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Introduction

In this Ph.D. Thesis I want to investigate the physics of lepton mixing, the nature of
massive neutrinos, the problem of flavour and how extensions of physics beyond the Stan-
dard Model of particle physics (SM) could modify the oscillation phenomenology in long
baseline and reactor experiments.

Neutrino physics has still a large interest on the scientific community, which is clear
from the amount of papers that appear every year since the neutrino was postulated in
1930 by Pauli [1]], see for instance Fig. [I.I] where the number of papers dealing with
neutrino physics are shown as a function of the year. A large increasing in the number
of available papers appears after the experimental evidence obtained in 1956 by Cowan
and Reines research team at the Savannah River Site [2]. Using a modified version of
pyinspire.py script II] we analyse the inSpire database; we can easily observe that the
trend is positive.

There has been an impressive progress in the field of neutrino physics in the last sixty
years. In this period valuable experimental evidences for three families of massive neu-
trinos and flavour neutrino oscillations were obtained in various experimental channels,
and the parameters which characterize the mixing are known with a relatively high pre-
cision. As a consequence, the existence of non-zero neutrino masses and neutrino mixing
was established.

However we do not know yet what is the origin of neutrino masses, mixing and some of
the fundamental aspects of neutrino mixing. In fact, we do not have information about:

e whether the massive neutrinos are Dirac or Majorana particles
e what kind of spectrum the neutrino masses obeys

what is the absolute scale of neutrino masses

what is the octant for the atmospheric mixing angle a3
e what are the values of the C'P violating phases in the leptonic sector.

Determining the nature of massive neutrinos is one of the most pressing and ambitious
problems in the field of neutrino physics. Recognizing if neutrinos are Dirac fermions,

'The code is available online at https://github.com/agdiiura/PyInspireStat.
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Figure 1.1: Number of papers on inSpire that contain in the title the word neutrino
as a function of the Year in the interval [1930,2015]. In the inset we show the
percentage of papers with respect to the full database. The fit is performed with a
power law function from the data after 1956, the year of the experimental discovery.
We get: Number of papers o Year'?® with x2/dof = 58.78/56 = 1.05. The prediction
for Year 2016 at 95% CL is [1320, 1986].

possessing distinct antiparticles, or Majorana fermions, i.e. spin 1/2 particles that are
identical with their antiparticles [3]], is of fundamental importance for correctly under-
stand the origin of neutrino masses and mixing and, thus, the underlying symmetries of
the Lagrangian of particle interactions.

Determining the type of spectrum the neutrino masses and the absolute mass scale is also
of crucial importance for making progress in our understand of the origin of neutrino
masses and mixing. From a theoretical point of view the knowledge of the 623 octant,
as well as the CP phase, might be useful to construct a theory of flavour. Getting infor-
mation about the status of C'P symmetry in the leptonic sector might allow us to make
progress in the understand of the origin of the observed matter-antimatter asymmetry of
the Universe.

1.1 Three neutrino mixing formalism

The existence of massive neutrinos implies that the left-handed (LH) neutrino flavour fields
vo(z), that enter into the expression for the charged lepton current of weak interaction
Lagrangian, are linear combinations of three, or even more, massive neutrinos v;(x)

vo(z) = ZUajl/j(x) a={eu1} j=123... (1.1)
J

The misalignment between the neutrino mass and flavour eigenstates can be parametrized
through an unitary matrix, the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS) [4-7].
It contains six real parameters. Three are mixing angles: 62, the so-called solar angle,
013 the reactor angle and 63 the atmospheric one. Upyng also contains three phases. We
use the following convention for the PMNS matrix

Upnns = U = U diag{1, e™/2, ¢'(9/2+9)} (1.2)
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and U is the CKM-like parametrization of the mixing matrix, defined as

R 1 0 0 C13 0 5136_i5 cl12 s12 0
U= 0 C23 S923 0 1 0 —S12 C12 0 (13)
0 —s93 o3 —s13€ 0 c13 0 0 1

where ¢;; = cos;; and s;; = sinf;;. All the angles are in the first quadrant 6;; € [0,7/2].
Here § is the Dirac CP phase, a and 8 are the Majorana phases. On the basis of the exist-
ing neutrino oscillation data it is impossible to determine whether the massive neutrinos
are Dirac or Majorana particles.

Neutrino oscillations are a manifestation of leptonic mixing and they are a quantum
mechanical phenomenon in which a neutrino born with flavour a changes to a different
flavour § while propagating in vacuum or in matter; for a pedagogical introduction and
further details see Ref. [§]. Neutrinos are produced and detected via weak interactions
and the state created in the decay W' — (1 + v, is given by ([I). Observation of neutrino
oscillations in various neutrino experiments, see Sec. @] for a general overview, has
shown that there is a mismatch between the flavour and mass eigenstates of neutrinos.

From (L.I) we get that the probability of finding a neutrino created in a given flavour «
to be in the same state, or any other state f3, oscillates with time. The time evolution, in
quantum mechanics, of a neutrino produced in a given flavour at x = 0 and t = 0 is given

by
Valt)) =D Uslvi (1)) = Ukze™"'1(0)) (1.4)
j j

where we use the Dirac notation for quantum eigenstates. The neutrino oscillation proba-
bility, that is the probability of transformation from one flavour eigenstate |v,) to another
flavour eigenstate |v3), can be obtained as

Plva = vg) = (vplva) = DY Unje UL (v luy)| (1.5)
ik
The neutrinos are ultrarelativistic, so that p; ~ py ~ p ~ E,, therefore
2

m=
Ej:\/p?—i-m]z:p—i—QE]V (1.6)

where E; and m; are the energy and mass of the neutrino mass eigenstate v;. In this
case

Am%j
Ek—E]'Z ok (1'7)
14
where we have defined
Amzj =mi — m? (1.8)

which is the mass-squared difference. Notice that in neutrino oscillation experiments, the
propagation time ¢ is not measured. What is known is the distance L between the source
and the detector. Since ultrarelativistic neutrinos propagate almost at the speed of light,
it is possible to approximate ¢t = L. Using and the orthogonality relation (vi|v;) = dji,
after some algebra we get for the transition probability

9 AmijL
P(Va — vg) = 0ap — 42Re {UsUprUa;U%; } sin 5 )T
k>j v
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[ AmZ.L
+2ZIm{UakU5kUajU§j}sm < QEZ ) . (1.9)
k>j

The oscillation probabilities of the channels with a # § are usually called transition
probabilities or appearance channel, whereas the oscillation probabilities of the channels
with a = 8 are usually called survival probabilities or disappearance channel. In the case
of disappearance we have

Am?.L
Pva = va) =1 =4 [Ugkl?|Us;| sin® (4;) : (1.10)
k>j v

Thus we expect to have sensitivity to the parameters of PMNS when the argument of
the sin? function is O(1). Usually Amij is measured in eV?, the baseline L in km and the
neutrino energy E, in GeV, hence the argument of sin? can be written as 1.267><AmijL/El,.
In the following we discuss the phenomenology in the two-neutrino approximation while
in Appendix [A] we summarize the SM probabilities that are relevant in our analysis.

1.1.1 Two neutrino approximation

For the case of two generations of neutrinos, the above analysis becomes quite simpli-
fied without any loss of physical understand. The mixing matrix depends only on one
parameter 6 (known as mixing angle) and is given by

U_ ( cosf sm0> (L11)

—sinf cosf

and there is a single mass-squared difference Am?2. The oscillation probability in Eq. (T.9)
becomes

(1.12)

Am?2L
P (Vo — vg) = sin? 20 sin? < m ) .

4F,

Within this simplified model it is possible to analyse some features of the neutrino phe-
nomenology. In fact it was common during the nineties to study the oscillation in a
simplified framework with only two active neutrinos. The solar neutrino problem (see
later) can be studied in term of two effective parameters, the solar angle 65 = 612 and the
solar mass-squared difference Am%, while the deficit in the neutrino flux from cosmic rays
has been studied using the atmospheric angle 5 = 623 and the atmospheric mass-squared
difference Am5.

1.1.2 Oscillation in matter

The propagation of neutrinos becomes significantly modified in the presence of matter due
to their interactions with the elements composed of electrons, protons, and neutrons. The
coherent forward elastic scattering amplitudes are not the same for all neutrino flavours
Vvo. The electron neutrinos have additional contribution due to their charged current
(CC) interactions with matter which are mediated by weak bosons. On the basis of this
fact, Mikheyev and Smirnov [9], following the work of Wolfenstein [10], showed that an
interesting phenomenon occurs when neutrinos travel in dense madtter.

In the two-flavour case, discussed in Sec. [L.I.T} if neutrinos v, and v, travel through the
Sun, the propagation of v; and 2 will be modified due to the different interactions of v,
and v, with electrons. The mixing angle in the presence of matter is given by

sin? 26

2
20, =
S (cos20 — L/Ly,)? + sin® 20

(1.13)
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where L,,, a length characteristic of motion in matter of density n., is given by

_ o

L. =
" Grne

(1.14)

and G is the Fermi constant. Eq. ([.I3) has a resonance when n. is such that L/L,, =
cos 20 so that sin?26,, = 1, resulting in maximal mixing and the survival probability, to a
very good approximation, can be written as

Pva — va) = % [1 + cos 26 cos 20,,] . (1.15)

This is just a simple example of neutrino propagation in matter, for further details see
Ref. [§].

1.2 Neutrino experimental status

The first hint that neutrinos have mass came from the Homestake experiment [11] during
the sixties. In this experiment, it was found that only about one-third of the number
of neutrinos predicted by standard solar model (SSM) were reaching the detector on the
earth. The idea of neutrino oscillations gained support from the Japanese experiments
Kamiokande [12] and Super-Kamiokande [I13[14], during the nineties, in which similar
deficit was observed in the atmospheric neutrino flux.

Results from several solar neutrino experiments: Homestake [15], SAGE [16], GALLEX [17]
as well as Super-Kamiokande [18] that collected data for more than four decades have
shown that the large mixing angle (LMA) solution could be explained the solar neutrino
problem. The latest addition to this huge repertoire of experimental data are the results
from the SNO [I9-21] and Borexino experiments [22-24] which are consistent with the
LMA solution. This conclusion from the solar neutrino experiments has been investigated
independently by the KamLAND reactor antineutrino experiment [25-27] and a combined
analysis of the solar and KamLAND experimental data gives Am2 = 7.6 x 107° eV? and
sin? 2015 = 0.32, see for instance the global analysis performed in 2005 by the Authors of
Ref. [28].

