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INTRODUCTION

Variational problems and the solvability of certain nonlinear equations have
a long and rich history beginning with calculus and extending through the
calculus of variations. We study "well-connected" pairs of such problems
which are related by critical point considerations. We consider elliptic
degenerate problems of type

−∆u(y, z) =
1
|y|s u2∗−1(y, z) (1)

where x = (y, z) ∈ Rk × Rn−k, n ≥ 3, k ≥ 2, 2∗ = 2(n−s)
n−2 , 0 < s < 2. This

equation is critical because is invariant with respect to the scalings and z-
translations uβ(x) = β

n−2
2 u(βy, β(z− z0)), ∀β > 0. The lack of compactness

of problem (1) is also given by the fact that we are looking for entire solutions,
that is solutions for all space. Moreover (1) is the Euler equation associated
to a weighted Sobolev inequality, proved in [3]: There exists S > 0 such that
for u ∈ C∞

0 (Rk × Rn−k)




∫∫

Rk Rn−k

|u| 2(n−s)
n−2

|y|s dy dz




n−2
n−s

≤ S

∫∫

Rk Rn−k

|∇u|2 dy dz. (2)

for n ≥ 3, 0 ≤ s < 2 and 2 ≤ k ≤ n.
Always in [3],using the method of concentration compactness of P.L.Lions,
the authors prove that for 0 < s < 2, the best constant in (2) is achieved, that
is there exists a function u, called extremal, such that verifies the equality.
If s = 0, (2) corresponds to the classical Sobolev inequality which has been
exhaustively studied by Aubin [1] and Talenti [51] who computed exactly
the best constant and proved existence of extremal functions, exhibiting
them explicitly. If s = 2 and 2 < k ≤ n, (2) still holds true (see [3]) thus
providing an extension of the classical Hardy, which is known not to possess
extremal functions. While for the case k = n, an extensive literature was
produced concerning more general weighted Sobolev inequalities, only few
existence results for variational problems with cylindrical symmetry, (k < n),
are known (see [3],[2] and [42]). We recall, for k = n, the Caffarelli-Kohn-
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Nirenberg inequality ([13]) which establishes: For all u ∈ C∞
0 (Rn),




∫

Rn

|u|p|x|−bp dx




2/p

≤ Ca,b

∫

Rn

|x|−2a|∇u|2 dx (3)

where n ≥ 3,−∞ < a < n−2
2 , a ≤ b ≤ a + 1, and p = 2n

(n−2+2(b−a)) . Catrina
F. and Z.Q.Wang in ([17]) have obtained several results concerning best
constants and corresponding extremal functions for (3) in the case a < 0,
while the case a = 0, 0 < b < 1, was thoroughly investigated by [28] and
extremal functions have been computed by Lieb ([34]). Moreover, for a =
0, bp = s, we get (2) with k = n. For any a ∈ R, positive solutions of the
Euler equation associated to (3), on a properly weighted Sobolev space, turn
out to be radially symmetric (see [18] for the case a ≥ 0 and [17] for a < 0)
and they can be explicitly computed just solving an ODE.
The main purpose of this thesis is to characterize the extremals in (2) for the
case 0 < s < 2 and 2 ≤ k < n, or equivalently, to look for all solutions to
(1), but when k < n, we note that the extremals cannot be anymore radially
symmetric and then they cannot be searched among solutions of an ODE,
but of a PDE.

This thesis consists of four chapter which are organized as follows. In
chapter 1, we will recall several problems with lack of compactness and some
useful tools for these problems, which are employed in the rest of thesis, as the
method of Concentration-Compactness of P.L.Lions and the moving plane
method of Alexandrov and Serrin. In the second chapter, we give existence
and nonexistence results obtained by [3],[2] and [45] for the problem

−∆u(y, z) = φ(|y|) u2∗−1(y, z). (4)

where x = (y, z) ∈ Rk × Rn−k, n ≥ 3, k ≥ 2, 2∗ = 2(n−s)
n−2 , 0 < s < 2.

This equation, for n = 3 and φ(r) = r2α

(1+r2)α+1
2
, α > 0 has been proposed by

G.Bertin and L.Ciotti as a model describing the dynamics of elliptic galaxies
(see the book [7] and lecture notes [19]) . Here u satisfies the usual Poisson
equation ∆u = 4πGρ relating the gravitational potential u to the density of
matter ρ and satisfies the condition

∫
R3 φ(r)up−1dx < +∞ which guarantees

that the given solution carries a finite total mass. The cylindrical symme-
try of the problem is derived from the assumptions that the elliptic galaxies
are axially symmetric. Several elliptic equations similar to (4) arising from
models of globular cluster of stars have been investigated, but we know most
of these models are radial. In our case, we suppose that φ(r) is asymptotic,
at 0 or at ∞ (or both) to the function 1/rs. Then, (4) admits (1) as limit
problem. In third chapter we prove, using moving planes techniques, that
all the solutions of (1) are cylindrically symmetric. Thanks to these sym-
metries, (1) reduces to an elliptic equation in the positive cone in R2 and in
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a particular case, when s = 1, leads to a complete identification of all the
solutions of the equation

−∆u(y, z) =
u

n
n−2

|y| (5)

In fact, we prove

Theorem 1. Let u0 be the function given by

u0(x) = u0(y, z) = cn,k

(
(1 + |y|)2 + |z|2)−

n−2
2

where cn,k = {(n− 2)(k − 1)}n−2
2 . Then u is a solution of (5) if and only if

u(y, z) = λ
n−2

2 u0(λy, λ(z + z0)) for some λ > 0 and z0 ∈ Rn−k.

As a consequence of the above Theorem, we have

Theorem 2. The best constant S in the weighted Sobolev inequality (2), with
s = 1, is given by

S = (n− 2)(k − 1)

{
2(π)

n
2

(k − 2)!
(n + k − 3)!

Γ(n+k−2
2 )

Γ(k/2)

} 1
n−1

.

The identification of the solutions to (5) is based on a mysterious identity
which goes back to the work of Jerison and Lee ([31]) on the CR-Yamabe
problem. More precisely, it is related to the identification of the extremals
for the Sobolev inequality on the Heisenberg group ([32]). Actually, we
follow closely the approach by Garofalo-Vassilev ([25]) in the search of entire
solutions of Yamabe-type equations on more general groups of Heisenberg
type. We also remark that, while symmetry properties hold true for (2),
we didn’t succeeded in getting an efficient Jerison-Lee type identity in the
general case, and this is why a classification of solutions is missing if, in
(1), s 6= 1 . Similar difficulties are encountered in dealing with Grushin
type operators −∆x − (α + 1)2|x|2α∆y, (x, y) ∈ Rm × Rk with critical
nonlinearity (see [6] for a related sharp Sobolev inequality and identification
of extremals in case α = 1). As noticed in [41], the Heisenberg sublaplacian
is in fact a Grushin operator with α = 1, m an even integer and k = 1
(the work of Garofalo-Vassiliev actually deals with more general values of m
and k) and identification of solutions is available only in case α = 1. While
it is relatively easy to see that weak solutions to (1) are bounded, further
regularity on the subspace C = {(y, z) ∈ Rk × Rn−k : y = 0} is based on
more intricate estimates given by following lemma:

Lemma 3. Let u be a solution of (1). Assume
s < 1 + k

n if n ≥ 4
s < 3

2 if n = 3
Then u is C∞ in the z variable and C0,α, for some α < 1, in the y variable.
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In fourth chapter, we consider a perturbation problem of type

−∆u =
u2∗−1

|y|s + λu (6)

with u > 0, u ∈ H1
0 (Ω) where Ω ⊂ Rn is a bounded domain containing

the origin. With the help of a Pohozaev type identity, we prove that the
equation (6) does not have non-trivial non-negative solutions on starlike
bounded domains and the following result holds:

Theorem 4. Assume n ≥ 4. Then for every λ ∈ (0, λ1) there exists a
solution of the problem

−∆u = u2∗(1)−1

|y| + λu in Ω
u > 0 in Ω
u = 0 on ∂Ω.





(7)

where Ω is a bounded domain in Rn containing the origin and 2∗(1) = 2(n−1)
n−2 .



1. ISOPERIMETRIC INEQUALITIES

In this chapter, we shall give an historical background on isoperimetric
inequalities that are examples of scale invariance and hence of lack of
compactness.

Definition 1.0.1. We will say an "isoperimetric inequality" to be any
inequality which relates two or more geometric or physical quantities asso-
ciated with the same domain. The inequality must be optimal in the sense
that the equality sign holds for the same domain or in the limit as the domain
degenerates.

Definition 1.0.2. An extremal function or maximizing f , is a function that
gives equality.

Having a precise geometric meaning, these inequalities are often
invariant under the action of the conformal group, i.e. translations, rotations,
reflections, scaling symmetries, inversions on the unit sphere.

Since ancient times it has been known that among all plane domains of
a given area, the circle has the shortest boundary. The extremal property is
expressed in the classical isoperimetric inequality

L2 ≥ 4π A (1.1)

where A is the area enclosed by a curve C of length L, and where equality
holds if and only if C is a circle. Analogously, in Rn, with n ≥ 3, we get
isoperimetric inequality for currents

[M(∂T )]
n

n−1 ≥ 4π M(T ) (1.2)

The problem in Rn is to maximize the volume among all domains whose
boundary surfaces has a fixed (n− 1)-dimensional area. The solution is that
the unique extremal is the domain bounded by a sphere. Other examples
are analytic inequalities such as Sobolev inequality, Rayleigh quotient, eigen-
values of the Laplacian, Poincaré inequality. Extensive discussions of such
inequalities can be found in the book of Pólya and Szegö and in the review
by Payne. The most famous inequalities are the following.

Theorem 1.0.1. (Hardy-Littlewood-Sobolev)

|
∫

Rn

∫

Rn

f(x)|x− y|−λg(y)dxdy| ≤ Np,λ,n ‖f‖p ‖g‖t (1.3)
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for all f ∈ Lp(Rn), g ∈ Lt(Rn), 1 < p , t < ∞, 1
p + 1

t + λ
n = 2 and 0 < λ < n,

where Np,λ,n is the best constant. The sharp constant satisfies

Np,λ,n ≤ n

(n− λ)

(
ωn−1

n

)λ/n 1
p t

((
λ/n

1− 1/p

)λ/n

+
(

λ/n

1− 1/t

)λ/n)
.

where ωn−1 = surface area of the (n− 1)-dimensional unit sphere.

Remark 1.0.1. We notice that the constraint 1
p + 1

t + λ
n = 2 implies the

scale invariance of (1.3).

Remark 1.0.2. Inequality (1.3) was proved by Hardy-Littlewood-Sobolev in
the 1930’s. The sharp version with the constant, was proved by Lieb in 1983
in [34], where he shows that a maximizing pair f, g exists for (1.3). However,
neither this constant nor the optimizers are known when p 6= t. This requires
the use of two rearrangement inequalities and a new compactness technique
for maximizing sequence. For the case of t = p and, as corollary, for the case
t = 2 or p = 2, f and g are explicitly computed. As an application of Lieb’ s
method, the existence of a maximizing function f on Rn, can be proved for
the sharp constant in the Sobolev inequality.

1.1 Sobolev inequality

The following estimates, valid for all functions in certain classes, have become
a standard tool in existence and regularity theories for solutions of partial
differential equations, in the calculus of variations, in geometric measure
theory and in many other branches of analysis.

Definition 1.1.1. A ”Sobolev inequality” has come to mean an estimation of
lower order derivatives of a function in terms of its higher order derivatives.

Theorem 1.1.1. (Gagliardo-Nirenberg-Sobolev). Assume 1 ≤ p < n. There
exists a constant C depending only on p, n, such that

||u||
L

np
n−p (Rn)

≤ C ||∇u||Lp(Rn) (1.4)

for all u ∈ C∞
0 (Rn).

The sharp constant C = Cp,n and the extremal functions were derived
by Talenti [51].

1.2 Hardy inequality

This classical result, has been proved by Garcia and Peral in [24], using the
following one dimensional Hardy inequality which holds for all u ∈ C∞

0 (0,∞)
and for p > 1:

∫ ∞

0
|u′(t)|pdt ≥

(
p− 1

p

)p ∫ ∞

0

∣∣∣∣
u(t)

t

∣∣∣∣
p

dt (1.5)
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Theorem 1.2.1. Assume 1 < p < n. Then the following inequality
∫

Rn

|u|p
|x|p dx ≤ Cn,p

∫

Rn

|∇u|p dx (1.6)

hods for all u ∈ D1,p(Rn), where D1,p(Rn) is the completion of C∞
0 (Rn) in

the norm ||u||D1,p(Rn) = ||∇u||Lp(Rn). Moreover, Cn,p = (p/(n− p))p is the
optimal constant.

Remark 1.2.1. The (1.6) inequality is false for p = n ≥ 2, that is, there does
not exist any constant C > 0 such that

∫
Rn |∇u(x)|n dx ≥ C

∫
Rn |u(x)

x |n dx.
This can be seen easily by taking a ball B(0, R) and a smooth function
0 ≤ φ ≤ 1 such that φ = 1 on B(0, R/2) and 0 outside the ball B(0, R), so
that

∫
Rn |φ(x)

x |n dx = +∞.

Remark 1.2.2. The constant Cn,p = ( p
n−p)p is the optimal constant, i.e.

Cn,p = sup
u∈D1,p(Rn)

u 6= 0

∫
Rn |u(x)

x |p dx∫
Rn |∇u|p dx

. (1.7)

Moreover, for any bounded domain Ω containing 0 with 1 < p < n, the
following inequality

∫

Ω

|u|p
|x|p dx ≤ Cn,p

∫

Ω
|∇u|p dx (1.8)

holds for any u ∈ W 1,p
0 (Ω), which is the completion of C∞

0 (Ω) in the norm
||u||1,p,Ω :=

(∫
Ω |u(x)|p dx +

∫
Ω |∇u|p dx

)1/p and Cn,p is the best constant.

Through these two results, we can say that the embedding of W 1,p
0 (Ω) in Lp(Ω),

where Ω is a bounded domain containing 0, and 1 < p < n, with respect to
the weight |x|−p is continuous. Moreover, the constant Cn,p is not achieved,
unlike Sobolev inequality. In fact, we can give an explicit minimizing se-
quence for the best constant. For ε > 0, we define uε = |x|−n−p

p
+ε; for any

x ∈ Rn, uε is in D1,p(Rn) and verifies
(

n− p

p

)p

= lim
ε→0

∫
Rn |∇uε|pdx

∫
Rn

|uε(x)|p
|x|p dx

.

But the limit function u(x) := |x|−n−p
p does not belong to D1,p(Rn) and

satisfies the equation

− div(|∇u|p−2∇u) = Cn,p|u|p−1 in Rn

in the sense of distribution, i.e.
∫

Rn

|∇u|p−2 < ∇u,∇φ > dx = Cn,p

∫

Rn

|u|p−1 φdx for all φ ∈ C∞
0 (Rn).
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Remark 1.2.3. Let us consider the nonlinear operator

Lλu ≡ −∆p − λ

|x|p |u|
p−2u in W 1,p

0 (Ω).

Then

1. If λ ≤ Cn,p, Lλ is a positive operator .

2. If λ > Cn,p , Lλ is unbounded from below.

(1) it is obvious from (2.7) inequality. (2) By density argument and
optimality of the constant, there exists a function φ ∈ C∞

0 (Ω) such that
〈Lλ φ, φ〉 < 0. We can assume that ||φ||L2 = 1 and then by defining uµ(x) =
µn/2 φ(µx) we have ||uµ||L2 = 1 and the homogeneity of the operator allows
us to conclude that 〈 Lλ uµ, uµ〉 = µ2 〈Lλ φ, φ〉 < 0.

1.3 Weighted Sobolev inequalities

There are many generalizations of (2.5) and (2.6). We can cite

Theorem 1.3.1. (Caffarelli-Kohn-Nirenberg) The inequality

(
∫

Rn

|x|−bp|u|pdx)
2
p ≤ Ca,b

∫

Rn

|x|−2a|∇u|2dx (1.9)

holds for u ∈ C∞
0 (Rn), n ≥ 3, −∞ < a < n−2

2 , a ≤ b ≤ a + 1 and
p = 2n

n−2+2(b−a) .

Remark 1.3.1. The classical Sobolev inequality (a = 0, b = 0) and the
Hardy inequality (a = 0, b = 1) are special cases.

Note. In [34], Lieb considered the case a = 0, 0 < b < 1. In [18], Chou
and Chu considered the case a ≥ 0 and gave the best constants and explicit
minimizers. Moreover Lions in [38] (for a = 0) and Wang and Willem in [55]
(for a > 0), have established the compactness of all minimizing sequences up
to dilations. The symmetry of the minimizers has been studied in [34] and
[18]. In fact, all the nonnegative solutions in D1,2

a (Rn) for the corresponding
Euler equation are radial solutions and explicitly given (see Aubin, Talenti,
Lieb, Chou and Chu). This was established in [18], using a generalization of
the moving plane method (e.g., Gidas-Ni-Nirenberg, Caffarelli-Gidas-Spruck,
Chen).

Taking in (1.9) a = 0 and −b p = ν, we get

Theorem 1.3.2. (Egnell-Maz’ya) The inequality

(
∫

Rn

|u|p+1|x|νdx)
2

p+1 ≤ C

∫

Rn

|∇u|2dx (1.10)

holds for u ∈ C∞
0 (Rn) if −2 ≤ ν ≤ 0 and p + 1 = 2(n+ν)

n−2 .
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1.4 The Riemannian Yamabe problem

Let (M, g) be a compact Riemannian manifold, without boundary, of dimension
m ≥ 3. If g̃ = φq−2g, with q = 2m

m−2 , is a new metric conformal to g, the
scalar curvature K̃ of g̃ is given by

K̃ = φ1−q(am∆φ + Kφ), am = 4(m− 1)/(m− 2),

in which ∆ is the Laplace-Beltrami operator of g and K its scalar curvature
(see [1]). Thus the problem of finding a conformal metric with constant
scalar curvature K̃ ≡ µ is equivalent to finding a positive, C∞ solution φ to
the Yamabe equation:

am∆φ + Kφ = µφq−1. (1.11)

This problem has the following variational formulation. We consider the
constrained variational problem

µ(M) = inf{
∫

M
(am|dφ|2 + Kφ2) dVg :

∫

M
|φ|qdVg = 1 }. (1.12)

We can compute readily that the Euler-Lagrange equations for (1.12) is the
Yamabe equation, provided φ ≥ 0. Thus we want to search for the extremals
for (1.12). One of the major milestones in the solution of the Yamabe
problem was the following theorem, due to H.Yamabe [56], N. Trudinger
[52], and T. Aubin [1].

Theorem 1.4.1. Let (M, g) be a compact Riemannian manifold of dimen-
sion m ≥ 3.

(a) µ(M), depends only on the conformal class of g.

(b) µ(M) ≤ µ(Sm), in which the sphere Sm has the standard metric.

(c) If µ(M) < µ(Sm), then the infimum in (1.12) is attained by a positive,
C∞ solution to (1.11). Thus the metric g̃ = φq−2g has constant scalar
curvature µ(M).

Aubin also proved that µ(M) < µ(Sm) in all cases in which M is not
locally conformally flat and m ≥ 6. After a time, in 1984, R. Schoen [46]
has completed the solution of the Yamabe problem by proving that µ(M) <
µ(Sm) unless M is the sphere. The proof of part (a) consists of the fun-
damental observation that problem (1.12) is conformally invariant in the
following sense. Under the conformal change of metric g̃ = tq−2g, if we let
∆̃ and K̃ denote the Laplacian and scalar curvature of g̃, then we have

(am∆̃ + K̃)φ̃ = t1−q(am + ∆ + K)φ, with φ̃ = t−1φ. (1.13)

It follows that the integral in (1.12) is unchanged if we replace g by g̃ and φ
by φ̃, thus µ(M) is conformal invariant. The analysis of (1.12) begins with
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a thorough understanding of the special case of the sphere Sm in Rm+1. We
center Sm at the origin of Rm × R. By stereographic projection

Rm 3 x 7→
(

2x

1 + |x|2 ,
1− |x|2
1 + |x|2

)
∈ Sm ⊂ Rm+1,

coupled with the transformation law (1.13) converts the variational problem
on Sm to the problem on Rm :

µ(Sm) = inf{am

∫

Rm

|df |2 dx :
∫

Rm

|f |q dx = 1}. (1.14)

This is just the problem of finding the best constant and the extremal
functions for Sobolev’s inequality. Thus, the stereographic projection induces
a metric g̃ = u

4
m−2 g = 4

(1+|x|2)2
g of constant curvature µ = m(m−1) on Rm,

conformal to the Euclidean metric g on Rm, where u(x) = [m(m−2)]
m−2

4

[1+|x|2]
m−2

2
is an

extremal for (2.12). In the last twenty years, several authors have generalized
the Yamabe problem to Cauchy-Riemann manifolds, to Heisenberg group
and Carnot groups, see Jerison and Lee [31],[32], and Garofalo-Vassilev [25].

1.5 Plateau’s Problem

The study of parametric two-dimensional surfaces with prescribed mean
curvature, satisfying different kinds of geometrical or topological side con-
ditions, has constituted a very challenging problem and has played a promi-
nent role in the history of the Calculus of Variations. Minimal surfaces
are defined as surfaces with zero mean curvature. Surfaces with prescribed
constant mean curvature are usually known as "soap films" (H = 0) or
"soap bubbles" (H = const.). Minimal surfaces may also be characterized
as surfaces of minimal surface area for given boundary conditions. Finding a
minimal surface spanning a given constraint is known at Plateau’s problem.
In general, there may be one, multiple, or no minimal surfaces spanning a
given closed curve in space. The existence of a solution to the general case
was independently proved by Douglas ([20]) and Radó ([44]) in the 1930’s,
although their analysis could not exclude the possibility of singularities. In
the 1970’s Osserman ([43]) and Gulliver ([29]) showed that a minimizing
solution cannot have singularities. For the case of nonconstant prescribed
mean curvature, only few existence results of variational type are known,
see for example [47], [48]. In the last ten years many variational type re-
sults hold true in a perturbative setting, namely, for curvature of the forms
H(u) = H0 + H1(u) where H0 ∈ R \ {0} and H1 ∈ C1(R3) ∩ L∞, having
||H1||∞ small. In particular, we can mention Struwe [49], Wang [54], Bethuel
and Rey [8], Caldiroli and Musina [15]. In analogy with soap bubbles, we
can give the following
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Definition 1.5.1. A H-bubble is a regular surface M ↪→ R3 parametrized
by a conformal map u : S2 → R3, having mean curvature H(u) at every
regular point u ∈M.

Up to the composition with the stereographic projection S2 → R2, every
conformal parametrization u of M is a solution to

{
∆u = 2H(u) ux ∧ uy in R2∫
R2 |∇u|2 < +∞.

(1.15)

Here ux = (∂u1
∂x , ∂u2

∂x , ∂u3
∂x ), uy = (∂u1

∂y , ∂u2
∂y , ∂u3

∂y ), ∆u = uxx + uyy,∇u =
(ux, uy), and ∧ denotes the exterior product in R3. The invariance of problem
(1.15) with respect to the action of the conformal group of S2 ≡ R2 ∪ {∞}
means that the true unknown in this problem is a parametric surface, rather
than its parametrization. We note that the problem (1.15) has a natural
variational structure, since solutions to (1.15) are the critical points of the
functional

EH(u) =
1
2

∫

R2

|∇u|2 + VH(u),

where VH(u) = 2
∫
R2 Q(u) · ux ∧ uy and Q : R3 → R3 is any vector field

such that divQ = H. When H is bounded, EH turns out to be well defined
(by continuous extension) and sufficiently regular on some Sobolev space.
Roughly, the integral 2

∫
R2 Q(u) · ux ∧ uy has the meaning of the algebraic

H-weighted volume of the region enclosed by range u and it is essentially
cubic in u. Therefore, the energy functional EH , which is unbounded from
below and from above, actually admits a saddle type geometry. In case of
nonzero constant mean curvature H(u) = H0, Brezis and Coron [9] proved
that the only nonconstant solutions to (1.15) are spheres of radius |H0|−1

anywhere placed in R3. In order to make precise the geometrical structure
of EH , we consider the restriction of EH to the space of smooth functions
C1

0 (R2,R3) and we introduce the value

cH = inf
u∈C1

0(R2,R3)

u6=0

sup
s>0

EH(su)

which represents the mountain pass level along radial paths. Caldiroli and
Musina, in [15], proved the following existence result.

Theorem 1.5.1. Let H : R3 → R be a function C1(R3), satisfying:

(h1) H(u) → H∞, for some H∞ ∈ R,

(h2) supu∈R3 |∇H(u + ξ) · uu| < 1, for some ξ ∈ R3,

(h3) cH < 4π
3 H2∞

.

Then there exists an H-bubble ω such that EH(ω) = cH . Moreover, called BH

the set of H-bubbles, it holds that cH = infω∈BH
EH(ω).
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1.6 Historical references: works by Talenti, Lieb, Lions

Theorem 1.6.1. (Talenti) Let n ≥ 3 and f ∈ C∞
0 (Rn). Then, for 1 < p < n,

the following inequality holds

||f ||Lq(Rn) ≤ Cp,n ||∇f ||Lp(Rn) (1.16)

where q = np
n−p and Cp,n = π−1/2n−1/p

(
p−1
n−p

)(p−1)/p[
Γ(n)Γ((n+2)/2)

Γ(n/p)Γ((p+pn−n)/p)

]1/n

.

The equality sign holds in equation (1.16) iff f is a multiple of the function
(a + b|x|p/(p−1))(p−n)/p with a, b > 0 and x ∈ Rn.

Definition 1.6.1. We will denote by
S = inf{∫Rn |∇u|pdx |u ∈ D1,p(Rn),

∫
Rn |u|qdx = 1}.

We recall some useful notions for one-dimensional variational problems.
Let Ω be an open, simply connected region in Rn+1, (t, x1, · · · , xn) =

(t, x) a point of Ω and F = F (t, x, p) ∈ C2(Ω × Rn) a Lagrangian and let
(t1, a) and (t2, b) two points in Ω. The space

Γ := {γ : t → x(t) ∈ Ω : x ∈ C1[t1, t2], x(t1) = a, x(t2) = b}

consists of all continuously differentiable curves which start at (t1, a) and
end at (t2, b). On Γ is defined the functional

I(γ) =
∫ t2

t1

F (t, x(t), ẋ(t)) dt.

Definition 1.6.2. We say that γ∗ ∈ Γ is minimal in Γ if

I(γ) ≥ I(γ∗), ∀γ ∈ Γ.

Proposition 1.6.2. If γ∗ is is a regular minimal in Γ,, that is det(Fpipj ) 6= 0
for x = x∗, p = ẋ∗, then x∗ ∈ C2[t1, t2] and we have for j = 1, · · · , n

d

dt
Fpj (t, x

∗, ẋ∗) = Fxj (t, x
∗, ẋ∗) (1.17)

These equations are called Euler equations.

Definition 1.6.3. An element γ∗ ∈ Γ satisfying the Euler equations (1.17)
is called an extremal in Γ.

Definition 1.6.4. An extremal field in Ω is a vector field ẋ = ψ(t, x), ψ ∈
C1(Ω) which is defined in a wide neighborhood U of an extremal solution and
which has the property that every solution x(t) of the differential equation
ẋ = ψ(t, x) is also a solution of the Euler equations.
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Definition 1.6.5. A vector field ẋ = ψ(t, x) is called a Mayer field if there
is a function g(t, x) which satisfies the fundamental equations

gt = F (t, x, ψ)−
n∑

j=1

ψjFpj (t, x, ψ),

gx = Fpj (t, x, ψ). (1.18)

Remark 1.6.1. A vector field is a Mayer field if and only if it is an extremal
field which satisfies the compatibility condition

DψFpj (t, x, ψ) = Fxj (t, x, ψ) (1.19)

where Dψ := ∂t + ψ∂x + (ψt + ψψx)∂p.

