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Résumé

Le théorème de Noether est l’un des plus beaux piliers de la mécanique classique et de la
théorie des champs. Il a permis de démêler une relation entre les symétries et les lois de
conservation, et a trouvé des applications dans tous les domaines de la physique. Parmi
ses applications, le cas de la relativité générale est probablement l’un des plus subtils.
La seule symétrie de la relativité générale est l’invariance sous les transformations
de coordonnées, ou difféomorphismes. Mais cela ressemble plus à une symétrie de
jauge locale, et comme pour les symétries de jauge locale, une application directe du
théorème dit qu’il n’y a pas de charges conservées non triviales. Une analyse plus
approfondie montre que si l’on prend correctement en compte les conditions aux limites,
il y a des charges non triviales, mais ce ne sont pas des intégrales sur une hypersurface
de Cauchy, comme dans les applications aux théories de terrain sur l’espace-temps
plat, mais plutôt des intégrales de surface sur les limites bidimensionnelles d’une
hypersurface de Cauchy. De telles charges de surface ont joué un rôle clé dans la
compréhension de la relativité générale depuis l’analyse Hamiltonienne de l’ADM
(Arnowitt-Deser-Misner) et plus tard sur l’article fondateur de Regge et Teitelboim.
Dans la recherche actuelle, ces charges de surface jouent un rôle important dans les
applications phénoménologiques : par exemple, les quantités mesurées par LIGO et
la Vierge, comme la masse et le moment angulaire des trous noirs en coalescence
emportés par les ondes gravitationnelles, sont comprises comme des charges de surface.
Elles jouent également un rôle dans les développements théoriques : elles décrivent la
première loi de la mécanique des trous noirs, entrent dans la description de l’entropie des
trous noirs et ont été utilisées pour explorer les résolutions du paradoxe de l’information
sur les trous noirs. Il existe actuellement un domaine d’intérêt actif autour des charges, et
diverses questions ouvertes sont sur la table, de l’inclusion des multipôles gravitationnels
à la compréhension de leur quantification correcte. Il y a un deuxième aspect subtil de
la relativité générale que j’ai abordé dans cette thèse. Une conséquence de l’invariance
du difféomorphisme de la théorie est la présence de contraintes de première classe,
comme la loi de Gauss dans les théories de jauge. Ces contraintes de première classe
limitent le choix des conditions initiales admissibles pour le problème de Cauchy
d’une manière non linéaire et très non triviale. C’est un problème qui apparaît très
clairement dans la relativité numérique, où il faut mettre en 1

2uvre les contraintes avec
soin et s’assurer que les approximations utilisées par la grille numérique n’introduisent
pas de trop fortes violations. De bonnes conditions initiales sont connues pour des
solutions très simples, et une solution générale des contraintes est inconnue. Ce fait
a une conséquence importante également pour les approches de la gravité quantique.
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Dans la gravité quantique en boucle par exemple, il y a de l’espace, et des opérateurs
géométriques avec des spectres discrets et des propriétés de non-commutativité. Cette
image se tient au niveau cinématique, c’est-à-dire avant l’imposition de la version
quantique des contraintes du difféorphisme Hamiltonien, et il n’est pas prouvé que
la même géométrie quantique décrirait également l’espace physique de Hilbert de la
théorie, défini sur-coquille sur les contraintes. Une perspective différente du problème
peut être obtenue si l’on passe d’un problème de valeur initiale de Cauchy sur une
hypersurface semblable à un espace à un problème de valeur initiale caractéristique sur
une hypersurface nulle. Dans ce cas, on sait depuis les travaux de Sachs dans les années
60 que l’on peut identifier des données sans contraintes, sous la forme du cisaillement
de la congruence géodésique nulle de l’hypersurface. La question est de savoir si ces
données sans contrainte peuvent être interprétées en termes de variables de connexion,
puis d’appliquer les techniques de gravité quantique en boucle.
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Resume

Noether’s theorem is one of the most beautiful pillars of classical mechanics and field
theory. It unravelled a relation between symmetries and conservation laws, and found
applications in all domains of physics. Among its applications, the case of general
relativity is probably one of the most subtle ones. The only symmetry of general
relativity is the invariance under coordinate transformations, or diffeomorphisms. But
this is more like a local gauge symmetry, and like for local gauge symmetries, a direct
application of the theorem says that there are no non-trivial conserved charges. A
more careful analysis shows that if one correctly takes into account the boundary
conditions, there are non-trivial charges, but these are not integrals over a Cauchy
hypersurface, like in applications to field theories on flat spacetime, but rather surface
integrals over the two-dimensional boundaries of a Cauchy hypersurface. Such surface
charges have played a key role in the understanding of general relativity since the
ADM (Arnowitt-Deser-Misner) Hamiltonian analysis and later on the seminal paper
by Regge and Teitelboim. In current research, these surface charges play an important
role in phenomenological applications: for instance the quantities measured by LIGO
and Virgo, like the mass and angular momentum of coalescing black holes carried
away by gravitational waves, are understood as surface charges. They also play a
role in theoretical developments: they describe the first law of black hole mechanics,
enter the description of black hole entropy and have been used to explore resolutions
of the black hole information paradox. There is currently an active area of interest
around the charges, and various open questions are on the table, from the inclusion of
gravitational multipoles to understanding their correct quantization. There is a second
subtle aspect of general relativity that I addressed in this thesis. A consequence of
the diffeomorphism invariance of the theory is the presence of first class constraints,
like the Gauss law in gauge theories. This first class constraints limit the choice of
admissible initial conditions for the Cauchy problem in a non-linear, highly non-trivial
way. This is a problem that shows up very clearly in numerical relativity, where one
has to carefully implement the constraints and make sure that the approximations used
by the numerical grid don’t introduce too strong violations. Good initial conditions are
known for very simple solutions, and a general solutions of the constraints is unknown.
This fact has an important consequence also for approaches to quantum gravity. In loop
quantum gravity for example, there of space, and geometric operators with discrete
spectra and non-commutativity properties. This picture holds at the kinematical level,
namely prior to the imposition of the quantum version of the Hamiltonian diffeorphism
constraints, and it is not proved that the same quantum geometry would also describe
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the physical Hilbert space of the theory, defined on-shell on the constraints. A different
perspective to the problem can be gained if one switches attention from a Cauchy initial
value problem on a space-like hypersurface to a characteristic initial value problem
on a null hypersurface. In this case, it is known since the work of Sachs in the sixties
that one can identify constraint-free data, in the form of the shear of the null geodesics
congruence of the hypersurface. The question is whether these constraint-free data can
be given an interpretation in terms of connection variables, and then the loop quantum
gravity techniques be applied.
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Chapter 1
Introduction

One of the most important theoretical frameworks at the ground of quantum field the-
ory consists of the determination of suitable symmetry invariance of the associated
Lagrangian density. A fundamental tool of this analysis is the Noether theorem, which
allows one to associate such invariance of the field’s equations with a conserved quantity
known as the Noether charge. A well-known example of how this theorem applies is
the derivation of the energy-momentum tensor for a general field in a flat spacetime.
For this purpose, it must be regarded of significant interest the application of this formal-
ism to the description of the gravitational field, which requires to implement this field
concept on curved space-time geometry and in presence of a non-Riemannian affine
connection. The only symmetry of general relativity is the invariance under coordinate
transformations, or diffeomorphisms. But this is more like a local gauge symmetry,
and like for local symmetries, a direct application of the theorem says that there are
no non-trivial conserved charges as consequence of the fact that they are not global
quantities, as they are not associated to a global symmetry. Nevertheless, a more careful
analysis shows that if one correctly takes into account the boundary conditions, there
are non-trivial charges, but these are not integrals over a Cauchy hypersurface, like
in applications to field theories on flat spacetime, but rather surface integrals over the
two-dimensional boundaries of a Cauchy hypersurface.
An intuitive idea of what is behind this different application can be given looking at
concepts of time and energy in Special Relativity (SR) and General Relativity (GR). In
SR, time and energy are relative to the observer but uniquely defined: once we fixed the
coordinate system, we have a global inertial reference frame in which we can define
the energy of the matter field and particles and we can transform these quantities from
inertial frame to an accelerating one. On the contrary, for GR a unique definition of
time and a universal notion of energy as a conserved quantity lack as consequence
of diffeomorphisms invariance. The time of an inertial observer can flow at a very
different speed respect to the time of an inertial one and the diffeomorphisms invariance
prevents the construction of a meaningful notion of local energy-momentum tensor for
the gravitational field, since the latter can locally be made to vanish going to an inertial
frame.
As a consequence, global conserved charges can be defined only for particular solutions
of Einstein’s Equations in which the spacetime allows one or more global symmetries or
for Asymptotically-Flat Spacetime where the Minkowski background at the boundary
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allows the identification of a canonical notion of energy. In this context, the conserved
quantities result to be 2-d integrals, usually called "surface charges", and are derived
using an extension of the Noether theorem known as "second Noether Theorem". In
fact, from the standard Noether theorem, we have that for local gauge symmetries it
exists only one equivalence class of conserved currents and it corresponds to the trivial
one. However, these same trivial currents can generate a conservation law for 2-d
charges or fluxes in finite regions: if the theory has gauge parameters which generate
global symmetries, we are still able to define associated surface charges that are the
same for each observer and whose conservation law is given from the vanishing of the
3-d Noether current.
Such surface charges have played a key role in the understanding of general relativity
since the ADM (Arnowitt-Deser-Misner) [Arnowitt et al., 2008] Hamiltonian analysis
and later on the seminal paper by Regge and Teitelboim [Regge and Teitelboim, 1974].
In current research, these surface charges play an important role in phenomenological
applications: for instance the quantities measured by LIGO and Virgo, like the mass
and angular momentum of coalescing black holes carried away by gravitational waves,
are understood as surface charges. They also play a role in theoretical developments:
they describe the first law of black hole mechanics, enter the description of black hole
entropy and have been used to explore resolutions of the black hole information paradox.
There is currently an active area of interest around the derivation of these charges, and
various open questions are on the table, from the inclusion of gravitational multipoles
to understanding their correct quantization.
The study of conserved quantities also plays a fundamental role in scenario of information-
loss paradox resolution. The debate around the information paradox is crucially related
to the definition of the Bekenstein-Hawking entropy and suggested an analogy between
a BH and a thermodynamical system. A well known result of this interpretation is the
no-hair theorem [Carter, 1971, Hawking, 1972], stating that any stationary axisymmet-
ric BH can be described, no matter how it has been formed, by means of only three
parameters: the mass M, the angular momentum J and the charge Q. This is reminis-
cent of a description of a system with only macroscopic thermodynamical variable
such as energy, temperature and pressure and it connected on Jacobson interpretation
of Einsteins equations as emergent from description of more fundamental degrees of
freedom [Jacobson, 1995].

There is a second main aspect of GR that we deal in this dissertation. A consequence
of the diffeomorphism invariance of the theory is the presence of first class constraints,
like the Gauss law in gauge theories. This first class constraints limit the choice of
admissible initial conditions for the Cauchy problem in a non-linear, highly non-trivial
way. This is a problem that shows up very clearly in numerical relativity, where one
has to carefully implement the constraints and make sure that the approximations used
by the numerical grid don’t introduce too strong violations. Good initial conditions are
known for very simple solutions, and a general solutions of the constraints is unknown.
This fact has an important consequence also for approaches to quantum gravity. In loop
quantum gravity for example, there exists a compelling kinematical picture of quantum
spacetime, where the smooth manifold of general relativity is replaced by a collection of
quanta of space, and geometric operators with discrete spectra and non-commutativity
properties. This picture holds at the kinematical level, namely prior to the imposition of
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the quantum version of the Hamiltonian diffeomorphism constraints, and it is not proved
that the same quantum geometry would also describe the physical Hilbert space of the
theory, defined on-shell on the constraints. A different perspective to the problem can
be gained if one switches attention from a Cauchy initial value problem on a space-like
hypersurface to a characteristic initial value problem on a null hypersurface. In this case,
it is known since the work of Sachs [Sachs, 1962a] that one can identify constraint-free
data, in the form of the shear of the null geodesics congruence of the hypersurface. The
question is whether these constraint-free data can be given an interpretation in terms of
connection variables, and then the loop quantum gravity techniques be applied.
The topic of this thesis concerns the study of these two aspects, constraint-free data in
the bulk of a null hypersurface, and surface charges and their conservation or balance
laws, using tetrad variables instead of metric variables. This is motivated both by the
possibility that these different variables can shed light on the open questions in the
classical theory, but also by the potential applications to loop quantum gravity. My
thesis only dealt with classical aspects. The structure of my thesis is as follows. I will
first provide a basic introduction to the use of differential forms and tetrad variables in
general relativity, in Chapter 2. I will then present the original results of my thesis, split
in three Chapters based on the papers I published during my first two years of PhD work.

Chapter three
In the first chapter of the original part of this dissertation we present a work [De Lorenzo
et al., 2018] related to Jacobson’s idea that the continuum structure of spacetime could
emerge as the thermodynamical equilibrium description of more fundamental quantum
degrees of freedom [Jacobson, 1995].
The analysis that we will report is based on the paper [De Lorenzo et al., 2018] in
which we restate the thermodynamical formulation of gravity in the first order formal-
ism, i.e. using tetrads and spin connections as independent variables. Our analysis is
related to Jacobson’s idea that the continuum structure of spacetime could emerge as
the thermodynamical equilibrium description of more fundamental quantum degrees
of freedom [Jacobson, 1995] and was motivated to generalised this results in presence
of torsion. As we will show in the first introductive chapter, we can interpret torsion
as a some extra degrees of freedom that describes the spacetime structure and are
"visible" only in presence of a matter field that coupled with the gravitational field.
In this interpretation torsion should enter in every definition related to spacetime, as
parallel transport, curvature of spacetime, killing vector field etc. This means that if
we want to give a thermodynamical interpretation to Einstein-Cartan equations we
need to reformulate Jacobson’s idea starting from the physical and mathematical set-up
(bifurcating horizon) and conserved quantity laws.
We divided our analysis in two main parts. In the first one we study the case of the iden-
tification of a conserved energy-momentum tensor for Einstein-Cartan theory coupled
with a matter field. We show that this is possible only using the Noether identities of
the matter Lagrangian and the torsion field equations.
In the second part we use the conserved energy tensor to show that Jacobson’s thermo-
dynamical derivation of the Einstein equations follows as in the metric theory, namely
from the equilibrium Clausius relation and the fact that a Killing horizon is metric-
geodetic. In the same part we review the laws of black hole mechanics and analyse their
dependence on torsion. We didn’t specify any matter Lagrangian but we took a general
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one so our derivation works for an arbitrary torsion field.
Such a first order formulation finds its motivation in the possibility of extending the
thermodynamical picture of gravity towards advanced formulation required by a proper
approach to quantum gravity. In particular the set of dynamical equations derived trough
this analysis as to be regarded as the starting point for an implementation of the so
called Ashetkar-Barbero-Immirzi variables at the ground of loop quantum gravity, once
an Hamiltonian formulation is concerned.

Chapter fourth
The previous analysis pointed out that the study of conserved quantities in the first
order formalism requires some more attentions respect to the usual derivation in the
second order formalism trough the Noether theorem. We treat this general problem in
the third chapter, based on the paper [De Paoli and Speziale, 2018], where we extend
the analysis on conserved quantities to the presence of extra gauge symmetries which
act on tetrad indices and we use the covariant phase space formalism. The power of this
method hang on the fact that it allows one to define surface charges for diffeomorphisms
as the canonical generators in the covariant phase space and relies on the symplectic
potential, which summarizes all the symplectic properties of the covariant phase space.
In particular the symplectic two-form, obtained varying such potential, provides the
geometrical properties of the covariant phase space.
The analysis that we carried on is based on the identification of a symplectic potential
for general relativity in tetrad and connection variables that is fully gauge-invariant,
using the freedom to add surface terms. In fact the symplectic structure arising from
the Einstein-Cartan action is not fully gauge invariant and it leads to surface charges
associated with the internal Lorentz transformations. These charges are not present in
the metric analysis and are an evidence of the non gauge invariance of this structure.
Moreover we expect that when torsion vanishes the covariant phase space morphology
it’s equivalent to the metric one and it’s not the case as these internal charges are not
even defined for the Einstein Hilbert action where this internal gauge symmetry doesn’t
apply. To find a fully gauge-invariant symplectic potential, it is enough to use the fact
that the symplectic potential is defined from an action principle only up to the addition
of an exact form. In particular, it reproduces the Komar form when the variation is a Lie
derivative, and the geometric expression in terms of extrinsic curvature and 2d corner
data for a general variation.The additional surface term vanishes at spatial infinity for
asymptotically flat spacetimes, thus the usual Poincaré charges are obtained. We prove
that the first law of black hole mechanics follows from the Noether identity associated
with the covariant Lie derivative, and that it is independent of the ambiguities in the
symplectic potential provided one takes into account the presence of non-trivial Lorentz
charges that these ambiguities can introduce.
Among the motivations for these results we mention the study of boundary degrees
of freedom, in particular the presence of the Holst term in Palatini action has been
shown to lead to an interesting description in terms of a conformal field theory on
the boundary [Freidel et al., 2017a, Wieland, 2017a, Geiller, 2018]) and it would be
intriguing to see if and how that description is affected by our results.

Chapter fifth
Finally we devoted our study to formulate the Cauchy problem for GR and the as-
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sociated constraint structure in the case of a null foliation, still retaining tetrad and
spin connection as basic variables. This analysis is based on the paper [De Paoli and
Speziale, 2017], in which we discuss the Hamiltonian dynamics of general relativity
with real connection variables on a null foliation, and use the Newman-Penrose for-
malism to shed light on the geometric meaning of the various constraints. An explicit
interpretation of the constraint structure for a null foliation is provided clarifying how
the diffeomorphisms and internal gauge symmetries emerge in this scenario.
The use of a null-foliation permits a straightforward identification of the real physical
degrees of freedom which enter the constraint expressions. We identify the equivalent
of Sachs’constraint-free initial data as projections of connection components related to
null rotations, i.e. the translational part of the ISO(2) group stabilising the internal null
direction soldered to the hypersurface. A pair of second-class constraints reduces these
connection components to the shear of a null geodesic congruence, thus establishing
equivalence with the second-order formalism, which we show in details at the level
of symplectic potentials. A special feature of the first-order formulation is that Sachs’
propagating equations for the shear, away from the initial hypersurface, are turned into
tertiary constraints; their role is to preserve the relation between connection and shear
under retarded time evolution. The conversion of wave-like propagating equations
into constraints is possible thanks to an algebraic Bianchi identity; the same one that
allows one to describe the radiative data at future null infinity in terms of a shear of
a (non-geodesic) asymptotic null vector field in the physical spacetime. Finally, we
compute the modification to the spin coefficients and the null congruence in the presence
of torsion. This analysis is of impact for the perspective of a quantization procedure
of the gravitational field viewed in a null foliation. In this respect has particular value
the identification of the physical degrees of freedom within the constraints morphology,
since it would facilitate the extension of this picture in a full quantum sector described
by optimized variables.
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Chapter 2
Einstein-Cartan Action and Local Gauge
Invariance

In this chapter, we discuss both the basic formalism that we used in the rest of the
dissertation both the background that we consider necessary to fully understand the
results explained in the following chapters and put them into context.
In the first part, we introduce the tetrad and connection formalism and the related action.
This formalism is an approach to general relativity that describes the gravitational
field trough four independent vectors defined in a local reference frame instead of
the metric tensor components. It was developed mainly in the study of a quantum
theory of gravity, in which tetrad variables are fundamental if one wants to couple
the gravitational field with the fermionic matter, but it also has the power to a deeper
analysis of GR symmetries ad degrees of freedom. The simplest action that one can
build in this formulation is Palatini action, or Einstein-Cartan action if we consider to
be at the first order. We will give a brief overview of it in this chapter together with an
analysis of the constraints system,
In the second part, we introduce the torsion tensor and we described its basic properties.
The torsion contribution arises in the first order formalism if the covariant derivative
is not metric compatible, i.e. is not Levi-Civita, or if the connection is not tetrad
compatible. In vacuum, on-shell of the fields equation, the torsion tensor identically
vanishes everywhere so its presence could be explained only by the interaction of the
gravitational field with some sort of matter field. We show what are the basic sources
that can generate torsion, i.e. the matter terms action that could be added to the Einstein-
Cartan action and what are the physical interpretations of its contribution.
In the last part of this general introduction we recall how to recover the Noether Theorem
in the case of scalar field in flat spacetime and how to derive a conserved charges if a
global symmetry is present. If we want to apply the classical Noether Theorem to GR
(and in general for any gauge theory) to derive conserved quantities some accuracies
should be taken. Moreover in presence of tetrad variables we introduce four extra
local symmetries in the description of the gravitational field which actually play a
fundamental role in the correct derivation of conserved charges. We will discuss these
aspects of tetrad gravity in the two followings chapter and we left here the analysis of
Noether charges for the gravitational field in metric variables.
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2.1 Tetrad and connection variables
Let us now introduce the formalism of the tetrads and connections variables. These
represent a useful way to express the gravitational theory in terms of gauge invariant
variables.
The tetrad is a collection of four linearly independent one-forms eI

µ(x), I = 0,1,2,3 that
provides a local isomorphism between a general reference frame and an inertial one,
characterized by the flat metric ηIJ . The relation between these two reference frames is
conceptually based on the equivalence principle and is mathematically expressed by the
following equation

gµν(x) = eI
µ(x)e

J
ν(x)ηIJ, (2.1)

which reppresents the formal definition of the tetrad variables this is why the tetrads are
sometimes described as the square root of the metric.
The new indices I = 0,1,2,3 of the tetrad are called internal indices as they act in a flat
spacetime-metric manifold and they and come together with an additional invariance
under a local gauge group G which corresponds to the the Lorentz group SO(3,1). This
can be easily understood recalling that a local inertial frame is defined up to a Lorentz
transformation and as consequence he definition (2.1) is invariant under the following
transformation

eI
µ(x)−→ ẽI

µ(x) = Λ
I
J(x)e

J
µ(x) (2.2)

which act on the internal index and we will sometimes refer to as "internal gauge"
symmetry.
We can geometrically interpret the tetrads as the linear map that, for each point p ∈M
sends the tangent space Tp(M ) in the flat space. Then, given a vector v in p, the tetrads
are the matrices eµ

I (x) that transform the components vµ (i.e., contravariant vectors)
into new components vI

vµ eI
µ = vI . (2.3)

which transforms under the Lorentz group.Then, any tensor can be decomposed using
internal or spacetime coordinates related by the tetrads and their inverse i.e.,

T I1...Iq
J1...Jp

= eI1
µ1...e

Iq
µqeν1

J1
...eνp

Jp
T µ1...µq

ν1...νp . (2.4)

Related to the local gauge symmetry there is a connection ω IJ
µ , that is a 1-form with

values in the Lorentz algebra, which we can use to define covariant differentiation of
the fibres in the Lorentz tangent bundle. For example:

DµvI(x) = ∂µvI(x)+ω
I
µ J(x)vJ(x). (2.5)

This is the analogue of the covariant derivative ∇µ = ∂µ +Γµ for vectors in T (M ).
Using these two connections we can also define a covariant derivative for objects with
both types of indices as the tetrads:

DµeI
ν = ∂µeI

ν +ω
I
µ JeJ

ν −Γ
ρ

νµeI
ρ . (2.6)

Using this definition we can require to the fibre bundle space to have a connection
structure ωµ that is tetrad-compatible

DµeI
ν ≡ 0 . (2.7)
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Under this condition ω IJ
µ is the unique connection that we can write as a function of

the tetrads and we call it spin connection. This is the analogue as for the Levi-Civita
connection Γ(g), which is defined requiring that the covariant derivative is metric-
compatible ∇µgνρ = 0. From (2.7) we can derive the relation between the components
of ω IJ

µ and the coefficients Γ
ρ

µν of the Levi-Civita connection,

∂(µeI
ν)+ω

I
(µ JeJ

ν) = Γ
ρ

(νµ)
eI

ρ , ∂[µeI
ν ]+ω

I
[µ JeJ

ν ] = Γ
ρ

[νµ]
eI

ρ ≡ 0, (2.8)

where we separed the spacetime indices into their symmetric and antisymmetric combi-
nations. If we used the fact that the Levi-Civita connection Γ(g) has no antisymmetric
part we immediately obtain the following relation

ω
I
µJ = eI

ν∇µeν
J . (2.9)

A useful way to rewrite the previous equations is with the exterior calculus of forms.
Moving from the coordinate basis to the differential form notation we write eI = eI

µ dxµ

and ω IJ = ω IJ
µ dxµ . We denote with d the exterior derivative, with dω the covariant

exterior derivative and with ∧ the exterior product or wedge product 1.
In this notation equation (2.6) can be rewritten as

dωeI = deI +ω
I
J ∧ eJ =

(
∂µeI

ν +ω
I
µJeJ

ν

)
dxµ ∧dxν = 0, (2.10)

and it’s known as Cartan’s first structure equation. Given the connection, we define the
usually related tensor that characterized the manifold structure: its curvature

F IJ = dω
IJ +ω

I
K ∧ω

KJ, (2.11)

whose components are

F IJ
µν = ∂µω

IJ
ν −∂νω

IJ
µ +ω

I
Kµω

KJ
ν −ω

J
Kµω

KI
ν . (2.12)

If we substitute in ω the tetrad compatible connection we find the relation between F IJ
µν

and the usual Riemann tensor Rµνρσ (g) which is constructed out of the metric can be
expressed in term of the tetrad using (2.1),

F IJ
µν (ω (e))≡ eIρeJσ Rµνρσ (g). (2.13)

The relation is known as Cartan second structure equation. It shows that GR is a gauge
theory whose local gauge group is the Lorentz group, and the Riemann tensor can be
viewed as the field-strength of the spin connection.

2.1.1 The action in terms of tetrads
A theory of gravitation is formulated by using the metric tensor as a dynamical variable.
We assume that its dynamics is regulated by a variational principle based on an action

1We address the reader at the end of this chapter for a brief introduction on the exterior calculus of
forms
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functional S, which is invariant under diffeomorphisms. In its original formulation the
dynamics of the metric tensor is encoded in the Einstein-Hilbert action,

SEH [gµν ] =
1

16π G

∫ √−gR[gµν ]. (2.14)

The latter expression can be rewritten as a functional of the tetrad,

SEH(eI
µ) =

1
2

εIJKL

∫
eI ∧ eJ ∧FKL (ω(e)) . (2.15)

implying that now the tetrad is the dynamical variables and the variational principle
should be taken varying respect to them. As these are sixteen a priori independent
variables they bring with them and extra symmetry in the internal index. Moreover, on
top of the invariance under diffeomorphism, this reformulation of the theory possesses
an additional gauge symmetry under local Lorentz transformations.
A fact which plays an important role in the following is that we can lift the connection
to be an independent variable, and consider the new action

S(eI
µ ,ω

IJ
µ ) =

1
2

εIJKL

∫
eI ∧ eJ ∧FKL (ω) . (2.16)

Although it depends on extra fields, this action remarkably gives the same equations of
motion as the Einstein-Hilbert one (2.15). This happens because the extra field equations
coming from varying the action with respect to ω do not add anything new: they simply
impose the form (2.9) of the spin connection, and general relativity is thus recovered.
As it gives the same field equations, (2.15) can be used as the action of general relativity.
Notice that only first derivatives appears, thus it provides a first order formulation of
general relativity. Furthermore, the action is polynomial in the fields, a desiderable
property for quantization. On the other hand, there are two non-trivial aspects to take
into account. First the equivalence with GR holds only if the tetrad is non-degenerate,
i.e. invertible. On the other hand, (2.15) is also defined for degenerate tetrads, since
inverse tetrads never appear. Compare the situation with the Einstein-Hilbert action,
where the inverse metric appears explicitly. Hence, the use of (2.15) leads naturally
to an extension of general relativity where a sector with degenerate tetrads, and thus
degenerate metrics, exists. Second if we insist on the connection being an independent
variable, there exists a second term that we can add to the Lagrangian that is compatible
with all the symmetries and has mass dimension 4:

δIJKLeI ∧ eJ ∧FKL(ω), (2.17)

where δIJKL ≡ δI[KδL]J . This term is not present in the ordinary second order metric,
since when (2.9) holds,

δIJKLeI ∧ eJ ∧FKL(ω(e)) = ε
µνρσ Rµνρσ (e)≡ 0. (2.18)

Adding this second term to (2.15) with a coupling constant 1/γ leads to the so-called
Holst action [Holst, 1996]

S (e,ω) =

(
1
2

εIJKL +
1
γ

δIJKL

)∫
eI ∧ eJ ∧FKL (ω) . (2.19)
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Assuming non-degenerate tetrads, this action leads to the same field equations of general
relativity,

ω
IJ
µ = eI

ν∇µeJν , Gµν(e) = 0. (2.20)

This result is completely independent of the value of γ , which is thus a parameter
irrelevant in classical vacuum general relativity. It will however turn out to play a key
role in the quantum theory, where it is known as the Immirzi parameter.

2.1.2 Hamiltonian analysis of tetrad formulation
For the Hamiltonian formulation we proceed as before, assuming a 3+1 splitting of
the space-time (M ∼= R×Σ) and coordinates (t,x). We introduce the lapse function
and the shift vector (N, Na) and the ADM decomposition of the metric. It is easy to see
that a tetrad for the ADM metric is given by

eI
0 = eI

µτ
µ = NnI +NaeI

a, δi jei
ae j

b = gab, i = 1,2,3. (2.21)

The “triad” ei
a is the spatial part of the tetrad. As before, we want to identify canonically

conjugated variables and perform the Legendre transform, but we now have two new
features which complicate the analysis. The first one is the tetrad formulation, which
in particular has introduced a new symmetry in the action: the invariance under local
Lorentz transformations. As a consequence, we expect more constraints to appear,
corresponding to the generators of the new local symmetry. The second one is the
use of the tetrad and the connection as independent fields. Therefore, the conjugate
variables are now functions of both eI

a and ω IJ
a (and their time derivatives), as opposed

to be functions of the metric gab only. The consequence of these novelties is a much
more complicated structure than in the metric case. In particular, the constraint algebra
is second class. However, there is a particular choice of variables which simplifies
the analysis, making it possible to implement a part of the constraint and reducing the
remaining ones to first class again. These are the famous Ashtekar variables, which we
now introduce.2 To simplify the discussion, it is customary to work in the “time gauge”
eI

µnµ = δ I
0 , where

e0
µ = (N,0)−→ eI

0 =
(
N,Naei

a
)
. (2.22)

The crucial change of variables is the following: we define the densitized triad

Ea
i = eea

i =
1
2

εi jkε
abce j

bek
c, (2.23)

and the Ashtekar-Barbero connection

Ai
a = γω

0i
a +

1
2

ε
i
jkω

jk
a . (2.24)

These variables turns out to be conjugated. In fact, we can rewrite the action (2.19) in
terms of the new variables as [Barros e Sa, 2001a, Thiemann, 2001]

S(A,E,N,Na) =
1
γ

∫
dt
∫

Σ

d3x
[
Ȧi

aEa
i −Ai

0DaEa
i −NH−NaHa

]
, (2.25)

2On the general analysis with the second class constraints see [Barros e Sa, 2001a].
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where

G j ≡ DaEa
i = ∂aEa

j + ε jk`A j
aEa`, (2.26)

Ha =
1
γ

F j
abEb

j −
1+ γ2

γ
Ki

aGi, (2.27)

H =
[
F j

ab−
(
γ

2 +1
)

ε jmnKm
a Kn

b

]
ε jk`Ea

k Eb
`

detE
+

1+ γ2

γ
Gi

∂a
Ea

i
detE

. (2.28)

The resulting action is similar to Einstein-Hilbert action, with (A,E) as canonically
conjugated variables. Lapse and shift are still Lagrange multipliers, and consistently
we still refer to H(A,E) and Ha(A,E) as the Hamiltonian and space-diffeomorphism
constraints.
The algebra is still first class. The new formulation in terms of tetrads has introduced
the extra constraint (2.26). The reader familiar with gauge theories will recognize
it as the Gauss constraint. Just as the Hµ constraints generate diffeomorphisms, the
Gauss constraint generates gauge transformations. It is in fact easy to check that Eb

j
and Ai

a transform respectively as an SU(2) vector and as an SU(2) connection under this
transformation.

2.2 The role of Torsion field
In this section we want to introduce the basic notion of torsion. This will play an
important role in our analysis in the first order formalism where we require that the
connection Γ, or ω IJ , is not metric, or tetrad, dependent. In this case the connection is
consider as some extra fields, we will discuss in the following the different interpretation
as spacetime degrees of freedom. To treat this problem what is usually done in litterature
is to split the connection tensor in two parts, one that is still dependent on the metric
and corresponds to the usual Christoffel symbol plus a part that is independent. This
splitting allows to immediately see the contributions given by the presence of torsion
respect to classical gravity theory in the second order formalism with a Levi Civita
connection.

2.2.1 The torsion tensor
To understand better how torsion arise we first go back to metric variables and to the
construction of the covariant derivative in GR. The partial derivative of a scalar field is
a covariant vector and in the formalism of form is given by a one-form. However, the
partial derivative of any other tensor field does not form a tensor. But, one can add to
the partial derivative some additional term such that the sum is a tensor. The sum of
partial derivative and this additional term is called covariant derivative. The covariant
derivative is a tensor if and only if the affine connection Γ

ρ

µν transforms in a special
non-tensor way.
The rule for constructing the covariant derivatives of other tensors immediately follows
from requiring that the covariant derivatives of controvariant vectors transforms as
a tensor with an index up and an index down and that the covariant derivatives of a
covariant vector transforms as a tensor with both indices down. This can be generalise
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to the covariant derivative of any tensor with indices up and down. However from this
requirements the definition of connection Γα

βγ
contains some ambiguity. Indeed the

covariant derivative remains a tensor if one adds to Γα

βγ
any tensor Cα

βγ
such that

Γ
α

βγ
→ Γ

α

βγ
+Cα

βγ
. (2.29)

A special choice of connection which is used in General Relativity for the definition of
the covariant derivative is based on two requirement: (i) that is symmetric in the lower
indices Γα

βγ
= Γα

γβ
and ii) that the covarinat derivative of the metric tensor identically

vanishes ∇α gµν = 0. The former condition is also know as metricity condition. If these
conditions are satisfied there is a unique solution for Γα

βγ :

Γ
α

βγ
= Γ

α

βγ
(g) =

1
2

gαλ
(
∂β gλγ +∂γ gλβ −∂λ gβγ

)
. (2.30)

that corresponds to the Christoffel symbol, which can then be interpreted as a particular
case of the affine connection and we will refer to it as Γα

βγ
(g) to underline its dependence

respect to the metric tensor. It’s a very important object, because it depends on the
metric only and it is the simplest one among all possible affine connections. Other
connections can be considered as (2.30) plus some additional tensor as one can prove
that the difference between any two connections is a tensor.
When the space-time is flat, the metric and the Levi-Civita connection depend just
on the choice of the coordinates, and one can choose them such that Γ(g)α

βγ
vanishes

everywhere. On the contrary, if we consider,

Γ
α

βγ
= Γ

α

βγ
(g)+Cβ

α
γ , (2.31)

than the tensor Cα

βγ
(and, consequently, the whole connection Γα

βγ
) can not be eliminated

by a choice of the coordinates. Even if one takes the flat metric, the covariant derivative
based on Γα

βγ
does not reduce to the coordinate transform of partial derivative. Thus,

the introduction of an affine connection different from Christoffel symbol means that
the geometry is not completely described by the metric, but has another, absolutely
independent characteristic tensor Cα

βγ
. This ambiguity in the definition of Γα

βγ
is very

important, for it enables one to introduce gauge fields different from gravity, in the next
section we will see how to derive these extra fields from an action and what are the
necessary conditions to have it.

