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To my parents

1line
1line

Tolstoy had doubted the value
of his own enormous labours.

Tolstoy, a genius, had been unsure whether
what he did was of any use to anyone.

Not so the physicists.
They had no doubts.

V G, L  F, 
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1
Introduction

In this Ph.D. Thesis I want to investigate the physics of lepton mixing, the nature of
massive neutrinos, the problem of flavour and how extensions of physics beyond the Stan-
dard Model of particle physics (SM) could modify the oscillation phenomenology in long
baseline and reactor experiments.

Neutrino physics has still a large interest on the scientific community, which is clear
from the amount of papers that appear every year since the neutrino was postulated in
1930 by Pauli [1], see for instance Fig. 1.1 where the number of papers dealing with
neutrino physics are shown as a function of the year. A large increasing in the number
of available papers appears after the experimental evidence obtained in 1956 by Cowan
and Reines research team at the Savannah River Site [2]. Using a modified version of
pyinspire.py script 1 we analyse the inSpire database; we can easily observe that the
trend is positive.

There has been an impressive progress in the field of neutrino physics in the last sixty
years. In this period valuable experimental evidences for three families of massive neu-
trinos and flavour neutrino oscillations were obtained in various experimental channels,
and the parameters which characterize the mixing are known with a relatively high pre-
cision. As a consequence, the existence of non-zero neutrino masses and neutrino mixing
was established.

However we do not know yet what is the origin of neutrino masses, mixing and some of
the fundamental aspects of neutrino mixing. In fact, we do not have information about:

• whether the massive neutrinos are Dirac or Majorana particles

• what kind of spectrum the neutrino masses obeys

• what is the absolute scale of neutrino masses

• what is the octant for the atmospheric mixing angle θ23

• what are the values of the CP violating phases in the leptonic sector.

Determining the nature of massive neutrinos is one of the most pressing and ambitious
problems in the field of neutrino physics. Recognizing if neutrinos are Dirac fermions,

1The code is available online at https://github.com/agdiiura/PyInspireStat.
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Figure 1.1: Number of papers on inSpire that contain in the title the word neutrino
as a function of the Year in the interval [1930, 2015]. In the inset we show the
percentage of papers with respect to the full database. The fit is performed with a
power law function from the data after 1956, the year of the experimental discovery.
We get: Number of papers ∝ Year1.28 with χ2/dof = 58.78/56 = 1.05. The prediction
for Year 2016 at 95% CL is [1320, 1986].

possessing distinct antiparticles, or Majorana fermions, i.e. spin 1/2 particles that are
identical with their antiparticles [3], is of fundamental importance for correctly under-
stand the origin of neutrino masses and mixing and, thus, the underlying symmetries of
the Lagrangian of particle interactions.
Determining the type of spectrum the neutrino masses and the absolute mass scale is also
of crucial importance for making progress in our understand of the origin of neutrino
masses and mixing. From a theoretical point of view the knowledge of the θ23 octant,
as well as the CP phase, might be useful to construct a theory of flavour. Getting infor-
mation about the status of CP symmetry in the leptonic sector might allow us to make
progress in the understand of the origin of the observed matter-antimatter asymmetry of
the Universe.

1.1 Three neutrino mixing formalism

The existence of massive neutrinos implies that the left-handed (LH) neutrino flavour fields
να(x), that enter into the expression for the charged lepton current of weak interaction
Lagrangian, are linear combinations of three, or even more, massive neutrinos νj(x)

να(x) =
∑
j

Uαjνj(x) α = {e, µ, τ} j = 1, 2, 3 . . . (1.1)

The misalignment between the neutrino mass and flavour eigenstates can be parametrized
through an unitary matrix, the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS) [4–7].
It contains six real parameters. Three are mixing angles: θ12, the so-called solar angle,
θ13 the reactor angle and θ23 the atmospheric one. UPMNS also contains three phases. We
use the following convention for the PMNS matrix

UPMNS ≡ U = Ũ diag{1, eiα/2, ei(β/2+δ)} (1.2)
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and Ũ is the CKM-like parametrization of the mixing matrix, defined as

Ũ =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 (1.3)

where cij ≡ cos θij and sij ≡ sin θij . All the angles are in the first quadrant θij ∈ [0, π/2].
Here δ is the Dirac CP phase, α and β are the Majorana phases. On the basis of the exist-
ing neutrino oscillation data it is impossible to determine whether the massive neutrinos
are Dirac or Majorana particles.

Neutrino oscillations are a manifestation of leptonic mixing and they are a quantum
mechanical phenomenon in which a neutrino born with flavour α changes to a different
flavour β while propagating in vacuum or in matter; for a pedagogical introduction and
further details see Ref. [8]. Neutrinos are produced and detected via weak interactions
and the state created in the decay W+ → `+α +να is given by (1.1). Observation of neutrino
oscillations in various neutrino experiments, see Sec. 1.2 for a general overview, has
shown that there is a mismatch between the flavour and mass eigenstates of neutrinos.
From (1.1) we get that the probability of finding a neutrino created in a given flavour α
to be in the same state, or any other state β, oscillates with time. The time evolution, in
quantum mechanics, of a neutrino produced in a given flavour at x = 0 and t = 0 is given
by

|να(t)〉 =
∑
j

U?αj |νj(t)〉 =
∑
j

U?αje
−iEjt|νj(0)〉 (1.4)

where we use the Dirac notation for quantum eigenstates. The neutrino oscillation proba-
bility, that is the probability of transformation from one flavour eigenstate |να〉 to another
flavour eigenstate |νβ〉, can be obtained as

P(να → νβ) = |〈νβ|να〉|2 =

∣∣∣∣∣∣
∑
j

∑
k

Uαje
−iEjtU?βke

iEkt〈νk|νj〉

∣∣∣∣∣∣
2

. (1.5)

The neutrinos are ultrarelativistic, so that pj ' pk ' p ' Eν , therefore

Ej =
√
p2
j +m2

j ' p+
m2
j

2Eν
(1.6)

where Ej and mj are the energy and mass of the neutrino mass eigenstate νj . In this
case

Ek − Ej '
∆m2

kj

2Eν
(1.7)

where we have defined

∆m2
kj ≡ m2

k −m2
j (1.8)

which is the mass-squared difference. Notice that in neutrino oscillation experiments, the
propagation time t is not measured. What is known is the distance L between the source
and the detector. Since ultrarelativistic neutrinos propagate almost at the speed of light,
it is possible to approximate t = L. Using (1.6) and the orthogonality relation 〈νk|νj〉 = δjk,
after some algebra we get for the transition probability

P(να → νβ) = δαβ − 4
∑
k>j

Re
{
U?αkUβkUαjU

?
βj

}
sin2

(
∆m2

kjL

4Eν

)
+
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+ 2
∑
k>j

Im
{
U?αkUβkUαjU

?
βj

}
sin

(
∆m2

kjL

2Eν

)
. (1.9)

The oscillation probabilities of the channels with α 6= β are usually called transition
probabilities or appearance channel, whereas the oscillation probabilities of the channels
with α = β are usually called survival probabilities or disappearance channel. In the case
of disappearance we have

P(να → να) = 1− 4
∑
k>j

|Uαk|2|Uαj |2 sin2

(
∆m2

kjL

4Eν

)
. (1.10)

Thus we expect to have sensitivity to the parameters of PMNS when the argument of
the sin2 function is O(1). Usually ∆m2

kj is measured in eV2, the baseline L in km and the
neutrino energy Eν in GeV, hence the argument of sin2 can be written as 1.267×∆m2

kjL/Eν .
In the following we discuss the phenomenology in the two-neutrino approximation while
in Appendix A we summarize the SM probabilities that are relevant in our analysis.

1.1.1 Two neutrino approximation

For the case of two generations of neutrinos, the above analysis becomes quite simpli-
fied without any loss of physical understand. The mixing matrix depends only on one
parameter θ (known as mixing angle) and is given by

U =

(
cos θ sin θ
− sin θ cos θ

)
(1.11)

and there is a single mass-squared difference ∆m2. The oscillation probability in Eq. (1.9)
becomes

P(να → νβ) = sin2 2θ sin2

(
∆m2L

4Eν

)
. (1.12)

Within this simplified model it is possible to analyse some features of the neutrino phe-
nomenology. In fact it was common during the nineties to study the oscillation in a
simplified framework with only two active neutrinos. The solar neutrino problem (see
later) can be studied in term of two effective parameters, the solar angle θ� ≡ θ12 and the
solar mass-squared difference ∆m2

�, while the deficit in the neutrino flux from cosmic rays
has been studied using the atmospheric angle θA ≡ θ23 and the atmospheric mass-squared
difference ∆m2

A.

1.1.2 Oscillation in matter

The propagation of neutrinos becomes significantly modified in the presence of matter due
to their interactions with the elements composed of electrons, protons, and neutrons. The
coherent forward elastic scattering amplitudes are not the same for all neutrino flavours
να. The electron neutrinos have additional contribution due to their charged current
(CC) interactions with matter which are mediated by weak bosons. On the basis of this
fact, Mikheyev and Smirnov [9], following the work of Wolfenstein [10], showed that an
interesting phenomenon occurs when neutrinos travel in dense matter.
In the two-flavour case, discussed in Sec. 1.1.1, if neutrinos νe and νµ travel through the
Sun, the propagation of ν1 and ν2 will be modified due to the different interactions of νe
and νµ with electrons. The mixing angle in the presence of matter is given by

sin2 2θm =
sin2 2θ

(cos 2θ − L/Lm)2 + sin2 2θ
(1.13)
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where Lm, a length characteristic of motion in matter of density ne, is given by

Lm =

√
2π

GFne
(1.14)

and GF is the Fermi constant. Eq. (1.13) has a resonance when ne is such that L/Lm =
cos 2θ so that sin2 2θm = 1, resulting in maximal mixing and the survival probability, to a
very good approximation, can be written as

P(να → να) =
1

2
[1 + cos 2θ cos 2θm] . (1.15)

This is just a simple example of neutrino propagation in matter, for further details see
Ref. [8].

1.2 Neutrino experimental status

The first hint that neutrinos have mass came from the Homestake experiment [11] during
the sixties. In this experiment, it was found that only about one-third of the number
of neutrinos predicted by standard solar model (SSM) were reaching the detector on the
earth. The idea of neutrino oscillations gained support from the Japanese experiments
Kamiokande [12] and Super-Kamiokande [13, 14], during the nineties, in which similar
deficit was observed in the atmospheric neutrino flux.
Results from several solar neutrino experiments: Homestake [15], SAGE [16], GALLEX [17]
as well as Super-Kamiokande [18] that collected data for more than four decades have
shown that the large mixing angle (LMA) solution could be explained the solar neutrino
problem. The latest addition to this huge repertoire of experimental data are the results
from the SNO [19–21] and Borexino experiments [22–24] which are consistent with the
LMA solution. This conclusion from the solar neutrino experiments has been investigated
independently by the KamLAND reactor antineutrino experiment [25–27] and a combined
analysis of the solar and KamLAND experimental data gives ∆m2

� = 7.6 × 10−5 eV2 and
sin2 2θ12 = 0.32, see for instance the global analysis performed in 2005 by the Authors of
Ref. [28].
Similar deficit in the ratio of the flux of muon to electron flavour atmospheric neutri-
nos produced in cosmic rays has been observed. The other mass splitting ∆m2

A and the
atmospheric angle θ23 are well determined by the zenith angle dependent atmospheric
νµ data from Kamiokande [29], Super-Kamiokande [13, 14, 18, 30] and the long baseline
experiments (LBL) K2K [31, 32] and MINOS [33] in both appearance and disappearance
channels. The combined data from the atmospheric and long baseline experiments give
us |∆m2

A| = 2.4 × 10−3 eV2 and sin2 2θ23 = 1. More recently disappearance and appear-
ance results from LBL experiments in the form of the energy distribution of νµ and νµ in
T2K [34,35], and νµ events in NOνA at the beginning of 2016 [36,37] confirm the neutrino
oscillation hypothesis with high accuracy. Similar results were obtained by the OPERA
collaboration for the channel νµ → ντ [38].
With the observation of a non-zero reactor angle θ13 in 2012 by Double Chooz in France
[39], Daya Bay in China [40] and RENO in Korea [41], we now have complete knowledge
of all the three mixing angles θ12, θ13 and θ23. However, we do not have any information
on the Dirac-type CP violating phase δ and it is fully unconstrained as yet, although a
small hint for maximal CP violation from combined analyses give δ ∼ 3π/2. Due to mat-
ter effects we expect that NOνA, as well as the proposed experiments such as T2HK [42],
LBNE [43] and ESSνSB [170], could confirm this preliminary result. We also expect an
improvement on the measurement of the solar parameters by the planned JUNO experi-
ment [44].
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We report in Tab. 1.1 the best fit points with the 1σ errors and the 3σ confidence region
for Normal Ordering (NO) and Inverted Ordering (IO), that we will discuss in details later.
All the data are extracted from the latest global analysis performed in Ref. [45] using the
August 2016 data. Similar results were obtained in Refs. [46,47]. 2

Normal Ordering Inverted Ordering

Parameter Best Fit 3σ Range Best Fit 3σ Range

sin2 θ12/10−1 3.08+0.13
−0.12 2.73 ÷ 3.48 3.08+0.13

−0.12 2.73 ÷ 3.48
sin2 θ13/10−2 2.163+0.074

−0.074 1.938 ÷ 2.388 2.175+0.075
−0.074 1.950 ÷ 2.396

sin2 θ23/10−1 4.40+0.23
−0.19 3.88 ÷ 6.30 5.84+0.18

−0.22 3.98 ÷ 6.32
δ 5.04+0.66

−0.89 0 ÷ 2π 4.69+0.68
−0.79 0 ÷ 2π

∆m2
21/10−5 [eV2] 7.49+0.19

−0.17 7.02 ÷ 8.08 7.49+0.19
−0.17 7.02 ÷ 8.09

∆m2
3`/10−3 [eV2] +2.526+0.039

−0.037 +2.413 ÷ +2.645 -2.518+0.038
−0.037 -2.643 ÷ -2.406

Table 1.1: Latest results for the global fit of Ref. [45] (available at the website
http://www.nu-fit.org). Note that in the last line ` = 1 for NO and ` = 2 for IO.
The analysis prefers a global minimum for NO with respect to the local minimum
of IO, ∆χ2 = χ2

IO − χ2
NO = 0.56.

It is worth noticing that the global fit analyses we are referring to in Tab. 1.1, [45],
which are performed within the framework of the three neutrino mixing, suggest that
sin2 θ23 < 1/2 assuming NO while sin2 θ23 > 1/2 in the case of IO. These results have
important consequences from a theoretical perspective, in view of the need of finding a
simple principle which could explain the patterns of the masses and of the mixing in the
neutrino sector.
Furthermore, the admitted intervals of the absolute values of the elements of the PMNS
mixing matrix are at the 3σ level

‖UPMNS‖ =

0.798÷ 0.843 0.517÷ 0.584 0.139÷ 0.155
0.234÷ 0.518 0.449÷ 0.696 0.617÷ 0.787
0.251÷ 0.528 0.463÷ 0.706 0.600÷ 0.774

 . (1.16)

This result does not assume any particular neutrino mass ordering. Notice that the situ-
ation is quite different compared to the quark sector, where the quark mixing matrix, the
Cabibbo-Kobayashi-Maskawa matrix (CKM), has a hirarchical structure and it is almost
diagonal. For a schematic representation see Fig. 1.2, where we plot the absolute values
of the VCKM and UPMNS matrix elements.

The experimental data we have summarized in Tab. 1.1 are compatible with different
neutrino mass patterns, see for instance Fig. 1.3:

• Normal Ordering (NO): m1 < m2 < m3, which means ∆m2
� ≡ ∆m2

21 > 0 and ∆m2
A ≡

∆m2
31 > 0

• Inverted Ordering (IO): m3 < m1 < m2, which means ∆m2
� ≡ ∆m2

21 > 0 and ∆m2
A ≡

∆m2
32 < 0

where ∆m2
� is the solar mass-squared difference and ∆m2

A is the atmospheric one.
Depending on the value of the lightest neutrino mass minj{mj}, the mass spectrum could
be:

2A recent analysis with bayesian approach is performed in Ref. [48], where similar results were obtained.
The main difference is in θ23, where the maximum of the likelihood occurs for θ23 > π/4 for both orderings,
however we have sin2 θ23/10−1 ∈ [4.33, 4.96]⊕ [5.30, 5.94] @ 1σ CL, and the statistical significance is insufficient
to exclude the other octant.
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

‖VCKM‖ =



‖UPMNS‖ =

0 0.2 0.4 0.6 0.8 1

Figure 1.2: Pictorial representation of VCKM and UPMNS matrices, the color is pro-
portional to the absolute value of the maxtrix element.

• Normal Hierarchical (NH): m1 � m2 < m3, therefore m2 '
√

∆m2
� ' 8.7×10−3 eV and

m3 '
√

∆m2
A ' 4.9× 10−2 eV

• Inverted Hierarchical (IH): m3 � m1 < m2, therefore m1,2 '
√

∆m2
A ' 4.9× 10−2 eV

• Quasi Degenerate (QD): m1 . m2 . m3 ' m0 or m3 . m2 . m1 ' m0, therefore
mj �

√
|∆m2

A| and m0 = O(10−1) eV.

Normal Ordering Inverted Ordering

m1

m2

m3

∆m2
21

∆m2
31

m3

m2

m1
∆m2

21

∆m2
32

νe
νµ
ντ

Figure 1.3: Possible mass spectra allowed from neutrino oscillation data. With
different colors we indicate the probability of finding one of the flavour eigenstates
if the neutrino is in a certain mass eigenstate.

The ratio r` is defined as

r` ≡
∆m2

21

∆m2
3`

=

{
+2.965+0.120

−0.111 × 10−2 for NO
−2.975+0.111

−0.121 × 10−2 for IO (1.17)

where we have used the best fit values quoted in Tab. 1.1. At the level of 3σ the absolute
value of r`, defined in (1.17), is constrained in the interval

2.65× 10−2 ≤ |r1| ≤ 3.35× 10−2 (1.18)

for NO, while for IO

2.67× 10−2 ≤ |r2| ≤ 3.36× 10−2. (1.19)
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All possible types of mass spectrum are compatible with the experimental constrains on
the absolute scale of neutrino masses coming from β-decay experiments and cosmologi-
cal/astrophysical data.
The best probe for the β-decay is the nuclear reaction 3H → 3He + e + νe with a Q-value
Q = M3He −M3H = 18.6 keV. It is possible to measure the electron spectrum near the end
point and extract the value of mβ , the effective mass that enters in the decay

mβ ≡
√∑

j

m2
j |U1j |2 =

√
cos2 θ13

(
m2

1 cos2 θ12 +m2
2 sin2 θ12

)
+m2

3 sin2 θ13. (1.20)

The most stringent upper limit on mβ was obtained by the Mainz and Troitzk experiments
[49]

mβ ≤ 2.3 eV @ 95% CL (1.21)

while the KArlsruhe TRItium Neutrino experiment (KATRIN), which is expected to start the
data taking in the next years, will provide informations on the absolute scale of neutrino
masses with a sensitivity to mβ ∼ 0.2 eV [50] (see also [51] for a more recent description
of the experiment).

Information about the masses of light neutrinos can be obtained also from cosmological
observations. In particular the total mass of light active neutrinos,

∑
jmj , can be con-

strained from measurements of the matter power spectrum, which is a measure of the
variance of the distribution of density fluctuations in the Universe. An upper bound for
the sum of the masses can be obtained from the part of the power spectrum at small
scales, see Ref. [52]. This bound is model dependent and may change under different as-
sumptions. The PLANCK Collaboration presented the results based on the analysis of the
cosmic microwave background (CMB) temperature and lensing-potential power spectra.
In Ref. [53] the collaboration provided constraints assuming three species of degenerate
massive neutrinos and a ΛCDM model using the PLANCK temperature power spectrum
with a WMAP polarization low-multipole (` ≤ 23) and Acatama Cosmology Telescope (ACT)
high-multipole (` ≥ 2500) data. We refer to this CMB data combination as PLANCK. In this
case the upper limit on the sum of the neutrino mass reads∑

j

mj ≤ 0.59 eV @ 95% CL. (1.22)

Combining the latter with the Barion Acoustic Oscillation data (BAO), the limit is signifi-
cantly lowered at ∑

j

mj ≤ 0.23 eV @ 95% CL. (1.23)

The above upper limits can be converted into limits on the absolute scale of neutrino
masses that read respectively mmin . 0.19 eV in the more conservative case of (1.22) and
mmin . 0.07 eV in case of (1.23).
In the future we expect that the ESA mission EUCLID will measure the sum of the neutrino
masses with a 1σ precision better than 0.03 eV, [54]. EUCLID’s measurement of the galaxy
power spectrum, combined with PLANCK priors, should yield an error on the sum of the
neutrino masses of 0.04 eV [55].

1.2.1 The Majorana nature of the neutrino

The Majorana nature of massive neutrinos manifests itself in the existence of processes
where the total lepton charge L changes by two units, for instance K+ → π−+µ+ +µ+ or
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µ−+ (A,Z)→ µ+ + (A,Z − 2). Several studies have shown that the most promising experi-
ments having the potential of establishing the Majorana nature of massive neutrinos are,
at present time, experiments searching for neutrinoless double beta decay (0νββ-decay):
(A,Z)→ (A,Z + 2) + e− + e−. This process can be generated only by the (V − A) charged
current weak interaction via the exchange of massive Majorana neutrinos, for a review
see for instance Refs. [56–59]. The 0νββ-decay amplitude has the form

A(0νββ) = mββM(A,Z) (1.24)

where M(A,Z) is the nuclear matrix element of the decay (A,Z) → (A,Z + 2) + e− + e−

that does not depend on the neutrino mass and mixing parameters, and

mββ ≡
∣∣∣∣∑

j

mjU
2
1j

∣∣∣∣ =

∣∣∣∣ cos2 θ13

(
m1 cos2 θ12 +m2 sin2 θ12e

iα
)

+m3 sin2 θ13e
iβ

∣∣∣∣. (1.25)

is the 0νββ-decay effective Majorana mass. The probability of the process is proportional
to the square of mββ through

1

T 0ν
1/2(A)

= |mββ |2|M(A,Z)|2G0ν(Q,Z) (1.26)

where G0ν(Q,Z) is a known phase factor. The main uncertainty on mββ comes from the
nuclear matrix element.
The neutrinoless double beta decay rate depends on the neutrino mass spectrum, that
can be hierarchical, with partial hierarchy or quasi-degenerate. Using the latest data
on the neutrino oscillation parameters it is possible to show that in the case of NO one
has mββ . 0.005 eV, while if the spectrum is with IO, 0.01 eV . mββ . 0.05 eV. A large
value of the effective mass, mββ ∼ 0.5 eV, is possible if the neutrino mass spectrum is
quasi-degenerate. In QD case mββ can be close to the existing upper limits. The 0νββ
experimental search can thus have an enormous impact in constraining the mass hierar-
chy, the absolute scale of neutrino masses and together with other sources of information
could provide a unique insight on the value of the CP violating phases appearing in the
leptonic mixing matrix.

The experimental searches for neutrinoless double beta decay have a long history, see for
instance Ref. [60] for a review on this topic. The best lower limit on the half-life of 76Ge
is T 0ν

1/2(76Ge) > 2.1× 1025 years @ 90% CL, it was found in the GERDA 76Ge experiment [61].
If we combine the limits obtained in the Heidelberg-Moscow [62], IGEX [63] and GERDA
experiments we get T 0ν

1/2(76Ge) > 3.0× 1025 years @ 90% CL [61].
Other experiments search for 0νββ-decay: NEMO3 with 100Mo found mββ < (0.61÷1.26) eV
[64] and CUORICINO with 130Te obtained mββ < (0.16 ÷ 0.68) eV, both at 90%CL when
the nuclear uncertainties are taken into account. The best lower limits on the neutri-
noless double beta decay half-life of 136Xe were reported by the EXO and KamLAND-
Zen collaborations: T 0ν

1/2(136Xe) > 1.6 × 1025 years @ 90% CL [65] and T 0ν
1/2(136Xe) > 1.07 ×

1026 years @ 90% CL [66].
Most importantly, a large number of new generation experiments aim at sensitivity to
mββ < (0.01 ÷ 0.05) eV, see Refs. [56–59], among them CUORE and SNO+ (130Te), GERDA
and MAJORANA (76Ge), SuperNEMO, KamLAND-Zen and EXO (136Xe), AMoRE and MOON
(100Mo), COBRA (116Cd), CANDLES (48Ca). The experiments listed above are aiming to probe
the QD and IO ranges of mββ .

1.3 Thesis outline

In this Thesis I aim to investigate two realizations of physics beyond the SM. In the first
part we will discuss a possible way to predict the mixing patterns that we observe in Na-
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ture, in particular the smallness of θ13. In the second part we want to discuss how models
of New Physics (NP) could modify the oscillation phenomenon.

The Thesis is organized as follow:

• In Chapter 2 we will discuss the prediction based on the so-called Generalized CP
symmetry combined with non-abelian discrete symmetry. We assume A5 ⊗ CP as
a symmetry in the full leptonic sector. Under such an assumption it is possible to
predict the mixing angles and to obtain sum rules among the oscillation parameters
as a function of one real degree of freedom, thus predictive patterns are testable at
current and future neutrino facilities.

• Chapter 3 is a one step further with respect to Chapter 2. In fact we will introduce
several explicit realizations of the model based on A5⊗CP that give us the possibility
to explore the mass spectrum and obtain prediction for observables as the Majorana
effective mass for the 0νββ-decay. In particular we will show many realizations
where testable relations among mixing angles and the mass spectrum exist.

• In Chapter 4 we will discuss two extension of the Standard Model, namely the Large
Extra Dimensions and Non-Standard Neutrino Interactions, that modify the oscilla-
tion probabilities with respect to the SM. We investigate the effects of NP at the
Daya Bay and T2K experiments. We will show how NP could modify our knowledge
on the SM oscillation parameters and we will put bounds on the NP parameters.

• In Chapter 5 we will summarize the results obtained and draw our conclusions.
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2
Lepton Mixing from A5 ⊗ CP

A possible tool to predict the mixing pattern that we observe in Nature in the leptonic
sector is the one based on flavour symmetry, see Refs. [67–69], as well as [70], for reviews
on this topic. As it has been discussed in several details in the literature a framework
where the mismatch between neutrino and charged lepton mass matrices is associated
with the non-trivial breaking of a flavour symmetry is quite interesting and predictive.
In particular, in our approach, we use non-abelian discrete symmetry combined with CP
as discussed in Refs. [71, 72]. This approach has already been studied for several sym-
metries: A4 [71, 73], S4 [74, 75], T ′ [76], Σ(36 × 3) [77], ∆(48) [78], ∆(96) [79] as well as
∆(3n2), [80], and ∆(6n2), [80–82], D(1)

9n,3n [83], with general n ∈ N. For a recent review see
Ref. [84].
In our study, fully presented in Ref. [85], we assume the non-abelian discrete group A5

and CP as a symmetry in the full leptonic sector, and we found that four mixing patterns
accomodate well the observed values of the mixing angles, which means that the angles
are in the 3σ allowed range. Similar results were obtained in Refs. [86,87].
The Chapter is organized as follow: in Sec. 2.1 we discuss the assumptions of lepton mix-
ing obtained from non-abelian discrete symmetries and we show the simplest examples:
the tri-bimaximal and bimaximal mixing patterns. In Sec. 2.2 we discuss the proper-
ties of the group A5 as well as the predictions for the mixing angles in the case of no
CP symmetry in the leptonic sector. In Sec. 2.3 we recapitulate the approach with CP
symmetry and non-abelian discrete symmetry and in Sec. 2.4 we discuss the analytical
patterns assuming A5 ⊗ CP that are in agreement with the experimental data. In the
last Sec. 2.5, we discuss the numerical results and the expected improvement at future
neutrino facilities.

2.1 Lepton mixing from discrete symmetry

We can obtain the leptonic mixing matrix UPMNS from symmetry consideration using the
fact that the full flavour symmetry group in the lepton sector Gf has a different symmetry
subgroups for the neutrino sector, Gν , and the charged leptonic sector, G`, see Fig. 2.1 for
a pictorial representation. This procedure was used assuming several non-abelian discrete
group (further details about non-abelian discrete symmetries are discussed in Appendix
B). For Majorana neutrinos the use of non-abelian and discrete symmetry subgroups of
SU(3) and U(3) have shown that symmetries giving rise to mixing angles that are in
agreement with experimental observations [88]. For instance, the groups A4, S4 and T ′
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are commonly utilized to generate tri-bimaximal (TBM) mixing [89–91]; the group S4 can
also be used to generate bimaximal (BM) mixing [92–94]; A5 can be utilized to generate
golden ratio (GR) mixing [95–98], we will discuss in details this scenario in Sec. 2.2.2;
and the groups D10 and D12 can lead to another type of GR [99, 100] and hexagonal (HG)
mixing [101,102].

We assume

G` ⊂ Gf Gν ⊂ Gf G` ∩ Gν = ∅. (2.1)

Assuming that the neutrinos are Majorana particles we can write the action of the ele-
ments of the subgroups of Gf on the mass matrix as 1

Q†M †`M`Q = M †`M` Q ∈ G` (2.2a)
ZTMνZ = Mν Z ∈ Gν (2.2b)

where in the second equation we used the fact that the neutrinos are Majorana particles.
For Dirac neutrinos

Z†M †νMνZ = M †νMν Z ∈ Gν . (2.3)

Flavour symmetry Gf

Charged Lepton
Sector G` ⊂ Gf

Q†M †`M`Q = M †`M`

Q ∈ G`

Qdiag = U †`QU`

Neutrino Sector
Gν ⊂ Gf

ZTMνZ = Mν

Z ∈ Gν

Zdiag = U †νZUν

UPMNS = U †`Uν

Figure 2.1: Representative scheme of the approach used in this Section, see text for
further details. For a similar procedure see Ref. [103].

The maximal invariance group of the neutrino mass matrix which leave the neutrino
masses unconstrained is the Klein group V = Z2 ⊗ Z2 [104–107]. The charged leptonic
subgroup G` is assumed in general as a direct product of cyclic groups Zm1⊗Zm2⊗ . . . Zmp .
We discard residual non-abelian symmetry because their character would result in a
complete, or partial degeneracy, of the mass spectrum, and thus it is incompatible with
the current data on charged lepton masses. For the same reason we assume that Z ∈ Gν
decomposes into three inequivalent representations under G`.
If we diagonalize the mass matrices, using (2.2), we can also rotate the group elements
Q and Z through unitary matrices as

Qdiag = U †`QU` (2.4a)
Zdiag = U †νZUν (2.4b)

1The charged lepton mass matrix M` is given in the right-left basis.
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because both G` and Gν are abelian. The lepton mixing originates then from the mismatch
of the embedding of G` and Gν into Gf . The matrices U` and Uν are determined uniquely
up to diagonal unitary matrices K`,ν and permutation matrices P`,ν , respectively

U` −→ U`P`K` (2.5a)
Uν −→ UνPνKν . (2.5b)

Thus the lepton mixing matrix UPMNS is, up to Majorana phases and permutations of rows
and columns

UPMNS = U †`Uν . (2.6)

The mixing matrix UPMNS is thus determined through G` and Gν and their relative em-
bedding into Gf . However, it is determined only up to exchanges of rows and columns,
because we do not predict lepton masses in this approach. Hence, the mixing angles are
fixed up to a small number of degeneracies, associated with these possible exchanges.
Also the Dirac CP phase δ is determined up to a factor π, if the exchange of rows and
columns is taken into account. At the same time, Majorana phases cannot be predicted,
because they are related to the eigenvalues of the matrix Mν which remain unconstrained
in this framework. Our conventions to extract the mixing angles and the CP phases are
discussed in Appendix D.

2.1.1 TBM and BM from discrete symmetries

The two most famous mixing patterns based on a non-abelian discrete symmetry are BM
and TBM. These can be obtained from Gf = S4, which is the symmetric group of degree
four, additional details are discussed in Appendix B.3. In the following we do not want
to discuss all the features of S4, however some basic facts are needed to construct the
mixing patterns. The generators S and T satisfy the algebra

S2 = T 4 = (ST )3 = 1. (2.7)

A possible choice for the three dimensional generators is

S =
1

2

 0
√

2
√

2√
2 −1 1√
2 1 −1

 T =

1 0 0

0 eiπ/2 0

0 0 ei3π/2

 . (2.8)

The group S4 contains another three dimensional representation, the generators are re-
lated to those in (2.8) with {S, T} → {−S,−T}, see (2.7). The abelian subgroups of S4 are:
four Klein groups V , four Z3 groups and three different Z4. These are summarized in Tab.
2.1.

Z4 Z3 V
Algebra Generators Algebra Generators Algebra Generators

Q1 T C1 ST K1 {T 2, ST 2S}
Q2 T 2S C2 TS K2 {S, T 2ST 2}
Q3 STS C3 T 2ST K3 {T 2, ST 2ST}

C4 TST 2 K4 {ST 2S, T 3ST}

Table 2.1: Possible independent algebras of S4 subgroups. This is the same classifi-
cation adopted in Ref. [108].
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• G` = Z3 and Gν = V

Using these subgroups we could obtain only TBM. We assume C3 ∈ Z3 and K1 ∈ V as
representative algebra. The absolute value of the PMNS matrix is

‖UPMNS‖ = UTBM =
1√
6

2
√

2 0

1
√

2
√

3

1
√

2
√

3

 (2.9)

and thus the mixing parameters are sin2 θ23 = 1/2, sin2 θ12 = 1/3 and a vanishing reactor
angle θ13. Thus also the Jarlskog invariant JCP [109], defined in Eq. (D.2), is zero. To
obtain a realistic mixing pattern with θ13 ∼ 9◦ from the TBM pattern we need to include
large corrections from higher dimensional operators. The TBM solar angle (as well as
the GR one) is shown in Fig. 2.3 with the allowed experimental value obtained in global
analysis of the neutrino oscillation parameters of Refs. [45,47,110].

• G` = Z4 and Gν = V

In this case only a unique mixing pattern is possible, the BM one. The absolute value of
the matrix elements of PMNS matrix is

‖UPMNS‖ = UBM =
1

2


√

2
√

2 0

1 1
√

3

1 1
√

3

 (2.10)

therefore both θ12 and θ23 are maximal. Large corrections are needed also to accommodate
well the solar angle, thus NLO corrections should have the same order of magnitude of
the Cabibbo angle, as discussed in Ref. [111].

• G` = V and Gν = V

This case, discussed in Ref. [112], produces a BM mixing pattern and thus ‖UPMNS‖ is the
same as (2.10). A representative choice for the subalgebras for G` is K1 and for Gν is K2.

2.2 Group A5

The group A5 is a non-abelian discrete group of even permutations on five elements [67].
It is the symmetry group of the icosahedron, which its net graph is shown in Fig. 2.2. The
A5 elements correspond to all the proper rotations of the icosahedron. Such rotations are
classified into five types, that is, the 0 rotation (identity), π rotations about the midpoint
of each edge, rotations by 2π/3 about axes through the center of each face, and rotations
by 2π/5 and 4π/5 about an axis through each vertex.

Figure 2.2: Net graphs of icosahedron. The elements of A5 can be interpreted as
rotations in this space. See the main text for further details.

The group A5 has 60 elements that can be grouped into five conjugacy class with 1, 12, 12, 15
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and 20 elements. The characters of A5 are collected in Tab. 2.2 where ϕ is the Golden
Ratio, defined as

ϕ ≡ 1 +
√

5

2
' 1.618 (2.11)

which is the solution of the equation ϕ2 − ϕ− 1 = 0. 2.

A5 C1 12C
[5]
2 12C

[5]
3 15C

[2]
4 20C

[3]
5

χ[1] 1 1 1 1 1
χ[3] 3 ϕ 1− ϕ -1 0
χ[3′] 3 1− ϕ ϕ -1 0
χ[4] 4 -1 -1 0 1
χ[5] 5 0 0 -1 -1

Table 2.2: Characters of the A5 group.

The group A5 has two generators S and T which satisfy the following algebra

S2 = T 5 = (ST )3 = 1. (2.12)

The rules S2 = (ST )3 = 1 are the same as Modular Group Γ5 [108]. In the context of
particle physics the A5 group is used to describe the symmetry of leptonic sector. The
predictions based on A5 are often called Golden Ratio [95–98].
The irreducible representations of A5 are one singlet 1, two triplets 3 and 3′, one quadru-
plet 4 and one quintuplet 5. In the three dimensional representation 3 we use the same
convention of Ref. [108] for the matrices S and T , where T is a diagonal matrix:

S =
1√
5

 1
√

2
√

2√
2 −ϕ 1/ϕ√
2 1/ϕ −ϕ

 T =

1 0 0

0 e2πi/5 0

0 0 e8πi/5

 (2.13)

The generators in 3′ are easily obtained from S and T defined in (2.13) by using the
combination T 2ST 3ST 2 and T 2 as generators. This shows immediately that the set of all
matrices describing the representations 3 and 3′ is the same and thus all conclusions
obtained for mixing patterns derived for the representation 3 hold also for 3′ and thus,
without loss of generality, we assume in the following analysis that Left Handed (LH)
leptons transform as 3 of A5. For the sake of completeness we report the explicit form of
the generator in the 3′ representation

S = − 1√
5

 1
√

2
√

2√
2 1/ϕ −ϕ√
2 −ϕ 1/ϕ

 T =

1 0 0

0 e4πi/5 0

0 0 e−4πi/5

 . (2.14)

The other representations admit a basis where T is diagonal, as discussed in Ref. [98].
For the representation 4 we have

S = −1

5


−
√

5 ϕ− 3 ϕ+ 2 −
√

5

ϕ− 3
√

5
√

5 ϕ+ 2

ϕ+ 2
√

5
√

5 ϕ− 3

−
√

5 ϕ+ 2 ϕ− 3 −
√

5

 T =


e2πi/5 0 0 0

0 e4πi/5 0 0

0 0 e6πi/5 0

0 0 0 e8πi/5

 (2.15)

2Note that the Golden Ratio has many interesting properties. In particular we use the property ϕn+2 =
ϕn+1 + ϕn with n ∈ Z and n ≥ −1, that implies ϕ−1 = ϕ− 1 ' 0.618 .
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and for 5

S =
1

5


−1

√
6 −

√
6 −

√
6 −

√
6√

6 2− ϕ 2ϕ 2(1− ϕ) −(1 + ϕ)

−
√

6 2ϕ 1 + ϕ 2− ϕ 2(ϕ− 1)

−
√

6 2(1− ϕ) 2− ϕ 1 + ϕ −2ϕ

−
√

6 −(1 + ϕ) 2(ϕ− 1) −2ϕ 2− ϕ

 T =


1 0 0 0 0

0 e2πi/5 0 0 0

0 0 e4πi/5 0 0

0 0 0 e6πi/5 0

0 0 0 0 e8πi/5

 .

(2.16)

The Kronecker products of A5 are

3⊗ 3 = 1s ⊕ 3a ⊕ 5s (2.17a)
3′ ⊗ 3′ = 1s ⊕ 3′a ⊕ 5s (2.17b)

3⊗ 3′ = 4⊕ 5 (2.17c)
3⊗ 4 = 3′ ⊕ 4⊕ 5 (2.17d)
3′ ⊗ 4 = 3⊕ 4⊕ 5 (2.17e)

3⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5 (2.17f)
3′ ⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5 (2.17g)

4⊗ 4 = 1s ⊕ 3a ⊕ 3′a ⊕ 4s ⊕ 5s (2.17h)
4⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 51 ⊕ 52 (2.17i)

5⊗ 5 = 1s ⊕ 3a ⊕ 3′a ⊕ 4a ⊕ 4s ⊕ 51,s ⊕ 52,s (2.17j)

where the explicit formulae are reported in the Appendix C. Notice that the Clebsch-Gordan
coefficient are defined using a coherent transformation under CP , therefore they are
different with respect to the definition of Ref. [98] (another basis is discussed in Ref. [113]).
This feature is discussed in more details in Chapter 3 where several realizations of A5⊗CP
are given.

2.2.1 Subgroups of A5

The subgroups of A5 that are relevant in our analysis are Z2, Z3, Z5 and V , where V is the
Klein group, defined as V = Z2 ⊗ Z2. 3 The elements of each subgroups can be generated
using the representations of the generators of A5. We used a brutal force approach, in
which we have generated all matrices M in the form

M =
6∏

k=1

SskT tk sk = 0, 1; tk = 0, 1, . . . 4 (2.18)

where we used the fact that the generators satisfy the algebra defined in (2.12), thus not
all choices for sk and tk are possible. Hence we isolate only the matrices that satisfy the
subgroups algebras and are independent to each others. 4 We check our results using
Ref. [108] and the website WikiGroup. All results are summarized in Tab. 2.3.

2.2.2 Golden Ratio Predictions

Using the results of Section 2.1 and the classification of A5 subgroups in Tab. 2.3 we can
find the PMNS mixing matrix in a simple way. Models based on A5 are already discussed
in literature [97,98,108,112–115].
Our conventions for the PMNS matrix and the way to extract mixing angles and CP
invariants are discussed in Appendix D.

3It is possible to have the subgroup Z4 but its elements are equivalents to those of Z2.
4Notice that if M is such that Mq = 1 also Mp and 11/qM satisfy the same Zq subalgebras for all values

of p.
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Z5 Z2 Z3 V
Algebra Generators Algebra Generators Algebra Generators Algebra Generators

R1 T S1 S C1 ST K1 {S, T 2ST 3ST 2}
R2 ST 2 S2 TST 4 C2 TS K2 {T 4ST, ST 3ST 2S}
R3 T 2S S3 T 2ST 3 C3 TST 3 K3 {TST 4, ST 2ST 3S}
R4 TST S4 T 3ST 2 C4 T 2ST 2 K4 {T 2ST 2, ST 2ST}
R5 TST 2 S5 T 4ST C5 T 3ST K5 {T 3ST 2, TST 2S}
R6 T 2ST S6 ST 2ST C6 ST 3ST

S7 ST 3ST 4 C7 ST 2ST 3

S8 TST 3ST 3 C8 ST 3ST 2

S9 T 2ST 3ST 2 C9 ST 2ST 4

S10 T 3ST 3ST C10 ST 2ST 2S
S11 ST 2ST 3S
S12 ST 2ST 3ST
S13 ST 2ST 3ST 2

S14 ST 2ST 3ST 3

S15 ST 2ST 3ST 4

Table 2.3: Possible independent algebras of A5 subgroups. This is exactly the same
classification adopted in Ref. [108].

• G` = Z5 and Gν = V

In each realization of G` = Z5 and Gν = V we find the same absolute values of the PMNS
matrix. A representation of the Z5 residual symmetry can be chosen diagonal, thus
UPMNS = Uν . We get

‖UPMNS‖ =

 cosφ sinφ 0

sinφ/
√

2 cosφ/
√

2 1/
√

2

sinφ/
√

2 cosφ/
√

2 1/
√

2

 '
0.851 0.526 0

0.372 0.602 0.707
0.372 0.602 0.707

 (2.19)

where we have defined tanφ ≡ ϕ−1 = ϕ − 1 ' 0.618. We find a vanishing reactor angle
θ13 and a maximal atmospheric angle θ23 with sin2 θ12 ' 0.276, as discussed in details in
Refs. [97,98, 113]. The Jarkslog invariant JCP = 0, thus the Dirac phase is trivial, zero or
π. Notice that moderate correction to the mixing angles θ12 and θ13 obtained at Leading
Order (LO) are necessary in order to achieve a good agreement with the experimental
measurements. In Fig. 2.3 we compare the prediction for sin2 θ12, as well as the TBM
quoted in (2.9), in the allowed region for the solar angle obtained from the global analysis
on neutrino oscillation.

• G` = Z3 and Gν = V

If we choose G` = Z3 and Gν = V we get a unique pattern for the PMNS matrix. In fact
only for (C1,K1) we get as the total group A5 and not a subgroup. These subgroups give
us the absolute value for the PMNS matrix, discussed in Ref. [112]

‖UPMNS‖ =
1√
6


√

2ϕ
√

2/ϕ 0

1/ϕ ϕ
√

3

1/ϕ ϕ
√

3

 '
0.934 0.357 0

0.252 0.661 0.707
0.252 0.661 0.707

 . (2.20)

In this case for the solar mixing angle we get sin2 θ12 = (2−ϕ)/3 ' 0.127 which is excluded
at more than 3σ CL. This means that we need large corrections in order to match the
experimental best fit values. Since θ13 = 0 we also get JCP = 0 and δ trivial.
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• G` = V and Gν = V

The last possibility is G` = V and Gν = V . In this case the unique mixing pattern is given
for (Ki,Kj) and i 6= j, in fact for i = j the PMNS is trivial, i.e. UPMNS = 1. This pattern is
discussed in Ref. [108]. The absolute value of the PMNS matrix is

‖UPMNS‖ =
1

2

 ϕ 1 1/ϕ
1/ϕ ϕ 1

1 1/ϕ ϕ

 '
0.809 0.500 0.309

0.309 0.809 0.500
0.500 0.309 0.809

 . (2.21)

We can extract the mixing angle from UPMNS, in this case sin2 θ12 = sin2 θ23 = (3− ϕ)/5 '
0.276 that are excluded at more than 2σ CL and sin2 θ13 = (2− ϕ)/4 ' 0.095. However it is
possible to have another pattern for the PMNS matrix if we exchange the second and the
third row. In this case we get sin2 θ23 = (2 + ϕ)/5 ' 1 − 0.276 = 0.724 and thus we expect
large corrections to the LO predictions to make the model viable.