Definition 1.6.6. A Hilbert invariant integral is a functional defined for
every curve γ : t 7→ x(t) as

I(γ) =
∫

γ
Fdt =

∫

γ
F dt− Fp ẋ dt + Fp dx.

Remark 1.6.2. Especially for the path γ∗ of the extremal field ẋ = ψ(t, x),
we have

I(γ∗) =
∫

γ∗
(F − Fpψ) dt + Fp dx.

Then, the difference with another curve γ is

I(γ)− I(γ∗) =
∫

γ
F (t, x, ẋ)− F (t, x, ψ)− (ẋ− ψ)Fp(t, x, ψ)dt

=
∫

γ
E(t, x, ẋ, ψ)dt

where E(t, x, ẋ, p, q) = F (t, x, p)− F (t, x, q)− (p− q)Fp(t, x, q) is called the
Weierstrass excess function.

Note. The proof of Talenti’s paper consists of two steps. In the first step the
author proves that if the quotient J(u) = ||u||Lq(Rn)

||∇u||Lp(Rn)
attains its supremum

value, then, by rearrangement technique, he can take spherically symmetric
extremals. Moreover, he shows that the critical radial points of J(u) are
functions of the form φ(r) = (a + b r

p
p−1 )1−n/p with a, b positive constants.

In the second part, he shows that the found extremals actually give the
maximum, using techniques of one dimensional calculus of variations. The
original idea is to consider a Lagrange constrained problem, i.e.

(∗)





∫ +∞
0 rn−1|u1(r)|qdr = max

where

u
′
2(r) = rn−1|u′1(r)|p

and
u2(0) = 0, u1(+∞) = 0, u2(+∞) = 1
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and to find the solution of this. It is easy to see that if u satisfies J(u) = max,
getting {

u1(r) = u(r)(
∫ +∞
0 tn−1|u′1(t)|pdt)−1/p

u2(r) =
∫ r
0 tn−1|u′1(t)|pdt

the couple (u1, u2) is a solution of (∗). Conversely, if (u1, u2) is a solution of
(∗), then u = u1 is such that J(u) = max . He proves that the two-parameters
family of extremals

(∗∗)
{

φ1(r) = a(1 + br)1−n/p

φ2(r) =
∫ r
0 tn−1|φ′1(t)|pdt

is a Mayer field (see Definition 1.6.5) in the first octant of the three-dimensional
space. Then, by Remark 1.6.1, there exists an exact differential dW such
that, along any path ]0,∞[3 r → (r, u1(r), u2(r)) which satisfies the con-
straint u

′
2(r) = rn−1|u′1(r)|p, the integral

∫
dW ≥ ∫∞

0 rn−1|u1(r)|qdr and
equality holds when the path is an extremal belonging to the Mayer field
(∗∗).

As seen in the Remark 2.0.2., Lieb in [34], proved the following theorem.

Theorem 1.6.3. Assume the hypotheses as in theorem 2.0.1. If p = t =
2n

(n−λ) , then

Np,λ,n = Nλ,n = πλ/2 Γ(n/2− λ/2)
Γ(n− λ/2)

{Γ(n/2)
Γ(n)

}−1+λ/n. (1.20)

In this case there is equality in (1.3) if and only if h ≡ ( const.) f and
f(x) = (γ2 + (x− a)2)−(2n−λ)/2, 0 6= γ ∈ R and a ∈ Rn.

The technique used by Lieb to prove this theorem is called "Competing
Symmetries".

Note. The name "Competing Symmetries" alludes to the fact that the sym-
metrization due to the rearrangement and the conformal symmetry strive
together to produce the limiting function Lf .

Lieb studied all the symmetries of (1.3) inequality. Some of them are
obvious. Certainly (1.3) is invariant by translations, by the orthogonal group
of rotations and reflections of Rn. Another important symmetry is the
scaling symmetry. If we replace f(x), h(x) by λn/p f(λx), λq/nh(λx) for
λ > 0, then the integral (1.3) is again invariant. It remains to check that the
(1.3) inequality in invariant under the conformal group, that is the group of
deformations that preserve angles. We can consider the inversion of the unit
sphere, I : Rn \ {0} → Rn, such that x 7→ x

|x|2 .

By stereographic projection, there exists a map S : Rn → Sn such that

x 7→ s =
(

2x1
1+|x|2 , · · · , 2xn

1+|x|2 , 1−|x|2
1+|x|2

)
and the inverse, S−1 is given by xi =
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si
1+sn+1

for i = 1, · · · , n. By calculation, writing s = S(x) and t = S(y), we
have that

n+1∑

i=1

(si − ti)2 = |s− t|2 =
4

(1 + |x|2)(1 + |y|2) |x− y|2 (1.21)

that is S is conformal. Moreover, the Euclidean group, together with scaling
and inversion generates all conformal transformations. We recall that the
conformal group on Rn, which we denote by C, is isomorphic to the Lorentz
group, O(n+1, 1) which has dimension (n+2)(n+1)

2 . We can define the action
of S on a function f ∈ Lp(Rn) as

S∗f(x) = F (s) = |JS−1(s)|1/p f(S−1(s)) (1.22)

and we have that ||F ||Lp(Sn) = ||f ||Lp(Rn). Computing the Jacobian of the
stereographic projection JS(x) and its inverse, we have

JS(x) = (
2

1 + |x|2 )n and JS−1(x) = (1 + sn+1)n. (1.23)

With these remarks, we can state the following.

Theorem 1.6.4. (Conformal invariance of the Hardy-Littlewood-Sobolev
inequality) Assume that p = r in (1.3) and that F ∈ Lp(Sn) and f ∈ Lp(Rn)
are related by (1.22). Let H and h another pair related in the same way.
Then

∫

Rn

∫

Rn

f(x)|x− y|−λ h(y) dx dy =
∫

Sn

∫

Sn

F (s)|s− t|−λ H(t) ds dt (1.24)

and ||F ||p = ||f ||p. Here |s− t|2 =
∑n+1

i=1 (si− ti)2 is the euclidean distance of
Rn+1. Manifestly, this shows the invariance under all isometries of Sn, i.e.
invariance under the group O(n + 1).

Proof. We can write
∫
Rn

∫
Rn f(x)|x− y|−λ h(y) dx dy

=
∫
Rn

∫
Rn(1+|x|2

2 )n/p f(x)
(

2
1+|x|2 |x− y|2 2

1+|y|2

)−λ/2

× (1+|y|2
2 )n/p h(y)( 2

1+|x|2 )n dx ( 2
1+|y|2 )ndy (1.25)

using that 2/p + λ/n = 2. Then, (1.24) can be rewritten as
∫

Sn

∫

Sn

F (s)|s− t|−λ H(t) ds dt. (1.26)

As we have seen in the remark, the HLS inequality is invariant under all
isometries of Sn, the translations and the scaling, that generates all conformal
group C.
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Consider now the rotation by 90◦, that is D : Sn → Sn,
Ds = (s1, · · · , sn+1,−sn) which maps the north pole n = (0, · · · , 1) in the
vector e = (0, · · · , 1, 0). The function F (D−1s) is now rotationally symmetric
about the e-axis and about n-axis. Thus, oh one hand, F (s) = φ(sn+1) for
some φ : Sn → R and, on the other hand, F (D−1s) = ψ(sn+1) for some
ψ : Sn → R. Then, φ(sn+1) = F (s) = ψ((DS)n+1) = ψ(−sn) for all s ∈ Sn,
which is only possible if F is a constant on Sn and hence

f(x) = C (1 + |x|2)−n/p.

It is easy to see that the function on Rn corresponding to F (D−1s) is given
by

(D∗f)(x) = |x + a|−2n/p f(
2x1

|x + a|2 , · · · ,
2xn−1

|x + a|2 ,
1− |x|2
|x + a|2 ) (1.27)

where a = (0, · · · , 1) ∈ Rn. If F is the function on Sn corresponding to f via
D, we set

(DF )(s) = F (D−1s) (1.28)

and we denote the symmetric-decreasing rearrangement of f by (Rf)(x) =
f∗(x). Recall that R is norm-preserving, i.e., ||Rf ||p = ||f ||p and that if we
apply a general conformal transformation (as D∗), to a radial function, (as
Rf), the result will generally no longer be radial. So, we shall consider the
map

RD∗ : Lp(Rn) → Lp(Rn).

The following theorem, proved by Carlen and Loss in [16], utilizing the map
RD∗ repeatedly, produce a specific optimizing sequence which strongly con-
verges.

Theorem 1.6.5. Let 1 < p < ∞ and let f ∈ Lp(Rn) be any nonnegative
function. Then the sequence fm = (RD∗)mf converges strongly in Lp(Rn),
as m →∞, to the function Lf := ||f ||p l(x) where

l(x) = (ωn)−1/p

(
2

1 + |x|2
)n/p

. (1.29)

Proof of the Theorem 1.6.3
We want to find the sharp constant in HLS inequality when p = r =
2n

n−λ , 0 ≤ λ < n. We can restrict our attention to the case h = f and
f ≥ 0. We consider

Nλ,n = sup{H(f) : f ∈ Lp(Rn), f ≥ 0, f 6= 0} (1.30)

where
H(f) :=

∫

Rn

∫

Rn

f(x)|x− y|−λf(y)dx dy

/
||f ||2p (1.31)
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The Theorem 1.6.3 can be shown as a corollary of Theorem 1.6.5. Re-
place f by f j(x) = min(f(x), j Lf (x)) so that f j converges monotically
to f(x) pointwise as j → ∞. If we can show that H(f j) → H(f) then,
by monotone convergence, H(f j) → H(f) and thus H(f) ≤ Nn,λ. Since
H(D∗f) = H(f) and H(Rf) ≥ H(f) by Riesz’s rearrangement inequality,
we have that H(fm) is a nondecreasing sequence where fm = (RD∗)mf.
Since, by the previous theorem, fm → Lf in Lp(Rn) as m →∞, we can pass
to a subsequence (again denoted by m) and assume that fm → Lf pointwise.
Since

fm ≤ C (1 + |x|2)−n/p for all m,

we know, by dominated convergence, that as m →∞,H(fm) → H(f) from
below. By calculations, we get (1.20). It remains to determine the case
of equality. Let f a nonnegative function. The equality in (1.3) can occur
only if l = (const.)f and if H(f) = Nλ,n. Then, by the strict rearrangement
inequality, we know that f must be a translate of a symmetric-decreasing
function. Moreover, the same is true for D∗f since it is also an optimizer
by the conformal invariance of H(f). Thus, the operation RD∗ acting on f
does nothing but translate D∗f to the origin, and hence RD∗f is nothing
but a conformal translation of f . The same is true for the whole sequence
fm = (RD∗)mf is a conformal image of f and we can write fm = Cmf,
where Cm is a sequence of conformal transformations. Since fm s.→ Lf , and
since the conformal transformations act as isometries on Lp(Rn), we have
that

lim
m→∞||f − C−1

m Lf ||p = 0. (1.32)

Moreover, the following lemma holds.

Lemma 1.6.6. Let C ∈ C be a conformal transformation and let l be given
by (1.29). If C acts on l, there exists λ 6= 0 and a ∈ Rn (depending on C)
such that

(Cl)(x) = (ωn)−1/p λn/p

(
2

λ2 + (x− a)2

)n/p

Proof. We know that every element in C is a product of elements of the
Euclidean group, scaling and inversions. It is easy to see it for scaling and
for Euclidean transformations. It remains to check that the inversion I maps
the function u(x) = (ωn)−1/pµn/p

(
2

µ2+(x−b)2

)n/p into a function of the same
type. In fact,

Iu(x) = (ωn)−1/pµn/p|x|−2n/p

(
2

µ2 + (x/|x|2 − b)2

)n/p

= (ωn)−1/p

(
µ

b2 + µ2

)n/p( 2
[µ/(b2 + µ2)]2 + [x− b/(b2 + µ2)]2

)n/p

.
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By Lemma 1.6.6, we have

(C−1
m Lf )(x) = λn/p

m (ωn)−1/p ||f ||p
(

2
λ2

m + (x− am)2

)n/p

(1.33)

for sequences λm 6= 0 and am ∈ Rn. Since, by (1.32), C−1
m Lf

s.→ f, it is plain
that λm → λ 6= 0 and am → a ∈ Rn. Hence

f(x) = λn/p (ωn)−1/p ||f ||p
(

2
λ2 + (x− a)2

)n/p

and the Theorem 1.6.3 is proved. ¤

In 1985 P.L.Lions, in [38]-[39], developed his concentration-compactness
principle to analyze necessary and sufficient condition for the convergence of
minimizing sequence satisfying the given constraint. The (CC) principle is
based on these lemmas.

Lemma 1.6.7. Let {µh}h a sequence of probability measures on Rn such
that µh ≥ 0,

∫
Rn dµh = 1. Along a subsequence, still denoted by {µh}h, one

of the following three alternatives holds:

i) (Compactness) There exists a sequence {ξh}h ⊂ Rn such that, for all ε > 0
there exists R > 0 with the property that

∫

BR(ξh)
dµh ≥ 1− ε ∀h.

ii) (Vanishing) For all R > 0 lim
h→∞

(
sup

ξh∈Rn

∫

BR(ξh)
dµh

)
= 0.

iii) (Dichotomy) There exists a number λ ∈]0, 1[ such that for all ε > 0 there
exist R > 0, and a sequence {ξh}h ⊂ Rn with the following property:
Given R′ > R there are non-negative measures µ1

h, µ2
h such that

0 ≤ µ1
h + µ2

h ≤ µh

supp {µ1
h} ⊂ BR(ξh), supp {µ2

h} ⊂ Rn \BR′(ξh),

lim sup
h→∞

(
|λ−

∫

Rn

dµ1
h|+ |(1− λ)−

∫

Rn

dµ2
h|

)
≤ ε.

Note. For any positive measure µ ∈ L1(Rn), we define concentration function
introduced by P. Lévi as

Q(r) = sup
x∈Rn

(
∫

Br(x)
dµ)
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Let Qh be the concentration functions associated with µh. Then, {Qh} is
a sequence of non-decreasing, positive bounded functions on [0,∞[ with
lim

R→∞
Qh(R) = 1. Hence, {Qh} is locally bounded in BV on [0,∞[ and there

exist a subsequence {µh} and a bounded, positive, non-decreasing function Q
such that Qh(R) → Q(R) for h →∞, for almost every R > 0. Normalizing
Q to be continuous from the left, we have:

Q(R) ≤ lim inf
h→∞

Qh(R).

Getting
λ = lim

R→∞
Q(R)

we have 0 ≤ λ ≤ 1. If λ = 0, we have "vanishing" case, while if λ = 1, we
can achieve "compactness" case and if 0 < λ < 1, we get "dichotomy " case.

The second is

Lemma 1.6.8. Let 1 ≤ p < n, 1
q = 1

p − 1
n . Let µ, ν bounded non-negative

measures on Rn.

i) um ⇀ u weakly inD1,p(Rn).

ii) νm = |uh|qdx ⇀ ν, weakly in the sense of measures in Rn.

iii) µm = |∇um|pdx ⇀ µ, weakly in the sense of measures in Rn.

Then,there exist an at most countable set of indices J , a corresponding set of
distinct points {xj ∈ Rn | j ∈ J}, and two sets {µj}j , {νj}j of non negative
numbers such that

ν = |u|qdx +
∑

j∈J

νjδj , µ ≥ |∇u|pdx +
∑

j∈J

µjδj and µj ≥ S ν
p/q
j ∀j ∈ J,

where δj = δxj is the Dirac measure with pole at {xj} ∈ Rn.

In particular,
∑

j∈J

(νj)p/q < ∞.

Then, the following result holds

Theorem 1.6.9. Let 1 < p < n, 1
q = 1

p − 1
n . Suppose {um} is a minimizing

sequence for S in D1,p(Rn) with ||um||Lq = 1. Then {um} up to translations
and dilatations is relatively compact in D1,p(Rn).

Proof. Choose x̃m ∈ Rn, R̃m > 0 such that for the rescaled sequence

vm(x) = R̃−n/q
m um(

x− x̃m

R̃m

)
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there holds

Qm(1) = sup
x∈Rn

∫

B1(x)
|vm|qdx =

∫

B1(0)
|vm|qdx =

1
2
. (1.34)

Since p > 1, we can assume that vm ⇁ v weakly in Lq(Rn) and weakly in
D1,p(Rn). Consider the families of measures

µm = |∇vm|pdx

νm = |vm|qdx

and apply Lemma (1.6.7) to the sequence {νm}. Vanishing cannot occur. If
we have dichotomy, let λ ∈]0, 1[ be as in Lemma, and for ε > 0 determine
R > 0, a sequence {xm} and measures ν1

m, ν2
m such that

0 ≤ ν1
m + ν2

m ≤ νm

supp (ν1
m) ⊂ BR(xm), supp (ν2

m) ⊂ Rn \B2R(xm),

lim sup
m→∞

(
|λ−

∫

Rn

dν1
m|+ |(1− λ)−

∫

Rn

dν2
m|

)
≤ ε.

Choosing a sequence εm → 0, corresponding Rm > 0 and passing to a
subsequence (νm) if necessary, we can achieve that

supp (ν1
m) ⊂ BR(xm), supp (ν2

m) ⊂ Rn \B2R(xm),

and
lim sup
m→∞

(
|λ−

∫

Rn

dν1
m|+ |(1− λ)−

∫

Rn

dν2
m|

)
= 0.

Moreover, we can suppose Rm →∞. Choose φ ∈ C∞
0 (B2(0)) such that φ ≡

1 in B1(0) and let φm(x) = φ(x−xm
Rm

). Decompose vm = vmφm +vm(1−φm).
Then

∫
Rn |∇vm|pdx =

∫
Rn |∇(vmφm)|pdx +

∫
Rn |∇(vm(1 − φm))|pdx + δm

where the error terms δm can be estimated from below

δm ≥ −C

∫

B2Rm (xm)\BRm (xm)
|vm|p|∇φm|pdx.

using the fact that 0 ≤ φ ≤ 1 and p > 1. Let Am denote the annulus
Am = B2Rm(xm) \BRm(xm). Estimating |∇φm| ≤ CR−1

m , we can bound

|| |vm| |∇φm| ||Lp(Am) ≤ CR−1
m ||vm||Lp(Am). (1.35)

Moreover, by Hölder’s inequality

R−1
m ||vm||Lp(Am) ≤ R−1

m |Am|
1
p
− 1

q ||vm||Lq(Am)

= C||vm||Lq(Am)

≤ C

[∫

Rn

dνm −
(∫

Rn

dν1
m +

∫

Rn

dν2
m

)] 1
q
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Hence this term tends to 0 as m →∞, while ||∇vm||pLp(Am) ≤ ||vm||pD1,p(Rn)

remains uniformly bounded and for (1.35), we obtain that δm ≥ o(1), where
o(1) → 0 asm →∞. Now by Sobolev’s inequality

||vm||pD1,p(Rn)
= ||vmφm|pD1,p(Rn)

+ ||vm(1− φm)||D1,p(Rn) + δm

≥ S (||vmφm||pLq(Rn) + ||vm(1− φm)||pLq(Rn) ) + δm

≥ S

[(∫

BRm (xm)
dνm

)p/q

+
(∫

Rn\B2Rm (xm)
dνm

)p/q]
+ δm

≥ S

[(∫

Rn

dν1
m

)p/q

+
(∫

Rn

dν2
m

)p/q]
+ δm

≥ S

(
λp/q + (1− λ)p/q

)
+ o(1)

But for 0 < λ < 1 and p < q we have λp/q + (1 − λ)p/q > 1, contradicting
the initial assumption that ||vm||pD1,p(Rn)

= ||um||pD1,p(Rn)
→ S. It remains

the case λ = 1. Let xm be as in the previous lemma and for ε > 0 choose
R = R(ε) such that

∫
BR(xm) dνm ≥ 1−ε. If ε < 1

2 , our condition (1.34) implies
Br(xm)∩B1(0) 6= ∅. Hence the conclusion of Lemma (1.6.7) also holds with
xm = 0, replacing R(ε) by 2R(ε)+1 if necessary. Thus, if νm

w
⇁ ν, it follows

that
∫
Rn dν = 1. By Lemma (1.6.8), we can assume that

µm ⇁ µ ≥ |∇v|pdx +
∑

j∈J

µjδxj

νm
w
⇁ ν ≥ |v|qdx +

∑

j∈J

νjδxj

for certain points xj ∈ Rn, j ∈ J and positive numbers µj , νj satisfying
S (νj)p/q ≤ νj , for all j ∈ J . By Sobolev’s inequality then

S + o(1) = ||vm||pD1,p(Rn)
=

∫

Rn

dµm ≥ ||v||p
D1,p(Rn)

+
∑

j∈J

µj + o(1)

≥ S

(
||v||p/q

Lq(Rn) + (
∑

j∈J

νj)p/q

)
+ o(1)

where o(1) → 0 for m → ∞.By strict concavity of the map λ → λp/q now
the latter will be

≥ S

(
||v||qLq(Rn) + (

∑

j∈J

νj)
)p/q

+ o(1)

= S

(∫

Rn

dν

)p/q

+ o(1) = S + o(1)

(1.36)
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and equality holds if and only if at most one of the terms ||v||Lq , νj , j ∈ J ,
is different from 0. We note that our normalization (1.34) assures that νj ≤
1
2 for all j ∈ J. Hence all νj must vanish, ||v||Lq = 1, and vm → v strongly
in Lq(Rn). But by Sobolev’s inequality ||v||p

D1,p(Rn)
≥ S and ||vm||D1,p(Rn) →

||v||D1,p(Rn) asm →∞. It follows that vm → v inD1,p(Rn), as desired.

As a consequence we obtain

Corollary 1.6.10. For 1 < p < n there exists a function u ∈ D1,p(Rn) with
||u||Lq(Rn) = 1 and ||u||D1,p(Rn) = S, where 1

q = 1
p − 1

n and where S =
S(k, p, n) is the Sobolev constant.

Over the past quarter century, one field of intense research activity has
been the study of what symmetry properties the solution of a nonlinear
elliptic boundary value problem can inherit from the domain on which it is
being solved. A classic paper is that of Gidas-Ni-Nirenberg. In [26], they
prove symmetry without symmetrization and related properties of positive
solutions of second order elliptic equations vanishing on the boundary, using
just the maximum principle and moving plane method.

Theorem 1.6.11. (Gidas-Ni-Nirenberg) In the ball Ω : |x| < R in Rn, let
u > 0 be a positive solution in C2(Ω) of

∆u + f(u) = 0 with u = 0 on |x| = R. (1.37)

Here f is of class C1. Then u is radially symmetric and

∂u

∂r
< 0, for 0 < r < R.

Theorem 1.6.12. (Gidas-Ni-Nirenberg) Let u > 0 be a C2 solution of (1.37)
in a ring-shaped domain R′ < |x| ≤ R. Then

∂u

∂r
< 0, for 0 <

R′ + R

2
< x < R.

The following is a generalization of Theorem 1.6.11 in Rn.

Theorem 1.6.13. (Gidas-Ni-Nirenberg) Let v > 0 be a C2 solution of an
elliptic equation

F (v, |∇v|2,
∑

vjvkvjk, trA, trA2, · · · , trAn) = 0 inRn (1.38)

where A = the Hessian matrix {vij}, here F is C1, for v > 0, and all values
of the other arguments. Assume that near infinity, v and its first derivatives
admit the asymptotic expansion (using summation convention):

v =
1
|x|m (a0 +

ajxj

|x|2 +
ajkxjxk

|x|4 + o(
1
|x|2 )) (1.39)

vxi = − m

|x|m+2
xi(a0 +

ajxj

|x|2 ) +
ai

|x|m+2
− 2xi

|x|m+4
ajxj + O(

1
|x|m+3

)
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for some m, a0 > 0. Then v is rotationally symmetric about some point and
vr < 0 for r > 0 where r is the radial coordinate about that point.

1.7 Extremals for the Sobolev inequality

Corollary 1.7.1. Let u be an extremal of the Sobolev inequality, that is a
nonnegative solution of corresponding Euler equations

−div(|∇u|p−2∇u) = uq−1 (1.40)

such that

u(x) → 0 for |x| → +∞ and

∫

Rn

|∇u|pdx < +∞. (1.41)

Then, u is of the form u(x) = (λ+ |x|p/(p−1))1−n/p, with λ positive constant.

Proof. By (GNN) theorem, we know that the solution of (1.40), are radial
functions. So, we can write the equation (1.40), as

(rn−1|u′|p−1 sign u′)
′
+ rn−1|u|q−1 sign u = 0 (1.42)

Moreover, we can suppose u radial, decreasing function and, we get

(− rn−1|u′|p−1)
′
+ rn−1|u|q−1 = 0 (1.43)

with the condition (1.41). It is possible to represent in closed form a set of
solutions, satisfying the condition (1.41), of the differential equation (1.43).
In fact, if p = 2, (1.43) is a particular case of Emden-Fowler equations and
all its solution can be obtained for quadratures. Let p = 2, n ≥ 3, q = 2n

n−2
and we consider only positive decreasing solutions. Then (1.40) rewrites as

(n− 1)u′ + r u′′ + r u
n+2
n−2 = 0 (1.44)

Setting t = − log r and u(t) = r(n−2)/2u(r), we find for the new unknown
of the equation

u′ = −n− 2
2

r−n/2 u(t) − r−n/2 ut .

u′′ =
(n− 2)n

4
r−

n+2
2 u(t) + (n− 1) r−n/2−1 ut + r−

n+2
2 utt
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Then, for any t ∈ R we have

0 = (n− 1)[−n− 2
2

r−n/2 u(t) − r−n/2 ut ] + r [
(n− 2)n

4
r−

n+2
2 u(t) + (n− 1) r−n/2−1 ut

+ r−
n+2

2 utt] + r [r−(n−2)/2u(t)]
n+2
n−2

= −(n− 1)
n− 2

2
r−n/2 u(t) − (n− 1) r−n/2 ut +

(n− 2)n
4

r−n/2 u(t) + (n− 1) r−n/2 ut

+ r−
n
2 utt + r−n/2 u(t)

n+2
n−2

=
n− 2

2
[−(n− 1) +

n

2
] r−n/2 u(t) + r−

n
2 utt + r−n/2 u(t)

n+2
n−2

= −(n− 2)2

4
r−n/2 u(t) + r−

n
2 utt + r−n/2 u(t)

n+2
n−2

= utt − (n− 2)2

4
u(t) + u(t)

n+2
n−2 . (1.45)

The simplest singular solution of (1.45) corresponds to u ≡ c = (n−2
2 )(n−2)/2.

Equation (1.45) can be integrated to give

(u′)2 = (
n− 2

2
)2u2 − n− 2

n
u

2n
n−2 + D . (1.46)

It follows from (1.46) that the behavior of u is determined by the roots of

(
n− 2

2
)2 u2 − n− 2

n
u

2n
n−2 + D = 0.

By the maximum principle, u cannot vanish for any finite t unless u ≡ 0, and
this forces D to lie in the interval 0 ≥ D ≥ −( 2

n) (n−2
n )n . The case D = 0

corresponds to the regular family of solutions

v =

(
λ

√
n(n− 2)

λ2 + r2

)(n−2)/2

λ > 0, (1.47)

while for all other D there is a periodic translation invariant positive family
of solutions uD(t) of (1.45). The other extreme case, D = −( 2

n) (n−2
n )n

corresponds to the solution u = c or u = c
r(n−2)/2 . Hence, the only positive

solution to (1.44) that are in H1(R+) are of type (1.47). In the general case
(1 < p < n, q = pn

n−p), it is easy to check that the solutions are (λ+r
p

p−1 )1−n/p

with λ > 0.

