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Summary /Thesis
INTRODUCTION

This thesis is made of the papers I wrote together with my Ph.D. colleague
Mattia Coloma and our advisor Prof. Domenico Fiorenza.

In this introduction I will briefly summarise the contents and the main results
and techniques of each of the papers. After that, the main body of the thesis
will be comprised of the latest version of each paper (i.e., the in-press version
for the accepted articles and the latest aryiv version for the one still under the
refereeing process), each followed by appendices to expand on some points that
could not find enough space in the articles or to present alternative points of
view on some aspects.

The first paper, “An exposition of the topological half of the Grothendieck—
Hirzebruch-Riemann-Roch theorem in the fancy language of spectra”, uploaded
to the aryiv on 27/11/2019 and accepted for publication in Ezpositiones
Mathematica on 17/11/2021, explains at a fundamental level the reasons for
the presence of the Todd class in the GHRR theorem, highlighting how natural
and inevitable it is.

In the second paper, “A very short note on the (rational) graded Hori
map”, uploaded to the aryiv on 29/03/2020 and accepted for publication in
Communications in Algebra on 08/11/2021, we show how the so-called graded
Hori map of [HM20] emerges at the rational level from the canonical equivalence
between left and right gerbes associated with a T-duality configuration and, in
particular, how it can be recovered as a pull-iso-push transform.

In the third paper, “The (anti-)holomorphic sector in C/A-equivariant
cohomology, and the Witten class”, uploaded to the aryiv on 28/06/2021 and
currently under review by the Journal of Geometry and Physics in its revised
version after a first positive report, we investigate the Witten genus from the
point of view of equivariant localization. We show how the a priori unjustified
statement that two formal degree 2 independent variables v and v have ratio
% = 7 € H can be made rigorous via a generalization of the Atiyah and Bott
localization theorem in equivariant cohomology, involving a suitably defined
(anti-)holomorphic sector in the equivariant cohomology for the action of an
elliptic curve C/A.

1. THE FANCY LANGUAGE OF SPECTRA AND THE TOPOLOGICAL
GROTHENDIECK—HIRZEBRUCH-RIEMANN—ROCH THEOREM

In the the paper “An exposition of the topological half of the Grothendieck—

Hirzebruch—Riemann—Roch theorem in the fancy language of spectra” we
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give an informal exposition of the theory of pushforwards and orientations in
cohomology with emphasis on categorical features of the category of spectra
coming into play, and show how the topological content of the GHRR theorem
naturally emerges from this.

While we explicitly reference the co-category Sp of Spectra in the article,
we just barely use its actual co-categorical structure explicitly. For our scopes
we just need to keep in mind that Sp is topologically enriched and that its
homotopy category has hom sets the 7y of the spaces of morphisms. We
denote by Sp(X,Y") the space of morphisms between spectra X and Y and by
[X,Y] :=mSp(X,Y) the hom set in the homotopy category.

Given a space X one obtains a spectrum out of it by first adjoining a basepoint
via the functor (=), : Top — Top, and then building the suspension spectrum
YT X by applying the functor £* : Top, — Sp. It is actually convenient denote
this spectrum just by X by a slight abuse of notation. We systematically do
this in the article, the only notable exception being writing S instead of X%+ for
the sphere spectrum. The co-category Sp of spectra is stable (in particular it is
the stabilization of the category of (nice) topological spaces). As such, it comes
with a fundamental family of self-equivalences given by the suspensions/shifts.
In view of their topological origin, the shift by 1 in positive degree is called the
suspension while in negative degree is called the looping.

Another important categorical feature of Sp we make a prominent use of is
its closed monoidality: we have a tensor product given by the smash product
of spectra and it admits a right adjoint F' given by the internal hom. The
tensor product allows us to define monoids (that is, ring spectra, representing
multiplicative cohomology theories) and comonoids (and we remark that all
suspension spectra admit a comonoid structure, inherited from their base space).
As a consequence, given a space X and a ring spectrum E we have a natural
ring structure on [X, E] and a natural map mo(F) = [S, E] — [X, E] making
[X, E] a mo(E) algebra.

Given a vector bundle V — X one defines its Thom spectrum X" to be the
suspension spectrum of its Thom space, the latter defined as the homotopy
cofibre of the map V\X — V', with V\X given by V minus the image of the
zero section of the bundle. Since trivial bundles become suspensions under
the Thom space functor, we can extend our definition of Thom spectrum to
virtual bundles (formal differences of bundles): if V=W — Z, and if Y + Z
equals the trivial bundle of rank n, we define XV = X"W*Y[—n]. This is useful
to define the Thom spectrum of the negative tangent bundle and to look at
the Pontryagin-Thom collapse map as a map of spectra vpy : S — X TX. A

2



theorem of Atiyah states that, if X is a compact smooth manifold, there is an
isomorphism of spectra under S between vpr : S — X 7% and ¢x : S — DX,
where the Alexander—Spanier dual DX = F(X,S) of X is the internal hom
spectrum of maps from X to S and ¢x is the map induced by the terminal
morphism X — S by duality.

This leads to integration as follows. Given a spectrum F one says that
a compact smooth n-dimensional manifold X is E-orientable if [ X, E] and
[DX[n], E] are isomorphic as [X, F]-modules, and one calls F-orientation of
X an isomorphism between them. Given an E-oriented manifold one then has
a natural integration map given by [X, E| = [DX|[n], E] £, [S[n], E].

The definition of orientability can be immediately extended to arbitrary
vector bundles as the condition [X, F] =~ [X"[-rk V], E]. Having introduced
this notion of E-orientability for arbitrary vector bundles, we consider what
we call closed families, a family F being closed if it is closed under box sums
and pullbacks. In a thesis appendix to the article, containing extra material
with respect to the article itself, we show how closed families defined this way
correspond to families of vector bundles associated with tangential structures
and vice versa. A coherent F-orientation of a closed family is the datum of an
E-orientation for every vector bundle in the family, such that our orientation
isomorphisms behave well under pullback and products. After we define stable
families as closed families containing every trivial bundle and such that given a
short exact sequence 0 — V; — V5 — V3 — 0 if two of them are in F so is the
third, we show how a coherent orientation of a stable family allows us to extend
the definition of E-orientation to virtual bundles that are formal differences of
bundles in the stable family.

Defining the tangent bundle to a map f : X — Y as the virtual bundle
Ty :=TX — f*TY, we say that f is F-oriented if T is. Given an E-oriented
map f we describe how to obtain pushforwards in cohomology, by first factoring
f:X — Y as an inclusion i : X — P composed with a fibration p: P - Y,
and then defining the pushforwards along ¢ and p. It should be remarked that
the pushforward along an E-oriented fibration p is quite technical, making use
of the theory of parametrized spectra of May and Sigurdsson [MS06] to build
the parametrized version ppr : Y — P~T¢ of the Pontryagin-Thom collapse
map. The pushforward along the inclusion is on the other hand more standard,
as the construction of the Pontryagin—Thom map in this case is straightforward.
Once one has the Pontryagin-Thom morphism ¢pr : Y — X717 one can define
the pushforward f, : [X, E] — [Y[dim X — dim Y], E] as the composition



%
[X,E] = [X T[dim X — dim Y], E] 225 [Y[dim X — dim Y], E].

We notice that ¢pr is a morphism of comodules so the map above is a map

of [Y, E]-modules. In particular, this gives the projection formula

f((ffa)r) = afi(x)
for any a € [V, E] and = € [ X, E].

In the second part of the article we focus on stably complex vector bundles,
that is, on the smallest stable family containing all the vector bundles with
structure group U(n), with n > 0, and prove that an orientation of this family
for a cohomology theory E amounts to a map MU — E, with MU the spectrum
of complex cobordism. We call this map, and the corresponding F-orientation
for stably complex vector bundles, a complex orientation of E. For an even
2-periodic ring spectrum F, i.e., for a ring spectrum such that W§]5+1E = (0 for
all k € Z and satisfying E' =~ E[2], this definition is shown to be equivalent to
the classical one in terms of the choice of a generator of F(S5?).

We then study the case of two complex orientations A and B for an even
2-periodic spectrum E and prove a first version of the Grothendieck—Hirzebruch—
Riemann-Roch theorem stating that, given f a complex oriented map,

fi(a) = f2(a tdas(Ty))

for any a € [X, E], with f2 and fZ the pushforwards induced by the two
orientations and td4 g(7y) a distinguished invertible element generalizing the

classical Todd class of Ty. Equivalently, the above identity can be written as
fa) -tdap(TY) = fZ(a-tdap(TX)).

As a slight generalization of this first version of the theorem, we get a second
version that more directly generalizes the classical statement. We consider two
even 2-periodic spectra E, F' each endowed with a fixed complex orientation,
and a map of ring spectra ¢y : E — F. Pushing forward the orientation on £ to
I one falls back into the first version of the theorem, where the two involved
orientations are now the original orientation on F' and the one pushed forward
from E via t. This way we obtain the following:

Proposition. Let pp: MU — E and pp: MU — F be complex orientations
for the ring spectra E and F', respectively, and let ¢»: E — F be a morphism of
ring spectra. Then, for any stably complex map f: X — Y and any a € [X, E],
the following Grothendieck—Hirzebruch—Riemann—Roch-like identity holds:

ba(f2%(a)) = fp(wz(a) tdyspp,or (T7))-



Finally we show how taking E and F' to be complex K-theory and periodic
rational cohomology, respectively, and taking 1 to be the Chern character one
recovers the classical statement of the Theorem:

Theorem. Let f : X — Y be a complex oriented map, and let K and HFy
denote the complexr K-theory and the periodic singular cohomology with rational
coefficients, respectively. Let fX and ff "o be the standard pushforwards in
along f in K-theory and in periodic rational cohomology, respectively. Finally,
let ch : K — HPy be the Chern character.

Then we have a commutative square:

R

) g_%,m_g.r
5‘\‘\(1' X " Yok - ' y
N% Vimamin- Codh’hur 033 V' h\’bh, Schrex -
LK) A W)
fos o L
Gr K @Q 22 Gr K (V) @

Wi V-omwn.\'«’{'\(f
,

VoL L .- “\

with td(f) the Todd class of the map f.

VRS 4

This is obtained by identifying the general Todd-type class tdy, . ,» appearing
in the Proposition above with the classical Todd class in the special case given
by the assumptions in the statement of the Theorem.

2. THE (RATIONAL) GRADED HORI MAP IN A VERY SHORT NOTE

In the article “A very short note on the (rational) graded Hori map” we
bring to light how the seemingly ad hoc construction of Han—Mathai’s graded
Hori map of [HM20] can be naturally seen as a pull-iso-push transform. This
generalizes the classical isomorphism between the twisted cohomologies of two
T-dual principal bundles known as the Hori map.

We work K-rationally over a fixed characteristic zero field K; doing this allows
us to work in the simple world of differential graded commutative algebras (DG-
CAs) letting us do everything rather explicitly leaving the geometric/topological
translation of the various constructions to the interested reader.

We begin by recalling how to extend DGCAs trivialising some cocycle as
an homotopy pushout (unsurprisingly, this is dual to the geometric operation
of forming the homotopy pullback giving the total space of a gerbe). In
particular we consider the DGCA K[z, zor] with two degree 2 generators and
extend it by trivialising the 4-cocycle given by product zopxog. This extension
Klar, Z2r]{zs,2.5) Will be the protagonist of the paper, as it is the DGCA
(co)classifying K-rational T-duality configurations.

We then consider a map f from K[z, Zor] {25,205} t0 some DGCA A and

out of this, by means of a rational “homotopy fibre/cyclification adjunction”,
5



we build several other extensions and K-rational gerbes, participating in
the following diagram where every square is a homotopy pushout and the
isomorphism v comes from the automorphism of K{xar, 2r] {2y, 2,5} SWitching
the cocycles:

14

| jL{f m)}w IR{f(war }\
\ /

We focus then on the upper part of this diagram and extend every DGCA B
appearing into it to the ring B = B [[€71, €] of bounded above formal Laurent
series in a variable £ of degree 2. Thanks to a fairly general result allowing us to
construct a degree-shifting map 7 : Gr(f(,,)} — Gr[—1], we give a projection
map 7: G 1~2{/f(x\2L)} — él\;g[—l] which lets us define the pull-iso-push transform
Ti—pr = TUIR : éz — é]\%[—l]. This reproduces/generalizes the graded Hori
map of Han-Mathai. Switching the roles of the left and right generators one
obtains the map Tz_r.

Once these maps have been defined in the formal setting above, we specialize
them first by considering the algebra of meromorphic functions with coefficients
in a given DGCA that are holomorphic on C\ {0}, and then by considering the
algebra of index 0 Jacobi forms (again with values in a given DGCA). Doing
this we prove that the composition 7;_,r o Tr_ 1 is naturally identified with the
operator —ﬁa—i, thus reproducing Theorem 2.2 from Han-Mathai paper.

In a thesis appendix to the article, containing extra material with respect to
the article itself, we give a sketch of the above constructions in the topological
setting, emphasizing how the lack of an isomorphism between K-theory and
even singular cohomology (which only become isomorphic after rationalization)

makes everything more involved.

3. THE WITTEN CLASS AND THE (ANTI-)HOLOMORPHIC SECTOR IN
C/A-EQUIVARIANT COHOMOLOGY

For a nice topological space X acted upon by a topological group G, the
G-equivariant (singular) cohomology of X is the (singular) cohomology of
the homotopy quotient X//G or, equivalently, of the space (X xg EG)/G.

6



Such a quotient always admits a map to BG = =//G and thus gives us a
map in cohomology H(BG) = Hg(x) - Hg(X) = H(X//G). In other words,
given a G-space X its G-equivariant cohomology is an algebra over Hg(x).
We will be mostly concerned with circle and torus actions, so we recall that
Hs (s R) = H(BSYR) = H(CP*R) = R[u] and Hgixs (5 R) = Rlu, ],
where u and v are variables of degree 2.

In our paper “The (anti-)holomorphic sector in C/A-equivariant cohomology,
and the Witten class” we recall the how to compute the equivariant cohomology
of a smooth manifold with a circle action via the Cartan (bi)complex. To be
more precise, rather than an action of the topological 1-torus, we consider the
actions of 1-dimensional Euclidean tori R/A, i.e., of Euclidean circles of length
A, where A is the positive generator of the lattice A € R. We remark that the
R/A-equivariant cohomologies will all be naturally isomorphic making this,
at a first sight, quite trivial and uninteresting. This is just a manifestation
of the contractibility of the moduli stack of real 1-dimensional lattices that
is isomorphic to R.¢; the case we are actually interested about, that of flat
2-dimensional tori, will yield more interesting features, again manifesting the
nontrivial topology of the moduli stack of 2-dimensional lattices.

For a given smooth manifold M with an R/A-action we therefore consider

the Cartan bicomplex
0 (M, R)™" @g Sym(ty[-2]),

whose two differentials are de Rham differential and the contraction along the
infinitesimal generator of the rotations, and whose total cohomology is the
R/A-equivariant cohomology of M. We also provide a version of the Cartan
(bi)complex written in terms of the coordinates relative to a choice of a linear
basis for the Lie algebra ¢, of R/A, which is useful for explicit computations.

Next, we turn our attention to equivariant characteristic classes of equivariant
vector bundles over R/A-trivial bases, i.e., such that the R/A-action on the
base of the bundle is trivial. Since an R/A-equivariant complex line bundle
over a R/A-trivial base can be seen as the datum of a standard complex line
bundle together with a complex character, we can define, using the splitting
principle, the weight polynomial wp(E°?) of (the effectively acted part of) a
complex R/A-equivariant vector bundle E as the product of the weights of the
characters associated with equivariant line bundles it formally splits into. Here
the weight w,, of a character x : R/A — U(1) is defined to be (27i)~" times the
Lie algebra morphism 2miw, induced by x.

Once the weight polynomial has been defined, we can define the normalized

top Chern class of E°T as the element, in the R/A-equivariant cohomology
7



localized at wp(E™), as copra(E™) = ciopr/a(ET) /wp(ET). Analogously,
we define the Euler class and normalized Euler class of (the effectively acted
part of) a real R/A-equivariant vector bundle V' and show that

eulz/A (V") i= \/opma (VI @ C).

After having presented the main constructions in the simplified setting of
Euclidean 1-tori, we then turn our attention to the case of 2-dimensional flat
tori equipped with a complex structure, or, equivalently, of complex Lie groups
C/A.

Here the analogue of the Cartan bicomplex above admits a tricomplex
structure, that is, we have that the C/A-equivariant cohomology of M with
coefficients in C is the total cohomology of

0°(M; C)" ®c Sym((ta")" [-2]) ®c Sym((ta*")*[-2]),

endowed with the three differentials given by the de Rham differential and by
the contractions in the complex directions d/dz and 0/0z.

Again, we also give a version with coordinates. Restricting our attention to
tA10 or 142! we get the holomorphic and antiholomorphic sector of the Cartan
complex. To be precise, we define the antiholomorphic sector of the Cartan

complex as the total complex of the bicomplex
0 (M; C)* @c Sym((¢a*")V[-2])

whose two differentials are the de Rham differential and the contraction in the
complex direction d/0z. Here too one can give a convenient description using
coordinates. We remark that one has a natural restriction map from the Cartan
tricomplex to the holomorphic and antiholomorphic sectors.

Unsurprisingly, everything we did in the 1-dimensional case admits an
analogue in 2 dimensions, in particular we define weights, the weight polynomial,
Chern and Euler classes and their normalized versions. The new, interesting
feature is that we can define these in the antiholomorphic sector by simply
taking the restriction map.

A well known theorem of Atiyah and Bott (see [AB84]) states that if M is a
smooth, orientable manifold with an S'-action and X is the submanifold of
fixed points, then there is an isomorphism of localized modules

i*/eul(v)

Hgi (M) Hg1 (X))

with eul(r) the Euler class of the normal bundle relative to the inclusion

i: X < M. Here one is localizing at the generator u of Hgi(+;R) = R[u].
8



In particular, by functoriality of the pushforwards, one obtains from this that

/M“’ - /X ZZ%

for any S'-equivariant form w on M. By formally using the localization formula,

in the seminal paper [Ati85] on localization techniques for S'-actions on loop
spaces, Atiyah obtains the A genus of a spin manifold X via an extremely neat
construction. Atiyah considers the (free) loop space LX of smooth unbased
maps from S! to X; this space admits a smooth, infinite dimensional manifold
structure and an action of S! given by rotations of loops. One may then want
to compute the (equivariant) volume of such manifold. By formally applying
the localization formula with M = £X (and so pretending to forget that the
localization formula was given only for finite dimensional manifolds) one can
simply define integrals on £X to be given by the localization formula. In
particular one has this way that the equivariant volume of £X is given by

/ / 1*vol
vol = )
£X x eul(v)

By using (-regularization techniques, Atiyah proved that, for a suitably chosen

“symplectic” volume form on £X, this actually yields the A genus of X. It

is interesting to notice that from Atiyah’s computation one can extract a

derivation of the A genus not involving the ill-defined infinite-dimensional

volume form: one finds

A(X) = ! :
X eul*(v)

—_—

where eul®(v) is the (-regularized normalized Euler class of the normal bundle
to the inclusion of X in £X as the submanifold of fixed points.

In our article we prove a version of the localization formula in the antiholo-
morphic sector. More precisely, we show that if an equivariantly closed form w
in the antiholomorphic sector is in the image of the restriction map from the

closed forms in the full Cartan complex, then

/ / Vw
w = _—.
M Fix(M) eul(ac/A(l/)

Having proved this antiholomorphic localization theorem, we want to apply it
to the mapping space M = Maps(C/A, X). To do this we have to work formally
since again the localization formula is actually true only for finite dimensional
manifolds. In particular the normal bundle of X = Fix(M) < M has infinite
rank and its Euler class is thus not well defined a priori. The trick is to proceed
with a Fourier decomposition and to notice that the (complexified) normal

bundle is isomorphic to the complexified tangent bundle of X tensored with
9



the direct sum of all nontrivial 1-dimensional representations of C/A. This
in turn implies that we can write our normalized Chern and Euler classes in
the antiholomorphic sector as infinite products that can be computed via a
(-regularization procedure.

We then obtain that, when X is a rational string manifold of even dimension

d then
o8]
= Z lt]R,j SA ’
1(9 ¢

(C/A( V)
where Wit ;(X) is the degree 2j homogeneous component of the real Witten
class Witg(X) of X, i.e., of the nonhomogeneous cohomology class defined by
d/2

Witg (X

)
z:ﬁj (rX)

where the 3;(T°X) are the Pontryagm roots of T X and o, is the Weierstrafl o-
function of the lattice A.

In a thesis appendix to the article, containing extra material with respect
to the article itself, we provide a general framework in which to view the
construction in our paper. In particular we suggest that it may be interesting
to associate to a manifold > and a subgroup G of its diffeomorphism group,
the integral of the normalized ({-regularized) Euler class of the G-equivariant
normal bundle relative to the inclusion ¢ : X — Maps(X, X). We give a
minimal example, with ¥ = S° and G = Z, and prove that, working in singular

cohomology with coefficients in 5, the aforementioned integral is always 0.
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An exposition of the topological half of the
Grothendieck—Hirzebruch—Riemann—Roch theorem in the fancy

language of spectra

ABSTRACT. We give an informal exposition of pushforwards and orientations
in generalized cohomology theories in the language of spectra. The whole
note can be seen as an attempt at convincing the reader that Todd classes
in Grothendieck—Hirzebruch—Riemann—Roch type formulas are not Devil’s

appearances but rather that things just go in the most natural possible way.

O\Y Q«;_s VA .

\a*«

\aw«u\b\- ?0 xc/LJr \o_g . dulr 11\’6{’(, SQ/L\(‘/\.:
LK) s w)
ova ) (n L <N
Gr K @Y — Grk (M) @

1. INTRODUCTION

After tensoring by @, the Chern character induces a natural isomorphism of
rings
ch: K(X)®Q — P H*(X;Q)
€L
from the complex K-theory of a (nice) topological space X to its even singular
cohomology with rational coefficients. Moreover, both complex K-theory and
singular cohomology have natural complex orientations. Simplifying a bit, this

means that if X is a compact complex manifold, one has pushforward maps
e K'(X)®@Q - K2 ¥ (,)@Q=Q

and

- [ DY - @E NG -

€7 €7
Since everything is very natural here, one would expect that in the best of
possible worlds the diagram

KO( ’ ’LGZ HQI(X Q)

would commute, i.e., to have an integral formula of the form

KU (V) = /X ch(V)

11




for any complex vector bundle V on X. Unfortunately, this formula is notoriously
not correct: it becomes so only after the introduction of a suitable multiplicative
correction factor, the Todd class of X, given by the cohomology class

(X) N c1(X)? + e2(X) N c1(X)ea(X)

2 12 24

This rather formidable expression is obtained from the characteristic power

td(X) =1+ 2

series

u u U2 U4

:1 — _—— —
1 —ev +2+12 720+

by applying the splitting principle to the holomorphic tangent bundle T'X of

X, i.e., if TX splits as a direct sum of complex line bundles L;, then

dime X u
td(X) = ] — .
i=1 u=ci1(L;)

On first sight, both the presence of the factor td(X) in the corrected formula

KU (V) = /X (V) td(X)

and its expression in terms of Chern classes may appear rather mysterious. The
main goal of this paper is to try to convince the reader that there is actually no
mystery here, and that on the contrary the specific correction factor td(X) is
precisely what one should have expected from the very beginning. We will try
to achieve this within an informal exposition of the theory of pushforwards and
orientations in cohomology, with an emphasis on categorical features of the
category of spectra coming into play.

We make no claim of originality. Everything we write can be found elsewhere,
and plenty of references will be given throughout the text. We owe most of our
gratitude for the inspiration to Ando, Blumberg and Gepner and their paper
[ABG10], to Panin and Smirnov for their [PS02] and [Pan02], and of course to
Quillen [Qui71]. We have also taken from Lurie’s [Lur09a] and [Lurl0], from
Ando, Blumberg Gepner, Hopkins and Rezk’s [ABGHRO08] and [AHR10], and
from May’s classic [May06].

We wish to reassure the reader that, although at the very beginning we will
be mentioning that the category of spectra is a symmetric monoidal stable
oo-category in the sense Lurie’s Higher Algebra [Lurl2], no advanced knowledge
of co-category theory is actually required to read this note as we will treat the
higher categorical aspects of spectra only very intuitively and we will be mostly
working in the homotopy category of spectra, which is an ordinary category
(i.e., a 1-category).

We thank Bertram Arnold, Nicholas Kuhn, Peter May, Denis Nardin and Dylan
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Wilson, whose answers to our random and often naive questions on MO have
actually been an invaluable encouragement at an early stage of this research;
Matthias Kreck and Peter Teichner, for influential comments on a preliminary
draft of these notes and on a talk based on them; Urs Schreiber, the Referee
and the Editor for comments, corrections and suggestions that greatly helped
us in improving the exposition from the first arXiv version to the present one;
Fosco Loregian, for countless coffees, beers and profunctors shared with us; and
Cliff Booth, for having pushed us to conclude the writing of this note. D.F.
thanks MPIM Bonn for the excellent and friendly research environment that
surrounded a revision of this note in a rainy week of November.

2. THE STABLE 00-CATEGORY OF SPECTRA

We will be working in the stable co-category Sp of spectra. We reassure the
reader possibly unfamiliar both with spectra and/or with co-categories (stable
or not) that a previous knowledge of these may be useful but not necessary at
all. A good motto to keep in mind is the following informal analogy: spectra
are to spaces as real numbers are to rational numbers. By this we do not only
mean that spectra are certain sequences of (nice) topological spaces just like
real numbers are (equivalence classes of) certain sequences of rational numbers,
but also —and this is the main content of the motto— that one actually works
with spectra by knowing the categorical features of the category they form
and its relations to the category of topological spaces, more than with their
actual definition entailing these features. In terms of the analogy, this is to say
that R can be defined as a suitable quotient of the set of Cauchy sequences of
rational numbers, but what one generally uses when working with real numbers
is not this definition but the properties it implies: e.g., that R is a complete
ordered field. This is actually a complete definition of R: a complete ordered
field, if it exists, is unique and contains Q. From this point of view, the whole
business of equivalence classes of Cauchy sequences can be seen as a proof of
the existence of a field with the completeness and ordering properties. Turning
back to spectra, we are saying that the only point we are asking the reader
to trust us on is that there exists a category Sp having the properties we will
attribute to it.

Actually, Sp will not be an ordinary category, but an (o0, 1)-category. We
address the interested reader to [LurQ9b] for a comprehensive treatment, and
here content us with saying that for two given objects X and Y in Sp, we do not
have just a set of morphisms, but a whole space of morphisms Sp(X,Y") between

X and Y. This allows us to say not only that two morphisms are possibly
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equal, but that they are possibly homotopic (i.e., they lie in the same connected
component of Sp(X,Y")), or to talk of homotopies between homotopies between
morphisms, and so on. Also, commutative diagrams of spectra will not be
strictly commutative, but always commutative up to some given homotopy,

which is part of the data defining a commutative diagram in an co-category.

Remark 2.1. Calling the objects of Sp “0-morphisms”, the elements in Sp(X,Y)
“l-morphisms, the homotopies between 1-morphisms “2-morphisms” and so on,
one sees that in Sp one has k-morphisms for every k > 0. This motivates the
terminology co-category. Moreover, since every homotopy is invertible up to a
homotopy between homotopies, one sees that for k£ > 1 every k-morphism in Sp
is invertible up to (k + 1)-morphisms. One indicates that 1 is the threshold for
invertibility by saying that the oo-category Sp is an (oo, 1)-category.

Taking connected components of the hom-spaces one gets the homotopy
category of spectra, usually denoted by hSp. As a matter of notation, hom-sets
in the category hSp will be denoted by [—, —] rather than by hSp(—, —), that
is one writes

[X7 Y] = 7TOSP(‘Xv Y),
for any X,Y in Sp. For a morphism f: X — Y in Sp, we will write
fr:5p(Y, Z) — Sp(X, Z)

and

fe:Sp(T, X) — Sp(T'Y)
for the continuous maps between hom-spaces induced by precompostion and
postcomposition with f, respectively. We will use the same symbols to denote

the induced maps between hom-sets in hSp.

