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Abstract

The six and a half hours Facebook outage1 of October 4, 2021 proved to the world that
in the 21st century, life on earth without communication technologies is impossible.
When utilising these technologies, our communications are protected using crypto-
graphic protocols that provide secrecy, integrity, privacy,... Meanwhile, the security
of the widely deployed cryptographic protocols we use today relies on some mathem-
atical problems that are difficult to solve efficiently with our current computers. In
1994, Peter Shor2 designed an algorithm that can solve these hard problems using
a sufficiently large quantum computer. Since then, mathematicians, cryptographers
and engineers have been working hand to hand to come up with new cryptographic
protocols relying on new hard problems that we believe would remain secure in the
presence of a large quantum computer.

Among the new hard problems suggested, isogenies (maps between elliptic curves)
are particularly attracting since they offer very compact protocols (they use less
bandwidth). Meanwhile, they are computationally slow. Also, the field of Isogeny-
Based Cryptography is relatively young since the first isogeny-based cryptographic
protocols appeared only a decade and a half ago. This suggests that more research is
needed in the field: protocol design, cryptanalysis, efficiency improvement, optimized
implementation, ...

This thesis focuses on the design of isogeny-based public key encryption schemes
and key exchange protocols, and on the cryptanalysis of isogeny-based protocols. It
reports five contributions to the field of Isogeny-based Post-Quantum Cryptography.
Three of these contributions are protocol designs, while two of them are cryptanalysis
results.

The first design is SimS (chapter 3): Simplified SiGamal. SimS is an IND-
CCA secure hash function free public key encryption scheme obtained by simplifying
and improving SiGamal and C-SiGamal, two CSIDH based IND-CPA public key
encryption schemes published by Moriya et al. at Asiacrypt 2020. The second design
is SÉTA (chapter 4): Supersingular Encryption from Torsion points Attack, a public
key encryption scheme obtained by transforming the Petit’s torsion points attack into
a trapdoor mechanism. Moreover, we provided a new general isogeny assumption
called the Uber Isogeny Assumption which underlies the security of most isogeny
based protocols. The third design is HealSIDH (chapter 5) Healed SIDH: an SIDH
type interactive key exchange which enables static-static secret keys. HealSIDH is
built on a direct countermeasure to the GPST adaptive attack on SIDH that we

1https://www.facebook.com/business/news/update-about-the-october-4th-outage
2http://www-math.mit.edu/~shor/

https://www.facebook.com/business/news/update-about-the-october-4th-outage
http://www-math.mit.edu/~shor/


introduce. We derive two public key encryption schemes SHealS and HealS from
HealSIDH, they both permit encryption key reuse.

The first cryptanalysis result (chapter 6) is a generalisation of the GPST reduction
of the isogeny problem in SIDH to that of the computation of the endomorphism
ring. In the GPST reduction, the secret isogeny needs to be relatively short. Our
generalisation permits to have the same reduction for SIDH instances with larger
isogeny degrees, BSIDH for instance. The second cryptanalysis result (chapter 7)
is a new adaptive attack on SIDH which uses the Petit’s torsion points attack as
subroutine.
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Chapter 1

Introduction

How would you feel if someone somewhere on earth was able to read all your
emails, all your whatsapp/telegram/signal/... messages; had unlimited access to your
bank account? As far as I am concerned, I would feel very bad.

In fact, all our emails, messages in social apps and our bank transactions are en-
crypted and digitally signed before being sent through the internet to their recipient.
The encryption, which in this case is generally done using a Public Key Encryption
(PKE) algorithm, ensures that only the authorised recipient is able to decrypt the
encrypted messages and learn the hidden information. The digital signature, which is
done using a Digital Signature Algorithm (DSA), ensures that anyone who has access
to the message can effectively verify its integrity and the identity of the sender. This
prohibits intruders to alter or change your messages, or to send messages on your
behalf.

The public key encryption schemes and digital signature algorithms we use today
are built on top of "computationally hard1" mathematical problems: the integer
factorization problem and the discrete logarithm problem. The most famous and
used version of the integer factorization problem is as follows: given a composite
integer n of the form n = p ∗ q with p ≈ q, compute the primes p and q. The discrete
logarithm problem is as follows: given a cyclic group G, a generator g of G and a
random element h in g, compute an integer e such that h = ge in G. These problems
are computationally hard to solve when n is large or the order of the group G is a
large prime.

It happens that a problem being "computationally hard" depends on the "com-
puter model" in play. From their invention till nowadays, our computers treat inform-
ation using classical bits: 0 and 1. They are hence called classical computers. In 1980,
Paul Benioff [Ben80] proposed a quantum mechanical model of the Turing machine,
that is a new computer model where information is treated using quantum bits: linear
combination of a 0 and a 1. They are hence called quantum computers. Few years
later, works of Richard Feynman [Fey82] and Yuri Manin [Man80] suggested that a
quantum computer had the potential to perform simulations which are unfeasible on
a classical computer. In 1994, Peter W. Shor [Sho94] described an algorithm that
efficiently solves the integer factorization problem and the discrete logarithm prob-
lem using a quantum computer. More precisely, a later version of his paper has the
following abstract.

1Problems that today most powerful computer will take many thousands of years to solve. Not
to be confused with impossible problems.
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"A digital computer is generally believed to be an efficient universal computing
device; that is, it is believed able to simulate any physical computing device with an
increase in computation time of at most a polynomial factor. This may not be true
when quantum mechanics is taken into consideration. This paper considers factoring
integers and finding discrete logarithms, two problems which are generally thought to
be hard on a classical computer and have been used as the basis of several proposed
cryptosystems. Efficient randomized algorithms are given for these two problems on a
hypothetical quantum computer. These algorithms take a number of steps polynomial
in the input size, e.g., the number of digits of the integer to be factored." [Sho97]

Shor’s discovery implies that the construction of large scale quantum computers
would make our public key encryption schemes and digital signature algorithms in-
secure. Hence all our emails, private messages, bank account passwords, ... will be
accessible to any malicious party possessing a large enough quantum computer. Con-
siderable progress has been done in the understanding of quantum mechanics and the
design of a quantum computer in the last two decades, hence amplifying the threat
of quantum computers on the cryptographic protocols we use today.

As a response to the threat, cryptographers have been intensively working on new
hard problems and new protocols that are made to work on classical computers, but
will not be vulnerable even in the presence of quantum computers. These protocols
are said to be post-quantum secure.

In December 2016, NIST2 launched a standardization process for post-quantum
secure protocols [Nat]. The aim of this process is to choose new secure post-quantum
algorithms that will replace the ones we use today. We stand today at the third
round of the process. The hard problems underlying the security of the schemes that
are still in the competition come from Lattices, Codes, Multivariate, Isogenies and
properties of hash functions (hashed-based).

1.1—The rise of isogenies

Isogenies are quite young as a candidate for hard problems underlying the security of
cryptographic protocols. Their official3 appearance as computationally hard problem
in cryptography goes back to 2006 with the Charles-Goren-Lauter (CGL) [CLG09]
hash function and the Couveignes-Rostotsev-Stolbunov (CRS) [Cou06; RS06] key
exchange. Since then, isogeny-based cryptography has grown rapidly, even better
after the submission of SIKE (Supersingular Isogeny Key Encapsulation) to the NIST
standardisation process in 2016. SIKE is the only isogeny-based scheme submitted
to the competition and has made it to the third round as an alternate candidate
(candidates that will go through a fourth round before finally being standardised or
eliminated).

Isogeny-based protocols, despite being relatively slow when compared to other
candidates, provide relatively short keys. This makes them particularly interesting
since they can better fit devices with memory constraints. Also, their rich mathemat-
ical structure makes them very promising, for now the only known practically efficient

2National Institute of Standards and Technologies, USA.
3Note that an isogeny-based schemes was suggested by Couveignes [Cou06] in 1997 in a paper that

was rejected at Crypto97. The result was presented at the Séminaire de complexité et cryptographie
at Ecole Normale Supérieure, but the paper was not made public till 2006.
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Post-Quantum alternative to the classic Diffie-Hellman key exchange protocol, that
is CSIDH, is based on isogenies.

Since 2006, there have been an increasing amount of results in the field. Never-
theless, there is lot to be explored in terms of designing new isogeny-based primitives,
cryptanalysing various assumptions and problems introduced. Moreover, theoretical,
software and hardware acceleration of isogeny-based schemes is needed. In fact, being
around only for about one and a half decade, the real potential of isogenies is still to be
determined. On the opposite side, more cryptanalysis is needed in order better eval-
uate the security of isogeny based schemes and discard those of these many schemes
being designed that are insecure. This thesis goes in this direction and focuses on the
design of new isogeny-based public key encryption schemes, and the cryptanalysis of
existing ones.

1.2—Results and outline

This thesis contains three new public key encryption schemes designs: SimS [FP21c],
SETA [Feo+19] and SHealS [FP21b]; and two cryptanalysis results [FKMT21] and
[FP21a]. The remainder of this thesis is organised as follows.

Chapter 2. Chapter 2 surveys some mathematical background relevant for the rest
of the thesis.

Chapter 3. At Asiacrypt 2020, Moriya et al. introduced two new IND-CPA secure
supersingular isogeny based Public Key Encryption (PKE) protocols: SiGamal and
C-SiGamal. Unlike the PKEs canonically derived from SIDH and CSIDH, the new
protocols provide IND-CPA security without the use of hash functions. SiGamal and
C-SiGamal are however not IND-CCA secure. Moriya et al. suggested a variant of
SiGamal that could be IND-CCA secure, but left its study as an open problem.

In Chapter 3, we revisit the protocols introduced by Moriya et al. First, we show
that the SiGamal variant suggested by Moriya et al. for IND-CCA security is, in
fact, not IND-CCA secure. Secondly, we propose a new isogeny-based PKE protocol
named SimS, obtained by simplifying SiGamal. SimS has smaller public keys and
ciphertexts than (C-)SiGamal and it is more efficient. We prove that SimS is IND-
CCA secure under CSIDH security assumptions and one Knowledge of Exponent-
type assumption we introduce. Interestingly, SimS is also much closer to the CSIDH
protocol, facilitating a comparison between SiGamal and CSIDH.

Chapter 4. In Chapter 4, we present Séta,4 a new family of public-key encryp-
tion schemes with post-quantum security based on isogenies of supersingular elliptic
curves. It is constructed from a new family of trapdoor one-way functions, where
the inversion algorithm uses Petit’s so called torsion attacks on SIDH to compute an
isogeny between supersingular elliptic curves given an endomorphism of the starting
curve and images of torsion points. We prove the OW-CPA security of Séta and
present an IND-CCA variant using the post-quantum OAEP transformation. Several
variants for key generation are explored together with their impact on the selection
of parameters, such as the base prime of the scheme. We furthermore formalise an

4To be pronounced [Se:t6] meaning "walk" in Hungarian.
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"uber" isogeny assumption framework which aims to generalize computational iso-
geny problems encountered in schemes including SIDH, CSDIH, OSIDH and ours.
Finally, we carefully select parameters to achieve a balance between security and
run-times and present experimental results from our implementation.

Chapter 5. In 2016, Galbraith et al. presented an adaptive attack on the SIDH key
exchange protocol. In SIKE, one applies a variant of the Fujisaki-Okamoto transform
to force Bob to reveal his encryption key to Alice, which Alice then uses to re-encrypt
Bob’s ciphertext and verify its validity. Therefore, Bob cannot reuse his encryption
keys. There have been two other proposed countermeasures enabling static-static
private keys: k-SIDH and its variant by Jao and Urbanik. These countermeasures
are relatively expensive since they consist in running multiple parallel instances of
SIDH.

In Chapter 5, firstly, we propose a new countermeasure to the GPST adaptive
attack on SIDH. Our countermeasure does not require key disclosure as in SIKE,
nor multiple parallel instances as in k-SIDH. We translate our countermeasure into a
key validation method for SIDH-type schemes. Secondly, we use our key validation
to design HealSIDH, an efficient SIDH-type static-static key interactive exchange
protocol. Thirdly, we derive a PKE scheme SHealS using HealSIDH. SHealS uses
larger primes compared to SIKE, has larger keys and ciphertexts, but only 4 isogenies
are computed in a full execution of the scheme, as opposed to 5 isogenies in SIKE. We
prove that SHealS is IND-CPA secure relying on a new assumption we introduce and
we conjecture its IND-CCA security. We suggest HealS, a variant of SHealS using a
smaller prime, providing smaller keys and ciphertexts.

As a result, HealSIDH is a practically efficient SIDH based (interactive) key ex-
change incorporating a "direct" countermeasure to the GPST adaptive attack.

Chapter 6. It has recently been rigorously proven (and was previously known
relying on certain heuristics) that the general supersingular isogeny problem reduces
to the supersingular endomorphism ring computation problem. However, in order
to attack SIDH-type schemes, one requires a particular isogeny which is usually not
returned by the general reduction. At Asiacrypt 2016, Galbraith et al. presented a
polynomial-time reduction of the problem of finding the secret isogeny in SIDH to
the problem of computing the endomorphism ring of a supersingular elliptic curve.
Their method exploits the fact that secret isogenies in SIDH are short, and thus it
does not extend to other SIDH-type schemes, where this condition is not fulfilled.

In Chapter 6, we present a more general reduction algorithm that generalises
to all SIDH-type schemes. The main idea of our algorithm is to exploit available
torsion point images together with the KLPT algorithm to obtain a linear system
of equations over a certain residue class ring. We show that this system will have
a unique solution that can be lifted to the integers if some mild conditions on the
parameters are satisfied. This lift then yields the secret isogeny. One consequence of
this work is that the choice of the prime p in B-SIDH is tight.

Chapter 7. The SIDH key exchange is the main building block of SIKE, the only
isogeny based scheme involved in the NIST standardization process. In 2016, Gal-
braith et al. presented an adaptive attack on SIDH. In this attack, a malicious party
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manipulates the torsion points in his public key in order to recover an honest party’s
static secret key, when having access to a key exchange oracle. In 2017, Petit designed
a passive attack (which was improved by de Quehen et al. in 2020) that exploits the
torsion point information available in SIDH public key to recover the secret isogeny
when the endomorphism ring of the starting curve is known.

In Chapter 7, firstly, we generalize the torsion point attacks by de Quehen et
al. Secondly, we introduce a new adaptive attack vector on SIDH-type schemes.
Our attack uses the access to a key exchange oracle to recover the action of the secret
isogeny on larger subgroups. This leads to an unbalanced SIDH instance for which the
secret isogeny can be recovered in polynomial time using the generalized torsion point
attacks. Our attack is different from the GPST adaptive attack and constitutes a new
cryptanalytic tool for isogeny based cryptography. This result proves that the torsion
point attacks are relevant to SIDH parameters in an adaptive attack setting. We
suggest attack parameters for some SIDH primes and discuss some countermeasures.

Chapter 8. Here we summarise the thesis and discuss some further work.

1.3—Relevance of the thesis contribution
Being built from a trapdoor one way function, Séta is fundamentally different from
SIDH and CSIDH which are Diffie-Hellman type schemes. This suggests that Séta
may be suitable as building block in some advanced schemes which could not be
constructed using CSIDH or SIDH.

Since 2016, year at which the GPST adaptive attack on SIDH was published,
to the best of our knowledge, all the suggested countermeasures suggested till date
are very costly. Our countermeasure is less costly. It appears to be the first trial
to "directly" counter the attack. In fact, previous attempts are more generic since
they involve key disclosure (in SIKE [Jao+20]), multiple parallel instances (in k-
SIDH [AJL17]) or signing the public key with a slow and large signature (Proof of
Isogeny knowledge [FDGZ21]). We believe our suggested countermeasure has a strong
potential and that after further refinements, it may be used to design isogeny-based
public key encryption schemes that compete with SIKE in terms of efficiency and
key sizes. Such schemes would be amazingly interesting in the sense that as a plus,
they will be compatible with static-static keys. The hence obtained SIDH type key
exchange, as Séta, may also be a suitable building block for advanced schemes.

Our cryptanalysis results foster the understanding of the security of SIDH. Our
reduction presented in Chapter 6 completes the reduction of the isogeny problem
with torsion points (in SIDH type schemes) to the endomorphism ring computation
problem, reduction which was established for SIDH primes by Galbraith-Petit-Shani-
Ti [GPST16]. Our new adaptive attack on SIDH proves that any SIDH-type scheme
becomes vulnerable to Petit’s torsion points attack (and improvements) in an adaptive
setting, regardless of the parameters used in the scheme. Therefore, in a setting where
adaptive security matters, any SIDH type scheme needs to be protected against these
torsion points attacks. This implies that in SIDH type schemes where one does not
use the Fujisaki-Okamoto transform or the public keys are not signed using the Proof
of Isogeny Knowledge presented in [FDGZ21], one needs to set the starting curve
as a random supersingular curve with unknown endomorphism ring. Up to date,
the later can only be done through a trusted setup that will generate the curve and
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forget its endomorphism ring. In fact, generating supersingular curves with unknown
endomorphism ring is a hard problem.



Chapter 2

Preliminaries

This thesis focuses on the design and the cryptanalysis of isogeny-based protocols.
This chapter provides some general background on Public key cryptography, elliptic
curves, isogenies, endomorphism rings of elliptic curves, isogeny graphs, and the cent-
ral problems in isogeny-based cryptography.

2.1—Public key cryptography

In general, for two parties to securely communicate through a public channel (such
as the internet, ...) we expect them to have established some shared secret s which is
used to encrypt and decrypt the messages that are sent through the public channel.
This type of encryption falls into the stream of Symmetric Cryptography (or private
key cryptography). In symmetric cryptography, the keys used to encrypt and decrypt
messages are identical. This implies that the two parties need to agree on the key
before their very first communication. One easy method for agreeing on the secret
key to be used is to set up a meeting, both parties travel to the meeting point, agree
on the key they will use, then each party returns to his residence. But this option
is very costly. One solves this issue using Public Key Cryptography. In public key
cryptography, each party chooses his secret key sk which is always kept secret, and his
public key pk which is made public. This secret key/public key pair can then be later
used to establish shared secrets (to be used in symmetric encryption schemes) through
key exchange protocols, to decrypt received encrypted messages or to encrypt messages
to other parties using their public key through a public key encryption scheme. In
public key cryptography, besides key exchange protocols that are used to establish
shared secrets through an insecure channel and public key encryption schemes that
are used to encrypt messages and hence provide message secrecy, there are digital
signature schemes that are used to provide message integrity and authenticity with
respect to the sender. Key exchange protocols and public key encryption schemes are
relevant for our thesis, we hence provide some general background about them.

2.1.1 –Key exchange protocol. A key exchange protocol is a cryptographic
protocol involving two parties A as Alice and B as Bob, who secretly choose some
uniformly random secret keys skA and skB respectively, then use this secret keys to
compute some public keys pkA and pkB respectively. The public keys are exchanged
through a public channel, then each party does some computation to recover some
secrets sA and sB . More formally, a key exchange protocol is a description of three
probabilistic polynomial time algorithms Setup, Key Generation and Key Exchange such
that
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• Setup takes the security parameter1 λ as input and returns a set pp of public
parameters;

• Key Generation takes the set of public parameters as input and returns the a pair
(sk, pk) where sk is the secret key and pk is the pubic key;

• Key Exchange takes one party’s secret key sk and another party’s public key pk′

and returns a secret value s, say sA for the secret value computed by Alice and
sB for the secret value computed by Bob.

As its name key exchange protocol indicates, at the end of the process, the secret
value computed by both parties using Key Exchange should be the same, that is sA =

sB . In this case we say that the key exchange protocol is correct. This secret value
s = sA = sB is the shared secret (the key that was exchanged).

The very first key exchange protocol was proposed by Diffie and Hellman in
1976 [DH76] and is known today as the Diffie-Hellman key exchange. The Diffie-
Hellman key exchange is one of the most important protocols in public key crypto-
graphy. Its publication marked the beginning of modern cryptography2 era. The idea
of the construction is quite simple. The Diffie-Hellman key exchange is as follows.

Setup: let G be a cyclic (multiplicative) group of prime order q and let g be a generator
of G. The public parameters are G, g and q.
Key Generation: Choose a uniformly random integer a ∈ {0, 1, · · · , q − 1} and compute
ga. The secret key is sk = a and the public key is pk = ga.
Key Exchange: To establish a shared secret with Bob, Alice retrieves Bob’s public key
pkB ∈ G and computes sA = pkskAB . Bob also retrieves Alice’s public key pkA ∈ G and
computes sB = pkskBA . We have sA = pkskAB = gskAskB = pkskBA = sB .

Note that for the Diffie-Hellman scheme to be efficient, the exponentiation in the
group G needs to run in polynomial time in the size of the exponent and of the group
order q. Now let us discuss the hard problems underlying the security of the Diffie-
Hellman key exchange. There are several ways of attacking a key exchange protocol.

Directly recovering one party’s secret key. Here, the adversary tries to re-
cover the secret key of one of the parties from the knowledge of the public parameters
and the public key. In the Diffie-Hellman key exchange, this corresponds to invert-
ing the exponentiation done during the Key Generation. This is in fact the Discrete
Logarithm Problem (DLP) in the group G.

Problem 2.1.1 (DLP). Let G be a cyclic group of prime order q and let g be a
generator of G. Given a uniformly random element h ∈ G, compute x ∈ {0, 1, · · · , q−1}
such that h = gx.

1The security parameter λ of a cryptographic protocol is in general the logarithm of the time (or
work load) needed to break the scheme. For example, to break a cryptographic scheme with security
parameter 128, you are expected to perform at least 2128 mathematical operations.

2Modern cryptography era (from the 1970’s upward) refers to the era where the algorithms used
in cryptographic protocols are public and their security relies on mathematical problem that are ex-
pected to be hard to solve. As opposed to ancient cryptography, where the security of cryptographic
algorithms mostly relied on the secrecy of the algorithms themselves. We refer to [KL07, Chapter
1] for more details.
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Recovering the shared key. Here, the adversary tries to recover the shared
secret key from the knowledge of G, g, pkA = ga and pkB = gb where skA = a and
skB = b. This problem is known as the Computational Diffie-Hellman (CDH) problem.

Problem 2.1.2 (CDH). Let G be a cyclic group of prime order q and let g be a
generator of G. Given uniformly random elements ga, gb ∈ G, compute gab.

Distinguishing the shared secret from a random group element. Depend-
ing on subsequent use of the shared secret, one may not only require that it should be
hard for an adversary to compute the shared key, but also, adversaries should not be
able to distinguish the shared secret from a uniformly random group element. This
problem is known as the Decisional Diffie-Hellman (DDH) problem.

Problem 2.1.3 (DDH). Let G be a cyclic group of prime order q and let g be a
generator of G. Let ga, gb ∈ G be two uniformly random elements. Given an element
z ∈ G, determine whether z = gab or not with probability non negligibly greater that
1/2.

Clearly, if the DDH problem is hard in G, then the CDH problem is hard in G

and, if the CDH problem is hard in G, then the DLP is hard in G. There are several
classical algorithms for solving the discrete logarithm problem in a generic group. The
Baby-step-giant-step algorithm which runs in time O(

√
q) and uses O(

√
q) memory,

the Pollard Rho algorithm which runs in time O(
√
q) and uses constant memory, and

the index calculus algorithm which runs in sub-exponential time O(2
√

log q log log q) to
solve to discrete log problem in Z/qZ (q prime). When the order q of G is smooth3,
the Pohlig-Hellman algorithm [PH78] can be used to compute discrete logarithms in
G is polynomial time. We refer to [KL07] and [Gal12] for more details about the
classical discrete logarithm computation algorithms.

2.1.2 –Public Key Encryption scheme. Rather than first establishing a shared
secret and then using this shared secret as private key in a symmetric encryption
scheme, Alice can directly encrypt messages to Bob using Bob’s public key through a
Public Key Encryption scheme. Bob then uses his secret key to decrypt the ciphertext
and recover the plaintext message. More formally, a public key encryption scheme is
a description of four probabilistic polynomial time algorithms Setup, Key Generation,
Encryption and Decryption such that

• Setup takes the security parameter λ as input and returns a set pp of public
parameters;

• Key Generation takes the set of public parameters as input and returns the a pair
(sk, pk) where sk is the secret key and pk is the pubic key;

• Encryption takes a public key pk and a plaintext m, and returns a ciphertext
c = Encryptionpk(m);

• Decryption takes a ciphertext c and the secret key sk corresponding to the public
key pk used during Encryption, and returns a plaintext m′ = Decryptionsk(c).

3An integer n is said to be smooth if its primes factors are small. More precisely, n is said to be
B-smooth for a given bound B if all the primes divisors of n are smaller than B.
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We say that the public key encryption scheme is correct if for every key pair (sk, pk)

and for every plaintext m in the message space M,

Decryptionsk(Encryptionpk(m)) = m.

The correctness of the public key encryption scheme assures that valid ciphertexts
always decrypt to the original plaintext message. There are many security require-
ments one may want a public key encryption scheme to fulfill, but we will briefly
describe only the ones relevant for our thesis: OW-CPA security, IND-CPA security
and IND-CCA security. Before we get into the security requirements of a public key
encryption scheme, let us first discuss the notion of negligibility.

Definition 2.1.4. A function f : N → R+, λ 7→ f(λ) is negligible (in λ) if for any
polynomial p ∈ Z[X], there exists λ0 ∈ N such that for all λ ≥ λ0 we have f(λ) < 1

p(λ)
.

Definition 2.1.5.

We use the notation negl(λ) to designate the image of a security parameter λ
through a negligible function. Note that from Definition 2.1.4, a function f is non
negligible (in λ) if there exist a polynomial p ∈ Z[X] and λ0 ∈ N such that for all
λ ≥ λ0 we have f(λ) ≥ 1

p(λ)
.

One Wayness under Chosen Plaintext Attacks (OW-CPA). The very first require-
ment that every public key encryption scheme should fulfill is one-wayness: no ad-
versary not having the decryption key (the secret key of the recipient) should be able
to decrypt the ciphertext. In fact, if there was an efficient algorithm that recovers
the plaintext message without requiring the decryption key then the scheme would
not offer secrecy. This security requirement is formalized as follows.

Definition 2.1.6 (OW-CPA secure). A public key encryption scheme Pλ having
security parameter λ is OW-CPA secure if for every probabilistic polynomial time
adversary A,

Pr
[
m = m′

∣∣∣∣∣ (pk, sk)← Key Generation(λ),m
$←−M,

c← Encryptionpk(m),m′ ← A(pk, c)

]
< negl(λ),

where m
$←−M means uniformly sampling m from M.

Indistinguishability under Chosen Plaintext Attacks (IND-CPA). Now let us sup-
pose that a referendum is organised at an institution and each employee has to encrypt
his ballot to the director who then decrypts the ballots and counts the votes. Here,
an adversary who wants to attack the scheme, say a colleague who wants to learn
your vote, does not need to decrypt the encrypted ballot, but to distinguish if it is the
encryption of a "Yes" ballot or that of a "No" ballot. In this context, if encryptions
of "Yes" ballots are distinguishable from those of "No" ballots, then the scheme is
not secure for this purpose, since an adversary will be able to learn the vote of each
participant looking only at his encrypted ballot. So we want them to be indistin-
guishable. This security requirement is known as Indistinguishability under Chosen
Plaintext Attacks: for any plaintext pair (m0,m1), ciphertexts of m0 should not be
distinguishable from those of m1. This is formalized as follows.
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Definition 2.1.7 (IND-CPA secure). A public key encryption scheme Pλ having
security parameter λ is IND-CPA secure if for every probabilistic polynomial time
adversary A,

Pr
[
b = b∗

∣∣∣∣∣ (pk, sk)← Key Generation(λ),m0,m1 ← A(pk,M),

b
$←− {0, 1}, c← Encryptionpk(mb), b

∗ ← A(pk, c)

]
=

1

2
+ negl(λ).

Indistinguishability under Chosen Ciphertext Attacks (IND-CCA). Still consider-
ing the vote described above, suppose now that the colleague willing to learn your
vote is the vice-director and there are some ciphertexts that the director received in
the company and had to discuss the corresponding plaintexts with the vice-director.
Moreover, after the vote, the director will continue to receive these ciphertexts and
share their corresponding plaintexts with the vice-director. Nevertheless, the director
is not authorised to share the plain (decrypted) ballots with the vice-director. For
the votes to be secret, the vice-director should still not be able to distinguish if an
encrypted ballot is the encryption of a "Yes" ballot or that of a "No" ballot. In the
cryptographic context, this translates to the scenario where the adversary has access
to a decryption oracle which he can query with any ciphertext different from the one
he wants to decrypt, then the decryption oracle returns the corresponding plaintext.
We want the ciphertexts to remain indistinguishable when the adversary is provided
this decryption oracle. This is formalized as follows.

Definition 2.1.8 (IND-CCA secure). A public key encryption scheme Pλ having
security parameter λ is IND-CCA secure if for every probabilistic polynomial time
adversary A,

Pr
[
b = b∗

∣∣∣∣∣ (pk, sk)← Key Generation(λ),m0,m1 ← AO(·)(pk,M),

b
$←− {0, 1}, c← Encryptionpk(mb), b

∗ ← AO(·)(pk, c)

]
=

1

2
+ negl(λ),

where O(·) is a decryption oracle that when given a ciphertext c′ 6= c, outputs Decryptionsk(c′)

or ⊥ if the ciphertext c′ is invalid.

One can easily verify that every IND-CCA secure public key encryption scheme
is IND-CPA secure and every IND-CPA secure public key encryption scheme is OW-
CPA secure. There are several generic transforms [FO99; Ham12; BR94] that help
obtain an IND-CCA secure public key encryption scheme from an IND-CPA or OW-
CPA secure public key encryption scheme.

We now describe two famous public key encryption schemes: RSA and El Gamal.

The RSA cryptosystem. The very first public key encryption scheme is the
RSA [RSA78] cryptosystem of Rivest, Shamir and Adleman published two years after
the Diffie-Hellman key exchange paper, in which the ideas of public key encryption
and digital signature were suggested but without any concrete construction. The
RSA cryptosystem construction uses high school modular arithmetic and its security
relies on the hardness of factoring large integers. The RSA cryptosystem is as follows.

Setup: no setup needed.
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Key Generation: Choose two random primes p and q of the same size, set N = p ∗ q.
Choose an integer e > 1 coprime to ϕ(N) where ϕ is the Euler function. Compute
d such that d ∗ e ≡ 1 mod ϕ(N). The secret key is sk = (N, e) and the public key is
pk = (N, d).Encryption: Let m ∈ Z×N (the multiplicative group of the ring ZN , that is
the set of integers between 1 and N − 1 that are coprime to N) be a plaintext. Given
a public key (N, e), compute the ciphertext c = me mod N .
Decryption: Given the secret key (N, d) and a ciphertext c, compute m′ = cd mod N .

The correctness of the RSA cryptosystem follows from Euler’s Theorem

xϕ(N) ≡ 1 mod N for x ∈ Z×N .

Recall that d∗e ≡ 1 mod ϕ(N), hence d∗e = 1+kϕ(N) for some integer k. Let m ∈ Z×N
be a plaintext and let c = me mod N be the corresponding ciphertext. Then

cd ≡ md∗e mod N

≡ m1+kϕ(N) mod N

≡ m ∗ (mϕ(N))k mod N

≡ m mod N.

Factoring the RSA modulus N breaks the RSA encryption. The RSA factorisation
problem is as follows.

Problem 2.1.9 (RSA factorisation problem). Let N = pq be the product of two
generic cryptographic size primes p and q such that p ≈ q. Given N , determine p and
q.

Note that RSA encryption scheme is deterministic. Therefore, one can easily
distinguish if a given ciphertext c is that of m0 or m1: one simply encrypts m0 and
m1 and compares the obtained ciphertext to c. Hence RSA is not IND-CPA secure.
One uses the OAEP transform [BR94] to derive the OAEP-RSA which is IND-CCA
secure.

The El Gamal cryptosystem.. In 1985, Taher El Gamal [ElG85] derived a public
key encryption scheme from the Diffie-Hellman key exchange protocol. This scheme
today bears his name: El Gamal encryption. The El Gamal encryption is designed
as follows.

Setup: let G be a cyclic (multiplicative) group of prime order q and let g be a generator
of G. The public parameters are G, g and q.
Key Generation: choose a uniformly random integer a ∈ {0, 1, · · · , q − 1} and compute
ga. The secret key is sk = a and the public key is pk = ga.
Encryption: Given a plaintext m ∈ G, a public key pk and the public parameters G, g
and q, generate a uniformly random integer b ∈ {0, 1, · · · , q − 1} and compute c1 = gb,
c2 = m ∗ pkb. The ciphertext is c = (c1, c2).
Decryption: Given the secret key a and a ciphertext c = (c1, c2), compute m′ = c2/c

a
1 .

The correctness of the El Gamal public key encryption scheme follows from that of
the Diffie-Hellman key exchange. The IND-CPA security of the El Gamal encryption
relies on the DDH problem in the group G.
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Theorem 2.1.10 ([ElG85; KL07]). If the DDH problem in G is hard, then the El
Gamal public key encryption scheme is IND-CPA secure.

The El Gamal cryptosystem suggests a generic construction of IND-CPA secure
public key encryption schemes: design a Diffie-Hellman type key exchange for which
the DDH type assumption holds, then derive an El Gamal type public key encryp-
tion scheme. This type of construction is widely used in practice. For instance, the
Diffie-Hellman key exchange and the El Gamal encryption scheme were later instan-
tiated with the group of points of elliptic curves (Miller 1985 [Mil85] and Koblitz
1987 [Kob87]) to obtain the Elliptic Curve Diffie-Hellman (ECDH) key exchange and
the Elliptic Curve Encryption Scheme.

Note that the El Gamal encryption is not IND-CCA secure, in fact, ciphertexts
are malleable: given a ciphetext c for some plaintext m, we can efficiently derive a
ciphertext c′ 6= c of some message m′ related to m. When ciphertexts are malleable,
the IND-CCA attack, when given a ciphertext c to decrypt, consists in deriving a
new ciphertext c′ 6= c such that the plaintext m′ corresponding to c′ is related to
the plaintext m correponding to c. One then queries the decryption oracle with c′ to
recover m′ and use the relation between m and m′ to recover m. Sometimes, one may
not be able to totally recover m, but as far as the relation between m and m′ permits
to distinguish m from some other ciphertext m∗, it suffices to break the IND-CCA
security requirement. In the case of the El Gamal encryption, the ciphertexts are
malleable in the following way:

if c = (c1, c2) is a ciphertext for m, then for every α ∈ G, c′ = (c1, αc2) is a
ciphertext for αm.

One uses hash functions and Message Authentication Codes (MAC) to construct
the Diffie-Hellman Integrated Encryption Scheme (DHIES) [BR97] which is IND-CCA
secure.

2.2—Elliptic curves

Elliptic curves play an important role in cryptography: they offer better4 groups
(compared to finite fields and Z/qZ) for the Diffie-Hellman key exchange, for the El
Gamal encryption and El Gamal signature schemes. This contributed to Elliptic
Curve Cryptography being widely deployed from 2005. Moreover, elliptic curves are
the objects on which isogenies, our main interest in this thesis, are built. This section
surveys elliptic curves. We refer to the books of Siverman [Sil09; Sil94] and the
book of Washington [Was08] for more material about elliptic curves. Also, Panny’s
thesis [Pan21] provides a nice introduction to isogeny based cryptography. The Bristol
isogeny-based cryptography school [MP21] provides background on nearly all the
aspects of isogeny-based cryptography.

Definition 2.2.1. Let K be a field. An elliptic curve over K is a pair (E,O) where
E is a smooth projective curve over K of genus one and O is a k-rational point on E,
the base point.

4more secure and more efficient
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The base point O is usually omitted. When the field of definition of the considered
curve is not implicitly defined, we explicitly write E/K to precise that the field of
definition of the curve E is K.

When the characteristic of the field K is not 2 or 3, every elliptic curve defined
over K is isomorphic to a short Weierstrass curve.

Proposition 2.2.2. Let K be a field whose characteristic is not 2 or 3. Every elliptic
curve (E,O) defined over K is isomorphic over K to a short projective Weierstrass
curve defined by an equation

E : Y 2Z = X3 + aXZ2 + bZ3 (2.1)

with a, b ∈ K such that the discriminant ∆ = −16(4a3 + 27b2) is non-zero.

The unique projective point [0:1:0] of E (2.1) having Z = 0 is called the point at
infinity and is denoted by∞ (∞ is in fact the image of O through the above mentioned
isomorphism). The affine part of E is hence defined by the short affine Weierstrass
equation

E : y2 = x3 + ax+ b. (2.2)

From now on, all our curves are defined over fields of characteristic not 2 and 3,
and are defined by a short affine Weierstrass equation. Always keep in mind that these
are in fact projective curves and that there is an implicit point at infinity (somewhere
up there at infinity).

The most relevant invariant of elliptic curves in isogeny-based cryptography is
the j-invariant, it parametrises the isomorphism classes of elliptic curves over the
algebraic closure K of K.

Definition 2.2.3. Let E/K : y2 = x3 + ax+ b be an elliptic curve. The j-invariant of
E, denoted by j(E), is the field element

j(E) = 1728
4a3

4a3 + 27b2
∈ K.

Proposition 2.2.4. Two elliptic curves E/K : y2 = x3 + ax + b and E′/K : y2 =

x3 + a′x+ b′ are isomorphic over K if and only they have the same j-invariant.

Even more, for a given j-invariant j ∈ K, when char(K) 6= 2, 3, the elliptic curve
E(j) defined by

E(j) : y2 = x3 − 3j(j − 11728)x− 2j(j − 1728)2

has j-invariant j.
Even though the curve E is defined over K, the points of E, which are solutions

of the short affine Weierstrass equation (Equation 2.2), have their coordinates in the
algebraic closure K of K. Concretely, the set of points of E is

E(K) = {(x, y) ∈ K ×K | y2 = x3 + ax+ b} ∪ {∞}.

For every field extension K ⊂ L ⊂ K, we say a point (x, y) of E is L-rational when
x, y ∈ L. The set of L-rational points of E is

E(L) = {(x, y) ∈ L× L | y2 = x3 + ax+ b} ∪ {∞}.
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The set of points of every elliptic curve E has a unique (additive) abelian group
structure for which the point at infinity is the neutral element. More interestingly,
this abelian group structure is geometrically defined using the following rule :

"Three points on E sum to ∞ if and only if there exists a line that intersects E
exactly at these points counted with their respective multiplicities".

This rule is highlighted in Figure 2.1. The point at infinity is on every vertical
line.

Figure 2.1: Group law of elliptic curves in the Weierstrass model.

For every field extension K ⊂ L ⊂ K, the set E(L) of L-rational points of E is a
subgroup of E. Naturally, this additive group law comes with a scalar multiplication
of points by integers.

Definition 2.2.5. For any integer n ∈ Z\{0}, let [n] : E → E, P 7→ [n]P be the scalar
multiplication by n on E, defined by adding together n copies of P if 0 < n or −n
copies of −P if n < 0. The scalar multiplication by n is a group endomorphism of E
and its kernel, denoted by E[n], is called the n-torsion subgroup of E.

The group structure of E[n] is given by the following proposition.

Proposition 2.2.6. Let E/K be an elliptic curve and n a non-zero integer.
• If char(K) = 0, then E[n] ∼= Z/nZ⊕ Z/nZ.
• If char(K) = p > 0, write n = m · pr where m and p are coprime. Then

E[n] ∼= Z/mZ⊕ Z/nZ or E[n] ∼= Z/mZ⊕ Z/mZ.

In particular, either E[p] ∼= Z/pZ or E[p] ∼= {0}, and if p - n then E[n] ' Z/nZ⊕
Z/nZ.

From Proposition 2.2.6, it follows that when the characteristic p of the field K is
non-zero, we can regroup elliptic curves defined over K into two sets: those for which
the p−torsion is the trivial group and those for which it is isomorphic to Z/pZ.
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Definition 2.2.7. Le K be a field of characteristic p > 0 and let E be an elliptic curve
defined over K. If E[p] ∼= Z/pZ, we say that E is ordinary. If not, then E[p] ∼= {0}
and we say that E is supersingular.

There are many fundamental differences between ordinary curves and supersingu-
lar curves. They range from the number of rational points to the endomorphism ring
structure passing through the field of definition of the curves and that of the rational
maps between them.

The number of points a an elliptic curve defined over a finite field Fq is bounded
by the Hasse bound.

Theorem 2.2.8 (Hasse Theorem). Let E/Fq be an elliptic curve, then

#E(Fq) = q + 1− t with |t| ≤ 2
√
q.

Given E/Fq the integer t, called the trace of the curve, can be computed in poly-
nomial time using Schoof’s Algorithm [Sch85]. Supersingular curves can be distin-
guished from ordinary ones by their trace.

Theorem 2.2.9 ([Was08, Proposition 4.31]). Let E/Fq (q = pn) be an elliptic curve
such that #E(Fq) = q+ 1− t. Then E is supersingular if and only t ≡ 0 mod p, which
is if and only if #E(Fq) ≡ 1 mod p.

Corollary 2.2.10. Let E/Fp where p > 3 is a prime be an elliptic curve. Then E is
supersingular if and only t ≡ 0 mod p, which is if and only if #E(Fp) = p+ 1.

Note that supersingular curves are defined only in fields of positive characteristic.
Moreover, there exists a finite number of supersingular curves given a fixed character-
istic p, and these curves are all isomomorphic to curves defined over Fp2 . Concretely,
we have the following theorem.

Theorem 2.2.11. Let E be a supersingular curve defined over a field of characteristic
p > 0. Then j(E) ∈ Fp2 . In particular, E is isomorphic to a curve defined over Fp2 .

In characteristic p, there are exactly b p12c + ε supersingular j-invariants (or iso-
morphism classes of supersingular curves), where ε ∈ {0, 1, 2}. Moreover, for all but
at most six supersingular elliptic curves E defined over Fp2 , we have

#E(Fp2) = (p+ δ)2 and E(Fp2) ∼= (Z/(p+ δ)Z)⊕ (Z/(p+ δ)Z)

where δ = ±1.

Beside the Weierstrass model, there are several other models of elliptic curves.
The most used ones are the Montgomery model and the Edwards model. Each model
has its advantages depending on the use. Montgomery curves have nice and effi-
cient x-coordinate only addition formulas, and come with the famous Montgomery
ladder [Mon87] for scalar multiplication. Edwards curves have similar advantages
over Weierstrass curve, moreover, their addition formulas are complete5. We refer to
[BL11] for further details about Edwards curves and their addition formulas. In this
thesis, we only use Montgomery curves.

5The same formula is used for point addition and point doubling.
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Definition 2.2.12. Let K be a field of characteristic not 2. A Montgomery curve
over K is a projective curve defined by the affine equation

By2 = x3 +Ax2 + x

where A,B ∈ K and B(A2 − 4) 6= 0. When B = 1 (as it will be the case in this
thesis), A is called the Montgomery coefficient of the curve. The j−invariant of the
Montgomery curve E : By2 = x3 +Ax2 + x is given by

j(E) =
256(A2 − 3)3

A2 − 4
.

As we will see in Section 2.3, they offer particularly efficient formulas for isogenies
of degree 2 and 3.

2.3— Isogenies
Now we describe the central object used in this thesis: isogenies of elliptic curves.

Definition 2.3.1. An isogeny between two elliptic curves E/K and E′/K is a non
constant rational map

φ : E → E′

which is also a group homomorphism. An isogeny is defined over K if it can be written
using fractions of polynomials with coefficients in K. Two curves E and E′ are said
to be isogenous when there exists an isogeny φ : E → E′.

Let HomK(E,E′) denote the set of all isogenies E → E′ defined over K, together
with the constant morphism 0 : E → E′, P 7→ ∞. For isogenies defined over K,
we write Hom(E,E′) = HomK(E,E′). Hom(E,E′) has an abelian group structure
inherited from the group structure of E′: (φ+ ψ)(P ) = φ(P ) + ψ(P ).

The scalar multiplications are examples of isogenies. When the curve E is defined
over a finite field Fq (q = pn), the Frobenius endomorphism of E, denoted π and given
by

π : E → E, (x, y) 7→ (xq, yq),

is an isogeny. Also, the pth-Frobenius defined by

πp : E → Ep, (x, y) 7→ (xp, yp)

is an isogeny from E : y2 = x3 + ax+ b to Ep : y2 = x3 + apx+ bp. Note that πp
is an endomorphism if and only if E is defined over Fp.

Proposition 2.3.2. Let φ : E → E′ be an isogeny defined over K. Then there exist
two rational functions r1, r2 such that

φ(x, y) = (r1(x), y · r2(x)) .

Write r1(x) = f(x)/g(x), then the integer

deg(φ) = max{deg(f), deg(g)}

is called the degree of φ.
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The rational functions r1 and r2 have the same poles and these poles are the
x-coordinates of the kernel points of φ. We have

kerφ = {(x, y) ∈ E | g(x) = 0} ∪ {∞}.

As a consequence, isogenies have finite kernels.

Definition 2.3.3. Let φ : E → E′ be an isogeny. If

deg(φ) = # ker(φ),

we say that φ is separable. If not, then E and E′ are defined over a finite field Fq,
φ = φ1 ◦ πrp where φ1 is separable and deg(φ) = pr deg(φ1). In the latter case, we
say that φ is inseparable. When φ = πrp for some integer r, we say that φ is purely
inseparable.

Being isogenous is an equivalence relation and the degree is multiplicative:
deg(φ ◦ ψ) = deg(φ) deg(ψ).

Proposition 2.3.4. Let φ : E → E′ be an isogeny. Then there exists an isogeny
φ̂ : E′ → E such that φ ◦ φ̂ = [deg(φ)]E′ and φ̂ ◦ φ = [deg(φ)]E. The isogeny φ̂ is called
the dual of φ. Moreover, we have the following rules:

• ̂̂
φ = φ;

• φ̂+ ψ = φ̂+ ψ̂ for φ 6= −ψ;

• φ̂ ◦ ψ = ψ̂ ◦ φ̂;

• ker φ̂ = φ(E[deg(φ)]).

