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Introduction

A classical problem in algebraic geometry is the construction of moduli spaces for

geometric objects, like algebraic curves, surfaces, vector bundles, with fixed invariants.

The most used method for constructing moduli spaces is based on Geometric Invariant

Theory (GIT). This theory was developed by David Mumford and provides tools to

construct the quotient of an algebraic variety X with respect to the action of a reductive

group G in the context of algebraic geometry. In particular, if X is a projective variety

and the action admits a very ample linearization L, up to restricting to an open subset

of X we can construct a quotient as a projective scheme. More precisely the quotient

is

X//G := Proj

( ∞⊕
n=0

H0(X,L⊗n)G
)
,

and the open set where the quotient map is defined is the so-called semistable locus Xss,

which is the set of points p in X for which there is an invariant section s ∈ H0(X,L⊗n)G

for some n such that s(p) 6= 0. Thus the main goal of the so-called GIT analisys is to

determine the semistable locus. We recall that a point p in X is said to be polystable

if it is semistable and its orbit is closed in Xss. Finally p is said to be stable if it is

polystable and its stabilizer is finite; the stable locus is denoted by Xs. Moreover we

remind that X//G is a categorical quotient, i. e. the quotient map π : Xss −→ X//G

is universal with respect to G-invariant morphism, while the restriction of π to Xs is

a geometric quotient, i. e. a categorical quotient such that π induces a one-to-one

correspondence between the orbits of Xs and the geometric points of the image of Xs

inside X//G.

The most famous application of GIT was the construction of the moduli space Mg

of smooth curves of genus g ≥ 2 and its compactification Mg via Deligne-Mumford

stable curves, carried out by Mumford (([Mum77])) and Gieseker (([Gie82])).

We recall the GIT construction of Mg. Fix an integer g ≥ 2. Given d = n(2g − 2)

with n sufficiently large, denote by Hilbd the Hilbert scheme of curves of degree d and

arithmetic genus g in Pd−g and by Chowd the Chow scheme of 1-cycles of degree d in
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Pd−g. Consider the Hilbert-Chow map

Ch : Hilbd → Chowd,

which sends a one dimensional subscheme [X ⊂ Pd−g] ∈ Hilbd to its 1-cycle. The

linear algebraic group SLd−g+1 acts naturally on Hilbd and Chowd so that Ch is an

equivariant map; moreover, these actions are naturally linearized, so it makes sense to

talk about (GIT) (semi-,poly-)stability of a point in Hilbd and Chowd. Given g ≥ 2, one

consider locally closed subsets of Hilbd and Chowd, denoted by Hilbcan
d and Chowcan

d

respectively, parametrizing the n-canonical smooth connected curves X of genus g in

Pd−g. A GIT analysis based on the Hilbert-Mumford numerical criterion shows that

for n sufficiently large each curve in Hilbcan
d and Chowcan

d is GIT stable with respect

to the action of SLd−g+1 (for details see [Mum77, Thm. 4.15] or [HM98, Chap. 4.B,

Thm 4.34]), so that the quotient of both these subsets by the action of the linear group

SLd−g+1 is well defined and is the moduli space Mg of the smooth curves of genus g,

which is only a quasi-projective variety. If we would like to obtain a compactification

of Mg, we have to consider the action of SLd−g+1 over the projective closures Hilbcan
d

and Chowcan
d . In the end of the seventies of the last century Mumford and Gieseker

proved that if n is sufficiently large, then the semistable locus consists of only Deligne-

Mumford stable curves (or stable for short), i.e. connected nodal projective curves

with finite automorphism group. Moreover the GIT quotient is geometric (i.e. there

are no strictly semistable objects), so that the GIT quotient is the moduli space Mg

of stable curves. Indeed Mumford in [Mum77] works under the stronger assumption

that n ≥ 5 while Gieseker assumes only that n ≥ 10, but later it was discovered that

Gieseker’s proof works also under the assumption n ≥ 5 (see [Mor10, Sec. 3]).

We could ask ourself what it happens when n < 5. This question is very interesting

because the quotient can be described always as a modular birational model of Mg

and in these last years many authors have found connections of this problem with the

so called Hassett-Keel program, whose ultimate goal is to find the minimal model of

Mg. Let us sum up what it was discovered in these last years.

• n = 3. The description of the quotient is due to David Schubert in 1991 ([Sch91]).

He proved that the semistable locus in the Chow scheme (and the same descrip-

tion holds for the Hilbert scheme) consists of pseudo-stable curves (or p-stable

curves for short). These are connected projective curves with finite automor-

phism group, whose only singularities are nodes and cusps, and without elliptic

tails (i.e. connected subcurves of arithmetic genus one meeting the rest of the

curve in one point). Since the GIT quotient analyzed by Schubert is geometric,

the GIT quotient is the moduli space of pseudo-stable curves of genus g. Later,

Hassett-Hyeon constructed in [HH09] a modular map T : Mg → M
p
g which on
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geometric points sends a stable curve onto the p-stable curve obtained by con-

tracting all its elliptic tails to cusps. Moreover, the authors of loc. cit. identified

the map T with the first contraction in the Hassett-Keel program for Mg.

• n = 4. This case was studied by Hyeon and Morrison in [HM10]. It is very

interesting because although the quotients are again isomorphic to the moduli

space of pseudo-stable curves, their properties are different: the Hilbert GIT

quotient is geometric, while the Chow GIT quotient is only categorical (i. e. there

are strictly semistable objects, some of which then get identified in the quotient).

More precisely, the Hilbert semistable locus coincides with Schubert’s, while the

Chow semistable locus is strictly bigger and it consists of weakly-pseudo-stable

curves (or wp-stable curves for short). These are connected projective curves with

finite automorphism group, whose only singularities are nodes and cusps (and

having possibly elliptic tails). This result can be reinterpreted as saying that

the non-separated stack of wp-stable curves and its open and proper substack of

p-stable curves have the same moduli space.

• n = 2. The quotients, which are not geometric but only categorical, were de-

scribed by Hassett-Hyeon in [HH]. The Hilbert GIT quotient M
h
g and the Chow

GIT quotient M
c
g (they are now different) are new compactification of Mg, re-

spectively the moduli spaces of h-semistable and the moduli space of c-semistable

curves. Moreover, they constructed a small contraction Ψ : M
p
g →M

c
g and iden-

tified the natural map Ψ+ : M
h
g → M

c
g as the flip of Ψ. These maps are then

interpreted as further steps in the Hassett-Keel program for Mg.

• n = 1. This case is still open. For some partial results on the GIT quotient for

the Hilbert scheme of 1-canonically embedded curves, we refer the reader to the

work of Alper, Fedorchuk and Smyth (see [AFS13]).

What I worked about in my PhD thesis is to construct modular compactifications

of the universal jacobian

Jd,g = {(X,L) |X is smooth of genus g and L is a line bundle of degree d}/ ∼,

via GIT quotients of the locus of connected curves inside Hilbd and Chowd. This

problem was studied first by Lucia Caporaso in her PhD thesis. She proved that for

d ≥ 10(2g − 2) the semistable locus of Hilbd consists of quasi-stable curves (i. e.

Deligne-Mumford semistable curves with no chains of P1 of length greater than 1) such

that the line bundle L defining the embedding in Pd−g is balanced, i. e. satisfies an

inequality that essentially says that the multidegree of L does not differ too much from

the multidegree of ω⊗nX for some suitable n (we will introduce the inequality later).
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As before, one may ask what happens when d < 10(2g − 2). In my PhD thesis I

studied the following

Problem: Describe the GIT quotient for the Hilbert and Chow scheme of curves

of genus g and degree d in Pd−g, as d decreases with respect to g.

This PhD thesis consists of the paper GIT for polarized curves, which was written

in collaboration with Gilberto Bini, Margarida Melo and Filippo Viviani. In this paper

we characterize completely the (semi-,poly-)stable points [X ⊂ Pd−g] ∈ Hilbd and of its

image Ch([X ⊂ Pd−g]) ∈ Chowd for d > 2(2g − 2). Before of stating the main results

of the paper, we introduce some definitions.

A curve X is said to be quasi-stable if it is obtained from a stable curve Y by

“blowing up” some of its nodes, i.e. by taking the partial normalization of Y at some

of its nodes and inserting a P1 connecting the two branches of each node. A curve X is

said to be quasi-p-stable (resp. quasi-wp-stable) if it is obtained from a p-stable curve

(resp. a wp-stable curve) Y by “blowing up” some of its nodes (as before) and “blowing

up” some of its cusps, i.e. by taking the partial normalization of Y at some of its cusps

and inserting a P1 tangent to the branch point of each cusp (the singularity that one

gets by blowing up a cusp is called tacnode with a line). Given a quasi-wp-stable

curve X, we call the P1’s inserted by blowing up nodes or cusps of Y the exceptional

components, and we denote by Xexc ⊂ X the union of all of them.

The following table summarize the previous definitions:

SINGULARITIES ωX NEF + IRREDUCIBLE

EXCEPTIONAL SUB-

CURVES

ωX AMPLE

nodes, cusps, tacnodes with a line quasi-wp-stable wp-stable

nodes, cusps, tacnodes with a line,

without elliptic tails

quasi-p-stable p-stable

nodes quasi-stable stable

Table 1: Singular curves

A line bundle L of degree d on a quasi-wp-stable curve X of genus g is said to

be balanced if for each subcurve Z ⊂ X the following inequality (called the Basic

Inequality) is satisfied ∣∣∣∣degZL−
d

2g − 2
degZ(ωX)

∣∣∣∣ ≤ |Z ∩ Zc|2
, (*)
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where |Z ∩ Zc| denotes the length of the 0-dimensional subscheme of X obtained as

the scheme-theoretic intersection of Z with the complementary subcurve Zc := X \ Z.

A balanced line bundle L on X is said to be properly balanced if the degree of L on

each exceptional component of X is 1. Moreover, a properly balanced line bundle L is

said to be strictly balanced (resp. stably balanced) if the basic inequality (*) is strict

except possibly for the subcurves Z such that Z ∩Zc ⊂ Xexc (resp. such that Z or Zc

is entirely contained in Xexc).

For d ≥ 10(2g−2), Caporaso’s description says that the semistability of a polarized

curve (X,L) depends only on the isomorphism class of X and the multidegree of L.

In the paper we prove that for d < 10(2g − 2) there are cases where our information

on the multidegree of L is not sufficient to determine if (X,L) is semistable or not.

More precisely this happens for
7

2
(2g − 2) ≤ d ≤ 4(2g − 2) when X admits irreducible

elliptic tails (i.e. irreducible components of X of arithmetic genus one and meeting the

rest of the curve in one point). Hence we need another definition that concerns the

behavior of irreducible elliptic tails of X with respect to a line bundle on X. Let F be

an irreducible elliptic tail of X and let us denote by p the intersection point between F

and X \F . Given a line bundle L on X, there exists a unique smooth point q such that

L|F = OF ((dF −1)p+q), where dF = degFL is the degree of L on F . The elliptic tail F

is said to be special with respect to L (or simply special when the line bundle L is clear

from the context) when q = p and non-special (with respect to L) otherwise. (Notice

that n-canonical curves contain only special elliptic tails since ω⊗nX |F = OF (np).)

We can now state the main theorems that we prove in the paper. Our first main

result extends the description of semistable (resp. polystable, resp. stable) points

[X ⊂ Pd−g] ∈ Hilbd given by Caporaso in [Cap94] to the case d > 4(2g − 2) and also

to the Chow scheme.

Theorem A Consider a point [X ⊂ Pd−g] ∈ Hilbd with d > 4(2g − 2); assume more-

over that X is connected. Then the following conditions are equivalent:

(i) [X ⊂ Pd−g] is semistable (resp. polystable, resp. stable);

(ii) Ch([X ⊂ Pd−g]) is semistable (resp. polystable, resp. stable);

(iii) X is quasi-stable and OX(1) is balanced (resp. strictly balanced, resp. stably

balanced).

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

When d = 4(2g − 2), the description of the semistable locus in Theorem A breaks

down because in [HM10] Hyeon and Morrison proved that there exist some semistable
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cuspidal curves. The semistable locus for d = 4(2g − 2) is described in the following

theorem. (Notice that in this case the Hilbert and Chow semistable loci admit a

different description.)

Theorem B Consider a point [X ⊂ Pd−g] ∈ Hilbd with d = 4(2g − 2) and g ≥ 3;

assume moreover that X is connected. Then it holds that

(i) [X ⊂ Pd−g] is semistable if and only if X is quasi-wp-stable without tacnodes nor

special elliptic tails (with respect to OX(1)) and OX(1) is balanced.

(ii) Ch([X ⊂ Pd−g]) is semistable if and only if X is quasi-wp-stable without tacnodes

and OX(1) is balanced.

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

The next range where the Hilbert and Chow semistable loci coincide and stay

constant is the interval 7
2(2g − 2) < d < 4(2g − 2), where we have the following

description. (A simple way to enunciate the following theorem is to say that ordinary

cusps appear in the semistable locus and special elliptic tails disappear.)

Theorem C Consider a point [X ⊂ Pd−g] ∈ Hilbd with 7
2(2g − 2) < d < 4(2g − 2)

and g ≥ 3; assume moreover that X is connected. Then the following conditions are

equivalent:

(i) [X ⊂ Pd−g] is semistable (resp. polystable, resp. stable);

(ii) Ch([X ⊂ Pd−g]) is semistable (resp. polystable, resp. stable);

(iii) X is quasi-wp-stable without tacnodes nor special elliptic tails (with respect to

OX(1)) and OX(1) is balanced.

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

When d = 7
2(2g − 2), the description of the Hilbert or Chow semistable locus

in Theorem C breaks down again because there exist semistable curves that contain

tacnodes with lines. Similarly to the case d = 4(2g − 2), we get that the Hilbert and

Chow semistable loci admit a different description.

Theorem D Consider a point [X ⊂ Pd−g] ∈ Hilbd with d = 7
2(2g − 2) and g ≥ 3;

assume moreover that X is connected. Then it holds that

(i) [X ⊂ Pd−g] is semistable if and only if X is quasi-p-stable and OX(1) is balanced.

vi



(ii) Ch([X ⊂ Pd−g]) is semistable if and only if X is quasi-wp-stable without spe-

cial elliptic tails (with respect to OX(1)) and OX(1) is balanced (resp. strictly

balanced, resp. stably balanced).

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

The next range where the Hilbert and Chow semistable loci coincide and stay

constant is the interval 2(2g − 2) < d < 7
2(2g − 2), where we have the following

description. (A simple way to enunciate the following theorem is to say that tacnodes

with lines appear in the semistable locus and all elliptic tails disappear.)

Theorem E Consider a point [X ⊂ Pd−g] ∈ Hilbd with 2(2g − 2) < d < 7
2(2g − 2)

and g ≥ 3; assume moreover that X is connected. Then the following conditions are

equivalent:

(i) [X ⊂ Pd−g] is semistable (resp. polystable, resp. stable);

(ii) Ch([X ⊂ Pd−g]) is semistable (resp. polystable, resp. stable);

(iii) X is quasi-p-stable and OX(1) is balanced (resp. strictly balanced, resp. stably

balanced).

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

Note that Theorem E breaks down for d = 2(2g − 2) since, for this value of d,

there are stable points [X ⊂ Pd−g] ∈ Hilbd (hence semistable points Ch([X ⊂ Pd−g]) ∈
Chowd) with X having arbitrary tacnodal singularities and not just tacnodes with a

line (see [HH]).

Extending another result by Caporaso, for d > 2(2g − 2) we can say exactly when

the Hilbert and Chow quotients are geometric, i. e. the semistable points are also

stable: this happens if and only if gcd(d + 1 − g, 2g − 2) = 1. On the contrary, if

gcd(d + 1 − g, 2g − 2) 6= 1 a combinatorial argument proves that for some semistable

curve [X ⊂ Pd−g] there is a subcurve Z for which the multidegree of OX(1) achieves

one of the extremes of the basic inequality; this fact implies that in the closure of the

orbit of such [X ⊂ Pd−g] there is another semistable point [X ′ ⊂ Pd−g] such that X ′

is obtained from X by blowing up the nodes of (Z ∩ Zc) \ Xexc, so that there is an

identification of the two orbits in the quotient. Moreover these are the only orbits

identifications that occur in the Hilbert or Chow GIT quotients outside of the critical

values d = 7
2(2g − 2) or 4(2g − 2) (these last cases will be explained later).

vii



A fondamental hypothesis that is present in all the above theorems is the connec-

tivity of the curve X. Indeed, under the assumption that d > 2(2g − 2), the locus of

connected curves in the Hilbert or Chow semistable locus is a connected and irreducible

component. In the paper we prove that there are no other components in the Hilbert

or Chow semistable locus if and only if gcd(d, g − 1) = 1. More generally, we prove

Theorem F The Chow map Ch : Hilbssd −→ Chowss
d induces a one-to-one correspon-

dence between the connected components of Hilbssd and the connected components of

Chowss
d . Moreover the cardinality of these sets is the number of integer partition of

gcd(d, g − 1).

As an application of Theorems A, C and E, one gets three compactifications of the

universal Jacobian stack Jd,g, i.e. the moduli stack of pairs (C,L) where C is a smooth

projective curve of genus g and L is a line bundle of degree d on C, and of its coarse

moduli space Jd,g.

Denote by J d,g (resp. J ps
d,g) the category fibered in groupoids over the category

of k-schemes, whose fiber over a k-scheme S is the groupoid of pairs (f : X → S,L)

where f : X → S is a family of quasi-stable curves (resp. quasi-p-stable curves) of

genus g and L is a line bundle on X of relative degree d over S whose restriction to

the geometric fibers of f is properly balanced. Moreover, denote by J wp
d,g the category

fibered in groupoids over the category of k-schemes, whose fiber over a k-scheme S is

the groupoid of pairs (f : X → S,L) where f is a family of quasi-wp-stable curves

of genus g and L is a line bundle on X of relative degree d that is properly balanced

on the geometric fibers of f and such that the geometric fibers of f do not contain

tacnodes with a line nor special elliptic tails with respect to L.

In the following theorem, we summarize the properties of J d,g, J
wp
d,g and J ps

d,g we

prove in the paper.

Theorem G Let g ≥ 3 and d ∈ Z.

1. J d,g (resp. J wp
d,g, J

ps
d,g) is a smooth, irreducible and universally closed Artin stack

of finite type over k and of dimension 4g − 4, containing Jd,g as a dense open

substack.

2. J d,g (resp. J wp
d,g, J

ps
d,g) admits an adequate moduli space Jd,g (resp. J

wp
d,g, resp.

J
ps
d,g), which is a normal integral projective variety of dimension 4g−3 containing

Jd,g as a dense open subvariety.

Moreover, if char(k) = 0, then Jd,g (resp. J
wp
d,g, resp. J

ps
d,g) has rational singular-

ities, hence it is Cohen-Macaulay.
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3. Denote by H̃d the main component of the semistable locus of Hilbd, i.e. the open

subset of Hilbd consisting of all the points [X ⊂ Pd−g] that are semistable and

such that X is connected. Then it holds:

(i) J d,g ∼= [H̃d/GLd−g+1] and Jd,g ∼= H̃d//GLd−g+1 if d > 4(2g − 2),

(ii) J wp
d,g
∼= [H̃d/GLd−g+1] and J

wp
d,g
∼= H̃d//GLd−g+1 if 7

2(2g − 2) < d ≤
4(2g − 2),

(iii) J ps
d,g
∼= [H̃d/GLd−g+1] and J

ps
d,g
∼= H̃d//GLd−g+1 if 2(2g − 2) < d ≤

7
2(2g − 2).

4. We have the following commutative diagrams

J d,g //

Ψs

��

Jd,g

Φs

��

J wp
d,g

//

Ψwp

��

J
wp
d,g

Φwp

��

J ps
d,g

//

Ψps

��

J
ps
d,g

Φps

��
Mg

//Mg Mwp
g

//M
p
g Mp

g
//M

p
g

where Ψs (resp. Ψwp, Ψps) is universally closed and surjective and Φs (resp. Φwp,

resp. Φps) is projective and surjective. Moreover:

(i) The morphisms Φs : Jd,g →Mg and Φps : J
ps
d,g →M

p
g have equidimensional

fibers of dimension g; moreover, if char(k) = 0, Φs and Φps are flat over

the smooth locus of Mg and M
p
g , respectively.

(ii) The fiber of the morphism Φwp : J
wp
d,g →M

p
g over a p-stable curve X ∈Mp

g

has dimension equal to the sum of g with the number of cusps of X.

5. Let J ?d,g be equal to either J d,g or J wp
d,g or J ps

d,g. Denote by J ?d,g ( Gm the

rigidification of J ?d,g by Gm and by Ψ̂? : J ?d,g → M
?
g the associated morphism,

where M?
g is equal to either Mg or Mwp

g or Mp
g . Then the following conditions

are equivalent:

(i) gcd(d+ 1− g, 2g − 2) = 1;

(ii) The stack J ?d,g ( Gm is a DM-stack;

(iii) The stack J ?d,g ( Gm is proper;

(iv) The morphism Ψ̂? : J ?d,g ( Gm →M
?
g is representable.

6. If char(k) = 0, then it holds

(i) (Φst)−1(X) ∼= Jacd(X)/Aut(X) for any X ∈Mg,
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(ii) (Φps)−1(X) ∼= Jacd(X)/Aut(X) for any X ∈Mp
g ,

where Jacd(X) is the moduli space of of rank-1, torsion-free sheaves on X of

degree d that are slope-semistable with respect to ωX (and it is called the canonical

compactified Jacobian of X in degree d).

My contribution to the paper was to solve the Problem for
7

2
(2g−2) ≤ d ≤ 4(2g−2).

Precisely I proved Theorem B, Theorem C, Theorem D, Theorem F and Theorem G

for the case of the stack J wp
d,g.

Now let us make come comments about the proof strategy. The approach to the

problem of determining the semistable locus is the same as that developed by Mum-

ford, Gieseker and Caporaso: firstly we use Hilbert-Mumford numerical criterion in

order to find necessary conditions for a point [X ⊂ Pd−g] in the Hilbert scheme to

be semistable (see Fact 4.20, Corollary 9.4 and Corollary 9.7) and finally we charac-

terize the entire semistable locus using combinatorial properties of the multidegree of

OX(1) and separateness property of suitable stacks of curves. For d ≥ 4(2g − 2) and

2(2g−2) < d <
7

2
(2g−2) this strategy does work because the semistable locus consists

only of quasi-stable and quasi-pseudo-stable curves respectively, thus in the second

step it suffices to work with separated stacks likeMg andMp
g respectively (forMp

g it

is necessary to suppose that g ≥ 3, because Mp
2 is not separated).

Unfortunately for
7

2
(2g − 2) ≤ d ≤ 4(2g − 2) it is not very hard to prove the

existence of semistable curves admitting cusps and elliptic tails (see Remark 11.4 and

Corollary 12.3), so that we have to work with the stack Mwp
g of weakly-pseudo-stable

curves, which is not separated. For this reason it is necessary to use other techniques.

A very naive idea is to apply again Hilbert-Mumford numerical criterion. We recall

that the Hilbert-Mumford criterion states that given a curve X ⊂ Pd−g

[X ⊂ Pd−g] is semistable ⇐⇒ µ([X ⊂ Pd−g], ρ) ≥ 0 for each 1ps ρ : Gm −→ SLd−g+1

(see [Dol03] for the definition of µ([X ⊂ Pd−g], ρ)). “Unfortunately” this criterion is

easier to apply when we would like to prove the instability of curves rather than the

semistability. 1

One way to solve this difficulty is to apply Tits’ results about the parabolic group

associated to a fixed one-parameter subgroup (see for more details [Dol03, Sec. 9.5] or

[MFK94, Chap. 2, Sec. 2]). These results allowed G. Kempf to prove that if [X ⊂ Pd−g]
is unstable, then there exists a unique one-parameter subgroup which in some sense

1Observe that recently Li and Wang in [LW] managed to give a different proof of Caporaso’s

description applying exclusively the Hilbert-Mumford numerical criterion, but their proof works only

for d � 0.

x



is the main responsible for the instability of [X ⊂ Pd−g]. The idea, hence, is to use

the properties of the parabolic group to study the behaviour of curves having elliptic

tails under the action of one parameter subgroups: we prove that, if [X ⊂ Pd−g] has

an elliptic tail, i. e. X is the union of an elliptic curve F and another curve C such

that F and C intersect each other in one node, the GIT analysis can be restricted to

1ps ρ : Gm −→ SLd−g+1 diagonalized by bases of Pd−g that come out from the union

of bases of the linear spans 〈F 〉 and 〈C〉 in Pd−g. In other words we can study the

semistability of X by analyzing the subcurves F and C in their linear spans separately.

Essentially this is the content of the Criterion of stability of tails (see Proposition 8.3).

Motivated by this criterion, we study the behaviour of polarized elliptic curves

F ⊂ Pr for some suitable r under the action of one parameter subgroups and we prove

that for
7

2
(2g − 2) < d < 4(2g − 2) there are semistable curves [X ⊂ Pd−g] that admit

non-special elliptic tails (see Remark 11.4) for all models of non-special elliptic tail (see

Corollary 12.3).

The final part of the GIT analysis is based on a nice numerical trick. We will explain

this trick briefly in the case
7

2
(2g − 2) < d < 4(2g − 2). Given a quasi-wp-stable curve

[X ⊂ Pd−g] ∈ Hilbd like above with F non-special, we define a new polarized curve X ′

by replacing the polarized subcurve F with a polarized smooth curve Y of genus g and

degree d − dF in such a way that Y and C intersect again in one node. If we denote

by d′ and g′ respectively the degree of the new line bundle L′ and the genus of X ′, one

can consider the Hilbert point [X ′ ⊂ Pd′−g′ ] ∈ Hilbd′ . It can be easily checked that

d′

2g′ − 2
=

d

2g − 2

and

OX(1) is balanced ⇐⇒ OX′(1) is balanced.

Applying our criterion, one prove that

[X ′ ⊂ Pd
′−g′ ] is semistable =⇒ [X ⊂ Pd−g] is semistable,

so that the GIT analysis can be completed by an induction argument on the number

of non-special elliptic tails of X. The proof of the base of induction requires the

separateness of Mp
g , so that we need to suppose again that g ≥ 3.

Let us now comment on the origin of the two critical values d = 4(2g − 2) and

d = 7
2(2g − 2), at which the Hilbert and Chow semistable loci change.

The first critical value d = 4(2g − 2) is due to the presence of Chow semistable

points Ch([X0 ⊂ Pd−g]) ∈ Chowd such that X0 has a cuspidal elliptic tail which is

special with respect to OX0(1). Inside the group of automorphism of this polarized

xi



curve there is a non-trivial copy of the multiplicative group Gm that induces a one-

parameter subgroup ρ : Gm → GLd−g+1 whose image in PGLd−g+1 is contained in

the stabilizer subgroup of [X0 ⊂ Pd−g]. The basins of attraction of [X0 ⊂ Pd−g] with

respect to ρ and ρ−1 are the ones depicted in Figure 1 below.

X

Z

X0

E

special elliptic tail

p

q

q

special cuspidal elliptic tail

C

C pinched
to an ordinary

cusp at q

F0

p

C

ρ ρ−1

Figure 1: The basin of attraction of a curve X0 with a special cuspidal elliptic tail F0.

This implies that as d
2g−2 passes from 4 + ε to 4 − ε for a small ε, special elliptic

tails become (Hilbert or Chow) unstable and they get replaced by cusps. Moreover,

Hilbert semistability for d = 4(2g− 2) behaves like Hilbert (or Chow) semistability for
7
2(2g − 2) < d < 4(2g − 2); hence Hilbert semistability is strictly stronger than Chow

semistability for d = 4(2g − 2).

The second critical value d = 7
2(2g − 2) is due to the presence of Chow semistable

points Ch([X0 ⊂ Pd−g]) ∈ Chowd such that X0 has a tacnodal elliptic tail. As before,

the presence of a non-trivial copy of the multiplicative group Gm inside the group of

automorphism of this polarized curve induces a one-parameter subgroup ρ : Gm →
GLd−g+1 whose image in PGLd−g+1 is contained in the stabilizer subgroup of [X0 ⊂
Pd−g]. The basins of attraction of [X0 ⊂ Pd−g] with respect to ρ and ρ−1 are the ones

depicted in Figure 2 below.

This implies that as d
2g−2 passes from 7

2 + ε to 7
2 − ε for a small ε non-special elliptic

tails become (Hilbert or Chow) unstable and they get replaced by tacnodes with a

line. Moreover, Hilbert semistability for d = 7
2(2g − 2) behaves like Hilbert (or Chow)

semistability for 2(2g − 2) < d < 7
2(2g − 2); hence Hilbert semistability is strictly

stronger than Chow semistability for d = 7
2(2g − 2).

Notice that the basins of attraction of Figure 1 were already considered by Hyeon-

Morrison in [HM10] in order to determine the semistable locus of Hilbcan
4(2g−2) and

Chowcan
4(2g−2). On the other hand, the basins of attraction of Figure 2 are clearly
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X ZF

non-special elliptic tail

p

Y

p

Y

ρ ρ−1

tacnode with a line

F0

E

tacnodal elliptic tail

E

X0

Figure 2: The basin of attraction of a curve X0 with a tacnodal elliptic tail F0.

not visible inside the pluricanonical locus (because they occur for a fractional value of
d

2g−2).
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GIT FOR POLARIZED CURVES

GILBERTO BINI, FABIO FELICI, MARGARIDA MELO, FILIPPO VIVIANI

Abstract. We investigate the GIT quotients of the Hilbert and Chow schemes of

curves of degree d and genus g in a projective space of dimension d−g, as the degree

d decreases with respect to the genus g. We prove that the first three values of d

at which the GIT quotients change are given by d = 4(2g − 2), d = 7
2
(2g − 2) and

d = 2(2g − 2). In the range d > 4(2g − 2), we show that the previous results of

L. Caporaso hold true both for the Hilbert and Chow semistability. In the range

4(2g − 2) < d < 7
2
(2g − 2), the Hilbert semistable locus coincides with the Chow

semistable locus and it maps to the moduli stack of weakly-pseudo-stable curves. In

the range 2(2g−2) < d < 7
2
(2g−2), the Hilbert and Chow semistable loci coincide and

they map to the moduli stack of pseudo-stable curves. We also analyze in detail the

first two critical values d = 4(2g−2) and d = 7
2
(2g−2), where the Hilbert semistable

locus is strictly smaller than the Chow semistable locus. As an application of our

results, we get two new compactifications of the universal Jacobian over the moduli

space of weakly-pseudo-stable and pseudo-stable curves, respectively.
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1. Introduction

1.1. Motivation and previous related works. One of the first successful applica-

tions of Geometric Invariant Theory (GIT for short), and perhaps one of the major

motivation for its development by Mumford and his co-authors (see [MFK94]), was

the construction of the moduli space Mg of smooth curves of genus g ≥ 2 and its

compactification Mg via stable curves (i.e. connected nodal projective curves with fi-

nite automorphism group), carried out by Mumford ([Mum77]) and Gieseker ([Gie82]).

Indeed, the moduli space of stable curves was constructed as a GIT quotient of a lo-

cally closed subset of a suitable Hilbert scheme (as in [Gie82]) or Chow scheme (as in

[Mum77]) parametrizing n-canonically embedded curves, for n sufficiently large. More

precisely, Mumford in [Mum77] works under the assumption that n ≥ 5 and Gieseker

in [Gie82] requires the more restrictive assumption that n ≥ 10. However, it was later

discovered that Gieseker’s approach can also be extended to the case n ≥ 5 (see [HM98,

Chap. 4, Sec. C] or [Mor10, Sec. 3]).

Recently, there has been a lot of interest in extending the above GIT analysis to

smaller values of n, especially in connection with the so called Hassett-Keel program

whose ultimate goal is to find the minimal model of Mg via the successive constructions

of modular birational models of Mg (see [FS13] and [AH12] for nice overviews).

The first work in this direction is due to Schubert, who described in [Sch91] the GIT

quotient of the locus of 3-canonically embedded curves (of genus g ≥ 3) in the Chow

scheme as the coarse moduli space M
p
g of pseudo-stable curves (or p-stable curves for

short). These are connected projective curves with finite automorphism group, whose

only singularities are nodes and cusps, and which have no elliptic tails (i.e. connected

subcurves of arithmetic genus one meeting the rest of the curve in one point). Since the

GIT quotient analyzed by Schubert is geometric (i.e. there are no strictly semistable

objects), one gets exactly the same description working with 3-canonically embedded

curves inside the Hilbert scheme (see [HH13, Prop. 3.13]). Later, Hassett-Hyeon

constructed in [HH09] a modular map T : Mg →M
p
g which on geometric points sends

a stable curve onto the p-stable curve obtained by contracting all its elliptic tails to

cusps. Moreover, the authors of loc. cit. identified the map T with the first contraction

in the Hassett-Keel program for Mg.

The case of 4-canonical curves was worked out by Hyeon-Morrison in [HM10]. The

Hilbert GIT-semistable points turn out to correspond again to p-stable curves, while

the Chow GIT-semistable locus is strictly bigger and it consists of weakly-pseudo-

stable curves (or wp-stable curves for short), which are connected projective curves

with finite automorphism group, whose only singularities are nodes and cusps (and

having possibly elliptic tails). However, Hyeon-Morrison also proved that the GIT

quotient for the Chow scheme turns out to be again isomorphic to the moduli space

M
p
g of p-stable curves, a fact that can be reinterpreted as saying that the non-separated
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stack of wp-stable curves and its open and proper substack of p-stable curves have the

same moduli space (see § 2.1 for more details).

Finally, the case of 2-canonical curves was studied by Hassett-Hyeon in [HH13],

where the authors described the Hilbert GIT quotient M
h
g and the Chow GIT quotient

M
c
g (they are now different), as moduli spaces of h-semistable (resp. c-semistable)

curves; see loc. cit. for the precise description. Moreover, they constructed a small

contraction Ψ : M
p
g →M

c
g and identified the natural map

Ψ+ : M
h
g → M

c
g as the flip of Ψ. These maps are then interpreted as further steps in

the Hassett-Keel program for Mg.

For some partial results on the GIT quotient for the Hilbert scheme of 1-canonically

embedded curves, we refer the reader to the work of Alper, Fedorchuk and Smyth (see

[AFS13]).

From the point of view of constructing new projective birational models of Mg, it

is of course natural to restrict the GIT analysis to the locally closed subset inside the

Hilbert or Chow scheme parametrizing n-canonical embedded curves. However, the

problem of describing the whole GIT quotient seems very natural and interesting too.

The first result in this direction is the pioneering work of Caporaso [Cap94], where the

author describes the GIT quotient of the Hilbert scheme of connected curves of genus

g ≥ 3 and degree d ≥ 10(2g − 2) in Pd−g. The GIT quotient obtained by Caporaso

in loc. cit. is indeed a modular compactification of the universal Jacobian Jd,g, which

is the moduli scheme parametrizing pairs (C,L) where C is a smooth curve of genus

g and L is a line bundle on C of degree d. Note that recently Li and Wang in [LW]

have studied Chow (semi-)stability of polarized nodal curves of sufficiently high degree,

giving in particular a different proof of Caporaso’s result for d� 01.

Our work is motivated by the following

Problem: Describe the GIT quotient for the Hilbert and Chow scheme of curves of

genus g and degree d in Pd−g, as d decreases with respect to g.

1.2. Our results. In order to describe our results, we need to introduce some notation.

Fix an integer g ≥ 2. For any natural number d, denote by Hilbd the Hilbert scheme of

curves of degree d and arithmetic genus g in Pd−g; denote by Chowd the Chow scheme

of 1-cycles of degree d in Pd−g and by

Ch : Hilbd → Chowd

the map sending a one dimensional subscheme [X ⊂ Pd−g] ∈ Hilbd to its 1-cycle. The

linear algebraic group SLd−g+1 acts naturally on Hilbd and Chowd so that Ch is an

equivariant map; moreover, these actions are naturally linearized (see Section 4.1 for

1Notice that Li-Wang worked more generally with polarized pointed weighted nodal curves.
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details 2), so it makes sense to talk about (GIT) (semi-,poly-)stability of a point in

Hilbd and Chowd.

The aim of this work is to give a complete characterization of the (semi-,poly-)stable

points [X ⊂ Pd−g] ∈ Hilbd or of its image Ch([X ⊂ Pd−g]) ∈ Chowd, provided that d >

2(2g − 2). Our characterization of Hilbert or Chow (semi-, poly-)stability will require

some conditions on the singularities of X and some conditions on the multidegree of

the line bundle OX(1). Let us introduce the relevant definitions.

A curve X is said to be quasi-stable if it is obtained from a stable curve Y by

“blowing up” some of its nodes, i.e. by taking the partial normalization of Y at some

of its nodes and inserting a P1 connecting the two branches of each node. A curve

X is said to be quasi-p-stable (resp. quasi-wp-stable) if it is obtained from a p-stable

curve (resp. a wp-stable curve) Y by “blowing up” some of its nodes (as before) and

“blowing up” some of its cusps, i.e. by taking the partial normalization of Y at some

of its cusps and inserting a P1 tangent to the branch point of each cusp (the singularity

that one gets by blowing up a cusp is called tacnode with a line). Note that quasi-stable

and quasi-p-stable curves are special cases of quasi-wp-stable curves: the quasi-stable

curves are exactly the quasi-wp-stable curves without cusps nor tacnodes with a line;

the quasi-p-stable curves are exactly the quasi-wp-stable curves without elliptic tails.

Given a quasi-wp-stable curve X, we call the P1’s inserted by blowing up nodes or

cusps of Y the exceptional components, and we denote by Xexc ⊂ X the union of all of

them.

A line bundle L of degree d on a quasi-wp-stable curve X of genus g is said to

be balanced if for each subcurve Z ⊂ X the following inequality (called the basic

inequality) is satisfied

(*)

∣∣∣∣degZL−
d

2g − 2
degZ(ωX)

∣∣∣∣ ≤ |Z ∩ Zc|2
,

where |Z ∩ Zc| denotes the length of the 0-dimensional subscheme of X obtained as

the scheme-theoretic intersection of Z with the complementary subcurve Zc := X \ Z.

A balanced line bundle L on X is said to be properly balanced if the degree of L on

each exceptional component of X is 1. Moreover, a properly balanced line bundle L is

said to be strictly balanced (resp. stably balanced) if the basic inequality (*) is strict

except possibly for the subcurves Z such that Z ∩Zc ⊂ Xexc (resp. such that Z or Zc

is entirely contained in Xexc).

The last definition we need concerns the behavior of irreducible elliptic tails of X (i.e.

irreducible components of X of arithmetic genus one and meeting the rest of the curve

in one point) with respect to a line bundle on X. So, let F be an irreducible elliptic

tail of X and let p denote the intersection point between F and the complementary

subcurve. Given a line bundle L on X, we can write L|F = OF ((dF − 1)p+ q), where

2In particular, when working with Hilbd, we will always consider the m-linearization for m � 0;

see Section 4.1 for details.
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dF = degFL denotes the degree of L on F , for a uniquely determined smooth point

q of F . We say that F is special with respect to L (or simply special when the line

bundle L is clear from the context) and non-special (with respect to L) otherwise.

We can now state the main theorems that we prove in this paper. Our first main

result extends the description of semistable (resp. polystable, resp. stable) points

[X ⊂ Pd−g] ∈ Hilbd given by Caporaso in [Cap94] to the case d > 4(2g − 2) and also

to the Chow scheme.

Theorem A. Consider a point [X ⊂ Pd−g] ∈ Hilbd with d > 4(2g − 2); assume

moreover that X is connected. Then the following conditions are equivalent:

(i) [X ⊂ Pd−g] is semistable (resp. polystable, resp. stable);

(ii) Ch([X ⊂ Pd−g]) is semistable (resp. polystable, resp. stable);

(iii) X is quasi-stable and OX(1) is balanced (resp. strictly balanced, resp. stably

balanced).

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

Theorem A follows by combining Theorem 11.1(1), Corollary 11.2(1) and Corollary

11.3(1).

When d = 4(2g − 2), the description of the semistable locus in Theorem A breaks

down and we get that the Hilbert and Chow semistable loci admit a different descrip-

tion.

Theorem B. Consider a point [X ⊂ Pd−g] ∈ Hilbd with d = 4(2g − 2) and g ≥ 3;

assume moreover that X is connected. Then it holds that

(i) [X ⊂ Pd−g] is semistable if and only if X is quasi-wp-stable without tacnodes nor

special elliptic tails (with respect to OX(1)) and OX(1) is balanced.

(ii) Ch([X ⊂ Pd−g]) is semistable if and only if X is quasi-wp-stable without tacnodes

and OX(1) is balanced.

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

Theorem B follows from Theorem 13.5. For a description of the Hilbert or Chow

polystable (resp. stable) locus, we refer the reader to Corollary 13.6 (resp. Corollary

13.7).

The next range where the Hilbert and Chow GIT-semistable loci coincide and stay

constant is the interval 7
2(2g − 2) < d < 4(2g − 2), where we have the following

description.

Theorem C. Consider a point [X ⊂ Pd−g] ∈ Hilbd with 7
2(2g − 2) < d < 4(2g − 2)

and g ≥ 3; assume moreover that X is connected. Then the following conditions are

equivalent:

(i) [X ⊂ Pd−g] is semistable (resp. polystable, resp. stable);
5



(ii) Ch([X ⊂ Pd−g]) is semistable (resp. polystable, resp. stable);

(iii) X is quasi-wp-stable without tacnodes nor special elliptic tails (with respect to

OX(1)) and OX(1) is balanced.

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

Theorem C follows by combining Theorem 13.2, Corollary 13.3 and Corollary 13.4.

When d = 7
2(2g − 2), the description of the Hilbert or Chow semistable locus in

Theorem C breaks down again and we get that the Hilbert and Chow semistable loci

admit a different description, similarly to the case d = 4(2g − 2).

Theorem D. Consider a point [X ⊂ Pd−g] ∈ Hilbd with d = 7
2(2g − 2) and g ≥ 3;

assume moreover that X is connected. Then it holds that

(i) [X ⊂ Pd−g] is semistable if and only if X is quasi-p-stable and OX(1) is balanced.

(ii) Ch([X ⊂ Pd−g]) is semistable if and only if X is quasi-wp-stable without special

elliptic tails (with respect to OX(1)) and OX(1) is balanced.

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

Theorem D follows from Theorem 11.5. For a description of the Hilbert or Chow

polystable (resp. stable), we refer the reader to Corollary 11.6 (resp. Corollary 11.7).

The next range where the Hilbert and Chow semistable loci coincide and stay con-

stant is the interval 2(2g−2) < d < 7
2(2g−2), where we have the following description.

Theorem E. Consider a point [X ⊂ Pd−g] ∈ Hilbd with 2(2g − 2) < d < 7
2(2g − 2)

and g ≥ 3; assume moreover that X is connected. Then the following conditions are

equivalent:

(i) [X ⊂ Pd−g] is semistable (resp. polystable, resp. stable);

(ii) Ch([X ⊂ Pd−g]) is semistable (resp. polystable, resp. stable);

(iii) X is quasi-p-stable and OX(1) is balanced (resp. strictly balanced, resp. stably

balanced).

In each of the above cases, X ⊂ Pd−g is non-degenerate and linearly normal, and OX(1)

is non-special.

The above Theorem E follows by combining Theorem 11.1(2), Corollary 11.2(2) and

Corollary 11.3(2). Note that Theorem E breaks down for d = 2(2g − 2) since, for

this value of d, there are stable points [X ⊂ Pd−g] ∈ Hilbd (hence semistable points

Ch([X ⊂ Pd−g]) ∈ Chowd) with X having arbitrary tacnodal singularities and not just

tacnodes with a line (see Remark 5.3).

Let us now briefly comment on the assumptions of the above theorems. First of

all, with the exception of Theorem A, the other four theorems require that g ≥ 3.

The reason for this assumption is that the moduli stack of p-stable curves of genus

g is not separated for g = 2 (see § 2.1) and this causes some extra-difficulties in the
6



GIT analysis. In particular, we use the hypothesis that g ≥ 3 (whenever p-stable or

wp-stable curves are involved) in a crucial way in Theorem 6.4, Propositions 10.5 and

10.8. Therefore, for simplicity, we restrict in this paper to the case g ≥ 3 whenever

dealing with p-stable or wp-stable curves (i.e. for d ≤ 4(2g − 2)); the GIT analysis for

g = 2 and the missing values of d (i.e. d = 5, 6, 7, 8) will be dealt with in a future work.

Another hypothesis that is present in all the above theorems is the connectivity of the

curveX. Indeed, under the assumption that d > 2(2g−2), the locus of connected curves

in the Hilbert or Chow semistable locus is a connected and irreducible component (see

the beginning of Section 10 and Corollary 14.7), that we call the main component

(see Section 14). In Section 15, we prove that there are no other components in the

Hilbert or Chow semistable locus if and only if gcd(d, g − 1) = 1. More generally,

we prove in Theorem 15.4 that the number of connected components (which are also

irreducible) of the Hilbert or Chow semistable locus is equal to the number of partitions

of gcd(d, g − 1).

Now let us make come comments about the proof strategy. The approach to the

problem of determining the semistable locus is the same as that developed by Mum-

ford, Gieseker and Caporaso: firstly we use Hilbert-Mumford numerical criterion in

order to find necessary conditions for a point [X ⊂ Pd−g] in the Hilbert scheme to

be semistable (see Fact 4.20, Corollary 9.4 and Corollary 9.7) and finally we charac-

terize the entire semistable locus using combinatorial properties of the multidegree of

OX(1) and separateness property of suitable stacks of curves. For d ≥ 4(2g − 2) and

2(2g−2) < d <
7

2
(2g−2) this strategy does work because the semistable locus consists

only of quasi-stable and quasi-pseudo-stable curves respectively, thus in the second

step it suffices to work with separated stacks likeMg andMp
g respectively (forMp

g it

is necessary to suppose that g ≥ 3, because Mp
2 is not separated).

Unfortunately for
7

2
(2g−2) ≤ d ≤ 4(2g−2) it is not very hard to prove the existence

of semistable curves admitting cusps and elliptic tails (see Remark 11.4 and Corollary

12.3), so that we have to work with the stack Mwp
g of weakly-pseudo-stable curves,

which is not separated. For this reason it is necessary to use other techniques. A very

naive idea is to apply again Hilbert-Mumford numerical criterion. We recall that the

Hilbert-Mumford criterion states that given a curve X ⊂ Pd−g

[X ⊂ Pd−g] is semistable ⇐⇒ µ([X ⊂ Pd−g], ρ) ≥ 0 for each 1ps ρ : Gm −→ SLd−g+1

(see [Dol03] for the definition of µ([X ⊂ Pd−g], ρ)). “Unfortunately” this criterion is

easier to apply when we would like to prove the instability of curves rather than the

semistability.

One way to solve this difficulty is to apply Tits’ results about the parabolic group

associated to a fixed one-parameter subgroup (see for more details [Dol03, Sec. 9.5] or

[MFK94, Chap. 2, Sec. 2]). These results allowed G. Kempf to prove that if [X ⊂ Pd−g]
is unstable, then there exists a unique one-parameter subgroup which in some sense

7



is the main responsible for the instability of [X ⊂ Pd−g]. The idea, hence, is to use

the properties of the parabolic group to study the behaviour of curves having elliptic

tails under the action of one parameter subgroups: we prove that, if [X ⊂ Pd−g] has

an elliptic tail, i. e. X is the union of an elliptic curve F and another curve C such

that F and C intersect each other in one node, the GIT analysis can be restricted to

1ps ρ : Gm −→ SLd−g+1 diagonalized by bases of Pd−g that come out from the union

of bases of the linear spans 〈F 〉 and 〈C〉 in Pd−g. In other words we can study the

semistability of X by analyzing the subcurves F and C in their linear spans separately.

Essentially this is the content of the Criterion of stability of tails (see Proposition 8.3).

Motivated by this criterion, we study the behaviour of polarized elliptic curves F ⊂
Pr for some suitable r under the action of one parameter subgroups and we prove that

for
7

2
(2g − 2) < d < 4(2g − 2) there are semistable curves [X ⊂ Pd−g] that admit

non-special elliptic tails (see Remark 11.4) for all models of non-special elliptic tail

(see Corollary 12.3).

The final part of the GIT analysis is based on a nice numerical trick. We will explain

this trick briefly in the case
7

2
(2g − 2) < d < 4(2g − 2). Given a quasi-wp-stable curve

[X ⊂ Pd−g] ∈ Hilbd like above with F non-special, we define a new polarized curve X ′

by replacing the polarized subcurve F with a polarized smooth curve Y of genus g and

degree d− dF in such a way Y and C intersect again in one node. If we denote by d′

and g′ respectively the degree of the new line bundle L′ and the genus of X ′, one can

consider the Hilbert point [X ′ ⊂ Pd′−g′ ] ∈ Hilbd′ . It can be easily checked that

d′

2g′ − 2
=

d

2g − 2

and

OX(1) is balanced ⇐⇒ OX′(1) is balanced.

Applying our criterion, one prove that

[X ′ ⊂ Pd
′−g′ ] is semistable =⇒ [X ⊂ Pd−g] is semistable,

so that the GIT analysis can be completed by an induction argument on the number

of non-special elliptic tails of X. The proof of the base of induction requires the

separateness of Mp
g , so that we need to suppose again that g ≥ 3.

Let us now comment on the origin of the two critical values d = 4(2g − 2) and

d = 7
2(2g − 2), at which the Hilbert and Chow semistable loci change. It turns out

that the existence of these two critical values is related to the presence in the Chow

semistable locus of a point Ch([X ⊂ Pr]) whose stabilizer subgroup in PGLd−g+1

contains a copy of the multiplicative subgroup Gm. This resembles very much what

happens in the Hassett-Keel program forMg where the variations of the log canonical

models of Mg are expected to be accounted for by curves with a Gm-automorphism;

see [AFS1].
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The first critical value d = 4(2g−2) is due to the presence of Chow semistable points

Ch([X0 ⊂ Pd−g]) ∈ Chowd such that X0 has a cuspidal elliptic tail which is special

with respect to OX0(1). Such a point has a non-trivial copy of the multiplicative group

Gm into its stabilizer subgroup inside PGLd−g+1 (see Lemma 6.1 and Theorem 6.4).

With respect to a suitable one-parameter subgroup ρ : Gm → GLd−g+1 whose image

in PGLd−g+1 is contained in the stabilizer subgroup of [X0 ⊂ Pd−g] (as in the proof of

Theorem 9.1), we prove in Theorem 9.2 that the basins of attraction of [X0 ⊂ Pd−g]
with respect to ρ and ρ−1 are the ones depicted in Figure 1 below.

X Z

X0

E

special elliptic tail

p

q

q

special cuspidal elliptic tail

C

C pinched
to an ordinary

cusp at q

F0

p

C

ρ ρ−1

Figure 1. The basin of attraction of a curve X0 with a special cuspidal

elliptic tail F0.

This implies that, in crossing the critical value d = 4(2g−2) (i.e. as d
2g−2 passes from

4 + ε to 4 − ε for a small ε), special elliptic tails become (Hilbert or Chow) unstable

and they get replaced by cusps. Moreover, Hilbert semistability for d = 4(2g − 2)

behaves like Hilbert (or Chow) semistability for 7
2(2g − 2) < d < 4(2g − 2); hence

Hilbert semistability is strictly stronger than Chow semistability for d = 4(2g − 2).

The second critical value d = 7
2(2g − 2) is due to the presence of Chow semistable

points Ch([X0 ⊂ Pd−g]) ∈ Chowd such that X0 has a tacnodal elliptic tail. Such a point

has a non-trivial copy of the multiplicative group Gm into its stabilizer subgroup with

respect to PGLd−g+1 (see Lemma 6.1 and Theorem 6.4). With respect to a suitable

one-parameter subgroup ρ : Gm → GLd−g+1 whose image in PGLd−g+1 is contained

in the stabilizer subgroup of [X0 ⊂ Pd−g] (as in the proof of Theorem 9.6), the basins

of attraction of [X0 ⊂ Pd−g] with respect to ρ and ρ−1 are depicted in Figure 2 below

(see Theorem 9.8 for the proof).

This implies that, in crossing the critical value d = 7
2(2g − 2) (i.e. as d

2g−2 passes

from 7
2 + ε to 7

2 − ε for a small ε), non-special elliptic tails become (Hilbert or Chow)

unstable and they get replaced by tacnodes with a line. Moreover, Hilbert semistability

for d = 7
2(2g − 2) behaves like Hilbert (or Chow) semistability for 2(2g − 2) < d <

7
2(2g − 2); hence Hilbert semistability is strictly stronger than Chow semistability for

d = 7
2(2g − 2).
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X ZF

non-special elliptic tail

p

Y

p

Y

ρ ρ−1

tacnode with a line

F0

E

tacnodal elliptic tail

E

X0

Figure 2. The basin of attraction of a curve X0 with a tacnodal elliptic

tail F0.

To conclude, observe that the basins of attraction of Figure 1 are already visible

in the 4-canonical locus inside Hilb4(2g−2) or Chow4(2g−2) (because all the elliptic tails

are special with respect to the canonical line bundle!) and indeed they were already

considered by Hyeon-Morrison in [HM10]; on the other hand, the basins of attraction

of Figure 2 are clearly not visible inside the pluricanonical locus (because they occur

for a fractional value of d
2g−2 !).

Finally, one last comment on the orbits identifications that occur in the GIT quo-

tient. It is well-known the GIT quotient of the (Hilbert or Chow) semistable lo-

cus parametrizes polystable orbits (i.e. semistable orbits that are closed inside the

semistable locus) and each semistable orbit contains a unique polystable orbit in its

closure. If d > 2(2g − 2) but d 6= 7
2(2g − 2) or 4(2g − 2), then Theorems A, C, E

imply that the polystable orbits correspond to the orbits of Hilbert semistable points

[X ⊂ Pd−g] such that moreover OX(1) is strictly balanced (and similarly for Chow

semistable points). Indeed, we prove in Section 7 that if a Hilbert semistable point

[X ⊂ Pd−g] is such that OX(1) achieves one of the extremes of the basic inequality at

a subcurve Z ⊂ X such that Z ∩ Zc ( Xexc, then there is an isotrivial specialization

of [X ⊂ Pd−g] to a Hilbert semistable point [X ′ ⊂ Pd−g] such that X ′ is obtained from

X by blowing up the nodes of (Z ∩ Zc) \ Xexc (see Theorem 7.5); hence the orbit of

[X ⊂ Pd−g] contains the orbit of [X ′ ⊂ Pd−g] in its closure. The same thing happens

for Chow semistable points. Therefore, Theorems A, C and E say that these are the

only orbits identifications that occur in the Hilbert or Chow GIT quotients outside of

the critical values d = 7
2(2g − 2) or 4(2g − 2). Moreover, an easy combinatorial argu-

ment (see [Cap94, Lemma 6.3]) shows that the extreme of the basic inequalities can be

achieved if and only if gcd(d+ 1− g, 2g− 2) 6= 1; therefore if gcd(d+ 1− g, 2g− 2) = 1

and d 6= 7
2(2g − 2) or 4(2g − 2) then the Hilbert or Chow GIT quotients that we get

are geometric, i.e. semistable points are also stable.

On the other hand, if d is equal to one of the two critical values 7
2(2g − 2) or

4(2g − 2), then the orbits identifications in the Hilbert and Chow GIT quotient are
10



different. Indeed, while in the Hilbert GIT quotient Q
h
d,g it is still true that the unique

orbits identifications are given by the isotrivial specializations described above, in the

Chow GIT quotient Q
c
d,g there are new isotrivial specializations that correspond to the

basins of attraction depicted in Figure 1 for d = 4(2g−2) and Figure 2 for d = 7
2(2g−2).

Note that there is a natural morphism Ξ : Q
h
d,g → Q

c
d,g from the Hilbert GIT quotient

to the Chow GIT quotient (because a Hilbert semistable point is also Chow semistable)

and we prove in Section 14 that Ξ is an isomorphism if d = 7
2(2g− 2) (see Proposition

14.5) while it is not an isomorphism if d = 4(2g − 2) (see Proposition 14.6).

