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Chapter 1

Introduction

Consider a one-dimensional system subject to a mechanical force g, in the presence of
large dissipation and of a quasi-periodic forcing term f. The system is described by the
following singular ordinary differential equation in R:

et + 1 +eg(x) =ef(wt), (1.1)

where ¢ is a small real positive parameter and w € R? d € IN, is the frequency vector
of the forcing. We are interested in systems with large dissipation: the inverse of the
perturbation parameter v = 1/e stands for the damping coefficient that is large if ¢ is
supposed to be small. Therefore we can rewrite as

I+t +g(x) = f(wt). (1.2)

Contrary to [68], since ¢ is small, no smallness condition is assumed on the forces f and g¢:
we just assume g : R — R and f: T? — R to be real analytic functions with t — f(wt)
quasi-periodic in time. Denote by ¢ the strip on T? of width ¢ where the quasi-periodic
forcing term f is analytic. Here and in the following T¢ denotes the d-dimensional torus,
ie. T¢ = (R/27Z)%.

Systems of the form have a great relevance in at least four different contexts of
classical mechanics and electronic engineering.

1. The dynamics of a point mass moving in one dimension subject to a nonlinear force,
by taking suitable mass units, is described by the second order equation &+ g(x) = 0;
by adding a dissipation term proportional to the velocity and a forcing term, one
obtains equation (1.1]) — see [8], 20], 411 [47) 48|, [73] and the references therein.

2. Equation with g(z) = a*, provided g > 1 and z(t) > 0 for all ¢, describes a
simple electronic circuit known as the resistor-inductor-varactor circuit. The var-
actor is a particular type of diode, which is a nonlinear electronic device analogous
to a nonlinear spring, where z is the extension and typically p € [1.5,2.5]. The



mechanical analogies of the resistor and the inductor are, respectively, a source of
linear damping and a constant mass. The full model for this circuit, i.e. one in
which the restriction x > 0 is removed, possesses a nonlinearity of a different form:
c1 exp(cel|x|), c1,co constants, for x < 0 and has been extensively studied, see for
instance [4, [5, [6l, 61], 62, [69] [70].

3. Studies of ship roll and capsize motivated the investigations of the behaviour of
the ODE & + vi + o — 22 = Fsin(wt), with F > 0, which is equation (I.1)) with
f(wt) = Fsin(wt) and g(z) = 2 — 22, see [23] [67].

4. Stationary wave solutions of a perturbed Korteweg-de Vries (kdV) equation are
described by a special case of equation , see [15]. In fact, consider a perturbed
(KdV) equation ur + cue + fueee = f(u, & —V1)e, where f(u,§— V1) = focos(w(§ —
V'7))¢ and the subscripts refer to partial differentiation. Then by taking the standard
transformation & — {—V'7, 7/ — 7, one obtains Buge —vu+u?/2 = focosw¢’+C in
the steady state (u,s = 0), with v =V £ ¢ and C a constant of integration. Finally,
re-naming & as t, we again obtain equation with f(wt) = (C + focos(wt))/f,
v =0 and g(u) = (—vu + u?/2)/B.

We also refer to [3], 26], 32] B33, 40, [72] and references quoted therein for a more detailed
physical motivation.

1.1 Hypotheses on the system

We want to prove the existence of response solutions for , i.e. quasi-periodic solutions
with the same frequency vector as the forcing term. Notice that if € = 0, any constant
¢ € R is a solution to (1.1)). In particular we want to study whether it is possible to
choose the constant ¢ in such a way that, for small value of e, response solutions exist
and go to c as € tends to zero. In general, this cannot be achieved without requiring some
non-degeneracy condition involving the functions f and g.

Hypothesis 1 (Non-degeneracy condition). There exists ¢ € R such that x = ¢ is a zero
of odd order n of the equation

where fo is the average of the function f on the d-dimensional torus. Equivalently, one
has g(c) = fo, d"g(c) #0 and %(jc) =0forj=1,....,n—1.

dml\

Remark 1.1. Hypothesis [I| is a necessary condition: indeed if this hypothesis is not
satisfied, in general there is no response solution reducing to ¢ as e tends to zero, see
Lemma in Appendix B for a detailed proof.

Hypothesis 2 (Non-resonance condition). The frequency vector w has rationally inde-
pendent components, that is w -v # 0 Yv € Z4 .= 74\ {0}.
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Remark 1.2. Hypothesis [2] is not restrictive: in fact if w is resonant, one can always
reduce to the case of w with rationally independent components by changing the value of
the dimension d, in the following way. If w € R? is resonant with multiplicity » < d, i.e
if there is a rank r subgroup G of Z¢ such that w-v =0 for all v € G and w - v # 0 for
all v € Z?\ G, then, after a transformation, w can be written as w = (w’,0), such that
w' e Rd/, with d’ = d — r, has rationally independent components and the function f may
be seen as a function on T of the form f(wt) = f(w't).

1.2 A brief review on the literature

The existence of response solutions to are widely studied in literature when the
frequency vector w satisfies a non-resonance condition stronger than Hypothesis 2} In
order to clarify what follows, we recall the definitions of Diophantine vectors and Bryuno
vectors (see [19]).

We say that w € R? is a Diophantine vector if it satisfies the standard Diophantine
condition |w-v| > Colv|™7, where |v| = |v|1 = |v1|+- - +|v4, for all v € Z¢ and for some
positive constants Cp, 7 with 7 > d — 1. Here and henceforth we denote by - the standard
scalar product in RY.

Define

=1 1 ,
Blw) =Y o logm, ap(w) := inf{|w - v| : v € Z¥such that 0 < |v| < 2F}. (1.4)
k=0

The vector w € R? satisfies the Bryuno condition if B(w) < co. Notice that the Diophan-
tine condition is stronger than the Bryuno one: in fact if w is a Diophantine vector, then
it also satisfies the Bryuno condition, whereas the converse is false, see Section 4.4 of [60]
for an example of a Bryuno number which is not Diophantine.

In [4I] a special case of (L.1)), with g(z) = x2, was considered. Response solutions
were proved to exist in the case of analytic periodic forcing term (d = 1) by requiring
only Hypothesis [1| with n = 1 and in the case of quasi-periodic forcing term by adding
a Diophantine condition on w to deal with the small divisors problem. In [42] the same
results were extended to equation with g an analytic function satisfying Hypothesis
and in [9], by adding the constraint ¢’(c) > 0, it was proved that the solution describes
a local attractor in the phase plane (z, ), which implies that there is a unique response
solution to in a neighbourhood of (¢,0). In [42] it was also proved that such solutions
are Borel summable at the origin when the frequency vector is either any one-dimensional
number (periodic case) or a two-dimensional vector satisfying the Diophantine condition
with 7 = 1.

In [44], [46] response solutions were proved to exist under Hypothesis [l| with n > 1 and
with w satisfying the Bryuno condition.

In [20} 29] the hypothesis on the frequency vector considered in [44] [46] was weakened



further: define the sequence e(w) as ei(w) = Qiklog m, with ai(w) as in and
assume that e;(w) converges to zero (as k — o00). In particular in [20] Hypothesis [1| with
n = 1 was considered and response solutions were produced through fixed point methods.
Under this mild non-resonance condition, the response solution is C* in € and analytic in

a domain of the complex plane with boundary tangent to the origin, see [20 28] 29].

If we consider Hypothesis with n = 1, the existence of response solutions to ([1.1]) can
be also obtained by only assuming Hypothesis |2 on the frequency vector w, see [47] for the
one dimensional case of (L)), that is z € R, [48] for the extension of the results in [47] to
the m-dimensional case z € R and [73] for the cases of analytic, finitely differentiable and
low regularity forcing (see below). Without any other condition on w, only a continuous
dependence of the solution on € and analyticity in € in a conical domain of the complex
plane can be proved [20, 28] [47, [73].

In [47] the existence of response solutions was also demonstrated for more general
equation
et + & +eh(r,wt) =0 (1.5)

with h : R x T4 — R a real analytic function, by assuming only Hypothesis [2| on w and
requiring ho(z) to have a simple zero ¢, that is the equivalent version of Hypothesis [1| with
n = 1; then this result was extended to the m-dimensional case in [48].

In [73] response solutions of were proved to exist under weaker regularity assump-
tions on f and ¢: in the case of highly differentiable functions f and ¢, such as f € H™,
with m > d/2, and g € C™*!, with [ = 1,2,..., existence of the response solution is
obtained under very weak assumptions of regularity on the forcing and on the mechanical
force, such as f in the L? space and ¢ Lipschitz continuous. The solutions were produced
through methods of fixed point theorem, which also requires a smallness assumption either
for f or for the nonlinear part of g.

1.3 Main results

This work aims to be a generalisation of [47], where the case of n = 1 is treated; we want
to show a similar result of existence for under the weaker Hypothesis || with n > 1.
First of all, we confine ourselves to the case of f a trigonometric polynomial and we prove
the following Theorem.

Theorem 1. Consider the ordinary differential equation with f a trigonometric
polynomial and assume Hypothesis 1| with n > 1. For any frequency vector w € RY
satisfying Hypothesis @ there exists €9 > 0 such that for all |e| < g¢ there is at least one
quasi-periodic solution x(t) = c+ X (wt,€) to such that X (¢, €) is analytic in ¥ and
goes to zero as € — 0.

The same result is already contained in [29], but our proof is slightly simpler. In [29]
the solution of ([1.1)) is written as a power series in a suitable parameter different from €. In



order to bound the small divisors, a quantity «, depending on the order n (see Hypothesis
and on the degree N of the trigonometric polynomial, is introduced: « := min{|w - v/ :
0 < |v| < (n+1)N}. Then the power series is proved to be convergent provided |e| < &y,
with ey small enough proportional to a: this requires a careful estimate of the relation
between end nodes and lines (which are defined in Chapter [2|) with propagators which can
be bounded proportionally to « (we refer to Section II of [29] for details). Here we write
the solution as a series which is not a power series expansion and use inductive estimates
to prove that it converges provided |e| < gp, with gy small enough. To do that, we use
renormalization group ideas and multiscale decomposition techniques: with respect to [29]
we weaken the dependence on the degree IV of the parameter « to which g is proportional
by requiring a := min{|w - v|: 0 < |v| < nN}.

The generalisation of Theorem [1| to the case of f an analytic function is not as simple
as one could think. In order to deal with the small divisors problem, we will confine
ourselves to the two-dimensional case of frequency vectors and we will need the properties
of continued fractions. We refer to [55] 57, 59, 63], 64] for a general overview on continued
fractions. Without lost of generality, we will assume w to be of the form w := (1, «), with
a € R\ Q (according to Hypothesis . Let A be a set, we denote by A the closure of A.

Theorem 2. Consider the ordinary differential equation (1.1)) with w = (1,a), a € R\Q,
and assume Hypothesis 1| with n > 1. Let p,/q, be the convergents of . Let Cy be the

fixed positive constant
n+1

4(n? +2n —1)
and let C be an arbitrary positive constant. Then there exist €9 € R and N1, Ng € IN,
with g small and positive, such that

Co = fv (16)

1

< 1.7

(ClQNl)n+1 = €0, ( )
1 _

Gt 2 0 fornz NN, (L8)

and, by defining N := max{Ny, No} and I,, as the interval
I, == e 2, (C’lqn)fnfl}, forn> N, (1.9)

for alle € Up>NI, there is at least one quasi-periodic solution x(t) = ¢+ X (wt,€) to (1.1)),
such that X (1, €) is analytic in v in the strip X (with & < £/4), is continuous in the
sense of Whitney in €, and goes to zero as € — 0.

We refer to [75] for the continuity —and differentiability— in the sense of Whitney, but
in general if A is a closed set in the Euclidean space E and f(z) is a function defined and
continuous in A, then this function can be extended so as to be continuous throughout F;
see also [31], §125. See also refs. [7, 37] for a similar use of the notion of continuity in the
sense of Whitney in different contexts.



We will find a connection between the frequency and the perturbation parameter: the
existence of response solutions can be proved for any frequency vector with some restriction
in € or for any € but with some restriction on w. As we can see from , once fixed
N as in Theorem [2| the solution does not exist for all |¢| < eg: if we do not assume any

condition on the frequency vector, there is in general no relation between 1 and
! (Cign+1)™

e~ C20n e refer to Chapter 4| for more details on the properties of g,,. It can happen that
W < e~ C20n Therefore we might obtain response solutions to exist in a set with
holes: the size of the holes depends on the frequency vector, in particular on the irrational

number « and, as a consequence, on the convergents p,/qn.

The rest of the work is organised as follows: in Chapter [2] we set up the problem in the
case of f a trigonometric polynomial and in Chapter [3| we prove the existence of response
solutions to under such an assumption on f. In Chapter {4 we highlight the main
properties of continued fraction that we use to prove Theorem [2] in Chapters [5.1] and
For concreteness, a specific case of odd n (n = 3) is treated in Appendix A.

1.4 Some related results

Existence of quasi-periodic and almost-periodic solutions to ordinary differential equations
— we refer to [IT], 24, B5] for an introduction to almost periodic functions — in problems
where no hypothesis is made on the frequencies has not been studied in the literature as
extensively as in the case in which one requires some non-resonance condition such as the
Diophantine or the Bryuno condition. For instance, in the framework of KAM theory, it is
well known that, in general, the invariant tori of the unperturbed system which are close
to resonances break up when the perturbation is switched on, see for example [13| [38].
Therefore, if one is looking for results holding for all frequencies one has to consider either
conservative systems away from the KAM regime — see for instance [10, [11], 12] — or non-
conservative systems.

Typically response solutions arise by bifurcation. Bifurcation phenomena have been
widely investigated in the literature — for instance we could mention [16, 17, [51], [52], based
on the singularity theory method. The method has been applied to the study of stable
quasi-periodic solutions for periodically and quasi-periodically forced systems, especially in
the conservative case — for example see [I8], 563, 54]. In particular, quasi-periodically forced
Hamiltonian oscillators are considered in [I8], where the persistence of quasi-periodic
solutions is studied in the case of resonance between the Diophantine frequency vector
of the forcing and the proper normal-internal frequency: first, the Hamiltonian of the
oscillator is written as a perturbation of an integrable one, which describes a suitable
one-dimensional system (backbone system) and a collection of rotators; then, under some
non-degeneracy assumptions, the behaviour of the full system is investigated according to
the bifurcations of the backbone system.

In order to guarantee the existence of response solutions, a non-degeneracy condition
is generally assumed on the unperturbed solution, usually a condition of hyperbolicity or



exponential dichotomy — see for instance [14], 27, 34} [77]. For example in [14] an invariant
torus bifurcates from the equilibrium point under a suitable assumption of hyperbolicity.
Our point of view is different since the unperturbed bifurcating solution is not given a
priori and it does not satisfy any stability or hyperbolicity condition: in fact, any constant
c is a solution to when ¢ = 0 and the existence of response solutions is proved for a
special value of the constant, which is the odd order zero of the equation g(x) = fo.

In [22, 50] the authors proved the existence of an almost periodic solution for the
differential equation

jj:f(t7$7y7€)7 Ey:g(t7$?y7€)7 (1'10)

with e > 0, (z,y) € R™ x R™ and f, g almost periodic in time, by requiring some assump-
tions on the unperturbed almost periodic solution of the unperturbed system

:t:f(t7$7y70)’ O:g(t7x’y70) (1'11)

and by requiring that the linearised equation associated to the system possesses an ex-
ponential dichotomy. Notice that equation is a particular case of , but the
point of view considered in [22, [50] is different since the problem is of hyperbolic type and
no small divisors appear. In both papers the vectors f,g with the respective Jacobian
matrices are supposed to be almost-periodic in time, continuous in (z,y, ) and bounded.
Analogous results for equations of the form are also provided in [66] always in the
almost periodic context, and in [T}, [34] 36, [71), [76], in the periodic context. The assump-
tion of exponential dichotomy on the linearised system was also applied to the studies
of almost periodic solutions to regularly perturbed linear and nonlinear systems; see for
example [27), B4 (56, [77].

As we said in the previous section, we will use the continued fraction theory to bound
the small divisors in the case of analytic f: the continued fractions are widely used when
the frequency is a Liouvillean vector, see for instance [58, [74]. In [58] the authors look for
a response solution to the equation

i+ Nr=cF(wt,z,i), z€R, w=(1,0), acR\Q, (1.12)

where e, A are positive parameters and F : T? x R x R — R is a real analytic function
satisfying the reversibility condition

Without assuming w to satisfy any strong non-resonant (Diophantine or Bryuno) condi-
tions, the authors proved that for any closed interval O C R\ {0} and any sufficiently
small v > 0, there exist eg > 0 and a Cantor set O, C O with Lebesgue measure
meas(O \ O,) = O(7v), such that if 0 < ¢ < gp and X € O,, the quasi-periodically forced
nonlinear oscillator described by admits a response solution. The system considered
in [74] is different with respect to since the function F' does not depend on &. Both
[58, [74] use the continued fractions theory and exploits the so-called CD-bridge between



the denominators of the best rational approximation of a continued fraction, introduced
by A. Avila, B. Fayad and R. Krikorian in [2]. With respect to [74], a modified KAM
scheme is proposed in [58] to deal with the small divisors problem: in particular in [58§],
the authors impose the second Melnikov’s condition for a Liouvillean frequency vector w
by varying some parameters in O. Notice that our problem is not the same as since
our system does not verify the reversibility condition in and is a singular differential
equation.
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Chapter 2

Setting of the problem

Let us denote by A(e, p) the disk of center ¢ and radius p in the complex plane.