Similar deficit in the ratio of the flux of muon to electron flavour atmospheric neutri-
nos produced in cosmic rays has been observed. The other mass splitting Ami and the
atmospheric angle 6o3 are well determined by the zenith angle dependent atmospheric
v, data from Kamiokande [29], Super-Kamiokande [13,/14,/18,|30] and the long baseline
experiments (LBL) K2K [31,/32] and MINOS [33]] in both appearance and disappearance
channels. The combined data from the atmospheric and long baseline experiments give
us ]Ami\ = 2.4 x 1073 eV? and sin?26,3 = 1. More recently disappearance and appear-
ance results from LBL experiments in the form of the energy distribution of v, and 7, in
T2K [34,[35], and v, events in NOvA at the beginning of 2016 [36,37] confirm the neutrino
oscillation hypothesis with high accuracy. Similar results were obtained by the OPERA
collaboration for the channel v, — v; [38].

With the observation of a non-zero reactor angle 63 in 2012 by Double Chooz in France
[39], Daya Bay in China [40] and RENO in Korea [41], we now have complete knowledge
of all the three mixing angles 612, 613 and 033. However, we do not have any information
on the Dirac-type C'P violating phase § and it is fully unconstrained as yet, although a
small hint for maximal CP violation from combined analyses give § ~ 37/2. Due to mat-
ter effects we expect that NOvA, as well as the proposed experiments such as T2HK [42],
LBNE [43] and ESSvSB [[I170], could confirm this preliminary result. We also expect an
improvement on the measurement of the solar parameters by the planned JUNO experi-
ment [44].



We report in Tab. the best fit points with the lo errors and the 30 confidence region
for Normal Ordering (NO) and Inverted Ordering (10), that we will discuss in details later.
All the data are extracted from the latest global analysis performed in Ref. [45] using the
August 2016 data. Similar results were obtained in Refs. [46,47]. E]

Normal Ordering Inverted Ordering
Parameter Best Fit 30 Range Best Fit 30 Range
sin? 015/107 3.0810 15 2.73 = 3.48 3.081015 2.73 = 3.48
sin? f13/10~2 21637007 1.938 + 2388 21757057 1.950 = 2.396
sin® f33/107 4407523 3.88 + 6.30 5.841035 3.98 = 6.32
5 5.0410:50 0=+ 27 4691095 0+ 27
Am3,/107° [eV?]  7.4970-1 7.02 + 8.08 7.4910-1 7.02 + 8.09

Am2,/1073 [eV?]  +2.526170037 +2.413 =+ +2.645 -2.518700%% 2,643 + -2.406

Table 1.1: Latest results for the global fit of Ref. [45] (available at the website
http://www.nu-fit.org). Note that in the last line ¢ = 1 for NO and ¢ = 2 for IO.
The analysis prefers a global minimum for NO with respect to the local minimum
of 10, Ax? = X} — x%0 = 0.56.

It is worth noticing that the global fit analyses we are referring to in Tab. [149],
which are performed within the framework of the three neutrino mixing, suggest that
sin?fy3 < 1/2 assuming NO while sin?fy3 > 1/2 in the case of I0. These results have
important consequences from a theoretical perspective, in view of the need of finding a
simple principle which could explain the patterns of the masses and of the mixing in the
neutrino sector.

Furthermore, the admitted intervals of the absolute values of the elements of the PMNS
mixing matrix are at the 3o level

0.798 = 0.843 0.517 <+ 0.584 0.139 = 0.155
|Upnins|| = [ 0.234 = 0.518 0.449 + 0.696 0.617 = 0.787 | . (1.16)
0.251 = 0.528 0.463 < 0.706 0.600 < 0.774

This result does not assume any particular neutrino mass ordering. Notice that the situ-
ation is quite different compared to the quark sector, where the quark mixing matrix, the
Cabibbo-Kobayashi-Maskawa matrix (CKM), has a hirarchical structure and it is almost
diagonal. For a schematic representation see Fig. [I.2] where we plot the absolute values
of the Vexwm and Upyns matrix elements.

The experimental data we have summarized in Tab. [.I] are compatible with different
neutrino mass patterns, see for instance Fig. [I.3}

e Normal Ordering (NO): my < mg < mg, which means Am% = Am3, > 0 and Am3 =
Am3, >0

e Inverted Ordering (10): mg < my < my, which means Am% = Am3; > 0 and Amj =
Am3, <0

where Am% is the solar mass-squared difference and AmQA is the atmospheric one.
Depending on the value of the lightest neutrino mass min;{m;}, the mass spectrum could
be:

2A recent analysis with bayesian approach is performed in Ref. [48], where similar results were obtained.
The main difference is in 23, where the maximum of the likelihood occurs for 023 > 7/4 for both orderings,
however we have sin® 623/107" € [4.33,4.96]®[5.30,5.94] @ 1o CL, and the statistical significance is insufficient
to exclude the other octant.
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Figure 1.2: Pictorial representation of Voxnm and Upyns matrices, the color is pro-
portional to the absolute value of the maxtrix element.

e Normal Hierarchical (NH): m; < mo < mg, therefore mo ~ ,/Am% ~87x1073 eV and

mg ~ y/Am% ~4.9 x 1072 eV

e Inverted Hierarchical (IH): m3 < my1 < ma, therefore my s ~ AmQA ~49x1072 eV

e Quasi Degenerate (QD): m; < mg S mg ~ mg or msg < mo

< my; ~ myg, therefore

~

m; > y/|Am%| and mg = O(107!) eV.

m3 [

m2
m1

Normal Ordering

2
Amz

IAm%l

mo [
IAm%l
m [ -
[ "
2 . v
Ams,y

m3 [

Inverted Ordering

Figure 1.3: Possible mass spectra allowed from neutrino oscillation data. With
different colors we indicate the probability of finding one of the flavour eigenstates
if the neutrino is in a certain mass eigenstate.

The ratio r, is defined as

5 { +2.9657018 x 1072 for NO

—2.97570131 x 1072 for 10 (L.17

where we have used the best fit values quoted in Tab. [[LI] At the level of 3¢ the absolute
value of 74, defined in (I.I7), is constrained in the interval

for NO, while for 10

2.65 x 1072 < |ry| < 3.35 x 1072 (1.18)

2.67 x 1072 < |rg| < 3.36 x 1072 (1.19)



All possible types of mass spectrum are compatible with the experimental constrains on
the absolute scale of neutrino masses coming from g-decay experiments and cosmologi-
cal/astrophysical data.

The best probe for the -decay is the nuclear reaction 3H — 3He + e + 7, with a Q-value
Q = Msyg, — Msy = 18.6 keV. It is possible to measure the electron spectrum near the end
point and extract the value of mg, the effective mass that enters in the decay

mg = /Z m?|U1j|2 = \/cos2 013 (m% cos? 01 + m% sin? 912) + mg sin® 6;3. (1.20)
J

The most stringent upper limit on mg was obtained by the Mainz and Troitzk experiments
[49]

mg < 2.3 eV @ 95% CL (1.21)

while the KArlsruhe TRItium Neutrino experiment (KATRIN), which is expected to start the
data taking in the next years, will provide informations on the absolute scale of neutrino
masses with a sensitivity to mg ~ 0.2 eV [[50] (see also [0l] for a more recent description
of the experiment).

Information about the masses of light neutrinos can be obtained also from cosmological
observations. In particular the total mass of light active neutrinos, Zj m;, can be con-
strained from measurements of the matter power spectrum, which is a measure of the
variance of the distribution of density fluctuations in the Universe. An upper bound for
the sum of the masses can be obtained from the part of the power spectrum at small
scales, see Ref. [02]. This bound is model dependent and may change under different as-
sumptions. The PLANCK Collaboration presented the results based on the analysis of the
cosmic microwave background (CMB) temperature and lensing-potential power spectra.
In Ref. [53] the collaboration provided constraints assuming three species of degenerate
massive neutrinos and a ACDM model using the PLANCK temperature power spectrum
with a WMAP polarization low-multipole (¢ < 23) and Acatama Cosmology Telescope (ACT)
high-multipole (¢ > 2500) data. We refer to this CMB data combination as PLANCK. In this
case the upper limit on the sum of the neutrino mass reads

> m; <0.59 eV @ 95% CL. (1.22)
J

Combining the latter with the Barion Acoustic Oscillation data (BAO), the limit is signifi-
cantly lowered at

> m; <0.23 eV @ 95% CL. (1.23)
J

The above upper limits can be converted into limits on the absolute scale of neutrino
masses that read respectively mmin < 0.19 €V in the more conservative case of @]} and
Mmin S 0.07 €V in case of ([.23).

In the future we expect that the ESA mission EUCLID will measure the sum of the neutrino
masses with a 1o precision better than 0.03 eV, [54]. EUCLID’s measurement of the galaxy
power spectrum, combined with PLANCK priors, should yield an error on the sum of the
neutrino masses of 0.04 eV [55].

1.2.1 The Majorana nature of the neutrino

The Majorana nature of massive neutrinos manifests itself in the existence of processes
where the total lepton charge L changes by two units, for instance K — 7~ +pu* +pu* or
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p=+ (A, Z) = pt + (A, Z —2). Several studies have shown that the most promising experi-
ments having the potential of establishing the Majorana nature of massive neutrinos are,
at present time, experiments searching for neutrinoless double beta decay (0vj33-decay):
(A,Z) - (A, Z +2)+ e + e . This process can be generated only by the (V — A) charged
current weak interaction via the exchange of massive Majorana neutrinos, for a review
see for instance Refs. [56-59]. The Ovj3S3-decay amplitude has the form

A(0vfp) = mgsM(A, Z) (1.24)

where M(A, Z) is the nuclear matrix element of the decay (A,7) — (A, Z+2)+e + e~
that does not depend on the neutrino mass and mixing parameters, and

772
E :mJUlj
J

is the Ov@ps-decay effective Majorana mass. The probability of the process is proportional
to the square of mgg through

mgg = cos® 013 (m1 cos? 012 4+ mo sin® ngem> + mgsin? 03¢ . (1.25)

1 2 2 ~0v
S mgslPIM(A, 2) PG (Q, Z 1.26

where G%(Q, Z) is a known phase factor. The main uncertainty on mgg comes from the
nuclear matrix element.

The neutrinoless double beta decay rate depends on the neutrino mass spectrum, that
can be hierarchical, with partial hierarchy or quasi-degenerate. Using the latest data
on the neutrino oscillation parameters it is possible to show that in the case of NO one
has mgg < 0.005 eV, while if the spectrum is with 10, 0.01 eV < mgg < 0.05 eV. A large
value of the effective mass, mgg ~ 0.5 eV, is possible if the neutrino mass spectrum is
quasi-degenerate. In QD case mgg can be close to the existing upper limits. The O0vj3g3
experimental search can thus have an enormous impact in constraining the mass hierar-
chy, the absolute scale of neutrino masses and together with other sources of information
could provide a unique insight on the value of the CP violating phases appearing in the
leptonic mixing matrix.