1.3. Application: compactifications of the universal Jacobian. As an applica-

tion of Theorems A, C and E, one gets three compactifications of the universal Jacobian

stack Jd,g, i.e. the moduli stack of pairs (C,L) where C is a smooth projective curve

of genus g and L is a line bundle of degree d on C, and of its coarse moduli space Jd,g.

To this aim, denote by J d,g (resp. J ps
d,g) the category fibered in groupoids over

the category of k-schemes, whose fiber over a k-scheme S is the groupoid of pairs

(f : X → S,L) where f : X → S is a family of quasi-stable curves (resp. quasi-p-

stable curves) of genus g and L is a line bundle on X of relative degree d over S whose

restriction to the geometric fibers of f is properly balanced. Moreover, denote by J wp
d,g

the category fibered in groupoids over the category of k-schemes, whose fiber over a

k-scheme S is the groupoid of pairs (f : X → S,L) where f is a family of quasi-wp-

stable curves of genus g and L is a line bundle on X of relative degree d that is properly

balanced on the geometric fibers of f and such that the geometric fibers of f do not

contain tacnodes with a line nor special elliptic tails with respect to L.

In the following theorem, we summarize the properties of J d,g, J
wp
d,g and J ps

d,g that

will be proved in Section 16.

Theorem F. Let g ≥ 3 and d ∈ Z.

(1) J d,g (resp. J wp
d,g, J

ps
d,g) is a smooth, irreducible and universally closed Artin

stack of finite type over k and of dimension 4g − 4, containing Jd,g as a dense

open substack.

(2) J d,g (resp. J wp
d,g, J

ps
d,g) admits an adequate moduli space Jd,g (resp. J

wp
d,g, resp.

J
ps
d,g), which is a normal integral projective variety of dimension 4g − 3 con-

taining Jd,g as a dense open subvariety.

Moreover, if char(k) = 0, then Jd,g (resp. J
wp
d,g, resp. J

ps
d,g) has rational singu-

larities, hence it is Cohen-Macauly.

(3) Denote by H̃d the main component of the semistable locus of Hilbd, i.e. the

open subset of Hilbd consisting of all the points [X ⊂ Pd−g] that are semistable

and such that X is connected. Then it holds:

(i) J d,g ∼= [H̃d/GLd−g+1] and Jd,g ∼= H̃d//GLd−g+1 if d > 4(2g − 2),

11



(ii) J wp
d,g
∼= [H̃d/GLd−g+1] and J

wp
d,g
∼= H̃d//GLd−g+1 if 7

2(2g − 2) < d ≤
4(2g − 2),

(iii) J ps
d,g
∼= [H̃d/GLd−g+1] and J

ps
d,g
∼= H̃d//GLd−g+1 if 2(2g − 2) < d ≤

7
2(2g − 2).

(4) We have the following commutative diagrams

J d,g //

Ψs

��

Jd,g

Φs

��

J wp
d,g

//

Ψwp

��

J
wp
d,g

Φwp

��

J ps
d,g

//

Ψps

��

J
ps
d,g

Φps

��

Mg
// Mg Mwp

g
// M

p
g Mp

g
// M

p
g

where Ψs (resp. Ψwp, Ψps) is universally closed and surjective and Φs (resp.

Φwp, resp. Φps) is projective and surjective. Moreover:

(i) The morphisms Φs : Jd,g → Mg and Φps : J
ps
d,g → M

p
g have equidimen-

sional fibers of dimension g; moreover, if char(k) = 0, Φs and Φps are flat

over the smooth locus of Mg and M
p
g , respectively.

(ii) The fiber of the morphism Φwp : J
wp
d,g →M

p
g over a p-stable curve X ∈Mp

g

has dimension equal to the sum of g with the number of cusps of X.

(5) Let J ?d,g be equal to either J d,g or J wp
d,g or J ps

d,g. Denote by J ?d,g ( Gm the

rigidification of J ?d,g by Gm and by Ψ̂? : J ?d,g →M
?
g the associated morphism,

whereM?
g is equal to eitherMg orMwp

g orMp
g . Then the following conditions

are equivalent:

(i) gcd(d+ 1− g, 2g − 2) = 1;

(ii) The stack J ?d,g ( Gm is a DM-stack;

(iii) The stack J ?d,g ( Gm is proper;

(iv) The morphism Ψ̂? : J ?d,g ( Gm →M
?
g is representable.

(6) If char(k) = 0, then it holds

(i) (Φst)−1(X) ∼= Jacd(X)/Aut(X) for any X ∈Mg,

(ii) (Φps)−1(X) ∼= Jacd(X)/Aut(X) for any X ∈Mp
g ,

where Jacd(X) is the moduli space of of rank-1, torsion-free sheaves on X

of degree d that are slope-semistable with respect to ωX (and it is called the

canonical compactified Jacobian of X in degree d).

The stack (resp. variety) J d,g (resp. Jd,g) was introduced by Caporaso in [Cap94]

and [Cap05] and is therefore called the Caporaso’s compactified universal Jacobian

stack (resp. variety). The properties of J d,g and Jd,g stated in the above theorem

were indeed already known (also for g = 2), by the work of Caporaso [Cap94], [Cap05]

and of the third author [Mel09].

In Section §16.4, we provide also an alternative description of the stack J d,g (resp.

J wp
d,g, resp. J ps

d,g) via certain rank-1, torsion-free sheaves on stable (resp. wp-stable,

resp. p-stable) that are semistable with respect to the canonical line bundle (see

Theorem 16.19).
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1.4. Open problems. This work leaves unsolved some natural problems for further

investigation, that we briefly discuss here.

As we observed above, Theorem E does not hold for d = 2(2g−2). The first problem

is thus the following.

Problem A.

(i) Describe the (semi-,poly-)stable points of Hilbd and Chowd in the case d = 2(2g−
2).

(ii) Describe the (semi-,poly-)stable points of Hilbd and Chowd in the case d = 2(2g−
2)− ε (for small ε).

(iii) What is the next critical value of d
2g−2 < 2 at which the GIT quotients change?

As an output of the GIT analysis proposed in Problem A, one experts to find new

compactifications of the universal Jacobian over the Hassett-Hyeon [HH13] moduli

spaces M
h
g and M

c
g of c-semistable and h-semistable curves, respectively.

In order to understand the relation between the three compactifications J d,g, J
wp
d,g

and J ps
d,g of the universal Jacobian stack Jd,g, the following problem seems natural.

Problem B. Describe the birational maps fitting into the following commutative dia-

gram

J d,g //

Ψs

��

J wp
d,g

Ψwp

��

J ps
d,g

Ψps

��

oo

Mg
� � //Mwp

g Mp
g

? _oo

More generally, one would like to set up a Hassett-Keel program for the Caporaso’s

compactified universal Jacobian stack J d,g and give an interpretation of the alternative

compactifications J wp
d,g and J ps

d,g of Jd,g as the first two steps in this program. Moreover

it would be interesting to study how the new settled Hassett-Keel program for J d,g
relates with the classical Hassett-Keel program for Mg.

1.5. Outline of the paper. We now give a detailed outline of the paper.

In Section 2, we discuss the singular curves that will appear throughout the paper:

stable, wp-stable and p-stable curves together with their associated stacks in §2.1;

quasi-stable, quasi-wp-stable and quasi-p-stable curves in §2.2. Moreover, we introduce

two operations on families of curves: the p-stable reduction that contracts elliptic tails

of wp-stable curves to cusps (see Proposition 2.6) and the wp-stable reduction that

contracts exceptional components of quasi-wp-stable curve to either nodes or cusps

(see Proposition 2.11).

In Section 3, we first collect in §3.1 several combinatorial results on balanced mul-

tidegrees and on the degree class group of Gorenstein curves; then, we introduce and

study in §3.2 stably and strictly balanced multidegrees on quasi-wp-stable curves.
13



In Section 4, we collect all the general results from GIT that we will need in this work.

In §4.1 we set up our GIT problem for Hilbd and Chowd. In §4.2 we recall the Hilbert-

Mumford numerical criterion for m-th Hilbert and Chow (semi)stability. Then we recall

several classical results that will be used in our GIT analysis: basins of attraction

(§4.3); flat limits and Gröbner basis (§4.4); the parabolic subgroup associated to a

one-parameter subgroup (§4.5). We end this section by recalling in §4.6 two classical

results due to Mumford and Gieseker: the Chow (or Hilbert) stability of smooth curves

of genus g embedded by line bundles of degree d ≥ 2g + 1; and the Potential stability

Theorem giving necessary conditions for a point of Hilbd or of Chowd to be semistable,

provided that d > 4(2g − 2).

In Section 5, we prove the Potential pseudo-stability Theorem 5.1 which gives nec-

essary conditions for a point of Hilbd or of Chowd to be semistable, provided that

d > 2(2g − 2).

In Section 6, we compute the stabilizer subgroup of a point of Hilbd, under the

assumption that d > 2(2g − 2).

In Section 7, we investigate the isotrivial specializations that arise when one of the

extremes of the basic inequalities is achieved.

In Section 8, we give a criterion for the (semi-, poly-)stability of a point of Hilbd or

Chowd whose underlying curve has a tail.

In Section 9, we deal with the Hilbert or Chow semistability of curves having an

elliptic tail (special or not) or having a tacnode with a line. We prove that special

elliptic tails become Chow unstable for d < 4(2g − 2) (see Theorem 9.1), ordinary

elliptic tails become Chow unstable for d < 7
2(2g−2) (see Theorem 9.6), tacnodes with

a line are Chow unstable for d > 7
2(2g − 2) (see Theorem 9.3). Moreover, we examine

the basins of attraction of the curves in Figure 1 and 2 (see Theorem 9.2 and 9.8).

In Section 10, we introduce a stratification of the Chow semistable locus by fixing

the isomorphism class of a curve and the multidegree of the line bundle that embeds

it. We study the closure of the strata in §10.1 and we prove a completeness result for

these strata in §10.2.

In Section 11 we characterize (semi, poly)-stable points in Hilbd and Chowd if either

4(2g − 2) < d or 2(2g − 2) < d ≤ 7
2(2g − 2) and g ≥ 3, thus proving Theorems A, D

and E.

In Section 12, we study the stability of elliptic tails in the range 7
2(2g − 2) < d ≤

4(2g − 2).

In Section 13, we characterize (semi, poly)-stable points in Hilbd and Chowd in the

range 7
2(2g − 2) < d ≤ 4(2g − 2), thus proving Theorems B and C.

In Section 14, we study the geometric properties of the Hilbert and Chow GIT

quotients and of their modular map towards the moduli space of p-stable curves.

In Section 15, we determine when the Hilbert or Chow semistable locus admits

extra-components made entirely of non-connected curves.
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In Section 16, we first recall in §16.1 the properties of the Caporaso’s compactified

universal Jacobian stack J d,g over the moduli stack of stable curves and of its moduli

space Jd,g. Then, in §16.2, we define and study the two new compactifications J wp
d,g and

J ps
d,g of the universal Jacobian stack Jd,g over the moduli stack of wp-stable curves and

p-stable curves, respectively. In §16.3, we prove that J wp
d,g and J ps

d,g admit projective

moduli spaces J
wp
d,g and J

ps
d,g, respectively, and we study their properties. Finally, in

§16.4, we provide an alternative description of the stack J d,g (resp. J wp
d,g, resp. J ps

d,g)

and of its moduli space via certain rank-1, torsion-free sheaves on stable (resp. wp-

stable, resp. p-stable) curves that are semistable with respect to the canonical line

bundle (see Theorem 16.19).

The Appendix 17 contains some positivity results for balanced line bundles on Goren-

stein curves which are used throughout the paper and that we find interesting in their

own.

Some of the results of this paper (more precisely, Theorems A and E and Theorem

F for J ps
d,g) were originally obtained by the first, third and fourth author and then

announced in [BMV12]. However, the GIT analysis in the range 7
2(2g − 2) ≤ d ≤

4(2g − 2) was left as an open question (see [BMV12, Question A]). The second author

solved this open problem by proving Theorems B, C, D and Theorem F for J wp
d,g and

then became a coauthor of this work. Moreover, the presence of extra-components in

the Hilbert or Chow semistable locus made of non-connected curves was also left as

an open question in loc. cit. (see [BMV12, Question C]); this was also solved by the

second author and resulted in Section 15 of the present work.
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1.1. k will denote an algebraically closed field (of arbitrary characteristic). All schemes

are k-schemes, and all morphisms are implicitly assumed to respect the k-structure.

1.2. A curve is a complete, reduced and separated scheme (over k) of pure dimension

1 (not necessarily connected). The genus g(X) of a curve X is g(X) := h1(X,OX).

The set of singular points of a curve X is denoted by Xsing.

1.3. A subcurve Z of a curve X is a closed k-scheme Z ⊆ X that is reduced and of

pure dimension 1. We say that a subcurve Z ⊆ X is proper if Z 6= ∅, X.

Given two subcurves Z and W of X without common irreducible components, we

denote by Z ∩W the 0-dimensional subscheme of X that is obtained as the scheme-

theoretic intersection of Z and W and we denote by |Z ∩W | its length.

Given a subcurve Z ⊆ X, we denote by Zc := X \ Z the complementary subcurve

of Z and we set kZ = kZc := |Z ∩ Zc|.

1.4. Let X be a curve. A point p of X is said to be

• a node if ÔX,p ∼= k[[x, y]]/(y2 − x2), where ÔX,p is the completion of the local

ring OX,p of X at p;

• a cusp if ÔX,p ∼= k[[x, y]]/(y2 − x3);

• a tacnode if ÔX,p ∼= k[[x, y]]/(y2 − x4).

A tacnode with a line of a curve X is a tacnode p of X at which two irreducible

components D1 and D2 of X meet with a simple tangency so that D1
∼= P1 and kD1 = 2

(or equivalently p is the set-theoretical intersection of D1 and Dc
1).

1.5. An elliptic tail of a curve X is a connected subcurve F of genus 1 meeting the

rest of the curve in one point; i.e. a connected subcurve F ⊆ X such that g(F ) = 1

and kF = |F ∩ F c| = 1. Moreover we say that F is

• nodal if F is an irreducible rational curve with one node;

• cuspidal if F is an irreducible rational curve with one cusp;

• reducible nodal if F consists of two smooth rational subcurves meeting in two

nodes;

• tacnodal if F consists of two smooth rational subcurves meeting in a tacnode.

Moreover we define the elliptic locus, which we denote by Xell, as the union of all the

elliptic tails of X.

1.6. A curve X is called Gorenstein if its dualizing sheaf ωX is a line bundle.

1.7. A family of curves is a proper, flat morphism X → T whose geometric fibers

are curves. Given a class C of curves, a family of curves of C is a family of curves

X → T whose geometric fibers belong to the class C. For example: if C is the class of

nodal curves of genus g, then a family of nodal curves of genus g is a family of curves

whose geometric fibers are nodal curves of genus g.
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2. Singular curves

The aim of this section is to collect the definitions and basic properties of the curves

that we will deal with throughout the paper.

2.1. Stable, p-stable and wp-stable curves. We begin by recalling the definition

of stable curves ([DM69]), pseudo-stable curves ([Sch91]) and weakly-pseudo-stable

curves ([HM10, Pag. 8]) of genus g ≥ 2.

Definition 2.1. A connected curve X of arithmetic genus g ≥ 2 is

(i) stable if

(a) X has only nodes as singularities;

(b) the canonical sheaf ωX is ample.

(ii) p-stable (or pseudo-stable) if

(a) X has only nodes and cusps as singularities;

(b) X does not have elliptic tails, i.e. Xell = ∅;
(c) the canonical sheaf ωX is ample.

(iii) wp-stable (or weakly-pseudo-stable) if

(a) X has only nodes and cusps as singularities;

(b) the canonical sheaf ωX is ample.

Note that, in each of the three cases, ωX is ample if and only if each connected subcurve

Z of X of genus zero is such that kZ = |Z ∩ Zc| ≥ 3.

Remark 2.2. Note that stable curves and p-stable curves are wp-stable. More pre-

cisely:

(i) stable curves are exactly those wp-stable curves without cusps.

(ii) p-stable curves are exactly those wp-stable curves without elliptic tails.

We will work throughout the paper with the following stacks.

Definition 2.3. Let g ≥ 2. We denote by Mg (resp. Mp
g , resp. Mwp

g ) the stack

parametrizing families of stable (resp. p-stable, resp. wp-stable) curves of genus g.

The properties of the above stacks can be summarized in the following

Theorem 2.4. Let g ≥ 2.

(i) Mwp
g is a smooth, irreducible algebraic stack of dimension 3g−3, containing Mg

and Mp
g as open substacks.

(ii) Mg is a proper stack; Mp
g is a proper stack if g ≥ 3 and a weakly proper stack if

g = 2; Mwp
g is a weakly proper stack.

(iii) Mg admits a coarse moduli space Mg; M
p
g admits a coarse moduli space M

p
g for

g ≥ 3 and an adequate moduli space M
p
g for g = 2. M

p
g is also an adequate moduli

space for Mwp
g .

Moreover, Mg and M
p
g are irreducible projective varieties of dimension 3g− 3.
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Proof. Part (i): Mwp
g is an algebraic stack since it is an open substack of the stack

of all genus g curves, which is well known to be algebraic (see e.g. [Hal]). By [Ser06,

Prop. 2.4.8], an obstruction space for the deformation functor DefX of a wp-stable

curve X is the vector space Ext2(Ω1
X ,OX) which is zero according to [DM69, Lemma

1.3] since X is a reduced curve with locally complete intersection singularities. This

implies that DefX is formally smooth, hence that Mwp
g is smooth at X. Moreover,

from [Ser06, Thm. 2.4.1] and [Ser06, Cor. 3.1.13], it follows that a reduced curve

with locally complete intersection singularities can always be smoothened; therefore

the open substack Mg ⊂ M
wp
g of smooth curves is dense. Since Mg is irreducible of

dimension 3g− 3 (see [DM69]), we deduce thatMwp
g is irreducible of dimension 3g− 3

as well. Clearly, Mg and Mp
g are open substacks of Mwp

g because the condition of

having no cusps or no elliptic tails is an open condition.

Part (ii): for any m ≥ 2, denote by Chowss
m,can the locally closed sub-locus of the

Chow scheme of 1-cycles of degree m(2g − 2) in PN (where N := m(2g − 2) − g)

consisting of curves which are embedded by the m-pluricanonical map and semistable

(see Section 4.1 for more details). It is known that: Chowss
m,can consists of stable

curves if m ≥ 5 (see [Mum77]); Chowss
4,can consists of wp-stable curves (see [HM10]);

Chowss
3,can consists of p-stable curves (see [Sch91] for g ≥ 3 and [HL07] for g = 2).

Now, a standard argument (see [Edi00, Thm. 3.2] and [ACG11, Chap. XII, Thm.

5.6]) yields the following isomorphisms of stacks:

(2.1)

Mg
∼= [Chowss

m,can/PGLN+1] for any m ≥ 5,

Mwp
g
∼= [Chowss

4,can/PGLN+1],

Mp
g
∼= [Chowss

3,can/PGLN+1].

In particular, it follows that all the above stacks are weakly proper (see [ASvdW,

Section 2]). Moreover, it is well known that there are no strictly semistable points in

Chowss
m,can for m ≥ 5 (see [Mum77]) and in Chowss

3,can for g ≥ 3 (see [Gie82]). This

yields that Mg and Mp
g for g ≥ 3 are proper stacks (see [ASvdW, Section 2]).

Part (iii): define the GIT quotients

(2.2)
Mg := Chowss

5,can//PGLN+1,

M
p
g := Chowss

3,can//PGLN+1.

By combining (2.1), (2.2) and what said above on the strictly semistable points, it

follows that Mg is a coarse moduli forMg and M
p
g is a coarse (resp. adequate) moduli

space of Mp
g for g ≥ 3 (resp. g = 2), see [Alp2]. It was proved in [HM10] that

M
p
g
∼= Chowss

4,can//PGLN+1,

which – combined with (2.1) – implies that M
p
g is an adequate moduli space forMwp

g .

The fact that Mg and M
p
g are irreducible projective varieties of dimension 3g− 3 is

well-known (see [DM69] and [HH09]).

�
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Note that our stacksMg,M
p
g andMwp

g correspond to the stacks Mg(A
−
2 ), Mg(A

+
2 )

and Mg(A2) in [ASvdW], respectively.

Remark 2.5.

(i) The stack Mwp
g of wp-stable curves is not proper since in Chowss

4,can there are

strictly semistable points. Indeed, Hyeon-Morrison proved in [HM10] that the

unique orbit specializations occurring in Chowss
4,can (for g ≥ 3) are the ones de-

picted in figure 3 below:
X Z

Y

E

elliptic tail

p

q

q

cuspidal elliptic tail

C

C pinched
to an ordinary

cusp at q

R

p

C

Figure 3. Orbit specializations in Chowss
4,can, i.e. isotrivial specializa-

tions in Mwp
g .

The above orbit specializations correspond to isotrivial specializations in the stack

Mwp
g (see [ASvdW]). Therefore, the closed points of Mwp

g are the wp-stable

curves X such that every elliptic tail of X is cuspidal and every cusp of X is

contained in an elliptic tail.

(ii) If char(k) = 0 then the adequate moduli spaces appearing in the above Theorem

2.4 are indeed good moduli spaces (see [Alp2, Prop. 5.1.4]).

Given a wp-stable curve Y , it is possible to obtain a p-stable curve, called its p-stable

reduction and denoted by ps(Y), by contracting the elliptic tails of Y to cusps. The

p-stable reduction works even for families.

Proposition 2.6. Let v : Y → S be a family of wp-stable curves of genus g ≥ 2. There

exists a commutative diagram

Y
ψ

//

v
��

ps(Y)

ps(v)||
S

where ps(v) : ps(Y) → S is a family of p-stable curves of genus g, called the p-stable

reduction of v : Y → S. For every geometric point s ∈ S, the morphism ψs : Ys →
ps(Y)s contracts the elliptic tails of Ys to cusps of ps(Y)s. Moreover, the formation of

the p-stable reduction commutes with base change.
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This defines a morphism of stacks ps :Mwp
g →Mp

g.

Proof. If v : Y → S is a family of stable curves, the statement was proved by Hassett-

Hyeon in [HH09, Sec. 3] under the assumption that g ≥ 3 and then extended to g = 2

with a similar argument by Heyon-Lee in [HL07, Sec. 4]. In what follows, we will show

how to adapt the argument of loc. cit. in order to work out in our case.

First of all, if S = k, then the statement follows from Proposition 3.1 in [HH09],

which asserts that given a stable curve C, there is a replacement morphism ξC : C →
T (C), where T (C) is a pseudo-stable curve of genus g, which is an isomorphism away

from the loci of elliptic tails and that replaces elliptic tails with cusps. The argumen-

tation is local on the nodes connecting each genus-one subcurve meeting the rest of

the curve in a single node. Since in a wp-stable curve all elliptic tails are connected to

the rest of the curve via a single node, the same argumentation works also in our case

with no further modifications.

Now, we have to prove the statement over an arbitrary base S. The approach of

Hassett-Hyeon is to consider a faithfully flat atlas V → Mg and define the p-stable

reduction for the family of stable curves over V induced by the above morphism. The

case of a family over an arbitrary base will follow by base-change from V →Mg to S.

In our case, we consider a faithful atlas ρπ : U → Mwp
g of the stack Mwp

g of wp-

stable curves and we let π : Z → U be the associated (universal) family of wp-stable

curves. The idea is now to consider an invertible sheaf L on Z, which will be a twisted

version of the relative dualizing sheaf of π, such that L is very ample away from the

locus of elliptic tails, and instead has relative degree 0 over all elliptic tails. Then use

L to define an S-morphism from Z to a family of p-stable curves which coincides with

the previous one over all geometric fibers of π.

To be precise, denote by δ1 ⊂ M
wp
g,1 the boundary divisor of elliptic tails on the

universal stack Mwp
g,1 over Mwp

g . An argument similar to the proof of Theorem 2.4(i)

shows that Mwp
g,1 is smooth; hence δ1 is a Cartier divisor. Let µπ : Z → Mwp

g,1 be the

classifying morphism corresponding to the family π : Z → U and set L := ωπ(µ∗πδ1).

The whole point is now to prove that π∗(L
n) is locally free and that Ln is relatively

globally generated for n > 0 and that the associated morphism factors through

Z
ξZ→ T (Z) ↪→ P(π∗L

n)

where T (Z) is a family of p-stable curves and ξZ coincides with the replacement mor-

phism ξC for all geometric fibers C of π. By browsing carefully through Hassett-Hyeon’s

argumentation, we easily conclude that everything holds also in our case.

�

Remark 2.7. From the above Proposition, we get the existence of a morphism of

stacks

(2.3) ps :Mwp
g →Mp

g ,
20



which, passing to the adequate moduli spaces, induces the morphism T : Mg → M
p
g

studied by Hassett-Hyeon in [HH09] for g ≥ 3 and by Hyeon-Lee in [HL07] for g = 2.

Indeed, it is proved in loc. cit. that T is the contraction of the divisor ∆1 ⊂ Mg of

curves having an elliptic tail.

2.2. Quasi-wp-stable curves and wp-stable reduction. The most general class of

singular curves that we will meet throughout this work is the one given in the following:

Definition 2.8.

(i) A connected curve X is said to be pre-wp-stable if the only singularities of X are

nodes, cusps or tacnodes with a line.

(ii) A connected curve X is said to be pre-p-stable if it is pre-wp-stable and it does

not have elliptic tails.

(iii) A connected curve X is said to be pre-stable if the only singularities of X are

nodes.

Note that wp-stable (resp. p-stable, resp. stable) curves are pre-wp-stable (resp.

pre-p-stable, resp. pre-stable) curves. Moreover, if p ∈ X is a tacnode with a line lying

in D1
∼= P1 and D2 as in 1.4, then (ωX)|D1

= OD1 , hence ωX is not ample. From this,

we get easily that

Remark 2.9. X is wp-stable (resp. p-stable, resp. stable) if and only if X is pre-wp-

stable (resp. pre-p-stable, resp. pre-stable) and ωX is ample.

The pre-wp-stable curves that we will meet in this paper, even when non wp-stable,

will satisfy a very strong condition on connected subcurves where the restriction of the

canonical line bundle is not ample, i.e., on connected subcurves of genus zero that meet

the complementary subcurve in less than three points. This justifies the following

Definition 2.10. A pre-wp-stable curve X is said to be

(i) quasi-wp-stable if every connected subcurve E ⊂ X such that gE = 0 and kE ≤ 2

satisfies E ∼= P1 and kE = 2 (and therefore it meets the complementary subcurve

Ec either in two distinct nodal points of X or in one tacnode of X).

(ii) quasi-p-stable if it is quasi-wp-stable and pre-p-stable.

(iii) quasi-stable if it is quasi-wp-stable and pre-stable.

The irreducible components E such E ∼= P1 and kE = 2 are called exceptional and the

subcurve of X given by the union of the exceptional components is denoted by Xexc.

The complementary subcurve Xc
exc = X \Xexc is called the non-exceptional subcurve

and is denoted by X̃.

Equivalently, a quasi-wp-stable curve is a pre-wp-stable X such that ωX is nef (i.e.

it has non-negative degree on every subcurve of X) and such that all the connected

subcurves E ⊆ X such that degEωX = 0 (which are called exceptional subcurves) are

irreducible. Note that the term quasi-stable curve was introduced in [Cap94, Sec. 3.3].
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We summarize the different types of curves that we have introduced so far in Table

1.

SINGULARITIES ωX NEF + IRREDUCIBLE

EXCEPTIONAL SUB-

CURVES

ωX AMPLE

pre-wp-stable = nodes, cusps, tacn-

odes with a line

quasi-wp-stable wp-stable

pre-p-stable = pre-wp-stable without

elliptic tails

quasi-p-stable p-stable

pre-stable = nodes quasi-stable stable

Table 1. Singular curves

Given a quasi-wp-stable curve Y , it is possible to contract all the exceptional com-

ponents in order to obtain a wp-stable curve, which is called the wp-stable reduction

of Y and is denoted by wps(Y). This construction indeed works for families.

Proposition 2.11. Let S be a scheme and u : X → S a family of quasi-wp-stable

curves. Then there exists a commutative diagram

X
φ

//

u
��

wps(X )

wps(u){{
S

where wps(u) : wps(X ) → S is a family of wp-stable curves, called the wp-stable

reduction of u.

For every geometric point s ∈ S, the morphism φs : Xs → wps(X )s contracts the

exceptional components E of Xs so that

(1) If E ∩ Ec consists of two distinct nodal points of X, then E is contracted to a

node;

(2) If E ∩ Ec consists of one tacnode of X, then E is contracted to a cusp.

The formation of the wp-stable reduction commutes with base change. Furthermore, if

u is a family of quasi-p-stable (resp. quasi-stable) curves then wps(u) is a family of

p-stable (resp. stable) curves.

Proof. We will follow the same ideas as in the proof of [Knu83, Prop. 2.1] and of

[Mel11, Prop. 6.6]. Consider the relative dualizing sheaf ωu := ωX/S of the family

u : X → S. It is a line bundle because the geometric fibers of u are Gorenstein curves

by our assumption. From Corollary 17.7 in the Appendix we get that for all i ≥ 2,

the restriction of ωiu to a geometric fiber Xs is non-special, globally generated and, if
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i ≥ 3, normally generated. Then, we can apply [Knu83, Cor. 1.5] to get the following

properties for ωu:

(a) R1u∗(ω
i
u) = (0) for all i ≥ 2;

(b) u∗(ω
i
u) is S-flat for all i ≥ 2;

(c) for any morphism T → S there are canonical isomorphisms

u∗(ω
i
u)⊗OS OT → (u× 1)∗(ω

i
u ⊗OS OT )

for any i ≥ 2;

(d) the canonical map u∗u∗(ω
i
u)→ ωiu is surjective for all i ≥ 3;

(e) the natural maps (u∗ω
3
u)i ⊗ u∗ω3

u → (u∗ω
3
u)i+1 are surjective for i ≥ 1.

Define now

Si := u∗(ω
i
u), for all i ≥ 0.

By (a) and (b) above, we know that Si is locally free and flat on S for i ≥ 2. Consider

P(S3)→ S.

Since, by (d) above, the natural map

u∗u∗(ω
3
u)→ ω3

u

is surjective, we get that there is a natural S-morphism

X
q

//

u
��

P(S3)

||
S

Denote by Y the image of X via q and by φ the (surjective) S-morphism from X to Y.

By (e) above, we get that

Y = Proj(⊕i≥0Si).

So, φ : Y → S is flat since the Si’s are flat for i ≥ 2. To conclude that Y → S is a

family of wp-stable curves note that the restriction of ω3
u to the geometric fibers of u

has positive degree in all irreducible components except the exceptional ones, where it

has degree 0. Indeed, it is easy to see (see for example [Cat82, Rmk. 1.20]) that, on

each geometric fiber Xs, φ contracts an exceptional component E ⊆ Xs to a node if E

meets the complementary curve in two distinct nodal points and to a cusp if E meets

the complementary subcurve in one tacnode. Moreover, Φ is an isomorphism outside

the non exceptional locus. We conclude that Y → S is a family of wp-stable curves, so

we set wps(X ) := Y and wps(u) := Y → S.

Property (c) above implies that forming wps is compatible with base-change.

The last assertion is clear from the above geometric description of the contraction

φs : Xs → wps(X )s on each geometric point of u.

�
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Remark 2.12. If u : X → S is a family of quasi-stable curves then the wp-stable

reduction wps(u) : wps(X )→ S coincides with the usual stable reduction s(u) of u (see

e.g. [Knu83]).

The wp-stable reduction allows us to give a more explicit description of the quasi-

wp-stable curves.

Corollary 2.13. A curve X is quasi-wp-stable (resp. quasi-p-stable, resp. quasi-

stable) if and only if it can be obtained from a wp-stable (resp. p-stable, resp. stable)

curve Y via an iteration of the following construction:

(i) Normalize Y at a node p and insert a P1 meeting the rest of the curve in the two

branches of the node.

(ii) Normalize Y at a cusp and insert a P1 tangent to the rest of the curve at the

branch of the cusp.

In this case, Y = wps(X). In particular, given a wp-stable (resp. p-stable, resp. stable)

curve Y there exists only a finite number of quasi-wp-stable (resp. quasi-p-stable, resp.

quasi-stable) curves X such that wps(X) = Y, which we call quasi-wp-stable (resp.

quasi-p-stable, resp. quasi-stable) models of Y .

Note that the above operation (ii) cannot occur for quasi-stable curves. With a

slight abuse of terminology, we call the above operation (i) (resp. (ii)) the blow-up of

a node (resp. of a cusp).

Proof. We will prove the Corollary only for quasi-wp-stable curves. The remaining

cases are dealt with in the same way.

Let X be a quasi-wp-stable curve and set Y := wps(X). By Proposition 2.11, the

wp-stablization φ : X → Y = wps(X) contracts each exceptional component E of X

to a node or a cusp according to whether E ∩Ec consists of two distinct points or one

point with multiplicity two. Therefore, X is obtained from Y by a sequence of the two

operations (i) and (ii).

Conversely, if X is obtained from a wp-stable curve Y by a sequence of operations

(i) and (ii), then clearly X is quasi-wp-stable and Y = wps(X).

The last assertion is now clear. �

We end this section with an extension of the p-stable reduction of Proposition 2.6

to families of quasi-wp-stable curves.

Definition 2.14. Let S be a scheme and u : X → S be a family of quasi-wp-stable

curves of genus g ≥ 3. Then there exists a commutative digram

φ : X
φ
//

u
$$

wps(X )
ψ
//

wps(u)
��

ps(wps(X )) := ps(X )

ps(u):=ps(wps(u))
vv

S
24



where the family wps(u) is the wp-stable reduction of the family u (see Proposition

2.11) and the family ps(wps(u)) is the p-stable reduction of the family wps(u) (see

Proposition 2.6).

We set ps(u) := ps(wps(u)) and we call it the p-stable reduction of u.

3. Combinatorial results

The aim of this section is to collect all the combinatorial results that will be used in

the sequel.

3.1. Balanced multidegree and the degree class group. Let us first recall some

combinatorial definitions and results from [Cap94, Sec. 4]. Although the results in loc.

cit. are stated for nodal curves, a close inspection of the proofs reveals that the same

results are true – more in general – for Gorenstein curves.

Fix a connected Gorenstein curve X of genus g ≥ 2 and we denote by C1, . . . , Cγ

the irreducible components of X. A multidegree on X is an ordered γ-tuple of integers

d = (dC1
, . . . , dCγ ) ∈ Zγ .

We denote by |d| =
∑γ

i=1 dCi the total degree of d. Given a subcurve Z ⊆ X, we set

dZ :=
∑

Ci⊆Z dCi . The term multidegree comes from the fact that every line bundle

L on X has a multidegree degL given by degL := (degC1
L, . . . , degCγL) whose total

degree |degL| is the degree degL of L.

We now introduce an inequality condition on the multidegree of a line bundle which

will play a key role in the sequel.

Definition 3.1. Let d be a multidegree of total degree |d| = d. We say that d is

balanced if it satisfies the inequality (called basic inequality)

(3.1)

∣∣∣∣dZ − d

2g − 2
degZωX

∣∣∣∣ ≤ kZ
2
,

for every subcurve Z ⊆ X.

We denote by B̃d
X the set of all balanced multidegrees on X of total degree d.

Following [Cap94, Sec. 4.1], we now define an equivalence relation on the set of

multidegrees on X. For every irreducible component Ci of X, consider the multidegree

Ci = ((Ci)1, . . . , (Ci)γ) of total degree 0 defined by

(Ci)j =


|Ci ∩ Cj | if i 6= j,

−
∑
k 6=i
|Ci ∩ Ck| if i = j.

More generally, for any subcurve Z ⊆ X, we set Z :=
∑

Ci⊆Z Ci.

Denote by ΛX ⊆ Zγ the subgroup of Zγ generated by the multidegrees Ci for i =

1, . . . , γ. It is easy to see that
∑

iCi = 0 and this is the only relation among the

multidegrees Ci. Therefore, ΛX is a free abelian group of rank γ − 1.
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Definition 3.2. Two multidegrees d and d′ are said to be equivalent, and we write

d ≡ d′, if d− d′ ∈ ΛX . In particular, if d ≡ d′ then |d| = |d′|.
For every d ∈ Z, we denote by ∆d

X the set of equivalence classes of multidegrees of

total degree d = |d|. Clearly, ∆0
X is a finite group under component-wise addition of

multidegrees (called the degree class group of X) and each ∆d
X is a torsor under ∆0

X .

The following two facts will be used in the sequel. The first result says that every el-

ement in ∆d
X has a balanced representative. The second result investigates the relation

between balanced multidegrees that have the same class in ∆d
X .

Fact 3.3 (Caporaso). For every multidegree d on X of total degree d = |d|, there exists

d′ ∈ B̃d
X such that d ≡ d′.

For a proof see [Cap94, Prop. 4.1]. Note that in loc. cit. the above result is only

stated for a nodal curve X and d = 0. Nonetheless, a closer inspection at the proof

shows that it extends verbatim to our case. See also [MV12, Prop. 2.8] for a refinement

of the above result.

Fact 3.4 (Caporaso). Let d, d′ ∈ B̃d
X . Then d ≡ d′ if and only if there exist subcurves

Z1 ⊆ . . . ⊆ Zm of X such that
dZi =

d

2g − 2
degZiωX +

kZi
2

for 1 ≤ i ≤ m,

d′ = d+
m∑
i=1

Zi.

Moreover, the subcurves Zi can be chosen so that Zci ∩ Zj = ∅ for i > j.

For a proof see [Cap94, p. 620 and p. 625]. In loc. cit., the result is stated for

DM-semistable curves but the proof extends verbatim to our case.

3.2. Stably and strictly balanced multidegrees on quasi-wp-stable curves.

We now specialize to the case where X is a quasi-wp-stable curve of genus g ≥ 2 (see

Definition 2.10) 3.

Given a balanced multidegree d on X, the basic inequality (3.1) gives that dE =

−1, 0, 1 for every exceptional component E ⊂ X. The multidegrees such that dE = 1

on each exceptional component E ⊂ X will play a special role in the sequel; hence they

deserve a special name.

Definition 3.5. We say that a multidegree d on X is properly balanced if d is balanced

and dE = 1 for every exceptional component E of X.

We denote by Bd
X the set of all properly balanced multidegrees on X of total degree

d.

3Actually, the reader can easily check that all the results of this subsection are valid more in general

if X is a G-quasistable curve of genus g ≥ 2 in the sense of Definition 17.1.
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The aim of this subsection is to investigate the behavior of properly balanced multi-

degrees on a quasi-wp-stable curve X, which attain the equality in the basic inequality

(3.1) relative to some subcurve Z ⊆ X. Let us denote the two extremes of the basic

inequality relative to Z by

(3.2)


mZ :=

d

2g − 2
degZωX −

kZ
2
,

MZ :=
d

2g − 2
degZωX +

kZ
2
,

Note that mZ = MZc and MZ = mZc . The definitions below will be important in what

follows.

Definition 3.6. A properly balanced multidegree d on X is said to be

(i) strictly balanced if any proper subcurve Z ⊂ X such that dZ = MZ satisfies

Z ∩ Zc ⊂ Xexc.

(ii) stably balanced if any proper subcurve Z ⊂ X such that dZ = MZ satisfies

Z ⊆ Xexc.

When X is a quasi-stable curve, the above Definition 3.6(i) coincides with the def-

inition of extremal in [Cap94, Sec. 5.2], while Definition 3.6(ii) coincides with the

definition of G-stable in [Cap94, Sec. 6.2]. Here we adopt the terminology of [BFV12,

Def. 2.4].

Definition 3.7. We will say that a line bundle L on X is balanced if and only if its

multidegree degL is balanced, and similarly for properly balanced, strictly balanced,

stably balanced.

Remark 3.8. In order to check that a multidegree d on X is balanced (resp. strictly

balanced, resp. stably balanced), it is enough to check the conditions of Definitions 3.1

and 3.6 only for the subcurves Z ⊂ X such that Z and Zc are connected. This follows

easily from the following facts. If Z is a subcurve of X and we denote by {Z1, . . . , Zc}
the connected components of Z, then the following hold:

(i) The upper (resp. lower) inequality in (3.1) is achieved for Z if and only if the

upper (resp. lower) inequality in (3.1) is achieved for every Zi. This follows from

the (easily checked) additivity relations

degZL =
∑
i

degZiL,

degZωX =
∑
i

degZiωX ,

kZ =
∑
i

kZi .

(ii) Z ∩ Zc ⊆ Xexc if and only if Zi ∩ Zci ⊆ Xexc for every i. Similarly, Z ⊆ Xexc if

and only if Zi ⊆ Xexc for every Zi.

(iii) If Zc is connected, then Zci = ∪j 6=iZj ∪ Zc is connected for every Zi.
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The next result explains the relation between stably balanced and strictly balanced

line bundles.

Lemma 3.9. A multidegree d on a quasi-wp-stable curve X of genus g ≥ 2 is stably

balanced if and only if d is strictly balanced and X̃ = X \Xexc is connected.

Proof. The proof of [BFV12, Lemma 2.7] extends verbatim from quasi-stable curves to

quasi-wp-stable curves. �

The importance of strictly balanced multidegrees is that they are unique in their

equivalence class in ∆d
X , at least among the properly balanced multidegrees.

Lemma 3.10. Let d, d′ ∈ Bd
X be two properly balanced multidegrees of total degree d

on a quasi-wp-stable curve X of genus g ≥ 2. If d ≡ d′ and d is strictly balanced, then

d = d′.

Proof. According to Fact 3.4, there exist subcurves Z1 ⊆ . . . ⊆ Zm of X such that

(3.3) d′ = d+

m∑
i=1

Zi,

(3.4) dZi =
d

2g − 2
degZiωX +

kZi
2

for 1 ≤ i ≤ m,

(3.5) Zci ∩ Zj = ∅ for i > j.

Assume, by contradiction, that d 6≡ d′; hence, using (3.3), we can assume that Z := Z1

is a proper subcurve of X. From (3.4) and the fact that d is strictly balanced, we deduce

that Z ∩ Zc ⊂ Xexc. Therefore, there exists an exceptional component E ⊆ Xexc such

that one of the following four possibilities occurs:

Case (I): E ⊆ Z and |E ∩ Zc| = 1,

Case (II): E ⊆ Z and |E ∩ Zc| = 2,

Case (III): E ⊆ Zc and |E ∩ Z| = 1,

Case (IV): E ⊆ Zc and |E ∩ Z| = 2.

Note that in Cases (II) or (IV), the intersection of E with Z or Zc consists either of

two distinct points or of one point of multiplicity two.

Claim: Cases (III) and (IV) cannot occur.

By contradiction, assume first that case (III) occurs. Consider the subcurve Z ∪ E
of X. We have clearly that 

dZ∪E = dZ + 1,

degZ∪EωX = degZωX ,

kZ∪E = kZ .
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Therefore, using (3.4), we have that

dZ∪E = dZ + 1 =
d

2g − 2
degZωX +

kZ
2

+ 1 =
d

2g − 2
degZ∪EωX +

kZ∪E
2

+ 1,

which contradicts the basic inequality (3.1) for d with respect to the subcurve Z ∪E ⊆
X.

Assume now that case (IV) occurs. For the subcurve Z ∪ E ⊆ X, we have that
dZ∪E = dZ + 1,

degZ∪EωX = degZωX ,

kZ∪E = kZ − 2.

Therefore, using (3.4), it follows that

dZ∪E = dZ + 1 =
d

2g − 2
degZωX +

kZ
2

+ 1 =
d

2g − 2
degZ∪EωX +

kZ∪E
2

+ 2,

which contradicts the basic inequality (3.1) for d with respect to the subcurve Z ∪E ⊆
X. The claim is now proved.

Therefore, only cases (I) or (II) can occur. Note that

(3.6) ZE = −|E ∩ Zc| =

−1 if case (I) occurs,

−2 if case (II) occurs.

Note also that, in any case, we must have that E ⊆ Z = Z1. Using (3.5), we get that

E ∩ Zci = ∅ for any i > 1, which implies that

(3.7) ZiE = 0 for any i > 1.

We now evaluate (3.3) at the subcurve E: using that dE = 1 because d is strictly

balanced and equations (3.6) and (3.7), we conclude that

d′E =

0 if case (I) occurs,

−1 if case (II) occurs.

In both cases, this contradicts the assumption that d′ is properly balanced. �

We conclude this subsection with the following Lemma, that will be used several

times in what follows.

Lemma 3.11. Let X, Y and Z be quasi-wp-stable curves of genus g ≥ 2. Let σ :

Z → X and σ′ : Z → Y be two surjective maps given by blowing down some of the

exceptional components of Z. Let d (resp. d′) be a properly balanced multidegree on X

(resp. on Y ). Denote by d̃ the pull-back of d on Z via σ, i.e., the multidegree on Z

given on a subcurve W ⊆ Z by

d̃W =

dσ(W ) if σ(W ) is a subcurve of X,

0 if W is contracted by σ to a point.

In a similar way, we define the pull-back d̃′ of d′ on Z via σ′. The following is true:
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(i) d̃ and d̃′ are balanced multidegrees.

(ii) If d is strictly balanced and d̃ ≡ d̃′ then there exists a map τ : X → Y such that

the following diagram commutes

Z
σ

~~

σ′

��
X

τ // Y

Proof. Part (i): let us prove that d̃ is balanced; the proof for d̃′ being analogous.

Consider a connected subcurve W ⊆ Z and let us show that d̃ satisfies the basic

inequality (3.1) with respect to the subcurve W ⊆ Z. If W is contracted by σ to a

point, then W must be an exceptional component of Z. In this case, we have that

d̃Z = 0, kW = 2 and degW (ωZ) = 0 so that (3.1) is satisfied. If σ(W ) is a subcurve

of X, then d̃W = dσ(W ) and, since σ contracts only exceptional components of Z, it

is easy to see that degW (ωZ) = degσ(W )(ωX) and that |W ∩W c| = |σ(W ) ∩ σ(W )c|.
Therefore, in this case, the basic inequality for d̃ with respect to W follows from the

basic inequality for d with respect to σ(W ).

Part (ii): start by noticing that if every exceptional component E ⊂ Z which is

contracted by σ is also contracted by σ′ then σ′ factors through σ, so the map τ exists.

Let us now prove that in order for the map τ to exist, it is also necessary that every

exceptional component E ⊂ Z which is contracted by σ is also contracted by σ′. By

contradiction, assume that τ exists and that there exists an exceptional component

E ⊂ Z which is contracted by σ but not by σ′. Then we have that

(3.8)

 d̃E = 0,

d̃′E = d′σ(E) = 1,

where in the last equation we have used that σ(E′) is an exceptional component of Y

and that d′ is properly balanced.

Since d̃ is equivalent to d̃′ by assumption, Fact 3.4 implies that we can find subcurves

W1 ⊂ . . . ⊂Wm ⊆ Z such that

(3.9) d̃ = d̃′ +

m∑
i=1

Wi,

(3.10) d̃′Wi
=

d

2g − 2
degWi

ωZ +
kWi

2
for 1 ≤ i ≤ m,

(3.11) W c
i ∩Wj = ∅ for i > j.

From (3.8) and (3.9), we get that

(3.12)

m∑
i=1

WiE
= −1.
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Denote by C1 and C2 the irreducible components of Y that intersect E, with the

convention that C1 = C2 if there is only one such irreducible component of Y that meets

E in two distinct points or in one point with multiplicity 2. It follows directly from

the definition of W (see Section 3) that for any subcurve W ⊆ Z with complementary

subcurve W c we have that

WE =



2 if E ⊆W c and C1 ∪ C2 ⊆W,

1 if E ⊆W c and exactly one among C1 and C2 is a subcurve of W,

0 if E ∪ C1 ∪ C2 ⊆W c or E ∪ C1 ∪ C2 ⊆W,

−1 if E ⊆W and exactly one among C1 and C2 is a subcurve of W,

−2 if E ⊆W and C1 ∪ C2 ⊆W c.

Using this formula, together with (3.12) and (3.11), it is easy to see that C1 must

be different from C2 and that, up to exchanging C1 with C2, there exists an integer

1 ≤ q ≤ m such that

(3.13)


E ∪ C1 ∪ C2 ⊆W c

i if i < q,

E ∪ C1 ⊂Wq and C2 ⊆W c
q ,

E ∪ C1 ∪ C2 ⊆Wi if i > q.

Let us now compute d̃Wq
. From (3.11), we get that

WiWq
=

−kWq if i = q,

0 if i 6= q.

Combining this with (3.9) and (3.10), we get that

(3.14) d̃Wq
= d̃′Wq

− kWq =
d

2g − 2
degWq

ωZ −
kWq

2
.

Consider now the subcurve σ(Wq) of X. By (3.14), we have that

dσ(Wq) = d̃Wq
=

d

2g − 2
degWq

ωZ −
kWq

2
=

d

2g − 2
degσ(Wq)ωX −

kσ(Wq)

2
,

and by (3.13) we have that

σ(Wq) ∩ σ(Wq)
c 6⊆ Xexc.

This contradicts the fact that d is strictly balanced.

�

4. Preliminaries on GIT

4.1. Hilbert and Chow schemes of curves. Fix, throughout this paper, two inte-

gers d and g ≥ 2 and write d := v(2g − 2) = 2v(g − 1) for some (uniquely determined)

rational number v. Set r + 1 := d− g + 1 = (2v − 1)(g − 1).

Let Hilbd,g (or Hilbd when g is clear from the context) be the Hilbert scheme

parametrizing subschemes of Pr = P(V ) having Hilbert polynomial P (m) := md+1−g,
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i.e., subschemes of Pr of dimension 1, degree d and arithmetic genus g. An element

[X ⊂ Pr] of Hilbd is thus a 1-dimensional scheme X of arithmetic genus g together

with an embedding X
i
↪→ Pr of degree d. We let OX(1) := i∗OPr(1) ∈ Picd(X). The

group GL(V ) ∼= GLr+1 (hence its subgroup SL(V ) ∼= SLr+1) acts on Hilbd via its

natural action on Pr = P(V ). Given an element [X ⊂ Pr] ∈ Hilbd, we will denote by

Orb([X ⊂ Pr]) its orbit with respect to the above action of GL(V ) (or equivalently of

SL(V )).

It is well-known (see [MS11, Lemma 2.1]) that for any m ≥ M :=
(
d
2

)
+ 1 − g and

any [X ⊂ Pr] ∈ Hilbd it holds that:

• OX(m) has no higher cohomology;

• The natural map

SymmV ∨ → Γ(OX(m)) = H0(X,OX(m))

is surjective.

Under these hypotheses, the m-th Hilbert point of [X ⊂ Pr] ∈ Hilbd is defined to be

[X ⊂ Pr]m :=
[
SymmV ∨ � Γ(OX(m))

]
∈ Gr(P (m),SymmV ∨) ↪→ P

P (m)∧
SymmV ∨

 ,

where Gr(P (m), SymmV ∨) is the Grassmannian variety parametrizing P (m)-dimensional

quotients of SymmV ∨, which lies naturally in P
(∧P (m) SymmV ∨

)
via the Plücker em-

bedding.

For any m ≥ M , we get a closed SL(V )-equivariant embedding (see [Mum66, Lect.

15]):

jm : Hilbd ↪→ Gr(P (m), SymmV ∨) ↪→ P(
∧P (m) SymmV ∨) := P

[X ⊂ Pr] 7→ [X ⊂ Pr]m.

Therefore, for any m ≥ M , we get an ample SL(V )-linearized line bundle Λm :=

j∗mOP(1) and we denote by

Hilbs,md ⊆ Hilbss,md ⊆ Hilbd

the locus of points that are stable and semistable with respect to Λm, respectively. If

[X ⊂ Pr] ∈ Hilbs,md (resp. [X ⊂ Pr] ∈ Hilbss,md ), we say that [X ⊂ Pr] is m-Hilbert

stable (resp. semistable).

The ample cone of Hilbd admits a finite decomposition into locally-closed cells, such

that the stable and the semistable locus are constant for linearizations taken from a

given cell [DH98, Theorem 0.2.3(i)]. In particular, Hilbs,md and Hilbss,md are constant

for m� 0. We set {
Hilbsd := Hilbs,md for m� 0,

Hilbssd := Hilbss,md for m� 0.

If [X ⊂ Pr] ∈ Hilbsd (resp. [X ⊂ Pr] ∈ Hilbssd , [X ⊂ Pr] ∈ Hilbssd \ Hilbsd), we say that

[X ⊂ Pr] is Hilbert stable (resp. semistable, strictly semistable). If [X ⊂ Pr] ∈ Hilbssd is
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such that the SL(V )-orbit Orb([X ⊂ Pr]) of [X ⊂ Pr] is closed inside Hilbssd then we

say that [X ⊂ Pr] is Hilbert polystable.

Let Chowd
j
↪→ P(⊗2SymdV ∨) := P′ the Chow scheme parametrizing 1-cycles of Pr of

degree d together with its natural SL(V )-equivariant embedding j into the projective

space P(⊗2SymdV ∨) (see [Mum66, Lect. 16]). Therefore, we have an ample SL(V )-

linearized line bundle Λ := j∗OP′(1) and we denote by

Chows
d ⊆ Chowss

d ⊆ Chowd

the locus of points of Chowd that are, respectively, stable and semistable with respect

to Λ.

There is an SL(V )-equivariant cycle map (see [MFK94, §5.4]):

Ch : Hilbd → Chowd

[X ⊂ Pr] 7→ Ch([X ⊂ Pr]).

We say that [X ⊂ Pr] ∈ Hilbd is Chow stable (resp. semistable, strictly semistable) if

Ch([X ⊂ Pr]) ∈ Chows
d (resp. Chowss

d , Chowss
d \Chows

d). We say that [X ⊂ Pr] ∈ Hilbd

is Chow polystable if Ch([X ⊂ Pr]) ∈ Chowss
d and its SL(V )-orbit is closed inside

Chowss
d . Clearly, this is equivalent to asking that [X ⊂ Pr] ∈ Ch−1(Chowss

d ) and that

the SL(V )-orbit Orb([X ⊂ Pr]) of [X ⊂ Pr] is closed inside Ch−1(Chowss
d ).

The relation between asympotically Hilbert (semi)stability and Chow (semi)stability

is given by the following (see [HH13, Prop. 3.13])

Fact 4.1. There are inclusions

Ch−1(Chows
d) ⊆ Hilbsd ⊆ Hilbssd ⊆ Ch−1(Chowss

d ).

In particular, there is a natural morphism of GIT-quotients

Hilbssd /SL(V )→ Ch−1(Chowss
d )/SL(V ).

Note also that in general there is no obvious relation between Hilbert and Chow

polystability.

4.2. Hilbert-Mumford numerical criterion for m-Hilbert and Chow (semi)sta-

bility. Let us now recall the Hilbert-Mumford numerical criterion for the m-Hilbert

(semi)stability and Chow (semi)stability of a point [X ⊂ Pr] ∈ Hilbd, following [Gie82,

Sec. 0.B] and [Mum77, Sec. 2] (see also [HM98, Chap. 4.B]). Although the criterion in

its original form involves one-parameter subgroups (in short 1ps) of SL(V ), it is tech-

nically convenient to work with 1ps of GL(V ) (see [Gie82, pp. 9-10] for an explanation

on how to pass from 1ps of SL(V ) to 1ps of GL(V ), and conversely).

Let ρ : Gm → GL(V ) be a 1ps and let x0, . . . , xr be coordinates of V that diagonalize

the action of ρ, so that for i = 0, . . . , r we have

ρ(t) · xi = twixi with wi ∈ Z.
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The total weight of ρ is by definition

w(ρ) :=
r∑
i=0

wi.

Given a monomial B = xβ00 . . . xβrr , we define the weight of B with respect to ρ to be

wρ(B) =
r∑
i=0

βiwi.

For any m ≥M as in Section 4.1 and any 1ps ρ of GL(V ), we introduce the following

function

(4.1) WX,ρ(m) := min


P (m)∑
i=1

wρ(Bi)

 ,

where the minimum runs over all the collections of P (m) monomials {B1, . . . , BP (m)} ⊂
SymmV ∨ which restrict to a basis of H0(X,OX(m)). It is easy to check that WX,ρ(m)

coincide with the filtered Hilbert function of [HH13, Def. 3.15]. In the sequel, we will

often write Wρ(m) instead of WX,ρ(m) when there is no danger of confusion.

