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Abstract

This Ph.D. thesis introduces some research topics the candidate worked on during his Ph.D.
journey at “Università degli Studi Roma Tre”, presenting the candidate’s contributions in these
fields. The work mainly introduces results in graph algorithms, pedestrian management, vehicular
traffic estimation, and drug repurposing. Despite the heterogeneity of these topics, they all share
a common foundation in graph theory, with machine learning techniques applied to analyse and
predict data patterns.

The present work opens by introducing the basics of graph theory, including the representation
and efficient contraction of graphs. It also covers the generation of random graphs and the analysis
of random walks over graphs. Additionally, selected topics in machine learning are discussed, such
as artificial neural networks and clustering methods.

The candidate’s contributions are then presented in individual chapters.
As regards the first contribution, a novel algorithm for contracting graphs equipped with an

attribute-based colouring is introduced. The mathematical setting is formalised and theoretical
definitions and practical implementations are provided.

The second and largest contribution focuses on pedestrian management in crowded museum
environments. A coloured-graph representation of museum-like environments is presented and
analysed. A semi-automatic IoT-based tracking system for Lagrangian data is described and the
problem of reconstructing trajectories from noisy data is tackled. Different data analysis techniques
are discussed. Finally, aided by a digital twin opportunely created, optimisation strategies are
considered and proposed. The two world-renowned case studies of the museum of Galleria Borghese
in Rome and the Peggy Guggenheim Collection in Venice, validate the approach.

The third contribution integrates machine learning techniques with macroscopic differential
models for vehicular traffic estimation and forecast. The corresponding chapter explores congestion
event detection and upcoming flux prediction by means of machine learning techniques for time
series analysis. These results are used to enhance different aspects of the numerical model, namely
helping in the inversion of the fundamental diagram of traffic and providing future boundary
conditions that are not available in real-time.

The fourth and final contribution presents a novel approach for drug repurposing based on a
recommender system. A drug-disease knowledge graph is constructed using gene similarity scores,
and recommendations are generated using biased random walks. The approach is validated through
a case study on rheumatoid arthritis and classical benchmark approaches.

Closes the thesis a summary of the introduced works and an extended list of the candidate’s
publications.

Keywords: Graph analysis · machine learning · colour contraction · supervised learning · clustering
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Preface

The present thesis explores the candidate’s work and contribution, which spanned
over the course of three years rich in collaborations. Throughout this period of time,
the candidate had the opportunity to confront himself with novel and captivating
challenges, interact with remarkable researchers from diverse fields, and engage
with various research groups.

Beyond stimulating the candidate’s intellectual curiosity across a wide range of
topics, this journey enabled the candidate to dive in and apply a significant portion of
the knowledge acquired throughout his entire academic path, spanning a bachelor’s
degree in mathematics and a master’s degree in computational sciences.

The following pages delve into four research themes, which, despite their apparent
differences, share a common extended mathematical foundation that will hopefully
be elucidated throughout the course of this work. The primary focus of this work
revolves around the topics of graph theory and machine learning, employed to analyse
and predict data patterns within heterogeneous data.

The interdisciplinary nature of the work is further emphasised by the presence of
three supervisors, each representing different aspects and thematics of the research
landscape the candidate is involved in. Their expertise spans theoretical and com-
putational modelling, computational biology and immunology, and theoretical and
applied graph theory, collectively enriching the candidate’s research journey and
ensuring a comprehensive exploration of the presented works.

Road map

Chapter 1 provides the basics of graph theory, laying out the notation that will
be used in this work. In particular, Section 1.2 introduces all the basics about
(simple, undirected) graphs, Section 1.3 considers some useful generalisation
including digraphs and multi-graphs, and Section 1.4 delves into the problem of
efficient representation of graphs. Later, Section 1.5 introduces the problem of
graph contraction that will be later analysed in Chapter 3 and Section 1.6 dis-

ix



x Preface

cusses the problem of generating random graphs. Finally, Section 1.7 describes
random walks over graphs and provides some basic definitions and properties
of Markov chains that will be later used in Chapter 6.

Chapter 2 covers some selected arguments in machine learning. In particular, Sec-
tion 2.1 opens the chapter by discussing the deep entanglement between math-
ematics and machine learning and presenting a broad overview of its different
fields. Section 2.2 introduces more in detail the setting of supervised learning
and settles the ground for Section 2.3 which provides an overview of artificial
neural networks by focusing on feed-forward and recurrent neural networks.
Section 2.4 closes the chapter by delving into the topic of clustering, mainly
focusing on centroid-based (Section 2.4.1) approaches and hierarchical analysis
(Section 2.4.2).

Chapter 3 presents the first result of the candidate by introducing a novel algorithm
for tackling the contraction of coloured graphs which is performance-oriented.
In particular, the concepts of 𝛾-contraction and 𝛽-contraction are formally de-
fined and details are discus regarding the theoretical aspect of contracting over a
colouring 𝛾. The novel algorithm is presented both in abstract and implementa-
tion terms and suitable data structures are introduced. Benchmarks over random
graphs and an application example are further analysed. The chapter closes with
a final discussion.

Chapter 4 describes an all-around study on crowd tracking, modelling, and simu-
lating performed in the setting of cultural heritage. In particular, a novel coloured
graph-based approach is introduced for representing museum-like environments.
A semi-automatic tracking system is presented, and both Lagrangian and Eule-
rian data are analysed. The problem of Lagrangian trajectory reconstruction from
noisy data is tackled in-depth, requiring the introduction of a novel approach
based on cascaded localisers resembling the graph structure of the environment.
Multiple data analysis techniques are exploited, including a hierarchical cluster-
ing approach based on a custom metric obtained by the graph structure. Later,
a technique for digital twin creation based on a time-varying Markov model is
introduced. Finally, the digital twin is used to improve the quality of the mu-
seum fruition. Two case studies – the museums of Galleria Borghese in Rome
and the Peggy Guggenheim Collection in Venice – further validate the approach
presented here.

Chapter 5 introduces novel methods that integrate machine learning techniques
with macroscopic differential models for vehicular traffic estimation and forecast.
The chapter discusses traffic data of flux and velocity, gathered from fixed
sensors along a highway network. In particular, two main tasks are considered:
congestion events detection and expected upcoming flux prediction. Such tasks
fit well in the context of time series analysis and, apart from being interesting per
se, can enrich the data that are later exploited by the differential model for traffic
state estimation. In particular, congestion detection is used to propose a novel
density-based approach (relying on the inversion of the fundamental diagram)
for injecting flux data into the model, hence overcoming numerical issues that
might lead to unfeasible situations. Conversely, the expected upcoming flux
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is used in place of boundary conditions (missing in real-time estimation) for
forecasting the traffic state. The chapter closes with a description of simulation
examples with both real and synthetic data.

Chapter 6 describes the last contribution of the candidate presented in this thesis, a
novel approach for drug repurposing based on a recommender system hinged on
gene similarity scores and biased random walks. In particular, different sources of
data are considered for the creation of a drug-disease knowledge graph obtained
as the joining of two similarity-weighted complete graphs. Recommendations are
then obtained as paths of short length, highlighted by biased random walks. The
recommendation mechanism is made explainable by a sage usage of the Markov
chain underlying the random walk process. The stability of the model is further
discussed, based on the Ergodicity of the process. A case study – rheumatoid
arthritis – is used, along with classical performance evaluation techniques, to
validate the novel methodology.

How to read this thesis

The present work covers four different research topics by introducing novel contents
in coloured-based contraction, pedestrian management, vehicular traffic estimation
and drug repurposing. Despite being very dissimilar one from the other, all of the
approaches here proposed deepen their roots in a common background which is
primary-based on graph theory and, secondary, on machine learning approaches
(which are typically built on top of some clever graph-based representation of the
problem).

Part I introduces a common ground useful for understanding the contributions
presented in this thesis. However, Chapters 1 and 2 do not introduce any novel result
and can be safely skipped by readers familiar with graph theory and machine learn-
ing. We solely remind the reader that we refer to undirected simple graphs (unless
differently specified) and that with the term colouring, we refer to a typological map-
ping (with values in 𝐶 ⊊ N, |𝐶 | < ∞) rather than a proper colouring, as understood
in the well-known colouring problems.

The Chapters 3–6 from Parts II–IV hold the candidate’s contributions and are
thought of as self-contained chapters, only requiring the basics from Part I. Hence,
they can be read independently one from the other and in any order. For this reason,
each chapter is provided with (i) an abstract summarising the content, (ii) a literature
discussion on the specific topic, and (iii) a conclusions section which also discusses
possible further developments.

Each chapter of this work introduces specific own naming, acronyms, and sym-
bols, which are consistent1 throughout the text. In particular, Chapter 1 (especially
Section 1.2) is devoted to introducing the entire graph-related notation. Section Math-
ematical notation (page xxxvii) introduces, for the sake of completeness, a few well-

1 Consistent at the best of the author’s knowledge
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known mathematical notations that are assumed known. Section List of acronyms
and symbols (page xxix) provides a list of chapter-wise organised abbreviations and
symbols which can be helpful while navigating along the present work.

Candidate’s contributions

This thesis mainly presents contributions that the candidate published as journal
papers or conference proceedings, Chapter 5 being the exception since the corre-
sponding work is under review at the time of writing. A few results presented here are
novel also w.r.t. the published articles (see below) since they belong to articles that
are currently work-in-progress: it is the case, e.g., of the mathematical formalisation
of 𝛾-contraction in Chapter 3 and of results achieved in the Peggy Guggenheim
Collection from Chapter 4.

Works here are not only collected but also harmonised together and extended in
order to create a single and cohesive text.

In what follows, we report the direct contributions of the candidate to the specific
parts of this work and we highlight the contribution that are not present in the original
articles.

Chapter 3 – Graph contraction on attribute-based colouring The candidate fo-
cused mainly on the implementation of the code and on the literature review
of the problem. In particular, the first serial version of the code was written by
the candidate in multiple languages before the agreement on using C and the
candidate also carried out the performance campaign over random graphs. The
mathematical characterisation of the problem, which is formalised here for the
first time, is entirely due to the candidate, as well as the proof of Theorem 3.1.
The chapter heavily extends upon the published articles with regard to the context
of mathematical formalisation of the problem and of the algorithm and improves
the description of the implementation by means of (previously unpublished) C
pseudo-codes.

Chapter 4 – Managing crowded museums The main areas of contribution of the
candidate concern the novel-introduced graph-based approach, the machine
learning development and the realisation of the technical/implementation part
of the project. More in detail, the candidate

• handled the technical and implementation part of the project, developing,
managing, and maintaining the data collection systems (IoT and Eulerian).

• proposed, described, and formalised the idea of representing museums as
coloured graphs and elaborated the way the metric could arise from such a
representation.

• designed, developed, and validated trajectory refinement methods and the
creation of corresponding datasets.

• was involved in preliminary analysis of the trajectories
• carried out the trajectory clustering
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• contributed to the tuning of the digital twin and the drafting of recommen-
dations that were then taken into account by the curators of the museums
adopted as case studies.

The main novelty of the chapter w.r.t. the published work consists of all the
details, descriptions, and results regards the Peggy Guggenheim Collection.

Chapter 5 – Hybrid approach for traffic state estimation and forecast The
principal area of contribution of the candidate concerns the machine learning
development, implementation and application, as well as the interpretation of
the results. More in detail, the candidate commits himself to a careful data
analysis whose outcome consists of the proposal of the methodologies presented
throughout this text along with various applications in anomaly detection (that
here are not discussed since results are still in an early stage). The work discussed
here presents very few changes from the paper submitted in [282], also available
as a preprint.

Chapter 6 – Explainable drug repurposing The study presented here was entirely
executed by the candidate, who provided the mathematical background and
developed the code to perform the analysis and validation of the methodology.
The idea of the recommender system on gene similarity, originally provided
by the candidate’s supervisor F. Castiglione, was later explored and compared
to other literature approaches by the candidate himself. The datasets (provided
by coauthor Paolo Tieri) were organised, analysed, filtered, and integrated by
the candidate. The analysis of the case study was not a prerogative of the
candidate due to the very different background required. The sole novelty w.r.t.
the published version in [270], is represented by a clarification on benchmarks
results and the correction of a few discrepancies in notation.

List of contributions

In the following, we report the list of the candidate’s contributions relevant to the
topics covered in this work, organised by chapter. In the closing of the present
thesis, in Author’s contributions (p. C-1), an extended version of this list is reported,
organised by publication kind rather than by topic. The extended list also includes
other contributions the candidate worked on during his Ph.D. which are not relevant
to the results presented in this thesis.

Chapter 3 – Graph contraction on attribute-based colouring

[287] E. Onofri. “On the theoretical aspects of colour contraction: 𝛾-contraction”.
In preparation

[285] F. Lombardi and E. Onofri. “Parallel graph contraction on attribute-based
colouring”. In preparation

[283] M. Caprolu, F. Lombardi, and E. Onofri. “Speculative Polkadot? an
overview”. In preparation
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[274] F. Lombardi and E. Onofri. “Some results on colored network contrac-
tion”. In: Journal of Ubiquitous Systems and Pervasive Networks 17.2 (Dec.
2022), pp. 91–98. doi: 10.5383/JUSPN.17.02.006

[278] F. Lombardi and E. Onofri. “Graph contraction on attribute-based color-
ing”. In: Procedia Computer Science 201 (Apr. 2022). The 13th International
Conference on Ambient Systems, Networks and Technologies (ANT) / The
5th International Conference on Emerging Data and Industry 4.0 (EDI40),
pp. 429–436. issn: 1877-0509. doi: 10.1016/j.procs.2022.03.056

Chapter 4 – Managing crowded museums

[284] M. Catrambone, P. Centorrino, E. Cristiani, E. Onofri, and C. Riminesi.
“On the pollution impact of visitors inside crowded museums”. In prepara-
tion

[289] P. Centorrino, E. Cristiani, P. Ferrara, D. Macchion, and E. Onofri. Mea-
surement and analysis of the visitors behavior in the Peggy Guggenheim
Collection. Technical report. IAC–CNR, Feb. 2023, pp. 1–12

[280] E. Onofri and A. Corbetta. “RSSi-based visitor tracking in museums via
cascaded AI classifiers and coloured graph representations”. In: Collective
Dynamics 6 (Jan. 2022), pp. 1–17. doi: 10.17815/CD.2021.131

[271] P. Centorrino, A. Corbetta, E. Cristiani, and E. Onofri. “Managing
crowded museums: visitors flow measurement, analysis, modeling, and op-
timization”. In: Journal of Computational Science 53 (Apr. 2021), pp. 1–17.
issn: 1877-7503. doi: 10.1016/j.jocs.2021.101357

[276] P. Centorrino, A. Corbetta, E. Cristiani, and E. Onofri. “Measurement and
analysis of visitors’ trajectories in crowded museums”. In: IMEKO TC-4.
imeko:2019-83. Florence, Italy: International Conference on Metrology for
Archaeology and Cultural Heritage, Dec. 2019, pp. 423–428

Chapter 5 – Hybrid approach for traffic state estimation and forecast

[282] M. Briani, E. Cristiani, and E. Onofri. “Inverting the fundamental diagram
and forecasting boundary conditions: how machine learning can improve
macroscopic models for traffic flow”. arXiv:2303.12740. June 2023

Chapter 6 – Explainable drug repurposing

[270] F. Castiglione, C. Nardini, E. Onofri, M. Pedicini, and P. Tieri. “Explain-
able drug repurposing approach from biased random walks”. In: IEEE/ACM
Transactions on Computational Biology and Bioinformatics (July 2022).
pmid:35839194, pp. 1009–1019. doi: 10.1109/TCBB.2022.3191392
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a𝑖 ,B𝑖, 𝑗 𝑖-th element of vector a, element in position 𝑖, 𝑗 of matrix B.
0𝑛, 0𝑚×𝑛 zero 𝑛-length vector and zero 𝑚 × 𝑛-sized matrix
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P,NP Complexity classes of deterministic and non-deterministic polyno-

mial problems

List of abbreviations from Chapter 1 – Graph theory
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graph simple, undirected graph
colouring non-proper colouring
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ER Erdös-Rényi model
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𝑋𝑢,𝑣, Γ𝑢,𝑣 Walk (or trail) and path between 𝑢 and 𝑣
∥𝑋𝑢,𝑣∥ Length of the walk
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𝐾𝑛1 ,...,𝑛𝑟 𝑟-clique with partitions of size 𝑛1, . . . , 𝑛𝑟
𝑇𝑛
𝑑

𝑑-ary complete tree of order 𝑛.
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𝐺1 {

→
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M,A Adjacency matrix and adjacency lists of a graph
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𝐺/𝑈 Contraction of a graph 𝐺 over the vertex subset𝑈
𝔪𝐺 (𝑢1, . . . ) Contraction of a graph 𝐺 seen as variadic function
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𝑃,P Markov chain transition probability and transition matrix
Pt Markov chain 𝑡-steps transition matrix
T (𝑢) Random walk returning time set of the node 𝑢.
𝝅,𝚷 Markov chain stationary distribution and stationary matrix
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ML Machine learning
(R)MSE (Root) mean squared error
ANN Artificial neural network
FNN Feed-forward neural network
MLP Multi-layer perceptron
SLP Single-layer perceptron
RNN Recurrent neural network
LSTM Long-short term memory
(A-)HCA (Agglomerative) hierarchical clustering analysis
D-HCA Divisive hierarchical clustering analysis
C-LINK Complete Linkage
S-LINK Single Linkage
UPGMC Unweighted Pair Group Method with Mean Centroid

List of symbols from Chapter 2 – Machine learning

x, 𝑦 Data sample, ground truth
X, y Set of samples, set of ground truths
𝑁, 𝑛 Number of samples in the dataset, number of features in a sample
𝐷 Dataset (possibly labelled), see also X
𝔏, 𝑜 Generic model, output of the model
L Generic (model) output space
𝑘 Number of classes for classification/clustering tasks
ô, ŷ Output/ground-truth (discrete) probability of being in a class
p, q Probability distributions
w, 𝑏 Weights, bias
𝑓 , 𝑎 Activation function, activation value
𝐿𝑘 , 𝐼 Linear activation with slope 𝑘 , identity activation
𝜑0 Heaviside activation
𝜎 Sigmoid activation
tanh Hyperbolic tangent activation
(𝑉, 𝐸, 𝜔) Edge-weighted digraph associated with an ANN
ℓ Number of layers
𝑎𝑣, 𝑣𝑎 activation value of neuron v and vice versa
𝑉𝑙 , a(𝑙) Neurones and activation value of layer 𝑙
n Number of neurones per layer in a MLP
𝑁in, 𝑁out Number of input, output features

2 Many more acronyms are introduced in this chapter while describing literature-related concepts,
in particular w.r.t. methods names. However, we here solely report the acronyms that are useful
for the comprehension of the concepts within this work. Furthermore, a few notation are also from
Chapter 1.
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𝑇 Steps in a time series
h, 𝑁hid hidden state of RNN and corresponding size
c, g cell state, gate of the LSTM
W,R, b Input weights, recurrent weights, biases
C, 𝐶 Clustering, cluster
M,m Set of centroids, centroid
𝝁 Mean centroid
𝑑 (·, ·) Distance amongst samples
F Family of clusterings
𝑑c (·, ·) Distance amongst clusters
d, c𝜉 join-distance vector, size of 𝜉-significative clusters

List of symbols from Chapter 3 – Graph contraction on attribute-based
colouring

𝐺 = (𝑉, 𝐸, 𝛾) Input graph of the contraction procedure
𝐺′ Output graph of the contraction procedure
𝑛, 𝑛′, 𝑚, 𝑚′ Order and size of 𝐺 and 𝐺′.
𝛾, 𝐶, 𝑐 Vertex colour map, relative colour set, and number of colours
𝐺/𝛾{𝑢, 𝑣} Colour-preserving contraction
𝔪
𝛾

𝐺
Colour-preserving contraction (procedure)

𝐺/𝛾 (𝑈) Colour-preserving contraction (variadic form)
𝐺/𝛾 Graph 𝛾-contraction (colour contraction)
𝑁𝛾 (𝑣), 𝑁𝛾 (𝑈) Colour neighbourhood of 𝑣, of𝑈
𝜕𝛾 (𝑣), 𝜕𝛾 (𝑈) Colour degree of 𝑣, of𝑈
S, C𝛾 (𝐺) Colour sub-partition and colour partition (also denoted S★)
𝛽 Map 𝑉 → 𝑉 ′ induced by contraction mapping evaluation algorithm
S𝛽 Colour sub-partition induced by 𝛽
𝐷 = (𝑉, 𝐵) Rooted di-forest built according to contraction mapping algorithm
𝑅, 𝑟𝑇 Root set of 𝐷, root of tree 𝑇
𝜋, 𝜋̃ Map 𝑉,S → 𝑅 induced by 𝐷
𝛼̂, 𝛼̃ Map 𝑅,S → {0, . . . , 𝑛′} induced by 𝑟𝑇 ordering
𝛼 Map 𝑅 → 𝑉 ′ induced by 𝛼̂ ordering
𝐺/𝛽 𝛽-contraction, iteration of the algorithm
idx t, col t Data type for vertices and colours
𝑝1, 𝑝2 Thresholds for regular ER model
𝑝− , 𝑝+ Thresholds corresponding to 𝑝1, 𝑝2 for coloured ER model
𝐺FB Use case graph of Facebook

List of abbreviations from Chapter 4 – Managing crowded museums

BLE Bluetooth low-energy
RSSI Received signal strength indicator
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Acc Binary accuracy
PpR People per room
Ret Returning visitors
PDF Probability density function
ToP Time of permanence
ToT Time over threshold
TVMM Time-varying Markov model
CHF Cumulative hazard function

List of symbols from Chapter 4 – Managing crowded museums

·̃ Matrix convolution
·̄ Matrix (𝑧-score, sum) normalisation
𝑎𝑖 , 𝐴 𝑖-th antenna, number of antennas
D Room distance matrix
D̄, D̄∗,W̄ room- and trajectory-wise error metrics
𝛿 Time window
𝛿𝜇, 𝛿VC mean value relative error, variation coefficient relative error
ℎ★ Hazard function for the whole museum
𝐾𝑖 𝑖-th colour cluster
K Room transition matrix
𝜆, 𝑘 Weibull distribution parameters
M(𝑡) Time-dependent room transition matrix
𝑟𝑖 , 𝑟★, 𝑅 𝑖-th room, entrance/exit room, number of rooms
p ToP vector
R RSSI matrix
ℜ,𝔉,ℭ,ℨ,𝔚 selectors
𝑆𝑟 Survival function for room 𝑟

𝔱, 𝔰, 𝑁 Two trajectories, number of trajectories
𝑇 Length of a trajectory
W Trajectory distance matrix (Wasserstein-inspired)

List of abbreviations from Chapter 5 – Hybrid approach for traffic state
estimation and forecast

TSE Traffic state estimation
PDE Partial differential equation
LWE Lighthill–Whitham–Richards (traffic model)
PW Payne–Whitham (traffic model)
ARZ Aw–Rascle–Zhang (traffic model)
CTM Cell transmission model (traffic model)
PINN Physics-informed neural networks
PIDL Physics-informed deep learning model
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PUNN Physics-uninformed neural networks
PRGP Physics regularised Gaussian process
TLS Technische Lieferbedingungen für Streckenstationen
3𝑇 3-technology (sensors)
HF High-flux (sensors)
LF Low-flux (sensors)

List of symbols from Chapter 5 – Hybrid approach for traffic state estimation
and forecast

𝑓 , 𝜌, 𝑣 Flux, density and velocity (variables)
f, v Flux and velocity (vectors)
f∗, v∗ regularised flux and density (vectors)
𝜌max Maximum density allowed
𝑓max, 𝜎 Maximum reachable flux and corresponding optimal density 𝜎
𝑡0 Present moment in time, time of nowcast prediction
Δ𝑡past,Δ𝑡fut Data are known for [𝑡0 − Δ𝑡past, 𝑡0] and predicted for (𝑡0, 𝑡0 + Δ𝑡fut)
X Temporal sequence of feature vectors x
y Ground-truth data
𝑁in, 𝑁hid Number of input features of the ANN, hidden layers of LSTM
o, 𝑁pred Prediction output and corresponding size
ô, 𝑁class Classification normalised output, corresponding size, and best class
𝑝𝑟 positive ratio of samples in the dataset
𝔉𝑐,𝔉𝑝 ANNs for detection and forecast of congestion events
b3𝑇 Congestion events risen by 3𝑇 sensors
b 𝑓 , b𝑣 Flux and velocity heuristics for congestion events
𝔓𝑔 ANN for forecast expected upcoming flux on group of sensors 𝑔
𝑔1, 𝑔2, 𝑔3, 𝑔4 Boundary inflows of Venice, Trieste, Conegliano and Udine
𝑆𝑘 𝑘-th road segment between sensors 𝑠𝑘 and 𝑠𝑘+1 (out of 𝑁𝑆)
𝐹 Numerical flux
Δ𝑥,Δ𝑡 Space and time discretisation step
𝑁𝑡 , 𝑁

𝑘
𝑥 Number of time intervals and space cells within the discretisation

𝜌l, 𝑓l, 𝜌h, 𝑓h Density and flux of light and heavy vehicles
𝜌𝑁 , 𝜌𝐹 Density obtained by the nowcast and by the forecast
𝐸1 (𝑡) Relative 𝐿1 error between 𝜌𝑁 𝜌𝐹

List of abbreviations from Chapter 6 – Explainable drug repurposing

BLAS Basic linear algebra subprograms
DR Drug repurposing
cas-number Chemical abstracts service reference number
UMLS Unified medical language system
OMIM Online Mendelian inheritance in man
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MeSH Medical subject headings
ICD International classification of diseases
NCD Non-communicable disease
RA Rheumatoid arthritis
GT Ground truth
ROC Receiver operating characteristic
AUC Area under curve
DB DrugBank (construction dataset)
DGN DisGeNET (construction dataset)
ID IDrug (validation dataset)
LL Li and Lu article (validation dataset)
MC MalaCards (construction dataset)
RDB RepoDB (validation dataset)
SLAMS Similarity-based LArge-margin learning of Multiple Sources (vali-

dation dataset)

List of symbols from Chapter 6 – Explainable drug repurposing

𝐺DB Drug-gene graph based on DB dataset
𝐺DGN Disease-gene graph based on DGN database
𝐺MC Drug-disease graph based on MC relations
𝜎 Similarity score
𝑝(𝑡) Presence ratio of gene 𝑡
𝐻 (𝑇) Shannon Entropy of the gene set 𝑇
𝐺drg, 𝐺dis Complete graph of drugs (disease)
ℓ Length of a random walk, recommender iteration
𝔭 Percentage of drugs to recommend
(V, E, 𝜔E) Final complete weighted digraph on 𝑉drg ∪𝑉dis
R (ℓ ) ℓ-th recommendation matrix
ℜ

𝔭

ℓ
drug recommender system with parameters ℜ(R, ℓ, 𝔭)

𝑋 biased random walk
G Markov chain
𝚷, 𝝅 Stationary distribution matrix (vector)





Mathematical notation

Throughout this work, a few well-known mathematical notations are assumed known.
However, for the sake of completeness, we here report them divided into paragraphs.

Numeric set

N and N+ denote the set of non-negative and positive integers, Z identifies all the
integers (relative numbers), Q stands for rational numbers and R for real numbers.
We also employ Z𝑞 as the integers modulo 𝑞, which actually is isomorphic to the
quotient Z/𝑞Z, and we use the ≡𝑞 to denote an equivalence modulo 𝑞. We denote with
F𝑞 the finite field with 𝑞 elements and, in particular, F2 represents the binary field –
more formally, (F2, +, ·), where + is the or operator and · is the and operator. [𝑎, 𝑏]
and (𝑎, 𝑏) denotes the closed and the open interval between 𝑎 and 𝑏 in R.

Truncating and rounding

For any 𝑥 ∈ R, floor operator ⌊𝑥⌋ specifies the closer integer less than 𝑥 (truncated
value of 𝑥), ceil operator ⌈𝑥⌉ states the closer integer bigger than 𝑥 (truncated value
of 𝑥 + 1, unless ∈ N) while rounding operator ⌊𝑥⌉ rounds 𝑥 to the closer integer
(truncated value of 𝑥 + 0.5).

Set, tuples, vectors, and matrices

We use curly brackets {. . . } for a set of elements (unordered, without repetitions),
angle brackets ⟨. . . ⟩ for tuples (unordered, with repetitions), and round brackets
(. . . ) for vectors (ordered with repetitions).

We usually denote vectors and matrices with small and capital bold Roman letters
respectively. Given a set 𝑆 and two dimensions 𝑚, 𝑛 ∈ N+, we define the space of
all 𝑛-length vectors with values in 𝑆 as 𝑆𝑛 and the space of all 𝑚 × 𝑛-sized matrices
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with values in 𝑆 as 𝑆𝑚×𝑛. Vectors are always interpreted as single-column matrices,
i.e. x ∈ 𝑆𝑛 corresponds to x ∈ 𝑆𝑛×1. A superscript ·t denotes the matrix/vector
transposition, hence xt ∈ 𝑆1×𝑛 while a superscript ·𝜏 denotes the matrix/vector
transposition w.r.t. the off-diagonal, i.e. ·t where columns and rows are flipped. The
𝑖-th element of a vector x is identified by x𝑖 and, analogously, the element in position
𝑖, 𝑗 of a matrix M is identified by M𝑖, 𝑗 . The 𝑖-th row and the 𝑗-th column of a matrix
M ∈ 𝑆𝑚×𝑛 are denoted respectively with M𝑖, · ∈ 𝑆𝑛 and M·, 𝑗 ∈ 𝑆𝑚. The zero vector
of length 𝑛 is denoted by 0𝑛, while the zero matrix of size 𝑚 × 𝑛 is denoted by 0𝑚×𝑛.
Analogously, the unit vector of length 𝑛 (i.e. where each entry is one) is denoted by
1𝑛, while the identity matrix of size 𝑚 × 𝑛, i.e. 0𝑚×𝑛 where main diagonal entries
are 1, is denoted by 1𝑚×𝑛.

Asymptotic classes

We adopt big-O and big-Ω notation for upper- and lower-bounding asymptotic classes
respectively. We use the big-Θ notation for both upper- and lower-bounding together.
Given two real-valued functions 𝑓 , 𝑔, in formulas we have

𝑓 (𝑥) ∈ O(𝑔(𝑥)) ⇐⇒ ∃𝑐, 𝑥0 ∈ R s.t. 𝑓 (𝑥) < 𝑐 · 𝑔(𝑥),∀𝑥 > 𝑥0

𝑓 (𝑥) ∈ Ω(𝑔(𝑥)) ⇐⇒ ∃𝑐, 𝑥0 ∈ R s.t. 𝑓 (𝑥) > 𝑐 · 𝑔(𝑥),∀𝑥 > 𝑥0

𝑓 (𝑥) ∈ Θ(𝑔(𝑥)) ⇐⇒ 𝑓 (𝑥) ∈ O(𝑔(𝑥)) and 𝑓 (𝑥) ∈ Ω(𝑔(𝑥))

Complexity classes

We adopt canonical notation for complexity classes. In particular, given a decision
problem A, we say that A ∈ P, if it is solvable by a deterministic Turing machine
in polynomial time and we say that A ∈ NP if it is solvable by a non-deterministic
polynomial-time Turing machine (or, analogously, if it is verifiable in polynomial
time by a deterministic Turing machine). A is said to be NP-hard if there exists a
polynomial reduction from each problem in NP to A. A problem which is both in
NP and NP-hard is said to be NP-c (or NP-complete), since proving its membership
in P would solve the famous problem P =? NP. Problems in NP (some of which are
introduced in Section 1.5) are considered to be computationally intractable on the
average case.
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Chapter 1
Graph theory

I wrote down this first chapter as an introduction to graph
theory, mainly focusing on the topics that serve in the rest of the
present work. The chapter is initially structured similarly to the
lectures in informatics I hold at “Università degli Studi Roma
Tre”. The content represents my personal approach to graph
theory that takes inspiration from various books and research
articles, including [6, 7, 12, 13].

1.1 Introduction

Like many other areas in (applied) mathematics, it is not surprising that graph
theory has been independently discovered many times throughout history. However,
conversely w.r.t. many of the other branches of mathematics – which were typically
motivated by fundamental problems of calculation, motion, and measurements – the
problem which led to graph theory development were often little more than puzzles.
The origins of the concept of graphs and the correspondent study can be traced back
to the works of Euler, who mentioned the subject in his writings dealing with the
well-known problem of Königsberg bridges [10].

Although Euler’s initial problem may have seemed like a playful riddle, it was
rooted in the physical world, and its solution provides a clear explanation for why
graph theory captivates mathematicians. In fact, like many other applied mathematics
fields, graph theory exhibits a remarkable capacity of abstraction from the real world.
The surprising variety and depth of its theoretical results make, nowadays, graph
theory an appealing and rich subject of study.

However, it took nearly two centuries for the first book on graph theory to be
published in 1936 [15]1. Kirchhoff, Cayley and Sylvester later rediscovered graph
theory, with their investigations once again rooted in the realm of physics and chem-
istry. Kirchhoff’s study of electric networks led to the development of fundamental
concepts and theorems concerning trees in graphs, while Cayley and Sylvester ex-
plored graphs by building an isomorphism with the structure of single molecules,
introducing the so-called chemical graph theory. Sylvester, in particular, was one
of the first researchers who recognise the importance of graphs and their wide ap-
plicability, commenting on their combinatorial nature2. Another notable contributor

1 The interested reader can refer to [3] for a book discussing the early stages of graph theory before
1936.
2 “The theory of ramification is one of pure colligation, for it lakes no account of magnitude
or position; geometrical lines are used, but have no more real bearing on the matter than those
employed in genealogical tables have in explaining the laws of procreation” (quote is from [12]).

3



4 1 Graph theory

to graph theory was Hamilton, who approached the subject from a puzzle-solving
perspective by creating a board game called “Around the World” where the objective
was to determine a Hamiltonian (or traceable) path over a graph. Subsequently, the
famous four colour conjecture gained prominence and has remained an enduring
topic of interest ever since.

Within the present century, graph theory continues to experience numerous re-
discoveries, particularly notable in its application to real-world problems. From
computer science and network analysis to operations research and social network
analysis, graphs offer powerful tools for modelling, analysing, and solving a wide
range of practical problems, as we will briefly see also in the main contributions
discussed in this work. The ability to represent relationships, connections, and de-
pendencies between entities makes graph theory an indispensable tool in numerous
fields. In addition, the abstract nature of graph theory enables the study of general
principles and properties that are applicable across different domains. Concepts like
connectivity, paths, cycles, and graph algorithms have far-reaching implications and
find applications in diverse areas of science, engineering, and social sciences; al-
though, a precise description of their applications is out of the scope of the present
work.

As a natural consequence of the diverse fields where graph theory developed,
a standard notation for graph theoretical objects is lacking. In fact, the choice of
names for graph elements often reflects the specific context in which graphs are
employed. As an example, when considering a communications network such as
an email network, the entities involved are referred to as nodes, aligning with the
terminology used in computer science. Conversely, different names may be used for
objects in other domains, such as vertices or points in mathematical graph theory,
molecular structures in chemistry, flow charts in programming, or human relations
in social sciences. This further motivates the presence of Section 1.2 – and more in
general the choice of having this as the first chapter of this work – which, despite
being very introductory, serves the purpose of introducing a common line for the
rest of this work.

1.1.1 Chapter organisation

The rest of this chapter is organised as follows. In Section 1.2 we introduce the basics
of graph theory, covering the topics of adjacency (Section 1.2.1), sub-graphs and
spanning (Section 1.2.2), and describing some useful operations within two graphs
(Section 1.2.3); we continue by describing the different kinds of walks that can be
performed along a graph (Section 1.2.4) and the consequent definition of connected
graph, connected component, tree, and forest (Section 1.2.5). We close Section 1.2
discussing graph isomorphisms and graph classes (Section 1.2.6) and describing
how to equip a graph with weights and, in particular, with colours(Section 1.2.7).
Section 1.3 introduces some possible generalisation on graphs, including digraphs
and multi-graphs. Section 1.4 delves into the problem of representing a graph, dis-
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cussing both advantages and shortcomings of adjacency lists and adjacency matrices.
Section 1.5 introduces the problem and the notation related to graph contraction, a
topic that is cardinal later in Chapter 3. Section 1.6 describes how it is possible to
generate random graphs, with particular attention to the well-known Erdös-Rényi
models (Section 1.6.1) that are later used in Chapter 3 for benchmark purposes; a few
other models are discussed as well for the sake of completion (Section 1.6.2). Closes
the chapter Section 1.7 on random walks over graphs; after basic definitions are
provided (Section 1.7.1), reachability in random walks is discussed (Section 1.7.2)
and a few important properties for what follows are introduced (Section 1.7.3).

1.2 The basics

Let us consider a finite set 𝑉 of size 𝑛 (for this chapter we might assume 𝑉 ⊊ N and,
usually,𝑉 = {0, . . . , 𝑛−1}). We recall𝑉2 as the 2-vectors of𝑉 , or Cartesian product
𝑉 ×𝑉 :

𝑉2 � 𝑉 ×𝑉 = {(𝑢, 𝑣) | 𝑢, 𝑣 ∈ 𝑉} , (1.1)

i.e. all the possible vectors of length 2 with elements from 𝑉 . We denote with [𝑉]2
the 2-sets of 𝑉 :

[𝑉]2 = {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑉, 𝑢 ≠ 𝑣} , (1.2)

i.e. the set of all possible subsets of two distinct elements in 𝑉 3. We denote with
⟨𝑉⟩2 the 2-uple (or duples) of 𝑉 :

⟨𝑉⟩2 = {⟨𝑢, 𝑣⟩ | 𝑢, 𝑣 ∈ 𝑉} , (1.3)

i.e. the set of all possible (unordered) couples of elements in 𝑉 .
We define a (simple, undirected) graph (on 𝑉) as a pair of sets 𝐺 = (𝑉, 𝐸) such

that 𝐸 ⊆ [𝑉]2. Elements 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸 are called vertices and edges, respectively4.
The usual way to depict a graph is by means of a planar drawing, where vertices are
represented by points and edges by lines (see Figure 1.1).

The vertex set and the edge set w.r.t. a graph 𝐺 are denoted as 𝑉𝐺 and 𝐸𝐺
respectively to remark it (useful when working with multiple graphs, like we do later
in Chapter 6); hence we say that 𝐺 = (𝑉𝐺 , 𝐸𝐺).

We define the order of a graph 𝐺 as the size of its vertex set and the size of 𝐺 as
the size of its edge set; we denote them as 𝑛𝐺 = |𝐺 | = |𝑉𝐺 | and 𝑚𝐺 = ∥𝐺∥ = |𝐸𝐺 |
respectively.

3 [ · ]2 is also denoted by P2 ( ·) since it corresponds to a subset of the power set P(·) where all
elements have dimension two: [𝑋]2 = P2 (𝑋) = {𝑦 ∈ P(𝑋) | |𝑦 | = 2}
4 In literature, 𝑣 ∈ 𝑉 and 𝑒 ∈ 𝐸 are often called in various ways, including:

vertex point node junction 0-simplex entity
edge line arc branch 1-simplex relation



6 1 Graph theory

0

1

23

4

5

6

78

9

5
9

4

2

78

3

1

6

0

Fig. 1.1: Two representations of the Petersen graph, a well-known (simple, undirected) graph
𝐺 = (𝑉, 𝐸 ) , where 𝑉 = {0, . . . , 9} and 𝐸 = {{0, 2}, {0, 3}, {0, 5}}, {1, 3}, {1, 4}, {1,
6}, {2, 4}, {2, 7}, {3, 8}, {4, 9}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 5}}. Representations
are equivalent. We see that𝐺 has order |𝐺 | = 10 and size ∥𝐺 ∥ = 15. The graph is 3-regular, since
𝜕(𝑣) = 3, ∀𝑣 ∈ 𝑉 .

We (nearly) always adopt the same notation for vertices – using Latin letters
𝑢, 𝑣, 𝑤 – and for edges – using Latin letters 𝑒, 𝑓 .

1.2.1 Adjacency, neighbourhoods, and degrees

Given two vertices 𝑢, 𝑣 ∈ 𝑉𝐺 , they are said to be adjacent – denoted by 𝑢 ∼𝐺 𝑣 –
if there exists an edge 𝑒 ∈ 𝐸𝐺 with 𝑒 = {𝑢, 𝑣}; in such a case we say that 𝑒 joins 𝑢
and 𝑣 and that 𝑢 and 𝑣 are incident with 𝑒. In particular, 𝑢 and 𝑣 are called endpoints
(or simply ends or endvertices) of 𝑒. Given two edges 𝑒, 𝑓 ∈ 𝐸𝐺 , they are said to
be adjacent – denoted by 𝑒 ∼𝐺 𝑓 – if they share one endpoint. If 𝑢, 𝑣 ∈ 𝑉 (resp.
𝑒, 𝑓 ∈ 𝐸) are not adjacent, then we say that they are independent and we write
𝑢 ≁𝐺 𝑣 (𝑒 ≁𝐺 𝑓 ). We can extend the concept of vertex (resp. edge) independence to
a set of vertices (resp. edge) if they are pairwise independent; in such case, we refer
to such set as stable. Conversely, a set of vertices that are mutually adjacent is said
to be a clique.

The set of vertices adjacent to a given vertex 𝑣 ∈ 𝑉 is called neighbourhood of
𝑣 ∈ 𝑉 and it is denoted by

𝑁𝐺 (𝑣) = {𝑢 ∈ 𝑉 | 𝑢 ∼𝐺 𝑣} . (1.4)

The size of 𝑁 (𝑣) is referred to as degree of 𝑣 and it is denoted by 𝜕𝐺 (𝑣). Maximum,
average and minimum degree of a graph are respectively denoted by Δ(𝐺), 𝜕 (𝐺),
and 𝛿(𝐺), i.e.
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Δ(𝐺) = max
𝑣∈𝑉𝐺

𝜕 (𝑣) , 𝜕 (𝐺) = 1
|𝐺 |

∑︁
𝑣∈𝑉𝐺

𝜕 (𝑣) , 𝛿(𝐺) = min
𝑣∈𝑉𝐺

𝜕 (𝑣) . (1.5)

If, for some 𝑘 ∈ N, we have 𝛿(𝐺) = 𝑘 = Δ(𝐺) (= 𝜕 (𝑣),∀𝑣 ∈ 𝑉𝐺) then the graph is
said 𝑘-regular. Do note that the graph size and vertices degree are linked together
since

∥𝐺∥ = 1
2

∑︁
𝑣∈𝑉𝐺

𝜕 (𝑣) = 1
2
𝜕 (𝐺) · |𝐺 | . (1.6)

Size and degree of vertices naturally extend to vertices sets, i.e. given 𝑈 ⊂ 𝑉 we
define

𝑁𝐺 (𝑈) =
⋃
𝑢∈𝑈

𝑁𝐺 (𝑢) \𝑈 (1.7)

and 𝜕𝐺 (𝑈) = |𝑁𝐺 (𝑈) |.

1.2.2 Subgraphs and span

Let 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸 ′) be two graphs. If 𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊂ 𝐸 we say that
𝐺′ is a subgraph of 𝐺 – and we write 𝐺′ ≤ 𝐺. In particular, if 𝐺′ ≠ 𝐺 and 𝐺′ ≠ ∅,
we say that it is a proper subgraph – and we write 𝐺′ < 𝐺.

If𝐺′ ≤ 𝐺 and 𝑥 ∼𝐺 𝑦 ⇒ 𝑥 ∼𝐺′ 𝑦,∀𝑥, 𝑦 ∈ 𝑉 ′, we say that𝐺′ is an induced graph
of 𝐺 by 𝑉 ′; in particular, we say that 𝑉 ′ spans (or induces) 𝐺′ over 𝐺 and we write
𝐺′ = ⟨𝑉 ′⟩𝐺 . By abuse of notation, given 𝐺′ ≤ 𝐺, we denote the subgraph spanned
by 𝐺′ – we write ⟨𝐺′⟩𝐺 – as the subgraph spanned by 𝑉 ′, i.e. ⟨𝐺′⟩𝐺 = ⟨𝑉 ′⟩𝐺; do
note that 𝐸 ′ has no role in spanning a graph, except for the fact that 𝐸 ′ ⊆ 𝐸 must
hold, since 𝐺′ ≤ 𝐺.

Finally, we say that 𝐺′ is a spanning graph if 𝐺′ ≤ 𝐺 and ⟨𝐺′⟩𝐺 = 𝐺, i.e.
𝑉 ′ = 𝑉 (this notation is particularly useful when referring to some particular kind of
subgraphs, like a tree, see later in Section 1.2.5).

1.2.3 Graphs operators

Let 𝐺1 = (𝑉1, 𝐸1) and 𝐺2 = (𝑉2, 𝐸2) be two graphs.We define the following
operators between them

Graphs union We define the graphs union 𝐺1 ∪ 𝐺2 as the graph

𝐺 = 𝐺1 ∪ 𝐺2 = (𝑉1 ∪𝑉2, 𝐸1 ∪ 𝐸2) . (1.8)

Graphs Intersection We define the graphs intersection 𝐺1 ∩ 𝐺2 as the graph

𝐺 = 𝐺1 ∩ 𝐺2 = (𝑉1 ∩𝑉2, 𝐸1 ∩ 𝐸2) . (1.9)
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Edges addition Given 𝐹 ⊂ [𝑉1]2, we define the edges addition𝐺1 +𝐹 as the graph

𝐺 = 𝐺1 + 𝐹 = (𝑉1, 𝐸1 ∪ 𝐹) . (1.10)

Edges removal Given a generic edge set 𝐹 (typically 𝐹 ⊂ [𝑉1]2), we define the
edges removal 𝐺1 − 𝐹 as the graph

𝐺 = 𝐺 − 𝐹 = (𝑉1, 𝐸1\𝐹) . (1.11)

Vertices removal Given a vertex set 𝑈 (typically 𝑈 ⊂ 𝑉1), we define the vertices
removal 𝐺1 −𝑈 as the graph

𝐺 = 𝐺1 −𝑈 = ⟨𝑉1\𝑈⟩𝐺1 . (1.12)

We further define 𝐺1 − 𝐺2 as 𝐺1 − 𝑉2, a well-posed notation since removing
vertices 𝑉2 implicitly includes the removal of each edge insisting over 𝑉2.

Graphs join If 𝐺1 and 𝐺2 are disjoint (i.e. 𝑉1 ∩𝑉2 = ∅), we define the graphs join
𝐺1 ∗ 𝐺2 as the graph

𝐺 = 𝐺1 ∗ 𝐺2 = 𝐺1 ∪ 𝐺2 + {{𝑢, 𝑣} | 𝑢 ∈ 𝐺1, 𝑣 ∈ 𝐺2} , (1.13)

i.e. the graph obtained by the union of 𝐺1 and 𝐺2 where all the vertices from
𝐺1 are joined with all the vertices from 𝐺2.

Figures 1.2, 1.3, and 1.4 provide some simple examples of the above-described
operation for ease of readability.

In the following, we always drop the subscript ·𝐺 when it is clear from the context
to which graph we are referring to, e.g. we simply write 𝑢 ∼ 𝑣 rather than 𝑢 ∼𝐺 𝑣.

1.2.4 Traversability of a graph

Underlying the concept of connectivity of a graph 𝐺 = (𝑉, 𝐸) – that we introduce
in the upcoming Section 1.2.5 – there are the notions of walk, trail, and path, three
progressive refinements of the same object. We define a walk 𝑋𝑢,𝑣 between two nodes
𝑢, 𝑣 ∈ 𝑉 as a non-empty succession of pair-wise adjacent nodes between 𝑢 and 𝑣, i.e.

𝑋𝑢,𝑣 = (𝑥0, 𝑥1, . . . , 𝑥ℓ−1, 𝑥ℓ) s.t.



ℓ ≥ 0
𝑥0 = 𝑢

𝑥ℓ = 𝑣

𝑥𝑖 ∈ 𝑉 ∀0 ≤ 𝑖 < ℓ
{𝑥𝑖 , 𝑥𝑖+1} ∈ 𝐸 ∀0 ≤ 𝑖 < ℓ

(1.14)

The vertices 𝑢 and 𝑣 are said to be the source and the destination of the walk. We
say that the walk traverse the graph by visiting the edges 𝑥𝑖 and travelling along the
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Fig. 1.2: An example of (c) union, (d) intersection, and (e) subtraction of two graphs (a) and (b).
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Fig. 1.3: An example of (c) addition and (d) removal of an edge set (b) from a graph (a).
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Fig. 1.4: An example of join (b) between two disjoint graphs (a) and (c).

edges {𝑥𝑖 , 𝑥𝑖+1} (or traversing them). The number of edges (with multiplicity) within
the walk (i.e. ℓ) is referred to as length of 𝑋 and it is denoted by ∥𝑋 ∥. Do note that
|𝑋 | = ∥𝑋 ∥ + 1 and if ∥𝑋 ∥ = 0 the walk is said trivial.

A walk that travels along each edge at most once is said to be a trail while, if
each vertex is visited at most once, we refer to the walk as a path. Paths are typically
denoted by Γ𝑢,𝑣 rather than 𝑋𝑢,𝑣. In particular, a path is also a trail. Do note that a
path also defines a subgraph 𝐺′ of 𝐺 where |𝐺′ | = ∥𝐺′∥ + 1.

A non-trivial walk 𝑋𝑢,𝑣 with matching source and target (i.e. 𝑢 = 𝑣 and ∥𝑋 ∥ > 1)
is often called a tour. A tour Γ𝑢,𝑢 (with abuse of notation) where each vertex and
each edge is distinct (apart from 𝑢 = 𝑣) is called a cycle5. Similarly to paths, a cycle
can be seen as a subgraph 𝐺′ of 𝐺 where |𝐺′ | = ∥𝐺′∥. In particular, we can say that
a path is a walk without inner cycles.

Do note that, given a cycle Γ𝑢,𝑢, then for any vertex 𝑣 ∈ Γ𝑢,𝑢, with 𝑢 ≠ 𝑣, the
cycle is divided into two paths Γ𝑢,𝑣 and Γ𝑣,𝑢 which are disjoint apart from the mutual
{source, destination} couples. Conversely, given two disjoint paths connecting 𝑢, 𝑣 ∈
𝑉 , the concatenation of these two paths forms a cycle. It follows that all the vertices
𝑣 ∈ Γ𝑢,𝑢 admit a cycle Γ𝑣,𝑣 themselves. A graph that does not admit any cycle is
called acyclic. Do note that a graph is acyclic if and only if, for any couple of vertices
𝑢, 𝑣 ∈ 𝑉 , there exists at most a single distinct path Γ𝑢,𝑣.

Before moving on to the next Section, it is worth (mainly for historical purposes)
introducing two couples of famous problems related to graphs traversability. The
first couple of problems were introduced back in the work of Euler (see [10]) we
referred to in the introduction of this chapter (Section 1.1) and consists in finding
a tour that traverses each edge exactly once, or Eulerian tour. A derivation of the
same problem consists in finding a trail which traverses each edge exactly once, or
Eulerian trail. A graph that admits an Eulerian (trail) tour is said a (semi-) Eulerian
graph; many efforts were devoted in early graph theory to characterise Eulerian
graphs. Particularly relevant results in this sense are the ones of Hierholzer (see [14])
which provided a linear time algorithm for evaluating Eulerian tours by proving that
a graph is Eulerian if and only if each of its vertices has even degree.

5 The requirement that each edge is distinct can be dropped in favour of ∥𝑋∥ > 2.
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The second couple of problems, that might seem very close to Eulerian trails
and tours are determining whether there exists a path (resp. a cycle) that traverses
all the vertices, or a Hamiltonian path6 (resp. Hamiltonian cycle). A graph which
contains a Hamiltonian path is said to be traceable, while a graph containing a
Hamiltonian cycle is said to be Hamiltonian. Despite being very similar in definition
to Eulerian graphs, also solely determining whether a graph is Hamiltonian/traceable
is a well-known NP-c problem (see [6]).

1.2.5 Connectivity, trees and forests

Given a graph 𝐺 = (𝑉, 𝐸), two vertices 𝑢, 𝑣 ∈ 𝑉 are said to be connected if there
exists at least a path (more in general a walk) Γ𝑢,𝑣 (disconnected, otherwise). The
minimum length of a path between 𝑢 and 𝑣 (if present) is denoted by 𝑑 (𝑢, 𝑣) and it
is said distance between 𝑢 and 𝑣; such path is said to be the shortest path between 𝑢
and 𝑣. If 𝑢 and 𝑣 are disconnected, we assume 𝑑 (𝑢, 𝑣) = +∞, hence we have

𝑑 (𝑢, 𝑣) = min
(
{∥Γ𝑢,𝑣∥} ∪ {+∞}

)
. (1.15)

The term distance is used since 𝑑 defines a metric over the vertex set, holding (i)
positivity, (ii) symmetry, and (iii) triangular inequality.

If all the vertices in 𝑉 are pairwise connected, then the graph is said to be
connected. A component of a graph is a maximal connected subgraph (maximal w.r.t.
connectivity), i.e. a subgraph 𝐺1 ≤ 𝐺 such that for any 𝐺2 ≤ 𝐺 either 𝐺2 ≤ 𝐺1
or 𝐺2 is disconnected or, analogously, a connected subgraph 𝐺′ = ⟨𝑈⟩𝐺 spanned
by 𝑈 ⊆ 𝑉 such that 𝑁 (𝑈) = ∅. We denote with C(𝐺) the set of all the components
of 𝐺. It follows that, if a graph admits a single component (i.e. |C(𝐺) | = 1), then
it is connected; in fact, given two components 𝐺′ and 𝐺′′ of 𝐺, either 𝐺′ = 𝐺′′ or
𝐺′ ∩ 𝐺′′ = (∅, ∅).

If for any couple of vertices there exists at most a path connecting them, then
the graph is said a forest; if there exists exactly one path connecting each couple of
vertice, then the graph is said to be a tree7. It follows that a forest is a graph whose
components are trees.

Forests and (in particular) trees have many applications in computer science. As
an example, we will use trees in the context of graph spanning in Chapter 3. In
fact, in the context of a connected graph (component), the minimal spanning graph
whose also connected is called spanning tree (an ensemble of spanning trees is called
spanning forest, see Figure 1.5).

In the following, we assume each graph to be connected if not differently specified.
This restriction might seem very strict, however, when we analyse a graph we can
typically analyse its component instead (being them independent one from the other).

6 Hamiltonian paths are also said Traceable paths.
7 Analogous definition to forest and tree are, respectively, acyclic graph and connected forest or
connected acyclic graph.
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Fig. 1.5: A disconnected graph with its components. For each component, it is highlighted a
spanning tree. All the spanning trees together form a spanning forest.

𝑟

(a)

𝑟 L0

L1

L2

L3

L4

(b)

Fig. 1.6: (a) A generic tree 𝑇 with |𝑇 | = 22 and (b) its corresponding rooted version in 𝑟 . The root
is highlighted in orange (and marked with 𝑟), leaves are highlighted in green.

Rooted trees

Given a tree 𝑇 = (𝑉, 𝐸) it is always possible, and sometimes convenient, to select
a given node 𝑟 ∈ 𝑉 as a special node; such node is then called the root of the tree.
A tree with a fixed root is often called rooted tree – denoted by 𝑇𝑟 . In rooted trees,
nodes are organised depending on their distance from 𝑟 (which is called height of
a node), hence creating levels. In particular, we define the 𝑘-th level of 𝑇 as the set
of all nodes with height 𝑘 . The number of levels ℓ of a tree is called height of the
tree, i.e. ℓ = max{𝑑 (𝑢, 𝑟) | 𝑢 ∈ 𝑉}. Nodes with degree 1 are called leaves of 𝑇 and
do represent the further points w.r.t. the root along a given path. Figure 1.6 depicts a
tree along with the corresponding rooted version.

Given a vertex 𝑣 ∈ 𝑉, 𝑣 ≠ 𝑟 , ∃!Γ𝑣,𝑟 = (𝑣, 𝑥1, . . . , 𝑥𝑘−1, 𝑟). Nodes 𝑥1, . . . , 𝑟 are
referred to as ascendant of the vertex 𝑣 and, in particular, 𝑥1 is said to be the parent
(or father) of 𝑣. Conversely, 𝑣 is referred to as children (or child) of 𝑥1, hence the
children of 𝑣 are 𝑁 (𝑣) − {𝑥1}. Do note that a node is a leaf if and only if it has no
child and 𝑟 has no parent.

We define a 𝑑-ary tree (binary, if 𝑑 = 2) as a rooted tree where all vertices have
at most 𝑑 children. Do note that ariety might depend on the choice of the root since
the number of children of 𝑟 is equal to 𝜕 (𝑟), while the number of children of 𝑣 ≠ 𝑟
is equal to 𝜕 (𝑣) − 1. A 𝑑-ary tree where each node (up to level ℓ − 1) has exactly 𝑑
children is said complete. It is easy to prove the height of a generic 𝑑-ary graph 𝑇 is
bounded between ⌈log𝑑 ( |𝑇 |)⌉ ≤ ℓ < |𝑇 |, where the equality holds if (but not only
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0

12

𝐺

(a)

0

12

𝐺′

(b)

𝜑 : 𝐺 → 𝐺′

0 ↦→ 1
1 ↦→ 2
2 ↦→ 0

(c)

Fig. 1.7: Two sample graphs 𝐺 and 𝐺′ such that 𝐺 ≠ 𝐺′ but 𝐺 � 𝐺′: (a) 𝐺 =

({0, 1, 2}, {{0, 1}, {0, 2}}) . (b) 𝐺′ = ({0, 1, 2}, {{0, 1}, {1, 2}}) . (c) A valid isomorphism
between 𝐺 and 𝐺′.

if) 𝑇 is complete, hence making complete 𝑑-ary trees the “shortest” graphs (i.e. the
graphs with smallest height) as possible.

1.2.6 Graphs classification

Let 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸 ′) be two graphs. Graph equality (=), i.e.

𝐺 = 𝐺′ ⇐⇒ 𝑉 = 𝑉 ′ and 𝐸 = 𝐸 ′ , (1.16)

is an equivalence relation which is typically too strict. In order to relax the equality,
we can think of an equivalence relation that only considers the structure of the edges,
rather than the “identity” of the vertices. This approach makes sense in many settings
since graphs are typically used to study relations rather than entities. Hence, we can
define an equivalence relation that is “equality up to isomorphism”. More formally,
we say that 𝐺 and 𝐺′ are isomorphic – and we write 𝐺 � 𝐺′ – if there exists an
isomorphism 𝜑 between them, i.e. a vertex bijection:

𝜑 : 𝐺 → 𝐺′

𝑣 ↦→ 𝑣′
s.t. {𝑢, 𝑣} ∈ 𝐸 ⇐⇒ {𝜑(𝑢), 𝜑(𝑣)} ∈ 𝐸 ′ . (1.17)

See Figure 1.7 for an example of isomorphism. In particular, if 𝐺 = 𝐺′ then an iso-
morphism 𝜑 is called automorphism and the two graphs are said to be automorphic.

We define a graph invariant as a graph map that assigns equal values to isomorphic
graphs, e.g. order and size of a graph are invariants. Analogously, we define a set of
graphs that is closed under isomorphism as a graph property , e.g. having a 3-clique
as a sub-graph (i.e. three vertices mutually connected, see below).

Being � an equivalence relation, it makes sense to talk about classes of graphs and
to study them depending on their similarities, invariants and properties. In particular,
we define a few classes of graphs that will be useful later:

Empty graph A graph is said to be empty if 𝐺 = (∅, ∅). Do note that the empty
graph forms an equivalence class with a single graph.
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Trivial graph A graph is said to be trivial if it is isomorphic to 𝐺 = ({1}, ∅), i.e. if
its order is |𝐺 | = 1.

Independent graph A graph𝐺 = (𝑉, 𝐸) is said to be 𝑛-independent – and we write
𝐼𝑛 – if |𝐺 | = 𝑛 and 𝐸 = ∅.

Path graph A graph 𝐺 = (𝑉, 𝐸) is said to be a 𝑛-path – and we write 𝑃𝑛 – if
|𝐺 | = 𝑛 and there exists a path that traverses all the nodes and all the edges8.

Cycle graph A graph 𝐺 = (𝑉, 𝐸) is said to be a 𝑛-cycle, with 𝑛 > 2 – and we write
𝐶𝑛 – if |𝐺 | = 𝑛 and there exists a cycle that traverses all the nodes and all the
edges9.

Complete graph A graph 𝐺 = (𝑉, 𝐸) is said to be 𝑛-complete – and we write 𝐾𝑛 –
if |𝐺 | = 𝑛 and {𝑢, 𝑣} ∈ 𝐸,∀𝑢, 𝑣 ∈ 𝑉 , i.e. ∥𝐺∥ =

(𝑛
2
)
= 𝑛!

2!(𝑛−2)! =
𝑛· (𝑛−1)

2 .
𝑟-partite graph A graph 𝐺 = (𝑉, 𝐸) is said to be 𝑟-partite if there exists a 𝑟-

partition 𝑉1, . . . , 𝑉𝑟 of 𝑉 10 such that ⟨𝑉𝑖⟩𝐺 � 𝐼 |𝑉𝑖 | for each 0 < 𝑖 ≤ 𝑟 (i.e.
{𝑢, 𝑣} ∈ 𝐸 ⇒ 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉 𝑗 with 𝑖 ≠ 𝑗). If 𝑟 = 2 we call the graph bipartite
rather than 2-partite.

𝑟-clique A graph 𝐺 = (𝑉, 𝐸) is said to be an 𝑟-clique (biclique if 𝑟 = 2) if there
exists an 𝑟-partition 𝑉1, . . . , 𝑉𝑟 , with 𝑛𝑖 = |𝑉𝑖 |, such that 𝐺 � 𝐼𝑛1 ∗ · · · ∗ 𝐼𝑛𝑟 ,
that is ∀𝑢, 𝑣 ∈ 𝑉, {𝑢, 𝑣} ∈ 𝐸 ⇐⇒ 𝑢 ∈ 𝑉𝑖 , 𝑣 ∈ 𝑉 𝑗 with 𝑖 ≠ 𝑗 . In particular, we
denote it as 𝐾𝑛1 ,...,𝑛𝑟 . A biclique 𝐾1,𝑛 is called 𝑛-star. Do note that an 𝑛-clique
of size 𝑛 is isomorphic to 𝐾𝑛.

𝑑-ary complete tree We denote with𝑇𝑛
𝑑

the class of 𝑑-ary complete graphs of order
𝑛 (see Section 1.2.5). Do note that 𝑇𝑛1 � 𝑃

𝑛.

Do note that 𝐾1, 𝐼1, 𝑃1, and 𝑇1
𝑑

are all examples of trivial graphs. Analogously,
𝑃2 � 𝐾2 � 𝐾1,1 and 𝐾3 � 𝐶3 � 𝐾1,1,1 (which is typically called triangle).