The experimental searches for neutrinoless double beta decay have a long history, see for
instance Ref. [60] for a review on this topic. The best lower limit on the half-life of °Ge
is Tlo/”2(76Ge) > 2.1 x 10%° years @ 90% CL, it was found in the GERDA "®Ge experiment [61].
If we combine the limits obtained in the Heidelberg-Moscow [62], IGEX [63] and GERDA

experiments we get Tl()/”2(76Ge) > 3.0 x 10%® years @ 90% CL [61].

Other experiments search for Ov$3-decay: NEMO3 with %Mo found mgp < (0.61+1.26) eV
[64] and CUORICINO with '3Te obtained mgs < (0.16 =+ 0.68) eV, both at 90%CL when
the nuclear uncertainties are taken into account. The best lower limits on the neutri-
noless double beta decay half-life of !36Xe were reported by the EXO and KamLAND-
Zen collaborations: T7},("*Xe) > 1.6 x 10% years @ 90% CL [65] and T7},(***Xe) > 1.07 x

1026 years @ 90% CL [66].

Most importantly, a large number of new generation experiments aim at sensitivity to
mgps < (0.01 = 0.05) eV, see Refs. [56-59], among them CUORE and SNO+ (}3Te), GERDA
and MAJORANA ("%Ge), SuperNEMO, KamLAND-Zen and EXO (*¢Xe), AMoRE and MOON
(1%Mo), COBRA (116Cd), CANDLES (*8Ca). The experiments listed above are aiming to probe
the QD and IO ranges of mgg.

1.3 Thesis outline

In this Thesis I aim to investigate two realizations of physics beyond the SM. In the first
part we will discuss a possible way to predict the mixing patterns that we observe in Na-

_9_



ture, in particular the smallness of #13. In the second part we want to discuss how models
of New Physics (NP) could modify the oscillation phenomenon.

The Thesis is organized as follow:

e In Chapter [2| we will discuss the prediction based on the so-called Generalized C'P
symmetry combined with non-abelian discrete symmetry. We assume A; ® CP as
a symmetry in the full leptonic sector. Under such an assumption it is possible to
predict the mixing angles and to obtain sum rules among the oscillation parameters
as a function of one real degree of freedom, thus predictive patterns are testable at
current and future neutrino facilities.

e Chapter [3] is a one step further with respect to Chapter 2] In fact we will introduce
several explicit realizations of the model based on A5®@CP that give us the possibility
to explore the mass spectrum and obtain prediction for observables as the Majorana
effective mass for the Ovfg-decay. In particular we will show many realizations
where testable relations among mixing angles and the mass spectrum exist.

e In Chapter 4 we will discuss two extension of the Standard Model, namely the Large
Extra Dimensions and Non-Standard Neutrino Interactions, that modify the oscilla-
tion probabilities with respect to the SM. We investigate the effects of NP at the
Daya Bay and T2K experiments. We will show how NP could modify our knowledge
on the SM oscillation parameters and we will put bounds on the NP parameters.

e In Chapter [5] we will summarize the results obtained and draw our conclusions.
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Lepton Mixing from A; @ CP

A possible tool to predict the mixing pattern that we observe in Nature in the leptonic
sector is the one based on flavour symmetry, see Refs. [67-69], as well as [[70], for reviews
on this topic. As it has been discussed in several details in the literature a framework
where the mismatch between neutrino and charged lepton mass maitrices is associated
with the non-trivial breaking of a flavour symmetry is quite interesting and predictive.
In particular, in our approach, we use non-abelian discrete symmetry combined with CP
as discussed in Refs. [71,[72]. This approach has already been studied for several sym-
metries: Ay [71,(73]], Sy [74,/75], T" [76], (36 x 3) [77], A(48) [78], A(96) [79] as well as
A(3n?), [80], and A(6n?), [80-82], Dég% [83], with general n € N. For a recent review see
Ref. [84]. ’

In our study, fully presented in Ref. [85], we assume the non-abelian discrete group As
and C'P as a symmetry in the full leptonic sector, and we found that four mixing patterns
accomodate well the observed values of the mixing angles, which means that the angles
are in the 30 allowed range. Similar results were obtained in Refs. [86L87].

The Chapter is organized as follow: in Sec. 2.]] we discuss the assumptions of lepton mix-
ing obtained from non-abelian discrete symmetries and we show the simplest examples:
the tri-bimaximal and bimaximal mixing patterns. In Sec. [2.2] we discuss the proper-
ties of the group As as well as the predictions for the mixing angles in the case of no
CP symmetry in the leptonic sector. In Sec. we recapitulate the approach with C'P
symmetry and non-abelian discrete symmetry and in Sec. 2.4 we discuss the analytical
patterns assuming As ® CP that are in agreement with the experimental data. In the
last Sec. we discuss the numerical results and the expected improvement at future
neutrino facilities.

2.1 Lepton mixing from discrete symmetry

We can obtain the leptonic mixing matrix Upyns from symmetry consideration using the
fact that the full flavour symmetry group in the lepton sector Gy has a different symmetry
subgroups for the neutrino sector, G,, and the charged leptonic sector, G,, see Fig. for
a pictorial representation. This procedure was used assuming several non-abelian discrete
group (further details about non-abelian discrete symmetries are discussed in Appendix
[B). For Majorana neutrinos the use of non-abelian and discrete symmetry subgroups of
SU(3) and U(3) have shown that symmetries giving rise to mixing angles that are in
agreement with experimental observations [88]. For instance, the groups Ay, S; and T’
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are commonly utilized to generate tri-bimaximal (TBM) mixing [89-91]; the group S4 can
also be used to generate bimaximal (BM) mixing [92-94]; As can be utilized to generate
golden ratio (GR) mixing [95-98]], we will discuss in details this scenario in Sec. [2.2.2
and the groups Dip and D12 can lead to another type of GR [99,100] and hexagonal (HG)
mixing [101,102].

We assume
Gr C Gy G, CGy GengG, =0. (2.1)

Assuming that the neutrinos are Majorana particles we can write the action of the ele-
ments of the subgroups of Gy on the mass matrix asm

QIMIMQ = MM,  Qeq, (2.2a)
Z'M,Z=M, Zeg, (2.2b)

where in the second equation we used the fact that the neutrinos are Majorana particles.
For Dirac neutrinos

ZIMIM,Z = MM, ZeG,. (2.3)

[Flavour symmetry G f}

Charged Lepton Neutrino Sector
Sector G, C Gy G, C Gy

l
{QTM; M,Q = M] Mg}

Qedgs

|

o= _viow) (z==uizs)

\ /

Figure 2.1: Representative scheme of the approach used in this Section, see text for
further details. For a similar procedure see Ref. [[103].

[UPMNS =0, J qu

The maximal invariance group of the neutrino mass matrix which leave the neutrino
masses unconstrained is the Klein group V = Zs ® Zs [104-H107]. The charged leptonic
subgroup G, is assumed in general as a direct product of cyclic groups Z,, ® Z, ®. .. Zp,.
We discard residual non-abelian symmetry because their character would result in a
complete, or partial degeneracy, of the mass spectrum, and thus it is incompatible with
the current data on charged lepton masses. For the same reason we assume that Z € G,
decomposes into three inequivalent representations under Gy.

If we diagonalize the mass matrices, using (2.2), we can also rotate the group elements
@ and Z through unitary matrices as

Q¥ — UlQu, (2.4a)
z4e — i zu, (2.4b)

'The charged lepton mass matrix M, is given in the right-left basis.
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because both Gy and G, are abelian. The lepton mixing originates then from the mismatch
of the embedding of G, and G, into Gy. The matrices U, and U, are determined uniquely
up to diagonal unitary matrices Ky, and permutation matrices P ,, respectively

Ug — UngKg (2.5&)
U, — U,P,K,. (2.5b)

Thus the lepton mixing matrix Upyns iS, up to Majorana phases and permutations of rows
and columns

Upnins = U U, (2.6)

The mixing matrix Upyng is thus determined through G, and G, and their relative em-
bedding into G;. However, it is determined only up to exchanges of rows and columns,
because we do not predict lepton masses in this approach. Hence, the mixing angles are
fixed up to a small number of degeneracies, associated with these possible exchanges.
Also the Dirac CP phase § is determined up to a factor w, if the exchange of rows and
columns is taken into account. At the same time, Majorana phases cannot be predicted,
because they are related to the eigenvalues of the matrix M, which remain unconstrained
in this framework. Our conventions to extract the mixing angles and the C'P phases are
discussed in Appendix [D]

2.1.1 TBM and BM from discrete symmetries

The two most famous mixing patterns based on a non-abelian discrete symmetry are BM
and TBM. These can be obtained from Gy = S4, which is the symmetric group of degree
four, additional details are discussed in Appendix [B.3] In the following we do not want
to discuss all the features of S;, however some basic facts are needed to construct the
mixing patterns. The generators S and T satisfy the algebra

S§? =T = (ST)3 = 1. 2.7)

A possible choice for the three dimensional generators is

1[0 V2 V2 1 0 0
525 V2 -1 1 T=1[0 em/2 0 . (2.8)
V2 1 -1 0 0 eB3n/2

The group S4 contains another three dimensional representation, the generators are re-
lated to those in (2.8) with {S,T'} — {—S5,—T'}, see (2.7). The abelian subgroups of S, are:
four Klein groups V, four Z3 groups and three different Z,. These are summarized in Tab.

21

Z4 Z3 4
Algebra Generators Algebra Generators Algebra  Generators
Q1 T Ch ST K, {T? ST?S}
Q2 %8 Co TS Ko {8, T%2ST?}
Q3 STS Cs T%ST K3 {T? ST?ST}
Cy TST? K4 {ST?S,T35T}

Table 2.1: Possible independent algebras of Sy subgroups. This is the same classifi-
cation adopted in Ref. [10§].
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eG,=Z73and G, =V

Using these subgroups we could obtain only TBM. We assume C3 € Z3 and K; € V as
representative algebra. The absolute value of the PMNS matrix is

L (2 V2 0
”UPMNSH:UTBMZT 1 V2 V3 (2.9)
“\1 v2 v3

and thus the mixing parameters are sin? 0o = 1/2, sin? 019 = 1/3 and a vanishing reactor
angle 613. Thus also the Jarlskog invariant Jop [109], defined in Eq. (D-2), is zero. To
obtain a realistic mixing pattern with 613 ~ 9° from the TBM pattern we need to include
large corrections from higher dimensional operators. The TBM solar angle (as well as
the GR one) is shown in Fig. 2.3] with the allowed experimental value obtained in global
analysis of the neutrino oscillation parameters of Refs. [45,47,110].

ogg:Z4andgl,:V

In this case only a unique mixing pattern is possible, the BM one. The absolute value of
the matrix elements of PMNS matrix is

V2 V2 0
1
IUpains]| =Upm =5 1 1 V3 (2.10)
1 1 3

therefore both 612 and 033 are maximal. Large corrections are needed also to accommodate
well the solar angle, thus NLO corrections should have the same order of magnitude of
the Cabibbo angle, as discussed in Ref. [L11].

eG/,=Vand G, =V

This case, discussed in Ref. [112], produces a BM mixing pattern and thus |Upmns|| is the
same as (2.10). A representative choice for the subalgebras for G, is K; and for G, is K.