The Hilbert-Mumford numerical criterion for m-th Hilbert (semi)stability translates

into the following (see [Gie82, p. 10] and also [HM98, Prop. 4.23]).

Fact 4.2 (Numerical criterion for m-Hilbert (semi)stability). Let m ≥ M as

before. A point [X ⊂ Pr] ∈ Hilbd is m-Hilbert stable (resp. semistable) if and only if

for every 1ps ρ : Gm → GL(V ) of total weight w(ρ) we have that

µ([X ⊂ Pr]m, ρ) :=
w(ρ)

r + 1
mP (m)−WX,ρ(m) > 0

(resp. ≥).

Indeed, the function µ([X ⊂ Pr]m, ρ) introduced above coincides with the Hilbert-

Mumford index of [X ⊂ Pr]m ∈ P
(∧P (m) SymmV ∨

)
relative to the 1ps ρ (see [MFK94,

2.1]).

The function WX,ρ(m) also allows one to state the numerical criterion for Chow

(semi)stability. According to [Mum77, Prop. 2.11] (see also [HH13, Prop. 3.16]),

the function WX,ρ(m) is an integer valued polynomial of degree 2 for m � 0. We

define eX,ρ (or eρ when there is no danger of confusion) to be the normalized leading

coefficient of WX,ρ(m), i.e.,

(4.2)

∣∣∣∣WX,ρ(m)− eX,ρ
m2

2

∣∣∣∣ < Cm,

for m� 0 and for some constant C.

The Hilbert-Mumford numerical criterion for Chow (semi)stability translates into

the following (see [Mum77, Thm. 2.9]).
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Fact 4.3 (Numerical criterion for Chow (semi)stability). A point [X ⊂ Pr] ∈
Hilbd is Chow stable (resp. semistable) if and only if for every 1ps ρ : Gm → GL(V )

of total weight w(ρ) we have that

eX,ρ < 2d · w(ρ)

r + 1

(resp. ≤).

Remark 4.4. Observe that 2d · w(ρ)
r+1 is the normalized leading coefficient of the poly-

nomial w(ρ)
r+1mP (m) = w(ρ)

r+1m(dm+ 1− g). Therefore, combining Fact 4.3 and Fact 4.2

for m� 0, one gets a proof of Fact 4.1.

The following definition is very natural.

Definition 4.5. Let [X ⊂ Pr] ∈ Hilbd and ρ be a one-parameter subgroup of GLr+1.

We say that

(i) [X ⊂ Pr] is Hilbert semistable (resp. Chow semistable) with respect to ρ if

WX,ρ(m) ≤ w(ρ)

r + 1
mP (m) for m� 0

(
resp. eX,ρ ≤

2d

r + 1
w(ρ)

)
;

Moreover, we say that [X ⊂ Pr] is Hilbert strictly semistable (resp. Chow strictly

semistable) with respect to ρ if

WX,ρ(m) =
w(ρ)

r + 1
mP (m) for m� 0

(
resp. eX,ρ =

2d

r + 1
w(ρ)

)
;

(ii) [X ⊂ Pr] is Hilbert stable (resp. Chow stable) with respect to ρ if

WX,ρ(m) <
w(ρ)

r + 1
mP (m) for m� 0

(
resp. eX,ρ <

2d

r + 1
w(ρ)

)
;

(iii) [X ⊂ Pr] is Hilbert polystable (resp. Chow polystable) with respect to ρ if one of

the following conditions is satisfied:

(a) [X ⊂ Pr] is Hilbert stable (resp. Chow stable) with respect to ρ;

(b) [X ⊂ Pr] is Hilbert strictly semistable (resp. Chow strictly semistable) with

respect to ρ and

lim
t→0

ρ(t)[X ⊂ Pr] ∈ Orb([X ⊂ Pr]).

Remark 4.6. Let [X ⊂ Pr] ∈ Hilbd and ρ be a one-parameter subgroup of GLr+1. Ap-

plying Definition 4.5, Fact 4.2 and Fact 4.3 we have that [X ⊂ Pr] is Hilbert semistable

(resp. polystable, stable) if and only if [X ⊂ Pr] is Hilbert semistable (resp. polystable,

stable) with respect to any one-parameter subgroup of GLr+1. The same holds for the

Chow semistability (resp. polystability, stability).

Let [X ⊂ Pr] ∈ Hilbd. If C is a subscheme of X of aritmetic genus gC , we can

consider the new point [C ⊂ Pr] ∈ HilbdegOC(1),gC and also WC,ρ(m) and eC,ρ with

respect to a one-parameter subgroup ρ : Gm → GLr+1. The next result says that we

can estimate or compute eX,ρ in terms of the weights of the subschemes of X.
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Proposition 4.7. Let [X ⊂ Pr] ∈ Hilbd and let ρ be a one-parameter subgroup of

GLr+1.

(i) If Y is a subscheme of X and the weights of ρ are non-negative, then WX,ρ(m) ≥
WY,ρ(m) (in particular eX,ρ ≥ eY,ρ).

(ii) If X is reduced (possibly non connected), has pure dimension 1 and {Xi}i=1,...,n

is a collection of subcurves of X such that

(Xi)
c =

⋃
k 6=i

Xk

for each i = 1, . . . , n, then

eX,ρ =

n∑
i=1

eXi,ρ.

Proof. Let us prove (i). Denote by PX and PY the Hilbert polynomials of X and Y ,

respectively, and consider a monomials basis {B1, . . . , BPX(m)} of H0(X,OX(m)) such

that

WX,ρ(m) =

PX(m)∑
i=1

wρ(Bi).

Since the restriction map H0(X,OX(m)) −→ H0(Y,OY (m)) is onto for m� 0, up to

reordering the monomials, we can assume that {B1, . . . , BPY (m)} is a monomial basis

of H0(Y,OY (m)). Hence

WY,ρ(m) ≤
PY (m)∑
i=1

wρ(Bi) ≤
PX(m)∑
i=1

wρ(Bi) = WX,ρ(m)

and (i) is proved.

Now we will prove (ii). We can assume that n = 2. Let x1, . . . , xr+1 be the co-

ordinates of V that diagonalize ρ and denote by w1, . . . , wr+1 ∈ Z the weights of ρ.

Consider the exact sequence of sheaves

(4.3) 0 −→ OX −→ OX1 ⊕OX2 −→ OX1∩X2 −→ 0

and the other ones obtained by tensoring (4.3) by OX(m) with m ∈ Z. For m� 0 we

get the exact sequence

0→ H0(OX(m))
(|X1

,|X2
)

−→ H0(OX1(m))⊕H0(OX2(m)) −→ H0(OX1∩X2(m))→ 0.

Since X1 ∩ X2 is a 0-dimensional of length k := kX1 = kX2 , we have h0(X1 ∩
X2,OX1∩X2(m)) = k for each m ∈ Z. Denote by P (m), P1(m), P2(m) the Hilbert

polynomials of X, X1, and X2 respectively (satisfying P1(m) + P2(m) = P (m) + k by

the last exact sequence) and let {B1, . . . , BP (m)} be a monomial basis of H0(X,OX(m))

such that

WX,ρ(m) =

P (m)∑
i=1

wρ(Bi).
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Now, consider the linear independent vectors

C1 = (B1|X1
, B1|X2

), . . . , CP (m) = (BP (m)|X1
, BP (m)|X2

) ∈ H0(OX1(m))⊕H0(OX2(m))

Adding other vectors CP (m)+j = (B1j , B2j) for j = 1, . . . , k, we can complete the lin-

ear independent set {C1, . . . , CP (m)} to a basis of H0(X1,OX1(m))⊕H0(X2,OX2(m)).

Now, it is easy to check that, up to reordering the vectors, π1(C1), . . . , π1(CP1(m)) are

linear independent in H0(X1,OX1(m)) and π2(CP1(m)+1), . . . , π2(CP (m)+k) are linear

independent inH0(X2,OX2(m)), where we denote by πi the projection ofH0(X1,OX1(m))⊕
H0(X2,OX2(m)) onto the i-th factor. This implies that, up to reordering the vectors

again, there exists k1 ∈ Z with k1 ≤ k such that B1|X1
, . . . , BP1(m)−k1 |X1

are linear

independent in H0(X1,OX1(m)) and BP1(m)−k1+1|X2
, . . . , BP (m)|X2

are linear indepen-

dent in H0(X2,OX2(m)). Finally, setting k2 := k−k1, we can consider other monomials

B′1, . . . , B
′
k1
, B′′1 , . . . , B

′′
k2

so that

{B1, . . . , BP1(m)−k1 , B
′
1, . . . , B

′
k1} is a monomial basis for H0(X1,OX1(m)),

{BP1(m)−k1+1, . . . , BP (m), B
′′
1 , . . . , B

′′
k2} is a monomial basis for H0(X2,OX2(m)).

Denoting by w̃ = maxi{wi}, we have

WX,ρ(m) =

P (m)∑
i=1

wρ(Bi) =

P1(m)−k1∑
i=1

wρ(Bi) +

P (m)∑
i=P1(m)−k1+1

wρ(Bi)

≥ WX1,ρ(m)−
k1∑
i=1

wρ(B
′
i) +WX2,ρ(m)−

k2∑
i=1

wρ(B
′′
i )

≥ WX1,ρ(m) +WX2,ρ(m)− kw̃m =

(
eX1,ρ + eX2,ρ

2

)
m2 +O(m),

which implies that

eXρ ≥ eX1,ρ + eX2,ρ.

Now, we will prove the reverse inequality. Let F be a homogeneous polynomial of

degree h ≥ 1 vanishing identically on X1 and regular on X2. Let {B1, . . . , BP1(m)}
be a monomial basis of H0(X1,OX1(m)) and {B′1, . . . , B′P2(m−h)} a monomial basis of

H0(X2,OX2(m− h)) such that

WX1,ρ(m) =

P1(m)∑
i=1

wρ(Bi) and WX2,ρ(m− h) =

P2(m−h)∑
i=1

wρ(B
′
i).

It is easy to check that B1, . . . , BP1(m), FB
′
1, . . . , FB

′
P2(m−h) are linearly independent

in H0(X,OX(m)), so that, setting d2 = degX2, we have

dim
〈
B1, . . . , BP1(m), FB

′
1, . . . , FB

′
P2(m−h)

〉
= P1(m) + P2(m− h)

= P1(m) + P2(m)− d2h

= P (m) + k − d2h ≤ P (m).(4.4)
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Adding possibly other monomials B′′1 , . . . , B
′′
d2h−k, we get a basis of H0(X,OX(m)).

Actually we would like to work with a monomial basis in order to apply the Hilbert-

Mumford numerical criterion (Fact 4.3), so suppose that F = M1 + . . . + Mp, where

M1, . . . ,Mp are monomials of degree h. It is an easy exercise to prove that for j =

1, . . . , P2(m− h) we can choose monomials Mij such that

B1, . . . , BP1(m),Mi1B
′
1, . . . ,MiP2(m−h)

B′P2(m−h), B
′′
1 , . . . , B

′′
d2h−l

are linearly independent. For each m� 0 we get

WX,ρ(m) ≤
P1(m)∑
j=1

wρ(Bj) +

P2(m−h)∑
j=1

wρ(MijB
′
j) +

d2h−k∑
j=1

wρ(B
′′
j )

≤ WX1,ρ(m) +WX2,ρ(m− h) + hw̃P2(m− h) + (d2h− k)w̃m

=

(
eX1,ρ + eX2,ρ

2

)
m2 +O(m).

This implies that

eXρ ≤ eX1,ρ + eX2,ρ

and we are done. �

Remark 4.8. Proposition 4.7(ii) improves the estimate of [HM98, Chap. 4, Ex. 4.49],

which however holds even for non-reduced 1-dimensional complete subschemes of Pr.

Proposition 4.7(ii) holds only for the Chow weight. We will see later a class of

examples with n = 2 (see Lemma 8.1) that in general do not satisfy the equality

WX,ρ(m) = WX1,ρ(m) +WX2,ρ(m).

4.3. Basins of attraction. Basins of attraction represent a useful tool in the study

of the orbits which are identified in a GIT quotient. We review the basic definitions,

following the presentation in [HH13, Sec. 4].

Definition 4.9. Let [X0 ⊂ Pr] ∈ Hilbd and ρ : Gm → GLr+1 a 1ps of GLr+1 that

stabilizes [X0 ⊂ Pr]. The ρ-basin of attraction of [X0 ⊂ Pr] is the subset

Aρ([X0 ⊂ Pr]) := {[X ⊂ Pr] ∈ Hilbd : lim
t→0

ρ(t) · [X ⊂ Pr] = [X0 ⊂ Pr]}.

Clearly, if [X ⊂ Pr] ∈ Aρ([X0 ⊂ Pr]) then [X0 ⊂ Pr] belongs to the closure

of the SLr+1-orbit O([X ⊂ Pr]) of [X ⊂ Pr]. Therefore, if [X0 ⊂ Pr] is Hilbert

semistable (resp. Chow semistable) then every [X ⊂ Pr] ∈ Aρ([X0 ⊂ Pr]) is Hilbert

semistable (resp. Chow semistable) and is identified with [X0 ⊂ Pr] in the GIT quotient

Hilbssd /SLr+1 (resp. Ch−1(Chowss
d )/SLr+1).

The following well-known properties of the basins of attraction (see e.g. [HH13, p.

24-25]) will be used in the sequel.

Fact 4.10. Same notation as in Definition 4.9 and let m ≥M as in Section 4.1.

(i) If µ([X0 ⊂ Pr]m, ρ) < 0 (resp. eX0,ρ > 2d · w(ρ)
r+1 ) then every [X ⊂ Pr] ∈ Aρ([X0 ⊂

Pr]) is not m-Hilbert semistable (resp. not Chow semistable).
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(ii) If µ([X0 ⊂ Pr]m, ρ) = 0 (resp. eX0,ρ = 2d · w(ρ)
r+1 ) then [X0 ⊂ Pr] is m-Hilbert

semistable (resp. Chow semistable) if and only if every [X ⊂ Pr] ∈ Aρ([X0 ⊂ Pr])
is m-Hilbert semistable (resp. Chow semistable).

4.4. Flat limits and Gröbner bases. A useful technique for computing the limit

limt→0 ρ(t)[X ⊂ Pr] is based on the theory of Gröbner bases (see [HeHi11] for the

general theory and [HHL07] and for its applications to GIT). Let ρ : Gm → GL(V ) be

a 1ps and let {x1, . . . , xr+1} be coordinates of V that diagonalize the action of ρ, so

that for i = 1, . . . , r + 1 we have

ρ(t) · xi = twixi for some wi ∈ Z.

If a = (a1, . . . , ar+1) ∈ Nr+1, we define the monomial

xa := xa11 x
a2
2 . . . x

ar+1

r+1 ∈ S := k[x1, . . . , xr+1].

Let us define the following order ≺ρ (called the ρ-weighted graded order) on the set of

monomials of S. If xa and xb are monomials, we say that xa ≺ρ xb if

(1) deg xa < deg xb or

(2) deg xa = deg xb and wρ(x
a) < wρ(x

b).

It is easy to notice that the order ≺ρ is not total, in general. In order to have a

monomial order ≺ that refines ≺ρ, it suffices to fix a lexicographical order < on the set

of monomials of S, for example the one induced by declaring that x1 < x2 < . . . < xr+1,

and to say that xa ≺ xb if

(1) xa ≺ρ xb or

(2) deg xa = deg xb, wρ(x
a) = wρ(xb) and xa < xb.

We call the above monomial order ≺ a ρ-weighted lexicographic order. Moreover, if

f =
∑
cax

a ∈ S and I is an ideal of S, we denote by

(1) in≺ρ(f) the sum of the terms of f of maximal order with respect to ≺ρ;
(2) in≺ρ(I) = 〈in≺ρ(f) | f ∈ I〉;
(3) in≺(f) the monomial (hence without coefficient) of maximal order with respect

to ≺;

(4) c≺(f) the coefficient of in≺(f) in f ;

(5) in≺(I) = 〈in≺(f) | f ∈ I〉;
(6) w(f) = max{wρ(xa) | ca 6= 0} and f̃(x1, . . . , xr+1, t) = tw(f)f(t−w1x1, . . . , t

−wr+1xr+1);

(7) Ĩ = 〈f̃ , f | f ∈ I〉 ⊂ S[t].

Now, we recall the definition of Gröbner basis with respect to a monomial order (see

[HeHi11, Definition 2.1.5]).

Definition 4.11. Let I be an ideal of S and ≺ a monomial order. A system of

generators {f1, . . . , fn} of I is said to be a Gröbner basis for I with respect to ≺ if

in≺(I) = 〈in≺(f1), . . . , in≺(fn)〉.
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In the sequel, we will use some facts about Gröbner bases. First of all, we recall a

famous criterion to determine if a system of generators of an ideal is a Gröbner basis

or not (cf. [HeHi11, Theorem 2.3.2]). Let f1, f2 ∈ S be two homogeneous polynomial

and define

S(f1, f2) =
l.c.m.(in≺(f1), in≺(f2))

c≺(f1) in≺(f1)
f1 −

l.c.m.(in≺(f1), in≺(f2))

c≺(f2) in≺(f2)
f2.

where l.c.m.(in≺(f1), in≺(f2)) is the least common multiple of in≺(f1) and in≺(f2).

Fact 4.12. (Buchberger’s criterion) Let I = 〈f1, . . . , fn〉 be an ideal in S and ≺ a

monomial order. The system of generators {f1, . . . , fn} is a Gröbner basis with respect

to ≺ if and only if

in≺(S(fi, fj)) ∈ 〈in≺(f1), . . . , in≺(fn)〉
for each i, j ∈ {1, . . . , n}.

Now, we recall a basic fact about the relation between Gröbner bases and flat limits

(see [HHL07, Theorem 3] or for more details [HeHi11, Sec. 3.2]).

Fact 4.13. If I ⊂ S is an ideal, then the k[t]-algebra S[t]/Ĩ is free as a k[t]-algebra.

Moreover, the following hold:

(4.5) S[t]/Ĩ ⊗k[t] k[t, t−1] ∼= (S/I)[t, t−1] and S[t]/Ĩ ⊗k[t] k[t]/(t) ∼= S/in≺ρ(I).

We obtain a useful corollary.

Corollary 4.14. Let [X ⊂ Pr] ∈ Hilbd and let ρ be a one-parameter subgroup of GLr+1.

Denote by I the homogeneous ideal of X. Then [V (in≺ρ(I)) ⊂ Pr] = limt→0 ρ(t)[X ⊂
Pr].

Proof. By Fact 4.13 we have a family of curves X → A1 whose central fiber is V (in≺ρ(I)) ⊂
Pr. This yields a map β : A1 → Hilbd which coincides away from 0 ∈ A1 with the map

α : A1 → Hilbd induced by ρ. Since Hilbd is projective, the maps α and β coincides

everywhere and we are done. �

Finally, the following fact allows us to compute explicitly the ideal in≺ρ(I) (see

[HHL07, Theorem 3] or for more details [HeHi11, Sec. 3.2]).

Fact 4.15. Let {f1, . . . , fn} be a Gröbner basis for I with respect to a ρ-weighted

lexicographical order ≺ that refines ≺ρ. Then

(i) f̃1, . . . , f̃n generate Ĩ;

(ii) in≺ρ(f1), . . . , in≺ρ(fn) generate in≺ρ(I).

4.5. The parabolic group. Here we recall a classical result due to J. Tits (see for

more details [Dol03, Sec. 9.5] or [MFK94, Chap. 2, Sec. 2]) which is very useful

to study the semistable locus of the action of a reductive group G on an algebraic

variety. Let X ⊂ P(V ) be a projective variety and G a reductive group that acts

on X via a linear representation in V . For the sake of simplicity we assume that
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G = GL(W ) for some vector space W . By the Hilbert-Mumford criterion, x ∈ X is

semistable if and only if for every one-parameter subgroup ρ : Gm → GL(W ) we have

that µ(x, ρ) ≥ 0. We know that every one-parameter subgroup is diagonalized by some

basis of V . A priori, it does not suffice to check the condition of the Hilbert-Mumford

criterion for all one-parameter subgroups, which are diagonalized by a fixed basis of V :

this represents the main difficulty in characterizing the semistable locus. Tit’s result

allows one to identify the one-parameter subgroups which give the “worst” weights so

that the research of a destabilizing one-parameter subgroup is less intricate.

Definition 4.16. We define the parabolic group with respect to a one-parameter

subgroup ρ by setting

P (ρ) =
{
g ∈ GL(W ) | there exists lim

t→0
ρ(t)gρ(t)−1

}
⊂ GL(W ).

Fact 4.17. The group P (ρ) is a parabolic subgroup of GL(W ), i.e. it contains a Borel

subgroup. Moreover, if x ∈ X, then µ(x, ρ) = µ(x,A−1ρA) for each A ∈ P (ρ).

For a proof see [Dol03, Lemma 9.2, Lemma 9.3] or [MFK94, Def. 2.3/Prop. 2.6].

It is not difficult to show that when we consider the action of GLr+1 on Hilbd, if

the weights of the 1ps ρ with respect to a diagonalizing basis {x1, . . . , xr+1} of V

satisfy the inequalities w1 ≥ . . . ≥ wr+1, then P (ρ) contains the group of the upper

triangular matrices with respect to the coordinates {x1, . . . , xr+1}. This fact has a

useful consequence.

Corollary 4.18. Let [X ⊂ Pr] ∈ Hilbd and let Y := (y1, . . . , yr+1)t be an arbitrary

basis of V .

(i) Let ρ : Gm → GLr+1 be a 1ps diagonalized by the basis coordinates X = (x1, . . . , xr+1)t

with weights w1, . . . , wr+1, respectively. Then there exist a lower unitriangular

matrix A = (aij) and a one-parameter subgroup ρ′ : Gm → GLr+1 diagonalized

by the new coordinates (z1, . . . , zr+1)t =: Z = AY such that

ρ′(t)zi = twσ(i)zi for some σ ∈ Sr+1 and WX,ρ(m) = WX,ρ′(m) for m� 0.

(ii) [X ⊂ Pr] is Hilbert semistable (resp. polystable, stable) if and only if it is Hilbert

semistable (resp. polystable, stable) with respect to all the one-parameter sub-

groups which are diagonalized by Z = AY for every lower unitriangular matrix

A. The same holds for the Chow semistability (resp. polystability, stability).

Proof. In order to prove (i), it suffices to assume that w1 ≥ . . . ≥ wr+1 and that

y1 = x1, . . . , yl−1 = xl−1, yl = y =
r+1∑
i=1

λixi, yl+1 = xl+1, . . . , yr+1 = xr+1,

where λ1, . . . , λr+1 ∈ k. Now, we define the following basis of coordinates:

zi = xi if i 6= l and zl = y −
l−1∑
i=1

λixi =

r+1∑
i=l

λixi.
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Let A and B be the matrices such that Z = AY = BX. By construction, A is lower

unitriangular and B is upper unitriangular, hence B ∈ P (ρ) by Fact 4.17 and

(4.6) WX,ρ(m) = WX,B−1ρB(m)

for m � 0. Now, if we define ρ′ = B−1ρB, then ρ′ is diagonalized by the coordinates

Z.

It remains to prove (ii). The “only if” implication follows from Remark 4.6. In

order to prove the “if” direction, consider a 1ps ρ of GLr+1 diagonalized by a basis

X = (x1, . . . , xr+1). Using (i), we can find a lower unitriangular matrix A such that

the 1ps ρ′ := A−1ρA is diagonalized by the basis Z = AY and is such that

(4.7) w(ρ′) = w(ρ) and WX,ρ′(m) = WX;ρ(m) for � 0.

The equalities (4.7) imply (ii) for the (semi)stability. Now, let us prove (ii) for the

polystability. Since A ∈ P (ρ), there exists limt→0(ρ(t)Aρ(t)−1): call it B. We have

lim
t→0

ρ′(t)[X ⊂ Pr] = lim
t→0

(A−1ρ(t)A[X ⊂ Pr]) = lim
t→0

A−1(ρ(t)Aρ(t)−1)(ρ(t)[X ⊂ Pr])

= A−1 · lim
t→0

(ρ(t)Aρ(t)−1) · lim
t→0

ρ(t)[X ⊂ Pr]

= A−1B · lim
t→0

ρ(t)[X ⊂ Pr].(4.8)

Combining (4.7) and (4.8), we see that [X ⊂ Pr] is Hilbert (resp. Chow) polystable

with respect to ρ′ if and only if it Hilbert (resp. Chow) polystable with respect to ρ;

combined with Remark 4.6, this concludes the proof of (ii). �

4.6. Stability of smooth curves and Potential stability. Here we recall two basic

results due to Mumford and Gieseker: the stability of smooth curves of high degree

and the (so-called) potential stability theorem.

Fact 4.19. If [X ⊂ Pr] ∈ Hilbd is connected and smooth and d ≥ 2g+ 1 then [X ⊂ Pr]
is Chow stable.

For a proof, see [Mum77, Thm. 4.15]. In [Gie82, Thm. 1.0.0], a weaker form of the

above Fact is proved: if [X ⊂ Pr] ∈ Hilbd is connected and smooth and d ≥ 10(2g− 2)

then [X ⊂ Pr] is Hilbert stable. See also [HM98, Chap. 4.B] and [Mor10, Sec. 2.4] for

an overview of the proof.

Fact 4.20 (Potential stability). If d > 4(2g−2) and [X ⊂ Pr] ∈ Ch−1(Chowss
d ) ⊂ Hilbd

(with X possibly non connected) then:

(i) X is reduced of pure dimension one and has at most nodes as singularities. In

particular, X is a pre-stable curve whenever it is connected.

(ii) X ⊂ Pr is non-degenerate, linearly normal (i.e., X is embedded by the complete

linear system |OX(1)|) and OX(1) is non-special (i.e., H1(X,OX(1)) = 0).

(iii) The line bundle OX(1) on X is balanced (see Definition 3.7).
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Proof. For the connected case, see [Mum77, Prop. 4.5]. In [Gie82, Thm. 1.0.1, Prop.

1.0.11], the same conclusions are shown to hold under the stronger hypothesis that

[X ⊂ Pr] ∈ Hilbssd and d ≥ 10(2g − 2). See also [HM98, Chap. 4.C] and [Mor10, Sec.

3.2] for an overview of the proof. If X is not connected, the argument is analogous to

Theorem 5.1 below. �

Remark 4.21. The hypothesis that d > 4(2g − 2) in Fact 4.20 is sharp: in [HM10] it

is proved that all the 4-canonical p-stable curves (which in particular can have cusps)

belong to Hilbs4(2g−2).

5. Potential pseudo-stability theorem

The aim of this section is to generalize the Potential stability theorem (see Fact

4.20) for smaller values of d. The main result is the following theorem, which we call

Potential pseudo-stability Theorem for the relations with the pseudo-stable curves (see

Definition 2.1(ii)).

Theorem 5.1. (Potential pseudo-stability theorem) If d > 2(2g − 2) and [X ⊂ Pr] ∈
Ch−1(Chowss

d ) ⊂ Hilbd (with X possibly not connected), then

(i) X is a pre-wp-stable curve, i.e. it is reduced and its singularities are at most

nodes, cusps and tacnodes with a line.

(ii) X ⊂ Pr is non-degenerate, linearly normal (i.e., X is embedded by the complete

linear system |OX(1)|) and OX(1) is non-special (i.e., H1(X,OX(1)) = 0);

(iii) The line bundle OX(1) on X is balanced (see Definition 3.7).

Proof. To prove the claim, we adapt various results in [Mum77], [Gie82], [Sch91] and

[HH13, Sec. 7]. Let us indicate the different steps of the proof. Suppose that [X ⊂
Pr] ∈ Ch−1(Chowss

d ) ⊂ Hilbd (with X possibly non connected). We will denote by

X ′ ⊂ X the union of the connected components of X of dimension 1.

• X ′ is non-degenerate: the same proof of [Gie82, Prop. 1.0.2] shows that if X ′

is degenerate, then there exists a 1ps ρ with positive weights such that

eX′,ρ >
2d

r + 1
w(ρ),

without any assumption on d. By Proposition 4.7(i), we have eX,ρ ≥ eX′,ρ, so

that [X ⊂ Pr] is Chow unstable.

• X ′ = Y t Z, where Y is generically reduced and Z is a disjoint union of P1’s

of multiplicity 2.

If X ′ is connected, this follows, using Proposition 4.7(i), from [Sch91, Lemma

2.4], which works under the assumption that d > 2(2g − 2), or from [HH13,

Lemma 7.4], which works under the assumption that d > 3
2(2g − 2). Notice

that if X ′ is connected then X ′ = Y .

Now suppose that X ′ is not connected. We use some ideas from [Sch91,

Lemma 2.4]. Let C be a connected component of X ′ such that is not generically

reduced. There are two cases:
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(1) C is reducible;

(2) C is irreducible.

Suppose that case (1) occurs. Pick an irreducible component D of C having

multiplicity greater than 1. Following the first part of the proof of [Sch91,

Lemma 2.4], we get that there exists a 1ps ρ with w(ρ) = 1 such that eC,ρ ≥ 3.

By Proposition 4.7(i), we have

eX,ρ ≥ eC,ρ ≥ 3 >
2d

r + 1
if

d

r + 1
<

3

2

(
⇐⇒ d >

3

2
(2g − 2)

)
;

hence, under our assumption on d, [X ⊂ Pr] is Chow unstable.

It remains to analyze case (2). If degOX(1)|Cred
≥ 2, then the second part

of the proof of [Sch91, Lemma 2.4] gives a 1ps ρ with positive weights and

w(ρ) = 3 such that eC,ρ ≥ 8, so that by Proposition 4.7(i) we have

eX,ρ ≥ eC,ρ ≥ 8 >
6d

r + 1
if

d

r + 1
<

4

3

(
⇐⇒ d > 2(2g − 2)

)
;

hence, [X ⊂ Pr] is Chow unstable. If degOX(1)|Cred
= 1 (i. e. Cred is a line),

the last proof does not work. Suppose that the multiplicity of C is n, with

n ≥ 3. Let {x1 . . . , xr+1} be a system of coordinates in Pr such that

Cred =
r+1⋂
i=3

{xi = 0}

and consider a 1ps ρ diagonalized by {x1 . . . , xr+1} with weights w1 = w2 = 1

and w3 = . . . = wr+1 = 0. We obtain that

eX,ρ ≥ n eCred,ρ ≥ 6 >
2d

r + 1
w(ρ) =

4d

r + 1
if

d

r + 1
<

3

2

(
⇐⇒ d >

3

2
(2g − 2)

)
and again [X ⊂ Pr] is Chow unstable. We deduce that if C is a non-reduced

irreducible component of X ′, then C is a P1 with multiplicity two.

• Y does not have triple points: using Proposition 4.7(i), same proof as that

of [Mum77, Prop. 3.1, p. 69] (see also [Sch91, Lemma 2.1]) or [Gie82, Prop.

1.0.4], both of which are easily seen, by direct inspection, to work under the

assumption that d > 3
2(2g − 2).

• Y does not have non-ordinary cusps: using Proposition 4.7(i), same proof of

[Sch91, Lemma 2.3] which works for d > 2(2g−2) or [HH13, Lemma 7.2] which

works for d > 25
14(2g − 2).

• Y does not have higher order tacnodes or tacnodes in which one of the two

branches does not belong to a line: using Proposition 4.7(i), same proof of

[Sch91, Lemma 2.2], which works for d > 2(2g − 2).

• H1(Xred,OXred
(1)) = 0. Since it is obvious that

H1(Xred,OXred
(1)) = H1(X ′red,OX′red(1))

and H1(Zred,OZred
(1)) = 0, it suffices to prove that H1(Yred,OYred(1)) = 0. We

use the Clifford’s theorem for reduced curves with nodes, cusps and tacnodes
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of [HH13, Thm. 7.7] (generalizing the Clifford’s theorem of Gieseker-Morrison

for nodal curves in [Gie82, Thm. 0.2.3]). From the proof of [HH13, Thm. 7.7],

we deduce the following

Fact 5.2 (Clifford’s theorem). Let X be a reduced connected curve with

nodes, cusps and tacnodes and let L be a line bundle on X generated by global

sections. Assume that H1(X,L) 6= 0 and consider a non-zero section s ∈
H0(X,ωX ⊗L−1) ∼= H1(X,L)∨. Let C be the subcurve of X which is the union

of all the irreducible components of X where s is not identically zero. Then

(5.1) h0(C,L|C) ≤ degCL

2
+ 1.

We will follow the same argument used by Gieseker in the Claim of [Gie82,

Prop. 1.0.8] with some modifications. Suppose, by contradiction, that

H1(Yred,OYred(1)) 6= 0 :

there exists a connected component W ⊂ Yred such that H1(W,OW (1)) 6= 0.

Choose a non-zero section

0 6= s ∈ H0(W,ωW ⊗OW (−1)) ∼= H1(W,OW (1))∨.

Let C be the subcurve of W which is the union of all the irreducible components

of W where s is not identically zero. Fact 5.2 implies that

h0(C,OC(1)) ≤ degCO(1)

2
+ 1.

We notice that s vanishes at the points of intersection of C with the comple-

mentary subcurve Cc. It is easy to check that the proof of [Gie82, Prop. 1.0.7]

works without any assumption on d and even if kC = 0. We obtain

2 degCO(1) ≤ 2d

r + 1
h0(C,OC(1)) ≤ 2d

r + 1

(
degCO(1)

2
+ 1

)
.

Using our assumption d > 2(2g − 2), which is equivalent to the inequality
d

r + 1
<

4

3
, we get that

2 degCO(1) <
4

3
(degCO(1) + 2) ⇐⇒ degCO(1) < 4 ⇐⇒ degCO(1) = 1, 2 or 3.

Firstly suppose that degCOC(1) = 1 or 2. If C is irreducible, then C ∼= P1

and we get a contradiction since H1(P1,OP1(1)) = 0 and H1(P1,OP1(2)) = 0.

If C is reducible, then degCO(1) = 2 and we can write C = C1 ∪ C2 where

C1
∼= C2

∼= P1, degC1
O(1) = degC2

O(1) = 1 (i.e. C1 and C2 are lines) and

|C1 ∩ C2| = 1. This gives the exact sequence

0 −→ OC1 ⊕OC2 −→ OC(1) −→ OC1∩C2 −→ 0.

From the exact sequence of cohomology we get that H1(C,OC(1)) = 0 and

again we have a contradiction.
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Now suppose that degCOC(1) = 3. If C is irreducible, then either C ∼= P1

or C is an elliptic curve (smooth, nodal or cuspidal) in 〈C〉 ∼= P2, so we obtain

that H1(C,OC(1)) = 0, which is absurd. Finally assume that C is reducible.

If C has 2 irreducible components C1 and C2, then C1
∼= C2

∼= P1 and, up

to reordering, we can assume that degC1
O(1) = 1 (i.e. C1 is a line) and

degC2
O(1) = 2 (i.e. C2 is a conic). There are two cases: either |C1 ∩ C2| = 2

(which happens if and only if C1 and C2 lie in the same plane) or |C1∩C2| = 1.

In the former case, we have the following exact sequence

0 −→ OC1(−1)⊕OC2 −→ OC(1) −→ OC1∩C2 −→ 0.

Again using the exact sequence of cohomology, we obtain that H1(C,OC(1)) =

0, absurd. The latter case is dealt with similarly and it is left to the reader. If

C has 3 irreducible components C1, C2 and C3, then C1
∼= C2

∼= C3
∼= P1 and

degC1
O(1) = degC2

O(1) = degC3
O(1) = 1 (i.e C1, C2 and C3 are lines). There

are two cases: either each of the Ci’s intersects all the others (which happens

if and only if the Ci’s lie on the same plane) or the Ci’s form a chain. In the

former case, there is the exact sequence

0 −→ OC1(−1)⊕OC2(−1)⊕OC3(−1) −→ OC(1) −→ Op ⊕Oq ⊕Or −→ 0

from which we obtain again H1(C,OC(1)) = 0, absurd. The latter case is

similar and left to the reader.

• X ′ is generically reduced, i.e. Z = ∅. The proof uses some ideas from [Gie82,

Prop. 1.0.2]. Suppose, by contradiction, that Z 6= ∅ and let E ⊂ Z be a

connected component of Z. By hypothesis E is a double line. Setting I = I(E),

consider a primary decomposition

I = J1 ∩ . . . ∩ Jk.

where J1 is I(Ered)-primary. We notice that J1 is uniquely determined by

[Mat89, Thm. 6.8(iii)] and there exists a system of coordinates {x1 . . . , xr+1}
in Pr such that

J1 ⊂ 〈x3, . . . , xr, x
2
r+1〉 := J.

Denote by E0 the subscheme of E defined by J and setW := Ec, n := h0(Z,OZ)

and m := h0(Y,OY ). Consider the exact sequence

(5.2) 0 −→ OWred
−→ O(1)|Wred

−→ OD −→ 0,

where D is a divisor associated to O(1)|Wred
with support on the smooth locus

of Wred. Observing that g(E) ≤ g(E0) = 0, it is easy to check that

h0(OWred
) = m+ n− 1, h1(OWred

) ≥ g + 1 +m+ n− 2 and h0(OD) = d− 1− n,
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so that from the exact sequence of cohomology associated to (5.2) we obtain

that

h0(Wred,O(1)|Wred
) = h0(Wred,OWred

) + h0(Wred,OD)− h1(Wred,OWred
)

= d− g − n− 1 < d− g + 1 = h0(Pr,OPr(1)).

This implies that the restriction map

π : H0(Pr,OPr(1)) −→ H0(Wred,OPr(1)|Wred
)

has kernel K 6= 0. Since [X ⊂ Pr] is Chow semistable, X is non-degenerate

in Pr, hence there exists a non-zero section s ∈ K which is regular on E. Let

{x1 . . . , xr+1} be a system of coordinates such that x1 = s and

Ered =

r+1⋂
i=3

{xi = 0}.

Consider a 1ps ρ diagonalized by {x1 . . . , xr+1} with weights w1 = 0 and w2 =

. . . = wr+1 = 1. It is not difficult to check that eE0,ρ = 2 and eW,ρ = 2(d− 2).

By [HM98, Chap. 4, Ex. 4.49] and Proposition 4.7(i) we get that

eX,ρ ≥ eE0 + eW,ρ = 2d− 2 > 2d− 2d

r + 1
=

2d

r + 1
r if

d

r + 1
> 1 (⇐⇒ g ≥ 2),

hence [X ⊂ Pr] is Chow unstable.

• X ′ is reduced and 5.1(ii) and 5.1(iii) hold: it follows from the proofs of [Gie82,

Prop. 1.0.7-1.0.12], which work also for disconnected curves.

• X has pure dimension 1: suppose by contradiction that there exists an irre-

ducible component of dimension 0. This implies that, denoting by g(X ′) the

arithmetic genus of X ′, g(X ′) > g. By Riemann-Roch and the vanishing of

H1(X ′,OX′(1)), we get

h0(X ′,OX′(1)) = d− g(X ′) + 1 < d− g + 1 = h0(Pr,OPr(1)),

hence X ′ is degenerate, absurd.

�

Remark 5.3. The hypothesis that d > 2(2g− 2) in the above Theorem (5.1) is sharp:

in [HH13, Thm. 2.14] it is proved that all the 2-canonical h-stable curves in the sense

of [HH13, Def. 2.5, Def. 2.6] (which in particular can have arbitrary tacnodes and not

only tacnodes with a line) belong to Hilbs2(2g−2).

5.1. Balanced line bundles and quasi-wp-stable curves. The aim of this subsec-

tion is to study the following

Question 5.4. Given a pre-wp-stale curve X, what kind of restrictions does the exis-

tence of an ample balanced line bundle L impose on X?

The following result gives an answer to the above question.
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Proposition 5.5. Let X be a pre-wp-stable curve of genus g ≥ 2. If there exists an

ample balanced line bundle L on X of degree d ≥ g − 1, then X is quasi-wp-stable and

L is properly balanced.

Proof. Let Z be a connected rational subcurve of X (equivalently Z is a chain of P1’s)

such that kZ ≤ 2. Clearly, kZ ≥ 1 since X is connected and Z 6= X because g ≥ 2.

If kZ = 1 then degZ(ωX) = −1 and the basic inequality (3.1) together with the

hypothesis that d ≥ g − 1 gives that

degZ(L) ≤ d

2g − 2
degZ(ωX) +

kZ
2

= − d

2g − 2
+

1

2
≤ 0.

This contradicts the fact that L is ample.

If kZ = 2 then degZ(ωX) = 0 and the basic inequality (3.1) gives that

degZ(L) ≤ d

2g − 2
degZ(ωX) +

kZ
2

= 1.

Since L is ample, it has positive degree on each irreducible component of Z; therefore

Z must be irreducible which implies that Z ∼= P1 and degZL = 1. �

Combining the previous Proposition 5.5 with the potential stability Theorem (see

Fact 4.20) and the Potential pseudo-stability Theorem 5.1, we get the following

Corollary 5.6.

(i) If d > 2(2g − 2) and [X ⊂ Pr] ∈ Ch−1(Chowss
d ) ⊂ Hilbd with X connected then

X is a quasi-wp-stable curve and OX(1) is properly balanced.

(ii) If d > 4(2g − 2) and [X ⊂ Pr] ∈ Ch−1(Chowss
d ) ⊂ Hilbd with X connected then

X is a quasi-stable curve and OX(1) is properly balanced.

Note that, by Proposition 17.3(ii) of the Appendix, we have the following Remark,

which can be seen as a partial converse to Proposition 5.5.

Remark 5.7. A balanced line bundle of degree d > 3
2(2g − 2) on a quasi-wp-stable

curve X is properly balanced if and only if it is ample. Therefore, for d > 3
2(2g − 2),

the set Bd
X is the set of all the multidegrees of ample balanced line bundles on X.

6. Stabilizer subgroups

Let [X ⊂ Pr] be a Chow semistable point of Hilbd with X connected and d >

2(2g − 2). Note that X is a quasi-wp-stable curve by Corollary 5.6(i), L := OX(1) is

balanced and X is non-degenerate and linearly normal in Pr by the Potential pseudo-

stability Theorem 5.1.

The aim of this section is to describe the stabilizer subgroup of an element [X ⊂ Pr] ∈
Hilbd as above. We denote by StabGLr+1([X ⊂ Pr]) the stabilizer subgroup of [X ⊂ Pr]
in GLr+1, i.e. the subgroup of GLr+1 fixing [X ⊂ Pr]. Similarly, StabPGLr+1([X ⊂ Pr])
is the stabilizer subgroup of [X ⊂ Pr] in PGLr+1. Clearly, StabPGLr+1([X ⊂ Pr]) =

StabGLr+1([X ⊂ Pr])/Gm, where Gm denotes the diagonal subgroup of GLr+1 which

clearly belongs to StabGLr+1([X ⊂ Pr]).
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It turns out that the stabilizer subgroup of [X ⊂ Pr] ∈ Hilbd is related to the

automorphism group of the pair (X,OX(1)), which is defined as follows.

Given a variety X and a line bundle L on X, an automorphism of (X,L) is given by

a pair (σ, ψ) such that σ ∈ Aut(X) and ψ is an isomorphism between the line bundles

L and σ∗(L). The group of automorphisms of (X,L) is naturally an algebraic group

denoted by Aut(X,L). We get a natural forgetful homomorphism

(6.1)
F : Aut(X,L)→ Aut(X)

(σ, ψ) 7→ σ,

whose kernel is the multiplicative group Gm, acting as fiberwise multiplication on L,

and whose image is the subgroup of Aut(X) consisting of automorphisms σ such that

σ∗(L) ∼= L. The quotient Aut(X,L)/Gm is denoted by Aut(X,L) and is called the

reduced automorphism group of (X,L).

The relation between the stabilizer subgroup of an embedded variety X ⊂ Pr and

the automorphism group of the pair (X,OX(1)) is provided by the following result.

Lemma 6.1. Given a projective embedded variety X ⊂ Pr which is non-degenerate

and linearly normal, there are isomorphisms of algebraic groups{
Aut(X,OX(1)) ∼= StabGLr+1([X ⊂ Pr]),

Aut(X,OX(1)) ∼= StabPGLr+1([X ⊂ Pr]).

Proof. This result is certainly well-known to experts. However, since we could not find

a suitable reference, we sketch a proof for the reader’s convenience.

Observe first that the natural restriction map H0(Pr,OPr(1)) → H0(X,OX(1)) is

an isomorphism because by assumption the embedding X ⊂ Pr is non-degenerate and

linearly normal. Therefore, we identify the above two vector spaces and we denote

them by V . Note that Pr = P(V ∨) and that the standard coordinates on Pr induce a

basis of V , which we call the standard basis of V .

Let us now define a homomorphism

(6.2) η : Aut(X,OX(1))→ StabGLr+1([X ⊂ Pr]) ⊆ GLr+1 = GL(V ∨).

Given (σ, ψ) ∈ Aut(X,OX(1)), where σ ∈ Aut(X) and ψ is an isomorphism between

OX(1) and σ∗OX(1), we define η((σ, ψ)) ∈ GL(V ∨) as the composition

η((σ, ψ)) : V ∨ = H0(X,OX(1))∨
ψ̂−1

−−→∼= H0(X,σ∗OX(1))∨
σ̂∗−→∼= H0(X,OX(1))∨ = V ∨,

where ψ̂−1 is the dual of the isomorphism induced by ψ−1 and σ̂∗ is the dual of the

isomorphism induced by σ∗. Let us denote by φ|OX(1)| (resp. φ|σ∗OX(1)|) the embedding

of X in Pr given by the complete linear series |OX(1)| (resp. by |σ∗OX(1)|) with respect

to the basis of H0(X,OX(1)) (resp. H0(X,σ∗OX(1))) induced by the standard basis
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of V via the above isomorphisms. By construction, the following diagram commutes:

(6.3) X �
� φ|OX (1)|

//

σ

��

x�

φ|σ∗OX (1)| **

P(H0(X,OX(1))∨)

ψ̂−1

��
P(H0(X,σ∗OX(1))∨)

σ̂∗
��

X �
� φ|OX (1)|

// P(H0(X,OX(1))∨).

Thus we get that η((σ, ψ)) belongs to StabGLr+1([X ⊂ Pr]) ⊆ GL(V ∨) and η is well-

defined.

Conversely, we define a homomorphism

(6.4) τ : StabGLr+1([X ⊂ Pr])→ Aut(X,L)

as follows. An element g ∈ StabGLr+1([X ⊂ Pr]) ⊆ GLr+1 = GL(V ∨) will send X

isomorphically onto itself, and thus induces an automorphism σ ∈ Aut(X). Consider

now the isomorphism

ψ̃ : V = H0(X,OX(1))
ĝ−1

−−→∼= V = H0(X,OX(1))
σ∗−→∼= H0(X,σ∗OX(1)),

where ĝ−1 is the dual of g−1 and σ∗ is the isomorphism induced by σ. The isomor-

phism ψ̃ induces an isomorphism ψ between OX(1) and σ∗OX(1) making the following

diagram commutative

H0(X,OX(1))⊗OX // //

ψ̃
��

OX(1)

ψ

��
H0(X,σ∗OX(1))⊗OX // // σ∗OX(1).

We define τ(g) := (σ, ψ) ∈ Aut(X,OX(1)).

We leave to the reader the task of checking that the homomorphisms η and τ are

induced by morphisms of algebraic groups and that they are one the inverse of the

other.

The map η sends the subgroup Gm ⊆ Aut(X,OX(1)) of scalar multiplications on

OX(1) into the diagonal subgroup Gm ⊂ GLr+1 and therefore it induces an isomor-

phism Aut(X,OX(1)) ∼= StabPGLr+1([X ⊂ Pr]). �

In Theorem 6.4 below, we describe the connected component Aut(X,L)0 of Aut(X,L)

containing the identity for the pairs we will be interested in. By Definition 2.10, recall

that for a quasi-wp-stable curve X we denote by Xexc ⊂ X the subcurve of X con-

sisting of the union of the exceptional components E of X, i.e., the subcurves E ⊂ X

such that E ∼= P1 and kE = 2. We denote by X̃ := Xc
exc the complementary subcurve

of Xexc and by γ(X̃) the number of connected components of X̃. Certain elliptic tails

of X will play a special role in what follows.
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Definition 6.2. Let F be an irreducible elliptic tail of X (i.e., an irreducible subcurve

of X such that gF = 1 and kF = 1) and let p denote the intersection point between

F and the complementary subcurve F c. Given an ample line bundle L on X, we can

write L|F = OF ((dF − 1)p+ q), where dF = degFL denotes the degree of L on F , for

a uniquely determined smooth point q of F . We say that F is special with respect to

L if q = p and non-special otherwise. We denote by ε(X,L) the number of cuspidal

elliptic tails of X that are special with respect to L.

Remark 6.3. If F is a reducible elliptic tail of X (for example reducible nodal or

tacnodal), F cannot be special. Indeed, using the same notation as in Definition 6.2, if

L|F = OF (dF p), there exists an irreducible component E ⊂ F such that degL|E = 0,

hence L is not ample.

Before stating Theorem 6.4, we introduce another notation: we denote by τ(X) the

number of tacnodal elliptic tails of X.

Theorem 6.4. Let X be either a quasi-stable curve of genus g ≥ 2 or a quasi-wp-stable

curve of genus g ≥ 3 and let L be a properly balanced line bundle of degree d ∈ Z on

X. Then the connected component Aut(X,L)0 of Aut(X,L) containing the identity is

isomorphic to Gγ(X̃)+ε(X,L)+τ(X)
m .

Proof. Consider the wp-stable reduction X → wps(X) of X (see Proposition 2.11).

Note that since wps(X) = Proj(⊕i≥0H0(X, ωi
X)), an automorphism of X naturally

induces an automorphism of wps(X), so by composing the homomorphism F (see (6.1))

with the homomorphism Aut(X)→ Aut(wps(X)) induced by the wp-stable reduction,

we get a homomorphism

(6.5) G : Aut(X,L) −→ Aut(wps(X)).

We will determine the connected component Ker(G)0 of the kernel of G and the con-

nected component Im(G)0 of the image of G in the two claims below.

CLAIM 1: Ker(G) = Ker(G)0 = Gγ(X̃)
m .

Recall from Proposition 2.11 that the wp-stable reduction X → wps(X) is the con-

traction of every exceptional component E ∼= P1 of X to a node or a cusp if E ∩ Ec

consists of two nodes or one tacnode, respectively. We can factor the wp-stable reduc-

tion of X as

X → Y → wps(X),

where c : X → Y is obtained by contracting all the exceptional components E of X

such that E ∩ Ec consists of two nodes and Y → wps(X) is obtained by contracting

all the exceptional components E of Y such that E ∩ Ec consists of a tacnode. Now,

since an automorphism of X must send exceptional components of X meeting the rest

of X in two distinct points to exceptional components of the same type, we can factor

the map G of (6.5) as

G : Aut(X,L)
G1−→ Aut(Y )

G2−→ Aut(wps(X)).
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This gives an exact sequence

(6.6) 0→ Ker(G1)→ Ker(G)
G1|Ker(G)−−−−−−→ Ker(G2).

The same proof of [BFV12, Lemma 2.13] applied to the contraction map X → Y gives

that

(6.7) Ker(G1) = Gγ(X̃)
m .

Using (6.6) and (6.7), Claim 1 follows if we prove that

(6.8) Im(G1) ∩Ker(G2) = {id}.

In order to prove (6.8), we need first to describe explicitly Ker(G2). Recall that,

by construction, all the exceptional components E ∼= P1 of Y are such that E ∩ Ec

consists of a tacnode of Y and all of them are contracted to a cusp of wps(X) by the

map Y → wps(X). Therefore, Ker(G2) consists of all the automorphisms γ ∈ Aut(Y )

such that γ restricts to the identity on Y \ ∪E where the union runs over all the

exceptional subcurves E of Y . Consider one of these exceptional components E ⊂ Y

and let {p} = E ∩ Ec. Since p is a tacnode of Y , there is an isomorphism (see [HH13,

Sec. 6.2])

i : TpE
∼=−→ TpE

c,

where TpE is the tangent space of E at p and similarly for TpE
c. Any γ ∈ Aut(Y )

preserves the isomorphism i. If moreover γ ∈ Ker(G2) ⊆ Aut(Y ) then γ acts trivially

on the irreducible component of Ec containing p, hence it acts trivially also on TpE
c.

Therefore, the restriction of γ ∈ Ker(G2) to E will be an element φ ∈ Aut(E) that

fixes p and induces the identity on TpE. Fix the identification (E, p) ∼= (P1, 0) and

consider the transformations in Aut(P1) = PGL2 of the form

(6.9) φλ(z) =
z

λz + 1
ψµ(z) = µz

for λ ∈ k and µ ∈ k∗. All the elements that fix p and induce the identity on TpE form

a subgroup of Aut(E), which is isomorphic to the additive subgroup Ga of Aut(P1) =

PGL2 given by all the transformations φλ (for λ ∈ k). Conversely, every such φ

extends to an automorphism of Aut(Y ), which is the identity on Ec and therefore lies

on Ker(G2). From this discussion, we deduce that

(6.10) Ker(G2) =
∏
E

Ga,

where the product runs over all the exceptional components E of Y .

We can now prove (6.8). Take an element (σ, ψ) ∈ Aut(X,L) such that G1(σ, ψ) ∈
Ker(G2). Consider an exceptional component E of Y ; let {p} = E ∩ Ec and let C be

the irreducible component of Ec containing p. By (6.10) and the discussion preceding

it, we get that G1(σ, ψ)|E = φλ for some λ ∈ k (as in (6.9)) and G1(σ, ψ)|C = idC .

By construction, the map c : X → Y is an isomorphism in a neighborhood of E ⊂ Y .

Therefore, by abuse of notation, we identify E with its inverse image via c, similarly
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for p, and we call C ′ the irreducible component of X such that {p} = E∩C ′. From the

above properties of G1(σ, ψ), we deduce that σ|E = φλ and σ|C = idC . Consider now

X̂ ∼= E
∐
Ec the partial normalization of X at p and let ν : X̂ → X be the natural

map. We have an exact sequence

0→ Ga → Pic(X)
ν∗−→ Pic(X̂) = Pic(E)× Pic(Ec)→ 0.

By looking at the gluing data defining line bundles on X, it is easy to check that the

above automorphism σ ∈ Aut(X) acts as the identity on Pic(X̂) and that it acts on Ga

by sending µ in µ + λ. Since, by assumption, there exists an isomorphism ψ between

σ∗(L) and L, we must have that λ = 0, or in other words that σ|E = φ0 = idE .

Since this is true for all the exceptional components E of Y , from (6.10) we get that

G1(σ, ψ) = id and (6.8) is now proved.

CLAIM 2: Im(G)0 = Gε(X,L)+τ(X)
m .

Note that if X is quasi-stable of genus g ≥ 2 then wps(X) is stable of genus g ≥ 2

and that if X is quasi-p-stable of genus g ≥ 3 then wps(X) is p-stable of genus g ≥ 3.

In both cases, we have that Aut(wps(X)) is a finite group (see [DM69] for stable curves

and [Sch91, Proof of Lemma 5.3] for p-stable curves); hence Im(G)0 = {id} and Claim

2 is proved.

In the general case, consider the p-stable reduction wps(X)→ ps(wps(X)) := ps(X)

of wps(X) (see Definition 2.14) and the induced map

H : Aut(wps(X))→ Aut(ps(X)).

As recalled before, Aut(ps(X)) is a finite group if g ≥ 3; hence we get that

(6.11) Aut(wps(X))0 = Ker(H)0.

The p-stable reduction wps(X) → ps(X) contracts all the elliptic tails of wps(X) to

cusps of ps(X). This easily implies that

(6.12) Ker(H)0 =
∏
F

Aut(F, p)0,

where the product is over all the elliptic tails F of wps(X), {p} = F ∩F c and Aut(F, p)0

is the connected component of the automorphism group of the pointed curve (F, p).

There are 3 possibilities for the elliptic tails of the quasi-wp-stable wps(X) according

to Figure 1 below.

F F
F

Type I Type II Type III

Figure 4. All the possible elliptic tails of a wp-stable curve.
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We claim that, for an elliptic tail F of wps(X), the following holds

(6.13) Aut(F, p)0 =

{id} if F is smooth or nodal (type I or II),

Gm if F is cuspidal (type III).