Remark 2.2. Even by the few informal lines above, one should deduce that
oo-categories are a nice context for doing homotopical constructions. In classical
category theory, such a context is provided by the notion of a model structure
on a category. Starting with a model structure on an ordinary category is indeed
one of the most powerful ways to produce a rigorously defined (o0, 1)-category.
In these cases one says that the (o0, 1)-category is presented by the model
structure. For instance, a rigorous definition of the (o0, 1)-category of spectra
we are talking about is as the (o0, 1)-category presented by the standard model
structure on the (ordinary) category of orthogonal spectra [MMSS01].

Other two (00, 1)-categories we will meet in this note are the co-category
Top of (nice) topological spaces, presented by the classical (or Quillen) model

structure, and whose homotopy category hTop is the usual homotopy category
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of (nice) topological spaces, and its pointed version Top,. The co-categories
Top, Top, and Sp are related by the functors (or, better, co-functors)

Top i> Top, ,

and
Top, 2N Sp ,

where (=), : Top — Top, is the functor adjoining a free basepoint, i.e., X, :=
X u*, and X*: Top, — Sp is the infinite suspension, mapping a pointed space
Y to the spectrum given by sequence of pointed spaces X*Y recursively defined
by (X*Y )y =Y and (X¥Y),41 = X((X*Y),) for any n > 0. The morphisms
L((2*Y),) — (XY )41 giving X*Y the structure of a (sequential) spectrum
are the identities.

We will always look at (nice) topological spaces and pointed (nice) topological
spaces as spectra via the sequence of functors

Top i> Top, =, Sp ,
that is, given a space X, we will denote by the same symbol X its stabilization,
i.e., the spectrum XX, and similarly for pointed spaces. As a notable exception
to this rule, when X is the space = consisting of a single point, we will use the
classical notation S to denote the spectrum X% «.

It should be remarked that stabilization is not an embedding: by stabilising
one loses all the unstable information about a space X. Nevertheless, as we will
only be concerned with stable aspects, no confusion should arise in this note,
and we will find it an extremely convenient notation to denote by the same
symbol both a space and its stabilization.

Remark 2.3. By definition, the spectrum S has Sy = #;, = * L+ = S° and so,
inductively, S,, = S™ for any n > 0. It is called the sphere spectrum.

Remark 2.4. In an (o0, 1)-category, all universal properties are given “up to
homotopy” (with the homotopies being part of the universal property). For
instance, in an ordinary category C the property of an object & of being
initial is the fact that the hom-set C(¢, X) is a singleton for every object X in
C. In the (o0, 1)-categorical setting this is translated into requiring that the
hom-space C((J, X) is “a singleton up to homotopy”, i.e., into the requirement
that C(J, X) is contractible. This means that there is not a unique initial
morphism, but that the initial morphism is unique up to homotopies that are
in turn unique up to higher homotopies, and so on. With this in mind, one

continues to talk of “the” initial morphism ¢ — X. Similarly, the universal
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property of the pullback, declined into an (o0, 1)-categorical setting, becomes

the fact that the commutative diagram

C(T, X xzY) — C(T, X)

| |

C(T,Y) — C(T, 2)

is a homotopy pullback of topological spaces for every T in C. We refer the
reader to [Doe98] for an introduction to homotopical pullbacks and pushouts in

the category of (nice) topological spaces.

By saying that the co-category of spectra is stable one means it satisfies two
very simple axioms (see [Lurl2] for a comprehensive account):

(1) it has a zero object 0, i.e., an object that is at the same time initial and
terminal;

(2) it has pullbacks and pushouts, and every pullback is a pushout, and
vice versa.

Remark 2.5. Since pullback and pushout diagrams coincide in a stable (o0, 1)-
category, one sometimes calls them “pullout” diagrams. Pullout diagrams of
the form

L}Y

X
l g
0—— 72

are called fibre/cofibre sequences. In this case, one says that X is the fibre of g
and Z is the cofibre of g.

Remark 2.6. One uses a special notation to denote the fibre of the initial
morphism 0 — X and the cofibre of the terminal morphism X — 0. Namely
one denotes them by the symbols X[—1] and X[1], respectively, so that one
has the following defining pullout diagrams for these:

X[-1] —— 0 X —0
[
0 — X 0 — X[1]

Comparison of the two pullout diagrams above immediately shows that in a
stable (o, 1)-category C the shifts

[1], [-1]: C > C

are autoequivalences of C inverse to each other. One calls [1] the shift functor

and, for any n € Z one writes [n] for [1]™.
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Remark 2.7. The reader used to the language of triangulated categories will
have found this sketchy description of stable co-categories echoing something
familiar. And indeed the homotopy category hC of a stable (oo, 1)-category
carries a natural structure of a triangulated category, where distinguished
triangles are the image in hAC of fibre/cofibre sequences in C and where the
shift functor is induced by the shift functor of C. It is a nice exercise to show
that the two simple axioms of stable (oo, 1)-category imply the somehow less
transparent “octahedral axiom” of triangulated categories.

Remark 2.8. The shift functor in the (o0, 1)-category of spectra is induced
by the suspension functor on pointed topological spaces. By this reason it is
commonly denoted as X — ¥ X in algebraic topology textbooks. Here we prefer
denoting it by X — X[1] to stress that it is the shift functor. Since [1] and
[—1] are inverse autoequivalences of C, one has a natural homotopy equivalence
Sp(X[1],Y) = Sp(X,Y[—1]) for any X,Y in Sp. The identification of [1] with
the suspension functor then identifies the negative shift Y +— Y[—1] with the
loop space functor.

Remark 2.9. As in every stable co-category, the hom-sets [ X, Y] in the homotopy
category hSp have a natural structure of abelian groups. Namely, since 0 is the
zero object, we have natural homotopy equivalences Sp(X,0) = = and so, by
definition of the negative shift functor, the hom-space Sp(X,Y|[—1]) is defined
by the homotopy pullback

Sp(X,Y[-1]) ——— 0
0 — Sp(X,Y)

This gives a natural identification of Sp(X, Y'[—1]) with the loop space QSp(X,Y")
based at the zero morphism X — Y, i.e., at the morphism X — 0 — Y. Iterat-
ing this, one gets an identification Sp(X, Y |[—n]) = Q"Sp(X,Y) for every n > 1.
In particular, by using Y = Y[2][—2], this gives the the natural identification

[X,Y] = mSp(X,Y) = mQ*Sp(X, Y[2]) = mSp(X, Y[2]).

Definition 2.10. Let X be a spectrum. For any n € Z, one writes
TP (X) = [S[n], X]

and calls the abelian group 7>P(X) the n-th homotopy group of X.

Remark 2.11. Notice that if X is a pointed space seen as a spectrum, then for
n = 0, the homotopy group 7>P(X) is not the n-th homotopy group of X: it is

the n-th stable homotopy group of X.
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Another remarkable feature of the oo-category of spectra is that it is symmetric
monoidal with the smash product as tensor product and the sphere spectrum S
as unit object. Following [Lurl0] we will denote the smash product of spectra
with the symbol ® rather than with the usual A to stress it is the monoidal
product. Similarly, we will use @ instead of v to denote the coproduct of
spectra. Also Top and Top, are symmetric monoidal, with tensor product given
by the Cartesian product and by the smash product, respectively. Moreover,
both (=) : Top — Top, and ¥*: Top, — Sp are monoidal functors [MMSS01].
This fact has an immediate important consequence: spaces are special objects
within spectra with respect to the monoidal structure. Namely, every object in
Top is a coassociative cocommutative comonoid via the diagonal morphism
A: X — X x X and the terminal morphism X — . Since ¥ is symmetric
monoidal we have that a space X, seen as a spectrum, comes with natural
distinguished morphisms

A X - XX
e: X - S

making it a coassociative cocommutative comonoid in Sp.

Remark 2.12. Tensor product of spectra is compatible with the shift functor:

one has natural isomorphisms

X®V[) = (XQY)[1]= (X)) V.
These identify the shift functor with the tensor product with the object S[1].
2.1. Periodic ring spectra.

Definition 2.13. Algebra objects (or monoids) in Sp, i.e., spectra E endowed

with morphisms

m: FQFE — F
e:S—- F

satisfying the usual unit and associativity conditions will be called ring spectra.
If, moreover, the multiplication is commutative (up to coherent homotopies)
they will be called commutative ring spectra or E,-ring spectra.

Remark 2.14. Since shift commutes with tensor product, if F is a ring spectrum

then E[k] is an E-module for any k € Z.
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As in every monoidal category, if X is a comonoid and F is a monoid, then

[X, E] is a monoid with multiplication given by the composition

(A*’m*)

[X,E]|®[X,E] -2~ [X® X,E® E] [X, E]

As this multiplication is compatible with the abelian group structure on [ X, F],
when X is a comonoid and F is a monoid the hom-set [ X, F] has a canonical
ring structure, which is commutative if both F is commutative and X is
cocommutative. So, in particular, if X is a space and E is an F-ring spectrum,
then [ X, F] is a commutative ring.

Remark 2.15. Thanks to the compatibility of the shift functor with the tensor

product, if X is a space then the direct sum
PIx. En]]
nez

has a natural structure of graded commutative ring. This is called the graded
E-cohomology ring of X.

Remark 2.16. If ¢: E — F' is a morphism of E,-ring spectra, then
Vet [ X, E] — [ X, F]

is a homomorphism of rings, for any comonoid X. Dually, if p: X - Y is a

morphism of comonoids, then
o*: [V, E] - [X, E]

is a homomorphism of rings, for any E,-ring spectrum E. In particular, since
any continuous map of (nice) topological spaces is a comonoid map with respect
to the comultiplication given by the diagonal embedding, any continuous map
between spaces induces a pullback ring homomorphism ¢*: [V, E] — [ X, E].
As a special case of this, by taking the terminal morphism we see that for any
space X the ring [X, E] comes with a natural ring homomorphism

" (E) =[S, E] — [X, E,

making [ X, E] a 7;°(E)-algebra. One says that 73" (E) is the ring of coefficients
for the multiplicative cohomology theory defined by the E,-ring spectrum FE.

Example 2.17. Let A be an abelian ring. If £ = HA, the Eilenberg-Mac Lane
E-ring spectrum defining singular cohomology with coefficients in A, one has
WSP(H A) = A, so that the coefficients of singular cohomology are indeed the

coefficients in the sense of Remark 2.16.
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Remark 2.18. Since shift commutes with tensor product, if X is a comonoid in

Sp and Y is a comodule over X, i.e., we have a morphism
p:Y > XRY

making the obvious diagrams commute, then for any n € Z also Y[n] is a
X-comodule. In particular, for any n the hom-set [Y[n], F] is an [ X, E]-module
via the [X, E]-action

* M)

(X, E]® [Y[n], E] —2= [X @ Y[n], E® E] ~2"), [y [n), E].

A particular instance of this construction is obtained by taking X = S and
p: Y = S®Y the natural isomorphism, for any spectrum Y. This way, one
sees that [Y[n], E] is a [S, E]-module, i.c., a m°(E)-module, for any n € Z. In
particular, if Y is a space, this module structure coincides with the one induced
by the ring homomorphism 73°(E) — [V, E] described in Remark 2.16.

Remark 2.19. If X and Y are two (nice) topological spaces and E is an Ey-ring
spectrum, then the commutative diagram of spaces
XxY — X

L]

Y —— «

induces the commutative diagram of commutative rings

and so, by the universal property of the tensor product of commutative rings, a

morphism of rings
@5 [X, E] @, [V, E] — [X @Y, E].
One sees that ®g is induced by the external multiplication
[X,E]®[V,E] 25 [XQY,EQE] — ™= [XQY, E],
by factoring the latter through [X, E|® [Y, E] — [X, E] ®.50 () Y, E].

Definition 2.20. We will say that the F,-ring spectrum E is periodic of
period k or simply k-periodic if we are given an isomorphism of E-modules
¢ : E— E[—k]. The composition

Bp:S— E 5 E[—k]

is called the Bott element of the k-periodic Ey-ring spectrum (E, ¢).
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Remark 2.21. At the level of homotopy classes, the Bott element Sg is an
element in w3°(E).

Remark 2.22. Since ¢ is an isomorphism, the Bott element is invertible: there
exists an element 8;': S — E[k] with 8p8,' = 85'8e = e: S — E. For
any spectrum X, the multiplication by the Bott element induces a natural
isomorphism of abelian groups [ X, F] LN [X[k], E]. In particular, the choice of
an element & € [X[—k], E] is equivalent to the choice of an element Sg € [ X, F]
via the periodicity isomorphisms. If X is a space, by the universal property
of polynomial rings the latter are in bijection with ring homomorphisms
1P (E)[u] — [X,E] extending the canonical homomorphism ¢*: [S, E] —
[X, E], via the association u — Bg¢.

Remark 2.23. 1f (E, ¢) is a k-periodic E-ring spectrum, then the isomorphism
@ is the multiplication by the Bott element, i.e., ¢ is the composition

id®B

E=E®S % g Bk~ (EeE)[-k] 21 B[-

Therefore, one can equivalently define a k-periodic FE.-ring spectrum as an F-
ring spectrum endowed with a morphism g : S[k] — E such that multiplication
by g induces an isomorphism of F-modules F — E[—k].

Definition 2.24. An FE-ring spectrum F is called even 2-periodic if it is
2-periodic and 75, (E) = 0,Vk € Z.

Example 2.25. The first and most natural example of an even 2-periodic coho-
mology theory is complex K-theory KU. The Bott element Sxy € 7T§’ P(KU) =
K°(S?) can be identified with (the class of the) virtual line bundle 1¢ — L™! in
the K-theory of S?, where L = Opic(1) is the universal complex line bundle
over the complex projective line P'C =~ S? and 1¢ is the trivial rank 1 complex
vector bundle S? x C — S2.

Another even 2-periodic cohomology theory we will come back to later is
even 2-periodic rational singular cohomology H P, Q := @,_, HQ[2i]. Here,
as usual, HQ denotes the Eilenberg-Mac Lane spectrum of the abelian group
(Q, +), so that [X, HQ[2:]] = H*(X;Q) for any (nice) topological space X.

Its homotopy groups are given by
Qifi=0
0 otherwise.

TP (HQ) =

The Bott element Sup, o of HP.Q can be identified with 1 € WSP(H Q) via
Hpev@ H772 2z HQ 61_77'0 (H@>ﬁ Qﬁ

€7
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where [ is a degree —2 formal variable used to keep track of the degree shiftings.
In other words, the Bott element Syp,,q of H P, Q is naturally identified with
the formal variable § used in forming the even 2-periodic rational singular
cohomology of a space X:
HPL(X;Q) = €D H"™(X;Q)5".
€L

Equivalently, the Bott element Sgp, g is the fundamental class of S? via

SP(HP.,Q) = [ [ w5P(HQ[2i]) = mP(HQ[2]) = QB.

€L

Notice that at the level of 7r§ P’s, the Chern character ch: KU — H Pev@ gives
75°(ch): 3P (KU) — myP(H PpyQ) mapping 1c — L' to 1 — P17 = Bey(L).
As the first Chern class of the universal line bundle on P'C represents the
fundamental class of P'C in singular cohomology (with Z- and so also) with
Q-coefficients, we see that the Chern character maps the Bott element of KU
to the Bott element of H P,,Q.

2.2. Vector bundles and Thom spectra. We will also be prominently
considering the category VectBung of real vector bundles over (nice) topological
spaces, whose objects are vector bundles V' — X and whose morphisms are

commutative diagrams

where f is fibrewise linear. The category VectBung is symmetric monoidal with
monoidal product given by (V - X)@ (W - Y) = (VEW — (X xY)),
where (VA W)z = Vo @ W, and unit object the zero vector bundle over the
point.

Notation 2.26. With K-theory in mind, in what follows we will usually denote
the direct sum of vector spaces and of vector bundles by + instead than by .

Definition 2.27. The Thom space Th(V — X) of a real vector bundle V' — X
is defined as the homotopy pushout

VWX ———— V
f — s TH(V — X)

where V\ X denotes the total space of the vector bundle V' minus the copy of

X inside it given by the zero section.
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Notice that, by its very definition, Th(V — X) is a pointed space. The
basepoint of Th(V — X)) is customary denoted by co: it is the “point at infinity”
of the total space of the vector bundle V' — X in the “vertical directions”.

Remark 2.28. A more concrete description of the Thom space Th(V — X)) is
obtained as follows. In order to compute the homotopy pushout defining it,
one replaces the inclusion V\X < V with the homotopy equivalent cofibration
VAB(V) < V, where B(V) is the open unit disk bundle of V' for some chosen
Riemannian metric. By retracting on the closed unit disk bundle, this is in
turn equivalent to the cofibration S(V') < D(V'), where S(V') denotes the unit
sphere bundle and D(V') the closed unit disk bundle of V', respectively. The
Thom space of V' is then realized as the quotient space D(V')/S(V'), with base
point the equivalence class S(V'). One sees from this description that when
the base space X of the vector bundle V' — X is compact, the Thom space
Th(V — X) reduces to the one-point compactification of the total space V/,
pointed at the point at infinity.

Remark 2.29. The Thom space construction,
Th: VectBung — Top,
is a symmetric monoidal functor: one has a natural isomorphism
Th(VEAW - (X xY)) = Th(V - X) A Th(W - Y).
The above remark immediately leads to the following

Definition 2.30. The Thom spectrum functor (V — X) — XV is the symmet-
ric monoidal functor VectBung — Sp given by the composition

VectBung — 2 Top, SR Sp .

Example 2.31. If V is the rank zero vector bundle 0 = X x R — X then
VAX = & and so Th(0 — X) = X,. This implies X° = X, where as usual
on the right hand side we are writing X for the suspension spectrum X% X.
Another simple example is the following. As Th(R — =) = (S',00) = X, (%),
we have «& = S[1].

Remark 2.32. In the categorical spirit of this note, the actual definition of the
Thom spectrum functor is less important than its properties. What the reader
should keep in mind is that to a real vector bundle V' — X is associated a
spectrum XV in such a way that (X x Y)VEW ~ XV @YW and that +® = S[1].
For instance, from these two properties one derives

XV = (X x {})VE = XV @8[1] = X"[1],
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where we have written 1 for the trivial rank 1 vector bundle 1 := X xR — X.
More generally, writing n := X x R" — X for the trivial rank n bundle, one
has XV* = XV[n] for any nonnegative n.

The other categorical property of Thom spectra that we will need is that
Thom spectra are comodules over their bases: for every (nice) topological space
X and every vector bundle V — X the Thom spectrum X" has a canonical
X-comodule structure

Av: XV > X® X",
This is simply obtained by applying the Thom spectrum functor to the morphism

in VectBung given by the commutative diagram

% (0,idy) omV

| L

X 2, X xX

where A: X — X x X is the diagonal embedding. This construction is natural:
if (f,f): (V- X)— (W — Y) is a morphism in VectBung,then we have a
commutative diagram

XV A XXV
lfv lf@f‘/
WALy @yW
In other words, the construction of Thom spectra gives a functor
VectBung — Comod(Sp)
(V= X) — (X, XV),
where for any monoidal category C we denote by Comod(C) the category whose

objects are pairs (A, M), where A is a coalgebra object in C and M is an

A-comodule, and morphisms from (A, M) to (B, N) are commutative diagrams

Apg

where f: A — B is a morphism of coalgebras.
This gives a natural [ X, E]-module structure on the E-cohomology of XV.

Remark 2.33. If f: X — Y is a morphism of (nice) topological spaces and V' is
a vector bundle on Y we have a naturally induced morphism

(f, f): (X, X7y = (v, v")
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in Comod(Sp). In particular, given two vector bundles V' and W over a space

X, we have a natural morphism
(A, AVEY (X XY S (XX, XY XY

as a consequence of the pullback isomorphism V + W = A*(V EH W), where
A: X — X x X is the diagonal embedding.

Remark 2.34. The category VectBung has a positive shift given by tensoring
with the trivial rank 1 line bundle R — *. As we have seen in Remark 2.32,
the Thom spectrum functor changes the positive shift on VectBung into the
shift functor on Sp. As a consequence, we have a well defined notion of Thom
spectrum of a virtual bundle V =V, — V; on X, given by XV = X Vo+1h [—n],
where \71 is a vector bundle on X such that V; + \71 is the trivial rank n vector
bundle, for some n. As a shifted comodule is again a comodule, we see that XV
is naturally an X-comodule for any virtual vector bundle V on X.

Example 2.35. Let X be a compact smooth manifold, and let 7: X < R" be an
embedding. If v denotes the normal bundle to X in R”, then T'X + v is the
trivial rank n vector bundle over X, so that X~7% = X”[—n]. By considering
R™ inside its one-point compactification S™, one can look at ¢ as an embedding
i: X — S A tubular neighborhood U of X in S™ is homeomorphic to the
open unit disk bundle B(v) of the normal bundle v. Mapping all points of S
outside U to the point at infinity in the Thom space of v while keeping the
points of U fixed defines a map of pointed spaces S™ — Th(v). Applying %,
this defines a map of spectra S[n] — X and so, equivalently, a map of spectra

Ypr: S — XTX,

The latter is, up to homotopy, independent of all the choices involved in its
definition. It is called the Pontryagin—Thom collapse map.

3. E-ORIENTATIONS AND INTEGRATION

A second main feature of the category of spectra we will use is that it is
monoidally closed, i.e., for any object X the functors

—®X:Sp—Sp
X®—:Sp—Sp
have right adjoints. We will write

F(X,~):Sp—Sp
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for the right adjoint of the right multiplication functor — ® X, i.e., we have

natural isomorphisms
Sp(Y ®X,Z) =Sp(Y,F(X, %))
for any spectra X,Y, Z.
Definition 3.1. The Alexander—Spanier dual DX of a spectrum X is
DX = F(X,S),
i.e., it is the spectrum characterized by
Sp(Y,DX) =~ Sp(Y ® X, S),
naturally, for any spectrum Y.

It is immediate from the definition that D is a contravariant functor D: Sp —
Sp°P. Moreover, as S is the unit object, we have a natural isomorphism DS = S.

In particular, for any space X we have a distinguished morphism
v:S— DX,
which is the image under the duality functor D of the distinguished morphism
X —S.
We have already noticed (nice) topological spaces are special among spectra.
A somehow surprising fact is that, even from the spectral point of view, compact

smooth manifolds are special among (nice) topological spaces. We have the

following

Theorem 3.2 (Atiyah). [Ati61] Let X be a compact smooth manifold. Then
there is an isomorphism of spectra under S

S
27N
XX = y DX

where TX is the tangent bundle of X, X~ 7% is the Thom spectrum of the
virtual bundle =T X, and ypp: S — X 1% is the Pontryagin—Thom collapse

map from Ezample 2.35.
From Theorem 3.2, we get

Corollary 3.3. Let X be a compact smooth manifold. Then DX carries a
natural X -comodule structure. In particular, if E is a ring spectrum, then
[DX, E] carries a natural [ X, E]-module structure.

We can now give the main definition of this Section:
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Definition 3.4. Let E be a commutative ring spectrum. A compact n-
dimensional smooth manifold X is E-orientable if [DX|[n], E] is an [X, E]-
module of rank 1. An FE-orientation of X is an isomorphism of [ X, E]-modules
[ X, E] — [DX|[n], E]. An E-oriented compact n-dimensional smooth manifold
X is a pair (X, o) where X is a compact n-dimensional smooth manifold and

o:[X, E] — [DX]n], E] is an isomorphism of [X, F]-modules.

Notice that, if (X, o) is an E-oriented compact n-dimensional smooth mani-
fold, then the datum of o is equivalent to the datum of a generator 7 = 7(x ,)
of [DX[n], E] as an [X, E]-module. The element 7 will be called the Thom
class of the F-orientation of X.

Definition 3.5. For (X,0) an E-oriented compact n-dimensional smooth
manifold we have a naturally defined integration map

/( . [X, E] — [S[n], E]

X,0)
given by the composition

(X, E] —% [DX[n], E] -2 [S[n], E]

Remark 3.6. When FE is the Eilenberg-Mac Lane spectrum HZ representing
integral cohomology, the datum of an FE-orientation of a compact smooth
manifold X is equivalent to the datum of an orientation of X in the sense
of differential geometry, and the integration map defined above is naturally
identified with integration in singular cohomology.

4. F-ORIENTED VECTOR BUNDLES

So far we have been considering E-orientations of compact smooth manifolds,
defined in terms of Thom spectra of opposite tangent bundles. It will be
convenient to generalize this construction to arbitrary real virtual vector
bundles (recall from Remark 2.34 that we have a well defined notion of Thom
spectrum XV for any real virtual vector bundle V over a (nice) topological

space X).

Definition 4.1. Let V' be a rank r virtual real vector bundle over X. V is
is said to be E-orientable if [XV[—r], E] is an [X, E]-module of rank 1. An
E-orientation of V is the choice of an isomorphism oy : [X, E] = [XV[—r], E].

Remark 4.2. Notice that with this definition each trivial real vector bundle
n = X xR™ — X has a canonical F-orientation. Namely, X™ = X[n], and so the

shift isomorphism provides a distinguished isomorphism [X, E| — [X*[—n], E].
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Definition 4.3. The datum of an E-orientation oy of a rank r virtual vector
bundle V is equivalent to the datum of a generator 7, of [XV[—r], E] as an
[X, F]-module; namely, the image of the unit 1 € [ X, E] via the isomorphism
oy. The element

v: XV[-r] - E
will be called the Thom element of the E-oriented bundle V.

Remark 4.4. Since orientations are isomorphisms of [ X, E]-modules from [ X, E,
they are a torsor for the group of [ X, EF]-module automorphisms of [ X, F], i.e.
for the group GL1[X, E] of units of [X, F]. In other words, if oy, gy are two
E-orientations on an FE-orientable rank r (virtual) vector bundle V' over X,
there exists a unique element my in GL[X, E] < [X, E] making the following

diagram

my -—

[

]

X, E] y [X,E
[XV[-r], E],

commute, where - is the product in [X, E']. Equivalently, we have 7y = my - 7y.

Remark 4.5. The functor X — GLi[X, E] is representable: there exists a
spectrum G Ly E with a natural isomorphism

GL.[X,E] =~ [X,GL,E].

Therefore a multiplier my can be equivalently seen as a morphism my : X —
GL.E.

Remark 4.6. A noteworthy property of E-orientations is that they satisfy the
2-out-of-3 property: if a short exact sequence 0 — V; — V5 — V3 — 0 of vector
bundles on a topological space is given, then E-orientations on two of the vector
spaces in the sequence canonically determine an E-orientation of the third one,
see [May06].

The main idea now is to study not only an E-orientation of a single vector
bundle, but to look at systems of coherent F-orientations of a family of vector
bundles.

Definition 4.7. A family of vector bundles F is said to be closed if it closed
under the operations of pullback and box sum. This means that:

(1) if the vector bundles V' — X and W — Y are in the family F, then the
box sum VAHW — X ®Y isin F,
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(2) for any map f: X — Y and every vector bundle V' — Y in the family
F, then the pullback bundle f*V — X is in F.

Remark 4.8. Notice that, if V,W are vector bundles over X, then via the
isomorphism A*(VEHW) =~ V + W from Remark 2.33 any closed family is
automatically closed under the operation of direct sum of vector bundles.

Ezample 4.9. Examples of closed families are the family of all (finite rank) real
vector bundles and the family of all (finite rank) trivial real vector bundles.
Other, more interesting examples are given by the family of all real oriented
vector bundles (i.e. real vector bundles V' with a reduction of the structure
group to SO(rk V'), where rk V' denotes the rank of V' as a real vector bundle),
spin bundles (i.e, with reduction of the structure group to Spin(rkV')), and
complex vector bundles (i.e., even rank real vector bundles V' with a reduction
of the structure group to U(3 rk V).

Definition 4.10. A coherent system of E-orientations on a closed family of
vector bundles F (or an E-orientation of F) is the datum of an E-orientation
oy : [X,E] = [XY[-1kV], E], for each V € F, satisfying the following

coherence conditions:

(1) Given V,W € F and f: X — Y the following diagrams commute.

[X,E]®[Y, F] 222 [XV[-1k V], E] @ [Y V[~ 1k W], E]

! |

(X QY E] [XVQYW[-1kV — 1k W], E]

and
[V, E] —— [YV[-1k V], E]

f*l l(fv)*

(X E] 5o [X7V [~k V] E]

(2) if a trivial vector bundle n is in F, then oy, is the canonical orientation
of n.

