

α

m2
W sα

+
2v2λc2

α

m2
W

+ 2c2
α

)
C12

(
p2, q2, k2,m2

W ,m
2
W ,m

2
H

)
+

+

(
2v2λs2

α

m2
W

+ 2s2
α +

vwκcαsα
m2
W

)
C12

(
p2, q2, k2,m2

W ,m
2
W ,m

2
S

)
+

(
2λv2

m2
W

+
wκcαv

m2
W sα

+ 16c2
W + 2

)
×

× C12

(
p2, q2, k2,m2

W ,m
2
W ,m

2
Z

)
+

(
− v2κc4

α

m2
W

− 2vwκsαc
3
α

m2
W

+
6vwρsαc

3
α

m2
W

+
2v2κs2

αc
2
α

m2
W

−

− 6v2λs2
αc

2
α

m2
W

+
vwκs3

αcα
m2
W

)
C12

(
q2, p2, k2,m2

W ,m
2
H ,m

2
S

)
+
(
8c2
W − 8

)
C2

(
k2, p2, q2, 0,m2

W ,m
2
W

)
−
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− 2C2 (k2, p2, q2,m2
W ,m

2
Z ,m

2
Z)

c2
W

+ 2s2
αC2

(
p2, q2, k2,m2

W ,m
2
W ,m

2
S

)
+
(
8c2
W − 6

)
×

× C2

(
p2, q2, k2,m2

W ,m
2
W ,m

2
Z

)}
. (40)

One-Loop Corrections to SHH Vertex

{δVH(p2, k2, q2)}fer =
g2

16π2

c2
α

vm2
WCHHS

{
− 18sαB0

(
q2,m2

b ,m
2
b

)
m4
b−

− 18m4
csαB0

(
q2,m2

c ,m
2
c

)
− 18m4

t sαB0

(
q2,m2

t ,m
2
t

)
− 6m4

τsαB0

(
q2,m2

τ ,m
2
τ

)
−
(

24m6
b+

+ 3k2m4
b + 3p2m4

b − 3q2m4
b

)
sαC0

(
k2, q2, p2,m2

b ,m
2
b ,m

2
b

)
−
(

24m6
c + 3k2m4

c + 3p2m4
c−

− 3q2m4
c

)
sαC0

(
k2, q2, p2,m2

c ,m
2
c ,m

2
c

)
−
(
24m6

t + 3k2m4
t + 3p2m4

t − 3q2m4
t

)
sα×

× C0

(
k2, q2, p2,m2

t ,m
2
t ,m

2
t

)
−m4

τ

(
8m2

τ + k2 + p2 − q2
)
sαC0

(
k2, q2, p2,m2

τ ,m
2
τ ,m

2
τ

)
−

−
(
18k2m4

b + 6p2m4
b − 6q2m4

b

)
sαC1

(
k2, q2, p2,m2

b ,m
2
b ,m

2
b

)
−
(
18k2m4

c + 6p2m4
c − 6q2m4

c

)
sα×

× C1

(
k2, q2, p2,m2

c ,m
2
c ,m

2
c

)
−
(
18k2m4

t + 6p2m4
t − 6q2m4

t

)
sαC1

(
k2, q2, p2,m2

t ,m
2
t ,m

2
t

)
−

−
(
6k2m4

τ + 2p2m4
τ − 2q2m4

τ

)
sαC1

(
k2, q2, p2,m2

τ ,m
2
τ ,m

2
τ

)
−
(
6k2m4

b + 18p2m4
b − 6q2m4

b

)
sα×

× C2

(
k2, q2, p2,m2

b ,m
2
b ,m

2
b

)
−
(
6k2m4

c + 18p2m4
c − 6q2m4

c

)
sαC2

(
k2, q2, p2,m2

c ,m
2
c ,m

2
c

)
−

−
(
6k2m4

t + 18p2m4
t − 6q2m4

t

)
sαC2

(
k2, q2, p2,m2

t ,m
2
t ,m

2
t

)
−
(
2k2m4

τ + 6p2m4
τ − 2q2m4

τ

)
sα×

× C2

(
k2, q2, p2,m2

τ ,m
2
τ ,m

2
τ

)}
, (41)