2.2.2 Basic properties and notation
Untill now we have introduced the independent term of connection but we still didn’t
give a proper definition of the torsion tensor. Using the violation of condition (i), that
represents the antisymmetry property of the connection, we define the torsion tensor
T α

βγ
as:

T α
βγ = Γ

α

βγ
−Γ

α

γβ
= 2Γ

α

[βγ] =−2C[βγ]
α . (2.32)

From this definition and the relation between the full connection and the Levi-Civita
one, (2.31), we derive the following relation

Cβγ
α =

1
2
(
Tβγ

α −T α
βγ +Tγβ

α
)

(2.33)
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where Cα
bγ

is called the contorsion tensor. Here and in the following we use a comma
between indices to bundle up those with special symmetry properties.
The indices are raised and lowered by means of the metric. It is worthwhile noticing that
the contorsion is antisymmetric in the first two indices: Cβγ

α =−Cγβ
α , while torsion

itself is antisymmetric in the last two indices T α
βγ =−T α

γβ .
In a spacetime with torsion also the curvature definition are influence from this extra
field. For example, the commutator of covariant derivatives now depends both on the
torsion and on the curvature tensor. We start first from the commutator acting on the
scalar field φ , [

∇α ,∇β

]
φ =Cγ

αβ ∂γφ , (2.34)

which doesn’t vanish anymore due to the antisymmetry property of the indices. In the
case of a vector, a brief algebraic calculation give the following expression[

∇α , ∇β

]
vγ = T δ

αβ ∇δ vγ +Rγ
δαβ vδ , (2.35)

where Rγ
δαβ is the curvature tensor in the space with torsion:

Rγ

δαβ
= ∂α Γ

γ

δβ
−∂β Γ

γ

δα
+ +Γ

γ

λα
Γ

λ

δβ
−Γ

λ

λβ
Γ

λ

δα
.

Using (2.34), (2.35) and that the product Pλ Bλ is a scalar, one can easily derive the
commutator of covariant derivatives acting on a 1-form Bλ and then calculate such a
commutator acting on any tensor. In all cases the commutator is the linear combination
of curvature (2.36) and torsion. The curvature (2.36) can be easily expressed through the
Riemann tensor (curvature tensor depending only on the metric), covariant derivative
∇α (torsionless) and contorsion as

Rµνρσ = Rµνρσ (g)+2ı∇[ρCσ ],µν +Cρ,µλCσ ,
λ

ν −Cσ ,µλCρ,
λ

ν (2.36)

where we indicate the usual Riemann tensor defined only in terms of the metric connec-
tion as Rµνρσ (g) Similar formulas can be written for the Ricci tensor and for the scalar
curvature with torsion:

Rµν = Rµν(g)+2ı∇[νCρ],µ
ρ +2C[ν ,µλCρ],

λρ (2.37)

R = R(g)+2
e

∇[νCρ],
νρ +2C[µ,

µλCρ],λ
ρ (2.38)

It proves useful to divide torsion into three irreducible components: i) the trace vector
Tβ = T α

·βα
, ii) the axial vector Sν = εαβ µνTαβ µ and iii) the tensor qα

·βγ
, which

satisfies two conditions qα

·βα
= 0 and εαβ µνqαβ µ = 0.

Then, the torsion field can be expressed through these new fields as

Tαβ µ =
1
3
(
Tβ gαµ −Tµ gαβ

)
− 1

6
εαβ µν Sν +qαβ µ . (2.39)

Using the above formulas, it is not difficult to express the curvatures (2.36), through
these irreducible components. We shall write only the expression for scalar curvature,
which will be useful in what follows

R = R(g)−2∇α T α − 4
3

Tα T α +
1
2

qαβγ qαβγ +
1
24

Sα Sα . (2.40)
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2.3 Noether theorem and conserved charges

To conclude this recapitulation chapter we want to give a basic review on how deriving
conserved charges for a general quantum field theory. As we already discussed the
fundamental tool to derive conserved charges is the Noether theorem which states that
every differentiable symmetry of the action of a physical system has a corresponding
conservation law. The main idea under this theorem is related to the concept of (global)
symmetry: that a system is invariant under a certain transformation means that the
physical quantities describing this system don’t change. As an example we can consider
the translation symmetry, for which case the invariance of the system is associated with
the conservation of the energy-momentum tensor of the matter field.
While considering the gravitational field, the Noether theorem doesn’t have a straight
application since the global symmetry is now a local property in the sense of the
diffeomorphism invariance. In fact to recover a proper concept of energy-momentum
is necessary to consider the role of the gravitational field as spacetime metric and the
affine connection. A proper way to address this subtle question relies on addressing the
concept of isolated system. Such a concept can be mathematically expressed by suitable
asymptotic boundary conditions, i.e. flatness conditions at spatial and null infinity. This
approach has been developed in literature and the conserved charges are derived for
some specific solution of spacetime ADM charges, Ashtekar:2000hw, Ashtekar:2008jw,
Corichi:2016eoe. Here we will not face the full derivation of this method, but we
discuss the main problems of a direct application of the Noether Theorem giving a
physical intuition behind them.

2.3.1 Noether theorem in QFT in Minkowsky spacetime
In field theory, we can derive conserved quantities associated with a Lagrangian symme-
try through the Noether theorem. In particular, for theories defined on flat space-times,
the principle of special relativity must be valid and the equations of motion for two
observers in two inertial systems must be the same. This translates into in the request
that the Lagrangian of the system is invariant under Poincaré transformations and allows
us to define conserved quantities for each field defined on a flat space-time. If we
consider the subgroup of translation and use the Noether theorem we can define a
stress-energy tensor T µν that satisfies a conservation law.
We consider as an example the Klein Gordon scalar field φ(xα), described by the
Lagrangian:

L =
1
2

∂µφ∂
µ

φ − 1
2

m2
φ

2, (2.41)

and consider an infinitesimal translation εµ :

x′µ = xµ + ε
µ , φ

′(xµ) = φ(xµ). (2.42)

where εµ is a global parameter. The Noether theorem tells us that every continuous
symmetry that leaves the Lagrangian unchanged is associated with a four-current

Jµ =
∂L

∂ (∂µφ)
δφ +L δxµ , (2.43)
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which satisfies the conservation equation,

∂µJµ = 0, (2.44)

and whose integrated temporal component on a spatial surface Σ is preserved in time3

∫
V

d3x
∂J0

∂ t
=−

∫
V

d3x ∂iJi =
∫

Σ

dσ n · J = 0. (2.45)

We defined the conserved quantity as the integral of the zero componente,

Q =
∫

Σ

d3x J0, (2.46)

and one can prove that is independent of the chosen surface Σ. Let us now apply
these considerations to the Lagrangian (2.41), which is independent of the position
of the fields in space-time. To derive the quantities associated with invariance under
translations we replace in the (2.43) the variation of the fields:

δT φ = δφ +(∂µφ)εµ = 0, (2.47)
δφ =−∂µφε

µ . (2.48)

where in the first variation the term δT represents the total transformation of the fields,

δtφ = φ(x)−φ
′(x′) = φ(x)−φ

′(x)+φ
′(x)−φ

′(x′) = δφ +(∂µφ)δxµ . (2.49)

The resulting current is a rank two tensor given by

T µν =
∂L

∂ (∂νφ)
∂

µ
φ +gµνL . (2.50)

with
∂µT µν = 0. (2.51)

and we can prove that is the energy-stress tensor associated with the Klein Gordon field.
Consider now the four conserved charges (we have a charge for each symmetry, so in
in this case we have four charges, one for temporal translation and three for spatial
translations),

T 0µ =
∂L

∂ (φ̇)
∂

µ
φ +g0µL . (2.52)

The component 00 corresponds to the Hamiltonian density,

T 00 =
∂L

∂ (φ̇)
φ̇ −L = πφ̇ −L , (2.53)

that integrated gives us the Hamiltonian of the system

H =
∫

d3x T 00 = E. (2.54)

3using appropriate fall-off condition for the fields at spatial infinity.
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While the integral of the spatial components T 0 j represents the spatial impulse

Pi =
∫

d3x
∂L
∂ φ̇

∂
i
φ . (2.55)

Let us now move to a curved space-time and then replace the tensor ηµν of the flat-
spacetime with the metric tensor gµν , and the ordinary derivative ∂µ with the covariant
derivative ∇µ . The Lagrangian (2.41) will depend explicitly on the gravitational field
gµν . In this case we know that the transformations naturally associated with curved
spacetime are the diffeomorphisms, under which the dynamics remains unchanged.
Also in this case it is possible to obtain an energy-stress tensor for the Klein Gordon
field which satisfies the equation,

∇µT µν = 0. (2.56)

However, in this case, it is not possible to associate a conserved charge since the former
equation no longer represents a global conservation law4. The Noether theorem stated
above is in fact valid only for global transformations which represent an isometry for
the metric. When we move fro a minkowskian space-time to a curved one, the system
is no longer invariant under Poincarè transformations but under diffeomorphisms, and
the field transforms like a tensor

gα ′β ′ = Λ
α ′
µ Λ

β ′
ν gµν , (2.57)

Λ
α ′
µ =

∂ xα ′

∂ xµ
. (2.58)

(2.59)

The prove that (2.56) does not represent a conservation law is quite immediate it is
based on the fact that the we have substitute the partial derivative with the covariant one
to consider the curvature of spacetime,

∇µT µν = ∂µT µν +Γ
µ

λ µ
T νλ +Γ

µ

νλ
T µλ (2.60)

The first can be rewrite as
Γ

µ

λ µ
=

1√−g
∂λ

√−g, (2.61)

from which follow that the Gauss Theorem is not enough anymore to recover a conserved
quantities,

∂µ(
√−gT µν) =−√−g Γ

µ

νλ
T µλ . (2.62)

From a conceptual point of view this result is not surprising, in fact in the case in which
a gravitational field is present, we expect that next to the energy of the matter also that
of the gravitational field will appear. However we are not able to define a notion of
energy density for the gravitational field.
There are some cases in which it is possible to define conserved quantities, for example

4Note that the equation (2.56) still defines a local conservation law, and therefore it is possible to
associate an energy density with matter, but this is well defined only locally, where we can always
consider putting ourselves in a minkowskian reference system.
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in the Schwarzchild metric for a static black hole we identify the parameter M with the
energy of the black hole and we know that this quantity is conserved globally. This
happens whenever space-time has a Killing vector ξ α , that is, such that ∇β ,ξα = 0,
which generates an isometry along the geodesics to which it is tangent. In other words,
a Killing vector identifies directions of the time space along which the metric remains
unchanged: Lξ gαβ = 0. For example, in a static space-time it is possible to define a
temporal killing vector whose geodesics, given by the coordinate lines t, the metric does
not change. The quantity conserved in this case corresponds precisely to energy. While
in the case of a spherical symmetry time space we are able to define a spatial killing
vector and the conserved charge corresponding to the angular momentum. Suppose
we have a space-time in which there is a killing vector ξ α , this allows us to write a
conservation law for the vector T αβ ξ β , given by:

∇α(T αβ
ξ

β ) = (∇αT αβ )ξ β +T αβ
∇αξ

β = 0. (2.63)

In this case we can take advantage of the following property, valid only for vectors:
√−g ∇α(T αβ

ξβ ) = ∂α(
√−gT αβ

ξβ ) (2.64)

which allows us to use the Gauss theorem. Separating the spatial part from the temporal
part we obtain:

∂Q
∂ t

=
∂

∂ t

∫
Σ

d3x
√−gT 0β

ξβ =−
∫

Σ

d3x ∂a(
√−gT aβ

ξβ )=−
∫

∂Σ

dσ
√−gT aβ

ξβ na = 0

(2.65)
where na is the vector normal to the edge surface and also in this case we have assumed
the annulment of the fields to infinity. We have thus obtained that it is possible to obtain
globally conserved quantities even in general relativity only if space-time has at least
one Killing vector. It can be shown that the maximum of independent Killing vectors
can be ten. In this case, space-time is flat and the 10 conserved quantities correspond
precisely to those obtained from invariance under Poincarè transformations.
At this point we pose the problem of seeing if it is possible to give some notion of
energy for the gravitational field. The invariance under diffeomorphisms tells us that it
is not possible to have local observables, so what we would expect to find in any case is
a global quantity. Let’s start from the equation (), as already underlined because of the
right term this does not represent a conservation law. What we try to define then is a
tensor tµν that has added to the tensor energy-impulse of the matter satisfying the law
of conservation:

∂µ(
√−g(T µν + tµν)) = 0. (2.66)

Furthermore, in order for it to be a well-defined quantity it must only be a function
of the metric This problem was studied by Landau Lipschitz, and the tensor form that
satisfies the properties listed above was found to be:

tµν

LL =− c4

8πG
gµν + − c4

16π G(−g)
((−g)(gµνgαβ −gµαgνβ )),αβ (2.67)

where it is seen that the impulse energy tensor is only a function of the metric. Also
you can easily see that the equation () is satisfied, in fact the term with Einstein’s tensor
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Gµν is going to just cancel T µν , while using the commutativity of ordinary derivatives
and the fact that the term in brackets is anti-symmetrical in β and µ it is possible to
set the second term to zero. However, tµν

LL is not a tensor but a pseudotensitor, in fact,
although the first term with Gµν is a tensor, the term containing the second derivatives
of the metric does not transform like a tensor. It can also be rewritten according to
Christoffell’s symbols, which highlight its pseudo-sensorial character.
A definition of the impulse energy tensor has also tried to give in the linearized case,
where in the second-order expansion of the Einstein equations it is possible to interpret
one of the terms of self-interaction as the analogue of the impulse energy tensor.
Consider Einstein’s second-order equations in the vacuum 5

G(1)
αβ

[γ
(2)
λδ

]+G(2)
αβ

[γλδ ] = 0, (2.68)

where γλδ and γ
(2)
λδ

are the perturbative contributions to the first and second order
metrics:

gαβ = ηαβ + γαβ + γ
(2)
αβ

. (2.69)

Einstein’s equations are not linear, a consequence of the fact that the gravitational field
interacts with itself. In this perspective we can interpret the Einstein tensor in the second
order

G(2)
αβ

= R(2)
αβ
− 1

2
ηαβ R(2) (2.70)

as the tensor energy impulse that generates the contribution to the first order, and
rewrite the previous equation in the form:

G(1)
αβ

[γ
(2)
λδ

] = 8π tαβ , (2.71)

with
tαβ =− 1

8π
G(2)

αβ
[γλδ ]. (2.72)

From the properties of Gµν we know that tαβ is symmetric and is preserved, ∂ αtαβ = 0,
so can to be effectively interpreted as the tensor energy impulse of the gravitational
field in the linearized development in the second order. However it can be seen that it is
not unique, that is, the equation (2.72) remains unchanged if we add to tαβ a tensor of
the form ∂ λ ∂ δUαλβδ constructed out from the metric tensor, quadratic in it and with
the following symmetries Uαλβδ =U[αλ ]βδ =Uαλ [βδ ] =Uβδαλ . In fact, as you can
see by comparing tαβ with the Landau-Lifshitz tensor tµνLL, these two differ by a term
that has the same properties stated above .
It is also not a gauge invariant, meaning if we replace γαβ with γαβ + 2δ(αξβ ) does
not remain unchanged 6 These difficulties reflect the fact that it is not possible to give
a local definition of energy for the gravitational field. The problem can be overcome
by considering non-local observables as the flow at infinity. We see that although it is
not possible to give a local definition of energy it is possible to define the total energy

5First-order we have G(1)
αβ

[γλδ ] = 0.
6From the linearized case to the first order we know instead that gαβ is not completely, but we can

make gauge transformations under which Einstein’s equations remain unchanged.
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for an isolated system, that is, in one this space-time is asymptotically flat. In this
case requesting that for r→ ∞ the components of γαβ and its derivatives go to zero as
γαβ = O(1/r) and ∂r = O(1/r2), we show that the flow of γαβ :

E =
∫

Σ

t00d3x (2.73)

it is well defined, that is the integral is convergent, and furthermore it is invariant under
gauge transformation ξ α which preserve the asymptotic conditions.
There are different types of infinity. We can consider the spatial infinity or the zero
infinite. We will discuss later what properties the metric must have for a space-time to
be asymptotically flat. In both cases, by imposing fall-off conditions for the metric it is
possible to recover a definition of total mass. In fact, we expect that in a space-time
asymptotically flat, since the metric at infinity tends towards that of Minkowsky, we
are able to find some isometries and consequently asymptotically conserved charges.
Let us first analyze the spatial case studied by ADM and then the null one proposed by
Bondi, which has particular importance in the study of energy carried by gravitational
waves. The two definitions of mass coincide only for a stationary spacetime, ie in the
absence of gravitational waves. In the case where gravitational radiation is present, it is
shown that the mass of Bondi is decreasing. It is also possible to make a comparison
between the mass of Bondi in the second order and that defined above for the flow of
gravitational energy and to see that they coincide.

22



23





Chapter 3
Spacetime Thermodynamics with
Contorsion

In this chapter we present a work based on the paper [De Lorenzo et al., 2018] in
collaboration with Simone Speziale and Tommaso De Lorenzo. Our analysis is related
to Jacobson’s idea that the continuum structure of spacetime could emerge as the
thermodynamical equilibrium description of more fundamental quantum degrees of
freedom [Jacobson, 1995] and was motivated to generalised this results in presence of
torsion.
The chapter is organised in the following way: in the first section we gave a brief
introduction of the physical background. In particular our results build on the discussion
of this paper [Dey et al., 2017], albeit with a critique of some of their methods and
results, and on the original paper of Jacobson [Jacobson, 1995] where he first proposed
a thermodynamical interpretation of Einstein equation. In section two we give a brief
review of the Einstein-Cartan Action in tetrad variables and with exterior calculus of
forms. Then, before giving the original results, we review the Noether identities and the
conservation laws in presence of torsion. In the last section we present a derivation of
the laws of black hole thermodynamics for our specific case and we address the reader
to [Wald, 1984] for a more general discussion. Finally we give in the last section of the
chapter a list of the conventions that we used and some equations in tetrad formalism
with the exterior calculus.

3.1 Background and motivations

In a famous paper [Jacobson, 1995], Ted Jacobson proposed that Einstein equations
could have a thermodynamical origin, compatible with the thermodynamical interpreta-
tion of the laws of black hole thermodynamics [Bardeen et al., 1973]. His argument,
based on a geometric interpretation of Clausius relation, has been later extended to
include non-equilibrium terms and higher derivative gravity theories [Eling et al.,
2006, Chirco and Liberati, 2010, Guedens et al., 2012], and more recently to spacetimes
with non-propagating torsion, namely Einstein-Cartan first-order gravity [Dey et al.,
2017]. The main difficulty of extending Jacobson’s idea to Einstein-Cartan gravity is
that there are two sets of independent field equations to be derived: the torsion equations

25



as well as the proper Einstein equations. It was showed in [Dey et al., 2017] that it
is possible to derive the latter set for a special type of torsion, and by identifying the
torsional terms as a non-equilibrium contribution to Clausius relation. The torsion
equations are not derived, and whether they can have also a thermodynamical origin is
left as an open question. In the following analysis we also do not provide a derivation
of the torsional equations, but we show that if they hold, the tetrad Einstein equations
can be derived without the need of non-equilibrium terms nor restrictions on torsion.
The technical result that allows us to achieve this is the identification of the conserved
energy-momentum tensor. The last point is crucial: in Einstein-Cartan theory, there is
no conserved energy-momentum tensor that appears as source of the field equations.
Nonetheless, if one restricts to invertible tetrads (and this appears necessary to con-
nect with the metric theory and the familiar notions used in Jacobson’s argument), the
connection can always be written as a Levi-Civita one plus a contorsion tensor. Using
this well-known decomposition, the tetrad Einstein equations can be written as the
Levi-Civita Einstein tensor on the left hand side, and a torsion dependent effective
energy-momentum tensor T eff on the right hand side. By taking the Levi-Civita co-
variant derivate of both sides, the left one vanishes due to Bianchi’s identities. This in
turn implies the vanishing of the right hand side, allowing to identify the conserved
energy-momentum tensor also in the presence of torsion.
For the thermodynamical argument, on the other hand, one needs to identify a con-
served energy-momentum tensor without using the field equations, since these are to be
derived. In order to achieve this result we will show that the conservation of T eff in the
Einstein-Cartan theory can be derived without using the tetrad field equations. The proof
is simple although rather lengthy, and best done using differential forms. It follows
from the Noether identities of the theory, and requires the matter and torsion field
equations to be satisfied. Our second result is to use this conserved energy-momentum
tensor and the contorsion description to show that the tetrad Einstein equations can be
derived from the Clausius relation with the same assumptions and hypothesis of the
metric case [Jacobson, 1995], without the need of the non-equilibrium terms and the
restrictions on torsion used in [Dey et al., 2017]. This is possible because the start-
ing point of Jacobson’s argument, a Killing horizon associated with a locally boosted
observer, is a notion which is insensitive to the presence of torsion. In particular, the
generators of the Killing horizons follow the Levi-Civita geodesic equation. This turns
out to suffice to recover the tetrad Einstein equations from the equilibrium Clausius
relation, since the torsion terms are identified by the effective energy-momentum tensor.
A further advantage of our derivation is that it includes also the Immirzi term in the
Einstein-Cartan theory. To complete our discussion, we also look at the laws of black
hole mechanics in the presence of torsion. The zeroth law is unaffected, and it can be
proven exactly as in the metric case, provided that the energy conditions are imposed on
T eff. The first law on the other hand depends on torsion. We consider here the ‘physical
process’ version of the first law [Wald, 1995], which is closely related to Jacobson’s
argument run backwards. Using the same contorsion decomposition as before, the
formal expression of the first law is unchanged, but the quantities appearing depend
on torsion through the effective energy-momentum tensor. The second law has a more
marginal dependence, in the sense that torsion simply enters the inequalities on the
energy conditions required.
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3.2 Analysis of Einstein-Cartan field equations and the
role of matter

Let us begin by briefly reviewing the field equations of Einstein-Cartan theory and
the contorsion decomposition. We refer the reader to [Hehl et al., 1995] for more
details, and to the Appendix 3.7 for definitions and notation. We consider the following
first-order action,

SEC(e,ω) =
1

16π

∫
PIJKL

(
eI ∧ eJ ∧FKL(ω)− Λ

6
eI ∧ eJ ∧ eK ∧ eL

)
, (3.1)

where
PIJKL :=

1
2γ

(ηIKηJL−ηILηJK)+
1
2

εIJKL, (3.2)

and γ is the Immirzi parameter. We restrict attention to invertible, right-handed tetrads.
The action is then equivalent to first-order general relativity 1

SEP(g,Γ) =
1

16π

∫
[
√−g(gµρgνσ Rµνρσ (Γ)−2Λ)+

1
γ

ε̃
µνρσ Rµνρσ ]d4x, (3.3)

with initially independent metric and connections, which are related to the fields of (4.1)
by the familiar formulas

gµν = eI
µeJ

νηIJ, Γ
ρ

µν = eρ

I DµeI
ν := eρ

I (∂µeI
ν +ω

IJ
µ eJν). (3.4)

We collectively denote the matter fields as ψ , and consider a general matter Lagrangian
Lm(e,ω,ψ) := Lm(e,ω,ψ)d4x. Varying the matter action we have

δSm =
∫

δLm =
∫ (

2τ
µ

IδeI
µ +σ

µ
IJδω

IJ
µ +Emδψ

)
ed4x, (3.5)

where Em denotes the matter field equations, and we defined the source terms

τ
µ

I :=
1
2e

δLm

δeI
µ

=− 1
2e

δLm

δeν
J

eν
I eµ

J =: τ
J

νeν
I eµ

J , σ
µ

IJ =
1
e

δLm

δω IJ
µ

. (3.6)

The sign choice in the definition of τ is not universal in the literature. We picked it this
way in analogy with the metric energy-momentum tensor T Γ

µν ,

T Γ
µν :=− 2√−g

δLm(g,Γ)
δgµν

=−1
e

δLm(e,ω)

δeI(µ
eI

ν) = 2τ
I
(µeν)I, (3.7)

which coincides with the one of general relativity in the absence of torsion.
The field equations obtaining varying (4.1) and the matter action are

Gµ
I(e,ω)+Λeµ

I +
1
2γ

ε
µνρσ eα

I Rανρσ (e,ω) = 16π τ
µ

I, (3.8a)

PIJKLε
µνρσ eK

ν T L
ρσ =−16π σ

µ

IJ. (3.8b)

1Sometimes called Einstein-Palatini general relativity because proving its equivalence to general
relativity uses the Palatini identity.
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Here

Gµ
I(e,ω) :=

1
4

εIJKLε
µνρσ eJ

νFKL
ρσ (ω) = Gµν(e,ω)eνI (3.9)

is the first-order Einstein tensor, the Riemann tensor and curvature are related by
Rµνρσ (e,ω)= eµIeνJF IJ

ρσ (ω), and T I := dωeI is the torsion. The first set (3.8a) contains
the ten Einstein equations, plus six redundant equations: although Gµν(e,ω) is not
symmetric a priori, it is easy to show that the Noether identity associated with invariance
of the action under internal Lorentz transformations (see (3.31a) below) implies that
the equations for Gµ

[IeJ]µ are automatically satisfied. The relevant content of (3.8a) is
therefore just its symmetric part, which in turn gives the Einstein’s equations

Gµν(e,ω)+Λgµν +
1
2γ

ε(µ
λρσ Rν)λρσ (e,ω) = 8π T Γ

µν , (3.10)

or equivalently as functions of (g,Γ) via (3.4).
In the following, we will refer to (3.8a) or (3.10) as Einstein’s equations (in the presence
of torsion), to be distinguished from the torsion Einstein-Cartan equations (3.8b), or
torsion equations for short. It is often convenient to write the field equations using the
language of differential forms, as we did in the action (4.1). To that end, we use the
Hodge dual ? mapping p-forms to (4− p)-forms (see Appendix 3.7 for conventions).
This allows us to define the Einstein 3-from

?GI(ω) :=−1
2

εIJKLeJ ∧FKL(ω), (3.11)

where the opposite sign with respect to (3.9) is a consequence of Lorentzian signature,
and equivalently the dual source forms ?τI and ?σIJ . The field equations (3.8) then read

?GI(ω)+Λ?eI−
1
γ

eJ ∧FIJ(ω) = 16π ?τI, (3.12a)

PIJKL eK ∧T L = 8π ?σIJ. (3.12b)

3.2.1 Properties of the contorsion field

Although connections form an affine space with no preferred origin, the presence of an
invertible tetrad suggests a natural origin: the Levi-Civita connection ω IJ

µ (e) associated
with the tetrad. We can then always decompose an arbitrary connection into Levi-Civita
plus a contorsion tensor CIJ

µ as

ω
IJ
µ = ω

IJ
µ (e)+CIJ

µ . (3.13)

Torsion and curvature are related to the contorsion as follows:

T I =CIJ ∧ eJ, (3.14)

FJK(ω) = FJK(e)+dω(e)C
JK +CJM ∧CM

K = FJK(e)+dωCJK−CJM ∧CM
K,

(3.15)
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where dω(e) is the exterior derivative with respect to the Levi-Civita connection. Plug-
ging this decomposition into the field equations we find

?GI(e)+Λ?eI = 16π ?τI +PIJKL(dω(e)C
JK +CJM ∧CM

K), (3.16)

PIJKLeK ∧CLM ∧ eM = 8π ?σIJ. (3.17)

The fact that the field equations for the Einstein-Cartan theory can be recasted as in
(3.16) is the source of an old debate in the literature about the role of torsion [Hehl and
Weinberg, 2007]: if we forget about the notion of affine parallel transport defined by
ω IJ , and use simply the one defined by ω IJ(e) in the sector of invertible tetrads, then
the theory is indistinguishable from ordinary metric theory with some non-minimal
matter coupling. The non-minimality is captured by the effective energy-momentum
tensor sourcing (3.16), i.e.

?τ
eff
I := ?τI +

1
16π

PIJKL(dω(e)C
JK +CJM ∧CM

K). (3.18)

While we take no stand in the debate, we will heavily use this fact in the thermodynamic
discussion below. Before getting there, we need to review in the next Section the relation
between the conservation of the energy-momentum tensor and the Bianchi identities.
For convenience of the reader, we report the relation between torsion and contorsion in
tensor language,

T ρ
µν := eρ

I T I
µν =−2C[µ,ν ]

ρ = 2Γ
ρ

[µν ]
, (3.19)

Cµ,νρ =
1
2

Tµ,νρ −T[ν ,ρ]µ , C(µ,ν)ρ = T(µ,ν)ρ . (3.20)

The Einstein equations (3.8a) read

Gµν(e)+Λgµν = 8π T eff
µν , (3.21)

T eff
µν = 2τ

I
(µeν)I +

1
16π

(
6gα(µδ

αρσ

ν)γδ
− 2

γ
gγ(µεν)δ

ρσ

)(
ı∇ρCσ ,

γδ +Cρ,
γλCσ ,λ

δ

)
.

(3.22)

We refrained from expanding the completely antisymmetric δ
αρσ

νγδ
since no useful

simplification occurs. Notice that for a given contorsion we have a 1-parameter family
of conserved energy momentum tensors, labeled by the Immirzi parameter. Finally,
using the torsion equations, T eff can be seen to be linear in the source tensor of the
Einstein equations, and contain derivative and quadratic terms in the source tensor of
the torsion equations.

3.3 Noether identities and conservation laws in pres-
ence of torsion

The gravity action (4.1) is invariant under internal Lorentz transformations

δλ eI = λ
I
JeJ, δλ ω

IJ =−dωλ
IJ, (3.23)
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as well as diffeomorphisms,2

δξ eI = £ξ eI = deIyξ +d(eIyξ ) = dωeIyξ +dω(eIyξ )− (ω I
Jyξ )eJ, (3.24a)

δξ ω
IJ = £ξ ω

IJ = dω
IJyξ +d(ω IJyξ ) = F IJyξ +dω(ω

IJyξ ). (3.24b)

Specializing the variation of the action (4.1) to (3.23) and (4.21) respectively, and
integrating by parts, one obtains the following Noether identities,3

PIJKLeK ∧FLM ∧ eM = PIJKLeK ∧dωT L, (3.26a)

dω(PIJKLeJ ∧FKL) = PIJKLT J ∧FKL. (3.26b)

These are nothing but contracted forms of the Bianchi identities dωF IJ = 0, dωT I =
F IJ ∧ eJ . Using the field equations (3.12) in (3.26) one finds additional relations for the
matter sources,

dω ?σIJ = 2?τ[I ∧ eJ], (3.27a)

dω ?τI =
1
2

FJKyeI ∧?σJK +T JyeI ∧?τJ. (3.27b)

These matter Noether identities can also be derived without reference to the field
equations (3.12): they follow from invariance of the matter action (3.5) under (3.23)
and (4.21), on-shell of the matter field equations. See [Hehl and McCrea, 1986, Hehl
et al., 1995, Barnich et al., 2016] for more details.
Recall now that, in the metric formalism, invariance of the matter Lagrangian under
diffeomorphisms guarantees the conservation of the energy-momentum tensor,

δξ Lm = d(Lmyξ ) ⇒ ∇µT µν = 0, (3.28)

on-shell of the matter field equations. In the first-order formalism with tetrads, the
energy-momentum tensor does not appear immediately in the field equations: the
closest object we have is the source τ of the Einstein’s equations (3.8a). This quantity
is however not conserved, as we can see from (3.27b), whose right-hand side does
not vanish on-shell. Nevertheless, although τ is not conserved, it is easy to identity
an effective energy-momentum tensor which is conserved, thanks to the contorsion
decomposition (3.16). If we take the Levi-Civita exterior derivative dω(e) on both sides
of (3.16), the left-hand side vanishes identically. This in turns implies the vanishing of
the right-hand side, which gives a local conservation law

dω(e)τ
eff
I = 0 (3.29)

valid also in the presence of torsion. Equivalently in terms of tensors, the object
with vanishing (Levi-Civita) divergence is T eff

µν as defined in (3.22), and it provides

2Note that the Lie derivatives (4.21) are not gauge-covariant objects. It is often convenient to consider
the linear combination of transformations Lξ = £ξ +δωyξ which is covariant.

3To obtain (3.26a), we used the identity (A.6) below. For the reader’s convenience, we report the
identities also in the more common γ-less case,

?G[I ∧ eJ] =−
1
2

εIJKLeK ∧dω T L, dω ?GI =−
1
2

εIJKLT J ∧FKL. (3.25)
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the conserved energy-momentum tensor of the theory.4 This simple observation is
well-known in the literature, see [Hehl et al., 1976,Hehl, 1976,Böhmer and Hehl, 2018]
(where it is referred to as ‘combined energy-momentum tensor’), and can be taken to
provide the basis of energy conservation in Einstein-Cartan theory.
For later purposes, we are interested in whether it is possible to derive the conservation
law (3.29) without using the Einstein’s equations. This is a bit of a strange question
if one starts from an action principle, but it is crucial to Jacobson’s thermodynamical
argument, where this is not the case. We could not find the answer to this question in the
literature, which turns out to be affirmative. The result is the following: Proposition 1:
The matter Noether identities (3.27) on-shell of the matter and torsion field equations
imply the conservation law for the effective energy-momentum tensor (3.29). The proof
is a somewhat lengthy exercise in algebraic identities, and we leave it to Appendix 2.
We also looked for a stronger result, namely whether (3.29) also holds without imposing
the torsion equation, but we did not succeed. The proof in the Appendix (A.2) shows
explicitly the step in which we use the torsion field equation. To give an idea of what
happens, using the contorsion decomposition (3.27) can be combined to give

dω(e)

(
?τI +

1
2

CJKyeI ?σJK

)
=

1
2

(
FJK(ω)yeI +£eICJK

)
∧?σJK (3.30)

(an expression for the Noether identities which appears for instance in [Hehl et al.,
2013]), and using the torsion field equation the right-hand side reduces to dω(e) of a 3-
form. In tensorial language, the Noether identities for a generic gauge and diff-invariant
Lagrangian density L read (see e.g. [Barnich et al., 2016])

Dµ

δL

δω IJ
µ

+
δL

δe[Iµ
eµ

J] = 0, (3.31a)

δL

δω IJ
µ

F IJ
νµ(ω)+

δL

δeI
µ

T I
νµ − eI

νDµ

δL

δeI
µ

= 0, (3.31b)

on-shell of the matter field equations. For the Lagrangian density in (4.1), these give
respectively contractions of the algebraic and differential Bianchi identities,

2R[µν ] =−∇ρT ρ
µν −2∇[µT ρ

ν ]ρ +T ρ
ρσ T σ

µν , (3.32)

∇νGν
µ = T ρ

µσ Rσ
ρ −

1
2

T ν
ρσ Rρσ

µν , (3.33)

from the γ-less terms, and

ε
ανρσ Rµνρσ = ε

ανρσ (∇νTµ,ρσ +Tµ,λνT λ
ρσ ), (3.34)

ε
αβρσ

∇β Rµνρσ = ε
αβρσ T λ

βρRµνσλ (3.35)

4An alternative ‘conservation law’ using the full connection would be of little practical meaning,
because it would not lead to hypersurface quantities independent of the choice of space-like slice.
Another way to identify this conserved object is to solve the torsion equation – which in the case of
Einstein-Cartan is simply algebraic since torsion does not propagate, and plug the solution back into the
action. Varying the resulting matter action with respect to the tetrad then immediately gives the effective
energy-momentum tensor (3.22).
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for the part in 1/γ . As for the matter action,

Dµ(eσ
µ

IJ) =−2eτ
µ
[IeJ]µ , (3.36)

Dµ(eτ
µ

I) = eeµ

I

(
1
2

FJK
µν σ

ν
JK +T J

µντ
ν

J

)
. (3.37)

3.4 Thermodynamics formulation of Einstein equations

We now come to the main motivation for our analysis: show that Proposition 1 allows
us to run Jacobson’s argument with the usual equilibrium assumptions. To better
appreciate our point, let us briefly recall the key steps of the metric case, referring the
reader to [Jacobson, 1995] for more details.