1.8 Extremals for the Caffarelli-Kohn-Nirenberg inequalities

An other important result has been obtained by Catrina and Wang in [17] in
which they also compute explicitly all radial solution of (1.9) for a < 0. Let
D1,2

a (Rn) be the completion of C∞
0 (Rn) with respect to the inner product

(u, v) =
∫

Rn

|x|−2a∇u · ∇w dx. (1.48)
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We define

Ea,b(u) =

∫
Rn |x|−2a|∇u|2 dx

(
∫
Rn |x|−bp|u|p dx)2/p

(1.49)

We want to find S(a, b) = inf
u∈D1,2

a (Rn)\{0}
Ea,b(u). We recall that the extremal

functions of CKN inequalities satisfy the Euler equation

−div(|x|−2a∇u) = |x|−bpup−1 (1.50)

for n ≥ 3, a < n−2
2 , a ≤ b ≤ a + 1, and p = 2n

n−2+2(b−a) . Moreover (1.50)
is invariant under dilation, i.e. if u is a solution on (1.50), also uλ(x) =
λ

n−2−2a
n−2 u(λx) is a solution. Then, Catrina and Wang have proved the fol-

lowing

Theorem 1.8.1. Up to dilations, all radial solution of (1.50) are explicitly
given, i.e.

u(x) =
(

n(n− 2− 2a)2

n− 2(1 + a− b)

)n−2(1+a−b)
4(1+a−b) 1

(
1 + |x|

2(n−2−2a)(1+a−b)
n−2(1+a−b)

)n−2(1+a−b)
2(1+a−b)

The proof is based on a standard thecnique. By GNN theorem, we know
that the solution of (1.50), are radial functions. So, we can write the equation
(1.50), as

(rn−1−2au′ )
′
+ rn−1−b p up−1 = 0 (1.51)

that is

(n− 1− 2a)rn−2−2a u′ + rn−1−2au′′ + r
n−1− 2nb

n−2+2(b−a) up−1 = 0

i.e.

(n− 1− 2a)r−2a u′ + r1−2au′′ + r
1− 2nb

n−2+2(b−a) up−1 = 0 (1.52)

Setting t = − log r and u(t) = r(n−2−2a)/2u(r), we have

u′ = −(n− 2− 2a)
2

r−(n−2a)/2 u(t) − r−(n−2a)/2 ut .

u′′ =
(n− 2− 2a)(n− 2a)

4
r−

(n−2a+2)
2 u(t) +

(n− 2a− 2)
2

r−(n−2a+2)/2 ut

+
(n− 2a)

2
r−(n−2a+2)/2 ut + r−(n−2a+2)/2 utt .
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Then

0 = (n− 1− 2a) r−2a [−(n− 2− 2a)
2

r−a−n/2 u(t) − r−a−n/2 ut]

+ r1−2a [
(n− 2− 2a)(n− 2a)

4
r−

(n−2a+2)
2 u(t)

+
(n− 2a− 2)

2
r−(n−2a+2)/2 ut +

(n− 2a)
2

r−
(n−2a+2)

2 ut + r−
(n−2a+2)

2 utt]

+ r
1− 2nb

n−2+2(b−a) [r−(n−2−2a)/2 u(t)]
2n

n−2+2(b−a)
−1

= −(n− 1− 2a)(n− 2− 2a)
2

r−n/2−a u(t)− (n− 1− 2a) r−n/2−a ut

+
(n− 2− 2a)(n− 2a)

4
r1−2a−n/2+a−1 u(t) + (n− 2a− 1) r1−2a−n/2+a−1 ut

+ r1−2a−n/2+a−1 utt + r
1− 2nb

n−2+2(b−a) r
− (n−2−a)n

n−2+2(b−a)
+n−2−2a

2 u(t)
n+2−2(b−a)
n−2+2(b−a)

=
(n− 2− 2a)

2

(
−(n− 1− 2a) +

(n− 2a)
2

)
r−a−n/2 u(t)

+ [n− 2a− 1− n + 1 + 2a] r−a−n/2 ut + r−a−n/2 utt + r−n/2−a u(t)
n+2−2(b−a)
n−2+2(b−a)

=
(n− 2− 2a)

2
(−n/2 + 1 + a) r−a−n/2 u(t) + r−a−n/2 utt + r−a−n/2 u(t)

n+2−2(b−a)
n−2+2(b−a)

= −(n− 2− 2a)2

4
r−a−n/2 u(t) + r−a−n/2 utt + r−a−n/2 u(t)

n+2−2(b−a)
n−2+2(b−a)

= −(n− 2− 2a)2

4
u(t) + utt + u(t)

n+2−2(b−a)
n−2+2(b−a) . (1.53)

Again, u(t) satisfies

utt − (n− 2− 2a)2

4
u + u

n+2−2(b−a)
n−2+2(b−a) = 0

that is a nonlinear autonomous ordinary differential equation of the second
order and it has as first integral

(ut)2 =
(n− 2− 2a)2

4
u2 − (n− 2 + 2(b− a))

n
u

2n
n−2+2(b−a) + C .

Remark 1.8.1. Let p, γ be real numbers with p > 2. If v satisfies the
equation

(vt)2 = γ2 v2 − 2
p

vp (1.54)

then

v(t) =
(

γ2p

2

) 1
p−2

(
cosh(

p− 2
2

γt)
) −2

p−2

. (1.55)

Proof. If v satisfies (1.54), then vt = ±
√

γ2 v2 − 2
p vp = ±v

√
γ2 − 2

p vp−2 .

Setting w =
√

γ2 − 2
p vp−2, we have
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dw
dv = −(p−2

p ) 1
w v vp−2 = 1

v w (p−2
2 ) (w2 − γ2). Thus,

±dt = dv

v
q

γ2− 2
p

vp−2
= ( 2

p−2) dw
(w2−γ2)

. Integrating, we have

t = ∓ (
2

p− 2
)

∫
dw

(w2 − γ2)
= ± 2 γ

(p− 2)
(tanh)−1(

w

γ
)

= ± 2 γ

(p− 2)
(tanh)−1




√
γ2 − 2

p vp−2

γ


 .

This implies

tanh(
p− 2
2γ

t) = ±

√
γ2 − 2

p vp−2

γ

that is

tanh2(
p− 2
2γ

t) =
γ2 − 2

p vp−2

γ2

i.e.
(

e
p−2
2γ

t − e
− p−2

2γ
t

e
p−2
2γ

t + e
− p−2

2γ
t

)2

=


1 + e

2(p−2)
γ

t − 2 e
p−2

γ
t

1 + e
2(p−2)

γ
t + 2 e

p−2
γ

t


 = 1 − 2

p γ2
vp−2.

Then 
1− 4 e

p−2
γ

t

(1 + e
2(p−2)

γ
t + 2 e

p−2
γ

t)


 = (1 − 2

pγ2
vp−2)

and

− 4 e
p−2

γ
t

(1 + e
2(p−2)

γ
t + 2 e

p−2
γ

t)
= − 4 e

p−2
γ

t

(1 + e
(p−2)

γ
t)2

= − 2
pγ2

vp−2

Finally,

vp−2 =
pγ2

2
4 e

p−2
γ

t

(1 + e
p−2

γ
t)2

=
pγ2

2
cosh

(
(p− 2)

2γ
t

)− 2
p−2

and we get the thesis.

As in the previous paragraph, we get that the only positive solution in
H1(R) for the equation (1.53) verify the equation (1.54) and it is of the type
(1.55) where γ = (n−2−2a)

2 and p = 2n
n−2+2(b−a) . Then, the radial solution in

Rn for (1.50) corresponding to this u is

u(x) =
(

n(n− 2− 2a)2

n− 2(1 + a− b)

)n−2(1+a−b)
4(1+a−b) 1

(
1 + |x|

2(n−2−2a)(1+a−b)
n−2(1+a−b)

)n−2(1+a−b)
2(1+a−b)

.
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In this chapter we study existence and non-existence of cylindrical solutions
for a nonlinear elliptic equation in R3. The problem is the following:

−∆u = φ(r)|u|p−2u in R3

u(x) > 0∫
R3 φ(r)up−1dx < +∞



 (2.1)

with p > 1, x = (x1, x2, x3) ∈ R3, r =
√

x2
1 + x2

2 and u = u(r, z). The model
function for φ is

φ(r) =
r2α

(1 + r2)α+ 1
2

, (2.2)

where α ≥ 0. This equation has been proposed by G.Bertin and L.Ciotti as
a model describing the dynamics of elliptic galaxies (see the book [7] and
lecture notes [19]) . Here u satisfies the usual Poisson equation ∆u = 4πGρ
relating the gravitational potential u to the density of matter ρ. The deriva-
tion of such a model is the following. A galaxy can be conceived as a "gas
of stars" with a distribution function f(x, v, t) so that ρ =

∫
R3 f(x, v, t)dv,

where v is the velocity of the stars. The integration over the velocity space
is restricted to a domain defined by the requirement that the distribution
function is positive. This condition is formulated in terms of the integrals
of motion for the chosen potential. As a consequence of this approach, we
are led to an implicit relation between the galaxy density and galaxy poten-
tial. In general this relation is nonlinear, moreover it is not known if the
Poisson equation admits physically acceptable solutions. Thus, any system
for which solutions can be established is of great interest in the applications.
The cylindrical symmetry of the problem is derived from the assumptions
that the elliptic galaxies are axially symmetric. Moreover, the condition∫
R3 φ(r)up−1dx < +∞ guarantees that the given solution carries a finite
total mass. Several elliptic equations similar to (2.1) arising from models
of globular cluster of stars have been investigated, but we know most of
these models are radial. Motivated by the Bertin and Ciotti choice (2.2),
M.Badiale and G.Tarantello in [3], have considered the following hypothesis:

φ ∈ C(R+), φ ≥ 0, φ(r) = 0 if and only if r = 0, rφ(r) ∈ L∞(R+),
(2.3)

where we set R+ = [0, +∞[. We note that the functions in (2.2) satisfy
(2.3) for α > 0. They proved that the problem (2.1), for p ∈ [4, 6], can
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be handled by a variational approach in the Sobolev space D1,2(R3) which
also guarantees the finite-total-mass condition. This fact rests upon a new
Sobolev inequality, which has been derived for any dimension n ≥ 3 and
extends the Caffarelli-Kohn-Nirenberg inequality (see [13]). This inequality
can be seen as the "cylindrical" version of the CKN inequality, the most
natural formulation of CKN inequality for cylindrical functions.

Theorem 2.0.2. (Badiale-Tarantello) Let n ≥ 3, 2 ≤ k ≤ n, x = (y, z) ∈
Rn = Rk × Rn−k, 1 < q < n, 0 ≤ s ≤ q, and s < k. There exists a positive
constant C = C(n, q, k, s) such that for all u ∈ D1,q(Rn) we have




∫

Rn

|u|
q(n−s)

n−q

|y|s




n−q
n−s

≤ C

∫

Rn

|∇u|q (2.4)

More general inequalities of (2.4), in the case of k = n, have been con-
sidered by Caffarelli-Cohn-Nirenberg ([13]), while Catrina F. and Z.Q.Wang
in ([17]) have obtained several results concerning best constants and corre-
sponding extremal functions. When k = n, (2.4) was thoroughly investigated
in [28] and extremal functions in this case have been computed by Lieb ([34]).

2.1 The case q = 2

From now on, we will always consider the inequality (2.4) with q = 2, i.e.




∫

Rn

|u| 2(n−s)
n−2

|y|s




n−2
n−s

≤ C

∫

Rn

|∇u|2 (2.5)

holds for any u ∈ D1,2(Rn), n ≥ 3 and 0 ≤ s ≤ 2. Moreover, setting σpσ = s,
we can write the equation (2.5), as

(∫

Rn

|u|pσ

|y|σpσ

) 2
pσ ≤ C

∫

Rn

|∇u|2 (2.6)

where n ≥ 3, 0 ≤ σ ≤ 1 and pσ = 2n
n−2+2σ . We note that the case σ = 0

corresponds to the classical Sobolev inequality, while, if σ = 1, (2.6) is the
classical Hardy inequality which is known not to have extremal functions.
So, our interest, is for the case 0 < σ < 1 and 2 ≤ k < n.
In the next section we will introduce fundamental definitions and some
relevant results which will be needed in the sequel. We collect below a list
of the main notations.

• D1,2(Rn) is the closure of C∞
0 (Rn) with respect to the norm ||u|| =

(
∫
Rn |∇u|2dx)1/2.
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• Lq(Rn), Lq
loc(R

n) are the usual Lebesgue spaces.

• 2∗ = 2(n−s)
n−2 defines the critical exponent for (2.5) inequality.

• We set R+ = [0,+∞[ and R+ =]0, +∞[.

Remark 2.1.1. For s > 0, 2∗ = 2∗(s) = 2(n−s)
n−2 < 2∗ where 2∗ = 2n

n−2 is the
critical Sobolev exponent.

In analogy to the Sobolev’s best constant, we introduce the best constant in
(2.6) by setting

S = inf
{∫

Rn

|∇u|2dx |u ∈ D1,2(Rn),
∫

Rn

|u|2∗
|y|s dx = 1

}
(2.7)

Clearly, S depends on k, s, 2 and n.

2.2 Existence of extremal functions

Through the Concentration-Compactness principle of P.L.Lions, in [3] it is
proved

Theorem 2.2.1. (q=2) Assume 2 ≤ k ≤ n, x = (y, z) ∈ Rk × Rn−k, 0 <
s < 2. Then, the extremal problem (2.7) attains its infimum: ∃ a function u
which satisfies ∫

Rn

|∇u|2dx = S,

∫

Rn

|u|2∗
|y|s dx = 1.

Corollary 2.2.2. As a consequence, we get that the problem




− div(∇v) =
1
|y|s v2∗−1

v(x) > 0 inRn

v ∈ D1,2(Rn)

(2.8)

admits the non trivial solution v = S−
1

2∗−1 u where u is an extremal function
for (2.7) as given by the last theorem.

One of the crucial aspects is the following

Remark 2.2.1. For every λ > 0 and ξ ∈ Rn−k, the problem (2.8) is invariant
under the transformation u → uλ,ξ with

uλ,ξ(y, z) = λ
n−2

2 u(λy, λ(z − ξ)) (2.9)

In particular, if u minimizes (2.7), so does uλ,ξ for every λ and ξ ∈ Rn−k.
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Definition 2.2.1. A minimizing sequence {uh}h ∈ D1,2(Rn) for (2.7), is
characterized by the properties

∫

Rn

|∇uh|2dx → S,

∫

Rn

|uh|2∗
|y|s dx = 1. (2.10)

For R > 0 and ξ ∈ Rk, we set

ΩR(ξ) = {(y, z) ∈ Rk× ∈ Rn−k | |y|+ |z − ξ| < R}.

The first lemma of Concentration-Compactness principle is the following

Lemma 2.2.3. Let {uh}h satisfying (2.10). Along a subsequence, still de-
noted by {uh}h, one of the following three alternatives holds:

i) There exists a sequence {ξh}h ⊂ Rn−k such that, for all ε > 0 there exist
hε ∈ N and Rε > 0 such that

∫

ΩR(ξh)

|uh|2∗
|y|s dx > 1− ε, ∀h ≥ hε, ∀R ≥ Rε.

ii) For all R > 0 lim
h

[
sup

ξ∈Rn−k

∫

ΩR(ξ)

|uh|2∗
|y|s dx

]
= 0.

iii) There exists α ∈]0, 1[ such that for all ε > 0 there exist Rε > 0, a
sequence of positive numbers Rh → ∞ and a sequence {ξh}h ⊂ Rn−k

such that
∣∣∣∣
∫

ΩRε (ξh)

|uh|2∗
|y|s dx− α

∣∣∣∣ < ε,

∣∣∣∣
∫

Rn\ΩRh
(ξh)

|uh|2∗
|y|s dx− (1− α)

∣∣∣∣ > ε (2.11)

∫

ΩRh
(ξh)\ΩRε (ξh)

|uh|2∗
|y|s dx < ε (2.12)

The proof of theorem (2.2.1) can be divided in to two more steps.
Step 1. Under the condition (2.10), only alternative i) can occur.

Proof. In fact, by Remark (2.2.1), given a minimizing sequence ũh, also

uh = λ
n−2

2
h ũ(λhy, λh(z − ξh)) is a minimizing sequence. Then, for a suitable

choice of λh > 0 and ξh ∈ Rn−k, we can assume

sup
ξ∈Rn−k

∫

|z−ξ|<1

∫

|y|<1

|uh|2∗
|y|s dydz =

∫

|z|<1

∫

|y|<1

|uh|2∗
|y|s dydz =

1
2

(2.13)

So, the case ii) in the above lemma, cannot occur. The third case is more
delicate and it is proved by contradiction. To show this, the following is
necessary
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Remark 2.2.2. Let p > 1. Then ∃C = Cp > 0 such that ∀a, b ∈ Rn,

| |a + b|p − |a|p − |b|p | ≤ Cp(|a|p−1|b|+ |a||b|p−1). (2.14)
1− xp ≥ (1− x)p ∀x ∈ [0, 1], ∀p > 1. (2.15)

Proposition 2.2.4. Let {uh}h be a sequence satisfying (2.10),(2.11),(2.12).
Let ψ ∈ C∞

0 ([0, +∞[,R) be such that ψ(t) = 1 for 0 ≤ t ≤ 1, ψ(t) =
0 for t ≥ 2, 0 ≤ ψ(t) ≤ 1 and − C ≤ ψ′(t) ≤ 0,∀t ≥ 0. For fixed ε > 0
small enough, we define

φh,ε(y, z) = ψ

(
1

Rh −Rε
(|y|+ |z − ξh|) +

Rh − 2Rε

Rh −Rε

)

Under the hypothesis of theorem (2.2.1), we get
∫

Rn

|∇uh|2dx ≥
∫

Rn

|∇φh,εuh|2dx +
∫

Rn

|∇(1− φh,ε)uh|2dx− σε, (2.16)

where σε is a constant depending on ε only and such that σε → 0 as ε → 0.

Proof. To prove (2.16), we will first prove the following claim:
∫

Rn

|∇uh|2dx ≥
∫

Rn

|∇uh|2φ2
h,εdx +

∫

Rn

(1− φh,ε)2|∇uh|2dx. (2.17)

We denote by Kh the support of φh,ε and ΩRε(ξh) = Ωh. We notice that
Ωh ⊂ Kh. Then

∫

Rn

|∇uh|2dx =
∫

Ωh

|∇uh|2dx +
∫

Kh\Ωh

|∇uh|2dx =
∫

Ωh

φ2
h,ε|∇uh|2dx +

∫

Rn\Kh

(1− φh,ε)2|∇uh|2dx +
∫

Kh\Ωh

|∇uh|2dx.

But, by Remark (2.2.2),
∫

Kh\Ωh

|∇uh|2dx =
∫

Kh\Ωh

φ2
h,ε|∇uh|2dx +

∫

Kh\Ωh

(1− φ2
h,ε)|∇uh|2dx

≥
∫

Kh\Ωh

φ2
h,ε|∇uh|2dx +

∫

Kh\Ωh

(1− φh,ε)2|∇uh|2dx
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and (2.17) holds. Always by Remark (2.2.2),
∫

Rn

φ2
h,ε|∇uh|2dx +

∫

Rn

(1− φh,ε)2|∇uh|2dx

=
∫

Rn

|∇(φh,εuh)− uh∇φh,ε|2dx +
∫

Rn

|∇(1− φh,ε)uh + uh∇φh,ε|2dx

≥
∫

Rn

|∇(φh,εuh)|2dx +
∫

Rn

|∇(1− φh,ε)uh|2dx + 2
∫

Rn

|∇φh,ε|2|uh|2dx

− C

(∫

Rn

|∇(1− φh,ε)uh|2−1 |uh| |∇φh,ε|dx +
∫

Rn

|∇(1− φh,ε)uh||uh|2−1|∇φh,ε|2−1dx

)

− C

(∫

Rn

|∇(φh,εuh)|2−1 |uh| |∇φh,ε|dx +
∫

Rn

|∇(φh,εuh)||uh|2−1|∇φh,ε|2−1dx

)

=
∫

Rn

|∇(φh,εuh)|2dx +
∫

Rn

|∇(1− φh,ε)uh|2dx + 2
∫

Rn

|∇φh,ε|2|uh|2dx

− 2C

(∫

Rn

|∇(1− φh,ε)uh| |uh| |∇φh,ε| dx +
∫

Rn

|∇(φh,εuh)| |uh| |∇φh,ε| dx

)
.

Now, we will prove that the last term vanishes as ε → 0, uniformly in h. In
fact, we note that∫

Rn

|∇(φh,εuh)| |uh| |∇φh,ε| dx

≤
∫

Rn

|uh|2|∇φh,ε|2dx +
∫

Rn

|∇uh||uh|φh,ε|∇φh,ε|dx. (2.18)

Estimating each term of (2.18) separately, we get:
∫

Rn

|uh|2|∇φh,ε|2dx ≤ C

(
1

Rh −Rε

)2 ∫

Ah,ε

|uh|2dx

where Ah,ε = ΩRh
(ξh) \ ΩRε(ξh). By the Hölder inequality, we obtain

∫

Ah,ε

|uh|2dx =
∫

Ah,ε

|uh|2 1
|y|2s/2∗

|y|2s/2∗dx

≤
(∫

Ah,ε

|uh|2∗ 1
|y|s dx

)2/2∗ (∫

Ah,ε

|y| 2s
2∗−2 dx

) 2∗−2
2∗

ε2/2∗
(∫

Ah,ε

|y| 2s
2∗−2 dx

) 2∗−2
2∗

(2.19)

We remember that in Lemma (2.2.3), case (iii), we can always choose Rh ≥
2Rε. Setting γ = 2s

2∗−2 , we have
∫

Ah,ε

|y|γ dx

≤
∫

|z|<Rh

dz

∫

|y|<Rh

|y|γdy ≤ CRh
n−k

∫ Rh

0
ργρk−1dρ ≤ CRh

n+γ .
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Thus, from (2.19), we get
(

1
Rh −Rε

)2 ∫

Ah,ε

|uh|2dx ≤
(

1
Rh −Rε

)2

Cε2/2∗(Rh
n+γ)

2∗−2
2∗ .

Since
(n + γ)2∗−2

2∗ = 2 and Rh
Rh−Rε

= 1 + Rε
Rh−Rε

≤ 2, we conclude
∫

Rn

|∇φh,ε|2|uh|2dx ≤ Cε2/2∗ , (2.20)

with the constant C > 0 independent of ε and h. The next estimate follows
from (2.19) and the fact that, by (2.10),

∫
Rn |∇uh|2dx is uniformly bounded.

∫

Rn

φh,ε|∇φh,ε| |uh| |∇uh| dx =
∫

Ah,ε

φh,ε|∇φh,ε| |uh| |∇uh| dx

(∫

Ah,ε

|∇φh,ε|2|uh|2 dx

)1/2(∫

Ah,ε

φ2
h,ε |∇uh|2 dx

)1/2

≤ C(ε2/2∗)1/2 = Cε1/2∗ .

(2.21)

Besides

|
∫

Rn

|∇(1− φh,ε)uh| |uh| |∇φh,ε| dx| = |
∫

Rn

|∇φh,εuh| |uh| |∇φh,ε| dx|

= |
∫

Rn

|uh|2 |∇φh,ε|2 dx| ≤ σε

where σε → 0 as ε → 0, uniformly with respect to h. Putting these estimates
in (2.2.2), for (2.17), we have proved the proposition.

Now we can proceed by contradiction. For any ε > 0, we may extract a
subsequence and assume that

∫

ΩRε(ξh)

|uh|2∗
|y|s dx → αε

as h → ∞. We note that such a sequence {uh}h depends also on ε. By the
assumption (2.11), we have |αε − α| ≤ ε, so that αε → α as ε → 0. Set
σh,ε =

∫
Rn |∇u|2dx − S. By (2.10), σh,ε → 0 as h →∞. But by proposition

(3.2.4) and (2.11), we have:

S + σh,ε =
∫

Rn

|∇u|2dx ≥
∫

Rn

|∇φh,εuh|2dx +
∫

Rn

|∇(1− φh,ε)uh|2dx− σε

≥ S

[(∫

Rn

|φh,εuh|2∗
|y|s dx

)2/2∗
+

(∫

Rn

|(1− φh,ε)uh|2∗
|y|s dx

)2/2∗]
− σε

≥ S

[∫

ΩRε(ξh)

|φh,εuh|2∗
|y|s dx

)2/2∗
+

(
1−

∫

ΩRε(ξh)

|φhuh|2∗
|y|s dx + σε

)2/2∗]
− σε
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Then, for a fixed ε > 0, if we pass to the limit foe h →∞, we get

S ≥ S(α2/2∗
ε + (1− αε + σε)2/2∗)− σε

Letting ε → 0, we have:

S ≥ S( α2/2∗ + (1− α)2/2∗)

which gives the contradiction, as α ∈]0, 1[. In conclusion, we can always find
a minimizing sequence for (2.7) such that

∀ε > 0,∃hε ∈ N, ∃Rε > 0 such that ∀h ≥ hε, ∀R ≥ Rε :
∫

ΩR(0)

|uh|2∗
|y|s dx > 1−ε.

(2.22)

Step 2. To prove the second form of Concentration-Compactness prin-
ciple, i.e.

Lemma 2.2.5. Let {uh}h ⊂ D1,2(Rn) be a sequence with the property that
there exist two Radon measures µ, ν and a function u ∈ D1,2(Rn) such that
for some s > 0,

i) uh ⇀ u weakly inD1,2(Rn).

ii) νh = |uh|2∗ 1
|y|s dx ⇀ ν, weakly in the sense of measures.

iii) µh = |∇uh|2dx ⇀ µ, weakly in the sense of measures.

Then, there exist an at most countable set of indices J , a corresponding set
of points {zj ∈ Rn−k | j ∈ J}, and two sets {µj}j , {νj}j of non negative
numbers such that

ν = |u|2∗ 1
|y|s dx +

∑

j∈J

νjδj , µ ≥ |∇u|2dx+
∑

j∈J

µjδj and µj ≥ S ν
2/2∗
j ∀j ∈ J,

where δj = δ(0,zj) is the Dirac measure with pole at (0, zj) ∈ Rn.

Proof. By the Remark (2.1.1) and by Sobolev’s embedding, we can assume
that

uh
s→ u in L2∗

loc(R
n) and pointwise almost everywhere.

In particular,
uh

|y|s →
u

|y|s pointwise a.e.
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Let φ ∈ C∞
0 (Rn). Then we have

∫

Rn

|φ|2∗ |uh|2∗ 1
|y|s dx ≤ 1

S2/2∗

(∫

Rn

|∇φuh|2dx

)2/2∗
(2.23)

∫

Rn

|∇φuh|2dx ≤
∫

Rn

|φ|2dµ +
∫

Rn

|∇φ|2|u|2dx + 2C(
∫

Rn

|φ|2dµ)1/2(
∫

Rn

|∇φ|2|u|2dx)1/2 + o(1)

(2.24)

where o(1) → 0 for h →∞.
The first follows easily, so we prove (2.24).