The next definition is motivated by the following two facts we noticed
in Remarks 4.2 and 4.6: every trivial bundle is canonically oriented, and

E-orientations satisfy a 2-out-of-3 property.

Definition 4.11. A closed family of vector bundles F is said to be stable if it

contains the family of trivial bundles and satisfies the 2-out-of-3 property, i.e.,
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if for a short exact sequence of vector bundles
two of the V;’s are in F then also the third is in F.

Ezxample 4.12. Let us consider the family of complex vector bundles. This is
a closed family but not a stable family: it contains only “half” of the trivial
bundles (those with even rank as real vector bundles). To obtain a stable family
out of the closed family of complex bundles we need to stabilize it, i.e. consider
vector bundles V such that V' + k is complex for some k > 0. Such bundles
are called stably complex. The family of stably complex vector bundles is a
stable family and it is the smallest stable family that contains the family of
complex bundles. More generally, for any closed family of vector bundles we

can consider its stabilization.

Remark 4.13. An FE-orientation of a stable family F is defined as an FE-
orientation of F as a closed family. It is immediate to see that the datum of an
E-orientation of a closed family is equivalent to the datum of an E-orientation
on its stabilization.

Remark 4.14. Equivalently, conditions (1-2) above can be expressed in terms of
Thom elements as

(1) Tvmw = v ®F Tw;
(2) Tprv = (fV) 103
(3) m=1€[X,E] = [X"*[-n], E].

Remark 4.15. Let {oy }ver be a an E-orientation of a stable family F. Then it
makes sense to talk about the E-orientation oy of a virtual bundle V' = V5 — V;
where both Vg, V; € F. Namely, by the 2 out of 3 property, any complement
171 of V} is in F. Writing V =V, + ‘71 — n, we have natural isomorphisms of
shifted Thom spectra

XV[-1kV] = XW0rVin[— 1k V] >

~ XYV [k V — ] = XY =1k (V) + V).

Since Vi + Vi € F, we have an E-orientation Oy, 47, Which we can take as the
FE-orientation oy of V. One checks that oy is well defined, i.e., it is independent
of the choice of the complement V;. This way the notion of E-orientation of
a stable family of vector bundles extends to stable families of virtual vector

bundles.
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Remark 4.16. Let V, W be two (virtual) vector bundles over the manifold X in
the E-oriented family . Then the pullback isomorphism V +W = A*(VEHW),
and conditions (1-2) in Remark 4.14 give

(AVEW)e(

VW = TV Qp Tw) = Tv - Tw.

The normalisation condition (3) then gives 7/ - 7_y = 1.

Remark 4.17. Tt follows from conditions (1-2) in Definition 4.10 that for
any (virtual) vector bundle V' in the E-oriented stable family F on X, the

multiplication by the Thom class 7y € [ XV [—1k V], E] gives natural morphisms
of [ X, E]-modules

XV, E] ™5 (XYY -1k V], B

As 1y - 7_y = 1, these are actually isomorphisms. In particular, by taking
W = n, we see that multiplication by the Thom class 7y is an isomorphism of
[X, F]-modules

[X[n], E] =5 [XV[n — 1k V], E],

for any n € Z.

So far we have defined compatible systems of E-orientations of a stable family
of vector bundles F. Again, rather than study a single system, it is interesting
to study how two compatible systems interact. As in Remark 4.4, two systems
of E-orientations {oy, sy }ver define a set of Thom classes {7y, ty }ver as well
as a set of multipliers {my }vcz, uniquely defined by the property 7, = myty.
Now we want to state some properties satisfied by the set multipliers {my }yecr.

Proposition 4.18. Let F be a stable family of vector bundles, and o and s
two E-orientations of F, with associated Thom classes T and t, and system of
multipliers m. Then for any two (virtual) vector bundles in the family F over a
space X, we have my w = mymy, and for any trivial vector bundle n on X

we have my, = 1. In particular, my ., = my for any V and n.

Proof. As the X-comodule structure on XV*" and the X ® X-comodule
structure on XV ® XV are compatible (Remark 2.33), for any \, u € [X, F],
we have (A\u)(ty - tw) = Mty - ptw. Therefore, by Remark 4.16 we have that
myiwtviw = Tv4w
=Ty *TwW
= mwtv . mwtw
= mvmwtv : tW

= mymwly w.
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The conclusion follows from uniqueness of multipliers. The statement for trivial

bundles is immediate from the normalisation condition 7, = ¢, = 1. O

Corollary 4.19. For the multipliers associated to a (virtual) vector bundle
V e F and to its opposite =V, we have mym_y = 1.

Remark 4.20. By Remark 4.5, the collection of multipliers can be seen as a
collection of morphisms my: X — GL,E, for any (virtual) vector bundle V'
over X, and the compatibility of multipliers with pullbacks amounts to the

commutativity of the diagrams

Y f y X
GI,E,

for any map f:Y — X.

5. PUSHFORWARDS IN F-COHOMOLOGY

We can now introduce the notion of an F-oriented map between compact
smooth manifolds and define a pushforward in E-cohomology along an FE-
oriented map. This will generalize the construction of the integration map
in Section 3, which will be recovered as the pushforward along the terminal
morphism X — = for an E-oriented manifold X.

For a smooth map f: X — Y we write T} for the virtual bundle over X

defined by
Ty :=TX — f*'TY.

Definition 5.1. An F-orientation of a smooth map f: X — Y is an E-
orientation of the virtual bundle —7%.

Remark 5.2. Notice that an E-orientation of a manifold is a special case of

FE-orientation for a morphism: X is E-oriented precisely when t : X — = is.

Remark 5.3. The 2-out-of-3 property of E-orientation of (virtual) vector bundles
implies that also E-orientations of maps have a 2-out-of-3 property: if

xLysy

are smooth maps and two out of {f, g,go f} are F-oriented then so is the third.
In particular, if f: X — Y is a smooth map between E-oriented manifolds then

f is canonically F-oriented. See [May06].
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We now describe how to define a pushforward map
fer [X, E] = [Y[dim X — dim Y], F]

for an F-oriented map f: X — Y which is a smooth fibration with typical
fibre a smooth compact manifold F' of dimension d = dim X — dimY. In this
situation we can think of f as a parametrized family over Y of (nice) topological
spaces, i.e., as an oo-functor f: Y — Top, where on the left we are writing Y for
its oo-Poincaré groupoid (i.e., for the co-groupoid with objects the points of Y,
1-morphisms the paths between points, 2-morphisms the homotopies between
paths, etc), and on the right Top is the oo-category of (nice) topological spaces,
with homotopies between continuous maps, homotopies between homotopies,
etc. as higher morphisms. Namely, the definition of (Serre) fibration is precisely
a way of encoding this idea. Now, we are always looking at topological spaces
as spectra via X7, so we look at f as a family of spectra parametrized by Y,

EOO
v L Top —> Sp.

We refer the interested reader to [ABG11] or [MS06| for a detailed and
rigorous treatment of the category Spy of all such parametrized spectra with
parameter space Y'; for the aim of this note the intuitive definition sketched
above will be sufficient.

The co-category Spy inherits from Sp the pointwise monoidal structure with
unit object the pointwise unit Sy given by the constant family with fibre S over
Y, and so pointwise duals. In particular we will have an Alexander—Spanier
dual Dy (f) coming with a distinguished morphism

¢r: Sy — Dy(f)
in Spy. By putting everything together (formally, this means taking the
o-colimit of the natural transformation ¢ of co-functors Y — Sp), we get a
map
Y — colimy Dy (f).

If we denote by Fj the fibre of f: X — Y over y € Y, then Atiyah duality
pointwise identifies Dy (f), = D(F,) with Fy_Tf so the one above is a map

. —Ty
Y — colimy F, 7.

Maybe not surprisingly, the colimit on the right hand side is the Thom spectrum
X~Ts (see [ABG11] for a rigorous proof). Therefore, at least when f: X — Y
is a smooth fibration with compact fibres, we have a natural Pontryagin—Thom
morphism

Ypr: Y — Xin.
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In the best of possible worlds, this would be true for any smooth map f,
not necessarily a fibration with compact fibres. And indeed it is. This can
be shown by factoring the map f as the composition of an embedding and
a smooth fibration with compact fibres and noticing that for an embedding
t: X < Y one has the geometrically defined Pontryagin—Thom collapse map
Y — X" = X1, However, to our knowledge, the general Pontryagin-Thom
morphism Y — X 77 for a general f has not yet been given a transparent
interpretation in terms of the monoidal closedness of the category of spectra.
See, however [ABG11, Remark 4.17] .

The morphism ¢@pr: Y — X717 is a morphism of Y-comodules, where the
Y -comodule structure on X ~77 is induced by its X-comodule structure via f,

i.e., the diagram
Y YprPT N X_Tf
Ayl |vsiaeas,
YQY ———— YX T

id®ypr

commutes.

Therefore, if f is E-oriented we can define a pushforward map
fer [X, E] = [Y[dim X —dim Y], F]
as the composition
(X, B] 2 [X T [dim X — dim Y], E] 255 [V[dim X — dim Y], E].

When f is the terminal morphism, the pushforward map f, is F-integration
over X.

Remark 5.4. Since ppr is a morphism of Y-comodules,
Yoyt [X T [dim X — dim Y], E] — [Y[dim X — dim Y], F]

is a morphism of [Y, E]-modules. Since [X, E] T, [X 7 [dim X —dim Y], E]
is an isomorphism of [X, E]-modules by definition of E-orientation, it will
also be an isomorphism of [Y, E]-modules where we look at every [X, E]
module as an [Y, E]-module via the ring homomorphism f*: [V, E] — [X, E].
Summing up, f, is a morphism of [Y, E]-modules, where we look at [ X, E] as
an [Y, E]-module via f*. This is the projection formula

f((fFa)-2) = a- fu(z)

for any a € [Y, E] and = € [ X, E].
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Remark 5.5. As we noticed, if X and Y are E-oriented, then f: X — Y gets a
canonical F-orientation by the 2-out-of-3 property. If moreover X and Y are
compact, multiplications by the Thom classes of TY and of f*TY intertwine
the morphisms induced in E-cohomology by ¢pr and the dual of f, i.e., we

have a commutative diagram

(Df)*

[DX[dim X], E] , [DY[dim X], E]

| |

[X~TX[dim X], E] [T [dim X], E]

f*TTYlZ ZlTTY

(X T[dim X —dim Y], E] ———— [Y[dim X —dimY], E]
YPT

of [Y, E]-modules. So we see that under these assumptions the pushforward f,

can be written as the composition
(X, E] = [DX[dim X], ] 225 [DY[dim X], E] 2 [Y[dim X — dim Y], E].

Remark 5.6. Since they are pullbacks along dualized morphisms, pushforwards
are covariantly functorial: if we are given a composition X Ly % 7 of
E-oriented maps, then we have (g o f), = g4 o fi. This is immediately seen
via Remark 5.5 in case X,Y and Z are compact E-oriented manifolds, and by
a similar argument in the general case of F-oriented maps. See [Dye69] for
details.

6. THE SPECTRUM MU AND COMPLEX ORIENTATIONS

Let us consider complex vector bundles. As every rank k£ complex vector
bundle over a manifold X is a pullback of the tautological vector bundle
Vi — BU(k), the naturality of orientations with respect to pullbacks tells us
that, in order to E-orient all complex vector bundles, we only need to orient all
the tautological bundles Vj, — BU (k). Moreover, from

XV+1C _ XV [2]7

where 1¢ := C x X — X is the trivial rank 1 complex vector bundle over X,
and from j*Vi.; = Vi + 1¢, where j: BU(k) — BU(k + 1) is the canonical
embedding, we see that a coherent system of E-orientations on all of the V}’s is
equivalent to the datum of a commutative diagram

- —— MUk —-1) — MU(k) — MUk +1) —

\l%



of maps of spectra, where we have written MU (k) for BU(k)"*[—2k]. By the
universal property of the limit, this is equivalent to a single map of spectra

p: MU — E|

where by definition
MU = lim MU (k)

This spectrum MU may informally be thought of as the infinite desuspension
of the Thom spectrum of the infinite dimensional tautological bundle over BU.

So far we have not used compatibility of orientations with formation of
direct sums, the latter operation giving the co-abelian group structure on BU.
Requiring this is equivalent to requiring that p: MU — E is a morphism
of homotopy commutative ring spectra. The morphism p described above
has by construction the rather special property that all of its components
pr = Tr: MU(k) — E are generators of [MU(k), E], which are free rank 1
[BU (k), E]-modules. Quite remarkably, this property is actually not special at
all: every morphism of homotopy commutative ring spectra p: MU — FE has
this property. Namely, one has MU(0) = S and the morphism MU (0) — MU is
the unit of MU. As a ring morphism preserves the unit, we have a commutative

diagram

NS

S=MU0) — MU(1 > MU
\lpl/

Now we have the following
Lemma 6.1. The zero section v: BU(1) — BU(1)"* is a homotopy equivalence.

Proof. Let Ly, = Opnc(1) be the universal line bundle over P*C. There is a
natural isomorphism (P"C)ftn ~ P**1C such that the zero section P"C —
(P"C)V» ~ P"IC is identified with the standard inclusion P"C — P""'C
as the hyperplane at infinity. Namely, let p be a point in P**'C\P"C. Then
the collection of projective lines through p, with the point p removed, is a
holomorphic line bundle over P"C which is immediately seen to be isomorphic
to Opnc(1). This realises the above mentioned identification. Taking the
limit over n we get an isomorphism BU(1) =~ BU(1)", where L = O(1) is
the universal line bundle over BU(1) = P*. The universal line bundle L is
obtained from the tautological line bundle V; by pullback along the equivalence
inv: BU(1) — BU(1) mapping each line bundle to its inverse induced by the

group automorphism of U(1) mapping z to z~!. By Remark 2.33 we therefore
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have a commutative diagram
BU(1) —— BU(l)L
linv linvvl
BU(1) —— BU(l)V1

where three of the arrows are homotopy equivalences, and so also the fourth
is. [

By the argument in Lemma 6.1 we see that p; provides an extension ¢ of the
unit of £ to P*[-2]:

Pe[-2]
% 2 inv\\\
P'C[-2] Pe[—2] \

where i1 : P'C — P® is the standard inclusion. As a consequence of the fact that
P* has a CW-complex structure with only even dimensional cells, one can show
that the datum of such an extension ¢ gives an isomorphism of [P*, E]-modules
[P*, E] = [P*[-2], E] = [MU(1), E] and that ¢ as an element in [P*[-2], E]
is a generator of this [P*, E]-module. This is a generalized version of the
usual isomorphism H?(P*;Z) ~ H°(P*,Z) in singular cohomology, see [Lurl0,
Lecture 4] for details. Therefore, p; is an E-orientation of the tautological line
bundle V; — BU(1). To conclude, we need to show that also the p;’s with
k = 2 are E-orientations of the tautological vector bundles Vj, — BU (k). This
is a corollary of the splitting principle for complex bundles in E-cohomology,
for F an E,-ring spectrum. Namely, the pullback of the tautological bundle
Vi — BU(k) along the morphism of topological spaces ji,: BU(1)* — BU(k)
splits as j;Vj, = levl and this induces identifications
Ji [BU(K), E] = [BU(1)®", EJ>™
() s [MU k), B] = [MU(1)%*, B>

where (—)%™ denotes the Sym,-invariants. As the j;’s and the actions of the
symmetric groups are compatible with the canonical embeddings BU (k) —

BU(k + 1), this identifies pj, with the symmetric element (p;)®*. The latter is

manifestly the datum of an isomorphism [BU (1)®%, E]3y™s ~ [MU(1)®*, E]3ms
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of [BU(1)®*, E]%™r-modules, so the p’s are E-orientations. Again, see [Lurl0),
Lectures 4 & 6] for details.
Summing up, by the above reasoning we have proven the following

Proposition 6.2. A system of compatible E-orientations on complex (and so
also on stably complex) vector bundles is equivalent to the datum of a single

morphism of homotopy commutative ring spectra p: MU — E.
In view of Proposition 6.2 it is natural to give the following definition.

Definition 6.3. Let E be an E,-ring spectrum. A morphism of homotopy
commutative ring spectra p: MU — F is called a complex orientation of the

Eo-ring spectrum F.

Remark 6.4. In particular, the identity morphisms idy;;: MU — MU defines
the canonical complex orientation of MU.

Remark 6.5. As both MU and E are E,-ring spectra, one may be tempted
to think the morphism MU — FE defined by a system of compatible FE-
orientations on complex vector bundles is actually a morphism of F-ring
spectra, but it is actually not necessarily so. Namely, differently from the case
of commutative rings inside all rings, the co-category of E-ring spectra is not
a full co-subcategory of the oo-category of ring spectra. This is so because the
enhancement of a ring spectra morphism between two E,-rings to an E-ring
morphism is structure and not property: it is the additional datum of all the
coherent homotopies involved in the definition of a morphism of F-ring spectra.
By the same argument for commutative rings inside all rings, a morphism
of ring spectra between E -rings is automatically a morphism of homotopy
commutative ring spectra, but an enhancement to a full morphism of F.-rings
may not exist. See [HL18] for a detailed discussion. Clearly, if MU — E is a
morphism of E-ring spectra then it is in particular a morphism of homotopy
commutative ring spectra, and so a complex orientation of F.

Remark 6.6. The above discussion shows that any lift of 1 € [S, E] to an element
e € [P*[—2], E] under the pullback morphism [P*[-2], E] — [P!C[-2], E] =
[S, E'] defines a morphism p;: MU(1) — E that uniquely extends to a morphism
of E,-ring spectra p: MU — E. Therefore, (homotopy classes of) complex
orientations of E bijectively correspond to these lifts. Moreover, one sees
by construction that ¢ is identified with the pullback of the Thom class
7 € [BU(1)F[—2], E] along the zero section +: BU(1) — BU(1)*

Remark 6.7. Although we are not going to make use of this fact, it is worth

mentioning that the spectrum MU has an interesting geometric characterization:
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it is the complex cobordism spectrum. For X a finite dimensional smooth
manifold the hom-set [X[n], MU] is the set of complex cobordism classes of
proper complex oriented maps f : Z — X with dim f :=dimZ —dim X =n
[Qui71]. In particular, when X is a point we get the complex cobordism ring

QY .= @PIS[n], MU] = @ P MU.
n=0 n=0
The spectrum MU is (—1)-connected, i.e., its homotopy groups vanish in
negative degree or, equivalently, MU =~ MUsq. This gives MU« = (MUx=0)<o
~ HrP(MU), and so the fibre sequence associated to the O-truncation of MU

1S

MU-q — MU — MU<y =~ Hr?(MU) = HZ.

As the O-truncation morphism for a E -ring spectrum is an F.-ring map, we

read from the above sequence an Fy-ring map
MU — HZ,

and so a canonical complex orientation for Z-valued singular cohomology.
Equivalently, this tells us that the family of all complex vector bundles has a
natural theory of Thom classes in Z-valued singular cohomology. We notice
that, by the functoriality of H— : CommRings — E,-RingSp and since Z is
initial in the category of commutative rings, for every commutative ring A there
is a distinguished morphism of E-ring spectra HZ — HA. As a consequence,
singular cohomology with coefficients in A has a canonical complex orientation

for every commutative ring A.

Remark 6.8. If : E — F is an homomorphism of homotopy commutative ring
spectra, then, a complex orientation p: MU — E of E can be pushed forward
to a complex orientation ¢, p of F. In terms of Thom classes of (virtual) stably
complex vector bundles the orientation i, p is simply defined by

T$*p = u(T()).
Remark 6.9. Assume we are given two complex orientations
P1, P2 MU - FE

of a multiplicative cohomology theory E. We have seen in Remarks 4.4 and 4.5
that the collection of multipliers between p; and ps is equivalent to the datum of
a compatible family of morphism my : X — GL{FE, indexed by vector bundles

V — X. Due to compatibility with pullbacks, we can restrict to universal
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bundles: the datum of the whole collection of multipliers {my } is equivalent to

the datum of the multipliers
my: BU(k) - GL E,
and so to the datum of a commutative diagram

-—— BU(k—-1) —— BU(k) —— BU(k+1) —— ---

mg
Tm l %1

GL FE
As BU = lim BU (k), this is in turn equivalent to the datum of a single morphism
m: BU - GL,E.

Notice that, since GL1[X, E] is the multiplicative subgroup of the commutative
ring [X, E], the group GL,[X, E] is an abelian group and so the spectrum
G L1 F is an oco-abelian group. As the direct sum of vector bundles is the group
operation on BU, the equation my ,w = my -my implies that m: BU — GIL1FE
is a morphism of homotopy abelian co-groups.

Group homomorphisms into an abelian group are themselves an abelian
group (more concretely: the bundlewise product of two compatible systems of
multipliers is again a compatible system of multipliers), and as we have already
noticed multiplying a compatible system of orientations with a compatible
system of multipliers one gets a multiplicative system of multipliers. In other
words, the space of complex orientations of E, i.e., the space of homotopy
commutative ring spectra morphisms MU — FE is a torsor over the group
Home,,(BU,GL,E).

Remark 6.10. The analysis that we made to establish the equivalence between
compatible systems of F-orientations on complex vector bundles and homotopy
commutative ring spectra maps MU — FE can be done in a completely analogous
way to establish an equivalence between compatible systems of E-orientations
on real (resp. oriented real) vector bundles and homotopy commutative ring
spectra maps MO — E (resp. M SO — E). By Thom’s theorem (see [Koc96,
Theorem 1.5.10]), both MO and M SO are cobordism spectra. More precisely,
MO is the real cobordism spectrum while M SO is the real oriented cobordism
spectrum and the respective cobordism rings are obtained as
0° ~ EPIS[n], MO] = P =P MO
n=0 n=0
and
0% ~ P[s[n], MSO] = @ mPMSO

n=0 n=0
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Both MO and M SO are (—1)-connected spectra, so the fibre sequences associ-
ated to their O-truncations are

MO~y — MO — MO« ~ Hr?(MO) = HZ/2
MSO-y — MSO — MSO<y =~ HrP(MSO) = HZ.
and we get two natural F,-ring maps
MO — HZ/2

MSO — HZ.

This tells us that the family of all real vector bundles has a canonical ori-
entation/Thom classes in Z/2-valued singular cohomology and the family of
all oriented real vector bundles has a canonical orientation/Thom classes in
Z-valued singular cohomology.

7. EULER CLASSES OF E-ORIENTED VECTOR BUNDLES

Assume an F-orientation of a stable family F is given. Thom spectra of
actual (i.e., nonvirtual) vector bundles come equipped with natural zero section

maps ty: X — XV that are morphisms of X-comodules, i.e., the diagrams

X —Y XV

N Jav

XRX oo XXV
commute. So, for any V' in F we have pullbacks
v [XY -1k V], E] - [X[-1k V], E]
which are morphisms of [X, E]-modules.

Definition 7.1. The element ey := t*71y of [X[—1k V], E] is called the Euler
class of V.
Remark 7.2. From the commutativity of

X wiw s X VAW

a| |avaw

XX — XV XW

Ly @y

one gets the multiplicativity of Euler classes,

Ev+w = €v - ew,
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where - is the product in [X, E]. For the trivial bundle 1, the zero section
t1: X — X' = X[1] is the inclusion of X into its suspension, so it is homotopi-
cally trivial. From this and the multiplicativity of Euler classes it follows that
if V has a never zero section, so that V' =V + 1 then, ey, = 0.

The above general discussion applies in particular to complex orientations of
E, i.e., to a compatible system of F-orientation of complex vector bundles. By
Remark 6.6, the datum of such an orientation is equivalent to the the datum
of a Thom class 77, such that, under the isomorphism of [P*C, E]-modules
[MU(1), E] = [P*C[-2], E] induced by the pullback along the zero section
t: BU(1) — BU(1)%, it lifts the unit element 1 € [S, E]. By definition of
the Euler class, we therefore have that the Euler class e, € [P*[-2]|C, E]
is a generator of [P*C[—-2], E] as a [P*C, F]-module, with e, = 1, where
i1: P!'C — P*C is the inclusion. For a fixed complex orientation on F, we will
write e? for the Euler class of the universal line bundle L = O(1), i.e, we will

write ef = e;.

Example 7.3. It follows from the proof of Lemma 6.1 and by the description of
MU given in Remark 6.7 that the Euler class e™Y of the canonical complex
orientation of MU is the hyperplane inclusion P°~1C < P® seen as a complex
oriented proper map of dimension —2 to P, i.e., more precisely, that for any
n = 1 the pullback i*eMY along the standard inclusion i, : P"C < P is the
complex oriented proper map of dimension —2 to P"C given by the hyperplane
inclusion P*~1C — P"C.

Let now E be an even 2-periodic E-ring spectrum with Bott element [g.
One of the most important features of even 2-periodic spectra, and, in general, of
complex orientable spectra, lies in the cohomology of (complex) projective spaces.
Since the E-cohomology of P® is defined to be the limit of the E-cohomologies
of the P"C’s over the (pullback of the) inclusions 4, : P"C < P"*'C, one gets
that the choice of an element fg in [P*, E] is equivalent to the datum of a
compatible sequence {fg&, € [P"C, E]},en, where &, is the pullback of ¢ along
the inclusion ¢ : P"C — P* and hence equivalent to a commutative diagram of

rings

— [P"IC, E] [P C, E] [P-'C, E] ——

n—l

where the n-th arrow maps u to 5€,.
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Proposition 7.4. If e¥ € [P*[-2], E] is the Euler class of a complex orienta-

tion of E, then the above diagram induces a sequence of compatible isomorphisms

2 [S, Efu)/(u?) » [S, Efu] /(™) =[S, EJ[u]/(u") > -

| o

.o — [P™IC, E] —E 5 [P"C, B] —=1 [P*IC, E] — -

The proof of this proposition is just a consequence of the collapsing at the
second page of the (cohomological) Atiyah—Hirzebruch spectral sequence for
P"C; a more detailed account of this argument can be found in [Ada74] or
[Koc96]. If we take the limit of the above diagram we get a commutative
diagram

~

[S, E][[u]] B > [P, E]

u—pPBref

u Hm 1/’{

[P'C, E]

where the top horizontal arrow is an isomorphism, and in the left diagonal
arrow 1 denotes the unit of [S, F] seen as an element in [P'C[—2], E] via the
isomorphism S =~ P'C[—2]. Conversely, the existence of such a commutative
diagram is equivalent to the existence of a complex orientation of E.

Corollary 7.5. Every even 2-periodic ring spectrum is complex orientable.