An exhaustive list of all the isomorphism classes of graphs𝐺 of order 1 ≤ |𝐺 | ≤ 6
(organised by graph size) can be found in [12, Appendix 1]. The analogous list for
digraphs𝐺 (see later Section 1.3) of order 1 ≤ |𝐺 | ≤ 4 can be found in [12, Appendix
2]. Finally, a list of all the possible trees 𝑇 of order 1 ≤ |𝑇 | ≤ 10 can be found in
[12, Appendix 3].

1.2.7 Weighted and coloured graphs

The notion of distance along the graph introduced in Section 1.2.5 and, in particular,
in (1.15) is based on the search for a shortest path connecting two nodes. This is a
classical problem in combinatorial optimisation literature, which can be solved by
means of many different algorithms like, e.g., the well-known Dijkstra algorithm.
Other important problems in graph theory combinatorial optimisation include, e.g.,

8 Analogously, we can say 𝐺 is connected and the degree of each node is 2 but two nodes which
have degree 1.
9 Analogously, we can say 𝐺 is connected and the degree of each node is 2.
10 We recall a 𝑟-partition of 𝑉 being a set of 𝑟 (non-empty) proper subsets 𝑉1, . . . , 𝑉𝑟 ⊊ 𝑉 such
that

⋃𝑟
𝑖=1 𝑉𝑖 = 𝑉 and 𝑉𝑖 ∩ 𝑉𝑗 = ∅, ∀1 ≤ 𝑖 < 𝑗 ≤ 𝑟 .
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1.8: Nine different graph classes. (a) The empty graph. (b) The trivial graph 𝐼1. (c) The
4-independent graph 𝐼4. (d) The 5-path graph 𝑃5. (e) The 6-cycle graph 𝐶6. (f) The 7-complete
graph 𝐾7. (g) The 8-star graph 𝐾1,8. (h) A 3-partite graph. (i) The biclique 𝐾3,3.

the search for the maximum number of independent paths connecting two nodes, i.e.
the maximum flux problem.

Both shortest-path and maximum-flux problems are typically grounded in the
physical world, as they were originally motivated by the representation of some
real-world use case. It is the case e.g. of a sat-nav searching for a (sub-)optimal path
in a road network or the optimisation of the flux along a railway network (see [17,
18] for two historical reviews on those problems). It is natural with these problems
(and many others) to extend the binary notion of edges (1 if the edge is present, 0
if the edge is absent) to incorporate numerical values, known as weights. Weights
represent additional information about the relationships between the graph vertices
depending on the underlying problem; as an example, they might represent vertices
mutual distances (or edges traversal cost), when referring to the shortest path problem
(often denoted as minimum cost problem in this context), or to edges capacity or
resistance, when referring to the maximum flux problem.

More formally, a edge-weighted graph is a graph 𝐺 = (𝑉, 𝐸) equipped with
an edge-weight function 𝜔𝐸 – and we write 𝐺 = (𝑉, 𝐸, 𝜔𝐸) – i.e. a mapping
𝜔𝐸 : 𝐸 → R (or R𝑘) that maps each edge to one (or multiple) weights in R.
Typically, 𝜔𝐸 is chosen as a non-negative function; despite not being mandatory,



16 1 Graph theory

it usually makes sense in many contexts (what does a negative capacity represent?)
and prevents having negative-valued cycles that might make the process of finding
minimal-cost paths get stuck.

The concept of edge-weighting naturally extends to vertices by considering
a vertex-weight function, i.e. a mapping 𝜔𝑉 : 𝑉 → R (or R𝑘). A graph
𝐺 = (𝑉, 𝐸, 𝜔𝑉 , 𝜔𝐸) which is equipped with both an edge weighting 𝜔𝐸 and a
vertex weighting 𝜔𝑉 function is said to be a total weighted graph. We refer the
reader interested in combinatorial problems of minimum cost and maximum flux to
[6].

We already said that weights typically restrict codomain to non-negative values.
However, in many applications, weights take values in a (countable) finite set 𝐶. We
define such a weight mapping as a typological function as it associates an entity
with a type11 from the finite set of types 𝐶. Without any loss in generality, we might
assume that 𝐶 ⊊ N, |𝐶 | = 𝑐 < +∞.

In the context of graph theory, elements of 𝐶 are often referred to as colours
and typological functions are often called colourings and denoted with 𝛾𝑉 and 𝛾𝐸
(for vertex- and edge-colouring, with colours 𝐶𝑉 and 𝐶𝐸 reps.). A graph where
vertices (resp. edges) are equipped with a colouring is said a vertex-coloured graph
(edge-coloured graph). In particular, if both vertices and edges are equipped with
a colouring, the graph is said to be total-coloured. The term colour derives from
the fact that such typological information can be represented by depicting nodes
and edges in various colours; many examples are present throughout this thesis,
including, e.g., the graph representation of museum-like environments in Chapter 4
where colours represent expert knowledge injection.

It is important to notice that, in the classical literature of graph theory, many
efforts were devoted in studying proper graph colourings – often abbreviated simply
as colourings. A vertex colouring 𝛾𝑉 is said to be proper for the graph𝐺 = (𝑉, 𝐸) if
∀𝑢, 𝑣 ∈ 𝑉 such that 𝑢 ∼ 𝑣 we have 𝛾𝑉 (𝑢) ≠ 𝛾𝑉 (𝑣); in other words, 𝛾𝑉 is proper if 𝐺
is 𝑐-partite and it defines a valid 𝑐-partition of the vertices. A similar concept holds
for proper edge colourings 𝛾𝐸 , where ∀𝑒, 𝑓 ∈ 𝐸, 𝑒 ∼ 𝑓 ⇒ 𝛾𝐸 (𝑒) ≠ 𝛾𝐸 ( 𝑓 ). In the
present work, we do not face the proper colouring problems (for further details,
we refer the interested reader to [7]) but rather colourings in the sense of clusterings
(see also Chapter 2), i.e. we will consider sets of adjacent nodes of the same colour
as a single entity within the graphs (cf. Section 1.5).

1.3 Digraph and other generalisations

So far, we defined graphs where the relation ∼ established by 𝐸 is commutative, i.e.
𝑢 ∼ 𝑣 ⇐⇒ 𝑣 ∼ 𝑢, anti-reflexive, i.e. 𝑣 ≁ 𝑣,∀𝑣 ∈ 𝑉 , and it is not transitive, i.e. 𝑢 ∼ 𝑣

11 The concept of typological function derives in this context from computer science jargon cate-
gorical function; however, in order to disambiguate from mathematical category theory, we prefer
here to adopt the term type rather than category.
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and 𝑣 ∼ 𝑤 does not necessarily imply that 𝑢 ∼ 𝑤. The commutative property is the
reason why we refer to the graph as undirected, since there is no distinction between
connecting 𝑢 with 𝑣 and 𝑣 with 𝑢. The anti-reflexive property motivates the name
simple, since no self-connection is allowed.

It is possible to generalise a graph so that these two properties do not hold.

In particular, in order to drop commutativity in a graph 𝐺 = (𝑉, 𝐸), we require
𝐸 ⊆ {{𝑢, 𝑣} ∈ 𝑉2 | 𝑢 ≠ 𝑣} rather than [𝑉]2. In such case, we refer to 𝐺 as a simple
directed graph, or simple digraph . In digraphs, an edge 𝑒 = (𝑢, 𝑣) is also denoted
𝑢 →𝐺 𝑣 (or simply 𝑢 → 𝑣) and the endpoints of 𝑒 are referred to as source and
destination of the edge.

Along with the definition of neighbourhood, in digraphs, we can also define the
concept of in-neighbourhood 𝑁− (𝑣)

𝑁− (𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} (1.18)

and out-neighbourhood 𝑁+ (𝑣)

𝑁+ (𝑣) = {𝑤 ∈ 𝑉 | (𝑣, 𝑤) ∈ 𝐸} . (1.19)

The corresponding sizes are called in-degree 𝜕− and out-degree 𝜕+. It is rather clear
that 𝜕 (𝑣) = 𝜕− (𝑣) + 𝜕+ (𝑣) and, analogously to (1.6), we have

∥𝐺∥ =
∑︁
𝑣∈𝑉

𝜕− (𝑣) =
∑︁
𝑣∈𝑉

𝜕+ (𝑣) . (1.20)

Digraph spanning and digraph operators behave like for regular graphs (cf. Sec-
tions 1.2.3 and 1.2.2), with the exception of digraph join; in fact, being edges end-
points no longer commutative, given two digraphs𝐺1 = (𝑉1, 𝐸1) and𝐺2 = (𝑉2, 𝐸2),
we define the digraph (directed) join 𝐺1

→
∗𝐺2 as

𝐺 = 𝐺1
→
∗𝐺2 = 𝐺1 ∪ 𝐺2 + {(𝑢, 𝑣) | 𝑢 ∈ 𝐺1, 𝑣 ∈ 𝐺2} , (1.21)

In particular, we denote 𝐺2
→
∗𝐺1 also as 𝐺1 ∗←𝐺2 and we denote 𝐺1 ∗←𝐺2 + 𝐺1

→
∗𝐺2

as 𝐺1
→
∗
←𝐺2. If it is clear from the context that 𝐺1 and 𝐺2 are digraphs, then we refer

to 𝐺1
→
∗𝐺2 adopting the same notation from undirected graphs, i.e. 𝐺1 ∗ 𝐺2.

Walks, tours, trails, paths, and cycles in a digraph 𝐺 = (𝑉, 𝐸) are naturally
bounded to follow the direction of the edges (hence being called directed walks,
directed tours, . . . ). Therefore, it can happen that given two nodes 𝑢, 𝑣 ∈ 𝑉 , there
exists Γ𝑢,𝑣 while Γ𝑣,𝑢 does not. However, in order to keep graph connectivity sym-
metric, we say that two nodes 𝑢, 𝑣 ∈ 𝑉 are connected if there exists a path Γ𝑢,𝑣 in the
underlying undirected graph. Conversely, if there exists a directed path from 𝑢 to 𝑣,
we say that 𝑢 is strongly connected to 𝑣. If 𝑢 and 𝑣 are mutually strongly connected
we simply say that they are strongly connected. It follows that a digraph is said to
be connected (resp. strongly connected) if all of its vertices are connected (resp.
strongly connected).



18 1 Graph theory

Given a digraph 𝐺 = (𝑉, 𝐸), if there exists a vertex 𝑣 such that there exists a
directed path from 𝑣 to 𝑤,∀𝑤 ∈ 𝑉 (or, analogously from 𝑤 to 𝑣,∀𝑤 ∈ 𝑉), then the
digraph is said to be rooted. In fact, it is easy to see that there exists a spanning tree
which can be rooted in 𝑣 with all the edges directed from parents to children.

More in general, in the context of digraphs, the concept of tree naturally extends
also to direct acyclic graphs (or DAGs). In DAGs, no directed cycles are allowed;
however, given 𝑢, 𝑣 ∈ 𝑉 , more than a single path Γ𝑢,𝑣 can coexist (as far as no
path 𝐺𝑣,𝑢 are present). It follows that the underlying undirected graph of a DAG is
not necessarily a tree. Consequently, the concept of rooted tree extends naturally to
rooted DAGs: here the single root is replaced by a set of roots such that ∀𝑤 ∈ 𝑉
exists a root 𝑣 within the set such that 𝑣 is strongly connected to 𝑤.

In order for a graph 𝐺 = (𝑉, 𝐸) to drop anti-reflexivity, we require the ability to
have self loops, i.e. edges from a vertex 𝑣 to itself. This is pretty straightforward in
digraphs since we can assume 𝐸 ⊂ 𝑉2; in such case, we refer to it as a digraph with
self loops (or simply digraph). Conversely, since the edges of (undirected) graphs
are made of sets rather than vectors, we define a graph with self loops by requiring
𝐸 ⊆ [𝑉]1 ⋃ [𝑉]2, where [𝑉]1 represents the 1-sets of 𝑉 , i.e. {{𝑣}, 𝑣 ∈ 𝑉}, where
{𝑣} denotes a self loop of 𝑣.

The last notation (undirected graphs with self loops) is pretty unusual in graph
theory and it is canonically preferred to oppose (simple, undirected) graphs with the
concept of multi-graphs. Intuitively, a multi-graph is a graph where multiple edges
are allowed between the same couple of vertices and self loops are permitted. We
define a multi-graph as a triple𝐺 = (𝑉, 𝐸, 𝜙), where𝑉 is the set of vertices, as usual,
𝐸 is a (finite) set of symbols, and 𝜙 : 𝐸 → ⟨𝑉⟩2 is a map that assigns to each edge
𝑒 ∈ 𝐸 , its endpoints in ⟨𝑉⟩2.

It is pretty clear how to combine the above definitions to generate a multi-graph
without self loops (or simple multi-graph), a multi-digraph, and all of the other
possible combinations12.

Many other generalisations are possible for a graph; for completeness, let us
cite, e.g., hypergraphs, where an edge can join more than a couple of vertices, i.e.
𝐸 ⊆ P(𝑉), or infinite graphs (see [7, Chapter 8]), where 𝑉 and 𝐸 are not limited to
be finite.

1.4 Representing a graph

We already saw in Section 1.2 that graphs are mathematical objects that can be either
represented as couples of sets (eventually equipped with a number of functions) or
pictorially as points in the space and lines joining them. However, being powerful
data structures in computer science it is worth to discuss also how they can be
efficiently represented in a computer.

12 However it is out of the scope of this chapter, since in the following we will only work with
graphs, digraphs and multi-graphs.
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Let 𝐺 = (𝑉, 𝐸) be a graph with order 𝑛 and size 𝑚. We assume that the vertex set
is given by 𝑉 = {1, . . . , 𝑛} and hence there is no need to store it. More in general,
𝑉 is numerable, and hence there exists a bijection between 𝑉 and {1, . . . , 𝑛}; it is
then possible to store 𝑉 appropriately as a vector and still refer to vertices according
to their indices 𝑣 ∈ {1, . . . , 𝑛}. In particular, two main approaches exist to store the
edge set 𝐸 :

Adjacency matrix We define the adjacency matrix of𝐺 as M ∈ F𝑛×𝑛2 where M𝑢,𝑣 =

1 ⇐⇒ 𝑢 ∼ 𝑣. Do note that elements on the main diagonal of M are zero if the
graph is simple and the matrix is symmetric unless 𝐺 is a digraph. Depending
on the average degree 𝜕 (𝐺) (actually on 𝑚), it might be beneficial to store the
matrix as sparse, since the sparsity13 of the matrix is given by 1 − 𝑚/𝑛2.

Adjacency lists We define the adjacency lists of𝐺 as a 𝑛-length vector A of vertices
sets (𝑎1, . . . , 𝑎𝑛), where 𝑎𝑢 = {𝑣 ∈ 𝑉 | 𝑢 ∼ 𝑣}, i.e. 𝑎𝑢 = 𝑁 (𝑢). In particular
|𝑎𝑢 | = 𝜕 (𝑢) (or 𝜕+ (𝑣) if 𝐺 is a digraph), hence making the total size of A
optimal, being equal to

∑𝑛
𝑢=1 |𝑎𝑢 | =

∑𝑛
𝑢=1 𝜕 (𝑢) = 𝑚.

Each of the two storage approaches presents both vantages and shortcomings. For
example, in the common case where 𝑚 ≪ 𝑛2, adjacency lists are much more space
efficient. Space efficiency comes, however, with a bigger computational time for
checking whether two specific nodes 𝑢, 𝑣 ∈ 𝑉 are adjacent (the entire 𝑎𝑢 should be
checked, which costs at least O(log 𝑛) in the case of an ordered representation, and
O(𝑛) otherwise) comparing to a nearly-linear cost for checking M𝑢,𝑣. Conversely, if
the whole neighbourhood of a vertex 𝑣 ∈ 𝑉 is to be explored (like it happens in visits,
see [6]), A is optimal in time, being already 𝜕 (𝑣) in size, while M (more specifically
M𝑣, ·) always require O(𝑛) steps, regardless of the vertex degree.

Furthermore, in digraphs, while 𝑎𝑢 = 𝑁+ (𝑣),∀𝑣 ∈ 𝑉 , extracting the in-
neighbourhood is a computationally oversized task in A; it requires, in fact, traversing
all the adjacency lists 𝑎𝑢, 𝑢 ≠ 𝑣. Conversely, in M, both extracting 𝑁+ (𝑣) and 𝑁− (𝑣)
are pretty straightforward tasks; in fact, they require determining the (truth values of
the) 𝑢-th row/column respectively of M.

Another important advantage of the matrix representation is the capability of
modifying the graph (i.e. adding and removing edges) in linear time since it is only
needed to modify the actual matrices values. Conversely, requiring to add/remove a
value from a set is potentially much more complex in adjacency lists since, depending
on the way they are implemented, it might cause the rewriting of the entire set.

However, the best advantage of M over A, is given by the possibility of evaluating
the connectivity of the graph by means of matrix exponentiation. In fact, performing
the multiplication M ×M in F2 yields a new matrix M(2) ∈ F𝑛×𝑛2 where 𝑀 (2)𝑢,𝑣 =

1 ⇐⇒ ∃Γ𝑢,𝑣 with |Γ𝑢,𝑣 | = 2. More in general we have:

M(𝑘 ) = M𝑘 =

𝑘 times︷          ︸︸          ︷
M × · · · ×M , M(𝑘 ) ∈ F𝑛×𝑛2 (1.22)

where it holds

13 The sparsity of a matrix is defined as the ratio of the non-zero elements.
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𝑀
(𝑘 )
𝑢,𝑣 = 1 ⇐⇒ ∃Γ𝑢,𝑣 with |Γ𝑢,𝑣 | = 𝑘 . (1.23)

In particular, (1.23) is easy to prove by induction over 𝑘 , being M(1) = M which
represents the paths of length 1.

Analogously, performing the exponentiation in N rather than in F2 also provides
interesting data. It is easy to see that if we build W(𝑘 ) as:

W(𝑘 ) = M𝑘 =

𝑘 times︷          ︸︸          ︷
M × · · · ×M , W(𝑘 ) ∈ N𝑛×𝑛 (1.24)

then𝑊 (𝑘 )𝑢,𝑣 represents the number of distinct paths joining 𝑢 and 𝑣 of length 𝑘 .
Finally, worth of mention is also the representative capability of adjacency matri-

ces in the context of edge-weighted graphs. In fact, in particular, if edge weights are
single values – say the weight function being 𝜔𝐸 : 𝐸 → R– we can directly replace
the boolean value M𝑢,𝑣 with weight value 𝜔𝐸 ({𝑢, 𝑣}) hence obtaining M ∈ R𝑛×𝑛
(with a proper representation of edges that are not present).

We will use adjacency matrix exponentiation later in Section 1.7.2 and Chapter 6
in the context of random walks. Conversely, we will rely on adjacency lists in Chap-
ter 3 due to its contained space cost (which is particularly important when handling
graphs of order ∼ 107 and beyond). It is in fact mandatory to take into account that
dense matrix representations are not admissible when considering graphs of order
∼ 106 and beyond, since they correspond to (at least) ∼ 1012 bit, i.e. > 100 gigabytes
of memory; conversely, considering a sparse matrix representation lessens the com-
putational advantages due to the constraints added by the implementation which,
despite being carefully optimised (see, e.g., SparseBLAS [4]), typically relies on a
three-array structure.

1.5 Hard problems and graph contraction

Graph theory has given rise to numerous famous problems, many of which have
significant implications in computer science and mathematics. Amongst these prob-
lems, a non-negligible class is formed by NP-c problems. We have introduced a few
so far (more or less explicitly), including:

Hamiltonian paths and cycles Determine whether a graph is Hamiltonian or trace-
able is a well-known NP-c problem with relevant applications in network routing,
DNA sequencing, and scheduling algorithms.

Travelling salesman problem (TSP) It is a classic optimisation problem requiring
finding the shortest Hamiltonian cycle in a complete weighted graph. The TSP
is an NP-c problem that has extensive applications in logistics, transportation
planning, and resource allocation.

Graph colouring problem Finding a proper minimal colouring (where the size of
the colour set 𝑐 is minimal) is an NP-c problem with applications in scheduling,
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register allocation in compilers, and frequency assignment in wireless commu-
nication.

Independent set problem Detecting the largest set of independent vertices (or anal-
ogously the bipartition in 𝑉1, 𝑉2 with that maximises |𝑉1 |) is an NP-c problem
with relevance in areas such as social network analysis, task scheduling, and
resource allocation in computer networks.

Clique problem Retrieving the largest clique of a given graph is another NP-c prob-
lem with applications in social network analysis, data mining, and computational
biology.

Many other problems, such as the Steiner tree problem, the knapsack problem, and
the vertex cover problem, fall into the NP complexity class (see [6] for a detailed
description). Solving them by brute force is an unfeasible task even when the graph
order is low and many other “simpler” problems are still tough when the order is
contained (say |𝐺 | ∼ 105). Most of the graph problems present, in fact, challenging
computational hurdles, and although efficient algorithms for solving them exactly are
not known, various approximation algorithms and heuristics have been developed to
find near-optimal solutions in practice.

Until very recently, techniques for solving problems on large graphs were typically
developed in the context of sequential algorithms (as also discussed in [5]). Most of
these techniques, like depth-first search and Dikjsra algorithm (for which we refer
the reader to [6]) are, however, very complex to parallelise (see [19]). Hence, we now
present a suitable approach for parallel applications, an implementation of which we
will discuss later in Chapter 3.

A common practice when facing a problem on a large graph 𝐺 = (𝑉, 𝐸) is
to consider a simplified version of it capable of retaining important connectivity
information and preserving the relationships between vertices. Hence, the idea is to
consider a “condensed” version of𝐺 that captures the essential characteristics of the
original graph, allowing for more efficient analysis and computation.

A very common way to compact a graph is via graph contraction. Given two
adjacent vertices 𝑢, 𝑣 ∈ 𝑉 , we define the contraction of 𝑢 and 𝑣 – and we denote it
as 𝐺/{𝑢, 𝑣} – as a novel graph 𝐺′ = (𝑉 ′, 𝐸 ′) where 𝑢 and 𝑣 are dropped and a new
vertex 𝑤 is added in place of them, such that it retains all the connections that 𝑢 and
𝑣 had (without multiplicity). More formally, we have that

𝑉 ′ = (𝑉\{𝑢, 𝑣}) ∪ {𝑤} (1.25)

and

𝐸 ′ = {{𝑥, 𝑦} ∈ 𝐸 | 𝑥, 𝑦 ∈ 𝑉\{𝑢, 𝑣}} ∪ {{𝑥, 𝑤},∀𝑥 ∈ 𝑁𝐺 ({𝑢, 𝑣})} . (1.26)

or, analogously,
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𝑢

𝑣

(a)

𝑤

(b)

Fig. 1.9: (a) a graph𝐺 and (b) the corresponding contraction𝐺′ = 𝐺/{𝑢, 𝑣}. Contracted vertices
𝑢, 𝑣 ∈ 𝑉𝐺 are highlighted in orange and the resulting blended vertex 𝑤 ∈ 𝑉𝐺′ is highlighted in
green.

𝐺/{𝑢, 𝑣} =
(
𝐺 − {𝑢, 𝑣}

)
∪

(
⟨𝑁𝐺 ({𝑢, 𝑣})⟩𝐺 ∗ 𝐼1) .14 (1.27)

Figure 1.9 shows pictorially a sample of graph contraction. It is worth noticing that
in (1.27) we lose reference of the novel vertex 𝑤, hence it could be preferable to write
({𝑤}, ∅) instead of 𝐼1. It is in fact important to highlight that 𝑤 is somehow derived
by 𝑢 and 𝑣 as well as edges {𝑥, 𝑤} are derived by (the combination of) {𝑥, 𝑢} or (and)
{𝑥, 𝑣}. As an example, in the context of weighted graphs, vertices and edges might
inherit a combination of the original weights.

By abuse of notation, we can say that the contraction is a procedure 𝔪𝐺 (𝑢, 𝑣)
that returns a blended vertex 𝑤 ∉ 𝑉 from 𝑢 and 𝑣 and a set 𝐸𝑤 of blended edges
joining 𝑤 to 𝐺 − {𝑢, 𝑣} obtained from the incident edges on 𝑢 and 𝑣 such that
𝑁𝐺′ (𝑤) = 𝑁𝐺 ({𝑢, 𝑣}). Hence, we can re-write (1.27) as

𝐺/{𝑢, 𝑣} =
( (
𝐺 − {𝑢, 𝑣}

)
∪

(
{𝑤}, ∅

) )
+ 𝐸𝑤 , (1.28)

with (𝑤, 𝐸𝑤) ← 𝔪𝐺 (𝑢, 𝑣).
In particular, 𝔪𝐺 satisfies commutative (𝔪𝐺 (𝑢, 𝑣) = 𝔪𝐺 (𝑣, 𝑢)) and associa-

tive (𝔪𝐺 (𝑢,𝔪𝐺 (𝑣, 𝑤)) = 𝔪𝐺 (𝔪𝐺 (𝑢, 𝑣), 𝑤)) properties if the same properties hold
for the above-mentioned blending procedures. In what follows, we assume this
holds true15, hence 𝔪𝐺 can be seen as a variadic function, i.e. it can be applied
to any set of arguments 𝑈 = {𝑢0, . . . , 𝑢𝑘}, that is 𝔪𝐺 (𝑈) = 𝔪𝐺 (𝑢0, . . . , 𝑢𝑘) =
𝔪𝐺 (. . . (𝔪𝐺 (𝑢0, 𝑢1) . . . ), 𝑢𝑘).

Given a vertex subset 𝑈 ⊂ 𝑉 , it is important to note that the variadic nature of
𝔪𝐺 ensures that the natural generalisation of 𝐺/{𝑢, 𝑣} to 𝐺/𝑈 is well defined, i.e.

14 Do note that ⟨𝑁𝐺 ({𝑢, 𝑣}) ⟩𝐺 is somehow a more readable notation to specify a subgraph of 𝐺
with vertex set 𝑁𝐺 ({𝑢, 𝑣}); however, we only require (𝑁𝐺 ({𝑢, 𝑣}) , ∅) since we are not interested
in mutual connections between them.
15 This is trivially true for a simple unweighted graph but, more in general, we can distinguish
the contraction of 𝑢 in 𝑣 from the contraction of 𝑣 in 𝑢, depending on how additional data are
generated for 𝑤 and its corresponding edges However, such an outcome is out of the scope of this
work, since we will only consider additive or invariant blendings over weighted graphs, i.e. where
𝜔𝑉 (𝑤) = 𝜔𝑉 (𝑢) + 𝜔𝑉 (𝑣) or where 𝛾𝑉 (𝑤) = 𝛾𝑉 (𝑢) = 𝛾𝑉 (𝑣) with similar behaviour on edges.
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(a)

𝑤

(b)

Fig. 1.10: (a) a graph 𝐺 and (b) the corresponding contraction 𝐺′ = 𝐺/𝑈. The set of contracted
vertices𝑈 ⊆ 𝑉𝐺 are highlighted in orange and the resulting blended vertex 𝑤 ∈ 𝑉𝐺′ is highlighted
in green.

𝐺/𝑈 =
(
𝐺 −𝑈

)
∪

(
⟨𝑁𝐺 (𝑈)⟩𝐺 ∗ 𝐼1) , (1.29)

or, analogously

𝐺/𝑈 =

( (
𝐺 −𝑈

)
∪

(
{𝑤}, ∅

) )
+ 𝐸𝑤 , with (𝑤, 𝐸𝑤) ← 𝔪𝐺 (𝑈) . (1.30)

It is clear that contraction 𝐺/{𝑢, 𝑣} is a particular case of 𝐺/𝑈, where |𝑈 | = 2.
In particular, we refer to 𝐺/𝑈 as a contraction graph of 𝐺 and we denote it as

𝐺/𝑈 ⪯ 𝐺. Equality holds only if |𝑈 | < 2 while, otherwise, we write 𝐺/𝑈 ≺ 𝐺 and
we define 𝐺/𝑈 it a proper contraction graph of 𝐺. Figure 1.10 reports an example
of contraction of a set of vertices.

A further problem arises when talking about graph contraction: how to determine
which vertex needs to be contracted (and at which time)? The answer mainly depends
on what the expected outcome is. We here report the two most common use cases
and the corresponding strategy:

induction strategy In order to solve a problem over a large graph 𝐺, contraction
is used to produce a sequence of condensed graphs 𝐺1 ≻ 𝐺2 ≻ · · · ≻ 𝐺𝑘
(potentially up to 𝑘 = 𝑛 − 1); the problem is then solved on 𝐺𝑘 and the solution
is, iteratively, transported up to 𝐺, i.e. given a solution for 𝐺𝑖 a solution for
𝐺𝑖−1 is evaluated. In this context, vertices to contract are typically determined
by picking the two endpoints of a random edge of the graph (edge contraction),
picking a vertex and contracting its neighbourhood (start contraction), or picking
independent binary-tree subgraphs and contracting progressively their nodes into
the root (tree contraction).

group analysis strategy In order to study connectivity-related properties and inter-
actions between (and within) “groups” of vertices in large graphs, contraction
is used to produce a condensed graph where each group is represented by a
single node. Such groups are typically natural with the problem definition or
might arise from e.g. some clustering technique. As we discuss in Section 1.2.7,
such pieces of information can be sketched as a colouring function 𝛾𝑉 . Hence,
it makes sense to consider the contraction induced by 𝛾𝑉 – or colour contrac-
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tion – where two nodes are contracted whether they are adjacent and share the
same colour. Analogously, different notions of colour contraction can be given
if colouring is provided to edges, e.g., two vertices are contracted whether the
edge joining them is from some specific colour subset 𝐶′ ⊂ 𝐶.

A simple example of the first approach is given by the problem of determining the
components of a large graph, where one can contract the graph up to an independent
graph and then reconstruct the components by tracing the contraction backwards.
A more complex example is discussed e.g. in [11], where authors employ graph
contraction in the development of a fast parallel algorithm to determine reachability
in DAGs.

A number of examples for the second approach are scattered throughout this
work and can be found later in Chapter 3 and 4. Simpler examples include, e.g.,
studying behaviour and interaction between members of a social network sharing
some characteristics.

1.6 Generating random graphs

An essential tool when it comes to analysing algorithms and procedures designed for
solving problems over graphs is the capability of generating (large) random graphs
with particular properties (depending on the underlying problem). Apart from the
mere testing task (which is the way we use it in this work and our reason to introduce
this topic), it is worth mentioning that the theory of random graphs is a subject of
its own. In fact, with his pioneering work [8], Erdös introduced the probabilistic
method as a sophisticated and versatile proof technique: roughly speaking, in order
to prove that a given property holds, it is possible to prove that, for any 𝑛 ∈ N+, the
probability that a random graph of order 𝑛 has such probability is strictly positive.

The probabilistic method highlights, amongst the others, the importance of being
able to determine how to sample graphs from the set G𝑛 (G𝑛,𝑚) of all the possible
graphs of order 𝑛 ∈ N (and size 𝑚 ≤ 𝑛2). In the rest of this section, we will primarily
introduce the early definition of Erdös–Rényi graph and we will later describe a few
other models of random graphs.

1.6.1 Erdös-Rényi graphs

One of the most well-known approaches for generating random graphs is the Erdös-
Rényi (ER) model, extensively analysed by Paul Erdös and Alfréd Rényi in the [9].
ER graphs are characterised by their simplicity and stochastic nature.

In particular, two similar variants of the model were introduced in [9], one simpler
to generate and the other more suitable for testing applications due to the higher level
of randomness:
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Uniform model Given 𝑛, 𝑚 ∈ N with 0 ≤ 𝑚 ≤ 𝑛2, we define the uniform random
model – and we denote it as ER𝑛,𝑚 – as the operation of sampling a graph
from G𝑛,𝑚 uniformly at random, i.e. all of the

(𝑀
𝑚

)
possible graphs with order 𝑛

and size 𝑚 are equally probable within the model, with 𝑀 being the number of
possible edges 𝑀 =

(𝑛
2
)
. In other words, in a graph 𝐺←$ ER𝑛,𝑚 we have that a

given edge has probability 𝑚/𝑀 of being present and probability 𝑀 − 𝑚/𝑀 of being
absent (see [1] for the analogous model in multi-graphs, a simpler context since
possible graphs are 𝑀𝑚 rather than

(𝑀
𝑚

)
).

Binomial model Given 𝑛 ∈ N and 𝑝 ∈ [0, 1], we define the binomial random model
– and we denote it as ER𝑛,𝑝 – as the operation of sampling a 𝑛-order graph where
each possible edge is present with probability 𝑝, being the decision concerning
the different edges independent. In other words, ER𝑛,𝑝 model samples a specif
graph 𝐺 ∈ G𝑛 with probability 𝑝𝑚 (1 − 𝑝) (𝑛2)−𝑚, where 𝑚 = ∥𝐺∥ (and all the
graphs with equal size are equally probable).

In particular ER𝑛,𝑝 , can be seen as a generalisation of ER𝑛,𝑚 where𝑚 is not fixed,
but rather a random variable sampled from the binomial distribution Bin(

(𝑛
2
)
, 𝑝).

Hence, we have

P
{
∥𝐺∥ = 𝑚 | 𝐺←$ ER𝑛,𝑝

}
=

( (𝑛
2
)
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑚 , (1.31)

since it corresponds to achieving 𝑚 successes within a sample from Bin(
(𝑛
2
)
, 𝑝). We

recall the expectation of 𝑚←$Bin(
(𝑛
2
)
, 𝑝) being E[𝑚] =

(𝑛
2
)
𝑝, meaning that ER𝑛,𝑚

and ER𝑛,𝑝 are equivalent on average when

𝑝 =
𝑚(𝑛
2
) ∼ 2𝑚

𝑛2 or 𝑚 =

(
𝑛

2

)
𝑝 ∼ 𝑛

2 · 𝑝
2

. (1.32)

It is not surprising that in [9] results are formulated in terms of ER𝑛,𝑚 rather
than ER𝑛,𝑝 since they are simpler to prove but still holds for the binomial model
(on average). In particular, components size and structure of random graphs are
studied w.r.t. the relation between 𝑛 and 𝑚, providing threshold functions for many
interesting properties, like e.g., the fact that 𝑚0 = 𝑛

𝑘 − 2/𝑘 − 1 is a threshold between
the probability of finding a tree subgraph of order 𝑘 in 𝐺←$ ER𝑛,𝑚 is very high
(𝑚 > 𝑚0) or very low (𝑚 < 𝑚0) [9, Corollary 1 of Theorem 1].

The two most fascinating and important results concern the number of components
and their size (and will be later used in Section 3.4 for benchmark creation). In
particular, all of the following properties hold with overwhelming probability with
𝑛→∞:
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Components size The ratio 𝑚/𝑛 ∼ 1/2 (that is 𝑝 ∼ 1/𝑛) is a threshold on the largest
component size 𝜌𝑛,𝑚, that divides between having 𝜌𝑛,𝑚 ∈ O(log 𝑛) and 𝜌𝑛,𝑚 ∈
Ω(𝑛 − log 𝑛) 16. In particular, there is a ”double-jump” behaviour:17

𝑝 < 1/𝑛 The graph is made of many distinct small components of size bounded
by O(log 𝑛);

𝑝 = 1/𝑛 The largest component of the graph has size Θ(𝑛2/3);
𝑝 > 1/𝑛 The graph presents a single “giant” component that connects all but at

most O(log 𝑛) vertices.

Global connectivity The ratio 𝑚𝑛/∼ log 𝑛/2 (that is 𝑝 ∼ log 𝑛/𝑛) is a threshold for the
graph connectivity. In particular, the threshold is sharp (meaning that behaviour
changes for 𝜖 small at will) on both having isolated vertices and components of
size greater than one, which combined implies:

𝑝 < (1 − 𝜖 ) · log 𝑛/𝑛 The graph contains isolated vertices;
𝑝 > (1 + 𝜖 ) · log 𝑛/𝑛 The graph is connected.

Finally, it is important to note that generating ER graphs is relatively straight-
forward and can be done efficiently. This is particularly true for the uniform model,
where it is simply needed to extract 𝑚 (or 1 − 𝑚 when 𝑚 > 1/2

(𝑛
2
)
) different couples

of vertices. Conversely, for what concerns the binomial model it is always possible
to first extract a value for 𝑚 which is compatible with the distribution built over 𝑛
and 𝑝 and then to run the uniform model with parameters 𝑛 and 𝑚.

1.6.2 Other random graph models

In addition to ER graphs, several other random graph models have been developed to
capture different characteristics and phenomena. We report a few notable examples
for completeness.

Watts-Strogatz model Proposed by the homonym researchers in [20], this model
generates graphs with small-world properties (i.e. most of the nodes have limited
mutual distance). It starts with a regular lattice and then rewires a fraction of
the edges to create shortcuts, resulting in high local clustering and short average
path lengths.

Barabási-Albert model Introduced by homonym authors in [2], this model gener-
ates graphs that exhibit scale-free properties (i.e. where node degree distribution
follows a power-low distribution, with a little number of central “hubs” and many
low degree “satellites”). Graphs are built according to a preferential attachment

16 Do note that these two results are complementary since they can be obtained one from the other
considering 𝑝 = 𝑛/2 and 𝑝 = 1 − 𝑛/2.
17 The proven result in [9, Theorem 9b] is much more complex, since it precisely characterises
the size of the giant component for all 𝑐 = 𝑝/2 ∼ 𝑚/𝑛 in terms of the solution of the equation
𝑥 (𝑐)𝑒−𝑥 (𝑐) = 2𝑐𝑒−2𝑐 , however this level of detail is out of the scope of this work.
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mechanism, where new vertices are added, and each new vertex connects to
existing vertices with a probability proportional to their degree.

Stochastic block model (SBM) The SBM is a generative model that captures the
community structure observed in many real-world networks. It assigns vertices to
different blocks or communities and determines the probability of edge existence
based on the blocks to which the vertices belong.

Configuration model It generates random graphs with a specified degree sequence.
It starts with a set of free endpoints (or stubs in the jargon), where each stub
represents a vertex and its degree. The stubs are then randomly paired to form
edges, resulting in a random graph that matches the given degree sequence.

These models, among others, provide versatile tools for generating random graphs
that exhibit specific properties or mimic real-world phenomena. Their broad appli-
cation ranges from complex systems to study network dynamics and, as it is done
later in Chapter 3, to evaluate the performance of graph algorithms.

1.7 Random walks and Markov chains

We close this chapter by introducing random walks on graphs, a fundamental concept
in graph theory which have applications in various fields, including computer science,
physics, and social network analysis. Briefly, a random walk can be seen as a memory-
less process that outputs a walk on a graph. In particular, random walks can be
analysed using the underlying probabilistic concept of Markov chain, a powerful
tool which is very closely entangled with random walks. We here only scratch the
surface on the topic of Markov chains, for which we refer the reader to [16].

In particular, we will use random walks in Chapter 6 to build a recommender
system that works on the combination of two complete weighted graphs joined by
a bipartite graph between the two. A Markov model with memory is also used in
Chapter 4 in order to design a digital twin simulating visitor trajectories in museum-
like environments.

1.7.1 Basic definitions

A random walk on a 𝑛-order graph 𝐺 = (𝑉, 𝐸) is a stochastic memory-less process
that starts at an initial vertex 𝑣0 ∈ 𝑉 and moves along a walk 𝑋 = (𝑥0, 𝑥1, . . . )
where at each step 𝑡, the element 𝑥𝑡 is determined probabilistically according to
some distribution 𝑃 over 𝑁 (𝑥𝑡−1), that is

P{𝑥𝑡 = 𝑣 | 𝑥𝑡−1 = 𝑢, {𝑥𝑠 = 𝑢𝑠}𝑡−2
𝑠=0} = P{𝑥𝑡 = 𝑣 | 𝑥𝑡−1 = 𝑢} = 𝑃(𝑢, 𝑣) . (1.33)

Hence, the choice of the next vertex is typically determined by a probability distri-
bution that assigns probabilities to the (outgoing) edges of 𝑥𝑡−1 that does depend
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neither on 𝑡 nor on 𝑥0, . . . , 𝑥𝑡−2. Such distribution probabilities are typically built
over some property of the graph vertices or edges. In particular, we refer to a

Simple random walk In simple random walks, the probability of moving from 𝑢 to
𝑣 (assuming the walk is in 𝑢) is given by

𝑃(𝑢, 𝑣) =
{

1/𝜕(𝑢) if 𝑢 ∼ 𝑣
0 otherwise

(1.34)

(1/𝜕+ (𝑢) in the case of a digraph).
Weighted random walk In the context of a positively weighted graph (say edge-

weighted, but it follows analogously in vertex-weighted), a weighted random
walk assigns the probability of moving from 𝑢 to 𝑣 as proportional to the weight
𝜔𝐸 of the edge joining them, i.e.

𝑃(𝑢, 𝑣) =
{

𝜔𝐸 ({𝑢,𝑣})∑
𝑤∈𝑁 (𝑢)𝜔𝐸 ({𝑢,𝑤})

if 𝑢 ∼ 𝑣
0 otherwise

, (1.35)

where the otherwise clause can be dropped if we consider the complete graph
𝐺′ = 𝐾𝑛 with weight function 𝜔𝐸′ ({𝑢, 𝑣}) = 𝜔𝐸 ({𝑢, 𝑣}) if 𝑢 ∼𝐺 𝑣 and 0
otherwise. It follows that simple random walks are a particular case of weighted
random walks where 𝜔𝐸 (𝑒) = 1,∀𝑒 ∈ 𝐸 .

Biased random walk Biased random walks are a further generalisation of weighted
random walks that builds 𝑃 depending on a generic bias (or preference) towards
certain vertices or edges. Such a bias can be based on various factors, such as
vertex degrees, edge weights, or specific attributes of the vertices.

In particular, the probability distribution 𝑃 represents per se a weight function
for 𝐺 if interpreted as a digraph (since typically 𝑃(𝑢, 𝑣) ≠ 𝑃(𝑣, 𝑢)) and it is typically
represented by a weighted adjacency matrix P ∈ R𝑛,𝑛 (cf. Section 1.4) which is
right-stochastic, i.e.

∑
𝑣∈𝑉 P𝑢,𝑣 = 1,∀𝑢 ∈ 𝑉 . In probability field, such a matrix is

typically referred as a transition matrix and can be used as the basis of a Markov
chain (Markov process discrete both in time and space), i.e. a process defined on a
set of elementsX (= 𝑉) and a transition matrix P that samples a sequence of random
variables 𝑋𝑖 from X (starting with 𝑋0 = 𝑥0) such that, ∀𝑥, 𝑦 ∈ X, we have:

P{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥, {𝑋𝑠 = 𝑥𝑠}𝑡−1
𝑠=0} = P{𝑋𝑡+1 = 𝑦 | 𝑋𝑡 = 𝑥} = P𝑢,𝑣. (1.36)

The relationship within (1.33) and (1.36) (and in particular between random walks
and Markov chains) is evident, henceforth, in the following, we will refer to them
interchangeably18.

18 This assumption is merely for sake of simplicity since in the present work we will not deepen
in the probability theory behind random walks. There is indeed a deep difference between the two
concepts, as a random walk is more likely a sample from a Markov chain rather than a Markov
chain itself. From the probabilistic point of view, we can say that Markov chains model a type of
random walks. However, we refer to [16] for a deepen discussion on this topic.
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1.7.2 Evolution of a random walk

It is clearly a matter of interest to study the evolution of a random walk and, in
particular, to be able to describe precisely the reachability (or reach probability)
within a Markov chain, i.e. the probability that a random walk starting on 𝑢 (i) is on
vertex 𝑣 at time 𝑡 or (ii) has reached vertex 𝑣 within time 𝑡.

We can state the first task as determining P{𝑥𝑡 = 𝑣 | 𝑥0 = 𝑢}. In particular, it is
worthwhile to notice that if 𝑡 = 1 trivially we have

P{𝑥1 = 𝑣 | 𝑥0 = 𝑢} = 𝑃(𝑢, 𝑣) = P𝑢,𝑣 (1.37)

and if 𝑡 = 2 we have

P{𝑥2 = 𝑣 | 𝑥0 = 𝑢} =
∑︁
𝑤∈𝑉
P{𝑥2 = 𝑣 | 𝑥1 = 𝑤}P{𝑥1 = 𝑤 | 𝑥0 = 𝑢}

=
∑︁
𝑤∈𝑉

𝑃(𝑤, 𝑣)𝑃(𝑣, 𝑢)

=
∑︁
𝑤∈𝑉

P𝑢,𝑤P𝑤,𝑣

= (P × P)𝑢,𝑣 = (P2)𝑢,𝑣

, (1.38)

where the first equality holds due to the memory-less property (1.36). Hence, it is
easy to see by induction that

P{𝑥𝑡 = 𝑣 | 𝑥0 = 𝑢} = (P𝑡 )𝑢,𝑣 = Pt
𝑢,𝑣 , (1.39)

where we are denoting Pt = P𝑡 . The similarity between (1.39) and (1.22) is pretty
straight, in particular in the case of weighted graphs.

1.7.3 Basic properties

Markov chains and random walks can have several important properties. we here
report a few we will need in what follows:

Irreducible A Markov chain is said to be irreducible if, ∀𝑢, 𝑣 ∈ 𝑉∃𝑡 > 0 such that
Pt
𝑢,𝑣 > 0, hence requiring that each node is reachable in finite time from each

other vertex. It is straightforward to observe that a Markov chain is irreducible
if and only if the underlying graph is (strongly) connected.

Aperiodic Let T (𝑣) = {𝑡 ≥ 1 | Pt
𝑣,𝑣 > 0} be the set of times when a random walk

starting on 𝑣 ∈ 𝑉 is allowed to return to it. We define the period of a vertex
𝑣 ∈ 𝑉 as the greatest common divisor of T (𝑣) and we say that a Markov chain
is said to be aperiodic if all the states have period 1 (periodic, otherwise). In
particular, it is important noticing that, if the chain is irreducible, then the period
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is equal for each node19. If the chain is irreducible, it is then sufficient to show
the existence of two tours of coprime length to prove that the chain is aperiodic.
More in general, a Markov chain is aperiodic if the underlying graph is not
bipartite. Finally, it is trivial to notice that a chain is aperiodic if the underlying
graph admits self loops (and at least one is present).

Positive recurrent Given a random walk 𝑋 , we define the hitting time of a vertex
𝑣 ∈ 𝑉 as the first time 𝑡 for which 𝑥𝑡 = 𝑣. We define a Markov chain as
being positive recurrent if the expectation of such a 𝑡 is finite for every node.
In particular, if the chain is irreducible, then it is positive recurrent (see [16,
Lemma 1.13]).

Stationary distribution A probability distribution 𝝅 on 𝑉 is said stationary with
regards to P if it is a left invariant, i.e. 𝝅t × P = 𝝅t.

Ergodic A Markov chain is said to be Ergodic if it is irreducible and aperiodic.
In particular, an Ergodic Markov chain admits a unique stationary distribution
𝝅 ∈ R𝑛 to which any random walk (regardless of the starting point) approaches
for sufficiently large times20. In other words, we have that

P𝑡 𝑡→∞−−−−→ 𝚷 , (1.40)

where 𝚷 = 1𝑛 × 𝝅t.
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Chapter 2
Machine learning

This second chapter introduces, with no claim of completeness,
some basic concepts on machine learning. The field I am trying
to cover is so extended that more than a book would be required
to tackle it suitably (many of which, e.g. [28, 33, 52] can be
found in the reference section). However, I organised it in order
to highlight the minimum necessary contents to navigate through
the reading of this work unscathed.

2.1 Introduction

Within the last few decades, we have constantly tried to capture the essence of human
intelligence in order to imbue it in some mechanical process. In fact, the field of
artificial intelligence (AI) traces its roots back to the mid-20th century, with one
of the earliest influential works in the field being the seminal paper “Computing
Machinery and Intelligence” by British mathematician and logician Alan Turing
[59]. The paper presented the concept of the Turing Test, a test to determine whether
a machine can exhibit intelligent behaviour indistinguishable from that of a human.
It is worth noting that, while Alan Turing is often considered the founder of AI (being
an early exponent of the theory that the human brain is in effect a digital computer,
see [30]), there were earlier contributions and works that paved the way for the field.
For instance, the development of formal logic, symbolic reasoning systems, and
early computational devices in the early 20th century all played a role in shaping the
concepts and ideas that led to the emergence of AI as a field of study.

Hence, we can see AI as the multidisciplinary field that focuses on the development
of intelligent systems capable of performing tasks that typically require human
intelligence. These tasks include problem-solving, pattern recognition, decision-
making, and natural language processing. The term multidisciplinary is here more
actual than ever since AI encompasses a wide variety of branches, including machine
learning, natural language processing, computer vision, robotics, biology, and expert
systems and its applications permeate most of the fields of science.

In this setting, Machine Learning (ML) has emerged as a powerful field that
focuses on the development of algorithms and models enabling computers to learn
from data and improve their performances without being explicitly programmed.
Instead of relying on handcrafted rules and instructions, ML algorithms learn pat-
terns and relationships directly from the data by making use of statistical techniques,
optimisation methods, and mathematical models. ML is then capable of making pre-
dictions, classifying data, discovering patterns, and performing decisions according
to the model they are learned on.

33
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ML has gained significant attention in recent years due to several factors. First,
the exponential growth of data generated in various domains, such as social media,
healthcare, finance, and e-commerce, has created a need for automated methods to
extract meaningful insights and knowledge from this vast amount of information.
Second, advances in computational power and storage capabilities have made it
feasible to process and analyse large datasets. Finally, machine learning techniques
have demonstrated remarkable success in solving complex problems, leading to
significant advancements in areas such as image and speech recognition, natural
language processing, and autonomous vehicles.

2.1.1 Mathematics and machine learning

The scope of this chapter is to provide an introduction to the fundamental concepts
and techniques in machine learning, later used in this work. In fact, if graph theory
is nowadays considered a proper field of mathematics (and we required Chapter 1
due to the huge discrepancy in notation), conversely, some mathematicians still
look at machine learning suspiciously, as a subject proper to computer scientists
only. The present work, however, humbly provides a few examples explaining why
mathematicians too should be well aware of the machine learning world: Chapter 5,
in particular, shows how machine learning can serve mathematical modelling and
Chapter 6 provides an example of how machine learning techniques can naturally
arise from strong mathematical concepts like information entropy and biased random
walks on graphs.

Revising the worlds of Deisenroth, Faisal, and Ong (see [33]), too often ML is
taught and used as a set of black-box methodologies, often neglecting the strong
underlying mathematical backbone in favour of a “simpler” ready-to-use toolbox
interpretation1. In fact, numerous mathematical fields play a crucial role in ML
hence further motivating the approach of mathematicians to it:

Linear algebra Fundamental in ML, the field of linear algebra deals with vectors,
matrices, and their operations. Concepts such as vector spaces, linear trans-
formations, eigenvectors, and eigenvalues are essential for understanding and
implementing algorithms like principal component analysis (PCA), linear re-
gression, and matrix factorisation methods [21].

Calculus Calculus is essential for optimisation algorithms used in machine learn-
ing, such as gradient descent. Concepts like derivatives and gradients are used

1 “As machine learning becomes more ubiquitous and its software packages become easier to use,
it is natural and desirable that the low-level technical details are abstracted away and hidden from
the practitioner. However, this brings with it the danger that a practitioner becomes unaware of the
design decisions and, hence, the limits of machine learning algorithms. [. . . ] For historical reasons,
courses in machine learning tend to be taught in the computer science department, where students
are often trained in Programming languages, data analysis tools, large-scale computation and the
associated frameworks, but not so much in mathematics and statistics and how machine learning
builds on it.”



2.1 Introduction 35

for finding optimal points or directions in a function’s landscape. Differential
calculus enables the analysis of functions and their rates of change, while integral
calculus is used for measuring accumulated quantities [27].

Probability theory It provides the tools for modelling uncertainty and making pre-
dictions in ML. In particular, the Bayesian approach to probability allows the
interpretation of ML methods under the concept of statistical inference [52].

Statistics Tools and techniques from statistics are crucial for making inferences and
drawing conclusions from data. It encompasses concepts such as hypothesis
testing, confidence intervals, and regression analysis. Statistical techniques are
employed for model selection, model evaluation, and analysing the significance
of results in machine learning [42].

Optimisation theory One of the main aspects of ML is the ability to find optimal
solutions to problems. In ML, optimisation algorithms are used in model param-
eter selection, to minimise loss functions, and to maximise objective functions.
Techniques like gradient descent, convex optimisation, and stochastic optimisa-
tion are employed to find optimal solutions efficiently [26].

Information theory It quantifies the amount of information contained in data and
provides measures of information content, such as entropy and mutual informa-
tion. It plays a crucial role in tasks such as data compression, feature selection,
and measuring the effectiveness of learning algorithms [52].

Differential equations They are used to model dynamic systems and phenomena.
In machine learning, differential equation models, such as ordinary differential
equations and partial differential equations, are employed in areas like time
series analysis, dynamical systems modelling, and deep learning. In Chapter 5,
e.g., we revise the literature on how differential equations can be used to build
the so-called physics-informed neural networks (PINNs).

Discrete mathematics The vast field of discrete mathematics encompasses combi-
natorics, graph theory, and logic, among other areas. Combinatorics is relevant
to analysing the combinatorial properties of data, while logic forms the ba-
sis for reasoning and rule-based systems. Discrete mathematics is essential for
understanding algorithms and data structures used in machine learning [28, 33].

Cryptography 2 Cryptography and data security play a key role in allowing the
usage of data for model training, while retaining a certain level of confidentiality,
integrity, and authenticity of data and models (see e.g. [56]). It is, for example, the
case of federated learning, that employs cryptographic protocols and techniques
(mainly related to multi-party computation) to ensure that sensitive data remains
encrypted and secure during the training process [50].

Graph theory Last but not least, graph theory provides a framework for representing
and analysing relationships and dependencies in data. Graph-based algorithms,
such as graph neural networks and PageRank, are used for tasks like recom-
mender systems, social network analysis, and knowledge graph representation.
In the present work, we analyse and introduce different approaches in machine
learning related to graph theory, like cascaded localisers based on colour cluster

2 Concurrently, it is worthy of mentioning also the contribution of machine learning to cryptography
(see e.g. [54]), a different field to which the candidate is particularly attached.
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representations of museum-like environments in Chapter 4 and a drug recom-
mender system based on biased random walks over a complete knowledge graph
in Chapter 6.

Hence, this chapter is motivated by the natural need for a bridge between the
mathematical world and the field of computer science, a task that we clearly cannot
hope to achieve in these few pages. For this reason, we here provide the formalisation
of the concepts that are strictly necessary for the reader, and we further refer to the
(much more) suitable books on this topic (e.g. [33, 41, 42, 52]).

2.1.2 A gentle overview of machine learning

Machine learning can be broadly categorised into three main families of approaches
depending on how data are structured and used in the models:
Supervised learning In supervised learning, the algorithms learn from labelled

examples to make predictions or classify novel (unseen and un-labelled) data.
Examples of supervised learning include the well-known problem of handwritten
digit recognition [34] and email spam classification.

Unsupervised learning Unsupervised learning deals with finding patterns or struc-
tures in un-labeled data. It is the case, e.g. of density estimations and community
detection.

Reinforcement learning Conversely to the previous two approaches, reinforcement
learning involves the concept of agent that typically learns to interact with a given
environment. The typical scope is the maximisation of a reward signal. Famous
examples include game playing (like the ability to play chess, Go, and video
games) and autonomous driving.

Many complex approaches, however, do not properly fit into this three-fold categori-
sation. It is the example, e.g., of anomaly detection tasks, that can be tackled in many
different ways, including semi-supervised learning approaches where supervised and
unsupervised approaches are mixed.

Concurrently, machine learning approaches are also classified according to the
underlying task they have been developed for. Some example include
Regression It consists in predicting a continuous value or quantity based on input

features. Albeit there exist examples of unsupervised regression, the typical
regression model is supervised. Linear regression, polynomial regression, and
support vector regression are examples of regression techniques.

Classification The objective of classification is to label input instances within pre-
defined classes or categories. Binary classification involves, e.g., distinguishing
between two classes, while multi-class classification involves assigning instances
to multiple classes. Classification tasks are usually supervised techniques since
the corresponding unsupervised approach is often referred to as clustering (see
below). Examples include logistic regression, decision trees, and support vector
machines.
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Density estimation The goal of density estimation is to provide a model for the
distribution of the dataset. Density estimation models are unsupervised in nature
and, sometimes, they are referred also as unsupervised regression. Kernel density
estimation, Gaussian mixture models, and self-organising maps are commonly
used approaches.

Clustering Clustering tackles the problem of grouping similar instances together
based on their intrinsic characteristics or similarity measures. They are the
unsupervised counterpart of classification tasks since aim to discover patterns
and structures in data without a priori labelling. 𝑘-means, hierarchical clustering,
and DBSCAN are some common clustering techniques.

Dimensionality reduction Models in dimensionality reduction try to reduce the
number of input features or variables while preserving essential information.
Dimensionality reduction techniques, such as Principal Component Analysis
(PCA) and 𝑡-distributed Stochastic Neighbour Embedding (𝑡-SNE), help in vi-
sualising and compressing data while retaining key patterns.

Anomaly detection Anomaly detection concerns the identification of rare or un-
usual instances in a dataset, i.e. data points that differ significantly from the
norm. Despite the existence of supervised approaches, anomaly detection is
mainly focused on unsupervised solutions. One-class SVM, isolation forest, and
auto-encoders are typically used for anomaly detection.

Recommender systems Recommender systems (or recommendation systems, RSs)
provide personalised recommendations or suggestions to users based on their
preferences and historical data. RSs are typically tackled as semi-supervised
approaches; however, both supervised and unsupervised techniques exist. Col-
laborative filtering, content-based filtering, and hybrid methods are commonly
used in recommender systems.

Natural Language Processing (NLP) Finally, NLP deals with text and language
data, including tasks like sentiment analysis, text classification, named entity
recognition, machine translation, and question-answering systems. Just like RS,
NLP can be tackled both as a supervised or unsupervised task.

2.1.3 Chapter organisation

Throughout the rest of this chapter, we primarily focus on supervised learning tech-
niques for regression and classification and unsupervised learning techniques for
clustering. In fact, these are the main ML-related topic that we cover respectively
in Part III (i.e. Chapters 4 and 5) and in Chapter 4. In particular, in Section 2.2 we
discuss more in detail the setting of supervised learning, introducing the basic nota-
tion for datasets and models that will be used throughout this work; we also briefly
introduce the tasks of assessing models performances (Section 2.2.1) and how train-
ing in ML is different from regular optimisation techniques (Section 2.2.2). Then,
in Section 2.3 we discuss artificial neural networks and their applications in classifi-
cation and prediction tasks, introducing the early perceptron model (Section 2.3.1),
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the classical feed-forward neural networks (Section 2.3.2), and the recurrent neu-
ral networks (Section 2.3.3); multi-layer perceptron and long-short term memory
models are discussed in greater details. Finally, in section 2.4 we introduce the
problem of clustering data and we focus our attention on two different approaches:
the centroid-based clustering (Section 2.4.1) and the hierarchical clustering analysis
(Section 2.4.2); 𝑘-means and agglomerative hierarchical clustering techniques are
discussed in more in depth.

2.2 Supervised learning: regression and classification

As we introduced in Section 2.1, ML is about constructing models capable of learning
patterns from data. In this sense, the term learning often implies some form of
optimisation of an objective function on such data.

As we described in Section 2.1.2, when it comes to supervised learning, data are
equipped with some form of labelling, i.e. the expected behaviour that the model
should reproduce on that specific datum. In the context of ML, data are often called
samples and labels are also referred to as ground truth; a set of samples is called
dataset and a set of samples with corresponding ground truth is called a labelled
dataset. Hence, learning from a labelled dataset means tuning the model to try
reproducing as accurately as possible such samples and, possibly, extend the same
behaviour on previously unseen samples. In particular, depending on whether the
labels are taken from a finite or infinite set, the corresponding task is referred
to as classification or regression respectively. Do note that, in the following, we
usually refer to single-labelled samples, i.e. each sample is labelled with a single
value; however, the discussion is analogous when multiple labels are considered per
sample, hence yielding problems of multi-regression and multi-classification.

More formally, a sample x represents a list of features, i.e., individual measurable
properties of the sample. In the following we will usually assume features being
values in R, hence a sample is a feature vector of some length 𝑛, i.e. x ∈ R𝑛. Then,
we can define a dataset as

X = {x(𝑖) }𝑁−1
𝑖=0 , x(𝑖) ∈ R𝑛 . (2.1)

If samples are labelled, we define the corresponding ground truth as

y = {𝑦 (𝑑) }𝑁−1
𝑖=0 , 𝑦 (𝑑) ∈ L (2.2)

where L represent some kind of ground truth set (in other words we are assuming
that the feature vector x(𝑖) is labelled with value 𝑦 (𝑑) ). We further define a labelled
dataset as the set

𝐷 = {X; y} = {(x(𝑖) , 𝑦 (𝑖) )}𝑁−1
𝑖=0 . (2.3)

A model is then some sort of procedure 𝔏 that maps a sample to a corresponding
value, i.e.
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𝔏 : R𝑛 → L
x ↦→ 𝑜

(2.4)

In particular, we say that 𝔏 is a classifier model if L is finite, i.e. |L| = 𝑘 < +∞,
and we say that it is a regressive model otherwise, i.e. they solve respectively a
classification task or a regression task. In what follows, we refer toL = {0, . . . , 𝑘−1}
for classification tasks and we refer to L = R for regression tasks.

It is important to note that, usually, classification tasks are modelled as multi-
regression tasks where each class is concurrently assigned to a regression value; the
regression output z can be then normalised to resemble a probability vector ô where
𝑖-th entry specifies the probability of belonging to 𝑖-th class. Consequently, a class 𝑜
can be determined as the regression output yielding the maximum value, i.e.

𝑜 = argmax(ô) = argmax(z) . (2.5)

A common way to apply normalisation over a regression output z = (z0, . . . , z𝑘−1)
is the so-called SoftMax function, where the probability of the 𝑖-th class is given by:

𝑜𝑖 = softmax(z)𝑖 =
𝑒z𝑖∑𝑘−1
𝑗=0 𝑒

z 𝑗
, 𝑖 = 0, . . . , 𝑘 − 1. (2.6)

In general, given a dataset X, we denote the evaluation of 𝔏 over X as 𝔏(X) and
we denote the corresponding output with oL , or simply o when L can be derived by
the context; in mathematical terms we have

o = 𝔏(X) = {𝔏(x(𝑖) )}𝑁−1
𝑖=0 , 𝑜 ∈ L . (2.7)

It is clear from the above description that three questions arise:

1. How can the model 𝔏 be built?
2. How can we assess the performance of a model w.r.t. a labelled dataset?
3. How can we improve on such performance, hence actually training the super-

vised model?

For what concerns the first question, we present in the upcoming Section 2.3 a
few models that we later use in the course of this work. In fact, providing a complete
overview of all the models in the literature is out of the purpose of this introductory
chapter and it is, in general, fairly impossible. We refer the reader to the books [25,
40] for a wider, yet incomplete, list of models.

The second and the third answers are, indeed, closely related and we discuss them
in the following two Sections 2.2.1 and 2.2.2.
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2.2.1 Assessing models performances

Being able to evaluate the performances of a model requires some form of objective
function, or loss function in ML jargon. A loss function, in the context of supervised
learning, expresses some form of cost w.r.t. to how o is dissimilar from y.