∫

Rn

|∇φuh|2dx =
∫

Rn

|φ∇uh + uh∇φ|2 dx

≤
∫

Rn

|φ|2 |∇uh|2 dx +
∫

Rn

|∇φ|2 |uh|2 dx

+ 2C

∫

Rn

|φ| |∇φ| |∇uh| |uh| dx

≤
∫

Rn

|φ|2 |∇uh|2 dx +
∫

Rn

|∇φ|2 |uh|2 dx

2C

(∫

Rn

|φ|2 |∇uh|2 dx

) 1
2
(∫

Rn

|∇φ|2 |uh|2 dx

) 1
2

≤
(∫

Rn

|φ|2 dµ

) 1
2

+
∫

Rn

|∇φ|2 |u|2 dx

2C

(∫

Rn

|φ|2 dµ

) 1
2
(∫

Rn

|∇φ|2 |u|2 dµ

) 1
2

+ o(1)

as h →∞, since
∫

Rn

|φ|2|∇uh|2 dx →
∫

Rn

|φ|2 dµ and uh → u in L2
loc(Rn)

as 1 < 2 ≤ 2∗. Thus the estimate (2.24) holds.
First case. If u = 0, from (2.23),(2.24) we have

∫

Rn

|φ|2∗dν ≤ 1
S2/2∗

(∫

Rn

|φ|2dµ

)2/2∗
(2.25)

By an approximation procedure, we get

ν(E) ≤ 1
S2/2∗

µ(E)2/2∗ (2.26)

for all bounded borelian sets E. Thus, we can write

ν = ν0 +
∑

j∈J

νjδxj
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where νj = ν({xj}), {xj |j ∈ J} is the set of atoms of ν and ν0 is free of
atoms. As ν(Rn) < +∞, J is a countable set. Moreover ν0 is absolutely
continuous with respect to µ, hence ν0 = fdµ with f ∈ L1(Rn, dµ) and

f(x) = lim
r→0

ν0(Br(x))
µ(Br(x))

µ− a.e. (2.27)

As ν0 ≤ ν, we obtain that, if x is not atom of µ, then f(x) = 0 and ν0 = 0.
In fact, since µ(Rn) < +∞, also the set G of atoms for µ is almost countable.
Since ν0 is free of atoms, ν0(G) = 0. Then, for any borelian set B, we have

ν0(B) = ν0(B ∩G) + ν0(B \G) = ν0(B \G) =
∫

B\G
f(x)dµ = 0

as f(x) = 0 in B \G. Hence,

ν =
∑

j∈J

νjδxj

and by setting, µj = µ({xj}), we derive

νj ≤ 1
S2/2∗

µ
2/2∗
j

that is
µj ≥ S ν

2∗/2
j .

Clearly,
µ ≥

∑

j

µjδxj

and hence the lemma is proved in the case u = 0.
Second case: u 6= 0.
By result of Brezis and Lieb in [10], we know

|uh|2∗ 1
|y|s dx− |uh − u|2∗ 1

|y|s dx− |u|2∗ 1
|y|s dx ⇀ 0

Applying the same result to the sequence {uh − u}h, we have

|uh − u|2∗ 1
|y|s dx ⇀ ν̃ =

∑

j∈J

νjδxj .

We are going to apply (2.23) and (2.24), for an appropriate choice of test
functions. Let φ ∈ C∞

0 (B2), 0 ≤ φ ≤ 1 and φ = 1 inB1. For ε > 0, we
define:

φε(x) = φ(
x− xj

ε
)
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for a given j ∈ J. Then, we obtain
∫

Rn

φ2∗
ε dν ≤ 1

S2/2∗

[∫

Rn

φ2
εdµ+

∫

Rn

|u|2|∇φε|2dx+2C

(∫

Rn

|u|2|∇φε|2dx

)1/2]2/2∗

(2.28)
Also
∫

Rn

|u|2|∇φε|2dx =
∫

B2ε(xj)
|u|2|∇φε|2dx ≤

(∫

B2ε(xj)
|u|2∗

)2/2∗(∫

B2ε(xj)
|∇φε|ndx

)2/n

.

But with a change of variables, we get
∫

B2ε(xj)
|∇φε|ndx =

∫

B2ε(xj)

1
εn
|(∇φε)(

x− xj

ε
)|ndx =

∫

B2

|∇φε|ndt.

Moreover,
∫
B2ε(xj)

|u|2∗dx → 0 for ε → 0. Passing to the limit in (2.28), for
ε → 0, we have

ν({xj}) ≤ 1
S2/2∗

µ({xj})2/2∗

that is
µj ≥ Sν

2/2∗
j

since xj is also an atom for the measure µ. By weak convergence, µ ≥
|∇u|2dx. Clearly, µ ≥ µjδxj . As the measures |∇u|2 and δxj are orthogonal
to each other, we derive

µ ≥ |∇u|2dx +
∑

j

µjδxj

At this point, we will prove that xj = (0, zj) for some zj ∈ Rn−k. We notice
that, since uh → u in L2∗

loc(R
n), then for all ε > 0, we have

∫

|z|<R

∫

ε<|y|<R
|uh − u|2∗ 1

|y|s dx ≤ 1
εs

∫

|z|<R

∫

ε<|y|<R
|uh − u|2∗dx → 0.

(2.29)
Let A = {(0, z) | z ∈ Rn−k} and let B ∈ Rn−k be any ball such that
dist(A,B) > 0. Then, (2.18) implies ν(B) =

∫
B
|u|2∗
|y|s dx and necessarily

all atoms of ν must lie in A, that is xj ∈ A for all j ∈ J. Finally, the proof
of lemma is supplemented.

Step 3. Proof of Theorem 2.2.1.
We only consider the case s > 0. We are going to apply Lemma 2.2.5 to
a minimizing sequence for (2.7), with the properties (i),(ii),(iii) of Lemma
2.2.5. We can also assume to satisfy (2.13) and (2.22). For the limiting
measure ν notice that, (2.22) implies that, for any ε > 0,

1 ≥
∫

Rn

dν ≥
∫

ΩR(0)
dν ≥ lim sup

n

∫

ΩR(0)

|un|2∗
|y|s dx ≥ 1− ε
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provided R ≥ Rε. Then
∫
Rn dν = 1 and

∫
Rn

|u|2∗
|y|s dx ≤ 1. By Lemma 2.2.5,

we have that any possible atom for ν must lie on the subspace y = 0, and by
(2.13), we find that νj ∈ [0, 1/2], for all j ∈ J. Since 1 < 2 < 2∗, we derive
the inequalities

S ≥
∫

Rn

dν ≥
∫

Rn

|∇u|2dx +
∑

j∈J

µj

≥ S

[(∫

Rn

|u|2∗
|y|s dx

)2/2∗
+

∑

j∈J

ν
2/2∗
j

]

≥ S

[∫

Rn

|u|2∗
|y|s dx +

∑

j∈J

νj

]

= S

∫

Rn

dν = S.

Thus all inequalities above must reduce to equalities. In particular

[(∫

Rn

|u|2∗
|y|s dx

)2/2∗
+

∑

j∈J

ν
2/2∗
j

]
=

∫

Rn

|u|2∗
|y|s dx +

∑

j∈J

νj

which for 2/2∗ < 1 implies that all terms above are forced to be equal to
either 1 or 0. As their sum equals 1, only one of these terms is equal to 1 and
the others must be 0. But since 0 ≤ νj ≤ 1/2, we only have the possibility
that νj = 0 for all j and

∫
Rn

|u|2∗
|y|s dx = 1. Consequently S =

∫
Rn |∇u|2 dx, so

u is the desired minimizer.

2.3 A variational approach for the problem (2.1)

Through the Sobolev inequality (2.5), M.Badiale and G.Tarantello in [3]
derive a variational principle for the problem (2.1) in the Sobolev space
D1,2(R3), provided φ satisfies (2.2), and p ∈ [4, 6]. Indeed, they prove:

Lemma 2.3.1. For each p ∈ [4, 6] there exists a constant Cp such that, for
u ∈ D1,2(R3),

∫

R3

φ(r) |u|p(x)dx ≤ Cp

(∫

R3

|∇u|2dx

)p/2

. (2.30)

Proof. In view of (2.2), since rφ(r) is bounded, we can use (2.5), with n = 3,
with k = 2, and s = 1, (so 2∗ = 4) to conclude

∫

R3

φ(r)|u|4(x)dx =
∫

R3

rφ(r)
|u|4
r

dx ≤ C

(∫

R3

|∇u|2dx

)2

.
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Moreover, since φ ∈ L∞(R+), by the Sobolev embedding, we obtain
∫

R3

φ(r)|u|6(x)dx ≤ C

(∫

R3

|∇u|2dx

)3

.

For 4 < p < 6, we have
∫

R3

φ(r)|u|pdx =
∫

R3

φ(r)
p−4
2 |u|3(p−4)φ(r)

6−p
2 |u|2(6−p)dx

≤
(∫

R3

φ(r)|u|6
) p−4

2
(∫

R3

φ(r)|u|4
) 6−p

2

≤ C1

(∫

R3

|∇u|2
) 3(p−4)

2

C2

(∫

R3

φ(r)|u|4
)6−p

= Cp

(∫

R3

|∇u|2
) p

2

.

Moreover, always in [3], the authors got the asymptotic behavior of so-
lutions for the problem (2.32) by a result of Egnell [21].

Lemma 2.3.2. Assume p ∈ [4, 6], φ verifying (2.2), and let u ∈ D1,2(R3),
u ≥ 0 be a weak solution of the equation −∆u = φup−1. There exists a
constant positive C such that

u(x) ≤ C

|x| (2.31)

as |x| → ∞.

By Lemma 2.3.1 and Lemma 2.3.2, it follows that, for p ∈ [4, 6] the
functional

I(u) =
1
2

∫

R3

|∇u|2dx− 1
p

∫

R3

φ(r)|u|p dx

is well defined, Fréchet differentiable in D1,2(R3), and its critical points
satisfy 



−∆u(x) = φ(r)|u|p−2u in R3,

u(x) > 0 in R3

u ∈ D1,2(R3)
(2.32)

Thus, every solution of (2.32), satisfies the finite-mass condition and it is
solution of (2.1). In fact, by (2.3) and (2.31), it holds

∫

R3

φ(r)up−1dx ≤ C

∫

R

∫ ∞

0

1
r

1

(1 + r2 + z2)
p−1
2

r drdz

= C

∫

R

∫ ∞

0

1

(1 + r2 + z2)
p−1
2

drdz < +∞.
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for p ∈ [4, 6]. So, for p ∈ [4, 6], the problem reduces to search non-negative
critical points for I in D1,2(R3). Also, the problem (2.32) has the following
variational formulation. Any extremal function for the minimization problem

inf {|∇u|2dx
∣∣u ∈ D1,2(R3),

∫

R3

φ(r)|u|pdx = 1} (2.33)

yields a solution for (2.32). Moreover, to obtain solutions with cylindri-
cal symmetry, it needs to consider the restriction of I over the subspace
D1,2

c (R3) = {u ∈ D1,2(R3) with cylindrical symmetry}. Let M and Mc

be the Nehari manifold

M = {u ∈ D1,2(R3) : u 6= 0,

∫

R3

|∇u|2 =
∫

R3

φ(r)|u|p}.

Mc = {u ∈ D1,2
c (R3) : u 6= 0,

∫

R3

|∇u|2 =
∫

R3

φ(r)|u|p}.

It is easy to verify that the functional I is coercive and bounded from below
on M , (respectively Ic on M), and

I(u) = (
1
2
− 1

p
)
∫

R3

|∇u|2 dx ∀u ∈ M

Ic(u) = (
1
2
− 1

p
)
∫

R

∫ ∞

0
|∇u|2 r drdz ∀u ∈ Mc.

For any u ∈ M, u 6= 0,there exists a unique scalar λ given by

λ =
(∫

R3 |∇u|2∫
R3 φ|u|p

) 1
p−2

such that λu ∈ M. Therefore if we define the best constant in (2.30)

Sφ = inf
{∫

R3

|∇u|2dx : u ∈ D1,2(R3),
∫

R3

φ(r)|u|pdx = 1
}

(2.34)

Sc,φ = inf
{∫

R3

|∇u|2dx : u ∈ D1,2
c (R3),

∫

R3

φ(r)|u|pdx = 1
}

(2.35)

as an immediate consequence, we have

Lemma 2.3.3. S is achieved if and only if SM is achieved (respectively Sφ,c

is achieved if and only if SMc is achieved) and

SM = inf
u∈M

I(u) =
(

1
2
− 1

p

)
S

p
p−2

φ (2.36)

SMc = inf
u∈M

I(u) =
(

1
2
− 1

p

)
S

p
p−2

φ,c (2.37)
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Remark 2.3.1. The particular case is when p = 4. In this situation, we
obtain the nonexistence for the minimization problems (2.32) and (2.33)
also for the function φ(r) of type (2.2). We note that Bertin and Ciotti
model, φ(r) is asymptotic to 1/r when r →∞, so the problem (2.1) admits
the limit problem 



−∆u(x) = 1

r u3 in R3,
u(x) > 0 in R3

u ∈ D1,2(R3)
(2.38)

which has a solution, given by the extremals of (2.5) inequality when
n = 3, k = 2, s = 1.

2.4 Existence and nonexistence results

In [3], it is proved the following theorem:

Theorem 2.4.1. Let φ satisfy (2.3).
i) If 4 < p < 6 then I (or Ic) attains its infimum over M (respectively on
Mc) at a solution u (respectively, a cylindrically symmetric solution uc) for
(2.1). These solutions are also extremals for the best constant in (2.30) over
D1,2(R3) (respectively D1,2

c (R3))). Furthermore, there exists p0 ∈ (4, 6) such
that, if p0 < p < 6, then Sφ < Sφ,c; therefore u and uc define two different
solution for (2.1) in this case, and the best constant in (2.30) is attained at
a function which is not cylindrically symmetric.
ii) If p = 6, then I cannot attain its infimum over M. On the contrary, Ic

attains its infimum over Mc at a cylindrically solution for (2.1) which cor-
responds to an extremal for the best constant in (2.30) over D1,2

c (R3).
iii) If p = 4 and the function r → rφ(r) is assumed increasing and not
constant then neither I or Ic can attain their infimum over M and Mc re-
spectively.

M.Badiale and E.Serra in [2] continue the work begun in [3] and obtained
several results for a more general problem in Rn, with n ≥ 3, given by:




−∆u(x) = φ(|y|) u2∗−1 in Rn,

u(x) > 0 in Rn

u ∈ D1,2(Rn)
(2.39)

where x = (y, z) ∈ Rk × Rn−k, k ≥ 2, 0 < s < 2, 2∗ = 2n−s
n−2 . We denote

|y| by r and suppose that the function φ(r) is asymptotic, at 0 or at ∞ (or
both) to 1/rs. Then, the problem (2.39) admits the problem (2.8) as limit
problem, invariant under transformation (2.9). The hypotheses on φ are the
following. For some η ∈ (0, 1) and s ∈ (0, 2)

φ ∈ C0,η
loc (R+,R+), φ(r)rs ∈ L∞(R+),

and at last one between lim
r→0

φ(r)rs = 1 and lim
r→∞φ(r)rs = 1 holds.

(2.40)
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lim sup
r→0,+∞

φ(r)rs ≤ 1. (2.41)

The Theorem 2.0.2 implies that in the space D1,2(Rn) the integral∫
Rn

1
|y|s |u|2∗dx is finite, so, for u ∈ D1,2(Rn) \ {0}, we can define

J(u) =

∫
Rn |∇u|2dx

(
∫
Rn

1
|y|s |u|2∗dx)2/2∗

, and Jφ(u) =

∫
Rn |∇u|2dx

(
∫
Rn φ(|y|)|u|2∗dx)2/2∗

We can see that J and Jφ are C1 functionals over D1,2(Rn). We also define

S = inf{J(u) : u ∈ D1,2(Rn)\{0}} and Sφ = inf{Jφ(u) : u ∈ D1,2(Rn)\{0}}

and we consider the minimization problem

find u ∈ D1,2(Rn) \ {0}, u ≥ 0, such that Jφ(u) = Sφ. (2.42)

Badiale and Serra in [2] investigate the regularity and positivity of solution
for (2.39) in some particular cases and get the following results.

Lemma 2.4.2. Assume (2.40) and let u ∈ D1,2(Rn), u ≥ 0, be a weak
solution of the equation

−∆u(x) = φ(|y|)u2∗−1

If s n < 4, then u ∈ C0,η
loc (Rn) for some η ∈ (0, 1). If s n < 2, then u ∈

C1,θ
loc (Rn) for some η ∈ (0, 1).

Proof. We first claim that u ∈ Lq
loc(R

n) for all q < +∞. We write
φ(|y|)u2∗−1 = φ(|y|)u2∗−1

1+u (1 + u), and we set

a(x) = φ(|y|)u
2∗−1

1 + u
,

so that u satisfies
−∆u(x) = a(x)(1 + u).

For Lemma B.3 in the book of Struwe [50], it is enough to prove that a ∈
Ln/2(Rn). We rewrite

a(x) = φ(|y|)|y|s u2∗−2

|y|s
u

1 + u

Of course, the quantity u
1+u is bounded (as u ≥ 0), while φ(|y|)|y|s is bounded

by (2.40). Hence we have to prove that

u2∗−2

|y|s ∈ Ln/2, that is,
u(2∗−2)n/2

|y|ns/2
∈ L1.
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To show this, we notice that since s n < 4, so that n s/2 < 2 < k. We can
use the Theorem 2.0.2, with n s/2. Indeed, we have

(2∗ − 2)
n

2
=

2(n− n s/2)
n− 2

.

In this way, we have proved the claim. Moreover, if s n < 4 we can take
some p > n

2 such that sp < 2; since k ≥ 2, we see that ( 1
|y|sp ) is locally

integrable. This implies that u2∗−1

|y|s is locally in Lq(Rn) for some p > q > n
2 .

By the usual elliptic regularity theory and the Sobolev embedding, it follows
that u ∈ C0,θ

loc (Rn) for some θ ∈ (0, 1). Finally, if s n < 2 we can repeat the
same argument using some p > n such that again s p < 2, to obtain that
u ∈ C1,θ

loc (Rn) for some θ ∈ (0, 1).

Lemma 2.4.3. Assume (2.40) and let u ∈ D1,2(Rn), u ≥ 0, be a weak
solution of the equation

−∆u(x) = φ(|y|)u2∗−1

If s n < 4, then u > 0 in Rn.

Proof of Lemma 2.4.3. We define A = {x = (y, z) ∈ Rn : y 6= 0}.
By standard elliptic regularity, u ∈ C2,η

loc (A) for some η ∈ (0, 1); hence we
can apply the classical strong maximum principle to obtain that u > 0 in A.
Moreover, by Lemma 2.4.2, u ∈ C0,θ

loc , for some θ ∈ (0, 1). Let x0 ∈ Rnbe such
that y0 = 0 and consider the ball B = B1(x0). We define φ̃(r) = min{1, φ(r)}
and we remark that φ̃ is Hölder continuous, because so is φ. Let v be the
classical solution of the problem

{ −∆v(x) = φ̃(|y|) u2∗−1 in B,
v(x) = 0 on ∂B.

(2.43)

We notice that φ̃(|y|) u2∗−1 is Hölder continuous and now −∆u ≥ −∆v in
the weak sense in B, and u ≥ v on ∂B, so that, using the maximum principle
for weak solutions, we have u ≥ v in all B. But v is a classical solution of
(2.43), −∆v ≥ 0 and v is not a constant, so by the strong maximum principle
we have v > 0 in all of B and hence u(x0) > 0. ¤

The first nonexistence result is a consequence of the following identity of
Pohozaev type (see Proposition 2.5 in [2]).

Proposition 2.4.4. Let a : Rn → R be a function such that

a(x)|y|s ∈ L∞(Rn), with a ∈ C(A), (2.44)

and let u ∈ D1,2(Rn) be a weak solution of

−∆u(x) = a(x)|u|p−2u in Rn. (2.45)
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Assume that u ∈ C1,θ
loc (Rn) ∩ Lp(Rn) ∩ C2(A) for some θ ∈ (0, 1) and also

that
a|u|p ∈ L1(Rn) and∇a(x) · x|u|p ∈ L1(Rn). (2.46)

Then the following identity holds
∫

Rn

[(
n− 2

2
− n

p

)
a(x)− 1

p
∇a(x) · x

]
|u|pdx = 0 (2.47)

Applying (2.47) to problem (2.39), with the suitable limitations on the
values of s, n, we get

Corollary 2.4.5. Assume that s n < 2, that φ satisfies (2.40) and also that

φ
′ ∈ C(R+) and φ

′
(r)rs+1 ∈ L∞(R+). (2.48)

Define ψ(r) = φ(r)rs and assume that ψ is monotone (increasing or decreas-
ing) and not constant. Then the problem (2.39) has no solutions.

Proof. We apply Proposition 2.4.4 with p = 2∗ and a(x) = φ(|y|). We note
that ∇a(x) · x = φ

′
(|y|)|y|, so that (2.40), (2.48) and Theorem 2.0.2 imply

that the hypotheses of Proposition 2.4.4 are satisfied. So, if we assume that u
is a solution of (2.39), by Lemma 2.4.2 we have u ∈ C1,θ

loc (Rn) and by Lemma
2.4.3 we obtain that u > 0 everywhere. Moreover, computing

(
n− 2

2
− n

2∗

)
a(x)− 1

2∗
∇a(x) · x = − s

2∗
a(x)− 1

2∗
∇a(x) · x

= − 1
2∗

(sa(x) +∇a(x) · x) = − 1
2∗

(sφ(|y|) + φ
′
(|y|)|y|)

= − 1
2∗

1
|y|s−1

(s|y|s−1φ(|y|) + φ
′
(|y|)|y|s) = − 1

2∗|y|s−1
ψ
′
(|y|),

we see that (2.47) gives

0 =
∫

Rn

1
|y|s−1

ψ
′
(|y|) |u|2∗ dx. (2.49)

Under the hypothesis that ψ is monotone and not constant we obtain that
ψ
′ is not zero and has constant sign. Therefore (2.47) gives a contradiction

and this implies that (2.39) has no solutions.

A natural question is the following: there does a φ 6= 1
rs exist for which

the infimum in (2.33), when p = q∗(s) = q∗, is achieved? The answer was
given by K. Sandeep in [45], who discussed the existence and nonexistence
of minimizer for the constraint minimization problem

Sφ = inf
u∈D1,q(Rn)

{
∫

Rn

|∇u|q :
∫

Rn

φ(r)|u|q∗dx = 1}, (2.50)
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where r = |y|, x = (y, z) ∈ Rk × Rn−k, 2 ≤ k ≤ n, 0 ≤ s < q, s < k, 1 <

q < n, q∗ = q(n−s)
n−q . For the sake of simplicity, we will consider only the case

q = 2. We will denote I(u) the functional given by

I(u) =
1
2

∫

Rn

|∇u|2 − 1
2∗

∫

Rn

φ(r)|u|2∗ .

Notice that its critical points satisfy the problem (2.39). In [45] the following
theorem is proved.

Theorem 2.4.6. Let φ : R+ → R+ be continuous and satisfies lim
r→0

rsφ(r) =

C0 and lim
r→∞rsφ(r) = C∞, where 0 ≤ C0 < ∞ and 0 ≤ C∞ < ∞, then

i)

Sφ ≤ min{ S

C
2
2∗
0

,
S

C
2
2∗∞
} (2.51)

ii) and Sφ is achieved if Sφ satisfies

Sφ < min{ S

C
2
2∗
0

,
S

C
2
2∗∞
} (2.52)

iii) If φ satisfies in addition rsφ(r) ≤ max{C0, C∞} for all r, then

Sφ = min{ S

C
2
2∗
0

,
S

C
2
2∗∞
}

and Sφ is achieved only when φ(r)rs ≡ max{C0, C∞}.
Proof. (i) By Theorem 2.0.2, we know that S is achieved at some w ∈
D1,2(Rn). We define, for λ > 0, wλ(x) = λ

n−2
2 w(λx). Then, by a change

of variables, J(wλ) = J(w) = S, while

Jφ(wλ) =

∫
Rn |∇u|2 dx

(
∫
Rn φ( |y|λ ) |y|

s

λs
|w|2∗
|y|s dx)2/2∗

.

Since |w|2∗
|y|s ∈ L1(Rn), it is easy to check that Jφ(wλ) → S

C
2/2∗∞

as λ → 0.

On the other hand, by definition, we have that Sφ ≤ Jφ(wλ) for all λ > 0,
therefore for λ → 0, we have Sφ ≤ S

C
2/2∗∞

. Analogously, letting λ → +∞, we

have Sφ ≤ S

C
2/2∗
0

. Thus we get

Sφ ≤ min{ S

C
2/2∗
0

,
S

C
2/2∗∞

}.
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To prove (ii), we need some preliminaries. We denote the sets {(y, z) ∈
Rn : r0 ≤ |y| ≤ r1}, {(y, z) ∈ Rn : |y| ≤ r0 (≥ r1)} by {r0 ≤ r ≤ r1}
and {r ≤ r0} (≥ r1) respectively. We recall a well-known application of
Ekeland’s principle to select the best minimizing sequence for a functional
over the corresponding Nehari’ manifold.

Lemma 2.4.7. There exists a sequence {uh}h ∈ M such that I(uh) → SM

and I
′
(uh) → 0 where I

′ denotes the Frechet derivative of I.

Proceeding in the same lines of Badiale and Tarantello, in [45] the com-
pactness properties of the minimizing sequence are discussed. The first step
is to show that the assumption (ii) prevents "vanishing" of the minimizing
sequence in the y-direction .

Lemma 2.4.8. Let Sφ < min{ S

C
2/2∗
0

, S

C
2/2∗∞

} and {uh}h be a minimizing

sequence as in above Lemma, then there exist r0, r1 with 0 < r0 < ∞, 0 <
r1 < ∞ and a constant K0 > 0 such that

lim inf
n→∞

∫

r0≤r≤r1

φ(r)|uh|2∗ dx ≥ K0. (2.53)

Proof of Lemma 2.4.8.
Let C be such that C = max{C2/2∗

0 , C
2/2∗∞ }, then we have Sφ < S

C and hence,
by Lemma 2.3.3, we have

SM <

(
1
2
− 1

2∗

)
(
S

C
)

2∗
2∗−2 (2.54)

We will prove our lemma by contradiction. For absurd, we suppose that for
all r0, r1 > 0

lim inf
n→∞

∫

r0≤r≤r1

φ(r)|uh|2∗ dx = 0.

We claim that this contradict (2.54). Let ε > 0. Then, we can find r0, r1 > 0
such that

∣∣
∫

r≤r0

(φ(r)− C0

rs
)|uh|2∗ dx +

∫

r≥r1

(φ(r)− C∞
rs

)|uh|2∗ dx
∣∣ < ε. (2.55)

uniformly for all h. By our assumptions, passing to a subsequence if neces-
sary, we can assume that

lim
h→∞

∫

r0≤r≤r1

φ(r)|uh|2∗ dx = 0. (2.56)
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Now, by (2.55), (2.56), we get
∫

Rn

φ(r)|uh|2∗ dx =
∫

r≤r0

φ(r)|uh|2∗ dx +
∫

r0<r<r1

φ(r)|uh|2∗ dx +
∫

r≥r1

φ(r)|uh|2∗ dx

≤ C0

∫

r≤r0

|uh|2∗
rs

dx + o(1) + C∞
∫

r≥r1

|uh|2∗
rs

dx + ε

≤ max{C0, C∞}
∫

Rn

|uh|2∗
rs

dx + ε + o(1) (2.57)

where o(1) denotes the terms which go to zero as h →∞. Since uh ∈ M, we
have

1 =
( ∫

Rn |∇u|2 dx∫
Rn φ(r)|uh|2∗ dx

) 2
2∗−2

≥
( ∫

Rn |∇u|2 dx

C
2∗
2

∫
Rn

|uh|2∗
rs dx + ε + o(1)

) 2
2∗−2

Therefore

SM = lim
h→∞

(
1
2
− 1

2∗

)∫

Rn

|∇uh|2 dx

≥ lim
h→∞

(
1
2
− 1

2∗

)
(∫

Rn |∇uh|2 dx

) 2
2∗−2

+1

(
C

2∗
2

∫
Rn

|uh|2∗
rs dx + ε + o(1)

) 2
2∗−2

= lim
h→∞

(
1
2
− 1

2∗
)
( ∫

Rn |∇uh|2 dx

C(
∫
Rn

|uh|2∗
rs dx)

2
2∗

) 2∗
2∗−2

(
1 +

ε + o(1)

C
2∗
2

∫
Rn

|uh|2∗
rs dx

) −2
2∗−2

≥
(

1
2
− 1

2∗

)(
S

C

) 2∗
2∗−2

lim
h→∞

(
1 +

ε + o(1)

C
2∗
2

∫
Rn

|uh|2∗
rs dx

) −2
2∗−2

(2.58)

Since rsφ(r) is bounded, we have
∫

Rn

|uh|2∗
rs

dx ≥ K

∫

Rn

φ(r)|uh|2∗ dx = K

∫

Rn

|∇uh|2 dx → K
22∗

2∗ − 2
SM > 0

where K is a positive constant. Therefore by taking h → ∞ and ε → 0 in
(2.58), we get

SM ≥
(

1
2
− 1

2∗

)(
S

C

) 2∗
2∗−2

.