{δVH(p2, k2, q2)}bos =
g2

16π2

c2
α

vm2
WCHHS

{
− 48c2

αsαm
4
W − 24c2

αm
4
Zsα + v3CHHHCHHHS×

× B0

(
k2,m2

H ,m
2
H

)
+ 2v3CHHSCHHSSB0

(
k2,m2

H ,m
2
S

)
+ v3CHSSCHSSSB0

(
k2,m2

S,m
2
S

)
+

+
(
32c2

αsαm
4
W + 2v3CHSη+η−CHη+η−

)
B0

(
k2,m2

W ,m
2
W

)
+
(
16c2

αsαm
4
Z + v3CHη3η3CHSη3η3

)
×

× B0

(
k2,m2

Z ,m
2
Z

)
+ v3CHHHHCHHSB0

(
p2,m2

H ,m
2
H

)
+ 2v3CHHHSCHSSB0

(
p2,m2

H ,m
2
S

)
+

+ v3CHHSSCSSSB0

(
p2,m2

S,m
2
S

)
+
(
32c2

αsαm
4
W + 2v3CHHη+η−CSη+η

)
B0

(
p2,m2

W ,m
2
W

)
+

+
(
16c2

αsαm
4
Z + v3CHHη3η3CSη3η3

)
B0

(
p2,m2

Z ,m
2
Z

)
+ v3CHHHCHHHSB0

(
q2,m2

H ,m
2
H

)
+

+ 2v3CHHSCHHSSB0

(
q2,m2

H ,m
2
S

)
+ v3CHSSCHSSSB0

(
q2,m2

S,m
2
S

)
+

(
8c2
αsαm

4
W−

− 4vc2
αCSη+ηm

2
W − 8vcαCHη+ηsαm

2
W + 2v3CHSη+η−CHη+η

)
B0

(
q2,m2

W ,m
2
W

)
+
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+

(
4c2
αsαm

4
Z + v3CHη3η3CHSη3η3 −

2vc2
αm

2
WCSη3η3

c2
W

− 4vcαm
2
WCHη3η3sα
c2
W

)
B0

(
q2,m2

Z ,m
2
Z

)
+

+ 2v3C2
HHSCSSSC0

(
k2, p2, q2,m2

H ,m
2
S,m

2
S

)
+ 2v3C2

HHHCHHSC0

(
k2, q2, p2,m2

H ,m
2
H ,m

2
H

)
+

+ 2v3CHHHCHHSCHSSC0

(
k2, q2, p2,m2

H ,m
2
H ,m

2
S

)
+ 2v3CHHSC2

HSSC0

(
k2, q2, p2,m2

H ,m
2
S,m

2
S

)
+

+ 2v3C2
HSSCSSSC0

(
k2, q2, p2,m2

S,m
2
S,m

2
S

)
+

(
96c2

αsαm
6
W − 4vc2

αCSη+η−m
4
W − 20k2c2

αsαm
4
W−

− 20p2c2
αsαm

4
W − 12q2c2

αsαm
4
W − 8vcαCHη+η−sαm

4
W + 4p2vc2

αCSη+η−m
2
W − 4q2vc2

αCSη+η−m
2
W−

− 4k2vcαCHη+η−sαm
2
W − 8p2vcαCHη+η−sαm

2
W + 4q2vcαCHη+η−sαm

2
W + 4v3C2

Hη+η−CSη+η−

)
×

× C0

(
k2, q2, p2,m2

W ,m
2
W ,m

2
W

)