3.4.1 Set-up: definition of killing vector field and bifurcating hori-
zon

Consider an arbitrary metric gµν on a manifold, a point P and a neighbourhood suffi-
ciently small for spacetime to be approximately flat. Denote by ξ µ the future-pointing
(approximate) Killing vector generating a Rindler horizon H within the approximately
flat region, with bifurcating surface B through the point P. This is by construction
hypersurface orthogonal, null at the horizon but not outside, and vanishing at B:

ξ
2 H
= 0, ∂µξ

2 =:−2κ ξµ , ξ
µ B
= 0. (3.38)

Since it is Killing, it is also geodesic,

ξ
ν ı∇νξ

µ =−1
2

∂µξ
2 = κ ξ

µ . (3.39)

The inaffinity κ can be proven to be constant on the horizon, and it is usually referred
to as the horizon surface gravity. For a Rindler horizon, constancy of κ follows
immediately from the vanishing of the Riemann tensor.5 It is useful to introduce an
affine parameter λ along the null geodesics, with origin at the point P. It can be easily
shown that

ξ
µ =−λ κ lµ , lµ

∂µ = ∂λ . (3.40)

Given this geometric set-up, the first step of Jacobson’s argument is to associate to the
Rindler horizon its Unruh temperature:

(i) T =
κ

2π
, κ = constant. (3.41)

5For a stationary black hole horizon, this is the content of the zeroth law of black hole mechanics.
This was proved using the Einstein’s equations and the dominant energy condition [Bardeen et al., 1973],
although in principle one could just require the analogue of the dominant energy condition directly on
the Ricci tensor, as done in the generalization to isolated horizons [Ashtekar et al., 2000b].
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Bξµ

Tµν

Figure 3.1. The set-up thermodynamical derivation of Einstein’s equation as proposed
in [Jacobson, 1995]. Local flatness allows to consider approximate Rindler observers ξ µ

around any point P of a given spacetime. The associate Rindler horizon has bifurcate
surface B passing through P. The system is perturbed by a small flux of matter crossing the
past horizon and entering the left wedge. For the derivation to be valid, an infinite family of
ξ µ is actually considered, one per each direction.

Next, three assumptions are made: first, that there is an energy flux through the horizon
in the near past of P, see Fig. 5.1, given by a conserved energy-momentum tensor Tµν :

(ii) ∆U :=
∫
H

Tµνξ
µ lνdλd2S =−κ

∫
H

Tµν lµ lν
λdλd2S, ∇µT µ

ν = 0,

(3.42)
where we used (3.40) and the constancy of κ . This energy flux will be interpreted
thermodynamically as a heat flux, ∆U = ∆Q. Second assumption, that there is a notion
of entropy variation associated to the horizon, which is (universally, i.e. independently
of the matter state) proportional to the area variation:

(iii) ∆S = η ∆A = η

∫
H

θdλd2S, (3.43)

where θ is the expansion of horizon. This is controlled by the Raychadhuri equation for
lµ ,

dθ

dλ
=−θ 2

2
−σµνσ

µν −Rµν lµ lν . (3.44)

The final, technical assumption made in [Jacobson, 1995] is that at P one can take
θ = σµν = 0, and approximate the solution of the Raychadhuri equation simply by
θ =−λRµν lµ lν +O(λ 2).6 Using this approximation,

∆S =−η

∫
H

λ Rµν lµ lνdλd2S. (3.45)

6Vanishing of the initial expansion and shear are taken to be the equilibrium conditions necessary for
the upcoming application of Clausius relation. We find on the other hand the last approximation quite
strong in that it implies constant curvature, at least along the horizon’s generators. See Appendix 3.5.1
for a discussion of this approximation, and an alternative derivation which uses perturbation theory in the
metric fluctuations.
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Finally, we observe that using (i− iii) and the approximation (3.45), the Clausius
first law of thermodynamics ∆Q = T ∆S implies∫

H

(
2π

η
Tµν −Rµν

)
lµ lν

λdλd2S = 0. (3.46)

Since this is valid for an arbitrary direction of the Killing boost and at any point, we
can remove the integral. The Einstein equations (with an undetermined cosmological
constant) then follow by imposing the conservation law ∇µTµν = 0. The Newton
constant is identified determined by G = 1/(4η).

3.4.2 The effect of torsion on the set-up
In the Einstein-Cartan theory (4.1) the connection is a priori affine, and torsion can be
present, affecting the geodesic and Raychaudhuri equations. One may then think that
the argument above should be substantially revisited. As we now show, this is actually
not the case. The first observation we make is that the starting point of Jacobson’s
argument, a Killing horizon, is a purely metric notion:

0 = £ξ gµν = ξ
α

∂αgµν +gµα∂νξ
α +gνα∂µξ

α (3.47)

= 2ı∇(µξν) = ∇(µξν)+T(µ
ρ

ν)ξρ .

Hence by definition, it does not depend on torsion, in spite of the apparent presence
of the latter in the last expression above. The constancy of κ on the approximate
Rindler horizon also follows like in the metric case from the vanishing of the metric
Riemann tensor. Being Killing and null, ξ µ is automatically geodetic with respect to
the Levi-Civita connection (which we recall is always well-defined and at disposal since
we are only interested in the sector of Einstein-Cartan theory with invertible tetrads), so
(3.39) still holds. Hence, we can run most of the argument as in the metric case. Step
(i) is unchanged. For step (ii), we follow [Jacobson, 1995] and define the energy flux
as the integral of the conserved energy-momentum tensor. Proposition 1 identifies this
object uniquely as T eff

µν defined in (3.22), with its torsional dependence. Step (iii) is also
unchanged: since the generators of the Killing horizon follow the Levi-Civita geodesics
(3.39), the change of the expansion of the generators is governed by the Raychaudhuri
equation (3.44) with the metric Ricci tensor Rµν(e) appearing on the right-hand side.
Imposing again the equilibrium Clausius relation ∆Q = T ∆S with these (i− iii), and
using the same approximation (3.45), we arrive exactly at∫

H

(
2π

η
T eff

µν −Rµν(e)
)

lµ lν
λdλd2S. (3.48)

We conclude that the torsion-full Einstein equations, in the form (3.21), can be derived
à la Jacobson from the equilibrium Clausius relation. No need to consider a torsion-full
Raychaudhuri equation, non-equilibrium terms and restrictions on torsion, as argued
in [Dey et al., 2017] and reviewed in the next Section. It suffices to use the result of
Proposition 1 to identify the correct energy-momentum tensor.
There is however an important caveat to our procedure: we are assuming the torsion
equations to hold, since we used them to prove Proposition 1. This may look unsatis-
factory, since it is currently not known whether these equations can be derived from
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a thermodynamical description. Our logic is that if such a description of the torsion
equations exists, then it is consistent to assume that they hold when deriving the Einstein
equations. This said, it is also possible that Proposition 1 holds off-shell of the torsion
equations, so that these are not needed to derive the Einstein equations. Nonetheless,
one would still need to be able to derive the torsion equations from thermodynamics for
the whole framework to make sense. Assuming them to hold seems thus to us coherent
if a complete thermodynamical framework exists. In any case, the main problem if
one does not want to use the conserved energy-momentum tensor is the ambiguity that
one faces in defining it, see e.g. [Hehl, 1976]. The prescription used by the authors
of [Dey et al., 2017] for instance, is to take what would be the source of the Einstein
equations, namely the derivative of the matter Lagrangian with respect to the tetrad (or
to the metric, equivalently up to a symmetrization). Notice that this can be tricky in the
presence of torsion, because one can work with either the first-order action S(g,Γ) or
the second-order action S(g,C). The field equations are completely equivalent since the
two actions are related by a (non-linear) field redefinition, however for the sources one
has

T Γ
µν :=

2√−g
δLm(g,Γ)

δgµν
, (3.49)

TC
µν =

2√−g
δLm(g,C)

δgµν
= T Γ

µν +
2√−g

δLm(g,Γ)
δΓα

βγ

δΓα

βγ

δgµν
. (3.50)

Both coincide with the general relativity energy-momentum tensor when torsion van-
ishes, but differ in the presence of torsion. This type of ambiguity reminds us that
using a conserved energy-momentum tensor, when available, is always the best choice.
We now show how this ambiguity in turn affects the non-equilibrium approach to the
derivation of the Einstein equations.

3.4.3 Non-equilibrium terms in the thermodynamical relations and
their interpretation

A more general setting including a non-vanishing shear has been considered in [Eling
et al., 2006, Chirco and Liberati, 2010]. In this case the presence of additional terms
on the right-most side of (3.43) is incompatible with the equilibrium Clausius relation.
Hence to run Jacobson’s argument one must assume that there are non-equilibrium
terms,

∆Q = T ∆S+∆Snon−equi. (3.51)

The interpretation of the shear-squared terms as non-equilibrium is justified a priori from
the horizon tidal heating effect [Chirco and Liberati, 2010]. It should be noticed however
that the same shear-squared terms enter both the T ∆S and the ∆Snon−equi contributions,
since one is still assuming (3.43), that the entropy variation is proportional to the area
variation. This feature seems to us unusual from a thermodynamical perspective.

In any case, we now discuss the application of the non-equilibrium approach to
deriving the Einstein equations, which is more problematic. We start as before from the
observation that a Killing horizon is metric-geodetic, and use the same approximations
leading to the integrated metric Raychaudhuri equation (3.45), but this time allowing a
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non-zero shear in (3.44). Then from (3.51) we obtain

2π

η

∫
H

T ??
µν lµ lν

λdλd2S =
∫
H

(
Rµν(e)lµ lν +σµνσ

µν

)
λdλd2S+∆Snon−equi. (3.52)

The delicate point now is how to define the heat flux, namely what T ??
µν needs to be

used on the left-hand side of the above equation. Clearly, the identification of the non-
equilibrium terms that will be needed to obtain the Einstein equations (3.21) depends
on how we define the energy-momentum tensor. If, as in the previous Section, the
conserved one is used, the only non-equilibrium term comes from the shear, which
can then be argued for as in the metric theory following [Eling et al., 2006, Chirco
and Liberati, 2010]. This shows how the derivation of the Einstein equations from the
conserved energy-momentum tensor and metric Raychaudhuri equation can be easily
extended to the presence of shear.

If we chose instead to define the heat flux via a source tensor, we would need
additional non-equilibrium terms in order to fully reproduce the Einstein equations
(3.21). The crucial point is whether they can be justified a priori as in the example of
the tidal heating, else the construction is artificial. The authors of [Dey et al., 2017]
argue that this is possible, if (a) we choose T ??

µν = TC
µν for the heat flux, and (b) we

define the non-equilibrium terms as those arising from the torsion-full Raychaudhuri
equation that include torsion-full derivatives of lµ . There are three problems that we
can see with this construction. First, a Killing vector is metric-geodesic, but in general
not geodesic with respect to the torsion-full connection, since from (3.13) we see that

ξ
ν
∇νξµ = κ ξµ −Cν ,µρ ξ

ν
ξ

ρ = κ ξµ −Tν ,µρ ξ
ν
ξ

ρ . (3.53)

For this reason, the authors of [Dey et al., 2017] restrict torsion to satisfy

Cν ,µρξ
ν
ξ

ρ = 0. (3.54)

This restriction implies that metric and torsion-full geodesics coincides, and one can
use the geodesic torsion-full Raychaudhuri equation on the Killing horizon. But since
the metric and the torsion-full geodesic expansions also coincide,7 it follows that the
torsion-full Raychaudhuri equation is identical to the metric one. Therefore, it is
unclear what one gains from this approach, except for a restriction on torsion that in the
equilibrium approach presented in the previous Section is not necessary.8

Second, the identification of the non-equilibrium contributions as torsion-full co-
variant derivatives of lµ is questionable: we are not aware of any proof that in a

7In the presence of torsion, the displacement of a vector qµ Lie dragged along ξ µ is given by

ξ
ν
∇ν qµ = Bµν qν , Bµν := ∇ν ξµ +Tµ,λν ξ

λ = ı∇ν ξµ +Cρ,µν ξ
ρ ,

hence introducing the usual projector ⊥µν on a 2d space-like surface orthogonal to ξ µ , we have
θ :=⊥µν Bµν = ıθ . For the reader interested in more details on geodesics with torsion, see e.g. [Luz and
Vitagliano, 2017, ?].

8Since in order to recover the Einstein equations we will need to consider arbitrary boost Killing
vectors, see discussion below (3.46), the restriction on torsion (3.54) should hold for any ξ µ . This implies
a strong restriction on torsion, that can be satisfied for instance if it is completely antisymmetric. A priori
it could be possible to consider a relaxation of (3.54), allowing for a right-hand side proportional to ξµ

rather than vanishing, since this would only mismatch the inaffinity of metric and torsion-full geodesics.
However we don’t know whether the derivation of [Dey et al., 2017] can be extended to this case.
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spacetime with torsion it is the torsion-full shear that gives the tidal heating. Fur-
thermore, the condition of vanishing initial expansion implies that at the point P we
have ∇µ lµ =⊥µν Tµ,νρ lρ , making some ‘non-equilibrium terms’ indistinguishable from
terms without derivatives, as the authors of [Dey et al., 2017] acknowledge in a footnote.

Third, there is the ambiguity associated with picking a non-conserved T ??
µν , as

discussed before. Had we chosen the alternative source T Γ, which is also more natural
from the perspective of a metric-connection action, the same identification of non-
equilibrium contributions would not work, as it would miss the terms with covariant
derivatives of the contorsion in (3.21).

Summarizing, although the non-equilibrium approach has the advantage of allowing
to relax the assumption of an initial non-vanishing shear [Eling et al., 2006, Chirco and
Liberati, 2010], it is in our opinion ambiguous when applied to gravity with torsion.

3.5 Black hole thermodynamics in presence of torsion
As mentioned in the introduction, Jacobson’s derivation is inspired by the laws of black
hole thermodynamics. Having shown that the derivation works also in the presence
of torsion, at least as far as recovering the Einstein equations, the next question we
considered is what happens to the these laws.
We have recalled earlier that the surface gravity of the Rindler horizon is constant
simply because the Riemann tensor vanishes. For a general horizon, constancy of the
surface gravity is the zeroth law, and its proof uses the Einstein equations and the
dominant energy conditions. In the presence of torsion, we can follow the proof with
the equations (3.21), and the only modification is that the dominant energy condition
will be a restriction on the effective energy-momentum tensor.
More interesting is the modification that occurs to the first law. To see this, let us
consider the ‘physical process’ version of the proof [Wald, 1995], in which an initially
stationary black hole is perturbed by some matter falling inside the horizon. For our
generalization, we suppose that the in-falling matter has spin and sources torsion, and
that the metric and connection satisfy the Einstein-Cartan field equations.
As in the metric case, we assume that all matter falls into the black hole, and that the
latter is not destroyed by the process, but settles down to a new stationary configuration
[Wald, 1995, Gao and Wald, 2001]. These assumptions are motivated by the no-hair
theorem and the cosmic censorship conjecture, which keep their value also in a theory
with non-propagating torsion. For example, it is known that a compact ball of static or
slowly spinning torsion-full Weyssenhoff fluid9 admits a solution which satisfies the
junction conditions with an external Schwarzschild or slowly rotating Kerr [Prasanna,
1975, Arkuszewski et al., 1974].
Following [Wald, 1995], we use the linearized Einstein equation to study the effect on
the horizon geometry caused by the in-falling matter at first order in perturbation theory,

gµν = g0
µν +hµν , Cρ,µν = cρ,µν . (3.55)

Being null and hypersurface orthogonal, the affine horizon generators are metric
geodetic, and their expansion is governed by the Raychaudhuri equation (3.44). The

9This is a single component of torsion (the trace part) generated by the gradient of a scalar [Griffiths
and Jogia, 1982].
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background generators lµ are proportional to the Killing generators ξ µ satisfying
lµ =−(λκ)−1ξ µ , with constant κ by the zeroth law. They have vanishing shear and
expansion, giving therefore at first order

d
dλ

δθ =−δRµν(h)lµ lν . (3.56)

Integrating along the horizon H from the bifurcation surface B to a cut S∞ at future
null infinity, we have for the total area variation

∆A =
∫
H

δθ dλd2S =
∫
H

δRµν(h)lµ lν
λdλd2S, (3.57)

where we integrated by parts and used that λ |B = 0 since ξ µ |B = 0, and that θ |S∞
= 0

by the late time settling down assumption.
In the standard particular case of torsion-less matter with conserved energy-momentum
tensor Tµν , we have from the linearized Einstein equations∫

H
δRµν(h)lµ lν

λdλd2S = 8π

∫
H

δTµν(h)lµ lν
λdλd2S. (3.58)

At this order, we can substitute lµ =−(λκ)−1ξ µ in the right-hand side integrand

− 8π

κ

∫
H

δTµν(h)ξ µ lν
λdλd2S =

8π

κ

∫
H

δTµν(h)ξ µ dHν =
8π

κ
(∆M−ΩH∆J),

(3.59)
where in the first equality we used that fact the future-pointing volume form on H is
dHµ =−lµdλd2S, and in the second the explicit expression ξ µ = ∂

µ

t +ΩH∂
µ

φ
as well

as the definitions of ∆M and ∆J used in [Wald, 1995]. We conclude that the linearized
Einstein equations imply the first law of perturbations around a stationary black hole,10

∆M =
κ

8π
∆A+ΩH∆J. (3.60)

For torsion-generating matter, we can follow exactly the same procedure, the only
difference being that we use the Einstein-Cartan equations (3.21) with the conserved
effective energy-momentum tensor on the right-hand side. The first law follows as
before but with new mass and angular momentum variations

∆M−ΩH∆J =
∫
H

δT eff
µν (h)ξ

µ dHν (3.61)

10To make contact between this ‘physical process’ version of the first law, and the one in terms of
ADM (Arnowitt-Deser-Misner) charges, recall that since we are assuming all matter to be falling in the
black hole, the integral along the horizon equals the integral on a space-like hypersurface Σ extending
from B to a 2-sphere S∞ at spatial infinity i0. Using again the Einstein equations and the explicit form
of the conserved Noether current (see [Iyer and Wald, 1994], here κ is the Komar charge and Θ the
Einstein-Hilbert symplectic potential) we find∫

H
δTµν(h)ξ µ dHν =

∫
Σ

δTµν(h)ξ µ dΣ
ν =

∫
S∞

(kξ −Θyξ )−
∫

B
kξ = ∆MADM−ΩH∆JADM,

where the final result follows from a standard calculation with ξ µ = ∂
µ

t +ΩH∂
µ

φ
. See [De Paoli and

Speziale, 2018] for a derivation of the first law with covariant Hamiltonian methods for Einstein-Cartan
theory.
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determined by the torsion-dependent T eff
µν . This is consistent with the results of

[Arkuszewski et al., 1974] mentioned above, where the mass of the external Schwarzschild
has a torsion contribution from an effective energy density profile of the static Weyssen-
hoff fluid compatible with the formula above.
Following the same approach of treating the effect of torsion as an effective energy-
momentum tensor, we can conclude that also the second law of black hole mechanics
is still valid, provided the required restrictions on the energy-momentum tensor of
matter [Bardeen et al., 1973] are applied to the effective tensor (3.22).
As for the more elusive third law, a discussion would require a prior understanding of
extremal black holes in the presence of torsion, we didn’t face this analysis in our paper
and we postpone this study to a future work.

3.5.1 Jacobson’s thermodynamic argument: two possible deriva-
tions

We want to introduce here a brief discussion on some details of Jacobson’s thermody-
namic argument and consider a different derivation that is motivated by the (backwards)
similitude with the physical process proof of the first law of black hole thermodynamics.
Let us first review the physical set-up and its thermodynamical interpretation. With
reference to Fig. 5.1, we see that from the perspective of the boosted observer the
energy flux is coming out of its ‘white hole horizon’, or as the authors of [Guedens
et al., 2012] put it, ‘one has to think of the heat as going into a reservoir which is
behind the horizon’. We suppose this must be the reason why (3.42) is defined with a
minus signs with respect to the outgoing energy flux (the future-pointing integration
is dHµ =−lµdλd2S, as we used in Section 3.5). An alternative set-up was presented
in [Guedens et al., 2012], see Fig. 3.2, placing the energy flux in the future of the
bifurcation surface, so to have the boosted observer seeing it falling into its Rindler
horizon. Spacetime is initially flat, in particular θ = σµν = 0 at the bifurcation surface.

B

ξµ

Tµν

Figure 3.2. The set-up thermodynamical derivation of Einstein’s equation as proposed
in [Guedens et al., 2012]. Local flatness allows to consider approximate Rindler observers
ξ µ around any point P of a given spacetime. The associate Rindler horizon has bifurcate
surface B passing through P. The system is perturbed by a small flux of matter crossing the
future horizon and leaving the right wedge. An infinite family of ξ µ is actually considered,
one per each direction.
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With the same approximations used in (3.45) (i.e. constant curvature at first order in the
affine parameter from B), one can again derive the Einstein equation from the Clausius
relation. The physical interpretation of the Clausius law is the same: there is a negative
energy flux which corresponds to a reduction in entropy, and assuming an entropy
universally proportional to the area this translates into the focusing of geodesics. But
now the initial heat reservoir is within the domain of causality of the boosted observer,
which is an appreciable feature to have.

Within this ’11 set-up, the analogy between the argument and the first law is manifest,
and it suggests an alternative procedure, with the advantage of relaxing the constant
curvature approximation, at the price of an additional assumption. Consider the same
set-up of Fig. 3.2, but let us assume this time that spacetime is initially arbitrary, and that
long enough after the flux has crossed and perturbed the horizon, the latter ‘settles down’
to Rindler again. This is an assumption, which in the case of the first law is motivated by
the no-hair theorem; it has no corresponding backing-up in the case of a Rindler horizon
that we know of, but we observe that the same assumption is used to derive the results
of [?, ?]. We can then treat the Raychaudhuri equation not at first order in l, which
implies a constant curvature, but at first order in the metric perturbations, with small but
otherwise arbitrary curvature along the horizon. Thanks to the assumption of Rindler
behavior at later times we can obtain the area variation integrating by parts as in (3.57)
in the main text, without needing to know the explicit solution to the Raychaudhuri
equation.

Then, using the same steps (i− iii) (with a small energy-momentum tensor δTµν ),
but replacing (3.45) with (3.57), we can again derive the Einstein equations. This
alternative derivation has the nice feature, to our taste, of not requiring constant curvature
and energy-momentum tensors, with the consequence of making all dλ integrations
really not significative. However it can hardly be considered a more solid derivation,
as we initially hoped, because of the ad hoc ‘Rindler stationarity’ assumption at late
times. This could be removed if we reverse the boundary conditions, and required that
spacetime is initially Rindler, namely at B, and can be arbitrary at later times. However
the derivation does not work unfortunately, unless curvature is constant again, which is
what allows the authors of [Guedens et al., 2012] to reverse boundary conditions with
respect to [Jacobson, 1995].

3.6 Concluding remarks

Prompted by the analysis of [Dey et al., 2017], we looked at one aspect of conservation
laws in Einstein-Cartan theory. In the sector of invertible tetrads, where one can choose
to split the connection into the Levi-Civita one plus a contorsion tensor, it is immediate
to identify a the conservation law of the energy-momentum tensor T eff for matter from
the Einstein equations. We showed in our analysis that T eff can be derived without
using the Einstein equations, starting instead from the Noether identities associated
with the gauge and diffeomorphism invariance of the matter Lagrangian, and relating
them through the torsion equations.
Thanks to this result, we were able to reproduce Jacobson’s thermodynamical argument
[Jacobson, 1995], and derive the Einstein equations from the equilibrium Clausius
relation. Our derivation is much simpler than the one proposed in [Dey et al., 2017], and
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does not require non-equilibrium terms nor any restriction on torsion. On the other hand,
like in [Dey et al., 2017], we are only able to derive the tetrad Einstein equations from
a thermodynamical argument, and not the torsion equations as well. This remains an
open question in order to truly extend Jacobson’s argument to theories with independent
metric and connection.
For our construction, we used first the equilibrium set-up of [Jacobson, 1995], in
particular the initial shear vanishes. Non-equilibrium terms have been advocated in
order to relax this assumption [Eling et al., 2006, Chirco and Liberati, 2010, Guedens
et al., 2012], and the same can be done in the presence of torsion: we showed that one
can treat the shear alone as non-equilibrium feature, and still derive the torsion-full
Einstein equations with all the torsional dependence coming from the equilibrium part.
On the other hand, non-equilibrium terms could become crucial if one were able to go
beyond Einstein-Cartan theory, and apply a thermodynamical reasoning to derive the
field equations of modified theories of tetrad and connection with higher order terms,
which typically include propagating torsion (and associated ghosts, see e.g. [Tseytlin,
1982]). It could be interesting if the dissipation present in this case would be associated
with dissipation of energy to the torsional degrees of freedom. From this perspective it
could be intriguing to consider existing condensed matter models in which dissipating
lattice defects introduce torsion [Kröner, 2017].
In the next chapter we gave up the thermodynamical set-up for gravity to focus on the
general problem of definition of conserved charges in the first order formalism. As we
outlined in the introductive chapter, the Noether theorem applies to gauge theories with
no global symmetry (e.g. with no killing vector field fo GR) in a form that it’s known
in litterature as the second Noether theorem [Blau, 2011] and a direct application of
the theorem states that there are no non-trivial conserved charges. Switching to tetrad
variables we add an extra symmetry to the theroy, the internal gauge symmetry, and
we want to analyse if it brings new peculiarities in the derivation of conserved charges
for gravity. Even this symmetry doesn’t bring physical conserved quantities, as we
expected, we showed in the next chapter that it leads to some subtelties that one should
take care of to have a fair correspondence between the two formulation of GR in tetrad
and metric variables.

3.7 Conventions

We take ε˜µνρσ as the completely antisymmetric spacetime density with ε˜0123 = 1, and

ε̃µνρσ ε˜µνρσ =−4!. It is related to the volume 4-form by

ε :=
1
4!

εµνρσ dxµ ∧dxν ∧dxρ ∧dxσ , εµνρσ :=
√−gε˜µνρσ . (C.3.1)

We define the Hodge dual in components as

(?ω
(p))µ1..µ4−p :=

1
p!

ω
(p)α1..αpεα1..αpµ1..µ4−p. (C.3.2)
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For the internal Levi-Civita density εIJKL we refrain from adding the tilde. We use the
same convention, ε0123 = 1, so the tetrad determinant is

e =− 1
4!

εIJKLε̃
µνρσ eI

µeJ
νeK

ρ eL
σ , (C.3.3)

and we take e > 0 for a right-handed tetrad.
Curvature and torsion are defined by

F IJ(ω) = dω
IJ +ω

IK ∧ωK
J, T I(e,ω) = dωeI, (C.3.4)

where dω is the covariant exterior derivative, whose components we denote by Dµ , to
distinguish them from the spacetime covariant derivative ∇µ with affine connection Γ

ρ

µν .
The relation between the connections on the fiber and on the tangent space is given by

DµeI
ν = Γ

ρ

µνeI
ρ , ω

IJ
µ = eI

ν∇µeνJ (C.3.5)

for ω and Γ general affine connections, plus the metricity condition Dµη IJ = 0. The
compatibility of the internal covariant derivative and the tetrad means that Dµ f I =
eI

ν∇µ f ν and so on.
The commutators of the covariant derivatives satisfy:

[Dµ ,Dν ] f I = F I
Jµν(ω) f J, (C.3.6)

[Dµ ,Dν ] f =−T ρ
µν(e,ω)∂ρ f , (C.3.7)

[∇µ ,∇ν ] f ρ = Rρ
σ µν(Γ) f σ −T σ

µν∇σ f ρ , (C.3.8)

where

Rρσ µν(Γ) = eIρeJσ F IJ
µν(ω) T ρ

µν(Γ) = eρ

I T I
µν(ω). (C.3.9)

Finally, torsion and contorsion are related by

T ρ
µν := eρ

I T I
µν(e,C) =−2C[µ,ν ]

ρ = 2Γ
ρ

[µν ]
⇔ Cµ,νρ =

1
2

Tµ,νρ −T[ν ,ρ]µ .

(C.3.10)

Both torsion and contorsion have spinorial decomposition (3
2 ,

1
2)⊕ (1

2 ,
3
2)⊕ (1

2 ,
1
2)⊕ (1

2 ,
1
2),

which corresponds to three irreducible components under Lorentz transformations (since
the latter include parity). They can be defined as follows [Hehl et al., 1976],

Cµ,νρ = C̄µ,νρ +
2
3

gµ[ρČν ]+ ε
µνρσĈσ , (C.3.11)

gµνC̄µ,νρ = 0 = εµνρσC̄µ,νρ , Čµ :=Cν ,
µν , Ĉσ :=

1
6

εσ µνρCµ,νρ . (C.3.12)

As in the rest of the dissertation we use metric signature with mostly plus, and natural
units G = c = h̄ = 1.
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Chapter 4
Derivation of the symplectic potential in
tetrad formalism for GR

In this chapter, we continue the discussion on conserved charges for gauge theories
using a different approach, based on the covariant phase space formalism. The covariant
phase space method is based on the construction of the symplectic potential and the
derivation of the boundary terms arising from the variation principles. To derive the
conserved quantities in this formalism, instead of starting from a Lagrangian and using
the Noether theorem, we start from the action and use the boundary terms1. In this case
symmetries are studied as properties of the phase space and the associated conserved
charges correspond to the integral of the hamiltonian generators of these symmetries.
The analysis on conserved charges for tetrad gravity was carried on in the paper [De Paoli
and Speziale, 2018], we report here our results and some features of the derivation
of the symplectic potential. We use tetrad variables throughout all the discussion and
the exterior calculus which has the merit of compactifying calculations and making
them more readable. In particular this formalism avoids confusion in simultaneous
employment of internal indices and spacetime indices. All formulas are expressed in the
first order formalism, meaning the connection is an independent variable before going
on-shell. This has the advantage of a better comparison with the connection description
like Ashtekar’s phase space at future null infinity and at spacetime infinity. Another
property is that our first order formulas can also be applied to extensions of GR, as
spacetime with torsion that we already introduced int he previous chapter.
Even if a priopri the use of tetrad variables and the Einstein-Cartan action is just a
ridefinition of the theory, it turned out to be non-trivial as one subtlety arises in the study
of the symplectic structure: the phase space derived from the Einstein-Cartan action is
not gauge-invariant and not equivalent to the usual metric one even in the absence of
torsion. As a consequence both the definitions of conserved charges and conservations
laws are different respect to the usual metric one. To face these problems we analysed
the derivation of a symplectic potential, and we showed that it is possible to define a
symplectic structure such that the associated conserved charges match the metric ones
as soon as one restores the gauge invariance of the symplectic potential.
The chapter is divided in the following way: in the first part we derive the symplectic

1In GR the famous boundary term is the Gibbons-Hawking boundary term which consists of the trace
of the extrinsic curvature K.
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structure that arises from Einstein-Cartan action. It consists of the symplectic potential
Θ, defined as the integral on a Cauchy tridimensional hypersurface of the boundary
terms, and from its variation in the fields space, Ω, which plays the role of the metric of
the phase-space. In the second part we compared the tetrad symplectic form with the
metric one for some particular fields variations, and we proved how to solve the gauge
invariance of the first one. We report in the appendix of this chapter A.2 the notation
that we used for the exterior calculus formalism, and other conventions.

4.1 Introduction and motivations

Covariant phase space methods [Ashtekar et al., 1991, Crnkovic and Witten, 1986, Lee
and Wald, 1990, Wald and Zoupas, 2000] provide powerful tools for the study of
symmetries and conservation laws in gauge theories and gravity. These methods have
been successfully applied to tetrad gravity, recovering the metric Poincarè charges at
spatial infinity, the first law of black hole mechanics and its generalization to isolated
horizons [Ashtekar et al., 2000b, Ashtekar et al., 2008, Corichi et al., 2014, Corichi
et al., 2016]. Notwithstanding these positive results, the symplectic potential most
commonly used has two unappealing features that we wish to improve upon, and which
motivate this discussion. The first issue consists of the not fully gauge-invariance of
the symplectic potential: the associated pre-symplectic form has degenerate gauge
directions inside the Cauchy hypersurface, but not on its boundary, unless this is taken
at infinity and with appropriate fall-off conditions. This means that the covariant phase
space gives in general non-trivial surface charges for internal Lorentz transformations.
Since when torsion vanishes we would like to recover the same physics as in the metric
theory, such charges appear unphysical to us.
The second and related issue is that, again when torsion vanishes, the symplectic
potential taken from the Einstein-Hilbert action is not equivalent to the one taken from
Einstein-Hilbert action. This difference shows up for instance if we look at a variation
given by a Lie derivative: the familiar Komar term which appears in the metric case
is not present. As a consequence, also the Noether charge is different, which led the
authors of [Jacobson and Mohd, 2015, Prabhu, 2017] to point out a potential problem
with the derivation of the first law from the Noether identity, and to propose that in
tetrad gravity the Noether charge for diffeomorphisms should be associated not to a Lie
derivative, but to a modified derivative involving an internal gauge transformation which
depends non-linearly on the tetrad. We will see that solving the first issue automatically
solves the second.
To find a fully gauge-invariant symplectic potential, it is enough to use the fact that
the symplectic potential is defined from an action principle only up to the addition of
an exact form. Our first result is to identify an appropriate exact form that makes the
pre-symplectic form completely gauge-invariant, thus free of internal Lorentz charges
in the absence of torsion. Our second result is to show that the gauge-invariant potential
gives exactly the Komar term when the variation coincides with the Lie derivative,
thus recovering the expected Noether charge. Finally we prove equivalence to the
Einstein-Hilbert symplectic potential for a general variation, in the absence of torsion,
by reproducing the geometric formula of [Burnett and Wald, 1990, Lehner et al., 2016]
in terms of extrinsic geometry and 2d corner terms. A support for the proposed gauge-
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invariant symplectic potential comes also from the fact that it turns out to match the
boundary term found in [Bodendorfer et al., 2014] using Hamiltonian method and with
the requirement of finding a canonical transformation from the tetrad to the ADM phase
space in the presence of 2d corner terms.
The importance of working with a gauge-invariant potential for generic gauge theories
has been discussed in details in [Barnich and Compere, 2008], and our construction
shows how this can be done for tetrad gravity.
Having established these results, we look at physical applications, in particular to
asymptotic charges and to the first law of black hole thermodynamics. Since the
modification we propose changes the symplectic form and the phase space structure,
it is not guaranteed that the results in the literature still apply: the exact form affects
the Hamiltonian charges of the theory. For asymptotic Poincaré charges, it is easy to
see that the result of [Ashtekar et al., 2008] is preserved, since with those asymptotic
fall-off conditions the additional exact form vanishes at spatial infinity.
For the first law, the situation is more interesting. First of all, having recovered the
equivalence with the Einstein-Hilbert symplectic potential, we can immediately show
that using our gauge-invariant symplectic potential the first law follows from the Noether
identity associated with the covariant Lie derivatives, coherently with the metric case.
However, we show that the first law follows also from the non-gauge-invariant potential
and the same Lie derivative, provided that one takes into account the non-trivial internal
Lorentz charge. The latter has the effect of changing the Hamiltonian Killing flow,
because tetrads and connections are preserved by a Killing Lie derivative only up to an
internal transformation, and not identically.
Recovering the first law from the non-gauge invariant potential and the Lie derivative
is in fact not new: it was already proven in [Ashtekar et al., 2000b] using directly
the Hamiltonian generators, not expressing them in terms of the Noether charge and
thus without puzzling over that mismatch. The presence of a non-zero Hamiltonian
diffeomorphism generator was indeed observed in [Ashtekar et al., 2000b], and referred
to as the horizon energy. Our construction clarifies that this horizon energy is the
internal Lorentz charge produced by using a non-gauge covariant potential.
Therefore, we deal with a situation similar to the metric case, albeit slightly subtler.
In the metric case, the first law is invariant under the cohomology ambiguity in the
symplectic potential, because the contribution of the exact form to the symplectic form
vanishes. In the tetrad formalism this is not the case, because the Killing Lie flow
vanishes only up to internal transformations. Nonetheless, the first law is still invariant,
provided one takes into account the non-trivial internal Lorentz charges that can be
present changing the symplectic potential by an exact form.