If F is of type I, this follows from the well-known fact that a 1-pointed smooth curve

of genus 1 has only finitely many automorphisms. If F is of type II (resp. of type III),

this follows from the identification of Aut(F, p)0 with the subgroup of automorphism

of F ν ∼= P1 fixing three points (resp. two points), namely the inverse image of p and

of the singular locus of F via the normalization map ν : F ν → F .

Now, suppose that F is an elliptic tail of type III. Obviously F is the image of

an elliptic tail F ′ of X via the wp-stable reduction. Since the wp-stable reduction

contracts the exceptional subcurves of X, F ′ can be chosen is such a way that F ′ is

cuspidal irreducible or tacnodal with two irreducible components. Using (6.11), (6.12)

and (6.13), Claim 2 follows if we prove that Aut(F, p)0 = Gm ⊂ Im(G) if and only if

one of the following cases is satisfied:

(i) F ′ is cuspidal and special with respect to L,

(ii) F ′ is tacnodal.

If F ′ is cuspidal, we can identify F with F ′ and clearly Aut(F, p)0 ⊂ Im(G) if and

only if L|F ∈ PicdF(F) is fixed by Gm. Consider the Gm-equivariant isomorphism

ρ : Fsm
∼=−→ PicdF(F) which maps r to OF ((dF −1)p+r). The unique Gm-fixed point is

the point p, which is sent to OF (dF p) by ρ. Therefore, L|F is fixed by Aut(F, p)0 = Gm

if and only if L|F = OF (dF p), or in other words when F is special with respect to L.

Now, suppose that F ′ is tacnodal, i.e. F ′ is the union of two smooth rational

subcurve E1 and E2 meeting in a tacnode. Let {p} = F ′ ∩ (F ′)c and let q be the

tacnode; assume that p ∈ E2. Consider

X̂ = (F ′)ν
∐

(F ′)c = E1

∐
E2

∐
(F ′)c

the partial normalization of X, ν : X̂ → X the natural map and {q1, q2} the inverse

image of q via ν, where we assume that q1 ∈ E1 and q2 ∈ E2. The following holds:

Aut((F ′)ν , q1, q2, ν
−1(p))0 = Aut(E1, q1)o ×Aut(E2, q2, ν

−1(p))0 ∼= (Gm nGa)×Gm.

Indeed, if we fix the identifications (E1, q1) ∼= (P1, 0) and (E2, q2, ν
−1(p)) ∼= (P1, 0,∞),

we can consider the transformations of the form (6.9) and it is well-known that

(1) Aut(P1, 0)0 is generated by the automorphisms φλ, ψµ ∈ PGL2 for λ ∈ k and

µ ∈ k∗,
(2) Aut(P1, 0,∞)0 is generated by ψµ ∈ PGL2 for µ ∈ k∗.

As explained in the proof of Claim 1, every γ ∈ Aut(X) preserves the isomorphism

i : TqE1
∼=−→ TqE2, so that there is an identification of Aut(F ′, p)0 with the subgroup

of Aut(E1, q1)×Aut(E2, q2, ν
−1(p))0 corresponding to the elements (ψµ1 , φλ, ψµ2) such
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that µ1 = µ2. Hence

Aut(F ′, p)0 ∼= Gm nGa.

Now, the wp-stable reduction F ′ → F induces a surjective map Aut(F ′, p)0 → Aut(F, p)0

and (ψµ, φλ, ψµ) ∈ Aut(F ′, p)0 is mapped to the identity if and only if its restriction to

E2 is the identity, i.e. if and only if µ = 1. We obtain an exact sequence

0→ Ga → Aut(F ′, p)0 ∼= Gm nGa → Aut(F, p)0 ∼= Gm → 0,

which allows one to identify Aut(F, p)0 with the subgroup of Aut(F ′, p) consisting of

all the elements of the form (ψµ, id, ψµ). If L ∈ Pic(X), for any such γ = (ψµ, id, ψµ) ∈
Aut(F ′, p)0 ⊂ Aut(X) we have that γ∗L ∼= L since, given the exact sequence

0→ Ga → Pic(X)
ν∗−→ Pic(X̂) = Pic(E1)× Pic(E2)× Pic((F′)c)→ 0,

the automorphism γ acts as the identity both on Pic(X̂) ∼= Z2 × Pic((F′)c) and on the

gluing data Ga. Hence Aut(F, p)0 ⊂ Im(G) and the claim 2 is completely proven.

�

7. Behaviour at the extremes of the basic inequality

Recall from Corollary 5.6(i) that if [X ⊂ Pr] ∈ Hilbd is Chow semistable with X

connected and d > 2(2g−2), then X is quasi-wp-stable andOX(1) is properly balanced.

The aim of this section is to investigate the properties of the Chow semistable points

[X ⊂ Pr] ∈ Hilbd such that OX(1) is stably balanced or strictly balanced (see Definition

3.7).

Our fist result is the following

Theorem 7.1. If d > 2(2g− 2) and [X ⊂ Pr] ∈ Hilbsd ⊆ Hilbd with X connected, then

OX(1) is stably balanced.

Proof. The proof uses some ideas from [Gie82, Prop. 1.0.7] and [Cap94, Lemma 3.1].

Let [X ⊂ Pr] ∈ Hilbsd ⊆ Hilbd with X connected and assume that d > 2(2g − 2).

By the Potential pseudo-stability Theorem 5.1 and Corollary 5.6(i), we get that X is

a quasi-wp-stable curve and L := OX(1) is properly balanced and non-special.

By contradiction, suppose thatOX(1) is not stably balanced. Then, by Definition 3.6

and Remark 3.8, we can find a connected subcurve Y with connected complementary

subcurve Y c such that

(7.1)



Y c 6⊂ Xexc or equivalently gY c = 0 =⇒ kY c = kY ≥ 3,

degY cL = MY =
d

2g − 2
degY cωX +

kY c

2
=

d

2g − 2
(2gY c − 2 + kY c) +

kY c

2
,

degY L = mY =
d

2g − 2
degY ωX −

kY
2

=
d

2g − 2
(2gY − 2 + kY )− kY

2
.

In order to produce the desired contradiction, we will use the numerical criterion

for Hilbert stability (see Fact 4.2). Let V := H0(Pr,OPr(1)) = H0(X,OX(1)) and
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consider the vector subspace

U := Ker
{
H0(Pr,OPr(1))→ H0(Y,L|Y )

}
⊆ V.

Set N + 1 := dimU . Choose a basis {x0, . . . , xN , . . . , xr} of V relative to the filtration

U ⊆ V , i.e., xi ∈ U if and only if 0 ≤ i ≤ N . Define a 1ps ρ of GLr+1 by

ρ(t) · xi =

xi if 0 ≤ i ≤ N,

txi if N + 1 ≤ i ≤ r.

We will estimate the two polynomials appearing in Fact 4.2 for the 1ps ρ.

First of all, the total weight w(ρ) of ρ satisfies w(ρ) = r − N = dimV − dimU ≤
h0(Y, L|Y ). Since L is non-special and H0(X,L) � H0(Y, L|Y ) because X is a curve,

we get that h0(Y,L|Y ) = degY L+ 1− gY . Therefore, we conclude that

(7.2)
w(ρ)

r + 1
mP (m) ≤

h0(Y,L|Y )

r + 1
m(dm+1−g) =

degY L+ 1− gY
d+ 1− g

[
dm2 + (1− g)m

]
.

In order to compute the polynomial Wρ(m) for m � 0, consider the filtration of

H0(Pr,OPr(m)):

0 ⊆ Um ⊆ Um−1V ⊆ . . . ⊆ Um−iV i ⊆ . . . ⊆ V m = H0(Pr,OPr(m)),

where Um−iV i is the subspace of H0(Pr,OPr(m)) generated by the monomials contain-

ing at least (m− i)-terms among the variables {x0, . . . , xN}. Note that for a monomial

B of degree m, it holds that

(7.3) B ∈ Um−iV i \ Um−i+1V i−1 ⇐⇒ wρ(B) = i.

Via the surjective restriction map µm : H0(Pr,OPr(m)) � H0(X,Lm), the above

filtration on H0(Pr,OPr(m)) induces a filtration

0 ⊆ F 0 ⊆ F 1 ⊆ . . . ⊆ F i ⊆ . . . ⊆ Fm = H0(X,Lm),

where F i := µm(Um−iV i). Using (7.3), we get that

(7.4) Wρ(m) =
m∑
i=1

i
[
dim(F i)− dim(F i−1)

]
= mdim(Fm)−

m−1∑
i=1

dim(F i) =

= m(dm+ 1− g)−
m−1∑
i=0

dim(F i).

It remains to estimate dimF i for 0 ≤ i ≤ m − 1. To that aim, consider the partial

normalization τ : X̂ → X of X at the nodes laying on Y ∩ Y c. Observe that X̂ is

the disjoint union of Y and Y c. We denote by D̃ the inverse image of Y ∩ Y c via τ .

Since Y ∩Y c consists of kY nodes of X, D̃ is the disjoint union of DY and DY c , where

DY consists of kY smooth points on Y and DY c consists of kY smooth points on Y c.

Consider now the injective pull-back morphism

τ∗ : H0(X,Lm) ↪→ H0(X̂, τ∗Lm) = H0(Y,Lm|Y )⊕H0(Y c, Lm|Y c),

which clearly coincides with the restriction maps to Y and Y c.
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Note that if B is a monomial belonging to Um−iV i ⊆ H0(Pr,OPr(m)) for some

i ≤ m − 1, then B contains at least m − i ≥ 1 variables among the xj ’s such that

xj ∈ U ; hence the order of vanishing of B along the subcurve Y is at least equal to

m− i . This implies that any s ∈ F i ⊆ H0(X,Lm) with i ≤ m− 1 vanishes identically

on Y and vanishes on the points of DY c with order at least (m− i). We deduce that

(7.5) τ∗(F i) ⊆ H0(Y c, Lm|Y c((i−m)DY c)) for 0 ≤ i ≤ m− 1.

CLAIM: H1(Y c, Lm|Y c((i−m)DY c)) = 0 for 0 ≤ i ≤ m− 1 and m� 0.

Let us prove the claim. Clearly, if the claim is true for i = 0 then it is true for every

i > 0; so we can assume that i = 0. According to Fact 17.4(i) of the Appendix, it is

enough to prove that for any connected subcurve Z ⊆ Y c, we have that

(7.6) degZ(Lm|Z(−mDZ)) > 2gZ − 2 for m� 0,

where DZ := DY c ∩ Z. Indeed, (7.6) is equivalent to

(7.7) degZL ≥ |DZ | with strict inequality if gZ ≥ 1.

Observe that, since each point of DZ is the intersection of Z with Y = X \ Y c and

Z ∩ Y c \ Z 6= ∅ unless Z = Y c because Y c is connected, the following holds:

(7.8) |DZ | ≤ kZ with equality if and only if Z = Y c,

where kZ is, as usual, the length of the schematic intersection of Z with the comple-

mentary subcurve X \ Z in X. In order to prove (7.7), we consider different cases.

If gZ ≥ 1 then using the basic inequality (3.1) for L relative to the subcurve Z and

the assumption d > 2(2g − 2), we compute

degZL ≥
d

2g − 2
degZωX −

kZ
2
> 2(2gZ − 2 + kZ)− kZ

2
≥ 3kZ

2
≥ 3|DZ |

2
≥ |DZ |,

which shows that (7.7) holds in this case.

If gZ = 0 and Z = Y c then, using that degY cL = MY c and kY c ≥ 3 by (7.1), we get

degY cL = MY c =
d

2g − 2
(2gY c − 2 + kY c) +

kY c

2
> 2(kY c − 2) +

kY c

2
> kY c = |DY c |,

which shows that (7.7) holds also in this case.

It remains to consider the case gZ = 0 and Z ( Y c. If kZ ≤ 2 then, since X is

quasi-wp-stable and Z is connected, we must have that Z is an exceptional component

of X, i.e., Z ∼= P1 and kZ = 2. By Proposition 5.5 it follows that degZL = 1. Since

|DZ | ≤ 1 by (7.8), we deduce that (7.7) is satisfied also in this case. Finally, assume

that kZ ≥ 3. Consider the subcurve W := Zc ∩ Y c ⊂ Y c. It is easy to check that

(7.9) kY c − kW = |Z ∩ Y | − |W ∩ Z| = |DZ | − (kZ − |DZ |) = 2|DZ | − kZ .

Using the basic inequality of L with respect to W together with (7.1), (7.9) and kZ ≥ 3,

we get

degZL = degY cL− degWL ≥
d

2g − 2
degY cωX +

kY c

2
− d

2g − 2
degWωX −

kW
2

=
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=
d

2g − 2
degZωX + |DZ | −

kZ
2
> 2(kZ − 2) + |DZ | −

kZ
2
> |DZ |.

The claim is now proved.

Using the claim above, we get from (7.5) that

(7.10)

dimF i = dim τ∗(F i) ≤ mdegY cL+ (i−m)kY + 1− gY c for 0 ≤ i ≤ m− 1 and m� 0.

Combining (7.10) and (7.4), we get that

Wρ(m) ≥ m(dm+ 1− g)−
m−1∑
i=0

[mdegY cL+ (i−m)kY + 1− gY c ] =

= m(dm+ 1− g)−m [mdegY cL−mkY + 1− gY c ]− kY
m(m− 1)

2
=

(7.11) = m2

[
degY L+

kY
2

]
+m

[
1− gY −

kY
2

]
,

where in the last equality we have used d = degL = degY L + degY cL and g = gY +

gY c + kY − 1.

Using that degY L = mY by (7.1), we easily check that

(7.12) degY L+
kY
2

= d
degY L+ 1− gY

d+ 1− g
and

(7.13) 1− gY −
kY
2

= (1− g)
degY L+ 1− gY

d+ 1− g
.

By combining (7.2), (7.11), (7.12), (7.13), we get for m� 0:

(7.14) Wρ(m) ≥ m2

[
degY L+

kY
2

]
+m

[
1− gY −

kY
2

]
=

=
degY L+ 1− gY

d+ 1− g
[
dm2 + (1− g)m

]
≥ w(ρ)

r + 1
mP (m),

which contradicts the numerical criterion for Hilbert stability (see Fact 4.2).

�

7.1. Closure of orbits. Given a point [X ⊂ Pr] ∈ Hilbd, denote by Orb([X ⊂ Pr]) the

orbit of [X ⊂ Pr] under the action of SL(V ) = SLr+1. Clearly, Orb([X ⊂ Pr]) depends

only on X and on the line bundle L := OX(1) and not on the chosen embedding

X ⊂ Pr.
The aim of this subsection is to investigate the following

Question 7.2. Given two points [X ⊂ Pr], [X ′ ⊂ Pr] ∈ Ch−1(Chowss
d ) with X and X ′

connected, when does it hold that

[X ′ ⊂ Pr] ∈ Orb([X ⊂ Pr])?

We start by introducing an order relation on the set of pairs (X,L) where X is a

quasi-wp-stable curve and L is a properly balanced line bundle on X of degree d.
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Definition 7.3. Let (X ′, L′) and (X,L) be two pairs consisting of a quasi-wp-stable

curve together with a properly balanced line bundle of degree d on it.

(i) We say that (X ′, L′) is an elementary isotrivial specialization of (X,L), and we

write (X,L)
el
 (X ′, L′), if there exists a proper connected subcurve Z ⊂ X ′ with

degZL
′ = mZ , Zc connected and Z∩Zc ⊆ X ′exc such that (X,L) is obtained from

(X ′, L′) by smoothing some nodes of Z ∩ Zc, i.e., there exists a smooth pointed

curve (B, b0) and a flat projective morphism X → B together with a line bundle

L on X such that (X ,L)b0
∼= (X ′, L′) and (X ,L)b ∼= (X,L) for every b0 6= b ∈ B.

(ii) We say that (X ′, L′) is an isotrivial specialization of (X,L), and we write (X,L) 

(X ′, L′) if (X ′, L′) is obtained from (X,L) via a sequence of elementary isotrivial

specializations.

There is a close relation between the existence of isotrivial specializations and strictly

balanced line bundles, as explained in the following

Lemma 7.4. Notations as in Definition 7.3.

(i) If (X,L) (X ′, L′) then L is not strictly balanced.

(ii) If L is not strictly balanced then there exists an isotrivial specialization (X,L) 

(X ′, L′) such that L′ is strictly balanced.

Proof. Part (i): clearly, it is enough to consider the case where (X,L)
el
 (X ′, L′) is an

elementary isotrivial specialization as in Definition 7.3(i). For Z ⊆ X ′ as in Definition

7.3(i), decompose Zc as the union of all the exceptional components {Ei}i=1,··· ,kZ
of X ′ that meet Z and a subcurve W . By applying Remark 3.8(i) to the subcurve

E1∪· · ·∪EkZ , where the basic inequality achieves its maximal value, it is easy to see that

degWL
′ = mW . Let now W̃ be the subcurve of X given by the union of the irreducible

components of X that specialize to an irreducible component of W ⊂ X ′. Since (X,L)

is obtained from (X ′, L′) by smoothing some nodes which belong to Z ∩ ∪iEi and

therefore are not in W , we clearly have that W̃ ∼= W , k
W̃

= kW and L
W̃
∼= L′W . Hence

deg
W̃
L′ = m

W̃
and, since W̃ ∩ W̃ c 6⊂ Xexc, we conclude that L is not strictly balanced.

Part (ii): if L is not strictly balanced, we can find a subcurve Y ⊂ X such that

degY L = MY and Y ∩ Y c ( Xexc. Using that degY L = MY , or equivalently that

degY cL = mY c , it is easy to check that if n ∈ Y ∩ Y c ∩Xexc then there exists a unique

exceptional component E of X such that n ∈ E ⊂ Y .

Let us denote by {n1, . . . , nr} the points belonging to Y ∩ Y c \ Xexc. Let X ′ be

the blow-up of X at {n1, . . . , nr} and let EY := E1 ∪ · · · ∪ Er be the new exceptional

components of X ′. Given a subcurve Z ⊆ X denote by Z ′ the strict transform of Z

via the blow-up morphism and define kYZ′ := |Z ′ ∩ EY ∩ Y |.
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Y Y c

{n1, . . . , nr} E1

Er

Y c′
Y ′

 

...

X X ′

Define a multidegree d on X ′ such that dEi = 1, for i = 1, . . . , r and, given an

irreducible component C of X,

dC′ = degCL− kYC′ .

From [Cap94, Important Remark 5.1.1] we know that there is a flat and proper fam-

ily X → B over a pointed curve (B, b0) and a line bundle L over X such that

(Xb,L|Xb) ∼= (X,L) for b 6= b0 and (Xb0 ,L|Xb0 ) ∼= (X ′, L′) where X ′ is the blow-up

of X at {n1, . . . , nr} and degL′ = d.

Let us check that L′ is properly balanced. It is clear that the degree of L′ is equal

to one on all the exceptional components of X ′. Let W ⊆ X ′ and let us check that L′

satisfies the basic inequality (3.1). Start by assuming that W = Z ′ for some Z ⊆ Y .

Then we have that

(7.15)

degZ′L
′ = degZL−kYZ′ = degY L−deg

Y \ZL−k
Y
Z′ = MY−deg

Y \ZL−k
Y
Z′ ≥MY−MY \Z−k

Y
Z′

= MZ − |Z ∩ Y \ Z| − kYZ′ = MZ − kZ + |Z ′ ∩ Y c′| = mZ + |Z ′ ∩ Y c′|.
Suppose now that W = Z ′Y c ∪ Z ′Y ∪ EW where ZY c ⊆ Y c, ZY ⊆ Y and EW ⊆ EY .

Then, degWL
′ = degZ′Y c

L′ + degZ′Y L
′ + |EW | and, by (7.15), it follows that

degWL
′ = degZY cL+mZ + |Z ′Y ∩ Y c′|+ |EW | ≥

dωW
2g − 2

−
kZY c

2
− kZY

2
+ |Z ′Y ∩ Y c′|+ |EW | = mW + |EW | − |EW ∩ Z ′Y ∩ Z ′Y c | ≥ mW

Analogously, we can show that degWL
′ ≤ MW , so we conclude that L′ is properly

balanced.

Now, if L′ is strictly balanced we are done. If not, we repeat the same procedure

and after a finite number of steps we will find the desired pair (X ′′, L′′) with L′′ strictly

balanced.

�

We can now give a partial answer to Question 7.2.

Theorem 7.5. Let [X ⊂ Pr], [X ′ ⊂ Pr] ∈ Hilbd and assume that X and X ′ are quasi-

wp-stable curves and OX(1) and OX′(1) are properly balanced and non-special. Suppose

that (X,OX(1)) (X ′,OX′(1)). Then

(i) [X ′ ⊂ Pr] ∈ Orb([X ⊂ Pr]).
(ii) [X ⊂ Pr] ∈ Ch−1(Chowss

d ) (resp. Hilbssd ) if and only if [X ′ ⊂ Pr] ∈ Ch−1(Chowss
d )

(resp. Hilbssd ).
60



Proof. It is enough, in view of Fact 4.10, to find a 1ps ρ : Gm → GLr+1 that stabilizes

[X ′ ⊂ Pr] and such that µ([X ′ ⊂ Pr]m, ρ) ≤ 0 for m� 0 and [X ⊂ Pr] ∈ Aρ([X ′ ⊂ Pr]).
We can clearly assume that (X,OX(1))

el
 (X ′,OX′(1)). Using the notation of

Definition 7.3(i), this means that there exists a connected subcurve Z ⊂ X ′ with Zc

connected and Z∩Zc ⊂ X ′exc and degZL
′ = mZ such that (X,OX(1)) is obtained from

(X ′,OX′(1)) by smoothing some of the nodes of Z ∩Zc. Moreover, we can decompose

the connected complementary subcurve Zc as

Zc =
⋃

1≤i≤kZ

Ei ∪W,

where the Ei’s are the exceptional subcurves of X ′ that meet the subcurve Z and

W := Zc \ ∪iEi is clearly connected as well. Since degEiL
′ = 1, it follows from Remark

3.8 applied to the subcurve E1 ∪ · · · ∪ EkZ that degWL
′ = mW .

The required 1ps ρ of GLr+1 is similar to the 1ps considered in the proof of Theorem

7.1. More precisely, consider the restriction map

res : H0(X ′,OX′(1)) −→ H0(Z,OZ(1))⊕H0(W,OW (1)).

The map res is injective since the complementary subcurve of Z ∪W is made of the

exceptional components Ei ∼= P1, each of which meets both Z and W in one point.

Moreover, since OX′(1) is non-special by assumption, which implies that also OZ(1)

and OW (1) are non-special, we have that

dimH0(Z,OZ(1))+dimH0(W,OW (1)) = degZOX′(1)−gZ+1+degWOX′(1)−gW+1 =

= mZ − gZ + 1 +mW − gW + 1 = d− g + 1 = dimH0(X ′,OX′(1)),

where we have used that mZ +mW = d− kZ and g = gW + gZ + kZ − 1. This implies

that res is an isomorphism. Define now the 1ps ρ : Gm → GLr+1 so that{
ρ(t)|H0(W,OW (1)) = t · Id,

ρ(t)|H0(Z,OZ(1)) = Id.

Let us check that the above 1ps ρ satisfies all the desired properties.

CLAIM 1: µ([X ′ ⊂ Pr]m, ρ) ≤ 0 for m� 0.

This is proved exactly as in Theorem 7.1: see (7.14) and the equation for µ([X ⊂
Pr]m, ρ) given in Fact (4.2).

CLAIM 2: ρ stabilizes [X ′ ⊂ Pr] ∈ Hilbd.

Using Lemma 6.1, it is enough to check that

Imρ ⊆ Aut(X ′,OX′(1)) ∼= StabGLr+1([X ′ ⊂ Pr]) ⊆ GLr+1.

Since the non exceptional subcurve X̃ ′ ⊂ X ′ is contained in Z
∐
W , it follows from the

proof of Theorem 6.4 that Aut(X ′,OX′(1)) contains a subgroup H isomorphic to G2
m

and such that (λ, µ) ∈ H ∼= G2
m acts via multiplication by λ on H0(W,OW (1)) and by

µ on H0(Z,OZ(1)). By construction, it follows that Imρ ⊆ H and we are done.

CLAIM 3: [X ⊂ Pr] ∈ Aρ([X ′ ⊂ Pr]).
61



Recall that, by assumption, (X,OX(1)) is obtained from (X ′,OX′(1)) by smoothing

some of the nodes of Z ∩ Zc = ∪i(Z ∩ Ei). Denote by ni the node given by the

intersection of Z with Ei and by Def(X′,ni) the functor of infinitesimal deformations of

the complete local ring ÔX′,ni (see [Ser06, Sec. 2.4]). According to [Ser06, Cor. 3.1.2,

Exa. 3.1.4(a)], if we write ÔX′,ni = k[[ui, vi]]/(uivi), then Def(X′,ni) has a semiuniversal

ring equal to k[[ai]] with universal family given by k[[ui, vi, ai]]/(uivi − ai).
Consider now the local Hilbert functor HPr

X′ parametrizing infinitesimal deformations

of X ′ in Pr (see [Ser06, Sec. 3.2.1]). Clearly, HPr
X′ is pro-represented by the complete

local ring of Hilbd at [X ⊂ Pr]. Since X ′ is a curve with locally complete intersection

singularities and OX′(1) is non-special, from [Kol96, I.6.10] we get that the natural

morphism of functors

(7.16) HPr
X′ −→ DefX′

is formally smooth, where DefX′ is the functor of infinitesimal deformations of X ′. It

follows easily from [Ser06, Thm. 2.4.1], that also the natural morphism of functors

(7.17) DefX′ −→
∏
i

Def(X′,ni)

is formally smooth. Moreover, since ρ stabilizes [X ′ ⊂ Pr] by Claim 2, the above

morphisms (7.16) and (7.17) are equivariant under the natural action of ρ on each

functor. Therefore, in order to prove that [X ⊂ Pr] ∈ Aρ([X ′ ⊂ Pr]), it is enough to

prove that ρ acts on each k[[ai]] with positive weight (compare also with the proof of

[HM10, Lemma 4] and of [HH13, Cor. 7.9]).

Fix a node ni = Ei ∩ Z for some 1 ≤ i ≤ kZ . We can choose coordinates

{x1, . . . , xr+1} of V = H0(Pr,OPr(1)) = H0(X ′,OX′(1)) so that xi is the unique

coordinate which does not vanish at ni, the exceptional component Ei is given by

the linear span 〈xi, xi+1〉 and the tangent TZ,ni of Z at ni is given by the linear span

〈xi−1, xi〉. Then the completion of the local ring OX′,ni is equal to k[[ui, vi]]/(uivi)

where ui = xi−1/xi and vi = xi+1/xi. Since TZ,ni is contained in the linear span

〈Z〉 of Z and ρ(t)|H0(W,OW (1)) = Id by construction, we have that ρ(t) · xi = xi and

ρ(t) · xi−1 = xi−1; hence ρ(t) · ui = ui. On the other hand, the point qi defined by

xk = 0 for every k 6= i + 1 is clearly the node given by the intersection of Ei with

W . Since ρ(t)|H0(W,OW (1)) = t · Id by construction, we have that ρ(t) · xi+1 = txi+1;

hence ρ(t) · vi = tvi. Since the equation of the universal family over k[[ai]] is given by

uivi − ai = 0 and ρ acts on this universal family, we deduce that ρ(t) · ai = tai, which

concludes our proof.

�

From the above theorem, we deduce now the following

Corollary 7.6. Let [X ⊂ Pr] ∈ Hilbd with X connected and d > 2(2g−2). If [X ⊂ Pr]
is Chow polystable or Hilbert polystable then OX(1) is strictly balanced.
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Proof. Let us prove the statement for the Chow polystability; the Hilbert polystability

being analogous.

Let [X ⊂ Pr] ∈ Hilbd for d > 2(2g− 2) with X connected and assume that [X ⊂ Pr]
is Chow-polystable. Recall that X is quasi-wp-stable by Corollary 5.6(i) and OX(1) is

properly balanced by Theorem 5.1 and Proposition 5.5. By Lemma 7.4, we can find

a pair (X ′, L′) consisting of a quasi-wp-stable curve X ′ and a strictly balanced line

bundle L′ on X ′ such that (X,OX(1))  (X ′, L′). Note that L′ is ample by Remark

5.7; moreover X ′ does not have elliptic tails if d < 5/2(2g − 2) because otherwise,

by the basic inequality (3.1), L′ would have degree at most 2 on each elliptic tail,

hence it would not be very ample. Therefore, we can apply Theorem 17.5 which

allows us to conclude that L′ is non-special and very ample; we get a point [X ′
|L′|
↪→

Pr] ∈ Hilbd. The above Theorem 7.5 gives that [X ′ ⊂ Pr] ∈ Orb([X ⊂ Pr]) and

[X ′ ⊂ Pr] ∈ Ch−1(Chowss
d ). Since [X ⊂ Pr] is Chow polystable, we must have that

[X ′ ⊂ Pr] ∈ Orb([X ⊂ Pr]); hence X ′ = X and OX(1) = OX′(1) = L′ is strictly

balanced.

�

8. A criterion of stability for tails

In this section we would like to state a criterion of stability for tails based on the

Hilbert-Mumford criterion and the parabolic group. Let [X ↪→ Pr] ∈ Hilbd with

d > 2(2g − 2), where X is the union of two curves X1 and X2 (of degrees d1, d2

and genus g1, g2) that intersect each other trasversally in a single point p. By the

Potential pseudo-stability Theorem 5.1(ii), we can assume that h1(X,OX(1)) = 0,

which implies that h0(Xi,OXi(1)) = di+ 1−gi =: ri+ 1. Hence, denoting by 〈X1〉 and

〈X2〉 respectively the linear spans of X1 and X2, we can find a system of coordinates

{x1, . . . , xr+1} such that

〈X1〉 =

r+1⋂
i=r1+2

{xi = 0} and 〈X2〉 =

r1⋂
i=1

{xi = 0}.(8.1)

Using this type of coordinates to find destabilizing one-parameter subgroups is very

convenient because we can study the two subcurves separately, as the results below

show.

Let ρ be a 1ps of GLr+1. By Proposition 4.7, we know that eX,ρ = eX1,ρ + eX2,ρ,

but in general we cannot say something similar for the Hilbert weight WX,ρ(m). If ρ

is diagonalized by coordinates of type (8.1), we can do it.

Lemma 8.1. Let [X ⊂ Pr] ∈ Hilbd as above and let ρ be a 1ps of GLr+1 diagonalized

by coordinates of type (8.1). Then

(8.2) WX,ρ(m) = WX1,ρ(m) +WX2,ρ(m)− wr1+1m.

Proof. Let m be a positive integer and consider a monomial basis {B1, . . . , BP1(m)}
of H0(X1,OX1(m)). Since the point p = [x1 = 0, . . . , xr1 = 0, xr1+1 = 1, xr1+2 =
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0, . . . , xr+1 = 0] belongs to X1, there exists a monomial (for example BP1(m)) such

that BP1(m) = xmr1+1. The same holds for each monomial basis {B′1, . . . , B′P2(m)} of

H0(X2,OX2(m)) (for example B′P2(m) = xmr1+1). By the exact sequence

0→ H0(OX(m))
(|X1

,|X2
)

−→ H0(OX1(m))⊕H0(OX2(m)) −→ H0(OX1∩X2(m))→ 0,

we obtain that {B1, . . . , BP1(m), B
′
1, . . . , B

′
P2(m)−1} is a monomial basis ofH0(X,OX(m)).

Therefore, if we choose the monomial basis {B1, . . . , BP1(m)} and {B′1, . . . , B′P2(m)} so

that

WX1,ρ(m) =

P1(m)∑
i=1

wρ(Bi) and WX2,ρ(m) =

P2(m)∑
i=1

wρ(B
′
i),

then we get

WX,ρ(m) ≤
P1(m)∑
i=1

wρ(Bi) +

P2(m)−1∑
i=1

wρ(B
′
i)

=

P1(m)∑
i=1

wρ(Bi) +

P2(m)∑
i=1

wρ(B
′
i)− wρ(B′P2(m))

= WX1,ρ(m) +WX2,ρ(m)− wr1+1m.

Now, we will prove the reverse inequality. Choose a monomial basis {B1, . . . , BP (m)}
of H0(X,OX(m)) such that

WX,ρ(m) =

P (m)∑
i=1

wρ(Bi).

The same argument used to prove the inequality ≥ of Proposition 4.7 shows that for

each monomial basis {B1, . . . , BP (m)} of H0(X,OX(m)), we can reorder the monomials

so that

(1) {B1, . . . , BP1(m)} is a monomial basis of H0(X1,OX1(m)),

(2) {BP1(m), . . . , BP (m)} is a monomial basis of H0(X2,OX2(m)),

(3) BP1(m) = xmr1+1.

We obtain

WX,ρ(m) =

P (m)∑
i=1

wρ(Bi) =

P1(m)∑
i=1

wρ(Bi) +

P (m)∑
i=P1(m)

wρ(Bi)− wρ(BP1(m))

≥ WX1,ρ(m) +WX2,ρ(m)− wr1+1m

and we are done. �

Let I, I1 and I2 be the ideals of X, X1 and X2, respectively. If ρ is diagonalized by

coordinates of type (8.1), we can compute easily the flat limit

lim
t→0

ρ(t)[X ⊂ Pr]

by computing the flat limits of X1 and X2 separately.
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Lemma 8.2. Let X = X1 ∪X2 ⊂ Pr be a connected (possibly not reduced) curve and

let {x1, . . . , xr+1} coordinates such that

{xi | r1 + 2 ≤ i ≤ r+ 1} ⊂ I1, {xi | 1 ≤ i ≤ r1} ⊂ I2 and I1 + I2 = 〈xi | i 6= r1 + 1〉.

Let ρ be a 1ps of GLr+1 diagonalized by {x1, . . . , xr+1} and denote by ≺ a ρ-weighted

lexicographical order in k[x1, . . . , xr+1] that refines ≺ρ.

(i) If {f1, . . . , fn} ⊂ k[x1, . . . , xr1+1] is a system of generators for I1∩k[x1, . . . , xr1+1]

and {g1, . . . , gm} ⊂ k[xr1+1, . . . , xr+1] is a system of generators for I2∩k[xr1+1, . . . , xr+1],

then

I = 〈f1, . . . , fn, g1, . . . , gm, xixj | 1 ≤ i ≤ r1 and r1 + 2 ≤ j ≤ r + 1〉.

(ii) Moreover, if {f1, . . . , fn} and {g1, . . . , gm} are Gröbner bases with respect to ≺,

then

(a) {f1, . . . , fn, xr1+2, . . . , xr+1} and {x1, . . . , xr1 , g1, . . . , gm} are Gröbner bases

respectively for I1 and I2;

(b) {f1, . . . , fn, g1, . . . , gm, xixj | 1 ≤ i ≤ r1 and r1 + 2 ≤ j ≤ r + 1} is a Gröbner

basis for I.

(iii) We have that

in≺(I) = in≺(I1) ∩ in≺(I2) and in≺ρ(I) = in≺ρ(I1) ∩ in≺ρ(I2).

Proof. Let us first prove part (i). Consider f ∈ I = I1 ∩ I2. Since f ∈ I2, there exist

p1, . . . , pr1 ∈ k[x1, . . . , xr+1] and q1, . . . , qm ∈ k[xr1+1, . . . , xr+1] such that

f =

r1∑
i=1

xipi +

m∑
k=1

qkgk.

Let p̃i ∈ k[x1, . . . , xr1+1] for i = 1, . . . , r1 such that each monomial of pi − p̃i contains

one among the coordinates xr1+2, . . . , xr+1. Analogously, let q̃k ∈ k[x1, . . . , xr1+1] for

k = 1, . . . ,m such that each monomial of qk − q̃k contains one among the coordinates

x1, . . . , xr1 . In this way for i = 1, . . . , r1 and j = r1+2, . . . , r+1 there exist polynomials

lij which satisfy

f =

r1∑
i=1

xip̃i +

r1∑
i=1

r+1∑
j=r1+2

xixjlij +
m∑
k=1

q̃kgk.

Since in each term of the above summation the monomial xar1+1 does not appear, we

get that
r1∑
i=1

r+1∑
j=r1+2

xixjlij +
m∑
k=1

q̃kgk ∈ I1.

Moreover, since f ∈ I1 by assumption, we get also that

r1∑
i=1

xip̃i ∈ I1,
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hence there exist h1, . . . , hn ∈ k[x1, . . . , xr1+1] such that

r1∑
i=1

xip̃i =

n∑
i=1

hifi.

Substituting into the above expression of f , we get

(8.3) f =

n∑
i=1

hifi +

r1∑
i=1

r+1∑
j=r1+2

xixjlij +

m∑
k=1

q̃kgk,

which shows that {f1, . . . , fn, g1, . . . , gm, xixj | 1 ≤ i ≤ r1 and r1 + 2 ≤ j ≤ r + 1} is a

system of generators for I, q.e.d.

Now, suppose that {f1, . . . , fn} and {g1, . . . , gm} are Gröbner bases with respect to

≺ and let us prove part (ii). The assertion (a) follows easily from the Buchberger’s

criterion (see Fact 4.12). In order to prove the assertion (b), consider an element

f ∈ I1 ∩ I2 and write it as in (8.3). By definition the three polynomials

F :=

n∑
i=1

hifi, G :=

r1∑
i=1

r+1∑
j=r1+2

xixjlij and H :=

m∑
k=1

q̃kgk

have no common similar monomials, so that

in≺(f) = in≺(in≺(F ) + in≺(G) + in≺(H)).

Obviously in≺(G) ∈ 〈xixj | 1 ≤ i ≤ r1 and r1 + 2 ≤ j ≤ r + 1〉. We know that

{f1, . . . , fn} is a Gröbner basis, hence in≺(F ) ∈ 〈in≺(f1), . . . , in≺(fn)〉. Similarly,

in≺(H) ∈ 〈in≺(g1), . . . , in≺(gn)〉, hence

{f1, . . . , fn, g1, . . . , gm, xixj | 1 ≤ i ≤ r1 and r1 + 2 ≤ j ≤ r + 1}

is a Gröbner basis for I, q.e.d.

Let us now prove part (iii). According to (ii)(a), the ideals in≺(I1) and in≺(I2)

satisfy the hypothesis of (i) with respect to the generators {in≺ρ(f1), . . . , in≺ρ(fn)} of

in≺(I1) ∩ k[x1, . . . , xr1+1] and {in≺ρ(g1), . . . , in≺ρ(gm)} of in≺(I2) ∩ k[xr1+1, . . . , xr+1].

Therefore, part (i) gives that

{in≺ρ(f1), . . . , in≺ρ(fn), in≺ρ(g1), . . . , in≺ρ(gm), xixj | 1 ≤ i ≤ r1 and r1 +2 ≤ j ≤ r+1}

is a system of generators of in≺(I1) ∩ in≺(I2). However, the above elements generate

also in≺(I) by (ii)(b), and the first assertion of part (iii) follows. The second assertion

follows in a similar way once we apply Fact 4.15 and (ii) to get
in≺ρ(I1) = 〈in≺ρ(f1), . . . , in≺ρ(fn), xr1+2, . . . , xr+1〉,

in≺ρ(I2) = 〈in≺ρ(g1), . . . , in≺ρ(gm), x1, . . . , xr1〉,

in≺ρ(I) = 〈in≺ρ(fk), in≺ρ(gl), xixj | 1 ≤ i ≤ r1, r1 + 2 ≤ j ≤ r + 1, 1 ≤ k ≤ n, 1 ≤ l ≤ m〉.

�

The criterion of stability for tails we are going to explain states that coordinates of

type (8.1) diagonalize the one-parameter subgroups that give the “worst” weights.
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Proposition 8.3. (Criterion of stability for tails.) Let [X ⊂ Pr] ∈ Hilbd as above.

The following conditions are equivalent:

(1) [X ⊂ Pr] is Hilbert semistable (resp. polystable, stable);

(2) [X ⊂ Pr] is Hilbert semistable (resp. polystable, stable) with respect to any

one-parameter subgroup ρ : Gm → GLr+1 diagonalized by coordinates of type

(8.1);

(3) [X ⊂ Pr] is Hilbert semistable (resp. polystable, stable) with respect to any

one-parameter subgroup ρ : Gm → GLr+1 diagonalized by coordinates of type

(8.1) with weights w1, . . . , wr+1 such that

w1 = w2 = . . . = wr1+1 = 0 or wr1+1 = wr1+2 = . . . = wr+1 = 0.

The same holds for the Chow semistability (resp. polystability, stability).

Proof. The implications (1) =⇒ (2) =⇒ (3) are clear for each type of stability.

Let us now prove the implication (2) =⇒ (1). Let X = (x1, . . . , xr+1)t be a basis of

coordinates of type (8.1). By Corollary 4.18 applied to (x1, . . . , xr1 , xr1+2, . . . , xr+1, xr1+1),

it is enough to consider a 1ps ρ : Gm → GLr+1 that is diagonalized by the coordinates

(8.4) (z1, . . . , zr+1)t = Z = AX

where

(8.5)

A =



1 0 · · · 0 0 0 0 · · · 0

a21 1 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...
...

ar1,1 ar1,2 · · · 1 0 0 0 · · · 0

ar1+1,1 ar1+1,2 · · · ar1+1,r1 1 ar1+1,r1+2 ar1+1,r1+3 · · · ar1+1,r+1

ar1+2,1 ar1+2,2 · · · ar1+2,r1 0 1 0 · · · 0

ar1+3,1 ar1+3,2 · · · ar1+3,r1 0 ar1+3,r1+2 1 · · · 0
...

...
...

... 0
...

...
. . .

...

ar+1,1 ar+1,2 · · · ar+1,r1 0 ar+1,r1+2 ar+1,r1+3 · · · 1


.

Define the new matrix A′ = (a′ij) as follows

a′ij =

{
aij if i ≤ r1 + 1 or j ≥ r1 + 1

0 if i ≥ r1 + 2 and j ≤ r1
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so that

(8.6)

A′ =



1 0 · · · 0 0 0 0 · · · 0

a21 1 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...
...

ar1,1 ar1,2 · · · 1 0 0 0 · · · 0

ar1+1,1 ar1+1,2 · · · ar1+1,r1 1 ar1+1,r1+2 ar1+1,r1+3 · · · ar1+1,r+1

0 0 · · · 0 0 1 0 · · · 0

0 0 · · · 0 0 ar1+3,r1+2 1 · · · 0
...

...
...

... 0
...

...
. . .

...

0 0 · · · 0 0 ar+1,r1+2 ar+1,r1+3 · · · 1


.

Now, set (z′1, . . . , z
′
r+1)t =: Z ′ = A′X; the coordinates Z ′ are of type (8.1). Con-

sider the one-parameter subgroup ρ′ diagonalized by the coordinates Z ′ with the same

weights of ρ (in particular w(ρ) = w(ρ′)). Since z′i = zi for i = 1, . . . , r1 + 1, if

{B1(Z ′), . . . , BP1(m)(Z
′)} is a monomial basis ofH0(OX1(m)), then {B1(Z), . . . , BP1(m)(Z)}

is again a monomial basis of H0(OX1(m)), hence

(8.7) WX1,ρ(m) ≤WX1,ρ′(m) and eX1,ρ ≤ eX1,ρ′ .

Similarly, the set of monomial bases of the subcurve X2 with respect to Z and the one

with respect to Z ′ are the same, so that

(8.8) WX2,ρ(m) = WX2,ρ′(m) and eX2,ρ = eX2,ρ′ .

Suppose that [X ⊂ Pr] is Chow semistable (resp. stable) with respect to ρ′, i.e.

eX,ρ′ ≤
2d

r + 1
w(ρ′) (resp. <).

Combining the formulas (8.7) and (8.8) with Proposition 4.7, we get

eX,ρ = eX1,ρ + eX2,ρ ≤ eX1,ρ′ + eX2,ρ′ = eX,ρ′ ≤
2d

r + 1
w(ρ′) =

2d

r + 1
w(ρ) (resp. <)

and the implication (2) =⇒ (1) for Chow semistability (resp. stability) follows. We

notice that this last step does not work for the Hilbert semistability (resp. stability)

because in general

WX,ρ(m) 6= WX1,ρ(m) +WX2,ρ(m),

as Lemma 8.1 shows. But the argument used to prove the part ≤ of 8.2 can be applied

to ρ, so that

(8.9) WX,ρ(m) ≤WX1,ρ(m) +WX2,ρ(m)− wr+1m,

By (8.7), (8.8), (8.9) and Lemma 8.1 we obtain

WX,ρ(m) ≤ WX1,ρ(m) +WX2,ρ(m)− wr1+1m

≤ WX1,ρ′(m) +WX2,ρ′(m)− wr1+1m = WX,ρ′(m).
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and the implication (2) =⇒ (1) for the Hilbert semistability (resp. stability) follows.

Now, we will prove the implication (2) =⇒ (1) for the Chow polystability (for the

Hilbert polystability the argument is analogous using Lemma 8.1 instead of Proposition

4.7). By what proved above, we get that [X ⊂ Pr] is Chow semistable. By Corollary

4.18, it is enough to prove that [X ⊂ Pr] is Chow polystable with respect a 1ps

ρ : Gm → GLr+1 that is diagonalized by coordinates Z as in (8.4). We can assume

that

(8.10) eX,ρ =
2d

r + 1
w(ρ),

because, if eX,ρ >
2d
r+1 w(ρ) then there is nothing to prove. As above consider the one-

parameter subgroup ρ′ with the same weights of ρ and diagonalized by the coordinates

Z ′ = A′X, which are of type (8.1). Denoting by B = (bij) the matrix A(A′)−1, we

have that

B =



1 0 · · · 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · 1 0 0 0 · · · 0

0 0 · · · 0 1 0 0 · · · 0

br1+2,1 br1+2,2 · · · br1+2,r1 0 1 0 · · · 0

br1+3,1 br1+3,2 · · · br1+3,r1 0 0 1 · · · 0
...

...
...

... 0
...

...
. . .

...

br+1,1 br+1,2 · · · br+1,r1 0 0 0 · · · 1


and Z = BZ ′.

CLAIM: If r1 + 2 ≤ j ≤ r + 1, 1 ≤ i ≤ r1 and bji 6= 0 then wj ≥ wi.
Suppose by contradiction that wj < wi. Define a one-parameter subgroup ρ̃ diago-

nalized by the new coordinates Y = (y1, . . . , yr+1)t where

(8.11) yk =


z′k if k 6= i,
r1∑
l=1

bjlz
′
l if k = i

with weights

(8.12) w̃k =

{
wk if k 6= i,

wj if k = i.

Notice that Y is a set of coordinates of type (8.1) and w(ρ̃) < w(ρ). Let B1, . . . , BP1(m)

be a monomial basis of H0(X1,OX1(m)) with respect to Y such that

eX1,ρ̃ = n.l.c.

( P1(m)∑
l=1

wρ(Bl)

)
,
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where n.l.c denotes the normalized leading coefficient. The set of coordinates Y is of

type (8.1), hence Bl ∈ k[y1, . . . , yr1+1] for l = 1, . . . , P1(m). Notice that yi|X1
= zj |X1

and yk = zk for k = 1, . . . , i− 1, i+ 1, . . . , r1 + 1. Therefore, if

{B1(y1, . . . , yr1+1), . . . , BP1(m)(y1, . . . , yr1+1)}

is a monomial basis of H0(X1,OX1(m)), then the same holds for

{B1(z1, . . . , zi−1, zj , zi+1 . . . , zr1+1), . . . , BP1(m)(z1, . . . , zi−1, zj , zi+1 . . . , zr1+1)};

hence

(8.13) eX1,ρ ≤ n.l.c.

( P1(m)∑
l=1

wρ(Bl)

)
= eX1,ρ̃.

Moreover, since yl|X2
= zl|X2

for r1 +1 ≤ l ≤ r+1, the monomial bases of H0(OX2(m))

with respect to Y and Z are the same, hence

(8.14) eX1,ρ = eX1,ρ̃.

Since we already know that [X ⊂ Pr] is Chow semistable, Fact 4.3 gives that

(8.15) eX,ρ̃ ≤
2d

r + 1
w(ρ̃).

Combining (8.13), (8.14), (8.15) and Proposition 4.7, we get

eX,ρ = eX1,ρ + eX2,ρ ≤ eX1,ρ̃ + eX2,ρ̃ = eX,ρ̃ ≤
2d

r + 1
w(ρ̃) <

2d

r + 1
w(ρ),

which contradicts (8.10) and the Claim is proved.

Consider the weighted graded orders ≺ρ, ≺ρ′ and two weighted graded lexicograph-

ical orders ≺ and ≺′ that refine respectively ≺ρ and ≺ρ′ and are induced by the

lexicographical orders z1 < z2 < . . . < zr+1 and z′1 < z′2 < . . . < z′r+1. Denote by I, I1

and I2 the ideals of X, X1 and X2 respectively. Let f1, . . . , fn ∈ k[z′1, . . . , z
′
r1+1] and

g1, . . . , gm ∈ k[z′r1+1, . . . , z
′
r+1] such that {f1, . . . , fn, z

′
r1+2, . . . , z

′
r+1} and {z′1, . . . , z′r1 , g1,

. . . , gm} are Gröbner bases respectively of I1 and I2 with respect to ≺′. Fact 4.15 im-

plies that {
I ′1 := in≺ρ′ (I1) = 〈in≺ρ′ (f1), . . . , in≺ρ′ (fn), z′r1+2, . . . , z

′
r+1〉,

I ′2 := in≺ρ′ (I2) = 〈z′1, . . . , z′r1 , in≺ρ′ (g1), . . . , in≺ρ′ (gm)〉.

Applying Lemma 8.2, we obtain that

{in≺ρ′ (f1), . . . , in≺ρ′ (fn), in≺ρ′ (g1), . . . , in≺ρ′ (gm), z′iz
′
j | 1 ≤ i ≤ r1 and r1+2 ≤ j ≤ r+1}

is a system of generators of I ′ := in≺ρ(I). Denoting by X ′ := V (I ′) ⊂ Pr and applying

Fact 4.13, we get

[X ′ ⊂ Pr] = lim
t→0

ρ′(t)[X ⊂ Pr].

Now, define

[X ′′ ⊂ Pr] = lim
t→0

ρ(t)[X ⊂ Pr]
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and consider the matrix B′ = (b′ji) defined as follows:

b′ji =


bji if 1 ≤ j ≤ r1 + 1 or r1 + 1 ≤ i ≤ r + 1,

bji if r1 + 2 ≤ j ≤ r + 1, 1 ≤ i ≤ r1 and wj = wi,

0 if r1 + 2 ≤ j ≤ r + 1, 1 ≤ i ≤ r1 and wj > wi.

By the above CLAIM, we have

in≺ρ

(
zk −

r1∑
i=1

bkizi

)
= zk −

r1∑
i=1

b′kizi

for k = r1+2, . . . , r+1. Since z′i = zi for i = 1, . . . , r1+1, we get that fi(Z) = fi(B
−1Z),

hence, by Buchberger’s criterion (see Fact 4.12), the system of generators{
f1(B−1Z), . . . , fn(B−1Z), zr1+2 −

r1∑
k=1

br1+2,kzk, . . . , zr+1 −
r1∑
k=1

br+1,kzk

}
is a Gröbner basis of I1 with respect to ≺, so that

in≺(I1) = 〈in≺(f1(B−1Z)), . . . , in≺(fn(B−1Z)), zr1+2 . . . , zr+1〉.

Now, consider I2. For each j = 1, . . . ,m there exists hj ∈ k[z1, . . . , zr+1] such that

each of its monomials contains one among the coordinates z1, . . . , zr1 and such that it

holds

(8.16) gj(B
−1Z) = gj(Z) + hj(Z);

hence

〈z1, . . . , zr1 , g1(B−1Z), . . . , gm(B−1Z)〉 = 〈z1, . . . , zr1 , g1(Z), . . . , gm(Z)〉.

Applying in≺ to (8.16) we obtain in≺(gj(B
−1Z)) = in≺(gj(Z)); hence

in≺(〈z1, . . . , zr1 , g1(B−1Z), . . . , gm(B−1Z)〉) = in≺(〈z1, . . . , zr1 , g1(Z), . . . , gm(Z)〉)

= 〈z1, . . . , zr1 , in≺(g1(Z)), . . . , in≺(gm(Z))〉

= 〈z1, . . . , zr1 , in≺(g1(B−1Z)), . . . , in≺(gm(B−1Z))〉.

By definition {z1, . . . , zr1 , g1(B−1Z), . . . , gm(B−1Z)} is a Gröbner basis of I2 with re-

spect to ≺. We notice that in≺(I) ⊂ in≺(I1) ∩ in≺(I2). Applying Lemma 8.2 to the

ideals in≺(I1) and in≺(I2) we deduce that

{in≺(f1(B−1Z)), . . . , in≺(fn(B−1Z)), in≺(g1(B−1Z)), . . . , in≺(gm(B−1Z)), zizj}

generate in≺(I1) ∩ in≺(I2) for 1 ≤ i ≤ r1, r1 + 2 ≤ j ≤ r + 1; hence{
f1(B−1Z), . . . , fn(B−1Z), g1(B−1Z), . . . , gm(B−1Z), zi

(
zj −

r1∑
k=1

bjkzk

)}
for 1 ≤ i ≤ r1, r1 + 2 ≤ j ≤ r + 1 is a Gröbner basis for I with respect to ≺. By Fact

4.15, we obtain that{
in≺ρ(fh(B−1Z)), in≺ρ(gl(B

−1Z)), zi

(
zj −

r1∑
k=1

b′jkzk

)}
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generate in≺ρ(I) for 1 ≤ i ≤ r1, r1 + 2 ≤ j ≤ r + 1, 1 ≤ h ≤ n and 1 ≤ l ≤ m. Let Mi

be the monomials in Z ′ such that

gj =
∑

Mi

and the sum is not redundant. Denoting by w̃ = maxi{wρ′(Mi)} we have that

in≺ρ(gj(B
−1Z)) = in≺ρ

(∑
Mi(B

−1Z)

)
=

∑
i |wρ′ (Mi)=w̃

in≺ρ(Mi(B
−1Z))

=
∑

i |wρ′ (Mi)=w̃

Mi((B
′)−1Z))

= in≺ρ′ (gj)((B
′)−1Z)(8.17)

Moreover, as we said before, B and B′ do not change the first r1 +1 coordinates, hence

(8.18) in≺ρ′ (f)((B′)−1Z) = in≺ρ(f((B)−1Z)).

Combining (8.17) and (8.18), we deduce that [X ′′ ⊂ Pr] ∈ Orb([X ′ ⊂ Pr]). By our

hypothesis, [X ⊂ Pr] is Chow polystable with respect to ρ′; thus there exists C ∈ GLr+1

such that

(8.19) [X ′ ⊂ Pr] = C[X ⊂ Pr]

We deduce that [X ′′ ⊂ Pr] ∈ Orb([X ⊂ Pr]) and we are done.

Let us finally prove the implication (3) =⇒ (2). Consider ρ′ as above (which we will

rename ρ). Up to translating the weights, we can assume that wr1+1 = 0. Define ρ1

and ρ2 with weights respectively w1
1, . . . , w

1
r+1 and w2

1, . . . , w
2
r+1 so that

(8.20) w1
i =

{
wi if i ≤ r1

0 if i ≥ r1 + 1
and w2

i =

{
0 if i ≤ r1

wi if i ≥ r1 + 1

so that w1
i + w2

i = wi for all i and w(ρ1) + w(ρ2) = w(ρ). Now, notice that

(8.21)

WX1,ρ(m) = WX,ρ1(m), WX2,ρ(m) = WX,ρ2(m), eX1,ρ = eX,ρ1 and eX2,ρ = eX,ρ2 .