By the assumption of analyticity on g, for any ¢ € R there exists pg > 0 such that
x — g(z) is analytic in A(c, pg). Then for all p < po, if we take ¢ as in Hypothesis |1 and
if we define I" := max{|g(z)| : € A(c, p)}, one has

o
1 0Pg _
g(@) =g(c) + > gp(z — )P, gpi= i7ar (@ ol T, (2.1)
p=n ’
where we have used Cauchy’s estimates for analytic functions.

Let us suppose that the quasi-periodic forcing term f is a trigonometric polynomial
of degree N, that means f, = 0 for all v € Z? such that |v| > N. Hence if we define
¢ := max{|f,|: [v| < N}, we have

f@)= > he”?, L)< (2:2)

veZa
We shall see later how to modify the forthcoming analysis in order to discuss the case

in which f is an analytic function containing all the harmonics.

Define

a:= min |w-vl (2.3)
0<|v|<nN

by the assumption of irrationality on w, cf. Hypothesis[2| one has a > 0.

We are interested in the existence of response solutions to (1.1)), i.e. solutions of the
form

2(t,e) = ¢+ C + X(whe, o), (2.4)

where ¢ is a value that has to be fixed and ¥ — X (v;¢,() is a zero-average function.
Since we are looking for quasi-periodic solutions X (;¢,(), analytic in 1, we can write

(1.1) in Fourier space as
(iw-v)(1+iew -v)X, +elglc+C+ X)]p =<fy v £0, (2.5)

11



with )
X(he (o) = > Xpe“™ X, = X,(2.G0),

vEZS

where Z2 := 74\ {0}, provided for v = 0 one has

[9(c+ ¢+ X)]o = fo (2.6)

We call the range equation and the bifurcation equation, see also [25] 49, [65]. We
first study the range equation looking for a solution to , depending on the parameter
¢ that is supposed to be close enough to zero. Then we analyse the bifurcation equation
and we try to fix  in order to make this equation to be satisfied as well.

In order to write the perturbation expansion of the response solutions, we use some
graphical objects, that we call trees, which we describe below.

2.1 Tree formalism

A rooted tree ¥ is a graph with no cycle, such that all the lines are oriented toward a
unique point, that we call root, which has only one incident line, the root line. All the
points in 9, except the root, are called nodes. The orientation of the lines in ¥ induces a
partial ordering relation (<) between the nodes. Given two nodes v and w, we shall write
w < v every time v is along the path (of lines) which connects w to the root; we shall
write w < £ if w < v, where v is the unique node that the line ¢ enters, see figure For
any node v, denote by p, the number of lines entering v.

Given a rooted tree 19, we call first node the node the root line exits and we denote
by N(9) the set of nodes, by E(¢¥) the set of end nodes, i.e. nodes v with p, = 0, by
V(9) = N(9)\ E(9¥) the set of internal nodes and by L(¥) the set of lines. We impose the
constraint p, > n, Vv € V(¥). If for any discrete set A we denote by |A| its cardinality,
we define the order of ¥ as k = k(V) := |N(9)|. See [45] for a general overview on the tree
formalism.

Given a rooted tree 1, for any node w € N (1) the line exiting w can be considered as
the root line of a tree 6, formed by the nodes v € N(1J) such that v < w, by the lines
which join such nodes and by the root line itself. Such a tree is called a subtree of ¥ with
first node w.

We associate with each end node v € E(¥)) a mode label v, € Z? and we split E()) in
two complementary sets: Ey(v) = {v € E(¥) : v, =0} and E1(9) ={v € E(Y) : v, # 0},
in such a way that E(J) = Ep(v) U E1(9). With each line ¢ € L(1) we associate a
momentum vy € Z% with the conservation law

vy = Z Uy, (2.7)

weFE(Y)
w=<{

12



Us

V2 Ve
U7
(%] VU3
U8
Vg
Vg
U10

Figure 2.1: An example of tree with 10 vertices, 7 end nodes vs, vs, vg, V7, Vs, Vg, v19 and 3 internal
nodes v1,vg,v4. According to the definition of partial ordering relation, vs < ve but there is no
relation between vs and vy.

i.e. the momentum of the line £ is the sum of the mode labels associated with the end
nodes preceding £. Equivalently, by induction, the momentum of the line £ is the sum of
the momenta of the lines entering v, if v is the node the line £ exits.

With each line ¢ € L(¥) we also assign a scale label ny € {0,1}. Generally one can
consider the scale label as a number in Z (we refer to [45] for a general overview on
multiscale analysis) but, for the problem we are studying, we just need the scale label to
be either zero or one.

Definition 2.1 (Labelled trees). We call labelled rooted tree a rooted tree with the labels
associated with N(9) and L(0).

Definition 2.2 (Equivalent trees). We call equivalent two labelled rooted trees which can
be transformed into each other by continuously deforming the lines in such a way that they
do not cross each other.

In the following we shall consider only inequivalent labelled rooted trees and we denote
by Tk the set of non-equivalent trees of order k£ and momentum v associated with the
root line.

Definition 2.3 (Cluster). A cluster T' on scale mis a mazimal set of nodes and lines
connecting them such that all the lines have scales n' < n and there is at least one line
with scale n. The lines entering the cluster T and the possible unique line coming out
from it (if existing at all) are called the external lines of the cluster T'. Given a cluster
T on scale n, we shall call np := n the scale of the cluster. We call V(T'), E(T) and
L(T) the set of internal nodes, of end nodes and of lines of the cluster T respectively,

13



with the convention that the external lines of T do not belong to L(T). In particular we
denote with E1(T) and Eo(T) the following sets: Fy(T) := {v € E(T) : v, # 0} and
Eo(T) := E(T) \ E(T).

According to the definition of scale label, we have two possibilities for ny (i.e. {0,1}):
notice that we will only deal with clusters on scale 0, because the only possible cluster on
scale 1 is the whole tree 7, where there is at least one line on scale 1.

Definition 2.4 (Self-energy cluster and renormalized tree). We call self-energy cluster any
cluster T' (on scale 0) such that T' has only one entering line that has the same momentum
of exiting line. We denote by Ty, the set of renormalized trees in Ty, i.e. of trees that
do not contain any self-energy clusters and by R the set of self-energy clusters (all on
scale 0 by construction).

Notice that, by Definition the mode labels associated with the end nodes in a
self-energy cluster T' are such that

Let us introduce a sharp partition of unity: let x and ¥ be functions defined on R,
such that
1 forz<§ 0 forz<$
X(z) = TES gy = TS (2.8)
0 forx > g, 1 forx > g,
with « as in (2.3)). Note that x(z) + ¥(z) =1, for all x € Ry.

We associate with each node v € N () a node factor

—EGp,, vEV(V)
F’U = EfV’U7 'UGEl
C, v € Ey

and with each line ¢ € L(¥) a propagator
Gy =Gl (w-vpe, ¢ c), ye 0,1}, (2.10)
where the functions G (w - vy;e,(, c) are defined as follows. For vy # 0

U(Jw - vy])
iw-v(l+isw-vy)’
X(|w - vl)
w- vl +iew vy) — M(w-vge, ¢ e)

G[O](w ‘vpe,(,c) =
(2.11)
GM(w-vpe, ¢ e) =

14



with

M(w ’ V€;€7C76) = X(‘w ’ V@’)M(w Vi€, C, C)a (212&)
M(W‘I/%&‘,C,C) = Z W(va”/f;g)C7c)’ (212b)
TERo
V(T ,w-v;e,(,c) ::( H Gg)( H F) (2.12c)
LeL(T) veV(T)

where ¥ (T, w - vy;e,(, c) is called the value of the self-energy cluster T.

For vy, = 0, we set Gy = 1 and for convenience we assign these lines the scale 0 only,
that is GIY(0;¢,¢,¢) = Gy = 1.

Remark 2.5. With the sharp partition considered above, a momentum v identifies
uniquely the scale 7.

In order to simplify the notation we omit the dependence on the parameters ¢, (,c
in (2.10), (2.11)), (2.12a]), (2.12b) and (2.12c]), hence, from now on, we will just write
G w-v), GM(w-v), Mw-v), M(w-v), ¥(T,w-v).

Remark 2.6. Since we are considering only cluster on scale 0, the product over the lines
n (2.12¢)) involves only propagators on scale 0, that means the formula of ¥ (T,w - v) can

be rewritten as
YT w - v) ( ] ¢ W)( I F)

LeL(T) veV (T

Therefore the expressions of M(w - v) in (2.12a)) and of ¥ (T, w - v) in (2.12¢) are well
posed.

Now define the value of the renormalized tree ¥ as

Y (9) =¥ (0;e,(,c) ( 11 G4)< 11 F> (2.13)

LeL(¥) veV (9)

and set

xph=3 v (2.14)

19€Tk v

where T}, ,, denotes the set of all renormalized trees of order £ and momentum v associated
with the root line, see Definition [2.4]

Finally we can define the renormalized series or renormalized expansion as

X() = X(hie,Ce) = Y eV ¥X,, X, =Y X (2.15)
k=1

veZd

15



Remark 2.7. In order to simplify the notation, we do not write the dependence on ¢, ¢
and ¢ of the coefficients XM in (2.15]).

Our goal is to prove that the series X (1;¢,(,c) in (2.15) converges and solves the
range equation (2.5)), i.e.

iw-v(l+iw-v)X, =¢[f —glc++ X)), (2.16)

for all v # 0.

16



Chapter 3

Proof of Theorem [1

Let « be as in (2.3) and set n as n := max{|e|,|¢|} = max{e,|(|}, since ¢ is real and
positive.

3.1 Bounds on the propagators

Lemma 3.1. Given a tree ¥, consider a self-energy cluster T in ¥ with momentum v
associated with its external lines and with order k. Then one has

| ¥ (T,w - v)| < pI' CFT e =1, (3.1)
where C' is defined as
- 2 29
-1
C:=p max{ . ,1}, (3.2)

with T, p as in (2.1)) and ®, « respectively as in (2.2)), (2.3)).

Proof. As we have discussed in Remark we only deal with self-energy clusters on scale
0; hence we have

|V (Tw-v) < [T 169w vl ] IF.

LeL(T) veV(T)
If vy # 0 and ny = 0, by the sharp partition considered in ({2.8)), it follows that
1 2
G w - vy)| < <-,

T |lwer T«

instead if v, = 0, one has G1%(0) = 1.
Therefore it follows that

V(D) =1+ E1 (T) [+ Eo(T)]

2)\V<T>\—1+|E1(T)|
en

| (T, w - v)| < TVDIglET)] j=(kr=1) (E

< pICFT g phr =1,

17



with C as in (3.2)). O

Remark 3.2. The lines exiting end nodes in F; (1) are on scale 0 since f is a trigonometric
polynomial. In fact, if we consider v € F4(¢) and the corresponding exiting line ¢, by the
definition of node factor it follows that |vs| < N. Therefore, by using the definition
of avin (2.3) we see |w - v¢[ > a > §, that implies the line £ to be on scale 0. This can be
generalised as long as [vy| < nlV.

Lemma 3.3. Given a tree ¥, consider a self-energy cluster T in ¥ with momentum v
associated with its external lines. For n small enough, one has

IM(w-v)| > Aen™ 1, (3.3)

with M(w-v) defined in (2.12a) and A a suitable positive constant depending on ®,T', p, o,
i.e. A= A(®,T,p, ), with T, p as in (2.1) and ®, o respectively as in (2.2)), (2.3).

Proof. A cluster T must contain at least n nodes, i.e. k7 > n. Indeed let us consider a tree
with order k > n+ 1, in which the root line, ¢y, exits a node vy € V(¢#). By construction
Dy, > M, therefore a cluster 7', if exists, must contain at least n —1 lines on scale 0 entering
vo and hence n — 1 nodes besides vg.

In particular, by the analysis above, we notice that if a self-energy cluster has only n

nodes, then n— 1 of such nodes are in E(1)) and the external lines of the cluster exit/enter
the same node, see Figure

Figure 3.1: A cluster with n = 3 nodes.

We denote by My(w - v) the contributions to M(w - v) corresponding to self-energy
clusters with n nodes and we denote by AM(w - v) the other summands of M(w - v), see

(2.12a]) and (2.12b)). Notice that My(w - v) = My(0), i.e. My(w - v) does not depend on

v and is real. Hence we have

Ma(w-v)| = Aoe | (XM 4+ ¢! (3.4)

for a suitable positive constant Ay depending on ®,T", p, . The right hand term of (3.4))
represents the contribution of the self-energy clusters with n nodes.

18



If ¢ = o(e), then
(x40 > e,

for a suitable positive constant A; depending on @, .

Analogously, if € = o((), then
(x40 > A,

for a suitable positive constant Ay depending on @, a.
If { = ae + o(e), with a # 0, then
(x4t = [ 4 as 4+ o)™

[( _|_ a)n 1]0 En—l +0(€n—1)
Asze

AVARIY

(1 .

with Az positive constant and where we have defined the function wy” in such a way that

XM = gl
Hence we conclude that B
Mu(w - v)| > Agen™ ", (3.5)

for a suitable positive constant g@ depending on Ag, A1, Aa, As.
Therefore, from (3.5) and Lemma applied to AM(w - v), we have:

(M(w - v)|

IAM(w - v)| < aren” < 1 , (3.6)

for a suitable positive constant a1 and for £, small enough.
Hence we obtain (3.3):
M(w-v)| = [Mn(w-v)| - [AM(w - V)]
> Goen™ " — aien”
2 Aenﬂ—l
for a suitable positive constants ag and a; depending on ﬁm pand C and A =ap/2. O

Lemma 3.4. For any ¢ € L(9), one has

|G (w - vy)| < 4A7Tem Iyt ifve#0 and ny = 1;
GO (w - vy)| < 2, if vy # 0 and g = 0; (3.7)
GO w - vy)| =1, if vy =0;

where A is as in Lemma[3.3
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Proof. If vy # 0 and ny = 1, one has

A n—1
iw-vi(l+icw-vy) — M(w-vy)| > 82 :
This can be proved as follows. Let = w - v. If ex? < M, then

iz — (e2 + M(@)| > [iz — (22 + Ma(0)) — AM(2))|
> iz~ (ea® + Ma(0))] — |AM(2))
> |ex + Ma(0)] ~ [AM(@)
L M@ IM@) | Aer!
- 2 4 - 4

where we have used the bound (3.6) on AM(z) and Lemma If ex? > |M72($)|, again
by using (3.6) and Lemma one has

iz — (e2® + M(2))| 2 fiz — (2® + Mu(0))] — [AM(2))|

VZAﬁ%nlpﬂ >,f§€nn717

> [a] - |AM(2)| > }

for  and e small enough. Then the bound of |GM(w - vy)| follows directly from the
definition ([2.11]).

If vy # 0 and 1y = 0, by the sharp decomposition considered in ({2.8]), it follows that
1 2
<

O . <
GV w)| < o < 2,

If vy = 0, the last equation follows directly from the definition of G[O}(O). O

3.2 An estimate for 7 ()

Set
2 & 4T

C:= p_lmax{g,a, A,l} (3.8)

where p,I" are as in (2.1)), ® is as in (2.2]), o as in (2.3 and A is the constant defined in
Lemma [3.31

The following results provide an estimate for ¥/(J), with ¥ a renormalized tree.

Lemma 3.5. Let ¥ be a tree of order k =1, that is ¥ € T1,. Then

€, if v # 0;
[qF ifvr=0.

Notice that when the order of the tree is 1, then Ti, = T1 .

V()] < pC{

20



Vo Vo

_— a0

efv ¢

Figure 3.2: An example of trees with k = 1.

Proof. Let k = 1, that means there is only one node, vy, that is in particular an end node.
There are two possibilities: vy € Ey(9) or vy € Eq(9), see Figure

Since we are in the situation described in Remark [3.2] there are no small divisors
associated with the root line. Hence if v # 0, the value of the tree is bounded by

|V (9) < @% < pCe, (3.10)
while if v = 0, one has
|7 (D) = [¢] < pCI<], (3.11)
with C as in (3.8]).
(]

Remark 3.6. Since we are interested in studying the range equation, we require that the
momentum of the root line is not zero. By construction, the momentum of every internal
line is different from 0, as well.

Remark 3.7. In Remark we have seen that if |vy| < nN, then n, = 0. This also
means that if a line £ € L(1) is on scale 1 then |vy| > nN. Therefore if we consider an
internal line ¢, that by construction is such that vy, # 0, see Remark these are the
possible cases:

a) |vel <nuN (= ng=0);
b) |v¢| >nN and ny = 0;
c) |ve] >nN and ny=1.

Lemma 3.8. Let ¥ € Ty, be a renormalized tree of order k > n+ 1 and momentum of
the root line v # 0. Then

V@) < pCPEHE = 8= (3.12)

with p and C as in (2.1)) and (3.8)) respectively.
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Proof. Let ¥ € T}, with k > n+ 1 and let vg be the first node, that is the node the root
line exits. For any renormalized tree, we have the following structure:

e ¥ € Skl,wl,...,ﬁm € Tk, v,,, are m renormalized trees of order k; > 1 with
j =1,...,m entering vg;

o (),... 0l are s lines exiting end nodes in Fj(1)) and entering vo;

o (] ... 0! are r lines exiting end nodes in Ey(¥) and entering vo;

em+r+s>n;

e m,r,s > 0;

k=k+ - +knt+r+s+1;

Each 95, for j = 1,...,m, is represented by the graph element in Figure as a line
with label v, exiting a ball with label (k;).

(k)

O

Figure 3.3

Then we can graphically represent the tree 1 described above as depicted in Figure

3.4

By induction, we assume that for any 1 < k' < k, holds with &’ instead of
k. Moreover we use the first of to bound the value of any element in Figure
composed by an end node v; € E(¥) and the respective exiting line £ and the second of
to bound the value of any element in Figure formed by an end node v} € Ep(9)
and the respective exiting line 7.