Proof. Let E be an even 2-periodic ring spectrum. By the above discussion, to
prove that E is complex orientable we have to show that the distinguished ring
morphism [S, E][u] — [P'C, E] sending u — Sx1 admits a lift through . The
obstructions to such a lift are the obstructions to extending Bg1: P!C — E to
a map fBef: P — E. through the sequence of skeleta inclusions

PIC = PIC — PC = PC < ---
~—~ ~— ~— ~—
2-skeleton 3-skeleton 4-skeleton 5-skeleton

so they lie in the singular cohomologies of P* with coefficients in the abelian

groups 157, (E) = [S[2n + 1], E]. For an even cohomology theory these are all

zero, so all the obstructions vanish. [l

8. THE GHRR THEOREM, CASE I: ONE SPECTRUM, TWO ORIENTATIONS

Let pa and pp be two complex orientations for an even 2-periodic F-ring

spectrum F, and for every stably complex virtual vector bundle V' over X,

denote by i}, 08 the corresponding isomorphisms of [ X, E]-modules o¢}, o :

[X,E] 5 [XV[-1kV],E]. If f: X — Y is a stably complex map, i.e., it is a
43



smooth map such that T} is a stably complex virtual vector bundle over X,
then we have two F-orientations on —7% and a commutative diagram

“m_mp

(X, E] ! s [X, E]

A
O'f g
[X~T/[dim X — dim Y], E]

i lg,;;T Vi

[Y[dim X — dim Y], E]

B
f

In other words, we have

fi(a) = fi(a-m_ry)

for any a € [X, E]. We want to determine the multiplier m_p, = f*(mzy)-mgy.
To do so, let V' be a stably complex vector bundle over X. As my ., = my for
any n, we may assume that V' is a complex vector bundle. Also, as the splitting
principle works for every even 2-periodic F-ring spectrum FE as recalled above,
it is not restrictive to assume that V splits as a direct sum of complex line
bundles L; classified by maps A;: X — P*. We then have

k k k
my =m = = = || A
V=MLt = | ML = ] ] ¥ = i Ly
i=1 =1 =1

where L = O(1) is the universal line bundle on P*. So we just need to compute
a single multiplier, namely my. This is defined by the equation 77 = my, - 5.
As the pullback along the zero section ¢: P* — (P®)l is an isomorphism of

A — my - eP, where e/

[P*, E]-modules, this is equivalent to the equation e
and e? are the Euler classes of the E-orientations p4 and pg, respectively. By
the conclusion of Section 7, the Euler classes e4 and e? uniquely determine a

commutative diagram

S, E)[[u]] —=2 [, E][[u]]

u—LBret ur—BreB
[P*C, F]
where every arrow is a ring isomorphism, and so
p(u)
L=~
U Ju=ppes

Therefore, for any complex vector bundle V' on X we have

mV:HM

i

u=BgAfel
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Definition 8.1. It is customary to call m_y the Todd class of V relative to
the two orientations p4 and pp and to denote it tda g(V), i.e.,

u
tdag(V)= || — .
Ll e
By introducing the Todd function
u
tdap(u) = —,
20 = )

the above takes the form

tdA’B(V) = thA,B(U)

u=BpA¥eB
Remark 8.2. Notice that, since the restrictions of Bge? and fge? to P'C
coincide (they are both equal to Sg1), one has p(u) = u + o(u), hence
tdap(u) =1+ o(1).
With this notation we have

m,Tf = tdAyB (Tf)

and the product formula for the Todd class from Definition 8.1 tells how to
express this as a product of characteristic classes for TX and TY. Summing
up, we have proven the following

Theorem 8.3 (GHRR for a pair of complex orientations). Let ps and pp
be two complex orientations for an even 2-periodic Ey-ring spectrum E, and
let f: X — Y be a stably complex map. Then the two pushforward maps
fA fB X, E] — [Y[dim X — dimY], E| are related by the Grothendieck—-
Hirzebruch—Riemann—Roch formula

fla) = fP(a-tdap(Ty)),
for any a € [X, E].

Remark 8.4. By multiplicativity and functoriality of the multipliers and by the
projection formula, the above identity can be written as

fia) - tdap(TY) = fP(a- tdap(TX)).

9. THE GHRR THEOREM, CASE II: TWO ORIENTED SPECTRA, ONE
MORPHISM

Let now p: MU — E be a complex orientation of £/ and let ¢): £ — F' be a

morphism of homotopy commutative ring spectra. Then we have the following.
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Lemma 9.1. For any stably complex map f: X — Y, the diagram

(X, E] Vs y [X,F]

| Jz-

[V[dim X — dimY], E] —2 [Y[dim X — dim Y], F]
commautes.

Proof. The diagram

[X,E] b » [X,F)
afol lzp*a_Tf
(X7 [dim X — dim Y], E] -2 [X~T[dim X — dim Y], F]
commutes, as ¥, maps the element 1 in [X, E] to the element 1 in [X, F'] and
Tib;:f = (1’ Tf) by definition of v, p. The diagram

(X7 [dim X — dim Y], E] =2 [X T [dim X —dimY], F

W;Tl l‘ﬁzT

[V[dim X — dimY], E] —2— [Y[dim X — dim Y], F]

trivially commutes as post-compositions and pre-compositions of morphisms
commute. 0
We also have

Proposition 9.2. Let pp: MU — E and pp: MU — F be complex orienta-
tions for the Ey-ring spectra E and F, respectively, and let ¢: E — F be a
morphism of ring spectra. Then, for any stably complex map f: X —Y and
any a € [ X, E], the following Grothendieck—Hirzebruch—Riemann—Roch like
identity holds:

Vu(f27(a)) = fL7 (Yula) - tdy,pp pr (1))
Proof. By Lemma 9.1, we have

V(25 (a)) = fL#07 (Yula)).
The conclusion then follows from the second-last equation in Section 8. ([l
The statement of Proposition 9.2 is equivalent to the commutativity of the
diagram

tdw*PE,PF (Tf)-=

(X, E] X, F]

/| L

[V[dim X — dimY], E] —2 [Y[dim X — dim Y], F]
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Remark 9.3. As a particular case, one can consider £ = MU and pg to be the
identity morphism of MU. Taking F' = HP,,Q and pr: MU — HP,,Q the
standard complex orientation py of H P.,Q, one sees from Proposition 9.2 that
for any complex orientation v: MU — HP,,Q and any complex manifold X of
complex dimension n one has a commutative diagram

tdy,p gy (TX) Vs
e

[X, MU] [X, H P, Q]

7rideUl lﬂiH
0y, b > QB",

where Y is the 2n-dimensional complex cobordism group. The image of the

unit element 1 € [X, MU] via midv is the complex cobordism class of X, see
[Qui71]. The pushforward map in even periodic rational singular cohomology
induced by its standard complex orientation is the periodic version of the usual
pushforward map in rational singular cohomology. In particular, if X is a
compact complex manifold, the pushforward map

HP.wQ
/ @ H27, X Q @Bdich

€7

along the terminal morphism 7x: X — = is

HPeyQ
/ _ ﬁdimCX /
- )
X X

where [ « 18 the usual integral in singular cohomology.. Finally, the morphism of
abelian groups 1, : Q5 — QA" is the degree —2n component of the Hirzebruch
Y-genus, i.e., of the graded rings homomorphism

v @05, — QB 57

neZ
Therefore, as a particular case of Proposition 9.2 one finds Hirzebruch’s genus

formula:

Bu([X]) = plime X /X by (TX).

10. SPECIALIZING TO THE CLASSICAL STATEMENT

The archetype of the formula in Proposition 9.2 is obviously the classical
Grothendieck-Hirzebruch-Riemann—Roch formula. Denote by KU the spectrum
representing complex K-theory and by H P.,Q the spectrum representing even
periodic rational singular cohomology. Both spectra are multiplicative and
even 2-periodic. With their standard complex orientations, their shifted Euler

classes are given by Brefx = 1c — L™ € [P®, KU] and by Bgef® = B¢ (L) €
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[P*, HP,,Q], where ¢; is the first Chern class in singular cohomology and £ is
a formal degree —2 variable; see, e.g. [LMO07, Example 1.1.5] for the convention
on the orientation of complex K-theory.

The Chern character ch: KU — HP,,Q provides a multiplicative map of
even 2-periodic cohomology theories (i.e. ch(fSx) = By, see Example 2.25) from
complex K-theory to periodic rational singular cohomology. It can be seen as

the composition
ch

T

KU =0 KUy —— HP.,Q,
. =

where (—)g is the rationalization map and ®: KUy =~ H P,,Q is the equivalence
given by the splitting of rational spectra in sums of Eilenberg—Mac Lane spectra,
normalised so as to map the Bott element of KUg to the Bott element of
HP,,Q. By the general splitting for rational spectra we have

KUg = @iz HrP(KUg)[i] = @iz H(mP KU)®Q[i] = @;e2HQ[2j] = HP Q.

Moreover, naturality of these equivalences with respect to the monoidal structure
of spectra implies that KUy =~ HP,,Q is an equivalence if F-ring spectra. A
good reference for this result in a cohomological flavour can be found in [Hil71].
Now, to get an explicit expression for the equivalence ®: KUy = HPF,,Q
induced by rationalization, recall that KU is generated by the class of the
universal line bundle L, so we only need to determine ®(L). This is an element
in [P*, HP,,Q], so by the results in Section 7, there exists a unique formal

power series
0
flu) =" fu*
k=0
with coefficients in Q = [S, H P.,Q] such that
(L) = f(Ber(L))-

By naturality with respect to pullbacks, and since ® is a ring homomorphism,

we have
1= ®(1c) = fo,
SO we can write
flu) =™
for a unique formal power series
0
g(u) =Y gru”
k=0



with gy = 0. Again by naturality with respect to pullbacks and since the tensor
product of vector bundles induces the product in K-theory, we have, for any
n e 7,

e9(nu) = e9(w)

— O(L®") = O(L)" = eI .
Bei(L) nBei (L) Ber (L)

As evaluating at Sci(L) is an isomorphism Q[[u]] = H P,,Q(PP*), this gives

g(nu) =n g(u), for any n € Z,

so g(u) is a linear function: g(u) = gy u for some g; € Q. Imposing that ®

preserves Bott elements we find
Ber(Llpig) = 1 — e 9Pealtbic) — gy 8e) (Llpc),

and so g1 = 1, i.e., f(u) = " and ® = ch. As we are interested in

tdCh*ﬂKva (u)a

we have to identify the map ¢ determined by the commutative diagram

[S, HP.,Q][[u]] 2P IS, H P Q][[u]]

UHCh(lc—m Acl (L)

[P*C, HP,,Q]

Asch(le — L7Y) =1 — e P4 the map ¢ is

u

olu) =1—e"

Therefore the Todd function associated with the Chern character and the stan-
dard orientations of complex K-theory and even periodic rational cohomology

1S

tdenpre o (1) = 1 — o

11. WHY “THE TOPOLOGICAL HALF”?

Readers so patient to have read until here may be wondering what is the
non-topological half of the Grothendieck-Hirzebruch-Riemann-Roch theorem
we were hinting at in the title. To explain this, consider a compact complex
manifold X together with a holomorphic vector bundle V over it. Then the
Hirzebruch—Riemann—Roch theorem can be stated as the identity

X(X;V)z/XCh(V)td(TX),

where on the left we have the holomorphic Euler characteristic of X with

coefficients in the holomorphic bundle V' (or, equivalently, in its sheaf V of
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holomorphic sections). This Euler characteristic is the pushforward in the
analytical K-theory of X (or equivalently in the bounded derived category
of coherent sheaves on X)) of the element [V] in KU*(X) to an element in

KU () = Z along the terminal morphism 7x: X — =. That is, we have
X(X; V) = 7 (V).

By the discussion in the previous sections, the statement of the Hirzebruch—
Riemann—-Roch theorem can be rewritten as

analytical/algebro-geometrical part
7\

U (7)) = 2 KU([V]) = /X h(V) td(TX),

.

topological part

where the right part of the identity is what we have discussed in this note, while
the left part of the identity, i.e., the identification between the push-forward in
analytic (or algebro-geometric) K-theory and the pushforward in topological
K-theory is a deep result in the holomorphic (or algebro-geometric) setting,
unattainable by purely topological methods. Analogous considerations apply
to the more general case of the pushforward along a proper holomorphic map
between holomorphic manifolds considered in the Grothendieck—Hirzebruch—
Riemann-Roch theorem.

As a conclusion, let us recall how to determine the Todd function u/(1 —e™")
just by assuming the identity Wﬁg’an([V]) = 7% ([V]), where V is a holomorphic
vector bundle V' over a compact complex manifold X, holds for some complex
orientation p: MU — KU of the topological complex K-theory. Under these
assumptions, by the discussion in the previous sections we will have in particular

the identities
HPQ

X(P"C; Opne) = / tdeny ppp (TP"C) = 87" tdenyp,ps (TP"C)
PrC PrC

for a suitable formal power series tden,,», (¢). By the Euler exact sequence

0 — Opnc = @D Opre(1) —» TP"C — 0
i=0
we get
tdCh*Pva (TPH(Q = tdch*px,pH <5CI<OIP"<C(1))>nH

so that, writing
e ¢]
(tdCh*P:pH (U))nﬂ = Z an+1,kuk
k=0

we obtain

X(Pn(cv O]P’"C) = Op+1,n-
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On the other hand

X(P"C; Opnc) = ¥ h™(P"C) = 1.
q=0

Therefore the formal series tden, p, (v) must satisfy a,41, = 1 for every n, ie.,
it must have the property that the coefficient of ™ in (td,(u))" ™" equals 1 for
any n. A classical computation using the Lagrange inversion formula shows
that there exists a unique formal power series with this property: the power

series expansion of
u

betsprcon (W) = T =0

As the Chern character is an isomorphism from rationalized complex K-theory
to even 2-periodic rational singular cohomology, this shows that the only possible
complex orientation of topological K-theory for which one can have the complex
analytic/algebro-geometric half of the Grothendieck—Hirzebruch-Riemann-Roch
theorem is pg, i.e., the one with (shifted) Euler class Sxpe®V = 1¢c — L™1, thus
motivating this apparently less natural choice with respect to SxyefV = L —1¢.
Clearly, as far as one is not concerned with the complex analytic/algebro-
geometric half of the theorem, this second orientation, with corresponding Todd
function u/(e"* — 1), is an equally valid choice, and it is actually quite a common
choice for defining a complex orientation of topological K-theory in algebraic
topology.

The reproduction of part of a letter by Alexander Grothendieck has been extracted from
https://commons.wikimedia.org/wiki/File:Grothendieck-Riemann-Roch. jpg
where it is licensed as “This work is ineligible for copyright and therefore in the public domain because it

consists entirely of information that is common property and contains no original authorship.”
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Appendices
1. ORTHOGONAL SPECTRA

In an effort to keep the exposition as friendly as possible, in the article we
avoided a detailed description of Sp as a stable co-category, barely mentioning
it as presented by the standard model structure on the category of orthogonal
spectra. Also in this appendix we are not going to give details on the the
oo-category structure Sp but at least we recall the basics of the model structure
on the category of orthogonal spectra. Standard references include [MMSS01]
and [MMSS98].

Definition 1.1. An orthogonal spectrum FE is given by a sequence { F, } ey of
pointed spaces along with, for all n € N,

(1) an action of the orthogonal group O(n) on E,,
(2) amap 0, : E, A ST — B,y 1.

For all n > 0,k > 1 we require the map
k kE onnSFT! k—1
o' B, NS E, AS"T > 5 B

to be O(n) x O(k) equivariant, with O(k) acting on S* the standard way and
O(n) x O(k) acting on E,,,j via the inclusion O(n) x O(k) — O(n + k).

A morphism f : E — F is a sequence of O(n)-equivariant maps f,, : E, — F,

commuting with the structure maps o,:

g

lfn/\sl lfn+1

FonSt 2 oy
We denote the category of orthogonal spectra by OrthSpectra

Definition 1.2. Given an orthogonal spectrum £ consider the maps

—AS1t On
lnk - 7Tn+an - 7Tn+k+1En N Sl ﬂ’ 7Tn+k+1En+1'
We define the stable homotopy groups to be mE := colim,, 7, F, along the

lnk-

Definition 1.3. Let f : E' — F be a map of orthogonal spectra. We say that
f is a weak homotopy equivalence if it induces isomorphisms on all the stable
homotopy groups

Tof : Mol — T, F.
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Definition 1.4. Let f : E — F be a map of orthogonal spectra, then f is a
q-fibration if it is a level-wise Serre fibration. It is an acyclic fibration if it is
both a ¢-fibration and a weak homotopy equivalence. We say that f : £ — F'is
a q-cofibration if it satisfies the LLP with respect to the acyclic ¢-fibrations.

Theorem 1.5. The category OrthSpectra admits a model structure with fibra-
tions and cofibrations those of Definition 1.4 and weak equivalences the weak
homotopy equivalences. This model structure presents the oo-category Sp of

spectra.

An important feature of OrthSpectra is that it admits a closed monoidal
structure with the tensor product given by the smash defined as the following

coequalizer:

V' O(n), A X, AnS'AY,

pH14+q=n O(p)x1x0(q)
JgAqu lXp/\U’qY
O(n AN X, AY,
p+\q/=n (m)+ 0)x0() " !
(X A Y),

with o’ 31/ : S* A'Y, — Y, ;1 obtained by composing the braiding with a;.
The monoidal unit is given by the sphere spectrum S with S™ at level n and

with the obvious O(n)-action.

2. CLOSED FAMILIES, TANGENTIAL STRUCTURES AND ORIENTATIONS

We now describe how to give orientations to those families of vector bundles
coming from tangential structures, also known as (B, f)-structures. The
simplest, but incomplete, definition of a tangential structure is as follows.

Consider a sequence of spaces B, By = * with maps i,,, : B, — B,, a
sequence of Serre fibrations f,, : B, — BO(n) such that the diagrams

’L'm,n
B, —— B,

s |

BO(m) —— BO(n)

commute.
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We also ask for maps fimn : By X By, — Bp,4y, such that the diagrams

Hm,n
B, x B, — ™" B ..

lfmxfn lfn#—m

BO(n) x BO(m) —— BO(n + m)

commute.

We denote by V,, — B, the rank n real vector bundle on B, classified by
the map f,: B, = BO(n). In other words, V,, is the pullback along f,, of the
tautological vector bundle EO(n) x o) R™ over BO(n).

Ezxample 2.1. The Whitehead tower of O(n), with n > 3, gives us plenty of nice
and useful tangential structures. We recall that we have

* — .- — String(n) — Spin(n) — SO(n) — O(n).

Here, starting with O(n) one kills its my taking the connected component of
the identity to obtain SO(n). Then one can kill its m; taking the universal cover
to obtain the group Spin(n). The second homotopy group meSpin(n) is already
trivial; killing the third homotopy group m3Spin(n) =~ Z gives the String group
String(n). One continues this way ending with the (weakly homotopically)
trivial group = after killing all of the homotopy groups of O(n). Let us denote
O(n)(k) the (homotopy) group appearing at the k-th stage of the tower. The
classifying spaces BO(n)(k) provide a natural example of a tangential structure.

Consider now a rank n vector bundle V' — X, classified by a map v : X —
BO(n). By this we mean that it is isomorphic to the pullback along v of the
tautological vector bundle EO(n) x o) R™ over BO(n). Let B = {B,,, fu, ttnm}
be a tangential structure; we say that V' admits a B-structure if there exists a
lift of v along f,,. In other words we ask for the existence of the dashed maps
in the following diagram

Notice that if they do exist then V is automatically the pullback of V,, since
both the right square and the big square are pullbacks. Given a (B, f)-structure
B, we will denote the family of vector bundles with B-structure by Fz. This
way one recovers the definition of orientation on a real vector bundle (in the

classical sense), or of a Spin and String structure on a real vector bundle as
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an BSO(n)-structure, a BSpin(n)-structure and BString(n)-structure in the
sense of tangential structures, respectively. The family given by the limit of
the Whitehead tower, i.e., by the trivial tangential structure B,, = * gives real
vector bundles with a framing.

As we said, this definition of tangential structure is not complete, in particular
complex vector bundles are not related to any (B, f)-structure for the simple
reason that they only have even rank. By weakening the notion of (B, f)-
structure asking B,, and f, to be indexed only by some multiple of a natural
number k we get the notion of S*-(B, f)-structure. For simplicity we will
refer to these as (B, f)-structures as well. One can then define the complex
tangential structure as that induced by the canonical maps BU(n) — BO(2n).
The real vector bundles admitting such a structure are, obviously, the complex
vector bundles.

Our reason to define these tangential structures is that they yield closed
families of vector bundles (and vice versa, as shown later). As such we want
to describe how to use them in order to endow such families with coherent
orientations with respect to a given cohomology theory F.

To begin with, recall that coherent E-orientations behave well under pullbacks.
In particular we just need to orient the universal vector bundles V,, — B,, to

orient every other vector bundle in F5. From the pullback diagram

(EO(n) X 0(n) Rn> AR —— EO(TL + 1) XO(n+1) R+t

l l

BO(n) » BO(n+1)

one deduces that the pullback of V1 along i, 41 is V,, @ R*. A coherent
system of E-orientations on the V,,’s then amounts to a commutative diagram

-— MB,, y — MB, —— MB, ., — ---

E

with BY"[—n] = M B,,. The datum of this diagram is obviously equivalent to a
single map of spectra
p:MB—FE

with M B := lim M B,, called the B-cobordism spectrum. Moreover, asking for
compatibility with the formation of direct sums amounts to asking for p to be a
map of homotopy commutative ring spectra.

Notice that, by construction, the spectrum M B is connective, i.e., has trivial

homotopy groups in negative degree. We recall that given a spectrum F we
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always have a truncation fibre sequence of the form
E.p = E — By,

with E.j (respectively E<x) a spectrum having all homotopy groups of index
> k isomorphic to those of F and the others trivial (respectively, the homotopy
groups of index < k isomorphic to those of E and the others trivial). In

particular we have a map
MB —- MB<y = HrgoMB

giving a canonical orientation for singular cohomology with oM B coefficients
to bundles with B-structure. Here the equivalence M B¢y =~ HnyM B is an
immediate consequence of the connectiveness of M B: since M B =~ M B, we
have M B¢y = (M B<y)> 0 and the latter is (essentially by definition) HmyM B.

FEzxample 2.2. By considering complex tangential structures one obtains this way
the complex cobordism spectrum MU. By considering orthogonal structures,
so actually imposing no additional structure on the real vector bundles in the
family, one obtains the orthogonal cobordism spectrum MO. At the other
extreme of the Whitehead tower of O(n), the cobordism spectrum associated
with framed vector bundles is the sphere spectrum S.

Let us now explain how any closed family F comes from a suitable (B, f)-
structure whose associated bundles are again those in F, thus yielding an
equivalence between these two concepts.

Starting with a closed family F one considers for any n € N the subcategory
F, of VectBung whose objects are rank n vector bundles in F and whose
morphisms are pullback squares. By a colimit procedure analogue to that
used to produce classifying spaces for topological groups one sees that F
has a terminal object F,, — B,. The forgetful morphisms/inclusion functors
Fn — VectBung induce the maps B,, — BO(n). The maps i,,, are obtained
from the universal property of the pullback by considering the diagrams

Tm,n

B, — *B,, — B,
~. | |
BO(m) —— BO(n).

Finally the morphisms i, ,, are obtained from the functors F,, x F, — Fim

induced by the box sum axiom for the closed family.
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Remark 2.3. Using the equivalence between (B, f)-structures and closed families
one can define the stabilization of a (B, f)-structure as the (B, f) structure
induced by the stabilization .7/-"; of the closed family Fpg. For instance, this way
one defines stably complex structures as tangential structures.

As hinted to in the article, the GHRR theorem that we state there for complex
oriented cohomology theories has a natural generalization to cohomology
theories oriented by more general cobordism spectra. By the results of the
previous section in this appendix, this general setting is that of cohomology
theories oriented by tangential structures. Let therefore, in the notation of
the previous section, (B, f) be a (stable) tangential structure and let M B
be the corresponding cobordism spectrum. For a ring spectrum F, we call
B-orientation of E' a morphism of homotopy ring spectra p: MB — FE.

Let now pa, pg : M B — E be two B-orientations. The collection of multipli-
ers for these two B-orientations is equivalent to the datum of a compatible
family of morphisms my : X — G L1 E indexed by vector bundles V' — X in the
closed family corresponding to the tangential structure (B, f). By compatibility
with the pullbacks one only needs to consider the multipliers for the universal
bundles V,, — B,,. That is, the collection of all the {mV}VGIB is equivalent to
the datum of a sequence of multipliers

mpg Bk - GLlE

making the diagram

N Bk*l 5 Bk > Bk+1 e
Mp—1 mE4+1
GL. F

commute. This is in turn the datum of a single map By, := colim By — GI1 F
of homotopy abelian co-groups. Here the group structure on By, coming from
the structure maps i, : By X By, = By,4, of the tangential structure, and
the fact that the multipliers give rise to a map of homotopy abelian groups
is the compatibility of multipliers with box sums of vector bundles. This in
particular tells us that the space of E-orientations for B-bundles, that is, of
ring spectra maps M B — E is a torsor over the group Homg,(By, GL1 E).
Now everything works just as in the case of complex orientations described
in the article. Let B be a tangential structure, £ an F.-ring spectrum,
pa,ps : MB — E be two B-orientations of E, f : X — Y be a B-oriented
map, and 07,07 : [X,E] = [X "[dimx —dim Y], E] be the isomorphisms

corresponding to the two orientations p4 and ppg, respectively. Then we have the
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following commutative diagram giving a Grothendieck—Hirzebruch-Riemann—
Roch theorem for B-oriented cohomology theories:

m_ry

[X, E] > [ X, E]

A B
f of

(X~ [dim X — dim Y], E]
f’f lWTDT ff
[V[dim X — dim Y], E]

As for complex orientations, also for B-orientations one can use pushforward
of orientations to get a version of the GHRR theorem closer to the classical
statement. If ¢ : E — F'is a map of ring spectra, pg: MB — E,pp: MB — F
are two B-orientations, and f : X — Y is a B-oriented map. Then one has the

commutative diagram

[X, E] v [

PE
*

[V[dim X — dimY], ] —% [Y[dim X — dim Y], F]

X, F|
lfw* PE

*

yielding two orientations on F', namely pr and ¢, (pg). This brings us back to
the situation considered above and so, denoting by {my } 5 the multipliers
relative to these two orientations, we have the commutative diagram

PE

[X,E] — " [Y[dim X — dimY], E]

mor; 'w*l lw*
PF

[X,F] —=—— [YV[dim X — dim Y], F],
or, equivalently, the GHRR identity
b (f£2(a)) = f27 (Yu(a) -mozy) .

For more information about tangential structures we refer the reader to
[Koc96].

3. LOCALIZATIONS OF SPECTRA AND THE CHERN-DOLD CHARACTER

In the article the main example of a morphism of ring spectra we considered
was the Chern character ch: KU — HP,,Q. We will now explain how this is
actually a particular instance of a general construction of Chern-Dold characters.

Let A be a spectrum. One says that a spectrum Y is A-acyclic if Y ® A =~ 0.
A map of spectra f : X — Z is called A-equivalenceif fA: X®A > ZR A

is an equivalence. Finally, one says that a spectrum X is A-local if the only
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morphism Y — X from an A-acyclic spectrum Y to X is the zero morphism (up
to homotopy, i.e., if Sp(Y, X) is contractible). For every spectrum X there exists
(and it is unique up to equivalence) an A-local spectrum L4 X together with an
A-equivalence X — L4X. The spectrum L4 is called the A-localization of X.
The construction of A-localizations is functorial, so it gives an endofunctor L 4
of Sp.

The localization functor L, preserves finite direct sums but it does not
necessarily preserve arbitrary direct sums. When this happens, it has a
particularly simple description; namely, if L4 preserves arbitrary direct sums
then one has a natural isomorphisms

LAX = X@LAS

In other words, if L4 preserves arbitrary direct sums then A-localization is
the tensor product with the A-localization of the sphere spectrum. Since the
tensor product in Sp is given by the smash product of spectra, one calls such a
localization functor a smashing localization

If A= HG, with G = Z/pZ, p a prime, or G = Q then A-localization (called
G-localization in this case) is smashing and so is given by the tensor product
with LyaS. The spectrum LygS is called the Moore spectrum of G and it
is usually denoted by the symbol SG. It can be characterised as the unique
connective spectrum with moSG = G and 7-¢(SG ® HZ) = 0.

When G = Q one has an equivalence SQ =~ HQ, and so Q-localization is just
the tensor product with HQ. If now F is the ring spectrum associated with
a given multiplicative cohomology theory, we can consider the Q-localization
of £/ to get a map Agg: £ — LpyoE = E® HQ. Now, one uses that a
tensor product with an Eilenberg-MacLane spectrum splits as a direct sum of
Eilenberg-MacLane spectra:

EQ HQ= @ H(r?E) ® Q[i]
1EZL
to write the localization map as
chdg: E — @ H(mPE) @ Q[i].
€L
Written this way, the localization map is called the Chern-Dold character.
Compatibility of localization with tensor product implies that the Chern-Dold

character is a map of homotopy ring spectra, where the ring spectrum structure
on the right hand side is induced by the natural maps

mPE x mPE =[S, E[-i]] x [S, E[-j]] = [S, E[~i — j]] = m2;(E).

i+J
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As a consequence, for every (nice) topological space X we have an induced ring

homomorphism, called again the Chern-Dold character,
chdp: E°(X) 2% (NHI(X; 7P E®Q),
1EL
and generalizing the Chern character for complex K-theory
ch: K°(X) - H™"(X;Q).
Notice that from the point of view of the cohomology theories represented by
these spectra we have

HQy

chd : E*(Y) 2% Lo B*(Y) = H*(X, m.(E) ® Q).
For details see [Hil71].
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A very short note on the (rational) graded Hori map

ABSTRACT. The graded Hori map has been recently introduced by Han-
Mathai in the context of T-duality as a Z-graded transform whose homoge-
neous components are the Hori-Fourier transforms in twisted cohomology
associated with integral multiples of a basic pair of T-dual closed 3-forms.
We show how in the rational homotopy theory approximation of T-duality,
such a map is naturally realized as a pull-iso-push transform, where the
isomorphism part corresponds to the canonical equivalence between the left

and the right gerbes associated with a T-duality configuration.