Determining whether two given curves E and E′ are isogenous over K is quite easy
and efficient: one computes #E(K) and #E′(K) using Schoof’s algorithm, then by
Tate’s Theorem (Theorem 2.3.5) one checks whether #E(K) = #E′(K). Meanwhile,
computing an isogeny between isogenous curves is not easy at all, it is believed that
even quantum computers can’t help here. Nevertheless, when the kernel of a separable
isogeny is provided, then this kernel defines the separable isogeny up to isomorphism.
If the size of the kernel is smooth, then the isogeny can be effectively computed in
polynomial time using Vélu’s formula [Vél71].

Theorem 2.3.5 (Tate). Let K be a finite field. Two curves E/K and E′/K are
isogenous over K if and only if #E(K) = #E′(K).

Proposition 2.3.6. Let E be an elliptic curve defined over K and let G be a finite
subgroup of E defined6 over K. Then there exist an elliptic curve E′ and a separable
isogeny φG : E → E′, both defined over K, such that ker(φG) = G. The pair (E′, φG)

is unique up K-isomorphism of E′. The curve E′ is denoted by E/G.

6G is defined over K means that for every automorphism σ of K fixing K (σ(x) = x for all
x ∈ K), we have σ(G) = G.
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Theorem 2.3.7 (Vélu [Vél71]). Let E : y2 = x3 + ax+ b be a Weierstrass curve over
a field K and let G be a finite subgroup of E. For any point P ∈ E, define

fx(P ) = x(P ) +
∑

Q∈G\{∞}
(x(P +Q)− x(Q))

and
fy(P ) = y(P ) +

∑
Q∈G\{∞}

(y(P +Q)− y(Q)) .

Then the map
φ : E → E/G P 7→ (fx(P ), fy(P )),

where poles of fx and fy get mapped to the point at infinity, is a separable isogeny
with kernel G. The codomain is a Weierstrass curve whose equation can be efficiently
recovered.

Vélu’s formulas can be translated to any other curve model. For example, let
E : By2 = x3 + Ax2 + x be a Montgomery curve, let P2 = (x2, 0) ∈ E and P3 =

(x3, y3) ∈ E be points of order 2 and 3 respectively, with x2 6= 0. Then the groups
G2 = 〈P2〉 and G3 = 〈P3〉 define respectively two separable degree 2 and degree 3

isogenies φ2 : E → E2 = E/G2 and φ3 : E → E3 = E/G3 where:

φ2(x, y) =

(
x
xx2 − 1

x− x2
, y
x2x2 − 2xx2

2 + x2

(x− x2)2

)
,

E2 : (Bx2)y2 = x3 +
(

2(1− x2
2)
)
x2 + x

and

φ3(x, y) =

(
x

(xx3 − 1)2

(x− x3)2
, y

(xx3 − 1)(x2x3 − 3xx2
3 + x+ x3)

(x− x3)3

)
E2 : (Bx2

3)y2 = x3 +
(
x3(Ax3 − 6x2

3 + 6)
)
x2 + x.

Vélu formulas have complexity O(deg(φ)). Recently, Bernstein et al. [BDLS20] de-
signed an algorithm, denoted

√
élu (square root Vélu), whose asymptotic complexity

is O(
√

deg(φ)). Note that for small primes ` < 110, the Vélu formulas outperform the√
élu algorithm in terms of efficiency [BDLS20, Appendix A.3]. Hence when design-

ing cryptographic isogeny-based protocols, the Vélu formulas are used for those small
primes while the

√
élu algorithm is used for larger primes. Both are not efficient for

computing separable isogenies of generic large degree. Nevertheless, when the degree
is smooth, the isogeny can be computed as a composition of isogenies of small degree.

Proposition 2.3.8. Let E be an elliptic curve and let G be a finite subgroup of E.
For any subgroup G′ of G, the isogeny φ : E → E/G can be decomposed as

φ : E
ϕ1−−→ E/G′

ϕ2−−→ E/G

where ker(ϕ1) = G′ and ker(ϕ2) = ϕ1(G).
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Proposition 2.3.8 suggests that to compute an isogeny φ of degree
∏r
i=1 `

ei
i , we

can decompose φ as

φ = ϕ11 ◦ · · · ◦ ϕ1e1 ◦ · · · ◦ ϕr1 ◦ · · · ◦ ϕrer

where ϕij has degree `i for 1 ≤ i ≤ r and 1 ≤ j ≤ ei. Hence the cost of computing φ
boils down to that of computing ei isogenies of degree `i for 1 ≤ i ≤ r. This enables
us to efficiently compute isogenies of smooth degree with given kernel.

2.4—Endomorphism rings and isogeny graphs
Definition 2.4.1. The endomorphism ring of an elliptic curve E, denoted by End(E),
is the ring End(E) = Hom(E,E), whose elements are isogenies from E to E, to which
one adds the constant map 0 : E → E,P →∞.

There are only three possibilities for the structure of the endomorphism ring of
an elliptic curve.

Proposition 2.4.2 ([Was08, Theorem 3.2]). Let E be an elliptic curve defined over
a field K.

• If char(K) = 0, then either End(E) = Z or End(E) is isomorphic to an order in
a quadratic imaginary field.

• If char(K) = p and K = Fq, then End(E) is isomorphic either to an order in
a quadratic imaginary field7 or to a maximal order in the quaternion algebra8

ramified at p and at infinity.

In positive characteristic, the structure of the endomorphism ring is directly re-
lated to the type (ordinary or supersingular) of the curve.

Proposition 2.4.3. Let E be an elliptic curve defined over a finite field Fq. Then
the endomorphism ring of E is an order in a quadratic imaginary field if and only if
E is an ordinary curve.

Proposition 2.4.4. Let θ ∈ End(E) be an endomorphism of an elliptic curve E and
let θ be its conjugate in the corresponding quadratic field or quaternion algebra. Its
norm N(θ) = θθ ∈ Z and its trace tr(θ) = θ + θ ∈ Z are such that

θ2 − tr(θ)θ +N(θ) = 0.

The degree of the actual isogeny φθ corresponding to θ is in fact deg(φθ) = N(θ)

and its dual φ̂θ corresponds to the conjugate θ of θ.
From now on, unless when stated otherwise, the elliptic curves considered are

defined over a finite field Fq with q = pn.
Let E/Fq be an elliptic curve. Then the Frobenius endomorphism π of E is an

endomorphism of E and Z[π] ⊂ End(E). Moreover, N(π) = q and tr(π) = t where
#E(Fq) = q + 1 − t, and the characteristic equation of π is X2 − tX + q = 0. When
π /∈ Z, we get that Z[π] is isomorphic to Z[

√
t2 − 4q], which is an order in the quadratic

7We refer to the book of David Cox [Cox14] for background on quadratic fields.
8We refer to the book of John Voight [Voi18] for background on quaternion algebras.
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imaginary field Q(
√
t2 − 4q). In this case, the knowledge of t (equivalently #E(Fq))

gives rise to a non trivial quadratic suborder of End(E). When π ∈ Z (as it will be
the case for supersingular curves over Fp2), the knowledge of t does not come with
any further information than the cardinality of the curve. This constitutes a huge
difference between ordinary curves (where π /∈ Z) and supersingular curves over9 Fp2
(where π ∈ Z). This difference is visible at the level of the ordinary isogeny graph
and the supersingular isogeny graph.

We recall that the curves are defined over finite fields Fq of characteristic p > 0

and that only separable isogenies are considered.

Definition 2.4.5. Let ` 6= p be a (small) prime. The `-isogeny graph G`(Fq) is the
undirected graph with vertex set Fq (seen as the set of j-invariants) and edges (j1, j2)

correspond to `−isogenies (up to isomorphism) defined over Fq between the curves
E(j1) and E(j2).

From the Tate Theorem (Theorem 2.3.5), we know that two isogenous curves
have the same trace of Frobenius. By Theorem 2.2.9, we see that ordinary traces are
distinct from supersingular traces. Hence an ordinary curve cannot be isogenous to
a supersingular curve. This implies that the isogeny graph has ordinary components
and supersingular components.

Ordinary graphs. Recall that ordinary curves have complex multiplication. Even
though we restricted ourselves to curves defined over finite fields, most of the facts
and results presented here in the ordinary case are valid for curve defined over positive
characteristic fields. We refer to [Cox14] for prerequisites on orders in quadratic fields.

Definition 2.4.6. An `−volcano is a connected undirected graph whose vertices are
partitioned into one or more levels V0, · · · , Vd such that the following hold:

1. The subgraph on V0 is a regular graph of degree at most 2.

2. For i > 0, each vertex in Vi has exactly one neighbor in level Vi−1.

3. For i < d, each vertex in Vi has degree `+1 and exactly ` neighbors in level Vi+1.

The levels V0 and Vd are called the surface (or crater) and the floor of the volcano
respectively. The integer d is called the depth of the volcano.

The ordinary subgraph of the `−isogeny graph, or simply the ordinary `−isogeny
graph has many connected components that have the same `-volcano structure. They
are called Isogeny volcanoes. Lets us briefly describe theses `−isogeny volcanoes.

Theorem 2.4.7 ([Sut17, Lecture 23, Thm 23.3]). Let φ : E/Fq → E′/Fq be an `-
isogeny defined over Fq between two ordinary curves and set End(E) = O, End(E′) =

O′. Then O and O′ are orders in the same imaginary quadratic field Q(
√
t2 − 4q)

(where #E(Fq) = #E′(Fq) = q + 1− t) and one of the following holds:
(i) O = O′, we say φ is horizontal;

9Note that the field of definition of the supersingular curve is important here. In fact, as precised
in Chapter 3, when a supersingular curve E is defined over Fp instead, π = πp /∈ Z and Z[π] is non
trivial.
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(ii) [O : O′] = `, we say φ is descending;
(iii) [O′ : O] = `, we say φ is ascending.

In general, the existence of horizontal, descending and ascending `−isogenies with
domain E depends on the fields of definition Fq of the curve E, End(E) and `.

Set t coprime to p such that t ≤ 2
√
q. For any order O in Q(

√
t2 − q), let Ellq(O)

be the set of isomorphism classes of ordinary curves E/Fq such that End(E) = O.

Proposition 2.4.8. Let O be an order of discriminant ∆ with ∆ coprime to q. The
set Ellq(O) is either empty or has cardinality10 h(∆). If Ellq(O) is non empty, then
EllO′(Fq) is non empty for every imaginary quadratic order O′ containing O.

Let Omax be the maximal order of Q(
√
t2 − q) and ∆max its discriminant. Fix an

order O in Q(
√
t2 − q) of discriminant ∆. Then O ⊂ Omax, [Omax : O] = f such that

∆ = f2∆max and O = Z + fOmax. The integer f is called the conductor of O.
Let E/Fq be an ordinary curve such that End(E) = O has conductor f and the

trace of Frobenius of E is t. Let fπ be the conductor of Z[π]. Then its discriminant
∆π satisfies ∆π = t2 − 4q = f2

π∆max. Write fπ = `df0 where ` and f0 are coprime. Set
O0 = Z + f0Omax, then [O0 : Z[π]] = `d and O0 has conductor f0. We have f = `ef0

for some 0 ≤ e ≤ d, and [O0 : O] = `e, [O : Z[π]] = `d−e. Then the component of the
ordinary supersingular `−isogeny graph containing E is structured as follows.

• If O = O0, equivalently e = 0, the curve E admits 1 +
(

∆0
`

)
(where

( ·
·
)
is the

Legendre symbol) horizontal `-isogenies, no ascending `−isogeny, and `−
(

∆0
`

)
descending `−isogenies if 0 < d.

• If 1 < d and 0 < e < d, then the curve E admits no horizontal `-isogeny, one
ascending `−isogeny, and ` descending `−isogenies.

• If e = d and 0 < d, then the curve E admits no horizontal `-isogeny, one ascending
`−isogeny, and no descending `−isogeny.

Looking back at Definition 2.4.6, one notices that these components are `−volcanoes
where the vertices in the level Vi of the volcano are the curves E for which e = i. Fig-
ure 2.2 illustrates the volcano structure of the ordinary components.

Figure 2.2: Example of 3-volcano on the left, and a component of depth 2 of the ordinary 3-isogeny
graph on the right. Images taken from [Sut17].

10h(∆) or h(O) is the class number of O.
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Figure 2.3: Example of isogeny star where three different isogeny degrees are used: 3, 5, 7. Beautiful
image taken from [Pan21].

We refer to Kohel’s thesis [Koh96] or [Sut13; Sut17] for more details about endo-
morphism rings of ordinary elliptic curves and ordinary graphs. Now let us have a
closer look at each level of the volcano.

All the curves in the same level Ve (with 0 ≤ e ≤ d) of the ordinary `−isogeny graph
have the same endomorphism ring Oe = Z + `eO0. Consider a different prime `′ 6= `

such that `′ - fπ and the discriminant ∆e of Oe satisfies
(

∆e
`′

)
= 1 (equivalently we

have
(

∆π
`′

)
= 1). In this case, each curve in Ve admits two horizontal `′−isogenies and

0 vertical `′−isogeny. That is at each level Ve, we have a cycle, a depth 0 `′−volcano.
Taking many different such primes `′, we get more edges creating shortcuts in the
cycle. These graphs were named isogeny stars by Rostovtsev and Stolbunov [RS06].
For sufficiently large values of q, an isogeny star is expander11 when all such primes
below (log 4q)2 are used [JMV09]. Figure 2.3 illustrates an example of isogeny star.

The beautiful structure of isogeny stars (as opposed to the messiness of super-
singular graphs, more details in the following paragraphs) does not fall from heaven.
In fact there is a class group action in the background from which the horizontal
isogenies arise.

Class group action. Let O be an order in some quadratic imaginary field Q(
√

∆)

(∆ = t2 − 4q < 0). Recall that Ellq(O) was the set of isomorphism classes of ordinary
curves E/Fq such that End(E) = O. A fractional ideal of O is an O−submodule
a ⊂ Q(

√
∆) such that there exists d ∈ O\{0}, da ⊂ O. A fractional ideal a of O

is integral if a ⊂ O. A fractional ideal a of O is invertible if there exists another
fractional ideal b of O such that ab = O. The inverse a−1 of an invertible fractional

11Expander graphs are strongly connected graphs: any small subset of vertices have a large
boundary.
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ideal a of O is a−1 = 1
N(a)

a where

· : Q(
√

∆)→ Q(
√

∆), a+ b
√

∆ 7→ a+ b
√

∆ = a− b
√

∆

is the usual involution in Q(
√

∆), and N(a) is the norm of the ideal a. The set I(O)

of invertible ideals of O forms an abelian group under ideal multiplication. The ideal
class group of O, denoted by cl(O), is the quotient of the group of invertible ideals of
O modulo the subgroup P (O) of principal fractional ideals of O:

cl(O) = I(O)/P (O).

Fractional ideals define finite subgroups of curves in Ellq(O), which in turn define
separable isogenies.

Proposition 2.4.9. Let E be an elliptic curve in Ellq(O) and let a be an invertible
integral ideal of O generated by α1, α2 ∈ a. Then a defines a finite subgroup of E
denoted E[a] and given by

E[a] =
⋂
α∈a

ker(α) = ker(α1) ∩ ker(α2).

Factor the ideal a as (πpO)ras where as * πpO. Then #E[a] = #E[as] = N(as).

As a finite subgroup of E, E[a] defines a separable isogeny

φa : E → aE := E/E[a].

Ideal multiplication corresponds to composition of isogenies. The principal ideals
correspond to endomorphisms. Hence for two equivalent12 ideals a and b, we have
aE = bE. Therefore, denoting by [a] the ideal class of an invertible ideal a of O, the
curve [a]E := bE where b ∈ [a] is well defined. We obtain an action of the class group
cl(O) of O on Ellq(O).

Theorem 2.4.10. Let O be an order in Q(
√
t2 − 4q) such that Ellq(O) is not empty.

Then the ideal class group cl(O) acts freely on Ellq(O) via the map

cl(O)× Ellq(O) → Ellq(O)

([a], E) 7→ [a]E.

Whenever p is inert in O, there are two orbits of cardinality h(O) each. Otherwise,
the action is transitive and the unique orbit has cardinality h(O).

As we will briefly discuss in the following paragraph, a similar class group action
can also be constructed in the supersingular case [Cas+18; CK20] when an embedding
of O into the endomorphism ring of some supersingular curve E is provided. For
ordinary curves, this class group action is always transitive. In fact, since t and p are
coprime, then (

∆O
p

)
=

(
∆π

p

)
=

(
t2 − 4q

p

)
= 1,

12That is a and b have the same class [a] = [b], equivalently the ideal ab−1 is principal.
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so p splits in O.
In cl(O), each ideal class has integral ideal representative a of norm `e11 `e22 · · · `

em
m

where the primes `i with 1 ≤ i ≤ m split in O, this is equivalent to
(

∆O
`i

)
= 1. For

1 ≤ i ≤ m, fix a root ai of X2 − tX + q = 0 mod `i and let bi be the other root. Write
`iO = lili where li is the prime ideal above `i generated by (`i, π− ai) and of norm `i.
Then for each elliptic curve E ∈ Ellq(O), the two horizontal `i−isogenies of domain E
correspond in fact to the actions of [`i] and [`i] = [`i]

−1 on E. Their kernels are given
by

ker(φ[li]) = E[`i] ∩ ker(π − ai) ker(φ[li]−1) = E[`i] ∩ ker(π − bi).

In the class group cl(O), the integral ideal [a] factors as [a] = [l1]e1 · · · [lm]em . Hence
the action of the ideal class [a] can be evaluated by consecutively evaluating for each
1 ≤ i ≤ m, |ei| times the action of the ideal classes [li] or [li]

−1 depending on the sign
of ei. This class group action evaluation is efficient as far as the primes `i are small
enough. Chapter 3 provides further details about the computation of the class group
action.

Supersingular graph. The supersingular `−isogeny graph is less structured com-
pared to the ordinary `−isogeny graph. Recall that in characteristic p > 3, there are
about p

12 isomorphism classes of supersingular curves and each class has a repres-
entative E defined over Fp2 . More surprisingly, all supersingular isogenies between
supersingular curves defined over Fp2 are defined over Fp2 . This implies that supersin-
gular isogeny graph over Fp2 is equivalent13 to the full supersingular isogeny graph,
that is the supersingular isogeny graph over Fp.

There are in fact 5 possible traces for supersingular curves defined over Fp2 : t = 0,
t = ±p and t = ±2p. Meanwhile, the number of isomorphism classes of supersingular
elliptic curves effectively having trace t = 0 or t = ±p is at most 6 depending on
the congruence class of p modulo 12 [Sch87; AAM19]. Those components14 are less
interesting as far as cryptography is concerned. The remaining curves E have trace
t = 2p, in which case #E(Fp2) = (p − 1)2, or t = −2p, in which case #E(Fp2) =

(p + 1)2. They correspond to two identical components (in terms of structure) and
are isomorphic to the full isogeny graph. Therefore, to study the full supersingular
`−isogeny graph, one can restrict to the supersingular component whose vertices have
trace t = −2p (or t = 2p). In general, this component is what is usually referred to
when using the terms supersingular `−isogeny graph.

The supersingular `−isogeny graph is connected, `+ 1 regular, and is an expander
graph [Piz90]. As a consequence, given any two supersingular j−invariants j1 and j2,
there exists a relatively short `-power degree isogeny φ : E(j1) → E(j2). The super-
singular `−isogeny graph looks very messy and unstructured. Figure 2.4 illustrates
the supersingular 2−isogeny graph over the field F25212 .

Even though the supersingular `−isogeny graph looks highly unstructured, one can
still manage to attach some structure to it. In the ordinary case, the Frobenius endo-
morphism of an ordinary curve E readily provides a non trivial suborder Z[

√
t2 − 4q]

of End(E). Ordering the orders above Z[
√
t2 − 4q], we get the volcano structure on

13Up to neglecting some few (at most 6) isolated vertices.
14They merge with the larger components when considering the graph over an extension of Fp2

of degree 24 (at most).
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Figure 2.4: Supersingular 2−isogeny graph over F25212 . This image give an idea on how unstructured
the supersingular graph is. Image taken from [Lau17].

curves whose endomorphism contains a copy of Z[
√
t2 − 4q]. This same insight could

be used to attach some volcanic structure to the supersingular isogeny graph. All one
needs to do is to pick a supersingular curve E0 together with an imaginary quadratic
order O such that End(E0) contains a copy of O. With respect to O, one defines ho-
rizontal, descending and ascending supersingular `−isogenies. One therefore obtains
a volcano structure where nodes are supersingular elliptic curves E such that End(E)

contains a copy of O.

Delfs-Galbraith [DG16] noticed that for supersingular curves defined over Fp,
Z[
√
−p] ⊂ End(E), therefore the components of the Fp supersingular isogeny graph

are volcanoes. The depth of these volcanoes is at most 2. Meanwhile, if one goes up
to Fp2 , the depth becomes infinite. In fact, the set of supersingular curves E for which
End(E) contains a copy of the suborder Z + `rO (0 < r) of some imaginary quadratic
order O is always non empty. This means that in reality, over Fp2 , we obtain a sort
of infinite volcano where j−invariants reappear as we descend. At each level of this
infinite volcano, as in the ordinary case, there is a class group action operating on the
curves. Nevertheless, in order to evaluate the class group action at a given supersin-
gular curve E in the level r, the embedding of Z+`rO into End(E) needs to be known.
Determining this embedding is not efficient in general. Coló-Kohel [CK20] introduce
this class group action on supersingular graphs and name it orientation. They use
it to design a Diffie-Hellman type key exchange protocol named OSIDH (Oriented
Supersingular Isogeny Diffie-Hellman). Onuki [Onu21] provides further details about
supersingular curve orientation and Chenu-Smith [CS21] introduce a generalisation
of Fp-supersingular elliptic curves.
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2.5—The central problems in isogeny-based cryptography
The first central problem in isogeny-based cryptography is that of computing isogenies
between given isogenous elliptic curves, usually refered to as the pure isogeny problem.

Problem 2.5.1. Let E and E′ be two isogenous elliptic curves defined over a finite
field Fq. Compute an isogeny φ : E → E′.

In general, when the degree of φ is smooth, φ can be described using a sequence
(E0 = E,E1, · · · , En = E′) of curves such that Ei and Ei+1 are mi-isogenous for some
small integer mi. Furthermore, when E[deg(φ)] ⊂ E(Fq), φ can be described using
a generator of its kernel. It is infeasible to write down a large degree isogeny as a
rational map. Isogenies φ of large non smooth degree are very difficult to handle.
When E[deg(φ)] ⊂ E(Fq), φ can be described using kerφ but one can not effectively
compute (with current isogeny formulas) φ and check that its image curve is E′.

In practice, the problems underlying isogeny-based protocols are slightly different.
In some cases, one needs to compute an isogeny defined over a specific subfield, or an
isogeny with a specified degree. In SIDH for instance, the degree of the isogeny is fixed
and the action of the isogeny on some torsion points is provided. This supplementary
information has been exploited in adaptive attacks [GPST16; FP21a], in passive
attacks [Pet17; Que+21; FKMT21] on imbalanced variants of SIDH.

Another more natural and more interesting problem is that of determining the
endomorphism ring of a given elliptic curve.

Problem 2.5.2. Let E be an elliptic curve defined over a finite field Fq. Compute
End(E).

Solving the endomorphism ring computation problem would lead to efficient at-
tacks on SQISign [De +20] and Séta [SKPS19; Feo+19].

These two problems are central in isogeny-based cryptography. The known at-
tempts to solve them on one hand, and the nature of the relation between the pure
isogeny problem and the endomorphism ring problem on the other hand, differ con-
siderably depending whether the curves in play are ordinary or supersingular.

The ordinary case. In general, the best known algorithms to solve the ordinary
pure isogeny problem are improvements of an algorithm due to Galbraith [Gal99].
Let E and E′ be two isogenous ordinary curves. Galbraith’s algorithm consists in
walking up to the surface of the ordinary `−isogeny graph through chains of ascending
`−isogenies φ1 : E → E1 and φ2 : E′ → E2, recovering an horizontal isogeny φ : E1 →
E2 and returning φ̂2 ◦ φ ◦ φ1 as an isogeny from E to E′. In general, one can always
choose ` such that E and E′ are on the surface. The horizontal isogeny φ can be
recovered classically in time15 Õ(q1/4) (and roughly the same amount of space) using
the meet in the middle algorithm, or quantumly in time 2O(

√
log p)) using an algorithm

Childs, Jao and Soukharev [CJS14] which reduces the problem of computing φ into
an instance of the hidden-shift problem.

Regarding the ordinary endomorphism ring problem, the main obstacles are factor-
ing the Frobenius discriminant ∆π = t2−4q, and computing isogenies of degree ` where

15The Õ notation here means that we ignore polylog factors.
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` divides the conductor fπ of Z[π], that is the square root of the square part of ∆π.
In fact, when this factorisation is known and the conductor fπ of Z[π] is smooth,
for each prime ` dividing fπ, one can probe the depth of End(E) in the `−isogeny
graph to recover the largest power of ` dividing the conductor of End(E). Once the
conductor f of End(E) is computed, we get that End(E) ∼= Z + fOmax, where Omax

is the maximal order in Q(
√
t2 − 4q). Works of Bisson and Sutherland [Bis12; BS11]

propose a general algorithm with subexponential complexity.
The ordinary pure isogeny problem and the ordinary endomorphism ring problem

are not quite related. In fact, knowing the endomorphism rings of the ordinary curves
in play in the pure isogeny problem does not make the problem easier. Instead, its
complexity remains the same given that from the discussion at the beginning of this
paragraph, finding an isogeny from E to E′, reduces to finding an horizontal isogeny
between curves lying on the surface of the ordinary `−isogeny graph. This includes
curves having the same endomorphism ring. Nevertheless, one should notice that
when the class group action considered is on supersingular curves, say the Fp sub-
graph [Cas+18] or the Coló-Kohel orientation [CK20], computing the endomorphism
ring is equivalent to solving the pure isogeny problem [CPV20; Wes21].

The supersingular case. The supersingular `−isogeny graph over Fp2 is connected.
So any two supersingular curves E and E′ defined over Fp2 are isogenous. The generic
meet in the middle path finding algorithm takes Õ(p1/2) time and space. In [DG16],
Delfs and Galbraith suggest to walk down to the Fp subgraph, then brute force the
isogeny defined over Fp. This leads to a memory free algorithm with complexity
Õ(p1/2). Recently, Santos, Costello and Shi [SCS21] provided an implementation of
the Delfs-Galbraith algorithm incorporating some speed-up in the walking down to
the Fp subgraph step. Their algorithm still has the same asymptotic complexity but
beats the original Delfs-Galbraith in practice when it comes to runtime.

The supersingular endomorphism ring problem was first studied in David Kohel’s
thesis [Koh96]. The general idea consists in searching for loops at the vertex E in the
supersingular isogeny graph till these loops, that correspond to endomorphisms of E,
generate the endomorphism ring of E. The most recent version of this algorithm is
due to Eisenträger et al. [Eis+20] which runs in time O(log(p)2p1/2). Their idea is to
generate endomorphisms till the suborder they generate is contained in a relatively
small number of maximal orders, then the endomorphism ring is recovered by a brute
force search among these maximal orders.

The relation between the supersingular isogeny problem and the supersingular
endomorphism ring problem is well understood. In fact they are equivalent. Many
papers prove this equivalence relying on heuristics [PL17; EHM17; Eis+18], but Weso-
lowski [Wes21] recently proved the equivalence relying on the Generalised Riemann
Hypothesis.



Chapter 3

SimS: A Simplification of SiGamal

This chapter is for all practical purposes identical to the paper SimS: A Simplification
of SiGamal [FP21c], authored jointly with Christophe Petit, which was published at
PQCrypto 2021.

3.1— Introduction
The construction of a large scale quantum computer would make the nowadays widely
used public PKE schemes insecure, namely RSA [RSA78], ECC [Kob87] and their
derivatives. As a response to the considerable progress in constructing quantum com-
puters, NIST launched a standardization process for post-quantum secure protocols
in December 2016 [Nat].

Isogeny-based protocols are in general based on the assumption that given two iso-
genous curves E and E′, it is difficult to compute an isogeny from E to E′. This hard
problem was used by J. M. Couveignes [Cou06], Rostovtsev and Stolbunov [RS06] to
design a key exchange protocol using ordinary isogenies, and by Charles, Goren and
Lauter [CLG09] to design a cryptographic hash function using supersingular isogenies.
In 2011, as a countermeasure to the sub-exponential quantum attack on the CRS
(Couveignes-Rostovtsev-Stolbunov) scheme by Childs et al. [CJS14], Jao and De Feo
designed SIDH [JD11] (Supersigular Isogeny Diffie-Hellman), a Key Exchange pro-
tocol based on supersingular isogenies. The submission of SIKE [Jao+20] (a Key En-
capsulation Mechanism based on SIDH) to the NIST standardization process marked
the starting point of a more active research in isogeny-based cryptography. Isogeny-
based protocols are not the most efficient candidates for post quantum cryptography,
but they provide the shortest keys and ciphertexts.

In 2018, Castryck et al. constructed CSIDH [Cas+18] (Commutative SIDH) us-
ing the Fp-sub-graph of the supersingular isogeny graph. CSIDH key exchange is
close to CRS but is an order of magnitude more efficient. PKE schemes based on
isogeny problems include SIKE, SÉTA [SKPS19] and more recently SiGamal and C-
SiGamal [MOT20]. SÉTA and the PKEs canonically derived from the key exchange
protocols SIDH and CSIDH are only OW-CPA secure. They require the use of hash
functions and/or generic transformations such as the Fujisaki-Okamoto [FO99] or
OAEP [BR94] to fulfil higher security requirements such as IND-CPA and IND-CCA
security ([SKPS19, §2.4],[Jao+20, §1.4], [MOT20, §3.3]). This motivated Moriya,
Onuki and Tagaki to introduce the SiGamal [MOT20, §5] and C-SiGamal [MOT20,
§6] PKE schemes derived from CSIDH. SiGamal and C-SiGamal provide IND-CPA
security under new assumptions they introduce. The authors noticed that neither
SiGamal nor C-SiGamal is IND-CCA secure. In Remark 7 of [MOT20], they sug-
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gest a slightly modified version of SiGamal that from their point of view could be
IND-CCA secure, but they left its study as open problem.

Contributions. In this chapter, we prove that the variant of SiGamal suggested by
Moriya et al. in Remark 7 of their paper is not IND-CCA secure by exhibiting a simple
and concrete attack. We then modify SiGamal to thwart this attack, and obtain a
new isogeny-based PKE scheme which we call SimS. We prove that SimS is IND-CPA
secure relying on CSIDH security assumptions (Assumption 2). This is a considerable
improvement on SiGamal whose IND-CPA security relies on new assumptions. We
then introduce a “knowledge of Exponent" type assumption (Assumption 3) under
which we prove that SimS is IND-CCA secure. This assumption may have other
applications in isogeny-based cryptography.

We adapt the Magma code for SiGamal [Mor20] to run a proof of concept imple-
mentation of SimS using the SiGamal primes p128 and p256. For the prime p128, SimS
is about 1.13x faster than SiGamal and about 1.19x faster than C-SiGamal. For the
prime p256, we get a 1.07x speedup when compared to SiGamal and a 1.21x speedup
when compared to C-SiGamal.

For the same set of parameters, SimS has smaller private keys, public keys and
ciphertexts compared to SiGamal and C-SiGamal. SimS is simple, sits between
SiGamal and CSIDH, helps to better understand the relation between SiGamal and
CSIDH while providing IND-CCA security and being more efficient compared to
SiGamal. Table 3.1 best summarizes our contributions.

CSIDHpke SimS SiGamal C-SiGamal
Private key [a] [a] a a
Size of plaintext log2 p r − 2 r − 2 r − 2
Size of Alice’s public key log2 p log2 p 2 log2 p 2 log2 p
Size of ciphertexts (or Bob’s public key) 2 log2 p 2 log2 p 4 log2 p 2 log2 p
Class group cost for p128 compared to CSIDH x1.00 x1.30 x1.50 x1.50
Class group cost for p256 compared to CSIDH x1.00 x2.31 x2.57 x2.57
Enc + Dec cost for p128 compared to CSIDHpke x1.00 x1.38 x1.57 x1.65
Enc + Dec cost for p256 compared to CSIDHpke x1.00 x2.62 x2.82 x3.17
Security OW-CPA IND-CCA IND-CPA IND-CPA

Table 3.1: Comparison between CSIDHpke, SimS, SiGamal and C-SiGamal. CSIDHpke uses the
csidh-512 prime, while SimS, SiGamal and C-SiGamal use the primes p128 and p256 which are
SiGamal primes that provide the same security level as the csidh-512 prime.

Outline. The remainder of this chapter is organized as follows: in Section 3.2, we
recall the main ideas of the class group action and the CSIDH key exchange protocol.
In section 3.3, we present the SiGamal PKE scheme and we show that the variant
suggested in [MOT20, Remark 7] is not IND-CCA secure. Section 3.4 is devoted
to SimS and its security arguments. In section 3.5 we present the outcome of a
proof-of-concept implementation and compare SimS to CSIDH and (C-)SiGamal in
Section 3.6. We conclude the paper in Section 3.7.

3.2—Preliminaries

3.2.1 –Class group action on supersingular curves defined over Fp. We
refer to [Sil09; Was08] for general mathematical background on supersingular elliptic
curves and isogenies, to [Cas+18; DG16] for supersingular elliptic curves defined
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over Fp and their Fp-endomorphism ring, and to [CH; Ren18] for isogenies between
Montgomery curves.

Let p ≡ 3 mod 4 be a prime greater than 3. The equation By2 = x3 + Ax2 + x

where B ∈ F∗p and A ∈ Fp\{±2} defines a Montgomery curve E over Fp. The curve
E : By2 = x3 + Ax2 + x is isomorphic (over Fp) to the curve defined by the equation
y2 = x3 +Ax2 +x (resp. −y2 = x3 +Ax2 +x) when B is a square in Fp (resp. B is not a
square in Fp). The curve E is said to be supersingular if #E(Fp) ≡ 1 mod p, otherwise
E is said to be ordinary. If E is a supersingular curve defined over Fp with p > 3, then
#E(Fp) = p + 1. All the elliptic curves we consider in this paper are supersingular
curves defined by an equation of the form y2 = x3 +Ax2 +x where A ∈ Fp is called the
Montgomery coefficient of the curve. In the rest of this section, we briefly describe
the class group action used in CSIDH.

Let E be a supersingular curve defined over Fp and let π be the Frobenius endo-
morphism of E. The Fp-endomorphism ring O of E is isomorphic to either Z[π] or
Z[ 1+π

2 ] [DG16]. As in the ordinary case, the class group cl(O) of O acts freely and
transitively on the set E``p(O) of supersingular elliptic curves defined over Fp and
having Fp-endomorphism ring O. We have the following theorem.

Theorem 3.2.1. [Cas+18, Theorem 7] Let O be an order in an imaginary quadratic
field such that E``p(O) is non empty. The ideal class group cl(O) acts freely and
transitively on the set E``p(O) via the map

cl(O)× E``p(O) → E``p(O)

([a], E) 7→ [a]E = E/E[a],

where a is an integral ideal of O and E[a] = ∩α∈a kerα.

From now on, we will consider the quadratic order Z[π] and the action of its class
group cl(Z[π]) on the set E``p(Z[π]). We represent Fp-isomorphism classes of curves in
E``p(Z[π]) using the Montgomery coefficient A [CD20, Proposition 3].

The efficiency of the computation of an isogeny with known kernel essentially
depends on the smoothness of its degree. In [Cas+18], the authors work with a prime
p of the form p = 4`1 · · · `n−1. This implies that for i ∈ {1, · · · , n},

(
−p
`i

)
= 1 and by the

Kummer decomposition theorem [Kum47], (`i) = lili in cl(Z[π]), where li = (`i, π − 1)

and li = (`i, π+1) are integral ideals of prime norm `i. It follows that [li][li] = [`i] = [1]

in cl(Z[π]), hence [li]
−1 = [li]. Since the primes `i are small, then the action of the ideal

classes [li] and [li]
−1 can be computed efficiently using Vélu formulas for Montgomery

curves [CH; Ren18]. In reality, the kernel of the isogeny corresponding to the action
of the prime ideal li = (`i, π − 1) is generated by a point P ∈ E(Fp) of order `i,
while that of the isogeny corresponding to the action of l−1

i = (`i, π + 1) is a point
P ′ ∈ E(Fp2)\E(Fp) of order `i such that π(P ′) = −P ′. The computation of the action
of an ideal class

∏
[li]

ei where (e1, · · · , en) ∈ {−m, · · · ,m}n can be done efficiently by
composing the actions of the ideal classes [li] or [li]

−1 depending on the signs of the
exponents ei. Since the prime ideals li are fixed, then the vector (e1, · · · , en) is used
to represent the ideal class

∏
[li]

ei . From the discussion in [Cas+18, §7.1], m is chosen
to be the least positive integer such that

(2m+ 1)n ≥ |cl(Z[π])| ≈ √p.
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3.2.2 –CSIDH. CSIDH [Cas+18] stands for Commutative Supersingular Isogeny
Diffie-Hellman and is a Diffie-Hellman type key exchange protocol. The base group in
Diffie-Hellman protocol is replaced by the unstructured set E``p(Z[π]) and the expo-
nentiation is replaced by the class group action of cl(Z[π]) on E``p(Z[π]). Concretely,
CSIDH is designed as follows.

Setup. Let p = 4`1 · · · `n− 1 be a prime where `1, · · · , `n are small distinct odd primes.
The prime p and the supersingular elliptic curve E0 : y2 = x3 +x defined over Fp with
Fp-endomorphism Z[π] are the public parameters.
Key Generation. The private key is an n-tuple e = (e1, · · · , en) of uniformly random
integers sampled from a range {−m, · · · ,m}. This private key represents an ideal
class [a] =

∏
[li]

ei ∈ cl(Z[π]). The public key is the Montgomery coefficient A ∈ Fp of
the curve [a]E0 : y2 = x3 +Ax2 + x obtained by applying the action of [a] on E0.
Key Exchange Suppose Alice and Bob have successfully computed pairs of private
and public key (e,A) and (e′, B) respectively. Upon receiving Bob’s public key B ∈
Fp\{±2}, Alice verifies that the elliptic curve EB : y2 = x3 +Bx2 + x is a supersingu-
lar curve, then applies the action of the ideal class corresponding to her secret key
e = (e1, · · · , en) to EB to compute the curve [a]EB = [a][b]E0. Bob does analogously
with his own secret key e′ = (e′1, · · · , e′n) and Alice’s public key A ∈ Fp\{±2} to com-
pute the curve [b]EA = [b][a]E0. The shared secret is the Montgomery coefficient S of
the common secret curve [a][b]E0 = [b][a]E0.

The security of the CSIDH key exchange protocol relies on the following assumptions.
Let λ be the security parameter and let p = 4`1 · · · `n−1 be a prime where `1, · · · , `n

are small distinct odd primes. Let E0 be the supersingular elliptic curve y2 = x3 + x

defined over Fp, let [a], [b] and [c] be uniformly random ideal classes in cl(Z[π]).

Assumption 1. The CSSICDH (Commutative Supersingular Isogeny Computational
Diffie-Hellman) assumption holds if for any probabilistic polynomial time (PPT) al-
gorithm A,

Pr [E = [b][a]E0 | E = A(E0, [a]E0, [b]E0)] < negl(λ).

Assumption 2. The CSSIDDH (Commutative Supersingular Isogeny Decisional Diffie-
Hellman) assumption holds if for any PPT algorithm A,

Pr

b = b∗

∣∣∣∣∣∣∣
[a], [b], [c]← cl(Z[π]), b

$←− {0, 1},
F0 := [b][a]E0, F1 = [c]E0,

b∗ ← A(E0, [a]E0, [b]E0, Fb)

 =
1

2
+ negl(λ).

In [CSV20], Castryck et al. show that Assumption 2 does not hold for primes
p ≡ 1 mod 4. This does not affect primes p ≡ 3 mod 4, which are used in CSIDH,
SiGamal and in our proposal SimS.
An IND-CPA insecure PKE from CSIDH. A PKE scheme can be canonically derived
from a key exchange protocol. For the case of CSIDH, this PKE scheme is sketched
as follows. Suppose that Alice has successfully computed her key pair (e,A). In
order to encrypt a message m ∈ {0, 1}dlog pe, Bob computes a random key pair (e′, B)
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and the binary representation S01 of the corresponding shared secret S. He sends
(B, c = S01 ⊕ m) to Alice as the ciphertext. For the decryption, Alice computes the
shared secret S and its binary representation S01, then recovers m = S01 ⊕ c. In the
comparison in Section 3.6, the term CSIDHpke will be used to refer to the previous
PKE each time the precision is needed.

The above PKE scheme is not IND-CPA secure. In fact, given two distinct plain-
texts m0 and m1, if (B, c) is a ciphertext for mi, then Si01 = c⊕mi is the binary repres-
entation of the Montgomery coefficient of a supersingular curve while S1−i

01 = c⊕m1−i
is that of an ordinary curve with overwhelming probability. Hence an adversary can
efficiently guess if the ciphertext (B, c) is that of m0 or m1. In practice, a hash function
h is used to mask the supersingular property of the shared secret S, the ciphertext
becomes (B, c = h(S01)⊕m).

3.3—Another look at SiGamal protocol

3.3.1 – SiGamal protocol and variants. Let p = 2r`1 · · · `n− 1 be a prime such
that `1, · · · , `n are small distinct odd primes. Let E0 be the elliptic curve y2 = x3 + x

and let P0 ∈ E(Fp) be a point of order 2r. Recall that for every small odd prime `i
dividing p + 1, there are two prime ideals li = (`i, π − 1) and li = (`i, π + 1) above `i
in cl(Z[π]). Also, the isogenies φli and φli of domain E0 correspond to the isogenies
with kernel generated by Pli ∈ E0[`i] ∩ ker(π − 1)\{0} and Pli

∈ E0[`i] ∩ ker(π + 1)\{0}
respectively. The points liP0 and liP0 are images of the point P0 trough these isogenies
respectively. Let a = (α)le11 · · · l

en
n ∈ cl(Z[π]) where α is an integer then point aP0 is the

image of P0 by the composition of the isogenies φli if ei > 0 or φli if ei < 0, and the
multiplication by α. For a given integer k, we denote by [k] ◦ b the composition of the
isogeny corresponding to the ideal class b and the scalar multiplication by k, and the
point [k] ◦ bP0 denotes the image of P0 trough this isogeny.

The SiGamal PKE scheme can be summarized as follows.

Key Generation. Let p = 2r`1 · · · `n − 1 be a prime such that `1, · · · , `n are small dis-
tinct odd primes. Let E0 be the elliptic curve y2 = x3 + x and let P0 ∈ E(Fp) be a
point of order 2r. Alice takes a random integral ideal a = (α)le11 · · · l

en
n where α is a

uniformly random element of Z×2r , computes E1 := [a]E0 and P1 := aP0. Her public
key is (E1, x(P1)) and her private key is (α, e1, · · · , en). Let Z2r−2 = Z/2r−2Z be the
message space.
Encryption. Let m ∈ Z2r−2 be a plaintext, Bob embeds m in Z×2r via m 7→ M = 2m + 1.
Bob takes a random integral ideal class b = (β)le11 · · · l

en
n where β is a uniformly random

element of Z×2r . Next, he computes [M ]P1, E3 = [b]E0, P3 := bP0, E4 = [b]E1 and
P4 := b([M ]P1). He sends (E3, x(P3), E4, x(P4)) to Alice as the ciphertext.
Decryption. Upon receiving (E3, x(P3), E4, x(P4)), Alice computes aP3 and solves a dis-
crete logarithm instance between P4 and aP3 using the Pohlig-Hellman
algorithm [PH78]. Let M ∈ Z×2r be the solution of this computation. If 2r−1 < M ,
then Alice changes M to 2r −M . She computes the plaintext m = (M − 1)/2.

In C-SiGamal, a compressed version of SiGamal, one replaces the point abP0 by a
distinguished point PE4

∈ E4 of order 2r, which then does not need to be transmitted.
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The scheme integrates an algorithm that canonically computes a distinguished point
of order 2r on a given supersingular curve defined over Fp where p = 2rl1 · · · ln − 1.
We refer to [MOT20] for more details on the SiGamal and C-SiGamal.

Moriya et al. prove that SiGamal and C-SiGamal are IND-CPA secure relying
on two assumptions they introduce. However, they point out that SiGamal is not
IND-CCA secure since one can efficiently compute a valid encryption of 3m + 1 from
a valid encryption of m. Indeed, given ([b]E0, bP0, [b]E1, [2m + 1]bP1) one easily com-
putes ([b]E0, bP0, [b]E1, [3][2m+ 1]bP1) = ([b]E0, bP0, [b]E1, [2(3m+ 1) + 1]bP1). A similar
argument applies for C-SiGamal as well.

As a remedy, Moriya et al. suggest to omit the curve [b]E1 in the ciphertext
(see [MOT20, Remark 7]). We now show that this variant is still vulnerable to IND-
CCA attacks.

3.3.2 –An IND-CCA attack on Moriya et al.’s variant. In this version of
SiGamal, a ciphertext for m is of the form ([b]E0, bP0, [2m+ 1]bP1) and the decryption
process is identical to that of the original SiGamal. We prove the following lemma.

Lemma 3.3.1. Let c = ([b]E0, bP0, [2m+ 1]bP1) be a ciphertext for a plaintext m, then
c′ = ([b]E0, [1/3]bP0, [2m + 1]bP1) is a ciphertext for m′ = 3m + 1.

Proof. To decrypt c′, Alice computes [a][b]E0 and a([1/3]bP0) = [1/3]abP0, then she
solves a discrete logarithm problem between [2m+ 1]bP1 = [2m+ 1]abP0 and [1/3]abP0.
The solution to this discrete logarithm problem is

M ′ = ±3(2m + 1) = ±(2(3m + 1) + 1) = ±(2m′ + 1).

It follows that the corresponding plaintext (after changing M ′ to 2r −M ′ when ne-
cessary) is (M ′ − 1)/2 = 3m + 1 = m′.