We want to prove the bound in for every possible choice of the momentum of
the root line, as described in Remark

Let us study the case a) of Remark i.e. the case in which the root line has
momentum || < nN.

By induction we have

‘ 4//(19)’ < pm+r+sck71 g pf(m+r+s) n% ‘C|r€s+1
«
k+3n —s—r—143(m—1)n

<oTa tCFtpmit = mpr o trtstl (3.13)

k+3n mn+2n(m+r+s)—n

< kaé'O_l n2ntl 2n41 ,
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Figure 3.4: Tree of order k representing the described structure.

where we have used Lemma to bound the propagator of the root line and where we
have defined

~ d 2
Cp:= max{l @ a }

"ol AT
Notice that 50_1 <1.
As we can easily check, the bound in (3.12)) holds, indeed:

mn+2n(m+r+s)—n S 2n2 —n

> 0.
2n+1 — 2n+1

The second case of Remark b), is analogous to the case a), since the behaviour of
the value of the tree is still described by (3.13).

In the case c), the root line is on scale 1. By induction and by Lemma we have:

AU —(m+r+8)n43mn;&?lii Ic|” o5t
Aenpr—1 (3.14)
k+3n

< ka 511—1 p2ntt nA(m,r,s)’

(@) < prreCh

where we have defined Cy and A(m, 7, s) as

61 = max{é,@—A,l, i} >1,
20" 4'ae” " AT (3.15)
_mn+2n(m+7r+s)—2n* —2n '

A(m,r,s) = 1
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If m+r+ s >n+1 the thesis follows trivially as

—9m2 —
mn+2n(m—+r+s)—2n 2n> mn_
2n+41 T 2n+1 7

If m + r 4+ s = n the argument is more delicate. In this case, A(m,r,s) reduces to

mn — 2n

A(m.rys) = "5

where we have used m + 7+ s =nin , so that the bound trivially holds if
m > 2, since A(m,r,s) > 0in such a case, whereas A(m,r, s) is negative if m = 0, 1. Since
the root line is on scale 1, by construction m > 1. In fact, if m = 0 and hence s +r = n,
we have

S
lv] < Z ]1/4_\ < sN <nN,
=1
that implies the root line is on scale 0, but this is not the case we are considering.

Thus, we have to study the case m = 1, i.e. when there is only one subtree 1, € ‘Ik’hl’él ,
with k1 > 1, entering vg. If m = 1, or equivalently s + r = n — 1, the scale of the line
exiting the tree ¥; cannot be 1, i.e. ny, = 0, as one can show by reasoning as follows.
If both £y, £, are on scale 1, one has |w - vy| < § and |w - vy, | < §. Moreover we have
DIy 1/4;'_| <> ‘Vg;_| < sN < uN, that implies |w - (Z;:1 I/g;_)| > «. Besides by
construction

> Q@
a<|w- (Y ve)l=lw- (v, —ve)l < |w- vl +lw- vyl < 5t
i=1

(67

2 — ¢

that is impossible.

The analysis of the first case a) and the previous observation suggest that the bound
for 91 can be improved. Suppose m’ trees and s’ + 7’ lines enter the first node of 91, that
we call v;. We denote by:

NS (Z’f'p'/zl”"’ﬁ;n’ € ‘Zk:n”,,z E with &% > 1 for j = 1,...,m/, the m’ renormalized

trees entering vq;
° Z’l, . ,Z’S, the s’ lines exiting end nodes in F; and entering vy;
° Z’l’ e ,Zﬂ’, the 7’ lines exiting end nodes in Ey and entering vy;
with the following constraints:
* vy = Z;n:/1 vg + Z;‘:l Y # 0;
o/ +1r' +5 >n;
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b mlar/73/ > 07
o ky :Z;Zlk‘g—&—s/—i—r/—i—l.
Then, by induction and by reasoning as in obtaining (3.13)), it follows that

/
3m/nt 2 k)

|V(0h)] < pCMy— it ¢ et

k1 +3m/nt2r/ ng2s’ ng2n

S pckln 2n+1

k1+2n2+2n

< pChiy ma
where in the last bound we have used that

ki +m/n+2n(r' + s +m/) + 2n - k1 +2n% +2n
2n+1 - 2n+1

Then, by using that ky =k —r —s—1=Fk —n, for m =1 (3.14) can be improved into

k:1+2n2+2n 41_‘
v (9| < 1+r+sck1+r+s —(+r+s) et |F|” 6s—l—l
| V() <p P n q e
~ I12 n ~ n I127 n
S pckcl—lnkléi+i2 — kaCI—lng:fl 7722n+§
~ 2n2_2n
and the thesis follows since C Ip™+1 < 1, for n small enough. g

3.3 Convergence of the renormalized expansion

Lemma 3.9. For any k > 1 and v € Z¢ one has

k+3n

XU < pBryET (3.16)

where B = B(T, p, ®, A, N, «) is a positive constant proportional to C, with C defined as

m .

Proof. To bound the coefficients X defined in (2.14), we use the estimate in (3.12]) and
we sum over all trees in € ,,. Then notice that the sum over the mode labels v € 7% in
([2.14) can be bounded by (2N + 1)% and the assertion follows. O

We have proved that the series described in (2.15)) converges.

Corollary 3.10. The function X (1;¢,(,c) is analytic in 1 in any strip Y¢, provided n
small enough (depending on §).
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Proof. If we consider the set of renormalized trees in Ty ,, in particular we have that
|v| < kN. Hence we rewrite ([2.15]) as

o0

Y e
k=1|v|<kN
and by using the bound on the Fourier coefficients given by Lemma we have

o0 o
3 30 e < pN S kBt e,
k=1 |v|<kN k=1

that is convergent since 7 is supposed to be small. This also gives a lower bound of the
radius of convergence. O

3.4 The renormalized expansion as a solution of ([1.1)

After proving that the renormalized expansion X = X(1;¢,(,c), defined as in (2.15),
converges, we still have to check that it is a solution of (1.1)), i.e. that (2.16) is satisfied.

Write .
X,=> Xpm  Xua=> " > v, (3.17)
n=0 k=1 V€T v.7

where T, ,, 5 is the subset of T}, of the renormalized trees with root line on scale n.
Define

Di(z;e,¢,¢) :=ix(1 + iex)—./\/l[ﬁfu (z;¢e,(,c), forn =0,1, (3.18a)
1
G(z;e,(,0) == T (3.18b)

with the convention that M[=U(z;e, ¢ ¢) = 0 and M (z;¢,¢,¢) = M(z;¢e,,¢), with
M(z;e,(, c) defined as in . Again, in order to simplify the notation we write just
Di(x), MIPU(z), G(x) instead of Dy (x;¢e,,¢), MP—U(x:e, ¢ ¢), G(ase, ().
According to this notation GI%(z) = U(|z|)/Do(x) and G (x) = x(|z|)/D1(z), where
GU(z) and Gll(z) are defined as in (2.11)).
If we define

Qe ¢ c) = Gw-v)e[f —glc+C+ X (56,¢,0), (3.19)

then we have to prove that Q(v;¢,(,c) = X, for v # 0.
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Now we write explicitly the right hand side of
Glw v)elf —gle+ ¢+ X(5e,¢,0))] =
=G(w - v)(¥(jw - v|) + x(lw - v]))elf —gle+ ¢+ X(56,¢,0)]w
= G(w-v)(Dy(w - )G (w - v)+
+Di(w - v)GM(w-v))e[f —glc+ ¢+ X(,2,¢0))o

(3.20)

‘We now observe that

G%w - v)elf — gle+¢+ X (e, 0) V—Za PRAC)

k=1 1963].@71,10
GM(w - v)e[f —gle+C+ X (-, e,¢,c) :Za PR AC)
k=1 9eT;

where Sk, v differs from Ty, 1 as it contains also trees which can have one renormalized
self—energy cluster on scale 0 with exiting line ¢y, if ¢y denotes the root line of ¢. In
fact if we analyse the contribution G(w - v)e[f — glc + ¢ + X (-,€,¢, ¢))],, we notice it
differs from )_(,,,1, in as much it also contains an additional contribution that represents
the self-energy cluster on scale 0 mentioned above:

GMw-v)elf —gle+ ¢+ X(56,¢ 0
:ng Z V(0 +G1](w V)M (w - I/Z&k Z V().
k=1 9€% .1 k=1 9€Tp 1

By inserting this expression in (3.20]), we obtain
QUvie, ¢c) = G(w-v)e[f —gle+C+ X(e.¢ o))y =

:g(w~u)<Do(w-u)Zek S YW +Diw-)Y Y )+

k=1 9€%y.,0 k=1 9€%p 1
+ Di(w- )M (w - )M (w - v) Zsk Z “//(19)> =
k=1  0€Tp,.
=G(w-v) (Do(w )Xy o+ Di(w-v)Xp1 + Di(w-v)GH(w - v)M(w- 1/))_(,,,1) =
= Dy (w ) (Dow - 2)Xuo + (Di(w-v) + (- v)M(w- ) Xpa ) =

= _m0+ﬂgmlzﬂxu

so that (2.16) follows.

Remark 3.11. Note that at each step only absolutely converging series have been dealt
with, so that the above analysis is rigorous and not only formal.
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3.5 The bifurcation equation

In order to conclude our analysis, we have to solve the bifurcation equation, described by
, which can be studied by using Hypothesis |1 We start by providing an estimate for
the value of the trees describing the bifurcation equation. Define #™(¢) as #'(9) with the
only difference that the node factor of the first node vg is F,, = gp,, (Without the factor

—e appearing in (2.9))).
Lemma 3.12. Let ¥ in Ty o, with k >n+ 1. Then

2

| 7*(9)] < pPCp it (3.21)

with p, ' as in (2.1) and C as in (3.8).

Proof. We refer to the proof of Lemma, in particular to Figures [3.3] and [3.4] for the
construction and notations of the trees. Since the momentum of the root line is 0, by
using Lemma, and Lemma we bound the value of the tree as

| 4//*(19)| < Fp—(m—i-'r—l—s)ck—l m—&—r—i—sngn;nziﬁl“ |C|r s

k—s—r— 1+3mn+,r_+s

S FC_lck 2n+1

k+mn42n(m+r+s)—1

S pFéilckT] 2n+1

If we define )
H(e, ¢) = [g(c+ (+ X (:56,¢,0)]o — fo, (3.22)

in such a way that the bifurcation equation becomes #H (e, () = 0, then the following results
hold.

Lemma 3.13. The function H(e, () is C™ with respect to C.

Proof. By Hypothesis one has g(c) = fo, g;ﬁ’-(c) =0fori=1,2,...,n—1and dm"( c) #0;
recall that n is odd. Hence

ng C+XGCA= 3 5 7w)

k=n+19€%; ,0
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Therefore it is sufficient to prove that the function #»*(¢) is C" in (. In particular ¥™(¢J)
depends on ¢ through the node factors and through the propagators associated with lines

on scale 1, see (2.13) and (2.14)), that means:
oro=a( I #)-(T16)+( I #)-o IT 6 rsssn
veN (9 LeL(V) vEN (D) teL(¥
If the derivative acts on the node factors, we have

(H F) B@) (PO (T R).

vEN (Y vEN (9)\ Eo ()

Then, by using (3.21)), for 0 < 7 < n one has

’8]( H F) ( H G5>’<‘EO( N(Eo(9)| = 1)--- (|Eo(9)] — 7 +1)pL'Cy ko1

vEN (V) teL(¥

< B @) (1Bo(d)] = 1) -~ (Eo(d)] — j + 1)p0 o' m

for a suitable positive constant C’ depending on C, with C defined as in (3.8), that is
bounded since 7 is supposed to be small and k£ > n + 1.

If the derivatives act on the propagators the analysis is more delicate. We have to
distinguish among two cases: the case in which the derivatives act on the same line and
the case in which the derivatives act on different lines. The worst case is the first one.
Denote z = w - vy, with £ € L(¢¥), and suppose that n derivatives act on the propagator

G (z), see (2.11)). Then one has:

O M()

(Dr@)?”

20 M(@)? | M)

(Di@)’ +( <>>] | |

iy (O M@) M) .. (0 M)
(Di(@)y 1 |

.G (z) = x(jal) 755

RGN (@) = x(la) | =7

NS SIS

k=011,...,i;_L€A

3<j<n

)

(3.23)

for suitable constants Qi ,..oi and where

—k
A::{il,...,ij,kGIN: i1+---+ij,k:jandi1Zigz---Zij,k21}.

Before proceeding with the estimate of the derivatives, we have to provide a bound for
OcM(z;e,(,c). Since the lines composing M(x;¢e,(,c) are on scale 0, see (2.12a)), the
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derivatives act only on the node factor. By Lemma [3.1] and Lemma [3.3] it follows that

|0 M(z)| < bre(¢™ 2 + 7?7 2) < 2byen 2,
[0FM ()| < bae (" + ™" 7%) < 2byen™ 2,

08 M ()] < bp1e(147") < 2by 16,
[P M ()] < bue(1 + ") < 2by¢,

with suitable positive constants bq,...,b, and where the first contribution is from reso-
nances containing only one internal node, while the second one is from all the contributions
with at least two internal nodes. Hence, to sum up, we have

PIM(2)] < 2bjen™ 7, forj=1,...n—1, (3.24)
08 M ()] < 2byc. (3.25)

We can write the contributions of the derivatives acting on the same propagator as
follows:

(I m)oc( IT &) =%

VEN(9) EL(9)
) 02 2M(x)
(L ) I1 co) = OGP+ i)

(11 &)ar( 11 &) -

veEN(9) LeL(9)
D>
k=0 ilv---vin—kEA
for n > 3. By using (3.24)), (3.25) and Lemma we have

’ (02 M(2) (02 M(2)) ... (97 M())
(D1 (2))7F

iy (O M(@)) (D2 M(2)) ... (9 M(x))
(D1 (z))rF ’

’ < gi=hp=1)(G=R)=EIZ1(0s) gtk p—(=1)(—k)

=n for 1 <j<n
Then, from Lemma [3.12] one has the bound

(0P M(2) (@2 M(x)) ... (87 M(z
(D1 (x))i—k

k+2n?-1

)‘ < pLCHy s ™

W)
k4202 —1—j(2n+1)

= pI'CFn Intl forl <j <n,
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and in particular

(02 M(2)) (02 M(x)) ... (87" M())
(D1(x))n*

that is bounded since 7 is supposed to be small and k£ > n + 1.

k—m—-1

‘ < pIChy 3T

7 (0)

If the derivatives act on different lines, we have

% TT ) =M vt vt 6w 1T a0)

teL(V) CeL(I\L/ (9)

with L'(9) the set of the lines where the derivatives act, ji,j2 # 0, j3,...,Jr > 0 and
ji+---+jr=rfor 1 <r <n. Then from the previous analysis, it can be easily seen that
every n-th derivative of the function #*(J) in the variable ¢ is bounded.

Therefore we can conclude that H(e, () is C" in (. O

Lemma 3.14. There exists a neighbourhood U x V of (,() = (0,0) such that for all
e € U there is at least one value ¢ = ((e) € V, depending continuously on &, for which
one has H(e, () = 0.

Proof. By hypothesis one has g(c) = fo, dxl( ¢)=0fori=1,2,...,n—1and ¢ T “9(c) £ 0,
for odd n such that n > 3. Hence

ng [(C+ X (:52,¢,0)Po.

We know that ;?,17—[(0, 0) = gn(c) # 0.

We assume gyn(c) > 0. The proof can be easily generalised also to the case gy(c) < 0.
Call W and V = [V_, V] the neighbourhoods of e = 0 and ¢ = 0, respectively. For any
e € W, if we consider H(e, () as a function of the variable ¢, then (0,0) is a rising point
of inflection of the function H(e, (). In particular, since #(0,0) = 0, then H(0,V}) > 0
and H(0,V_) <0

Now we look at H(e,V_) and H(e, V4 ) as functions of e: they are both continuous
functions in W, then by continuity, there exists U C W neighbourhood of 0 such that
H(e,V_) <0and H(e,Vy) >0foralle € U.

Since for all ¢ € U the function H (e, ¢) is continuous and it is also increasing in ¢ and
H(e,V_) < 0 and H(e,V;) > 0, then there exists a continuous curve ( = ((¢) € V such
that H(e,((e)) =

O
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Chapter 4

A review on continued fractions

For this chapter, we refer to [55, 57, [59] [60L 63, [64] and the references contained therein.

We denote by x = [ag,. .., a,] the expression
1
x =ap+ . (4.1)
a1 +
1 . 1
a
2 L 1
a
3 ‘ 1
. . + P
an
with ap € R and ay,...,a, € RT.
Definition 4.1. We call [ag, ...,a,] a finite continued fraction and the coefficients
ao, . . ., ay the partial quotients of the continued fraction.

We call an infinite continued fraction the limit for n — oo, if it exists, of x, =
[ag, ..., an], i.e.

T = nh—>Holo[a0’ ce ] =ag + . (4.2)

ai +

as +
as +
3 . 1
S

According to this definition, we say that if the limit exists the continued fraction converges.