4.2 Formulation of a gauge-invariant symplectic poten-
tial

We consider the following first order action for Einstein-Cartan gravity (for a review,
see [Hehl et al., 1995])

SEC(e,ω) = PIJKL

∫
M

eI ∧ eJ ∧FKL(ω)− Λ

6
eI ∧ eJ ∧ eK ∧ eL, (4.1)
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where we have taken units 16πG = 1, and

PIJKL :=
1
2γ

(ηIKηJL−ηILηJK)+
1
2

εIJKL. (4.2)

The action is to be supplemented by appropriate boundary integrals I3d and I2d de-
pending on the boundary conditions chosen, see e.g. [Obukhov, 1987, Bodendorfer
and Neiman, 2013, Corichi et al., 2016] for 3d boundaries without corners, and [Jubb
et al., 2017] in the presence of corners. The coupling constant γ is referred to as
Barbero-Immirzi parameter in most literature,2 and the associated Lagrangian density
corresponds to the additional dimension-two term ε̃µνρσ Rµνρσ (Γ) that one can write
in the first order formalism.3 The variation of the action gives the field equations and a
boundary term, ∫

M
d
(

PIJKLeI ∧ eJ ∧δω
KL
)
, (4.3)

which will be the centre of attention of this analysis, for the role it plays in the covariant
phase space formalism.
Let us denote by dθEC(δ ) the integrand.The theory defined by (4.1) differs a priori from
general relativity: it is only defined for orientable manifolds, and odd under orientation
inversion, instead of even; it allows for degenerate tetrads hence degenerate metrics; it
allows for non-vanishing spacetime torsion T I := dωeI , if matter couples to the affine
connection ω IJ . In the following, we restrict attention to an invertible, right-handed
tetrad. Then when torsion vanishes ω IJ = ıω IJ is the Levi-Civita spin connection, (4.1)
is equivalent to the Einstein-Hilbert action SEH and thus the theory to general relativity.
This equivalence extends to the boundary term:

dθEC

∣∣
ω=ıω = dθEH, (4.4)

as can be easily seen for instance from

eµ

I eν
J 2ıD[µδ ıω IJ

ν ] = eµ

I eν
J δF IJ

µν(e)= δR−δ (eµ

I eν
J )δF IJ

µν(e)= δR−2RI
µδeµ

I = gµν
δRµν .
(4.5)

The equivalence (4.4) implies also that the 3-forms are equal up to an exact form,

θEH = θEC|ω=ıω +dα. (4.6)

The question we address here is to find an α for which the equality above holds. It is
motivated by the covariant phase space formalism, which uses the boundary term to
define Noether and Hamiltonian charges of the theory. Let us briefly review the basic
points of this formalism, referring the reader to e.g. [Wald and Zoupas, 2000] for details.
Suppose that the boundary ∂M of M (which can be the whole spacetime or just a region
of interest) admits a canonical split with the identification of a Cauchy hypersurface
Σ. Then the boundary term dθ(δ ) obtained from the variation of a Lagrangian 4-form

2Because of the role it plays in the canonical transformation to real Ashtekar-Barbero variables, see
e.g. [Thiemann, 2001].

3For the interested reader, this parameter has an interesting renormalization flow [Daum and Reuter,
2010, Benedetti and Speziale, 2011a], with an on-shell logarithmic divergence induced by the simultane-
ous presence of fermions and Λ [Benedetti and Speziale, 2011b].
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L can be used to provide a symplectic potential on the space of solutions to the field
equations, by taking its integral on Σ:

Θ(δ ) :=
∫

Σ

θ(δ ). (4.7)

This defines a one-form in field space, and its exterior derivative is the pre-symplectic
two-form

Ω(δ1,δ2) = δ1Θ(δ2)−δ2Θ(δ1)−Θ([δ1,δ2]). (4.8)
Using δL≈ dθ(δ ), where here and in the following ≈ means on-shell of the field equa-
tions, one sees that Ω is independent of the choice of hypersurface Σ if the background
fields as well as the variations δ1 and δ2 satisfy the field equations.

The symplectic structure so defined is not unique. First, the explicit form of the
potential depends also on the boundary terms I3d and I2d in the action principle. These
however do not affect the pre-symplectic form since the symplectic potential is changed
by a total variation, therefore the covariant phase space structure is independent of them.
There is nonetheless a certain freedom, since the symplectic potential is defined by the
Lagrangian L only up to an exact form, that is the Lagrangian identifies an equivalence
class

L −→ {θ(δ ) = θ(δ )+dα(δ )}, (4.9)
where α is an arbitrary 2-form in spacetime and 1-form in field space. This cohomology
freedom does affect the pre-symplectic form, and it is important to test that physical
predictions are independent of it. This freedom plays an important role below.
The simplest set-up for this formalism is when ∂M = Σ1∪Σ2 joined at a 2d space-like
surface, in which case the canonical splitting is obvious. A more general configura-
tion is a topological cylinder, ∂M = Σ1∪Σ2∪T , with the time-like hypersurface T
connecting the 2d space-like boundary ∂Σ1 to ∂Σ2. To introduce a canonical split
in this case we typically require that Θ(δ ) vanishes on T .4 This is a restriction on
the admissible solutions if T is in the spacetime bulk, but can become negligible if
the boundary is pushed to infinity, and it is the fall-off conditions on the fields that
guarantee the vanishing of Θ(δ ) on T∞. This set-up is relevant for instance in the study
of asymptotic charges at spatial infinity with Λ = 0. The appropriate fall-off conditions
for (4.1) where given in [Ashtekar et al., 2008]. We will come back to this point below
in Section 4.4.
The power of this formalism for diff-invariant theories is that it allows one to define
quasi-local Hamiltonian charges for diffeomorphisms as the canonical generators in the
covariant phase space.5 They are given by the pre-symplectic form with one variation
being a Lie derivative δξ = £ξ ,

δHξ [Σ] := Ω(δ ,δξ ) =
∫

Σ

δθ(δξ )−δξ θ(δ ). (4.10)

4This is because data can generically both inflow and outflow off a time-like boundary, making a
canonical split impossible without restricting the phase space. Another useful set-up is when the time-like
boundary is replaced by a null hypersurface N . In that case we can have a canonical split with non-zero
contribution from N , since it is a one-way only membrane, see e.g. [Ashtekar et al., 2000b, Wieland,
2017b, Ashtekar and Wieland, 2018].

5Let us remind the reader less familiar with this formalism that for a general diffeomorphisms, these
quasi-local charges are not interesting observables, because their value depends on the shape of the
boundary of Σ. It is only when ξ µ is a Killing or asymptotic Killing vector that the charges are truly
useful.
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Here we assumed that [δξ ,δ ] = 0,6 and the δ is there to remind us that the quantity on
the RHS is not always a total variation. Only when it is, the generator integrates to a
proper Hamiltonian charge Hξ [Σ].7 The integrability condition is

∫
Σ

ω(δ1,δ2)yξ = 0
[Wald and Zoupas, 2000], where ω is the integrand of Ω, and a sufficient condition
familiar from the ADM energy calculations is the existence of a functional B such that
θ(δ )yξ = δByξ .

The origin of this latter condition becomes clear if we recall the relation between the
Hamiltonian charges and the Noether charges, which do not coincide for diff-invariant
theories. The conserved Noether current is given by (see e.g. [Iyer and Wald, 1994])

j(δξ ) := θ(δξ )−Lyξ , (4.11)

since this is the object that is closed on-shell: Using δξ L = d(Lyξ ), it is immediate to
see that d j(δξ ) ≈ 0. Furthermore, it is also possible to show that j(δξ ) ≈ dq(ξ ) for
some 2-form q(ξ ) [Iyer and Wald, 1994]. It follows that the Noether charge, defined as
the integral of the current,8 is a boundary term:

Qξ [∂Σ] :=
∫

Σ

j(δξ )≈
∫

∂Σ

q(ξ ). (4.12)

To find the relation between the Hamiltonian and Noether charges one takes the variation
of (4.11), and replaces it in the definition (4.10) together with the Lie derivative variation
δξ θ(δ ) = £ξ θ(δ ) = dθyξ +d(θyξ ). This gives

δHξ [Σ]≈ δQξ [∂Σ]−
∫

∂Σ

θ(δ )yξ . (4.13)

This shows (i) that the Hamiltonian as well as the Noether charge are surface charges,
but in general differ by a term θ(δ )yξ ; and (ii) that if θ(δ )yξ = δByξ , then δHξ [Σ] =
δHξ [Σ] is a total variation and thus integrable. In spite of their close relation, the
Hamiltonian and Noether charges have an important difference: the former changes
only under the ambiguity (4.9) in defining the symplectic potential, whereas the Noether
current j(δξ ) and charge Q∂Σ(ξ ) are changed also by adding boundary terms I to the
action, which makes them less universal objects than the Hamiltonian charges.9

To make this quick review more concrete, let us recall that for the Einstein-Hilbert
Lagrangian LEH = (R−2Λ)ε (without boundary terms, for simplicity), we have

θEH(δ ) = 2gρ[σ
δΓ

µ]
ρσ dΣµ , (4.14)

with dΣµ the oriented volume element. Specializing to a diffeomorphism,

θEH(£ξ ) = dκ(ξ )+?(2Eyξ )+LEHyξ , (4.15)

6This is a customary assumption [Wald and Zoupas, 2000], although it can be argued [Ashtekar et al.,
1991] that it is rather a definition of what we mean by the perturbation of a diffeomorphed solution.

7Since a typical case study is when Σ has two boundaries, Hξ [Σ] is also referred to as a flux, leaving
the name charge for the surface integrals whose difference makes up Hξ [Σ], see below.

8Noether charges for gravity can also be derived without using covariant phase space methods, see
e.g. [Barnich et al., 2000]. For a derivation of Noether charges for first order tetrad gravity with these
methods, see [Barnich et al., 2016].

9There is also a third ambiguity in the definition of the Noether charge itself, since one can always
add an exact 2-form to it. This ambiguity will play no role in the following.
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where κ is the Komar form, in components

κµν(ξ ) :=−εµνρσ ∇
ρ

ξ
σ , (4.16)

Eyξ := (Gµν +Λgµν)ξ
µdxν contains the field equations, and ? is the Hodge dual on

spacetime forms (see the section at the end of this chapter for conventions). It follows
that the Noether charge associated with diffeomorphisms by (4.14) is the Komar form,

j(δξ ) = θEH(δξ )−LEHyξ ≈ dκ(ξ ). (4.17)

It also enters the Hamiltonian charge,

δHξ [Σ] := ΩEH(δ ,δξ ) =
∫

Σ

δθEH(δξ )−δξ θEH(δ ) (4.18a)

=
∫

∂Σ

δκ(ξ )−θEH(δ )yξ . (4.18b)

This equation is the starting point to prove the first law of black hole mechanics.
Coming back to the tetrad action (4.1), we see that it defines the symplectic poten-

tial10

ΘEC(δ ) :=
∫

Σ

θEC(δ ) :=
∫

Σ

PIJKLeI ∧ eJ ∧δω
KL. (4.19)

This turns out not to be equivalent to (4.14) when torsion vanishes, hence a non-zero
α is required in (4.6). The difference shows up prominently when one evaluates the
symplectic potential for a diffeomorphism variation δξ . In the metric case with the
Einstein-Hilbert Lagrangian LEH, we have (4.15) with the Komar form. When using
tetrads as fundamental variables, we have the additional gauge freedom of performing
internal Lorentz transformations. The action (4.1) is thus invariant under SO(3,1) gauge
transformations

δλ eI = λ
I
JeJ, δλ ω

IJ =−dωλ
IJ (4.20)

as well as the usual diffeomorphisms,

£ξ eI = deIyξ +d(eIyξ ) = dωeIyξ +dω(eIyξ )− (ω I
Jyξ )eJ (4.21a)

£ξ ω
IJ = dω

IJyξ +d(ω IJyξ ) = F IJyξ +dω(ω
IJyξ ), (4.21b)

as well as combinations of the two. In particular, we can consider the gauge-covariant
diffeomorphisms

Lξ eI = dωeIyξ +dω(eIyξ ) (4.22a)

Lξ ω
IJ = dωω

IJyξ +dω(ω
IJyξ )−d(ω IJyξ ) = F IJyξ , (4.22b)

which are defined adding a gauge transformation to the Lie derivative,

Lξ := £ξ +δωyξ . (4.23)

10Another common choice is the opposite polarization, obtained adding the extrinsic geometry bound-
ary term to the action. All considerations in this discussion apply also to this alternative choice, although
some explicit formulae are different.
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These are gauge-covariant, unlike (4.21), and [Lξ ,δλ ] = δdω λyξ is a gauge transforma-
tion.11

Taking variations given by these Lie derivatives, the potential (4.19) gives

θEC(£ξ ) = PIJKL

[
eI ∧ eJ ∧FKLyξ +2eI ∧T J

ω
KLyξ

]
+d(PIJKLeI ∧ eJ

ω
KLyξ ),

(4.24a)

θEC(Lξ ) = PIJKLeI ∧ eJ ∧FKLyξ . (4.24b)

Using

PIJKLeI ∧ eJ ∧FKLyξ =
1
3!

(
− 1

γ
ε

αβγµFαβγλ ξ
λ +2eFµ

λ ξ
λ

)
εµνρσ dxν ∧dxρ ∧dxσ

ω=ıω
=
(
(?2E(e)+LEH)yξ

)
, (4.25)

we see that both options differ from (4.15), even when torsion vanishes. The associated
torsionless Noether current is

j(£ξ )|ω=ıω = ?(2E(e)yξ )+d(PIJKLeI ∧ eJ ıωKLyξ ), (4.26)

which is exact on-shell as expected, but lacks the Komar term (4.16), as also the
current associated to Lξ would. Hence (4.19) does not reproduce the Noether charge
of the metric theory with neither £ξ nor Lξ . This does not affect the evaluation of the
asymptotic Poincaré charges, see below in Section 4.4, but it was argued in [Jacobson
and Mohd, 2015] to spoil the first law of black hole mechanics. The solution there
proposed was to associate the diffeomorphism Noether charge not to the original Lie
derivative, but to the following mixing of diffeomorphisms and gauge transformations,

K(e)
ξ

eI := Lξ eI +
(

eν [I£ξ eJ]
ν

)
eJ. (4.27)

This indeed produces the Komar term (as shown in [Jacobson and Mohd, 2015, Prabhu,
2017], or by direct evaluation of (4.19) with δω IJ = K(e)

ξ
ıω IJ), and the same proposal

has been followed for instance in [Montesinos et al., 2017, Frodden and Hidalgo, 2018].
However, this is not the origin of the alleged problem with the first law, which as we show
below in Section 4.5 can be derived also from the Noether identity with the covariant
Lie derivative. The key point is that the symplectic potential (4.19) does not define a
gauge-invariant symplectic structure. To see this, we look at the pre-symplectic form
derived from (4.19). Using the shorthand notation ΣIJ := eI ∧ eJ and the commutativity
[δλ ,δ ] = 0 of gauge transformations and variations of the fundamental fields, we have

ΩEC(δ ,δλ ) = δΘEC(δλ )−δλ ΘEC(δ ) =−PIJKL

∫
Σ

[λ ,Σ]IJ ∧δω
KL +δΣ

IJ ∧dωλ
KL =

= PIJKL

∫
Σ

δ (dωΣ
IJ)λ KL−PIJKL

∫
∂Σ

δΣ
IJ

λ
KL,

(4.28)

11The reader familiar with the Hamiltonian analysis of (4.1) will recognise these two covariances as
those associated respectively to the generators

Da := Ca−ω
IJ
a GIJ , Ca :=−2P̃b

IJF IJ
ab .

see e.g. [Thiemann, 2001].
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where we used

δΣ
IJ∧dωλ

KL = d(δΣ
IJ

λ
KL)−(dωδΣ

IJ)λ KL = d(δΣ
IJ

λ
KL)−

(
δ (dωΣ

IJ)+[δω,Σ]IJ
)

λ
KL,

(4.29)
and

PIJKL

(
[λ ,Σ]IJ ∧δω

KL− [δω,Σ]IJ
λ

KL
)
= 0 (4.30)

which follows from the Jacobi identity.
On-shell of the field equations, the first term in (4.28) vanishes (or in the presence

of torsion it would cancel against the source term coming from the matter contribution
to the symplectic potential), and we are left with a surface term, which gives the
non-vanishing Lorentz charge

δHλ = ΩEC(δ ,δλ ) =−PIJKL

∫
∂Σ

δΣ
IJ

λ
KL. (4.31)

This means that the symplectic structure induced by ΩEC has degenerate gauge directions
in the bulk of Σ, but not on its boundary. Again this fact is well-known in the literature,
see e.g. [Corichi et al., 2016, Frodden and Hidalgo, 2018]. While in a gauge theory
this is a rather natural fact with a physical meaning, we find it unpalatable in this
gravitational context because it would assign charges that are not there in the metric
theory, making the covariant phase spaces inequivalent even in the absence of torsion.
A fully gauge-invariant symplectic structure can be easily obtained using the ambiguity
(4.9) in the definition of the symplectic potential. We find that the required exact form is∫

∂Σ

α(δ ) :=
∫

∂Σ

1
γ

eI ∧δeI +?eI ∧δeI =−PIJKL

∫
∂Σ

eI ∧ eJ eρK
δeL

ρ . (4.32)

In fact, a simple calculation shows that∫
∂Σ

δα(δλ )−δλ α(δ ) = PIJKL

∫
∂Σ

δ (eI ∧ eJ)λ KL, (4.33)

which cancels the surface term in (4.28). The corrected potential

Θ
′
EC(δ ) := ΘEC(δ )+

∫
∂Σ

dα(δ ) = PIJKL

∫
Σ

eI ∧ eJ ∧δω
KL +

∫
∂Σ

1
γ

eI ∧δeI +?eI ∧δeI

(4.34)
is thus gauge-invariant. Notice also that it satisfies Θ′EC(δλ ) = 0 for vanishing torsion.12

As it turns out, the very same exact form allows us also to recover precisely the
Komar expression from a Lie derivative variation. To see this, let us first notice the
following identity

eν [ILξ eJ]
ν = D[I

ξ
J]+T [I

µνeJ]µ
ξ

ν , (4.35)

12For a gauge transformation

ΘEC(δλ ) =
∫

Σ

PIJKLdω(eI ∧ eJ)λ KL−
∫

∂Σ

PIJKLeI ∧ eJ
λ

KL

is a pure boundary term when torsion vanishes, cancelled by the addition of (4.32) since eρKδλ eL
ρ =−λ KL.

One could also use this argument to deduce the boundary subtraction term (4.32).
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where DIξJ = eµ

I eν
J ∇µξν is the covariant derivative corresponding to dω . This implies

that

α(Lξ )
∣∣
ω IJ=ıω IJ=−PIJKLeI ∧ eJDK

ξ
L = κ(ξ )− 1

2γ
?κ(ξ ). (4.36)

The last piece is the trivial Komar charge ?κµν(ξ ) = 2ı∇[µξν ], similar to the trivial
charge associated with the topological Lagrangian εµνρσ FµνFρσ in YM theory. This is
an exact form; it does not contribute to the boundary integral, and we disregard it in the
following.13 Putting (4.36) together with (4.24b) we find

θ
′
EC(Lξ ) = θEC(Lξ )+dα(Lξ )

ω=ıω
= PIJKLeI ∧ eJ ∧FKLyξ +dκ(ξ )≡ θEH(£ξ ), (4.37)

where in the last step we used (4.25). The gauge-invariant symplectic potential (4.34)
reproduces precisely the metric result in the absence of torsion.14

For these reasons, it seems to us that (4.34) provides a better symplectic potential
for the EC theory than the simple boundary term alone: it satisfies our desiderata

Θ
′
EC(Lξ )

∣∣
ω IJ=ıω IJ=ΘEH(£ξ ) (4.38)

and
Ω
′
EC[δλ ,δ ] = 0. (4.39)

As further support for the use of (4.34), we remark that it matches the boundary term
derived in the Hamiltonian analysis of [Bodendorfer et al., 2014], starting from the
requirement of having a canonical transformation of connection variables to the ADM
phase space in the presence of corners. Here we derived it from the requirement of full
gauge-invariance of the pre-symplectic structure in the covariant phase space.15

4.3 General variations approach and equivalence to the
metric casa

Properties (4.38) and (4.39) were the ones we cared the most for. However, it is only
a few more steps to prove that the equivalence extends to arbitrary variations. In this
Section we prove that

Θ
′
EC(δ )

∣∣
ω IJ=ıω IJ = ΘEH(δ ), (4.40)

namely that α(δ ) defined in (4.32) satisfies (4.6).
In tensor language, a geometric expression for the generic variation was given in [Burnett
and Wald, 1990], and more recently rederived in [Lehner et al., 2016]. Using the notation
from the latter paper cited, one has

nµθ
µ

EH(δ ) = 2nµgρ[σ
δΓ

µ]
ρσ =−2δK +Kabδqab− s∇aδAa, (4.41)

13It would be however non-trivial in the presence of torsion.
14We point out that this equality holds also with the non-gauge-covariant derivative, since θ ′EC(£ξ ) =

θ ′EC(Lξ )+2PIJKLeI ∧T J ωKLyξ .
15When the paper [De Paoli and Speziale, 2018] appeared on the archives, Matthias Blau showed us

some unpublished notes where he had also constructed the same gauge-invariant potential and proved the
property (4.38) [Blau, 2018].
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where the notation is as follows: nµ is the unit normal to Σ, with signature s := n2 =±1
and projector qµν := gµν − snµnν ; Kµν := qρ

µqρ

ν ∇ρnσ is the extrinsic curvature of the
hypersurface. The authors of [Lehner et al., 2016] pick coordinates ya(xµ), a = 1,2,3
to parametrize Σ, and tµ

a := ∂xµ/ya define tangent vectors and the induced metric
qab = qµνtµ

a tν
b with determinant q. Finally, ta

µ := qabgµνtν
b are the inverse tangent

vectors, ∇a the induced Levi-Civita covariant derivative and δAa :=−sta
µδnµ captures

the variation of the normal-tangential components of δgµν . For our purposes, it is
convenient to rewrite this formula in a covariant way, without using tangent vectors and
hypersurface tensors. To that end, we denote by r̂µ the unit normal to the space-like
boundary ∂Σ within T ∗Σ: it satisfies r̂2 =−s and r̂µnµ = 0 (and in the case when it is
time-like we take it future oriented). Since δ ta

µ = δAanµ , the second term in (4.41) can
be rewritten immediately in covariant form,

Kabδqab = Kµνδgµν =−2Kµ

I δeI
µ . (4.42)

As for the boundary term we have

− s
∫

Σ

DaδAadΣ =−s
∫

∂Σ

r̂ata
µδnµdS =−s

∫
∂Σ

r̂µqµ

ν δnνdS =−s
∫

∂Σ

r̂µδnµdS,

(4.43)
where dΣ :=

√−sqd3y and dS are the induced volume elements on Σ and ∂Σ. Hence,16

sΘEH(δ ) =
∫

Σ

nµθ
µ

EH(δ )dΣ

=
∫

Σ

[
−2δ (K

√−sq)+(Kµν −Kqµν)
√−sqδqµν

]
d3y− s

∫
∂Σ

r̂µδnµdS.

(4.44)

We will take advantage of this formula to establish the equivalence (4.40), by proving
that
θ ′EC(δ ) = θEC(δ )+ dα(δ ) equals the RHS of (4.44) for vanishing torsion and right-
handed tetrads.
First of all, we need an identity which allows us to rewrite the symplectic potential with
the hypersurface unit normal nµ explicitly appearing:

1
2

εIJKL

∫
Σ

eI ∧ eJ ∧δω
KL =−2

∫
Σ

eδωI,
IJnJ =−sεIJKL

∫
Σ

eI ∧ eJ ∧δω
L

MnKnM.

(4.45)
To see this, we use the tetrad identity (C.4.6) before and after using nKnM = s(ηKM−
qKM), getting

εIJKLε
µνρσ eI

µeJ
νδω

L
ρ Mnσ nKnM = 2seδωI,

IJnJ

=−sεIJKLε
µνρσ eI

µeJ
ν(δω

KL
ρ +δω

L
ρ MqKM)nσ

=−sεIJKLε
µνρσ eI

µeJ
νδω

KL
ρ nσ +2seδωK,LMqKMnL.

(4.46)

Since in the last term we can replace qKM with ηKM we obtain

εIJKLε
µνρσ eI

µeJ
νδω

KL
ρ nσ = 4eδωI,

JInJ, (4.47)

16It is by the way in this covariant form that the equation is presented in [Burnett and Wald, 1990].
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from which (4.45) follows. Another needful identity concerns the 1/γ piece of ΘEC: we
have ∫

Σ

eI ∧ eJ ∧δω
IJ =

∫
Σ

(
T I ∧ eJ (e

ρ

I δeJ
ρ)− eI ∧δT I

)
−
∫

∂Σ

eI ∧δeI, (4.48)

which can be shown using ω IJ
µ = eλ I∇µeJ

λ
and integrating by parts.

Next, we consider the following boundary term [Obukhov, 1987, Bodendorfer and
Neiman, 2013, Wieland, 2013],

IΣ := 2
∫

Σ

PIJKLeI ∧ eJ ∧nKdωnL = 2
∫

Σ

eµ

I DµnIdΣ =: 2
∫

Σ

◦
KdΣ (4.49)

which represents an ‘affine’ version
◦
K of the extrinsic curvature – in the sense of

being defined without referring to the Levi-Civita connection –, and which reduces
to the extrinsic curvature K if there is no torsion. The equality in the middle follows
using (C.4.6) and nIDµnI = 0. Notice also that the term proportional to 1/γ vanishes
identically. We then compute its variation, which gives

δ IΣ =
∫

Σ

εIJKL
[
2δeI ∧ eJ ∧nKdωnL + eI ∧ eJ ∧ (δnKdωnL +nKdωδnL +δω

L
MnKnM)

]
=
∫

Σ

εIJKL

[
2δeI ∧ eJ ∧nKdωnL + eI ∧ eJ ∧

(
2δnKdωnL− s

2
δω

KL
)
+2eI ∧T J nK

δnL
]

+d(εIJKLeI ∧ eJnK
δnL) (4.50)

where we used (4.45). The second term vanishes since nI is unit norm, and isolating the
symplectic potential (4.19) in (4.50) we find

sΘEC(δ ) = εIJKL

∫
Σ

−δ
(
eI ∧ eJ ∧nKdωnL)+2δeI ∧ eJ ∧nKdωnL +2eI ∧T J nK

δnL

(4.51)

+ εIJKL

∫
∂Σ

eI ∧ eJnK
δnL +

s
γ

∫
Σ

eI ∧ eJ ∧δω
IJ.

We now compare this expression for ω = ıω and T = 0 with (4.44). The first term in
(4.51) gives immediately the first term in (4.44), thanks to (4.49). The matching of the
second terms in (4.51) and (4.44) is also easily established:

2εIJKL

∫
Σ

δeI ∧ eJ ∧nKdωnL =−2
∫

Σ

(qν
I ∇νnµ − eµ

I ∇ρnρ)δeI
µdΣ (4.52)

=−2
∫

Σ

(
◦
KI

µ −
◦
Keµ

I )δeI
µdΣ,

which coincides with the second term in (4.44) when torsion vanishes. It remains to
look at the boundary term of (4.50), which in tensor form gives

εIJKL

∫
∂Σ

eI ∧ eJnK
δnL =−4

∫
∂Σ

n[K r̂L]n
K

δnLdS (4.53)

=−2s
∫

∂Σ

r̂LδnLdS =−2s
∫

∂Σ

(r̂µδnµ + r̂Lnµ
δeL

µ)dS.
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As expected, this surface term alone fails to reproduce the surface term in (4.44). This
is fixed by the correcting term (4.32), which gives

sdα(δ ) =−sPIJKL

∫
∂Σ

eI ∧ eJeρK
δeL

ρ = s
∫

∂Σ

(nµ r̂IδeI
µ − r̂µnIδeI

µ)dS+
s
γ

∫
∂Σ

eI ∧δeI

(4.54)

The piece in 1/γ cancels the last term of the second row of (4.51) when torsion vanishes,
see (4.48). Adding up (4.53) and the γ-less part of (4.54), and using δ (eI

µnµ r̂I) = 0 we
obtain

−s(2r̂µδnµ + r̂Inµ
δeI

µ + r̂µnIδeI
µ)=−s(2r̂µδnµ− r̂µδnµ−nI

δ r̂I−nµδ r̂µ− r̂I
δnI)=−sr̂µδnµ ,
(4.55)

where the final equality follows from r̂IδnI =−nIδ r̂I which cancels the third with the
fifth term, and nµδ r̂µ =−r̂µδnµ = (s/2)r̂µnµnρnσ δgρσ = 0 which cancels the fourth.
We have thus proved (4.40).

4.4 Analysis of the Poincaré charges at spatial infinity
Since the modification we propose changes the pre-symplectic form, we should check
that it does not spoil established results, such as the recovery of Poincaré charges at
spatial infinity with Λ = 0. It was proved in [Ashtekar et al., 2008] that the original
symplectic potential (4.19) vanishes on T∞, a necessary condition for the canonical split
without reducing the phase space, and that it leads to the correct Poincaré charges as in
the metric formalism. Furthermore, the authors showed that the non-gauge-invariance
of (4.19) vanishes in the limit to i0. This already signals that our modification will
vanish in that limit, hence preserving those results. Let us show this explicitly, using
the boundary and fall-off conditions of [Ashtekar et al., 2008].17

One chooses a reference flat metric ηµν for the asymptotic behaviour, with hyper-
bolic slicing given by ρ2 := ηµνxµxν and three angles collectively denoted by Φ. Then
the fall-off conditions appropriate to Poincaré symmetries are given for the tetrad by

eI
µ = 0eI

µ(Φ)+
1eI

µ(Φ)

ρ
+O(ρ−2), (4.56)

with
0eI

µ(Φ) = δ
I
µ ,

1eI
µ(Φ) = σ(Φ)(2ρµρ

I− oeI
µ), (4.57)

σ(Φ) a reflection-symmetric arbitrary scalar function and ρµ := ∂µρ.
We then have at leading order∫

∂Σ

δ1α(δ2)−δ2α(δ1)

=−PIJKL

∫
∂Σ

[(
2 0e[Iµ(δ1

1eJ]
ν )

0eρK− 0e[Iµ
0eJ]

ν (δ1
1eρK)

)
(δ2

1eL
ρ)− (δ1↔ δ2)

] 1
ρ2 dSµν

(4.58)

17These we recall are slightly stronger than strictly necessary, as they are chosen also to eliminate the
logarithm and supertranslation freedoms from the asymptotic symmetry group. It would be of course
interesting to study relaxations admitting supertranslations, see e.g. [Henneaux and Troessaert, 2018], as
motivated by [Hawking et al., 2016].
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which vanishes exactly using (4.57) and the antisymmetry in KL. The exact form we
added gives no leading contribution to the pre-symplectic form in the limit to i0, and the
recovery of the Poincaré charges established in [Ashtekar et al., 2008] is left unaffected.

4.5 Study of first law of thermodynamics with the sim-
pletic formalism

We now show that our symplectic potential permits to derive the first law of black hole
mechanics from the Noether charge associated with a Lie derivative, just like in the
metric case [Iyer and Wald, 1994]. For the application of the formalism to derive the
first law of black hole mechanics, we take a stationary and axisymmetric background
solution, Λ = 0, and choose Σ to be a Cauchy hypersurface with two boundaries, one at
the bifurcation surface B and one at spatial infinity S∞. We take ξ µ to be the Killing
vector that generates the horizon. Consider first the metric case. Since ξ µ is Killing, all
variations δξ vanish and by linearity also the Hamiltonian charge,

δHξ = ΩEH(δ ,δξ ) = 0. (4.59)

Recalling the expression (4.18b) in terms of the Noether charge, we find a conservation
law between surface charges at the bifurcating surface and at spatial infinity,∫

B
δκ(ξ ) =

∫
S∞

δκ(ξ )−θEH(δ )yξ , (4.60)

where we used that fact that ξ µ |B = 0. If the perturbations are asymptotically flat and
solution of the linearized field equations (but otherwise general), this equation evaluates
to the first law of black hole mechanics (see e.g. [Iyer and Wald, 1994])18

2kδA = δM−ΩHδJ. (4.61)

Crucially, this first law is invariant under θ 7→ θ +dα , since the contribution of this
ambiguity to (4.59) always vanishes:

d
(
δα(δξ )−δξ α(δ )

)
= 0. (4.62)

To see this, use the fact that α(δ ) depends linearly on the variations and that δξ = 0 on
the background fields. The quantity in square brackets then gives α(δδξ )−α(δξ δ ) = 0
since [δξ ,δ ] = 0.
If the same state of affairs held in the tetrad formalism, we would agree with the argu-
ment given in [Jacobson and Mohd, 2015, Prabhu, 2017]: neither options presented in
(4.24) give the Noether charge of the metric theory, and since the first law should be
invariant under redefinitions of the symplectic potential, we are left with the only possi-
bility of looking for a new transformation to which the first law should be associated.