1. FOREWORD

The graded Hori map has been recently introduced in [HM20], by assembling
together the Z-family of Hori maps associated with a certain Z-family of T-
duality configuration data naturally associated to a single T-duality configuration.
This may at first sight appear as a rather ad hoc construction. The aim of this
note is to show how, on the contrary, the graded Hori map as a whole naturally
emerges from the geometry associated with a T-duality configuration. One only
needs to look at a step higher with respect to the T-dual bundles: the graded
Hori map is a manifestation of a canonical equivalence between the left and the
right gerbes associated with a T-duality configuration. More precisely, we show
that, in the rational homotopy theory approximation of T-duality, such a map
is naturally realized as a pull-iso-push transform, where the isomorphism part
corresponds to the left gerbe/right gerbe canonical equivalence.

We will construct this pull-iso-push transform using only purely algebraic
constructions related to the category DGCA of differential graded commutative
algebras (DGCAs) over a characteristic zero field K, which can be assumed to be
the field Q of rational numbers. In particular, we will heavily use the language
of extensions of DGCAs associated with DGCA cocycles. The reader familiar
with rational homotopy theory will immediately recognize every step in the
construction we are going to present as a translation of phenomena appearing
in the rational homotopy theory approximation of T-duality. We point the
unfamiliar reader to [FSS18b] for an introduction very close to the spirit of this
note. We also borrow from [F'SS18a| the rational homotopy theory description
of the equivalence of the gerbes associated to a T-duality configuration. See
[BS05] for the topological origin of this equivalence. Here we choose to present
the construction in purely algebraic terms, leaving to the reader the job of

connecting to rational homotopy theory.
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The note is organized as follows. First we review topological T-duality in
rational homotopy theory, in particular, in Section 2 we recall a few basic
constructions on extensions of DGCAs and define the DGCA (co)classifying
rational T-duality configurations, and in Section 3 we recall the definition
of the two isomorphic rational gerbes associated with a rational T-duality

4

configuration, whose isomorphism will be the “iso” part in the “pull-iso-push”
transform.

After this review, in Section 4 we define the graded Hori map 7;_,r associated
with these data and extend it to Laurent series. In Section 5 we show how, when
the base field is the field C of complex numbers, this allows one to describe
the graded Hori map as an operator on rings of meromorphic functions with a
single pole at the origin taking values in a DGCA A; endowed with a rational
T-duality configuration. It turns out that in this translation the graded Hori

map becomes the antidiagonal matrix

0 1
_qd% 0

where ¢ is the complex coordinate on C. Finally, in Section 6 we show how one
can further extend coefficients to Ag-valued index 0 Jacobi forms in the two
variables (z,7) € C x H, by means of their g-expansion, where ¢ = ™. This
way we recover the original definition of the graded Hori map by Han-Mathai,
as well as its main properties. In particular, one identifies the graded Hori map
on Jacobi forms with the antidiagonal matrix

( 0 1)
a bl
~3ri5; 0

and therefore the composition of two graded Hori transforms as the operator
L2 on the ring of Ag-valued index 0 Jacobi-forms [HM20, Theorem 2.2].

" 2mi 0z

2. COCYCLES AND EXTENSIONS OF DGCAS

We start with a (non-negatively graded) differential graded commutative
algebra (A, d) over the field K and with a 2-cocycle, i.e., a closed homogeneous
element of degree 2, t; € A. We can extend our base DGCA A in such a way
to trivialize the 2-cocycle t5 by adding a formal generator e; of degree 1 and
declaring our extension to be

(A, d) % A{tg} = (A[el],del = t2)7

where the differential of Ay, coincides with the differential d on the subalgebra

A.
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The choice of a 2-cocycle for the DGCA A is the same datum as a DGCA map
from the polynomial DGCA (K[z2],0) to A, where (K[z],0) is the polynomial
algebra over K on a single degree 2 generator x,, endowed with the trivial
differential. This in turn means regarding A as an object under (K|[z5],0), a
point of view that will be useful later.

More generally, the datum of a DGCA map from (K[xz,],0) to A, where now
x, is a degree n variable, is the same as that of an n-cocycle in A and, again,
given such a cocycle t,, € A it is possible to extend A to trivialize ¢, by

(A,d) —— Ag,y = (Alen—1],de,1 :=t,).

The construction of A,y out of the pair (A,%,) is universal: A,y together
with the embedding of the sub-DGCA A is the homotopy cofiber of ¢, i.e., the
homotopy pushout of the diagram:

K[z,] — (A, d)

0

of DGCAs, where 1), is the unique DGCA morphism with ¢(z,) = t,, in the
projective model structure on non-negatively graded DGCAs, see, e.g., [BG76].
Indeed, in order to compute a model for this cofiber one has to replace the
vertical map by a cofibration followed by a weak equivalence, and the easiest

way of doing this is to consider
Klz,] — (Klzp, en—1],den—1 = x,) = 0,

and then compute the ordinary pushout of the diagram

K[, Yy (A, d)

to obtain

» (A, d)
(K[l’n, enfl]u denfl = xn) — (P7 dP)?
with
(P, dp) = (A[@nfl], dpa = da for a € A, dpen,l = %n (fﬂn»

= (A[enfl]a denfl = tn) = A{tn}-
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Universality implies in particular that the construction (A,t,) v~ Ag,y is
natural, a fact that can also be easily checked directly: if f: (A,t,) — (B, s,)
is a morphism of DGCAs endowed with n-cocycles, i.e., if f is a morphism of
DGCAs, f: A — B, such that f(¢,) = s,, then we get a morphism of DGCAs
f: Agi,y — Bys,y by setting fla) = f(a) for any a € A and f(en_1.4) = €n_1.5.
This is manifestly compatible with compositions of morphisms of DGCAs
endowed with n-cocycles.

Remark 2.1. If n is even, every degree k element a;, in Ay 3 can be uniquely
written as ay = ay + €,_18k_ny1, for some degree k element o and some degree

k—n+ 1 element By_,,1 in A. The map
7 Agy — Al-n + 1]
W + €n—1Bk—n+1 = Br—n+1
is a map of chain complexes. Namely, we have
di—pi1)(m(ag) = di—ni1) (7 (ks + €n—1Bk—n+1))
= d[fn+1]6k—n+1
= (=)™ VdBnis
and
m(dag) = m(d(ok + €n—1Pk—n+1))
T(deu, + tpBr—nt1 + (—1)" ' dBr—ns1)
—1)" 1 dBy 1.

Of course, 7 is not a map of DGCAs (the shifted complex A[—n + 1] does not
even have a natural DGCA structure). But it is a map of right DG-A-modules:

if v, is a degree [ element in A, then

m(ary) = 7((ar + taBr—n)n) = 7((arn) + tn(Be—nn) = Br—nn = m(ar)n.

As a side remark, by thinking of 1: A — Ay 4 as a pullback p* and of
7 Ag,y — A[—n+1] as the pushforward p,, the above identity is the projection
formula:
s (arp™ () = pe(a)n-
Finally, the map of right DG-A-modules 7: Ag,y — A[—n + 1] has an evident
section
eno1-—: A[-n+1] - Ap

given by the left multiplication by e,_.
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An example of the construction (A,t,) v~ A,y we will be interested in is

the following. Consider the polynomial algebra
Klwar, ar] = Klzaor] @ K[128]

on two degree 2 generators o7, and zsp, endowed with the trivial differential.!
Then the element xo7 295 is a 4-cocycle and so defines a DGCA map

K[t4] - K[$2L7 $2R]

ty — XopXoR
The associated extension is the DGCA

K[$2L7$2R]{x2LxQR} = (K[-TzL, T2R, y3], dxor, = dror = 0,dys = 932L£U2R)

Notice that K[@L»x?R]{xsz} carries two distinguished 2-cocycles x57, and
Tor and that o: 2o, < 22r is a DGCA automorphism of K[zar, Z2r]{zsrz0n)
exchanging the two cocycles. We denote by pr,, pr: K[zo] — K[Zar, Tor] (sy 205}
the two maps corresponding to the cocycles xor, xoR, respectively.

3. TWO EQUIVALENT RATIONAL GERBES

In order to get the DGCA construction corresponding to the rational ho-
motopy description of the pull-iso-push transform between gerbes associated
with a T-duality configuration, we consider a DGCA A together with a map
Kl|22r, Tor]{zor0m} J, A. As we noticed above, the source of f has two distinct
2-cocycles corresponding to maps pr, pr : K[xa] — Kl@ar, Z2r){es, 2.5} sending
the generator x5 in x97, and in zgp, respectively. Composing with the map f we
therefore get maps fr, fr : K[za] — A, corresponding to two distinct 2-cocycles
in A, and we end up with following commutative diagram of DGCAs:

N>

$2L) x?R {:EQL[L'QR} K x?L’ xQR {.’L'QLIQR}

The previous diagram shows that the map f can be read in two different
ways as a map in the undercategory ¥*2/DGCA of DGCAs endowed with a
distinguished 2-cocycle, i.e., with a distinguished morphism from K[zs]. In

Here and below, all tensor products are over K.
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particular, we have that f is both a map between K[z, zor]

}andA

{z2r22R

decorated with their left 2-cocycles

(K[I2L7x2R]{z2LazgR}7pL) L) (Aa fL)7

and with their right 2-cocycles

(K22, 28 ) mapzany» PR) —— (A, fr).

This will be crucial in order to define the equivalence between the algebraic
structures corresponding to the left and right gerbes of topological T-duality.
We begin with the following, which is a particular case of the “hofib/cyc
adjunction” of [FSS18a; FSS18b], and whose proof in this specific case we give
for the sake of completeness.

Proposition 3.1. Let (A, t3) be a DGCA with a distinguished 2-cocycle ts.

Then the assoctation

Homy oy peca ((KlZar, 2] (2sr 200}, PL)s (A, U,)) = Hompecea (Klzs], Aqry)

AS)
Ayl

where ¢ is defined by

@: w3 @(y3) — e1p(T2r),

is a natural bijection. Clearly, everything identically works if we exchange pr

with pr and xop with xop,.

Proof. We begin by showing that @(z3) is a 3-cocycle. If
o1 (Klzar, T2r]ssraary PL) = (A, Y1)

is a map in the undercategory ¥[*2V/DGCA , then

p(zar) = (popr)(T2) = Y, (22) = ta.

Therefore,

d(p(z3))

d(p(ys) — e1p(a2r)) =
(zar)p(z2r) — t2p(w2r) + e1p(drar) =
0

This shows that the map ¢ — ¢ actually takes values in Hompgea (K[2s], At} ).

Now we define a map in the opposite direction. For a DGCA morphism
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V: Klas] — Ag,y, let t3 be the 3-cocycle t3 = 9(x3) in Ag,y. The 3-cocycle t3
can be uniquely written as t3 = ag — e1by with ag, b, € A. The association

Yz — az, Tar — by, Tap >ty

defines a map ¥ : (K[22r, T2r] sy 000, PL) — (A, t2) in K2/DGCA. Tt is im-
mediate to check that » = ¢ and ¥ = 1, so the two maps are inverse each

other. O

Now, let us go back to our DGCA A endowed with a DGCA morphism
K21, T2r]{zor0m} 4, A. To avoid confusion, let us denote by e, and e the
yand Ap := Ay
of A, respectively. By the above proposition, and looking at f both as a

additional degree 1 generators in the extensions Ay, := Ay

Tor, T2R)

morphism from (K[zar, Zar|{zsr 2051, L) to (A, fr) and as a morphism from

(Klz2r, T2r] {zor20n}s PR) tO (A, fr), we end up with distinguished 3-cocycles

flys) —einf(war) € A, f(ys) — eirf(war) € Ag

and again, we can define extensions of A; and Agr by trivializing the above
3-cocycles. We define the left rational gerbe Gy, and the right rational gerbe Gg
of the rational T-configuration f as the DGCAs

O = AL{f(ys)—e1sf(22r)}
gR = AR{f(yS)—elRf(fB2L)}'

Again, to avoid confusion, we denote by &7 and &g the additional degree 2
generators of Gy, and Gg as extensions of Ay and of Ag, respectively. Both G,
and Gg are extensions of A (since both Ay and Ar were extensions), and this

tower of extensions of A can be depicted in the diagram



We can add to this diagram the DGCA Apg := Ap ®4 Ag, i.e., the DGCA
(Aleir, e1r],deir = f(xar),deigr = f(x2gr)), obtaining the diagram

\/\/
\/

where the central square commutes. As a matter of notation, in the above
diagram we are writing ¢, (resp. tr) wherever the extension is made by means
of the 1-form ey, (resp. ejr) and iy, (resp. ir) whenever the extension is made
by means of the 2-form &7 (resp. &ag).

We can extend Gy, and Gi by computing the obvious (homotopy) pushouts
to get the further extensions

GL{f (w2} OR {121}
Explicitly,
deir, = f(iU2L)
GLif@r)y = | Aleir, eir, &orl, § deip = f(x2r)
d&or, = f(y3) - €1Lf($2R)
and
deir, = f($2L)
Gr{f@or)y = | Aleir, e1r, §2r]s § derr = f(w2r)

déar = f(y3) — eirf(war)
We can now make explicit the iso part of our pull-iso-push transform.
Proposition 3.2. The DGCAs Grif@w,n)y @nd GR{f(z,)} aT€ iS0MoOTphic via
an isomorphism

GLif@my — GR{f(a2r)}
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that is the identity on Argr and acts as

&ar, — S + €1r€1R,

on the degree two generator. The inverse isomorphism is, clearly, v=: &g —

fQL — €1LE1R-

Proof. The map v is a map of graded commutative algebras, and it is of course
a bijection since an explicit inverse is given by the map of graded commutative
algebras v~! which is the identity on Ay and sending &g to S — eireir.
To see that v is a map of DGCAs we need to show that it is a map of chain
complexes. This can be checked on the generators of the polynomial algebra
GL{f(wsm)}> SO We only need to compute dv(&ar). We have

dv(&er) = d(&or + e1n€1r) =
y3) — eirf(xar) + f(war)eir — e1nf(x2r) =

I

f(y3) - €1Lf(I2R)
(
(

I
N

fys) — einf(xar)) =
déar),

[
N

where we used that f(ys3) — e1rf(z2r) € ALgr and v is the identity on Apr. O

The isomorphisms v and v~! complete our previous diagram to the commu-
tative diagram

v

| jL{f m)}w OR{s(wsr \
\ /

4. THE GRADED HORI MAP FROM RATIONAL EQUIVALENCES OF GERBES

All the maps and the DGCAs appearing in the upper part of our diagram

OLifar)y — " GR{f(a2r))

gt Or
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can be extended to the rings of (bounded above) formal Laurent series in the
degree 2 generators. For instance, as a graded commutative algebra the DGCA
Gy, is the polynomial algebra Ap[£.] over Aj, and so embeds as a subalgebra
into the ring of Laurent series

Gr = A6 (6] = ALl[&, Ear)-

The ring G1. has moreover a natural DGCA structure, by setting

A&y = =67 (f(ys) — ernf(x2r))

making G; — QL an inclusion of DGCAs. One similarly extends the other
DGCAS GRr, GL{f(zor)} A GR{f(z,,)} aPpearing in the above diagram.

The maps tg, t, obviously extend to the rings of Laurent series. We denote
by iy, and i these extensions. We notice that v extends too, we only need to
be careful in defining the extension v. As ejje;g is nilpotent, this is done by
using the formal power series inverse for 1 — 1, i.e., by declaring that the action
of ¥ on &' is given by

D(&1) = (Gr+ewer) ™ = ) (1) (eieir) &l ' = &a — e1eiréon,
=0
where we used that (e;ze1r)? = 0. One easily checks that # is indeed a DGCA
morphism: it is compatible with the relation &,'¢,;, = 1 as
D(&0)0(&r) = (Sor — erce1réar;) (Gor + e1re1r) = 1

and with the differential as

0(d&yr) = (=& (fys) — ernf(war)))
= — (&g — eice1réer)*(f(ys) — ern f(z2r))
= — (&7 — 2e1e1réon) (f(ys) — ernf(22r))
= —&5 f(ys) + 2e1neirs) fys) + Spenn S (2ar)
and
di&y)}) = d(&p — erreirésp)
= —& (f(y3) — errf(war)) — (derreir)éof; + 2e1rerrtyy (f(ys) — e1rf (@ar))
= —&5 (fys) — errf(zar)) — (f(z2r)eir — e1nf(x2r))Eon + 2e1ne1réop £ (y3)
= & (ys) + e1nf(z2r)ésp + 2e1e1rEsp f(ys)

As f(xgr) is an even cocycle, by Remark 2.1 we have a projection

T2 GR{f(azr)} — Gr[—1]
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mapping oy + e118k—1 to Br_1, which is a morphism of right DG-Gz-modules.
Also the projection 7: : Gr{f(s,,)1 — Gr[—1] naturally extends to formal
Laurent series modules to a map

—

T gR{f($2L)} - gR[_l]

and so it is possible to build a pull-iso-push transform 7;_,r as the composition

o — ——

OLifaan)y — " GR{f(e21)}

A S

G, Tir s Gr[—1].

The transform
Tir: Gr — Ga[—1]

associated to the initial rational 7-duality configuration K{zar, 2r] {2y, 205} ENY)
is seen to coincide with the graded Hori map introduced by Han and Mathai in

[HM20]. Namely, the action of  on a generic degree k element

W = E (Qontk + €1nBant+k—1 + €1RY2n+k—1 + €1L61R52n+k—2)§2_1;n
nez

—

in QL{f(xQR)} is given by

D(wg) = Z(a2n+k + e10.B2n4+k—1 + €1RYV2n4+k—1 + €10€1RO2n4k—2)0(&5)") =
nez

— —n—1
= E (C2p4k + €10B2n+k—1 + €1RYV2n+k—1 + €10€1RO2m+k—2) (&5 —neireiréypy ) =
neZ

—n —n—1
= E (02n+k + €1002n+k—1 + €1RV2n+k—1 + €1L€1RO2n+k—2)Eaf — N€1LEIRC2n+k Sy =
NneZ

= Z(a2n+k + e10B2n+k—1 + €1RV2n+k—1 + €10€1R(O2ntk—2 — (N — 1)asnik—2))é R,
nez

hence the action of © on the coefficients of a generic degree k£ Laurent series

—

in gL{f(m2R)} is given by

Qonik Qontk
Bon+k—1 | » Bontk—1
>
Yon+k—1 Von+k—1
Oontk—2 Sontk—2 — (N — 1)oopsk—2
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The inclusion éz L1 g@)} and the projection 7: Gryf(z,,)1 — éj\g[—l] can
be displayed in a similar way

Qonik Qontk
Aon+k L Bontk—1 . Bantk—1 R Bontk—1
b
bontk—1 0 Vontk—1 Oon k-2
0 Oontk—2

The left-to-right transform 7;_,r therefore act on the coefficients of a generic

degree k element > . (aonik + €10B2n+k-1)E5, € G1 a8
Qon ik Qon+k
Aont+k LR Bontk—1 A Bontk—1 R Bontk—1
52n+k—1 0 0 *(TL — 1)a2n+k_2
0 —(n — 1)aopir—2
i.e., it acts on the degree k element Y (qon+k + €10bonik-1)E) € éz as

Z(%mk + e11.Bon+k-1)&51 — Z (Bantk—1 — (n — 1)e1r0onik—2) Ep

neZ neZ
—-n —n—1
= E 52n+k—1523 + e1r E —n&2n+k§23
neZ nez

The above expressions can be conveniently packaged by introducing, for every
sequence {Ng, 1 pnez Of elements of A with deg(ne,4x) = 2n + k, the Laurent
series in a degree 2 variable &

N (&) = Z?hmkf_n-

nez

We have manifest isomorphisms of graded vector spaces

Afl¢,¢]
@

All¢€ll-1]

L — o —

~

GLifwan)y @ — GR{f(221)}
A[[¢7, €][-1]
S,

Al €][-2)

and

All€¢]

G «— @® —— Gg.



In terms of these isomorphisms, the maps 7, iz and 7 are represented by the

. 0100
m —> y
0001

so that the graded left-to-right Hori transform 7;_ r is represented in matrix

0 1
T — :
(#’2 0>

One similarly defines the right-to-left Hori transform Tz_. As
(0 1> (0 1> (é 0)
d d -
& 0)\& 0) \0 &

d -
TroroTior = @1 Gr — Gr[-2]

following matrices:

Kl o o
o o = o
o = o o
_ o O O
o o o
o o = O

form as:

one sees that

and
d

Ean : Gr — Gr[—2].

7-L—>R o EHL =

5. HORI TRANSFORMS OF MEROMORPHIC FUNCTIONS

Before extending the ring of coefficients to the ring of Jacobi forms we start
with a one variable intermediate step. We will need an extra degree 2 variable
in order to keep the following computations within the context of graded maps.
So we assume that our base DGCA A is of the form

A= Aglu™t, ul]

where u is a degree 2 variable and Ag is a DGCA endowed with a rational
T-duality configuration K[zar, Zor] {2,000} EN Ag. Notice the a T-duality
configuration on Ay induces a T-duality configuration

K[:’C2L7 x2R]{CE2L$2R} i) AO — A
on A simply by composing f with the inclusion Ag — A. All the extension and

gerbes below are computed with respect to this T-duality configuration on A.
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For instance, the extended left gerbe éz will be

starting DQCA  trivialize f(z2r)
o~ =
Gr="Ay [u ulllern] 6 Gor .
~—— —_—

additional  trivialize f(ys3)—
variable eir f(z2r) and ex-
tend to Laurent

series

Assume now the base field K to be the field C of complex numbers and let M,
be the C-algebra of meromorphic functions on C that are holomorphic on the
punctured plane C\{0}, i.e. meromorphic functions that admit at most a polar
singularity in the origin. By looking at the algebra M, as a DGCA concentrated
in degree zero, we can then consider the DGCA M(Ap) := Mo ® Ay, that we
will call the DGCA of meromorphic functions with values in Ay and with at
most polar singularities in the origin. A degree k element in My(Ap) has a
Laurent series expansion around the origin of the form

fla) = Z Jrid"

where the f,.; are degree k elements in Ay, with f,., = 0 for n « 0. For any

1 € Z we have an isomorphism us; of graded vector spaces

Mo(Ag) =A€7, €][24]
fl@) = & flug™)

Notice that there exists a commutative diagram

d
_qd7q

Mo(Ao) _—

] d =

Alle1, €] —== A[[e Y €][-2]

As remarked at the end of the previous section, the natural isomorphism of
graded vector spaces of G and Gr with A[[¢71, ] @ A[[¢7, £][—1] identifies

the graded Hori map 7T,z with the antidiagonal matrix d% (1] , l.e., we have

Al ¢l @ AflE™ €][-1] ﬁ Al[e €=t @ A[[¢, €][-2]

v B

Gr Tion s Gr[—1]
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Therefore, we see that the graded Hori map 7, participates into a commuta-

tive diagram of graded vector spaces

Moto) & MA1] — ) a0 Mo

Mo@uo[—l]ll ( 0 1) lluo[—ﬂ@ufz
4 g

Alle @Al €[-1] —=

———— A[[¢E[-1 @ Al €2

i L

—

GL Tion » Gr[—1]

The same happens for the graded Hori map Tx_.1, so that the composition
Trr © Tr—r is identified with the endomorphism

_qd% 0
0 —qd%

of My(Ap) ® Mo(Ag)[—1], and similarly for T,z o TrL.

6. EXTENDING COEFFICIENTS TO THE RING OF JACOBI FORMS

In this concluding section we extend the ring of coefficients for our extended
gerbes to the graded ring of Jacobi forms of index 0. We address the reader to
the classic [EZ85] for a complete and detailed account of the general theory of
Jacobi forms of arbitrary index, and here we content us in briefly recalling the
definition of a (meromorphic) Jacobi form of index 0.

Definition 6.1. A (meromorphic) Jacobi form of weight s and index 0 is a

function

CxH > C
which is meromorphic in the variable z and holomorphic in the variable 7, such
that J

e is modular in 7 ie. J(ZZ5, %) = (cr + d)*J(2,7) for any (2}) in
SL(2,Z);
e is elliptic in z i.e. J(z + A7+ u,7) = J(2,7) for any (A, ) in Z?%

e has a polar behaviour for z — +400.

We notice two important features of Jacobi forms. First, by applying the
operator 0/0z to both sides of the modularity and of the ellipticity equations,
one sees that if J(z,7) is a Jacobi form of weight s and index 0 then 2J(z,7)

is a Jacobi form of weight s + 1 and index 0.
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Secondly, from the ellipticity condition for the pair (0, 1) € Z? one sees that
every Jacobi form is periodic in z of period 1, hence it has a series expansion in

2miz

the variable ¢ = e of the form

J(z,T)

[
™
Q
3
2
RS
E

for some ng € Z, where the fact that this Laurent series is bounded below is a
consequence of the polar behaviour of J for z — +io0.
As the weight s ranges over the integers, Jacobi form of index 0 form a graded

ring

s70 = @\70(5)7

SEZL

(with degree given by the weight). The fact that a_az maps weight s index 0
Jacobi forms to weight s + 1 index 0 Jacobi forms then can be expressed by
saying that % is a degree 1 derivation of the graded ring Jy. Moreover, from
the identity

0 1 0

10T 2mioz
we see that the ring of g-expansions of index 0 Jacobi forms (a subring of the
ring of bounded below Laurent series in the variable ¢ with coefficients in the
ring of holomorphic function on H) is closed under the action of the operator
_qa_q.
We can now verbatim repeat the construction of Section 5. For a DGCA B
over C, let us write B(7) for the DGCA

B(r) := B® Hol(H)

where the ring Hol(H) of holomorphic function in the variable 7 € H is seen as

a DGCA concentrated in degree zero. Also, let us write

Jo(4o) = P TV (Ao)

SEL

for the bigraded ring Jy(Ap) := Jo ® Ag of index 0 Jacobi forms with values in

a DGCA Aj. Then the commutative diagram at the end of Section 5 induces
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the commutative diagram

( i 1)
1 8

T 2mi 80.2 0

-~ 4

T3 (Ao) @ T3 (Ao)[-1] T (Ag)[~1] @ T3V (Ag)

g-expansion 0 1 g-expansion
N —q % 0 N
Mo(Ao(7)) ® Mo(Ao(7))[—1] ( "t Mo(Ao(7))[—1] @ Mo(Ao(7))
po@po[—1] 2 (o 1 V| po[—1]®p—2
N2 d g

A el A" -1

l l

Gr(7) Tin > Gr(7)[~1]

That is, the graded Hori transform 77,5 induces the morphism

0 1 S1 S S S

( Lo 0) J0™ (A0) & T3 (A0) 1] = T (An) [-1] @ Ty (Ao)
2mi 0z

at the level of index 0 Agp-valued Jacobi forms, for any weights s, sy in Z.

The same holds for the graded Hori transform Tx_, 1, so that the composition

To-ro Tror acts as

—sE 0 (s1) (2) (s141) (s241)
0 _Lai +Jo (Ao) SIVA (Ao)[-1] — 0 (Ao) SN (Ao)[—1]
211 0z

and similarly for 7, g © Tr—r. This reproduces [HM20, Theorem 2.2].

Acknowledgments. d.f thanks NYU-AD for support on occasion of the work-
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Appendices
1. TwISTED COHOMOLOGY

The idea behind twisted cohomology is actually really simple. One starts
by observing that, in view of Brown’s representability theorem if one follows
a classical approach, or by definition if one directly starts with spectra, the
degree n E-cohomology of a space X is the space of maps from X to a space
E,, (or rather, the set of homotopy classes of these maps). Now, maps X — F,,
can be equivalently seen as the sections of the trivial bundle X x F, — X.
This immediately suggests to think of sections of a nonnecessarily trivial bundle
E, - P, - X as “twisted maps” from X to F,, and their homotopy classes
as degree n twisted E-cohomology classes of X. A further step consists in
looking at the collection of all the spaces P, as a parametrized spectrum P
with parameter space X, and so define the twisted cohomologies of a space X
as the spaces of sections of parametrized spectra P € Spy.