Proposition 4.2. A continued fraction is called simple if ag € Z and a; € IN for alli > 1.
Any irrational number x € R\ Q can be represented as a unique simple infinite continued
fraction [ag, a1, az,...].
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Proof. Denote by [z] the integer part of a real number. Define the map

A:(0,1) > [0,1],  Alz):=—— H

x x
Then with each x € R\ Q we associate a continued fraction as follows:
50 =T — [.’E],
ap = [z],

so that we obviously have
z = ag + o, o € (0,1)

and define recursively for all n > 1

b= o= [£=] = A,
1
=gzt

in such a way that we can obtain recursively for n > 1

-1
n—1 = n + g’ﬂ'

(4.8)

In this way, we have built the continued fraction expansion of the irrational number x:

1 1
r=ayp+ & =ap+ =q+ ——=ap+
0+& =ao PR i 1 0 R
a1 al
az + &2
as +
Proposition 4.3. Given a simple continued fraction [ag, a1, as,...], define
po = ao, p1 =aiap + 1, Pk = QkPk—1 + Pk—2, k> 2
q =1, q = a1, Tk = Akqr—1 + Qr—2, k= 2.
Then one has
Pk
—:[ao,...,ak], k‘ZO
qk

We call (4.12)) the k—th convergent of the continued fraction.
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Proof. The proof is by induction. If k = 0 the statement is trivially true. Suppose that

7;—: = lao, ..., ak] for K < m and check that the thesis still holds for £ = m + 1. Indeed one

has

1
(a0, A1y .-y Qmy Q1] = a0, a1, .. am + | =
Um4-1

1
(am + Am+1 )Pm—1+ Pm—2 _ PmQm+41 T Pm—1 _ Pm+41
(am + Kﬂl)mel + gm—2 qmOam+1 + Qm—1 dm+1

O
Remark 4.4. A continued fraction converges if and only if lim,,_, 5—;‘ exists.
Proposition 4.5. Let x € R\ Q. Then
x = P+t & Pubnrt forn > 0. (4.13)

B Gn+1 + qnén+1 ’

Proof. We proceed by induction on n. If n = 0, one has

p1+po&t  apar + 14 apés

o+ qé a1+ &

=ap + & = .

:ao
ay + &1

_ Pi+1+Pi&i41 : :
Now we assume that z = === for 0 < j < n and prove that (4.13) still holds for

j=n+1:
Pnt2 + Pnt1ént2 _ Ont2Pnt1 + Pt Prt1éns2
G2 + @n1énr2 nt2q@ns1 + Gn + Gnr1én
_ (@ni2 4 &ni2)Pni1 +Pn
(an+2 + §n+2)QTL+1 + qn
_ PotPnniégt _ Pabnst +Pas1 _
In + Gni1&ty Gnnt1 + dns
]
Corollary 4.6. Let x € R\ Q. Then &, = —% forn > 1.
Proof. Again proof by induction. O

4.1 Some properties of the convergents

Proposition 4.7. Let pg,qxr be as in Proposition[{.3 Then for all x € R, one has:

(1) gky1 > qr >0 for k>1;
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(2) pr > 0[pr < 0] when x> 0[x <O0] for k>1;
(3) Peqr—1 — Pr—1qk = (1)1 for k> 1;
(4) preqr—2 — Pr—2qx = (—1)*ay for k> 2.

Proof. Parts (1) and (2) follow directly by definition of pg, g in (4.10), (4.11]). The proof
of (3) and (4) can be easily obtained by induction.

Let us start by proving (3). If &k = 1 then p1go—pog1 = 1 and the thesis is satisfied. Let
us suppose ppqr—1 — pr—1qx = (—1)*71 for 1 < k < m and we study the case k = m + 1:

Pm+19m — Pmim+1 = (am-l—lpm +pm—1)Qm - pm(am-I—IQm + Qm—l) =
= _(memfl _pmfl(Im) = _(_1)m—1 = (_1)777,7
that implies (3).

Let us consider the case k = 2 in (4): the thesis trivially holds since pagy — pog2 = as.
Again we proceed by induction, by assuming (4) for 2 < k < m:

Pm+19m—1 — Pm—19m+1 = (am—l—lpm +pm—1)Qm—1 - pm—l(am+IQm + Qm—l) =

= aerl(memfl _pmflc_Im) = aerl(_l)m_l = am+1(_1)m+1?
that implies (4). O

Proposition 4.8. Let z, = f;—:, k >0, be a sequence of convergents of € R. Then

1) xop is strictly increasing;

2) xopy1 s strictly decreasing;

4) Top < Ty < Toma1 for all k,m € N such that 2k <n and 2m + 1 < n.

(1)

(2)

(3) ok < Togy1;
(4)

Proof. (1) We have to show that if k is even then zj, < zjy2. According to the definition
of zj and by using (4) in Proposition we have

 Pra2dk — Pedrr2 (=1 Paggo
Th4+2 — Tk = =
qk+29k qk+29k

that is positive since k is even.

(2) Let us consider k£ odd. Again by using (4) in Proposition [4.7| we obtain the thesis:

_ _ (=1 k+2a a
A (Prak+2 = @ePry2) _ —(1)"Pars _ an2

qkqk+2 dk4k+2 qkqk+2
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(3) Let us suppose that k is odd (the case of even k is analogous). By using (3) in
Proposition [£.7] we have

 —(pr410k — prary1)  —(=DF 1
T — Tp41 = = =
qkdk+1 qkqk+1 qkqk+1

> 0,

that implies xx > Tg41.

(4) If n is even, since xg is strictly increasing and 2k < n, we have x9 < z,. By the
previous point we also have z,, < xom11.

If n is odd, since xgy,41 is strictly decreasing and 2m + 1 < n, we have xo,+1 > Tn.
By following the previous point we also have x,, > xo since n is odd.

O]

Corollary 4.9. Given x € R\ Q and the convergents {xy}, the following holds:

Top < ¥ < xok+1 Vk €N, (4.14)

see Figure[].]]

Xo X2 X2 k X X2 k+1 X3 X1

Figure 4.1

Proof. {xar} is strictly increasing and {xor11} is strictly decreasing, hence

sup o, = lim xor =z = lim xogy1 = inf wopyq.
keN k—ro0 k—o0 kelN

In particular, since z € R\ Q, we have & # xay, xor 11 for all k. Therefore we can conclude

Top, < SUp o, = & = inf Topy1 < Topy1.
keN kelN

O]

Proposition 4.10. Let = be a positive irrational number and let {zy} be the convergents
of the simple continued fraction representing x. Then

1 1
— < ‘az — &’ < . (4.15)
ar(ax + qr+1) Q! A+
Proof. Consider first the case of even k. We have to use the following inequalities:
a a+c c
a_ < ¢ 4.16
b b+d d (4.16)
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for 3, 5 rational positive numbers such that § < 4.

Therefore, since z; < xx+1 (k even), we have

Pk _ Pkt DPrir _ Pkt 2Pki1 _ Pkt GkioDkir _ Phi2
Q% Gkt aerr Qe+ 20k Qe+ Oky2qr+1 Grt2

<z

_ PEtPE+1

Define sy, : e

. By the previous inequality one has
Tp < S <Xx=x—x > S — T >0,

that means

g PE_ PR +Pht1 Pk _ QkPk+1 — Pkdk+1 _
W Qe Q1 Gk @ (Qr+1 + ax)
(-nF 1

(@ +ar)  ae(qrsr +ar)

Besides, by Corollary we have xp < ¥ < xjy1, that implies 0 < o — x < Tgy1 — Tg-
Hence we have the second inequality in (4.15):

—1)k 1
x_@<m+1_@:( > '
qk gk+1 qk qkqk+1 qrqr+1

If k£ is odd, by Corollary @ one has zp4+1 < < x, hence we can reason as before by
changing the roles of x; and xx11 in the following way:

+ 2 + a +
ygs > Pk+1 T Pk > Pk+1 T Pk S s k+2Pk+1 T Dk _ Pk+2

— > .
Q% Q1+ 2qk+1 T+ Gk ag+2qk+1 + Q6 Qrt2
By defining sj, := Z:I%, we obtain 0 > s; — x; > x — ;. Hence it follows that
1 1

>X— Tk > Tyl — T = —

a6 (Qr1 + qr) Qert1

Finally the thesis follows by collecting together the two cases:

1
qkdk+1 '

1 ‘ Dk

—_— < |

@ (qr + Qrt1) ak
O

Remark 4.11. The result in Proposition [4.10] still holds if we only assume x to be
irrational. In fact, if < 0 then also pi, < 0 for all £ > 0, see Proposition 4.8l Then z and
P

ﬁ have the same sign and = — 2—: is still a difference, as in (4.15)).

Proposition 4.12. For any x € R\ Q, there exist infinitely many p,q such that

1
‘x—%’ <o (4.17)
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Proof. Consider the sequence of convergents of z, {p/q}. From (4.15) we have

1 1
(x_@)< <= VE>1,
qk qk9rk+1 qj,
where the last inequality follows from Proposition 4.7 O

Remark 4.13. The result in Proposition 4.12| can be improved in the following way: for
all z € R\ Q, there exist infinitely many p, ¢ such that

1
o= 2| <

gl V5>
Remark 4.14. The result in ([#.18) cannot be improved, that is if C' > /5, then for all

x € R\ Q, it is not possible to find infinite values of p,q € IN such that ‘x — g‘ < Ciqg.

(4.18)

4.2 Best rational approximations

For reasons that will be clear later, we are interested in the continued fraction expansion
of irrational numbers. Therefore, from now on, x is supposed to be an irrational number.

Definition 4.15. A rational number p/q, with ¢ > 0 and GCD(p,q) =1, is called a best
rational approrimation of v € R\ Q if

|nz —m| > |qz — p|, Vm,n€e€Z:0<|n|<gq and = # L (4.19)
n’ q

Remark 4.16. m,n € N if x > 0.

Proposition 4.17. If a rational number % 1s one of the best rational approximations of
x then % s a convergent of x.

Proof. First of all, notice that if % is one of the best rational approximations of x, then
% > ag. In fact, if this were not true, we would have a contradiction since x > ag:

Y

Ix—ao!<‘m—§’§‘qa¢—p

that means %) is not one of the best rational approximations.

Let us suppose that % is not a convergent. Then by Corollary we can assume g to
be either greater than % or between two convergents xy_1,Tr+1 such that

T < Thy1 < Th—1, if k is even;
Tp—1 < Trt1 < X, if k£ is odd.
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1 CASE: g > %.
We know that % > x. Then

1 1
)x—g‘>‘]ﬂ—£]2— = |qz —p| > —.
q q g q19 q1

By the definitions (4.10)) and (4.11)), po = ap and ¢op = 1, so

1
lqor — po| = |z — ao| < —
qo0
and if we combine the two inequalities we obtain
1
lgz — p| > — > |z — aol,
q1
which is a contradiction since %) is one of the best rational approximations.
I1 CASE: Bi=l < P o Phtl
C Gk—1 q Qk+1”

If k is even we have x > zjy1 > %, while if £ is odd we have z < z11 < g. Then, in both
cases

1
Pr+1 Q‘ >

QeQht1

=4l
q qk+1 q

1
qk+1

As |grr — pi| < , we obtain

1
gz —pl > — > lqpx — pl.
qk+1
We have to show gp < ¢ to obtain a contradiction: in fact, since £ is one of the best
rational approximations, one has |qxx — px| > |gz — p| for g < g. We know that if k is
odd one has Z:=1 < B < P: while if k is even one has 2t < 2 < 2:—:1. In both cases

qk—1
g_pk71‘<@_pk71‘: 1
q gk-1 dr  qk-1 drqk—1
1 P _ Pk—1 1 : :
Hence we can conclude T ‘q a1 | oo that implies ¢ < q. ]

Proposition 4.18. Given the sequence of convergents {pn/qn} of x, the following inequal-
ities hold:

g0z — po| > [qiz — p1| > -+ > |qex — prl > ... (4.20)

Proof. By (4.15) it follows that |grx — pg| < ﬁ and also |gx—12 — pg—1| > m. Since
ap+1 > 1, we have

1 . 1 !
Q-1+ qr ~ Qr—1+ Q19 Q41
and then |qpr — pi| < 2~ < —L— < |gt_17 — px_1|. Hence |qxz — pi| < |gr_12 — pr_1|

Qk+1 — Gqr—11+4qk
for all £ > 1. ]
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Proposition 4.19. If {2—:} is the sequence of convergents of x > 0, then Z—: is one of the
best rational approzimations, i.e. for all k >0, |qx — p| > |qxx — pk| for all p,q € N such
that 0 < q < qx+1 and q # qi.

Proof. Given p/q € @, let us define p, v as the solutions of

<Pk+1 pk) (u) _ <p> that is (u) _(—1) ( T —m) <p> '
Gkv1 k) \V )’ v —Qkr1 Prt1) \4
This means that (u,v) € Z2\ {0}. If v = 0 and pu # 0, i.e. u > 1, we have ¢ = uqri1

that implies ¢ > qx11, but by hypothesis ¢ < gi+1. Instead, if 4 = 0 and v # 0 we obtain
q = vqi and since g # qx, v > 2. This implies the thesis since

lgz — p| > 2|qrx — pi| > |qrT — PK-

If u,v # 0, as 0 < ¢ < qg+1, 1 and v must have opposite sign, as well as qx117 — pPr+1
and ggr — pg. Therefore p(qrr12 — pra1) and v(grx — p) have the same sign and since
|, [v| > 1, we can conclude:

lqz — p| = |(1qr+1 + vae) T — (Upry1 + vpr)| =
= (k17 — pry1) + v(ger — pr)| =
= |p(gk+127 — pry1)| + V(e — pr)| >
> |vgrz — pr)| > |akz — pil

that is the thesis. O

Remark 4.20. We can generalise Proposition to all z € R by considering p € Z
and g € IN such that 0 < |¢| < qr+1 and |g| # qx.

Corollary 4.21. Any rational number g is one of the best rational approrimation if and
only if% s a convergent of x.

Proof. Tt follows directly by Propositions and O

4.3 Diophantine vectors and continued fractions

Recall that a vector w € R? is called Diophantine with exponent 7, if |w - v| > /|| for
all v € Z2 and for a suitable positive constant v (cf. Section [1.2)).

Proposition 4.22. Let w = (1,a) € R? be a Diophantine vector with exponent 7. Given
the sequence of convergents {px/qr} of a, there exists a positive constant K¢ such that for
all ke N

ar+1 < Kogg.- (4.21)
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Proof. Define vy := (—pk, qx)-

As w is a Diophantine vector, we have |w - vi| = | — pp + aqi| > L=, with |vg| =

vl
lvil2 = 1/q% —|—p%, for some positive constant .

By Proposition it follows that |w - vy < -1

qk+1"

Moreover one has qx < [Vi| < qxV 1+ 4a?. Indeed, by using Proposition Qk+1 >
asa; + 1 > 2 for any k > 1, that implies

1 1
lw - vi| < B and thus |px| < |gra| + 3 < 2|gxa].

Hence
ar < vl <\/ai + Har)? = V1 + 4a?.

By summarising, we obtain
(1 +4a2)7/2

Gp1 < ¢ ———,
Y
since 1
Y Y
— > |W V| > > )
Qk+1 | | el T qf(1 4 4a?)7/?
. . . . (1+4a2)7‘/2
which yields (4.21)) with Ky = —_— O]
4.4 The Bryuno function
Let
n
Bn:=][& for n>0 and B,=1, (4.22)
§=0

where {;}i>0 is the sequence described recursively by (4.4)) and (4.6)).

Proposition 4.23. For any x € R\ Q, one has:
Bn = (=1)"(gnx —pp) for n >0, (4.23)

where p, and q, are defined respectively as in (4.10) and (4.11). In particular for n > 0
one has:
Bn

gn = B ) and 67171 = an+1ﬁn + Bn+1' (4'24)
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Proof. From the definition of g, in (4.22) and from Corollary one has
/Bn =§0§1§n =
(1) DETPL BT TP GnaT " Paot  GnT —Pn

qor —Po 91T — P1 qn—2T — Pn—2 Gn—1T — Pn—1

0
qox — Po T — ap
(=1)"(gnx — pn).

O
Proposition 4.24. For all z € R\ Q and for alln > 1, one has
_ 1 n
P < (\/52 ) ; (4.25)
1
= < Bngnt1 <1, (4.26)

2
with B, qn respectively as in (4.22)) and (4.11]).

Proof. We first prove (4.25). Call g := @ One can have two possibilities: either & < ¢
foralli=0,...,n, or § > g for some 1.

If¢ <gforalli=0,...,n, follows trivially.

If & > g for some i, then, according to (4.6), one has &1 = Ei_l - [Ei_l]. Notice that
since & > g, then [fi_l] < 1 and by combining it with (4.7)), one has [fi_l] = 1. Hence
i1 = 5;1 —land &4 < g ' —1=g, thus &&01 = 1—§& < 1— g = ¢g2. Therefore, in the
sequence (3, = & ---&,, one can isolate the pairs §;&; 41 such that & > ¢ (since for each
pair &&11 < g%). The other terms in 3, are all smaller or equal to g except for possible

&, < 1 and (4.25) follows once again.
We now focus on (4.26). From (4.13)), we have that

Dit1 + Diit1
L —Pi =i~ —Pi =
Gi+1 + ¢i&iv1
_ QiDiv1 — Pidiv1 _ (1)
Qi1+ G&iv1 Qi1 + @liv1’

for all ¢ > 1. Then

‘ Qi+1 1
Biqiv1 = (1) (qix — pi)git1 = ax = < 1.
qi+1 + Qigi-i-l qié-iJrl
1+ —
qi+1

Since the sequence {¢;} is strictly increasing and &; < 1, one has ¢;&+1/¢i+1 < 1. Hence

1 1
Bidis1 = 75 > B
14 qiSi+1

qi+1

42



and we have proved (4.26]). O
Corollary 4.25. Let q, be as in (4.11). Then for alln > 1 one has

L2yt (4.27)
YIRS |
Proof. (4.27) follows directly by combining (4.25) with (4.26)). O

Definition 4.26. The Bryuno function B : R\ Q — R is defined as

Zﬁz 1(z)log &, (4.28)
where &; follows the repeated iterations of the map A(z) defined in (4.3) and 5; is as in

T22).

