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Basic Notations

a.e. almost everywhere (with respect to the Lebesgue measure)

a.s. almost surely (with respect to the Lebesgue measure)

Rd euclidean d-dimensional space

x · y scalar product
∑n

i=0 xiyi of two vectors x, y ∈ Rd

|x| euclidean norm of x ∈ Rk

||σ|| matrix norm of σ ∈ Rk×d

B(x0, r) open ball of center x0 and radius r ∈ Rd, {x ∈ Rd : |x− x0| < r}

B(x0, r) closed ball of center x0 and radius r ∈ Rd, {x ∈ Rd : |x− x0| ≤ r}

∂E boundary of the set E

int E interior of the set E

E closure of the set E

a ∨ b min{a, b}, fora, b ∈ R

a ∧ b max{a, b}, fora, b ∈ R

⊗ Direct Product

I⊗ J The smallest sigma-algebra which contains {U × T : U ∈ I, T ∈ J}

d(x,C) distance from the point x to the closed set C

∆t,∆x discretization steps, in compact form∆ ≡ (∆x,∆t)

i imaginary unit

1Ω characteristic function of the set Ω

δij Kronecker’s symbol

Ck(Ω) Space of functions u : Ω→ Rwith continuous k-th derivative on a domain Ω

Ck0 (Ω) Space of functions with compact support belonging to Ck(Ω)

Lp(Ω) Space of functions u : Ω→ R such that
∫

Ω u
p < +∞, 1 ≤ p ≤ +∞

L∞(Ω) Space of functions u : Ω→ R such that sup |up| < +∞, 1 ≤ p ≤ +∞

Lploc(Ω) Space of functions u in Lp(Ω) for any compact set K ⊂ Ω, 1 ≤ p ≤ +∞

L1
loc Space of locally integrable functions
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Mp,d Space of Rd-valued Ft − adapted progressive measurable processes

(X(t))t such that ∀q,
∫ t

0 E[|X(s)|p]ds <∞, p ≥ 1

M2,n×d Space of Rn×d-valued Ft − adapted progressive measurable process

(X(t))t such that
∫ t

0 E[||X(s)||pds] <∞]

||u||p Norm of u in Lp(Ω)

lp Space of p-th power summable vectors or sequences

l∞ Space of bounded vectors or sequences

V, vj Numerical solution, as a vector and as a value at the nodexj

V n, vnj Numerical solution, as a vector and as a value at the node(xj , t
n)

Mk,d(R) Matrix of dimension k × d with real values

M> Transpose of a matrix B

Ker(M) Kernel of matrix M: all of those vector v for which Mv = 0

Ker⊥(M) The ortogonal space of Kernel of M

USC The space of real-valued upper semi-continuous functions

LSC The space of real-valued lower semi-continuous functions



Introduction

One of the central problem in modern mathematical finance is derivative

pricing: that is to define a fair price. A derivative is a financial contract

which value depends on an underlying asset which can be an equity stock, an

interest rate or any different financial asset. The well known Black-Scholes

model, after 43 years of its first publishing [8], represents, with its closed

form , an universal accepted framework. In this work, we develop a qualita-

tive and quantitative analysis on stochastic volatility models. These models

represents a wide known class of models among financial mathematics for

the evaluation of options and complex derivatives, starting from the fun-

damental paper of S.L. Heston (1993, The Review of Financial Studies).

Moreover, this thesis proposes an interesting researches on both theoretical

studies on the solution of Dirichlet problem associated and numerical stud-

ies, for the approximation of solution and the model calibration by real data

taken from real market.

In Chapter 1 we revise the original Black-Scholes model, which assumes the

existence of a risk-free asset Bt and of an underlying asset St, following

respectively a deterministic and a geometric Brownian motion: dSt = µStdt+ σStdWt

dBt = rBtdt
(1)

where the deterministic constant coefficients µ, σ and r represent respec-

tively the local mean rate of return of the asset, the volatility of the asset

vi
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and the short-term rate interest. (Wt)t is a standard one dimensional Brow-

nian process ([34], [41]).

However, as well known from many works in literature ([53], [38], [22]),

the original model is not consistent with market prices. In particular, it is

unable to correctly reproduce all the vanilla option prices mainly because

contracts with different strikes and maturities exhibit different volatilities.

In fact, given all the model parameters and the observed price of an Euro-

pean type option it is possible to invert the Black-Scholes formula in order

to find the so-called implied-volatility. Thus, the implied volatility is the

value to be used such that the Black-Scholes price of a plain vanilla option

is equal to the actual price quoted on the market. As Rebonato wittily said

([63]): ”Implied volatility is the wrong number to put in the wrong formula

to obtain the right price”.

Figure 1: Volatility from Market Data (European call options quoted on the

SX5E Index at 1st June 2012).

After an overview of the main mathematical results on the theory of stochas-

tic equations and of financial theory, we have revised results of option pric-

ing. The main strands of research that have been proposed to improve the

Black and Schole Model are:

• Local Volatility, [38].
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• Stochastic Volatility, [41], [25].

• Levy Processes, [3], [6], [67].

All of these approaches release the Black-Scholes hypothesis of a constant

volatility. The class of affine processes, [27], [20], [21], which are a class of

time homogeneous Markov processes, includes the above mentioned exam-

ples. In an affine model the risk-neutral price of a European-type derivative

can be found by solving a system of ordinary differential Riccati equations

and then inverting a Fourier transform.

Nevertheless not all the financial models are affine and for the other ones

there is both a problem to establish if it is well-posed problem and a problem

for the existence of a formula for the evaluation of the solution and of its

calibration.

In Chapter 2 we analyze the other models proposed to overcome the

Black and Scholes model. So, among the most popular model proposed by

literature, in this thesis have been examined the following models:

• Local Volatility Models (LVM). Introduced for the first time in 1994

by Dupire [29] and Derman and Kani [22], these models assume that

the diffusion coefficient of the underlying asset is no longer a constant

value but instead a deterministic function of time and of the underlying

asset itself: σ = σLV (s; t)

dst = rstdt+ σLV (st; t)stdWt (2)

As concerned the Dupire’s model, it has been proposed a new imple-

mentation, numerically efficient, by which, starting form the option

data really quoted on the market, it is obtained an evaluation of all

the characteristic parameters of the model. In this way it is obtained a

local volatility comparable with the implicit volatility observed. From

this approach, it has been highlighted that the local volatility, although

it calibrates the no-uniformity of volatility, it presents a not right dy-
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namics of the well known volatilty smile (implicit volatility inferred by

market).

• Stochastic Volatility Models (SVM).

In this class of models the volatility itself is considered to be a

stochastic process with its own dynamics. Thus, this is a two-factor

model, driven by two correlated Brownian motions, see equation 2.131

below.

• Jump Diffusion Models (JDM) Introduced by Merton these models

considers the underlying asset to follow a Levy process with a drift, a

diffusion and a jump term;

dst = rstdt+ σstdWt + stdJt (3)

Of course, all these three kinds of models have some advantages and disad-

vantages (which will be analyzed later on). In particular in the last ten years

the first two models have been widely studied in academic literature as well

as used at the equity trading desks of investment banks. Local Volatility

models assume volatility to be a deterministic function of the underlying

asset and time, whereas Stochastic Volatility models consider volatility as

a random process itself. While the former models are able to be well cal-

ibrated to traded vanilla options, the latter can reproduce a more realistic

dynamics of implied volatility. The Levy processes can accurately describe

heavy-tailed and skewed distributions typical of asset returns and a semi-

closed form valuation formulas are available for simple contracts, such as

plain vanilla options.

Focus on stochastic volatility models and following the results obtained,

among others, also in Pascucci (Fin. Stoch.)(2008) and Costantini et P. (Fin.

Stoch.)(2012) we could know that when the problem at hand does not fit in

the class of affine models, the risk-neutral price of a European-type deriva-

tive can be computed only by solving a valuation equation. The general

form of which (in the time-homogeneous case) is:
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{
∂tu(t, x) + Lu(t, x)− c(x)u(t, x) = f(t, x) (t, x) ∈ (0, T )×D

u(T, x) = φ(x) x ∈ D
(4)

where, for every smooth g : D ⊂ Rd → R, the operator L is defined as

Lg(x) = ∇g(x)b(x) +
1

2
tr(∇2g(x)a(x)) +

∫
D

(g(z)− g(x))m(x, dz), (5)

for any x ∈ D. Matrix a = σσ> corresponds to the diffusion matrix of a

stochastic process (Xt)t with values in the domain D ⊂ Rd, b represents

the drift of the process under a suitable (risk-neutral) probability measure,

c is a discount rate function, φ is the final payoff function, f is the cost of

execution. If presence of jumps, there is also a measure m which summarizes

the jump intensity and the probability distribution of (Xt)t.

The Dirichlet problem (4) could have some difficulties, such as:

• The diffusion matrix a is singular on the boundary of the domain D,

or is even identically zero in some direction;

• The drift b and the matrix σ are not Lipschitz-continuous up to the

boundary of D;

• The coefficients b and a are fast growing near the boundary or at

infinity;

• The jump intensity is not bounded;

• The state space D has a boundary, but no boundary conditions are

specified.

A result is precisely that under the assumptions below, the pricing problem

has a unique viscosity solution. This type of problem, when the operator in

the equation is hypoelliptic, is deeply studied in Pascucci (Fin. Stoch.)(2008)

and is also examined more recently in Costantini et P. ([16]) and we report

here the main assumptions for existence and uniqueness of viscosity solu-

tions (which, among the others, allows to deal with singular diffusion ma-

trices). The assumptions needed for such an existence (see chapter 2, 2.2.1
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and following) will ensure that any boundary condition will become redun-

dant from an analytical point of view. But, over the hypothesis made on

b, σ, f, φ, c in the interior of D, the fundamental assumption is the existence

of a Lyapunov-type function, that is a no-negative function V ∈ C2(D) such

that 

∫
D V (z)m(x, dz) < +∞

LV (x) ≤ C(1 + V (x)), ∀x ∈ D,

limx∈D,x→x0 V (x) = +∞ ∀x0 ∈ ∂D,

limx∈D,|x|→+∞ V (x) = +∞.

(6)

Nevertheless, from a numerical point of view we need a condition even along

the boundary which will no force the numerical value to a value which will

produce a consistent error. In Ekstrom, E. Tysk (2011) is analyzed for

the case of stochastic volatility models the condition enforceable along the

boundary and moreover, their assumptions will guarantee the existence of

a Lyapunov function. Let X be the stock price process and Y the variance

process associated to the underlying X which will determine the payoff φ,

defined by  dXt =
√
YtXtdW1

X0 = x0

 dYt = β(Yt)dt+ σ(Yt)dW2

Y0 = y0

The option price function u : [0,∞)× [0, T ]→ R corresponding to a payoff

function φ : [0,∞)→ R is given by

u(x, y, t) = Ex,y,t[e−r(T−t)g(x(T ))], (7)

where the indexes indicate that X(t) = x and r is the free-risk rate.

Hypotesis 0.0.1. The drift β ∈ C([0,∞)) is continuously differentiable in

x with bounded derivative, and β(0) ≥ 0, σ ∈ C([0,∞)) is such that α(x) :=

1
2σ

2(x) is continuously differentiable with Holder continuous derivative, and

σ(x) = 0 if and only if x = 0. The functions β, σ, αx are all of, at most,

linear growth:

|β(x)|+ |σ(x)|+ |αx(x)| ≤ C(1 + x), (8)
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for all x ≥ 0. The payoff function φ : [0,∞) → [0,∞) is continuously

differentiable with both φ and φ
′

bounded.

Theorem 0.0.1. Under Hypothesis 2.3.1 and Assumption 2.3.1, the term

structure equation admits a unique solution u ∈ C([0, T ]×[0,∞))∩C1([0, T )×

[0,∞))∩C1,2((0, T )× (0,∞)) which satisfies (2.90) and the terminal condi-

tion u(x, T ) = g(x), for any x > 0, and (2.92).

Then, in Chapter 2 (see Theorem 2.3.3), we state the following result,

where some of Tysk’s assumptions are relaxed, without loosing those ones

needed to have the existence of the Lyapunov function.

Theorem 0.0.2. Let β and α = 1
2σ

2 be locally Lipschitz continuous on

(0,∞). Let α ∈ C([0,∞)) ∩ C1((0, ε)), with bounded derivative on (0, ε),

for some ε > 0, α(y) = 0 if and only if y = 0. Moreover, there exists a

positive constant C > 0 such that

|β(y)|+ α(y) ≤ C(1 + y), (9)

for all y > 0. Assume the following condition:

lim
y→0+

{
α
′
(y)− β(y)

}
< 0. (10)

Then, for every φ ∈ C([0,∞)), satisfying |φ(S)| ≤ C(1 + S), for all S ≥ 0,

the pricing problem associated to (2.96), with payoff function φ, has a unique

viscosity solution u ∈ C([0, T ]× (0,∞)2) such that

|u(t, S, y)| ≤ C (1 + S) , (11)

for all S > 0, y > 0, t ∈ [0, T ].

One of the most important stochastic volatility model is the Heston

model, introduced in 1993, and nowadays it is probably the most popular

stochastic volatility model. Several other models have been derived from

Heston model, including also extension with jumps:
dSt = µStdt +

√
VtStdWt,

dVt = κ(θ − Vt)dt + σ
√
VtdZt,

dWtdZt = ρdt.

(12)
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The Heston model is characterized by five constant parameters, namely κ,

θ, σ, ρ and the initial value of the variance v0. We analyze deeply Heston

Model: the condition enforceable along the boundary (following the Tysk’s

result) is verified by the closed-form solution. The reason that makes this

model so popular and used is probably the fact that it has a semi-closed

form solution for plain vanilla options.

The call t-time price of the European call with strike K and maturity T

is the expected discounted value under the risk-neutral measure Q, namely:

Ct = e−r(T−t)EQ
t [(ST −K)+]

= e−r(T−t)EQ
t [ST1ST>K ]− e−r(T−t)KEQ

t [1ST>K ], (13)

where EQ
t [·] denotes the conditional expected value at time t ∈ (0, T ). By

analogy with the Black-Scholes formula, the guessed solution of this Euro-

pean option is of the form Ct = C(t, xt, Vt), where xt = log(St) and the

deterministic function C takes the form (for specified parameters):
C(t, x, v) = exP1(T − t, x, v)− e−rτKP2(T − t, x, v),

Pj = 1
2 + Ij , j = 1, 2,

Ij = 1
π

∫∞
0 Re

[
e−iφlog(K)fj(φ;x,v)

iφ

]
dφ.

(14)

This enables a fast valuation of European-style options which becomes of

critical importance when calibrating the model to known option prices. The

drawback of stochastic volatility models is that the more realistic dynamics

comes at the cost of an additional theoretical complexity and a greater diffi-

culty in the numerical solution of the pricing problem and model calibration.

In Chapter 3 we refer closely to the paper presented in Donatucci et

al. (2015) for a new approach in the calibration of stochastic volatility

models, in order to provide an efficient approximation of observed plain

vanilla options. The motivation for the introduction of such a viewpoint

is mainly based on the fact that the price of a call option obtained in the

framework of a stochastic volatility model, depends on the value v0, the

initial volatility, that unfortunately acts like an hidden stochastic variable.
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The most simple approach adopted to resolve the estimation of this hidden

variable, is considering v0 as an additional parameter in the calibration

procedure.

There exists even a well-known methods of filtering (which is essen-

tially the problem of inferring the current volatility from current and past

asset prices) to solve the calibration problem which rely on a linear filter

which uses a polynomial state-space formulation of the discrete version of

the continuous-time model, see Carravetta F. at al. (2000). In contrast, we

follow here a different approach inspired on the empirical results proposed

by Dragulescu and Yakovenko (2002) in order to calibrate option prices av-

eraging over volatility. This approach permits an extension to a wide class

of models where could be one or more hidden values which influences market

prices, defining a new notion of arbitrage where the price of the contingent

claim could be validated as mean value of option prices. In Chapter 3, we

shall derive a closed-form formula for the averaged call price (3.108), given

a probability density function Π for the initial volatility. We also generalize

this approach by introducing a different notion of abritrage with respect

to those given in Duffie (2001). In particular we apply this notion to a

market represented by stocks driven by a Brownian motion with coefficients

depending by random parameters and we state a general pricing relation for

a contingent claim in such a market. In the case of the Heston model, given

the functon

CΠ(S0, T,K; Θ) =

∫ +∞

0
CH(S0, v, T,K; Θ)Π(v) dv. (15)

for a probability density function Π such that Π(v) = 0 for any v ≤ 0, we

deduce the analogous of equation (2.25) in the following result.

Theorem 0.0.3. (Average Call Price) If the function v 7→ vΠ(v) belongs

to L1(R), then the following relation holds true:

CΠ(S0, T,K; Θ) = S0Q1(S0, T,K; Θ)− e−rTKQ2(S0, T,K; Θ), (16)
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where

Qj =
1

2
+

1

π

∫ ∞
0

Re
[eCj(T,φ)+iφ log(

S0
K

)MΠ

(
Dj(T, φ)

)
iφ

]
dφ, (17)

for j = 1, 2, S0, T, K > 0, r > 0, Θ ∈ H, with ρ ∈ (−1, 1), MΠ being the

moment generating function related to Π (see (3.96) in Chapter 3) .

For the Heston model, we also prove that for a large class of probabil-

ity distributions assumed for the initial volatility parameter, the estimation

error in the calibration procedure of option prices is less than the case of

the simple pricing formula. Our results are validated with numerical com-

parisons, on observed call prices, between the proposed calibration method

and the classical approach. We have compared the standard methods which

considers v0 as an additional parameter and our approach under three distri-

butions: the Gamma (GAM), the Inverse Gaussian (IG) and the Generalized

Inverse Gaussian (GIG), for which the integrands appearing are explicitly

known. From a numerical point of view, the calculation of the option price

is made somewhat complicated by the fact that the integrands have oscilla-

tory nature. However, the integration can be done in a reasonably simple

fashion by the aid of Gauss-Lobatto quadrature. This integration method

is capable of handling a wide range of functional forms.

In Chapter 4, we use the principle of finite difference methods to ap-

proximate the differential operator defined for the pricing problem studied

(using here again the Heston model, as case study). The finite difference

methods (FD) for derivatives are one of the simplest and oldest methods to

solve differential equations. It was already known by L. Euler (1707-1783)

ca. 1768, in one dimension of space and was probably extended to dimension

two by C. Runge (1856-1927) ca. 1908.

The principle of finite difference methods consists in approximating the

differential operator by replacing the derivatives in the equation using dif-

ferential quotients. The aim of these methods(which could be different de-

pending on the approximation used) consists into to evaluate the values of
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a continuous function f(t, S) on a set of discrete points in (t, S) plane (or

in a high dimensional ones). The discretization will produce a systems of

ODEs as

C ′(t) = F (t, C(t))(0 ≤ t ≤ T ), C(0) = C0. (18)

This method defines approximation Cn to the exact solutions value C(tn)

subsequently for n = 1, 2, 3, ...N . In case of (18) we have

F (t, w) = Aw + b(t) 0 ≤ t ≤ T,w ∈ Rm. (19)

Thus, each step requires the solution of a system of linear equations involving

the matrix (I− 1
2∆tA) where I denotes the m×m identity matrix. Generally

speaking, finite-difference schemes can be divided into two classes: implicit

FD schemes and explicit FD schemes. The θ-schemes refer to those scheme

in which are balanced both explicit and implicit scheme. The most famous

of these last schemes is the Crank -Nicolson scheme, obtained by taking

average of these two schemes. That is, the approximation is obtained as:

Cn = Cn−1 +
1

2
∆tF (tn−1, Cn−1) +

1

2
∆tF (tn, Cn).

In our application to the two-dimensional Heston PDE, the dimension usu-

ally gets very large and the Crank-Nicholson scheme becomes ineffective.

The reason for this is that (I − 1
2∆tA), and hence the matrices in its LU

factorization, possess a bandwidth. For the numerical solution of the semi-

discrete Heston PDE we shall study a splitting schemes of the Alternating

Direction Implicit (ADI) type. In the past decades, ADI schemes have been

successful already in many application areas.

As mentioned above, even if a boundary condition has been proved to not

be necessary from an analytical point of view, we still need such a condition

for the implementation of any numerical scheme. We decide to implement

the PDE defined in [30] (proved that this is consistent with the theoretical

solution) and used the Lyapunov function in this implementation: balancing

the nodes in the boundary with the function found out. So, established such

a function, we will use this one for the implementation of our numerical
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scheme: For the Heston model it is:

L(s, v) = − log(v)− log(s) + s log(s+ 3) + s(v + 1) + v.

To discretize the domain, we introduce an equi-distributed grid points cor-

responding to a spatial step size ∆s = 1/(Ns+1), ∆v = 1/(Nv+1) and to a

time step ∆t = 1/(M+1), where M,Ns, Nv are positive integers, number of

time steps, of nodes in S and V direction respectively. We define the nodes

of the regular grid as:

(tn, si, vj) = (n∆t, i∆s, j∆v)

with n ∈ 0, ..,M + 1, i ∈ 0, ..., Ns + 1, i ∈ 0, ..., Nv + 1. And we denote as

Cni,j the value of an approximate solution at point (tn, si, vj) and C(t, s, v)

the exact solution of problem. The initial data must also be discretized as:

C0
i,j = C0(si, vj) ∀ i ∈ {1, . . . , Ns + 1} ∀ j ∈ {1, . . . , Nv + 1}. (20)

The problem is then to find, at each time step, a vector Ci,j ∈ R2 , such

that its components are the values (Cni,j)1≤i≤Ns 1≤i≤Nv . We decompose the

matrix A into three submatrices,

A = A0 +A1 +A2. (21)

We choose the matrix A0 as the part of A that stems from the FD discretiza-

tion of the mixed derivative term in. Next, in line with the classical ADI

idea, we choose A1 and A2 as the two parts of A that correspond to all spa-

tial derivatives in the s- and v-direction, respectively. The FD discretization

described implies that A1, A2 are essentially tridiagonal and pentadiagonal,

respectively. The ADI scheme considered, the Douglas scheme ([43], [24]),

develops as
Y0 = Cn−1 + 1

2∆tF (tn−1, Cn−1),

Yj = Yj−1 + 1
2∆t[Fj(tn, Yj)− Fj(tn−1, Cn−1)], j = 1, 2,

Cn = Y2.
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The splitting schemes treats the mixed derivative part F0 in a fully explicit

way. F1 and F2 parts are treated implicitly in the schemes. The results

obtained are figured as follows below:

Figure 2: Solution by FD and Lyap

We highlight that our modified scheme converges to the exact solution

quicker that the scheme which does not use the Lyapunov function along

the boundary. Moreover this scheme gets all the stability requirements of

the original scheme. In fact, we derive new linear stability results for this

ADI schemes that have previously been studied in the literature ([44], [56],

[13]). These results are subsequently used to show that the ADI scheme

under consideration are unconditionally stable when applied to finite differ-

ence discretizations of general parabolic two-dimensional convection diffu-

sion equations. In the end, the focal point of the last part of analysis is that:

even if the numerical scheme without the use of the Lyapunov function is

converging to the exact value, the use of the function speeds up this conver-

gence even close to the nodes along the boundary where v = 0. The use of

the Lyapunov function even in the numerical scheme will allow us to obtain
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the convergence in a shorter time, decreasing the numerical error.



Chapter 1

Option Pricing

In order to introduce the mathematical framework necessary in the following,

we have made an extensive use in this chapter of many of the most known

books in financial mathematics. For the more general concept we have

employed [3], [15], [48], [66] and [49], while for what concerns the stochastic

differential equations we have consulted [60] and [62].

1.1 Stochastic Processes

A stochastic process is a family (Xt)t∈[0,T ] of real-valued random variables

defined on the same probability space (Ω,F , P ) indexed by time. The time

parameter t can be either discrete or continuous, but for our purposes, we

will consider continuous-time stochastic processes. For each realization of

the randomness ω, the trajectory X(ω) : t → Xt(ω) defines a function of

time, called the sample path of the process. Thus, a stochastic processes

can also be viewed as random functions: random variables taking values in

function spaces. In a dynamic context, as time goes on, more information

is progressively revealed to the observer. It is necessary to add some time

dependent ingredient to the structure of our probability space to accom-

modate this additional feature, that is done by introducing the concept of

filtration. Moreover, in the sequel, we consider X(t) and Xt as equivalent

notations for the random variable representing the value of the process at

1
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time t.

Definition 1.1.1 (Filtration). A filtration on the probability space (Ω,F ,P)

is an increasing family of σ − algebras (Ft)t∈[0,T ] such that:

Fs ⊆ Ft ⊆ F ∀ 0 ≤ s ≤ t ≤ T. (1.1)

A probability space equipped with a filtration is called a filtered space.

The information flow is described by the filtration Ft and we can now

distinguish quantities which are known given the current information from

those which are still viewed as random at time t. An Ft-measurable random

variable is nothing else but a random variable whose value will be revealed

at time t; similarly a process whose value at time t is revealed by the infor-

mation Ft is said to be non-anticipating or adapted. We recall here that, if

(E, E) and (F,F) are measure spaces, a function f : F → E is said to be

F-measurable if for every subset A ⊂ E , f−1(A) = {x ∈ F : f(x) ∈ A} ∈ F .

Definition 1.1.2. Given a filtration (Ft)t∈[0,T ], a stochastic process (Xt)t∈[0,T ]

is said to be Ft-adapted if, for each t ∈ [0, T ], the random variable Xt is

Ft-measurable.

If we consider a Ft-adapted stochastic process (Xt)t as a function from

the measure space ([0, T ]×Ω,B([0, T ])×F) to (E, E), the following definition

is straightforward.

Definition 1.1.3. A stochastic process
(
Xt

)
t∈[0,T ]

is said to be measurable

if the function (t, ω) 7→ X(t, ω) is measurable from ([0, T ]×Ω,B([0, T ])×F)

to (E, E).

A slightly different notion is introduced in the following definition.

Definition 1.1.4. An Ft-adapted stochastic process
(
Xt

)
t∈[0,T ]

is said to be

progressively measurable if, for every t ∈ [0, T ], the function (t, ω) 7→ X(t, ω)

is measurable from ([0, t]× Ω,B([0, t])×Ft) to (E, E).
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Whenever any other filtration is specified we will assume that the proba-

bility space is endowed with the natural filtration generated by the stochastic

process under study.

Definition 1.1.5. Given a filtration (Ft)t and a random time τ : Ω →

[0,+∞), we say that τ is a Ft-stopping time if

{τ ≤ t} ∈ Ft ∀t ≥ 0. (1.2)

Moreover, we define the σ-algebra

Fτ = {A ∈ FT : A ∩ {τ ≤ t} ∈ Ft , ∀t ∈ [0, T ]}. (1.3)

In other words, a positive random variable that represents the time at which

some event is going to take place is an Ft-stopping time if given the infor-

mation in Ft one can determine whether the event has happened or not. So,

a positive random variable that represents the time at which some event is

going to take place is an Ft-stopping time if given the information in Ft one

can determine whether the event has happened or not.

Definition 1.1.6. Λp[0, T ], p ≥ 1, is the class of progressively measurable

stochastic processes (Xt)t∈[0,T ] on (Ω,F , (Ft)t∈[0,T ],P) such that∫ T

0
|Xs|pds <∞, (1.4)

P-almost surely.

Definition 1.1.7. Mp[0, T ], p ≥ 1, is the class of stochastic processes

(Xt)t∈[0,T ] ∈ Λp[0, T ] such that

E
[∫ T

0
|Xs|pds

]
<∞. (1.5)

Definition 1.1.8. Consider a probability space (Ω,F ,F ,P) equipped with a

filtration (Ft)t∈[0,T ]. The F-adapted process (Wt)t is a standard d-dimensional

Brownian motion if only if its components (Wt)t = (W 1
t ,W

2
t , . . . , W

d
t ) are

one-dimensional independent Brownian motions.



CHAPTER 1. OPTION PRICING 4

Suppose that (µ(t))t ∈ Λ1[0, T ], and that (σ(t))t ∈ Λ2[0, T ], then, for each

x0 ∈ R

X(t) = x0 +

∫ t

0
µ(u)du+

∫ t

0
σ(u)dW (u) (1.6)

defines a stochastic process called an Ito process [64]. It is customary, and

convenient, to express such an equation in differential form, in terms of its

stochastic differential: dX(t) = µ(t)dt+ σ(t)dW (t),

X(0) = x0.
(1.7)

For a given d-dimensional Brownian motion (Wt)t = (W 1
t ,W

2
t , . . . , W

d
t ), d ≥

1, it is possible to consider an n-dimensional Ito process X : Ω× [0, T ]→ Rn

on the same filtered probability space, such that each component Xi(t), for

i = 1, . . . , n, has the stochastic differential dXi(t) = µi(t)dt+
∑d

j=1 σ
j
i (t)dW

j(t),

Xi(0) = xi,0 ∈ R,
(1.8)

where (µi(t))t ∈ Λ1[0, T ], (σji (t)) ∈ Λ2[0, T ] for all i = 1, . . . , n, j = 1, . . . , d.

Now suppose that f : [0, T ]×Rn → R is continuous with all the derivatives

∂f
∂t , ∂f

∂xi
, ∂2f
∂xixj

, i, j = 1, . . . , n, on [0, T ] × Rn, then the question arises of

giving a meaning to the stochastic differential df(t,X(t)) of the process

f(t,X(t)). The well known Ito’s lemma gives the analogue of the chain rule

for stochastic calculus, assuming the hypothesis above.

Theorem 1.1.1. (Ito’s Lemma) If (X(t))t is n-dimensional satisfying

(1.8), then the stochastic process (f(t,X(t)))t has the following stochastic

differential:

df(t,X(t)) =

∂f
∂t

+

n∑
i=1

µi(t)
∂f

∂xi
+

1

2

n∑
i,j=1

(σσT )ij
∂2f

∂xixj

 dt
+

n∑
i=1

d∑
j=1

∂f

∂xi
σji (t)dW

j(t), (1.9)

where, for every t ∈ [0, T ], σ(t) stands for the Rn×d matrix with entries

(σji (t))i,j . Here all the partial derivatives of f are evaluated at (t,X(t)).
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Example 1.1.1. An over-abused example of stochastic process was intro-

duced by Black-Scholes model (1973) to describe the evolution for the un-

derlyng stock of an option, is the Geometric Brownian Motion:

S(t) = s0 exp
{
σW (t) +

(
µ− 1

2
σ2
)
t
}

(1.10)

where (W (t))t is a one-dimensional Brownian motion, s0 > 0, µ and σ > 0

are constant coefficients. Thus, given the function

f(t, x) = s0 exp
{
σx+

(
µ− 1

2
σ2
)
t
}
, (1.11)

clearly, it hods S(t) = f(t,W (t)). Then, applying Ito’s formula, we can

derive the stochastic differential of S(t)

dS(t) = df(t,W (t))

= (µ− 1

2
σ2)fdt+

1

2
σ2fdt

= µS(t)dt+ σS(t)dW (t). (1.12)

By the results reported in next section allow us to establish that the

Geometric Brownian motion is the unique solution to the stochastic differ-

ential equation (1.12). We recall some useful results related to the concept

of martingale.

Definition 1.1.9. Let (Ω,FT , (Ft)t≥0,P) be a filtered probability space. An

(Ft)t≥0-adapted stochastic process (Mt)t≥0 is a martingale if E [|Mt|] < ∞,

for all t ≥ 0, and

E [Ms|Ft] = Mt, (1.13)

for all s ≥ t.

Definition 1.1.10. Let (Ω,FT , (Ft)t≥0,P) be a filtered probability space.

An (Ft)t≥0-adapted stochastic process (Mt)t≥0 is called local martingale if

there existis a sequence of stopping times {τn}n≥1 on (Ω,FT , (Ft)t≥0,P) such

that

i) τn are almost surely increasing: P(τn < τn+1) = 1, for all n ≥ 1;
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ii) τn diverge almost surely: P(τn →∞, as n→∞) = 1;

iii) the stopped process (Mt∧τn)t≥0 is an (Ft)t≥0-martingale, for any n ≥ 1.

There are two popular generalizations of a martingale that also include

cases when the current observation of the process is not necessarily equal to

the future conditional expectation. In particular we recall that (Mt)t≥0 is

called sub (respectively super) -martingale if the inequality ≥ (respectively

≤) holds in (1.13). A well known result shows that any local martingale

bounded from below is a super-martingale (see, for example, [49]).

Theorem 1.1.2. (Martingale Representation Theorem) Let (Wt)t≥0

be n-dimensional Brownian motion on (Ω,FT , (Ft)t≥0,P). Suppose that

(Mt)t≥0 is a martingale on such a space and that Mt ∈ L2(Ω,FT ,P), for all

t ≥ 0. Then there exists a unique stochastic process (gs)s∈[0,t] ∈ M2[0, t],

for all t ≥ 0 such that

Mt(ω) = E [M0] +

∫ t

0
gs(ω)dWs(ω),

for ω ∈ Ω P-a.s., for all t ≥ 0.

Theorem 1.1.3. (Girsanov Theorem) Let (Wt)t≥[0,T ], T > 0, be n-

dimensional Brownian motion on (Ω,FT , (Ft)t∈[0,T ],P). Let λ ∈ M2,n[0, T ]

be such that

ξλt := exp

(
−
∫ t

0
λsdWs −

1

2

∫ t

0
|λ(s)|2ds

)
, t ∈ [0, T ],

is a martingale on (Ω,FT , (Ft)t∈[0,T ],P). Then the process

W̃t := Wt +

∫ t

0
λsds,

is a Brownian motion on the space (Ω,FT , (Ft)t∈[0,T ]) under the probability

measure Q, equivalent to P, defined through by its Radon-Nikodym deriva-

tive:
dQ
dP

(ω) := ξλT (ω).
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A sufficient condition under which ξλ is a strictly positive martingale is

given by the so called Novikov condition:

E
[
exp

(
1

2

∫ T

0
|λ(s)|2ds

)]
<∞.

We have also the following representation result for Ito processes.

Theorem 1.1.4. (Diffusion Invariance Principle) Let (Wt)t≥0 be n-

dimensional Brownian motion on (Ω,FT , (Ft)t≥0,P). If (Xt)t≥0 is a Rn-

valued Ito process satisfying:

dXt = µtdt+ σtdWt,

with (µs)s∈[0,t] ∈ M1,n[0, t], (σs)s∈[0,t] ∈ M2,n×n[0, t], for any t > 0 and

it is a martingale under the probability measure Q, equivalent to P, on

(Ω,FT ), then there exists a n-dimensional Brownian motion (W̃t)t≥0 on

(Ω,FT , (Ft)t≥0,Q) such that dXt = σtdW̃t.

1.2 Stochastic Differential Equations

In this section, we recall some well known results related to the theory of

stochastic differential equations (SDEs). Let µ : [0, T ] × Rn → Rn and σ :

[0, T ]× Rn → Rn×d be Borel-measurable functions. Let (Ω,F ,Ft)t∈[0,T ],P)

the a filtered probability space and, let (Wt)t∈[0,T ] be an adapted d-dimensional

standard Brownian Motion of such a space.

Definition 1.2.1. Let Z an F0-measurable Rn-valued random variable. We

will say that the process (Xt)t∈[0,T ] is a solution of the the stochastic differ-

ential equation  dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

X0 = Z,
(1.14)

if, for every t ∈ [0, T ], it holds

Xt = Z +

∫ t

0
µ(u,Xu)d(u) +

∫ t

0
σ(u,Xu)dWu (1.15)
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Definition 1.2.2. We say that the stochastic differential equation (1.14)

has a strong solution on the given probability space (Ω,F , (Ft)t∈[0,T ],P)

with respect to the fixed d-dimensional Brownian motion (Wt)t if exists a

stochastic process (Xt)t satisfying:

i) (Xt) is adapted to the filtration Ftt;

ii) P(X0 = Z) = 1;

iii) (µ(t,Xt))t and (σ(t,Xt))t belong to Λ1[0, T ] and Λ2[0, T ], respectively;

iv) With probability one, the process satisfies (1.15).

With this definition at hand the notion of the existence of a strong

solution is clear. We will say that strong uniqueness of a solution holds,

only if the construction of a strong solution is unique on any probability

space carrying the random elements (Wt)t and Z, where Z is an arbitrary

initial condition.

Definition 1.2.3. Suppose that, whenever (Ω,F , (Ft)t∈[0,T ],P) is a filtered

probability space equipped with a d-dimensional Brownian motion (Wt)t and

a F0-measurable, Rn-valued random variable Z, any two strong solutions

(Xt)t, (X ′t)t of (1.14) with initial condition Z satisfy P(∀ t ∈ [0, T ] : Xt =

X ′t) = 1. Then we say that strong uniqueness holds for equation (1.14).

We remark that since solution processes are, by definition, continuous,

and [0, T ] is separable, it suffices to have the weaker condition

P(Xt = X ′t) = 1 for all t ∈ [0, T ] in the above definition.

The concept of strong solution is opposed to the one of weak solution.

A strong solution is a weak solution, and if σ is Lipschitz, then any weak

solution is a strong solution. In particular two weak solutions on the same

space involving the same Brownian Motion are identical, where neither the

probability space nor the BM are previously assigned. Both require the

existence of a process Xt that solves the integral equation version of the

SDE. The difference between the two lies in the underlying probability space
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(Ω,F ,P). A weak solution consists of a probability space and a process

that satisfies the integral equation, while a strong solution is a process that

satisfies the equation and is defined on a given probability space.

Definition 1.2.4. A weak solution of the stochastic differential equation

(1.14) with initial condition Z is a stochastic process (Xt)t defined on some

probability space (Ω,F ,P) such that for some admissible filtration (Ft)t and

for some Wiener process (Wt)t adapted to such a filtration, the process (Xt)t

is (Ft)t-adapted and satisfies the stochastic integral equation (1.15).

In our thesis, we are interested in strong solutions, therefore unless

specific cases, in the following we shall assume that the probability space

(Ω,F , (Ft)t∈[0,T ],P) and the d-dimensional Brownian motion (Wt)t are fixed.

We recall the following existence and uniqueness result to strong solutions

for SDEs. For the sake of simplicity, we shall adopt the notation ||·|| both for

the Euclidean norm a vector in Rn and for the norm of a matrix, meaining

that

||σ|| =

 n∑
i=1

d∑
j=1

|σji |
2

2

, ∀ σ ∈ Rn×d.

Theorem 1.2.1. (Existence and uniqueness for SDEs)

Consider the SDE (1.14) where µ : [0, T ] × Rn → Rn and σ : [0, T ] × R →

Rn×d are continuous functions satisfying:

i) (Local Lipshitz continuity) for all ν ∈ N there exists Kν ∈ R so that

||µ(t, x)− µ(t, y)||2 + ||σ(t, x)− σ(t, y)||2 ≤ Kν ||x− y||2, (1.16)

for ||x||, ||y|| ≤ ν, t ∈ [0, T ];

ii) (Growth condition) there exists a constant K ∈ R so that

||µ(t, x)||2 + ||σ(t, x)||2 ≤ K(1 + ||x||2), (1.17)

for x ∈ Rn, t ∈ [0, T ].
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iii) The initial condition Z is F0-measurable and square integrable (i.e.

E[|Z|2] <∞).

Then (1.14) has a unique strong solution (Xt)t ∈M2[0, T ] if X̃t.

The proof of the existence and uniqueness theorem stated above follows

the lines of the classical proofs for existence and uniqueness of solutions

of ordinary differential equations, with appropriate modifications for the

random terms. See, for instance, Karatzas and Shreve (1991) as a reference.

It is useful to give here the definition of equivalent measure.

Definition 1.2.5. Given two probability measures P and Q on the proba-

bility space (Ω,F), we say that Q is absolutely continuous with respect to

P if for any A ∈ F , with P(A) = 0, it holds Q(A) = 0.. In this case, we can

define the Radon-Nikodym derivative dQ
dP as the F-measurable, P-integrable

function h : Ω→ R+ satisfying:

Q(A) =

∫
A
h(ω)dP(ω), A ∈ F . (1.18)

We will use the notation dQ = hdP to denote that Q is absolutely continuous

with respect to P with Radon-Nikodym derivative h. The measues P and

Q are said to be equivalent i f P is absolutely continuous with respect to Q

and Q is also absolutely continuous with respect to P.