Corollary 3.3.2. The variant of SiGamal suggested by Moriya et al. in [MOT20,
Remark 7] is not IND-CCA secure.

3.4—SimS
We now introduce a new protocol that resists the previous attack. We name our
protocol SimS (Simplified SiGamal), which highlights the fact that our scheme is a
simplification of SiGamal.

3.4.1 –Overview. We observe that the attack presented in the previous section
is effective because the ciphertext contains the curve bE0 and its 2r-torsion points
bP0.

SimS is obtained by adjusting SiGamal in such a way that when a curve is part
of the ciphertext, then none of its points are, and the other way around. In order
to achieve this, we replace the point abP0 in the (C)SiGamal protocol by a canonical
point PE4

∈ E4 = [a][b]E0. More concretely, in SimS, Alice’s secret key is an ideal
class [a], and her public key is the curve E1 = [a]E0. To encrypt a message m, Bob
chooses a uniformly random ideal class [b], he computes E3 = [b]E0, E4 = [b]E1 and he
then canonically computes a point PE4

∈ E4(Fp) of smooth order 2r|p + 1. He sends
E3 and P4 = [2m + 1]PE4

to Alice. In order to recover m, Alice computes E4 = [a]E3
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E0 E1 = [a]E0

E3 = [b]E0

E4 = [b]E1,
P4 = [2m+ 1]PE4

E4 = [a]E0,
m′ = DLP (P4, PE4)

[a]

[b]

[b]

[a]

Figure 3.1: SimS scheme. The elements in black are public, while those in blue are known only by
Bob and those in red only by Alice.

and PE4
, then solves a discrete logarithm instance in a group of order 2r using the

Pohlig-Hellman algorithm. Figure 3.1 depicts the scheme.
The IND-CCA attack presented in Section 3.3.2 is no more feasible in SimS since

no point of the curve E3 nor the curve E4 are part of the ciphertexts.

3.4.2 –The SimS public key encryption protocol. Now let us concretely
describe the key generation, encryption and decryption processes. We use the Al-
gorithm 12 to canonically compute the point PE ∈ E(Fp) of order 2r|p+ 1.

Before we describe the protocol, let us notice that revealing P4 or its x-coordinate
may leak too much information about the curve E4. In fact x(P4) is the root of the 2r

division polynomial of E4. Moreover, one could easily derive x(P4 + (0, 0)) = 1
x(P4)

by
a simple inversion in Fp, which would affect the IND-CCA security of the scheme. To
avoid this, we make use of a randomizing function1 fE : Fp → F = Im(fE), indexed
by supersingular curves defined over Fp, satisfying the following conditions:
P1: fE is bijective, fE and its inverse gE = f−1

E : F → Fp can be efficiently computed
when E is given;

P2: for every element x ∈ Fp, any PPT adversary having no access to x and E

cannot distinguish fE(x) from a random element of F = Im(FE);
P3: for every element x ∈ Fp, for every non identical rational function R ∈ Fp(X),

any PPT adversary having no access to x and E cannot compute fE(R(x)) from
fE(x).

Example 3.4.1. In the proof of concept implementation in Section 3.5, we use the
randomizing function fE : x 7→ bin(x) ⊕ bin(AE) where bin(·) takes an element in Fp
and returns its binary representation. In Appendix A.3, we argue that fE satisfies
(P1), (P2) and (P3), with respect to the parameters suggested in Section 3.5.

Having such a function, SimS is designed as follows.

Key Generation: Let p = 2r`1 · · · `n−1 be a prime such that `1, · · · , `n are small distinct
odd primes and λ + 2 ≤ r ≤ 1

2 log p where λ is the security parameter. Let E0 be the
elliptic curve y2 = x3 + x. Alice takes a random ideal class [a] ∈ cl(Z[π]), computes
E1 := [a]E0. Her public key is E1 and her private key is [a]. The plaintext space is
the set M = Z2r−2 .

1In general, one will have Im(fE) ⊂ {0, 1}dlog2 pe.
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Encryption: Let m ∈ Z2r−2 be a plaintext, Bob embeds m in Z×2r via m 7→ 2m + 1. Bob
takes a random ideal class [b] ∈ cl(Z[π]) and computes E3 = [b]E0, E4 = [b]E1 and
P4 = [2m + 1]PE4

. He sends (E3, x
′ = fE4

(x(P4))) to Alice as the ciphertext.
Decryption: Upon receiving (E3, x

′), Alice verifies that E3 is a supersingular curve,
computes E4 = [a]E3 and PE4

. If gE4
(x′) is not the x-coordinate of a 2r-torsion point

on the curve E4, then Alice aborts. She solves the discrete logarithm instance between
P4 = (gE4

(x′),−) and PE4
using the Pohlig-Hellman algorithm. Let M ∈ Z×2r be the

solution of this computation. If 2r−1 < M , then Alice changes M to 2r −M . She
computes the plaintext (M − 1)/2.

Theorem 3.4.2. If fE4
satisfies (P1), then SimS is correct.

Proof. Since fE4
satisfies (P1), then fE4

is bijective, fE4
and its inverse gE4

= f−1
E4

can be efficiently computed by Alice since she has access to E4.
As in CSIDH, the Montgomery coefficients of the curves [a][b]E0 and [b][a]E0 are equal.
Therefore Alice and Bob obtain the same distinguished point PE4

. Since the points
PE4

and P4 = [2m + 1]PE4
have order 2r, then the Pohlig-Hellman algorithm can

be implemented on their x-coordinates x(P4) = gE4
(x′) and x(PE4

) only to recover
M ≡ ±(2m + 1) mod 2r. Since m ∈ Z2r−2 , then 2m + 1 < 2r−1. Alice changes M to
2r −M if 2r−1 < M , then she computes the plaintext (M − 1)/2 = m.

Remark 3.4.3. Instantiating SimS with SIDH would lead to a PKE scheme which
is not IND-CCA secure because SIDH is vulnerable to adaptive attacks [GPST16].

3.4.3 – Security arguments. We prove that the IND-CPA security of SimS relies
on Assumption 2. We also prove that SimS is IND-CCA secure under a Knowledge
of Exponent-type assumption which we introduce.

Theorem 3.4.4. If Assumption 2 holds and fE4
satisfies (P2), then SimS is IND-

CPA secure.

Proof. We adapt the proof of [MOT20, Theorem 8] to our setting. Let us suppose
that SimS is not IND-CPA secure, then there exists a PPT adversary A that can
successfully distinguish whether a given ciphertext (E3, x

′) was encrypted from a
plaintext m0 or m1 with probability 1

2 + γ. Below, we use A to construct a PPT
CSSIDDH solver A′ whose success probability is 1

2 + 1
2γ.

Given a CSSIDDH instance input (E0, [a]E0, [b]E0, Fb) as in Assumption 2, we
choose b ∈ {0, 1} uniformly at random, we compute c = ([b]E0, fFb(x([2mb + 1]PFb))).
Let b∗ = A(E0, [a]E0, c).

The CSSIDDH solver A′ returns 1 if b∗ = b, and 0 if b∗ 6= b.
Now let’s compute the advantage of A′. Note that b is a uniformly random bit,

so b = 0 with probability 1
2 and b = 1 with probability 1

2 .
When b = 0, then b∗ = b with probability 1

2 + γ.
When b = 1, [a][b]E0 6= Fb and the ciphertext c is invalid. Since A does not have

access to E and x([2mb+1]PFb), and that fFb satisfies (P2), then A can not distinguish
x′ = fFb(x([2mb + 1]PFb)) from a random element of Im(fFb). Hence the output b∗ of
the query independent of b. We get that b∗ = b with probability 1

2 .
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Therefore, CSSIDDH solver A′ succeeds with probability

1

2
(
1

2
+ γ) +

1

2
× 1

2
=

1

2
+

1

2
γ.

Compared to the IND-CPA game setting, the adversary also has access to a de-
cryption oracle O(·) in the IND-CCA game setting. To prove that SimS is IND-CCA
secure, it is sufficient to prove that the decryption oracle is useless. This immedi-
ately follows if we assume that no PPT adversary having access to E0, E1 and a
valid ciphertext c, can produce a brand new valid ciphertext c′ unless she encrypts c′

herself. This is formalized in the following assumption.

Assumption 3. The CSSIKoE (Commutative Supersingular Isogeny Knowledge of
Exponent) assumption is stated as follows.

Let λ be a security parameter, let p = 2r`1 · · · `n−1 be a prime such that λ+2 ≤ r ≤
1
2 log p. Let [a], [b] be a uniformly sampled elements of cl(Z[π]). Let (fE)E∈cl(Z[π]) be
a family of randomizing functions as defined in Section 3.4.2 such that each of these
functions satisfies (P3).

Then for every PPT adversary A that takes E0, [a]E0 and ([b]E0, f[a][b]E0
(x(P )))

where P ∈ [a][b]E0 is a point of order 2r as inputs, and returns a couple
([b′]E0, f[a][b′]E0

(x(P ′))) 6= ([b]E0, f[a][b]E0
(x(P ))) where P ′ ∈ [a][b′]E0 is a point of

order 2r, there exists a PPT adversary A′ that takes the same inputs and returns
([b′], [b′]E0, f[a][b′]E0

(x(P ′))).

Theorem 3.4.5. Let us suppose that SimS is IND-CPA secure, and that Assumption
3 holds. Then SimS is IND-CCA secure.

Proof. Let us suppose that Assumption 3 holds and SimS is not IND-CCA secure,
and let us prove that SimS is not IND-CPA secure.

Since SimS is not IND-CCA secure, then there exists a PPT adversary AO(·) =

(A1, O(·)) (where O(·) is the decryption oracle) that successfully determines if a given
ciphertext c is that of a plaintext m0 or m1 with a non negligible advantage γ.

Suppose that the adversary AO(·) queries the decryption oracle O(·) with some
valid ciphertexts c1 = (F1, x1), · · · , cn = (Fn, xn) computed by A1. By Assump-
tion 3, there exists a polynomial time algorithm A2 that when outputting c1 =

(F1, x1), · · · , cn = (Fn, xn) also outputs the ideal classes [b1], · · · , [bn] such that Fi =

[bi]E0 for i ∈ {1, · · · , n}. From the knowledge of the ideal classes [b1], · · · , [bn] and
[a]E0, the adversary A2 successfully decrypts c1, · · · , cn.

Replacing the decryption oracle O(·) by A2, we obtain an adversary A′ = (A1,A2)

that successfully determines if a given ciphertext c is that of m0 or m1 with advantage
γ (which is non negligible) and without making any call to the decryption oracle.
This contradicts SimS’s IND-CPA security.

Remark 3.4.6. In all this section, we have assumed that the ideal classes [a] and [b]

were uniformly sampled elements of cl(Z[π]). Strictly speaking, in order to uniformly
sample elements in cl(Z[π]), one needs to compute the class group structure and its
generators. Computing the class group cl(Z[π]) requires sub-exponential time in its
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discriminant [BKV19, §1]. The class group structure for the CSIDH-512 prime was
computed in [BKV19] with a lot of computational effort. As in the preliminary version
of CSIDH or instantiations of CSIDH using different primes for which the class group
is unknown, we assume that the many small prime ideals li used to sampled elements
in cl(Z[π]) (see Section 3.2.1) generate the entire class group or a sufficiently large
subgroup of the class group such that the sampled ideals are close to being uniformly
random. See [Cas+18, §7.1] for more details.

Remark 3.4.7. The secret vectors (e1, · · · , en) ∈ [−m,m]n used to sample ideals
a = le11 · · · l

en
n ∈ cl(Z[π]) can be seen as analogous to exponents in discrete logarithm-

based protocols, and Assumption 3 is in that sense analogous to the “knowledge of
exponent” assumption (see Appendix A.1) introduced by Damgård in the context of
discrete logarithm-based cryptography [Dam92] and also used in [HT98]. If ever the
class group cl(Z[π]) were computed for the SimS primes, then the analogy would be
more immediate.

3.5— Implementation results
Here we present the experimentation results obtained by adapting the code of
SiGamal [Mor20]. The implementation is done using the two primes proposed by
Moriya et al. for SiGamal.
SiGamal prime p128. Let p128 be the prime 2130 · `1 · · · `60−1 where `1 through `59 are
the smallest distinct odd primes, and `60 is 569. The bit length of p128 is 522. The
private key bound is m = 10.
SiGamal prime p256. Let p256 be the prime 2258 · `1 · · · `43−1 where `1 through `42 are
the smallest distinct odd primes, and `43 is 307. The bit length of p256 is 515. The
private key bound is m = 32.

All the costs (number of field multiplications, where 1S=0.8M and 1a=0.05M) of
CSIDH presented are done with the csidh-512 prime (of 512 bits) while those of SimS,
SiGamal and C-SiGamal are with p128 and p256. The costs presented in Table 3.2 and
Table 3.3 are the average costs of 20, 000 rounds of key generation, encryption and
decryption of each scheme.

Prime csidh-512 p128 p256
Scheme CSIDH SimS (C)SiGamal SimS (C)SiGamal
Costs 441, 989 576, 124 663, 654 1, 023, 400 1, 140, 189

Table 3.2: Cost (number of field multiplications, where 1S=0.8M and 1a=0.05M) of class group
action for CSIDH with the csidh-512 prime, SimS, SiGamal and C-SiGamal with p128 and p256.

Remark 3.5.1. In this proof of concept implementation, the class group algorithm
considered does not take into account the improvements in [CDV20], [BFLS20], [CD20].

3.6—Comparison with SiGamal and CSIDH
Here we compare SimS, (C-)SiGamal and CSIDH (or CSIDHpke more precisely).
The comparison is done at four levels: design, security, keys and ciphertext sizes, and
efficiency.
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p128 p256
KGen Enc. Dec. KGen Enc. Dec.

C-SiGamal
663, 594

1, 433, 805 767, 176
1, 151, 447

2, 685, 714 1, 528, 020
SiGamal 1, 326, 856 760, 861 2, 208, 530 1, 536, 829

SimS 576, 124 1, 159, 533 679, 733 1, 023, 827 2, 057, 297 1, 417, 401

Table 3.3: Computational costs (number of field multiplications, where 1S=0.8M and 1a=0.05M)
for C-SiGamal, SiGamal and SimS with p128 and p256.

Design. At the design level, SimS sits between (C)SiGamal and CSIDH. SimS’s
private keys are ideal classes, as in CSIDH, while in (C)SiGamal they are integral
ideals. In the class group action in (C-)SiGamal, a point has to be mapped through
the isogeny as well, as opposed to CSIDH and SimS.
Securiy. Security-wise, SimS IND-CPA security relies on CSIDH assumptions, con-
trarily to SiGamal whose IND-CPA security relies on new assumptions. Moreover,
SimS is IND-CCA secure.
Keys and ciphertext sizes. The size of SimS’s ciphertexts is equal to that of C-
SiGamal’s ciphertexts, and is half that of SiGamal ciphertexts. The size of SimS’s
public keys is half that of the public keys in SiGamal and C-SiGamal. The size of the
private key in (C)SiGamal, compared to that of SimS, is augmented by r bits that are
used to store the integer α such that the secret ideal a is in the form a = (α)le11 · · · l

en
n .

Efficiency. SimS is more efficient compared to SiGamal and C-SiGamal when using
the same primes. From the results in Table 3.2, we have that for the prime p128, the
SimS class group action computation is 1.15x faster than that of (C)SiGamal and is
1.30x slower than that of CSIDH; and for the prime p256, it is 1.11x faster than that of
(C)SiGamal and is 2.31x slower than that of CSIDH. For Encryption and decryption
with the prime p128, SimS is about 1.13x faster than SiGamal and about 1.19x faster
than C-SiGamal. For the prime p256, we get a 1.07x speedup when compared to
SiGamal and a 1.21x speedup when compared to C-SiGamal.

We summarize the comparison in Table 3.1. Note that the encryption in CSIDHpke
is essentially two CSIDH class group computations and the decryption is one class
group computation.

3.7—Conclusion
In this chapter, we revisited the protocols introduced by Moriya et al. at Asiacrypt
2020, and obtained several results. We proved that the variant of SiGamal suggested
by Moriya et al. is not IND-CCA secure. We construct a new isogeny based PKE
scheme SimS by simplifying SiGamal in such a way that it resists the IND-CCA attack
on SiGamal and its variants. SimS is more efficient than SiGamal and it has smaller
private keys, public keys and ciphertexts. We prove that SimS is IND-CPA secure
relying on CSIDH assumptions. We introduce a Knowledge of Exponent assumption
in the isogeny context. Relying on the later assumption, we prove that SimS is IND-
CCA secure. Interestingly, SimS is also closer to CSIDH than SiGamal was, allowing
for a better comparison between those two protocols.

We leave a better study of the Knowledge of Exponent assumption and further
cryptographic applications of this assumption to future work.
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Chapter 4

Séta: Supersingular Encryption from
Torsion Points Attacks

This chapter is for all practical purposes identical to the paper Séta: Supersingular
Encryption from Torsion Points Attacks [Feo+19], authored jointly with Luca De
Feo, Cyprien Delpech de Saint Guilhem, Péter Kutas, Antonin Leroux, Christophe
Petit, Javier Silva and Benjamin Wesolowski, which was published at Asiacrypt 2021.

4.1— Introduction

Isogeny-based cryptography. Recent years have seen an increasing interest in cryptosys-
tems based on supersingular isogeny problems as appropriate candidates for post-
quantum cryptography. The latter has received greater focus due to the recent stand-
ardization process initiated by NIST.1

More precisely, the central problem of isogeny-based cryptography is, given two
elliptic curves, to compute an isogeny between them. For the right choice of para-
meters, the best quantum algorithms for solving this problem still run in exponential
time [BJS14]. Variants of this problem have been used to build primitives such
as hash functions [CLG09], encryption schemes [JD11; Aza+20], key encapsulation
mechanism (KEM)s [Aza+20] and signatures [GPS20; De +20].
Encryption schemes. The first key agreement and public-key encryption (PKE)
scheme based on isogenies of ordinary elliptic curves was independently discovered
by Couveignes [Cou06] and Rostovtsev and Stolbunov [RS06; Sto10]. It follows a
“Diffie–Hellman-like” structure: Alice and Bob start from a public curve E0 and
choose random secret isogenies ϕA, ϕB to reach curves EA, EB . They then send the
curves to each other and finally use their respective secrets to arrive at a common
curve EAB . It is then immediate to transform the key agreement into a CPA-secure
PKE by following El Gamal’s blueprint.

In 2011, Jao and De Feo [JD11] introduced SIDH, a key agreement protocol based
on isogenies of supersingular curves, inspired both by the Couveignes–Rostovtsev–
Stolbunov scheme and by the hash function of Charles, Goren and Lauter [CLG09].
In the supersingular case, however, isogenies do not have a natural commutative
property, meaning that, for example, the result of applying Bob’s isogeny ϕB to
Alice’s curve EA cannot be meaningfully defined without some extra constraints. To
solve this, Jao and De Feo proposed sending additional information in the protocol

1U.S. Department of Commerce, National Institute of Standards and Technology, Post-
Quantum Cryptography project, 2016. Available at https://csrc.nist.gov/projects/post-quantum-
cryptography, last retrieved September 13th, 2019.

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
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in the form of images of torsion points under the secret isogenies. With the help of
these points, they ensured that each party could evaluate their secret isogeny on the
other’s curve.

However, the isogeny problem upon which the security of the scheme is based now
differs from the original problem in certain ways. Most importantly, the adversary
has access to the image of certain torsion points under a secret isogeny. Galbraith,
Petit, Shani and Ti [GPST16] were the first to exploit this extra information in an
active attack showing that one cannot use static keys in SIDH. Then, two further
works studied the generic problem of finding isogenies if the action of the isogeny on
some torsion is known [Pet17; Que+21]. These look at two different scenarios:

1. The starting curve is E0 : y2 = x3 + x;

2. The starting curve is chosen by the adversary;

Let p be a prime number; for simplicity we restrict to supersingular elliptic curves
defined over Fp2 . Let A be the degree of some secret isogeny ϕ and let B be the order
of a torsion group on which the action of ϕ is known. In the first case [Que+21] gives
a polynomial-time algorithm to compute ϕ whenever B >

√
pA2. In the second case

it shows how to construct special starting curves (called backdoor curves) for which
backdoor information is known, in the form of an endomorphism of the curve, which
enables a polynomial-time algorithm to compute ϕ whenever B > A2.

In SIDH one has A ≈ B ≈ √p so these algorithms do not lead to an attack.
However [Que+21] also shows that, if an adversary is allowed to choose the starting
curve, then even in the SIDH setting it is possible to mount key-recovery attacks which
take exponential time, yet are faster than known algorithms [Que+21, Corollary
32]. In anticipation of potential further cryptanalysis progress, it is desirable to
design alternative cryptographic protocols that rely on different isogeny problems. An
example of this is the CSIDH scheme [Cas+18] (and its variants [MOT20; FP21c]), a
key agreement protocol that relies on the original isogeny problem, but is restricted
to supersingular elliptic curves over Fp, and can be solved in quantum subexponential
time.

These results show that any relaxation of the assumptions used in building isogeny-
based PKE schemes and KEMs is of interest from a theoretical point of view, and
could become crucial if further cryptanalysis progress occurs.

Contributions of this chapter.. Our main contribution is to turn the attack de-
scribed in [Que+21] into a PKE by using the special starting curves mentioned above
as public keys. The associated secret key can be derived from an endomorphism of
the curve with a specific minimal polynomial. More precisely, one can use any special
curve whose endomorphism ring has a particular quadratic order embedded into it.
Using such a starting curve, one can design a PKE where a message corresponds to
an isogeny and a ciphertext contains the codomain of the isogeny together with im-
ages of the torsion points under the isogeny. Decryption is then performed using the
algorithm which recovers the secret isogeny using the techniques developed in [Pet17]
and [Que+21].

Choosing parameters for our scheme is not obvious due to the following reason.
Even though trapdoor curves can be constructed in polynomial time, in practice this
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can be very costly. This is acceptable for a backdoor, but not for a PKE for which
key generation should be routine computation. The expensive step is to generate a
supsersingular elliptic curve with a prescribed endomorphism ring. We utilize tech-
niques from SQISign [De +20] where one uses special primes to substantially speed up
the procedure of generating starting curves. Furthermore, the worst-case complexity
of torsion-point attacks is dependent on the number of prime factors of the isogeny
degree. We therefore impose extra conditions on the quadratic order to avoid timing
attacks that this could imply.

We also present variants for constructing backdoor curves which allow for slightly
different decryption mechanisms. Namely one can either construct the starting curve
directly and then compute a backdoor, or instead choose a secret backdoor curve first
and then apply a secret walk to it. We discuss trade-offs between security, key size
and speed in this context.

We emphasize that just knowing the equation of the starting curve and a descrip-
tion of the quadratic order embedded in it does not seem to be helpful without the
concrete knowledge of an endomorphims realizing this embedding. We formalize this
idea in what we call the uber isogeny problem or O-UIP (Problem 4.5.1): suppose
that one knows that a certain quadratic order O is embedded in the endomorphism
ring of two curves E0, Es, and that and that a concrete embedding of E0 is also given
in input, the problem is to find an isogeny between E0 and ES corresponding to a
O-ideal. The formulation of this O-UIP is inspired from the key recovery problem in
CSIDH [Cas+18, Problem 10]. We show that SIDH, OSIDH [CK20] and our PKE
scheme also rely implicitly on various instances of this assumption. We also provide
an analysis on the difficulty of this problem.

Finally, we present an implementation of our scheme which includes searching for
an appropriate base prime and measuring key generation and encryption/decryption
speeds. Written in C, our implementation reuses some of the codebase of SQISign
and improves the efficiency of several steps crucial for Séta computations.

In Section 4.2 we recall basic properties of supersingular elliptic curves and the
SIDH protocol. Furthermore, we discuss backdoor curves (which in this context we
rename as trapdoor curves) in more detail. In Section 4.3 we introduce our one-way
function and PKE Séta. In Section 4.4 we show how one can generate keys efficiently
for Séta. In Section 4.5 we introduce the uber isogeny assumption, discuss its relation
to other studied isogeny problems and provide some analysis of its hardness. In
Section 4.6 we provide details of our implementation.

4.2—Preliminaries

We denote the computational security parameter by λ. We write PPT for probabilistic
polynomial time. The notation y ← A(x; r) means that the algorithm A, with input x
and randomness r, outputs y. The notation Pr[sampling : event] means the probability
of the event on the right happening after sampling elements as specified on the left.
Given a set S, we denote sampling a uniformly random element x of S by x

$← S.
A probability distribution X has min-entropy H∞(X) = b if any event occurs with
probability at most 2−b. Given an integer n =

∏
i `
ei
i , where the `i are its prime

factors, we say that n is B-powersmooth if `eii < B for all i. We denote by Zn the set
of residue classes modulo n.
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4.2.1 – Supersingular elliptic curves. We recall definitions and results related
to supersingular elliptic curves.

Let q be a power of p and let E1, E2 be elliptic curves defined over a finite field
Fq. An isogeny ϕ : E1 → E2 is a surjective morphism which sends the point at infinity
of E1 to the point of infinity at E2. An isogeny is also a group homomorphism from
E1(Fq) to E2(Fq) with a finite kernel. The degree of the isogeny is its degree as a
finite map of curves. If the isogeny ϕ is separable, then # kerϕ = degϕ. If there exists
an isogeny ϕ from E1 to E2, then there exists a unique isogeny ϕ̂ from E2 to E1 with
the property that ϕ ◦ ϕ̂ = [n] where n is the degree of the isogeny and [n] denotes
the multiplication by n map on E2. Such isogenies ϕ and ϕ̂ are called dual of each
other. We call two curves isogenous if there exists an isogeny between them. By the
previous remark, this relation is symmetric.

Let E be an elliptic curve defined over Fq. An isogeny from E to itself is called
an endomorphism of E. Under addition and composition, endomorphisms of E form,
together with the zero map, a ring denoted End(E). A theorem of Deuring states that
such an endomorphism ring is either an order in an imaginary quadratic field (such
curves are called ordinary) or a maximal order in a quaternion algebra (such curves
are called supersingular).

It is a well-known theorem of Tate that two curves defined over Fq are isogenous
by an isogeny defined over Fq if and only if their number of Fq-rational points is
equal. Isogenous curves have isomorphic endomorphism rings thus supersingularity
is preserved under an isogeny. Supersingular curves can always be defined (up to
isomorphism) over Fp2 and a curve is supersingular if and only if the number of
points is congruent to 1 mod p.

Supersingularity is thus preserved under isogenies.
Kernels of isogenies and Vélu’s formulas. An isogeny is a group homomorphism
whose kernel is a finite subgroup of the starting curve. Moreover, let E be an elliptic
curve defined over finite field Fq and let G be a finite subgroup of E(Fq). Then there
exists a unique (up to automorphisms of the target curve) separable isogeny whose
kernel is exactly G. Due to this uniqueness property we will denote the image curve
by E/G. Furthermore, given a subgroup G whose order is powersmooth, the curve
E/G can be computed efficiently using Vélu’s formulas [Vél71].
Elliptic curve j-invariant. An elliptic curve E defined over Fp2 can always be written
in short Weierstrass form E : y2 = x3 + Ax + B, for A,B ∈ Fp2 . We can therefore
identify any curve with its two coefficients: E ∼ (A,B). Given such a curve, its j-
invariant is defined as j(E) = 1728 4A3

4A3+27B2 . As its name suggests, this quantity is
invariant under any isomorphism over Fp2 . In this work, we denote by J p the set
of j-invariants of supersingular curves defined over Fp2 . We then identify the set of
isomorphism classes of supersingular elliptic curves over Fp2 with J p.
Twists of elliptic curves. As presented in [Aza+16, Section 2.4], two curves E1 ∼
(A1, B1) and E2 ∼ (A2, B2) are isomorphic over Fp2 if and only if there is some u ∈
Fp2\{0} such that A1 = u4A2 and B1 = u6B2. It happens that two curves defined over
Fp2 are isomorphic over Fp2 but not over Fp2 ; such curves are twists of one another.n
For p 6= 2, 3, a quadratic twist of E ∼ (A,B) is any curve of the form Et ∼ (t2A, t3B)

for t ∈ Fp2\F2
p2 (i.e. t is not a square in Fp2). Curves with j-invariant equal to 0 or

1728 are treated separately and we refer to [Aza+16, Section 2.4].
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Canonical curves. We take the same approach as [GPS20, Appendix A] to fix a
canonical choice of curve for each j-invariant. Given j ∈ Fp2 , we define the curve Ej as
Ej ∼ (0, 1) when j = 0, Ej ∼ (1, 0) when j = 1728 and Ej ∼ ( 3j

1728−j ,
2j

1728−j ) otherwise.
Isogeny graphs. Let ` 6= p be a prime number. Define the graph G` = G`(Fp2) to

have vertex set V = J p. We have that #V = b p12c+ k, where k ∈ {0, 1, 2}. Given two
vertices j1, j2 ∈ V , with representative curves E1, E2 such that j(Ei) = ji, there is an
edge in G` between j1 and j2 if and only if there is an equivalence class of `-isogenies
between E1 and E2, where two isogenies ϕ,ψ : E1 → E2 are equivalent if there exists
an automorphism α of E2 such that ψ = αϕ.

Edges of G`(Fp2) can also be defined by the modular polynomial [Sil94] Φ`(x, y) ∈
Z[x, y]. It is symmetric, meaning that Φ`(x, y) = Φ`(y, x), and is of degree `+1 in both
x and y. It holds that Φ`(j1, j2) = 0 if and only if there is an `-isogeny equivalence class
between two curves with j-invariants j1 and j2, and thus an edge in G`. Therefore,
given a vertex j ∈ V , its neighbours are exactly those j-invariants which are roots of
the univariate polynomial Φ`(x, j). As Φ` is of degree `+1 in x and all the j-invariants
are in Fp2 , we see that G` is an (`+ 1)-regular graph.

4.2.2 –Quaternion algebras and endomorphism rings of supersingular
elliptic curves. A quaternion algebra is a four-dimensional central simple algebra
over a field K. When the characteristic of K is not 2, then A admits a basis 1, i, j, ij

such that i2 = a, j2 = b, ij = −ji where a, b ∈ K\{0}. The numbers a, b characterise the
quaternion algebra up to isomorphism, thus we denote the aforementioned algebra
by the pair (a, b). A quaternion algebra is either a division ring or it is isomorphic to
M2(K), the algebra of 2× 2 matrices over K.

Let A be a quaternion algebra over Q. Then A⊗ Qp is a quaternion algebra over
Qp (the field of p-adic numbers) and A ⊗ R is a quaternion algebra over the real
numbers. A is said to split at p (resp. at ∞) if A⊗ Qp (resp. A⊗ R) is a full matrix
algebra. Otherwise it is said to ramify at p (resp. at ∞). A quaternion algebra over
Q is split at every but finitely many places, and the list of these places defines the
quaternion algebra up to isomorphism. An order in a quaternion algebra over Q is
a four-dimensional Z-lattice which is also a subring containing the identity (it is the
non-commutative generalization of the ring of integers in number fields). A maximal
order is an order that is maximal with respect to inclusion.

The endomorphism ring of a supersingular elliptic curve over Fp2 is a maximal
order in the quaternion algebra Bp,∞, which ramifies at p and at ∞. Moreover,
for every maximal order in Bp,∞ there exists a supersingular elliptic curve whose
endomorphism ring is isomorphic to it.

It is easy to see that, when p ≡ 3 (mod 4), this quaternion algebra is isomorphic
to the quaternion algebra (−p,−1). In that case, the integral linear combinations of
1, i, ij+j2 , 1+i

2 form a maximal order O0 which corresponds to an isomorphism class of
supersingular curves, namely the class of curves with j-invariant 1728 (e.g. the curve
E : y2 = x3 + x). It is easy to see that all elements ai + bj + cij + d with a, b, c, d ∈ Z
are contained in O0.

4.2.3 –Class group action on the set of supersingular curves . We briefly
recall the main definitions and properties related to the class group of quadratic
imaginary orders and their link with supersingular elliptic curves. We say that a
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curve E admits an embedding of a quadratic imaginary order O, if there exists a
subring of End(E) that is isomorphic to O. We say this embedding is primitive or
optimal if this isomorphism cannot be extended to a super-order of O. We write
EO for the set of supersingular elliptic curves admitting a primitive embedding of O
(up to isomorphisms). Following [CK20], we also call a primitive embedding of O in
End(E) an O-orientation on E. Through the usual Deuring correspondence, O-ideals
can be identified with isogenies. For any such ideal a, we write ϕa : E → a ? E for the
corresponding isogeny. The property that a ? E ∼= b ? E when a and b are in the same
ideal class proves that ? defines a group action of the class group Cl(O) on EO. The
class number h(O) is the cardinality of Cl(O). In full generality, we cannot say much
more on #EO than the classical Proposition 4.2.1.

Proposition 4.2.1. Let K be a quadratic imaginary field and let O be a quadratic
order inside K. When p does not split in K, the number of distinct embeddings of O
inside maximal orders of the quaternion algebra Bp,∞ is exactly Cl(O). In particular,
#EO ≤ h(O).

In general, Proposition 4.2.1 does not help in estimating #EO precisely because we
do not know how to estimate the number of different embeddings of O into the same
maximal order in Bp,∞. We provide examples of cases where more precise properties
can be stated in Sections 4.5.2 and 4.5.3.

When p splits in the field K, then EO is empty (the curves admitting an O-
orientation are ordinary). In the remaining of this article, we consider that we are
never in this case to simplify the notations and statements.

Any quadratic order O can be written as O = Z + fO0 where O0 is another
quadratic order (not necessarily distinct from O) and f is often called the conductor
of O. When the conductor is one, we say that the quadratic order is maximal. In
[LB20], it was shown that these conductors can be tied to isogenies.

Proposition 4.2.2. Let O = Z+fO0 be a quadratic order and let E be a supersingular
curve defined over Fp2 . If E is in EO, then there exists an isogeny of degree f between
E and a supersingular curve E0 ∈ EO0

. Conversely, when there exists an isogeny of
degree f between E and a supersingular curve E0 ∈ EO0

, then E is in EZ+f ′O0
for

some f ′ dividing f .

In Proposition 4.2.2, we say that the isogeny ϕ : E0 → E of degree f is descending
when f ′ = f . Let ϕ : E0 → E be a descending isogeny of degree f , the embedding
of O in End(E) in Proposition 4.2.2 is obtained with endomorphisms of the form
[d] + ϕ ◦ α0 ◦ ϕ̂ with d ∈ Z and α0 in the embedding of O0 inside End(E0). Similar
endomorphisms are constructed in torsion point attacks against SIDH variants [Pet17;
Que+21], and they underlie the decryption mechanism of the Séta encryption scheme.

4.2.4 – SIDH and SIKE. Here we give a high level description of SIDH and
SIKE. We start with the original SIDH protocol of Jao and De Feo [JD11]. In the
setup one chooses two small primes `A, `B and a prime p of the form p = `eAA `eBB f − 1,
where f is a small cofactor and eA and eB are large (in SIKE [Aza+20] they use
`eAA = 2216, `eBB = 3137 and f = 1). Let E be a fixed supersingular curve, for example,
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assuming p = 3 mod 4, the elliptic curve with j-invariant 17282. Let PA, QA be a basis
of E[`eAA ] and let PB , QB be a basis of E[`eBB ]. The protocol is as follows:

1. Alice chooses a random cyclic subgroup of E[`eAA ] generated by A = [xA]PA +

[yA]QA and Bob chooses a random cyclic subgroup of E[`eBB ] generated by B =

[xB ]PB + [yB ]QB .

2. Alice computes the isogeny ϕA : E → E/〈A〉 and Bob computes the isogeny
ϕB : E → E/〈B〉.

3. Alice sends the curve E/〈A〉 and the points ϕA(PB) and ϕA(QB) to Bob, and
Bob similarly sends (E/〈B〉, ϕB(PA), ϕB(QA)) to Alice.

4. Alice and Bob both use the images of the torsion points to compute the shared
secret which is the curve E/〈A,B〉 (e.g. Alice can compute ϕB(A) = [xA]ϕB(PA)+

[yA]ϕB(QA) and E/〈A,B〉 = EB/〈ϕB(A)〉).

This key exchange protocol also leads to a PKE scheme in the same way as the
Diffie–Hellman key exchange leads to ElGamal encryption. Let Alice’s private key be
the isogeny ϕA : E → E/〈A〉 and her public key be the curve E/〈A〉 together with the
images of the torsion points ϕA(PB) and ϕA(QB). Encryption and decryption work
as follows:

1. To encrypt a bitstring m, Bob chooses a random subgroup generated by B =

[xB ]PB + [yB ]QB and computes the corresponding isogeny ϕB : E → E/〈B〉.
He computes the shared secret E → E/〈A,B〉 and hashes the j-invariant of
E/〈A,B〉 to a binary string s. The ciphertext corresponding to m is the tuple
(E/〈B〉, ϕB(PA), ϕB(QA), c := m⊕ s)

2. In order to decrypt Bob’s message, Alice computes E/〈A,B〉 and from this
information computes s. Then she retrieves the message by computing c⊕ s.

This PKE scheme is IND-CPA secure [JD11; Aza+20]. In the SIKE submis-
sion [Aza+20], it is transformed using the constructions in [HHK17, Section 3] to
produce an IND-CCA secure KEM in the random oracle model (ROM).

4.2.5 –Trapdoor curves. Let E1, E2 be supersingular elliptic curves over Fp2
and let φ : E1 → E2 be an isogeny of degree D. First we recall the following algorithmic
problem:

Problem 4.2.3 (SSI-T). Let D and N be smooth coprime integers. Let φ : E1 → E2

be a secret isogeny of degree D. Assume that we know the action of φ on E1[N ].
Compute φ.

Remark 4.2.4. The SSI-T problem is a generalization of the CSSI introduced in
[JD11] (Problem 4.5.6) where D and N are prime powers of the same size.

2Jao and De Feo do not specify a particular curve, and recommend to pick one using Bröker’s
algorithm [Brö09], however there appears to be no advantage in doing so, and thus SIKE opts for
j = 1728 for simplicity.
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The SSI-T problem makes sense for any D,N which are coprime and sufficiently
smooth. However, in many cases the size of the input is superlinear in p thus has
no practical relevance. Thus from now on we restrict to instances where the D and
N-torsion are efficiently representable:

Definition 4.2.5. Let N be an integer and let p be a prime number. Let E be a
supersingular elliptic curve defined over Fp2 . We call E[N ] efficiently representable if
representing points in E[N ] requires polynomial space in log p = O(λ).

Remark 4.2.6. In particular E[N ] is efficiently representable whenever N is
powersmooth or N divides pc − 1 for some small c. In this paper we will mainly
consider instances where N is smooth and divides p2 − 1.

We recall (slightly modified version of)[Que+21, Theorem 3] how finding a certain
endomorphism of E2 relates to finding the secret isogeny φ:

Theorem 4.2.7. Let φ : E1 → E2 be a secret isogeny of degree D. Assume that
E[N ] and E[D] are efficiently representable for any supersingular curve E and that
the action of φ on E1[N ] is given. Suppose furthermore, that we know θ ∈ End(E1)

and d, e ∈ Z such that the trace of θ is 0 and deg(φ ◦ θ ◦ φ̂+ [d]) = N2e. Let M be the
largest divisor of D such that E2[M ] ⊂ ker(φ ◦ θ ◦ φ̂) ∩ E2[D]. Let k be the number of
distinct prime divisors of M . Then we can compute φ in time O∗(2k

√
e) .

Proof. We sketch the proof of the theorem. Let τ = φ ◦ θ ◦ φ̂ + [d]. Then if ker(τ) is
cyclic, then τ = ψ′ ◦ η ◦ ψ where deg(ψ) = deg(ψ′) = N and deg(η) = e and the kernels
of ψ and ψ′ are cyclic. In [Que+21, Theorem 3] it is shown that ker(τ) is always cyclic
if N is odd and if N is even then τ = ψ′ ◦ η ◦ ψ ◦ [K] where deg(ψ) = deg(ψ′) = N/K,
deg(η) = e and K = 1 or K = 2.

Then one can compute ψ and K using the torsion point information and ψ′ using
the observation that ker(ψ̂′) = τ(E2[B]). The isogeny η can be computed by a meet-
in-the-middle algorithm. Once τ is computed, one can compute φ by looking at
G = ker(φ ◦ θ ◦ φ̂) ∩ E2[D]. If M = 1 then G is cyclic and can be recomputed easily. If
not, then one can use [Section 4.3][Pet17] to recover τ . The cost of this step is O∗(2k)

where k is the number of prime factors of M .

Remark 4.2.8. Theorem 4.2.7 in particular implies that one can recover φ in O∗(
√
e)

whenever the number of distinct prime divisors of D (and hence M) is smaller than
log log p. In Section 4.3.3, we introduce a condition on the quadratic order Z[θ] to
ensure that M is always equal to 1.

The key ingredient to Theorem 4.2.7 is the knowledge of θ. When M = 1 (which
will be the case for the concrete inversion procedure in Algorithm 1), all we really
need is the action of θ on E1[N ]. Indeed, from the sketch of proof of Theorem 4.2.7, we
see that in that case θ is only used to compute the kernel of the two isogenies ψ and ψ′

of degree N . These kernels are computed by evaluating the N-torsion τ = φ◦θ ◦ φ̂+[d]

which can be done with the action of θ and φ on E1[N ].
Note the action of θ on E1[N ] is hard to recover from E1 only. This motivates a

notion of (D,N)-trapdoor T to encompass any kind of information that enables the
computation described in the proof of Theorem 4.2.7.
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Definition 4.2.9. Let p be a prime number and let D and N be coprime smooth
integers. Then a tuple (E, T ) is called a (D,N)-trapdoor curve if one can use T to
solve any instance of the SSI-T problem (with parameters D,N, p) with starting curve
E in polynomial time. We call T the trapdoor. In this chapter, we will have T = (θ, d, e)

where θ ∈ End(E), d and e are as in Theorem 4.2.7.

In [Que+21] the authors introduce a polynomial-time algorithm for constructing
(D,N)-trapdoor curves whenever N > D2 and the number of prime divisors of D <

log log p. The main idea is to reproduce the set-up of Theorem 4.2.7. Thus, if one
can construct a supersingular elliptic curve E together with an endomorphism θ ∈
End(E) verifying the requirements of Theorem 4.2.7, and compute the action of this
endomorphism θ on E[N ], then one can solve SSI-T in polynomial time (by finding
an e which is sufficiently small).

The conditions put on θ in Theorem 4.2.7 are essentially conditions on the minimal
polynomial of θ, meaning that every trace zero element in the quaternion algebra
whose norm is B2e−d2

A2 can be used as a suitable θ. This implies that potential (D,N)-
trapdoor curves are obtained from curves in EO for quadratic order O of the form

Z
[√

N2e−d2
D2

]
.

We briefly sketch how θ can be generated. Since Tr(θ) = 0, it can be written as
ci+bj+aij over Bp,∞. Then the degree of τ is D2(p2a+p2b+c2)+d2. Observe that a, b, c
can be rational numbers but since θ is an integral element its norm p2a2 + p2b2 + c2

must be an integer. So one has to find d, e such that N2e− d2 is divisible by D2 and
is positive.

This can be achieved when N > D2. Let ∆ = N2e − d2. Then one has to find a
rational solution to the equation p2a2 + p2b2 + c2 = ∆, which exists whenever ∆ is a
quadratic residue modulo p (if that is not the case one chooses a different d and e).
A solution can be found using Denis Simon’s algorithm [Sim05]. From there, we can
find a maximal order O containing θ and then compute a supersingular elliptic curve
whose endomorphism ring is isomorphic to O (see Algorithm 3 in Section 4.4.2). After
that, the action of θ on the N-torsion can be found using an explicit representation
of O. All these operations can be done in polynomial time (see Algorithms 2 and 3
for more details), leading to the following theorem:

Theorem 4.2.10. Let p be a prime number and let D and N be smooth coprime
integers such that N > D2 and the number of distinct prime divisors of D is smaller
than log log p. Then there exists a polynomial-time algorithm which outputs a (D,N)-
trapdoor curve E with the following information:

• The j-invariant of E.
• Integers d, e with e = O(log(p)).
• A basis P,Q of E[N ] and the points θ(P ), θ(Q) for a trace 0 endomorphism θ

such that deg([D]θ + [d]) = N2e.

4.2.6 –Post-quantum OAEP transformation. We present here the post-quantum
OAEP generic transformation we used in Section 4.3.5.

Let
f : {0, 1}λ+k1 × {0, 1}k0 → {0, 1}nc
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be an invertible injective function. The function f is the public key of the scheme,
its inverse f−1 is the secret key. The scheme makes use of three hash functions

G : {0, 1}k0 → {0, 1}k−k0 ,

H : {0, 1}k−k0 → {0, 1}k0 ,

H ′ : {0, 1}k → {0, 1}k,

modelled as random oracles, where k = λ + k0 + k1. Given those, the encryption
scheme is defined as follows:

• Enc: given a message m ∈ {0, 1}λ, choose r $← {0, 1}k0 and set

s = m||0k1 ⊕G(r), t = r ⊕H(s),

c = f(s, t), d = H ′(s||t),

and output the ciphertext (c, d).
• Dec: given a ciphertext (c, d), use the secret key to compute (s, t) = f−1(c). If
d 6= H ′(s||t) output ⊥. Otherwise, compute r = t ⊕ H(s) and m = s ⊕ G(r). If
the last k1 bits of m are 0, output the first n bits of m, otherwise output ⊥.

4.3—Séta trapdoor one way function and public key encryption
scheme

In this section we describe a general trapdoor one-way function where the main idea
is to turn the attacks from [Que+21] into a trapdoor mechanism.

We first generalise the CGL hash function and we describe a trapdoor sub-family
of this generalization. We then provide more details on key generation, evaluation
and inversion. We finally describe the Séta public key encryption scheme and its CCA
version.