Two examples of loss functions later used in Chapter 5 (one for classification
problems and one for regression problems) are the following:

Mean squared error (regression) A classical way to evaluate loss when L = R is
to employ the (root) mean squared error, i.e.

MSE =
1
𝑁

𝑁−1∑︁
𝑖=0

(
𝑜 (𝑖) − 𝑦 (𝑖)

)2
, RMSE =

√
MSE . (2.8)

𝑘-cross entropy (classification) A simple way to evaluate loss whenL = {0, . . . , 𝑘−
1} is to use 𝑘-cross entropy3. Given two discrete distribution probabilities p and
q over L, we define their 𝑘-cross entropy as follows

𝑘-cross-entropy(p, q) =
𝑘−1∑︁
𝑗=0

p 𝑗 · ln(q 𝑗 ) . (2.9)

Here p plays the role of the ground truth of sample x and hence corresponds to
a vector ŷ where all entries are set to zero but the entry 𝑦 (i.e. the correct class)
which is set to 1 and q is defined as the output ô of a normalisation function
(see above, cf. SoftMax (2.6)) over the same sample x. Total entropy is further
defined as

𝑘-cross-entropy(X, y) = 1
𝑁

𝑁−1∑︁
𝑖=0

𝑘-cross-entropy(ŷ(𝑖) , ô(𝑖) ) . (2.10)

A wider list of loss functions can be found in [28, Chapter 3].

2.2.2 Training of a model

Once a loss function is provided, many approaches exist to minimise it by tuning the
model parameters. The solution to the minimisation problem is, however, usually
intractable analytically4, hence approximate (iterative) methods are used instead; it

3 The general definition of cross entropy over R rather than {0, . . . , 𝑘 − 1} naturally follows from
(2.10) as

∫
R
𝑝 (𝑥 ) ln(𝑞 (𝑥 ) ) 𝑑𝑥, with proper definitions for 𝑝 (𝑥 ) and 𝑞 (𝑥 ) .

4 There exists a few examples for which the optimal model is known, like the linear regression
problem. However, in most of the cases, the number of model parameters is so high that the problem
is unfeasible.
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is the case of, e.g., gradient descent, momentum method, and simulated annealing
(see [28, Chapter 4] for a description of these and other methods).

Adopting an iterative approach allows, however, a key feature in ML that makes
it different from regular optimisation processes. In some sense, we can say that
optimisation in ML tackles concurrently the minimisation of two types of errors
along the iterations (epochs in ML jargon): the training error and the generalisation
error.

More formally, when the optimisation is performed, the dataset 𝐷 is split into
three parts being training set, test set and validation set. We assume that all these
sets are identically distributed w.r.t. 𝐷, being the training the largest and the val-
idation the smallest set. Size-wise, they approximately are in correspondence to
(70%, 20%, 10%) of the entire dataset and serve different purposes. We denote with
training error, generalisation error, and validation error the correspondent evalua-
tion of the loss function.

The optimisation is then executed on the training set only, hence the training error
lays the base for the minimisation procedure. However, unlike regular optimisation
where the procedure stops when the training error gets stuck in some (local) minima,
a further stopping condition is assumed on the monotony of the generalisation error;
in other words, if at some point of the procedure, the generalisation error starts
growing instead of decreasing (natural fluctuation should be taken into account),
then we stop the optimisation. In fact, in such a situation, we say that the procedure is
over-training and, consequently, the model is overfitting the training set, hence losing
the capability of generalising results. Analogously, if training stops before reaching
the minimum for the generalisation error, then the procedure is under-training and,
consequently, the model is underfitting the training set. Figure 2.1 shows a training
example. Conversely, validation set and validation error are used to tune the so-called
hyper-parameters (learning parameters, model structural parameters, . . . ).

The above-described approach to the minimisation problem is what we call a
learning or training procedure. In what follows we do not cover the wide variety of
methods and problems related to model training, and we refer the reader to [25] for
any further detail.

2.3 Artificial neural networks

Artificial neural networks (ANNs) are computational models inspired by the structure
and functioning of biological neural networks, particularly the human brain. ANNs
have gained significant attention in the field of ML and have proven to be powerful
tools for solving complex tasks across various domains. In particular, they are well-
suited for tackling supervised tasks like the ones introduced in Section 2.2. In this
section, we explore the foundation of ANNs, starting with the concept of Rosenblatt’s
perceptron and then delving into feedforward and recurrent neural networks.
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Fig. 2.1: Example of a typical training procedure. Both the training and generalisation error initially
lowers. At some point, the generalisation error reaches a minimum point and then starts growing
back again. When the minimum is reached, the training procedure should stop, otherwise overfitting
occurs.

Fig. 2.2: A biological neuron cell. The axon outputs the (electrical) signal that was processed on
the input signals conducted by dendrites. Each dendrite is connected to an axon via a synapse.

2.3.1 The perceptron

The perceptron is one of the earliest and fundamental building blocks of artificial
neural networks. Introduced by Rosenblatt in [55] as a simplified model of a bio-
logical neuron, the perceptron consists of a single computing cell with one or more
inputs (say 𝑛) and a single output. The original idea of Rosenblatt was to mimic
the behaviour of the neuron cells, where 𝑛 electrical signals are transmitted to the
body-cell through dendrites and, if a threshold is reached, then a signal is outputted
via the axon (see Figure 2.2).

In the mathematical representation, the 𝑛 signals represent the input features of a
sample. Features are processed through a linear combination resembling the dendrites
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Fig. 2.3: A perceptron, i.e. an artificial neuron cell. Input signals are processed by a weighted
convolution and the output is the result of the activation function 𝑓 .

connection, hence resulting in the internal state of the perceptron (activation value, in
the jargon). Then, the output corresponds to the application of a non-linear function
(or activation function) to this activation value (see Figure 2.3). To stick to the
biological model, historically, the activation function behaved as threshold function
on some threshold 𝑏̄; however, this constraint was quickly dropped in favour of
different kinds of (possibly derivable) functions.

More formally, let x ∈ R𝑛 be the feature vector, let w ∈ R𝑛 be a vector of weights
and let 𝑏 ∈ R be a constant (or bias). Then the activation value 𝑎 ∈ R is given by

𝑎 = 𝑏 +
𝑛∑︁
𝑖=1

w𝑖 · x𝑖 , (2.11)

where the summation in (2.11) is often denoted by ⟨w, a⟩ or wt × a. Then, given an
activation function 𝑓 : R→ R, the output 𝑜 ∈ R is derived as 𝑜 = 𝑓 (𝑎).

Classical choices for the activation functions are the following (see also Figure 2.4)

Linear function Given a slope coefficient 𝑘 ∈ R+, we canonically define the linear
function as the straight line given by

𝐿𝑘 (𝑎) = 𝑘 · 𝑎 , (2.12)

with 𝐿1 being denoted by 𝐼, or identity function.
Heaviside function Also denoted as step function centred in 0, the Heaviside func-

tion is given by

𝜑0 (𝑎) =
{

1 if 𝑎 > 0
0 if 𝑎 ≤ 0 .

(2.13)

Do note that the Heaviside function resembles as the biological definition of the
perceptron with 𝑏̄ = −𝑏.

Sigmoid function Typically, the following simplified version of the sigmoid is used

𝜎(𝑎) = 1
1 + 𝑒−𝑎 ∈ (0, 1) . (2.14)
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Fig. 2.4: Three widely employed activation functions. (a) Sign function. (b) Sigmoid function. (c)
Hyperbolic tangent.

Do note that 𝜎(𝑎) = 1 − 𝜎(−𝑎) holds.
Hyperbolic tangent We recall the well known hyperbolic tangent being

tanh(𝑎) = 𝑒𝑎 − 𝑒−𝑎
𝑒𝑎 + 𝑒−𝑎 ∈ (−1, 1) . (2.15)

The perceptron as a classifier

When the Heaviside function is chosen, it is rather clear that, upon the choice of
w, the perceptron actually divides the feature space into two subspaces: one where
the perceptron evaluates to 1 and the other where the perceptron evaluates to 0. The
division boundary between these two subspaces is identified by 𝑎 = 0 and it is, in
particular, a hyperplane (i.e. a space of dimension 𝑛 − 1).

The behaviour we have described is a simple example of binary classifier not
requiring a normalisation function (cf. SoftMax 2.6). In fact, the input sample x is
either classified as class zero or as class one directly applying 𝜑0 (𝑏 + wt × x).

It is easy to see that, despite being a quite limited model, perceptrons can still
model interesting datasets, like, e.g., the outcome of the and and or logic operators.
Problems arise (trivially) when non-linearity in data occurs: as an example, it is easy
to prove that a single perceptron is not able to model the xor logic operator.

From the perceptron to the artificial neural network

Resembling the biological structure of neural networks it is then natural to consider
a model where multiple perceptrons are connected together, forming a so-called
artificial neural network (ANN). In this contest, we usually drop the term perceptron
in favour of the broader name artificial neuron5. We can then represent an ANN as
an edge-weighted connected digraph (𝑉, 𝐸, 𝜔), where vertices𝑉 represent neurones

5 The terms perceptron and artificial neuron are often used interchangeably in the literature, as
they refer to similar concepts. However, Rosenblatt’s perceptron is more likely a specific kind of
artificial neuron where the bias is embedded in the Heaviside activation function (step function)
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and directed edges 𝐸 shows how signals travel between them thanks to the weight
function 𝜔. In this scheme, input features are directly injected into (some of the)
neurones referred to as input neurones, that later transmit them to the other neurones
through weighted connections. Analogously, the output of the network is taken from
(some of the) neurones, referred to as output neurones, after the network is evaluated.
In particular, input and output neurones are not necessarily disjoint.

Here, the structure of the network, i.e. 𝑉, 𝐸 are hyper-parameter of the model.
Conversely, given a model 𝑉, 𝐸 , the parameter to be tuned is the weight function 𝜔
which, we recall, corresponds to a weight per edge, i.e. tunable parameters are in
number |𝐸 | ≤ |𝑉 | · ( |𝑉 | − 1).

ANNs are then classified in terms of their digraph structure and, in particular, can
be divided into two main classes depending on the presence or the absence of loops:

Feed-forward neural networks When the underlying graph is a DAG, the resulting
network is such that the update of each artificial neuron does not depend on
the state of the neuron itself (i.e. the network has no feedback). Examples of
feed-forward neural networks are multi-layer perceptrons (MLP, see below) and
convolutional neural networks (CNN, see [48]).

Recurrent neural networks When the underlying graph presents some cycles, then
there is a feedback effect amongst artificial neurones. Examples of recurrent neu-
ral networks include long-short term memory (LSTM, see below) and Hopfield
network (when the graph is homomorphic to 𝐾𝑛, see [44]).

2.3.2 Feed-forward neural networks

Feed-forward neural networks (FNNs) are the most commonly used kind of artificial
neural network. Their structure does not present any feedback, hence the corre-
sponding digraph is a DAG (rooted in the input neurones). The input neurones are
organised in a set𝑉0 called input layer and they are such that 𝜕− (𝑣) = 0,∀𝑣 ∈ 𝑉0. The
corresponding values are organised in a vector a(0) (where, with abuse of notation,
we are denoting a relationship between the set of vertices and the vector of values
denoting with 𝑎𝑣 the value of 𝑣 and with 𝑣𝑎 the vertex whose value is 𝑎). It follows
that input neurones do not process data in the FNN model and hence serve as a mere
input for the rest of the network. Conversely all (and typically sole) the neurones
𝑣 ∈ 𝑉 such that 𝜕+ (𝑣) = 0 are output neurones (otherwise they serve no purpose in
the network).

In general, no constraints are given on activation function and each neuron can
be equipped with a different one. However, a single activation function 𝑓 : R → R
is usually the case for all non-output neurones (typically sigmoid activation is used).
Then the evaluation of a neuron 𝑣 ∈ 𝑉\𝑉0 is given by

and whose task is binary classification. Artificial neurons, on the other hand, are more general and
encompass a wider range of computational models used in ANN, including the perceptron.
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𝑎𝑣 =
∑︁
𝑢∈𝑉
(𝑢,𝑣) ∈𝐸

𝜔(𝑢, 𝑣) · 𝑓 (𝑎𝑢) , (2.16)

and neurones can be evaluated from the input layer onwards. The output provided by
an output neuron 𝑢 ∈ 𝑉 is then given by 𝑓 ′ (𝑎𝑢), where 𝑓 ′ : R→ L is the activation
function of the output neuron (typically equal for all of them).

Despite not being a strict requirement of FNNs, usually, other neurones can be
organised in layers 𝑉𝑙 too, depending on their distance 𝑙 from the input neurones
(with correspondent values a(𝑙) ). Clearly, this assumption requires that each neuron
𝑢 ∈ 𝑉\𝑉0 is equally distant from all the input neurones (at least w.r.t. the ones it is
connected to).

Then let ℓ + 1 the total number of layers. In particular, layers can be seen as a
partition {𝑉0, . . . , 𝑉ℓ } of the nodes such 𝑁− (𝑉𝑙) ⊆ 𝑉𝑙−1 and 𝑁+ (𝑉𝑙) ⊆ 𝑉𝑙+1, hence
forming a (ℓ + 1)-partite graph. Do note that, in general, having more than a neuron
𝑣 ∈ 𝑉\𝑉0 with 𝜕− (𝑣) = 0 per layer makes little or no sense since such a neuron
behaves as a bias for the upcoming layer (i.e. it has a fixed value, say 1). However, a
single bias neuron per layer is typically included, it is denoted with 𝑏𝑙 , and its index
in a𝑙 is 0, i.e. 𝑎 (𝑙)0 = 1.

A second common constraint satisfied by FNNs is that 𝑉ℓ (the last layer) is made
of all and sole the output neurones. If this is the case, then 𝑉𝑙 is referred to as output
layer, while all the other layers 𝑉𝑙 , 0 < 𝑙 < ℓ are referred to as hidden layers.

Finally, when the number of hidden layers is greater than one, FNNs are called
deep neural networks (DNNs). FNNs, and in particular DNNs, have shown remark-
able success in various applications, including image and speech recognition, natural
language processing, and pattern recognition. Their ability to learn hierarchical rep-
resentations of the input data through the hidden layers enables them to capture
intricate patterns and make accurate predictions.

Single/Multi-layer perceptron

A very common case for a layer 𝑉𝑙 in a FNN is when all the neurones (but bias
neurones) receive as input all the outputs of the previous layer, i.e.𝑁− (𝑣) = 𝑉𝑙−1,∀𝑣 ∈
𝑉𝑙\𝑏𝑙 . Then𝑉𝑙 is referred to as a dense layer. In other words, we have that𝑉𝑙 is dense
if 𝑉𝑙−1 ∗ (𝑉𝑙 − 𝑏𝑙) is the spanned subgraph ⟨𝑉𝑙−1 ∪𝑉𝑙⟩𝐺 of the DAG 𝐺.

A FNN where all the layers are dense (but the input) is called a multi-layer
perceptron (MLP) model and, in particular, its DAG model is defined as

ℓ⋃
𝑙=1
𝑉𝑙−1 ∗ (𝑉𝑙 − 𝑏𝑙) . (2.17)

The scheme for a generic MLP is provided in Figure 2.5.
Then, if we define 𝑛𝑖 = |𝑉𝑙 | − 1, 0 ≤ 𝑖 < ℓ and 𝑛ℓ = |𝑉𝑙 | (where the term ‘−1’ is

due to the bias neuron), an MLP can be safely defined by the (ℓ + 1)-length vector
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Fig. 2.5: Scheme for a generic MLP. Data are processed from the input layer 𝑉0 (in blue) through
hidden layers 𝑉𝑙 , 0 < 𝑙 < ℓ (in orange) up to the output layer 𝑉ℓ (in green). Bias neurones are
highlighted in grey.

n = (𝑛0, 𝑛1, . . . , 𝑛ℓ), where we recall that 𝑛0 = 𝑛 = |𝑉0 | = |x| = 𝑁in represents the
number of input features and 𝑛ℓ = |𝑉ℓ | = 𝑁out represent the number of outputs of
the network.

MLPs of the form n = (𝑁in, 𝑁out), i.e. where 𝐺 = 𝐼𝑁in ∗ 𝐼𝑁out , are often re-
ferred to as single-layer perceptrons (SLPs). In particular, it follows that the SLP
with the identity activation function is merely a 𝑁out-convolution of the features.
Analogously, an SLP with Heaviside activation function and 𝑁out = 1 is equivalent
to Rosenblatt’s perceptron.

It is easy to see that, if 𝑓 : R → R is chosen as activation function for all the
neurones, then (2.16) assumes the following form

𝑎
(𝑙)
𝑗

=

𝑛𝑙−1∑︁
𝑖=0

𝑤
(𝑙)
𝑖, 𝑗
· 𝑓 (𝑎 (𝑙−1)

𝑖
) , (2.18)

where w(𝑙) ∈ R𝑛𝑙−1×𝑛𝑙 is the weight matrix of layer 𝑙, i.e. defined as 𝑤 (𝑙)
𝑖, 𝑗

=

𝜔(𝑢𝑖 , 𝑣 𝑗 ),∀𝑢𝑖 ∈ 𝑉𝑙−1 and ∀𝑣 𝑗 ∈ 𝑉𝑙 . In particular, a powerful way to state (2.18)
is the vectorial form, i.e.

a(𝑙) = w(𝑙) t × 𝑓 (a(𝑙) ) . (2.19)
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A remarkable fact in MLPs is given by the universal approximation theorem for
neural networks (see [31]) which states that every continuous function mapping R
intervals to R intervals can be approximated arbitrarily closely by an MLP of the
form n = (𝑁in, 𝑁h, 𝑁out). This result holds for a wide range of activation functions,
e.g. for the sigmoidal functions.

2.3.3 Recurrent neural networks

While FNNs excel at processing static and independent data, they are limited in their
ability to handle sequential or temporal data. Recurrent neural networks (RNNs)
address this limitation by introducing recurrent connections, i.e. feedback loops. A
loop within the graph enforces, in fact, a concept of time within the network since,
conversely to FNNs, a neuron can influence itself during the evaluation of the model.
Intuitively, this allows information to be stored and propagated through time along
the network.

Along with the introduction of a temporal scale on the network, is reasonable to
assume a temporal scale also on samples6. More in detail, a time series is a particular
kind of sample whose features present some form of temporal correlation and, hence,
are better represented as a matrix X ∈ R𝑁in×𝑇 rather than a vector. In particular, we
have X = (x1, . . . x𝑇 ), with |x𝑡 | = 𝑁in,∀𝑡 ∈ 1, . . . , 𝑇 , where x𝑡 represents the
features of time 𝑡. 𝑇 is called length of the series and 𝑁in represents the number of
(temporal independent) features: it is the case, e.g., of hourly-measured temperature
and humidity within a day (𝑁in = 2,𝑇 = 24, see future work of Chapter 4) or flux and
velocity minute-wise reading from a sensor deployed on a highway (see Chapter 5).

Typically, RNNs are then described in terms of a basic building block, or cell,
that progressively builds an output h𝑡 ,∀𝑡 ∈ {1, . . . , 𝑇} taking as input the output
h𝑡−1 of the cell at time 𝑡 − 1 along with the features x𝑡 at time 𝑡. Here h is referred
to as hidden cell and it is not bounded to share its size 𝑁hid with the size 𝑁in of x.
In fact, even if 𝑁hid = 𝑁in is widely adopted, 𝑁hid should be properly hyper-tuned
during the selection of the model.

Figure 2.6 depicts the general form of an RNN in its unfolded representation.
The unfolded representation highlights how an RNN is, in reality, a FNN where (i)
contiguous layers7 are organised in cells, (ii) input features are fed little by little after
each cell, and (iii) the structure of the cell and its weights are constrained to be equal
cell-by-cell.

Despite their effectiveness, RNNs suffer from the vanishing gradient problem,
where the gradients used to update the weights can diminish or explode over time,
leading to difficulties in learning long-range dependencies. To address this, variants
such as independent RNN (IndRNN, [49]) and Gated Recurrent Unit (GRU, [29])
were developed, which employ specialised units and gating mechanisms to better

6 This is not the case with all RNNs, an example being Hopfield networks that are more focused on
the evolution from an initial situation provided by the input.
7 Here layers are enumerated from the first set x1 of features.
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y1

x2 . . . x𝑡 . . .

. . . . . .

y2 . . . y𝑡 . . .

h RNN RNN RNN

Fig. 2.6: Unfolded representation of an RNN. The cell is depicted multiple times despite being
always the same (same structure and same weights). Size 𝑁hid = |h𝑡 | of the hidden state and size
𝑁in = |x𝑡 | of the input features are independent. The hidden state is also the output of the network.

preserve and control the flow of information. In the following, we describe one of
the most famous variants of this kind.

Long-Short term memory

Long-short term memory (LSTM) are one of the most famous and widest-used
classes of RNN. The LSTM model was introduced by Hochreiter and Schmidhuber
in [43] to overcome the traditional problem of vanishing gradient that affected regular
RNN, making them capable of capturing long-term dependencies in sequential data.

The idea underlying the LSTM is to divide the output h𝑡 of each step from the
processed data that generates it, hence keeping a sort of internal memory c𝑡 (or cell
state) of the LSTM itself. Both h𝑡 and c𝑡 shares the same dimension 𝑁hid (namely
|h𝑡 | = |c𝑡 | = 𝑁hid) which is related to the “length of the memory” (time window)
the LSTM is capable to capture. The cell state can be then updated depending on
the novel input features x𝑡 conditioned over the previous output h𝑡−1. A pictorial
representation of the unfolded process is given in Figure 2.7 to be compared with
the one from RNN (cf. Figure 2.6).

More in detail, the LSTM update is based on four different SLP gf, gi, gc, and
go, or gates (with |g· | = 𝑁hid). Each gate evaluates over both the current-step input
features x𝑡 and the previous-step output h𝑡−1. In particular, the activation function is
set to regular sigmoid for all the neurones but the ones from gc which are equipped
with hyperbolic tangent. More explicitly, we have:

gf
𝑡 = sigmoid

(
bf +Wf × x𝑡 + Rf × h𝑡−1

)
,

gi
𝑡 = sigmoid

(
bi +Wi × x𝑡 + Ri × h𝑡−1

)
,

gc
𝑡 = tanh

(
bc +Wc × x𝑡 + Rc × h𝑡−1

)
,

go
𝑡 = sigmoid

(
bo +Wo × x𝑡 + Ro × h𝑡−1

)
,

(2.20)
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. . . . . .
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h

c . . . . . .
LSTM LSTM LSTM

Fig. 2.7: Unfolded representation of an LSTM (cf. Figure 2.7). The cell is depicted multiple times
despite being always the same (same structure and same weights). The sizes |h𝑡 | and |c𝑡 | of hidden
and cell state (respectively) are equal to the output size 𝑁out (being h𝑡 the actual output). However,
𝑁out is independent from the input size 𝑁in = |x𝑡 |.

c𝑡−1

h𝑡−1

x𝑡

c𝑡

h𝑡

W.Comb. W.Comb. W.Comb. W.Comb.

sigmoid sigmoid tanh sigmoid

tanh

gf
𝑡 gi

𝑡 gc
𝑡 go

𝑡

⊙

⊙

⊙

+

Fig. 2.8: Schematic structure of the LSTM computing unit evaluating input at time 𝑡 . W.Comb.
represents the weighted combination with bias given as b· +W· ×x𝑡 +R· ×h𝑡−1. All the components
are vectors of length 𝑁hid but x which is of length 𝑁in. We recall that h𝑡 is also the output of the
network.

where W· , R· , and b· are called respectively input weights, recurrent weights, and
biases and represents the parameters of the model.

Each gate serves a different purpose, where the first three rule the update of the
cell state c and the fourth determine the next hidden state h (regulating the cell state
contribution). More formally:

gf The forget gate weakens c𝑡−1 by applying a transformation within the range (0, 1).
gi The input gate decides how the candidate influences c𝑡 , being a transformation

of range (0, 1).
gc The candidate gate represents the cell input activation that regulates 𝑐, being of

range (−1, 1).
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go The output gate decides how c𝑡 will compose the output, applying a transforma-
tion of range (0, 1).

Hence, (see also Figure 2.8 for a pictorial representation) the update rules are given
by

c𝑡 = gf
𝑡 ⊙ c𝑡−1 + gi

𝑡 ⊙ gc
𝑡 , h𝑡 = go

𝑡 ⊙ tanh(c𝑡 ), (2.21)

where ⊙ denotes the Hadamard (element-wise) product.

2.4 Cluster analysis

As we have seen in the previous sections, perceptron first and ANNs then are capable
of performing different kinds of tasks, including learning how to classify samples
from a labelled dataset.

However, the process of labelling each sample in the dataset, including the train-
ing, test, and validation sets, is typically labour-intensive. As an example in visitor
tracking scenarios (see later Section 4.5), accurately labelling the trajectory of a
guest requires either following them during their visit or manually analysing data
afterwards, both of which are time-consuming solutions that do not always produce
the expected accuracy.

More in general, it is not always possible to correctly formalise a priori which
class set L the classification problem should rely on: getting back to the museum
example, one could be interested in determining typical paths without knowing
them a priori (see later Section 4.6.3). Additionally, even when a concept of class
representative is provided, it can be beneficial to use methods that automatically
label samples and update the representative definitions to improve accuracy.

All of the above observations highlight the importance of addressing classification
problems using unsupervised methods, leading to the concept of clustering. In other
terms, we can say that clustering is a fundamental task in unsupervised learning,
where similar data samples are grouped together based on their intrinsic patterns or
properties.

Naturally, clustering plays a crucial role in exploratory data analysis, pattern
recognition, and data compression. Beyond the requirement of grouping similar data
into clusters, clustering also provides – as principal output or as a byproduct – a
natural way to represent each cluster by means of a representative element. This
representative element can either be a sample from the dataset or an artificially
generated one that combines elements belonging to the cluster. In the first case, we
refer to this representative as a medoid of the cluster, while in the latter case (which
is typically more frequent), we refer to it as centroid.

The notion of similarity w.r.t. data samples is broad in the context of clustering
and can involve various characteristics of the features, including geometric position,
connectivity, or statistical distribution. Consequently, there is no single, universally
applicable definition of cluster as it rather depends on how the underlying problem
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is defined. Instead, there exists a wide range of clustering models, each with its own
peculiarities, characteristics, and assumptions.

In the upcoming sections, we will explore two main clustering approaches:
centroid-based clustering in Section 2.4.1 and hierarchical clustering in Section 2.4.2.
These approaches provide insights into different ways of addressing the clustering
problem and represent important methodologies in unsupervised learning. However,
for the sake of completeness, in what follows we first discuss how different clustering
models can be classified.

Clustering models

We have already highlighted that no precise definition cluster can be univocally
provided. However, we can mainly classify clustering techniques depending on the
relation that clusters induce over data.

More formally, given an (un-labelled) dataset 𝐷, we can classify a clustering
technique C(𝐷) depending on how the clustering C = (𝐶1, . . . , 𝐶𝑘) divides samples
x ∈ 𝐷, where 𝐶𝑖 represents the clusters. In particular, we say the clustering being
strict if ∀x ∈ 𝐷 there exists at most one cluster 𝐶 ∈ C such that x ∈ 𝐶. If the
existence is guaranteed, i.e. ∃!𝐶 ∈ C, then the clustering is referred to as hard. It
is rather clear that a clustering is hard if and only if it defines a proper partition of
the data samples. If conversely a sample is allowed in being in more than a single
cluster, then the clustering is said fuzzy (or soft).

Apart from this broad classification, clustering techniques are classified after the
definition of cluster they work over. In the following, we provide an extended list
(with no claim of completeness) of nine different kinds of clustering techniques
along with their corresponding assumptions:

Centroid models Centroid models tackle the problem of clustering as an optimi-
sation problem w.r.t. the centroids of the clusters. In other words, centroids are
determined first and samples are assigned to the cluster whose centroid they are
closest to. A popular example of centroid model is the 𝑘-means clustering [51].

Connectivity models Connectivity models emphasise the connectivity or proximity
between data points. They consider data points that are closely connected to
be part of the same cluster. Examples include hierarchical clustering (HCA)
algorithms that create clusters based on some definition of distances between
data points.

Distribution models Distribution models assume that the data points in each clus-
ter follow a specific statistical distribution. Gaussian mixture models (GMMs)
are widely used in this category, where, e.g., each cluster is represented by a
Gaussian distribution. The clustering algorithm estimates the parameters of the
distributions to assign data points to the appropriate clusters.

Density models Density-based models focus on identifying regions of high density
in the data space, which are then considered clusters. Data samples in low-
density regions are considered noise or outliers. Density-based spatial clustering
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of applications with noise (DBSCAN, [38]) is a popular density-based clustering
algorithm that groups data points based on their density and connectivity.

Subspace models Subspace models aim to discover clusters that exist in specific
subspaces or subspaces with certain characteristics. This approach is useful when
different subsets of features contribute to different cluster structures. Subspace
clustering algorithms, such as COBWEB [39] and CLIQUE [22], find clusters in
different subspaces of the data.

Group models Group models, also known as partitioning models, partition the data
space into a predetermined number of clusters. Each data point is assigned to
a single cluster. The simplest examples include partitioning around medoids
(PAM, [46]) and fuzzy 𝑐-means (FCM, [37]), where the objective is to minimise
the dissimilarity between the data points and the medoids or cluster centroids.

Graph-based models Graph-based models represent the data as a graph, where data
samples are nodes and edges represent relationships or similarities. Clusters are
identified as connected components or communities in the graph. Spectral clus-
tering (see, e.g. [53]) and Markov cluster algorithm (MCL, [35]) are examples
of graph-based clustering approaches. In Chapter 3, we assume having graphs
equipped with a clustering (there represented as a vertex-colour map 𝛾) and
we discuss the problem of extracting the contracted graph where nodes are the
representative of such clustering.

Signed graph models Signed graph models take into account positive and negative
relationships between data samples, such as friendship or rivalry. These models
aim to identify cohesive clusters with positive relationships within the clusters
and negative relationships between clusters.

Neural models Neural models use ANNs to perform clustering. A famous example
is given by self-organising maps (SOM, [47]).

2.4.1 Centroid-based clustering

The first class of models we introduce are the so-called centroid-based methods. In
centroid-based clustering, samples x are assumed as points in R𝑛 and each cluster is
represented by a centroid m ∈ R𝑛. Given a set of 𝑘 centroids M = {m1, . . . ,m𝑘},
these define a clustering C = (𝐶1, . . . , 𝐶𝑘) where the points are grouped according
to the closer centroid. In mathematical terms, we have that

x ∈ 𝐶𝑖 ⇐⇒ 𝑑 (x,m𝑖) < 𝑑 (x,m 𝑗 ), ∀ 𝑗 ≠ 𝑖 , (2.22)

where the definition is well-posed as far as points (or centroids) are considered in
general position8 and where 𝑑 : R𝑛 → R is some sort of metric (typically Euclidean
norm is used). It is easy to see that the centroids define a Voronoi tessellation [60]

8 Being in general position is a well-known concept in computational geometry, where points are
not provided with integer-valued position but rather with real-valued position. In this setting, it is
assumed that the probability of having two couple of equidistant points is negligible.
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of the space, and that the points are organised based on their membership in these
cells.

If the number 𝑘 of centroids is fixed, a typical problem related to Voronoi tessel-
lation is the well-known facility location problem, which (in this context) requires
founding the set of 𝑘 centroids such that the distance between samples and centroids
is minimised, i.e. the solution of the minimisation problem

argmin
M

𝑘∑︁
𝑖=1

∑︁
x∈𝐶𝑖

𝑑 (x,m𝑖) . (2.23)

The problem is hard also in many sub-variants (it is e.g. NP-hard also on graphs
and while the supreme metric is adopted), hence many algorithms were developed
to find sub-optimal solutions.

If Euclidean distance is considered (i.e. 𝑑 (x, y) = ∥x − y∥), a widely studied
variation of (2.23) is the case of the minimisation of within-cluster sum of squares
(WCSS), i.e. the minimisation of the measure

𝑘∑︁
𝑖=1

∑︁
x,y∈𝐶𝑖

∥x, y∥2 . (2.24)

In (2.24), centroids does not figure explicitly and the minimisation problem can
be stated in terms of clusters as follows

argmin
C

𝑘∑︁
𝑖=1

∑︁
x,y∈𝐶𝑖

∥x, y∥2 . (2.25)

However, it is easy to see that then (2.25) corresponds to the formulation (2.23)
where centroids are bounded to be the geometrical average of the points within their
cluster, i.e.

m𝑖 = 𝝁𝑖 = 𝜇(𝐶𝑖) =
1
|𝐶𝑖 |

∑︁
x∈𝐶𝑖

xi , ∀𝑖 ∈ {1, . . . , 𝑘} . (2.26)

In particular, we can state (2.25) in terms of (2.26) as follows

argmin
C

𝑘∑︁
𝑖=1

∑︁
x∈𝐶𝑖

∥x, 𝝁𝑖 ∥2 . (2.27)

𝒌-means model

The optimisation problem described in (2.27) is still NP-hard, however efficient
sub-optimal algorithms are known. It is the case, e.g. of 𝑘-means model, one of the
most famous models in centroid-based clustering. In particular, 𝑘-means resemble an
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Algorithm 1: kMeans(𝐷, 𝑘) ↦→C
Input: A dataset 𝐷 of size 𝑁 and a number of clusters 𝑘
Output: A clusterisation C of 𝐷 suboptimal for (2.27)

1 foreach (𝑖 ∈ {1, . . . , 𝑘}) do
2 𝐶𝑖 ← ∅;
3 𝐶′

𝑖
← ∅;

// Randomly assign each sample to a cluster
4 foreach (𝑖 ∈ {1, . . . , 𝑁 }) do
5 𝑗←${1, . . . , 𝑘};
6 𝐶′

𝑗
← 𝐶′

𝑗
∪ {x𝑖 };

// Repeat until convergence
7 while (𝐶𝑖 ≠ 𝐶

′
𝑖
, ∃𝑖 ∈ {1, . . . , 𝑘}) do

// Update new clusters
8 foreach (𝑖 ∈ {1, . . . , 𝑘}) do
9 𝐶𝑖 ← 𝐶′

𝑖
;

10 𝐶′
𝑖
← ∅;

// Evaluate new centroids
11 foreach (𝑖 ∈ {1, . . . , 𝑘}) do
12 mi ← 1/|𝐶𝑖 |

∑
x∈𝐶𝑖

xi;

// Evaluate new clusters
13 foreach (𝑖 ∈ {1, . . . , 𝑁 }) do
14 𝑑∗ ← ∥x𝑖 − m1 ∥;
15 𝑗∗ ← 1;
16 foreach ( 𝑗 ∈ {2, . . . , 𝑘}) do
17 if (𝑑∗ > ∥x𝑖 − mj ∥)
18 𝑑∗ ← ∥x𝑖 − mj ∥;
19 𝑗∗ ← 𝑗;

20 𝐶′
𝑗∗ ← 𝐶′

𝑗∗ ∪ {x𝑖 };

21 return (𝐶′1, . . . , 𝐶
′
𝑘
);

iterative procedure that progressively evaluates a (sub-)optimal Voronoi tessellation
by making use of the centroid constraint provided in (2.26).

Given a set of centroids M, the main idea of 𝑘-means is, in fact, to iteratively
evaluate a clusterisation C via (2.22) and then use it to evaluate a novel set of
centroids M via (2.26). The procedure is then iterated until convergence is reached,
i.e. no sample change in cluster assignment. A pseudo-code of the model is provided
in Algorithm 1

It is easy to see that, under the general position assumption (see Footnote 8), the
algorithm converges; in fact, each step of Algorithm 1 lowers the total cost of the
configuration, cf. (2.27). However, it is proved that, in the worst case, the algorithm
takes 2Ω(

√
𝑁 ) iterations to reach convergency, see [24]. Worst-case scenarios are

nevertheless unfair and resemble critical sample distributions. It is in fact also proven
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that, if samples are randomly perturbed, then the algorithm converges in linear time
both in 𝑁 and 𝑘 , see [23].

An important topic in 𝑘-means is also related to the choice of initial clusters;
in fact, despite the model is deterministic, it can provide different outcomes de-
pending on different initial conditions. For this reason, it is useful to execute the
model multiple times while varying initial conditions and to compare the results in
terms of the cost of the configuration provided as output. The proposed solution in
Algorithm 2.27 is to initialise a random clustering and we evaluated centroids on it.
However, randomly generated centroids serve the purpose as well.

A second important thing to notice is that 𝑘 must be set a priori. In the next
section, we will discuss a clustering method that overcomes this problem by building
a family of clusters at the varying of 𝑘 ∈ {1, . . . 𝑁}.

2.4.2 Hierarchical clustering analysis

We now proceed in the description of hierarchical clustering analysis (HCA), a
powerful clustering technique that, unlike 𝑘-means, does not assume the knowledge
of 𝑘 a priori, but rather builds progressively a family F of hard clusterings. In
particular, the family F is formed by a succession of hard clusterings of the dataset
that are one the refinement of the other.

Depending on the construction strategy of F , HCA is divided into two variants,
namely

Agglomerative HCA When F is built with a bottom-up strategy, by progressively
merging clusters up to a unique one, the HCA is referred to as agglomerative
(A-HCA).

Divisive HCA When F is built with a top-down strategy, hence starting from a
single omni-comprehensive clustering which gets progressively divided, the
HCA is referred to as divisive (D-HCA).

In general, merges (or splits) are determined in a greedy manner with the help of
some form of cluster metric (see below).

In what follows we analyse A-HCA (and we drop the ‘A-’ for readability) since
it is the one that we later use in Section 4.6.3 and, in general, the discussion is
similar for the two approaches. However, we refer the reader to [45, Chapter 6]
for the detailed description of D-HCA approach referred, there, as divisive analysis
clustering (DIANA).

More in details, let 𝐷 = {x𝑖}𝑁𝑖=1 be an (un-)labeled dataset. (A-)HCA produces the
family F = (C1, . . . , 𝐶𝑁 ) such that C𝑖 , 1 < 𝑖 ≤ 𝑁 represents a one-step refinement
of 𝐶𝑖−1, meaning that each C𝑖 is a sub-partition of C𝑗 ,∀𝑖 < 𝑗 ≤ 𝑁 and, in particular,
C𝑖 differs from C𝑖−1 by a sole couple of clusters that get merged in 𝑖-th step. Formally,
we have that C1 = {{x},∀x ∈ 𝐷} is the clustering where all the samples belong to a
different cluster. Then, if we let 𝐴, 𝐵 ∈ C𝑖−1 be the closest clusters w.r.t. some metric
in 𝐶𝑖−1, then 𝐶𝑖 is defined as
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C𝑖 = C𝑖−1\{𝐴, 𝐵} ∪ (𝐴 ∪ 𝐵) ∀𝑖 ∈ {2, . . . , 𝑁}. (2.28)

Do note, in fact, that the described procedure lasts exactly 𝑁 − 1 steps and, unlike
𝑘-means which depends on centroid initialisation, it is deterministic (unless two
couples of clusters share the same distance).

However, a piece of information is still missing: a proper definition of a metric
within the cluster space, or linkage in the jargon, i.e. a function 𝑑c

𝑑c : [𝐷]∗ × [𝐷]∗ → R
(𝐴, 𝐵) ↦→ 𝑑c (𝐴, 𝐵)

, (2.29)

where [𝐷]∗ denotes a set of arbitrary size over 𝐷. Various methods can be found
in the literature to define 𝑑c, most of which resemble some metric 𝑑 : 𝐷 × 𝐷 → R
over the space of samples. In the following, we assume such metric as given (simple
metrics include e.g. Euclidean, Manhattan, and, in general, 𝐿 𝑝 norm), and we define
a few useful derived clustering metrics for clusters 𝐴, 𝐵 ∈ [𝐷]∗ (see also [36]).

SLINK The single linkage is defined as the shortest distance dividing two clusters

slink(𝐴, 𝐵) = min{𝑑 (a, b) | a ∈ 𝐴, b ∈ 𝐵} . (2.30)

CLINK The complete linkage is defined as the largest distance dividing two clusters

clink(𝐴, 𝐵) = max{𝑑 (a, b) | a ∈ 𝐴, b ∈ 𝐵} . (2.31)

UPGMC The unweighted pair group with mean centroids is defined as the distance
dividing the (mean) centroids 𝝁𝐴, 𝝁𝐵 of the clusters, i.e.

upgmc(𝐴, 𝐵) = 𝑑 (𝝁𝐴, 𝝁𝐵) . (2.32)

Here centroids are evaluated just like in classical 𝑘-means (see (2.22)), however,
different methodologies for centroids/medoids evaluation can be used leading to
different unweighted pair group centroids (UPGC) definitions.

In particular, it is interesting that UPGMC naturally provides also an explicit rep-
resentative of the clusters (being the mean of the internal point). This behaviour,
however, comes at a high cost that might penalise the method. In fact, if we consider
the series d defined by the progressive distances of the joint centroids (i.e. where d𝑖
represent the distance of the joined clusters at time 𝑖), then d is positive monotone
by definition in SLINK and CLINK, while it can potentially decrease in UPGMC.

HCA dendrogram and other representations

The last remark on d, is strictly related to a different issue in HCA: which clustering
should be considered amongst F ? In fact, by looking at the sole family, no direct
hints are provided on which clustering better suits the data w.r.t. the others. Like
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many issues in ML, there is no definitive answer to this question; however, a few
representations of the family F can be beneficial. We here report three of them:

Distance plot First and foremost, we already introduced the concept of the join-
distance vector d. A simple yet useful method to determine which clustering
is more suitable is to choose a given threshold 𝑑 and to consider the last HCA
iteration joining two clusters with corresponding distance bounded by 𝑑. In other
words, a clustering 𝐶𝑖 can be chosen as 𝑖 = min{𝑖 ∈ {1, . . . , 𝑁 | d𝑖 > 𝑑} − 1. A
suitable threshold for 𝑑 might naturally emerge by the underlying problem or it
can be determined via the elbow method applied to the plot of d (i.e. a sudden
change in the slope in d, see also [58]).

Size plot A different approach can be to evaluate the number c𝜉 of 𝜉-significant
clusters, i.e. clusters of size greater than 𝜉 ∈ N. In formulas, we have c𝜉 ∈ N𝑁 ,
where c𝑖 𝜉 = |{𝐶 | |𝐶 | > 𝜉, 𝐶 ∈ C𝑖}|. Usually, a plateau can be found in the
plot of c𝜉 , at the varying of 𝜉 (see later Section 4.6.3). The ratio beneath this
approach consists in the fact that it should be possible to locate a number of
significant clusters which are stable during the process, i.e. that absorb other
smaller clusters but are not joined with other stable clusters. If this is the case,
then a suitable stopping point for the HCA procedure corresponds to when these
stable clusters join together.

Dendrogram Finally, it is useful to note that, since clusterings are progressive
refinement of the same partition, then it is possible to represent the procedure
as a rooted graph 𝐺 = (𝑉, 𝐸) often referred to as dendrogram. In particular,
let 𝑉 = {𝐶 ∈ C,∀C ∈ F } be the set of distinct clusters amongst the different
clusterings. Then, an edge exists between two nodes (i.e. clusters) if one is the
result of the join operation w.r.t. the other. It is rather clear that 𝐺 is then a
binary tree rooted in the single cluster contained in C𝑁 and where the leaves
are the clusters formed by the single samples {x}. Pictorial representation of
dendrograms can help assess both d and c as the vertices can be organised
accordingly in height.

An example of the above-described representations is shown in Figure 2.9.

On the complexity of HCA

A pseudo-code representation of the HCA procedure is provided in Algorithm 2. It is
rather clear that the computational time of HCA is, in the general (unoptimised) case,
unsatisfactory bounded by O(𝑁3 · 𝑑), where 𝑑 represents the cost of the evaluation
of the metric function 𝑑c. Optimised versions of the algorithm provide a tradeoff
by storing clustering distances in a matrix and selectively updating (and evaluating)
only distances that changed due to cluster joins. However, in the case of SLINK and
CLINK, optimal algorithms of complexity O(𝑁2) are known (see [32, 57]).
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(a) (b)

(c) (d)

Fig. 2.9: An example of hierarchical clustering analysis of 𝑁 = 50 randomly generated points
in R2 with UPGMC. (a) 𝑁 = 50 points along with their clusterisation when HCA is stopped at
iteration 42 (i.e. 8 clusters). (b) corresponding cluster-join distance d; as it can be seen, an elbow
can be located at iteration 42. (c) the number of significant clusters for different values of 𝜉 ; again,
iteration 42 identifies the end of a plateau. (d) the dendrogram associated with the procedure, where
𝑦-coordinate reports the distance from d at which the join was made; the cut at iteration 42 is
highlighted with a dashed line.
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Chapter 3
Graph contraction on attribute-based colouring

This chapter presents a novel performance-oriented algorithm
for contracting graphs provided with a vertex-colouring
function. The algorithm was developed in collaboration with
Flavio Lombardi, researcher at “Istituto per le Applicazioni del
Calcolo” of the “Consiglio Nazionale delle Ricerche”
(IAC-CNR). Here I harmonise the contributions from a
conference paper [278], a journal paper [274], and a paper in
preparation [287], hence providing a mathematical
formalisation that, to the best of my knowledge, was still missing
in the literature.

Abstract Networks play a ubiquitous role in computer science and real-world
applications. Using distinctive node features to group such data into clusters, hence
represented by a single representative node per cluster, proves to be a valuable
approach. These contracted graphs can reveal previously hidden characteristics of
the original networks.
In many real-world cases, clusters can be identified by a set of connected vertices that
share the result of some categorical function, i.e. a mapping of the vertices into some
categorical representation that takes values in a finite set C. As an example, we can
identify contiguous terrains with the same discrete property on a geographical map
(leveraging Space Syntax) or contiguous nodes having the same discrete property
in a social network. Contracting a graph allows a more scalable analysis of the
interactions and structure of the network nodes.
This chapter delves into the problem of contracting possibly large coloured networks
into smaller and more easily manageable representatives. It provides a rigorous
mathematical definition of the problem, which, to the best of our knowledge, was
missing in the existing literature. Specifically, we explore the variadic nature of the
contraction operation and use it to introduce a weaker version of colour contraction.
We propose a novel effective algorithm to perform colour contraction efficiently
by leveraging this weaker definition. Performance plots are provided for a range of
graphs and results are thoroughly analysed and discussed, aiming to provide practical
use cases and application scenarios for the approach.

Keywords: Coloured networks · Graph contraction · Greedy algorithm · Graph
analysis
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3.1 Introduction

Networks are pervasive in computer science and in real-world applications [80]. Col-
lecting, navigating, and extracting insights from such data and from the underlying
graph structure is often challenging [62]. A widespread technique is to organise data
in clusters by means of some characteristics and extract a representative element
from each cluster [68]. The graph made of these representative objects is usually
much smaller than the original one while it preserves many useful characteristics.

A common way to describe clusters is to provide a categorical classification of
the vertices by means of some colouring function, i.e. a mapping of the vertices into
some fixed representation. Colouring functions can be generated as the outcome of
clustering techniques (see Section 1.2.7). Oftentimes, however, this kind of informa-
tion is natural with the graph – like the language spoken by users in a Social Network
– or can be injected as expert-knowledge – as the additional information a geologist
can provide on a specific terrain map. Indeed, also continuous variables, like e.g. air
pressure in weather forecasting maps, can be sketched as discrete if sampled in fixed
ranges.

Networks can be quite large in nature, thus having an efficient way to contract
them provides a useful approach to ease analysis and detection of issues. In this sense,
stakeholders can be identified as the analysts that need to extract information, e.g. for
urban planning, where city maps are contracted on neighbourhoods sharing the same
thematic area. Other stakeholders are those ones analysing networks representing
Unspent Transaction Output or account-based cryptocurrencies that might search,
e.g., for accumulation nodes or highly connected small clusters of vertices.

In the above scenarios, the vertices sharing the same categorical information can
be merged via (graph) contraction, i.e. a novel vertex is generated in place of the
previous ones, preserving the adjacency of the substituted vertices (see Section 1.5).
Application of contraction generates novel graphs that share a number of properties
with the original graph (e.g. connectivity), but whose size is usually much smaller
(in both vertices and edges).

Graph contraction problems are an interesting set of problems on their own being
a class of NP-Hard problems, e.g. determining whether one can obtain a tree by
contracting at most 𝑘 edges from a given connected graph to obtain a tree (i.e. Tree
Contraction) is a possible example [61].

3.1.1 Related Work

Graph contraction is useful in many graph-related problems since it tackles the
problem of reducing input data into a more manageable size. It is the case, for
example, of image 3D curve skeleton extraction, as presented in [74]. Solutions to
many well-known graph problems have been formulated by means of procedural
reduction of the original graph (cf. Section 1.5); it is the case, e.g., of finding the
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shortest path [66, 11], of computing chromatic polynomials [86], evaluating DP
colouring [79] or evaluating the number of spanning trees [69] of a simple graph.

Parallel computing, where data must be mapped to processing units via some
not a priori known logic, is an interesting use case for graph contraction as well.
Ponnusamy et al. [82] introduced an iterative parallel graph contraction algorithm
to pairwise contract vertices, hence reducing the problem size before mapping data.
Meyerhenke et al. apply a similar idea in [76], extending it in a multi-levelled way:
namely, the graph is iteratively reduced while applying label propagation to obtain
graphs of manageable size. An interesting review on these topics can be found in [85].

In both coloured and colourless versions, contraction provides many insights about
graph connectivity-related features (see e.g. [84] for a fast connectivity algorithm
based on graph contraction). Studying graphs and colour clusters connectivity is
useful in a wide variety of applications [63], including when the graphs underlie
beneath more complex processes, e.g. the connectivity of the basis of Markov process
reveals important information about its Ergodicity (see e.g. later Chapter 6 for an
Ergodic two-coloured graph-based Markov process).

Despite its usefulness in a wide variety of applications, to the best of our knowl-
edge, there is not a rich research effort on colour-based graph contraction. Neverthe-
less, some research work can be found with applications in distinct areas.

D’Autilia and Spada [65] used colour-based graph contraction to retrieve the
relationship between pedestrian, vehicular and hybrid areas in city maps to com-
pare different mobility plans; in this context, the authors enforced colours on street
junction-based graphs leveraging on Space Syntax approach [71] where a city is
analysed by means of its different areas. Later, in Chapter 4, we described a pro-
cedural classification method of cascaded localisers derived by colour contraction
over museums graph representations where colours are injected by expert knowledge
as architectural and conceptual constraints. Crypto-currency offers some interesting
use cases as well – transactions and users graphs, whose analysis can be complex
(see e.g. [64, 73]), can benefit from a feature-preserving size reduction of the orig-
inal network. Finally, other applications include complex networks such as Social
Networks and web graphs, with some novel results shown and discussed below.

Nevertheless, to the best of our knowledge, an efficient parallel algorithm for
coloured graph contraction is not available at present. Some early work by Miller
and Reif [78] and by Philips [81], is limited to –colourless– graphs. More recent
work on label propagation by Meyerhenke et al. [77] aims at building colour clusters
instead of contracting them. This motivates our work, whose final goal is to provide
a contraction algorithm effectively capable of leveraging parallel computing.

3.1.2 Chapter contribution

In this chapter, we tackle the problem of colour contraction (or 𝛾-contraction) and
we discuss it in detail providing, to the best of our knowledge, the first mathemat-
ical formalisation of the problem. We introduce a consistent notation with regular
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graph connectivity and contraction and we propose a weaker formalisation of the
𝛾-contraction under the name of 𝛽-contraction. Here, the idea is to exploit local
properties of the vertices instead of applying global visits that are known to be
challenging to efficiently parallelise (see [5]).

We leverage 𝛽-contraction constructive definition (see Theorem 3.1) to describe
a general approach to 𝛾-contraction problem and we refine it by introducing a novel
algorithm for graph colour contraction that is fast and reliable. The algorithm is
applied in various scenarios and results are shown and discussed. Although the algo-
rithm is presented in its serial version, it is designed to be naturally parallelisable1.
Care has been taken to incorporate important concepts of parallel computing system
design (we refer the interested reader to [67] for a good review on parallel graph
algorithms). In particular, the underlying data structure is optimised, yielding a com-
putational cost that, in the average case, is proportional to the number of edges of
the original graph (i.e. like in a regular visit) while avoiding global assumptions on
the vertices (that usually force parallel versions to use barriers).

3.1.3 Chapter organisation

The rest of this chapter is organised as follows. Section 3.2 provides the mathematical
formalisation of the colour contraction problem, directly extending the contents from
Chapter 1. Section 3.3 introduces our novel algorithm both providing a mathematical
formalisation of it (Section 3.3.1) and describing it algorithmically (Section 3.3.3);
underlying data structures (Section 3.3.2) and computational complexities (Sec-
tion 3.3.4) are both discussed in details. Section 3.4 shows and discusses results
obtained applying the proposed algorithm to benchmark Erdös-Rényi graphs (Sec-
tion 3.4.1) and to a real-world graph of Facebook pages (Section 3.4.2). Finally,
Section 3.5 closes the chapter by summarising contributions and discussing future
developments.

3.2 Coloured-based graph contraction

In this section, we formalise the problem of contracting a (vertex-)coloured graph.
Hence, let us consider a graph𝐺 = (𝑉, 𝐸, 𝛾) equipped with a vertex-colour function
𝛾 = 𝛾𝑉 : 𝑉 → 𝐶, 𝐶 ⊊ 𝑁 , |𝐶 | = 𝑐 < +∞, as described in Section 1.2.7.

We first and foremost need to extend the definition of graph contraction (see
Section 1.5) to a coloured graph:
Definition 3.1 (Colour-preserving contraction)
Let𝐺 = (𝑉, 𝐸, 𝛾) be a vertex-coloured graph and let 𝑢, 𝑣 ∈ 𝑉 be two adjacent vertices

1 A parallel version is already available at the time of writing but statistics, comparison, and profiling
for performances are incomplete yet. In order to provide a self-contained work, such results, along
with the detailed implementation of the parallel version, are not discussed here.
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sharing the same colour, i.e. 𝑢 ∼ 𝑣 and 𝛾(𝑢) = 𝛾(𝑣). We define the colour-preserving
contraction – and we denote it as 𝐺/𝛾{𝑢, 𝑣} – as the graph 𝐺′ = 𝐺/{𝑢, 𝑣} equipped
with the colouring function

𝛾′ : 𝑉 ′ → 𝐶

𝑧 ↦→ 𝛾′ (𝑧) , with 𝛾′ (𝑧) =
{
𝛾(𝑧) if 𝑧 ≠ 𝑤
𝛾(𝑢) if 𝑧 = 𝑤

(3.1)

where 𝑤 is the novel vertex in 𝐺′ that blends 𝑢 and 𝑣.
We define the corresponding procedure as 𝔪

𝛾

𝐺
(𝑢, 𝑣) analogously to 𝔪𝐺 (𝑢, 𝑣);

𝔪
𝛾

𝐺
(𝑢, 𝑣) outputs the blended vertex 𝑤 ∉ 𝑉 , the edge set 𝐸𝑤 joining 𝑤 with

𝑁𝐺 ({𝑢, 𝑣}), and the colour 𝑥𝑤 ∈ 𝐶 such that 𝛾′ (𝑤) = 𝑥𝑤 = 𝛾(𝑢).
It is straightforward to consider the following

Proposition 3.1 (Properties of colour-preserving contraction)
Colour-preserving contraction 𝔪

𝛾

𝐺
is commutative and associative.

Proof For what concern commutative property, let us consider𝑤, 𝐸𝑤, 𝑥𝑤 = 𝔪
𝛾

𝐺
(𝑢, 𝑣)

and 𝑤′, 𝐸𝑤′ , 𝑥𝑤′ = 𝔪
𝛾

𝐺
(𝑣, 𝑢). In particular, we already know by the definition of 𝔪𝐺

that 𝑤 = 𝑤′ and 𝐸𝑤 = 𝐸𝑤′ . From (3.1), it follows 𝑥𝑤 = 𝛾(𝑢) and 𝑥𝑤′ = 𝛾(𝑣). Since
colour-preserving contraction is solely defined on 𝑢, 𝑣 such that 𝛾(𝑢) = 𝛾(𝑣) we can
conclude that 𝑥𝑤 = 𝑥𝑤′ .

Being 𝔪𝐺 associative, associative property for 𝔪𝛾

𝐺
follows analogously.

In general, we refer to 𝔪
𝛾

𝐺
simply as 𝔪 when it is clear from the context that we

are considering a coloured graph.

Definition 3.2 (𝛾-contraction)
Given a vertex-coloured graph𝐺 = (𝑉, 𝐸, 𝛾), we define the 𝛾-contraction of𝐺, more
formally the colour contraction of𝐺 on the colour set 𝐶 induced by the colouring 𝛾,
as the procedure that applies the (commutative, associative) colour-preserving graph
contraction to all the couples of adjacent vertices that shares the same colour, i.e.
that evaluates progressively 𝐺/𝛾{𝑢, 𝑣},∀𝑢, 𝑣 ∈ 𝑉 such that 𝑢 ∼ 𝑣 and 𝛾(𝑢) = 𝛾(𝑣).
We denote such operation as 𝐺/𝛾.

Before proceeding, it is worthwhile for ease of notation to provide the following
set of definitions on coloured graphs

Definition 3.3 (Colour neighbourhood)
Let 𝐺 = (𝑉, 𝐸, 𝛾) be a vertex-coloured graph. We define the colour neighbourhood
of 𝑣 ∈ 𝑉 – and we write 𝑁𝛾 (𝑣) – as the set of adjacent vertices of 𝑣 that share the
same colour with it

𝑁𝛾 (𝑣) = {𝑢 ∈ 𝑁𝐺 (𝑣) | 𝛾(𝑢) = 𝛾(𝑣)} . (3.2)

Mimicking the notation for the regular neighbourhood (cf. (1.7)), we also define the
colour neighbourhood of a set of vertices𝑈 ⊆ 𝑉 as

𝑁𝛾 (𝑈) =
⋃
𝑢∈𝑈

𝑁𝛾 (𝑢)\𝑈 . (3.3)
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We refer to the size of the colour neighbourhood as the vertex/vertex set colour
degree, i.e.

𝜕𝛾 (𝑢) = |𝑁𝛾 (𝑣) | , 𝜕𝛾 (𝑈) = |𝑁𝛾 (𝑈) | . (3.4)

Observation 3.1 (On colour neighbourhoods)
In the following, we assume that 𝛾(𝑢) = 𝛾(𝑣),∀𝑢, 𝑣 ∈ 𝑈 when referring to 𝑁𝛾 (𝑈).
In fact, dropping such a condition would result in having multiple colours amongst
the vertices in 𝑁𝛾 (𝑈).

Definition 3.4 (Colour cluster and colour component)
Let 𝐺 = (𝑉, 𝐸, 𝛾) be a vertex-coloured graph. We define a colour cluster as a
set of vertices 𝑆 ⊆ 𝑉 such that ∀𝑢, 𝑣 ∈ 𝑆 we have 𝛾(𝑢) = 𝛾(𝑣) and there exists
Γ𝑢,𝑣 = (𝑤0, . . . , 𝑤𝑘) entirely contained in 𝑆, i.e. 𝑤𝑖 ∈ 𝑆, for 0 ≤ 𝑖 ≤ 𝑘 . We denote
with 𝛾(𝑆) the colour of the vertices contained in 𝑆.

If a colour cluster 𝑆 is maximal (i.e. ∀𝑆′ ⊂ 𝑉 colour cluster, 𝑆 ⊆ 𝑆′ then 𝑆 = 𝑆′)
we say that 𝑆 is a colour component.

Observation 3.2 (On the connectivity of colour clusters and colour components)
Requiring the existence between 𝑢 and 𝑣 of Γ𝑢,𝑣 entirely contained in 𝑆 is equivalent
to requiring that ⟨𝑆⟩𝐺 is connected (cf. Section 1.2.5). We here explicitly refer to
the path Γ joining each couple of vertices in 𝑆 as it is later useful in both the proof
of Proposition 3.4 and in the explanation of the algorithm introduced in this chapter
(cf. Section 3.3).

With the concept of colour-cluster, it is a natural consequence of Proposition 3.1
to claim the following

Proposition 3.2 (Colour contraction variadic form)
The colour-preserving contraction procedure 𝔪𝛾

𝐺
admits a variadic form on colour

clusters. In other words, given 𝑈 ⊆ 𝑉 a colour cluster, then 𝐺/𝛾𝑈 is well defined
and equips the resulting graph 𝐺/𝑈 with the colouring function defined in (3.1).

Proof The proposition directly follows from the fact that colour-preserving contrac-
tion is commutative and associative, analogously to regular graph contraction (cf.
Section 1.5). □

A useful remark on colour components, also highlighting the similarity with
connected components from Section 1.2.5, is provided in the following

Observation 3.3 (Colour components are disjoint)
It directly follows from Definition 3.4 that, given two colour components 𝑆1, 𝑆2 of
𝐺, then if 𝑣 ∈ 𝑆1 and 𝑣 ∈ 𝑆2 we have 𝑆1 = 𝑆2. In other words, 𝑆1 ∩ 𝑆2 is either empty
or equal to 𝑆1 (and 𝑆2).

Definition 3.5 (Colour (sub-)partition)
Let 𝐺 = (𝑉, 𝐸, 𝛾) be a vertex-coloured graph. We define a colour sub-partition of
𝐺 as a set of colour clusters S that forms a partition on the vertex set 𝑉 . We further
define a colour partition S★ as a minimal (sized) colour sub-partition.
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It is pretty straightforward to claim the following

Proposition 3.3 (The colour partition is unique)
Let 𝐺 = (𝑉, 𝐸, 𝛾) be a vertex-coloured graph. The colour partition S★ of 𝐺 – and
we denote it as C𝛾 (𝐺) – is unique and it is made of all the colour components of 𝐺.

Proof The proof follows from Observation 3.3. Since each vertex is contained in
a single colour component, then the set S★ of all the colour components of 𝐺 is
unique. Furthermore, ∀𝑆𝑖 , 𝑆 𝑗 ∈ S★, 𝑆𝑖 ≠ 𝑆 𝑗 , it holds 𝑆𝑖 ∩ 𝑆 𝑗 = ∅ and, since 𝑆★
collects all the colour components, then ∀𝑣 ∈ 𝑉, ∃!𝑆 ∈ S★ such that 𝑣 ∈ 𝑆, i.e. S★
is a partition of 𝑉 . Minimality directly follows from the fact that colour components
are maximal. □

In order to build a colour partition, it is useful to characterise the colour compo-
nents by means of the following

Proposition 3.4 (Colour component characterisation)
Let 𝐺 = (𝑉, 𝐸, 𝛾) be a vertex-coloured graph and let 𝑆 ⊆ 𝑉 be a colour cluster of
𝐺. We have that 𝑆 is a colour component ⇐⇒ 𝑁𝛾 (𝑆) = ∅.
Proof We prove one implication at a time, both ad absurdum.