1.3 The Feynman-Kac Theorem

The Faynman-Kac Theorem is extensively used in many applications in-

cluded in pricing European-type financial derivatives.

Theorem 1.3.1 (Feynman-Kac Theorem). Let (Ω,F , (Ft)t∈[0,T ],P) be

a filtered probability space and suppose that (Xt)t is the solutions of the SDE

(1.14), where the coefficients µ and σ satisfy the assumptions of Theorem

1.2.1. Consider the parabolic partial differential equation:

∂V

∂t
(t, x) + µT∇V (t, x) +

1

2
tr(σσT∇2V )− rV (t, x) = 0, (1.19)
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defined for all x ∈ Rn and t ∈ (0, T ), subject to the terminal condition

V (T, x) = Φ(x), where Φ : Rn → R is a continuous function and r ∈ R is a

positive constant (usually defined as the short-term interest rate in pricing

problems). The theorem asserts that if V ∈ C([0, T ]×Rn)∩C((0, T )×Rn)∩

is a solution to equation (1.19) satisfying

E
[ ∫ T

0

(
e−rs||∇V Tσ(s,Xs)||2

)
ds
]
<∞, (1.20)

then, the following holds true

V (t,Xt) = E
[
e−r(T−t)Φ(XT )|Ft

]
, (1.21)

for any t ∈ [0, T ], P almost surely.

The Feynman-Kac theorem illustrates the close connection between stochas-

tic differential equations and partial differential equations and it can be used

in both directions. One of our objectives is to study enough general condi-

tions to guarantees the existence and the uniqueness of the solution to the

Dirichlet problem (1.19) associated with stochastic volatility models used in

option pricing. Often in such models, the domain of the problem is not the

whole space Rn and the differential operator is degenerate at the boundary.

1.4 Option Pricing

The stochastic calculus has the appearance of having been expressly de-

signed as a tool for financial analysis, so naturally does it fit the applica-

tion. Stochastic calculus is now the language of pricing models and risk

management. All continuous-time models are based on Brownian motion,

despite the fact that most of the results extend easily to the case of a general

abstract information filtration.

A financial derivative, for example an option, is an instrument whose

value depends on the values of some underlying variables, where the under-

lying can be a commodity, an interest rate, a stock, a stock index, a currency,

etc. This payment is called payoff. An example widely discussed in what fol-

lows is the European call option. The buyer of the call option has the right,
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but not the obligation, to buy an agreed quantity of the underlying from the

seller of the option at a certain time (the expiration date) for a certain price

(the strike price). The seller incurs a corresponding obligation to fulfill the

transaction, that is to sell if the option holder elects to ”exercise” the option

at expiration. The buyer pays a premium to the seller for this right. Once

a financial derivative is defined the first question is the following: ”‘what is

the fair price that the seller of the derivative should charge to the buyer”’.

In order to answer this question we introduce a few concepts. First af all

we will suppose the market to be frictionless. This means

1. No transaction costs: no cost incurred in making an economic ex-

change;

2. Perfect liquid markets: the assets traded in the market can be sold

without causing a significant movement in the price and with minimum

loss of value;

3. No taxes;

4. No restrictions on short sales: the practice of selling securities or other

financial instruments that are not currently owned is allowed for any

quantity of the financial instrument;

5. no transaction delays.

Finally, we suppose that investors are allowed to trade continuously up to

some fixed finite planning horizon T , where all economic activity stops. An

essential feature of market is based on the absence of arbitrage opportuni-

ties. This assumption can be interpreted as a market equilibrium condition.

1.4.1 The Arbitrage Principle

Let (Wt)t∈[0,T ] be a standard d-dimensional Brownian motion defined on the

filtered probability space (Ω,F , (Ft)t∈[0,T ],P) . We consider a d-dimensional

market with a set of risky non-dividend-paying assets, with price at time t
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given by Si(t), i = 1, . . . n, and a riskless asset, a bond, with price at time t

given by S0(t). The price process vector (St)t = (S0(t), S1(t), . . . , Sn(t))t is

driven by the following stochastic system of equations: dSi(t) = µi(t)dt+
∑d

j=1 σ
j
i (t)dW

j
t ,

Si(0) = si > 0 i = 1, . . . , n,
(1.22)

and  dS0(t) = rtS0(t)dt,

S0(0) = s0 > 0.
(1.23)

where µ and σ must meet the conditions of 1.2.1. In particular the short-

term interest rate (rt)t belongs to M1[0, T ]. Without loss of generality, we

can assume that s0 = 1 so that S0(t) := exp (
∫ t

0 rudu). We also assume that

initial prices si, i = 1, . . . , n are known constants.

Definition 1.4.1. An admissible portfolio (strategy) for the market repre-

sented by (1.22)-(1.23) is a Rn+1-valued progressively measurable process

(θt)t = {(θ0(t), . . . θn(t))}t with respect to the filtration (Ft)t such that

〈θ(t), µ(t)〉 ∈ M1[0, T ] and 〈θ(t), σj(t)〉 ∈ M2[0, T ] for any j = 1, . . . , d.

The value at time t of the portfolio associated with (θt)t is given by 〈θt, St〉.

Definition 1.4.2. We say that a portfolio strategy (θt)t ∈ Λ(S) is self-

financing if the following holds true:

〈θt, St〉 = 〈θs, Ss〉+

∫ t

s
〈θu, dSu〉 :=

= 〈θs, Ss〉+

∫ t

s
〈θu, µu〉du+

d∑
j=1

∫ t

s
〈θu, σju〉 dW j

u , (1.24)

for any 0 ≤ s ≤ t ≤ T .

The set of all self-financing strategies for the market S is denoted as

Θ(S). We also recall the standard notion of arbitrage, as in Duffie (2001).

Definition 1.4.3. A portfolio strategy θ ∈ Θ(S) is an arbitrage if

〈θ(0), S(0)〉 ≤ 0 ≤ 〈θ(T ), S(T )〉 P-a.s. (1.25)

and

P(〈θ(T ), S(T )〉 > 0) > 0. (1.26)
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In financial modelling is a common practice to consider a state price

deflator to discount the price process S. In our case (non dividend stocks)

we choose Y (t) := [S0(t)]−1 = exp(−
∫ t

0 rudu) as state price deflator.

Therefore, we consider the discounted price process V (t) = Y (t)S(t). In the

following with E[·] we denote the expected value with respect to measure

P; if the expected value is calculated with respect to a measure Q different

from P, it will be denoted with EQ[·]. We say that a probability measure

Q defined on (Ω;FT ) is an equivalent martingale measure if Q is equivalent

to P according to Definition (1.2.5) and the discounted stock-price process

(Vt)t is a {Ft}t∈[0,T ]-martingale under Q. The existence of an equivalent

martingale measure is related to the absence of arbitrage, while the unique-

ness of the equivalent martingale measure is related to market completeness,

see ([4], [46]). We also recall that Battig (1999), making use of functional

analytic methods, gives a very general definition of completeness in a large

financial market, which is invariant with respect to a change in probability

and independent of No Arbitrage.

Proposition 1.4.1. Completeness of the market is equivalent to uniqueness

of the equivalent martingale measure when one of the following conditions

is fulfilled:

• the market contains a finite number of assets;

• every asset price process has continuous trajectories;

• the filtration F (generated by the asset price processes) is strictly left

continuous, that is, for all stopping times τ , we have Fτ = Fτ−

1.5 Black and Scholes Model

The Black and Scholes model was first published by Fischer Black and My-

ron Scholes in the 1973 on the paper entitled ”The Pricing of Options and

Corporate Liabilities”, published in the Journal of Political Economy. Af-

ter 42 years of its first publication, the problem of derivative pricing which
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could overcome the Black and Scholes model has not been completely solved.

The difficult concerning derivative pricing is to define a fair price. The just

mentioned Black-Scholes model represents a universal accepted framework

for derivative pricing. In his now famous doctoral thesis, Bachelier (1900)

proposed to model asset prices by an arithmetic Brownian motion, i.e. he

suggested the model dSt = µdt + σdWt, for constants µ, σ > 0 and for a

1-dimensional Brownian motion. While this was a good first approximation

to the dynamics of stock prices, arithmetic Brownian motion has one seri-

ous drawback: as St is normally distributed with mean S0 +µt and variance

σ2t, the asset price can become negative with positive probability, which is

at odds with the fact that real-world stock-prices are always nonnegative

because of limited liability of the shareholders.

Samuelson (1965) therefore suggested replacing arithmetic Brownian mo-

tion by geometric Brownian motion. This model assumes the existence of

a risk-free asset Bt and of an underlying asset St, following respectively a

deterministic and a geometric Brownian motion dynamics: dSt = µStdt+ σStdWt,

dBt = rBtdt,
(1.27)

where the deterministic parameters µ, σ and r represent respectively the

local mean rate of return of the asset, the volatility of the asset and the short-

term interest rate. Under the Black and Scholes setting, the no arbitrage

value driving the price evolution of a European-type option with maturity

T > 0, is the unique solution to the following partial differential equation

(PDE) :
∂C

∂t
+

1

2
σ2S2∂

2C

∂S2
+ rSS(t)

∂C

∂S
− rC = 0, (1.28)

for all S > 0, t ∈ (0, T ), where C is the price of the option as a function

of stock price S and time t, with terminal condition, at maturity T , given

by the payoff of the option, satisfying suitable boundness conditions. In

the case of a European call option, there exists an equivalent martingale
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measure Q for the discounted price process of the underlying such that

C(t, St) = e−r(T−t)EQ[(ST −K)+|Ft]. (1.29)

Under such a measure, the price process (St)t is a geometric Brownian mo-

tion under Q:

ST = Ste
(r−σ

2

2
)(T−t)+σ(WQ

T−W
Q
t ), (1.30)

so we can write

C(t, St) = e−r(T−t)EQ[(Ste
(r−σ

2

2
)(T−t)+σ(WQ

T−W
Q
t ) −K)+|Ft]. (1.31)

This relation can explicitly evaluated in closed form. The Black-Scholes

model contains some rather strong simplifications of the real world: the

model implies that the log-returns are normally distributed but historical

returns often displays non-normal features; the model assumes zero transac-

tion costs (without considering that the replicating strategy yields infinitely

large losses); the volatility is assumed to be known and constant over time.

This last assertion implies that all options on a specific stock should have

the same implied volatility. Actually this is not the case. Instead, implied

volatility empirically vary with strikes (K) and maturities (T ). The implied

volatility graphed against strike for a fixed maturity is known as the volatil-

ity smile or the volatility skew. Plotting the implied volatility against both

strike and time to maturity gives the so called volatility surface.

The names refers to the forms these curves often take, which may vary in

different markets. Stock options for example often shows a skew effect, while

in the currency world we are more likely to see a smile curve. Implied volatil-

ity also seems to vary with time to maturity, a feature commonly referred

to as the term structure of volatility. The more we approach the maturity,

the more the skew or smile behaviour accentuates. The existence of the

volatility smile/surface casts a doubt over the Black-Scholes model and it

is one of the why several other smile-consistent model have been developed.

The non-constant volatility models can be parted in two categories:
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Figure 1.1: Volatility from Market Data (European call options quoted on

the SX5E Index at 1st June 2012).

• The model with endogenous volatility, where the volatility is described

by a stochastic process that depends on the same risky factor as the

underlying. In this case the market is in general complete.

• The exogenous volatility models, where the volatility is described by

a stochastic process driven by one or more than one additional risky

factors. In this setting the market often is incomplete.

The most popular endogenous volatility models are the local volatility mod-

els, where the volatility is assumed to be a function of t and St, while in the

second class, we can highlighted the stochastic volatility models.

1.6 Affine Models

In order to take into account the empirical evidence of a non constant volatil-

ity, several models have been proposed during the last twenty years ([20],

[21], [27]). We will give a detailed description of these models in the next

chapter. Here we would like to mention only an overview. Among the
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Figure 1.2: Implied volatility of SP500 options at 27-Nov 2005.

most popular models proposed, we recall the exponential Lévy model (which

generalize the Black- Scholes model by introducing jumps) and stochastic

volatility models.

Both these approaches relaxed the Black-Scholes hypothesis of a constant

volatility. The class of affine processes includes the above mentioned ex-

amples. We introduce the affine processes as a class of time-homogeneous

Markov processes.

Definition 1.6.1. A time-homogeneous Markov process with state space

(D,B(D)) is a family

(Ω, (Xt)t≥0, (Ft)t≥0, (pt)t≥0, (P)x∈D), (1.32)

where

- Ω is a probability space;

- (Xt)t≥0 is a stochastic process taking values in D;

- (Ft)t≥0 = σ(Xs, s ≤ t);

- (pt)t≥0 is a semigroup of transition functions on (D,B(D));

- (P)x∈D is a probability measures on (Ω,∨t≥0Ft).
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satisfying

E[f(Xt+s)|(Ft)] = E[f(Xs)], (1.33)

P-a.s., for all misurable functions f in D.

In fact, the affine processes are a class of time homogeneous Markov

processes characterized by two additional properties. The first one be-

ing stochastic continuity, the second one is a condition which character-

izes the Fourier-Laplace transform of the one-time marginal distributions.

This introduction of affine processes in taken from [27], [21] and [51]. For

u = (v, w) ∈ Cm × Cn we define the function fu ∈ C(D) by

fu(x) := e〈u,x〉 = e〈v,y〉+〈w,z〉, x = (y, z) ∈ D. (1.34)

Notice that fu ∈ Cb(D) if and only if u lies in U := Cm− × iRn,

Definition 1.6.2. Let

(W, (Xt)t≥0, (Ft)t≥0, (pt)t≥0, (P)x∈D) (1.35)

be a time homogeneous Markov process. The process is said to be an affine

process if it satisfies the following properties:

• for every t ≥ 0 and x ∈ D, lims→t ps(x, ·) = pt(x, ·), weakly,

• there exist functions ϕ : R≥0 × U → C and Ψ : R≥0 × U → Cd such

that

E[e〈u,Xt〉] =

∫
D
e〈u,ε〉pt(x, dε) = eϕ(t,u)+〈x,Ψ(t,u)〉 (1.36)

for all x ∈ D and (t, u) ∈ R≥0 × U.

The affine structure and Markov property give an appealing property for

the functions ϕ and Ψ.

Proposition 1.6.1. The functions ϕ and Ψ satisfy the following semiflow

property: for every u ∈ U and t, s ≥ 0

Ψ(t+ s, u) = Ψ(t, u) + Ψ(s, ϕ(t, u)) Ψ(0, u) = 0, (1.37)

ϕ(t+ s, u) = ϕ(s, ϕ(t, u)) ϕ(0, u) = u. (1.38)



CHAPTER 1. OPTION PRICING 20

The functions ϕ and Ψ can be uniquely chosen so that they are jointly

continuous on R≥0 × U. See Section 3 in [27] for the proof of the previous

proposition. Regularity is also a key feature for an affine process. It gives

differentiability of the Fourier-Laplace transform with respect to the time.

Definition 1.6.3. An affine process X is called regular if, for every u ∈ U ,

the partial derivatives

F (u) := ∂tΨ(t, u)|t=0 R(u) := ∂tϕ(t, u)|t=0 (1.39)

exist for all u ∈ U and are continuous in

Um = {u ∈ Cd| sup
x∈D

Re(〈u, x〉) ≤ m} (1.40)

for all m ≥ 1.

Theorem 1.6.1. Every affine process is regular. Moreover, on the set R≥0×

U , the functions Ψ and ϕ satisfy the following system of generalized Riccati

equations:

∂tΨ(t, u) = F (ϕ(t, u)) Ψ(0, u) = 0, (1.41)

∂tϕ(t, u) = R(ϕ(t, u)) ϕ(0, u) = u. (1.42)

with

F (u) = 〈b, u〉+
1

2
〈u, au〉 − c

+

∫
D\{0}

(
e〈u,ε〉 − 1− 〈πju, πjh(ε)〉

)
m(dε) (1.43)

Rk(u) = 〈βk, u〉+
1

2
〈u, αku〉 − γk

+

∫
D\{0}

(
e〈u,ε〉 − 1−

〈
πj∪{k}u, πj∪{k}h(ε)

〉 )
Mk(dε) (1.44)

for k = 1, · · · , · · · , d. The set of parameters

(b, β, a, α, c, γ,m,M) (1.45)

is specified by
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b, βi ∈ Rd i = 1, · · · , d, (1.46)

a, αi ∈ Sd+ i = 1, · · · , d, (1.47)

c, γi ∈ R≥0 i = 1, · · · , d, (1.48)

m,Mi are Levy measures fori = 1, · · · , d, (1.49)

This set of parameters is called admissible for D = Rm≥0 × Rn, if the

conditions in the table below are satisfied with I and J defined as

I = {1, · · · ,m} and J = {m+ 1, · · · , d}. (1.50)

The set of admissible parameters fully characterizes an affine process in D.

The theorem just mentioned is referred to Theorem 6.4 in [21]

Example 1.6.1. [Cox-Ingersoll-Ross model (1985)] Consider the one di-

mensional diffusion (Xt)t≥0 given by the solution of the following SDE: dXt = (b− βXt)dt+
√
αXtdWt,

X0 = x > 0,
(1.51)

where b, β, α > 0 are positive coefficients satisfying the well known Feller’s

condition [34], 2b ≥ α. Actually such a condition avoids the possibility

of negative values for the process. The model is often used to describe

the evolution of interest rates. It is a type of one-factor model (short-rate

model) as it describes interest rate movements as driven by only one source

of market risk. The model can be used in the valuation of interest rate

derivatives. It was introduced in 1985 by Cox, Ingersoll and Ross [17] as an

extension of the Vasicek model (1977). More generally, when the process is

at a low level (close to zero), the standard deviation also becomes very small,

which dampens the effect of the random shock on the rate. Consequently,
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Diffusion

akl = 0 for k ∈ Iorl ∈ J

αj = 0 ∀j ∈ J

{αi}kl = 0 if k ∈ I \ {i} or l ∈ I \ {i},

Drift

b ∈ D

(βi)k ≥ 0 ∀i ∈ I and k ∈ I{i}

(βj)k = 0 ∀j ∈ J, k ∈ I

Killing

γj = 0 ∀j ∈ J

Jumps

supp(m) ⊆ D and
∫
D\{0}

(
(|πIε|+ |πJε|2) ∧ 1

)
m(dε) <∞

Mj = 0 ∀j ∈ J

supp(Mi) ⊆ D ∀i ∈ I and∫
D\{0}

(
(|πI\{i}ε|+ |πJ∪{i}ε|2) ∧ 1

)
Mi(dε) <∞

Table 1.1: Set of conditions for admissible parameters.

when the process gets close to zero, its evolution becomes dominated by

the drift factor, which pushes the process upwards (towards equilibrium).

The CIR is an ergodic process, and possesses a stationary distribution. The

same process is also used in the Heston model (1993) to model stochastic

volatility. The process (Xt)t is also an example of affine process in R≥0. Its

Fourier-Laplace transform can be explicitly computed as the solution of the

Riccati ordinary differential equation: ∂tΨ(t, u) = −βΨ(t, u) + 1
2αΨ2(t, u)

Ψ(0, u) = u
(1.52)

and

ϕ(t, u) = b

∫ t

0
Ψ(s, u)ds.



Chapter 2

Volatility Models

As mentioned in the previous chapter, several models have been proposed

during the last twenty years, developing and generalizing the Black-Scholes

framework. As previously exposed in the first chapter the most popular mod-

els proposed to overcome such evidences are the exponential Levy model

(which generalize the Black- Scholes model by introducing jumps), Local

Volatility Models, the Stochastic Volatility model and Jump Diffusion Mod-

els. In particular we recall here the last three main approaches:

• Local Volatility Models (LVM).

Introduced for the first time in 1994 by Dupire [29] and Derman and

Kani [22]these models assume that the diffusion coefficient of the un-

derlying asset is no longer a constant value but instead a deterministic

function of time and of the underlying asset itself: σ = σLV (s; t)

dSt = rStdt+ σLV (Stt)StdWt (2.1)

• Stochastic Volatility Models (SVM).

In this class of models the volatility itself is considered to be a

stochastic process with its own dynamics. Thus, this is a two-factor

model, driven by two correlated one-dimensional Brownian motions,

see equation 2.131

• Jump Diffusion Models (JDM).

23
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Introduced by Merton these models considers the underlying asset to

follow a Levy process with a drift, a diffusion and a jump term;

dSt = rStdt+ σStdWt + StdJt, (2.2)

Of course, all these three kinds of models have some advantages and disad-

vantages. In particular in the last ten years the first two models have been

widely studied in academic literature as well as used at the equity trading

desks of investment banks.

2.0.1 Local Volatility Model

Local Volatility models, introduced for the first time in 1994 by Dupire

and Derman and Kani [29], [22], assume that the diffusion coefficient of

underlying is no longer a constant value but instead a deterministic function

of time and of the underlying asset itself: σ = σLV (s, t).

dSt = rStdt+ σLV (St, t)StdWt (2.3)

The Local Volatility Models are not so far from the original Black and Sc-

holes model, mainly for the reason that they are a straightforward general-

ization of the original Black-Scholes framework. The principal advantage is

the possibility of a (nearly) perfect fit to the quoted market price.(if we had

a continuum of traded vanilla prices for each strike and maturity). Infact,

in this case a clear representattion could be possible.

Dupire Equation

The Black-Scholes backward parabolic equation in the variables (s, t) is the

Feynman-Kac representation of the discounted expected value of the final op-

tion value. It is possible to find the same option price solving a ”‘dual prob-

lem”’, namely a forward parabolic equation in the variables (K,T ) known

as dual Black-Scholes equation or Dupire’s equation ([29], [22]).

Proposition 2.0.2. [Dupire’s equation] The value of a call option as a

function of the strike price K and the time to maturity T given the present
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value of the stock S, with a continuous dividend rate d ≥ 0, and short-term

rate r ≥ 0, is given by the following forward parabolic equation known as

Dupire’s equation:

∂C
∂T −

1
2σLV (K,T )K2 ∂2C

∂K2 + (r − d)K ∂C
∂K − dC = 0, on (0,∞)× (0,∞),

C(0;T ) = S ∀ T ∈ (0,∞),

limK→∞C(K;T ) = 0 ∀ T ∈ (0,∞),

C(K; 0) = (S −K)+ ∀ K ∈ (0,∞).

Proof. Let’s consider the transition probability density function p(S, T ;S0, 0)

of ST , given the initial value S0 > 0, at time t = 0, related to the following

risk-neutral dynamics:

dSt = (r − d)Stdt+ σLV (St, t)StdWt (2.4)

with the initial value S0. The diffusion coefficient of the underlying is as-

sumed to be a deterministic function of time and of the underlying asset

itself, σ = σLV (s; t), and Wt is a standard 1-dimensional Brownian motion.

The value of an option is the discounted value of the expected pay-off, for a

Call option it means that:

C(K,T ) = e−rT
∫ +∞

0
(S −K)+p(S, T, S0, 0)dS

= e−rT
∫ +∞

K
(S −K)p(S, T, S0, 0)dS,

for any T, K > 0. Deriving the above expression twice with respect to the

strike price, we get

∂C

∂K
= e−rT

∫ +∞

K
p(S, T ;S00)dS, (2.5)

∂2C

∂K2
= e−rT p(K,T ;S0, 0). (2.6)

The transition density function of the underlying stock process corresponds

to the second order derivative of the call price with respect to the strike

(originally due to Breeden and Litzenberg [9]):

p(K,T ;S0, 0) = erT
∂2C

∂K2
(2.7)
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The probability density function solves the Fokker-Planck equation:

∂p

∂T
=

1

2

∂2

∂S2
[σ2
LV (S, T )S2p(S, T )]− (r − d)

∂

∂S
[Sp(S, T )]. (2.8)

for all S > 0, T > 0. Here, for the sake of simplicity, we have omitted the

explicit dependence of p with respect to S0 and the initial time. Evaluating

the time derivative of relation (2.5), we get

∂C

∂T
= −rC + e−rT

∫ +∞

K
(S −K)

∂p

∂T
dS, (2.9)

and by substituting the time derivative of the probability density function

inside the integral as in equation (2.8), the above equation can can be re-

written as:

∂C

∂T
+ rC = e−rT

∫ +∞

K
(S −K)

(1

2

∂2

∂S2
[σ2
LV (S, T )2S2p] +

−(r − d)
∂

∂S
[Sp]

)
dS. (2.10)

By integrating the righthand side by parts twice and leveraging the fact that

p(S, T ) decays exponentially fast once S →∞, we deduce:

∂C

∂T
+ rC = e−rT

1

2

(
[(S −K)

∂

∂S
[σ2
LV (S, T )S2p(S, T )]]S=+∞

S=K (2.11)

−
∫ +∞

K

∂

∂S
[σ2
LV (S, T )2S2p(S, T )]

)
− e−rT (r − d)

(
[(S −K)Sp(S, T )]]S=+∞

S=K −
∫ +∞

K
Sp(S, T )dS

)
=

1

2
e−rTσ2

LV (K,T )2K2p(K,T ) + (r − d)

(
C + e−rtK

∫ +∞

K
p(S, T )dS

)
.

Using the expression (2.5) and (2.6) in the first and second term of the right

hand side respectively we obtain Dupire’s equation:

∂C

∂T
=

1

2
σ2
LV (K,T )K2 ∂

2C

∂K2
− (r − d)K

∂C

∂K
− dC, (2.12)

for all K > 0, T > 0.
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From Dupire’s equation, it is possible to derive a formula to evaluate

the local volatility function σLV (·; ·) from option prices. This is known as

Dupire’s formula:

σ2
LV (K,T ) = 2

∂TC + (r − d)K∂KC + dC

K2∂2
KC

. (2.13)

This seems to be straightforward, if we could observe on the market a con-

tinuum of plain vanilla prices. Unfortunately, only some options could be

derived from direct observation of market data and the residual ones have to

be interpolated and extrapolated starting from these. As it could be easily

inferred this entails a computational error (which becomes bigger in the t

the denominator) and let the Dupire’s formula to be not so useful to put in

practice. It is possible to reformulate it in a more suitable form: using the

Black-Scholes implied volatility σ(K, t) instead of option prices. The idea

[35] and [38] is to insert the Black-Scholes formula and its derivative into

Dupire’s formula. Starting from

C = CBS(St, t,K, t, σI(K, t)), (2.14)

and applying the rule of differentiation, it can be obtained that

σ2
LV (K, t) =

σ2
I + 2tσI(

∂σI
∂t + (r − d)K ∂σI

∂K )

(1 + d1K
√
t∂σI∂K )2 +K2σIt(

∂2σI
∂K2 − d1

√
t(∂σI∂K )2)

(2.15)

with

d1 =
log S0

K + (r − d+ 1
2σ

2
I )t

σI
√
t

(2.16)

Nevertheless, there is still the problem that implied volatility is not known

as a continuous function of strike prices and maturities and in 2004 Gatheral

proposed an interesting parametrization of the implied volatility surface

called Stochastic Volatility Inspired (SV I) given by the following function:

σSV II (x, tn) =

√
Cn1 + Cn2 [Cn3 (x− Cn4 ) +

√
(x− Cn4 )2 + Cn5 , (2.17)

where the coefficients mentioned above are calibrated form the market data.

Thus, denoting by Tn (for n = 1 · · ·N), the vector of the N available market
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maturities, it is possible to evaluate N different SV I functions σI(x, tn), for

n = 1 · · ·N , and then we define for t ∈ (tn, tn+1):

σSV II (x, t) = σSV II (x, tn) +
t− tn

tn+1 − tn
[σSV II (x, tn+1)− σSV II (x, tn)]

=
tn+1 − t
tn+1 − tn

σSV II (x, tn) +
t− tn

tn+1 − tn
σSV II (x, tn+1). (2.18)

The model assumes the variable x to be the logarithmic forward moneyness

x = log(K/Ft) The five parameters for each maturity:

• Cn1 ≥ 0 provides the constant component of volatility.Increasing. Cn1

implies a vertical translation of the smile;

• Cn2 ≥ 0 influences the slope of the volatility in its wings. Increasing

Cn2 increases the slopes of both the left and right wings, tightening the

smile;

• Cn3 ∈ (−1, 1) provides a counter-clockwise rotation of the smile. In-

creasing Cn3 decreases (increases) the slope of the left(right) wing;

• Cn4 provides an horizontal translation. Increasing Cn4 translates the

smile to the right;

• Cn5 > 0 influences the smile curvature. Increasing Cn5 reduces the

at-the-money curvature of the smile.

The calibration of coefficients Cn1 , C
n
2 , C

n
3 , C

n
4 , C

n
5 which are obviously time-

dependent is implemented by solving a least-squares constrained optmiza-

tion problem, by finding those coefficients such that the implied volatilities

of the model are as closest as possible to the ones actually quoted on the

market. The idea is to calibrate the parameters starting from the closest

maturities till the farthest ones. Let xn = [Cn1 , C
n
2 , C

n
3 , C

n
4 , C

n
5 ], then we

have to solve a sequence of minimization problems:

(M)

 for every n = 1, · · · , N find xn ∈W ⊂ R5 such that :

Jn(xn) = miny∈W Jn(y)
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where the cost functional is

Jn(y) =
M∑
j

ωj

(
σSVI
I (Kj , tn; y)− σMarket

I (Kj , tn)

σMarket
I (Kj , tn)

)2

, (2.19)

where Kj , j = 1, · · · ,M is the vector of market strike prices, tn n = 1, ·, N

is the vector of maturities, σMarket
I (Kj , tn) is the implied volatility ob-

served on the market for a contract with strike price Kj and maturity tn;

σSV
I (Kj , tn; y) is the implied volatility provided by the SV I model for a con-

tract with strike price Kj and maturity tn, given the vector of coefficients y;

ωj are weights chosen to fit better the central region of the smile. The input

data for the minimization problem (M) are shown in table below. Starting

from the first maturity, and using the initial guess conditions, the cost func-

tional (2.19) is minimized with a Lsq algorithm. The method minimizes the

vector-valued function, which will be the functional cost, using the vector of

initial parameter values, x0, where the lower and upper bounds of the pa-

rameters will be specified. We will use the Matlab code function lsqnonlin,

which uses an interior-reflective Newton method for large scale problems.

Matlab defines a large scale problem as one containing bounded/unbounded

parameters, where the system is not under-determined, i.e., where the num-

ber of equations to solve is more than the required parameters. Given that

the underlying of the model is liquidly traded, there should exist a rich set

of market prices for calibration. So, hopefully, our system will never be

under-determined. The result produced by lsqnonlin is dependent on the

choice of x0, the initial estimate. This is, hence, not a global optimizer, but

rather, a local one. We have no way of knowing whether the solution is a

global/local minimum.

Once the calibration of the coefficients is accomplished for the first matu-

rity, we use these values as new first guess conditions for the next calibration

of the coefficients of the second maturity and so on till the last expiration.

This procedure is quite natural since consecutive smiles are rather similar

and therefore the fitted coefficients would be quite close as well.
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Dupire Coefficients Initial guess Lower bound Upper bound

C1 0.001 0.0001 10

C2 0.6 0.0001 10

C3 -0.3 -1 1

C4 0.05 -10 10

C5 0.05 0.0001 10

Once calibrating all the coefficients (for each maturity) we can calculate

the surface of Implied Volatility. Figure below shows the whole surface of

calibrated SV I Implied Volatility σSVI (K;T ) as a function of strike prices

and maturities.

Figure 2.1: Stochastic Volatility Inspired (SVI)

The use of the Dupire’s formula combined with the SV I parametrization is

one of the most direct, fast, stable and reliable method to reconstruct the

Local Volatility surface from marked data.
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2.1 Stochastic Volatility Model

The stochastic volatility model has been proposed as a description of data

from financial markets by Clark (1973), Tauchen and Pitts (1983), Taylor

(1986, 1994), and others. The appeal of the model is that it provides a simple

specification for speculative price movements that accounts, in qualitative

terms, for broad general features of data from financial markets such as lep-

tokurtosis and persistent volatility. Also, it is related to diffusion processes

used in derivatives pricing theory in finance; see Mathieu and Schotman

(1994) and references therein. The standard form as set forth, for instance,

in Harvey, Ruiz, and Shephard (1994), Jacquier, Polson, and Rossi (1994),

and Danielsson (1994), takes the form of an autoregression whose innova-

tions are scaled by an unobservable volatility process, usually distributed as

a lognormal autoregression. Unlike the previous section, these kind of mod-

els consider the volatility itself as a random process with its own dynamics.

The Stochastic Volatility Models, have specular properties to the Local ones:

in fact they provide a good smile dynamics over the time, but a bad fit of

the present market prices. So, the former models are able to be well cali-

brated to traded vanilla options, the latter can reproduce a more realistic

dynamics of implied volatility. The main feature of a stochastic volatility

model (SV) is to consider the volatility itself as a stochastic process. Then,

while the standard Black-Scholes model assumes a constant volatility term

σ a Stochastic Volatility Model considers volatility as a function of a process

St. Thus, the model derived is a two-factor model, driven by two correlated

Brownian motions on the same filtered probability space, namely Wt and

Zt, as 
dSt = µStdt + b(Vt)StdWt,

dVt = a(Vt)dt + c(Vt)dZt,

dWtdZt = ρdt,

(2.20)

where µ is a constant coefficients which represents the instantaneous rate

of return of the stock, ρ ∈ [−1, 1] is a constant correlation parameter,
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a, b, c : [0,∞) → [0,∞) are deterministic and continuous functions, sat-

isfying suitable regularity assumptions such that system (2.20) admits a

unique strong solution, for any initial datum S0 ≥ 0, V0 ≥ 0, satisfying

Vt ≥ 0, for all t ≥ 0, with probability 1. A SV model assumes two sources of

randomness Wt, Zt and only one traded asset St depending on both these

sources. In this case, we cannot hedge the risk and the model is said to be

incomplete. The concept of completeness of the model is strictly related to

the Girsanov theorem and the existence of an equivalent martingale measure

(as mentioned in the previous chapter). Actually, if the model is complete

then it exists only one equivalent measure and the price of every derivative

is uniquely determined. On the other hand, if the model used is incomplete,

there exist many different martingale measures. Estimation of the stochastic

volatility model presents intriguing challenges, and a variety of procedures

have been proposed for fitting the model. Extant methods include method

of moments (Dupire and Singleton, 1993; Andersen and Sorensen, 1996);

Bayesian methods (Jacquier, Polson, and Rossi, 1994; Geweke, 1994), simu-

lated likelihood (Danielsson, 1994), and Kalman Filtering methods (Harvey,

Ruiz, and Shephard, 1994; Kim and Shephard, 1994).

2.1.1 The Heston model

One of the most important stochastic volatility model is the Heston model,

introduced in 1993 and nowadays it is probably the most popular stochastic

volatility model. Several other models have been derived from Heston model,

including also extension with jumps. In the Heston model we have, in line

with the notation used above, b(v) =
√
v, (the square of the volatility, the

variance Vt, is a Cox-Ingersoll-Ross (CIR) process), a(v) = κ(v − θ) and

c(v) = σ
√
v. The dynamics is given by the following system:

dSt = µStdt+
√
VtStdWt,

dVt = κ(θ − Vt)dt+ σ
√
VtdZt,

dWtdZt = ρdt,

(2.21)
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The Heston model is characterized by five constant parameters, namely κ,

θ, σ, ρ and the initial value of the variance v0.

• k > 0 is the rate of mean reversion. The mean reversion rate can

be interpreted as representing the degree of volatility clustering: it

means that large moves are followed by large moves, while small moves

are more likely to be followed by small moves. The mean reversion

parameter controls the curvature of the curve. Increasing the mean

reversion parameter flattens the implied volatility smile, see Figure

2.1.1. Decreasing the mean reversion has a similar effect as increasing

the volatility of variance in terms of curvature;

• θ > 0 the long term mean;

• σ > 0 the volatility of volatility;

• ρ ∈ [−1, 1] si the correlation, which can be interpreted as the corre-

lation between the log-returns and volatility of the asset, affects the

heaviness of the tails. Intuitively, if ρ > 0, then volatility will increase

as the asset price/return increases. This will spread the right tail and

squeeze the left tail of the distribution creating a fat right-tailed dis-

tribution. Conversely, if ρ < 0, then volatility will increase when the

asset price/return decreases, thus spreading the left tail and squeezing

the right tail of the distribution creating a fat left-tailed distribution

(emphasising the fact that equity returns and its related volatility are

negative correlated). The correlation, therefore, affects the skewness

of the distribution.

In order to guarantee that the volatility process is strictly positive, the

parameters k > 0, θ > 0 and σ > 0, must also verify a fundamental con-
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Figure 2.2: The effect of changing the mean reversion κ. Source [39]

Figure 2.3: The effect of changing the long run variance θ. Source [39]

straint, the so-called Feller condition [34]:

Fe = κθ − 1

2
σ2 ≥ 0. (2.22)

If this relation is satisfied then, the process Vt is strictly positive: it cannot

reach the zero because the drift term pushes it away when it becomes too

small. However the reason that makes this model so popular and used is

probably the fact that it has a semi-closed form solution for plain vanilla op-

tions. This enables a fast and computational efficient valuation of European

options which becomes of critical importance when calibrating the model to

known option prices. One of the main advantages of the Heston is that the

characteristic function for (xT , VT ) is known in an explicit form, where xT

is the logarithm of the terminal stock price, xT = log(ST ). Exploiting the
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properties of the characteristic function, as it is a the Fourier transform, one

can get an approximation of the density function of xT . Here below the plot

of the density function is given for two different maturities. The parameters

used are κ = 1.5768, σ = 0.5751, θ = 0.0398, µ = 0.0175, ρ = −0.5711.

Here below the plot for the density function for different value of correla-

tion. The values used are r = 0, κ = 1.5768, σ = 0.5751, η = 0.0398, u0 =

0.0175, T = 10

2.1.2 A closed-form solution

The main reason for the popularity of the Heston model among stochas-

tich volatility models is that it provides a closed-form solution for pricing

vanilla options. This is of great benefit in particular when calibrating against

market prices. We also remark that, under the change of measure to a risk-

neutral measure Q, the equation in the Heston model keep a shape similar

to those of system (2.21), where µ is raplaced by the risk-free interest rate
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r > 0. Precisely: dSt = rStdt+
√
VtStdW

′
t ,

dVt = κ′(θ′ − Vt)dt+ σ
√
VtdZ

′
t,

(2.23)

where (W ′t)t, (Z ′t)t are Brownian motions under Q. The new parameters are

defined as follows:

κ′ = κ− σλ, θ′ =
κθ

κ− σλ
, (2.24)

where the constant parameter λ ∈ (0, κ/σ) is used to define the so called

market price for the volality risk, λ
√
Vt. In particular (µ−r)/

√
Vt represents

the market price premium for the stock S. Since our focus is mainly on

the pricing problem, where the risk-neutral dynamics is considered, with an

abuse of notation, in the following we will continue to denote with κ and θ the

risk-neutral parameter and with Wt, Zt the Brownian motions representing

the source of randomness. We also observe that Feller’s condition (2.22) is

still satisfied by considering coefficients κ′, θ′.

Then, the no arbitrage price, at time t, of the European call with strike

K and maturity T is the expected discounted value under the risk-neutral

measure Q, namely:

Ct = e−r(T−t)EQ
t [(ST −K)+]

= e−r(T−t)EQ
t [ST1ST>K ]− e−r(T−t)KEQ

t [1ST>K ], (2.25)

where EQ
t [·] denotes the conditional expected value, given Ft. By analogy

with the Black-Scholes formula, the guessed solution of this European option

is of the form Ct = C(t, xt, vt), where the deterministic function C takes the

form 
C(t, x, v) = exP1(τ, x, v)− e−rτKP2(τ, x, v),

Pj = 1
2 + Ij ,

Ij = 1
π

∫∞
0 Re

[
e−iφlog(K)fj(φ;x,v)

iφ

]
dφ,

(2.26)
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where τ = T − t is the time to expiration and

fj(φ;x, v) = exp (Cj(τ, φ) +Dj(τ, φ)v + iφx), (2.27)

Dj =
bj−ρσiφ+dj

σ2

(
1−edjτ

1−gjedjτ

)
, (2.28)

Cj = riφτ + a
σ2

[
(bj − ρσiφ+ dj)τ − 2log

(
1−gjedjτ

1−gj ,

)]
, (2.29)

dj =
√

(bj − ρσiφ)2 − σ2(2ujiφ− φ2), (2.30)

gj =
bj−ρσiφ+dj
bj−ρσiφ−dj ,

where u1 = 1
2 , u2 = −1

2 , a = kη, b1 = k−ρσ, b2 = k. Despite of such formula,

in the Heston model the diffusion coefficient σ is not Lipschitz-continuous

up to the boundary. Results obtained in Costantini et al. (2012) for a

general class of princing problems is based on reflecting diffusion processes

with jumps (including also the Heston model), shows that, in presence of the

above features, existence, uniqueness or regularity of solutions of the pricing

problem may very well not hold. Even though there is extensive literature

on equations with degenerating coefficients, compare the classical reference

([59]), the C1-regularity of the solution at the boundary is not available

in the generality that is needed here. We observe that, as a function of

τ = T − t, the function (2.25) satisfies the pricing equation:

∂C

∂τ
− 1

2
v
∂2C

∂x2
− (r − 1

2
v)
∂C

∂x
− ρσv ∂

2C

∂x∂v
+

− 1

2
σ2v

∂2C

∂v2
+ rC − κ(θ − v)

∂C

∂v
= 0, (2.31)

for any τ ∈ (0, T ), x ∈ R. Thus, following [30] and [31], we prove that

the solution (2.26) satisfies the boundary condition at v = 0 in the classical

sense, see Proposition 2.1.1 below.