4.3.1 –Generalised Charles-Goren-Lauter hash function. We generalise
the CGL hash function family introduced in [CLG09]. To select a hash function
from this family, one selects a j-invariant j ∈ Jp which canonically fixes a curve
E/Fp2 with j(E) = j. There are ` + 1 isogenies of degree ` connecting E to other
vertices. These `+ 1 vertices can be ordered in a canonical way and a canonical one
of them can be ignored. Then, given a message m = b1b2 . . . bn, with bi ∈ [`], hashing
starts by choosing a degree-` isogeny from E according to symbol b1 to arrive at a
first curve E1. Not allowing backtracking, there are then only ` isogenies out of E1

and one is chosen according to b2 to arrive at a second curve E2. Continuing in the
same way, m determines a unique walk of length n. The output of the CGL hash
function hj is then the j-invariant of the final curve in the path, i.e. hj(m) := j(En),
where the walk starts at vertex j and is defined as above. We see that starting at a
different vertex j′ results in a different hash function hj′ .

We modify this hash function family in three ways. First, we consider a general-
isation where we do not ignore one of the ` + 1 isogenies from the starting curve E.
That is, we take inputs m = b1b2 . . . bn where b1 ∈ [`+ 1] and bi ∈ [`] for 2 ≤ i ≤ n; this
introduces a one-to-one correspondence between inputs and cyclic isogenies of degree
`n originating from E.



Section 4.3 51

Secondly, we consider a generalisation where the walk takes place over multiple
graphs G`i . Given an integer D =

∏n
i=1 `

ei
i where the `i are prime factors, we introduce

the notation µ(D) :=
∏n
i=1(`i+1)·`ei−1

i . We then take the message m to be an element
of

[µ(D)] =

{
(m1, . . . ,mn)

∣∣∣∣∣ mi = bi1bi2 . . . biei , bi1 ∈ [`i + 1], bij ∈ [`i]

for 2 ≤ j ≤ ei, for 1 ≤ i ≤ n

}
where each mi is hashed along the graph G`i . To ensure continuity, the j-invariants
are chained along the hash functions, that is, we write ji = hji−1

(mi), where ji−1 is
the hash of mi−1. Thus, only j = j0 parameterizes the overall hash function. As
before, this generalization returns the final j-invariant jn = hjn−1

(mn) as the hash of
m.

Thirdly, we also modify the CGL hash function to return the images of two canon-
ically defined torsion points Pj and Qj of order N under the D-isogeny ϕm : Ej → Ejn .

We call the resulting hash function family generalized CGL or G-CGL, and we
denote it by Hp,D,N , namely

Hp,D,N =
{
hD,Nj : m 7→ (j(En), ϕm(Pj), ϕm(Qj)) | j ∈ Jp

}
.

4.3.2 –A trapdoor function family from the G-CGL family. Given p,D

and N , let JT,p ⊂ Jp be the set of j-invariants of (D,N)-trapdoor curves defined over
Fp2 (see Definition 4.2.9). By definition of a trapdoor curve, for any jT ∈ JT,p, the
hash function hD,NjT

can be inverted using the trapdoor information. We hence obtain
the following family of trapdoor functions:

Fp,D,NT =
{
fD,NjT

: m 7→ (j(En), ϕm(PjT ), ϕm(QjT )) | jT ∈ JT,p
}
,

where fD,NjT
:= hD,NjT

.

Injectivity. We observe that, for a proper choice of parameters, the functions are
injective.

Lemma 4.3.1. Let N2 > 4D. Then for any jT ∈ JT,p, fD,NjT
is injective.

Proof. Let N2 > 4D and jT ∈ JT,p, suppose that a function fDjT is not injective, i.e.
that there are two distinct isogenies ϕ and ϕ′ of degree D from EjT to Ec, corres-
ponding to two distinct messages, with the same action on EjT [N ], implied by the
colliding images of PjT and QjT . Then, following [MP19, Section 4], their difference is
also an isogeny between the same curves whose kernel contains the entire N-torsion.
This, together with [Sil09, Lemma V.1.2], implies that 4D ≥ deg(ϕ−ϕ′) ≥ N2. Taking
N2 > 4D ensures that in fact ϕ = ϕ′ and therefore that fD,NjT

is injective.

One-wayness. One-wayness of our function family relies on Problem 4.3.2 below. This
problem is a variant of the CSSI problem introduced in [JD11], with the difference
that the starting j-invariant is chosen at random from JT,p (instead of being fixed)
and only the min-entropy of the distribution is specified.
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Problem 4.3.2 (Trapdoor computational supersingular isogeny (TCSSI) problem).
Given p and integers D and N , let jT be a uniformly random element of JT,p and
ϕm : EjT → Em be a random isogeny of degree D sampled from a distribution X with
min-entropy H∞(X) = O(λ). Let {PjT , QjT } be a basis of the torsion group EjT [N ].
Given EjT , PjT , QjT , Em, ϕm(PjT ) and ϕm(QjT ), compute ϕm.

Lemma 4.3.3. Let jT be a uniformly random element of JT,p. Then the function
fD,NjT

∈ Fp,D,NT is (quantum) one-way under the (quantum) hardness of Problem 4.3.2.

Proof. It is easy to check that the distribution of isogenies resulting from hashing a
uniform m∗

$← [µ(D)] has the required entropy; hence the reduction is immediate.

4.3.3 – Inversion. In this section, we concretely show how to use methods from
[Que+21] to invert a given function fD,NjT

∈ Fp,D,NT with trapdoor information T . We
assume that D is odd and that gcd(D,N) = 1. We take EjT a supersingular curve
inside EO where O is the quadratic order Z[

√
(N2e− d2)/D2] for some integers d, e.

We write θ for the endomorphism of End(EjT ) such that Z[θ] ∼= O. Let us also take a
basis PjT , QjT of EjT [N ]. If we define T as e, d, PJT , QjT , θ(PjT ), θ(QjT ), then EjT , T is
a (D,N)-trapdoor curve as produced in Theorem 4.2.10.

To make the inversion mechanism efficient on all inputs, we require the additional
condition that the discriminant ∆ of O is a quadratic nonresidue modulo every prime
divisor of D. The concrete statement can be found in Lemma 4.3.4. We explain how
to generate Ej,T , O and T in Sections 4.4.1 and 4.4.2. We are given (jm, Pm, Qm)

as the output of fD,NjT
for some input m, which we want to recover. Let the isogeny

corresponding to m be denoted by φm. We assume that Pm = φm(PjT ) and Qm =

φm(QjT ). Let τ := φm ◦ θ ◦ φ̂m + [d] and let G := ker(τ − [d]) ∩ Em[D].

Lemma 4.3.4. If ∆ = Disc O is a non-quadratic residue modulo every prime divid-
ing D, the group G is cyclic and equal to ker(φ̂).

Proof. It is clear that ker(φ̂m) ⊂ G since it is contained in ker(φm ◦ θ ◦ φ̂m) and
in Em[D] as well. We now show that G is cyclic. Let M be the largest divisor
of D such that Em[M ] ⊂ G. Then φm can be decomposed as φD/M ◦ φM . Then by
[Pet17, Lemma 5] the kernel of φM is fixed by θ. In the proof of [Pet17, Lemma
6] it is shown that a subgroup of EjT [M ] can only be fixed by an endomorphism
θ if Tr(θ)2 − 4 deg(θ) = Disc Z[θ] = ∆ is a square modulo M . Thus, the quadratic
residuosity condition on ∆ ensures that M = 1 which implies that G is cyclic. The
order of G is a divisor of D since G is cyclic and every element of G has order dividing
D. However, G contains ker(φ̂m) which is a group of order D. This implies that
G = ker(φ̂m).

The group G = ker(φ̂) can be computed by solving a double discrete logarithm
problem, which is efficient as D is smooth. We summarize the steps needed for
inverting the one-way function in Algorithm 1.

In [Que+21] it is shown that Algorithm 1 runs in polynomial time whenever Em[D]

is efficiently representable and ∆ = Disc Z[θ] is as in Lemma 4.3.4.
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Algorithm 1 Computing inverses
Require: jT ∈ JT,p, a trapdoor T and c.
Ensure: m ∈ [µ(D)] such that fD,NjT

(m) = c.
1: Parse c as (jm, Pm, Qm) ∈ Fp2 × (Fp2)2 × (Fp2)2.
2: Parse T as e, d, PJT , QjT , θ(PjT ), θ(QjT ).
3: Compute the canonical curve Em having j-invariant jm.
4: Let τ = φm ◦ θ ◦ φ̂m + [d] ∈ End(Em). . Choices of θ and d ensure deg τ = N2e.
5: Compute τ as described in the proof of Theorem 4.2.7.
6: Compute ker(φm ◦ θ ◦ φ̂m) ∩ Em[D] = ker(τ − [d]) ∩ Em[D] = ker(φ̂m).
7: Compute ker(φm) using ker(φ̂m).
8: return m ∈ [µ(D)] that corresponds to ker(φm).

4.3.4 – Séta Public Key Encryption. We now build Séta, a Public Key En-
cryption scheme using the trapdoor one-way function family of Section 4.3.2, and we
show that it is OW-CPA secure. Concretely, we define the Séta PKE scheme as the
tuple (Key Generation,Encryption,Decryption) of PPT algorithms described below.

Parameters. Let λ denote the security parameter. Let p be a prime such that p2−1 =

DNf where D, N are smooth integers and f is a small co-factor such that 22λ < D,
D2 < N . We let params = (λ, p,D,N).

Key generation. The Key Generation(params) algorithm proceeds as follows:

1. Compute a uniformly random (D,N)-trapdoor supersingular elliptic curve (EjT , T )

defined over Fp2 using Algorithms 2 and 3 (see Section 4.4).

2. Set pk := (jT ) and sk := T .

3. Return (pk, sk).

Encryption. The Encryption(params, pk,m) algorithm proceeds as follows. For a given
m ∈ {0, 1}nm , where nm = blog2 µ(D)c, first cast m as an integer in the set [µ(D)] and
then:

1. Parse pk = jT ∈ JT,p.

2. Compute (jm, Pm, Qm)← fD,NjT
(m).

3. Return c = (jm, Pm, Qm).

Decryption. The Decryption(params, pk, sk, c) algorithm proceeds as follows:

1. Given params, sk and c, parse c as (jc, Pc, Qc) ∈ Fp2 × (Fp2)2× (Fp2)2; if that fails,
return ⊥.

2. Follow Algorithm 1 to recover m̃ ∈ [µ(D)]; if this fails, set m̃ = ⊥.

3. If ⊥ was recovered, return ⊥.
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4. Otherwise, from m̃ ∈ [µ(D)], recover m ∈ {0, 1}nm and return it.

Theorem 4.3.5. Let p be a prime, let D and N be integers such that D2 < N .
Suppose that the output distribution of Algorithm 3 is statistically close to uniform.
Let EjT be an output of Algorithm 3. If Problem 4.3.2 with p,D,N,EjT and X such
that H∞(X) = λ is hard for quantum PPT adversaries, then the PKE scheme above
is one-way chosen-plaintext attack (OW-CPA) post-quantum secure.

Proof. Let M = {0, 1}nm denote the message space of the encryption scheme, with
nm = O(λ). We see that a randomly sampled m $←M directly embedded as an integer
m ∈ [µ(D)] yields a distribution Y with min-entropy H∞(Y ) ≥ λ on isogenies of degree
D starting from EjT . The challenge of opening a given ciphertext c then reduces to
recovering the secret isogeny of Problem 4.3.2 with X = Y .

4.3.5 – IND-CCA encryption scheme. We obtain an IND-CCA secure PKE
scheme by applying the generic post-quantum OAEP transformation [TU16, Sec-
tion 5] (see Appendix 4.2.6) to Séta, for which we prove that our function fD,NjT

is
quantum partial-domain one-way.

Definition 4.3.6. Let k1, k0 and nc be integers. A family F of functions f : {0, 1}λ+k1×
{0, 1}k2 → {0, 1}nc is partial domain one-way if for any polynomial time adversary A,
the following advantage is negligible in λ:

Advλ(A) = Pr

[
s′ = s; s′ ← A(1λ, y), y ← f(s, t), (s, t)

$← A×B, f ← F
]

Lemma 4.3.7. Let jT be a uniformly random element of JT,p. The function fD,NjT
defined in Section 4.3.2 is a quantum partial-domain one-way function, under the
hardness of Problem 4.3.2.

Proof. We note that in our case, partial domain inversion is the same as domain
inversion where only the first part of the path is required. More precisely, factor D as
D1 ·D2 such that gcd(D1, D2) = 1, 2λ+k1 ≤ µ(D1) and 2k0 ≤ µ(D2) (where λ+k0 +k1 is
the bit-length of input strings) and then embed each of s and t into µ(D1) and µ(D2)

respectively. Then we can set fD,NjT
(s, t) := fD2,N

j1
(t) where (j1, P1, Q1) = fD1,N

jT
(s) and

fD2,N
j1

uses {P1, Q1} as basis of Ej1 [N ]. Since 2λ+k1 ≤ µ(D1), then recovering s from
y = fD,NjT

(s, t) is hard under the same assumption as Theorem 4.3.5 with D replaced
by D1.

Theorem 4.3.8 ([TU16], Theorem 2). If fD,NjT
is a quantum partial-domain one-way

function, then the OAEP-transformed scheme is IND-CCA secure in the quantum
random oracle model (QROM).
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Algorithm 2 Computing the integers d, e
Require: D,N, p as above. Let S be the product of primes dividing D.
Ensure: (d, e) such that −N

2e−d2
D2 < 0 is a quadratic non-residue modulo every prime

dividing D and is a quadratic non-residue modulo p.
1: Set e = 1.
2: Find u such that u2 ≡ N2e (mod D2).
3: for every prime `i dividing D do
4: Let s`i be a quadratic non-residue modulo `i.
5: ri ← (s`i −

−N2e+u2

D2 )(2u)−1 (mod `i).
6: end for
7: Compute a residue r modulo S with the property that r ≡ ri (mod `i).
8: `← 0.
9: d← D2(S`+ r) + u.

10: A← N2e−d2
D2 .

11: if A < 0 then
12: return ⊥
13: end if
14: if A is not a square modulo p then
15: `← `+ 1.
16: go to Step 9.
17: end if
18: return (d, e)

4.4—Key generation variants

In this section we describe various methods for generating keys for Séta. We first
describe Algorithm 2, which can generate integers d, e so that ∆ = Disc O, where
O = Z[

√
(N2e− d2)/D2], satisfies the quadratic residuosity conditions imposed Section

4.3.3. Then, we present two options for generating a uniformly random supersingular
elliptic curve inside EO together with the remaining part of the trapdoor information
T . Algorithm 3 treats the generic case, and Algorithm 4 focuses on computing a
(DDs, N)-trapdoor curve from a (D,N)-trapdoor curve and a random walk of degree
Ds.

4.4.1 –Computing the trapdoor information. We recall that the required
condition is that ∆ = Disc O = −4N

2e−d2
D2 must be negative and a quadratic non-

residue modulo every prime dividing D and also modulo p. For simplicity, we fix
e = 1 and look for d of a special form. This is described in Algorithm 2.

Lemma 4.4.1. If d, e is the output of Algorithm 2, then N2e−d2
D2 is a quadratic non-

residue modulo all `i.

Proof. Let ri, s`i , T and u be as in Algorithm 2. Let r be an integer such that
r ≡ ri (mod `i). Then we show that for every i, the integer −N

2e+(D2r+u)2

D2 is not a
quadratic residue modulo `i which implies that −N

2e−d2
D2 is not a quadratic residue
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modulo every `i since T`+ r ≡ ri (mod `i) for every integer `. We have that

−N2e+ (D2r + u)2

D2
=
−N2e+ u2

D2
+D2r2 + 2ur.

By our choice of r we have that

−N2e+ u2

D2
+D2r2 + 2ur ≡ −N

2e+ u2

D2
+ 2uri ≡ s`i (mod `i),

which is a quadratic nonresidue by the choice of s`i .

Lemma 4.4.2. Let S be the product of all primes dividing D. If N > D2S, then
Algorithm 2 returns a correct pair (d, e) with probability higher than 1 − 2−

N
SD2 +1

under plausible heuristic assumption.

Proof. Since u is found by solving an equation modulo D2, we obtain u < D2. Sim-
ilarly we have r < S. Under plausible heuristic assumptions, we can estimate to 1/2
the probability that the quadratic reduosity condition on A is satisfied. Thus, we
obtain a bound on the failure probability by counting how many values ` can be tried
before A becomes negative. With the conservative bound that D2r + u ≈ D2S, we
obtain that we can try N−D2S

DS2 different values for small d, which gives the result.
Correctness of the result follows from Lemma 4.4.1.

4.4.2 –Trapdoor curve generation. Now we focus on generating a random
supersingular elliptic curve whose endomorphism ring contains an embedding of O =

Z[
√

(N2e− d2)/D2 for d, e outputs of Algorithm 2. In [Que+21, Section 5.1] it is
discussed how one can generate a specific curve inside EO. Essentially, this is achieved
by computing a maximal order O containing the suborder O (with [Voi13, Algorithm
7.9]) and then computing a supersingular elliptic curve whose endomorphism ring
is isomorphic to O (with [Eis+18, Algorithm 12]). This procedure can be made
concretely efficient with the algorithms from [De +20] under some conditions on the
prime p that partly underlie the choice of prime described in Section 4.6.2. However,
this procedure is essentially deterministic, so an adversary knowing the quadratic
order O can just recompute the same trapdoor curve. The point of this subsection is
to show how to randomize the procedure.

We obtain randomization by first generating a curve with the deterministic pro-
cedure and then applying the action of a random class group element to derive another
random curve with the same embedding. This operation would be costly if it required
to compute a lot of isogenies. However, we can do it over the quaternions at a neg-
ligible cost before applying the translation algorithm from maximal orders to elliptic
curves.

For concrete randomization, we use the fact (see [JMV09]) that there exists a
bound B (polynomial in p) for which the graph whose vertices are curves in EO and
edges are isogenies of prime degree smaller than B is an expander graph. The fast
mixing property of expander graphs implies that the distribution of curves obtained
after a random walk of fixed length quickly converges to the uniform distribution
as the length of the walk grows. More precisely, for any δ we can find a length ε
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Algorithm 3 Generating the trapdoor curve from a quadratic order O

Require: A prime p, an integer N , a quadratic order O, a bound B, a length ε.
Ensure: A uniformly random curve EjT ∈ EO, a basis PjT , QjT of EjT [N ], and

θ(PjT ), θ(QjT ) with θ ∈ End(EjT ) such that Z[θ] ∼= O.
1: Find a max. order O ⊂ Bp,∞ with O embedded in O with the alg. from [Que+21].
2: Compute `1, . . . , `n the n primes split in O smaller than B.
3: Select a random vector (ε1, . . . , εn) in Zn with L1 norm equal to ε.
4: Set OjT = O.
5: for 1 ≤ i ≤ n do
6: Compute αi ∈ O such that li = O〈αi, `i〉 is a prime ideal above `i.
7: for 1 ≤ j ≤ |εi| do
8: Compute the ideal I = OjT 〈αi, `i〉.
9: Set OjT as the right order of I.

10: end for
11: end for
12: Compute the curve EjT from OjT with [Eis+18, Algorithm 12].
13: Compute a canonical basis PjT , QjT of EjT [N ].
14: Select the correct element θ ∈ OjT such that O ∼= Z[θ].
15: Use the representation of OjT obtained from the execution of [Eis+18, Algorithm

12] to compute θ(PjT ), θ(QjT ).
16: return EjT , PjT , QjT of EjT [N ], θ(PjT ), θ(QjT ).

(logarithmic in the size of the graph and δ) for which the statistical distance between
the random walk distribution and the uniform distribution is less than δ. So once
the length ε (corresponding to a sufficiently small δ) has been set, for any starting
curve E0 in EO the curve

∏n
i=1 l

εi
i ? E0 where l1, . . . , ln are prime ideals above the n

prime `1, . . . , `n smaller than B that are split in O and (ε1, . . . , εn) is uniformly random
among the vectors in Zn such that

∑n
i=1 |εi| = ε, is statistically close to a uniformly

random element in EO. This result underlies Algorithm 3.

Proposition 4.4.3. Algorithm 3 is correct and terminates in polynomial time.

Proof. All the sub-algorithms run in polynomial-time and by choice of B and ε, the
number of iterations in the loop is also polynomial.

It is easy to verify that the ideal I corresponds through the Deuring correspondence
to the isogeny ϕli . Thus, our method simulates a random walk over the graph that
we described at the beginning of this section. For the reasons explained there, the
curve EjT obtained in the end is statistically close to a random element in EO.

4.4.3 –Constraints on the prime. In Séta, we compute and evaluate isogenies
of degree D and N . Hence we always require that D and N are smooth and that
the DN-torsion groups are efficiently representable, i.e., that they are defined on
extensions of Fp2 of small degree. For example, if we require that E[DN ] ⊂ E(Fp4),
then DN must divide p2−1. The smoothness bound B1 of D impacts the efficiency of
encryption and the smoothness bound B2 of N impacts the efficiency of decryption.
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For a given security level λ, we require 22λ < D in order to protect the scheme against
the meet-in-middle attack.

Since we have the range D2 < D2S < D3 depending on the value of S (product
of primes dividing D), and that Lemma 4.4.2 implies that N > D2S then we can
estimate that the value DN will be between 26λ and 28λ. If we want DN dividing
p2−1, we can estimate that the minimum size for the prime p will be between 3λ and
4λ bits. The actual size will depend on the size of (p2 − 1)/DN .

Besides encryption and decryption, key generation also restricts the types of
primes to be used in Séta. Indeed, Step 12 and Step 15 of Algorithm 3 use [Eis+18,
Algorithm 12], which in turn uses the KLTP Algorithm [KLPT14]. Although this
algorithm runs in polynomial time, it is not practical in general; the variant intro-
duced in [De +20] achieves much greater efficiency, provided that p2−1 is of the form
p2 − 1 = `fN2f2, where ` is a small prime, N2 > p3/2 is a smooth integer co-prime to
` and f2 is a cofactor. We refer to [De +20, §8] for more details; a concrete method
to select Séta-friendly primes is described in Section 4.6.2.

4.4.4 –Alternative key generation. We describe an alternative method for
computing trapdoor curves and suggest a variant of the key generation algorithm for
Séta. The main idea is to perform a random secret walk from a publicly available
trapdoor curve. The method relies on the following proposition.

Proposition 4.4.4. Let p be a prime, let Ds, D and N be three smooth integers. Let
(EjT , T ) where T = (θ(PjT ), θ(QjT ), d, e) be a (DsD,N)-trapdoor curve. Let φs : EjT →
Es be an isogeny of degree Ds. Set T ′ = (θ′(Ps), θ

′(Qs), d, e) where θ′ = φs ◦ θ ◦ φ̂s and
{Ps, Qs} is a canonical basis of Es[N ]. Then (Es, T

′) is a (D,N)-trapdoor curve.

Proof. Since we know the action of θ on the torsion group EjT [N ] and φs, then we
can efficiently evaluate θ′ = φs ◦θ ◦ φ̂s on Es[N ]. Since (EjT , T ) is a (DsD,N)-trapdoor
curve, then Tr(θ) = 0 and θ̂ = −θ. Hence

Tr(θ′) = φs ◦ θ ◦ φ̂s +
̂

φs ◦ θ ◦ φ̂s = φs ◦ θ ◦ φ̂s − φs ◦ θ ◦ φ̂s = 0.

It follows that

deg([D]θ′ + [d]) = D2 deg(θ′) + d2 = D2D2
s deg(θ) + d2 = N2e.

By Theorem 4.2.10, (Es, T
′) is a (D,N)-trapdoor curve.

Relying on Proposition 4.4.4, Algorithm 4 computes (D,N)-trapdoor curves when
given a (DsD,N)-trapdoor curve.

Lemma 4.4.5. Algorithm 4 is correct and runs in polynomial time.

Proof. The correctness of Algorithm 4 follows from Proposition 4.4.4. Step 1 of
Algorithm 4 consists of a degree Ds isogeny computation. Since Ds is smooth, then
Step 1 runs in polynomial time. Step 2 consists of an evaluation of φs ◦ θ ◦ φ̂s on
Ps and Qs. One evaluate φ̂s(Ps) and express it as a linear combination of PjT and
Qj to recover θ

(
φ̂s(Ps)

)
, then on evaluates φs

(
θ
(
φ̂s(Ps)

))
. Similarly, one evaluates
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Algorithm 4 Computing a (D,N)-trapdoor curve from a (DsD,N)-trapdoor curve
where Ds ≈ 22λ is a smooth integer
Require: a (DsD,N)-trapdoor curve (EjT , T ) where T = (θ(PjT ), θ(QjT ), d, e).
Ensure: a (D,N)-trapdoor curve (Es, T

′).
1: Sample a uniformly random isogeny φs : Eθ,j → Es of degree Ds .
2: Compute T ′ = (θ′(Ps), θ

′(Qs), d, e) where θ′ = φs ◦θ ◦ φ̂s and {Ps, Qs} is a canonical
basis of Es[N ]..

3: return (Es, T
′)

φs
(
θ
(
φ̂s(Qs)

))
. All these steps run in polynomial time since Ds and N are smooth

integers.

A variant of the Séta setup and key generation is described as follows.

Parameters. Let λ denote the security parameter. Let p be a prime such that p2−1 =

DsDNf where Ds, D, N are smooth integers and f is a small co-factor such that
22λ < D ≈ Ds, D2

sD
2 < N . Compute a (DsD,N)-trapdoor curve (EjT , T ) using

Algorithm 3. We let params = (λ, p,Ds, D,N,EjT , T ).

Key generation. The Key Generation(params) algorithm proceeds as follows:

1. Compute a random (D,N)-trapdoor curve (Es, T
′) using Algorithm 4 with (EjT , T )

as input.

2. Set pk := (js) and sk := T ′.

3. Return (pk, sk).

The advantage of this variant is the fact the key generation algorithm does not use
Algorithm 3, hence most of the requirements on p enumerated in Section 4.4.3 can be
relaxed. This implies having more freedom in the choice of D and N , for which we
could opt for powers of very small primes. Mostly, less good SQISign primes would
be admissible for this variant, which is not the case in the original Séta described
in Section 4.3.4, since its key generation uses Algorithm 3 which requires good Séta
primes in order to be practically efficient. This variant is hence a good alternative to
the Séta key generation, given the fruitless search of good cryptographic size SQI-Sign
primes.

On the other hand, using less good SQISign primes implies that generating the
(DsD,N)-trapdoor curve (EjT , T ) in the parameters generation is less efficient. But
since this parameter generation is run once and for all, then this does not constitute
a considerable drawback.

The main drawback of this key generation method is the considerably large size
of the base prime p. In fact, p needs to satisfy p2 − 1 = DsDNf where f is a small
co-factor, and Ds ≈ D ≈ 22λ such that attacking the isogeny φs : EjT → Es or φm :

Es → Em are equivalent with respect to the meet in the middle attack. Considering
the fact that N > (DsD)2, then N > 28λ and 212λ < DsDN ≤ p2 − 1, as opposed to
26λ < ND < p2 − 1 in Séta (see Section 4.4.3). It follows that the bit size of p2 − 1

practically doubles when we use Algorithm 4 for key generation.
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4.5— “Uber” isogeny assumption
In this section, we introduce a generic framework, which we label Uber Isogeny as-
sumption in analogy to [Boy08], aiming at generalizing isogeny computation prob-
lems encountered in the main families of isogeny-based schemes such as SIDH [JD11],
CSIDH [Cas+18], OSIDH [CK20] and Séta (presented in this work).

The uber isogeny problem does not directly underlie the security of these various
schemes (in the sense that no formal reduction is yet known). However, for each of
these protocols there exists a set of parameters for which if one can solve the uber
isogeny problem, then one can break the scheme. At a higher-level, our new problem
can be seen as a generic key recovery problem.

By introducing this new assumption our goal is twofold. First, we highlight the
proximity between the various isogeny schemes and we provide a common target for
cryptanalysis. Second, the generic attack that we describe in Section 4.5.3 gives a
lower-bound on the security of any future scheme whose security may be related to
our uber assumption in a similar manner as SIDH, CSIDH, OSIDH and Séta.

4.5.1 – The new generic problem. The principal mathematical structure be-
hind the uber isogeny problem is the group action at the heart of the CSIDH protocol
and all the following works. In the isogeny setting, these group actions emerge through
class groups of quadratic orders. The main definitions and properties were introduced
in Section 4.2.3.

Problem 4.5.1 (O-Uber Isogeny Problem ( O−UIP )). Let p > 3 be a prime and let O
be a quadratic order of discriminant ∆. Given E0, Es ∈ EO and an explicit embedding
of O into End(E0) (i.e the knowledge of α0 ∈ End(E0) such that Z[α0] ∼= O), find
a powersmooth ideal a of norm coprime with ∆ such that [a] ∈ Cl(O) is such that
Es ∼= a ∗ E0.

Remark 4.5.2. In Problem 4.5.1, the powersmoothness condition on the norm is to
ensure that the resulting isogeny can always be computed in polynomial time. In some
special cases where the form of the prime p enables to compute some smooth isogenies
in polynomial time, this condition might be relaxed a little bit.

4.5.2 –Relation with various isogeny-based constructions. We start with
the link with CSIDH [Cas+18] which is quite obvious. We state the CSIDH key
recovery problem below [Cas+18, Problem 10].

Problem 4.5.3. Given two supersingular elliptic curves E, E0 defined over Fp with
the same Fp-rational endomorphism ring O, find an ideal a of O such that [a]?E = E0.
This ideal must be represented in such a way that the action of a on any curve can
be evaluated efficiently, for instance a could be given as a product of ideals of small
norm.

Proposition 4.5.4. When p = 3 mod 4 and ∆ = −4p, Problem 4.5.1 is equivalent to
the CSIDH key recovery Problem 4.5.3.

Proof. In the case of CSIDH, the curves admitting an embedding of Z[
√
−p] ∼= Z[π]

in their endomorphism rings are the curves defined over Fp (i.e left stable by π the
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Frobenius morphism). Then, it is quite clear that Problem 4.5.1 is equivalent to
Problem 4.5.3.

The OSIDH protocol [CK20] is a generalization of CSIDH where Z[π] is replaced
by a larger class of quadratic orders. The link between OSIDH and Problem 4.5.1 is
also straightforward. Let us fix some notations3 for this protocol and briefly recall
the principle. The OSIDH key exchange protocol starts from a descending chain of
`-isogenies of size n that we write ϕ0 : F0 → E0 where F0 admits a O0-orientation
(i.e an embedding of O0 inside End(E0). From there, ϕ0 induces an O-orientation
on E0. The secret keys of Alice and Bob are O-ideals a, b whose action on E0 will
lead to curves EA = a ∗ E0 and EB = b ∗ E0. These curves have also a O-orientation
which implies the existence of `n-isogenies ϕA : F0 → EA and ϕB : F0 → EB as in
Proposition 4.2.2. Alice public key will be EA together with some torsion points
(which will allow Bob to compute b ? EA).

Proposition 4.5.5. When O0 is a quadratic order of class number 1 and O = Z +

`nO0, then if there exists a PPT algorithm that can break Problem 4.5.1, there is a
PPT algorithm that can recover the keys of the OSIDH protocol presented in [CK20].

Proof. From the definition of the group action of Cl(O) on the curves having an O-
orientation (see [CK20]), finding a smooth ideal c such that EA = c ∗E0 is enough to
recover the secret key.

Note that we do not have equivalence in Proposition 4.5.5 because the OSIDH
public keys include more information than just curves. This will be the same for
SIDH and Proposition 4.5.7.

For SIDH, we write4 F0 for the common starting curve. In SIDH, recovering
the secret key from the public key is equivalent to the computational supersingular
isogeny problem (CSSI), see [JD11] that we state in Problem 4.5.6.

Problem 4.5.6. Let `A be a small prime number and A = `eAA for some exponent
eA. Let ϕA : F0 → EA be an isogeny whose kernel is 〈[mA]PA + [nA]QA〉, where mA

and nA are chosen at random from Z/AZ (where at least one is in Z/AZ×. Given EA
and the values ϕA(PB), ϕA(QB) for P,B,QB a basis of F0[B] find a generator RA of
kerϕA.

The proposition below requires a bit more work as the link between SIDH and
group actions is less obvious.

Proposition 4.5.7. Assume that F0 admits an O0-orientation with O0 a maximal
quadratic order of class number 1. If there exists a PPT algorithm solving Prob-
lem 4.5.1 for O = Z + A′O0 where A′ divides A, then there exists a PPT algorithm
that breaks the CSSI problem with overwhelming probability.

3These notations do not exactly agree with the ones introduced in [CK20] because we want to
hightlight the link with our O-IOP.

4Once again, we highlight that these notations are unusual and were chosen to emphasize the
link with Problem 4.5.1.
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Proof. First, note that A is chosen so that the kernel points of A-isogenies have a
polynomial-size representation. Then, since A is also smooth, the discrete logarithms
can be solved in polynomial time in the A-torsion and isogenies of degree A can be
computed in polynomial time.

For the rest of this proof, let us write α the endomorphism of F0 such that Z[α]

realizes the embedding of O0 inside End(F0).
If the curve EA is A-isogenous to F0, then EA admits an embedding of Z + AO0.

This embedding is not necessarily primitive but we know there exists A′ dividing A
such that O = Z + A′O0 admits a primitive embedding in End(EA) (see Propos-
ition 4.2.2). Conversely, since the class number of O0 is 1, then any Z + A′O0-
orientation on EA implies the existence of an A′-isogeny between EA and F0. Let
us write ϕA′ : F0 → EA this isogeny of degree A′. Then ϕA, the secret isogeny in
Problem 4.5.6 is the composition of ϕA with an endomorphism θA of O0 of degree
A/A′. Since A/A′ is a power of `A, there are two possibilities for θA. Thus, the
difficulty lies in recovering ϕA′ .

We can generate a curve E0 in EZ+A′O0
by generating ϕ0 : F0 → E0 a descending

isogeny of degree A′. Any ideal a such that EA = a ∗ E0 can be interpreted as
an isogeny ϕa : E0 → EA of degree n(a). The proof is concluded by the fact that
ker ϕ̂A′ = ϕa(ker ϕ̂0), which we prove below. Once ker ϕ̂A′ has been computed, is easy
to recover kerϕA′ = ϕ̂A′(EA[A′]) and find a solution to the CSSI as we explained
above.

To prove ker ϕ̂A′ = ϕa(ker ϕ̂0), we need to understand how the fact that a is an
O-ideal translates on the action of ϕa on ϕ̂0. As explained in Proposition 4.2.2
and the following paragraph, the embedding of O in E0 (resp. EA) is obtained as
Z[ϕ0◦α◦ϕ̂0] = Z[θ0] (resp. Z[ϕA′ ◦α◦ϕ̂A′ ] = Z[θA′ ]). By definition of a being an O-ideal,
we have that ϕa(ker θ0) = ker θA. Thus, we need to prove that ker θ0 ∩ E0[A′] = ker ϕ̂0

and ker θA′ ∩ EA[A′] = ker ϕ̂A (note that this property is exactly what underlies the
inversion mechanism in Section 4.3.3). We will do it for θ0, the property for θA′ holds
for the exact same reasons. It is clear from the definition of θ0 = ϕ0 ◦ α ◦ ϕ̂0 that we
have ker ϕ̂0 ⊂ ker θ0. Let us take P ∈ EA[A′] r ker ϕ̂0, then Q = ϕ̂0(P ) ∈ kerϕ0 r 〈0〉.
If we assume that P ∈ ker θ0, it implies that α(Q) ∈ kerϕ0. Since kerϕ0 is cyclic, we
have that α(Q) = λQ for some λ ∈ Z. This contradicts the fact that ϕ0 is descending.
Indeed, if we write ϕQ, the isogeny of kernel generated by Q, we have ϕ0 = ψ0 ◦ ϕQ
for some isogeny ϕQ and the condition α(Q) = λQ implies that ϕQ is not descending
and so ϕ0 would not be descending, which is a contradiction. Thus, we have proven
that ker θ0 ∩ E0[A′] = ker ϕ̂0 and this concludes the proof asexplained above.

We refer to Section 4.3 for the full details and notations about Séta. We write
O ∼= Z[

√
(N2e− d2)/D2] ∼= Z[θ] and assume that e, d,O are public. This assumption is

plausible as the procedure described in Algorithm 2 is essentially deterministic.

Proposition 4.5.8. If there exists a PPT algorithm solving Problem 4.5.1 for O,
then there exists a PPT algorithm that takes a Séta public key Es and recovers a
trapdoor T such that EjT , T is a (D,N)-trapdoor curve.

Proof. Let EjT be a Séta public key. By applying Algorithm 3 in O and adding the
integers e, d a (D,N)-trapdoor curve E0, T0 can be found in polynomial time with E0 ∈
EO. Thus, we can apply the PPT solver for Problem 4.5.1 on E0 and EjT to compute
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an isogeny ϕa : E0 → EjT corresponding to a O ideal a. If we write θ0 ∈ End(E0)

and θ ∈ End(EjT ) the endomorphisms such that O ∼= Z[θ0] ∼= Z[θ]. Then, by definition
of O-ideals, we have that θ ◦ ϕa = ϕa◦. So if T0 = e, d, P0, Q0, θ0(P0), θ0(Q0), then
T = e, dϕa(P0), ϕa(Q0), ϕa(θ0(P0)), ϕa(θ0(Q0)) is such that EjT , T is a (D,N)-trapdoor
curve.

We finish this section by proving that some instances of Problem 4.5.1 are related
to the more generic isogeny problem of finding a smooth isogeny between any two
supersingular curves (Problem 4.5.9 below). For that it suffices to show that there
exists some quadratic order that is embedded inside the endomorphism ring of any
supersingular curve.

Problem 4.5.9. Let p > 3, be a prime number. Given E1,E2 two distinct supersin-
gular curves over Fp2 . Find ϕ : E1 → E2, an isogeny of powersmooth degree.

Proposition 4.5.10. There is an absolute constant c > 0 such that the following
holds. Let O be a quadratic order of conductor `e inside O0 a maximal quadratic
order, such that ` is inert in O0, and e ≥ c log`(p). If there exists a PPT algorithm
that can break Problem 4.5.1, then there is a PPT algorithm that breaks Problem 4.5.9.

Proof. From the fact that the `-isogeny graph is Ramanujan, and the rapid mixing
of non-backtracking random walks in expander graphs [ABLS07], we deduce that for
e = Ω(log`(p)), there exists a non-backtracking path of degree `e between any two
supersingular curves in the graph.

In particular, if E0 is any O0-orientable curve, there exists a cyclic isogeny of
degree `e from E0 to any other E, and since ` is inert in O0, this isogeny must be
a sequence of descending isogenies. This implies that any E is O-orientable. Thus,
if we write E1 and E2, the two curves in the generic isogeny problem, then we can
construct a middle curve E0 with an explicit embedding of O, then use the PPT
algorithm to find paths between E0, E1 and E0, E2, and finally concatenate the two
paths to obtain a path between E1 and E2 of powersmooth degree.

4.5.3 –Analysis of the uber isogeny assumption. In this section we invest-
igate the complexity of solving Problem 4.5.1. We are going to see that there are
various special cases leading to various complexities.

We start by giving a generic estimate which can be seen as the worst case com-
plexity.

A first upper bound: exhaustive search. The simplest method to solve Problem 4.5.1
is to apply an exhaustive search, for instance by selecting a set of small primes `i all
split in O and trying all combinations of

∏
leii ?E0 until one is isomorphic to Es, where

each li is a prime ideal above `i. The expected running time of this algorithm is in
O(#EO). The best generic bound on the size of this set is given in Proposition 4.2.1.

The classical estimate h(O) = Θ(
√

∆) gives a first upper-bound on the complexity
to solve Problem 4.5.1. In particular, it shows that solving Problem 4.5.1 is easy
when the discriminant ∆ is small. However, when ∆ grows, it is harder to estimate
how this bound reflects on the actual complexity of the problem.
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There are some special cases for which we can be a bit more precise than Pro-
position 4.2.1. For instance, when the discriminant are short, the following Theorem
from Kaneko [Kan89] can be applied to derive a precise statement.

Theorem 4.5.11. Take two distinct quadratic orders O1,O2 of discriminants ∆1,∆2

embedded optimally in the same maximal order inside the quaternion algebra ramified
exactly at p and ∞. If we have Q(

√
∆1) ∼= Q(

√
∆2), then ∆1∆2 ≥ p2.

Applying Theorem 4.5.11 to the discriminants ∆ ≤ p, we see that there cannot be
two distinct embeddings of O inside the same maximal order, thus proving that #EO =

h(O). Thus, in that case, we know that the exhaustive search method described above
has asymptotic complexity Θ(

√
∆).

Another example is given in the proof of Proposition 4.5.10, where we saw that
there are some values of ∆ for which we know that EO is exactly the set of super-
singular curves. More generally, the link between the conductor of O and isogenies
(Proposition 4.2.2) allows us to obtain some better estimates on the size of EO by
using the expander properties of isogeny graphs.

The case of CSIDH. (Proposition 4.5.4) has received a lot of attention from the
community ( [Cas+18; BS20; Pei20; CCJR20] since it was the first scheme that
naturally fits into this framework. In fact, there are improvements over the exhaustive
search strategy in both the classical and quantum settings. The main ingredient
behind these speed-ups is the ability for anyone to obtain a concrete embedding
(through the Frobenius morphism) of O = Z[

√
−p] inside End(E) for any E ∈ EO.

In particular, computing a ? E becomes easy for any E ∈ EO when a has smooth
norm. In the classical setting, this implies a quadratic speed-up over the generic
exhaustive search by using a meet-in-the-middle technique (see [Cas+18]). In the
quantum setting, the speed-up is even more radical, as it creates a malleability oracle
(see [KMPW21]) that reduces CSIDH’s security to an instance of the hidden shift
problem which can be solved in quantum sub-exponential time as described in [Pei20;
BS20] for instance.

Note that neither of these attacks can be used in the generic case as it seems hard to
obtain this malleability oracle for other group actions. For instance, in OSIDH [CK20]
the public keys are made of a curve E and some torsion points to make possible the
computation of a ? E for some secret ideal a. These additional torsion points are not
needed in CSIDH because they can be easily computed.

Smooth conductor inside a maximal quadratic order. A better algorithm also exists
when the conductor f of O is smooth. By Proposition 4.2.2, there exists an isogeny of
degree f between any curve E ∈ EO and any curve in EO0

, where O0 is the quadratic
maximal order containing O. Let E0, Es given by in an instance of Problem 4.5.1,
and let us write ϕ0 : F0 → E0 and ϕs : Fs → Es the two isogenies of degree f .

The alternative resolution method enumerates through all possible Fs = a0 ?F0 in
EO0

then tries to find ϕs of degree f . Since f is smooth, we can apply a meet-in-the-
middle technique to reduce this part to O(

√
f). Once ϕs : Fs → Es and a O0-ideal a0

such that Fs = a0 ?F0 has been found, we can compute a O-ideal such that Es = a?E0

as described in [CK20, Section 5.1].
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If we write ∆ = f2∆0 where ∆0 is the fundamental discriminant of O0. The
complexity of this algorithm is Θ(

√
f
√

∆0) which is better than Θ(
√

∆) = Θ(f
√

∆0).

Other cases. When we are not in one of the above cases, there is no known im-
provement over the exhaustive search (classically or quantumly). Thus, the presumed
security entirely relies on the size of EO. In that regard, the cases where the conductor
of O is big might give more confidence in the difficulty of Problem 4.5.1 as the size of
EO is tied to the number of isogenies of a given degree between distinct pair of curves.
In comparison, the distribution of embeddings of a maximal quadratic order of big
discriminant (i.e above the bound in Theorem 4.5.11) have been less studied. As of
yet, there are no reason to believe that there exists such quadratic orders that would
be embedded in only a small portion of all the supersingular curves but not enough
work has been done on the question to reach a definitive conclusion.

4.6— Implementation
We implemented the version of Séta where the starting curve (EjT , T ) is a (D,N)-
trapdoor curve, i.e, the secret key does not contain a random walk, as described in
Section 4.4.2. Our implementation is written in pure C, reusing large parts of the
codebase of SQISign5; in particular we depend on GMP 6.2.1 for integer arithmetic,
Pari 2.13 for quaternion arithmetic [PAR], and we adapt the so called velusqrt code
for isogeny evaluation [BDLS20]6. Our code is avaible at https://github.com/seta-
isogeny-encryption/seta.

4.6.1 –Main building blocks. Key generation consists of two parts. Finding
a suitable θ in its quaternion form and then finding a supersingular elliptic curve
whose endomorphism ring contains θ. The difficult part of this procedure in practice
is a subroutine for finding a supersingular elliptic curve whose endomorphism ring is
isomorphic to a particular maximal order O. For this step we reused a substantial
amount of the code used for SQISign [De +20].

Encryption consists in the evaluation of an isogeny of degree D at points of order
N . In order to make this efficient we choose parameters where D has small prime
factors and both D and N divide p2 − 1 to avoid using extension fields.

Decryption also uses evaluations of isogenies, but here isogenies of degree N are
evaluated. Furthermore, decryption requires some linear algebra modulo D (when
computing the intersection ker(τ − [d]) ∩ Em[D]) and modulo N (when computing
the isogenies ψ and ψ′). In these steps one uses subroutines for solving discrete
logarithms but due to N and D being smooth, this step is negligible compared to
other computations.

4.6.2 –Prime search. To efficiently implement Séta, it is necessary to select
a prime satisfying the many constraints mentioned in Section 4.4.3. To maximise
efficiency of encryption and decryption, while maintaining reasonably efficient key
generation, we opted to search for a prime satisfying the following constraints: (1)
p2− 1 = DN , with both D and N smooth; (2) D ≈ 22λ and N ≈ 24λ; and (3) D has as
few prime factors as possible.

5https://github.com/SQISign/sqisign
6https://velusqrt.isogeny.org/software.html

https://github.com/seta-isogeny-encryption/seta
https://github.com/seta-isogeny-encryption/seta
https://github.com/SQISign/sqisign
https://velusqrt.isogeny.org/software.html
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There are currently three known techniques to search for primes such that p2 − 1

is smooth, all discussed in [CMN20]. Of these, the most apt to satisfy the constraint
that D has few prime factors was introduced by Costello in [Cos20]: fix an exponent
n > 1, and sieve the space of integers p = 2xn − 1 until one is found such that both
p+ 1 = 2xn and p− 1 = 2(xn − 1) are smooth.