This contradicts (2.55) and hence the lemma follows. ¤
Fix an r0 and r1 satisfying (2.55) and let Q denotes

Q = {(y, z) ∈ Rn : r0 ≤ r ≤ r1, z ∈ [0, 1]n−k}
and

Qj = {(y, z) ∈ Rn : r0 ≤ r ≤ r1 : z ∈ ξj + [0, 1]n−k}
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where ξj ∈ Nn−k. Now by translating the minimizing sequence {uh} in the
z direction, if necessary, we can assume that the minimizing sequence
guaranteed by Lemma 2.4.9 satisfies in addition

sup
j

∫

Qj

φ(r)|uh|2∗ dx =
∫

Q
φ(r)|uh|2∗ dx (2.59)

The second step is to extend the last lemma in the z-direction.

Lemma 2.4.9. Let {uh}h be a minimizing sequence as in Lemma 2.4.9, and
satisfying (2.59) and r0, r1 chosen as in Lemma 2.4.8, then

lim inf
h→∞

∫

Q
φ(r)|uh|2∗ dx > 0 (2.60)

Proof. Let s1 > 0 be such that s < s1 < 2. We define

2
′
∗ = 2∗(s1) =

2(n− s1)
n− 2

.

Then 2 < 2
′
∗ < 2∗ and by Theorem 2.0.2 there exists a constant C > 0 such

that ∫

Rn

|u|p′∗
rs1

dx ≤ C

(∫

Rn

|∇u|2 dx

)n−s1
n−2

(2.61)

holds for u ∈ D1,2(Rn). Now by using (2.59) and the boundedness of uh in
D1,2(Rn), we have

(∫

Qj

φ(r)|uh|2∗ dx

) 2
′
∗

2∗ ≤ K

(∫

Qj

|uh|2∗ dx

) 2
′
∗

2∗

= K

(∫

Q
|uh(x + ξj)|2∗ dx

) 2
′
∗

2∗

≤ K

((∫

Q
|∇uh(x + ξj)|2 dx

)1/2

+
(∫

Q
|uh(x + ξj)|2

′
∗) dx

) 1

2
′
∗
)2

′
∗

≤ K

((∫

Qj

|∇uh(x)|2 dx

) 2
′
∗
2

+
∫

Qj

|uh(x)|2
′
∗ dx

)

≤ K

(∫

Qj

|∇uh(x)|2 dx +
(∫

Qj

|uh(x)|2
′
∗ dx

)

≤ K

(∫

Qj

|∇uh(x)|2 dx +
(∫

Qj

|uh(x)|2
′
∗

rs1
dx

)

(2.62)
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where K stands for a positive constant independent of n, k. Now using (2.59),
(2.61) and (2.62), we get

∫

r0≤r≤r1

φ(r)|uh|2∗ dx =
∞∑

i=1

∫

Qj

φ(r)|uh|2∗ dx

=
∞∑

i=1

(∫

Qj

φ(r)|uh|2∗ dx

) 2
′
∗

2∗
(∫

Qj

φ(r)|uh|2∗ dx

)1− 2
′
∗

2∗

≤ K

(∫

Q
φ(r)|uh|2∗ dx

)1− 2
′
∗

2∗
(∫

Rn

|∇uh|2 dx +
∫

Rn

|uh|2
′
∗

rs1
dx

)

≤ K

(∫

Q
φ(r)|uh|2∗ dx

)1− 2
′
∗

2∗
(2.63)

The conclusion follows immediately by Lemma 2.4.8.

Now we are ready to prove the part (ii) of the Theorem 2.4.6.
Proof of (ii).
Let Sφ satisfy (ii). Then from previous Lemmas, we can find a sequence
{uh}h ∈ M such that I(uh) → SM , I

′
(uh) → 0 and

lim
h→∞

∫

Q
φ(r)|uh|2∗ dx > 0.

Then {uh}h is a bounded sequence in D1,2(Rn) and therefore by passing
to a subsequence if necessary we can assume that {uh}h converges weakly
to say u0 ∈ D1,2(Rn), uh → u0 in L2∗

loc(R
n) and uh → u0 pointwise almost

everywhere. Hence
∫

Q
φ(r)|u0|2∗ dx = lim

h→∞

∫

Q
φ(r)|uh|2∗ dx > 0.

So, u0 6= 0, and since I
′
(uh) → 0, we know that u0 satisfies the equation

−∆u0 = φ(r)|u0|2∗−2u0 inRn

i.e. ∫

Rn

|∇u0|2 dx =
∫

Rn

φ(r)|u0|2∗ dx

i.e. u0 ∈ M. Consequently, using the weak lower semicontinuity of the norm
in D1,2(Rn), we get

I(u0) =
(

1
2
− 1

2∗

) ∫

Rn

|∇u0|2 dx ≤ lim inf
h→∞

(
1
2
− 1

2∗

)∫

Rn

|∇uh|2 dx = lim
h→∞

I(uh) = SM .
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Thus, limh→∞ ||uh||2 = ||u0||2, that is {uh}h converges strongly to u0 in
D1,2(Rn) and I(u0) = infM I(u) = SM . ¤
Proof of (iii).
From our assumptions we have that

φ(r) ≤ max{C0, C∞} 1
rs

. (2.64)

Thus from definition of Sφ and S, we get

Sφ ≥ min{ S

C
2/2∗
0

,
S

C
2/2∗∞

} (2.65)

and hence equality holds in (2.65). It is clear that when rsφ(r) ≡ max{C0, C∞}
then Sφ is achieved. So we assume that the inequality in (2.64) is strict at
least at one point. Let us suppose that Sφ is achieved for such a φ say at
v ∈ D1,2(Rn). Then we can take v ≥ 0 and by strong maximum principle of
Vazquez [53], v > 0. Then

Sφ =

∫
Rn |∇v|2 dx

(
∫
Rn φ(r)|v|2∗ dx)2/2∗

>

∫
Rn |∇v|2 dx

(max{C0, C∞}
∫
Rn

|v|2∗
rs dx)2/2∗

≥ min{ S

C
2/2∗
0

,
S

C
2/2∗∞

} = Sφ

which is a contradiction. Hence Sφ is not achieved. This completes the proof
oh Theorem 2.4.6. ¤
The research of a condition for φ which guarantees a solution to the
problem (2.39) was studied also by Badiale and Serra in [2] by Concentration-
Compactness principle, having analogous results. Here there is a list.

Theorem 2.4.10. (i) Assume that φ satisfies (2.40) and also that

φ(r)rs ≤ 1∀r > 0 and φ(r0)rs
0 < 1 for some r0 > 0. (2.66)

(ii) Assume that φ satisfies (2.40) and (2.41) and Sφ < S.

(iii) Assume that φ satisfies (2.40) and

lim
r→0

φ(r)rs = lim
r→+∞ = 1 withφ(r)rs ≥ 1 for all r > 0. (2.67)

(iv)Assume that s n < 4 and that in addition to (2.40) and (2.41), φ
satisfies also lim

r→+∞φ(r)rs = 1 and

∃r0 > 0, ∃β ∈ (0, k − s) such that φ(r)rs ≥ 1 +
1
rβ

for all r ≥ r0.

Then, in the case (i), the problem (2.42) has no positive solutions, while
in the cases (ii),(iii),(iv) the problem (2.42) has a solution.
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Proof. The proof of (i),(ii) is the same as in Theorem 2.4.6.
iii) Let φ ∈ C0,η

loc (R+,R+), φ(r)rs ∈ L∞(R+) and lim
r→0

φ(r)rs = lim
r→∞φ(r)rs =

1, with φ(r)rs ≥ 1 for all r > 0. If φ(r)rs ≡ 1, then the problem reduces to
(2.8) and of course S = Sφ. The existence of a solution has been proved in
[3]. Otherwise there exists a r1 > 0 such that

φ(r1)rs
1 > 1. (2.68)

Let w ∈ D1,2(Rn), w > 0 be such that
∫

Rn

|∇w|2dx = S, and

∫

Rn

1
|y|s |w|

2∗dx = 1 (2.69)

Hence, by (2.67) and (3.67) we see that
∫

Rn

φ(|y|)|w|2∗dx >

∫

Rn

1
|y|s |w|

2∗dx = 1,

which implies that

Sφ ≤
∫
Rn |∇w|2 dx

(
∫
Rn φ(|y|)|w|2∗dx)2/2∗

< S

The conclusion follows then from Theorem 2.4.6.

(iv) In order to prove (iv), we need some estimates on the decay of w,
the solution of problem (2.8). We recall this following result, due to Egnell
(see [21]).

Theorem 2.4.11. Let u ∈ D1,2(Rn), u ≥ 0 be a weak solution of the equation

−∆u = f(x, u),

where 0 ≤ f(x, u) ≤ b(x)uσ and

1 < σ <
n + 2
n− 2

, b ∈ Lτ (Rn), τ =
2n

n + 2− (n− 2)σ
.

Then lim sup|x|→+∞ |x|n−2u(x) < +∞.

By an application of Theorem 2.4.11, Badiale and Serra in [2] prove this
result.

Lemma 2.4.12. Let w be a solution of problem (2.8) and assume that s n <
4. There exists C > 0 such that

w(x) ≤ C

|x|n−2
as |x| → +∞.



2. A weighted Sobolev inequality 53

Proof. We want to show that the hypotheses of Theorem 2.4.11 are verified.
Fix some σ ∈ (1, n+2

n−2) very close to 1 and write the equation as −∆w =
b(x)wσ, where b(x) = 1

|y|s w2∗−1−σ. We want to prove that b ∈ Lτ (Rn),
where

τ =
2n

n + 2− σ(n− 2)

as in Theorem 2.4.11, that is
∫

Rn

b(x)τ dx =
∫

Rn

(
1
|y|s w2∗−1−σ)τ dx < +∞. (2.70)

But ∫

Rn

(
1
|y|s w2∗−1−σ)τ dx =

∫

Rn

w(2∗−1−σ)τ 1
|y|sτ dx. (2.71)

Applying the (2.5) with a = sτ, to the second member of (2.71), we have:
∫

Rn

w(2∗−1−σ)τ 1
|y|sτ dx =

∫

Rn

1
|y|a w2∗(a) dx < +∞.

We just have to check that sτ < 2 and the exponents,

2∗(sτ) =
2(n− sτ)

n− 2
= (2∗ − 1− σ)τ. (2.72)

Now since s < 4/n and τ is as close as we wish to n/2, by taking σ sufficiently
close to 1, we see that sτ < 2. By computations, we have (2.72).

Proof of (iv). We want to prove that Sφ < S and apply Theorem 2.4.6.
Let w verify (2.69) and define wλ(x) = λ

n−2
2 w(λx), where x = (y, z). We

compute, setting x′ = λx,

∫

Rn

φ(|y|)w2∗
λ (x)dx =

∫

Rn

φ

( |y′|
|λ|

)
1
λs

w(x′)2∗dx′ =
∫

Rn

φ

( |y′|
|λ|

) |y′|s
λs

1
|y′|s w(x′)2∗dx′

=
∫

Rn

1
|y′|s w2∗ dx′ +

∫

Rn

[φ
(
|y
′

λ
|
) |y′|s

λs
− 1]

1
|y′|s w2∗ dx′ = 1 +

∫

Rn

[φ
(
|y
′

λ
|
) |y′|s

λs
− 1]

1
|y′|s w2∗ dx′.

Let us study the last integral. We write it as
∫

Rn

[φ
(
|y
′

λ
|
) |y′|s

λs
− 1]

1
|y′|s w2∗dx′

=
∫

|y′|<λr0

[φ
(
|y
′

λ
|
) |y′|s

λs
− 1]

1
|y′|s w2∗dx′ +

∫

|y′|≥λr0

[φ
(
|y
′

λ
|
) |y′|s

λs
− 1]

1
|y′|s w2∗dx′

and we consider these two integrals separately. We have, by our assumptions,
∫

|y′|≥λr0

[φ
(
|y
′

λ
|
) |y′|s

λs
−1]

1
|y′|s w2∗dx′ ≥

∫

|y′|≥λr0

1

|y′λ |β
1
|y′|s w2∗dx′ = λβ

∫

|y′|≥λr0

1
|y′|s+β

w2∗dx′.
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When λ ≥ 1/r0 we obtain

λβ

∫

|y′|≥λr0

1
|y′|s+β

w2∗dx′ ≥ λβ

∫

|y′|≥1

1
|y′|s+β

w2∗dx′ = aλβ,

where a =
∫
|y′|≥1

1
|y′|s+β w2∗dx′ is (positive) and finite since

∫

|y′|≥1

1
|y′|s+β

w2∗dx′ ≤
∫

|y′|≥1

1
|y′|s w2∗dx′ ≤

∫

Rn

1
|y′|s w2∗dx′ = 1.

Therefore we have proved that
∫

|y′|≥λr0

[φ
(
|y
′

λ
|
) |y′|s

λs
− 1]

1
|y′|s w2∗dx′ ≥ aλβ,

with a > 0. Concerning the other integral we obtain, writing x′ = (y′z′),
∣∣∣∣
∫

|y′|≤λr0

[φ
(
|y
′

λ
|
) |y′|s

λs
− 1]

1
|y′|s w2∗dx′

∣∣∣∣

≤ C

∫

|y′|≤λr0,|z′|≤C1

1
|y′|s w2∗dx′ + C

∫

|y′|≤λr0,|z′|≥C1

1
|y′|s w2∗dx′.

As w is continuous (by Lemma 2.4.3) we firs see that
∫

|y′|≤λr0,|z′|≤C1

1
|y′|s w2∗ dx′ ≤ C

∫

|y′|≤λr0,|z′|≤C1

1
|y′|s dx′

≤ C

∫ λr0

0

1
ρs

ρk−1 dρ = C λk−s.

Next, from Lemma 3.3.14 we obtain that for |x| → ∞, w(x) ≤ C
|x|n−2 that

implies w(x)
2(n−s)

n−2 ≤ C2∗
|x|2(n−s) . Then

∫

|y′|≤λr0,|z′|≥C1

1
|y′|s w2∗dx′ ≤ C

∫

|y′|≤λr0,|z′|≥C1

1
|y′|s

1
|x′|2(n−s)

dx′

≤ C

∫

|y′|≤λr0,|z′|≥C1

1
|y′|s

1
|z′|2(n−s)

dy′dz′ ≤ Cλk−s

∫

|z′|≥C1

1
|z′|2(n−s)

dz′

= Cλk−s

∫ +∞

C1

1
ρ2(n−s)

ρn−k−1 dρ = Cλk−s

∫ +∞

C1

1
ρn+k−2s+1

dρ.

But since n+k−2s+1 > 1, because s < k ≤ n, we have that
∫ +∞
C1

1
ρn+k−2s+1 dρ <

+∞, thus ∫

|y′|≤λr0,|z′|≥C1

1
|y′|s w2∗dx′ ≤ Cλk−s.
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Collecting all above all estimates we finally arrive at
∫

Rn

φ(|y|)w2∗
λ (x) dx ≥ 1 + aλβ − bλk−s,

with a, b > 0. As β < k − s, when λ is small, (i.e. 1
r0
≤ λ < 1), we obtain

∫

Rn

φ(|y|)w2∗
λ dx > 1,

which implies that

Sφ ≤ Jφ(wλ) =

∫
Rn |∇w|2 dx

(
∫
Rn φ(|y|)w2∗

λ dx)2/2∗
< S.

The conclusion follows easily. ¤
Summing up, we get existence of solutions for (2.42) when φ(r)rs ≥ 1

and nonexistence when φ(r)rs ≤ 1 and φ(r)rs 6= 1. By iv), we require φ(r)rs

to be above 1 just for large values of r.

Remark 2.4.1. We have just seen that the problem (2.32) has no solutions
for n = 3, p = 2∗ = 4. However, for the Theorem 2.4.6 shows that by a small
perturbation of Ciotti-Bertin function φ, we can obtain a problem which
does have a solution. Indeed, we can fix γ ∈ (2α − 1, 2α) and ε > 0 and
define

φε(r) = φ(r) + ε
rγ

(1 + r2)α+ 1
2

=
r2α + εrγ

(1 + r2)α+ 1
2

By computations, we have, for large r’s

φε(r)r − 1 ≥ C

r2α−γ
.

As 0 < 2α−γ < 1 < k−s, the hypotheses of the Theorem 2.4.6 are satisfied
and we obtain a solution for problem (2.32) with φε replacing φ.



3. SYMMETRY PROPERTIES AND IDENTIFICATION OF THE
EXTREMALS OF A WEIGHTED SOBOLEV INEQUALITY

In this chapter, we study the symmetry properties of the minimizers of a
weighted Sobolev inequality which establishes:
Let n ≥ 3, 2 ≤ k ≤ n, x = (y, z) ∈ Rk × Rn−k, 0 ≤ s < 2, 2∗ = 2n−s

n−2 . There
exists a optimal constant S = Sn,k,s such that

S




∫

Rn

|u|2∗
|y|s




2
2∗

≤
∫

Rn

|∇u|2 ∀ u ∈ D1,2(Rn) (3.1)

If s = 2, (3.1) still holds true (see [3], Remark 2.3) if 2 < k ≤ n, thus
providing an extension of the classical Hardy inequality (which is known not
to possess extremal functions). The limiting case s = 0 corresponds to the
classical Sobolev inequality. It has been exhaustively studied by Aubin [1]
and Talenti [51] who computed exactly the best constant

S0,n = n(n− 2)
(

Γ(n
2 )Γ(n

2 + 1)ωn−1

Γ(n + 1)

) 2
n

and proved existence of extremal functions, exhibiting them explicitly. In
the more general case 0 ≤ s < 2 ( but k = n ) the best constant has been
computed in [28] and extremal functions have been identified by Lieb ([34]):
they are given, up to dilations and translations by

U(x) =
1

(1 + |x|2−s)
n−2
2−s

More general inequalities of type (3.1), still in case k = n, have been
considered by Caffarelli-Kohn-Nirenberg [13]. Also here, positive solutions
of the associated Euler equation (on a properly weighted Sobolev space) turn
out to be radially symmetric (see [7]) and they can be explicitly computed
just solving an ODE (see [17]). They turns out to be of the same form as
in the case a = 0. When k < n, extremals cannot be anymore radially
symmetric and then they cannot be searched among solutions of an ODE.
In this chapter, at first, we will recall an important result proved by Mancini
and Sandeep in [40] where the cylindrical symmetry of minimizers of (3.1)
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has been proved, by symmetrization arguments applied to a related Hardy-
Littlewood-Sobolev inequality. In the second part of this chapter, we study
entire solutions for the following problem

−∆u = u
n+2−2t

n−2

|y|t in Rn

u > 0
u ∈ D1,2(Rn)





(3.2)

where Rn = Rk × Rn−k, n ≥ 3, 2 ≤ k < n, t ∈ (0, 2) and a point x ∈ Rn is
denoted by x = (y, z). In [3] it was proved that (3.2) is the Euler equation
associated to (3.1) inequality. It is known that (3.1) admits extremals (see
[3]) and so, the problem (3.2), (with t = s), has a solution. We will prove,
using moving planes techniques, that all the solutions of the Euler equation
associated to (3.1) are cylindrically symmetric. This result is from [22].

3.1 Rearrangement inequalities

In this section, we will give some preliminaries which will be useful later.

Definition 3.1.1. f : Rn → R is said to be vanishing at ∞ if it satisfies
{|f | > t}| < ∞ for all t > 0, where | · | denotes the Lebesgue measures.

Definition 3.1.2. Let A ⊂ Rn a Borel set of finite measure. Define A∗,
the symmetric rearrangement of the set A, as the open ball centered in
the origin whose volume is that of A. In formula, A∗ = {x | |x| < r} with
(|Sn−1|/n)rn = |A|.
Definition 3.1.3. The symmetric-decreasing rearrangement of a characteristic
function of a set is, χ∗A = χA∗ .

Definition 3.1.4. The symmetric decreasing rearrangement of f is
f∗(x) =

∫∞
0 χ∗{|f |>t}(x)dt .

Lemma 3.1.1. (Riesz’s rearrangement inequality) Let f, g, h be three non
negative functions on Rn, vanishing at ∞, then

∫

Rn

∫

Rn

f(x)g(x− y)h(y)dxdy ≤
∫

Rn

∫

Rn

f∗(x)g∗(x− y)h∗(y)dxdy. (3.3)

Further, if g is strictly symmetric decreasing, then equality in (3.3) holds if
and only if f(x) = f∗(x − x0) and h(x) = h∗(x − x0) for some common
x0 ∈ Rn.

Lemma 3.1.2. Let f, g, h be three non negative functions on Rn, vanishing
at ∞ and a > 0. Then∫

Rn

∫

Rn

f(x)
|x|a g(x− y)

h(y)
|y|a dxdy ≤

∫

Rn

∫

Rn

f∗(x)
|x|a g∗(x− y)

h∗(y)
|y|a dxdy.

(3.4)
Moreover, if g = g∗ equality holds in (3.4) if and only if f = f∗ and h = h∗.
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Proof. For s > 0, we denote by Bs the ball in Rn with center at zero and
radius (1

s )
1
a . With this notation, we have

1
|x|a =

∫ ∞

0
χBs(x) ds.

Using this representation, Fubini’s theorem and Lemma 3.1.1, we get
∫

Rn

∫

Rn

f(x)
|x|a g(x− y)

h(y)
|y|a dxdy =

∫ ∞

0

∫ ∞

0

(∫

Rn

∫

Rn

(fχBs)(x)g(x− y)(hχBt)(y)dydx

)
dsdt

≤
∫ ∞

0

∫ ∞

0

(∫

Rn

∫

Rn

(fχBs)
∗(x)g∗(x− y)(hχBt)

∗(y)dydx

)
dsdt.

(3.5)

Further, we note that (fχBs)∗ ≤ f∗χBs , ∀s > 0. In fact, by the inclusion
between level sets, we have

{(fχBs)
∗ > t} = {fχBs > t}∗ = ({(f > t} ∩ Bs)∗ ⊂ ({(f > t}∗ ∩ Bs)

= {f∗ > t} ∩ Bs = {f∗χBs > t}
and hence

(fχBs)
∗(x) =

∫ ∞

0
χ{(fχBs

)∗>t}(x)dt ≤
∫ ∞

0
χ{f∗χBs>t}(x)dt = (f∗χBs)(x).

Then∫ ∞

0

∫ ∞

0

(∫

Rn

∫

Rn

(fχBs)
∗(x)g∗(x− y)(hχBt)

∗(y)dydx

)
dsdt

≤
∫ ∞

0

∫ ∞

0

(∫

Rn

∫

Rn

(f∗χBs)(x) g∗(x− y) (h∗χBt)(y)dydx

)
dsdt

=
∫

Rn

∫

Rn

f∗(x)
|x|a g∗(x− y)

h∗(y)
|y|a dxdy. (3.6)

This proves (3.4). Let g be strictly symmetric decreasing. Assume that
equality (3.4) holds for an f and h. We want to show that f = f∗ and
h = h∗.
It follows from (3.3), that if equality (3.4) holds, then for almost s > 0,

∫ ∞

0

(∫

Rn

∫

Rn

(fχBs)
∗(x)g∗(x− y)(hχBt)

∗(y)dydx

)
dt

=
∫ ∞

0

(∫

Rn

∫

Rn

(f∗χBs)(x) g∗(x− y) (h∗χBt)(y)dydx

)
dt (3.7)

We fix an s0 for which (3.4) holds. Then
∫

Rn

∫

Rn

(fχBs0
)∗(x)g∗(x− y)(hχBt)

∗(y)dydx

=
∫

Rn

∫

Rn

(f∗χBs0
)(x) g∗(x− y) (h∗χBt)(y)dydx (3.8)
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for almost all t > 0. Therefore, by Lemma 3.1.1, we get:
There exists x0 ∈ Rn such that (fχBs0

) and (hχBt) are symmetrically
decreasing with respect to x0. We claim that x0 = 0, unless f ≡ 0 or h ≡ 0.
Suppose x0 6= 0. Let t > 0 such that (3.4) holds for this t and (1

t )
1
a < |x0|.

Then (hχBt) is symmetric decreasing with respect to x0 and (hχBt) is zero
near x0 ⇒ hχBt ≡ 0 ⇒ h ≡ 0 in Bt . Now varying t, we get h ≡ 0 in the
ball B(0, |x0|) := {x : |x| < |x0| }. Again, since (hχBt) is symmetrically
decreasing with respect to x0 for almost t > 0 and h ≡ 0 in the ball center
at zero and radius |x0|, we get h ≡ 0 in Rn.
This proves that x0 = 0, i.e. (hχBt) and (fχBs0

) are radially decreasing
functions for a.e. t ∈ (0,∞) ⇒ h is radially decreasing in Rn and f is radially
decreasing in Bs0 . Varying s0, we get f = f∗ and h = h∗. This proves
lemma.

We have seen that (3.1) inequality can be written as

(∫

Rn

|u|pσ

|y|σpσ

) 2
pσ ≤ C

∫

Rn

|∇u|2 (3.9)

where x = (y, z) ∈ Rk × Rn−k, k ≥ 2, n ≥ 3, 0 ≤ σ ≤ 1 and pσ = 2n
n−2+2σ .

Now, we will remember the important results obtained by Mancini and
Sandeep in [40]. We can define

S = S(σ) = sup
u∈D1,2(Rn)
R |∇u|2=1

(∫

Rn

|u|pσ

|y|σpσ

) 2
pσ

(3.10)

and notice that S is achieved by u ∈ D1,2(Rn) which satisfies
∫

Rn

|u|pσ−2uϕ

|y|σpσ
= S

pσ
2

∫

Rn

∇u∇ϕ ϕ ∈ D1,2(Rn). (3.11)

Let G = 1
(n−2)ωn|x|n−2 denote the fundamental solutions of −∆ in Rn. We

have

Theorem 3.1.3. Let σ ∈ [0, 1), p = 2n
n−2+2σ , 1

q + 1
p = 1. Let x = (y, z), x′ =

(y′, z′) be two different points in Rn = Rk × Rn−k. Then

sup
h∈Lq ,||h||q=1

∫

Rn

∫

Rn

h(x)
|y|σ G(x− x′)

h(x′)
|y′|σ dx′ dx = S. (3.12)

Furthermore, u is an extremal for (3.10) if and only if f := |u|p−2u
|y|σpσ is an

extremal for (3.12).
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Proof. By (3.1), we derive a doubly weighted Hardy-Littlewood-Sobolev
inequality:

∫

Rn

∫

Rn

h(x)
|y|σ G(x− x′)

f(x′)
|y′|σ dx′ dx ≤ S||h||q ||f ||q ∀h, f ∈ Lq. (3.13)

By density argument, it is enough to prove (3.13) for positive C∞
0 functions.

For f ∈ C∞
0 , let fσ(x) := f(x)

|y|σ . Then fσ ∈ L
2n

n+2 and hence, by the classical
Hardy-Littlewood-Sobolev inequality, G ∗ fσ ∈ D1,2(Rn) and

∫
∇φ∇(G ∗ fσ) =

∫
φfσ ∀φ ∈ D1,2(Rn). (3.14)

Thus, by the Hölder inequality, we get

∫
(G ∗ fσ)hσ ≤ ||h||q

(∫
(G ∗ fσ)p

|y|σp

)1/p

≤ ||h||q
(

S

∫
|∇(G ∗ fσ)|2

)1/2

.