Proposition 2.1.1. The solution function 2.26 to the pricing problem for

a Call option under the Heston model satisfies the boundary condition

∂C

∂τ
− r∂C

∂x
− k(θ − v)

∂C

∂v
+ rC = 0. (2.32)

along the boundary v = 0.
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In order to prove the above proposition, we make use of the following

results concerning with the asymptotic behavior of the coefficients appearing

in the Heston formula (2.26)-(2.27). Actually, for our knowledge the proof

of these technical results are not presented in the available literature.

Lemma 2.1.1. Assuming that κ, θ, σ, τ > 0 and ρ ∈ (−1, 1), we obtain the

following asymptotics:

lim
φ→∞

dj(φ)

φ
= σ

√
1− ρ2, (2.33)

lim
φ→∞

gj(φ) = −1 + 2ρ2 + 2iρ
√

1− ρ2 = (i
√

1− ρ2 + ρ)2, (2.34)

lim
φ→∞

Dj(φ)

φ
= −

√
1− ρ2 + iρ

σ
, (2.35)

lim
φ→∞

Cj(φ)

φ
= −iκθ

2

σ2
ρτ − κθ

σ2
σ
√

1− ρ2, (2.36)

for j = 1, 2.

Lemma 2.1.2. For every x ∈ R, v ≥ 0, τ > 0, κ, θ, r, K > 0 and ρ ∈ (−1, 1),

the integrand in Ij (2.26),

Re

[
e−iφlog(K)fj(φ;x, v)

iφ

]
, (2.37)

is bounded as φ→ 0+ and of exponential decay as φ→∞, for j = 1, 2.

Proof. (Proposition 2.1.1) We evaluate the partial derivatives of the price

function. Thanks to Lemma 2.1.2 the passage of the derivative into the

integral is admissible:

∂C

∂τ
= ex

1

π

∫ ∞
0

Re

[
e−iφlog(K)f1(φ;x, v)

iφ

(
∂C1

∂τ
+ v

∂D1

∂τ

)]
dφ

+re−rτKP2 + e−rτK
1

π
×

×
∫ ∞

0
Re

[
e−iφlog(K)f2(φ;x, v)

iφ

(
∂C2

∂τ
+ v

∂D2

∂τ

)]
dφ, (2.38)

being the derivative for Cj and Dj the following:

∂Cj
∂τ

= riφ+ aDj , (2.39)

∂DJ

∂τ
= ρσiφDj −

1

2
φ2 +

1

2
σ2D2

j + ujiφ− bjDj , (2.40)
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for j = 1, 2. Collecting all, we have

∂C

∂τ
= ex

1

π

∫ ∞
0

Re

(
e−iφlog(K)f1(φ;x, v)

iφ
(riφ+ aD1+

+vρσiφD1 −
v

2
φ2 +

v

2
σ2D2

1 + vu1iφ− vb1D1)
)

dφ+

+ Kre−rτP2 +Kre−rτ
1

π

∫ ∞
0

Re

(
e−iφlog(K)f2(φ;x, v)

iφ
(riφ+ aD2+

vρσiφD2 −
v

2
φ2 +

v

2
σ2D2

2 + vu2iφ− vb2D2)
)

dφ. (2.41)

For other partial derivatives, it holds:

∂C

∂x
= exP1 + ex

1

π

∫ ∞
0

Re
[
e−iφlog(K)f1(φ;x, v)

]
dφ+

−e−rτK 1

π

∫ ∞
0

Re
[
e−iφlog(K)f2(φ;x, v)

]
dφ, (2.42)

∂C

∂v
= ex

1

π

∫ ∞
0

Re

[
e−iφlog(K)

iφ
f1(φ;x, v)D1

]
dφ+

−e−rτK 1

π

∫ ∞
0

Re

[
e−iφlog(K)

iφ
f2(φ;x, v)D2

]
dφ. (2.43)
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By using all the previous expressions for the partial derivatives of C, we get:

∂C

∂τ
− r∂C

∂x
− κ(θ − v)

∂C

∂v
+ rC = (2.44)

ex

π

∫ ∞
0

Re

[
e−iφlog(K)f1(φ;x, v)

iφ
(riφ+ aD1 + vρσiφD1 −

v

2
φ2+

v

2
σ2D2

1 + vu1iφ− vb1D1) ]dφ+Kre−rτP2 +
Kre−rτ

π
×

×
∫ ∞

0
Re

[
e−iφlog(K)f2(φ;x, v)

iφ
(riφ+ aD2 + vρσiφD2 −

v

2
φ2 +

v

2
σ2D2

2+

+vu2iφ− vb2D2)] dφ− rex

2
− rex 1

π

∫ ∞
0

Re

[
e−iφlog(K)

iφ
f1(φ;x, v)

]
dφ

−rex 1

π

∫ ∞
0

Re
[
e−iφlog(K)f1(φ;x, v)D2

]
dφ

+rKe−rτ
1

π

∫ ∞
0

Re

[
e−iφlog(K)

iφ
f2(φ;x, v)

]
dφ

−k(η − v)ex
1

π

∫ ∞
0

Re

[
e−iφlog(K)

iφ
f1(φ;x, v)D1

]
dφ

+k(η − v)Ke−rτ
1

π

∫ ∞
0

Re

[
e−iφlog(K)

iφ
f2(φ;x, v)D2

]
dφ

+
rex

2
+ rex

1

π

∫ ∞
0

Re

[
e−iφlog(K)

iφ
f1(φ;x, v)

]
dφ− re−rτK

2

−re−rτK 1

π

∫ ∞
0

Re

[
e−iφlog(K)

iφ
f2(φ;x, v)

]
dφ, (2.45)

and deleting similar terms, (2.44) reduces to

ex

π

∫ ∞
0

Re

[
e−iφlog(K)f1(φ;x, v)

iφ
(vρσD1 −

vφ

2i
+
vσ2D2

1

2iφ
+

+
v

2
+
vρσD1

iφ
) ]dφ+

−Kre
−rτ

π

∫ ∞
0

Re

[
e−iφlog(K)f2(φ;x, v)

iφ
(vρσD2 −

vφ

2i
+

vσ2D2
2

2iφ
− v

2
)

]
dφ −→ 0, v → 0+. (2.46)

The convergence of the expression above is leveraged by using Lemma 2.1.2.

Coming from this lemma, we can state that for φ → 0+ the second part



CHAPTER 2. VOLATILITY MODELS 41

of integrand is bounded, as a function of φ, as well as the first one and so

the integral is convergent. Similarly, as φ → ∞, the asymptotic behavior

of the coefficients Dj(φ) and Cj(φ) as functions of φ, imply the absolute

convergence of (2.44), as v → 0+ is justified.

Proposition 2.1.1 suggests that, from the numerical point of view, in

building a finite difference method, condition (2.32) can be used as a bound-

ary condition that is coherent with the pricing equation (2.31). Under suit-

able assumptions on the coefficients. Similar conditions can be stated for

other stochastic volatility models, see [30] and [31].

Proof. Lemma 2.1.2 We evaluate, at first, the behavior of the integrand

in Ij as φ → 0+.. For the sake of simplicity, we omit the indication of the

index j in all the coefficients. Thus, we can write

d(φ) =
√

(b− ρσiφ)2 − σ2(2uiφ− φ2)

=
√
b2 − ρ2σ2φ2 − 2ibρσφ− 2iuσ2φ− σ2φ2

= b

√
1 +
−ρ2σ2φ2 − 2ibρσφ− 2iuσ2φ− σ2φ2

b
, (2.47)

and by Taylor expansion, around phi ≈ 0, we get

d(φ) = b

[
1 +
−ρ2σ2φ2 − 2ibρσφ− 2iuσ2φ− σ2φ2

2b
+ o(φ)

]
= b+

1

2
(−2ibρσφ− 2iuσ2φ) + o(φ)

= b− ibρσφ− iuσ2φ+ o(φ)

= b− hiφ+ o(φ). (2.48)

where h = bρσ − uσ2. In particular d(φ) → b when φ → 0+. Now, we

consider coefficient g(φ):

g(φ) =
b− ρσiφ+ d(φ)

b− ρσiφ− d(φ)

≈ 2b− ρσiφ− hiφ
hiφ− ρσiφ

=
g(1)

iφ
+ g(2), (2.49)
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with g(1) = 2b/(h − ρσ), g(2) = (ρσ + h)(ρσ − h). Therefore, we get the

following asymptotic behavior, as φ→ 0+:

D(φ) =
b− ρσiφ+ d(φ)

σ2

( 1− ed(φ)τ

1− g(φ)ed(φ)τ

)
≈ 2b− ρσiφ− hiφ

σ2

( 1− ed(φ)τ

1− g(φ)ed(φ)τ

)
≈ 2b− ρσiφ− hiφ

σ2

(1− ed(φ)τ )iφ

iφ− g(1)ebτ − g(2)ebτ iφ
. (2.50)

Multiplying for the conjugate of the term in the denominator, we obtain:

D(φ) ≈ 2b− ρσiφ− hiφ
σ2

(1− ebτ )iφ[g(1)ebτ + (g(2)ebτ − 1)iφ]

[g(1))2e2bτ + (1− (g(2))ebτ ]2φ2

= −2b(1− ebτ )

σ2g(1)ebτ
iφ+O(φ2)

= miφ+O(φ2), (2.51)

with m = −2b(1 − ebτ )/[σ2g(1)ebτ ]. We use previous estimates to analyze

the integrand in Ij (2.27):

Re

[
e−iφlog(K)fj(φ;x, v)

iφ

]
=

= − 1

φ
eRe(Cj(φ))+Re(Dj(φ))v sin

[
Im(Cj(φ)) + Im(Dj(φ))v + φ log

(
ex

K

)]
≈ − 1

φ
sin {φ [rτ + (a+ v)m+ x− logK]} . (2.52)

as φ → 0+. So, being the last term in (2.52) bounded, we argue that the

integrand in Ij is also bounded as φ → 0+. Now, we consider the behavior

as φ → ∞. By Lemma 2.1.1, we easily deduce that, there exist a constant

M > 0, such that for φ large enough, it holds:∣∣∣∣∣Re
e−iφ log(K)f(φ;x, v)

iφ

∣∣∣∣∣ ≤ 1

φ
eRe(Cj(φ))+Re(Dj(φ))v

≤ Me
−φ
(
κθ
σ
τ
√

1−ρ2+ 1
σ

√
1−ρ2

)
. (2.53)

Hence the integrand has an exponential decay as φ→∞.
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Proof. (Lemma 2.1.1) It suffices to prove the result for the case of j = 1.

lim
φ→∞

d1(φ)

φ
= lim

φ→∞

√
σ2(1− ρ2)−

2iσ(ρκ− 1
2σ)

φ
+ σ2/φ2

= σ
√

1− ρ2. (2.54)

We use this equation to prove the second limit:

lim
φ→∞

g1(φ) =
−ρσi+ σ

√
1− ρ2

−ρσi− σ
√

1− ρ2

= −(σ
√

1− ρ2 − ρσi)2

σ2(1− ρ2) + ρ2σ2

= −σ
2(1− ρ2)− 2iσ2ρ

√
1− ρ2 − ρ2σ2

σ2

= −1 + 2ρ2 + 2iρ
√

1− ρ2 = (i
√

1− ρ2 + ρ)2. (2.55)

Note that limφ→∞ |g1(φ)| = 1. Now we need the following estimation to

prove the next limit:

lim
φ→∞

ed1(φ)τ − 1

c1(φ)ed1(φ)τ − 1
= lim

φ→∞

1

c1(φ)

(
1 +

1− c1(φ)

c1(φ)ed1(φ)τ − 1

)
= lim

φ→∞

1

c1(φ)
= lim

φ→∞

c1(φ)

|c1(φ)|
= −1 + 2ρ2 − 2iρ

√
1− ρ2. (2.56)

Moreover

lim
φ→∞

D1(φ)

φ
=

1

σ2
(−1 + 2ρ2 − 2iρ

√
1− ρ2)(−ρσi+ σ

√
1− ρ2)

=
−iρ−

√
1− ρ2

σ
. (2.57)

Finally, consider

lim
φ→∞

ln
(
c1(φ)ed1(φ)τ−1

c1(φ)−1

)
φ

= lim
φ→∞

ln
(
ed1(φ)τ c1(φ)

c1(φ)−1

)
φ

= lim
φ→∞

 ln(ed1(φ)τ ) + ln( c1(φ)
c1(φ)−1)

u


= lim

φ→∞

d1(φ)τ

φ
= σ

√
1− ρ2. (2.58)
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Hence, we can obtain the last relation of Lemma 2.1.1:

lim
φ→∞

C1(φ)

φ
= −κθ

σ2
τ
(
σ
√

1− ρ2 + iσρ
)
. (2.59)

2.2 Pricing Equation and Viscosity Solutions

Flexibility and availability of closed-form solutions to the pricing equation,

represent the success of affine models in financial modelling. As we dis-

cussed in the introduction, in presence of an affine model, the computation

of the risk-neutral price of (European-type) derivative is reduced to solving

a system of ordinary differential equations and then inverting the Fourier

transform. Unfortunately, not all financial derivatives could be localized

among affine models with affine or exponential-affine final payoff. From a

general point of view, if the problem at hand does not fit in the class of

affine models, the risk-neutral price can be computed by solving the pricing

equation. Here we recall a result proposed in [16] that includes, in the time-

homogeneous case, a general enough formulation of the pricing problem:{
∂tu(t, x) + Lu(t, x)− c(x)u(t, x) = f(t, x), (t, x) ∈ (0, T )×D,

u(T, x) = φ(x), x ∈ D,
(2.60)

where, for every smooth g : D ⊂ Rd → R, the operator L is defined as

Lg(x) = ∇g(x)b(x) +
1

2
tr(∇2g(x)a(x)) +

∫
D

(g(z)− g(x))m(x, dz), (2.61)

for any x ∈ D. Matrix a = σσ> corresponds to the diffusion matrix of a

stochastic process (Xt)t with values in the domain D ⊂ Rd, b represents the

drift of the process under a suitable (risk-neutral) probability measure, c is

a discount rate function, φ is the final payoff function, f is the cost of execu-

tion. If presence of jumps, there is also a measure m which summarizes the

jump intensity and the probability distribution of (Xt)t. Often, in financial

modelling, the state space D is not the whole space Rd and the equation
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just mentioned above could have, often concurrently, some difficulties, such

as:

• The diffusion matrix a is singular on the boundary of the domain D

or is even identically zero in some direction. The former singularity

arises in some stochastic volatility models, like in the Heston model

(1993).

• The drift b and the matrix σ are not Lipschitz-continuous up to the

boundary of D. This occurs, for instance, whenever some components

are square root-diffusions, like in the CIR (1985) or in the Heston

model (1993).

• The coefficients b and a are fast growing near the boundary or at

infinity.

• The jump intensity is not bounded.

• The state space D has a boundary, but no boundary conditions are

specified in the model. This is the case in most models where D has

a boundary.

In presence of the above features, existence, uniqueness and regularity of so-

lutions to system (2.60) may very well not hold. Still, it is common practice

in mathematical finance to develop numerical methods taking for granted

existence, uniqueness and regularity of the solution to the valuation equa-

tion. In contrast, the theory of viscosity solutions allows to deal with sin-

gular diffusion matrices (see Appendix A). Viscosity solutions, although a

priori not differentiable, are continuous functions if the data are continuous,

and are especially well suited to be computed numerically. In a paper of

Costantini et al. [16], the existence and uniqueness of viscosity solutions for

equation (2.60), are proved assuming only that coefficients b and σ are locally

Lipschitz-continuous in the interior of D and that exists a Lyapunov-type

function.
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2.2.1 Existence and Uniqueness results

In this section, we recall the assumptions and the main results proved in

[16]. Consider a security derived from the value of a state vector X, with

infinitesimal generator (2.61), and with final payoff φ at time T . If the

valuation equation (2.60) has one and only one viscosity solution u, then

the arbitrage-free price of the derivative contract at time t < T , for the case

f ≡ 0, is given by

u(t,Xt) = E[e−
∫ T
t c(Xs)dsφ(XT )|FXt ]. (2.62)

where {FXt }t stands for the filtration generated by X. The main result

proved in [16] concerns with the existence of a unique viscosity solution for

(2.60). Let D be a (possibly unbounded) star-shaped open subset of Rd .

When the operator (2.61) is a pure differential operator (m(x, ·) = δx), the

following assumption on the coefficients is considered.

Assumption 2.2.1. a = σσT , where σ : D → Rd×d and b : D → Rd are

Lipschitz-continuous on compact subsets of D.

Otherwise, the following is given.

Assumption 2.2.2. a = (ai,j)i,j=1,..,d, ai,j ∈ C2(D), m : D → M(D)

(where M(D) denotes the space of finite Borel measures on D) is continuous

and

supx∈D

∣∣∣ ∫
D
g(z)m(x, dz)

∣∣∣ <∞, ∀ g ∈ Cc(D). (2.63)

Notice that the assumption ai,j ∈ C2(D), for all i, j = 1, ..., d, implies

Assumption 2.2.1.

Assumption 2.2.3. There exists a no-negative function V ∈ C2(D) such

that: ∫
D
V (z)m(x, dz) < +∞, LV (x) ≤ C(1 + V (x)), ∀x ∈ D, (2.64)

lim
x∈D,x→x0

V (x) = +∞, ∀ x0 ∈ ∂D, lim
x∈D, |x|→+∞

V (x) = +∞. (2.65)
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This assumption ensures that the stochastic process corresponding to

our system does not blow up in finite time and does not reach the boundary

of D, as is the case for most models in finance. In our specific case, σ could,

at the same time, be zero in D or on boundary of D and be degenerate

(of Hölder-type) on the boundary. The function V is called a Lyapunov-

type function for system (2.60). From the probabilistic point of view, the

existence of a Lyapunov function ensures that the state process (Xt)t does

not reach the boundary and does not blow up in finite time. The function

V also determines the growth rate that we can allow for the data f and φ

of (2.61). In fact, in [16], the folllowing assumptons are also considered.

Assumption 2.2.4. Let f ∈ C([0, T ] ×D), c, φ ∈ C(D) and c is bounded

from below. There exists a strictly increasing function ϕ : [0,+∞)→ [0,∞)

such that

s→ sϕ(s) is convex, lim
s→∞

ϕ(s) = +∞, (2.66)

(s1 + s2)ϕ(s1 + s2) ≤ C(s1ϕ(s1) + s2ϕ(s2)),∀s1, s2 ≥ 0, (2.67)

and

|f(t, x)|ϕ(f(t, x)) ≤ CT (1 + V (x)),

|φ(x)|ϕ(|φ(x)|) ≤ CT (1 + V (x)), (2.68)

for all (t, x) ∈ [0, T ]×D.

All the results still hold under the following localized version of Assump-

tions 2.2.3 and 2.2.4: there exists a sequence of nonegative C2(D) functions

{Vn}n∈N such that

sup
x∈K

sup
n
Vn(x) < +∞, ∀ K ⊆ D compact, (2.69)

∫
D
Vn(z)m(x, dz) < +∞,∀x ∈ D. (2.70)

lim
x→x0

Vn(x) = +∞,∀x0 ∈ ∂D, lim
x∈D,|x|→+∞n∈N

inf Vn(x) = +∞, (2.71)

LVn(x) ≤ C(1 + Vn(x)), ∀x ∈ D, |x| ≤ n, (2.72)



CHAPTER 2. VOLATILITY MODELS 48

|f(t, x)|ϕ(|f(t, x)|) ≤ CT (1 + infnVn(x)) ∀(t, x) ∈ [0, T ]×D, (2.73)

|φ(x)|ϕ(|φ(x)|) ≤ C(1 + inf
n
Vn(x)) ∀x ∈ D. (2.74)

For the proof the the following theorems, we refer the reader to [16].

Theorem 2.2.1. Let L be the operator defined by (2.61). Then, for every

probability distribution P0 on D, there exists one and only one stochastic

process X which is a solution of the martingale problem for (L,P0) with

D(L) = C2
c (D). X is a homogeneous strong Markov process with paths in

DD[0,∞). Denoting by Xx the process with P0 = δx, x ∈ D, we have, for

every T > 0 and FX
x

t -stopping time τ such that

sup
0≤t≤T

E[V (Xx
t∧τ )] ≤ CT (1 + V (x)). (2.75)

The following results state the existence and the uniqueness for the viscosity

solutions to the valuation equation (2.60).

Theorem 2.2.2. For every x ∈ D, let Xx be the process of Theorem 2.2.1

with P0 = δx. Then, for every t ∈ [0, T ],

E
[∣∣∣∣φ(Xx

T−t)e
−
∫ T−t
0 c(Xx

r )dr −
∫ T−t

0
f(t+ s,Xx

s )e−
∫ s
0 c(X

x
r )drds

∣∣∣∣] ≤ ∞.
(2.76)

The function

u(t, x) = E
[
φ(Xx

T−t)e
−
∫ T−t
0 c(Xx

r )dr −
∫ T−t

0
f(t+ s,Xx

s )e−
∫ s
0 c(X

x
r )drds

]
(2.77)

is continuous on [0, T ]×D and is a viscosity solution to (2.60) satisfying

|u(t, x)|ϕ(|u(t, x)|) ≤ CT (1 + V (x)), ∀(t, x) ∈ [0, T ]×D. (2.78)

Theorem 2.2.3. There exists only one viscosity solution to (2.60) satisfying

(2.78).

We discuss the application of previous results to some pricing problems

in finance.
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Example 2.2.1. [Heston model]. The Heston model (which will be fully

developed in next chapter from the point of view of new calibration tech-

niques), is specified by dSt = rStdt +
√
vtSt dWt,

dvt = κ(θ − vt)dt + σ
√
vt dZt,

(2.79)

where (Zt)t and (Wt)t are instantaneously correlated Brownian motions:

dWtdZt = ρ dt, with ρ ∈ [−1, 1]. Therefore (2.60) takes the form of

Lg(S, v) = rS∂Sg + κ(θ − v)∂vg +
vS2

2
∂2
Sg +

σ2v

2
∂2
vg + σvSρ∂2

Svg,

for all smooth functions g : (0,∞)2 → R. Under Feller’s condition (1951)

for the volatility process (vt)t, 2κθ ≥ σ2, the valuation problem admits, for

instance, the following Lyapunov function:

V (S, v) = − logS − log v + s log (S + 3) + S(v + 1) + v. (2.80)

The valuation problem for an option with linearly increasing payoff function

φ, with f = 0 and c = r (constant), satisfies Assumptions 2.2.3-2.2.4, taking

ϕ(s) = log (s+ 3).

Therefore there exists a unique viscosity solution to the valuation problem

associated to model (2.79) . Indeed, we remark that the existence of this

function, expecially for stochastic volatility models, allow to manage the

absence of a boundary condition along the critical direction of v = 0, where

usually the diffusion coefficient loses the Lipschitz-continuity. This point

will addressed in Chapter 4.

Example 2.2.2. [Arithmetic Asian Option]. Let r be a constant short-

term interest rate and assume that the underlying asset follows

dSt = rStdt+ StdWt, (2.81)

under the 1-dimensional Brownian motion (Wt)t, then the valuation problem

for the price of the Arithmetic Asian oating-strike put option is

∂tu+
σ2S2

2
∂2
Su+rS∂Su+S∂Au−ru = 0, u(T, S,A) =

(
S − A

T

)
+

. (2.82)
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where T is the maturity of the option. Here the variable A stands for the

value of the average price process At =
∫ t

0 Ssds and the state space domain

is D = (0,+∞)2. The differential operator has the following coefficients:

a(S,A) =

 σ2S2 0

0 0

 , b(S,A) =

 rS

S

 .
Therefore L is strongly degenerate, in the sense that a(S,A) has everywhere

rank 1 on the domain (0,∞)2 and it is null at the boundary S = 0. The

valid Lyapunov function is given by

V (S,A) = S−1A−1 +A2 + S2. (2.83)

Indeed, we have

LV (S,A) =
σ2

SA
− r

SA
− 1

A2
+ σ2S2 + 2rS2 + 2SA

≤ (σ2 − r)S−1A−1 + (2r + σ2 + 1)S2 +A2

= (σ2 − r)V (S,A) + (3r + 1)S2 + (1− σ2 + r)A2

≤ CV (S,A),

for any S, A > 0, where C = 2 + 4r + σ2. The valuation problem for the

arithmetic Asian option is well posed from the point of view of viscosity

solutions, taking ϕ(s) = log (s+ 3).

Example 2.2.3. [Geometric Asian Option under Heston model].

Consider model (2.79) where, for the sake of simplicity, we assume that

ρ = 0; let xt = log(St) and Gt =
∫ t

0 xsds, the geometric Asian put option

with maturity T and strike price K has the payoff function φ(x, v,G) =

(K − eG/T )+. The valuation equation is

∂tu+
v

2
∂2
xu+

σ2v

2
∂2
vu+

(
r − v

2

)
∂xu+ k(θ − v)∂vu+ x∂Gu− ru = 0.

As in the previous example, also in this case the operator L is strongly

degenerate and degenerates at the boundary v = 0. The domain of the
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problem is D = R× (0,+∞)× R, with coefficients

a(x, v,G) =


v 0 0

0 σ2v 0

0 0 0

 , b(x, v,G) =


r − v

2

k(θ − v)

x

 .
I the condition for the volatility process 2κθ > σ2 is satisfied, a suitable

Lyapunov function for this case is V (x, v,G) = v−a + v2 + x2 + G2, with

a = 2κθ
σ2 − 1. In fact,

LV (x, v,G) = av−a−1

[
σ2

2
(a+ 1)− κθ

]
+ κθv−a + 2xr − 2xv

+(1 + σ2 + 2κ)v − 2κv2 + 2xG

≤ κθv−a + (1 + σ2 + 2κ)2 + r2 + 2v2 + 3x2 +G2

≤ C(1 + V (x, v,G)), ∀ x,G ∈ R, v > 0,

where C = max(r2 + (1 + σ2 + 2κ)2, κθ+ 3). Thus, the associated Dirichlet

problem (with f = 0 and c = r costant) is well posed in the sense of viscosity

solutions, taking ϕ(s) = s, given that the payoff function is bounded.

Example 2.2.4. [Local Volatility Model]. Let Xt be the 1-dimensional

underlying state process of a contingent claim with payoff φ(XT ) at maturity

T > 0, where φ : (α, β) → R is a continuous function, and suppose that

follows

dXt = b(Xt)dt+ σ(Xt)dWt, (2.84)

where (Wt)t is a 1-dimensional Brownian motion. Let b, σ : (α, β) → R be

locally Lipschitz continuous functions on (α, β). The natural domain of the

process (from a financial point of view) is the (possibly unbounded) interval

(α, β). Given the short-term rate r > 0, the valuation equation becomes

∂tu+
1

2
σ2(x)∂2

xu+ b(x)∂xu− ru = 0, u(T, x) = φ(x). (2.85)

This kind of model includes the so called local volatility model, where (Xt)t

represents the stock price process. The operator L can be degenerate at the

boundaries α, β with the coefficient σ that is not Lipschitz continuous up α
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and/or β and, at the same time, can be strongly degenerate in the interior

of the interval. We consider the following conditions which cover both these

degeneracies: There exist α < p < q < β such that σ2 ∈ C1(E), σ2 > 0 in

E, E = (α, p] ∩ [q, β), and

lim
x→α+

∫ p

x
σ−2(ξ)dξ = +∞, lim

x→α+

[
b(x)− 1

2

d

dx
σ2(x)

]
> 0, (2.86)

lim
x→β−

∫ x

q
σ−2(ξ)dξ = +∞, lim

x→β−

[
b(x)− 1

2

d

dx
σ2(x)

]
< 0. (2.87)

There exist α < p′ ≤ p, q ≤ q′ < β such that, by (2.86)-(2.87), the function

V (x) =


∫ p′
x σ−2(ξ)dξ if x ∈ (α, p′),∫ x
q′ σ
−2(ξ)dξ if x ∈ (q′, β),

satisfies V (x) > 0 and LV (x) < 0, for every x ∈ (α, p′) ∪ (q′, β). Then, we

consider an extension of V to the interval [p′, q′] so that V is strictly positive,

with V ∈ C2((α, β)). Therefore, by the continuity of the coefficients b and

σ, it is clear that LV (x) is bounded over the closed interval [p′, q′] and V

becomes a Lyapunov function for the Dirichlet problem (2.85) on the domain

D = (α, β). Then, for any payoff function φ satisfying Assumption 2.2.4,

the pricing problem (2.85) admits a unique viscosity solution as established

in Theorems 2.2.2-2.2.3.

2.3 Boundary Conditions in SV models

By the previous results and examples, we deduce that the existence of the

Lyapunov-type function ensures that the underlying state process will never

approach the boundary. Nevertheless, from a numerical point of view, a

boundary condition along the boundary is needed: a condition coherent

with the princing equation possibly reducing the numerical error. In this

section we focus our attention on stochastic volatility models whose gen-

erale formulation is given in (2.20). The associated pricing equation for a
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European-type option is the following:

∂u

∂t
+

1

2
s2b2(v)

∂2u

∂s2
+

1

2
c2(v, t)

∂2u

∂v2
+ ρb(v)c(v, t)

∂2u

∂v∂s
+

+ rs
∂u

∂s
+ a(v, t)

∂u

∂v
− ru = 0, (2.88)

where r stands for the risk-free rate (assumed to be constant). In [31] the

condition enforceable along the boundary is analyzed for the simpler case

of a single-factor model. Here, the state process (Xt)t is described as a

nonnegative stochastic process solution to

dXt = β(t,Xt)dt+ σ(t,Xt)dWt, (2.89)

where (Wt)t is a one dimensional Brownian motion on a given filtered proba-

bility space, σ(t, 0) = 0 and β(t, 0) ≥ 0, for all t ≥ 0. Under suitable regular-

ity assumptions, the no arbitrage price of an option corresponding to a payoff

function g : [0,∞) → [0,∞), with discount function c : [0,∞) → [0,∞), is

the unique solution of the following problem:

∂tut(t, x) +
1

2
σ2(t, x)∂2

xu(t, x) + β(t, x)∂xu(t, x) = c(x)u(t, x), (2.90)

for (t, x) ∈ (0, T ) × (0,∞), with terminal condition u(x, T ) = g(x), for

any x > 0. We will report here the assumtpions made in ([31]) for time-

independent coefficients and for c(x) ≡ x (term-structure equation for an

option where Xt stands for the short-term interest rate).

Hypotesis 2.3.1. β ∈ C([0,∞)) is continuously differentiable in x with

bounded derivative, β(0) ≥ 0; σ ∈ C([0,∞)) is such that α(x) := 1
2σ

2(x) is

continuously differentiable with Hölder continuous derivative, σ(x) = 0 only

if x = 0. The functions β, σ and α′ are all of, at most, linear growth:

|β(x)|+ |σ(x)|+ |αx(x)| ≤ C(1 + x), (2.91)

for all x ≥ 0. The payoff function g : [0,∞) → [0,∞) is continuously

differentiable with both g and g
′

bounded.
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Moreover, by formally inserting x = 0 in the pricing equation, an addi-

tional boundary condition is considered:

∂tu(t, 0) + β(0)∂xu(t, 0) = 0, (2.92)

for all t ∈ (0, T ). An additional assumption is also considered. Let (Wt)t be a

standard Brownian motion on a filtered probability space (Ω,F , (Ft)t≥0,P).

Assumption 2.3.1. The coefficients σ and β are such that, path-wise,

uniqueness holds for the equation

dY (t) = (α(x) + β)(Y (t), t)dt+ σ(Y (t), t)dWt (2.93)

Theorem 2.3.1. Under Hypothesis 2.3.1 and Assumption 2.3.1, the term

structure equation admits a unique solution u ∈ C([0, T ]×[0,∞))∩C1([0, T )×

[0,∞))∩C1,2((0, T )× (0,∞)) which satisfies (2.90) and the terminal condi-

tion u(x, T ) = g(x), for any x > 0, and (2.92).

In particular, condition (2.92) becomes a necessary condition for the

well posedeness of the pricing problem when the underlying state process

can reach the boundary, at x = 0. This feature is only partially addressed

by authors of [31].

For the case of stochastic volatility models, we recall the result proved

in [30] , where the Black-Scholes equation in stochastic volatility models

is studied. In particular, in such a work it is proved that there exists a

unique classical solution to the parabolic differential equation with a certain

boundary behaviour for vanishing values of the volatility. If the boundary

is attainable, then this boundary behaviour serves as a boundary condition

and guarantees uniqueness in appropriate function spaces. On the other

hand, if the boundary is non-attainable, then the boundary behaviour is not

needed to guarantee uniqueness, but is nevertheless very useful for instance

from a numerical perspective. More precisely, the underlying model is the

following. Let S be the stock price process and y the volatility process,

defined by {
dSt = St

√
ytdWt

S0 = s0 > 0,
(2.94)
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and {
dyt = β(yt)dt+ σ(yt)dZt

y0 = y0 ≥ 0.
(2.95)

respectively, where (Wt)t and (Zt)t are two standard Brownian motions

with constant correlation ρ ∈ (−1, 1). The corresponding pricing operator

becomes

Lu = β(y)
∂u

∂y
+

1

2
σ2(y)

∂2u

∂y2
+

1

2
S2y

∂2u

∂S2
+ ρσ(y)S

√
y
∂2u

∂S∂y
. (2.96)

A classical solution to the valuation equation considered in [30] is a function

u ∈ C1,2([0, T ) × (0,∞)2) ∩ C1,1,0([0, T ) × (0,∞) × [0,∞)), satisfying the

system
∂tu+ Lu = 0 on [0, T )× (0,∞)2,

u(t, 0, y) = g(0) y ∈ [0, T ]× [0,∞),

∂tu(t, S, 0) + β(0)∂yu(t, S, 0) = 0 (t, S) ∈ [0, T )× (0,∞),

u(T, S, y) = φ(S) (S, y) ∈ (0,∞)2.

(2.97)

The model is specified with a zero interest rate and with time-homogeneous

coefficients. However generalizations to a deterministic interest rate and

time-dependent coefficients are straightforward. Here the main assumptions

on the coefficients given in [30] are summarized in the following hypoteses.

Hypotesis 2.3.2. β ∈ C1([0,∞)) with a Hölder continuous derivative,

β(0) ≥ 0. σ(y) > 0, for all y > 0, σ(0) = 0, and the function σ2 ∈ C1([0,∞))

with a Hölder continuous derivative. The growth condition

|β(y)|+ σ(y) ≤ C(1 + y), (2.98)

holds for all y ≥ 0, where C is a constant. The payoff function φ is bounded

and is twice continuously differentiable on [0,∞). Moreover, S ∈ (0,∞) 7→

Sφ′(S) and S ∈ (0,∞) 7→ S2φ′′(S) are bounded.

Thus, the main result proved in [30] is the following Theorem.

Theorem 2.3.2. Assume that Hypothesis 2.3.2 holds. Then, there is at

most one classical solution to the pricing problem for (2.95)-(2.94), which is

of strictly sublinear growth in S and polynomial in y.
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Boundary conditions are included in the notion of a classical solution

regardless if the boundary can be hit or not. On the other hand, it is clear

that standard payoff functions related to call and put options do not satisfy

the assumptions specified in 2.3.2. An extension to the case of the put

option and in the case of Heston’s model, has been proposed in Ould (2012)

(Theorem 3.1), ensuring the following properties of the solution:

1) u ∈ C(([0, T )× [0,∞)2) ∩ C1,0,1([0, T )× (0,∞)× [0,∞)).

2) u ∈ C1,2,2([0, T )× (0,∞)2).

3) For every t ∈ [0, T ), v > 0, the function S 7→ u(t, S, v) is increasing

and strictly convex on (0,∞);

4) For every t ∈ [0, T ), S > 0, the function v 7→ u(t, S, v) is strictly

increasing.

Precisely, under the usual condition 2κθ > σ2, no boundary condition

is required to state the existence and uniqueness of the solution. We aim

to prove here that, for the stochastic volatility model (2.95)-(2.94), if the

underlying process does not hit the boundary at y = 0, the assumptions

given in [31] (see Hypothesis 2.3.2) can be weakened in order to state the

existence of uniqueness of a viscosity solution.

Theorem 2.3.3. Let β and α = 1
2σ

2 be locally Lipschitz continuous on

(0,∞). Let α ∈ C([0,∞)) ∩ C1((0, ε)), with bounded derivative on (0, ε),

for some ε > 0, α(y) = 0 if and only if y = 0. Moreover, there exists a

positive constant C > 0 such that

|β(y)|+ α(y) ≤ C(1 + y), (2.99)

for all y > 0. Assume the following condition:

lim
y→0+

{
α
′
(y)− β(y)

}
< 0. (2.100)

Then, for every φ ∈ C([0,∞)), satisfying |φ(S)| ≤ C(1 + S), for all S ≥ 0,

the pricing problem associated to (2.96), with payoff function φ, has a unique
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viscosity solution u ∈ C([0, T ]× (0,∞)2) such that

|u(t, S, y)| ≤ C (1 + S) , (2.101)

for all S > 0, y > 0, t ∈ [0, T ].

Remark 2.3.4. Under the assumptions of the previous Theorem, the pric-

ing problem associated to (2.96) is well posed without imposing a boundary

condition at y = 0 and at S = 0.

Remark 2.3.5. If both β and α
′

are continuous up to y = 0, then condition

(2.100) is equivalent into requiring that α′(0) < β(0).

Note that when some of the assumptions of Theorem (2.3.3 do not apply,

there are explicit examples for which the Dirichlet problem for (2.96) is not

well posed. In particular, uniqueness, is not ensured. We consider here two

examples.