2.2 Group A4;

The group As is a non-abelian discrete group of even permutations on five elements [|67].
It is the symmetry group of the icosahedron, which its net graph is shown in Fig. 2.2] The
As elements correspond to all the proper rotations of the icosahedron. Such rotations are
classified into five types, that is, the 0 rotation (identity), = rotations about the midpoint
of each edge, rotations by 27/3 about axes through the center of each face, and rotations
by 27/5 and 47 /5 about an axis through each vertex.

VAVAVAVAVAN
\VAVAVAVAVA

VVVVV

Figure 2.2: Net graphs of icosahedron. The elements of A; can be interpreted as
rotations in this space. See the main text for further details.

The group As has 60 elements that can be grouped into five conjugacy class with 1,12,12,15
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and 20 elements. The characters of As are collected in Tab. 2.2] where ¢ is the Golden
Ratio, defined as

1++5

5~ 1618 (2.11)

4

which is the solution of the equation ¢? — ¢ —1 = 0. H

4 ¢ 120 120l 15¢ 200!

Y1 1 1 1 1
B3 © 1—p -1 0
BT 3 1-9 % -1 0
4 4 -1 -1 0 1
B 5 0 -1 -1

Table 2.2: Characters of the As group.

The group As has two generators S and 7" which satisfy the following algebra
S? =T° = (ST)3 = 1. (2.12)

The rules S? = (ST)? = 1 are the same as Modular Group T's [108]. In the context of
particle physics the As group is used to describe the symmetry of leptonic sector. The
predictions based on A5 are often called Golden Ratio [95-98]].

The irreducible representations of Aj are one singlet 1, two triplets 3 and 3’, one quadru-
plet 4 and one quintuplet 5. In the three dimensional representation 3 we use the same
convention of Ref. [I0§] for the matrices S and T, where T is a diagonal matrix:

) 1 V2 V2 1 0 0
S=—"—1|v2 —¢ 1/¢p T=1[0 e2m/5 ¢ (2.13)
V5 V2 1o —p 0 0  eSmils

The generators in 3’ are easily obtained from S and 7T defined in 2.I3) by using the
combination T2ST3ST? and T? as generators. This shows immediately that the set of all
matrices describing the representations 3 and 3’ is the same and thus all conclusions
obtained for mixing patterns derived for the representation 3 hold also for 3’ and thus,
without loss of generality, we assume in the following analysis that Left Handed (LH)
leptons transform as 3 of As. For the sake of completeness we report the explicit form of
the generator in the 3’ representation

e V2 V2 1 0 0
S:—7 V2 1/p —p T=1[0 e™/5 0 : (2.14)
5 V2 —p 1/p 0 O e~ 4mi/5

The other representations admit a basis where T is diagonal, as discussed in Ref. [98].
For the representation 4 we have

V5 ©—3 o+2 —/5 e2mi/s 0 0
1le=3 V5 V56 @+2 0 etmi/s g 0
_ _ T = . 2.15
=75 0+2 Vb Vb -3 0 0 /5 (2.15)
—V5 o+2 -3 -6 0 0 0 et/

*Note that the Golden Ratio has many interesting properties. In particular we use the property "2 =
@™t 4+ ™ with n € Z and n > —1, that implies ¢ * = ¢ — 1 ~ 0.618 .
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and for 5

—1 V6 -6 -6 -6 1 0 0 0 0
| Ve 2 20 2(1—¢) —(1+¢) 0 e¥i/5 0 0 0
§=x —6 2 1+  2-¢ 2p-1) | T=|0 0 ™ 0 0
V6 2(1—¢) 2-¢ 14¢ —2¢ 0 0 0 550
V6 —(14+¢) 20p—-1) —2¢ 2— ¢ 0 0 0 0 e85
(2.16)
The Kronecker products of As are
33=1,03,D 5, (2.17a)
323 =1,®3, ®5; (2.17b)
33 =495 (2.17¢)
34=3®405 (2.17d)
34=30405 (2.17e)
35=333 w465 (2.17f)
395=393®485 2.17g)
494=1,63,93, 34, ® 5, (2.17h)
45=393 0435, D5y (2.171)
505=133,03, D4, D45 D515 D5 (2.17))

where the explicit formulae are reported in the Appendix|[C] Notice that the Clebsch-Gordan
coefficient are defined using a coherent transformation under CP, therefore they are
different with respect to the definition of Ref. [98] (another basis is discussed in Ref. [[L113]).
This feature is discussed in more details in Chapter [3|where several realizations of As@CP
are given.

2.2.1 Subgroups of A;

The subgroups of As that are relevant in our analysis are Zy, Z3, Z5 and V, where V is the
Klein group, defined as V = Z; ® Zs. E] The elements of each subgroups can be generated
using the representations of the generators of As. We used a brutal force approach, in
which we have generated all matrices M in the form

6
M=]]s*T* s =01 t; =0,1,...4 (2.18)
k=1
where we used the fact that the generators satisfy the algebra defined in (2.I2), thus not
all choices for s; and ¢, are possible. Hence we isolate only the matrices that satisfy the
subgroups algebras and are independent to each others. EI We check our results using
Ref. [108] and the website WikiGroup. All results are summarized in Tab. [2.3]

2.2.2 Golden Ratio Predictions

Using the results of Section and the classification of A5 subgroups in Tab. 2.3] we can
find the PMNS mixing matrix in a simple way. Models based on Aj are already discussed
in literature 97,098,108, 112-113].

Our conventions for the PMNS matrix and the way to extract mixing angles and C'P
invariants are discussed in Appendix [D]

3It is possible to have the subgroup Z4 but its elements are equivalents to those of Z.
*Notice that if M is such that M? = 1 also MP? and 1*/9M satisfy the same Z, subalgebras for all values
of p.
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Zs Zo Z3 1%

Algebra Generators Algebra Generators Algebra Generators Algebra Generators

Ry T Sy S Ch ST K {8, T?ST3ST?}
Ry ST? S5 TST* Cs TS K {T4ST, ST3ST?S}
R3 28 S3 2873 Cs TST3 K; {TST*, ST?ST3S}
Ry TST Sy T35T? Cy T25T? Ky {T28T?, ST?ST}
Rs TST? Ss T4ST Cs T3ST Ks {T3ST? TST?S}
Rs 28T Se ST2ST Cs ST3ST

St ST3ST! Cr ST?ST3

Sy TST3ST? Cs ST3ST?

So T2ST3ST*? Cy ST?ST4

S1o T3ST3ST Cio STEEIE

S11 ST?ST3S

Si2 ST2ST3ST
Sis ST2ST3ST?
Si4 ST25T3ST3
Sis ST2ST35T*

Table 2.3: Possible independent algebras of As subgroups. This is exactly the same
classification adopted in Ref. [[108].

ogg:Z5andg,,:V

In each realization of G, = Z5 and G, = V we find the same absolute values of the PMNS
matrix. A representation of the Z5 residual symmetry can be chosen diagonal, thus
Upvns = U,. We get

cos ¢ sin ¢ 0 0.851 0.526 0
[Upmns|| = | sing/v2 cos¢/v2 1/v2| ~ (0372 0.602 0.707 (2.19)
sing/v2 coso/vV2 1/v/2 0.372 0.602 0.707

where we have defined tan¢ = p~! = ¢ — 1 ~ 0.618. We find a vanishing reactor angle
013 and a maximal atmospheric angle 3 with sin? 019 ~ 0.276, as discussed in details in
Refs. [97,98,[113]. The Jarkslog invariant Jcp = 0, thus the Dirac phase is trivial, zero or
. Notice that moderate correction to the mixing angles 615 and 613 obtained at Leading
Order (LO) are necessary in order to achieve a good agreement with the experimental
measurements. In Fig. we compare the prediction for sin? 6,9, as well as the TBM
quoted in (2.9), in the allowed region for the solar angle obtained from the global analysis
on neutrino oscillation.

eG,=73and G, =V

If we choose Gy = Z3 and G, = V we get a unique pattern for the PMNS matrix. In fact
only for (Cy, K1) we get as the total group As and not a subgroup. These subgroups give
us the absolute value for the PMNS matrix, discussed in Ref. [112]]

L (V20 V2/e 0 0.934 0.357 0
IUpmnsll = —= | 1/¢ ¢ V3] ~ 10252 0.661 0.707 | . (2.20)
V6 /e ¢ V3 0.252 0.661 0.707

In this case for the solar mixing angle we get sin? 015 = (2—¢)/3 ~ 0.127 which is excluded
at more than 30 CL. This means that we need large corrections in order to match the
experimental best fit values. Since 613 = 0 we also get Jop = 0 and ¢ trivial.
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ogg:VandQ,,:V

The last possibility is Gy =V and G, = V. In this case the unique mixing pattern is given
for (K, K;) and i # j, in fact for ¢ = j the PMNS is trivial, i.e. Upmns = 1. This pattern is
discussed in Ref. [I08]. The absolute value of the PMNS matrix is

R 0.809 0.500 0.309
||UPMNSH:§ /o ¢ 1 | ~[0.309 0.809 0.500 . (2.21)
1 1/ o 0.500 0.309 0.809

We can extract the mixing angle from Upyxs, in this case sin? 1y = sin? a3 = (3 — ¢)/5 ~
0.276 that are excluded at more than 20 CL and sin? ;3 = (2 — ¢)/4 ~ 0.095. However it is
possible to have another pattern for the PMNS matrix if we exchange the second and the
third row. In this case we get sin®fa3 = (2 + ¢)/5 ~ 1 — 0.276 = 0.724 and thus we expect
large corrections to the LO predictions to make the model viable.

GR | TBM

T

. Lo | L | |
24 26 28 30 32 34 36 3.8
sin’0,/107!

Figure 2.3: Predictions for sin? 015 for GR and TBM mixing patterns (red dashed
lines) where the box charts represent the value of the global fits (we show the
results for NO since the allowed region is the same for both orderings) performed
in Ref. (labeled as CLMMP), Ref. (labeled as FTV) and Ref. (labeled
as GMS). The white lines are the best fit values, the grey boxes the 1o confidence
regions and the grey lines the 30 allowed regions.