(3.15)
Analogously, we obtain from (3.14)

∫
|∇(G ∗ fσ)|2 =

∫
fσ(G ∗ fσ)

≤ ||f ||q
(∫

(G ∗ fσ)p

|y|σp

) 1
p

≤ ||f ||q S
1
2 ||∇(G ∗ fσ)||2

and hence
||∇(G ∗ fσ)||2 ≤ S

1
2 ||f ||q. (3.16)

This, jointly with (3.15) gives (3.13) for h, f ∈ C∞
0 (Rn). A density argument

using Fatou’s lemma gives the result. Moreover, we note that (3.13) holds
true also if we replace q with 2n

n+2 and hσ with any h ∈ L
2n

n+2 . Hence G∗fσ ∈
L

2n
n+2 for any f ∈ Lq, and in fact, applying (3.14) to fj → f in Lq, we see

that G ∗ fσ ∈ D1,2(Rn) and (3.15) holds for all f ∈ Lq. Now, if we set

Ŝ = Ŝ(σ) := sup
||f ||q=1

∫

Rn×Rn

f(x)
|y|σ G(x− x′)

f(x′)
|y′|σ dx dx′ ≤ S (3.17)

We want to prove the reverse inequality. Since σ < 1, (3.9) posses an
extremal function u. Since |u| is extremal as well, and hence solves (3.11), it
turns out to be positive away from {y = 0} by the maximum principle, i.e.
u does not change sign , and we can assume u ≥ 0. After normalization, we
have

∫

Rn

|u|p
|y|σp

= 1,

∫

Rn

|u|p−1ϕ

|y|σp
= S

∫

Rn

∇u∇ϕ ϕ ∈ D1,2(Rn). (3.18)
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If f := up−1

|y|σ(p−1) , then
∫
Rn f q =

∫
Rn

up

|y|σp = 1. In particular, as noted above,
we have that G ∗ fσ ∈ D1,2(Rn), and hence, using (3.18),

S

∫

Rn

u fσ = S

∫

Rn

∇(G ∗ fσ)∇u =
∫

Rn

|u|p−1

|y|σp
G ∗ fσ.

But fσ = |u|p−1

|y|σp and hence S =
∫
Rn fσG ∗ fσ ≤ Ŝ because

∫
Rn f q = 1. This

proves that S = Ŝ and that f = up−1

|y|σ(p−1) is an extremal function for (3.12).
Finally, let f be an extremal function for the weighted Hardy-Littlewood-
Sobolev quotient (3.12). Clearly, f cannot change sign, so we can assume
f ≥ 0. We have:

||f ||q = 1 and

∫

Rn×Rn

f(x)
|y|σ G(x−x′)

g(x′)
|y′|σ dx dx′ = S

∫

Rn

f q−1 g ∀g ∈ Lq.

Let u := f q−1 |y|σ so that up−1

|y|σ(p−1) = f ∈ Lq. The Euler-Lagrange equation
for f rewrites

∫

Rn

g(x)
|y|σ G(x− x′)

up−1

|y′|σp
= S

∫

Rn

u

|y|σ g ∀g ∈ Lq.

In particular, we find that Su = G ∗ fσ and hence, as remarked above,
u ∈ D1,2(Rn) and −S∆u = fσ = up−1

|y|σp . Thus S
∫
Rn |∇u|2 =

∫
Rn

up

|y|σp =∫
Rn f q = 1 i.e. u is an extremal function for (HS).

3.2 Cylindrical symmetry of extremals

In this section, we will show the following result, proved by G.Mancini and
K.Sandeep which evidences symmetry properties of the extremals of (3.1)
inequality.

Theorem 3.2.1. Extremals of the Sobolev inequality (3.1) are
cylindrically symmetric, i.e., if the supremum in (3.1) is attained at
u ∈ D1,2(Rn), then

i) u(·, z) is radially symmetric decreasing function in Rk for all z ∈ Rn−k.

ii) There exists z0 ∈ Rn−k such that u(y, · + z0) is radially symmetric
decreasing function in Rn−k for all y ∈ Rk, y 6= 0.

Proof. In view of the last theorem, it is enough to prove that the extremals
of (3.13) have the required symmetry properties.Let f ∈ Lq(Rn) such that

∫

Rn

f q = 1 and

∫

Rn

∫

Rn

f(x)
|y|σ G(x− x′)

f(x′)
|y′|σ dx′ dx = S.



3. Symmetry properties and identification of the extremals of a weighted Sobolev inequality 62

Let f∗′ denote the obtained by taking the k-dim rearrangement of f(·, z) for
all z ∈ Rn−k i.e. f∗′(·, z) = f(·, z)∗, where ∗ denotes the rearrangement of
functions in Rk. Then, from the properties of symmetrization, Lemma 3.1.2
and the fact that f is an extremal for (3.13), we get

∫
Rn(f∗′)q = 1 and

S =
∫

Rn

∫

Rn

f(x)
|y|σ G(x− x′)

f(x′)
|y′|σ dx′ dx

=
∫

Rn−k

∫

Rn−k

(
∫

Rk

∫

Rk

f∗′(y, z)
|y|σ G(y − y′, z − z′)

f∗′(y′, z′)
|y′|σ )

=
∫

Rn

∫

Rn

f∗′(x)
|y|σ G(x− x′)

f∗′(x′)
|y′|σ dx′ dx

≤ S.

Hence we get equality in all the steps and therefore from Lemma 3.1.2, we
obtain u(·, z) is symmetrically decreasing for almost all z ∈ Rn−k. Now let
us prove the symmetry in the z variable. Let v be the function obtained
by taking the (n − k) dim symmetrization of f(y, ·) for a.e. y ∈ Rk i.e.
v(y, ·) = (f(y, ·))∗, where ∗ denotes the rearrangement in Rn−k. Then, from
Lemma 3.1.1, we have

∫
Rn vq = 1 and

S =
∫

Rk

∫

Rk

1
|y|σ

1
|y′|σ (

∫

Rn−k

∫

Rn−k

f(y, z)G(y − y′, z − z′)f(y′, z′))

≤
∫

Rk

∫

Rk

1
|y|σ

1
|y′|σ (

∫

Rn−k

∫

Rn−k

v(y, z)G(y − y′, z − z′)v(y′, z′))

=
∫

Rn

∫

Rn

v(x)
|y|σ G(x− x′)

v(x′)
|y′|σ ≤ S

Then, we have equality in the second step, i.e., for a.e. y ∈ Rk

∫

Rk

1
|y′|σ (

∫

Rn−k

∫

Rn−k

f(y, z)G(y − y′, z − z′)f(y′, z′)) dy′

=
∫

Rk

1
|y′|σ (

∫

Rn−k

∫

Rn−k

v(y, z)G(y − y′, z − z′)v(y′, z′)) dy′.

Fix a y0 ∈ Rk. Then, from the above equality, we have
∫

Rn−k

∫

Rn−k

f(y0, z)G(y0 − y′, z − z′)f(y′, z′)dz dz′

=
∫

Rn−k

∫

Rn−k

v(y0, z)G(y0 − y′, z − z′)v(y′, z′)dz dz′

holds for a.e. y′ ∈ Rk. Since G(y, ·) is strictly symmetric decreasing in
Rn−k, we get from Lemma 3.1.1, that f(y0, ·) and f(y′, ·) are symmetrically
decreasing with respect to a common point in Rn−k for almost all y′ ∈ Rk,
i.e. there exists z0 ∈ Rn−k such that z → f(y, z + z0) is symmetrically
decreasing in Rn−k. This completes the proof of theorem.
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3.3 Symmetry Properties of solutions

In this section we establish, using the moving planes method (see [26],[27]),
the symmetry properties of solutions of the Euler equation associated to
(3.1). The principal result in this section, is the following theorem.

Theorem 3.3.1. If u is a solution of (3.2), then u is cylindrically symmetric,
i.e.:

(i) for any choice of z ∈ Rn−k, u(·, z) is symmetric decreasing in Rk .

(ii) there exists z0 ∈ Rn−k such that, for any choice of y ∈ Rk, y 6= 0,
u(y, ·) is symmetric decreasing about z0 in Rn−k.

Proof. Let us denote a point x ∈ Rn as x = (y, z) = (y1, ...yk, z1...zn−k).
First we will show that u is symmetric decreasing in the y variable.
For λ > 0 define

Ωλ = {(y, z) : y1 > λ} (3.19)

and for x ∈ Ωλ denote by xλ its reflection with respect to the hyper plane
y1 = λ. i.e, xλ = (2λ− y1, y2...yk, z) = (yλ, z). Now let us define

uλ(x) := u(xλ) , x ∈ Ωλ , wλ := uλ − u (3.20)

Notice that wλ is smooth away from the subspace {(2λ, 0...0, z) : z ∈
Rn−k}, wλ = 0 on ∂Ωλ, wλ ∈ D1,2(Ωλ). We first claim that wλ ≥ 0 in Ωλ

for λ large enough. First, since λ > 0 ⇒ |yλ| < |y| in Ωλ , wλ satisfies

−∆wλ ≥ A(x)
wλ

|y|t (3.21)

where 0 ≤ A(x) :=
u

2∗(t)−1
λ − u2∗(t)−1

uλ − u
≤

≤ (2∗(t)− 1) [max{uλ(x), u(x)}]2∗(t)−2 , 2∗(t)− 2 = 2
2− t

n− 2
(3.22)

Multiplying (3.21) by w−λ and integrating by parts over Ωλ, we get

∫

Ωλ

|∇w−λ |2 ≤
∫

Ωλ

A(x)
(w−λ )2

|y|t ≤




∫

Ωλ∩{wλ<0}

(A(x))
n

2−t




2−t
n




∫

Ωλ

(w−λ )2∗(s)

|y|s




2
2∗(s)

where we have set s := nt
n−2+t ∈ (0, 2), so that 2∗(s)

2 = 2n
n−2+t is the exponent

conjugate to n
2−t . An application of (3.1) leads to

S




∫

Ωλ

(w−λ )2∗(s)

|y|s




2
2∗(s)

≤




∫

Ωλ∩{wλ<0}

(A(x))
n

2−t




2−t
n




∫

Ωλ

(w−λ )2∗(s)

|y|s




2
2∗(s)

(3.23)
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Since uλ < u on {wλ < 0}, (3.22) gives
∫

Ωλ∩{wλ<0}

(A(x))
n

2−t ≤ C

∫

Ωλ

u
2n

n−2 (3.24)

and the right hand side goes to zero as λ goes to infinity. Hence it follows
from (3.23) that for λ large enough w−λ = 0 and hence uλ ≥ u. Now, let

A = {λ > 0 : uλ′ ≥ u in Ωλ′ for all λ′ > λ}, λ0 := inf A

We will show that λ0 = 0.
Assume that λ0 > 0. Define wλ0 = uλ0 − u. Then wλ0 ≥ 0 and satisfies
−∆wλ0 ≥ 0 in Ωλ0 and away from the (n-k) dimensional subspace y =
(2λ0, 0...0). Hence in this region wλ0 > 0. Let ε > 0. Choose R > 0 and
δ0 > 0 such that ∫

|x|≥R

u
2n

n−2 <
ε

2
(3.25)

∫

λ0−δ0<y1<λ0+δ0

u
2n

n−2 +
∫

2λ0−δ0<y1<2λ0+δ0

u
2n

n−2 <
ε

2
. (3.26)

Let us consider the set

K = {x = (y, z) : λ0+δ0 ≤ y1 ≤ 2λ0−δ0 or y1 ≥ 2λ0+δ0}∩{x = (y, z) : |x| ≤ R}.

Then K is compact and wλ0 > 0 in K. Choose 0 < δ1 < δ0 such that
uλ0−δ − u > 0 in K for all 0 < δ < δ1. Let λ1 = λ0 − δ with 0 < δ < δ1.
We claim that when ε is small enough uλ1 ≥ u in Ωλ1 , which contradicts the
definition of λ0 and hence λ0 = 0. Now to see this, we define wλ1 = uλ1 − u
and we proceed as in the case of (3.23), to get

S




∫

Ωλ1

(w−λ1
)2∗(s)

|y|s




2
2∗(s)

≤

≤




∫

Ωλ1
∩{wλ1

<0}

(A(x))
n

2−t




2−t
n




∫

Ωλ1

(w−λ1
)2∗(s)

|y|s




2
2∗(s)

(3.27)

By the choice of λ1, wλ1 > 0 in K . This together with (3.25) and (3.26)
gives ∫

Ωλ1
∩{wλ1

<0}

(A(x))
n

2−t ≤ C

∫

Ωλ1
∩{wλ1

<0}

u
2n

n−2 < ε. (3.28)
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(3.27) and (3.28) together implies that for ε small enough w−λ1
= 0 and this

completes the proof. Hence λ0 = 0 and consequently

u(−y1, ...yk, z) ≥ u(y1, ...yk, z)

for all y1 > 0. Doing the same arguments for v(y, z) = u(−y1, y2..., yk, z)
leads to u(−y1, ...yk, z) ≤ u(y1, ...yk, z) for y1 > 0 and hence

u(−y1, ...yk, z) = u(y1, ...yk, z) in Rn.

Now the symmetry in the y variable follows as one can do the moving plane
argument in any direction in the y plane instead of the y1 direction.

Next we will prove the symmetry in the z direction. Let Ωλ, xλ and uλ

be as defined in (3.19),(3.20) with z1 in place of y1 and this time for all
λ ∈ R. Now exactly as in the previous case one gets the existence of a λ1 > 0
such that uλ ≥ u in Ωλ for all λ ≥ λ1. The same arguments applied to
v(y, z1, ...zn−k) = u(y,−z1, ...zn−k) yields the existence of λ2 < 0 such that
uλ ≤ u in Ωλ for all λ ≤ λ2.. Now let A = {λ ∈ R : uλ′ ≥ u in Ωλ′ for all λ′ >
λ}. Then A is nonempty and bounded below, let λ0 = inf A. We claim that
uλ0 = u in Ωλ0 .
Let wλ0 = uλ0 −u, then wλ0 is smooth in Ωλ0 except on the subspace y = 0,
wλ0 ≥ 0 and satisfies

−∆wλ0 =
1
|y|t

(
u

n+2−2t
n−2

λ0
− u

n+2−2t
n−2

)
= A(x)

wλ0

|y|t (3.29)

where A satisfies the estimate (3.22). Since Ωλ0 \ {(0, y) : y ∈ Rn−k} is
connected, by strong maximum principle either wλ0 ≡ 0 or wλ0 > 0. If the
second case happens we can argue as in the previous case (where we showed
λ0 > 0 ⇒ λ0 is not the infimum), to get a contradiction. Hence wλ0 = 0
and therefore u is symmetric decreasing in the z1 direction with respect to
z0
1 = λ0. Similarly once can show that u is symmetric decreasing in the zi

direction with respect to some z0
i for i = 1, ..., n− k. Now it is easy to show

that u(y, .) is symmetric decreasing with respect to z0 = (z0
1 , ..., z

0
n−k) for all

y 6= 0. This completes the proof of Theorem 3.3.1.

3.4 A priori Estimates and regularity of solutions

We want to know the properties of regularity and boundedness of solutions
for (3.2). Define the Móbius inversion I : Rn \ {0} → Rn by

I(w) =
w

|w|2
and the following Kelvin transform, u∗ : Rn \ {0} → R by

u∗ = |x|2−nu(I(x)) = |x|2−nu(
x

|x|2 )

Then, the following result holds.
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Remark 3.4.1. If u satisfies the equation (3.2), then also u∗(x) verifies
(3.2).
In fact,

−∆u∗(x) = −|x|−n−2∆u(
x

|x|2 ) = |x|−n−2u(
x

|x|2 )
n+2−2t

n−2
|x|2t

|y|t

= |x|−n−2+2tu(
x

|x|2 )
n+2−2t

n−2
1
|y|t =

[u( x
|x|2 )|x|2−n]

n+2−2t
n−2

|y|t =
[u∗(x)]

n+2−2t
n−2

|y|t

First we prove a lemma which is the key in obtaining estimates on u and
its z derivatives.

Lemma 3.4.1. Let u ∈ H1
loc(Rn) satisfies

−∆u =
f(x)u
|y|t +

g(x)
|y|t (3.30)

where t ∈ (0, 2), f and g are in Lp
loc(R

n) for some p > n
2−t . Then u is

locally bounded in Rn.

Proof. We prove the result using the well known Moser iteration scheme (see
[30]). To start with let us define the test function to be used.
Fix R > 0 and let R < ri+1 < ri < 2R, and η be a smooth cut off
function satisfying 0 ≤ η ≤ 1, η = 1 in B(0, ri+1), η = 0 outside B(0, ri)
and |∇η| ≤ C(ri − ri+1)−1 for some constant C independent of ri+1 and ri.
Let k = ||g||Lp(B(0,2R)). For m > 0 define u = u+ + k and

um =
{

u if u < m
k + m if u ≥ m

(3.31)

Now for β ≥ 0 define the test function v = vβ as

v = η2(u2β
m u− k2β+1).

Then 0 ≤ v ∈ H1
0 (B(0, ri)) and hence from (3.30)

∫

Rn

∇u.∇v =
∫

Rn

f(x)uv

|y|t +
∫

Rn

g(x)v
|y|t (3.32)

Now by direct calculation
∫
Rn

∇u.∇v =
∫
Rn

η2u2β
m∇u.∇u + 2β

∫
Rn

η2u2β−1
m u∇um.∇u

+2
∫
Rn

η(u2β
m u− k2β+1)∇u.∇η

(3.33)
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Observe that in the support of the integrand of the first integral, ∇u = ∇u
and in the second integral um = u, ∇um = ∇u. Also u2β

m u− k2β+1 ≤ u2β
m u.

These facts together with Cauchy Schwartz give
∫

Rn

∇u.∇v ≥ 2β

∫

Rn

η2u2β−1
m u∇um.∇u +

∫

Rn

η2u2β
m∇u.∇u− 2

∫

Rn

η(u2β
m u− k2β+1)|∇u||∇η|

≥ 2β

∫

Rn

η2u2β−1
m u∇um.∇u +

∫

Rn

η2u2β
m∇u.∇u− 2

∫

Rn

η u2β
m u |∇u||∇η|

= 2β

∫

Rn

η2u2β−1
m u∇um.∇u +

∫

Rn

η2u2β
m∇u.∇u− 2

∫

Rn

u2β
m (

1√
2

η |∇u|)(
√

2u |∇η|)

≥ 2β

∫

Rn

η2u2β−1
m u∇um.∇u +

∫

Rn

η2u2β
m∇u.∇u−

∫

Rn

u2β
m (

1
2
η2 |∇u|2 + 2u2 |∇η|2)

= 2β

∫

Rn

η2u2β−1
m u∇um.∇u +

1
2

∫

Rn

η2u2β
m∇u.∇u− 2

∫

Rn

u2β
m u2 |∇η|2

1
2

∫

Rn

η2(u2β
m |∇u |2 + 4βu2β−2

m u2|∇um|2)− 2
∫

Rn

u2β
m u2 |∇η|2

(3.34)

Setting w = uβ
mu, we have

∫

Rn

|∇w|2η ≤
∫

Rn

|∇w|2 ≤ (1 + 2β)
∫

Rn

4β|um|2β |∇um|2 + |um|2β|∇u|2 (3.35)

|∇w|2η2 ≥ 1
2
[|∇(ηw)|2 − 2|w|2|∇η|2] (3.36)

and (3.34) rewrites as
∫

Rn

∇u.∇v ≥ 1
4(1 + 2β)

∫

Rn

|∇(ηw)|2 − C

(ri − ri+1)2

∫

B(0,ri)

w2 (3.37)

The right hand side of (3.32) can be estimated as follows.

| ∫
Rn

(
f(x)uv
|y|t + g(x)v

|y|t
)
| ≤ ∫

Rn

(
|f(x)|+ |g(x)|

k

)
(ηw)2

|y|t

≤ || (ηw)2

|y|t ||Lq ||f + g
k ||Lp(B(0,2R))

(3.38)

where 1
p + 1

q = 1, p > n
2−t and hence q < r := n

n−2+t . Let
1
q = θ + 1−θ

r . The
interpolation inequality gives

||(ηw)2

|y|t ||Lq ≤ ε(1− θ)||(ηw)2

|y|t ||Lr + ε−
1−θ

θ ||(ηw)2

|y|t ||L1 , ∀ε > 0 (3.39)
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The weighted Sobolev inequality (3.1) with s = nt
n−2+t , 2∗(s)

2 = n
n−2+t = r

gives

||(ηw)2

|y|t ||Lr = (
∫ |ηw|2∗(s)

|y|s )
2

2∗(s) ≤ C‖∇(ηw)‖2
L2

and hence, from (3.39), we have

||(ηw)2

|y|t ||Lq ≤ Cε||∇(ηw)||2L2 + Cε−α||(ηw)2

|y|t ||L1 (3.40)

where C and α are constants depending only on n, q and t.
Note that by the choice of k , ||f + g

k ||Lp(B(0,2R)) ≤ C, where C depends only
on R . Hence by choosing ε suitably in (3.40) and from (3.32), (3.37) and
(3.38), we get ∫

Rn

|∇(ηw)|2 ≤ C(1 + β)α

(ri − ri+1)2

∫

B(0,ri)

w2

|y|t (3.41)

where C and α depends only on R, p and n.
Combining with the weighted Sobolev inequality (3.1) leads to




∫

B(0,ri+1)

w2 n−t
n−2

|y|t




n−2
n−t

≤ C(1 + β)α

(ri − ri+1)2

∫

B(0,ri)

w2

|y|t . (3.42)

Substituting w, using um ≤ u and setting γ = 2β + 2 and χ = n−t
n−2 , (3.42)

becomes,



∫

B(0,ri+1)

uγχ
m

|y|t




1
γχ

≤
(

C(1 + β)α

(ri − ri+1)2

) 1
γ




∫

B(0,ri)

uγ

|y|t




1
γ

. (3.43)

Passing to the limit as m →∞ we get



∫

B(0,ri+1)

uγχ

|y|t




1
γχ

≤
(

C(1 + β)α

(ri − ri+1)2

) 1
γ




∫

B(0,ri)

uγ

|y|t




1
γ

(3.44)

provided the right hand side is finite.
We prove our lemma by iterating the above relation. For i = 0, 1, 2, ..., define
γi = 2χi and ri = R + R

2i . Then χγi = γi+1, ri− ri+1 = R
2i+1 and hence from

(3.44), with γ = γi, we have




∫

B(0,ri+1)

uγi+1

|y|t




1
γi+1

≤ C
i

χi




∫

B(0,ri)

uγi

|y|t




1
γi

, i = 0, 1, 2.... (3.45)
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where C is a constant depending only on R and hence by iteration,




∫

B(0,ri+1)

uγi+1

|y|t




1
γi+1

≤ C
Σ j

χj




∫

B(0,r0)

uγ0

|y|t




1
γ0

, i = 0, 1, 2, .... (3.46)

Taking the limit as i →∞, we get

sup
B(0,R)

u ≤ C




∫

B(0,2R)

u2

|y|t




1
2

(3.47)

Hence u+ is bounded in B(0, R). Applying the same argument to −u instead
of u we get the boundedness of u− and hence u is locally bounded. This
proves the lemma.

Lemma 3.4.2. Let u be a solution of (3.2). Then

∃c2 > c1 > 0 :
c1

1 + |x|n−2
≤ u(x) ≤ c2

1 + |x|n−2
, ∀x ∈ Rn.

Proof. To show that u is locally bounded it is enough to show, in view of
Lemma 3.4.1, that f(x) = u2∗−2 ∈ Lp

loc(R
n) for some p > n

2−t , that is

u2 2−t
n−2 ∈ Lp

loc(R
n) for some p > n

2−t , that is u ∈ Lp
loc(R

n) for some p > 2n
n−2 .

To prove this additional integrability of u let us multiply the equation (3.2)
by v the test function used in the proof of Lemma 3.4.1, with k = 0 and
β = 2−t

n−2 . Then from (3.37) we get

∫

Rn

|∇(ηw)|2 ≤ C(1 + β)
(ri − ri+1)2

∫

B(0,ri)

w2 + 2(1 + 2β)
∫

Rn

u
2(2−t)
n−2

(ηw)2

|y|t (3.48)

Now choose M > 0 such that

(
∫

u≥M

u
2n

n−2

) 2−t
n

< S
8(1+2β) , where S is the

constant appearing in (3.1) with , instead of t, s := nt
n−2+t . Then, from

Cauchy Schwartz and weighted Sobolev inequality (3.1)

∫

Rn

u
2(2−t)
n−2

(ηw)2

|y|t ≤ M
2(2−t)
n−2

∫

Rn

(ηw)2

|y|t +




∫

u≥M

u
2n

n−2




2−t
n 


∫

Rn

(
(ηw)2

|y|t
) n

n−2+t




n−2+t
n

≤ M
2(2−t)
n−2

∫

Rn

(ηw)2

|y|t +
1

8(1 + 2β)

∫

Rn

|∇(ηw)|2 (3.49)
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Substituting (3.49) in (3.48) and using w ≤ u
n−t
n−2 we get

∫

Rn

|∇(ηw)|2 ≤ C




∫

B(0,ri)

w2 +
∫

B(0,ri)

(ηw)2

|y|t


 ≤

≤ C




∫

B(0,ri)

u2 n−t
n−2 +

∫

B(0,ri)

u2 n−t
n−2

|y|t


 (3.50)

where C is a constant depending on β, ri and ri+1. Now using the Sobolev
inequality and then passing to the limit as m →∞ we get

∫

B(0,R)

u(1+β) 2n
n−2 ≤ C




∫

B(0,ri)

u2 n−t
n−2 +

∫

B(0,ri)

u2 n−t
n−2

|y|t




2n
n−2

(3.51)

and the right hand side is finite thanks to (3.1). This shows the required
integrability and hence u is locally bounded. Also, since u is radially de-
creasing in y and z, we get 0 < c1 ≤ u(x) ≤ c2, ∀ |x| ≤ 1. Finally, the
bounds at infinity follow from the fact that if u is a solution of (3.2), by
Remark 3.4.1, also u∗(x) = |x|2−nu(|x|−2x) solves (3.2).

We already know that any solution of (3.2) is C0,α if t < 2k
n (compare

with Lemma 2.2 in [2]). As a consequence of Lemma 3.4.1 and standard
elliptic regularity, we get a more precise result which extends Badiale and
Serra’ Lemma.

Lemma 3.4.3. Let u be a solution of (3.2). Assume
t < 1 + k

n if n ≥ 4
t < 3

2 if n = 3
Then u is C∞ in the z variable and C0,α, for some α < 1, in the y variable.

Proof. First we show the (local) boundedness of the z derivatives of u. Note
that from (3.2) and standard elliptic estimates u ∈ W 2,p

loc (Rn) for all p < k
t .

Therefore uzi ∈ W 1,p
loc (Rn) for all p < k

t and it satisfies

−∆uzi =
(n + 2− 2t)

(n− 2)
u

2(2−t)
n−2

|y|t uzi (3.52)

In order to prove uzi is locally bounded, it is enough to prove, in view of
Lemma 3.4.1, that uzi ∈ W 1,2

loc (Rn).
This clearly happens if k ≥ 4, or t < 1, since k

t > 2 in all these cases. So,
let k = 2, 3 and t ∈ [1, 2).

Write u
2(2−t)
n−2

|y|t uzi = u
2(2−t)
n−2

|y|t−1

uzi
|y| . From Sobolev (see [3]) uzi ∈ W 1,p

loc (Rn) ⇒
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uzi ∈ Lp
loc(R

n). Now, under the given assumptions, 2t−1
k < 1, and n < k

t−1 .
Hence one can find q ∈ (n, k

t−1) and p1 < k
t , such that 1

r1
:= 1

p1
+ 1

q < 1.

Thus, u
2(2−t)
n−2

|y|t uzi ∈ Lr1
loc(R

n) . By elliptic regularity and Sobolev embedding,

uzi ∈ W 1,p2

loc , p2 := nr1
n−r1

≥ p1γ where γ := nq
nq+(n−q) > 1 by the choice of q.

A bootstrap argument gives eventually uzi ∈ W 1,2
loc (Rn) .

Similar arguments proves the local boundedness of uzi , uzizj , uzizjzk
, .....