Example 2.3.1. Let us consider here the Cox-Ingersoll-Ross (CIR) [17]

model used for pricing zero coupon bonds, where the underlying described

under the empirical measure P is the short term interest rate, that is

drt = κ(θ − r)dt+ σ
√
rtdZt, (2.102)

where κ, θ > 0 and Feller’s condition is satisfied 2κθ ≥ σ2. In this setting,

a well known fact is that the market in not complete (see Proposition 1.4.1)

and a market risk-premium function has to be defined. A usual form for such

a premium is given in [28] and it takes the form of λ(r) = ψ0r
−1/2 +ψ1r

1/2,

for some constant parameters ψ0, ψ1. Under the CIR model bond’s value

p(t, r) satisfies the valuation problem: ∂tp+ σ2

2 r∂
2
rrp+ κ(θ − r)∂rp− rp = 0 on (0, T )× (0,∞),

p(T, r) = 1.
(2.103)

where κ = κ+ ψ1 and θ = κθ−σψ0

κ+ ψ1
. A solution of the pricing problem is:

p1(t, r) = A(t)e−B(t)r, (2.104)
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where

A(t) =

[
2γe(κ−γ)(T−t)/2

2γ + (κ− γ)[1− e−γ(T−t)]

]2κθ/σ2

, (2.105)

B(t) =
2(1− e−γ(T−t))

2γ + (κ− γ)[1− e−γ(T−t)]
, (2.106)

γ =
√
κ2 + 2σ2. (2.107)

However, when the values of ψ0, ψ1 are such that 2κθ < σ2, there is also

another solution, made as:

p2(t, r) =

{
A(t)e−B(t)r

[
1− Γ(ν,rz(t))

Γ(ν,0)

]
, 0 < t < T

1 ; t = T.
(2.108)

where

Γ(ν,m) =

∫ ∞
m

e−ττν−1dτ (2.109)

is the incomplete gamma function with ν = 1− 2κθ/σ2, and

z(t) =
2

σ2

e−κ(T−t)A(t)−
1
κθ∫ T

t e−κ(T−s)A(s)−
1
κθ ds

. (2.110)

For every t < T , r > 0, it holds:

p2(t, r) < p1(t, r), (2.111)

with p2(T, ·) = p1(T, ·). Under the inequality

2κθ < σ2 (2.112)

there is not an equivalent martingale measure Q: r can hit zero under Q even

though it cannot under P. In fact measures P and Q are not equivalent: they

are different for those event which almost surely will never happen (their zero

probability events are not the same). The problem is not well posed from

the financial point of view and from the analytic point of view, a boundary

condition is required. In the CIR model the value of coefficients examined

in Theorem 2.3.3 are σ2(y) = σ2y and β(y) = κ(θ − y).. These coefficients

verify (2.112) and so do not satisfy condition (i).
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Example 2.3.2. This example is to justify the upper bound for the solution

(2.101). If it is removed, we can have multiple solutions for the pricing even if

all other assumptions of Theorem 2.3.3 hold true. Let us consider a modified

version of Heston’s model studied in Grünbichler and Longstaff (1996): dSt = rSt dt+
√
ytSt dWt,

dyt = η2dt+ η
√
yt dWt.

where (Wt)t is a standard Brownian motion and η > 0 is a constant. For

this model, the valuation equation is

∂tu+
1

2
S2y∂2

Su+
1

2
η2y∂2

yu+ ηSy∂2
ySu+ rS∂Su+ η2∂yu− ru = 0,

on (0, T )×(0,∞)2. Clearly the coefficients β(y) = η2 and σ(y) = η
√
y satisfy

(i) and the volatility process (yt)t cannot hit zero, if y0 > 0. A regular solu-

tion u1 = u1(t, S, y) is available for payoff functions φ = φ(S, y) correspond-

ing to European equity options and volatility derivatives, see Grünbichler

and Longstaff (1996) and also Heston (1993). Let us consider the function

u2(t, S, y) = u1(t, S, y) + Π(t, y), with

Π(t, y) =
1

y
exp

(
−r(T − t)− 2y

η2(T − t)

)
.

Function u2 is another solution to the pricing problem with the same payoff

function as u1. However u2 does not satisfy inequality (2.101). In this case

there exists an arbitrage involving a short position in the replicating strategy

for u2 and a long position in that for u1. From the financial point of view,

the role of u2 is related to the presence of bubbles in the market and is

studied in [42].

Proof of Theorem 2.3.3. Due to the assumptions made on the coefficients σ

and β, Assumptions 2.2.1 and 2.2.4, proposed in [16], are readily verified

on (0,∞). It has to be proved now Assumption 2.2.3. By assumption (i),

there exists c ∈ (0, ε) such that α
′
(y) < β(y), for all y ∈ (0, c). Since α

′
is

bounded on (0, ε), we set H to be the supremum of |α′ | on (0, c). Thus, we

consider the scale measure for the volatility process:

pc(y) =

∫ y

c
exp

(
−2

∫ η

c

β(τ)

σ2(τ)
dτ

)
dη, (2.113)
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and the speed measure, defined as

Vc(y) =

∫ y

c
p′c(ξ)

∫ ξ

c

2

p′c(z)σ
2(z)

dzdξ, (2.114)

Under the assumptions made on β and σ, Vc belongs to C2((0,∞)) and it

is strictly positive for all y > 0, y 6= c. Moreover Vc satisfies(
β(y)∂y +

1

2
σ2(y)∂2

y

)
Vc(y) = 1, (2.115)

for any y ∈ (0,∞). We consider the behavior of Vc(y), around y = 0. For

every y ∈ (0, c), it holds:

2

∫ c

y

β(τ)

σ2(τ)
dτ >

∫ c

y

α
′
(τ)

α(τ)
dτ = log

α(c)

α(y)
.

Hence p
′
c(y) > α(c)/α(y), for any 0 < y < c, and (2.99) implies β(y) ≤

C(1 + y) < C(1 + c) =: a, on the interval (0, c). We can write the following:

Vc(y) =

∫ c

y
p
′
c(ξ)

∫ c

ξ

2

p′c(z)σ
2(z)

dzdξ

>

∫ c

y

α(c)

α(ξ)

∫ c

ξ

1

α(z)
exp

(
−
∫ c

z

β(τ)

α(τ)
dτ

)
dzdξ

>

∫ c

y

α(c)

α(ξ)

∫ c

ξ

1

α(z)
exp

(
−a
∫ c

z

1

α(τ)
dτ

)
dzdξ

=
α(c)

a

∫ c

y

1

α(ξ)

[
1− exp

(
−a
∫ c

ξ

1

α(τ)
dτ

)]
dξ

=
α(c)

a

∫ c

y

1

α(ξ)
dξ − α(c)

a2

[
1− exp

(
−a
∫ c

y

1

α(τ)
dτ

)]
(2.116)

From Lagrange’s mean value theorem, we deduce the inequality 0 < α(y) ≤

Hy, for all y ∈ (0, c), implying the divergence of the integrals in (2.116), as

y → 0+. Thus we have proved that that Vc(y) → +∞, as y → 0+. Thus,

we consider the function

V (S, y) = S(1 + y)− log(S) + S log(S + 1) + y + Vc(y). (2.117)

Clearly V ∈ C2((0,∞)2), and it is easy to see that V is strictly positive on
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(0,∞)2. Furthermore, by (2.99), we get

LV (S, y) = β(y)(S + 1) +
1

2
S2y

[
1

S2
+

1

S + 1
+

1

(S + 1)2

]
+2ρσ(y)

√
y + LVc(y)

≤ C(1 + y)(S + 1) +
y

2
(2 + S) +

√
2C(1 + y)y + 1

≤ C(1 + y)(S + 1) + y + (1 + y)S +
√

2C(1 + y) + 1

≤ (C + 1)S(1 + y) + (C +
√

2C + 1)(1 + y)

≤ A[1 + S(1 + y) + y] ≤ A[1 + y +MS(1 + y)−M log(S) +M ]

≤ A(M + 1)[1 + S(1 + y)− log(S) + y] < A(M + 1)[1 + V (S, y)],

where A := 1+C+
√

2C, whenever M ≥ 1/(1−e−2). In light of Assumption

2.2.3, V represents a Lyapunov function for the operator L in (2.96). Given

a function φ, such that |φ(S)| ≤ C(1 + S), for all S > 0 and a positive

constant C, it suffices to consider the function ϕ(S) = log(S + C) in order

to satisfy Assumption 2.2.4. for the final datum φ. Hence the associated

Dirichlet problem satisfies the hypotheses of Theorem 2.2.2. It admits a

unique continuous viscosity solution without imposing any boundary condi-

tion at y = 0 and S = 0. In order to prove the inequality (2.101), we observe

that functions u(t, S, y) := −C(1 + S) and u(t, S, y) := C(1 + S) represent

respectively a viscosity sub/super-solution to the Dirichlet problem associ-

ated to (2.96), with final datum φ, since Lu(t, S, y) = Lu(t, S, y) = 0, for

all S > 0, y > 0, t ∈ (0, T ), using also (2.99). Then (2.101) easily follows

by the comparison principle between viscosity sub/super-solutions proved in

Theorem 4.2 [16].

Remark 2.3.6. In the proof of Theorem 2.3.3 we have used the scale mea-

sure for the volatility process, namely the function Vc. It can be proved that

that if

lim
y→0+

Vc(y) = lim
y→+∞

Vc(y) = +∞,

then the process (yt)t cannot hit the origin or explode in finite time.
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Remark 2.3.7. It is clear from the proof of Theorem 2.3.3, that the assump-

tion requiring that α(y) = 0 if and only if y = 0, can be weakened allowing

that α(y) = 0 for some y ≥ ε, keeping the Lipschitz continuity of σ around

such points. Indeed, we cannot define the function Vc for all y > 0, however

it suffices to replace such a function in (2.117) with Wc ∈ C2((0,∞)), de-

fined as Wc(y) := Vc(y), for y ∈ (0, c) and Wc(y) coinciding with a suitable,

strictly positive, second order polynomial on [c,∞). In light of assumption

(2.99), such a definition allows to obtain a new Lyapunov-type function for

the operator (2.96).

2.4 Regularity of the Viscosity Solution

Here we investigate the regularity of the solution to the problem ∂tu(t, S, y) + Lu(t, S, y) = 0 on (0, T )× (0,∞)2,

u(S, y, T ) = φ(S), on (0,∞)2,
(2.118)

where L is the pricing operator associated to the stochastic volatility model

(2.96). To this end we recall a well known result related to the initial-

boundary value problem (written for t replaced by T − t).
∂tv + Lv = 0 on Q = (0, T )×B,

v(T, x) = φ(x) on B,

v(t, x) = ψ(t, x) on K,

(2.119)

where B is a bounded domain in Rd, with C2 boundary ∂B, K = [0, T )×∂B,

and the differential operator L is defined in (2.60), the integral component

being omitted. The coefficients σ and b are continuous functions in B. Given

a set A, IA denotes the indicator function of A. In the following (Wt)t∈[0,T ] is

a d-dimensional Brownian motion defined on a probability space (Ω,F ,P),

with filtration (Ft)t∈[0,T ].

Theorem 2.4.1. Let a = σσ> be uniformly positive definite (i.e. ∃ λ > 0,

such that a(x) ≥ λId, for all x ∈ B). Let a, b be uniformly Lipschitz

continuous in B, with ψ continuous in K, φ continuous in B and ψ(T, x) =



CHAPTER 2. VOLATILITY MODELS 63

φ(x), if x ∈ ∂B. Then there exists a unique solution v ∈ C([0, T ] × B) ∩

C2,1((0, T )×B) to the initial-boundary value problem (2.119), given by

v(t, x) = E
[
ψ(τ, ξt,xτ )Iτ<T + φ(ξt,xτ )Iτ=T

]
, (2.120)

where, for every x ∈ Rd, t ∈ [0, T ], (ξt,xs )s∈[0,T ] is the unique strong solution

to the stochastic differential equation

dξt,xs = b(ξt,xs )dt+ σ(ξt,xs )dWt, ξt,xt = x. (2.121)

Here, the coefficients b, σ are uniformly Lipschitz continuous extensions of

b and σ to Rd, and τ represents the first time in [t, T ) that ξx,t leaves B, if

such a time exists and τ = T otherwise.

The proof can be found in [37] (Theorem 5.2).

Theorem 2.4.2. Under the assumptions of Theorem 2.3.3, the unique vis-

cosity solution to (2.118) satisfying (2.101) belongs to C1,2((0, T )×(0,∞)2).

Proof of Theorem 2.4.2. In light of Theorem 2.3.3, we consider the unique

viscosity solution u to problem (2.118). We consider a disk of radius r > 0,

Br, with Br ⊂ (0,∞)2. Let us consider the initial-boundary value problem

(2.119), where B = Br, with v(T, ·, ·) = φ(·) (the payoff function) on Br,

ψ ≡ u on K = [0, T ) × ∂Br. From the assumption that σ(y) = 0 only if

y = 0 and by ρ ∈ (−1, 1), we deduce that the diffusion matrix of (2.96)

a(S, y) =

 S2y ρσ(y)
√
yS

ρσ(y)
√
yS σ2(y)


is uniformly positive definite on any compact subset of (0,∞)2. There-

fore the regularity assumptions on the coefficients β and σ allow to ap-

ply Theorem 2.4.1, arguing that v ∈ C1,2((0, T ) × Br). Let us fix a point

(t, S, y) ∈ (0, T ) × Br and let Xx := (SS , yy) be the unique stochastic pro-

cess, starting at x := (S, y) which is the solution to the martingale problem

for (L, δx) given in Theorem 2.2.1. Thus, thanks to Theorem 2.2.2, the

process

{u(t+ t ∧ τ,Xx
t∧τ )}0≤t≤T−t,
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is an {FXx

t }-martingale, for every {FXx

t }-stopping time τ . On the other

hand, given the stopping time τr defined as the first exit time of Xx from

Br, if τr < T − t, and τr = T − t otherwise, since Xx is the solution to the

martingale problem for L, also the process

v(t+ t ∧ τr, Xx
t∧τr)−

∫ t∧τr

0
(∂sv + Lv)(t+ s,Xx

s )ds = v(t+ t ∧ τr, Xx
t∧τr)

is an {FXx

t }t-martingale. Therefore, it is easy to see that

u(t, S, y) = E
[
u(τr, X

x
τ )
]

= E
[
v(τr, X

x
τ )
]

= v(t, S, y).

Hence the viscosity solution u coincides with v in Br, implying that u ∈

C1,2((0, T ) ×(0,∞)2).

Remark 2.4.3. By the reasoning adopted in the proof of Theorem 2.4.2,

under the assumptions described in Remark 2.3.6, the regularity of the vis-

cosity solution to problem (2.118) can be proved in the neighborhood of any

point (t, S, y) ∈ (0, T )× (0,∞)2 where σ(y) > 0.

2.5 Jump Diffusion Model

An empirical motivation [67] for using jump-diffusion models comes from the

fact that asset return distributions tend to have heavier tails than those of

normal distribution. However, it is not clear how heavy the tail distributions

are, as some people favor power-type distributions, others exponential-type

distributions. The two basic building blocks of every jump-diffusion model

are the Brownian motion (the diffusion part)and the Poisson process (the

jump part). The Brownian motion is a familiar object to every option trader

since the appearance of the Black-Scholes model, but a few words about

the Poisson process are in order. Take a sequence {τi}i≤1 of independent

exponential random variables with parameter λ, that is, with cumulative

distribution function P(τi ≤ y) = e−λy and let Tn =
∑n

i=1 τi. The process

Nt =
∑
n≥1

1t≤Tn (2.122)
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is called the Poisson process with parameter λ. For example, if the waiting

times between buses at a bus stop are exponentially distributed, the total

number of buses arrived up to time t is a Poisson process. The trajectories

of a Poisson process are piecewise constant, with jumps of size 1 only. The

jumps occur at times Ti and the intervals between jumps (the waiting times)

are exponentially distributed. The Poisson process shares with the Brow-

nian motion the very important property of independence and stationarity

of increments, that is, for every t > s the increment Nt−Ns is independent

from the history of the process up to time s and has the same law as Nt−s.

The processes with independent and stationary increments are called Levy

processes after the French mathematician Paul Levy. For financial applica-

tions, it is of little interest to have a process with a single possible jump size.

The compound Poisson process is a generalization where the waiting times

between jumps are exponential but the jump sizes can have an arbitrary

distribution. More precisely, let N be a Poisson process with parameter λ

and {Yi}i≥1 be a sequence of independent random variables with law f . The

process

Xt =

Nt∑
i=1

Yi (2.123)

is called compound Poisson process. Combining a Brownian motion with

drift and a compound Poisson process, we obtain the simplest case of a

jump diffusion process which sometimes jumps and has a continuous but

random evolution between the jump times

Xt = µt + σBt +

Nt∑
i=1

Yi, (2.124)

The Jump Diffusion Model (JDM) was introduced first by Merton in [57],

where the stock price is St = S0e
Xt with Xt as above and the jumps Yi

have Gaussian distribution. Several models combining jumps and stochastic

volatility appeared in the literature. In the Bates [6] model, one of the most

popular examples of the class, an independent jump component is added to
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the Heston stochastic volatility model: dXt = µdt+
√
VtdW

1
t + dZt, St = S0e

Xt

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t d

〈
W 1,W 2

〉
t

= ρdt.
(2.125)

Here Z is a compound Poisson process with Gaussian jumps. If J denotes

the jump size then ln(1 +J) ∼ N(ln(1 + k)− 1
2δ

2, δ2) for some k̄. Under the

risk-neutral probability one obtains the equation for the logarithm of the

asset price:

dXt = (r − λk − 1

2
vt)dt+

√
vtdWt + Z̃t, (2.126)

where Z̃t is a compound Poisson process with normal distribution of jump

magnitudes. Since the jumps are independent of the diffusion part, the

characteristic function for the log-price process can be obtained as:

φXt(z) = φDXt(z)φ
J
Xt(z), (2.127)

where:

φDXt(z) =
exp

{
κθt(κ−iρσz)

σ2z
+ izt(r − λk) + izx0

}
(cosh γt

2 + (κ−iρσz)
γ sinh γt

2 )
2κθ
σ2

exp

{
− (z2 + iz)v0

γ coth γt
2 + κ− iρσz

}
(2.128)

is the diffusion part and

φJXt(z) = exp{tλ(e−δ
2z2/2+i(ln(1+k)− 1

2
δ2)z − 1)} (2.129)

is the jump part.

2.6 Local Stochastic Volatility Model

Recently a new model, generalization of the two previous ones, has been

proposed: the ”‘Local-Stochastic Volatility Model”’ (LSV). The need for

better models became apparent eventually, given the observed drawbacks

for both Local Volatility Models and Stochastic Volatility Models in con-

junction with various asset classes and/or various financial instruments. A

purely stochastic volatility model generates the same smile irrespective of
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Figure 2.4: Left: Sample path of a compound Poisson process with Gaussian

distribution of jump sizes. Right: sample path of a jump-diffusion process

(Brownian motion + compound Poisson).

the initial level of spot, and therefore is a ”‘sticky-delta”’ method- the smile

stays anchored at points corresponding to the specified deltas, while a local

volatility model parametrized by a local function clearly depends on the spot

level (and its initial level), and it is therefore ”‘sticky-strike”’. Consequently

local stochastic volatility model were introduced in the literature to com-

bine the best characteristic of both models, while minimizing downside. To

understand why there was a need for LSV model, we list here below the ad-

vantages and disadvantages of both local volatility and stochastic volatility

models.

1. Local Volatility Models

• Advantages

– Consistent with today’s market price by construction

– Calibration may not require numerical optimization

• Disadvantages

– tend to replicate rather poorly the characteristics of market

dynamics for spot and volatility (implied volatility tends to

move too much given a change in the spot, no mean-reversion

effect)

– Impossible to tune-up the volatility of implied volatility, as

there is simply no parameter for that
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– Forward volatility implied by Local Volatility Models is not

realistic, since it flattens out

– Changes in the underlying imply a general parallel shift of the

smile(approximately) under Local Volatility Models, while

market experience indicates that often smiles are ”‘sticky”’

and remain invariant under many types of changes

2. Stochastic Volatility Models

• Advantages

– Tend to be more in line with market dynamics

– Equipped to model the term-structure (through mean-reversion

parameters) and the volatility of the variance (through vol-

of-vol parameters)

– Forward volatility implied by Stochastic Volatility Model has

a much more realistic behavior

• Disadvantages

• Calibration is done by Least Squares Optimization, and requires

special attention to ensure stability of parameters

• any change in either mean-reversion or vol-of-vol requires re-

calibration of other parameters

• Usually does not fit well short term market skew/smile

Local Stochastic Volatility Models aim to incorporate the advantages (and

eliminate disadvantages) of these models.

These models consider volatility as the product between a deterministic

and a stochastic term. In this way, using an hybrid local-stochastic volatility,

it is possible to take the advantages of both the two basic models, which,

in fact, can be considered as special cases of this generalized model. It is

assumed, therefore, the following stochastic dynamics for the evolution of

the underlying asset St:
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
St = rStdt+ b(Vt)σLSV (St)StdWt

dVt = a(Vt)dt+ c(Vt)dZt

dWtdZt = ρdt

(2.130)

Example 2.6.1. Described in [54] and [55], this model is representative for

a class of Local Stochastic Volatility Model which combines a mean reverting

process for the volatility or variance (like in Heston Model), with a general

local volatility function acting as multiplication factor for the stochastic

volatility. It also incorporates jumps and is formulated as follows:
dSt = rStdt+ σl(St)St

√
VtdWt + (exp(j)− 1)dNt

dVt = κ(θ − Vt)dt+ γ
√
VtdZt

dWtdZt = ρdt

(2.131)

with NT is a Poisson processs and Wt, Zt are Brownian Processes correlated

by ρ; Vt represents the stochastic variance and σl denotes a local volatility

function. We note that the model is the same as in the Heston model plus

jumps when σl ≡ 1, and the same as in Dupire’s model, when γ = 0.



Chapter 3

Weighted Average Price

The motivation for the introduction of this new point of view in financial

modeling is mainly based on the fact that the price of a call option obtained

in the framework of a stochastic volatility model dependes on the value v0,

the initial volatility, that unfortunately acts like an hidden stochastic vari-

able. The most simple approach adopted to resolve the estimation of this

hidden variable, is to consider v0 as an additional parameter in the cali-

bration procedure. In fact, in valuing financial derivatives, the no-arbitrage

price of a European-type derivative can be found by a representation for-

mula, where the price is given as a conditional expectation under a risk-

neutral probability measure. In our approach, we extend that framework,

by proving a new version of the fundamental theorem of asset pricing (Har-

rison Kreps (1979)) for processes depending on random parameters.

This allows to state a no arbitrage pricing formula similar to the classical

one, without conflict with classical theory.

Although the application of this new arbitrage context is related to a

specific stochastic volatility model, the theoretical results presented, exhibit

a much more general significance in financial modeling.

In this chapter we refer closely to the paper presented by Papi, Pon-

tecorvi and Donatucci (2014) for a new approach in the calibration of stochas-

tic volatility models to vanilla options.

70
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3.1 Financial Market Modeling with Random Pa-

rameters

We propose a new mathematical framework to price financial instruments

derivatives, where the underlying stochastic model depends on some random

parameters governed by a pre-defined probability law. For a fixed parameter

value, we consider a stochastic Ito process driven by a Brownian motion on

the same probability space for the assets dynamics in the market. We con-

sider a filtered probability space (Ω,F , (Ft)t∈[0,T ],P), where we assume that

a k-dimensional Brownian motion (W (t))t is assigned, in order to represent

market shocks.

Let q0 : (Ω0,F0)→ (Rp,B(Rp)), where (Ω0,F0, f0) is a complete probability

space; its probability law m0 is defined as follows:

m0(B) = f0({ω0 ∈ Ω0 : q0(ω0) ∈ B}) ∀ B ∈ B(Rp). (3.1)

Finally, consider (Rp,B(Rp),m0) like a complete probability space for the

values of random model parameters here described by the outcomes of the

random variable q0. Let (Ω̃0, F̃ , (F̃t)t∈[0,T ], P̃0) a product probability space

defined as:

1. Ω̃0 := Ω× Rp;

2. F̃t := Ft ⊗ B(Rp);

3. P̃0 := P⊗m0.

An element of the product space will be denoted as Ω̃0 3 ω̃ = (ω, q). More-

over, we shall use E[·] to denote the expected value referred to the usual

measure P in the space Ω, meanwhile we shall adopt the notation EP̃0 [·] for

the expectation according to the product measure P̃0. We consider a k-

dimensional market with a set of risky no-dividend-paying assets, with price

at time t given by Si(t, q), i = 1, . . . k, and a riskless asset, usually a zero

coupon bond, with price at time t given by S0(t). The price of these asset

verify the following q-depending system of stochastic differential equations,
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for every fixed q ∈ Rp (we will omit here and throughout all the chapter the

dependence on ω, pointing out only the dependence on q):dSi(t, q) = µi(t, q)dt+
∑k

j=1 σi,j(t, q)dWj(t),

Si(0, q) > 0, for t ∈ [0, T ],
(3.2)

and dS0(t) = rtS0(t)dt,

S0(0) = s0 > 0 for t ∈ [0, T ].
(3.3)

The initial price vector S(0, q) ∈ Rk may depend on q, but it is assumed to

be independent of ω ∈ Ω. The parameter q allows to describe latent factors

that cannot be directly observed on the market even if they affect prices.

Moreover, it may reflect the uncertainty in the specification of the adopted

to describe the evolution of prices.

In such a formulation we can easily find out stochastic volatility models,

where the initial volatility is not available, see Example 3.2.2 below. This

kind of representation allows also to include the uncertainty in the specifi-

cation of model parameters. Let M̃p,k[0, T ], M̃p,k×h[0, T ], be the analogous

of the spaces ofMp,k[0, T ],Mp,n×m[0, T ] in the product space Ω̃0, endowed

with the filtration (F̃t)t and under the product measure P̃0, for any p ≥ 1,

k, h ∈ N, k, h ≥ 1. A similar notation will be used for the space Λp,k[0, T ].

Thus, we consider also the following standing assumption.

Assumption 3.1.1. µ : [0, T ]× Ω× Rp → Rk , µ ∈ M̃1,k[0, T ], σ : [0, T ]×

Ω× Rp → Rk×k, σ ∈ M̃2,k×k[0, T ] and r ∈M1[0, T ].

Without loss of generality, we can assume that s0 = 1 so that S0(t) =

exp(
∫ t

0 rudu). We also add rtS0(t) as the first component in the vector

µ(t, q) and a row of zeros as the first row in the matrix σ(t, q), without

changing the notation. Thefore µ and σ become Rk+1-valued and Rk+1×k-

valued processes, respectively.

Definition 3.1.1. A process θ : [0, T ] × Ω × Rp → Rk+1 is a self-financing

portfolio if (θt)t∈[0,T ] is {F̃t}t∈[0,T ]-progressively measurable, 〈θ(t, q), µ(t, q)〉 ∈
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M1[0, T ], 〈θ(t, q), σ·,j(t, q)〉 ∈ M2[0, T ], for j = 1, . . . , k and q ∈ Rp, m0 a.s.

and

〈θ(t, q), S(t, q)〉 = 〈θ(0, q), S(0, q)〉+

∫ t

0
θ(q, s)dS(s, q), (3.4)

with 〈θ(t, q), S(t, q)〉 ≥ κθ, for all 0 ≤ t ≤ T , P̃0 a.s, for a constant κθ

depending only by θ.

A portfolio is self-financing if there is no exogenous infusion or with-

drawal of money, all trades are financed by selling or buying assets in the

portfolio. The boundedness from below required in the definition of self-

financing portfolio should be interpreted as a reasonable condition in order

to avoid excessive losses in the portfolio value. We will indicate as Θ(S)

the set of self-financing portfolios for the market defined by S. Moreover, a

fundamental notion in mathematical finance is the following.

Definition 3.1.2. A portfolio θ ∈ Θ(S) is an arbitrage if

〈θ(0, q), S(0, q)〉 ≤ 0 ≤ 〈θ(T, q), S(T, q)〉, P̃0 a.s. (3.5)

and

P̃0(〈θ(T, q), S(T, q)〉 > 0) > 0. (3.6)

Let’s define the discounted price process S̃(t, q) := Y (t)S(t, q), where

Y (t) := [S0(t)]−1 = exp(−
∫ t

0
rudu) (3.7)

so as to have S̃0(t, q) = 1. Moreover, let S := (S̃1, . . . S̃k) and

µ(t, q) = Y (t)Si(t, q)[µi(t, q)− rt], (σ(t, q))i,j = Y (t)Si(t, q)σi,j(t, q),

(3.8)

for all i, j = 1, . . . , k. It is easy to see that there is no arbitrage in the market

defined by S if and only if there is no arbitrage in the market represented

by the discounted price process S. Thus, in absence of arbitrage opportuni-

ties, a proportional relationship between the average rate of securities prices

variation and the risk related to stocks volatility holds true. In particular,

we derive an extension to our market depending on the random parameter
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q, of a well known result obtained in the literature by Harrison and Pliska

(Stochastic Proc. and Applications, (1981)-(1983)) if the market is free of

arbitrage, see also [?].

Remark 3.1.1. We observe that, in absence of the random parameter q, our

definition of arbitrage portfolio coincides with the original given in Definition

1.4.3. Furthermore, if θ is an arbitrage in the sense of Definition 3.1.2, then

there exists a Borel set B0 ⊂ Rp, with m0(B0) > 0, such that for every

q0 ∈ B0, (θ(t, q0))t represents a trading strategy for the market given by

(3.2), for q = q0. In other words, there are multiple trading choises that

lead to a potential profit for arbitrage, in the classical sense, as in [26].

Theorem 3.1.2. Let the financial market represented by S be arbitrage

free. Then, there exists a Rd-valued progressively meadurable process λ in

the product space, such that for ω̃ ∈ Ω̃0, P̃0 almost surely, it satisfies

σ(t, ω̃)λ(t, ω̃) = µ(t, ω̃), (3.9)

for t ∈ [0, T ] almost everywhere (a.e.), in the sense of Lebesgue measure on

R.

The process λ usually identifies the so called market price of risk, see [?]. If

σ(t, ω̃) is invertible, then λ is uniquely defined by λ(t, ω̃) = σ(t, ω̃)−1µ(t, ω̃).

In order to prove Theorem 3.1.2, we need the following technical results.

For the sake of completeness we present their proof in this section, even if

the details can be found in [?].

Lemma 3.1.1. The following maps:

(x, σ) 7→ projKer(σ)(x), (3.10)

(x, σ) 7→ projKer(σ)⊥(x), (3.11)

defined on Rd ×Mk,d(R), and

(y, σ) 7→ projKer(σ>)(y), (3.12)
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(y, σ) 7→ projKer(σ>)⊥(y), (3.13)

defined on Rk ×Mk,d(R), are Borel measurable functions.

Here projG, G⊥ denote the projection on the linear subspace G and the

orthogonal complement of the subspace G, respectively.

Corollary 3.1.1. The process projKer(σ>(t,·))[µ(t, ·)], 0 ≤ t ≤ T , is progres-

sively measurable in the product space Ω̃0, under the extended filtration

{F̃t}t.

Lemma 3.1.2. In absence of arbitrage in the market given by S, for ω̃ ∈

Ω̃0, P̃0 almost surely, it holds µ(t, ω̃) ∈ Im(σ(t, ω̃), for t ∈ [0, T ] almost

everywhere.

Lemma 3.1.3. Let

Ψ1 : {(y, σ) ∈ Rk ×Mk,d(R), y ∈ Im(σ)} → Rd (3.14)

where Ψ1(y, σ) is the unique ξ ∈ Ker(σ)⊥ such that σξ = y, and

Ψ2 : {(x, σ) ∈ Rd ×Mk,d(R), y ∈ Im(σ>)} → Rd (3.15)

where Ψ2(x, σ) is the unique η ∈ Ker(σ>)⊥ such that σ>η = y. Both of

such maps are Borel measurable functions.

Proof of Theorem 3.1.2. In accordance with Lemma 3.1.2 and Lemma 3.1.3,

the following progressively measurable process:

λ(t, ω̃) := Ψ1(µ(t, ω̃), σ(t, ω̃)), (3.16)

is well-defined and for ω̃ ∈ Ω̃0, P̃0 almost surely, it satisfies satisfies (3.9) for

t ∈ [0, T ] almost everywhere.

Proof of Lemma 3.1.1. It suffices to prove the result for the first map. The

space Mk,d(R) is naturally equipped with the Borel σ-algebra induced by

the topology associated to the operator norm. Rd and Rk are naturally
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equipped with Borel σ-algebras as well and the product space is equipped

with the product σ-algebra. Finally, let Qk be the countable dense subset

of rational vectors into Rk. Define the following Borel measurable function

F : Rd ×Mk,d(R)→ R where

F (z, σ) := inf
q∈Qk

||z − σ>q|| ∀z ∈ Rd, σ ∈Mk,d(R), (3.17)

thus

{(z, σ) : z ∈ Im(σ>)} ⊂ {(z, σ) : F (z, σ) = 0}.

On the other hand, if F (z, σ) = 0, then there exists a sequence {qn}n ⊂ Qk

such that lim
n→∞

||z − σ>qn|| = 0. Since Rk = Ker(σ>) ⊕ Ker(σ>)⊥, we can

decompose every qn as qn = q1,n + q2,n, where q1,n ∈ Ker(σ>) and q2,n ∈

Ker(σ>)⊥. Obviously, restricted on Ker(σ>)⊥, the linear function defined

by σ> is invertible.

Since σ>q2,n → z, as n → ∞, the sequence {q2,n}n converges to some q2 ∈

Ker(σ>)⊥ that satisfies σ>q2 = z. Therefore we deduce that z ∈ Im(σ>).

Hence we have proved

{(z, σ) : z ∈ Im(σ>)} = {(z, σ) : F (z, σ) = 0}. (3.18)

In particular {(z, σ) : z ∈ Im(σ>)} is a Borel set. Consequently

{(x, σ, ξ) ∈ Rd ×Mk,d(R)× Rd : ξ = projKer(σ)(x)} =

= {(x, σ, ξ) : ξ ∈ Ker(σ), x− ξ ∈ Ker(σ)⊥} =

= {(x, σ, ξ) : ξ>σ> = 0, x− ξ ∈ Im(σ>)} (3.19)

is a Borel set too. Define Q : Rd ×Mk,d(R)→ Rd such that

Q(x, σ) := projKer(σ)(x), ∀ x ∈ Rd, σ ∈Mk,d(R). (3.20)

The set in (3.19) is the graph of Q, that is

Gr(Q) := {(x, σ, ξ) : (x, σ) ∈ Rd ×Mk,d(R), ξ = Q(x, σ)}. (3.21)
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Since Gr(Q) is a Borel set, Q must be a measurable Borel function. Indeed,

for all B ∈ B(Rd), we have

{(x, σ) : Q(x, σ) ∈ B} = projRd×Mk,d(R)Gr(Q)∩ (Rd×Mk,d(R)×B) (3.22)

and a projection of a Borel set is a Borel set.

Proof of Lemma 3.1.2. Define, for 0 ≤ t ≤ T , ω̃ = (ω, q) ∈ Ω̃0 the following

maps:

p(t, q) := projKer(σ(t,q))[µ(t, q)], (3.23)

and

θ(t, q) :=


p(t,q)
|p(t,q)| if p(t, q) 6= 0,

0 if p(t, q) = 0.
(3.24)

We also consider

θ0(t, q) := −〈θ(t, q), S(t, q)〉+

∫ t

0
θ(s, q)dS(s, q). (3.25)

Then the process θ(t, q) := (θ0(t, q), θ(t, q)) is self-financing. In fact

〈θ(t, q), Y (t)S(t, q)〉 = θ0 + 〈θ(t, q), S(t, q)〉 =

∫ t

0
θ(s, q)dS(s, q), (3.26)

and

〈θ(0, q), Y (0)S(0, q)〉 = −〈θ(0, q), S(0, q)〉+ 〈θ(0, q), S(0, q)〉 = 0. (3.27)

Hence

〈θ(t, q), Y (t)S(t, q)〉 =

∫ t

0
〈θ(s, q), µ(s, q)〉ds+

∫ t

0
〈θ>(s, q)σ(s, q)〉dW (s)

=

∫ t

0
〈θ(s, q), µ(s, q)〉ds+

∫ t

0
〈θ>(s, q)σ(s, q)〉dW (s)

=

∫ t

0
〈θ(s, q), µ(s, q)〉ds

=

∫ t

0

(
1{p(s,q) 6=0}〈

p(s, q)

|p(s, q)|
, p(s, q) +

+projKer(σ(s,q))⊥(µ(s, q))〉
)

=

∫ t

0
1{p(s,q) 6=0}|p(s, q)|ds ≥, 0 for all t ∈ [0, T ].
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Since 〈θ(T, q), S(T, q)〉 ≥ 0 and we are assuming a free-arbitrage market, it

follows 〈θ(T, q), S(T, q)〉 = 0 P̃0 a.s., implying for ω̃ = (ω, q) ∈ Ω̃0 P̃0 a.s,

p(t, q) = 0 for t ∈ [0, T ] a.e and the result is proved.

Proof of Lemma 3.1.3. We prove the result only for Ψ1 (for Ψ2 the proof is

similar). Let:

∆ := {(y, σ, ξ) ∈ Rk×Mk,d(R)×Rd : y ∈ Im(σ), ξ ∈ Im(σ>), σξ = y} (3.28)

In the proof of Lemma 3.1.1 we have seen that {(σ, ξ) : ξ ∈ Im(σ>)} is a

Borel set. The same argument is valid for {(y, σ) : y ∈ Im(σ)}.

Thus, ∆ is a Borel set, but ∆ is the graph of Ψ1. Then, by Lemma 3.1.1,

we deduce that Ψ1 is a Borel measurable function.

3.2 q-Depending Risk-Neutral Measure

Definition 3.2.1. A risk-neutral measure (also called equivalent martingale

measure) for the market S is a probability measure Q̃0 is a probability

measure Q̃0 on the product space (Ω̃0, F̃T ), equivalent to P̃0 such that

EQ̃0 [S(s, q)|F̃t] = S(t, q) ∀ t ≤ s ≤ T, t ≥ 0, (3.29)

P̃0 a.s., or equivalently

EQ̃0 [S(s, q)|F̃t] = S(t, q)e−
∫ t
0 rudu, (3.30)

P̃0 a.s.

The following results generalize to our setting some well known facts

related to free arbritrage markets

Theorem 3.2.1. If S represents an arbitrage free market and there is a

market price of risk λ satisfying (3.9) such that

E
[
e

1
2

∫ T
0 |λ(s,q)|2 ds

]
<∞ ∀ q ∈ m0 − a.s. (3.31)

then S admits a risk-neutral measure.
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Theorem 3.2.2. If S admits a risk-neutral measure, then it describes an

arbitrage free market.

In order to build a risk-neutral measure, we define a weighted version of

the Girsanov’s exponential [58]. Let us consider a product set A×B, where

A ∈ FT and B ∈ B(Rp), a martingale measure Q̃0 equivalent to P̃0 can be

defined through its Radon-Nikodyn derivative, that is:

dQ̃0

dP̃0

(ω, q) = δλ0 (ω, q) := e−
∫ T
0 λ(s, ω,q)dW (s)− 1

2

∫ T
0 |λ(s, ω,q)|2ds (3.32)

for any (ω, q) ∈ Ω̃0, P̃0 almost surely. In fact, for every q ∈ Rp, δ0(·, q)

represents the usual Girsanov’s exponential associated with λ(·, q). If con-

dition (3.31) (called also Novikov’s condition) then, by Girsanov’s theorem,

the following map is well defined:

Rp → {Probability measures on (Ω,FT ) equivalent to P }

q 7→ Qq, Qq(A) = E[δλ0 (·, q) · 1A] ∀A ∈ FT ,

Since for every A ∈ FT , q 7→ Qq(A) is also Borel measurable, we can define

Q̃0 as follows:

Q̃0(A×B) =

∫
B
Qq(A)dm0(q). (3.33)

It is now clear how Q̃0 can be extended to all F̃T -measurable sets and, of

course, Q̃0 defines a probability measure on (Ω̃0, F̃T ) equivalent to P̃0.

For the proof of Theorem 3.2.1, we recall here the concept of π-system

and Dinkin-system to exploit the Dynkin’s π-λ Theorem [47].

Definition 3.2.2. Let Σ be a non-empty set, and let D be a collection of

subsets of Σ. Then D is a Dynkin system if

1. Σ ∈ D;

2. if A ∈ D, then Ac ∈ D;

3. if A1, A2, A3, . . . is a sequence of subsets in D such that Ai ∩ Aj = ∅

for all i 6= j, then

∞⋃
n=1

An ∈ D.
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Definition 3.2.3. Let Σ be a non-empty set, and let P be a collection of

subsets of Σ. Then P is a π-system if

1. P is non-empty;

2. if A1 and A2 are subsets of P then A1 ∩A2 ∈ P.

Theorem 3.2.3. [Dynkin’s π-λ Theorem [47]] If P is a π-system and D is

a Dynkin system of the same non-empty set Σ and P ⊆ D, then σ(P) ⊆ D.

In othe words, the σ-algebra generated by P is contained in D.