2.3 (P invariance

If we assume CP invariance in the neutrino sector, as discussed in Ref. and
[117)], we can introduce a continuous parameter 6 that could modify the pure As prediction
discussed above in Sec. 2.2.2]

We start our discussion considering a generic symmetry group Gy, as done in Section @
We assume that the residual symmetry in the charged sector G, is, in general, a direct
product of cyclic symmetry Z,,, ® Zpy, ® ...Zp,, as in Sec. @ The CP symmetry acts
on the neutrino sector, but we can discuss in general the action on the field space, see
Refs. [118H120]. Under a CP symmetry a generic field ® transforms as

b(x) — ®'(z) = XP*(zcp) (2.22)

where X is the representations of the C'P operator in field space and x¢cp is the space-
time coordinate transformed under the usual CP transformation z — zcp = (2°, —x). The
invariance of the field under G; is expressed as

P(x) — ®'(z) = AD(z) (2.23)
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where A is an element of the non-abelian discrete symmetry that we are considering. The
X can be chosen as a constant unitary symmetric matrix

XXT=XXx*=1. (2.24)

In this way the square of the C'P transformation is the identity, X2 = 1. The action of X
on the mass matrices, before the symmetry breaking, is

X*M] M X = (M] My)* (2.25a)
XM, X = M} (2.25D)

if neutrinos are Majorana particles. If neutrino are Dirac particles (2.25b) has to be
changed into

X*MIM, X = (M} M,)* (2.26)

The fact that the theory is invariant under some group of flavour symmetry G; requires
that for the generators of the group A the representations X in the field space must
satisfy the following relation

(X'AX)* = A" A A € Alg{G;} (2.27)

where in general A # A’. In A; we find that that A = A’, so the transformation defined in
is an isomorphism, see Sec. [2.3.3] for further details. Notice that if X is a solution
of 2:24) and @2:27) also e”X, with p € R an arbitrary phase, is a solution. At the same
time, it is always possible to find the trivial solution of the problem X = 1.

If we perform a change of basis with an unitary matrix Q in the field space

d—d=00 (2.28)
the unitary matrix X and the generator A transform as

X — X =0 x0* (2.29a)
A— A=0TAQ (2.20D)

as a consequence of (2.22) and 2.23). The constraints (2.24) and 2.27), applied on X, are
covariant under the Q transformation, i.e. also X fulfills the same conditions. A change
of basis can be useful in order to reach a basis in which the action of some elements of
Gy or the C'P transformation is simple. For example we can use the fact that any unitary
symmetric matrix X can be written as the product

X =0l (2.30)

of a unitary matrix 2 in order to go to a basis in which the action of CP is canonical, i.e.
X =1

2.3.1 Neutrino sector invariant under 7, ® C'P

In the following we consider the case in which the residual symmetry G, is Zy ® C'P.
This allows us to determine all physical phases and mixing angles in terms of one real
parameter 6. A small mixing reactor angle 63, as well with the solar and atmospheric
angles in the observed range, can then be found by an appropiate choice of the parameter
0 and further relations among the PMNS parameters are predicted. Such correlations
can be testable at future neutrino facilities [I121H124]. Once the flavour group Gy has been
chosen, several independent definitions of CP are in general allowed (as discussed above),
leading to physically distinct results.
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We explain the general setup and show the form of the lepton mixing matrix. We assume
that Gy contains as subgroup Z; and we denote as Z the representation of the operator in
the field space, therefore Z? = 1. In order to define the group Zo ® CP we need to impose
the constraint

XZ*—ZX =0. (2.31)

This condition is invariant under the covariance transformations defined in 2.29). Thus,
it is always possible to go in the basis where Z is diagonal and X canonical, as defined
in Eq. @.30). In this basis we have

Z.=0tza  Z.= diag{(—l)zl, (—1)2, (-1)%} (2.32)

with z; = 0,1 and two z; being equal. These conditions have an important consequence
for the form of the light Majorana neutrino mass matrix. In fact it has to satisfy the
following conditions

Z'M,Z = M, (2.33a)
XM, X =M. (2.33b)
Applying the basis transformation induced by the unitary matrix Q, defined in 2.30), we
see that the combination QT M,Q is constrained to be block-diagonal and real. Thus this

matrix can be diagonalized using a rotation in the ij-plane of degenerate eigenvalues of
Z by a rotation matrix R;;(§). We define three possible matrices

cosf sinf O

Ri2(0) = | —sinf cos® 0 (2.34a)
0 0 1
cos@ 0 sinf
Ry3(0) = 0 1 0 (2.34b)
—sinf 0 cosf
1 0 0
Ro3(0) = |0 cosf sind (2.34c)

0 —sinf@ cos6

where 6 € [0, 7). The plane ij is determined by the subspace of Qf ZQ which has degenerate

eigenvalues, see Eq. (2.32).
We need also a diagonal matrix K, with elements equal to =1 or £i in order to obtain

positive neutrino masses. Without loss of generality we can write the matrix as
K, = diag{l, ikl,i]”} (2.35)

where k12 =0,1,2,3. In this way the matrix M, can be diagonalized with unitary matrix
defined as

U, =QR;;(0)K,. (2.36)
The mass spectrum is not fixed and thus permutations of the columns of U, are admitted.

The residual symmetry in the charged leptonic sector is Gy,. The situation is equal of no
CP symmetry, as discussed in Sec. 2.1l For @ being a realization of the generator of G,
in the representation 3 € Gy we know that the combination MZTMZ fulfills the relation

QT M} M,Q = M M,. (2.37)
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For non-degenerate eigenvalues of () the unitary matrix U, which diagonalizes ) can
be found, up to permutations of its columns and overall phases of each column, by the
condition

UlQu, = Q. (2.38)
Given (2.37) the matrix U, also diagonalizes the product M, My, thus
(UM} MUy = 7R m? (2.39)

where 7% is the permutation of three elements and k = e, u, 7. The fact that the lepton
masses are not fixed in this approach is reflected by the possible permutations of columns
of Ug.

The PMNS maftrix is given by the misalignment between the residual symmetries in the
charged and neutrino sector

Upnins = U U, = UQR;;(0)K, (2.40)

up to unphysical phases and permutation of rows and columns. Therefore in our analysis
we always consider 6 x 6 = 36 possible permutation of rows and columns for a given
combination (@, Z, X). A scheme of the methodology used in the case of CP symmetry is

shown in Fig. 2.4

[Flavour symmetry G; ® CP}

Charged Lepton Neutrino Sector
Sector Gy C Gy G, CGrCP

QTMJMKQZMJMe XZ*—7ZX =0
Qe g Ze€G,XeCP

| l

ZTMZ M,
diag __ 77T

Q e U QUZ XM X = M* }

Z, = QTZQ
V — QR@]

UPI\INS — U Ul/ = QRLJ

Figure 2.4: Representative scheme of the approach used in this Section, see text for
further details.

We expect that one of the PMNS columns is fixed, i.e. it does not contain 6, because the
rotation R;;(6) acts in a subspace of the flavour space. We also notice that the formulae
2:249) and @23I) are covariant under the basis transformation defined by the unitary
matrix Q, thus the matrices

Zz=0z0 X=0'x0 (2.41)

satisfy the condition defined in 2.24) and @2.31). If we also change the generator of G, in
the same way

Q=00 (2.42)



we see that Upyns, defined in (2:40), does not change, since its result does not depend on
the transformation Q. Thus both the triplet (Q,Z,X) and (Q, Z,X) related by Q lead
to the same results for lepton mixing. We use this property to reduce the number of
independent patterns to study.

2.3.2 Accidental C'P symmetry

Notice that there exists the possibility that an accidental C'P symmetry is present, dif-

ferent from the C'P transformation X that we impose in our theory. An accidental C'P

symmetry |§| corresponds to a C'P transformation Y (if it exists) which satisfies the condi-
tions

Y*M] MY = (M) M,)* (2.43a)

YM,Y = M. (2.43b)

In this case all the C'P phases «a, 8 and § of the PMNS matrix have to be trivial, 0 or w. If
Y and M, fulfill the condition

Y*MIM,Y = (MIM,)* (2.44)
only the Majorana phases are trivial, while the Dirac phase ¢ has to be 0 or .
Eq. implies [71]]
QY —YQT =o. (2.45)

This conditions ensures that Y is diagonal in the same basis as @, that is Y is diagonal in
the charged lepton mass basis. Notice that if Y fulfills also the quantity Y’ satisfies
the same condition, where Y’ is defined as

V' =v][[[@]" 0<ni<m, (2.46)

i<p

where m; is the dimension of one of the cyclic subgroup Z,,, of G, and Q; € Z,,,, 2-43b)
implies

YZ*-ZY =0 (2.47a)
XY -YX*=0. (2.47b)
Notice that the matrix Y is always diagonal and positive in the neutrino mass basis, thus

Y =UlYU; = diag{yl,yz, yg} (2.48)

where y; € RT. If only the equality in @2.44) holds it is sufficient that only is
satisfied with the additional condition that Y is diagonal ([2.45).

An accidental CP symmetry that is always present in the neutrino sector for a given
transformation Z and X is the one represented by the additional C'P transformation

Y = ZX that satisfies the condition defined in (2.:24), 2.31) and 2.47).

2.3.3 CP transformation of Aj

We report the simplest representation of X, in the case of group A; for a given represen-
tation r

Xy =1 (2.49a)

5In the following we refer to (Q, Z,X) as a triplet or touple.
®The accidental CP symmetry is similar to the barionic number U(1)z in the Standard Model.
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X3 = Po3 (2.49b)

X3/ = P23 (2490)
00 01
0010
X4= 010 0 (2.49d)
10 00
1 0 0 0 0
0 0 0 0 -1
Xs=0 0 0 1 O (2.49e)
0 0 1.0 O
0 -1 0 0 O
The matrix P,3 is defined as
100
Ps=10 0 1 (2.50)
0 10

The matrix Pz represents the so called p — 7 reflection symmetry [89,90,(125}|126]. We
may notice that the form of X, is the same as the invariant contained in the product r&r
in the flavour space. Using the explicit form of S and T in the representation r we can
check that

(X718 Xp)* = S, (2.51a)
(X T X ) =Ty (2.51b)

for all the irreducible representations of As, therefore the CP transformations act as an
inner automorphism on As.
The form of CP transformations we consider is

X =ZX, (2.52)

where Z is the matrix representative of a Z, generating element, Z? = 1. In general
are possible sixteen different C'P transformations. All of them are consistent with (2.24)
and are the sixteen class-inverting involutive automorphisms of As. We thus discuss
all CP transformations that fulfill requirement in (2.24) and are consistently imposed in
according to Ref. [116]. These properties, class-inverting and involutive, are given if the
twisted Frobenius-Shur indicator ¢,(r) is +1 in all irreducible representations r € As. From
the definition of the twisted Frobenius-Shur indicator in the case of As we have

1 Z

where XM (g) is the character of the element g in representation r, see Tab. and ¢* the

image of g under the action of the automorphism .. We verify that ¢,(r) = +1 using the
fact that if the statement is true then [1274129]

Z x[r] (e) = dim{g € A5 such that ¢* = g~ '} (2.54)
reAs

where X[r](e) is the character of the neutral element in representation r, thus we sum
over the dimensions of all irreducible representations.
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2.4 C(Classification

In this section we report the independent patterns for Upyng that we can obtain from
the possible choice of the triplets (@, Z, X) assuming A; ® CP as a full symmetry in the
leptonic sector. In particular we want to classify the relevant cases for the phenomenology
using a gaussian x? test based on the PMNS parameters extracted from Ref. [45]. This 2
is the sum of each mixing angle contribution X?j' We use the following definition

X0) =) xd0) =

i#j i#j

sin® 6;:(0) — sin? 657P 72
|: J( ) 1] (255)

The way to extract mixing angles and C'P phases from Upyns is discussed in Appendix [D]
We consider as interesting categories the triplets which satisfy the condition X?j <9, i.e.
the mixing angle 6;; is in the 30 confidence region, therefore the global minimum is such
that x2, < 27. We assume this number because we consider independent gaussian errors
for each angle. We do not include the value of § because the significance is lower than 3o.