If [X ⊂ Pr] is Chow semistable (resp. stable) with respect to ρ1 and ρ2, i.e.

eX,ρ1 ≤
2d

r + 1
w(ρ1) (resp. <) and eX,ρ2 ≤

2d

r + 1
w(ρ2) (resp. <)

then, applying Proposition 4.7 and (8.21), we get that

eX,ρ = eX1,ρ+eX2,ρ = eX,ρ1+eX,ρ2 ≤
2d

r + 1
w(ρ1)+

2d

r + 1
w(ρ2) =

2d

r + 1
w(ρ) (resp. <),

or, in other words, that [X ⊂ Pr] is Chow semistable (resp. stable) with respect to

ρ. The same argument goes through for the Hilbert semistability (resp. stability)

replacing Proposition 4.7 with Lemma 8.1.
72



It remains to prove the implication (3) =⇒ (2) for the polystability. Suppose that

there exist matrices A1, A2 ∈ GLr+1 such that

lim
t→0

ρ1(t)[X ⊂ Pr] = A1[X ⊂ Pr] and lim
t→0

ρ2(t)[X ⊂ Pr] = A2[X ⊂ Pr]

By Lemma 8.2

lim
t→0

ρ(t)[X ⊂ Pr] = lim
t→0

ρ2(t)

(
lim
t→0

ρ1(t)[X ⊂ Pr]
)
.

Moreover, each point of X2 is fixed by A1, hence ρ2(t)A1 = A1ρ2(t). We deduce that

lim
t→0

ρ(t)[X ⊂ Pr] = lim
t→0

ρ2(t)

(
lim
t→0

ρ1(t)[X ⊂ Pr]
)

= lim
t→0

ρ2(t)(A1[X ⊂ Pr])

= A1 lim
t→0

ρ2(t)[X ⊂ Pr] = A1A2[X ⊂ Pr]

and we are done. �

The proof of this criterion suggests us an important remark. First we need a defini-

tion.

Definition 8.4. Let X be a quasi wp-stable curve such that X = X1 ∪X2, kX1 = 1,

and denote by p the intersection point of X1 and X2. Let (X ′1, q) be a pointed curve,

where q is a smooth point, and define the new curve X ′ by gluing X ′1 and X2 so that p is

identified with q and represents a separating node of the new curve. We say that X ′ is

obtained from X by replacing X1 with (X ′1, q). Since Pic(X) = Pic(X1)×Pic(X2),

it makes sense to introduce another definition. Let (X,L) and (X ′1, q, L
′
1) be a couple

and a triple where X, X ′ and q are as above, L ∈ Pic(X) and L′1 ∈ Pic(X ′1). Consider

the new curve X ′ as above and the line bundle L′ defined as follows:

L′ := (L1, L|X2
) ∈ Pic(X ′1)× Pic(X2) = Pic(X ′).

We say that the couple (X ′, L′) is obtained from (X,L) by replacing X1 with

(X ′1, q, L
′
1). If L is very ample we will identify (X,L) and [X

|L|
↪→ Pdim |L|].

Remark 8.5. Let X, ρ1 and ρ2 be as in the proof of the implication (3) =⇒ (2) in

Proposition 8.3 and denote by L := OX(1) (we keep the same notation). Suppose

that the system of coordinates {z1, . . . , zr+1} is of type (8.1) and diagonalizes ρ1 and

ρ2. By formulas (8.21), WX,ρ1(m) (hence eX,ρ1) depends only on the curve X1 and

the embedding L1 := L|X1
in ∩r+1

i=r1+2{xi = 0}. In other words, if we replace X2 with

another curve X ′2 so that the embedding L1 in ∩r+1
i=r1+2{xi = 0} is the same, then

WX,ρ1(m) does not change.

We can use this remark in order to prove a useful result.

Corollary 8.6. Let [X1 ⊂ Pr1 ] ∈ Hilbd1,g1, [X2 ⊂ Pr2 ] ∈ Hilbd2,g2 and [X3 ⊂ Pr3 ] ∈
Hilbd3,g3 such that X = Ci ∪Di and kCi = 1 for i = 1, 2, 3. Denote by

{pi} = Ci ∩Di , Li = OXi(1) and νi =
di

2gi − 2
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for i = 1, 2, 3. Suppose that ν1 = ν2 = ν3 and (X3, L3) is obtained from (X1, L1) by

replacing D1 with (D2, p2, L2|D2
). If [X1 ⊂ Pr1 ] and [X2 ⊂ Pr2 ] are Chow semistable

(resp. polystable, stable) then [X3 ⊂ Pr3 ] is Chow semistable (resp. polystable, stable).

The same holds for the Hilbert semistability (resp. polystability, stability).

Proof. We will first prove the statement for the Chow (semi-, poly-) stability; the

case of Hilbert (semi-, poly-) stability is completely analogous. Denoting by si =

h0(Ci, Li|Ci)− 1 for i = 1, 2, 3, we have that s1 = s3. By Proposition 8.3, it suffices to

consider one-parameter subgroups ρ1 and ρ2 diagonalized by coordinates (x1, . . . , xr3+1)

of Pr3 such that

〈C3 ⊂ Pr3〉 =

r3+1⋂
i=s3+2

{xi = 0} and 〈D3 ⊂ Pr3〉 =

s3⋂
i=1

{xi = 0}

with weights

ρ1(t) · xi =

{
twixi if i ≤ s3

xi if i ≥ s3 + 1
and ρ2(t) · xi =

{
xi if i ≤ s3 + 1

twixi if i ≥ s3 + 2

By hypothesis C1 = C3 and L|C1
= L|C3

, hence we can find coordinates (x′1, . . . , x
′
r1+1)

in Pr1 such that for each i = 1, . . . , s1 + 1

x′i|C1
= xi|C3

where we identify 〈C1 ⊂ Pr1〉 with 〈C3 ⊂ Pr3〉. If ρ′1 is a one-parameter subgroup

diagonalized by (x′1, . . . , x
′
r1+1) with weights

w′i =

{
wi if i ≤ r1

0 if i ≥ r1 + 1

then w(ρ) = w(ρ′) and

eX1,ρ′1
= eC1,ρ′1

= eC3,ρ1 = eX3,ρ1 ,

since the embeddings C1 ↪→ 〈C1 ⊂ Pr1〉 and C3 ↪→ 〈C3 ⊂ Pr3〉 are the same (see

Remark 8.5). Notice that the equalities ν1 = ν2 = ν3 are equivalent to

d1

r1 + 1
=

d2

r2 + 1
=

d3

r3 + 1
.

Since [X1 ⊂ Pr1 ] is Chow semistable (resp. stable) by assumption, the Hilbert-Mumford

numerical criterion (Fact 4.3) gives that

eX1,ρ′1
≤ 2d1

r1 + 1
w(ρ′1) (resp. <).

Combining this inequality with the previous relations, we obtain

eX3,ρ1 = eX1,ρ′1
≤ 2d1

r1 + 1
w(ρ′1) =

2d3

r3 + 1
w(ρ1) (resp. <),

i.e. that [X3 ⊂ Pr3 ] is Chow semistable (resp. stable) with respect to ρ1. Analogously,

using that [X2 ⊂ Pr2 ] is Chow semistable (resp. stable), we obtain that [X3 ⊂ Pr3 ] is

Chow semistable (resp. stable) with respect to ρ2.
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It remains to prove the polystability. Suppose that [X3 ⊂ Pr3 ] is strictly Chow

semistable, so that there exists a one-parameter subgroup, for example ρ1 as above,

such that

eX3,ρ1 =
2d3

r3 + 1
w(ρ1)

and consider the one-parameter subgroup ρ′1 as above. Let I1 and I3 be the ideals of

C1 and C3 respectively in Pr1 and Pr3 . It is easy to check that I1 ∩ k[x1, . . . , xs1+1] =

I3 ∩ k[x1, . . . , xs3+1], hence in≺ρ′1
(I1) = in≺ρ1 (I3). Since [X1 ⊂ Pr1 ] is Chow polystable

by hypothesis, there exists A = (aij) ∈ GLr1+1 such that

lim
t→0

ρ′1(t)[X1 ⊂ Pr1 ] = A[X1 ⊂ Pr1 ].

Define the matrix A′ = (a′ij) ∈ GLr3+1 as follows:

a′ij =


aij if 1 ≤ i ≤ s1 and 1 ≤ j ≤ s1,

1 if (s1 + 1 ≤ i ≤ r3 + 1 or s1 + 1 ≤ j ≤ r3 + 1) and i = j,

0 if (s1 + 1 ≤ i ≤ r3 + 1 or s1 + 1 ≤ j ≤ r3 + 1) and i 6= j.

Now, we notice that ρ1 fixes each point of D3 ⊂ Pr3 . Moreover, the actions of ρ1 and

ρ′1 on C3 ⊂ Pr3 coincide, hence by Lemma 8.2 and Corollary 4.14 we get

lim
t→0

ρ1(t)[X3 ⊂ Pr3 ] = A′[X3 ⊂ Pr1 ].

This implies that [X3 ⊂ Pr3 ] is Chow polystable with respect to ρ1. Analogously, using

that [X2 ⊂ Pr2 ] is Chow polystable, we obtain that [X3 ⊂ Pr3 ] is Chow polystable with

respect to ρ2, and we are done.

�

9. Elliptic tails and Tacnodes with a line

According to Corollary 5.6(i), if [X ⊂ Pr] ∈ Hilbd is Chow semistable with X

connected and 2(2g − 2) < d ≤ 4(2g − 2), then X is quasi-wp-stable. The aim of this

section is to investigate whether X can have tacnodes with a line or elliptic tails.

We begin this section by recalling the relation between the presence of cusps and the

presence of special elliptic tails (in the sense of Definition 6.2). We refer to [HM10].

Theorem 9.1. Let [X ⊂ Pr] ∈ Hilbd with X connected and 2(2g − 2) < d. Assume

that one of the following two conditions is satisfied

(i) d < 4(2g − 2) and [X ⊂ Pr] ∈ Ch−1(Chowss
d );

(ii) d = 4(2g − 2) and [X ⊂ Pr] ∈ Hilbssd .

Then X does not have special elliptic tails.

Proof. According to the hypothesis on [X ⊂ Pr], we get that X is quasi-wp-stable

by Corollary 5.6(ii) and that L := OX(1) is very ample, non-special and balanced of

degree d by the Potential pseudo-stability Theorem 5.1.

Suppose that X has a special elliptic tail, i.e., X = F ∪ C where F ⊆ X is an

irreducible subcurve of arithmetic genus 1, C ⊆ X is a connected subcurve of arithmetic
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genus g − 1 and p := F ∩ C is a nodal point of X which is a smooth point of both F

and C, and L|F = OF (νp) for some ν ∈ N. We want to show, by contradiction, that

[X ⊂ Pr] 6∈ Ch−1(Chowss
d ) (resp. Hilbssd ) if (i) (resp. (ii)) holds. Since Ch−1(Chowss

d )

and Hilbssd are open in Hilbd, we can assume that F is a smooth elliptic tail.

Note that the basic inequality (3.1) applied to F gives that ν := degL|F ≤ 4 if (i)

holds and ν = 4 if (ii) holds.

Consider the linear spans VF := 〈F 〉 of F and VC := 〈C〉 of C on Pr = P(V ). It

follows from Riemann-Roch theorem, using that L (hence L|C and L|F ) is non-special,

that VF has dimension ν−1 and VC has dimension d−ν−(g−1) = r−ν+1. Therefore,

we can choose a system of coordinates {x1, . . . , xr+1} of type (8.1), i.e. such that

(9.1) VF =

r+1⋂
i=ν+1

{xi = 0} and VC =

ν−1⋂
i=1

{xi = 0}.

Hence p is the point where all the xi’s vanish except xν . For 1 ≤ i ≤ ν, we will identify

xi with the section of H0(F,L|F ) it determines and we will denote by ordp(xi) the

order of vanishing of xi at p. By Riemann-Roch theorem applied to the line bundles

L|F (−ip) = OF ((ν − i)p) for i = 0, . . . , ν, we may choose the first ν coordinates

{x1, . . . , xν} of V so that

(9.2) ordp(xi) =

ν if i = 1,

ν − i if 2 ≤ i ≤ ν.

Consider the one-parameter subgroup ρ : Gm → GL(V ) which, in the above coordi-

nates, has the diagonal form ρ(t) · xi = twixi for i = 1, . . . , r+ 1, with weights wi such

that

(9.3)


w1 = wρ(x1) = 0

wi = wρ(xi) = i for 2 ≤ i ≤ ν,

wj = wρ(xj) = ν for j ≥ ν + 1.

The proof of [HM10, Lemma 1] extends verbatim to our case and gives that

WX,ρ(m) = m2

[
dν − ν2

2

]
+m

[
3ν

2
− gν

]
− 1 for any m ≥ 2.

In particular, the normalized leading coefficient of WX,ρ is equal to

(9.4) eX,ρ = 2dν − ν2.

From (9.3), it is easy to compute that the total weight of ρ is equal to

(9.5) w(ρ) =

ν∑
i=2

i+ ν(r + 1− ν) = ν(r + 1) +
−ν2 + ν − 2

2
.

If (i) holds, i.e. if v := d
2g−2 < 4, combining (9.4), (9.5) and the fact that r = d − g,

we get that

2d
w(ρ)

r + 1
= 2dν+

2v

2v − 1
(−ν2+ν−2) < 2dν+

8

7
(−ν2+ν−2) = 2dν−ν2− (ν − 4)2

7
≤ eX,ρ.
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This implies that [X ⊂ Pr] 6∈ Ch−1(Chowss
d ) by Fact 4.3.

On the other hand, if (ii) holds, i.e. if v := d
2g−2 = 4 (hence ν = 4), then

WX,ρ(m) = (4d−8)m2+(6−4g)m−1 > (4d−8)m2+(5−4g)m =
w(ρ)

r + 1
mP (m)for m� 0.

This implies that [X ⊂ Pr] 6∈ Hilbssd by Fact 4.2.

�

As a corollary, if d = 4(2g − 2) and X ⊂ Pr admits a special elliptic tail, then

[X ⊂ Pr] is strictly Chow semistable with respect to the 1ps ρ as in (9.3). It would be

interesting to find the equations of F in its linear span 〈F 〉 in order to determine the

flat limit

[X0 ⊂ Pr] = lim
t→0

ρ(t)[X ⊂ Pr]

using Corollary 4.14. This is not very difficult to do (we leave it to the reader as an

exercise) and one obtains that X0 is given by the union of C and a special cuspidal

elliptic tail, which we denote by F0. Here we do not use this fact, we consider directly

[X0 ⊂ Pr] ∈ Hilbd where X0 = F0 ∪ C and F0 is cuspidal and special. Using the same

system of coordinates {x1, . . . , xr+1} in Pr as in Theorem 9.1, we can parameterize F0

by

[s, t] ∈ P1 7→ [s4, s2t2, st3, t4, 0, . . . , 0],

so that F is special since ordp(x1) = 4, the cusp q is the point [1, 0, 0, . . . , 0] and ρ

stabilizes [X0 ⊂ Pr]. We are ready to show explictly the relation between the cusps

and the special elliptic tails we outlined at the beginning of this section by studying

Aρ([X0 ⊂ Pr]) and Aρ−1([X0 ⊂ Pr]) (see [HM10, Lemma 4]).

Theorem 9.2. Let [X0 ⊂ Pr] ∈ Hilbd as above and let ρ as in (9.3). Then Aρ([X0 ⊂
Pr]) (resp. Aρ−1([X0 ⊂ Pr])) contains smoothings of the cusp (resp. separating node),

but not smoothings of the separating node (resp. cusp).

Proof. We use the same tecniques used to prove CLAIM 3 in the proof of Theorem 7.5.

We have that the tangent space TX,q is given by 〈x2, x3〉, so that the completion of the

local ring OX,q is given by k[[u, v]]/(u2 − v3) where u = x3/x1 and v = x2/x1. Since

ρ(t) · x1 = x1, ρ(t) · x2 = t2x2 and ρ(t) · x3 = t3x3, we obtain that ρ(t) · u = t3u and

ρ(t) · v = t2v. We recall that Def(X,q) has a semiuniversal ring equal to k[[a, b]] with

universal family k[[u, v, a, b]]/(u2 − v3 − av − b). This implies that ρ(t) · a = t4a and

ρ(t) · b = t6b, so that Aρ([X0 ⊂ Pr]) contains smoothings of q. If we consider the action

of ρ on the universal family of the separating node p, we obtain non positive weights,

hence Aρ−1([X0 ⊂ Pr]) does not contain smoothings of p. The converse result holds if

we consider Aρ−1([X0 ⊂ Pr]). �

The original result of this section is that there is a similar relation between tacnodes

with a line and non-special elliptic tails. Concerning the presence of tacnodes with a

line, we recall the following result.
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Figure 5. The basin of attraction of a curve X0 with a special cuspidal

elliptic tail F0.

Theorem 9.3. If 7
2(2g − 2) < d and [X ⊂ Pr] ∈ Ch−1(Chowss

d ) ⊂ Hilbd with X

connected, then X does not have tacnodes with a line.

Proof. This follows from [Gie82, Prop. 1.0.6, Case 2]; however, for the reader’s conve-

nience and also because we will need it later, we give a sketch of the proof.

Using the hypothesis on [X ⊂ Pr], we get that X is quasi-wp-stable by Corollary

5.6(ii) and L := OX(1) is very ample, non-special and balanced of degree d by the

Potential pseudo-stability Theorem 5.1. Suppose that X has a tacnode with a line, i.e.

we can write X = Y ∪E with E ∼= P1, {p} = E ∩Y is a tacnode of X and degL|E = 1.

We want to show, by contradiction, that [X ⊂ Pr] 6∈ Ch−1(Chowss
d ) if 7

2(2g − 2) < d.

Since E and Y are tangent in p ∈ E ∩ Y , we can choose coordinates {x1, . . . , xr+1}
of H0(X,L) so that

ordp(xi|E) ≥ 2 and ordp(xi|Y ) ≥ 2 for any 1 ≤ i ≤ r − 1,

ordp(xr |E) = ordp(xr |Y ) = 1,

ordp(xr+1|E) = ordp(xr+1|Y ) = 0,

where xi|E (resp. xi|Y ) denotes the image of xi ∈ H0(X,L) via the restriction map

H0(X,L) → H0(E,L|E) (resp. H0(X,L) → H0(Y,L|Y )), and ordp denotes the order

of vanishing of a section at the point p (considered as a smooth point of E and of Y ).

Consider now the one-parameter subgroup ρ : Gm → GL(V ) which, in the above

coordinates, has the diagonal form ρ(t) · xi = twixi for i = 1, . . . , r + 1, with weights

wi such that

(9.6)


wi = wρ(xi) = 0 for 1 ≤ i ≤ r − 1,

wr = wρ(xr) = 1,

wr+1 = wρ(xr+1) = 2.
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Clearly, the total weight of ρ is equal to w(ρ) = 3. The proof of [Gie82, Prop. 1.0.6,

Case 2] gives that

(9.7) eX,ρ ≥ 7.

Therefore, if 7
2 < v := d

2g−2 then we have that

2w(ρ)
d

r + 1
= 6

2v

2v − 1
< 6 · 7

6
≤ eX,ρ.

which implies that [X ⊂ Pr] 6∈ Ch−1(Chowss
d ) by Fact 4.3. �

Combining Corollary 5.6(i) with Theorem 9.3 and Theorem 9.1, we get the following

Corollary 9.4. Let [X ⊂ Pr] ∈ Hilbd with X connected and 2(2g − 2) < d. Assume

that one of the following two conditions is satisfied

(i) 7
2(2g − 2) < d < 4(2g − 2) and [X ⊂ Pr] ∈ Ch−1(Chowss

d );

(ii) d = 4(2g − 2) and [X ⊂ Pr] ∈ Hilbssd .

Then X is a quasi-wp-stable curve without tacnodes nor special elliptic tails.

We turn now our attention to the stability of generic elliptic tails (hence also non-

special ones).

Remark 9.5. Suppose that [X ⊂ Pr] has an elliptic tail, i.e. we can write X = Y ∪F
where F ⊆ X is a connected subcurve of arithmetic genus 1, Y ⊆ X is a connected

subcurve of arithmetic genus g−1 and F ∩Y = {p} where p is a nodal point of X which

is smooth in F and Y . Our goal is to determine under which hypothesis [X ⊂ Pr] is

Hilbert or Chow semistable. Using Corollary 5.6(i) and the Potential pseudo-stability

Theorem 5.1, we can assume that X is quasi-wp-stable and L := OX(1) is very ample,

non-special and balanced of degree d.

Let ν := degL|F . Since L (and hence L|F ) is very ample by construction, we must

have ν ≥ 3. On the other hand, by applying the basic inequality (3.1) to the subcurve

F ⊆ X we get ∣∣∣∣ν − d

2g − 2

∣∣∣∣ ≤ 1

2
,

so that 
ν ≤ 3 if d < 7

2(2g − 2),

ν = 3, 4 if d = 7
2(2g − 2),

ν ≥ 4 if d > 7
2(2g − 2).

If ν = 4 then there exists an isotrivial specialization (X,L)  (X ′, L′) (in the sense

of Definition 7.3), where X ′ = Y ∪ E ∪ F is obtained from X by blowing up the node

p (i.e. inserting an exceptional component E ∼= P1 meeting Y and F in one point)

and L′ is a properly balanced line bundle on X ′ such that degL′|Y = degL|Y = d − 4,

degL′|E = 1 and degL′|F = 3. Using Theorem 17.5 from the Appendix, it is easy to see

that L′ is non-special and very ample; therefore there exists [X ′ ⊂ Pr] ∈ Hilbd such

that OX′(1) = L′. Thus the basic inequality (3.1) and Theorem 7.5 imply
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(1) [X ′ ⊂ Pr] ∈ Orb([X ⊂ Pr]);
(2) if d = 7

2(2g − 2) then [X ⊂ Pr] ∈ Hilbssd (resp. [X ⊂ Pr] ∈ Ch−1(Chowss
d )) if

and only if [X ′ ⊂ Pr] ∈ Hilbssd (resp. [X ⊂ Pr] ∈ Ch−1(Chowss
d )).

Theorem 9.6. Let [X ⊂ Pr] ∈ Hilbd with X connected and assume that one of the

following conditions is satisfied

(i) 2(2g − 2) < d < 7
2(2g − 2) and [X ⊂ Pr] ∈ Ch−1(Chowss

d );

(ii) d = 7
2(2g − 2) and [X ⊂ Pr] ∈ Hilbssd .

Then X does not have elliptic tails, i.e. Xell = ∅.

Proof. Denote by L := OX(1). We want to show, by contradiction, that [X ⊂ Pr] 6∈
Ch−1(Chowss

d ) (resp. [X ⊂ Pr] 6∈ Hilbssd ) if (i) (resp. (ii)) holds. Note that since

Ch−1(Chowss
d ) and Hilbssd are open in Hilbd, we can assume that F is a generic con-

nected curve of arithmetic genus one, and in particular that it is a smooth elliptic

curve. Moreover, by Remark 9.5 we can assume that degL|F = 3, so that we can write

(9.8) L|F = OF (2p+ q)

for some (uniquely determined) q ∈ F . By our generic assumption on F , we can assume

that q 6= p.

Consider now the linear spans VF := 〈F 〉 of F and VY := 〈Y 〉 of Y on Pr = P(V ). It

follows from Riemann-Roch theorem, using that L (hence L|Y and L|F ) is non-special,

that VF has dimension 2 and VY has dimension d− 3− (g − 1) = r− 2. Therefore, we

can choose coordinates {x1, . . . , xr+1} of V such that

VF =
r+1⋂
i=4

{xi = 0} , VY =
2⋂
i=1

{xi = 0}

and p is the point where all the xi’s vanish except x3. For 1 ≤ i ≤ 3, we will identify xi

with the section of H0(F,L|F ) it determines and we will denote by ordp(xi) the order of

vanishing of xi at p. By Riemann-Roch theorem applied to the line bundles L|F (−ip)
for i = 0, . . . , 3 and using (9.8) with q 6= p, we may choose the first three coordinates

{x1, . . . , x3} of V so that

(9.9) ordp(xi) = 3− i for 1 ≤ i ≤ 3.

Consider the one-parameter subgroup ρ : Gm → GL(V ) which, in the above coordi-

nates, has the diagonal form ρ(t) · xi = twixi for i = 1, . . . , r+ 1, with weights wi such

that

(9.10)


w1 = wρ(x1) = −2,

w2 = wρ(x2) = −1,

wj = wρ(xj) = 0 for j ≥ 3.

The total weight of ρ is equal to

(9.11) w(ρ) = −2− 1 = −3.
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We want now to compute the polynomial WX,ρ(m). By Lemma 8.1

WX,ρ(m) = WF,ρ(m) +WY,ρ(m)

since w3 = 0. Moreover, each coordinate of VY = {x1 = x2 = 0} has weight 0, hence

WY,ρ(m) = 0 and

(9.12) WX,ρ(m) = WF,ρ(m)

In order to compute the polynomial WF,ρ(m), consider the embedding of F as a

cubic curve in P2 = P(H0(F,L|F )∨) given by the complete linear system |L|F | . Let

f ∈ k[x1, x2, x3]3 be a homogenous polynomial of degree 3 defining F . The conditions

(9.9) on the order at p of the coordinates {x1, x2, x3} translate directly into conditions

on the polynomial f . More specifically, the point p has coordinates (0, 0, 1) and p ∈ F
if and only if the coefficient of x3

3 in f is equal to zero. The condition that ordpx1 ≥ 2

says that the tangent space of F at p must have equation {x1 = 0} which translates

into the fact that the coefficient of x2
3x2 in f is zero while the coefficient of x2

3x1 is not

zero. Finally, we have that ordp(x1) = 2 (i.e. p is not a flex point of F ) if and only if

the coefficient of x2
2x3 in f is not zero. Summing up, every polynomial f such that the

coordinates {x1, x2, x3} satisfy (9.9) is of the form

(9.13)

f = a300x
3
1+a210x

2
1x2+a201x

2
1x3+a120x1x

2
2+a102x1x

2
3+a111x1x2x3+a030x

3
2+a021x

2
2x3,

where a102 6= 0 and a021 6= 0.

Because of the choice (9.10) of the one-parameter subgroup ρ, it is easy to see that

the monomial x2
2x3 has the maximal ρ-weight among all the monomials appearing in

the above equation (9.13) of f . Moreover, the same monomial appears with non-zero

coefficient in f . Therefore, a collection of 3m monomials that compute the polynomial

WF,ρ(m) is represented by the monomials which are not divisible by x2
2x3, namely{

{xm−k1 xk3}0≤k≤m, {x2x
m−1−h
1 xh3}0≤h≤m−1, {x2

2x
m−2−j
1 xj2}0≤j≤m−2

}
.

We get

WF,ρ(m) =

m∑
k=0

[w1(m−k)+kw3]+

m−1∑
h=0

[w2+(m−1−h)w1+hw3]+

m−2∑
j=0

[(j+2)w2+(m−2−j)w1] =

(9.14) =

[
3

2
w1 +

1

2
w2 + w3

]
m2 +

[
−3

2
w1 +

3

2
w2

]
m+ [w1−w2] = −7

2
m2 +

3

2
m− 1.

Combining (9.14) with (9.12), we get

(9.15) WX,ρ(m) = −7

2
m2 +

3

2
m− 1.

In particular, the normalized leading coefficient of WX,ρ(m) is equal to

(9.16) eX,ρ = −7.
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Let us first assume that condition (i) holds, and in particular that v :=
d

2g − 2
<

7

2
.

The right hand side of the numerical criterion for Chow (semi)stability (see Fact 4.3)

can be bounded above as follows:

(9.17) 2d
w(ρ)

r + 1
= − 6d

r + 1
= −6

d

d− g + 1
= −6

2v

2v − 1
< −7.

From (9.16) and (9.17), we deduce that the chosen 1ps ρ satisfies

eX,ρ > 2d
w(ρ)

r + 1
.

In other words, ρ violates the numerical criterion for Chow semistability of [X ⊂ Pr]
(see Fact 4.3); hence [X ⊂ Pr] 6∈ Ch−1(Chowss

d ) which is the desired contradiction.

Finally, let us assume that condition (ii) holds, namely v :=
d

2g − 2
=

7

2
. One of the

two polynomials appearing in the numerical criterion for Hilbert (semi)stability (see

Fact 4.2) is equal to

(9.18)
w(ρ)

r + 1
mP (m) = − 3

r + 1
m(md+ 1− g) = − 3d

r + 1
m2 +

3

r + 1
(g − 1)m =

7

2
m2 +

1

2
m.

From (9.14) and (9.18), it follows that

w(ρ)

r + 1
mP (m)−WX,ρ(m) < 0 for m� 0,

which implies that [X ⊂ Pr] 6∈ Hilbssd by Fact 4.2. �

Combining the previous Theorem 9.6 with Corollary 5.6(i) and Definition 2.10(ii),

we get the following

Corollary 9.7. Let [X ⊂ Pr] ∈ Hilbd with X connected and assume that one of the

following two conditions is satisfied

(i) 2(2g − 2) < d < 7
2(2g − 2) and [X ⊂ Pr] ∈ Ch−1(Chowss

d );

(ii) d = 7
2(2g − 2) and [X ⊂ Pr] ∈ Hilbssd .

Then X is a quasi-p-stable curve.

The Chow case for d =
7

2
(2g−2) is very interesting. In the proof of the last theorem

we said that if [X ⊂ Pr] admits an elliptic tail F that satisfies (9.8) (we use the same

notation of the last proof) and ρ : Gm → GLr+1 is the one-parameter subgroup defined

above with weights (9.10), then

eX,ρ =
7

3
w(ρ)

Thus [X ⊂ Pr] is Chow strictly semistable with respect to ρ. In the next theorem, we

determine

[X0 ⊂ Pr] := lim
t→0

ρ(t) · [X ⊂ Pr]

and we study Aρ([X0 ⊂ Pr]) and Aρ−1([X0 ⊂ Pr]).
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Theorem 9.8. Let X and ρ be as above. Then X0 = F0 ∪ Y , where F0 is a tacnodal

elliptic tail (in particular [X ⊂ Pr] ∈ Aρ([X0 ⊂ Pr])). Moreover, Aρ−1([X0 ⊂ Pr])
contains smoothings of the separating node, but not smoothings of the tacnode.

Proof. Denote by I the homogeneous ideal defined by X ⊂ Pr. In the proof of Theorem

9.6 we said that F ⊂ VF satisfies the equation

f = a300x
3
1+a210x

2
1x2+a201x

2
1x3+a120x1x

2
2+a102x1x

2
3+a111x1x2x3+a030x

3
2+a021x

2
2x3 = 0,

where a102 6= 0 and a021 6= 0. Let us consider the ρ-weighted graded order in≺ρ as in

§4.4 .We obtain that g := in≺ρ(f) = a102x1x
2
3 + a021x

2
2x3, which is the equation of an

elliptic tacnodal curve F0 in VF ∼= P2. Denote by IF and IY respectively the ideals of

F and C, respectively. Suppose that h1, . . . , hn ∈ k[x3, x4 . . . , xr+1] is a Gröbner basis

for I(Y ) ∩ k[x3, . . . , xr+1]: by Lemma 8.2 we deduce that

{f, h1, . . . , hn, xixj | 1 ≤ i ≤ 2 and 4 ≤ j ≤ r + 1}

is a Gröbner basis for I = IY ∩ IF . Applying the definition we get

in≺ρ(I) = 〈g, h1, . . . , hn, xixj | 1 ≤ i ≤ 2 and 4 ≤ j ≤ r + 1〉,

which is exactly the ideal defining the variety X0 = F0 ∪ Y ⊂ Pr. Now, it is enough to

apply Corollary 4.14.

In order to show the last part of the theorem, we use the same tecniques used to

prove CLAIM 3 in the proof of Theorem 7.5. Consider the separating node {p} =

{[0, 0, 1, 0, . . . , 0]} = VF0 ∩ VY . We can assume that the tangent space TX,p is given by

〈x2, x4〉, hence the completion of the local ring OX,p is given by k[[u, v]]/(uv) where

u = x2/x3 and v = x4/x3. Since ρ(t)−1 · x2 = tx2 and ρ(t)−1 · x4 = x4, we get

ρ(t)−1 · u = tu and ρ(t)−1 · v = v. We recall that Def(X,p) has a semiuniversal ring

equal to k[[a]] with universal family k[[u, v, a]]/(uv−a). This implies that ρ(t)−1 ·a = ta

and Aρ−1([X0 ⊂ Pr]) contains smoothings of p. If we consider the action of ρ on the

universal family of the tacnode we obtain non positive weights, hence Aρ−1([X0 ⊂ Pr])
does not contain smoothings of the tacnode. �

X ZF

non-special elliptic tail

p

Y

p

Y

ρ ρ−1

tacnode with a line

F0

E

tacnodal elliptic tail

E

X0

Figure 6. The basin of attraction of a curve X0 with a tacnodal elliptic

tail F0.
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10. A stratification of the semistable locus

Consider the following sublocus of Ch−1(Chowss
d ) ⊂ Hilbd:

(10.1) Ch−1(Chowss
d )o := {[X ⊂ Pr] ∈ Ch−1(Chowss

d ) ⊂ Hilbd : X is connected}.

Note that if d > 2(2g − 2) then the condition of being connected is both closed and

open in Ch−1(Chowss
d ): it is closed because of its natural interpretation as a topological

condition; it is open because if [X ⊂ Pr] ∈ Ch−1(Chowss
d ) then X is a reduced curve

by the Potential pseudo-stability Theorem 5.1 and therefore X is connected if and

only if h0(X,OX) = 1, which is an open condition by upper-semicontinuity. Therefore,

Ch−1(Chowss
d )o is both open and closed in Ch−1(Chowss

d ); or, in other words, it is a

disjoint union of connected components of Ch−1(Chowss
d ).

Inspired by [Cap94, Sec. 5], we introduce in this section an SLr+1-invariant stratifi-

cation of Ch−1(Chowss
d )o and we establish some properties of it.

Recall that if [X ⊂ Pr] ∈ Ch−1(Chowss
d )o and d > 2(2g − 2) then X is quasi-wp-

stable and OX(1) is properly balanced by Corollary 5.6(i). Recall also that Bd
X denotes

the set of multidegrees of properly balanced line bundles on X of total degree d (see

Definition 3.5).

Following [Cap94, Sec. 5.1], consider, for any quasi-wp-stable curve X of genus g

and any d ∈ Bd
X , the (locally closed) stratum of Ch−1(Chowss

d )o:

(10.2)

M
d
X := {[Y ⊂ Pr] ∈ Ch−1(Chowss

d )o : ∃φ : X
∼=−→ Y such that deg φ∗OY (1) = d}.

Note in particular, that the isomorphism φ between the abstract curve X and the

embedded curve Y is not specified. However, with a slight abuse of notation, we will

often represent points of M
d
X by [X ⊂ Pr].

Each stratumM
d
X is SLr+1-invariant since SLr+1 acts on Ch−1(Chowss

d )o by changing

the embedding of X inside Pr and thus it preserves X and the multidegree d. Note

that M
d
X may be empty for certain pairs (X, d) as above.

10.1. Specializations of strata. The aim of this subsection is to describe all pairs

(X ′, d′) with X ′ quasi-wp-stable of genus g and d′ ∈ Bd
X′ such that M

d′

X′ ⊆M
d
X .

Generalizing the refinement relation of [Cap94, Sec. 5.2], we define an order relation

on the sets of pairs (X, d) where X is a quasi-wp-stable curve of genus g and d ∈ Bd
X .

Definition 10.1. Let (X ′, d′) and (X ′′, d′′) be such that X ′ and X ′′ are two quasi-

wp-stable curves of genus g and d′ ∈ Bd
X′ , d

′′ ∈ Bd
X′′ . We say that (X ′′, d′′) � (X ′, d′)

if (X ′′, d′′) can be obtained from (X ′, d′) via a sequence of elementary operations as

depicted in Figures 7, 8, 9, 10, 11 and 12 below.

Remark 10.2. Given two quasi-wp-stable curves X ′ and X ′′ (not necessarily endowed

with any multidegree), we can also say that X ′′ � X ′ if X ′′ can be obtained from X ′

via a sequence of the elementary operations depicted in Figures 7, 8, 11, 9, 10 and 12,

ignoring the degrees.
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d1

d2
d2

d1 − 1

1

X ′
X ′′

d1

1

d1 − 1

X ′′
X ′

Figure 7. Blow-up of a node: external and internal cases.

d

1

d− 1

X ′ X ′′

Figure 8. Blow-up of a cusp.

e

d− e d− e X ′′

X ′

e

Figure 9. Replacing an elliptic tail by a cuspidal elliptic tail.

d

eX ′

X ′′
d− e

Figure 10. Replacing a cuspidal singularity by a cuspidal elliptic tail.

e

d− e d− e

e− 1

1

X ′′

X ′

Figure 11. Replacing an elliptic tail by a tacnodal elliptic tail.

d− e

e− 1

1
X ′′

X ′

1

d− 1

Figure 12. Replacing a tacnode with a line by a tacnodal elliptic tail.

From the above description it is easy to see that there is a relation between the

isotrivial specialization introduced in Definition 7.3 and the order relation �. More

precisely, we have the following
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Remark 10.3. Let (X ′, L′) and (X ′′, L′′) be two pairs consisting of a quasi-wp-stable

curve of genus g and a properly balanced line bundle of degree d. If (X ′, L′) (X ′′, L′′)

then (X ′′, degL′′) � (X ′,degL′).

The following elementary property of the order relation � will be used in what

follows.

Lemma 10.4. Notations as in Definition 10.1. If X ′′ � X ′ and d′′ ∈ Bd
X′′ then there

exists d′ ∈ Bd
X′ such that (X ′′, d′′) � (X ′, d′).

Proof. Start by assuming that X ′′ is obtained from X ′ by blowing up an external node

n, as in the picture on the left of Figure 7.

Denote by {C ′1, . . . , C ′γ} the irreducible components of X ′, by {C ′′1 , . . . , C ′′γ} their

proper transforms in X ′′ and by E the exceptional component that is contracted to

the node n by the map σ : X ′′ → X ′. Assume that C ′1 and C ′2 are the two irreducible

components of X ′ that contain the node n. Define a multidegree d′ on X ′ in the

following way:

d′C′i
:=

{
d′′C′′i

for i 6= 1,

d′′C′′1
+ 1 for i = 1.

It is clear that |d′| = d, so we must check that d′ satisfies the basic inequality (3.1).

Given a subcurve Z ′ of X ′, we denote by Z ′′ the subcurve of X ′′ that is the proper

transform of Z ′ under the blow-up map X ′′ → X ′. Define WZ′ to be the subcurve of

X ′′ such that WZ′ = Z ′′ if C ′1 ( Z ′ and WZ′ = Z ′′ ∪ E if C ′1 ⊆ Z ′. Then it is easy to

see that 
d′Z′ = d′′WZ′′

,

gZ′ = gWZ′′ ,

kZ′ = kWZ′′ .

Hence the basic inequality (3.1) for d′ relative to the subcurve Z ′ is the same as the

basic inequality for d′′ relative to the subcurve WZ′′ . We conclude that if d′′ ∈ Bd
X′′

then d′ ∈ Bd
X′ .

The remaining cases are similar (and easier) and are therefore left to the reader. �

We will now prove that the above order relation � determines the inclusion relations

among the closures of the strata M
d
X ⊂ Ch−1(Chowss

d )o of (10.2). The following result

is a generalization of [Cap94, Prop. 5.1].

Proposition 10.5. Assume that d > 2(2g−2) and moreover that g ≥ 3 if d ≤ 4(2g−2).

Let X ′ and X ′′ be two quasi-wp-stable curves of genus g and let d′ ∈ Bd
X′ and d′′ ∈ Bd

X′′.

Assume that M
d′′

X′′ 6= ∅. Then

M
d′′

X′′ ⊆M
d′

X′ ⇐⇒ (X ′′, d′′) � (X ′, d′).

86



Proof. ⇐= We will start by showing that if X ′′ � X ′ then there is a family u : X → B

over a smooth curve B whose geometric fiber Xb over a point b ∈ B is such that Xb ∼= X ′

for all b 6= b0 and Xb0 ∼= X ′′.

Start by assuming that X ′′ is obtained from X ′ by blowing up a node, say n. Let

B be a smooth curve and consider the trivial family X ′ × B over B. By blowing up

the surface X × B at the node n belonging to the fiber over a point b0 ∈ B, we get a

family u : X → B whose geometric fiber Xb over a point b ∈ B is such that Xb ∼= X ′

for all b 6= b0 and Xb0 ∼= X ′′ as in the figure below (where we have depicted an external

node, but the case of an internal node is completely similar).

X

Bp
b0
p ?q

In the case when X ′′ is obtained from X ′ by blowing up a cusp we proceed in the

same way as in the previous case: we consider the trivial family X ′×B over B and by

blowing up the surface X×B on the cusp p belonging to the fiber over a point b0 ∈ B,

we get a family u : X → B whose geometric fiber Xb over a point b ∈ B is such that

Xb ∼= X ′ for all b 6= b0 and Xb0 ∼= X ′′ as in the figure below.

X

B
?q

b0

The cases when X ′′ is a cuspidal elliptic tail as in Figures 9 and 10 are direct

consequences of Remark 2.5(i). The cases depicted in Figures 11 and 12 can then be

obtained from these as follows. Let u : X → B be a family such that, for b 6= b0,

Xb ∼= X ′ is a curve with an elliptic tail and such that Xb0 is a curve with a cuspidal

elliptic tail as in Figure 9. By blowing up the surface X at the cusp p of the central

fiber Xb0 , we get a new family u′ : X ′ → B such that X ′b ∼= X ′ is a curve with an elliptic

tail as before and such that X ′b0 has a tacnodal elliptic tail as in Figure 11. Finally, in

order to deal with the situation depicted in Figure 12, we consider an isotrivial family

u : X → B where for b 6= b0, Xb is a curve with a cuspidal singularity and such that

Xb0 has a cuspidal tail, as in Figure 10. The locus in X corresponding to the cusp in

each fiber Xb of u over B is a Weil divisor on the surface X ; by blowing up this divisor,

we get a new family u′ : X ′ → B such that, for b 6= b0, X ′b ∼= X ′ is a curve having a

tacnode with a line while X ′b0 has a tacnodal elliptic tail, as in Figure 12.

Consider now the relative Picard scheme π : PicX/B → B of the family u : X → B,

which exists by a well-known result of Mumford (see [BLR90, Sec. 8.2, Thm. 2]). Since
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H2(Xb,OXb) = 0 for any b ∈ B because Xb is a curve, we get that π : PicX/B → B is

smooth by [BLR90, Sec. 8.4, Prop. 2].

Let now [X ′′ ⊂ Pr = P(V )] ∈ Md′′

X′′ and set L′′ = OX′′(1) ∈ Picd′′(X′′). Note that

the embedding X ′′ ⊂ Pr defines an isomorphism φ : H0(X ′′, L′′)
∼=→ V .

We can view L′′ as a geometric point of (PicX/B)b0
∼= Pic(X′′). Since the morphism

π : PicX/B → B is smooth, up to shrinking B (i.e., replacing it with an étale open

neighborhood of b0), we can find a section σ of π such that σ(b0) = L′′. Moreover,

by definition of the order relation � (see Figures 7, 8, 9, 10, 11 and 12 above), it is

clear that we can choose the section σ so that σ(b) is a line bundle of multidegree d′

on Xb ∼= X ′ for every b 6= b0.

Up to shrinking B again, we can assume that the section σ corresponds to a line

bundle L over X such that L|Xb0
∼= L′′ and L|Xb has multidegree d′ for b 6= b0. Since L′′

is very ample and non-special and these conditions are open, up to shrinking B once

more, we can assume that L is relatively very ample and we can fix an isomorphism

Φ : u∗L
∼=→ OB ⊗ V of sheaves on B such that Φ|b0 = φ. Via the isomorphism Φ, the

relatively very ample line bundle L defines an embedding

X �
� i //

u ��

P(OB ⊗ V ) = PrB

xx
B

whose restriction over b0 ∈ B is the embedding X ′′ ⊂ Pr. The family u : X → B

together with the embedding i defines a morphism f : B → Ch−1(Chowss
d )o such that

f(b0) = [X ′′ ⊂ Pr] ∈ M
d′′

X′′ and f(b) ∈ M
d′

X′ for every b 6= b0, so we conclude that

M
d′′

X′′ ⊆M
d′

X′ .

=⇒ Suppose now that M
d′′

X′′ ⊆ M
d′

X′ . Then we can find a smooth curve B and a

morphism f : B → Ch−1(Chowss
d )o such that f(b0) ∈Md′′

X′′ for some b0 ∈ B and f(b) ∈
M

d′

X′ for every b0 6= b ∈ B. By pulling back the universal family above Ch−1(Chowss
d )o

along the morphism f , we get a family

X �
� //

u
��

B × Pr

B

such that Xb0 = X ′′ and Xb = X ′ for every b 6= b0. In particular, u yields an isotrivial

specialization of X ′ into X ′′. Let X → B be the wp-stabilization of u; for b 6= b0,

X
′
:= X b is the wp-stabilization of X ′ while X

′′
:= X b0 is the wp-stabilization of X ′′.

According to Remark 2.5(i), X
′
and X

′′
may differ by replacing elliptic tails by cuspidal

elliptic tails or by replacing cuspidal singularities by cuspidal elliptic tails as in Figures

9 and 10, so X
′′ � X ′. Then, as X is a family of quasi-wp-stable curves, it is obtained

from X in two steps: first by blowing up the surface X on the locus of some nodal or

cuspidal singularities along all the fibers of X giving rise to a new family X̃ , and then
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by further blowing up X̃ on nodal or cuspidal singularities of the fiber over b0. Denote

X̃ ′ := X̃b for b 6= b0 and X̃ ′′ := X̃b0 . Then it is easy to see that X̃ ′′ � X̃ ′: the only

situation that needs some care is when blowing up X on a cuspidal singularity in the

case when X
′′

is obtained from X
′

by replacing a cuspidal singularity by a cuspidal

elliptic tail as in Figure 10. But in this case, we easily see that we get a situation as

described on Figure 12, so X̃ ′′ � X̃ ′. Finally, by blowing up X̃ on nodes or cusps of

X̃b0 we get the situations described in Figures 7, 8 and 11, so X ′′ � X ′.
Consider now the line bundles Lb0 := OX (1)|Xb0 ∈ Picd′′(X′′) and Lb := OX (1)|Xb ∈

Picd′(X′) for any b0 6= b ∈ B. Let Y ′ ⊆ X ′ be a subcurve of X ′. Consider the subcurve

Y ′′ ⊆ X ′′ = Xb0 given by the union of all the irreducible components Ci of X ′′ for which

there exists a section s of u : X → B such that s(b0) ∈ Ci and s(b) ∈ Y ′ ⊆ X ′ = Xb′
for every b 6= b0. By construction, we get that d′Y ′ = degY ′Lb = degY ′′Lb0 = d′′Y ′′ .

According to Definition 10.1, this yields that (X ′′, d′′) � (X ′, d′).

�

10.2. A completeness result. Given any quasi-wp-stable curve X of genus g and a

multidegree d ∈ Bd
X , consider the subgroup of the automorphism group Aut(X) of X

given by

(10.3) Autd(X) = {φ ∈ Aut(X) : φ∗L ∈ Picd(X) for any L ∈ Picd(X)}.

Note that given a point [Y
i
↪→ Pr] belonging to the stratum M

d
X as in (10.2), the line

bundle φ∗OY (1) ∈ Picd(X) is only well-defined up to the action of Autd(X). We denote

by [OX(1)] the class of this line bundle in the quotient Picd(X)/Autd(X). Therefore,

we have a well-defined (set-theoretic) map

(10.4)
p : M

d
X → Picd(X)/Autd(X)

[X ⊂ Pr] 7→ [OX(1)].

Note that the fibers of the map p are exactly the SLr+1-orbits on M
d
X . The image of

p can be nicely described using the following useful result about the relation between

the automorphism group of X and the stability of [X ⊂ Pr].

Lemma 10.6. Let [X ⊂ Pr] ∈ Hilbd where X is non-degenerate and linearly normal

in Pr. Set L = OX(1). If φ ∈ Aut(X), then [X ⊂ Pr] is Chow semistable (resp. stable)

if and only if [X
|φ∗L|
↪→ Pr] is Chow semistable (resp. stable). The same holds for the

Hilbert (semi)stability.

Proof. For m� 0 we have the commutative diagram

SmH0(X,L)
φ∗
//

����

SmH0(X,φ∗L)

����
H0(X,Lm)

φ∗
// H0(X,φ∗Lm),
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which allows us to identify the monomial bases of H0(X,Lm) and of H0(X,φ∗Lm).

More precisely, if we fix a system of coordinates {x1, . . . , xr+1} and {B1, . . . , BP (m)} is a

monomial basis ofH0(X,Lm) with respect to {x1, . . . , xr+1}, then {φ∗(B1), . . . , φ∗(BP (m))}
is a monomial basis of H0(X,φ∗Lm) with respect to the system of coordinates

{φ∗(x1), . . . , φ∗(xr+1)}.

Now, let ρ be a 1ps diagonalized by {x1, . . . , xr+1} with weights w1, . . . , wr+1 and

define another 1ps ρ∗ diagonalized by {φ∗(x1), . . . , φ∗(xr+1)} with the same ordered

weights. By the identification of monomial bases, we have that WX,ρ(m) = WX,ρ∗(m)

for m� 04. Now, it suffices to apply the Hilbert-Mumford criterion (Fact 4.2) and our

statement is proved. �

Corollary 10.7. Let X be a quasi-wp-stable curve and d ∈ Bd
X . Let L ∈ Picd(X) and

assume that L is very ample and non-special. Consider the point [X
|L|
↪→ Pr] ∈ Hilbd,

which is well-defined up to the action of SLr+1. Then

[L] ∈ Im(p)⇔ [X
|L|
↪→ Pr] ∈ Ch−1(Chowss

d )o.

The aim of this subsection is to prove the following completeness result, which

generalizes [Cap94, Prop. 5.2].

Proposition 10.8. Let X be a quasi-wp-stable curve and d ∈ Bd
X . Assume that one

of the following conditions is satisfied:

(i) d > 4(2g − 2);

(ii) 2(2g − 2) < d < 7
2(2g − 2) and g ≥ 3;

(iii) X is quasi-p-stable, 7
2(2g − 2) < d < 4(2g − 2) and g ≥ 3.

Then either M
d
X = ∅ or p : M

d
X → Picd(X)/Autd(X) is surjective.

Proof. Note that the statement of the Proposition is equivalent to the fact that either

θ−1(Im(p)) = ∅ or θ−1(Im(p)) = Picd(X), where θ : Picd(X) → Picd(X)/Autd(X) is

the projection to the quotient. We first make the following two reductions.

Reduction 1: We can assume that if d < 5
2(2g − 2) then X does not contain elliptic

tails; in this case every L ∈ Picd(X) is non-special and very ample.

Indeed, according to Theorem 17.5(i), L ∈ Picd(X) is non-special since X is quasi-

wp-stable, hence G-semistable, and degL = d > 2(2g− 2) > 2g− 2 (recall that g ≥ 2).

Now, if d < 5
2(2g−2) and X contains some elliptic tail F , then from the basic inequality

it follows easily that dF = 2. But no line bundle of degree 2 on a curve of genus 1 is

very ample, hence no line bundle of multidegree d on X can be very ample. Otherwise,

since any L ∈ Picd(X) is ample by Remark 5.7, it follows from Theorem 17.5(iii) that

L is very ample, q.e.d.

Reduction 2: We can assume that d is strictly balanced.

4Here there is an abuse of notation: WX,ρ(m) is referred to [X ⊂ Pr], while WX,ρ∗(m) is referred

to [X
|φ∗L|
↪→ Pr].
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Indeed, suppose the proposition is true for all strictly balanced line bundles on quasi-

wp-stable curves and let us show that it is true for our multidegree d on X, assuming

that d is not strictly balanced. Let L ∈ Picd(X). Since d is not strictly balanced,

by Lemma 7.4(ii) there exists an isotrivial specialization (X,L)  (X ′, L′) such that

d′ := degL′ is a strictly balanced multidegree on X ′. Moreover, from the proof of the

cited Lemma, it follows easily that the curve X ′ and the multidegree d′ depend only

on X and d and not on L ∈ Picd(X). Note that, since X ′ is obtained from X by

blowing up some nodes of X, then X has some elliptic tails if and only if X ′ has some

elliptic tails. Therefore, according to Reduction 1, L and L′ are non-special and very

ample. Up to the choice of a basis of H0(X,L) and of H0(X ′, L′), we get two points

of Hilbd, namely [X
|L|
↪→ Pr] and [X ′

|L′|
↪→ Pr]. These two points are indeed well-defined

only up to the action of the group SLr+1. From Corollary 10.7, we get that [L] ∈

Im(M
d
X

p→ Picd(X)/Autd(X)) if and only if [X
|L|
↪→ Pr] ∈ Ch−1(Chowss

d )o, and similarly

that [L′] ∈ Im(M
d′

X′
p′→ Picd′(X′)/Autd′(X′)) if and only if [X ′

|L′|
↪→ Pr] ∈ Ch−1(Chowss

d )o.

Therefore, Theorem 7.5(ii) gives that [L] ∈ Im(p) if and only if [L′] ∈ Im(p′). In other

words, we have defined a set-theoretic map

Υ : Picd(X)→ Picd′(X′)

L 7→ L′

such that Υ−1(θ′−1(Im(p′))) = θ−1(Im(p))., where θ : Picd(X) → Picd/Autd(X) and

θ′ : Picd′(X′) → Picd′/Autd′(X′) are the projection maps. The proposition for d′ is

equivalent to the fact that either θ′−1(Im(p′)) = ∅ or θ′−1(Im(p′)) = Picd′(X′). Using

the above map Υ, it is easy to see that the above properties hold also for d, q.e.d.

We now prove the proposition for a pair (X, d) satisfying the properties of Reduction

1 and Reduction 2 and one of the conditions (i), (ii) and (iii). Assume that M
d
X 6= ∅,

for otherwise there is nothing to prove. Let us first prove the following

CLAIM: θ−1(Im(p)) ⊂ Picd(X) is open and dense.

Consider a Poincaré line bundle P on X × Picd(X), i.e., a line bundle P such that

P|X×{L} ∼= L for every L ∈ Picd(X) (see [Kle05, Ex. 4.3]). By Reduction 1, it follows

that P is relatively very ample with respect to the projection π2 : X × Picd(X) →
Picd(X) and that (π2)∗(P) is locally free of rank equal to r + 1 = d − g . We can

therefore find a Zariski open cover {Ui}i∈I of Picd(X) such that (π2)∗(P)|Ui
∼= O⊕(r+1)

Ui

and the line bundle P induces an embedding

X × Ui �
� ηi //

π2
""

P(Or+1
Ui

) = PrUi

yy
Ui
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The above embedding corresponds to a map fi : Ui → Hilbd and, using Corollary 10.7,

we get that

θ−1(Im(p)) =
⋃
i

f−1
i (Ch−1(Chowss

d )o).

Since Ch−1(Chowss
d )o is open inside Chow−1(Chowss

d ) (by the discussion at the begin-

ning of Section 10) and Ch−1(Chowss
d ) is open in Hilbd (because any GIT-semistability

condition is open), it follows that f−1
i (Ch−1(Chowss

d )o) is open inside Ui; hence

θ−1(Im(p)) ⊆ Picd(X)

is open as well. Moreover, since Picd(X) is irreducible and M
d
X 6= ∅, we get that

θ−1(Im(p)) ⊆ Picd(X) is also dense, q.e.d.

In order to finish the proof, it remains to show that θ−1(Im(p)) ⊆ Picd(X) is closed.

Since θ−1(Im(p)) is open by the CLAIM, it is enough to prove that θ−1(Im(p)) is closed

under specializations (see [Har77, Ex. II.3.18(c)]), i.e., if B ⊆ Picd(X) is a smooth curve

such that B \ {b0} ⊆ θ−1(Im(p)) then b0 ∈ θ−1(Im(p)). The same construction as in

the proof of the Claim gives, up to shrinking B around b0, a map f : B → Hilbd such

that f(B \ {b0}) ⊂ Ch−1(Chowss
d )o ⊆ Ch−1(Chowss

d ). We denote by L the relatively

ample line bundle on π1 : X := X ×B → B which gives the embedding into PrB.