GMS

FTV

CLMMP

2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8

sin2Θ12�10-1

TBMGR

Figure 2.3: Predictions for sin2 θ12 for GR and TBM mixing patterns (red dashed
lines) where the box charts represent the value of the global fits (we show the
results for NO since the allowed region is the same for both orderings) performed
in Ref. [46] (labeled as CLMMP), Ref. [47] (labeled as FTV) and Ref. [45] (labeled
as GMS). The white lines are the best fit values, the grey boxes the 1σ confidence
regions and the grey lines the 3σ allowed regions.

2.3 CP invariance

If we assume CP invariance in the neutrino sector, as discussed in Ref. [71, 72, 116] and
[117], we can introduce a continuous parameter θ that could modify the pure A5 prediction
discussed above in Sec. 2.2.2.
We start our discussion considering a generic symmetry group Gf , as done in Section 2.1.
We assume that the residual symmetry in the charged sector G` is, in general, a direct
product of cyclic symmetry Zm1 ⊗ Zm2 ⊗ . . . Zmp , as in Sec. 2.1. The CP symmetry acts
on the neutrino sector, but we can discuss in general the action on the field space, see
Refs. [118–120]. Under a CP symmetry a generic field Φ transforms as

Φ(x) −→ Φ′(x) = XΦ?(xCP ) (2.22)

where X is the representations of the CP operator in field space and xCP is the space-
time coordinate transformed under the usual CP transformation x→ xCP = (x0,−x). The
invariance of the field under Gf is expressed as

Φ(x) −→ Φ′(x) = AΦ(x) (2.23)
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where A is an element of the non-abelian discrete symmetry that we are considering. The
X can be chosen as a constant unitary symmetric matrix

XX† = XX? = 1. (2.24)

In this way the square of the CP transformation is the identity, X2 = 1. The action of X
on the mass matrices, before the symmetry breaking, is

X?M †`M`X = (M †`M`)
? (2.25a)

XMνX = M?
ν (2.25b)

if neutrinos are Majorana particles. If neutrino are Dirac particles (2.25b) has to be
changed into

X?M †νMνX = (M †νMν)? (2.26)

The fact that the theory is invariant under some group of flavour symmetry Gf requires
that for the generators of the group A the representations X in the field space must
satisfy the following relation

(X−1AX)? = A′ A,A′ ∈ Alg{Gf} (2.27)

where in general A 6= A′. In A5 we find that that A = A′, so the transformation defined in
(2.27) is an isomorphism, see Sec. 2.3.3 for further details. Notice that if X is a solution
of (2.24) and (2.27) also eiρX , with ρ ∈ R an arbitrary phase, is a solution. At the same
time, it is always possible to find the trivial solution of the problem X = 1.
If we perform a change of basis with an unitary matrix Ω in the field space

Φ −→ Φ̃ = Ω†Φ (2.28)

the unitary matrix X and the generator A transform as

X −→ X̃ = Ω†XΩ? (2.29a)
A −→ Ã = Ω†AΩ (2.29b)

as a consequence of (2.22) and (2.23). The constraints (2.24) and (2.27), applied on X , are
covariant under the Ω transformation, i.e. also X̃ fulfills the same conditions. A change
of basis can be useful in order to reach a basis in which the action of some elements of
Gf or the CP transformation is simple. For example we can use the fact that any unitary
symmetric matrix X can be written as the product

X = ΩΩT (2.30)

of a unitary matrix Ω in order to go to a basis in which the action of CP is canonical, i.e.
X̃ = 1.

2.3.1 Neutrino sector invariant under Z2 ⊗ CP

In the following we consider the case in which the residual symmetry Gν is Z2 ⊗ CP .
This allows us to determine all physical phases and mixing angles in terms of one real
parameter θ. A small mixing reactor angle θ13, as well with the solar and atmospheric
angles in the observed range, can then be found by an appropiate choice of the parameter
θ and further relations among the PMNS parameters are predicted. Such correlations
can be testable at future neutrino facilities [121–124]. Once the flavour group Gf has been
chosen, several independent definitions of CP are in general allowed (as discussed above),
leading to physically distinct results.
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We explain the general setup and show the form of the lepton mixing matrix. We assume
that Gf contains as subgroup Z2 and we denote as Z the representation of the operator in
the field space, therefore Z2 = 1. In order to define the group Z2 ⊗ CP we need to impose
the constraint

XZ? − ZX = 0. (2.31)

This condition is invariant under the covariance transformations defined in (2.29). Thus,
it is always possible to go in the basis where Z is diagonal and X canonical, as defined
in Eq. (2.30). In this basis we have

Zc = Ω†ZΩ Zc = diag
{

(−1)z1 , (−1)z2 , (−1)z3
}

(2.32)

with zi = 0, 1 and two zi being equal. These conditions have an important consequence
for the form of the light Majorana neutrino mass matrix. In fact it has to satisfy the
following conditions

ZTMνZ = Mν (2.33a)
XMνX = M?

ν . (2.33b)

Applying the basis transformation induced by the unitary matrix Ω, defined in (2.30), we
see that the combination ΩTMνΩ is constrained to be block-diagonal and real. Thus this
matrix can be diagonalized using a rotation in the ij-plane of degenerate eigenvalues of
Z by a rotation matrix Rij(θ). We define three possible matrices

R12(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 (2.34a)

R13(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (2.34b)

R23(θ) =

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 (2.34c)

where θ ∈ [0, π). The plane ij is determined by the subspace of Ω†ZΩ which has degenerate
eigenvalues, see Eq. (2.32).
We need also a diagonal matrix Kν with elements equal to ±1 or ±i in order to obtain
positive neutrino masses. Without loss of generality we can write the matrix as

Kν = diag
{

1, ik1 , ik2
}

(2.35)

where k1,2 = 0, 1, 2, 3. In this way the matrix Mν can be diagonalized with unitary matrix
defined as

Uν ≡ ΩRij(θ)Kν . (2.36)

The mass spectrum is not fixed and thus permutations of the columns of Uν are admitted.

The residual symmetry in the charged leptonic sector is G`. The situation is equal of no
CP symmetry, as discussed in Sec. 2.1. For Q being a realization of the generator of G`
in the representation 3 ∈ Gf we know that the combination M †`M` fulfills the relation

Q†M †`M`Q = M †`M`. (2.37)
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For non-degenerate eigenvalues of Q the unitary matrix U` which diagonalizes Q can
be found, up to permutations of its columns and overall phases of each column, by the
condition

U †`QU` = Qdiag. (2.38)

Given (2.37) the matrix U` also diagonalizes the product M †`M`, thus

(U †`M
†
`M`U`)ij = πijkm2

k (2.39)

where πijk is the permutation of three elements and k = e, µ, τ . The fact that the lepton
masses are not fixed in this approach is reflected by the possible permutations of columns
of U`.
The PMNS matrix is given by the misalignment between the residual symmetries in the
charged and neutrino sector

UPMNS ≡ U †`Uν = U`ΩRij(θ)Kν (2.40)

up to unphysical phases and permutation of rows and columns. Therefore in our analysis
we always consider 6 × 6 = 36 possible permutation of rows and columns for a given
combination (Q,Z,X). A scheme of the methodology used in the case of CP symmetry is
shown in Fig. 2.4.

Flavour symmetry Gf ⊗ CP

Charged Lepton
Sector G` ⊂ Gf

Q†M †`M`Q = M †`M`

Q ∈ G`

Qdiag = U †`QU`

Neutrino Sector
Gν ⊂ Gf ⊗ CP

XZ? − ZX = 0
Z ∈ Gν , X ∈ CP{
ZTMνZ = Mν

XMνX = M?
ν

Zc = Ω†ZΩ
Uν ≡ ΩRij(θ)Kν

UPMNS = U †`Uν ≡ ΩRij(θ)Kν

Figure 2.4: Representative scheme of the approach used in this Section, see text for
further details.

We expect that one of the PMNS columns is fixed, i.e. it does not contain θ, because the
rotation Rij(θ) acts in a subspace of the flavour space. We also notice that the formulae
(2.24) and (2.31) are covariant under the basis transformation defined by the unitary
matrix Ω̃, thus the matrices

Z̃ = Ω̃†ZΩ̃ X̃ = Ω̃†XΩ̃? (2.41)

satisfy the condition defined in (2.24) and (2.31). If we also change the generator of G` in
the same way

Q̃ = Ω̃†QΩ̃ (2.42)
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we see that UPMNS, defined in (2.40), does not change, since its result does not depend on
the transformation Ω̃. Thus both the triplets5 (Q,Z,X) and (Q̃, Z̃, X̃) related by Ω̃ lead
to the same results for lepton mixing. We use this property to reduce the number of
independent patterns to study.

2.3.2 Accidental CP symmetry

Notice that there exists the possibility that an accidental CP symmetry is present, dif-
ferent from the CP transformation X that we impose in our theory. An accidental CP
symmetry 6 corresponds to a CP transformation Y (if it exists) which satisfies the condi-
tions

Y ?M †`M`Y = (M †`M`)
? (2.43a)

YMνY = M?
ν . (2.43b)

In this case all the CP phases α, β and δ of the PMNS matrix have to be trivial, 0 or π. If
Y and Mν fulfill the condition

Y ?M †νMνY = (M †νMν)? (2.44)

only the Majorana phases are trivial, while the Dirac phase δ has to be 0 or π.
Eq. (2.43a) implies [71]

QY − Y QT = 0. (2.45)

This conditions ensures that Y is diagonal in the same basis as Q, that is Y is diagonal in
the charged lepton mass basis. Notice that if Y fulfills (2.45) also the quantity Y ′ satisfies
the same condition, where Y ′ is defined as

Y ′ = Y
∏
i≤p

[
Q?i
]ni 0 ≤ ni ≤ mi (2.46)

where mi is the dimension of one of the cyclic subgroup Zmi of G` and Qi ∈ Zmi , (2.43b)
implies

Y Z? − ZY = 0 (2.47a)
XY ? − Y X? = 0. (2.47b)

Notice that the matrix Y is always diagonal and positive in the neutrino mass basis, thus

Ỹ = U †νY U
?
ν = diag

{
y1, y2, y3

}
(2.48)

where yj ∈ R+. If only the equality in (2.44) holds it is sufficient that only (2.47a) is
satisfied with the additional condition that Ỹ is diagonal (2.48).
An accidental CP symmetry that is always present in the neutrino sector for a given
transformation Z and X is the one represented by the additional CP transformation
Y = ZX that satisfies the condition defined in (2.24), (2.31) and (2.47).

2.3.3 CP transformation of A5

We report the simplest representation of Xr in the case of group A5 for a given represen-
tation r

X1 = 1 (2.49a)
5In the following we refer to (Q,Z,X) as a triplet or touple.
6The accidental CP symmetry is similar to the barionic number U(1)B in the Standard Model.
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X3 = P23 (2.49b)
X3′ = P23 (2.49c)

X4 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 (2.49d)

X5 =


1 0 0 0 0
0 0 0 0 −1
0 0 0 1 0
0 0 1 0 0
0 −1 0 0 0

 . (2.49e)

The matrix P23 is defined as

P23 =

1 0 0
0 0 1
0 1 0

 . (2.50)

The matrix P23 represents the so called µ − τ reflection symmetry [89, 90, 125, 126]. We
may notice that the form of Xr is the same as the invariant contained in the product r⊗r
in the flavour space. Using the explicit form of S and T in the representation r we can
check that

(X−1
r SrXr)

? = Sr (2.51a)
(X−1

r TrXr)
? = Tr (2.51b)

for all the irreducible representations of A5, therefore the CP transformations act as an
inner automorphism on A5.
The form of CP transformations we consider is

X = ZX0 (2.52)

where Z is the matrix representative of a Z2 generating element, Z2 = 1. In general
are possible sixteen different CP transformations. All of them are consistent with (2.24)
and are the sixteen class-inverting involutive automorphisms of A5. We thus discuss
all CP transformations that fulfill requirement in (2.24) and are consistently imposed in
according to Ref. [116]. These properties, class-inverting and involutive, are given if the
twisted Frobenius-Shur indicator ει(r) is +1 in all irreducible representations r ∈ A5. From
the definition of the twisted Frobenius-Shur indicator in the case of A5 we have

ει(r) ≡ 1

dim{A5}
∑
g∈A5

χ[r](gιg) (2.53)

where χ[r](g) is the character of the element g in representation r, see Tab. 2.2, and gι the
image of g under the action of the automorphism ι. We verify that ει(r) = +1 using the
fact that if the statement is true then [127–129]∑

r∈A5

χ[r](e) = dim{g ∈ A5 such that gι = g−1} (2.54)

where χ[r](e) is the character of the neutral element in representation r, thus we sum
over the dimensions of all irreducible representations.
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2.4 Classification

In this section we report the independent patterns for UPMNS that we can obtain from
the possible choice of the triplets (Q,Z,X) assuming A5 ⊗ CP as a full symmetry in the
leptonic sector. In particular we want to classify the relevant cases for the phenomenology
using a gaussian χ2 test based on the PMNS parameters extracted from Ref. [45]. This χ2

is the sum of each mixing angle contribution χ2
ij . We use the following definition

χ2(θ) ≡
∑
i 6=j

χ2
ij(θ) =

∑
i 6=j

[
sin2 θij(θ)− sin2 θexp

ij

σij

]2

(2.55)

The way to extract mixing angles and CP phases from UPMNS is discussed in Appendix D.
We consider as interesting categories the triplets which satisfy the condition χ2

ij ≤ 9, i.e.
the mixing angle θij is in the 3σ confidence region, therefore the global minimum is such
that χ2

min ≤ 27. We assume this number because we consider independent gaussian errors
for each angle. We do not include the value of δ because the significance is lower than 3σ.

We report our numerical results in several tables, for the relevant categories of tuples
(Q,Z,X). The oscillation parameters are evaluated at the best fit values of θ, that we call
θbf . Two results are reported, the left column is for NO, while the right one is for IO.

To obtain the PMNS matrix we use the following algorithm:

1. The matrix Z is involutory, so it is diagonalizable by a unitary matrix Ω0 such that
Ω†0ZΩ0 = Zc.

2. The matrix Ω = Ω0P , where P = diag{eiα, eiβ, eiγ}, can be found, up to permutations
of columns, using the condition

Ω†XΩ? = 1 (2.56)

which is equivalent to ΩΩT = X , but easier to compute because the equations for the
phases α, β and γ are decoupled.

3. If no solutions can be found for Ω we need to rotate the degenerate subspace defined
by the eigenvalues of Zc with a unitary matrix Vij(ψ). We can find ψ using the non
diagonal element of (2.56), imposing (Ω†XΩ?)13 = 0.

4. We find the PMNS matrix as UPMNS = U †`ΩRij(θ)Kν , where U` is the matrix that
diagonalizes Q. We extract the mixing parameters through the procedure defined
in Appendix D. Then we perform the χ2 test, defined in (2.55), using all possible
permutations of rows and columns of UPMNS to obtain θbf .

To extract the values of CP phases we use the invariant parameters JCP, I1 and I2, fol-
lowing the same conventions of Ref. [80]. The details are reported in Appendix D.
The independent categories that we study in details are summarize in Tab. 2.4 with the
values of χ2

min for normal (left column) and inverted (right column) ordering. In partic-
ular using the similarity transformations, as discussed in (2.41) and (2.42), we find six
independent categories for Q ∈ Z5, described in Sec. 2.4.1, eight categories for Q ∈ Z3, de-
scribed in Sec. 2.4.2 and only four categories for Q ∈ V = Z2⊗Z2, described in Sec. 2.4.3. 7

7We acknowledge Pietro Pugliese for the help to write a fast algorithm to check the independent tuples.
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Notice that for each Z ∈ Z2 we can choose four different values of X that satisfy the
conditions (2.24), (2.27) and (2.31). It is easy to find that if Z is in the j-th Klein group,
i.e. Z = Ka

j , the possible non trivial matrices X are in the form

Xa,b
j = Kb

jX0 (2.57)

where a, b = 1, 2, 3 and j = 1, . . . 5.

Q Z X χ2
min Q Z X χ2

min

Q ∈ Z5 Q ∈ Z3

R1 S1 X0 14.08 17.83 C4 S1 X0 > 102 > 102

R1 S2 X0 > 102 > 102 C4 S2 X0 > 102 > 102

R1 S3 X0 4.04 7.74 C4 S3 X0 > 102 > 102

R1 S3 S1X0 5.64 3.46 C4 S4 X0 8.84 12.57
R1 S2 S1X0 > 102 > 102 C4 S1 S3X0 > 102 > 102

R1 S1 S2X0 42.18 49.96 C4 S2 S3X0 > 102 > 102

C4 S3 S1X0 > 102 > 102

C4 S4 S5X0 > 102 > 102

Q ∈ V = Z2 ⊗ Z2

K2 S1 X0 4.48 6.43 K1 S1 X0 > 102 > 102

K1 S2 X0 > 102 > 102 K2 S1 S3X0 > 102 > 102

Table 2.4: Independent categories for the PMNS matrix with the value of χ2
min

for normal and inverted ordering. We highlight the realistic patterns with a green
colour. The yellow patterns require Next-to-Leading Order (NLO) corrections to have
all the mixing angles in the 3σ confidence region. The pink pattern for Q ∈ Z5 does
not fit well the mixing angles but it is interesting because it is related to TBM and
BM while the pink one for Q ∈ V has all non trivial CP invariants. We recall that
the algebras are summarized in Tab. 2.3.

In the following we do not consider all possible analytical expressions for each touple
(Q,Z,X). We consider only seven explicit realization: five for Q ∈ Z5 (one does not fit
well all the mixing angles, but it is related to TBM and BM described in Sec. 2.1.1), one
for Q ∈ Z3 and two for Q ∈ V even if only one touple can achieve all the mixing angles in
the 3σ confidence region. In fact we want to show an explicit realization with non trivial
Majorana phases.

2.4.1 Sector Q ∈ Z5

There exist 6× 15× 2 = 180 triplets (Q,Z,X) assuming Q ∈ Z5. 8 However, without loss of
generality we can analyse the simplest case Q = T : there are similarity transformations
for Z defined in a given Klein subgroup Kj , Z = Ka

j , with a = 1, 2, 3 that connect the
different triplets (T,Z,X) as

T−mKa
j T

m = Ka
i (2.58a)

T−mXa,b
j T−m = Xa,b

i (2.58b)

T−mQTm = Q (2.58c)

8In this counting we use the fact that the triplets (Q,Z,X0) and (Q,Z,ZX0) give us the same UPMNS.
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where m = 1, . . . 4 and i 6= j and Xa,b
i is defined in (2.57).

The general transformations for X = X0 and Q 6= T , assume the form

C†Ka
i C = Ka′

j (2.59a)

C†P23C
? = P23 (2.59b)

C†RpC = Rq (2.59c)

where i, j = 1, . . . 5, a, a′ = 1, 2, 3, and p, q = 1 . . . 6. The C matrices are elements of Z3 ⊂ A5,
hence C3 = 1, see Tab. 2.3. The transformations for X 6= X0 are obtained in the same
way. In fact if C fulfills (2.59) with X = X0 then, for a non trivial X of the form (2.57)
we have

C†Xa,b
j C? = C†Kb

jP23C
? = C†Kb

j1P23C
? = C†Kb

jCC
†P23C

? = Kb′
i P23 = Xa′,b′

i (2.60)

where Xa′,b′

i are good representations of the CP operator for a given Ka′
j .

Therefore we can study only the cases with Q = T , which is the simplest choice. In fact
we have U` = 1, up to permutations of columns, thus the PMNS matrix is given only by
the neutrino sector. The results of our numerical analysis are reported in Tab. 2.5 for
X = X0 and in Tab. 2.6 for X 6= X0. The analytical treatment of each category with an
acceptable value of χ2, except when explicitly stated, is reported in the following.

(Q,Z,X) (R1, S1, X0) (R1, S3, X0) (R1, S2, X0)

θbf (0.28, 2.86) (0.18, 2.97) (0.58, 2.56)
χ2

min 14.08 17.83 4.04 7.74 > 102 > 102

sin2 θ12/10−1 2.60 2.60 2.83 2.83 3.04 3.04
sin2 θ13/10−2 2.16 2.17 2.18 2.19 0.00 0.00
sin2 θ23/10−1 5.00 5.00 5.00 5.00 5.00 5.00

JCP ± 0.032 ± 0.032 ± 0.033 ± 0.033 0 0
I1 0 0 0 0 0 0
I2 0 0 0 0 0 0

Table 2.5: Possible values for the PMNS parameters for a given Z with Q = T and
X = X0.

(Q,Z,X) (R1, S1, S2X0) (R1, S3, S1X0) (R1, S2, S1X0)

θbf 0.28 0.17 2.97 (0.25, 3.40)
χ2

min 42.18 49.96 5.64 3.46 > 102 > 102

sin2 θ12/10−1 2.61 2.61 2.83 2.83 3.04 3.04
sin2 θ13/10−2 2.10 2.04 2.17 2.19 0.00 0.00
sin2 θ23/10−1 7.30 7.27 4.08 5.92 5.00 5.00

JCP 0 0 0 0 0 0
I1 0 0 0 0 ± 0.10 ± 0.10
I2 0 0 0 0 0 0

Table 2.6: Same as Tab. 2.5 with X 6= X0.
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• Case (R1, S1, X0)

For the first group in Tab. 2.5 the matrix Ω0, up to permutations of columns, is

Ω0 =

 cosφ sinφ 0

sinφ/
√

2 − cosφ/
√

2 1/
√

2

sinφ/
√

2 − cosφ/
√

2 −1/
√

2

 (2.61)

where tanφ ≡ ϕ−1 = ϕ− 1 ' 0.618. The matrix Ω that satisfies the condition (2.56) is

Ω = Ω0 diag{−1, 1, i}. (2.62)

The PMNS is given by

UPMNS = ΩR23(θ)Kν . (2.63)

The column of the PMNS matrix which is constant is the first one

‖Uα1‖ =

 cosφ

sinφ/
√

2

sinφ/
√

2

 '
0.851

0.372
0.372

 . (2.64)

In this case, we find the following analytic expressions for the mixing angles

sin2 θ12 =
tan2 φ cos2 θ

1 + tan2 φ cos2 θ
=

(2− ϕ) cos2 θ

1 + (2− ϕ) cos2 θ
(2.65a)

sin2 θ13 = sin2 φ sin2 θ =
sin2 θ

2 + ϕ
(2.65b)

sin2 θ23 =
1

2
. (2.65c)

Notice that we have an upper bound for the reactor angle by the inequality sin2 θ13 ≤
(2 − ϕ)/(3 − ϕ) ' 0.28 and the same bound is valid for the solar angle θ12. We can write
the following relation between sin2 θ12 and sin2 θ13

sin2 θ12 =
ϕ− 2− (ϕ− 3) sin2 θ13

(ϕ− 3) cos2 θ13
=
ϕ− 2

ϕ− 3
+

sin2 θ13

ϕ− 3
+O(sin4 θ13) ' 0.276− 0.724 sin2 θ13.

(2.66)

This relation explains the tension between the two mixing angles in the χ2 analysis, in
fact when θ13 is close to the best fit value, sin2 θ13 = 2.18× 10−2, the solar mixing angle is
disfavored at more than 3σ confidence level, sin2 θ12 = 2.60 × 10−1 using the approximate
relation. Therefore this category needs large NLO corrections to fits the experimental
data.
For the CP invariants we have

JCP =
1

4
cosφ sin2 φ sin 2θ =

2− ϕ
4(3− ϕ)3/2

sin 2θ (2.67a)

I1 = I2 = 0 (2.67b)

thus the CP phases are

| sin δ| = 1 sinα = sinβ = 0. (2.68)
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• Case (R1, S3, X0)

For the second group in Tab. 2.5 the matrix Ω0 is the same as the case (T, S1, X0) defined
in (2.61). The matrix Ω is

Ω = Ω0 diag{−1, 1,−i} (2.69)

and the PMNS is given by

UPMNS = ΩR13(θ)Kν . (2.70)

The constant column of the PMNS matrix is the second one

‖Uα2‖ =

 sinφ

cosφ/
√

2

cosφ/
√

2

 '
0.526

0.602
0.602

 . (2.71)

The expressions for the mixing angles are

sin2 θ12 =
tan2 φ

tan2 φ+ cos2 θ
=

(2− ϕ)

(2− ϕ) + cos2 θ
(2.72a)

sin2 θ13 = cos2 φ sin2 θ =
sin2 θ

3− ϕ
(2.72b)

sin2 θ23 =
1

2
. (2.72c)

In this category we have an upper limit for the reactor angle by the inequality sin2 θ13 ≤
(3 − ϕ)−1 ' 0.72 while for the solar mixing angle we get the lower bound sin2 θ12 ≥
(2 − ϕ)/(3 − ϕ) ' 0.28. There exists a relation between sin2 θ12 and sin2 θ13, that can be
written as

sin2 θ12 =
1

(2 + ϕ) cos2 θ13
=

1

2 + ϕ

[
1 + sin2 θ13 +O(sin4 θ13)

]
' 0.276(1 + sin2 θ13). (2.73)

When θ13 is close to the best fit point, sin2 θ13 = 2.18× 10−2, we obtain sin2 θ12 = 2.82× 10−1

using the approximated relation, which is compatible at 2σ confidence level.
For the CP invariants we obtain

JCP =
1

4
sinφ cos2 φ sin 2θ =

ϕ− 1

4(3− ϕ)3/2
sin 2θ (2.74a)

I1 = I2 = 0 (2.74b)

thus we get

| sin δ| = 1 sinα = sinβ = 0. (2.75)

Notice that both for the categories (T, S1, X0) and (T, S3, X0) the main difference in the χ2

at θ = θbf for NO and IO is given by θ23. In fact we have ∆χ2
23 ' 3.70 at θ23 = π/4.

• Case (R1, S2, X0)

This case does not fit well the mixing angles that we observe in Nature, however it is
quite interesting because for particular values of θ we get the well known TBM or BM
patterns discussed in Sec. 2.1.1. We find that the matrix Ω is

Ω =

1 0 0

0 i/
√

2 −1/
√

2

0 −i/
√

2 −1/
√

2

 (2.76)
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and the PMNS is

UPMNS = ΩR12(θ)Kν . (2.77)

The constant column is the third one

‖Uα3‖ =

 0

1/
√

2

1/
√

2

 '
 0

0.707
0.707

 . (2.78)

In this case the expressions for the mixing angles are

sin2 θ12 = sin2 θ (2.79a)
sin2 θ13 = 0 (2.79b)

sin2 θ23 =
1

2
. (2.79c)

The CP invariants are trivial

JCP = I1 = I2 = 0. (2.80)

Notice that for θ → sin−1(1/
√

3) we obtain the TBM mixing matrix, while for θ → π/4
we obtain the BM mixing matrix. The CP invariants are trivial, thus there exists an
accidental CP symmetry, discussed in Sec. 2.3.2. In this case the matrix Y that fulfills
the conditions is

Y = S2P23 = −1. (2.81)

• Case (R1, S1, S2X0)

For the first group in Tab. 2.6 the matrix Ω0 is the same as (2.61) while the matrix Ω that
fulfills the condition (2.56) is

Ω = iΩ0 (2.82)

and

UPMNS = ΩR23(θ)Kν . (2.83)

The constant column of the PMNS matrix is the first one. The absolute value is the same
as (2.64). The mixing angles assume the following analytic expressions

sin2 θ12 =
tan2 φ cos2 θ

1 + tan2 φ cos2 θ
=

(2− ϕ) cos2 θ

1 + (2− ϕ) cos2 θ
(2.84a)

sin2 θ13 = sin2 φ sin2 θ =
1

2 + ϕ
sin2 θ (2.84b)

sin2 θ23 =
1

2
+

cosφ cos θ sin θ

cos2 θ + cos2 φ sin2 θ
=

1

2
−

√
3− ϕ sin 2θ

ϕ− 4 + (ϕ− 2) cos 2θ
(2.84c)

where we observe that θ12 and θ13 follow the same relations as category (R1, S1, X0). The
mixing angle θ23 is unconstrained in this case. It is interesting to write an expression
between the reactor angle θ13 and the atmospheric angle θ23 through the approximate
relation

sin2 θ23 =
1

2
± ϕ sin θ13 +O(sin3 θ13) ' 0.500± 1.618 sin θ13. (2.85)
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The connection with the solar angle is the same as (2.66). The global effect is to have
χ2

min ∼ 50 even if the reactor angle θ13 is close to the experimental value. In fact when
sin2 θ13 = 2.18 × 10−2 we get sin2 θ23 = 7.39 × 10−1 or sin2 θ23 = 2.61 × 10−1 using the ap-
proximate relation. Clearly the larger value of θ23 gives a better value for χ2

min for both
orderings. In fact there is a tension between all the mixing angles.
In this category the CP invariants are trivial

JCP = I1 = I2 = 0. (2.86)

The accidental CP symmetry is related to the existence of the matrix Y , defined in Sec.
2.3.2

Y = S1X = S1S3P23 = −1. (2.87)

• Case (R1, S3, S1X0)

For the second group in Tab. 2.6 we have the same matrix Ω0 defined in (2.61), but in this
case the matrix Ω that fulfills the condition (2.56) is

Ω = Ω0 diag{−1,−i, 1}. (2.88)

We get the following PMNS

UPMNS = ΩR13(θ)Kν . (2.89)

The constant column in the PMNS matrix is the second one. The absolute value is the
same as (2.71). However, due to different form of the X matrix the analytic expressions
for the mixing angles are different with respect to the case in Tab. 2.5. We have

sin2 θ12 =
tan2 φ

tan2 φ+ cos2 θ
=

(2− ϕ)

(2− ϕ) + cos2 θ
(2.90a)

sin2 θ13 = cos2 φ sin2 θ =
sin2 θ

3− ϕ
(2.90b)

sin2 θ23 =
1

2

(cos θ + sin θ sinφ)2

cos2 θ + sin2 θ sin2 φ
=

1

2

[
1 +

√
7− 4ϕ sin 2θ

sin2 θ + ϕ− 3

]
. (2.90c)

In this category the parameter which is different with respect to the case S3 evaluated
for X = X0 is θ23. Notice that this parameter is unconstrained. We can find the following
approximate relation between sin2 θ23 and sin2 θ13

sin2 θ23 =
1

2
± (ϕ− 1) sin θ13 +O(sin3 θ13) ' 0.500± 0.618 sin θ13 (2.91)

In this case for the best fit value of the reactor angle sin2 θ13 = 2.18× 10−2 we obtain two
different values for sin2 θ23 which are 4.09 × 10−1 and 5.91 × 10−1. The second value is
closer to one of the best fit points for θ23, then the χ2

min for IO is better than the value for
NO.
The CP invariants are all trivial

JCP = I1 = I2 = 0. (2.92)

As for the previous cases with trivial invariants this fact is related to the existence of an
accidental CP symmetry realized by the matrix

Y = S3X = S3S1P23 = −1. (2.93)
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2.4.2 Sector Q ∈ Z3

In this Section we want to classify the possible patterns for the PMNS matrix in the case
of Q ∈ Z3. In general 10× 15× 2 = 300 combinations are possible for the triplets (Q,Z,X).
However, as done for Q ∈ Z5, due to the similarity transformations defined in (2.41) and
(2.42), we can reduce the number to eight patterns to analyse, that are summarized in
Tab. 2.4.
To obtain the similarity transformations it is easy to start from Q = C4 = T 2ST 2 and X 6=
X0. In this case the matrices A = TmSTm are good representations of the transformations
for Z in the j-th Klein subgroup of A5, Z = Ka

j , where a, b = 1, 2, 3. The transformations
can be written as

(T−mST−m)Ka
j (TmSTm) = Kb

i (2.94a)

(T−mST−m)Xa,b
j (T−mST−m) = Xa,b

i (2.94b)

(T−mST−m)Q(TmSTm) = Q (2.94c)

where m = 1, 2, i, j = 1, . . . 5 and X is defined in (2.57).
For the general case Q ∈ Z3 there exists similarity transformations that connects the
different triplets, as discussed in Sec. 2.4.1 for Q ∈ Z5, but these are quite cumbersome.
Therefore, without loss of generality, we can study the simplest case Q = T 2ST 2 because
the matrix U` is easy to evaluate and it does not contain complex numbers

U
(C4)
` =



−
√

1

3
+

2

3
√

5
−
√

1

15

(
5−
√

5
) 2√

3
(
5 +
√

5
)

2√
3
(
5 +
√

5
) −1

2
− 1

30

√
75 + 30

√
5

1

30

(
−15 +

√
75 + 30

√
5
)

2√
3
(
5 +
√

5
) 1

2
− 1

30

√
75 + 30

√
5

1

30

(
15 +

√
75 + 30

√
5
)


. (2.95)

Notice that the neutrino sector is exactly the same as Q ∈ Z5, thus we do not need more
informations about the matrices Ω0. The results are reported in Tab. 2.7 for X = X0 and
in Tab. 2.8 for X 6= X0. In the following we discuss in details only the case (T 2ST 2, S4, X0)
because the other categories have a huge χ2

min.

(Q,Z,X) (C4, S3, X0) (C4, S1, X0) (C4, S2, X0) (C4, S4, X0)

θbf (0.41, 2.73) (0.39, 2.74) (0.41, 2.92) (0.60, 0.97)
χ2

min > 102 > 102 > 102 > 102 > 102 > 102 8.84 12.57

sin2 θ12/10−1 1.09 1.09 1.30 1.30 3.04 3.04 3.41 3.41
sin2 θ13/10−2 2.06 2.07 2.20 2.21 0.00 0.00 2.17 2.18
sin2 θ23/10−1 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00

JCP ± 0.022 ± 0.022 ± 0.024 ± 0.024 0 0 ± 0.034 ± 0.034
I1 0 0 0 0 0 0 0 0
I2 0 0 0 0 0 0 0 0

Table 2.7: Possible values for the PMNS parameters for a given Z with Q = T 2ST 2

and X = X0.
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(Q,Z,X) (C4, S3, S1X0) (C4, S1, S3X0) (C4, S2, S3X0) (C4, S5, S4X0)

θbf (1.20, 1.94) (0.53, 2.60) (0.05, 3.09) (0.79, 2.36)
χ2

min > 102 > 102 > 102 > 102 > 102 > 102 > 102 > 102

sin2 θ12/10−1 1.13 1.12 4.46 4.46 3.04 3.04 3.49 3.50
sin2 θ13/10−2 1.67 1.74 2.16 2.16 0.00 0.00 4.47 4.47
sin2 θ23/10−1 8.20 8.27 6.56 6.56 5.00 5.00 6.51 6.51

JCP 0 0 0 0 0 0 ± 10−9 ± 10−9

I1 0 0 0 0 ± 0.21 ± 0.21 ± 0.21 ± 0.21
I2 0 0 0 0 0 0 ± 10−9 ± 10−9

Table 2.8: Same as Tab. 2.7 with X 6= X0.

• Case (C4, S4, X0)

The matrix Ω in this case is similar to (2.61), but with different exponential factors in the
matrix elements

Ω =

 cosφ − sinφ 0

sinφ/
√

2 e−i2π/5 cosφ/
√

2 e−i2π/5 1/
√

2 e−i9π/10

sinφ/
√

2 ei2π/5 cosφ/
√

2 ei2π/5 1/
√

2 ei9π/10

 (2.96)

where we recall that tanφ = 1/ϕ. We obtain the PMNS matrix as

UPMNS = ΩR23(θ)Kν . (2.97)

The constant column of the PMNS matrix is the second one

‖Uα2‖ =
1√
3

1
1
1

 '
0.577

0.577
0.577

 . (2.98)

Thus, one of the columns of the resulting PMNS mixing matrix has to be trimaximal,
up to phases. To reach compatibility with the experimental data on lepton mixing angles
this column must be identified with the second one of UPMNS. In this case the analytic
expressions for the mixing angles are

sin2 θ12 =
1

2 + sin 2θ
(2.99a)

sin2 θ13 =
1− sin 2θ

3
(2.99b)

sin2 θ23 =
1

2
. (2.99c)

Notice that in this case the solar angle θ12 satisfies the lower bound sin2 θ12 ≥ 1/3, instead
the reactor angle θ13 fulfills the upper bound sin2 θ13 ≤ 2/3. It is easy to obtain the
following relation between the solar and the reactor mixing angles

sin2 θ12 =
1

3 cos2 θ13
=

1

3

[
1 + sin2 θ13 +O(sin4 θ13)

]
' 0.333(1 + sin2 θ13) (2.100)

which is a well-know relation that occurs in case of a TBM column [130–133]. When the
reactor mixing angle is evaluated at the best fit point sin2 θ13 = 2.18× 10−2 the solar angle
is sin2 θ12 = 3.41× 10−1 which is disfavoured at 2σ CL.
The difference between NO and IO in χ2

min is given by θ23. We have ∆χ2
23 ' 3.70 at
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θ23 = π/4, as previously noticed for the categories (T, S1, X0) and (T, S3, X0).
The CP invariants are

JCP =
cos 2θ

6
√

3
I1 = I2 = 0. (2.101)

We can extract the non trivial Dirac CP phase

| sin δ| = 1 (2.102)

which implies that the CP Dirac phase is maximal.

2.4.3 Sector Q ∈ V

In this section we want to analyse the case Q ∈ V = Z2 ⊗ Z2. We adopt the notation Q
for the couple of matrices {Q1, Q2}. 5× 10× 2 = 100 combinations of triplets (Q,Z,X) are
possible. As for Q ∈ Z3 or Z5 there exists similarity transformations that connects the
different triplets, see Eq. (2.41) and (2.42). Only four categories, that are summarize in
Tab. 2.4, are independent. These transformations are quite cumbersome and we discard
their form.
We consider the simplest case Q = K2 = {T 4ST, ST 3ST 2S} which is easy to compute, as
discussed for Q ∈ Z3 in the category (C4, S4, X0).
Notice that in this case the matrix U` has to diagonalize the elements of the Klein sub-
group K2, which means Q1 = T 4ST and Q2 = ST 3ST 2S and the product Q1Q2 = T 2ST 3STS.
This is always possible because the matrices of V commute [Q1, Q2] = 0.
We report the results of our numerical analysis in Tab. 2.9 for X = X0 and in Tab. 2.10
for X 6= X0.
Notice that if Z is in the same Klein group as Q we have UPMNS = Rij(θ)Kν . The third
column of the PMNS matrix is constant and it is ‖Uα3‖ = (0, 0, 1)T . Then this case is ruled
out by the χ2 analysis because it is impossible to have the mixing angles compatible with
the experimental data.

(Q,Z,X) (K2, S1, X0) (K1, S1, X0) (K1, S2, X0)
P1 P2

θbf 1.27 1.27 (0.58, 2.56) (1.14, 2.00)
χ2

min 6.19 6.43 4.48 11.84 > 102 > 102 > 102 > 102

sin2 θ12/10−1 3.31 3.31 3.31 3.31 3.04 3.04 3.04 3.04
sin2 θ13/10−2 2.20 2.18 2.19 2.24 0.00 0.00 0.00 0.00
sin2 θ23/10−1 5.24 5.25 4.76 4.78 0.00 0.00 0.00 0.00

JCP 0 0 0 0 0 0 0 0
I1 0 0 0 0 0 0 0 0
I2 0 0 0 0 0 0 0 0

Table 2.9: Possible values for the PMNS parameters for a given Z and X = X0.
Notice that the categories (K1, S1, X0) and (K1, S2, X0) are different because it does
not exist a similarity transformation that connects the two triplets. However the
values of the mixing angles and phases are the same.

• Case (K2, S1, X0)

For the first category in Tab. 2.9 we have defined two possible rows permutation of the
PMNS matrix (the second and the third row) that can give us a plausible χ2

min. P1 is the

– 33 –



(Q,Z,X) (K2, S1, S3X0)
P1 P2

θbf (1.31, 1.82) (1.31, 1.82)
χ2

min > 102 > 102 > 102 > 102

sin2 θ12/10−1 3.04 3.04 3.04 3.04
sin2 θ13/10−2 9.55 9.55 9.55 9.55
sin2 θ23/10−1 2.76 2.76 7.24 7.24

JCP ± 0.030 ± 0.030 ± 0.030 ± 0.030
I1 ∓ 0.079 ∓ 0.079 ∓ 0.079 ∓ 0.079
I2 ∓ 0.019 ∓ 0.019 ∓ 0.019 ∓ 0.019

Table 2.10: Same as Tab. 2.9 with X 6= X0.

permutation with θ23 > π/4 and P2 is the permutation with θ23 in the other octant. The
UPMNS is obtained by the matrix Ω defined in Eq. (2.62), and U` is defined as Ω in Eq.
(2.96). The PMNS matrix is

UPMNS = U †`ΩR23(θ)Kν . (2.103)

In this case the constant column of the PMNS matrix is the first one. These are

‖UP1
α1‖ =

1

2

 ϕ
1

1/ϕ

 '
0.809

0.500
0.309

 ‖UP2
α1‖ =

1

2

 ϕ
1/ϕ

1

 '
0.809

0.309
0.500

 (2.104)

respectively for P1 and P2. In this category the mixing angles assume the following
expressions

sin2 θ12 = 1− 6− 2ϕ

17ϕ− 31 + (7ϕ− 11)(cos 2θ − 2 sin 2θ)
(2.105a)

sin2 θ13 =
1

8

[
3− ϕ+ (ϕ− 1)(cos 2θ − 2 sin 2θ)

]
(2.105b)

sin2 θ23 =


−2(ϕ− 1) sin 2θ − (ϕ− 1) cos 2θ + ϕ− 3

(6− 4ϕ) sin 2θ + (2ϕ− 3) cos 2θ + 4ϕ− 9
for P1

(3ϕ− 4) cos 2θ − (ϕ− 2)(2 sin 2θ − 3)

(6− 4ϕ) sin 2θ + (2ϕ− 3) cos 2θ + 4ϕ− 9
for P2

(2.105c)

where the values for θ23 depends on the possible permutations of rows in the matrix UPMNS.
Clearly sin2 θP1

23 + sin2 θP2
23 = 1 because only the second and the third rows are exchanged.

The solar and reactor mixing angles follow the upper bound sin2 θ1j ≤ (3 − ϕ)/4 ' 0.35
and j = 2, 3, while the atmospheric angle θ23 is unconstrained. It is easy to evaluate the
following relation between the two angles θ12 and θ13

sin2 θ12 = 1− 3ϕ− 4

4(7ϕ− 11) cos2 θ13
=

=
1

4(7ϕ− 11)

[
5(5ϕ− 8) + (4ϕ− 3) sin2 θ13 +O(sin4 θ13)

]
' 0.345− 0.655 sin2 θ13

(2.106)

therefore when the reactor angle is close to the best fit point sin2 θ13 = 2.18 × 10−2 we
obtain sin2 θ12 = 3.31 × 10−1 which is in the 3σ confidence region. A similar relation for
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θ23 is intricate, but can be approximated for P1 and P2 as 9

sin2 θP1
23 =

2 + ϕ

5
− 2

5

√
3 + 4ϕ sin θ13 −

4ϕ+ 3

5(2ϕ− 1)
sin2 θ13 +O(sin3 θ13) '

' 0.724− 1.231 sin θ13 − 0.847 sin2 θ13 (2.107a)

sin2 θP2
23 =

3− ϕ
5

+
2

5

√
3 + 4ϕ sin θ13 +

4ϕ+ 3

5(2ϕ− 1)
sin2 θ13 +O(sin3 θ13) '

' 0.276 + 1.231 sin θ13 + 0.847 sin2 θ13 (2.107b)

thus when θ13 is close to the best fit point we get sin2 θ23 = 5.23 (4.77) × 10−1 for P1 (P2).
This explain the difference in the χ2 analysis in NO and IO for the two permutations.
The CP invariants are trivial

JCP = I1 = I2 = 0. (2.108)

In this case a matrix Y for the accidental CP symmetry (discussed in Sec. 2.3.2) is

Y = −diag{1, e−i4π/5, ei4π/5}. (2.109)

• Case (K2, S1, S3X0)

This category fails to fit the mixing angles; however, it might be interesting because the
CP invariants are non trivial. The PMNS matrix is easy to obtain, in fact the matrix U`
is the same as (2.96) and the matrix Ω is related to Ω0 defined in Eq. (2.61) by the relation

Ω = P13Ω0diag{i, 1,−1} (2.110)

where P13 is the permutation of first and third columns. The UPMNS is straightforward to
evaluate

UPMNS = U †`ΩR23(θ)Kν . (2.111)

The constant column, fixed by group theory, is the third one

‖UP1
α3‖ =

1

2

1/ϕ
1
ϕ

 '
0.309

0.500
0.809

 ‖UP2
α3‖ =

1

2

1/ϕ
ϕ
1

 '
0.309

0.809
0.500

 (2.112)

where we indicate the two possible permutations of second and third rows. Clearly only
the solar mixing angle θ12 can be fitted in this category and no non-trivial sum rules can
be obtained from the three mixing angles. For this triplet the mixing angles assume the
following expressions

sin2 θ12 =
1 + ϕ cos2 θ

2 + ϕ
(2.113a)

sin2 θ13 =
2− ϕ

4
(2.113b)

sin2 θ23 =


1

2 + ϕ
for P1

1 + ϕ

2 + ϕ
for P2

(2.113c)

Notice that sin2 θP1
23 + sin2 θP2

23 = 1. The solar angle is constrained to be (2 +ϕ)−1 ≤ sin2 θ12 ≤
(1+ϕ)(2+ϕ)−1. As discussed above this category is interesting because all CP invariants

9Notice that the condition sin2 θP1
23 + sin2 θP2

23 = 1 is valid order by order in the perturbation series of sin θ13.
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are non trivial. By definition the Majorana invariants are constant under exchange of
second and third rows (see definition in Appendix D), while the Dirac invariant changes
sign. We get

JCP = −sin 2θ

16
(2.114)

and the other invariants are

I1 = (−1)k1+1 (1 + ϕ) sin 2θ

16
I2 = (−1)k2

(1− ϕ) sin 2θ

16
. (2.115)

Using these relations we can extract the value of the CP phases

sin δ = −
√

10 sin 2θ√
9− cos 4θ

(2.116a)

sinα = (−1)k1
8 sin 2θ

cos 4θ − 9
(2.116b)

sinβ = (−1)k2+1 2 sin 2θ√
5 + cos 2θ

. (2.116c)

Using the best fit value θbf = ±1.31971 we get

sin δ = ∓0.523206 sinα = ∓(−1)k10.454979 sinβ = ∓(−1)k20.309279 . (2.117)

2.5 Numerical discussion

All possible patterns for the PMNS matrix that we have analysed above can be represented
in the parameter space of mixing angles, as shown in Fig. 2.5, 2.6 and 2.7. In particular
we present in the planes (sin2 θij , sin

2 θjk) the regions of ∆χ2 at two degrees of freedom
for 1σ (green), 2σ (yellow) and 3σ (blue) confidence level, assuming NO or IO. Notice that
two hypotheses for the NOνA flux were used, namely a likelihood-based selector (LID) and
Library Event Matching (LEM) [37, 134, 135]. As discussed in Ref. [37] LID compares the
longitudinal and transverse energy deposition in the particle shower, while LEM compares
an input event from either data or simulation to a large and independent library of
simulated events. The regions and the best fit points are extracted from the May 2016
results of Ref. [45]. 10

The analysis prefers a global minimum for IO, with ∆χ2 ≡ χ2
NO − χ2

IO = −0.78 assuming
LEM; therefore the confidence regions for NO are larger with respect to those of IO. In the
case of the LID method ∆χ2 = 1.03, thus IO is preferred. Since the statistical significance
of this result is still weak we ignore in our χ2 analysis the mass ordering effect. At the
same time, since the indication of a preferred value of the Dirac phase δ is rather weak,
i.e. below the 3σ significance, we do not include any information on δ in the χ2 function.
In the planes we report with a black solid line the parametric plot of mixing angles as
a function of the internal angle θ. In particular we represent with red dots the values
obtained at θbf , which are summarized in Tabs. 2.11 (assuming LEM) and 2.12 (assuming
LID). The interesting categories are classified as follows

Case I (R1, S3, S1X0) Case II (R1, S3, X0)
Case III (C4, S4, X0) Case IV (K2, S1, X0)

(2.118)

where for the Case IV we assume two possible permutations, (P1 and P2) as discussed
above. The arrows in the plots indicate for each category the direction of the increasing
value of θ in the interval 0 ≤ θ ≤ θbf and the arrows always belong to the closest label I-IV.