18Notice that in this situation the (trivial) Hamiltonian charge is integrable, so both sides of (4.60)
are total variations: this is manifest for the LHS, for the RHS it follows from the standard ADM energy
result plus the fact that ∂φ is tangent to S∞. This property is on the other hand not manifest in the final
expression (4.61) of the first law, where it is guaranteed by identities relating the variations of the various
quantities appearing.
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The problem we see with this argument is the assumption that (4.59) still holds in the
tetrad theory, namely the requirement that for a Killing vector, £ξ eI = 0. This is not
necessary, and can lead to inconsistencies; it is enough to require that

Lξ eI = λξ
I
JeJ, (4.63)

since this automatically preserves the metric. Contracting with the inverse metric, we
get an expression for the gauge transformation:

λξ
IJ =−eρILξ eJ

ρ =−D[I
ξ

J], (4.64)

where we used (4.35) in the absence of torsion.19 Notice that it does not vanish on a
bifurcating surface where ξ µ = 0. This immediately means that

δHξ = Ω(δ ,Lξ ) = Ω(δ ,δλξ
), (4.65)

namely the Killing diffeomorphism generator for a general potential is an internal
Lorentz charge.
Using the gauge-invariant symplectic potential Θ′EC, the Lorentz charge is zero, see
(4.39), and thus from (4.65) the vanishing δHξ = 0 of the diffeomorphism generator
associated with a Killing vector is preserved. The Noether charge contains the exact
Komar form, see (4.38) (there is a priori another ambiguity in the cohomology of κξ ,
but this is irrelevant for the first law since the boundary of a boundary is zero), and
the symplectic potential reduces to the one of the Einstein-Hilbert action, see (4.40).
Hence (4.65) gives back precisely the conservation law (4.60), and the first law follows
as usual. We conclude that our gauge-invariant potential associates naturally the first
law to the invariance of the action under (covariant) Lie derivatives.
One may wonder whether the invariance of the first law under the ambiguity (4.9) is
lost. This is not the case. In fact, we now show that the first law can also be derived
from the non-gauge-invariant potential (4.19) and the same Lie derivative, without need
for the non-linear object (4.27) of [Jacobson and Mohd, 2015] or the automorphism
construction of [Prabhu, 2017], provided one takes into account the presence of a
non-zero Lorentz charge. Starting from the non-gauge-invariant potential (4.19) and
using (4.63), the Hamiltonian generator (4.65) for a Killing vector does not vanish
anymore but coincides with the Lorentz generator.20 This evaluates to

ΩEC(δ ,Lξ ) = ΩEC(δ ,δλξ
) =−

∫
∂Σ

PIJKLδ (eI ∧ eJ)λξ
KL, (4.66)

where we used (4.28), which is valid also for a field-dependent gauge parameter
like λξ since the contribution from its variation is cancelled by the commutator term

19The reader may worry whether the invariance up to a gauge transformation of the tetrad under an
isometry is consistent with the transformation of ω IJ , namely whether

Lξ ω
IJ = F IJyξ

?
=−dω λ

IJ
ξ

= dω D[I
ξ

J].

The equality is indeed satisfied as it is nothing but the familiar Killing identity Rσ µνρ ξ σ = ∇µ ∇ν ξρ

expressed in the tetrad formalism.
20A fact that can also be taken as motivation to prefer the gauge-invariant potential.
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ΘEC([δ ,δλξ
]) which is in this case not vanishing.

To evaluate the hand side, we could compute the Noether current associated with Lξ ,
but we can also use (4.23) and the bilinearity of the symplectic form to derive

ΩEC(δ ,Lξ ) = ΩEC(δ ,£ξ )+ΩEC(δ ,δωyξ ). (4.67)

The first piece gives

ΩEC(δ ,£ξ ) =
∫

∂Σ

δ j(£ξ )−θEC(δ )yξ =
∫

∂Σ

PIJKLδ (eI ∧ eJ
ω

KLyξ )−θEH(δ )yξ +dα(δ )yξ

=
∫

∂Σ

PIJKL

[
eI ∧ eJ

δλ
KL
ξ

+δ (eI ∧ eJ)ω
KLyξ

]
−θEH(δ )yξ , (4.68)

where in the second equality we used (4.26) on-shell, and the equivalence (θEC +
dα)|ω IJ=ıω IJ = θEH previously established; in the last step we used∫

∂Σ

dα(δ )yξ =
∫

∂Σ

£ξ α(δ ) =
∫

∂Σ

PIJKL

[
eI ∧ eJ

δλ
KL
ξ
− eI ∧ eJ

δω
KLyξ

]
. (4.69)

This can be proved by explicit calculation using (4.32) and (4.64), but also observing
that

£ξ α(δ ) = Lξ α(δ ) = δλξ
α(δ )+α([δ ,δλξ

−δωyξ ]) = α([δ ,δλξ
−δωyξ ]), (4.70)

which follows using δλ α(δ ) = 0 for a gauge transformation and (4.64) for the back-
ground fields φ :

Lξ α(φ ,δφ)=α(Lξ φ ,δφ)+α(φ ,Lξ δφ)= δλξ
α(φ ,δφ)−α(φ , [δλξ

,δ ]φ)+α(φ , [Lξ ,δ ]φ)

(4.71)
and [Lξ ,δ ] = [δωyξ ,δ ]. The second piece in (4.67) is again a Lorentz charge,

ΩEC(δ ,δλξ
) =−

∫
∂Σ

PIJKLδ (eI ∧ eJ)ω
KL yξ , (4.72)

and cancels the second term in (4.68). We can now equate (4.66) to (4.67) with the
above manipulation, and derive

−
∫

∂Σ

PIJKLδ (eI ∧ eJ)λξ
KL =

∫
∂Σ

PIJKLeI ∧ eJ
δλ

KL
ξ
−θEH(δ )yξ . (4.73)

Finally, notice that∫
∂Σ

PIJKLδ (eI ∧ eJ
λ

KL
ξ

) =−
∫

∂Σ

PIJKLδ (eI ∧ eJDK
ξ

L) =
∫

∂Σ

δκξ , (4.74)

hence (4.73) gives the same identity (4.60) as the metric and gauge-invariant symplectic
potential calculations, from which the first law follows. The Lorentz charge is thus
crucial to recover the Komar form and the first law using the non-gauge-invariant
symplectic potential and the ordinary Lie derivative.
We conclude that also with the original potential (4.19) the first law follows from the
Noether identity and Lie derivatives. This is consistent with the findings of [Ashtekar
et al., 2000b], where the first law for stationary black holes and more in general for
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isolated horizons was recovered from the second equality in (4.18a), without going
through the Noether current expression (4.18b). In [Ashtekar et al., 2000b] the internal
Lorentz symmetry at the isolated horizon was fixed, and the non-vanishing of (4.65)
indeed noticed, and referred to as horizon energy. Our results show that this is nothing
but the Lorentz charge.
The bottom line of the derivation of the first law (4.73) with the non-gauge-invariant
potential and the Lie derivative is that the Komar charge, absent from the symplectic
potential, pops up through the Lorentz charge giving the diffeomorphism Hamiltonian
generator. This simple reshuffling restoring the first law extends to any symplectic
potential in the equivalence class (4.9). Therefore, there still is a perfect invariance
of the first law under the cohomology ambiguity in the symplectic potential, albeit in
a subtler way than in the metric case. The subtlety is that adding an exact form to
the symplectic potential can introduce surface Lorentz charges, which in turn provide
non-zero charges also for the Hamiltonian generators of Killing isometries. These have
to be taken into account if one wants to recover the first law from the covariant Lie
derivative alone.
Let us also compare our results with those of [Jacobson and Mohd, 2015,Prabhu, 2017].
There it was acknowledged that the symplectic potential is not gauge-invariant, and
it was shown that one can still work with it and define Hamiltonian diffeomorphism
charges vanishing for Killing vectors, provided these diffeomorphism are not associated
with Lie derivatives alone, standard or covariant, but with automorphisms of the tetrad.
This construction uses the non-linear object (4.27) whose action depends on the tetrad
also when acting on other fields, and whose extension in the case of an affine connection
with torsion is unclear to us. Our findings show that there is a simpler alternative:
keep the covariant Lie derivative and switch to a gauge-invariant potential, or keep
the non-gauge-invariant potential but take into account the Lorentz charges and the
non-vanishing of (4.65). This said about our alternative, we remark that the motivations
of [Jacobson and Mohd, 2015,Prabhu, 2017] include topological issues and smoothness
of fields; we have not looked at these aspects, so we are not in a position to assess how
they would change our results.

4.6 Conclusions

In this analysis we have proposed a gauge-invariant symplectic potential for tetrad
general relativity, implementing what discussed for generic gauge theories in [Barnich
and Compere, 2008]. See also [Donnelly and Freidel, 2016, Gomes and Riello, 2018]
for additional discussions on the importance of gauge-invariance of the phase space.
Our construction uses the freedom to add exact spacetime forms, namely corner terms,
to the symplectic potential. A gauge-invariant symplectic potential cannot be directly
read off from the action, but additional input is required in the choice of the right corner
term, which in turns determines the covariant phase space and resulting Hamiltonian
fluxes/surface charges.
The gauge-invariant potential eliminates what we see as spurious internal Lorentz
charges produced by the symplectic potentials used so far in the literature. It does not
change the Poincaré charges at spatial infinity, since the gauge-breaking terms vanish in
that limit. It plays a key role on the other hand in deriving the first law of black hole
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mechanics from the Noether identity associated with the Lie derivative and a vanishing
Killing Hamiltonian flux, like in the metric theory.
We also pointed out that the derivation of the first law from the covariant Lie derivative
is in the end invariant under the cohomology ambiguity in the symplectic potential, and
thus independent of having chosen a gauge-invariant one: it suffices to take into account
the non-trivial Lorentz charges that can be present. The technical statement is that
the invariance of the first law under the ambiguity θ 7→ θ +dα , which is guaranteed
in the metric theory by the fact that for a Killing field we have Ω(δ ,δξ ) = 0, it is
now correspondingly guaranteed by the Ω(δ ,Lξ ) = Ω(δ ,δλξ

). Therefore, the first law
is recovered with a non-vanishing Killing Hamiltonian flux if one uses the original
potential, while a vanishing Killing Hamiltonian flux if one uses the gauge-invariant
symplectic potential.
Our gauge-invariant symplectic potential turns out to be exactly equivalent to the
Einstein-Hilbert one when torsion vanishes and for arbitrary variations. This was not
granted a priori since they could have differed by gauge-invariant exact 2-forms, e.g.
terms written directly as variation of the metric. The proof was based on some identities
for differential geometry with tetrads that allows us to recover variations of extrinsic
curvature and 2d corner terms.
For simplicity, we have neglected boundary terms in the action, and the explicit contribu-
tion of matter fields. Boundary terms and topological terms can be added following the
previous treatments [Corichi et al., 2016, Jubb et al., 2017]. The matter contribution is
worth exploring: we have settled the issue of the equivalence of the symplectic potential
when torsion vanishes, this can now be used to study the contribution of torsion to the
charges.
Among the applications of our results we mention the study of boundary degrees of free-
dom, in particular the 1/γ term in (4.34) has been shown to lead to an interesting descrip-
tion in terms of a conformal field theory on the boundary [Freidel et al., 2017a,Wieland,
2017a, Geiller, 2018]), and it would be interesting to see if and how that description is
affected by our results. A related issue concerns calculations of entanglement entropy
based on the action (4.1), see e.g. [Ashtekar and Krishnan, 2004, Bodendorfer, 2014].
Finally, approaches to quantization suggest to endow the covariant phase space methods
within the Batalin-Fradkin-Vilkovisky framework, which for the non-gauge-invariant
potential (4.19) has been discussed in [Cattaneo and Schiavina, 2017].
Throughout our analysis we restricted attention to non-null hypersurfaces. A sym-
plectic potential for tetrad gravity giving vanishing internal Lorentz charges can also
be obtained when the 2d corner hinges between a space-like and a null hypersur-
face [Wieland, 2017b, Ashtekar and Wieland, 2018]. Quasi-local charges and con-
servation laws are even more interesting when one considers null hypersurfaces (see
e.g. [Ashtekar and Streubel, 1981,Wald and Zoupas, 2000,Reisenberger, 2013,Hawking
et al., 2016,Wieland, 2017b,Hopfmüller and Freidel, 2018]) and it is natural to ask how
our results extend to that case. In the following chapter we explored the Hamiltonian
structure of Einstein-Cartan gravity on null hypersurfaces preparing tools for a future
study of a symplectic potential for a null foliations.
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4.7 Conventions
We define the spacetime Levi-Civita density ε˜µνρσ as the completely antisymmetric

object with ε˜0123 = 1, and ε̃µνρσ ε˜µνρσ =−4!. We denote the spacetime volume form
as

ε :=
1
4!

εµνρσ dxµ ∧dxν ∧dxρ ∧dxσ , εµνρσ :=
√−gε˜µνρσ . (C.4.1)

The Hodge dual ? : Λp 7→ Λn−p is defined in components as

(?ω
(p))µ1..µn−p :=

1
p!

ω
(p)α1..αpεα1..αpµ1..µn−p. (C.4.2)

For (non-null) hypersurfaces, we use the following conventions: if the Cartesian equa-
tion of Σ is ϕ(x) = 0, the unit normal is

nµ :=
s√

gρσ ∂ρϕ∂σ ϕ
∂µϕ, s := n2 =±1, (C.4.3)

and the induced volume form

ε
Σ := εyn, ε

Σ
µνρ := nσ

εσ µνρ , dΣµ = snµdΣ. (C.4.4)

On a space-like surface S within Σ, with unit normal r̂µ , we have r̂2 = −s and the
induced area form

ε
S := ε

Σyr̂, ε
S
µν := nρ r̂σ

εµνρσ . (C.4.5)

For the internal Levi-Civita density εIJKL we refrain from adding the tilde. We keep the
same convention, ε0123 = 1, hence the tetrad determinant is

e =− 1
4!

εIJKLε̃
µνρσ eI

µeJ
νeK

ρ eL
σ , 4ee[µI eν ]

J =−εIJKLε̃
µνρσ eK

ρ eL
σ , (C.4.6)

and we take e > 0 for a right-handed tetrad.
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Chapter 5
Initial constraint free data in real
connection variables

In this last chapter, we extend our analysis of tetrad gravity on a null foliation of the
spacetime. This work reported is based on pubblished paper [De Paoli and Speziale,
2017] in which we use the Hamiltonian formalism on a null foliation and the natural
action boundary term to identify the constraint free initial data. At different level respect
to the previous chapter analysis, where the symplectic potential was derived without
considering any vanishing variations of the field at boundary, here we fixed suitable
degrees of freedom on null hypersurface. As results of this procedure we are able to
identify the physical phase space of the tetrad formulation determining the explicit form
of the constraints in term of such physical variables. This identification of the physical
degrees of freedom is propaedeutic to the covariant formulation of the phase space,
discussed in the previous chapter, for a null boundary.

5.1 Introduction

Null foliations play an important role in general relativity. Among their special features,
they admit a gauge-fixing for which the Einstein’s equations can be integrated hierarchi-
cally as well as constraint-free initial data can be identified, like shown by Sachs [Sachs,
1962a]. Precisely the null foliations provide a framework for the description of grav-
itational radiation from isolated systems and of conserved charges, starting from the
seminal work of Sachs, Bondi, van der Burg and Metzner (henceforth BMS), New-
man and Penrose (NP), Geroch and Ashtekar [Bondi, 1960, Sachs, 1962b, Bondi et al.,
1962, Newman and Penrose, 1962, Penrose, 1980, Penrose, 1963, Penrose, 1965, Geroch,
1977, Ashtekar, 1981, Ashtekar and Streubel, 1981, Ashtekar, 2014] (see also [Mädler
and Winicour, 2016, Wald and Zoupas, 2000, Barnich and Troessaert, 2011] and ref-
erence therein). These classic results are based on the Einstein-Hilbert action and the
spacetime metric as fundamental framework, and they provide a clear geometric picture
of the physical degrees of freedom of General Relativity at the non-linear level. In this
chapter we wish to understand some of these results using as the previous chapters a
first-order action principle with real connection variables. In particular, we will identify
the equivalent of Sachs’ free data in terms of some connection components (which will
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be related to the translational part of the ISO(2) group stabilising the internal null direc-
tion soldered to the hypersurface), and highlight some properties of their Hamiltonian
dynamics.
We have several reasons to investigate this problem as follows. First of all we know
from the work of Ashtekar that the radiative physical degrees of freedom at future
null infinity are best described in terms of connections [Ashtekar, 1981, Ashtekar and
Streubel, 1981].1 We then wish to provide a connection description of the physical
degrees of freedom in the spacetime bulk, in the sense of constraint-free initial data
for the first-order action. Secondly, the connection description later led Ashtekar to
the famous reformulation of the action principle of general relativity [Ashtekar, 1986],
which is at the root of loop quantum gravity. This approach to quantising general
relativity suggests the use of connections as fundamental fields, instead of the metric.
There exists a canonical quantisation scheme that leads to the well-known prediction of
quantum discreteness of space [Rovelli and Smolin, 1995]. This result uses space-like
foliations, and the dynamical restriction to the quanta of space imposed by the Hamil-
tonian constraint are still not explicitly known. Quantising with analogue connection
methods the constraint-free data on null foliations would allow us to study the quantum
structure of the physical degrees of freedom directly.2

As a preliminary result in this direction, it was shown in [Speziale and Zhang, 2014]
that at the kinematical level, discretisations of the 2d space-like metric have quantum
area operators with a discrete spectrum given by the helicity quantum numbers. A
stronger more recent result appeared in [Wieland, 2017a], based on covariant phase
space methods and a spinorial boundary term, which confirms the discrete area spectrum
without a discretisation. The aim of our analysis is to extend these results within a
Hamiltonian dynamical framework.
The Hamiltonian dynamics of general relativity with real connection variables on a
null foliation appeared in [Alexandrov and Speziale, 2015], presenting bit intricated
structures, like the conversion of what Sachs called the propagating Einstein’s equa-
tions into (tertiary) constraints. In this study, we present three results. First, we use
the Newman-Penrose formalism to clarify the geometric meaning of the various con-
straints present in the Hamiltonian structure studied in [Alexandrov and Speziale, 2015].
Second, we identify the connection equivalent of Sachs’ free data as the ‘shear-like’
components of an affine3 null congruence; we show how they reduce to the shear of a
null geodesic congruence in the absence of torsion, and how they are modified in the
presence of torsion; we use the Bondi gauge to derive their Dirac brackets, and show the
equivalence with the metric formalism at the level of symplectic potentials. Third, we
explain the origin and the meaning of the tertiary constraints, and we point out that the
algebraic Bianchi identity responsible for the conversion of the propagating equations
into constraints is the same one that allows the interpretation of the radiative data at
future null infinity I +.

1Another class of null hypersurfaces for which the connection description plays an important role
is the one of isolated horizons [Ashtekar and Krishnan, 2004, Ashtekar et al., 2000a, Ghosh and Perez,
2011].

2For recent work towards the same goal but in metric variables, see [Fuchs and Reisenberger, 2017].
3In the sense of being given by an affine connection, a priori non-Levi-Civita, not of being affinely

parametrised.
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The identification of the dynamical part of the connection with null rotations4 (related
on-shell to the shear) is a striking difference with respect to the case of a space-like
foliation, because these components form a group, albeit a non-compact one, unlike
the dynamical components of the space-like formalism which are boosts. We have thus
two senses in which a null foliation gives a simpler algebra:the first-class part of the
constraint algebra is a genuine Lie algebra (thanks to the fact that the Hamiltonian is
second class), and the connection physical degrees of freedom form a group.
This chapter is organised as follows. We first review the background material on the
Hamiltonian structure on null foliations that we didn’t presenti in the review chapter
(2). In the second section, we discuss the use of Bondi coordinates and identification of
constraint-free initial data and their symplectic potential in metric variables. In Section
3, we restated this analysis in terms of connection variables. In Section 4, we map
the non-adapted tetrad used in the Hamiltonian analysis to a doubly-null tetrad, we
identify the constraint-free data and study the effect of the constraints on an affine null
congruence. We describe the modifications induced by torsion in the case of minimally
and non-minimally coupled fermions, as well as in the presence of a completely general
torsion. We rederive the conversion of the propagating equations into constraints using
the Newman-Penrose formalism, and single out the algebraic Bianchi identity responsi-
ble for it. In Section 5 we specialise to Bondi coordinates, we discuss the Dirac bracket
for the constraint-free data and the equivalence of the symplectic potential with that
one in metric variables. We finally highlight that the same algebraic Bianchi identity
relevant to the understanding of the tertiary constraints plays an interesting role for
radiative data at I +. In Section 6 concluding remarks follow. We also provide an
extensive Appendix containing technical material. This includes the detailed relation of
our tetrad foliation to the 2+2 foliation used in the literature, of the metric coefficients
we use to those of Sachs and of Newman and Penrose, the explicit expression of all NP
spin coefficients in the first-order variables, and some details on the mixing between
internal boost gauge-fixing and lapse fixing via radial diffeomorphisms.
For the purposes of this analys, we will mostly restrict attention to local considerations
on a single null hypersurface. Moreover we neglect boundary conditions and surface
terms. These carry of course very important physics, as discussed in the previous
chapter, but we will address the study of null boundaries as future perspective.

5.2 Hamiltonian formulation and the problem initial
data

Before presenting the first-order connection formulation, let us review some basic facts
of the metric formulation, that will be useful in the following: the details of the Bondi
coordinate gauge-fixing, and the description of constraint-free data and their associated
symplectic potential.

The typical set-up is a 2+2 foliation with a doubly-null initial slice, see Fig. 5.1.
Sachs’ constraint-free data for a local evolution can then be identified with the conformal
class of the two-dimensional induced metric along the initial slice, or alternatively
its shear, plus corner data at the 2d space-like intersection. With some additional

4here we denote by null rotations the generators of rotations on the null hypersurface
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regularity assumptions, one can also use a 3+1 foliation by null cones radiated by a
time-like world-line. See [Rendall, 1990, Friedrich, 1986, Frittelli et al., 1995, Choquet-
Bruhat et al., 2011, Chrusciel, 2014] for the formal analysis of solutions and existence
theorems. Both evolution schemes are typically local because of the development
of caustics, however for situations with sufficiently weak gravitational radiation like
those of [Christodoulou and Klainerman, 1993], null cones can foliate all of spacetime.
A case of special interest is the study of radiating isolated gravitational systems in
asymptotically flat spacetimes. In the asymptotic 2+2 problem, one puts the second null
hypersurface at future null infinity I +, and the foliation describes null hypersurfaces
(or null cones) attached to I +. In this case the assignment of initial data is subtler
(see e.g. [Friedrich, 1981]), because of the compactification involved in the definition
of I . In particular, I + is shear-free by construction. Nonetheless, the data are still
described by an asymptotic shear, transverse to I + [Penrose, 1963, Newman and
Penrose, 1962, Ashtekar, 1981], and Ashtekar’s result was to show that these degrees of
freedom and the phase space they describe are better thought of in terms of connections
living on I +, a construction which is useful for the understanding of conserved charges.
Notice that one can not take I + itself as null cone of a 3+ 1 foliation, because of
the ‘hole’ at i+ where tails and bound states escape null infinity (see e.g. [Geroch,
1978]), nor I − for the same reason. We will mostly focuse on local properties of
null hypersurfaces, and not discuss the non-trivial features associated for instance with
boundary data at corners, residual diffeomorphisms, caustics and cone-vertex regularity,
for which we refer the reader to literature cited above and below.

Bondi coordinates: (u; r; θ;φ)

@r

@u

r =const

u =const

S0; (θ;φ)

Figure 5.1. Left: Set-up of the characteristic 2+ 2 initial-value problem. Two null
hypersurfaces intersect on a space-like 2d surface S0. When the two null hypersurfaces are
intersecting light cones, as in the picture, S0 has topology of a sphere. The (partial) Bondi
gauge is such that (θ ,φ) are constant along ∂r, and ∂r is null for all values of u. On the
other hand, ∂u is null at at most one value of r, unless the spacetime has special isometries.
Right: Further requiring suitable regularity conditions one can consider also a local 3+1
foliation of light-cones generated by a time-like world-line.

5.2.1 Bondi gauge and Sachs constraint-free initial data
The Bondi coordinate gauge is specified as follows: we take spherical coordinates in a
local patch of spacetime, xµ = (u,r,θ ,φ), with the level sets of u to provide a foliation
into null hypersurfaces Σ. du is thus a null 1-form, implying the gauge-fixing condition
g00 = 0, and the associated future-pointing null vector lµ =−gµν∂µu is tangent to the
null geodesics of Σ. The second gauge condition is to require the angular coordinates
xA = (θ ,φ), A = 2,3, to be preserved along r, i.e. lµ∂µxA = 0. This implies g0A = 0
and makes r a parameter along the null geodesics: the level sets of r thus provide a
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2+1 foliation orthogonal to the null geodesics. At this point, the metric and its inverse
can be conveniently parametrized as follows,

gµν =

−e2β V
r + γABUAUB −e2β −γABUB

0 0
γAB

 , gµν =

0 −e−2β 0
e−2β V

r −e−2βUA

γAB

 ,

(5.1)
in terms of seven functions (β ,V,UA,γAB). Being the coordinates adapted to the 2+2
foliation defined by u and r, gAB ≡ γAB is the metric induced on the 2d space-like
surfaces, and we denote its determinant γ and its inverse γAB. The gauge-fixing has the
property that gAB = γAB, so it is analogue to the shift-free (partial) gauge Na = 0 for a
space-like foliation. There still remains one coordinate freedom, for which two different
choices are customary in the literature: we can require as in [Sachs, 1962b, Bondi et al.,
1962] the radial coordinate to be an areal parameter R (called ‘luminosity distance’
by Sachs), namely fix

√
γ = R2 f (θ ,φ); or we can follow the Newman-Penrose (NP)

literature [Newman and Penrose, 1962, Penrose, 1980] and require g01 = −1, with
no restrictions on γ , which makes r an affine parameter for the congruence generated
by lµ . The relation between the two choices is given by ∂ r/∂R = e2β . As we will
review below, e2β plays the role of the lapse function in the canonical theory, and these
two choices correspond to two different gauge-fixings of the radial diffeomorphism
constraint. Accordingly, we will denote from now on e2β = N > 0. In the following,
we will often keep this last gauge fixing unspecified, for our results to be easily adapted
to both choices. We will then refer to the partial gauge-fixing g00 = 0 = g0A as partial
Bondi gauge.5

To set up the characteristic 2+2 initial-value problem, one chooses initial data on
two null hypersurfaces intersecting on a space-like 2d surface S0, see Fig. 5.1. Working
with a null foliation, any fixed value of u identifies the first null hypersurface. On the
other hand, with r affine or areal at most one r =constant hypersurface will also be
null, for a generic spacetime. Its location can be fixed with a measure-zero gauge-
fixing g11|r0 = 0. Then, as shown originally in [Sachs, 1962a] (see also [d’Inverno and
Smallwood, 1980, Torre, 1986, Mädler and Winicour, 2016]), constraint-free initial data
for general relativity can be identified with the conformal class of 2d space-like metrics
γAB, of which we take the uni-modular representative γ̌AB := γ−1/2γAB; supplemented by
boundary data at the corner S0 between the two initial slices.6 Up to the measure-zero
corner data, the two independent components of γ̌AB are the two physical degrees of
freedom of general relativity on a null hypersurface. In the associated hierarchical
integration scheme, the Hamiltonian constraint can be solved as a radial linear equation
for V , and one can identify the propagating equations for the constraint-free data as (the

5A third option to complete the partial Bondi gauge is to take dr null, so to have also g11 = 0. This
choice, used in the original Sachs paper [Sachs, 1962a], is not adapted to the asymptotic problem, and
will be not considered in the following.

6Explicitly, Sachs’ also fixes the residual hypersurface gauge, and provides the corner data

(γ, ∂uγ, ∂rγ, ∂rUA)|S0 .

They provide the area of S0, the initial expansion of the null geodesic congruences along the two
hypersurfaces, and the non-integrability of the two null directions: UA,1 gives in these coordinates the
Lie bracket among the two normal vectors ∂u and ∂r at S0.
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traceless part of) the projection of the Einstein’s equations on the space-like surface.
These give the evolution of γ̌AB away from the initial slice. The price to pay for the
identification of constraint-free data is that the dynamical spacetime can be reconstructed
only locally in a neighbourhood of the characteristic surface (neighbourhood that may
well be smaller then the maximal Cauchy development, see e.g. [Rendall, 1990]), as
caustics develop and stop the validity of the coordinate patch. See e.g. [Frittelli et al.,
1995, d’Inverno, 2005, Reisenberger, 2013, Mädler and Winicour, 2016] for various
discussions on this.

The geometric interpretation of the constraint-free data is most commonly given in
terms of the shear of null geodesic congruences, which is directly determined by the
induced 2d metric. To see this, let us consider the normal 1-form lµ =−∂µu. Since it is
null, it is automatically geodesic and twist-free; and since the level sets of u provide a
null foliation, it is affinely parametrised. The associated congruence tensor coincides
then with the Lie derivative of the induced metric, which in partial Bondi gauge is
proportional to the radial derivative,

∇AlB =
1
2

£lγAB =
1

2N
∂rγAB. (5.2)

This surface tensor can be familiarly decomposed into shear σAB and expansion θ as
the trace-less and trace parts,

1
2

£lγAB =

√
γ

2
£l γ̌AB +

1
2

γAB£l ln
√

γ = σAB +
1
2

γABθ . (5.3)

Hence, the shear of the null congruence carries the same information of the conformal
2d metric, up to zero modes lost in the derivative and which are part of the corner data.
The fact that (the bulk of the) constraint-free data can be described in terms of shear
will allow us to easily identify them in the first-order formalism, where ∇µ is an affine
connection.

Here we used the Bondi gauge in order to identify the tangent vector field to the
null geodesic congruence with a coordinate vector, thus simplifying Lie derivatives.
A 2d space-like metric in Σ, its Lie derivative defining a shear, and associated Sachs’
propagating equations, can be identified without this gauge-fixing: it suffices to use a
2+2 decomposition, either in terms of two scalar fields defining a 2+2 foliation (one
being u), or in terms of a null dyad (one element being lµ ), as we will review below.
The role of the gauge-fixing is nonetheless crucial to specify the explicit integration
scheme of the constraints and the other field equations. Hence, it is possible to talk
about physical degrees of freedom in a completely covariant way, as often done in
the literature, although only once the gauge is completely fixed one can truly identify
constraint-free initial data.

5.2.2 Hamiltonian structure in the metric formalism
The fact that the constraint-free data can be either described by the metric or the shear,
its null-radial derivative, captures a well-known property of field theories on the light
cone: the momentum conjugated to the fields does not depend on velocities, but on
the null radial derivative of the field. Consider for instance a scalar field in Minkowski
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spacetime. Defining x± := t± r, and choosing x+ as ‘time’ for the canonical analysis,
the conjugate momentum is

π(x−,xA) :=
δL

δ φ̇
= ∂−φ(x−,xA), (5.4)

where A = 2,3 are the transverse coordinates. The independence of the momentum
from the velocities gives rise to a primary constraint Φ := π−∂−φ , which is second
class with itself, up to zero modes, see e.g. [Alexandrov and Speziale, 2015]. In the
following, we will refer to this constraint as light-cone condition. This fact, which is
just a direct consequence of the fact that the normal vector to a null hypersurface is
tangent to it, means that the momentum is not an independent variable, and can then be
eliminated from the phase space. The physical phase space has thus ∞1 dimensions per
degree of freedom, instead of ∞2 as in the space-like formulation, and the fields satisfy
Dirac brackets defined by a suitable regularisation of ∂

−1
− . Since we are not interested in

this paper in the subtle infrared issues and boundary conditions, let us content ourselves
to describe the symplectic structure of the theory looking at the symplectic potential. To
that end, one can use the covariant phase space method (see e.g. [Ashtekar et al., 1991]),
and read the symplectic potential from the variation of the action in presence of a null
boundary. Consider for simplicity a free scalar field, and a null boundary given by a
single light-cone Σ ruled by x−. Then the variation of the action gives the following
boundary contribution,

Θ =
∫

Σ

∂−φ δφ . (5.5)

This symplectic potential shows that the conjugate momentum to φ satisfies the light-
cone condition (5.4), and announces the presence of ∂

−1
− in the Dirac bracket among

the φ ’s.
The same structure arises in gauge theories (see e.g. [Grange et al., 1998]) and

linearised general relativity around Minkowski [Scherk and Schwarz, 1975, Evens et al.,
1987]: the physical phase space has ∞1 dimensions for each physical degree of freedom
(a transverse mode in these examples), and the conjugate momentum is given by the
null radial derivative of the mode itself. Remarkably, it is also true in full, non-linear
general relativity, with the momentum given by the shear, again a null radial derivative
of the physical degrees of freedom as shown in (5.2). The Hamiltonian analysis of
general relativity on a null hypersurface has been performed in [Torre, 1986] using
the 2+ 2 formalism of [d’Inverno and Smallwood, 1980]. Starting with a covariant
kinematical phase space of canonical variables (gµν ,Π

µν := δL /δ∂ugµν ), one finds 6
first class and 6 second class constraints, for a resulting 2-dimensional physical phase
space, as expected. The six first class constraints split in 3 hypersurface diffeomorphism
generators plus three primary constraints imposing the vanishing of the conjugate
momenta to the chosen shift vectors. The six second class are: the null hypersurface
condition g00 = 0, which in turns gauge-fixes the Hamiltonian constraint and makes it
second class;7 two light-cone conditions, the non-linear version of (5.4); the vanishing
of the momentum conjugated to the lapse N, and the vanishing of ∂ug00.8

7Up to zero modes: Measure-zero ‘parallel’ time diffeomorphisms are still allowed. For instance,
these contain the BMS super-translations [Bondi et al., 1962] for asymptotically flat spacetimes.

8This last constraint may look puzzling. The problem is that imposing g00 strongly in the action
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The analysis of [Torre, 1986] is general and does not require the Bondi gauge: we
introduce a 2+ 2 foliation by two closed 1-forms, nα = dφ α locally, with α = 0,1,
normals to a pair of hypersurfaces. Instead of lapse and shift, we have two shift vectors
and a ‘lapse matrix’ Nαβ , with inverse Nαβ := nα

µ nβ µ , and dual basis nµ

α := gµνNαβ nβ

ν .
The only gauge-fixing is to take a null foliation defined say by the level sets of φ 0,
so that N00 = 0 = N11, and the lapse (i.e. the Lagrange multiplier of the Hamiltonian
constraint) turns out to be the off-diagonal component, N01 = −N.9 The induced
space-like metric on the 2-dimensional surface orthogonal to both normals is then
γµν = gµν −Nαβ nα

µ nβ

ν . In this formalism, we can identify covariantly the two physical
degrees of freedom with γ̌µν ; their propagating equations as the two components of the
Einstein equations obtained from the trace-less projection onto the 2d surface; and their
Hamiltonian counterpart as the multiplier equations arising from the stabilisation of the
two light-cone conditions.