Thanks to this technique, D can be taken as a factor of p+ 1, and has thus much
fewer prime factors than a generic smooth prime of the same size. The drawback of
the technique is that, as n increases, the search space decreases, to the point where
no smooth integers may be found.

Concretely, for λ = 128, we fixed n = 12 and we sieved within the space 232 < x <

233, i.e., 2385 < p < 2397. This yielded four primes with largest factor bounded by 225,
and three with bound 226, corresponding to x = 4679747572, 4845958752, 4966654633,
5114946480, 6334792777, 8176556533, 8426067021. Unfortunately, the search space was
fully explored, meaning that no better primes exist for n = 12.

The relatively large smoothness bounds negatively affect performance of all al-
gorithms in Séta. Unfortunately, it appears to be difficult to find better primes given
current knowledge. Even dropping the constraint on the number of prime factors of
D, the best algorithms known today can hardly beat a 220 smoothness bound for a
prime of 384 bits [CMN20, Table 3].

4.6.3 –Experimental results. We ran experiments on a 4.00GHz Quad-Core
Intel Core i7, using a single core. We used the prime p = 2 · 842606702112 − 1, and the
smooth factors

D = 4312 · 8471911,

N = 321 · 5 · 7 · 13 · 17 · 19 · 23 · 73 · 25712 · 313 · 1009 · 2857 · 3733 · 5519 · 6961

· 53113 · 499957 · 763369 · 2101657 · 2616791 · 7045009 · 11959093

· 17499277 · 20157451 · 33475999 · 39617833 · 45932333.

The key generation was ran only once, and took 10.43 hours. The encryption pro-
cedure took 4.63 seconds, and the decryption took 10.66 minutes, averaged over six
runs. The decryption time is almost entirely devoted to the evaluation of isogenies of
degrees the largest factors of N .

4.7—Further work and conclusion
The efficiency of the scheme essentially depends on the prime factorization of D. We
have managed to keep all computations within Fp2 but D still has large prime factors.
In principle, one can construct trapdoor curves whenever N > D2 so in particular
when ND divides p− 1 and N = 2k, D = 3l. The bottleneck here is the generation of
the trapdoor curve which is rather inefficient, despite its polynomial complexity. Note
that generating the curve does not affect the speed of encryption and decryption, it
only affects the speed of key generation. Thus if one devised a more efficient version
of the KLPT algorithm which speeds up the maximal order to elliptic curve mapping
algorithm, then one could derive a much more efficient scheme. We estimate that in
the best case, one could get a scheme which is only 5 times slower than SIDH. Another
interesting research direction is whether one could build upon our Séta scheme and
derive more advanced primitives. The framework of Séta has certain advantages in
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this context when compared to SIDH. First, Séta is based on a trapdoor one-way
function which could be useful in building signature schemes. Second, SIDH-based
constructions are more likely to need a trusted setup to avoid backdoor curve attacks
such as the one described in [Bas+21, Section 6]. Finally, public key validation is
easy in the context of Séta which could be used to build non-interactive key exchange
or counteract fault attacks.

This chapter presents the OW-CPA PKE scheme Séta, built upon a generalized
version of the isogeny-based CGL hash function family. To do so, we made use
of a “torsion-point attack” against SIDH-like schemes [Pet17] and transformed this
into a decryption mechanism which recovers a message encrypted as a secret isogeny
between a trapdoor starting curve and a final ciphertext curve. An IND-CCA variant
is constructed using the post-quantum OAEP transform and both security proper-
ties are proven to reduce to the TCSSI problem, derived from the CSSI problem
introduced in [JD11]. We then discussed the key generation in terms of computing
trapdoor information, the corresponding curve generation, and of the constraints that
this does or does not place on the base prime of the scheme; we also proposed an
alternative method for these computations. Of independent interest, we formalized
the “uber isogeny asumption” and discussed its relation with existing isogeny-based
schemes, such as CSIDH, OSDIH and SIDH, before analyzing its complexity. Finally,
we presented implementation results for both the search of a well-suited base prime
and for key-generation, encryption and decryption experiments.

Acknowledgments. We would like to thank the anonymous reviewers for their remarks
and suggestions.





Chapter 5

SHealS and HealS: isogeny based PKEs
from a key validation method for SIDH

This chapter is for all practical purposes identical to the paper SHealS and HealS:
isogeny based PKEs from a key validation method for SIDH [FP21b], authored jointly
with Christophe Petit, which was published at Asiacrypt 2021.

5.1— Introduction

The general isogeny computational problem is the following: given two isogenous el-
liptic curves E and E′, compute an isogeny from E to E′. This hard problem was used
by J. M. Couveignes [Cou06], Rostovtsev and Stolbunov [RS06] to design a key ex-
change protocol using ordinary isogenies, and by Charles, Goren and Lauter [CLG09]
to design a cryptographic hash function using supersingular isogenies. The CRS
(Couveignes-Rostovtsev-Stolbunov) key exchange scheme is less practical in general
and is vulnerable to a sub-exponential quantum attack [CJS14].

In 2011, Jao and De Feo proposed SIDH [JD11] that uses isogenies of supersin-
gular elliptic curves. SIDH is efficient and it is not vulnerable to the sub-exponential
quantum attack presented in [CJS14]. Nevertheless, a recent paper by Kutas et
al. [KMPW21] proves that hidden-shift like attacks apply to variants of SIDH with
considerably overstretched parameters. The isogeny computational problem underly-
ing the security of SIDH is believed to be hard to break, even when using a quantum
computer. SIKE [Jao+20] (which is the state of art implementation of SIDH [JD11;
FJP14]) is the only isogeny-based Key Encapsulation Mechanism (KEM) submitted
to the NIST post-quantum standardization process. Even though SIKE is not the
most efficient candidate among KEMs in this competition, SIKE provides the most
compact keys and ciphertexts. This has certainly contributed to its selection for the
third round of the competition as an alternate candidate [Nat].

Contrarily to the ordinary case where isogenies commute, supersingular isogenies
do not commute in general. In order to solve this issue in SIDH, the images of some
well-chosen torsion points through the secret isogeny are computed and included in
the public keys.

In 2016, Galbraith et al. [GPST16] exploited this supplementary information to
develop adaptive attacks on SIDH when one party has a static secret key. The main
idea of the attack is that Bob replaces the images of the torsion points in his public
key by malicious ones and obtains some information on Alice’s static secret when
looking at the obtained shared secret. Repeating this process a polynomial number
of times, Bob totally recovers Alice’s private key.
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In SIKE, the attack is avoided by applying a variant [HHK17] of the Fujisaki-
Okamoto transform [FO99]. This transform forces Bob to reveal his encryption key to
Alice. Two countermeasures enabling static-static key exchange have been proposed:
k-SIDH [AJL17] and a variant by Jao and Urbanik [UJ20]. These schemes essentially
consist in running k2 parallel instances of SIDH with each party having k SIDH private
keys, hence each party computes about k2 isogenies. In [Dob+20] and in [Bas+20],
it is shown that variants of the adaptive attacks still apply to these schemes, and
that the attacks are exponential in k in general. Hence one needs a relatively large
k, say k = 46 as suggested by [Dob+20], for these schemes to be secure. For k = 46,
about 462 = 2116 isogenies are computed in k-SIDH, hence the scheme is arguably not
practical. To the best of our knowledge, there exists no practically efficient method
to counter the adaptive attack on SIDH without revealing the encryption key and
using re-encryption to verify the validity of the ciphertext.

CSIDH [Cas+18] is the perfect post-quantum alternative to the classical Diffie-
Hellman key exchange due to its analogy to the later primitive. Meanwhile, its
quantum security has been considerably degraded recently [Pei20], [BS20], [CCJR20]
and remains to be precisely estimated. CSIDH was originally instantiated with a
512 bit prime, but due to analysis of its actual quantum security, in [CCJR20] it is
suggested to use primes of up to 4000 bits to achieve the NIST level 1 security. The
increase of the prime size impacts the efficiency of the scheme.

Contributions. The contributions of this chapter are fourfold.

Firstly, we propose a new countermeasure to the GPST adaptive attack on SIDH.
The main idea is that Bob enables Alice to verify that his torsion points were honestly
generated. Consider an SIDH setting, let φA : E0 → EA and φ′A : EB → EBA be Alice’s
secret isogenies, φB : E0 → EB and φ′B : EA → EAB be Bob’s secret isogenies in an
SIDH instance. In Section 5.3, we prove that if Bob publishes the action of φB on
E0[`2eAA ] and that of φ′B on EA[`2eAA ], then Alice can exploit this information to verify
Bob’s public key validity. Working with SIDH parameters where p = `eAA `eBB f − 1,
the torsion points of order `2eAA and `2eBB would be defined over extensions of Fp2 of
degree roughly `eAA and `eBB respectively. We hence increase the field characteristic to
p = `2eAA `2eBB f − 1 (where f is a small co-factor) such that the later torsion groups are
defined over Fp2 . Also, we set the starting curve E0 to be a random supersingular
curve with unknown endomorphism ring to avoid improved torsion points attacks. We
hence obtain an efficient key validation method which does not require key disclosure
and re-encryption, as it is the case in SIKE.

Secondly, we incorporate this key validation method into a key exchange scheme:
HealSIDH (Healed SIDH). Let p = `2eAA `2eBB f−1 as required by the countermeasure,
let φA : E0 → EA, φ′A : EB → EBA, and φB : E0 → EB , φ′B : EA → EAB be Alice’s
and Bob’ secret isogenies respectively. Alice reveals the action of φA on E0[`2eBB ] and
that of φ′A on EB [`2eBB ]. Analogously, Bob reveals the action of φB on E0[`2eAA ] and
that of φ′B on EA[`2eAA ]. Revealing the action of φ′A and φ′B on torsion points implies
revealing points on the shared curve EAB = EBA. To avoid this, each party canon-
ically generates a basis of the corresponding subgroup and reveals the coordinates of
the points in this canonical basis. HealSIDH is an order of magnitude more efficient
compared to k-SIDH (the existing countermeasure to the adaptive attack on SIDH)
since only four isogenies are computed in HealSIDH while more than k2 (with 46 ≤ k)
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of them are computed in k-SIDH. The security of HealSIDH against key recovery re-
lies on Problem 5.4.3 which is a variant of the Supersingular Isogeny Computational
Diffie-Hellman Problem (SSICDHP), Problem 5.2.5.

Thirdly, we design a PKE scheme using HealSIDH. Our PKE scheme is named
SHealS: Static-static key Healed SIKE. The idea in SHealS is to use the points to
encrypt the plaintext, in such a way that the receiver solves a discrete logarithm
problem in a group of smooth order to recover the plaintext. A similar idea is used in
SiGamal [MOT20] and SimS [FP21c], but our design is different. SHealS uses primes
two times larger (in terms of bit size) compared to SIKE primes, has larger keys and
ciphertexts, but only 4 isogenies are computed and evaluated on torsion points in a
full execution (Key Generation+Encryption+Decryption) of the scheme, as opposed to 5

isogenies in SIKE, among which 3 isogenies are evaluated on torsion points while the
remaining two are not. For this reason, we believe SHealS efficiency is comparable to
that of SIKE, but only an optimised implementation of SHealS would help evaluate
the exact timings and do a more precise efficiency comparison. The main advantage
of SHealS over SIKE is the reuse of encryption keys. In fact, since there is no key
disclosure, the encryption key can remain static for a given user. Moreover, this user
can use this same key as a private key in the SHealS PKE setting. We prove that
SHealS is IND-CPA secure relying on one new assumption we introduce. Despite not
being able to come up with a succinct proof of IND-CCA security, we conjecture that
SHealS is IND-CCA secure and provide arguments to support our conjecture.

Lastly, we suggest HealS, a variant of SHealS using a smaller prime, providing the
same security level, smaller keys and ciphertexts. The size of the prime used in HealS
is only 1.5 times that of the prime used in SIKE. This yields a speed-up over SHealS,
smaller keys and ciphertexts; hence reducing the efficiency and key sizes gap between
SHealS and SIKE. The drawback of HealS compared to SHealS is that private keys
can not be used as encryption keys.

As a result, beside CSIDH whose quantum security remains to be precisely es-
timated, HealSIDH is a new efficient interactive post-quantum key exchange scheme
enabling static-static key setting. Moreover, we believe the fact that there is no key
disclosure in SHealS and HealS makes of them promising PKE schemes.

Related work. While this work was under submission, an SIDH Proof of Knowledge
mechanism [FDGZ21] was published online by De Feo et al. This mechanism enable
any party in an SIDH instance to prove that his public key was honestly generated.
The proof attached to the public key is obtained by performing an SIDH-type signa-
ture on the public key to proof the knowledge of the secret isogeny and the correctness
of the torsion points. For this reason, the proof is relatively large (O(λ2)), comput-
ing and verifying the proof are relatively time consuming compared to our schemes.
Nevertheless, their proof enables the design of an SIDH based NIKE while our key
exchange HealSIDH is interactive.

Outline. The remainder of this capter is organized as follows: in Section 5.2, we
recall some generalities about PKE schemes, elliptic curves and isogenies. We briefly
present SIDH, the improved torsion points attacks and the GPST adaptive attack.
We end Section 5.2 by describing existing countermeasures to the GPST adaptive
attacks. Section 5.3 is devoted to our countermeasure. In Section 5.4 we present
HealSIDH key exchange and in Section 5.5 we construct the SHealS PKE scheme. In
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Section 5.6, we provide a concrete instantiation of HealSIDH and SHealS, and provide
a high level comparison to k-SIDH and SIKE respectively. In Section 5.7, we present
HealS and in Section 5.8 we conclude the paper.

5.2—Preliminaries

5.2.1 – Public key encryption. We recall standard security definitions related
to public key encryption.

Definition 5.2.1 (PKE). A Public Key Encryption scheme Pλ is a triple of PPT
algorithms (Key Generation, Encryption, Decryption) that satisfy the following.

1. Given a security parameter λ as input, the key generation algorithm
Key Generation outputs a public key pk, a private key sk and a plaintext space
M.

2. Given a plaintext µ ∈M and a public key pk as inputs, the encryption algorithm
Encryption outputs a ciphertext c = Encryptionpk(µ).

3. Given a ciphertext c and sk as inputs, the decryption algorithm Decryption out-
puts a plain text = Decryptionsk(c).

Definition 5.2.2 (Correctness). A PKE scheme Pλ is correct if for any pair of keys
(pk, sk) and for every plaintext µ ∈M,

Decryptionsk
(
Encryptionpk(µ)

)
= µ.

Definition 5.2.3 (IND-CPA secure). A PKE scheme Pλ is IND-CPA secure if for
every PPT adversary A,

Pr
[
b = b∗

∣∣∣∣∣ (pk, sk)← Key Generation(λ), µ0, µ1 ←M,

b
$←− {0, 1}, c← Encryptionpk(µb), b

∗ ← A(pk, c)

]
=

1

2
+ negl(λ).

Definition 5.2.4 (IND-CCA secure). A PKE scheme Pλ is IND-CCA secure if for
every PPT adversary A,

Pr

[
b = b∗

∣∣∣∣∣ (pk, sk)← Key Generation(λ), µ0, µ1 ← AO(·)(pk,M),

b
$←− {0, 1}, c← Encryptionpk(µb), b

∗ ← AO(·)(pk, c)

]
=

1

2
+ negl(λ),

where O(·) is a decryption oracle that when given a ciphertext c′ 6= c, outputs
Decryptionsk(c′) or ⊥ if the ciphertext c′ is invalid.

5.2.2 –Elliptic curves and isogenies. An elliptic curve is a rational smooth
curve of genus one with a distinguished point at infinity. Elliptic curves can be seen
as commutative groups with respect to a group addition having the point at infinity
as neutral element. When an elliptic curve E is defined over a finite field Fq, the set
of Fq-rational points E(Fq) of E is a subgroup of E. For every integer N coprime with
q, the N-torsion subgroup E[N ] of E is isomorphic to ZN ⊕ ZN .

An isogeny from E to E′ is a rational map from E to E′ which is also a group
morphism. The kernel of an isogeny is always finite and entirely defines the isogeny up
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to powers of the Frobenius. Given a finite subgroup G of E, there exists a Frobenius
free isogeny of domain E having kernel G, called a separable isogeny. Its degree is
equal to the size of its kernel. The co-domain of this isogeny is denoted by E/G.
The isogeny and the co-domain E/G can be computed from the knowledge of the
kernel using Vélu’s formulas [Sil09] whose efficiency depends on the smoothness of
the isogeny degree.

An endomorphism of an elliptic curve E is an isogeny from E to E. The group
structure of E is closely related to that of its endomorphism ring. When E is defined
over a finite field, the endomorphism ring of E is either an order in a quadratic field,
in which case we say E is ordinary, or a maximal order in a quaternion algebra in
which case we say E is supersingular. The generic isogeny problem is harder to solve
for supersingular curves (for which the best attacks are exponential) than ordinary
curves (for which there exists a sub-exponential attack [CJS14]). SIDH is based on
supersingular isogenies.

5.2.3 – SIDH. The SIDH scheme is defined as follows.

Setup. Let p = `eAA `eBB − 1 be a prime such that `eAA ≈ `eBB ≈ √p. Let E0 be a super-
singular curve defined over Fp2 . Set E0[`eAA ] = 〈PA, QA〉 and E0[`eBB ] = 〈PB , QB〉. The
public parameters are E0, p, `A, `B , eA, eB , PA, QA, PB , QB .

Key Generation. The secret key skA of Alice is a uniformly random integer α sampled
from Z`eAA . Compute the cyclic isogeny φA : E0 → EA = E0/ 〈PA + [α]QA〉. The pub-
lic key of Alice is the tuple pkA = (EA, φA(PB), φA(QB)). Analogously, Bob’s secret
key skB is a uniformly random integer β sampled from Z`eBB and his public key is
pkB = (EB , φB(PA), φB(QA)) where φB : E0 → EB = E0/ 〈PB + [β]QB〉.

Key Exchange. Upon receiving (EB , Ra, Sa), Alice checks that
e(Ra, Sa) = e(PA, QA)`

eB
B , if not she aborts. She computes the isogeny φ′A : EB →

EBA = EB/ 〈Ra + [α]Sa〉. Her shared key is j(EBA). Similarly, upon receiving
(EA, Rb, Sb), Bob checks that e(Rb, Sb) = e(PB , QB)`

eA
A , if not he aborts. He com-

putes the isogeny φ′B : EA → EAB = EA/ 〈Rb + [β]Sb〉. His shared key is j(EAB).

The correctness of the key exchange follows from the fact that
EA/ 〈φA(PB) + [β]φA(QB)〉 ' E0/ 〈PA + [α]QA, PB + [β]QB〉 ' EB/ 〈φB(PA) + [α]φB(QA)〉 .

The security of the SIDH key exchange protocol against shared key recovery relies
on Problem 5.2.5. Furthermore, Problem 5.2.6 states that it is difficult to distinguish
the shared secret from a random supersingular elliptic curve.

Problem 5.2.5 (Supersingular Isogeny Computational Diffie-Hellman). Given E0,
PA, QA, PB, QB, EA, φA(PB), φA(QB), EB, φB(PA), φB(QA) (defined as in SIDH),
compute EAB.

Problem 5.2.6 (Supersingular Isogeny Decisional Diffie-Hellman). Given E0, PA,
QA, PB, QB, EA, φA(PB), φA(QB), EB, φB(PA), φB(QA) (defined as in SIDH), set
F0 = EAB and let F1 be a uniformly random supersingular curve. Given (E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), EB , φB(PA), φB(QA), Fb)

where b is uniformly sampled from {0, 1}, distinguish whether b = 0 or b = 1.
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An IND-CPA secure PKE from SIDH. One canonically derives a PKE
scheme from SIDH as follows. Let H : Fp2 → {0, 1}n be a cryptographic hash function.

Key Generation. Alice generates her key pair exactly as in SIDH.
Encryption. Let m be a plaintext. Bob generates a random integer β ∈ Z`eBB and
executes the SIDH key exchange using Alice’s public key to obtain
c0 = (EB , φB(PA), φB(QA)) and jAB = j(EAB). The returned ciphertext is (c0, c1 =

H(jAB)⊕m).
Decryption. Given a ciphertext (c0, c1), Alice completes the underlying SIDH key
exchange to obtain jBA = j(EBA) and recovers the plaintext m = c1 ⊕H(jBA).

The above scheme is IND-CPA secure assuming Problem 5.2.6 is hard [FJP14],
but it is not IND-CCA since it is vulnerable to the GPST adaptive attack [GPST16]
that we present later in Section 5.2.5.

5.2.4 –Passive torsion point attacks on SIDH. The direct key recovery at-
tack (attacking one party’s secret key) in SIDH translates into solving the following
Supersingular Isogeny Problem.

Problem 5.2.7. Let A and B be two integers such that gcd(A,B) = 1. Let E0 be a
supersingular elliptic curve defined over Fp2 . Set E0[B] = {P,Q} and let φ : E0 → EA
be a random isogeny of degree A. Given E0, EA, P , Q, φ(P ) and φ(Q), compute φ.

The difference between Problem 5.2.7 and the general isogeny problem is the fact
that the action of φ on the group E0[B] is revealed. In 2017, Petit [Pet17] exploited
these torsion point images to design an algorithm that solves Problem 5.2.7 for a
certain choice of unbalanced (A� B) parameters when the endomorphism ring of the
starting curve E0 is public. Petit’s attack has recently been considerably improved
by de Quehen et al. [Que+21]. We refer to [Que+21] for more details.

To counter the attack in unbalanced SIDH instances, one sets the starting curve
E0 to be a random supersingular curve with unknown endomorphism ring. We don’t
know how to generate random supersingular elliptic curves for which the endomorph-
ism ring is unknown (also to the party generating the curve). This is considered as an
open problem [DMPS19]. Hence one generally relies on a trusted party to generate a
random curve which is then used as a public parameter of the scheme. This will be
the case for the schemes presented in this paper.

5.2.5 – GPST adaptive attack. In SIDH [FJP14] one does a pairing-based
check on the torsion points φB(PA) and φB(QA) returned by a potentially malicious
Bob. Let E be a supersingular elliptic curve, let N be an integer and let µN be the
group of N-roots of unity. Let eN : E[N ] × E[N ] → µN be the Weil pairing [Gal12].
Let φ : E → E′ be an isogeny of degree M , then for P,Q ∈ E[N ],

eN (φ(P ), φ(Q)) = eN (P,Q)M

where the first pairing is computed on E′ and the second one on E.
In SIDH, given (EB , R, S) returned by Bob as public key, Alice checks if

e`eAA
(R,S) = e`eAA

(PA, QA)`
eB
B .
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As we will see below, this verification does not assure that the points R,S were
honestly generated. More precisely, the pairing verification does not capture the
GPST adaptive attack.

The GPST adaptive attack. The main idea of the Galbraith et al. adaptive
attack [GPST16] is that if Bob manipulates the torsion points φB(PA) and φB(QA)

conveniently, then he can get some information about Alice’s private key α given that
he knows if the secret curve computed by Alice is equal to EAB or not. Hence in
the attack scenario, Bob needs to have access to the later information. This access is
provided to Bob through a key exchange oracle:

O(E,R, S,E′) which returns 1 if j(E′) = j(E/ 〈R+ [α]S〉) and 0 otherwise

If one supposes that `A = 2 and eA = n, then after each query, Bob recovers one bit
of

α = α0 + 21α1 + 22α2 + · · ·+ 2n−1αn−1.

The attack recovers the first n−2 bits of α using n−2 oracle queries, and it recovers
the two remaining bits by brute force. We refer to [GPST16] for more details.

5.2.6 –Existing countermeasures to the GPST adaptive attacks . The
previous section has highlighted the need for a "better" key validation method for
SIDH-type schemes. We now present SIKE and k-SIDH, that are currently the two
main countermeasures to the GPST attack on SIDH.

SIKE (Supersingular Isogeny Key Encapsulation). Our description is more
general compared to that submitted to the third round of the NIST competition [Jao+20],
and it does not include key compression features. In the following scheme, G, H and
F are hash functions and n is an integer, we refer to [Jao+20] for more details.

Setup. As in SIDH.
Key Generation. Generate a secret key sk = α ∈ Z`eAA and a public key
pk = (EA, φA(PB), φA(QB)) as in SIDH. Sample a uniformly random integer s ∈ {0, 1}n

and return (s, sk, pk).
Encapsulation. Sample a uniformly random integer m from {0, 1}n. Compute β =

G(m||pk) ∈ Z`eBB and compute c0 = (EB , φB(PA), φB(QA)) and EAB as in the SIDH,
together with c1 = F (j(EAB))⊕m and K = H(m||(c0, c1)) and return ((c0, c1),K).
Decapsulation. From (c0, c1), compute EBA as in SIDH and m′ = c1 ⊕ F (j(EBA)). Re-
encrypt m′ to obtain c′0 = (E′B , ψB(PA), ψB(QA)). If c0 = c′0, return
K = H(m′||(c0, c1)), else return K = H(s||(c0, c1)).

In SIKE, the adaptive attacks are not applicable since during the decapsulation,
Alice recomputes Bob’s encryption key β′ = G(m′||pk) ∈ Z`eBB and checks if the ob-
tained key leads to the curve and torsion points sent by Bob, this enables her to detect
maliciously generated public keys. Therefore, the scheme requires key disclosure to
the recipient. This is a common drawback to all post-quantum PKEs engaged in the
NIST standardization process. In fact, as noticed in [AJL17, §1], these schemes use
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ephemeral keys or indirect validation techniques that would expose one’s key in the
static-static setting.

Other countermeasures to the GPST attack. As a countermeasure to the
GPST attack, Azarderakhsh et al. introduced k-SIDH [AJL17]. In k-SIDH, Alice’s
private key is a tuple α = (α1, · · · , αk) ∈ (ZeA`A )k and Bob’s private key is a tuple
β = (β1, · · · , βk) ∈ (ZeB`B )k. Alice and Bob simultaneously run k2 SIDH key exchange in-
stances corresponding to the k2 couples of Alice and Bob’s SIDH private keys (αi, βj),
1 ≤ i, j ≤ k. The shared secret is then obtained by applying a key derivation function
to the corresponding k2 SIDH shared secrets. The scheme quickly becomes imprac-
tical as k grows.

In [UJ20], Jao and Urbanik propose a variant of k-SIDH that they expected to be
more efficient. Their variant exploits non trivial automorphisms of the starting curve
E0 when this supersingular curve has j-invariant 0 or 1728 to reduce the number k of
SIDH instances in k-SIDH. For example, in the case where the starting supersingular
curve E0 has j-invariant 0, there exists a non trivial automorphism η6 of E0 of order
6. Given a finite subgroup G ⊂ E0, the curves E0/G, E0/η6(G) and E0/η

2
6(G), are

isomorphic but it is not the case for the isogenies E0 → E0/G, E0 → E0/η6(G) and
E0 → E0/η

2
6(G). Hence when performing a key exchange, these three isogenies will

lead to three distinct SIDH shared keys. Hence with α′ = (α1, · · · , αk′) ∈ (ZeA`A )k
′

and β′ = (β1, · · · , βk′) ∈ (ZeB`B )k
′
, Alice and Bob can derive 3k′2 SIDH shared secrets

contrarily to k′2 for k-SIDH.
In [Dob+20], Dobson et al. show that the GPST attack can be adapted to k-

SIDH. Nevertheless, the cost of the attack (number of queries to the key exchange
oracle) grows exponentially with k. Dobson et al.’s attack does not directly apply to
the Jao-Urbanik variant of k-SIDH. In [Bas+20], Basso et al. present an adaptation
of this attack to the Jao-Urbanik variant. Moreover, they prove that considering
their attack, for the same security level, k-SIDH is more efficient compared to the
Jao-Urbanik variant. From these two attacks, one concludes that for k-SIDH and the
Jao-Urbanik variant to be secure against adaptive attacks, one needs k to be relatively
large ([Dob+20] suggests k = 46 for about 128 bits of security), consequently the
schemes become less practical.

To sum up, as countermeasures to the GPST adaptive attack, SIKE imposes key
disclosure while k-SIDH comes with a considerable efficiency drawback. We address
this in the next section by providing a new countermeasure which is more efficient
compared to k-SIDH and without key disclosure.

5.3—A new countermeasure to the GPST adaptive attack
In this section, we describe a mechanism which enables Alice, when using a static
key, to decide on the correctness of the torsion points returned by Bob. We translate
this point correctness mechanism into a new key validation method.

5.3.1 –Overview. In our scenario, like in SIKE, we suppose that the initiator
of the communication (Bob) has to prove the validity of his torsion points to the
other party (Alice). Let E0, PA, QA, PB , QB , EA, φA(PB), φA(PB) be the public
parameters and Alice’s public key in an SIDH instance. For simplicity, we suppose
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that the degree of Alice’s isogeny is 2a and that the degree of Bob’s isogeny is 3b for
some integers a and b. In SIDH, Bob computes a cyclic isogeny φB : E0 → EB of
degree 3b together with the images φB(PA) and φB(QA) of PA and QA. We say that
the torsion points R,S ∈ EB [2a] returned by Bob are correct if R = [λ]φB(PA) and
S = [λ]φB(QA) for some λ ∈ Z/2aZ×. We establish a Points Correctness Verification
(PCV) mechanism for Alice to determine if the torsion points computed by Bob are
correct.

We start with an observation by Leonardi [Leo20]: ”in an honest SIDH, φ′A ◦φB =

φ′B ◦ φA”. Composing by φ̂′A on the left, we get

[2a] ◦ φB = φ̂′A ◦ φ
′
B ◦ φA. (5.1)

Let P2, Q2 ∈ E0[22a] be points such that [2a]P2 = PA and [2a]Q2 = QA. Then{
φ′A ◦ φB(P2) = φ′B ◦ φA(P2)

φ′A ◦ φB(Q2) = φ′B ◦ φA(Q2),
(5.2)

hence {
φB(PA) = φB([2a]P2) = φ̂′A ◦ φ

′
B ◦ φA(P2)

φB(QA) = φB([2a]Q2) = φ̂′A ◦ φ
′
B ◦ φA(Q2)

(5.3)

Equation 5.3 suggests that if Alice can successfully check the equalities in Equa-
tion 5.2, then she can verify if Bob’s torsion points are correct.

The idea of the PCV mechanism is that instead of revealing the action of φB :

E0 → EB on the 2a-torsion sub-group of E0, Bob reveals the action of φB on the
22a-torsion sub-group of E0 and the action of φ′B : EA → EAB on the 22a-torsion sub-
group of EA. In our PCV mechanism, Bob’s public key (when honestly computed) is
(EB , φB(P2), φB(Q2)). The action of φ′B : EA → EAB on the 22a-torsion sub-group of
EA is provided by canonically generating a new 22a-torsion basis {RA, SA} of EA and
revealing Rab = φ′B(RA) and Sab = φ′B(SA).

At this point, Bob can be malicious in the following three ways:

1. honestly compute Ra = φB(P2) and Sa = φB(Q2), and maliciously compute
Rab = φ′B(RA) and Sab = φ′B(SA);

2. maliciously compute Ra = φB(P2) and Sa = φB(Q2), and honestly compute
Rab = φ′B(RA) and Sab = φ′B(SA);

3. maliciously compute Ra = φB(P2) and Sa = φB(Q2), and maliciously compute
Rab = φ′B(RA) and Sab = φ′B(SA).

In the first two cases, we say that Bob is partially point-malicious and in the third
case we say that Bob is doubly point-malicious.

Remark 5.3.1. We use the term point-malicious to highlight the fact that we focus
only on the correctness of the torsion points output by Bob, not on the validity of the
Bob’s entire public key. Hence we are supposing that φB and φ′B are cyclic isogenies
of degree 3b and only the torsion point were maliciously evaluated.
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When Bob is partially point-malicious, then either the right hand term or the
left hand term in Equation 5.2 is correctly computed by Alice. Hence the partial
point-maliciousness of Bob would be detected since the other term of the equation
would be different. Concretely, we have the following theorem.

Theorem 5.3.2. Let E0, PA, QA, PB, QB, EA, φA(PB), φA(PB) be the public para-
meters and Alice’s public key in an SIDH instance. Let P2, Q2 ∈ E0[22a] such that
[2a]P2 = PA and [2a]Q2 = QA. Let (EB , Ra, Sa) be Bob’s public key. Moreover,
let {RA, SA} be a canonical basis of EA[22a] and let {Rab, Sab} be its image through
φ′B : EA → EAB output by Bob. Write φA(P2) = [e1]RA + [f1]SA and φA(Q2) =

[e2]RA + [f2]SA. Let us suppose that Bob is eventually partially point-malicious and
let ψ′A : EB → EB/ 〈[2a]Ra + [α][2a]Sa〉 be the isogeny computed by Alice.
If e22a(Ra, Sa) = e22a(P2, Q2)3b , [e1]Rab + [f1]Sab = ψ′A(Ra) and [e2]Rab + [f2]Sab =

ψ′A(Sa), then Bob’s torsion points are correct.

Proof. Noticing that [e1]Rab+[f1]Sab stands for φ′B◦φA(P2) and ψ′A(Ra) for φ′A◦φB(P2),
while [e2]Rab+[f2]Sab stands for φ′B ◦φA(Q2) and ψ′A(Sa) for φ′A ◦φB(Q2), the theorem
follows from the previous discussion.

Remark 5.3.3. The points φA(P2), φA(Q2) ∈ EA[22a] are secret (known only by
Alice). In fact their knowledge is equivalent to the knowledge of Alice’s secret since
[2a]P2 = PA and [2a]Q2 = QA.

For the third case where Bob is doubly point-malicious, we provide a more involved
mathematical proof in the next paragraph.

5.3.2 –The main theorem. In the previous section, we make use of points of
order 22a or 32b. In SIDH parameters where p = 2a3bf − 1, these points are defined
over a large extension field of degree roughly 2a ≈ 3b. To make our key validation
efficient, we use primes of the form p = 22a32bf − 1. Moreover, we evaluate isogenies
of degree 2a on points of order 32b ≈ 22a. To avoid improved torsion points attacks or
any variant of it, we set the starting curve E0 to be a random supersingular curve with
unknown endomorphism ring. Figure 5.1 summarizes the key validation mechanism
hence obtained.

We prove the following Theorem.

Theorem 5.3.4. Let p = 22a32bf − 1 and let E0 be a random supersingular elliptic
curve with unknown endomorphism ring defined over Fp2 . Let E0, PA, QA, PB, QB,
EA, φA(PB), φA(PB) be the public parameters and Alice’s public key in an SIDH in-
stance. Let P2, Q2 ∈ E0[22a] such that [2a]P2 = PA and [2a]Q2 = QA. Let (EB , Ra, Sa)

be Bob’s public key. Moreover, let {RA, SA} be a canonical basis of EA[22a] and let
{Rab, Sab} be its image through φ′B : EA → EAB output by Bob. Write φA(P2) =

[e1]RA + [f1]SA and φA(Q2) = [e2]RA + [f2]SA. Let ψ′A : EB → EB/ 〈[2a]Ra + [α][2a]Sa〉
be the second isogeny computed by Alice during the key exchange.

If e22a(Ra, Sa) = e22a(P2, Q2)3b , [e1]Rab + [f1]Sab = ψ′A(Ra) and [e2]Rab + [f2]Sab =

ψ′A(Sa), then Bob’s torsion points are correct with probability 1− 1
O(p1/4)

.
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E0, P2, Q2,

PB , QB

EA, φA(PB), φA(QB)
φA(P2) = [e1]RA + [f1]SA
φA(Q2) = [e2]RA + [f2]SA

EB , Ra, Sa

EAB , Rab, Sab

EBA, ψ
′
A(Ra), ψ′A(Sa)

e22a(Ra, Sa)
?
= e22a(P2, Q2)3

b

ψ′A(Ra)
?
= [e1]Rab + [f1]Sab

ψ′A(Sa)
?
= [e2]Rab + [f2]Sab

Ra = φB(P2), Sa = φB(Q2)

Rab = φ′B(RA), Sab = φ′B(SA)

Honest Bob

Key validation

Valid key Invalid key

φA

φ′B
φB

ψ′A

Yes No

Figure 5.1: Key validation mechanism for SIDH-type schemes. The curve E0 is a random supersin-
gular elliptic curve with unknown endomorphism ring defined over Fp2 where p = 22a32bf − 1.

Proof. Let us suppose that Bob is possibly doubly point-malicious, say∣∣∣∣∣∣∣∣∣
Ra = [x]φB(P2) + [y]φB(Q2)

Sa = [z]φB(P2) + [t]φB(Q2)

Rab = [x′]φ′B(RA) + [y′]φ′B(SA)

Sab = [z′]φ′B(RA) + [t′]φ′B(SA)

for some integers x, y, z, t, x′, y′, z′ and t′ modulo 22a.
Let us suppose that e22a(Ra, Sa) = e22a(P2, Q2)3b , [e1]Rab + [f1]Sab = φ′A(Ra) and

[e2]Rab+ [f2]Sab = φ′A(Sa). We prove that x = t = x′ = t′ = ±1 and y = z = y′ = z′ = 0,
which implies that Bob’s torsion points are correct. Let

φ′A : EB → EBA = EB/ 〈φB(PA) + [α]φB(QA)〉 = EB/ 〈[2a]φB(P2) + [α][2a]φB(Q2)〉

be the isogeny that ought to be computed by Alice if Bob’s torsion points were
correct and let

ψ′A : EB → EB/
〈
[2a]Ra + [α][2a]Sa

〉
be the isogeny effectively computed by Alice. We distinguish two cases.

Case 1: φ′A 6= ψ′A. Then EAB 6= EB/ 〈[2a]Ra + [α][2a]Sa〉 with overwhelming prob-
ability. In fact, if EAB = EB/ 〈[2a]Ra + [α][2a]Sa〉 with φ′A 6= ψ′A, then φ′A ◦ ψ̂′A is an
endomorphism of EAB of degree 22a ≈ √p. Since E0 is a random supersingular curve,
then the curve EAB which is 2a2b isogenous to E0 can be assimilated to a random
supersingular curve. Hence the probability that EAB admits a cyclic endomorphism
of degree 22a ≈ √p is roughly bounded by

√
p3/2

p ≈ 1
p1/4

, this follows from the number
of M-small curves where M =

√
p [LB20].

Hence Rab, Sab /∈ EB/ 〈[2a]Ra + [α][2a]Sa〉 with overwhelming probability. There-
fore [e1]Rab+ [f1]Sab 6= ψ′A(Ra) and [e2]Rab+ [f2]Sab 6= ψ′A(Sa) since they are points on
different curves1.

1In the up coming sections, rather than revealing torsion points on the shared curve, one reveals
their coordinates in some canonical basis. Hence when EAB 6= EB/ 〈[2a]Ra + [α][2a]Sa〉, the points
recovered by Alice are just random points on her curve and the validation fails with overwhelming
probability.
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Case 2: φ′A = ψ′A. Then Alice computes

ψ′A(Ra) = φ′A(Ra) = φ′A([x]φB(P2) + [y]φB(Q2))

= φ′B ◦ φA([x]P2 + [y]Q2)

= φ′B([x]φA(P2) + [y]φA(Q2))

= φ′B ([x]([e1]RA + [f1]SA) + [y]([e2]RA + [f2]SA))

= φ′B ([xe1 + ye2]RA + [xf1 + yf2]SA)

= [xe1 + ye2]φ′B(RA) + [xf1 + yf2]φ′B(SA)

and

ψ′A(Sa) = φ′A(Sa) = φ′A([z]φB(P2) + [t]φB(Q2))

= φ′A ◦ φB([z]P2 + [t]Q2)

= φ′B([z]φA(P2) + [t]φA(Q2))

= φ′B ([z]([e1]RA + [f1]SA) + [t]([e2]RA + [f2]SA))

= φ′B ([ze1 + te2]RA + [zf1 + tf2]SA)

= [ze1 + te2]φ′B(RA) + [zf1 + tf2]φ′B(SA)

On the other hand, Alice computes

[e1]Rab + [f1]Sab = [x′e1 + z′f1]φ′B(RA) + [y′e1 + t′f1]φ′B(SA)

and
[e2]Rab + [f2]Sab = [x′e2 + z′f2]φ′B(RA) + [y′e2 + t′f2]φ′B(SA)

The integers x, y, z, t, x′, y′, z′ and t′ need to satisfy{
ψA(Ra) = [e1]Rab + [f1]Sab
ψA(Sa) = [e2]Rab + [f2]Sab

i.e. {
[xe1 + ye2]φ′B(RA) + [xf1 + yf2]φ′B(SA) = [x′e1 + z′f1]φ′B(RA) + [y′e1 + t′f1]φ′B(SA)
[ze1 + te2]φ′B(RA) + [zf1 + tf2]φ′B(SA) = [x′e2 + z′f2]φ′B(RA) + [y′e2 + t′f2]φ′B(SA)

i.e. 
xe1 + ye2 = x′e1 + z′f1

xf1 + yf2 = y′e1 + t′f1

ze1 + te2 = x′e2 + z′f2

zf1 + tf2 = y′e2 + t′f2

mod 22a

i.e. 
e1 e2 0 0

f1 f2 0 0

0 0 e1 e2
0 0 f1 f2



x

y

z

t

 =


e1 0 f1 0

0 e1 0 f1

e2 0 f2 0

0 e2 0 f2



x′

y′

z′

t′

 mod 22a (5.4)

From Remark 5.3.3, the knowledge of e1, e2, f1 and f2 is equivalent to the knowledge
of Alice’s private isogeny φA. Therefore, when guessing e1, e2, f1, f2, or φA, Bob
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succeeds with a probability bounded by 1
2a ≈

1
p1/4

, which is negligible. Assuming
that Bob does not have access neither to the matrix

M1 =


e1 e2 0 0
f1 f2 0 0
0 0 e1 e2
0 0 f1 f2

 ∈M2(Z/22aZ) nor M2 =


e1 0 f1 0
0 e1 0 f1
e2 0 f2 0
0 e2 0 f2

 ∈M2(Z/22aZ).

The solutions of Equation 5.4 that are independent of M1 and M2 satisfy

y = z = y′ = z′ = 0, x = t = x′ = t′.

Since e22a(Ra, Sa) = e22a([x]φB(P2), [x]φB(Q2)) = e22a(φB(P2), φB(Q2))x
2

, then from
the pairing equation e22a(Ra, Sa) = e22a(P2, Q2)3b , a needs to satisfy x2 = 1, hence
x = ±1.
We finally get x = t = x′ = t′ = ±1 and y = z = y′ = z′ = 0.

Remark 5.3.5. A formal proof of Theorem 5.3.2 can be obtained from that of The-
orem 5.3.4 by setting x = 1 = t, y = 0 = z or x′ = 1 = t′, y′ = 0 = z′ at the beginning of
the proof depending on the points on which Bob decides to be partially point-malicious.

Remark 5.3.6. Bob can use the same key validation method to detect a malicious
Alice. We set the isogeny degrees to powers of 2 and 3 just for simplicity. The key
validation method generalises to any SIDH-like setup.

5.4—The HealSIDH (Healed SIDH) key exchange protocol
We now propose a variant of SIDH key exchange protocol which makes use of the
GPST adaptive attack countermeasure we have just described. We first give the
general idea behind the construction, then we concretely describe the key exchange
and we finally discuss the underlying Diffie-Hellman-type hard problems.

5.4.1 –An overview of HealSIDH. The idea behind HealSIDH is to incorpor-
ate the key validation mechanism described in Section 5.3 in the SIDH key exchange.

Set p = 22a32bf − 1 such that 2a ≈ 3b, E0[22a] = 〈P2, Q2〉, E0[32b] = 〈P3, Q3〉,
PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3 and QB = [3b]Q3. Alice’s secret is an integer α
sampled uniformly from Z/2aZ while Bob’s secret is an integer β sampled uniformly
from Z/3bZ. Alice computes φA : E0 → EA = E0/ 〈PA + [α]QA〉 together with φA(P2),
φA(Q2), φA(P3) and φA(Q3). She canonically generates the basis {RA, SA} of EA[22a]

and solves for e1, f1, e2 f2 such that φA(P2) = [e1]RA + [f1]SA and φA(Q2) = [e2]RA +

[f2]SA. Her public key is (EA, φA(P3), φA(Q3)) and her secret key is (α, e1, f1, e2, f2).
Bob does the same to obtain a public key (EB , φB(P2), φB(Q2)) and a secret key
(β, g1, h1, g2, h2).

If Bob wishes to establish a shared secret with Alice, he retrieves Alice’s public
key (EA, Rb, Sb), computes φ′B : EA → EAB = EA/

〈
[3b]Rb + [β][3b]Sb

〉
together with

φ′B(RA), φ′B(SA), φ′B(Rb) and φ′B(Sb). The yet to be confirmed shared secret is the
j-invariant jAB of EAB . He sends (φ′B(RA), φ′B(SA)) to Alice.

Upon receiving (φ′B(RA), φ′B(SA)), Alice retrieves Bob’s public key tuple (EB , Ra, Sa).
She computes φ′A : EB → EBA = EB/ 〈[2a]Ra + [α][2a]Sa〉 together with φ′A(RB),
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φ′A(SB), φ′A(Ra) and φ′A(Sa). She then computes Rba and φ̂′A(φ′B(SA)).
If e22a(Ra, Sa) 6= e22a(P2, Q2)3b or [e1]φ′B(RA) + [f1]φ′B(SA) 6= φ′A(Ra) or
[e2]φ′B(RA) + [f2]φ′B(SA) 6= φ′A(Sa), Alice aborts. Otherwise, she sends φ′A(RB) and
φ′A(SB) to Bob and keeps the j-invariant jBA of EBA as the shared secret.