10The dataset of one and two dimensional projections are available at the website http://www.nu-fit.org.
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Figure 2.5: Parametric plot of the mixing angles in the planes (sin2 θ12, sin
2 θ23).

The plots are for NO (left panels) and IO (right panels) as a function of the internal
angle θ. In upper panels we assume LEM model for NOνA neutrino flux, while in
lower panels LID. The red dots are the best fit points obtained using our χ2 analysis.
The categories are classified in Eq. (2.118). For the symbols and the lines see text
for further details. Note that the curves II and III partly overlap.

The red dashed lines in Fig. 2.5 over the planes (sin2 θ12, sin
2 θ23), represent the non trivial

lower or upper values for sin2 θ12. For Case I and II we have sin2 θ12 ≥ (2−ϕ)/(3−ϕ) ' 0.28
and in Case III sin2 θ12 ≥ 1/3 ' 0.33. For the Case IV we have sin2 θ12 ≤ (3−ϕ)/4 ' 0.35 for
both permutations.

The curve of Case I in Fig. 2.6 (sin2 θ13, sin
2 θ12) appears to be disconnected due to the

chosen scales of the axes, thus, for clarity we mark on the curve of Case I some partic-
ular values of the internal angle θ with different black symbols: F for θ = π/19, � for
θ = π/17, • for θ = 16π/17 and N for θ = 18π/19. We also show the results in the plane
(sin2 θ13, sin

2 θ23) in Fig. 2.7.

Since from the data reported in Ref. [45] there is not a strong evidence for a parabolic be-
haviour around the minimum for the atmospheric angle θ23 we used a different definition
of χ2 in order to test the goodness of our previous results. We construct the χ2 using the
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Figure 2.6: Same as Fig. 2.5 but in the planes (sin2 θ13, sin
2 θ12) using the LEM

(upper) or LID model (lower). Notice that the curves II and III overlap in the plane.

public data available at the website http://www.nu-fit.org, see Ref. [45]. We use the one
dimensional projections χ2

q of q-th mixing parameter to construct the test function. The
parameters q are {sin2 θ12, sin

2 θ13, sin
2 θ23}. The χ2 is defined as

χ2 ≡
∑
q

χ2
q (2.119)

where the sum is over all the observables assuming a given ordering for the mass spec-
trum and a given model for the NOνA flux (LIM or LEM). This hypothesis introduces a
small error because we do not consider the correlations among the mixing parameters,
however this effect is small and its inclusion is beyond the scope of our work. Since the
available data are a discrete collection of points we use a first order polynomial function
to interpolate the dataset. In this way we are able to evaluate the χ2

q for each point in the
parameter space.

The results of our analysis are shown in Tab. 2.11 for Case I through Case IV assuming
the LEM model for the neutrino flux, while in Tab. 2.12 we report the case of LID model.
The data are consistent with the analysis performed with the simple χ2 defined in (2.55).
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Figure 2.7: Same as Fig. 2.5 but in the planes (sin2 θ13, sin
2 θ23) using the LEM model

(upper) or LID (lower). The curves for Case I and II as well as for the permutations
in Case IV, respectively, lie on top of each other in the plane.

The main difference is in Case I where the local minimum becomes the global minimum
and vice versa, however the statistical significance is irrelevant. In Fig. 2.8 our results
for the χ2 defined in (2.119) as a function of the internal angle θ are shown.
Notice that the differences between LEM and LID models for the mixing angles are small.
Instead the values for χ2

min, using (2.119), are different because the χ2 provided by the
nu-fit collaboration strongly depends on the neutrino flux method. However, for each Case
NO or IO have the same behaviour for LEM and LID methods. For instance in Tab. 2.11
(LEM method) Case I, assuming NO, has a larger χ2

min with respect to IO, and the same
happens in Tab. 2.12 (LID method). This structure is preserved for all Cases.

Our findings for the different Cases are summarized in Tab. 2.11 and Tab. 2.12. As one
can see, these results agree well with our analytical estimates made in Sec. 2.4.1 for
Q ∈ Z5, Sec. 2.4.2 for Q ∈ Z3 and Sec. 2.4.3 for Q ∈ V . In particular, we observe from Tab.
2.11, Tab. 2.12 and Fig. 2.8 that the sum of the best fitting values of θ and the second
minimum for NO and IO in Case I approximately equals π, since the formulae for sin2 θ12

and sin2 θ13 are invariant under the transformation θ → π − θ, while sin2 θ23 turns into

– 39 –



Case (LEM) χ2
min θbf sin2 θ12 sin2 θ13 sin2 θ23 sin δ

5.13 2.968 0.283 0.0217 0.592 0
G` = Z5 - Case I (8.65) (0.173) (0.283) (0.0215) (0.409) 0

(T 2, T 2ST 3ST 2, SX0) 5.03 2.967 0.283 0.0221 0.593 0
(12.08) (0.176) (0.283) (0.0219) (0.408) 0

G` = Z5 - Case II 5.60 0.175-2.967 0.283 0.0221 0.5 ∓1
(T 2, ST 2ST,X0) 7.82 0.175-2.967 0.283 0.0221 0.5 ∓1

G` = Z3 - Case III 6.89 0.604-0.967 0.341 0.0216 0.5 ±1
(T 2ST 2, ST 2ST 3S,X0) 9.18 0.603-0.967 0.341 0.0220 0.5 ±1

G` = Z2 ⊗ Z2 - Case IV-P1 3.40 0.253 0.331 0.0218 0.475 0
({S, T 2ST 3ST 2}, ST 2ST,X0) 6.26 0.256 0.331 0.0222 0.477 0

G` = Z2 ⊗ Z2 - Case IV-P2 3.96 0.255 0.331 0.0218 0.525 0
({S, T 2ST 3ST 2}, ST 2ST,X0) 5.38 0.256 0.331 0.0221 0.523 0

Table 2.11: Values of χ2
min obtained using the likelihood function assuming the LEM

method for the NOνA flux, best fit for θ and PMNS parameters for patterns that
have χ2

min ≤ 27. Upper rows are for NO while lower ones are for IO. In the Case I in
parenthesis we quote the local minimum. Notice that the Dirac phases are maximal
when also the atmospheric angles are maximal, otherwise δ is trivial. The Majorana
phases are always trivial if we want to accommodate the mixing angles.

Case (LID) χ2
min θbf sin2 θ12 sin2 θ13 sin2 θ23 sin δ

6.35 2.968 0.283 0.0219 0.592 0
G` = Z5 - Case I (8.13) (0.174) (0.283) (0.0217) (0.408) 0

(T 2, T 2ST 3ST 2, SX0) 5.17 2.967 0.283 0.0219 0.592 0
(10.11) (0.175) (0.283) (0.0218) (0.408) 0

G` = Z5 - Case II 6.01 0.175-2.967 0.283 0.0219 0.5 ∓1
(T 2, ST 2ST,X0) 6.91 0.175-2.967 0.283 0.0220 0.5 ∓1

G` = Z3 - Case III 7.34 0.604-0.967 0.341 0.0218 0.5 ±1
(T 2ST 2, ST 2ST 3S,X0) 8.25 0.604-0.967 0.341 0.0218 0.5 ±1

G` = Z2 ⊗ Z2 - Case IV-P1 3.56 0.255 0.331 0.0219 0.476 0
({S, T 2ST 3ST 2}, ST 2ST,X0) 5.10 0.255 0.331 0.0220 0.476 0

G` = Z2 ⊗ Z2 - Case IV-P2 4.65 0.255 0.331 0.0220 0.524 0
({S, T 2ST 3ST 2}, ST 2ST,X0) 4.75 0.256 0.331 0.0219 0.524 0

Table 2.12: Same as Tab. 2.11, assuming the LID method for the NOνA experiment.

cos2 θ23 (see (2.105c)). Similarly, the sum of the two best fitting points (the same for NO
and IO) almost equals π in Case II (see Sec. 2.4.1). Also related to the symmetry properties
of the formulae for the solar and the reactor mixing angles is the observation in Case
III those two best fitting points (for NO and IO) sum up to π/2 (see Sec. 2.4.2). Case IV
does not reveal such a symmetry in the parameter θ and thus we discuss in this case the
results corresponding to two different permutations that are related by the exchange of
the second and third rows of UPMNS. This allows us to accommodate sin2 θ23 < 1/2 as well
as sin2 θ23 > 1/2.
We observe maximal CP violation when θ23 is also maximal, otherwise δ is trivial. This
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is a feature of models with non-abelian discrete symmetry and CP under certain assump-
tions which are fullfilled by the group A5, see for instance Ref. [136] where a detailed
analysis was performed.
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Figure 2.8: Results for the χ2 constructed from the May 2016 data of Ref. [45] as a
function of the internal angle θ for the Cases I-IV. In the Case IV the solid line is
for P1 while the dashed line is for P2. In the upper panels we show our results for
NO and in the lowers for IO. The left panels are obtained with the LEM assumption
of NOνA flux, while the right ones with LID.

We notice that in Tab. 2.11 and Tab. 2.12 the solar mixing angle θ12 differs by up to 20%
between Case I/Case II with sin2 θ12 ' 0.283 and Case III/Case IV where larger values of
sin2 θ12 are obtained. In the next years planned experiments will be able to distinguish
among different mixing values. The experiment JUNO [44] will be able to reduce the error
on the best fit value of sin2 θ12 at 1% level, thus allowing for a discrimination among Case
I/Case II and Case III/Case IV. According to the RENO-50 collaboration its planned exper-
iment can achieve a similar reduction of the error, see Ref. [137]. For θ23 no distinction
is possible between Case II and III, since the angle is maximal in both cases. Anyway,
the predictions for Case I and Case IV considerably differ: the atmospheric mixing angle
is larger in Case I than in Case IV. This difference is large enough to be possibly dis-
tinguished in the experiment NOνA [138]. This experiment can also help in measuring
the Dirac phase δ, using the data in the appearence νµ → νe and disappearence νµ → νµ
channels, so that a discrimination between Case II/Case III where δ is maximal and Case
I/Case IV with δ = 0 or π might be possible. In contrast, the predictions for θ13 are almost
the same in all cases and, hence, it is unlikely that they can be distinguished at future
neutrino facilities.
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3
Models of Neutrino Masses

In the analysis performed in Chapter 2 we obtain predictions for the mixing angles based
on group theory. However, if we want to get other information about neutrino phenomenol-
ogy, such as the absolute mass scale, we need to construct an explicit model. This approach
was well established and several explict models with non-abelian discrete symmetry com-
bined with CP were studied in the literature: S4 [74, 75, 139–141], A4 [73, 142, 143], T ′ [76],
∆(27) [142,144], ∆(48) [78,145], ∆(96) [79,146] as well as A5 [86].
These kind of models need new additional degrees of freedom, the scalar flavon [147].
Flavons transform as irreducible representations of the flavour symmetry. When they
acquire a non-zero vacuum expectation value (vev) we obtain the flavour structure of
the model. This approach was largely used for models based on non-abelian discrete
symmetry within a non-supersymmetric or supersymmetric framework, for a review see
Refs. [67–69,84].
In this Chapter we want to discuss several realizations for the neutrino mass spectrum
based on A5 and CP . In particular we concentrate our investigation on Case II of our pre-
vious classification. The basic facts about the neutrino mass matrix and the flavon vevs
are summarized in Sec. 3.1. A detailed classification of the different realizations based on
particular vacuum alignments is discussed in Sec. 3.3, while in Sec. 3.4 we illustrate our
numerical results. In Sec. 3.5 we will discuss the results for the low energy observables:
the effective masses mβ , for the β-decay, and mββ , for the 0νββ-decay. As a last point, in
Sec. 3.6, we will show an explicit model based on the classification performed in Sec. 3.3.

3.1 Case II

We showed in Chapter 2 that four types of neutrino mixing based on A5⊗CP accommodate
well the observed oscillation parameters, i.e. all the mixing angles are in the allowed 3σ
confidence regions. For the residual symmetry in the neutrino sector we assume Z2⊗CP .
Case I and II in our previous classification are constructed under the assumption of
G` = Z5. Case III is based on G` = Z3, while case IV has the Klein group Z2 ⊗ Z2 as a
residual symmetry in the charged lepton sector.
In our analysis we consider Case II. Following the discussion of Sec. 2.3 a representative
touple (Q,Z,X) for this category is (T, T 2ST 3T 2, X0). We recapitulate the results discussed
in Sec. 2.4.1 for this case. In our approach the PMNS matrix is written as

UPMNS = ΩIIR13(θ)Kν (3.1)
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where the matrix ΩII is given by

ΩII =

 −cφ −sφ 0

−sφ/
√

2 cφ/
√

2 −i/
√

2

−sφ/
√

2 cφ/
√

2 i/
√

2

 (3.2)

and we have defined sφ ≡ 1/
√

2 + ϕ ' 0.526, cφ ≡
√

1− s2
φ =

√
(1 + ϕ)/(2 + ϕ) ' 0.851, and

ϕ ≡ (1 +
√

5)/2 ' 1.618 is the Golden Ratio. The matrix R13(θ) is a rotation matrix in the
1 − 3 plane of an angle θ and Kν is a diagonal matrix with entries ±1 and ±i needed to
have a positive mass spectrum. The neutrino mass matrix Mν fulfills the conditions of
invariance under the residual symmetry in the neutrino sector Gν = Z2 ⊗ CP defined in
(2.33): ZTMνZ = Mν and XMνX = M?

ν where Z ∈ Z2 and X is a representation of the CP
symmetry on the field space.
We then have the following texture for the neutrino mass matrix

Mν = m0


s+ x+ z

3

2
√

2
(z + iϕy)

3

2
√

2
(z − iϕy)

3

2
√

2
(z + iϕy)

3

2
(x+ iy) s− x+ z

2
3

2
√

2
(z − iϕy) s− x+ z

2

3

2
(x− iy)

 (3.3)

where all the parameters s, x, y and z are dimensionless and real and m0 is the absolute
neutrino mass scale. The neutrino mass matrix (3.3) can be diagonalized by UPMNS in
(3.1) with the additional condition

tan 2θ =
2
√

7 + 11ϕy

2x(ϕ+ 1) + z(2ϕ+ 1)
. (3.4)

The value of θ is independent on the overall sign in neutrino mass matrix Mν , as ex-
pected. Notice that in the limit y → 0 the neutrino mass matrix is invariant under the
µ− τ reflection symmetry [89,90,125,126], i.e. under the action of the permutation matrix
in the 2− 3 plane, P23, defined in (2.50).

The atmospheric angle is fixed to be maximal by symmetry, while the reactor angle is
related to the internal angle θ through the relation

sin2 θ13 =
2 + ϕ

5
sin2 θ . (3.5)

The solar mixing angle θ12 is related to θ13 by the sum rule

sin2 θ12 =
3− ϕ

5 cos2 θ13
' 0.276

cos2 θ13
. (3.6)

The Jarlskog invariant is

JCP = −
√

2 + ϕ

20
sin 2θ . (3.7)

The Dirac phase δ in this Case is maximal, | sin δ| = 1. Up to first order in θ the quantity
tan 2θ ∼ sin 2θ hence the sign of JCP is related to the sign of θ, thus we expect two solutions
since we do not impose any constraints on δ. The other invariants, defined in Appendix D,
called I1 and I2, are trivial (I1 = I2 = 0), thus the Majorana phases α and β are zero or π.
The reactor mixing angle θ13 is proportional to sin2 θ thus in order to obtain θ13 ∼ 9◦ a
small value of θ is needed. Assuming the best fit value for θ13 we get θbf = ±0.175. Due
to the sum rule in (3.6) sin2 θ12 ' 0.283, which is within the 3σ allowed range.
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A small value of θ means that |y| � |x|, |z|, see (3.4), and up to first order in y2 we can
expand sin2 θ as

sin2 θ =
(11ϕ+ 7)y2

[2(1 + ϕ)x+ (1 + 2ϕ)z]2
+O(y4) . (3.8)

The neutrino masses can be obtained from the diagonalization of Mν as

UTPMNSMνUPMNS = diag{m̃1, m̃2, m̃3} (3.9)

where m̃j are the complex masses of the Majorana neutrinos. We indicate the absolute
value of m̃j as mj . Starting from our PMNS matrix we have

m1 = m0

∣∣∣∣s− x

2
+ z

3ϕ− 2

4
− 3

4
(ϕ− 2)

√
[2(1 + ϕ)x+ (1 + 2ϕ)z]2 + (28 + 44ϕ)y2

∣∣∣∣ (3.10a)

m2 = m0

∣∣∣∣s+ x+ z

(
1− 3

2
ϕ

)∣∣∣∣ (3.10b)

m3 = m0

∣∣∣∣s− x

2
+ z

3ϕ− 2

4
+

3

4
(ϕ− 2)

√
[2(1 + ϕ)x+ (1 + 2ϕ)z]2 + (28 + 44ϕ)y2

∣∣∣∣. (3.10c)

Notice that m2 does not depend on y since it is the eigenvalue of the fixed column, see
(2.71). Expressions for the atmospheric and solar mass differences, ∆m2

31 and ∆m2
21, are

not difficult to obtain from Eq. (3.10) but they are rather cumbersome (in principle they
depend on four independent parameters) and the physical properties of the mass order-
ings are difficult to extract. For this reason, we prefer to show them in the following
subsection using a perturbative expansion in the appropriate small parameter y.

For the reactor mixing angle θ13, we notice that it is invariant under the replacement
θ → −θ, see Eq. (3.8), and therefore, thanks to (3.4), it is invariant under the exchange
y → −y . The neutrino masses are also invariant under the same transformation; we then
expect at least two solutions {s, x,±y, z} for each point of the parameter space compatible
with the experimental data. On the other hand, the relations involving masses and angles
are independent on the overall sign in the mass matrix; hence the solutions are invariant
under {s, x, y, z} → −{s, x, y, z} and we expect two pairs of solution for each point.

3.1.1 Flavons of Case II

As a first step we want to compute the explicit form of the vacuum expectation values
(vev) of the flavon fields in a given representation r ∈ A5. The vev of φν,r is invariant
under Gν , then it is possible to use the following relations

〈φν,r〉 = Z〈φν,r〉 (3.11)

which is the equation for the positive eigenvalue(s) of Z in the representation r. If we
assume a CP symmetry in the neutrino sector we have to impose the additional condition

〈φν,r〉 = Xr〈φν,r〉?. (3.12)

The CP matrices in representation r are classified in Sec. 2.3.3. Using the conditions
defined in (3.11) and (3.12) we can construct the flavon vevs. In the case of Gν = Z2 ⊗ CP
and Z = T 2ST 3T 2, X = X0 we obtain

〈φν,1〉 = v1 (3.13a)

〈φν,3〉 = v
(
−
√

2ϕ−1, 1, 1
)T (3.13b)
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〈φν,3′〉 = w
(√

2ϕ, 1, 1
)T (3.13c)

〈φν,4〉 =
(
yr − iyi, (1 + 2ϕ)yr − iyi, (1 + 2ϕ)yr + iyi, yr + iyi

)T (3.13d)

〈φν,5〉 =
(
−
√

2

3
(xr + xr,2),−xr + iϕxi, xr,2 − ixi, xr,2 + ixi, xr + iϕxi

)T (3.13e)

where all coefficients are reals.

3.1.2 Two step symmetry breaking

To obtain a small value of θ it is possible to use a two-step symmetry breaking such as:
G` → Gν = Z2 ⊗ Z2 ⊗ CP → Z2 ⊗ CP . The Klein group and CP can be used to set the
parameter y, which controls the size of θ, equal to zero. A possible choice is y ∝ yr in
(3.13d) and/or y ∝ xi in (3.13e). In this case the parameter y is vanishing and only under
Z2 ⊗ CP it is non zero, therefore it is naturally the smallest parameter.

3.2 Constraints on neutrino masses

In the following we want to obtain testable predictions on the mass spectrum. This fact
can be achieved reducing the number of independent parameters. The easiest way is to
set some of the flavon vevs to zero: in several cases this fact is equivalent to leave out
some flavons in a model; if not, due to reduced number of fields, we have to arrange for
some vacuum alignment that leads to this.
Since we have four observables (three neutrino masses and one independent mixing angle
because of (3.6)), we expect sum rules for neutrino masses and testable correlations, see
Refs. [148–151]. These are worked out in each of the classes studied. Thus, in the following,
we will start a classification reducing the number of independent parameters.
We assume two mechanisms to generate the light neutrino masses: Mechanism I involves
the Weinberg operator [152] and Type II see-saw [153–155], while Mechanism II is based
on Type I [156–159] and Type III [160] see-saw. Under the assumption of single type of
new particles added to the SM, these three types of see-saw realizations exhaust all the
possibilities of reproducing the Weinberg operator, see Ref. [161].
In our analysis we consider two realizations for the Type I (III): Mechanism II-1 where the
Dirac mass matrix MD is trivial, and Mechanism II-2 where the heavy Majorana mass
matrix MM is trivial. In this way we keep the number of independent parameters as
small as possible.
We also assume different properties under A5 for the matter field(s) in each mechanism:
for Mechanism I we can have L ∼ 3 or 3′ while for Mechanism II L and νc transform
as 3 and/or 3′. A schematic representation of the classification used is shown in Fig. 3.1
where all the cases are summarized.

3.2.1 Equivalence between different mechanisms

The number of independent mechanisms discussed above can be reduced using the fact
that the phenomenology of two (a priori) different cases is the same under the redefinition
of the model parameters. In the following we use the same convention of Ref. [162] for
the field content.

• Weinberg and Type II see-saw

The first observation is that the Weinberg operator and the Type II see-saw realization
give us the same predictions. In fact, neglecting the A5 contractions and flavour indices,
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Case II G` = Z5

Mechanism I
• Weinberg operator
• Type II see-saw

I-a
L ∼ 3

I-b
L ∼ 3′

Mechanism II
• Type I see-saw
• Type III see-saw

Mechanism II 1
MD trivial

Mechanism II 2
MM trivial

II-a
L, νc ∼ 3

II-b
L, νc ∼ 3′

II-c
L ∼ 3
νc ∼ 3′

II-d
L ∼ 3′

νc ∼ 3

Figure 3.1: Scheme of the classification of neutrino masses used in this Chapter,
see text for further details. We highlight in red the independent cases in our
classification.

the effective operator for the Weinberg operator is

OWeinberg = yW
(LT iσ2H)C(HT iσ2L)

Λ
(3.14)

where Λ is the UV cutoff, C the charge conjugation operator, σ2 the Pauli matrix, L is the
usual lepton doublet and H the Higgs field. The relevant part of the Type II lagrangian is

LII ⊃ −yIIL
TCσ2∆L+ h.c. (3.15)

where ∆ is a scalar that transforms as (1,2,2) under the SM gauge group SU(3)c ⊗
SU(2)L ⊗ U(1)Y . The scalar ∆ can acquire a vev through the scalar potential

Vscalar = µHTσ2∆?H +m2
∆ Tr{∆∆}+ . . . (3.16)

and thus 〈∆〉 ' µ〈H〉2/m2
∆. When ∆ acquires a non-zero vev mν 6= 0, and for m∆ � 〈H〉

and µ = O(1) eV we get a light neutrino mass. Since we want to discuss the correlations
in the mass spectrum it is sufficient to study only the Weinberg operator because the
neutrino mass matrix Mν is related to the one of Type II by the parameter redefinition

yW
〈H〉2

Λ
←→ yII〈∆〉. (3.17)

• Type I and Type III see-saw

A similar strategy is possible between Type I and Type III see-saw. In fact the lagrangian
responsible for the Majorana mass in Type I is

LI ⊃ −yILσ2H
?νc +

MM

2
νcνc + h.c. (3.18)

where νc is the right-handed neutrino. The mass matrix for the light neutrinos can be
obtained using the well know relation

Mν = −MT
DM

−1
M MD (3.19)
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where MD = yD〈H〉 is the Dirac mass matrix and MM is the mass of heavy Majorana
particle. For Type III the additional field is

−→
T , a fermionic triplet under SU(2)L, and the

lagrangian is

LIII ⊃ yIIIL
TCσ2

−→σ ·
−→
T H +mT

−→
T ·
−→
T . (3.20)

In exactly the same manner as before in Type I, one gets a Type III see-saw for mT � 〈H〉

Mν = yTIIIm
−1
T yIII〈H〉2 (3.21)

and thus, without loss of generality, we can investigate only the Type I realizations since
we are interesting on correlations about the mass spectrum and mixing angles.

• Mechanisms I-a and I-b

In the case of Mechanism I the predictions for L ∼ 3 and L ∼ 3′ are the same. Using
the A5 generators in representation 3′ the PMNS of Case II, defined in Eq. (3.1), can be
obtained with a representative touple (Q,Z,X) = (T, S,X0). The vev of the flavon invariant
under the action of Z = S in the five-dimensional representation is

〈φν,5〉 =
(
−
√

2

3
(xr + xr,2),−xr + i(1− ϕ)xi, xr,2 − ixi, xr,2 + ixi, xr + i(1− ϕ)xi

)T
. (3.22)

We can recover the same phenomenology under the redefinition of the vevs

v1 −→ v1 xr ←→ xr,2 xi −→ ϕxi (3.23)

which is equivalent to a redefinition of the neutrino mass matrix parameter in (3.3):
s −→ s, x←→ z and y −→ ϕy.

• Mechanisms II-a and II-b

Here we can have two possibilities: trivial MD or trivial MM .

◦ For a trivial Dirac mass matrix MD the redefinition of the vevs is the same as before,
(3.23). In this case we can perform a redefinition of the parameters in the heavy
Majorana mass matrix MM (indicated with capital letters) S −→ S,X ←→ Z and
Y −→ ϕY .

◦ In the case of a trivial Majorana mass matrix MM we have to consider the vev of
flavons in representation 3′ invariant under S = Z. It is

〈φν,3′〉 = w
(
−
√

2ϕ−1, 1, 1,
)T
. (3.24)

We notice that with respect to the case L, νc ∼ 3 ∈ A5, we have to change the vevs
as

v −→ w xi −→ ϕ−1xi xr ←→ xr,2 (3.25)

to reproduce the same mass matrix.

• Mechanisms II-c and II-d

In this case we need to know the vev invariant under the action of Z = S for the four-
dimensional representation

〈φν,4〉 =
(
yr − iyi, (3− 2ϕ)yr − iyi, (3− 2ϕ)yr + iyi, yr + iyi

)T
. (3.26)

If we consider the light neutrino mass matrix Mν we observe that it is invariant under
the vevs redefinition

xr ←→ ±xr,2 xi −→ ±ϕxi yr −→ ±(1 + 2ϕ)yr yi −→ ∓yi. (3.27)
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3.3 Analytic results

In this Section we discuss the main features for the mechanisms described above. In
particular we investigate the mass spectrum and the sum rule Σ for the complex masses
(further details in Appendix E). We also investigate the mass hierarchy, give predictions
for the Majorana phases and the analytical relations among the flavon vevs to get the
mass splittings and mixing angles in the allowed 3σ confidence region; a discussion on
the sum of the neutrino masses and the parameters mβ and mββ is also included.
The strategy adopted to achieve this program is summarized as follows:

• from Eq. (3.4) we derive the expression of the internal angle θ and, using (3.8), we
obtain a prediction for the mixing angle θ13; this allows to identify the parameter y in
Mν as the appropriate expansion parameter to be used in our analytical approximate
estimates of the physical observables; notice that, in order to make θ13 numerically
close to the experimental value, this requires a correlation among the same y and
other parameters;

• masses and then mass differences are easily obtained from the mass spectrum at the
appropriate perturbative order; with them, we can study the type of neutrino mass
ordering imposing the following constraints:

◦ ∆m2
21 > 0 and ∆m2

32 > 0 (m1 < m2 < m3) for Normal Ordering (NO);
◦ ∆m2

21 > 0 and ∆m2
31 < 0 (m3 < m1 < m2) for Inverted Ordering (IO);

• in order to make the mass differences compatible with the experimental values, the
ratio r` = ∆m2

21/∆m
2
3` (` = 1 for NO or ` = 2 for IO) is built for the allowed mass

ordering and an ansatz of proportionality among the two remaining parameters is
imposed: p1 = kp2; k is determined requiring r` and θ13 to be in the 3σ range; these
ansatze have also been numerically verified. In the case of a small spread for k we
quote only the value that accommodates well θ13 and the ratio r`;

• finally, the prediction for mass sum rules, phases and effective masses are drawn
when a natural expansion is possible.

In the following, we analyse more closely the relevant features of the sub-cases of each
Mechanisms. To facilitate the comparison among the different cases, at the end of the
sections we report two tables; the exact analytical predictions are highlighted in green.

3.3.1 Mechanism I

Field L H φν,1 φν,5

A5 3 1 1 5

Table 3.1: Quantum numbers of the fields involved in Mechanism I.

The effective lagrangian responsible for the neutrino masses is

L eff = y1

[
[(LH)2]1φν,1

]
1

Λ2
+ y5

[
[(LH)2]5φν,5

]
1

Λ2
. (3.28)

The quantum number of the matter, Higgs and flavon fields are reported in Tab. 3.1.
Since the lepton fields L are in the same representation of A5 only the contributions from
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singlet and pentaplet flavons are relevant in the lagrangian ([L ⊗ L]3 = (0, 0, 0)T ). The
Yukawa couplings are real, assuming our convention for the Clebsch-Gordan coefficients,
see Appendix C for further details. After symmetry breaking (flavour and electroweak),
we obtain a mass matrix Mν for the neutrinos of the same form as in Eq. (3.3) with

s ≡ y1
v1

Λ
(3.29)

(contribution from the flavon singlet) and

x ≡ −y5
xr,2
Λ

√
2

3
y ≡ −y5

xi
Λ

√
2

3
z ≡ −y5

xr
Λ

√
2

3
. (3.30)

(contributions from the pentaplet). We notice that the parameter y comes from the pure
imaginary part of the vev of the flavon in the representation 5. The absolute mass scale
in this model can be set as

m0 ≡
〈H〉2

Λ
. (3.31)

Here 〈H〉2 = 174 GeV is the Higgs vacuum expectation value and Λ is the UV cutoff scale.
In the case of m0 = O(1) eV, the cutoff Λ is of order Λ = O(1013) GeV.

3.3.1.1 Mechanism I: z = 0

The reactor mixing angle, up to O(y2), is given by

sin2 θ13 =
1 + ϕ

4

y2

x2
+O(y4). (3.32)

The mass spectrum at NLO is

m1 = m0

∣∣∣∣s+ x+
3

4x
(2 + ϕ)y2 +O(y4)

∣∣∣∣ (3.33a)

m2 = m0 |s+ x| (3.33b)

m3 = m0

∣∣∣∣s− 2x− 3

4x
(2 + ϕ)y2 +O(y4)

∣∣∣∣ . (3.33c)

We can now obtain a sum rule Σ for the complex masses m̃j up to O
(
sin4 θ13

)
, which reads

Σ ≡ m̃1 − m̃2 + (3− ϕ) (m̃3 − m̃2) sin2 θ13 +O
(
m sin4 θ13

)
(3.34)

where the factor m is just the dimension scaling of the sum rule. From the mass spectrum,
Eq. (3.33), we derive that IO is excluded and only the NO is acceptable for the mass
spectrum, provided that x > 0 ∧ s < −x or x < 0 ∧ s > −x.
Using the mass spectrum (3.33) we are able to predict the Majorana phases: under the
assumption m1 > 0, we have α = 0 and β = 0.
The ratio between the solar and atmospheric mass-squared differences is given by

r1 =
2(3− ϕ)(s+ x)

(2s− x)
sin2 θ13 +O(sin4 θ13). (3.35)

where we used the relation defined in (3.32). To reproduce the experimental value of r1,
we find that the linear relation s = kx, with k = −20 is quite a good ansatz. Consequently,

r1 = 1.28 sin2 θ13 +O(sin4 θ13) (3.36)
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giving r1 = 0.031 at θbf . It is important to observe that the previous correlation between s
and x has been derived using the perturbative expansion in Eq. (3.35); however, it is well
possible that this relation could be modified by higher order effects and/or cancellations
between NLO and N2LO terms, visible in the numerical scan where all parameters are
free and no correlation is imposed (see later). For this particular case, it turns out that
k = −6 and k → −103 also give good values of r1:

r1 =


1.38 sin2 θ13 +O(sin4 θ13) s = −103x

1.06 sin2 θ13 +O(sin4 θ13) s = −6x
(3.37)

For k = −6 we need a large value of θ13 in order to obtain a compatible value for r1, while
assuming k = −103 the best fit point of θ13 gives r1 = 0.030, in good agreement with the
experimental data. Notice that the case k = −103, obtained in our numerical analysis is
a good approximation for k → −∞, which corresponds to the limit of degenerate mass
spectrum mj/m0 = |s|+O(y2).
The sum of the neutrino masses is proportional to a non-trivial combination of the ratio
r1 and θ13

∑
j

mj '

√
∆m2

21

5 sin2 θ13 − r1(ϕ+ 2)

r1 sin2 θ13

r1(ϕ+ 1) + 2 sin2 θ13(ϕ+ 2)

2
[
5ϕ sin2 θ13 − r1(3ϕ+ 1)

] (3.38)

which implies a lower bound
∑

jmj & 0.155 eV.
Using the ansatz s = kx, our estimates for mβ and mββ are:

mβ =

√
−∆m2

31(k + 1)2

6k − 3

[
1 +

1

2

(
9

(k + 1)2
+ 2ϕ− 6

)
sin2 θ13 +O(sin4 θ13)

]
(3.39)

which, taking into account the best fit values of the observables and the range of the
allowed values of k, derived in (3.37), translates into the bound

3.86× 10−2 eV . mβ . 6.20× 10−1 eV , (3.40)

and

mββ = −

√
∆m2

31

3− 6k
(k + 1)

[
1− (3− ϕ) sin2 θ13 +O(sin4 θ13)

]
(3.41)

from which

3.85× 10−2 eV . mββ . 6.20× 10−1 eV . (3.42)

In particular, for k = −20 we have mβ ' mββ ' 8.24× 10−2 eV.

3.3.1.2 Mechanism I: x = 0

For this case we have

sin2 θ13 =
y2

z2
+O(y4). (3.43)

At LO the mass spectrum is

m1 = m0

∣∣∣∣s+
1

2
(3ϕ− 1)z +O(y2)

∣∣∣∣ (3.44a)

m2 = m0

∣∣∣∣s− (3ϕ

2
− 1

)
z

∣∣∣∣ (3.44b)
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m3 = m0

∣∣∣∣12(2s− z) +O(y2)

∣∣∣∣ (3.44c)

which implies the following mass sum rule for the complex neutrino masses m̃j

Σ = m̃1 + (ϕ+ 1)m̃2 − (ϕ+ 2)m̃3 +O(m sin2 θ13) (3.45)

where m is a dimensionful factor needed to correctly reproduce the right dimension of Σ.
The solar mass difference is

∆m2
21/m

2
0 = −3(2ϕ− 1)

4
z(4s+ z)− 3

s(4ϕ− 2) + (ϕ+ 7)z

2z
y2 +O

(
y4
)
. (3.46)

Eq. (3.46) tells us that although the condition z = −s/4 makes zero the LO term it also
causes negative coefficients of the y2 terms in the expansion of the mass differences, for
any value of the model parameters. Thus, the positiveness of the solar mass difference
can only be obtained invoking a cancellation between LO and NLO terms. In particular,
we get that only IO is allowed for this case, provided that z > 0∧−z(ϕ+ 3)/4ϕ < s < −z/4
or z < 0 ∧ −z/4 < s < −z(ϕ+ 3)/4ϕ.
The Majorana phases could be predicted using the condition for a definite mass spectrum
and Eq. (3.44) with the additional condition m1 > 0. We have α = π and β = π.
The expression for r2 as a function of θ13 is given by

r2 = − (2ϕ− 1)(4s+ z)

4s(ϕ− 1) + (ϕ− 4)z
+

4
(
4s2(ϕ− 8) + s(11− 7ϕ)z − 2(ϕ− 8)z2

)
(4s(ϕ− 1) + (ϕ− 4)z)2

sin2 θ13 +O
(
sin4 θ13

)
(3.47)

and the ansatz s ' −0.3z provides a good choice to reproduce the experimental value of
r2

1, r2 ' −0.14 + 4.33 sin2 θ13 ∼ −0.040 for sin2 θ13 = 2.19 × 10−2. Also in this case, we
have observed that the coefficient of the (undisplayed) sin4 θ13 term can be as large as
∼ +8, thus the corrections to the previous relations can be important and can partially
destroy the correlation found above. For example, for θ = θbf , the N2LO computation gives
r2 = −0.034, a roughly 10% correction to the pure O(sin2 θ13) contribution.
Using the relations derived above and the correlation between s and z we obtain for the
sum of the neutrino masses∑

j

mj =
√
−∆m2

32

[
2.71 + 7.49 sin2 θ13 +O(sin4 θ13)

]
' 1.42× 10−1 eV. (3.48)

For mβ and mββ we get

mβ '
√
−∆m2

32

[
1.08 + 2.40 sin2 θ13 +O(sin4 θ13)

]
' 5.61× 10−2 eV (3.49)

mββ '
√
−∆m2

32

[
0.46 + 0.52 sin2 θ13 +O(sin4 θ13)

]
' 2.32× 10−2 eV (3.50)

where we used the best fit values of ∆m2
32 and θ13 [45].

3.3.1.3 Mechanism I: s = 0

The expression of tan 2θ is the same as the one quoted in Eq. (3.4) (since this does not
depend on s) and the reactor mixing angle θ13 fulfills Eq. (3.5) with the same sin2 θ defined

1The other solution for k gives s ' 0.9z. However this solution reproduces the wrong sign of the solar
mass difference, thus we exclude this possibility.
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in (3.8). The mass eigenstates can be expressed at LO as

m1 = m0

∣∣∣∣x+
1

2
(3ϕ− 1)z +O(y2)

∣∣∣∣ (3.51a)

m2 = m0

∣∣∣∣x− (3ϕ

2
− 1

)
z

∣∣∣∣ (3.51b)

m3 = m0

∣∣∣∣−1

2
(4x+ z) +O(y2)

∣∣∣∣ . (3.51c)

We have at LO the following exact mass sum rule for the complex neutrino masses m̃j

Σ = m̃1 + m̃2 + m̃3. (3.52)

For NO, imposing m2 > m1 and m3 > m2 we get x < 0 ∧ 0 < z < −2x/ϕ or x > 0 ∧ −2x/ϕ <
z < 0, which tell us that the z parameter can be vanishingly small. Since there are no
natural symmetry arguments behind this possibility, we will not discuss it more in detail.
For IO, imposing again m2 > m1 but m3 < m1 we obtain x < 0 ∧ −2x/ϕ < z < −4x or
x > 0 ∧−4x < z < −2x/ϕ, that, for a generic value of the x variable, does not set a strong
restriction on the magnitude of z.
The Majorana phases are independent from the perturbative expansion and for NO (IO)
are given by α = 0 and β = π (α = π and β = 0). From the sum rule Σ defined in (3.52) and
assuming the best fit values for the solar and atmospheric squared-mass differences, we
get in the case of NO mmin = m1 = 2.77× 10−2 eV, and for IO mmin = m3 = 7.64× 10−4 eV.
The ratio r2 is

r2 = − (2ϕ− 1)z(4x+ z)

4x2 + 4ϕxz + (ϕ− 4)z2
+

+
4
(
2x2 + xz + 2z2

) [
4(ϕ− 2)x2 − 4(ϕ− 1)xz − z2

]
[(8ϕ+ 6)x− (13ϕ+ 6)z]

[4x2 + 4ϕxz + (ϕ− 4)z2]2 (2(ϕ+ 1)x+ 2ϕz + z)
sin2 θ13 +O

(
sin4 θ13

)
.

(3.53)

The good ansatz in this case is x = kz with k ' −3/10. For the sake of completeness, we
also quote here the expression of θ13

sin2 θ13 =
25(39ϕ+ 34)

961

y2

z2
+O(y4) x = − 3

10
z (3.54)

from which we learn that y/z ∼ ±1/10 must be fulfilled in order to reproduce the best fit
value of θ13. In this limit the ratio r2 is given by

r2 ' −0.11 + 2.33 sin2 θ13 +O(sin4 θ13) (3.55)

thus in the 3σ CL region of experimental parameter space for θ ∼ θbf . Using the relations
among x, y and z discussed above, the sum of the neutrino masses can be expressed as∑

j

mj '
√
−∆m2

32

[
2.00− 0.14 sin2 θ13 +O(sin4 θ13)

]
' 9.9× 10−2 eV (3.56)

whereas for mβ and mββ we have

mβ '
√
−∆m2

32

[
0.96 + 0.34 sin2 θ13 +O(sin4 θ13)

]
' 4.79× 10−2 eV (3.57)

and

mββ '
√
−∆m2

32

[
0.41 + 0.03 sin2 θ13 +O(sin4 θ13)

]
' 2.01× 10−2 eV , (3.58)

where the numerical estimates are obtained for ∆m2
32 = −2.449 × 10−3 eV2 and sin2 θ13 =

2.19× 10−2.
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3.3.1.4 Mechanism I: summary tables

In this Section, we report all previous results in two different tables, to facilitate the
comparison of the physics implied by the three cases analysed above. In particular, in
Tab. 3.2 we report, for the allowed mass ordering, the predictions for the group theory
parameter θ, the reactor angle and CP Majorana phases for Mechanism I. In Tab. 3.3,
instead, we outline our results for the neutrino mass sum rules, for which we give the
coefficients a, b and c of the complex masses m̃j , for the assumed form Σ(a, b, c) = am̃1 +
bm̃2 + cm̃3, and, given the somehow intricate analytical structure, the central numerical
values of the sum of the neutrino masses and the effective masses mβ and mββ (for
the case z = 0 instead we give a lower bound for

∑
jmj and an interval for the effective

masses because the N2LO terms in the expression of the ratio r1 turn out to be particularly
important).

z = 0 x = 0 s = 0

ordering NO IO both
tan 2θ

√
ϕ+ 2

y

x
2
√

3− ϕy
z

Eq. (3.4)

sin2 θ13
1 + ϕ

4

y2

x2

y2

z2

25(39ϕ+ 34)

961

y2

z2

(α, β) (0, 0) (π, π) (0, π), (π, 0)

Table 3.2: Leading order predictions for the group theory parameter θ, mixing
angles and CP phases for Mechanism I. In the first line we also report the allowed
ordering of the neutrino masses. The two values for (α, β) in the case s = 0 refer
to NO and IO, respectively.

z = 0 x = 0 s = 0 - IO

Σ(a, b, c) (1,−1 + (ϕ− 3)s2
13, (3− ϕ)s2

13) (1, ϕ+ 1,−(2 + ϕ)) (1, 1, 1)∑
jmj [eV] & 0.155 0.14 9.90× 10−2

mβ [eV]
[
3.86× 10−2, 6.20× 10−1

]
5.61× 10−2 4.79× 10−2

mββ [eV]
[
3.85× 10−2, 6.20× 10−1

]
2.32× 10−2 2.01× 10−2

Table 3.3: Leading order predictions for the neutrino mass sum rules and the nu-
merical values of the sum of the neutrino masses and the effective masses mβ and
mββ for Mechanism I. Here s213 is a short-hand notation for sin2 θ13.