If we adapt the null coordinate, φ 0 = u, we have nµ

1 = N01n0µ = Nlµ . Unlike lµ , nµ

1
has non-vanishing affinity, given by k(n1) = £n1 lnN, and its shear and expansion are N
times those of lµ . The partial Bondi gauge corresponds to putting to zero one of the
two shift vectors, and only in this gauge the coordinate vector ∂φ 1 is tangent to the null
geodesics on Σ. As discussed above, the gauge-fixing is convenient for many reasons,
principally to provide the explicit integration scheme of the Einstein’s equations, in
particular solving the constraints. Another advantage is that due to the presence of
complicated second class constraints, it is difficult to write the explicit Dirac bracket
for the physical phase space. Gauge-fixing gets rid of gauge quantities and simplifies
this problem. It becomes for instance straightforward to write the symplectic potential
purely in terms of physical data. For our purposes, we specialise here the analysis
of [Torre, 1986] to the partial Bondi gauge, adapting coordinates so that φ 0 = u and
requiring g0A = 0, but keeping r unfixed as to see explicitly the role of lapse and

√
γ .

This partial gauge-fixing eliminates various gauge fields from the phase space, and one
can isolate the induced 2d metric γAB and its conjugate momentum density, which turns
out to be

Π̂AB :=
√

γ Π
AB =

δL

δ γ̇AB
=

√
γ

2
(γABγCD−γACγBD)£n1γ

CD−√γ γAB(£n1 lnN+
1

2N
£n0N00),

(5.6)
in terms of the dual basis (n0,n1) defined above. Taking the trace-less and trace parts, it
is immediate to identify them as the shear and expansion of the null-geodesic congruence

would lead to a variational principle missing one of the Einstein’s equations. To avoid this ‘missing
equation’, the Hamiltonian in [Torre, 1986] is first constructed with arbitrary g00, and g00 = 0 is later
imposed as initial-value constraint on the phase space. The additional constraint ∂ug00 = 0 then simply
arises as a secondary constraint preserving the first one under evolution. As explained in [Alexandrov
and Speziale, 2015], an advantage of working with a first order formalism is that one does not need this
somewhat artificial construction: we can impose the gauge-fixing condition strongly in the action and
still have a complete well-defined variational principle, thanks to the appearance in the action of the
variable canonically conjugated to g00. Furthermore, the on-shell value of the Lagrange multiplier for
g00 = 0, which is fixed by hand in [Torre, 1986], comes up dynamically as a multiplier equation.

9The sign we use in this definition is opposite to the one of [Torre, 1986], to match with our earlier
choice N > 0.
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of n1,

ΠAB−
1
2

γABΠ =

√
γ

2
£n1 γ̌AB = σ(n1)AB, (5.7)

Π := γ
AB

ΠAB =−θ(n1)−2k(n1)−
1
N

£n0N00. (5.8)

The first equation above is precisely the light-cone condition (5.4) for non-linear gravity:
the two physical momenta are the null radial derivatives of the two physical modes
of the metric, namely, the shear of n1. The second equation shows that the trace of
the momentum does not carry any additional information, although this may require
a few words: first, the expansion can be determined from the dynamical fields (up to
boundary values) using the Raychaudhuri equation; the lapse can always be fixed to
1 with a radial diffeomorphism as mentioned above, thus removing the non-affinity
term;10 finally, the last term vanishes using the equations of motion.

In this partial Bondi gauge, the symplectic potential computed in [Torre, 1986]
reads11

Θ =
∫

Σ

d3x Π̂
AB

δγAB =−
∫

Σ

d3x
[
σ(n1)ABδ γ̂

AB +(θ(n1)+2k(n1))δ
√

γ

]
, (5.9)

where we used δγAB =−γACγBDδγBD and defined the densitised inverse metric γ̂AB :=√
γγAB. Notice also that the shear term can be rewritten using−σABδ γ̂AB =

√
γ σABδγAB.

The non-affinity term vanishes if we fix a constant lapse, and using the explicit metric
form of shear and expansion, the symplectic potential takes the form

Θ =−
∫

Σ

d3x
[√

γ

2
£n1 γ̌ABδ γ̂

AB +£n1 ln
√

γ δ
√

γ

]
. (5.10)

The first term has precisely the form (5.5) for the 2 physical degrees of freedom, which
is the main point we wanted to make. The second term is just a corner contribution
thanks to the Bondi gauge. In this paper we are interested in bulk degrees of freedom,
hence we neglect corner terms in the symplectic potential.

This symplectic potential for the shear, here adapted from [Torre, 1986] to the Bondi
gauge, can also be derived with covariant phase space methods (see e.g. [Ashtekar
et al., 1991]), without referring to a special coordinate system but only to the field
equations. It plays a crucial role in the study of BMS charges at null infinity (see
e.g. [Ashtekar, 2014, Wald and Zoupas, 2000, Barnich and Troessaert, 2011]), which
has recently received much attention for its possible relation to the information black
hole paradox argued for in [Hawking et al., 2016]. For a careful treatment of caustics,
corner data and residual diffeos, see [Reisenberger, 2008, Reisenberger, 2013], as well
as [Duch et al., 2017] in a related context. For a more general expression of Θ without

10Canonically, the fact that changing r can be used to fix N = 1 follows from the fact that lapse
transforms under radial diffeos like the radial component of a tangent vector. The alternative gauge-fixing,
r areal coordinate with lapse free, turns the non-affinity term into a corner contribution to the symplectic
potential, see e.g. [Reisenberger, 2013]. As mentioned above, we do not discuss corner terms in the
present paper.

11As usual, deriving the symplectic potential requires an integration by part. Although [Torre, 1986]
does not give the associated boundary term, this is known to be 2

∫
Σ
(θ + k)

√
γ , see e.g. [Parattu et al.,

2016]. Note the different factors of 2 between the boundary term and the symplectic potential.
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a full foliation and a discussion of corner terms without any coordinate gauge fixing,
and its relevance to capture the full information about the charges, see [Hopfmüller and
Freidel, 2016]. See also [Parattu et al., 2016, Lehner et al., 2016, ?, Wieland, 2017b] for
additional discussions on corner terms.

5.3 Canonical structure in real connection variables

5.3.1 Spacetime Foliation and the tetrad gauge-fixing
In this section we briefly review the canonical structure of general relativity in con-
nection variables on a null hypersurface [Alexandrov and Speziale, 2015]. In units
16πG = 1, we work with the Einstein-Cartan action

S[e,ω] =
1
2

∫
M

εIJKLeI ∧ eJ ∧
(

FKL(ω)− Λ

6
eK ∧ eL

)
, (5.11)

where eI is the tetrad 1-form, and F IJ(ω) = dω IJ +ω I
K ∧ωKJ the curvature of the

spin connection ω IJ . As in the ADM formalism, we fix a 3+1 foliation with adapted
coordinates xµ = (t,xa), and hypersurfaces Σ described by the level sets of t. We
parametrise the tetrad as follows [Barros e Sa, 2001b, Alexandrov and Vassilevich,
1998, Alexandrov, 2000],

e0 = N̂dt +χiE i
adxa, ei = NaE i

adt +E i
adxa. (5.12)

The hypersurface normal is then the soldering of the internal direction xI
+ := (1,χ i):

nΣ
µ := eI

µx+I = (−N,0,0,0), N = N̂−NaE i
aχi. (5.13)

For space-like Σ, the usual tetrad adapted to the ADM coordinates is recovered for
vanishing χ i, which makes e0 parallel to the hypersurface normal. Using a non-adapted
tetrad may appear as an unnecessary complication, but has the advantage that allows
one to control the nature of the foliation. The metric induced by (5.12) on Σ is

qab := eI
aeJ

bηIJ = Xi jE i
aE j

b, Xi j := δi j−χiχ j, detqab = E2(1−χ
2), (5.14)

where χ2 := χiχ
i. It is respectively space-like for χ2 < 1, null for χ2 = 1, and time-like

for χ2 > 1. In other words, we control with χ i the signature of the hypersurface normal,
while e0 is always time-like.

We are interested here in the case of a foliation by null hypersurfaces. Notice that
even though the induced hypersurface metric is degenerate, we can still assume an
invertible triad, with inverse denoted by Ea

i . This means that we can use the triad
determinant, E := detE i

a 6= 0, to define tensor densities. We denote such densities with
a tilde respectively above or below the tensor, e.g.

∼
Ea

i := EEa
i for density weight 1 and

∼E
i
a := E−1E i

a for density weight −1. The triad invertibility is an advantage of the tetrad
formalism for null foliations, and it allows us to write the null direction of the induced
metric on Σ as (Ea

i χ i)∂a. Further, although the induced metric qab is not invertible, we
can raise and lower its indices with the triad. We define the projector qa

b := EaiE j
bXi j,
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which projects hypersurface vectors on 2d space-like spaces orthogonal to the null
direction Ea

i χ i; and qab := Ea
i Eb

j X
i j, which satisfies qabqbc = qa

c.
On the other hand, N̂ and Na should not be immediately identified with the lapse and

shift functions, defined as the Lagrange multipliers of the diffeomorphism constraints.
The true lapse can be identified from (5.13) or by computing the tetrad determinant,
which turns out to be e = NE. As for the shift vector, there is no canonical choice
on a null foliation, corresponding to the fact that there is no canonical Hamiltonian.12

Following the canonical analysis of [Alexandrov and Speziale, 2015], to be recalled
below, we keep Na as the shift vector. In terms of the lapse N, the metric associated
with the tetrad (5.12) reads

gµν =

(
−N2 +NaNbqab−2NNaE i

aχi qbcNc−NE i
bχi

qacNc−NE i
aχi qab

)
, (5.15)

with inverse

gµν =
1
N

(
0 −Eb

i χ i

−Ea
i χ i NEa

i Eb
i +(NaEb

i +NbEa
i )χi

)
. (5.16)

The coordinate t being adapted to the null foliation, gab ≡ qab is the degenerate induced
metric on Σ. We can also write the projector on the 2d space-like spaces in a covariant
form, using the null dyad provided by the internal null vectors xI

± = (±1,χ i) soldered
by the tetrad,

xI
± := (±1,χ i), x±µ = eI

µx±I =

{
(−N,0)
(N +2NaEaχ,2Eaχ)

, x+µxµ

− = 2.

(5.17)
We then have

⊥µ
ν := δ

µ
ν −

1
2

xµ

+x−ν −
1
2

xµ

−x+ν =

(
0 0

qa
bNb qa

b

)
, (5.18)

and

γµν := gµν − x+(µx−ν) =

(
qabNaNb qbcNc

qabNb qab

)
(5.19)

is the induced metric in covariant form. For later purposes, let us identify here the
propagating Einstein’s equations, which are given by the components

(⊥GT)ab :=
(
⊥a

(ρ ⊥b
σ)− 1

2 ⊥ab⊥ρσ

)
Gρσ =Π

ab
cd

(
Gcd+NdGc0+NcG0d+NcNdG00

)
.

(5.20)
Here

Π
ab
cd := qa

(cqb
d)−

1
2

qabqcd (5.21)

is the traceless part of the projector on S for symmetric hypersurface tensors, and we
used the notation Gµ

I := Gµ

I +Λeµ

I = 0 where Gµ

I is the Einstein tensor in tetrad indices.
The explicit form of (5.20) is given in [Alexandrov and Speziale, 2015], and it will not
be needed here.

12In the sense that it is not possible to express the Hamiltonian constraint purely in terms of hypersurface
data, see for instance [Alexandrov and Speziale, 2015] and [Torre, 1986].
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An advantage of the tetrad formulation is that we can perform the canonical analysis
with the 3+ 1 null foliation [Alexandrov and Speziale, 2015], without the need of
introducing a further 2+2 foliation like in the metric case. Nonetheless, it is instructive
to review how the two formalisms compare in the absence of torsion. Our coordinates
are adapted to the 3+ 1 foliation by null hypersurfaces with normal 1-form dt, and
to match notations with the literature, we rename from now on t = u; however the 2d
space-like spaces defined by (5.18) are in general not integrable, hence they do not
foliate spacetime. Nonetheless, we can choose a 2+2 foliation and adapt our tetrad to
it. For the sake of simplicity let us choose the foliation given by the normals

n0 = du, n1 = dr, (5.22)

so that our coordinates xa = (r,xA) are already adapted, and the induced 2d metric is
γAB ≡ gAB = qAB. To adapt the null dyad x±µ to this foliation we use the translational
part of the ISO(2) group stabilising xI

+ to remove the components x−A = E i
Aχi = 0. This

gauge transformation makes the tangent vectors to {S} integrable. The same can be
done in the Newman-Penrose formalism, see Appendix A.7 for details and a general
discussion. Comparing then the metric coefficients of (5.1) and (5.16) we see that
the lapse functions used in the metric and connection formulations differ by a factor
Er

i χ i. This can be always set to one with an internal boost along xI
+, as explained in the

next Section. Hence, using this boost and the translational part of the stabiliser we can
always reach the internal ‘radial gauge’

E i
aχi = (1,0,0) ⇔ Er

i χ
i = 1, X i jEr

j = 0, (5.23)

where the equivalence follows from the invertibility of the triad. In this internal gauge
N coincides with the lapse of the metric formalism, given by −1/g01 in adapted
coordinates, E =

√
γ and

√−g = NE = N
√

γ , and the induced metrics coincide, gµν −
x+(µx−ν) = gµν −Nαβ nα

µ nβ

ν . Proofs and more details on the relation between the
χ-tetrad and the 2+2 formalism are reported in Appendix A.8.

5.3.2 Constraint structure
On a null hypersurface, each degree of freedom is characterised by a single dimension
in phase space, as recalled above. This means that the constraint structure associated
to the gravitational action should lead to a phase space of dimensions 2×∞3 on
Σ (plus eventual zero modes and corner data, not discussed here). We now review
from [Alexandrov and Speziale, 2015] how this counting comes about, as the result has
some peculiar aspects that we wish to analyse in this paper.

From (5.11), we see that the canonical momentum conjugated to ω IJ
a is

∼
Pa

IJ :=
(1/2)εabcεIJKLeK

b eL
c , namely, it is simple as a bi-vector in the internal indices. This

results in a set of (primary) simplicity constraints, which fixing an internal null direction,
can be written in linear form as Φa

I := εIJ
KL ∼Pa

KLxJ
+ = 0. Two different canonical analysis

were presented in [Alexandrov and Speziale, 2015]. The first is manifestly covariant,
with only χ2 = 1 as a gauge-fixing condition. The second gauge-fixes instead all three
components, that is χ i = χ̂ i for a fixed χ̂ i with χ̂2 = 1. Since in this paper we are
interested in the identification of constraint-free data that arises through a complete
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gauge-fixing, we recall only the details of the second analysis, and refer the reader
interested in the covariant expressions to [Alexandrov and Speziale, 2015].

Working with a gauge-fixed internal direction, we can solve explicitly the primary
simplicity constraints in terms of

∼
Pa

0i =
∼
Ea

i ,
∼
Pa

i j = 2
∼
Ea
[iχ j]. The kinetic term of the action

is then diagonalised by the same change of connection variables as in the space-like
case [Alexandrov and Vassilevich, 1998],

ω
0i
a = η

i
a−ω

i j
a χ j, ω

i j
a = ε

i jk
(

r̃kl +
1
2

εklmω̃
m
)
∼E

l
a, (5.24)

with r̃i j symmetric. After this change of variables and an integration by parts, the action
reads13

S =
∫

dt
∫

Σ

2(
∼
Ea

i ∂tη
i
a +π

i j
∂t r̃i j +χi∂tω̃

i)+λi jΦ
i j +µiϕ

i +nIJGIJ +NaDa + ∼NH ,

(5.25)
where

GIJ := Da
∼
Pa

IJ, Da := −∼Pb
IJF IJ

ab +ω
IJ
a GIJ, H :=

∼
Ea

i
∼
Eb

j F i j
ab−2ΛE2, (5.26)

are the gauge and diffeomorphism constraints, written in covariant form for practical
reasons. Notice that as in the space-like case, the generator of spatial diffeomorphism
includes internal gauge transformations (and accordingly, we have nIJ = ω IJ

0 −Naω IJ
a ).

Next, the constraint
Φ

i j = π
i j (5.27)

imposes the vanishing of the momentum conjugated to ri j, and is the left-over of the
primary simplicity constraints in this non-covariant analysis. Finally, the constraint

ϕ
i = χ

i− χ̂
i (5.28)

gauge-fixes the internal vector. In particular, the projection (χi + χ̂ i)ϕ i gives the null-
foliation condition χ2 = 1, namely g00 = 0, and its stabilisation plays an important role
in recovering all of Einstein’s equations.14

The phase space of the theory has initially 36 dimensions, with Poisson brackets

{η i
a(x),

∼
Eb

j (x
′)}= 1

2
δ

i
jδ

b
a δ

(3)(x,x′), (5.29)

{r̃i j(x),πkl(x′)}=
1
2

δ
i j
(kl)δ

(3)(x,x′), {ω̃ i(x),χ j(x′)}=
1
2

δ
i
jδ

(3)(x,x′).

The explicit form of the constraints is considerably more compact and elegant than
in the metric case [Torre, 1986], a fact familiar from the use of Ashtekar variables
in other foliations. On the other hand, many of the constraints are second class. The
reader familiar with the Hamiltonian analysis in the space-like case will recall that the

13In [Alexandrov and Speziale, 2015] we rescaled the action by a factor 1/2, to avoid a number of
factors of 2 when computing Poisson brackets. Here we restore the conventional units. Accordingly, the
parametrization of

∼
Pa

IJ in terms of
∼
Ea

i , as well as the explicit expressions for the constraints presented
below in (5.26), are twice those of [Alexandrov and Speziale, 2015].

14This plays the role of the ∂ug00 = 0 condition of [Torre, 1986], and the advantage of the first-order
formalism is that it can be imposed prior to computing the Hamiltonian.
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stabilisation of the primary simplicity constraints leads to six secondary constraints
which are second class with the primary. The secondary constraints thus obtained,
together with the six Gauss constraints, recover half of the torsion-less conditions; the
remaining half goes in Hamiltonian equations of motion. In the null case the situation
becomes more subtle: there are again six secondary constraints, given by

Ψ
i j =−ε

(ikl ∼Ea
k ∼E

j)
b ∂a

∼
Eb

l + ε
(ikl ∼Ea

k χlη
j)

a −M i j,klrkl, (5.30)

where
M i j,kl = ε

(ikm
ε

j)lnXmn. (5.31)

These have the same geometric interpretation of being six of the torsion-less conditions.
However, only four of them are now automatically preserved. This is a consequence
of the fact that (5.31) has a two-dimensional kernel: Π

i j
klM

kl,mn ≡ 0, where Π
i j
kl is the

internal version of the symmetric-traceless projector (5.21) obtained via the triad. Then,
stabilisation of the two secondary constraints

Ψ̂
i j = Π

i j
klΨ

kl, (5.32)

requires two additional, tertiary constraints

ϒ
ab :=

1
2

Π
ab
cdE(c

i ε
d)e f

(
F0i

e f −χ jF
i j
e f

)
= 0. (5.33)

As pointed out in [Alexandrov and Speziale, 2015], the two constraints (5.32) are
the light-cone conditions imposing the proportionality of physical momenta to the
hypersurface derivatives in the null direction: As we will show below, they reproduce
precisely the metric relation (5.7) between momenta and shear. What is peculiar to
the formalism, is that this condition is not automatically preserved under the evolution,
but requires the additional constraints (5.33). These additional constraints are not
torsion-less conditions; they will be discussed in details in Section 5.4.4 below.

Concerning the nature of the constraints and the dimension of the reduced phase
space, we have the following situation. The hypersurface diffeos Da are first class,
but not the Hamiltonian H , which forms a second class pair with χiϕ

i. The other
two components Xi jϕ

j gauge-fix two of the six Gauss constraints, those that would
change the internal direction. The other four Gauss constraints remain first class. This
is different from the canonical analysis on a space-like or time-like hypersurface, where
fixing the internal direction gives a 3-dimensional isometry group. Here instead we
have a 4-dimensional isometry group, given by the little group ISO(2) of the internal
direction given by χ i, plus boosts along χ i. The fact that the isometry group on a null
hypersurface is one dimension larger than for other foliations is of course a well-known
property, that led Dirac himself to suggest the use of null foliations as preferred ones.
In the context of first-order general relativity with complex self-dual variables, it has
for instance been pointed out in [Goldberg et al., 1992, d’Inverno et al., 2006].

However, there is a subtle way in which this extra isometry is realised in our context,
because the action of internal boosts along χ i mixes with that of radial diffeomorphisms.
Let us spend a few words explaining it. Notice that right from the start we fixed to
unity the 0-th component of the internal null direction xI

+. This choice, implicit in the
parametrization (5.12) of the tetrad, deprives us of the possibility of changing χ i with
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an internal boost along χ i, since in the absence of a variable x0
+ this would not preserve

the light-likeness of the internal direction. Nonetheless, the explicit calculation of the
constraint structure shows that Kχ := G0iχ

i is still a first class constraint: simply, its
action is not to change χ i, which it leaves invariant, but rather to rescale the lapse func-
tion. Using the transformation properties for Lagrange multipliers (see e.g. [Henneaux
and Teitelboim, 1992]), we find for the smeared constraint the transformation

Kχ(λ ).N = eλ N. (5.34)

In other words, the lapse function is in our formalism soldered to the extent of the
internal null direction, see (5.17), and this is the reason why it transforms under internal
radial boosts. As already discussed at the end of Sec. 5.3.1, our lapse coincides with the
lapse of the metric formalism only if we fix the radial boosts to have Er

i χ i = 1. Hence,
there is in our formalism a partial mixing of the action of internal boosts along χ i and
radial diffeomorphisms.

To complete the review of the constraints structure, it remains to discuss the simplic-
ity constraints. They are all second class, but in different ways: Ψ̂i j among themselves,
just like those encoding the light-cone conditions (5.4), the remaining four Ψi j are sec-
ond class with four of the primary Φi j, and the remaining two Φi j are second class with
the two tertiary constraints. The overall canonical structure established in [Alexandrov
and Speziale, 2015] leads to the following diagram, where the arrows indicate which
constraints are mutually second class:

primary constraints Φi j ϕ i 2↔ GIJ Da H
l4

secondary constraints Ψab

�2

tertiary constraints ϒab /

o

= ~

2

1

We have 7 first class constraints (forming a proper Lie algebra), and 20 second class con-
straints, for a
2×∞3-dimensional physical phase space, as expected for the use of a null hypersurface.
Among those, the pair Hamiltonian-null hypersurface condition.

5.4 Geometric interpretation of the constraint solution

5.4.1 Newman-Penrose tetrad
To elucidate the geometric content of the canonical structure in the first order formalism,
it is convenient to use the Newman-Penrose (NP) formalism. To that end, we want to
map our tetrad (5.12) to a doubly-null tetrad (lµ ,nµ ,mµ , m̄µ), where

lµnµ =−1 =−mµm̄µ , gµν =−2l(µnν)+2m(µm̄ν). (5.35)

We have already partially done so, when we introduced the soldered internal null vectors
xµ

± = eµ

I xI
±, xI

± = (±1,χ i), which provide the first pair. For the second pair, we have to
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choose a spatial dyad for the induced metric (5.19), that is γµν = 2m(µm̄ν); we can do
so taking mµ to be a complex linear combination of the two orthogonal tetrad directions
X i jeµ

j , normalised by mµm̄µ = 1. The set

(xµ

+,−xµ

−,m
µ , m̄µ) (5.36)

so defined is an NP tetrad. Notice that x+µ = −N∂µu, so the first vector chosen is
normal to the null hypersurface. The minus sign in front of the second vector is to
follow the conventions to have all vectors future-pointing.

Before adopting the traditional notation with lµ and nµ for the first two vectors, let
us briefly discuss the frame freedom. Using the nomenclature of [Chandrasekhar, 1985],
we have rotations of class I leaving lµ unchanged, of class II leaving nµ unchanged,
and of class III rescaling lµ and nµ and rotating mµ :

lµ 7→ A−1lµ , nµ 7→ Anµ , mµ 7→ eiθ mµ . (5.37)

Conforming with standard literature on null hypersurfaces, we want the first null co-
vector to be normal to the null hypersurface and future pointing, that is lµ ∝ −∂µu.
Concerning its ‘normalisation’, a reasonable choice is to take it proportional to the
lapse function, like in the space-like Arnowitt-Deser-Misner (ADM) canonical analysis:
lADM
µ =−N∂µu. This analogy with ADM is confirmed by Torre’s analysis, which as

we recalled above, identifies in n1µ ≡ lADM
µ the normal relevant to the Hamiltonian

structure, namely whose shear gives the conjugate momentum in the action. However,
most of the literature on null hypersurfaces uses a gradient normal, lµ = −∂µu, and
we’ll conform to that, by taking

lµ =
1
N

xµ

+, nµ =−N
2

xµ

−. (5.38)

This rescaling of xµ

± means paying off a large number of N factors in the spin coefficients,
see the explicit expressions reported in Appendix A.4. In any case, the relation between
the two choices is a class III transformation, and all NP quantities are related by simple
and already tabulated transformations that can be found in [Chandrasekhar, 1985], some
of which are reported in Appendix A.4.15

We fix from now on the following internal direction,

χ
i = (1,0,0), (5.39)

and introduce the notation v± ≡ v± := 1√
2
(v2± iv3) for the internal indices M = 2,3

orthogonal to it. This choice is done only for the convenience of writing explicitly
the tetrad components of mµ and m̄µ when needed, and we will keep referring to χ i

in the formulas as to make them immediately adaptable to other equivalent choices.
Summarising, our NP tetrad and co-tetrad, and their expressions in terms of the metric

15The rescaling also means that while all Lorentz transformations of (5.36) are generated canonically
via GIJ , this is not the case for (l,n) defined via (5.38): we disconnect the canonical action of the radial
boost Kχ , which leaves them invariant instead of generating the class III rescaling. We see then again
that lADM

µ = x+µ is a more canonical choice of null tetrad adapted to the foliation.
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coefficients (5.12), are

lµ =
1
N
(eµ

0 + eµ

1 ) = (0,
1
N

Ea
i χ

i), (5.40a)

nµ =
N
2
(eµ

0 − eµ

1 ) = (1,−Na− 1
2NEa

i χ
i), (5.40b)

mµ =
1√
2
(eµ

2 − ieµ

3 ) = (0,Ea
−), (5.40c)

and

lµ =
1
N
(−e0

µ + e1
µ) = (−1,0), (5.41a)

nµ =−N
2
(e0

µ + e1
µ) =−

(N
2
(N +2NaE i

aχi),NE i
aχi

)
, (5.41b)

mµ =
1√
2
(e2

µ − ie3
µ) = (NaE−a ,E−a ). (5.41c)

The NP tetrad thus constructed is adapted to a null foliation like the one used in most
literature [Newman and Unti, 1962, Newman and Tod, 1981, Adamo et al., 2009]. A
detailed comparison and discussion of the special cases corresponding to a tetrad further
adapted to a 2+2 foliation or to the Bondi gauge can be found in Appendix A.7 and
A.8.

Associated with the NP tetrad are the spin coefficients, namely 12 complex scalars
projections of the connection ω IJ

µ , e.g. (minus) the complex shear σ :=−mµmν∇ν lµ .16

If the connection is Levi-Civita, these are functions of the metric. In the first order
formalism on the other hand, the connection is an independent variable, and the NP
spin coefficients will be functions of the metric and of the connection components.
To distinguish the two situations, we will keep the original NP notation, e.g. σ , for
the Levi-Civita coefficients, and add an apex ◦ for the spin coefficients with an affine
off-shell connection, e.g.

◦
σ . On-shell of the torsion-less condition, ω IJ = ω IJ(e) and

◦
σ = σ . Explicit expressions for all the spin coefficients are in Appendix A.4, and we
will report in the main text only those relevant for the discussion.

5.4.2 The affine null congruence
Since the normal vector lµ is null, it would be automatically geodesic with respect to
the spacetime Levi-Civita connection. Furthermore it would have vanishing non-affinity
since it is the unit normal to a null foliation. With an off-shell, affine connection ω IJ

a on
the other hand, these familiar properties do not hold. Using Newman-Penrose notation
with an apex ◦ for the spin coefficients of the affine off-shell connection, what we have
is

lν
∇ν lµ =

◦
ε lµ − ◦κ m̄µ + cc, (5.42)

with ‘non-affinity’ and ‘non-geodesicity’ that are given respectively by

k(l) :=
◦
ε + cc =− 1

N
Ea

i χ
i(η i

aχi−∂a lnN),
◦
κ =− 1

N2 Ea
i χ

i
η
−
a . (5.43)

16The reader familiar with the NP formalism will notice an opposite sign in this definition. This is a
consequence of the fact that we work with mostly plus signature.
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For the same reason, the congruence ∇µ lν is not twist-free, even though lµ is the
gradient of a scalar, nor defined intrinsically on S: it also carries components away
from it. Nonetheless, we can still take its projection ⊥ρ

µ ⊥σ
ν∇ρ lσ , and decompose

it into irreducible components: we will refer to the traceless-symmetric
◦
σ µν , trace

◦
θ and antisymmetric parts

◦
ωµν as ‘connection shear’, ‘connection expansion’, and

‘connection twist’. The components away from the hypersurface Σ, which are all
proportional to the shift vector Na, are not directly relevant for us and we leave them to
Appendix A.5. Using the definition ∇µeI

ν =−ω IJ
µ eνJ and the decomposition (5.24), we

have for the hypersurface components

∇alb =
1
N

Xi jη
i
aE j

b, (5.44)

and

◦
σ (l)ab :=

1
N

qa
cqb

dXi jη
i
(cE j

d)−
1
2

qab
◦
θ (l),

◦
θ (l) :=

1
N

Xi jη
i
aEa

j ,
◦
ω(l)ab :=

1
N

qa
cqb

dXi jη
i
[cE j

d].

(5.45)
In NP notation, shear, twist and expansion are described by the following two complex
scalars,

◦
σ :=−mµmν

∇ν lµ =−mµmν
◦
σ (l)µν =− 1

N
Ea
−η
−
a , (5.46)

◦
ρ :=−mµm̄ν

∇ν lµ =−1
2

◦
θ (l)−mµm̄ν

◦
ω(l)µν =− 1

N
Ea
+η
−
a , (5.47)

where the real and imaginary parts of
◦
ρ carry respectively the connection expansion and

twist. It is also convenient to introduce the complex shear
◦
σ (l) := mµmν

◦
σ (l)µν =− ◦σ .

This comes up awkwardly opposite in sign to the NP spin coefficient, but the minus
sign is an unavoidable consequence of the fact that we work with mostly plus signature,
the opposite to NP.

The connection shear so computed allows us to identify Sachs’ constraint-free initial
data for first-order general relativity in terms of real connection variables: in the absence
of torsion,

◦
σ = σ and we can follow the same hierarchical integration scheme. From

the connection perspective, the relevant piece of information is thus Ea
−η−a ; namely the

contraction with the triad of η−a , which is the translation part of the ISO(2) stabilising
the null direction xI

+. Notice that both connection term and triad term have the same
internal helicity: loosely speaking, it is this coherence that allows to reproduce the
spin-2 behaviour in metric language.

Notice that at the level of Poisson brackets, the shear components commute: trivially
in { ◦σ (l),

◦
σ (l)}= 0, but also when the conjugate appears, since17

{ ◦
σ (l),

◦̄
σ (l)
}
=

2i
NE

Im(
◦
ρ), (5.48)

which vanishes on-shell of the Gauss law, as we show in the next Section. This is to
be expected, since it is only at the level of the Dirac bracket that the shear components

17Using the brackets (5.29), and notice that {η i
a,
∼
Eb

j /(NE)}= 1/(2NE)(δ b
a δ

j
i −Ea

i E j
b/2).
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do not commute with themselves, that is when the light-cone constraints are used. We
will show below in Section 5.5.1 that the Dirac bracket reproduces exactly the metric
structure of (5.10).

In terms of the covariant connection, the shear, twist and expansion are described as
follows,

◦
σ (l) = eν

I eρ

J mµmν lρ ω
IJ
µ ,

◦
ρ = eν

I eρ

J m̄µmν lρ ω
JI
µ . (5.49)

Using these covariant expressions, it is easy to see how the congruence is affected by
the presence of torsion, writing ω IJ

µ = ω IJ
µ (e)+CIJ

µ where CIJ
µ is the contorsion tensor.

For instance, consider the case of fermions with a non-minimal coupling [Alexandrov,
2008]

Sψ =− i
4

∫
eψ̄eµ

I γ
I(a− ibγ

5)Dµ(ω)ψ + cc, a,b ∈ C, Re(a)≡ 1. (5.50)

(The minimal coupling would be a = 1, b = 0). Solving Cartan’s equation, one gets
(restoring for a moment Newton’s constant G)

CIJ
µ = 2πeK

µ G
[

1
2

ε
IJ

KL

(
AL− Im(b)V L

)
−δ

[I
K

(
Re(b)AJ]+ Im(a)V J]

)]
, (5.51)

where V I = ψ̄γ Iψ and AI = ψ̄γ Iγ5ψ are the vectorial and axial currents. Plugging this
decomposition into (5.49) we find

◦
σ = σ ,

◦
ρ = ρ−πG

[
inµ

(
Aµ − Im(b)V µ

)
− lµ

(
Re(b)Aµ + Im(a)V µ

)]
. (5.52)

The connection shear recovers its usual metric expression, whereas twist is introduced
proportional to the axial current; for non-minimal coupling, the twist depends also on
the vectorial current, and furthermore the expansion is modified, picking up an extra
term proportional to the time-like component of the vectorial and axial currents. More
in general, for an arbitrary contorsion decomposed into its three irreducible components
(3/2,1/2)⊕ (1/2,3/2)⊕ (1/2,1/2)⊕ (1/2,1/2),

Cµ,νρ = C̄µ,νρ +
2
3

gµ[ρČν ]+
1
e

ε
µνρσĈσ , (5.53)

we have

◦
σ = σ −mµmν lρC̄µ,νρ ,

◦
ρ = ρ− m̄µmν lρC̄µ,νρ +

1
3

lµČµ − inµĈµ , (5.54)

as well as

◦
κ = κ− lµmν lρC̄µ,νρ ,

◦
k(l) = k(l)− lµnν lρC̄µ,νρ − 1

3
lµČµ (5.55)

for the non-geodesicity and inaffinity.
It is now instructive to see how the various quantities introduced above, and as-

sociated with an affine geodesic, are put on-shell by the constraints present in the
Hamiltonian formulation of the theory, and thus (in the absence of torsion) take their
values as in the more familiar metric formalism. As we show in details in the next
subsection, the congruence is made geodesic by the Gauss law, which also puts on-shell
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the connection twist and expansion; the non-affinity vanishes as a consequence of the
equation of motion stabilising χ2 = 1, namely the condition of null foliation; and finally,
the connection shear is put on-shell by the two secondary simplicity constraints (5.32).18

5.4.3 Torsionless nature of the affine null congruence
In this subsection we use the affine congruence defined above to study the geometric
meaning of the various constraints present in the theory, in particular those responsible
for the metricity of the congruence. Let us begin with the Gauss constraint G in (5.26).
First, we decompose it into rotations Li := 1

2εi jkG
jk and boosts Ki := G0i. Then, we

consider the projections along χ i, and perpendicular to it, defined by vi
⊥ := ε i jkχ jvk

(notice that vi
⊥ =−iv−). These various components have the following explicit forms

(see Appendix A.6),

Lχ :=
1
2

εi jkχ
iG jk ϕ≈ εi jkχ

i ∼Ea j
η

k
a , (5.56a)

Li
⊥ := G i j

χ j
ϕ≈ ∂a

∼
Eai +

∼
Eai

ηaχ−η
i
a
∼
Ea

j χ
j− ω̃

i +χ
i(ω̃ jχ

j−∂a
∼
Ea

j χ
j), (5.56b)

Kχ := χ
iG0i

ϕ≈ ∂a
∼
Ea

i χ
i−Xi j

∼
Eai

η
j

a , (5.56c)

Ki
⊥ := ε

i jk
χ jG0k

ϕ≈ ε
i jk

χ j(∂a
∼
Ea

k +
∼
Ea

k η
i
aχi− ω̃k), (5.56d)

where
ϕ≈ means on-shell of the ϕ constraint only, namely assuming χ i constant.