Of course, one has to take some care in defining what is meant by a section of
a parametrized spectrum, as we do not have an actual projection map P — X
from our parametrized spectrum P to our space X. Also, in order to show that
this definition of twisted cohomology is not just a generalization for the sake of
generality, we need a recipe to build interesting examples.

Let F' a spectrum. Since F' is an object in an co-category its automorphisms
form a group object in co-groupoids/(nice)topological spaces. In particular
we have a classifying space BAut(F) (or classifying oo-groupoid BAut(F')) and
we can envision the action of Aut(F') on F as the datum of an co-functor
BAut(F') — Sp sending the unique object of the co-groupoid BAut(F') to F,
with an obvious definition on the morphisms. This map is the spectral analogue
to the universal fibre bundle with fibre F'. Given a space X, one calls twist
for the F-cohomology of X a map of spaces y: X — BAut(F'), or equivalently
a map of co-groupoids 11, X — BAut(F'), were I1,X denotes the Poincaré
ao-groupoid of X. Composing x with the oo-functor BAut(F) — Sp encoding
the action of Aut(F) on F' gives a X-parametrized spectrum where over each
point of X one has a copy of the spectrum F. The stable homotopy groups of
the spaces of sections of this X-parametrized spectrum are called the y-twisted
F-cohomologies of X. By an abuse of notation (as actually this map does not
exist) reminiscent of the Grothendieck construction, one denotes the co-functor
BAut(F) — Sp as p: F//Aut(F) — =//Aut(F). In this notation, the composite
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functor 1, X — BAut(F') corresponds to the pullback

E —— F//Aut(F)

ook

X X «//Aut(F),

and the y-twisted F' cohomologies of X are the stable homotopy groups of the
spaces of sections of .

Given a ring R it is typically more interesting to study bundles with fibre R
where the fibres are not bare sets but maintain an R-module structure. Things
are the same in the spectral case and the definition of twisted cohomology with
coefficients in a ring spectrum just follows this point of view. Indeed, consider a
ring spectrum R and recall the existence of the space GL;(R) mentioned in the
article on the GHRR theorem. Taking a space X and a twist x : X — BGL{(R)
we can do everything as we did above to define the y-twisted R cohomology
of X, but looking at the GL;(R)-action on R not just as at an co-functor
BGL,(R) — Sp but as at an oo-functor BGL,(R) — RMod. The y-twisted
cohomology groups of X with coefficients in the ring spectrum R are then
defined as the homotopy groups of the spaces of sections of the X-parametrized

R-module
X % BGLi(R) — RMod.

For more information about twisted cohomology we refer the reader to [MS06]

and [ABG10].

2. TOWARDS A TOPOLOGICAL GRADED HORI MAP

We now specialize the general construction of twisted cohomology sketched
above to the specific case of twisted K-theory. In this case it is known, see, e.g.,
[MS06], that GL,(KU) = Z/2 x BUg, where the factor Z/2 acts on complex
vector bundles by taking the conjugate bundle and BUg acts by tensoring with
a vector bundle. These actions naturally extend to virtual complex vector
bundles and so to KU. Moreover, one has BUg =~ K(Z,2) x BSUg, so that
GL(KU) = 7Z/2x K(Z,2) x BSUg. It is customary to restrict the attention to
the middle factor and thus to consider twists x : Y — K(Z,3) = BK(Z,2) —
BGL{(KU). In other words, the classical twists of complex K-theory are
elements in the third singular cohomology group with integer coefficients.

This fact suggests the idea that the right object to study in the topological
version of T-duality is not singular cohomology twisted by a 3-cocycle, but

twisted complex K-theory. The first part of the construction presented in
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our article is then easily lifted form the rational approximation to a genuinely
topological form as follows.
First, one defines the space BTfold as the homotopy pullback:

BTfold b o

| |

K(Z,2) x K(Z,2) — K(Z.,4).

and calls T-duality configuration on a space X a map f : X — BTfold. The
composition

X L BTfold - K(Z,2) x K(Z,2)
gives us two maps [,r : X — K(Z,2). We denote the homotopy fibres of [ and
r by P, and P, respectively. These are topological S!-fibrations over X. Also in
the topological setting we have a homotopy fibre - cyclification adjunction and
moreover one can interpret the results in [BS05] as the topological equivalence

LBTfold //S* = B*U(1).
By definition of the map [, we have a commutative diagram

! s BTfold

K(Z,2)

X

and so we can view f as a map in the overcategory of topological spaces
over K(Z,2). By the homotopy fibre - cyclification adjunction, we will have a
corresponding adjoint map f;: P, — £ BTfold //S!, and so, by the Bunke-Schick
result, as a map
fir P, — B*U(1) =~ K(Z,3).
The same is true on the right side, giving a map f, : P, —» K(Z,3).
We can then form the homotopy commutative diagram

/\
/\/\

K(Z K(Z,3),

where P = P, xx P, is a topological S!'-fibration both over P, and over P,.
The two maps f;: P, — K(Z,3) and f,: P. - K(Z,3) serve as twists for the
complex K-theory of P, and of P, respectively. The composite maps f; o m; and

fr om,. serve as twists for the complex K-theory of P, and the defining property
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of a T-fold configuration amounts to the datum of an isomorphism of twisted
K-theory groups?
Kfloﬂ'l (P) = Kf’roﬂ"r (P)

Then one has a pull-iso-push transform
Kfl<Pl) —l) Kfloﬂl<P> l) Kfroﬂ'r(P) T—*) Kf'r (PT)7

giving the topological Hori map in complex K-theory. The possibility of defining
a graded version of this map at the rational level and its interplay with the
theory of Jacobi forms strongly suggests that the topological Hori map in
complex K-theory should be the ¢ — 0 limit of a topological Hori map in elliptic
cohomology, involving a suitable pull-iso-push transform in twisted elliptic
cohomology. This fits nicely in the geometric framework in which Han and
Mathai derive the graded Hori map of [HM20] and will hopefully be investigated
in detail in forthcoming research.
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The (anti-)holomorphic sector in C/A-equivariant cohomology, and
the Witten class

ABSTRACT. Atiyah’s classical work on circular symmetry and stationary
phase shows how the A-genus is obtained by formally applying the equivariant
cohomology localization formula to the loop space of a simply connected
spin manifold. The same technique, applied to a suitable “antiholomorphic
sector” in the C/A-equivariant cohomology of the conformal double loop
space Maps(C/A, X) of a rationally string manifold X produces the Witten
genus of X. This can be seen as an equivariant localization counterpart to

Berwick-Evans supersymmetric localization derivation of the Witten genus.

Se vogliamo che tutto rimanga come ¢, bisogna che tutto cambi.

1. INTRODUCTION

In the classic work [Ati85], Atiyah shows how to recover the A-class of a
compact smooth spin manifold X via a formal infinite dimensional version of the
Duistermaat-Heckman formula applied to the smooth loop space Maps(T, X) of
maps from a circle to X. Such a formula is a particular case of the well known
localization formula for torus equivariant cohomology, extensively treated in
[AB84]. The appearance of the A-class in such an infinite dimensional version
of localization techniques in torus equivariant cohomology was pointed out by
Atiyah as “a brilliant observation of the physicist E. Witten” and suggests
that, reasoning as in [Ati85], the Witten class Wit(X) [Wit87; Wit88], should
emerge from a localization formula for the torus equivariant cohomology of the
double loop space Maps(T?, X) of maps from a 2-dimensional torus to X. This
is indeed the case, as long as one makes an a priori unjustified assumption:

that the generators u,v of the T?-equivariant cohomology of a point over C,
Hi: (pt; C) = Clu, v],

are not independent but rather satisfy a C-linear dependence condition of the

form
v =TU

where 7 is a point in the complex upper half plane H, see [Lu08]. Although
the hypothesis of C-linear dependence of the polynomial variables u, v may
appear somewhat “ad hoc” to make the computations work out, yet it suggests
that if instead of looking at a topological torus T? we consider a complex torus
C/A then there should exist a version of the localization theorem for torus
equivariant cohomology, where only a holomorphic variable ¢ (or its conjugate

E) appears, instead of the two real variables u,v. In this paper we show that
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such a holomorphic (resp. antiholomorphic) sector of the C/A-equivariant
cohomology can indeed be defined and that an (anti-)holomorphic localization
formula holds. Going back to what inspired it, in the final part of the paper we
show how the Witten class of a compact smooth manifold emerges from the
antiholomorphic localization formula for the C/A-equivariant cohomology of the
double loop space Maps(C/A, X). More precisely, the idea is to formally apply
the finite-dimensional antiholomorphic localization formula obtained in the first
part of the paper to the inclusion of X in Maps(C/A, X) as the submanifold
of constant maps (that are the fixed points for the C/A-translation action on
Maps(C/A, X). It turns out, however, that the infinite products that would
naively define the equivariant Euler class for the normal bundle v, of X in
Maps(C/A, X) do not converge, so a suitable (-regularization is needed in order
to make sense of these infinite products. Once this is done, one obtains that if
X is a compact rational string manifold, i.e., if X is a compact spin manifold
with torsion first Pontryagin class, then the inverse of the normalized Euler
class of vy defines a modular form with values in the complex cohomology of
X, which turns out to be the Witten class of X. In particular, the integral
over X of the inverse of the normalized Euler class of v, is the Witten genus
of X. From the point of view of C/A-equivariant cohomology, the geometric
condition that X needs to be a rationally string manifold will emerge as the
condition ensuring that the (-regularization procedure involved in the infinite
rank localization formula is independent of the choice of arguments for the
nonzero elements in the lattice A < C. This condition will also imply that
the expected modular properties of the inverse normalized Euler class are not
disrupted by the (-regularization.

Equivariant cohomology and the Atiyah—Bott localization formula admit
an elegant rephrasing in terms of supergeometry, see, e.g., [PZ17]. Reversing
this point of view, every differential geometric construction obtained through
supersymmetric localization techniques in quantum field theory should in
principle admit a derivation internal to the setting of equivariant cohomology.
In this sense, the results of this paper can be seen as an equivariant localization
counterpart to Berwick-Evans supersymmetric localization derivation of the
Witten genus [BE13; BE19], with the Weierstrafl (-regularization of equivariant
Euler classes playing the role of the (-regularization of infinite dimensional

determinants in supersymmetric quantum field theory.

We thank the Referee for very useful comments and suggestions that helped
us in improving both the content and the exposition of the paper. D.F.’s

research has been partially supported by PRIN 2017 — 2017YRA3LK.
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2. 1D EUCLIDEAN TORI EQUIVARIANT COHOMOLOGY

2.1. The Euclidean Cartan complex for circle actions. As a half-way
step towards two dimensional real tori endowed with a complex structure C/A,
we start by recalling a few basic constructions in the equivariant cohomology
for 1-dimensional torus actions, formulating them for 1-dimensional Euclidean
tori R/A rather than for the topological 1-dimensional torus T. Here A < R is
a lattice in R, i.e. an additive subgroup of R isomorphic to Z.

The quotient R/A can be thought of as a circle of length ¢, with ¢ the
minimum strictly positive element of A. It has a natural structure of real
Lie group; we will denote its Lie algebra by t,. Next we consider a compact
smooth manifold M with a smooth action of R/A, denote by Q°(M;R)®/A the
R/A-invariant part of the de Rham algebra of M, and endow

O (M; R)*/* @z Sym(ta[-2])

with a bigrading where the component of bidegree (k, 1) is QF~!(M; R)¥* ®g
Sym'(ty¥[~2]). This bigraded vector space comes equipped with a structure of
bicomplex where the differential of degree (1,0) is the de Rham differential
(acting trivially on Sym(ty¥[—2])) and the differential of degree (0, 1) is the
operator ep " [—2]u,,  , where (ex, ex") is a pair consisting of a linear generator of
ta and of its dual element in ty, and v., is the vector field on M corresponding
to e, via the differential of the action. The operator ¢ is the contraction
operator. It is immediate to see that ex”[—2]s,,, is independent of the choice
of the generator e,.

Definition 2.1. The Cartan complex of R/A O M is the total complex of the
bicomplex

(Q°(M;R)¥ @ Sym(ta ¥ [~2]): dar, ea [~ 2]ua,, ).

The total differential in the Cartan complex is denoted by dr/a and is called the
equivariant differential. Elements in the Cartan complex that are dr/s-closed
are called equivariantly closed forms.

Remark 2.2. The importance of the Cartan complex resides in the fact its
cohomology is the real R/A-equivariant cohomology Hp / A(M;R) of M. So it
provides a differential geometric tool to compute this cohomology. It is the
generalization to the equivariant setting of the de Rham complex computing
real singular cohomology.

Remark 2.3. Evaluation at 0 € t{[—2] is a morphism of complexes from the

Cartan complex to the de Rham complex (Q°*(M;R)®A dyr) of R/A-invariant
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forms. One says that an element w in the Cartan complex is an extension of an

invariant form w if @]y = w.

Remark 2.4. The quotient map R — R/A gives a distinguished Lie algebra
isomorphism Lie(R) = t5. By means of this isomorphism, the Cartan bicomplex
is isomorphic to

(Q°(M; R)¥Mul; dar, ut, )

where d/dz is the standard basis vector in Lie(R) and u is a degree 2 formal
variable corresponding to the dual 1-form dx placed in degree 2. Notice that
with respect to the bigrading, the variable u has bidegree (1, 1).

2.2. R/A-equivariant characteristic classes. Equivariant vector bundles
over an R/A-manifold come with a natural notion of equivariant characteristic
classes. When the action on the manifold is trivial®, equivariant characteristic
classes admit a simple combinatorial /representation theoretic description that
we recall below.

Remark 2.5. A typical situation where one meets equivariant vector bundles on
a R/A-trivial base is by considering equivariant vector bundles on the R/A-fixed
point locus Fix(M) in an R/A-manifold M. Notice that, since R/A is a compact
Lie group, its action on M is automatically proper and so Fix(M) is a smooth
submanifold of M. Equivariant vector bundles on Fix(A) one considers need
not be restrictions of equivariant vector bundles on M. A classical example is
the normal bundle v for the inclusion Fix(M) < M.

For ease of exposition, we will tacitly assume Fix(M) to be connected: in
the more general situation of a possibly nonconnected fixed point locus all
the constructions we recall in this section are to be repeated for each of the

connected components of Fix(M).

Remark 2.6. For a R/A-trivial manifold one has M = Fix(M), so it is actually
not restrictive to work with submanifolds of the form Fix(M) when one is
interested into equivariant vector bundles over R/A-trivial base manifolds.

Remark 2.7. As the R/A-action is trivial on Fix(M), the associated Cartan
bicomplex is
(Q*(Fix(M); R) ®r Sym(ta " [2]); dar., 0)
and so the R/A-equivariant cohomology of Fix(M) is
HI?&/A(FiX(M); R) = H*(Fix(M); R) ®& Sym(ty ¥ [—-2]).

3This does not imply that the action is trivial on the bundle.
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The key to the combinatorial description of equivariant complex vector
bundles over R/A-trivial base manifolds is the following statement, which is an
immediate consequence of the regularity of the decomposition into isotypic
components of smooth families of complex representations of compact Lie
groups. The statement is well known, see, e.g., [Sin01, Proposition 4.6] where
however it is given without a proof. For completeness, we provide a proof for
the particular case we are interested in.

Lemma 2.8. An R/A-equivariant complez line bundle on Fix(M) is equivalently
the datum of a pair (L, x), where L is a complex line bundle on Fix(M) and
xX: R/A — U(1) is a character of R/A.

Proof. Let us denote by L, the fiber of L on the point p € M. The datum
of an R/A-equivariant complex line bundle L on Fix(M) is the datum of a
collection of group homomorphisms R/A — Autc(L,), smoothly depending
on p € Fix(M). Since L, is 1-dimensional, one has a canonical isomorphism
Autc(L,) = C*, so our datum is the datum of a smooth family of Lie group
homomorphisms y,: R/A — C*. Since R/A is compact, these have to factor
through U(1) and so they form a smooth family of characters x,: R/A — U(1).
Since U(1)-valued characters of R/A are uniquely defined by their topological
degree as smooth maps R/A — U(1) and the topological degree is a homotopy
invariant, we have that x, is constant on connected components of Fix(M).
Therefore, if Fix(M) is connected, as we are assuming, we are reduced with the
datum of a single U(1)-valued character x of R/A. O

By the above Lemma, in what follows we will write an R/A-equivariant

complex line bundle over Fix(M) as a pair (L, x).

Definition 2.9. Let x: R/A — U(1) be a character. The weight of x is the

linear map
wy: th — R
defined as follows: 2miw, is the Lie algebra homomorphism 27w, : tx —

2miR = Lie(U(1)) associated with the Lie group homomorphism Y, i.e., 2miw,

is the linear map making the diagram

2Tiwy

tA ~ R 2miR

projl lepo

R/A =R/N —— U(1)

commute.
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Remark 2.10. Notice that, by definition, w, is an element of t,", and so
wy 2] € t4Y[—2] < Sym(taV[—2]).

Definition 2.11. Let (L,x) be an R/A-equivariant complex line bundle
over Fix(M). The equivariant first Chern class of (L, x) is the element of
H*(Fix(M);R) ®g Sym(ty¥[—2]) given by

cir/a(L, x) = ci(L) + wy[-2].

Remark 2.12. It is convenient to give a more explicit description of ¢i r/a (L, X)

in terms of the isomorphism
H o (Fix(M); R) = H* (Fix(M); R)[u]

induced by the Lie algebra isomorphism Lie(R) = t,. In order to do so, recall
that characters of R/A are indexed by the dual lattice A¥ of A and that via the
standard inner product in R this is identified with A: every character of R/A is
of the form
x(x) = pa(x) := exp(2miAvol(R/A)?z),

for some A € A. The associated weight w) is then wy = Avol(R/A)~2dx so
that wy[—2] = Avol(R/A)~2u. The equivariant first Chern class of (L, py) is
then written as ¢ g/a(L, pr) = c1(L) + Avol(R/A)~?u. Introducing the rescaled
formal variable uy := vol(R/A)2u, of the same bidegree as u, this is written

cir/a(L, pr) = c1(L) + Aup.

For a R/A-equivariant complex vector bundle E on Fix(M) one defines the
equivariant Chern classes of F by the equivariant splitting principle. Namely,
first one decomposes F as the direct sum of its isotypic components,

£ @
XEAY

next, one define the equivariant Chern roots of each component E, via the
splitting principle:

{aira(Ey) Yimt,nke, = {i(Ey) + wy[—2]} o, ke,

where the o;(E))’s are the Chern roots of E,. Finally one defines the total
R/A-equivariant Chern class of E by means of these equivariant Chern roots.

Definition 2.13. In the same notation as above, the total R/A-equivariant
Chern class of F is
crn(E) = ] crm(Ey),

XEAY
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with
rkEy

crn(By) = [ (1 + ciga(Ey)).

i=1

In particular, the top R/A-equivariant Chern class of E is

Crop,R/A(E) = H H (@i(Ey) + wy[-2]).

Remark 2.14. In terms of the formal variable u, and the identification between

AY and A, these read

rkEp/\
CR/A(E) - H H (1 + OéivR/A<EP)\> + /\UA)
AeA =1
and
rkEpA
copra(E) = [ 11 (@i(B,,) + dun).
AeAN =1

It is convenient to isolate the contribution from the isotypic component of

the trivial character 0 € A, corresponding to the zero weight. We write
E=E,®FE"=E,® @ E,=Eo® @ E\,
xeAV\{0} AeA\{0}
and call BT the effectively acted bundle. By multiplicativity of the total Chern
class and of the top Chern class one finds

cr/n(E) = c(Eo)cra(E); Ctopr/A(E) = Ctop(Eo)Cropr/a (E).

Definition 2.15. The weight polynomial of E°T is the element in Sym(ty ¥ [—2])
given by

wp(EM) = [ (w[-2)™ = [] wi™[-2kE].

xeAV\{0} xeAV\{0}

Remark 2.16. By construction, the weight polynomial wp(E*%) is a nonzero
element in Sym(ty ¥ [—2]).

By localizing the R/A-equivariant cohomology of Fix(M) at wp(E°T), i.e.,
by formally inverting wp(E°T) one can rewrite the top R/A-equivariant Chern

class of B as

(2.1) Cropr/A(E") = wp(E)rop a (E),
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where

rkEy

(2.2) GornEN = T I (1 + O‘i(Ex))

xeAv\{o} i=1 wy[=2]

Definition 2.17. The degree zero element ¢, r/a(E°T) in the localization
Hg )\ (Fix(M); R) up(ery) is called the normalized top Chern class of E°ft

Remark 2.18. Notice that crop r/a (E°T) is an invertible element in the localization

Hg p(Fix(M); R) (up( ety -

Remark 2.19. Equivalently, in terms of the variable u, one writes

rkE/JA 4
© Q; FE o ) U
oo (1) 1L (- 25)

AeA\{0} AeA\{0} i=1

J/

-~

Crop,r/A (B°T)

2.3. Equivariant Euler classes of real vector bundles. Since equivariant
vector bundles come naturally with a notion of equivariant characteristic
classes, real oriented equivariant vector bundles come with a natural notion
of equivariant Euler class. And again, if the equivariant vector bundle has a
trivial base space, the combinatorics behind the computation of an equivariant
Euler class is purely representation theoretic.

Real irreducible representations of R/A are indexed by the quotient set AY/+.
The unique fixed point 0 corresponds to the trivial representation, which is
the unique 1-dimensional real representation of R/A; the equivalence class [x]
of the complex character x corresponds to the irreducible real 2-dimensional
representation yg. As Y ! =, we see that (x~!)gr and yg are isomorphic as
real representations. In terms of the distinguished isomorphism of AV ~ A
induced by the inner product, the involution on AY reads A < —\ and the
above isomorphism of complex characters is p_, = py. In particular, we see
that every nontrivial irreducible real representation of R/A factors through a
complex character via the standard inclusion U(1) = SO(2) — O(2):

©

TN

R/A —— U(1) — O(2)

As a consequence, if we decompose an R/A-equivariant real vector bundle V'
over Fix(M) as

V=VgaVT'=Vge & Vu

[x]Jeavi{o}/+
92



we see that the effective component Ve can always be endowed (non canonically)
with a complex structure. In particular V% is always an even rank orientable

vector bundle.

Remark 2.20. By choosing an orientation for V¢ one has a well defined
equivariant Euler class for it, and a change in the choice of the orientation
corresponds to a sign change in the equivariant Euler class.

The above remark leads to the following doubling trick. The two possible
equivariant Euler classes for V| corresponding to the two possible orientations,
are precisely the two solutions of the equation

rk veff

(2.3) (W = (1) croprn (V" ®C)

with [w] of degree 3 kg V. The choice of one solution then determines an
orientation of V¢ whose corresponding equivariant Euler class is the chosen

solution.

Remark 2.21. Since characteristic classes with real or complex coefficients can
be computed via Chern-Weil theory, equation (2.3) has a simple origin in
linear algebra: if Fy € Q*(M,s0(2k)) is the curvature 2-form for a Riemannian
connection V on an even rank orientable vector bundle V' on a smooth manifold
M, then the top Chern class of V' ® C has a closed form representative given
by the determinant det(5=Fy) = (—1)F det(5= F), while the Euler class of V
has a closed form representative given by the Pfaffian Pf (%FV), and for any
skew-symmetric matrix A in s0(2k) one has Pf(A)? = det(A).

Definition 2.22. Let a choice of arguments for the elements A € A\{0} be
fixed. The equivariant Euler class eulg/y (V") defined by this choice is the
distinguished solution of equation (2.3), given by

ok veff rk(veffgr)
(2.4)  eulgp (VM) := (iup) ™2 Iy =
AeA\{0}

VG (V@ C),

where the determination of the square root is such that /1 +¢t=1+1¢/2+---.
The distinguished orientation on V% defined by the given choice of arguments

is the one that is coherent with this choice of equivariant Euler class.

Remark 2.23. Since we are assuming V is a finite rank vector bundle, only
finitely many ranks rk(V°T ® C),,,
actually a finite product and one actually only needs to choose arguments for

the finitely many \’s in A\0 such that tk(V°T ® C)
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Definition 2.24. The (R/A)-equivariant cohomology class

etlz/n (V") i= \/conma (VI @ C)

is called the normalized equivariant Euler class of V.

Remark 2.25. The normalized equivariant Euler class @X(Veﬁ) is independent
of any choice of arguments, and so is canonically associated with the real
equivariant vector bundle V.

Remark 2.26. If the R/A-equivariant vector bundle V' is oriented, one endows
Vlo) with the orientation compatible with those of V" and Vet By this procedure,
applied to the tangent bundle of an oriented R/A-manifold M, one gets a
canonical orientation for Fix(M) once a choice of arguments for the nonzero

elements in the lattice A has been fixed.

3. THE (ANTI-)HOLOMORPHIC SECTOR FOR A COMPLEX TORUS ACTION

With this short reminder of equivariant cohomology for 1d FEuclidean tori
actions, we have set up the stage to describe the Cartan complex and equivariant
cohomology classes for the action of 2d flat tori equipped with a complex
structure.

By definition, these tori are given by the quotients C/A of C by two dimen-
sional lattices A < C, so they are the natural generalization of the Euclidean 1d
tori R/A considered in the previous section. The quotients C/A have a natural
structure of Lie groups and, as in the 1d case, we will denote their Lie algebra
by ty. Moreover C/A, carries a holomorphic structure compatible with the
group addition, so that complex tori are an example of holomorphic Lie groups.
This gives the Lie algebra ty a complex Lie algebra structure that will allow us
to give the complexified Cartan complex of a C/A-action a holomorphic kick.

The following statement is immediate.

Lemma 3.1. Let M be a compact smooth manifold M equipped with a smooth
action by C/A ©O M. The complex structure on ty gives a natural splitting
th Qr C = 10 @ t,%! inducing a decomposition

0 (M; €)™ @c Sym((ta")¥[~2]) ®c Sym((ta*") ¥ [-2]),
of the complexified Cartan complex
0 (M; €)% ®c Sym((ta ®r C)*[~2])
computing the equivariant cohomology of C/A O M with coefficients in C. This

realizes the complexified Cartan complex as the total complex of a tricomplex with

QEP-1(M; C)F/A @c Sym? (6 [~2]) @c Sym (" [~2]) i tridegree (k. p, ).
94



The differential of degree (1,0,0) in this tricomplex is the de Rham differential;
the differential of degree (0,1,0) is the operator ep[=2]i,,, , where (ea,en)
is a pair consisting of a C-linear generator of tA** and of its dual element
in (ta10)Y, and ve, is the complex vector field on M corresponding to ey via
the differential of the action; the differential of degree (0,0,1) is the operator
en" [=2]tu,, , where (€r,€1") is a pair consisting of a C-linear generator of %!

and of its dual element in (to%')V.

Remark 3.2. The isomorphism Lie(C) = t, induced by the projection C — C/A
induces natural C-linear generators for t/l\’o and t(/]\’l, given by the images of
the complex invariant vector fields d/dz and d/0z, respectively. Denoting by &
and € the dual invariant 1-forms dz ad dZ placed in degree 2, the complexified

Cartan tricomplex is written

(Q.(Ma C)(C/A [57 E]a ddR> gbva/az ) Ebva/ﬁ)-

With respect to the given trigrading, the variables & and ¢ have tridegree
(1,1,0) and (1,0, 1), respectively.

By restricting the Cartan tricomplex only to the antiholomorphic (resp.
holomorphic) part, i.e. by taking only t,%! (resp. t,'?) instead of ty ®g C,
and taking the associated total complex, we end up with the definition of the
antiholomorphic (resp. holomorphic) sector of the Cartan complex over C.

Definition 3.3. In the same assumptions as in Lemma 3.1, the antiholomorphic
sector of the complexified Cartan complex is the total complex associated with
the bicomplex

(Q*(M;C)%* @c Sym((ta™") " [2]): dar, €2 [~2]eer, )-

€A

Its total differential will be denoted by 5@//\ and its cohomology by the symbol
H(E/A-E(M5 C). By changing t,%! into t41° one obtains the definition of the
holomorphic sector.