3.3.2 Mechanism II a-1

This section is devoted to the Type I see-saw mechanism with the lepton doublet and νc

in the same A5 representation and a trivial Dirac mass matrix. The quantum numbers
of the matter, Higgs and flavon fields are reported in Tab. 3.4. With this assignment, the

Field L νc H φν,1 φν,5

A5 3 3 1 1 5

Table 3.4: Quantum numbers of the fields involved in Mechanism II a-1.
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Dirac mass matrix MD is as simple as

MD = mDP23 , (3.59)

where the matrix P23 is defined in (2.50) and mD ≡ yD〈H〉, yD is the Yukawa coupling and
〈H〉 is the Higgs vev. Assuming a Yukawa coupling of order one, the Dirac mass term is
naturally of order O(102) GeV. The Majorana lagrangian is given by 2

LM =
1

2

{
y1

[
(νcνc)1φν,1

]
1

+ y5

[
(νcνc)5φν,5

]
1

}
+ h.c. (3.60)

and gives rise to a mass matrix with the same form of Mν defined in (3.3). In order to
avoid confusion we call with capital letters (S,X, Y and Z) the parameter of the heavy
Majorana mass matrix. The absolute scale of the mass matrix is an arbitrary parameter
that can be chosen as the scale of heavy Majorana particles. The matrix is

MM = v


S +X + Z

3

2
√

2
(Z + iϕY )

3

2
√

2
(Z − iϕY )

3

2
√

2
(Z + iϕY )

3

2
(X + iY ) S − X + Z

2
3

2
√

2
(Z − iϕY ) S − X + Z

2

3

2
(X − iY )

 (3.61)

where

v ≡ max
{
|y1v1|, |y5xr|, |y5xr,2|, |y5xi|

}
∼ O(1013) GeV (3.62)

and

S ≡ y1
v1

v
(3.63)

which is the contribution from the flavon in representation 1, and

X ≡ −y5
xr,2
v

√
2

3
Y ≡ −y5

xi
v

√
2

3
Z ≡ −y5

xr
v

√
2

3
. (3.64)

which are the contributions from the pentaplet.
The mass of the light neutrinos can be computed using the see-saw relation

Mν = −MT
DM

−1
M MD = −(M−1

M )?m2
D. (3.65)

The parameters of MM can be related to those of Mν by

s =
v3

4 detMM

[
4S2 − 4X2 − 6Y 2 − 2XZ − 4Z2 − 3Y 2ϕ

]
(3.66a)

x = − v3

4 detMM

[
4SX + 4X2 + 4XZ + 3(Y 2 − Z2 + Y 2ϕ)

]
(3.66b)

y = − v3

2 detMM
Y
[
2S + 2X + Z(2− 3ϕ)

]
(3.66c)

z =
v3

2 detMM

[
− 2SZ + 4XZ + Z2 + 3Y 2ϕ

]
(3.66d)

where the neutrino mass scale m0 is

m0 ≡
m2
D

v
(3.67)

2It is always possible to add in the Majorana lagrangian a direct mass term M . However the net effect is
to rescale the coupling of the flavon in the representation 1 as y1φν,1 → M + y1φν,1. Thus the parameter S
change as S → S +M/v.
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and the determinant of the Majorana mass matrix reads

detMM =
v3

8

[
− 8S3 + 6S

(
4X2 + 2XZ + 3(ϕ+ 2)Y 2 + 4Z2

)
+ 16X3+

+ 12X2Z + 6X
(
3(ϕ+ 2)Y 2 − 7Z2

)
− 63ϕY 2Z + 9Y 2Z − 11Z3

]
. (3.68)

The scaling of the dimensionless parameters in Mν is O(1) since the parameters of MM

are by construction . 1. The condition for detMM 6= 0, which gives us a constrain on the
parameters S,X, Y and Z, guarantees the existence of M−1

M .

The neutrino mass matrix Mν can be diagonalized using UPMNS of Case II with the addi-
tional condition on tan 2θ

tan 2θ =
2
√

11ϕ+ 7Y [2S + 2X − (3ϕ− 2)Z]

2S(2(ϕ+ 1)X + 2ϕZ + Z) + 4(ϕ+ 1)X2 − 4ϕXZ − (5ϕ+ 4)Z2
(3.69)

where we notice that, with respect to the Weinberg operator, also the contribution from
the singlet S appears. The expression for sin2 θ13 is the same as Eq. (3.5).
The light neutrino masses are fixed by the form of UPMNS; therefore we have formally the
same expressions for the neutrino mass of the Weinberg operator, defined in (3.10) but
with the parameters s, x, y and z now defined in (3.66). The spectrum of the heavy Majo-
rana neutrinos are formally the same as those in (3.10) but evaluated with the parameters
S,X, Y and Z.

3.3.2.1 Mechanism II a-1: Z = 0

The condition Z = 0 is equivalent to have z ∼ 0 in the light neutrino mass matrix Mν ,
because z = O(Y 2) = O(x2

i /v
2), see (3.66). In this particular limit the relations for tan 2θ

and θ13 are the same as Mechanism I with z = 0 with the replacement y → Y and x→ X

sin2 θ13 =
1 + ϕ

4

Y 2

X2
+O(Y 4). (3.70)

The neutrino mass spectrum at LO can be obtained from (3.33) with the transformation
mj → m−1

j . The spectrum is

m1 = m0

∣∣∣∣− 1

S +X
+O(Y 2)

∣∣∣∣ (3.71a)

m2 = m0

∣∣∣∣− 1

S +X

∣∣∣∣ (3.71b)

m3 = m0

∣∣∣∣− 1

S − 2X
+O(Y 2)

∣∣∣∣ . (3.71c)

We have the following mass sum rule for the complex masses m̃j at NLO

Σ =
1

m̃1
− 1

m̃2
+ (3− ϕ)

(
1

m̃3
− 1

m̃2

)
sin2 θ13 +O

(
m−1 sin4 θ13

)
(3.72)

where the factor m−1 is necessary to correctly reproduce the right mass dimension. Notice
that we need to include the NLO contributions because at LO m1 and m2 are degenerate
(we have (m−1

2 −m
−1
1 )m0 ∝ sin2 θ13).

Using the mass spectrum (3.71) we get that both NO and IO are allowed in this limit,
provided that X > 0 ∧ (X/2 < S < 2X ∨ S > 2X) or X < 0 ∧ (S < 2X ∨ 2X < S < X/2) and
X > 0 ∧ (−X < S < X/2) or X < 0 ∧ (X/2 < S < −X), respectively.
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The value of the ratio r`, for both orderings, is given by

r` =
2(3− ϕ)(S − 2X)2

(2S −X)(S +X)
sin2 θ13 +O

(
sin4 θ13

)
. (3.73)

As before, the ansatz S = kX in the previous expression is used to correctly reproduce
the best fit value of r` and θ13; we get two possible solutions: S ' X and S ' 44X For the
first case, S = X , we obtain at LO m1/m2 ∼ 1 and m3/m2 ∼ 2 and non-trivial Majorana
phases α = 0 and β = π . Using the relations derived above and the relation between S
and X the sum of the neutrino masses can be expressed as

∑
j

mj =

√
∆m2

31

3

[
4 +

13

2

√
5(2− ϕ) sin2 θ13 +O(sin4 θ13)

]
' 1.12× 10−1 eV. (3.74)

The effective masses are predicted to be

mβ =

√
∆m2

31

3

[
1− 7

2
(ϕ− 3) sin2 θ13 +O(sin4 θ13)

]
' 3.16× 10−2 eV (3.75)

mββ =

√
∆m2

31

3

[
1− 1

2
(12− 7ϕ) sin2 θ13 +O(sin4 θ13)

]
' 2.88× 10−2 eV (3.76)

where we used the explicit expression of the masses and the values of the Majorana
phases, and in the numerical prediction we use the best fit values for θ13 and ∆m2

31.
Now we consider the case S = 44X ; a large value of S can be achieved if a direct mass
term for the heavy neutrinos is possible, which means M/v = O(10). This scenario is
less interesting from the phenomenology point of view because the mass spectrum is
quasi-degenerate; in fact, from (3.71) we have mj/m0 = |S−1|+O(Y 2). Using ∆m2

31 we can
express the sum of the neutrino masses as

∑
j

mj &
945

22

√
∆m2

31

29
' 0.38 eV (3.77)

which is still marginally compatible with the PLANCK data only (which imply
∑

jmj ≤
0.590 eV @ 95% CL) but not with the CMB ⊕ BAO data [53] (which give

∑
jmj ≤ 0.230 eV

@ 95% CL). Both Majorana phases are vanishing α = 0 and β = 0, whereas simple expres-
sions mβ and mββ can be obtained

mβ =
1

420

√
∆m2

31

29

[
5580 +

1

2
(5908ϕ− 17681) sin2 θ13 +O(sin4 θ13)

]
' 1.25× 10−2 eV (3.78)

mββ =
1

15

√
∆m2

31

29

[
210 +

1

2
(211ϕ− 632) sin2 θ13 +O(sin4 θ13)

]
' 1.25× 10−2 eV . (3.79)

Being mββ '
∑

jmj/3, we have a lower bound mββ & 0.12 eV.
The case of IO requires S, X and Y at the same order of magnitude; thus we will not
consider such a possibility any more.

3.3.2.2 Mechanism II a-1: X = 0

Under the assumption of vanishing X the equation for sin2 θ13, Eq. (3.5), can be obtained
from Mechanism I, x = 0, with the redefinition y → Y and z → Z

sin2 θ13 =
Y 2

Z2
+O(Y 4). (3.80)
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The light neutrino masses at LO are related to the spectrum (3.44) with the redefinition
mj → m−1

j

m1 = m0

∣∣∣∣− 2

2S + (3ϕ− 1)Z
+O(Y 2)

∣∣∣∣ (3.81a)

m2 = m0

∣∣∣∣− 2

2(S + Z)− 3ϕZ

∣∣∣∣ (3.81b)

m3 = m0

∣∣∣∣− 2

2S − Z
+O(Y 2)

∣∣∣∣ . (3.81c)

In this case the sum of the complex masses m̃j is

Σ =
1

m̃1
+

1 + ϕ

m̃2
− ϕ+ 2

m̃3
+O(m−1 sin2 θ13). (3.82)

where the parameter m−1 is necessary to reproduce the correct mass dimension. The
expressions for the mass-squared differences and the related ratio r` are quite cum-
bersome. From the ratios m1/m2 and m3/m2 we deduce that only the NO is allowed if
Z > 0 ∧ (3ϕ − 1)Z/4 > S > −Z/4 or (3ϕ − 1)Z/4 < 0 ∧ Z < S < −Z/4. The experimental
value of the (undisplayed) ratio r1 is reproduced with the ansatz S = kZ for three dif-
ferent values of the real parameter k, that is k ' 1/3, k ' −1/4 and k ' 2/3. (The case
k ' −1/4 leads a natural suppression of the solar mass splitting.) Accordingly, we obtain
m1/m2 ∼ 1/2 and m3/m2 ∼ 13/2 for S = Z/3, m1/m2 ∼ 1 and m3/m2 ∼

√
5 for S = −Z/4

and we have m1/m2 ∼ 1/3 and m3/m2 ∼ 9/2 for S = 2Z/3.
The Majorana phases are fixed by (3.81) and the mass ordering. In the case S/Z ∼ 1/3
and S/Z ∼ −1/4 we get α = π and β = π while in the case S/Z ∼ 2/3 we obtain α = π and
β = 0.
Also for

∑
jmj , mβ and mββ we can drawn three different predictions (obtained using the

best fit values of atmospheric mass difference and the reactor mixing angle). For S = Z/3
we have ∑

j

mj =
√

∆m2
31

[
1.23 + 4.58 sin2 θ13 +O(sin4 θ13)

]
' 6.59× 10−2 eV (3.83)

mβ =
√

∆m2
31

[
0.10 + 6.91 sin2 θ13 +O(sin4 θ13)

]
' 1.26× 10−2 eV (3.84)

and

mββ =
√

∆m2
31

[
−0.011 + 0.93 sin2 θ13 +O(sin4 θ13)

]
' 4.49× 10−4 eV. (3.85)

In the case S = −Z/4 we obtain

∑
j

mj =
√

∆m2
31

[
1 + 2ϕ

2
+ (9ϕ− 5) sin2 θ13 +O(sin4 θ13)

]
' 1.11× 10−1 eV (3.86)

mβ =
1

10

√
∆m2

31

[
5 + (23ϕ− 9) sin2 θ13 +O(sin4 θ13)

]
' 2.78× 10−2 eV (3.87)

mββ =
1

10

√
∆m2

31

[
2ϕ− 1 + (13ϕ− 9) sin2 θ13 +O(sin4 θ13)

]
' 9.78× 10−3 eV. (3.88)

Finally for S = 2Z/3 we have∑
j

mj =
√

∆m2
31

[
1.23− 5.91 sin2 θ13 +O(sin4 θ13)

]
' 5.73× 10−2 eV (3.89)

mβ =
√

∆m2
31

[
0.13 + 1.30 sin2 θ13 +O(sin4 θ13)

]
' 7.74× 10−3 eV (3.90)

and

mββ =
√

∆m2
31

[
−0.014 + 1.16 sin2 θ13 +O(sin4 θ13)

]
' 5.63× 10−4 eV. (3.91)
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3.3.2.3 Mechanism II a-1: S = 0

In this limit the reactor mixing angle becomes

sin2 θ13 =
(8ϕ+ 5)[2X + (2− 3ϕ)Z]2

[−4(ϕ+ 1)X2 + 4ϕXZ + (5ϕ+ 4)Z2]2
Y 2 +O(Y 4) . (3.92)

Neglecting accidental cancellation in the numerator, we then expect |Y | � |X|, |Z|. We
can obtain the LO expressions for the light neutrino masses

m1 = m0

∣∣∣∣− 2

2X + (3ϕ− 1)Z
+O(Y 2)

∣∣∣∣ (3.93a)

m2 = m0

∣∣∣∣− 2

2X + (2− 3ϕ)Z

∣∣∣∣ (3.93b)

m3 = m0

∣∣∣∣ 2

4X + Z
+O(Y 2)

∣∣∣∣ . (3.93c)

The sum for the complex masses m̃j gives the exact (to all orders) sum rule

Σ =
1

m̃1
+

1

m̃2
+

1

m̃3
. (3.94)

From the mass spectrum (3.93) we observe that both orderings are in principle allowed: NO
if Z > 0∧−Z/4 < X < −ϕZ/2 or Z < 0∧−ϕZ/2 < X < −Z/4 and IO for Z < 0∧ 2(X +Z) <
3ϕZ or Z > 0∧ 2(X +Z) > 3ϕZ. Within this articulated parameter space, the limits X → 0
and Z → 0 give a particular simple expression for the ratio m3/m2:

m3

m2
=

∣∣∣∣− 4X + Z

2X + (2− 3ϕ)Z
+O(Y 2)

∣∣∣∣→ {
1/2 Z → 0
3ϕ− 2 X → 0

(3.95)

so that X could be the smallest parameter in the case of NO while Z could be the smallest
one for IO; however, there is no clear symmetry argument behind these possibilities that
will not be addressed in the following. The Majorana phases are exact and are fixed by
the mass spectrum and the explicit form of (3.93). In the case of NO we have α = π and
β = π while for IO we get α = 0 and β = π.
Using the value of the Majorana phases we are able to obtain a prediction for the lightest
neutrino mass mmin from the sum rule Σ defined in (3.94). Assuming the best fit values
for the solar and atmospheric squared mass differences (see Tab. 1.1) we obtain mmin =
m1 = 1.09× 10−2 eV for NO and mmin = m3 = 2.84× 10−2 eV for IO.

3.3.2.4 Mechanism II a-1: summary tables

In this Section, we classify all previous results in two different tables: in Tab. 3.5 the
allowed mass ordering, the predictions for the internal angle θ, sin2 θ13 and the CP Majo-
rana phases. In Tab. 3.6 we summarize our results for the neutrino mass sum rules, for
which we give the coefficients a, b and c of the complex masses m̃i, for the assumed form
Σ(a, b, c) = a m̃−1

1 + b m̃−1
2 + c m̃−1

3 , and the numerical values of
∑

j mj and the effective
masses mβ and mββ .

3.3.3 Mechanism II a-2

The cases contemplated here involve a trivial structure of the Majorana mass matrix and
a more complicated Dirac mass matrix. The quantum numbers of the matter, Higgs and
flavon fields are summarized in Tab. 3.7. The lagrangian responsible for the Dirac mass
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Z = 0 X = 0 S = 0

ordering both NO both

tan 2θ
√
ϕ+ 2

Y

X
2
√

3− ϕY
Z

− 2
√

11ϕ+ 7[(3ϕ− 2)Z − 2X]Y

4(ϕ+ 1)X2 − 4ϕXZ − (5ϕ+ 4)Z2

sin2 θ13
1 + ϕ

4

Y 2

X2

Y 2

Z2
Eq. (3.92)

(π, π) (S ' Z/3 and S ' −Z/4)
(α, β) (0, π)

(π, 0) (S ' 2Z/3) (π, π), (0, π)

Table 3.5: Same as Tab. 3.2 but for Mechanism II a-1. The two values for (α, β) in
the case S = 0 refer to NO and IO, respectively.

Z = 0 - NO X = 0 S = 0

Σ(a, b, c) (1,−1 + (ϕ− 3)s2
13, (3− ϕ)s2

13) (1, ϕ+ 1,−(2 + ϕ)) (1, 1, 1)
0.11 (S ' X) 6.59× 10−2 (S ' Z/3)

& 0.38 (S ' 44X) 0.11 (S ' −Z/4)
∑

jmj [eV]

5.73× 10−2 (S ' 2Z/3)
-

3.16× 10−2 (S ' X) 1.26× 10−2 (S ' Z/3)
1.25× 10−2 (S ' 44X) 2.78× 10−2 (S ' −Z/4)mβ [eV]

7.74× 10−3 (S ' 2Z/3)
-

2.88× 10−2 (S ' X) 4.49× 10−4 (S ' Z/3)
1.25× 10−2 (S ' 44X) 9.78× 10−3 (S ' −Z/4)mββ [eV]

5.63× 10−4 (S ' 2Z/3)
-

Table 3.6: Same as Tab. 3.3 but for Mechanism II a-1.

Field L νc Hu φν,1 φν,3 φν,5

A5 3 3 1 1 3 5

Table 3.7: Quantum numbers of the fields involved in Mechanism II a-2.

matrix is

LD = Y1(νcL)1Hu + y1

[
(νcL)1

φν,1
Λ

]
1
Hu + y3

[
(νcL)3

φν,3
Λ

]
1
Hu + y5

[
(νcL)5

φν,5
Λ

]
1
Hu + h.c.

(3.96)

where Λ is the UV cutoff and the Yukawa couplings are real with our convention for the
Kronecker products, see Appendix C. A direct mass term in the previous lagrangian can
also be introduced; being proportional to the Yukawa coupling Y1, we simply redefine this
coupling. For the Majorana mass matrix MM we have

MM = MP23 (3.97)

where the matrix P23 is defined in (2.50). The heavy Majorana particles are degenerated
in this framework. After the flavour and electroweak symmetry breakings we obtain a
mass matrix for the Dirac neutrinos

MD = M1
D +M3

D +M5
D (3.98)
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where the matrices have the following form

M1
D = 〈H〉

(
y1
v1

Λ
+ Y1

)
P23 (3.99)

M3
D = i

y3〈H〉
Λ

v

 0 −1 1

1 0
√

2ϕ−1

−1 −
√

2ϕ−1 0

 (3.100)

M5
D =

y5〈H〉
Λ


−
√

2

3
(xr + xr,2) −

√
3

2
(xr + ixiϕ) −

√
3

2
(xr − ixiϕ)

−
√

3

2
(xr + ixiϕ) −

√
3

2
(ixi + xr,2)

xr + xr,2√
6

−
√

3

2
(xr − ixiϕ)

xr + xr,2√
6

√
3

2
(ixi − xr,2)

 . (3.101)

In order to reduce the number of parameters it is useful to introduce the following di-
mensionless quantities

f ≡ y1
v1

Λ
+ Y1 g ≡ y3

v

Λ
(3.102)

for the flavons φν,1 and φν,3. We also define

hr ≡ y5
xr
Λ

hr,2 ≡ y5
xr,2
Λ

hi ≡ y5
xi
Λ

(3.103)

for the vevs components in the representation 5 ∈ A5.
The neutrino mass matrix Mν can be obtained by

Mν = −MT
DM

−1
M MD = − 1

M
MT
DP23MD (3.104)

where we use the explicit expression for MM . The form of Mν is fixed by the symmetry,
thus it is equivalent to (3.3) with parameters

s =
1

3

[
4(ϕ− 3)g2 − 3f2 − 3(ϕ+ 2)h2

i − 4h2
r − 2hrhr,2 − 4h2

r,2

]
(3.105a)

x =
1

6ϕ

[
4ϕg2 + 4

√
3(ϕ+ 3)ghi + ϕ

(
4hr,2

(√
6f + hr,2

)
− 3h2

r + 4hrhr,2

)
+ (6ϕ+ 3)h2

i

]
(3.105b)

y =
1

3ϕ

[
hi

(
2ϕ
(√

6f + hr,2

)
− (ϕ+ 3)hr

)
− 2
√

3g(ϕhr + 2hr,2)
]

(3.105c)

z =
1

6

[
−8(ϕ− 1)g2 + 8

√
3ghi − 6ϕh2

i − 2hr

(
−2
√

6f + hr + 4hr,2

)]
. (3.105d)

The neutrino mass scale m0 is

m0 ≡
〈H〉2

M
(3.106)

that is m0 = O(1) eV. The relation between the vevs and θ can be expressed as

tan 2θ = −
√

58ϕ+ 36

{
2
√

6g(ϕhr + 2hr,2) + hi

(√
2(ϕ+ 3)hr − 2ϕ

(
2
√

3f +
√

2hr,2

))}
×

×
{

8
√

3g(7ϕ+ 4)hi + 2
√

6f [(5ϕ+ 3)hr + (6ϕ+ 4)hr,2]+

− (14ϕ+ 9)h2
r − (8ϕ+ 4)hrhr,2 + (12ϕ+ 8)h2

r,2

}−1

(3.107)

hence we notice that the parameters g and hi are relevant in the suppression of θ in order
to obtain a small value of the reactor mixing angle θ13, as shown in (3.5).
For this mechanism the Majorana phases are always vanishing, α = β = 0.
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3.3.3.1 Mechanism II a-2: hi = f = 0

We start considering a vanishing singlet vev, f = 0 and vanishing complex part of the
vev of the 5 representation, hi = 0. In this limit the reactor angle is then

sin2 θ13 =
12(21ϕ+ 13)g2

[hr(9ϕ+ 5)− 2hr,2(3ϕ+ 2)]2
+O(g4). (3.108)

The mass spectrum at LO is

m1 = m0

∣∣∣∣−1

6
((1− 3ϕ)hr − 2hr,2)2 +O(g2)

∣∣∣∣ (3.109a)

m2 = m0

∣∣∣∣−1

6
((3ϕ− 2)hr − 2hr,2)2

∣∣∣∣ (3.109b)

m3 = m0

∣∣∣∣−1

6
(hr + 4hr,2)2 +O(g2)

∣∣∣∣ (3.109c)

hence the following sum rule at LO for the complex masses m̃j is fulfilled

Σ = (m̃1 + m̃2 − m̃3)2 − 4m̃1m̃2 +O(m2 sin2 θ13) (3.110)

where m is a dimensionful parameter needed for consistency. Notice that the undisplayed
coefficient of order sin2 θ13 is proportional to hr+4hr,2 ∝

√
m3/m0 hence we expect that the

sum rule works better in the case of IO.
The solar mass-squared difference is

∆m2
21/m

2
0 = − 1

12
(2ϕ− 1)hr(hr + 4hr,2)

(
23h2

r + 4hrhr,2 + 8h2
r,2

)
+O(g2) (3.111)

therefore a natural suppression is expected for hr ∼ 0 or for hr ∼ −4hr,2. The second case
is related to IO, because in this limit m3/m2 ∼ 0, see (3.109c). Similar relations can be
obtained for the atmospheric mass differences, which depend on a different combination of
hr and hr,2 than that shown by the solar mass difference; we then expect r` ∝ hr(hr+4hr,2).
In this case both hierarchies are allowed: NO if hr,2 < 0 ∧ 0 < hr < 2(2 − 3ϕ)hr,2/11 or
hr,2 > 0 ∧ 2(2 − 3ϕ)hr,2/11 < hr < 0 and IO if hr,2 < 0 ∧ (2− 2ϕ)hr,2 < hr < −4hr,2 or
hr,2 > 0 ∧ −4hr,2 < hr < (2− 2ϕ)hr,2.
If we assume that hr ∼ 0 (NO) we obtain for the reactor mixing angle

sin2 θ13 = 3
g2

h2
r,2

+O(g4) hr = 0 (3.112)

thus we expect g/hr,2 ∼ ±1/10 in order to recover the best fit value sin2 θ13 = 2.19 × 10−2.
In this limit we have m1/m2 ∼ 1 and m3/m2 ∼ 4. Assuming instead hr = −4hr,2 (IO), we
have

sin2 θ13 =
1

15

g2

h2
r,2

+O(g4) hr = −4hr,2 (3.113)

therefore we expect that g/hr,2 ∼ ±1/2. In this limit we also expect that m1/m2 ∼ 1 and
m3/m2 ∼ 0.
We can estimate

∑
jmj , mβ and mββ . We obtain for NO

∑
j

mj =
√

∆m2
31

[
2

√
3

5
+

26(ϕ− 1)

5
√

3
sin2 θ13 +O(sin4 θ13)

]
' 7.48× 10−2 eV (3.114)

mβ =
1

10

√
∆m2

31

3

[
4ϕ− 2 + (1 + 10ϕ) sin2 θ13 +O(sin4 θ13)

]
' 1.39× 10−2 eV (3.115)
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and

mββ =
1

5

√
∆m2

31

3

[
2ϕ− 1− (4ϕ− 5) sin2 θ13 +O(sin4 θ13)

]
' 1.26× 10−2 eV (3.116)

where in the numerical evaluation we used the best fit values of ∆m2
31 and θ13 [45]. A

similar analysis can be done for IO; we obtain∑
j

mj =
√
−∆m2

32

[
2 + 2(3− ϕ) sin2 θ13 +O(sin4 θ13)

]
' 1.02× 10−1 eV (3.117)

mβ =
√
−∆m2

32

[
1 +

3

2
sin2 θ13 +O(sin4 θ13)

]
' 5.11× 10−2 eV (3.118)

and

mββ =
√
−∆m2

32

[
1 + sin2 θ13 +O(sin4 θ13)

]
' 5.06× 10−2 eV. (3.119)

3.3.3.2 Mechanism II a-2: hi = hr = 0

The second possibility we explore is the case where, beside hi = 0, one of the real vev
of φν,5 is null, hr = 0. This case is quite similar to the Weinberg operator with z = 0
discussed in Sec. 3.3.1.1, because the mass matrix parameter z is almost close to zero (in
fact z = O(g2), see (3.105d)). The reactor mixing angle as a series in g has the following
leading contribution

sin2 θ13 =
3g2[√

6f + hr,2
]2 +O(g4). (3.120)

In the limit |g| � |f |, |hr,2| we can obtain the mass spectrum at LO

m1 = m0

∣∣∣∣−1

3

(√
3f −

√
2hr,2

)2
+O(g2)

∣∣∣∣ (3.121a)

m2 = m0

∣∣∣∣−1

3

(√
3f −

√
2hr,2

)2
∣∣∣∣ (3.121b)

m3 = m0

∣∣∣∣−1

3

(√
3f + 2

√
2hr,2

)2
+O(g2)

∣∣∣∣ (3.121c)

where we notice that m1 = m2 in the LO approximation. A different kind of neutrino mass
sum rule can be obtained:

Σ = (m̃1 − m̃2)2 + 2(3− ϕ) (m̃1 − 3m̃2) (m̃1 − m̃2) sin2 θ13+

+ 20(ϕ− 2)m̃2 (m̃1 − 2m̃2 + m̃3) sin4 θ13 +O(m2 sin6 θ13) (3.122)

In this case we need to include terms up to O(sin4 θ13) since the difference (m2−m1)/m0 ∝
sin2 θ13. To obtain the solar mass-squared difference we need to consider also the (undis-
played) NLO contributions for the masses. We obtain

∆m2
21/m

2
0 =

4(ϕ− 3)
(
3
√

6f3 − 18f2hr,2 + 6
√

6fh2
r,2 − 4h3

r,2

)
3
(√

6f + hr,2
) g2 +O(g4). (3.123)

For the atmospheric mass differences ∆m2
3` it is enough to consider only the LO term. Only

NO is allowed, provided that hr,2 < 0∧
√

2/3hr,2 < f < −hr,2/
√

6 or hr,2 > 0∧−hr,2/
√

6 < f <√
2/3hr,2.
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As usual, the ratio r1 can be expressed as a function of θ13 using the relation defined in
(3.120)

r1 =
(ϕ− 3)

(√
6f + hr,2

) (
3
√

6f3 − 18f2hr,2 + 6
√

6fh2
r,2 − 4h3

r,2

)
3hr,2

(
3
√

6f3 + 9f2hr,2 + 6
√

6fh2
r,2 + 5h3

r,2

) sin2 θ13 +O(sin4 θ13). (3.124)

If we assume a linear relation between f and hr,2 of the form f = khr,2 we can obtain the
value of the coefficient k assuming both r1 and θ13 in the 3σ confidence region. We obtain
that the best value that accommodates both data with the constraint

∑
jmj ≤ 0.23 eV is

k ' −7/20, for which r1 ' 1.19 sin2 θ13. As in the case of Mechanism I with z = 0, discussed
in Sec. 3.3.1.1, we have a large spread for k: it is constrained between k ' −7/22 and the
values k = −1/

√
6, where the mass spectrum is degenerate at LO mj/m0 = 3h2

r,2/2 +O(g2).
Another correlation between g and f can be found, again in the limit f = −7/20hr,2, from
the expression of the reactor angle:

sin2 θ13 =
600(

347− 140
√

6
) g2

h2
r,2

+O(g4) f = − 7

20
hr,2 (3.125)

thus we expect g ∼ ±hr,2/100.
As a final remark we predict at LO and for f = −7hr,2/20 that m1/m2 ∼ 1 and m3/m2 ∼
6/5. The effective mass for β-decay and 0νββ-decay can be obtained under the same
assumption. We have

mβ =
√

∆m2
21

[
1.35

sin2 θ13
+ 0.04 sin θ13 +O(sin2 θ13)

]
' 7.88× 10−2 eV (3.126)

and

mββ =
√

∆m2
21

[
1.35

sin2 θ13
+ 0.01 sin θ13 +O(sin2 θ13)

]
' 7.88× 10−2 eV (3.127)

where the best fit values for ∆m2
21 and θ13 have been considered. Notice that the effective

masses are constrained to be mβ (mββ) & 5.49 × 10−2 eV when k ' −7/22. A non-trivial
relation for

∑
jmj as a function of r1,∆m

2
31 and θ13 exists, but it is quite cumbersome and

we do not discussed it in details. We only mention the lower bound
∑

jmj & 0.19 eV.

3.3.3.3 Mechanism II a-2: hi = hr,2 = 0

Starting from (3.5) we can obtain θ13

sin2 θ13 =
24(21ϕ+ 13)g2[√

2(9ϕ+ 5)hr − 4
√

3(3ϕ+ 2)f
]2 +O(g4). (3.128)

In the limit |g| � |f |, |hr| we can obtain the mass spectrum at LO

m1 = m0

∣∣∣∣−1

6

(√
6f + (1− 3ϕ)hr

)2
+O(g2)

∣∣∣∣ (3.129a)

m2 = m0

∣∣∣∣−1

6

(√
6f + (3ϕ− 2)hr

)2
∣∣∣∣ (3.129b)

m3 = m0

∣∣∣∣−1

6

(√
6f + hr

)2
+O(g2)

∣∣∣∣ . (3.129c)

At LO we can obtain the following sum rule for the complex masses m̃j

Σ = (m̃1 + (3ϕ+ 2)m̃2 − 5(ϕ+ 1)m̃3)2 − 4(3ϕ+ 2)m̃1m̃2 +O(m2 sin2 θ13) (3.130)
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where we notice that the coefficient in front of the masses are O(10), therefore we expect
large deviation to the sum rule.
The solar mass difference is

∆m2
21/m

2
0 = − 1

12
(2ϕ− 1)hr

(
hr − 2

√
6f
)(

12f2 − 2
√

6fhr + 23h2
r

)
+O(g2) (3.131)

which is proportional to hr(hr− 2
√

6f). The atmospheric mass differences are proportional
to hr. Therefore a possibility to suppress the ratio r` is to make the solar mass difference
almost vanishing, that is to impose hr ' 2

√
6f . The ansatz is compatible only for IO, for

which the neutrino masses are m1 = m2 = m045f2 +O(g2) and m3 = m09f2 +O(g2) and so
m1/m2 ∼ 1 and m3/m2 ∼ 1/5. It is interesting to observe that m3 could be close to zero if
f ' −hr/

√
6, see (3.129c), but this condition is not enough to obtain a small ratio r2, so we

expect m3 always different from zero.
The IO is the only hierarchy allowed in this case, for f < 0 ∧ 2

√
6f < hr < 2

√
6f/(3ϕ − 2)

or f > 0 ∧ 2
√

6f/(3ϕ− 2) < hr < 2
√

6f .
The relation hr ' 2

√
6f provides to be adequate to reproduce the (undisplayed) r2; this in

turn gives sin2 θ13 approximated by

sin2 θ13 =
1 + ϕ

18

g2

f2
+O(g4) hr = 2

√
6f ; (3.132)

so, to reproduce also its experimental value, we need g ∼ ±7/20f . Simple predictions for∑
jmj , mβ and mββ are possible:

∑
j

mj =

√
−∆m2

32

6

[
11

2
− 163ϕ− 244

36
sin2 θ13 +O(sin4 θ13)

]
' 1.11× 10−1 eV (3.133)

mβ =

√
−∆m2

32

6

[
5

2
+

√
188569− 113295ϕ

60
sin2 θ13 +O(sin4 θ13)

]
' 5.10× 10−2 eV (3.134)

and

mββ =

√
−∆m2

32

6

[
5

2
− 39ϕ− 68

12
sin2 θ13 +O(sin4 θ13)

]
' 5.07× 10−2 eV (3.135)

where we used sin2 θ13 = 2.19× 10−2 and ∆m2
32 = −2.449× 10−3 eV2.

3.3.3.4 Mechanism II a-2: g = f = 0

In this particular case the reactor angle is

sin2 θ13 =
(55ϕ+ 34)h2

i

[(5ϕ+ 3)hr + (6ϕ+ 4)hr,2]2
+O(h4

i ). (3.136)

Since the LO mass matrix Mν is the same as the case hi = f = 0, the mass spectrum is
the same as Sec. 3.3.3.1. We emphasize that in this case the sum rule defined in (3.110)
is exact (in the case of Sec. 3.3.3.1 we have O(sin2 θ13) corrections), thus it is possible to
use it to find the lightest neutrino mass mmin assuming the best fit values for the solar
and atmospheric mass differences. In the case of NO we get mmin = m1 = 1.13× 10−2 eV,
while in the case of IO we obtain mmin = m3 = 2.97× 10−6 eV.
Since m3/m0 ∝ (hr + 4hr,2)2 and ∆m2

21/m
2
0 ∝ hr(hr + 4hr,2), see (3.109c) and (3.111), we can

argue that hr ∼ 0 for NO and hr ∼ −4hr,2 for IO. In the first case we have

sin2 θ13 =
1 + ϕ

4

h2
i

h2
r,2

+O(h4
i ) hr = 0 (3.137)
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therefore hi ∼ ±hr,2/5. We remind that in this case we expect m1/m2 ∼ 1 and m3/m2 ∼ 4.
In the case of IO, starting from (3.136), we obtain

sin2 θ13 =
1 + ϕ

20

h2
i

h2
r,2

+O(h4
i ) hr = −4hr,2 (3.138)

thus for sin2 θ13 = 2.19× 10−2 we get hi ∼ ±2hr,2/5. In this case we predict m1/m2 ∼ 1 and
m3/m2 ∼ 0. We can obtain in this limit the values for

∑
jmj , mβ and mββ . In the case of

NO, we get∑
j

mj =
1

10

√
3∆m2

31

[
2√
5

+
ϕ− 1

5
sin2 θ13 +O(sin4 θ13)

]
' 7.73× 10−2 eV (3.139)

mβ =
1

10

√
∆m2

31

3

[
4ϕ− 2 + (1 + 26ϕ) sin2 θ13 +O(sin4 θ13)

]
' 1.55× 10−2 eV (3.140)

and

mββ =
1

5

√
∆m2

31

3

[
1− 2ϕ− (4ϕ+ 5) sin2 θ13 +O(sin4 θ13)

]
' 1.42× 10−2 eV (3.141)

A similar analysis can be done for IO, we obtain at NLO the same relations of the case
hi = f = 0 IO (see Sec. 3.3.3.1).

3.3.3.5 Mechanism II a-2: g = hr = 0

Assuming g = hr = 0 we obtain that the mixing angle θ13 can be expressed as

sin2 θ13 =
ϕ+ 1

4

h2
i

h2
r,2

+O(h4
i ). (3.142)

We can then expand the observables as a series in the parameter hi. At LO the mass
spectrum and the sum rule for the neutrino complex masses are the same as hi = hr = 0,
Sec. 3.3.3.2. The sum rule is formally the same as the case hi = hr = 0, which is defined
in Eq. (3.122), with the same coefficients. However due to NLO corrections the value of
the solar mass splitting is different

∆m2
21/m

2
0 =

(ϕ+ 2)
(
3
√

6f3 − 18f2hr,2 + 6
√

6fh2
r,2 − 4h3

r,2

)
3hr,2

h2
i +O(h4

i ). (3.143)

The atmospheric mass-squared difference at LO is the same as case hi = hr = 0 defined in
Sec. 3.3.3.2. From then we infer that the only allowed mass hierarchy is the NO, when
hr,2 < 0 ∧ f <

√
2/3hr,2 or hr,2 > 0 ∧ f >

√
2/3hr,2. At order h2

i the ratio r1 can be expressed
as a function of the reactor mixing angle using (3.142):

r1 =
(3− ϕ)

(
3
√

6f3 − 18f2hr,2 + 6
√

6fh2
r,2 − 4h3

r,2

)(
3
√

6f3 + 9f2hr,2 + 6
√

6fh2
r,2 + 5h3

r,2

) sin2 θ13 +O(sin4 θ13). (3.144)

The linear correlation f = k hr,2 with k ' 20 allows to reproduce the experimental value
of r1 in the 3σ confidence region with the additional constraint

∑
jmj ≤ 0.23 eV, (in fact,

we get r1 ' 1.14 sin2 θ13 +O(sin4 θ13)). As in the case hi = hr = 0, discussed in Sec. 3.3.3.2,
there exists a spread for the parameter k: it is bounded between k ' 17 and k → ∞
(that is O(103) in our numerical scan), where the mass spectrum at LO is degenerate,
mj/m0 = f2 +O(h2

i ).
As in the case of hi = hr = 0 we do not report the relation for the sum of the neutrino
masses because it is a cumbersome function of r1,∆m

2
21 and θ13, nonetheless we get the
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lower bound
∑

jmj & 0.19 eV. The effective masses mβ and mββ can be evaluated in this
framework. We obtain

mβ =
√

∆m2
31

[
1.27− 1.70 sin2 θ13 +O(sin4 θ13)

]
' 6.12× 10−2 eV (3.145)

and

mββ =
√

∆m2
31

[
1.27− 1.75 sin2 θ13 +O(sin4 θ13)

]
' 6.13× 10−2 eV (3.146)

where in the numerical evaluation we used the best fit values of ∆m2
31 and θ13. Due to

the spread in k we get the interval 5.53× 10−2 eV . mβ (mββ) . 4.85× 10−1 eV.

3.3.3.6 Mechanism II a-2: g = hr,2 = 0

The reactor mixing angle is

sin2 θ13 =
h2
i

h2
r

+O(h4
i ). (3.147)

In this case the LO expressions for the neutrino spectrum are the same as hi = hr,2 = 0,
Sec. 3.3.3.3, thus we do not report here the predictions for the mass ordering and Σ. In
this case only IO is allowed, and we predict m1/m2 ∼ 1 and m3/m2 ∼ 1/5. The sum of the
neutrino masses

∑
jmj and the parameters mβ and mββ are

∑
j

mj =

√
−∆m2

32

6

[
11

2
+

5(17 + 14ϕ)

12
sin2 θ13 +O(sin4 θ13)

]
' 1.18× 10−1 eV (3.148)

mβ =

√
−∆m2

32

6

[
5

2
+

170ϕ+ 143

60
sin2 θ13 +O(sin4 θ13)

]
' 5.36× 10−2 eV (3.149)

and

mββ =

√
−∆m2

32

6

[
5

2
+

19 + 34ϕ

12
sin2 θ13 +O(sin4 θ13)

]
' 5.32× 10−2 eV (3.150)

where we used sin2 θ13 = 2.19× 10−2 and ∆m2
32 = −2.449× 10−3 eV2.

3.3.3.7 Mechanism II a-2: summary tables

As done before we report all previous results in two different tables, to facilitate the
comparison of physics implied by the six cases analysed above. In particular, in Tab. 3.8
we report the admitted mass ordering, the predictions for tan 2θ and the reactor angle. The
Majorana phases are always vanishing, (α, β) = (0, 0). In Tab. 3.9 we outline our results
for the neutrino mass sum rules and the numerical values of

∑
jmj and the effective

masses mβ and mββ .

3.3.4 Mechanism II c-2

In this section we want to describe an alternative realization of the Type I see-saw where,
with respect to the previous case, the right-handed neutrinos transform as a 3′, see Tab.
3.10. The lagrangian responsible for the Dirac mass is

LD = y4

[
(νcL)4

φν,4
Λ

]
1
Hu + y5

[
(νcL)5

φν,5
Λ

]
1
Hu + h.c. (3.151)

where Λ is the UV cutoff scale.
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hi = f = 0 hi = hr = 0 hi = hr,2 = 0

ordering both NO IO

tan 2θ
4
√

87ϕ+ 54g

hr(9ϕ+ 5)− 2hr,2(3ϕ+ 2)
−2
√

9− 3ϕg√
6f + hr,2

4
√

6
√

29ϕ+ 18g√
2(9ϕ+ 5)hr − 4

√
3(3ϕ+ 2)f

sin2 θ13
12(21ϕ+ 13)g2

[hr(9ϕ+ 5)− 2hr,2(3ϕ+ 2)]2
3g2[√

6f + hr,2
]2 24(21ϕ+ 13)g2[√

2(9ϕ+ 5)hr − 4
√

3(3ϕ+ 2)f
]2

g = f = 0 g = hr = 0 g = hr,2 = 0

ordering both NO IO

tan 2θ
2
√

76ϕ+ 47hi
(5ϕ+ 3)hr + (6ϕ+ 4)hr,2

√
ϕ+ 2

hi
hr,2

2
√

3− ϕhi
hr

sin2 θ13
12(21ϕ+ 13)g2

[hr(9ϕ+ 5)− 2hr,2(3ϕ+ 2)]2
ϕ+ 1

4

h2
i

h2
r,2

h2
i

h2
r

Table 3.8: Same as Tab. 3.2 but for Mechanism II a-2.

hi = f = 0 hi = hr = 0 hi = hr,2 = 0

Σ (m̃1 + m̃2 − m̃3)2 − 4m̃1m̃2 Eq. (3.122) Eq. (3.130)∑
jmj [eV] 7.48× 10−2 (NO), 1.02× 10−1 (IO) & 0.19 1.11× 10−1

mβ [eV] 1.39× 10−2 (NO), 5.11× 10−2 (IO) & 5.49× 10−2 5.10× 10−2

mββ [eV] 1.26× 10−2 (NO), 5.06× 10−2 (IO) & 5.49× 10−2 5.07× 10−2

g = f = 0 g = hr = 0 g = hr,2 = 0

Σ (m̃1 + m̃2 − m̃3)2 − 4m̃1m̃2 Eq. (3.122) Eq. (3.130)∑
jmj [eV] 7.73× 10−2 (NO), 1.02× 10−1 (IO) & 0.19 1.18× 10−1

mβ [eV] 1.55× 10−2 (NO), 5.11× 10−2 (IO) [5.53× 10−2, 4.85× 10−2] 5.36× 10−2

mββ [eV] 1.42× 10−2 (NO), 5.06× 10−2 (IO) [5.52× 10−2, 4.85× 10−2] 5.32× 10−2

Table 3.9: Same as Tab. 3.3 but for Mechanism II a-2.

Field L νc Hu φν,4 φν,5

A5 3 3′ 1 4 5

Table 3.10: Quantum numbers of the fields involved in Mechanism II c-2.