To prove holder continuity in the y variable, let us define v(y) = u(y, z)
for y ∈ Rk. Then from the local bounds on u and its z derivatives, we get

∆v ∈ Lp
loc(R

k) locally uniformly in z, for all p < k
t . Hence v ∈ W

1, kp
k−p

loc (Rk)
for all p < k

t . So, for t ≤ 1 v is in fact holder continuous of any exponent by
Morrey’s theorem. More in general, since t < 1 + k

n ⇔ nk
nt−k > k and hence

np
n−p > k for suitable p < k

t , we still obtain v ∈ Cα
loc(Rk) for some α ∈ (0, 1).

This proves the lemma.

3.5 Classification of solutions of a critical weighted operator

In this section we classify all the solutions of

−∆u = u
n

n−2

|y| in Rn

u > 0
u ∈ D1,2(Rn)





(3.53)

where Rn = Rk × Rn−k, k ≥ 2, n ≥ 3 and a point x ∈ Rn is denoted as
x = (y, z) ∈ Rk × Rn−k.
The problem (3.53) is a particular case, (in which t = 1), of the problem
(3.2) studied in the previous section. Note that t = 1 is the unique integer
belonging to the interval (0, 2). We have already proved that all solution of
the Euler equations associated to (3.1) inequality (see [22]) have cylindrical
symmetry. Thanks to these symmetries, (3.53) reduces to an elliptic equation
in the positive cone in R2 which eventually leads to a complete identification
of all the solutions of (3.53). The identification of the solutions to (3.53) is
based on a mysterious identity which goes back to the work of Jerison and
Lee ([31]) on the CR-Yamabe problem. More precisely, it is related to the
identification of the extremals for the Sobolev inequality on the Heisenberg
group ([32]). Actually, we follow closely the approach by Garofalo-Vassilev
([25]) in the search of entire solutions of Yamabe-type equations on more
general groups of Heisenberg type. We also remark that, while symmetry
properties hold true for (3.2), we didn’t succeeded in getting an efficient
Jerison-Lee type identity in the general case, and this is why a classification
of solutions is missing if, in (1), s 6= 1 . Similar difficulties are encountered in
dealing with Grushin type operators−∆x−(α+1)2|x|2α∆y, (x, y) ∈ Rm×Rk

with critical nonlinearity (see [6] for a related sharp Sobolev inequality and
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identification of extremals in case α = 1). As noticed in [41], the Heisenberg
sublaplacian is in fact a Grushin operator with α = 1, m an even integer
and k = 1 (the work of Garofalo-Vassiliev actually deals with more general
values of m and k) and identification of solutions is available only in case
α = 1.

As a consequence we obtain the best constant and extremals of the related
weighted Sobolev inequality:

S

(∫

Rn

|u|2∗(1)

|y|
) 2

2∗(1) ≤
∫

Rn

|∇u|2 ∀u ∈ D1,2(Rn) (3.54)

where 2∗(1) = 2n−1
n−2 , S = Sn,k,1.

Let u be a solution of (3.53). By Theorem 3.3.1, we know that u can be
written, up to a translation in the z variable, as

u(y, z) = θ(|y|, |z|). (3.55)

where θ(r, s) : R+ × R+ → R+. By Lemma 3.4.1 and 3.4.2, we have

|θ(r, s)|+ |θs(r, s)|+ |θss(r, s)| ≤ C for all |(r, s)| ≤ R (3.56)

for some constant depending only on R. Define for r > 0, and s > 0

φ(r, s) =
(

n− 2
2

)2

θ
−2

n−2 (r, s) (3.57)

Then from the equation θ satisfies, we get

∆φ +
k − 1

r
φr +

n− k − 1
s

φs =
n

2
|∇φ|2

φ
+

n− 2
2r

(3.58)

Let us also define

F = 2∇φ.∇φr − |∇φ|2
φ

φr +
n− 2

2(k − 1)
|∇φ|2

φ
− n− 2

(k − 1)
φrr (3.59)

G = 2∇φ.∇φs − |∇φ|2
φ

φs − n− 2
(k − 1)

φrs (3.60)

h(r, s) = rk−1sn−k−1φ−(n−1) (3.61)

and X be the vector field
X = (hF, hG). (3.62)

With these definitions we can state our Jerison-Lee identity as
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Lemma 3.5.1. Let φ and X be as above, then

divX = h

[
(
2|∇2φ|2 − (∆φ)2

)
+

n

n− 2

(
∆φ− |∇φ|2

φ

)2
]

+h

[
2(k − 1)(n− k − 1)

n− 2

(
φs

s
− φr

r
+

n− 2
2(k − 1)r

)2
]

Proof. For convenience we split X as X = Y + n−2
k−1Z , where

Z := h

(
1
2
|∇φ|2

φ
− φrr,−φrs

)
, Y := X − n− 2

k − 1
Z

Then by direct calculation

divY = h

[
(
2|∇2φ|2 − (∆φ)2

)
+

n

n− 2

(
∆φ− |∇φ|2

φ

)2

+ 2∇φ.∇ψ

]

−h

[ |∇φ|2
φ

ψ − 2
n− 2

ψ2 +
k − 1

r
F +

n− k − 1
s

G

]
(3.63)

where ψ = ∆φ− n
2
|∇φ|2

φ . Substituting ψ from (3.58) as ψ = n−2
2r − k−1

r φr −
n−k−1

s φs, (3.63) becomes

divY = h

{
(
2|∇2φ|2 − (∆φ)2

)
+

n

n− 2

(
∆φ− |∇φ|2

φ

)2
}

+

+h

{
2(k − 1)(n− k − 1)

n− 2

(
φr

r
− φs

s

)2
}
−

−h

{
n− 2

2r

|∇φ|2
φ

+ (2k − n)
φr

r2
+ 2(n− k − 1)

φs

rs
− n− 2

2r2

}
(3.64)

Again by direct calculation

n− 2
k − 1

divZ = −n− 2
r2

φr +
(n− 2)2

2(k − 1)r2
+

n− 2
2r

|∇φ|2
φ

(3.65)

Now (3.63) follows by adding (3.63) and (3.65).

To put at work the Jerison-Lee identity, we need more estimates on our
solution written in cylindrical coordinates:

Lemma 3.5.2. Let u be a solution of (3.53) and θ be as in (3.55). Then
there exists a constant C > 0 such that
(i) 1

C ≤
(
1 + (r2 + s2)

n−2
2

)
θ(r, s) ≤ C

(ii)
(
1 + (r2 + s2)

n−1
2

)
|∇θ(r, s)| ≤ C

(iii)
(
1 + (r2 + s2)

n
2

)
|∇2θ(r, s)| ≤ C.
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Proof. Let as above v(y) = u(y, z) for y ∈ Rk. We know that v ∈ Cα
loc(Rk)

for all α ∈ (0, 1). Hence |y|β|∇v(y)| → 0 as |y| → 0 for all β > 0. Hence

|rβθr(r, s)| → 0 for all β > 0 (3.66)

Now from (3.53), θ satisfies the equation

θrr +
k − 1

r
θr = −θ

n
n−2

r
− f(r, s) (3.67)

where f(r, s) is the Laplacian in the z variable, which we know is locally
bounded. Multiplying (3.67) by rk−1 and integrating using (3.66) leads to

θr(r, s) =
−1
rk−1

r∫

0

tk−2θ
n

n−2 (t, s)dt− 1
rk−1

r∫

0

tk−1f(t, s) (3.68)

and the later is bounded. This together with the (3.56) gives

|∇θ(r, s)| ≤ C for all |(r, s)| ≤ R (3.69)

An integration by parts in (3.68) gives

θr = − θ
n

n−2

k − 1
+

C

rk−1

r∫

0

tk−1θ
2

n−2 θr − 1
rk−1

r∫

0

tk−1f(t, s) (3.70)

and hence

k − 1
r

θr +
θ

n
n−2

r
=

C

rk

r∫

0

tk−1θ
2

n−2 θr − 1
rk

r∫

0

tk−1f(t, s) (3.71)

and the later is locally bounded. Plugging back this information in (3.67)
gives the local boundedness of θrr. The local boundedness of θrs follows
similarly by integrating the o.d.e uzi satisfies in the variable r. Thus we
have

||θ(r, s)||C2 ≤ C for all |(r, s)| ≤ R (3.72)

Now to prove the bounds at infinity, let us observe that if u is a solution of
(3.53) then u∗(x) = |x|2−nu(|x|−2x) also solves (3.53). Therefore if we define
σ(r, s) = (r2 + s2)

2−n
2 θ((r2 + s2)−1(r, s)) then σ is locally bounded in C2.

This immediately proves (i) of Lemma 3.5.2 once we note that σ and θ are
bounded below by positive constants locally as they are decreasing in both
variables. Also by direct computation

|∇θ(r, s)| ≤ (r2 + s2)
−n
2 |∇σ((r2 + s2)−1(r, s))|+ (n− 2)(r2 + s2)

−1
2 θ(r, s)

(3.73)
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This together with (i) of Lemma 3.5.2 proves (ii). Again by direct calculation

|∇2θ(r, s)| ≤ (r2 + s2)
−(n+2)

2 |∇2σ((r2 + s2)−1(r, s))|+

+C(r2 + s2)
−1
2 |∇θ(r, s)|+ C(r2 + s2)−1θ(r, s) (3.74)

This together with (i) and (ii) proves (iii) and hence the lemma.

Theorem 3.5.3. Let u0 be the function given by

u0(x) = u0(y, z) = cn,k

(
(1 + |y|)2 + |z|2)−

n−2
2

where cn,k = {(n− 2)(k− 1)}n−2
2 . Then u is a solution of (3.53) if and only

if u(y, z) = λ
n−2

2 u0(λy, λ(z + z0)) for some λ > 0 and z0 ∈ Rn−k.

Proof. Let 0 < ε < R and define

Ωε,R =
{
(r, s) : s > 0, r > ε, r2 + s2 < R2

}

Integration by parts gives
∫

Ωε,R

divX =
∫

∂Ωε,R

X.νdH1

where ν is the outward normal to ∂Ωε,R and dH1 is the surface measure on
the boundary. Now the boundary integral can be split as

∫

∂Ωε,R

X.νdH1 = −
∫

Γ1

hGdH1 −
∫

Γ2

hFdH1 +
∫

Γ3

X.
1
R

(r, s)dH1

where Γ1 = ∂Ωε,R ∩ {s = 0}, Γ2 = ∂Ωε,R ∩ {r = ε} and Γ3 = ∂Ωε,R ∩ {r2 +
s2 = R2}. Now note that since our original solution u is smooth away from
{|y| = 0}, θs, θrs and hence φs and φrs vanishes on Γ1. Consequently G = 0
on Γ1. Hence
∫

Ωε,R

divX = −εk−1

∫

Γ2

sn−k−1 F (ε, s)
φn−1

+
1
R

∫

Γ3

{
rksn−k−1 F (r, s)

φn−1
+ rk−1sn−k G(r, s)

φn−1

}
dH1

It follows from Lemma 3.4.2 that φ is locally bounded in C2 and for
r2 + s2 > 1, 1

C (r2 + s2) ≤ φ(r, s) ≤ C(r2 + s2), |∇φ(r, s)| ≤ C(r2 + s2)
1
2

and |∇2φ(r, s)| ≤ C, for some positive constant C. Hence F and G are
locally bounded and |F (r, s)| ≤ C(r2 + s2)

1
2 and |G(r, s)| ≤ C(r2 + s2)

1
2 for

r2 + s2 > 1, and for some positive constant C. Using this estimates we get

|
∫

Ωε,R

divX| ≤ C
(
εk−1 + R−(n−2)

)
.
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where C is independent of both R and ε. Now passing to the limit as R →∞
and then ε → 0 we get

∫
R+×R+

divX = 0. Note from the right hand side of

(3.63) that divX ≥ 0, and hence divX = 0 in R+×R+ and thus from (3.63),
we obtain

2|∇2φ|2 − (∆φ)2 = 0 (3.75)

and

∆φ− |∇φ|2
φ

= 0 (3.76)

It follows from (3.75) that

φrr = φss and φrs = 0

This immediately tells us that all third order derivatives of φ vanishes and
hence φ can be written as

φ(r, s) = a0 + a1r + a2s + a3rs + a4r
2 + a5s

2

Recall that φs(r, 0) = 0 and this gives,

a2 = a3 = 0 (3.77)

Since φrr = φss, a4 = a5. Also from (3.76) and the fact that φ is not a
constant, we can write

a4 = a5 = m, m > 0. (3.78)

Now from (3.63) and (3.76), φ satisfies

n− 2
2

∆φ +
n− 2

2r
= (k − 1)

φr

r
+ (n− k − 1)

φs

s
(3.79)

and this gives

a1 =
n− 2

2(k − 1)
(3.80)

Finally from (3.76),

a0 =
( a1

2m

)2
(3.81)

Now (3.77), (3.78), (3.80) and (3.81) together gives

φ(r, s) = m

{(
r +

n− 2
4(k − 1)m

)2

+ s2

}
(3.82)

Writing m = n−2
4(k−1)λ, λ > 0, we get

φ(r, s) =
n− 2

4(k − 1)
λ

{(
r +

1
λ

)2

+ s2

}
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and thus
u(y, z) = λ

n−2
2 u0(λy, λz),

where u0 is as in Theorem 5.1.1. Conversely by direct calculation one can
see that the function u(y, z) = λ

n−2
2 u0(λy, λ(z + z0)), indeed solve (3.53) for

any λ > 0 and z0 ∈ Rn−k. This completes the proof of Theorem 3.5.3.

Theorem 3.5.4. The best constant S in the weighted Sobolev inequality
(3.54) is given by

S = (n− 2)(k − 1)

{
2(π)

n
2

(k − 2)!
(n + k − 3)!

Γ(n+k−2
2 )

Γ(k/2)

} 1
n−1

.

Proof. Let u0 be as in Theorem 3.5.3. We note that

∫

Rn

|∇u0|2 dx =
∫

Rn

u
2(n−1)

n−2

0

|y| dx.

Then

S =

∫
Rn

|∇u0|2 dx

(∫
Rn

u2∗
0
|y| dx

)2/2∗
=

∫
Rn

u2∗
0
|y| dx

(∫
Rn

u2∗
0
|y| dx

)2/2∗
=

( ∫

Rn

u2∗
0

|y| dx

)1−2/2∗
=

(∫

Rn

u2∗
0

|y| dx

)1−n−2
n−1

.

Therefore

Sn−1 =
∫

Rn

|∇u0|2 dx =
∫

Rn

u
2(n−1)

n−2

0

|y| dx =
∫

Rn

[cn,k(1+|y|)2+|z|2)−(n−2)/2]
2(n−1)

n−2
1
|y| dx

= c
2(n−1)

n−2

n,k

∫

Rn

((1+|y|)2+|z|2))−(n−1) 1
|y| dx = {(n−2)(k−1)}n−1

∫

Rn

1
((1 + |y|)2 + |z|2)n−1

1
|y| dx

= {(n− 2)(k − 1)}n−1 ωk−1ωn−k−1

∞∫

0

∞∫

0

rk−2sn−k−1

((1 + r)2 + s2)n−1 dr ds

where ωk−1 and ωn−k−1 are the surface measure of the k − 1 and n− k − 1
dimensional sphere in Rk and Rn−k respectively. Now

∞∫
0

∞∫
0

rk−2sn−k−1

((1+r)2+s2)n−1 dr ds =
∞∫
0

rk−2dr
(1+r)n+k−2

∞∫
0

sn−k−1ds
(1+s2)n−1
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Now consider, for j ∈ N, a ∈ R+, a > j
2 the integral

∞∫

0

ρj−1ds

(1 + ρ2)a
=

1
2
B(

j

2
, a− j

2
)

where B(x, y) is the Beta function. Recalling that B(x, y) = Γ(x)Γ(y)
Γ(x+y) , where

Γ indicates the Euler’s Gamma function, we conclude that

∞∫

0

ρj−1ds

(1 + ρ2)a
=

1
2

Γ( j
2)Γ(a− j

2)
Γ(a)

(3.83)

Moreover, if p is an integer, Γ(p) = (p− 1)!

∞∫

0

sn−k−1ds

(1 + s2)n−1
=

1
2

Γ(n−k
2 ) Γ(n− 1− n−k

2 )
Γ(n− 1)

=
1
2

Γ(n−k
2 ) Γ(n+k−2

2 )
(n− 2)!

(3.84)

Analogously,

∞∫

0

rk−2dr

(1 + r)n+k−2
= 2

∞∫

0

t2k−3 dt

(1 + t2)n+k−2
=

Γ(k − 1)Γ(n + k − 2− k + 1)
Γ(n + k − 2)

=
(k − 2)!(n− 2)!

(n + k − 3)!

(3.85)
Recalling the formula ωn−1 = 2πn/2

Γ(n
2
) , we get

Sn−1 = {(n− 2)(k − 1)}n−1 ωk−1ωn−k−1

∞∫

0

∞∫

0

rk−2sn−k−1

((1 + r)2 + s2)n−1 dr ds

= {(n− 2)(k− 1)}n−1 2πk/2

Γ(k/2)
2π(n−k)/2

Γ(n−k
2 )

1
2

Γ(n−k
2 ) Γ(n+k−2

2 )
(n− 2)!

(k − 2)!(n− 2)!
(n + k − 3)!

= {(n− 2)(k − 1)}n−1 2πn/2 Γ(n+k−2
2 )

Γ(k/2)
(k − 2)!

(n + k − 3)!

3.6 Properties of solutions

Remark 3.6.1. We note that the function U = ((1 + |y|)2 + |z|2)1−n/2

satisfies U = (U)∗.
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In fact, for any λ > 0, we get:

U(
λx

|λx|2 ) = U(
λy

|λx|2 ,
λz

|λx|2 ) = U(
y

λ|x|2 ,
z

λ|x|2 ) =
(

1
(1 + r

λ(r2+s2)
)2 + ( s

λ(r2+s2)
)2

)(n−2)/2

=
1

((λ(r2+s2)+r
λ(r2+s2)

)2 + ( s
λ(r2+s2)

)2)(n−2)/2

=
1

1
[λ(r2+s2)]n−2 ((λ(r2 + s2) + r)2 + s2)(n−2)/2

=
[λ(r2 + s2)]n−2

((λ(r2 + s2) + r)2 + s2)(n−2)/2

=
[λ(r2 + s2)]n−2

(λ2(r2 + s2)2 + r2 + 2λr(r2 + s2) + s2)(n−2)/2

=
[λ(r2 + s2)]n−2

((r2 + s2)(λ(r2 + s2) + 2λr + 1))(n−2)/2

=
λn−2(r2 + s2)(n−2)/2

((1 + λr)2 + (λs)2)(n−2)/2

= λn−2|x|n−2U(λx)

Thus, the function w(y, z) = λ
n−2

2 U(λy, λz) = λ
n−2

2 (U)∗(λx)
= λ

n−2
2 |λx|2−nU(λx|λx|−2) = λ

2−n
2 |x|2−n U(λx|λx|−2).

Remark 3.6.2. If we define

V (y, z) = |y|2−n U(
y

|y|2 ,
z

|y|), (3.86)

then V = U.

In fact,

U(
y

|y|2 ,
z

|y|) =
1

((1 + | y
y2 |)2 + (| zy |)2)

n−2
2

=
1

(( |y|+1
|y| )2 + |z|2

|y|2 )
n−2

2

=
|y|n−2

((1 + |y|)2 + |z|2)n−2
2

= |y|n−2 U(y, z) .

We want to compute ∆y,zV (y, z).
Let x = (y, z) be a point in Rn, x′ = ( y

|y|2 , z
|y|) = (y′, z′).

Note that |y ′| = 1
|y| , y = y ′

|y ′|2 , |z ′| = |z|
|y| = |z| |y ′|, z = z′

|y ′| . Then

i) ∇yV = (2−n)y
|y|n U + 1

|y|n ∇y′U − 2 y
|y|n+2 ∇y′U · y − y

|y|n+1 ∇z′U · z.
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ii) ∇zV = |y|2−n∇z′ U
1
|y| = 1

|y|n−1∇z′U.

iii) 1
|y|2∇yV · y = (2−n)

|y|n−2 U + 1
|y|n ∇y′U · y − 2

|y|n ∇y′U · y − 1
|y|n−1 ∇z′U · z

= (2−n)
|y|n−2 U − 1

|y|n ∇y′U · y − 1
|y|n−1 ∇z′U · z.

iv) ∇zV · z
|y|2 = 1

|y|n+1 ∇z′U · z.

We know that
∆xV = ∆x(|y|2−n) U + |y|2−n∆xU(y′, z′) + 2∇x(|y|2−n) · ∇xU . So, we must
compute three therms.
First therm: |y|2−n∆x U( y

|y|2 , z
|y|).

Now

∇yU(
y

|y|2 ,
z

|y|) = ∇y′ U
∂

∂y
(

y

|y|2 ) +∇z′ U
∂

∂y
(

z

|y|) (3.87)

∇y ·
(
∇yU(

y

|y|2 ,
z

|y|)
)

=
k∑

i,j=1

∂2U

∂2y′iy
′
j

( k∑

α=1

∂y′i
∂xα

· ∂y′j
∂xα

)

+
k∑

i=1

∂U

∂y′i

( k∑

α=1

∂2y′i
∂xα

)
+

n∑

i=k+1

∂U

∂z′i

( k∑

α=1

∂z′i
∂xα

)

(3.88)

So,

∆yU(
y

|y|2 ,
z

|y|) =
k∑

i=1

∂2U

∂y
′ 2
i

1
|y|4 −

2(k − 2)
|y|4 ∇y′U · y − (k − 3)

|y|3 ∇z′U · z

=
1
|y|4 ∆y′U − 2(k − 2)

|y|4 ∇y′U · y − (k − 3)
|y|3 ∇z′U · z

= |y ′|4 ∆y′U − 2(k − 2)|y ′|2∇y′U · y′ − (k − 3)|y ′|2∇z′U · z′ (3.89)

while

∇zU(
y

|y|2 ,
z

|y|) =
1
|y| ∇z′U (3.90)

∆zU(
y

|y|2 ,
z

|y|) =
1
|y|2 ∆z′U = |y ′|2∆z′U (3.91)

Then

∆xU(
y

|y|2 ,
z

|y|) = |y ′|4 ∆y′U+|y ′|2∆z′U−2(k−2)|y ′|2∇y′U ·y′−(k−3)|y ′|2∇z′U ·z′

(3.92)
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and

|y|2−n ∆y,z U(
y

|y|2 ,
z

|y|)

= |y|2−n [|y ′|4 ∆y′U + |y ′|2∆z′U − 2(k − 2)|y ′|2∇y′U · y′ − (k − 3)|y ′|2∇z′U · z′]

=
1

|y|n+2
∆y′U +

1
|y|n ∆z′U − 2(k − 2)

|y|n ∇y′U · y

|y|2 −
(k − 3)
|y|n ∇z′U · z

|y| .
(3.93)

Second therm: ∆x(|y|2−n) U .
But

∆x(|y|2−n) =
(

∆y + ∆z

)
(|y|2−n) = ∆y(|y|2−n) =

(n− 2)(n− k)
|y|n

and
∆x(|y|2−n) U =

(n− 2)(n− k)
|y|n U . (3.94)

Third therm: 2
〈∇x|y|2−n,∇xU(y′, z′)

〉
. Now

∇x|y|2−n = ∇y|y|2−n =
(2− n)y
|y|n .

We can compute

∇yU(y′, z′) = ∇yU(
y

|y|2 ,
z

|y|)

=
1
|y|2 ∇Uy′ − 2 y

|y|4 ∇Uy′U · y − y

|y|3 ∇z′U · z (3.95)

Then

2
〈∇x|y|2−n,∇xU(y′, z′)

〉
= 2

〈∇y|y|2−n,∇yU(y′, z′)
〉

= 2
〈∇x|y|2−n,∇xU(y′, z′)

〉

= 2
〈

(2− n) y

|y|n ,
1
|y|2 ∇y′U − 2 y

|y|4 ∇y′U · y − y

|y|3 ∇z′U · z
〉

=
2 (2− n)
|y|n+2

y · ∇y′U − 4(2− n)|y|2
|y|n+4

y · ∇y′U − 2 (2− n)|y|2
|y|n+3

z · ∇z′U

= −2 (2− n)
|y|n+2

y · ∇y′U − 2 (2− n)
|y|n+1

z · ∇z′U (3.96)
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Summing (3.93), (3.94), (3.96), we get

∆y,zV =
1

|y|n+2
∆y′U +

1
|y|n ∆z′U − 2(k − 2)

|y|n ∇y′U · y

|y|2 −
(k − 3)
|y|n ∇z′U · z

|y|
+

(n− 2)(n− k)
|y|n U − 2 (2− n)

|y|n+2
y · ∇y′U − 2 (2− n)

|y|n+1
z · ∇z′U

=
(n− 2)(n− k)

|y|n U +
1

|y|n+2
∆y′U +

1
|y|n ∆z′U

− 2 (2− n + k − 2)
|y|n+2

y · ∇y′U +
(−4 + n− k + 3)

|y|n+1
z · ∇z′U

=
(n− 2)(n− k)

|y|n U +
1

|y|n+2
∆y′U +

1
|y|n ∆z′U

+
2 (n− k)
|y|n+2

y · ∇y′U +
(n− k − 1)
|y|n+1

z · ∇z′ (3.97)

But the function V satisfies the properties (1)–(4), and so (3.97) rewrites

∆y,zV +
2(n− k)
|y|2 y · ∇yV − (k − 1)

|y|2 z · ∇zV +
(n− 2)(n− k)

|y|n U

=
1

|y|n+2
∆y′U(y′, z′) +

1
|y|n ∆z′U(y′, z′) (3.98)

that implies

∆yV +
1
|y|2 ∆zV +

2(n− k)
|y|2 y · ∇yV − (k − 1)

|y|2 z · ∇zV + (n− 2)(n− k)
V

|y|2

=
1

|y|n+2
∆y′U(y′, z′) +

1
|y|n+2

∆z′U(y′, z′) =
1

|y|n+2
∆y′,z′U(y′, z′)

= − 1
|y|n+2

U(y′, z′)
n

n−2

|y′| = − |y|−n−2 |y|
(
|y|n−2V (y, z)

) n
n−2

= − V (y, z)
n

n−2

|y| .

(3.99)

Finally, we get the following theorem

Theorem 3.6.1. Let U a solution to the problem (3.53). Let V be defined
as (3.86). Then V satisfies the following semilinear equation:

∆yV +
1
|y|2 ∆zV +

2(n− k)
|y|2 y · ∇yV − (k − 1)

|y|2 z · ∇zV + (n− 2)(n− k)
V

|y|2

= − V (y, z)
n

n−2

|y| . (3.100)

Thus, to any function U, solution to (3.53), we can associate a function
V (y, z) = |y|2−nU( y

|y|2 , z
|y|) which solves the equation

∆HV + (n− 2)(n− k)
V

|y|2 = − V (y, z)n/(n−2)

|y| (3.101)
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where ∆H = ∆y + 1
|y|2 ∆z + 2(n−k)

|y|2 y · ∇y − (k−1)
|y|2 z · ∇z

is a Grushin operator.

Corollary 3.6.2. Let U a solution to the problem (3.53). Let W be defined
as

W (y, z) = |y|2−n U(
y

|y|2 , z) (3.102)

Then W satisfies the following semilinear equation

∆yW +
1
|y|4 ∆zW +

2(n− k)
|y|2 y ·∇yW +(n−2)(n−k)

W

|y|2 = −W
n

n−2

|y| (3.103)

Proof. As before, we must compute

∆x(
y

|y|2 , z)

We have

∆y(
y

|y|2 , z) = |y ′|4 ∆y′U − 2(k − 2)|y ′|2∇y′U · y′ (3.104)

∆z(
y

|y|2 , z) = ∆z′U (3.105)

and we get

∆y,zW =
(n− 2)(n− k)

|y|n U +
1

|y|n+2
∆y′U +

1
|y|n+2

∆z′U +
2(n− k)
|y|n−2

y · ∇y′U

(3.106)

that is

∆yW +
1
|y|4 ∆zW +

2(n− k)
|y|2 y · ∇yW + (n− 2)(n− k)

W

|y|2

=
1

|y|n+2
∆y′U +

1
|y|n−2

∆z′U =
1

|y|n−2
∆y′,z′U(y′, z′) = −W

n
n−2

|y| (3.107)

equivalently,

|y|∆yW +
1
|y|3 ∆zW +

2(n− k)
|y| y · ∇yW + (n− 2)(n− k)

W

|y|
= W

n
n−2 (3.108)

We can rewrite (3.107) as

LW + (n− 2)(n− k)
W

|y|2 = − Wn/(n−2)

|y| (3.109)

where L = ∆y + 1
|y|4 ∆z + 2(n−k)

|y|2 y · ∇y is a Grushin operator.