Upon receiving φ′A(RB) and φ′A(SB), Bob does the key validation check.
If e32b(Rb, Sb) 6= e32b(P3, Q3)2a or [g1]φ′A(RB) + [h1]φ′A(SB) 6= φ′B(Rb) or
[g2]φ′A(RB) + [h2]φ′A(SB) 6= φ′B(Sb), Bob aborts . If not he successfully takes jAB as
the shared secret.

Practically, if Bob reveals the points φ′B(RA) and φ′B(SA), or Alice reveals φ′A(RB)

and φ′A(SB), then an adversary can recover the curve EAB since for P ∈ EAB , the
Montgomery coefficient AEAB of EAB satisfies

AEAB =
y(P )2 − x(P )3 − x(P )

x(P )2
.

We avoid this by exploiting the ideas used in SIKE [Jao+20] for key compression: rep-
resent a point P ∈ E[N ] by its coordinates in a basis of E[N ] which can be canonically
computed.

5.4.2 –HealSIDH Key Exchange. Instead of revealing the points φ′B(RA) and
φ′B(SA), Bob canonically generates a basis {RAB , SAB} of EAB [22a] and computes
e3, f3, e4, f4 ∈ Z22a such that

φ′B(RA) = [e3]RAB + [f3]SAB and φ′B(SA) = [e4]RAB + [f4]SAB .

Similarly, Alice canonically generates a basis {RBA, SBA} of EBA[32b] and computes
g3, h3, g4, h4 ∈ Z32b such that

φ′A(RB) = [g3]RBA + [h3]SBA and φ′A(SB) = [g4]RBA + [h4]SBA.

Concretely, the HealSIDH Key Exchange is entirely described in Figure 5.2.

Lemma 5.4.1. HealSIDH is correct.

Proof. Follows from the correctness of SIDH and Theorem 5.3.4.

Remark 5.4.2. Two parties Alice and Bob need to run the key validation only once,
during their first communication. In the subsequent communications between the two
parties there is no need to revalidate the keys.

5.4.3 – Security of HealSIDH. We present the Computational Diffie-Hellman-
type problem underlying the security of HealSIDH. We argue that the Decisional
variant of this problem is not hard.

Problem 5.4.3 (HealSIDH-CDHP). Let p = 22a22bf−1 and E0 a supersingular curve
defined over Fp2 with unknown endomorphism ring. Let E0[22a] = 〈P2, Q2〉, E0[32b] =

〈P3, Q3〉, PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3, QB = [3b]Q3. Let φA : E0 → EA,
φB : E0 → EB, φ′A : EB → EBA and φ′B : EA → EAB be secret isogenies as described
in SIDH-type schemes. Let EA[22a] = 〈RA, SA〉 , EB [32b] = 〈RB , SB〉 , EAB [22a] =
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p = 22a32bf − 1,
E0[22a] = 〈P2, Q2〉 , E0[32b] = 〈P3, Q3〉,

PA = [2a]P2, QA = [2a]Q2,
PB = [3b]P3, QB = [3b]Q3

α ← Z/2aZ,
kerφA = 〈PA + [α]QA〉 ,

E0
φA−−→ EA, φA(P3), φA(Q3)
EA[22a] = 〈RA, SA〉

φA(P2) = [e1]RA + [f1]SA
φA(Q2) = [e2]RA + [f2]SA

β ← Z/3bZ,
kerφB = 〈PB + [β]QB〉 ,

E0
φB−−→ EB , φB(P2), φB(Q2)
EB [32b] = 〈RB , SB〉

φB(P3) = [g1]RB + [h1]SB
φB(Q3) = [g2]RB + [h2]SB

α ∈ Z2a , e1, f1, e2, f2 ∈ Z22a EA, Rb, Sb β ∈ Z3b , g1, h1, g2, h2 ∈ Z32bEB , Ra, Ra

EB [32b] = 〈RB , SB〉
kerφ′A = 〈[2a]Ra + [α][2a]Sa〉 ,

EB
φ′A−−→ EBA, φ

′
A(Ra), φ′A(Sa)

EBA[32b] = 〈RBA, SBA〉
φ′A(RB) = [g3]RBA + [h3]SBA
φ′A(SB) = [g4]RBA + [h4]SBA

EA[22a] = 〈RA, SA〉
kerφ′B =

〈
[3b]Rb + [β][3b]Sb

〉
,

EA
φ′B−−→ EAB , φ

′
B(Rb), φ

′
B(Sb)

EAB [22a] = 〈RAB , SAB〉
φ′B(RA) = [e3]RAB + [f3]SAB
φ′B(SA) = [e4]RAB + [f4]SAB

EBA
φ′A(Ra), φ′A(Sa)

g3, h3,

g4, h4 ∈ Z32b

EAB
φ′B(Rb), φ

′
B(Sb)

e3, f3,

e4, f4 ∈ Z22a

EBA[22a] = 〈RAB , SAB〉
Rab = [e3]RAB + [f3]SAB
Sab = [e4]RAB + [f4]SAB

——————–
e22a(Ra, Sa)

?
= e22a(P2, Q2)3

b

φ′A(Ra)
?
= [e1]Rab + [f1]Sab

φ′A(Sa)
?
= [e2]Rab + [f2]Sab

EAB [32b] = 〈RBA, SBA〉
Rba = [g3]RBA + [h3]SBA
Sba = [g4]RBA + [h4]SBA

——————–
e32b(Rb, Sb)

?
= e32b(P3, Q3)2

a

φ′B(Rb)
?
= [g1]Rba + [h1]Sba

φ′B(Sb)
?
= [g2]Rba + [h2]Sba

Valid key
KA = j(EBA)

Invalid key
KA =⊥

Invalid key
KB =⊥

Valid key
KB = j(EAB)

Rb = φA(P3), Sb = φA(Q3)

Rba = φ′A(RB), Sba = φ′A(SB)

Honest Alice

Ra = φB(P2), Sa = φB(Q2)

Rab = φ′B(RA), Sab = φ′B(SA)

Honest Bob

skA pkA skBpkB

Abort

K = KA = KB

Shared key

K
ey

ge
ne
ra
ti
on

K
ey

ex
ch
an

ge

Note: the basis {RA, SA}, {RB , SB}, {RAB , SAB} and {RBA, SBA} are canonically generated.

Yes No YesNo

Figure 5.2: HealSIDH interactive key exchange. E0 is a random supersingular curve.

〈RAB , SAB〉 , EAB [32b] = 〈RBA, SBA〉 . Let e3, f3, e4, f4 ∈ Z22a and g3, h3, g4, h4 ∈ Z32b

such that φ′A(RB) = [g3]RBA + [h3]SBA, φ′A(SB) = [g4]RBA + [h4]SBA, φ′B(RA) =

[e3]RAB + [f3]SAB and φ′B(SA) = [e4]RAB + [f4]SAB.
Given E0, P2, Q2, P3, Q3, EA, φA(P2), φA(Q3), RA, SA, EB, φB(P2), φB(Q2),
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RB, SB, e3, f3, e4, f4, g3, h3, g4, h4, compute EAB.

The main differences between Problem 5.4.3 and Problem 5.2.5 are as follows:
• the action of the secret isogeny φA (resp. φB) of degree 2a (resp. 3b) on E0[32b]

(resp. E0[22a]) is revealed;
• in addition to image points through φA as in SIDH, the coordinates of some
image points through φ′A (resp. φ′B) in a canonical basis are revealed.

With respect to the first point, we reveal the action of isogenies of degree A ≈ p1/4

on a B-torsion subgroup where B ≈ p1/2. Since the endomorphism ring of the curve E0

is unknown, then HealSIDH is protected against improved torsion attacks [Que+21].
With respect to the second point, the coordinates g3, h3, g4, h4 of φ′A(RB) and

φ′A(SB) in a canonical basis of EBA[32b], and the coordinates e3, f3, e4, f4 of φ′B(RA)

and φ′B(SA) in a canonical basis of EBA[22a] are revealed. We don’t see how this could
affect the hardness of Problem 5.4.3.

Nevertheless, revealing these coordinates implies that the decisional version of
Problem 5.4.3 is not hard. In fact, suppose that you are given a random supersingular
elliptic curve E and you wish to determine if E = EBA or E 6= EBA. Then you can
generate the canonical bases E[32b] = 〈RBA, SBA〉 and E[22a] = 〈RAB , SAB〉, perform
the pairing checks

e22a ([e3]RAB + [f3]SAB , [e4]RAB + [f4]SAB)
?
= e22a(RA, SA)3b

and
e32b ([g3]RBA + [h3]SBA, [g4]RBA + [h4]SBA)

?
= e32b(RB , SB)2a .

If E = EAB , then these checks would be successful. If E 6= EAB , then these checks
will fail with overwhelming probability since the points [e3]RAB + [f3]SAB , [e4]RAB +

[f4]SAB , [g3]RBA + [h3]SBA and [g4]RBA + [h4]SBA would be random points of E of
order 22a, 22a, 32b and 32b respectively; hence likely would not satisfy the pairing
equalities.

5.5—SHealS: a public key encryption scheme
Even though the DDH-type problem for HealSIDH is not hard, we still use HealSIDH
to design a secure public key encryption scheme, which we call SHealS. We first give
an overview of our construction, then we fully describe and analyze it.

5.5.1 –An overview of SHealS. Our aim is to derive a PKE scheme from
HealSIDH.

A canonical way to design a PKE scheme from HealSIDH is to proceed as follows.
Consider the HealSIDH setting. Alice generates her key pair (skA, pkA) where skA =

(α, e1, f1, e2, f2) and pkA = (EA, Rb, Sb). In order to encrypt a plaintext m of binary
length n, Bob randomly samples β ∈ Z/3bZ, computes c0 = (EB , Ra, Sa, e3||f3||e4||f4)

and c1 = H(jAB) ⊕m where H : Fp2 → {0, 1}n is a cryptographic hash function. The
ciphertext is c = (c0, c1). Decryption consists in completing the underlying HealSIDH
key exchange using skA and c0. If the key exchange is successful, recover m = c1 ⊕
H(jBA) using the shared secret EBA, else m =⊥.

As shown in the following lemma, the resulting PKE scheme is not IND-CCA
secure.
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Lemma 5.5.1. Let m ∈ {0, 1}n be a plaintext and let k ≥ 1 be an integer such that the
kth bit of m (the coefficient of 2k−1 in the 2-adic expansion of m) is 0. If c = (c0, c1)

is a ciphertext for m, then c′ = (c0, c1 ⊕ 2k−1) is a ciphertext for m + 2k−1.

Proof. Since the kth bit of m is 0, then m + 2k−1 = m⊕ 2k−1. Hence

c1 ⊕ 2k−1 = m⊕H(jAB)⊕ 2k−1 = (m⊕ 2k−1)⊕H(jAB) = (m + 2k−1)⊕H(jAB).

Therefore c′ = (c0, c1 ⊕ 2k−1) is a ciphertext for m + 2k−1.

This IND-CCA attack applies to all PKE schemes in which the ciphertext is of the
form (c0, H(s)⊕m) where s and c0 are independent of m. We choose to use points to
encrypt the plaintext, as in SiGamal [MOT20] and SimS [FP21c].

5.5.2 – SHealS Public Key Encryption scheme. The plaintext space is changed
to M = Z×

22a , the set invertible elements in the ring of integers modulo 22a. The
ciphertext of a given plaintext m ∈ M is c = (c0, c1) where c0 = (EB , Ra, Sa),
c1 = H(jAB) ⊕ (me3||mf3||me4||mf4) and H : Fp2 → {0, 1}8a is a cryptographic hash
function.

Note that scaling e3, f3, e4 and f4 by m is equivalent to scaling the points [e3]RAB+

[f3]SAB and [e4]RAB + [f4]SAB by [m]. This enables Alice to recover m by solving a
discrete logarithm instance in a group of order 22a.

Concretely, Figure 5.3 entirely describes SHealS PKE.

Lemma 5.5.2. SHealS PKE is correct.

Proof. Follows from the correctness of HealSIDH.

Remark 5.5.3. In SHealS, since there is no key disclosure, Bob can reuse his en-
cryption key β to encrypt other plaintexts. Moreover, since the 32b torsion points are
readily available, he can use the same β as a static private key.

5.5.3 – Security analysis. We prove that SHealS is IND-CPA secure relying on
Assumption 4. Next we discuss the IND-CCA security of SHealS. We conjecture that
SHealS is IND-CCA secure and provide arguments to support our conjecture.

Assumption 4. Let E0, P2, Q2, PA, QA,P3, Q3, PB, QB, EA, RA, SA, φA(P3),
φA(Q3), EB, φB(P2), φB(Q2) the public parameters and keys of an HealSIDH instance.
Set EAB [22a] = 〈RAB , SAB〉 where the basis {RAB , SAB} is canonically generated, let
B0 = {φ′B(RA), φ′B(SA)} and let B1 = {R,S} be a uniformly random basis of EAB [22a]

such that e22a(R,S) = e22a(RA, SA)3b . Set φ′B(RA) = [e03]RAB + [f03]SAB, φ′B(SA) =

[e04]RAB + [f04]SAB, R = [e13]RAB + [f13]SAB and S = [e14]RAB + [f14]SAB. For any
PPT algorithm A,

Pr

b = b∗

∣∣∣∣∣∣∣∣
b

$←− {0, 1},

b∗ ← A

(
EA, φA(P3), φA(Q3), EB , φB(P2),

φB(Q2), EAB , eb3||fb3||eb4||fb4

)  =
1

2
+ negl(λ).
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p = 22a32bf − 1,
E0[22a] = 〈P2, Q2〉 ,
E0[32b] = 〈P3, Q3〉,

PA = [2a]P2, QA = [2a]Q2,
PB = [3b]P3, QB = [3b]Q3

α
$←− Z2a ,

kerφA = 〈PA + [α]QA〉 ,
E0

φA−−→ EA, φA(P3), φA(Q3)
EA[22a] = 〈RA, SA〉

φA(P2) = [e1]RA + [f1]SA
φA(Q2) = [e2]RA + [f2]SA

e1, f1, e2, f2 ∈ Z22a ,
α ∈ Z2a

EA, Rb, Sb

m ∈ M, β $←− Z3b

kerφB = 〈PB + [β]QB〉 ,
E0

φB−−→ EB , φB(P2), φB(Q2)
EA[22a] = 〈RA, SA〉

kerφ′B =
〈
[3b]Rb + [β][3b]Sb

〉
,

EA
φ′B−−→ EAB ,

EAB [22a] = 〈RAB , SAB〉
φ′B(RA) = [e3]RAB + [f3]SAB
φ′B(SA) = [e4]RAB + [f4]SAB

c0 = (EB , Ra, Sa),
c1 = H(jAB) ⊕

(me3||mf3||me4||mf4)

c = (c0, c1)

kerφ′A = 〈[2a]Ra + [α][2a]Sa〉 ,

EB
φ′A−−→ EBA, φ

′
A(Ra), φ′A(Sa)

EBA[22a] = 〈RAB , SAB〉
e′3||f ′3||e′4||f ′4 = H(jBA) ⊕ c1,
Rab = [e′3]RAB + [f ′3]SAB
Sab = [e′4]RAB + [f ′4]SAB

e22a(Ra, Sa)
?
= e22a(P2, Q2)3

b

〈φ′A(Ra)〉 ?
= 〈[e1]Rab + [f1]Sab〉

〈φ′A(Sa)〉 ?
= 〈[e2]Rab + [f2]Sab〉

m′ = DLP ([e1]Rab+[f1]Sab, φ
′
A(Ra))

[m′]φ′A(Sa)
?
= [e2]Rab + [f2]Sab

return m′ return ⊥

Hash function:

H : Fp2 → {0, 1}8a

skA pkA

Public parameters

Key generation

Encryption

Decryption

Yes No

Figure 5.3: SHealS PKE. E0 is a supersingular curve with unknown endomorphism ring.

Theorem 5.5.4. If Assumption 4 holds and H is sampled from an entropy smoothing2

hash functions family H, then SHealS is IND-CPA secure.

Proof. Analogous to the proof of Theorem 3.4.4.

2This means that for any random hash function H ∈ H and any random element s ∈ Fp2 , it is
hard to distinguish H(s) from a random element of {0, 1}8a [Sho04].
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Concretely, Assumption 4 states that given EA, φA(P3), φA(Q3), EB , φB(P2),

φB(Q2), EAB , it is difficult to distinguish the images points φ′B(RA), φ′B(SA) of a basis
{RA, SA} of EA[22a] through φ′B and a uniformly random basis {R,S} of EAB [22a]

such that e22a(R,S) = e22a(RA, SA)3b .

Concerning the IND-CCA security of SHealS, one may be tempted to use a know-
ledge of exponent type as Fouotsa and Petit did to prove the IND-CCA security of
SimS [FP21c]. But this type of assumption does not hold for SIDH type schemes.
In fact, one can not see SIDH as an analog to the classic Diffie-Hellman as it is the
case in CSIDH. In CSIDH, the secret isogeny can have any degree in a well chosen
key space. But in SIDH, the degree of the secret isogeny is fixed. This eliminates the
idea of assimilating the secret isogenies in SIDH to "exponents".

We have not been able to come up with a succinct proof of IND-CCA security for
SHealS, but we argue that SHealS is not vulnerable to any known attack on SIDH type
schemes since we have countered the GPST adaptive attack [GPST16] and possible
variants of it, and the improved torsion points attacks [Pet17; Que+21]. Note that
we do not take side channel attacks into consideration in this analysis. We hence
state the following conjecture and leave it’s proof or its invalidation for future work.

Conjecture 1. SHealS is IND-CCA secure.

5.6—Concrete instantiations and comparisons: HealSIDH vs
k-SIDH; SHealS vs SIKE

5.6.1 –Concrete instantiation. We performed a basic Sagemath [The20] proof-
of-concept implementation of our key validation method, HealSIDH and SHealS. We
use the prime p870 = 2432327410−1 where a = 216 and b = 137 as in SIKEp434 [Jao+20,
§1.6]. Hence we expect SHealSp870 and SIKEp434 on one hand, HealSIDHp870 and
k-SIDHp434 on the other hand, to provide the same security level.

The proof-of-concept implementation of SHealS is very basic and unoptimized,
hence it cannot serve as a reference when comparing SHealS and SIKE in terms of
efficiency. In the following paragraph, we do a high level comparison between SHealS
and SIKE. We argue that the efficiency of an optimized implementation of SHealS is
comparable to that of SIKE (considering instances providing the same security level).

5.6.2 – SHealS vs SIKE. We provide a high level comparison between SHealS
and SIKE and argue that SHealS’s efficiency is close to that of SIKE. In what follows,
we suppose that in both SIKE and SHealS, an SIDH-type public key (E,P,Q) is
represented by (xP , xQ, xP−Q) as specified in [Jao+20]. Let λ be a security parameter,
and let ph and ps respectively be the HealSIDH (or SHealS) prime and the SIKE prime
providing λ bits of security. It follows that dlog pse ≈ 4λ and dlog phe ≈ 8λ.

Design. At the design level, in SHealS, the encryption public key is validated through
a "direct" key validation mechanism while in SIKE, the validation is done through re-
encryption. For this reason, the number of isogenies computed in SIKE (Key Generation+

Encapsulation + Decapsulation) is 5 while only 4 isogenies are computed in SHealS
(Key Generation + Encryption + Decryption). Nevertheless, all the 4 isogenies in SHealS
are evaluated on torsion points as well, while only 3 of the 5 isogenies in SIKE are
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evaluated on torsion points. In SHealS, a trusted party is needed for the generating
the starting curve E0.
Security. SHealS’s IND-CCA security is conjectured while that of SIKE is inheritated
from a variant Fujisaki-Okamoto transform [HHK17].
Keys sizes. In SIKE and SHealS, the secret key is α and (α, e1, f1, e2, f2) respectively.
Since e1, f1, e2, f2 lie in Z/22aZ, then their bitsize is twice that of α ∈ Z2a . Hence the
secret key of HealSIDH is 9 times larger compared to that of SIKE.
The public key in SIKE and SHealS are both of the form (xP , xQ, xP−Q). Hence in
SIKE the public key has roughly 3(2dlog pse) = 6dlog pse ≈ 24λ bits while in SHealS it
has roughly 3(2dlog phe) = 6dlog phe ≈ 48λ bits. Therefore, the size of the public key
in SHealS is roughly twice that of the public key in SIKE.
For the ciphertext, the bitsize of c0 in SHealS is twice that of c0 in SIKE, while the
bit size of c1 in ShealS is 8a = 16λ, opposed to n ∈ {128, 192, 256} in SIKE. It follows
that the size of SHealS ciphertexts is about 2.45 times that of SIKE ciphertexts.
Efficiency. As mentioned before, only 4 isogenies are computed in SHealS while 5

isogenies are computed in SIKE. Meanwhile, the prime used in SHealS is twice as large
as SIKE prime. And, in SHealS, the isogenies φ′A : EB → EBA and φ′B : EA → EAB
are evaluated on two torsion points each, which is not the case in SIKE. Without
an advanced implementation of SHealS, it is difficult to provide a precise efficiency
comparison between both schemes.

We summarize the comparison3 in Table 5.1. Let λ be a desired security level.

SIKE SHealS
Field characteristic size ≈ 4λ ≈ 8λ

Private key size ≈ 2λ ≈ 18λ

Public key size ≈ 24λ ≈ 48λ

Ciphertext size ≈ 26λ ≈ 64λ

KeyGen (isog. comp.) 1 1

Encaps/Encrypt (isog. comp.) 2 2

Decaps/Decrypt (isog. comp.) 2 1

Adaptive attacks No No (conjecture)
Key disclosure Yes No
Encryption key reuse No Yes
Key validation method used re-encryption Key val. method in § 5.3

Table 5.1: High level comparison between SHealSIDH and SIKE.

5.6.3 –HealSIDH vs k-SIDH. To the best of our knowledge, the only exist-
ing post-quantum key exchange schemes enabling static-static key setting prior to
this work4 were CSIDH [Cas+18], k-SIDH [AJL17] and its variant by Jao and Urb-

3Note that the comparisons in Table 5.1, 5.3 and 5.2 are really high level and do not include the
discrete logarithm instances (at most six of them in dimension 2 groups) in HealSIDH, SHealS and
HealS.

4While this work was under submission, a proof of isogeny knowledge [FDGZ21] was published
online. We will provide a concrete comparison with this construction in later versions of this paper
that we will make available on the IACR eprint database.
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anik [UJ20]. As highlighted in Section 5.2.6, Basso et al. [Bas+20] showed that
k-SIDH is preferable to the later variant from an efficiency vs security point of view.
We provide a high level comparison between HealSIDH and k-SIDH since both are
countermeasures to the GPST adaptive attacks.
Design. At the design level, HealSIDH comes with an incorporated key validation
method, while k-SIDH mitigates the GPST adaptive attacks by running many parallel
SIDH intances. This implies that more than k2 isogenies are computed in k-SIDH
(full execution of the key exchange) while only 4 isogenies are computed in HealSIDH.
Nevertheless, There are two rounds in HealSIDH, as opposed to one round in k-SIDH.
Note that the starting curve in HealSIDH is generated by a trusted party, which is
not the case in k-SIDH.
Security. Security wise, HealSIDH is not vulnerable to the GPST adaptive attacks
since it incorporates a countermeasure. In k-SIDH, one does not eliminate the attack
completely, but one increases its cost in such a way that it becomes exponential in k.
Keys sizes. From the comparison made in Section 5.6.2, the secret key in HealSIDH
has roughly 18λ bits. In k-SIDH, the size of the secret key is k times that of a SIKE
secret key, hence 2kλ. The public keys in HealSIDH have roughly 48λ bits while in
k-SIDH they have about 24kλ bits.
Efficiency. As mentioned before, only 4 isogenies are computed in HealSIDH. In k-
SIDH, roughly 2k2 + 2k isogenies are computed. Even though the HealSIDH prime
size is twice that of the k-SIDH prime, k-SIDH is still an order of magnitude less
efficient compared to HealSIDH because of the relatively large number of isogenies
computed.

Table 5.2 provides a high level comparison between HealSIDH and k-SIDH. We
refer to [AJL17] for more details on k-SIDH.

HealSIDH k-SIDH
Field characteristic size ≈ 8λ ≈ 4λ

Private key size ≈ 18λ ≈ 2kλ

Public key size ≈ 48λ ≈ 24kλ

KeyGen 1 k

key exchange 2 2k2

Adaptive attacks No exp. in k

Static-static key yes yes
NIKE No yes

Table 5.2: High level comparison between HealSIDH and k-SIDH (46 ≤ k).

5.7—HealS (Healed SIKE): improving the efficiency of SHealS
From the comparison in Section 5.6.2, one concludes that the prime size, the key and
ciphertext sizes in SHealS are at least twice that in SIKE. In this section, our aim is
to improve on this prime, key and ciphertext sizes.

5.7.1 –HealS Public Key Encryption. Having a closer look at ShealS, one
notices that since Bob does not run a key validation on Alice’s public key in the PKE
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encryption scheme, then it is not a requisite to have the 32b-torsion points defined
over Fp2 . Hence when the parameters are chosen for a PKE scheme purpose only,
the prime p can be relaxed to p = 22a3bf − 1 where 2a ≈ 3b and f is a small cofactor.
Most of the scheme remains unchanged. Concretely, HealS is SHealS with a prime of
the form p = 22a3bf − 1.

While the base prime change when going from SHealS to HealS comes with con-
siderable speed-up and considerable improvement on key and ciphertext sizes (see
Section 5.7.2), one should notice that Bob can no more use his encryption key as
secret key when receiving encrypted messages. In fact, in order to encrypt a plain-
text for Bob, one needs to compute the images of torsion points of order 32b. For HealS
primes, these torsion points are defined over large extensions since p = 22a3bf − 1.
Nevertheless, Bob can reuse the same encryption key β to encrypt other messages
to other parties or the same party, only he can not use it as decryption key. This
technical difference motivated us to rename the instance HealS instead of keeping the
name SHealS. Appendix B.1 provides more details about the Key Generation, Encryption
and Decryption algorithms in HealS.

5.7.2 –Concrete instantiation and comparison with SIKE. We instanti-
ate HealS with the prime p650 = 24323137 − 1 where a = 216 and b = 137 as in
SIKEp434 [Jao+20, §1.6]. Hence HealSp650 and SIKEp434 are expected to provide
the same security level.

We summarise a high level comparison between HealS and SIKE in Table 5.3. We
also include SHealS in this table to highlight the advantages of HealS when compared
to SHealS.

SIKE SHealS HealS
Field characteristic size ≈ 4λ ≈ 8λ ≈ 6λ

Private key size ≈ 2λ ≈ 18λ ≈ 18λ

Public key size ≈ 24λ ≈ 48λ ≈ 36λ

Ciphertext size ≈ 26λ ≈ 64λ ≈ 48λ

KeyGen (isog. comp.) 1 1 1

Encaps/Encrypt (isog. comp.) 2 2 2

Decaps/Decrypt (isog. comp.) 2 1 1

Adaptive attacks No No (conj.) No (conj.)
Key disclosure Yes No No
Encryption key reuse No Yes Yes
Key validation method used re-encryption Key val. method in § 5.3

Table 5.3: High level comparison between HealS, SHealS and SIKE.

Table 5.4 compares the key and ciphertext sizes of our PKE with some NIST
finalists KEMs. We notice that the key sizes in HealS are more compact compared
to these finalists. The ciphertext size in HealS is close to that of Kyber, NTRU and
Saber, while being considerably larger compared to that of Classic McEliece.



Section 5.8 91

HealS Kyber NTRU Classic McEliece Saber
sk 288 1632 935 6492 1568

pk 576 800 699 261120 672

c 768 768 699 128 736

Table 5.4: Key and ciphertext sizes comparison between HealS and the four NIST finalists KEMs
Kyber, NTRU, Classic McEliece and Saber, for 128 bits of security (NIST level 1).

5.8—Conclusion
In this chapter, we introduced an efficient countermeasure to the GPST adaptive
attack which does not require key disclosure nor re-encryption. Next, we used this
countermeasure to design an efficient static-static key interactive exchange scheme:
HealSIDH. HealSIDH is not vulnerable to the GPST adaptive attacks. We derive
an IND-CPA secure PKE scheme with conjectured IND-CCA security SHealS from
HealSIDH. The full execution of SHealS contains only 4 isogeny computations while
that of SIKE contains 5 isogeny computations. For this reason, even though SHealS
uses larger parameters and has larger keys, we expect its efficiency to be comparable
to that of SIKE. In order to optimize the efficiency, keys and ciphertexts sizes, we
suggest HealS, a variant of SHealS using a smaller prime. The main difference between
SHealS and HealS is that in SHealS, a party can use his private key as encryption
key when encrypting ciphertexts for other parties.

Moreover, we provided a high level comparison between HealSIDH and k-SIDH
on one hand, and between SHealS, HealS and SIKE on the other hand. HealSIDH
is an order of magnitude more efficient compared to k-SIDH and the keys in k-SIDH
are about k times bigger compared to those of HealSIDH. The advantages of SHealS
and HealS over SIKE are

• no encryption key disclosure to the recipient during encryption;
• incorporated key validation method (no re-encryption during decryption);
• encryption key reuse.

In order to evaluate the concrete efficiency of the schemes constructed in this
paper, an advanced implementation of SHealS and HealS is needed. We leave this
task to follow-up work. We believe the design of SHealS leaves room for considerable
optimisations. These may come from the implementation, from variants of the key
validation method or from redesigning the schemes.

Furthermore, there are possibly existing isogeny-based schemes that would bene-
fit from our key validation method. Also the key validation may enables the design
of new isogeny-based primitives. We also leave such an investigation for future work.

Acknowledgements. We would like to express our sincere gratitude to the anonym-
ous reviewers of Asiacrypt 2021 for their helpful comments and suggestions.





Chapter 6

On the Isogeny Problem with Torsion
Point Information

This chapter is for all practical purposes identical to the eprint On the Isogeny Prob-
lem with Torsion Point Information [FKMT21], authored jointly with Péter Kutas,
Simon-Philipp Merz and Yan Bo Ti, which will appear at PKC 2022.

6.1— Introduction
Practical large scale quantum computers pose a threat to most cryptosystems cur-
rently in use [Gro96; Sho97]. Recent advances in quantum computing and the need
for long-term security in cryptography has led to a surge of interest in developing
quantum secure replacements for these classical cryptographic algorithms. Moreover,
NIST has started a procedure to determine new cryptographic standards for a post-
quantum era [Nat].

Most of the standardisation candidates are based on lattices, codes or multivariate
polynomial systems over finite fields. A more recent but promising area of post-
quantum research is isogeny-based cryptography.

Couveignes was the first one to mention isogenies for cryptographic use in 1997 [Cou06],
and the area gained traction in the following decade with new developments such as
collision-resistant hashing [CLG09] and key exchange [RS06; Sto10] based on isogeny
problems. After Jao and De Feo introduced supersingular isogeny Diffie-Hellman
(SIDH) [JD11], a predecessor of the isogeny-based submission to NIST’s standardisa-
tion procedure SIKE [Jao+17], the area has enjoyed increasing popularity.

The central problem in most of isogeny-based cryptography is to find an isogeny
ϕ : E1 → E2, i.e. a morphism both in the sense of algebraic geometry and group theory,
between two given supersingular elliptic curves defined over a finite field Fq. For two
supersingular elliptic curves E1 and E2, the problem of computing an arbitrary isogeny
between them and the problem of computing their endomorphism rings End(E1) and
End(E2) was revently proven to be equivalent [Wes21] under the assumption that the
generalized Riemann hypothesis holds.

There are infinitely many isogenies E1 → E2, but attacking isogeny-based prim-
itives such as SIDH requires to recover an isogeny ϕ : E1 → E2 of a specific degree.
Generic algorithms are unlikely to return an isogeny of the correct degree given the
endomorphism rings. In Section 4 of [GPST16], it is shown how to recover secret
isogenies in the case of SIDH. The attack exploits the observation that secret iso-
genies in SIDH are of particularly small degree. In the case where the isogeny one
wishes to recover is not of particularly small degree, as is the case in B-SIDH [Cos20],
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SÉTA [SKPS19] or an instantiation of SIDH with secret isogenies of larger degree,
this observation no longer holds and the algorithm due to Galbraith et al. no longer
applies.

Chapter contributions. The results of this chapter provide a polynomial-time
algorithm (assuming GRH) which recovers an isogeny between two supersingular
elliptic curves of a specific degree N1, given their endomorphism rings and some
torsion point images under the isogeny. More precisely, let d be the least degree of
any isogeny between two isogenous supersingular elliptic curves E1 and E2. Then,
our algorithm solves the following problem, whenever N1 < dN2/16.

Task 6.1.1. Let N1, N2 be coprime integers and let ϕ : E1 → E2 be a secret isogeny of
degree N1 between two supersingular elliptic curves. Let PB, QB be a basis of E1[N2].
Given End(E1), End(E2), ϕ(PB), and ϕ(QB), find an isogeny ϕ′ : E1 → E2 of degree
N1 such that ϕ|E1[N2] = ϕ′|E1[N2].

Since SIDH-type schemes such as B-SIDH tend to use balanced parameters, where
N1 ≈ N2, the condition that N1 < dN2/16 is very mild.

The main idea behind the algorithm is the following. Isogenies from E1 to E2

form a Z-module M of rank 4 and a basis of M can be computed using the KLPT
algorithm [KLPT14]. Then, one computes an LLL-reduced basis ψ1, ψ2, ψ3, ψ4 of M .
We show how to evaluate ψi(PB), ψi(QB) for every i and we know φ(PB) and φ(QB).
Since φ = x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4 for some xi ∈ Z, this yields 4 linear equations
in 4 variables, x1, x2, x3, x4, modulo N2 (torsion-point images can be represented by
a 2× 2 matrix with entries from Z/N2Z and each entry corresponds to an equation).
We will show that this system of equations has a unique solution for xi modulo N2

which we also compute. Since the ψi form an LLL-reduced basis, we can bound the
absolute value of the coefficients xi by N2/2 for N1 < dN2/16. This leads to a unique
solution for xi ∈ Z.

The contribution of this paper can be seen as an extension of the reductions by
Kohel et al. [KLPT14] and Wesolowski [Wes21] which allow to compute an isogeny
(of no specific degree) between two supersingular elliptic curves, whenever the endo-
morphism rings of the curves are known. Note that Kohel et al. provide a heuristic
polynomial-time algorithm for this reduction, whereas Wesolowski shows that this
reduction works in polynomial-time in general assuming the generalized Riemann
hypothesis (GRH).

Together with known results on the computation of endomorphism rings, a con-
sequence of this work is an answer to the open question how small the size of the prime
p in B-SIDH can be chosen. More precisely, this work implies that one cannot lower
the size of the prime p in B-SIDH significantly while maintaining the same security
level. Current parameter sets are not threatened because parameters were selected
in a cautious way (i.e., were larger than necessary if one only accounted for existing
attacks). Our algorithm has better a similar classical runtime to a generic meet-in-the-
middle algorithm but is essentially memory-free (whereas meet-in-the-middle requires
an exponential amount of memory). Furthermore, the quantum version of our attack
has a much better runtime than previously known quantum attacks (O(p1/4)[Eis+20]
compared to O(p1/2)[JS19]). The running time of our algorithms is dominated by the
computation of the endomorphism rings.
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Outline. In Section 6.2, we recall some necessary mathematical background,
details of the SIDH key exchange as well as some related work. In Section 6.3, we
give algorithms to evaluate non-smooth degree isogenies and to compute an isogeny of
a specific degree between two supersingular elliptic curves with known endomorphism
ring, if certain torsion point information is available. Moreover, we discuss the impact
of this work on isogeny-based cryptography before concluding the paper in Section 6.5.

6.2—Preliminaries
In this section, we recall some relevant background on elliptic curves and isogeny-
based cryptography. For further introductory reading, we refer to Silverman [Sil09]
and De Feo [De 17] respectively. Furthermore, we briefly recall some consequences
of the KLPT algorithm [KLPT14] and the LLL lattice reduction [LLL82]. Moreover,
we sketch a related algorithm due to Galbraith et al. [GPST16] which computes
an isogeny of specific degree between two supersingular elliptic curves with known
endomorphism ring, if this degree is sufficiently small.

6.2.1 –Elliptic curves and isogenies. Let E1, E2 be elliptic curves defined over
a field K. An isogeny between E1 and E2 is a non-constant rational map which
is also a group homomorphism (or equivalently, fixes the point at infinity). The
degree of an isogeny is its degree as a finite map of curves, i.e. the degree of the
extension of function fields. An isogeny is called separable if the corresponding field
extension is separable. For a separable isogeny, the degree equals the size of its kernel.
Furthermore, for every finite subgroup G of an elliptic curve E, there exists a unique
separable isogeny whose kernel is G. We denote the corresponding curve by E/G.
Given a finite subgroup G ⊂ E the corresponding isogeny from E to E/G can be
computed using Vélu’s formulae [Vél71].

Let φ : E1 → E2 be an isogeny of degree d. Then there exists a unique isogeny
φ̂ with the property that φ ◦ φ̂ = [d], where [d] denotes the multiplication by d. This
isogeny φ̂ is called the dual of φ and it is also of degree d. An isogeny from E to
itself is called an endomorphism. Endomorphisms of E form a ring under addition
and composition denoted by End(E).

Let E be defined over a finite field of characteristic p. Then End(E) is either
an order in an imaginary quadratic field and E is called ordinary, or a maximal
order in the rational quaternion algebra Bp,∞ ramified at p and at infinity in which
case E is called supersingular. For the rest of the paper we will restrict ourselves to
supersingular elliptic curves.

For an elliptic curve E : y2 = x3 + Ax + B, its j-invariant is given by j(E) =

1728 4A3

4A3+27B2 and two curves are isomorphic if and only if they share the same j-
invariant.

Example 6.2.1. For the supersingular elliptic curve E0 : y2 = x3 + x the above
formula yields the j-invariant j(E0) = 1728. It is well-known that End(E0) is the Z-
module generated by 1, ι, 1+π

2 and ι+ιπ
2 , where ι denotes E0’s non-trivial automorph-

ism, (x, y) 7→ (−x, iy), and π is the Frobenius endomorphism, (x, y) 7→ (xp, yp).

Let ` be a prime number and define the supersingular `-isogeny graph as follows.
The vertices of the graph are isomorphism classes of supersingular elliptic curves
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represented by their j-invariant and two vertices are connected by an edge if and
only if they are `-isogenous. The supersingular `-isogeny graph is connected, (`+ 1)-
regular and a Ramanujan expander graph. The diameter of the graph is between
log p and 2 log p. The presumed hardness of path-finding in this graph is the hardness
assumption underlying isogeny-based cryptography.

Remark 6.2.2. In the rest of this paper we will call an integer smooth if its smooth-
ness bound is polynomial in log p.

6.2.2 – SIDH and B-SIDH. We give a brief description of SIDH [JD11] and
B-SIDH [Cos20] key exchanges.

The public parameters of SIDH are two coprime smooth numbers N1 and N2, a
prime p of the form p = N1N2f − 1, where f is a small cofactor, and a supersingu-
lar elliptic curve E0 defined over Fp2 together with points PA, QA, PB , QB such that
E0[N1] = 〈PA, QA〉 and E0[N2] = 〈PB , QB〉.

The protocol proceeds as follows:

1. Alice chooses a random cyclic subgroup of E0[N1] as GA = 〈PA + [xA]QA〉 and
Bob chooses a random cyclic subgroup of E0[N2] as GB = 〈PB + [xB ]QB〉.

2. Alice and Bob compute the isogeny φA : E0 → E0/〈GA〉 =: EA and the isogeny
φB : E0 → E0/〈GB〉 =: EB , respectively.

3. Alice sends the curve EA and the two points φA(PB), φA(QB) to Bob. Mutatis
mutandis, Bob sends

(
EB , φB(PA), φB(QA)

)
to Alice.

4. Alice and Bob use the given torsion points to obtain the shared secret
j(E0/〈GA, GB〉). To do so, Alice computes φB(GA) = φB(PA) + [xA]φB(QA) and
uses the fact that E0/〈GA, GB〉 ∼= EB/〈φB(GA)〉. Bob proceeds analogously.

In practice N1 and N2 are chosen to be powers of 2 and 3, respectively, to maximize
the efficiency of the scheme. However, choosing a prime of the form N1N2f − 1 with
N1 ≈ N2 implies that the curves EA, EB are much closer at E0 than the diameter of
the supersingular isogeny graph, i.e. the paths connecting E0 with EA and EB are
shorter than one would expect for randomly chosen isogenous curves.

In order to avoid walking only in a small subgraph and to reduce the size of
the prime p, Costello introduced the variant B-SIDH [Cos20]. The main differences
between SIDH and B-SIDH are

• N1 and N2 are smooth coprime divisors of p−1 and p+1 (or vice versa) respect-
ively. Hence, p+ 1 and p− 1 both need to have large smooth factors as opposed
to just one of them in SIDH.

• For the best parameter choice, we have N1 ≈ N2 ≈ p as opposed to N1 ≈ N2 ≈
√
p

in SIDH.
• Isogenies are a priori defined over Fp4 as opposed to Fp2 .

In B-SIDH the curves E0 and EA are no longer closer than expected in the isogeny
graph, but parameter selection might be harder and it seems at first to come at
the expense of working over larger field extensions. However, to every supersingular
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elliptic curve E defined over Fp2 , there exists a quadratic twist (i.e., a curve defined
over Fp2 which is isomorphic to E over Fp4 but not over Fp2). If E has (p + 1)2

rational points over Fp2 , then its twist has (p − 1)2 rational points over Fp2 . Thus,
when computing an isogeny of degree N1 dividing p+ 1 one can work with the curves
having p+ 1 rational points, and before computing an isogeny of degree N2 dividing
p − 1, one switches to twists that have p − 1 rational points. Technically, the switch
makes it possible to compute the isogenies using only operations over Fp2 . For more
details we refer to [Cos20].

6.2.3 –KLPT and LLL lattice reduction. In this subsection, we recall some
facts about the Kohel-Lauter-Petit-Tignol (KLPT) algorithm [KLPT14] and the
Lenstra-Lenstra-Lovász (LLL) lattice reduction [LLL82].

Let Bp,∞ be the quaternion algebra ramified at p and at infinity. Let O1 and O2

be maximal orders in Bp,∞. Then the quaternion isogeny problem asks for a left ideal
I connecting O1 and O2, i.e., a left ideal I of O1 which is also a right ideal of O2.
By [KLPT14, Lemma 8], we have the following result.

Lemma 6.2.3. Let O1 and O2 be maximal orders in Bp,∞. Then the intersection
O1 ∩ O2 has the same index M in O1 and O2. Furthermore,

I(O1,O2) = {α ∈ Bp,∞ |αO2α ⊂MO1}

is a left ideal of O1 and a right ideal of O2 of reduced norm M . I(O1,O2) can be
computed in polynomial time.

Lemma 6.2.3 shows that one can compute a connecting ideal between two max-
imal orders efficiently. However, this ideal will not have smooth norm in general.
In [KLPT14], the main algorithm shows how to compute an equivalent left ideal of
O1 of norm `k where ` is some small prime number.

Let E1, E2 be supersingular elliptic curves with endomorphism rings O1 and O2

respectively. Then isogenies from E1 to E2 are left O1-modules and right O2-modules.
In particular, they form a Z-lattice of rank 4 [Voi18, Lemma 42.1.11]. The Z-lattice
is isomorphic to a connecting left ideal I as an O1-module by the following lemma.

Lemma 6.2.4. [Voi18, p. 42.2.7] Let Hom(E2, E1) denote the set of isogenies from
E2 to E1 and let O1 and O2 denote the endomorphism rings of E1 and E2 respectively.
Let I be a connecting ideal of O1 and O2 and let φI denote the corresponding isogeny.
Then the map φ∗I : Hom(E1, E2)→ I, ψ 7→ ψ◦φI is an isomorphism of left O1-modules.

Since the KLPT-algorithm computes a connecting ideal between two maximal
orders, Lemma 6.2.4 implies that one can compute a Z-basis of Hom(E1, E2). However,
the degree of these isogenies might not be smooth and it is not obvious that one can
evaluate them efficiently. In Algorithm 5, we will show that one can evaluate these
isogenies on points efficiently using the KLPT algorithm.

Next, we recall some basic facts about lattice reduction, which aims to transform
an arbitrary input basis into a basis of “higher quality”. In the following, we are
interested in bases that are close to orthogonal.
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Let B := (b1, . . . , bn) be the basis of a lattice L, let πi denote the projection onto
span(b1, . . . , bi−1) for i = {1, . . . , n} and let B∗ := (b∗1, . . . , b

∗
n) be the Gram-Schmidt

orthogonalization of B, where b∗i = πi(bi). Intuitively speaking, a good basis is one
in which the sequence of Gram-Schmidt norms ‖b∗1‖, ‖b∗2‖, . . . , ‖b∗n‖ does not decay too
fast.

The Lenstra–Lenstra–Lovász (LLL) reduction calculates a short and nearly or-
thogonal lattice basis for any lattice in polynomial time [LLL82]. We recall a more
precise statement in the following proposition using the Gram-Schmidt coefficients
µi,j :=

〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

Proposition 6.2.5. The LLL lattice reduction with factors (η, δ), where δ ∈ (0.25, 1)

and η ∈ [0.5,
√
δ], provides in polynomial time a basis B = (b1, . . . , bn) that is size-

reduced with µi,j < η for all j < i and has Gram-Schmidt orthogonalization satisfying
the Lovász condition δ‖b∗i ‖

2 ≤ ‖µi+1,ibi + b∗i+1‖
2.

The default parameters for LLL-reduction in magma, which we will use later in
this paper, are δ = 0.75 and η = 0.501. Since LLL-reduced bases are in some sense
close to orthogonal, we can expect short vectors in the lattice to have rather small
coefficients with respect to the basis. This is captured by the following lemma which
is a consequence of [LLL82, Equation (1.8)] and Cramer’s rule.

Lemma 6.2.6. Let L be a full rank lattice with LLL-reduced basis b1, . . . , bn with
factors (η, δ) and let v :=

∑n
i=1 γibi ∈ L. Then

|γi| ≤
(

4

(4δ − 1)

)n(n−1)/4 |v|
|bi|

.