Remark 4.27. The definition of Bryuno function can be extended to x € Q by setting
B(z) = +o0.

Proposition 4.28. The Bryuno function has the following properties:
(a) B(x) = B(x+1) for allxz € R;
(b) For all x € (0,1)

1
B(z) = —logx + a;B(;); (4.29)
(¢) There exists a positive constant C' such that for all x € R\ Q one has
log gj+1
Blz) - S 28441 ‘ <0, (4.30)
- 35t

with {q;}j>0 as in (4.11)).

Proof. (a) Given z € R\ Q, the sequences {&;}i>0 and {8;}i>0 associated with = and
x + 1 are the same.

(b) Lety = % We denote by &; , a;y and &; , a; . the sequences for recurrence described
in (4.6) and (4.7 associated respectively with y and . We also call 3;,, fi. the
sequences (4.22)) associated with x and y.

If z € (0,1), then [z] = 0. Hence, from ([£.4), (4.5), (4.6) and (4.7 it follows

that {o. = @, apy = a1z, S0,y = §1,2- By induction, one has &, , = &,4+1,, and
By = Bnti1,z/x, for all n > 0. Thus

o0 oo 1
== _Biaylog&iy = —logtoy - 2; —Bialog€itia
1=

——liﬂ- log &; —l(B(x)—l-lo )
= mi:l i—1,2 108 he = gx).
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(c) We first notice that (4.23]) implies
¢Bi-1+q-1Pi=1 i>1 (4.31)
In fact,
0iBi—1 + Gi—16;i = (1) 'qi(gi—12 — pic1) + (=1)'qi—1(qix — p;)
= (=1)"(gipi-1 — qi—1pi) = (-1)* =1,

where we have used Proposition

Then, from (4.24)), (4.28) and 1 , one has
> lo

i=0

- (%61 1+Qz 161
q;

) log gi+1

q;
225i—110g(5iQi+1 Zﬁz 11og B 1+Z = 152 log gi+1-

=0 =0

From (4.26)) and by combining the inequality log ¢; < (2/e)q ? with ( ([.27), one has
the following estimates:

> 2 log?2
> B log(ﬁi%’—i—l)’ <2)° < 2c¢9,
i=0 i=0

%

> = log2 + log ¢;
Zﬁifl log Bifl‘ <2 Z ————= < 2(c1 + c2),

i=0 i=0 i
qi—1 log gi+1
E L leongH’ <2 E Seoditl < 2¢q,
i—0 qi+1

for suitable positive constants c1, co. Then one has

log ¢;
’B(]})—Z qu-‘rl) <C_4(Cl+62)
1=0
and we have proved (4.30)).
O

Remark 4.29. Let w = (1,a) and recall the definition of B(w) in (1.4). Then notice
that in general the three series

= logq =1
+1
B, S w3 s
§=0

= U

with a;(w) as in (1.4)), are different from each other, but each series converges if and only
if the other two converge, see Proposition and Lemma 1 of [43].
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Definition 4.30. In the light of Remark[{.29, the Bryuno condition can be expressed by

YR o, (4.32)

=0 U

as well as by the condition B(w) < oo used on Section [1.3,
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Chapter 5

Proof of Theorem 2

In this Chapter we provide a proof of Theorem In particular in Section we give
a bound for the value of any renormalized tree described in Section [5.1} in Section [5.3
we study the convergence of the series and we also study the bifurcation equation.
That completes the proof of Theorem Finally in Section [5.4] we give some comments
on the intervals I,,, see , where the solution exists. We recall that if n is even, there
is no response solution of the form , reducing to c as € tends to zero, see Remark
and Appendix

5.1 Preliminaries for the proof of Theorem

We want to use the theory of continued fractions to deal with the small divisors problem
appearing in. To this end, we shall restrict ourselves to two-dimensional frequency vectors:
in the previous case of f a trigonometric polynomial, w was a vector of arbitrary dimension
d with d > 2; instead from now on we need w to be a vector of dimension 2. Moreover,
without any loss of generality, we assume w of the form w := (1,) € R?, with a € R\ Q.
The condition o € R\ Q is required since we want w to have rationally independent
components, see Hypothesis

Let {pn/qn} be the convergents of the infinite continued fraction representing «, which
also are one of the best rational approximation of «, see Corollary

Set v := (—v1,12) € Z*\ {0}. By using the properties of the convergents, for all vy, vo
such that 0 < |va| < ¢, and |v2] # ¢—1, one has

1
|w - v| = |rea — 1] > |agn-1 — Pn—1| > 50 Vn > 1. (5.1)

n

Indeed, the first inequality follows from Proposition [£.19] while the second one follows

from (4.15)) :
1 1
AGn—1 = Pn-1| > ———— > — Vn=>1,
g el Gn—1 1 Qn 2qy,
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where we have used ¢, > ¢,—1 > 0, according to Proposition

Let us denote by A(c, p) the disk of center ¢ and radius p in the complex plane and by
Y¢ the strip of width £ on the 2-dimensional torus, that is

Se = { € €22 R() € T%|S(¥)] < ). (5.2)

By the assumption on g, as in Section [2, for any ¢ € R there exists pg > 0 such that g(x)
is analytic in A(e, po). Then, if we take ¢ as in Hypothesis [1} for all p < pg, (2.1)) still
holds: -
1 0Pg _
g(@) =g(c) + > _gplz — ), gp:= H@(C)’ lgp| <Tp7P, (5.3)
p=n '
with T := max{|g(x)| : x € A(c, p)}.

By the analyticity assumption on the quasi-periodic forcing term f, for any ¢ € R there
exists &y such that f is analytic in X¢,. Then for all { < &, if we define ® := max{|f(+)| :
1 € ¢}, one has:

F@)= > fe™?,  |f] < etV (5.4)

veZ?2

Consider the ordinary differential equation (1.1]) with d = 2 and assume Hypothesis
For any frequency vector w = (1,a) with @ € R\ @, we want to prove that, defined N
and I,, as in Theorem [2| and for all € > 0 such that

£€ m = U [6_02‘1”, (Clqi)"“}’ (5.5)

n>N n>N

with Cy, Cs positive constants with Cy fixed as the value given at the end of the proof of
Theorem [2| and C an arbitrary constant, there exists at least one quasi-periodic solution
of the form

z(t,e) = c+ (+ X(wt; g, (), (5.6)

where ( is a value that has to be fixed and ¥ — X (1; ¢, () is a zero-average quasi-periodic
function. Equation ([5.5)) can be rewritten as

1 1 1
—log— < ¢qn < —. (5.7)
€ Clé‘m

Recall that one can write (1.1) in Fourier space as
(iw-v)1+iew - v)X, +elglc+C+ X)), =€fy v#0 (5.8)

and, for v = 0 as
[9(c+ ¢+ X)]o = fo, (5.9)

where (5.8)) and (5.9)) are called the range equation and the bifurcation equation, respec-
tively. As in the case of f a trigonometric polynomial, we first study the range equation
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looking for a solution to (5.8]), depending on the small parameter (. Then we analyse (5.9)
and fix ¢ = ((g) in order to make such an equation to be satisfied.

We find that the parameter (, in general, is no more than continuous in €. In our
case, this suffices, since all we need is to prove that the parameter goes to 0 as € tends
to to zero. Of course, in principle more regularity is possible, and the parameter could
have different branches, as found in similar contexts when bifurcation phenomena occur.
One could even think that a fractional power series may be constructed: for instance, this
happens for both the Melnikov problem [30] and lower dimensional tori of codimension 1
[39], when the case of higher order zeroes is considered. For the problem under study the
situation is more delicate, since already in the case of simple zeroes in general no more
than continuity is found [47]. In any case, we do not exclude that stronger regularity
results may be obtained, possibly with different methods; see also ref. [20] 28] 21] for
some results about the form of the analyticity domains in dissipative perturbations of
Hamiltonian systems.

In doing that we need to consider a slightly modified version of tree construction
introduced on Section Define N(9),V(¥), E(9), Eo(9), E1(¥) and L(V) as previously
and denote by k = k() = |N(9)| the order of ¥. Again, with each line ¢ € L(¢}) we assign
a scale label my € {0,1} and we introduce the following partition of unity:

1

1

1 forz < Srewi, 1 for x> Slewi,

x(x) == é 1 U(z) = _C’4 1 (5.10)
0 for x> Hentt, 0 for x < Ftentt.

with C} be the same constant as ([5.5).

We associate with each node v € N(¥) a node factor and with each line ¢ € L(9) a

propagator, according to the rules of Section see (2.9)—(2.12c) with x(z), ¥(z) as in
(5.10).

In order to simplify the analysis, we split the set L(¥) in two disjoint sets, Lo(¢}) :=
{{e L) :vy=0}and L1(9) :={€ € L(Y) : vy # 0} = L(Y) \ Lo(¥). Notice that if ¢ is
an internal line, then ¢ € L ().

Remark 5.1. Let £ € Li(9). If |vg| < gy, then also |vy 2| < g,. Hence we can apply (5.1

and see that the line ¢ has to be on scale 0: in fact we have |w - vy| > %5$ > %eﬁ
and, according to the sharp partition considered in , this implies that the line £ has
to be on scale 0. The statement above can be rephrased as saying that if ¢ is on scale 1,
then |v| > gp.

Therefore we have three different possibilities for a line ¢ € L1 (9):

1. |v¢| < gn, that automatically implies scale 0,
2. |v¢| > gy and scale ny = 0,

3. |v¢| > gn and scale ny = 1.
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In the first and in the second case, the propagator of the line £ is given by the expression of
G (w-vy) in , while a propagator satisfying the last condition is given by G (w-vy)
in the same reference, with ¥(z) and x(z) as in (5.10).

We define L o(9), L>o(9), L>1(09) as follows:

o Loo():={lec Li(V): |ve| < an},
o L>o(¥):={le Li(V): |vi > gy and ny = 0},
o L>1(0) :={l € L1(V) : |v¢| = gn and g = 1}.

By construction, one has L;(¥) = L« o(9) U L> o(9) U L> 1(9).

The definitions of cluster, self-energy-cluster, value of the tree and renormalized series
are still as in Section Note that if k7 is the order of a self-energy cluster, then k7 > n
by construction. Denote with E;(T) and Ey(T) the following sets: Eq(T') := {v € E(T) :
vy, # 0} and Eo(T) := E(T)\ E1(T), where the sets E(T) and V(T') are as in Section

Define

n := max{e, ||} (5.11)

and look at Lemma [3.1| and Lemma [3.3} with the rules above we still have analogous
results.

Lemma 5.2. Given a tree 9, consider a self-energy cluster T in 9 of order k. Then one
has

| ¥ (T)| < DpCkrepwin k=1, (5.12)
with 1 4T
-~ 1
C:=p "max {—Cl Yor 1}, (5.13)

with p, T as in (5.3)) and ® as in (5.4).

Proof. We recall the definition of the value of a self-energy cluster, that is
0
ry=( I »)( II &)
veV(T) e L(T)

Since every line in T is on scale 0, we bound the propagators as

1 4 1
[0] . < < —g ¥l

if vy # 0, otherwise
G[O](w ) Vf) =1,
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if vy = 0. Then, by using (5.3)) and (5.4) to bound the node factors, we have

4D [B1(T)] 4T VD)1
< 1, (kr—1) 1 V(D) =1+ E(T))+1 | - Eo(T)]
Il < T (cl> (cl) = <1

< TGk ¢ e (VD)= LB D) Eo(T))+1 o (T)

< TpChrepmatir=h),
where we have used that |V (T')| > 1 by construction and defined C as in (5.13). O

Lemma 5.3. Given a tree ¥, consider a self-energy cluster T' in ¥ with momentum of the
external lines equal to v. Define M(w - v) as in (2.12a)). Then, for n small enough, one
has

IM(w - v)| > Aen™ 1, (5.14)

with A positive constant depending on T, p, ®,Cy, with ', p as in (5.3), ® as in (5.4) and
C1 as in (5.5

Proof. The proof is the same as for Lemma[3.3] In particular, if we denote with My (w-v)
the terms of M(w -v) with n nodes and with AM(w - v) the other terms of M(w -v), we
have that M (w - v) = M;,(0) and hence My(w - v) is real. Therefore by combining the
proof of Lemma [3.3| with Lemma [5.2} one has

“2
M(w - )| > [Ma(0)] = [AM(w - v)| > aen ™" —benmiT > Aen™

for suitable positive constants a, b depending on I, p, ®, C; and A = a/2, provide 7 is small
enough. O

Remark 5.4. The constant A, considered in ([5.14)), is not the same constant as in Lemma
B:3] as it depends on f.

We want to prove that the series X (;¢, ¢, ¢) described by (2.15)) converges. In order
to do that, we have to provide a bound for X ,[,k} in (2.14) and hence we need an estimate
on the value of each tree, see equation (2.13]). The latter will be the main object of the

next chapter where we analyse the generic case of odd n > 3.

At the end, we will prove that the renormalized series solves the equation (1.1)) and we
will fix ( = ((g) as a parameter that goes to zero as € goes to zero in order to make the
bifurcation equation satisfied.

5.2 A bound for 7 (1) in the case of a generic odd n > 3.

Here and henceforth, we consider n as an odd number such that n > 3; the case n = 1
is already discussed in [47, [73]. If one is interested in the bound of the tree for a specific
value of n, the case of n = 3 is treated in Appendix A.
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Let C, C and C) be defined as follows:

4D 4D 4T 4T
. —1 - =
C=p max{cl, -1 A’Cl}’ (5.15a)
- > 0 ¢ O
C=max {11 (5.15b)
- DA D A A
C]_ = max{ﬁ,f,ﬁ,a,l}, (515C)

with the positive constants p,T', ®,C; defined as in (5.3)), (5.4), (5.5)) respectively and A
defined as in Lemma Notice also that C,Cy > 1.

Lemma 5.5. Let ¥ be a tree of order k =1 and let £y be the root line. Then if e € Up>n1y,
with I, and N as in Theorem[3, one has

entt eVl if €o € L o(9) U L o(0),
|7 (9)] < pC x { i+l if o € L>1(0), (5.16)
|<|7 ngo € Lo(ﬂ),

with p, C'" and n respectively as in (5.3), (5.15al) and (5.11]).

Proof. Let £y € L. o(¥) U L> o(?), then the value of the tree is
v (9) =ef, GV(w - v).

If we bound |f,| according to (5.4) and if we estimate |GI%(w - v)| by using the sharp

partition (5.10), i.e. |G)(w-v)| < Cilsfﬁ, we obtain the first equation in (5.16]).
If o € L>1(V), then the value of the tree is given by

v (9) =cef, GM(w-v)

and we have to use the bound provided in Lemma to obtain the second equation in
(5-16) since |G (w - v)| < Ly

If ¢y € Lo(9), then ¥ (9) = (.

Hence the thesis holds by choosing C' as in (5.15a)). O

Lemma 5.6. Let ¥ € Ty, be a tree of order k > n+ 1 and momentum v # 0 associated
with the root line £y. Let Co be as in (1.6) and, for any fired Cy take € € I, for some
n > N, where N satisfies (1.8) and I, is as in (1.9). Then one has

y@) =7 [ e (5.17)
vEFE1 ()
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where

_&), .

_ E w21 € :‘ |’ if bo € L<,0(79)7

|[7(9)] < pCFyiein ™5 x g e ian, if o € L= o(9), (5.18)
e i, if by € Ly (9),

with p,C and n as in (5.3)), (5.15a) and (5.11)).

Proof. Let be ¥ € T}, and denote by vy the first node, that is the node the root line
exits. For any renormalized tree, one has the following structure:

o ¥} € ‘Zkhl’ll’ cooyUm € Ty, v, ~enter the first node vp and the root lines £1,. .., 4y,
are such that |vy| < g, for all j =1,...,m, so that {1,..., 0y € L o(¥);

o ¥ € Kk/l,,,z,l sy U, € Ek;ﬂy% enter the first node vy and the root lines /1,.. ., £, are

such that ’Vg;_| > qp and ﬁg; =0forall j=1,...,p, so that £},...,£, € L> o(V);

.., € T, . enter the first node vy and the root lines ¢, ..., ¢/ are
l kl ,I/e;/ 1 l

Y7

[ 19/1/ c Tk/llﬂjl
1
such that ]1/[;_/\ > ¢, and ﬁg;f =1forall j=1,...,],s0 that ¢{,..., ¢/ € L>1(9);

e the lines Zl,...,ér, entering the node vg, exit the end nodes v1,...,v, € E1(J)
respectively and are such that n; = 0 for all j = 1,...,r, so that {; € L. o(J) U
J

L>o() foralj=1,...,m;

e the lines @1, . ,!Z’;, entering the node vg, exit the end nodes 17’1, LU € Eq ()
respectively and ¢/; € L> forall j =1,...,s;
e the lines /1,...,/,, entering the node vy, exit the end nodes o1, ..., 0, € FEy(J);

e m,p,l,r,s,u>0.
According to this construction, we have the following constraints:
o k=k(W) =" k(0;) + 0 k(W) + X kWD) s+ u+ 1
em+pt+l+r+stu>n
o v =30 v+ Y v+ v T Y vy v
o v #0.

In the expression of #'(1}) we collect a common factor [], . B (9) e~¢el/2 and we verify
by induction on the order of the tree the inequality in . In particular we will use
to bound subtrees of order k’, with 1 < k' < k and with £ replaced with %
to bound the values of the subtrees of order 1 formed by an end node in E; () and the
respective exiting line. Finally we use the last inequality in to estimate the values
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of the subtrees of order 1 formed by end nodes in Ey(}) and the respective exiting lines.
See Section 2] for the definition of subtree.