(⇐) Let 𝑆 ⊆ 𝑉 be a colour cluster such that 𝑁𝛾 (𝑆) = ∅. If ad absurdum ∃𝑆′ ⊆ 𝑉
such that 𝑆′ is a colour cluster and 𝑆 ⊊ 𝑆′, then 𝑆 = 𝑆′\𝑆 ≠ ∅. In particular, let
us consider 𝑣 ∈ 𝑆 and 𝑢 ∈ 𝑆 then ∃Γ𝑢,𝑣 = (𝑤0, . . . , 𝑤ℓ), with 𝑤𝑖 ∈ 𝑆′,∀0 ≤ 𝑖 ≤ ℓ
and 𝑤0 = 𝑢, 𝑤ℓ = 𝑣. Let us denote with 𝑖 the first 𝑖 such that 𝑤𝑖 ∉ 𝑆, i.e.

𝑖 = min{𝑖 ∈ {0, . . . , ℓ} | 𝑤𝑖 ∈ 𝑆} .

We have that 𝑤𝑖−1 ∈ 𝑆 (which is well-posed, in fact 𝑖 > 0 since 𝑤0 = 𝑢 ∈ 𝑆),
hence {𝑤𝑖−1, 𝑤𝑖} ∈ 𝐸 and 𝛾(𝑤𝑖−1) = 𝛾(𝑤𝑖) since 𝑤𝑖−1, 𝑤𝑖 ∈ 𝑆′. It follows that
𝑤𝑖 ∈ 𝑁𝛾 (𝑤𝑖−1) ⊂ 𝑁𝛾 (𝑆) ≠ ∅ (⇒⇐).

(⇒) Let 𝑆 ⊂ 𝑉 be a colour component. If ad absurdum ∃𝑢 ∈ 𝑁𝛾(𝑆), let us prove
that 𝑆′ = 𝑆 ∪ {𝑢} is a colour cluster (such that 𝑆 ⊊ 𝑆′). By Definition 3.3 we
have 𝛾(𝑢) = 𝛾(𝑤),∀𝑤 ∈ 𝑆 and there exists 𝑣 ∈ 𝑆 such that 𝑢 ∼ 𝑣. Let us call
𝑒 = {𝑢, 𝑣}. ∀𝑤 ∈ 𝑆, there exists a path Γ𝑤,𝑣 which is entirely contained in 𝑆 and
which can be extended to 𝑣 by 𝑒, hence forming a path Γ𝑤,𝑢 entirely contained
in 𝑆′ . It follows that 𝑆′ is a local colour cluster such that 𝑆 ⊊ 𝑆′ (⇒⇐). □

The proof of Proposition 3.4 highlights a constructive way to evaluate a colour
component from one of its vertices 𝑣 ∈ 𝑉 , which is resumed in Algorithm 3. Hence,
the colour partition of a graph can be determined by means of a simple yet effective
procedure, as described in Algorithm 4.

We are now ready to refine Definition 3.2 under the variadic form of 𝔪𝛾

𝐺
(cf.

Proposition 3.2) as follows

Definition 3.6 (𝛾-contraction (variadic form))
Let 𝐺 = (𝑉, 𝐸, 𝛾) be a vertex-coloured graph and let S★ = C𝛾 (𝐺). We define the
𝛾-contraction of 𝐺 – and we denote it as 𝐺/𝛾 – as the graph obtained by applying
𝐺/𝛾𝑆, ∀𝑆 ∈ S★.
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Algorithm 3: EvalColourComponent(𝑣, 𝐺) ↦→𝑆
Input: A vertex 𝑣 of the vertex-coloured graph 𝐺 = (𝑉, 𝐸, 𝛾)
Output: The colour component 𝑆 where 𝑣 belongs to

1 𝑆← ∅;
2 𝑁 ← {𝑣};
3 repeat
4 𝑆← 𝑆 ∪ 𝑁 ;
5 𝑁 ← 𝑁𝛾 (𝑆);
6 until (𝑁 ≠ ∅);
7 return 𝑆;

Algorithm 4: EvalColourPartition(𝐺) ↦→S★
Input: A vertex-coloured graph 𝐺 = (𝑉, 𝐸, 𝛾)
Output: The colour partition S★ = C𝛾 (𝐺)

1 S★← ∅;
2 𝐾 ← 𝑉 ;
3 while (𝐾 ≠ ∅) do
4 Let 𝑣 be a vertex from 𝐾 ;
5 𝑆← EvalColourComponent(𝑣, 𝐺);
6 S★← S★ ∪ {𝑆};
7 𝐾 ← 𝐾\𝑆;

8 return S★;

Algorithm 5: simpleGammaContraction(𝐺) ↦→𝐺′
Input: A vertex-coloured graph 𝐺 = (𝑉, 𝐸, 𝛾)
Output: The corresponding 𝛾-contraction 𝐺′ = 𝐺/𝛾

1 S★← EvalColourPartition(𝐺);
2 foreach (𝑆 ∈ S★) do
3 𝐺← 𝐺/𝛾𝑆;

4 return 𝐺;

The latter definition further highlights that 𝛾-contraction builds a novel graph
𝐺′ = (𝑉 ′, 𝐸 ′, 𝛾′) = 𝐺/𝛾 where each node 𝑣𝑖 ∈ 𝑉 ′ is the contraction of a colour
component 𝑆𝑖 ∈ C𝛾 (𝐺) and it is equipped with the colour 𝛾(𝑆𝑖). It follows that
|𝐺′ | = |C𝛾 (𝐺) | = |C𝛾′ (𝐺′) | and, since all 𝑆𝑖 are maximal, ∀𝑢′, 𝑣′ ∈ 𝑉 ′ if 𝑢′ ∼ 𝑣′
then 𝛾′ (𝑢′) ≠ 𝛾′ (𝑣′). In other words, 𝐺′ is a 𝑐-partite graph, where the partition is
induced by 𝛾′ (and 𝛾′ is a proper colouring of 𝐺). Hence we can use Algorithm 4 to
define a simple, intuitive way to perform 𝛾-contraction, as resumed in Algorithm 5.

In particular, in the upcoming Section 3.3, we explain how the variadic nature of
𝔪
𝛾

𝐺
is used to build our fast algorithm for 𝐺/𝛾 evaluation.
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3.3 The 𝜸-contraction algorithm

In this section, we introduce our novel algorithm for evaluating 𝛾-contraction of
generic vertex-coloured graphs. We first provide an overview of our solution and then
we delve into the technical details of the implementation that makes the algorithm
efficient.

3.3.1 Algorithm overview

Our novel approach to 𝛾-contraction mainly leverages the variadic nature of𝔪𝛾

𝐺
. The

algorithm we introduce progressively determines colour sub-partitionsS and applies
𝔪(𝑆𝑖) for all the 𝑆𝑖 ∈ S concurrently. The reason why we went for this approach
rather than evaluating colour partitions like in Algorithm 4 is that Algorithm 4 is
hardly parallelisable since all of the operations introduced are strongly sequential.
Conversely, in our algorithm, we efficiently determine a forest subgraph of 𝐺 where
each tree spans a (possibly maximal) colour cluster in S. In particular, only a few
iterations are typically needed to build 𝐺/𝛾 (∼ 4 iterations for 𝑛 ∼ 5 × 10+4 and
𝑚 > 𝑛 log 𝑛, see later Section 3.4.1).

We mainly divide the procedure into two phases (to be iterated until the 𝛾-
contraction is completed): (i) evaluation of a colour sub-partition S and (ii) actual
contraction of the colour clusters 𝑆 ∈ S. More formally, let 𝐺 = (𝑉, 𝐸, 𝛾) be the
graph to be contracted (with 𝑛 = |𝐺 | and 𝑚 = ∥𝐺∥), S𝛽 be the colour sub-partition
determined in the first phase, and 𝐺′ = (𝑉 ′, 𝐸 ′, 𝛾′) the graph resulting from the
second phase (with 𝑛′ = |𝐺′ | and 𝑚′ = ∥𝐺′∥). Then, the two phases are defined as
follows:

contraction mapping evaluation We build a contraction mapping 𝛽 : 𝑉 → 𝑉 ′ �
S𝛽 that identify, per each vertex 𝑣 ∈ 𝑉 , a novel vertex 𝑣′ ∈ 𝑉 ′. In particular,
we recall that there exists a bijection between the novel vertices 𝑣′ ∈ 𝑉 ′ and the
colour clusters 𝑆 ∈ S𝛽 through which 𝐺′ is evaluated. In this phase, S𝛽 is not
known a priori and it is generated with an emerging procedure that only relies
on (easily parallelisable) local properties of each vertex 𝑣 ∈ 𝑉 i.e. its colour
neighbourhood 𝑁𝛾 (𝑣). In particular, this is done in a four-step approach that:
(i) identify a rooted forest where each maximal tree spans a colour cluster, (ii)
builds a map 𝜋 that links each node to the root of the tree it belongs to, (iii)
builds a bijection 𝛼 that assigns a novel vertex to each root of the forest, and
(iv) builds the map 𝛽 such that vertices within distinct trees are linked to the
corresponding novel vertex.

contraction mapping application We evaluate 𝐺′ = 𝐺/𝛽, which is well posed
since 𝑉 ′ (the codomain of 𝛽) can be interpreted as a set of colours hold-
ing 𝑉 ′ � {0, . . . , 𝑛′ − 1}2. In other words, for each 𝑆𝑖 ∈ S𝛽 (which corre-

2 This assumption is natural in computer science, where 𝑉 ′ is represented as an array and a node
can be identified by its index within the array.
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sponds to 𝛽−1 (𝑣′
𝑖
), 𝑣′

𝑖
∈ 𝑉 ′) we evaluate concurrently the result of 𝐺/𝛾𝑆𝑖 . Here,

roughly speaking, concurrently means that we evaluate a “multi-contraction”
𝐺/𝛾{𝑆1, . . . , 𝑆 |S𝛽 | } = 𝐺/𝛾S𝛽 rather than evaluating𝐺/𝛾𝑆1/𝛾 . . . /𝛾𝑆 |S𝛽 | . How-
ever, we are not mathematically rigorous on the introduction of 𝐺/𝛾S𝛽 , since it
much more represents a computer science optimisation rather than a real novel
operation.

Being mainly a computational fact, we leave the precise description of the sec-
ond phase to Section 3.3.3. We here solely recall that, being the colour-preserving
contraction associative, if we assume 𝑆𝑖 contracting in a novel vertex 𝑤𝑖 then we can
define 𝐺′ as:

𝑉 ′ =
{
𝑤𝑖 ,∀𝑆𝑖 ∈ S𝛽

}
𝐸 ′ =

{
{𝑤𝑖 , 𝑤 𝑗 } ∈ [𝑉 ′]2 | 𝑁 (𝑆𝑖) ∩ 𝑆 𝑗 ≠ ∅

}
𝛾′ (𝑤𝑖) = 𝛾(𝑆𝑖), ∀𝑤𝑖 ∈ 𝑉 ′

(3.5)

or, analogously, we can build it from 𝛽 as

𝑉 ′ = {𝛽(𝑣),∀𝑣 ∈ 𝑉}
𝐸 ′ = {{𝛽(𝑢), 𝛽(𝑣)}∀𝑢, 𝑣 ∈ 𝑉 | 𝑢 ∼𝐺 𝑣}

𝛾′ (𝑤′) = 𝛾(𝛽−1 (𝑤′)), ∀𝑤′ ∈ 𝑉 ′
(3.6)

where we are exploiting the fact that 𝑉 ′ and 𝐸 ′ are sets to get rid of duplicates.
For what concern the first phase, the underlying idea is to create a digraph 𝐷

on 𝑉 where each node 𝑣 ∈ 𝑉 is joined to a representative node 𝑣̂ within 𝑁𝛾 (𝑣). To
provide a definition of representative which is suitable to work locally, we assume
a total ordering on 𝑉 . This is naturally done by considering the bijection between 𝑉
and {0, . . . , 𝑛 − 1} as before and then defining the representative as the minimum of
the colour neighbourhood. Hence we claim and prove the following

Theorem 3.1 (Creation and characterisation of 𝐷)
Let 𝐺 = (𝑉, 𝐸, 𝛾) be a coloured-vertex graph where vertices are enumerated in
{0, . . . , 𝑛 − 1}. The digraph with self loops 𝐷 = (𝑉, 𝐵), where 𝐵 is defined as

𝐵 = {(𝑣, 𝑣̂),∀𝑣 ∈ 𝑉} (3.7)

with
𝑣̂ = min{𝑢 ∈ 𝑁𝛾 (𝑣) ∪ {𝑣}} , ∀𝑣 ∈ 𝑉 . (3.8)

is a forest. In particular, each connected component 𝑇 ∈ C(𝐷) is a tree whose
vertices are a colour cluster 𝑆 = 𝑉𝑇 of 𝐺, hence C(𝐷) define a colour sub-partition
S𝛽 of 𝐺. The vertex 𝑟𝑇 = min{𝑣 ∈ 𝑉𝑇 },∀𝑇 ∈ C(𝐷) is such that ∀𝑣 ∈ 𝑉𝑇 the single
path Γ𝑣,𝑟𝑇 is directed and maximal (w.r.t. 𝑣), hence 𝑟𝑇 is a natural root for 𝑇 and a
natural representative for 𝑆 ∈ S𝛽 . In particular, the representative 𝑟𝑇 also induces
a natural way to enumerate the colour clusters 𝑆 ∈ S𝛽 .

Proof Let us prove the Proposition point by point
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1. Let us prove that 𝐷 is a forest. We recall that, in order for 𝐷 to be a forest, then
given two distinct nodes 𝑢, 𝑣 ∈ 𝑉 there exists at most a single path Γ𝑢,𝑣 joining
them.
Without loss of generality, let 𝑢 > 𝑣 and assume 𝑢, 𝑣 and on the same connected
component, hence ∃Γ𝑢,𝑣 = (𝑤0, . . . , 𝑤ℓ) a path connecting them. We now prove
that Γ𝑢,𝑣 is unique.
In particular, from (3.7), each node 𝑤 ∈ 𝑉 has 𝜕+

𝐷
(𝑤) = 1, and we have 𝑣 <

𝑢,∀𝑢 ∈ 𝑁− (𝑣) and 𝑢 ≥ 𝑣 for the single node 𝑢 ∈ 𝑁+ (𝑣) (where equality holds
only if 𝑢 = 𝑣, i.e. v has a self loop). It follows that each path can be divided
into at most two monotone paths, i.e. (since 𝑢 > 𝑣) ∃𝑎 ∈ {1, . . . , ℓ} such that
𝑤0 > 𝑤1 > . . . 𝑤𝑎 and (unless 𝑎 = ℓ) 𝑤𝑎 < 𝑤𝑎+1 < . . . 𝑤ℓ . In fact, if more than a
change in monotony exists, then there exists a node 𝑤𝑖 such that 𝑤𝑖−1 < 𝑤𝑖 and
𝑤𝑖 > 𝑤𝑖+1, which is impossible since it would imply that 𝜕+ (𝑣) = 2.
In particular, the two monotone paths Γ𝑢,𝑤𝑎

and Γ𝑣,𝑤𝑎
are unique according to

the same argument, hence Γ𝑢,𝑣 is unique as well.
2. Let us prove that a connected component𝑇 ∈ C(𝐷) spans a colour cluster. Being
𝐷 a forest, it is straightforward that 𝑇 is a maximal tree in 𝐷. In particular, it
follows from (3.8) that∀𝑢, 𝑣 ∈ 𝑉𝑇 , then 𝛾(𝑢) = 𝛾(𝑣), hence ⟨𝑇⟩𝐺 is a (connected,
colour preserving) sub-graph of𝐺 whose vertices (i.e.𝑉𝑇 ) form a colour cluster.
Clearly, being C(𝐷) a partition, we have that 𝑇𝑖 and 𝑇𝑗 are disjoint ∀𝑇𝑖 , 𝑇𝑗 ∈
C(𝐷), hence

S𝛽 = S = {𝑉𝑇 ,∀𝑇 ∈ C(𝐷)} (3.9)

is a colour subpartition.
3. Let us prove that for any 𝑇 ∈ C(𝐷), given 𝑟𝑇 = min{𝑣 ∈ 𝑉𝑇 }, the unique path

Γ𝑣,𝑟𝑇 is directed ∀𝑣 ∈ 𝑉𝑇 and it is maximal w.r.t. 𝑣. Holding 𝜕+
𝐷
(𝑢) = 1,∀𝑢 ∈ 𝑉𝑇 ,

it is easy to see that, ∀𝑣 ∈ 𝑉𝑇 , the longest directed path Γ𝑣,∗ starting from 𝑣 is
uniquely determined by (3.8) and, in particular, it is monotone. Therefore, Γ𝑣,∗
ends in a node 𝑟𝑣 = min{𝑧 ∈ Γ𝑣,∗}. It follows from (1) that ∀𝑢, 𝑣 ∈ 𝑉𝑇 , ∃𝑤 ∈ Γ𝑢,𝑣
such that the path can be split into two monotone directed paths Γ𝑢,𝑤 and Γ𝑣,𝑤,
hence 𝑤 = min{𝑧 ∈ Γ𝑢,𝑣} and 𝑤 ∈ Γ𝑢,∗∩Γ𝑣,∗. In particular, 𝑟𝑣 = 𝑟𝑤 and 𝑟𝑢 = 𝑟𝑤,
hence 𝑟𝑢 = 𝑟𝑣,∀𝑢, 𝑣 ∈ 𝑉𝑇 , so 𝑟𝑣 = 𝑟𝑇 ,∀𝑣 ∈ 𝑉𝑇 .
The vertex 𝑟𝑇 is then a natural choice for being the root of the tree𝑇 . Furthermore,
if we let 𝑅 = {𝑟𝑇 ,∀𝑇 ∈ C(𝐷)} be the set of the roots within the forest, then it is
natural to consider the map 𝜋̃:

𝜋̃ : S → 𝑅 ⊆ 𝑉
𝑉𝑇 ↦→ 𝑟𝑇

(3.10)

or, analogously, the map 𝜋̂ : 𝑉 → 𝑅 ⊆ 𝑉 defined as

𝜋̂(𝑣) = 𝜋̃(𝑆), ∀𝑣 ∈ 𝑆, ∀𝑆 ∈ S . (3.11)

4. We finally show the natural enumeration of colour clusters 𝑆 ⊆ S. Let 𝑛′ = |S|,
then we can build the natural bijection 𝛼̂ : 𝑅 → {0, . . . , 𝑛′ − 1} that preserve
the ordering on 𝑅, i.e.
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𝛼̂(𝑟𝑇 ) ≤ 𝛼(𝑟𝑇 ′ ) ⇐⇒ 𝑟𝑇 ≤ 𝑟𝑇 ′ , ∀𝑟𝑇 , 𝑟𝑇 ′ ∈ 𝑅 , (3.12)

where equality holds if and only if 𝑇 = 𝑇 ′. Hence, 𝛼̂ induces an enumeration 𝛼̃
on S via 𝜋̃, i.e.

𝛼̃ : S → {0, . . . , 𝑛′ − 1}
𝑆 ↦→ 𝛼̂(𝜋̃(𝑆)) . (3.13)

The points (1)–(4) conclude the proof. □

Observation 3.4 In the proof of Theorem 3.1 we have defined constructively the
colour sub-partition S𝛽 in (3.9) and we have introduced two couples of analogous
maps, whose form we recall in the following for ease of notation:

𝜋̂ : 𝑉 → 𝑅, in (3.11) 𝛼̂ : 𝑅 → {0, . . . , 𝑛′ − 1}, in (3.12)
𝜋̃ : S → 𝑅, in (3.10) 𝛼̃ : S → {0, . . . , 𝑛′ − 1}, in (3.13) .

In particular, the formulation 𝛼̃ and 𝜋̃ prove Theorem 3.1 while 𝛼̂ and 𝜋̂ are used in
the following to build 𝛽.

The four steps of “contraction mapping evaluation” phase follows naturally from
Observation 3.4:

Creation of 𝐷 We create a digraph with self loops 𝐷 = (𝑉, 𝐵) with 𝐵 defined as in
(3.7). In particular, 𝐷 is a rooted forest (with root set 𝑅) whose components in
C(𝐷) define the colour sub-partition S𝛽 .

Creation of 𝜋 : 𝑉 → 𝑅 The map 𝜋 is already defined as 𝜋̂ (3.11).
Creation of 𝛼 : 𝑅 → 𝑉 ′ Let us consider a set of novel vertices 𝑉 ′ = {𝑤𝑖 ,∀𝑖 ∈
{0, . . . , 𝑛′ − 1}} enumerated in {0, . . . , 𝑛′ − 1}, where 𝑛′ = |S𝛽 |. Since clusters
𝑆 ∈ S𝛽 are enumerated in the same interval according 𝛼̂, as defined in (3.12),
hence it is natural to build the bijection 𝛼 between roots and novel vertices as
follows:

𝛼 : 𝑅 → 𝑉 ′

𝑟 ↦→ 𝑤𝛼̃(𝑣)
(3.14)

Creation of 𝛽 The map 𝛽 : 𝑉 → 𝑉 ′ directly follows as the composition 𝛼 ◦ 𝜋, i.e.

𝛽 : 𝑉 → 𝑉 ′

𝑣 ↦→ 𝛼(𝜋(𝑣)) . (3.15)

An example of the described procedure can be found in Figure 3.1.

Observation 3.5 (𝐷 identifies colour clusters that might be not maximal)
It is important to notice that 𝑆 ∈ S𝛽 , despite being a colour cluster, might or might
be not a colour component depending on the chosen enumeration of vertices, i.e..
A simple counter-example is given by the path graph 𝐺 = 𝑃4 = ({𝑣0, . . . 𝑣3}, 𝐸, 𝛾)
where 𝐸 = {{𝑣0, 𝑣2}, {𝑣1, 𝑣3}, {𝑣2, 𝑣3}} and 𝛾(𝑣) : 𝑉 → {𝑐} which is represented in
Figure 3.2. Here, we have 𝑣̂0 = 𝑣0, 𝑣̂1 = 𝑣1, 𝑣̂2 = 𝑣0, and 𝑣̂3 = 𝑣1, hence resulting
in 𝐷 = (𝑉, {(𝑣2, 𝑣0), (𝑣3, 𝑣1)}) which identifies the two tree with vertex sets 𝑆0 =

{𝑣0, 𝑣2} and 𝑆1 = {𝑣1, 𝑣3}.
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Fig. 3.1: Example of a 1-iteration 𝛽-contraction of the graph 𝐺 to the graph 𝐺′ = 𝐺/𝛾. (a) The
graph 𝐺 = (𝑉, 𝐸 ) . The directed edges 𝐵 of the digraph 𝐷 = (𝑉, 𝐵) are highlighted as bold
arrows over 𝐺 (self loops are omitted). The map 𝜋 is represented with dashed bend arrows which
link each node within a colour cluster to the corresponding tree root i.e. nodes where 𝜋 form a self
loop. Numeric values of the map 𝛼̂ are reported on the 𝜋 self loops. Map 𝛽 is not reported for
the sake of readability (see Figure 3.2). (b) The contracted graph 𝐺′ = (𝑉 ′, 𝐸′ ) = 𝐺/𝛽 = 𝐺/𝛾.
Vertices in 𝑉 ′ (i.e. the codomain of 𝛽) are enumerated according to values on self loops from 𝜋.

0 2 3 1

0 1

0 1𝐺

𝐺′

Fig. 3.2: A small example of graph𝐺 = (𝑉, 𝐸 ) for which 𝛽 determines two distinct colour clusters
instead of a single colour component. The corresponding contracted graph 𝐺′ = 𝐺/𝛽 = (𝑉 ′, 𝐸′ )
is also reported. The directed edges 𝐵 of the digraph 𝐷 = (𝑉, 𝐵) are highlighted as bold arrows
over 𝐺 (self loops are omitted). The map 𝜋 is represented with dashed bend arrows and numeric
values of the map 𝛼̂ are reported on the 𝜋 self loops. Map 𝛽 is represented as dotted arrows
connecting 𝐺 with 𝐺′.
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3.3.2 The data structures

Before discussing the actual implementation of the algorithm, it is necessary to
devote a few words to the data structures involved in the contraction operation. So
far, we have used a purely mathematical notation in our descriptions. However, given
the implementation-oriented nature of this and the upcoming subsection, we will
here use a computer-oriented notation. We will use typewritten text for code-
related entities, with the exception of numeric variables that will be denoted with
classical mathematical text weight e.g. 𝑖, 𝑛, . . . . Unless differently specified, all the
numeric variables, i.e. variables in N, are assumed to be idx t, a custom data type
being unsigned integer by default. In fact, having a custom data type allows us to
use the correct data type depending on the size of the graph to be stored, e.g. it could
be unsigned long or unsigned long long. It makes exception the colour set 𝐶
which typically requires much smaller values; for this reason, we refer as col t to
the colour type.

In particular, since our implementing language of choice is C, we will mainly use
related notation. In particular, we talk about arrays and arrays of arrays instead of
vectors and matrices and we use square brackets to identify elements, i.e. the 𝑖-th
element of vector 𝑎 is denoted as a[𝑖]. Analogously, sets and mapping are built as
arrays as well, where we have to ensure that elements of sets are disjoint. The array
type is denoted by prepending a * character before a variable declaration, hence an
array of arrays a of idx t is denoted by idx t **a. The arrays size needs to be stored
manually and arrays of a given size 𝑛 need to be created (or allocated, in the computer
science jargon) with an allocation function alloc(𝑛, d) which requires knowing the
datatype d and is typically computationally non-negligible, e.g. 𝑎 ∈ N𝑛 is denoted
by a← alloc(𝑛, int). Allocated structures require explicit de-allocation via free
when they are out of scope, e.g. free(a) must be raised when a is no longer needed.
Along with regular data types, we use custom structures for graphs and contraction
mappings (see below). The fields of a structure are accessed through the ‘.’ operator,
e.g. the field 𝑛 of a graph G is denoted G.𝑛. We avoid making direct use of pointers and
relative operators in this description for ease of readability. For any further reference
on C, we refer the reader to [70].

For the sake of simplicity, in the following we describe the minimal working
implementation, meaning that graphs are undirected and present no weights but
the vertex colour. In particular, an input graph might be a multi-graph and during
the contraction procedure it eventually becomes a multi-graph anyway; however,
the resulting graph will always be simple since contraction joins multiple edges
connecting the same colour components and hence does our 𝛽-contraction. Vertices
𝑉 of a graph 𝐺 = (𝑉, 𝐸) are always assumed as 𝑉 = {0, . . . , |𝐺 | − 1} and, since no
information is held inside a vertex, vertex sets are not stored. Edges 𝐸 are stored as
adjacency lists (cf. Section 1.4), i.e. an array of arrays of idx t of different sizes.

An extension of the algorithm over weighted or/and directed graphs is available at
the moment of writing, however, its description is beyond the purpose of the present
work since it requires many technicalities that are well out of purpose from the context
of presenting the algorithm. In particular, the graph structure requires defining the
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Algorithm 6: Graph data structure
1 struct Graph
2 idx t 𝑛 ; // order of the graph
3 idx t 𝑚 ; // size of the graph
4 col t *C; // colour list, of length 𝑛
5 idx t *Nv; // vertices degree, of length 𝑛
6 idx t **E; // adjacency lists, for each vertex 𝑣 of length Nv[𝑣]

Algorithm 7: ContractionMapping data structure
1 struct ContractionMapping
2 idx t 𝑛 ; // order of the original graph
3 idx t 𝑛′ ; // order of the contracted graph, |S𝛽 |
4 idx t 𝑛∗ ; // effective size of cSize and revBecomes, either 𝑛 or 𝑛′
5 idx t *cSize; // size of the colour clusters 𝑆 ∈ S, of length 𝑛∗
6 idx t *becomes; // 𝛽 mapping, of length 𝑛
7 idx t **revBecomes; // 𝛽−1 mapping, for each vertex 𝑣 of length cSize[𝑣]

vertex set explicitly as an array of vertex and the edge set as an array of arrays of
edge, both of which structures need to be defined properly. Furthermore, an explicit
merge function is needed to combine edges and vertexes during contraction. All
of these requirements are bulky and, however, penalise the algorithm from the
performances point of view and should be avoided if possible; this further motivates
the discussion of the minimal working implementation (that is, however, the one
used for benchmarks presented in Section 3.4.1). Furthermore, the main part of the
algorithm consisting in the creation of the contraction mapping is agnostic w.r.t. these
changes, unless considering differences also in the way that colours behave (a further
different topic). However, we will point out with Footnotes 3 and 4 where the main
modifications are needed for the algorithm to work on different graph structures.

More in detail, a graph 𝐺 is stored as a Graph structure G which is described
in Algorithm 6 and the contraction mapping 𝛽 is stored, along with 𝛽−1 as a
ContractionMapping structure cMap which is described in Algorithm 7. In par-
ticular, the various mapping described in Section 3.3.1 are not stored individually,
but rather the field becomes and revBecomes are progressively updated following
the four-steps pattern described.

3.3.3 Implementation of the algorithm

In the following, we provide and discuss the implementation of our contraction
algorithm. At a high level, the algorithm takes in input a graph 𝐺 = (𝑉, 𝐸, 𝛾) and
progressively evaluates the 𝛽-contraction operation 𝐺′ ← 𝐺/𝛽 in place, until 𝐺/𝛾
is obtained (see Algorithm 8).
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𝛽-contraction
evaluateContractionMapping

becomesInitialisation

forall (𝑣 ∈ 𝑉 ) becomes[𝑣] ← min
(
{𝑣} ∪ 𝑁𝛾 (𝑣)

)
becomesUpdate

for (𝑖 = 0; 𝑖 < 𝑛; 𝑖++) becomes[𝑖 ] ← becomes[becomes[𝑖 ] ]
evaluateClusterSize

forall (𝑣 ∈ 𝑉 ) cSize[becomes[𝑣] ]++
extractReverseBecomesMapping

let I be a 𝑛-length array storing the first available position of revBecomes[𝑣]
forall (𝑣 ∈ 𝑉 )
𝑤← becomes[𝑣]
revBecomes[𝑤] [I[𝑤]++] ← 𝑣

revBecomesCompacting

𝑖← 0
foreach (𝑣 ∈ 𝑉 )
cSize[𝑖 ] ← cSize[𝑣]
revBecomes[𝑖++] ← revBecomes[𝑣]

shrink cSize and revBecomes down to 𝑛′

becomesCompacting

forall (𝑣′ ∈ 𝑉 ′ )
for (𝑖 = 0; 𝑖 < cSize[𝑣′ ]; 𝑖++)
becomes[revBecomes[𝑣′ ] [𝑖 ] ] ← 𝑣′

applyGraphContraction

edgesDestinationUpdate

forall (𝑣 ∈ 𝑉 )
for (𝑖 = 0; 𝑖 < Nv[𝑣]; 𝑖++)
E[𝑣] [𝑖 ] ← becomes[E[𝑣] [𝑖 ] ]

colourClusterMerge

let a be a 𝑛′-length bit-array repr. edges endpoints
for (𝑣′ ∈ 𝑉 ′ )

reinitialise a to false
for (𝑖 = 0; 𝑖 < cSize[𝑣′ ]; 𝑖++)
𝑤← revBecomes[𝑣′ ] [𝑖 ]
for ( 𝑗 = 0; 𝑗 < Nv[𝑤]; 𝑗++)
a[E[𝑤] [ 𝑗 ] ] ← true

E[𝑣′ ] ← convert a in adjacency list
Nv[𝑣′ ] ← count true in a
Shrink E and Nv[𝑣′ ] down to 𝑛′

vertexContraction

Re-build C according revBecomes

Fig. 3.3: Description of the 𝛽-contraction algorithm, i.e. an iteration of our novel 𝛾-contraction
algorithm, sketched as a function tree. Each leaf summarises a different phase by means of a
simplified math-oriented pseudo-code.
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Algorithm 8: GraphColourContraction(G) ↦→G′
Input: The Graph G to be contracted
Output: The Graph G′, colour contraction of G

1 cMap← evaluateContractionMapping(G);
2 while (cMap.𝑛 ≠ cMap.𝑛′) do
3 applyGraphContraction(G, cMap);
4 freeCMap(cMap); // The function opportunely frees allocated elements in cMap
5 cMap← evaluateContractionMapping(G);
6 return G;

In the rest of this section, we focus on the structure of a single iteration of 𝐺/𝛽.
Let𝐺 = (𝑉, 𝐸, 𝛾) and𝐺′ = (𝑉 ′, 𝐸 ′, 𝛾′) = 𝐺/𝛽 and let 𝑛 = |𝐺 |,𝑚 = ∥𝐺∥, 𝑛′ = |𝐺′ |,
and 𝑚′ = ∥𝐺′∥. We recall that here 𝑉 = {0, . . . , 𝑛 − 1} and 𝑉 ′ = {0, . . . , 𝑛′ − 1},
hence, when we write ∀𝑣 ∈ 𝑉 , we mean that a variable idx t 𝑣 is ranging in the
interval 0 ≤ 𝑣 < 𝑛. Then, 𝛽-contraction is made of two phases: the generation of the
contraction mapping cMap (see Algorithm 9) and its application (see Algorithm 10).
A summary of the whole procedure is sketched as a function calls tree in Figure 3.3
with a mathematic-friendly notation.

In the pseudo-codes that follow (Algorithm 8–20), we keep naming consistency
as much as possible, hence we here list a few variable names that always play the
same role and that we are not re-defining in each pseudo-code for sake of simplicity.

• Graph *G is the graph 𝐺 = (𝑉, 𝐸) as defined in Algorithm 6.
• Graph *G′ is the contracted graph 𝐺/𝛽 = (𝑉 ′, 𝐸 ′). Do note that the algorithms

described work in-place to avoid multiple allocations, hence G′ is never formally
allocated.

• ContractionMapping *cMap is the contraction mapping as defined in Algo-
rithm 7.

• idx t 𝑖, 𝑗 , 𝑘 are (indices of) vertices within 𝑉 , ranging in [0, 𝑛).
• idx t 𝑖′, 𝑗 ′, 𝑘 ′ are (indices of) vertices within 𝑉 ′, ranging in [0, 𝑛′).
• idx t 𝑖idx, 𝑗idx, 𝑘 idx define (indices of) vertices within E[·] (i.e. edges), ranging

in [0, Nv[·]).
• idx t 𝑖bdx, 𝑗bdx, 𝑘bdx define (indices of) vertices withinrevBecomes[·], ranging

in [0, cSize[·]).

Contraction mapping creation

For what concern the evaluation of the contraction mapping, the four steps de-
scribed in Section 3.3.1 – i.e. the creation of (i) 𝐷, (ii) 𝜋, (iii) 𝛼, and (iv) 𝛽 – are
entirely managed through the sole map becomes, which is progressively updated
until the map 𝛽 is created; this is done in seven steps that involve also the creation
of revBecomes, i.e. the inverse non-surjective map of becomes, and cSize, i.e.
the sizes set {|𝑆 |,∀𝑆 ∈ S𝛽}. Do note that, since within the algorithm we consider
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Algorithm 9: evaluateContractionMapping(G) ↦→cMap
Input: The Graph G
Output: The corresponding ContractionMapping holding 𝛽 and 𝛽−1

1 ContractionMapping cMap;
2 cMap← contractionMappingAllocation(G.𝑛);
3 becomesInitialisation(G, cMap);
4 becomesUpdate(cMap);
5 evaluateClusterSize(cMap);
6 extractReverseBecomesMapping(cMap);
7 revBecomesCompacting(cMap);
8 becomesCompacting(cMap);
9 return cMap;

Algorithm 10: applyGraphContraction(G, cMap)
Input: The Graph G to be contracted with the 𝛽-map cMap
Output: Nothing, contraction is performed in place

1 edgesDestinationUpdate(G, cMap);
2 colourClusterMerge(G, cMap);
3 vertexContraction(G, cMap);

𝑉 ′ = {0, . . . , 𝑛′ − 1}, then the two maps 𝛼̂ : 𝑅 → {0, . . . , 𝑛′ − 1} and 𝛼 : 𝑅 → 𝑉 ′

are equivalent.
More in detail, we have

1. The ContractionMapping cMap is allocated and initialised according to the
size 𝑛 of the graph𝐺 so that becomes[𝑣] = 𝑣,∀𝑣 ∈ 𝑉 . In particular, cMap.𝑛∗← 𝑛

while the vectors in revBecomes are left non-allocated since their size is still
not known. The total computational time of this phase is O(𝑛), just like the
computational space (see Algorithm 11).

2. becomes is initialised so that it reflects the edges set 𝐵 of the digraph 𝐷 (see
Algorithm 12). This is a greedy procedure that requires for each vertex to look
at its whole neighbourhood and hence it takes

∑
𝑣∈𝑉 𝜕 (𝑣) = 2𝑚 comparison

operations, i.e. a total time of O(𝑚).
3. As we have abundantly discussed for 𝐷, becomes now defines a set of rooted

trees (variable in height) such that each node within a tree is connected to its
root via a directed path. Consequently, in order to make becomes behaving
like 𝜋̂ : 𝑉 → 𝑅 (with 𝑅 the set of roots), then ∀𝑣 ∈ 𝑉 it is sufficient to
repeatedly update becomes[𝑣] ← becomes[becomes[𝑣]] until a fixed point is
reached (since a root 𝑟 ∈ 𝑅 is such that becomes[𝑟] = 𝑟). In particular, since
by construction becomes[𝑣] ≤ 𝑣,∀𝑣 ∈ 𝑉 , then, if the operation is performed in-
order w.r.t. 𝑣, we have that becomes[𝑣] is always a root and the update converges
in one step.
We can easily prove the correctness of this claim by induction on the size |𝑇 | of
each tree 𝑇 ; let 𝑉𝑇 = {𝑣0, . . . , 𝑣𝑖 , . . . } ⊆ 𝑉 , then
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base, |𝑇 | = 1 It is trivial that becomes[𝑣0] = 𝑣0 and therefore, 𝑣0 is mapped to
the root of the tree it belongs to.

step, |𝑇 | = 𝑙 Let us consider the induction hypothesis that becomes[𝑣𝑖] =

𝑣0,∀𝑖 < 𝑙. Then becomes[𝑣𝑙] = 𝑣𝑖 for some 𝑖 < 𝑙. Therefore

becomes[becomes[𝑣𝑙]] ← becomes[𝑣𝑖] = 𝑣0 .

Conversely, if the operation is not done in-order (e.g. in parallel implementa-
tions), in the worst case it requires log(ℓ) iterations, where ℓ is the height of
the deepest tree. In fact, it is rather clear that, in the worst case, the procedure
halves the height of a tree at each iteration. The proof is pretty straightforward
and it is out of context for the present work since we only discuss here a serial
implementation.
The total cost of this step (see Algorithm 13) is of a few operations per node
and, hence, it is bound by O(𝑛).

4. Once the map 𝜋̂ is stored in becomes, it is rather simple to evaluate the size of
each colour cluster in the vector cSize as cSize[𝑣′] ← |{𝑣 ∈ 𝑉 | becomes[𝑣] =
𝑣′},∀𝑣′ ∈ 𝑅 (see Algorithm 14). This is necessary since, in order to efficiently
apply first 𝛼 over becomeswithout taking into account the order of the operation
and then 𝛽 over 𝐺, we first need to build 𝜋̂−1 (see next step) which requires
allocating a proper-sized revBecomes. The time spent for this operation is
negligible being O(𝑛).

5. With a suitably built cSize array, we can efficiently evaluate in revBecomes
the map 𝜋̂−1 : 𝑅 → 𝑉 . In fact, it is rather simple to build it by progressively
traversing becomes while keeping the last used position in an array of indices
Ibdxs (see Algorithm 15). Since the operation is performed in a single visit
of becomes, then it takes O(𝑛) steps. From the computational space point of
view, we require the allocation of Ibdxs of size 𝑛′ and of the vectors within
revBecomes which are in number 𝑛′; however, the total space allocated for
revBecomes is still bounded by O(𝑛), being equal to the number of vertices in
𝑉 .

6. We can now apply the map 𝛼 : 𝑅 → 𝑉 ′ over the domain of 𝜋̂−1 : 𝑅 → 𝑉 , hence
obtaining the map 𝛽−1 : 𝑉 ′ → 𝑉 . To do so, we rearrange revBecomes and
cSize in two novel arrays revBecomes′ and cSize′ of size 𝑛′ (respectively of
arrays and of vertices). As a consequence, 𝑛∗ is now set to 𝑛′. The operation is
completed in linear time O(𝑛) (see Algorithm 16).

7. Finally, we are ready to update becomes from representing 𝜋̂ to representing
𝛽. This can be trivially done by a single traverse of revBecomes in linear time
O(𝑛) (see Algorithm 17).

Contraction mapping application

We already mentioned in Section 3.3.1, despite non being strictly formal, that the
application of the contraction mapping mainly consists of concurrently evaluating
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Algorithm 11: contractionMappingAllocation(𝑛) ↦→cMap
1 ContractionMapping cMap;
2 cMap← alloc(1, ContractionMapping);
3 cMap.𝑛← 𝑛;
4 cMap.𝑛′ ← 0;
5 cMap.𝑛∗ ← 𝑛;
6 cMap.becomes← alloc(𝑛, idx t);
7 cMap.revBecomes← alloc(𝑛, idx t*);
8 cMap.cSize← alloc(𝑛, idx t);
9 for (𝑖 ∈ {0, . . . , 𝑛 − 1})

10 cMap.becomes[𝑖 ] ← 𝑖;

Algorithm 12: becomesInitialisation(G, cMap)
1 col t 𝑐; // colour of current vertex
2 idx t 𝑏; // current best choice for becomes
3 foreach (𝑖 ∈ {0, . . . , G.𝑛 − 1}) do
4 𝑐← G.C[𝑖 ];
5 𝑏← 𝑖;
6 foreach ( 𝑗idx ∈ {0, . . . , G.Nv[𝑖 ] − 1}) do
7 𝑗 ← G.E[𝑖 ] [ 𝑗idx ];
8 if ( 𝑗 < 𝑏 ∧ G.C[ 𝑗 ] = 𝑐)
9 𝑏← 𝑗;

10 cMap.becomes[𝑖 ] ← 𝑏;

Algorithm 13: becomesUpdate(cMap)
// This for-loop must be executed in order to work correctly

1 foreach (𝑖 ∈ {1, . . . , cMap.𝑛 − 1) do
2 cMap.becomes[𝑖 ] ← cMap.becomes[cMap.becomes[𝑖 ] ];

Algorithm 14: evaluateClusterSize(cMap)
1 foreach (𝑖 ∈ {0, . . . , cMap.𝑛 − 1}) do
2 cMap.cSize[cMap.becomes[𝑖 ] ]++;

3 foreach (𝑖 ∈ {0, . . . , cMap.𝑛 − 1}) do
4 if (cMap.cSize[𝑖 ] > 0)
5 cMap.𝑛′++;
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Algorithm 15: extractReverseBecomesMapping(cMap)
1 idx t *Ibdxs; // counter for 𝑗bdx of revBecomes[becomes[𝑖 ] ]
2 Ibdxs ← alloc(cMap.𝑛, idx t);
3 foreach (𝑖 ∈ {0, . . . , cMap.𝑛 − 1}) do
4 if (cMap.cSize[𝑖 ] > 0)
5 cMap.revBecomes[𝑖 ] ← alloc(cMap.cSize[𝑖 ], idx t);
6 else
7 cMap.revBecomes[𝑖 ] ← NULL;

8 foreach (𝑖 ∈ {0, . . . , cMap.𝑛 − 1}) do
9 𝑖′ ← cMap.becomes[𝑖 ];

10 𝑗bdx ← Ibdxs [𝑖′ ]++;
11 cMap.revBecomes[𝑖′ ] [ 𝑗bdx ] ← 𝑖;

12 free(Ibdxs );

Algorithm 16: revBecomesCompacting(cMap)
1 idx t 𝑖′ ← 0; // explicit assignment needed since it is used as a counter
2 idx t **revBecomes′, *cSize′; // compact version of revBecomes and cSize
3 cSize′ ← alloc(cMap.𝑛′, idx t);
4 revBecomes′ ← alloc(cMap.𝑛′, idx t*);

// This for-loop should be performed in order for 𝛼̂ to respect the order of the roots in 𝑅
5 foreach (𝑖 ∈ {0, . . . , cMap.𝑛 − 1}) do
6 if (cMap.revBecomes[𝑖 ] ≠ NULL)
7 cSize′ [𝑖′ ] ← cMap.cSize[𝑖 ];
8 revBecomes′ [𝑖′ ] ← cMap.revBecomes[𝑖 ];
9 𝑖′++;

10 free(cMap.cSize);
11 cMap.cSize← cSize′;

// We only free revBecomes array, since revBecomes[ · ] are still used in revBecomes′
12 free(cMap.revBecomes);
13 cMap.revBecomes← revBecomes′;
14 cMap.𝑛∗ ← cMap.𝑛′;

Algorithm 17: becomesCompacting(cMap)
1 foreach (𝑖′ ∈ {0, . . . , cMap.𝑛′ − 1}) do
2 foreach ( 𝑗idx ∈ {0, . . . , cMap.cSize[𝑖′ ] − 1}) do
3 cMap.becomes[cMap.revBecomes[𝑖′ ] [ 𝑗idx ] ] ← 𝑖′;
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Algorithm 18: edgesDestinationUpdate(G, cMap)
1 foreach (𝑖 ∈ {0, . . . , G.𝑛 − 1}) do
2 foreach ( 𝑗idx ∈ {0, . . . , G.Nv[𝑖 ] }) do
3 G.E[𝑖 ] [ 𝑗idx ] ← cMap.becomes[G.E[𝑖 ] [ 𝑗idx ] ];

the graph 𝐺/𝛽. Here concurrently means that we perform the contraction of all
the colour clusters at the same time rather than evaluating the graph 𝐺1 = 𝐺/𝑆0,
𝐺2 = 𝐺1/𝑆1, . . . ,𝐺′ = 𝐺𝑛′/𝑆𝑛′ . In particular, we complete this task in three distinct
steps, as highlighted in Algorithm 10:

1. First and foremost, we apply 𝛽 : 𝑉 → 𝑉 ′ (stored in becomes array) to the
destination of the edges stored in E[·]; this can be done by simply traversing the
edge adjacency list, hence tacking O(𝑚) operations (see Algorithm 18). Clearly,
this lets E in an inconsistent state, since now maps sources in 𝑉 to destinations
in 𝑉 ′, but prepares them for the next step.

2. We are now ready to effectively merge the adjacency lists according to 𝛽. In other
words, given 𝑆 ∈ S𝛽 , we want to build the adjacency list for 𝑢′ = 𝛼̃(𝑆) ∈ 𝑉 ′
as {{𝑢′, 𝑤′} | 𝑤′ ∈ E[𝑣], for some 𝑣 ∈ 𝑆}. In fact, after the previous step, we
have E[𝑣] ⊆ 𝑉 ′. In particular, this can be done efficiently with the aid of an
𝑛′-length bit-array a that holds a dense representation of the adjacency list we
are building; in fact, 𝑣 ∈ 𝑆 we can traverse the edge list E[𝑣] of 𝑣 and set to true
each position corresponding to a valid destination, i.e. a[𝑧] ← true,∀𝑧 ∈ E[𝑣].
This naturally gets rid of any duplicate edge, both formed during 𝛽-contraction
and within the original graph3. Algorithm 19 shows the complete procedure for
performing the merge.
Only a single arraya is required at a time, hence bounding the space complexity to
O(𝑛′) (plus the space occupied by the contracted graph). From the computational
complexity point of view, this phase is the heaviest of the whole 𝛽-contraction. In
fact, filling a ∀𝑣′ ∈ 𝑉 ′ requires in total O(𝑚) steps. Conversely, converting back
a to a sparse representation requires O(𝑛′) steps, which are executed ∀𝑣 ∈ 𝑉 ′,
hence costing O(𝑛′2). This bounds the complexity to O(𝑛′2 + 𝑚).

3. Finally, vertices should be merged as well. In particular, since in our simplified
representation we only keep track of the colours in a separate array C within the
Graph structure, then we solely need to build a novel 𝑛′-length array C′, which
can be simply done in O(𝑛) steps (see Algorithm 20)4.

3 The bit-array should be adequately substituted if more complex merge operations are required,
like in the case of edge-weighted graphs. As an example, we can keep track of how many edges
have been merged together by implementing a suitable function here.
4 A merge function for vertices should be properly defined if more complex graphs are considered,
like in the case of vertex-weighted graphs. As an example, we can keep track of how many nodes
or edges have been merged in a vertex by implementing a suitable function here.
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Algorithm 19: colourClusterMerge(G, cMap)
1 idx t 𝑎idx; // index of a
2 idx t 𝑑; // temporary value for Nv′ [𝑖′ ]
3 idx t *e; // temporary reference to E′ [𝑖′ ], i.e. sparse version of a
4 bool *a; // temporary dense 𝑛′-length bit-array for the adjacency list e
5 idx t 𝑚′ ← 0; // value 𝑚 for 𝐺′
6 idx t *Nv′; // neighbourhood degrees Nv for 𝐺′, of size 𝑛′
7 idx t **E′; // adjacency lists E for 𝐺′, of size 𝑛′

8 Nv′ ← alloc(cMap.𝑛′, idx t);
9 E′ ← alloc(cMap.𝑛′, idx t*);

10 a← alloc(cMap.𝑛′, bool);
11 foreach (𝑖′ ∈ {0, . . . , cMap.𝑛′ − 1}) do

// Reset a
12 foreach (𝑎idx ∈ {0, . . . , cMap.𝑛′ − 1}) do
13 a[𝑎idx ] ← false;
14 𝑑← 0;

// fill a and deallocate old adjacency vectors
// cycle over revBecomes[𝑖′ ] vertices j

15 foreach ( 𝑗bdx ∈ {0, . . . , cMap.cSize[𝑖′ ] − 1) do
16 𝑗 ← cMap.revBecomes[𝑖′ ] [ 𝑗bdx ];

// cycle in the neighbourhood of 𝑗
17 foreach (𝑘idx ∈ {0, . . . , G.Nv[ 𝑗 ] − 1}) do
18 𝑘′ ← G.E[ 𝑗 ] [𝑘idx ];

// The condition 𝑖′ ≠ 𝑘′ can be dropped if self loops are allowed in 𝐺/𝛽
19 if (𝑖′ ≠ 𝑘′ ∧ ¬a[𝑘′ ])
20 a[𝑘′ ] ← true;
21 𝑑++;

22 free(G.E[ 𝑗 ] );

// convert from bit-array a to adjacency list e
23 e← alloc(𝑑, idx t);
24 𝑘idx ← 0;
25 foreach (𝑎idx ∈ {0, . . . , cMap.𝑛′ − 1}) do
26 if (a[𝑎idx ])
27 e[𝑘idx++] ← 𝑎idx;

28 Nv′ [𝑖′ ] ← 𝑑;
29 E[𝑖′ ] ← e;
30 𝑚′ ← 𝑚′ + 𝑑;

31 free(a);
32 free(G.Nv);
33 G.Nv← Nv′;
34 free(G.E);
35 G.E← E′;
36 G.𝑚← 𝑚′;
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Algorithm 20: vertexContraction(G, cMap)
1 col t *C′; // Colour array C for 𝐺′, of size 𝑛′

2 C′ ← alloc(cMap.𝑛′, col t);
3 foreach (𝑖′ ∈ {0, . . . , cMap.𝑛′ − 1}) do
4 C′ [𝑖′ ] ← G.C[cMap.revBecomes[𝑖′ ] [0] ];

5 free(G.C);
6 G.C← C′;
7 G.𝑛← cMap.𝑛′;

3.3.4 Space and time complexity

We mainly discussed space and time complexities bounds for 𝛽-contraction during
the description of the algorithm phases in Section 3.3.3.

In particular, we have seen that, from the time-complexity point of view, the
creation of the contraction mapping requires traversing a constant number of times
the vertices and a single time the edges of the input graph, yielding a total complexity
of O(𝑛 + 𝑚) which is optimal. From the computational space point of view, the
contraction mapping requires exactly 3 idx t for the constants, 𝑛 idx t and one
pointer for the becomes, 𝑛 idx t (𝑛′ after compaction) and one pointer for the
cSize, and 𝑛 idx t and 𝑛+1 pointers (𝑛′+1 after compaction) for the revBecomes,
yielding a total of 3𝑛 + 𝑛′ + 3 idx t and 𝑛 + 𝑛′ + 5 pointers during compaction. If
we compare this number to the graph occupancy of 𝑛 + 3 pointer and 𝑚 + 2𝑛 + 2
idx t, we can safely say that its computational space is nearly negligible since,
typically, 𝑛 = O(𝑚). Only a few more idx t variables are required (mostly for
Ibdxs) throughout the phase, bounding the total space cost to O(𝑛).

For what concerns the contraction mapping application, we have seen that the
computational time cost of colourClusterMerge dominates over the entire algo-
rithm. In fact, our solution with bit-array requires a O(𝑛′)-step elaboration for each
of the 𝑛′ contracted vertices; furthermore, all the edges need to be elaborated once
again, hence yielding a total cost of O(𝑛′2 +𝑚). While the 𝑚 term is clearly optimal,
the 𝑛′2 term can certainly rise the computational cost up to O(𝑛2) if the graph is only
partially contracting (think e.g. a graph where all nodes are of different colours).
However, it is important to point out that the same cost would be yielded from any
kind of algorithm that elaborates the graph the way ours does (e.g. cf. Algorithm 5).
Moreover, careful heuristics can (and should) be used a priori to determine whether
it is convenient to contract the graph: we recall that our algorithm is motivated by the
need of generating small representatives of big graphs, hence the assumption 𝑛′ ≪ 𝑛

usually holds true. Finally, for what concerns the computational space cost, we notice
that most of the requirements are once again related to the colourClusterMerge
algorithm; however, they are bounded by the creation of a requiring 𝑛′ bool and the
allocation of the novel components of the contracted graph. If we consider the latter,
we obtain a space bound of O(𝑛′ + 𝑚′), however, as far as the compacted graph is
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Time complexity Space complexity

contractionMappingAllocation O(𝑛) O (𝑛)
becomesInitialisation O(𝑚) O (1)

becomesUpdate O(𝑛) O (1)
evaluateClusterSize O(𝑛) O (1)

extractReverseBecomesMapping O(𝑛) O (𝑛)
revBecomesCompacting O(𝑛) O (𝑛′ )
becomesCompacting O(𝑛) O (1)

evaluateContractionMapping O(𝑛 +𝑚) O (𝑛)

edgesDestinationUpdate O(𝑚) O (1)
colourClusterMerge O(𝑛′2 +𝑚) O (𝑛′ )†
vertexContraction O(𝑛) O (1)‡

applyGraphContraction O(𝑛′2 +𝑚) O (𝑛′ )†

Total O(𝑛′2 +𝑚) O (𝑛)★

Table 3.1: Computational time- and space cost bounds for the proposed 𝛽-contraction algorithm.
If we consider the allocation of the contracted graph, space costs are: † O(𝑛′ +𝑚′ ) , ‡ O(𝑛′ ) , and
★ O(𝑛 +𝑚′ ) .

allocated, they are unavoidable. Hence it makes much more sense to exclude them
from the bound, consequently yielding a space complexity bound of O(𝑛′).

In particular, we report the computational costs related to Algorithms 9–20 in
Table 3.1.

As we stated in Section 3.3.1 and showed with Observation 3.5, the local greedy
approach used for building 𝐷 in the first place does not guarantee the optimality
for S𝛽 . One possible solution (as displayed in Algorithm 8) is to execute the com-
plete algorithm more than once until convergence is reached. However, different
solutions (possibly used in an adaptive way) can be devised; as an example, in-
stead of iterating over the whole contraction, it might be convenient to iterate over
becomesInitialisation assigning iteratively

becomes[𝑣] ← min
(
becomes[𝑤]

��� 𝑤 ∈ {𝑣 ∪ 𝐸𝛾 [𝑣]}) . (3.16)

However, do mind that, while successive iterations of contraction are typically per-
formed on much smaller graphs (hence requiring a limited time w.r.t. the first
contraction), iteration over (3.16) works over the complete graph and might take
up to 𝑛 iterations (it is the case of a line graph where nodes are connected as
0 ∼ 𝑛 ∼ 𝑛 − 1 ∼ · · · ∼ 1).

We stress out that particularly unfair and pathological graphs (e.g. graphs where 𝑛/2
nodes contract and the remaining 𝑛/2 does not) might yield unsatisfactory execution
times. Nevertheless, particular structures like those are rare and can be spotted a
priori by simple graph measures so that different approaches can be employed. As
we see in the upcoming Section 3.4.1, in random graphs it is for example usual that
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the algorithm takes a few iterations to stop and that the sizes involved sink fast,
making the dimensions of 𝑛 and 𝑚 decrease by an order of two or more magnitudes
as early as the first iteration, actually making the computational time of the upcoming
phases negligible.

3.4 Benchmarks and results

We open this section with a discussion of a benchmark campaign over Erdös-Rényi
random graphs. In particular, we evaluate execution times, contraction rate and 𝛽-
contraction iteration over (randomly coloured) graphs of order up to 𝑛 = 5 × 10+4

built under the binomial ER model with three different values for 𝑝 = 𝑝(𝑛, 𝑐).
The rest of this section is then devoted to discussing a real-world use case, i.e.

a web-page network that categorises Facebook pages according to four different
owners: politicians, governmental organisations, television shows, and companies.

3.4.1 Application to random graphs

In order to provide useful benchmarks, we performed an experimental campaign over
randomly generated graphs. We adopted the binomial Erdös-Rényi model discussed
in Section 1.6.1 with variable sizes in terms of nodes 𝑛 and probability 𝑝.

In particular, we recall that (for 𝑛 large) the expected behaviour in terms of the
number and the size of the connected components of a graph ER𝑛,𝑝 is strictly related
to the two thresholds

𝑝1 =
1
𝑛

and 𝑝2 =
log(𝑛)
𝑛

. (3.17)

In particular, for 𝑝 < 𝑝1 no connected components of size larger than log(𝑛) are
expected, for 𝑝1 < 𝑝 < 𝑝2 a few components, one of which is giant, are expected,
and for 𝑝 > 𝑝2 the graph is expected to be connected.

It is worthwhile to point out that, for what concerns our analysis, values 𝑝 ∈
[𝑝1, 𝑝2] are the most significant since 𝑝 ≥ 𝑝1 yields graphs that contracts on a small
number of nodes 𝑛′ (i.e. 𝑛′ ≪ 𝑛) while 𝑝 ≤ 𝑝2 generates graphs with a non-trivial
number of connected components (𝑛′ > 1).

For what concerns colours, we decided to assign a vertex colouring uniformly at
random from a given colour set𝐶 of 𝑐 colours. It is easy to see that, if each vertex has
probability 1/𝑐 to be of a given colour, then only 𝑛/𝑐 vertices are expected to share the
same colour. As a consequence, it is mandatory to rescale the probability thresholds
from (3.17) properly, hence obtaining two new thresholds

𝑝− =
𝑐

𝑛
and 𝑝+ =

log(𝑛) − log(𝑐)
𝑛

· 𝑐 (3.18)
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(a) (b)

(c)

Fig. 3.4: Average contraction time obtained on 𝑐-coloured ER𝑛,𝑝 graphs at varying of 𝑐 and 𝑛. Do
note that 𝑧-axis scales are different. (a) 𝑝 = 𝑝− , (b) 𝑝 = 𝑝+, and (c) 𝑝 = 𝑝∗.

respectively in place of 𝑝1 and 𝑝2. This naturally extends the ER model to consider
colours since the expected behaviour (in terms of colour clusters) of a 𝑐-coloured
graph ER𝑐𝑛,𝑝 is the same as 𝑐 single-colour graphs of the form ER𝑛,𝑝 then randomly
connected between them (i.e. thresholds should be evaluated w.r.t. 𝑛/𝑐 nodes).

We performed a benchmark campaign evaluating different aspects of 𝛾- and 𝛽-
contraction at the varying of 𝑛 ∈ [1500, 50000], 𝑐 ∈ [1, 1500] and 𝑝 ∈ {𝑝− , 𝑝+, 𝑝∗ =
𝑝−+𝑝+

2 }. In particular, we repeated multiple experiments per triple (𝑛, 𝑐, 𝑝) scattered
with different resolutions and we collected the resulting statistics. Averaged results
in terms of computational execution time, number of 𝛽-contraction iterations before
convergence, and the inverse ratio of contraction 𝑛′/𝑛 are reported respectively in
Figures 3.4, 3.5, and 3.6.

Do note that 𝑐 > 𝑛 makes little sense for the analysis since the expected number
of vertices per colour would be less than one (also 𝑝+ would be negative, hence
generating disconnected vertices only). This is the reason why we kept 𝑐 and 𝑛

running over two quasi-disjoint consecutive ranges, being 𝑛 = 1500 = 𝑐 the only
intersection (yielding, as expected, 0 iterations on 𝑝+).

The thresholds in the ER model are sharp when 𝑛→∞, hence it makes sense that
the most interesting conditions are when 𝑛/𝑐 ≫ 1; when 𝑛/𝑐 ∼ 1, in fact, the graph
hardly contracts, actually causing little or no iterations. When 𝑛 grows, contraction is
much more effective, actually leading to much fewer colour clusters (as can be seen
in Figure 3.6); this behaviour is less significant in the case 𝑝 = 𝑝− since we expect
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(a) (b)

(c)

Fig. 3.5: Average number of required 𝛽-contraction iterations on 𝑐-coloured ER𝑛,𝑝 graphs at
varying of 𝑐 and 𝑛. Do note that 𝑧-axis scales are different. (a) 𝑝 = 𝑝− , (b) 𝑝 = 𝑝+, and (c)
𝑝 = 𝑝∗.

(a) (b)

(c)

Fig. 3.6: Average contracted vertices ratio 𝑛′/𝑛 obtained on 𝑐-coloured ER𝑛,𝑝 graphs at varying of
𝑐 and 𝑛. Do note that 𝑧-axis scales are different. (a) 𝑝 = 𝑝− , (b) 𝑝 = 𝑝+, and (c) 𝑝 = 𝑝∗.
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to have a big number of small connected components, compared to 𝑝 = 𝑝+, where
we expect to have only a few of them – actually 𝑛′ ∼ 𝑐. Following this behaviour,
Figure 3.4 shows that the more the graph is connected (according to the choice of
𝑝), the less it takes to contract (despite 𝑚 being larger). Such a conclusion seems
to be counter-intuitive, however, it totally makes sense since the less the graph is
connected, (i) the higher it will be 𝑛′, causing each further iteration to be more
complex and (ii) the higher the chances the local minima are not the global ones,
hence requiring more 𝛽-contraction iterations to correctly obtain the 𝛾-contraction,
as can be seen in Figure 3.5. In fact, having a larger number of iterations over larger
amounts of vertices makes the algorithm more computationally expensive.

3.4.2 A real-world use case: Facebook

In order to provide a sample yet interesting use case for graph contraction, we
have applied our algorithm to a real-world graph from the SNAP datasets [75]: the
Facebook web-pages network 𝐺FB = (𝑉FB, 𝐸FB) collected in 2017 by [83].
𝑉FB represents 𝑛FB = 22470 Facebook official pages organised in 4 categories (i.e.