Proof. By [LLL82, Equation (1.8)], an LLL-reduced basis b1, . . . , bn satisfies

n∏
i=1

|bi| ≤
(

4

(4δ − 1)

)n(n−1)/4

det(L).

Therefore, using Cramer’s rule we get

|γi| =
det(b1, . . . , bi−1, v, bi+1, . . . , bn)

det(L)
≤ |b1| · · · |bi−1| · |v| · |bi+1 · · · |bn|

det(L)
· |bi||bi|

≤
(

4

(4δ − 1)

)n(n−1)/4

· |v| · det(L)

|bi| · det(L)
=

(
4

(4δ − 1)

)n(n−1)/4

· |v||bi|
.

6.2.4 –GPST. In [GPST16, §4], Galbraith, Petit, Shani and Ti describe how to
compute the secret isogeny of an SIDH instance efficiently, if the endomorphism rings
of both the domain and the codomain of the isogeny are known (or can be computed).
We summarize their results and we recall why the algorithm does not work as such
outside of an SIDH setting.

Let ϕ : E1 → E2 be a `n-degree isogeny one wishes to recover, given the two
endomorphism rings O1 and O2 of E1 and E2 respectively. Since E1 and E2 are
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supersingular curves, their endomorphism rings are maximal orders in the rational
quaternion algebra Bp,∞. By Lemma 6.2.3, one can recover an ideal connecting O1

and O2. Such an ideal corresponds to one of infinitely many isogenies between E1

and E2. This isogeny is in general not of degree `n and, in particular, it is not the
same as ϕ. Yet, to attack SIDH, the isogeny needs to be of the correct degree.

The secret isogenies in SIDH are of degree approximately √p. However, a pair
of random supersingular elliptic curves over Fp2 is unlikely to be connected by an
isogeny of degree significantly smaller than √p. In [GPST16] the authors leverage
this observation to recover the sought isogeny given the endomorphism rings of E1

and E2 as follows.
Given a connecting ideal I for the endomorphism rings, the authors compute a

Minkowski reduced basis which is used to recover an element α ∈ I of minimal norm.
By [KLPT14, Lemma 5], the ideal I ′ := Iα/Norm(I) is another ideal connecting O1

and O2 of minimal norm, Norm(α). Then, one can compute the isogeny E1 → E2

of degree Norm(α) corresponding to this ideal using Vélu’s formulae. If the shortest
isogeny between E1 and E2 is indeed of degree `n, this algorithm allows to recover
such an isogeny of correct degree from the endomorphisms. The experimental results
in [GPST16] suggest that, by trying relatively few small elements α in the previous
algorithm, one recovers an isogeny that can be used to attack SIDH with overwhelming
probability.

Clearly, the approach outlined above relies crucially on the fact that the degree of
the isogeny one wants to recover is among the smallest possible degrees of isogenies
connecting E1 and E2. In schemes that do not use secret isogenies of unexpectedly
short degree, e.g. in B-SIDH [Cos20], SÉTA [SKPS19], or if somebody was to in-
stantiate SIDH with secret isogenies of larger degree, renders the GPST approach
infeasible.

6.3—Computing isogenies using torsion information
In this section, we describe an algorithm to evaluate non-smooth degree isogenies; and
an algorithm to compute a secret isogeny φ : E1 → E2 of degree N1 between super-
singular elliptic curves, provided that certain torsion images and the endomorphism
rings of E1 and E2 are known.

6.3.1 –Evaluating non-smooth degree isogenies. In this subsection, we provide
an algorithm for the following problem

Task 6.3.1. Let E1 and E2 be two curves with given endomorphism rings O1 and
O2 respectively. Let I be an O1-left and O2-right ideal of norm N1 and let P ∈ E1.
Evaluate φI(P ), where φI is the isogeny corresponding to the ideal I.

To solve this task, we extend an algorithm due to Petit and Lauter [PL17, Al-
gorithm 3] which evaluates endomorphisms. Note that a solution to Task 6.3.1 evalu-
ates isogenies of non-smooth degree between curves with known endomorphism rings.

Petit-Lauter Algorithm [PL17, Alg. 3]:. Let (E1,O1) denote a supersingular curve
and its endomorphism ring, and let w ∈ O1. In order to evaluate the endomorphism
φwO1

on a point P ∈ E1, the algorithm by Petit and Lauter uses a curve (E0,O0)
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whose endomorphisms can be efficiently evaluated, e.g. the curve with j-invariant
1728 (see Example 6.2.1). The algorithm proceeds as follows.

Let {w1, w2, w3, w4} be a basis of O0 and let {φ1, φ2, φ3, φ4} be the corresponding
basis of End(E0). The core idea of the algorithm is to use the KLPT algorithm to
compute a powersmooth isogeny ϕ : E1 → E0 of degree N .

Then, we have NO1 ⊂ O0 and thus Nw ∈ O0. For w = a1w1+a2w2+a3w3+a4w4
N this

implies
φwO1

= ϕ−1 ◦ a1φ1 + a2φ2 + a3φ3 + a4φ4

N
◦ ϕ,

where ϕ−1 := 1
degϕ ϕ̂. Since all the isogenies on the right-hand side can be evaluated

efficiently, this allows to evaluate φwO1
.

Solving Task 6.3.1:. Let (E2,O2) be a supersingular elliptic curve with its endo-
morphism ring, let I be an O1-left and O2-right ideal of non-smooth norm and let
P ∈ E1. We would like to evaluate the isogeny φI corresponding to the ideal I at the
point P .

Using the KLPT algorithm, we compute an O1-right and O2-left ideal J whose
smooth norm is coprime to that of I. Then, the ideal IJ represents an endomorphism
w ∈ O1 of E1. The element w ∈ O1 can be recovered by computing the shortest vector
in IJ . We obtain IJ = wO1 for some w ∈ O1. Using [PL17, Algorithm 3], we evaluate
Q = φwO1

(P ), and compute φI(P ) = φ−1
J (Q). We summarize the steps in Algorithm 5.

Algorithm 5 Evaluating non-smooth degree isogenies
Require: Elliptic curves E1, E2 with endomorphism rings O1,O2 and an O1-left and
O2-right ideal I together with a point P ∈ E1, an elliptic curve E0 such that its
endomorphism ring O0 is generated by endomorphisms φ1, φ2, φ3, φ4 that can be
evaluated efficiently.

Ensure: φI(P ).
1: Compute an O1-right and O2-left ideal J whose smooth norm is coprime to that

of I using KLPT algorithm;
2: Compute an O1-left and O0-right ideal K of powersmooth norm N using KLPT

algorithm;
3: Set IJ = wO1 for some w ∈ O1 and find integers a1, a2, a3 and a4 such that
Nw = a1w1 + a2w2 + a3w3 + a4w4 ;

4: Evaluate Q = φIJ (P ) =
φ−1
K ◦(a1φ1+a2φ2+a3φ3+a4φ4)◦φK(P )

N using [PL17, Alg. 3];
5: return φ−1

J (Q)

Lemma 6.3.2. Algorithm 5 runs in polynomial time.

Proof. Since the endomorphism rings of the curves E0, E1 and E2 are known, the calls
of the KLPT algorithm in Step 1 and Step 2 run in polynomial time. Note that the
original KLPT algorithm runs in heuristic polynomial time, but Wesolowski showed
that the reduction of KLPT is polynomial time assuming only GRH [Wes21].

The ideal I (O1-left and O2-right) and J (O1-right and O2-left) have coprime
norms, hence the two-sided O1 ideal IJ corresponds to a non trivial endomorphism
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w ∈ O1 of E1 that can be recovered by computing a Minkowski reduced basis of
IJ . For lattices up to dimension 4, a Minkowski reduced basis can be computed in
polynomial time [NS04]. The integers a1, a2, a3 and a4 are obtained by rewriting
the quaternion Nw as an element of O0. Therefore, Step 3 runs in polynomial time.
By hypothesis, the isogenies φ1, φ2, φ3 and φ4 can be evaluated efficiently. The
ideals K and J have smooth norm, hence the isogenies φK , φ−1

K and φ−1
J have smooth

degree and can also be evaluated efficiently. It follows that Step 4 and Step 5 run in
polynomial time as well.

6.3.2 –Main algorithm. Next, we generalise Algorithm 2 of [GPST16]. There,
an isogeny φ between two curves E1 and E2 with known endomorphism rings O1

and O2 is computed, if its degree is minimal, i.e., φ is the isogeny of smallest degree
connecting E1 and E2. The algorithm in [GPST16] applies to the SIDH setting
where the degree of the secret isogenies are minimal with non negligible probability
(or otherwise at least particularly short). Meanwhile, the torsion point information
available in SIDH-like schemes is not used at all.

We will show in this section how the torsion point information in SIDH-like
schemes can be exploited together with the knowledge of endomorphism rings to
compute secret isogenies of arbitrary (larger but fixed) degree.

The strategy is as follows. Let φ : E1 → E2 be a secret isogeny, let P , Q be a
basis of E1[N2] and let φ(P ), φ(Q) be the torsion information provided in SIDH-like
schemes. Let I(O1,O2) be a connecting ideal between the maximal orders O1 and O2.
Instead of solving for a minimal norm element of the ideal I(O1,O2) as in [GPST16],
we compute an LLL-reduced basis {ψ1, ψ2, ψ3, ψ4} of I.

Using Algorithm 5, the isogenies ψi, i = 1, . . . , 4, can be evaluated at the points P
and Q. Next, we want to write φ in terms of our LLL-reduced basis, i.e. we want to
find (x1, . . . , x4) ∈ (Z/N2Z)4 such that

φ = x1ψ1 + x2ψ2 + x3ψ3 + x4ψ4. (6.1)

Clearly, recovering xi allows to compute the secret isogeny φ.
Note that Equation 6.1 implies in particular

4∑
i=1

xiψi(P ) = φ(P ) and
4∑
i=1

xiψi(Q) = φ(Q). (6.2)

To compute x1, x2, x3 and x4, we first prove that a solution to Equation 6.2 is unique
modulo N2. Then, we use simple linear algebra methods to recover it. Finally, we
will show that knowing the xi modulo N2 is enough to recover them as integers.

Lemma 6.3.3. Let E1, E2 be supersingular elliptic curves over Fp2 and let P,Q be a
basis of E1[N2]. Let ψ1, ψ2, ψ3, ψ4 be a Z-basis of Hom(E1, E2). The system

4∑
i=1

xiψi(P ) = φ(P ),

4∑
i=1

xiψi(Q) = φ(Q)

has a unique solution (x1, x2, x3, x4) ∈ (Z/N2Z)4.
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Proof. Let P ′, Q′ be a basis of E2[N2]. Every isogeny φ in Hom(E1, E2) can be iden-

tified with a matrix
(
a b

c d

)
∈M2(Z/N2Z) by writing its images on E1[N2] as follows

φ(P ) = aP ′ + cQ′, φ(Q) = bP ′ + dQ′.

Let A =

(
a b

c d

)
be a matrix in M2(Z/N2Z). First, we prove that for any matrix A,

there exists an isogeny φ ∈ Hom(E1, E2) such that representation of φ is A.
Let ψ : E1 → E2 be an isogeny such that the degree of ψ is coprime to N2. Note

that such an isogeny exists as the `-isogeny graph is connected for any prime `. Let
M be the matrix corresponding to ψ. Since the degree of ψ is coprime to N2, it
corresponds to an invertible matrix in M2(Z/N2Z).

It is known (see [Voi18, Theorem 42.1.9.]) that End(E1)/N2 End(E1) is isomorphic
to M2(Z/N2Z) (the injection is clear, surjectivity is the key result). Note that the
isomorphism depends on a choice of basis of E1[N2]. Consider the isomorphism cor-
responding to the basis P,Q. Then, there exists an endomorphism θ ∈ End(E1)

whose matrix representation is AM−1. This implies that the matrix representation of
φ = θ◦ψ is AM−1M = A, i.e. there exists an isogeny from E0 to E1 that is represented
by the matrix A.

Clearly,
∑4
i=1 xiψi and

∑4
i=1 yiψi are represented by the same matrix if xi ≡ yi

(mod N2) for i = 1, . . . , 4. Thus, there are at most N4
2 = |(Z/N2Z)4| different matrices

that one can obtain.
Now, the Lemma follows by a simple counting argument. Since every matrix in

M2(Z/N2Z) is represented for an isogeny, every matrix must uniquely correspond to
a sum of the form

∑4
i=1 xiψi modulo N2. Consequently, if a matrix has two different

representations of the form
∑4
i=1 xiψi, then they are the same modulo N2 which

finishes the proof.

Remark 6.3.4. Essentially the main result of the proof is that Hom(E1, E2) modulo
N2 is isomorphic to M2(Z/N2Z) as a Z/N2Z-module. Informally, the key idea is that
Hom(E1, E2) is a left ideal in End(E1), hence it will be a left ideal in M2(Z/N2Z)

modulo N2. Since isogenies between E1 and E2 of degree coprime to N2 exist, this left
ideal will contain invertible matrices, hence it must be the entire matrix ring.

Now we provide details on how to recover x1, x2, x3, x4. Given ψi(P ), ψi(Q)

for i = 1, 2, 3, 4 and φ(P ), φ(Q), where {ψ1, ψ2, ψ3, ψ3} is the LLL-reduced basis of
Hom(E1, E2), we would like to compute (x1, · · · , x4) ∈ (Z/N2Z)4 such that

4∑
i=1

xiψi(P ) = φ(P ),
4∑
i=1

xiψi(Q) = φ(Q).

Note that N2 is a smooth integer and that φ(P ) and φ(Q) form a basis of E2[N2] as
deg(φ) and N2 are coprime. For i = 1, 2, 3, 4, we can compute the integers ai, bi, ci, di ∈
Z/N2Z such that ψi(P ) = [ai]φ(P ) + [bi]φ(Q) and ψi(Q) = [ci]φ(P ) + [di]φ(Q) by using
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the Weil pairing and solving discrete logarithms in a group of smooth order. Now,
the integers (x1, · · · , x4) ∈ (Z/N2Z)4 satisfy

φ(P ) =

[
4∑
i=1

xiai

]
φ(P ) +

[
4∑
i=1

xibi

]
φ(Q)

and

φ(Q) =

[
4∑
i=1

xici

]
φ(P ) +

[
4∑
i=1

xidi

]
φ(Q).

We obtain

(
1 0 0 1

)
=
(
x1 x2 x3 x4

)
·


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

 .

By Lemma 6.3.3, there exists a unique solution
(
x1 x2 x3 x4

)
to the previous

equation. Hence the matrix

M :=


a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4


is invertible and the solution is given by

(
x1 x2 x3 x4

)
=
(

1 0 0 1
)
·M−1.

The latter operation corresponds to adding the first and the fourth row of M−1. We
summarize this process in Algorithm 6.

Algorithm 6 Computing the linear system
Require: ψi(P ) and ψi(Q) for i = 1, . . . , 4, where ψi are a Z-basis of Hom(E1, E2);

φ(P ) and φ(Q) of smooth order N2.
Ensure: x1, x2, x3, x4 such that

∑4
i=1 xiψi(P ) = φ(P ), and

∑4
i=1 xiψi(Q) = φ(Q).

1: for i = 1, · · · , 4 do
2: Compute ai, bi, ci, di ∈ Z/N2Z such that ψi(P ) = [ai]φ(P ) + [bi]φ(Q) and
3: ψi(Q) = [ci]φ(P ) + [di]φ(Q);
4: end for
5: Set M to be the 4× 4 matrix whose rows are (ai, bi, ci, di) for i = 1, 2, 3, 4;
6: Compute the inverse matrix M−1 of M ;
7: Set (x1, x2, x3, x4) to be the sum of the first and the fourth rows of M−1;
8: return x1, x2, x3, x4 such that |xi| ≤ N2/2.

Lemma 6.3.5. Algorithm 6 is correct and runs in polynomial time provided that N2

is smooth.

Proof. Follows from the previous discussion.
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Lemma 6.3.6 gives a condition under which the solution computed in Algorithm 6
gives a solution to Equation 6.1.

Lemma 6.3.6. Let d := min{deg(ϕ) |ϕ : E1 → E2 is isogeny}. If N1
N2

< d
16 , then given

the solution x1, . . . , x4 to
∑4
i=1 xiψi(P ) = φ(P ),

∑4
i=1 xiψi(Q) = φ(Q) returned by

Algorithm 6, we have φ =
∑4
i=1 xiψi in Hom(E1, E2).

Proof. By Lemma 6.2.6, setting δ = 0.75 and n = 4, we have that φ =
∑4
i=1 γiψi where

|γi| ≤ 8 deg(φ)
deg(ψi)

≤ 8N1
d . It follows that |γi| ≤ 8N1

d < N2
2 since N1

N2
< d

16 by hypothesis.
The solution (x1, x2, x3, x4) returned by Algorithm 6 satisfies |xi| < N2

2 for
i = 1, 2, 3, 4. Moreover, by Lemma 6.3.3, this solution is unique modulo N2. Thus,
φ =

∑4
i=1 xiψi in Hom(E1, E2).

The entire process of computing isogenies of a specific but arbitrary degree between
two supersingular curves with known endomorphism ring is summarised in Algorithm 7.

Algorithm 7 Computing isogeny with torsion-point information
Require: Supersingular elliptic curves E1, E2 with known endomorphism rings
O1,O2 which are connected by an isogeny φ of degree N1 and φ(P ), φ(Q), where
P,Q are a basis of E1[N2], such that N1

N2
< d

16 .
Ensure: φ.
1: Using KLPT, compute a basis of an O1-left and O2-right ideal I ;
2: Compute an LLL-reduced basis ψ1, ψ2, ψ3, ψ4 of I;
3: Compute ψi(P ), ψi(Q) using Algorithm 5 ;
4: Use Algorithm 6 to solve for x1, x2, x3, x4 ∈ Z/N2Z such that
5:
∑4
i=1 xiψi(P ) = φ(P ),

∑4
i=1 xiψi(Q) = φ(Q);

6: Compute isogeny from the relation φ =
∑4
i=1 xiψi

1;
7: return φ.

Finally, we prove that Algorithm 7 succeeds in polynomial time.

Theorem 6.3.7. Let d := min{deg(φ) |φ : E1 → E2 is isogeny}. Algorithm 7 solves
Problem 6.1.1 in polynomial time, if N1

N2
< d

16 .

Proof. Correctness of the algorithm follows from Lemma 6.3.6 and the preceding
discussion. We are left to show the polynomial running time. Step 1 uses the reduction
of the KLPT algorithm [KLPT14], which runs in polynomial time [Wes21]. Step 2 is
the LLL lattice reduction algorithm which also runs in polynomial time. Step 3 and
Step 4 run in polynomial time by Lemma 6.3.2 and Lemma 6.3.5 respectively.

Remark 6.3.8. We could also have required the condition N1
N2
≤ d

16 and in that case
we get the condition that |xi| ≤ N2/2. However, when N2 is even and xi is congruent
to N2/2, then the lift to the above range is not unique (as −N2/2 and N2/2 represent

1Note that this is an abstract representation of φ. In fact computing and writing down φ this
way (as a sum of rational maps) is impossible since φ has large degree in general. Nevertheless, with
this abstract notation, φ can be evaluated on any point. When its degree N1 is smooth, its kernel
can be recovered and φ can then be written down as a composition of isogenies of small degree.
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the same residue class). This is not an issue for Algorithm 7 as one will have multiple
candidates (16 of them in the worst case) for ψ that can be tested. By looking at the
degrees, the correct one can be chosen efficiently. More generally, one can actually
relax the statement of Theorem 6.3.7 further by allowing non-unique lifts and adding
a check step at the end of Algorithm 7.

Remark 6.3.9. As was shown in Lemma 6.3.6, Algorithm 7 requires an amount of
torsion point information that depends on the degree d of the shortest isogeny between
the supersingular elliptic curves E1 and E2.

For many applications of cryptographic interest balanced parameters are used where
N1 ≈ N2. Taking N1

N2
≈ 1, the procedure above works whenever the two curves are not

connected by an isogeny of degree smaller than 16. This can be checked easily with an
exhaustive search.

6.3.3 –Example. We will illustrate the attack with an example.
Consider the prime p = 83701957499, where we have p + 1 = 22 · 314 · 54 · 7. Let B be
the quaternion algebra ramified at p and ∞ and generated over the rationals by i, j, k
where i2 = −p, j2 = −1, and k = ij. Fix the finite field Fp2 where α2 = −1 generates
Fp2 over Fp.

Consider the elliptic curve given by E0 : y2 = x3 + x which has j-invariant 1728.
The endomorphism ring of E0 is generated by:

1, j,
j + k

2
,

1 + i

2
.

We let the secret isogeny be a 314-isogeny θ : E0 → E. We use θ to recover the
endomorphism ring of E which is generated by

5159993 + i + 10319986j + 11800766447346k

9565938
,
2i + 6291065j + 7411685041437k

9565938
,
3j + 196249k

2
, 1594323k.

Note that in the real attack, we have made the assumption that End(E) is known,
so we have only used the secret to calculate a known quantity.

Now, using the knowledge of both endomorphism rings, we are able to compute a
connecting ideal between them and also compute the reduced basis of the ideal to be

227049 + i + 154612j

2
,
154612− 227049j + k

2
,
121127− 9i + 4995744j + 14k

2
,
4995744− 14i− 121127j − 9k

2
.

We can interpret these endomorphisms and map the generators of the E0[54] through
them.

We have chosen the points

P5 = (75854242840α+ 62002351922, 51107649030α+ 19190692821),

Q5 = (17857458337α+ 504604508, 77775481527α+ 25718537048)

to be the generators of E0[54].
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In particular, by naming the reduced basis elements as ψ1, ψ2, ψ3, ψ4, we have that

ψ1(P5) = (9049577476α+ 26838535531, 9532248787α+ 18861270144)

ψ1(Q5) = (14085392798α+ 75272963133, 35152660085α+ 3705843319)

ψ2(P5) = (54148936824α+ 29574813, 27904476482α+ 79581351851)

ψ2(Q5) = (6218706354α+ 14437916419, 19897519544α+ 26853032937)

ψ3(P5) = (27253519435α+ 63921648196, 55371710596α+ 3587102479)

ψ3(Q5) = (6221393886α+ 23453138168, 81414672111α+ 63571818133)

ψ4(P5) = (20904892135α+ 45099774747, 32347928248α+ 14718113311)

ψ4(Q5) = (16837240041α+ 11444980635, 5815630261α+ 82050564219)

Furthermore, we have the images of P5 and Q5 through the secret isogeny θ as
given as part of the problem. Note that these ψi are not the same as the ones defined
in the previous section as they are endomorphisms of E0. However, they are just the
original ψi composed with the isogeny between E1 and E0 coming from KLPT. We
will denote the actual isogenies corresponding to them by ψ′i. They can be evaluated
at P5 and Q5 by applying the connecting isogeny to them and multiplying it with the
inverse of its degree modulo 54. These are points in E, and in particular, they are in
the subgroup E[54]. This allows us to express them in terms of θ(P5) and θ(Q5) which
we are given.

This results in the following 4× 4 matrix
222 128 484 474

311 363 337 12

184 477 307 574

344 566 191 132


whose first row represents the four coefficients that expresses ψ′1(P5) as a linear com-
bination of θ(P5) and θ(Q5), and ψ′1(Q5) as a linear combination of θ(P5) and θ(Q5).
For example,

ψ′2(Q5) = [337]θ(P5) + [12]θ(Q5).

Inverting this matrix and summing the first and fourth rows allow us to recover the
coefficients xi’s providing the expression of the secret isogeny as a linear combination
of ψ′1, ψ′2, ψ′3 and ψ′4. The result of the computation is that

θ = 14ψ′1 + 9ψ′2 + ψ′4.

One can check that this is correct without actually computing the ψ′i by computing
that the degree of this linear combination is indeed 314 (as the action on the 54-torsion
is already correct).

Remark 6.3.10. As one can see in this example, the secret isogeny is not the shortest
isogeny between E0 and E, hence the algorithm from [GPST16] would not have been
sufficient for finding θ.
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6.4—Relevance to isogeny-based cryptography

We use this section to summarize how Algorithm 7 impacts different isogeny-based
constructions.

First, we recall the current state-of-the-art regarding endomorphism ring compu-
tations as it is clearly the most time consuming part when attacking an isogeny-based
cryptosystem using the reduction given by this paper.

Given a supersingular elliptic curve E defined over a finite field of characteristic p,
the problem is to find End(E). The first algorithm to solve this is described in Kohel’s
thesis [Koh96] and was later improved by Delfs-Galbraith [DG16] to a running time
of Õ(p1/2). The most recent algorithm is due to Eisenträger et al. [Eis+20] which
runs in time O(log(p)2p1/2). The best known quantum algorithm is due to Biasse, Jao
and Sankar [BJS14] and has a running time of Õ(p1/4).

The isogeny-based community for a long time considered the meet in the middle
attack (MiTM) [Gal99] as best attack when addressing the security level of isogeny-
based schemes. Meanwhile, this MiTM attack requires exponential storage, hence
may be unrealistic. Recently, [Adj+18] and [Cos+20] considered the van Oorschot-
Wiener (vOW) parallel collision finding algorithm [VW99] for the isogeny compu-
tation problem. The vOW collision search allows for a space-time trade-off in the
generic MiTM, leading to a larger time complexity when limited storage is used. Es-
timating the security level of isogeny-based schemes using vOW, suggests that one
can reduce the size of parameters that where previously fixed considering the generic
MiTM attack with unrealistic memory requirements. For an SIDH-like scheme in
which the secret isogenies have degree roughly N , the scheme is secured against the
MiTM attack if 22λ < N , where λ is the desired security level. When considering
the vOW attack, N may be considerably smaller compared to 22λ. See for instance
a recent proposal for the reduction of parameters in SIKE by Longa et al. [LWS20].
However, one also needs to take the attack into account where one computes the
endomorphism ring of curves and then uses Algorithm 7 to attack the secret isogeny.
Given the classical and quantum complexity O(log(p)2p1/2) and Õ(p1/4) respectively,
this implies that the parameter p must also satisfy 22λ < p.

Our attack applied against SIDH has complexity similar to the attack from [GPST16].
It does not effect parameter choices as SIDH isogenies are short and thus pathfinding
algorithms are more efficient. Our algorithm has much more impact when isogeny
degrees are larger (as the complexity of our algorithms depends on p and not on N1).
For B-SIDH, the proposed prime p is roughly 22λ. Provided the new analysis of the
vOW collision search attack in [LWS20], one may be tempted to propose smaller B-
SIDH primes in order to improve on B-SIDH’s efficiency. However, doing so would
make the scheme vulnerable to attacks that compute endomorphism rings and use
the results of this paper. This is because p would be smaller than 22λ. Hence, one
consequence of this paper is that the current choice of the parameter p in B-SIDH
is tight. Furthermore, one can also interpret this result differently. Namely, any
SIDH-like construction has to use parameters at least as large as B-SIDH, otherwise
they become vulnerable to out attack. In other words, proposing schemes with longer
isogeny walks than in B-SIDH does not provide any security benefit. This is not
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unexpected, as walks in B-SIDH have lengths which are comparable to the diameter
of the supersingular isogeny graph.

Another interpretation of our result is that when torsion point images are provided,
then the problem of finding one isogeny between two supersingular elliptic curves
becomes equivalent to finding an isogeny of a specific degree for a wide range of
parameters.

6.5—Conclusion
In this chapter, we showed how to compute an isogeny of a specific degree between two
supersingular elliptic curves, given their endomorphism rings and the images of some
torsion points through the isogeny. This can be seen as an extension of an algorithm
due to Galbraith et al. [GPST16] which did not use torsion point information but
required the isogeny to be of small degree.

As a consequence, this paper allows us to estimate the security of schemes like
B-SIDH, SÉTA and SIDH instantiated with larger degree isogenies when considering
an attack that computes endomorphism rings. In particular, our work provides a
significant speed-up to existing quantum attacks on B-SIDH. We stress that this
work does not allow to break any of the recommended parameter sets. However,
our work shows that the prime chosen in B-SIDH cannot be lowered for the given
security levels and also implies that any (reasonable) scheme that provides torsion
point images has to use a 2λ-bit prime for security level λ (making B-SIDH the most
compact construction that uses torsion point images).

Acknowledgements. We would like to thank Craig Costello for his useful comments
on a previous draft.



Chapter 7

A New Adaptive Attack on SIDH

This chapter is for all practical purposes identical to the paper A New Adaptive
Attack on SIDH [FP21a], authored jointly with Christophe Petit, which will appear
at CT-RSA 2022.

7.1— Introduction

The first isogeny-based cryptographic schemes are the CGL (Charles-Goren-Lauter)
hash function [CLG09] and the CRS (Couveignes-Rostovtsev-Stolbunov) key ex-
change [RS06; Cou06]. The CRS scheme is a Diffie-Hellman type key exchange
scheme using isogenies of ordinary elliptic curves. It is vulnerable to a sub-exponential
quantum hidden shift like attack [CJS14] and is not practically efficient.

In 2011, Jao and De Feo proposed SIDH [JD11; FJP14] that uses isogenies of
supersingular elliptic curves. SIDH is efficient and it is not vulnerable to the sub-
exponential quantum attack presented in [CJS14]. Nevertheless, a recent paper by
Kutas et al. [KMPW21] proves that hidden shift like attacks apply to variants of SIDH
with considerably overstretched parameters. The problem of computing isogenies
between given supersingular elliptic curves is arguably new in cryptography. Its
relation with the supersingular endomorphism ring computation problem have been
studied in [PL17; Eis+18]. A rigorous proof (under the GRH) of the equivalence
between the two problems was recently proposed by Wesolowski [Wes21].

Contrarily to the ordinary case where isogenies commute, supersingular isogenies
do not commute in general. In order to solve this issue in SIDH, the images of some
well-chosen torsion points through the secret isogeny are computed and included in
the public keys. This implies that the hard problem underlying the security of SIDH
is different from the general supersingular isogeny problem. Moreover, this torsion
points have been used in designing adaptive and passive attacks on SIDH and/or its
(unbalanced) variants.

The most relevant adaptive attack (excluding side channel attacks) on SIDH is due
to Galbraith, Petit, Shani and Ti (GPST) [GPST16]. They suppose that one honest
party Alice uses a static secret key, and the other malicious party Bob performs
multiple key exchanges with Alice. The main idea of the attack is that Bob replaces
the images of the torsion points in his public key by malicious ones and obtains some
information on Alice’s static secret isogeny when looking at the obtained shared
secret. Repeating this process a polynomial number of times, Bob totally recovers
Alice’s private key. The pairing-based key validation method present in SIDH does
not detect the GPST adaptive attack. In SIKE [Jao+20] (Supersingular Isogeny Key
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Encapsulation), the GPST adaptive attack is avoided by leveraging SIDH with a
variant [HHK17] of the Fujisaki-Okamoto transform [FO99].

The first passive torsion points attacks are due to Petit [Pet17] and were recently
improved by de Quehen et al. [Que+21]. These attacks combine the availability of the
endomorphism ring of the starting curve E0 in SIDH and the torsion point information
available in SIDH public keys, to compute a suitable endomorphism of Alice’s public
curve EA. The secret isogeny is then recovered using the later endomorphism. For
sufficiently unbalanced SIDH parameters (the degrees of the secret isogenies of the
parties are of different size), the latest version of the attack [Que+21] is more efficient
compared to the generic meet in the middle and the van-Oorschot - Wiener (vOW)
attack [VW99]. For balanced parameters (the degrees of the secret isogenies of both
parties are approximately of the same size), the quantum version of the attack is
as efficient as the best known quantum attacks [Que+21, Figure 1]. Other passive
attacks exploiting the availability of torsion points in the public key are described
in [FKMT21; KMPW21].

The improved torsion points attacks do not apply to SIDH and BSIDH parameters
since these parameters are balanced. Therefore, one may argue that they are not
relevant to SIDH, BSIDH or any other SIDH like schemes using balanced isogenies
degrees.

Contributions. The contribution of this chapter is twofold.
First, we revisit the torsion point attacks. The torsion points attacks are used

to recover a secret isogeny φ : E0 → E of degree NA when the images of torsion
points of order NB in E0 are provided. We prove that one can tweak the algorithm
in such a way that it recovers φ when only the images of three cyclic disjoint groups
G1, G3, G3 ⊂ E0[NB ] of order NB are provided. This constitutes a generalisation of
the torsion point attacks and will be useful in the design of our adaptive attack.

Secondly, we design a new adaptive attack on SIDH-types schemes, including
BSIDH. Our attack uses torsion point attacks as a subroutine.

Let φA : E0 → EA be Alice’s secret static isogeny in an SIDH instance. Let NA and
NB be the isogeny degrees of Alice and Bob respectively. Our attack actively recovers
the images through φA of three pairwise disjoint cyclic groups G1, G2, G3 ⊂ E0[NNB ]

of order NBN where N is a well chosen integer coprime to NA. This leads to an
unbalanced SIDH instance for which the torsion point attacks can be used to recover
the secret isogeny in polynomial time.

Our attack differs from the GPST adaptive attack as follows. In the GPST adapt-
ive attack, the malicious Bob computes isogenies of correct degrees NB and manip-
ulates torsion points images. Our attack consists of computing isogenies of degrees
larger than NB and scaling the torsion point images by a suitable scalar to make the
public key pass the pairing-based key validation method in SIDH. One then utilises
the torsion points attack to recover the secret.

We prove that our attack runs in polynomial time. We provide specific attack
parameters for SIDH primes $IDHp182, $IDHp217, SIDHp377, SIDHp434, SIDHp503
and SIDHp546. For these SIDH primes, the attack fully recovers Bob’s secret iso-
geny querying a few tens of thousand times the key exchange oracle. Determining
specific attack parameters for BSIDH primes is computationally intensive. We only
give an example of generic attack parameters for the smallest BSIDH prime. We
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suggest countermeasures among which the Fujisaki-Okamoto transform (as used in
SIKE), using SIDH proof of isogeny knowledge as recently proposed in [FDGZ21] or
setting the starting curve in SIDH to be a random supersingular curve with unknown
endomorphism ring.

The torsion point attacks do not apply to SIDH parameters [Que+21, §1.1 Figure
1] since they do not (yet) outperform generic passive attacks such as the meet in
the middle on SIDH parameters. This attack comes as an ice breaker. This result,
despite being less efficient when compared to the GPST adaptive attack, it proves
that the torsion point attacks become relevant to SIDH and BSIDH parameters in
an adaptive attack setting. Moreover, this attack vector is the first of its kind. It
exploits the fact that in an SIDH instance, the pairing check does not suffices to
convince Alice that Bob effectively computed an isogeny of degree NB . We believe
this attack fosters the understanding of SIDH and is a new cryptanalytic tool for
isogeny based cryptography.

Outline. The remaining of this chapter is organized as follows: in Section 7.2, we recall
some generalities about elliptic curves and isogenies. We briefly present SIDH and
the GPST adaptive attack. In Section 7.3, we present the torsion point attacks and
describe our generalisation. In Section 7.4 we present an overview of our attack and
describe the active phase. We also discuss the computation of the attack parameters
and summarize the attack. In Section 7.5, we suggest attack parameters for some
SIDH primes and we briefly describe some countermeasures. We conclude the paper
in Section 7.6.

7.2—Preliminaries

7.2.1 –Elliptic curves and isogenies. An elliptic curve is a rational smooth
curve of genus one with a distinguished point at infinity. Elliptic curves can be seen
as commutative groups with respect to a group addition having the point at infinity
as neutral element. When an elliptic curve E is defined over a finite field Fq, the set
of Fq-rational points E(Fq) of E is a subgroup of E. For every integer N coprime with
q, the N-torsion subgroup E[N ] of E is isomorphic to ZN ⊕ ZN .

An isogeny from E to E′ is a rational map from E to E′ which is also a group
morphism. The kernel of an isogeny is always finite and entirely defines the isogeny up
to powers of the Frobenius. Given a finite subgroup G of E, there exists a Frobenius
free isogeny of domain E having kernel G, called a separable isogeny. Its degree is
equal to the size of its kernel. The co-domain of this isogeny is denoted by E/G.
The isogeny and the co-domain E/G can be computed from the knowledge of the
kernel using Vélu’s formulas [Sil09] whose efficiency depends on the smoothness of
the isogeny degree.

An endomorphism of an elliptic curve E is an isogeny from E to E. The structure
of E is closely related to that of its endomorphism ring. When E is defined over
a finite field, the endomorphism ring of E is either an order in a quadratic field,
in which case we say E is ordinary, or a maximal order in a quaternion algebra in
which case we say E is supersingular. The generic isogeny problem is harder to solve
for supersingular curves (for which the best attacks are exponential) than ordinary
curves (for which there exists a sub-exponential attack [BJS14]). SIDH is based on
supersingular isogenies.
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7.2.2 – SIDH: Supersingular Isogeny Diffie-Hellman. The SIDH scheme is
defined as follows.

Setup. Let p = `eAA `eBB − 1 be a prime such that `eAA ≈ `eBB ≈ √p. Let E0 be a super-
singular curve defined over Fp2 . Set E0[`eAA ] = 〈PA, QA〉 and E0[`eBB ] = 〈PB , QB〉. The
public parameters are E0, p, `A, `B , eA, eB , PA, QA, PB , QB .
Key Generation. The secret key skA of Alice is a uniformly random integer α sampled
from Z`eAA . Compute the cyclic isogeny φA : E0 → EA = E0/ 〈PA + [α]QA〉. The pub-
lic key of Alice is the tuple pkA = (EA, φA(PB), φA(QB)). Analogously, Bob’s secret
key skB is a uniformly random integer β sampled from Z`eBB and his public key is
pkB = (EB , φB(PA), φB(QA)) where φB : E0 → EB = E0/ 〈PB + [β]QB〉.

Key Exchange. Upon receiving Bob’s public key (EB , Ra, Sa), Alice checks1 that e(Ra, Sa) =

e(PA, QA)`
eB
B , if not she aborts. She computes the isogeny φ′A : EB → EBA =

EB/ 〈Ra + [α]Sa〉. Her shared key is j(EBA). Similarly, upon receiving (EA, Rb, Sb),
Bob checks that e(Rb, Sb) = e(PB , QB)`

eA
A , if not he aborts. He computes the isogeny

φ′B : EA → EAB = EA/ 〈Rb + [β]Sb〉. His shared key is j(EAB).

The correctness of the key exchange follows from the fact that

EA/ 〈φA(PB) + [β]φA(QB)〉 ' E0/ 〈PA + [α]QA, PB + [β]QB〉 ' EB/ 〈φB(PA) + [α]φB(QA)〉 .

The scheme is summarized in Figure 7.1.

E0, PA, QA,

PB , QB

EA, φA(PB),

φA(QB)

EB , φB(PA),

φB(QA)
EAB

φA

φ′B
φB

φ′A

Figure 7.1: SIDH Key Exchange

The security of the SIDH key exchange protocol against shared key recovery relies
on Problem 7.2.1. Furthermore, Problem 7.2.2 states that it is difficult to distinguish
the shared secret from a random supersingular elliptic curve.

Problem 7.2.1 (Supersingular Isogeny Computational Diffie-Hellman). Given E0,
PA, QA, PB, QB, EA, φA(PB), φA(QB), EB, φB(PA), φB(QA) (defined as in SIDH),
compute EAB.

Problem 7.2.2 (Supersingular Isogeny Decisional Diffie-Hellman). Given E0, PA,
QA, PB, QB, EA, φA(PB), φA(QB), EB, φB(PA), φB(QA) (defined as in SIDH) and
a random supersingular curve E, distinguish between E = EAB and E 6= EAB.

In the rest of this paper, we denote by NA and NB the degree of Alice’s and
Bob’s isogeny respectively. Since we will be supposing that Alice is honest and Bob

1Note that in the original SIDH [JD11], this pairing check is not part of the scheme. But, as
precised in [CLN16] and [GPST16], one includes the check to discard some malformed public keys.
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is potentially malicious, Alice’s public key will be (EA, φA(PB), φA(QB)) while Bob’s
will be (EB , R, S).

7.2.3 –GPST adaptive attack. In SIDH [FJP14] one does a pairing-based
check on the torsion points φB(PA) and φB(QA) returned by a potentially malicious
Bob. Let E be a supersingular elliptic curve, let N be an integer and let µN be the
group of N-roots of unity. Let eN : E[N ] × E[N ] → µN be the Weil pairing [Gal12].
Let φ : E → E′ be an isogeny of degree M , then for P,Q ∈ E[N ],

eN (φ(P ), φ(Q)) = eN (P,Q)M

where the first pairing is computed on E′ and the second one on E.
In SIDH, given (EB , Ra, Sa) returned by Bob as public key, Alice checks if

e`eAA
(Ra, Sa) = e`eAA

(PA, QA)`
eB
B .

As we will see below, this verification does not assure that the points R,S were
honestly generated. More precisely, the pairing verification does not capture the
GPST adaptive attack.

The GPST adaptive attack. The main idea of the Galbraith et al. adaptive
attack [GPST16] is that if Bob manipulates the torsion points φB(PA) and φB(QA)

conveniently, then he can get some information about Alice’s private key α given that
he knows if the secret curve computed by Alice is equal to EAB or not. Hence in
the attack scenario, Bob needs to have access to the later information. This access is
provided to Bob through a key exchange oracle:

O(E,R, S,E′) which returns 1 if j(E′) = j(E/ 〈R+ [α]S〉) and 0 otherwise

If one supposes that `A = 2 and eA = n, then after each query, Bob recovers one bit
of

α = α0 + 21α1 + 22α2 + · · ·+ 2n−1αn−1.

Concretely, let us suppose that Bob has successfully recovered the first i bits of α,
say Ki = α0 + 21α1 + · · ·+ 2i−1αi−1 so that

α = Ki + 2iαi + 2i+1α′

He generates (EB , φB(PA), φB(QA)) and computes the resulting key EAB . To recover
αi, he chooses suitable integers a, b, c, d and queries the oracle O on (EB , R, S,EAB)

where R = [a]φB(PA) + [b]φB(QA) and S = [c]φB(PA) + [d]φB(QA). The integers a, b, c
and d are chosen to satisfy the following conditions:

1. if αi = 1, 〈R+ [α]S〉 = 〈φB(PA) + [α]φB(QA)〉;

2. if αi = 0, 〈R+ [α]S〉 6= 〈φB(PA) + [α]φB(QA)〉;

3. the Weil paring e2n(R,S) must be equal to e2n(φB(PA), φB(QA))
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The first two conditions help to distinguish the bit αi. The third one prevents the
attack from being detected by the pairing-based check presented in Section 7.2.3.
When attacking the ith bit of α where 1 ≤ i ≤ n− 2, the attack uses the integers

a = θ, b = −θ2n−i−1Ki, c = 0, d = θ(1 +Ki2
n−i−1)

where θ =
√

(1 + 2n−i−1)−1. The attack recovers the first n − 2 bits of α using
n − 2 oracle queries, and it recovers the two remaining bits by brute force. We refer
to [GPST16] for more details.

The GPST adaptive attack exploits the fact that the pairing check does not con-
vince Alice that the torsion points returned by Bob were honestly computed. In the
rest of this paper, we will design a new adaptive attack that exploits the fact that
the pairing check does not convince Alice that Bob effectively computed an isogeny
of degree NB .

7.3—Generalizing torsion points attacks
In this section, we revisit the torsion point attacks. Firstly, we describe the torsion
point attacks. Next, we provide a generalisation of these attacks that can be used to
solve weaker version of Problem 7.3.1.

7.3.1 –Torsion points attacks on SIDH. The direct key recovery attack (at-
tacking one party’s secret key) in SIDH translates into solving the following Super-
singular Isogeny Problem.

Problem 7.3.1. Let NA and NB be two integers such that gcd(NA, NB) = 1. Let
E0 be a supersingular elliptic curve defined over Fp2 . Set E0[NB ] = 〈P,Q〉 and let
φ : E0 → E be a random isogeny of degree NA. Given E0, E, P , Q, φ(P ) and φ(Q),
compute φ.

The difference between Problem 7.3.1 and the general isogeny problem is the fact
that the action of φ on the group E0[NB ] is revealed. In 2017, Petit [Pet17] exploited
these torsion point images and the knowledge of the endomorphism ring of the starting
curve E0 to design an algorithm that solves Problem 7.3.1 for a certain choice of
unbalanced (NA � NB) parameters. Petit’s attack has recently been considerably
improved by de Quehen et al. [Que+21].

The idea of the torsion points attacks if to find a trace 0 endomorphism θ ∈
End(E0) that can be efficiently evaluated on E0[NB ], an integer d and a small smooth
integer e such that

N2
A deg θ + d2 = N2

Be. (7.1)

Writing Equation 7.1 in terms of isogenies we get

φ ◦ θ ◦ φ̂+ [d] = ψ2 ◦ ψe ◦ ψ1 (7.2)

where ψ1 and ψ2 are isogenies of degree NB , ψe is an isogeny of degree e. The torsion
point information φ(P ), φ(Q) is used to evaluate τ = φ◦θ◦φ̂+[d] on E[NB ]. Knowing τ
on E0[NB ], the kernels of the isogenies ψ1 : E → E1 and ψ̂2 : E → E2 can be recovered
efficiently. The isogeny ψe : E1 → E2 is recovered by brute force or meet in the middle.
We refer to [Que+21, § 4.1] for technical details.
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Having computed ψ1 ◦ ψe ◦ ψ2, one recovers

ker φ̂ = ker (ψ2 ◦ ψe ◦ ψ1 − [d]) ∩ E[NA].

Figure 7.2 illustrates the attack.

E0 E

E1

E2

θ
φ̂

φ
ψe

ψ̂2

ψ1

Figure 7.2: Improved torsion points attack.

The efficiency of torsion point attacks mostly depends on the imbalance between
the isogeny degree NA and the order NB of the torsion points images.

de Quehen et al. [Que+21] show that under some heuristics, when j(E0) = 1728,
Problem 7.3.1 can be solved in:

1. Polynomial time when: NB > pNA and p > NA;

2. Superpolynomial time but asymptotically more efficient than meet-in-the-middle
on a classical computer when: NB >

√
pNA;

3. Superpolynomial time but asymptotically more efficient than quantum claw-
finding [JS20] when: NB > max{NA,

√
p}.