I case: £y € L. o(V).
We start by analysing the case in which the root line has momentum v such that |v| < g,.
In this case we have:
AC (it ptitrts)

<
<&’ p

o s—u— 2_
m+p+l+r+50k—ln%+%(m+p+l)€ﬁ(r+l)

7 (9)]

_§(sor - s -
« n(_n_i_l)(“_s)‘due—% Py \u[j|€—§qn(p+l)6 2 (21:1 |sz 42251 |Vg;|)

~ k 21
S pckc_lnn(n+1)+n n nAO(maPJ,TaS:u)

_£ r _ s .
X e_i Xt lvel ~San(p+) 2 (21:1 vz 1+25-1 |”e;. ‘)

)

with C and C as in (5.15a)) and in (5.15b|) respectively and

(m+p)(n3—|—n2—n—1)+(l+r)(n2—1)+u(n2+n—1)+
n(n+1)
sm®—n+1)—n+n?
a n(n+1)

AO(mvpa l,T, S’u) =

Notice that, by the definition of 6, one has C1 <1
We want to verify the first bound in (5.18)), that is equivalent to prove

~ _&ym 1=§( " - s -
G tyolmpdran) o~ Sanr "3 D5 Pl (Salg W bal) g5 g

We distinguish among three different cases:

(a) p+1=1;
(b) p+1>2;
(c) p+l=0.

In the case (a), we have to prove

5 T K
~5 (5o vy, 25 IVz;_\) <1

f— Y

~ £
C_lnAO(mvavrvsvu) X 671 Z;n:l ‘Vlj| X e

since e~ 1P = e=§an < =MV,

In doing that, we first analyse p = 1 and [ = 0. The thesis is obviously satisfied when
s =0, in fact
2 —D(m+r+u)+n?—-1_ nn®-1)

A 1,0,7,0 > > =n-—1
o(m, 1,0,7,0,u) > n(n+1) ~ n(n+1) R4
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so the thesis follows.

The thesis is satisfied for s > 1 as well. We start by noting that the function
Ap(m,1,0,7,s,u) could be negative, so the conclusion is not as trivial as in the case
s = 0. We observe that

nd—n+1

A 1,0 >
O(ma ; ,T,S,’LL) = n(n+1) S,

so we have the following inequality

£ T s
~ I3 2 vy |+ 1 |V
C—lnAo(m,l,O,r,s,u) x e i > eyl xe 2 (Zﬂfl ! fjl 2=l e I)

3 £ s
_n—n41 -5 |lvp
<y T e 2T

Since ]VZ;_\ > qn > 02_1 log% forall j =1,...,s, we can deduce

_n3—n+18 7% S._l ‘l/z, | _n3—n+1 & \s _n3—n+1 & \Ss
n n(nt+1) ° % e = i < (77 n(nt+1) 5202> < (77 n(nt1) 77202>

n37n+1
1

_n—ntl, £
and if we require n 0+ Tac < 1,ie. Oy < 211(1174&))57 the thesis is satisfied once again.

(n3—n+1
We now analyse p = 0 and [ = 1 by following the same approach: if s = 0, the function
Ap(m,0,1,7,0,u) is non-negative, as we can easily see since m +r +u >n—1

M- (m+r+u)—nd+n2+n-1 -

A 0,1,n,0 > 0.
O(ma , L, T, ,U)_ n(n+1) =

If s > 1, the function Ag(m, 0, 1,7, s,u) could be negative, but, as in the previous situation,
we can use the decaying of the exponential part associated with the lines s. We have the
following bound for the function Ag(m,0,1,r,s,u):

3 2 2
—n’ —n“+n —n“—n+1
Ap(m,0,1,7,s,u) > s = s,
n(n+1) n+1
. . _"2_"+1+i . 1 . ..
so if we require n 1 202 < 1) ie. (o < mf, the thesis follows, by noticing

that

~ _Eym _£ r _ s .
Gt om0 ms) o o8 ZF 1S (5o bz, 4 bz )

2

—n—nt+1 _§ \S
S(n R 6202> <L

By comparing the bounds on C we have

C < n(n+1)
2= 2(“?;:11“)5 so we require  Cy < ;;15. (5.20)
Cr < 2(n2+n71)£ 2(n® 40— 1)
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An analogous result is obtained in the second case, (b), in which the function
Ao(m,p,l,7,s,u) has the following lower bound:

w-n+l  (-2)(n-1)

Ag(m,p,lr, s,u) > — s —
o(m, p )z n(n+1) n
Then we split e ~§an(+) i the following way
efﬁqn(pﬂ) — —San(p+i-1 71qn

¢ :
50 we can use e~ 1% to erase the factor e~ il in (5.19), so that the thesis becomes
m _& r ~ s _
5_1’]”A0(m,p7l7r757u) X 67% ijl |Vé] ‘6 2 (ZJZI IVZJ ‘+Z]:1 ‘VZQ |) X e_%‘Jn(p-‘rl—l) < 1-

Finally we can use ¢, > C% log% and by requiring

02 S nSrlj;]:Fl 57 1f n= 3a (5 21)
Cr < g€ i n>5and nodd, '

the thesis follows as

~ (w5 s _
CilnAO(mva:T:s:u) X e_% ZTZI |VZ‘ 2 (2]21 Iyé] ‘+Z]=l ‘VZ‘; |) X 67§Qn(p+l*1)

_=9@-1) & n3 —ntl g S
< n n 4Cy (77 n(n+1) 2C’2> S 1.

Now we have to compare the conditions on Cy in ([5.21)) with the one in (5.20]):

Cy < Q(H;‘;} s if n > 3 and n odd,
Cs < 2(2915;21 3 if n= 3, (522)
CQSmf, ifn25andnodd.

n+1 < 11(11+1)
2(n2+4n—1) 2(n3—n+1)

n n+1 : ys
one has =) =T < 3a=T)" Then, to summarize, the condition on Cy becomes

If n = 3, one has ; if n =5 one has 2(n;i_nlfl) < 4(n_2‘)‘(n_1); ifn>7

v +n-1) (5.23)

Co < sl ¢ if n=3,5,
CQ_W§7 ifn27andnodd.

In the third case, (c), by the definition of momentum v, it follows that

3 m r s
e 1 (2371 | ¢; H_E]71 | gj‘ 2371 ‘ g;l) < 6_%'/‘,

95



so we have to prove that

~ S (v s -
C—lnAg(m,O,O,r,s,u)e 1 (ijl |V£j I+2 51 |VIZ;. I) < 1.

If s =0, that is m + r + u > n, the thesis follows trivially since Ag(m,0,0,7,0,u) > 0.
If s > 1, once again we have that Ag(m,0,0,r,s,u) > —%s and hence
we have to require

_n2+n71 &
n n+1 8402 S 1

that is Cy < m%nlfl)f . This condition is sharper than the one in (5.23)), so we require

3 (5.24)

To sum up, if the root line is such that |v| < g, the first bound in holds by
requiring .

IT case: £y € L> o(99).
We consider now the case in which the root line has momentum v such that lv| > ¢, and
it is on scale 0. We can estimate the |#(9)| in the following way:

o) k—r—s—u—1  n?—1 n
|«//(19)’ < Ckfl ZCL/TFp*(m+p+l+r+s+u)pm+p+l+r+s+unW+ o (m+p+l)€n+1(r+1)€u
1

g r s
¢ —& v v
" n(—ﬂﬁ‘l)(l*‘s)efl Z;nzl |Véj e_%q"(p+l)6 2 (2371 |Vej |+ZJ,1 |V4§. ‘)

~ k 21
< pckcflnm‘p‘T nAo(m,p,l,T,S,u) X

S vy -5 (S v, S v
L lve, i1 g 25 v ) e
X e 1T 2( I=11 J=t £j>e—zqn(P+l),

with C, C as in (5.15al) and ([5.15b)) respectively and

(m+p)@®+n2—n—1)+((+r)0>=1)+um®+n-1)
n(n+1)
smd—n+1)+n®—n
a n(n+1) ’

Ao(m,p,l,r,s,u) =

Note that the expression of the function Ag(m,p,l,r, s,u) is the same as in case (a);
however, now, we want to verify the second bound in by using that |v| > ¢,. The
proof proceeds as in the case of ¢y € L. (1), since the function Ag(m,p,l,r,s,u) does
not change with respect to the previous case. The only difference is that now we have to

construct a factor e~ 3% in the bound of |7 (9)].

.- .. _€
o If p+1>1itis trivial as we have the term e~ 19 (P+h),
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o lfp+1=0,thenv =371 vy +3 7 v; + > 5 4 Vy,so we can factorise
i i

S (Sl i v l) _ (S5l v v ]) §(S5 vy 45 v )

and we can use the fact that |v| > ¢, in order to obtain the desired term:

£ ™ol N Y e I 1 72
Ik 1 oYL WA TS YY) < oSl < oS

Apart for that, the discussion proceeds as in the previous case.

III case: £y € L> 1(9).
We analyse the third possibility, that is the root line on scale 1 and the momentum
satisfying the inequality |v| > gy, i.e. fo € L>1(¥). We can bound the | ¥ (9)| as follows:

|47/(19)’ < Ckfl %pf(m+p+l+r+s+u)pm+p+l+r+s+un7€—lrx(+_'_—ll>t—1+ n2n_1(m+p+l)n(7n+1)(l+s) %

£ m £ r s
- n_ _£ =3 2 vyl =5 (= v 250 v |
X 1 n+loor |C|ue 30 (p+1) e Lo j 2( J Z; J z )

~ k n?-1
Spckcfln“(n+1)+ o T/Al(m,p,l,r,s,u)n—n—l-lx

efgq..<p+z>f§ S ey =§ (S g, 455 vz )

with C and C; as in (5.15a) and (5.15¢|) respectively and Aj(m,p,l,r,s,u) defined as

(n3+n2—n—1)(m+p)+(n2—1)(l+r)+u(n2+n—l)+
n(n+1)
smd—n+1)+n3+n?—n
B n(n+1)

Ay(m,p, L,y s,u) ==

Again we can distinguish among three different cases:

(a) p+1=1;
(b) p+1>2;
(c) p+1=0.

In the first case, (a), we have to prove

=~ —iym =5 (r, |vs Sy
Cl—lnA1(m,p,l,r,s,u) <e * 2 |VZJ| 2 (23:1 |ng‘+2]=1 |V4;‘) <1

since efg‘In(p‘i’l) — 671Qn'
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We first focus on the case p=1and [ =0. If s =0, that ism +7r+u > n—1, the
2
function Ai(m,1,0,7,0,u) is positive, since Aq(m,1,0,7,0,u) > =4 L > 0, hence the
thesis follows.

If we consider s > 1, the function Ay(m,1,0,7,s,u) could be negative, so we have to

take advantage of the decaying of the momentum of the lines El, ..., 0., since |V€’ | > qn >

Cy Hog L <. We also observe that

(m+r+u)(n?—1)—sm3-—n+1)-1 - n?4+n—1
— S

A 1.0 >
1(m, 1,0,7,5,u) 2 nn+1) = n+1

and the thesis follows once again as

£ m £ r s
~ -3 Ve |—3 Wi g
G lyimplirsn) 5 ¢ § 7 ey =5 (S g 155 vz )

_n4n—1 € \S EEE S R S
< (77 n+1 5202> S (77 n+1 2C'Q> < 1’

where the last inequality holds if Cy satisfies ([5.24]).
We now analyse p =0 and [ = 1. The case s = 0 is not as simple as the previous one
since Ay(m,0,1,7,0,u) is not positive; nevertheless it satisfies the lower bound
n

A 1 > — .
1(m707 ,7’70,U)_ n+1

This case is possible only if | Y270, vy, + 3> °%_; v; | > gn. Indeed, if this is not the case,
J
that is if | Z;”Zl vy, + Z;Zl I/Z| < ¢p, by using the properties of continued fractions, see

(5.1)), it follows that |w - (Z Lyt vy )\ > Clan+1 By hypothesis the lines ¢

and ¢ are both on scale 1, so we have |w - v| < %8“+1 and |w - vy | < %6n+1, but this
is impossible as

Cl _1 i - Cl _1
5 & <|w- (ZV@], +ZV@)| =lw-(v—vp) <|w- v+ |w- vl < 5 e

j=1 j=1
So we can obtain the thesis as follows:

_ _e(sm o )€

O lyPAalmo1rou) 4(Zj:1|”ffj|+zj:1 |”4]~‘) i2j=1lvg |<77 e i
_n £ —noy £ 1

S n n+1 g 4Ca S n ntl " 4Cy § 7711— <1

where we have used (5.24]).
If s > 1, we notice that
s(n® 4+ n% —n) 4 n? nd 4+ 2n% —n n?+2n—1

A 70717 y 9y Z_ Z_ = - )
i(m .8 u) n(n+1) n(n+1) ° nt1l
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hence we have the following estimate:

- S _ 3 _
G tyBi(m0.1.r0) oS (S e 5 g 1) = g o |

2 2
+2n—1 £ _n“42n—1 £
< () < (e Ty

_ n2+2n71

. . . . . <|»L n—1
and, by using (5.24]), this bound implies the thesis as 1 "2¢2 < g~ < 1.
We now study the case (b), p+1 > 2. We want to prove that

£y m _£ r _ s _
)~ E E v Q(ijllugjwzj:l\ueg) o

51—177A1(m,p,l,r,s,U) % efiqn(erl < e il (5.25)

First of all notice that

e Fan () — o= fn o= fan(pH=1)

so we can use the first factor to erase the same factor on the right hand side of (5.25]).
By using the fact that p+1 > 2, we can bound Ay (m,p,l,r, s,u) in the following way:

3 3 2
—n+1 —n2—n 42
Al(m,P,l,ﬁSuU)z—n nt S_n i nt
n(n+1) n(n+1)

and we obtain

~ _&ym _§(sor _ s _
C;lnAl(m,p,l,r,s,u) e * ijl |Vej| 2 (Zj:l |V€j H—Z]:l "@;') e—iqn(p—l-l—l)

7n37n27n+2 £ 7n37n+1 I3 S
< n n(n+1) e 1dn (77 n(n+1) 6_5‘1")

_ n—n2_nt2 & _ nS—nt1 &€ \S
S n n(n+1) £4C2 (77 n(n+1) 8202>

g2, ¢ o ndondl £ s
< n n(n+1) 4Coy (77 n(n+1) 2C2) .

X . 7n37n27n+2+i i . 7n37n+1+i .
So if we require n  "+D T 4C < 1) that also implies n "(+D "2¢2 < 1 the thesis

follows. In fact, we do not have to add any other condition on Cs, because if Cy satisfies
ndon?_ny2 ¢ 2(n—1)

(5.24), then =D Ti% < w7, that is actually less than 1.
We now analyse the third case, (c), p =1 = 0. First of all we notice that

_e(sm oy, Ty S s
. .|+ . vy |+ . v £ £
e 4 (Zj—ll J| 2371| g]‘ 2]71| g;‘) < e_Z‘Ul < e_an7

as V| > gn. So we have to prove that

~ —&(>or 5 s -
Grtyprmoorsw o o4 (Zia kg F i) )
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If s =0, one has u +m + r > n, that implies
m(n3 —n) +nu—n

n(n+1)

2

A1 <m7 07 07 r, 07 U) Z

Then if m > 1 the function A;(m,0,0,r,0,u) is strictly positive, otherwise, if m = 0, one

has A(0,0,0,7,0,u) > —45. Moreover, in such a case, v = 22:1 vy and |v| > q, >

Cy ! log %, so, it follows that

_ENr _
O 1pA100,0,0u) =3 2= M| =5y o~ §iv]

_n_ £ —n 4 &
S n nt+1g4Co é n n+1 ' 4CoH
<"l <i

and the thesis holds once again, provided C5 is as in (|5.24]).

If s > 1, we notice again that Aj(m,0,0,r,s,u) > —“2‘:%_15 and the desired bound

_n2+2n—1 +L
follows by requiring n "' "4 < 1. Then

~ (ST |us 5 vy
Gy m00rsa) o o HOWSYZAL )

_n24on-1 _€ \s _!\2+2n—1+i s
< (77 n+1 E4CQ> § (77 n+1 402) S 1.

Therefore, if we replace the condition on Cy in (5.24) with the last one, since

Hence to sum up, the third inequality of (5.18]) holds by requiring Co < 401%2}171)5 .

(n41)¢
{02 = 4(11(?‘:11)_61) — < (2114_—1)6’ (5.26)
Co < fmzann 4 +2n —1)
that is, if we take Cs as
n+1
SR 2
= 4(n2 4 2n — 1)5’ (5:27)
both (5.17)) and (5.18)) are satisfied and the proof of Lemma [5.6|is completed. O
Corollary 5.7. The bound in (5.18)) can be simplified as follows:
_ bk n?=1
[V (9)] < pCFipre+D ™ (5.28)
in such a way that (5.18)) becomes
ek _yn’o1 ¢
|V (9)] < pCrprern T s H ezl (5.29)
veEE] (19)

provided Cy as in (5.27)).
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Proof. In order to obtain these expressions we have bounded the first term in (5.18) as
£ . .
e-1lVl < 1, the second and the third alternatives as

3 & 2034024120
e 1In < £4C <e n(n+1) < ]_’
£ £ 2n3+n2+172n 113+n2+17n
—nt1 —& T R —n+14 > —n+1+4
n e 29 < n n £4Cy <« n 1Cy < n n(n+1) S n n(n+1) < 1’
where we have used the lower bound of g, in (5.7) with Cy as in (5.27)). O

Remark 5.8. The bound ([5.18)) has been used for the induction argument, but what we
need in the following is the simpler bound (/5.28]).