The next work in progress is the study of hyperbolic symmetries for the
solutions to (3.2).



4. BREZIS NIRENBERG TYPE PROBLEMS

In this chapter we shall give some existence and nonexistence results for the
boundary value problem

−∆u = |u|2∗−2u
|y|s + λu in Ω

u > 0 in Ω
u = 0 ∈ ∂Ω.





(4.1)

where x = (y, z) ∈ Ω ⊂ Rk × Rn−k is a bounded smooth domain containing
the origin in its interior and n ≥ 3, 2 ≤ k < n, s ∈ (0, 2) and 2∗ = 2(n−s)

n−2 . The
exponent 2∗−1 is critical from the viewpoint of weighted Sobolev embedding,
that is H1

0 (Ω) ↪→ L2∗(Ω, |y|−s dx) is continuous but not compact. We can
approach this problem by a direct method and attempt to obtain non-trivial
solutions of (4.1) as constrained minima of the functional

Φλu =
1
2

∫

Ω

(|∇u|2 − λ|u|2) dx− 1
2∗

∫

Ω

|u|2∗
|y|s dx

Equivalently, we may seek to minimize

Qλ(u,Ω) =
∫

Ω

(|∇u|2 − λ|u|2)dx, u 6= 0,

∫

Ω

|u|2∗
|y|s dx = 1.

We will consider the second method.

4.1 Preliminaries

We recall the weighted Hardy-Sobolev inequality proved by [3].
For 1 < p < n, D1,p(Rn) is embedded continuously in Lp∗(Rn, |y|−s) and

C




∫

Rn

|u|p∗
|y|s dx




p/p∗

≤
∫

Rn

|∇u|p dx ∀u ∈ D1,p(Rn) (4.2)

where x = (y, z) ∈ Rk ×Rn−k, p∗ = p(n−s)
n−p and D1,p(Rn). If s = p, s < k, we

get the partial Hardy inequality

C

∫

Rn

|u|p
|y|p dx ≤

∫

Rn

|∇u|p dx ∀u ∈ D1,p(Rn) (4.3)
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If we take Ω = BR = {(y, z) ∈ Rk × Rn−k : |y| + |z| < R}, a ball of
radius R > 0, then also (4.2), (4.3) are true for any u ∈ W 1,p

0 (BR). If Ω is a
any general bounded domain, we can verify the validity of (4.2) for W 1,p

0 (Ω)
which is the completion of C∞

0 (Ω) in the norm

||u||1,p,Ω :=
(∫

Ω

|u(x)|pdx +
∫
Ω

|∇u|p dx

)1/p

.

We can define the best Hardy-Sobolev constant of a domain Ω ⊂ Rn, n ≥ 3,
as

Ss,k,n(Ω) = S := inf
{∫

Ω

|∇u|2 dx : u ∈ H1
0 (Ω) and

∫

Ω

|u|2∗
|y|s dx = 1

}
(4.4)

where 0 ≤ s < 2, 2∗ = 2(n−s)
n−2 . Moreover, we set

Sλ := inf
{
||∇u||22−λ||u||22 : u ∈ H1

0 (Ω) and

∫

Ω

|u|2∗
|y|s dx = 1

}
, λ ∈ R. (4.5)

Another relevant parameter is the first eigenvalue of the Laplacian, de-
fined as

λ1 = inf{
∫

Ω

|∇w|2dx : w ∈ H1
0 (Ω),

∫

Ω

|w|2dx = 1 }.

Definition 4.1.1. Let V be a Banach space, E ∈ C1(V ), β ∈ R. We say
that E satisfies condition (P.S.)β , if any sequence {um} in V such that
E(um) → β while DE(um) → 0 as m → ∞ is relatively compact. Such
sequences in the sequel for brevity will be referred to as (P.S.)β-sequences.

The following lemmas are an immediate consequence of (4.2), (4.3) and
Sobolev embeddings. We begin with an analogue of the Rellich-Kondrachov
compactness theorem for the space H1

0 (Ω).

Lemma 4.1.1. For 1 ≤ q < 2∗, 0 ≤ s < 2, the embedding H1
0 (Ω) ↪→

Lq(Ω, |y|−sdx) is compact.

Proof. Let {uk} be a bounded sequence in H1
0 (Ω). Since q < p < 2n

n−2 , the
Kondrachov compactness theorem guarantees the existence of a convergent
subsequence of {uk} in Lq(ρ < |y| < 1) for any ρ > 0. By taking diagonal
sequence one may assume without loss of generality that {uj} converges in
Lq(ρ < |y| < 1) for any ρ > 0. On the other hand, by the Hölder inequality
and the weighted Sobolev inequality,

∫∫

|y|<δ

|z|<δ

|y|−s |uj |q dy dz ≤
(∫∫

|y|<δ

|z|<δ

|y|−s dx

)1−q/p (∫

Ω
|y|−s |uj |p dy dz

)q/p
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for some constant C. Therefore, for a given ε > 0, we first fix a δ such that
∫∫

|y|<δ

|z|<δ

|y|−s |uj |q dy dz ≤ ε

2
.

Then ∫

Ω
|y|−s |uj − uk|q dy dz <

1
2
ε + δ−s

∫∫

|y|<δ

|z|<δ

|uj − uk|q dy dz < ε

for sufficiently large j, k. Hence {uj} is also a Cauchy sequence in Lq(Ω, |y|−s dx).

4.2 Nonexistence results

In this section we will establish some nonexistence results. The main tools
are different variants of the Pohozahev’s identity.

Proposition 4.2.1. There is no solution of (4.1) when λ ≥ λ1.

Indeed, let φ1 be the eigenfunction of −∆, with φ1 > 0 on Ω. Suppose u
is a solution of (4.1). We have

−
∫

Ω

∆u φ1 dx = λ1

∫

Ω

uφ1 dx =
∫

Ω

u2∗−1

|y|s φ1 dx+λ

∫

Ω

u φ1 dx > λ

∫

Ω

uφ1 dx.

and thus λ < λ1.

Theorem 4.2.2. There is no solution of (4.1) when λ ≤ 0 and Ω is a smooth
starshaped domain.

Proof. The proof is based on the following "Pohozaev identity".

Proposition 4.2.3. Let a : Rn → R be such that a(x)|y|s ∈ L∞(Rn), with
a ∈ C(A), where A = {(y, z) ∈ Rn : y 6= 0}. Let g : R → R be continuous

with primitive G(u) =
u∫
0

g(v) dv. Let u ∈ H1
0 (Ω) be a weak solution of

{ −∆u = a(x)|u|2∗−2u + g(u) in Ω
u = 0 in ∂Ω

(4.6)

Assume that u ∈ C1,θ(Ω) ∩ Lp(Ω) ∩ C2(A) for some θ ∈ (0, 1). Then u
satisfies the identity
∫

∂Ω

−1
2
|∇u|2x·ν dσ =

∫

Ω

n− 2
2

|∇u|2 −nG(u)− 1
2∗

(na(x) +∇a(x)·x)|u|2∗ dx.

(4.7)
where ν is the outer unit normal of ∂Ω.
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Proof. For any ε > 0 we consider the sets

V1 = V1(ε) = {x ∈ Ω : yi > ε}, V2 = V2(ε) = {x ∈ Ω : yi < −ε}.
for i = 1, · · · , n. For simplicity we will take i = 1. By our assumptions, u is
a classical solution to (4.6) in V1 ∪ V2, so in each set, we can multiply (4.6)
by x · ∇u(x) and we can integrate. We recall that

(∆u + g(u))(x · ∇u)) = div(∇u(x · ∇u))− |∇u|2 − x · ∇
( |∇u|2

2

)
+ x · ∇G(u)

= div
(
∇u(x · ∇u)− x

|∇u|2
2

+ xG(u)
)

+
n− 2

2
|∇u|2 − nG(u)

and

x · ∇u a(x)|u|2∗−2u = div
(

1
2∗

a(x)|u|2∗x
)
− n

2∗
a(x)|u|2∗ − 1

2∗
|u|2∗∇a(x) · x

The, setting V = V1 ∪ V2, we have
∫

∂V

(
−x · ∇u

∂u

∂ν
+

1
2
|∇u|2x · ν −G(u)x · ν

)
dσ − n− 2

2

∫

V

|∇u|2 dx + n

∫

V

G(u) dx

=
∫

∂V

1
2∗

a(x)|u|2∗ x · ν dσ − n

2∗

∫

V

a(x)|u|2∗ dx− 1
2∗

∫

V

x · ∇a |u|2∗ dx

that is
∫

∂V

(
−x · ∇u

∂u

∂ν
+

1
2
|∇u|2x · ν − 1

2∗
a(x)|u|2∗ x · ν −G(u)x · ν

)
dσ

=
∫

V

(
n− 2

2
|∇u|2 − nG(u) − n

2∗
a(x)|u|2∗ dx− 1

2∗
x · ∇a |u|2∗

)
dx (4.8)

We pass to the limit in (4.8) as ε → 0. The limit of the right hand side in
(4.8) is

∫

Ω

n− 2
2

|∇u|2 − nG(u)− 1
2∗

(na(x) +∇a(x) · x)|u|2∗ dx

For the left hand side, we have

∂Ω = {x ∈ ∂Ω : x1 < ε} ∪ {x ∈ ∂Ω : x1 < −ε}
∪ {x ∈ Ω : x1 = ε} ∪ {x ∈ Ω : x1 = −ε} = S1 ∪ S2 ∪ S3 ∪ S4.

Then

lim
ε→0

∫

S1∪S2

(
−x · ∇u

∂u

∂ν
+

1
2
|∇u|2x · ν − 1

2∗
a(x)|u|2∗ x · ν −G(u)x · ν

)
dσ
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=
∫

∂Ω

(
−x · ∇u

∂u

∂ν
+

1
2
|∇u|2x · ν − 1

2∗
a(x)|u|2∗ x · ν −G(u)x · ν

)
dσ

We have now to see what happens in S3 ∪ S4, as ε → 0. Notice that in
S3, ν = (−1, 0, · · · , 0), while in S4, ν = (1, 0, · · · , 0). Hence we can write

∫

S3∪S4

(
−x · ∇u

∂u

∂ν
+

1
2
|∇u|2x · ν − 1

2∗
a(x)|u|2∗ x · ν −G(u)x · ν

)
dσ

=
∫

S3

(
x · ∇uD1u− 1

2
|∇u|2x1 +

1
2∗

a(x)|u|2∗ x1 + G(u) x1

)
dσ

+
∫

S4

(
−x · ∇uD1u +

1
2
|∇u|2x1 − 1

2∗
a(x)|u|2∗ x1 −G(u) x1

)
dσ

But the hypotheses, the function −x ·∇uD1u+ 1
2 |∇u|2 x1− 1

2∗a(x)|u|2∗x1−
G(u)x1 is continuous everywhere, so that we can conclude that

lim
ε→0

∫

S1∪S2

(
−x · ∇u

∂u

∂ν
+

1
2
|∇u|2x · ν − 1

2∗
a(x)|u|2∗ x · ν −G(u)x · ν

)
dσ = 0.

Hence, passing to the limit as ε → 0, (4.8) implies
∫

∂Ω

(
−x · ∇u

∂u

∂ν
+

1
2
|∇u|2x · ν − 1

2∗
a(x)|u|2∗ x · ν −G(u)x · ν

)
dσ

=
∫

Ω

n− 2
2

|∇u|2 − nG(u)− 1
2∗

(na(x) +∇a(x) · x)|u|2∗ dx. (4.9)

But, on ∂Ω, u = 0 so that G(u) = 0,∇u = ∇u · νν and this implies
∫

∂Ω

−1
2
|∇u|2x · ν dσ =

∫

Ω

n− 2
2

|∇u|2 − nG(u)− 1
2∗

(na(x) +∇a(x) · x)|u|2∗ dx.

(4.10)

Proof of Theorem 4.2.2. Let u is a solution to (4.1) and suppose
u ∈ C1,θ(Ω). Then, we can apply Proposition (4.2.3) with a(x) = |y|−s.
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Notice that ∇a(x) · x = (−s)|y|−s−1|y|. Then we have:

− 1
2

∫

∂Ω

|∇u|2x · ν dσ

=
n− 2

2

∫

Ω

|∇u|2 dx− n

2

∫

Ω

u2 dx− n(n− 2)
2(n− s)

∫

Ω

|y|−s|u|2∗ dx +
s(n− 2)
2(n− s)

∫

Ω

|y|−s|u|2∗

=
n− 2

2

∫

Ω

|u|2∗
|y|s dx + λ

(n− 2)
2

∫

Ω

u2

− n

2

∫

Ω

u2 dx− n(n− 2)
2(n− s)

∫

Ω

|y|−s|u|2∗ dx +
s(n− 2)
2(n− s)

∫

Ω

|y|−s|u|2∗

= λ

(
n− 2

2
− n

2

) ∫

Ω

u2 dx +
(

n− 2
2

− n(n− 2)
2(n− s)

+
s(n− 2)
2(n− s)

)∫

Ω

|y|−s|u|2∗

= −λ

∫

Ω

u2 dx (4.11)

So,
1
2

∫

∂Ω

|∇u|2x · ν dσ = λ

∫

Ω

u2 dx (4.12)

If Ω is starshaped about the origin, we have (x · ν) > 0 a.e. on ∂Ω. When
λ < 0 we deduce from (4.12) that u ≡ 0. When λ = 0 we deduce from (4.12)
that ∂u

∂ν = 0 on Ω and then, by (4.1) we have

0 = −
∫

Ω

∆u dx =
∫

Ω

u2∗−1

|y|s dx

that is u ≡ 0.

Remark 4.2.1. We can note that

i)Sk,n,s is independent of Ω and depends only by n, k, s.

ii) The infimum S = Sk,n,s is never achieved when Ω is a bounded domain.

i) This follows from the fact that the ratio
||∇u||L2(Ω)

||u||L2∗ (Ω,|y|−sdx)
is invariant

under the scaling uβ(x) = β(n−2)/2u(βx)∀β > 0.
ii) Suppose that S were attained by some function u ∈ H1

0 (Ω). We may
assume that u ≥ 0 on Ω (otherwise replace u by |u|). Fix a ball B containing
Ω and set

ũ =
{

ũ on Ω
0 on B \ Ω.
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Thus S is also achieved on B by ũ and ũ satisfies −∆ũ = µ ũ2∗−1

|y|s for some

constant µ > 0 (since
∫
B

ũ2∗
|y|s dx = 1 and

∫
B

|∇u|2 dx = µ = S > 0) which is

impossible by Pohozaev’s identity.

4.3 The special case s = 1

When Ω = Rn and s = 1, we know that the infimum for S is achieved by
function

U(x) = U(y, z) = Cn,k

[
(1 + |y|)2 + |z|2]−

(n−2)
2 (4.13)

where Cn,k = {(n− 2)(k− 1)}n−2
2 or after scaling, and translations in the z-

variable, by any of the functions

Ut(x) = t
n−2

2 U(t y, t(z + z0)) = t
n−2

2 Cn,k

[
(1 + |ty|)2 + |t(z + z0)|2

]− (n−2)
2

=
(

(n− 2)(k − 1)
t

)n−2
2

[(
1
t

+ |y|)2 + |z + z0|2]−
(n−2)

2

= Cn,k,t [(
1
t

+ |y|)2 + |z + z0|2]−
(n−2)

2 (4.14)

for t > 0. We want to show the following lemma

Lemma 4.3.1. We have

Sλ < S for all λ > 0. (4.15)

Proof. Following Aubin’s method [1], also used by [11] we define

Qλ(u) =
||∇u||22 − λ||u||22
||u||2

2∗, |y|−1

(4.16)

for u ∈ H1
0 (Ω), u 6= 0. We assume that 0 ∈ Ω and we set

uε(y, z) =
ψ(y, z)

((ε + |y|)2 + |z|2)(n−2)/2
(4.17)

for some ε ∈ (0, 1] and ψ(y, z) ∈ C∞
0 (Ω) are test functions such that

0 ≤ ψ ≤ 1 and ψ ≡ 1 in a neighborhood of 0. The idea is to estimate Qλ(uε)
where ε = 1

t → 0.
Step 1. We claim that

||∇uε||22 =
K1

εn−2
+ O(1) (4.18)

where K1 = K1(n, k, 2, 1). From (4.17), we have

∇yuε(y, z) =
∇yψ(y, z)

[(ε + |y|)2 + |z|2](n−2)/2
− (n− 2) (ε + |y|) y ψ(y, z)

|y| [(ε + |y|)2 + |z|2]n/2
(4.19)

∇zuε(y, z) =
∇zψ(y, z)

[(ε + |y|)2 + |z|2](n−2)/2
− (n− 2)z ψ(y, z)

[(ε + |y|)2 + |z|2]n/2
(4.20)
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Since ψ ≡ 1 near (y, z) = (0, 0), writing ψ2 = 1 + ψ2 − 1, it follows that
∫

Ω

|∇uε|2 dy dz =
∫

Ω

|∇yuε|2 + |∇zuε|2 dy dz

=
∫

Ω

dy dz

∣∣∣∣
(n− 2) (ε + |y|) y ψ

|y| [(ε + |y|)2 + |z|2]n/2

∣∣∣∣
2

+
∫

Ω

dy dz

∣∣∣∣
(n− 2)z ψ

[(ε + |y|)2 + |z|2]n/2

∣∣∣∣
2

+ O(1)

= (n− 2)2
∫

Ω
dy dz ψ2 (ε + |y|)2 + |z|2

[(ε + |y|)2 + |z|2]n + O(1)

= (n− 2)2
∫

Ω
dy dz ψ2 1

[(ε + |y|)2 + |z|2]n−1
+ O(1)

= (n− 2)2
∫

Ω
dy dz

1
[(ε + |y|)2 + |z|2]n−1

+ (n− 2)2
∫

Ω

ψ2 − 1
[(ε + |y|)2 + |z|2]n−1

+ O(1)

= (n− 2)2
∫

Ω
dy dz

1
ε2(n−1)[(1 + |yε |)2 + | zε |2]n−1

+ O(1)

= (n− 2)2
∫

Rn

dv εk dw εn−k

ε2(n−1)[(1 + |v|)2 + |w|2]n−1
+ O(1)

= (n− 2)2 ε−n+2

∫

Rn

dv dw

[(1 + |v|)2 + |w|2]n−1
+ O(1)

=
K1

εn−2
+ O(1), (=

K1

ε(n−m)/(m−s)
+ O(1))

where K1 = (n− 2)2
∫
Rn

1
[(1+|y|)2+|z|2]n−1 dx = ||∇U ||22

C2
n,k

.

Step 2. We claim that

||uε||22∗,|y|−1 =
K2

εn−2
+ O(1) (4.21)
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Proof. We have
∫

Ω

|uε|2∗
|y| dx =

∫

Ω

ψ2∗

|y| [(ε + |y|)2 + |z|2]n−1
dx

=
∫

Ω

1
|y| [(ε + |y|)2 + |z|2]n−1

dx +
∫

Ω

ψ2∗ − 1
|y| [(ε + |y|)2 + |z|2]n−1

dx

=
∫

Ω

1
|y| [(ε + |y|)2 + |z|2]n−1

dx + O(1)

=
∫

Ω

1
ε2(n−1)[(1 + |yε |)2 + | zε |2]n−1

1
|y| + O(1)

=
∫

Rn

dv εk dw εn−k

ε2(n−1)[(1 + |v|)2 + |w|2]n−1

1
|v|ε dv dw + O(1)

= ε−n+1

∫

Rn

dv dw

[(1 + |v|)2 + |w|2]n−1

1
|v| dv dw + O(1)

= ε−n+1

∫

Rn

|U |2∗ |y|−1 dx + O(1) =
K ′

2

εn−1
+ O(1),

where K ′
2 =

∫
Rn

|U |2∗ |y|−1 dx = (
U2∗,|y|−1

Cn,k
)2∗ . Then

||uε||22∗,|y|−1 =
(∫

Ω

|uε|2∗
|y| dx

)2/2∗
=

(
ε−n+1

C2∗
n,k

∫

Rn

|U |2∗ |y|−1 dx

)2/2∗
+ O(1)

=
K2

εn−2
+ O(1) (=

K2

ε(n−m)/(2−s)
+ O(1)) (4.22)

where K2 = 1
(Cn,k)2

(∫
Rn

|U |2∗ |y|−1 dx

)2/2∗
and K1

K2
= S.

Step 3. We claim that

||uε||22 =
K3

εn−4
+ O(1) if n > m2 = 4 (4.23)

||uε||22 > C| log ε| if n = m2 = 4 (4.24)
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Proof. In the first case we have
∫

Ω

|uε|2 dx =
∫

Ω

ψ2

[(ε + |y|)2 + |z|2]n−2
dx

=
∫

Ω

1
[(ε + |y|)2 + |z|2]n−2

dx +
∫

Ω

ψ2 − 1
[(ε + |y|)2 + |z|2]n−2

dx

=
∫

Ω

1
ε2(n−2)[(1 + |yε |)2 + | zε |2]n−2

dx + O(1)

=
∫

Rn

dv εk dw εn−k

ε2(n−2)[(1 + |v|)2 + |w|2]n−2
+ O(1)

=
1

εn−4

∫

Rn

1
[(1 + |v|)2 + |w|2]n−2

dv dw + O(1) =
K3

εn−4

(
=

K3

ε(n−m2)/(2−s)

)

(4.25)

where K3 = 1
(Cn,k)2

∫
Rn

U2 dx. In the second case we have

∫

Ω

|uε|2 dx = O(1) + 2(k − 1)
∫

Ω

1
[(ε + |y|)2 + |z|2]2 dx = O(1) + 2(k − 1) Ik(ε)

and there exist 0 < R1 < R2 such that∫∫

|y|<R1
|z|<R1

1
[(ε + |y|)2 + |z|2]2 dx ≤ Ik(ε) ≤

∫∫

|y|<R2
|z|<R2

1
[(ε + |y|)2 + |z|2]2 dx

and it is clear that for a fixed R > 0 we have∫

Ω

1
[(ε + |y|)2 + |z|2]2 dx =

∫

Ω

1
[(ε + |y|)2 + |z|2]2 dx

= ωk ω4−k

R∫

0

R∫

0

rk−1s4−k−1

[(ε + r)2 + s2]2
dr ds = ωk ω4−k

R∫

0

R∫

0

rk−1s3−k

ε4
[
(1 + r

ε)
2 + ( s

ε)
2
]2 dr ds

= ωk ω4−k

R/ε∫

0

R/ε∫

0

(vε)k−1(wε)3−kε dv ε dw

ε4[(1 + v)2 + w2]2
= ωk ω4−k

R/ε∫

0

R/ε∫

0

vk−1w3−k

[(1 + v)2 + w2)]2
dv dw

where ωk−1 and ωn−k−1 are the surface measure of the k − 1 and n− k − 1
dimensional sphere in Rk and Rn−k. Hence, if k = 2, we get

I2(ε) =

R∫

0

R∫

0

vw

[(ε + v)2 + w2)]2
dv dw = − R log ε

2(R + ε)
+ O(1) (4.26)
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If k = 3, we have two sums, J1 and J2. But J1 = O(1) and

J2 ≥
R arctan( R

R+ε)(−3R2 − 2Rε− 2R2 log ε− 4Rε log ε− 2ε2 log ε)
4((R + ε)2

+
R arctan( R

R+ε)(2R
2 log(R + ε) + 4Rε log(R + ε) + 2ε2 log(R + ε))

4((R + ε)2
+ O(1)

> −R3 arctan( R
R+ε) log ε

2(R + ε)2
+ O(1) = C| log ε|+ O(1). (4.27)

If k = n = 4, we have that our function U(y, z) = U(x) = C(1 + |x|)n−2 is
radial and

∫
|x|<R

1
(ε+|y|)4 dx = ωn

R∫
0

r3 dr
(ε+r)4

= O(1) + C| log ε|.

Step 4. End of the proof.

Proof. Combining Steps 1-3, we obtain




Qλ(uε) = S − λ
K3

K2
ε2 + O(εn−2) if n ≥ 5,

Qλ(uε) < S − λ
C

K2
ε2| log ε|+ O(ε2) if n = 4.

(4.28)

In all cases we deduce that Sλ ≤ Qλ(uε) < S provided ε > 0 is small
enough.

Lemma 4.3.2. If 0 < Sλ < S, then Sλ is achieved.

Proof. First we prove the existence of a minimizer of Sλ. Choose a minimizing
sequence such that {un}n such that

∫

Ω

u2∗
n

|y| dx = 1 (4.29)

||∇un||22 − λ||un||22 = Sλ + o(1) as n →∞. (4.30)

Since {un}n is also bounded in H1
0 (Ω) we can assume that the sequence

converges weakly in H1
0 (Ω) and L

2n
n−2 (Ω) and that it converges in L2(Ω) and

pointwise a.e. in Ω with
∫
Ω

u2∗
|y| dx ≤ 1. Set vn = un − u, so that vn ⇀ 0

weakly in H1
0 and vn → 0 a.e. on Ω. By definition of S and (4.29), we have

||∇un|| ≥ S. From (4.30) it follows that λ||u||22 ≥ S − Sλ > 0 and therefore
u 6= 0. Using (4.30) we obtain

||∇u||22 + ||∇vn||22 − λ||u||22 = Sλ + o(1) (4.31)
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since vn ⇀ 0 weakly in H1
0 (Ω). On the other hand, a lemma of Brezis and

Lieb [10] yields

1 =
∫

Ω

|un|2∗
|y| dx =

∫

Ω

|u|2∗
|y| dx +

∫

Ω

|vn|2∗
|y| dx + o(1)

≤
(∫

Ω

|u|2∗
|y| dx

)2/2∗
+

(∫

Ω

|vn|2∗
|y| dx

)2/2∗
+ o(1). (4.32)

which leads to

1 ≤
(∫

Ω

|u|2∗
|y| dx

)2/2∗
+

1
S
||∇vn||22 + o(1). (4.33)

We claim that
||∇u||22 − λ||u||22 ≤ Sλ||u||22∗, |y|−1 (4.34)

to conclude the proof of lemma since u 6= 0. We consider the case Sλ > 0
(i.e. 0 < λ < λ1). We deduce from (4.33) that

Sλ ≤ Sλ||u||22∗, |y|−1 + (
Sλ

S
) ||∇vn||22 + o(1). (4.35)

Combining (4.31) and (4.35) we obtain (4.34).

Then, our main result is the following:

Theorem 4.3.3. Assume n ≥ 4. Then for every λ ∈ (0, λ1) there exists a
solution of the problem

−∆u = u2∗(1)−1

|y| + λu in Ω
u > 0 in Ω
u = 0 on ∂Ω.





(4.36)

where Ω is a bounded domain in Rn containing the origin and 2∗(1) = 2(n−1)
n−2 .

Proof of theorem 4.3.3
Let u ∈ H1

0 (Ω) be given by Lemma 5.2.2, that is

||u||2∗,|y|−1 = 1 and ||∇u||22 − λ||u||22 = Sλ.

We may assume that u ≥ 0 on Ω. Since u is a minimizer for Sλ, we obtain
a Lagrange multiplier µ ∈ R such that

−∆u− λu = µ
u2∗−1

|y| onΩ.

In fact, µ = Sλ and Sλ > 0 since λ < λ1. It follows that c u satisfies (4.36) for
some appropriate constant c > 0 (c = S

1/(2∗−2)
λ ). We note that u > 0 on Ω by

strong maximum principle of Vazquez [53]. ¤
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