Proof of Theorem 3.2.1. It suffices to show that, for all 0 ≤ t ≤ s ≤ T and

for every G ∈ F̃t, it holds

EQ̃0 [S(s, q)1G] = EQ̃0 [S(t, q)1G]. (3.34)

At first we prove that (3.34) holds true on the collection of subsets It ⊂ Ω̃0

where:

It := {A×B|A ∈ Ft and B ∈ B(Rp)}. (3.35)

Since the Novikov condition holds for the market price of risk, and by Theo-

rem 3.1.2, we deduce that, for q m0-a.s., (S(t, q))t∈[0,T ] is a martingale under

the measure Qq, se also [26] and [48]. Thus, for A×B ∈ It, we have

EQ̃0 [S(s, q)1A(ω)1B(q)] = EP̃0 [δ0(ω, q)S(s, q)1A(ω)1B(q)]

=

∫
B
EQq [S(s, q)1A(ω)]dm0(q)

=

∫
B
EQq [S(t, q)1A(ω)]dm0(q)

= EQ̃0 [S(t, q)1A(ω)1B(q)]. (3.36)

We observe that closely It is a π-system on Ω̃0. Let

G̃t := {G ∈ F̃t|G verify (3.34)}, (3.37)

then it is easy to show that the first two point in the definition of Dynkin

system 3.2.2 are verified. We prove here the last point of 3.2.2. Consider a
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sequence of subsets A1, A2, A3, . . . in It such that Ai ∩Aj = ∅, for all i 6= j,

and define

Gn =

n⋃
i=1

Ai and G =

∞⋃
i=1

Ai.

If ω̃ = (ω, q) /∈ G, then 1Gn(ω̃) = 1G(ω̃) = 0, for all n ≥ 1. On the other

hand, if ω̃ = (ω, q) ∈ G, then:

∃ n̄ ≥ 1 such that ω̃ ∈ Gn, ∀ n > n̄ and 1Gn(ω̃) = 1G(ω̃) = 1.

Hence, 1Gn converges pointwise to 1G(ω̃), as n→∞ and, consequently, we

deduce that

S(τ, ·)1Gn → S(τ, ·)1G, Q̃0-a.s., (3.38)

as n→∞, for any τ ∈ [0, T ]. Hence, by (3.36), we have

EQ̃0 [S(s, q)1Gn ] =
n∑
i=1

EQ̃0 [S(s, q)1Ai ] =
n∑
i=1

EQ̃0 [S(t, q)1Ai ]

= EQ̃0 [S(t, q)1Gn ], (3.39)

and using the monotone convergence theorem on both sides (3.39), (3.34) is

proved for G. Theorem 3.2.3 implies F̃t = σ(It) ⊆ G̃t ⊆ F̃t. In particular,

from G̃t = F̃t for all t ∈ [0, T ], we deduce that S is a Q̃0-martingale.

Proof of Theorem 3.2.2. Let Q̃0 be an equivalent martingale measure for

S. Since for every q, (S(t, q))t is an Ito process in the filtered probabil-

ity space (Ω,F , (Ft∈[0,T ]),P) and since (Wt)t∈[0,T ] can be clearly seen as a

k-dimensional Brownian motion in the filtered probability space (Ω̃0, F̃T ,

(F̃t∈[0,T ]), P̃0) and the assumption on the coefficiente σ, we can apply the

diffusion invariance principle (see [49]) to deduce that there exists a k-

dimensional standard Brownian motion (W̃t)t∈[0,T ] under Q̃0, such that

S(s, ω̃) = S(t, ω̃) +

∫ s

t
σ(ξ, ω̃)dW̃ξ(ω̃)

for ω̃ ∈ Ω̃0, P̃0 a.s, for all 0 ≤ t ≤ s ≤ T . Hence for every θ ∈ Θ(S), we have

〈θ(t, q), S(t, q)〉 = 〈θ(0, q), S(0, q)〉+

∫ t

0
θ(q, ξ)>σ(ξ, ω̃)dW̃ξ(ω̃), (3.40)



CHAPTER 3. WEIGHTED AVERAGE PRICE 82

P̃0-a.s., for all 0 ≤ t ≤ T . In particular, the portfolio value process (〈θ(t, ·),

S(t, ·)〉)t∈[0,T ] is a local martingale bounded from below on (Ω̃0, F̃T , Q̃0).

Hence it is a super-martingale, implying the inequality

EQ̃0

[
〈θ(T, ·), S(T, ·)〉

∣∣F̃0

]
≤ 〈θ(0, ·), S(0, ·)〉,

Q̃0-a.s. Now, if θ were an arbitrage strategy, it holds

〈θ(0, ·), S(0, ·)〉 ≤ 0 ≤ 〈θ(T, ·), S(T, ·)〉,

Q0-a.s. and there would be A ∈ F̃T , with Q̃0(A) > 0, such that 〈θ(T, ω̃),

S(T, ω̃)〉 > 0, for all ω̃ ∈ A. From the law of iterated expectations, we obtain

the following contradiction:

0 < EQ̃0 [〈θ(T, ·), S(T, ·)〉1A] = EQ̃0

[
EQ̃0

[
〈θ(T, ·), S(T, ·)〉1A

∣∣F̃0

]]
≤ EQ̃0

[
EQ̃0

[
〈θ(T, ·), S(T, ·)〉

∣∣F̃0

]]
≤ EQ̃0 [〈θ(0, ·), S(0, ·)〉] ≤ 0.

Thus the market represented by S is arbitrage free.

We discuss the application of our modelling framework to two funda-

mental examples.

Example 3.2.1 (Black and Scholes Model). Now we are going to review

the Black and Scholes model with the latter topic. The model, as known, is dSt = µStdt+ σStdWt,

dBt = rBtdt
(3.41)

where (Wt)t is a one dimensional Brownian motion on the filtered prob-

ability space (Ω,F , (Ft)t,P). The deterministic constant parameters µ, σ

and r represent respectively the local mean rate of return of the asset, the

volatility of the asset and the short-term rate of interest. As has already

been said, one of the mainstay of this model is a closed-form solution for

the price of European put and call options while a weakness is based on the

constant volatility assu,ption (that makes the model inconsistent with ob-

served market prices). Following our theoretical approach we can consider
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σ as a random variable endowed with a given probability distribution with

density f ∈ L1(R;R+), such that f(σ) > 0, for all σ > 0, f(σ) = 0, for all

σ ≤ 0; hence dm0(σ) = f(σ)dσ.

In the Black-Scholes model, for a given maturity of the option T , the

market price of risk and the Radon-Nikodym derivative of the extended

risk-neutral measure on the product space, take the following form:

λσ =
µ− r
σ

,
dQ̃0

dP̃0

(ω, σ) = e−λσWT (ω)− 1
2
λ2σT , (3.42)

for any ω ∈ Ω, σ > 0. In fact, for every σ > 0, by Girsanow’s theorem, we

can define the measure Qσ as the probability measure on (Ω,FT ), equivalent

to P, with density e−λσW (T )− 1
2
λ2σT . Thus, it holds

EP̃0 [e−λσWT− 1
2
λ2σT ] =

∫∞
0 f(σ)

∫
Ω e
−λσWT (ω)− 1

2
λ2σTdP(ω)dσ =

=
∫∞

0 f(σ)dσ = 1.

In our setting, the no-arbitrage price for the call option, with strike K

and maturity T , is based on the well known Black-Scholes formula for the

option price:

C(t, S) =

∫ ∞
0

EQσ [(Sσ −K)+]f(σ)dσ

=

∫ ∞
0

[SN(dσ1 )−Ke−r(T−t)N(dσ2 )]f(σ)dσ

=: SNf
1 −Ke

−rTNf
2 (3.43)

where

dσ1 :=
log(S/K) +

(
r + 1

2σ
2
)

(T − t)
σ
√
T − t

, dσ2 := dσ1 − σ
√
T − t,

represent the usual Black-Scholes coefficients, and

Nf
i :=

∫ ∞
0

N(dσi )f(σ)dσ, i = 1, 2. (3.44)

These coefficients can be furtherly simplified depending on the choice of the

density function f .
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Example 3.2.2. Now we are going to review the Heston model in light

of our no-arbitrage setting. Let (W 1
t )t, (W 2

t )t be two independent Brown-

ian motions on the probability space (Ω,F , (Ft)t≥0,P). The Heston model

(1993) assumes the following real-world dynamics (i.e. under measure P):dSt(v0) = µSt(v0)dt+ St
√
Vt(v0)dW 1

t ,

dVt(v0) = κ(θ − Vt(v0))dt+ σ
√
Vt(v0)

(
ρdW 1

t +
√

1− ρ2dW 2
t

)
,

(3.45)

with S0(v0) > 0, V0(v0) = v0 > 0. The parameters µ ∈ R, κ, θ, σ > 0,

ρ ∈ [−1, 1] which are assumed to be constants, satisfy Feller’s condition,

2κθ ≥ σ2, in order to ensure that volatility is strictly positive in finite

time (see Revuz and Yor, (1991)). In this case, the uncertainty is on the

parameter v0, the initial volatility.

However, options are usually priced under the risk-neutral measure and

they incorporate a volatility risk premium. The risk-neutral model corre-

sponding to equations (3.45), is usually obtained by applying Girsanov’s

change of measure theorem:dSt(v0) = rSt(v0)dt+ St
√
Vt(v0)dW̃ 1

t (v0),

dVt(v0) = κ
′
(θ
′ − Vt(v0))dt+ σ

√
Vt(v0)

(
ρdW̃ 1

t (v0) +
√

1− ρ2dW̃ 2
t (v0)

)
,

(3.46)

where (W̃ 1
t (v0))t∈[0,T ], (W̃ 2

t (v0))t∈[0,T ] are Brownian motion under the prob-

ability measure Qv0 , equivalent to P on (Ω,FT ), with Radon-Nikodym deriva-

tive

dQv0

dP
(ω) = exp

(
−
∫ T

0
λ1(t, v0)dW̃ 1

t (ω, v0)−
∫ T

0
λ2(t, v0)dW̃ 2

t (ω, v0)

−1

2

∫ T

0
|λ1(t, v0)|2dt− 1

2

∫ T

0
|λ2(t, v0)|2dt

)
,

and

dW̃ i
t (v0) = dW i

t + λi(t, v0)dt, for i = 1, 2.

Here {λ1(t, v0)}t∈[0,T ] and {λ2(t, v0)}t∈[0,T ] processes in M2[0, T ], for any

v0 > 0. In order to guarantee that the functional form of system (3.45)



CHAPTER 3. WEIGHTED AVERAGE PRICE 85

is preserved under Qv0 , the usual formulation of the market price of risk

processes is given by

λ1(t, v0)
√
Vt(v0) = µ− r, (3.47)√

1− ρ2λ2(t, v0) = λ
√
Vt(v0)− ρλ1(t, v0), (3.48)

for some constant parameter λ ∈ (−κ/σ, 0]. Thus, the following relations

hold:

κ
′

= κ+ σλ, θ
′

=
κθ

κ′
. (3.49)

We recall that condition (3.47) ensures that discounted stock prices are local

martingales under Qv0 , for any fixed v0 > 0. In particular, it holds θ
′ ≥ θ,

that is the risk-neutral measure captures the risk-averse nature under P,

since it increases the long-run level value of risk-neutral volatility. Since

(Vt(v0))t is an affine process, by the results obtained in [27], it admits a

continuous dependence on the initial data.

Equation (3.47) represents the equity premium regarded as compensa-

tion for accepting the diffusive risk associated with W 1 and W 2. In fact,

economic reasoning in Heston (1993) indicates that these compensations

take the forms λ1

√
Vt and λ2

√
Vt. We observe that, whereas the value

λ1ρ+λ2

√
1− ρ2 can be estimated from the asset price alone, the estimation

of λ1, λ2 needs another class of observations like option prices. 3.4.1 The no-

arbitrage price for a European call option, given under the extended market

setting, is obtained by integration of the Heston price function CH (2.26)

against the density function f chosen for the initial volatility parameter:

C(t, S) =

∫ ∞
0

CH(t, log(S), v0)f(v0)dv0. (3.50)

In particular the dependence of the new price function on the volatility is

removed. Relation (3.50) can be reduced furtherly to a single integration as

we will investigate later in Theorem 3.4.1.
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3.3 Averaging over volatility

So, as exposed above, the volatility represents a fundamental factor for the

price evaluation of financial primary assets as well as of financial derivatives.

We propose a new approach for the estimation parameters in stochastic

volatility models. In this section we present an estimation approach which

resume the theoretical framework described in previous sections, where the

initial volatility is considered as a random variable driven by a given prob-

ability density function. This method leads to a new approach in calibrat-

ing option prices. We will focus primarily on the Heston model, reserving

for future contributions the extension of such a technique to more general

stochastic volatility models.

Our technique is mainly based on the work of Dragulescu and Yakovenko

(2002) for estimation of the Heston model on historical stock prices. Using

the Fourier and Laplace transforms, the authors solve the Fokker-Planck

equation for the Heston model exactly and find the joint density function

of log-returns and variance as a function of time, conditional on the initial

volatility v0. Thus, they integrate the joint density function over the initial

volatility against a particular density function and they obtain a proxy for

the marginal density function of log-returns, unconditional with respect to

the initial variance. The approximated probability density function, found

in Dragulescu and Yakovenko (2002), provides an excellent agreement with

observed historical financial data. The intuition consists in supposing that

the initial volatility is a random variable distributed according to the sta-

tionary distribution of the volatility process.

3.3.1 The stationary distribution of the volatility process

The processes in the Heston model are characterized by the transition den-

sity function Pt(x, v| v0), where x stands for the log-return (related to drift

µ) and v is the at time t, given the initial conditions x = 0 e v = v0 at

t = 0. The evolution in time of Pt(x, v|v0) follows the following Fokker-
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Planck equation:

∂

∂t
P =

∂

∂v
[κ(v−θ)P ]+

1

2

∂

∂x
(vP )+ρ

∂2

∂x∂v
(vP )+

1

2

∂2

∂x2
(vP )+

2

2

∂2

∂v2
(vP ),

(3.51)

for x ∈ R, v > 0, t > 0. The initial condition is the product of two Dirac

delta functions: Pt=0(x, v|v0) = δ(x)δ(v − v0). The marginal density of

volatility, conditionated to the initial value v0, is Πt(v|v0) =
∫∞
−∞ Pt(x, v|v0) dx,

and it satisfies the Fokker-Planck partial differential equation given by

∂

∂t
Πt(v) =

∂

∂v
[κ(v − θ)Πt(v)] +

2

2

∂2

∂v2
[vΠt(v)], (3.52)

for t > 0, v > 0, obtained by integration of (3.51) in dx and imposing the

initial condition Πt=0(v|v0) = δ(v − v0). Due to the Feller’s condition, it is

proved that the initial value problem associated to (3.52) is well posed for

v ∈ (0,∞), t ∈ (0,∞).

Proposition 3.3.1. The unique stationary solution Π? ∈ C2((0,∞)) of

(3.52) which verifies the following conditions:

i) Π∗(v) ≥ 0, for all v > 0,

ii) vΠ∗(v) in integrable on (0,∞),

iii)
∫∞

0 Π∗(v)dv = 1,

is the density function related to a Gamma distribution function with pa-

rameters (α, θα), α = 2κθ
σ2 , that is:

Π∗(v) =
vα−1

Γ(α)

(
α

θ

)α
e−

αv
θ , (3.53)

where Γ(α) =
∫∞

0 tα−1e−tdt is the Gamma function.

Proof. A stationary solution is the solutions of the ordinary differential equa-

tion

κ
d

dv
[(v − θ)Π∗(v)] +

σ2

2

d2

dv2
[vΠ∗(v)] = 0, (3.54)

which implies that

κ(v − θ)Π∗(v) +
σ2

2

d

dv
(vΠ∗(v)) = C, (3.55)
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for some constant C, that is

κ(v − θ)Π∗(v) +
vσ2

2

d

dv
Π∗(v) +

σ2

2
Π∗(v) = C, (3.56)

d

dv
Π∗(v) =

2

vσ2

[
C −

(
κv − κθ +

σ2

2

)
Π∗(v)

]
, (3.57)

d

dv
Π∗(v) =

2C

vσ2
− 2

vσ2

(
κv − κθ +

σ2

2

)
Π∗(v) =

2C

vσ2
+

(
−1

v
+

2κθ

vσ2
− 2κ

σ2

)
Π∗(v) =

2C

vσ2
+

(
α− 1

v
− α

θ

)
Π∗(v).

(3.58)

From (3.55), by integrating between v0 > 0 and v > v0, we get

κ

∫ v

v0

vΠ∗(v)dv − κθ
∫ v

v0

Π∗(v)dv +
σ2

2

(
vΠ∗(v)− v0Π∗(v0)

)
= C(v − v0).

(3.59)

Using conditions i)-iii), terms on the left-hand side in (3.59) are bounded

for v → ∞. Hence, we argue tha C = 0. Substituting C = 0 in (3.58), we

obtain the following ordinary differential equation:

d

dv
Π∗(v) =

(
α− 1

v
− α

θ

)
Π∗(v), (3.60)

whose generale solution is

Π∗(v) = Ae−
α
θ
v+(α−1) log(v) = Ae−

α
θ
vvα−1, (3.61)

for A > 0, constant. We can find the value of the constant A, thanks to

condition iii): ∫ ∞
0

Π∗(v)dv = A

∫ ∞
0

e−
α
θ
vvα−1dv = 1, (3.62)

implies

A =

(∫ ∞
0

e−
α
θ
vvα−1dv

)−1

=

(∫ ∞
0

e−t
θα

αα
tα−1dt

)−1

=
αα

θα
1∫∞

0 e−ttα−1dt
=

(
α

θ

)α 1

Γ(α)
,

(3.63)

where the change of variables v = θ
α t has been used. Replacing the value

found for A in (3.61), we finally get the assertion.
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This stationary distribution is a Gamma distribution with coefficients

depending on the Heston model parameters. Since x appears in (3.51) only

in the derivative operator ∂
∂x , it is convenient to take the Fourier transform:

Pt(x, v|v0) =

∫ +∞

−∞

dpx
2π

eipxxP̄t,px(v|v0). (3.64)

Inserting this expression we find the equation verified by P̄ :

∂

∂t
P̄ =

∂

∂v
[κ(v − θ)P̄ ]−

[p2
x − ipx

2
v − iρσpx

∂

∂v
v − σ2

2

∂2

∂v2
v
]
P̄ , (3.65)

for t > 0, v > 0. The latter is simpler than (3.51), because the number of

variables has been reduced to two, v and t, whereas px only plays the role

of a parameter. Since equation (3.65) is linear in v and quadratic in ∂
∂x , it

can be simplified by taking the Laplace transform over v:

P̃t,px(pv|v0) =

∫ +∞

0
dve−pvvP̄t,px(v|v0). (3.66)

The PDE satisfied by P̃t,px(pv|v0) is of the first order[
∂

∂t
+
(
Lpv +

σ2

2
p2
v −

p2
x − ipx

2

) ∂

∂pv

]
P̃ = −κθpvP̃ (3.67)

where

L = κ+ iρσpx (3.68)

and the corresponding initial condition is given by

P̃0,px(pv|v0) = e−pvv0 . (3.69)

The solution of (3.67) is given by the method of characteristics [33] and is

given by:

P̃t,px(pv|v0) = exp

(
−p̃v(0)v0 − κθ

∫ t

0
dτ p̃v(τ)

)
(3.70)

where the function p̃v(τ) is the solution of the characteristic (ordinary) dif-

ferential equation:

dp̃v
dτ

(τ) = Lp̃v(τ) +
σ2

2
p̃2
v(τ)− p2

x − ipx
2

, (3.71)
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with the boundary condition p̃v(t) = pv at τ = t. The previous differential

equation is of Riccati type, with constant coefficients, and its solution takes

the following form:

p̃v(τ) =
2M

σ2

1

NeM(t−τ) − 1
− L−M

σ2
, (3.72)

where

M =
√
L2 + σ2(p2

x − ipx) (3.73)

N = 1 +
2M

σ2pv + (L−M)
.

Substituting (3.72) in (3.70), we find

P̃t,px(pv|v0) = exp
[
−p̃v(0)v0−

κθ(L−M)t

σ2
−2κθ

σ2
log
(N − e−Mt

N − 1

)]
. (3.74)

Usually, we are interested only in log-returns x and do not care about the

volatility v. Moreover, whereas log-returns are directly known from financial

data, volatility is a hidden stochastic variable that has to be estimated.

Inevitably, such an estimation is done with some degree of uncertainty, which

precludes a clear-cut direct comparison between Pt(x|v0) and financial data.

Thus, in [25], the reduced probability distribution is considered:

Pt(x|v0) =

∫ +∞

0
dvPt(x, v|v0) =

∫ +∞

−∞

dpx
2π

eipxxP̃t,px(0|v0). (3.75)

Inserting (3.74) in the last expression, we obtain:

Pt(x|v0) =

∫ +∞

−∞

dpx
2π

exp
(
ipxx− v0

p2
x − ipx

L+M coth(Mt
2 )

)
(3.76)

× exp
[
− 2κθ

σ2
log
(

cosh(
Mt

2
) +

L

M
sinh(

Mt

2
)
)

+
κLθt

σ2

]
.

However, equation cannot be directly compared with financial time series

data, because it depends on the unknown initial volatility v0. In order to

resolve this problem, Dragulescu and Yakovenko [25] have assumed that v0

is a random parameter driven by the stationary probability distribution Π?.

So, the estimated probability density function for the log-returns, Pt(x),

becomes

Pt(x) = EΠ∗ [Pt(x|v0)] =

∫ +∞

0
Π∗(v0)Pt(x|v0) dv0 (3.77)
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Figure 3.1: See [25]. The stationary probability distribution Π∗(v) of vari-

ance v, given by Eq. (??) and shown for α = 1.3, γ = 11.35, θ = 0.022, κ =

, 0.618, µ = 0.143.

Equation (3.77) can be furtherly simplified with the aim to let an easier

implementation from the numerical point of view .

Proposition 3.3.2. For every t > 0, x ∈ R and for any choice of parameters

σ, κ > 0, ρ ∈ [−1, 1], θ ∈ R, with 2κθ > σ2, Pt(x) in (3.77) assumes a Fourier

type integral representation:

Pt(x) =
1

2π

∫ +∞

−∞
dpxe

ipxx+Ft(px), (3.78)

where

Ft(px) =
κθLt

2
− 2κθ

2
log

[
cosh

(
Mt

2

)
+
M2 − L2 + 2κL

2κM
sinh

(
Mt

2

)]
.

(3.79)

In order to prove the proposition, we need the following relation for the

generalized moment generating function of the Gamma distribution:∫ ∞
0

ezv
vα−1

Γ(α)

(
α

θ

)α
e−(αv)/θdv =

1

(1− θ
αz)

α
, (3.80)

which holds for all z ∈ C, with Re(z) < α/θ. In fact it can be easily derived

according with the following passages: Let z = x+ iy in C, with x < α/θ,,

then
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∫ ∞
0

(ezv)
v(α−1)

Γ(α)

(
α

θ

)α
e−(αv)/θdv =

1

(1− θ
αz)

α
.

Due to ezv = exv(cos(vy) + i sin(vy)), we can write∫ ∞
0

(ezv)
v(α−1)

Γ(α)

(
α

θ

)α
e−(αv)/θdv =

αα

Γ(α)

∫ ∞
0

vα−1

θα
evxe−(αv)/θ cos(vy)dv +

iαα

Γ(α)

∫ ∞
0

vα−1

θα
evxe−(αv)/θ sin(vy)dv.

Applying the substitution v = (−x+ α
θ )−1w, we get

αα

Γ(α)θα

∫ ∞
0

wα−1
(α
θ
− x
)−α

e−w cos

(
yw
(α
θ
− x
)−1
)
dw+

iαα

Γ(α)θα

∫ ∞
0

wα−1
(α
θ
− x
)−α

e−w sin

(
yw
(α
θ
− x
)−1
)
dw =

(α
θ

)α(α
θ
− x
)−α ∫ ∞

0

wα−1

Γ(α)
e−weiAwdw,

where we fixed A := y
(
α
θ − x

)−1
. Observe here that the integral in the last

line of ?? is the charactheristic function of the Gamma distribution with

parameters (α, 1) evaluated in A. Thus, the following equalities allow us to

deduce (3.80): (α
θ

)α(α
θ
− x
)−α ∫ ∞

0

wα−1

Γ(α)
e−weiAwdw =(α

θ

)α(α
θ
− x
)−α 1

(1− iA)α
=(α

θ

)α 1(
α
θ − x− iy

)α =

(α
θ

)α 1(
α
θ − z

)α =
1

(1− θ
αz)

α
.

Define the following complex-valued functions:

A(px, t) =
ipx − p2

x

L+M coth(Mt
2 )

, (3.81)

B(px, t) = −2κθ

σ2
log
(

cosh(
Mt

2
) +

L

M
sinh(

Mt

2
)
)

+
κLθt

σ2
, (3.82)

where we omit the dependence on the parameters κ, ρ and σ. In order to

prove the central result of this section, we need a technical result, that is

not proved in [25].
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Lemma 3.3.1. For every t > 0, px ∈ R and for any choice of parameters

σ, κ > 0, ρ ∈ [−1, 1], θ ∈ R, with 2κθ > σ2, it holds Re(A(px, t)) ≤ 0 and

px ∈ R 7→ exp Re((B(px, t))) is integrable on R.

Proof of Proposition 3.3.2. We substitute the full expression of Pt(x|v0),

found in (3.76), into (3.77), to get

Pt(x) =

∫ +∞

0
dv0Π∗(v0)

∫ +∞

−∞

dpx
2π

eipxx+v0A(px,t)+B(px,t), (3.83)

Exchanging the integrals in (3.83), we get

Pt(x) =

∫ +∞

−∞

dpx
2π

eipxx+B(px,t)

∫ +∞

0
Π∗(v0)ev0A(px,t)dv0. (3.84)

In the second integral we recognize the moment generating function of the

Gamma distribution with parameters (α, θα) that is evaluated in A(px, t),

from which results that∫ +∞

0
Π∗(v0)ev0A(px,t)dv0 =

1(
1− θ

αA(px, t)
)α (3.85)

with the condition Re(A(px, t)) < α/θ, which follows from Lemma 3.3.1.

Replacing (3.85) in (3.84), we have

Pt(x) =

∫ +∞

−∞

dpx
2π

eipxx+B(px,t)(
1− θ

αA(px, t)
)α . (3.86)

And so

Pt(x) =

∫ +∞

−∞

dpx
2π

eipxx+B(px,t)−α log
(

1− θ
α
A(px,t)

)
. (3.87)

The proof is easily done by replacing the coefficients A and B in (3.87) with

their respective values (3.81)-(3.82).

Proof of Lemma 3.3.1. We observe that A(px, t) = 0, if px = 0, for all t > 0.

Hence, in the following we assume that px 6= 0. We change the expression

of A(px, t) as follows:

A(px, t) = − L

σ2

(M/L)2 − 1

1 + M
L coth

(
M
L
Lt
2

) . (3.88)
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Since L > 0 and

Re

(
M2

L2

)
= 1 +

σ2 p2
x

L2
> 1,

for any px ∈ R\{0}, and by Re(1/z) = Re(z/|z|2) = Re(z)
|z|2 for all z ∈ C\{0},

it suffices to show that,

Re

(
1 + z coth (τ z)

z2 − 1

)
≥ 0,

for any τ > 0, z = α+ iω ∈ C, with Re(z2) = α2−ω2 > 1. We compute the

real part in (3.89). It is easy to see that

1 + z coth (ξ z)

z2 − 1
=
ξ

η
,

where

ξ = sinh(τα) cos(τω) + i cosh(τα) sin(τω) + (α+ iω)×

[cosh(τα) cos(τω) + i sinh(τα) sin(τω)],

η = (α2 − ω2 − 1 + 2iαω)[sinh(τα) cos(τω) + i cosh(τα) sin(τω)].

Hence (3.89) is satisfied if and only if Re(ξ)Re(η) + Im(ξ)Im(η) ≥ 0. After

some calculation, we get

Re(ξ)Re(η) + Im(ξ)Im(η) =

(α2 − ω2 − 1)
[
sinh2(τα) cos2(τω) + cosh2(τα) sin2(τω)

]
+
α

2
(α2 + ω2 − 1) sinh(2τα)− ω

2
(α2 + ω2 + 1) sin(2τω).

Since the previous expression is symmetric with respect to ω, it suffices to

prove that

q :=
α

2
(α2 + ω2 − 1) sinh(2τα)− ω

2
(α2 + ω2 + 1) sin(2τω) ≥ 0,

when ω > 0, with sin(2τω) ≥ 0. We apply the well known inequalities

sinh(x) ≥ x and sin(x) ≤ x, for any x ≥ 0, to get

q ≥ τ [α2(α2 + ω2 − 1)− ω2(α2 + ω2 + 1)]

= τ
(
α4 − α2 − ω4 − ω2

)
= τ(α2 + ω2)

(
α2 − ω2 − 1

)
> 0.
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Thus, the result for A is proved. For the complex-valued function B(px, t),

we have to show that, for every t > 0, ρ ∈ [−1, 1], σ > 0, κ > 0, θ > 0, with

2κθ > σ2, the function

px ∈ R 7→ eRe(B(px,t))

is integrable on R. To this aim, we estimate the absolute value of

w(M,L, t) := cosh(Mt/2) + (L/M) sinh(Mt/2). (3.89)

Since w(−M,L, t) = w(M,L, t), we can consider only the case in which

M = meiθ/2, where m > 0, m4 = [κ2 + σ2p2
x(1− ρ2)]2 + 2p2

x(2ρκ− σ)2 and

θ ∈ (−π, π] satisfies

cos θ =
κ2 + σ2p2

x(1− ρ2)

m2
, sin θ =

σpx(2κρ− σ)

m2
.

In particular, it holds Re(M) > 0. We study the behavior of Re(M) and

L/M , as |px| → ∞.∣∣∣∣ LM
∣∣∣∣2 =

|L|2

m2
=

κ2 + ρ2σ2p2
x√

[(1− ρ2)σ2p2
x + κ2]2 + σ2p2

x(2ρκ− σ)2
,

and

(Re(M))2 =
m2

2
(1 + cos θ) =

m2 + κ2 + 2p2
x(1− ρ2)

2
.

We deduce the following asymptotic regimes as |px| → ∞. Let (γ, c) :=

(σ/|2ρκ− σ|, 1/2) if σ 6= 2κ, whereas (γ, c) := (2, 1), if σ = 2κ. Thus

∣∣∣∣ LM
∣∣∣∣ ≈



|ρ|/
√

1− ρ2 if ρ 6= 0, ±1,

κ/(σ|px|) if ρ = 0,

(γ|px|)c if ρ = ±1,

ReM ≈

|px|
√

1− ρ2 if ρ 6= ±1,√
|px|/(2γ) if ρ = ±1 and 2κ 6= ,
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whereas, in the case ρ = 1 with 2κ = σ, we get

M = κ,
L

M
= 1 + 2ipx.

Let b = |ρ|/
√

1− ρ2, a = (b+ 1)/2, if ρ 6= ±1, and let a = 2, if ρ = ±1. By

(3.90), there exists p̃ > 0 depending on ρ, κ and σ, such that, for all px ∈ R

with |px| > p̃, the following inequalities are satisfied:

- If |ρ| < 1/
√

2 (a < b < 1), it holds |L/M | < a and

|w(M,L, t)| ≥
∣∣∣∣cosh

(
Mt

2

)∣∣∣∣− a ∣∣∣∣sinh

(
Mt

2

)∣∣∣∣ ≥ sinh

(
Re(M)

t

2

)
−a cosh

(
Re(M)

t

2

)
=

(1− a)

2
e
t
2

Re(M) − 1 + a

2
e−

t
2

Re(M).

- If |ρ| > 1/
√

2 (a > b > 1), it holds |L/M | > a and

|w(M,L, t)| ≥ a
∣∣∣∣sinh

(
Mt

2

)∣∣∣∣− ∣∣∣∣cosh

(
Mt

2

)∣∣∣∣ ≥ a sinh

(
Re(M)

t

2

)
− cosh

(
Re(M)

t

2

)
=

(a− 1)

2
e
t
2

Re(M) − a+ 1

2
e−

t
2

Re(M).

- If ρ = ±1/
√

2 and 2ρκ 6= σ, by replacing ρ2 with 1/2 in (3.90) and using

the Taylor expansion of τ 7→ 1/ 4
√

1 + τ near τ = 0, we deduce the following

equation:∣∣∣∣ LM
∣∣∣∣ =

(
1 +

4 2p2
x(
√

2κ− σ)2

(2κ2 + σ2p2
x)2

)−1/4

= 1− (
√

2κ− σ)2

σ2p2
x

+ R(px),

where |p4
xRe(px)| ≤ r̃, for any |px| > p̃, with r̃ > 0 depending only on σ and

κ. Using (3.90), we get the estimate

|w(M,L, t)| ≥ sinh

(
Re(M)

t

2

)
− cosh

(
Re(M)

t

2

)
+

(
1−

∣∣∣∣ LM
∣∣∣∣)×

× cosh

(
Re(M)

t

2

)
≥ e−

t
2

Re(M) +

(
(
√

2κ− σ)2

σ2p2
x

− r̃

p4
x

)
cosh

(
Re(M)

t

2

)
- If ρ = 1/

√
2 and 2ρκ = σ, it holds L/M = eiϕ, where

cosϕ =
κ

m
, sinϕ =

px√
2m

, M = m =
√
κ2 + 2p2

x/2.
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Hence

|w(M,L, t)| ≥ cosh

(
M
t

2

)
+ cos(ϕ) sin

(
M
t

2

)
≥ 1

2
e
t
2
M .

In the specific case (ρ, 2κ) = (1, σ), we consider the inequality

|w(M,L, t)| =
∣∣∣∣cosh

(
κ
t

2

)
+ (1 + 2ipx) sinh

(
κ
t

2

)∣∣∣∣ ≥ 2|px| sinh

(
κ
t

2

)
.

Let (ρ, 2κ) 6= (1, σ), then from the above inequalities we deduce that there

are constants c1 > 0, c2 ≥ 0 depending only on ρ, κ, σ and t such that, for

every |px| > p, B(px, t) satisfies

Re (B(px, t)) ≤ −
2κθ

σ2
log
[(
c1 + c2/p

2
x

)
e ζ

t
2
|px|c

]
+
κ2θt

2
, (3.90)

where (c, ζ) := (1,
√

1− ρ2) if ρ 6= ±1, whereas (c, ζ) := (1/2, 1/
√

2γ) other-

wise. Here c2 6= 0 only if ρ = ±1/
√

2 with 2ρκ 6= σ. Taking the exponential

in (3.90), we get the inequality

eRe(B(px,t)) ≤
exp(κ

2θt
σ2 )

[c1 + c2/p2
x]2κθσ2 exp

(
−ζ κθt

σ
|px|c

)
, (3.91)

for any |px| > p. The function on right-hand is integrable on R, with respect

to px. Similarly, in the case (ρ, 2κ) = (1, σ), we have

eRe((B(px,t))) ≤
exp(κ

2θt
σ2 )

[2 sinh(κt/2)]2κθ/σ2

1

|px|2κθ/σ2 . (3.92)

Since,2κθ > σ2, also in this case px 7→ exp(Re (B(px, t))) is integrable on

R.

As an application of the technique described above, we present the es-

timation of the Heston model based on closure daily prices of FTSE MIB

index (the reference stock market index for the Italian Stock Exchange),

from 06/09/2008 to 06/09/2012. The estimation approach is based on the

following minimization procedure, on the set of all admissible parameters

Ω = (µ, κ, θ, σ, ρ) ∈ R4
+, with 2κθ ≥ σ2, ρ ∈ (−1, 1).

min
Ω
S1(Ω) := min

Ω

∑
x

| log(Emp∆(x))− log(P∆(x))|2. (3.93)



CHAPTER 3. WEIGHTED AVERAGE PRICE 98

where P∆(x) is the proxy for the density of log-returns based on the

representation (3.97), ∆ is the time frequency of the date (in our case

∆ ≈ 1/250). Here the comparison is performed using the empirical den-

sity Emp∆(x). In the table 3.1 are shown the results of minimization. As it

is shown from Figure 3.2, the accuracy of approximation gets down when we

get away from the mean value. In accordance with [25], this feature is due

to the irregular behavior of the function Ft(px) (3.79) in the complex level

of px: the function Ft(px) has, in fact, singularities where the argument of

logarithm is null. An improvement of the estimation result can be obtained

following an approach which aim to a better approximation of the tails by

exponential functions. Let

G∆(x) =


P∆(x)e(x−a)q+ se x < a

P∆(x) se a ≤ x ≤ b

P∆(x)e(−x+b)q− se x > b,

(3.94)

where q+ e q− are two additional parameters which will be add to the

previous set, which so will become in this case Ω = (µ, κ, θ, σ, ρ, q+, q−).

The value of a and b are evaluated so that a certain percentage (for example

98%) of desired data will be in the gap [a, b]. In this case the minimization

procedure is based on the following functional:

min
Ω
S2(Ω) := min

Ω

∑
x

| log(Emp∆(x))− log(G∆(x))|2. (3.95)

In Table 3.2 are shown the results of the minimization procedure fol-

lowing the last extension while in the Graph 3.3 it could be examine the

improvement of approximations on the tails
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Initial values Results

µ 0.000567 -0.00025

κ 0.045 0.000053

θ 0.0000862 0.00041

σ 0.00245 0.000047

ρ 0 -0.9879

S1(Ω) 1664 29.06

Time occured 242.8 secondi

nr. of iterations 1631

Table 3.1: Results of the estimation procedure based on the error functional

S1(Ω).

Initial Values Results

µ 0.000567 -0.0015

κ 0.045 0.1096

θ 0.0000862 0.00040

σ 0.00245 0.00694

ρ 0 -0.9732

q+ 0 55.774

q− 0 -2.627

S2(Ø) 1832 18.61

time occurred 187.7 seconds

nr. of iterations 1401

Table 3.2: Results of the estimation procedure (3.95).
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Figure 3.2: The comparison between the empirical density (in red) and the

desity P∆(x) (in blue)

We can generalize the above approach by assuming that v0 has an arbi-

trary probability distribution with density function Π(v0). Thus, we consider

a non-negative function Π ∈ L1(R), such that Π(v) = 0, for all v ≤ 0, and

we denote by MΠ its (extended) moment generating function, namely

MΠ(z) =

∫ ∞
0

ezv Π(v) dv, (3.96)

which is clearly well defined for all z ∈ C, with Re(z) ≤ 0.

According to Dragulescu and Yakovenko [25], we define the probability

density function Pt(x) at time t of the log-returns relative to the drift µ, by

averaging over v0 with the weight Π(v0), namely:

Pt(x) =

∫ +∞

0
Π(v0)Pt(x|v0)dv0. (3.97)

Thus, we can extend the representation of Pt(x) established in Proposi-

tion 3.3.2.

Theorem 3.3.1. Under the assumptions on the parameters given in Propo-

sition 3.3.2, if the initial volatility is driven by the density function Π with

the above described properties, then the probability density function Pt(x)

at time t of log-returns relative to the drift µ, given by (3.97), reduces to
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Figure 3.3: Comparison between the approximation obtained using by P∆(x)

and G∆(x) (zoom on the tail on the right of dentities).

the following integral:

Pt(x) =

∫ +∞

−∞

dpx
2π

MΠ(A(px, t))e
ipxx+B(px,t). (3.98)

Proof of Theorem 3.3.1. By replacing the expression of Pt(x|v0) in (3.97),

we have

Pt(x) =

∫ +∞

0
dv0Π(v0)

∫ +∞

−∞

dpx
2π

eipxx+v0A(px,t)+B(px,t).

In order to change the order of integrals, we show that

I :=

∫ +∞

−∞
dpx

∫ +∞

0
dv0

Π(v0)

2π

∣∣∣eipxx+v0A(px,t)+B(px,t)
∣∣∣ <∞. (3.99)

By omitting the arguments of the complex-valued functions A and B, we

can write

I =
1

2π

∫ +∞

−∞
dpx

∫ +∞

0
dv0Π(v0)ev0Re(A(px,t))+Re(B(px,t))

=
1

2π

∫ +∞

−∞
dpxe

Re(B(px,t))

∫ +∞

0
dv0Π(v0)ev0Re(A(px,t))

≤ 1

2π

∫ +∞

−∞
dpxe

Re(B(px,t))

∫ +∞

0
dv0Π(v0)

=
1

2π

∫ +∞

−∞
dpxe

Re(B(px,t)) (3.100)

where we used the fact that Re(A(px, t)) ≤ 0, for any px ∈ R. Thanks to
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Figure 3.4: See [25]. Probability distribution Pt(x) of log-return x for differ-

ent time lags t. Points: The 19822001 Dow-Jones data for t = 1, 5, 20, 40, 250

trading days. Solid lines: Fit of the data Pt(x) =
∫ +∞
−∞

dpx
2π e

ıpxx+B(px,t).. For

clarity, the data points and the curves for successive t are shifted up by the

factor of 10 each. Inset: The 19902001 Dow-Jones data points compared

with the same theoretical curves.