There are two contributions to the Dirac mass matrix from the flavons in representation
4 and 5. Using our convention of Kronecker products, see Appendix C, and the vevs of
φν,4 and φν,5 (see (3.13)) we obtain the following matrices:

M4
D =

y4〈H〉
Λ


0 iyr − yi −yi − iyr

yi − i(2ϕ+ 1)yr −
yi + i(2ϕ+ 1)yr√

2

yi − iyr√
2

yi + i(2ϕ+ 1)yr
yi + iyr√

2

i(2ϕ+ 1)yr − yi√
2

 (3.152)
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M5
D =

y5〈H〉
Λ


−
√

2

3
(xr + xr,2)

xr + ixiϕ√
3

xr − ixiϕ√
3

ixi + xr,2√
3

√
2

3
(xr,2 − ixi)

√
2

3
(xr + ixiϕ)

xr,2 − ixi√
3

√
2

3
(xr − ixiϕ)

√
2

3
(ixi + xr,2)

 (3.153)

where the Yukawa couplings y4 and y5 are real. The total Dirac mass matrix is

MD = M4
D +M5

D. (3.154)

In this case we assume that the heavy Majorana mass matrix is trivial as in (3.97), hence
MM = MP23 where P23 is the matrix defined in Eq. (2.50) and M is the direct mass term of
heavy neutrinos. Note that the three right-handed neutrinos are exactly degenerate. The
light neutrino mass matrix is the same as (3.104), Mν = −MT

DP23MD/M . We can estimate
the scale of the light neutrinos as O(〈H〉2vivj/MΛ2) where vivj are generic combination
of the flavon vev.
It is convenient to redefine the parameters in Mν introducing the following dimensionless
quantities

fr ≡ y4
yr
Λ

fi ≡ y4
yi
Λ

(3.155)

for the flavon in the representation 4 ∈ A5. A similar position is possible for φν,5

hr ≡ y5
xr
Λ

hr,2 ≡ y5
xr,2
Λ

hi ≡ y5
xi
Λ
. (3.156)

We expect that these parameters are of O(1). The neutrino mass matrix Mν has the same
form as (3.3) with

s = −2

9

[ (
3(ϕ+ 2)h2

i + 4h2
r + 2hrhr,2 + 4h2

r,2

)
+
(
9f2
i + (36ϕ+ 27)f2

r

) ]
(3.157a)

x =
2

9

[ (
(5ϕ+ 1)h2

i − h2
r,2 − 4hrhr,2

)
+
(

4
√

3hrfi − 2
√

3hr,2fi + 2
√

3(4ϕ+ 1)hifr

)
− 6ϕf2

r

]
(3.157b)

y =
4

9

[
hi (2ϕhr,2 − (ϕ− 2)hr) +

√
3hifi + fr

((√
3 +
√

15
)
hr −

√
3hr,2

)
+ 3(ϕ+ 2)frfi

]
(3.157c)

z = −4

9

[ (
(ϕ− 1)h2

i − h2
r + h2

r,2

)
−
(

2
√

3(ϕ+ 1)hifr − 2
√

3(hr + hr,2)fi

)
+ (15ϕ+ 9)f2

r

]
.

(3.157d)

As for Mechanism II a-2 discussed in Sec. 3.3.3 the absolute mass scale m0 is m0 ≡
〈H〉2/M , see Eq. (3.106). The angle θ is related to the vevs by the relation

tan 2θ = 2
√

11ϕ+ 7

{
hi

(
−(ϕ− 2)hr + 2ϕhr,2 +

√
3fi

)
+

+ fr

((√
3 +
√

15
)
hr −

√
3hr,2 + 3(ϕ+ 2)fi

)}
×

×
{
h2
i (ϕ+ 2)(3ϕ+ 1) + 4

√
3hi(ϕ+ 1)(3ϕ+ 1)fr + ϕh2

r − 4(ϕ+ 1)hrhr,2+

+ 2
√

3hrfi − (2ϕ+ 1)h2
r,2 − 2

√
3(3ϕ+ 2)hr,2fi − 3(3ϕ+ 1)(4ϕ+ 3)f2

r

}−1

. (3.158)
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We need hi or fr (xi and yr in the vev language) small compared to the other vevs due to
the fact that y can be vanishing when hi = 0 and fr = 0. Hence the relevant parameters
for having a small θ, and thus a small reactor angle, are hi and fr. Notice that the case
hi = 0 is equivalent to φν,5 invariant under Z2 ⊗ Z2 ⊗ CP , while fr = 0 corresponds to φν,4
invariant under Z2 ⊗ Z2 ⊗ CP , see Sec. 3.1.2.
As in Mechanism II a-2, Sec. 3.3.3, the Majorana CP phases are vanishing, α = β = 0.

3.3.4.1 Mechanism II c-2: hi = fi = 0

In this limit the reactor mixing angle, up to corrections of order O(f4
r ), is

sin2 θ13 =
3(8ϕ+ 5)(hr,2 − 2ϕhr)

2(
−ϕh2

r + 4(ϕ+ 1)hrhr,2 + (2ϕ+ 1)h2
r,2

)2 f
2
r +O

(
f4
r

)
. (3.159)

We notice that θ13 could also be very small if hr,2 ∼ 2ϕhr, but this possibility is not
motivated by any symmetry argument based on residual symmetry for the flavon vevs
and will not be considered any more. The masses of the light neutrinos are

m1 = m0

∣∣∣∣−2

3
((ϕ− 1)hr + ϕhr,2)2 +O(f2

r )

∣∣∣∣ (3.160a)

m2 = m0

∣∣∣∣−2

3
(ϕhr + (ϕ− 1)hr,2)2

∣∣∣∣ (3.160b)

m3 = m0

∣∣∣∣−2

3
(hr − hr,2)2 +O(f2

r )

∣∣∣∣ . (3.160c)

The mass spectrum is the same as for Mechanism II a-2 with hi = f = 0, discussed in Sec.
3.3.3.1, if we perform the vevs redefinition

hr → ±
1

2
(hr − 2hr,2) hr,2 → ±(hr + hr,2) (3.161)

Using the expressions for the neutrino masses at LO we can obtain the same sum rule
as for Mechanism II a-2 with hi = f = 0 for the complex masses, defined in (3.110),
Σ = (m̃1 + m̃2 − m̃3)2 − 4m̃1m̃2 + O(m2 sin2 θ13). It is interesting to notice that the (undis-
played) coefficient in front of sin2 θ13 is proportional to (hr − hr,2) ∼

√
m3/m0, see (3.160c),

thus we expect that the sum rule works better in the case of IO.

The solar mass squared difference is

∆m2
21/m

2
0 =

4

9
(2ϕ− 1) (hr − hr,2) (hr + hr,2)

(
3h2

r + 4hrhr,2 + 3h2
r,2

)
+O

(
f2
r

)
(3.162)

thus a small value of the solar splitting can be achieved for hr ∼ ±hr,2. The possibility
hr ∼ +hr,2 is related to IO, because for the mass m3 we have at LO m3/m0 ∝ (hr − hr,2)2,
hence it can be vanishing, see Eq. (3.160c). From the mass spectrum defined in (3.160) we
see that both orderings are allowed: NO if hr < 0∧ hr(ϕ− 2) < hr,2 < −hr or hr > 0∧−hr <
hr,2 < hr(ϕ− 2), IO if hr < hr,2 < hr/(2 + 3ϕ) or hr > 0 ∧ hr/(2 + 3ϕ) < hr,2 < hr.
Using the fact that hr ∼ ±hr,2 we can obtain a simplified expression for θ13. In the case
of NO, hr ∼ −hr,2, we have

sin2 θ13 =
13 + 21ϕ

3

f2
r

h2
r

+O
(
f4
r

)
hr,2 = −hr (3.163)

hence we have fr ' ±2hr/50 to get a value of sin2 θ13 in the 3σ CL. While in the other case
we have hr = +hr,2 (IO) and we obtain

sin2 θ13 =
3(1 + ϕ)

5

f2
r

h2
r

+O
(
f4
r

)
hr,2 = +hr (3.164)
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hence fr ∼ ±hr/10 to obtain a value of the reactor mixing angle compatible with the
current data. It is possible to obtain the ratio of neutrino masses at LO assuming hr ∼
±hr,2. With these assumptions we have m1/m2 ∼ 1 for both orderings and m3/m2 ∼ 4 for
NO and m3/m2 ∼ 0 for IO.
The sum of the neutrino masses

∑
jmj and the effective masses mβ and mββ can be

obtained using the limits discussed above. We get for NO

∑
j

mj =
√

∆m2
31

[
2

√
3

5
− 17

5

√
3(89− 55ϕ) sin2 θ13 +O(sin4 θ13)

]
' 7.62× 10−2 eV (3.165)

mβ =

√
∆m2

31

3

1

10
[4ϕ− 2+( 415− 238ϕ) sin2 θ13 +O(sin4 θ13)] ' 1.47× 10−2 eV (3.166)

and

mββ =

√
∆m2

31

3

1

5

[
1− 2ϕ+ 4(32ϕ− 53) sin2 θ13 +O(sin4 θ13)

]
∼ 1.34× 10−2 eV (3.167)

where we used the best fit values of ∆m2
31 and θ13 reported in Tab. 1.1. For IO we obtain

similar results∑
j

mj =
√
−∆m2

32

[
2 + 3(2 + ϕ) sin2 θ13 +O(sin4 θ13)

]
' 1.11× 10−2 eV (3.168)

mβ =
√
−∆m2

32

[
1 +

1

2
(6ϕ+ 5) sin2 θ13 +O(sin4 θ13)

]
' 5.75× 10−2 eV (3.169)

and

mββ =
√
−∆m2

32

[
1 + (2 + 3ϕ) sin2 θ13 +O(sin4 θ13)

]
' 5.69× 10−2 eV (3.170)

where in the numerical evaluation ∆m2
32 = −2.449× 10−3 eV2 and sin2 θ13 = 2.19× 10−2.

3.3.4.2 Mechanism II c-2: hi = hr = 0

In this case, hr = 0, the reactor mixing angle is

sin2 θ13 =
(8ϕ+ 5)

(√
3hr,2 − 3(ϕ+ 2)fi

)2
h2
r,2

[
(2ϕ+ 1)hr,2 + 2

√
3(3ϕ+ 2)fi

]2 f2
r +O

(
f4
r

)
. (3.171)

A small reactor mixing angle can be obtained also for hr,2 ∼
√

3(2 + ϕ)fi, but no clear
symmetry argument can be invoked to explain such a relation.
The masses of the light neutrinos at LO are

m1 = m0

∣∣∣∣−2

3

(
ϕhr,2 +

√
3fi

)2
+O(f2

r )

∣∣∣∣ (3.172a)

m2 = m0

∣∣∣∣−2

3

(
(ϕ− 1)hr,2 −

√
3fi

)2
∣∣∣∣ (3.172b)

m3 = m0

∣∣∣∣−2

3

(
hr,2 −

√
3fi

)2
+O(f2

r )

∣∣∣∣ . (3.172c)

We can write the following sum rule for the complex masses as

Σ = (m̃1 + (21ϕ+ 13)m̃2 − 5(3ϕ+ 2)m̃3)2 − (84ϕ+ 52)m̃1m̃2 +O(m2 sin2 θ13). (3.173)
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In this case the coefficient in front of sin2 θ13 can be large, thus we expect that the sum
rule can be invalidated by NLO corrections.
The solar mass-squared difference is

∆m2
21/m

2
0 = −4

9
(2ϕ− 1)hr,2

(
hr,2 + 2

√
3fi

)(
3h2

r,2 + 2
√

3hr,2fi + 6f2
i

)
+O

(
f2
r

)
(3.174)

hence we expect a natural suppression for r` in the case of fi ∼ −1/2
√

3hr,2 because
∆m2

3` ∝ hr,2. This case is only compatible with NO, provided that hr,2 > 0 ∧ fi < −hr,2/2
√

3
or hr,2 < 0 ∧ fi > −hr,2/2

√
3.

From the expression of r1 as a function of sin2 θ13, we need fi ∼ −1/2
√

3hr,2 to reproduce
the best fit values of both observables. Adopting this ansatz, we obtain

sin2 θ13 =
3

4
(35ϕ+ 26)

f2
r

h2
r,2

+O
(
f4
r

)
fi = − hr,2

2
√

3
. (3.175)

and thus fr ∼ ±1/50hr,2 if we want to reproduce sin2 θ13 = 2.19× 10−2.
From the mass spectrum, defined in (3.172), in the limit fi = −hr,2/2

√
3, we get m1/m2 ∼ 1

and m3/m2 ∼ 9/5. Using the relations derived above and the condition fi = −hr,2/2
√

3 we
obtain ∑

j

mj =
√

∆m2
31

[
2.54− 1.97 sin2 θ13 +O(sin4 θ13)

]
' 1.24× 10−1 eV (3.176)

mβ =
√

∆m2
31

[
0.67− 0.03 sin2 θ13 +O(sin4 θ13)

]
' 3.31× 10−2 eV (3.177)

and

mββ =
√

∆m2
31

[
0.67− 0.25 sin2 θ13 +O(sin4 θ13)

]
' 3.29× 10−2 eV (3.178)

where in the numerical evaluations we used the best fit values for the atmospheric mass
difference and reactor mixing angle [45].

3.3.4.3 Mechanism II c-2: hi = hr,2 = 0

The reactor mixing angle is

sin2 θ13 =
(8ϕ+ 5)

(
2
√

3ϕhr + 3(ϕ+ 2)fi
)2

h2
r

[
ϕhr + 2

√
3fi
]2 f2

r +O
(
f4
r

)
. (3.179)

From symmetry argument we expect that |fr| � 1; however we could also have hr '√
3(1 − 2ϕ)fi/2 ' −1.94fi , but this condition is not related to any symmetry argument.

The masses at LO are

m1 = m0

∣∣∣∣−2

3

(
(ϕ− 1)hr +

√
3fi

)2
+O(f2

r )

∣∣∣∣ (3.180a)

m2 = m0

∣∣∣∣−2

3

(
ϕhr −

√
3fi

)2
∣∣∣∣ (3.180b)

m3 = m0

∣∣∣∣−2

3

(
hr +

√
3fi

)2
+O(f2

r )

∣∣∣∣ . (3.180c)

We obtain the following sum rule for the complex masses, which is exact at LO

Σ = (m̃1 + (34− 21ϕ)m̃2 + 5(3ϕ− 5)m̃3)2 + (84ϕ− 136)m̃1m̃2 +O(m2 sin2 θ13) (3.181)

where, as in the case hr = 0 discussed in Sec. 3.3.4.2, the coefficient in front of sin2 θ13 is
large.
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We observe that the mass-squared differences are related, at LO, to the ones of the previous
case (hr = 0, discussed in Sec. 3.3.4.2); in fact{

hr,2 −→ hr
fi −→ −fi

and
{

∆m2
21 −→ −∆m2

21

∆m2
31 −→ +∆m2

32
(3.182)

Thus the allowed spectra in this case are both NO (for hr > 0∧ (ϕ−1)/2
√

3hr < fi < hr/2
√

3
or hr < 0∧ (ϕ− 1)/2

√
3hr > fi > hr/2

√
3) and IO (for hr < 0∧ 6fi > −

√
3ϕhr or hr > 0∧ 6fi <

−
√

3ϕhr). In the following we will not deal with IO case since this hierarchy is realized
at the price of having all the non-vanishing vevs at the same order of magnitude; thus
there is no clear symmetry argument behind this realization.
To obtain a relation among hr and fi we need to consider the NLO corrections to the ratio
r1 expressed as a series in sin2 θ13. Fixing both r1 and θ13 to their best fit values we get
hr = 2

√
3fi ' 3.46fi. Notice that this relation gives us a natural suppression for the solar

mass splitting, see (3.174) and (3.182).
With this condition, we get

sin2 θ13 =
3(119ϕ+ 74)

4

f2
r

h2
r

+O
(
f4
r

)
fi =

hr

2
√

3
(3.183)

and thus we need fr ∼ ±hr/100 to obtain a compatible value of the reactor angle.

We can obtain the relative hierarchy of the neutrino mass spectrum starting from the LO
expression for the masses; for fi ' hr/2

√
3 we have m1/m2 ∼ 1 and m3/m2 ∼ 9/5. In this

limit we get for NO the values of
∑

jmj , mβ and mββ . We have∑
j

mj =
√

∆m2
31

[
2.54− 3.03 sin2 θ13 +O(sin4 θ13)

]
' 1.23× 10−1 eV (3.184)

mβ =
√

∆m2
31

[
0.67− 0.50 sin2 θ13 +O(sin4 θ13)

]
' 3.26× 10−2 eV (3.185)

and

mββ =
√

∆m2
31

[
0.67− 0.71 sin2 θ13 +O(sin4 θ13)

]
' 3.23× 10−2 eV (3.186)

where we used the best fit values for the atmospheric mass difference and reactor mixing
angle [45]. As discussed above the IO gives all the vevs with the same order of magnitude
thus we do not discuss here the analytical predictions.

3.3.4.4 Mechanism II c-2: fr = fi = 0

In this case only the flavon in representation 5 ∈ A5 is relevant for the Dirac mass. The
light neutrino mass matrix is Mν = −(M5

D)TP23(M5
D)/M , where M5

D is defined in (3.153).
In this case the reactor angle θ13 is

sin2 θ13 =
(ϕ+ 1)h2

i

[
(ϕ− 3)hr − 2(3ϕhr,2 + hr,2)

]2

[
(1− 2ϕ)h2

r + 4(ϕ+ 2)hrhr,2 + (3ϕ+ 1)h2
r,2

]2 +O
(
h4
i

)
(3.187)

where we neglect higher order terms in hi. The mass spectrum at LO is the same as the
case hi = fi = 0 discussed in Sec. 3.3.4.1, see (3.160). Also the sum rule Σ and the mass
splittings are the same, so we can ignore the discussion regarding the mass spectrum in
the following.
Using the fact that hr ∼ −hr,2 for NO we have

sin2 θ13 =
(7ϕ+ 10)

9

h2
i

h2
r

+O
(
h4
i

)
hr = −hr,2 (3.188)
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whereas for IO (hr ∼ +hr,2) we obtain

sin2 θ13 =
(3ϕ+ 2)

5

h2
i

h2
r

+O
(
h4
i

)
hr = +hr,2 (3.189)

thus hi/hr ∼ ±1/10 for values of θ13 compatible with the experimental determination, for
both orderings.
For the sum of the neutrino masses and the effective masses, in the case of NO, we have∑

j

mj =
√

∆m2
31

[
1.55− 2.55 sin2 θ13 +O(sin4 θ13)

]
' 7.40× 10−2 eV (3.190)

mβ =
√

∆m2
31

[
0.26 + 0.65 sin2 θ13 +O(sin4 θ13)

]
' 1.35× 10−2 eV (3.191)

and

mββ

√
∆m2

31

[
0.26− 0.51 sin2 θ13 +O(sin4 θ13)

]
' 1.22× 10−2 eV (3.192)

where in the numerical evaluations we used the best fit values for ∆m2
31 and θ13. For IO

we have instead:∑
j

mj =
√
−∆m2

32

[
2− 3(4ϕ− 7) sin2 θ13 +O(sin4 θ13)

]
' 1.01× 10−1 eV (3.193)

mβ =
√
−∆m2

32

[
1 +

1

2
(11− 6ϕ) sin2 θ13 +O(sin4 θ13)

]
' 5.02× 10−2 eV (3.194)

and

mββ =
√
−∆m2

32

[
1 + (5− 3ϕ) sin2 θ13 +O(sin4 θ13)

]
' 4.96× 10−2 eV. (3.195)

3.3.4.5 Mechanism II c-2: fr = hr = 0

The reactor angle is

sin2 θ13 =
(5 + 8ϕ)

(
2ϕhr,2 +

√
3fi
)2

h2
r,2

[
(2ϕ+ 1)hr,2 + 2

√
3(3ϕ+ 2)fi

]2h2
i +O

(
h4
i

)
. (3.196)

A possible partial cancellation occurs for hr,2 ∼ −
√

3(ϕ− 1)fi/2 ' −0.54fi but no symmetry
argument can be invoked to explain such a relation.
In the limit of small |hi| the LO terms for the solar and the atmospheric mass differences
are the same as Sec. 3.3.4.2, therefore we discard the discussion about the mass ordering.
Also the relation fi = khr,2 invoked to get the ratio r1 compatible with the data requires
the same k ' −1/2

√
3. This in turn implies that

sin2 θ13 =
1

4
(33ϕ+ 25)

h2
i

h2
r,2

+O(h4
i ) fi = − hr,2

2
√

3
(3.197)

and then hi/hr,2 ∼ ±3/100 to get a compatible value of θ13.
The value of mβ and mββ are different with respect to the case discussed in Sec. 3.3.4.2
because of the NLO corrections. We have∑

j

mj =
√

∆m2
31

[
2.54− 3.94 sin2 θ13 +O(sin4 θ13)

]
' 1.22× 10−1 eV (3.198)

mβ =
√

∆m2
31

[
0.67− 0.87 sin2 θ13 +O(sin4 θ13)

]
' 3.22× 10−2 eV (3.199)

and

mββ =
√

∆m2
31

[
0.67− 1.10 sin2 θ13 +O(sin4 θ13)

]
' 3.19× 10−2 eV (3.200)

where we used the best fit values of ∆m2
31 and sin2 θ13 quoted in Ref. [45].
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3.3.4.6 Mechanism II c-2: fr = hr,2 = 0

In this case the reactor angle θ13 is

sin2 θ13 =
(5 + 8ϕ)h2

i

(√
3fi − (ϕ− 2)hr

)2
h2
r

[
ϕhr + 2

√
3fi
]2 +O

(
h4
i

)
. (3.201)

As for the previous case (hr = 0) the predictions for the LO terms in the solar and at-
mospheric mass-squared differences are the same as φν,5 invariant under Z2 ⊗ Z2 ⊗ CP ,
because Mν has the same form at LO, thus the relations for the mass spectrum and Σ are
the same as Sec. 3.3.4.3 when hr,2 = hi = 0.

We can obtain a relation between fi and hr of the form fi = khr in the limit of small hi
using the NLO expression for r1 as series of θ13. We get that k ∼ 1/2

√
3 assures a natural

suppression in the ratio r1. Under this assumption the reactor angle reads

sin2 θ13 =
13− 3ϕ

4

h2
i

h2
r

+O(h4
i ) fi =

hr

2
√

3
(3.202)

hence we need hi ∼ ±hr/10 to obtain sin2 θ13 = 2.19×10−2. The mass spectrum in this limit
is constrained to have m1/m2 ∼ 1 and m3/m2 ∼ 9/5, as discussed in the case of NO in Sec.
3.3.4.3. The value of

∑
jmj , mβ and mββ are:

∑
j

mj =
√

∆m2
31

[
2.54− 7.64 sin2 θ13 +O(sin4 θ13)

]
' 1.18× 10−1 eV (3.203)

mβ =
√

∆m2
31

[
0.67− 2.28 sin2 θ13 +O(sin4 θ13)

]
' 3.06× 10−2 eV (3.204)

and

mββ

√
∆m2

31

[
0.67− 2.50 sin2 θ13 +O(sin4 θ13)

]
' 3.04× 10−2 eV (3.205)

where we used the best fit values of ∆m2
31 and sin2 θ13.

3.3.4.7 Mechanism II c-2: summary table

Differently to the other mechanisms we report our results in one table only because of
cumbersome formulae for tan 2θ and θ13. In Tab. 3.11 we summarize our numerical results
for the neutrino mass sum rules and the numerical values of

∑
jmj and the effective

masses mβ and mββ .

3.4 Numerical results

In this Section we discuss the validity of our analytical estimates, discussed in Sec. 3.3,
with respect to the numerical evaluation. The results for the observables mβ and mββ are
discussed in Sec. 3.5. In the following we outline the procedure used to get our numerical
results for the neutrino observables 3:

• We generate the parameters of Mν with a flat distribution in the range [−1,+1]. The
overall scale m0 is left as a free parameter and will be determined later on.

• We diagonalize the product M †νMν and we check that the numerical PMNS matrix is
in the 3σ allowed region, for both orderings, referring to the matrix in Eq. (1.16).

3We double checked the obtained results with independent codes written in Mathematica and C.
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hi = fi = 0 hi = hr = 0 hi = hr,2 = 0

Σ (m̃1 + m̃2 − m̃3)2 − 4m̃1m̃2 Eq. (3.173) Eq. (3.181)∑
jmj [eV] 7.62× 10−2 (NO), 1.11× 10−2 (IO) 1.24× 10−1 1.23× 10−1

mβ [eV] 1.47× 10−2 (NO), 5.75× 10−2 (IO) 3.31× 10−2 3.26× 10−2

mββ [eV] 1.34× 10−2 (NO), 5.69× 10−2 (IO) 3.29× 10−2 3.23× 10−2

fr = fi = 0 fr = hr = 0 fr = hr,2 = 0

Σ (m̃1 + m̃2 − m̃3)2 − 4m̃1m̃2 Eq. (3.173) Eq. (3.181)∑
jmj [eV] 7.40× 10−2 (NO), 1.01× 10−1 (IO) 1.22× 10−1 1.18× 10−1

mβ [eV] 1.35× 10−2 (NO), 5.02× 10−2 (IO) 3.22× 10−2 3.06× 10−2

mββ [eV] 1.22× 10−2 (NO), 4.96× 10−2 (IO) 3.19× 10−2 3.04× 10−2

Table 3.11: Same as Tab. 3.3 but for Mechanism II c-2.

• Since the mass ordering is fixed by the form of UPMNS we can construct the spectrum
and the squared-mass differences. We can determine the ordering and test if the
obtained r` is inside the 3σ regions reported in Eq. (1.18) for NO and (1.19) for IO.

• We can now fix the value of m0 comparing the best fit value of ∆m2
21 with our

numerical estimate (whose overall undetermined scale is precisely m0) thus we can
obtain the mass spectrum.

• Using the values of mixing angles and mass splittings we compute the χ2 for the
allowed orderings. We use the same definition of (2.119) and the data of Ref. [45].

In our numerical scan we generate O(108) points and the sampling efficiency is O(10−(3÷4))
for four (or more) free parameters and O(10−(5÷6)) for three free parameters.

For a given observable q we can define an associated error as

∆q ≡ qFull − q(N)LO

qFull
(3.206)

where the superscript Full refers to the full numerical evaluation obtained in the numer-
ical scan while (N)LO refers to the order of the analytical quantity q. We observe that
the error on the reactor mixing angle θ13 is a linear function of its full numerical value.
In fact, in terms of the small variable y, sin2 θ13 can be written as a series of the form
s2

13 LOy
2 + s2

13 NLOy
4 +O(y6), thus

∆ sin2 θ13 '
s2

13 NLO

s2
13 LO

y2 ∝ sin2 θ13. (3.207)

At the beginning of each subsection we report the tables with the best fit values for the
χ2 obtained in our numerical scan with the additional constraint

∑
jmj ≤ 0.23 eV (except

in Tab 3.13 for Mechanism II a-1 with Z = 0 and |S| � |X| where this constraint cannot
be satisfied. In this case we show the χ2 with the constraint

∑
jmj ≤ 0.59 eV). To quantify

the contribution of the mixing angles and the mass splittings in the total χ2 we introduce
the parameters χ2

a and χ2
m which are defined as

χ2
a ≡

∑
i 6=j

χ2
sin2 θij

χ2
m ≡ χ2

∆m2
21

+ χ2
∆m2

3`
(3.208)

where ` = 1 for NO and ` = 2 for IO. For the sake of completeness we also report the χ2 for
cases that cannot be expressed as a series in the natural small parameter not considered
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in the analytical part. These are marked with 7.

3.4.1 Mechanism I

z = 0 x = 0 s = 0 - NO s = 0 - IO 7

χ2
a 11.78 5.62 4.90 5.76

χ2
m 1.19 0.32 1.63 0.90
χ2 12.97 5.94 6.53 6.66

Table 3.12: Minimum of the χ2 in the case of Mechanism I.

3.4.1.1 Mechanism I: z = 0

The model discussed in Sec. 3.3.1.1 has many interesting features. In particular, as
discussed in (3.37), the proportionality between the two parameters x and s is not fixed
to a single relation but different values of the proportionality constant k are possible.
To confirm this analytic result and to better quantify the whole range of correlation
between x and s, we have reported the results of our numerical scan (for the allowed
points only) in the left panel in Fig. 3.2, where we also indicated the analytic correla-
tions found in Sec. 3.3.1.1. Interestingly enough, for these points, we confirm the bound
r1 & (3 − ϕ) sin2 θ13 ' 1.38 sin2 θ13 (right panel of Fig. 3.2), related to the limit x → 0 dis-
cussed in (3.37), where the mass spectrum at LO is degenerate, mj/m0 = |s|+O(y2).

As shown in Fig. 3.3 we cannot have both r1 and θ13 close to the experimental best fit
points if we require that the sum of the neutrino masses is lower than the cosmological
upper bound using the PLANCK ⊕ BAO data. Notice that the behaviour of

∑
jmj is in

agreement with the prediction discussed in (3.38).
As a final remark, we can quantify the goodness of the expansion in the small |y|. We
observe that the corrections for r1 and sin2 θ13 are roughly 10% for the whole parameter
space. For θ13 we observe a linear correlation as discussed in (3.207).

3.4.1.2 Mechanism I: x = 0

In this case the prediction discussed in Sec. 3.3.1.2 are in good agreement with our nu-
merical scan. In particular we observe a strong correlation between s and z, as discussed
in (3.47). This happens for all the points in the allowed 3σ confidence region for mass
splittings and mixing angles. We observe that the corrections to the mixing angle θ13

and the ratio r2 using (3.43) and (3.47) with respect to the full numerical evaluation are
of order 10% and 15%÷ 20 % in the whole parameter space.

3.4.1.3 Mechanism I: s = 0

In this case the analysis performed for IO in Sec. 3.3.1.3 is in good agreement with
our numerical scan. In particular, we observe the strong correlation between x and z
discussed in (3.53). The values for ∆ sin2 θ13 (|∆r2|) are of order 10% (5%).
On the other hand, we also found points compatible with NO, but the smallest parameter
in the neutrino mass matrix Mν turns out to be z, i.e. |z| � |y|. However, there are no
(clear) symmetry arguments behind this possibility that we do not investigate anymore.
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Figure 3.2: (Left plot) Distribution of the parameter s and x in the plane (s, x)
for Mechanism I with z = 0. The points satisfy the experimental constraints on
mixing angles and mass splittings at 3σ CL. The red dashed line is the theoretical
expectation for the excluded region at order y2 and the blue dashed line is the the-
oretical expectation between s and x given by (3.36). The green dashed lines are
the upper and lower limit on k, see Eq. (3.37). (Right plot) Scatter plot in the plane
(r1, sin

2 θ13). The red (green) region indicates the 1σ confidence region on sin2 θ13
(r1) and the dashed red (green) lines the 3σ confidence region on the same param-
eter extracted from Ref. [45]. The green dashed line is the lower bound obtained
from (3.37) where the mass spectrum is degenerate. The purple star indicates the
minimum of the χ2 in Tab. 3.12.
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Figure 3.3: Scatter plots in the plane (sin2 θ13,
∑
jmj) (left plot) and (r1,

∑
jmj)

(right plot) assuming Mechanism I and z = 0. The orizontal dashed red line indicates
the upper bound on the sum of neutrino masses by PLANCK Collaboration @ 95%
CL [53], the green region indicates the 1σ confidence region and the vertical dashed
green line the 3σ confidence region on sin2 θ13 (r1) extracted from Ref. [45]. The
purple star indicates the minimum of the χ2 under the assumption

∑
jmj ≤ 0.23 eV.

The green lines indicate the region of the planes which are admitted using the
predictions of (3.38) for the compatible values of r1 and θ13.
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3.4.2 Mechanism II a-1

Z = 0 (NO) Z = 0 X = 0 (NO) S = 0
|S| = |X| |S| � |X| IO 7 S ' Z/3 S ' −Z/4 X ' 2Z/3 NO 7 IO 7

χ2
a 4.38 6.09 5.51 4.37 4.38 4.36 4.36 7.91

χ2
m 0.02 8.56 0.16 0.09 0.00 0.02 0.01 1.06
χ2 4.40 14.65 5.67 4.46 4.38 4.38 4.37 8.96

Table 3.13: Minimum of the χ2 in the case of Mechanism II a-1.

3.4.2.1 Mechanism II a-1: Z = 0

In Sec. 3.3.2.1 we found that two correlations are possible between S and X , namely S ' X
and |S| � |X|. Our numerical scan confirms these analytical estimates. The corrections
to the analytical expression of r1 and θ13 given in Sec. 3.3.2.1 turn out to be roughly 10%
for both observables assuming |S| ' |X| or |S| � |X|. In particular, the case |S| � |Z| has
a positive ∆r1 while S ' X has a negative ∆r1. We also observe IO, but in this case the
parameters |S|, |X| and |Y | have the same order of magnitude.

3.4.2.2 Mechanism II a-1: X = 0

As discussed in Sec. 3.3.2.2 it is possible to have three different correlations between S
and Z. This is also confirmed to a very good accuracy by the numerical scan. We observe
that there is not a specific pattern in the plane (r1, sin

2 θ13) for the different correlations
between S and Z, see also Tab. 3.13 where the values for χ2

min are similar. This also
reflects on the fact that the NLO corrections to r1 are not completely negligible; in fact,
we found that at LO in the expansion parameter Y |∆r1| ∼ 50% while ∆ sin2 θ13 ∼ 10%.

3.4.2.3 Mechanism II a-1: S = 0

This possibility was not discussed analytically in detail since it is related to patterns with
a non-natural hierarchy among the vevs. In fact for NO we get from our numerical scan
|Z| � |Y | � |X| while for IO |X| � |Y | � |Z|, see Sec. 3.3.2.3. We do not discuss this
situation any more.

3.4.3 Mechanism II a-2

hi = f = 0 hi = hr = 0 hi = hr,2 = 0 g = f = 0 g = hr = 0 g = hr,2 = 0
NO 7 IO NO NO 7 IO NO 7 IO NO IO

χ2
a 4.36 5.76 11.73 4.71 5.71 4.37 5.52 12.05 6.20

χ2
m 0.01 0.14 4.64 0.01 0.01 0.00 0.01 6.06 0.00
χ2 4.37 5.90 16.37 4.72 5.72 4.47 5.53 18.11 6.20

Table 3.14: Minimum of the χ2 in the case of Mechanism II a-2.

3.4.3.1 Mechanism II a-2: hi = f = 0

The analytical predictions, performed in Sec. 3.3.3.1, for the strong correlation between
hr and hr,2 are well confirmed. Also the prediction for the mixing angles are confirmed by
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our numerical scan because ∆ sin2 θ13 ∼ 10%. For the mass splittings the LO predictions
(discussed in Sec. 3.3.3.1) do not correctly reproduce the numerical results. For NO we
observe that |hr| � |g| (this condition is necessary to have a small r1, see (3.111)), where g is
the naturally smallest parameter, and we get |∆r1| ∼ 40% with our analytical predictions.
For IO the NLO corrections to mass splittings are important, e.g. the solar mass-squared
difference is O(102) larger with respect to the experimental value. However these were
cumbersome and we did not report the full expansion in our analytical discussion. If we
include the undisplayed NLO corrections for the mass splittings, these are in agreement
with the full numerical evaluation at 10%÷ 20% level.

3.4.3.2 Mechanism II a-2: hi = hr = 0

This particular realization, discussed in detail in Sec. 3.3.3.2, has a similar phenomenol-
ogy as Mechanism I with z = 0. In fact there exists a lower bound for the allowed
region in the plane (r1, sin

2 θ13), as in the right plot of Fig. 3.2. The lower bound is a
consequence of the limit f = −hr,2/

√
6, where the mass spectrum is degenerate at LO,

mj/m0 = 3h2
r,2/2 + O(g2). In this case the relation between r1 and θ13 is the same as

k ' −103 discussed in (3.37): r1 = (3 − ϕ) sin2 θ13 +O(sin4 θ13). Also the scans of
∑

jmj as
a function of r1 or θ13 are similar to those shown in Fig. 3.3. In fact there exists a lower
bound

∑
jmj & 0.19 eV for θ13 close to the upper limit at 3σ CL, (in the case of Mechanism

I with z = 0 the lower bound is
∑

jmj & 0.155 eV). This is a consequence of a non trivial
relation among

∑
jmj , θ13,∆m

2
31 and the ratio r1, as discussed in Sec. 3.3.3.2. Also the

parameters ∆ sin2 θ13 and |∆r1| are similar to those discussed in the case of Mechanism I
with z = 0.

3.4.3.3 Mechanism II a-2: hi = hr,2 = 0

The predictions for the mixing angles discussed in Sec. 3.3.3.3 are in agreement with our
numerical discussion; however our numerics also shows that NO is allowed for the mass
spectrum of quasi-degenerate type. This is realized when |hr| � |g| � |f |, thus with hr as
the smallest parameter. This possibility cannot be explained using symmetry arguments.
For the case discussed in the analytical Section we observe that the corrections for the
mixing angles are of O(10 %) with respect to the full numerical evaluation: instead
the corrections for the solar mass difference, and then r1, are important. We observe
|∆∆m2

21| ∼ |∆r1| ∼ 50% ÷ 90%. The NLO effects (that we did not report in Sec. 3.3.3.3)
reduce the discrepancy between the analytical prediction and the full numerical scan at
the level of 10%.

3.4.3.4 Mechanism II a-2: g = f = 0

We observe a strong correlation between hr and hr,2, as discussed in the analytical part.
The analytical predictions, assuming IO, for the mixing angles performed in Sec. 3.3.3.4
are in good agreement with our numerical scan. The error for θ13 is roughly 10%, while
|∆r1| ∼ 60%÷90% using the LO expansions for the mass-squared differences. If we include
the NLO corrections for the mass splittings we obtain |∆r1| ∼ 10%. For NO we observe
that |hr| � |hi|, as discussed in Sec. 3.3.3.4.

3.4.3.5 Mechanism II a-2: g = hr = 0

As discussed in details in Sec. 3.3.3.5 this case is quite similar to hi = hr = 0 because
the LO predictions are the same. Also this case is in good agreement with our numerical
scan in the parameter space, with similar results for ∆ sin2 θ13 and |∆r1|, see Sec. 3.4.3.2.
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3.4.3.6 Mechanism II a-2: g = hr,2 = 0

This realization, discussed in Sec. 3.3.3.6, has a phenomenology similar to the case
hi = hr,2 = 0 discussed above in Sec. 3.4.3.2. The numerics confirms that only IO is
allowed. The LO results for θ13 are in agreement with the numerical evaluation to a high
degree of precision while for the mass splittings we obtain ∆m2

21 = O(10−4) eV2 and thus
we need to consider also the NLO corrections to correctly reproduce the full numerical
evaluation. Using the NLO formulae we obtain |∆∆m2

21| ∼ |∆r2| ∼ 20%.

3.4.4 Mechanism II c-2

hi = fi = 0 hi = hr = 0 hi = hr,2 = 0 fr = fi = 0 fr = hr = 0 fr = hr,2 = 0
NO IO NO NO IO 7 NO IO NO NO

χ2
a 4.36 5.55 4.37 8.81 5.80 4.36 5.51 5.55 4.39

χ2
m 0.00 0.01 0.01 0.00 0.02 0.00 0.01 0.31 0.05
χ2 4.36 5.56 4.38 8.81 5.82 4.36 5.52 5.86 4.44

Table 3.15: Minimum of the χ2 in the case of Mechanism II c-2.

3.4.4.1 Mechanism II c-2: hi = fi = 0

The numerical scan in the parameter space for NO is in good agreement with the analyt-
ical expansions performed in Sec. 3.3.4.2, in particular we observe the strong correlation
between hr and hr,2. We observe that the corrections are roughly 3% (13%) for sin2 θ13 (r1) in
the whole parameter space. Assuming IO the NLO corrections to the mass splitting are im-
portant and cannot be neglected. For instance in the case of the solar mass splitting at LO
we get a negative value ∆m21 = −O(10−4) eV2 while at NLO we get ∆m21 = O(10−5) eV2.

3.4.4.2 Mechanism II c-2: hi = hr = 0

The analysis performed in Sec. 3.3.4.2 is compatible with the numerical analysis per-
formed in our numerical scan: we observed that the approximations correctly reproduce
the numerical values, being the deviations roughly 5% for |∆r1| and ∆ sin2 θ13.

3.4.4.3 Mechanism II c-2: hi = hr,2 = 0

For NO the analytical expansion for small values of |fr| correctly reproduces the reactor
angle: the corrections are roughly ∆ sin2 θ13 ∼ 10% in the whole 3σ region for θ13, while
for |∆r1| we observe a 35 ÷ 60% deviation with respect to the full numerical evaluation.
Including the NLO corrections we obtain a good agreement because |∆r1| ∼ 5%÷ 10%.

3.4.4.4 Mechanism II c-2: fr = fi = 0

The prediction for mixing angles discussed in Sec. 3.3.4.4 are in agreement with our
numerical analysis. In particular, the reactor mixing angle obtained using the analytical
expansion is about 15% ÷ 20% different with respect to the full numerical evaluation
for NO while it is only 5% for IO. At LO the predictions for the mass splittings partially
reproduce the numerical values, because ∆r1 ∼ 40%÷60% for NO and ∆m2

21 = O(10−4) eV2

for IO. If we include the NLO correction we reduce the discrepancy between the full
numerical result and the analytical prediction. As an example of the NLO corrections for
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the ratio r` we shown in Fig. 3.4 the results of |∆r`| as a function of r`. We notice that
the corrections to the NLO predictions of r` are about 5 ÷ 10% (5 ÷ 15%) for NO (IO).
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Figure 3.4: Distribution of the corrections with respect to the full numerical eval-
uation in the planes (r`, |∆r`|) in the case of Type I see-saw Mechanism II c-2 with
fr = fi = 0 using the NLO relations. The green (blue) region indicates the 1σ CL for
r1 (|r2|) extracted from Ref. [45]. The points satisfy the experimental constraints on
mixing angles and mass splittings at 3σ CL. The purple star indicates the values
with χ2

min assuming NO while the purple triangle assuming IO, see Tab. 3.15.

3.4.4.5 Mechanism II c-2: fr = hr = 0

The predictions discussed in Sec. 3.3.4.5 are in agreement with our numerical scan.
However, we have observed that also other realizations with all the parameters in Mν with
the same order of magnitude are possible. In this case no clear symmetry arguments can
be invoked to explain the absence of hierarchy. Concerning the validity of the analytical
formulae, the correction are of order 10% for sin2 θ13., while their impact on r1 is roughly
45 ÷ 80% in the admitted confidence region. Just to make a comparison, in the case of
Mechanism II c-2 (hi = hr = 0) that has the same LO prediction for the mass spectrum,
as discussed in the analytical part, the corrections to r1 are roughly at the 5% level. A
possible explanation for these differences can be found using the NLO coefficients of r1.
In the limit fi/hr,2 = −1/2

√
3 we have

NLO coefficient r1 Mechanism II c: hi = hr = 0

NLO coefficient r1 Mechanism II c: fr = hr = 0
= (15− 9ϕ)

f2
r

h2
i

= (15− 9ϕ)
9

25
' 0.15757

(3.209)

where we used the approximate relations among fr and hr,2 obtained after (3.175) and that
among hi and hr,2 derived after (3.197). Hence the corrections in the case of Mechanism
II c-2 hi = hr = 0 are smaller than those of the Mechanism II c-2 fr = hr = 0, thus we
expect a qualitative difference between these two realizations.

3.4.4.6 Mechanism II c-2: fr = hr,2 = 0

This case was discussed in Sec. 3.3.4.6. In our numerical scan we found that also other
configurations of NO with all the parameters at the same order of magnitude are allowed,
but these cannot be predicted using symmetry arguments and were not discussed in the
analytic part. The predictions for the natural case, |hi| � 1, are in agreement with our
numerical scan. In fact ∆ sin2 θ13 ∼ 30 ÷ 45% and |∆r1| ∼ 5% ÷ 15%. With respect to the

– 81 –



case hi = hr,2 = 0, which has the same LO predictions for the mass spectrum, discussed
in Sec. 3.4.4.3 we observe a different behaviour. Using the NLO coefficients of r1 (in the
limit fi/hr = 1/2

√
3) we have

NLO coefficient r1 Mechanism II c: hi = hr,2 = 0

NLO coefficient r1 Mechanism II c: fr = hr,2 = 0
= (39 + 63ϕ)

f2
r

h2
i

=
39 + 63ϕ

100
' 1.40936

(3.210)

where we used the approximate relation among fr and hr obtained after (3.183) and that
among hi and hr derived after (3.202), thus the corrections in the case of model with
hi = hr,2 = 0 are larger than those of fr = hr,2 = 0.

3.5 Predictions for mβ and mββ

In this Section we discuss our results for the effective masses mβ and mββ . The analytical
estimates are summarized in Tabs. 3.3, 3.6, 3.9 and 3.11. We show our results in several
plots in the planes (mmin,mββ) and (mβ,mββ) where we also indicate the bounds on mmin

with red vertical dashed lines. These are obtained from the cosmological data [53]: mmin <
0.19 eV assuming PLANCK data and mmin < 0.07 eV using PLANCK ⊕ BAO data. For
mβ we indicate with a red vertical dashed line the expected sensitivity for the KATRIN
experiment: 0.2 eV @ 90% CL [50]. The excluded region for mββ , in both planes, is the
area over the horizontal purple dashed line, mββ ≥ 0.19 eV obtained using the 90% CL
limit on the half-life of 76Ge [61]. A recent result using the 136Xe, T 0ν

1/2(136Xe) > 1.07 ×
1026 years @ 90% CL [66], gives the lower bound for the excluded region mββ ≥ 0.083 eV
(gA = 1.269), but this result has a large uncertainty due to the bad knowledge on the
nuclear matrix element.

3.5.1 Mechanism I

In the case of Mechanism I, discussed in Sec. 3.3.1, we obtain different predictions for
mββ or mβ assuming a particular vacuum alignment for the flavon fields (see Tab. 3.3).
In Fig. 3.5 we show our results for mββ as a function of mmin (left panel) and mβ (right
panel) assuming s = 0, x = 0 or z = 0.
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Figure 3.5: Effective mass mββ for the neutrinoless double beta decay as a function
of mmin (left plot) and mβ (right plot) in the case of Mechanism I. Gray circles are
for NO while black diamonds for IO. The green (blue) region is the allowed area for
mββ at 3σ CL of mixing parameters [45] assuming NO (IO) while the green (blue)
lines contain the region at 1σ.

– 82 –



The predictions, summarized in Tab. 3.3, for the cases z = 0, x = 0 and s = 0 (IO) are in
agreement with the numerical evaluation performed in our numerical scan. We also show
the results for the case s = 0, assuming NO, where it does not exist a natural expansion
in the small parameter y.
We observe that the high mass region in the case z = 0 is already excluded by cosmology
and the current experiments on neutrinoless double decay. Future experiments, discussed
in Sec. 1.2.1, could probe the IO and quasi-degenerate region with a sensitivity mββ ∼
0.01 ÷ 0.05 eV (for a recent review see Ref. [59]). Thus we expect to confirm or reject
different realizations of Mechanism I using neutrinoless double beta decay experiments,
while mβ is far from the expected sensitivity of the KATRIN experiment except for the
case z = 0.