5.3 Convergence of the Renormalized Expansion

We want to prove that the series described in (2.15)) converges.
Lemma 5.9. For any k > 1 and v € Z2 one has

n2—1

k
1xB| < pBryern t T e miv, (5.30)

where B is a positive constant proportional to C, with C defined as in (5.15al), provided
Cy as in (p.27) and € € Up>N1y, with I, and N as in Theorem @

Proof. To bound the coefficients X defined as in (2.14), we use the estimate (5.29) and
sum over all trees in €, ,,.

The sum over the mode labels v € Z2 in (2.14)) can be performed by using the factor
e~ 312l associated with end nodes in E1(9) and this gives a bound B‘lEl(Me_%l””‘ for some

positive constant Bj. The sum over the other labels produces a factor Bg (19), with Bo
suitable positive constant. By taking B = B BsC' the thesis follows. O

Corollary 5.10. The function X (;¢,¢, ) is analytic in v in a strip B¢, with £ < %
Proof. 1t follows from the bound on the Fourier coefficients given by Lemma [5.9 0

Lemma 5.11. X(v;¢,(,c), defined as in (2.15), solves the range equation, i.e. is a
solution to (2.16]).

Proof. The proof is the same as in Section [3.4] O

We refer to [75] for the definition of continuity — and differentiability — in the sense of
Whitney: let A be a closed set in euclidean space E and let f(x) be a function defined and
continuous in A. Then this function can be extended so as to be continuous throughout
E; see also [31], §125.
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Lemma 5.12. X(Qp;a,g,c) can be extended to a function )Z'(t/);s,g,c), defined for all
¢ € [0,c0), such that X(w;,(,¢) = X(:6,C,¢) for e € UponTn and X(ie,C,c) is
continuous in € and X (¢;e,(,c) — 0 as e — 0.

Proof. Continuity of the function ¢ — X (t;¢,(,¢) holds trivially for ¢ > 0 such that
€ € Up>n1y, with I, defined as in ((1.9). On the contrary continuity at ¢ = 0 needs some
discussions. Set

F(g,0) == [|X(:16,¢,0)||oo = sup{ X (¥;¢,¢,c) 1 9 € Yer}, (5.31)

with ¢ < % as in Corollary Since F(0,¢) = 0 by construction, see (5.8) and take
e = 0, we have to prove that F(g,{) — 0 as ¢ — 0, that means for all « > 0 there exists
0 > 0 such that 0 < ¢ < ¢ implies |F(e, ()| < ¢.

We have -
Fle,0) <SS | x| e,
k=1vezd

Then we bound the value of a tree with k nodes by using the bound (5.29)) for k£ — 1
nodes except one end node and by noticing that E;(¢) # 0 (otherwise v = 0). Thus, we

have:
DoM< 3T ST )] <

vezd veZAIET,

<p0kn"<"+1>+"_1<> SO Y et

ﬁGTV k vEFY (19) vy, EZ4

—n—1
< kan"(n+1)+““("‘?’1) 8"+1 Z e*é‘l/|/4
vezd

Notice that we have used that an end node w € Ej(¥) and the respective exiting
line can be bounded or with emie ¢l or with n~"tle—¢*wl. Hence we can collect
a common factor e~ 5wl that multiplied by €¢I HveE (19)\{ }e_g\"v\ gives the factor

[loer, 9 € 4‘ vol. Therefore we are left with a contribution e7#1e~3Vul or n" e~ Sl
by using and - we have
2(n2+2n-1) n?4an—1

§ f n
n7n+1€f§\uw| < n7n+1€f§qn < ,)7*“4’18 o <g nr < gnil

since n > ¢.
Hence we obtain the following bound for F(e, {):

n3 —n—1

n(n+1)
Fe,() < p—l———ewin 3 eI (5.32)
1-— B?]n<"+1) vezd
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and, for fixed ¢ > 0, by choosing § > 0 suitably small and taking 0 < ¢ < § we have
F(e,¢) <.

By reasoning ia a similar way, one proves that, for all ¢,¢’ € U,>n1,, the function F
satisfies the bound |F(e, () — F(¢/,¢)| < w(e,€’) for a suitable modulus of continuity w;
the bounds above ensures that ¢ — F(g,() is at least Holder-continuous with exponent
n/(n+1)

Therefore, in the light of , the function X (1;¢, ¢, ¢) can be extended in the sense
of Whitney to a function )Z'('zﬂ; g, (,c), defined for all € € [0, &), such that )N((z,b; g,(,c) =
X(w;e,¢,c) for € € UpsnI,. Therefore )A(;(z/;; g,(,c) represents the Whitney extension of
):(:(1,[1;6,C, ¢) to the interval [0,£0] and is continuous in & by construction, in particular

X(¢;e,(,c) > 0ase— 0. O

5.4 The bifurcation equation
Define the function H(e, () as in (3.22)), that is

H(e, Q) = [glc+ ¢+ X(56,¢,0))]o — fo. (5.33)
Hence the bifurcation equation in becomes H(e, () = 0.

Lemma 5.13. The function H(e, () is C™ with respect to C.

@9(c) = 0fori=1,2,...,n—1 and o&(c) #0,

Proof. By Hypothesis one has g(c) = fo, 7.5

where n is odd and such that n > 3. Hence

ng [(¢+ X (6, 0))7] Z >, VW)

k=n+19€%; o

V* (1) is defined as ¥/ (¢) with the only difference that the node factor of the first node vy
is Fuyy = gp,, (Without the factor — appearing in ([2.9)). Therefore it is sufficient to prove
that the function ¥™(«9) is C™ in (. We first provide a bound for the renormalized trees
associated with the solution of the bifurcation equation. Take C' as in and p,I" as
in (5.3).

We consider the same construction of Lemma the only difference is that now, if
we denote with v the momentum of the root line, one has v = 0. The bound for #™*(¥)
can be easily obtained from the proof of Lemma by noticing that the propagator of
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the root line is equal to one. Indeed we have:

h—r—s— 2_
’7/*(19)’ < Pp—(m+p+l+r+s)pm+p+l+r+sck71 UW“ - 1(m+p+l)€n“ﬁr
_£ r ~ s ~
« 7]( n—‘,—]_ l+s lclue 1 Z] 1 | Z ‘ (p+l) 2 (Z]zl |Vej|+Zj:1 |V[;‘)

_E&xm _£ r _ s _
_ pmk@_lnﬁm(m,p,z,r,s,u)e_gqnw)e § 5 ey =5 (S o 15250 vz )

w3 _n— m(n3—n)+nu
< pFC’knkt\(nH) 1y (n(nﬁ;_ e—%qn(p—i-l—&-s)’
(5.34)
with C as in (5.15al) and .
C:=pC>1

and where we have used that

(mtptitr+u)—1)+m+p)(—n)+nu

Ag(m,p,l,r,s,u) = n(n+1)

_1+5(n3—n+1)

n(n+1) N
w—n—1 m@—n) 4+ smP+n—1)
pu— + B
and 2
LA < (7)<,

since Cs is as in (5.27)).

In particular ¥*(1}) depends on ¢ through the node factors and through the propagators
associated with lines on scale 1, see (2.13]) and (2.14)). For 0 < j < n, this is:

w3 (T #) (T 6) e ( I0R) 2 I 6)
V€T 0 vEN(I) LeL(9) vEN (D) LeL(9)
If the derivative acts on the node factors, we have
oc( H ) = E@|doO- (I Ry,
veEN (¥ vEN (V)\Eo ()
Then, if we assume that n derivatives act on the node factor, by using , one has
(11 7)-( 11 Ge)! < [B(0)|(|Bo(®)] ~ 1) -+~ (|Eo(®)| — j + 1)prC"x
vEN(9) LeL(v¥ (5_35)

ktnd—n—1 , m@3—n)tnu
XN n?nJﬁ‘l‘) + n(n+1) 7je_§qn(p+l+5)
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for 0 < j < n and for a suitable positive constant C’ depending on C, with C defined as

in (5159,

If the derivatives act on the propagators the analysis is more delicate. We have to
distinguish among two cases: the case in which the derivatives act on the same line and
the case in which the derivatives act on different lines. The worst case is the first one.
Denote x = w - vy, with ¢ € L(J), and suppose that n derivatives act on the propagator

GM(z), see (2.11)). Then one has:

IM(z)
(D1 (x))?’

O2G(2) = x(Ja) [2OMEE | M)

D@y +<z>1< ) |
- (O M@) (02 M(2)... (09 M)
=x<|x|>2 S iy CEGE 3<j<n,

k=011,...,i; €A

.G () = x(la) 73

(5.36)
where the index set in the last sum is
A::{il,...Jj_kG]N: nt-tyg=7 and i1 > ip > - - >k = 1}

and for suitable constants Qi ,.oij i Before proceeding with the estimate of the derivatives,
we have to provide a bound for O: M(x;¢€,(, ¢). Since the lines composing M(z;¢,(, c) are
on scale 0 see , the derivatives act only on the node factor. By Lemma and
Lemma [5.3] it follows that

2—211—1 2

OM(z)| < bie(C™ 24 ) < 2y e,

2_3n-_2

OZM(x)] < bos(C 3 4w ) < by,

n2—n
O M(2)] < bure(L 47 50 ) < 2y i e,
ﬂ27 n
[OEM()] < bue(1+7"F1) < 2z,

with suitable positive constants by, ..., b,. The first contribution is from resonances that
contain only one internal node, while the second one is from all the contributions of
resonances with at least two internal nodes.

Hence, to sum up, we have

XM ()| < 2bjen 7, forj=1,....n—1, (5.37)
OEM ()] < 2bye. (5.38)
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We can write the contributions of the derivatives acting on the same propagator as
follows:

( H Fv)6€< H Gg):”/(ﬁ)acM(m)

vEN(D) eeL(9) Dy (x)

)2 OPM(x)
(uell_\f[(ﬁ)FOag(éelL_‘([ﬁ)Ge) :7/(19)[2(33??;)))2) " i)1(35) }
(I r)ee( I1 &)=
vEN(9) eEL()

n—1 ‘
= 7/(’[9)2 Z ail,...,ij,k (Dl(l’))n_k )

k=0 ilv---yin—kEA

for n > 3 and for suitable constants a;,, ;.

By using Lemma and (5.37)), (5.38)), up to a constant, we have

| (9 M(2)) (92 M(x)) ... (97 M(a
(D1 ()7 *

—(n=1)(G—F)

) ‘ < gl =hp=1)G=R)=EI21 ) o=tk
—n7 for1<j<n.
Then, from (5.34]), one has the bound

71 72 ij*k
(aC M(z)) (8<(;\/l(($))))j k (84 M(z)) < pFCk 0 kt‘?i;?)’l + m(‘:‘?;;ﬁn“ —je—gqn (p+l+s)
1\x))—

|7 ()
forl <j <n,

and in particular the worst case is

(92 M (@) (02 M(2)) ... (97 M(x)) a1

W* 19 < oI k n(n+1) + n(n+1) fqn(p+l+s)
v (i ()" Serchn o

k—n2—n—1 m(113—11)+11u
SpFC’“n ReED T aGtD e_%Qn(p'i‘l-f'S).

(5.39)

Notice that we have to bound the same contribution as in (5.35|).
If p+1+s>1, by using (5.27)), one has
2

k—n“—n—1 m(n3—n)+nu E—nZ—n—1 3 k4nd34n2—2n—1
n nr(1n+]11) + n(n+41) 6_%(]n(P+l+5) S n n(n+1) +@ S n nn(:+1) .

that is bounded since 7 is supposed to be small.
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If p4+ 1+ s =0, we have to distinguish among two different cases: m > 1 or m =0
and r +u > n. If m > 1, one has

k,n27n71+m(n3—n)+xm k4n3—n2—2n—1
n n(n+1) n(n+1) S 7 n(n+1)

that again is bounded since 7 is small, n > 3 and k£ > n+ 1.

If m =0 and r + u > n, we have to notice that in this case, the derivatives have to act on
the node factor, since the propagators do not depend on . Then if j is the number of the
derivatives, one has the bound j < u. Hence, © > n and one has

k—n2—n—l+ nu k—n—1
n n(n+1) n(n+1) S nn(n+1)7

that is bounded since 7 is small and & > n+ 1.

If the derivatives act on different lines, it means

32( H)GO:agl(;[l}(w.,/él)ag?(;[l}(w.,/42)...52}(;[1}(‘0.Wr)( I1 Gz),

teL(v CeL(I\L (9)

with L'(9) the set of the lines where the derivatives act, ji,j2 # 0, j3,...,Jr > 0 and
ji+---+jr=rfor 1 <r <n. Then from the previous analysis, it can be easily seen that
every n-th derivative of the function #*(9) in the variable ¢ is bounded.

Therefore we can conclude that H(e, () is C" in (. ]

Lemma 5.14. There exists a neighbourhood U x V' of (g,{) = (0,0) such that for all
e € U there is at least one value ¢ = ((¢) € V, depending continuously on e, that solves
the bifurcation equation.

Proof. See the proof of Lemma [3.14] in the case of f a trigonometric polynomial. O

We summarize the previous results with the following Lemma.

Lemma 5.15. Let g and N be as in Theorem |2 and ((¢) as in Lemma |5.14. Define

Cy as in (5.27) and I, as in (L.9). Then for all ¢ € Up>n1,, the function x(t,e) =
c+((e) + X(wt;e,((e),c) solves (1.1)). Moreover x(t,e) is continuous in € (in the sense
of Whitney) and x(t,e) — ¢ as € — 0.

5.5 Final comments
The intervals described by (5.5]) give us the connection between the perturbation parameter

and the frequency vector. In principle, one would expect to obtain the existence of response
solutions for all frequency vectors provided |e| < go, with gy small enough. To study if
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this really occurs, we need to analyse better the intervals where the solution exists. Once
g0 and N have been fixed as in Theorem [2} if we define the intervals I, as in (1.9), that is

I, = [6702‘1", (CIQn)7n71]7 n> N,

the solution exists for all |e] < gg such that € € Up,>n1y.

The intervals I,, are well defined for n large enough. However, they might be disjoint.
From the theory of continued fractions, we know that the sequence g, is increasing, so

that
1 1

< ;
(C1gnr1)™  (Crgn)™
but there is no a priori relation between e~“2% and (Cign1 Therefore it may

happen that e~¢2% > (Ciq,,1) " '. If that is the case, the intervals I,, and I, are
disjoint, as represented in Figure [5.1

e*C2qn+1 < efczqnj (5.40)

)—n—l'

In+1 In €0
———e—————— @-----———————— -~ -
—Caqn+1 1 —Caqn 1
€ Crgnin)™1 € (C1gn)"t1
Figure 5.1

The overall measure of these intervals depends on the irrational number «, in particular
on the convergents p,,/qn, 50 we cannot say in general where the meas(I,,) = (C1g,) " ! —
e~C2n is either large or small.

Once ¢y and N > 0 have been fixed as in Theorem [2| the problem to address is when
it is possible to obtain the result of existence for all |e| < g9. Of course, this is equivalent
to require

e < (Cigni1)™ Y, n>N, (5.41)

so as to have the situation represented in Figure |5.2

(Crgny2)"H! (C1gny1)™t!
Figure 5.2
From the results available in the literature we know that, taken g9 > 0, if w is Dio-

phantine or Bryuno, response solutions exist for all |e| < g in a set without holes. Hence
it is not surprising that (5.41)) is satisfied when w is Diophantine or Bryuno.
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Indeed, if w is Diophantine, condition ([5.41)) easily follows by using Proposition

1 1 o
> > e 2n, n >N,
(Crgn1)™ T~ (KoCrgh)™H!
with Ky as in the proof of Proposition Cs as in (5.27) and Cy and N suitably chosen.
Recall that, defining

1
en(a) := —10g gns1,
n

we say that w = (1,«) is a Bryuno vector if £,(«) is summable, see Definition If
en(a) is summable, ([5.41) is satisfied:

10g(C1gp41)"" = (n+1)1og C1 + (n+ 1) log go1 =
=M+ 1)logCi + (n+ 1)gnen(a) < Cagn

with Cy as in (5.27) and C; suitably chosen.

What is not true is the opposite: there are vectors which satisfy , but are not
Bryuno vectors. In fact, it is sufficient that e,(«) be small enough so as to satisfy the
bound above.

To summarize, for n > 3 and d = 2, if we do not require on the convergents of
a, we find that the response solutions exist in a set with holes; instead if we impose
on the frequency vectors, we have the existence of response solutions for all |¢| < gy and
for a class of frequency vectors which satisfy a condition that is weaker than Bryuno’s and
also weaker than the request that e,(a) — 0.

Notice also that, on the contrary, if n = 1, for any d, the response solutions exist in a
set without holes, by only requiring e to be small enough, see [47, [73].
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Appendix A

Theorem 2: the case n = 3

In this Appendix we discuss explicitly the case n = 3 both, for concreteness, to discuss a
case where all the constants are explicitly computed (in terms of the parameters) and as
an explicit example where it is easier to draw pictures.

Let C, C and C; be as in (5.15a)) and define N and I,, as in Theorem [2] with n = 3.

Lemma A.1. Let ¥ be a tree of order k = 1 and root line £y. Let us denote by v the
momentum of the root line. Then if € € Up>n1,, one has

cieélvl if bo € Leo(¥) U Ls o(9);
|V (9)| < pC < n~2e Wl if by € Lo 1 (9). (A1)
<1, if by € Lo (V).