More concretely, if NA ≈ pα and NB ≈ NAp
η, then the improved torsion points

attack runs in time Õ
(
N

1+2(α−η)
4α

A

)
and Õ

(
N

1+2(α−η)
8α

A

)
on a classical computer and

a quantum computer respectively [Que+21, §6.2 Proposition 27]. In the special case
where α = 1

2 , we get the following corollary.

Corollary 7.3.2. Suppose that NA ≈ p
1
2 and NB ≈ p

1
2 +η where 1 ≤ η. Under some

heuristics, [Que+21, Algorithm 7] solves Problem 7.3.1 in polynomial time.

Remark 7.3.3. SIKE parameters (for which E0 is close to a curve having j-invariant
1728 and NA ≈ NB ≈

√
p) are not affected by these improved torsion points attacks.

Also, the attack does not affect any SIDH-type scheme in which the starting curve E0

is a random supersingular curve with unknown endomorphism ring.

In our attack setting, we will not be provided with the images of torsion points
through isogenies, but with the images of cyclic torsion groups. In the next section,
we generalize the torsion point attacks such that they directly apply to our setting.
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7.3.2 –Generalized torsion points attacks. We consider the following prob-
lem.

Problem 7.3.4. Let NA and NB be two integers such that gcd(NA, NB) = 1. Let E0

be a supersingular elliptic curve defined over Fp2 . Let G1, G2, G3 be three pairwise
disjoint cyclic groups of E0 of order NB. Let φ : E0 → E be a random isogeny of
degree NA.

Given E0, G1, G2, G3, E, φ(G1), φ(G2) and φ(G3), compute φ.

The difference between Problem 7.3.4 and Problem 7.3.1 is the way the torsion
point information is provided. In Problem 7.3.1, image points of a basis of the NB-
torsion group are given, while in Problem 7.3.4, only the images of three cyclic disjoint
groups of order NB are provided. This a priori represents less information, but as we
show below, this is sufficient to run the improved torsion point attacks.

Let θ, d and e be such that Equation 7.1 is satisfied, set τ = φ ◦ θ ◦ φ̂+ [d]. Let G1,
G2 and G3 be as in Problem 7.3.4. In the improved torsion point attacks, the torsion
point information (φ(P ), φ(Q)) is solely used to recover the action of τ on E[NB ] as
explained in Section 7.3.1. Hence we only need to prove that the knowledge of φ(G1),
φ(G2) and φ(G3) is sufficient to evaluate τ on E[NB ].

First we prove that from the action of φ on 3 cyclic disjoint groups of order NB , we
can recover the image of a basis of E0[NB ] through [λ] ◦ φ for some integer λ coprime
to NB . Concretely, we have the following lemma.

Lemma 7.3.5. Let φ : E0 → E an isogeny of degree NA and let NB be a smooth
integer coprime to NA. Let G1 = 〈P1〉, G2 = 〈P2〉, G3 = 〈P3〉 be three pairwise disjoint
cyclic groups of E0 of order NB. Given H1 = 〈Q1〉, H2 = 〈Q2〉, H3 = 〈Q3〉 such that
φ(Gi) = Hi for i = 1, 2, 3; there exists an integer λ ∈ (Z/NBZ)× such that we can
compute λ2 and [λ] ◦ φ(P ) for any P ∈ E0[NB ].

The result in Lemma 7.3.5 partially available in [Bas+21, Lemma 1 §3.2] where
Basso et. al prove that from the action of φ on 3 well chosen cyclic groups of smooth
order NB , one can recover the action of φ on any group of order NB . Our Lemma
goes a bit further and proves that we can evaluate [λ] ◦ φ on the NB torsion for some
λ ∈ (Z/NBZ)× such that λ2 is known. Note that knowing λ2 does not always enable
us to compute λ, since when NB is not a prime power, the equation x2 ≡ a2 mod NB
may have more than two solutions.

Proof of Lemma 7.3.5. For i = 1, 2, 3, set φ(Pi) = [λi]Qi where λi ∈ (Z/NBZ)×. Since
G1 ∩ G2 = {0}, then {P1, P2} is a basis of E0[NB ] and {Q1, Q2} is a basis of E[NB ].
Write P3 = [v1]P1 + [v2]P2 and Q3 = [u1]Q1 + [u2]Q2. Then, we get

[λ3u1]Q1 + [λ3u2]Q2 = [λ3]Q3 = φ(P3) = [v1]φ(P1) + [v2]φ(P2) = [v1λ1]Q1 + [v2λ2]Q2.

Hence λ3u1 = v1λ1, λ3u2 = v2λ2 and λi/λ3 = ui/vi for i = 1, 2. Since G1 ∩G3 = G2 ∩
G3 = {0} and NA is coprime to NB , then H1 ∩H3 = H2 ∩H3 = {0} and u1, u2, v1, v2 ∈
(Z/NBZ)×. Thus λ1v1/u1 = λ3 = λ2v2/u2, and φ(P1) = [λ3]Q′1, φ(P2) = [λ3]Q′2 where
Q′1 = [v1/u1]Q1 and Q′2 = [v2/u2]Q2.

We have

eNB (P1, P2)deg φ = eNB (φ(P1), φ(P2)) = eNB ([λ3]Q′1, [λ3]Q′2) = eNB (Q′1, Q
′
2)λ

2
3 .



Section 7.4 117

We recover λ2
3 by solving the following discrete logarithm

λ2
3 = DLP

(
eNB (P1, P2)deg φ, eNB (Q′1, Q

′
2)
)
.

For any S = [α]P1 + [β]P2 ∈ E0[NB ] we have [λ3] ◦ φ(S) = [α]Q′1 + [β]Q′2.

Now that we can evaluate [λ] ◦ φ point wise on E0[NB ] for some λ ∈ (Z/NBZ)×

such that λ2 is provided, we show how to evaluate τ on E[NB ].
Since we can evaluate φλ = [λ] ◦ φ on E0[NB ], then we can evaluate φ̂λ on E[NB ]

as well. Therefore we can evaluate φλ ◦ θ ◦ φ̂λ on E[NB ]. Meanwhile, we have

φλ ◦ θ ◦ φ̂λ = ([λ] ◦ φ) ◦ θ ◦ ([λ] ◦ φ̂) = [λ2] ◦ φ ◦ θ ◦ φ̂.

Since λ2 ∈ (Z/NBZ)× is provided, then we get

φ ◦ θ ◦ φ̂ = [λ−2] ◦ φλ ◦ θ ◦ φ̂λ

on E[NB ]. Hence τ = φ◦θ◦φ̂+[d] can be efficiently evaluated on E[NB ]. This concludes
our discussion.

From now on, we can translate the solutions in [Que+21] computing θ, d, e, and
using the torsion point attacks to solve Problem 7.3.1 into solutions that compute
θ, d, e, and solve Problem 7.3.4 in the same time and memory complexity, ignoring
polylogarithmic factors.

Theorem 7.3.6 (Generalized Torsion Point Attacks). Suppose we are given an in-
stance of Problem 7.3.4 where NA has O(log log p) distinct prime factors. Assume we
are given the restriction of a trace-zero endomorphism θ ∈ End(E0) to E0[NB ], an
integer d coprime to NB, and a smooth integer e such that

deg
(
φ ◦ θ ◦ φ̂+ [d]

)
= N2

Be or deg
(
φ ◦ θ ◦ φ̂+ [d]

)
= N2

Bpe.

Then we can compute φ in time Õ(
√
e).

Proof. Follows from the previous discussion, [Que+21, Theorem 3] and [Que+21,
Theorem 5].

We have the following Corollary.

Corollary 7.3.7. Suppose that NA ≈ p
1
2 and NB ≈ p

1
2 +η where 1 ≤ η. Under some

heuristics, Problem 7.3.4 can be solved in polynomial time.

In the following section, we use the revisited torsion point attacks to design a new
adaptive attack on SIDH.

7.4—A new adaptive attack on SIDH
In this section, we present our attack. First we present an overview, next we describe
the active phase of our attack.
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7.4.1 –Overview. In our attack, we suppose that one party is using a static
secret/public key pair, and the other party runs multiple key exchanges with the
honest party. He is provided with a the same oracle O(E,R, S,E′) described in Sec-
tion 7.2.3.

The main idea of the attack is to use a key exchange oracle to recover the action of
Alice’s secret isogeny on a larger torsion point group. Doing so leads to an unbalanced
SIDH. The malicious Bob then uses the revisited torsion point attacks, which in this
case run in polynomial time, to recover Alice’s secret key. Hence our attack has two
phases.

Let NA and NB be the isogeny degrees of Alice and Bob respectively. In general,
we have NANB |p + 1 in the case of SIDH schemes, NA|p + 1, NB |p − 1 or NB |p + 1,
NA|p − 1 for BSIDH. Let E0 = E(1728) be the starting curve, E0[NB ] = 〈PB , QB〉,
and let (EA, φA(PB), φA(QB)) be Alice’s public key where her static secret key is an
isogeny φA : E0 → EA of degree NA. Moreover, suppose that you are given some
"suitable" smooth integer N coprime to NA such that E0[NBN ] ⊂ E0(Fp2k ) for some
integer k (we will provide the requirements on N as we describe the attack in the
following sections).

The two phases of the attack can be summarized as follows.

• The active phase. Bob uses the access to a key exchange oracle O(E,R, S,E′)

to secretly transform Alice’s static public key (EA, φA(PB), φA(QB)) into a tuple
(EA, φA(G1), φA(G2), φA(G3)) where G1 = 〈P 〉, G2 = 〈Q〉, G3 = 〈R〉 are cyclic
subgroups of maximal order in E0[NBN ], such that G1∩G2 = G2∩G3 = G1∩G3 =

{0}.

• The passive phase. Having (EA, φA(G1), φA(G2), φA(G3)), Bob applies the
revisited torsion point attacks to recover Alice’s secret.

The passive phase is nothing else than the revisited torsion point attacks described
in Section 7.3.2. In the rest of this section, we provide a full description of the active
phase.

7.4.2 –Explicit description of the active phase. Let p be the base prime. Let
N = `v11 · · · `

vn
n be a smooth integer coprime to NA such that E0[`vii ] ⊂ E(Fp2ki ) and for

each prime `i which is not a square modulo NA, vi is even. Let G1, G2, G3 be cyclic
subgroups of E0[NBN ] of order NBN such that G1 ∩ G2 = G1 ∩ G3 = G2 ∩ G3 = {0}.
The active phase of the attack consists in recovering φA(Gj) for j = 1, 2, 3.

For j = 1, 2, 3, we can represent Gj as Gj =
∑r
i=1Gji where Gji is a group of order

NB`
vi
i . The action of φA on Gj is recovered by computing φA(Gji) for i = 1, · · · , n.

Storing φA(Gj) in this form enables us to perform all computations in extension
fields of degree k1, · · · , kn, instead of LCM(k1, · · · , kn) the full group Gj is considered.
This is because all supersingular isogenies are Fp2 -rational. Hence we never go to
extension fields with degree beyond max{ki, i = 1, · · · , r}. Let us describe how we
compute φA(Gji) for j = 1, 2, 3 and i = 1, · · · , n.

Let G be a cyclic subgroup of E0[NB`
v] of order NB`v. Let us suppose that ` ≡ µ2

mod NA is a square modulo NA and that v = 1. Note that φA([`]G) is readily provided
in Alice’s public key since this group has order NB . To compute the action of φA on
G of order NB`, Bob computes the isogeny φG : E0 → EG having kernel G together
with R = [µ−1]φG(PA), S = [µ−1]φG(QA). Let H be a random cyclic subgroup of
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EA[NB`] of order NB` containing φA([`]G). Let φH : EA → EH be the isogeny of
kernel H and φ′A : EG → EG/φG(ker(φA)) be the isogeny of kernel φG(ker(φA)). If H is
the image of the group G through φA then the diagram in Figure 7.3 commutes and
O(EG, R, S,EH) = 1. In the other case, when H 6= φA(G), Lemma 7.4.1 shows that
the oracle returns 1 with negligible probability.

E0

EA

EB

EAB

EG

EH = EφA(G)

···

φA

φ′B

φB

ψH

φ′A

φG

φH

Figure 7.3: Computing the action of φA on G.

Lemma 7.4.1. Suppose that ` ≈ O(log p) and NANB ≈ p (or NANB > p), and
let G, H, EH and EG/φG(ker(φA)) be defined as above. If H 6= φA(G) then EH =

EG/φG(ker(φA)) with negligible probability.

Proof. Suppose that EH = EG/φG(ker(phiA)) and let H ′ = φA(G). By construction,
we get [`]H = [`]φA(G) = [`]H ′, and we can decompose φH and φ′H as φH = ψH ◦
φ′B and φH′ = ψH′ ◦ φ′B where φH and φH′ are isogenies of degree ` from EAB to
EG/φG(ker(φA)). Since H 6= H ′, then ψ̂H′ 6= ±ψH and ψ̂H′ ◦ ψH is a non scalar
endomorphism of EAB of degree `2. Therefore, the curve EAB is an `2-small curve as
defined in [LB20].

On the other hand, since NANB ≈ p, then EAB is statistically a random su-
persingular curve since the diameter of the supersingular isogeny graph is roughly
p [GPS17]. Moreover, the number of `2-small curves is roughly `3 [LB20]. Consider-
ing the fact that the number of supersingular curves defined over Fp2 is p

12 , then the
probability that EAB is an `2-small curve is roughly 12`3

p , which is negligible since
` ≈ O(log p).

Remark 7.4.2. We scale φG(PA) and φG(QA) by µ−1 in order to avoid the detection
by pairing computation. When scaled by µ−1, we have

eNA(R,S) = eNA([µ−1]φG(PA), [µ−1]φG(QA))

= eNA(PA, QA)µ
−2 deg φG

= eNA(PA, QA)NB .
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The above equation also justifies the requirement that ` should be a quadratic residue
modulo NA. When ` is not a quadratic residue modulo NA and `2 divides N , we set
the group G to have order NB`2 and we proceed the same way. In the later case, we
scale the points φG(PA) and φG(QA) by `−1 mod NA instead.

If 1 < v, then the process can be iterated to recover the action of φA on groups of
order NB`, NB`2, · · · , NB`v when ` is a square modulo NA, respectively NB`2, NB`4,
· · · , NB`v when ` is not a quadratic residue modulo NA. Note that in the later case,
v is even.

We deduce Algorithm 8 for computing the action of φA on a larger group G.

Algorithm 8 Evaluating the action of φA on a larger group G of order NB`v using
O(E,R, S,E′) .
Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), G.
Ensure: φA(G).
1: Set G0 = [`v]G;
2: if ` is a square modulo NA then
3: Compute µ =

√
` mod NA;

4: for i = 1, · · · , v do
5: Gi = [`v−i]G

6: Compute φGi : E0 → EGi of degree NB`
i and of kernel Gi, together with

7: R = [µ−i]φGi(PA) and S = [µ−i]φGi(QA);
8: for H cyclic group of EA of order NB`i containing φA(Gi−1) do
9: Compute φH : EA → EH of kernel H;

10: if O(EGi , R, S,EH) = 1 then
11: Set φA(Gi) = H;
12: end if
13: end for
14: end for
15: G′ = φA(Gv);
16: else
17: for i = 1, · · · , v/2 do
18: Gi = [`v−2i]G

19: Compute φGi : E0 → EGi of degree NB`
2i and of kernel Gi, together with

20: R = [`−i]φGi(PA) and S = [`−i]φGi(QA);
21: for H cyclic group of EA of order NB`2i containing φA(Gi−1) do
22: Compute φH : EA → EH of kernel H;
23: if O(EGi , R, S,EH) = 1 then
24: Set φA(Gi) = H;
25: end if
26: end for
27: end for
28: G′ = φA(Gv/2);
29: end if
30: return G′.
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Lemma 7.4.3. Algorithm 8 runs in time Õ(kv) = O(kv · poly(log p)) time whenever `
is of polynomial size and E0[NB`

v] ⊂ E(Fp2kv ). The output of Algorithm 8 is φA(G)

with overwhelming probability.

Proof. Since `, NA and NB are smooth integers, the time complexity of Algorithm 8
depends on the degree kv of the field extension only. Hence Algorithm 8 runs in time
O(kv · poly(log p)). The second point of the Lemma follows from Lemma 7.4.1.

Recall that E0[NB`
vi
i ] ⊂ E(Fp2ki ). Set k∗ = max{ki}. Algorithm 9 fully describes

the active phase our attack.

Algorithm 9 Recovering the action of φA on cyclic disjoint groups G1, G2, G3 of
order NBN using the oracle O(E,R, S,E′)

Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), NA, NB , N = `v11 · · · `
vn
n , Gji

for j = 1, 2, 3 and i = 1, · · · , n.
Ensure: φA(Gji) for j = 1, 2, 3 and i = 1, · · · , r.
1: for i = 1, · · · , n do
2: for j = 1, 2, 3 do
3: Compute φA(Gji) using Algorithm 8;
4: end for
5: end for
6: return φA(Gji) for j = 1, 2, 3 and i = 1, · · · , n.

Lemma 7.4.4. Algorithm 9 runs in time Õ(max{k∗}) whenever `i for i = 1, · · · , n,
NA, NB are smooth integers.

Proof. Follows from the Lemma 7.4.3.

This concludes our description of the active phase. In the next section, we discuss
the computation of the integer N .

7.4.3 –Computing the integer N . We address the existence and the compu-
tation of the integer N . We would like to compute a smooth integer N = `v11 · · · `

vn
n

coprime to NA such that E0[NB`
vi
i ] ⊂ E(Fp2ki ) and for each prime `i which is not

a square modulo NA, vi is even. Recall that by Corollary 7.3.7, the torsion point
attacks run in polynomial time when p < N .

We start by the following Lemma which describes the group structure of super-
singular curves over extension fields.

Lemma 7.4.5. Let E/Fp2 be a supersingular elliptic curve such that
E(Fp2) ' (Zp−ε)2 where ε = ±1 corresponds to the sign of the trace of Frobenius t = 2εp

of E over Fp2 .
Then for every natural number k, the group structure of E over Fp2k is given by

E(Fp2k ) ' (Zpk−εk )2 (7.3)
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Proof. Let k be natural number and let tk be the trace of Frobenius of E over Fp2k .
Then by Hasse Theorem (theorem V.1.1 of [Sil09]),

|E(Fp2k )| = p2k + 1− tk.

Over Fp2 , the characteristic equation of Frobenius is given by

X2 − 2εpX + p2 = (X − εp)2

By Theorem 4.12 of [Was08]

tk = 2(εp)k = 2εkpk

where εk is the sign of tk. Hence t2k = 4p2k and by lemma 4.8 of [Sch87]

E(Fp2k ) ' (Z√
p2k−εk )2 ' (Zpk−εk )2.

From Equation 7.3, we have that E0[NB`
vi
i ] ⊂ E0(Fp2ki ) if and only if NB`vii |p

ki −
εki where ε is the sign of the trace of Frobenius of E0 as described in the proof of
Lemma 7.4.5.

Let ` be a small prime. Then `v|p2k − 1 for some k ≤ `v. This means that for
each prime `i dividing N , ki ≤ `vii . This heals a easy way to compute N : choose the
smallest primes `i coprime to NANB , such that p < N =

∏
`2i . Then the largest `i is

in O(log p). Moreover we have ki at most `2i .
To moderate the fields extension degrees, we also include in N primes ` that are

squares modulo NA. For this primes, we only require ` to divide p2k − 1, hence
obtaining a smaller field extension.

We describe the full process in Algorithm 10. The algorithm returns the list P of
prime power factors of N with the list D of the corresponding extension field degrees.

Lemma 7.4.6. Algorithm 10 runs in polynomial time and for each prime `i dividing
N , ki ≤ `2i ≈ O(log2 p).

Proof. Follows from the previous discussion.

Remark 7.4.7. In all this section, we were attacking Alice’s secret isogeny. To attack
Bob’s secret isogeny instead, one interchanges the roles of NA and NB. Mostly, the
quadratic residuosity condition on N will depend on NB.

Remark 7.4.8. In practice, one may set a bound on the extension degrees and slightly
increase the size of the primes `i. This will be the case in the attack parameters we
will present in Section 7.5.
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Algorithm 10 Computing N
Require: p, NA, NB .
Ensure: P , D.
1: Create the lists P and D, set N = 1, set ` = 1;
2: while N < p do
3: choose the next prime ` coprime to NANB ;
4: if ` is a square modulo NA then
5: Compute the smallest integer k such that `|p2k − 1.
6: Append ` to the list P and 2k to the list D;
7: N = N ∗ `;
8: else
9: Compute the smallest integer k such that `2|p2k − 1.

10: Append `2 to the list P and 2k to the list D;
11: N = N ∗ `2;
12: end if
13: end while
14: return P, D;

Algorithm 11 New Adaptive attack on SIDH
Require: E0, PA, QA, PB , QB , EA, φA(PB), φA(QB), NA, NB .
Ensure: ker(φA).
1: Compute a suitable smooth integer N using Algorithm 10.
2: Let G1, G2, G3 cyclic disjoint subgroups of E0[NBN ] of order NBN .
3: Compute φA(G1), φA(G2), φA(G3) using the oracle O(E,R, S,E′) and Algorithm 9.
4: Compute φA using the revisited torsion point attacks of Theorem 7.3.6.
5: return ker(φA).

7.4.4 –Attack summary. The full attack is summarised in Algorithm 11.
Now we evaluate the number of oracle queries. Since N = `v11 · · · `

vn
n where for

each prime `i which is not a square modulo NA, vi is even, then we can write N =

`2v11 · · · `2vnn `u1
n+1 · · · `

um
n+m where the primes `n+j for j = 1, · · · ,m are squares modulo

NA. From Algorithm 8, for each prime factor `i (1 ≤ i ≤ n) of N , the maximum
number of queries to the oracle (E,R, S,E′) is equal to the number of cyclic subgroups
of
(
Z/`2iZ

)2
of order `2i , which is `i(`i + 1). Note that if the first `i(`i + 1)− 1 queries

fail, then there is no need to perform the last query since it will succeed. Also, for
each prime factor `n+j (1 ≤ j ≤ m) of N , the maximum number of queries to the
oracle (E,R, S,E′) is equal to the number of cyclic subgroups of (Z/`iZ)2 order `i,
which is `i + 1. Here also, there is no need to perform the last query when the first `i
queries failed. Therefore, the maximum number of oracle queries in the attack is

Oq =
n∑
i=1

vi [`i(`i + 1)− 1] +
m∑
j=1

uj`n+j .

Now we can state the main result of this paper.
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Theorem 7.4.9. Let p, E0, NA < p, NB < p, PA, QA, PB, QB, EA, φA(PB), φA(QB)

be the public parameters and the public key of an SIDH type scheme.
Provided a key exchange oracle O(E,R, S,E′), Algorithm 11 recovers φA in poly-

nomial time.
Furthermore, Algorithm 11 performs at most

Oq =

n∑
i=1

vi [`i(`i + 1)− 1] +

m∑
j=1

uj`n+j

queries to the key exchange oracle where N = `2v11 · · · `2vnn `u1
n+1 · · · `

um
n+m is the integer

computed in Step 1.

Proof. By Lemma 10, Step 1 outputs a smooth integer N such that max{ki} ≈
O(log2 p). Hence by Lemma 7.4.3, Step 3 runs in time Õ(log2 p) = Õ(1). Step 4
runs in polynomial time since p < N . The number of oracle queries follows from the
discussion preceding Theorem 7.4.9.

Remark 7.4.10. In our attack, the malicious Bob computes isogenies of degree NB`2

or NB` depending on the quadratic residuosity of ` modulo NA. In appendix C.1, we
suggest a variant of the attack where isogenies Bob computes isogenies of degree `2 or
` instead. Nevertheless, this variant can be easily detected.

7.5—Relevance and countermeasures
In this section, we suggest some attack parameters for $IDH and SIDH primes. We
discuss possible countermeasures to the attack.

7.5.1 –Attack parameters for some SIDH and BSIDH primes. We pro-
pose attack parameters for the two (non cryptographic size) primes suggested for the
$IKE challenge [Cos21, §10], the SIDH primes SIDHp377 and SIDHp546 suggested
by Longa et al. [LWS20], SIDHp434 and SIDHp503 as specified in SIKE [Jao+20].

As attack parameters, we provide the prime factorisation of N , the maximum field
extension degree k∗ = max{ki}, η ≈ N/p and the number Oq of oracle queries. We
also precise which party is attacked: B stands for Bob and A stands for Alice.

The outcome of our investigations on the above mentioned $IDH primes and SIDH
primes is summarised in Table 7.1 and Table 7.2 respectively.

When it comes to BSIDH instances, generating specific attack parameters is less
trivial. We believe this may be because BSIDH primes2 are twin primes. Using the
generic attack parameters computation described in Algorithm 10, the degree of the
field extensions are relatively larger compared to those used when running the attack
on SIDH. For example, let us consider the smallest BSIDH prime (prime in example
6 of [Cos20])

p = 2 · (23 · 34 · 17 · 19 · 31 · 37 · 532)6 − 1.

Set NA = p+ 1 and NB = (p− 1)/2. Then we get

N = 52 · 112 · 232 · 292 · 412 · 472 · 592 · 612 · 672 · 712 · 792·
832 · 892 · 972 · 1012 · 1072 · 1092 · 1132 · 1272 · 1312 · 1372

2Primes p such that both p+ 1 and p− 1 are smooth.
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Party k∗ η Oq N

$IDHp182 prime: p = 291357 − 1

B 96 185
182

7251 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 472 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 103 ∗
109 ∗ 127 ∗ 139 ∗ 157 ∗ 181 ∗ 241 ∗ 277 ∗ 421 ∗ 433 ∗ 541 ∗ 661 ∗ 919

$IDHp217 prime: p = 2110367 − 1

B 96 222
217

9349 52 ∗ 7 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 109 ∗ 157 ∗ 163 ∗
181 ∗ 193 ∗ 199 ∗ 211 ∗ 223 ∗ 229 ∗ 271 ∗ 277 ∗ 307 ∗ 337 ∗ 571 ∗ 631 ∗
1009 ∗ 1093 ∗ 1249 ∗ 1381

Table 7.1: Attack parameters for the two $IDH primes.

Party k η Oq N

SIDHp377 prime: p = 21913117 − 1

B 120 377
377

40728 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 97 ∗ 103 ∗
109 ∗ 157 ∗ 181 ∗ 193 ∗ 199 ∗ 229 ∗ 241 ∗ 271 ∗ 277 ∗ 307 ∗ 313 ∗
331∗337∗433∗487∗571∗631∗661∗739∗1009∗1021∗1051∗
1093∗1249∗1993∗2161∗2707∗3433∗3529∗4003∗4603∗5419

SIDHp434 prime: p = 22163137 − 1

B 152 438
434

66169 52 ∗ 7 ∗ 112 ∗ 13 ∗ 172 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 712 ∗ 73 ∗
79 ∗ 97 ∗ 103 ∗ 109 ∗ 127 ∗ 139 ∗ 151 ∗ 181 ∗ 193 ∗ 211 ∗ 277 ∗
373 ∗ 409 ∗ 421 ∗ 433 ∗ 457 ∗ 547 ∗ 601 ∗ 613 ∗ 739 ∗ 751 ∗ 757 ∗
1123 ∗ 1171 ∗ 1231 ∗ 1489 ∗ 1741 ∗ 1873 ∗ 2311 ∗ 2593 ∗ 2887 ∗
3037 ∗ 3061 ∗ 4357 ∗ 5227 ∗ 6091 ∗ 6661 ∗ 7621

SIDHp503 prime: p = 22503159 − 1

B 158 512
503

81049 52∗7∗112∗13∗19∗31∗37∗43∗61∗67∗73∗79∗97∗103∗109∗
127∗139∗151∗157∗163∗181∗193∗199∗211∗229∗241∗277∗
409∗421∗433∗439∗457∗463∗571∗577∗601∗859∗967∗1093∗
1153∗1171∗1201∗1303∗1327∗1741∗2131∗2179∗2269∗2371∗
2377∗2689∗3037∗3169∗4663∗6151∗6469∗6529∗8893∗9769

SIDHp546 prime: p = 22733172 − 1

B 152 551
546

112441 52 ∗ 7 ∗ 112 ∗ 13 ∗ 19 ∗ 31 ∗ 37 ∗ 43 ∗ 61 ∗ 67 ∗ 73 ∗ 79 ∗ 832 ∗ 97 ∗
103 ∗ 109 ∗ 127 ∗ 139 ∗ 151 ∗ 157 ∗ 163 ∗ 181 ∗ 193 ∗ 223 ∗ 277 ∗
307 ∗ 379 ∗ 409 ∗ 421 ∗ 433 ∗ 457 ∗ 613 ∗ 631 ∗ 661 ∗ 691 ∗ 751 ∗
1117 ∗ 1153 ∗ 1249 ∗ 1321 ∗ 1621 ∗ 1741 ∗ 1753 ∗ 1801 ∗ 1933 ∗
1999 ∗ 2053 ∗ 2137 ∗ 2281 ∗ 3571 ∗ 3823 ∗ 5059 ∗ 5281 ∗ 5563 ∗
6373 ∗ 6397 ∗ 6481 ∗ 7549 ∗ 7639 ∗ 8161 ∗ 9151

Table 7.2: Attack parameters for some SIDH primes.

and the `2i torsion points for `i dividing N are defined over extension fields of Fp2 of
degree

20, 55, 253, 406, 820, 23, 3422, 15, 402, 2485, 3081, 3403, 1958,

9312, 2020, 5671, 11772, 12656, 8001, 1310, 2329,
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the order is the same as in the prime factorisation of N . The number of oracle queries
is Oq = 152523. Note that here, one will be working with extension fields of degree up
to 12656. One may prefer to compute a different integer N for which the maximum
extension field degree is relatively small, but as we mentioned before, this requires
intensive computations which we could not do on a personal computer.

Remark 7.5.1. Our attack applies to eSIDH [COR20] as well. It can be easily
adapted to k-SIDH [AJL17] and it’s variant by Jao and Urbanik [UJ20]. In the later
case, the number of oracle queries is exponential in k.

7.5.2 –Countermeasures to the attack. A straightforward countermeasure of
the attack is to use a variant of the Fujisaki-Okamoto transform [FO99; HHK17]
as in SIKE. This transform obliges Bob to disclose his secret key to Alice who will
recompute Bob’s public to verify its correctness. Recomputing Bob’s public key will
enable Alice to detect Bob’s maliciousness.

A second countermeasure is that Bob uses the SIDH proof of Knowledge as recently
suggested in [FDGZ21]. In this proof of knowledge, Bob proves that there exists an
isogeny of degree NB between E0 and EB and that the provided torsion points were
not maliciously computed. Nevertheless, this countermeasure is very costly, since the
proof of isogeny knowledge is nothing else than the SIDH based signature scheme,
which is relatively slow and has large signatures.

Another less costly countermeasure is to set the curves E0 to be a random super-
singular elliptic curve with unknown endomorphism ring. This counters the improved
torsion points attack. Hence Bob will not be able to recover Alice’s secret isogeny
after recovering its action on a larger torsion group. Nevertheless, one should keep
in mind that this later countermeasure does not counter the GPST adaptive attack.
Also, it requires a trusted party that will run the setup.

Remark 7.5.2. Since the starting curve in HealSIDH, SHealS and Heals (presented
in Chapter 5) is a random supersingular curve with unknown endomorphism ring,
then this adaptive attack does not apply to those schemes.

7.6—Conclusion
In this chapter, we present a generalisation of the torsion point attacks and use it to
design a new adaptive attack on SIDH type schemes. Our generalized torsion point
attacks recover a secret isogeny when its action on three disjoint cyclic subgroups
of relatively large order is provided. Our adaptive attack consists of maliciously
computing isogenies of larger degrees than expected in SIDH, then using an access
to a key exchange oracle to recover the action of the honest party’s secret isogeny on
large torsion groups. We then use this generalized torsion point attacks to recover
the secret isogeny.

We provide concrete attack parameters for SIDH instances instantiated with the
SIDH primes $IDHp182, $IDHp217, SIDHp377, SIDHp434, SIDHp546 and SIDHp503.
A search of attack parameters on BSIDH primes is ongoing. We finally suggest coun-
termeasures among which the Fujisaki-Okamoto transform (as used in SIKE), using a
proof of isogeny knowledge as recently proposed in [FDGZ21] or setting the starting
curve in SIDH to be a random supersingular curve with unknown endomorphism ring.
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This result proves that torsion point attacks, which do not yet apply to SIDH,
become relevant to SIDH parameters in an adaptive attack setting. Moreover, it
introduces a new cryptanalytic tool for isogeny based cryptography.





Chapter 8

Summary and further work

In this thesis, we designed three isogeny-based public key encryption schemes and/or
key exchange protocols and developed two cryptanalysis results on SIDH types schemes.

Among the schemes designed, we have SimS, SETA and HealSIDH. SimS is an
IND-CCA hash function free PKE which improves on a recent work of Moriya, Onuki
and Takagi. SÉTA is a new PKE obtained by transforming the Petit’s attack into a
trapdoor mechanism. And, HealSIDH is a new key exchange protocol obtained from
a countermeasure to the GPST adaptive attack.

Our cryptanalysis results include a generalisation of the GPST reduction of the
isogeny problem in SIDH instances to the endomorphism ring computation problem.
Also, we design a new adaptive attack on SIDH that uses the Petit’s torsion point
attack as subroutine. Our attack is fundamentally different from the GPST adaptive
attack.

The difference between SÉTA and previous isogeny-based PKEs (PKEs derived
from SIDH or CSIDH) is that SÉTA is built from a trapdoor mechanism while these
previously existing isogeny-based PKEs are El Gamal type encryption schemes, de-
rived from the Diffie-Hellman type key exchanges CSIDH and SIDH. This suggests
that SÉTA may be used as building block for some advanced schemes that were
difficult to built with CSIDH or SIDH. We leave this investigation for future work.

Our countermeasure to the GPST adaptive attack in new and comes with too
much overhead. We believe the countermeasure could be optimised or redesigned to
reduce the overhead. Also, this countermeasure will eventually enable the design of
new advanced schemes using SIDH as a subroutine. We also leave this as future work.

The last research direction we suggest is cryptanalysis. Our countermeasure to
the GPST adaptive attack is new, hence will need to be properly analysed in the near
future. Our new adaptive attack on SIDH leaves us with the question: how far can
we reach with the Petit’s torsion points attack? We expect to explore possibilities for
further improvements of Petit’s torsion points attack.
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A.1—Knowledge of Exponent assumption
In the context of Discrete Logarithm-based cryptography, the Knowledge of Exponent
assumption is stated as follows.

Assumption 5 (Knowledge of Exponent assumption [Nao03]). Let G = 〈g〉 be a
cyclic group of prime order q where q is of cryptographic size. Let x be a uniformly
random exponent in {2, · · · , q − 1} and let h = gx. The adversary tries to compute
h1, h2 ∈ G such that h1 = gz and h2 = hz for some z ∈ {2, · · · , q − 1}.
The knowledge of exponent assumption holds if for every polynomial time adversary
A that when given g, q and h outputs (gz , hz), there exists a polynomial time adversary
A′ that for the same inputs outputs (z, gz , hz).

Intuitively, this assumption states that the only efficient way to compute (gz , hz)

is to first fix z, then to compute gz and hz.
In SimS, the ciphertexts are of the form c = ([b]E0, f[b][a]E0

(x([2m0 + 1]P[b][a]E0
)).

Assumption 3 states the only efficient way to compute a valid ciphertext is to first
fix the ideal class [b], then run the encryption algorithm of SimS to compute c =

([b]E0, f[b][a]E0
(x([2m0 + 1]P[b][a]E0

)).

A.2—Generating the distinguished point of order 2r

Here we discuss how when given a supersingular curve E defined over Fp where p =

2r`1 · · · `n − 1, one can efficiently generate a distinguished point PE of order 2r. The
algorithm used by Moriya et al. in C-SiGamal to generate such a point mainly relies
on the following result.

Theorem A.2.1. ([MOT20, Appendix A]) Let p be a prime such that p ≡ 3 mod 4 and
let E be a supersingular Montgomery curve defined over Fp satisfying EndFp(E) ∼= Z[π].
Let P ∈ E.
If P ∈ E[π − 1]\E[2], then x(P ) ∈ (F∗p)2 ⇐⇒ P ∈ 2E[π − 1].

If P ∈ E[π + 1]\E[2], then x(P ) /∈ (F∗p)2 ⇐⇒ P ∈ 2E[π + 1].

Hence when searching for the x-coordinate of points of order 2r in E, we need
to avoid elements of Fp that are squares. Since p = 2r`1 · · · `n − 1 with r > 1, then(
−1
p

)
= −1,

(
2
p

)
= 1 and

(
`i
p

)
= 1 for i ∈ {1, · · · , n}. Furthermore, let us suppose

that `1, · · · , `n−1 are the first smallest odd primes, then for every I ⊂ {0, 1, · · · , n−1},(−∏i∈I `i
p

)
= −1 where `0 = 2. Moriya et al.’s Algorithm [MOT20, Appendix A]
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exploits this to consecutively sample x from the sequence −2,−3,−4, · · · and when x

is the x-coordinate of a point in E(Fp), it checks if this point has order divisible by 2r.
Corollary A.2.2 proves that if a such x is the x-coordinate of a point in E(Fp) then
the corresponding point has order divisible by 2r, hence the check is not necessary.

Corollary A.2.2. Let p be a prime such that p ≡ 3 mod 4 and let E be a supersingular
Montgomery curve defined over Fp satisfying EndFp(E) ∼= Z[π]. Let P ∈ E(Fp) such
that x(P ) 6= 0.
If x(P ) /∈ (F∗p)2 then [`1 × · · · × `n]P is a point of order 2r.

Proof. Since E(Fp) = E[π − 1] is a cyclic group, then there exist a point Q of order
p+1 = 2r`1 · · · `n such that E(Fp) = 〈Q〉. Set P = [αP ]Q. Since E is in the Montgomery
form, then E(Fp) ∩ E[2] = 〈(0, 0)〉. Since x(P ) 6= 0, then P ∈ E[π − 1]\E[2]. Let us
suppose that x(P ) /∈ (F∗p)2, then by Theorem A.2.1 P /∈ 2E[π − 1], hence αP is odd.
Therefore, gcd(p + 1, αP ) = gcd(2r`1 · · · `n, αP ) = gcd(`1 · · · `n, αP ). This implies that
P = [αP ]Q is a point of order

p+ 1

gcd(p+ 1, αP )
= 2r · `1 · · · `n

gcd(`1 · · · `n, αP )
.

Hence [`1 × · · · × `n]P is a point of order 2r.

Exploiting Corollary A.2.2 we get Algorithm 12 which improves on that used by
Moriya et al. for the same purpose.

Algorithm 12 Computing the distinguished point PE
Require: The prime p = 2r`1 · · · `n − 1 and Montgomery coefficient A ∈ Fp of a

supersingular curve.
Ensure: PE ∈ E(Fp) of order 2r.
1: Set x← −2

2: while x3 +Ax2 + x is not a square in Fp and −x ≤ `n−1 + 1 do
3: Set x← x− 1

4: end while
5: if −x ≤ `n−1 + 1 then
6: Set P = (x, ·) ∈ E(Fp)

7: Set PE = [`1 × · · · × `n]P

8: return PE
9: else

10: return ⊥.
11: end if

A random element x ∈ F∗p\(F∗p)2 is the x-coordinate of a point P ∈ E(Fp) with
probability 1

2 . The probability that Algorithm outputs ⊥ is bounded by
(

1
2

)`n−1 . For
SiGamal primes p256 and p128 (see Section 3.5), `n−1 is 191 and 281 respectively, hence
the output is ⊥ with probability 2−191 and 2−281 respectively.

Remark A.2.3. Algorithm 12 is deterministic, hence always outputs the same point
PE when the input in unchanged.
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A.3—On the randomising function fE

Given a prime p of size n (n = dlog2 pe) and a supersingular elliptic curve E/Fp, we
consider the function

fE : Fp → F = Im(fE) ⊂ {0, 1}n, x 7→ bin(x)⊕ bin(AE).

Clearly, fE is bijective and satisfies (P1) with GE = f−1
E : y 7→ x ∈ Fp such that

bin(x) = y ⊕ bin(AE). Proving that fE satisfies (P2) and (P3) is less straightforward.
Nevertheless, we give some intuitive arguments on why we believe that fE satisfies
(P2) and (P3).

Given an element y ∈ F , in order to distinguish whether y = fE(x) where x

is the x-coordinate of a point of order 2r on some supersingular curve E or just a
random element of {0, 1}n, one may first fix the supersingular curve E, then check
if gE(y) is the the x-coordinate of a point of order 2r on E. This process needs
to be repeated for all O(

√
p) supersingular elliptic curves defined over Fp. Hence

leading to an exponential adversary. Another possible way is to try all elements in
the set Y = {(z, t) ∈ F2

p, bin(z) ⊕ bin(t) = y} till you get a couple (z, t) for which t is
the Montgomery coefficient of a supersingular curve E and z is the x-coordinate of
a point of order 2r on E. So p has to be chosen such that the cardinality of Y is
exponential (in the security parameter) for every y ∈ {0, 1}n.

Let k be the bit length of p−2n−1, that is the position of the second most significant
bit of p. Then for every y ∈ {0, 1}n, there exist at least 2k−1 couples (z, t) ∈ F2

p such
that y = bin(z) ⊕ bin(t). In fact, one can write y = b||y1||y0 where b is the first bit
of y, y1 and y0 have n − k and k − 1 bits respectively. Then for every w ∈ {0, 1}k−1,
z′ = b||0 · · · 0||(w ⊕ y0) and t′ = 0||y1||w are binary representations of elements in Fp
and y = z′ ⊕ t′.

For the primes p128 and p256 used in Section 3.5, we have k = n−1. In brief, when
using the above function fE , one should avoid primes p such that p−2n−1 < 2λ where
λ is the security parameter and n is the binary length of p.

The third property (P3), intuitively, follows from the fact there is no compatibility
with XOR and algebraic operations. In fact, given a⊕b, it seems hard to derive R(a)⊕b
where R is non identical rational function.

B.1—HealS PKE
The HealS Public Key Encryption scheme is detailed in Figure B.1.

C.1—A simpler, but detectable variant of the attack
We present a simpler variant of our attack, but which can be easily detected. In
Section 7.4.2, we use Algorithm 8 to recover the action of φA on groups of order
NB`

v. In the case where ` is coprime to NB , there is no need to consider groups
of order NB`v since we already know the action of φA on the NB-torsion points.
Therefore, we can directly recover the action of φA on groups of order `v.

Let d be the smallest divisor of NB such that NB = dN ′B and N ′B is a square
modulo NA, say N ′B ≡ γ2 mod NA. To recover the action of φA on a cyclic group
G1 of order ` where ` ≡ µ2 mod NA, Bob chooses a cyclic group G0 of order d

and sets G = G0 + G1, which is a group of order d`. He computes the isogeny
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p = 22a3bf − 1,
E0[22a] = 〈P2, Q2〉 ,
E0[3b] = 〈PB , QB〉,

PA = [2a]P2, QA = [2a]Q2

α
$←− Z2a ,

kerφA = 〈PA + [α]QA〉 ,
E0

φA−−→ EA, φA(PB), φA(QB)
EA[22a] = 〈RA, SA〉

φA(P2) = [e1]RA + [f1]SA
φA(Q2) = [e2]RA + [f2]SA

e1, f1, e2, f2 ∈ Z22a ,
α ∈ Z2a

EA, Rb, Sb

m ∈ (Z/22aZ)×, β $←− Z3b

kerφB = 〈PB + [β]QB〉 ,
E0

φB−−→ EB , φB(P2), φB(Q2)
EA[22a] = 〈RA, SA〉

kerφ′B = 〈Rb + [β]Sb〉 ,

EA
φ′B−−→ EAB ,

EAB [22a] = 〈RAB , SAB〉
φ′B(RA) = [e3]RAB + [f3]SAB
φ′B(SA) = [e4]RAB + [f4]SAB

c0 = (EB , Ra, Sa),
c1 = H(jAB) ⊕

(me3||mf3||me4||mf4)

c = (c0, c1)

kerφ′A = 〈[2a]Ra + [α][2a]Sa〉 ,

EB
φ′A−−→ EBA, φ

′
A(Ra), φ′A(Ra)

EBA[22a] = 〈RAB , SAB〉
e′3||f ′3||e′4||f ′4 = H(jBA) ⊕ c1,
Rab = [e′3]RAB + [f ′3]SAB
Sab = [e′4]RAB + [f ′4]SAB

e22a(Ra, Sa)
?
= e22a(P2, Q2)3

b

〈φ′A(Ra)〉 ?
= 〈[e1]Rab + [f1]Sab〉

〈φ′A(Sa)〉 ?
= 〈[e2]Rab + [f2]Sab〉

m′ = DLP ([e1]Rab+[f1]Sab, φ
′
A(Ra))

[m′]φ′A(Sa)
?
= [e2]Rab + [f2]Sab

return m′ return ⊥

Hash function:

H : Fp2 → {0, 1}8a

skA pkA

Public parameters

Key generation

Encryption

Decryption

Yes No

Figure B.1: HealS PKE.

φG : E0 → EG = E0/G together with R = [γµ−1]φG(PA) S = [γµ−1]φG(QA). For each
cyclic group H ⊂ EA[d`] containing φA(G0), Bob computes EH = EA/H and queries
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the oracle (EG, R, S,EH). Note that

eNA(R,S) = eNA([γµ−1]φG(PA), [γµ−1]φG(QA))

= eNA(PA, QA)γ
2µ−2 deg φG

= eNA(PA, QA)N
′
B`
−1d`

= eNA(PA, QA)NB ,

Hence the pairing check does not detect the attack. Nevertheless, when NB is a very
smooth integer (like in SIDH where NB = 3b and d ∈ {1, `}), d is small. Hence Alice
can easily check if the curves E0 and EG are d`-isogenous to discard such malicious
public keys.
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