3.5.2 Mechanism II a-1

In the case of Mechanism II a-1, discussed in Sec. 3.3.2, we have many predictions because
of different vacuum alignments, see for instance Tab. 3.6. Our results are shown in Fig.
3.6 where we use the same conventions as Fig. 3.5.
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The predictions discussed in the various cases are in agreement with our numerical scan,
even for the case S = 0 where we only discussed the value of the lightest neutrino mass
mmin because no simple expansion in the natural smallest parameter Y is possible. The
case Z = 0 with |S| � |X| is close to the excluded region and already excluded using
the PLANCK ⊕ BAO data, as discussed in Sec. 3.3.2.1. In this Mechanism of A5 ⊗ CP
the future neutrinoless double beta decay experiments could probe only the cases Z = 0
and S = 0 (IO), while the realizations for X = 0 and S = 0 (NO) are beyond the expected
sensitivity. For mβ only the case Z = 0 and |S| � |X| is close to the KATRIN sensitivity.

3.5.3 Mechanism II a-2

In the case of Mechanism II a-2, described in Sec. 3.3.3, the situation is quite intricate
because several realizations for the vacuum alignment are possible. In Fig. 3.7 we show
our results for the numerical scan in the parameter space (we also show the results for
hi = hr,2 = 0 with NO, which does not have an expansion in small |g|). We indicate as ‘‘1’’
the cluster made by the cases hi = f = 0 NO (grey) and g = f = 0 NO (pink); ‘‘2’’: g = f = 0
IO (green); ‘‘3’’: hi = f = 0 IO (black); ‘‘4’’ g = hr,2 = 0 IO (green) and hi = hr,2 = 0 IO (black);
‘‘5’’: g = hr = 0 NO (pink), hi = hr = 0 NO (grey) and hi = hr,2 = 0 NO (grey). We observe
that the predictions for mββ in the cases marked as 2, 3 and 4 are quite similar, thus it
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is difficult, from the experimental point of view, to distinguish among these realizations.
The results are in agreement with the analytical predictions discussed above in Sec. 3.3.3,
see Tab. 3.9.
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Figure 3.7: Same as Fig. 3.5 but in the case of Mechanism II a-2. See text for
further details.

For both cases hi = hr = 0 and g = hr = 0 (marked as 5) the predictions for mββ are
quite similar to those of Mechanism I with z = 0, see Sec. 3.5.1, thus it is impossible to
distinguish among these cases. In the plane (mβ,mββ) we observe that the predictions for
the cases with g = 0 or hi = 0 are the same, so there is no way to disentangle these two
cases. However, the predictions for the lightest neutrino mass mmin are quite different in
cases with g = f = 0 assuming IO with respect to the other IO realizations (see clusters
2, 3 and 4), thus we expect that the next cosmological experiments, such as EUCLID [54]
combined with the PLANCK data, could improve the knowledge on mmin, because the
expected sensitivity on the sum of the neutrino masses is O(10−2) eV.

3.5.4 Mechanism II c-2

This Mechanism, discussed in Sec. 3.3.4, contains six different realizations of the vacuum
alignment. The results for the numerical scan over the parameter space are shown in
Fig. 3.8 where we observe that the data are in agreement with our analytical predictions,
summarized in Tab. 3.11. We also show the results for hi = hr,2 with IO, that does not have
a natural expansion in the parameter |fr|. We indicate with ‘‘1’’ the cluster with hi = fi = 0
NO (pink) and fr = fi = 0 NO (grey); label ‘‘2’’: hi = fi = 0 IO (green) and fr = fi = 0 IO
(black); label ‘‘3’’: hi = hr = 0 NO (pink), hi = hr,2 = 0 NO (pink), fr = hr = 0 NO (grey) and
fr = hr,2 = 0 NO (grey); label ‘‘4’’: hi = hr,2 = 0 IO (green).

This realization is similar to the Mechanism II a-2 discussed above in Sec. 3.5.3 because
the prediction in the plane (mβ,mββ) is the same in the two cases with fr = 0 and hi = 0,
see clusters 1,2 and 3 (while in Mechanism II a-2 for g = 0 and hi = 0) and far from the
expected KATRIN sensitivity, thus it is difficult to distinguish among different realizations.
Also the predictions for mmin are similar for the cases with fi = 0, hr = 0 or hr,2 = 0, thus
it is difficult to disentangle these cases.
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Figure 3.8: Same as Fig. 3.7 but in the case of Mechanism II c-2.

3.6 Model for Mechanism II c-2: fr = fi = 0

In this Section we want to construct an explicit realization for the neutrino mass spectrum
based on the classification discussed above in Sec. 3.3. We concentrate our investigation
on Mechanism II c-2 with fr = fi = 0, discussed in Sec. 3.3.4.4, where the lepton doublet
transforms as a 3 ∈ A5 while the right-handed neutrino as a 3′. This realization is
equivalent to have only a flavon in the pentaplet representation.
The prototype model of how a non-Abelian discrete symmetry can reproduce a given
mixing pattern is the model of Altarelli and Feruglio based on A4 [163]. We consider a
SUSY realization to generate the neutrino and charged lepton masses in the A5 ⊗ CP
framework. However additional symmetries are needed to correctly reproduce the right
vacuum alignment and prevent some unwanted couplings. We consider an abelian Z3

symmetry (see Appendix B for more details about abelian groups) and an abelian charge,
the Froggatt-Nielsen (FN) charge U(1)FN [147] spontaneously broken through the vev of a
scalar field Θ1 . As usual in SUSY, we also take into account the continuous R-symmetry
U(1)R that has the usual R-parity as a subgroup; terms in a superpotential should always
have total R-charge equal to two, see Ref. [164] for further details. The quantum numbers
for the matter fields are summarized in Tab. 3.16.

Field L νc E Hd Hu φν,5 φν,3 φν,3′ ϕ5 χ5 χ3′ ϕ̃5 χ̃5 χ̃3′

A5 3 3′ 3 1 1 5 3 3′ 5 5 3′ 5 5 3′

Z3 ω3 ω0
3 ω3 ω0

3 ω0
3 ω2

3 ω3 ω3 ω3 ω2
3 ω0

3 ω3 ω2
3 ω0

3

U(1)FN 0 0 1/3 0 0 0 0 0 -1/3 -2/3 -1 -1/12 -1/6 -1/4
U(1)R 1 1 1 0 0 0 0 0 0 0 0 0 0 0

Table 3.16: Quantum numbers of the fields involved in the Model.

In the flavon sector, we would like to build a potential for the field φν,5 such that the
minimum is as in (3.13e) and |xi| � |xr|, |xr,2|. The method of the driving fields is the
appropiate one. They do not get vevs but merely help the other flavons to do so. In the
following we present a SUSY case in which the U(1)FN is gauged such that a field Θ1

gets its vev through a D-term. The quantum numbers of the driving fields and Θ1 are
summarized in Tab. 3.17.
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Field φ0
ν,5 φ0

ν,1 χ0
5 χ0

3′ χ0
1 χ̃0

5 χ̃0
3′ χ̃0

1 Θ1

A5 5 1 5 3′ 1 5 3′ 1 1
Z3 ω3 ω3 ω3 ω0

3 ω0
3 ω3 ω0

3 ω0
3 ω0

3

U(1)FN 0 0 2/3 1 1 1/6 1/4 1/4 -2
U(1)R 2 2 2 2 2 2 2 2 0

Table 3.17: Quantum numbers of the driving fields and Θ1 involved in the Model.

The scalar potential can be written as

Vscalar = VF + VD (3.211)

where the F -term and D-term are

VF =
∑
fields

∣∣∣∣∂W∂Φ

∣∣∣∣2 VD =
1

2

(
M2
FI − gFN|Θ1|2

)2
. (3.212)

The D-term can be constructed in the same way as Refs. [165, 166]. In VD the parameter
gFN is the U(1)FN charge and MFI is the contribution of the Fayet-Iliopoulos term. There
are SUSY minima such that VF = VD = 0. The vanishing of VD requires

|〈Θ1〉|2 =
M2
FI

gFN
. (3.213)

The superpotential can be written as

W =Wν +W` (3.214)

where Wν(`) is the relevant part for the neutrino (charged lepton) driving fields. These
can be expressed as series of Λ−1, where Λ is the UV cutoff scale

W =
(
WLO
ν +WLO

`

)
+ (δWν + δW`) + . . . (3.215)

3.6.1 LO superpotential

At LO we can study WLO
ν and WLO

` separately because of FN charges.

3.6.1.1 Neutrino superpotential: WLO
ν

The superpotential is

WLO
ν = µ5

[
φ0
ν,5φν,5

]
1

+ λ
[
φ0
ν,5(φν,3φν,3′)5

]
1

+ λ3

[
φ0
ν,5(φν,3φν,3)5

]
1

+

+ λ3′
[
φ0
ν,5(φν,3′φν,3′)5

]
1

+ g3

[
φ0
ν,1(φν,3φν,3)5

]
1

+ g3′
[
φ0
ν,1(φν,3′φν,3′)5

]
1

(3.216)

where µ5, λ, λ3, λ3′ , g3, g3′ ∈ R as a consequence of the Clebsh-Gordan coefficients, see Ap-
pendix C. The components of the 〈φν,5〉 in (3.13e) can be parametrized as

xi = xi + δxi xr = xr + δxr xr,2 = xr,2 + δxr,2. (3.217)

The terms δxi, δxr and δxr,2 are the quantum corrections, that we ignore at this order in
the Λ−1 expansion. The equations for the minimum, VF = 0, give us the following vevs

w = i

√
g3

g3′
(ϕ− 1) v (3.218)
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where v is unconstrained. Since we need v and w real the parameters in the potential
fulfill the condition g3g3′ < 0; similar bounds hold in other models with CP , see for
instance Ref. [74]. The other vevs are

xi = 0 (3.219a)

xr =
3w2λ3′ − 6v2λ3(ϕ− 1)− 2wvλ(ϕ+ 1)√

6µ5

(3.219b)

xr,2 =
6w2λ3′ϕ+ 3v2λ3 + 2wvλ(ϕ− 2)√

6µ5

. (3.219c)

Using (3.218), (3.219b) and (3.219c) we get

xr
xr,2
' xr
xr,2

=
2
√
−g3g3′λ(3ϕ− 4) + 3 [2g3λ3′(1− 2ϕ) + g3′λ3(2 + ϕ)]

2
√
−g3g3′λ(1 + 3ϕ)− 3 [2g3λ3′(1− 2ϕ) + g3′λ3(ϕ− 3)]

(3.220)

which is compatible with xr/xr,2 ' ±1, see Sec. 3.3.4.4, assuming a tuning among the
parameters in WLO

ν .

3.6.1.2 Charged lepton superpotential: WLO
`

This analysis is similar to the one discussed in Ref. [113]. The superpotential at the
renormalizable level is

WLO
` = η

[
χ0
1(χ5ϕ5)1

]
1

+m3′
[
χ0
3′χ3′

]
1

+ ρ3′
[
χ0
3′(χ5ϕ5)3′

]
1

+m5

[
χ0
5χ5

]
1

+

+ ρa
[
χ0
5(ϕ5ϕ5)51

]
1

+ ρb
[
χ0
5(ϕ5ϕ5)52

]
1

+

+ η̃
[
χ̃0
1(χ̃5ϕ̃5)1

]
1

+ m̃3′
[
χ̃0
3′χ̃3′

]
1

+ ρ̃3′
[
χ̃0
3′(χ̃5ϕ̃5)3′

]
1

+ m̃5

[
χ̃0
5χ̃5

]
1

+

+ ρ̃a
[
χ̃0
5(ϕ̃5ϕ̃5)51

]
1

+ ρ̃b
[
χ̃0
5(ϕ̃5ϕ̃5)52

]
1

(3.221)

where all coefficients are real. A particular solution for the vevs at LO is

〈χ3′〉 = (0, 0, 0)T 〈χ̃3′〉 = (0, 0, 0)T (3.222a)
〈χ5〉 = (0, 0, 0, 0, vχ)T 〈χ̃5〉 = (0, 0, 0, 0, ṽχ)T (3.222b)
〈ϕ5〉 = (0, 0, vϕ, 0, 0)T 〈ϕ̃5〉 = (0, 0, ṽϕ, 0, 0)T (3.222c)

where

vχ =
2ρa + 3ρb√

6

v2
ϕ

m5
ṽχ =

2ρ̃a + 3ρ̃b√
6

ṽ2
ϕ

m̃5
(3.223)

and vϕ, ṽϕ are unconstrained.

3.6.2 NLO corrections

3.6.2.1 Neutrino superpotential: δWν

Due to Z3 and U(1)FN charges the corrections in the sector with the neutrino driving
fields do not contain χ5, χ̃5, ϕ5, ϕ̃5, χ3′ and χ̃3′ . We have two possible contractions with
the driving fields φ0

ν,5 and φ0
ν,1: φν,5φν,5φν,3 and φν,5φν,5φν,3′ , so in principle four kinds

of operators, up to contractions, are possible. Since we have two identical fields we can
use the antisymmetry of the Clebsh-Gordan coefficients in order to reduce the number of
non-vanishing operators. We get only six independent operators, collected in Appendix
F.1. Notice that there are no correction to the driving field φ0

ν,1 at NLO

∂Wν

∂φ0
ν,1

=
∂WLO

ν

∂φ0
ν,1

+ · · · = 0 (3.224)

– 87 –



where dots indicate N2LO corrections, thus δv and δw satisfy the LO relation, see Eq.
(3.218). With the above operators we could find the corrections to the vevs defined in
(3.219). We get

δxi ∝
1

Λ

v5

µ3
5

δxr = −δxr,2 (3.225)

where δxi is a function of the couplings g3(3′)
j and the LO vevs (3.218) and (3.219), hence

δxi = O(v2/Λ) with the natural condition v = O(µ5). Thus we get the required hierarchy
|xi| � |xr|, |xr,2|. In order to obtain the correct size of θ13, see Eq. (3.187), we can assume

w

Λ
∼ v

Λ
∼ xr

Λ
∼ xr,2

Λ
∼ λC

xi
Λ

=
δxi
Λ
∼ λ2

C (3.226)

where λC is the sine of the Cabibbo angle, λC ' 0.22 [167]. From the see-saw mechanism
we could predict the scale of the heavy Majorana particles

mν ∼
〈Hu〉2

M

vivj
Λ2
∼ 〈Hu〉2

M
λ2
C = sin2 β

〈H〉2

M
λ2
C (3.227)

thus for mν = 0.1 eV and sinβ ∼ 1 we get M = O(1013) GeV.

3.6.2.2 Charged lepton superpotential: δW`

In δW` it is possible to have contractions among the driving fields χ0
5, χ0

3′ and χ0
1 and

all the scalar flavon fields. We get twenty-eight operators with the pentaplet χ0
5, sixteen

with χ0
3′ , seven with χ0

1, twelve with χ̃0
5, seven with χ̃0

3′ and only four with χ̃0
1. These are

discussed in Appendix F.1. Thus we have 28 + 16 + 7 + 12 + 7 + 4 = 74 operators at NLO. The
effect of these operators is to modify the vacuum alignment of (3.222). We get

〈χ3′〉 = (δχ1
3′ , δχ

2
3′ , δχ

3
3′)

T (3.228a)
〈χ5〉 = (δχ1

5, δχ
2
5, δχ

3
5, δχ

4
5, vχ + δvχ)T (3.228b)

〈ϕ5〉 = (δϕ1
5, δϕ

2
5, vϕ + δvϕ, δϕ

4
5, δϕ

5
5)T (3.228c)

〈χ̃3′〉 = (δχ̃1
3′ , δχ̃

2
3′ , δχ̃

3
3′)

T (3.228d)
〈χ̃5〉 = (δχ̃1

5, δχ̃
2
5, δχ̃

3
5, δχ̃

4
5, ṽχ + δṽχ)T (3.228e)

〈ϕ̃5〉 = (δϕ̃1
5, δϕ̃

2
5, ṽϕ + δṽϕ, δϕ̃

4
5, δϕ̃

5
5)T (3.228f)

where all δχir are different from zero. Note that not all variations are independent because
we have more δχir, (twenty-six) than equations (sixteen) thus ten vevs are functions of the
others. Notice that the fields χ3′ and χ̃3′ are needed to obtain a solution for the NLO
equations. The expressions for the field variations are quite cumbersome and thus we do
not include them here.

3.6.3 Neutrino mass spectrum

At LO the model is the one discussed in Mechanism II c-2 with fr = fi = 0 (this is
equivalent to no flavon in representation 4 ∈ A5) and the light neutrino mass matrix is
Mν = −M5

D
T
P23M

5
D/M where M5

D is defined in Eq. (3.153). At LO hi = 0 thus θ13 = 0.

3.6.3.1 NLO corrections

The Dirac lagrangian at NLO can be written as

L NLO
D = Hu

{
y4

33′

[
(νcL)4

(
φν,3φν,3′

Λ2

)
4

]
1

+ y5
33′

[
(νcL)5

(
φν,3φν,3′

Λ2

)
5

]
1

+
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+ y5
33

[
(νcL)5

(
φν,3φν,3

Λ2

)
5s

]
1

+ y5
3′3′

[
(νcL)5

(
φν,3′φν,3′

Λ2

)
5s

]
1

}
. (3.229)

The Yukawa couplings are real. The Dirac mass can be written as

MD = MLO
D +MNLO

D + . . . (3.230)

where we expect the naive scaling MLO
D ∼ 〈Hu〉vi/Λ and MNLO

D ∼ 〈Hu〉vivj/Λ2 and vi is a
generic vev defined as in (3.226). We obtain that (ImMNLO

D )ij = 0, thus this term does not
contribute to θ13. The matrix is

MNLO
D ∼ 〈Hu〉

vivj
Λ2

a e e
d b c
d c b

 (3.231)

where a, b, c, d are O(1) real coefficients.
The Majorana lagrangian at NLO is 4

L NLO
M = λ5

53

[
(νcνc)5

(
φν,3φν,5

Λ

)
5

]
1

+ λ5
53′

[
(νcνc)5

(
φν,3′φν,5

Λ

)
5

]
1

(3.232)

where λ5
53 and λ5

53′ are real parameters. The mass matrix for the heavy Majorana particles
can be written as

MM = MLO
M +MNLO

M + · · · = MP23 +MNLO
M + . . . (3.233)

where we used Eq. (3.97) for MLO
M . From the NLO corrections we get

MNLO
M ∼ ivw

Λ

 0 −f̃ f̃

−f̃ f 0

f̃ 0 −f

 (3.234)

where f̃ =
√

2ϕf and f = O(1). The light neutrino mass matrix can be obtained as

Mν = MLO
ν +MNLO

ν + . . . (3.235)

where the LO term is discussed in Sec. 3.3.4.4 and the NLO term can be written as

MNLO
ν = − 1

M

[(
MNLO
D

T
P23M

LO
D +MLO

D
T
P23M

NLO
D

)
−MLO

D
T
MNLO
M MLO

D

]
. (3.236)

The term in parentheses is real, thus it does not contribute to θ13 (see the discussion after
Eq. (3.3)), while the last term has the following structure

1

M
MLO
D

T
MNLO
M MLO

D = i〈Hu〉2
vivjvk

Λ3

(xr − xr,2)

M

 0 −g̃ g̃
−g̃ g 0
g̃ 0 −g

 (3.237)

where g̃ =
√

2ϕg and g = O(1). This part of the neutrino mass matrix is important to get
θ13 6= 0. Notice that in the case of IO this term is negligible because xr−xr,2 ' xr−xr,2 ' 0,
see Sec. 3.3.4.4, and a non-zero reactor angle is a consequence of δxi defined in (3.225).
The form of Mν is the same MLO

ν thus the neutrino phenomenology does not change at
this order.

4Notice that terms proportional to one flavon fields are forbidden by Z3 and U(1)FN charges.

– 89 –



3.6.4 Charged lepton masses

At LO the Yukawa lagrangian responsible of the lepton mass is the following

LY = yτHd

[
(EcL)5

ϕ5

Λ

]
1

+ y1
µHd

[
(EcL)5

(χ̃5χ̃5)51
s

Λ2

]
1

+ y2
µHd

[
(EcL)5

(χ̃5χ̃5)52
s

Λ2

]
1

+

+ y3Hd

[
(EcL)3

(χ̃3′ϕ̃5)3
Λ2

]
1

+ y5Hd

[
(EcL)5

(χ̃3′ϕ̃5)5
Λ2

]
1

+ h.c. (3.238)

therefore mτ = yτ
√

3/2〈Hd〉vϕ/Λ, mµ = y1
µ〈Hd〉ṽ2

χ/2Λ2 and me = 0. Including the effect of
the vevs shifts, (3.228), in the Yukawa lagrangian (3.238) we obtain corrections for the
charged lepton mass matrix M`. We get

M` = 〈Hd〉 diag

{
0, y1

µ

ṽ2
χ

2Λ2
, yτ

√
3

2

vϕ
Λ

}
+ 〈Hd〉

yτ
Λ


−δϕ1

5

√
3

2 δϕ
5
5 −

√
3

2 δϕ
2
5√

3
2 δϕ

5
5

√
3
2δϕ

4
5

1
2δϕ

1
5

−
√

3
2 δϕ

2
5

1
2δϕ

1
5

√
3
2δvϕ

 (3.239)

where the mass matrix at NLO is symmetric because of the Kronecker products. We get
corrections for UPMNS by charged leptons through U †` , see Sec. 2.3. These corrections can
change the LO prediction θ23 = π/4 and are useful to accommodate the recent hint by
NOνA of a deviation from a maximal atmospheric mixing. To obtain the right hierarchy
we need δϕ1

5 ' 0, which is a particular solution for (3.228). As discussed in Ref. [113] the
correction δϕ1

5 can be smaller than the others δϕj 6=1
5 . In fact, embedding A5 to its double

cover I ′ it is possible to solve this issue because I ′ has a doublet representation that can
be used for the right-handed charged leptons. This approach was used in Ref. [168] to
reproduce the mass hierarchy in the quark sector.
The matrix U` can be written as

U` '

 1 (m12
m22

V
Λ )? (m13

m33

V
Λ )?

−m12
m22

V
Λ 1 −(m11/2

m33

V 2

Λ2 )?

−m13
m33

V
Λ

m11/2
m33

V 2

Λ2 1

 (3.240)

where we indicate as mij ≡ (M`)ij the matrix elements of M` and V is the scale of the
vevs, defined through the relation (3.223) at LO. The ratio between the vevs and the cutoff
scale is fixed by phenomenology

λ2
C '

mµ

mτ
∼ V

Λ
(3.241)

where λC ' 0.22 is the Cabibbo angle. However, a certain degree of fine-tuning is needed
in this model to have me/mµ ' λ3÷4

C . The estimate in (3.241) is also useful to investigate
the size of the reactor angle. The PMNS matrix is the product U †`Uν , where, at this order
in Λ−1 expansion, Uν is defined as in (3.1). To quantify the effect of U` we can assume
θ = 0, so the Golden Ratio (GR) mixing angle θ12 is modified by a factor O(λ2

C) while the
reactor and atmospheric angles change at O(λ4

C) [113]

sin2 θ12 =
3− ϕ

5

[
1 +O(λ2

C)
]

sin2 θ13 = O(λ4
C) sin2 θ23 =

1

2

[
1 +O(λ4

C)
]
. (3.242)

At order Λ−2 no operators are relevant for the lepton masses. We have 4 + 11 + 19 = 34
operators at order Λ−3, four with Ec ⊗ L ∼ 1, eleven with Ec ⊗ L ∼ 3 and nineteen with
Ec⊗L ∼ 5, see Sec. F.2. In general these operators give a mass for e and also corrections
to mτ and mµ. All these operators are suppressed at least as λ4

C due to (3.226) and (3.241),
thus we could ignore the effects on the PMNS matrix.
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UPMNS = ULO
PMNS + UNLO

PMNS

L LO
D (〈φ〉LO)⊕L LO

M (〈φ〉LO)

ULO
ν

L LO
Y (〈φ〉LO)

ULO
`

L NLO
D (〈φ〉LO)⊕L NLO

M (〈φ〉LO)

L LO
D (〈φ〉NLO)⊕L LO

M (〈φ〉NLO)

UNLO
νULO

`
†
UNLO
ν

L NLO
Y (〈φ〉LO)⊕L LO

Y (〈φ〉NLO)

UNLO
`UNLO

`
†
ULO
ν

Figure 3.9: Scheme of the contributions to the PMNS matrix from the charged
lepton and neutrino sector.

3.6.5 PMNS matrix summary

We want to summarize the results discussed above, in particular the order of magnitude
of the mixing angles. Each angle has four contributions at NLO, as shown in Fig. 3.9.
These corrections come from:

• the neutrino matrix Uν , which is obtained from

1 the neutrino lagrangian (3.151) (with y4 = 0), using 〈φν,r〉 evaluated at NLO
(3.225);

2 the effective operators for neutrino masses, defined in the Dirac (3.229) and
Majorana (3.232) lagrangians, using 〈φν,r〉 at LO, see Eqs. (3.218) and (3.219);

• the charged-lepton matrix U`, which is obtained from

3 the Yukawa lagrangian (3.238), using 〈χr〉 at NLO (3.228);
4 the effective operators for charged-leptons masses (F.9a),(F.10) and (F.11), with
〈χr〉 and 〈φν,r〉 evaluated at LO, see (3.218), (3.219) and (3.222).

In this model the LO prediction for UPMNS is the Golden Ratio matrix, which has θ13 = 0,
a maximal atmospheric angle and a non-trivial value of θ12 (see the discussion after
Eq. (2.19) in Chapter 2). Only at NLO the reactor angle acquires a non-zero value as
summarized above. Using the formula for sin2 θ13 as a function of the neutrino flavons
vevs, Eq. (3.187), and the corrections from U †` we get

sin2 θ13 '
2 + ϕ

5

∣∣∣∣∣sin θ + i

√
3− ϕ

2

(
m?

12

m?
22

− m?
13

m?
33

)
V

Λ

∣∣∣∣∣
2

(3.243)

where sin θ = O(λC), see Eq. (3.226), and V/Λ is O(λ2
C), see Eq. (3.241). Thus we expect

that the phenomenology of θ13 is the same as A5 ⊗ CP assuming O(1) coefficients in M`.
The atmospheric angle θ23 receives corrections at order λ3

C , as discussed above

sin2 θ23 '
1

2

[
1 +

√
4 + 2ϕ

5
sin θ

Im{(V/Λ)(m13m22 +m12m33)m?
22m

?
33}

|m22m33|2

]
(3.244)

hence to get θ23 6= π/4 we need large coefficients in M`. The solar angle θ12 is

sin2 θ12 '
3− ϕ

5

[
1 +

sin2 θ

5
− 1√

10

(
m12

m22
+
m13

m33
+ c.c.

)
V

Λ

]
. (3.245)
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Note that the sum rule between the solar and reactor angles, defined in (3.6), is broken
by the quantum corrections. Using the above relations we could obtain a mixing pattern
that is in agreement at the level of 3σ with the current experimental data: θ23 6= π/2 and
θ13 ∼ 9◦.
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4
New Physics at Neutrino Facilities

After the discovery of the non-vanishing reactor mixing angle θ13 in 2012 and its mea-
surement in the Double Chooz [39], Daya Bay [40] and RENO [41] reactor experiments,
experimental efforts in the neutrino sector are now devoted to establishing the presence
of CP violation in the lepton sector, the neutrino mass ordering and the absolute mass
scale.
The large value of the reactor angle, θ13 about 9◦, allows to search for the CP Dirac
phase δ in Long Baseline (LBL) neutrino experiments, such as Tokai to Kamioka (T2K) [35],
NOνA [138] and in future LBL experiments such as Hyper-Kamiokande [42], the Deep Un-
derground Neutrino Experiment (DUNE) [169] and the proposed ESSνSB [170].
The observation of 28 electron neutrino events in T2K [35] confirmed the νµ → νe transi-
tion at more than 7σ and provided a first weak indication for the value of the CP Dirac
phase δ. In fact, a combined analysis of the appearance and disappearance channels
in T2K, which also includes the reactor constraints on the reactor angle [171], disfavors
δ/π ∈ [0.15, 0.83] for NO and [−0.18, 1.09] for IO at 90% CL, with a best fit point around
maximal CP violation, δ ' 3π/2. This shows the large increase of sensitivity in the de-
termination of δ when performing a combined analysis of reactor and super-beam data,
see Refs. [45,47,48,110].
The strength of such a procedure can also be used to test the presence of physics beyond
the Standard Model (SM) in the neutrino sector that affects neutrino oscillation proba-
bilities, and to investigate its impact on the determination of the standard oscillation
parameters. This analysis was performed in Ref. [172].
In this Chapter, we consider two possible scenarios, discussed in Section 4.1, in the
effective field theory approach: the so called Large Extra Compactificated Dimensions
(LED) model, where sterile neutrinos can propagate in a larger than three-dimensional
space whereas the SM left-handed neutrinos are confined to a four-dimensional space-time
brane; and Non-Standard Neutrino Interactions (NSI), where the neutrino interactions with
ordinary matter are parametrized at low energy in terms of effective flavour-dependent
couplings. In Section 4.2 we discuss the statistical procedure adopted in our analysis while
in Section 4.3 we show our results assuming SM, LED or NSI oscillation probabilities.

4.1 Effective Theory

In this Section we want to review the two models and their impact on neutrino oscillation
probabilities. In our work, following similar analysis performed in Refs. [173,174], we use
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an effective field theory approach, which means that the theory is valid up to a certain
energy scale Λ. We assume that this scale is far from the usual electroweak scale, i.e.
Λ� mW , and we can write an effective lagrangian L eff that contains the effect of New
Physics for each specific model. In both models we can consider the effect of NP on
oscillation phenomena as a perturbation of the SM neutrino amplitude

A(να → νβ) = ASM(να → νβ) + δA(να → νβ). (4.1)

4.1.1 Large Extra Dimensions

This is a model of sterile neutrinos that propagate in LED giving rise to Kaluza-Klein (KK)
modes. The Standard Model LH neutrinos are confined to a 4D spacetime brane [175–177].
In this case the right-handed neutrinos, as gravity, can propagate in the bulk.
There exist several bounds on the number of extra dimensions in the context of LED
from astrophysics experiments [167]. We focus our attention to a 6D picture. The extra
dimensions are compactified, the fifth (sixth) is a circle of radius R (R′). We use, in
practice, a 5D approach, because we consider the limit R � R′ [178–182]. From torsion
experiment on Newton’s law we have the following bound on the radius [183]

R ≤ 37 µm @ 95% CL. (4.2)

We consider a framework where we have a Dirac mass term for the three active neutrinos.
This model is often indicated as the (3, 3) LED model. The action of 5D massless bulk
neutrinos Ψα(xµ, y), interacting with the standard LH neutrinos να is

S = i

∫
d4x dy Ψ

α
(xµ, y)ΓA∂

AΨα(xµ, y) +

∫
d4x

[
iναL/∂ν

α
L + λαβHν

α
Lψ

β
R(xµ, 0) + hc

]
+ SI

(4.3)

where ΓA are the Dirac matrices in five dimensions A = 0, 1, 2, 3, 4, λαβ the Yukawa cou-
plings and H the Higgs doublet. SI is the part of the action responsible for neutrino
interaction with matter. After electroweak symmetry breaking the neutrino mass ma-
trix can be extracted from the Lagrangian. Following the conventions of Ref. [184] the
effective lagrangian in 4D is

L eff
LED = LM + LCC (4.4)

where

LM =
∑
α,β

mαβ

{
ν

(0)
α,Lν

(0)
α,R +

√
2

∞∑
k=1

ν
(0)
α,Lν

(k)
α,R

}
+
∑
α

∞∑
k=1

k

R
ν

(k)
α,Lν

(k)
α,R (4.5a)

LCC =
g√
2

∑
α

`αγ
µ
(
1− γ5

)
ν

(0)
α,LWµ + h.c. (4.5b)

Here we have indicated with α = e, µ, τ the flavour eigenstates, i = 1, 2, 3 the mass eigen-
states and k ∈ N \ {0} the KK modes. In this lagrangian the zero mode is the SM left-
handed neutrino and the KK modes are the particles of New Physics. The matrix mαβ is
the Dirac mass matrix.
In this framework ν

(k)
α,L and ν

(k)
α,R are massive linear combinations of the bulk fermion

fields, which are coupled to SM neutrinos ν(0)
α,L.

To evaluate the probability amplitude A(να → νβ) in this model we need to know the mass
eigenstates m

(k)
j and the matrix elements of transition between the zero mode and the

tower of KK states W (k)
j . In Appendix G we report further details about the evaluation of
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these terms. This diagonalization can be done by a unitary transformation with respect
to the active flavours

ν
(0)
α,L =

∑
i

Uαiν
(0)
i,L (4.6a)

ν
(0)
α,R =

∑
i

Rαiν
(0)
i,R (4.6b)

ν
(k)
α,R =

∑
i

Rαiν
(k)
i,R k ≥ 1 (4.6c)

where Uαi are the PMNS matrix elements. The condition∑
α,β

U?αimαβRβj = δijM j
ν ⇐⇒

(
U †mR

)
ij

= diag
(
M j
ν

)
(4.7)

must be satisfied. Notice that this is not a matrix product, but only a condition on matrix
elements. In this model the oscillation amplitude is

A(να → νβ) =
∑
i,j,l

∞∑
k=0

UαiU
∗
βjW

(0k)
ij W

(0k)
lj exp

[
i

(
λ

(k)
j

)2
L

2R2Eν

]
. (4.8)

In vacuum we have a diagonal matrix element of transition, Wij ∝ δij (see Appendix G.1),
thus we get

A(να → νβ) =
∑
j

∞∑
k=0

UαjU
∗
βj |W

(k)
j |

2 exp

[
i

(
λ

(k)
j

)2
L

2R2Eν

]
. (4.9)

Thus the probability is

P(να → νβ) =
∣∣∣A(να → νβ)

∣∣∣2 =
∑
i,j

∞∑
k,k′=0

UαjU
∗
αiUβiU

∗
βj |W

(k)
j |

2|W (k′)
i |2 exp

[
i

(
λ

(k)
j

)2 − (λ(k′)
i

)2
2R2Eν

L

]
.

(4.10)

This means that the SM probability is slightly modified by the extra dimensions, in fact the
mass of new particles is heavier than zero modes and the matrix elements are suppressed:
W

(k≥1)
j ∼ k−1. We can recover the SM probability in the limit of R,m0 → 0, as shown in

Fig. 4.4, for the channel νµ → νµ for a baseline of L = 295 km and Eν = 1 GeV.

The deformed probability depends on two parameters: the radius R of the extra dimension
and the mass of lightest neutrino m0 through the dimensionless perturbative parameter
ξ, defined as 1

ξj ≡
√

2Rmj , j = 1, 2, 3. (4.11)

In the case of reactor experiments, the above-mentioned procedure allows to calculate the
LED contribution to the total amplitude A(να → νβ) = ASM(να → νβ) + δALED(να → νβ) as
discussed in [184]

δALED(νe → νe) ' ξ2
1 |Ue1|

2 + ξ2
2 |Ue2|

2 + ξ2
3 |Ue3|

2 '
' ξ2

1 cos2 θ12 cos2 θ13 + ξ2
2 cos2 θ13 sin2 θ12 + ξ2

3 sin2 θ13. (4.12)

In the NO case (m3 > m2 > m1 = m0), δALED(νe → νe) is dominated by the last term,
in fact ξ2

3 ∝ m2
3, and thus suppressed by the small reactor angle θ13. For the IO case

1Notice that mj ≡ m(k=0)
j , which are the mass eigenstates that we observe in current experiments.
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Figure 4.1: In this plot we show the limit R→ 0 for the LED oscillation probabilities
assuming NO (dashed green) or IO (solid purple). These reproduce the SM probabili-
ties for both mass ordering (small dashed lines). The LED probabilities are obtained
for a baseline L = 295 km, m0 = 0 eV and Eν = 1 GeV.

(m2 > m1 > m3 = m0) the first two terms dominate the amplitude and no suppressing
factor is at work; we then expect the IO scenario to give us better constraints on R and
m0 than the NO case. The situation is quite different for the νµ → νµ and νµ → νe channels.
Indeed for the disappearance channel we have

δALED(νµ → νµ) ' ξ2
1 |Uµ1|2 + ξ2

2 |Uµ2|2 + ξ2
3 |Uµ3|2 '

' ξ2
1 cos2 θ23 sin2 θ12 + ξ2

2 cos2 θ12 cos2 θ23 + ξ2
3 cos2 θ13 sin2 θ23+

+ 2(ξ2
1 − ξ2

2) cos θ12 cos θ23 sin θ12 sin θ13 sin θ23 cos δ +O(sin2 θ13) (4.13)

and, due to the absence of the sin θ13 suppression in the ξ2
3 term, we do not expect a

significant difference in sensitivity between NO and IO. This channel is also expected to
give better constraints than the νµ → νe appearance one; in fact, in this last case the
amplitude reads

δALED(νµ → νe) ' ξ2
1Ue1U

∗
µ1 + ξ2

2Ue2U
∗
µ2 + ξ2

3Ue3 U
∗
µ3 '

' (ξ2
2 − ξ2

1) cos θ12 sin θ12 cos θ13 cos θ23 + ξ2
3 sin θ13 cos θ13 sin θ23e

−iδ+

− sin θ13 sin θ23 cos θ13e
−iδ(ξ2

1 cos2 θ12 + ξ2
2 sin2 θ12) (4.14)

and every term is suppressed by either ξ2
2 − ξ2

1 ∝ ∆m2
21 or sin θ13.

The global effects are reported in Fig. 4.2 for the channels νe → νe and νµ → νe as a
function of the neutrino energy. In our numerical study we used only the first five KK
resonances since the effects for more particles is meaningless.

4.1.2 Non Standard Interactions

In this Section we want to describe a model of interaction for neutrino in the low energy
regime called NSI which can describe NP effects in a model independent way. The im-
portance of NSI in the context of neutrino oscillations has pointed out in [185] and there
exists a large literature about this topic, see Ref. [186] for a recent review. We follow the
conventions of Ref. [187] (see also Refs. [173,174] for a similar analysis).
If we consider only lepton number conserving operators, ∆L = 0, the most general NSI
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Figure 4.2: Probability of oscillation as a function of the neutrino energy in the
channel νe → νe at L = 1 km (left) or νµ → νe at L = 275 km (right) using the LED
probabilities. These are obtained fixing m0 = 0 eV, R = 0.5 µm, δ = 0, sin2 2θ13 = 0.09,
sin2 θ12 = 3.08×10−2 and ∆m2

21 = 7.54×10−5 eV2. For NO we use ∆m2
31 = 2.5×10−3 eV2

and sin2 θ23 = 4.37 × 10−2, while for IO ∆m2
31 = −2.3 × 10−3 eV2 and sin2 θ23 =

4.55× 10−2.

effective lagrangian reads

L eff
NSI = LV±A + LS±P + LT (4.15)

where the subscripts indicated the Lorentz structure of the operator

LV±A =
GF√

2

∑
α,β

∑
f,f ′

(
εvV±A

)f,f ′
αβ

[
νβγ

σ(1− γ5)`α

][
f
′
γσ(1± γ5)f

]
+

+
GF√

2

∑
α,β

∑
f,f ′

(
εmV±A

)f
αβ

[
νβγ

σ(1− γ5)`α

][
fγσ(1± γ5)f

]
(4.16a)

LS±P =
GF√

2

∑
α,β

∑
f,f ′

(
εvS±P

)f,f ′
αβ

[
νβ(1− γ5)`α

][
f
′
(1∓ γ5)f

]
(4.16b)

LT =
GF√

2

∑
α,β

∑
f,f ′

(εvT )f,f
′

αβ

[
νβσ

ρτ `α

][
f
′
σρτf

]
. (4.16c)

Here α is the index of generations, α = {e, µ, τ} and f, f ′ are the component of an arbitrary
weak doublet which is a partner of the neutrinos. In the tensor operator σρτ = i[γρ, γτ ]/2.
The dimensionless tensor ε in flavour space gives the strength of non-standard interaction
relative to GF , the Fermi constant. The superscript v stands for vacuum effects and m for
matter effects. We expect that these effects are suppressed as

|ε| ∼
m2
W

m2
NSI

(4.17)

where mNSI is the typical mass of New Physics, mNSI . Λ and Λ is the UV cutoff scale.
Since there are many free parameters to constraint, we can use several arguments in
order to reduce their number [187]:

1. In experiments for neutrino oscillations in vacuum we can set f, f ′ = u, d, therefore
we can write (εv)ff

′

αβ = (εv)αβ without loss of generality. The same consideration holds
for matter oscillations, so that (εm)ff

′

αβ = (εm)αβ .
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2. For the non-standard matter effects only couplings to electrons, up and down quarks
are important.

3. The lepton τ in detector beam source can be neglected because τ production is almost
impossible in reactor and beam experiments, thus

(
εvV±A

)
τβ

=
(
εvS±P

)
τβ

= (εvT )τβ = 0

for all β = {e, µ, τ}. For the same reason we can neglect muons in reactor experi-
ments and electrons in superbeam since they are the subdominant background.

4. In muon interaction there is still room for non (V −A)(V −A) interactions [188].

5. Tensor interactions are forbidden in pion decay because the operator must have a
parity odd in the interaction.

6. In the detection processes involving muons the (S + P )(S ± P ) and TT interactions
are suppressed by a factor mµ/Eν = O(10−3) for neutrino energy of O(1) GeV. We
also neglect possible interference effects that can strongly modify the oscillation
amplitude.

7. Interaction of the type (V −A)(V +A) may in general be important in cross sections,
so we cannot neglect them.

8. The measurements of angular distribution in nuclear β decay strongly constrained
the TT and (S + P )(S ± P ) operators, thus we can set

(
εvS±P

)
eβ

= (εvT )eβ = 0 for all
β = {e, µ, τ}.

9. In electron interactions there is still room for (V −A)(V +A) operators with electrons
because these terms are chirally suppressed, thus the coefficient could be large. It
is possible to obtain bounds on the effective axial and vector couplings using proton
and neutron data, but due to the fact of non perturbative nature of low energy QCD
these are strongly model dependent, see Ref. [189].

Using these arguments we can write a more compact expression for the oscillation prob-
ability in vacuum because we consider only interactions with (V − A)(V ± A) Lorentz
structure. Therefore in our analysis effects of NSI can appear at low energy through
vacuum couplings, defined as εvαβ ≡ εαβ = |εαβ| exp iφαβ .
Notice that these new couplings can affect neutrino production and detection [10,190,191],
so the neutrino at production s and detection d states are a superposition of the orthonor-
mal flavour eigenstates |να〉, see for instance Refs. [186,192,193]. We have

|νsα〉 = |να〉+
∑

β=e,µ,τ

εsαβ|νβ〉 =
[
(1 + εs)|ν〉

]
α

(4.18a)

〈νdβ| = 〈νβ|+
∑

α=e,µ,τ

εdαβ〈να| =
[
〈ν|(1 + εd)

]
β
. (4.18b)

The oscillation probability can be obtained by squaring the amplitude 〈νdβ|e−iHL|νsα〉, where
H is the hamiltonian in the mass eigenstates basis:

P(νsα → νdβ) = |〈νdβ|e−iHL|νsα〉|2 =

∣∣∣∣(1 + εd)γβ
(
e−iHL

)
γδ

(1 + εs)αδ

∣∣∣∣2. (4.19)

We can obtain a numerical expression for the probability but is more useful to introduce a
perturbative formalism to understand the dependence of NP on the parameters. All those
expressions are reported in Appendix H. Notice that the states |νsα〉 and 〈νdβ|, in general,
do not form a complete set of states, so the norm is not automatically set to one∑

α

|νsα〉〈νsα| 6= 1 〈νsα|νsβ〉 6= δαβ
∑
β

|νdβ〉〈νdβ| 6= 1 〈νdα|νdβ〉 6= δαβ. (4.20)
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This implies effects which occur when L = 0, they are the so-called zero distance effects.
In this way the disappearance channel may have large deviations with respect to the SM
prediction.

For εαβ there exist model independent bounds, derived in Ref. [194], which at 90% CL read

|εee| < 0.041, |εeµ| < 0.025, |εeτ | < 0.041, |εs,dµe | < 0.026, |εs,dµµ | < 0.078, |εs,dµτ | < 0.013 .

(4.21)

For a more recent review on the NSI bounds see for instance Ref. [195]. In Fig. 4.3 we
show the P(νe → νe) and P(νµ → νµ) oscillation probabilities. The effect of NSI is shown
for a particular choice of the parameters.
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Figure 4.3: Probability of oscillation as a function of the neutrino energy in the
channel νe → νe at L = 1 km (left) or νµ → νe at L = 275 km (right) assuming
NSI probabilities obtained fixing δ = 0, the mixing angles sin2 2θ13 = 0.09, sin2 θ12 =
3.08×10−2 and sin2 θ23 = 4.37×10−2. The mass splittings are ∆m2

21 = 7.54×10−5 eV2,
∆m2

31 = 2.5× 10−3 eV2. For NSI-I we fixed εsµe = εeµ = εeτ = 10−2 and all the phases
are zero, while in the case NSI-II εeτ = 4× 10−2 and φeτ = 0.

4.2 Statistical Analysis

In this Section we want to summarize the main features of the T2K and Daya Bay exper-
iments and the statistical procedure that we use in our study. We analyze the data using
a modified version of the software GLoBES , see Refs. [196, 197] as well as the documenta-
tion at the following URL: https://www.mpi-hd.mpg.de/personalhomes/globes/index.html.
The software is designed to simulate the oscillation experiments taking into account all
the systematics and uncertainties.

4.2.1 T2K Experiment

T2K (Tokai to Kamioka) is a long-baseline neutrino experiment in Japan, and is studying
neutrino oscillations. The T2K experiment sends an intense beam of muon neutrinos from
Tokai, which is on the east coast of Japan, to Kamioka at a distance of LSK = 295 km in
western Japan. The neutrino beam is made in collisions between a proton beam and a
graphite target; these collisions produce pions, which decay to muon neutrinos 2.