𝑐 = 4 colours) depending on their owner, namely: (i) politicians, (ii) governmental
organisations, (iii) television shows and (iv) companies. 𝑉FB nodes are linked via
𝑚FB = 170823 undirected edges 𝐸FB representing mutual likes between the pages.
It is worth noticing that the numbers 𝑛FB, 𝑚FB, and 𝑐 are in line with the E-R graphs
we have used as benchmarks. In fact, considering an E-R graph with 𝑛 = 22470 and
𝑐 = 4, the expected number of edges ranges between 𝑚− = 𝑛2/2 · 𝑝− = 𝑛 · 𝑐/2 = 44540
and 𝑚+ = 𝑛2/2 · 𝑝+ = 𝑚− · (ln(𝑛) − ln(𝑐)) = 387996.

The contraction converges in three iterations (plus a contraction mapping eval-
uation to check convergency), and the running time is approximately 61𝑚𝑠 on the
test machine. The original graph and the three contraction iterations are pictorially
displayed in Figure 3.7, where the graph is rendered using Wolfram Mathematica
[72].

The intense computational effort lies in the first 𝛽-contraction iteration that takes
∼ 95% of the total time, actually contracting vertices with a ratio ∼ 5 : 1 and edges
with a ratio ∼ 3.5 : 1. Conversely, the second iteration is the one contracting more,
with a ratio of ∼ 10 : 1 and ∼ 35 : 1 for vertices and edges respectively; despite
this fact, it takes significantly less time than the first step given that the size of
the graph has already been significantly reduced. The third and last 𝛽-contraction
iteration contracts the last few local minima, actually reducing vertices and edges
with a negligible ratio of ∼ 1.3 : 1 and ∼ 1.8 : 1 respectively.

By observing the contracted graph (Figure 3.7(d)) we can identify one major
cluster per colour but “Politician” pages having two of them. “Company” pages first
and “Television Show” pages second, represent the main glue among the central
clusters, while “Politician” and “Governmental” pages are either part of the central
clusters or nearly-isolated vertices. Furthermore, the “Politician” pages appear to be
the only connection to many isolated “Governmental” pages; a similar behaviour can
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(a) Iteration 0 (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Politician
Governamental
organization

Television
show

Company

Fig. 3.7: (a) The original page-page Facebook graph 𝐺FB with self loops elided; 𝑛 = 22470, 𝑚 =

170823. (b) The first 𝛽-contraction iteration took 59ms, yielding 𝑛 = 4441, 𝑚 = 48178. (c) The
second 𝛽-contraction iteration took 1ms, yielding 𝑛 = 437, 𝑚 = 1380. (d) The third and last
𝛽-iteration took less than 1ms, yielding 𝑛 = 334, 𝑚 = 782.



References 97

be identified for a big number of nearly-isolated “Company” pages that are connected
to the “Television show” cluster only.

Overall, the above results show how useful network contraction is in trying to
evince meaningful characteristics and behaviour from large datasets. A field expert
studying a possibly very large network can benefit from the compact representation
of the structure under observation offered by the contracted graph.

3.5 Conclusions

In this chapter, to the best of our knowledge, we provided the first formal charac-
terisation of 𝛾-contraction, which incorporates concepts related to graph connec-
tivity, clustering and coloured representation. We explored the variadic nature of
𝛾-contraction and proposed a weakened version under the name of 𝛽-contraction.
Additionally, we have introduced a generic yet effective approach for 𝛽-contraction,
providing both formal and algorithmic descriptions in its serial version. We have eval-
uated its complexity in detail and conducted a performance measurement campaign
on random graphs. Furthermore, we have demonstrated real-world applications of the
implemented 𝛽-contraction algorithm. Results are detailed and discussed, offering
diverse use cases and heterogeneous application scenarios.

The results presented in this chapter demonstrate the utility and feasibility of
coloured graph contraction in visualising and identifying issues and features related
to large coloured networks, which are prevalent in today’s world.

Future work will involve the introduction and evaluation of a parallel implemen-
tation of the methodology here proposed, leveraging the formal definition of the
problem presented here. Additionally, further exploration of practical scenarios and
more extensive performance evaluations on benchmark networks will help assess the
advantages and limitations of the proposed approach. In this direction, the analysis
of Polkadot transaction graph will also be the object of a future paper [283].
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Chapter 4
Managing crowded museums: visitors’ flow
measurements, analysis, modelling, and
optimisation

This chapter covers a line of research on pedestrian tracking
related to cultural heritage. The research was conducted
between 2018 and 2023 in collaboration with Emiliano
Cristiani, researcher at the “Istituto per le Applicazioni del
Calcolo” of the “Consiglio Nazionale delle Ricerche”
(IAC-CNR), Alessandro Corbetta, assistant professor at the
Department of Applied Physics of the Eindhoven University of
Technology, and Pietro Centorrino, independent researcher and
professor. Here I harmonise the contributions from two
conference proceedings [276, 280], one journal paper [271],
and a technical report [289].

Abstract We present an all-around study of the visitors’ flow in crowded museums:
a combination of Lagrangian field measurements and statistical analyses enables
us to create stochastic digital twins of the guest dynamics, unlocking comfort- and
safety-driven optimisations.
We specifically present a graphs encoding for museum-like environments, where
expert knowledge is injected as a total colouring. This encoding allows us to extract
useful information and representations, including a natural notion of room metric.
We describe two cheap visitor tracking systems: (i) a simple manual Eulerian ap-
proach based on a self-devised tally counter and (ii) a more complex yet cheap
semi-automatic Lagrangian IoT-based visitor tracking system relying on Raspberry
Pi receivers, displaced in fixed positions throughout the museum rooms, and on
portable Bluetooth Low Energy beacons handed over to the visitors. The signal
intensity provides a proxy for the distance to the antennas and thus indicative posi-
tioning. However, RSSI signals are well-known to be noisy, even in ideal conditions
(high antenna density, absence of obstacles, absence of crowd, etc.). Consequently,
we present three approaches allowing to filter the beacons RSSI and accurately recon-
struct visitor trajectories at room scale: a sliding window-based statistical analysis,
a vanilla MLP neural network reconstruction, and a cascaded AI classifier based on
the graph encoding of the museum.
Via a clustering analysis, hinged on an original Wasserstein-like trajectory-space
metric, we analyse the visitors’ paths to get behavioural insights, including the most
common flow patterns. On these bases, we build the transition matrix describing,
in probability, the room-scale visitors’ flows. Such a matrix is the cornerstone of a
stochastic model capable of generating visitor trajectories in silico.
We conclude by employing the simulator to enhance the museum fruition while
respecting numerous logistic and safety constraints. This is possible thanks to opti-
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mised ticketing and new entrance/exit management.
Our case studies are the museum of Galleria Borghese in Rome and the Peggy
Guggenheim Collection in Venice (Italy), in which we performed multiple real-life
data acquisition campaigns.

Keywords: IoT · Machine learning · Clustering · Tracking system · Museum simu-
lator · Museum optimisation · Pedestrian dynamics · Total-coloured graph analysis

4.1 Introduction

The analysis of the behaviour of museum visitors has a long-standing tradition [108,
137] and underlies the capacity of profiling exhibitions, increasing visitors’ com-
fort and safety, improving public reception, increasing the number of sold tickets,
and enhancing artworks preservation [154]. Its feasibility has significantly grown
during the last decades thanks, particularly, to the diffusion of Internet-of-Things
(IoT) technologies [96, 107, 150], which enabled individual tracking needlessly of
invasive structural modifications (e.g. as it happens with overhead optical tracking
sensors [136]). The outstanding issue of visitors’ management demands multidisci-
plinary skills connected to, amongst others, psychology, computer science, statistics,
physics of complex systems as well as modelling and optimisation theory.

Museums curators are expected to achieve three complex and seemingly contra-
dictory objectives: increasing the visitors’ number, enhancing the experience quality,
and preserving the artworks [154]. Accurately measuring and analysing the visitors’
trajectories is an essential component towards these objectives and, specifically,
when aiming at an efficient organisation of the exhibits [93, 141], the determination
of adequate ticketing strategies, and also to verify if visitors’ experience complies
with managers’ intents [143].

A complete workflow enabling the full control of visitors in a museum consists
of several challenging steps, that we here summarise.

Visitors tracking The first goal is to understand the behaviour of visitors in terms
of paths followed in the museum. Not all museums have predefined paths and
sometimes more than one choice is possible [120]. Moreover, in large museums,
it is rare that visitors see the whole exhibition [130]. A number of technologies
exist for indoor tracking that is characterised by a trade-off between deployment
complexity, invasiveness, and accuracy. Radio-based approaches, as considered
in this work, enable room-level positioning accuracy: visitors’ trajectories are
rendered into sequences of visited rooms and related permanence times. At the
price of more invasive and complex deployments, sometimes impossible in the
context of cultural heritage, centimetre-level individual positioning can be also
accomplished, e.g. via distributed grids of 3D scanners or video cameras.
Besides, psychological and sociological variables can be observed on side of
paths, such as heart rate, skin conductance, emotional and aesthetic evaluations
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of specific artworks [116, 141, 142], interactions with group-mates, degree of
attention, boredom or fatigue.
Automatic systems could be complemented with manual activities, like paper-
and-pencil annotations and questionnaires [117, 127, 141]. From questionnaires,
one can estimate demographic-related and museum visit-related features [127]
like age, gender, educational level, number of visits per year to museums, etc.
After the visit, one can measure the degree of satisfaction, the relationship
between perceived and real time spent in the museum [92], etc.

Behaviour understanding A number of variables can be estimated from visitors’
trajectories: busy hours, movement patterns, length of visits, permanence times
in each room, and number of stops. Two indicators are generally considered
to quantify the importance of a specific exhibit, the attraction power (relative
amount of people who have stopped in front of an artwork during their visit) and
the holding power (average time spent in front of an artwork) [120].
Clustering and AI-based algorithms can be used for inferring, from the whole
trajectories dataset, the typical paths or, equivalently, the typical individual
behaviours inside the museum. Another interesting question regards the pre-
dictability of visitors’ behaviour [100, 118, 125]: can a person who starts visiting
the museum in a certain manner be immediately labelled as a visitor of a certain
type?
Social behaviour can be observed too. For example, one can wonder, e.g., if peo-
ple belonging to the same group follow the same path or they split, or whether
individuals are attracted or repelled by crowding.

Museums digital twin Once statistics about visitors’ trajectories and behaviour are
available, it is possible to create an algorithm capable of generating real-like
visit paths in the museum [88]. This is done by reproducing the movements of
people from one room to another, duly determining their transition probability.
Moreover, herding behaviour in social groups or the response to congestion and
fatigue could be taken into account. A digital twin is able to reproduce virtual
visitors moving in the museum with realistic behaviour, possibly in new (i.e.
inexperienced) conditions. It is also possible to forecast the visitors’ flow from
some initial conditions, like, e.g. the visitor inflow at a given time.

Visitors’ flow optimisation In order to use the museum digital twin as a managing
tool, curators and organisers have to identify relevant control variables and
objectives: regarding the former, one can, e.g., regulate the entrance flows, limit
the maximum occupancy of selected rooms, increase the number of entrances
or exits, set a maximal duration of the visit. The ticket price can obviously be
controlled too.
Regarding objectives instead, one can aim at maximising the number of visitors,
the pleasantness of the visit, the amount of information conveyed, or keeping
the environmental parameters (e.g., temperature and humidity) in a given range,
for the best conservation of the collection.
Once this is done, a museum digital twin can be profitably used to simulate
different scenarios, aiming at matching the objectives while varying the control
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variables. Here, optimisation algorithms like particle swarm and gradient-based
methods can be used to automatise the search for a solution.

4.1.1 Relevant literature

The first step (visitors’ tracking) is the one that has received the most attention in
the literature, as it relates to pedestrian dynamics in general, i.e. beyond the museum
context.

Focusing on (indoor) tracking systems, all kinds of technologies have been ex-
ploited, such as RFID [120], Wi-Fi [109, 114], Bluetooth [95, 97, 102, 125, 129,
131, 132, 133, 134, 146, 152, 154], video cameras [123], 3D scanners [98, 140]. An
exhaustive review of these methods is out of the scope of the paper; we refer the
interested reader to the papers [110, 129] for more references.

Different technologies require different degrees of visitors’ involvement. For ex-
ample, video cameras, 3D scanners, Wi-Fi or Bluetooth mass scans require no
collaboration, while Bluetooth-based apps and RFID tags usually require some de-
gree of interaction with the visitor. Measuring personal data like heart rate or skin
conductance requires instead total involvement [116, 142]. Moreover, convincing
people to participate in an experiment, for example by downloading and installing a
smartphone app, can be difficult and time-consuming [134]. Sometimes free tickets
could yield a good incentive [155].

Our contribution falls on the Bluetooth-based approach, with portable IoT de-
vices broadcasting periodically their identities on the Bluetooth and/or Wi-fi net-
works. Measuring the strength of these signals, the so-called RSSI (i.e. the Received
Signal Strength indication), with antennas deployed at different locations yields a
mechanism to perform localisation and tracking (cf. also reviews [101, 138]). Such
an approach has been employed in different fields, allowing tracking in healthcare
facilities [115] and smart buildings [144].

In principle, high antennas densities could also allow precise localisation through
signal tri/multi-lateration [148, 149, 151]. However, in historic buildings, a frequent
location for museums, massive antennas deployments are impossible due to architec-
tural constraints, while room-level tracking allows sufficient insights. Additionally,
even in optimal conditions (e.g. line of sight to the beacon, absence of radio interfer-
ence) RSSI values typically suffer from high fluctuations [89]. Literature provides
useful filtering techniques like Bayesian [124] and Kalman [156] filtering, capable
to improve distance readings up to 40% in accuracy. Nevertheless, museums often
feature complex geometries rich in obstacles and – especially in old constructions –
a wide mixture of thick and thin walls with narrow and wide doors. In combination
with crowding, these yield even noisier RSSI signals with a quick decay, causing
ambiguous or even void positioning readings. These constraints likewise jeopardise
the success of any approach based on instantaneously “maximum RSSI” readings
(argMax), even when the ambition is the sole room-level localisation.
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The second step (Behaviour understanding) has also been investigated in great
detail in connection with museums. Regarding individual behaviour, the predominant
idea is to classify visitors into four categories based on the way they interact with
the artworks: ‘Ants’ (tend to follow a specific path and observe extensively almost
all the exhibits); ‘Butterflies’ (do not follow a specific path but are guided by the
physical orientation of the exhibits; stop frequently to acquire more information);
‘Fish’ (most of the time move around in the centre of the room and usually avoid
looking at exhibits details); ‘Grasshoppers’ (seem to have a specific preference for
some pre-selected exhibits and focus their time on them, while tending to ignore the
rest), see, e.g., [118] or [145] for the origin of this taxonomy.

Regarding social behaviour instead, the idea is to label visitors in six categories
based on how they interact with group mates: ‘Doves’ (interested in other visitors
while ignoring the environment); ‘Meerkats’ (stand side by side, expressing great
interest in the exhibits); ‘Parrots’ (share their attention between exhibits and group
members); ‘Geese’ (advance together with one visitor appears in the lead); ‘Lone
wolves’ (enter the museum together and then separate); ‘Penguins’ (cross the space
together while ignoring the exhibits), see, e.g., [103, 120].

Clustering techniques (e.g., 𝑘-means, hierarchical clustering, sequence alignment)
have been used to assign every visitor trajectory (spanning from room-scale to
continuum) to one of the groups described above, or to some given typical movement
patterns [95, 102, 103, 118, 125, 127, 129, 132, 133, 153, 155]. This enables one to
quantify the percentage of visitors belonging to each group. Note that typically the
number of clusters is assigned a priori and this can be an important limitation. One
crucial point for cluster investigation is the definition of a suitable metric, to measure
the distance between trajectories, and aggregate (cluster) trajectories close to each
other. Examples of such metrics devised at room scale can be found in [95, 125, 132].
In particular, [95, 132] propose a combination of well-known metrics defined in the
space of characters strings (as trajectories can be suitably represented as sequences
of characters), which is further corrected to take into account the differences in time
of permanence in each room.

Regarding trajectory comparisons, let us mention also two other papers: [153]
compares measured trajectories with those coming from a random walk simulator in
order to understand which kind of visitors exhibits stronger patterns. The work [119]
compares trajectories of visitors with and without audio guides in order to measure
the impact of the transmitted information.

The third and fourth steps are also related to the rich pedestrian flow modelling
literature: if one considers the museum as a continuous space as in [122], one can
refer to differential (agent-based, kinetic, fluid-dynamic) or non-differential (discrete
choice, cellular automata) models. See, e.g., [90, 99, 104, 105, 106, 113, 126] for
some reviews, books chapters and books about this topic.

If one instead considers the museum as a graph – where the nodes represent the
rooms of the museum and the edges represent connections amongst rooms – one
can refer to some classical tools like transition matrices and deterministic/stochastic
Markov chains with/without memory [114, 131, 147] in order to simulate a room-
level walk in the museum (i.e. a trajectory on the graph).
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Although many mathematical tools are available, examples of actual museums
digital twins developed with the aim of reproducing, understanding and optimising
visitors’ behaviour are largely missing. This fact holds despite the fact that the path
followed by visitors is evidently conditioned by the design of the exhibition galleries
[93, 141]. An interesting attempt can be found in [111, 112]: the author describes
a museum simulator and uses it to show that changes in the layout design of an
exhibition result in different visitor circulation patterns. Unfortunately, that simulator
can be hardly used in a museum with a very high density of artworks exposed, since
it requires a complex calibration of many artwork-scale parameters which usually
show a high variance between visitors. See also [88] for a rudimentary graph-
based simulator and [135] for a simulator developed under the NetLogo software
environment.

4.1.2 Chapter contributions

In this line of research, we perform an all-around investigation which includes
contributions to all the four steps described above. Covering the whole process allows
us to reach an unprecedented level of understanding and control of the museum, which
unleashes the capability of improving deep modifications to the ticketing strategy as
well as to the museum access management. Our results are validated on real visitors
data acquired in the museum of Galleria Borghese (Rome, Italy) and the Peggy
Guggenheim Collection (Venice, Italy). In more detail, the research unfolds along
the following lines:

1. We propose a room-scale graph-structured representation of museums capable
of capturing museum topology and expert knowledge. In practice, we equip
both vertices and edges (representing rooms and connections respectively) with
different colourings to represent architectural and conceptual constraints. We
also show how to use this representation to extract compact representations of
the museum via graph colour contraction, which will be essential for trajectory
reconstruction.

2. We describe a cheap and easily reproducible semi-automatic data collection sys-
tem, hinged on an IoT-based room-scale Lagrangian tracking system for museum
visitors. From an operational point of view, one provides (consenting) individ-
uals (or groups) with a portable IoT portable Bluetooth Low Energy (BLE)
beacon (note that personal mobile phones, modulo privacy and randomisation
issues, could be used likewise [154]). Antennas preemptively deployed (here
realised by means of common Raspberry Pis) measure the RSSI of the periodic
advertisements of each beacon. We also describe a simpler manual data collec-
tion system for Eulerian measurements of museum visitors. We employ these
systems for multiple extended data collection campaigns which provide the high
statistics measurements here employed.

3. We employ and filter the RSSI of the beacons to reconstruct individual visitors’
trajectories. Due to the restricted space and the numerous architectural and
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historical constraints each beacon is often captured by multiple antennas at the
same time reporting highly fluctuating readings. Accurately reconstructing the
trajectories in this setting defines a challenge per se. We propose a simple ML
approach which outperforms standard sliding window processing, especially,
when it comes to estimating the correct time of permanence in rooms. We
further enhance this result by introducing an original cascaded methodology that
combines an ensemble of trained classifiers, henceforth referred to as localisers,
with the coloured-graph representation of the museum. This approach replaces
a “complex” predictor with multiple simpler ones obtained by the injection of
expert knowledge, which operates at different space- and time scales.

4. The total-coloured graph representation of a museum enforces a room-scale met-
ric D and, consequently, a (room-level) trajectory-scale Wasserstein-inspired1

distance W. We employ such metrics as indicators to compare reconstructed
trajectories with the corresponding ground truth, providing a more insightful
performance analysis than the simple binary accuracy.

5. In order to get insights about visitors’ behaviour, including the most common
movement patterns, we analyse trajectories via statistical and clustering tech-
niques. The previously introduced notion of distance further enforces an ad hoc
trajectory clustering metric capable of capturing the geometrical properties of
the museum. By using agglomerative hierarchical clustering analysis, only based
on such metric (and with no a priori hypothesis on the number of clusters nor
on their size), we can automatically unveil hard-to-see movement patterns that
go well beyond the standard animal-inspired classification (see Section 4.1.1).
As a by-product, we can also identify anomalous behaviours.

6. We employ statistical tools to build a probability transition matrix amongst
museum rooms, which provides us with building blocks for a model capable of
simulating in silico the museum visits. In particular, this enables us to forecast
the path of visitors entering the museum from any room. Unlike the simulator
presented in [111, 112], our simulator leverages the measured permanence time
in each room on side of the probability of transition from one room to any other.
This results in a tool easier to calibrate.

7. Finally, we employ the simulator to significantly increase the efficiency of the
ticketing strategy and entrance/exit management. Our results suggest a way
to enhance the museum fruition from both visitors’ and curators’ points of
view while keeping the numerous constraints within the limits. We propose
a suggested visiting path capable of significantly reducing the flux crossings
and we start unveiling quantitatively how artwork positioning impact on their
fruition.

1 The Wasserstein distance was first introduced by Kantorovich in 1942 and then rediscovered many
times. Nowadays, it is also known as Lip′-norm, earth mover’s distance, 𝑑-metric, Mallows distance.
An important characterisation is also given by the Kantorovich–Rubinstein duality theorem.
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4.1.3 Chapter organisation

In the rest of this chapter, we present our methods and original contributions alongside
our field activity, hence describing methods and results as a whole. For this reason, we
firstly describe in Section 4.2 our case studies, introducing the Galleria Borghese first
(Section 4.2.1) – with its two-floor ring-structure and its peculiar original ticketing
strategy – and the Peggy Guggenheim Collection then (Section 4.2.2) – with its
problematic entrance system and its floor plan divided into two buildings and multiple
areas. In Section 4.3, we introduce a topological representation for museum-like
environments based on total-coloured (di)graphs that allow expert knowledge to
be injected as a piece of typological information, or colour (Section 4.3.1); we
further analyse how this pieces of information can be used to provide a coarse-
grained representation of the museum (Section 4.3.2) and how a metric definition
emerges (Section 4.3.3). In Section 4.4, we describe our IoT-based tracking system for
Lagrangian datasets (4.4.1), our manual Eulerian data gathering approach (4.4.2),
as well as the structure of our case studies and the datasets we collected (4.4.3).
In Section 4.5 we discuss the trajectory reconstruction methods, ranging from the
simplest sliding window approach (Section 4.5.1), passing on an intermediate multi-
layer perceptron approach (Section 4.5.2), up to the more complicate cascaded
selector (Section 4.5.3), our innovative high-level approach that builds over the
coloured representation of the museum. We conclude the section by discussing
the problem of missing data in beacon readings (Section 4.5.4) and comparing
the result of our novel cascaded method under various implementation strategies
(Section 4.5.5). In Section 4.6 we analyse the trajectories collected (Section 4.6.1),
also fitting their statistical observable with known distributions, we discuss the
dataset variability (Section 4.6.2), and we introduce a clustering approach and its
results in the Galleria Borghese case study (Section 4.6.3). We further show how the
coarse-scale representation of the museum can provide clustering on multiple levels
of details and we adopt the Peggy Guggenheim Collection as an explanatory example
(Section 4.6.4). In Section 4.7 we introduce the model which allows us to create a
complete digital twin of the museum (Section 4.7.1) and simulate in silico the visitors’
flow (Section 4.7.2); the resulting trajectories are discussed in the setting of Galleria
Borghese case study (Section 4.7.3). In Section 4.8 we discuss a sample of model
parameters and objectives in the Galleria Borghese case study and we employ them
to find optimal strategies for the entrance/ticketing system (Section 4.8.1); we further
discuss the possibility of removing the finite time horizon in visits (Section 4.8.2) and
the changes, along with their impact, that the curator decided to apply (Section 4.8.3).
In Section 4.9 we discuss analogous yet different results of our study in the Peggy
Guggenheim Collection mainly focussing on suggesting preferential visiting paths
to avoid flux crossing. In particular, we discuss the preliminary changes and their
impact on the fruition of the museum and we close the section by describing the
future changes that curators are currently planning (at the time of writing). The final
discussion in Section 4.10 closes the chapter.
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(a) (b)

Fig. 4.1: The two largest rooms in Galleria Borghese. (a) Ratto di Proserpina (room IV) located
on the first floor. (b) Main area on the second floor (room XIV), part of the Pinacoteque. The room
enumeration is given in Figure 4.2.

4.2 Case study description

In the following, we describe the structure and the peculiarities of our case-study
museums. Despite the methodologies introduced in this chapter being mostly general
(with some exceptions that are clearly pointed out)2, we decide to present them along
with their application and validation for the sake of readability. Consider, e.g., the
task of sketching a graph representation of a museum (see later Section 4.3): we do
believe that the abstract description of the procedure is highly enhanced by our two
well-grounded case-study applications.

4.2.1 The museum of Galleria Borghese in Rome

The world-renowned museum of Galleria Borghese (Rome, Italy), is a relatively
small, two-floor museum with 3 entrances and 21 exhibition areas. Its sculptures and
paintings attract visitors from all over the world, see Figure 4.1. On the main floor,
the exhibition area is circular, while the second floor (Pinacoteque) is U-shaped, see
Figure 4.2. Rooms are numbered but no obligatory exhibition path is assigned, so
many people do not visit the rooms in their natural order. Moreover, the density of
exhibits is so high that people often come back to already visited rooms multiple
times to admire artworks missed during the previous passages. Congestion is frequent
in some rooms, like the one which hosts Caravaggio’s paintings. Audio guides are
available on-demand and guided tours are allowed but subject to quota (both in
number and size).

2 Mathematical and numerical methods presented here can be used whenever one has to track
people moving in a built environment through a non-predefined sequence of rooms. In addition,
control and optimisation techniques are suitable whenever the flow of people can be controlled in
some way, e.g. changing entrance doors and/or changing the visiting path dynamically.
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(a) Floor 1 (b) Floor 2

Fig. 4.2: Floor plan of Galleria Borghese. The ticket office is located on floor -1 (not depicted)
while floors 1 and 2 host the exhibition. The entrances/exits to the exhibition area are marked with
E (main entrance, from outside the building) and with S (stairs, accessible from the ticket office).
Lines in red represent inaccessible passages.

To cope with the many historical, artistic and architectural constraints, museum
curators established in 1996 scheduled visits: tickets must be booked in advance
and give access to the museum for a slot of 2h. Five slots per day are granted. The
maximum number of visitors allowed in each slot is 360. Additionally, 30 tickets,
called “last-minute”, are sold 30 minutes after the beginning of each time slot. People
can also decide which floor to start the visit from, within some limits3. At the end
of each time slot, people are invited to leave, and the museum empties completely.
Let us also note that many visitors enter without their smartphones since they must
leave their personal bags in the wardrobe.

It is plain that the Galleria Borghese has specific peculiarities which make it rather
unique in the world. Let us mention, in particular, the entrance system with quota
and the fact that visitors often return to already visited rooms.

4.2.2 The Peggy Guggenheim Collection in Venice

The Peggy Guggenheim Collection is amongst the most important Italian museums
for European and North American art of the first half of the 20th century, see
Figure 4.3. It is located in Peggy Guggenheim’s former home, Palazzo Venier dei
Leoni, on the Grand Canal in Venice. It is part of the Solomon R. Guggenheim
Foundation, whose constellation includes the Solomon R. Guggenheim Museum,
New York, the Guggenheim Museum Bilbao, and the future Guggenheim Abu Dhabi.

The museum holds Peggy Guggenheim’s personal collection, masterpieces from
the Hannelore B. and Rudolph B. Schulhof collection, a sculpture garden as well as
temporary exhibitions.

3 The strategy here described is referred to the ante-pandemic situation, before the SARS-CoV-2
outbreak and the consequent limitations introduced to face Covid-19 disease.
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(a) (b)

Fig. 4.3: Two of the most visited areas of the Peggy Guggenheim Collection. (a) the Calder Hall,
main entrance to the permanent exhibition that connects it with both the Sculpture Garden and the
Grand Canal terrace. (b) One of the areas of the Sculpture Garden.

The museum itself is located in two distinct buildings divided by the sculpture
garden areas (see Figure 4.4). The permanent collection, which holds masterpieces by
Jackson Pollock and Pablo Picasso amongst the others, is divided into 12 exhibition
spaces arranged like an eight-like shape and shares the building with the Schulhof
collection (6 exhibition spaces). The temporary exhibitions are located in a different
building made of 14 rooms displaced in a circular fashion. The same building
also holds a bookshop and a veranda, where visitors can take a break, charge their
electronic devices and peek at the garden beneath. The two buildings are separated
by the Sculpture Garden, a large open green area divided into 4 exhibition spaces
from which visitors can reach a cafeteria as well. Finally, a terrace over the Grand
Canal of Venice is reachable by the central room of Peggy’s collection.

Conversely to the museum of Galleria Borghese, there are no fixed time slots and
visitors can book tickets in advance choosing between six entrance times per hour.
Audio guides are available on-demand and guided tours are allowed with limitation
in number.

Curators of the museum cyclically change the disposition of the pieces of art,
also replacing artworks frequently (about every three months) and a discrete number
of temporary exhibitions are set up yearly. As a consequence, this offers a peculiar
characteristic of the museum: visitor membership, a yearly-based subscription that
allows members to freely access the museum and participate in dedicated events.
Such a feature enforces interesting patterns in visiting habits since members typically
know well the museum and tend to focus on specific rooms instead of visiting the
entire exhibition area.
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Fig. 4.4: Floor plan of the Peggy Guggenheim Collection. The entrance and the exit to/from the
exhibition area are depicted with orange arrows. Red lines represent closed passages.

4.3 Representing museums as total-coloured (di)graphs

We consider here a generic museum divided into multiple floors; usually, a visitor
explores one floor at a time instead of going back and forth between them repeatedly.
Two kinds of connections arise from this example: same and different floor links.
However, we can think of other different architectural constraints that may influence
a visit, e.g., different buildings. Similarly, we can provide conceptual subdivisions
that concern rooms: e.g. if the exhibition is organised in different historical time
periods, the typical visitor will likely explore a thematic area at a time instead of
traversing them randomly.

In the following, we formalise this approach by first sketching the museum as a
total-coloured graph and then extracting its emerging clustering. We also provide
a metric definition to make useful insights available when it comes to comparing
trajectory reconstruction methods.
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4.3.1 Extraction of a total-coloured graph

In this section we provide, by means of graph theory (cf. Chapter 1), a natural
formalisation of a museum as a graph equipped with different colourings to represent
its architectural and conceptual constraints (cf. Figure 4.5).

Let𝐺 = (𝑉, 𝐸) be a graph, where𝑉 = {𝑟1, 𝑟2, . . . , 𝑟𝑛} represents museum virtual
rooms and 𝐸 represents connections between them (e.g., doors, staircases, paths,
. . . ). Here, we adopt the term virtual room with respect to the physical room to cope
with different data granularity: it might be beneficial to consider multiple virtual
rooms inside a single big room (e.g. east and west part of a room) or a single virtual
room representing many physical rooms (e.g. different gardens might be sketched as
a single open area).

It is worth pointing out that, despite being unusual for cultural heritage applica-
tions, also one-way connections may occur (cf. Figure 4.5(c)), actually making 𝐺 a
digraph.

Once a room-wise digraph is designed, we can enforce conceptual subdivisions of
the rooms and architectural constraints of the edges by means of a set of typological
information sketched as a vertex-colouring 𝛾v and an edge-colouring 𝛾e, hence
obtaining a total coloured digraph (cf. Section 1.2.7). More formally, we have

𝛾v : 𝑉 → 𝐶v, 𝛾e : 𝐸 → 𝐶e , (4.1)

where 𝐶v, 𝐶e ⊂ N represent a set of colours for vertices and edges respectively.
We add (if not present in the reconstruction) additional artificial rooms, marked

with a dedicated colour, to represent the entrances and the exits of the museum:
ticket offices, bookshops, or outside areas compose great examples. These rooms
will serve in the trajectory reconstruction process as placeholders for the visitors
before the visit begins, after it ends, and, possibly, whenever no signal is detected.
Conceptually, these rooms shall be sources or sinks in the digraph, namely nodes
with no incoming or outgoing edges, respectively.

4.3.2 Room clustering via colour contraction

We now consider the colour contraction of the digraph 𝐺 (cf. Section 4.3), allowing
us to extract different kinds of room clustering. The resulting clusters infer insights
from the typological information stored as colours in vertices and edges.

In particular, we slightly extend the notion of colour contraction from Section 3.2,
where only vertex colouring was considered. Depending on which colouring we rely
on, we can in fact build different partitions of 𝑉 by joining two rooms 𝑟𝑖 and 𝑟 𝑗 in
the same cluster as follows:

vertex-colouring If 𝑟𝑖 and 𝑟 𝑗 are connected and share the same colour, then they
are in the same cluster, say 𝐾𝑙 , that is:
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Fig. 4.5: Use cases for total-coloured graphs in three fictitious museums. (a) A museum inspired
by the Galleria Borghese with three floors and two kinds of exhibitions. (b) A segment of a
museum where all three floors host two kinds of exhibitions. Without considering the vertex-
colour information, the two trajectories t1 and t2 would be very similar, however, they clearly
are opposite and therefore different. (c) An example of a directed museum with multiple kinds
of exhibitions based on Vatican Museums (Rome, Italy). Entrance and exit artificial rooms are at
different locations.

if (𝑟𝑖 , 𝑟 𝑗 ) ∈ 𝐸 and 𝛾v (𝑟𝑖) = 𝛾v (𝑟 𝑗 ) then 𝑟𝑖 , 𝑟 𝑗 ∈ 𝐾𝑙 . (4.2)

Note that two rooms do not need to be directly connected to belong to the
same cluster. Hence, we aggregate all the rooms sharing the same conceptual
information which are reachable one from the other (cf. 4.6(a)). This corresponds
to regular colour contraction 𝐺/𝛾, deeply discussed in Chapter 3.

edge-colouring If 𝑟𝑖 and 𝑟 𝑗 are connected by an edge of some specific colour
𝐶′ ⊊ 𝐶e, then they are in the same cluster, say 𝐾𝑙 , that is:

if 𝑒 = (𝑟𝑖 , 𝑟 𝑗 ) ∈ 𝐸 and 𝛾(𝑒) ∈ 𝐶′ then 𝑟𝑖 , 𝑟 𝑗 ∈ 𝐾𝑙 . (4.3)

As an example, by selecting door connections, this technique contracts all the
rooms within the same floor of the museum in single clusters (cf. 4.6(b)).

multi-colouring We can also combine the two previous methodologies, therefore
obtaining a clustering of the rooms based on both architectural and conceptual
constraints (cf. 4.6(c)).
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(a)
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Fig. 4.6: Colour contractions applied to the graph representation in Figure 4.5(a). (a) vertex-
colouring: the two kinds of exhibitions join in one single cluster each, suggesting that visitors
explore them independently. (b) edge-colouring: by contracting over door edges ({↔}) we obtain
a floor-based representation, prompting the idea that visitors would rarely deal with stairs if it is not
needed. (c) total-colouring: contracting over both vertex-colouring and edge-colouring summaries
the hints from the clustering (a) and (b), detecting four areas, likely visited independently.

4.3.3 Room metric enforced by the total-coloured graph

The definition of a graph related to museum exhibition spaces naturally yields a
concept of distance D between the nodes. A “vanilla” distance between two rooms
for a colourless graph can be in fact defined by the least number of edges traversed
to reach one room from the other (cf. Section 1.2.5). Determining such a distance
corresponds to the well-known shortest path problem, which naturally extends to
include edges weighing a non-unit distance (i.e. weighted edges) [87].

In the setting of (typically edge) coloured graphs, the colours themselves can be
interpreted as weights, e.g. the weight of a colour can be proportional to the time
employed to traverse that specific kind of edge. Therefore, the assignment of a weight
𝑤(𝛾(·)) to each colour 𝐶e, i.e. a mapping:

𝑤 : 𝐶e → N+ (R+, more in general) , (4.4)

enforces also a distance notion between rooms4.
Whenever two rooms differ in colour, since their typological information differs

(cf. Figure 4.5(b)), a penalty 𝛽 is applied to their mutual distance. Note, whenever
𝛽 > 0, the metric D does not satisfy the relaxation principle [6] (which can be still
applied by adding 𝛽 a posteriori).

4 As an additional feature, it can be useful to reduce the cost of the first door transition, actually
decreasing the weight of short transitions that can occur if visitors stand still by the entrance door.
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𝑟0 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 𝑟10 𝑟11 𝑟12

𝑟0 0 11.5 10.5 11.5 12.5 12.5 11.5 10.5 11.5 20.5 20.5 21.5 21.5

𝑟1 11.5 0 1.5 2.5 3.5 1 2.5 3.5 4.5 10 10.5 11.5 11

𝑟2 10.5 1.5 0 1 2 2.5 3 4 3 10.5 10 11 11.5

𝑟3 11.5 2.5 1 0 1 3.5 4 3 2 11.5 11 12 12.5

𝑟4 12.5 3.5 2 1 0 4.5 3 2 1 12.5 12 13 13.5

𝑟5 12.5 1 2.5 3.5 4.5 0 1.5 2.5 3.5 11 11.5 12.5 12

𝑟6 11.5 2.5 3 4 3 1.5 0 1 2 12.5 12 13 13.5

𝑟7 10.5 3.5 4 3 2 2.5 1 0 1 13.5 13 14 14.5

𝑟8 11.5 4.5 3 2 1 3.5 2 1 0 13.5 13 14 14.5

𝑟9 20.5 10 10.5 11.5 12.5 11 12.5 13.5 13.5 0 1.5 2.5 1

𝑟10 20.5 10.5 10 11 12 11.5 12 13 13 1.5 0 1 2.5

𝑟11 21.5 11.5 11 12 13 12.5 13 14 14 2.5 1 0 1.5

𝑟12 21.5 11 11.5 12.5 13.5 12 13.5 14.5 14.5 1 2.5 1.5 0

Table 4.1: Distance matrix D from the total-coloured graph in Figure 4.5(a). We weigh ‘1’ the
door connections (𝑤(↔) = 1), ‘10’ the staircase links (𝑤(↔) = 10), and 𝛽 = +0.5 the distance
between two rooms not sharing the same room-colour.

The distance D is discrete in the vertices of the graph, therefore it can be repre-
sented as a 𝑛×𝑛matrix. If the connections in the underlying graph are bi-directional
(𝐺 is undirected) the distance is commutative; however, since in general 𝐺 is a
digraph, no assurance can be made a priori on the symmetry of D. Formally, we
have:

D𝑖, 𝑗 = D(𝑟𝑖 , 𝑟 𝑗 ) = 𝛽 · 1{𝛾v (𝑟𝑖 )≠𝛾v (𝑟 𝑗 ) } +
∑︁
𝑒∈Γ

Γ shortest path
between 𝑟𝑖 and 𝑟 𝑗

𝑤(𝛾(𝑒)) , (4.5)

where 1{ 𝜖 } is the indicator of the event 𝜖 , i.e. 1{𝛾v (𝑟𝑖 )≠𝛾v (𝑟 𝑗 ) } = 1 if 𝛾v (𝑟𝑖) ≠ 𝛾v (𝑟 𝑗 )
and 0 otherwise.

As an example, we report in Table 4.1 the distance matrix D associated with the
graph introduced in Figure 4.5(a).

4.4 Data collection

In this section, we tackle the problem of collecting data. We introduce first the main
source of data, our original IoT tracking system that allows us to gather individual
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(a) (b)

Fig. 4.7: Main components of the IoT tracking system (a) Sample visitor wearing the BLE beacon.
(b) Raspberry Pi used as Bluetooth antenna to receive beacon signals and measure their RSSI.

visitor trajectories. Secondly, we describe our complementary dataset of room-wise
crowd statistics. In numerical simulations, the first method is often referred to as
Lagrangian, recalling the Lagrangian approach from fluid dynamics which deals
with individual particles and calculates the trajectory of each particle separately.
The second method, on the other hand, is often referred to as Eulerian, since it deals
with concentration of particles and evaluates their overall diffusion.

4.4.1 IoT visitors tracking system

Cultural heritage sites worldwide typically have heavy limitations in the possibility
of displacing (electrical) devices. It is the case, e.g., of the Galleria Borghese,
which is covered by frescoes and paintings, and the Peggy Guggenheim Collection,
with its minimalist design and no places to hide large devices. To cope with these
historical and architectural constraints, we developed a non-invasive radio-based
IoT measurement solution delivering (virtual) room-level visitor trajectories. In this
sense, we define a trajectory as a finite sequence

𝔱 = (𝔱0, 𝔱1, . . . , 𝔱𝑇−1), (4.6)

where 𝔱𝑡 states the room (within a finite virtual room set {𝑟1, 𝑟2, . . . , 𝑟𝑛}) in which
the visitor is located at discrete time 𝑡, considering a regular time sampling 𝑡 ∈
0, 1, . . . , 𝑇 − 1.

Figure 4.7 shows the main components of the tracking system, which consists of:

Transmitters We employed small BLE beacons as transmitters due to their cheap-
ness and their compactness. We provide a beacon to each (consenting) visitor to
track their position inside the museum after a small briefing about the experi-
ment, see Figure 4.7(a). The beacon transmitted a signal at +4dB with iBeacon
encoding [128], which carries a unique identifier (UUID), a major, and a minor
(for filtering purposes).
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Fleet of receiving antennas We employed Raspberry Pi 3B+ (RPi) as receivers due
to their affordable cost and limited power consumption. An RPi is a single-board
computer with embedded Bluetooth and Wi-Fi modules that can be powered via
regular commercial power banks, see Figure 4.7(b). RPis were located along
the museum in fixed positions and labelled with convenient names, see later
Figure 4.12(a) and Figure 4.15(a). A high-level Python3 service running on
the RPis was used to scan continuously the surrounding area, searching for
beacons signals, and packing data by aggregating multiple readings from the
same beacon.

Data packets Data packets are created to transmit/store readings aggregated on a
Δ𝑡 time interval (Δ𝑡 = 5𝑠 in our experiments). Aggregation is useful to limit the
amount of data to be transmitted and stored. Each data packet corresponds to
the readings of a single couple RPi–beacon in a Δ𝑡 time interval and it is made
of (i) Beacon identity, (ii) RPi identity, (iii) timestamp, (iv) number of readings
within the interval, and (v) average or the RSSI readings5. We recall that the
RSSI, or received signal strength intensity, is a relative index in arbitrary units
representing the intensity of the beacon signal strength compared to the ground
noise. Do also note that no unified standards are designed to what concerns
RSSI values, hence we employed the most commonly used: values are strictly
negative and the stronger signals, the closer they are to zero (cf. Figure 4.8).

Central server We employed a proprietary server to receive data packets in real time
coming from all RPis via an internet connection. The server then stored data
packets in a central (Postgre)SQL database along with the reception timestamp
and other information from the museum and the RPi position. In the unfair
situation where no internet connection is available at reading time, data packets
are saved on RPis and later imported into the database. This situation is, in
practice, very common in old cultural heritage sites where no Wi-Fi or LAN is
available in each and every room; it was e.g. the case of Galleria Borghese at the
time the readings were taken. However, it can be typically bypassed by setting
up a custom internet connection system by means of commercial routers and
Wi-Fi extenders.

Such a system proved to be reliable also with dozens of beacons broadcasting at
the same time within a small area.

A data sample is reported in Figure 4.8, showing the history of the readings of a
single beacon during a visit. The analysis of the raw data immediately confirms that
the RSSI signal suffers from high fluctuations (cf. [89]). This means that a beacon
fixed in the middle of a room is not received with a constant RSSI, and the RSSI
of two equidistant beacons might not be the same. In addition, two other important
difficulties arise from data analysis:

5 It is worthwhile to point out that this structure was improved over time; e.g., during our first
campaign in Galleria Borghese only the first RSSI reading was stored and no aggregation procedures
were taken into account. For this and many other practical reasons, also an identification of the code
version by means of the commit hash was added as a piece of information within the data packet.
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Fig. 4.8: Typical raw RSSI data throughout a 120-minute visit as recorded by the 14 RPis receiving
antennas in Galleria Borghese. Data are re-sampled every Δ𝑡 = 10 s and RPis antennas are distin-
guished by markers. Inset: between minutes 29 and 32 the visitor is detected by both A04 and A05,
and the maximal RSSI strongly oscillates between the two. As a consequence, the signal strength
is insufficient to associate unambiguously a visitor to a location.

1. A single beacon can be detected by multiple antennas at the same time. RSSI is
used to resolve the ambiguity but high fluctuations make such task rather hard.

2. Some areas of the museum could not be covered at all (e.g., due to the impossi-
bility to deploy antennas, as it can happen in narrow corridors or staircases).

Finally, let us also mention the possibility – which we consider very rare – that
visitors wearing beacons could be influenced by the fact that they feel tracked, cf.
[141, 154].

In the upcoming section, we describe how the raw RSSI data from the transmitters
is processed to estimate individual trajectories.

4.4.2 Eulerian data gathering

Concurrently with the (semi-automatic) Lagrangian data gathering technique in-
troduced in the previous section, we developed a simple yet useful smartphone
application to perform Eulerian data gathering (manually).

The application allows an operator within a room to report time-by-time the
visitors’ presence inside the room by the use of two simple buttons: ‘+1’ and ‘-1’
(cf. Figure 4.9). Writing such an application from scratch (instead of using one
of the many tally counters already available online) allowed us to customise it
and, in particular, store each button press along with the timestamp of the tap.
Figure 4.10 reports a typical measurement of the crowd level inside a room in the
Peggy Guggenheim Collection on a weekday. Do note that larger rooms can easily
be covered and surveyed by multiple operators working together (e.g., positioned at
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(a) (b) (c)

Fig. 4.9: Visitor Tracker application. (a) Main menu of the application that allows to set preferences
and choose amongst different activities (here only two are reported for the sake of simplicity). (b)
Main activity of the application, i.e. counting the number of visitors inside a given room. The
current sum and a tap counter are provided for the sake of verifiability. (c) Secondary activity of
the application developed specifically for measuring changes in Galleria Borghese, i.e. counting the
number of visitors with a given coloured stamp (see later Section 4.8.3 for more details). The current
number of counted visitors per colour and a tap counter are provided for the sake of verifiability.

each access to the room). In a similar fashion the entire museum or part of it (e.g.
a wing) can be tracked as well, here with the downside that no intermediate error
checks can be properly made.

Furthermore, the application can be used also to track other visitors’ habits, like
the natural emerging trend of going left/right after entering an exhibition area and
how this changes in the presence of obstacles or signage (see later Section 4.6.3 for
a discussion of visiting pattern in the Peggy Guggenheim Collection and Section 4.9
for an example of signage and its impact).

Such a solution, despite being unfeasible on a large scale (due to the high require-
ment in manpower), typically produces high-quality data that can serve both per se
for fine statistics purposes and as a benchmark for the coarser grain data that can
be extracted from the Lagrangian measurements. In fact, providing all the visitor
trajectories are available, the occupancy of a room can be evaluated time-by-time by
simply counting how many trajectories are in that room at each time; however, in
our solution this is typically not the case, since only a fraction of visitors is provided
with beacons, hence making such a reconstruction much noisier.
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Fig. 4.10: Sample of Eulerian data gathered in the Peggy Guggenheim Collection (PG-6) during
a day-long measurement. The top panel displays the crowd level with a resolution of Δ𝑡 = 1s; a
regularisation Gaussian filter is applied over a downsampling to Δ𝑡 = 10s to better highlight the
trend. The bottom panel displays how many people enter the room during the same day: as can
be seen, the in-flux is rather constant and slows down around lunchtime. Do note that a visitor
re-entering is counted twice since Eulerian measurements do not follow individuals.

Fig. 4.11: Sample of visitors’ time of permanence in front of a single artwork gathered in the Peggy
Guggenheim Collection. The artwork is one of the most renowned by Jackson Pollock, “Alchemy”.
Do note that the first time-bin highlights visitors that observed the artwork for less than 5 seconds
(14%). Mean time of permanence is 48s (45s without audio guide, 115s with audio guide), standard
deviation is 46s, and most of the visitors (73%) leave within one minute.

Manual measurements can also be made on specific aspects of the museum. It is
the case, e.g., of measuring the time of permanence in front of single artworks. A
sample measurement of this kind is depicted in Figure 4.11 and allows the gathering
of highly detailed insights on specific artworks. In particular, it is strictly related
to the holding power of each piece of art and can prompt interesting suggestions
on possible rearrangements of a collection (see also [112]). Furthermore, it can be
correlated with other information, like the usage of an audio guide, the visitors’ age,
sex, and ethnic group to perform in-depth studies on the single artwork (which is out
of the scope of this work).
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Number Room nickname Antenna

𝑟1 Paolina 𝑎2
𝑟2 David 𝑎4
𝑟3 Apollo e Dafne 𝑎5
𝑟4 Ratto di Proserpina 𝑎1, 𝑎10
𝑟5 Portico 𝑎8, 𝑎9
𝑟6 Enea e Anchise 𝑎11
𝑟7 Satiro su delfino 𝑎7
𝑟8 Caravaggio 𝑎6

𝑟9 Pinacoteque 𝑎3, 𝑎12, 𝑎13, 𝑎14

Table 4.2: Match amongst the 𝑅 = 9 rooms (𝑟𝑥) and the 𝐴 = 14 RPi antennas (𝑎𝑥𝑦) in the Galleria
Borghese.

4.4.3 Analysis of the case studies and corresponding datasets

In the following, we describe the tracking system details of our two case studies
along with the two corresponding datasets we were able to put together from our
measurements.

Galleria Borghese

The Lagrangian data gathered in the Galleria Borghese case study come from a
measurement campaign that lasted between June and August 2019. The central
SQL server received 1, 308, 617 records corresponding to 900 visitor trajectories
surveyed during 13 2h-long visit slots. The percentage of tracked visitors w.r.t. the
total number was about 1:5. As it usually happens, the vast majority of visitors
came in groups (family, friends, guided tours, etc.). In this case, apart from a few
exceptions, we tracked only one member of each group, thus losing the ability to
detect the interactions within social groups.

Due to the architectural constraints, we were able to monitor the 21 exhibition
areas of the museum with 𝐴 = 14 antennas only, hence we decided to group the
physical rooms into 𝑅 = 9 areas (virtual rooms). Table 4.2 reports the antenna-room
assignments, while Figure 4.12(a) display the antennas position on the museum
map and the virtual room definition, along with a sample ground-truth trajectory
associated with data from Figure 4.12(b), here conveniently represented with room
transition highlighted and with colours matching the virtual room of the reading.

According to the disposition of antennas within the different exhibition areas,
we chose to reconstruct the two visiting floors with different resolutions, building
trajectories at room-scale on the first floor while having a single comprehensive
room on the second one. We assigned a single colour to the so-formed 𝑅 = 9 rooms.
We include an entrance/exit artificial room connected to the three entry rooms of
the museum (𝑟4, 𝑟5 and 𝑟9) representing the ticket office (where we also provided
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Fig. 4.12: (a) The Galleria Borghese floor plan. We report the position of antennas (𝑎𝑥𝑦) and
virtual rooms (𝑟𝑥). Red lines represent closed doors. We include in blue a sketch of the trajectory
whose RSSI measurements are in panel (b). The trajectory begins on the first floor (F1) and follows
a counter-clockwise path before reaching the second floor (F2). (b) RSSI measurements for a
real visitor trajectory (sketched in panel (a)). The readings from the 𝐴 = 14 antennas are coloured
depending on the virtual room (thus, measurements taken by any of the antennas on the second floor
come with the same colour, yellow triangles). Room transitions are represented by the alternating
background colour.
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Fig. 4.13: (a) Graph representation of the Galleria Borghese (cf. 4.12(a)) with the corresponding
edge-clustering enforced by the orange connections (↔). Do note the addition of a fictitious room
𝑟0 to serve as entrance/exit. (b) The distance matrix obtained weighting ‘2’ the door connections
(𝑤(↔) = 2), ‘15’ the staircases connection (𝑤(↔) = 15) and ‘0’ the different type of exhibitions
(𝛽 = 0). A discount factor of ‘1/2’ is applied for the first door transition (cf. Footnote 4).

visitors with beacons), assigning to it a different colour. The point of interest for the
clustering phase consists, however, of the kinds of connections here represented in
black (doors) and orange (stairs). The coloured-graph representation of the museum
with its edge-colouring contraction, along with the corresponding distance matrix is
also reported in Figure 4.13.

The Eulerian data gathered come from multiple measurement campaigns that
occurred during 2019, 2020 and 2021 and mainly serve here as benchmarks for the
construction of the methodologies introduced in the rest of this chapter. In particular,
data for the occupancy of the whole museum, reported in Figure 4.14, are worth
of mention. It clearly highlights two of the most important criticalities that first
motivated the study here proposed: (i) the museum fully empties between the time
slot due to exit/enter procedures and (ii) the museum mean occupancy on the second
hour of each turn is below 50%, hence being the occupancy trend highly sub-optimal.
Furthermore, they can be used to study entrance and exit rates from the museum.

Along with them, we gathered single room occupancy, and we measured different
aspects regarding the visitors’ choices: the chosen entrance and the first choice be-
tween going left or right upon entrance are two examples. The second measurement,
in particular, is correlated with the “clockwisety” of the visit, i.e. if the main floor is
mainly visited in clockwise or anti-clockwise order, being circular in shape.
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Fig. 4.14: Example of occupancy of the whole museum in the Galleria Borghese case study. It is
clear that the decision of having non-overlapping time slots heavily penalises the fruition of the
museum since the museum is overcrowded in the first hour and poorly populated during the last
half-hour.

Peggy Guggenheim Collection

The Lagrangian data gathered in the Peggy Guggenheim Collection case study come
from a measurement campaign that lasted between December 2022 and January
2023. The central SQL server received 1, 377, 293 records corresponding to 524
visitors’ trajectories, ranging in time from 10 up to 310 minutes (5 hours and 10
minutes). Conversely to the Galleria Borghese measurements, the management of
beacons delivery and pick-up operations was entrusted to museum interns, hence to
simplify the procedures, beacons were only delivered to visitors who left items in
the wardrobe.

At the time of Lagrangian measurements, no temporary exhibitions were held,
hence we were able to monitor the 18 exhibition areas of the museum, along with
the terrace, the cafeteria, the 4 areas of the sculpture garden, the veranda, and the
ticket office with 𝐴 = 20 antennas. We deployed mainly one antenna per room in the
permanent exhibition while we were able to place only two antennas in the Schulhof
collection. Being mainly outdoor areas, we were able to deploy a limited number of
antennas in the garden (3), the ticket office area (1), the terrace (2), and the bar (1).
Table 4.3 reports the antenna-room assignments, while Figure 4.15(a) display the
antennas position on the museum map and the virtual room definition, along with a
sample ground-truth trajectory associated with data from Figure 4.15(b).

We decided to reconstruct room-wise the permanent exhibition area but PG-9
and the corridors that, despite holding artworks, were too narrow to correctly deploy
antennas. We provided the so-formed 9 virtual rooms with a single colour and we
linked them with two kinds of connections to represent the following conceptual
constraint: visitors typically visit one side of the permanent exhibition before the
other (this was originally suggested by the curator and further confirmed by data,
see later Section 4.6.3). Due to the limited number of antennas, we decided to
reconstruct the rest of the areas by grouping them up in a single virtual room each,
each one with a different colour, as suggested in Figure 4.4. Connections between
exhibition areas and the garden are classified by a third colour representing the
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Fig. 4.15: (a) the Peggy Guggenheim Collection map. We report the position of antennas (𝑎𝑥𝑦)
and virtual rooms (𝑟𝑥𝑦). Red lines represent closed doors and greyed areas represent inaccessible
zones. We include in blue a sketch of the trajectory whose RSSI measurements are in panel (b).
The trajectory starts the visit from Calder Hall (𝑟09) by crossing the sculpture garden (𝑟11). It visit
the left wing first and the right wing of the permanent exhibition after. Later, it goes to the Schulhof
collection (𝑟10) before moving to the garden and the veranda (𝑟12) and, finally, leaving the museum.
(b) RSSI measurements for a real visitor trajectory (sketched in panel (a)). The readings from the
𝐴 = 19 antennas are shaped depending on the virtual room. Room transitions are represented by
the alternating background colour.
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Number Room name Antenna

𝑟01 PG-1 𝑎01
𝑟02 PG-2 𝑎02
𝑟03 PG-3 𝑎03
𝑟04 PG-4 𝑎04
𝑟05 PG-5 𝑎05
𝑟06 PG-6 𝑎06
𝑟07 PG-7 𝑎07
𝑟08 PG-8 𝑎08
𝑟09 Calder Hall 𝑎09

𝑟10 Schulhof Collection 𝑎10, 𝑎11
𝑟11 Sculpture garden 𝑎18, 𝑎19, 𝑎20
𝑟12 Cafeteria 𝑎12
𝑟13 Veranda 𝑎13, 𝑎14
𝑟14 Terrace 𝑎16, 𝑎17
𝑟15 Ticket office 𝑎15

Table 4.3: Match amongst the 𝑅 = 15 rooms (𝑟𝑥𝑦) and the 𝐴 = 20 RPi antennas (𝑎𝑥𝑦) in the
Peggy Guggenheim Collection.

transition from indoor to outdoor. The reconstruction yields a total of 𝑅 = 15 virtual
rooms (in 7 colours) connected by 22 edges (in 3 colours). The coloured-graph
representation of the museum with its multi-step multi-colouring contraction, along
with the corresponding distance matrix is reported in Figure 4.16. The multi-step
contraction highlights a finer representation with 9 areas and a coarser representation
with 7 areas, being the difference in the reconstruction of the permanent exhibition
that is divided into left-, centre-, and right wing (L, 𝑟9, and R).

The Eulerian data gathered come from multiple measurement campaigns that
occurred during June, July, and December 2022, and January, March, and May 2023
and mainly serve as a source of information for the final discussion in Section 4.9.

Conversely to the Lagrangian dataset, some of the Eulerian measurements were
gathered while the temporary exhibition “Surrealism and Magic: Enchanted Moder-
nity” was held. For this reason, we were able to track the number of visitors inside
the two main exhibition areas during June and July 2022. The data, reported in Fig-
ure 4.17, mainly show that the first opening hours are the least crowded and a pike
in presence can be located before lunch. Furthermore, the presence in the temporary
exhibition is constantly lower than the correspondent presence in the main exhibi-
tion. This latter fact can be attributed to three main reasons: (i) visitors approach
the temporary exhibition after the permanent one and could be more fatigued, (ii)
the building structure of the temporary exhibition is less appealing compared to the
main exhibition (being hold in the original Peggy Guggenheim’s home), and (iii) the
artworks held in permanent exhibition are of higher artistic and historical value.

Like in the Galleria Borghese case study, we gathered single-room occupancy to
be used as benchmarks and we measured the ratio of first choice between going left
wing L or right wing R upon entrance in Calder Hall (𝑟9). Of particular interest, is
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Fig. 4.16: (a) Graph representation of the Peggy Guggenheim Collection (cf. 4.15(a)) with the cor-
responding multi-colouring contraction: edge-colouring enforced by the blue connections (↔) for
wings and vertex-colouring for thematic areas. Do note that here no additional room for entrance/exit
is needed since its role is already handled by the ticket office (𝑟15 ) . (b) The distance matrix obtained
weighting ‘1’ the door connections (𝑤(↔) = 1), ‘3’ the wing connection (𝑤(↔) = 3), ‘5’ the
inside-outside transition (𝑤(↔) = 5) and ‘10’ the different type of exhibitions (𝛽 = 10). A discount
factor of ‘1’ is applied for the first door transition (cf. Footnote 4).

Fig. 4.17: Mean museum occupancy in the Peggy Guggenheim Collection where visitors are
distributed amongst temporary and permanent exhibitions.

the fact that visitors are evenly split between the two choices L and R, hence later
causing a flux cross once they get back to Calder Hall (𝑟9).

Finally, we also measured the time of permanence in front of a number of artworks.
A simple yet effective result of this analysis is later discussed in Section 4.9.

4.5 Trajectory reconstruction and filtering

We use the raw data collected by the tracking systems to reconstruct trajectories
𝔱 = (𝔱0, 𝔱1, . . . , 𝔱𝑇−1), which represent the sequence of visited rooms and the time
of permanence in each room. These reconstructed trajectories are then compared
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with ground-truth data, which can be obtained either through field observations or
manual extraction from the data.

Naive methods for comparing a reconstructed trajectory with its ground truth
include binary accuracy, which can be used as an initial indicator. Given two trajec-
tories 𝔰 and 𝔱 spanning 𝑇 discrete time bins (eventually padded to match in length),
we recall the binary accuracy as follows:

Acc(𝔰, 𝔱) = 1
𝑇

𝑇−1∑︁
𝑡=0

1𝔰𝑡=𝔱𝑡 . (4.7)

However, the coloured graph representation and, in particular, the metric (4.5), offer
the opportunity to develop a more comprehensive set of indicators. We can adopt the
room-level metric D as is to evaluate single room displacements and we can extend
it to a Wasserstein-inspired trajectory-level metricW by summing the component-
wise distances between instantaneous locations, that is:

W(𝔰, 𝔱) =
𝑇−1∑︁
𝑡=0
D(𝔰𝑡 , 𝔱𝑡 ) . (4.8)

The collected RSSI data does not have uniform temporal sampling, therefore, as
a first step, we apply a re-sampling procedure to the signal with a fixed time step
of Δ𝑡 = 10 s (cf. Figure 4.8). The choice of Δ𝑡 involves a trade-off between signal
granularity and desired resolution; in particular, usingΔ𝑡 = 10 s results in six samples
per minute, which is sufficiently small compared to the typical duration of room visits
and traversal times, while also allowing redundant antenna advertisement signals
(RPi transmission frequency in our model is 5 seconds). We employed a threshold
of -120 dB for antennas that fail to detect the beacon. By applying this procedure to
a single beacon, we obtain an 𝐴 × 𝑇 matrix R (where 𝑇 is the visit duration divided
by Δ𝑡). In other words, for a given beacon, the element R𝑎,𝑡 represents the mean
RSSI of the signal received by the 𝑎-th antenna in the 𝑡-th time bin, or -120 if the
𝑎-th antenna never detects the beacon during that time bin.

The most straightforward way to reconstruct visitor trajectories is to compute the
argmax of the RSSI history for each beacon: at each time bin, we retain the antenna
that receives the highest RSSI value. The current location of the visitor is then
determined based on the room associated with the antenna. A sample result of this
procedure is shown in Figure 4.18(a). Unfortunately, when a visitor is equidistant
from two or more antennas, the maximal RSSI value oscillates rapidly amongst
the antennas. In signal terms, the visitor appears to perform extremely rapid and
unrealistic room changes.