We report our numerical results in several tables, for the relevant categories of tuples
(Q,Z,X). The oscillation parameters are evaluated at the best fit values of 6, that we call
Ope. Two results are reported, the left column is for NO, while the right one is for I0.

To obtain the PMNS matrix we use the following algorithm:

1. The matrix Z is involutory, so it is diagonalizable by a unitary matrix €y such that
Qb Z0 = Z..

2. The matrix Q = QoP, where P = diag{e’®, e*®,e"}, can be found, up to permutations
of columns, using the condition

QX0 =1 (2.56)

which is equivalent to QT = X, but easier to compute because the equations for the
phases «, 8 and v are decoupled.

3. If no solutions can be found for 2 we need to rotate the degenerate subspace defined
by the eigenvalues of Z. with a unitary matrix V;;(¢). We can find ¢ using the non
diagonal element of 2.56), imposing (QfXQ*);3 = 0.

4. We find the PMNS matrix as Upyng = UJQRU’(H)KZ,, where U, is the matrix that
diagonalizes . We extract the mixing parameters through the procedure defined
in Appendix @ Then we perform the x? test, defined in [255), using all possible
permutations of rows and columns of Upyng to obtain 6Oy.

To extract the values of C'P phases we use the invariant parameters Jcp, I1 and Iy, fol-
lowing the same conventions of Ref. [80]. The details are reported in Appendix [D]

The independent categories that we study in details are summarize in Tab. 2.4 with the
values of Xfmn for normal (left column) and inverted (right column) ordering. In partic-
ular using the similarity transformations, as discussed in @24I) and 2.42), we find six
independent categories for Q € Zs, described in Sec. 2.4.]] eight categories for Q € Z3, de-
scribed in Sec. and only four categories for Q € V = Zy®Z5, described in Sec. |Z|

"We acknowledge Pietro Pugliese for the help to write a fast algorithm to check the independent tuples.
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Notice that for each Z € Zs we can choose four different values of X that satisfy the
conditions 2.24), 2.27) and @.3I). It is easy to find that if Z is in the j-th Klein group,
t.e. Z = Kja the possible non trivial matrices X are in the form

X3 = K!Xy (2.57)

where a,b=1,2,3 and j=1,...5.

Q A X X12nin Q Z X Xl?nin

Q S Z5 Q S Zg
R, S Xo 1408 1783 C, 5 Xo > 102 > 102
R S Xo >102 >102 C4y S, Xo > 102 > 102
Rl 53 X() 4.04 7.74 C4 S3 X() > 102 > 102
Ry S3 SiXo 5.64 346 C, Sy Xo 8.84 12.57

Ri Sy SiXg >102 >102 Cy Si S3Xo >102 > 10°
R1 Sl SQXQ 42.18 49.96 04 SQ SgXo > 102 > 102
Cy S3 S1Xo >10%2 > 102
Cyi Si S5Xo >102 > 102

QEV:ZQ®Z2

Ky 9 Xo 4.48 643 K; S Xo > 102 > 102
K Sy Xy >10%2 >102 Ky S; S3Xp, >102 > 10?2

Table 2.4: Independent categories for the PMNS matrix with the value of x2;,
for normal and inverted ordering. We highlight the realistic patterns with a green
colour. The yellow patterns require Next-to-Leading Order (NLO) corrections to have
all the mixing angles in the 30 confidence region. The pink pattern for Q) € Z5 does
not fit well the mixing angles but it is interesting because it is related to TBM and
BM while the pink one for @ € V has all non trivial CP invariants. We recall that
the algebras are summarized in Tab. [2;3}

In the following we do not consider all possible analytical expressions for each touple
(Q,Z,X). We consider only seven explicit realization: five for Q € Z5 (one does not fit
well all the mixing angles, but it is related to TBM and BM described in Sec. .I1.T), one
for Q € Z3 and two for ) € V even if only one touple can achieve all the mixing angles in
the 30 confidence region. In fact we want to show an explicit realization with non trivial
Majorana phases.

2.4.1 Sector Q € Z5

There exist 6 x 15 x 2 = 180 triplets (@, Z, X) assuming Q € Zs. E] However, without loss of
generality we can analyse the simplest case @ = T: there are similarity transformations
for Z defined in a given Klein subgroup K;, Z = K7, with a = 1,2,3 that connect the
different triplets (T, Z, X) as

T-"KIT™ = K¢ (2.58a)
T = X (2.58b)
T"QT™ = Q (2.58¢)

8In this counting we use the fact that the triplets (Q, Z, Xo) and (Q, Z, ZX,) give us the same Upnmns.
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where m=1,...4 and i # j and Xf"b is defined in 2.57).
The general transformations for X = Xy and @ # T, assume the form

CTKeC = K (2.59a)
CTPy3C* = Pog (2.59D)
C'R,C = R, (2.59¢)

where 7,5 =1,...5,a,a’ =1,2,3, and p,q =1...6. The C matrices are elements of Z3 C As,
hence C3 = 1, see Tab. The transformations for X # Xy are obtained in the same
way. In fact if C fulfills (2.99) with X = X then, for a non trivial X of the form (2.57)
we have

CLX$P0* = CTKY Py C* = CTKM Py C* = CTRCOT PosC* = KV Pys = X (2.60)

where Xi“/’b/ are good representations of the C'P operator for a given KJ‘?/.

Therefore we can study only the cases with Q = T, which is the simplest choice. In fact
we have Uy = 1, up to permutations of columns, thus the PMNS maftrix is given only by
the neutrino sector. The results of our numerical analysis are reported in Tab. for
X = Xo and in Tab. for X # Xy. The analytical treatment of each category with an
acceptable value of x?, except when explicitly stated, is reported in the following.

(szvX) (RlasleO) (R17S37X0) (R17527X0)
O (0.28, 2.86) (0.18, 2.97) (0.58, 2.56)
in 14.08 17.83 4.04 774 >10° > 10?
sin? 612/1071  2.60 2.60 2.83 2.83 3.04 3.04
sin® 013/1072  2.16 2.17 2.18 2.19 0.00  0.00
sin® f23/10~1  5.00 5.00 5.00 5.00 5.00 5.00
Jep +0.032 £0032 +£0.033 +0.033 O 0
L 0 0 0 0 0 0
L 0 0 0 0 0 0

Table 2.5: Possible values for the PMNS parameters for a given Z with @ =T and
X = Xp.

(Qaza X) (Rl,Sl,SQXO) (Rl)S?)aSlXO) (RbSQ’SlXO)
O 0.28 017 297 (0.25, 3.40)
o 4218 4996 564 346 >10* > 107

sin012/1071  2.61  2.61 283 2.83 3.04  3.04
sin?013/1072  2.10 2.04 217  2.19 0.00  0.00
sin /1071 7.30 727 408 592 500  5.00

Jop 0 0 0 0 0 0
I 0 0 0 0 + 0.10 =£ 0.10
I 0 0 0 0 0 0

Table 2.6: Same as Tab. With X # X,.
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e Case (Ry,S1,Xo)
For the first group in Tab. the matrix gy, up to permutations of columns, is

cos ¢ sin ¢ 0

Qo= |sing/vV2 —cosgp/vV2 1/V2 (2.61)
sing/VZ —cosd/VZ —1/vZ

where tan¢ = p~! = p — 1 ~ 0.618. The matrix Q that satisfies the condition is

Q= Qp diag{—1,1,}. (2.62)
The PMNS is given by

Upnmins = QRa3(0) K. (2.63)
The column of the PMNS matrix which is constant is the first one

cos ¢ 0.851
|Uat|| = | sing/v2 0.372 | . (2.64)
sin¢/v/2 0.372

1

In this case, we find the following analytic expressions for the mixing angles

. 9 tan? ¢ cos? 0 (2 — ) cos? o
00 — - 2.65
S = an? pcos?h 14 (2—¢)cos?d (2.652)
. 2 0
sin? 013 = sin® ¢ sin? 0 = s (2.65b)
24+
1
sin? Oy = 3 (2.65¢)

Notice that we have an upper bound for the reactor angle by the inequality sin?6;3 <
(2—¢)/(3—¢) ~0.28 and the same bound is valid for the solar angle ;2. We can write
the following relation between sin? f19 and sin® 63

sin2 913
p—-3

+ O(sin? 013) ~ 0.276 — 0.724 sin” 6;3.
(2.66)

-2
Sin2912: :4'0 +
-3

This relation explains the tension between the two mixing angles in the x? analysis, in
fact when 6;5 is close to the best fit value, sin? 015 = 2.18 x 1072, the solar mixing angle is
disfavored at more than 3o confidence level, sin? f15 = 2.60 x 10~! using the approximate
relation. Therefore this category needs large NLO corrections to fits the experimental
data.

For the C'P invariants we have

1 2 —
Jep = 7 cos ¢sin® gsin 26 = 4(3_753/2 sin 26 (2.67a)

L=1,=0 (2.67b)
thus the C'P phases are

|sind| =1 sina = sin 8 = 0. (2.68)
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e Case (Rl,Sg,Xo)

For the second group in Tab. the matrix € is the same as the case (7,51, Xp) defined
in (2.61). The matrix 2 is

Q= Q diag{—1,1, —i} (2.69)
and the PMNS is given by
Upmns = QR13(0) K. (2.70)

The constant column of the PMNS martrix is the second one

sin ¢ 0.526
[Ua2ll = [ cos¢/v2 | ~ [0.602 ] . 2.71)
cosp/v/2 0.602

The expressions for the mixing angles are

. tan® ¢ (2-9)
2
010 = - 2.72
ST = a2 d+cos20  (2— )+ cos?b (2.728)
.2
sin? 015 = cos? psin? § = S0_0 (2.72h)
33—
1
sin? fg3 = 5 (2.72¢)

In this category we have an upper limit for the reactor angle by the inequality sin? 613 <
(3 — p)~! ~ 0.72 while for the solar mixing angle we get the lower bound sin? 69 >
(2 —¢)/(3 — ¢) ~ 0.28. There exists a relation between sin?6f12 and sin? 63, that can be
written as

1
(24 p)cos?bis  2+¢

sin? 09 = 14 sin?6013 + O(sin? 013) | ~ 0.276(1 +sin?613).  (2.73)
When 6,3 is close to the best fit point, sin? 13 = 2.18 x 1072, we obtain sin? 615 = 2.82 x 107!
using the approximated relation, which is compatible at 20 confidence level.