Remark 3.4. In terms of the distinguished basis {0/0z,0/0z} of Lie(C) ® C,
the antiholomorphic sector of the Cartan complex over C is the total complex

associated to the bicomplex
(Q°(M; C)Me]; dar, Ervyor)-

3.1. C/A-equivariant Chern classes. Exactly as in the R/A case, C/A-
equivariant complex line bundles over Fix(M) are equivalently pairs (L, x)

consisting of a complex line bundle L over Fix(M) and a character y : C/A —
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U(1), and the first equivariant Chern class of (L, x) in the C/A-equivariant

Cartan complex is
crem(L, x) = a(L) + wy[-2],

where w,, is the weight of x, i.e., the R-linear map defined by the commutative

diagram

2miwy

tAé(C — 2miR

projl lexp(—) .

C/A —— U(1)

Chern classes of higher rank C/A-equivariant complex vector bundles are defined
exactly as in the R/A setting: one first decomposes the bundle as the direct sum
of its isotypic components, and then formally splits each of these a direct sum of
line bundles. This way one defines the equivariant Euler classes eulg/a (V) and
the normalized equivariant Euler classes @(veﬁ) by generalizing Definitions

2.22 and 2.24.

Remark 3.5. By means of the standard Hermitian pairing on C, the dual lattice
AV of characters of C/A is identified with A: every character of C/A is of the

form
(2) = \Z — Az
PXE) = EPATSOI(C/AY )

for some A € A. The corresponding weight is

Az — Mz
0 2ivol(C/A)

The first equivariant Chern class of (L, py) is given by
creim(Ly pp) = (L) + A&y — Aa,

where

§ z §

AT SOl C/A) AT Zivol(C/A)”

We will be particularly interested in the antiholomorphic part of the C/A-
equivariant Chern classes, i.e. the classes in the antiholomorphic sector obtained
by evaluating the holomorphic parameter £ at 0. By the splitting principle,
these are determined by the antiholomorphic parts of the equivariant first Chern

classes,

(3.1) C?,(C/A(La pa) = crem(Ly X)le=o = e1(L) + Ay
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From this, one has the following immediate generalization of (2.1, 2.2):

—

= o - rk Eeff r = e
(32) C?op,(C/A(E H) = gA H A KPox Cfop,(C/A(E H)’
AeA\{0}

[\

7v
wp (Eef)

where

— tkEp, )E_l
Cfop,(C/A H H ( #> :

AeA\{0} i=1

Remark 3.6. The polynomial

3/ e — rkpeft .
wp’(E) = €, [T Ao
AeA\{0}

in the variable £, is the weight polynomial of E°® (or, more precisely, its
complexification) evaluated at £ = 0. One calls it the antiholomorphic weight
(Fix(M); C).

polynomial. By construction, it is a nonzero element in H, /A

/\

Definition 3.7. The degree zero element ¢’ (E°T) in the localization

top,C/A

H ps A, a(FlX(M ); C) (wp? () is called the normalized antiholomorphic top Chern

class of E°%.
Remark 3.8. There is no particular reason to prefer the antiholomorphic sector
over the holomorphic sector if not this: when A = A, is the lattice Z @ Zr, the

association
T C?,(C/AT (L> pm-i—m') =0 (L) + (m + nT) EAT

is holomorphic in terms of the modular parameter 7 rather than in terms of the
conjugate parameter 7.

By analogy with the construction in Section 2.3, for real C/A-equivariant
bundles we have a notion of (normalized) equivariant Euler classes in the
antiholomorphic sector for their effectively acted parts.

Definition 3.9. Let V be a real C/A-equivariant bundle on Fix(M) and let V&
be its effectively acted subbundle. For a fixed choice of the arguments for the

elements A € A\{0}, the equivariant Euler class of VI in the antiholomorphic

sector is the element in H, I S(Fix(M); C) defined by

VeH®C —_—

Fl — .k VCff =
eul(C/A( ) = (i€y) H A Cfop,R/A(Veﬁ ®C).
AeA\{0} ~ — .

eulg/A (Veff)
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The irivertible degree zero element eulg ) A (V) in the localization of H ps ¥ /\;E(F ix(M);C)
at wp? (Ve ®@g C) is called the normalized equivariant Euler class of V% in the

antiholomorphic sector.

Remark 3.10. The normalized Euler class eul? A(VT) in the antiholomorphic
sector is independent of the choice of arguments for the elements \’s.

Remark 3.11. Since the real vector bundle V% carries a complex structure the
nonzero Chern roots of its complexification V¥ ® C come in opposite pairs.

From )

ai(Epy)Ex w(E e\ . ail(B,)%E,
i O

o —

we see that only even powers of E/_Xl appear in the expansion of eulg / A(VeE) as

a polynomial in the variable Exl

The following statement is immediate from the definitions. As it will be used

several times in what follows, we make it stand out as a Lemma.

Lemma 3.12. In the same notation as in Definition 3.9, the following identities
hold:

eul(‘%/A(Veﬁ) = euIC/A(Veﬁ) }§=0

and

—

el (VT) = eule/s (VD)
C/A = €ulg/a £=0"
4. THE ANTIHOLOMORPHIC LOCALIZATION THEOREM

Localization techniques are a very common and powerful tool in equivariant
cohomology. We will briefly recall the main theorem, the Atiyah-Bott localization
theorem for a d-dimensional torus actions [AB84] declined in its Euclidean
version, i.e., for flat tori of the form R?/A, and then show how for complex tori
C/A the result continues to hold even when we restrict our attention to the
antiholomorphic sector.

4.1. The localization formula for a Euclidean torus actions. Let R?/A
be a d-dimensional Euclidean torus, with Lie algebra t), and let M be a
smooth compact connected oriented finite dimensional manifold endowed with
a smooth R?/A-action. Assume Fix(M) is a nonempty smooth submanifold
of M, and denote by v the normal bundle to the inclusion ¢: Fix(M) — M.
The R?/A-action on v is completely effective, i.e., vioy = 0 and so, by the same
argument used above in the case d = 1, the real bundle v carries a complex

structure. In particular, it is of even rank and orientable. Once an orientation
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is fixed, one has a well defined equivariant Euler class for v, that can be written
as
eulgan(v) = wp(v)enlzs/a(v)

with wp(v) a degree 2rk v element in Sym(ty[—2]), called the weight polyno-
mial, and eu/LRd\/A(V) a degree zero invertible element in the R?/A-equivariant
cohomology of Fix(M) localized at wp(v), of the form 1 + ---. One orients
Fix(M) in such a way that its orientation is compatible with those on M and
on v. Having fixed this notation, the Atiyah-Bott localization theorem reads as

follows.

Theorem 4.1 (Localization isomorphism). After localization at the weight
polynomial wp(v), the equivariant cohomologies of M and Fix(M) become
isomorphic Sym(ty [ —2]) wp())-modules. An explicit isomorphism is given by:

eule/A( v)TLa*

Hﬁ.ed/A(Ma R) wp(v)y ——— HRd/A

(FiX(M), R)(wp(,,)) [—rky].
The inverse isomorphism is given by the equivariant pushforward t,.

Remark 4.2. The localization isomorphism is induced by a morphism between the
Cartan complexes. To realize such a morphism one only needs to choose closed
forms representatives in Q° (Fix(M); C)R“/A for the Chern classes of the normal
bundle v, endowed with a chosen complex structure. Such a choice determines
a representative for eulga/ ()~ in Q°(Fix(M); )Rd/A ®r Sym(t} [—2]) wp),
which we will denote by the same symbol eulg/s ()™, and one has a morphism
of differential graded Sym(ty[—2])(wp())-modules

Q°* (M, R)*/* @z Sym (£ [~2]) wp()
leule/A(y)_l-L*
O (Fix(M), R)*/* @ Sym (£ [2]) (wpy) [—Tkv].
The Atiyah-Bott theorem then says that this morphism is a quasi-isomorphism.

—1.0*

The fact that the inverse of eulga, () is the equivariant pushforward

L4 has the following important consequence.

Corollary 4.3 (Localization formula). Let & € (Q'(M;R)Rd/A)wp(l,) be an

equivariantly closed form in the localization of the Cartan complex of M. Then

11 / /
(1) M Fix(M) eule/A )

Corollary 4.3 is often used in the following version, to compute integrals of

invariant forms on M.
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Corollary 4.4. Let w € QUM (A R)EYA be an invariant top degree form on
M. Assume one has an equivariantly closed extension & € (Q*(M, R)Rd//\ ®
Sym(t)[—2]))4™M of w. Then

4.2 /w—/
( ) Fix(M) eule/A >

Remark 4.5. In the particular setting of Corollary 4.4, the localization formula
(4.2) tells us that the term on its right hand side, which is a priori an element
in the R-algebra Sym(t;[—2])(wp()), is actually a constant, i.e., an element of
R. Also notice that despite the right-hand side in (4.2) appears on first sight to
depend on the choice of an orientation of v it actually does not depend on it, as
the orientation of Fix(M) is not fixed a priori but is determined by that of v in
such a way that they are jointly compatible with the orientation of M.

Remark 4.6. When d = 1, one can use (2.4) to write the localization formula
(4.2) as

e~

rkv rkVP)\ LW
(43) / w = (Z"LLA)_ 2 A2 / —
M H Fix(

AeA\{0} M) euliopr/a (V)

The right hand side of (4.3) a priori depends on the choice of the arguments for
the elements A € A\{0}, and it is actually independent of it due to the same

argument as in remark 4.5.

4.2. The antiholomorphic localization theorem. Let us now consider
complex tori C/A. In this situation, Theorem 4.1 becomes the following.

Theorem 4.7 (Localization Isomorphism in the Antiholomorphic Sector).
After localization at the antiholomorphic weight polynomial wpg(y), the an-
tiholomorphic sectors of equivariant cohomologies of M and Fix(M) become
1somorphic C[E](wpg(y))—modules. An explicit isomorphism is given by:

-1,

H*, (M,C)

eul? (v)
/ . .
N 5 C/A H (FlX(M), (C)(wpg(u)) [—l"kV] .

(wp?(v)) . C/A;D

The inverse isomorphism is given by the restriction of the equivariant pushforward

Ly to the antiholomorphic sector.

Proof. In terms of the distinguished variables & and ¢ introduced in Remark
3.2, the localization quasi-isomorphism is written as the quasi isomorphism of
differential graded C[€, ] (up(v))-modules

s Q.(FIX<M)7 C)C/A [5’ g] (wp(v)) [—I‘kl/].
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Evaluation at £ = 0 induces a surjective homomorphism
= |§ 0
C[f, 5] (wp(v)) C[f] (wpﬁ(y)) .
From this we get the morphism of short exact sequences of complexes

0 0

2 2

£Q° (M; C)YME, € wpvy) M EQ* (Fix(M); C)[€, €] wp(y [—Tkr]

i
S
i

where the commutativity of the bottom square follows from Lemma 3.12.
Since the first two horizontal arrows are quasi-isomorphisms by the Atiyah-
Bott localization theorem, so is the third one. This proves the first part of the
statement. Since the differential on the Cartan complexes for the fixed point
loci reduces to the de Rham differential acting trivially on the variables &, €,

the induced linear map
. . le= . .
Hep (Fix(M), C) wptvy) =~ He )y 5(FIx(M), C) 50
is just the evaluation at £ = 0. Writing it as

. : c ‘ ° =
H (FIX(M>7 C) [57 g](wp(u E ° H (FIX(M> (C) [5](wp5(,j))
one sees it is manifestly surjective. By choosing a linear section ¢ to this map
one defines a morphism

H.

% na(Fix(M), ©) g [-1kv] — HE (M. C), 70

(wp?(v))

as the composition

He  (Fix(M), C) wp(wy [-Tkv] ———— Hg (M, C)wp(r))

d -

He \ S(Fix(M), C) 5, [—1kv] HE ) oM, C) i
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The linear map ¢ is an inverse to the isomorphism

. eulC/A( v)"L® . )
H(C/A a(M, (C)(wpg(l/)) e T— H(C/A a(FlX(M), (C)(wpg(l/)) [-I'kl/].

Namely, we have in cohomology

1 * O

eulgy (1) 171 = (eulein (V) *r0) |y = o]y = id.

By uniqueness of the inverse, this in particular shows that (] is actually
independent of the choice of the section ¢ and so we can unambiguously write
L4 for it. By construction, the morphism

Ly H(C/A a(FlX(]W), C)(wpg(y))[—rky] H(':/A a(M’ C)(wpg(y))

serves as the pushforward map between the antiholomorphic sectors. O]

Corollary 4.8 (Localization Formula in the Antiholomorphic Sector). Let wg
be a Oc/a-closed form of degree dim M in Q*(M; C)“/A[E]. If we admits a degree
dim M dga-closed extension to Q*(M;C)[E, €] then

— iky _Tk(v®0)py ¥z
/ wg = (i€y) 2 H A 2 / . /,\—5
M AeA\{0} ) euld , (v)

Proof. Let &(&,€) be a degree dim M dg/s-closed extension of wg to Q*(M; C)[¢, £].
By the localization formula (Corollary 4.4) we have

[ o csin

Since the left hand side is independent of &, so is the right hand side. Therefore

we can write o
/ _ (/ L*M&ﬁ))‘
wg = — .
M Fix(M) e111<C/A(V) £=0

The rational expression eulg/a (v) ™1+ t*@(€, €) is defined at £ = 0 and evaluation

at £ = 0 commutes with equivariant integration (which in the Cartan model is
just componentwise integration of the differential form parts). So, by Lemma

3.12, we find
_ / e / W
5:0 Fix(m) €Uleya(V)]e=o Fix(M) eulfé/A(y)

wWs =
/ ¢ /le eul(C/A
0]

Ezxample 4.9. Let M = S? with its standard metric induced by the canonical
embedding S? < R3, and let w be its volume form. Let us make U(1) =~ SO(2)

act on S? by rotations around the vertical axis, i.e., via the embedding
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SO(2) — SO(3) given by A — diag(A,1). For any nonzero A € A < C,
use the character py: C/A — U(1) to define a C/A-action on S?. Using
stereographic coordinates on S? and polar coordinates on R?, one sees that

o
A
1 + p2 g/\

wg = w =

is a degree 2 ac/A—closed form and that

- 4
w(gvg) =W — 1 +7Tp2

(AEx — Aén)

is a degree 2 d¢/a-closed extension of We. The C/A-action on S? has exactly
two fixed points, the North pole corresponding to p = o0 and the South pole
corresponding to p = 0. Since the manifold of fixed points is 0-dimensional,
the normalized equivariant Euler class in the antiholomorphic sector reduces
to the constant 1. Choosing the arguments of A and —A\ in such a way that
arg(—\) = arg(\) — 7, the induced orientation on the manifold of fixed points
gives positive orientation to the North pole and negative orientation to the
South pole. From Corollary 4.8 we then find

_ 4 _
w= [ we= (€))7 N2(=A —1/2/ (— ) Ay = 4.
/52 52 ° (i) =) Fix(s2) \ 1+ p? A

5. CONFORMAL FAMILIES OF C/A-MANIFOLDS AND MODULARITY

So far we have been considering a single C/A-manifold M, for a fixed lattice
A. Interesting phenomena happen if we let both the lattice an the manifold vary.
More precisely, we will be interested into a smooth family M, of C/A-manifolds,

with A ranging over all oriented lattices in C.

Remark 5.1. By saying that the family is smooth we are implicitly saying that
the set of all oriented lattices in C has a natural structure of a smooth manifold.
It is indeed so: any lattice A € C admits a basis given by an ordered pair
(w1, ws) € C* with $(wjwsy) > 0. Denoting this open subset of C* by U, one
has that

Lattices™ (C) = U/SL(2;Z).

Since the SL(2;Z)-action on U is free and properly discontinuous, one sees
that Lattices™(C) is naturally a smooth manifold. The intuitive notion of a
smooth family of manifolds parametrized by lattices can then be formalized as
the datum of a smooth and proper submersion M — Lattices* (C). Similarly,
one formalizes the notion of a smooth family of C/A-manifolds by working in
the category of smooth group actions over the base manifold Lattices® (C). Sice

writing definitions and constructions over a base makes the exposition more
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obscure on first reading without really adding a mathematical content, we will
content ourselves in giving “fibrewise definitions”, leaving to the interested
reader the straightforward but a bit tedious task of writing them in terms of
global objects over a base.

The multiplicative group C* of nonzero complex numbers smoothly acts on
the set of lattices by homotheties. The multiplication by a nonzero complex

number z induces a complex Lie group isomorphism
man: C/A = C/aA
for any A in Lattices™ (C), and these isomorphisms satisfy

miaA = 1dC/A7 Maiay,A = May,aaA © Mgy A = Mag,aiA © Mgy A
We say that the family {M,} of C/A-manifolds is a conformal family if it is

compatible with this C*-action. More precisely, we give the following.

Definition 5.2. An conformal family of C/A-manifolds is a smooth family
{M\} of C/A-manifolds such that, for any a € C* and any oriented lattice A
one is given diffeomorphisms

©an: My — Mgjan
such that

1.4 = 1dasy; Payaz,A = Pas,ash © Pash = Pag,arA © Pay A
and the diagram
C/A x My —— My
(5.1) (moizan)| [pes
C/al\ x My —— My

commutes.

Remark 5.3. In the same spirit of Remark 5.1, one can express the notion of a
conformal family in terms of smooth fiber bundles over the moduli stack

M 1(C) = Lattices™ (C)//C* = H//SL(2,7Z)

of elliptic curves over C. Notice that neither the C*-action on Lattices™ (C) nor
the SL(2,Z) on the upper complex half-plane H = {7 € C : (1) > 0} are free
due the fact that the multiplication by —1 acts trivially. In terms of elliptic
curves this corresponds to the standard involution realizing them as ramified
double covers of P!C. Additionally, there are points with larger stabilizers,

corresponding to elliptic curves with complex multiplication.
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Remark 5.4. It is immediate from Definition 5.2 that the diffeomorphisms ¢, o
induce, by restriction to the fixed points loci, diffeomorphisms

Qpa,A: FIX(MA) = FiX(MaA).

Thanks to the compatibilities between the morphisms (¢ga, M) and
the elliptic curve actions in a conformal family, one sees that the pullback
morphisms ¢} \: Q°*(Maa; C) — Q°(My; C) induce, by restriction to invariant
forms, pullback morphisms

o Q°(Man; C)%h - Q*(My; C)T/A,

The complex Lie group isomorphism m, s induce, by passing to Lie algebras,
complex linear isomorphisms of abelian Lie algebras dmg,a: ty — t;a. Under
the isomorphism Lie(C) = t, induced by the projection C — C/A, these linear
isomorphisms are just multiplications by the complex number a. Complexifying
and dualizing we obtain the C-linear automorphism of Lie(C)¥ ® C that acts
on the distinguished basis (dz, dz) as dz — adz and dz — @ dz. Therefore,in
terms of the distinguished basis (&, &) of (ty ®& C)¥[—2] consisting of dz and
dz placed in degree 2, the C-linear isomorphism

Pran aa®C > @C

induced by m, is given by
@:a,M § — ag; 90:@,/\1 g’_’ EE

Remark 5.5. From

vol(C/aA) = aavol(C/A),
one sees that that in terms of the distinguished basis (£,a,&,,) and (€4, &,) the
isomorphism ¢y, 5 reads

@:a,A: gal\ = a_lfA; gpza,A: EaA = a_lgA‘

Lemma 5.6. The data of a conformal family of C/A-manifolds induce isomor-

phisms of complexified Cartan tricomplexes

Pan ® Prant Q' (Mar; €)% @c Sym((tan")¥[~2]) ®c Sym((taa®") " [-2])
= Q°(Ma; ©)* @c Sym((ta1)¥[~2]) ®c Sym((ta*")¥[-2]).

Proof. Since the three differentials are trivial on the generators coming from

tY,, we only need to check compatibility with differentials on C/aA-invariant
105



differential forms on M,,. That is, for an element w € Q°*(Mx; (C)C/ aA we have
to check the three identities

ddR(‘PZ,Aw) = SDZ,A(ddRW);
(Paaw) = Pian(§)Paatyan w)

LA
f V)0 ) EYER

[

0/0%

(@2,/\“’) = SOZa,A(E)QOZ,A(%g/AEW);

where U(/?\/ﬁz and Ug;}?z are the complex vector fields on M, and M, corresponding
to 0/0z via the differentials of the actions of C/A and C'/aA, respectively, and
similarly for Ué\/az and vg/‘}%. The first identity is obvious. Using ¢, \(§) = ag,
the second identity reduces to ¢,a (@7 Aw) = a@y, A(L,US/Aa w). By definition of the

/0=

pullback of differential forms, Lot (©% aw) = @i Al w), and so we are

Ldgoa,A(ﬁUé\l/az)
reduced to proving the identity dgpa,A(vé\/az) = v%\/az. Since ad/0z = dm, p0/0z,

the identity we have to prove is equivalent to the commutativity of the diagram

ty —2 VectorFields(M,)

dma,/\l ld%,A

tu AN VectorFields(M,,),
which is immediate from (5.1). The proof of the third identity is identical. [

Corollary 5.7. The data of a conformal family of C/A-manifolds induce
isomorphisms between the antiholomorphic sector of the complexified Cartan
complex of M, and that of My, for any oriented lattice A and every a € C*.

Corollary 5.8. In a conformal family, the C/A-equivariant cohomology of My
and the C/aA-equivariant cohomology of Mua are canonically isomorphic. The
same holds for their (anti-)holomorphic sectors.

Remark 5.9. In global terms, Corollary 5.8 amounts to saying that H(‘:/A(MA; C)

and H(E/A;é

M;41(C).

(My;C) define complex vector bundles over the moduli stack

5.1. Equivariant vector bundles over conformal families. Given a family
{My} of C/A-manifolds, we can consider a family of C/A-equivariant vector
bundles E over the fixed loci Fix(M,). Again, regularity of the family {E,}
can be expressed in terms of a single equivariant vector bundle £ over Fix(M),
where M — Lattices* (C) is the smooth and proper submersion from Remark
5.1, but here too we will content us with fibrewise definitions. When {M, }
is a conformal family, it is natural to consider vector bundles E, that form a

conformal family, too. This leads to the following.
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Definition 5.10. A conformal family of C/A-equivariant vector bundles Fy
over the fixed loci of a conformal family of C/A-manifolds is a smooth family of
equivariant vector bundles equipped with isomorphisms of vector bundles

Var: Ex = o) yEan
making the diagrams

(C/AXEA _—> EA

(ma,Aﬂpa,A)l liﬁa,A

(C/CLA X QOZVAEQA — (,OZ’AEQA
commute for any oriented lattice A and any a € C*, such that

(5-2) Yarap,A = ‘le,/\(waz,aﬂ\) © ,[7Z)1117A

for any ay, as.

Ezxample 5.11. The restrictions to the fixed loci of the tangent bundles T'My
for a conformal family {M,} are a conformal family of C/A-equivariant vector

bundles, with isomorphisms v, s given by the differentials of the diffeomorphisms
Pa,A-
dg&a’AZ TMA = QDZ,ATMaA-

Equation (5.2) in this case is

d§0ala2,/\ = szl,A(dgpawhA) © d@ah/\

and so it is satisfied due to the chain rule for differentials, since @g,4,,4 =
Pag.a1 A OPayr.a- The tangent bundles TFix(My) to the fixed loci form a conformal
family of subbundles of {T'Mj
loci

’Fix( MA)}’ and so the normal bundles to the fixed

T My ‘Fix(MA)

AT TTRix(M,)

are a conformal family.

Lemma 5.12. Let {(Lx, xa)} be a conformal family of C/A-equivariant complex
line bundles on Fix(My). Then

(©a A ® vian)(crc/an(Lan, Xar)) = cre/a(Las Xa)
and

(SOZ,A ® @fa,A)(CiC/aA(LaA, XaA)) = C?,(C/A<LA7 XA)-
107



Proof. In the notation of Remark 3.5, the character y, will be of the form p)
for some A € A. By definition of conformal family, the diagram

C/AXLA X—A> LA

(ma,mwa,/\)l l@l)a,/\

Clah x ©¥\ Loy —2% 0¥\ Laa

commutes, and 80 xa(z) = Xaa(az) for any z € C. This means that x,a = pax.
Now we compute

c1.c/an(Lans Xar) = ¢1.c/ar(Lans par) = ¢1(Lan) + aXéqp — arian,

and so by Remark 5.5 we have

(3.4 ® Plaa)(Crc/an(Lans Xan)) = (954 ® Pia)(€1(Lan) + aAEon — aXEar)
= c1(ph aLar) + AEp — A
= c1(La) + A6y — Ma
= C1,<C/A(LA, XA))-

The proof for the antiholomorphic part is analogous. 0

By the splitting principle we therefore get the following.

Proposition 5.13. Let {Ex} be a conformal family of C/A-equivariant complex
vector bundles over Fix(My). Then we have

(902,A ® @:a,A)<Cfop,(C/aA(E2§)) = Cfop,C/A(E?\H)

and

—

(SOZ,A ® (p:a,A)(Ctaop’C/aA(Egﬁ)) = Cfop,c/A(EXH)~

Proof. The first identity is immediate from Lemma 5.12 and the splitting

principle. To prove the second identity, we write

—

H (aA)rkEaA;PaA Cfop,(C/A (Esﬁ),
aleaA\{0}
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notice that rkFE,y.,, , = rkEy,,, for every A € A, and use the first identity to get

— 1k ESH kEn. = . .
& " H ArkEray Cgop,C/A(EAﬁ): fop,C/A(EAﬂ)
AeA\{0}

—

= (YA ® @::;,A)(Cgop,(C/aA(Esﬁ))

—

S rk Eeff r . Fl e
= (@:a,Aga/\) KPR H (&)\) KEe (@:,A ® @:a,A)Cfop,(C/A<Eai)
AeA\{0}
—rk E5f KE. FE
=&y " H AEnie (Pan® @:a,A)Cfop7(C/A(Eai)7
AeA\{0}
and the conclusion follows. O

Corollary 5.14. Let {V} be a conformal family of C/A-equivariant real vector
bundles on Fix(My). Then we have

—_—

(Par® SOT;a,A)(GUIé/aA(Vae/{f)) = eU1<aC/A(V/$H)
Specializing this to the case considered in Example 5.11 we find the following.

Corollary 5.15. Let {My} be a conformal family of C/A-manifolds, and let
va be the normal bundle for Fix(My) < My. Then we have

—

(SOZ,A ® @:a,A)(GUIg:/aA(VaA)) = elﬂg:/A(VA)
for any oriented lattice A and any a € C*.

5.2. Trivializations of the fixed points bundle and modular forms.
Assume now we have a trivialization of the family of fixed points submanifolds
of a conformal family {M,}. In terms of smooth bundles over the moduli stack
M 1, this is a trivialization of the smooth fiber bundle Fix(M) — M; ;. In
terms of fibrewise definitions, this is the following.

Definition 5.16. Let {M,} be a conformal family. A trivialization of the
conformal family {Fix(M,)} is the datum of a smooth manifold X and of a
collection of diffeomorphisms

jAZ X = FIX(MA)
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such that the diagrams

FiX(MA)
2
(5 3) X Pa,A
jaA
FiX(MaA)

commute for any oriented lattice A and any a € C*.

A trivialization of the fixed points bundle produces a trivialization of the
C/A-equivariant cohomologies of the fixed loci and of their antiholomorphic
sectors. More precisely, we have the following lemma, whose proof is immediate
from Remark 5.5 and Definition 5.16.

Lemma 5.17. Let £x and €y be two variables in degree 2, and let Jix: Cléa, &>
Cléx, Ex] be the ring isomorphism induced by

j::A: & — &x; j':A: EA '_)EX'
For any a € C*, let p,: C[éx, Ex] = Cléx, Ex] be the ring isomorphism induced
by
fa: Ex =@ Ex; et Ex —a ey
Then

IX®iia

H(.Z/A(FIX(MA)a (C) =~ H* (FlX(MA)v (C) [6/\7 EA] — H® (Xa (C) [€X> EX]
1s an isomorphism of graded rings, and all the diagrams

-3k -3k
]aA®J£;aA

H*(X,C)[¢xEx]
‘19:,/\@90?‘;@,/\\[ lid@ua

He,, (Fix(M,y),C) ——— H*(X,C)[¢x, Ex]

TA®IiA

He )\ (Fix(Maa), C)

commute. The same hold for the antiholomorphic sectors:

H2 5 (Fix(My),©) = H*(Fix(My), OE,] 22 H*(X, €[]

18 an isomorphism of graded rings, and all the diagrams

) )
]aA®]t;aA =

H*  (Fix(My,),C) H*(X,C)[¢x]

C/A;0

‘P:,A@":a,/\l lid@ua

He,\ 5(Fix(My), C) e H*(X,C)[¢x]
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commute.