The two second class constraints are the linear combinations T̂ i
⊥ := Li

⊥− ε i
jkχ jKk

⊥,
whose action would change the internal direction χ i. On the other hand, T i

⊥ :=
Li
⊥+ ε i

jkχ jKk
⊥ and Lχ belong to the ISO(2) subgroup stabilising xI

+ and are first
class, together with Kχ .19 Using the explicit expressions for the spin coefficients (see
Appendix A.4), we immediately identify the xI

+-stabilisers with

Lχ = 2ENIm(
◦
ρ), L−⊥+ ε

− jk
χ jKk

⊥ = EN2 ◦
κ . (5.57)

These first class constraints are thus responsible for the congruence being geodesic and
twist-free. For the remaining first class constraint, we have

Kχ = E(Ea
i χ

i
∂a ln |E|−N

◦
θ (l)+∂aEa

i χ
i). (5.58)

Recalling that
√−g = NE and the explicit form of lµ from (5.41), we see that this

constraint puts the expansion on-shell:
◦
θ (l) ≈ θ(l) = lµ

∂µ ln
√−g+∂µ lµ . (5.59)

18Notice that here we are defining the congruence in the presence of torsion using a displacement vector
ηµ such that Bµν ην := lν ∇ν ηµ = ην ∇ν lµ . This is suggested as to keep the geometric interpretation

of the spin coefficients
◦
σ and

◦
ρ , however it means that the displacement vector is not Lie dragged:

£lη
µ = lν ∇ν ηµ −ην ∇ν lµ + 2Cµ

σν ησ lν = 2Cµ
σν ησ lν . In spite of the fact that in the presence of

torsion differential parallelograms do not close, it is natural to still require the Lie dragging of ηµ

(see e.g. [Luz and Vitagliano, 2017]). With this definition of the congruence, shear and expansion are
never modified by torsion, but only the twist. The NP spin coefficients

◦
σ and

◦
ρ lose their geometric

interpretation.
19Covariantly, the stabilisers can be written as T I := 1/2ε IJKLx+JJKL and T̂ I := −1/2ε IJKLx−JJKL.

With χ i = (1,0,0) and M = 2,3, we have vM
⊥ = (−v3,v2); the second class constraints read T̂ M =

(L2 +K3,L3−K2), whereas the first class ones are T M = (L2−K3,L3 +K2).
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Let us remark the central role played by the radial boost: as a constraint, it is responsible
for the metricity of the expansion; as a symmetry generator, it rescales lapse as discussed
in (5.34).20 Finally, the second class constraints fix the two components of ω̃ i orthogonal
to χ i, and have no direct implication for the affine congruence.

Let us now come to the non-affinity: even on-shell of the Gauss law, the now-
geodesic congruence still carries non-affinity k(l), in spite of lµ being the gradient of a
scalar. This is because the Gauss law only captures half of the torsion-less conditions.
Where is then the equation setting k(l) = 0? It must come from the Hamiltonian equation
of motion that gives the stability of ϕ iχi, namely the equation capturing the fact that the
level sets of u provide a null foliation. Indeed, this stability condition was identified
in [Alexandrov and Speziale, 2015] as the multiplier equation expressing lapse in terms
of canonical variables,21 which reads

Ea
i χ

i(∂a lnN−η
i
aχi) = 0. (5.60)

Comparing this expression with the first of (5.43), we see that it implies the vanishing
of the non-affinity.

It remains to put on shell the connection shear. To that end, we look at the light-cone
conditions (5.32). With our gauge-fixing χ i = (1,0,0) the two components of Ψ̂i j are
Ψ̂23 are Ψ̂22− Ψ̂33. We combine them into a single complex equation, which gives

− 1
2

(
Ψ

23 +
i
2
(Ψ22−Ψ

33)
)
= Ñ

◦
σ (l)−Ea

−E−b ∂a
∼
Eb

1 +Ea
1 E−b ∂a

∼
Eb
− = 0, (5.61)

from which it follows that

◦
σ (l) =

1
N

E−b (Ea
−∂aEb

1 −Ea
1 ∂aEb

−) = lµmν(∂µmν −∂νmµ) =
1
2

mµmµ£lγµν ≡ σ(l),

(5.62)
where in the second equality we used the explicit expressions (5.41) for the NP tetrad.
Hence, the two secondary simplicity constraints corresponding to the light-cone con-
ditions make the connection shear metric. Comparing this result with the analysis in
metric variables of [Torre, 1986], we expect the connection shear to be the conjugate
momentum to the conformal metric. This expectation is indeed borne out, as we will
show below in Section 5.5.1.

Summarising, the congruence generated by lµ is made geodesic by three first-
class Gauss constraints. The fourth first-class one gives the relation between the
connection expansion and the metric expansion. All these conditions are automatically
preserved under evolution in u, since there are no secondary constraints arising from
the stabilisation of the Gauss law. As for the connection shear, its relation to the metric
shear is realised by the light-cone secondary simplicity constraints, and they are not
automatically preserved. Tertiary constraints are required, to whose analysis we turn
next.

20As well as transforming the connection component determining lapse, {Kχ(λ ),(ηaχ)(Eaχ)} =
∂rλ . At the level of covariant field equations, the radial boost constraint corresponds to the equation
εabcεi jke j

cχkDaei
b = 0.

21Recall that on a null hypersurface, the Hamiltonian constraint is second class, therefore its Lagrange
multiplier satisfies an equation of motion, which fixes it up to zero modes. Concerning the zero
modes, these are the left-over diffeomorphisms that on I become the supertranslations of the BMS
transformations.
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5.4.4 Tertiary constraints as the propagating equations
Let us now discuss the tertiary constraints (5.33), whose presence is something quite
unfamiliar within general relativity, and which is due to the combined use of a first-order
formalism and a null foliation: each feature taken individually introduces a secondary
layer of constraints in the Hamiltonian structure. Perhaps even more surprising is which
of the field equations are described by these constraints: the propagating Einstein’s
equations, namely the dynamical equations describing the evolution (in retarded time u)
of the shear away from the null hypersurface. In fact, it was shown in [Alexandrov and
Speziale, 2015] that

ϒ
ab =− 1

2N
Π

ab
cd

[
4gεe f h g0egc f (⊥GT)dh +Ec

i (Bdi +NdB0i)
]
, (5.63)

where in the first term we recognise the propagating Einstein’s equations, and

BµI := ε
µνρσ eνJF IJ

ρσ (ω)≡ 0 (5.64)

denotes the algebraic Bianchi identities. This means that in the first-order formalism,
the only time derivative present in the propagating equations (5.20) can be completely
encoded in algebraic Bianchi equations.

The equivalence (5.63) may appear geometrically obscure, and it is furthermore
not completely trivial to derive as a tensorial equation. On the other hand, it becomes
transparent using the Newman-Penrose formalism, as we now show. To that end,
let us first identify the propagating equations in the Newman-Penrose formalism. A
straightforward calculation of the propagating equations gives

mµmν ⊥ρσ

µν Gρσ (ω,e)=mµmνGµν(ω,e)=mµmνRµν(ω,e)=−Rlmnm(ω,e)−Rnmlm(ω,e)≈ 2Rlmmn(e),

where in the last equality ≈ means on-shell of the torsion-less condition.22 Next, let us
look at the tertiary constraints in its form (5.33), and project it in the same way on S:

mambϒ
ab =

1
2

mambE(a
i ε

b)e f
(

F0i
e f −χ jF

i j
e f

)
. (5.65)

First, we have that

F0i
e f (ω,e)−χ jF

i j
e f (ω,e) =− 2

N
nµeiνRµνe f (ω,e). (5.66)

Then, to obtain the hypersurface Levi-Civita symbol, we observe that nµ is the only
vector with a u-component, therefore we can write23

ε
de f =−e6l[dmem̄ f ]. (5.67)

Finally, using the fact that maEa
i eiν = mν , we have

1
E

mambϒ
ab =−1

e
nµmνmdε

de f Rµνe f (e,ω)= 2nµmν lρmσ Rµνρσ (e,ω)= 2Rnmlm(e,ω),

(5.68)
22These equations are not be confused with Sachs’ optical equations Rlmlm and Rlmlm̄, which relate

Weyl and Ricci to the variation of shear and twist along the null hypersurface, not away from it.
23With conventions ε0123 = 1, e =−1/4!εIJKLεµνρσ eI

µ eJ
ν eK

ρ eL
σ .
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which coincides with (minus) the propagating equations on-shell of the torsion-less
condition,

mambϒ
ab ≈−EmµmνGµν(e). (5.69)

It is also instructive to see the explicit role played by the algebraic Bianchi identity.
For vanishing torsion and NP gauge,24 the propagating equation reads

∆σ −δτ + λ̄ρ +(µ + γ̄−3γ)σ +2βτ +Φ02 = 0, (5.70)

where we can further set Φ02 = 0 since we are interested in the vacuum equations. Here
∆ := nµ∇µ and δ := mµ∇µ is conventional NP notation, see Appendix A.4. For an
expression of this equation in metric language, see e.g. [Mädler and Winicour, 2016].
The point is that if the connection is initially independent from the metric, this is a PDE
with a single time derivative in the term ∆σ ; but this term can be eliminated using an
algebraic Bianchi identity, or ‘eliminant relation’ in the terminology of [Chandrasekhar,
1985]. Using equation (g) on page 48 of [Chandrasekhar, 1985], which in NP gauge
reads

Dλ +∆σ̄ − δ̄ (α + β̄ ) = σ̄(3γ̄− γ +µ− µ̄)−2β̄ (α + β̄ ), (5.71)

we can replace ∆σ with δ (ᾱ +β )−Dλ̄ plus squares of spin coefficients. In metric
variables, this would indeed be a trivial manipulation, since the time derivative is now
simply shifted from ∆σ = −mµmν∂u∂rγµν + . . . to Dλ̄ = −mµmν∂r∂uγµν + . . .. But
used in the first order formalism with an independent connection (where now (5.71)
holds with all

◦
σ quantities and it is derived from (5.64)), relates non-trivially the

propagating equations to the tertiary constraint.
Finally, concerning the geometric interpretation of this constraint, recall from

Section 5.3.2 that it is there to stabilise the light-cone conditions: hence, Einstein’s
propagating equations can be seen as the condition that a metric-compatible connection
shear on the initial null slice, remains metric at later retarded times.25

5.5 Implementation of the Bondi gauge

The discussion in the last two Sections has been completely general: apart from the
condition of having a null foliation, we have not specified further the coordinate system.
We now specialise to Bondi coordinates, presenting the simplified formulas that one
obtains in this case. We will then use this gauge to prove the equivalence of the
symplectic potentials of the first-order and metric formalisms, which in particular
identifies the connection shear with the momentum conjugated to the conformal 2d
metric; and to discuss a property of radiative data at I +.

To that end, we completely fix the internal gauge, adapting the doubly-null tetrad to
a 2+2 foliation. For the interested reader, the Bondi gauge for our tetrad without the
complete internal gauge-fixing is described in Appendix A.8.1. We take χ i = (1,0,0)

24Namely ρ = ρ̄ , κ = ε = π = 0, τ = ᾱ +β . See Appendix A.7.2 for details.
25This can be compared with the metric formalism of [Torre, 1986], where the propagating Einstein’s

equations also arise from the stabilisation of the light-cone shear-metric conditions, but as multiplier
equations, not as constraints.
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as in (5.39), and use the first-class generators Kχ and TM to fix Er
i = (1,0,0). This

internal ‘radial gauge’ adapts the tetrad to the 2+1 foliation of constant-r slices:

χ
i = (1,0,0), Er

i = (1,0,0) ⇒ E1
a = (1,0,0), E =

√
γ, mµ = (0,0,EA

−).
(5.72)

The determinant of the triad now coincides with that of the induced metric γAB (hence
triad and metric densities now conveniently coincide). This fixes five of the internal
transformations, leaving us with the SO(2) freedom of rotations in the 2d plane of
mappings mµ 7→ eiδ mµ . We will not use this freedom in the following, and if desired
can be fixed for instance requiring the triad to be lower-triangular. Now we impose
the coordinate gauge-fixing. On top of the null foliation condition g00 = 0, the Bondi
gauge conditions are g0A = 0, plus a condition on r, typically either the areal choice√

γ = r2 f (θ ,φ), or the affine choice g01 =−1. We take here the affine Bondi gauge,
and report the details on Sachs areal gauge in Appendix A.8.2. From the parametrisation
(5.16), we can read these conditions in terms of our tetrad variables:

g0a =− 1
N

Ea
i χ

i = (−1,0,0). (5.73)

Using the internal gauge-fixing (5.72), Er
i χ i = Er

1 = 1, hence (5.73) implies EA
1 = 0

and N = 1, as in the metric formalism. The metric (5.15) and its inverse reduce to the
following form,

gµν =

2U + γABNANB −1 γABNB

0 0
γAB

 , gµν =

0 −1 0
−2U NA

γAB

 , (5.74)

where we redefined 2U :=−1−2Nr for convenience. The triad and its inverse are

E i
a =

(
1 0

−EM
A EA

1 EM
A

)
, Ea

i =

(
1 0

EA
1 EA

M

)
, (5.75)

where as before we use M = 2,3 for the internal hypersurface coordinates orthogonal to
χ i, and EA

M is the inverse of the dyad EM
A .

The structure of the null congruence of lµ reduces to:

k(l) =−η
1
r ,

◦
κ = η

−
r , (5.76)

◦
σ (l)AB = η

M
(AEB)M,

◦
θ (l) = η

M
A EA

M,
◦
ω(l)AB = η

M
[A EB]M. (5.77)

The lapse equation (5.60) simplifies to

η
1
r = 0, (5.78)

so this connection component is set to zero by working with a constant lapse. The
vanishing of the twist imposed by Lχ (in absence of torsion) now reads

η[AB] := η
M
[A
∼
EM

B] = 0. (5.79)
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This equation is the null-hypersurface analogue of the familiar symmetry of the extrinsic
curvature in the spatial hypersurface case, there analogously imposed by part of the
Gauss constraint: K[ab] := Ki

[aE i
b] = 0. The radial boost Kχ simplifies to

Kχ =
√

γ

( ◦
θ (l)−∂r ln

√
γ

)
, (5.80)

and its solutions give the affine Bondi-gauge formula for the expansion,
◦
θ (l) = θ(l) :=

∂r ln
√

γ . The solution of the light-cone secondary simplicity constraints (5.61) now
gives

◦
σ (l) = E−A ∂rEA

−, (5.81)

namely the expression for the shear in affine Bondi gauge, written here in terms of the
dyad EA

M.

5.5.1 Equivalence of symplectic potentials
We now show the equivalence between the symplectic potential in connection variables
(which we can read from the pδq part of (5.25)) and the one in metric variables
(5.9), thereby identifying the canonical momentum to the conformal 2d metric in the
connection language. It will turn out to be the connection shear of the canonical normal
n1

µ = Nlµ , as to be expected from the on-shell equivalence of the first and second
order pure gravity action principles. As in the usual space-like canonical analysis,
the equivalence of symplectic potentials will require the Gauss law. We begin by
eliminating χ i and π i j from the phase space, completely fixing the internal gauge and
using the primary simplicity constraints, and consider then only the first term of (5.25)
for the symplectic potential. Since our main focus are the bulk physical data, we will
neglect boundary contributions to the symplectic potential, and show the equivalence in
the partial Bondi gauge g0A = 0. The reason not to fix completely the Bondi gauge is
to keep both lapse and an arbitrary

√
γ , to show a more general equivalence holding

regardless of the choice of coordinate r. Hence, we want to show that

Θ =
∫

Σ

2
∼
Ea

i δη
i
a
(g0A=0)
≈

∫
Σ

√
γ Π

AB
δγAB, (5.82)

with ΠAB given by (5.6).
The partial Bondi gauge is EA

i χ i = EA
1 = 0, which implies ηM

r = 0 on shell of the
Gauss law, see (5.76). This eliminates two monomials from the integrand, and we are
left with the following two terms:

Θ =
∫

Σ

2
∼
Ea

i δη
i
a ≈

∫
Σ

2(
∼
EA

Mδη
M
A +
√

γδη
1
r ). (5.83)

Accordingly, here and in the following we will restrict attention to variations preserving
the gauge and the Gauss constraint surface. Let us look at the right-hand side of (5.82).
We expect from the metric formalism that the conjugate momentum is build from the
congruence of nµ

1 = Nlµ . Its shear and expansion are just N times those of lµ , which
we can read from (5.45); its non-affinity is k(n1) = ∂r lnN = η1

r using the lapse equation
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(5.60) in partial Bondi gauge. Accordingly, we consider the following ansatz for the
momentum,

ΠAB := η
M
A EBM− γAB(EA

Mη
M
A +η

1
r ), (5.84)

whose decomposition gives

ΠAB−
1
2

γABΠ = η
M
(AEB)M−

1
2

γAB
◦
θ (n1) ≡

◦
σ (n1)AB, Π =−

◦
θ (n1)−2η

1
r , (5.85)

where we used ηM
r = 0 = ηM

[A EB]M from the Gauss law. This momentum reduces to the
one in the metric formalism (5.6) by construction, and we now show it satisfies (5.82).
To that end, we first observe that E =

√
γ is now a 2×2 determinant. This means that

detEM
A = det

∼
EA

M, and the inverse induced metric has the following expression in terms
of canonical variables,

γ
AB =

∼
EA

M
∼
EBM

(det
∼
EA

M)2 . (5.86)

A simple calculation then gives

Π
AB

δγAB =−ΠABδγ
AB =−2

[
Π(AB)E

BM−ΠEM
A
]

δ
∼
EA

M

=−2
[
η

M
(AEB)MEBN

δ
∼
EA

N +η
1
r EM

A δ
∼
EA

M

]
. (5.87)

where we used δ det
∼
E = EM

A δ
∼
EA

M. Next, we use again ηM
[A
∼
EB]M = 0 from the Gauss law,

so the first symmetrised term above gives twice the same contribution. Using the fact
that δ

√
γ = NEM

A δ
∼
EA

M, we finally get

Π
AB

δγAB ≈−2
[
η

M
A δ

∼
EA

M +η
1
r δ
√

γ

]
, (5.88)

and (5.82) follows up to boundary terms. We have thus verified that in the first order
formalism the (traceless part of the) conjugate momentum to the induced metric is the
connection shear of n1 = Nlµ .

We also remark the presence of a term proportional to the 2d area. As in the metric
formalism, this is a measure-zero degree of freedom, that can be pushed to a corner
contribution and describes one of Sachs’ corner data. A similar corner term appears in
the spinorial construction of [Wieland, 2017a], where it is shown to admit a quantisation
compatible with that of the loop quantum gravity area operator. See also [Freidel and
Perez, 2015] for related results on 2d discreteness.

This result provides an answer to one of the open questions of [Alexandrov and
Speziale, 2015], namely that of identifying the Dirac brackets for the reduced phase
space variables. We did so looking at the symplectic potential as in covariant phase
space methods, and completely fixing the gauge: this introduced additional second
class constraints that could be easily solved, e.g (5.78). Whether it is possible to
write covariant Dirac brackets without a complete gauge-fixing remains an open and
difficult question, because of the non-trivial field equations satisfied by the second class
Lagrange multipliers.

It is interesting to compare the situation with the space-like case, where the dynami-
cal part of the connection is also contained in components of η i

a, except now χ i belongs
to a time-like 4-vector (and we can always set χ i = 0, a choice often referred to as ‘time
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gauge’, since e0 ∝ dt). These dynamical components describe boosts and therefore do
not form a group. An SU(2) group structure can be obtained via a canonical transfor-
mation, to either complex self-dual variables, as in the original formulation [Ashtekar,
1986], or to the auxiliary Ashtekar-Barbero real SU(2) connection (see e.g. [Thiemann,
2001]): the transformation requires adding the Immirzi term to the action, and the price
to pay is either additional reality conditions, or use of an auxiliary object instead of a
proper spacetime connection. Using a null foliation appears to improve the situation:
the three internal components of η i

a can be naively26 associated with the radial boost Kχ

and the two ‘translations’ T i
⊥, or null rotations, related to the ISO(2) group stabilising

the null direction of the hypersurface. But as we have seen above only the translation
components ηM

a enter the bulk physical degrees of freedom, which are described by
the connection shear. The component η i

aχi is on a different footing: it enters the spin
coefficients α,β ,γ and ε (see Appendix A.4), and is treated in a way similar to the
expansion θ , in that it is fully determined from initial data on a corner. We plan to
develop these ideas in future research, in particular investigating the relation with a loop
quantum gravity quantization based on the translation components of the connection,
representing bulk physical degrees of freedom.

To complete the comparison between null and space-like foliations, in the latter
case the canonical momentum conjugated to the induced metric is build from the triad
projection Ki

a of the extrinsic curvature (see e.g. [Thiemann, 2001] for details). For
a null foliation, the canonical momentum conjugated to the induced metric is related
to the shear of the null congruence. The comparison is summarised by the following
table:27

foliation space-like null
relevant internal group SU(2) ISO(2)
momentum conjugated to metric Πab = Ki

aEbi−qabKi
cEc

i Πab = Xi j(η
i
aE j

b−qabη i
cEc j)

To help the comparison in the table above, we have used the fact that in our formalism
we can define the raised-indices hypersurface metric qab, and use it to prescribe an
extension Πab of (5.84) on the whole hypersurface.28

5.5.2 Radiative data at future null infinity
As a final consideration, we would like to come back to the geometric interpretation
of the tertiary constraints, and point out that the very same algebraic Bianchi identity
that links them to the propagating equations, also plays an interesting role in the
interpretation of the radiative data at I +.

To that end, we consider in this subsection the case of an asymptotically flat space-
time, and the u =constant null foliation attached to future null infinity I +. In this

26To make the argument precise, we should embed the dynamical components into a covariant
connection whose non-dynamical parts are put to zero by linear combinations of constraints, see e.g.
[Alexandrov and Livine, 2003] for an analogue treatment in the space-like case.

27For the reader interested in the time-like case, see [Alexandrov and Kadar, 2005].
28The equivalence (5.82) can then be written with Πabδqab on the right-hand side, and trivially holds

because the extra pieces now present are put to zero by the constraints and/or gauge conditions.
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setting, we can compare our metric (5.74) and doubly-null tetrad to those of Newman-
Unti [Newman and Unti, 1962, Newman and Tod, 1981, Adamo et al., 2009] mostly
used in the literature, and use the asymptotic fall-off conditions for the spin coefficients
there computed.29 We refer the interested reader to Appendix A.8.1 for the details, and
report here only the most relevant results. In particular,

σ =
σ0

r2 +O(r−4), (5.89)

and the asymptotic shear−σ0(u,θ ,φ) fully characterises the radiative data at I + [Pen-
rose, 1963, Newman and Penrose, 1962, Ashtekar, 1981]. Ashtekar’s result [Ashtekar,
1981] (see also [Ashtekar, 2014] for a recent review) is that the data can be described
in terms of a connection Dµ defined intrinsically on I +, related to the shear by
σ0

µν = Dµ lν − 1
2γµνγρσ Dρ lσ . This description has led to a deeper understanding of

the physics of future null infinity, showing among other things that the phase space at
I + is an affine space (there is no super-translational invariant classical vacuum). The
connection description at I + inspired and is exactly analogous to the local spacetime
connection description studied in this paper.

From the perspective of the 2+ 2 characteristic initial-value formulation (with
backward evolution – or we should rather say final-value formulation), this means
that one can think of I + as one of the two null hypersurfaces, but the relevant datum
there is not the shear along it (which vanishes!), but the transverse asymptotic shear
−σ0(u,θ ,φ) at varying u, see Fig. 5.2. However, we now show that thanks to the
Bianchi identity (5.71), this datum can also be identified as shear of a vector field in the
physical spacetime.

I
+

I
+

@u@r

@u - @r

Figure 5.2. Characteristic initial-value problem at I +. One prescribes data on a
chosen u0 hypersurface of the foliation attached to future null infinity, plus the asymptotic
transverse shear −s0(u,θ ,φ). Thanks to the algebraic Bianchi identity (5.71), this can also
be understood as prescribing a certain shear for the non-geodetic asymptotic null vector
∂u−∂r in the physical spacetime.

To that end, consider the second null vector of the tetrad, nµ . It is null everywhere
but non-geodesic, with

nν
∇νnµ =−γ nµ +ν mµ + cc. (5.90)

In the asymptotic expansion,
nµ

∂µ

r 7→∞−→ ∂u−∂r (5.91)

29In using these results, care should be taken in that the authors use a slightly different definition of
coordinates: u is now 1/

√
2 the retarded time, and r is

√
2 the radius of the asymptotically flat 2-sphere.
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is leading-order twist-free and affine, but still non-geodesic:

ω(n) := Im(µ) = m̄µmν
∇νnµ = O(r−2), γ = O(r−2), ν =

ψ0
3

r
+O(r−2).

(5.92)
The non-geodesicity at leading order depends on one of the asymptotic complex pro-
jections of the Weyl tensor, in turn given by the radiative data ψ0

3 = δ ˙̄σ0.30 Since nµ

is not geodesic, it is also not hypersurface orthogonal, in spite of being twist-free at
lowest order: the radiative term δ ˙̄σ0 prevents the identification of a null hypersurface
normal to (5.91) (except in the very special case of completely isotropic radiation at
all times). Consequently, there is no unique definition of shear for the congruence it
generates. Using the NP formalism, it is natural to consider the shear along the 2d
space-like hypersurface spanned by mµ , and define

σ(n) :=−λ =−m̄µm̄ν
∇νnµ =

λ 0

r
+O(r−2). (5.93)

At the same lowest order O(r−1), the algebraic Bianchi identity (5.71) can be solved
to give

λ
0 = ˙̄σ0, (5.94)

which relates the transverse asymptotic shear to the λ -shear of nµ . Hence, the radiative
data at future null infinity correspond to a shear of a non-geodesic vector field ‘aligned’
with I +. The fact that the vector is non-geodesic shows that the asymptotic 2+ 2
problem can not be formulated in real spacetime. On the other hand, this is how close
one can get, in terms of the interpretation of the main constraint-free data, in bridging
between the local 2+2 characteristic initial-value problem, and the asymptotic one.

5.6 Concluding remarks
Here we have presented and discussed many aspects of the canonical structure of Gen-
eral Relativity in real connection variables on null hypersurfaces. We have clarified the
geometric structure of the Hamiltonian analysis presented in [Alexandrov and Speziale,
2015], explaining the role of the various constraints and their geometric effect on a
null congruence. We have seen how the Lorentz transformations of the null tetrad are
generated canonically, and how to restrict them so to adapt the tetrad to a 2+2 foliation,
and compare the connection Hamiltonian analysis to the metric one. Restricting our
analysis to the Bondi gauge we have identified constraint-free data in connection vari-
ables. The metric canonical conjugated pair ‘conformal 2d metric/shear’ it is replaced
in the first order formalism by a pair ‘densitized dyad/ null rotation components of
the connection’, with the null rotations becoming the shear on-shell of the light-cone
secondary simplicity constraints. In the presence of torsion, the connection can pick
up additional terms that contribute to the shear, twist and expansion of the congruence,
leading to modifications of Sachs’ optical and Raychaudhuri’s equations.
Even in the absence of torsion, the on-shell-ness is not automatically preserved under

30This can be seen solving at first order in 1/r the NP components Rnm̄nl and Rnm̄nm of the Riemann
tensor, see e.g. (310i) and (310m) of [Chandrasekhar, 1985].
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retarded time evolution, but it requires tertiary constraints, unusual in canonical formu-
lations of GR. We have shown that the tertiary constraints encode Sachs’ propagating
equations thanks to a specific algebraic Bianchi identity, the same that allows one to
switch the interpretation of the radiative data at I + from the transverse asymptotic
shear σ0 to the ‘shear’ λ 0 of a non-geodetic null vector aligned with I +. The identifi-
cation of the connection constraint-free data as null rotations means that the degrees of
freedom form a group, albeit non-compact, hence one could try to use loop quantum
gravity quantization techniques without introducing the Immirzi parameter [?]. Some
of the corner data, which we did not investigate here, have already be shown to lead to a
quantization of the area [Speziale and Zhang, 2014, Wieland, 2017b, Freidel and Perez,
2015]. A quantization of the connection description of the radiative degrees of freedom
can lead to new insights both for loop quantum gravity and for asymptotic quantisations
based on a Fock space.
We infer that the connection formalism can provide a new angle on some of the open
questions on the dynamics of null hypersurfaces in GR. We left some open questions that
are interesting to investigate: the symplectic potential and Dirac brackets among physi-
cal data without the Bondi gauge, the inclusion of boundary terms and identification of
the BMS generators in this Hamiltonian language.
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Chapter 6
Conclusion

In this thesis, we discussed different aspects of the derivation of conserved charges in
the first order formulation of GR and we explored different formalisms to described
such conserved charges. The basic element of our analysis was the Einstein-Cartan
action, which describes the gravitational field in terms of tetrads variables and affine
connection and could be generalized to the presence of torsional degrees of freedoms.
To derive conserved quantities, we first introduced the two common approaches, the
Hamiltonian methods which is based on a phase-space splitting and it is not covariant,
and the Noether theorem which applies to every Lagrangian density but in this case
applied in a subtle way as the symmetries that we are considering are local gauge
symmetries. We have then discussed the covariant phase-space formalism and we
showed how the Hamiltonian and Noether charges can be derived from the symplectic
structures and which are the ambiguities between the different definitions.
The study of these ambiguities have an important role if one consider some sort of
boundary degrees of freedom. In particular, it has been shown that the boundary term
which breaks the gauge invariance leads to an interesting description in terms of a con-
formal field theory on the boundary [Wieland, 2017a, Freidel and Perez, 2018, Freidel
et al., 2017b]. In this interpretation the redundancy fixed at the boundary is not a gauge
invariance but could be interpreted as a physical degree of freedom, for different choice
of the boundary gauge fixing we could select different physics.
In this context, our work can be viewed as a further step in understanding more deeply
the connection between the gauge invariance of the symplectic potential and the surface
charges and we hope that may aid to have a clear distinction between different methods
to derive them.
Another interesting analysis that could be carried on starting from our gauge invariant
symplectic potential regards the study of BMS charges, the surface charges associated
with the symmetries of asymptotically flat four dimensional spacetimes at null infinity.
In this direction a first direct implementation of our work is to study how the surface
charges defined in finite region trough the covariant-phase space formalism can have a
correspondence with the BMS surface charges. More in the specific, one could ask if the
extension from Poincare charges to BMS charges at null infinity is just a consequence
of the asymptotically-flat limit or could have some physical consequence also in not
idealized (not isolated) systems.
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In the analysis of conserved charges an appealing study is the thermodynamical
interpretation of gravitational field, which is based on the derivation of a conserved
energy-momentum tensor off-shell of the fields equations. We treated this problem
in the tetrad and connection variables starting from the Jacobson analysis [Jacobson,
1995], to see which were the main differences respect to the metric formulation and
if they could lead to an interesting insight of the first order tetrad formulation. Two
interesting features arised in this case: the first one concerns derivation of the first law of
thermodynamics for BH, while the second one was related to find a proper conservation
law for the energy-momentum tensor valid also not on-shell of the equations of motion.
The first issue is related with previous analysis of the symplectic potential as to prove
the first law we needed an energy-momentum tensor. In this analysis we also pointed out
that the derivation of the first law from the two tetrad symplectic potential is equivalent,
i.e it is invariant under the cohomology ambiguity in the symplectic potential. This
statement was necessary as we were considering a specific physical application, that do
not depend on the reformulation of the theoretical frameworks. In particular we proved
that it suffices to take into account the non-trivial Lorentz charges that can be present to
make the two formulations equivalent.
For the thermodynamical argument, on the other hand, one needs to identify a conserved
energy-momentum tensor without using the field equations, since these are to be derived.
This analysis was more intriguing as we were able to identify a conserved energy tensor,
conserved not on-shell of the Einstein equations, for the pure gravitational field, but we
weren’t able to find a conserved tensor for the torsion fields. This remains a crucial open
question in order to truly extend if Jacobson?s argument could be extend to theories
with independent metric and connection and to fully understand the thermodynamical
interpretation of the gravitational fields.
In the conclusive part of the dissertation we addressed the problem of the identification
of degrees of freedom selected by the boundary terms in the first order formalism
using the tetrad and connection variables on a null foliation. These variables has a
central role in this analysis as they allows to easily re-write the fields equations in
terms of the Newman-Penrose spin-coefficients and the Weyl tensor, which has a well-
known physical interpretation in the study of gravitational radiation.The use of null
hypersurfaces is crucial to Sachs’ identification of constraint-free data in metric variables
on a double null foliations, which is the only case where one can exactly identify the
non-perturbative physical degrees of freedom without imposing any symmetries on the
physical spacetime.
The problem of the identification of free-initial data is also a well-known problem
in numerical relativity. Current simulations still have some limitations: for example
the initial data present the problem of "junk" radiation that can become relevant in
cases where either the linear momentum or the spin of the black holes are high. This
effect has been shown to affect considerably, for example, the high energy black hole
collisions [Cook, 2000], requiring a specific grid construction to overcome this difficulty.
As consequence a better knowledge on how to improve the initial data construction
would have a great impact for the gravitational wave modelling as will improve a more
the precision of waveforms produced in numerical simulations.
This study has an important consequence also for approaches to quantum gravity. In
loop quantum gravity for example, there exists a compelling kinematical picture of
quantum spacetime, where the smooth manifold of GR is replaced by a collection of
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quanta of space, and geometric operators with discrete spectra and non-commutativity
properties. This picture holds at the kinematical level, namely prior to the imposition
of the quantum version of the Hamiltonian diffeomorphism constraints, and it is not
proved that the same quantum geometry would also describe the physical Hilbert space
of the theory, defined on-shell on the constraints.
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Appendix I

A.1 Exterior calculus of forms
On a differentiable manifold, the exterior derivative extends the concept of the differ-
ential of a function to differential forms of higher degree and it allows for a natural,
metric-independent generalization of Stokes’ theorem, Gauss’ theorem, and Green’s
theorem from vector calculus.
The exterior derivative of a differential form of degree k is a differential form of degree
k+1. Consider a smooth function f (a 0-form), then the exterior derivative of f is the
differential of f , d f . This is the unique 1-form such that for every smooth vector field
X , d f (X) = dX f , where dX f is the directional derivative of f in the direction of X
and for any 0-form (smooth function) f it satisfies d(d f ) = 0. These properties can
be extended to any k-form α and more generally we can define the exterior derivative
as the unique linear mapping from k-forms to (k + 1)-forms satisfying the following
properties:

1. df is the differential of f , for 0-forms f (smooth functions);

2. d(dα) = 0 for any k-form α;

3. d(α ∧β ) = dα ∧β +(−1)k(α ∧dβ ).