Therefore, we present three data refinement methods that progressively increase
in complexity and reliability. The first method adopts a sliding window approach, the
second method is based on a simple multi-layer perceptron (MLP) model, and the
third method relies on a cascaded localiser constructed using the contracted-graph
representation of the museum.
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(a) Argmax approach

(b) Sliding window approach

(c) MLP approach

Fig. 4.18: A sample beacon RSSI elaborated by (a) argmax, (b) sliding window, and (c) multi-layer
perceptron approaches (𝛿 = 6). The left column reports the max of RSSI for the argmax and
sliding window approaches (antennas located in the same room are labelled with the same colour
but different markers), and the maximum amongst the rooms probabilities for the MLP approach.
The right column reports the corresponding reconstructed trajectories as sequences of rooms. Not-
detected statuses are marked by green crosses (×).

4.5.1 Sliding window approach

The first method aims to reduce noise in the RSSI data by applying a low-pass filter,
which is implemented as a weighted moving average, and a normalisation. RSSIs
gathered close in time should have close values; besides, the closer the bins, the
higher the correlation.

To achieve this, we convolve the RSSI signals obtained from each antenna (i.e.,
the rows R ·,𝑡 ) of the RSSI matrix with a (symmetric triangular) kernel of size 2𝛿 + 1
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and weights 𝑤0, 𝑤1, . . . , 𝑤2𝛿 . Formally, this convolution generates a new matrix R̃
defined as follows:

R̃𝑎,𝑡 =
𝑡+𝛿∑︁
𝑑=𝑡−𝛿

R𝑎,𝑑 · 𝑤𝛿−𝑡+𝑑 , 0 ≤ 𝑎 < 𝐴, 𝛿 ≤ 𝑡 < 𝑇 − 𝛿 . (4.9)

Next, we apply a 𝑧-score normalisation across the signals acquired by the different
antennas to make them comparable. This results in a third matrix R̄ given by:

R̄𝑎,𝑡 =
R̃𝑎,𝑡 − 𝜇𝑡

𝜎𝑡
, 0 ≤ 𝑎 < 𝐴, 𝛿 ≤ 𝑡 < 𝑇 − 𝛿 , (4.10)

where 𝜇𝑡 and 𝜎𝑡 are, respectively, the mean and standard deviation of R̄ at each time
bin (i.e., column-wise). In other words, 𝜇𝑡 = 𝜇(R̄ ·,𝑡 ) and 𝜎𝑡 = 𝜎(R̄ ·,𝑡 ).

Figure 4.18(b) illustrates a sample outcome of this procedure.

4.5.2 Multi-layer perceptron approach

The second method lays its foundation in the fact that a trained human is typically
able to reconstruct the trajectory by looking at the plotted dataset (cf. Figure 4.8),
hence making neural networks suitable for this purpose. Both as an improvement in
performances compared to the sliding window method and as a baseline for the third
methodology, we propose a trajectory reconstruction approach based on a vanilla
MLP (see 2.3.2).

At any time bin 𝑡, we cast the localisation of a visitor in one amongst the 𝑅 rooms
as a classification problem, hence requiring the MLP to process the R matrix (in
time windows) and to return the probability vector whose 𝑟-th component is the
probability that the visitor is located in the room 𝑟. For the sake of simplicity (and
the lowest possible data requirements for training), we built a single hidden layer
(hence a 3-layer MLP) and we adopt the sigmoid as activation function.

At each time 𝑡, we considered a symmetrical time window of (2𝛿 + 1), hence
generating (2𝛿 + 1)𝐴 input features obtained by restricting the matrix R to the 𝛿
columns before and after 𝑡 (analogous notation to Section 4.5.1), i.e. the column
block R ·,𝑡−𝛿 · · ·𝑡+𝛿 . The single hidden layer is to be hyper-tuned in the number of
neurons; however, we find it suitable to consider 4 × 𝐴 neurons, as a trade-off
between the input and the output layer sizes. The network output layer is made of 𝑅
neurons that we interpret – through a softmax normalisation – as the instantaneous
probability of being in the 𝑟-th room.

According to the validation performed on our datasets, almost always the MLP
outputs a classification with an overall majority (probability > 0.5, see Fig-
ure 4.18(c)). However, it can happen – particularly during a room transition – that
no class reaches such a majority. In such a case, we proceed by removing probability
values smaller than a fixed threshold 𝜖 = 0.15 and those yielding unfeasible tran-
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sitions according to our graph representation. After re-normalising the remaining,
in the unlikely event that still no room discloses an overall majority, we assume the
visitor standing still.

Comparing with the sliding window approach

Looking at Figure 4.18(b) and Figure 4.18(c) we observe two interesting features: the
sliding window approach often prevents spikes from arising (see minutes ∼ 35, 53),
yielding cleaner trajectories that make it easier to enumerate room transitions. On
the other hand, it tends to smooth trajectories excessively, ignoring fast transitions
(see minute ∼ 52).

The first phenomenon is simply explained by the pass-filter nature of the sliding
window approach: it typically creates smooth signal curves that hardly intersect in
more than one point per room transition.

The latter phenomenon, conversely, can be verified if we consider the bin-by-bin
accuracy and it is explained by the major flexibility of the MLP that learns over the
training set.

The accuracy achieved over the Galleria Borghese test set (20% of the entire
dataset) by the MLP is in fact 0.858, compared to an accuracy of 0.734 obtained
by the sliding windows approach. It is doubtless, however, that both approaches
overcome the results obtained via the argmax approach, which has an accuracy of
0.547.

4.5.3 Cascaded trajectory reconstruction based on colour-clustering

The third and last method mainly finds its advantage in the expert-knowledge infor-
mation injected in the museum graph and its contraction (cf. Section 4.3). The idea is
to use the different clustering of museum rooms we obtained from the total-coloured
graph (cf. Figure 4.6) to build a series of cascaded classifiers that improve room-level
localisation accuracy over the other methods.

Our clustering creates a partition of 𝑉 in aggregates of rooms 𝐾1, 𝐾2, . . . (clus-
ters) that are, by construction, typically explored by visitors one at a time. Thus, our
localisation approach first identifies the visitor in one amongst the different room
clusters, say 𝐾𝑖 , and, only afterwards, in a specific room within 𝐾𝑖 . From an oper-
ational point of view, this corresponds to building one “large-scale” localiser that
classifies at cluster-level 𝐾1, 𝐾2, . . ., and multiple “fine-scale” localisers, each oper-
ating within a single cluster, and returning a specific room. Each localiser, at either
large- or small-scale, operates on all or a subset of 𝐴′ ≤ 𝐴 RSSI signals, possibly
down-sampled in time. As RSSI are highly fluctuating, analysing data from a time
window of, say, 𝑇 ′ ≤ 𝑇 samples, instead of the single measurements is mandatory.
We refer to the time window as symmetric if data from both the future and the past is
used, and asymmetric otherwise (necessary for online trajectory reconstruction). In
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Fig. 4.19: Two possible designs for a cascaded selector built upon the museum in Figure 4.5(a).
A direct match between antennas and room is assumed (i.e. 𝑎𝑖 is deployed in room 𝑟𝑖 , with
0 ≤ 𝑖 ≤ 12). (a) A two-layer cascaded selector as enforced by the clustering in Figure 4.6(b). (b)
A two-layer cascaded selector as enforced by the clustering in Figure 4.6(c).

the case of the large-scale classifier, considering a time window including a down-
sampled version of the RSSI signal yields better performance since it limits the input
dimension of the classifier and prevented noisy inputs.

It is clear that the task for the coarse-grain large-scale localiser is simpler w.r.t.
the task of directly classifying the beacon in the correct room, hence we expect it
to achieve a better accuracy (later cf. Table 4.4). It follows that, since locating the
beacon in the correct area of the museum provides an upper bound for the misplacing,
such an approach guarantees an improvement in the overall misplacement measured
byW.

Considering the example in Figure 4.6(b), we would employ three localisers: a
floor selector 𝔉 fed with the signal from all the antennas that outputs one amongst
the three areas (F0, F1 or F2) of the museum and two room selectors ℜ1 and ℜ2 (to
be mutually employed depending on the output of 𝔉) that use the signals from the
receivers on their respective floor to output the most probable room within that floor.
Do note that area F0 has a single room associated with it, hence making it pointless
to build a selector ℜ0.

The described method naturally extends to consider multiple layers of localisers,
coarser to finer, simply considering multiple progressive contractions; it is the case,
e.g. of what happens if we consider contracting progressively over multiple kinds of
edges or over edges and vertices (multi-contraction). Consider, e.g., the example in
Figure 4.6(c), we can build a three steps mechanism based on seven localisers: the
initial structure would be the same as before, with a floor localiser 𝔉, followed by two
colour localisers ℭ1 and ℭ2, each one trained on a different floor; four fine-grained
room localisers {ℜ𝑖}4𝑖=1 close the structure.

A pictorial representation of the described selectors can be found in Figure 4.19.
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The choices for each individual localiser are also critical for the success of the
method. Depending on the amount of data available one could opt for heuristics or
data-driven approaches.

• Heuristic algorithms heavily depend on the museum topology. Convolutional
kernel approaches (ConvKer) yield a reference baseline, so we used our sliding
windows approach as a benchmark.

• Many options are available for classification algorithms trained with ground-
truth data [40]. We specifically consider three of them, widely used in the
literature: (i) the MLP, built as in the Section 4.5.2 as an example of FNN, (ii)
the LSTM as an example of RNN, better suited than regular ANN, and (iii) the
random forest (RF), capable of accomplish classification tasks efficiently.

MLP and LSTM are described respectively in Section 2.3.2 and 2.3.3. Conversely,
RFs are predictors consisting of an ensemble of randomised decision trees [91],
i.e. weaker tree classifiers where each internal node represents a query over the
data features and each leaf is a classification label. The RF classifies following the
majority vote over the tree ensemble, following the concept that weaker classifiers
trained on different subsets of data learn various aspects from the features.

4.5.4 Handling not-detected beacons

Due to (small) areas uncovered by antennas or because of random signal losses, it
may happen that a beacon remains not detected. This is also what (correctly) happens
before and after a visit or when the visitor leaves the exhibition areas during the visit,
for example to reach the toilet.

Before performing statistical analyses, we amend for not-detected statuses when-
ever this can be done unambiguously. Although we notice that such a process might
require mainly museum-specific solutions, we report two corrections which we deem
of general interest.

1. If the blind period is less than a few minutes (typically 3 minutes is suitable,
with some exceptions, e.g. 10 minutes for the Pinacoteque of Galleria Borghese
due to the low antennas presence), and the visitor is detected in the same room
before and after the blind period, the visitor is associated with that room for the
whole period.

2. If the blind period is less than a few time bins (typically 3, equals to 30 seconds
with Δ𝑡 = 10 s), and the visitor is detected in two different rooms before and
after the blind period, the visitor is supposed to be in one between the two rooms
(at random).

Whenever the overall not-detected status exceeds 25 minutes, we decided to trash
such a trajectory, hence removing it from the dataset.
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4.5.5 Trajectory reconstruction results in case studies

In this section, we discuss the performance of our cascaded methodology on the
basis of Lagrangian experimental data gathered in our measurement campaigns. We
design the cascaded localisers relying on the clustering built in Section 4.4.3 and we
present the performances of the methods by means of four indicators based on the
metric enforced by the graph.

The metrics considered are:

Acc The vanilla accuracy, given by the fraction of correct predictions over the total
number of samples.

D Mean sample displacement, given by the average distanceD between the sample,
instantaneous, predictions and the corresponding ground truth.

D∗ The mean sample displacement error, given by the average distanceD restricted
to wrongly labelled samples, and the corresponding ground truth.

W The mean trajectory displacement, given by the average distance W between
the reconstructed trajectory and the corresponding ground truth.

Building upon the emerging clustering from Figure 4.13(a), we develop a two-
layer cascaded localiser built of two predictors: (i) a floor predictor 𝔉, whose inputs
are the data from all the 𝐴 antennas; (ii) a sculpture floor (F1) room predictor ℜ,
whose input are the data from all the 𝐴′ ⊂ 𝐴 antennas displaced in the rooms from
F1. The structure of the localiser is reported in Figure 4.20(a).

Conversely, building upon the emerging clustering from Figure 4.16(a), we de-
velop a three-layer cascaded localiser built of four predictors: (i) a zone predictor ℨ,
whose inputs are the data from all the 𝐴 antennas and the output is one of the seven
colour clusters; (ii) a wing predictor 𝔚, whose input are the data from all the 𝐴′ ⊂ 𝐴
antennas displaced in the rooms from the main exhibition area and the terrace and
the output is either the left, the right or the central area of the collection; (iii-iv) two
room localisers ℜl and ℜr working respectively on the two wings of the museum.
The structure of the localiser is reported in Figure 4.20(b).

As a sample benchmark, in Table 4.4, we compare the localisation accuracy we
achieve employing different methods for building the single localisers for the Galleria
Borghese cascaded selector, considering both online and offline perspectives (i.e.
involving asymmetric resp. symmetric time windows). Additionally, we report the
results obtained via a single classifier (cf. Section 4.5.2) as a benchmark.

The metrics are elaborated on a test set,T , disjoint from the training set, consisting
of about 20% of the labelled data. We employed the matrix from Figure 4.13(b) as
room-distance matrix D.

The proposed method proves not only to increase the accuracy but also to commit
much smaller errors when a room is misclassified. In particular, when adopting
𝔉 = RF and ℜ = LSTM, the mean error committed by the method is D ≈ 0.08
compared to D ≈ 0.57 by a single LSTM localiser. This corresponds to an effective
displacement restricted to misclassifications ofD∗ ≈ 2.5, where 1 means the visitor
is positioned in an adjacent room and 3 means the visitor is located 2 rooms away
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Fig. 4.20: Structure of the cascaded selectors based on the clustering associated with (a) The Galleria
Borghese (cf. Figure 4.13(a)) and (b) the Peggy Guggenheim Collection (cf. Figure 4.16(a)). Do
note that localisers 𝔚, ℜl, and ℜr also take as input the signal from antennas 𝑎9, 𝑎16, and 𝑎17 due
to their position inside the museum (cf. Figure 4.15(a)).

Symmetric time window [−6, +6]

Methodology Accuracy D D∗ W

Single Localiser
ArgMax 0.6562 4.3755 12.727 3150.3
ConvKer 0.7645 3.1693 13.458 2281.9

MLP 0.8679 1.4402 10.903 1037.0

LSTM 0.9267 0.5761 7.8605 414.84

RF 0.8900 1.2150 11.046 874.84
Floor Localiser

ArgMax 0.8673 1.9905 15 –
ConvKer 0.9005 1.4925 15 –

MLP 0.9045 1.4325 15 –

LSTM 0.9650 0.5250 15 –

RF 0.9386 0.9210 15 –
Floor Localiser with downsampling (Δ𝑡 = 5min)

ArgMax 0.9148 1.2780 15 –
ConvKer 0.8201 2.6984 15 –

MLP 0.9949 0.0764 15 –
LSTM 0.9940 0.0900 15 –

RF 0.9966 0.0509 15 –

Sculpture floor Localiser
ArgMax 0.8111 0.3314 1.7546 –
ConvKer 0.8974 0.1327 1.2938 –

MLP 0.9493 0.0593 1.1714 –

LSTM 0.9507 0.0521 1.0588 –

RF 0.9435 0.0709 1.2564 –
Multiple Localiser (Floor + Sculpture)

RF – LSTM 0.9677 0.0816 2.5267 58.760

Asymmetric time window [−6, 0]

Methodology Accuracy D D∗ W

Single Localiser
ArgMax 0.6562 4.3755 12.727 3150.3
ConvKer 0.7105 3.4537 11.930 2486.6

MLP 0.8525 1.5483 10.497 1114.7

LSTM 0.8721 1.1459 8.9600 825.10

RF 0.8662 1.3524 10.108 973.76
Floor Localiser

ArgMax 0.8673 1.9905 15 –
ConvKer 0.8986 1.5210 15 –

MLP 0.9011 0.9480 15 –

LSTM 0.9480 0.7800 15 –

RF 0.9258 1.1130 15 –
Floor Localiser with downsampling (Δ𝑡 = 5min)

ArgMax 0.9148 1.2780 15 –
ConvKer 0.8283 2.5754 15 –

MLP 0.9932 0.1020 15 –

LSTM 0.9966 0.0509 15 –

RF 0.9957 0.0644 15 –
Sculpture floor Localiser

ArgMax 0.8111 0.3314 1.7546 –
ConvKer 0.8258 0.2165 1.2429 –

MLP 0.9043 0.1072 1.1212 –

LSTM 0.9058 0.1260 1.3385 –

RF 0.8928 0.1390 1.2973 –

Multiple Localiser (Floor + Sculpture)

LSTM – LSTM 0.9413 0.1250 2.1311 90.068

LSTM – RF 0.9337 0.1326 2.0008 95.510

Table 4.4: Localisation performances achieved by employing a combination of selectors on experi-
mental data collected at the Galleria Borghese. Best results are highlighted in yellow. Performances
with single localisers are reported as a reference. All the localisers have been trained on a desktop
computer in less than five minutes, being the RF the fastest in training (1/30 of MLP training) and
𝐿𝑆𝑇𝑀 the slowest (three times the MLP training). The ConvKer employs the sliding window
approach (see Section 4.5.1).
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from the ground truth. We note that this major increase is due to the “large-scale”
classifier generally labelling correctly (accuracy> 99.5%) the floor a visitor is at.ℜ =
LSTM proves to be the best sculpture floor selector, and, overall, using a symmetric
time window provides higher results than the online approach. In the case of the
floor selector 𝔉, online and offline approaches based on RF and LSTM delivered
comparable results. This aspect is probably due to the fact that the floor classification
problem is more regular and simpler than the room classification.

4.6 Trajectory analysis and clustering

In this section, we first present a few basic statistics for analysing the Lagrangian
dataset that are useful both per se and for the creation of the digital twin later. We
employ our case-study datasets to explain their usage and impact and we show how
the metric enforced by the total coloured graph can be used to perform preliminary
analysis on the trajectory dataset. Later, we introduce the core of this section, being
the unsupervised clustering of the trajectories. Closes the section a discussion over
case-study dataset clusterisation.

4.6.1 Basic statistics

Let us consider a dataset of 𝑁 trajectories 𝔱1, . . . , 𝔱𝑁 of maximum length 𝑇 . We
consider three basic illustrative statistics that we also employ in Section 4.7 to
calibrate our digital twin:

Time of Permanence We denote by ToP(𝑣, 𝑟) the total time spent by trajectory 𝔱𝑣

in room 𝑟 ∈ {1, . . . , 𝑅} during its visit, with 𝑣 ∈ {1, . . . 𝑁}. It is important
not to confuse ToP with the Eulerian measurements: in fact, even if ToP is a
room-wise measurement, it still is dependent on the trajectory 𝔱𝑣.

Returning visitors We denote by Ret(𝑣, 𝑟) the number of times the trajectory 𝔱𝑣

stopped by room 𝑟 . Being a Lagrangian measurement, Ret provides insights
on museum navigability since, in principle, reducing overcrowding requires
avoiding flow intersections and, hence, reducing backtracking.

People per Room We denote by PpR(𝑟, 𝑡) the number of visitors in room 𝑟 ∈
{1, . . . , 𝑅} during the time bin 𝑡 ∈ {1, . . . , 𝑇}. It is important to note that this
measure is the analogous to the Eulerian measurement of a room. The idea of
extracting it from the Lagrangian dataset is that the Eulerian dataset can be here
used to validate trajectory reconstruction and sampling. Furthermore, being able
to evaluate it from the Lagrangian dataset will unleash more potential from the
trajectory-wise digital twin we introduce later in Section 4.7
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Time of Permanence

Given a trajectory 𝔱𝑣 of a visitor 𝑣 ∈ {1, . . . , 𝑁} it is straightforward to evaluate the
corresponding time of permanence in room 𝑟 ≡ 𝑟𝑖 , 𝑖 ∈ {1, . . . , 𝑅}, being

ToP(𝑣, 𝑟) =
𝑇∑︁
𝑡=1

1𝔱𝑣𝑡=𝑟
. (4.11)

Given the set ToP(·, 𝑟) = {ToP(𝑣, 𝑟)}𝑁
𝑣=1, it is worthwhile studying an approx-

imation of its empirical distribution by means of some statistical distribution. To
this scope, many functions can be used to reproduce ToP including, e.g., Gaussian,
Poisson, or Gamma distributions; however a Weibull distribution with parameters
𝜆 = 𝜆(𝑟) and 𝑘 = 𝑘 (𝑟) depending on room 𝑟 proved to fit well6 in most of the cases.
The Weibull distribution is in fact related to the time-to-failure of a system, which,
in our context, is to be interpreted as the time-to-exit a room (more precisely as the
time-to-exit-and-do-not-return, since we consider the ToP as the total time spent in
a room). The parameter 𝜆 (characteristic time of visit) gives information about the
room holding power, while parameter 𝑘 (Weibull slope) characterises the decision
to leave the room. We recall the probability density function (PDF) of the Weibull
distribution being

𝑓 (𝑥;𝜆, 𝑘) =
{
𝑘
𝜆

(
𝑥
𝜆

) 𝑘−1
𝑒−(

𝑥/𝜆)𝑘 if 𝑥 ≥ 0
0 otherwise

. (4.12)

In Section 4.7, the survival and the hazard function associated with the Weibull
distributions will be used as building blocks of the proposed museum digital twin.

Figure 4.21 reports the ToP empirical distributions and their Weibull fit for
individual sample rooms as well as for the whole Galleria Borghese museum. In
particular, for all rooms of the Galleria Borghese museum, 𝑘 > 1 holds, meaning
that the exit (failure) rate increases with time (𝑘 = 1 indicates that the exit rate is
constant over time while 𝑘 < 1 indicates a decreasing-in-time exit rate). In practice,
we deem that visitors find all the rooms worthy of attention, and it happens rarely
that visitors leave a room immediately.

Returning visitors

Museums in old historical buildings typically have an entangled structure that can
lead the visitor to get lost. Furthermore, in museums, visitors are typically inclined to
return to previously visited rooms to admire once again the most impactful artworks
or to analyse them with a second eye.

For this reason, it is useful to quantify Ret, a yet simple task that consists in
evaluating

6 The best solution according to the Akaike information criterion, in our experiments.
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(a) (b)

(c) (d)

Fig. 4.21: Four ToP distributions and their Weibull fit. Inset: related Quantile-Quantile plots that
depict the Real vs. Weibull quantile relation. (a) Satiro su delfino (𝑟7, 𝑘 = 1.8, 𝜆 = 17). (b) Apollo
e Dafne (𝑟3, 𝑘 = 2, 𝜆 = 36). (c) Pinacoteque (𝑟9, 𝑘 = 2.8, 𝜆 = 221). (d) Whole museum (𝑘 = 4.1,
𝜆 = 572). In the last case, the Weibull distribution does not fit correctly due to the forced exit after
2h. This problem will be solved later in Section 4.8.2, by censoring the last 5 minutes of the visit.

Ret(𝑣, 𝑟) =
𝑇∑︁
𝑡=1

1𝔱𝑣𝑡=𝑟
· . . . · 1𝔱𝑣

𝑡+𝛿=𝑟
· 1𝔱𝑣

𝑡−1≠𝑟
, (4.13)

where the parameter 𝛿 is used to avoid counting fast-crossings of the room, like
a visitor that simply enters the room to find out that he already visited it. We
note, however, that 𝛿 should be kept in the order of the few units (𝛿 = 3 in our
experiments) since usually returning visitors never return to a room for more than a
couple of minutes.

The Galleria Borghese provides an excellent example for returning visitors analy-
sis as it has no suggested path for visitors and the density of artworks is so remarkably
high that visitors easily miss a fraction of the pieces during the first passage of a
room.

We observe that each guest visits a room, on average, 1.3 times (1.5 times,
for 𝑟8, Caravaggio), while entrance rooms have 2.7 passages. On the other hand,
25% of the visitors skip at least one room (especially 𝑟7, Satiro su Delfino). The
time of permanence during the first passage by a room is generally the longest, in
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comparison to the next ones (this, however, does not hold for entry rooms). The
time of first return (time interval between the moment a visitor leaves a room and
the moment they return) appears consistent throughout the museum rooms and is
between 25 and 30 minutes.

Finally, we highlight that the occurrence of fast returns (less than 5 minutes),
which in our case are about 10% of all returns, could indicate that visitors frequently
get lost or change the direction of their visit (clockwise vs. counterclockwise, cf.
museum map in Figure 4.2).

Despite being very different in conception and style, the Peggy Guggenheim
Collection also provides a good example for returning visitors. In fact, like in Galleria
Borghese, no suggested path is enforced by signage, and, conversely to the Galleria
Borghese, only a few pieces of art are displayed in each room. However, due to the
nature of modern art museums, visitors are likely inspired to return to admiring a
few pieces of the collection, like Pollock’s and Magritte’s.

We observe that each guest visits a room 1.1 times (1.4 times for 𝑟8) on average.
The Sculpture garden (room 𝑟11) reports 3.2 passages on average due to its central
position and the longest visit is typically the second (as guests typically visit it after
the main exhibition area). Furthermore, 18% of visitors skip at least one room of the
main exhibition area, with ∼ 8% not visiting entirely the Schulhof collection 𝑟10:
this can be attributed to the fact that guests do not find it, actually thinking that the
exhibition is made of the sole permanent exhibition (𝑟1 to 𝑟9).

People per room

The number of people per room, PpR, is probably the most relevant indicator as well
as that of largest interest for museum curators, as it connects with safety (hyper-
congestion), comfort, and attractiveness for the audience (under-used rooms could
indicate scarce interest). It follows that being able to evaluate it from Lagrangian
data further unleashes the ability of a model capable of reproducing trajectories (see
later, Section 4.7).

In order to evaluate PpR we first need to know how visitors enter the museum.
Eulerian measurements for the entire museum come in handy since they provide an
empirical distribution of the entrance time that can either be fitted or directly used
to pad the trajectories.

To amend the fact that beacons are given to a sample of visitors, and only to
one member of each social group, we consistently replicate each trajectory 𝑞 times,
where the integer 𝑞 is uniformly distributed between 1 and 6.

Once trajectories have been coherently padded and magnified, PpR(𝑟, 𝑡) can be
directly evaluated by enumerating the trajectories that are in room 𝑟 in time bin 𝑡:

PpR(𝑟, 𝑡) =
𝑁∑︁
𝑣=1

1𝔱𝑣𝑡=𝑟
. (4.14)
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Fig. 4.22: Distribution of the mutual distances between trajectories from the Galleria Borghese
dataset. The 𝑥-axis is normalized w.r.t. the longest measured distance. The mean pairwise distance
𝜇 is reported in red while the shaded area denotes the range 𝜇 ± 𝜎 (𝜎 being the standard deviation
of the distribution).

The PpR time series of one room and of the whole museum is later used as a
reference and compared with our simulations in Figure 4.32.

About the size of the dataset

Before using the datasets and the indicators introduced above, we need to check if the
number of considered trajectories is enough to get useful information. To this end,
we have compared ToP and PpR extracted from the whole dataset (848 trajectories
in the Galleria Borghese case study and 481 trajectories in the Peggy Guggenheim
Collection case study) with ToP and PpR extracted from several random subsets of
the datasets with variable size. We observed that the difference between partial and
complete datasets stabilises starting from 300 sampled trajectories, meaning that we
would not have obtained significantly different results if we had tracked more than
300 trajectories.

4.6.2 Variability in trajectory dataset

The distance W introduced in Section 4.5 is a further very important tool when
it comes to analysing a trajectory dataset. In particular, a strong indication of the
variability amongst different trajectories can be obtained by evaluating the mutual
pairwise distance between all trajectories and studying the corresponding distribu-
tion. As an example, in Figure 4.22 we report such distribution obtained from the
Galleria Borghese dataset.
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(a) (b)

(c) (d)

Fig. 4.23: (a) Most common trajectory from the Galleria Borghese dataset and, (b), distribution
of the distances between such trajectory and all the others. The visitor performs a circular visit
following the room numbering on the main floor, then they reach the Pinacoteque upstairs. (c) & (d)
Analogous plot for the least common trajectory in our dataset. The visitor enters the museum via the
Pinacoteque and then they visit the main floor twice, once clockwise and once counterclockwise.
𝑥-axis in (b) & (d) is normalized w.r.t. the longest measured distance amongst all the trajectories.

The trajectory over the tails of this distribution also gives important information:
the most present trajectories over the left (resp. right) tail correspond in fact to
the most (resp. least) common trajectories of the dataset. Here “common” is to be
intended as the closer to the other following the idea that the higher the number of
trajectories close to a given one, the more common the trajectory is.

An example of this procedure applied to the Galleria Borghese dataset is given
in Figure 4.23, where the single trajectory having the highest number of other
trajectories within distance 𝜇 − 𝜎 and the one having the least number of other
trajectories within distance 𝜇 + 𝜎 are reported.

Finally, we mention the capability of finding automatically members of social
groups (it could happen that elements of the same social group went to the ticket
office separately, and thus were assigned more than one beacon). Indeed, two or more
trajectories very close to one another likely belong to visitors in a company.

Figure 4.24 reports a sample of trajectories from the Galleria Borghese dataset at
different distances from a given reference trajectory.
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(a) (b)

Fig. 4.24: (a) Sample of measured trajectories from the Galleria Borghese dataset. (b) Distribution
of the distances between the trajectory marked by “blue plus signs” (+) in (a) and all the others.
Distances are reported in percentage w.r.t. the longest distance measured. Trajectories closer than
0.025% (yellow bin) likely belong to the same group of visitors; trajectories closer than 0.15%
(red bins) are slightly time-shifted; in trajectories closer than 0.30% (purple bins) relations are still
identifiable; trajectories farther away than 0.30% (green ones) are completely unrelated. Trajectories
in (a) are randomly sampled from corresponding colour percentile sets in (b).

4.6.3 Clustering algorithms

As we recalled in Section 4.1.1, clustering algorithms can be used for inferring, from
the whole trajectories dataset, the typical paths or, equivalently, the typical individual
behaviours inside the museum.

Here we employ algorithms which do not require defining a priori the number
𝑘 of clusters, nor to assign predefined reference trajectories around which clusters
are agglomerated (as typically happens with, e.g., 𝑘-means approach, see 2.4.1).
Moreover, we do not use the typical taxonomy (ant, butterfly, fish, grasshopper, cf.
Section 4.1.1) to guide the clustering, aiming at other, possibly hybrid, behaviours.
To this end, we employ an agglomerative hierarchical clustering analysis (A-HCA)
approach (see Section 2.4.2) to build the trajectory dendrogram.

To measure the distance between two clusters, we leverage on (4.8). We consider,
in particular, the three common methods introduced in Section 2.4.2: complete
linkage (C-LINK), single linkage (S-LINK), and Unweighted Pair Group Method
with Mean Centroid (UPGMC).

Determining a representative trajectory 𝔱C in a trajectory cluster C is useful in
general, and mandatory to employ UPGMC. To do so, we compute a mode amongst
all the trajectories: for each time bin 𝑡, our representative trajectory reports the most
visited room amongst the elements of C:

(𝔱C)𝑡 := argmax
𝑟∈{1,...,𝑅}

{∑︁
t∈C

1t𝑡=𝑟

}
, 0 < 𝑡 ≤ 𝑇 . (4.15)
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(a) (b)

Fig. 4.25: (a) Number of 5- (filled markers) and 15- (empty markers) significant clusters in the
Galleria Borghese dataset as a function of the dendrogram depth for C-LINK, S-LINK and UPGMC
methods. (b) Number of 𝑝 = 5, 15, 30, 50 significant clusters obtained via UPGMC method. The
dendrogram is cut in correspondence to the plateau at depth 67.

Note that the centroids found with a specific cut may also be employed to cluster a
different set of trajectories. This also means that, if new trajectories are gathered, the
same centroids may be used in order to get a clustering. This may reveal that habits
have been broken or new paths have been discovered.

For what concerns the choice of a valuable clustering amongst the family generated
by HCA, we adopt the 𝜉-significant cluster strategy described in Section 2.4.2.
In fact, we here recall that having a high variation in the number of significant
clusters in the proximity of the root often implies that clusters are unstable, i.e. they
merge randomly in the process, preventing valuable interpretations. Having instead
a very small number of significant clusters, say one or two, often means that each
cluster contains very non-homogeneous elements, thus resulting in less valuable
categorisations in practice.

Clustering results in Galleria Borghese

Figure 4.25(a) reports the number of 5- and 15-significant clusters as a function of
the dendrogram depth for the Galleria Borghese dataset. C-LINK yields many small
unstable clusters joining together, with no meaningful interpretation, towards the
end of the process. S-LINK offers, on the other hand, a poor set of typical clusters
to which all the trajectories converge quickly throughout the clustering process.
Conversely, UPGMC leads to a relatively small amount of consistent stable clusters.

In particular, the UPGMC dendrogram shows a plateau around layer ℓ̄ ∼ 67, for
many values of 𝑝, see Figure 4.25(b). We adopt such a cutting layer since it ensures
the maximum amount of highly significant clusters (𝑝 = 30, 50 have the last absolute
maximum there) without trading off too much information in smaller clusters.
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(a) (b)

(c) (d)

Fig. 4.26: Four representative trajectories (centroids) of the Galleria Borghese clusters joining
respectively (a) 16%, (b) 9%, (c) 4%, (d) 1% of the trajectory dataset. Representative trajectories
may show spikes (see, e.g., (c), ∼ 75th minute). According to (4.15), this phenomenon arises
whenever rooms have approximately the same number of visitors within the same interval of time.

We consider here the representative trajectories of each cluster obtained after a
dendrogram cut at layer ℓ̄. Although none of the representative trajectories strictly
coincides with any amongst the trajectories observed, they all appear real (i.e. con-
form with a potential visit). This emphasises that clusters indeed aggregate similar
trajectories.

Figure 4.26 shows four representative trajectories related to four clusters of dif-
ferent sizes. The two most common patterns are related to visitors who follow the
natural numbering of the rooms, starting or ending the visit in the Pinacoteque,
which is visited once. This identifies the most typical visit pattern for the curators.
Nevertheless, clustering investigation brings to light other, less expected, patterns:
the one which does not include the visit at the Pinacoteque (possibly visitors who
did not find the staircase) and patterns where the Pinacoteque comes amidst the
visit. Note that both patterns have been observed by the museum managers and are
discouraged.

Observation (Filtering by clustering) Clustering can be also used to detect unfeasi-
ble/unreal trajectories coming from system malfunctioning; in fact, those trajectories
tend to gather in a single cluster. This powerful feature helps to design filters to clean
up the data during the preprocessing phase.
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(a) (b)

Fig. 4.27: Two anomalies of the Galleria Borghese dataset. (a) A rare pattern where the Pinacoteque
and main floor are both visited twice. (b) A strange pattern with many changes of direction
(clockwise/counterclockwise).

Observation (Anomaly detection) Trajectories which remain isolated in the last
layers (close to the root of the tree) are, by definition, far from all the other centroids
and therefore very atypical. We claim that these trajectories are anomalies detected
during the process. If they do not come from system malfunctioning, they belong to
people who behave abnormally or suspiciously and deem additional checks.

Figure 4.27 shows some of the anomalies detected in our study.

4.6.4 Clustering on coarser trajectories

As the Galleria Borghese case study demonstrates, clustering on full trajectories
yields valuable insights into visiting anomalies and meaningful centroids for cluster-
ings through pseudo-trajectories that, at first glance, are indistinguishable from real
ones.

However, to extract more precise and useful pieces of information, it might be
advantageous to work with coarser representations of the trajectories. This can be
achieved in three main ways, each capable of capturing different behaviours: (i)
considering a coarser representation of the museum, (ii) excluding the concept of
ToP from the analysis and focusing solely on the sequence of rooms 𝑟𝑖1 , 𝑟𝑖2 , . . . (cf.
[95, 132]), or (iii) combining both approaches.

Considering a coarser representation of the museum is a natural progression,
especially with the introduction of colour-clustering described in Section 4.3.2.
Trajectories can be reconstructed without applying all the localisers of the cascaded
selector (cf. Section 4.5.3), resulting in a trajectory that consists of a succession of
colour clusters rather than virtual rooms.
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The main advantage of this approach is the reduced number of clusters due to the
limited number of available rooms, making it easier to visualise and interpret the
results.

Dropping the concept of ToP from the analysis is a widely used technique in
literature. It significantly reduces the size of trajectories and allows for the use of
alternative metrics compared to the complex definition ofW. It is the case, e.g., the
Levenshtein distance (edit distance, see [121]) that measures the minimum number
of single-character edits (insertions, deletions, substitutions) required to transform
one string into another.

This approach primarily focuses on the visitor’s pattern of visits, highlighting
the typical path followed regardless of the time spent in each room. Due to its
nature, clustering based on such coarsened trajectories particularly emphasises the
Ret metric.

By combining the aforementioned methodologies, we obtain highly compact
coarsened trajectories that still carry valuable information. These trajectories provide
a high-level pattern of museum visits that can be processed using even simpler
metrics, such as the Kronecker delta (𝔇k (𝑟𝑖 , 𝑟 𝑗 ) = 1𝑟𝑖≠𝑟 𝑗 ).

Clusterings resulting from the analysis of such a dataset typically yield easily
interpretable results that can be directly understood by museum curators to assess
whether visitors are behaving as expected, at least at a high level.

Clustering results in the Peggy Guggenheim Collection

Being more intricate in its structure, the Peggy Guggenheim Collection serves as
a compelling case study for elucidating the coarsening of trajectories. Specifically,
the eight-shaped layout of the building vividly demonstrates why flux crossing can
result in significant issues, leading to overcrowding in Calder Hall (𝑟9). Guests who
begin their visit on the left wing frequently intersect with visitors who have opted for
the right wing first, thereby converging at the centre and typically causing disorder.

This observation suggests that we should halt trajectory reconstruction before
applying the room localisers ℜl and ℜr (see Figure 4.20(b)), thereby generating
trajectories sampled from 𝑟l, 𝑟r, 𝑟9, 𝑟10, 𝑟11, 𝑟12, 𝑟13, 𝑟14, 𝑟15. Figure 4.28 presents a
sample visit with its coarsened reconstruction.

Furthermore, to focus primarily on the inherent patterns within the permanent
exhibition, we can omit the ToP and further reduce the room set to 𝑟l, 𝑟r, 𝑟s, resulting
in an extremely compact string representation of visits (here, we denote 𝑟s = 𝑟10 for
consistency, to maintain its correspondence with the Schulhof collection).

A typical trajectory can then be represented by a string such as 𝔱 = (R, L, R, S).
Figure 4.29 displays a pie chart illustrating the most common trajectory patterns, with
𝔱★1 = (L, R, S) being the most frequent, followed by 𝔱★2 = (R, S, L), 𝔱★3 = (R, L, S),
and 𝔱★4 = (S, R, L).

Moreover, guests who initiate their visit from 𝑟9 are equally divided between the
left and right wings of the museum, resulting in crossing flows from right to left
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Fig. 4.28: Trajectory reconstruction of a sample beacon from the Peggy Guggenheim Collection
dataset. The reconstruction is coarsened both in space (aggregating 𝑟l ≡ {𝑟1, 𝑟2, 𝑟3, 𝑟4} and
𝑟r ≡ {𝑟5, 𝑟6, 𝑟7, 𝑟8}) and time (dropping ToP indicator), hence resulting in:

𝔱 = (𝑟15, 𝑟11, 𝑟9, 𝑟l, 𝑟9, 𝑟r, 𝑟10, 𝑟r, 𝑟9, 𝑟14, 𝑟9, 𝑟11, 𝑟13, 𝑟11, 𝑟15 ) .

Fig. 4.29: Pie chart reporting the most common coarsen trajectories in the Peggy Guggenheim
Collection dataset, restricted to the main exhibition area. ToP has been dropped and macro-areas
are as follows: L ≡ {𝑟1, 𝑟2, 𝑟3, 𝑟4}, R ≡ {𝑟5, 𝑟6, 𝑟7, 𝑟8}, and S ≡ {𝑟10}.
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that can be mitigated by suggesting an improved visiting pattern (e.g. by means of
signage, see later Section 4.9 and Figure 4.40).

Lastly, it is noteworthy that the data reveals an unexpected behaviour: 10% of
visitors start their visit from 𝑟10, contrary to the expectations of the museum curator.
This behaviour highlights a critical issue wherein visitors who are unfamiliar with
the museum entrance system may mistakenly perceive the Schulhof collection as the
entry point due to observing other visitors exiting from there.

4.7 Model and calibration

In this section, we develop a Lagrangian digital twin of the museum, which is an al-
gorithm capable of generating new trajectories that are statistically indistinguishable
from the measured ones.

To represent the complex visitor behaviour, we employ a stochastic approach
based on Markov chains (cf. Section 1.7). Our simulator is designed to generate
visiting paths with relevant observable features, such as guests skipping one or more
rooms and/or returning multiple times to the same room.

The model is based on two important assumptions:

Visitors are independent of each other The decision to leave or remain in a room
does not depend on the number of people in that room. This assumption is
certainly reasonable up to mild congestion levels. On the other hand, hyper-
congestion has surely an impact on visitors’ choices, however, our current data
collection seems still insufficient to quantify such a challenging aspect. We
suspect that congestion can either increase or decrease the ToP, depending on
the perceived importance and fame of the room content.

Social groups behave as one individual Social groups visit the museum remaining
together, i.e. following the same trajectory and thus spending the same time in
each room. This assumption, which is an important limitation, is consistent with
the fact that beacons were given almost always to a single member of each
social group. Therefore, we are not capable of disentangling interactions and
differences within social groups.

In a regular Markov chain, the transition probability from one state (room) to
the next depends only on the current state. However, in our context, it is intuitive
to assume that visitors’ choices depend on the rooms they have previously visited.
Furthermore, since there is no predefined visit path, a naive Markov chain would
create a bounce phenomenon amongst rooms (e.g., 𝑟1 → 𝑟2 → 𝑟3 → 𝑟2 → 𝑟1 →
𝑟2), while the majority of paths are more regular (e.g., 𝑟1 → 𝑟2 → 𝑟3 → 𝑟4 or
𝑟4 → 𝑟3 → 𝑟2 → 𝑟1).

To simulate complex visitor behaviour, we hence introduce a concept of memory
in the Markov chain to represent visitors’ knowledge of the visited rooms. We
also assume that visitors remember the time spent in each room. We use a non-
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homogeneous transition matrix that is time-dependent through a weight function 𝑆.
Henceforth, we refer to this model as a time-varying Markov model.

4.7.1 Time-varying Markov model (TVMM)

Assuming the museum comes with 𝑅 non-sink rooms7, in order to construct the
time-varying Markov model we start considering an 𝑅 × 𝑅 matrix K representing
room transitions. Following the most frequent definition of probability, we evaluate
K𝑖, 𝑗 as the number of transitions from room 𝑟𝑖 to room 𝑟 𝑗 within all the measured
trajectories, where 𝑟𝑖 = 𝑟 𝑗 holds if the visitor remains in the same room, i.e.:

K𝑖, 𝑗 =
𝑁∑︁
𝑣=1

𝑘𝑣 (𝑟𝑖 , 𝑟 𝑗 ) where 𝑘𝑣 (𝑟𝑖 , 𝑟 𝑗 ) =
𝑇−1∑︁
𝑡=1

1𝔱𝑣𝑡=𝑟𝑖
· 1𝔱𝑣

𝑡+1=𝑟 𝑗
. (4.16)

In other words, we have that 𝑘𝑣 (𝑟𝑖 , 𝑟 𝑗 ) denotes the number of 𝑟𝑖 → 𝑟 𝑗 transitions
along the 𝑣-th trajectory of the dataset. Hence, the sum over rows ofK (or by columns,
with an offset of 1 unit on the first/last room) represents the total time, in time bins,
spent by all tracked visitors in each room, i.e. it holds

𝑁∑︁
𝑣=1

ToP(𝑣, 𝑟𝑖) =
𝑅∑︁
𝑘=1
K𝑖,𝑘 since ToP(𝑣, 𝑟𝑖) =

𝑅∑︁
𝑘=1

𝑘𝑣 (𝑟𝑖 , 𝑟𝑘) . (4.17)

To obtain transition probabilities, we perform a by-row sum-normalisation of K,
resulting in a new matrix K̄ defined as:

K̄𝑖, 𝑗 =
K𝑖, 𝑗∑𝑁
𝑘=1K𝑖,𝑘

. (4.18)

Hence, the element K̄𝑖, 𝑗 obtains the interpretation of the probability of moving from
room 𝑟𝑖 to room 𝑟 𝑗 . Do note that, as far as all the rooms have been visited at least
once by a single visitor, the normalisation is well-posed since the graph associated
with the museum is strongly connected and, consequently, no rowK·, 𝑗 is identically
equal to zero.

To avoid the room bounce phenomenon of visitors moving back and forth between
rooms, we introduce a time-dependent matrixM(𝑡) based on K̄. More precisely, we
consider:

M𝑖, 𝑗 (𝑡) = K̄𝑖, 𝑗 · 𝑆𝑟 𝑗 (𝑡), 𝑖, 𝑗 ∈ {1, . . . , 𝑅} , (4.19)

where 𝑆𝑟 (𝑡) is the survival function of the statistical distribution 𝜒𝑟 associated with
the empirical distribution ToP(·, 𝑟). In other words, 𝑆𝑟 (𝑡) quantifies the probability
that a guest spends a time interval longer than 𝑡 in room 𝑟 . In particular, 𝑆𝑟 (𝑡) is a

7 We recall that exit rooms are shaped as sink inside the graph representation. Here we omit them
from matrix K since they will be modelled differently, see later this section.
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Fig. 4.30: The Galleria Borghese time-varying Markov model (cf. Figure 4.13(a)). Transition prob-
abilities M̄ (0) = K̄ between rooms are reported both numerically and pictorially. The probability
to remain in the same room is not included for the sake of readability. We can see that the counter-
clockwise path is preferred and fast transitions from rooms 𝑟5, 𝑟2 to rooms 𝑟2, 𝑟4, respectively, are
admitted. The probability of leaving the museum is sampled as the hazard function ℎWei (𝑡 ) .

monotone decreasing function such that 𝑆𝑟 (0) = 1, 𝑆𝑟 (𝑡) > 0 and 𝑆𝑟 (𝑡) → 0 for
𝑡 → 𝑡max

𝑟 , where 𝑡max
𝑟 is the largest measured ToP(·, 𝑟), i.e. 𝑡max

𝑟 = max{ToP(𝑣, 𝑟) |
𝑣 ∈ {0, . . . , 𝑁}}. Do note that it followsM(0) = K̄.

We recall the (𝜆𝑟 , 𝑘𝑟 )-Weibull survival function (cf. Section 4.6.1) being

𝑆Wei
𝑟 (𝑡) ≡ 𝑆Wei

𝑟 (𝑡;𝜆𝑟 , 𝑘𝑟 ) = 𝑒−(𝑡/𝜆𝑟 )
𝑘𝑟
. (4.20)

During the simulation, the function 𝑆𝑟 (𝑡) is updated based on the time spent in
each room, concurrently modifying the value ofM(𝑡). Sum-normalisation by rows
is further required in order to obtain a valid transition matrix M̄(𝑡). Do note that,
since 𝑆𝑟 (𝑡) > 0 for 𝑡 > 0, row-normalisation is well-posed.

Finally, we have to tackle the task of terminating the visit (i.e. how a trajectory
exits from the museum). Assuming the existence of a room 𝑟★ marked as exit (a sink
for the graph representation), it makes sense to avoid considering it within the matrix
K since, usually, a visitor follows the concept of once-exit-alway-exit. Following this
idea, we modelled the exit via the hazard function ℎ★(𝑡) associated with the statistical
distribution of the total time of visit 𝜒★. Namely, we have:

P(𝔱𝑡+1 = 𝑟★) =
{
ℎ★(𝑡) if 𝔱𝑡 ∼ 𝑟★
0 otherwise

, (4.21)
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where ∼ denotes the adjacency over the museum graph.
We recall the (𝜆★, 𝑘★)-Weibull hazard function being

ℎWei
★ ≡ ℎWei

★ (𝑡;𝜆★, 𝑘★) =
𝑘★

𝜆★
𝑘★
· 𝑡𝑘★−1. (4.22)

Figure 4.30 provides a visual representation of the time-varying Markov model
built for the Galleria Borghese case study. Such model, with the appropriate transition
probabilities and exit probabilities extracted in Section 4.6.1 (cf. Figure 4.21), allows
us to simulate visitor behaviour in a way that captures the observed characteristics
of the museum visits.

4.7.2 Creation and validation of a virtual dataset of trajectories

Once the time-varying Markov model we introduced in the previous section is set,
we can run it to produce virtual trajectories. Novel trajectories can, in principle, stick
with any time granularity Δ𝑡. However, in our experiments, we set Δ𝑡 = 10s to match
our reconstructed trajectories, hence building a dataset simpler to compare.

In order to create a novel trajectory 𝔰, the starting room 𝑟★ is set at 𝑡 = 1, i.e.
𝔰1 = 𝑟★. If more than one entrance is available, then which one is the starting room
is randomly chosen in accordance with the empirical distribution of entrances. Such
distribution can either be derived by the Lagrangian dataset or can be estimated by
other means, like an ad hoc measurement with the tool introduced in Section 4.4.2.

The model is then run by firstly initialising to zero a 𝑅+1-length vector p holding
the trajectory ToP value for the 𝑅 rooms (p𝑟 ) and for the whole museum (p★). At
each time step 𝑡, the following instructions are executed:

1. If the exit conditions are met, then the visit (and the process) stops, that is, given
the un-biased coin 𝑐←$ [0, 1]:

𝔰𝑡+1 = 𝑟★ if 𝔰𝑡 ∼ 𝑟★ and 𝑐 < ℎ★(p★) . (4.23)

2. Otherwise, the model advances the Markov chain by sampling the next room
𝔰𝑡+1←$𝜓(𝑟, 𝑡), where the distribution𝜓 is defined over the room set {𝑟1, . . . , 𝑟𝑅}
and is given by

𝜓(𝑟, 𝑡) = M̄𝔰𝑡 ,𝑟 (p𝑡 ) =
K̄𝔰𝑡 ,𝑟 · 𝑆𝑟 (p𝑡 )

𝑍
, (4.24)

with 𝑍 being the suitable normalisation constant.
3. Finally, the time of permanence is updated, meaning p𝔱𝑡+1 and p★ are both

increased by one time bin.

The procedure can be repeated at will to build up a set of datasets of independent
trajectories.

In addition to validating trajectories visually, we should then compare our new
in silico dataset with the reconstructed one. It is in fact mandatory to quantify the
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accuracy of the simulation through a set of observables. To this scope, we employ
the following:

ToP We evaluate mean 𝜇, standard deviation 𝜎 and variation coefficient VC = 𝜎/𝜇
of the ToP(·, 𝑟) distributions, for both real and simulated visits. We use the
relative error of mean (𝛿𝜇) and variation coefficient (𝛿VC) as observables,
which are:

𝛿𝜇 =
𝜇𝑠𝑖𝑚

𝜇𝑟𝑒𝑎𝑙
− 1 , 𝛿VC =

VC𝑠𝑖𝑚
VC𝑟𝑒𝑎𝑙

− 1. (4.25)

PpR We consider 𝐾 = 100 statistically independent simulated days of visits, each
including a total of generated trajectories coherent with a real visit day (similarly
to the PpR in Section 4.6.1, simulated visits are replicated 𝑞 times, where 𝑞 is
a uniform integer random variable between 1 and 6, to mimic social groups).
We compute the PpR at each time bin as an ensemble average across such 𝐾
realisations and we confront the results with the empirical PpR from both the
Lagrangian and the Eulerian datasets.

Clusters We use the same HCA technique presented in Section 4.6.3 to aggregate
simulated trajectories. This analysis aims to check if the most numerous cluster is
sufficiently close to the measurements; this guarantees that the simulator creates
a sufficient amount of plausible trajectories.

4.7.3 Simulation results in Galleria Borghese case study

The entrance system in the Galleria Borghese museum is pretty peculiar since visit
turns are non-overlapping, due to the fact that the museum empties every two hours.
For this reason, visitors tend to be on time, hence entering the museum like within
a batch instead of a few at time. However, due to some delays (ticket control, late
arrival, queue at wardrobe), the entrance process is completed in about 20 minutes.
We simulate these dynamics by fixing 𝑇 = 2h and extracting the delay 𝑡0 at random
from a set of measured delays and setting 𝔰𝑡 = 𝑟0 for 𝑡 < 𝑡0 (cf. Figures 4.13(a)
and 4.30).

In addition, the museum has three possible mutual points of access from the
entrance (𝑟★ = 𝑟0). We sample the first room amongst Ratto di Proserpina (𝑒1 = 𝑟4),
Portico (𝑒2 = 𝑟5), and Pinacoteque (𝑒3 = 𝑟9) according to the measurements made,
i.e.

P[𝔰𝑡0 = 𝑒1] = 0.15 , P[𝔰𝑡0 = 𝑒2] = 0.60 , P[𝔰𝑡0 = 𝑒3] = 0.25 . (4.26)

Finally, since visitors are forced to exit after two hours, we slightly modified the
exit condition so that if 𝑡 = 𝑇 and a visitor is still in the museum, then the visit is
considered finished, and the visitor is moved to the exit room. Coherently, if the in
silico visitor decides to leave the museum at time 𝑡 < 𝑇 , then the trajectory is padded
with the exit room to match the 𝑇-length.
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(a) (b)

Fig. 4.31: Two simulated trajectories inside the Galleria Borghese. (a) A long trajectory which
begins from the second floor (𝑟9) and then moves to the main floor following the room enumeration.
(b) A short trajectory that begins from the main floor (𝑟5), traverses it according to the room
enumeration, and finally reaches the second floor.

Room 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 𝑟8 𝑟9 Museum

𝛿𝜇 11% 10% 2% 8% 12% −3% −2% 7% −8% −3%
𝛿VC −28% −10% −15% −15% −20% 13% 12% 3% 31% −11%

Table 4.5: Relative error between mean and variation coefficient of ToP distribution evaluated for
simulated vs. real trajectories in the Galleria Borghese case study.

Figure 4.31 shows two representative simulated trajectories, which indeed share
typical features with measurements: the Pinacoteque is visited once and the visit
path follows the natural numbering of rooms. At times, people backtrack to rooms
already visited, as in real life.

Table 4.5 compares the real and simulated ToP distributions, by considering
the relative differences in ToP averages and variation coefficient. The mean values
of the distributions are well approximated, despite the simulations tend to slightly
overestimate the ToP in the main floor and to underestimate it in the Pinacoteque.
The 𝛿VC indicator highlights instead some differences between model and data:
real visitors are more unpredictable than simulated ones, which yields negative 𝛿VC
values. On the contrary, the dynamics in the Pinacoteque appear predictable and
even more consistent than in simulations. This most likely relates to the fact that the
Pinacoteque is the area with the weakest antenna coverage: amending not-detected
data diminishes the variance of the measured ToP distribution.

In Figure 4.32, we compare measurements and simulations considering the PpR as
a function of time. Simulations are reported in terms of ensemble statistics amongst
100 realisations of 400 visits; in particular, we consider ensemble PpR average and
ensemble PpR standard deviation.

In Figure 4.33 we finally report the representative trajectories of the two most
numerous clusters obtained by gathering real and simulated trajectories.
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(a) (b)

Fig. 4.32: Comparison of the average PpR of real visits (red line) and the ensemble-average PpR
of simulated visits (blue line) in: (a) Ratto di Proserpina (𝑟4); (b) the whole museum of Galleria
Borghese. The shaded area corresponds to the interval [𝜇 − 𝜎, 𝜇 + 𝜎 ]. We note that the blue line
is almost entirely contained in the shaded area, as expected.
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Fig. 4.33: The centroids of the two most numerous clusters obtained by applying hierarchical
clustering over real and simulated datasets from the Galleria Borghese case study. The real case
joins 16% of the dataset, whereas the simulated one joins 18%. We note that the centroids share a
number features, e.g. the ToP in each room, the total time of visit, the entry room (Portico, 𝑟5), and
the final room (Pinacoteque, 𝑟9). The main difference is the behaviour after completing the visit on
the main floor. Real visitors come back counterclockwise, while simulated visitors keep walking
clockwise. This could be explained by the fact that many visitors ask for information in room 𝑟5 and
are sent backwards to the staircases. The model does not include the interactions with the museum
staff, hence cannot catch this feature.

4.8 Museum control and optimisation in Galleria Borghese

We are now ready to employ the digital twin introduced in the previous section as a
tool to improve the museum experience. More precisely, we simulate different sce-
narios and observe visitors’ behaviour in virtual environments, aiming at supporting
curators’ decisions. In this regard, it is useful to remark that changing the ticketing
strategy or the duties of security staff can require weeks of training in real life.
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For our case study, we identify the following control variables (C1–C4) and
objectives (O1–O4).

C1 Considering that Galleria Borghese has three entrances (Ratto di Proserpina,
Portico, and Pinacoteque), museum managers can assign a certain percentage
of visitors to each entrance. Operationally, such control can be implemented by
introducing a tag (e.g. name or colour) in the ticket which specifies the entrance.

C2 The scheduled entry times in the museum can be tuned.
C3 The number of visitors allowed in each turn can be modified.
C4 The fixed duration of a visit turn can be either (C4a) modified or (C4b) totally

removed.

Objectives:

O1 Keeping the PpR below a certain room-dependent threshold. Historically, our
study began precisely to control the number of visitors in the Pinacoteque, which
has a very low admittance limit for safety reasons.

O2 Keeping the PpR, in any room at any time, approximately constant. This would
reduce strong variations of relative humidity which can damage the artworks
[94, Chapter 2].

O3 Decreasing the queue at the entrance.
O4 Increasing the number of visitors per day.

We recall that before and during our experimental campaign, the control variables
were set as follows

C1 15%, 60%, and 25% of the visitors entering from Ratto di Proserpina, Portico,
and Pinacoteque, respectively.

C2 Visitors entered at 09:00, 11:00, 13:00, 15:00, and 17:00, with the museum
being completely empty.

C3 360 visitors were allowed to book for the visit in advance plus 30 last-minute
visitors.

C4 Fixed 2h slots of visit.

Note that O1 is also strictly related to the social distance issue, a hot topic during
the emergency situation caused by the Covid-19 pandemic.

Among the many possibilities, we focused on two improvements: C1 aiming at
O1, and C2, C3 & C4b aiming at O1 & O2.

4.8.1 Entrance strategy optimisation

Keeping the existing conditions regarding the number of visitors and the time horizon,
we explore the effects of a different visitor partition amongst the three entrances (C1).
We aim at a PpR as low as possible in all rooms (O1), especially in the Pinacoteque,
which is the room with the most stringent safety constraints.

We fix an overcrowding threshold for each room, representing a PpR limit the cu-
rators do not want to exceed. Then, we pursue a brute force attack on the optimisation
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Fig. 4.34: Total time duration in which the overcrowding threshold is exceeded (ToT) in room 𝑟9
(Pinacoteque), in room 𝑟8 (Caravaggio), and in all other rooms of the Galleria Borghese (sum of
each ToT is considered), for 13 triplets (𝐸1, 𝐸2, 𝐸3 ) . We observe that the overall ToT exceeds at
least 120 min over a day of visits regardless of the entrance system.

problem, trying all the possible triplets (𝐸1, 𝐸2, 𝐸3) ∈ [0, 100]3,
∑3
𝑒=1 𝐸𝑒 = 100,

which indicates the percentages of visitors starting the visit from each entrance 𝑒1
(Ratto di Proserpina), 𝑒2 (Portico), and 𝑒3 (Pinacoteque).

Figure 4.34 shows the results of the optimisation process evaluating the total time
the PpR exceeds the overcrowding threshold (ToT, time over threshold), for room
𝑟9 (Pinacoteque), room 𝑟8 (Caravaggio), and for all the remaining rooms. The best
triplet for the Pinacoteque is (20, 60, 20), while the best triplet for Caravaggio is
(40, 20, 40): in fact, these configurations minimise the ToT in those rooms, respec-
tively. More in general, it is easy to see that optimal choices for one room do not
necessarily mean optimality for others. The solution currently employed by the mu-
seum, which is (15, 60, 25), is almost optimal to reduce overcrowding in Pinacoteque
and in the whole museum in general, but it sacrifices the pleasantness of the visit in
some rooms on the main floor.

4.8.2 Removing the finite time horizon of the visits

The full elimination of the current finite time horizon allowed for the visits is
a challenging improvement for the museum experience. The idea is to keep the
reservation mandatory while setting an entry interval fixed every 30, 60, or 120
minutes (C2), but, unlike the current setting, remove the requirement to leave after
2h (C4b). The immediate advantage is that the museum staff does not have to empty
the museum at the end of the visit turn, thus saving about 5-7 minutes during which
the museum remains completely empty (O2). Moreover, this would also be a great
advantage for the (few) visitors who want to stay for a very long time inside the
museum.

Unfortunately, as it happens for every mathematical model, simulation results are
reliable only in the conditions in which the simulator was developed and calibrated.
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(a) (b)

Fig. 4.35: Cumulative hazard function associated with the Weibull distribution of the whole museum
of Galleria Borghese. Empirical values are evaluated with the Kaplan–Meier method. (a) Without
censoring (cf. Figure 4.21(d)) and (b) after censoring the last 5 visit minutes (new parameters are
𝑘★ = 3.5 and 𝜆★ = 596). This method allows us to get a better fit of the real distribution between 0
and 2h, i.e. the visit interval. The uncensored fit, instead, is negatively influenced by the forced exit.

In our measurements, less than 1/4 of visitors are still inside the museum when the
time limit is reached (and are forced to exit); for these, a (negative) influence of
the time limit certainly occurs. Nevertheless, such influence possibly exists also for
the other 3/4, that might have scheduled their visit according to the existing time
constraints.

We tackled the problem by censoring the Weibull distribution associated with the
visit time of the whole museum (cf. Section 4.6.1). This statistical procedure allows
us to deal with a dataset in which the event of interest is not observed during the
study. We obtain the new distribution as a maximum likelihood estimate censoring
the last 5 visit minutes, see Figure 4.35. We use the estimated parameters to modify
the hazard function which controls the conclusion of the visit.

We simulated an entire day i.e. 9 a.m. – 7 p.m., corresponding to the total time
span of the 5 visit turns currently implemented. This is necessary as after removing
the time limit, visit turns overlap and the museum never empties. Figure 4.36 shows
the result of the optimisation process. The best strategy is to let 100 visitors (C3)
enter from the main floor (C1) every 30 minutes (C2). These choices eliminate
completely the peaks in the PpR indicator (congestion moments, O1) and the PpR
remains stable with small fluctuations during the whole visit day (O2). Having the
system approximately at this thermodynamic-like equilibrium greatly facilitates the
management since it allows us to evaluate – using the measured transition matrix –
the average number of people in each room from the number of visitors allowed (i.e.
sold tickets).
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(a)

(b)

Fig. 4.36: PpR optimisation in the Galleria Borghese case study. The PpR is plotted as a function
of time in the settings before our experimentation and considering the best entrance strategy. The
comparison includes (a) room 𝑟8 (Caravaggio) and (b) the whole museum.