Lemma 3.3.1, we get (3.99). This implies the following equation:

Pt(x) =

∫ +∞

0
dv0Π(v0)

∫ +∞

−∞

dpx
2π

eipxx+v0A(px,t)+B(px,t)

=

∫ +∞

−∞

dpx
2π

eipxx+B(px,t)

∫ +∞

0
dv0Π(v0)ev0A(px,t)

=

∫ +∞

−∞

dpx
2π

eipxx+B(px,t)MΠ

(
A(px, t)

)
that is the desired expression.

Example 3.3.1. If Π(v0) is the probability density function of the Gamma

distribution, with parameters α > 0, β > 0,

Π(v0) = gα,β(v0) :=
βα

Γ(α)
vα−1

0 e−βv0 , (3.101)
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then the expression (3.98) yields

Pt(x) =

∫ +∞

−∞

dpx
2π

eipxx+B(px,t)(
1− 1

βA(px, t))α

=

∫ +∞

−∞

dpx
2π

eipxx+B(px,t)−α log
(

1−β−1A(px,t)
)
. (3.102)

The estimation method developed above for stock price data can be ex-

tended, with rigorous arguments, technique to the option pricing problem.

Furthermore, we prove that, for a large class of probability distributions

assumed for the initial volatility parameter, the estimation error in the cali-

bration procedure of option prices is less than the case of the simple pricing

formula. Our results are validated with a numerical comparison, on observed

call prices, between the proposed calibration method and the classical ap-

proach.

The calibration of SV models to synthetic and market option data forms

one of the major theme in the literature. Calibrating methods to market

data (either option prices or implied volatilities) allows to infer the (risk-

neutral) market parameters for the different models and thus to use these

models for pricing and hedging purposes.

The cost of using such models, however, is that the calibration and pricing

techniques that must be employed are usually quite onerous. The choice of a

calibrating routine requires a trade-off between its computational complexity

and its accuracy. This leads to a complication that plagues SV models in

general. A common solution is to find those parameters which produce the

correct market prices of vanilla options. This is called an inverse problem,

as we solve for the parameters indirectly through some implied structure.

A well documented and popular method of fitting pricing models to

observed data is to find a set of model parameter values that minimizes the

square of the differences between the empirical values and the corresponding

model values. More specifically, the squared differences between vanilla

option market prices and model theoretical prices are minimized over the
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parameter space:

inf
Θ

N∑
i=1

wi

(
CModel(S0,Ki, Ti; Θ)− CMarket

i (Ki, Ti)
)2
. (3.103)

where Θ is the vector of parameter values, CModel(S0, Ti,Ki; Θ) and

CMarket
i (Ki, Ti) denote the ith option price from the model and market

dataset, respectively, with strike Ki and maturity Ti, whereas N is the num-

ber of options used for calibration. The coefficients wi, i = 1, . . . , N , denote

suitable weights. One possible choice for these weights is to set wi = 1/N ,

for all i = 1, . . . , N , making equation (3.103) a measure of mean squared

errors Zhu (2010). Alternatively, we could let wi = |bidi − aski|−1, where

bidi and aski stand for the bid and ask prices of the ith option in the dataset.

This would allow us to place more weight on options which are more liquid

in the market. A third option that has also been suggested is to use the

implied volatilities of the sampled options as weights, a method explored by

Cont (2005).

In the Heston model there are essentially four (risk-neutral) parameters

that need estimation: κ > 0, θ > 0, σ > 0 and ρ ∈ [−1, 1].

The common approach adopted to overcome this estimation problem,

is considering the initial volatility v0 > 0 as an additional parameter in

the calibration procedure. An alternative approach can be perfomed with

at-the-money (ATM) implied variance, based on the following result from

Gatheral (2006).

Theorem 3.3.2. Term structure of the Black-Scholes implied volatility in

the Heston Model:

σ2
ATM ≈

1

T

∫ T

0
[(v0 − θ

′
)e−κ

′
t + θ]dt = (v0 − θ

′
)
1− e−κ

′
T

κ′T
+ θ

′
(3.104)

where κ
′

= κ − 1
2ρσ and θ

′
= κθ/κ

′
. The ATM Black-Scholes implied

variance in the Heston model converges (in probability) to v0, as T → 0.

The practical significance of the previous theorem is that, if we assume that

the stock process follows the Heston dynamics, then v0 should be consistent
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with the short dated at-the-money volatility: there is a linear relationship

between the initial variance, v0, and the Black-Scholes implied variance re-

turned by the Heston model. This estimation method has been considered

as a satisfactory estimate for the initial variance v0, in the Heston model.

Following the method by Dragulescu and Yakovenko (2002), we apply

such a method to the calibration of the Heston model and we give math-

ematical and numerical justification of this approach. In the following, we

will consider the set P of all non-negative Lebesgue-integrable functions

f : R→ R such that f(v) = 0, for any v ≤ 0, almost everywhere (a.e.), and∫ +∞

0
f(v)dv = 1. (3.105)

Clearly P is a subset of all probability density functions on R. For every

f ∈ P and any bounded measurable function φ : (0,∞)→ R, let define

Ef [φ] :=

∫ +∞

0
φ(v)f(v)dv (3.106)

Let the actual price of a call option with maturity T and strike K - in the

framework of the Heston model - be denoted as CH(S0, v0, T,K; Θ) where

Θ ∈ H :=
{

(κ, θ, σ, ρ) ∈ R4 : κ, θ, σ > 0, 2κθ ≥ σ2, ρ ∈ [−1, 1]
}
. (3.107)

By averaging over volatility, we mean the option price functional given by

CHf (S0, T,K; Θ) := Ef
[
CH(0, S0, ·, T,K; Θ)

]
, (3.108)

for every S0 > 0, T > 0, K > 0, Θ ∈ H, f ∈ P.

So, if f is replaced with the Dirac delta function δ(v−v0) centered at v0 > 0,

then (3.108) reduces to CH(S0, v0, T,K; Θ). The case of a constant initial

volatility can be obtained considering v0 as a random variable distributed

according with the density f ∈ P. Let CMi = CMarket
i (Ki, Ti), i = 1, . . . , N

be a basket of call prices, all written on the same underlying asset with

price S0, at time t = 0. Let {wi ≥ 0, for i = 1, . . . , N} be a set of given

weights. For the calibration purpose, we consider two objective functionals
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J : H× (0,∞)→ [0,∞) and J
′

: H×P → [0,∞), defined as follows:

J(Θ, v0) :=

N∑
i=1

wi|CMi − CH(0, S0, v0, Ti,Ki; Θ)|2, (3.109)

J ′(Θ, f) :=
N∑
i=1

wi|CMi − CHf (S0, Ti,Ki; Θ)|2. (3.110)

(3.111)

Let P ′ be a non-empty subset of P, then define I, I ′ be the infimum of J

over H× (0,∞) and the inf of J
′

over H×P ′ , respectively.

Theorem 3.3.3. For every f ∈ P, the integral in (3.108) is bounded. If

P ′ ⊆ P is such that for every v0 > 0, there exists a sequence {fn}n ⊆ P ′

satisfying

lim
n→∞

∫
R
fn(v)g(v) dv = g(v0), (3.112)

for all bounded, continuous functions g : R→ R, then I ′ ≤ I. Furthermore

inf
f∈P ′

CHf (S0, T,K; Θ) < CH(0, S0, v0, T,K; Θ) < sup
f∈P ′

CHf (S0, T,K; Θ)

(3.113)

for any Θ ∈ H, S0, v0 > 0 T, K > 0.

The chain of inequalities (3.113) shows that the averaged price (3.108)

yields a wider range of prices than the standard Heston model, when v0 varies

within a bounded interval, and this holds in practice. Moreover (3.108) rep-

resents a no-arbitrage price coherent with the general framework exposed in

Setion 3.1.

Before to proceed with the proof of Theorem 3.3.3, we formulate an

example for the set P ′ which satisfies the assumption of Theorem 3.3.3.

Consider the subset G ⊂ P of the probability density functions associated

with the Gamma distribution:

G =

{
gα,β ∈ P : gα,β(x) =

βα

Γ(α)
xα−1e−βx1x>0, α, β > 0

}
. (3.114)
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We have the following result. Thus, for every α, β > 0 and z ∈ C, with

Re(z) < β, the moment generating function of gα,β ∈ G is given by

Mα,β(z) =

∫ ∞
0

ezv
βα

Γ(α)
vα−1e−βv dv =

(
1− 1

β
z

)−α
. (3.115)

The set G satisfies condition (3.112). In fact, let v0 > 0 and gn ∈ G be such

that gn = gαn,βn , with αn = n βn = n/v0, n > 1 integer. The characteristic

function of gn is

φn(t) =

(
1− it

βn

)−αn
=

(
1− itv̄

n

)−n
, (3.116)

for all t ∈ R. Clearly gn converges weakly to δ(· − v0), since φn(t) → eitv0 ,

for any t ∈ R, where

φ(t) =

∫
R
eitxδ(x− v0)dx = eitv0 , (3.117)

which is the characteristic function associated to the delta function, centered

at v0.

Remark 3.3.4. We observe that different types of probability distributions

satisfy condition (3.112). In particular we mention the Inverse Gaussian

distribution (IG) with density function

IGα,β(x) =
[ α

2πx3

]1/2
· exp

(
−α(x− β)2

2β2x

)
, (3.118)

for x > 0, where β > 0 is the mean and α > 0 is the shape parameter. Then

it is easy to see that IGαn,v0 converges weakly to δ(· − v0), for any sequence

αn →∞. In particular, the Inverse Gaussian and Gamma distributions are

special cases of the generalized Inverse Gaussian distribution (GIG) having

density function

GIGa,b,p(x) =
(a/b)p/2

2Kp(
√
ab)

xp−1 · exp

[
−1

2

(
ax+

b

x

)]
, (3.119)

for x > 0, with parameters a, b > 0, p ∈ R. Here Kp denotes the modified

Bessel function of the second kind, where p is not an integer. This is the
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Gamma distribution when a = 2β and b → 0, p = α; it is the Inverse

Gaussian if a = α/β2, b = α and p = −1/2.

Another suitable distribution is a scaled version of noncentral-χ2 distri-

bution. In fact, as documented in several papers, the distribution of the

Heston volatility vT , conditional on vt, for t < T , is distributed according

to such a distribution with parameters derived from the Heston model, see

for example Broadie and Kaya (2006).

Proof of Theorem 3.3.3. The function u(t, S, v) = S is a super-solution for

the Dirichlet problem associated with the differential operator associated

with the Heston model, since Lu = 0, for all S > 0, v > 0, t ∈ (0, T ),

and u(T, S, v) = S > (S − K)+ (payoff function for the call price). Thus

by the comparison principle proved for in Costantini et al (2012), it holds

CH(0, S0, v0, T,K; Θ) ≤ S0, for every S0 > 0, v0 > 0, K, T > 0, Θ ∈ H.

This yields

0 ≤ CHf (S0, T,K; Θ) =

∫ ∞
0

CH(0, S0, v, T,K; Θ)f(v) dv ≤ S0 <∞,

(3.120)

for any f ∈ P.

The Jensen’s inequality implies

|CMi − CHf (S0, T,K; Θ)|2 = |Ef [CMi − CH(0, S0, ·, Ti,Ki; Θ)]|2

≤ Ef
[
|CMi − CH(0, S0, ·, Ti,Ki; Θ)|2

]
(3.121)

for every f ∈ P. Summing over i = 1, . . . , N , we get

J ′(Θ, f) ≤ Ef [J(Θ, ·)] ∀ f ∈ P ′. (3.122)

Let v0 > 0 and {fn}n ⊂ P ′, satisfying (3.112). Writing inequality (3.122)

for fn, leads to

I ′ ≤ J ′(Θ, fn) ≤ Efn [J(Θ, ·)] =

∫
R
J(Θ, v)fn(v)dv. (3.123)
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By (3.120), the function v 7→ J(Θ, v) is bounded, for any Θ ∈ H. Hence, we

can take the limit on the right-hand side as n→∞ to obtain

I ′ ≤ J(Θ, v0), (3.124)

for any arbitrary Θ and v0 > 0, and taking the inf over (Θ, v0) ∈ H×(0,∞).

This proves the inequality I ′ ≤ I.

We prove the inequality for the sup in (3.113), the other relations can be

obtained with similar arguments. Let v̄ > v0 > 0, and {fn}n ⊂ P ′ be a

sequence of density functions associated to v̄. Let g ∈ C∞(R) be such that

0 ≤ g(v) ≤ 1, everywhere, g(v) = 0, for |v| ≥ 1, g(v) = 1 for |v| ≤ 1/2.

Define gε(v) = g
(
v−v̄
ε

)
, for every ε > 0. Since v 7→ CH(0, S0, v, T,K; Θ) is

strictly increasing, for every 0 < ε < v̄ − v0, we can write

CHfn(S0, T,K; Θ) ≥
∫ v̄+ε

v̄−ε
CH(0, S0, v, T,K; Θ)fn(v) dv

≥ CH(0, S0, v̄ − ε, T,K; Θ)

∫ ∞
0

gε(v)fn(v) dv.

Taking the limit as n→∞, we get

sup
f∈P∂

CHf (S0, T,K; Θ) ≥ CH(0, S0, v̄ − ε, T,K; Θ)

> CH(0, S0, v0, T,K; Θ)

for any S0 > 0, v0 > 0, T, K > 0, Θ ∈ H.

Following Theorem 3.3.3 the calibration procedure using the average call

price (3.108), under the Gamma distribution set G, consists in minimizing

the functional

IG(α, β,Θ) :=
N∑
i=1

ωi|CMi − Egα,β [CH(0, S0, ·, Ti,Ki; Θ)]|2 (3.125)

over (α, β,Θ) ∈ (0,∞)2×H. Thus, the calibration is achieved by adding to

the set of parameters H two real parameters that describe the distribution of

the initial volatility v0. We also observe that the averaged call price (3.108)



CHAPTER 3. WEIGHTED AVERAGE PRICE 110

is strictly increasing with respect to the scale parameter γ = 1/β. In fact,

by the regularity properties of the Heston call price it holds:

∂

∂γ
Egα,β [CH(0, S0, ·, T,K; Θ)]

=
∂

∂γ

∫ ∞
0

CH (S0, γw, T,K; Θ)
1

Γ(α)
wα−1e−w dw

=

∫ ∞
0

∂CH

∂v
(S0, γw, T,K; Θ)

1

Γ(α)
wα−1e−w dw > 0. (3.126)

Hence we can conjecture that the scale parameter represents an estimate of

the ”true” volatility in the Heston model.

3.4 Average call price formula

In this section we derive a closed-form formula for the averaged call price

(3.108), given a probability density function Π ∈ P.

CΠ(S0, T,K; Θ) =

∫ +∞

0
CH(S0, v, T,K; Θ)Π(v) dv. (3.127)

We will state a result that yields a simplified form, reducing the ex-

pression of the price above to a single integration. This will be of great

convenience for numerical computation purposes.

Theorem 3.4.1. (Average Call Price) If Π ∈ P satisfies EΠ[v] < ∞,

then the following relation holds true:

CΠ(S0, T,K; Θ) = S0Q1(S0, T,K; Θ)− e−rTKQ2(S0, T,K; Θ), (3.128)

where

Qj =
1

2
+

1

π

∫ ∞
0

Re
[eCj(T,φ)+iφ log(

S0
K

)MΠ

(
Dj(T, φ)

)
iφ

]
dφ, (3.129)

for j = 1, 2, S0, T, K > 0, r > 0, Θ ∈ H, with ρ ∈ (−1, 1), MΠ being the

moment generating function (3.96) related to Π.
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Remark 3.4.2. If Π is the pdf associated to the Gamma distribution with

parameters (α, β), the integrand in (3.129) reduces to

Qj =
1

2
+

1

π

∫ ∞
0

Re

[
eCj(T,φ)+iφ log(

S0
K

)

iφ
(
1− βDj(T, φ)

)α
]
dφ. (3.130)

In the cases of the Inverse Gaussian distribution (IG) and the Generalized

Inverse Guassian distribution (GIG), we can also find an explicit expres-

sion for Qj which are based on the moment generating function of these

distributions, respectively given by:

MIG(z) = exp

[
α

β

(
1−

√
1− 2β2z

α

)]
, (3.131)

MGIG(z) =

(
a

a− 2z

)p/2 Kp(
√
b(a− 2iz))

Kp(
√
ab)

, (3.132)

where Kp is a modified Bessel function of the second kind.

We also need to prove the following Lemma that is not available, for our

knowledge, in the actual literature.

Lemma 3.4.1. For any φ, κ, θ, σ > 0, ρ ∈ (−1, 1), τ > 0 we have that

Re(Dj(τ, φ)) ≤ 0, (3.133)

for j = 1, 2.

Proof of Theorem 3.4.1. . According to Heston model (2.25),

Pj =
1

2
+

1

π

∫ ∞
0

pj(φ, log(S0), v) dφ, j = 1, 2. (3.134)

Therefore it suffices to prove the equation Qj = 1
2 + 1

π I, where

I =

∫ ∞
0

∫ ∞
0

pj(φ, log(S0), v)Π(v) dφ dv. (3.135)

Let’s first verify the convergence of I. To this end, Lemma 2.1.1-2.1.2 yields

Re(Cj(T, φ)) < −cφ, (3.136)
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as φ > η, with η > 0 chosen large enough, where c = κθT
√

1− ρ2/(2σ) > 0.

Moreover, it is easy to see that Im(Dj(T, φ)) → 0, as φ → 0+. Therefore,

by Lemma 2.1.1-2.1.2, setting v = 0, there exists ε > 0 such that

|pj(φ, log(S0), 0)| ≤ 2| log(S0/K)|+ 2|Im(∂φCj(0, T ))|, (3.137)

|Im(Dj(T, φ))| ≤ djφ, (3.138)

for every 0 < φ < ε, for a constant coefficient dj depending only on the

coefficients in Lemma 2.1.1-2.1.2.

Now it suffices to show that the integrals I∞ and I0, defined below, are

bounded. They represent respectively the integral on (φ, v) ∈ (η,∞)×(0,∞)

and the integral over (φ, v) ∈ (0, ε)×(0,∞). Let us consider them separately:

I∞ =

∫ ∞
0

[∫ ∞
η

Π(v)
1

φ
eRe(Cj)+Re(Dj)v

∣∣∣∣sin(Im(Cj) + Im(Dj)v + φ log
S0

K

)∣∣∣∣ dφ]dv
≤
∫ ∞

0

[
Π(v)

∫ ∞
0

eRe(Cj)

φ
eRe(Dj)v dφ

]
dv ≤

∫ ∞
η

eRe(Cj)

φ
dφ <∞.

Here we have omitted the dependence of Cj and Dj on (T, φ), and we have

used Lemma 3.4.1 in the last inequality. Still using Lemma 3.4.1 and in-

equality | sin(x)| ≤ | sin(y)| + |x − y|, for any pair of real numbers x, y, we

get

I0 =

∫ ∞
0

Π(v)

[∫ ε

0

1

φ
eRe(Cj)+Re(Dj)v

∣∣∣ sin(Im(Cj) + Im(Dj)v + φ log
S0

K

) ∣∣∣dφ] dv
≤
∫ ∞

0
Π(v)

[ ∫ ε

0

1

φ
eRe(Cj)

[∣∣∣ sin(Im(Cj) + φ log
S0

K

) ∣∣∣+ |Im(Dj)|v
]
dφ

]
dv

≤
∫ ε

0
|pj(φ, log(S0), 0)

∣∣∣ dφ+ djεEΠ [v] .

Hence, I0 is bounded under the assumption EΠ[v] < ∞. So we are
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allowed to change the order of integration in (3.135):

I =

∫ ∞
0

[∫ ∞
0

Re
[e−iφ log(K)fj(φ; log(S0), v)

iφ

]
Π(v)dv

]
dφ

=

∫ ∞
0

[
Re
[ ∫ ∞

0

e−iφ log(K)fj(φ; log(S0), v)

iφ
Π(v)

]
dv

]
dφ

=

∫ ∞
0

Re
[eiφ log

S0
K

+Cj(T,φ)

iφ

∫ ∞
0

eDj(T,φ)v Π(v)dv
]
dφ

=

∫ ∞
0

Re

[
eiφ log

S0
K

+Cj(T,φ)

iφ
MΠ(Dj(T, φ))

]
dφ. (3.139)

We remark that Re(Dj(T, φ)) ≤ 0 implies that MΠ

(
Dj(T, φ)) is well defined

for all T > 0, φ > 0. Note also that the switch between the integral and the

real is allowed since∣∣∣∣∣e−iφ log(K)fj(φ; log(S0), v)

i
Π(v)

∣∣∣∣∣ = eRe(Cj(T,φ))+Re(Dj(T,φ))vΠ(v)

≤ eRe(Cj(T,φ)) Π(v), (3.140)

and, given that Re(Cj(T, φ)) does not depend on v, this function is integrable

with respect to v ∈ (0,∞), for any φ.

Proof of Lemma 3.4.1. As is well known (see Heston (1993)), τ 7→ Dj(τ, φ)

solves, for every φ > 0, a Riccati type equation:

∂Dj

∂τ
(τ, φ) = Aj(φ)−Bj(φ)Dj(τ, φ) +RD2

j (τ, φ), (3.141)

and Dj(0, φ) = 0, where

Aj(φ) = iujφ−
1

2
φ2

Bj(φ) = bj − ρσφi

R =
1

2
σ2.

Thus, the function w(τ, φ) = exp
(
−R

∫ τ
0 Dj(t, φ)dt

)
solves the second order

differential equation

∂2
τw(τ, φ) +Bj(φ)∂τw(τ, φ) +RAj(φ)w(τ, φ) = 0. (3.142)
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In the sequel we shall use the notation w′ to denote the partial derivative

∂τw(τ, φ) and w̄(τ, φ) for the conjugate of w(τ, φ). Computing the real part

of Dj leads to

Re(Dj) = − 1

R
Re

(
w′w̄

|w|2

)
= − 1

R

w′RwR + w′IwI
|w|2

,

where w = wR + iwI and w′ = w′R + iw′I . Let ξ(τ, φ) = |w(τ, φ)|2, then of

course we can write ξ′ = w′w̄ + ww̄′ and Re(Dj) = −ξ′/(2Rξ). Moreover,

by using equation (3.142), we find

ξ′′ = −Bjw′w̄ −AjRww̄ + 2w′w̄′ − w(B̄jw̄
′ + ĀjRw̄)

= −Re(Bj)(w
′w̄ + ww̄′)− iIm(Bj)(w

′w̄ − ww̄′)− 2RRe(Aj)ξ

+ 2w′w̄′ = −Re(Bj)ξ
′ + 2Re(iww̄′)Im(Bj)− 2RRe(Aj)ξ +

+2w′w̄′ = −bjξ′ − 2Re(iww̄′)σρφ+
1

2
σ2φ2ξ + 2w′w̄′,

and, by the definition of w, we argue that

Re(iww̄′) = −R Im(Dj)|w|2 = −R Im(Dj) ξ,

|w′|2 = R2ξ|Dj |2.

By these relations, we deduce that ξ solves the Cauchy problem:
ξ′′(τ, φ) + bjξ

′(τ, φ)− γ(τ, φ)ξ(τ, φ) = 0,

ξ′(0, φ) = 0,

ξ(0, φ) = 1,

(3.143)

where γ(τ, φ) = (1/2)σ2φ2 + 2[R2|Dj(τ, φ)|2 +Rσρφ Im(Dj(τ, φ))]. In order

to prove that, for every fixed φ > 0, Re(Dj(τ, φ)) ≤ 0, for any τ > 0, it

suffices to show that ξ′(τ, φ) ≥ 0, for all τ > 0. Assume that this is not

true, by way of contradiction. Suppose that there exists τ ′ > 0 such that

ξ′(τ ′, φ) < 0. Since Dj(0, φ) = 0, (3.143) yields

ξ′′(0, φ) =
1

2
σ2φ2 + 2γ(0) =

1

2
σ2φ2 > 0. (3.144)

Hence, by the continuity of ξ′, ξ′′ as functions of τ , the supremum

τ0 = sup {τ ∈ (0, τ ′) : ξ′(τ, φ) ≥ 0}, (3.145)
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is well defined, since the related set is non-empty, and 0 < τ0 < τ ′, ξ′(τ0, φ) =

0. We show that ξ′′(τ0, φ) > 0. From the differential equation in (3.143) and

Re(Dj(τ0, φ)) = 0, this is equivalent to state the inequality

φ2 + 2ρφA+A2 > 0, (3.146)

where A = σIm(Dj(τ0, φ)). If A = 0 the last inequality reduces to φ2 > 0,

that is obviously true. Otherwise, if A 6= 0, since |ρ| < 1, we get

φ2 + 2ρφA+A2 > φ2 − 2|A|φ+A2 = (φ− |A|)2 ≥ 0. (3.147)

Thus ξ′(τ, φ) is positive in a right neighborhood of τ0. This is in contradic-

tion with the definition of τ0 and we have proved that ξ′(τ, φ) ≥ 0 for every

τ, φ > 0, implying inequality (3.133).

3.5 Calibration to option prices

The general approach to the calibration of parametric models, such as the

Heston model, is to apply a least-square type procedure either in price or

implied volatility. Unfortunately, this kind of approach will in general be

very sensitive to the choice of the initial point, which will often in practice

drive the selection of the local minima the algorithm will converge to. The

various explicit formulas come into play to receive a pertaining initial point.

Estimates for the volatility parameter v0, with the structural parameters

{κ, θ, ρ, σ} will be needed. The calibration procedure consists in the mini-

mization of the functional in (3.103), where CModel is the Heston call price

CH(S0, v0, T,K; Θ) in the standard case or, otherwise the weighted average

call price CΠ(S0, T,K; Θ), for a given probability distribution density Π ∈ P.

In this second case, the density is chosen according to a parameterized fam-

ily of density functions related to a probability distribution, implying that

the set of parameters includes also the parameters of such a distribution.

By the results of Section 3.3, we have compared the standard method

which considers v0 as an additional parameter and our approach under three
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distributions: the Gamma (GAM), the Inverse Gaussian (IG) and the Gen-

eralized Inverse Gaussian (GIG), for which the integrands appearing are ex-

plicitly known. From a numerical point of view, the calculation of the option

price is made somewhat complicated by the fact that the integrands have

oscillatory nature. However, the integration can be done in a reasonably

simple fashion by the aid of Gauss-Lobatto quadrature. This integration

method is capable of handling a wide range of functional forms. Since the

Gauss-Lobatto algorithm is designed to operate on a closed bounded inter-

val, we have used a transformation of the original integral boundaries (0,∞)

to the finite interval [0, 1], as presented in Kahl and Jackel (2005).

In order to evaluate the performance of those methods, we have used

three discrepancy measures documented in several works in the literature:

the average prediction error (APE), the root mean-square error (RMSE) and

the average relative prediction error (ARPE). They are defined as follows:

APE =
N∑
n=1

|CModel
i − CMarket

i |∑N
n=1C

Market
i

(3.148)

ARPE =
1

N

N∑
i=1

|CModel
i − CMarket

i |
CMarket
i

(3.149)

RMSE =

√√√√ N∑
i=1

|CModel
i − CMarket

i |2
N

, (3.150)

where CModel
i = CH(S0, v0, Ti,Ki; Θ) under the simple Heston model (H)

and CModel
i = CΠ(S0, Ti,Ki; Θ) under the average price method denoted

WAPH in the following. Ti and Ki denote respectively the maturity and

the strike price of the ith option, all written on a stock with current price

S0. The admissible parameter set for the Heston model has been specified

in (3.107).

3.5.1 Estimation results

Our empirical analysis is conducted on a dataset of option prices on the

Standard and Poor’s 500 Index, which represents the main capitalization-

weighted index of 500 stocks in the US market. The index is designed to
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measure performance of the broad domestic economy through changes in

the aggregate market value of 500 stocks representing all major industries.

We have considered a first dataset composed by option prices from Septem-

ber 1, 2010 to September 30, 2010 and further dataset of market prices

from September 1, 2015 to September 30, 2015. Only call prices that ver-

ify standard no-arbitrage bounds have been considered. Moreover, we have

tested the model on call options, with the constraint on the moneyness:

0.9 < M < 1.1, where M = K
S0

. Overall, we have considered 8, 315 call

prices divided into 21 trading dates and 9 expiry dates for the 2010’s set

and 1, 091 call prices divided into 21 trading dates and 7 expiry dates for

the 2015’s set. For each of the considered models for the density function,

driving the initial volatility, we have calibrated everyday the corresponding

parameters that are 5 in the standard Heston model (denotes as H), where

v0 is a parameters, 6 in both cases of WAPH with GAM and with IG, 7 in

the case of WAPH with GIG.

The results of the estimation are summarized in Table 3.3 and in Table

3.5. Precisely, the averages of daily error measures and the parameters for

all methods are reported. For what concerns all the error measures, the

averaged call price under the GIG distribution seems to perform better in

the considered period, while for what concerns the case with the Gamma

distribution (GAM) and the Inverse Gaussian distribution (IG) we observe

a substantial equality of the performance of these approaches. In fact, the

GIG includes the GAM and the IG as special cases. The Heston model does

not perform badly, but it is systematically beaten by the weighted average

price model, especially for what concerns the RMSE criterion.

In order to better analyze model performance, we have estimate the

implied Black-Scholes volatility and for each trading day. Every trading day

is associated with the standard deviation of the implied volatility (σσ) and

the results of the parameter estimation are clustered considering different

levels of the standard deviation. In Table 3.7 cluster average RMSE are

reported, the results show that the GIG model error does not depend on
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APE RMSE ARPE

Heston 2.1905 0.5182 3.5480

WAPH-GAM 1.2878 0.2145 2.3781

WAPH-IG 1.1230 0.4167 2.5181

WAPH-GIG 1.3400 0.1104 1.0824

Table 3.3: Averages of the daily error measures APE, RMSE and ARPE for

the different pricing methods on 2010 database

APE RMSE ARPE

Heston 4.5448 3.4457 0.0844

WAPH-GAM 3.9909 3.4239 0.1908

WAPH-IG 4.0201 3.1184 0.0923

WAPH-GIG 3.7336 2.9810 0.0700

Table 3.4: Averages of the daily error measures APE, RMSE and ARPE for

the different pricing methods on 2015 dataset

the standard deviation of the implied volatility and the conclusion that can

be drawn is that clusters with more variability are better described by GIG

model.
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k θ σ ρ v0

Heston 0.0252 4.4944 0.4599 -0.6062 0.0024

k θ σ ρ α (shape) β (rate)

GAM 0.1178 0.9404 0.4567 -0.6057 0.0016 2.7953

k θ σ ρ α (shape) β (mean)

IG 0.1053 0.8843 0.5103 -0.6342 0.0023 0.0082

k θ σ ρ a b (mean) p

GIG 0.0145 1.2084 0.4432 -0.6401 5.4502 0.0001 0.0027

Table 3.5: Averages of the daily estimated parameters under the considered

pricing methods for 2010 dataset.

k θ σ ρ v0

Heston 6.5140 0.0919 0.4732 -0.9999 0.0471

k θ σ ρ α (shape) β (rate)

GAM 4.3786 0.0282 0.4770 -0.9999 0.0100 4.3888

k θ σ ρ α (shape) β (mean)

IG 0.1505 0.2313 0.3483 0.8742 0.0067 0.0124

k θ σ ρ a b (mean) p

GIG 4.4033 0.0233 0.2754 -0.8743 2.7055 0.0675 101.0082

Table 3.6: Averages of the daily estimated parameters under the considered

pricing methods for the 2015 dataset.

Heston WAPH-GIG

1.5% < σσ ≤ 2.0% 3.9526 2.5608

2.0% < σσ ≤ 2.5% 4.6239 2.1010

2.5% < σσ ≤ 3.0% 4.1979 1.8574

3.0% < σσ ≤ 3.5% 5.5774 3.1035

3.5% < σσ ≤ 4.0% 6.4538 2.7909

4.0% < σσ ≤ 4.5% 7.8989 3.0723

Table 3.7: Average RMSE for different standard deviation cluster.
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A natural extension of the Heston model is to include jumps in the stock

price process. In the continuous time setting, Bates (1996), among others,

examines the empirical performance of an affine stochastic volatility model

(SVJ) using index returns and option data. Bates’s model is a Heston pro-

cess with an added Merton log-normal jump. Other benchmark works for

continous-time affine SVJ models has been considered in Pan (2002) and

Bates (2006), and variants have been estimated on stock index returns by

Andersen et al. (2002), Chernov et al. (2003),and Eraker et al. (2003). These

kind of models significantly outperform the Black-Scholes model into fitting

the observed implied volatility surface. Intuitively, it makes sense that a

jump in the stock price process should trigger a correlated jump in the

volatility process in that sudden, large movements in the stock price would

cause increased market anxiety around that stock. Therefore, Bates inspired

models have been extended by including jumps in the volatility process in

addition to those in the stock price process (SVJJ models). In particular,

contributions by Broadie et al. (2007) and Gatheral (2006) explore the mer-

its and drawbacks of the SVJJ model over Bates-style models. Broadie et

al. (2007) argue in favour of a stochastic volatility model that incorporates

jumps in both the stock price and variance processes, while Gatheral finds

that a stochastic volatility model with jumps in the stock price process only

produces the best fit to the implied volatility surface. Here, in order to

provide a comparison between our technique and the SVJJ model, we have

considered the Heston stochastic volatility double jump-diffusions model.

However, we remark that such a comparison may not be appropriate since

SVJJ models potentially have a superior option market fit while keeping a

sound balance between reality and tractability and it allows also a range of

jump amplitude distributions. On the other hand, our approach could be

extended in order to include the case of models with jumps. In the formu-

lation of the jump stochastic volatility model (SVJJ), we have considered
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closely [28], with the following risk-neutral dynamics: dSt = (r − λµJ)Stdt+ St
√
vtdW̃

1
t + JtStdNt,

dvt = κ(θ − vt)dt+ σ
√
vt

(
ρdW̃ 1

t +
√

1− ρ2dW̃ 2
t

)
+ ZtdÑt.

(3.151)

Here (W̃ 1
t )t≥0 and (W̃ 2

t )t≥0 are independent Brownian motions, (Ñt)t≥0 rep-

resents a Poisson process under the risk-neutral measure, independent of W i,

for i = 1, 2, with jump intensity λ > 0. The jump terms in the model are

defined through processes (Zt, Jt)t≥0 independent of the Brownian motions

and the Poisson Process, such that

Zt ∼ Exponential(µV ),

(1 + Jt) |Zt ∼ Log-normal(µS + ρJZ, σ
2
S),

(3.152)

for each t > 0, where µS ∈ R, µV > 0, σS > 0, ρJ < 1/µV are constant

coefficients and

µJ =
eµS+

σ2S
2

1− ρJµV
− 1. (3.153)

Moreover κ, θ, ρ and σ satisfy the usual constraints for the Heston model,

already described in previous sections. For the computation of call prices

using model (3.151), we refer the reader to [28]. Table 3.8 includes the

estimation of model parameters of the WAPH-GIG model and the SVJJ

model (3.151). Even if the SVJJ model implies superior option market fit,

there is evidence, from our experimental results, that the WAPH-GIG and

SVJJ provide similar performances. This empirical analysis shows that our

k θ σ ρ a b (mean) p

WAPH-GIG 2.9894 0.0242 0.3796 -0.8499 1.5416 0.0348 15.8841

k θ σ ρ v0

SVJJ 4.9689 0.0352 0.5913 -0.9999 0.0580

λ µS σS ρJ µV

0.0254 -0.8516 1.4978 -0.0440 39.9852

Table 3.8: Pricing models estimated parameters, based on September 1,

2015 dataset.

approach is quite promising and represents an improvement over the Heston

model, while retaining the same degree of analytical tractability.
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APE RMSE ARPE

WAPH-GIG 2.5048 2.9857 0.0491

SVJJ 2.3049 3.0306 0.0452

Table 3.9: Comparison between the error measures for the weighted pricing

approach and the SVJJ model, based on September, 2015 dataset.

3.6 A PDE for the Weighted Average Price in the

Heston model

In this section we show that the weighted average price function (3.108)

corresponds, essentially, to an equivalent one-dimensional model, by devel-

oping a partial differential equation for the price function. Then, in Chapter

4, the corresponding Dirichlet problem will be solved by implementing the

FD method. In this specific case, we have a one-dimensional problem that

reduces the complexity of the weight for the numerical procedure. This is ob-

viously lower in comparison, for instance, with ADI schemes for the Heston

pde. Since we are interest the time evolution of the average price (3.108), it

is reasonable to assume that, the initial volatility, at time t ≥ 0 is driven by

a probability distribution with density function π = π(t, v) ∈ C2((0,∞)2)

satisfying the Fokker-Planck equation associated with the variance process

in the Heston model:

∂π

∂t
=

∂

∂v
(κ(v − θ)π) +

σ2

2

∂2

∂v2
(vπ) , (3.154)

for any (t, v) ∈ (0,∞)2. Thus, for a given density function Π ∈ L1((0,∞)),

for the volatility at time t = 0, such that EΠ[v] <∞, the unique solution to

(3.154) is obtained by using the transition density function p(t, v|v0), from

v0, at time t = 0, to v, at time t, of the volatility process p(t, v|v0) that,

as proved in [34], is the solution of (3.154) satisfying the initial condition

p(0, v|v0) = δ(v − v0), provided that θ, σ, κ > 0 and q := 2κθ
σ2 − 1 ≥ 0.
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Actually, we can write

π(t, v) =

∫ ∞
0

p(t, v|v0)Π(v0)dv0. (3.155)

By Karlin and Taylor [50] (page 220), the transition density takes the fol-

lowing explicitly form:

p(t, v|v0) = c e−η−cv
(
cv

η

)q/2
Iq

[
2(cvη)1/2

]
, (3.156)

where c = 2κeκt/[σ2(eκt − 1)], η = c v0e
−κt, and Iq denotes the modified

Bessel function of the first kind of order q. It is easy to see that the following

properties are also satisfied for all t > 0:

∫∞
0 π(t, v)dv = 1,

f(t, v)→ 0, as v → 0+, and as v →∞,

for f(t, v) = vπ(v, t) and f(t, v) = ∂
∂v [vπ(t, v)].

∂2

∂v2
[vπ(t, v)] is bounded as v → 0+

(3.157)

Therefore, we consider the weighted average price for a call option at time

0 ≤ t < T , with strike price K > 0 and maturity T :

Cπ(t, S;K,T ) =

∫ +∞

0
CH(t, S, v;K,T )π(v, t)dv, (3.158)

where CH is the Heston call price function (2.26). For the sake of simplicity,

we omit the dependence on the vector of model parameters Θ ∈ H.

Proposition 3.6.1. If ρ = 0, θ, σ, κ > 0 and q ≥ 0, then there exists a

unique, strictly positive, function Vπ = Vπ(t, S;K,T ), with Vπ(·, ·;K,T ) ∈

C1,2((0, T )× (0,∞)), such that the weighted average price function Cπ sat-

isfies the following final value problem:

∂Cπ
∂t

+
1

2
σ2S2 ∂2

∂S2
[VπCπ] + rS

∂Cπ
∂S

= rCπ, (3.159)

for any t ∈ (0, T ), S > 0, with Cπ(T, S) = max(K − S, 0).

Proof of Proposition 3.6.1. We recall that CH is the solution of

∂CH

∂t
+

1

2
vS2∂

2CH

∂S2
+

1

2
vσ2∂

2CH

∂v2
+ k(θ − v)

∂CH

∂v
+ rS

∂CH

∂S

− rCH = 0,
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with CH(T, S) = max(S −K, 0). Multiplying each term in the above equa-

tion by π and integrating with respect to v on (0,∞), we easily obtain∫ +∞

0

∂CH

∂t
πdv +

∫ +∞

0

1

2
vS2∂

2CH

∂S2
πdv +

∫ +∞

0

1

2
vσ2∂

2CH

∂v2
πdv +

+

∫ +∞

0
κ(θ − v)

∂CH

∂v
πdv +

∫ +∞

0
rS
∂CH

∂S
πdv +

−
∫ +∞

0
rCHπdv = 0. (3.160)

For every t ∈ (0, T ), S > 0, we can apply the mean value theorem to the

identity function (v 7→ v) with respect to the positive and bounded measure

CH(t, S, v;K,T )× π(t, v)dv on (0,∞), to find a unique Vπ = Vπ(t, S;K,T ) >

0 such that∫ +∞

0
vCH(t, S, v;K,T )π(t, v)dv = Vπ(t, S;K,T )Cπ(t, S;K,T ).