The second statement in Lemma 5.17 clearly continues to hold after we
localize H*(Fix(My),C)[€,] at €, and H*(X,C)[€x] at €. Recalling Remark
3.11, we can now give the main definition of this section.

Definition 5.18. Let { M)} be a conformal family of C/A-manifolds with a
given trivialization (X, {jx}) of its fixed points, and let £ = {Ex} and V = {V,\}
be a conformal family of C/A-equivariant complex and real vector bundles over
Fix(My), respectively. The total complex Witten class of £ is the function

Wite : Lattices™ (C) — H*(X, C)[Z)_(l]

given by
. . 1
Witg(A) := (JR @ jir) | =——
cfop,(C/A(EXH)

The coefficient
Witg,,: Lattices™ (C) — H*(X, C)

defined by the expansion
o0
Wite(A) = ZWitg;k(A)f)}k
k=0

will be called the k-th complex Witten class of £. The total real Witten class of
V is the function

Witg,y : Lattices™ (C) — H*(X, C)[E)_(l]
given by
. - - 1
Witgy(A) == (Jy ®Jip) | =—
euLaC/A(VfH)
The coefficient
Wity : Lattices™ (C) — H* (X, C)

defined by the expansion

o
WitR;V;]g(A) = ZWitR;V;k<A>f)_(2k
k=0

will be called the k-th real Witten class of V.

Proposition 5.19. The k-th complex Witten class Witg,;, is a modular form

of weight k. The k-th real Witten class Witg.y.r s @ modular form of weight 2k.
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Proof. We give a proof for the complex Witten classes first. We have to show
that for any a € C* and any oriented lattice A we have

Witg(al) = a"Witg 1 (A)

and that, denoting by A, the lattice A, := Z ® 7Z for a complex number 7 in
the upper complex half-plane H one has that

H — H*(X,C)[Ex ]
T = Witg;k(AT)

is a holomorphic function of 7. The first identity follows from Lemma 5.17 and

Proposition 5.13. Indeed, we have

Witg (al) = (jia ®Jt;aA) T

Cfop,(C/aA(ng/{)
= (Id ® fta-1) © (Jx ® Jia) © (Par @ Pean) —
Ctop,(C/aA(EgA)

~ (@) 0 (R itn) | ==
Cfop,(C/A(E/e\H)
= (Id @ pig-1)Wite (A).
Expanding this identity gives
e} e}
3" Wites(ah)ex" = 3 aFWite (A)éx .
k=0 k=0

Holomorphicity of 7 — Witg.x(A,) is immediate from Remark 3.8. The proof
for the real Witten classes is identical, by using Corollary 5.14. U

Corollary 5.20. In the same assumptions as in Definition 5.18, if X is a

manifold of even dimension d, then

/ Wite.q/2
X

is a complez valued modular form of weight d/2. If X is a manifold of dimension

d with d =0 mod 4, then
/ Witr;,d/4
X

is a complex valued modular form of weight d/2.

We conclude this section with a definition.
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Definition 5.21. Let M = {M,} be a conformal family of C/A-manifolds
with a given trivialization (X, {jx}) of its fixed points. The real an complex
Witten classes of M, denoted by Witg.aq,, and Wit ay,x, are defined as the real
Witten classes of the normal bundles {r, } and the complex Witten classes of
the complexified normal bundles {vy ® C}, That is,

WitR;M;k = WitR;{,,A};k; WitM;k = Wit{,/A®(c};k.

6. THE WITTEN CLASS OF DOUBLE LOOP SPACES

Let now X be a smooth d-dimensional manifold. A paradigmatic example of
a conformal family of C/A-manifolds is given by

My = Maps(C/A, X),

the spaces of smooth maps from C/A to X, with their standard Fréchet
infinite-dimensional smooth manifold structures, and with C/A-actions given by
translation: z *y: p — y(p + z). The isomorphisms

©an: Maps(C/A, X) = Maps(C/aA, X)

are given by the pullbacks along m,-1 44 : C/aA — C/A. The commutativity of
(5.1) is then the trivial identity a*(p + az) = a~'p + 2. The submanifold of
fixed points for this action consists of the submanifold of constant loops, so that
we have a canonical trivialization j,: X — Fix(M,) mapping a point z € X to
the constant map v,: C/A — X with constant value x. The commutativity
of (5.3) is trivial. We are thus in the situation considered in Section 5.2 and
so, by Proposition 5.19, Corollary 5.20 and Definition 5.21, modular forms
are naturally associated with the conformal family {Maps(C/A, X)} and so,
ultimately, to X.

Things are however not so straightforward. Indeed, as the normal bundle to
X in Maps(C/A, X) has infinite rank, we will need to make sense of the now
infinite products defining normalized equivariant top Chern classes and Euler
classes. The idea here is to write

<1+ ai(E,;)Ef) - (1+2)

where we think of the degree zero variable z as of a complex variable, to

2=0i(Epy )Ex |

compute the product of the factors 1 + z/A so to obtain an entire function ®(z)
and then to compute @(ai(EpA)Exl) by putting z = &i(EpA)Exl in the Taylor
expansion of ® at z = 0. Notice that this last operation makes sense without
any convergence issue as, by the finite dimensionality of X, the degree zero

element Ozi(Ep)\)Exl is nilpotent. Yet, there is no guarantee that the infinite
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product of the factors 1 + z/\ will converge, and actually it does not. So one
has to suitably regularize it in order to get a convergent product. A convenient
way of doing so is by the technique of Weierstrafl (-regularization that we
recall below. Our problems are not over, yet: (-regularization may disrupt the
expected modularity of Witten classes, so we will have to check in the end
whether this is preserved. It will turn out that a topological constraint on X
has to be imposed in order to maintain modularity: X has to be a rational
string manifold.

With these premises, we can now determine the Witten classes of the conformal
family { My} = {Maps(C/A, X)}. We will assume X to be 2-connected so that
M, is connected. One can weaken this assumption by requiring X to be only
connected, and taking M, to be the space Maps,(C/A, X) of homotopically
trivial maps from C/A to X. Or one can even remove any connectedness
assumption on X by working separately on each of the connected components
of Maps,(C/A, X) (which bijectively correspond to the connected components
of X).

As the smooth structure on M, is the standard Fréchet one, the tangent
space at the point v € Maps(C/A, X) is the space H°(C/A;v*T X) of smooth
sections of the pullback of the tangent bundle of X via «. In particular, for any

xr € X we have
T, My =C*(C/NT,X) = C*°(C/AR) ®@r T, X,
and so the restriction of the complexified tangent bundle of My to X = Fix(M,)

1S

TM®C|, = C*(C/A;C) Q¢ (TX ®x C).

Remark 6.1. In writing X = Fix(M,) we have identified X with Fix(M,) via
ja- We will keep this identification fixed in all that follows, so that we will see
X as a submanifold of M, and consequently reduce , to the identity of X.

Since Fourier polynomials are dense in the Fréchet topology of C*(C/A;C),
in the same vein of [Ati85], we consider the Fourier topological direct sum

decomposition

TMy®C|, = (@Qx)) ®c (TX ®r C),

AEA
where Cy is the 1-dimensional representation of C/A with character py. This
immediately implies

vy ®C = @ Co | ®c (TX ®r C),
AeA\{0}
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where v, denotes the normal bundle for the inclusion X < Maps(C/A, X).
By formally applying formula (3.2) to this infinite rank situation, we obtain

. d =1
Cfop@/A(VA@C) = H H (1 + %)
AeA\{0} =1
d
(6.1) -1 11 (1 + ;) B
i=1 AeA\{0} z=a;(X)En

where (X)), ..., aq(X) are the Chern roots of the complexified tangent bundle
TX ®r C of X. As anticipated, to compute (and actually give a meaning to)

[I (1+5)

AeA\{0}

the infinite product

one uses Weierstrafl (-regularization. For the reader’s convenience we recall
the basics of the procedure here. A detailed treatment can be found, e.g., in
[Rud87, Chapter 15]. For any r = 0, let

- 0 itr=20

P.(z) := Z ﬁ = ,

=) S+ + 2 ifr>0.

If {x,} is a sequence of nonzero complex numbers with |x,| — +0oo for n — 400

and {p,} is a sequence of nonnegative integers such that

o0 ( R )1+pn
d (= < 4o
"fn’

n=1

for every R > 0, then the infinite product

o0
Weig5(2) = [ ] (1 — Ki) o Pon (2/hn)

n=1

converges and defines an entire function which has a zero at each point x,, and
no other zeroes. More precisely, if k£ occurs with multiplicity m in the sequence
{kn} then Weiz 5(z) has a zero of order m at z = k. Moreover, the infinite
product defining Weiz 5(2) is unchanged under simultaneous renumbering of
{kn} and {p,}. If A < C is a lattice, then the series

(6.2) > |A1|s

AeA\{0}

converges for R(s) > 2. This implies that for any r > 2 the series

R 147 1
e _ Rr-i—l -
> (%) >
AeA\{0} AeA\{0}
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converges, and so, by choosing p,, to be the constant sequence p,, = r one sees
that the infinite product

I1 (1 n ;) ePr(=2/3)
AeA\{0}

defines an entire function of z. Here we used the renumbering invariance to write
the product as a product over A\{0}. Now one makes a choice of arguments for
the elements A € A\{0} in such a way that the (-function (s (o}, defined by
analytic extension of the holomorphic function

1
Cngoy(s) = > o R(s)>2
AeA\{0}

is defined at s = 1 and at s = 2. By convergence of (6.2) for R(s) > 2, the
¢-function (p\foy will then be defined at every positive integer, and one can

formally write

H (1 + ;) = H e~ Pr(=2/3) (1 4 ;) oPr(=2/%)

AeA\{0} AeA\{0}

= H e~ Pr(=2/2) H <1+ ;) ePr(=2/3)

AeA\{0} AeA\{0}

_(— 2 (=2)" z
— e ( Cavgoy (1)z+Ca\ 103 (2) Z +++Cavgo3 (1) = ) H 1+ _) ePT(—z/A)7

AeA\{0}

where in the last step one has replaced the possibly divergent sums ) ,_ A0} %,
for j = 1,...,r with their (-regularizations. Thanks to absolute convergence,
the terms (=" freely move in and out from the product over A\{0} for k > 2.
Therefore, the last term in the above chain of formal identities is independent

of r as soon as r > 2 and we arrive at the following.

Definition 6.2. Let a choice of arguments for the elements A € A\{0} in such
a way that (o is defined at r = 1 and at r = 2 be fixed. The Weierstraf3
(-regularized product of the factors (1 + z/\) with A ranging in A\{0} is

C 22 z z2
H (1 + ;) = b0y (Dz—Ca\03 (2) 5 H <1 + ;) e 3tz
AeA\{0} AeA\{0}
Remark 6.3. Choices of arguments for the elements A € A\{0} such that (x\(03(1)
and (a\f03(2) are defined do actually exist and moreover there are quite natural
choices with this property, see Remark 6.10 below.

We can now turn (6.1) into a formal definition.
116



Definition 6.4. Let v5 be the normal bundle for the inclusion X < Maps(C/A, X).
The Weierstrafl (-regularized equivariant top Chern class of vy ® C in the
antiholomorphic sector is defined as

— d

E ¢ z
Cf(’);C/A(VA ®C) := H H (1 + X>
i=1 \eA\{0}

2= (X)Ey "

By analogy with Definition 5.18 and Definition 5.21 we then give the following.

Definition 6.5. In the same assumptions as in Definition 6.2, the (-reqularized
total complex Witten class of {Maps(C/A, X)} is the function

: . . —1
Wlt%Maps((C/A,X)}: Lattices™ (C) — H*(X,C)[{y |
given by
. Y 1
Wity papsie/a,x)y (V) = (X @ Jga) —
Ctép,C/A(VA ® C)

The coefficient

Wit%Maps((C/A,X)};k: Lattices™ (C) — H**(X,C)

defined by the expansion

0
Withaps(C/AvX)}(A) - ZWit({:Maps((C/A,X)};k(A)g)_(k
k=0

will be called the k-th (-regularized complex Witten class of {Maps(C/A, X)}.

Lemma 6.6. In the same assumptions as in Definition 6.2 one has

Y

1_[C 1+ E) _ eCA\{O}(l)Z_CA\{O}@)éO-A—(Z)

z
AeA\{0}

where op(z) is the Weierstraf§ o-function of the lattice A.

Proof. By definition of the Weierstrafl o-function, see, e.g., [WW15, Section
20.42], one has

(6.3) on(z) =z H (1 - ;) e§+2zf?.

The statement then follows by changing A in —\ in the above product and by

comparing with Definition 6.2. O
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Corollary 6.7. In the same assumptions as in Definition 6.2 one has

d
., .
6.4 Wit$ A) = eSavor@pr(TX)Ex H
( ) {Maps((C/A,X)}( ) U O‘A(z)

2= (X)Ex
where p1 (T X) denotes the first Pontryagin class of TX seen as an element
in H4(X;C).

Proof. From Definitions 6.2 and 6.4 and from Lemma 6.6, recalling Remark 6.1
and that j, (zix) = £, one has

d
(6.5) Wit%Maps((C/A,X)}(A) = H (e_CA\{O}(l)Z-‘rCA\{O}(Q)Z; L)

i=1 o (2) Z—ai(X)E)_(I.
One then rewrites the right hand side of (6.5) as
ecA\{o}(1)c1(TX®C)5A1+<A\{0}(2>(écl(TX®<C)2cz(TX@(C))ﬁAlﬁ c
i1 I8 |aogt
recalls that the odd Chern classes of the complexification of a real vector bundle
vanish, and uses the relation co(TX ®g C) = —p1(T'X) to conclude. O

It is important to stress that the (-function (a\joy and its value at 2 depend
on the choice of arguments for the elements A in A\{0}. One removes this
dependence by requiring that p;(X) is zero in H*(X;Q), i.e., by requiring that
X is a rational string manifold. With this assumption, formula (6.4) reduces to

d
¢ z
(6.6) Wlt{Maps((C/A,X)}(A) = | | —

o oA 2) |

z=ai(X)Ey

where now the right hand side is a canonically defined equivariant cohomology
class in the antiholomorphic sector.

The entire function z/o,(2) is the characteristic power series for the complex
Witten genus [AHR10]. Therefore, summing up, we have obtained the following.

Proposition 6.8. Let X be a d-dimensional rational string manifold.
Then Wit%Maps(C/A X)) 1s the Witten class of the manifold X . In particular,

iof d is even then

1 C
/X Wlt{Maps(C/A,X) hid/2

1s the complex Witten genus of X.

Remark 6.9. Proposition 6.8 in particular tells us that if X is a rational string
manifold, then the (-regularized complex Witten classes

Wit?Maps((C/A,X)};k: Lattices" (C) — H*(X,C)
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are modular forms of weight k. This can be directly seen from (6.6) by
the modular properties of the function (A, z) — z/oa(x), which are in turn
immediate from the product formula (6.3).

Remark 6.10. When A = Z @ Z7 with &(7) > 0, with the standard choice of
arguments —7 < arg(\) < 7, one gets

CA\{O}(Q) = _47”% = G(7)

where 7 is the Dedekind n-function and G5 is the quasi-modular Eisenstein

72 1
Ga(T) = 37T Z Zm,

neZ\0 mezZ

see [Apol2, Chapter 3, Ex.1] and [QHS93, Example 13]. This explains the
exponential prefactor

series

e~ G2(T)p1(X)

appearing in the expression of the Witten class for a non rationally string
manifold for lattices of the standard form Z @ Z7. More generally, once an
oriented basis (wy,ws) for the lattice A is chosen, one can write A = w; H(Z®7Z)
with 7 = wy /w1, choose an argument for w; in [—7, 7) and choose the arguments
of the elements A € A\{0} so that

—7 + arg(wy) < arg(\) < 7 + arg(wy).
With this choice one has (a\ (03 (2) = wi *Ga(7).

As an immediate corollary, we get the analogous of Proposition 6.8 for the
real Witten class. We first need an couple of obvious definitions.

Definition 6.11. Let v be the normal bundle for the inclusion X < Maps(C/A, X).
The Weierstrafl (-regularized equivariant Euler class of v, in the antiholomorphic
sector is defined as

0; . {\
eul(C/CA(uA) = Ctoi),(C/A(VA ®C),
where the determination of the square root is such that /1 +---=1+---

Definition 6.12. In the same assumptions as in Definition 6.2, the (-reqularized
total real Witten class of {Maps(C/A, X)} is the function

. ) . —1
Wlt]?%;{Maps((C/A,X)}: Lattices™ (C) — H*(X,C)[¢x |
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given by
Wlt]g{,{Maps(C/A7X)}(A) = (]X ®]:A) /5\—

eul(c’/CA(yA)
The coefficient

Wit : Lattices™ (C) — H*(X,C)

R;{Maps(C/A,X)};k
defined by the expansion
14C i4€ —2k
Witk putapsica, 0 (4) = D With (vape(csn xpe(AEx
k=0
will be called the k-th (-regularized real Witten class of {Maps(C/A, X)}.

From equation (6.6) and by the usual 1/z < z rule for passing from passing
from Pontryagin classes of a real vector bundle to Chern classes of its complexi-
fication in characteristic power series for genera (see, e.g., [Hir78, Section 1.3]),
we have that if X is a rational string manifold of even dimension d, then

d/2
(6.7) Witg, {Maps(c/a,x)) (A H

2=Bi(X)Ex
where the §;(X) are the Pontryagin roots of TX. From this, one has the real

Witten classes analogue of Proposition 6.8.

Proposition 6.13. Let X be a rational string manifold of even dimension d.
Then Wlt{MapS((C/AX is the Witten class of the manifold X . In particular, if
d=0 mod 4 then

¢
/X Wit (Maps(e/a.)}a2
1s the real Witten genus of X.

Clearly, we also have the analogue of Remark 6.9

Remark 6.14. If X is a rational string manifold of even dimension d, then the

(-regularized real Witten classes

Wit ¢

bR (Maps(C/A, X))k : Lattices™ (C) — H*(X,C)

are modular forms of weight 2k.
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Appendices

1. GENERALISING TO OTHER MAPPING SPACES, TRANSGRESSED BUNDLES,
ToDpD, A, AND A TOY EXAMPLE

In the paper we considered the normal bundle relative to the inclusion
X «— [?X = Maps(T?, X). This was, of course, due to us wanting to use the
localization theorem for torus actions. The careful reader may have noticed
how here the torus T? plays two roles: it is the source space for the space of
maps Maps(T?, X) and it is the group acting on this space with X as manifold
of fixed points.

An obvious generalization to consider, especially in the context of TFTs,
consists in allowing arbitrary closed compact manifolds as source manifolds for
the space of maps, and arbitrary subgroups of the diffeomorphism groups of
these manifolds as groups of symmetries: given a manifold > acted smoothly
upon by a group D, the mapping space Maps(X, X) naturally inherits a D-
action. Moreover, if the D-action on ¥ is transitive, then the fixed point locus
for the D-action on Maps(X, X) is the submanifold of constant maps and so it
is canonically identified with X.

When Maps(3, X) is given its standard Fréchet manifold structure, the
tangent bundle to Maps(X, X ) can be described in terms of a pull-push procedure.
Consider the span

Maps(X, X) <~ Maps(3, X) x & =5 X

with 7 the projection on the first factor and ev sending a pair (7, s) to vy(s).
Then T'(Maps(X, X)) = m.ev*T X, where the fibre of m,V over a point 7 is
given by the space of sections of V' over the fibre 3 =~ 7~!(y). In other words,
the tangent space over a map 7 : ¥ — X is given by the space I'(3;v*T'X).
When ~ is an embedding, this can be thought of as the space of sections of T'X
over the image of .

With this in mind, it is clear how the restriction of the tangent bundle of
Maps(X, X) to X < Maps(2, X) identified with the submanifold of constant
maps is given, over a point x, by C*(3,7X,). Thus the normal bundle of
t: X — Maps(X, X) will be given (over z) by C*(X,TX,)/TX,.

We generalize this process with the following definition:

Definition 1.1. Given two manifolds 3, X, and a vector bundle V — X, we
define the transgressed bundle 7(V') to be t*m.ev* (V) with 7 and ev as above.
We also define ¢(V) := 7(V)/V.

If ¥ admits a D-action, then both 7(V') and (V) will be D-equivariant

bundles over X.
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If V — X is a real or complex vector bundle on X, characteristic classes of
V' appearing in various classical genus formulas can be expressed as inverse
equivariant normalized top Chern or Euler classes of ¢)(V') for a suitable choice
of the manifold ¥ and of the group D. For instance, the result of Atiyah
recovering A(X ) from circular symmetry [Ati85] can be immediately generalized
to an arbitrary real vector bundle V' — X obtaining A(V) as the inverse of the
equivariant normalized Euler class of (V) for ¥ = T' and D = T acting on
itself by translations. We show this below. In doing this we will also see how the
Todd class of a complex vector bundle /' — X is recovered as the inverse of the
equivariant normalized top Chern class of 1(V), again with (X, D) = (T*, T!).

To begin with we recall from our article that, given a lattice A in R and given
a R/A-equivariant complex bundle £ on a R/A-trivial manifold, its normalized
top Chern class is given by

T ailB, uyt
(BT = ] 11 (1+%”A) _
AeA\{0} i=1
tkEyy
- 11 1I <1+§) .
AeA\{0} i=1 z=a;(Bpp Juy !

Unfortunately this product is only convergent for bundles whose effective
part is finite dimensional. This is obviously true for finite dimensional bundles
and obviously false for transgressed bundles. We can fix this non-convergence
issue for a transgressed bundle E' = 7(F') exactly as we did in the paper for the
C/A-equivariant bundles. The effectively acted part of 7(F) is ¢(F) and the
1d version of the 2d computation done in the article gives( for details on the

(-regularizations used in this computation see [QHS93])
¢ N\ —vol(R/A)~Linz Z —z/A
H <1+X>—€ H (1+X)€ .
AeA\{0} AeA\{0}

Recalling that

H <1 N f) - sin (72 vol(R/A)™1)

-1
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and setting uy =
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ie.,
—_—

Cfop,R/A(w(F)) = td(F> U~A)717

with td(F, ) the homogeneous Todd polynomial of F' in the variable @,. From

the point of view of equivariant characteristic classes, this is nicely rewritten as

1
td(F7 U~A) = —

Next, we recall that

1—e* 22 sinh z/2
= M

z z/2

This implies that, if V' — X is a real vector bundle and F = V ® C is its
complexification, then

—

Copin BV ®C)) = td(V @ C,1iy) ! = A(V,10y) 2

In other words, recalling that

etlg (W) == | (W @ C),

where the determination of the square root is such that 1+ --- =14 ---, we
have
- . 1
A(V, UA) =
eulg, ), (¥ (V)

Remark 1.2. In the article on the Witten genus, its modular properties have
been derived through conformal invariance. On the other hand, these modular
properties have a topological origin. This is seen by noticing that instead of
considering just T%-translations on Maps(T?, X)), one could have considered the
action of the whole group Diff " (T?) of oriented diffeomorphisms of T?. The
modular group SL(2;Z) action on T?-equivariant cohomology of the fixed locus
X < Maps(T?,Y) then shows up by noticing that Diff " (T?) retracts on the
subgroup D = SL(2;Z) x T?. From the point of view of oriented lattices A < C,
this SL(2;Z)-action is reflected in the fact that the moduli stack of oriented
lattices in C is equivalent to BSL(2;7Z). A detailed topological derivation of the
Witten genus via the (SL(2;7Z) x T?)-equivariant cohomology of Maps(T?, %)

will be hopefully carried out in forthcoming research.
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1.1. A toy example with Stiefel-Whitney classes. As a conclusion, we
investigate a toy example, based on the simplest nontrivial space of maps: the
one obtained by taking ¥ = S°, endowed with the transitive action of the
symmetric group on 2 elements. Equivalently this is the translation action of the
group S® = {1, —1} on itself. For a manifold X, we have Maps(S5?, X) = X x X,
and the induced symmetric group action is the permutation action. The fixed
points are the diagonal of X x X, and so again a copy of X. For a real vector
bundle V' — X the transgressed bundle 7(V') is isomorphic to V @ V' in this
case, S® acts on this direct sum by acting trivially on one copy of V' and via
the sign representation on the other copy. The bundle (V') is therefore a copy
of V as a vector bundle, with S° acting through the sign representation.

In order to handle localization formulas in S°-equivariant cohomology we
will need to work with coefficients in Fy := Z/2Z. As a consequence, the
relevant characteristic classes will be the equivariant Stiefel-Whitney classes.
The S%-equivariant cohomology ring of the point with Fy coefficients is

Ho(+;Fy) = H*(BS% Fy) = H*(P*R; Fy) = Fy[z],
with x in degree 1. The equivariant Stiefel-Whitney classes of ¢)(V) will therefore
be elements in Hg (X, Fy) = H*(X,Fy)[x].
For an equivariant real line bundle over X = Fix(X x X) whose character is

the sign representation of S, one has that the first equivariant Stiefel-Whitney
class is

wyg0(L) = wi(L) + =,
and so the normalized first equivariant Stiefel-Whitney class of L is

X

'&]\1750([4) = 1 +

Remark 1.3. Notice that it is possible to localize at x precisely because we
are working with [Fy coefficients, so that the fact that x has degree 1 does not
make it a zero divisor: the equation ? = —2? is trivially satisfied and does
not impose a nontrivial constraint on x; in particular the equivalent equation
222 = 0 is trivial and does not make up a pair of zero divisors (2z,z) as it

would be with coeflicients in a field of characteristic different from 2.
By applying the splitting principle to ¥ (V'), one sees that the top normalized
Stiefel-Whitney class of ¢(V) is

rkV
'&}top,so(w(v» = H 1+ @7
=1
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where the wq(L;) are the Stiefel-Whitney roots of V. We therefore find
rk V'

1 1
Brop,s0 (L (V) H 1+z

where the classes Wy (V') are recursively defined by (V) = w (V) and
(V) = Wt (V)wi (V) + -+« + w0 (V)wg—1 (V) + wi (V).
Expanding this relation one finds
wp = w;
Wy = wf—kwg
5 = wi+ws
Wy = w‘ll+wfw2+w§+w4
5 = w? +w1w§ +w%w3 +ws
6 = W) +wiwy +wi +ws +wiwg +wg
wy = wz —I—w‘llwg +w§w3 +w1w§ +w%w5 +wr
wg = w? + w?wg + w‘llwg —|—w§‘ +w2w§ +wilw4 +w§w4 —|—wi + w%wﬁ +wsg
Wy = w‘[f+w?w§—|—w1w§—|—w?w3—|—w§+w1wi+w‘fw5+w§w5+wfw7+wg,
and so on.

By comparison with what happens for Maps(T!, X), where one recovers
the A-class and the A-genus of X, one would expect that w,(TX) is an
interesting class of an n-dimensional manifold X, and that [, w,(7X) is an
interesting invariant of X taking values in Fy. Unfortunately, it is not so. By
the multiplicativity of Stiefel-Whitney classes, one can equivalently characterize
w(V) as the total Stiefel-Whitney class w(W) of a vector bundle W such that
VW =R? x X. Specializing to the case of V = T'X and recalling that by
the Whitney embedding theorem every smooth n-manifold X can be smoothly
embedded into R?", we have w,,(TX) = w,(vx /r2n ), where vy pen denotes the

normal bundle for a fixed embedding X < R?*"*. Now, it is a (nontrivial) fact
(see [MS74, Corollary 11.4]) that wy,(vx/ren) = 0. Therefore, in particular

1
= =0
/);' wtop,SO (¢(TX))
for any X.
Even though this may appear a trivial result, this is far from the truth:

the invariant is trivial, but its triviality is a nontrivial result. Indeed, for
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an arbitrary vector bundle V' — X on an n-dimensional manifold X there
is no reason for w, (V') to be 0. A simple counterexample is the case of the
tautological bundle £ — P"R. In this case one has @, (&) = wy(£)"™, and so

L ey - Lomera =

is a nontrivial element in H*(BS?, Fy)(n).
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