We can now apply a fundamental result in GIT, called polystable replacement prop-

erty (see e.g. [HH13, Thm. 4.5]), which implies that, up to replacing B with a

finite cover ramified over b0, we can find two maps g : B → Ch−1(Chowss
d )o and

h : B \ {b0} → SLr+1 such that

(10.5) f(b) = h(b) · g(b) for every b0 6= b ∈ B,

(10.6) g(b0) is Chow polystable.

We denote by π2 : Y → B the pull-back of the universal family over Ch−1(Chowss
d )o

via the map g and by M the line bundle on Y which is the pull-back of the universal

line bundle via g. Property (10.5) implies that X ∼= Yb and degM|Yb = d for every

b0 6= b ∈ B. Moreover, if we set Y := Yb0 , M := M|Y0 and d′ := degM , then

Proposition 10.5 implies that (Y, d′) � (X, d). Observe also that (10.6) together with

Corollary 7.6 imply that M is strictly balanced.

Assume now that (i) holds. By Corollary 5.6(ii), X and Y are quasi-stable curves.

Therefore, (Y, d′) is obtained from (X, d) via a sequence of blowing up of nodes, as

depicted in Figure 7. In particular, there exists a surjective map σ : Y → X that

contracts the new exceptional components produced by blowing up some of the nodes

of X. Hence there exists a map Σ : Y → X over B which is an isomorphism away from

the fiber over b0 and whose restriction over b0 ∈ B is the contraction map σ : Y → X.

Consider the line bundle L̃ := Σ∗(L) on Y and set L̃ := L̃|Yb0 = σ∗(L) and d̃ = deg(L̃).

Property (10.5) implies that, up to shrinking B around b0, L̃ and M are isomorphic
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away from the central fiber Yb0 = Y ; hence, by Lemma 10.9, we can find a Cartier

divisor T on Y supported on the central fiber Yb0 = Y such that

(10.7) L̃ =M⊗OY(T ).

This implies that the multidegrees d′ and d̃ on Y are equivalent in the sense of Definition

3.2. Since d is strictly balanced by Reduction 1, we can now apply Lemma 3.11 (with

Z = Y and σ′ = id) in order to conclude that X = Y or, equivalently, X = Y.

Since we have already observed that (Y, d′) � (X, d), we must have that d = d′.

Combining this with (10.7), we get that L := LXb0 = MXb0 = M . We deduce that

b0 = L = M ∈ θ−1(Im(p)) by combining Corollary 10.7 with (10.6), q.e.d.

Next, assume that (ii) holds. By Corollary 9.7, X and Y are quasi-p-stable. There-

fore, (Y, d′) is obtained from (X, d) via a sequence of blowing up of nodes and cusps,

as depicted in Figures 7 and 8. Thus we get again a map Σ : Y → X over B with

the same properties as in case (i) and the argument is completely analogous to the

previous one.

Finally, assume that (iii) holds. In this case, the curve X does not contain elliptic

tails by assumption, whereas the curve Y might contain some elliptic tails. Denote by

M ′ the line bundle on Y such that M ′|Y cell
= M|Y cell and M ′|F is special for each elliptic

tail F of Y . As in the proof of (⇐) in Proposition 10.5, up to shrinking B around b0,

we can find a relatively very ample line bundleM′ on Y so thatM′|Y = M ′ andM′|Yb
has the same multidegree as M|Yb for each b 6= b0. Let F1, . . . , Fn be the elliptic tails

that compose the elliptic locus Yell, denote by pi the intersection point of Fi with (Fi)
c

and define the line bundle N as follows:

N =M′ ⊗OY(4F1 + . . .+ 4Fn).

Since OY(4F1 + . . . + 4Fn)|Fi = OFi(−4pi) and M′|Fi = OFi(4pi), we deduce that

N := N|Y is trivial on each Fi. Therefore, the line bundle N is relatively globally

generated and the induced map

Y
φ|N| //

π2 ��

PrB

~~
B

embeds π−1
2 (B \ {b0}) in PrB and contracts exactly Yell ⊂ Y over b0. Denote by Z the

image of Y in PrB via φ|N | and π3 : Z → B the restriction of PrB → B to Z ⊂ PrB.

Setting Z = Zb0 and d′′ := degOPrB (1)|Z , Proposition 10.5 implies that (Z, d′′) � (X, d).

Since Z does not contain elliptic tails, (Z, d′′) is obtained from (X, d) via a sequence of

blowing up of nodes and cusps, as depicted in Figures 7 and 8. Hence, as in part (i),

there exists a map Σ : Z → X which is an isomorphism away from the central fiber and

whose restriction to the central fiber is the contraction of the exceptional components

of Z produced by blowing up some nodes and cusps of X. Summing up, we have the
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commutative diagram

Y
φ|N| //

π2
&&

Z Σ //

π3
��

X ,

π1
xx

B

Composing φ|N | with Σ, we obtain a map Σ′ : Y → X over B, whose restriction over b0

contracts Yell and possibly some exceptional components of Y . As above, consider the

line bundle L̃ := (Σ′)∗L and let T be the Cartier divisor on Y, supported on Yb0 = Y ,

such that

(10.8) L̃ =M⊗OY(T ).

If we prove that Yell = ∅, we are done since Σ′ : Y → X contracts only exceptional

components as in the case (i) and (ii). Suppose, by contradiction, that Y admits an

elliptic tail, which we denote by F . Set C = F c and denote by p the intersection

point of F with F c. Note that OY(T )|F is equal to the line bundle associated to some

multiple of p, i.e. F is special with respect to OY(T )|F (see Definition 6.2). On the

other hand, since F is contracted by Σ′ and L̃ is the pull-back of L via Σ′, we have

that L̃|F = OF . Therefore, using (10.8), we deduce that F is also special with respect

to M . This is absurd because the point [Y
|M |
↪→ Pr] is Chow semistable and cannot have

special elliptic tails by Theorem 9.1.

�

The following well-known Lemma (see e.g. the proof of [Ray70, Prop. 6.1.3]) was

used in the above proof of Proposition 10.8.

Lemma 10.9. Let B be a smooth curve and let f : X → B be a flat and proper

morphism. Fix a point b0 ∈ B and set B∗ = B \ {b0}. Let L and M be two line

bundles on X such that L|f−1(B∗) =M|f−1(B∗). Then

L =M⊗OX (D),

where D is a Cartier divisor on X supported on f−1(b0).

Remark 10.10. Since in the proof of Proposition 10.8 we applied the polystable re-

placement property, a stronger result holds: if [X ⊂ Pr] is Hilbert (resp. Chow)

semistable, OX(1) is strictly balanced and one of the conditions of Proposition 10.8 is

satisfied, then [X ⊂ Pr] is Hilbert (resp. Chow) polystable. This result can be seen as

a partial converse to Corollary 7.6.

Remark 10.11.

(i) The above Proposition 10.8 is false in the case 7
2(2g − 2) ≤ d < 4(2g − 2) if

the curve X is not assumed quasi-p-stable (see Remark 11.4 and also Theorem

11.5(2) and Theorem 13.2).
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(ii) The careful reader will have noticed that we do not say anything if d = 7
2(2g−2) or

4(2g−2). Actually Proposition 10.8 can be extended to the cases d = 4(2g−2) (for

X quasi-wp-stable) and d = 7
2(2g−2) (for X quasi-p-stable). In our presentation,

we will only use the extension to d = 4(2g− 2) but we are not yet ready to prove

it. Its proof requires the analysis of stability of elliptic tails and will be dealt with

later (see Proposition 12.4).

The following result is an immediate consequence of Proposition 10.8.

Corollary 10.12. Let [X
i
↪→ Pr], [X i′

↪→ Pr] points in Hilbd. Assume that one of the

conditions of Proposition 10.8 is satisfied and deg i∗OPr(1) = deg i′∗OPr(1). Then

[X
i
↪→ Pr] belongs to Ch−1(Chowss

d ) (resp. Hilbssd ) if and only if [X
i′
↪→ Pr] belongs to

Ch−1(Chowss
d ) (resp. Hilbssd ).

Proof. Let us first prove the statement for the Chow semistability. Assume that [X
i
↪→

Pr] ∈ Ch−1(Chowss
d ). This is equivalent to saying that [X

i
↪→ Pr] ∈ Md

X where d :=

deg i∗OPr(1) = deg i′∗OPr(1). In particular, M
d
X 6= ∅; hence, from Proposition 10.8

and Corollary 10.7, we deduce that [X
i′
↪→ Pr] ∈ Md

X , or in other words [X ′
i′
↪→ Pr] ∈

Ch−1(Chowss
d ), q.e.d.

The proof for the Hilbert semistability is similar: we can define a stratification of

Hilbss,od := {[X ⊂ Pr] ∈ Hilbssd : X is connected},

whose strata are given by

M̃
d
X = {[X ⊂ Pr] ∈ Hilbss,od : degOX(1) = d} ⊆Md

X .

It is clear that Propositions 10.5 and 10.8 remain valid if we substitute M
d
X with M̃

d
X .

Therefore, the above proof for the Chow semistability extends verbatim to the Hilbert

semistability.

�

11. Semistable, polystable and stable points (part I)

The aim of this section is to describe the points of Hilbd that are Hilbert or Chow

semistable, polystable and stable for

2(2g − 2) < d ≤ 7

2
(2g − 2) and d > 4(2g − 2).

The range 7
2(2g − 2) < d ≤ 4(2g − 2) will be studied later.

Let us begin with the semistable points.

Theorem 11.1. Consider a point [X ⊂ Pr] ∈ Hilbd and assume that X is connected.

(1) If d > 4(2g − 2) then the following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert semistable;

(ii) [X ⊂ Pr] is Chow semistable;
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(iii) X is quasi-stable, non-degenerate and linearly normal in Pr and OX(1) is

properly balanced and non-special;

(iv) X is quasi-stable and OX(1) is properly balanced;

(v) X is quasi-stable and OX(1) is balanced.

(2) If 2(2g − 2) < d < 7
2(2g − 2) and g ≥ 3 then the following conditions are

equivalent:

(i) [X ⊂ Pr] is Hilbert semistable;

(ii) [X ⊂ Pr] is Chow semistable;

(iii) X is quasi-p-stable, non-degenerate and linearly normal in Pr and OX(1)

is properly balanced and non-special;

(iv) X is quasi-p-stable and OX(1) is properly balanced;

(v) X is quasi-p-stable and OX(1) is balanced.

Proof. Let us first prove part (1).

(1i) =⇒ (1ii) follows from Fact 4.1.

(1ii) =⇒ (1iii) follows from the potential stability theorem (see Fact 4.20) and Corol-

lary 5.6(ii).

(1iii) =⇒ (1iv) is clear.

(1iv) ⇐⇒ (1v) follows from Remark 5.7, using that OX(1) is ample.

(1iv) =⇒ (1i) First of all, we make the following

Reduction: We can assume that OX(1) is strictly balanced.

Indeed, by Lemma 7.4(ii), there exists an isotrivial specialization (X,OX(1))  

(X ′, L′) such that X ′ is quasi-stable and L′ is a strictly balanced line bundle on X ′ of

total degree d. According to Theorem 17.5 and using that d > 4(2g − 2), we conclude

that L′ is very ample and non-special. Therefore, by choosing a basis of H0(X ′, L′),

we get a point [X ′
|L′|
↪→ Pr] ∈ Hilbd. According to Theorem 7.5, [X ⊂ Pr] ∈ Hilbssd if

and only if [X ′ ⊂ Pr] ∈ Hilbssd . Therefore, up to replacing X with X ′, we can assume

that OX(1) is strictly balanced, q.e.d.

Now, since X is quasi-stable, we can find a smooth curve B
f
↪→ Hilbd and a point

b0 ∈ B such that, if we denote by Pr×B i←↩ X π→ B the pull-back via f of the universal

family over Hilbd and we set L := i∗(OPr(1)�OB), then [X i
↪→ Pr×B]b0 = [X ⊂ Pr] and

X|π−1(b) is a connected smooth curve for every b ∈ B \{b0}. Note that, by construction,

π is a family of quasi-stable curves of genus g. As in the proof of Proposition 10.8, we

can now apply the semistable replacement property, which implies that, up to replacing

B with a finite cover ramified over b0, we can find two maps g : B → Hilbd and

h : B \ {b0} → SLr+1 such that

(11.1) f(b) = h(b) · g(b) for every b0 6= b ∈ B,

(11.2) g(b0) is Hilbert polystable.
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We denote by Pr ×B i′←↩ Y π′→ B the pull-back via g of the universal family over Hilbd

and we set M := (i′)∗(OPr(1) � OB). Property (11.1) implies that, up to shrinking

again B around b0, we have that

(11.3) (X ,L)|π−1(B\{b0})
∼= (Y,M)|(π′)−1(B\{b0}).

Note that this fact together with (11.2) and the potential stability Theorem (Fact 4.20)

implies that π′ is also a family of quasi-stable curves of genus g.

Consider now the stable reductions s(π) : s(X )→ B of π : X → B and s(π′) : s(Y)→
B of π′ : Y → B (see Remark 2.12). From (11.3), it follows that s(π) and s(π′) are two

families of stable curves, which are isomorphic away from the fibers over b0. Since the

stack Mg of stable curves is separated, we conclude that

(11.4) s(X )
∼= //

s(π) !!

s(Y)

s(π′)}}
B

Therefore, π and π′ are two families of quasi-stable curves with the same stable reduc-

tion (from now on, we identify s(X )
s(π)−→ B and s(Y)

s(π′)−→ B via the above isomorphism).

If we blow-up all the nodes of the fiber over b0 of the stable reduction s(π) = s(π′), we

get a new family of quasi-stable curves π̃ : Z → B with the same stable reduction as

that of π and of π′, which moreover dominates π and π′, i.e., such that there exists a

commutative diagram

(11.5) Z

π̃

��

Σ′

��

Σ

��
X

π ��

Y

π′��
B

where the morphisms Σ and Σ′ induce an isomorphism of the corresponding stable

reductions. Equivalently, the maps Σ and Σ′ are obtained by blowing down some

of the exceptional components of the fiber of Z over b0. If we set L̃ := Σ∗(L) and

M̃ := (Σ′)∗(M), then (11.3) gives that

L̃π̃−1(B\b0)
∼= M̃π̃−1(B\b0).

Lemma 10.9 now gives that there exists a Cartier divisor D on Z supported on π̃−1(b0)

such that

(11.6) L̃ = M̃ ⊗OZ(D).

We now set (X,L) := (X ,L)b0 and d := degL, (Y,M) := (Y,M)b0 and d′ := degM ,

Z := Zb0 , L̃ := L̃b0 and d̃ := degL̃, M̃ := M̃b0 and d̃′ := degM̃ . Equation (11.6)

gives that d̃ and d̃′ are equivalent on Z. Moreover, d is strictly balanced by the above
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Reduction and d’ is strictly balanced by the assumption (11.2) together with Corollary

7.6. Therefore, we can apply Lemma 3.11 twice to conclude that X = Y. Now, the

relation (11.3) together with the Lemma 10.9 imply that there exists a Cartier divisor

D′ on X = Y supported on π−1(b0) such that

(11.7) L =M⊗OX (D′).

In particular, we get that d is equivalent to d′. Since d and d′ are strictly balanced,

Lemma 3.10 implies that d = d′. Since [Y i′
↪→ Pr × B]b0 = [Y ↪→ Pr] ∈ Hilbssd by

assumption (11.2), Corollary 10.12 gives that [X ⊂ Pr] ∈ Hilbssd , q.e.d.

The proof of part (2) is similar: it is enough to replace quasi-stable curves by quasi-

p-stable curves (using Corollaty 9.7), to replace the stable reduction by the p-stable

reduction and using the fact that the stack Mp
g of p-stable curves of genus g ≥ 3 is

separated.

�

From the above Theorem 11.1, we can deduce a description of the Hilbert and Chow

polystable and stable points of Hilbd.

Corollary 11.2. Consider a point [X ⊂ Pr] ∈ Hilbd and assume that X is connected.

(1) If d > 4(2g − 2) then the following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert polystable;

(ii) [X ⊂ Pr] is Chow polystable;

(iii) X is quasi-stable, non-degenerate and linearly normal in Pr and OX(1) is

strictly balanced and non-special;

(iv) X is quasi-stable and OX(1) is strictly balanced.

(2) If 2(2g − 2) < d < 7
2(2g − 2) and g ≥ 3 then the following conditions are

equivalent:

(i) [X ⊂ Pr] is Hilbert polystable;

(ii) [X ⊂ Pr] is Chow polystable;

(iii) X is quasi-p-stable, non-degenerate and linearly normal in Pr and OX(1)

is strictly balanced and non-special;

(iv) X is quasi-p-stable and OX(1) is strictly balanced.

Proof. Let us prove part (1).

(1i)⇐⇒ (1ii): from Theorem 11.1(1) we get that the Hilbert semistable locus inside

Hilbd is equal to the Chow semistable locus. Since a point of Hilbd is Hilbert (resp.

Chow) polystable if and only if it is Hilbert (resp. Chow) semistable and its orbit is

closed inside the Hilbert (resp. Chow) semistable locus, we conclude that also the locus

of Hilbert polystable points is equal to the locus of Chow polystable points.

(1ii) =⇒ (1iii) follows from the potential stability theorem (see Fact 4.20), Corollary

5.6(ii) and Corollary 7.6.

(1iii) =⇒ (1iv) is obvious.

(1iv) =⇒ (1i) follows from Theorem 11.1 and Remark 10.10. �
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Corollary 11.3. Consider a point [X ⊂ Pr] ∈ Hilbd and assume that X is connected.

(1) If d > 4(2g − 2) then the following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert stable;

(ii) [X ⊂ Pr] is Chow stable;

(iii) X is quasi-stable, non-degenerate and linearly normal in Pr and OX(1) is

stably balanced and non-special;

(iv) X is quasi-stable and OX(1) is stably balanced.

(2) If 2(2g − 2) < d < 7
2(2g − 2) and g ≥ 3 then the following conditions are

equivalent:

(i) [X ⊂ Pr] is Hilbert stable;

(ii) [X ⊂ Pr] is Chow stable;

(iii) X is quasi-p-stable, non-degenerate and linearly normal in Pr and OX(1)

is stably balanced and non-special;

(iv) X is quasi-p-stable and OX(1) is stably balanced.

Proof. Let us prove part (1).

(1ii) =⇒ (1i) follows from Fact 4.1.

(1i) =⇒ (1iii) follows from the potential stability theorem (see Fact 4.20) and The-

orem 7.1.

(1iii) =⇒ (1iv) is obvious.

(1iv) =⇒ (1ii): from Corollary 11.2(1), we get that [X ⊂ Pr] is Chow polystable.

Lemma 3.9 gives that X̃ := X \Xexc is connected; hence, combining Lemma 6.1 and

Theorem 6.4, we deduce that StabPGLr+1([X ⊂ Pr]) is a finite group. This implies that

[X ⊂ Pr] ∈ Ch−1(Chows
d) since a point of Hilbd is Hilbert (resp. Chow) stable if and

only if it is Hilbert (resp. Chow) polystable and it has finite stabilizers with respect

to the action of PGLr+1.

The proof of part (2) is similar, using the Potential pseudo-stability Theorem 5.1

and Corollary 11.2(2). �

The characterization of the GIT semistable locus for 7
2(2g − 2) ≤ d ≤ 4(2g − 2)

is a bit more intricate and requires other arguments. We can understand this by the

following remark.

Remark 11.4. Let X = C ∪ E be a curve of genus g ≥ 3 whose only singularity is a

tacnode with the line E and let us fix a balanced line bundle L of degree 7
2(2g − 2) ≤

d ≤ 4(2g− 2). Consider a point [X ⊂ Pr] ∈ Hilbd with OX(1) = L and let us try going

over again the argument of the proof of Theorem 11.1(1). Using the same notation,

since X is quasi-p-stable, we can find a polarized family (X → B,L) over a smooth

curve B
f
↪→ Hilbd such that [X i

↪→ Pr × B]b0 = [X ⊂ Pr] and X|π−1(b) is a connected

smooth curve for every b ∈ B \{b0}. We apply the polystable replacement property and

we obtain a new polarized family (Y → B,M). Consider now the p-stable reductions
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ps(π) : ps(X )→ B and ps(π) : ps(Y)→ B. Up to shrinking B around b0 we have

(11.8) (X ,L)|π−1(B\{b0})
∼= (Y,M)|(π′)−1(B\{b0})

so that ps(π) : ps(X ) → B and ps(π) : ps(Y) → B are isomorphic away from the

fibers over b0, hence isomorphic everywhere since the stack Mp
g of p-stable curves is

separated for g ≥ 3. In particular ps(Y) ∼= ps(X). There are three cases:

(1) Y ∼= X;

(2) Y ∼= wps(X), or in other words, Y is irreducible with only a cusp and no nodes;

(3) Y admits an elliptic tail.

We claim that (3) occurs. Indeed, case (1) is absurd because [Y
|M |
↪→ Pr] is Chow

polystable by construction but the tacnodes with a line are not Chow polystable for

d = 7
2(2g − 2) by Theorem 9.8 and they are Chow unstable for d > 7

2(2g − 2) by

Theorem 9.3. Suppose by contradiction that (2) occurs. We have a map

(11.9) X
wps

//

π ��

Y

π′��
B

Denote by L̃ the pull-back of M via wps, L′ = L̃|b0 , d = degL = (degCL,degEL)

and d′ = degL′. By Lemma 10.9, there exists a Cartier divisor T on X such that

L̃ = L ⊗OX (T ). This implies that

(d− 1, 1) = d ≡ d′ = (d, 0),

which is absurd since |C ∩ E| = 2. We conclude that in Hilbd there are examples of

Chow semistable points that admit elliptic tails. This fact is the origin of some new

difficulties in the range 7
2(2g − 2) ≤ d ≤ 4(2g − 2). So far our techniques worked well

since the stacksMg andMp
g (for g ≥ 3) are separated, but for 7

2(2g−2) ≤ d ≤ 4(2g−2)

they are not enough to determine the semistable locus of Hilbd because we have to work

with the stack Mwp
g of wp-stable curves, which is not separated. Notice also that, if

we could use the same techniques in the range 7
2(2g − 2) ≤ d ≤ 4(2g − 2) successfully,

we would prove, for instance, the completeness result of Proposition 10.8 for every

quasi-wp-stable curve, which is false since special elliptic curves are Chow unstable by

Theorem 9.1.

To conclude this section we study the extremal case d = 7
2(2g−2), a very interesting

case, because the semistable locus with respect to Hilbert stability and Chow stability

are different.

Theorem 11.5. Consider a point [X ⊂ Pr] ∈ Hilbd with d = 7
2(2g− 2) and g ≥ 3 and

assume that X is connected.

(1) The following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert semistable;
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(ii) X is quasi-p-stable, non-degenerate and linearly normal in Pr and OX(1)

is properly balanced and non-special;

(iii) X is quasi-p-stable and OX(1) is properly balanced;

(iv) X is quasi-p-stable and OX(1) is balanced.

(2) The following conditions are equivalent:

(i) [X ⊂ Pr] is Chow semistable;

(ii) X is quasi-wp-stable without special elliptic tails, non-degenerate and lin-

early normal in Pr and OX(1) is properly balanced and non-special;

(iii) X is quasi-wp-stable without special elliptic tails and OX(1) is properly

balanced;

(iv) X is quasi-wp-stable without special elliptic tails and OX(1) is balanced.

Proof. The proof of (1) is analogous to Theorem 11.1(2) since for d = 7
2(2g − 2) the

elliptic tails are Hilbert unstable by Theorem 9.6. Let us prove (2).

(2i) =⇒ (2ii) follows from the Potential pseudo-stability Theorem 5.1 and Theorem

9.1.

(2ii) =⇒ (2iii) is clear.

(2iii) =⇒ (2iv) is obvious.

(2iv) =⇒ (2i). By Theorem 9.8 and Theorem 7.5 we can assume that

(a) each elliptic tail F of degree 4 contains an elliptic tail F ′ of degree 3 as a subcurve;

(b) each elliptic tail F of degree 3 is tacnodal and F c consists of the union of subcurves

C and E ∼= P1, where E meets C and F in one point;

Let n be the number of elliptic tails of degree 3. We prove our statement by induction

on n. If n = 0, then [X ⊂ Pr] is Chow semistable by (1). Suppose that n > 0.

Consider an elliptic tail F of degree 3 and the 1ps ρ as in (9.10) which, as observed

before Theorem 9.8, satisfies eX,ρ = 2d
w(ρ)

r + 1
=

7

3
w(ρ). By Theorem 9.8 there exists

[Y ⊂ Pr] ∈ Aρ−1([X ⊂ Pr]) that satisfies (2iv) and contains n − 1 elliptic tail. By

induction [Y ⊂ Pr] is Chow semistable and Fact 4.10 implies that also [X ⊂ Pr] is

Chow semistable. �

Corollary 11.6. Consider a point [X ⊂ Pr] ∈ Hilbd with d = 7
2(2g−2) and g ≥ 3 and

assume that X is connected.

(1) The following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert polystable;

(ii) X is quasi-p-stable, non-degenerate and linearly normal in Pr and OX(1)

is strictly balanced and non-special;

(iii) X is quasi-p-stable and OX(1) is strictly balanced.

(2) The following conditions are equivalent:

(i) [X ⊂ Pr] is Chow polystable;
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(ii) X is quasi-wp-stable, each elliptic tail of X is tacnodal, each tacnode is

contained in an elliptic tail, X is non-degenerate and linearly normal in

Pr, OX(1) is strictly balanced and non-special;

(iii) X is quasi-wp-stable, each elliptic tail is tacnodal, each tacnode is con-

tained in an elliptic tail and OX(1) is strictly balanced.

Proof. Since for d = 7
2(2g − 2) the elliptic tails are Hilbert unstable by Theorem 9.6,

the argument of Corollary 11.2(2) goes through for (1). Let us prove (2).

(2i) =⇒ (2ii) is implied by Theorem 9.8.

(2ii) =⇒ (2iii) is clear.

(2iii) =⇒ (2i). Let X and L := OX(1) be as in (2iii). By Theorem 9.8 and Theorem

7.5 we have to work under the assumptions (a) and (b) of the proof of Theorem 9.6.

Let n be the number of elliptic tails of degree 3. We prove our statement by induction

over n. (For a sketch of the proof strategy, see Construction 13.1.) If n = 0, [X ⊂ Pr]
is Hilbert polystable by (1), hence also Chow polystable. Suppose now that n > 0.

Consider an elliptic tail F of degree 3 and denote by C1 = F c and {p} = F ∩ C1. Let

C2 be a smooth curve of genus g, q a point of C2 and L′C2
∈ Picd+3(C2). Denote by

(X ′, L′) the couple consisting of a curve X ′ of genus g′ and a line bundle L′ on X ′

obtained from (X,L) by replacing F with (C2, q, L
′
C2

). The line bundle L′ has degree

d′ = 2d and is very ample, hence we can consider the point [X ′ ⊂ Pr′ ] ∈ Hilbd′,g′ with

OX′(1) = L′. We notice that

(11.10) ν ′ :=
d′

2g′ − 2
=

d

2g − 2
=: ν.

Now, we claim that L′ is strictly balanced. As we noticed in Remark 3.8, it suf-

fices to check the basic inequality (3.1) for each connected subcurves such that its

complementary is connected. Let D ⊂ X ′ a connected subcurve. If D = C2 then

obviously the basic inequality (3.1) is satisfied. Otherwise, up to replacing D with Dc,

we can assume that D does not contain C2 as a subcurve. This implies that D can

be seen as a subcurve of X. Since degL|D = degL′|D and |D ∩X \D| = |D ∩X ′ \D|,
the basic inequality (3.1) is satisfied by (11.10). Now, the point [X ′ ⊂ Pr′ ] admits

n − 1 elliptic tails, hence it is Chow polystable. Consider now [Y ⊂ Pr] ∈ Hilbd

such that Y = F ∪ E ∪ C, where C is smooth, E ∼= P1, E meets F and C in one

point and OY (1) is balanced. By Theorem 11.5 this point is Chow semistable. Let

[Y ′ ⊂ Pr] ∈ Orb([Y ⊂ P r]) ∩ Ch−1(Chowss
d ). Denoting by d and d′ the multidegrees

of OY (1) and OY ′(1) respectively, by Proposition 10.5 we get that (Y ′, d′) � (Y, d), so

that Y ∼= Y ′ and dim(StabPGLr+1([Y ⊂ Pr])) = dim(StabPGLr+1([Y ⊂ Pr])). This im-

plies that [Y ⊂ Pr] is Chow polystable. Since (11.10) holds and (X,L) can be obtained

again from (X ′, L′) by replacing C2 with (F, p, L|F ), [X ⊂ Pr] is Chow polystable by

Corollary 8.6 and we are done. �

Corollary 11.7. Consider a point [X ⊂ Pr] ∈ Hilbd with d = 7
2(2g−2) and g ≥ 3 and

assume that X is connected.
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(1) The following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert stable;

(ii) X is quasi-p-stable, non-degenerate and linearly normal in Pr and OX(1)

is stably balanced and non-special;

(iii) X is quasi-p-stable and OX(1) is stably balanced.

(2) The following conditions are equivalent:

(i) [X ⊂ Pr] is Chow stable;

(ii) X is quasi-p-stable without tacnodes, non-degenerate and linearly normal

in Pr and OX(1) is stably balanced and non-special;

(iii) X is quasi-p-stable without tacnodes and OX(1) is stably balanced.

Proof. Since for d = 7
2(2g − 2) the elliptic tails are Hilbert unstable by Theorem 9.6,

the argument of Corollary 11.3(2) goes through for (1). Let us prove (2).

(2i) =⇒ (2ii) follows from Corollary 11.6 and Theorem 9.6.

(2ii) =⇒ (2iii) is clear.

(2iii) =⇒ (2i): from Corollary 11.6(2), we get that [X ⊂ Pr] is Chow polystable.

Since OX(1) is stably balanced, Lemma 3.9 gives that X̃ := X \Xexc is connected;

hence, combining Lemma 6.1 and Theorem 6.4, we deduce that StabPGLr+1([X ⊂ Pr])
is a finite group. This implies that [X ⊂ Pr] ∈ Ch−1(Chows

d) since a point of Hilbd is

Hilbert (resp. Chow) stable if and only if it is Hilbert (resp. Chow) polystable and it

has finite stabilizers with respect to the action of PGLr+1. �

12. Stability of elliptic tails

In this section we will use the criterion of stability for tails (Proposition 8.3) in

order to study the stability of elliptic curves for 7
2(2g − 2) < d ≤ 4(2g − 2). We

notice that in this range - by the basic inequality (3.1) - it suffices to consider the

elliptic curves of degree 4. In particular if F is an elliptic curve of [X ⊂ Pr], then

r1 := h0(F,OX(1)|F )− 1 = 3.

Lemma 12.1. Let 7
2(2g − 2) < d ≤ 4(2g − 2) and let [X ⊂ Pr] ∈ Hilbd such that

X = F ∪ C where F is an elliptic tail (smooth, nodal, cuspidal or reducible nodal).

Denote by {p} = F ∩ C and

OX(1) = (OX(1)|F , L2 := OX(1)|C) ∈ Pic4(F )× Picd−4(C).

Let (F ′, q) be a pointed elliptic curve and denote by X ′ be the curve obtained from X

by replacing F with (F ′, q). Then

(1) If [X ⊂ Pr] is Hilbert semistable (resp. stable) then [X ′
|L|
↪→ Pr] is Hilbert

semistable (resp. stable) for each properly balanced line bundle

L ∈ (Pic4(F ′) \ {OF ′(4p)})× {L2}

(2) If [X ⊂ Pr] is Chow semistable (resp. stable) then
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(i) If 7
2(2g − 2) < d < 4(2g − 2) then [X ′

|L|
↪→ Pr] is Chow semistable (resp.

stable) for each properly balanced line bundle

L ∈ (Pic4(F ′) \ {OF ′(4p)})× {L2}

(ii) If d = 4(2g − 2) then [X ′
|L|
↪→ Pr] is Chow semistable for each properly

balanced line bundle

L ∈ Pic4(F ′)× {L2}

(resp. Chow stable if F ′ is not cuspidal and L ∈ (Pic4(F ′) \ {OF ′(4p)})×
{L2}).

Proof. Consider X ′ and a properly balanced line bundle L = (L1, L2) ∈ Pic4(F ′) ×
Picd−4(C). By Theorem 17.5(iiia) the line bundle L is very ample and non-special,

hence we can consider the point [X
|L|
↪→ Pr] ∈ Hilbd. Let ρ1 and ρ2 be two one-

parameter subgroups diagonalized by a system of coordinates {x1, . . . , xr+1} of type

(8.1), i.e. such that

〈F ′〉 =
r+1⋂
i=5

{xi = 0} and 〈C〉 =
3⋂
i=1

{xi = 0},

and having weights

(12.1) ρ1(t) · xi =

{
twixi if i ≤ 3,

xi if i ≥ 4,
and ρ2(t) · xi =

{
xi if i ≤ 4,

twixi if i ≥ 5.

By Proposition 8.3, it suffices to prove that [X ′ ⊂ Pr] is Chow or Hilbert (semi-)stable

with respect to any such ρ1 and ρ2.

By Remark 8.5 and the Hilbert-Mumford criterion (see Fact 4.2 and Fact 4.3), if

[X ⊂ Pr] is Hilbert semistable (resp. Chow semistable) we have

WX′,ρ2(m) = WX,ρ2(m) ≤ w(ρ2)

r + 1
mP (m)

(
resp. eX′,ρ2 = eX,ρ2 ≤

2d

r + 1
w(ρ2)

)
,

while if [X ⊂ Pr] is Hilbert stable (resp. Chow stable) then

WX′,ρ2(m) = WX,ρ2(m) <
w(ρ2)

r + 1
mP (m)

(
resp. eX′,ρ2 = eX,ρ2 <

2d

r + 1
w(ρ2)

)
.

This proves the Hilbert or Chow (semi-)stability of [X ′ ⊂ Pr] with respect to ρ2.

The Hilbert or Chow (semi-)stability of [X ′ ⊂ Pr] with respect to ρ1 will follow from

the next lemma, that completes our proof. �

Lemma 12.2. Let [X ⊂ Pr] ∈ Hilbd such that X = F ∪ C where F is an elliptic tail

(smooth, nodal, cuspidal or reducible nodal) and the line bundle

L := OX(1) = (L1 := L|F , L2 := L|C) ∈ Pic4(F )× Picd−4(C)

is properly balanced. Let ρ1 be a one-parameter subgroup as in (12.1). Then
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(i) if 7
2(2g − 2) < d < 4(2g − 2) and L1 ∈ Pic4(F ) \ {OF (4p)} then

eF,ρ1 <
2d

r + 1
w(ρ1)

(ii) if d = 4(2g − 2) then

eF,ρ1 ≤
2d

r + 1
w(ρ1) =

16

7
w(ρ1).

Moreover, if L1 ∈ Pic4(F ) \ {OF (4p)} then

eF,ρ1 <
16

7
w(ρ1) if F is not cuspidal,(12.2)

WF,ρ1(m) <
w(ρ1)

7
mP (m) for m� 0 if F is cuspidal.

Proof. Since eF,ρ1 does not depend on C, we can prove these two claims by considering

F as an elliptic tail of polarized curves whose semistability is known.

Firstly assume that F is smooth, nodal or reducible nodal. Let C be a smooth

curve of genus 2 and consider the new curve X = F ∪ C with {p} = F ∩ C embedded

in P11 via a properly balanced line bundle M = (M1,M2) (indeed M is very ample

and non-special by Theorem 17.5(iiia)) with M1 ∈ Pic4(F ) \ {OF (4p)}, degM|F = 4

and degM|C = 10. Since the curve X is quasi-wp-stable,
d

2g − 2
=

7

2
and M is

properly balanced, by Theorem 11.5 we know that [X ⊂ P11] with M = OX(1) is

Chow semistable; hence

eF,ρ1 ≤
2d

r + 1
w(ρ1) =

7

3
w(ρ1)(12.3)

by the Hilbert-Mumford numerical criterion (Fact 4.3). In the same way we can con-

sider another properly balanced line bundle M ′ such that degM ′|F = 4 and degM ′|C =

13. Since the curve X is quasi-stable, 4 <
d

2g − 2
=

17

4
< 4, 5 and M ′ is stably bal-

anced, by Corollary 11.3(1) we know that [X ⊂ P14] with M ′ = OX(1) is Chow stable;

hence

eF,ρ1 <
2d

r + 1
w(ρ1) =

34

15
w(ρ1).(12.4)

Now, consider a point [X ⊂ Pr] ∈ Hilbd that satisfies the hypothesis of our lemma.

Assume that 7
2(2g− 2) < d ≤ 4(2g− 2) and L1 ∈ Pic4(F ) \ {OF (4p)}. Since

17

15
<

8

7
≤

d

r + 1
<

7

6
, combining (12.3) and (12.4) we deduce that

if w(ρ1) ≥ 0, then eF,ρ1 <
34

15
w(ρ1) ≤ 2d

r + 1
w(ρ1),

and

if w(ρ1) < 0, then eF,ρ1 ≤
7

3
w(ρ1) <

2d

r + 1
w(ρ1),

so that (i) and (ii) are proved for smooth, nodal and reducible nodal elliptic tails under

the hypothesis that L1 6= OF (4p).
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Let X = F∪C be a curve as above, with F an irreducible elliptic tail (smooth, nodal,

or cuspidal). By [HM10, Proposition 6], we know that [X ⊂ P13] with OX(1) = ω⊗4
X is

strictly Chow semistable. Hence if d = 4(2g − 2) and L1 = OF (4p) = (ω⊗4
X )|F we get

eF,ρ1 ≤
2d

r + 1
w(ρ1) =

16

7
w(ρ1),

and the first part of (ii) is proved.

It remains to prove (i) and (ii) for the cuspidal case. Suppose that 7
2(2g − 2) <

d < 4(2g − 2) and F is cuspidal. In order to prove (i), it suffices to exhibit a non-

special line bundle L1 for which the inequality (12.2) is satisfied. Indeed, Aut(F, p)

acts transitively on Pic4(F ) \ {OF (4p)} and we can apply Lemma 10.6. Consider the

Chow semistable point [Y ⊂ Pr] ∈ Hilbd obtained in Remark 11.4 and denote by F its

elliptic tail. Since the semistability is an open condition, up to smoothing arbitrarily

Y , we can assume that F is smooth. Now, let B ⊆ Picd(Y) be a smooth curve such

that

B \ {b0} ⊆ (Pic4(F ) \ {OF (4p)})× {OC(1)} and b0 = {OF (4p)} × {OC(1)}.

Consider the trivial family Y = Y × B → B and denote by L the Poincaré bundle P
on Y ×Picd(Y ) restricted to Y. As in the proof of Proposition 10.8, up to shrinking B

around b0, we obtain an embedding Y ↪→ PrB, which yields a map f : B → Hilbd such

that f(B \ {b0}) ⊂ Ch−1(Chowss
d )o. Now, apply the polystable replacement property.

Up to replacing B with a finite cover ramified over b0, we get a polarized family

(Z → B,M) such that, denoting Z := Zb0 and M := M|Z , the point [Z ⊂ Pr] with

M = OZ(1) is Chow polystable. Denote by F ′ the elliptic tail of Z. Since Z is an

isotrivial family of curves over B, either Z ∼= Y or F ′ is cuspidal. If Z ∼= Y , then

OZ(1)|F = OF (4p), which is absurd by Theorem 9.1, hence the second case occurs.

Since F ′ ⊂ Z is not special, StabPGLr+1([Z ⊂ Pr]) is finite by Theorem 6.4 and Lemma

6.1, hence [Z ⊂ Pr] is Chow stable. This proves the inequality

eF,ρ1 <
2d

r + 1
w(ρ1)

if F is cuspidal. The last inequality of (ii) can be proved in the same way applying the

polystable replacement property for the Hilbert stability. �

Corollary 12.3. Let X = F ∪ C be a connected curve where F is an elliptic tail

(smooth, nodal, cuspidal or reducible nodal) and C is smooth. Denote by p the inter-

section point of F with C and consider a properly balanced line bundle L ∈ Picd(X)

with 7
2(2g − 2) < d ≤ 4(2g − 2). Then there exists M ∈ Picd−4(C) such that

(1) if 7
2(2g − 2) < d < 4(2g − 2), L|C = M and L|F ∈ Pic4(F ) \ {OF (4p)}, then

[X
|L|
↪→ Pr] is Chow stable;

(2) if d = 4(2g − 2), L|C = M , L|F ∈ Pic4(F ) \ {OF (4p)} and F is cuspidal

(resp. not cuspidal), then [X
|L|
↪→ Pr] is Hilbert (resp. Chow) stable; moreover

if OX(1)|F = OF (4p) and F is cuspidal, then [X
|L|
↪→ Pr] is Chow polystable.
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Proof. For (1) and the first statement of (2), it suffices to consider the curve Y obtained

in Remark 11.4 applying the polystable replacement property to a quasi-wp-stable curve

X ′ = C ∪E where C and E ∼= P1 meet together in a tacnode (in this case p ∈ C) and

apply Lemma 12.1. For the last statement of (2), we notice that X is a closed point

in the stackMwp
g by Remark 2.5(i). Hence if ρ is a one-parameter subgroup such that

eX,ρ =
16

7
w(ρ)

then, setting [X0 ⊂ Pr] = limt→0 ρ(t)[X ⊂ Pr], we have that X ∼= X0 and

dim StabPGLr+1([X ⊂ Pr]) ≥ dim StabPGLr+1([X0 ⊂ Pr])

by Theorem 6.4 and Lemma 6.1. This implies that [X0 ⊂ Pr] ∈ Orb([X ⊂ Pr]) and we

are done. �

Now, we are ready to extend the completeness result of Proposition 10.8 to the case

d = 4(2g − 2).

Proposition 12.4. Let X be a quasi-wp-stable curve and d ∈ Bd
X . Assume that

d = 4(2g − 2). Then either M
d
X = ∅ or the map p : M

d
X → Picd(X)/Aut(X) is

surjective.

Proof. Assume that M
d
X 6= ∅, for otherwise there is nothing to prove. According to

Corollary 10.7, the surjectivity of p is equivalent to the fact that [X
|L|
↪→ Pr] is Chow

semistable for every L ∈ Picd(X). With this aim, let E = {F1, . . . , Fk} be the set

of the elliptic tails of X, set C = Xc
ell and denote by pi the intersection point of Fi

with (Fi)
c for each i = 1, . . . , k. By standard arguments of basins of attraction we can

assume that:

(1) the multidegree d is strictly balanced (same proof as that of Reduction 2 in

Proposition 10.8);

(2) each elliptic tails F with OX(1)|F = OF (4p) is cuspidal (by Theorem 9.2 and

Fact 4.10);

(3) each cusp is contained in an elliptic curve (same proof as that of (2)).

In this way we have a curve like in the picture below:

F2
F3 F4F1

C

p1 p2
p3

p4

Let F = E1 ∪ E2 be a reducible nodal elliptic curve where E1 and E2 are two smooth

rational curves. Consider a smooth point p ∈ E1 ⊂ F and a line bundle M ∈ Pic4(F )

such that degM = (degM|E1
, degM|E2

) = (3, 1). By Lemma 12.1, if we replace each
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elliptic tail Fi with a pointed polarized curve (F ′i , p
′
i,Mi) ∼= (F, p,M), we obtain a new

curve X ′ (see the picture below)

XXXX

C

F ′4F ′3F ′2
F ′1

p′1 p′2
p′3 p′4

and a multidegree d′ for which there exists a properly balanced line bundles L′ ∈

Picd
′
(X ′) such that [X ′

|L′|
↪→ Pr] is Chow semistable. We notice that X ′ is quasi-stable

and each Chow semistable isotrivial specialization is again a quasi-stable curve, so that

by the proof of Proposition 10.8 (case d > 4(2g − 2)) we obtain that our statement is

true for X ′ and d′. In order to complete the proof, it is enough to replace again each

F ′i with (Fi, pi,OX(1)|Fi) and to apply Lemma 12.1. �

13. Semistable, polystable and stable points (part II)

The aim of this section is to describe the points of Hilbd that are Hilbert or Chow

semistable, polystable and stable for

7

2
(2g − 2) < d ≤ 4(2g − 2) and g ≥ 3.

The GIT analysis in this range is based on a nice numerical trick which uses the

following

Construction 13.1. Given a quasi-wp-stable curve [X ⊂ Pd−g] ∈ Hilbd which admits

a non-special elliptic tail F , we define a new polarized curve X ′ by replacing the

polarized subcurve F with a polarized smooth curve Y of genus g and degree d − dF
in such a way Y and X \ F intersect again in one node. If we denote by d′ and g′

respectively the degree of the new line bundle L′ and the genus of X ′, one can consider

the Hilbert point [X ′ ⊂ Pd′−g′ ] ∈ Hilbd′ . We easily check that

ν ′ :=
d′

2g′ − 2
=

2d

2(2g − 1)− 2
=

d

2g − 2
=: ν.

Moreover we claim that

OX(1) is balanced ⇐⇒ OX′(1) is balanced.

Let us prove the implication =⇒. As we noticed in Remark 3.8, it suffices to check

the basic inequality (3.1) for each connected subcurve such that its complementary is

connected. Let D ⊂ X ′ a connected subcurve. If D = Y then obviously the basic

inequality (3.1) is satisfied. Otherwise, up to replacing D with Dc, we can assume that

D does not contain Y as a subcurve. This implies that D can be seen as a subcurve
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of X. Since ν ′ = ν, degL|D = degL′|D and |D ∩ X \D| = |D ∩ X ′ \D|, the basic

inequality (3.1) is satisfied. The proof of the reverse implication ⇐= is analogous.

We notice that from X to X ′ the number of non-special elliptic tails decreases by 1.

Applying the results about elliptic tails of the previous section and Corollary 8.6, one

prove that

[X ′ ⊂ Pd
′−g′ ] is semistable =⇒ [X ⊂ Pd−g] is semistable,

so that the GIT analysis can be completed by an induction argument on the number

of non-special elliptic tails of X. (For d = 4(2g − 2)the induction argument will be on

the number of all elliptic tails of X.) Applying arguments based on specializations of

strata (Proposition 10.5) and results of completeness (Proposition 10.8 and Proposition

12.4), one can prove the basis of the induction as well. Notice that we have already

used this construction in the proof of Corollary 11.6.

Let us begin with the case 7
2(2g − 2) < d < 4(2g − 2).

Theorem 13.2. Consider a point [X ⊂ Pr] ∈ Hilbd with 7
2(2g − 2) < d < 4(2g − 2)

and g ≥ 3 and assume that X is connected.

(i) [X ⊂ Pr] is Hilbert semistable;

(ii) [X ⊂ Pr] is Chow semistable;

(iii) X is quasi-wp-stable without tacnodes nor special elliptic tails, non-degenerate

and linearly normal in Pr and OX(1) is properly balanced and non-special;

(iv) X is quasi-wp-stable without tacnodes nor special elliptic tails and OX(1) is prop-

erly balanced;

(v) X is quasi-wp-stable without tacnodes nor special elliptic tails and OX(1) is bal-

anced.

Proof. The implications (i) ⇒ (ii), (iii) ⇒ (iv) and (iv) ⇒ (v) are clear.

(ii) ⇒ (iii) follows from Corollary 5.6(i) and Corollary 9.4.

(v) ⇒ (i). The proof is based on Construction 13.1. Let X and L := OX(1) be as

in (v) and let n be the number of elliptic tails of X. We will prove our statement by

induction over n.

Assume first that each cusp of X is contained in an elliptic tail of X. If n = 0 then

X is quasi-stable without elliptic tail and the same argument used to prove Theorem

11.1 (case d > 4(2g − 2)) goes through. Suppose that n > 0. Consider an elliptic tail

F (which is non-special by assumption) and denote by C1 = F c and {p} = F ∩ C1.

Let C2 be a smooth curve of genus g, q a point of C2 and L′C2
∈ Picd+4(C2). Denote

by (X ′, L′) the couple consisting of a curve X ′ of genus g′ and a line bundle L′ on X ′

obtained from (X,L) by replacing F with (C2, q, L
′
C2

). The line bundle L′ is ample of

degree d′ = 2d, moreover we have

(13.1) ν ′ :=
d′

2g′ − 2
=

2d

2(2g − 1)− 2
=

d

2g − 2
=: ν.
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By the same argument used in the proof of Corollary 11.6 and Construction 13.1, L′ is

properly balanced, therefore L′ is non-special and very ample by Theorem 17.5; hence

we can consider the point [X ′ ⊂ Pr′ ] ∈ Hilbd′,g′ with OX′(1) = L′. Now, X ′ contains

n−1 elliptic tails and L′ is balanced, hence by induction [X ′ ⊂ Pr′ ] is Hilbert semistable.

By Corollary 12.3(1), there exists a Hilbert semistable point [Y ⊂ Pr] ∈ Hilbd such that

Y admits the elliptic tail F with OY (1)|F = L|F . Since (13.1) holds and (X,L) can

be obtained again from (X ′, L′) by replacing C2 with (F, p, L|F ), [X ⊂ Pr] is Hilbert

semistable by Corollary 8.6.

Consider now the general case, where X can have cusps not contained in an elliptic

tail. As before, we prove our statement by induction over n. If n = 0 then X is

quasi-p-stable and, by Corollary 10.12, it is enough to prove that for each balanced

multidegree d there exists a line bundle L of multidegree d such that [X ⊂ Pr] is Hilbert

semistable with OX(1) = L. By Proposition 10.5 the curve X specializes isotrivially

to a curve X ′ such that each cusp in contained in an elliptic tail. Let F1, . . . , Fm be

the elliptic tails of X ′ and denote by pi the intersection point of Fi with F ci . Replacing

each cuspidal elliptic tail Fi with a pointed reducible nodal one (F ′i , qi) we obtain a

quasi-stable curve X ′′, which is Hilbert semistable for each balanced polarization L′′ by

the argument above. If we replace again each reducible nodal elliptic tail F ′i with the

pointed polarized curve (Fi, pi, L|Fi), by Lemma 12.1 [X ′ ⊂ Pr] is Hilbert semistable.

The semistability is an open condition, so that the theorem is true for a generic element

of Picd(X). If n > 0 we apply the same argument based on replacement of elliptic tails

used above and the proof is complete. �

Corollary 13.3. Consider a point [X ⊂ Pr] ∈ Hilbd with 7
2(2g − 2) < d < 4(2g − 2)

and g ≥ 3 and assume that X is connected. The following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert polystable;

(ii) [X ⊂ Pr] is Chow polystable;

(iii) X is quasi-wp-stable without tacnodes nor special elliptic tails, non-degenerate

and linearly normal in Pr and OX(1) is strictly balanced and non-special;

(iv) X is quasi-wp-stable without tacnodes nor special elliptic tails and OX(1) is

strictly balanced.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are proved in the same way as in Corollary

11.2.

(iii) ⇒ (iv) is obvious.

(iv) ⇒ (i): the proof of this implication is based on Construction 13.1 and is very

similar to the one used to prove Corollary 11.6(2). Denote by L = OX(1) and n the

number of elliptic tails of X. We will prove our corollary by induction over n. If n = 0,

then X is quasi-p-stable and the same argument used to prove Proposition 10.8 shows

that [X ⊂ Pr] is Hilbert polystable. Suppose that n > 0. Consider an elliptic tail F

and denote by C1 = F c and {p} = F ∩C1. As in the proof of Corollary 11.6, let C2 be

a smooth curve of genus g, q a point of C2 and L′C2
∈ Picd+4(C2). Denote by (X ′, L′)
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the couple consisting of a curve X ′ of genus g′ and an ample line bundle L′ of degree

d′ = 2d on X ′ obtained from (X,L) by replacing F with (C2, q, L
′
C2

). By construction

we have that

(13.2) ν ′ :=
d′

2g′ − 2
=

2d

2(2g − 1)− 2
=

d

2g − 2
=: ν.

By the same argument used in the proof of Corollary 11.6 and Construction 13.1, the

line bundle is strictly balanced. Therefore, the line bundle L′ is very ample and non-

special by Theorem 17.5, and we can consider the point [X ′ ⊂ Pr′ ] ∈ Hilbd′,g′ , with

OX′(1) = L′. Now, [X ′ ⊂ Pr′ ] admits n− 1 elliptic tails, hence it is Hilbert polystable

by induction. By Corollary 12.3, there exists a Hilbert stable (hence polystable) point

[Y ⊂ Pr] ∈ Hilbd such that Y admits the elliptic tail F with OY (1)|F = L|F . Since

13.2 holds and (X,L) can be obtained from (X ′, L′) by replacing C2 with (F, p, L|F ),

we get that [X ⊂ Pr] is Hilbert polystable by Corollary 8.6. �

Corollary 13.4. Consider a point [X ⊂ Pr] ∈ Hilbd with 7
2(2g − 2) < d < 4(2g − 2)

and g ≥ 3 and assume that X is connected. The following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert stable;

(ii) [X ⊂ Pr] is Chow stable;

(iii) X is quasi-wp-stable without tacnodes and special elliptic tails, non-degenerate

and linearly normal in Pr and OX(1) is stably balanced and non-special;

(iv) X is quasi-wp-stable without tacnodes and special elliptic tails and OX(1) is stably

balanced.

Proof. The implications (ii) ⇒ (i) and (iii) ⇒ (iv) are clear.

(i) ⇒ (iii) follows from Theorem 13.2 and Theorem 7.1.

(iv) ⇒ (ii). By Corollary 13.3, [X ⊂ Pr] is Chow polystable; hence it suffices to

prove that StabPGLr+1([X ⊂ Pr]) is a finite group. Since the line bundle OX(1) is

stably balanced, Lemma 3.9 gives that X̃ := X \Xexc is connected; hence, combining

Lemma 6.1 and Theorem 6.4, we deduce that StabPGLr+1([X ⊂ Pr]) is a finite group �

To conclude this section we study the extremal case d = 4(2g− 2), where the Chow

semistable locus differs from the Hilbert semistable locus.

Theorem 13.5. Consider a point [X ⊂ Pr] ∈ Hilbd with d = 4(2g− 2) and g ≥ 3 and

assume that X is connected.

(1) The following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert semistable;

(ii) X is quasi-wp-stable without tacnodes nor special elliptic tails, non-degene-

rate and linearly normal in Pr and OX(1) is properly balanced and non-

special;

(iii) X is quasi-wp-stable without tacnodes nor special elliptic tails and OX(1)

is properly balanced;
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(iv) X is quasi-wp-stable without tacnodes nor special elliptic tails and OX(1)

is balanced.

(2) The following conditions are equivalent:

(i) [X ⊂ Pr] is Chow semistable;

(ii) X is quasi-wp-stable without tacnodes, non-degenerate and linearly normal

in Pr and OX(1) is properly balanced and non-special.

(iii) X is quasi-wp-stable without tacnodes and OX(1) is properly balanced;

(iv) X is quasi-wp-stable without tacnodes and OX(1) is balanced.

Proof. The proof of (1) is the same as the proof of Theorem 13.2, using the fact that

Corollary 9.4 does hold true also in the present case. Let us prove (2).

(2i) ⇒ (2ii) follows from Theorem 5.1, Corollary 5.6 and Theorem 9.3.

(2ii) ⇒ (2iii) ⇒ (2iv) are clear.

(2iv)⇒ (2i) is proved with the same argument used to prove the implication (v)⇒(i):

the only difference is that we do not assume that the elliptic tails are non-special and

we use Corollary 12.3(2) instead of Corollary 12.3(1). �

Corollary 13.6. Consider a point [X ⊂ Pr] ∈ Hilbd with d = 4(2g− 2) and g ≥ 3 and

assume that X is connected. The following conditions are equivalent:

(1) The following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert polystable;

(ii) X is quasi-wp-stable without tacnodes and special elliptic tails, non-degene-

rate and linearly normal in Pr and OX(1) is strictly balanced and non-

special;

(iii) X is quasi-wp-stable without tacnodes and special elliptic tails and OX(1)

is strictly balanced.

(2) The following conditions are equivalent:

(i) [X ⊂ Pr] is Chow polystable;

(ii) X is quasi-wp-stable without tacnodes, each special elliptic tail of X is

cuspidal, each cuspidal elliptic tail of X is special, each cusp of X is

contained in an elliptic tail, X is non-degenerate and linearly normal in

Pr, OX(1) is strictly balanced and non-special;

(iii) X is quasi-wp-stable without tacnodes, each special elliptic tail of X is

cuspidal, each cuspidal elliptic tail of X is special, each cusp of X is

contained in an elliptic tail and OX(1) is strictly balanced.