For the C'P invariants we obtain

1 -1
Jop = 1 sin ¢ cos? ¢ sin 20 = W sin 20 (2.74a)
L =1,=0 (2.74b)
thus we get
|sind| =1 sina =sin 8 = 0. (2.75)

Notice that both for the categories (T, S, Xo) and (T, S3, Xo) the main difference in the 2
at 0 = 6y for NO and IO is given by f23. In fact we have Axgg ~ 3.70 at O93 = 7/4.

e Case (R;,S2, Xo)

This case does not fit well the mixing angles that we observe in Nature, however it is
quite interesting because for particular values of 6§ we get the well known TBM or BM
patterns discussed in Sec. We find that the matrix Q is

1 0 0
Q=10 i/vV2 -—1/V2 (2.76)
0 —i/vV2 —1/V2
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and the PMNS is
Upnins = QR12(0) K. (2.77)

The constant column is the third one

0 0
|Unsll = [1/v2 | ~ 0707 | . (2.78)
1/v2 0.707

In this case the expressions for the mixing angles are

sin? @15 = sin? (2.79a)
sin? 613 =0 (2.79b)
sin? O3 = % (2.79¢)
The CP invariants are trivial
Jop=1=1I=0. (2.80)

Notice that for § — sin~!(1/v/3) we obtain the TBM mixing matrix, while for § — /4
we obtain the BM mixing matrix. The CP invariants are trivial, thus there exists an
accidental C'P symmetry, discussed in Sec. In this case the matrix Y that fulfills
the conditions is

Y = SyPo3 = —1. (2.81)

e Case (Ry,S1,52X))

For the first group in Tab. the matrix g is the same as (2.61) while the matrix ) that
fulfills the condition is

O = i (2.82)
and
Upnns = QR23(0)K,. (2.83)

The constant column of the PMNS matrix is the first one. The absolute value is the same
as (2.64). The mixing angles assume the following analytic expressions

. 9 tan? ¢ cos? 0 (2 — ) cos? 0
019 = = 2.84
S o2 = T a2 pcos?f 1+ (2—¢)cos?h (2.84a)
1
sin? 013 = sin® ¢ sin® @ = —— sin% (2.84b)
2+
sin2 By — l—i- cosgcosfsing 1 V3 — psin 20 (2.84¢)

2 cos20+cos?psin?d 2 o —4+ (p—2)cos20

where we observe that 612 and 6,3 follow the same relations as category (Ri,S1, Xp). The
mixing angle 623 is unconstrained in this case. It is interesting to write an expression
between the reactor angle 613 and the atmospheric angle 633 through the approximate
relation

1
sin? fgg = 5+ @sintis + O(sin® 013) ~ 0.500 + 1.618 sin ;3. (2.85)
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The connection with the solar angle is the same as (2.60). The global effect is to have
Xfmn ~ 50 even if the reactor angle 6,3 is close to the experimental value. In fact when
sin? 13 = 2.18 x 1072 we get sin?fy3 = 7.39 x 107! or sin?fa3 = 2.61 x 10~! using the ap-
proximate relation. Clearly the larger value of a3 gives a better value for x2. for both
orderings. In fact there is a tension between all the mixing angles.

In this category the C'P invariants are trivial

Jop =11 = I, = 0. (2.86)

The accidental C'P symmetry is related to the existence of the matrix Y, defined in Sec.

2.3.2
Y = 81X = 5,53P3 = —1. (2.87)

e Case (R1,S3,51X0)

For the second group in Tab. 2.6) we have the same matrix  defined in (2.6I), but in this
case the matrix ) that fulfills the condition (2.56) is

Q= Qo diag{—1, —i,1}. (2.88)
We get the following PMNS
Upmns = QR13(0) K. (2.89)

The constant column in the PMNS matrix is the second one. The absolute value is the
same as (2.71I). However, due to different form of the X matrix the analytic expressions
for the mixing angles are different with respect to the case in Tab. 2.5 We have

.2 tan® ¢ (2-9)
012 = = 2.90

S = e ¢+cos20  (2— )+ cos?b (2:90a)
;2

sin? 615 = cos? ¢ sin? § = Zm o (2.90b)
-

. . 2 — .
sin? oy — 1 (cosf + s?n29 SII'l (;;) 1 14 \/.72 4psin 260 . (2.900)
2cos?20 +sin“fsin® ¢ 2 sin®f 4+ ¢ — 3

In this category the parameter which is different with respect to the case S3 evaluated
for X = Xj is f#23. Notice that this parameter is unconstrained. We can find the following
approximate relation between sin® fe5 and sin? 613

1
sin® g3 = 5 £ (P~ 1)sinfis + O(sin® 13) ~ 0.500 =+ 0.618 sin 63 (2.91)

In this case for the best fit value of the reactor angle sin A1 = 2.18 x 1072 we obtain two
different values for sin®#y3 which are 4.09 x 10~! and 5.91 x 10~!. The second value is
closer to one of the best fit points for a3, then the X?mn for 10 is better than the value for
NO.

The CP invariants are all trivial

Jop =11 = I, = 0. (2.92)

As for the previous cases with trivial invariants this fact is related to the existence of an
accidental CP symmetry realized by the matrix

Y = 83X = S35, Pz = —1. (2.93)
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2.4.2 Sector () € Z3

In this Section we want to classify the possible patterns for the PMNS matrix in the case
of Q) € Z3. In general 10 x 15 x 2 = 300 combinations are possible for the triplets (Q, Z, X).
However, as done for @ € Zs, due to the similarity transformations defined in 2.4I) and
@]}, we can reduce the number to eight patterns to analyse, that are summarized in
Tab. 2.4

To obtain the similarity transformations it is easy to start from Q = Cy = T2ST? and X #
Xo. In this case the matrices A =T™ST™ are good representations of the transformations
for Z in the j-th Klein subgroup of As, Z = Kj‘?, where a,b = 1,2,3. The transformations
can be written as

(T~"ST™™)K{(T™ST™) = K} (2.94a)
(T~mST™) XN (T~mST™™) = X (2.94b)
(T~™ST™™Q(T™ST™) = Q (2.94c)

where m =1,2, 4,5 =1,...5 and X is defined in (2.57).

For the general case Q € Z3 there exists similarity transformations that connects the
different triplets, as discussed in Sec. for Q € Zs, but these are quite cumbersome.
Therefore, without loss of generality, we can study the simplest case Q = T2ST? because
the matrix Uy, is easy to evaluate and it does not contain complex numbers

_ gk 2 i(5_\/5) 2
3 3V5 15 \/m
2 11 1
Ca) _ | —=———— — = — —\/754+30vV56 — (—15+ 75+ 30V5
U = . 2.95
¢ 3(5+ v5) 2 30 30( ) (2.995)
2z %—30 75 + 30v5 %(15+\/75+30\/5)
3(5+V5)

Notice that the neutrino sector is exactly the same as @) € Zs, thus we do not need more
informations about the matrices {29. The results are reported in Tab. for X = Xy and
in Tab. for X # Xo. In the following we discuss in details only the case (T2ST?, Sy, Xo)
because the other categories have a huge x2. .

(Q’Z’X) (047537X0) (047SI)XU) (045827X0) (04’347X0)

O (0.41, 2.73) (0.39, 2.74) (0.41, 2.92) (0.60, 0.97)
i > 102 >10*  >102 >10> >10*> >10*> 8.84 12.57
sin? 612/1071  1.09 1.09 1.30 1.30 3.04 3.04 3.41 3.41
sin® f13/1072  2.06 2.07 2.20 2.21 0.00  0.00 2.17 2.18
sin? f23/10~1  5.00 5.00 5.00 500 500 500  5.00 5.00

Jop +0.022 +£0.022 +£0.024 +£0024 O 0 +£0034 =£0.034
L 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0

Table 2.7: Possible values for the PMNS parameters for a given Z with Q = T%ST?
and X = X.
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(@, 7,X) (C4, 83,51X0)  (C4,51,53X0)  (Cy, S2, S3X0) (C4, S5,84X0)
O (1.20,1.94)  (0.53,2.60)  (0.05, 3.09) (0.79, 2.36)
i >102 >10* >10° >10* >10® >10> >10*> > 10?

sin?615/1071  1.13 1.12 4.46 4.46 3.04 3.04 3.49 3.50
sin? 013/1072  1.67 1.74 2.16 2.16 0.00 0.00 4.47 4.47
sin? fp3/1071  8.20 8.27 6.56  6.56 5.00 5.00 6.51 6.51

Jop 0 0 0 0 0 0 + 1072 4+ 107Y
L 0 0 0 0 +021 +021 +021 +021
I 0 0 0 0 0 0 + 1072 4+ 107Y

Table 2.8: Same as Tab. With X # Xo.

e Case (C4, Sy, Xo)

The matrix Q in this case is similar to (2.61), but with different exponential factors in the
matrix elements

€os ¢ —sing 0
Q= |sing/v2 e=27/5 cosp/\/2 e=27/5 1/1/2 ¢=i97/10 (2.96)
sin/v/2 e27/5  cos¢/\/2 €275 1/1/2 197/10

where we recall that tan¢ = 1/p. We obtain the PMNS matrix as
Upmns = QRa3(0) K. (2.97)

The constant column of the PMNS matrix is the second one

L1 0.577
U2l = —= | 1] = | 0577 | . (2.98)
V3 \4 0.577

Thus, one of the columns of the resulting PMNS mixing matrix has to be trimaximal,
up to phases. To reach compatibility with the experimental data on lepton mixing angles
this column must be identified with the second one of Upyns. In this case the analytic
expressions for the mixing angles are

1

.2

- 2,

sin”the = 5508 (2.99a)

sin? 013 — Lgmze (2.99b)
1

sin? Oy = 3 (2.99¢)

Notice that in this case the solar angle 65 satisfies the lower bound sin® 619 > 1/3, instead
the reactor angle 6;3 fulfills the upper bound sin? 613 < 2/3. Tt is easy to obtain the
following relation between the solar and the reactor mixing angles

sin® 010 = # = 1 1+ sin? 013 + O(Sin4 913)] ~0 333(1 + sin? 913) (2.100)

3cos?fi3 3 - ’

which is a well-know relation that occurs in case of a TBM column [[I304133]]. When the
reactor mixing angle is evaluated at the best fit point sin? #;3 = 2.18 x 1072 the solar angle
is sin? 65 = 3.41 x 10~! which is disfavoured at 20 CL.
The difference between NO and 10 in x2. is given by fa3. We have Ax3; ~ 3.70 at
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023 = w/4, as previously noticed for the categories (T, S1, Xo) and (T, Ss, Xo).
The CP invariants are

cos 20
Jop = L =1,=0. 2.101
=T 1=1z ( )
We can extract the non trivial Dirac C P phase
|sind| =1 (2.102)

which implies that the C'P Dirac phase is maximal.