+

(
60c2

αsαm
6
W

c6
W

+
2p2vc2

αCSη3η3m
2
W

c2
W

− 2q2vc2
αCSη3η3m

2
W

c2
W

−

− 2vc2
αm

2
ZCSη3η3m

2
W

c2
W

− 4vcαm
2
ZCHη3η3sαm

2
W

c2
W

− 2k2vcαCHη3η3sαm
2
W

c2
W

− 4p2vcαCHη3η3sαm
2
W

c2
W

+

+
2q2vcαCHη3η3sαm

2
W

c2
W

+ 2v3C2
Hη3η3

CSη3η3 − 12c2
αm

6
Zsα − 10k2c2

αm
4
Zsα − 10p2c2

αm
4
Zsα−

− 6q2c2
αm

4
Zsα

)
C0

(
k2, q2, p2,m2

Z ,m
2
Z ,m

2
Z

)
+ 2v3CHHSC2

HSSC0

(
p2, k2, q2,m2

H ,m
2
S,m

2
S

)
+

+ 2v3C3
HHSC0

(
p2, q2, k2,m2

H ,m
2
H ,m

2
S

)
+ 2v3CHHHCHHSCHSSC0

(
q2, p2, k2,m2

H ,m
2
H ,m

2
S

)
+

+

(
− 24k2c2

αsαm
4
W − 8p2c2

αsαm
4
W + 8q2c2

αsαm
4
W + 4k2vc2

αCSη+η−m
2
W − 4p2vc2

αCSη+η−m
2
W+

+ 4q2vc2
αCSη+η−m

2
W − 16k2vcαCHη+η−sαm

2
W

)
C1

(
k2, q2, p2,m2

W ,m
2
W ,m

2
W

)
+

(
− 12k2c2

αsαm
4
Z−

− 4p2c2
αsαm

4
Z + 4q2c2

αsαm
4
Z +

2k2vc2
αm

2
WCSη3η3

c2
W

− 2p2vc2
αm

2
WCSη3η3

c2
W

+
2q2vc2

αm
2
WCSη3η3

c2
W

−

− 8k2vcαm
2
WCHη3η3sα
c2
W

)
C1

(
k2, q2, p2,m2

Z ,m
2
Z ,m

2
Z

)
+m2

W

(
− 8k2c2

αsαm
2
W − 24p2c2

αsαm
2
W+

+ 8q2c2
αsαm

2
W + 4k2vc2

αCSη+η− − 4p2vc2
αCSη+η− − 4q2vc2

αCSη+η− − 8k2vcαCHη+η−sα−

− 8p2vcαCHη+η−sα + 8q2vcαCHη+η−sα

)
C2

(
k2, q2, p2,m2

W ,m
2
W ,m

2
W

)
+

(
− 4k2c2

αsαm
4
Z−

− 12p2c2
αsαm

4
Z + 4q2c2

αsαm
4
Z +

2k2vc2
αm

2
WCSη3η3

c2
W

− 2p2vc2
αm

2
WCSSη3

c2
W

− 2q2vc2
αm

2
WCSη3η3

c2
W

−

− 4k2vcαm
2
WCHη3η3sα
c2
W

− 4p2vcαm
2
WCHη3η3sα
c2
W

+
4q2vcαm

2
WCHη3η3sα
c2
W

)
×

× C2

(
k2, q2, p2,m2

Z ,m
2
Z ,m

2
Z

)}
. (42)
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One-Loop Corrections to Stt Vertex