2Technical details are available at http://t2k-experiment.org/t2k/
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Figure 4.4: Schematic layout of T2K experiment.

T2K studies neutrino oscillations with two separate detectors, both of which are 2.5 degrees
away from the centre of the neutrino beam. The ND280 near detector is LND280 = 280 me-
tres from the target, and measures the number of muon neutrinos in the beam before any
oscillations occur. The off-axis configuration allows to obtain an almost monochromatic
neutrino energy by the relation 3

Eν =
m2
π −m2

µ

2
(
Eπ − pπ cos θ

) ' 0.68 GeV (4.22)

where θ is the angle respect to the neutrino beam, and the numerical value is the energy
peak, at pπ = mπ cot θ. In the left panel of Fig. 4.5 we report the neutrino energy Eν as a
function of the pion momentum pπ for different axis configuration.
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Figure 4.5: (Left) Energy of neutrino products by pion decay as a function of pion
momentum. Are reported several angles, in red the off-axis configuration at T2K.
(Right) Flux of T2K experiment as a function of neutrino energy for various flavour
for Run I+II, data taken from [198].

For the analysis we used the public data for the disappearance channel [34], for the ap-
pearance ones [35] at the far detector and the data collected at the near detector [198].
During Run I-IV in disappearance Super-Kamiokande (SK) has 120 events and 28 in ap-
pearance, see Ref. [34,35] while the ND280 has collected 17369 events of CCQE with zero
pions in the final state [198]. Important parameters of the experiment are the fiducial
mass of near and far detectors. We have 4

FMND280 = 1529 kg FMSK = 22.5 kton. (4.23)

The measured event rates at the near detector have been estimated rescaling the non
oscillated measured event rates at the far detector using the scale factor L2

SK/L
2
ND280 ×

3The neutrinos are mainly produced from pions and kaon decay. In the off-axis configuration the pions
are the most relevant contribution.

4Private communication, see Ref. [199].
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FMND280/FMSK, i.e. we use Gauss theorem for the flux of the experiment, constrained
with the 17369 observed events. The neutrino flux has been estimated from Ref. [198], see
the right panel in Fig. 4.5. 5 We normalize all the events with a bin-to-bin normalization
constant, Nd

j , extracted using the T2K best fit for each channel.
The energy bin pre-smearing is performed assuming a resolution function of gaussian
form

R(Eν , E
′
ν) =

1

σE
√

2π
exp

[
− (Eν − E′ν)2

2σ2
E

]
(4.24)

where E′ν is the energy after the smearing processes. The energy resolution is assumed
to be [200]

σE
Eν

=
0.085 GeV

Eν
. (4.25)

This value is based on the programmatic report of T2K [201]. In our simulation we see
that this values does not influence the analysis since the main contribution comes from
the normalization of each bin Nd

j , extracted from the best fit. Besides other functional
dependences for σE give us consistent results. The post-smearing efficiency is evaluated
in the same way.
All these effects are subleading because of low statistics, but can be important when we
combine the analysis of T2K with other experiments, as for example the reactor Daya Bay
experiment.

We have simulated the systematics of the experiment, which are summarized in the upper
panel of Tab. 4.3. All the σ’s are the standard deviations of the systematic parameters,
which are expressed as gaussians with zero means. The parameter σρc contains the sys-
tematics uncertainties in the c-th channel, corresponds to (σρ1 , σρ2) = (8.8%, 8.1%), which
values extracted from Table II of Ref. [35] and Table I of Ref. [34], σΩd is the fiducial mass
uncertainty for the d-th detector (σΩd and σΩN have been estimated to be of the order of
1% for the far and the near detectors similarly to [202]), αd and αN are free parameters
which represent the energy scale for predicted signal events with uncertainty σαd and
σαN , (σαd , σαN = 1% [203]).

4.2.2 Daya Bay Experiment

The Daya Bay (DB) Reactor Neutrino Experiment is a China-based multinational particle
physics project studying neutrinos. It is situated at Daya Bay, approximately 52 kilo-
meters northeast of Hong Kong and 45 kilometers east of Shenzhen. At present time
the experiment consists of eight Antineutrino Detectors (AD), clustered in three locations
within 1.9 km of six nuclear reactors. Each detector consists of 20 ton of liquid scintilla-
tor (linear alkylbenzene doped with gadolinium) surrounded by photomultiplier tubes and
shielding. 6

The Daya Bay experimental setup that we take into account consists of six reactors [40],
emitting νe. The flux of arriving νe has contributions from the isotopes 235U, 238U, 239Pu,
and 241Pu, with weights reported in Tab. 4.1, whose spectra have been recently estimated
in Refs. [205,206].
The total flux of arriving νe at the six ADs has been estimated using the convenient
parametrization discussed in Ref. [205] and taking into account all the distances between

5Available at http://t2k-experiment.org/results/nd280data-numu-cc-inc-xs-on-c-2013
6Further details can be found at http://dayabay.ihep.ac.cn/twiki/bin/view/Public/
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Figure 4.6: Schematic layout of DB experiment, from Ref. [204].

235U 238U 239Pu 241Pu

AD1 63.3 12.2 19.5 4.8
AD2 63.3 12.2 19.5 4.8
AD3 61.0 12.5 21.5 4.9
AD4 61.5 12.4 21.5 4.9
AD5 61.5 12.4 21.5 4.9
AD6 61.5 12.4 21.5 4.9

Table 4.1: Ratio of νe from isotope in percentage. See the presentation at NuFact
2013 by S. Jetter (link).

the detectors and the reactors, see Tab. 4.2. For this analysis we use the data set accu-
mulated during 217 days extracted from Fig. 2 of Ref. [207]. The antineutrino energy Eν
is reconstructed by the prompt energy deposited by the positron Eprompt using the approx-
imated relation [40] Eν ' Eprompt + 0.8 MeV. The energy resolution function is a Gaussian
function, as discussed in the case of the T2K experiment, see (4.24), parametrized accord-
ing to

σE =

{
γ
√
Eν/MeV − 0.8 Eν > 1.8 MeV

γ Eν ≤ 1.8 MeV
(4.26)

with γ = 0.08 MeV. The cross section for the inverse beta decay (IBD) νe + p → e+ + n
process has been taken from Ref. [208].

We use the following systematics, see Tab. 4.3 for a summary. The parameter σε is
the reactor flux uncertainty (σε ' 3%), the parameter σd is the uncorrelated detection
uncertainty (σd = 0.2%) and σBd is the background uncertainty of the d-th detector obtained
using the information given in Ref. [207]: σB1 = σB2 = 8.21, σB3 = 5.95, σB4 = σB5 =
σB6 = 1.15 and σr = 0.8% is the correlated reactor uncertainties. The corresponding pull
parameters are (ε, εd, ηd, αr). With this choice of nuisance parameters we are able to
reproduce the 1σ, 2σ and 3σ confidence level results presented in Fig. 3 of Ref. [207] with
high accuracy. The differences are at the level of few percent (see for instance Tab. I and
Tab. II of Ref. [173] where this analysis was already performed).
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D1 D2 L1 L2 L3 L4

AD1 362 372 903 817 1354 1265
AD2 358 368 903 817 1354 1266
AD3 1332 1358 468 490 558 499
AD4 1920 1894 1533 1534 1551 1525
AD5 1918 1892 1535 1535 1555 1528
AD6 1925 1900 1539 1539 1556 1530

Table 4.2: Baselines from antineutrino detectors AD1-6 to reactors D1, D2, and L1-4
in meters, the data are summarised in Tab. 2 of Ref. [40].

4.2.3 Definition of ∆χ2

We introduce the systematics in the signal through priors and we perform a minimization
of these in the χ2 using the software GLoBES [196, 197]. Our analysis is performed by the
so-called pull method, see Refs. [200, 209]. We construct the total χ2 as the sum of T2K,
χ2

T2K, and DB, χ2
DB, contributions

χ2(θ) ≡ min
ρ

[
χ2

T2K(θ;ρ) + χ2
DB(θ;ρ)

]
(4.27)

where θ = {sin2 θ13, sin
2 θ23, δ,∆m

2
31} is the vector of parameters that we want to estimate

and ρ is the vector of the fifteen systematics considered in our analysis and discussed
above. See Tab. 4.3 for a complete list. In the following Odj is the observed event in the
j-th bin of detector d and T dj is the test event. The test events rate in each energy bin, of
width ∆Ej , is calculated using GLoBES by the relation

T dj (θ,ρ) =
1

Nd
j

∫
∆Ej(ρ)

dE Φνα(E)P(να → νβ)(E;θ)σνβ (E)ε(E) (4.28)

where Φνα is the neutrino flux, P(να → νβ) the probability of oscillations, σνβ the cross
section of the processes and ε the detector efficiency. As discussed above Nd

j is the nor-
malization, which is extracted from the best fit in the case of T2K, or from the unoscillated
events in the case of Daya Bay. In the χ2 the sum is performed over all c-th channel and
d-th detectors.

The T2K χ2 is given by a Poisson function [203]

χ2
T2K(θ;ρ) =

2∑
c=1

ncbins∑
i=1

2

[
Oci − T cj (θ,ρ) · (1 + ρc + Ωc) +Oci log

Oci
T cj (θ,ρ) · (1 + ρc + Ωc)

]
+

+

nNbins∑
i=1

2

[
ONi − TNj (θ,ρ) · (1 + ρ1 + ρ2 + ΩN ) +ONi log

ONi
TNj (θ,ρ) · (1 + ρ1 + ρ2 + ΩN )

]
+

+

2∑
d=1

(
ρ2
d

σ2
ρd

+
Ω2
d

σ2
Ωd

)
+

Ω2
N

σ2
ΩN

+ Priors (4.29)

where ncbins is the number of bins in c-th channel at SK, while nNbins at ND280.

The Daya Bay χ2 is a gaussian function. Its definition can be found in Ref. [40]

χ2
DB(θ;ρ) =

6∑
d=1

26∑
i=1

[
Odi − T di (θ,ρ) ·

(
1 + ε+

∑
r ω

d
rαr + εd

)
+ ηd

]2
Odi +Bd

i

+
ε2

σ2
ε

+
∑
r

α2
r

σ2
r

+
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Name Pull Error Value Reference

Appearance Systematic ρ1 σρ1 0.088 [35]
Disappearance Systematic ρ2 σρ2 0.081 [34]

Fiducial mass SK † Ωd σΩd 0.01 [202]
Fiducial mass ND280 † ΩN σΩN 0.01 [202]

Energy SK † αd σαd 0.01 [203]
Energy ND280 † αN σαN 0.01 [203]

Reactor Flux ε σε 0.03 [207]
Uncorrelated Energy εd σd 0.02 [207]
Correlated Energy 3 αr σr 0.08 [207]

Background AD1 η1 σB1 8.21 [207]
Background AD2 η2 σB2 8.21 [207]
Background AD3 η3 σB3 5.95 [207]
Background AD4 η4 σB4 1.15 [207]
Background AD5 η5 σB5 1.15 [207]
Background AD6 η6 σB6 1.15 [207]

Table 4.3: Systematics uncertainties used in our simulation for T2K (upper panel)
and DB (lower panel). The values taken from T2K collaboration are estimated for
sin2(2θ13) = 0.1 by Monte Carlo simulation. The values with †, instead, are consid-
ered in a conservative scenario. The value with 3 is obtained at Eν ∼ 1 MeV.

+
6∑
d=1

[
ε2
d

σ2
d

+
η2
d

σ2
Bd

]
+ Priors (4.30)

where Odi are the measured IBD events of the d-th detector ADs in the i-th bin, Bd
i

the corresponding background. The parameter ωdr is the fraction of IBD contribution
of the r-th reactor to the d-th detector AD, determined by the approximated relation
ωdr ∼ L−2

rd /(
∑6

r=1 1/L2
rd), where Lrd is the distance between the d-th detector and the r-

th reactor which are reported in Tab. 4.2.

4.2.4 Priors

In our analysis we marginalized over the parameters not shown in the plots, unless
explicitly stated. In particular we considered θ13, θ23, δ and ∆m2

31 as free parameters
completely unconstrained; we used gaussian priors on the solar mixing angle and mass
difference defined through the mean value and the 1σ error as follows: sin2 θ12 = 0.306 ±
20% and ∆m2

21 = (7.6±5%)×10−5 eV2, according to Ref. [110]. The software GLoBES searches
for the parameters in the allowed 3σ range using a gaussian distribution. The same scan
is performed for the nuisance parameters quoted in Tab. 4.4.
The NSI parameters are considered as free parameters constrained by the upper limits,
Eq. (4.21), while in the case of LED we impose the additional constraint to be in the
perturbative regime, i.e. ξj < 0.2 and R fulfils the condition (4.2).

4.3 Results

In this Section we want to summarize the main results of our procedure. In particular in
Section 4.3.1 we discuss the analysis performed using the T2K ⊕ Daya Bay data for the
standard oscillation parameters assuming SM, LED or NSI oscillation probabilities. In the
Sections 4.3.2 and 4.3.3, we discuss the bounds that we obtained for the NP scenarios.
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4.3.1 Standard oscillation parameters

We show our results for SM oscillation probabilities in Fig. 4.7 after performing a com-
bined fit to the Daya Bay [207] and T2K [34,35] data. We show the 1σ, 2σ, 3σ confidence
regions of ∆χ2 ≡ χ2 − χ2

min for 1 degree of freedom (dof) in the (δ, sin2 θ13), (δ, sin2 θ23),
(sin2 θ13, sin

2 θ23), (∆m2
31, sin

2 θ23) and (∆m2
31, sin

2 2θ13) planes in the case of NO (IO) with
dotted, dashed and solid lines (red, orange and yellow), respectively. We cut the χ2 at 1
dof as done in Ref. [110] in order to easily compare our results.
The obtained best fit points are indicated with a circle for NO and with a cross for IO. The
figures have been obtained using the standard oscillation probabilities relevant for the
νe → νe, νµ → νe and νµ → νµ channels (these were computed using the software GLoBES )
see Appendix A for the appropriate formulae.
The obtained best fit points and the 3σ confidence level regions are summarized in Tab.
4.4. The results that we obtained are in agreement with Ref. [110] and we observe that the
recent hint for maximal CP violation in the leptonic sector, δ ' 3π/2, is achieved mainly
using the latest Daya Bay and T2K results, however due to the low statistics of the T2K
experiment these results are very preliminary.

Notice that the definition ∆χ2 that we use is based on Wilks’ theorem, which is not ap-
plicable to discrete choices (such as NO vs IO, see for instance Ref. [210]) or to cyclic
variables (such as the Dirac CP phase δ, see a detailed discussion in the global analysis
of Ref. [48]). In the hierarchy tests, it has been observed that the above ∆χ2 prescription
is useful to investigate the statistical difference between normal or inverted ordering
with good approximation [211]. For CP violation tests, the prescription appears to lead (in
general) to more conservative bounds on δ, as compared with the results obtained from
numerical experiments, see Refs. [212,213].

As it can been seen from Fig. 4.7 and in Tab. 4.4 the differences between the two mass
ordering schemes is small and therefore the hierarchy cannot be established. We would
like to remark that our results are in agreement with the ones obtained with a more so-
phisticated technique taking into account all the available data from neutrino oscillation
experiments in [45, 47, 110], see also the analysis performed by the T2K Collaboration in
Ref. [171].

SM LED NSI

Parameter Best-fit 3σ range Best-fit 3σ range Best-fit 3σ range

2.51+0.06
−0.06 2.34− 2.69 2.53+0.07

−0.05 2.37− 2.73 2.56+0.06
−0.09 2.31− 2.74|∆m2

31|/10−3 [eV2]
2.54+0.06

−0.06 2.37− 2.73 2.54+0.07
−0.07 2.35− 2.71 2.56+0.09

−0.08 2.32− 2.77

5.3+0.4
−0.6 4.0− 6.3 5.3+0.4

−0.5 4.1− 6.3 5.2+0.6
−0.8 3.8− 6.5

sin2 θ23/10−1

5.3+0.4
−0.5 4.1− 6.2 5.3+0.4

−0.5 4.1− 6.3 5.2+0.6
−0.8 3.9− 6.5

2.3+0.3
−0.2 1.6− 3.0 2.3+0.2

−0.4 1.4− 3.0 3.9+0.4
−2.6 0.7− 5.1

sin2 θ13/10−2

2.4+0.2
−0.3 1.6− 3.0 2.2+0.1

−0.1 1.3− 2.9 3.8+0.5
−2.6 0.7− 5.1

1.53+0.33
−0.37 - 1.47+0.35

−0.31 - 1.65+0.55
−0.78 -

δ/π
1.48+0.36

−0.35 - 1.59+0.30
−0.36 - 1.35+0.75

−0.49 -

Table 4.4: Best fit (±1σ) and 3σ errors of the standard parameters obtained in the fit
of T2K ⊕ Daya Bay data, using the SM, LED and NSI probabilities. If two values are
given, the upper one corresponds to Normal Ordering and the lower one to Inverted
Ordering.
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Figure 4.7: Best fit points and 1σ, 2σ and 3σ confidence region obtained from the T2K
and Daya Bay data using the SM oscillation probabilities in the planes (δ, sin2 θ13),
(δ, sin2 θ23) and (sin2 θ13, sin

2 θ23) (upper panel), (∆m2
31, sin

2 2θ13) and (∆m2
31, sin

2 θ23)
(lower panel) in the case of NO (IO) with dotted, dashed and solid lines (red, orange
and yellow), respectively. The best fit point is marked with a circle for NO and a
cross for IO.

We show our results in Fig. 4.8 for LED and in Fig. 4.9 for NSI after performing a
combined fit to the Daya Bay [207] and T2K [34,35] data. Fig. 4.8 and Fig. 4.9 have been
obtained using the LED and the NSI oscillation probabilities relevant for the interesting
channels, see Section 4.1.1 for LED and Section 4.1.2 for NSI. The obtained best fit points
and confidence level regions at 3σ are summarized in Tab. 4.4 for both models.
We show the best fit points, a circle for NO and a cross for IO, and the 2σ, 3σ confi-
dence regions for 1 degree of freedom (dof) in the (δ, sin2 θ13), (δ, sin2 θ23), (sin2 θ13, sin

2 θ23),
(∆m2

31, sin
2 θ23) and (∆m2

31, sin
2 2θ13) planes assuming NO (IO) with dashed and solid lines

(orange and yellow), respectively.
We do not show the 1σ confidence regions due to the low sensitivity in the NSI case to the
CP violation phase as it can been understood from the one dimensional projections of the
∆χ2 = χ2 − χ2

min function, shown in Fig 4.10 for NO and in Fig. 4.11 for IO.

The presence of LED parameters in the oscillation formulae does not affect too much the
shape of the contours, see Fig. 4.7 and Fig. 4.8, as well as Tab. 4.4; in this respect, the
importance of including the T2K data in our analysis is mainly visible in the determina-
tion of ∆m2

31. In fact, in the analysis of the Daya Bay data only performed in Ref. [173],
the 3σ confidence region for the atmospheric mass splitting was roughly 5% larger with
respect to the SM determination, whereas in the present analysis this difference is re-
duced to roughly 1%. The reactor angle θ13 is strongly constrained from the Daya Bay
data, see Ref. [173], and it is very close to the SM result as shown in the one dimensional
projections of ∆χ2 in Figs. 4.10 and 4.11.

In the NSI scenario the presence of the new complex couplings εαβ enlarges the confi-
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Figure 4.8: Same as Fig. 4.7 but using the LED oscillation probabilities.
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Figure 4.9: Same as Fig. 4.7 but using the NSI oscillation probabilities.

dence regions of the standard oscillation parameters and, in particular, reduces the hints
for maximal CP violation since the whole [0, 2π] range for the Dirac phase δ is allowed
at 2σ confidence level, see the one dimensional projections in Figs. 4.10 and 4.11.
This effect is caused by the new sources of the CP violation, encoded in the unconstrained
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phases φαβ in the oscillation probabilities, see Appendix H for the relevant probabilities.
A large effect is also found in the determination of the reactor angle θ13. Indeed, in the
NSI case, the 3σ confidence region of sin2 θ13 is roughly twice as large as in the SM case,
as can be observed from Tab. 4.4. The main reason for such a behaviour is the strong
correlation among the reactor angle and the NSI parameters: for large enough εsµe and/or
εeµ,τ (and an appropriate choice of the related CP phases), huge cancellations can occur
with the standard part of the probability, thus causing an increase of the allowed θ13; the
opposite can also happen: positive interferences can decrease the expected value of the
reactor angle, see for instance Ref. [173].
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Figure 4.10: ∆χ2 as a function of sin2 θ13 (left panel), sin2 θ23 (middle-left panel),
δ (middle-right panel) and ∆m2

31 (right panel) using the SM (solid blue line), LED
(small dashed orange line) and NSI (large dashed green line) oscillation probabili-
ties assuming NO neutrino mass spectrum.
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Figure 4.11: Same as Fig. 4.10, but assuming IO neutrino mass spectrum.

We can easily notice in the one dimensional projections, Figs. 4.10 and 4.11 that the
atmospheric mixing angle θ23 is close to SM result for both models of NP. The same
happens for the mass splitting ∆m2

31.

4.3.2 LED fit

We consider the bounds on the size of the largest extra dimension R after performing
a fit with the T2K data only or with a combined analysis of the T2K and the Daya Bay
data, our results are shown in Fig. 4.12. The purple horizontal dashed line represent the
expected sensitivity on the lightest neutrino mass from the KATRIN experiment [51]. In
Fig. 4.12 we show the 2σ and 3σ exclusion limits with dashed and solid lines for NO
and with orange and yellow regions for IO neutrino mass spectrum. The circles and the
stars represent the 2σ bounds obtained using the IceCube IC-40 and IC-79 data set [214],
respectively, from which we have the following constraints: R ≤ 0.54 µm (R ≤ 0.34 µm )
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using the IC-40 (IC-79) data set at 1 dof 7.
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Figure 4.12: Exclusion regions at 2σ and 3σ confidence level for 1 dof with the
dashed and solid lines for NO and with the orange and yellow regions for IO neu-
trino mass spectrum for the LED model in the (log10(R), log10(m0))-plane, where m0

is the lightest neutrino mass and R the large extra dimension size, obtained fitting
the data of T2K experiment (left panel) and the Daya Bay and the T2K experiments
(right panel). The circles and the stars represent the 2σ bounds obtained using the
IceCube IC-40 and IC-79 data set [214] at 1 dof, respectively.

In our analysis we obtain an upper bound on the size of the largest extra dimension R for
T2K R ≤ 0.93 µm for normal and inverted ordering at 2σ CL and R ≤ 0.60 µm for NO and
R ≤ 0.17 µm for IO at 2σ CL in the combined analysis. All these bounds are summarised
in Tab. 4.5. We do not show the obtained best fit points for m0 and R since the χ2 is almost
flat in the allowed region (white areas in Fig. 4.12), they are meaningless.
The T2K data we used in the analysis consist on 28 appearance events and 120 disappear-
ance events, but the relevant constraint in T2K on the size of the largest extra dimension
R comes mainly from the νµ → νµ channel, see (4.13) and the relative discussion, which
is more sensitive. The combined analysis is dominated by the Daya Bay experiment, as
expected due to the higher statistics, see (4.12) for νe → νe and (4.14) for νµ → νe.

DB T2K T2K ⊕ DB IC-40 IC-79
Ref. [173] [172] [172] [214] [214]

NO 0.57 0.93 0.60 0.54 0.34
IO 0.19 0.93 0.17 0.54 0.34

Table 4.5: Upper bounds on R in µm at 2σ using different datasets.

4.3.3 NSI fit

Finally we analyze the bounds on the new couplings εαβ arising from the latest data of
the T2K and the Daya Bay experiments. In Fig. 4.13 we show the 2σ and 3σ confidence
regions for δ = 0 for the zero distance terms in the νµ → νµ oscillation probability in

7We thank A. Esmaili, O. L. G. Peres and Z. Tabrizi for providing us the χ2 function of their LED analysis
with the IceCube data.
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which the NSI parameters not shown in the plots are set to zero. The relevant parameters
in P(νe → νe) are discussed in Ref. [173] (see also Ref. [195] for a recent review). The
results for other values of the CP violation phase δ are similar to the case δ = 0 because
these couplings enter as a constant shift of the neutrino flux, see Appendix H.
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Figure 4.13: Allowed regions at 2σ and 3σ confidence level for 1 dof with in the
planes (εsµτ , φ

s
µτ ) (left panel) (εsµµ, φ

s
µµ) (right panel). The dashed vertical lines are

εsµτ = 0.013 and εsµµ = 0.078, see (4.21).

Similarly we show in Fig. 4.14 the confidence regions for the other NSI couplings but
fixing δ = 0, π, 3π/2 in the upper, middle and lower panels, respectively. As show in Fig.
4.14 the confidence regions depend on the choice of δ because this parameter is not well
defined at 1σ confidence level, as discussed above, see for instance Fig. 4.10 and 4.11
for the one dimensional projections of ∆χ2. For this reason we have to show the results
for fixed values of δ. The other parameters are marginalized over. Thus we can obtain
a bound for the absolute values of εαβ that are correlated to the values of the relative
phases φαβ , see Tab. 4.6.

φeµ/π δ/π Upper bound @ 2σ CL φsµe/π δ/π Upper bound @ 2σ CL

0 0 4.85× 10−3 0 0 6.28× 10−3

1 1 9.94× 10−3 1 1 9.96× 10−3

-1/2 3/2 3.50× 10−2 1/2 3/2 3.12× 10−2

Table 4.6: Upper bounds on the parameter εeµ and εsµe at 2σ CL for particular choices
of the phases φeµ and φsµe and δ, the values are obtained from Fig. 4.14.

For example at δ = 0 in the range φeµ ∈ [−1.41, 1.33] we have εeµ ≤ 0.025 at 3σ CL (the
bound quoted in Ref. [194]), and for φeµ = 0 we obtain εeµ < 4.9× 10−3 at 3σ CL which are
stronger bounds respect to what found in Ref. [194]. However, for maximal CP violation,
δ = 3π/2 we obtain a less stringent bound for the same parameter. The same analysis is
possible for εeτ and εsµe. For this last parameter we obtain in the region φsµe ∈ [−1.17, 1.50]
that εsµe ≤ 0.026 at 3σ CL (the bound quoted in Ref. [194]) and in particular for δ = 0 and
φsµe = 0.20 we have εsµe < 6.2 × 10−3 at 3σ confidence level. Again the bound obtained
for δ = 3π/2 is less relevant compared to the analysis of Ref. [194]. See Tab. 4.6 for a
summary of the bounds that we obtained for the NSI couplings.
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Figure 4.14: Allowed regions in the (εαβ , φαβ)-planes at 2σ and 3σ confidence level
for 1 dof and δ = 0, π, 3π/2 in the upper, middle and lower panels, respectively. The
vertical lines are at εeµ = 0.025, εeτ = 0.041 and εsµe = 0.026, see (4.21).

4.4 Discussion

While the impact of LED on the best fit values and 1σ errors of the standard oscillation
parameters is almost negligible (the largest difference is found for sin2 θ13 where the 3σ
LED confidence region is almost 10% larger than the standard model), this is not the case
for the NSI scenario, where particularly the allowed values of θ13 and δ are different from
the standard determination. Indeed the 1σ confidence region for θ13 is roughly six times
larger than the standard model analysis.
The situation is similar for the Dirac phase δ, where the presence of new phases from the
NSI complex couplings εαβ reduces the sensitivity with respect to the standard physics.
In fact, although the best fit is still around the standard solution δ ' 3π/2 (as found
in [45,47,48,110]), the presence of NSI effects makes this value statistically less significant.
As for the bounds on the parameters of the LED and NSI models at 2σ CL (1 dof), we have
found the following results:
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• using the T2K data only we obtain R ≤ 0.93 µm for both NO and IO.

• in the combined analysis of the T2K ⊕ Daya Bay data we obtain R ≤ 0.60 µm for NO
and R ≤ 0.17 µm for IO

• for |εeµ| < 4.85 × 10−3 and |εsµe| < 6.28 × 10−3 (for δ = 0); |εeµ| < 9.94 × 10−3 and
|εsµe| < 9.96× 10−3 (for δ = π).

Following the discussion of the previous Section, the current bounds on the NSI parame-
ters are expected to be improved after a better determination of the standard CP phase δ.
For the LED parameters, an effort must be done in order to constrain the absolute mass
m0 and, consequently, the value of R.
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5
Conclusions

After the discovery of a non-zero reactor angle θ13 in 2012 we are entering in the age of
CP discovery. However, from a theoretical point of view, we do not know yet the origin of
the lepton mixing and why the neutrino masses are lighter compared to others leptons.
The models of NP that we investigated in this Thesis deal with these topics. In particular
we analysed three different realizations of physics beyond the SM that are interesting for
neutrino phenomenology: generalized CP symmetry, Large Extra Dimensions and Non-
Standard neutrino Interactions.

In the first part (Chapter 2) we studied a mechanism to generate the lepton mixing based
on non-abelian discrete symmetry combined with the so-called generalized CP symme-
try. The PMNS matrix is given by the misalignment between the residual symmetries
in the charged and neutrino sector. We assumed the group of even permutations of five
elements, A5, as a symmetry in the full leptonic sector. The predictions based on this
approach lead to mixing angles that are functions of a single parameter, the internal an-
gle θ. We have found that four mixing patterns, based on different residual symmetries,
accommodate well the mixing angles in the experimental allowed range, for a particular
choice of the free parameter θ.

In Chapter 3 we constructed several realizations of the neutrino mass spectrum based on
the residual symmetry Z5 in the charged lepton sector. In this approach the flavour struc-
ture of the model is given by additional scalar fields, the flavons, with non-zero vacuum
expectations values. We performed a classification, reducing the number of independent
parameters in the neutrino mass matrix, to obtain testable relations among the mixing
parameters. These relations can be checked at present and future neutrino facilities. We
also showed the predictions for the low energy observables, the effective masses mβ and
mββ . As a last point of our analysis we discussed a particular scenario, based on Type
I see-saw mechanism, with a particular vacuum alignment with only three independent
parameters. We discussed the origin of the charged lepton masses and the corrections to
UPMNS from the charged sector.

The effect of NP in the neutrino sector can modify the oscillation phenomenology and
might produce a bias in the extraction of the oscillation parameters. In Chapter 4 we
studied this phenomenon in the context of two extension of the SM: Large Extra Dimen-
sions and Non-Standard Interactions. We used the data of the Daya Bay reactor and T2K
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beam experiments to investigate how these models of NP can modify the oscillation am-
plitude. We found that LED slightly modifies our knowledge on mixing parameters with
respect to the SM. In the NSI scenario the reactor angle and the Dirac phase δ are not well
defined at the level of 1σ due to the new complex couplings ε that enter in the oscillation
amplitude. We also use the experimental data to constraint the parameter space of NP:
the radius of the largest extra dimensions in LED and the absolute values of the complex
couplings for NSI.

In conclusion, we are in an exciting era for neutrino physics. Several experiments are
ongoing and many others are planned. In the next years we will be able to obtain in-
formation about the mixing parameters with higher accuracy and, probably, we can get
information on the absolute mass scale from β-decay, 0νββ-decay and cosmology exper-
iments. In the spirit of this impressive progress we expect that the mechanism of NP
described in this Thesis can be confirmed or rejected at a certain confidence level.
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A
SM oscillation probabilities

In this Appendix we summarized the SM oscillation probabilities that are relevant in the
analysis performed in Chapter 4. These can be found in Ref. [215], where the Authors
perform a complete analysis studying the matter effect on neutrino oscillation. Since the
experiments T2K and Daya Bay (DB) have a small baseline we could ignore the matter
effects at this level. The formulae can be expressed as a series in the small parameters
sin θ13 and ∆m2

21 � |∆m2
3`|.

The approximated formula PSM(νµ → νµ) (relevant to T2K experiment) can be found in
Ref. [216]. It reads

PSM(νµ → νµ) ' 1−
[
sin2 2θ23 − sin2 θ23 sin2 2θ13 cos 2θ23

]
sin2

(
∆m2

23 L

4Eν

)
+

−
(

∆m2
12 L

4Eν

)
[sin2 θ12 sin2 2θ23 + J̃ sin2 θ23 cos δ] sin

(
∆m2

23 L

2Eν

)
+

−
(

∆m2
12 L

4Eν

)2 [
cos4 θ23 sin2 2θ12 + sin2 θ12 sin2 2θ23 cos

(
∆m2

23 L

4Eν

)]
. (A.1)

Here J̃ ≡ cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 is the Jarkslog-like invariant. The other relevant
channel is νµ → νe. The probability is

PSM(νµ → νe) ' sin2 θ23 sin2 2θ13 sin2

(
∆m2

31L

4Eν

)
+

− sin δ
sin 2θ12 sin 2θ23

2 sin θ13
sin2 2θ13 sin

(
∆m2

21L

4Eν

)
sin2

(
∆m2

31L

4Eν

)
(A.2)

For the DB experiment

PSM(νe → νe) ' 1− cos4 θ13 sin2 2θ12 sin2

(
∆m2

21L

4Eν

)
+

− sin2 2θ13

[
cos2 θ12 sin2

(
∆m2

31L

4Eν

)
+ sin2 θ12 sin2

(
∆m2

32L

4Eν

)]
. (A.3)

Notice that |∆m2
21| � |∆m2

3`| and ` = 1, 2, thus at the DB detector the argument of the
square bracket in the second line can be approximated with an effective mass ∆m2

ee, see
for instance Ref. [217]. This is the parameter measured by the DB collaboration.

– 115 –



B
Non abelian discrete groups

In this Appendix we recapitulate some basic facts about group theory, in particular we
focus on non abelian discrete symmetries, which are used in our analysis developed in
Chapter 2.

B.1 Group theory

We want to recall some basic definitions about group theory. We follow Refs. [218–220]
and [67]. The couple {G, ·}, where G is a generic set and · some operation well defined, is
call a group if the following four properties are satisfied

1. Clousure: ∀ g1, g2 ∈ G, g1 · g2 = g3 ∈ G

2. Associativity: ∀ g1, g2, g3 ∈ G, g1 · (g2 · g3) = (g1 · g2) · g3

3. Identity: ∃! e ∈ G : e · g = g · e = g, ∀ g ∈ G

4. Inverse: ∀ g ∈ G ∃ g−1 : g · g−1 = g−1 · g = e.

The order is the number of the elements in G; the order of a finite group is finite.
The group is called abelian if all of their elements are commutable each others. i.e.
g1 · g2 = g2 · g1 for all elements of the group. If all elements do not satisfy the commuta-
tivity the group is called non-abelian.

The simplest example of finite groups are the cyclic group of order N , called ZN , which
consists of

{e, ωN , ω2
N , . . . ω

N−1
N } ∈ ZN (B.1)

where ωNN = e. The ZN group can be represented as discrete rotations, whose generator
ωN corresponds to 2π/N rotation, see Fig. B.1.

In the case of non-abelian groups a simple example is given by the groups of permutations
of N objects, SN , with order N !. For instance we consider here the group of permutations
of three elements S3. We call the elements G = {1, 2, 3} and the 3! = 6 operations are

e ≡ γ123 = (1, 2, 3) γ23 = (1, 3, 2) γ12 = (2, 1, 3) (B.2)
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Figure B.1: Elements of ZN for N = 3, 4, 5 on the unitary circle.

γ312 = (3, 1, 2) γ13 = (3, 2, 1) γ231 = (2, 3, 1). (B.3)

These operations form a group. Therefore the product of elements is still an element of G

γ12γ312(1, 2, 3) = γ12(3, 1, 2) = (1, 3, 2) ∈ G (B.4a)
γ312γ12(1, 2, 3) = γ312(2, 1, 3) = (3, 2, 1) ∈ G (B.4b)

and so on. Notice that the group is non-abelian, in fact γ312γ12 6= γ12γ312.

If a subset H of the group G is also a group, H is called the subgroup of G. The Lagrange’s
theorem tells us that the order of the subgroup H must be a divisor of the order of G (for
a modern proof see Ref. [67]).

If a subgroup N of G satisfies g−1N g = N for any element g ∈ G, the subgroup N is called
a normal subgroup or an invariant subgroup. The subgroup H and normal subgroup N of
G satisfy HN = NH and it is a subgroup of G, where

NH = {nj · hj such that nj ∈ N , hj ∈ H} (B.5)

and similar for HN .

When gh = e for an element g ∈ G, the number h is called the order of g. The elements,
{e, g, g2, . . . gh−1}, form a subgroup, which is the abelian Zh group with the order h.

The elements g−1 · a · g for g ∈ G are called elements conjugate to the element a. The set
including all elements to conjugate to an element a of G, {g−1 · a · g, ∀ g ∈ G}, is called a
conjugacy class. All of elements in a conjugacy class have the same order because

(g · a · g−1)h = g · a(g−1 · g) · a · (g−1 · g) . . . a · g−1︸ ︷︷ ︸
h

= g · ah · g−1 = g · e · g−1 = g · g−1 = e. (B.6)

The conjugacy class including the identity e consists of the single element e.

B.2 Representations and characters

In the following we need to know the action of the group elements g ∈ G in the vectorial
space V. The representation r is the omomorphism

r :

{
G −→ GL(V)
g ∈ G 7−→ r(g) ∈ GL(V)

(B.7)

such that

r(g1 · g2) = r(g1)r(g2) ∀ g1, g2 ∈ G (B.8a)
r(e) = 1. (B.8b)
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We can note that the map r is not a one-to-one relation. The vector space V, on which rep-
resentation matrices act, is called a representation space such as r(g)ijvj with j = 1, . . . , n.
The dimension n of the vector space V is called as a dimension of the representation.
A subspace in the representation space is called invariant subspace if r(g)ijvj for any
vector vj in the subspace and any element g ∈ G also corresponds to a vector in the same
subspace. If a representation has an invariant subspace, such a representation is called
reducible. A representation is irreducible if it has no invariant subspace. In particular, a
representation is called completely reducible if r(g) for g ∈ G are written as the following
block diagonal form 

r1(g) 0
0 r2(g) 0

0 r3(g)
. . .

rm(g)

 (B.9)

where each rq(g) for q = 1, . . . ,m is irreducible. This implies that a reducible representa-
tion r(g) is the direct sum of rq(g), r(g) =

∑m
q=1⊕rq(g). Every (reducible) representation

of a finite group is completely reducible. Furthermore, every representation of a finite
group is equivalent to a unitary representation. The simplest (irreducible) representation
is found that r(g) = 1 for all elements g, that is, a trivial singlet.
The matrix representations satisfy the following orthogonality relation∑

g∈G
rp(g)ijrq(g

−1)kl =
NG
np

δpqδilδjk (B.10)

where NG is the order of the group G and np is the dimension of the representation rp(g).

The character χ[r(g)] of a representation r(g) is the trace of the representation matrix

χ[r(g)] ≡ Tr{r(g)} =

dq∑
i=1

r(g)ii. (B.11)

A representation is real if it has real characters and the representation matrices can be
written as real matrices. If the representation has real characters but its representation
matrices cannot be written in a real form, it is called pseudo-real. If the representation
has complex characters, it is called complex and then also its representation matrices
are complex. In all groups the number of complex representations is even, since each
complex representation r(g) has its complex conjugate r(g)?. The representation matrices
of r(g) are the complex conjugated ones of r(g), up to a similarity transformation.

The element conjugate to a has the same character because of the property of the trace

Tr{r(g−1 · a · g)} = Tr{r(g−1)r(a)r(g)} = Tr{r(a)} (B.12)

that is, the characters are constant in a conjugacy class. The characters fulfill the fol-
lowing orthogonality relation, ∑

g∈G
χ[rq(g)]?χ[rq′ (g)] = NGδqq′ . (B.13)

Therefore the characters of different irreducible representations are orthogonal and dif-
ferent from each others. In addition, they satisfy the following orthogonality relation∑

g∈G
χ[rq(gi)]

?
χ[rq′ (gj)] =

NG
np

δCiCj . (B.14)
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where Ci denotes the conjugacy class of gi and ni denotes the number of elements in the
conjugacy class Ci.

If there are dn n-dimensional irreducible representations, the elements of the group in a
given representation r(g) are represented by (n × n) matrices. The identity e is always
represented by the (n × n) identity matrix 1n and the character of χ[r(g)](C1) for the
conjugacy class C1 = e is found to be n for the n-dimensional representation. It is possible
to show that the number of unitary irreducible representations should be equal to the
number of conjugacy classes, thus∑

n

dn = number of conjugacy classes. (B.15)

Using the (B.14) and the results quoted above it is possible to show that∑
p

|χ[rq(gi)](C1)|2 =
∑
n

dnn
2 = d1 + 4d2 + 9d3 + · · · = NG (B.16)

where n is a natural number.

B.3 The group S4

The group S4 is the permutation group of order four, it has 4! = 24 elements and it is
isomorphic to the symmetry group of the cube. The algebra, introduced in (2.7), contains
two generators, S and T , that satisfied the condition S2 = T 4 = (ST )3 = 1.

S4 C1 3C
[2]
2 6C

[2]
3 6C

[4]
4 8C

[3]
5

χ[1] 1 1 1 1 1
χ[1′] 1 1 -1 -1 1
χ[2] 2 2 0 0 -1
χ[3] 3 -1 1 -1 0
χ[3′] 3 -1 -1 1 0

Table B.1: Characters of the S4 group.

The group contain five irreducible representations, two singlet 1 and 1′, one doublet 2 and
two triplets 3 and 3′. The (non trivial) tensor products are

1′ ⊗ 1′ = 1 (B.17a)
1′ ⊗ 2 = 2 (B.17b)
1′ ⊗ 3 = 3′ (B.17c)
1′ ⊗ 3′ = 3 (B.17d)

2⊗ 2 = 1s ⊕ 2s ⊕ 1′a (B.17e)
2⊗ 3 = 2⊗ 3′ = 3⊕ 3′ (B.17f)

3⊗ 3 = 3′ ⊗ 3′ = 1s ⊕ 2s ⊕ 3′s ⊕ 3a (B.17g)
3⊗ 3′ = 1′ ⊕ 2⊕ 3⊕ 3′ (B.17h)

where the subscript s (a) denotes symmetric (antisymmetric) combinations. The S4 ele-
ments can be classified by the order h of each element, where ωh = e. These are classified
in Tab. B.1 where the five conjugacy classes are summarized with their characters. We
have 1 + 3 + 6 + 6 + 8 = 24 elements in each class and the superscript indicates the order
of each element in the conjugacy classes. The same classification is adopted for A5 in the
main text, see for instance Tab. 2.2.
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C
Kronecker products of A5

We report here the complete list of the Kronecker products for the group A5 ⊗ CP . With
respect to the simple group A5 we need the to impose additional condition[

X(r⊗ r′)?
]
r′′

=

[
X(r)? ⊗X(r′)?

]
r′′

∀ r, r′, r′′ ∈ A5 (C.1)

where X is the CP matrix for the representation r ∈ A5.
We report the Kronecker products in the case of X = X0. We assigne a = (a1, a2, a3)T and
b = (b1, b2, b3)T to the 3 representation, while a′ = (a′1, a

′
2, a
′
3)T and b′ = (b′1, b

′
2, b
′
3)T belong

to the 3′ representation, c = (c1, c2, c3, c4, c5)T and d = (d1, d2, d3, d4, d5)T are pentaplets;
f = (f1, f2, f3, f4)T and g = (g1, g2, g3, g4)T are tetraplets.