4.8.3 Actual implementation of the proposed improvements

After the completion of our research, the museum curator decided to change the
entrance strategy in light of the proposed optimisation by scheduling entrances on
an hourly scheme, hence allowing 200 visitors per hour compared to 360+30 visitors
per two-hour slot. In order to avoid overcrowding, the curator decided to let 50%
of the visitors entering from 𝐸1, then 20% from 𝐸3 and, finally, the remaining part
from 𝐸1 again (this also complained with the restriction imposed during the sanitary
emergency caused by Covid-19 pandemic).

We stress that the most important impact consists in the removal of the inter-time
slot procedure that forced visitors to exit. However, the curator decided to keep the
visit time limit of two hours, hence causing time slots to overlap. To be able to
distinguish between different time slots, removable coloured stamps are currently
given to visitors (to be stuck on their clothes) at the beginning of each visit slot.
In order to provide the visitor with the indication that their time slot is over, the
curator also introduced a sound message to remind the end of each time slot. Finally,
it is important to notice that the novel entrance system allows visitors to enter also
one hour before the museum closing time; hence, the curator introduced tickets with
lowered prices for this last time slot.



164 4 Managing crowded museums

(a) (b)

Fig. 4.37: Museum occupancy after the rescheduling of the entrance system where 200 visitors
enter each hour. Data depicted are from two distinct measurement days, (a) a morning from 9 to
12:30 and (b) an afternoon from 15 to 19 highlights the behaviours at museum opening and closing
time.

We decided to study the behaviours after these changes, by performing a novel
gathering of Eulerian data. Unfortunately, such dataset was gathered during the
sanitary emergency, hence with a limited number of tickets sold, i.e. 120 w.r.t. the
current 200 per time slot. Results in terms of museum occupancy are reported in
Figure 4.37 and should be compared with Figure 4.36(b) (with a suitable rescaling of
the 𝑦-axis). Figure 4.37 (a), (b) respectively highlights two main important features:
(i) the museum never empties and (ii) the total number of visitors is (soft) bounded
by 170.

Finally, in order to provide insights on how many visitors do follow the end-visit
indication, i.e. the two-hours limit, we gathered the Eulerian measure of visitors
inside the museum divided by turn colours (cf. Figure 4.9(c)). Figure 4.38 depicts a
histogram of the visitor exit time per colour, hence showing that most of the visitors
end their visit within 20 minutes after the real turn end.

4.9 Museum control and optimisation in the Peggy Guggenheim
Collection

The initial setting in the Peggy Guggenheim Collection was very different from the
one in Galleria Borghese. In fact, curators already employed an optimal ticketing
system with no fixed time slots (actually a time slot per 10 minutes intervall, but
without hard constraints on the tickets sold per time slot).

However, Eulerian and Lagrangian measurements highlighted a number of inter-
esting criticalities worth of attention:
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Fig. 4.38: Visitors’ exit time with respect to their entrance time after rescheduling the entrance
system. Most of the visitor (as expected) ends their visit before the “soft” time limit of 2h. A
little number of visitors continue visiting the museum after two hours and 20 minutes, actually
overlapping with two other time slots. Corresponding cumulative presence inside the museum is
reported in Figure 4.37.

1. The Calder Hall (𝑟9), despite being an entrance room, also holds important art-
works. However, visitors typically ignore it the first time they enter the museum
and they rather spend more time there on their second passage by the room.

2. Visitors entering the main building from Calder Hall (𝑟9) splits equally between
the two wings of the museum, hence without highlighting a preferred path of
visit.

3. A direct consequence of the previous point is that Calder Hall (𝑟9) experiences
a heavy flux cross between visitors entering the building from the garden (𝑟11),
from the terrace (𝑟14) and from the two wings of the museum. Hence the room
is hardly enjoyable, in particular during the most crowded hours of the day.

4. The number of visitors who enters the main building through the Schulhof
collection (𝑟10) is ∼ 10%.

5. Conversely, ∼ 8% of the visitors do not visit the Schulhof collection (𝑟10) at all.
6. The ticket office (𝑟15) experiences a flow cross between people entering the

museum and people exiting the museum.
7. Only ∼ 80% of the visitors visit (partially or entirely) the temporary exhibition.
8. Upon entrance, visitors typically seek restrooms that are mainly located at the

museum exit and in the bar area (𝑟12).

All of the aforementioned remarks are likely ascribable to a lack of signage inside
the museum. A visitor entering the garden along the obliged path from the ticket
office first, and entering the Calder Hall then, is in fact leaved “on its own” to find
a suitable visiting path. Our proposed optimisation was then to install a suggested
path, e.g. by means of suitable signage, in order to guide visitors in a preferential
direction.

The suggested path, also depicted in Figure 4.39, solve most of the above-
mentioned issues. In fact, entering from the south part of the garden makes it natural
to visit first the temporary exhibition and later the permanent exhibition, also cre-
ating an expectation crescendo during the visit. Furthermore, visiting the left wing
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Fig. 4.39: Suggested visit path in the Peggy Guggenheim Collection that avoids fluxes crossing and
potentially overcome the criticalities arisen during the experimentation. In particular, visitors enter
the museum from the ticket office directly in the south part of the garden. This gives them direct
access to restrooms (which are here highlighted with a purple star) and potentially to the bar. Then
visitors move to the temporary exhibition and/or the veranda. Visitors continue the visit through
the main part of the garden (and eventually the bar) and then enter the main exhibition area (i.e.
permanent exhibition) from Calder Hall. The permanent exhibition is visited from left to right, with
an intermediate stop on the terrace. Closes the visit the Schulhof collection and then the visitors
are free to further explore the garden, go to the bar, or move to the exit.

of the main exhibition first allows visitors to be on the correct side of the museum
to experience the Schulhof collection. Clearly, most of the flux crossings are hence
avoided.

In particular, we partially implemented the proposed solution by adding signage
to Calder Hall by means of a simple printed arrow visible from the garden entrance
and pointing to the left wing (see Figure 4.40). We gathered a novel Eulerian dataset
to measure the first choice ratio between left and right wing, i.e. we counted how
many visitors chose the left wing against the right wing on their first visit to Calder
Hall. The result of the measurement, surprisingly, showed that, also with the sole
addition of a non-refined printed arrow, the choice ratio changed from ∼ 48% to
∼ 73%. This further suggests that, with more elaborated signage, better results are
expected.

In light of the preliminary results obtained, the museum curators decided to accept
the proposed suggestions and scheduled (at the time of writing) some renovations
to make it possible to invert the one-way entrance/exit from/to the ticket office.
Furthermore, a custom signage to highlight the suggested path from Figure 4.39 is
also under construction.
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Fig. 4.40: Preliminary implementation of signage in Calder Hall (𝑟9, Peggy Guggenheim Collection)
by means of a printed arrow (on the left of the picture). In the picture background, an operator is
busy, manually counting the visitors’ first choice between left and right wing with the help of the
developed smartphone application (cf. Section 4.4.2, Figure 4.9).

Finally, thanks to the time of permanence measurements carried on single art-
works, we were able to identify a particularly ill-fated piece of art: “the Empire of
Light” one of the most known paintings by René Magritte. In particular, Magritte’s
was moved from 𝑟8 (one of the largest) to 𝑟6 (one of the smallest) during a temporary
rearrangement and the time of permanence in front of it dropped significantly. While
in the original position visitor spent 53s (on average, with standard deviation of
50s), once positioned in room 𝑟6, the corresponding permanence time lowered to 38s
(on average, with standard deviation of 37s). In particular, an unexpected behaviour
worth of attention is the time spent by visitors with an audio guide which dropped
by 27s (from 102s to 75s, on average); this result is particularly interesting since,
clearly, registered descriptions on the audio guide last always the same time being
room-agnostic, hence one would expect that visitors would spend the same amount of
time in front of the piece of art while listening to it. Conversely, the data highlighted
that locating the artwork in a position of minor relevance (i.e., not a principal room)
encourages visitors to stop the audio guide reproduction and move on to different
artworks.

4.10 Conclusions and future work

This study aimed at measuring, analysing, modelling, and optimising visitors’ be-
haviour in museums and similar environments. The practical goal was to provide
suggestions to museum curators for efficiently managing visitors’ flows.

The proposed Eulerian measurement approach is simple and easy to implement,
simply requiring manpower that can easily be gathered by the museum e.g. by means
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of interns. The results of the measurements are easily interpretable and compose
an affordable way to verify the effectiveness of any change applied during the
experimentation.

The implemented Lagrangian measurement system is sustainable for the museum,
being economically viable and well-accepted by visitors. A free application to be
installed on the smartphone could serve as a beacon as well, provided visitors find
it useful (as an audio guide, for example). Employing Raspberry Pis as fixed Blue-
tooth antennas appeared quite convenient and allowed the necessary development
flexibility.

A major issue surely comes from the noisiness of the Bluetooth signal, which
must be overcome by suitable data post-processing. In this sense, the total-coloured
graph interpretation of the museum (which is novel and interesting per se) allows
the injection of useful expert-knowledge pieces of information as well as physical
constraints in the representation of the museum. Such representation is found to
be useful in both metric definition and trajectory reconstruction, allowing the de-
sign of a cascaded selector based on simple localisers that yields precise trajectory
reconstruction.

From the trajectory analysis, we have identified some issues in the museum design
and visit experience that can be considered by curators: for example, rooms of the
same size have drastically different times of permanence, as it happens e.g. for
Caravaggio and Satiro su Delfino in the Galleria Borghese case study. This suggests
that the museum can benefit from a rearrangement of the artworks, although this is
not always possible due to historical or architectural constraints.

The museum simulator allowed us to propose the implementation of a new ticket-
ing and entrance system, further validate by the post-change Eulerian measurements.

In the next future, we plan to further improve the model presented here. In
particular, we aim at including the internal dynamics of social groups (families,
friends, guided tours), and at considering the impact of congestion on individual
behaviour. This is to lift the current statistical independence of simulated trajectories,
thus increasing the level of complexity.

The impact of visitors on the local microclimate is also an outstanding issue to
which we aim (cf. [139]). A model is currently under development in collaboration
with the ISPC-CNR (Istituto di Scienze del Patrimonio Culturale), which provides
us with temperature, humidity, CO2, ammonia, and other pollutant data in the Peggy
Guggenheim Collection, and will be the object of a future paper [284].

Finally, worth of attention is also the possibility to enrich the model by allowing
possible displacement changes of some key artwork that might change the fruition
of the exhibition space.
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[145] E. Véron and M. Levasseur. Ethnographie de l’exposition: L’espace, le corps
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Chapter 5
Hybrid approach for traffic state estimation and
forecast

This chapter introduces a novel hybrid approach in traffic
modelling that exploits machine learning to enrich data fed into
the numerical model. The work presented here is currently under
submission [282] and it was realised in collaboration with Maya
Briani and Emiliano Cristiani, researchers at the “Istituto per le
Applicazioni del Calcolo” of the “Consiglio Nazionale delle
Ricerche” (IAC-CNR).

Abstract In this chapter, we aim to develop new methods that integrate machine
learning techniques with macroscopic differential models for vehicular traffic esti-
mation and forecast. It is well known that data-driven and model-driven approaches
have (sometimes complementary) advantages and drawbacks. We consider here a
dataset comprising vehicle flux and velocity data collected by fixed sensors on a
highway. The data is classified by lane and vehicle class. By means of a machine
learning model based on an LSTM recursive neural network, we extrapolate two
important pieces of information. Firstly, we detect congestion under the sensor, and
secondly, we forecast the total number of vehicles passing under the sensor within
the next future (30 minutes). These extracted pieces of information are then used to
enhance the accuracy of an LWR-based first-order multi-class model that describes
the dynamics of traffic flow between sensors. The first piece of information is used
to invert the (concave) fundamental diagram, thus recovering the density of vehicles
from the flux data. Such density data is directly injected into the model, resulting in
improved approximations of the dynamics between sensors, particularly in scenarios
involving accidents in unmonitored road sections. The second piece of information
serves as boundary conditions for the equations underlying the traffic model, to better
reconstruct the total amount of vehicles on the road at any future time. To illustrate
the effectiveness of our approach, we present and discuss examples from real-world
scenarios. Real data are provided by the Italian motorway company Autovie Venete
S.p.A.

Keywords: traffic · vehicles · fundamental diagram · LWR model · machine learning
· LSTM
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traffic flow
models

model-driven data-driven

non-differential differential parametric nonparametric

micro meso macrocellular automata

Fig. 5.1: Structure of the research lines in vehicular traffic flow modelling. Our approach builds
upon the highlighted leaves.

5.1 Introduction

Traffic state estimation (TSE) and traffic forecast have a long and solid tradition
which dates back to the 1950s. A very broad division of the research lines on vehicu-
lar traffic flow modelling is summarised in Figure 5.1. Model-driven and data-driven
approaches have their own advantages and drawbacks, which were well described in,
e.g., [199, 208]: Model-driven approaches allow to inject in the simulator the human
knowledge of the system, at least if it can be reasonably translated into equations. Dif-
ferences between agents can be (stochastically) taken into account as well, including
drivers’ psychological aspects. Differential macroscopic models, in particular, can
unveil the power of methodologies based on partial differential equations (PDEs),
for example giving the right tools to compute the Wardrop equilibrium of a traffic
system on a road network [165, 170, 206]. On the other hand, this approach tends
to be an oversimplification of traffic physics since the model is never able to catch
all the features of cars and drivers. Most models are difficult to work with noisy
and fluctuated data collected by traffic sensors and the calibration of the numer-
ous parameters is quite challenging. In addition, the numerical scheme used for the
discretisation of the equations (e.g., Godunov, Lax-Friedrichs) introduces a further,
often not negligible, approximation error. Finally, models require additional inputs
which are not available in real scenarios, such as, e.g., boundary conditions at any
future time.

Data-driven approaches, instead, are more suitable to deal with the nonlinearities
which characterise traffic flow and, for this reason, can be more accurate than model-
driven approaches, but they are agnostic to the physics of traffic flow and could lead to
infeasible estimation results. These methods are also not often interpretable and lack
robustness. More importantly, the generalisability of the models is often weak and
they have a high dependence on the training data samples. If the quality of training
data is poor (missing/overestimated/underestimated data), their predictive accuracy
will be severely weakened. Recently, many machine learning (ML) approaches were
proposed: they often rely on relatively simple structures (compared to PDEs intricate
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Fig. 5.2: (a) a typical single-valued fundamental diagram 𝑓 = 𝑓 (𝜌) . The green part corresponds
to the free phase while the orange part corresponds to the congested phase. Density 𝜎 corresponds
to the maximal flux 𝑓max (road capacity). Flux is null when the road is empty (𝜌 = 0) and when the
road is fully congested (𝜌 = 𝜌max) and vehicles are stopped. (b) a possible multi-valued fundamental
diagram. For any given density 𝜌 a set of possible values for 𝑓 can be chosen (between the lowest
and the highest curve). The multiple choice comes from the heterogeneity of drivers’ behaviour.

systems) making them more lightweight from a computational point of view, hence
being more suitable for real-time applications. However, dependency on large sets
of historical data means that training can be computationally very expensive and can
easily lead to data overfitting.

Recent research is growing in interest toward hybrid approaches which try to get
the best from each of the two approaches; however, they are rarer in the literature
and each paper uses only single aspects from the two methodologies to obtain very
different results. This chapter tries to advance in this research field by proposing a
computational method where ML techniques extrapolate from data the information
needed by differential macroscopic models for traffic flow (see highlighted nodes in
Figure 5.1).

5.1.1 Relevant literature

Fundamental diagram

First of all, we have to mention the fundamental diagram, which is one of the basic
ingredients of all model-driven approaches, especially at the macroscopic scale. It
defines the relationship between the flux 𝑓 and the density 𝜌 of vehicles [176, 183].
It is plain that the flux of vehicles is null in either the case of an empty road (null
density) or in the case of a fully congested road (maximal density, stopped bumper-to-
bumper vehicles). For intermediate density levels, real data show complex dynamics,
especially in correspondence to the maximal capacity of the road. Indeed, drivers act
differently in response to the same traffic conditions and, in addition, accelerations
and decelerations are far from being instantaneous. As a consequence, traffic shows
some instabilities [163, 192, 202]. In first-order traffic models, the fundamental
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diagram can be defined by means of a single function while second-order traffic
models allow the fundamental diagram to be multivalued, in the sense that a single
value of the density can be associated with many values of the flux, exactly as it
happens in reality, see Figure 5.2. Recently, an interesting ML-based method to
estimate the fundamental diagram was proposed in [197].

Model-driven

Mathematical models for traffic flow first appeared in 1955-6 with the seminal papers
[186, 194], which introduced the well-known LWR model. It is a first-order (velocity-
based) model constituted by a hyperbolic PDE where the observed quantity is the
vehicle density 𝜌. The model stems from the reasonable analogy between vehicular
dynamics and fluid dynamics. Following the same line, the model was successively
extended to the second order to include inertia (acceleration) effects in [193, 207]
and [158, 213], giving birth to the PW and ARZ models, respectively. Independently,
in the engineering literature, the CTM model [171] and the METANET model [189]
were introduced. These two last models are equivalent to the discretised versions
of the LWR and PW model, respectively [205]. The literature about mathematical
models is huge, we refer the reader to the surveys [160, 179, 195, 201, 205] for dif-
ferential models and their calibration, and [187] for nondifferential models (cellular
automata).

Some effort was also devoted to generalising mathematical models to road net-
works. This is not a trivial task due to the junction conditions which must be added
to assure the uniqueness of the solution of the resulting system of PDEs. We refer
the reader to [161, 162], and the book [177] for basic concepts.

Another generalisation of our interest is that of multi-class models. In this case,
more than one class of vehicles (e.g., cars and trucks) share the same road. Each class
has specific dynamics and the classes interact with each other in a nontrivial manner.
We refer to [157, 174, 200], and to the recent books [176, 183] for an overview of
the most used multi-class models.

Data-driven

Traffic data can be collected by means of several methods and technologies. Com-
monly one can have Eulerian data, provided by fixed sensors placed along the road
(which count passing vehicles), and Lagrangian data, provided by probe vehicles
equipped, e.g., with a GPS system. We refer to [166, 167, 209] for an overview on
traffic data. Typical objects under analysis are, hence, flux 𝑓 and velocity 𝑣, as op-
posed to the more abstract concept of density 𝜌 that characterises the model-driven
approaches.

Early works in data-driven methods mainly rely on classical statistical analysis of
historical data. More recently, the broad research carried out in ML furnished new
tools for data-driven methods.
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In this chapter, we are mostly interested in Artificial Neural Network (ANN, see
Section 2.3) methods for traffic understanding, estimation, and prediction, see [173,
191, 199, 210, 214, 216]. We recall that ANNs are mainly divided into two families:
feed-forward models (FNN), like the Single- or Multi-Layer Perceptron (S/MLP)
introduced in Section 2.3.2 and recurrent models (RNN) like LSTM, introduced in
Section 2.3.3. We refer the reader to the recent surveys [175, 184, 188, 198, 204]
on how these models are used in the context of traffic and, more specifically, we
focus on the use of LSTM for traffic data forecast; in fact, we recall LSTMs proved
to be capable of capturing long-range temporal feature dependencies and reducing
gradient explosion/vanishing. Among the recent literature, LSTM were often used
(both vanilla or as a building block of more complex structures) to perform analysis
and prediction on 𝑓 and 𝑣: for what concerns velocity, it is the case, e.g., of [178]
that mounts a fusion deep learning approach to predict lane-level traffic speed at two
minutes, [181] that considers the correlation between car speed and car type for a
prediction model (LSTM + 4 layer MLP) of the highway speed at 5 minutes, and
[208] that combines LSTM with a careful data preprocessing aided with wavelets
analysis to perform speed prediction at 15 minutes. For what concerns flux, it is
the case, e.g., of [215] where a temporal-spatial correlation is integrated into a 2D
LSTM network to predict traffic flow at 15 minutes, [203] which integrates weather
data with an attention model to perform short-term prediction of the traffic volume,
and [175] which describes a novel methodology of an LSTM-based attention model
to predict the upcoming flux based on 120 minutes of data (aggregated 10 minutes
by 10 minutes).

Hybrid methods To overcome the shortcomings of both model- and data-driven
approaches while exploiting their potentialities, recent studies introduced coupled
methods where physics and data play together. The way the coupling is performed
in the literature is very different since a common line is yet to be established: the
physical model can be (i) injected in the training process of the ANN, obtaining the
so-called Physics-Informed Neural Networks (PINNs), (ii) used in parallel with the
ANN, as it is done, e.g., in [197], where the TSE, the model parameter identification,
and estimation of the fundamental diagram are performed simultaneously, or (iii)
used after the ANN, like in the present work and in [180], where data are used
to provide consistent boundary conditions at junctions for macroscopic traffic flow
models.

The majority of the recent works fall back into the PINNs category, where physics
is usually plugged into the model by building a custom cost function, in particular,
trying to exploit the powerfulness of deep learning models (PIDL); it is the case,
e.g., of [196] where authors focus on highway TSE with observed data from loop de-
tectors and probe vehicles, by building a coupled model with a Physics-Uninformed
Neural Network (PUNN) and a PINN with custom loss function based on physi-
cal discrepancy measures. Paper [182], analogously, builds a custom loss function
relying on CTM and LWR with different fundamental diagrams (Greenshields’, Da-
ganzo’s, and inverse-lambda) to tackle the problem of data sparsity and sensor noise.
Another example of custom cost function based on multiple physical aspects is given
in [159], where authors perform TSE from probe vehicles data in an urban environ-
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ment by building a 6-component loss function that is used both to reconstruct the
road state and a smoothed version of the probe trajectories. Also worth mentioning
is the paper [190], where authors introduce PIDL car-following model architectures
encoded with different popular physics-based models to predict the evolution of the
velocity of each vehicle. Finally, it is also interesting the approach based on physics
regularised Gaussian process (PRGP), like the one proposed in [212] (later extended
in [211]) where a stochastic PRGP is developed and a Bayesian inference algorithm
is used to estimate the mean and kernel of the PRGP itself.

5.1.2 Chapter contribution

In this chapter, we deal with traffic data coming from a series of fixed sensors placed
along a highway. Sensors are able to count vehicles passing under them, estimate
vehicles velocity, and classify vehicles in terms of their length (dividing them, e.g.,
between light and heavy vehicles).

The main goal is to estimate the traffic conditions all along the road (i.e., between
sensors) at current and future time – in terms of macroscopic quantities like flux 𝑓 ,
density 𝜌, and velocity 𝑣 – by means of a first-order multi-class LWR-like macro-
scopic differential model which describes the joint dynamics of light and heavy
traffic, already introduced in [163]. More in detail, we consider 2 steps:

Nowcast This is the traffic estimation at current time 𝑡0 (now), at every point of
the road. To do that, we split the road into several consecutive segments, each
of which starts and ends with a sensor. Then, we run the model setting the
initial time 𝑡 = 𝑡0 − Δ𝑡past and the final time 𝑡 = 𝑡0, where Δ𝑡past is a parameter.
The model runs in each segment independently, providing the evolution of the
density. At time 𝑡0 − Δ𝑡past we assume that the road is empty. Then, the road
starts filling thanks to the sensor data which act as inflow and outflow boundary
conditions. If Δ𝑡past is sufficiently large, the road fills completely and a reliable
density estimate is computed along each segment.
The problem that arises is how to employ sensor data to enforce boundary
conditions: mathematical models typically require density data as Dirichlet
boundary conditions, but in our case sensors do not provide this information.
Alternatively, one can inject the flux data directly into the numerical scheme
chosen for the discretisation of the modelling equations. Unfortunately, this
solution is not always feasible because sensor data are not guaranteed to be
compatible with the solution of the numerical model; moreover, the solution
is not always the “correct” one, especially in the case of congestion events
appearing between sensors, see Section 5.6 for details. This is the reason why
we explore a third approach: we train an ANN based on an LSTM to detect
congestion formation at sensors in real time. This is an interesting and complex
problem per se, which gives, as a by-product, a tool for inverting the concave
fundamental diagram without ambiguity, being able to distinguish the free phase
from the congested phase, see Figure 5.2(a). The tool is then used to transform
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the flux datum into a density value and to be injected into the model, thus solving
the incompatibility issues mentioned above. Do note that this solution implicitly
adds new physical information to the model, leading, in most cases, to a more
accurate solution.

Forecast This is the traffic estimation at any future time 𝑡0 < 𝑡 < 𝑡0 + Δ𝑡fut, where
Δ𝑡fut is the duration of the simulation (30 min, in our case). In this case, sensors
data are not yet available, hence we forget the sensors and we consider the whole
highway as a unique long segment. We employ the same mathematical model
considered before, using the nowcast traffic estimation as initial conditions for
the density.
Since the model needs the boundary conditions for any time 𝑡0 < 𝑡 < 𝑡0 + Δ𝑡fut,
i.e. it needs to have an estimation of the number of vehicles which will enter
and leave the road until time 𝑡0 + Δ𝑡fut, the problem arises how to enforce
these boundary conditions, which sensors clearly cannot provide at time 𝑡. To
do that, we set up a different LSTM-based ANN to predict sensor data in the
time interval [𝑡0, 𝑡0 + Δ𝑡fut]. More precisely, the output of the ANN will not
be the minute-by-minute flux data, since they are too fluctuating to guarantee a
reliable prediction; instead, we opt to predict the total number of vehicles in the
time interval [𝑡0, 𝑡0 + Δ𝑡fut]: a simpler yet useful piece of information since it
can be interpreted as a constant boundary condition that, in most of the cases,
offer a good accuracy regarding the total mass found along the whole road at
𝑡 = 𝑡0 + Δ𝑡fut.

5.1.3 Chapter organisation

The rest of the chapter is organised as follows. Section 5.2 introduces the traffic flow
data we work on and discusses the benchmark dataset provided by Autovie Venete
S.p.A; in particular, we highlight the criticalities related to these kinds of data that
further motivate this work. Section 5.3 introduces in general terms the structure
of the ANN which will enrich the dataset. Section 5.4 discusses the creation of
the dataset (Section 5.4.1) and the (hyper)training procedures (Section 5.4.2) of
the networks which provide real-time and short-term information about congestion
events; a few examples are discussed both for real-time detection (Section 5.4.3)
and short-term prediction (Section 5.4.4). Section 5.5 discusses the creation of the
dataset (Section 5.5.1), the training procedure (Section 5.5.2), and the performances
(Section 5.5.3) of the network which provides information about a mid-term (30
minutes) forecast of the expected traffic volume at sensors. Section 5.6 introduces
the mathematical model used for traffic estimation and discusses the link between it
and the enriched dataset obtained by using the ANNs previously described. Results
related to the inversion of the fundamental diagram are described in Section 5.6.1,
where a simplified model is also used to clarify advantages and shortcomings;
estimation of the upcoming traffic volume is described in Section 5.6.2 instead.
Finally, Section 5.7 concludes the work with some final remarks.
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5.2 Discussing the data

Our benchmark dataset is provided by the Italian motorway company Autovie Venete
S.p.A. and it was collected between September 2020 and March 2022. It contains
traffic data from fixed sensors located along three highways in the North-East of
Italy, namely A23, A28, and (part of the) A4. All of the highways have two lanes per
direction except for the A4 which has three lanes in some parts. As usual, vehicles
have different speed limits on the basis of their length and weight, moreover, heavy
vehicles cannot use the fastest lane.

Data are collected by 45 groups of fixed sensors which provide, in total 301,200
records per day on average. Each group is characterised by a position 𝑥 along the
road and a direction of travel and consists of 1 sensor per lane (therefore we have 2
or 3 sensors per group). Each sensor

• counts passing vehicles;
• classifies them according to the German TLS1 5+1 class standard;
• measures the speed of vehicles.

The claimed relative error on counting and velocity is ±3%.
In the following, we aggregate TLS classes 1 and 2 as light vehicles (motorcycles,

cars, vans, and car trailers) and classes 3, 4, and 5 as heavy vehicles (lorries, lorry
trailers, tractor vehicles and buses), creating two macro-classes. In Sections 5.4
and 5.5 we will further aggregate data by macro-class or by group.

The spatial granularity is highly variable since the distance between sensors ranges
from 1 to 20 km. The temporal granularity is instead more regular since data are
transmitted by each sensor every 1 minute, as aggregate measurements: this means
that the database stores the total number of vehicles passed in that time interval and
the average velocity per each class, see Figure 5.3.

The measurements are kept for 2 hours for real-time analysis then they are moved
to a separate database. Consequently, historicised data are not available at real time.

Some remarks are in order:

1. Although flux data show a regularity on a daily basis, they are very fluctuating
from minute to minute, see Figure 5.3.

2. Sensors provide flux and velocity data only. Unfortunately, the density of vehicles
cannot be accurately recovered from the available data simply inverting the basic
relation

𝑓 = 𝜌𝑣. (5.1)

This limitation is due to the fact that, in the real world, flux 𝑓 , velocity 𝑣, and
density 𝜌 can only be measured in finite intervals of time and space, i.e. they
cannot be calculated exactly at the same point 𝑥 and time 𝑡. Relation (5.1) fails
in particular whenever large density values come into play since large densities

1 Technische Lieferbedingungen für Streckenstationen (TLS) is a standard specification for the
collection of traffic data that, amongst others, provides the guidelines to classify vehicles in either
2, 5+1, or 8+1 classes, see [164].
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(a)

(b)

Fig. 5.3: Velocity and flux for (a) light and (b) heavy vehicles from a single representative sensor;
entire week from Monday to Sunday. We observe that the raw flux data are very fluctuating from
minute to minute, but, applying a Gaussian filter (black line), one can recognise a certain pattern
repeated on a daily basis. At night, the flux data of all vehicles drop, while the velocity data of light
vehicles become more scattered. As expected, during the weekend, the flux of heavy vehicles is
quite low.

are usually associated with low fluxes and low velocities, which require long
time intervals to be detected, cf. [180].

3. Most importantly, our data cannot distinguish between an empty road and a
fully congested road. In both cases, the measured flux is 0 and the velocity is
undefined.

These remarks are important to understand how it can be difficult to detect the
formation of a congestion event in real time, which is, in turn, essential for a good
estimation and forecast of the traffic flow, even far from the sensor which first detects
the congestion. In order to better understand this point, we show in Figure 5.4
four congestion events which develop with different characteristics. In Figure 5.5,
instead, we show two very similar traffic conditions characterised by a flux drop,
which evolve in a totally different manner: one into the free regime and the other into
the congested regime. This makes it clear that, despite being relatively easy to detect
congestion events (distinguishing them from empty road conditions) by observing
data a posteriori (e.g., a whole day), it is very difficult to do the same at the moment
of the congestion formation.
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(a) (b)

(c) (d)

Fig. 5.4: Four congestion events detected by different sensors. Each event has peculiar features:
(a) we observe a rapid velocity drop and flux drop, then flux vanishes while velocity is undefined
(with some exceptions for some fast vehicles still passing); (b) flux and velocity drop abruptly; (c)
flux drops first, then traffic restarts at low velocity; (d) velocity drops while flux is only partially
lowered.

In the rest of the chapter, we will employ the dataset detailed above for describing
our data-/model-driven methods. Although the numerical and computational pro-
cedures are tuned for this specific dataset, we think that the adopted methods are
valid and can be used in more general situations, and that they can be especially
relevant for highways with a small number of lanes and an important presence of
heavy vehicles.

5.3 Supervised machine learning approach for the dataset

In this section, we set up a unique ML-based approach to solve both the two problems
introduced in Section 5.1, namely the real-time detection of congestion events and
the forecasting of the expected average flux at sensors. As we have already recalled,
among the supervised learning techniques, RNN in general, and LSTM in particular,
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(a)

(b)

Fig. 5.5: Two similar traffic conditions that evolve differently. (a) Normal traffic conditions char-
acterised by the usual high fluctuation of the flux. At 7:05 the flux drops abruptly then the traffic
restarts normally; (b) At 11:29 a very similar situation appears but, this time, it evolves into a
queue. Besides the Gaussian filter already shown in Figure 5.3, here we also show two other Gaus-
sian filters obtained without using future data (beyond the event horizon). Truncation is obtained
assuming either Dirichlet-like boundary conditions or Neumann-like boundary conditions. We see
that neither Gaussian filters nor raw data are enough to distinguish between the two scenarios at the
event horizon.

proved to be very effective in time series analysis. Hence, in the following, we define
temporal sequences as vectors X of feature vectors x, i.e. X = (x𝑡 )𝑡=1,2,..., where the
number of features 𝑁in is fixed (namely |x𝑡 | = 𝑁in). In our case, the features which
can be extrapolated from the dataset are flux 𝑓 and velocity 𝑣 organised by class of
vehicles and/or by lane.

We recall from Section 2.3.3 that LSTM output a 𝑁hid-length vector h per each
time step of the sequence, and that the internal memory of the network shares the same
dimension with h. Hence, in order not to bind the size 𝑁hid of the internal memory
to the size of the required output, we naturally need an intermediate component to
manipulate h into the actual prediction. Our tool of choice is a vanilla SLP Feed-
Forward Network that condenses the 𝑁hid features in

Regression task a 𝑁pred-length output o, where each entry represents an individual
prediction.
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Fig. 5.6: Pipeline of the data enriching tool. The time series obtained from sensors are globally
feature-wise normalised before feeding it in the LSTM, one-time step at a time. The output of the
LSTM is then processed by an SLP layer. Finally, a SoftMax layer is eventually applied (if task is
classification), and the result is provided.

Classification task a 𝑁class-length features-vector z, where each entry represents a
class of the problem, then fed into a softmax layer (see (2.6)) to transform them
into a probability vector ô (of being of a specific class). The final output can
be either the probability vector ô or the index of the highest-probability class
𝑜, i.e. 𝑜 = argmax(ô). Do note that ô can be used as a confidence indicator of
the prediction as the closer is max(ô) to 1, the more certain is the prediction
according to the ANN (see later e.g. Figure 5.9).

To complete the pipeline of our methodology (a summary of which, can be found
in Figure 5.6), we further need to specify how to evaluate the system performance
against our ground-truth data, i.e. we need to choose an error function to evaluate
the distance of our guesses from ground truth (a loss function, in the jargon).

Regression task Being the prediction output a real number, since we are not in-
terested in weighting differently over- and under-errors, we went for the vanilla
(Root) Mean Squared Error (see Equation 2.8).

Classification task Since we always classify data between a positive and a negative
class (boolean classification), we went for 𝑘-cross entropy (with 𝑘 = 2, cf. Equa-
tions (2.10), (2.9)). In particular, since our dataset shows a great disequilibrium
between positive and negative samples, we decide (instead of enriching it with
synthetic data that are often complex to generate) to weight the loss entropy on
the positive ratio 0 < 𝑝𝑟 < 1. We recall that the softmax applied to a binary
classification task returns a 2-value vector ô𝑡 = (1 − 𝑜𝑡 , 𝑜𝑡 ) where 𝑜𝑡 represents
the probability that the positive class is chosen. Hence, if 𝑦𝑡 is the ground-truth
bit corresponding to input x𝑡 – meaning that our target y𝑡 is either (1, 0) or (0, 1)
– then the weighted binary-cross entropy is defined as
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− 1
|X|

|X |∑︁
𝑡=1

( (
(1 − 𝑝𝑟 ) · 𝑦𝑡 · ln(𝑜𝑡 )

)
+

(
𝑝𝑟 · (1 − 𝑦𝑡 ) · ln(1 − 𝑜𝑡 )

) )
. (5.2)

5.4 Detection and short-term forecast of congestion

In this Section, we build a labelled dataset of congestion events and we use the previ-
ously described ANN-based methodology to build two classifiers: a first classifier 𝔉𝑐
for performing real-time detection of congestion events, and a second classifier 𝔉𝑝 to
perform short-term forecasting of the same congestion events. The two classifiers act
as a sort of “congestion alarm” and “congestion pre-alarm” launchers, respectively.

For our purposes, it is crucial to note that 17 groups of sensors out of the 45
deployed are also equipped with advanced technologies2 that, combining Doppler
radar, ultrasound emitters, and passive infrared radiation detectors, are able to de-
termine also stopped vehicles and intense congestion conditions, reporting them as
boolean flags in the corresponding minute. In the following, we will refer to these
sensors as 3𝑇 sensors and we will use them as one of the main sources of data for
supervised learning purposes.

5.4.1 Building the dataset

The dataset is created using data gathered by the 3𝑇 sensors. Since the congestion
event is detected by each sensor (i.e., in each lane), we decided to aggregate the data
of all classes of vehicles and working lane by lane. Therefore, the features are the
total flux 𝑓 and the average velocity 𝑣 of all vehicles (all classes). Actually, do notice
that recovering a posteriori a piece of information per class is often quite easy. In
fact, if a congestion event is detected in the slow lanes and not in the fast lane, it is
highly probable that the congestion is for heavy vehicles only, since they cannot use
the fast lane, see Section 5.2.

We split the data per day, so to perform an incremental training phase using only
randomised batches of days of data at a given time. Therefore, we get dataset samples
constituted by a two-feature 1440-long (24 h× 60 min) sequence X = (x1, . . . , x1440),
with x𝑡 = ( 𝑓𝑡 , 𝑣𝑡 ), 𝑡 = 1, . . . , 1440. The dataset should be labelled with a suitable
1440-long boolean array y = (𝑦1, . . . , 𝑦1440) reporting whether the corresponding
minute 𝑡 is labelled as a congestion event or not. The array y is computed by means
of a logical combination of three different computational procedures, each of which
leads to a truth value in F2. More precisely, we have

y = b3𝑇 + b 𝑓 + b𝑣, (5.3)

2 Provided by Asim Technologies Ltd, series TT295.

http://www.asim-technologies.com
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where we recall that + in F2 corresponds to the logical or, and the definition of the
procedures follows.

3𝑇 data b3𝑇 is the flag for the congestion event transmitted directly by the 3𝑇
sensors. On average, the amount of daily congestion events per sensor is pretty
low (< 0.1%), hence, in order to make the dataset more balanced, we selected the
samples reporting at least ∼ 1% of positive labelling (i.e.

∑1440
𝑡=1 (𝑏3𝑇

𝑡 ≥ 15)). We
noticed that the 3𝑇 detection procedure is quite “conservative”, meaning that it
tends to report a congestion event only if there is a stable queue under the sensor.
Moreover, the exact definition of congestion event, as well as the physical and
computational procedure used to detect it, are not publicly available and they
are not known by the authors. For these reasons, we decided to enrich the
true-samples with the two following heuristics.

Flux heuristic b 𝑓 considers the flux array f := ( 𝑓1, . . . , 𝑓1440) only, along with
a 10-fold Gaussian regularisation f∗ obtained via convolution with a triangular
kernel, cf. Figure 5.3; a congestion event is reported at time 𝑡 if the sensor detects
the following condition during the daytime (from 5 AM to 8 PM)

b 𝑓 = 1 ⇐⇒


𝑓𝑡−1 < 2,
𝑓𝑡 < 2,
𝑓 ∗𝑡 < 2,(

1
60

∑𝑡−1
𝑠=𝑡−60 𝑓𝑠

)
− 𝑓 ∗𝑡 > 2

. (5.4)

The idea behind this heuristic is that a sufficient condition for a congestion event
is a low flux at the current time combined with a sudden drop of the flux (i.e., a
high average flux in the previous time period).

Velocity heuristics b𝑣 considers instead the velocity array v := (𝑣1, . . . , 𝑣1440) only,
along with a regularisation v∗ (obtained as before). A congestion event is reported
at time 𝑡 if the sensor detects the following conditions during the daytime (from
5 AM to 8 PM):

b 𝑓 = 1 ⇐⇒


𝑣𝑡 < 𝑣𝑡−1

0 < 𝑣𝑡 < 65
max{𝑣∗𝑠 − 𝑣𝑡 | 𝑠 = 𝑡 − 1, . . . , 𝑡 − 15} ≥ 40

. (5.5)

The idea behind this heuristic is that a sufficient condition for a congestion event
is a low velocity at the current time combined with a sudden drop of the velocity
(i.e., a high velocity in the previous time period).

Observation The two heuristics were developed during a collaboration with the data
owner and have been human-validated through over a month of direct observations.

Observation We point out that the two heuristics both use data that are not available
yet at time 𝑡 (because of the regularisations), making them useless to perform real-
time applications.



5.4 Detection and short-term forecast of congestion 191

(a) (b)

Fig. 5.7: (a) 𝑘-Cross Entropy (loss) and (b) accuracy achieved by the training sessions for 𝔉𝑐 at
the varying of 𝑁hid over the test set. As it can be seen, the better parameter is 𝑁hid = 122 (i.e.
corresponding to 2 hours and two minutes). Since 𝑁hid is comparable w.r.t. the length of the time
series under analysis (two hours, cf. Section 5.2), this suggests that having longer time series might
refine the results even more.

Analysing the average and the standard deviation of the flux data we found
that most of the sensors dispatched on A4 behave very differently from the others
(𝜇 ∼ 1 × 10+4 vs. 2 × 10+3 vehicles/day and 𝜎 ∼ 1 × 10+4 vs. 5 × 10+3). This is not
surprising since A4 connects more populated areas compared to A23 and A28. For
this reason, we split the sensors into two disjoint sets, namely high flux (HF) and low
flux (LF), being LF all the sensors in A23, A28, and in the fastest lane of A4 (where
it has 3 lanes). In the rest of this and the following section we consider HF sensors
only, the procedure and analysis for LF sensors being similar.

We split the HF 119-day dataset {(X(𝑑) , y(𝑑) )}, 𝑑 = 1, . . . , 119 (171,360 training
minutes) in 96 training days and 23 validation days. The average sample positive rate
after the enrichment is 𝑝𝑟 = 4.2%, hence we weighted the 𝑘-cross entropy function
opportunely.

5.4.2 Training the model

We started by training the HF classifier 𝔉𝑐 first: we performed multiple training
sessions to estimate the suitable size 𝑁hid of the memory of the LSTM. Each training
session was carried out by using the ADAM optimiser working on randomly shuffled
batches of size 24 samples over 100 epochs arranged with 9 progressive refinements
of the learning rate (10 epochs per refinement). Each training procedure requires 30
to 300 seconds while trained networks do process data in a few milliseconds, making
them suitable for real-time applications.

Figure 5.7 reports the results in terms of loss and accuracy for the various training
sessions, where we vary 𝑁hid ∈ [1, 240] i.e. at most double the length of the available
time series. The choice of limiting the LSTM parameter 𝑁hid to 240 hidden units
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(a) (b)

Fig. 5.8: (a) 𝑘-Cross Entropy (loss) and (b) accuracy achieved by the training sessions for 𝔉𝑝 at
the varying of the forecasting time window Δ𝑡 (𝑥-axis), both for predicting y(𝑑) (in dashed blue)
and o(𝑑) (in orange/green). As expected, the smaller Δ𝑡 , the better the prediction.

during the parameter tuning phase is further motivated by the fact that both loss and
accuracy deteriorate around 150 hidden units and beyond.

We found 𝑁hid = 122 being the most suitable parameters for the model (with
𝑁in = 2, 𝑁class = 2), achieving a mean accuracy of 𝜇 = 97.03 (𝜎 = 0.17) and a mean
loss of 𝜇 = 7.01×10-3 (𝜎 = 0.11×10-3). We decided to further explore the values of
𝑁hid around 122, performing multiple training sessions with different rate drops and
𝑁hid ∈ [110, 130]. We obtain the best model for 𝑁hid = 120, yielding an accuracy of
97.70% (99.75% if weighted w.r.t. 𝑝𝑟 ) and a corresponding loss value of 5.2 × 10-3

over the test set. 10-fold cross-validation achieved similar performances in both terms
of loss (𝜇 = 8.97 × 10-3, 𝜎 = 2.68 × 10-3) and accuracy (𝜇 = 96.27, 𝜎 = 0.56).

Secondly, we tackled the problem of training the classifier 𝔉𝑝 . We fixed the
dimensions of the model (namely 𝑁in = 2, 𝑁hid = 120, and 𝑁class = 2) and we
focused on how many minutes we could anticipate the classification of 𝔉𝑐 without
losing too much in accuracy. The trivial way would be producing a labelled dataset
for the forecasting task by applying a Δ𝑡 minutes shift to the vectors y(𝑑) in order to
“bring backwards” the congestion events. However, we prefer forecasting the output
o(𝑑) of 𝔉𝑐 itself (i.e. the argmax of the probability vector) rather than the target y(𝑑)
of 𝔉𝑐. This change in objective is in fact convenient for two main reasons: (i) the
output o(𝑑) is in someway a “regularised” version of the real target y(𝑑) , hence it
should be easier to forecast; (ii) philosophically speaking, we are expecting that a 𝔉𝑝
alarm to be followed by a 𝔉𝑐 one. In order to further correct the dataset, however, we
also filtered the novel target vector from all the isolated congestion events, actually
filtering the ones that probably were false-positives of 𝔉𝑐.

The results of the training with the two proposed datasets are reported in Fig-
ure 5.8, where loss and accuracy are compared at the varying of the Δ𝑡 time shift.
Analysing the accuracy, it can be seen that trying to forecast o(𝑑) is in general sim-
pler; the loss, on the contrary, grows slower when the target is set to y(𝑑) actually
prompting that training on o(𝑑) is less conservative in terms of false-positives. We
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(a) (b)

(c) (d)

Fig. 5.9: Four examples of day-length classification of congestion events. Each plot reports the
velocity (top), the flux (middle) and the confidence of the model for the classification (bottom). (a)
and (c) are from LF sensors while (b) and (d) are from HF sensors.

found Δ𝑡 = 4 min being the most suitable parameter (in particular with the second
dataset, still having comparable loss) yielding interesting predictions while keep-
ing the average accuracy above 95% (with the best peak of 96.50%, or 98.82% if
weighted) with a corresponding average loss value of 2.4 × 10-2, hence comparable
to results obtained by 𝔉𝑐. Training times for the networks are consistent with those
from 𝔉𝑐 and 10-fold cross-validation results in similar outcomes, in both terms of
loss (𝜇 = 2.95 × 10-2, 𝜎 = 3.53 × 10-3) and accuracy (𝜇 = 93.81, 𝜎 = 1.22).

5.4.3 Results of the real-time classifier 𝕱𝒄

Figure 5.9 shows a few examples of day-length classification of congestion events
for both LF and HF sensors. We report the velocity 𝑣, flux 𝑓 , and the confidence of
the classification (given as 𝑜 rescaled in the interval [−1, +1], i.e. 𝑜 · 2 − 1). From
Figure 5.9(a), we can notice that when the drop is significant only in 𝑣 but not in 𝑓 ,
the model shows a little uncertainty to classify the event. However, as can be seen
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(a) (b)

(c) (d)

Fig. 5.10: Four examples of prediction of congestion events. (a) at 6:30 a congestion event is
correctly pre-alarmed four minutes in advance. (b) at 10:45 a congestion event begins intermittently
while a solid pre-alarm shows up. (c) a difficult-to-predict congestion appears at 6:06. (d) at 8:30 an
uncertain situation shows up, characterised by below-average velocity and normal flux, then after
9:00 a clear congestion is formed (pre-alarmed 1 minute in advance).

in Figure 5.9(b), if the drops involve also 𝑓 , then the model is able to classify the
congestion even if they are short in time. Figure 5.9(c) prompts that, in particular
circumstances, the model is able to classify critical events also when the ground truth
is uncertain, like when the flux is close to zero and velocity is high; do note that this
is a typical situation at night, with no congestion. Finally, Figure 5.9(d) shows that
the model also keeps the congestion alarm on when the critical situation is vanishing:
this comes from the fact that the model does not know the future, conversely to the
regularisation applied by the heuristics.

5.4.4 Results of the short-term classifier 𝕱𝒑

In order to give an idea about the actual possibility to predict congestion events, in
Figure 5.10 we show four outcomes which are commonly observable. Figure 5.10(a)



5.5 Computation of expected traffic volume 195

shows a very favourable case in which we are able to predict the congestion 4 minutes
before the actual formation. This is made possible since the velocity starts lowering
a bit before dropping down, together with the flux. In Figure 5.10(b), a long-standing
congestion is preceded by a confusing scenario in which the congestion alarm is
on and off. In this case, the congestion pre-alarm is constantly on. Figure 5.10(c)
highlights a case where prediction is quite hard, even for a trained human: congestion
begins abruptly with a velocity drop, and the ANN is able to predict it only 1 minute
in advance. Finally, Figure 5.10(d) depicts an uncertain situation which can likely
evolve into a queue (but it does not, at least for some minutes). The pre-alarm is on,
and even if this is formally incorrect (the congestion pre-alarm is not followed by a
congestion alarm) the uncertainty fully justifies the ANN behaviour.

5.5 Computation of expected traffic volume

In this section, we tackle the problem of performing mid-term prediction (30 min,
coherent with the simulation time we adopt in the upcoming Section 5.6) of the
expected traffic volume by building an ANN-based predictor 𝔓. Let us recall that,
unlike in the previous section, here we aggregate sensors belonging to the same group
(following the definition given in Section 5.2), while working on the two distinct,
but coupled, classes of vehicles (light and heavy). This is important because the
dynamics of the two classes are very different one from the other and, at the same
time, they are strongly interconnected.

5.5.1 Building the datasets

Ground-truth data y can be easily produced for each (group of) sensor, only needing
the real flux of light vehicles fl and that of heavy vehicles fh for the t upcoming
minutes (t = 30 min in our experiments). These compose the feature vector x as
(fl, fh) and the corresponding ground truth y as:

𝑦𝑡 =

(
1
t

𝑡+t∑︁
𝑠=𝑡+1

𝑓 l
𝑠 ,

1
t

𝑡+t∑︁
𝑠=𝑡+1

𝑓 h
𝑠

)
. (5.6)

For what concerns the dataset creation, we selected the data collected during the
entire 2021, corresponding to 348 day-wise readings (17 days are missing due to
reported reading problems). Due to the high number of available data, we decided
to tune a predictor per group of sensors. As for the previous training, we organised
the features in day-length sequences, and we built a dataset 𝐷 (𝑔) = {x(𝑑) ; y(𝑑) },
1 ≤ 𝑑 ≤ 348, for each group 𝑔. We extracted roughly one month of samples from
the dataset to form the test set while we used the remaining part as the training set.
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Fig. 5.11: Value of the RMSE achieved by the training session for 𝔓 at the varying of 𝑁hid. As it
can be seen, the best parameter is 𝑁hid = 27.

5.5.2 Training the model

We trained a different model𝔓(𝑔) per group of sensors over its corresponding dataset
𝐷 (𝑔) . In particular, we focus on the four groups representing the inflow boundaries
of the highway network under consideration: Venice (𝑔1) and Trieste (𝑔2) for the
A4, Conegliano (𝑔3) for the A28, and Udine (𝑔4) for the A23. 𝑔1 is the only group
deployed on a three-lane section.

By adopting the same nomenclature as from Figure 5.6, the choice of the input
and output features requires 𝑁in = 2 and 𝑁pred = 2, while 𝑁hid is a free parameter.
Hence, we performed multiple training sessions to estimate the suitable size for
the memory 𝑁hid of the LSTM. Each training session was carried out with the
ADAM optimiser, working with a variable learning rate, piece-wise decreasing over
5 progressive learning eras of 50 epochs each (for a total of 250 epochs). Each training
session required 70 to 480 seconds, a larger time compared to 𝔉𝑐 and 𝔉𝑝 training
due to the bigger datasets employed. However, such training times are feasible with
large training campaigns over all the sensors. Single data are processed in a few
milliseconds.

Figure 5.11 shows the value of the RMSE as a function of the free parameter
𝑁hid ∈ [1, 120], i.e. at most 4t. The choice of limiting the model parameter 𝑁hid
to 120 hidden cells during the parameter tuning phase is further motivated by the
fact that RMSE quickly deteriorates around 70 and beyond (conversely to the trend
obtained in Figure 5.7). We found 𝑁hid = 27 being the best parameter to correctly
capture the trend of the average flux, achieving a mean RMSE of 𝜇 = 0.1936 with
standard deviation 𝜎 = 8.7 × 10-3. Comparable RMSE performances are achieved
with 10-fold cross-validation (𝜇 = 0.24391, 𝜎 = 4.84 × 10-2).

Table 5.1 reports the average errors committed by the best model (with 𝑁in =

2, 𝑁hid = 27, 𝑁pred = 2) obtained per each group of sensors. Note that the RMSE
reported in Figure 5.11 is evaluated on the normalised dataset, hence it is not
comparable with results from Table 5.1.

The question arises if it is really needed to train a different LSTM per group of
sensors or if one ANN can serve all. To address this question we report in Figure 5.12
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Light vehicles Heavy vehicles
2-lane 3-lane 2-lane 3-lane

Mean average-error 42.74 76.60 11.74 25.06
Max average-error 70.80 95.06 19.48 33.44
Mean standard-deviation 41.72 62.96 12.04 23.94
Mean max-error 422.64 744.40 164.46 251.24
Mean average-flux 387.74 768.16 96.52 281.42
Mean max-flux 5320.64 5864.48 1825.30 2047.10

Table 5.1: Error statistics in [vehicles/h] achieved by multiple trainings of 𝔓 (with 𝑁hid = 27)
over the four datasets 𝐷 (𝑔𝑖 ) (average is performed on all minutes available in the dataset). Values
are sorted by vehicle class and number of lanes. Average and maximum flux are also reported as
benchmark values for relative error statistics.

(a) (b)

Fig. 5.12: Mean error ( |𝑦𝑡 − 𝑜𝑡 |) in [vehicles/h] for (a) light vehicles and (b) heavy vehicles
obtained by applying the network𝔓(𝑔𝑖 ) , 𝑖 ∈ {1, 2, 3, 4} (𝑥-axis) on the mutual test-sets𝐷 (𝑔 𝑗 ) , 𝑗 ∈
{1, 2, 3, 4} (𝑦-axis). As it can be seen, maximum-by-row is achieved on the main diagonal, meaning
that applying a specific ANN on a different dataset is not convenient. It is worth noticing that
maximum-by-row does not necessarily correspond to the maximum-by-column (see, e.g., 𝑖 =

1, 𝑗 = 4); this phenomenon is due to the high regularity of some datasets.

the error made by 𝔓(𝑔𝑖 ) tested against datasets 𝐷 (𝑔 𝑗 ) , with 𝑖, 𝑗 = 1, . . . , 4. We see
that it is highly suggested to train as many ANN as groups of sensors are considered.

5.5.3 Performance evaluation

We consider the group of sensors 𝑔2 as an example for the performance evaluation.
Figure 5.13 shows the histograms of the errors (in [vehicles/h]) made running the
prediction every minute available in the test set. Figure 5.14 shows instead the result
of 𝔓𝑔2 on an entire day. Every minute, the ground truth (i.e. the total number of
vehicles passed in the next 30 minutes, in [vehicle/h]) is compared with its ANN-
predicted value, and the offset is evaluated. Real flux f is reported along with its a
posteriori regularisation for reference. It can be seen again that the error in prediction
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(a) (b)

Fig. 5.13: Error histogram of the predictions of 𝔓𝑔2 over its test set for (a) light and (b) heavy
vehicles. Do note that error is almost symmetrical w.r.t. 0.

(a) (b)

Fig. 5.14:𝔓𝑔2 -predicted vs. actually measured average flux with t = 30min. Averages are performed
minute by minute. Results are reported in terms of both (a) light and (b) heavy vehicles.

is almost symmetrical and it usually corresponds to less than 200 vehicles/h for light
vehicles and much less for heavy vehicles.

Finally, Figure 5.15 shows an example of a single-minute prediction where a
pictorial representation of the ground truth is highlighted as the (discrete) integral
of the upcoming flux.

5.6 Feeding traffic models with ML-enriched data

The tools introduced in the previous sections are useful per se, but they can also be
used in combination with other, more classical, tools for traffic estimation and fore-
cast. In this section, we try to get advantage of the pieces of information extrapolated
by data in order to improve the accuracy of the macroscopic differential models.
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Fig. 5.15: Zoom of a single-minute prediction of the data presented in Figure 5.14. Prediction is
performed at time 𝑡=8:30, where dashed data are available. The predicted value is given by the area
beneath the orange line while the target of the prediction is represented by the value of the green
shaded area (represented also as the green dashed line for a better comparison).

5.6.1 Nowcast

In this section, we explore the possible advantages of inverting the fundamental dia-
gram when estimating the current status of traffic density by means of a macroscopic
differential model. As mentioned in Section 5.1, we split the whole road [𝑥min, 𝑥max]
into consecutive segments delimited by fixed sensors. We aim at estimating the
traffic density at the current time 𝑡0, therefore we start the simulation at a previous
time 𝑡0 − Δ𝑡past, with Δ𝑡past > 0, assuming an empty road at that time. Let us de-
note by 𝑁𝑆 the number of road segments (sensors are 𝑁𝑆 + 1). Each road segment
𝑆𝑘 := (𝑠𝑘 , 𝑠𝑘+1), 𝑘 = 1, . . . , 𝑁𝑆 , is delimited by two fixed sensors, located at 𝑥 = 𝑠𝑘
and 𝑥 = 𝑠𝑘+1, respectively.

We begin with a simplified setting, then we move to the real one.

Simplified setting

We adopt the classical single-lane single-class LWR model on each road segment 𝑆𝑘
𝜕𝑡 𝜌

𝑘 (𝑥, 𝑡) + 𝜕𝑥 𝑓 (𝜌𝑘 (𝑥, 𝑡)) = 0, 𝑥 ∈ 𝑆𝑘 , 𝑡 ∈ (𝑡0 − Δ𝑡past, 𝑡0)
𝜌𝑘 (𝑥, 𝑡0 − Δ𝑡past) = 0, 𝑥 ∈ 𝑆𝑘

𝜌𝑘 (𝑠𝑘 , 𝑡) = 𝜌𝑘in (𝑡), 𝑡 ∈ [𝑡0 − Δ𝑡past, 𝑡0]
𝜌𝑘 (𝑠𝑘+1, 𝑡) = 𝜌𝑘out (𝑡), 𝑡 ∈ [𝑡0 − Δ𝑡past, 𝑡0]

(5.7)

where 𝜌𝑘 ∈ [0, 𝜌max] is the vehicle density for some maximal density 𝜌𝑘max > 0, and
𝜌 ↦→ 𝑓 (𝜌) is the fundamental diagram. Let us assume, as usual, that 𝜌 ↦→ 𝑓 (𝜌) is
concave and denote by 𝜎 the argmax of 𝑓 , i.e. 𝑓 (𝜎) = max𝜌 𝑓 (𝜌) (see Figure 5.2).
Equation (5.7) is defined independently on each segment. Let us also recall that the
relation (5.1) holds true.
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Equation (5.7) is usually solved by numerical approximation. Let us introduce a
grid in the domain 𝑆𝑘× [𝑡0−Δ𝑡past, 𝑡0], with space step Δ𝑥 and time step Δ𝑡. The time
interval is divided into 𝑁𝑡 intervals, while each segment 𝑆𝑘 is divided into 𝑁 𝑘𝑥 cells
of length Δ𝑥; we denote with 𝜌𝑘,𝑛

𝑗
the corresponding approximate average density

in cell 𝐶𝑘
𝑗
, 𝑗 = 1, . . . , 𝑁 𝑘𝑥 at time 𝑛. Any conservative numerical scheme (see [185])

for (5.7) has the form

𝜌
𝑘,𝑛+1
𝑗

= 𝜌
𝑘,𝑛
𝑗
− Δ𝑡

Δ𝑥

(
𝐹 (𝜌𝑘,𝑛

𝑗
, 𝜌
𝑘,𝑛

𝑗+1) − 𝐹 (𝜌
𝑘,𝑛

𝑗−1, 𝜌
𝑘,𝑛
𝑗
)
)
, 𝑗 = 1, . . . , 𝑁 𝑘𝑥 , (5.8)

where 𝐹 is the numerical flux (i.e. an approximation of the flux 𝑓 at the interface
between two consecutive cells). For example, in the case of the Godunov scheme,
we have

𝐹 (𝜌− , 𝜌+) :=


min{ 𝑓 (𝜌−), 𝑓 (𝜌+)} if 𝜌− ≤ 𝜌+
𝑓 (𝜌−) if 𝜌− > 𝜌+ and 𝜌− < 𝜎
𝑓 (𝜎) if 𝜌− > 𝜌+ and 𝜌− ≥ 𝜎 ≥ 𝜌+
𝑓 (𝜌+) if 𝜌− > 𝜌+ and 𝜌+ > 𝜎

(5.9)

Let us consider, e.g., the right boundary condition of a given segment 𝑆𝑘 , which
corresponds to the left boundary condition of the following segment 𝑆𝑘+1 (in the
following we drop the index 𝑘 from 𝜌 for readability). Hence, if 𝑗 = 𝑁 𝑘𝑥 , one could
follow two kinds of approaches

flux-based approach Directly inject in the scheme the flux datum 𝑓𝑠𝑘 measured by
the sensor across the interface 𝑆𝑘 |𝑆𝑘+1 in place of the numerical outgoing flux
𝐹 (𝜌𝑛

𝑁𝑥
, 𝜌𝑛out), without estimating the density 𝜌out;

density-based approach Evaluate the numerical flux 𝐹 (𝜌𝑛
𝑁𝑥
, 𝜌𝑛out), by estimating

the density 𝜌out.

The two ways are, in principle, both correct and the first one seems to be more
practical since sensors provide flux data only (i.e. density is not available at all). On
the other hand, flux data 𝑓𝑠 provided by the sensor are not always compatible with
the solution carried by the numerical scheme. In fact, any flux 𝑓𝑠 outside the set of
admissible values {

𝐹 (𝜌𝑛𝑁𝑥
, 𝜌) : 𝜌 ∈ [0, 𝜌max]

}
(5.10)

is not compatible with (5.7) and leads to negative densities, since more mass comes
out than it is available in the road, see Figure 5.16(a). The question arises how to
enforce the compatibility of the sensor data: a natural solution is to project the sensor
data into the admissible set of flux data (5.10).

Regarding the density-based approach, the idea is to use the algorithm introduced
in Section 5.4 to help invert the concave fundamental diagram, i.e. passing from
the flux data to the density data by duly distinguishing between free and congested
regimes. More precisely, given the sensor flux datum 𝑓𝑠 < 𝑓max, the choice between
𝜌 and 𝜌′, with 𝜌′ ≠ 𝜌, 𝑓 (𝜌) = 𝑓 (𝜌′) = 𝑓𝑠 , is taken depending on the presence or
not of the congestion, see Figure 5.16(b).
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𝑓𝑠

𝜌𝑁𝑥

𝜌

𝑓

(a)

𝑓𝑠

𝜌 𝜌′
𝜌

𝑓

(b)

Fig. 5.16: Fundamental diagram 𝑓 = 𝑓 (𝜌) . (a) Example of non-admissible sensor flux datum for
the numerical flux (5.9): no flux 𝑓𝑠 > 𝑓 (𝜌𝑁𝑥

) is compatible with any boundary condition 𝜌out.
(b) Example of flux datum 𝑓𝑠 with two possible admissible density 𝜌 and 𝜌′: the correct side
(freeway vs. congested) of the fundamental diagram is chosen depending on the presence or not of
a congestion.