δV At (p2, k2, q2) =
g2

16π2

1

144m2
W

{
− 72c2

αC0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
m4
t−

− 72s2
αC0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
m4
t − 36c2

αB0

(
q2,m2

H ,m
2
t

)
m2
t − 36s2

αB0

(
q2,m2

S,m
2
t

)
m2
t+

+ 32m2
W − 32m2

Z − 384πv2αs − 256
(
−3παsv

2 −m2
W s

2
W

)
B0

(
q2, 0,m2

t

)
+

(
36m2

t+

+ 256c2
Wm

2
W − 320m2

W + 100m2
Z

)
B0

(
q2,m2

t ,m
2
Z

)
+

(
384πq2αsv

2 + 1536πm2
tαsv

2−

− 384k2παsv
2 − 384p2παsv

2 − 128k2m2
W − 128p2m2

W + 128q2m2
W + 128k2c2

Wm
2
W+

+ 128p2c2
Wm

2
W − 128q2c2

Wm
2
W − 512c2

Wm
2
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2
W + 512m2

tm
2
W

)
C0

(
k2, p2, q2, 0,m2

t ,m
2
t

)
+

+

(
− 36vwκm2

t c
5
α

sα
+ 72v2κm2

t c
4
α − 216v2λm2

t c
4
α + 72vwκm2

t sαc
3
α − 216vwρm2

t sαc
3
α−

− 36v2κm2
t s

2
αc

2
α

)
C0

(
k2, p2, q2,m2

t ,m
2
H ,m

2
H

)
+m2

t

(
− 36v2κc4

α − 72vwκsαc
3
α+

+ 216vwρsαc
3
α + 72v2κs2

αc
2
α − 216v2λs2

αc
2
α + 36vwκs3

αcα

)
C0

(
k2, p2, q2,m2

t ,m
2
H ,m

2
S

)
+

+m2
t

(
−216v2λs4

α − 108vwκcαs
3
α − 108v2κc2

αs
2
α − 216vwρc3

αsα
)
C0

(
k2, p2, q2,m2

t ,m
2
S,m

2
S

)
+

+

(
512m4

W − 640m2
Zm

2
W + 164m4

Z + 72v2λm2
t − 36k2m2

Z +
36vwκcαm

2
t

sα

)
×

× C0

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
+
(
72m4

t + 512c2
Wm

2
Wm

2
t − 640m2

Wm
2
t + 128m2

Zm
2
t

)
×

× C0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+

(
− 36v2κm2

t c
4
α − 72vwκm2

t sαc
3
α + 216vwρm2

t sαc
+
α

+ 72v2κm2
t s

2
αc

2
α − 216v2λm2

t s
2
αc

2
α + 36vwκm2

t s
3
αcα

)
C0

(
q2, p2, k2,m2

t ,m
2
H ,m

2
S

)
+

+

(
384πq2αsv

2 − 384k2παsv
2 − 384p2παsv

2 − 128k2m2
W − 128p2m2

W + 128q2m2
W+

+ 128k2c2
Wm

2
W + 128p2c2

Wm
2
W − 128q2c2

Wm
2
W

)
C1

(
k2, p2, q2, 0,m2

t ,m
2
t

)
+

(
9k2m2

Z−

− 9p2m2
Z + 9q2m2

Z

)
C1

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
+
(
−36k2c2

αm
2
t − 36p2c2

αm
2
t − 36q2c2

αm
2
t

)
×

× C1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
− 36m2

t s
2
α

(
k2 + p2 + q2

)
C1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
+

+
(
36k2m2

t + 36p2m2
t + 36q2m2

t − 320p2m2
W + 256p2c2

Wm
2
W + 64p2m2

Z

)
×
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× C1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+

(
384πq2αsv

2 − 384k2παsv
2 + 384p2παsv

2 − 128m2
W

(
k2+

+ p2 + q2 + k2c2
W − p2c2

W − q2c2
W

))
C2

(
k2, p2, q2, 0,m2

t ,m
2
t

)
+

(
− 27k2m2

Z + 27p2m2
Z−

− 63q2m2
Z

)
C2

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
+
(
−54k2c2

αm
2
t − 18p2c2

αm
2
t + 18q2c2

αm
2
t

)
×

× C2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
− 18m2

t s
2
α

(
3k2 + p2 − q2

)
C2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
+

+

(
54k2m2

t + 18p2m2
t − 18q2m2

t − 160k2m2
W − 160p2m2

W + 160q2m2
W + 128k2c2

Wm
2
W+

+ 128p2c2
Wm

2
W − 128q2c2

Wm
2
W + 32k2m2

Z + 32p2m2
Z − 32q2m2

Z

)
C2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)}
,

(43)