By the regularity of CH and the assumptions on π, we deduce that Vπ(·, ·;

K,T ) ∈ C1,2((0, T )× (0,∞)). Thus, we can write∫ +∞

0

1

2
vS2∂

2CH

∂S2
π(v, t)dv =

1

2
S2 ∂2

∂S2
[Vπ(t, S;K,T )Cπ(t, S;K,T )]

Let us evaluate now the third term in (3.160), using integration by parts:∫ +∞

0

1

2
vσ2∂

2CH

∂v2
πdv =

1

2
σ2

(
vπ(t, v)

∂CH

∂v

∣∣∣v=∞

v=0

)
+

− 1

2
σ2

(∫ +∞

0

∂CH

∂v

∂

∂v
[vπ(t, v)]dv)

)
,

The first term is null thanks to the properties of π in (3.157) and the proper-

ties of ∂vC
H outlined by Ould in [61]. Thus, we repeat again the integration

by parts, to get∫ +∞

0

1

2
vσ2∂

2CH

∂v2
πdv = −1

2
σ2CH

∂

∂v
[vπ]

∣∣∣v=∞

v=0

+
1

2
σ2

∫ +∞

0
CH

∂2

∂v2
[vπ]dv,

where, for the behavior of ∂v[vπ(t, v)], as v → 0+ and for v → ∞, the first

term is equal to zero. The first in the equation (3.160) can be rewritten as:∫ +∞

0

∂CH

∂t
πdv =

∂Cπ
∂t
−
∫ +∞

0
CH

∂π

∂t
dv. (3.161)
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Thus, using the partial differential equation satisfied by π (3.154), we can

evaluate the second integral in (3.161):

−
∫ +∞

0
CH

∂π

∂t
dv =

∫ +∞

0
CHκ(θ − v)

∂π

∂v
dv −

∫ ∞
0

κπCHdv +

−
∫ +∞

0

σ2

2
CH

∂2

∂v2
(vπ)dv,

and integrating by parts the first integral on the right-hand side, we obtain:∫ +∞

0

∂CH

∂t
πdv =

∂Cπ
∂t

+ CHκ(v − v)π|v=∞
v=0 −

∫ +∞

0

∂CH

∂v
κ(θ − v)πdv +

−
∫ +∞

0

σ2

2
CH

∂2

∂v2
(vπ)dv.

Collecting all the previous results in (3.160), we get

∂Cπ
∂t
−
∫ +∞

0

(
∂CH

∂v
κ(θ − v)π +

σ2

2
CH

∂2

∂v2
[vπ]

)
dv +

σ2

2
S2 ∂2

∂S2
[VπCπ]

+

∫ ∞
0

σ2

2
CH

∂2

∂v2
[vπ]dv +

∫ ∞
0

κ(θ − v)
∂CH

∂v
πdv + rS

∂Cπ
∂S
− rCπ = 0.

Finally, we have:

∂Cπ
∂t

+
1

2
σ2S2 ∂2

∂S2
[VπCπ] + rS

∂Cπ
∂S

= rCπ, (3.162)

for any t ∈ (0, T ), S > 0, and clearly Cπ(T, S) = max(K−S, 0), that proves

the result.

Remark 3.6.1. Equation (3.159) can be easily solved from the numerical

point of view thanks to the one dimensional (one space variable S) specifica-

tion of the problem: the numerical implementation does not require special

efforts, it produces a more stable and consistent approximation. Unfortu-

nately, in the equation is still present a term which needs to be evaluated

separately, that is the mean value function

Vπ(t, S;K,T ) =

∫∞
0 vCH(t, S, v;K,T )π(v, t)dv∫∞
0 CH(t, S, v;K,T )π(v, t)dv

which, under our weighted average approach, is a equivalent to a local volatil-

ity. Moreover it depends on the choice of the initial density function Π. In
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light of the results of previous sections, if Π is chosen in a class of den-

sity functions satisfying the assumptions of Theorem 3.3.3, the calibration

problem bases on the average call price allows to reduce the error with re-

spect to observed prices. We expect that Dupire’s calibration technique,

described in Chapter 1, can be adapted in order to estimate Vπ, using op-

tion implied volatilities, in agreement with the partial differential equation

(3.159). However this is matter for a further study that we do not develop

in this thesis. We also recall that, during the years, a different approach

for calibrating Local Volatility models was derived independently in several

research contributions. In particular, it is shown that the Local Volatil-

ity model represents satisfactory and alternative approach to the Stochastic

Volatility model. In fact, if we suppose that the underlying asset follows

a diffusion process with a stochastic instantaneous variance, then we can

think the local volatility as the conditional expectation of the instantaneous

volatility.



Chapter 4

Finite Difference Methods

The finite difference methods (FD) for derivatives are one of the simplest and

of the oldest methods to solve differential equations. It was already known by

Euler, L., (1707-1783) ca. 1768, in one dimension of space and was probably

extended to dimension two by Runge, C., (1856-1927) ca. 1908. Theoretical

results have been obtained during the last five decades regarding the ac-

curacy, stability and convergence of the finite difference method for partial

differential equations. These methods has been used for many application

areas such as fluid dynamics, heat transfer, semiconductor simulation and

astrophysics, for example. In finance, in particular, acquiring an effective

numerical time-discretization method for the spatially discretized problem

is a key step. The reason for which finite difference methods are a popular

choice for pricing options is that all options satisfy the Black-Scholes PDE

or appropriate variants of it. Finite Difference methods can be applied also

to American (early exercise) Options and they can also be used for many

exotic contracts.

The principle of finite difference methods consists in approximating the

differential operator by replacing the derivatives in the equation using dif-

ferential quotients. The aim of these methods(which could be different de-

pending on the approximation used)is to evaluate the values of a continuous

127
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function f(t, S) on a set of discrete points in (t, S) plane (or in a high

dimensional ones). The domain is partitioned in space and in time and ap-

proximations of the solution are computed at the space or time points: (t, S)

plane becomes a mesh grid with mesh points (i∆t, j∆S). We are interested

in the values of f(t, S) at mesh points (i∆t, j∆S), denoted as

f ij = f(i∆t, j∆S) (4.1)

Suppose the function f is C2 in the neighborhood of x. For any h > 0 we

have:

f(x+ h) ≈ f(x) + hf
′
(x) +

h2

2
f
′′
(x+ h1) (4.2)

where h1 is a number between 0 and h (i.e. x + h1 is point of ]x, x + h[ ).

For the treatment of problems, it is convenient to retain only the first two

terms of the previous expression:

f(x+ h) = f(x) + hf
′
(x) +O(h2) (4.3)

where the term O(h2) indicates that the error of the approximation is pro-

portional to h2. The approximation (4.2) is known as the forward difference

approximant of f
′
. Likewise, we can define the first order backward differ-

ence approximation of f ′ at point x as:

f(x− h) = f(x)− hf ′(x) +O(h2) (4.4)

Obviously, other approximations can be considered. In order to improve the

accuracy of the approximation, we define a consistant approximation, called

the central difference approximation, by taking the points x− h and x + h

into account

f(x+ h) = f(x) + hf
′
(x) +

h2

2
f
′′
(x) +

h3

6
f
′′′

(ε+) (4.5)

f(x− h) = f(x)− hf ′(x) +
h2

2
f
′′
(x)− h3

6
f
′′′

(ε−) (4.6)

where ε+ ∈]x, x+h[ and ε− ∈]x−h, x[. By subtracting these two expres-

sions we obtain:

f(x+ h)− f(x− h)

2h
≈ f ′(x) +

h2

6
(ε) (4.7)



CHAPTER 4. FINITE DIFFERENCE METHODS 129

where ε is a point of ]x− h, x+ h[. We could use:

• Forward difference method for the first derivative

f
′
(x) =

f(x+ ∆x)− f(x)

∆x
+O(∆x) (4.8)

• Backward difference method for the first derivative

f
′
(x) =

f(x)− f(x−∆x)

∆x
+O(∆x) (4.9)

• Centered difference method for the first derivative

f
′
(x) =

f(x+ ∆x)− f(x−∆x)

2∆x
+O(∆x)2. (4.10)

And by adding (4.5) and (4.6) we obtain the centered difference method

for the second derivative

f
′′
(x) =

f(x+ ∆x)− 2u(x) + u(x−∆x)

∆x2
+O(∆x)2 (4.11)

Figure 4.1: Geometric Interpretation

The approximation of f ′ at point x by forward and backward approxi-

mation is said to be consistent at the first order. More generally, we define

an approximation at order p of the derivative as

Definition 4.0.1. The approximation of the derivative f
′

at point x is of

order p(p > 0) if there exists a constant C > 0, independent of h, such that

the error between the derivative and its approximation is bounded by Chp

(i.e. is exactly O(hp)).
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The error between the numerical solution and the exact solution is deter-

mined by the error that is committed by going from a differential operator

to a difference operator. This error is called the discretization error or trun-

cation error. The term truncation error reflects the fact that a finite part of

a Taylor series is used in the approximation. The notion of consistency and

accuracy helps to understand how well a numerical scheme approximates an

equation. We introduce a formal definition of the consistency that can be

used for any partial differential equation defined on a domain Ω and denoted

by

(Lf)(x) = u(x), ∀x ∈ Ω (4.12)

where L denotes a differential operator. The notation (Lf) indicates that the

equation depends on f and on its derivatives at any point t, x. A numerical

scheme can be written, for every index i and j, in a more abstract form as:

(Lhf)(xj) = u(xj), ∀j ∈ 1, ...,M. (4.13)

Definition 4.0.2. [Consistency] A finite difference scheme is said to be

consistent with the partial differential equation it represents, if for any suffi-

ciently smooth solution f of this equation, the truncation error of the scheme,

corresponding to the vector εh ∈ RN whose components are defined as

(εh)j = (Lhf)(xj)− u(xj), ∀j ∈ 1, ...,M (4.14)

tends uniformly towards zero with respect to t and x, when h tends to zero,

i.e. if:

lim
h→0
||εh||∞ = 0. (4.15)

Moreover, if there exists a constant C > 0, independent of f and of its

derivatives, such that, for all h ∈]0, h0] (h0 > 0 given) we have:

||εh|| ≤ Chp (4.16)

with p > 0, then the scheme is said to be accurate at the order p for the

norm || ||.
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Lemma 4.0.1. Suppose f is a C4 continuous function on an interval [x −

h0, x+h0], h0 > 0 and exists a constant C > 0 such that for every h ∈]0, h0[

we have:

|f(x+ h)− 2f(x) + f(x− h)

h2
− f ′′(x)| ≤ Ch2 (4.17)

The differential quotient f(x+h)−2f(x)+f(x−h)
h2

is a consistent second-order

approximation of the second derivative u
′′

of u at point x.

Proof. We use Taylor expansions up to the fourth order to achive the result:

f(x+ h) = f(x) + hf
′
(x) +

h2

2
f
′′
(x) +

h3

6
f
′′′

(x) +
h4

24
f iv(ε+)(4.18)

f(x− h) = f(x)− hf ′(x) +
h2

2
f
′′
(x)− h3

6
f
′′′

(x) +
h4

24
f iv(ε−)(4.19)

where ε+ ∈]x, x+ h[ and ε− ∈]x− h, x[. Like previously:

f(x+ h)− 2f(x) + f(x− h)

h2
= f

′′
(x) +

h2

12
(ε) (4.20)

where ε ∈ [x − h, x + h]. Hence, we deduce the relation (4.17) with the

constant

C = supx∈[x−h,x+h]

|f iv|
12

(4.21)

Definition 4.0.3. [Convergence] A one-step finite difference scheme ap-

proximating a partial differential equation is a convergent scheme if for any

solution to the partial differential equation, f(t, x), and solutions to the finite

difference scheme, fni , such that f0
i converges to f(0, x) as i∆x converges to

x, then fni converges to f(t, x) as (n∆t, i∆x) converges to (t, x) as ∆t, ∆x

converge to 0.

Definition 4.0.4. [Stability] A finite difference scheme is said to be stable

for the norm || ||p if there exists two constants C1 > 0 and C2 > 0, indepen-

dent of h(space step discretization) and δ (time step discretization), such

that when h and δ tend towards zero:

||f ||p ≤ C1||f0||+ C2||u||, (4.22)
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whatever the initial data f0 and the source term g.

The most important notion of stability for a PDE is Von Neumann sta-

bility. Assume we have a Fourier expansion in space of our function

f(t, x) =
∑
k

f̂(k)eikx (4.23)

The sum is over k, the Fourier frequencies. Now take for f just one Fourier

term

f(t, x) = f̂(k)eikx (4.24)

and evaluate it at (xj , tn) to get

fnj = f̂(tn)eikj∆x (4.25)

To simplify notation we can write f̂n = f̂(tn). Then

fnj = f̂neikj∆x (4.26)

fnj−1 = f̂ne(ik(j−1)∆x) (4.27)

fnj+1 = f̂ne(ik(j+1)∆x) (4.28)

fn+1
j = f̂n+1e(ikj∆x) (4.29)

These expressions can be plugged directly into any finite difference scheme

to check the stability. The growth rate G is defined as

fn+1
j

fnj
. (4.30)

The necessary and sufficient condition for the error to remain bounded is

that |G| < 1 for all frequencies k. The effect of a single step of the numerical

scheme is to multiply the complex exponential by the so-called magnification

factor λ:

fn+1
j = λeikj∆x (4.31)

In other words, eikx assumes the role of an eigenfunction, with the magni-

fication factor λ being the corresponding eigenvalue of the linear operator
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governing each step of the numerical scheme. Continuing, we find that the

effect of n further iterations of the scheme is to multiply the exponential by

the nth power of the magnification factor:

fn+r
j = λreikj∆x (4.32)

Thus, the stability of the scheme will be governed by the size of the mag-

nification factor. If |λ| > 1, , then λr is exponentially growing as r → ∞,

and so the numerical solutions become unbounded as t→∞. This is clearly

incompatible with the analytical behavior of solutions to the heat equation,

and so a necessary condition for the stability of our numerical scheme is that

its magnification factor satisfy

|λ| ≤ 1 (4.33)

This method of stability analysis was developed by the mid-twentieh century

Hungarian mathematician and father of the electronic computer John von

Neumann. Conditional stability means we only have stability on a certain

condition. Usually the condition limits ∆t in function of ∆x.It is important

to note that we are checking the stability for a method, not for an equation.

4.1 Heston Model solved by FD

Generally speaking, finite-difference schemes can be divided into two classes:

implicit FD schemes and explicit FD schemes. The θ-schemes refer to those

scheme in which are balanced both explicit and implicit scheme. The most

famous of these last schemes is the Crank -Nicolson scheme, obtained by

taking average of these two schemes. In explicit finite difference schemes,

the value at time n+1 depends explicitly on the value at time n. The major

advantage of explicit finite difference methods is that they are

relatively simple and computationally fast but they need a condition (namely
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CFL condition) for their stability and if this condition is not satisfied, the

solution becomes unstable and starts to wildly oscillate. Instead, for the

implicit scheme we have to solve a linear system of equations. The main

advantage of implicit finite difference methods is that there are no restric-

tions on the time step, which is good news if we want to simulate geological

processes at high spatial resolution. Taking large time steps, however, may

result in an inaccurate solution. Therefore it is always wise to check the re-

sults by decreasing the time step until the solution does not change anymore

(this is called converge check)

First Derivative in Space Second Derivative in Space

Explicit
Cni+1,j−Cni−1,j

2ds

Cni+1,j−2Cni,j+C
n
i−1,j

ds2

Implicit
Cn+1
i+1,j−C

n+1
i−1,j

2ds

Cn+1
i+1,j−2Cn+1

i,j +Cn+1
i−1,j

ds2

θ Methods θ
Cni+1,j−Cni−1,j

2ds + (1− θ)C
n+1
i+1,j−C

n+1
i−1,j

2ds θ
Cn+1
i+1,j−2Cn+1

i,j +Cn+1
i−1,j

ds2
+ (1− θ)C

n+1
i+1,j−2Cn+1

i,j +Cn+1
i−1,j

ds2

Table 4.1: Explicit, Implicit and θ Discretization

Figure 4.2: A Explicit finite difference discretization. B Implicit finite dif-

ference discretization. Cθ-Method (i.d.Crank-Nicolson) discretization.

For 1D modeling, the implicit schemes are superior for two reasons. First

they can be made unconditionally stable and so the time step size can be

arbitrarily chosen to save computation time and, second, they lead to tridi-

agonal systems which can be solved efficiently by forward/backward substi-

tution (Trefethen, 1996). However, in higher dimensions, the implicit FD

schemes require solving multi-dimensional matrices which greatly increases

memory usage and computational cost. As regard our proposal, that is to
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solve the Heston PDE by FD, a semi-discretization of the Heston PDE, us-

ing finite difference schemes on a uniform grids, gives rise to large systems of

stiff ordinary differential equations. For the effective numerical solution of

these systems, standard implicit time-stepping methods are often not suit-

able anymore, and tailored time discretization methods are required.

For the numerical solution of the semi-discrete Heston PDE we shall study

a splitting schemes of the Alternating Direction Implicit (ADI) type. In the

past decades, ADI schemes have been successful already in many application

areas. A main and distinctive feature of the Heston PDE, however, is the

presence of a mixed spatial-derivative term, stemming from the correlation

between the two underlying stochastic processes for the asset price and its

variance. It is well known that ADI schemes were not originally developed to

deal with such terms. Let C(s, v, t) denote the price of a European option,

if at time T − t the underlying asset price is equal to s and its variance is

equal to v, and T is the given maturity time of the option. We will study

the forward equation in which, with abuse of notation we will use t even if

our time variable should be τ = T − t. Hestons stochastic volatility model

implies ([41], [53]) that C satisfies

(H)



∂C
∂t = 1

2s
2v ∂

2C
∂s2

+ ρσsv ∂
2C

∂v∂s + 1
2σ

2v ∂
2C
∂v2

+ (rd − rf )s∂C∂s +

+k(η − v)∂C∂v − rdu

C(0, s, v) = (s−K)+

C(t, 0, v) = 0

∂C
∂t − r

∂C
∂x − k(η − v)∂C∂v + rC = 0 for v = 0

We will solve the PDE from an initial condition C(0, s, v) = (s − K)+ to

some terminal time T, so that the time domain is naturally bound. In the

space domain boundary conditions must be provided. These can either be

determined by the ’physics’ of the problem (a knock-out barrier option has

a very clear choice of a boundary) or can be set sufficiently far out as to not
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affect the interesting part of the solution. In line with our previous discus-

sion on the boundary condition, the model we are going to evaluate does

not guarantee any solution along the boundary of v = 0. We first evaluate

the PDE (2.32) along the boundary, and second we implemente the Dirich-

let conditions along v = 0. The use of such a condition will be implemented

using the Lypaunov function (2.80)previously studied:the existence of a Lya-

punov function ensures that the state vector does not reach the boundary

and does not blow up in finite time. As a preliminary step towards the nu-

merical solution of the initial-boundary value problem for the Heston PDE,

the spatial domain, is restricted to a bounded set [0, SMax]× [0, VMax] with

fixed values SMax, VMax chosen sufficiently large. For the initial-boundary

value problem we perform a spatial discretization on a cartesian grid by

finite difference (FD) schemes.

To discretize the domain [0, T ] × D, we introduce an equi-distributed grid

points corresponding to a spatial step size ∆s = 1/(Ns+1), ∆v = 1/(Nv+1)

and to a time step ∆t = 1/(M + 1), where M,Ns, Nv are positive integers,

number of time steps, of nodes in S and V direction respectively. We define

the nodes of a regular grid:

(tn, si, vj) = (n∆t, i∆s, j∆v)

with n ∈ 0, ..,M + 1, i ∈ 0, ..., Ns + 1, i ∈ 0, ..., Nv + 1. And we denote as

Cni,j the value of an approximate solution at point (tn, si, vj) and C(t, s, v)

the exact solution of problem. The initial data must also be discretized as:

C0
i,j = C0(si, vj) ∀i ∈ 1....Ns + 1 ∀j ∈ 1....Nv + 1 (4.34)

The problem is then to find, at each time step, a vector Ci,j ∈ R2 , such that

its components are the values (Cni,j)1≤i≤Ns 1≤i≤Nv . To develop the numerical

scheme we will use the forward approximation for the discretization in the

S-direction (it is the analogous one as regard the V-direction):

C ′(xi,j) ≈
Cni+1,j − Cni−1,j

2∆s
(4.35)

C ′′(xi,j) ≈
Cni+1,j − 2Cni,j + Cni−1,j

∆s2
(4.36)
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For the discretization of the mixed derivative we use the FD scheme:

∂2C

∂s∂v
(xi, vj) ≈

Ci+1,j+1 + Ci+1,j + Ci+1,j−1 + Ci,j+1+

4∆s∆v
+

+
Ci−1,j+1 + Ci,j−1Ci−1,j−1 + Ci−1,j

4∆s∆v

(4.37)

The FD discretization described above of the initial-boundary value problem

(H) for the Heston PDE yields an initial value problem for a large system

of stiff ordinary differential equations (ODEs),

C
′
(t) = AC(t) + b(t) (0 ≤ t ≤ T ), C(0) = C0. (4.38)

Here A is a given m×m matrix and b(t) (t ≥ 0) and C0 are given mvectors

with m = Ns × Nv. The vector C0 is directly obtained from the initial

condition and the vector function b depends on the boundary conditions

setted. For each given t > 0, the entries of the solution vector C(t) to (H)

constitute approximations to the exact solution values C(t, s, v).

4.2 Time discretization and ADI schemes

Acquiring an effective numerical time-discretization method for the spatially

discretized Heston problem (H) is a key step in arriving at a full numerical

solution scheme for the Heston PDE that is both efficient and robust.

Let ∆t > 0 be a given time step and let temporal grid points be given

by tn = n∆t for n = 0, 1, 2, ..

A well-known method for the numerical solution of stiff initial value problems

for systems of ODEs

C ′(t) = F (t, C(t)) (0 ≤ t ≤ T ), C(0) = C0 (4.39)

is the Crank-Nicholson scheme or trapezoidal rule. This method defines

approximation Cn to the exact solutions value C(tn) subsequently for n =
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1, 2, 3, ... as follow:

Cn = Cn−1 +
1

2
∆tF (tn−1, Cn−1) +

1

2
∆tF (tn, Cn). (4.40)

In our case of (4.38) we have

F (t, w) = Aw + b(t) 0 ≤ t ≤ T,w ∈ Rm (4.41)

Thus, each step requires the solution of a system of linear equations involving

the matrix (I − 1
2∆tA) where I denotes the m×m identity matrix.

Since (I − 1
2∆tA)does not depend on the step index n, one can compute a

LU factorization of this matrix once, beforehand, and next apply it in all

step to obtain Cn(n ≥ 1). The Crank-Nicholson scheme can be practical

when the number of spatial grid points m = Ns × Nv is moderate. In our

application to the two-dimensional Heston PDE, however m usually gets

very large and the Crank-Nicholson scheme becomes ineffective. The reason

for this is that (I − 1
2∆tA), and hence the matrices in its LU factorization,

possess a bandwidth that is directly proportional to min(Ns,Nv).

4.2.1 A non uniform discretization

For the initial-boundary value problem (H) we perform a spatial discretiza-

tion on a Cartesian grid by finite difference (FD) schemes. Nerverthless to

improve the accuracy and convergence could be even applied a non-uniform

meshes (which has recently been considered e.g. by Tavella and Randall [68]

and Kluge [52])in both directions such that relatively many mesh points lie

in the neighborhood of s = K and v = 0, respectively. The application

of such non-uniform meshes greatly improves the accuracy of the FD dis-

cretization compared to using uniform meshes. This is related to the facts

that the initial function (4.34) possesses a discontinuity in its first derivative

at s = K and that for v ≈ 0 the Heston PDE is convection dominated. It

is also natural to have many grid points near the point (s, v) = (K, 0)as in

practice this is the region in the (s, v)-domain where one wishes to obtain

option prices. First of all define the grid in the direction of the underlying
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asset. It is Ns ≥ 1 and we will take a constant, later fixed, c > 0. Define

equidistant points ε0 < ε1 < ε2 < ... < εNs as

εi = sinh−1(−K/c) + i ∗∆εt (4.42)

with

∆ε =
1

Ns
[sinh−1((S −K)/c)− sinh−1(−K/c)]. (4.43)

So a non uniform grid 0 = s0 < s1 < .. < sNs = S is defined by the

transformation

si = K + c sinh(εi) (0 ≤ i ≤ Ns). (4.44)

In the v direction we define an integer m2 ≥ 1 and a constant d > 0.

We consider even in this case equidistant points given by ηj = j∆η for

j = 0, 1, ..,m2 with

∆η =
1

m2
sinh−1(V/d). (4.45)

Define so a grid 0 = v0 < v1 < .. < vNv = V with

V vj = d sinh(ηj) (0 ≤ j ≤ Nv) (4.46)

Figure 4.3: Non uniform Grid

So we can formulate even in this case our scheme with finite differences.
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Let f : R → R be a function and let s0 < s1 < s2 < ... < sm grid points

with ∆xi = xi − xi−1. For the approximation of our first derivative f
′
(si)

and the second derivative f
′′
(si) we can consider:

f ′(si) ≈ βi,−1f(si−1) + βi,0f(si) + βi,1f(si+1) (4.47)

f ′′(si) ≈ γi,−1f(si−1) + γi,0f(si) + γi,1f(si+1) (4.48)

∂2f

∂v∂s
≈

1∑
i,j=−1

βi,kβ̂j,lf(si+k, vj+l) (4.49)

βi,−1 =
−∆si+1

∆si(∆si + ∆si+1)
(4.50)

βi,0 =
∆si+1 −∆si

∆si∆si+1
(4.51)

βi,1 =
∆si

∆si+1(∆si + ∆si+1)
(4.52)

γi,−1 =
2

∆si(∆si + ∆si+1)
(4.53)

γi,0 =
−2

∆si∆si+1)
(4.54)

γi,1 =
2

∆si+1(∆si + ∆si+1)
(4.55)

Indicate with β̂i,k the analogous to βi,k but related to the direction of the

approximation of y. Here below we can see the relative error which occurs

for the underlying value of S = 100 in case of uniform and non uniform grid

for all the value of volatility valuated:
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Figure 4.4: Relative error for the Non Uniform Grid

Figure 4.5: Relative error for the Uniform Grid

4.2.2 ADI scheme

For the numerical solution of the semi-discretized Heston problem we shall

consider in this paper splitting schemes of the ADI type ([19], [43]).

We decompose the matrix A into three submatrices,

A = A0 +A1 +A2. (4.56)

We choose the matrix A0 as the part of A that stems from the FD dis-

cretization of the mixed derivative term in. Next, in line with the classical

ADI idea, we choose A1 and A2 as the two parts of A that correspond to

all spatial derivatives in the S- and V-direction, respectively. Taking into

account the PDE equation for pricing the rdC term (that one of degree equal

zero, where rd is the interest rate) is distributed evenly over A1, A2. The

FD discretization described implies that A1, A2 are essentially tridiagonal

and pentadiagonal, respectively. Write b(t) as

b(t) = b0(t) + b1(t) + b2(t) (4.57)
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where the decomposition is analogous to that of A. Next, define functions

Fj(j = 0, 1, 2) by

Fj(t, w) = Ajw + bj(t) 0 ≤ t ≤ T,w ∈ Rm. (4.58)

The ADI scheme considered, the Douglas scheme ([43], [24]), is developed

as 
Y0 = Cn−1 + 1

2∆tF (tn−1, Cn−1),

Yj = Yj−1 + 1
2∆t(Fj(tn, Yj)− Fj(tn−1, Cn−1)) (j = 1, 2)

Cn = Y2

The splitting schemes treats the mixed derivative part F0 in a fully explicit

way. F1 and F2 parts are treated implicitly in the schemes. In the Do scheme,

a forward Euler predictor step is followed by two implicit but unidirectional

corrector steps, whose purpose is to stabilize the predictor step.

In every step, systems of linear equations need to be solved involving

the two matrices (I − 1
2∆tAj) forj = 1, 2. Like for the CrankNicholson

scheme, these matrices do not depend on the step index n, and thus one can

determine their LU factorizations once, beforehand, and next apply them

in all time steps to compute Cn(n ≥ 1). To determine exactly the matrices

in our discretization, we fix that are blocks matrices , whose block will have

dimension (Ns − 1) × (Ns − 1). As regard A1, it will be composed with k

blocks only on the main diagonal. Here below we will refer to A1, A2, A0

for the matrix in which is splitted the matrix A; we will refer to Aix (for

i = 0, 1, 2 and x = A,B,C) to show the blocks distribution of the matrix Ai

and with Aixy to indicate the element composing the block of matrix. Every

blocks of matrix A1 (they are equal in each block) made up of:
A1B1,1,k

A1B1,2,k
0 · · · · · · 0

0 · · · · · · · · · 0 0

0 · · · A1Bi,i−1,k
A1Bi,i,k

A1Bi,i+1,k
0

0 0 · · · · · · A1Bm1−1,m1−2,k
A1Bm1−1,m1−1,k


where the index k is referring to the block. The elements of such discretiza-
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tion for k 6= 1 and i 6= 1 are the following:

A1Bi,i−1,k
=

1

4
vk+1

s2
i+1

∆s2
− (rd − rf )

si
2∆s

(4.59)

A1Bi,i,k
= −1

2
vk+1

s2
i+1

∆s2
+

1

2
rd (4.60)

A1Bi,i+1,k
=

1

4
vk+1

s2
i+1

∆s2
+ rd

si
2∆s

(4.61)

for i = 1 we will use the Lyapunov function L(s, v), introduced in the previ-

ous chapter (2.80), replacing the value S(1) in the boundary with S(1)/V (1).

Therefore we will have for k 6= 1

A1B1,1,k
= −1

2
vk+1

s2
2

(L2(s2, vk+1))

1

∆s2
+

1

2
rd (4.62)

A1B1,2,k
=

1

4
vk+1

s2
2

(L2(s2, vk+1))

1

∆s2
+ (rd − rf )

s2

L(s2, vk+1)

1

2∆s
(4.63)

If k = 1 we take into consideration the twin boundary conditions (those

coming from the discretization on S-direction and those coming from V-

direction). So, for k = 1 we have

A1Bi,i−1,1
=

1

4
v2

s2
i+1

L(si+1, v2)

1

∆s2
− (rd − rf )

si
2∆s

(4.64)

A1Bi,i,1
= −1

2
v2

s2
i+1

L(si+1, v2)

1

∆s2
+

1

2
rd (4.65)

A1Bi,i+1,1
=

1

4
v2

s2
i+1

L(si+1, v2)

1

∆s2
+ (rd − rf )si

1

2∆s
(4.66)

And

A1B1,1,1
= −1

2
v2

s2
2

(L3(s2, v2))

1

∆s2
+

1

2
rd (4.67)

A1B1,2,1
=

1

4
v2

s2
2

(L3(s2, v2))

1

∆s2
+ (rd − rf )

s2

(L(s2, v2))

1

2∆s
(4.68)

The matrix A2 is a tridiagonal (and not a diagonal one as the previous

A1) matrix made up of blocks of diagonal matrix of dimension m1 − 1, as
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following mode:
A2B A2C 0 0 0 · · · · · · 0

0 A2A A2B A2C 0 · · · · · · 0

0 0 0 · · · · · · A2A A2B A2C

0 0 0 · · · · · · · · · A2A A2B


The matrix A2A , A2B , A2C , will have on diagonal (for k 6= 1 e i 6= 0, those

index which are interested by boundary conditions for v = 0 and S = Smin):

A2Ai,i,k
=

1

4
vk+1σ

2 1

∆v2
− κ(θ − vk+1)

1

2∆v
(4.69)

A2Bi,i,k
= −1

2
vk+1σ

2 1

∆v2
+

1

2
rd (4.70)

A2Ci,i,k
=

1

4
vk+2σ

2 1

∆v2
+ κ(η − vk+2)

1

2∆v
(4.71)

For k = 1 the elements on diagonal are:

A2Ai,1
=

1

4

v2

L(si+1, v2)
σ2 1

∆v2
− κ(η − v2

L(si+1, v2)
)

1

2∆v
(4.72)

A2Bi,1
= −1

2

v2

L(si+1, v2)
σ2 1

∆v2
+

1

2
rd (4.73)

The matrix A0 which is referred to the discretizzation for the mixed deriva-

tive is a tridiagonal matrix made up of blocks of matrix(in turn tridiagonal

of dimension m1 − 1):

A0B A0C 0 0 0 · · · · · · 0

0 A0A A0B A0C 0 · · · · · · 0

0 0 A0A A0B A0C · · · · · · 0

0 0 0 · · · · · · A0C A0B A0C

0 0 0 · · · · · · · · · A0C A0B


The Lyapunov function used is:

L(s, v) = − log(v)− log(s) + s log(s+ 3) + s(v + 1) + v
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. The parameters used for our numerical simulation are:

η = 0.0022 σ = 0.618 r = 0.142

κ = 11.32 T = 1

The results obtained are figured as follows below:

Figure 4.6: Solution by FD and Lyap

While those found out by the exact solution are:

Figure 4.7: Solution by Close Formula
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4.2.3 The stability of ADI schemes

Theoretical stability results for all four ADI schemes - relevant to FD dis-

cretization of 2D convection-diffusion equations with a mixed derivative term

- have been derived in ([44], [56], [13]). These results concern unconditional

stability, i.e., without any restriction on the time step ∆t. The analysis has

been performed following the classical Von Neumann method (Fourier trans-

formation), where the usual assumptions are made that the coefficients are

constant, the boundary condition is periodic, the spatial grid is uniform,

and stability is considered in the l2-norm.

We derive linear stability results ever for this ADI scheme that use Lya-

punov function along the boundary. These results are subsequently used

to show that the ADI scheme under consideration is unconditionally stable

when applied to finite difference discretizations of general parabolic two-

dimensional convectiondiffusion equations. We mention that this scheme

above is closely related to so-called Approximate Matrix Factorization meth-

ods, cf. e.g. ([45]). When applied to the linear scalar test equation

C ′(y) = (λ0 + λ1 + λ2)C(t) (4.74)

with complex constants λj (0 ≤ j ≤ 2).

Application of ADI scheme gives rise to a linear iteration of the form

Cn = R(z0, z1, z2)Cn−1 (4.75)

with zj = ∆tλj with (j = 0, 1, 2) and

R(z0, z1, z2) = 1 +
z0 + z1 + z2

p
(4.76)

Here, and throughout this thesis, we adopt the notation

z = z1 + z2 p = (1− 1

2
z1)(1− 1

2
z2) θ =

1

2
. (4.77)

The iteration is stable if

|R(z0, z1, z2)| ≤ 1 (4.78)
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For our scheme we have that:

Y0 = Cn−1 + ∆tACn−1

Y1(1− 1
2dtA1) = Cn−1 + ∆tACn−1 − 1

2∆tA1Cn−1

Y2(1− 1
2dtA2) =

Cn−1+∆tACn−1− 1
2
dtA1Cn−1

1− 1
2
dtA1

− 1
2∆tA2Cn−1

Cn = Y2

and so, for this scheme, it is readily verified that

R(z0, z1, z2) = 1 +
z0 + z1 + z2

p
. (4.79)

Firstly we will consider the diffusion matrix constant and with periodic

boundary condition. The value λj mentioned above are eigenvalues of the

matrices Aj (0 ≤ j ≤ k). Consider the following condition on z0, z1, z2 ∈ C

(where θ is equal to 1
2 in our case):

p 6= 0 and |z0| ≤ |
p

2θ
| − | p

2θ
+ z| (4.80)

Recall that z, p are given by (4.77).

Lemma 4.2.1. Assume (4.80) holds and θ ≤ 1
2 . Then

|R(z0, z1, ..., zk)| ≤ 1 (4.81)

Proof. Define

R̃ = R̃(z0, z1, z2, ,̇zk) =
1

2θ
+
z + z0

p
(4.82)

We have

|R̃| = | 1

2θ
+
z

p
+
z0

p
| ≤ | 1

2θ
+
z

p
|+ |z0

p
| ≤ 1

2θ
. (4.83)

Subsequently,

|R(z0, z1, z2, ,̇zk)| = |1−
1

2θ
+ R̃| ≤ 1− 1

2θ
+ |R̃| ≤ 1− 1

2θ
+

1

2θ
(4.84)

The direct verification of condition (4.80) is not straightforward in gen-

eral, in view of the non-trivial formulas one has for the eigenvalues zj . We

introduce next a condition which is much easier to verify when k = 2:

Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2
√

Re(z1)Re(z2) (4.85)

and note that this condition is independent of the parameter θ.
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Lemma 4.2.2. Assume k = 2. Then (4.85)⇒ (4.80)

Proof. Define the vectors

zj =

−√2Re(zj)

|1+θzj√
zj
|

 j = 1, 2

Then

||zj ||2 =

√
−2Re(zj) +

|1 + θzj |2
2θ

=
|1− θzj |2√

2θ
(4.86)

Condition (4.85) implies p 6= 0 (sum of positive amount). Next, we obtain

|z0|+ |
p

2θ
+ z| = |z0|+ |

(1− θz1)(1− θz2)

2θ
+ z1 + z2| (4.87)

= |z0|+ |
(1 + θz1)(1 + θz2)

2θ
(4.88)

≤ 2
√

Re(z1)Re(z2) + |(1 + θz1)(1 + θz2)

2θ
| (4.89)

= v1 · v2 ≤ ||v1||2||v2||2 (4.90)

=
|1− θz1||1− θz2|

2θ
(4.91)

= | p
2θ
| (4.92)

which shows that (4.80) holds.

In the following theorem (see [44]), we summarize the main results above

on the stability requirements 4.78 relevant to k = 2. Unless stated otherwise,

z0, z1, z2 are assumed to be complex numbers here.

Theorem 4.2.1. Assume k = 2 and (4.85) holds. Then the condition (4.78)

is fulfilled whenever θ ≥ 1
2 .

4.2.4 Stability for ADI Modified scheme

Following the results obtained in the previous section we are going to validate

the results obtained on stability even for the modified scheme proposed for

the study about ADI discretization on Heston model. In our specif case we

have an equation of the form of

∂C

∂t
= c · ∇u+∇ · (D∇u) (4.93)
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where,

c =

c1

c2


and

D =

d11 d12

d21 d22


to have

∂C

∂t
= (d12 + d21)Csv + (c1Cs + d11Css) + (c2Cv + d22Cvv). (4.94)

We require that D is positive semi-definite. This is equivalent to

d11 ≥ 0 d22 ≥ 0 and(d12 + d21)2 ≤ 4d11d22. (4.95)

We investigate stability using the model scalar equation above and with λj

an eigenvalue of Aj for j = 0, 1, 2. Taking as example the matrix A1, whose

elements involves the discretization in s-direction. We know that in the Von

Neumann analysis we have the solution as

Cnj =
1

2π

∫ π
m1

− π
m1

eijhξĈ(ξ)dξ (4.96)

Applying this replacement to our discretization (referring in this case to the

space discretization), we have:

c1

Cnj+1 − Cnj−1

2∆s
+ d11

Cnj+1 − 2Cnj − Cnj−1

∆s2
= (4.97)

c1

2π2∆s

∫ π
j1

− π
j1

(ei(j+1)hξ + ei(j−1)hξ)Ĉ(ξ)dξ + (4.98)

+
d11

2π∆s2

∫ π
j1

− π
j1

(ei(j+1)hξ − 2eijhξ + ei(j−1)hξ)Ĉ(ξ)dξ

=
1

2π

∫ π
j1

− π
j1

eijhξĈ(ξ)(
c1

2∆s
(ei(j+1)hξ + ei(j−1)hξ + (4.99)

d11

∆s2
ei(j+1)hξ − 2eijhξ + ei(j−1)hξ))dξ
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The scaled eigenvalues zr = λrdt are

zr = crqr

(1

2
eiφr − 1

2
e−iφr

)
+drrar(e

iφr − 2 + e−iφr) (4.100)

= −2drrar(1− cosφr) + icrqr sinφr (4.101)

and z0 = (d12 + d21)b[− sinφ1 sinφ2] where

q1 =
∆t

∆s
q1 =

∆t

∆v
a1 =

∆t

∆s2
a2 =

∆t

∆v2
b =

∆t

∆s∆v
(4.102)

The angles φr are integer multiples of 2π/mr, (r = 1, 2) where as usual

m1,m2 are the dimension of the grid in the x and y directions, respectively.