Proof. If ¥ is a tree of order k =1, then 71, = %1 ..
If 4y € L. o(09), we have |G (w -v)| < 1 < 2 e~i. Then

wv] = C1

If £y € L>(0), by using the sharp partition (5.10) with n = 3, one has |G (w - v)| <
\w% < Cilsfi. Then

49
| V(9)] < aé‘%e_g""-
If o € L>1(0), from Lemma we obtain |GM(w - v)| < ﬁ Then
®
[yl < 2o,

If 4y € Lo(ﬁ), then ‘7/(19)’ = |C’
Hence if we choose C as in (5.15a]), the thesis follows. O
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Lemma A.2. Let ¥ € Ty, be a renormalized tree of order k > 4 and momentum v # 0
associated with the root line £y. Then

£

Y@ =70 [[ e =™ (A.2)
vEFE1(9)
where .
e"ill if bo € Lo o(V),
7(9)] < pCr1a*s x { o=fan, if by € L>o(9), (A.3)

2 i ifby € Lxa (),
with C' as in (5.15a]), C2 as in (L.6) withn =3 and ¢ € Up>n1,, provided n small.

Proof. Let us consider a renormalized tree, ¥ € €, ,,, of order £ > 4 and denote by vy the
first node, that is the node the root line exits. For any renormalized tree, we have the
following structure, see Figure

e ) € ‘Ek’l,wl» cooyUm € Ty, v, enter the first node vp and the respective root lines
1,..., by are such that |vy,| < g, for all j = 1,...,m; equivalently, ¢1,..., ¢, €
L<,0(19)§

o V| € ‘I’flv”eg sy U, € fk%,,% enter the first node vy and the root lines /1, .., ¢, are

such that ’I/glj‘ > ¢ and ﬁg;_ =0forall j=1,...,p, so that £|,..., 0, € L> o(?);

o V] € Tkl’"’f'l” L0 e (Zkl"/e;' enter the first node vy and the root lines ¢7, ..., ¢/ are
such that |vy| > ¢, and gy =1 for all j =1,...,1, so that £7,...,¢/ € L>1(9);
J J -

e the lines 21, . ,@; enter the node vy and exit the end nodes vy,...,v, € E1(J)
respectively and are such that n; =0 for all j =1,...,7; equivalently ¢y,... ¢, €
J

Lco(¥)U Lxo(9);

e the lines E’l, e ,EN’S enter the node vg and exit the end nodes 17’1, .. ,17’5 € Eq(v)
respectively and are such that |v; [ > g, and ny =1 for all j = 1,...,s, so that
J J

le, .. ,Z’s c Lzl(ﬁ);
e the lines /1,...,/, enter the node vg and exit the end nodes o1, ...,v, € Eg(9).
According to this structure, we have the following constraints:
l
o k=k(9) =200 k(0;) + 25 R(0)) + 375 k(O)) +r s +ut
e m+p+l+r+s+u>3;

L m?p7l7’r7s7u20;
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!
o v =3 v+ Ve + e Ve 2 v D Vi

e v#£D0.

Figure A.1: Tree representation of the described structure.

We use (A.1]) to bound the value of graph elements formed by an end node and the
respective exiting line. Then we assume that any value of tree of order &/, with 1 < &k’ < k,
follows (A.2]) and in order to prove Lemma we proceed by induction.

By following the described structure, we can easily collect a common factor
HveEl(ﬂ) exp(—£|vy|/2) in the expression of ¥ (), see (2.13). Hence we have to prove
the second bound in Lemma and we will do it by using for trees of order k'
with 1 < k' < k and by estimating the value of the graph elements formed by an end node
in E1(9¥) and the respective exiting line as in (A.1]) with % instead of £. We still use the
last inequality in to bound the value of the graph elements formed by an end node
in Ey(9¥) and the respective exiting line since the momentum of these lines is zero.

I case: £y € L. o(V).

Let us start by taking into account a renormalized tree with root line £y € L. (). We

want to prove

|7(9)] < pChyistie i,
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Since 7 := max{e, ||}, by combining (5.3)), (5.4) and by induction it follows that

|“/_/(q9)’ < g Ck—lpm+P+l+T+S+uIO—(m+p+l+r+g+u) %-ﬁ-%(m-}—p—i—l)

Cq K
m _£ r ~ s ~
_21_25|<|u e—% 20 \ng|e—%qn(p+l)e 2 (23:1 |sz 2251 |Vg;. ‘)

> E%(r—‘rl)

n
3 —r—s—u—1432m+32p+321—32—241—24s5+9(r+1)+12u

< pcké_ln%'i_%'r] 12

_£ r _ s _
X e‘% Xt vel o ~San (o), 2 (=5 vz 1+ "’4')

~ k | 8 32m+32p+8148r—255—24+11u
< pC’kC’ 17’12+377 12 X

_£ r _ s -
X 67% Z;nZI |V5j |e*§Qn(p+l)e 2 (Z]=1 Iylj ‘+Z]:1 ‘VZ; |) .

Since O~ < 1, we have to prove that

_&(m N_&(sr _ s _
pRo(mplrsu) HEm |w]‘) (2 ‘VﬁjHZFl|Ve§'|)e7§qn(p+l) < e*%ﬂ,

with
32m + 32p + 8l + 8 — 255 — 24 + 11u

12

AO(mvpa l,’l“, S,U) =

This can be seen by studying the following cases:

() p+i=1;
(2) p+1>2;
(3) p+1=0.

If we are in the first case, (1), we have
e i) — o—fan < e—%IV\7

since the momentum of the root line is such that |v| < gy,.
We have now two possibilities: p=1andl=0orp=0andl=1. Ifp=1and =0, we
have to prove that

£ m £ r s
32m+8r—25s5+8+11u =S\ e ) =5\ 2y v 425 v |
0 2 % e 4( J ]) 2( J Z; J 4])<1.

If s = 0 this is trivially true, because

_&(sm _&(sr _
77732m+8$r8+11“ % e 4(2;‘:1 |ng\) 2(2;‘:1 “’ej|) < 771% <1.
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If s > 1, the function Ag(m,1,0,7,s,u) could be negative, but the lines @1, - ,Z’s are

i
such that [vy | > ¢n > % Vj=1,...,s. So we bound Ag(m,1,0,r,s,u) as follows
J
25
Ao(m,1,0,7,s,u) > BTE

in such a way that
£ m _£ r _ s _
om0 s, (5 e 1) =8 (S5 bz 1+ 5 vz )

3 s
25, —35 25 vyl 25
% 2777 <

£
and the thesis follows by choosing Cs in such a way that 77_%5202 < 1. In particular
& 25, &
77_%5202 <n 12+202, so we have to require

2% ¢ 6
_2 LS < < e
ntog S0 = et

If p=0and [ =1, our statement becomes

) 3 m 3 T s
32m 4 8r— 25516411 =5 (20 e ) =5 ( 51 Ivg 225y v |
g 5 (S ) -5 (S by T b )

Again, if s = 0, that is m + r 4+ u > 2, the thesis follows because

_¢ m _£ T _
smssetoin 5 (5 ey )5 (S vy )

Ui

24m+3u+8(m+r4+u)—16 24m—+3u
12

<n <n = <L
Instead, if s > 1, the function Ag(m,0, 1,7, s,u) could be negative, but the thesis holds

by noticing that
11
Ao(m,0,1,7,s,u) > — 7

- _u L . JE S T
and by requiring = 4 €2¢2 < 1. In particular n~ 4e€2¢2 < g 4 ' 202 hence we can choose

(5 such that

11 ¢ 2
—— 4+ =<0 = (< —=¢
17 a0 S 2= 916
Summarizing, the condition on Cs becomes:
Cy< L 2
- 225 = ()< —¢. (A.4)
Cy < 3¢ 11

Let us now analyse the second case p +1 > 2.
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. _£
As we can see, we can rewrite the factor e 10 (1) a5 follows:
e—gqn(p-&-l) _ E_EQHe_%Qn(p"‘l_l).
. o . log 1
Since the momentum of the root line is such that |v| < ¢, and since ¢, > OC%;, by
observing that p+1—1 > 1, it follows:

£
e—%tzne—%m(p-ﬁ-l—l) < 6_%”'6@ .

The function Ag(m,p,l,r,s,u) can be bounded by using the condition p + 1 > 2:

32m+8r—25s+11u—8> % 2
12 =TTy

AO(mapv lv r,s, ’U,) Z
Then the thesis follows if

_&(ym _&(sr _ s _
77Ao(m,p,l,r,s,u)6 4(2j:1|"‘3j|) 2(Zj:1 |”ej‘+zj:1 M;l)e_gqn(pﬂ_l) <

25, & 2, &
i.e. if we require 7 127303 <1 and n 573 < 1. These inequalities are satisfied without

requiring any other condition on Cy since Co < %f , see equation ((A.4). Indeed:

_25
2

n 1

wlo

£
T <ps <1, n

Let us focus on the third case, (3), p+1 =0, that is m +r + s+ u > 3.
First of all notice that we can rewrite the exponential part as follows

efg(z;';l e, ) =5 (o vy, 145540 |Vz;_|) _

ST by T g S g 1) = § (S g T g )

So, from the conservation law of v, i.e. v =370 vy, + >0 vy + >0 v, we have
J J

£ Mo |+ s D v
. § (S ey 25 vy 55 | Z;|) < oS,
Hence we have to prove
32m8r—25s5—24+11u f% ( i v 35 v I)
n 12 X e I i7 < 1.

If s = 0, the thesis follows since 32m+87"f511“724 > 24"{;3“ > 0. If s > 1 we can reason as

before by noticing that

11
Ag(m,0,0,7,8,u) > -
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_u, &
and the thesis is satisfied by requiring n * tic <1,ie Cs < ﬁ&. By comparing this

condition with the one in (A.4), it follows

< L
C2 < 1215 and thus Cp < —¢. (A.5)
Cr < 7€ 11

IT case: €y € L> o(¥).
Let us now analyse the trees of order k with root line £y such that £y € L> o(¥). We want
to prove:
7(9)] < pChyistieion,

Since 7 := max{e, ||}, by combining (5.3)), (5.4) and by induction it follows that

—§ 27 ey -5 (5o vy 1+ vz )

)

|4/_/(19) < ka 571 W%Jr% 7]A(m,p,l,r,s,u) eigq”(erl)@

with

32m + 32p 4+ 8l + 8r — 25s — 24 + 11u
12 '
As before we can distinguish among three different cases:

AO(m>p7 l7 s, U) =

(1) p+1i=1,
(2) p+1>2,
3) p+1=0,

and since the function Ag(m,p,l,r,s,u) is the same as the previous case, the thesis can
be checked by following the late argument. The only difference is that now the root line

. £ . .
is such that |v| > g, so a term e~ 419" has to appear in every listed case.

If p+1 > 2, we have trivially efgq"(pﬂ) < 673%‘

If p+1 =0, we extract the factor

(S b o g, 5 v )

and we use the definition and the bound of |v| in the following way:

_£ M v | s Y5 v
(S by T g, 4 5 b ) P

ITI case: £y € Ly ;(¥).
Let us now consider a tree of order k with the root line ¢y such that ¢y € L> ;(¢). We
want to prove:



By induction on the order of the tree, we know

’7_/(19)‘ < p(m+p+l+r+s+u) Ck—l%p—(m—&-p—i-l—i-r—&-s-i-u n%*‘%(mﬂ-p-‘rl)n—ﬂ—%—Q

_& r _ s _
mue PN Vvl =5an (o4, 2(2j=1 g 1+ “’z3|).

Now from the definition of 5 and C; in (5.15a]), our thesis becomes:

_Eym _£ n—¢§ T _ s _
C 1 A1( Pilirisiu) o o i 2j=1lve;l=gan(p+D) 2(2J:1|Vej|+23:1 |V£§.‘) < e—%qn’

where the function Aq(m,p,l,r,s,u) is defined as

32m + 32p + 81 + 8r — 255 — 33 + 11u
12 '

Al(mapa l,?“, S,U) =

We start again by analysing the case p+ 1= 1. If p=1 and [ = 0, we have to prove
that

3 ~ s
32m48r—25s—1411u  _ &g m (T vy [ g )
n 12 o« e e eyl T2\ = WG T A= VT <1,

since 6’1_1 < 1. If s = 0 this is trivially true since m +r +u > 2. If s > 1, the function

Aq(m,1,0,7,s,u) could be negative and it has the following lower bound

11
Ai(m,1,0,7,8,u) > -5

Then if we take Cy as in (A.5)), the thesis follows:

_§( r _ s _ )
32 —25s—1411 £ POV 7 B e 1 2
32m+4-8r—255—1411u e_Z E ;”:1 ‘Uéjle 2 j=1 ‘ g].l j=1 ‘ [gl _ 1 %

U E < (nwein)?

3 11 11

Jp b S AVE 1
S aex2) < (n T72%) <pa® <1

If p=0 and [ = 1, the statement becomes:

3 ” s
32m+8r—255—25411 _Eym _7(2_: Vs |35 lva ‘)
n T “ X e 42]:1|V£j‘6 2 J=11"2; i=11"2 <1.

If s > 1 the thesis follows, since we can bound the function Aj(m,0,1,r, s,u) as
Ay(m,0,1,7,8,u) > —%s and we can notice that 777%+% < 1 because of (A.F).
s = 0 the argument is more delicate.

This situation is possible only if [ 377 vy, + 377, vi, | > gn- Indeed, if this is not the
case, that is if | E;”Zl vy, + Z;Zl vy, | < gn, by using the properties of continued fractions,
see (5.1)), it follows that |w - (Z;ri1 Ve, + >0 1 1/~)| > ﬁ > ClT% By construction we

4
also know that |w - v| < 014\/5 and |w - vy | < ‘[ Hence we have

G
2

C’
Ve <|w Zw +Zu (Vv S w4 w vy <

7



Figure A.2: The case of p=0,1 =1 and s = 0.

that is impossible.
Then it follows that:

32m—+8r—25+11u _ ¢ m _¢ Ty
n- 1z Xe i 2jm1lvely 2(Zg,1| Zjl)

(S vy v ) 5 (S v )

IN
|
NI
X
®

X e

where we have used (A.5)).
The case p+ 1 > 2 can be treated by using (5.5)) and by verifying that

Glyimplisn) o T g =0 rt=D=§ (S g 1+ 25 v ) .
In fact
Gty mplirsn) iy [=§an =15 (Tt by 1+ X5 vz )
< 7]7%5%(7]7?5%)3
< B (B < g <1

where we have used (A.5)).

Now we look at the case p +1 = 0, that is m + 7 + s + u > 3. First of all notice that
we can bound the value of the tree in the following way:

32m-+8r—255—33+11u —%(Z;ﬂzl Iugjl—i-Z;:l \VZ]_ [+>25-1 lva I)
12 e J

7)< pC Tty
5 (g 5 )
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By definition of v it follows that:

(S by T g, [ 5 b )

So, since 51_1 < 1, we have to prove

32m8r—255—33+11u ,% (22:1 g 14322520 vy I)
n 12 X e J J

< e-%\”l < e_%Qn‘

This can be done in the following way: if s = 0, that implies m + r + u > 3, we have the

following bound

Aq1(m,0,0,7,0,u) =

2m + 8r — 33+ 11u N 8m+u—3

12 - 4
Then, if m > 1 the thesis follows as

32m+8r—33+11u £ =1 v |

32mi8r_33+1lu - ) 5
n X e i <npa <1

If m = 0, that means r +u > 3, and in particular > 1 (otherwise it would be v = 0) we

have

Ui

£ T
3 —7 2.i=1 V7 3 £ 3 I3
i Xe 42]71‘ [J'l < n_Ze_Z‘VI < n_Ze_an

_3 _& 34 & 9
<pTigity <y AT <pf <1

where we have used ({A.5)) and the thesis follows once again.
If s > 1, one has Ay(m,0,0,7,s,u) > —%s. Then:

32m48r—255—33+11u ,%(Z;:l vz [+325-1 \Vﬂl)
e J J

’)7 12

£

_r _£ 7 £ ,Z+L
< (77 2e 4qn)5 < (77 25402)8 < (77 2 402)5

and if we request £ > %, ie. Oy < ﬁ we obtain the wished bound. By comparing this

4Co
condition on Cy with (A.5]), we finally have:

< £

{02 =~ 1§4 - CQ <
Co < 3y

Then, if we take Cy as

02:ﬁ7

both (A.2) and (A.3) are satisfied and the proof of Lemma is completed.
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Appendix B

Zeroes of even order

In this section we discuss what we anticipated in Remark that is what happens when
the equation g(z) = fo has zeroes of even order.

Lemma B.1. Let ¢ be a zero of even order of the equation (1.3). Then there is no
quasi-periodic solution reducing to ¢ when € goes to 0.

Proof. We focus on the bifurcation equation (2.6]) in the case of ¢y a zero of even order of
equation (1.3). As we have seen, we can rewrite the bifurcation equation as

[9(co + ¢ + X (56,¢,0)o = fo = gal(¢ + X)"o + [O(C + X)" o = 0, (B.1)

where g, is as in (2.1)) and g, # 0. As usual, we denote by []o the Fourier component with
label v = 0.

Since n is even, if ¢ = O(¢) then we have |gn|[(¢ + X)"]o > Ce", for some positive
constant C' and O((¢ + X)"!) = O(e"*!), so that (B.T)) cannot be satisfied for & small
enough.

If e = 0((), then

n

(64200 = 3 (1) SHX" 4o = ¢+ (™) (B.2)

k=0

for £ small enough. On the other hand, O((¢ + X)"™!) = O(¢"*!) and hence once more

there is no solution to (B.1]) because of (B.2]).

The case ( = o(e) can be discussed in a similar way. O
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