The main advantage of the exterior calculus form is that it allows to work in an arbitrary
manifold without worrying of the coordinate system’s choice. Of course one can
always come back to work a local coordinate system (x1, ...,xn), where the coordinate
differentials dx1, ...,dxn form a basis of the space of one-forms, each associated with
a coordinate. Using the one-forms basis and denoting dxi1 ∧ ·· · ∧dxik with an abuse
of notation as dxI (where I is a multi-index I = (i1, ..., ik)) the exterior derivative of a
k-form ω can be expressed as

dω =
∂ fI

∂xi dxi∧dxI. (A.1)

In particular, for a 1-form ω , the components of dω in local coordinates are

(dω)i j = ∂iω j−∂ jωi. (A.2)
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Appendix II

A.2 Index jugglers
In this Appendix we prove Proposition 1, namely that the matter Noether identities
(3.27) on-shell of the matter field equations, plus the torsion field equation (3.12b),
imply the conservation law for the effective energy-momentum tensor (3.29), reported
here for convenience

dω(e)

[
?τI +

1
16π

PIJKL(eJ ∧dω(e)C
KL + eJ ∧CKM ∧CM

L)

]
= 0, (A.1)

namely,

dω(e) ?τI =
1

8π
PIJKL

(
eJ ∧CK

M ∧FML(e)+ eJ ∧dω(e)C
KM ∧CM

L
)
. (A.2)

To prove this identity, we start from (3.27b). On the left-hand side, we split the
connection into Levi-Civita plus contorsion, see (3.13), obtaining

dω ?τI = dω(e) ?τI− (CJKyeI)eK ∧?τJ +T JyeI ∧?τJ (A.3)

where we used

T I =CIJ ∧ eJ → CI
J =−(CJKyeI)eK +T JyeI. (A.4)

In the second term of the right-hand side of (A.3) we use the second Noether identity
(3.27a), whereas the last term cancels the corresponding one on the right-hand side of
(3.27b), which then reads

dω(e) ?τI =
1
2

FJK(ω)yeI ∧?σJK−
1
2
(CJKyeI)dω ?σJK

=
1

16π

[
FJK(ω)yeI ∧−(CJKyeI)dω

]
PJKLMeL∧CM

N ∧ eN

=
1

16π

[(
FJK(e)+dω(e)C

JK)yeI ∧−(CJKyeI)dω(e)
]

PJKLMeL∧CM
N ∧ eN .

(A.5)

In the second equality above we eliminated the torsion source using the corresponding
field equation (3.17). In the third equality we expanded the curvature using the contor-
sion, see (3.15), and observed that the piece quadratic in C cancels the contorsion part
of the exterior derivative in the last term.1

1Following the same steps but without eliminating the torsion source in favour of the contorsion one
gets (3.30) in the main text, which does not use the torsion field equations but only the Noether identities.
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Having performed these simplifications, our goal is to show the equivalence of the right-
hand sides of (A.2) and (A.5). This will follow from the equivalence of the terms with
the Riemann tensor F IJ(e), and the equivalence of the terms involving the Levi-Civita
exterior derivatives. Both are consequences of trivial algebraic symmetries. Let us show
them one by one. We notice in advance the following useful cycling identities:

PIJKLeK ∧FLM ∧ eM =−PABC[Ie
A∧FBC∧ eJ], (A.6)

PIJKLFKM ∧CM
L =−PABC[IF

AB∧CC
J], (A.7)

which are easy to check.
To show the equivalence of the terms with the curvature, we start hooking a cotetrad
vector field on a trivially vanishing 5-form,

0 =
(

PJKLMFJK(e)∧ eL∧CM
N ∧ eN

)
yeI

= PJKLMFJK(e)yeI ∧ eL∧CM
N ∧ eN +PJKIMFJK(e)∧CM

N ∧ eN

−PJKLM(CM
NyeI)FJK(e)∧ eL∧ eN +PJKLMFJK(e)∧ eL∧CM

I. (A.8)

Of these four terms, the third vanishes identically: its 1/γ part directly through the
algebraic Bianchi identities for the Riemann tensor, the other part because of the
antisymmetry in the LP indices. The second and fourth terms recombine giving the
left-hand side of (A.7), hence (A.8) gives

2PIJKL FKM(e)∧CM
L∧ eJ = PJKML (FJK(e)yeI)∧ eL∧CM

N ∧ eN , (A.9)

which proves the equality of the curvature terms of (A.2) and (A.5).
The equivalence of the dω(e)C terms follows analogously. We hook the following
5-form,

0 =
(

PJKLMCJK ∧ eL∧dω(e)C
M

N ∧ eN
)
yeI

= PJKLM(CJKyeI)eL∧dω(e)C
M

N ∧ eN−PJKIMCJK ∧dω(e)C
M

N ∧ eN

+PJKLMCJK ∧ eL∧dω(e)C
M

NyeI ∧ eN +PJKLMCJK ∧ eL∧dω(e)C
M

I. (A.10)

Using an identity like (A.7), the second and fourth term give

PJKM[IC
JK ∧dω(e)C

M
N]∧ eN =−2PIJKL∧ eJ ∧dω(e)C

K
M ∧CML. (A.11)

For the third term we have

PJKLMCJK ∧ eL∧dω(e)C
M

NyeI ∧ eN =−PJKLMdω(e)C
MNyeI ∧ eL∧CJK ∧ eN (A.12)

= PJKLMdω(e)C
JKyeI ∧ eL∧CM

N ∧ eN ,

which follows from a similar cycling identity as before. Hence, (A.10) gives

2PIJKL∧ eJ ∧dω(e)C
K

M ∧CML = PJKLMdω(e)C
JKyeI ∧ eL∧CM

N ∧ eN (A.13)

+PJKLM(CJKyeI)eL∧dω(e)C
M

N ∧ eN ,

which proves precisely the equivalence between the dω(e)C terms in (A.2) and (A.5).
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Appendix III

A.3 Covariant Phase Space Methods
In the covariant phase-space methods one defines the symplectic potential form in the
field space as the integral over the hypersurface Σ:

Θ(δ ) :=
∫

Σ

θ(δ ) (A.1)

of the boundary term Θ(δ ), obtained by varying the Lagrangian. The variation δ

represents a vector field over the field space, hence Θ(δ )≡ Iδ Θ is understood as the
inner product between a one form and a vector field. The pre-symplectic 2-form is the
exterior derivative in field space of the symplectic potential and it is denoted by Ω = δθ .
It can be written in terms of standard functional differentials as follows,

Ω(δ1,δ2) = δ1[Θ(δ2)]−δ2[Θ(δ1)]−Θ[δ1,δ2]. (A.2)

This quantity depends a priori on the hypersurface Σ chosen to evaluate the integrals,
but it can be easily shown to be closed in spacetime, dΩ ∼ 0, if the fields and their
linear variations are on shell.
Having a pre-symplectic form at disposal, one can look for Hamiltonian generator
associated with a symmetry δε as in classical mechanics, starting from

δHε := Ω(δ ,δε) = δ [Θ(δε)]−δε [Θ(δ )]−Θ[δ ,δε ] . (A.3)

The slashed delta used in this definition is meant to highlight that the right hand side
is not necessary a total function variation. When it is, we say that the expression is
integrable, and refer to Hε as the Hamiltonian generator. It would make sense to refer the
generic expression (A.3) as pseudo-generator. However this distinction is rarely made,
and on the contrary some literature loosely refers to (A.3) as Hamiltonian generator,
even tough this makes sense only in integrable case. By inspection of (A.3), we see that

δe ps[Θ(δ )] = 0, [δ ,δε ] = 0, (A.4)

are sufficient conditions for integrability. A necessary and sufficient condition is∫
∂Σ

iεω(δ1,δ2) = 0, (A.5)

where ω(δ1,δ2) is the integrand of (A.2).
It can be shown by explicit calculation that for a gauge and diffeomorphism symmetries
the integral of (A.3) is exact. The generator is then a surface integral, if Σ has a signle
boundary, and this is referred to as Hamiltonian charge.
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Appendix IV

A.4 Spin coefficients

We use χ i = (1,0,0) and v± := (v2± iv3)/
√

2. For the tetrad derivatives we have

D = lµ
∇µ =

1
N

Ea
1 ∇a, ∆ = nµ

∇µ =
1
2
(∇t− (Na +

N
2

Ea
1)∇a), (A.1)

δ = mµ
∇µ = Ea

−∇a, δ̄ = mµ
∇µ = Ea

+∇a . (A.2)

For the spin coefficients we use the standard notation consistent with our mostly plus
signature (which carries an opposite sign as to the notation with mostly minus signature)
and use an apex ◦ to keep track of the fact that the connection ω IJ

µ is off-shell. We then
have

◦
α :=−1

2
(nµ

δ̄ lµ +mµ
δ̄ m̄µ) =

1
2

Ea
+η

1
a −

i
2

r1+−
1
4

ω
+− 1

2
δ̄ lnN (A.3)

◦
β :=−1

2
(nµ

δ lµ +mµ
δ m̄µ) =

1
2

Ea
−η

1
a −

i
2

r1−+
1
4

ω
−− 1

2
δ lnN (A.4)

◦
γ :=−1

2
(nµ

∆lµ +mµ
∆m̄µ) =−

1
4

NEa
1 η

1
a −

1
2

Na
η

1
a +

i
4

Nr11 +
i
2

NaE j
ar1 j +

i
4

Na(E l
aε1lmω

m)+

(A.5)

+
1
2
(ω01

0 − iω23
0 )− 1

2
∆ lnN

◦
ε :=−1

2
(nµDlµ +mµDm̄µ) =

1
2N

Ea
1 η

1
a −

i
2N

r11−
1
2

D lnN (A.6)

◦
κ :=−mµDlµ =− 1

N2 Ea
1 η
−
a (A.7)

◦
τ :=−mµ

∆lµ =
1
2

Ea
1 η
−
a +

Na

N
η
−
a −
√

2
N

(ω0−
0 −ω

1−
0 ) (A.8)

◦
σ :=−mµ

δ lµ =− 1
N

Ea
−η
−
a (A.9)

◦
ρ :=−mµ

δ̄ lµ =− 1
N

Ea
+η
−
a (A.10)

◦
µ := m̄µ

δnµ =
1
2

N
(

Ea
−η

+
a −ω

1− ir22− ir33

)
(A.11)
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◦
ν := m̄µ

∆nµ =−N
4
(NEa

1 +2Na)η+
a −

(N)2

2
(ω+− ir1−)−

N
2

Na(E1
a ω

+− (A.12)

+E+
a ω

1−2iE i
ari+)+

1
2
√

2
N(ω0+

0 +ω
1+
0 )

◦
λ := m̄µ

δ̄nµ =
1
2

N
(

Ea
+η

+
a +2r23− ir22 + ir33

)
(A.13)

◦
π := m̄µDnµ =

1
2

Ea
1 η

+
a +

1
2

ω
+− ir1− (A.14)

Under the rescaling (lµ ,nµ) 7→ (lµ/A,Anµ) (a class III transformation),

α 7→ α− 1
2A

δ̄A, β 7→ β − 1
2A

δA, γ 7→ Aγ− 1
2A

∆A, ε 7→ 1
A

ε− 1
2A

DA,

(A.15)

k 7→ 1
A2 k, τ 7→ τ, σ 7→ 1

A
σ , ρ 7→ 1

A
ρ, µ 7→ Aµ, (A.16)

ν 7→ A2
ν , λ 7→ Aλ , π 7→ π, (A.17)

Hence, many factors of N disappear in the spin coefficients if we use the ADM-like
normal lADM

µ =−N∂µu.

A.5 Congruence
The complete expression of the congruence tensor with an affine connection is

∇0l0 = ω
0i
0 (

1
N

Xi jE j
aNa−χi)+

1
N

ω
i j
0 χ jE i

aNa +
1
N

∂0N, ∇alb =
1
N

Xi jη
i
aE j

b,

∇0la =
1
N
(ω

0 j
0 Xi jE i

a +ω
i j
0 χ

jE i
a), ∇al0 = η

i
a(

1
N

Xi jNaE j
a−χ

i)+∂a lnN

(A.18)

with projection Bµν =⊥ρ
µ ⊥σ

ν∇ρ lσ given by

B00 :=
1
N

qc
bNaNb

η
M
a EM

c , B0a =
1
N

qb
cNc

η
M
b EM

a , Ba0 =
1
N

qb
aNc

η
M
b EM

c ,

Bab =
1
N

qc
aqd

bXi jη
i
aE j

b. (A.19)

A.6 Tetrad transformations and gauge fixings
At the Hamiltonian level, the Lorentz transformations are generated by the Gauss
constraint GIJ , usually decomposed into spatial rotations Li and boosts Ki, whose
canonical form from (5.26) reads

Li :=
1
2

εi jkG
jk = ∂a(εi jk

∼
Ea

j χ
k)− εi j

k
η

j
a
∼
Ea

k − εi j
k
ω̃

j
χk,

Ki := G0i = ∂a
∼
Ea

i +(
∼
Ea

i χ j−
∼
Ea

j χi)η
j

a−Xi jω̃
j. (A.20)
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Since we are working on a null hypersurface, it is convenient to introduce the sub-
groups ISO(2) stabilising the null directions xI

± = (±1,χ i), with generators T I :=
1/2ε IJKLx+JJKL and T̂ I := −1/2ε IJKLx−JJKL. Both groups are 3-dimensional and
contain the helicity generator Lχ , plus two independent pairs of ‘translations’, T i

⊥ :=
ε i jkχ jTk stabilising xI

+, and T̂ i
⊥ := ε i jkχ jT̂k stabilising xI

−. Taking both sets and the
radial boost Kχ we obtain the complete the Lorentz algebra, expressed in terms of
canonical variables in (5.56).

For ease of notation and to make the formulas more transparent, we fix from now
on χ i = (1,0,0), as we did in most of the main text. We use the orthogonal internal
indices M = 2,3, and write the canonical form of the generators as follows,

L1 = ε1MN
∼
EaM

η
N
a , TM =−ε1Mi

∼
Ea

1 η
i
a

K1 = ∂a
∼
Ea

1 −
∼
Ea

Mη
M
a , T̂M =−ε1Mi(

∼
Ea

1 η
i
a−2∂a

∼
Ea

i −2
∼
Ea

i η
1
a +2ω̃

i). (A.21)

To compute the action on the tetrad, we use the brackets (5.29). First of all, T̂M change
the internal null direction χ i:

{T̂M,χN}=−ε1MN . (A.22)

Since the direction is gauge-fixed by (5.28) in the action, these constraints are second
class.

The stabilisers TM are first class, and can be used to put the triad in (partially) lower
triangular form:

{TM,
∼
Ea

i }=−1
2ε1Mi

∼
Ea

1 , (A.23)

so we can always reach Er
M = 0 with these transformations, and E1

A = 0 follows from
the invertibility of the triad. The radial boost Kχ can be used to fix Er

1 = 1, since

{K1,
∼
Er

1}= 0, {Kχ ,E}= 1
2E, {Kχ ,Er

1}=−1
2Er

1. (A.24)

The triad so gauge-fixed reads

E i
a =

(
1 0

EM
r EM

A

)
, Ea

i =

(
1 0

EA
1 EA

M

)
, (A.25)

where EM
A is the 2d dyad with inverse EA

M, and EA
1 =−EA

MEM
r . In this gauge, dφ 1 = dr,

so the coordinates are adapted to the 2+ 2 foliation. Furthermore, E =
√

γ and so√−g = NE = N
√

γ . Finally, the helicity rotation L1, acting as

{L1,
∼
Ea

i }= 1
2ε1Mi

∼
Ea

M, (A.26)

can be used to put to zero one off-diagonal component of the dyad and thus complete
the triangular gauge of the triad.

Using hypersurface diffeomorphisms instead, we can put the triad in (partially)
upper-triangular form:

Da = 2∂b(η
i
a
∼
Eb

i )−2
∼
Eb

i ∂aη
i
b +2ω̃

i
∂aχi, {D(~N),

∼
Ea

i }= £~N
∼
Ea

i , (A.27)

so we can use DA to fix EAχ = 0, and Dr to fix Er
1 = 1. This gives

E i
a =

(
1 E1

A
0 EM

A

)
, Ea

i =

(
1 Er

M
0 EA

M

)
, (A.28)
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with Er
M =−EA

ME1
A. In this gauge the hypersurface coordinates are not adapted to the

2+1 foliation (the level sets r =constant do not span the 2d space-like surfaces), on the
other hand the tangent to the null directions is now the coordinate vector ∂r.

For clarity, the various conditions that can be fixed using the various constraints are
summarised in the table below, where by rg f we mean the final gauge fixing on r, for
instance affine or areal.

H DA Dr
g00 = 0 EAχ = 0 ⇔ EM

r = 0 Erχ = 1 aut rg f
T̂ i
⊥ T i

⊥ Kχ Lχ

χ i = (1,0,0) Er
M = 0 ⇔ EAχ = 0 rg f aut Erχ = 1 δ

Notice that if one does not fix the upper or lower triangular form of the triad, the
inverse of the 2d dyad if of course not given by the corresponding entries of the inverse
triad. A general parametrisation of the triad in terms of the dyad can be easily written
as follows,

E i
a =

(
M̂ E M

A fM
E M

A γA E M
A

)
, Ea

i =
1
M

(
1 − fM
−γA ME A

M + γA fM

)
. (A.29)

Here E M
A is the dyad and E A

M its inverse, E = E M and M = M̂− γAE M
A fM is a 2+ 1

lapse function. Then γAB = E M
A EMB and

qab =

(
γABγAγB γABγB

γBAγA γAB

)
. (A.30)

The Bondi gauge sets γA = 0, namely qra = 0.

A.7 2+2 foliations and NP tetrads
We collect here various useful formulas relating the tetrad formalism to the 2+ 2
foliation of [d’Inverno and Smallwood, 1980] and [Torre, 1986]. As briefly explained in
Section 5.2.2, the 2+2 foliation is induced by two closed 1-forms, nα := dφ α locally,
α = 0,1. These define a ‘lapse matrix’ Nαβ , as the inverse of Nαβ := nα

µ nβ µ , and a

dual basis of vectors nµ

α := Nαβ gµνnβ

ν . Note that nµ

0 and nµ

1 are tangent respectively
to the hypersurfaces φ 1 = const and φ 0 = const. We assume detNαβ < 0, so that
the codimension-2 leaves {S} are space-like. The projector on {S} is ⊥µ

ν := δ
µ

ν −
Nαβ nαµnβ

ν , and the covariant induced metric γµν :=⊥µν . The 2d spaces {T} tangent
to nµ

α are not integrable in generic spacetimes, since ⊥µ
ν [n0,n1]

ν 6= 0. This non-
integrability is often referred to as twist in the literature. On the other hand, the
orthogonal 2d spaces foliate spacetime by construction, and we can introduce shift
vectors to relate the tangent vectors to coordinate vectors, bµ

α = (∂φ α )µ −nµ

α .
To write the metric explicitly, we take coordinates (φ α ,σA) adapted to the foliation,

then

gµν =

(
Nαβ + γABbA

αbB
β

γBCbC
α

γACbC
β

γAB

)
, gµν =

(
Nαβ −Nαβ bB

β

−NβαbA
α γAB +Nαβ bA

αbB
β

)
.

(A.31)

112



For a null foliation, we fix one diffeomorphism requiring N11 = 0 = N00 = g00, so that
the first normal is null, and N01 = 1/N01, N11 =−N00/N2

01. The norm of n1 is N11 and
we leave it free (it can be both time-like or space-like without changing the fact that the
orthogonal spaces {S} are space-like), but notice that we can always switch to a null
frame (n0, ñ1) with

ñ1 = N01n1 +
1
2

N00n0, ||ñ1||2 = 0, n0
µ ñ1µ = 1. (A.32)

This can be used to define the first two vectors of a NP tetrad adapted to the foliation,
via lµ :=−n0

µ , nµ := ñ1
µ , so that the 2d space-like induced metrics coincide

γµν = gµν −Nαβ nα
µ nβ

ν = gµν +2l(µnν). (A.33)

Notice that acting with a Lorentz transformation preserving l, we have

nµ 7→ nµ + āmµ +am̄µ + |a|2lµ , mµ 7→ mµ +alµ ; (A.34)

one thus obtains a new covariant 2d metric, still space-like and transverse to lµ , but
not associated with the 2+2 foliation any longer. In terms of the NP tetrad, the non-
integrability of the time-like spaces is measured by the two spin coefficients τ and
π ,

mµ [l,n]µ = τ + π̄. (A.35)

A.7.1 Adapting a NP tetrad
We can also reverse the procedure: start from an arbitrary NP tetrad, and adapt it to a
2+2 foliation. To that end, recall first that

[m, m̄]ν = (µ− µ̄)lµ +(ρ− ρ̄)nµ − (α− β̄ )mµ +(ᾱ−β )m̄µ , (A.36)

so the general non-integrability of (m, m̄) is given by non-vanishing Im(ρ) and Im(µ).
To adapt the NP to the 3+1 null foliation, we choose l :=−dφ 0. This fixes 3 Lorentz
transformation, and implies Im(ρ) = 0 = κ and τ = ᾱ +β . We can also fix the SO(2)
helicity rotation requiring ε = ε̄ . This leaves us with two tetrad transformations left. To
have a 2+2 foliation induced by the tetrad, we need

µ− µ̄ = 2mµm̄ν
∂[νnµ] = 0. (A.37)

This is achieved if in coordinates (φ α ,σA) adapted to the foliation mµ = (0,0,mA),
hence nµ = (cα ,0,0) by orthogonality; this fixes the remaining two tetrad freedoms
(And if we fix radial diffeomorphisms to have N01 = −1, this gauge also implies
π = α + β̄ ). Inverting this linear system we find

dφ
0 =−l, dφ

1 =
c0

c1
l +

1
c1

n. (A.38)

This identifies cα = (N00/2,N01), and (A.33) follows again. For more on the character-
istic initial value problem in NP formalism see e.g. [Rácz, 2014]. The use of a tetrad
adapted to a 2+2 foliation is common, e.g. [Sachs, 1962a, Hawking, 1968, Mädler and
Winicour, 2016], but not universal. In particular in [Sachs, 1962a] the partial Bondi
gauge is completed with N11 = 0 = N00 = c0, so to have both 1-forms dφ α null.
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A.7.2 The Bondi gauge and Newman-Unti tetrad
A more wide-spread tetrad description, particularly suited to study asymptotic radiation,
is the one introduced by Newman and Unti [Newman and Unti, 1962], see e.g. [Newman
and Tod, 1981, Adamo et al., 2009] for reviews, which is adapted to the 3+ 1 null
foliation and to the Bondi gauge. We take coordinates (u,r,θ ,φ) and fix g00 = 0, so
that the level sets of u give a null foliation with normal lµ =−∂µu. Recall that the null
hypersurfaces Σ normal to lµ are ruled by null geodesics, with tangent vector

lµ
∂µ =−g0µ

∂µ =
1
N

∂r−g0A
∂A. (A.39)

This suggests a natural 2+1 foliation of Σ given by the level sets of a parameter along the
null geodesics (affine or not). The description simplifies greatly if we gauge-fix g0A = 0,
as to identify the geodesic parameter with the coordinate r, while simultaneously putting
to zero the shift vector of the r = const. foliation on Σ. In other words, the (partial)
Bondi gauge g0A = 0 gives a physical meaning to the coordinate foliation defined by u
and r by identifying it with the foliation defined by the null geodesics on Σ. In the 2+2
language of [d’Inverno and Smallwood, 1980, Torre, 1986], with adapted coordinate
φ 0 = u, the gauge corresponds to a vanishing shift vector bµ

1 , so that ∂φ 1 is tangent to
the null geodesics.

Let us complete the Bondi gauge choosing affine parametrization, namely g01 =−1.
The metric and its inverse read

gµν =

0 −1 0
g11 g1A

gAB

 , gµν =

−g11 +gABg1Ag1B −1 gABg1B

0 0
gAB

 . (A.40)

The Newman-Unti tetrad adapted to these coordinates is chosen identifying lµ with
the normal to the foliation, and requiring nµ and mµ to be parallel propagated along lµ .
It is parametrised as follows,

lµ
∂µ = ∂r, nµ

∂µ = ∂u +U∂r +XA
∂A, mµ

∂µ = ω∂r +ξ
A
∂A, (A.41)

with A = ζ , ζ̄ stereographic coordinates for S2 (ζ = cotθ/2eiφ ), and

g11 = 2(|ω|2−U), g1A = ωξ̄
A + ω̄ξ

A−XA, gAB = ξ
A
ξ̄

B + ξ̄
A
ξ

B. (A.42)

The co-tetrad is

lµ =(−1,0,0,0), nµ =
(

U−gABXA(ωξ̄
B+ω̄ξ

B),−1,gAB(ωξ̄
B+ω̄ξ

B)
)
, mµ =(−gABξ

AXB,0,gABξ
B).

The coefficients are a priori 9 real functions (U ∈ R, XA ∈ R2, ω ∈ C, ξ A ∈ C2)
parametrising the 6 independent components of the metric plus 3 internal components
corresponding to the ISO(2) stabiliser of lµ . The helicity subgroup generates dyad
rotations ξ A 7→ eiδ ξ A, and the translations the class I transformations (A.34). The latter
in particular shift ω 7→ ω +a, a ∈ C, and can be used to put ω = 0, so mµ = (0,0,mA)
with 2d space-like components only. This is the 2+2-adapted choice described above,
and corresponds to Er

M = 0 as in the lower-triangular form (A.25), that we also used
in Section 5.5 in the main text to make easier contact with the metric Hamiltonian
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formalism. Alternatively, this null rotation can be used to achieve π = 0, so to make nµ

and mµ to be parallel propagated along lµ as demanded by Newman and Unti.
In terms of spin coefficients, we have the following simplifications: κ = Im(ρ) = 0,

τ = ᾱ +β which follow from lµ being a gradient, Re(ε) = 0 from fixing the radial
diffeos requiring r affine parametrization, and π = 0 from the parallel transport of nµ

and mµ . Finally Im(ε) = 0 if we fix the helicity SO(2) rotation. This complete fixing is
usually referred to as NP gauge, to be contrasted with the 2+2-adapted gauge described
above, where the condition π = 0 is replaced by π = τ̄ and Im(µ) = 0.

Hence, when we refer to the Newman-Unti tetrad (A.41) in NP gauge there are only
6 free functions of all 4 coordinates. The NP gauge is preserved by class I and helicity
transformations with r-independent parameters.

A.8 Mappings to the χ-tetrad
In this Appendix we discuss the detailed relation between the χ-tetrad used to perform
the canonical analysis in real connection variables and the results of the previous
Appendix. It provides formulas completing the discussion in the main text.

At the end of Section (5.3.1) we introduced the internal ‘radial gauge’ (5.23), stating
that it adapts the tetrad to the 2+2 foliation and identifies the lapse function with the
one used in the metric formalism. We now provide the relevant details and proofs. The
χ-tetrad and its inverse are given by

eI
µ =

(
N̂ E i

aχi
NaE i

a E i
a

)
, eµ

I =
1
N

(
1 −χi
−Na NEa

i +Naχi

)
, (A.43)

where χ2 = 1 to have a null foliation, e = EN and N = N̂−NaE i
aχi is the lapse function.

Taking the soldered internal null directions x±µ = eI
µx±I of (5.17), and defining mµ to

be a complex linear combination of the two orthogonal tetrad directions X i jeµ

j , e.g.
mµ := 1√

2
(eµ

2 − ieµ

3 ) when χ i = (1,0,0), the basis

(xµ

+,−xµ

−,m
µ , m̄µ)

is a doubly-null tetrad. We then rescale it by

lµ =
1
N

xµ

+, nµ =−N
2

xµ

−, (A.44)

to define an NP tetrad adapted to the 3+1 null foliation as described in the main text, see
(5.40). In general, the 2d spaces with tangent vectors (mµ , m̄µ) will not be integrable.
With reference to (A.36), we see that integrability requires Im(ρ) = Im(µ) = 0. The
first condition is guaranteed by the fact that lµ is a gradient. The second can be obtained
with a class I transformation, generated by the translations Xi jT j stabilising lµ , fixing

EAχ = 0 ⇔ X i jEr
j = 0. (A.45)

In this gauge

mµ = (0,0,EA
−), nµ = (N(N/2+NrErχ),NErχ,0,0), (A.46)
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so that the null tetrad is manifestly adapted to the 2+2 foliation defined by the level
sets of the coordinates u and r. Then Im(µ) = 0 also follows immediately by explicit
calculation of (A.37) using the fact that mµ only has 2d surface components.

In a first-order formalism with independent connection, the statement holds in the
absence of torsion. We have already seen in Section 5.4.2 that on-shell of the torsionless
condition Im(

◦
ρ) = Im(ρ). Let us show here explicitly how Im(

◦
µ) goes on-shell. From

(A.11) we have

Im(
◦
µ) =−N2

2
Im(

◦
ρ)− N

2
(r22 + r33), (A.47)

and from one of the secondary simplicity constraints (5.30) we have

Ψ
11 =−r22− r33− ε

1MN ∼Ea
M∼E

1
b ∂a

∼
Eb

N . (A.48)

The last term vanishes for Er
M = 0 = E1

A, hence Im(
◦
µ) = 0 in this gauge.

To complete the comparison with the 2+2 formalism, let us fix the internal direction
χ i = (1,0,0), and use M = 2,3 to refer to the orthogonal directions. Then (A.45) puts
the triad in the form

E i
a =

(
E1

r 0
EM

r EM
A

)
, Ea

i =

(
Er

1 0
EA

1 EA
M

)
, (A.49)

thus EM
A is the 2d dyad and EA

M its inverse, and we further have the equalities E1
r = 1/Er

1,
EM

r =−EM
A EA

1 /Er
1. We then have gAB = qAB = EM

A EBM = γAB = E M
A EBM, consistently

with the fact that the metric induced by the dyad is adapted to the coordinates by
the gauge-fixing, and qAB = EA

MEBM = γAB is its inverse. Notice that the (partial)
Bondi gauge g0A = 0 achieves gAB = γAB, analogously to the vanishing-shift gauge for
space-like foliations.

At this point E = Erχ
√

γ and
√−g = ErχN

√
γ . A look at the metric shows that

−1/g01 = ErχN, (A.50)

hence, the lapse function in the metric Hamiltonian analysis of [Torre, 1986] equals the
one in the connection formulation up to a factor Erχ . This ambiguity is not surprising
due to the null nature of the foliation and the lack of a canonical normalization of its
normal. To identify our lapse with the one in the metric formalism is sufficient to fix
the radial boost Kχ as to have Erχ = 1, as we did with (5.23). Then also Erχ = 1
because of (A.45) and the triad takes the form (A.25). We also recover the relation√−g = N

√
γ between lapse and the determinant of the metric Hamiltonian analysis.

For completeness, we report below the relation between the χ-tetrad coefficients and
the 2+2 foliation with a general radial gauge. The case with coinciding lapse functions
can immediately be read plugging Erχ = 1 = Erχ in the formulas below.

The relation between the foliating normals and the adapted null co-frame is given
by

n0 = du=− 1
N

x+IeI, n1 = dr =
1

2Erχ

(N +2NrErχ

N
x+I+x−I

)
eI, n0

µn1µ =− 1
ErχN

.

(A.51)
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The dual basis, shift vectors and lapse matrix are

nµ

0 = N( Nr

Erχ
+ N

2 )l
µ +nµ = (1,0,NrErχEA

χ−NA), bA
0 = NA−NrErχEA

χ,

(A.52)

nµ

1 = ErχNlµ = (0,1,ErχEA
χ), bA

1 =−ErχEA
χ, (A.53)

Nαβ =

(
−N(N +2NrErχ) −NErχ

−NErχ 0

)
, Nαβ =

(
0 − 1

NErχ

− 1
NErχ

1
N(Erχ)2 (N +2NrErχ)

)
,

(A.54)
and the formulas for the 2d projector and covariant induced metric coincide,

γµν := gµν − x+(µx−ν) = gµν −Nαβ nα
µ nβ

ν =

(
qabNaNb qbcNc

qabNb qab

)
. (A.55)

From (A.25), we see also that EA
1 =−EA

MEM
r , which provides an alternative characteri-

sation of the second shift vector in terms of EM
r .

The non-integrability of the {T} surfaces is the same as measured by the null dyad,

⊥µ
ν [n0,n1]

ν ≡ [n0,n1]
µ , mµ [n0,n1]

µ =−N(τ + π̄). (A.56)

Having gauge-fixed N00 = 0 to have du null and r affine or areal, we cannot for general
metrics simultaneously take dr to be null. It can be made null on a single hypersurface Σ̃

defined by some fixed value of r = r0, if we exploit the left-over freedom of hypersurface
diffeomorphisms to fix N11 = 0. This is what was done by Sachs in setting up the 2+2
characteristic initial value problem, further fixing NA = 0 on the same hypersurface, so
that the normal vector of Σ̃ at r = r0 is just nµ

0 = nµ = ∂u, as in Fig.5.1.

A.8.1 The Bondi gauge and Newman-Unti tetrad
In Section 5.5 in the main text we discussed the Bondi gauge with a null tetrad already
adapted to the 2+2 foliation. This was motivated by the goal of recovering properties
of the metric symplectic formalism. On the other hand, the Newman-Unti tetrad (A.41)
mostly used in the literature is adapted to the 3+1 null foliation only. In this Appendix
we present the relation between our metric coefficients and those of (A.41) without
fixing the internal ‘radial gauge’ (5.72). To that end, we first fix all diffeomorphisms
requiring the Bondi gauge

1
N

Ea
χ = (1,0,0). (A.57)

We then fix the internal direction χ i = (1,0,0), and adapt l = −du = x+/N. This
leaves the freedom of acting with the ISO(2) subgroup stabilizing the direction. Be-
cause we rescaled the canonical tetrad by N, we also gain the freedom of canonical
transformations corresponding to the radial boost Kχ , which does not affect l. This
additional gauge freedom should be fixed requiring Erχ = 1, implying N = 1. We are
then left with 9 free functions, 6 for the metric and 3 for the internal ISO(2) stabilising
l. Comparing our tetrad (5.40) in this gauge with (A.41) we immediately identify

U =−1
2
−Nr, XA =−NA, ω = Er

−, ξ
A = EA

−. (A.58)

The 2+2-adapted tetrad is recovered with a class I transformation setting ω = EM
− = 0.
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A.8.2 Areal r and Sachs’ metric coefficients
Above we used affine r, as usual in literature using the Newman-Penrose formalism.
The alternative common choice is Sachs’, leaving g01 =−e2β free and requiring instead√

γ = r2 f (θ ,φ). Again we fix the internal direction χ i = (1,0,0) and the radial boosts
with Erχ = 1, so to have the identification of our N > 0 with the metric lapse e2β . The
triad has the form (A.28), and the metric reads

gµν =

−N(N +2Nr +2NAEAχ)+ γABNANB −N γABNB−NEAχ

0 0
γAB

 . (A.59)

Comparing with (5.1) in the main text, we find

β =
1
2

lnN, UA =−NA +Nγ
ABEBχ,

V
r
= 2N1 +N(1+ γ

ABEAχEBχ).

(A.60)
Reverting to affine r, N = 1 and the map from Sachs’ metric coefficients to Newman-
Unti’s is
V/r = 2(|ω|2−U), UA = XA−ωξ̄ A− ω̄ξ A.
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