δV Bt (p2, k2, q2) =
g2

16π2

1

72m2
W

{
18c2

αC0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
m3
t

+ 18s2
αC0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
m3
t + 36c2

αC1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
m3
t+

+ 36s2
αC1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
m3
t − 64

(
−3παsv

2 −m2
W s

2
W

)
C0

(
k2, p2, q2, 0,m2

t ,m
2
t

)
mt−

− 9m2
ZC0

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
mt +

(
18m3

t + 64c2
Wm

2
Wmt − 80m2

Wmt + 34m2
Zmt

)
×

× C0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+
(
36m3

t + 128c2
Wm

2
Wmt − 160m2

Wmt + 68m2
Zmt

)
×

× C1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+

(
− 18v2κmtc

4
α − 36vwκmtsαc

3
α + 108vwρmtsαc

3
α+

+ 36v2κmts
2
αc

2
α − 108v2λmts

2
αc

2
α + 18vwκmts

3
αcα

)
C1

(
q2, p2, k2,m2

t ,m
2
H ,m

2
S

)
+

+
(
384πmtαsv

2 − 128c2
Wmtm

2
W + 128mtm

2
W

)
C2

(
k2, p2, q2, 0,m2

t ,m
2
t

)
+

(
− 18vwκmtc

5
α

sα
+

+ 36v2κmtc
4
α − 108v2λmtc

4
α + 36vwκmtsαc

3
α − 108vwρmtsαc

3
α − 18v2κmts

2
αc

2
α

)
×

× C2

(
k2, p2, q2,m2

t ,m
2
H ,m

2
H

)
+

(
− 18v2κmtc

4
α − 36vwκmtsαc

3
α + 108vwρmtsαc

3
α+

+ 36v2κmts
2
αc

2
α − 108v2λmts

2
αc

2
α + 18vwκmts

3
αcα

)
C2

(
k2, p2, q2,m2

t ,m
2
H ,m

2
S

)
+

+mt

(
−108v2λs4

α − 54vwκcαs
3
α − 54v2κc2

αs
2
α − 108vwρc3

αsα
)
C2

(
k2, p2, q2,m2

t ,m
2
S,m

2
S

)
+

+

(
−128m4

W

mt

+
160m2

Zm
2
W

mt

− 68m4
Z

mt

− 18mtm
2
Z − 36v2λmt −

18vwκcαmt

sα

)
×

× C2

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)}
, (44)
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δV Ct (p2, k2, q2) =
g2

16π2

1

72m2
W

{
18c2

αC0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
m3
t+

+ 18s2
αC0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
m3
t + 36c2

αC1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
m3
t+

+ 36s2
αC1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
m3
t + 36c2

αC2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
m3
t+

+ 36s2
αC2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
m3
t + 64mt

(
−3παsv

2 −m2
W s

2
W

)
C0

(
k2, p2, q2, 0,m2

t ,m
2
t

)
+

+ 9m2
ZC0

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
mt +

(
18m3

t + 64c2
Wm

2
Wmt − 80m2

Wmt + 34m2
Zmt

)
×

× C0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
− 128mt

(
3παsv

2 − s2
Wm

2
W

)
C1

(
k2, p2, q2, 0,m2

t ,m
2
t

)
+

+mt

(
18vwκc5

α

sα
− 36v2κc4

α + 108v2λc4
α − 36vwκsαc

3
α + 108vwρsαc

3
α + 18v2κs2

αc
2
α

)
×

× C1

(
k2, p2, q2,m2

t ,m
2
H ,m

2
H

)
+

(
18v2κmtc

4
α + 36vwκmtsαc

3
α − 108vwρmtsαc

3
α−

− 36v2κmts
2
αc

2
α + 108v2λmts

2
αc

2
α − 18vwκmts

3
αcα

)
C1

(
k2, p2, q2,m2

t ,m
2
H ,m

2
S

)
+

+mt

(
108v2λs4

α + 54vwκcαs
3
α + 54v2κc2

αs
2
α + 108vwρc3

αsα
)
C1

(
k2, p2, q2,m2

t ,m
2
S,m

2
S

)
+

+

(
128m4

W

mt

− 160m2
Zm

2
W

mt

+
68m4

Z

mt

+ 18mtm
2
Z + 36v2λmt +

18vwκcαmt

sα

)
×

× C1

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
+
(
36m3

t + 128c2
Wm

2
Wmt − 160m2

Wmt + 68m2
Zmt

)
×

× C1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+
(
36m3

t + 128c2
Wm

2
Wmt − 160m2

Wmt + 68m2
Zmt

)
×

× C2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+mt

(
18v2κc4

α + 36vwκsαc
3
α − 108vwρsαc

3
α − 36v2κs2

αc
2
α+

+ 108v2λs2
αc

2
α − 18vwκs3

αcα

)
C2

(
q2, p2, k2,m2

t ,m
2
H ,m

2
S

)}
, (45)

δV Dt (p2, k2, q2) =
g2

16π2

1

8m2
W

{
− 3m2

ZC1

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
+

+ 2c2
αm

2
tC2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
H

)
+ 2m2

t s
2
αC2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
S

)
−

− 2m2
tC2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
− 3m2

ZC2

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)}
, (46)

δV Et (p2, k2, q2) =
g2

16π2

1

48m2
W

{(
8c2
W − 5

)
m2
Z

(
−
(
k2 + 3p2 − 3q2

))
×

× C1

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
−
(
8c2
W − 5

)
m2
Z

(
3k2 − 3p2 − q2

)
C2

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)}
,

(47)
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δV Ft (p2, k2, q2) =
g2