• 3⊗ 3 = 1s ⊕ 3a ⊕ 5s

1 = a1b1 + a2b3 + a3b2 (C.2a)

3 = i
(
a2b3 − a3b2, a1b2 − a2b1, a3b1 − a1b3

)T
(C.2b)

5 =
(
a1b1 −

a2b3
2
− a3b2

2
,

√
3

2
(a1b2 + a2b1),−

√
3

2
a2b2,−

√
3

2
a3b3,−

√
3

2
(a1b3 + a3b1)

)T
(C.2c)

• 3′ ⊗ 3′ = 1s ⊕ 3′a ⊕ 5s

1 = a′1b
′
1 + a′2b

′
3 + a′3b

′
2 (C.3a)

3′ = i
(
a′2b
′
3 − a′3b′2, a′1b′2 − a′2b′1, a′3b′1 − a′1b′3

)T
(C.3b)

5 =
(
a′1b
′
1 −

a′2b
′
3

2
− a′3b

′
2

2
,

√
3

2
a′3b
′
3,−
√

3

2
(a′1b

′
2 + a′2b

′
1),−

√
3

2
(a′1b

′
3 + a′3b

′
1),−

√
3

2
a′2b
′
2

)T
(C.3c)

• 3⊗ 3′ = 4⊕ 5

4 = i
(
a2b
′
1 −

a3b
′
2√

2
,−a1b

′
2 +

a3b
′
3√

2
, a1b

′
3 −

a2b
′
2√

2
,−a3b

′
1 +

a2b
′
3√

2

)T
(C.4a)

5 =
(
a1b
′
1,−

a2b
′
1 +
√

2a3b
′
2√

3
,
a1b
′
2 +
√

2a3b
′
3√

3
,
a1b
′
3 +
√

2a2b
′
2√

3
,
a3b
′
1 +
√

2a2b
′
3√

3
)
)T

(C.4b)
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• 3⊗ 4 = 3′ ⊕ 4⊕ 5

3′ = i
(
a2g4 − a3g1,

1√
2

(
√

2a1g2 + a2g1 + a3g3),− 1√
2

(
√

2a1g3 + a2g2 + a3g4)
)T

(C.5a)

4 = i
(
a1g1 +

√
2a3g2,−a1g2 +

√
2a2g1, a1g3 −

√
2a3g4,−a1g4 −

√
2a2g3

)T
(C.5b)

5 =
(
a3g1 + a2g4,

√
2

3
(
√

2a1g1 − a3g2),

1√
6

(
√

2a1g2 − 3a3g3 + a2g1),
1√
6

(
√

2a1g3 − 3a2g2 + a3g4),

√
2

3
(−
√

2a1g4 + a2g3)
)T
(C.5c)

• 3′ ⊗ 4 = 3⊕ 4⊕ 5

3 = i
(
a′2g3 − a′3g2,

1√
2

(
√

2a′1g1 + a′2g4 − a′3g3),
1√
2

(−
√

2a′1g4 + a′2g2 − a′3g1)
)T

(C.6a)

4 = i
(
a′1g1 +

√
2a′3g3, a

′
1g2 −

√
2a′3g4,−a′1g3 +

√
2a′2g1,−a′1g4 −

√
2a′2g2

)T
(C.6b)

5 =
(
a′3g2 + a′2g3,

1√
6

(
√

2a′1g1 − 3a′2g4 − a′3g3),−
√

2

3
(
√

2a′1g2 + a′3g4),

−
√

2

3
(
√

2a′1g3 + a′2g1),
1√
6

(−
√

2a′1g4 + 3a′3g1 + a′2g2)
)T

(C.6c)

• 3⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5

3 =
(2a1c1√

3
+ a3c2 − a2c5,−

a2c1√
3

+ a1c2 −
√

2a3c3,−
a3c1√

3
− a1c5 −

√
2a2c4

)T
(C.7a)

3′ =
(
a1c1 +

a2c5 − a3c2√
3

,
a1c3 +

√
2(a3c4 − a2c2)√

3
,
a1c4 +

√
2(a2c3 + a3c5)√

3

)T
(C.7b)

4 =
(

4a1c2 + 2
√

3a2c1 +
√

2a3c3, 2a1c3 − 2
√

2a2c2 − 3
√

2a3c4,

2a1c4 − 3
√

2a2c3 + 2
√

2a3c5,−4a1c5 +
√

2a2c4 + 2
√

3a3c1

)T
(C.7c)

5 = i
(
a2c5 + a3c2, a2c1 −

a1c2 +
√

2a3c3√
3

,−2a1c3 +
√

2a2c2√
3

,

2a1c4 −
√

2a3c5√
3

, a3c1 +
a1c5 −

√
2a2c4√

3

)T
(C.7d)

• 3′ ⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 5

3 =
(
a′1c1 +

a′3c3 + a′2c4√
3

,
−a′1c2 +

√
2(a′3c4 + a′2c5)√

3
,
a′1c5 +

√
2(a′2c3 − a′3c2)√

3

)T
(C.8a)

3′ =
(2a′1c1√

3
− a′3c3 − a′2c4,−

a′2c1√
3
− a′1c3 −

√
2a′3c5,−

a′3c1√
3
− a′1c4 +

√
2a′2c2

)T
(C.8b)

4 =
(

2a′1c2 + 3
√

2a′2c5 − 2
√

2a′3c4,−4a′1c3 + 2
√

3a′2c1 +
√

2a′3c5,

− 4a′1c4 −
√

2a′2c2 + 2
√

3a′3c1,−2a′1c5 − 2
√

2a′2c3 − 3
√

2a′3c2

)T
(C.8c)

5 = i
(
a′2c4 − a′3c3,

2a′1c2 +
√

2a′3c4√
3

,−a′2c1 −
a′1c3 −

√
2a′3c5√

3
,

a′3c1 +
a′1c4 +

√
2a′2c2√

3
,
−2a′1c5 +

√
2a′2c3√

3

)T
(C.8d)
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• 4⊗ 4 = 1s ⊕ 3a ⊕ 3′a ⊕ 4s ⊕ 5s

1 = f1g4 + f2g3 + f3g2 + f4g1 (C.9a)

3 = i
(
f1g4 − f4g1 + f3g2 − f2g3,

√
2(f2g4 − f4g2),

√
2(f1g3 − f3g1)

)T
(C.9b)

3′ = i
(
f1g4 − f4g1 + f2g3 − f3g2,

√
2(f3g4 − f4g3),

√
2(f1g2 − f2g1)

)T
(C.9c)

4 = i
(
f3g3 − f4g2 − f2g4, f1g1 + f3g4 + f4g3,−f4g4 − f1g2 − f2g1,

− f2g2 + f1g3 + f3g1

)T
(C.9d)

5 =
(
f1g4 + f4g1 − f3g2 − f2g3,−

√
2

3
(2f3g3 + f2g4 + f4g2),

√
2

3
(−2f1g1 + f3g4 + f4g3),√

2

3
(−2f4g4 + f2g1 + f1g2),

√
2

3
(2f2g2 + f1g3 + f3g1)

)T
(C.9e)

• 4⊗ 5 = 3⊕ 3′ ⊕ 4⊕ 51 ⊕ 52

3 =
(

4f1c5 − 4f4c2 − 2f3c3 − 2f2c4,−2
√

3f1c1 −
√

2(2f2c5 − 3f3c4 + f4c3),

√
2(−f1c4 + 3f2c3 + 2f3c2)− 2

√
3f4c1

)T
(C.10a)

3′ =
(

2f1c5 − 2f4c2 + 4f3c3 + 4f2c4,−2
√

3f2c1 +
√

2(2f4c4 + 3f1c2 − f3c5),

√
2(f2c2 − 3f4c5 + 2f1c3)− 2

√
3f3c1

)T
(C.10b)

4 =
(

3f1c1 +
√

6(f2c5 + f3c4 − 2f4c3),−3f2c1 +
√

6(f4c4 − f1c2 + 2f3c5),

− 3f3c1 +
√

6(f1c3 + f4c5 − 2f2c2), 3f4c1 +
√

6(f2c3 − f3c2 − 2f1c4)
)T

(C.10c)

51 = i
(
f1c5 + 2f2c4 − 2f3c3 + f4c2,−2f1c1 +

√
6f2c5, f2c1 +

√
3

2
(−f1c2 − f3c5 + 2f4c4),

− f3c1 −
√

3

2
(f2c2 + f4c5 + 2f1c3),−2f4c1 −

√
6f3c2

)T
(C.10d)

52 = i
(
f2c4 − f3c3,−f1c1 +

2f2c5 − f3c4 − f4c3√
6

,−
√

2

3
(f1c2 + f3c5 − f4c4),

−
√

2

3
(f1c3 + f2c2 + f4c5),−f4c1 −

2f3c2 + f1c4 + f2c3√
6

)T
(C.10e)

• 5⊗ 5 = 1s ⊕ 3a ⊕ 3′a ⊕ 4a ⊕ 4s ⊕ 51,s ⊕ 52,s

1 = c1d1 + c3d4 + c4d3 − c2d5 − c5d2 (C.11a)

3 = i
(

2(c4d3 − c3d4) + c2d5 − c5d2,
√

3(c2d1 − c1d2) +
√

2(c3d5 − c5d3),

√
3(c5d1 − c1d5) +

√
2(c4d2 − c2d4)

)T
(C.11b)

3′ = i
(

2(c2d5 − c5d2) + c3d4 − c4d3,
√

3(c3d1 − c1d3) +
√

2(c4d5 − c5d4),

√
3(c1d4 − c4d1) +

√
2(c3d2 − c2d3)

)T
(C.11c)

4s = i
(

(c1d2 + c2d1)− (c3d5 + c5d3)− 4c4d4√
6

,−(c1d3 + c3d1)− (c4d5 + c5d4)− 4c2d2√
6

,

(c1d4 + c4d1)− (c2d3 + c3d2) + 4c5d5√
6

, (c1d5 + c5d1)− (c2d4 + c4d2) + 4c3d3√
6

)T
(C.11d)
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4a = i
(

(c1d2 − c2d1) +

√
3

2
(c3d5 − c5d3), (c1d3 − c3d1) +

√
3

2
(c4d5 − c5d4),

(c4d1 − c1d4) +

√
3

2
(c3d2 − c2d3), (c1d5 − c5d1) +

√
3

2
(c4d2 − c2d4)

)T
(C.11e)

51 =
(
c1d1 + c2d5 + c5d2 +

c3d4 + c4d3

2
,−(c1d2 + c2d1) +

√
3

2
c4d4,

1

2
(c1d3 + c3d1 −

√
6(c4d5 + c5d4)),

1

2
(c1d4 + c4d1 +

√
6(c2d3 + c3d2)),−(c1d5 + c5d1)−

√
3

2
c3d3

)T
(C.11f)

52 =
(2c1d1 + c2d5 + c5d2

2
,
−3(c1d2 + c2d1) +

√
6(2c4d4 + c3d5 + c5d3)

6
,

− 2c4d5 + 2c5d4 + c2d2√
6

,

2c2d3 + 2c3d2 − c5d5√
6

,
−3(c1d5 + c5d1) +

√
6(−2c3d3 + c2d4 + c4d2)

6

)T
(C.11g)
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D
CP invariants

The mixing angles can be extracted using the PMNS matrix defined in (1.2). Using the
PMNS matrix elements we get

sin2 θ12 =
|U12|2

1− |U13|2
sin2 θ13 = |U13|2 sin2 θ23 =

|U23|2

1− |U13|2
. (D.1)

With this convention we can define the Jarlskog invariant JCP [109] as

JCP ≡ Im

[
U11U

∗
13U

∗
31U33

]
=

1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ. (D.2)

Similar invariants, called I1 and I2, can be defined for the Majorana phases

I1 ≡ Im

[
U12U12U

∗
11U

∗
11

]
= sin2 θ12 cos2 θ12 cos4 θ13 sinα (D.3)

I2 ≡ Im

[
U13U13U

∗
11U

∗
11

]
= sin2 θ13 cos2 θ12 cos2 θ13 sinβ. (D.4)

A third non-independent invariant can also be introduced

I3 ≡ Im

[
U13U13U

∗
12U

∗
12

]
= cos2 θ12 sin2 θ13 cos2 θ13 sin(β − α). (D.5)

Notice that the Dirac phase δ has a physical meaning only if all mixing angles are
different from 0 and π/2. Analogously, the vanishing of the invariants I1,2 only implies
sinα = 0, sinβ = 0, if solutions with sin 2θ12 = 0, cos θ13 = 0 or sin 2θ13 = 0, cos θ12 = 0 are
discarded. Furthermore, notice that one of the Majorana phases becomes unphysical, if
the lightest neutrino mass vanishes.
The Dirac CP phase can be extracted from (D.2) and the mixing angles (D.1) as

sin δ =
8JCP

sin 2θ12 sin 2θ23 sin 2θ13 cos θ13
. (D.6)

We can extract the Majorana phases from the numerical PMNS mixing matrix taking into
the account that there exist unphysical phases, δe,µ,τ , parametrized by a diagonal matrix
diag{exp iδe, exp iδµ, exp iδτ} that multiplies UPMNS from the left. These can be eliminated
with a redefinition of the charged lepton fields. A similar procedure is discussed in [221]
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using a different parametrization for the PMNS matrix. 1 We can obtain the Majorana
phases

α = 2 arg

{
U12

U11

}
(D.7)

β = 2 arg

{
U13

U11

}
. (D.8)

For the sake of completeness we report how to extract the values of the unphysical phases

δe = arg{U11} (D.9)

δµ = arg
{
U23e

−i(β/2+δ)
}

(D.10)

δτ = arg
{
U33e

−i(β/2+δ)
}
. (D.11)

1For further details see the webpage http://reapmpt.hepforge.org/.
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E
Neutrino mass sum rules

In the models we have considered we can define a sum rules Σ, i.e. a relation for the
complex masses m̃j . The complex masses are defined as

m̃1 ≡ m1 m̃2 ≡ m2e
iα m̃3 ≡ m3e

iβ (E.1)

where we use the same convention of Ref. [148] (see also Refs. [149–151]). In this case
mj are the absolute values of the light neutrino masses and α and β are the Majorana
phases, see (1.2) for our PMNS convention. The sum rule is a generic function of the
complex masses, Σ = Σ(m̃1, m̃2, m̃3) that is equal to zero in a given model. In general the
masses appear as m̃p

j where p ∈ Z depends on the type of neutrino masses. For instance
in the case of Mechanism I p = 1, in Mechanism II with trivial Dirac mass matrix p = −1
and otherwise p = 2.

-5 -4 -3 -2 -1

z

x

log10 ∆S

-4 -3 -2 -1

Z

X

log10 ∆S

Figure E.1: Distribution of the of log10 δΣ for Mechanism I (left plot) and Mechanism
II a-1 (right plot). We show only the results for x (X) and z (Z) equal to zero in the
case of Mechanism I (Mechanism II a-1) because for s = 0 (S = 0) the parameter δΣ
is zero. The gray lines indicate the range for the parameter δΣ, the white line is
the mean of the distribution while the gray region is the 1σ range.

Notice that the sum rule is defined as series in the expansion parameter, which depends
on the particular model. In order to quantify the deviation of the LO (or NLO/N2LO for
some particular sum rules) prediction we introduce the following dimensionless parame-
ter, evaluated for the full numerical values of the neutrino masses

δΣ ≡

∣∣∣∣∣ Σ∑
jm

p
j/3

∣∣∣∣∣ (E.2)

which is independent on the absolute scale of the neutrino masses. An alternative defini-
tion could be δΣ = Σ/[(

∑
jmj)

p/3]; in this case the value of δΣ can be different with respect
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log10 ∆S
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hi, fi NO
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fr, fi NO

fr, fi IO

fr,hr�200

fr,hr,2

∆S

Figure E.2: Same as Fig. E.1 but for Mechanism II a-2 (left plot) and Mechanism II
c-2 (right plot). In the left panel for hr = 0 we rescaled the distribution by a factor
200 because the NLO corrections are important, as discussed in the main text, see
Sec. 3.3.4.

to those obtained with the previous definition, however the relative goodness among the
sum rules in the various cases is conserved.
For the sake of completeness we show our results for δΣ obtained from our numerical
scans. The results are shown in Fig.s E.1 and E.2 where we observe that the relative
goodness of the different cases in each Mechanism is in agreement with the prediction
of Chapter 3. In particular for Mechanism II a-2 (c-2) we observe that in the case of
hi = f = 0 (hi = fi = 0 and fr = fi = 0) IO has a smaller value of δΣ with respect to NO.
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F
Effective operators

We collect the operators that are relevant for the model discussed in Sec. 3.6.

F.1 Superpotential δW

• NLO operators in δWν

We have six operators for δWν at NLO

g3
4

Λ

{
φ0
ν,5 [(φν,5φν,5)4sφν,3]5

}
1

g3
51

Λ

{
φ0
ν,5

[
(φν,5φν,5)51

s
φν,3

]
5

}
1

g3
52

Λ

{
φ0
ν,5

[
(φν,5φν,5)52

s
φν,3

]
5

}
1

(F.1a)

g3′
4

Λ

{
φ0
ν,5

[
(φν,5φν,5)4sφν,3′

]
5

}
1

g3′
51

Λ

{
φ0
ν,5

[
(φν,5φν,5)51

s
φν,3′

]
5

}
1

g3′
52

Λ

{
φ0
ν,5

[
(φν,5φν,5)52

s
φν,3′

]
5

}
1
.

(F.1b)

• NLO operators in δW`

We get twenty-eight operators with the pentaplet χ0
5

ã55
1,5

Λ

{
χ0
5 [(χ̃5χ̃5)3ϕ̃5]5

}
1

ã55
51,4

Λ

{
χ0
5 [(χ̃5χ̃5)4sϕ̃5]51

}
1

ã55
52,4

Λ

{
χ0
5 [(χ̃5χ̃5)4sϕ̃5]52

}
1

ã55
51,51

Λ

{
χ0
5

[
(χ̃5χ̃5)51

s
ϕ̃5

]
51

}
1

ã55
52,51

Λ

{
χ0
5

[
(χ̃5χ̃5)51

s
ϕ̃5

]
52

}
1

ã55
51,52

Λ

{
χ0
5

[
(χ̃5χ̃5)52

s
ϕ̃5

]
51

}
1

ã55
52,52

Λ

{
χ0
5

[
(χ̃5χ̃5)52

s
ϕ̃5

]
52

}
1

(F.2a)

a3
3,5

Λ

{
χ0
5 [(φν,5φν,3)3χ5]5

}
1

a3
3′,5

Λ

{
χ0
5 [(φν,5φν,3)3′χ5]5

}
1

a3
4,51

Λ

{
χ0
5 [(φν,5φν,3)4χ5]51

}
1

a3
4,52

Λ

{
χ0
5 [(φν,5φν,3)4χ5]52

}
1

a3
5,51

Λ

{
χ0
5 [(φν,5φν,3)5χ5]51

}
1

a3
5,52

Λ

{
χ0
5 [(φν,5φν,3)5χ5]52

}
1

(F.2b)

a3′
3,5

Λ

{
χ0
5

[
(φν,5φν,3′)3χ5

]
5

}
1

a3′
3′,5

Λ

{
χ0
5

[
(φν,5φν,3′)3′χ5

]
5

}
1

a3′
4,51

Λ

{
χ0
5

[
(φν,5φν,3′)4χ5

]
51

}
1

a3′
4,52

Λ

{
χ0
5

[
(φν,5φν,3′)4χ5

]
52

}
1

a3′
5,51

Λ

{
χ0
5

[
(φν,5φν,3′)5χ5

]
51

}
1

a3′
5,52

Λ

{
χ0
5

[
(φν,5φν,3′)5χ5

]
52

}
1

(F.2c)
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ã53′
3,5

Λ

{
χ0
5 [(ϕ̃5χ̃3′)3χ5]5

}
1

ã53′
3′,5

Λ

{
χ0
5 [(ϕ̃5χ̃3′)3′χ5]5

}
1

ã53′
4,51

Λ

{
χ0
5 [(ϕ̃5χ̃3′)4χ5]51

}
1

ã53′
4,52

Λ

{
χ0
5 [(ϕ̃5χ̃3′)4χ5]52

}
1

ã53′
5,51

Λ

{
χ0
5 [(ϕ̃5χ̃3′)5χ5]51

}
1

ã53′
5,52

Λ

{
χ0
5 [(ϕ̃5χ̃3′)5χ5]52

}
1

(F.2d)

ã3′3′
1

Λ

{
χ0
5 [(χ̃3′χ̃3′)1χ̃5]52

}
1

ã3′3′
51

Λ

{
χ0
5 [(χ̃3′χ̃3′)5χ̃51 ]51

}
1

ã3′3′
52

Λ

{
χ0
5 [(χ̃3′χ̃3′)5χ̃52 ]52

}
1
. (F.2e)

We have sixteen operators with χ0
3′

b̃3
′

1

Λ

{
χ0
3′ [(ϕ̃5χ5)1χ̃3′ ]3′

}
1

b̃3
′

3′

Λ

{
χ0
3′ [(ϕ̃5χ5)3′χ̃3′ ]3′

}
1

b̃3
′

41

Λ

{
χ0
3′ [(ϕ̃5χ5)41χ̃3′ ]3′

}
1

b̃3
′

42

Λ

{
χ0
3′ [(ϕ̃5χ5)42χ̃3′ ]3′

}
1

b̃3
′

51

Λ

{
χ0
3′ [(ϕ̃5χ5)51χ̃3′ ]3′

}
1

b̃3
′

52

Λ

{
χ0
3′ [(ϕ̃5χ5)52χ̃3′ ]3′

}
1

(F.3a)

b54
Λ

{
χ0
3′ [(ϕ5ϕ5)4sϕ5]3′

}
1

b551
Λ

{
χ0
3′
[
(ϕ5ϕ5)51

s
ϕ5

]
3′

}
1

b552
Λ

{
χ0
3′
[
(ϕ5ϕ5)52

s
ϕ5

]
3′

}
1

(F.3b)

b̃54
Λ

{
χ0
3′ [(χ̃5χ̃5)4sχ5]3′

}
1

b̃551
Λ

{
χ0
3′
[
(χ̃5χ̃5)51

s
χ5

]
3′

}
1

b̃552
Λ

{
χ0
3′
[
(χ̃5χ̃5)52

s
χ5

]
3′

}
1

(F.3c)

b34
Λ

{
χ0
3′ [(φν,3χ3′)4φν,5]3′

}
1

b35
Λ

{
χ0
3′ [(φν,3χ3′)5φν,5]3′

}
1

(F.3d)

b3
′

3′

Λ

{
χ0
3′
[
(φν,3′χ3′)3′φν,5

]
3′

}
1

b3
′

5

Λ

{
χ0
3′
[
(φν,3′χ3′)5φν,5

]
3′

}
1
. (F.3e)

In the case of χ0
1 we have only seven non vanishing operators

c5
51

Λ

{
χ0
1

[
(ϕ5ϕ5)51

s
ϕ5

]
1

}
1

c5
51

Λ

{
χ0
1

[
(ϕ5ϕ5)52

s
ϕ5

]
1

}
1

(F.4a)

c̃5
51

Λ

{
χ0
1

[
(χ̃5χ̃5)51

s
χ5

]
1

}
1

c̃5
51

Λ

{
χ0
1

[
(χ̃5χ̃5)52

s
χ5

]
1

}
1

(F.4b)

c3
5

Λ

{
χ0
1 [(φν,3χ3′)5φν,5]1

}
1

(F.4c)

c3′
5

Λ

{
χ0
1

[
(φν,3′χ3′)5φν,5

]
1

}
1

(F.4d)

c̃3′
3′

Λ

{
χ0
1 [(χ5ϕ̃5)3′χ̃3′ ]1

}
1
. (F.4e)

We get twelve operators with the pentaplet χ̃0
5

d̃3
3,5

Λ

{
χ̃0
5 [(φν,5φν,3)3χ̃5]5

}
1

d̃3
3′,5

Λ

{
χ̃0
5 [(φν,5φν,3)3′χ̃5]5

}
1

d̃3
4,51

Λ

{
χ̃0
5 [(φν,5φν,3)4χ̃5]51

}
1

d̃3
4,52

Λ

{
χ̃0
5 [(φν,5φν,3)4χ̃5]52

}
1

d̃3
5,51

Λ

{
χ̃0
5 [(φν,5φν,3)5χ̃5]51

}
1

d̃3
5,52

Λ

{
χ̃0
5 [(φν,5φν,3)5χ̃5]52

}
1

(F.5a)

d̃3′
3,5

Λ

{
χ̃0
5

[
(φν,5φν,3′)3χ̃5

]
5

}
1

d̃3′
3′,5

Λ

{
χ̃0
5

[
(φν,5φν,3′)3′χ̃5

]
5

}
1

d̃3′
4,51

Λ

{
χ̃0
5

[
(φν,5φν,3′)4χ̃5

]
51

}
1

d̃3′
4,52

Λ

{
χ̃0
5

[
(φν,5φν,3′)4χ̃5

]
52

}
1

d̃3′
5,51

Λ

{
χ̃0
5

[
(φν,5φν,3′)5χ̃5

]
51

}
1

d̃3′
5,52

Λ

{
χ̃0
5

[
(φν,5φν,3′)5χ̃5

]
52

}
1
.

(F.5b)

We have seven operators with χ0
3′

b54
Λ

{
χ0
3′ [(ϕ5ϕ5)4sϕ5]3′

}
1

b551
Λ

{
χ0
3′
[
(ϕ5ϕ5)51

s
ϕ5

]
3′

}
1

b552
Λ

{
χ0
3′
[
(ϕ5ϕ5)52

s
ϕ5

]
3′

}
1

(F.6a)
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b34
Λ

{
χ0
3′ [(φν,3χ3′)4φν,5]3′

}
1

b35
Λ

{
χ0
3′ [(φν,3χ3′)5φν,5]3′

}
1

(F.6b)

b3
′

3′

Λ

{
χ0
3′
[
(φν,3′χ3′)3′φν,5

]
3′

}
1

b3
′

5

Λ

{
χ0
3′
[
(φν,3′χ3′)5φν,5

]
3′

}
1
. (F.6c)

We have seven operators with χ̃0
3′

ẽ5
4

Λ

{
χ̃0
3′ [(ϕ̃5ϕ̃5)4sϕ̃5]3′

}
1

ẽ5
51

Λ

{
χ̃0
3′
[
(ϕ̃5ϕ̃5)51

s
ϕ̃5

]
3′

}
1

ẽ5
52

Λ

{
χ̃0
3′
[
(ϕ̃5ϕ̃5)52

s
ϕ̃5

]
3′

}
1

(F.7a)

ẽ3
4

Λ

{
χ̃0
3′ [(φν,3χ̃3′)4φν,5]3′

}
1

ẽ3
5

Λ

{
χ̃0
3′ [(φν,3χ̃3′)5φν,5]3′

}
1

(F.7b)

ẽ3′
3′

Λ

{
χ̃0
3′
[
(φν,3′χ̃3′)3′φν,5

]
3′

}
1

ẽ3′
5

Λ

{
χ̃0
3′
[
(φν,3′χ̃3′)5φν,5

]
3′

}
1
. (F.7c)

In the case of χ̃0
1 we have only four non vanishing operators

f̃5
51

Λ

{
χ̃0
1

[
(ϕ̃5ϕ̃5)51

s
ϕ̃5

]
1

}
1

f̃5
51

Λ

{
χ̃0
1

[
(ϕ̃5ϕ̃5)52

s
ϕ̃5

]
1

}
1

(F.8a)

f̃3
5

Λ

{
χ̃0
1 [(φν,3χ̃3′)5φν,5]1

}
1

(F.8b)

f̃3′
5

Λ

{
χ̃0
1

[
(φν,3′χ̃3′)5φν,5

]
1

}
1
. (F.8c)

F.2 Operators for charged lepton masses

With three flavons we have four operators with Ec ⊗ L ∼ 1

y1
3,3Hd

{
(EcL)1

[(
φν,5ϕ5

Λ2

)
3

φν,3
Λ

]
1

}
1

y1
3′,3′Hd

{
(EcL)1

[(
φν,5ϕ5

Λ2

)
3′

φν,3′

Λ

]
1

}
1

(F.9a)

ỹ1
51Hd

{
(EcL)1

[(
ϕ̃5ϕ̃5

Λ2

)
51
s

χ̃5

Λ

]
1

}
1

ỹ1
52Hd

{
(EcL)1

[(
ϕ̃5ϕ̃5

Λ2

)
52
s

χ̃5

Λ

]
1

}
1

. (F.9b)

We also have

y3
3,1Hd

{
(EcL)3

[(
φν,5ϕ5

Λ2

)
1

φν,3
Λ

]
3

}
1

y3
3,3Hd

{
(EcL)3

[(
φν,5ϕ5

Λ2

)
3

φν,3
Λ

]
3

}
1

y3
3,51Hd

{
(EcL)3

[(
φν,5ϕ5

Λ2

)
51

φν,3
Λ

]
3

}
1

y3
3,52Hd

{
(EcL)3

[(
φν,5ϕ5

Λ2

)
52

φν,3
Λ

]
3

}
1

(F.10a)

y3
3′,4sHd

{
(EcL)3

[(
φν,5ϕ5

Λ2

)
4s

φν,3′

Λ

]
3

}
1

y3
3′,4aHd

{
(EcL)3

[(
φν,5ϕ5

Λ2

)
4a

φν,3′

Λ

]
3

}
1

y3
3′,51Hd

{
(EcL)3

[(
φν,5ϕ5

Λ2

)
51

φν,3′

Λ

]
3

}
1

y3
3′,52Hd

{
(EcL)3

[(
φν,5ϕ5

Λ2

)
52

φν,3′

Λ

]
3

}
1

(F.10b)

ỹ3
4Hd

{
(EcL)3

[(
ϕ̃5ϕ̃5

Λ2

)
4s

χ̃5

Λ

]
3

}
1

ỹ3
51Hd

{
(EcL)3

[(
ϕ̃5ϕ̃5

Λ2

)
51
s

χ̃5

Λ

]
3

}
1

ỹ3
52Hd

{
(EcL)3

[(
ϕ̃5ϕ̃5

Λ2

)
52
s

χ̃5

Λ

]
3

}
1

. (F.10c)
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therefore we have eleven operators with Ec⊗L ∼ 3. We also have nineteen operators with
Ec ⊗ L ∼ 5

y5
3,3aHd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
3

φν,3
Λ

]
5

}
1

y5
3,3′a

Hd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
3′

φν,3
Λ

]
5

}
1

y5
3,4sHd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
4s

φν,3
Λ

]
5

}
1

y5
3,4aHd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
4a

φν,3
Λ

]
5

}
1

y5
3,51Hd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
51

φν,3
Λ

]
5

}
1

y5
3,52Hd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
52

φν,3
Λ

]
5

}
1

(F.11a)

y5
3′,3aHd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
3

φν,3′

Λ

]
5

}
1

y5
3′,3′a

Hd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
3′

φν,3′

Λ

]
5

}
1

y5
3′,4sHd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
4s

φν,3′

Λ

]
5

}
1

y5
3′,4aHd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
4a

φν,3′

Λ

]
5

}
1

y5
3′,51Hd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
51

φν,3′

Λ

]
5

}
1

y5
3′,52Hd

{
(EcL)5

[(
φν,5ϕ5

Λ2

)
52

φν,3′

Λ

]
5

}
1

(F.11b)

ỹ5
51,4Hd

{
(EcL)1

[(
ϕ̃5ϕ̃5

Λ2

)
4s

χ̃5

Λ

]
51

}
1

ỹ3
52,4Hd

{
(EcL)1

[(
ϕ̃5ϕ̃5

Λ2

)
4s

χ̃5

Λ

]
52

}
1

ỹ5
51,51Hd

{
(EcL)5

[(
ϕ̃5ϕ̃5

Λ2

)
51
s

χ̃5

Λ

]
51

}
1

ỹ3
52,51Hd

{
(EcL)5

[(
ϕ̃5ϕ̃5

Λ2

)
51
s

χ̃5

Λ

]
52

}
1

ỹ5
51,52Hd

{
(EcL)5

[(
ϕ̃5ϕ̃5

Λ2

)
51
s

χ̃5

Λ

]
51

}
1

ỹ3
52,52Hd

{
(EcL)5

[(
ϕ̃5ϕ̃5

Λ2

)
52
s

χ̃5

Λ

]
52

}
1

ỹ3
1Hd

{
(EcL)5

[(
ϕ̃5ϕ̃5

Λ2

)
1s

χ̃5

Λ

]
5

}
1

. (F.11c)
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G
LED mass eigenstates and matrix elements

In this Appendix we want to discuss how to compute the mass eigenstates for the neutrinos
in the LED framework. We use the same conventions of Ref. [184]. The mass matrix
follows Eq. (4.7), and can be written as

RMj = lim
k→∞


mjR 0 0 . . . 0√
2mjR 1 0 . . . 0√
2mjR 0 2 . . . 0

. . .√
2mjR 0 0 . . . k

 = lim
k→∞


2−1/2ξj 0 0 . . . 0
ξj 1 0 . . . 0
ξj 0 2 . . . 0

. . .
ξj 0 0 . . . k

 (G.1)

where we used the definition of ξj , given in Eq. (4.11), ξj ≡
√

2mjR. Notice that the matrix
Mj has two indeces in the KK subspace. We can define two vectors, for mass and flavour
eigenstates

νννα ≡


ν

(0)
α

ν
(1)
α
...

 νννi ≡


ν

(0)
i

ν
(1)
i
...

 α = e, µ, τ i = 1, 2, 3. (G.2)

We can also define a unitary matrix to rotate the two vectors using the relation

νννα = UUUαiνννi (G.3)

so UUU is

UUUαi ≡
(
Uαi 0
0 Rαi

)
(G.4)

where the matrices U and R are defined by Eq. (4.6). To diagonalize the mass matrix
M we need two rotations, so we need to diagonalize both M †M and MM †. Since we are
interested only on SM fields we can diagonalize only the product M †M .
The neutrino evolution equation is

i
d

dt
νννi,L = Hijνννi,L (G.5)

where the hamiltonian H is

Hij =
δij

2Eν
M †iMj +

(
UUU †VVVUUU

)
ij

. (G.6)
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Here VVV is the matter matrix, defined as

VVV = δαβVα = diag{Ve,Vµ,Vτ}. (G.7)

As the matrix UUU , the matter matrix VVV lives in a 2× 2 subspace; in fact we have

Vαi =

(
Vαi 0
0 0

)
=

(
δαeVCC + VNC 0

0 0

)
(G.8)

where the interaction with matter produces the potentials VCC =
√

2GFne and VNC =
−2−1/2GFnn. With this definition we can reformulate the hamiltonian H as the sum of
two contributions, the mass M †M and the mixing V, defined as

Vij ≡ 2R2Eν
∑
α

U?αiUαjVα. (G.9)

The squared mass matrix is then

M
2 ≡ R2M †jMj = lim

k→∞



(
k + 1/2

)
ξ2
j ξj 2ξj . . . kξj

ξj 1 0 . . . 0
2ξj 0 4 . . . 0

. . .
kξj 0 0 . . . k2

 (G.10)

that can be written as

M
2 = lim

k→∞

(
ηj vvvTj
vvvj KKK2

)
(G.11)

with the following definitions

ηj =

(
k +

1

2

)
ξ2
j vvvj = ξj


1
2
...
k

 KKK2 = diag{1, 4, 9, . . . k2}. (G.12)

We can separate the zero mode and the KK modes using a rescaling hamiltonian H such
that

H =

(ηjδij +Vij

)
00

(
vvvTj

)
0k(

vvvj

)
k′0

(
KKK2
)
kk′

 (G.13)

where the subscripts indices live in KK space. To diagonalize this hamiltonian, i.e. to
solve the secular problem, we need to solve

det

(
2R2EνH− λ2

1

)
= 0. (G.14)

We can use the Gauss algorithm for triangularization. We find for a finite k

[(
X00 − λ2

)
−

k∑
n=1

X0nXn0

Xnn − λ2

] k∏
n=1

(
Xnn − λ2

)
= 0 (G.15)
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where X = 2R2EνH and it has three indices in mass space, one over KK modes and two
in flavour space

X00 = 2R2Eν

[
δij
(
k +

1

2

)
ξ2
j +Vij

]
(G.16a)

X0k = Xk0 = δij2R2Eνk (G.16b)
Xkk = δij2R2Eνk

2 (G.16c)

therefore Eq. (G.15) becomes

2R2Eν

[
δij
(
k +

1

2

)
ξ2
j − λ2 +Vij − δijξ2

j

k∑
n=1

n2

n2 − λ2

] k∏
n=1

(
n2 − λ2

)
= 0. (G.17)

Using the fact that k =
∑k

n=1 we have[
Vij + δijξ2

j

(
1

2
− λ2 −

k∑
n=1

λ2

n2 − λ2

)] k∏
n=1

(
n2 − λ2

)
= 0. (G.18)

Taking the limit k →∞ and using the Taylor series for the cotangent function

−
∞∑
n=1

λ2

n2 − λ2
=

1

2

(
πλ cot(πλ)− 1

)
(G.19)

we find that the secular problem is the same as to solve

detT = 0 Tij ≡ Vij + δijξ2
j

(
πλ cot(πλ)− λ2

)
. (G.20)

The solution of this equation gives the mass of KK modes; in fact we have that λ(k)
j =

Rm
(k)
j . To find the eigenvectors w(k)

j we have to solve

Hw(k)
j =

(
λ

(k)
j

)2
w

(k)
j . (G.21)

We can define the component of the vector as(
w

(k)
i

)(k′)

j
≡W (kk′)

ij (G.22)

so for k′ = 0 we have

ηjW
(k0)
ij +

k∑
n=1

nξjW
(kn)
ij +

3∑
p=1

VjpW
(k0)
ip −

(
λ

(k)
i

)2
W

(k0)
ij = 0 (G.23)

and for k′ 6= 0

k′ξjW
(k0)
ij −

[
k′2 −

(
λ

(k)
i

)2
]
W

(kk′)
ij = 0. (G.24)

We notice that the equation for the matrix element of transition between the zero mode
and the KK is of the form of Eq. (G.18), so in the limit k →∞ we have, for each value of
λ

(k)
i , the equation

3∑
p=1

TipW
(k0)
ip = 0. (G.25)
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To obtain the correct normalization for the eigenvectors w(k)
i we need to use the condition

w
(k)
i · w

(k′)
j = δijδkk

′
(G.26)

thus
3∑
p=1

W
(k0)
ip W

(k′0)
jp = δijδkk

′
. (G.27)

In this way we must solve the following equation
3∑
p=1

(
W

(k0)
ip

)2
[
1 + ξ2

p

(
π2 cot2 πλ

(k)
p

4
− π cotπλ

(k)
p

4λ
(k)
p

+
π2

4

)]
= 1 (G.28)

that we obtained using Eq. (G.25) into the normalization condition Eq. (G.27). It is also
possible to find the non diagonal element in the KK space with the same procedure

W
(kk′)
j =

kξj

λ
(k′)2
i − k2

W 0k
i (G.29)

the details of the calculation can be found in Ref. [182].

G.1 Oscillation in vacuum

In vacuum we can set Vij = 0, in this way

detT = −

(
λ

(k)
j

)3

8

3∏
j=1

(
2λ

(k)
j − πξ

2
j cotπλ

(k)
j

)
= 0. (G.30)

This is a trascendental equation, but we can use a perturbative expansion in the region
of parameter space R−1 � mj , which means ξj � 1.
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Π Ξ 2 cot HΠΛL Ξ = 0.1

Figure G.1: Numerical solution of Eq. (G.30). The KK tower are the dots in the plot
for different values of ξ.

First of all we can write the master equation in the form

πλ
(k)
j = arctan

πξ2
j

2λ
(k)
j

+ kπ k ∈ N. (G.31)
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Using the fact that arctanx ' x we can rewrite as

λ
(k)
j =

ξ2
j

2λ
(k)
j

+ k +O(ξ3
j ) k ∈ N. (G.32)

Now we assume a perturbative expansion in the form

λ
(k)
j = λ0̄

j + ξjλ
1̄
j + ξ2

jλ
2̄
j +O(ξ3

j ) (G.33)

where the bar over the number means the perturbative order, not the KK index. In this
way we get

λ
(0)
j =

ξj√
2

[
1−

π2ξ2
j

12
+

11

16

π4ξ4
j

90
+O(ξ6

j )

]
(G.34a)

λ
(k≥1)
j = k +

ξ2
j

2k
−

ξ4
j

4k3
+O(ξ3

j ). (G.34b)

Using the Eq. (G.28) we obtain

W
(00)
j = 1−

π2ξ2
j

12
+

7

16

π4ξ4
j

90
+O(ξ6

j ) (G.35a)

W
(0k≥1)
j =

ξj
k
−

3ξ3
j

4k3
+O(ξ4

j ) (G.35b)

In Tab. G.1 we report some values for the eigenvalues and for the matrix elements of
transition evaluated numerically and using the approximate relations at first order in ξj .
It is clear that the relations are in good agreement with the true numerical values.

λ
(k)
j

W
(0k)
j

k ξ = 0.5 ξ = 0.1 ξ = 0.05

0 0.2949 0.2809 0.0701 0.0701 0.0353 0.0353
1 1.1084 1.1250 1.0050 1.0050 1.0013 1.0013
2 2.0600 2.0625 2.0025 2.0025 2.0004 2.0006
3 3.0409 3.0417 3.0017 3.0016 3.0003 3.0004
4 4.0309 4.0312 4.0013 4.0013 4.0003 4.0003

0 0.8262 0.7944 0.9918 0.9912 0.9979 0.9979
1 0.4072 0.5000 0.0992 0.1000 0.0499 0.0500
2 0.2351 0.2500 0.0499 0.0500 0.0171 0.0250
3 0.1620 0.1667 0.0342 0.0333 0.0134 0.0167
4 0.1230 0.1250 0.0250 0.0250 0.0125 0.0125

Table G.1: Values of λ
(k)
j and W

(0k)
ij calculated numerically using the software

Mathematica (left columns) and with the perturbative relations at order ξj of Eq.
(G.34) and (G.35) (right columns).

G.2 Sum rule for probability

In our code we use some test for the probability we evaluated numerically. In particular
we used the fact that ∑

α

P(να → νβ) =
∑
β

P(να → νβ) = 1 (G.36)
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as in SM. We can easily test the relation in vacuum starting from Eq. (4.10). At order ξ2

we have

∑
β

P(να → νβ) =
∑
β

∑
i,j

∞∑
k,k′=0

UαjU
?
αiUβiU

?
βj |W

(k)
j |

2|W (k′)
i |2 exp

[
i

(
λ

(k)
j

)2 − (λ(k′)
i

)2
2R2E

L

]
=

=
∑
j

∞∑
k,k′=0

|Uαj |2|W (k)
j |

2|W (k′)
j |2. (G.37)

where we used the fact that UPMNSU
†
PMNS = U †PMNSUPMNS = 1. Using the expression

reported in Eq. (G.35) we obtain

∑
β

P(να → νβ) '
∑
j

[(
1− π2

6
ξ2
j

)
+ ξ2

j

∞∑
k=1

1

k2

][(
1− π2

6
ξ2
j

)
+ ξ2

j

∞∑
k′=1

1

k′2

]
|Uαj |2. (G.38)

Now we recognize that the Riemann zeta function is defined for Re(s) > 1 as

ζ(s) ≡
∞∑
k=1

1

ks
ζ(2) =

π2

6
(G.39)

thus we get at order ξ2 the validity of Eq. (G.36). Similar relations hold for the sum over
initial states. It is easy to understand that the relation is verified also at the next order
in the same way because ζ(4) = π4/90.
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H
NSI oscillation probabilities

In this Appendix we report the main formulae for the oscillation probability in the contex
of NSI scenario. For the experiments of interest for this Thesis we can neglect the matter
effect in the propagation of the neutrino states. Hence we can write the Hamiltonian of
(4.19) approximatively as

Hαβ =
1

2Eν

Uαj
0 0 0

0 ∆m2
21 0

0 0 ∆m2
21


jk

(U †)kβ

 (H.1)

where the U is the PMNS matrix in the Standard parametrization. From the (4.19) and (H.1)
expanding for small ε (the absolute value of the NSI coupling) and neglecting terms of
order O(ε2), the oscillation probability for the disappearance channel at T2K is simplified
as

P(νµ → νµ) = PSM(νµ → νµ) + 2|εsµµ| cosφsµµ + 2|εdµµ| cosφdµµ+

−
[
2|εsµµ| cosφsµµ + 2|εdµµ| cosφdµµ

]
sin2 2θ23 sin2

[
∆m2

31 L

4Eν

]
+

− 2
(
|εsµτ | cosφsµτ + |εdτµ| cosφdτµ

)
cos 2θ23 sin 2θ23 sin2

[
∆m2

31 L

4Eν

]
+

+
(
|εsµτ | sinφsµτ + |εdτµ| sinφdτµ

)
sin 2θ23 sin

[
∆m2

31 L

4Eν

]
+O

(
∆m2

21

∆m2
31

)
+O(sin θ13ε) +O(ε2)

(H.2)

where the SM part is discussed in (A.1).
Notice that in this formula exhibits zero distance effects that modify the probability with
respect to the SM also for L = 0.
Using the same procedure it is possible to obtain the appearance probability

P(νµ → νe) = sin2 θ23 sin2 2θ13 sin2

(
∆m2

31 L

4Eν

)
+

− 2 sin 2θ12 sin 2θ23 sin

(
∆m2

21 L

4Eν

)
sin θ13 cos2 θ13 sin2

(
∆m2

31 L

4Eν

)
sin δ + P0 + P1

(H.3)
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where P0,1 are the leading and next to leading effect of NSI parameters evaluated with
perturbative procedure

P0 = −4|εsµe| sin θ13 sin θ23 cos(δ + φsµe) sin2

(
∆m2

31 L

4Eν

)
+

− 4|εsµe| sin θ13 sin θ23 sin(δ + φsµe) sin

(
∆m2

31 L

4Eν

)
cos

(
∆m2

31 L

4Eν

)
+

− 4εeµ sin θ13 sin θ23 cos(δ − φeµ) cos 2θ23 sin2

(
∆m2

31 L

4Eν

)
+

− 4εeµ sin θ13 sin θ23 sin(δ − φeµ) sin

(
∆m2

31 L

4Eν

)
cos

(
∆m2

31 L

4Eν

)
+

+ 8εeτ sin θ13 sin2 θ23 cos θ23 cos(δ − φeτ ) sin2

(
∆m2

31 L

4Eν

)
+O(εdee sin2 θ13)+

+O(εsµτ sin2 θ13) +O(εsµµ sin2 θ13) +O(εsµe sin3 θ13) +O(εeµ(eτ) sin3 θ13) +O(ε2) (H.4a)

P1 = −|εsµe| sin 2θ12 cos θ23 sinφsµe
∆m2

21L

2Eν
+

+ 2εeµ sin 2θ12 sin2 θ23 cos θ23 cosφeµ
∆m2

21L

4Eν
sin

(
∆m2

31 L

2Eν

)
+

+ εeµ sin 2θ12 cos θ23 sinφeµ
∆m2

21L

2Eν

[
1− 2 sin2 θ23 sin2

(
∆m2

31 L

4Eν

)]
+

+ 2εeτ sin 2θ12 sin θ23 cos2 θ23 cosφeτ
∆m2

21L

4Eν
sin

(
∆m2

31 L

2Eν

)
+

− 2εeτ sin 2θ12 sin θ23 cos2 θ23 sinφeτ
∆m2

21L

2Eν
sin2

(
∆m2

31 L

4Eν

)
+O

(
ε sin θ13

∆m2
21L

4Eν

)
+O(ε2)

(H.4b)

For DB the relevant formula is

P(νe → νe) = 1− sin2 2θ13 sin2

(
∆m2

31 L

4Eν

)
+ 4εee sinφee+

− 4 [εeµ sin 2θ13 sin θ23 cos 2θ13 cos(δ − φeµ)] sin2

(
∆m2

31 L

4Eν

)
+

− 4 [εeτ sin 2θ13 sin θ23 cos 2θ13 cos(δ − φeτ )] sin2

(
∆m2

31 L

4Eν

)
+O(ε2) (H.5)

where in the first line the zero-distance term is proportional to εee.
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