We have

|z0|2 ≤ (d12 + d21)2b2 ≤ 4d11d22b
2 (4.103)

and so

|z0|2 ≤ 4Re(z1)Re(z2) (4.104)

Thus we have shown that the condition (4.85) is fulfilled, independently of

dt, ds, dv > 0. and even for those nodes whre the discretization is balanced

by the Lyapunov function. By invoking Theorem 4.2.1, we arrive at the

following result (see [44])for the Douglas schemes:

Theorem 4.2.2. Consider equation (4.93) for k = 2 with 4.85 and periodic

boundary condition. Assume that θ ≤ 1
2 . Then the scheme are uncondition-

ally stable when applied to equation (H). Moreover, this conclusion remains

valid when any other, stable finite difference discretizations for Cs, Cv used.
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4.3 Numerical Validation

Consider now value for v0 close to 0 and with an underlying asset with value

S0 = 100, using 30 nodes with both directions and 50 time steps, we obtain

the following results:

V0 Numerical Value with Lyapu Numerical Value no Lyapu Theor Value

0.03 13.3193 13.3555 13.4339

0.06 13.6587 13.5071 13.6016

0.12 14.3820 13.9384 14.0529

0.20 14.9670 14.4459 14.5294

0.25 16.0614 15.5247 14.8679

If we implemented the boundary condition which uses the PDE in v = 0 we

have (for value of K = 100, Vmax = 0.3;T = 1;m1 = 30;m2 = 30;NT =

50;σ = 0.618; η = 0.0022;κ = 11.32; rd = 0.142; ρ = −0.5

V0 Numerical Value with Lyapu Numerical Value no Lyapu Exacted Value

0.03 13.0568 9.001 13.4339

0.06 13.3669 9.4182 13.6016

0.12 13.9433 10.2177 14.0529

0.20 14.5173 10.9365 14.5294

0.25 15.6348 12.2431 14.8679

As illustrated in the above table, the use of the Lyapunov function, com-

bined with the right PDE condition evaluated along the boundary for v = 0,

provides an optimization of the numerical results. As we go far from the

boundary (which our process will never approach) the converge of numerical

scheme results for both the methods. Nevertheless, the use of the Lyapunov

function raises intensely the convergence. Even for those nodes close to the

value of v = 0 the value of the numerical scheme does not deviate from

the exact value for a consistent value. As far as we leave the nodes along

the critical boundary, even the scheme without the Lyapunov function will
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slowly converge to the exact value.

If the grid points, in v direction, are increased (doubled in comparison with

the S direction) the results will be as the follow:

v0 = 0.01 v0 = 0.07 v0 = 0.1

Lyap NoLyap Theor Lyap NoLyap Theor Lyap NoLyap Theor

Spot

93.33 3.8755 6.6806 6.9444 6.3367 7.4265 7.6933 7.1754 7.7940 8.0443

100 11.0391 13.2733 13.3442 13.8818 13.5620 13.6623 14.3542 14.7430 13.8533

106.66 27.8350 19.9175 19.9419 23.0497 20.0379 20.0738 22.4683 20.12441 20.1689

Table 4.2: Price European call No PDE

v0 = 0.15 v0 = 0.2 v0 = 0.25

Lyap NoLyap Theor Lyap NoLyap Theor Lyap NoLyap Theor

Spot

93.33 8.2347 8.3660 8.5863 9.0592 8.9180 9.0822 10.3598 10.0656 9.5416

100 14.8654 14.0711 14.1884 15.3061 14.4435 14.5294 16.3279 15.4502 14.8679

106.66 22.1653 20.3017 20.3556 22.2125 20.5381 20.5660 22.9365 21.3963 20.7923

Table 4.3: Price European call no PDE

In this case, where it is not used the boundary condition which implemented

the PDE along the boundary, the use of the Lyapunov function does not seem

to give any improvement for the convergence of numerical solution to the

exact solution provided by the close formula. The numerical scheme without

the PDE implements in this case Dirichlet condition along both boundary

lines. From a theoretical point of view the use of Dirichlet condition is not

a fair value: the process will never approach that boundary and the value

imposed by the numerical scheme will force the solution to a value never

taken.

Again, if we implement the boundary condition which uses the PDE in

v = 0, taking this time more points in the v direction we have (for value of

K = 100, Vmax = 0.3;T = 1;m1 = 30;m2 = 60;NT = 50;σ = 0.618; η =

0.0022;κ = 11.32; rd = 0.142; ρ = −0.5):
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v0 = 0.01 v0 = 0.07 v0 = 0.1

Lyap NoLyap Theor Lyap NoLyap Theor Lyap NoLyap Theor

Spot

93.33 5.0768 6.7237 6.9444 6.5971 7.3398 7.6933 7.1638 7.6409 8.0443

100 12.4736 11.6131 13.3442 13.2146 12.2066 13.6623 13.4809 12.4693 13.8533

106.66 20.93656 17.2967 19.9419 20.3387 17.8157 20.0738 20.3204 18.0191 20.1689

Table 4.4: Price European call

v0 = 0.15 v0 = 0.2 v0 = 0.25

Lyap NoLyap Theor Lyap NoLyap Theor Lyap NoLyap Theor

Spot

93.33 7.9419 8.1164 8.5863 8.6155 8.5899 9.0822 9.8506 9.6714 9.5416

100 13.8944 12.8823 14.1884 14.3246 13.3029 14.5294 15.3846 14.3629 14.8679

106.66 20.4353 18.3416 20.3556 20.6600 18.6871 20.5660 21.5452 19.6844 20.7923

Table 4.5: Price European call

Even in this case, where we increased the number of nodes, the use of the

Lyapunov function increases the converge of the numerical solution to the

exact solution. The focal point of this part of analysis is that even the nu-

merical scheme without the use of the Lyapunov function is converging to

the exact value: the use of the function speeds up this convergence even

close to the node for which v = 0. The use of function even in the numerical

scheme will allow us to obtain the convergence requires in a shorter time,

decreasing the numerical error. To underline the error which occurs using

this approximation where the boundary conditions were given by the PDE

in the boundary of v = 0 we report the graphics here below:

To underline the different price obtained using this approximation where the

boundary conditions were given by the PDE in the boundary of v = 0 we re-

port the graphics here below, where we plot at the same time the theoretical

solution and the numerical one:
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Figure 4.8: Relative error-with and without Lyap

Figure 4.9: Relative error-with and without Lyap

The relative error coming from the approximation which uses the ”‘Lya-

punov” function and PDE on boundary is the following below. We have

used three different box, to highlight two volatility macro”‘area”:

s0/v0 0.02 0.05 0.08 0.10 0.11

93.33 -0.3135 -0.2092 -0.1495 -0.1174 -0.1122

100 -0.0588 -0.0405 -0.0314 -0.0276 -0.0261

106.66 0.0379 0.0197 0.0107 0.0075 0.0063

113.33 0.0017 0.0085 0.0110 0.0116 0.0118

The range of errors resulted from the approximation with the numerical

scheme implemented and the use of the Lyapunov function is always below
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s0/v0 0.13 0.14 0.15 0.16 0.17

93.33 -0.0948 -0.0876 -0.0811 -0.0753 -0.0700

100 -0.0034 -0.0223 -0.02512 -0.0201 -0.0189

106.66 0.0048 0.0043 0.0039 0.0037 0.0036

113.33 0.0120 0.0120 0.0121 0.0122 0.0124

10−2 (it has to be stressed here that to make a fair comparison between

the numerical solution and the exact value, the solution resulted from our

approximations should be taken not along or close to the boundary but in

the center of grid; for this reason we reported also the other value but we

highlighted the center of the grid for a fair evaluation).
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Viscosity Solutions

Here we recall the notion of viscosity solutions for our value problem. For

a more complete description we refer the reader to [18]. For any starshaped

domain D ∈ Rd, let USC([0, T ]×D) and LSC([0, T ]×D) denote the space of

real-valued upper and lower semi-continuous functions on [0, T ]×D, respec-

tively. The general form of a valuation equation (in the time-homogeneous

case) is the Dirichlet problem:

(M)

{
∂tu(t, x) + Lu(t, x)− c(x)u(t, x) = f(t, x) (t, x) ∈ (0, T )×D,

u(T, x) = φ(x), x ∈ D
(A.1)

where, for any smooth function g, the differential operator is

Lg(x) = 〈∇g(x), b(x)〉+
1

2
tr(∇2g(x)a(x)) (A.2)

where a, b, c, φ, f are continuous functions on [0, T ]×D.

Definition A.0.1. Given u ∈ USC([0, T ]×D), the parabolic super 2-jet of

u at the point (t, x) ∈ (0, T )×D is

P 2,+u(t, x) := {(∂tg(t, x),∇g(t, x),∇2g(t, x) : g ∈ C1,2([0, T ]×D) and

(u− g)(t, x) ≤ (u− g)(t, x) = 0, ∀(t, x) ∈ [0, T ]×D}.

156



APPENDIX A. VISCOSITY SOLUTIONS 157

We say that a function g as above is a test function for P 2,+u at (t, x).

For a function u ∈ LSC([0, T ] ×D), the parabolic lower 2-jet is defined as

P 2,−u := −P 2,+(−u).

In Definition A.0.1, we can assume, without loss of generality, that u−g

has a strict global maximum at (t, x), that is,

(u− g)(t, x) < (u− g)(t, x)) = 0, ∀(t, x) ∈ [0, T ]×D, (t, x) 6= (t, x).

A function g satisfying these conditions is called a good test function for

P 2,+u at (t, x).

Definition A.0.2. A function u ∈ USC([0, T ]×D) (resp. u ∈ LSC([0, T ]×

D)) is a viscosity subsolution (resp. supersolution) of (M) if

• for every (t, x) ∈ (0, T )×D and any (good) test function g for P 2,+u

at (t,x) (resp. P 2,−u), it holds

∂tg(t, x) + Lg(t, x)− c(x)u(t, x) ≥ f(t, x)(resp. ≤),

• u(T, x) ≤ φ(x) (resp.,≥) for all x ∈ D.

A function u that is both a viscosity subsolution and a viscosity super solu-

tion of (M) is a viscosity solution (clearly, u ∈ C([0, T ]×D)).
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Matlab Codes

1 [title ={ Dupire Volatility }]

2

3 function SIG=dupire(x0,T,C,Cp,T1,T2,r)

4

5 tau1=(T2 -T)/(T2 -T1);

6 tau2=(T-T1)/(T2 -T1);

7 deltaTau=T2-T1;

8 SigmaI1=sqrt(C(1)+C(2)*(C(3)*(x0 - C(4))+

9 sqrt((x0-C(4))^2.0+C(5))));

10 SigmaI2=sqrt(Cp(1)+Cp (2)*(Cp (3)*(x0 -Cp (4))+

11 sqrt((x0-Cp (4))^2.0+ Cp (5))));

12

13 f1=0.5*C(2)/ SigmaI1 *(C(3)+2.0*(x0 -C(4))/ sqrt((x0 -C(4))^2+C(5)));

14 f2=0.5* Cp(2)/ SigmaI2 *(Cp (3)+2.0*(x0 -Cp (4))/ sqrt((x0 -Cp (4))^2

15 +Cp (5)));

16 g1=1.0/ SigmaI1 *(C(2)*C(5)/(2*((x0 -C(4))^2.0+C(5))^1.5) -f1);

17 g2=1.0/ SigmaI2 *(Cp(2)*Cp (5)/(2*((x0 -Cp (4))^2+ Cp (5))^1.5) -f2);

18 SigmaI=tau1*SigmaI1+tau2*SigmaI2;

19

20 SigmaT =(SigmaI2 -SigmaI1 )/ deltaTau;

21

22 SigmaX=tau1*f1+tau2*f2;

23 SigmaXX=tau1*g1+tau2*g2;
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24 d1=((r+0.5* SigmaI ^2.0)*T-x0)/( SigmaI*sqrt(T));

25 Num=SigmaI ^2+2*T*SigmaI *( SigmaT+r*SigmaX );

26 Den =(1+d1*sqrt(T)* SigmaX )^2+

27 SigmaI*T*(SigmaXX -SigmaX -d1*sqrt(T)* SigmaX ^2)+0.74;

28

29 SIG=sqrt((Num )/(Den));

ADI to the Heston Model Calibrated by Lyapunov

function along the Boundary

1 function roe=HestonADI(ka,na,sig ,rho ,v0,r,T,s0,K,m1,m2,NT)

2

3 V=zeros(1,m2+1);S=zeros(1,m1+1);

4 dx=2*s0/m1;dv=2*v0/m2;

5

6 S=[0:dx :200];V=[0:dv :0.3];

7 dt=T/NT;teta =0.5; rd=r;

8

9 LY=zeros(m1 -1,m2 -1);

10

11 for i=1:m1 -1 for j=1:m2 -1

12 LY(i,j)=-log(S(i+1))-log(V(j+1))+S(i+1)*( log(S(i+1))+3)+

13 +S(i+1)*(V(j+1)+1)+V(j+1);

14 end end LLY =1./LY;

15

16 b1=zeros(1,m1 -1);b2=zeros(1,m1 -1);b3=zeros(1,m1 -1);

17

18 bb1=zeros(1,m2 -1); bb2=zeros(1,m2 -1); bb3=zeros(1,m2 -1);

19

20 g1=zeros(1,m1 -1);g2=zeros(1,m1 -1);g3=zeros(1,m1 -1);

21

22 ggg1=zeros(1,m2 -1); ggg2=zeros(1,m2 -1); ggg3=zeros(1,m2 -1);

23

24

25 %%% DERIVATA PRIMA

26 for i=1:m1 -1
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27 b1(i)= -1/(2*dx);b2(i)=0;b3(i)=1/(2* dx);

28 end

29 for i =1:m2 -2

30 bb1(i)= -1/(2*dv);bb2(i)=0; bb3(i)=1/(2* dv);

31 end

32

33 %%% DERIVATA SECONDA

34 for i=1:m1 -1

35 g1(i)=1/( dx^2);g2(i)=-2/(dx^2);g3(i)=1/(dx^2);

36 end

37 for i=1:m2 -1

38 ggg1(i)=1/(dv^2); ggg2(i)=-2/(dv^2); ggg3(i)=1/(dv^2);

39 end

40

41

42

43

44 for k=2:m2 -1

45 for i = 2:(m1 -2)

46 Ax(i,i,k) = 0.5*V(k+1)*S(i+1)^2* g2(i)+

47 (rd-rf)*S(i+1)*b2(i)-rd/2;

48 Ax(i,i-1,k)=0.5*V(k+1)*S(i+1)^2* g1(i)+

49 (rd -rf)*S(i+1)*b1(i);

50 Ax(i,i+1,k)=0.5*V(k+1)*S(i+1)^2* g3(i)+

51 (rd -rf)*S(i+1)*b3(i);

52 end

53

54 Ax(1,1,k)=0.5*V(k+1)*(S(2)* LLY(1,k))^2*g2(1)+

55 (rd-rf)*(S(2)* LLY(1,k))*b2(1)-rd/2;

56 Ax(1,2,k)=0.5*V(k+1)*(S(2)* LLY(1,k))^2*g3(1)+

57 +(rd -rf)*(S(2)* LLY(1,k))*b3(1);

58 Ax(m1 -1,m1 -2,k)=0.5*V(k+1)*S(m1)^2*g1(m1 -1)+

59 +(rd -rf)*S(m1)*b1(m1 -1);

60 Ax(m1 -1,m1 -1,k)=0.5*V(k+1)*S(m1)^2*g2(m1 -1)+

61 +(rd -rf)*S(m1)*b2(m1 -1)-rd/2;
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62 end

63

64

65 for i = 2:(m1 -2)

66 Ax(i,i,1) = 0.5*V(2)* LLY(i,1)*S(i+1)^2* g2(i)+

67 +(rd-rf)*S(i+1)*b2(i)-rd/2;

68 Ax(i,i-1 ,1)=0.5*V(2)* LLY(i,1)*S(i+1)^2* g1(i)+

69 +(rd -rf)*S(i+1)*b1(i);

70 Ax(i,i+1 ,1)=0.5*V(2)* LLY(i,1)*S(i+1)^2* g3(i)+

71 +(rd -rf)*S(i+1)*b3(i);

72 end

73

74 Ax(1 ,1 ,1)=0.5*V(2)* LLY (1 ,1)*(S(2)* LLY (1 ,1))^2*g2(1)+

75 +(rd -rf)*S(2)* LLY (1,1)*b2(1)-rd/2;

76 Ax(1 ,2 ,1)=0.5*V(2)* LLY (1 ,1)*(S(2)* LLY (1 ,1))^2*g3(1)+

77 +(rd -rf)*S(2)* LLY (1,1)*b3(1);

78

79

80 Ax(m1 -1,m1 -2 ,1)=0.5*V(2)* LLY(m1 -1,1)*S(m1)^2*g1(m1 -1)+

81 +(rd -rf)*S(m1)*b1(m1 -1);

82 Ax(m1 -1,m1 -1 ,1)=0.5*V(2)* LLY(m1 -1,1)*S(m1)^2*g2(m1 -1)+

83 +(rd -rf)*S(m1)*b2(m1 -1)-rd/2;

84

85

86 for k=1:(m2 -1)

87 A1((k-1)*(m1 -1)+1:(k -1)*(m1 -1)+m1 -1,(k -1)*(m1 -1)+1:

88 (k-1)*(m1 -1)+m1 -1)=Ax(1:m1 -1,1:m1 -1,k);

89 end

90

91

92 for i=1:m1 -1 %% no block

93 Ay(i,i ,1)=0.5*V(2)* LLY(i,1)* sig ^2* ggg2 (1)+

94 +ka*(na-V(2)* LLY(i,1))* bb2(1)-rd/2;

95 end

96
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97 for i=1:m1 -1

98 Hup(i,i ,1)=0.5*V(2)* LLY(i,1)* sig^2* ggg3 (1)+

99 +ka*(na-V(2)* LLY(i,1))* bb3 (1);

100 end

101

102 for k=2:m2 -1 for i=1:m1 -1

103 Ay(i,i,k)=0.5*V(k+1)* sig ^2* ggg2(k)+

104 +ka*(na -V(k+1))* bb2(k)-rd/2;

105 end end

106

107 for k=2:m2 -2

108 for i=1:m1 -1

109 Hup(i,i,k)=0.5*V(k+1)* sig^2* ggg3(k)+

110 +ka*(na -V(k+1))* bb3(k);

111 end end

112

113

114 for k=1:m2 -2

115 for i=1:m1 -1

116 Hdown(i,i,k)=0.5*V(k+2)* sig^2* ggg1(k+1)+

117 +ka*(na-V(k+2))* bb1(k+1);

118 end end

119

120

121 for k=1:(m2 -1)

122 A2((k-1)*(m1 -1)+1:(k -1)*(m1 -1)+m1 -1,(k -1)*(m1 -1)+1:

123 (k-1)*(m1 -1)+m1 -1)=Ay(1:m1 -1,1:m1 -1,k);%% blocks

124 end

125 for k=1:(m2 -2)

126 A2((k)*(m1 -1)+1:k*(m1 -1)+m1 -1,(k -1)*(m1 -1)+1:

127 (k-1)*(m1 -1)+m1 -1)= Hdown (1:m1 -1,1:m1 -1,k); %% sttdiagonal

128 end

129 for k=1:(m2 -2)

130 A2((k-1)*(m1 -1)+1:(k -1)*(m1 -1)+m1 -1,(k)*(m1 -1)+1:

131 (k)*(m1 -1)+m1 -1)= Hup(1:m1 -1,1:m1 -1,k);%% sprdiagonal
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132 end

133

134

135 %%% Mixed derivative by Lyapunov

136 for k=2:m2 -1

137 for i = 2:(m1 -2)

138 M(i,i,k) = rho*sig*S(i+1)*V(k+1)*b2(i)*bb2(k);

139 M(i,i-1,k)=rho*sig*S(i+1)*V(k+1)*b1(i)*bb2(k);

140 M(i,i+1,k)=rho*sig*S(i+1)*V(k+1)*b3(i)*bb2(k);

141 end

142

143 M(1,1,k)=rho*sig*S(2)* LLY(1,k)*V(k+1)*b2(1)* bb2(k);

144 M(1,2,k)=rho*sig*S(2)* LLY(1,k)*V(k+1)*b3(1)* bb2(k);

145 M(m1 -1,m1 -1,k)=rho*sig*S(m1)*V(k+1)*b2(m1 -1)* bb2(k);

146 M(m1 -1,m1 -2,k)=rho*sig*S(m1)*V(k+1)*b1(m1 -1)* bb2(k);

147 end

148

149 for i = 2:(m1 -2)

150 M(i,i,1) = rho*sig*S(i+1)*V(2)* LLY(i,1)*b2(i)*bb2 (1);

151 M(i,i-1 ,1)=rho*sig*S(i+1)*V(2)* LLY(i,1)*b1(i)*bb2 (1);

152 M(i,i+1 ,1)=rho*sig*S(i+1)*V(2)* LLY(i,1)*b3(i)*bb2 (1);

153

154 end

155 M(1,1,1)=rho*sig*V(2)* LLY(1 ,1)*S(2)* LLY(1 ,1)*b2(1)* bb2 (1);

156 M(1,2,1)=rho*sig*V(2)* LLY(1 ,1)*S(2)* LLY(1 ,1)*b3(1)* bb2 (1);

157 M(m1 -1,m1 -1 ,1)=rho*sig*V(2)* LLY(m1 -1 ,1)*S(m1)*b2(m1 -1)* bb2 (1);

158 M(m1 -1,m1 -2 ,1)=rho*sig*V(2)* LLY(m1 -1 ,1)*S(m1)*b1(m1 -1)* bb2 (1);

159

160

161 for k=2:m2 -2

162 AxyU(1,1,k)=rho*sig*S(2)* LLY(1,k)*V(k+1)*b2(1)* bb3(k);

163 AxyU(1,2,k)=rho*sig*S(2)* LLY(1,k)*V(k+1)*b3(1)* bb3(k);

164 for i=2:(m1 -2)

165 AxyU(i,i,k)=rho*sig*S(i+1)*V(k+1)*b2(i)*bb3(k);

166 AxyU(i,i-1,k)=rho*sig*S(i+1)*V(k+1)*b1(i)*bb3(k);
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167 AxyU(i,i+1,k)=rho*sig*S(i+1)*V(k+1)*b3(i)*bb3(k);

168 end

169 AxyU(m1 -1,m1 -1,k)=rho*sig*S(m1)*V(k+1)*b2(m1 -1)* bb3(k);

170 AxyU(m1 -1,m1 -2,k)=rho*sig*S(m1)*V(k+1)*b1(m1 -1)* bb3(k);

171 end

172

173 AxyU (1,1,1)=rho*sig*V(2)* LLY (1,1)*S(2)* LLY (1,1)*b2(1)* bb3 (1);

174 AxyU (1,2,1)=rho*sig*V(2)* LLY (1,1)*S(2)* LLY (1,1)*b3(1)* bb3 (1);

175 for i=2:(m1 -2)

176 AxyU(i,i,1)= rho*sig*V(2)* LLY(i,1)*S(i+1)*b2(i)*bb3 (1);

177 AxyU(i,i-1,1)= rho*sig*V(2)* LLY(i,1)*S(i+1)*b1(i)*bb3 (1);

178 AxyU(i,i+1,1)= rho*sig*V(2)* LLY(i,1)*S(i+1)*b3(i)*bb3 (1);

179 end

180 AxyU(m1 -1,m1 -1,1)= rho*sig*V(2)* LLY(m1 -1,1)*S(m1)*b2(m1 -1)* bb3 (1);

181 AxyU(m1 -1,m1 -2,1)= rho*sig*V(2)* LLY(m1 -1,1)*S(m1)*b1(m1 -1)* bb3 (1);

182

183 for k=1:m2 -2

184 AxyD(1,1,k)=rho*sig*S(2)* LLY(1,k+1)*V(k+2)*b2(1)* bb1(k+1);

185 AxyD(1,2,k)=rho*sig*S(2)* LLY(1,k+1)*V(k+2)*b3(1)* bb1(k+1);

186 for i=2:m1 -2

187 AxyD(i,i+1,k)=rho*sig*S(i+1)*V(k+2)*b3(i)*bb1(k+1);

188 AxyD(i,i-1,k)=rho*sig*S(i+1)*V(k+2)*b1(i)*bb1(k+1);

189 AxyD(i,i,k)=rho*sig*S(i+1)*V(k+2)*b2(i)*bb1(k+1);

190 end

191 AxyD(m1 -1,m1 -1,k)=rho*sig*S(m1)*V(k+2)*b2(m1 -1)* bb1(k+1);

192 AxyD(m1 -1,m1 -2,k)=rho*sig*S(m1)*V(k+2)*b1(m1 -1)* bb1(k+1);

193 end

194

195 for k=1:(m2 -1)

196 A0((k-1)*(m1 -1)+1:(k -1)*(m1 -1)+m1 -1,(k -1)*(m1 -1)+1:

197 (k -1)*(m1 -1)+m1 -1)=M(1:m1 -1,1:m1 -1,k);%% Block

198 end

199 for k=1:(m2 -2)

200 A0((k)*(m1 -1)+1:k*(m1 -1)+m1 -1,(k -1)*(m1 -1)+1:

201 (k -1)*(m1 -1)+m1 -1)= AxyD (1:m1 -1,1:m1 -1,k); %% sttdiagonal
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202 end

203 for k=1:(m2 -2)

204 A0((k-1)*(m1 -1)+1:(k -1)*(m1 -1)+m1 -1,(k)*(m1 -1)+1:

205 (k)*(m1 -1)+m1 -1)= AxyU (1:m1 -1,1:m1 -1,k);%% sprdiagonal

206 end

207

208

209 %%% VETTORE TERMINI NOTI

210 N0=zeros(NT+1,(m1 -1)*(m2 -1));

211 N1=zeros(NT+1,(m1 -1)*(m2 -1));

212 N2=zeros(NT+1,(m1 -1)*(m2 -1));

213

214 for k=1:NT+1

215 for i=1:(m2 -1)

216 N1(k,i*(m1 -1))=0.5*V(i+1)*g3(m1 -1)*S(m1)^2* max(0,S(m1+1)-K)+

217 +(rd-rf)*S(m1)*b3(m1 -1)* max(0,S(m1+1)-K);

218 end

219 end

220

221

222 for k=2:(NT+1)

223 t=(k-1)*dt;

224 for i=1:m1 -1

225 d1(i)=( log(S(i+1)/K)+(rd +0.5*V(1))*t)/( sqrt(V(1)*t));

226 d2(i)=d1(i)-sqrt(V(1)*t);

227 FF(i)=S(i+1)*0.5* erfc(-d1(i)/sqrt (2))-

228 +K*0.5* erfc(-d2(i)/sqrt (2))* exp(-rd*t);

229 end

230 for i=1:m1 -1

231 ddd1(i)=( log(S(i+1)/K)+(rd +0.5*V(m2 +1))*t)/( sqrt(V(m2+1)*t));

232 ddd2(i)=ddd1(i)-sqrt(V(m2+1)*t);

233

234 EE(i)=S(i+1)*0.5* erfc(-ddd1(i)/sqrt (2))-

235 +K*0.5* erfc(-ddd2(i)/sqrt (2))* exp(-rd*t);

236 end
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237

238 for i=1:m1 -1

239 N2(k,i)=(0.5* sig ^2*V(2)* LLY(i,1)* ggg1 (1)+

240 +ka*(na -V(2)* LLY(i,1))* bb1 (1))* FF(i);

241 N2(k,(m1 -1)*(m2 -2)+i)=(0.5* sig ^2*V(m2)*ggg3(m2 -1)+

242 +ka*(na-V(m2))*bb3(m2 -1))* EE(i);

243 end

244

245 a=(log(S(m1+1)/K)+(rd+0.5*V(1))*t)/( sqrt(V(1)*t));

246 b=d1(i)-sqrt(V(1)*t);

247 BB=S(m1 +1)*0.5* erfc(-a/sqrt (2))-

248 +K*0.5* erfc(-b/sqrt (2))* exp(-rd*t);

249

250

251 %%% first vector

252 N0(k,1)= rho*sig*V(2)* LLY (1,1)*S(2)* LLY (1,1)*

253 *b3(1)* bb1 (1)*FF(2)+

254 +rho*sig*V(2)* LLY(1 ,1)*S(2)* LLY(1 ,1)*

255 *b2(1)* bb1 (1)*FF(1);

256 for i=2:m1 -2 %%Last and first column

257 N0(k,i)=rho*sig*V(2)* LLY(i,1)*S(i+1)*b1(i)*bb1 (1)*FF(i-1)+

258 +rho*sig*V(2)* LLY(1,i)*S(i+1)*b2(i)*bb1 (1)*FF(i)+

259 +rho*sig*V(2)* LLY(1,i)*S(i+1)*b3(i)*bb1 (1)*FF(i+1);

260 end

261 N0(k,m1 -1)= rho*sig*V(2)* LLY(m1 -1,1)*S(m1)*(b3(m1 -1)* bb1 (1)*BB+

262 +b3(m1 -1)* bb2 (1)* max(0,S(m1+1)-K)+

263 +b3(m1 -1)* bb3 (1)* max(0,S(m1+1)-K)+

264 +b2(m1 -1)* bb1 (1)*FF(m1 -1)+b1(m1 -1)* bb1 (1)*FF(m1 -2));

265 for i=1:(m2 -3)

266 N0(k,(i+1)*(m1 -1))= rho*V(i+2)*S(m1)*(b3(m1 -1)* bb1(i+1)+

267 +b3(m1 -1)* bb2(i+1)+

268 +b3(m1 -1)* bb3(i+1))* max(S(m1+1)-K,0);

269 end

270

271
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272 %%% Last vector

273 N0(k,(m1 -1)*(m2 -2)+1)= rho*sig*V(m2)*S(2)*

274 *LLY(1,m2 -1)*b3(1)* bb3(m2 -1)*EE(2)+

275 +rho*sig*V(m2)*S(2)* LLY(1,m2 -1)*b2(1)*

276 *bb3(m2 -1)*EE(1);

277 for i=2:m1 -2 %% First and last column

278 N0(k,(m1 -1)*(m2 -2)+i)=rho*sig*V(m2)*S(i+1)*(b3(i)*

279 *bb3(m2 -1)*EE(i+1)+

280 +b1(i)*bb3(m2 -1)*EE(i-1)+b2(i)*bb3(m2 -1)*EE(i));

281

282 N0(k,(m1 -1)*(m2 -1))= rho*sig*V(m2)*S(m1)*(b3(m1 -1)* bb2(m2 -1)

283 *max(0,S(m1+1)-K)+

284 +b3(m1 -1)* bb1(m2 -1)* max(0,S(m1+1)-K)+

285 +b1(m1 -1)* bb3(m2 -2)*EE(m1 -2)+

286 +b2(m1 -1)* bb3(m2 -1)*EE(m1 -1)+

287 +b3(m1 -1)* bb3(m2 -1)* max(S(m1+1)-K,0));

288 end

289

290 N0(1 ,1)= rho*sig*V(2)* LLY (1,1)*S(2)* LLY (1,1)*

291 *b3(1)* bb1 (1)* max(0,S(m1+1)-K)+

292 +rho*sig*V(2)* LLY(1 ,1)*S(2)*

293 *LLY(1 ,1)*b2(1)* bb1 (1)** max(0,S(m1+1)-K);

294 for i=2:m1 -2 %% First and last Column

295 N0(1,i)=rho*sig*V(2)* LLY(i,1)*S(i+1)*b1(i)*bb1 (1)

296 *max(0,S(i)-K)+

297 +rho*sig*V(2)* LLY(i,1)*S(i+1)*b2(i)*bb1 (1)*

298 .......* max(0,S(i+1)-K)+

299 +rho*sig*V(2)* LLY(i,1)*S(i+1)*b3(i)*bb1 (1)*

300 .......* max(0,S(i+2)-K);

301 end

302 N0(1,m1 -1)= rho*sig*V(2)* LLY(m1 -1,1)*S(m1)*(b3(m1 -1)

303 *bb1 (1)* max(0,S(m1+1)-K)+

304 +b3(m1 -1)* bb3 (1)* max(S(m1+1)-K,0)+

305 +b3(m1 -1)* bb2 (1)* max(0,S(m1+1)-K)+

306 +b1(m1 -1)* bb1 (1)* max(0,S(m1 -1)-K)+
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307 +b2(m1 -1)* bb1 (1)* max(0,S(m1)-K));

308

309 for i=1:(m2 -3)%% last and first row of each column

310 N0(1,(i+1)*(m1 -1))= rho*V(i+2)*S(m1)*(b3(m1 -1)* bb1(i+1)+

311 +b3(m1 -1)* bb2(i+1)+

312 +b3(m1 -1)* bb3(i+1))* max(S(m1+1)-K,0);

313 end

314

315 N0(1,(m1 -1)*(m2 -2)+1)= rho*sig*V(m2)*S(2)* LLY(1,m2 -1)

316 *b3(1)* bb3(m2 -1)* max(0,S(3)-K)+

317 +rho*sig*V(m2)*S(2)* LLY(1,m2 -1)*b2(1)*

318 *bb3(m2 -1)* max(0,S(2)-K);

319 for i=2:m1 -2 %%Last column

320 N0(1,(m1 -1)*(m2 -2)+i)=rho*sig*V(m2)*S(i+1)

321 *(b3(i)*bb3(m2 -1)* max(0,S(i+2)-K)+

322 +b1(i)*bb3(m2 -1)* max(0,S(i)-K)+

323 +b2(i)*bb3(m2 -1)* max(0,S(i+1)-K));

324 end

325 N0(1,(m1 -1)*(m2 -1))= rho*sig*V(m2)*S(m1)*(b3(m1 -1)*

326 *bb2(m2 -1)* max(0,S(m1+1)-K)+

327 +b3(m1 -1)* bb1(m2 -1)* max(0,S(m1+1)-K)+

328 +b1(m1 -1)* bb3(m2 -2)* max(0,S(m1 -1)-K)+

329 +b2(m1 -1)* bb3(m2 -1)* max(0,S(m1)-K)+b3(m1 -1)

330 *bb3(m2 -1)* max(S(m1+1)-K,0));

331

332 N0(k,(m1 -1)*(m2 -1))= rho*sig*V(m2)*S(m1)*(b3(m1 -1)*

333 *bb2(m2 -1)* max(0,S(m1+1)-K)+

334 +b3(m1 -1)* bb1(m2 -1)* max(0,S(m1+1)-K)+

335 +b1(m1 -1)* bb3(m2 -2)*EE(m1 -2)+

336 ..... +b2(m1 -1)* bb3(m2 -1)*EE(m1 -1)+b3(m1 -1)*

337 *bb3(m2 -1)* max(S(m1+1)-K,0));

338

339 for i=1:m1 -1

340 N2(1,i)=(0.5* sig ^2*V(2)* LLY(i,1)* ggg1 (1)+

341 +ka*(na -V(2)* LLY(i ,1))* bb1 (1))* max(0,S(i+1)-K);
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342 N2(1,(m1 -1)*(m2 -2)+i)=(0.5* sig ^2*V(m2)*ggg3(m2 -1)+

343 +ka*(na -V(m2))*bb3(m2 -1))* max(0,S(i+1)-K);

344 end

345

346

347 IN=zeros(m1+1,m2+1);

348 %%% Initial condition

349 for i=1:m1+1 for j=1:m2+1

350 IN(i,j)=max(0,S(i)-K);

351 end end

352

353 CC=zeros(m1 -1,m2 -1); ZZ=zeros(m1 -1,m2 -1);

354

355 D=zeros(m1 -1,m2 -1);

356 for i=1:m1 -1 for j=1:m2 -1

357 D(i,j)=IN(i+1,j+1);

358 end end

359 U0=[];

360 for i=1:m2 -1

361 U0=[U0;D(:,i)];

362 end

363

364 for iii=2:NT+1

365 Y0=U0+dt*(A1*U0+A2*U0+A0*U0)+dt*(N0(iii -1,:)+

366 +N1(iii -1,:)+N2(iii -1,:))’;

367

368 QQ=eye((m1 -1)*(m2 -1))- teta*dt*A1;

369 SS=Y0-teta*dt*(A1*U0+(N1(iii -1,:)) ’)+

370 +teta*dt*(N1(iii ,:))’;

371 Y1=linsolve(QQ ,SS);

372

373 OO=Y1; OO=OO ’;

374 for i=1:m2 -1

375 ZZ(:,i)=OO(1+(i -1)*(m1 -1):i*(m1 -1));

376 end
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377

378 pp=iii;

379 for e=1:m1 -2

380 GG(e)=ZZ(e,1)+rd*dt*(e+1)*(ZZ(e+1,1)-ZZ(e ,1))+

381 +dt/dv*ka*(na-V(2)* LLY(e ,1))*( ZZ(e,2)-ZZ(e,1))-

382 +rd*dt*ZZ(e,1);

383

384 N2(pp,e)=(0.5* sig ^2*V(2)* LLY(e,1)* ggg1 (1)+

385 +ka*(na-V(2)* LLY(e,1))* bb1 (1))* GG(e);

386

387 end

388 GG(m1 -1)=ZZ(m1 -1 ,1)+rd*dt*(m1)*( max(0,S(m1+1)-K)-ZZ(m1 -1 ,1))+

389 +dt/dv*ka*(na-V(2)* LLY(m1 -1 ,1))*(ZZ(m1 -1,2)-ZZ(m1 -1,1))-

390 +rd*dt*ZZ(m1 -1 ,1);

391 N2(pp,m1 -1)=(0.5* sig ^2*V(2)* LLY(m1 -1,1)* ggg1 (1)+

392 +ka*(na-V(2)* LLY(m1 -1 ,1))* bb1 (1))* GG(m1 -1);

393 N0(pp,m1 -1)= rho*sig*V(2)*S(m1)*(b3(m1 -1)* bb1 (1)*BB+

394 +b3(m1 -1)* bb2 (1)* max(0,S(m1+1)-K)+

395 +b3(m1 -1)* bb3 (1)* max(0,S(m1+1)-K)+

396 +b2(m1 -1)* bb1 (1)*GG(m1 -1)+

397 +b1(m1 -1)* bb1 (1)*GG(m1 -2));

398

399 RR=eye((m1 -1)*(m2 -1))- teta*dt*A2;

400 WW=Y1-teta*dt*(A2*U0+(N2(iii -1,:)) ’)+ teta*dt*(N2(pp ,:)) ’;

401 Y2=linsolve(RR ,WW);

402 U0=Y2;U0=U0 ’;

403 for i=1:m2 -1

404 CC(:,i)=U0(1+(i -1)*(m1 -1):i*(m1 -1));

405 end

406

407 for e=1:m1 -2

408 GG(e)=CC(e,1)+rd*dt*(e+1)*(CC(e+1,1)-CC(e ,1))+

409 +dt/dv*ka*(na-V(2)* LLY(e ,1))*( CC(e,2)-CC(e,1))-

410 +rd*dt*CC(e,1);

411 N2(pp,e)=(0.5* sig ^2*V(2)* LLY(e,1)* ggg1 (1)+
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412 +ka*(na-V(2)* LLY(e,1))* bb1 (1))* GG(e);

413 end

414 GG(m1 -1)=CC(m1 -1 ,1)+rd*dt*(m1)*( max(0,S(m1+1)-K)-

415 +CC(m1 -1 ,1))+

416 +dt/dv*ka*(na-V(2)* LLY(m1 -1 ,1))*(CC(m1 -1,2)-

417 +CC(m1 -1,1))-

418 +rd*dt*CC(m1 -1 ,1);

419 N2(pp,m1 -1)=(0.5* sig ^2*V(2)* LLY(m1 -1,1)* ggg1 (1)+

420 +ka*(na-V(2)* LLY(m1 -1 ,1))* bb1 (1))* GG(m1 -1);

421 U0=U0 ’;end roe=U0(m1/2,m2/2);
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