Proof. The same argument of Corollary 13.3 proves (1). Let us prove (2).

(2i) ⇒ (2ii) follows from Theorem 13.5(2), Theorem 5.1 and Theorem 9.2.

(2ii) ⇒ (2iii) is clear.

(2iii) ⇒ (2i). We use Construction 13.1 again, as in the proof of Corollary 13.3.

Let n be the number of elliptic tails of X. If n = 0, then X is quasi-stable and

the proof of Corollary 11.2 goes through. Suppose that n > 0 and consider the point

[X ′ ⊂ Pr′ ] ∈ Hilbd′,g′ obtained from (X,L) by replacing an elliptic tail F with a smooth
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curve C2 of genus g and degree d+4. The line bundle L′ := OX′(1) is strictly balanced

on X ′ and the point [X ′ ⊂ Pr′ ] is Chow polystable since X admits n−1 elliptic tails. By

Corollary 12.3(2), there exists a Chow polystable point [Y ⊂ Pr] such that Y admits F

as an elliptic tail and OY (1)|F = OX(1)|F . Finally, applying Corollary 8.6 to the points

[X ′ ⊂ Pr′ ], [Y ⊂ Pr] and [X ⊂ Pr], we deduce that [X ⊂ Pr] is Chow polystable. �

Corollary 13.7. Consider a point [X ⊂ Pr] ∈ Hilbd with d = 4(2g− 2) and g ≥ 3 and

assume that X is connected.

(1) The following conditions are equivalent:

(i) [X ⊂ Pr] is Hilbert stable;

(ii) X is quasi-wp-stable without tacnodes and special elliptic tails, non-degene-

rate and linearly normal in Pr and OX(1) is stably balanced and non-

special;

(iii) X is quasi-wp-stable without tacnodes and special elliptic tails and OX(1)

is stably balanced.

(2) The following conditions are equivalent:

(i) [X ⊂ Pr] is Chow stable;

(ii) X is quasi-stable without special elliptic tails, non-degenerate and linearly

normal in Pr and OX(1) is stably balanced and non-special.

(iii) X is quasi-stable without special elliptic tails and OX(1) is stably balanced.

Proof. The same argument of Corollary 13.4 proves (1).

Let us now prove (2). Note that [X ⊂ Pr] is Chow stable if and only if it is Chow

polystable and its stabilizer StabPGLr+1([X ⊂ Pr]) is a finite group. Lemma 6.1 and

Theorem 6.4 give that a Chow polystable point [X ⊂ Pr] as in Corollary 13.6(2) has

finite stabilizer subgroup if and only if

• X does not have special cuspidal elliptical tails;

• X̃ := X \Xexc is connected.

The first condition is equivalent to the fact that X does not have cusps (hence it is

quasi-stable) nor special elliptic tails. The second condition is equivalent to the fact

that OX(1) is stably balanced by Lemma 3.9. Part (2) follows now from this fact

together with Corollary 13.6(2).

�

14. Geometric properties of the GIT quotient

For any d > 2(2g − 2), consider the open and closed subscheme Ch−1(Chowss
d )o of

the Chow-semistable locus Ch−1(Chowss
d ) ⊂ Hilbd consisting of connected curves, see

(10.1). From now on, in order to shorten the notation, we set

(14.1) Hd := Ch−1(Chowss
d )o ⊂ Hilbd

and we call Hd the main component of the Chow-semistable locus. Similarly, the locus

(14.2) H̃d := Hilbss,od := {[X ⊂ Pr] ∈ Hilbssd : X is connected}
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is an open and closed subscheme of Hilbssd , that we call the main component of the

Hilbert semi-stable locus. Note that H̃d is an open subset of Hd by Fact 4.1 and that

H̃d = Hd if and only if d 6∈ {7
2(2g − 2), 4(2g − 2)} by Theorems 11.1, 11.5, 13.2 and

13.5. The name “main component” is justified by the fact that Hd (resp. H̃d) is an

irreducible component of Ch−1(Chowss
d ) (resp. Hilbssd ), as we will prove in Corollary

14.7, together with the fact that for some values of d and g there could exist other

irreducible components of Chowss
d (resp. Hilbssd ) made of non-connected curves (see

Section 15).

Since Hd is clearly an SLr+1-invariant closed and open subscheme of Ch−1(Chowss
d ),

GIT tells us that there exists a projective scheme

(14.3) Q
c
d,g := Hd//SLr+1

which is a good categorical quotient of Hd by SLr+1 (see e.g. [Dol03, Sec. 6.1]).

Similarly, there exists a projective scheme

(14.4) Q
h
d,g := H̃d//SLr+1

which is a good categorical quotient of H̃d by SLr+1. Moreover, since H̃d ⊆ Hd, there

exists a projective morphism

(14.5) Ξ : Q
h
d,g = H̃d//SLr+1 → Hd//SLr+1 = Q

c
d,g.

If d 6∈ {7
2(2g − 2), 4(2g − 2)} then H̃d = Hd (as observed above), which implies that Ξ

is an isomorphism. We will therefore set

(14.6) Qd,g := Q
h
d,g = Q

c
d,g if d 6∈

{
7

2
(2g − 2), 4(2g − 2)

}
.

Indeed, we will prove that Ξ is an isomorphism if d = 7
2(2g−2) (see Proposition 14.5(i))

while it is not an isomorphism if d = 4(2g − 2) (see Proposition 14.6(i)).

Remark 14.1. By the well-known properties of GIT quotients (see [Dol03, Cor. 6.1]),

it follows that the closed points of Q
h
d,g = H̃d//SLr+1 (resp. Q

c
d,g = Hd//SLr+1) corre-

spond bijectively to orbits of Hilbert polystable points [X ⊂ Pr] in H̃d (resp. Chow

polystable points in Hd). Moreover, note that the orbit of a point [X ⊂ Pr] ∈ Hilbd

only determines the curve X and the line bundle OX(1) up to automorphisms of X

(compare with the discussion at the beginning of §10.2).

We now focus on the geometric properties of Q
h
d,g and Q

c
d,g. We begin with the

following result, which says that the singularities of Q
h
d,g and Q

c
d,g are not too bad.

Proposition 14.2. Assume that d > 2(2g − 2) and, moreover, that g ≥ 3 if d ≤
4(2g − 2). Then:

(i) Hd (resp. H̃d) is non-singular of pure dimension r(r + 2) + 4g − 3.

(ii) Q
c
d,g (resp. Q

h
d,g) is reduced and normal of pure dimension 4g − 3. Moreover, if

char(k) = 0, then Q
c
d,g (resp. Q

h
d,g) has rational singularities, hence it is Cohen-

Macauly.
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Proof. Part (i): the fact that Hd (resp. H̃d) is non-singular of pure dimension r(r +

2) + 4g− 3 is proved exactly as in [Cap94, Lemma 2.2], whose proof uses only the fact

that if X ∈ Hd (resp. H̃d) then X is reduced curve with locally complete intersection

singularities and embedded by a non-special linear system; these conditions are satisfied

by the Potential pseudo-stability Theorem 5.1. See also [HH13, Cor. 6.3] for another

proof.

Part (ii): Q
c
d,g is reduced and normal since Hd is such (see e.g. [Dol03, Prop. 3.1]).

The dimension of Q
c
d,g is 4g − 3 since Hd has dimension r(r + 2) + 4g − 3, SLr+1

has dimension r(r + 2) and the action of SLr+1 has generically finite stabilizers. If

char(k) = 0 then Q
c
d,g has rational singularities by [Bou87], using that Hd is smooth.

This implies that Q
c
d,g is Cohen-Macauly since, in characteristic zero, a variety having

rational singularities is Cohen-Macauly (see [KoM98, Lemma 5.12]). Alternatively, the

fact that Q
c
d,g is Cohen-Macauly follows from [HR74], using the fact that Hd is smooth.

The same argument works for Q
h
d,g. �

We mention that, if char(k) = 0, d > 4(2g − 2) and g ≥ 4, then Qd,g is known to

have canonical singularities (see [BFV12] in the case where gcd(d+ 1− g, 2g − 2) = 1

and [CMKV2] in the general case). This result has been used in loc. cit. to compute

the Kodaira dimension and the Iitaka fibration of Qd,g.

The GIT quotient Q
c
d,g admits a modular morphism to the moduli space M

p
g of

p-stable curves.

Theorem 14.3. Assume that d > 2(2g−2) and, moreover, that g ≥ 3 if d ≤ 4(2g−2).

Then:

(i) There exists a surjective natural map Φps : Q
c
d,g →M

p
g .

(ii) If d > 4(2g − 2) then the above map Φps factors as

Φps : Q
c
d,g

Φs

−→Mg
T−→M

p
g ,

where T is the map of Remark 2.7.

(iii) We have that

(Φps)−1(M0
g ) ∼= J0

d,g,

where M0
g is the open subset of Mg parametrizing curves without non-trivial au-

tomorphisms and J0
d,g is the degree d universal Jacobian over M0

g . In particular,

(Φps)−1(C) ∼= Picd(C) for every geometric point C ∈M0
g ⊂M

p
g .

If d > 4(2g − 2) then the same conclusions hold for the morphism Φs.

Proof. The proof is an adaptation of the ideas from [Cap94, Sec. 2].

Part (i): consider the restriction to Hd of the universal family over Hilbd and denote

it by

Cd �
� //

ud
��

Hd × Pr

Hd
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The morphism ud is flat, proper and its geometric fibers are quasi-wp-stable curves by

Corollary 9.7(ii). Consider the p-stable reduction of ud (see Definition 2.14):

Cd //

ud   

ps(Cd)

ps(ud){{
Hd

The morphism ps(ud) is flat, proper and its geometric fibers are p-stable curves of

genus g. Therefore, by the modular properties of M
p
g , the family ps(ud) induces a

modular map φps : Hd → M
p
g . Since the group SLr+1 acts on the family Cd by only

changing the embedding of the fibers of ud into Pr, the map φps is SLr+1-invariant and

therefore it factors via a map Φps : Q
c
d,g →M

p
g .

Let us show that Φps is surjective. Let C be any connected smooth curve over k

of genus g ≥ 2 and L be any line bundle on C of degree d > 2(2g − 2). Note that

d = degL ≥ 2g + 1 since g ≥ 2. Hence L is very ample and non-special and therefore

it embeds C in Pr = Pd−g. By Fact 4.19, the corresponding point [C
|L|
↪→ Pr] ∈ Hilbd

belongs to Hd and clearly it is mapped to C ∈ Mg ⊂ M
p
g by Φps. We conclude

that the image of Φps contains the open dense subset Mg ⊂ M
p
g . Moreover, Φps is

projective since Q
c
d,g is projective. Therefore, being projective and dominant, Φps has

to be surjective. This finishes the proof of part (i).

Consider now Part (ii). If d > 4(2g − 2), then the potential stability Theorem (see

Fact 4.20) says that the geometric fibers of the morphism ud are quasi-stable curves.

From Definition 2.14 and Proposition 2.11, it follows that the p-stable reduction ps(ud)

of ud factors through the wp-stable reduction wps(ud) of ud and that the latter one is

a family of stable curves. This implies that the map Φps : Q
c
d,g → M

p
g factors via a

map Φs : Q
c
d,g →Mg followed by the contraction map T : Mg →M

p
g .

Part (iii): the proof of [Cap94, Thm. 2.1(2)] extends verbatim to our case.

�

We now determine the dimension of the fibers of the morphisms Φs and Φps, starting

from the cases d 6∈ {7
2(2g − 2), 4(2g − 2)}.

Proposition 14.4.

(i) Assume that d > 4(2g − 2). The morphism Φs : Qd,g →Mg has equidimensional

fibers of dimension g and, if char(k) = 0, Φs is flat over the smooth locus of Mg.

(ii) Assume that 2(2g−2) < d < 7
2(2g−2) and g ≥ 3. The morphism Φps : Qd,g →M

p
g

has equidimensional fibers of dimension g and, if char(k) = 0, Φps is flat over the

smooth locus of M
p
g .

(iii) Assume that 7
2(2g−2) < d, d 6= 4(2g−2) and g ≥ 3. The fiber of Φps : Qd,g →M

p
g

over a p-stable curve X has dimension equal to the sum of g and the number of

cusps of X.

116



Proof. The flatness assertions in (i) and (ii) follow from the equidimensionality of the

fibers and the fact that Qd,g is Cohen-Macauly if char(k) = 0 (see Theorem 14.3(ii))

by using the following well-know flatness’s criterion.

Fact (see [Mat89, Cor. of Thm 23.1, p. 179]): Let f : X → Y be a dominant

morphism between irreducible varieties. If X is Cohen-Macauly, Y is smooth and f

has equidimensional fibers of the same dimension, then f is flat.

Let us now prove the statements about the dimension of the fibers.

Assume first that d > 4(2g − 2). By Corollary 5.6(ii), the fiber of the morphism

φs : Hd → Qd,g
Φs

→Mg,

over a stable curve X ∈Mg, is equal to

(φs)−1(X) =
⋃

s(X′)=X

d′∈Bd
X′

M
d′

X′

where the union runs over the quasi-stable curves X ′ whose stable reduction s(X′) =

wps(X′) is equal to X and d′ ∈ Bd
X′ . Since every such X ′ is obtained from X by blowing

up some of the nodes of X, we have that X ′ � X (see Remark 10.2). Therefore, Lemma

10.4 implies that, for every pair (X ′, d′) appearing in the above decomposition, there

exists d ∈ Bd
X such that (X ′, d′) � (X, d). This implies that

(φs)−1(X) =
⋃

d∈BdX

M
d
X ∩Hd.

We deduce that the fiber (Φs)−1(X) contains an open dense subset isomorphic to ⋃
d∈BdX

M
d
X

 /SLr+1 =
⋃

d∈BdX

M
d
X/SLr+1.

For any d ∈ Bd
X the map p : M

d
X → Picd(X)/Autd(X) of (10.4) is surjective by Theorem

11.1(1) and its fibers are exactly the SLr+1-orbits on M
d
X . Therefore

dimM
d
X/SLr+1 = dim Picd(X)/Autd(X) = g,

where we used that Autd(X) ⊆ Aut(X) is a finite group because X is a stable curve.

We conclude that (Φs)−1(X) is of pure dimension g, i.e. part (i) is proved.

Assume now that 2(2g − 2) < d < 7
2(2g − 2) and g ≥ 3. By Corollary 9.7, the fiber

of the morphism

φps : Hd → Qd,g
Φps

→ M
p
g ,

over a p-stable curve X ∈Mp
g , is given by

(φps)−1(X) =
⋃

wps(X′)=X

d′∈Bd
X′

M
d′

X′ ,
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where the union is over the possible quasi-p-stable curves X ′ whose wp-stable reduction

wps(X′) (which coincides with the p-stable reduction ps(X′)) is equal to X and d′ ∈
Bd
X′ . Since every such X ′ is obtained from X by blowing up some nodes or cusps of

X, we have that X ′ � X (see Remark 10.2). Therefore, Lemma 10.4 implies that, for

every pair (X ′, d′) appearing in the above decomposition, there exists d ∈ Bd
X such

that (X ′, d′) � (X, d). This implies that

(φps)−1(X) =
⋃

d∈BdX

M
d
X ∩Hd.

We now conclude the proof of part (ii) arguing as before (using Theorem 11.1(2)).

Assume finally that 7
2(2g − 2) < d, d 6= 4(2g − 2) and g ≥ 3. By Corollary 5.6(i),

the fiber of the morphism

φps : Hd → Qd,g
Φps

→ M
p
g ,

over a p-stable curve X ∈Mp
g , is given by

(14.7) (φps)−1(X) =
⋃

ps(X′)=X

d′∈Bd
X′

M
d′

X′ ,

where the union is over the possible quasi-wp-stable curves X ′ whose p-stable reduction

ps(X′) is equal toX and d′ ∈ Bd
X′ . Every such a curveX ′ is obtained fromX by blowing

up some of the nodes or cusps of X and by replacing some of the cusps of X by elliptic

tails.

We want now to rewrite (14.7) in a more convenient way. With this in mind, let us

introduce some notation. Let {c1, · · · , cl} be the cusps of X. For any subset ∅ ⊆ S ⊆
[l] := {1, · · · , l}, consider the family of wp-stable curves ηS : X S → V S := (M1,1)S

such the fiber of ηS over a point (Fi, pi)i∈S ∈ (M1,1)S is the wp-stable curve obtained

from X by replacing the cusp ci with the 1-pointed stable elliptic tail (Fi, pi) for every

i ∈ S. Note that ηS : X S → V S is a family of wp-stable curves whose p-stabilization is

the trivial family X×V S . For a point t ∈ V S , set X St := (ηS)−1(t). We can canonically

identify the properly balanced multidegrees of total degree d on X St as t varies in V S ;

we therefore set SBd := Bd
XSt

for any t ∈ VS . Moreover, for any given d ∈ SBd, we

consider the locally closed subset of Hd given by

SMd =
⋃
t∈V S

M
d

XSt
⊂ Hd.

Now, from Definition 10.1, it follows that, among the quasi-wp-stable curves appear-

ing in (14.7), the maximal curves with respect to the order relation � (see Remark

10.2) are the ones of type X St := (ηS)−1(t) for some t ∈ V S with ∅ ⊆ S ⊆ [l]. Using

this and Lemma 10.4, we can rewrite (14.7) as

(φps)−1(X) =
⋃

∅⊆S⊆[l]

d∈SBd

SMd ∩Hd,
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from which it follows that

(14.8)
⋃

∅⊆S⊆[l]

d∈SBd

SMd/SLr+1 is open and dense in (Φps)−1(X).

Using the map p of (10.4) and the fact that Aut(X St ) is a finite group since X St is

wp-stable, we get for any d ∈ SBd and any t ∈ V S :

(14.9) dimM
d

XSt
/SLr+1 ≤ dim Picd(X S

t )/Autd(X S
t ) = g.

We deduce that

(14.10) dim SMd/SLr+1 ≤ dimV S + g = |S|+ g,

which using (14.8) implies that dim(Φps)−1(X) ≤ g + l.

Consider now the special case where S = [l]. In this case, the curves X [l]
t are

stable for any t ∈ V (l) and, for a generic Lt ∈ Picd(X [l]
t ), any element of the form

[X [l]
t

|Lt|
↪→ Pr] is Chow (or equivalently Hilbert) semistable by Theorems 11.1(1) and

13.2. Therefore, for S = [l] equality does hold in (14.9) and (14.10) and we deduce

that dim(Φps)−1(X) = g + l. �

Now, we study the dimension of the fibers of the morphisms Ξ : Q
h
d,g → Q

c
d,g

and Φps : Q
c
d,g → M

p
g , as well as of their composition, in the two special cases d 6∈

{7
2(2g − 2), 4(2g − 2)}.

Proposition 14.5. Assume that d = 7
2(2g − 2) and that g ≥ 3.

(i) The morphism Ξ : Q
h
d,g → Q

c
d,g is an isomorphism.

(ii) The morphisms Φps : Q
c
d,g →M

p
g and Φps ◦ Ξ : Q

h
d,g →M

p
g have equidimensional

fibers of dimension g and, if char(k) = 0, then Φps and Φps ◦ Ξ are flat over the

smooth locus of M
p
g .

Proof. In order to prove part (i), by applying the Zariski’s main theorem in the form

[EGAIII1, (4.4.9)], it is enough to check that Q
c
d,g is reduced and normal and that Ξ

is birational and injective.

The fact that Q
c
d,g is reduced and normal follows from Proposition 14.2.

Consider now the open and dense SLr+1-invariant subset Hilbsd ∩ H̃d ⊆ H̃d. GIT

tells us that there exists a good geometric quotient (Hilbsd ∩ H̃d)/SLr+1 (in the sense

of [Dol03, Sec. 6.1]) which is an open subset of H̃d//SLr+1 = Q
h
d,g. Moreover, since

Ch−1(Chows
d) ∩ Hd is an open and dense SLr+1-invariant subset of Hilbsd ∩ H̃d by

Fact 4.1, the properties of the good geometric quotients (see [Dol03, Sec. 6.1]) ensure

that there exists a good geometric quotient (Ch−1(Chows
d) ∩ Hd)/SLr+1 which is an

open and dense subset of (Hilbsd ∩ H̃d)/SLr+1. Clearly, Ξ is an isomorphism over

(Ch−1(Chows
d) ∩Hd)/SLr+1, which shows that Ξ is birational.

Finally, let us show that Ξ is injective, which will conclude the proof. Consider a

point of Q
h
d,g represented by the orbit of an Hilbert polystable point [X ⊂ Pr] ∈ H̃d
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(see Remark 14.1). According to Corollary 11.6(1), this is equivalent to the fact that X

is quasi-p-stable and that OX(1) is strictly balanced. From Theorem 9.8 and Corollary

11.6(2) it follows that Ξ([X ⊂ Pr]) is represented by the orbit of any Chow polystable

point [Y ⊂ Pr] of Hd such that:

• Let {q1, . . . , qn} be the tacnodes with a line of X; denote by Ei the line con-

tained in X and passing through qi (for any i = 1, . . . , n) and let X̂ be the

complement of the lines Ei in X. Then Y is obtained from X̂ by gluing at each

point qi an elliptic tail Fi = F 1
i ∪F 2

i ∪F 3
i , where F ji

∼= P1 (for each j = 1, 2, 3),

F 1
i is joined nodally to X̂ in qi and to F 2

i while F 2
i and F 3

i meets in a tacnode.

Note that F 2
i ∪ F 3

i is a tacnodal elliptic tail for each i.

• OY (1) is a strictly balanced line bundle on Y such that OY (1)|F 1
i

= OF 1
i
(1),

OY (1)|F 2
i

= OF 2
i
(2), OY (1)|F 3

i
= OF 3

i
(1) and OY (1)|X̂ = OX(1)|X̂ .

Note that two line bundles OY (1) as above differ by an automorphism of Y (as it

follows from the proof of Theorem 6.4), so that the orbit of [Y ⊂ Pr] is well-defined

(see Remark 14.1).

From this explicit description it follows that the curve X and the restriction OX(1)|X̃
are uniquely determined by the orbit of the Chow-polystable point [Y ⊂ Pr] ∈ Hd.

Since the line bundle OX(1) is uniquely determined by its restriction OX(1)|X̃ up to

automorphisms of X, we can recover the orbit of [X ⊂ Pr] from the orbit of [Y ⊂ Pr]
(see Remark 14.1), which shows the injectivity of Ξ, q.e.d.

Part (ii): using part (i), it is enough to prove the result for the morphism Φps ◦ Ξ :

Q
h
d,g →M

p
g . The proof of the statement for Φps ◦Ξ is exactly the same as the proof of

Proposition 14.4(ii) replacing Theorem 11.1(2) by Theorem 11.5(1). �

Proposition 14.6. Assume that d = 4(2g − 2) and that g ≥ 3.

(i) The fiber of the morphism Ξ : Q
h
d,g → Q

c
d,g over the orbit of a Chow polystable

point [X ⊂ Pr] ∈ Hd is equal to the number of cuspidal elliptic tails of X that are

special with respect to OX(1).

(ii) The fiber of the morphism Φps : Q
c
d,g → M

p
g (resp. Φps ◦ Ξ : Q

h
d,g → M

p
g) over a

p-stable curve X has dimension equal to the sum of g and the number of cusps of

X.

Proof. Part (i): consider the point of Q
c
d,g represented by the orbit of the Chow

polystable point [X ⊂ Pr] ∈ Hd (see Remark 14.1). By Corollary 13.6(2), X is quasi-

wp-stable without tacnodes, OX(1) is strictly balanced and all the cusps of X are

contained in special cuspidal elliptic tails of X which, moreover, are the unique special

elliptic tails or cuspidal elliptic tails of X.

If X does not have special cuspidal elliptic tails (hence it does not have special

elliptic tails at all), then [X ⊂ Pr] is also Hilbert polystable by Corollary 13.6(1) and

its orbit represents the unique point of Ξ−1([X ⊂ Pr]) and we are done.

In the general case, let {F1, . . . , Fn} be the special cuspidal elliptic tails of X. Set

qi := Fi∩X̂ and note that degOX(1)|Fi = 4 by the basic inequality (3.1). By Corollary
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13.6(1) and Theorem 9.2, any Hilbert polystable point [Y ⊂ Pr] ∈ H̃d such that

Ξ([Y ⊂ Pr]) = [X ⊂ Pr] is of the following form (for some ∅ ⊆ S ⊆ [n] = {1, . . . , n}):
Type S: Y = YS is obtained from X by contracting to a cuspidal point q′i all the tails

Fi such that i ∈ S; in particular there is a natural morphism νS : X̂S := (∪i∈SFi)c → Y

which is the partial normalization of Y at the cusps q′i (with i ∈ S). Moreover, the line

bundle OY (1) is such that ν∗SOY (1) = OX(1)|X̂S (4 ·
∑

i∈S qi) and each of the cuspidal

elliptic tails Fi ⊂ Y with i 6∈ S is non-special with respect to OY (1). Set dS equal to

the strictly balanced multidegree of such a line bundle OY (1).

From Definition 10.1 (and in particular Figure 10), it follows that if ∅ ⊆ T ⊆ S ⊆ [n]

then (YT , dT ) � (YS , dS) which then implies that M
dT
YT
⊆MdS

YS
by Proposition 10.5. In

other words, inside the fiber Ξ−1([X ⊂ Pr]), the points of Type S = [n] are dense.

Observe now that for points [Y ⊂ Pr] ∈ H̃d of Type S = [n], the line bundle OY (1)

is specified up to the choice of the gluing data for each of the cusps q′i. Since each of

the cusps give a one-dimensional space of gluing conditions for OY (1), points of Type

S = [n] form an irreducible n-dimensional family sitting in the fiber Ξ−1([X ⊂ Pr]).
This shows that the dimension of Ξ−1([X ⊂ Pr]) is equal to n, which was the number

of special cuspidal elliptic tails of X, q.e.d.

Part (ii): the same proof of Proposition 14.4(iii) works in this case by replacing

Theorems 11.1(1) and 13.2 with Theorem 13.5.

�

Using the above Proposition, we can prove the irreducibility of Q
c
d,g and Q

h
d,g (and

hence of Hd and H̃d).

Corollary 14.7. Assume that d > 2(2g−2) and, moreover, that g ≥ 3 if d ≤ 4(2g−2).

Then Q
c
d,g and Q

h
d,g are irreducible. In particular, Hd and H̃d are also irreducible.

Proof. Let us first prove the irreducibility of Q
c
d,g.

In the case d ≤ 4(2g − 2) (and g ≥ 3), look at the surjective morphism Φps :

Q
c
d,g → M

p
g . Since M

p
g is irreducible by Theorem 2.4(iii) and the generic fiber of

Φps is irreducible by Theorem 14.3(iii), we get that there exists a unique irreducible

component of Q
c
d,g that dominates M

p
g . Assume, by contradiction, that there is another

irreducible component of Q
c
d,g, call it Z, that does not dominate M

p
g . Let W :=

Φps(Z) ( M
p
g and denote by l ≥ 0 the number of cusps of the generic point X ∈ W .

Since each cusp will increase the codimension of W in M
p
g by two, we get that

(14.11) dimW ≤ min{3g − 4, 3g − 3− 2l}.

Propositions 14.4(ii), 14.4(iii), 14.5(ii), 14.6(ii) imply that the generic fiber of the map

Z �W has dimension less than or equal to g + l. Using this and (14.11), we get

(14.12) dimZ ≤ min{4g − 4 + l, 4g − 3− l} < 4g − 3.

This however contradicts the fact that Qd,g is of pure dimension equal to 4g − 3 by

Proposition 14.2(ii), q.e.d.
121



The case d > 4(2g− 2) is dealt with in a similar (and easier) way by considering the

map Φs : Qd,g →Mg and using Proposition 14.4(i).

From the irreducibility of Q
c
d,g it follows that: Hd is connected (hence irreducible

because of its smoothness, see Proposition 14.2(i)) because Q
c
d,g is the good categorial

quotient of Hd by the connected algebraic group SLr+1; H̃d is irreducible because it is

an open subset of Hd; Q
h
d,g is irreducible because it is the good categorical quotient of

H̃d by SLr+1.

�

15. Extra components of the GIT quotient

Until now we considered the action of GLr+1 over Hilbd and we restricted our at-

tention to Ch−1(Chowss
d )o and Hilbss,od . It is very natural to ask if there are Chow and

Hilbert semistable points [X ⊂ Pr] ∈ Hilbd with X not connected. In this section we

would like to answer to this question.

As a corollary of the Potential pseudo-stability Theorem 5.1, we have the following

result.

Corollary 15.1. Let [X ⊂ Pr] ∈ Ch−1(Chowss
d ) (resp. ∈ Hilbssd ) where X = X1 ∪

. . . ∪Xn and each Xi is a connected component of X. Suppose that d > 2(2g − 2), set

di := degOX(1)|Xi, ri := dim〈Xi〉 (where 〈Xi〉 is the linear span of Xi) and denote by

gi the genus of Xi. Then

(1) h0(Xi,OXi(1)) = di − gi + 1 = ri + 1, h1(Xi,OXi(1)) = 0 and

h0(Pr,OPr(1)) = h0(X,OX(1)) =

n∑
i=1

h0(Xi,OXi(1)).

In particular, 〈Xi〉 ∩ 〈Xj〉 = ∅ for every i 6= j.

(2) For each i

di
2gi − 2

=
d

2g − 2

(
i. e.

di
ri + 1

=
d

r + 1

)
.

In particular, if n ≥ 2, then gcd(d, g − 1) 6= 1.

(3) For each i, [Xi ⊂ 〈Xi〉] ∈ Hilbdi,gi is Chow (resp. Hilbert) semistable.

(4) If n ≥ 2, [X ⊂ Pr] is Chow (resp. Hilbert) strictly semistable.

Proof. (1) follows easily from Theorem 5.1(ii). (2) is an easy consequence of the ba-

sic inequality applied to OX(1), which holds by Theorem 5.1(iii). Indeed, if Xi is a

connected component of X, we have kXi = 0, hence

di =
d

2g − 2
(2gi − 2)

and we are done. If X is not connected and, by contradiction, gcd(d, g − 1) = 1, the

ratio
d

g − 1
is reduced, hence for each connected component Xi ⊂ X, we have di = d,

absurd. Let us prove (3). Consider a 1ps ρ : Gm → GLr1+1 diagonalized by a system
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of coordinates {x1, . . . , xr1+1} in 〈X1〉 and denote by w1, . . . , wr1+1 the weights of ρ.

Let {y1, . . . , yr+1} be a system of coordinates in Pr such that yi|X1
= xi|X1

and

〈X1〉 =
r+1⋂

i=r1+2

{yi = 0} and 〈Xc
1〉 =

r1+1⋂
i=1

{yi = 0}.

Now consider a 1ps ρ′ : Gm → GLr+1 diagonalized by {y1, . . . , yr+1} with weights

w′1, . . . , w
′
r+1 such that

w′i =

{
wi if 1 ≤ i ≤ r1 + 1

0 if i ≥ r1 + 2.

By Proposition 8.3 we get

eX1,ρ = eXρ′ ≤
2d

r + 1
w(ρ′) =

2d1

r1 + 1
w(ρ),

so that [X1 ⊂ 〈X1〉] ∈ Hilbd1,g1 is Chow semistable (the Hilbert semistability is proved

in the same way). In order to prove (4), it suffices to consider ρ and ρ′ as above with

wi = 1 for i = 1, . . . , r1 + 1. We get

eX,ρ′ = eX1,ρ = 2d1 =
2d1

r1 + 1
(r1 + 1) =

2d

r + 1
w(ρ′)

and we are done. �

Now we would like to say that each point [X ⊂ Pr] ∈ Hilbd which satisfies (1), (2)

and (3) of Corollary 15.1 is Chow (resp. Hilbert) semistable.

Suppose that d > 2(2g − 2) and let [X ↪→ Pr] ∈ Hilbd where X is the dis-

joint union of two curves (possibly non connected) X1 and X2 (of degrees d1, d2 and

genus g1, g2 respectively). Under the hypothesis that h1(X,OX(1)) = 0, we have

h0(X,OX(1)) = h0(X1,OX1(1)) + h0(X2,OX2(1)), hence there exists a system of co-

ordinates {x1, . . . , xr+1} such that

〈X1〉 =

r+1⋂
i=r1+2

{xi = 0} and 〈X2〉 =

r1+1⋂
i=1

{xi = 0}.(15.1)

We have the following criterion (very similar to Proposition 8.3).

Proposition 15.2. (Criterion of stability for non-connected curves.) Let [X ⊂
Pr] ∈ Hilbd as above. The following conditions are equivalent:

(1) [X ⊂ Pr] is Hilbert semistable (resp. polystable, stable);

(2) [X ⊂ Pr] is Hilbert semistable (resp. polystable, stable) with respect to any

one-parameter subgroup ρ : Gm → GLr+1 diagonalized by coordinates of type

(15.1);

(3) [X ⊂ Pr] is Hilbert semistable (resp. polystable, stable) with respect to any

one-parameter subgroup ρ : Gm → GLr+1 diagonalized by coordinates of type

(15.1) with weights w1, . . . , wr+1 such that

w1 = w2 = . . . = wr1+1 = 0 or wr1+2 = wr1+3 = . . . = wr+1 = 0.
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The same holds for the Chow semistability (resp. polystability, stability).

Proof. It is analogous to the proof of Proposition 8.3. �

Corollary 15.3. Let [X ⊂ Pr] ∈ Hilbd where X = X1 ∪ . . . ∪ Xn and each Xi is a

connected component of X. Set di := degOX(1)|Xi and denote by gi the genus of Xi. If

[X ⊂ Pr] ∈ Hilbd satisfies (1) and (2) of Corollary 15.1, then the following conditions

are equivalent:

(1) [X ⊂ Pr] is Hilbert semistable (resp. polystable);

(2) [Xi ⊂ 〈Xi〉] ∈ Hilbdi,gi is Hilbert semistable (resp. polystable).

The same holds for the Chow semistability (resp. polystability).

Thus the semistable locus and the polystable locus of Hilbd for d > 2g − 2 are

completely determined by applying the previous corollary and the results of Section 11

and Section 13 about the stability of connected curves.

We are now able to determine the connected components of Hilbssd and Chowss
d for

d > 2(2g − 2). Set

d′ :=
d

gcd(d, g − 1)
and g′ :=

g − 1

gcd(d, g − 1)
+ 1.

Let H be a connected component of Hilbssd and consider [X ⊂ Pr] ∈ H. Using the same

notations as in Corollary 15.1, suppose that d1 ≥ d2 ≥ . . . ≥ dn. We get a well-defined

(integral) partition

(
d1

d′
, . . . ,

dn
d′

)
of gcd(d, g − 1). Define the function

φ : {connected components of Hilbssd } −→ {partitions of gcd(d, g − 1)}

H 7−→
(
d1

d′
, . . . ,

dn
d′

)
.

Conversely, let (k1, . . . , kn) be a partition of gcd(d, g−1). For each i = 1, . . . , n consider

a smooth curve Xi of genus gi = g′ki+1 and a line bundle Li on Xi of degree di = d′ki.

Define the curve X =
n⊔
i=1

Xi and consider the line bundle L on X such that L|Xi = Li.

Using the assumption that d > 2(2g− 2), it is easy to see that di ≥ 2gi + 1, so that Li

is very ample, [X
|Li|
↪→ Pdi−gi ] ∈ Hilbdi,gi is Hilbert stable (notice that gi ≥ 2 for every

i) and [X
|L|
↪→ Pr] ∈ Hilbd is Hilbert semistable by Corollary 15.3. Let K the connected

component which contains [X
|L|
↪→ Pr]. Now define the function

ψ : {partitions of gcd(d, g − 1)} −→ {connected components of Hilbssd }

(k1, . . . , kn) 7−→ K.

It is easy to check that φ ◦ ψ = id and ψ ◦ φ = id. Summing up, we obtain that

Hilbssd =
⊔

π part. of gcd(d,g−1)

ψ(π).
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The same arguments works for Ch−1(Chowss
d ) giving a bijection

φ′ : {connected components of Ch−1(Chowss
d )} −→ {partitions of gcd(d, g − 1)}.

We have proved the following

Theorem 15.4. There is a commutative diagram

{connected components of Hilbssd }
φ

//

η

��

{partitions of gcd(d, g − 1)}

{connected components of Ch−1(Chowss
d )}

φ′

22

where all the maps are one-to-one correspondences and η is induced by the inclusion

Hilbssd ⊆ Ch−1(Hilbssd ).

16. Compactifications of the universal Jacobian

Fix integers d and g ≥ 2. Consider the stack Jd,g, called the universal Jacobian stack

of genus g and degree d, whose section over a scheme S is the groupoid of families of

smooth curves of genus g over S together with a line bundle of relative degree d. We

denote by Jd,g its coarse moduli space, and we call it the universal Jacobian variety

(or simply the universal Jacobian) of degree d and genus g5.

16.1. Caporaso’s compactification. From the work of Caporaso ([Cap94]), it is

possible to obtain a modular compactification of the universal Jacobian stack and of

the universal Jacobian variety. Denote by J d,g the category fibered in groupoids over

the category of schemes whose section over a scheme S is the groupoid of families of

quasi-stable curves over S of genus g endowed with a line bundle whose restriction to

each geometric fiber is a properly balanced line bundle of degree d. We summarize the

main properties of J d,g into the following

Fact 16.1. Let g ≥ 2 and d ∈ Z.

(1) J d,g is a smooth, irreducible, universally closed Artin stack of finite type over

k, having dimension 4g − 4 and containing Jd,g as an open substack.

(2) J d,g admits an adequate moduli space Jd,g (in the sense of [Alp2]), which is a

normal irreducible projective variety of dimension 4g− 3 containing Jd,g as an

open subvariety.

5In [Cap94], this variety is called the universal Picard variety and it is denoted by Pd,g. We prefer

to use the name universal Jacobian, and therefore the symbol Jd,g, because the word Jacobian variety

is used only for curves while the word Picard variety is used also for varieties of higher dimensions

and therefore it is more ambiguous. Accordingly, we will denote the Caporaso’s compactified universal

Jacobian by Jd,g instead of P d,g as in [Cap94] (see Fact 16.1).
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(3) There exists a commutative digram

J d,g //

Ψs

��

Jd,g

Φs

��
Mg

// Mg

where Ψs is universally closed and surjective and Φs is projective, surjective

with equidimensional fibers of dimension g.

(4) If char(k) = 0, then for any X ∈Mg we have that

(Φs)−1(X) ∼= Jacd(X)/Aut(X),

where Jacd(X) is the canonical compactified Jacobian of X in degree d, parametriz-

ing rank-1, torsion-free sheaves on X that are slope-semistable with respect to

ωX (see Remark 16.13(ii)).

(5) If 4(2g − 2) < d then we have that{
J d,g ∼= [Hd/GL(r + 1)],

Jd,g ∼= Hd//GL(r + 1) = Qd,g,

where Hd ⊂ Hilbd is the open subset consisting of points [X ⊂ Pr] ∈ Hilbd such

that X is connected and [X ⊂ Pr] is Chow semistable (or equivalently, Hilbert

semistable).

Parts (1), (2), (3) follow by combining the work of Caporaso ([Cap94], [Cap05])

and of Melo ([Mel09]). Part (5) follows as well from the previous quoted papers if

d ≥ 10(2g− 2) and working with Hilbert semistability. The extension to d > 4(2g− 2)

and to the Chow semistability follows straightforwardly from our Theorem 11.1(1).

Part (4) was observed by Alexeev in [Ale04, Sec. 1.8] (see also [CMKV, Sec. 2.9] for a

related discussion and in particular for a discussion about the need for the assumption

char(k) = 0).

We call J d,g (resp. Jd,g) the Caporaso’s compactified universal Jacobian stack (resp.

Caporaso’s compactified universal Jacobian variety) of genus g and degree d.

16.2. Two new compactifications of the universal Jacobian stack Jd,g. The

aim of this subsection is to define and study two new compactifications of the universal

Jacobian stack Jd,g, one over the stackMp
g of p-stable curves of genus g and the other

over the stack Mwp
g of wp-stable curves of genus g.

Definition 16.2. Fix two integers d and g ≥ 3.

(i) Let J ps
d,g be the category fibered in groupoids over the category of k-schemes

whose sections over a k-scheme S are pairs (f : X → S,L) where f is a family

of quasi-p-stable curves of genus g and L is a line bundle on X of relative degree
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d that is properly balanced on the geometric fibers of f . Arrows between such

pairs are given by cartesian diagrams

X

�f
��

h // X ′

f ′

��
S // S′

together with a specified isomorphism L
∼=−→ h∗L′ of line bundles over X .

(ii) Let J wp
d,g be the category fibered in groupoids over the category of k-schemes

whose sections over a k-scheme S are pairs (f : X → S,L) where f is a family of

quasi-wp-stable curves of genus g and L is a line bundle on X of relative degree d

that is properly balanced on the geometric fibers of f and such that the geometric

fibers of f do not contain tacnodes with a line nor special elliptic tails relative to

L. Arrows between such pairs are given as in (i) above.

The aim of this subsection is to prove that J ps
d,g and J wp

d,g are algebraic stacks and

to study their properties. Let us first show that J ps
d,g and J wp

d,g are periodic in d with

period 2g − 2.

Lemma 16.3. For any integer n, there are natural isomorphisms

J ps
d,g
∼= J ps

d+n(2g−2),g and J wp
d,g
∼= J wp

d+n(2g−2),g,

of categories fibered in groupoids.

Proof. Note that a line bundle L on a quasi-wp-stable curve X is properly balanced if

and only if L⊗ωnX is properly balanced; moreover an elliptic tail F of X is special with

respect to L if and only if F is special with respect to L ⊗ ωnX . The required isomor-

phisms will then consist in associating to any section (f : X → S,L) ∈ J ps
d,g(S) (resp.

J wp
d,g(S)) the section (f : X → S,L ⊗ ωnf ) ∈ J ps

d+n(2g−2),g(S) (resp. J ps
d+n(2g−2),g(S)),

where by ωf we denote the relative dualizing sheaf of the morphism f . �

Moreover, the stacks J ps
d,g and J wp

d,g are invariant by changing the sign of degree.

Lemma 16.4. There are natural isomorphisms

J ps
d,g
∼= J ps

−d,g and J wp
d,g
∼= J wp

−d,g,

of categories fibered in groupoids.

The proof of this Lemma will be given later (after Theorem 16.19), when an alter-

native description of J ps
d,g and J wp

d,g will be available.

We will now show that if 2(2g−2) < d ≤ 7
2(2g−2) (resp. 7

2(2g−2) < d ≤ 4(2g−2))

then J ps
d,g (resp. J wp

d,g) is isomorphic to the quotient stack [H̃d/GLr+1], where

(16.1) H̃d := Hilbss,od := {[X ⊂ Pr] ∈ Hilbssd : X is connected}
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is the main component of the Hilbert semi-stable locus and the action of GLr+1 on H̃d

is induced by the natural action of GLr+1 on Pr. Note that, according to Fact 4.1, H̃d

is contained in the main component Hd of the Chow-semistable locus defined in (14.1);

moreover, if d > 2(2g− 2) then H̃d = Hd if and only if d 6= 7
2(2g− 2) and d 6= 4(2g− 2)

(see Theorems 11.1, 11.5, 13.2, 13.5).

Recall that, given a scheme S, [H̃d/GLr+1](S) consists of GLr+1-principal bundles

φ : E → S with a GLr+1-equivariant morphism ψ : E → H̃d. Morphisms are given by

pullback diagrams which are compatible with the morphism to H̃d.

Theorem 16.5. Let g ≥ 3.

(i) If 2(2g − 2) < d ≤ 7
2(2g − 2) then J ps

d,g is isomorphic to the quotient stack

[H̃d/GLr+1].

(ii) If 7
2(2g − 2) ≤ d ≤ 4(2g − 2) then J wp

d,g is isomorphic to the quotient stack

[H̃d/GLr+1].

Proof. To shorten the notation, we set G := GLr+1.

Let us first prove (i). We must show that, for every k-scheme S, the groupoids

J ps
d,g(S) and [H̃d/G](S) are equivalent. Our proof goes along the lines of the proof of

[Mel09, Thm. 3.1], so we will explain here the main steps and refer to loc. cit. for

further details.

Given (f : X → S,L) ∈ J ps
d,g(S), we must produce a principal G-bundle E on S and

a G-equivariant morphism ψ : E → H̃d. Notice that since d > 2(2g − 2), Theorem

17.5(i) implies that H1(Xs,L|Xs) = 0 for any geometric fiber Xs of f , so f∗(L) is locally

free of rank r + 1 = d − g + 1. We can then consider its frame bundle E, which is a

principal G-bundle: call it E. To find the G-equivariant morphism to H̃d, consider the

family XE := X ×S E of quasi-p-stable curves together with the pullback of L to XE ,

call it LE , whose restriction to the geometric fibers is properly balanced.

By definition of frame bundle, fE∗(LE) is isomorphic to Ar+1
k ×k E. Moreover, the

line bundle LE is relatively ample by Remark 5.7; hence it is relatively very ample

by Theorem 17.5(iii). Therefore, LE gives an embedding over E of XE in Pr × E.

By the universal property of the Hilbert scheme Hilbd, this family determines a map

ψ : E → Hilbd whose image is contained in H̃d by Theorems 11.1(2) and 11.5(1). It

follows immediately from the construction that ψ is a G-equivariant map.

X

f
��

XE := X ×S E

fE
��

oo

S Eoo
ψ

// Hilbd

Let us check that isomorphisms in J ps
d,g(S) lead canonically to isomorphisms in

[H̃d/G](S). Consider an isomorphism between two pairs (f : X → S,L) and (f ′ :

X ′ → S,L′) , i.e., an isomorphism h : X → X ′ over S and an isomorphism of line

bundles L
∼=→ h∗L′. Since f ′h = f , we get a unique isomorphism between the vector
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bundles f∗(L) and f ′∗(L′). As taking the frame bundle gives an equivalence between the

category of vector bundles of rank r+1 over S and the category of principal G-bundles

over S, the isomorphism f∗(L)
∼=→ f ′∗(L′) leads to a unique isomorphism between their

frame bundles, call them E and E′ respectively. It is clear that this isomorphism is

compatible with the G-equivariant morphisms ψ : E → H̃d and ψ′ : E′ → H̃d.

Conversely, given a section (φ : E → S, ψ : E → H̃d) of [H̃d/G] over a k-scheme S,

let us construct a family of quasi-p-stable curves of genus g over S and a line bundle

whose restriction to the geometric fibers is properly balanced of degree d.

Let Cd be the restriction to H̃d of the universal family on Hilbd. By Theorem 11.1(2),

the pullback of Cd by ψ gives a family CE on E of quasi-p-stable curves of genus g and

a line bundle LE on CE whose restriction to the geometric fibers is properly balanced.

As ψ is G-invariant and φ is a G-bundle, the family CE descends to a family CS over

S, where CS = CE/G. In fact, since CE is flat over E and E is faithfully flat over S, CS
is flat over S too.

Now, since G = GLr+1, the action of G on Cd is naturally linearized. Therefore,

the action of G on E can also be linearized to an action on LE , yielding descent data

for LE . Since LE is relatively very ample and φ is a principal G-bundle, a standard

descent argument shows that LE descends to a relatively very ample line bundle on

CS , call it LS , whose restriction to the geometric fibers of CS → S is properly balanced

by construction.

It is straightforward to check that an isomorphism on [H̃d/G](S) leads to an unique

isomorphism in J ps
d,g(S).

We leave to the reader the task of checking that the two functors between the

groupoids [H̃d/G](S) and J ps
d,g(S) that we have constructed are one the inverse of the

other, which concludes the proof of part (i).

The proof of part (ii) proceeds along the same lines using Theorems 13.2 and 13.5(1).

�

From Theorem 16.5 and Lemmas 16.3 and 16.4, we deduce the following conse-

quences for J ps
d,g and J wp

d,g.

Theorem 16.6. Let g ≥ 3 and d any integer.

(i) J ps
d,g is a smooth and irreducible universally closed Artin stack of finite type over

k and of dimension 4g−4, endowed with a universally closed morphism Ψps onto

the moduli stack of p-stable curves Mp
g .

(ii) J wp
d,g is a smooth and irreducible universally closed Artin stack of finite type over

k and of dimension 4g−4, endowed with a universally closed morphism Ψwp onto

the moduli stack of wp-stable curves Mwp
g .

Proof. Let us first prove part (i). Using Lemma 16.3, we can assume that 2(2g − 2) <

d ≤ 7
2(2g − 2) and hence that J ps

d,g
∼= [H̃d/GLr+1] by Theorem 16.5(i). The fact that

J ps
d,g is a universally closed Artin stack of finite type over k follows from Theorem

16.5 and general properties of stacks coming from GIT problems. J ps
d,g is smooth and
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irreducible since H̃d ⊆ Hd is smooth by Theorem 14.3(i) and irreducible by Proposition

14.4. Using again Theorem 14.3(i), we can compute the dimension of J ps
d,g as follows:

dimJ ps
d,g = dim H̃d − dim GLr+1 = r(r + 2) + 4g − 3− (r + 1)2 = 4g − 4.

Now, given (f : X → S,L) ∈ J ps
d,g(S), we get an element of Mps

g (S) by forgetting L
and by considering the p-stable reduction ps(f) : ps(X )→ S of f (see Definition 2.14).

This defines a morphism of stacks Ψps : J ps
d,g →M

p
g , which is universally closed since

J ps
d,g is so.

Let us now prove part (ii). Using Lemmas 16.3 and 16.4, we can assume that
7
2(2g − 2) < d ≤ 4(2g − 2) and hence that J wp

d,g
∼= [H̃d/GLr+1] by Theorem 16.5(ii).

Now, the proof proceeds as in part (i). Note that the morphism Ψwp : J wp
d,g → M

wp
g

send (f : X → S,L) ∈ J wp
d,g(S) into the wp-stable reduction wps(f) : wps(X )→ S of f

(see Proposition 2.11).

�

Note that Gm acts on J ps
d,g (resp. J wp

d,g) by scalar multiplication on the line bundles

and leaving the curves fixed. So, Gm is contained in the stabilizers of any section of J ps
d,g

(resp. J wp
d,g). This implies that J ps

d,g (resp. J wp
d,g) are never DM (= Deligne-Mumford)

stacks. However, we can quotient out J ps
d,g (resp. J wp

d,g) by the action of Gm using the

rigidification procedure defined by Abramovich, Corti and Vistoli in [ACV01]: denote

the rigidified stack by J ps
d,g ( Gm (resp. J wp

d,g ( Gm).

From the modular description of J ps
d,g (resp. J wp

d,g) it follows that the stack J ps
d,g(Gm

(resp. J wp
d,g ( Gm) is the stackification of the prestack whose sections over a scheme S

are given by pairs (f : X → S,L) ∈ J ps
d,g (resp. J wp

d,g) and whose arrows between two

such pairs are given by a cartesian diagram

X

�f
��

h // X ′

f ′

��
S // S′

together with an isomorphism L
∼=→ h∗L′ ⊗ f∗M , for some M ∈ Pic(S). We refer to

[Mel09, Sec. 4] for more details.

From Theorem 16.5 it follows that J ps
d,g ( Gm (resp. J wp

d,g ( Gm) is isomorphic to

the quotient stack [H̃d/PGLr+1] if 2(2g− 2) < d ≤ 7
2(2g− 2) (resp. if 7

2(2g− 2) < d ≤
4(2g − 2)). Note that, using Theorem 16.6, we get

{
dimJ ps

d,g ( Gm = dimJ ps
d,g + 1 = 4g − 3,

dimJ wp
d,g ( Gm = dimJ wp

d,g + 1 = 4g − 3.
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Moreover, the morphisms Ψps : J ps
d,g →M

p
g and Ψwp : J wp

d,g →M
wp
g of Theorem 16.6

factor as

(16.2)


Ψps : J ps

d,g → J
ps
d,g ( Gm

Ψ̂ps

−→Mp
g ,

Ψwp : J wp
d,g → J

wp
d,g ( Gm

Ψ̂wp

−→Mwp
g ,

We can now determine when the stacks J ps
d,g ( Gm and J wp

d,g ( Gm are DM-stacks.

Proposition 16.7. Let g ≥ 3 and d any integer.

(1) The following conditions are equivalent:

(i) gcd(d+ 1− g, 2g − 2) = 1;

(ii) For any d′ ≡ ±d mod 2g − 2 with 2(2g − 2) < d′ ≤ 7
2(2g − 2), the GIT

quotient H̃d′/PGLr+1 is geometric, i.e., there are no strictly semistable

points;

(iii) The stack J ps
d,g ( Gm is a DM-stack;

(iv) The stack J ps
d,g ( Gm is proper;

(v) The morphism Ψ̂ps : J ps
d,g ( Gm →M

p
g is representable.

(2) The following conditions are equivalent:

(i) gcd(d+ 1− g, 2g − 2) = 1;

(ii) For any d′ ≡ ±d mod 2g − 2 with 7
2(2g − 2) < d′ ≤ 4(2g − 2), the GIT

quotient H̃d′/PGLr+1 is geometric, i.e., there are no strictly semistable

points;

(iii) The stack J wp
d,g ( Gm is a DM-stack;

(iv) The stack J wp
d,g ( Gm is proper;

(v) The morphism Ψ̂wp : J wp
d,g ( Gm →M

wp
g is representable.

Proof. Let us first prove part (1).

(1i)⇐⇒ (1ii): the GIT quotient H̃d′/PGLr+1 is geometric if and only if every Hilbert

polystable point is also Hilbert stable. From Corollaries 11.2(2), 11.3(2), 11.6(1) and

11.7(1), this happens if and only if, given a quasi-p-stable curve X of genus g and a

line bundle L on X of degree d′, L is stably balanced whenever it is strictly balanced.

Recalling Definition 3.6, it is easy to see that this occurs if and only if, given a quasi-

p-stable curve X of genus g, any proper connected subcurve Y ⊂ X such that

mY =
d′

2g − 2
degY ωX −

kY
2
∈ Z,

is either an exceptional component or the complementary subcurve of an exceptional

component. Now, the combinatorial proof of [Cap94, Lemma 6.3] shows that this

happens precisely when gcd(d′ + 1 − g, 2g − 2) = 1. We conclude since gcd(d + 1 −
g, 2g − 2) = gcd(d′ + 1− g, 2g − 2) for any d ≡ ±d′ mod 2g − 2.

For the remainder of the proof, using Lemma 16.3, we can (and will) assume that

2(2g − 2) < d ≤ 7
2(2g − 2).
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Let us now show that the conditions (1ii), (1iii) and (1v) are equivalent. From

Theorem 6.4 and its proof, we get that for any quasi-p-stable curve X of genus g ≥ 3

and any properly balanced line bundle L on X we have an exact sequence

(16.3) 0→ Gγ(X̃)−1
m → Aut(X,L)→ Aut(ps(X)),

where γ(X̃) denotes, as usual, the connected components of the non-exceptional sub-

curve X̃ of X. Note that Aut(X,L) is the automorphism group of (X,L) ∈ (J ps
d,g (

Gm)(k) by the definition of the Gm-rigidification.

We claim that each of the conditions (1ii), (1iii) and (1v) is equivalent to the condi-

tion

(*)

γ(X̃) = 1 for any [X ⊂ Pr] ∈ H̃d or, equivalently, for any (X,L) ∈ (J ps
d,g ( Gm)(k).

Indeed:

• Condition (1ii) is equivalent to (*) by Lemma 3.9.

• Condition (1iii) implies (*) because the geometric points of a DM-stack have a

finite automorphism group scheme. Conversely, if (*) holds then Aut(X,L) ⊂
Aut(ps(X)), which is a finite and reduced group scheme since Mps

g is a DM-

stack if g ≥ 3. Therefore, also Aut(X,L) is a finite and reduced group scheme,

which implies that J ps
d,g ( Gm is a DM-stack.

• Condition (1v) is equivalent to the injectivity of the map Aut(X,L)→ Aut(ps(X))

for any (X,L) ∈ (J ps
d,g ( Gm)(k). This is equivalent to condition (*) by the

exact sequence (16.3).