In order to discuss the difference between the two approaches, we devise a simple
numerical test. We consider an infinitely-long single-lane road. As it is usually done
in the mathematical literature, we normalise both density and velocity in the interval
[0, 1] and we choose the fundamental diagram as 𝑓 (𝜌) = 𝜌(1 − 𝜌). In this case, the
maximal flux is 0.25 and it is achieved for 𝜌 = 𝜎 := 0.5. Two sensors are located at
𝑥 = 𝑠𝑘 := 0.45 and 𝑥 = 𝑠𝑘+1 := 0.8.

At initial time 𝑡 = 𝑡0 − Δ𝑡past the road has constant density 𝜌 = 0.45 for 𝑥 < 0.52
while the rest of the road is empty (𝜌 = 0). Immediately after the initial time, an
accident occurs at 𝑥 = 𝑏 := 0.6 and a bottleneck is formed between the two sensors.

Figure 5.17 shows the simulation where the model is aware of the bottleneck. This
represents our reference since it evaluates what we assume it is really happening on
the road and, hence, it is the result we would ideally like to reproduce with data at
our disposal. We can resume the outcome as follows:

1. At the initial time, a rarefaction fan immediately appears at 𝑥 = 0.52 and the
right part of the road starts populating

2. When enough vehicles have reached the bottleneck at 𝑥 = 𝑏, a queue appears
and starts back-propagating

3. The queue reaches the sensor at 𝑠𝑘 and continues back-propagating
4. From the bottleneck on, vehicles set off at maximal flux (𝜌 = 𝜎) and proceed

normally.

It is plain that, if the traffic is observed only at sensors, we cannot be able to
perceive the accident and the formation of the bottleneck in its actual position. The
effects of the accident will be visible only when the queue reaches the sensor at
𝑥 = 𝑠𝑘 .

Figure 5.18(a) shows the result obtained by the density-based approach. When
the queue is perceived at 𝑥 = 𝑠𝑘 , the recorded flux 𝑓𝑠𝑘 = 0 is correctly translated into
the maximal density 𝜌 = 1 inverting the fundamental diagram. Therefore, the queue
continues back-propagating while, for 𝑥 > 𝑠𝑘 , the traffic restarts with maximal flux.
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Fig. 5.17: Academic example of a traffic simulation where a bottleneck causes a traffic congestion
between two sensors. Reference solution where the bottleneck is known by the model: the queue
naturally propagates backwards from the locus of the bottleneck.

(a) (b)

Fig. 5.18: Solution for the bottleneck simulation from Figure 5.17 with density- and flux-based
approach where the model receives data from the sensors only. Both simulations locate the queue
at the upstream sensor and propagate the queue backwards. (a) The solution obtained with the
density-based approach correctly keeps the high-density value downstream of the sensor 𝑘. (b) The
solution obtained with the flux-based approach empties the street between the two sensors, hence
causing an incompatibility (black vertical line) at the interface 𝑠𝑘 |𝑠𝑘+1.
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At 𝑥 = 𝑠𝑘+1 whatever approach is used, the solution is the same and the traffic keeps
going with the same dynamics.

Figure 5.18(b) show instead the result obtained by the flux-based approach. As
before, when the queue reaches 𝑥 = 𝑠𝑘 the sensor registers a null flux there, and
a queue starts back-propagating. Since the flux through the sensor is null, no one
moves from the sensor on, and the space between the sensors becomes empty in a
short time. At this point, the flux data at the right sensor becomes incompatible with
the traffic condition (the road is empty but the sensor perceives moving vehicles).
Therefore, a negative density appears at 𝑥 = 𝑠𝑘+1. For 𝑥 > 𝑠𝑘+1 traffic dynamics
restart correctly with the measured flux.

In conclusion, in this case, the density-based approach is preferable since it catches
with better precision the real scenario. In particular, this result is achieved since the
density-based approach actually puts in the simulation additional information about
the system other than the naked flux data, i.e. the discrimination between free and
congested scenarios.

Real setting

In this section, we consider real sensor data provided by Autovie Venete (cf. Sec-
tion 5.2). The major difference with respect to the previous test is that now we deal
with a three-lane highway and two classes of vehicles (light and heavy), with coupled
dynamics. The LWR-like model is generalised to this case by a system of PDEs{

𝜕𝑡 𝜌
𝑘
l + 𝜕𝑥 𝑓l (𝜌𝑘l , 𝜌𝑘h) = 0, 𝑥 ∈ 𝑆𝑘 , 𝑡 ∈ (𝑡0 − Δ𝑡past, 𝑡0)

𝜕𝑡 𝜌
𝑘
h + 𝜕𝑥 𝑓h (𝜌𝑘l , 𝜌𝑘h) = 0, 𝑥 ∈ 𝑆𝑘 , 𝑡 ∈ (𝑡0 − Δ𝑡past, 𝑡0)

(5.11)

where 𝜌l, 𝑓l and 𝜌h, 𝑓h are the density and flux of light and heavy vehicles, re-
spectively. Equation (5.11) is complemented with initial and boundary conditions
as in (5.7). Moreover, the two classes of vehicles do not share the road in the same
manner, being heavy vehicles not allowed in the fastest lane. The coupled dynamics
with uneven space occupancy is taken from [163] and we refer the reader to it for
both the mathematical and numerical details. Here we just recall that we consider a
phase transition (cf. [168, 169, 172]) due to the presence of two states of the system,
see Figure 5.19:

partial-coupling phase Heavy vehicles influence the dynamics of light ones but
not vice versa. Light vehicles are then mainly in the fast lane and heavy vehicles
are independent of them. In this case, the two equations in the system (5.11) are
partially coupled, i.e. 𝑓h only depends on 𝜌h,{

𝜕𝑡 𝜌l + 𝜕𝑥 𝑓l (𝜌l, 𝜌h) = 0
𝜕𝑡 𝜌h + 𝜕𝑥 𝑓h (𝜌h) = 0

. (5.12)
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Fig. 5.19: The two phases of partial- and full-coupling model, see (5.12) and (5.11). The density
of light vehicles determines if the dynamic is partially or fully coupled.
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Fig. 5.20: Example of families of fundamental diagrams for light and heavy in the two phases
of partial- and full-coupling. (a) and (b) represent partial-coupling phase from (5.12). (c) and (d)
represent full-coupling phase from (5.11). (a) and (c) depicts the function 𝜌l → 𝑓l (𝜌l, 𝜌h ) for
several values of 𝜌h. (b) depicts the single function 𝜌h → 𝑓h (𝜌h ) and (d) depicts the function
𝜌h → 𝑓h (𝜌l, 𝜌h ) for several values of 𝜌l.
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full-coupling phase Light vehicles are too much to fit the fast lane only and then
invade the slow lane(s), influencing the dynamics of heavy vehicles. In this case,
the two equations are fully coupled and fall in the general form of the system
(5.11) .

Figure 5.20 shows the families of fundamental diagrams devised for taking into
account the flux-density dependence for each class of vehicles given the density of
the other class (see [163] for more details). Interestingly, there is a similarity with the
multi-valued fundamental diagram sketched in Figure 5.2(b). As we said, a multi-
valued diagram takes into account the heterogeneity of the drivers’ behaviour (inside
each class of vehicles). Here, instead, the drivers of each class are homogeneous, but
the presence of vehicles of the second class changes the behaviour of the drivers of
the first class, thus mimicking a multi-response setting.

We conclude this section by describing a sample test on real data.
Let us consider a stretch of road of length 32 km, across two segments. A sensor

is located at the interface at 𝑥 = 20.5 km. A permanent bottleneck caused by the
transition from 3 to 2 lanes is located at 𝑥 = 29.5 km and it is modelled within the
model as a change in the fundamental diagrams. In the real scenario, confirmed by
direct observation of Autovie Venete personnel, the bottleneck causes congestion for
heavy vehicles only, which propagates backwards and, in turn, slows down the light
vehicles. As in the academic test, the model perceives the congestion only when it
reaches the sensor.

Figure 5.21 shows the density and the velocity of light and heavy vehicles in the
case of flux- and density-based approaches after the completion of a nowcast. If the
flux-based approach is used, a piece of congestion for heavy vehicles propagates
upstream of the sensor and it keeps slowing down the light vehicles (their speed
is about 60 km/h), while downstream traffic is free. If instead the density-based
approach is used, the dynamics are more complex because the corrections 𝜌 → 𝜌′

for each class correspond to a change in the fundamental diagram of the other
class (cf. Figure 5.20). Downstream we observe a slowdown for both vehicle classes
(velocity is about 20 km/h for heavy vehicles and 100 km/h for light vehicles)
while upstream both vehicle classes are totally congested (velocity is zero). Again,
the density-based approach better matches the real scenario, especially between the
sensor and the bottleneck.

5.6.2 Forecast

In this section, we explore the possible advantage of estimating the incoming traffic
volume for traffic forecast. The idea is to run again the simulator based on the model
(5.11) from time 𝑡0 to time 𝑡0 +Δ𝑡fut. Conversely to the previous case, here we aim at
forecasting the traffic distribution in the whole road [𝑥min, 𝑥max] (with no interruption
at sensors), starting from the outcome of the nowcast procedure as initial condition
for the densities (𝜌l, 𝜌h). Obviously, sensor data can no be longer used here since
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(a) (b)

(c) (d)

Fig. 5.21: Real example of traffic simulation where a bottleneck causes a traffic congestion in a
(known) location between two sensors. (a) and (c) show the behaviour of light vehicles while (b)
and (d) shows the one of heavy vehicles. As can be seen in (a) and (b), the density obtained with
the density-based approach is realistic since it fills the road downstream. (c) and (d) shows the
corresponding velocities.

they are not yet available, and the problem arises which boundary conditions should
be used. Ideally, one should estimate the correct future inflow and outflow at each
time step Δ𝑡, but this is extremely difficult considering the high variability of the
traffic dynamics. On the opposite side, the simplest solution is to assume 𝜌in = 0 so
as to assume that nobody enters the road, and 𝜌out = 0 so as to guarantee maximal
outflow, but this leads to a gradual emptying of the road starting from the inflow
boundary. A possible compromise is to set 𝜌out = 0 for maximal outflow and keep a
constant inflow, equal to the last available datum, or an average of the last minutes,
or equal to a certain value predicted by a separate procedure. Here we consider the
outcome of the ANN set up in Section 5.5, which estimates the traffic volume for 30
min in the future, directly injecting the flux datum in the numerical scheme.

In order to measure the error of a simulation, let us consider the density distribution
𝑥 → 𝜌𝐹l,h ≡ (𝜌𝐹l , 𝜌𝐹h ) of the traffic obtained by the forecaster for light and heavy
vehicles. More formally, we are denoting with 𝜌𝐹l the density 𝜌𝐹l (𝑥, 𝑡0 + 𝛿) at any
future time 𝑡0 + 𝛿 where 𝛿 ∈ [0,Δ𝑡fut] (resp. for heavy vehicles). The idea is hence
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(a) (b)

Fig. 5.22: Normalised 𝐿1 error committed by the forecast as a function of time in the case of
ANN-generated inflow boundary condition (orange line) and with constant null inflow (blue line).
Results are reported for both (a) light and (b) heavy vehicles.

to compare these densities with the ones obtained by the nowcaster, if run as soon
as data becomes available, i.e. ∀𝛿 ∈ [0,Δ𝑡fut]. If we analogously denote the density
obtained by the nowcaster as 𝑥 → 𝜌𝐹l,h, we can define the (relative) 𝐿1-distance
between the two traffic densities as follows

𝐸1
l,h (𝑡) :=

∥𝜌𝐹l,h − 𝜌𝑁l,h∥𝐿1

∥𝜌𝑁l,h∥𝐿1
, (5.13)

where
∥𝜌∥𝐿1 :=

∫ 𝑥max

𝑥min

|𝜌(𝑥, 𝑡) | 𝑑𝑥 . (5.14)

Figure 5.22 shows the error as a function of time for light and heavy vehicles
separately, on a stretch of road of length 16 km with two lanes. We compare the
error made by using the predicted value of the incoming flux with the one made by
simply assuming a null inflow (the simplest choice). It is interesting to note that in
the ANN-aided traffic prediction, the error initially increases and then stays bounded
below about 30% for both light and heavy vehicles. This means that, although the
traffic distribution can be shifted horizontally with respect to the real one, the total
mass (i.e. the number of vehicles) does not differ excessively. On the contrary, using
a null inflow the error rapidly increases up to 100% and then stabilises, as expected.

5.7 Conclusions

In this chapter, we have proposed a hybrid model-/data-driven method for recon-
structing and predicting traffic distributions on extra-urban roads and highways.
Similar to [180, 197], the idea is to use an ANN as a joining link between real data
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and the mathematical model, avoiding using the latter in the training phase of the
ANN. This approach allows exploiting the power of ML in extrapolating information
from real-time and historical data and then passing to the model a piece of processed
information that can be immediately incorporated. We have also observed that data-
driven approaches based on data measured by fixed sensors can hardly extrapolate
any kind of spatial information, i.e. information about the spatial distribution of
traffic between sensors. This is the reason why we think that the mathematical model
is essential in TSE since it catches the right causality of traffic dynamics in space
and time.
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Chapter 6
Explainable drug repurposing approach from
biased random walks

This chapter describes a novel recommender system
methodology for drug repurposing. Its content, realised in
collaboration with Filippo Castiglione, Christine Nardini, and
Paolo Tieri, researchers of the “Digital Biology Unit” (DBU) of
the “Istituto per le Applicazioni del Calcolo” of the “Consiglio
Nazionale delle Ricerche” (IAC-CNR) and with Marco Pedicini,
professor at the “Università degli Studi Roma Tre”, was
published on IEEE/ACM Transactions on Computational
Biology and Bioinformatics [270]. Here I revise the notation
and partially extend benchmarks.

Abstract Drug repurposing is a highly active research area, aiming at finding novel
uses for drugs that have been previously developed for other therapeutic purposes.
Despite the flourishing of methodologies, success is still partial, and different ap-
proaches offer peculiar advantages. In this composite landscape, we present a novel
methodology focusing on an efficient mathematical procedure based on gene sim-
ilarity scores and biased random walks which rely on robust drug-gene-disease
association datasets. The recommendation mechanism is further unveiled by means
of the Markov chain underlying the random walk process, hence providing explain-
ability about how findings are suggested. Performances evaluation and the analysis of
a case study on rheumatoid arthritis show that our approach is accurate in providing
useful recommendations and is computationally efficient, compared to the state of
the art of drug repurposing approaches.

Keywords: Drug repurposing · Explainable artificial intelligence · Markov chain
· Network medicine · Biased random walk

6.1 Introduction

Drug repurposing (DR) is emerging as an essential and potentially valuable under-
taking to rapidly exploit existing and tested drugs for new uses, such as emerging
and neglected diseases, as well as an alternative and convenient choice as opposed
to the de novo drugs development. However, in the exemplary case of the recent
COVID-19 pandemic, despite the high number of DR attempts (a non-exhaustive
PubMed search performed on January 2022 reported more than 900 results using the
keywords “covid” and “drug repurposing”), the effectiveness of DR still appeared
to be low: out of over 400 drugs tested, just a few, and precisely four of them, were
definitively shown to be effective, i.e. graded “A” (i.e. established effectiveness; en-
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dorsement by professional societies) [219, 230, 265]. The reported success rate of
∼1% is certainly not satisfactory [239] and calls for better use of the increasingly
robust data and for the development of more efficient methods for DR algorithms
and processes capable of making the most out of previous knowledge.

DR approaches fuse well also with the concept of Synergistic Drug Combinations,
where the aim is to find two or more active pharmaceutical ingredients that co-op
well to target multiple conditions (e.g. [226] and [268]).

In what follows, we explain some prominent examples of current DR processes
representing the starting point of our study, and we highlight some salient related
limitations.

6.1.1 Brief exploration of previous relevant works

The pioneering work of Keiser et al. [242] introduced the possibility to infer by
computational means novel drugs for neglected diseases, and suggested general
computational DR systems. Since then, various sorts of computational approaches
exploiting different databases and different similarity criteria have been designed to
tackle the problem. In what follows we briefly report, with no claim of completeness,
some of the studies that are most relevant for the work presented here (see e.g. [227]
for a more in-depth review).

Luo et al. [248] exploited the concept of similarity of drugs (chemical-based)
and diseases (MeSH-based [245]) to build two networks, then they linked them
together exploiting data from the databases DrugBank [266] and Online Mendelian
Inheritance in Man (OMIM) [218], to generate 1933 drug-disease associations among
593 drugs and 313 diseases. Finally, a random walk approach was implemented
simultaneously on the two similarity networks to rank drug-disease associations and
propose predictions.

Nam et al. [250] proposed a method involving three steps: (i) drug network
reconstruction using drug-target protein associations, (ii) network reinforcement,
i.e. a machine learning approach providing information augmentation by using drug-
drug interaction knowledge, and (iii) a recommendation step via the generation of a
score computed by a graph-based semi-supervised learning procedure. The authors
identified and recommended 11 novel drugs for the case study of vascular dementia
through their approach.

Ozsoy et al. [253] carried out DR as a recommendation process in three steps:
similarity evaluation, neighbour, and disease selection, actually implementing a
collaborative filtering with the possibility to integrate multiple data sources and
multiple features. The method produced recommendations based on the similarity
and overlap between symptoms of the diseases and the effectiveness of the drugs,
hence showing better performances compared to other methods available in the
literature.
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6.1.2 Limitations and issues with available data

DR approaches exploit previous knowledge, data cross-linking and associations via
database interoperability to infer de novo predictions and testable hypotheses. Such
approaches leverage many different large datasets developed during the last decades,
when the global knowledge of drugs and diseases properties has considerably in-
creased [262]. However, a fast growth like this often generates an inconsistency in
nomenclatures, resulting in a persistent difficulty in fusing data coming from different
sources [263].

Literature reports many attempts in setting up actual standards (e.g. the latest
World Health Organization’s ICD-11 [240]), however, different usages imply differ-
ent requirements, not always addressed by all evolving standards. As such, for our
purposes, we refer to the common practice in the scientific community operating
on DR, which currently widely employs only a few de facto leading open-access
reference sources and standards (i.e. the DrugBank knowledge base for drug-target
associations [266] and the DisGeNet discovery platform containing one of the largest
publicly available collections of genes and variants associated with human diseases
[254]). We refer to more pragmatic reviews like [227] for an in-depth analysis of the
available datasets.

6.1.3 Chapter contribution

Building on previous works and with the aim of enhancing the reliability and the
capabilities of preceding attempts, we here propose a Markov chain-based similarity
approach that exploits available data in the form of a knowledge digraph [234] such
as experimental drug-gene interactions, disease-gene associations, and drug-disease
pharmacological indications.

Our approach consists of five distinctive features: (i) a careful data selection and
nomenclature mapping, (ii) a database bipartite digraph design, (iii) a SparseBLAS-
based data structure [4], (iv) an Ergodic Markov Process representation of the DR
system, and (v) an explainable output.

A careful selection of the terms grants maximum consistency and therefore min-
imal loss of information, in particular when datasets are joined together. This also
considerably reduces the effort spent manually curating the datasets. For this reason,
we chose two de facto standards: cas-number (Chemical Abstracts Service Ref-
erence Number) for drugs [223] as provided by DrugBank, and the UMLS (Unified
Medical Language System) identifier for diseases [221]. We converted all the in-
volved entities from the various datasets through different dictionaries provided by
MalaCards [257], OMIM [218], DrugBank [266], and many others and we assigned
each drug/disease a unique integer identifier (used for evaluation purposes). This
choice enables us to employ two widely used, highly curated, and up-to-date datasets
– DrugBank [266] and DisGeNET [254] – granting nomenclature standardisation
and interoperability.
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The savvy mathematical formulation of the datasets as bipartite digraphs allows
the natural construction of useful entropy-inspired similarity measures that lays the
foundations for our knowledge digraph (see e.g. [238] where a similar approach is
used to create a collaborative filtering for miRNA-disease associations).

We embed our digraph structure in the BLAS environment, where structures are
stored as sparse (Boolean) matrices. This solution yields fast and reliable perfor-
mances based on matrix-matrix operation, like the ability to represent connections
between entities as a sequence of multiplications.

We used the resulting knowledge digraph with normalised connections to generate
a Markov-process-based DR system. The underlying mathematical structure enforces
the usage of the notion of ergodicity, therefore providing a mathematical proof of
the stability of the recommendations with respect to small changes in the input data,
see Section 6.3.2.

Finally, recommendations provided on the basis of a biased random walk make
them self-explainable. Explainability in Artificial Intelligence methods (see [260])
like recommender systems is particularly useful since it allows, e.g. to interpret the
results and provide practical hints in testing, both features strongly demanded in
recent trends.

We found that all the above-mentioned characteristics are crucial to providing
effective, fast, usable, and reliable results for DR.

6.1.4 Chapter organisation

The remainder of this chapter is organised as follows. In Section 6.2 we describe
the databases and datasets used, their cross-mappings, the related necessary integra-
tion, and their pre-processing. Section 6.3 introduces the approach used to exploit
such data (Section 6.3.1), how to build the recommender system (Section 6.3.2),
and which are its parameters (Section 6.3.3). In Section 6.4 we discuss parameters
tuning (Section 6.4.1) and compare the methodology’s performances with four ex-
isting similar methods (Section 6.4.2). We provide further results in Section 6.5,
by analysing a specific DR case study, that of rheumatoid arthritis (RA), a chronic
autoimmune disease with complex aetiology and no cure to date. Finally, Section 6.6
provides a summary of the contribution and possible further developments.

6.2 Materials

The present DR approach makes use of several datasets and data sources for the
reconstruction of a knowledge digraph on which the recommender system is built.

As presented in Section 6.1.2, we extracted drugs and diseases information from
the two de facto standards DrugBank (DB) [266] and DisGeNET (DGN) [254]
respectively. This helped us in finding many (five) different datasets to obtain drug–
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Fig. 6.1: The architecture of the proposed DR model. From left to right, the main datasets (see
also Figure 6.2) are used to build the recommender engine (see also Figure 6.3). The recommender
engine is validated against four benchmark datasets, hence obtaining an average accuracy of 0.87
(see also Table 6.3 and Figure 6.6) and by a manual expert curation in the specific case of Rheumatoid
Arthritis, hence obtaining promising recommendations (see also Table 6.4 and Figure 6.7).

Name Usage #Diseases #Drugs #Genes #Connections Ref.

DB DR construction – 13563 4118 20279 [266]
DGN DR construction 30293 – 26137 3261324 [254]
MC DR construction 31642 12240 – 544857 [257]

RDB DR validation 1229 1519 – 10563 [222]
ID DR validation 3966 1314 – 111481 [224]
LL DR validation 719 799 – 3250 [244]

SLAMS DR validation 406 305 – 3871 [269]

Table 6.1: Structure of the seven datasets involved in our DR approach both as a source of knowledge
and for benchmark purposes.

diseases association, namely: MalaCards (MC) [257], RepoDB (RDB) [222], iDrug
(ID) [224], as well as data from Li and Lu’s article (referred to as LL) [244],
and data from the Similarity-based LArge-margin learning of Multiple Sources DR
framework (SLAMS) [269]. Since the latter four (described in Section 6.2.2) were
employed by other published DR methodologies, we found them suitable to be used
as benchmark datasets (see Section 6.4.2). On the contrary, we used the first three
(described in Section 6.2.1) to build and tune our methodology (see Section 6.3).

Table 6.1 summarises the statistics of the seven datasets reporting the number of
vertices and edges of the underlying graph while in the following we briefly account
for them. Their usage is summarised in Figure 6.1.
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6.2.1 Main datasets and data sources

DB [266] DrugBank is a pharmaceutical knowledge base that enables major ad-
vances across the data-driven medicine industry. It is provided as a drug-
oriented XML, where each drug is labelled by a DrugBank unique identifier
DB (DBxxxxx). We used it to extract drug-gene relations (target gene polypep-
tides), drug names (and cas-number), and their market status (approved, illicit,
experimental, . . . ) to provide further filtering on the final recommendations. We
were able to extract 7262 cas-number drugs (out of 13563) connected to 4118
Genes through 19792 connections (from 1 to 305 connections per drug).

DGN [254] DisGeNET is a discovery platform containing one of the largest publicly
available collections of genes and variants associated with human diseases. It is
provided as an SQLite DB built upon many domain, typological and associative
tables. We used it to extract the relations between diseases and target genes, along
with diseases’ names and UMLS identifiers. We consider 30170 Diseases (out of
30293) connected to 21671 (out of 26137) genes through 1135045 connections
(from 1 to 10161 connections per disease).

MC [257] MalaCards is an integrated database of human maladies and their an-
notations, modelled on the architecture and richness of the popular GeneCards
database of human genes. It provides the relations between drugs and diseases,
already expressed as relations between cas-number for drugs and UMLS iden-
tifier for diseases. We also used it as a source of dictionaries for converting the
test datasets. We filtered the entries, obtaining a total of 2088 cas-number (out
of 12240) and 7009 UMLS identifiers (out of 31642) connected via 495060 links.

The diagram in Figure 6.2 shows the links between the records of the databases.
We represented relations as highly sparse Boolean matrices and records as unit sparse
vectors of the corresponding size.

As described, each dataset is mainly used to extract the relations between two
different kinds of entities; hence it can be interpreted as a bipartite graph 𝐺◦ =

(𝑉◦, 𝐸◦) where nodes 𝑉◦ represents entities (drugs, diseases, or genes) and edges
𝐸◦ enforces connections among them. For ease of notation, we denote each graph
with the acronym of the corresponding dataset, meaning we build the recommender
system through three of them:

1. A Drug-Gene graph 𝐺DB = (𝑉DB, 𝐸DB) based on DB dataset
2. A Disease-Gene graph 𝐺DGN = (𝑉DGN, 𝐸DGN) based on DGN database
3. A Drug-Disease graph 𝐺MC = (𝑉MC, 𝐸MC) based on MC relations

The graphs, stored as sparse Boolean adjacency matrices, are built by multiplying
the matrices in Figure 6.2.
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6.2.2 Databases for test and performance comparison

RDB [222] The RepoDB recommender system provides a dataset extracted from
DrugCentral [233] and ClinicalTrials [229]. Such dataset was originally designed
as a benchmark database for drug repurposing systems testing. It counts 10563
connections between 1519 unique approved drugs (in DB format) and 1229
unique diseases (in UMLS format). We filtered these data on the drugs and
diseases available in our system, therefore obtaining 2860 links between 930
drugs and 556 diseases, 49% of which are not in MC.

ID [224] The iDrug recommender system provides a drug-diseases dataset coming
from Comparative Toxicogenomics Database [232] and the gold dataset from
PREDICT [237]. It is made of 111481 links between 1314 drugs (in DB format)
and 3966 diseases. The conversion in our nomenclature produced a total of
46607 links between 813 drugs and 1335 diseases, 84% of which are not in MC.

LL [244] The article by Li and Lu provides a sparse matrix representation of 3250
links between 799 drugs and 719 diseases, both in natural language. Data are
extracted from the National Drug File - Reference Terminology. We were able
to extract 1240 valid links between 673 drugs and 384 diseases, 22% of which
are not in MC.

SLAMS [269] The SLAMS recommender system provides 3871 interactions be-
tween 355 drugs and 406 diseases, both stored in natural language. Data are
extracted from DB and from the National Drug File - Reference Terminology as
for [244]. After our filtering, we obtained 1420 useful links between 242 drugs
and 194 diseases, 77% of which are not in MC.

6.3 Methods

In the following, we describe the implementation of the recommender engine, starting
from how data gathered from the sources (described in Section 6.2) are used and
providing details about the working parameters.

6.3.1 Assembling available data

We employed 𝐺DB and 𝐺DGN to extract similarity scores 𝜎 between drugs
and diseases respectively, hence obtaining two complete edge-weighted digraphs
𝐺drg = (𝑉drg, 𝐸drg, 𝜔drg) and 𝐺dis = (𝑉dis, 𝐸dis, 𝜔drg) with drugs/diseases as nodes
and similarity scores𝜎 as the weight of the edges, i.e.𝜔𝐸 (𝑢, 𝑣) = 𝜎(𝑢, 𝑣). Then,𝐺MC
provides a natural way to connect 𝑉drg and 𝑉dis by weighting connections according
to vertices degree (cf. simple random walk in Section 1.7.1), hence obtaining a single
digraph 𝐺. A pictorial representation of these steps can be found in Figure 6.3 while
a pseudo-code is provided in Algorithm 23.
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Fig. 6.3: (a) The datasets DB and DGN are processed according to the 𝜎 measure, yielding (b)
𝐺drg and 𝐺dis respectively. (c) These two digraphs are then connected by 𝐸conn edges, obtained
from MC with weights set to 1. The recommendation shown in cyan is obtained from R (ℓ) that
relies on biased random walks like yellow and purple ones.

We define 𝑝(𝑡) as the presence ratio of the gene 𝑡 in the graph𝐺DB = (𝑉DB, 𝐸DB),
namely

𝑝(𝑡) = |{𝑢 ∈ 𝑉 | 𝑡 ∼DB 𝑢}|
∥𝐺DB∥

, (6.1)

where we are denoting connectivity on 𝐺DB as ∼DB rather than ∼𝐺DB for ease of
notation. Here, 𝑝(𝑡) is a probability distribution, i.e.

∑
𝑡 𝑝(𝑡) = 1, therefore, given a

gene sets 𝑇 , the Shannon Entropy

𝐻 (𝑇) = −
∑︁
𝑡∈𝑇

𝑝(𝑡) · log2 (𝑝(𝑡)) (6.2)

is well-defined. We define 𝑉drg = 𝑉DB ∩𝑉MC as the set of drugs and we compare two
given drugs 𝑢, 𝑣 ∈ 𝑉drg by means of their target genes sets 𝑇𝑢 and 𝑇𝑣 as

𝜎(𝑢, 𝑣) = 2𝐻 (𝑇𝑢 ∩ 𝑇𝑣)
𝐻 (𝑇𝑢) + 𝐻 (𝑇𝑣)

, (6.3)

hence weighting each gene according to its relevance within the dataset. In particular,
0 ≤ 𝜎(𝑢, 𝑣) ≤ 1, where 𝜎(𝑢, 𝑣) = 1 if and only if 𝑇𝑢 = 𝑇𝑣 and 𝜎(𝑢, 𝑣) = 0 if and only
if 𝑇𝑢 ∩ 𝑇𝑣 = ∅. We finally consider the drug similarity-weighted complete digraph
𝐺drg = (𝑉drg, 𝐸drg, 𝜔drg) by defining the weight of the edge as

𝜔drg (𝑢, 𝑣) ≡ 𝜔𝐸drg (𝑢, 𝑣) =
{

𝜎 (𝑢,𝑣)∑
𝑤∈𝑉drg 𝜎 (𝑢,𝑤)

if 𝜎(𝑢, 𝑣) > 0

0 otherwise
. (6.4)
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Algorithm 21: EvalSigma(𝑉, 𝐺𝑑) ↦→P
Input: A dataset 𝐺𝑑 = (𝑉𝑑 , 𝐸𝑑 ) for 𝜎-score evaluation over the vertex set 𝑉
Result: The edges weight given as transition matrix P for the complete graph over 𝑉
Constraint: 𝑉 ⊂ 𝑉𝑑 , ⟨𝑉 ⟩𝐺𝑑

� 𝐼 |𝑉 |

1 P← 0|𝑉 |×|𝑉 | ;
2 for (𝑢 ∈ 𝑉)
3 𝑍 ← 0;
4 for (𝑣 ∈ 𝑉, 𝑣 ≠ 𝑢)
5 P𝑢,𝑣 ← 𝜎 (𝑢, 𝑣);
6 𝑍 ← 𝑍 + P𝑢,𝑣;
7 for (𝑣 ∈ 𝑉, 𝑣 ≠ 𝑢)
8 P𝑢,𝑣 ← P𝑢,𝑣/𝑍 ;
9 return P;

In particular, since
∑
𝑣∈𝑉drg 𝜔drg (𝑢, 𝑣) = 1 ∀𝑢 ∈ 𝑉drg, we have that the correspond-

ing weighted adjacency matrix Pdrg is right-stochastic. It follows that Pdrg can be
interpreted as a transition matrix1 (cf. Section 1.7.1).

Following the same pattern on 𝐺DGN, we define 𝐺dis = (𝑉dis, 𝐸dis, 𝜔dis) as the
disease similarity-weighted complete digraph with edge-weight 𝜔dis, hence making
diseases and drugs comparable by means of the similarity score.

The steps leading to the similarity digraphs are summarised and generalised in
Algorithm 21.

We later consider the two complete bipartite digraphs𝐺drg,dis overV = 𝑉dis∪𝑉drg,
from 𝑉drg to 𝑉dis and vice versa. It is pretty straightforward to consider the edge
weighting induced by the out-degree of each node in 𝐺MC, that is

𝜔drg,dis (𝑢, 𝑣) =
{

1
𝜕+MC (𝑢)

if 𝑢 ∼MC 𝑣

0 otherwise
(6.5)

for 𝑢 ∈ 𝑉drg, 𝑣 ∈ 𝑉dis, and for 𝑢 ∈ 𝑉dis and 𝑣 ∈ 𝑉drg. The corresponding adjacency
matrix Pdrg,dis is, again, right-stochastic (see Footnote 1). A pseudo-code representing
the procedure is provided in Algorithm 22.

If we consider the complete digraph in the vertices V, namely (V, 𝐸) = 𝐺drg ∗
𝐺dis, it is easy to see that the three sets of edges weights 𝜔dis, 𝜔drg, 𝜔drg,dis assign
positive values to disjoint set of edges. In fact, we have that the corresponding
transition matrices opportunely extended onV are of the form

Pdrg =

©­­­­«
𝜔drg 0

0 0

ª®®®®¬
, Pdis =

©­­­­«
0 0

0 𝜔dis

ª®®®®¬
, Pdrg,dis =

©­­­­«
0 𝜔drg,dis

𝜔drg,dis 0

ª®®®®¬
(6.6)

1 Actually, some of the rows could be empty if a drug has no common target genes with the others,
hence making necessary the “otherwise” clause; we get rid of this problem, also causing the matrix
not to be right-stochastic, in the next steps.
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Algorithm 22: EvalConnections(𝑉1, 𝑉2, 𝐺𝑑) ↦→P
Input: A graph 𝐺𝑑 to evaluate the connection weights between 𝑉1 and 𝑉2
Result: The edges weight P for the complete bipartite digraph over 𝑉1 ∪ 𝑉2
Constraint: 𝑉𝑑 ⊆ 𝑉1 ∪ 𝑉2, 𝑉1 ∩ 𝑉2 = ∅

1 V ← 𝑉1 ∪ 𝑉2;
2 P← 0|V|×|V| ;
3 for (𝑢 ∈ V)
4 𝑍 ← 𝜕𝑑 (𝑢);
5 for (𝑣 ∈ 𝑁𝐺𝑑

(𝑢)) // 𝑁𝐺𝑑
(𝑢) ⊆ 𝑉2

6 P𝑢,𝑣 ← 1/𝑍;

7 return P;

It is then straightforward to build a complete weighted digraph (with self loops)
𝐺 = (V, E, 𝜔E) by combining such weights and by adding suitable weights to
self loops: in order to preserve the transition matrix interpretation, we halve the
contribution of each weight function and we set the weight 𝜔E (𝑣, 𝑣) for each vertex
𝑣 ∈ V as 1 −∑

𝑤≠𝑣 𝜔E (𝑣, 𝑤)2, namely

𝜔E (𝑢, 𝑣) =



1/2 · 𝜔drg (𝑢, 𝑣) if 𝑢, 𝑣 ∈ 𝑉drg
1/2 · 𝜔dis (𝑢, 𝑣) if 𝑢, 𝑣 ∈ 𝑉dis
1/2 · 𝜔drg,dis (𝑢, 𝑣) if 𝑢 ∈ 𝑉drg, 𝑣 ∈ 𝑉dis
1/2 · 𝜔drg,dis (𝑢, 𝑣) if 𝑢 ∈ 𝑉dis, 𝑣 ∈ 𝑉drg

1 −∑
𝑤≠𝑣 𝜔E (𝑢, 𝑤) if 𝑢 = 𝑣

(6.7)

The transition matrix of graph 𝐺 obtained according to the weights from (6.7)
represents the base of our DR. In the following, we will denote it as R, since it
holds all the information we know from the very first step of our DR. The complete
procedure to create R is provided in Algorithm 23.

6.3.2 The core of the recommender system

In this section, we exploit the transition matrix property of R to model our system
as a recommender for the most probable destination of fixed-length biased random
walks.

We recall from Section 1.7.1 a ℓ-length R-biased random walk over V being a
sequence of ℓ + 1 nodes

2 It is a good practice to reduce each positive entry 𝜔𝐸 (𝑢, 𝑣) by a factor 𝑜 (min{𝜔E (𝑒) ∀𝑒 ∈ E |
𝜔E (𝑒) > 0}) before evaluating 𝜔E (𝑢, 𝑢) . This operation gets rid of any numerical issue caused
by rounding operations on small floating-point values, hence ensuring no negative value is assigned
to 𝜔E (𝑢, 𝑢) .
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Algorithm 23: AssembleData(𝐺DB, 𝐺DGN, 𝐺MC) ↦→R
Input: The dataset graphs 𝐺DB, 𝐺DGN and 𝐺MC
Result: The edges weight R for the complete digraph 𝐺 = (V , E, 𝜔E )

1 𝑉drg ← 𝑉DB ∩ 𝑉MC;
2 𝑉dis ← 𝑉DGN ∩ 𝑉MC;
3 V ← 𝑉drg ∪ 𝑉dis;
4 Pdrg ← EvalSigma(𝑉drg, 𝐺DB );
5 Pdis ← EvalSigma(𝑉dis, 𝐺DGN );
6 Pdrg,dis ← EvalConnections(𝑉drg, 𝑉dis, 𝐸MC );
7 Idrg ← 1|V|×|𝑉drg | ;
8 Idis ← ((1|V|×|𝑉dis | ) 𝜏 )t; // i.e. filled diag. is from bottom right corner
9 R ← Pdrg,dis + Idrg × Pdrg × (Idrg )t + Idis × Pdis × (Idis )t;

10 𝜖 ← 𝑜 (min{𝑤 ∈ R | 𝑤 > 0});
11 for (𝑢, 𝑣 ∈ V2)
12 R𝑢,𝑣 ← max{1/2(R𝑢,𝑣 − 𝜖 ) , 0};
13 for (𝑢 ∈ V)
14 R𝑢,𝑢 ← 1 − ∑{R𝑢,𝑣 | 𝑣 ∈ V};

15 return R;

𝑋 = (
source︷︸︸︷
𝑥0 , . . . ,

dest︷︸︸︷
𝑥ℓ ), 𝑥𝑖 ∈ V (6.8)

sampled with the probability distribution given by R according to (1.33), i.e.

P{𝑥𝑖+1 = 𝑣, | 𝑥𝑖 = 𝑢} = R𝑢,𝑣 . (6.9)

We define the ℓ-th recommendation R (ℓ ) as

R (ℓ )𝑢,𝑣 = P{𝑥ℓ = 𝑣, | 𝑥0 = 𝑢} , (6.10)

that, according to (1.39), can be evaluated as

R (ℓ ) = Rℓ =

ℓ-times︷        ︸︸        ︷
R × · · · × R . (6.11)

Given a percentage of drugs 0 < 𝔭 < 1 we want to recommend, we define the
drug recommender system ℜ

𝔭

ℓ
≡ ℜ(R, ℓ, 𝔭), as the map:

ℜ
𝔭

ℓ
: 𝑉dis → 𝑉

𝑝

drg
𝑢 ↦→ argmax𝑝

𝑣∈𝑉drg
(R (ℓ )𝑢,𝑣 )

, (6.12)

where 𝑝 = ⌊𝔭 · |𝑉drg |⌋ and argmax𝑝◦ ( 𝑓 (◦)) are the pre-images ◦ of the first 𝑝
maximum values of 𝑓 (◦).
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The definition of the recommender system also makes the methodology self-
explainable. In fact, given a recommendation 𝑟 for a disease 𝑑, we can query the
system to retrieve which paths contribute most to the novel connection itself, i.e. the
heaviest paths 𝑑 = 𝑤0 𝑤1 . . . 𝑤ℓ = 𝑟.

We can also define an analogous disease recommender system ℜ
𝔭

ℓ
: 𝑉drg → 𝑉

𝑝

dis
that, given a specific drug, unveils its relationship with other diseases. Due to the
asymmetric nature of the argmax operator and of the matrixR, the recommendations
generated by the two methodologies may differ i.e.ℜ𝔭

ℓ
is not symmetric. In fact, given

a disease 𝑑 ∈ 𝑉dis, we can have 𝑟 ∈ ℜ𝔭

ℓ
(𝑑) for some drug 𝑟 ∈ 𝑉drg while 𝑑 ∉ ℜ

𝔭

ℓ
(𝑟).

In other words, it could happen that the DR does not recommend a disease 𝑑 to be
treated via a specific drug 𝑟 even if 𝑟 was recommended for the treatment of that
specific disease 𝑑.

6.3.3 The parameters

Assuming R as fixed, there are two parameters in ℜ
𝔭

ℓ
: the length of the walk ℓ > 1

and the percentage of recommendations 0 < 𝔭 < 1.
In order to provide an upper bound for ℓ we tackle the task to determine the

argmax as a Markov process problem, where the graph 𝐺 forms the basis for an
ℓ-step Markov chain G (see Section 1.7).

In our experiments, G is irreducible. However, in general, this assumption can be
made without loss of generality. In fact, if G is not irreducible, then 𝐺 − {𝑒 ∈ E |
𝜔E (𝑒) = 0} is disconnected and hence we can study its components individually,
hence splitting G into independent irreducible Markov chains.

According to (6.7), for any state 𝑢 ∈ V we have R𝑢,𝑢 > 0 and therefore G is
aperiodic (and positive recurrent). We recall from Section 1.7.3 that an irreducible,
aperiodic and positive recurrent Markov chain is said to be Ergodic and that Ergodic
chains admit a unique stationary distribution 𝝅. In other words, we have that

R (ℓ ) = Rℓ ℓ→∞−−−−→ 𝚷 (6.13)

and, in general,

∀𝜖 > 0, ∃ℓ̄ < ∞ s.t. ∥R (ℓ ) −𝚷∥ < 𝜖 ∀ℓ ≥ ℓ̄. (6.14)

Then, for small 𝜖 > 0, we have that ℓ̄ is an upper bound for ℓ since ℜ𝔭

ℓ̄
would give

the same recommendation independently from the disease considered, hence being
uninformative for repurposing scope.

However, the convergence to a unique stationary distribution 𝝅 enforces the sta-
bility of the method. In fact, slightly modifying R (i.e. partially modifying the initial
conditions) we are expected to reach a similar 𝝅′, i.e. ∥𝝅 − 𝝅′∥ is negligible.
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POSITIVE SAMPLES

false negatives

i.e. wrongly not
recommended

true positives

i.e. correct
recommendations

NEGATIVE SAMPLES

true negatives

i.e. correctly not
recommended

false positives

i.e. novel
recommendations

recommendations

Fig. 6.4: Confusion matrix associated with the DR recommender system. ℜ𝔭

ℓ
recommendations are

represented by the shaded ellipse. False positives (shaded red) are to be minimised but, concurrently,
they represent also novel recommendations.

6.4 Performance evaluation

In this section, we provide an analysis of our method by means of the commonly used
performance indicators based on the confusion matrix obtained from the method’s
execution. We firstly analyse the method on its own, hence providing parameters tun-
ing by means of receiver operating characteristic (ROC) curves. Later, we apply our
methodology to cross-validation datasets provided by other literature recommender
systems.

6.4.1 Parameters tuning

As pointed out in Section 6.3.3, the recommender system ℜ
𝔭

ℓ
can be tuned by means

of two parameters:

(i) The length of the Markov Process 1 < ℓ ≪ ℓ̄ (discrete)
(ii) The recommendations percentage 0 < 𝔭 < 1 (continuous)

One of the most used tools in parameter tuning is the ROC curve (true-positive
rate vs. false-positive rate) constructed via the confusion matrix (cf. Figure 6.4) at
the varying of the parameters. The objective is to reduce the false-positive rate. As
it is common practice in the recommender systems literature, even if little or no a
priori information on the ground truth (GT) negatives is available (the absence of a
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(a) (b)

Fig. 6.5: The ROC curves obtained by the recommender system with various path lengths ℓ. The
axis represents false- and true-positive ratios. Curves are sampled with a rate ofΔ𝔭 = 0.01. Numeric
values of the AUC (integral of the curve) are reported in Table 6.2. (a) true- and false-positive ratios
are evaluated with regard to the complete dataset (unweighted). (b) true- and false-positive ratios
are firstly evaluated for each drug independently and then the average is computed (weighted).

ℓ unweighted mean AUC weighted mean AUC

2 0.908833 0.847932
3 0.961536 0.897935
4 0.931982 0.863702
5 0.924096 0.856561

Table 6.2: AUC of the ROC curves from Figure 6.5. Indicators are evaluated w.r.t. the complete
dataset (unweighted) or drug-by-drug and then averaged (weighted). Values are computed via the
Newton-Cotes numerical approximation formula.

given recommendation might be due to its effectiveness not being assessed, yet), it is
assumed that only a small fraction of the negatives are actually to be recommended.

For small values of ℓ, we can then build a ROC curve on the parameter 𝔭,
varying on 0 ≤ 𝔭 ≤ 1. Figure 6.5 represents such ROC curves with 1 < ℓ ≤ 5 and
Table 6.2 reports the corresponding area under the curve (AUC). Results are listed
with two indicators: unweighted rates are evaluated with regard to the complete
dataset (without taking into account the difference between the drugs); weighted
rates, on the contrary, are first evaluated regarding the drugs individually and then
averaged amongst them.

Weighted AUC values being smaller than unweighted ones (as expected) implies
that drugs associated with fewer a priori known-recommendations are more unreli-
able in the system. In fact, they have a stronger negative impact on the mean accuracy
than those with more recommendations available.
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According to ROCs, the best choice is ℓ★ = 3. Hence, recommendations derive
from exactly four random walks patterns of length 3 𝑋 = (𝑥0, 𝑥1, 𝑥2, 𝑥3) sampled
from one of the following

𝑉drg ×𝑉drg ×𝑉drg ×𝑉dis 𝑉drg ×𝑉drg ×𝑉dis ×𝑉dis
𝑉drg ×𝑉dis ×𝑉drg ×𝑉dis 𝑉drg ×𝑉dis ×𝑉dis ×𝑉dis

(6.15)

and nodes from the same set can potentially coincide.
With ℓ = ℓ★, we evaluate the best value of 𝔭 as the parameter generating the

furthest point from the reference diagonal

argmax
params

{sensitivity + specificity} , (6.16)

hence, obtaining 𝔭★ = 12.5%. In our setting, such a value corresponds to 213
recommendations per disease.

Analogous results are obtained also with leave-one-out 10-fold cross-validation
tests, where the AUC results in a mean value of 0.930174 and 0.862815 for weighted
and unweighted approaches respectively, both with a standard deviation of order
10-4.

6.4.2 Comparison with other methods

To provide more insightful information, we compare our method against the four
benchmark datasets RDB, ID, LL, and SLAMS introduced in Section 6.2. To keep
recommendations consistent with our method, we restricted such datasets by filtering
the diseases and the drugs available in our training and then we collect the result
regarding their connections. In situations like these ones, two main approaches are
possible: (i) a gentle re-tuning of the method with the new dataset in order to prove
the model’s flexibility to different data or (ii) a direct usage of the dataset as a cross-
validation set. While the first approach consists in performing parameter analysis
again on the novel dataset, hence forgetting the original set of data and therefore
taking the best results of the methodology over the benchmarks, the second approach
– the one we adopted – tests the benchmarks over the parameter gathered from
the original dataset. In this sense, we compared the recommendations our method
proposes with the ground truth obtained from the four restricted datasets. However,
to keep the environment of the test as close to reality as possible, we did not restrict
our method’s recommendation set to the drugs available in each benchmark dataset,
meaning that we made our method infer no information about the validation set it
was tested against; if this was the case, in fact, sensitivity and specificity values
would grow above (0.99, 0.9) due to the high number of recommendations, hence
being uninformative.

In Figure 6.6 we report, with respect to the Unweighted-mean ROC curve, the
true- and false-positive rates achieved on the benchmark datasets with ℓ = ℓ★.
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Dataset AUC Accuracy Sensitivity Specificity Shared
recoms

RDB 0.875031 0.8417 0.660791 0.875903 51%
ID 0.873807 0.7811 0.486318 0.881105 16%
LL 0.852050 0.8415 0.646048 0.853405 78%

SLAMS 0.873245 0.7701 0.469907 0.875486 23%

MC 0.892347 0.899491 0.899547 0.962165 100%

Table 6.3: ℜ
𝔭

3 AUCs and performance indicators for the benchmark datasets (cf. Figure 6.6).
Indicators are evaluated considering the best parameter 𝔭★ = 12.5%. Results for the main dataset
are reported as reference (MC).

Corresponding AUCs and numeric indicators extracted with 𝔭★ are reported in
Table 6.3.

As it is expected, better sensitivity and specificity results are obtained on LL and
RDB since they share more than 50% of the recommendation with our training set
MC (cf. Section 6.2.2). If we consider SLAMS and ID, while having less than 1/4 of
common data with MC, they achieve anyway a comparable accuracy and specificity.
Such comparable results provide a further clue of our method’s stability.

6.5 Case study: rheumatoid arthritis

In addition to the performances assessed in Section 6.4, we here explore in more
detail the results over an exemplar non-communicable disease (NCD), i.e. rheumatoid
arthritis (RA), a worldwide threat associated with spreading chronic inflammation
[249]. NCDs provoke, in fact, more than 44 million deaths per year [217] [261] and it
is estimated that RA, amongst the others, affects around 1% of the world population
[267]. RA’s incidence and representativeness make it an interesting case study to
explore the relevance of the results offered by the recommender system also being
its aetiology complex and not fully elucidated, since it includes both genetic and
environmental factors [259], [252].

Standard therapy (true positives) for RA was extracted from the 2021 update
of the American College of Rheumatology (ACR, [236]). Then, the relevance of
the findings towards potential clinical translation was manually curated for the top-
ranking novel results, using two sources of knowledge to deepen the information
retrieved by each entry. The first source is represented by PubMed [255], the most
comprehensive medical database. The second one is the well-known repository
ClinicalTrials [229] collecting concluded and ongoing clinical trials. In both cases,
the search terms were represented by the disease (rheumatoid arthritis) and the drug,
as recovered by the recommender system.

The top ten novel (w.r.t. the dataset) recommendations are reported in Table 6.4.
Score, drug name and CAS number are the output of the recommender system,
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Fig. 6.6: ROC curves obtained by testingℜ𝔭

3 against the benchmark datasets. Indicators are evaluated
w.r.t. the best setting𝔭★ = 12.5% and plotted over corresponding ROCs (numeric values are reported
in Table 6.3). Reference unweighted ROC is plotted as well (cf. Figure 6.5(b)).

while clinical trials and related publications are the results of our manual analysis
of the findings. Recommendations are divided according to the associated evidence
(publication or clinical study), into three sets:

approved Are drugs already employed in the literature (see [236]) but not present in
our training set MC. Being able to predict them offers a measure of the validation
of the system itself.

potential Are experimentally promising drugs according to recent publications (re-
ported in the table as well). They appear to be mainly drugs whose validation
in clinical trials is not (yet) engaged, but whose usage in animal models (mostly
collagen-induced arthritis – CIA – rodents) has recently offered promising re-
sults. This is the case for Gemcitabine (95058-81-4) [231] and Lenalidomide
(191732-72-6) [247], whose identification by our system is particularly inter-
esting due to their recent developments (i.e. after 2017).
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Score [%] Drug Name cas-number # Trials Relevance

3.8830 Dihydrofolic Acid 4033-27-6 0 open
3.3545 Folic acid 59-30-3 307 approved
3.0627 Cyclophosphamide 50-18-0 7 approved
2.1424 Gemcitabine 95058-81-4 0 potential [231]
2.0943 Doxorubicin 23214-92-8 0 open
2.0700 Tretinoin 302-79-4 2 open
1.9034 Farletuzumab 896723-44-7 0 potential [235]
1.8320 Cisplatin 15663-27-1 0 open
1.7145 Lenalidomide 191732-72-6 0 potential [247]
1.7101 Docetaxel 114977-28-5 0 open

Table 6.4: Top ten drug recommendations for RA with ℓ = ℓ★ = 3 iterations of the recommender
system. Score, drug name and CAS number are outputs of the recommender system, while clinical
trials and related publications are the results of our manual curation of the findings. Recommenda-
tions are divided into approved (already employed), potential (experimentally promising) and open
(little or no recent works). The most recent publication is reported for each potential result, while
[236] serve as a reference for approved ones.

open Are the ones supported by no hints of recent/ongoing related investigation.
They could potentially be the most important recommendations of the system,
providing a starting point for novel studies. However, they should be validated
by pharmacologists, a topic which is out of the scope of the present work.

Further inspection can be carried out thanks to the explainability of the output
provided by the Markov Process representation of the DR system. As an example,
Figure 6.7 reports the 25 paths of length ℓ = ℓ★ that are contributing most to
Gemcitabine novel recommendation, hence giving hints on the connections found.
The connection with the highest value is {RA → Fludarabine → Clofarabine →
Gemcitabine}. More in general, all these 25 connections share the same few drugs
(14) and diseases (5) with an interesting relevance in Fludarabine (cas-number =
21679-14-1, present in five paths), Fluorouracil (cas-number = 51-21-8, present
in nine paths), and Methotrexate (cas-number = 59-05-2, present in nine paths);
these paths consists in fact in 21 out of the 25 total (do note that such drugs are
present in the same path twice). All of these anti-neoplastic drugs can be found at a
distance of one from RA, meaning that they are present in MC dataset.

The category open, having no current support in the literature, can represent both
(expected) noise offered by such an automated system building on a meaningful but
limited database or the most innovative opportunities. In this sense, the explainability
of the recommendation represents a significant added value, offering pharmacologists
and rheumatologists a clear starting point for further consideration as well as the
feasibility of (early) translation into clinical testing.
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Fig. 6.7: Depiction of the recommendation process of the drug Gemcitabine in the case study of
RA (top 25 path contributions shown, coloured from yellow, as the most probable path, to blue, as
the least probable one). From left to right, the disease RA (source) is linked in the first step of the
process with similar diseases (in red) according to 𝜎-scores and approved drugs (in green) through
known associations. Then, a second step is performed and a different set of drugs is reached (some
of the nodes are returning from the first step, marked with †). Finally, the paths reach Gemcitabine
with a third (and last, ℓ = 3) step, generating the recommendation.
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6.6 Discussion and conclusions

Drug recommendation processes encompass experimental and computational ap-
proaches, with the latter potentially leveraging on computational resources as well
as algorithmic advances, especially in the area of machine learning [256]. The power
and flexibility of such tools created high expectations in the field of personalised
medicine, a twenty years-long effort in the evolution of the medical paradigm [251],
whose latest interpretations rely on machine learning for applications ranging from
diagnosis to therapy. In this setting, however, high-level transparency and account-
ability are mandatory, hence promoting explainable machine learning methods [264].

In this perspective, we here proposed a similarity-based approach that exploits es-
tablished associative knowledge on experimental drug-gene molecular interactions,
disease-drug and disease-gene associations, and pharmacological (disease-drug) in-
dications to build a predictive DR system.

The way the proposed approach is built grants several advantages. Amongst the
others, one is the standardisation, interoperability, quality and up-to-date information
obtained thanks to the choice of robust, binary-type data. Moreover, the use of asso-
ciative binary data (i.e. drug-disease, gene-disease, drug-gene) allows to overcome
the problem of the trustworthiness and sensibility to experimental settings of quanti-
tative data (such as e.g. gene expression data, valuable and extremely refined but also
sensitive to noise [258]), and to take advantage of prior knowledge characterised by
high robustness, reliability and stability. Another key feature is represented by the
generation of explainable prediction, which can be obtained, once again, since the
choice made here to integrate several binary associative datasets from reliable sources
(DrugBank, DisGeNET, MalaCards) allowed to build a robust and well-grounded set
of data that the recommender system is able to work on with a transparent approach.
The output is hence completely traceable, from the processing of the initial input
sources (diseases, drugs) up to the formulation of the drug repurposing proposal,
hence promoting it as an explainable artificial intelligence method.

On the other hand, typical issues of associative data generate DR shortcomings,
including noisy recommendations (e.g. false positive interactions) or incompleteness
in the datasets (false negative interactions). Here, the incorporation of sources con-
taining negative data (e.g. experimentally validated non-interacting pairs such as the
Negatome for protein-protein interactions [220]) or important pharmacological side
effects that impair drug usage (e.g. data from SIDER [243]) may help in refining the
output for practical, clinical use. Multiple, redundant or complementary data sources
(e.g. the Drug Repurposing Knowledge Graph [241]) will also help in this direction
to cover missing information as well as possible.

In future implementations, we plan to extend the capability of managing informa-
tion about drug–drug interactions, hence performing a step forward in the problem
of synergistic drug combinations while tackling the repurposing proposals issues.
To this scope, we plan to include the resources for drug synergy (e.g. DrugCombDB
[246]) and adversary effects (e.g. from DrugBank).

We also plan to include micro-RNA interactions, a growing field of interest
in diagnostic and therapeutic pharmacology (see [225]), to further strengthen our
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knowledge-graph; in fact, miRNA plays an important role similar to target genes
both for what concerns diseases (see [238]) and drugs (see [228]).
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Conclusions

In the present work, we have undertaken the task of collecting, extending, and
harmonising the contributions in the field of graph theory, machine learning, and data
analysis the candidate produced during his Ph.D. in mathematics at the “Università
degli Studi Roma Tre”.

The majority of the work presented here is derived from published articles in
reputable conferences and journals, such as the Elsevier Journal of Computational
Sciences (IF 3.817, cite score 5.9, Q1 in modelling and simulation) and IEEE/ACM
Transactions on Computational Biology and Bioinformatics (IF 3.702, cite score 7.5,
Q2 in applied mathematics).

Throughout this work, we have introduced several innovative methodologies and
algorithms that are applicable across a broad spectrum of fields, namely, big data
analysis, vehicular and pedestrian dynamics, as well as computational medicine and
immunology. Despite the heterogeneity of these fields (which might appear quite far
from one another), we were capable to capture the subtle mathematical underlying
backbone. Consequently, we have been able to contribute, albeit with some variation,
to all of these fields by employing similar techniques. These techniques are the
result of the journey undertaken by the candidate that started at “Università degli
Studi Roma Tre” nine years ago and led him to collaborate with (and thus learn
from) many experts in heterogeneous fields. Notable are the collaborations with
researchers affiliated with the “Istituto per le Applicazioni del Calcolo” which have
been instrumental in expanding the candidate’s knowledge and understanding.

These collaborations have demonstrated that, even in seemingly unrelated fields,
a common mathematical foundation can often be found. As a result, the theories
studied have multiple wide-ranging significant applications.

In particular, we have shown in Chapter 3 a fast and reliable algorithm for reducing
in terms of size graphs equipped with an attribute-based colouring. This methodology
hence enables the extraction of smaller yet meaningful representations from large
datasets organised as graphs, as it is a common case in big data. An application
example is discussed in the context of social networks.

A similar approach was employed, albeit on a different scale, in the context of
cultural heritage, specifically in extracting information from graph representations of
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museum-like environments. In this sense, Chapter 4 not only introduces a novel way
to represent museums as coloured graphs (with colours modelling expert knowledge),
but also investigates the complex behaviour of pedestrian traffic within exhibition
spaces. Several novel approaches, some of which are in the field of machine learning,
are introduced in this chapter, encompassing data gathering and analysis as well as
visitor flow modelling and optimisation. Notably, the introduction of a digital twin
allowed for the identification of changes with proven impacts on the daily operations
of renowned museums such as the museum of Galleria Borghese in Rome and the
Peggy Guggenheim Collection in Venice.

Chapter 5 shifts the focus from pedestrian to vehicular traffic, following the
trend of flow management through mathematical modelling. Within this context, we
address some of the problems related to real-time simulation and we propose two
machine learning methods to assist the mathematical model in making “appropriate
decisions”. Firstly, we tackle the issue of incompatible flux data obtained from fixed
sensors along highways and present a novel method for inverting the fundamental
diagram, thereby enabling the recovery of density at these sensors. In detail, the
method is built upon an LSTM-based artificial neural network capable of time-
series analysis, effectively distinguishing between freeway and congested situations.
Secondly, we address the problem of determining future-time boundary conditions
for the mathematical traffic model. Once again, the mindful use of an artificial neural
network proves to be effective in this regard.

Finally, in Chapter 6, we shifted our focus back to graph theory and we introduced
a novel drug repurposing recommender system based on biased random walks. In
particular, the system is based on a similarity-score entropy-like measure to construct
a transition matrix over a drug-disease knowledge graph. The resulting Markov chain
exhibits useful mathematical properties which enforce stability, consistency, and
explainability of the recommendation process.

Overall, the present work has contributed to the fields of graph theory, machine
learning, and data analysis by presenting novel methodologies, algorithms, and appli-
cations. The exploration of different domains showed the flexibility of mathematics
as a unifying field, allowing for meaningful contributions across heterogeneous
applications. Through collaborations and an interdisciplinary approach, we have
showcased the versatility and impact of the techniques developed, paving the way
for further advancements in these fields.



Author’s contributions

Apart from the works introduced in this thesis, the candidate also published four
other articles during his Ph.D.: three in the field of cryptography ([290, 272, 281])
with the Cryptography and Cybersecurity laboratory of “Università degli Studi Roma
Tre” as a natural follow-up of the candidate’s bachelor and master thesis work and
one in the field of computational topology ([275]) with the Computational Visual
Design Laboratory (CVD-Lab) of “Università degli Studi Roma Tre”.

At the time of writing, two more works by the candidate have been accepted for
publication ([277, 273]) and one is currently under preparation ([288]), all in the
field of cryptography.

Concurrently to the work presented in Chapter 6, the candidate is also collab-
orating with the European Project ERA4TB (European Regimen Accelerator for
Tuberculosis). Here, again with the “Digital Biology Unit” of the IAC-CNR, the
candidate is developing an agent-based system for simulating in silico Mycobac-
terium Tuberculosis (M.Tb.) pulmonary infection in a 2D/3D environment capable
of reproducing both in vivo and in vitro experimental data. The model itself will be
the object of a future paper currently under development [286].

The main objective of the research is to study the effect of novel drugs on
M.Tb. infection. In this setting, validation and application of the model are currently
undertaken in collaboration with the research laboratory of both the University of
Padova and Pavia which provide results of in vitro simulations.

Further work was also carried out for what concern the characterisation of the
Mt.B. disease in-host evolution and it is the object of an accepted paper [279].

The decision not to include those works relies mainly on their topics, which did
not suit well with the cohesive view presented here. It is indeed the candidate’s
belief that these works comprise different distinct narratives in their own right and,
consequently, they would have been superfluous within the scope of the present work.

Here is a comprehensive enumeration of the works accomplished by the candidate,
organised according to the type of publication.
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