16π2

1

24m2
W

{
−
(
8c2
W − 5

)
mtm

2
ZC0

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
+

+ 2
(
8c2
W − 5

)
mtm

2
ZC0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+ 4

(
8c2
W − 5

)
mtm

2
Z×

× C1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
− (8c2

W − 5)m4
Z (2c2

Wm
2
t + 4m2

W ) C2 (k2, p2, q2,m2
t ,m

2
Z ,m

2
Z)

mtm2
W

}
,

(48)

δV Gt (p2, k2, q2) =
g2

16π2

1

24m2
W

{(
8c2
W − 5

)
mtm

2
ZC0

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
+

+ 2
(
8c2
W − 5

)
mtm

2
ZC0

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+

(8c2
W − 5)m4

Z (2c2
Wm

2
t + 4m2

W )

mtm2
W

×

× C1

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
+

+ 4
(
8c2
W − 5

)
mtm

2
ZC1

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)
+ 4

(
8c2
W − 5

)
mtm

2
ZC2

(
p2, q2, k2,m2

t ,m
2
t ,m

2
Z

)}
,

(49)

δV Ht (p2, k2, q2) =
g2

16π2

1

24m2
W

{(
8c2
W − 5

)
m2
ZC1

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)
−

−
(
8c2
W − 5

)
m2
ZC2

(
k2, p2, q2,m2

t ,m
2
Z ,m

2
Z

)}
. (50)

D - Loop Integral Expressions: A0, B0, B00, B1

Now let us report the loop integrals which are expressed in the MS renormalization scheme:

∆[p2] =
1

ε
+ log

[
µ2

p2

]
(51)

K[p,ma,mb] =
√
m4
a + (m2

b − p2)2 − 2m2
a(m

2
b + p2) (52)

Q[p,m] =

√
1− 4m2

p2
log

[
1− p2

2m2

(
1 +

√
1− 4m2

p2

)]
, (53)
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A0(m2) = m2(1 + ∆[m2]), (54)
B0(p2, 0, 0) = 2 + ∆[−p2], (55)

B0(p2,m2,m2) = 2 + ∆[m2]−Q[p,m], (56)

B0(p2, 0,m2) = 2 + ∆[−m2] +

(
1− m2

p2

)
log

[
m2

m2 − p2

]
(57)

B0(p2,m2
a,m

2
b) = 2 + ∆[m2

b ] +
K[p,ma,mb]

p2
log

[
2mamb

m2
a +m2

b − p2 −K[p,ma,mb]

]
+

+

(
m2
b

p2
− m2

a

p2
− 1

)
log

[
ma

mb

]
, (58)

B00(p2, 0, 0) = −p2

(
2

9
+

∆[−p2]

12

)
(59)

B00(p2,m2,m2) = −2p2

9
+
m2

6
(∆[m2] + 7) +

p2 − 4m2

12
(Q[p,m]−∆[m2]), (60)

B00(p2, 0,m2) =
m2

12

(
7− m2

p2

)
− 2p2

9
+

(
3m2 − p2

12

)
∆[m2]+

+
(m2 − p2)3

12p4
log

[
m2

m2 − p2

]
, (61)

B00(p2,m2
a,m

2
b) =

7(m2
a +m2

b)

12
− 2p2

9
− m4

a − 2m2
am

2
b +m4

b

12p2
+

(
m2
a +m2

b

4
− p2

12

)
×

×
(

∆[m2
b ] + log

[
mb

ma

])
− 1

12p4

{
[(m2

a −m2
b)

3 + 3p2(m4
b −m4

a)]

4
log

[
mb

ma

]
−

−K3[p,ma,mb] log

[
2mamb

m2
a +m2

b − p2 −K[p,ma,mb]

]}
, (62)

B1(p2, 0, 0) = −1− ∆[−p2]

2
(63)

B1(p2,m2,m2) = −1 +
Q[p,m]−∆[m2]

2
, (64)

B1(p2, 0,m2) = −1 +
m2

2p2
− ∆[m2]

2
− (m2 − p2)2

2p4
log

[
m2

m2 − p2

]
, (65)

B1(p2,m2
a,m

2
b) = −1− ∆[m2

b ]

2
+

1

2p2

{
m2
b −m2

a +
2m2

ap
2 +K2[p,ma,mb]

p2
log

[
ma

mb

]
− m2

a −m2
b + p2

p2
K[p,ma,mb] log

[
2mamb

m2
a +m2

b − p2 −K[p2,ma,mb]

]}
. (66)
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