(1ii) =⇒ (1iv): this follows from the well-known fact that the quotient stack associ-

ated to a geometric projective GIT quotient is a proper stack.

(1iv) =⇒ (1ii): the automorphism group schemes of the geometric points of a proper

stack are complete group schemes. From (16.3), this is only possible if γ(X̃) = 1 for

any (X,L) ∈ (J ps
d,g ( Gm)(k), or equivalently if condition (*) is satisfied. This implies

that (1ii) holds by what proved above.

Let us now prove part (2).

(2i) ⇐⇒ (2ii): the proof is similar to the proof of the equivalence (1i) ⇐⇒ (1ii),

using Corollaries 13.3, 13.4, 13.6(1), 13.7(1).

For the remainder of the proof, using Lemmas 16.3 and 16.4, we can (and will)

assume that 7
2(2g − 2) < d ≤ 4(2g − 2).

Note that for any quasi-wp-stable curve X of genus g ≥ 3 and any properly balanced

line bundle L on X such that X does not have tachnodes nor special elliptic tails with

respect to L, Theorem 6.4 and its proof provides an exact sequence

(16.4) 0→ Gγ(X̃)−1
m → Aut(X,L)→ Aut(wps(X)).

Now, the equivalences (2ii) ⇐⇒ (2iii) ⇐⇒ (2iv) ⇐⇒ (2v) are proved as in part (1)

using (16.4) instead of (16.3).
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Remark 16.8. Notice that even if the existence of strictly semistable points in H̃d

for 2(2g − 2) < d ≤ 7
2(2g − 2) (resp. 7

2(2g − 2) < d ≤ 4(2g − 2)) prevents J ps
d,g ( Gm

(resp. J wp
d,g ( Gm) to be separated when gcd(d + 1 − g, 2g − 2) 6= 1, the fact that

J ps
d,g ( Gm and J wp

d,g ( Gm can be realized as a GIT quotients imply that their non-

separatedness is, in some sense, quite mild. Indeed, according to the recent work of

Alper, Smyth and van der Wick in [ASvdW], we have that the stacks J ps
d,g ( Gm and

J wp
d,g ( Gm are weakly separated, which roughly means that sections of J ps

d,g ( Gm

(resp. of J wp
d,g (Gm) over a punctured disc have unique completions that are closed in

J ps
d,g ( Gm (resp. J wp

d,g ( Gm); see [ASvdW, Definition 2.1] for the precise statement.

Since both J ps
d,g ( Gm and J wp

d,g ( Gm are also universally closed, then according to

loc. cit. we get that they are weakly proper. A similar argument implies that the

morphisms Ψ̂ps : J ps
d,g ( Gm →M

p
g and Ψ̂wp : J wp

d,g ( Gm →M
wp
g are weakly proper.

16.3. Existence of moduli spaces for J ps
d,g and J wp

d,g. The aim of this subsection

is to define (adequate or good) moduli spaces for the stacks J ps
d,g and J wp

d,g.

We start by observing that, since from Theorem 16.5 above we have that, for 2(2g−
2) < d ≤ 7

2(2g − 2) (resp. 7
2(2g − 2) < d ≤ 4(2g − 2)), the stack J ps

d,g (resp. J wp
d,g) is

isomorphic to the quotient stack [H̃d/GLr+1], there are natural morphisms

(16.5) J ps
d,g → Q

h
d,g := H̃d//GLr+1 for any 2(2g − 2) < d ≤ 7

2
(2g − 2),

(16.6) J wp
d,g → Q

h
d,g := H̃d//GLr+1 for any

7

2
(2g − 2) < d ≤ 4(2g − 2).

From the work of Alper (see [Alp] and [Alp2]), we deduce that the morphism (16.5)

(resp. (16.6)) realizes Q
h
d,g as the adequate moduli space of J ps

d,g (resp. J wp
d,g) and even

as its good moduli space if the characteristic of our base field k is equal to zero or bigger

than the order of the automorphism group of every p-stable (rep. wp-stable) curve of

genus g (because in this case, all the stabilizers are linearly reductive subgroups of

GLr+1, as it follows from Lemma 6.1 and the proof of Theorem 6.4). We do not recall

here the definition of an adequate or a good moduli space (we refer to [Alp] and [Alp2]

for details). We limit ourselves to point out some consequences of the fact that (16.5)

and (16.6) is an adequate moduli space, namely:

• The morphisms (16.5) and (16.6) are surjective and universally closed (see

[Alp2, Thm. 5.3.1]);

• The morphism (16.5) (resp. (16.6)) is universal for morphisms from J ps
d,g (resp.

J wp
d,g) to locally separated algebraic spaces (see [Alp2, Thm. 7.2.1]);

• For any algebraically closed field k′ containing k, the morphisms (16.5) and

(16.6) induce bijections

J ps
d,g(k

′)/∼
∼=−→ Q

h
d,g(k

′) if 2(2g − 2) < d ≤ 7

2
(2g − 2),

J wp
d,g(k

′)/∼
∼=−→ Q

h
d,g(k

′) if
7

2
(2g − 2) < d ≤ 4(2g − 2),
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where we say that two points x1, x2 ∈ J
ps
d,g(k

′) (resp. J wp
d,g(k

′)) are equivalent,

and we write x1 ∼ x2, if {x1} ∩ {x2} 6= ∅ in J ps
d,g ×k k′ (resp. J wp

d,g ×k k′); see

[Alp2, Thm. 5.3.1].

Moreover, if the GIT-quotient is geometric, which occurs if and only if gcd(d − g +

1, 2g − 2) = 1 by Proposition 16.7, then it follows from the work of Keel-Mori (see

[KeM97]) that actually Q
h
d,g is the coarse moduli space for J ps

d,g (resp. J wp
d,g), which

means that the morphism (16.5) (resp. (16.6)) is universal for morphisms of J ps
d,g (resp.

J wp
d,g) into algebraic spaces and moreover that (16.5) (resp. (16.6)) induces bijections

J ps
d,g(k

′)
∼=−→ Q

h
d,g(k

′) (resp. J wp
d,g(k

′)
∼=−→ Q

h
d,g(k

′))

for any algebraically close field k′ containing k.

It follows from the above universal properties of the morphism (16.5) that if 2(2g−
2) < d, d′ ≤ 7

2(2g − 1) are such that J ps
d,g
∼= J ps

d′,g then Q
h
d,g
∼= Q

h
d′,g. Similarly, if

7
2(2g − 2) < d, d′ ≤ 4(2g − 1) are such that J wp

d,g
∼= J wp

d′,g then Q
h
d,g
∼= Q

h
d′,g. Using this

fact together with Lemmas 16.3 and 16.4, the following definition is well-posed.

Definition 16.9. Fix d ∈ Z and g ≥ 3.

(i) Set J
ps
d,g := Q

h
d′,g = H̃d′//GLr+1 for any d′ ≡ ±d mod 2g−2 such that 2(2g−2) <

d′ ≤ 7
2(2g − 2).

(ii) Set J
wp
d,g := Q

h
d′,g = H̃d′//GLr+1 for any d′ ≡ ±d mod 2g−2 such that 7

2(2g−2) <

d′ ≤ 4(2g − 2).

Note that for any d ∈ Z, we have natural morphisms

(16.7) J ps
d,g → J

ps
d,g and J wp

d,g → J
wp
d,g

which are adequate moduli spaces in general and coarse moduli spaces if (and only if)

gcd(d− g + 1, 2g − 2) = 1.

The projective varieties J
ps
d,g and J

wp
d,g are two compactifications of the universal

Jacobian variety Jd,g. We collect some of their properties in the following theorem.

Theorem 16.10. Let g ≥ 3 and d ∈ Z.

(1) The variety J
ps
d,g satisfies the following properties:

(i) J
ps
d,g is a normal integral projective variety of dimension 4g−3 containing

Jd,g as a dense open subset. Moreover, if char(k) = 0, then J
ps
d,g has

rational singularities, hence it is Cohen-Macauly.

(ii) There exists a surjective map Φps : J
ps
d,g →M

p
g whose geometric fibers are

equidimensional of dimension g. Moreover, if char(k) = 0, then Φps is

flat over the smooth locus of M
p
g .

(iii) The k-points of J
ps
d,g are in natural bijection with isomorphism classes

of pairs (X,L) where X is a quasi-p-stable curve of genus g and L is a

strictly balanced line bundle of degree d on X.

(2) The variety J
wp
d,g satisfies the following properties:
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(i) J
wp
d,g is a normal irreducible projective variety of dimension 4g − 3 con-

taining Jd,g as a dense open subset. Moreover, if char(k) = 0, then J
wp
d,g

has rational singularities, hence it is Cohen-Macauly.

(ii) There exists a surjective map Φwp : J
wp
d,g →M

p
g whose geometric fiber over

a p-stable curve X has dimension equal to the sum of g and the number

of cusps of X.

(iii) The k-points of J
wp
d,g are in natural bijection with isomorphism classes

of pairs (X,L) where X is a quasi-wp-stable curve of genus g without

tacnodes and L is a strictly balanced line bundle of degree d on X such

that X does not have special elliptic tails with respect to L.

Proof. Let us first prove (1). Clearly, the above properties are preserved by the iso-

morphisms of Lemmas 16.3 and 16.4. Therefore, we can assume that 2(2g − 2) < d ≤
7
2(2g − 2) so that J

ps
d,g = Q

h
d,g = H̃d/GLr+1 by Definition 16.9.

Part (1i) follows by combining Proposition 14.2 and Corollary 14.7.

Part (1ii) follows from Theorem 14.3, Propositions 14.4(ii) and 14.5(ii).

Part (1iii) follows from Remark 14.1 together with Corollaries 11.2(2) and 11.6(1).

Let us first prove (2). Clearly, the above properties are preserved by the isomor-

phisms of Lemmas 16.3 and 16.4. Therefore, we can assume that 7
2(2g − 2) < d ≤

4(2g − 2) so that J
wp
d,g = Q

h
d,g = H̃d/GLr+1 by Definition 16.9.

Part (2i) follows by combining Proposition 14.2 and Corollary 14.7.

Part (2ii) follows from Theorem 14.3, Propositions 14.4(iii) and 14.6(ii).

Part (2iii) follows from Remark 14.1 together with Corollaries 13.3 and 13.6(1).

�

16.4. An alternative description of J d,g, J
ps
d,g and J wp

d,g. The aim of this sub-

section is to provide an alternative description of the stack J d,g (resp. J ps
d,g, resp.

J wp
d,g) in terms of certain torsion-free rank-1 sheaves on stable (resp. p-stable, resp.

wp-stable) curves rather than line bundles on quasi-stable (resp. quasi-p-stable, resp.

quasi-wp-stable) curves. Indeed, the results of this subsection are inspired by the work

of Pandharipande in [Pan96, Sec. 10], where he reinterprets Caporaso’s compactified

universal Jacobian variety Jd,g as the moduli space of slope-semistable torsion-free,

rank-1 sheaves of degree d on stable curves of genus g.

Let us first introduce the sheaves we will be working with.

Definition 16.11. Let X be a (reduced) curve and let I be a coherent sheaf on X.

(i) We say that I is torsion-free if the support of I is equal to X and I does not have

non-zero subsheaves whose support has dimension zero.

(ii) We say that I is of rank-1 if I is invertible on a dense open subset of X.

Observe that a torsion-free rank-1 can be non locally-free only at the singular points

of X. Clearly, every line bundle on X is a torsion-free, rank-1 sheaf on X.
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For each subcurve Y of X, let IY be the restriction I|Y of I to Y modulo torsion.

If I is a torsion-free (resp. rank-1) sheaf on X, so is IY on Y . We let degY (I) denote

the degree of IY , that is, degY (I) := χ(IY )− χ(OY ).

Definition 16.12. Let X be a Gorenstein curve of arithmetic genus g ≥ 2 and I a

rank-1 torsion-free sheaf of degree d on X. We say that I is ωX -semistable if, for every

proper subcurve Z of X, we have that

(16.8) degZ(I) ≥ ddegZ(ωX)

2g − 2
− kZ

2

where kZ denotes, as usual, the length of the scheme-theoretic intersection Z ∩ Zc of

X.

Remark 16.13. Let X be a Gorenstein curve such that ωX is ample.

(i) A torsion-free rank-1 sheaf I on X is ωX -semistable in the sense of Definition

16.12 if and only if it is slope-semistable with respect to the polarization ωX : the

proof of this fact for stable curves in [CMKV, Sec. 2.9] extends to the general

case.

(ii) Consider the controvariant functor

(16.9) J d,X : SCH→ SET

which associates to a scheme T the set of T -flat coherent sheaves on X × T

which are rank-1 torsion-free sheaves and ωX -semistable on the geometric fibers

X × {t} of the second projection morphism X × T → T . The functor J d,X is

co-represented by a projective variety Jacd(X), called the canonical compactified

Jacobian of X in degree d; see [CMKV, Section 2] for a detailed discussion on the

different constructions of the compactified Jacobians available in the literature.

Remark 16.14. Assume that X is a Gorenstein curve such that all its singular points

lying on more than one irreducible component are nodes (e.g. X is a wp-stable curve).

Then a torsion-free, rank-1 sheaf I is ωX -semistable if and only if, for any subcurve

Y ⊆ X, we have that

(16.10) d
degY (ωX)

2g − 2
− kY

2
≤ degY (I) ≤ ddegY (ωX)

2g − 2
+
kY
2
− |Y ∩ Y c ∩ Sing(I)|,

where Sing(I) denotes the set of singular points of X where I is not locally free.

Indeed, under the above assumptions on X, we have the exact sequence

(16.11) 0→ IY c(−[Y ∩ Y c \ Sing(I)])→ I → IY → 0.

From (16.11), by using that deg(I) := χ(I)− χ(OX) by definition (and the analogous

formulas for IY and IY c), the additivity of the Euler characteristic and the formula

χ(OX) = χ(OY ) + χ(OY c)− |Y ∩ Y c|, we get

(16.12) deg(I) = degY (I) + degY c(I) + |Y ∩ Y c ∩ Sing(I)|.
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By substituting (16.12) into the inequality (16.8) for Y c, we get the right inequality in

(16.10), q.e.d.

Torsion-free, rank-1 sheaves on a wp-stable curve X can be described via certain

line bundles on quasi-wp-stable models of X.

Lemma 16.15. Let X be a wp-stable curve. For any set S ⊂ Xsing, denote by X̂S

the quasi-wp-stable curve obtained from X by blowing-up the nodes and cusps of X

belonging to S and set φS : X̂S → X equal to the wp-stable reduction (as in Proposition

2.11).

(1) Let L be a line bundle on X̂S such that for every exceptional component E of

X̂S we have that degEL ∈ {−1, 0, 1}. Then

(i) R1φS∗ (L) = 0 and φS∗ (L) is a torsion-free rank-1 sheaf on X such that

deg φS∗ (L) = deg L.

(ii) φS∗ (L) is ωX-semistable if and only if L is balanced.

(2) Let I be a torsion-free rank-1 sheaf on X and denote by Sing(I) ⊆ Xsing the set

of points of X where I is not locally free. Then there exists a a line bundle L

on X̂Sing(I) such that

• degEL = 1 for all exceptional subcurves E of X̂Sing(I);

• I = φ
Sing(I)
∗ (L).

Moreover, the restriction of L to the non-exceptional subcurve of X̂Sing(I) (see

Definition 2.10) is unique.

Proof. Let us first prove (1). In order to simplify the notation, set Y := X̂S and

φ := φS . As in Definition 2.10, write Y = Yexc ∪ Ỹ , where Yexc is given by the union

of all the exceptional subcurves of Y and Ỹ = Y c
exc is the non-exceptional subcurve of

Y . Let Dexc := Yexc ∩ Ỹ , which we can view as a Cartier divisor on both Yexc and Ỹ .

The restrictions of L to Ỹ and to Yexc give rise to the following two exact sequences of

sheaves:

(16.13)

{
0→ L|Yexc(−Dexc)→ L→ L|Ỹ → 0,

0→ L|Ỹ (−Dexc)→ L→ L|Yexc → 0.

By taking the push-forward of (16.13) via φ, we get the two exact sequences of vector

spaces

(16.14)

{
0→ φ∗(L|Yexc(−Dexc))→ φ∗(L)→ φ∗(L|Ỹ ),

R1φ∗(L|Ỹ (−Dexc))→ R1φ∗(L)→ R1φ∗(L|Yexc)→ 0.

Since the restriction of φ to Ỹ is a finite birational morphism onto X, the sheaf φ∗(L|Ỹ )

is torsion-free and of rank 1 on X and R1φ∗(L|Ỹ (−Dexc)) = 0. On the other hand, the

sheaves φ∗(L|Yexc(−Dexc)) and R1φ∗(L|Yexc) are torsion sheaves supported on φ(Yexc).

For every exceptional component E ∼= P1 of Y , we have that degEL|Yexc ≥ −1 and
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degE
(
L|Yexc(−Dexc)

)
= degEL− degEOE(−Dexc) ≤ 1− 2 = −1, which implies that{

φ∗(L|Yexc(−Dexc))φ(E) = H0(E,L|Yexc(−Dexc)) = 0,

R1φ∗(L|Yexc)φ(E) = H1(E,L|Yexc) = 0.

Therefore, using (16.14), we deduce that φ∗(L) ⊆ φ∗(L|Ỹ ) is torsion-free and of rank

1 on X and R1φ∗(L) = 0. Moreover, we have that χ(L) = χ(φ∗(L)) − χ(R1φ∗(L)) =

χ(φ∗(L)), which, together with the fact that Y and X have the same arithmetic genus,

implies that degL = deg φ∗(L). Part (1i) is now proved.

Let us now prove part (1ii). Assume first that L is properly balanced. Let Z be

a subcurve of X and let Ẑ be the subcurve of Y obtained from the subcurve φ−1(Z)

by removing the exceptional subcurves E ⊂ φ−1(Z) such that E ∩ φ−1(Z)c 6= ∅ and

degEL = 1. From the definition of Ŵ , it is easy to check that

(16.15)

{
k
Ẑ

= kZ ,

pa(Ẑ) = pa(Z).

CLAIM: deg
Ẑ

(L) = degZ(φ∗(L)).

Indeed, first of all, by the projection formula, we get

(16.16) φ∗(L|φ−1(Z)) = φ∗(L⊗Oφ−1(Z)) = φ∗(L⊗ φ∗(OZ)) = φ∗(L)⊗OZ = φ∗(L)|Z .

Let E be the union of the exceptional subcurves of Y contained in φ−1(Z) ∩ φ−1(Zc)

and set Z̊ to be equal to the complement of E inside φ−1(Z). The morphism φ : Z̊ → Z

is the blow-up of Z at the singular points S \ (Z ∩ Zc). Therefore, by what proved in

(1i), we get that

(16.17)

{
φ∗(L|Z̊) is a torsion-free, rank-1 sheaf on Z,

R1φ∗(L|Z̊) = 0.

We have the following two exact sequences of sheaves on φ−1(Z) : 0→ L|E(−E ∩ Z̊)→ L|φ−1(Z) → L|Z̊ → 0,

0→ L|Z̊(−E ∩ Z̊)→ L|φ−1(Z) → L|E → 0.

By taking the push-forward via φ and using (16.17) and the analogous vanishing

R1φ∗(L|Z̊(−E ∩ Z̊)) = 0, we get the following two exact sequence of sheaves

(16.18)

{
0→ φ∗(L|E(−E ∩ Z̊))→ φ∗(L|φ−1(Z))→ φ∗(L|Z̊),

0→ R1φ∗(L|φ−1(Z))→ R1φ∗(L|E)→ 0.

The sheaves φ∗(L|E(−E ∩ Z̊)) and R1φ∗(L|E) are torsion sheaves supported at φ(E1)

and for any P1 ∼= E ⊆ E we get

(16.19)


φ∗(L|E(−E ∩ Z̊))φ(E) = H0(E,L|E(−E ∩ Z̊)) =

k if degEL = 1,

0 if degEL = −1, 0,

R1φ∗(L|E1)φ(E) = H1(E,L|E) = 0,
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since degEL = −1, 0, 1 and E intersects Z̊ in (exactly) one point. The first equation in

(16.18) together with (16.17) imply that φ∗(L|E(−E∩Z̊)) is the biggest torsion subsheaf

of φ∗(L|φ−1(Z)). Taking into account (16.15), we get that

(16.20) φ∗(L)Z = φ∗(L|φ−1(Z))/φ∗(L|E(−E ∩ Z̊)).

In order to compute the degree of φ∗(L)Z , notice first of all that from the first equation

in (16.19) it follows that φ∗(L|E(−E ∩ Z̊)) is a torsion sheaf of length equal to the

number of exceptional components E ⊆ E such that degEL = 1, which is also equal to

degφ−1(Z)(L)−deg
Ẑ

(L). Moreover, from the second equations in (16.19) and in (16.18)

it follows that R1φ∗(L|E) = R1φ∗(L|φ−1(Z)) = 0 which implies that χ(L|φ−1(Z)) =

χ(φ∗(L|φ−1(Z))). Now, we can compute the degree of φ∗(L)Z using (16.20):

degZ(φ∗(L)) = deg φ∗(L)Z = χ(φ∗(L)Z)−χ(OZ) = χ(φ∗(L|φ−1(Z)))−χ(φ∗(L|E(−E∩Z̊)))−χ(OZ) =

= χ(L|φ−1(Z))− degφ−1(Z)(L) + deg
Ẑ

(L)− χ(Oφ−1(Z)) = deg
Ẑ

(L),

q.e.d.

Using the above CLAIM and (16.15), the basic inequality (3.1) for L and the sub-

curve Ẑ ⊆ Y translates into the inequality (16.8) for φ∗(L) and the subcurve Z ⊆ X;

hence φ∗(L) is ωX -semistable.

Assume next that φ∗(L) is ωX -semistable. Let W be a connected subcurve of Y .

We want to compare the degree of L on W with its degree on the subcurve φ̂(W ) ⊆
φ−1(φ(W )) defined above. With this aim, set

• E0
W to be the collection of the exceptional subcurves contained in W but not

in φ̂(W ) (or equivalently, contained in W , intersecting φ−1(φ(W ))c and having

degree 1 with respect to L);

• E1
W to be the collection of the exceptional subcurves contained in φ̂(W ) ∩
φ−1(φ(W )c) but not in W .

• E2
W to be the collection of the exceptional subcurves contained in φ̂(W ) \
φ−1(φ(W )c) but not in W .

Moreover, set eiW to be equal to the cardinality of E iW (for i = 0, 1, 2). By construction,

we have that

(16.21) φ̂(W )
∐ ⋃

E∈E0W

E

 = W
∐ ⋃

E∈E1W

E

∐ ⋃
E∈E2W

E

 .
Moreover, the degree of L on the exceptional components belonging to E iW can assume

the following values:

(16.22) degEL =


1 if E ∈ E0

W ,

−1, 0 if E ∈ E1
W ,

−1, 0, 1 if E ∈ E2
W .
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Using (16.21) and (16.22), together with the above CLAIM, we get that

(16.23) degφ(W )(φ∗(L)) = deg
φ̂(W )

L ≤ deg
φ̂(W )

L+ e0
W ≤ degWL+ e2

W .

Moreover, by the definition of E iW together with (16.15), it is easily checked that

(16.24)

 kW = k
φ̂(W )

+ 2e2
W = kφ(W ) + 2e2

W ,

pa(W ) = pa(φ̂(W ))− e2
W = pa(φ(W ))− e2

W .

By applying the inequality (16.8) to the sheaf φ∗(L) and the subcurve φ(W ) and using

(16.23) and (16.24), we get

degW (L) ≥ degφ(W )(φ∗(L))− e2
W ≥d

2[pa(φ(W ))− 2] + kφ(W )

2g − 2
−
kφ(W )

2
− e2

W =

= d
2[pa(W )− 2] + kW

2g − 2
− kW

2
,

which shows that L satisfies the basic inequality (3.1) with respect to the subcurve

W ⊆ Y ; hence L is balanced.

Let us now prove (2). In order to simplify the notation, set Y := X̂Sing(I) and

φ := φSing(I). The restriction of φ to the non-exceptional subcurve i : Ỹ ↪→ Y , which

we denote by ν : Ỹ → X, coincides the normalization of X at the points of Sing(I). In

other words, we have the following commutative diagram

(16.25) Ỹ

ν ��

� � i // Y

φ
��
X

CLAIM 1: There is a unique line bundle M on Ỹ such that ν∗(M) = I.

This is certainly well-known (see [Kas] and the references therein), so we only give

a sketch of the proof. Consider the sheaf End(I) of endomorphisms of I. Scalar

multiplication induces a natural inclusion OX ↪→ End(I) and this inclusion makes

End(I) into a sheaf of finite commutative OX -algebras. Moreover, there exists a unique

rank-1 torsion-free sheaf J on Spec(End(I)) with the property that f∗(J) = I, where

f : Spec(End(I)) → X is the natural map (see [Kas, Lemma 3.7]). The claim now

follows from the following two facts

(*) End(I) = ν∗(OỸ ) and J is a line bundle.

Indeed, if (*) is true then Ỹ = Spec(End(I)) and we can take M = J . Property

(*) is a local property, i.e. it is enough to prove that for any p ∈ X with ν−1(p) =

{q1, · · · , qr} ⊂ Ỹ , we have that

(**)

{
End(Ip) ∼= ⊕iOỸ,qi

as OX,p −modules,

Ip is a free module over End(Ip).

If p 6∈ Sing(I) then (**) is clear: ν is an isomorphism above p and Ip = OX,p is a free

module over End(Ip) = OX,p. If p ∈ Sing(I) (hence p is a node or a cusp of X), then
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it is well-known (see e.g. [Kas, Prop. 5.7]) that Ip is isomorphic to the maximal ideal

mp of OX,p, End(mp) is isomorphic to the normalization ÕX,p of OX,p and mp is a free

module over ÕX,p. Property (**) is proved also in this case, q.e.d.

Let now E := E1 ∪ · · · ∪ En be the union of the exceptional subcurves of Y . Then

we can find a line bundle L on Y such that L|Ỹ = M and degEiL = 1, i = 1, . . . , n.

The proof of (2) is now implied by CLAIM 1 together with the following

CLAIM 2: The natural restriction morphism

res : φ∗L→ ν∗(L|Ỹ ) = ν∗(M)

is an isomorphism of sheaves on X.

We must show that for every open subset U ⊆ X, the restriction map

res : L(φ−1(U))→ L|Ỹ (i−1φ−1(U)) = L|Ỹ (ν−1(U))

is an isomorphism of OX(U)-modules. Suppose for simplicity that U contains a unique

point p ∈ Sing(I) and let E0 be its pre-image under φ. Then every section s ∈
L(φ−1(U)) can be seen as a couple (res(s), s|E0

) plus a compatibility condition. In the

case when p is a node, this condition just says that the value of s|E0
in i−1(φ−1(p)) =

ν−1(p) must coincide with the values of res(s) on those points. In the case when p is a

cusp, the condition says that the value of s|E0
on the pre-image ν−1(p) of the cusp must

coincide with the value of res(s) on that point and the same for their derivatives at

that point. We conclude using the fact that a section s ∈ H0(P1,OP1(1)) is determined

either by its value at two distinct points of P1 or by its value at one point together

with its derivative at that point. The general case, where U contains several points of

Sing(I), is dealt with similarly.

�

Given a wp-stable curve X and a torsion-free rank-1 sheaf I on X, an automorphism

of (X, I) is given by a pair (σ, ψ) such that σ ∈ Aut(X) and ψ is an isomorphism

between the sheaves I and σ∗(I). The group of automorphisms of (X, I) has a natural

structure of an algebraic group, which we denote by Aut(X, I). We have a natural

exact sequence of algebraic groups

(16.26)
0→ Aut(I)→ Aut(X, I)→ Aut(X)I → 0

(σ, ψ) 7→ σ

where Aut(I) is the group of automorphisms of the sheaf I and Aut(X)I is the subgroup

of Aut(X) consisting of all the elements σ ∈ Aut(X) such that σ∗(I) ∼= I.

If we write the sheaf I on X as the pushforward of a line bundle L on the quasi-wp-

stable model X̂Sing(I) of X as in Lemma 16.15(2), then Aut(X, I) can be expressed in

terms of the automorphism group Aut(X̂Sing(I), L), which was studied in Section 6.

Lemma 16.16. Notation as in Lemma 16.15(2). There is a natural isomorphism of

algebraic groups

Aut(X̂Sing(I), L)
∼=→ Aut(X,φ

Sing(I)
∗ (L)).
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Proof. To simplify the notation, set Y := X̂Sing(I) and φ := φSing(I). From the proof of

Theorem 6.4, it follows that there is an exact sequence

(16.27) 0→ Gγ(Ỹ )
m → Aut(Y, L)

G−→ Aut(X),

where γ(Ỹ ) is the number of connected components of the non-exceptional subcurve

Ỹ ⊆ Y .

The homomorphism G is obtained by composing the forgetful homomorphism F :

Aut(Y,L)→ Aut(Y ) of (6.1) with the homomorphism φ̃ : Aut(Y )→ Aut(X) induced

by the wp-stabilization φ : Y → X. The image of the homomorphism F is equal

to the subgroup Aut(Y )L ⊆ Aut(Y ) consisting of all the elements σ ∈ Aut(Y ) such

that σ∗(L) ∼= L. Moreover, the homomorphism φ̃ induces a surjection φ̃ : Aut(Y )L �

Aut(X)φ∗(L). Therefore, we conclude that

(16.28) Im(G) = Aut(X)φ∗(L).

From the proof of CLAIM 1 in Lemma 16.15(2), it follows that End(I) ∼= ν∗(OỸ ),

where ν : Ỹ → X is the restriction of φ to Ỹ . This implies that

(16.29) Aut(I) ∼= Gγ(Ỹ )
m .

The natural homomorphism Aut(Y,L)
∼=→ Aut(X,φ∗(L)) induces a morphism be-

tween the exact sequence (16.27) and the exact sequence (16.26) for the pair (X,φ∗(L)):

(16.30) 0 // Gγ(Ỹ )
m

��

// Aut(Y, L)
G //

��

Aut(X)I

��

// 0

0 // Aut(φ∗(L)) // Aut(X,φ∗(L)) // Aut(X)I // 0

where we used (16.28) for the exactness of the first sequence at Aut(X)I . The right

vertical homomorphism of diagram (16.30) is the identity, while the left vertical one

is an isomorphism by (16.29); hence also the middle vertical homomorphism is an

isomorphism. �

We will need one last definition, namely the concept of a special elliptic tail with

respect to a torsion-free, rank-1 sheaf, generalizing Definition 6.2.

Definition 16.17. Let X be a quasi-wp-stable curve and let I be a torsion-free, rank-1

sheaf on X. Let F be an irreducible elliptic tail of X and let p denote the intersection

point between F and the complementary subcurve F c. Denote, as usual, by IF the

restriction of I to F modulo the torsion subsheaf. We say that F is special with respect

to I if IF is a line bundle and IF = OF (dF · p), where dF := deg(IF ). Otherwise, we

say that F is non-special with respect to I.

We can now introduce three new categories fibered in groupoids over the category

of schemes parametrizing certain torsion-free, rank-1 sheaves on stable (resp. p-stable,

resp. wp-stable) curves.
142



Definition 16.18. Fix two integers d and g ≥ 2.

(i) Let Sd,g be the category fibered in groupoids over the category of k-schemes

whose sections over a k-scheme S are pairs (f : X → S, I) where f is a family

of stable curves of genus g and I is a coherent sheaf on X , flat over S, such that

its restriction Xs to every geometric fiber Xs := f−1(s) of f is a torsion-free,

rank-1, ωXs-semistable sheaf of degree d. Arrows between such pairs are given by

cartesian diagrams

X

�f
��

h // X ′

f ′

��
S // S′

together with a specified isomorphism I
∼=−→ h∗I ′ of coherent sheaves over X .

(ii) Let Sps
d,g be the category fibered in groupoids over the category of k-schemes

whose sections over a k-scheme S are pairs (f : X → S, I) where f is a family

of p-curves of genus g and I is a coherent sheaf on X , flat over S, such that its

restriction Is to every geometric fiber Xs := f−1(s) of f is a torsion-free, rank-1,

ωXs-semistable sheaf of degree d. Arrows between such pairs are given as in (i)

above.

(iii) Let Swp
d,g be the category fibered in groupoids over the category of k-schemes

whose sections over a k-scheme S are pairs (f : X → S, I) where f is a family of

quasi-wp-stable curves of genus g and I is a coherent sheaf on X , flat over S, such

that its restriction Is to ever geometric fiber Xs := f−1(Xs) of f is torsion-free,

rank-1, ωXs-semistable with the property that Is is locally free at the cusps of

Xs and each elliptic tail of Xs is non-special with respect to Is. Arrows between

such pairs are given as in (i) above.

We can now prove that the stacks Sd,g, S
ps
d,g and Swp

d,g are isomorphic to, respectively,

the stacks J d,g, J
ps
d,g and J wp

d,g; thus, they provide an alternative modular description

of them.

Theorem 16.19. Fix two integers d and g ≥ 2. There are isomorphisms of Artin

stacks 
J d,g

∼=−→ Sd,g

J ps
d,g

∼=−→ Sps
d,g

J wp
d,g

∼=−→ Swp
d,g

obtained by sending (f : X → S,L) ∈ J d,g(S) (resp. J ps
d,g(S), resp. J wp

d,g(S)) into

(wps(f) : wps(X )→ S, φ∗(L)) ∈ Sd,g(S) (resp. Sps
d,g(S), resp. Swp

d,g(S)), where φ : X →
wps(X ) is the morphism between the family f : X → S and its wp-stable reduction

wps(f) : wps(X )→ S (as in Proposition 2.11).

Proof. First of all, the fact that the above defined morphisms of stacks Φ? : J ?d,g −→
S?d,g (for ? = ∅, ps,wp) are well-defined is proved similarly to [Pan96, Sec. 10]: the
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flatness over S of the coherent sheaf φ∗(L) follows from the fact that R1φ∗(Ls) = 0 for

every s ∈ S (by Lemma 16.15(1)) using the flatness criterion of [Pan96, Lemma 10.5.2];

the fact that the geometric fibers φ∗(L)s of φ∗(L) are torsion-free, rank-1 of degree d

and ωwps(X )s .semistable follows from Lemma 16.15(1); moreover the extra-properties of

the geometric fibers of φ∗(L) for elements of Swp
d,g(S) as in Definition 16.18(iii) follows

the analogous extra-properties of the geometric fibers of L for elements of J wp
d,g(S) as

in Definition 16.2(ii).

Now, we have to check that the given natural transformations of categories fibered

in groupoids are equivalences for every scheme S: for simplicity we will verify it for

S = Speck; the general case is dealt with similarly and it will be left to the reader.

The essential surjectivity of the given natural transformation of categories follows from

Lemma 16.15(1); the fully faithfulness follows from Lemma 16.16.

�

Using Theorem 16.19, we can now prove Lemma 16.4.

Proof of Lemma 16.4. For every scheme S (which we can assume to be of finite type

over k) and for every ? = ∅,ps,wp, consider the natural transformation of functors

(16.31)
Λ?S : S?d,g(S) −→ S?−d,g(S)

(f : X → S, I) 7→ (f : X → S, I∨ := RHom(I,DX ⊗ ω−1
f )),

where DX is the dualizing complex of X and ωf is the relative dualizing sheaf of f

(which is a line bundle because the fibers of f are Gorenstein curves).

Let us check that Λ?S is well-defined and an equivalence of groupoids. The coherent

sheaf I is flat over S by assumption and its fibers are Cohen-Macaulay sheaves (because

a torsion-free sheaf on a curve is automatically Cohen-Macaulay). Therefore, standard

results for families of Cohen-Macaulay sheaves (see e.g. [Ari13, Lemma 2.1]) show that

the coherent sheaf I∨ is flat over S and that

(I∨)|f−1(s) = RHom(I|f−1(s), (DX⊗ω−1
f )|f−1(s)) = Hom(I|f−1(s),Of−1(s)) = (I|f−1(s))

∨.

Using this and Lemma 16.20 below, we get that Λ?S is well-defined. Similarly, we have

that (I∨)∨ = I which implies that Λ?S ◦ Λ?S = id, hence Λ?S is an an equivalence of

groupoids.

Therefore, we get that

S?d,g ∼= S
?
−d,g,

which, together with Theorem 16.19, concludes the proof of the Lemma.

�

Lemma 16.20. Let X be a Gorenstein curve and let I be a rank-1, torsion-free sheaf

on X of degree d. Then it holds:

(i) The dual I∨ := Hom(I,OX) of I is a rank-1, torsion-free sheaf on X of degree

−d.

(ii) I is reflexive, i.e. (I∨)∨ = I.
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(iii) If moreover X is wp-stable, then I is ωX-semistable if and only if I∨ is ωX-

semistable.

Proof. Part (ii) follows from [Har94, Prop. 1.6].

Let us now prove (i). Rank-1, torsion-free (or equivalently reflexive by (ii)) sheaves

of degree d on X are in bijection with generalized divisors of degree d on X up to

linear equivalence, see [Har94, Prop. 2.8]. Taking the dual of such a sheaf correspond

to taking the dual of the corresponding linear equivalence class of generalized divisors

by [Har94, Prop. 2.8(d)]. Therefore, I∨ is a rank-1, reflexive (hence torsion-free) sheaf

of degree −d on X.

Part (iii): by (ii), it is enough to prove the only if part. So assume that I is ωX -

semistable and let us show that I∨ is ωX -semistable. From Lemma 16.15(2), it follows

that, setting X̂ := X̃Sing(I) and φ := φSing(I), there exists a properly balanced bundle

L on X̂ such that φ∗(L) = I. The line bundle L−1 is also balanced (although not

necessarily properly balanced!) since, given a proper subcurve Z ⊆ X, we have that∣∣∣∣dZ − d

2g − 2
degZωX

∣∣∣∣ ≤ kZ
2
⇔
∣∣∣∣−dZ − −d

2g − 2
degZωX

∣∣∣∣ ≤ kZ
2
.

Moreover, by the definitions of Hom(−,−) and φ∗ and using that φ∗(L) = I and

φ∗(OX̂) = OX , we have that

φ∗(L
−1) = φ∗Hom(L,O

X̂
) = Hom(φ∗(L), φ∗(OX̂)) = Hom(I,OX) = I∨.

We conclude that I∨ is ωX -semistable by Lemma 16.15(1). �

From Theorem 16.19, using Fact 16.1, Theorem 16.6 and what discussed in §16.3,

we deduce the following corollary.

Corollary 16.21. Let d ∈ Z and g ≥ 2 (resp. g ≥ 3, resp. g ≥ 3).

(i) Sd,g (resp. Sps
d,g, resp. Swp

d,g) is a smooth and irreducible universally closed Artin

stack of finite type over k and of dimension 4g − 4, endowed with a universally

closed morphism Ψs (resp. Ψps, resp. Ψwp) onto the moduli stack of stable (resp.

p-stable, resp. wp-stable) curves Mg (resp. Mp
g , resp. Mwp

g ).

(ii) The projective variety Jd,g (resp. J
ps
d,g, resp. J

wp
d,g) is an adequate moduli space

(and even a good moduli space if char(k) = 0) for Sd,g (resp. Sps
d,g, resp. Swp

d,g).

Another corollary of Theorem 16.19 is a modular description of the fibers of the map

Φps : J
ps
d,g →M

ps
g in terms of canonical compactified Jacobians (see Remark 16.13(ii)),

extending the description of the fibers of the map Φs : Jd,g →Mg given in Fact 16.1(4).

Corollary 16.22. Let g ≥ 3 and d ∈ Z. Assume that char(k) = 0. Then the

fiber (Φps)−1(X) of the morphism Φps : J
ps
d,g → M

ps
g over X ∈ M

p
g is isomorphic

to Jacd(X)/Aut(X).

Proof. The proof is the same as the proof of the analogous result for the morphism

Φs : Jd,g → Mg (see Fact 16.1(4)) using that Jd,g is a good moduli space for Sd,g by

Corollary 16.21(ii); see e.g. [CMKV, Proof of Fact 2.6(3)] for more details. �
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It would be interesting to know if the above Corollary 16.22 is true regardless of

the characteristic of the base field k. This would follow if one could prove that J
ps
d,g

is a good moduli scheme for the stack J ps
d,g (or equivalently for the stack Sps

d,g) also in

positive characteristic.

17. Appendix: Positivity properties of balanced line bundles

The aim of this Appendix is to investigate positivity properties of balanced line

bundles of sufficiently high degree on reduced Gorenstein curves. The results obtained

here are applied in this paper only for quasi-wp-stable curves. However we decided to

present these results in the Gorenstein case for two reasons: firstly, we think that these

results are interesting in their own (in particular we will generalize several results of

[Cap10] and [Mel11, Sec. 5] in the case of nodal curves); secondly, our proof extends

without any modifications to the Gorenstein case.

So, throughout this Appendix, we let X be a connected reduced Gorenstein curve

of genus g ≥ 2 and L be a balanced line bundle on X of degree d, i.e., a line bundle L

of degree d satisfying the basic inequality

(17.1)

∣∣∣∣degZL−
d

2g − 2
degZωX

∣∣∣∣ ≤ kZ
2
,

for any (connected) subcurve Z ⊆ X, where kZ is as usual the length of the scheme-

theoretic intersection of Z with the complementary subcurve Zc := X \ Z and ωX is

the dualizing invertible (since X is Gorenstein) sheaf.

The following definitions are natural generalizations to the Gorenstein case of the

familiar concepts for nodal curves.

Definition 17.1. Let X be a connected reduced Gorenstein curve of genus g ≥ 2. We

say that

(i) X is G-semistable6 if ωX is nef, i.e. degZωX ≥ 0 for any (connected) subcurve

Z. The connected subcurves Z such that degZωX = 0 are called exceptional

subcurves.

(ii) X is G-quasistable if X is G-semistable and every exceptional subcurve Z is

isomorphic to P1.

(iii) X is G-stable if ωX is ample, i.e. degZωX > 0 for any (connected) subcurve Z.

Note that G-semistable (resp. G-stable) curves are called semi-canonically positive

(resp. canonically positive) in [Cat82, Def. 0.1]. The terminology G-stable was intro-

duced in [CCE08, Def. 2.2]. We refer to [Cat82, Sec. 1] for more details on G-stable

and G-semistable curves.

Observe also that quasi-wp-stable, quasi-p-stable and quasi-stable curves are G-

quasistable; similarly wp-stable, p-stable and stable curves are G-stable.

6The letter G stands for Gorenstein to suggest that these notions are the natural generalizations of

the usual notions from nodal to Gorenstein curves.
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Remark 17.2. Given a subcurve 7 i : Z ⊆ X with complementary subcurve Zc,

consider the exact sequence

0→ ωX ⊗ IZc → ωX → (ωX)|Zc → 0,

where IZc is the ideal sheaf of Zc in X. By the definition of the dualizing sheaf ωZ of

Z, it is easy to check that i∗(ωZ) = ωX ⊗ IZc which, by restricting to Z, gives

ωZ = (ωX ⊗ IZc)|Z = (ωX)|Z ⊗ IZ∩Zc/Z ,

where IZ∩Zc/Z is the ideal sheaf of the scheme theoretic intersection Z ∩ Zc seen as a

subscheme of Z. By taking degrees, we get the adjunction formula

(17.2) degZωX = 2gZ − 2 + kZ .

Using the above adjunction formula and recalling that gZ ≥ 0 if Z is connected, it is

easy to see that:

(i) X is G-semistable if and only if for any connected subcurve Z such that gZ = 0

we have that kZ ≥ 2.

(ii) X is G-stable if and only if for any connected subcurve Z such that gZ = 0 we

have that kZ ≥ 3.

Our first result says when a balanced line bundle of sufficiently high degree is nef or

ample.

Proposition 17.3. Let X be a connected reduced Gorenstein curve of genus g ≥ 2 and

let L be a balanced line bundle on X of degree d. The following is true:

(i) If d > 1
2(2g − 2) = g − 1 then L is nef if and only if X is G-semistable and for

every exceptional subcurve Z it holds that degZL = 0 or 1.

(ii) If d > 3
2(2g− 2) = 3(g− 1) then L is ample if and only if X is G-quasistable and

for every exceptional subcurve Z it holds that degZL = 1.

Proof. Let us first prove part (i). Let Z ⊆ X be a connected subcurve of X. If Z = X

then degZL = degL = d > (g − 1) > 0 by assumption. So we can assume that Z ( X.

Notice that, since X is connected, this implies that kZ ≥ 1.

If degZωX = 2gZ − 2 + kZ > 0 then, using the basic inequality (17.1) and the

assumption d > 1
2(2g − 2), we get

degZL ≥ d ·
2gZ − 2 + kZ

2g − 2
− kZ

2
>

2gZ − 2 + kZ
2

− kZ
2
≥

{
0 if gZ ≥ 1,

−1 if gZ = 0,

hence degZL ≥ 0. If gZ = 0 and kZ = 1 then, using the basic inequality and the

assumption on d, we get that

degZL ≤
d

2g − 2
(−1) +

1

2
< 0.

7Note that a subcurve of Gorenstein curve need not to be Gorenstein. For example, the curve X

given by the union of 4 generic lines through the origin in A3
k is Gorenstein, but each subcurve of X

given by the union of three lines is not Gorenstein.
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Therefore, if L is nef then X must be G-semistable. Finally, if Z is any exceptional

subcurve of X, then the basic inequality gives

(17.3) |degZL| ≤ 1,

from which we deduce that if L is nef then degZL = 0 or 1. Conversely, it is also clear

that if X is G-semistable and degZL = 0 or 1 for every exceptional subcurve Z of X

then L is nef.

Let us now prove part (ii). Let Z ⊆ X be a connected subcurve of X. If Z = X

then degZL = degL = d > 3(g−1) > 0 by assumption. So we can assume that Z ( X.

Notice that, since X is connected, this implies that kZ ≥ 1.

If degZωX = 2gZ − 2 + kZ > 0 then, using the basic inequality (17.1) and the

inequality d > 3
2(2g − 2), we get

degZL ≥ d·
2gZ − 2 + kZ

2g − 2
−kZ

2
>

3(2gZ − 2 + kZ)

2
−kZ

2
≥


kZ ≥ 1 if gZ ≥ 1,

2kZ − 6

2
≥ 0 if gZ = 0 and kZ ≥ 3,

hence degZL > 0. From part (i) and equation (17.3), we get that if L is ample then X

is G-semistable and for every exceptional subcurve Z we have that degZL = 1. Note

that every exceptional subcurve Z of X is a chain of P1. Assume that this chain has

length l ≥ 2 and denote by Wi (for i = 1, . . . , l) the irreducible components of Z.

Then each of the Wi’s is an exceptional subcurve of X. Therefore, the same inequality

as before gives that if L is ample then degWi
L = 1. This is a contradiction since

1 = degZL =
∑

i degWi
L = l > 1. Hence Z ∼= P1 and X is G-quasistable. Conversely,

it is clear that if X is G-semistable and degZL = 1 for every exceptional subcurve Z

of X then L is ample.

�

We next investigate when a balanced line bundle on a reduced Gorenstein curve is

non-special, globally generated, very ample or normally generated. To this aim, we

will use the following criteria, due to Catanese-Franciosi [CF96], Catanese-Franciosi-

Hulek-Reid [CFHR99] and Franciosi-Tenni [FT14] (see also [Fra04] and [Fra07]) which

generalize the classical criteria for smooth curves.

Fact 17.4. ([CF96], [CFHR99], [FT14]) Let L be a line bundle on a reduced Gorenstein

curve X. Then the following holds:

(i) If degZL > 2gZ − 2 for all (connected) subcurves Z of X, then L is non-special,

i.e., H1(X,L) = 0.

(ii) If degZL > 2gZ − 1 for all (connected) subcurves Z of X, then L is globally

generated;

(iii) If degZL > 2gZ for all (connected) subcurves Z of X, then L is very ample.

(iv) If degZL > 2gZ for all (connected) subcurves Z of X, then L is normally gener-

ated, i.e. the multiplication maps

ρk : H0(X,L)⊗k → H0(X,Lk)
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are surjective for every k ≥ 2.

Recall that if Z is a subcurve that is a disjoint union of two subcurves Z1 and

Z2 then gZ = gZ1 + gZ2 − 1. From this, it is easily checked that if the numerical

assumptions of (i), (ii), (iii) and (iv) are satisfied for all connected subcurves Z then

they are satisfied for all subcurves Z. With this in mind, part (i) follows from [CF96,

Lemma 2.1]. Note that in loc. cit. this result is only stated for a curve C embedded in

a smooth surface; however, a closer inspection of the proof reveals that the same result

is true for any Gorenstein curve C. Parts (ii) and (iii) follow from [CFHR99, Thm.

1.1]. Part (iv) follows from [FT14, Thm. 4.2], which generalizes the previous results of

Franciosi (see [Fra04, Thm. B] and [Fra07, Thm. 1]) for reduced curves with locally

planar singularities.

Using the above criteria, we can now investigate when balanced line bundles are

non-special, globally generated, very ample or normally generated.

Theorem 17.5. Let L be a balanced line bundle of degree d on a connected reduced

Gorenstein curve X of genus g ≥ 2. Then the following properties hold:

(i) If X is G-semistable and d > 2g − 2 then L is non-special.

(ii) Assume that L is nef. If d > 3
2(2g − 2) = 3(g − 1) then L is globally generated.

(iii) Assume that L is ample. Then:

(a) If d > 5
2(2g − 2) = 5(g − 1) then L is very ample and normally generated.

(b) If d > max{3
2(2g− 2) = 3(g− 1), 2g} and X does not have elliptic tails (i.e.,

connected subcurves Z such that gZ = 1 and kZ = 1) then L is very ample

and normally generated.

Proof. In order to prove part (i), we apply Fact 17.4(i). Let Z ⊆ X be a connected

subcurve. If Z = X then degZL = d > 2g−2 by assumption. Assume now that Z ( X

(hence that kZ ≥ 1). Since X is G-semistable, we have that degZ(ωX) = 2gZ−2+kZ ≥
0. If degZ(ωX) > 0 then the basic inequality (17.1) together with the hypothesis on d

gives that

degZL ≥
d

2g − 2
(2gZ − 2 + kZ)− kZ

2
> 2gZ − 2 +

kZ
2
> 2gZ − 2.

If degZ(ωX) = 0 (which happens if and only if Z is exceptional, i.e., gZ = 0 and

kZ = 2) then the basic inequality gives that

degZL ≥
d

2g − 2
(2gZ − 2 + kZ)− kZ

2
= −1 > −2 = 2gZ − 2.

In order to prove part (ii), we apply Fact 17.4(ii). Let Z ⊆ X be a connected subcurve.

If Z = X then we have that degZL = d > 3(g − 1) ≥ 2g − 1 by the assumption on d.

Assume now that Z ( X (hence that kZ ≥ 1). If gZ = 0 then degZL > −1 = 2gZ − 1

since L is nef. Therefore, we can assume that gZ ≥ 1. By applying the basic inequality

(17.1) and using our assumption on d, we get that

degZL ≥
d

2g − 2
(2gZ−2+kZ)− kZ

2
>

3

2
(2gZ−2+kZ)− kZ

2
= 3(gZ−1)+kZ ≥ 2gZ−1.
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In order to prove parts (iiia) and (iiib), we apply Facts 17.4(iii) and 17.4(iv). Let

Z ⊆ X be a connected subcurve. If Z = X then, in each of the cases (iiia) and (iiib),

we have that degZL = d > 2g by the assumption on d (note that 5(g − 1) > 2g since

g ≥ 2). Assume now that Z ( X (hence that kZ ≥ 1). If gZ = 0 then degZL > 0 = 2gZ

since L is ample. Therefore, we can assume that gZ ≥ 1.

In the first case (iiia), by applying the basic inequality (17.1) and the numerical

assumption on d, we get that

degZL ≥
d

2g − 2
(2gZ −2 +kZ)− kZ

2
>

5

2
(2gZ −2 +kZ)− kZ

2
= 5(gZ −1) + 2kZ ≥ 2gZ .

In the second case (iiib), from the basic inequality (17.1) and the numerical assump-

tion on d, we get that

degZL ≥
d

2g − 2
(2gZ − 2 + kZ)− kZ

2
>

3

2
(2gZ − 2 + kZ)− kZ

2
= 3(gZ − 1) + kZ ≥ 2gZ ,

where in the last inequality we used that gZ , kZ ≥ 1 and (gZ , kZ) 6= (1, 1) because X

does not contain elliptic tails.

�

Remark 17.6. Theorem 17.5(i) recovers [Cap10, Thm. 2.3(i)] in the case of nodal

curves. Theorem 17.5(ii) combined with Proposition 17.3(i) recovers and improves

[Cap10, Thm. 2.3(iii)] in the case of nodal curves. Theorem 17.5(iii) improves [Mel11,

Cor. 5.11] in the case of nodal curves. See also [Bal09], where the author gives some

criteria for the global generation and very ampleness of balanced line bundles on quasi-

stable curves.

The previous results can be applied to study the positivity properties of powers of

the canonical line bundle on a reduced Gorenstein curve, which is clearly a balanced

line bundle.

Corollary 17.7. Let X be a connected reduced Gorenstein curve of genus g ≥ 2. Then

the following holds:

(i) If X is G-semistable then ωiX is non-special and globally generated for all i ≥ 2;

(ii) If X is G-stable then ωiX is very ample for all i ≥ 3;

(iii) If X is G-quasistable then ωiX is normally generated for all i ≥ 3.

Proof. Part (i) follows from Theorem 17.5(i) and Theorem 17.5(ii).

Part (ii) follows from Theorem 17.5(iiia).

Let us now prove part (iii). If X is G-stable, then this follows from Theorem

17.5(iiia). In the general case, since ωiX is globally generated by part (i), it defines

a morphism

q : X → P := P(H0(X,ωiX)∨),

whose image we denote by Y := q(X). Since X is G-quasistable, the degree of ωiX on

a connected subcurve Z of X is zero if and only if Z = E is an exceptional subcurve,

i.e., if E ∼= P1 and kE = 2. The map q will contract such an exceptional subcurve E
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to a node if E meets the complementary subcurve Ec in two distinct points and to a

cusp if E meets Ec in one point with multiplicity two. Moreover, using Fact 17.4(iii),

it is easy to check that ωX is very ample on X \ ∪E, where the union runs over all

exceptional subcurves E of X. We deduce that Y is G-stable. By what proved above,

ωiY is normally generated. Clearly, q∗ωiY = ωiX and moreover, since q has connected

fibers, we have that q∗OX = OY . This implies that H0(X, (ωiX)k) = H0(Y, (ωiY )k)

from which we deduce that ωiX is normally generated. �

Remark 17.8. Part (i) of the above Corollary 17.7 recovers [Cat82, Thm. A and p.

68], while part (ii) recovers [Cat82, Thm B]. Part (iii) was proved for nodal curves in

[Mel11, Cor. 5.9].

A closer inspection of the proof reveals that parts (ii) and (iii) continue to hold for

ω2
X if, moreover, g ≥ 3 and X does not have elliptic tails (see also [Cat82, Thm. C]

and [Fra04, Thm. C]).

Let us end this Appendix by mentioning that it is possible to generalize the above

results in order to prove that a balanced line bundle of sufficiently high degree is k-

very ample in the sense of Beltrametti-Francia-Sommese ([BFS89]). Recall first the

definition of k-very ampleness.

Definition 17.9. Let L be a line bundle on X and let k ≥ 0 be a integer. We say that

L is k-very ample if for any 0-dimensional subscheme S ⊂ X of length at most k + 1

we have that the natural restriction map

H0(X,L)→ H0(S,L|S)

is surjective. In particular 0-very ample is equivalent to being globally generated and

1-very ample is equivalent to being very ample.

The proof of the following Theorem is very similar to the proof of the Theorem 17.5

above, using again [CFHR99, Thm. 1.1], and therefore we omit it.

Theorem 17.10. Let k ≥ 2 and assume that X is G-stable. Then:

(i) If d > 2k+3
2 (2g − 2) = (2k + 3)(g − 1) then L is k-very ample.

(ii) If d > 2k+1
2 (2g− 2) = (2k+ 1)(g− 1) and X does not have elliptic tails then L is

k-very ample.
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