2.4.3 Sector Q eV

In this section we want to analyse the case Q € V = Z3 ® Z3. We adopt the notation
for the couple of matrices {Q1,Q2}. 5 x 10 x 2 = 100 combinations of triplets (Q, Z, X) are
possible. As for Q € Z3 or Zs there exists similarity transformations that connects the
different triplets, see Eq. (2.4I) and 2.42). Only four categories, that are summarize in
Tab. 2.4 are independent. These transformations are quite cumbersome and we discard
their form.

We consider the simplest case Q = Ky = {T*ST, ST3ST?S} which is easy to compute, as
discussed for Q € Z3 in the category (C4, S4, Xo).

Notice that in this case the matrix U, has to diagonalize the elements of the Klein sub-
group Ko, which means Q; = T4ST and Qy = ST3ST?S and the product Q1Q2 = T2ST3STS.
This is always possible because the matrices of V commute [Q1, Q2] = 0.

We report the results of our numerical analysis in Tab. 2.9 for X = X, and in Tab. 2.10]
for X # Xo.

Notice that if Z is in the same Klein group as  we have Upyns = Rij(0)K,. The third
column of the PMNS matrix is constant and it is ||[Uas|| = (0,0,1)7. Then this case is ruled
out by the x? analysis because it is impossible to have the mixing angles compatible with
the experimental data.

(szaX) (K27SI7X0) (Kla‘Sl:Xo) (K17527X0)
P Py
O 1.27 1.27 (0.58, 2.56) (1.14, 2.00)
Xoin 6.19 6.43 448 11.84 > 10> > 10> > 10*> > 10?

sin?f12/1071  3.31 3.31 3.31 331 3.04 3.04 3.04 3.04
sin®f13/1072 220 218 219 224 0.00 0.00 0.00 0.00
sin?fp3/1071 524 525 476 478 0.00 0.00 0.00 0.00

Jcp 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0

Table 2.9: Possible values for the PMNS parameters for a given Z and X = X,.
Notice that the categories (Ki,51, Xo) and (K1, Sa, Xo) are different because it does
not exist a similarity transformation that connects the two triplets. However the
values of the mixing angles and phases are the same.

e Case (K2, S1, X0)

For the first category in Tab. we have defined two possible rows permutation of the
PMNS matrix (the second and the third row) that can give us a plausible x2. . P; is the
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(@, Z,X) (K3, 51, 583X0)

P1 P2
Ot (1.31, 1.82) (1.31, 1.82)
oo >102 >102 >10® > 102
sin?012/1071  3.04 3.04 3.04 3.04
sin?013/1072  9.55 9.55 9.55 9.55
sin?fp3/1071  2.76 2.76 7.24 7.24
Jcp 4+ 0.030 + 0.030 =+ 0.030 4+ 0.030
I + 0.079 F 0.079 F 0.079 F 0.079
I F0.019 F0.019 F0.019 F0.019

Table 2.10: Same as Tab. with X # Xo.

permutation with 63 > 7w/4 and P, is the permutation with 93 in the other octant. The
Upmns is obtained by the matrix 2 defined in Eq. (2.62), and Uy is defined as Q in Eq.
(2.96). The PMNS matrix is

Upnins = U QRo3(0) K, (2.103)

In this case the constant column of the PMNS matrix is the first one. These are

e 0.809 1 (¢ 0.809
ul==( 1 | ~ {0500 Ul ==11/¢] ~ |0.309 (2.104)
al 2 al 2
1/¢ 0.309 1 0.500

respectively for P; and P». In this category the mixing angles assume the following
expressions

. 6 —2¢p
2
O1p=1— 2.105
S P12 17¢ — 31 + (7 — 11)(cos 20 — 2 sin 20) (2.1052)
1
sin? 013 = [3 — o+ (¢ — 1)(cos 260 — 25in 26) (2.105b)

—2(p—1)sin20 — (¢ — 1) cos 20 + ¢ — 3 for P
(6 — 4) sin 20 + (2 — 3) cos 20 + 4 — 9 !
sin? fy3 = (2.105¢)
(3¢ — 4) cos 20 — (p — 2)(2sin 20 — 3)
. for P
(6 —4p)sin20 + (20 — 3) cos 20 + 4 — 9

where the values for 623 depends on the possible permutations of rows in the matrix Upyns.
Clearly sin® 9% + sin? 6% = 1 because only the second and the third rows are exchanged.
The solar and reactor mixing angles follow the upper bound sin?6;; < (3 — ¢)/4 ~ 0.35
and j = 2,3, while the atmospheric angle 623 is unconstrained. It is easy to evaluate the
following relation between the two angles 612 and 63

3p—4
s 2
O1o=1— _
e 4(7p — 11) cos? b13
1
= qp =i PP — 8+ (e —3) sin® 013 + O(sin® 613)| ~ 0.345 — 0.655 sin? 013
(2.106)

therefore when the reactor angle is close to the best fit point sin? 613 = 2.18 x 1072 we
obtain sin? ;2 = 3.31 x 10~! which is in the 3¢ confidence region. A similar relation for
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023 is intricate, but can be approximated for P, and P» as ﬂ

2 2 4 3
sin? 9% = ity —+/3+4psinbis — 5L sin? 605 + O(sin3 013) ~

5 5 (2¢p — 1)
~ 0.724 — 1.231sin 615 — 0.847sin% 0,5 (2.107a)
3— 2 4o + 3
sin® 9532 = Tw + 3 3+ 4psinbqg + % sin? 013 + O(sin3 013) ~
~ (.276 + 1.231sin 613 4 0.847 sin” 03 (2.107b)

thus when 63 is close to the best fit point we get sin?fa3 = 5.23 (4.77) x 107! for Py (P).
This explain the difference in the x? analysis in NO and IO for the two permutations.
The C'P invariants are trivial

Jop =1 = I = 0. (2.108)
In this case a matrix Y for the accidental C'P symmetry (discussed in Sec. 2.3.2) is

Y = —diag{1,e /5 ¢H7/5}, (2.109)

e Case (K2, S51,53X0)

This category fails to fit the mixing angles; however, it might be interesting because the
CP invariants are non trivial. The PMNS matrix is easy to obtain, in fact the matrix U,
is the same as (2.96) and the matrix € is related to 2y defined in Eq. (2.61) by the relation

Q= Plgﬁodiag{i, 1, —1} (2110)

where Pj3 is the permutation of first and third columns. The Upyng is straightforward to
evaluate

Upnins = U QRy3(0) K. (2.111)

The constant column, fixed by group theory, is the third one

v 0.309 L (Y 0.309
ulh==( 1 | ~ {0500 Ul =2 ¢ | ~[0.809 (2.112)
a3 9 a3 2
© 0.809 1 0.500

where we indicate the two possible permutations of second and third rows. Clearly only
the solar mixing angle 612 can be fitted in this category and no non-trivial sum rules can
be obtained from the three mixing angles. For this triplet the mixing angles assume the
following expressions

1 29
sin? 01y = m 2.113a)
2 _
sin? 013 = T‘p (2.113b)
1
— for P;
2+ ¢
sin? g3 = (2.113c)
1
ﬂ for P2
24

Notice that sin? 0531 + sin? 95; = 1. The solar angle is constrained to be (24 ¢)~! <sin?6;5 <
(1+¢)(2+¢)~1. As discussed above this category is interesting because all CP invariants

Notice that the condition sin® 65} +sin? 652 = 1 is valid order by order in the perturbation series of sin 6:3.
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are non trivial. By definition the Majorana invariants are constant under exchange of
second and third rows (see definition in Appendix [D), while the Dirac invariant changes
sign. We get

sin 26
Jop = — 2.114
cp 16 ( )
and the other invariants are
1 in 26 1— in 26
Il — (_1)k1+1 ( + SO) SI IQ — (_1)k2 ( 90) SII . (2115)
16 16
Using these relations we can extract the value of the C'P phases
v/10sin 20
sin§ = — o 2.116a)
9 — cos 46
8 sin 26
na = (—1)" ——"— 2.116b
sinar = (=1) cos4f — 9 ( )
2 sin 26
sin§ = (—1)ket1 502 (2.116¢)
V5 + cos 26
Using the best fit value 6y = £1.31971 we get
sind = F0.523206 sino = T(—1)%10.454979  sin 8 = F(—1)%20.309279 . (2.117)

2.5 Numerical discussion

All possible patterns for the PMNS matrix that we have analysed above can be represented
in the parameter space of mixing angles, as shown in Fig. and In particular
we present in the planes (sin? Hij,sin2 0;r) the regions of Ax? at two degrees of freedom
for lo (green), 20 (yellow) and 3o (blue) confidence level, assuming NO or 10. Notice that
two hypotheses for the NOvA flux were used, namely a likelthood-based selector (LID) and
Library Event Maltching (LEM) [37,(134}135]. As discussed in Ref. [37] LID compares the
longitudinal and transverse energy deposition in the particle shower, while LEM compares
an input event from either data or simulation to a large and independent library of
simulated events. The regions and the best fit points are extracted from the May 2016
results of Ref. [45]. [1;(7]

The analysis prefers a global minimum for 10, with Ax? = x%, — X}y = —0.78 assuming
LEM; therefore the confidence regions for NO are larger with respect to those of 10. In the
case of the LID method AX2 = 1.03, thus IO is preferred. Since the statistical significance
of this result is still weak we ignore in our y? analysis the mass ordering effect. At the
same time, since the indication of a preferred value of the Dirac phase § is rather weak,
i.e. below the 30 significance, we do not include any information on ¢ in the x? function.
In the planes we report with a black solid line the parametric plot of mixing angles as
a function of the internal angle 6. In particular we represent with red dots the values
obtained at 6, which are summarized in Tabs. 2.11] (assuming LEM) and (assuming
LID). The interesting categories are classified as follows

Case | (Rl, 53, SlXo) Case 11 (Rl, 53, Xo)

Case IIT  (Cy, Sy, Xo) Case IV (K2, S1, X)) (2.118)

where for the Case IV we assume two possible permutations, (P; and P,) as discussed
above. The arrows in the plots indicate for each category the direction of the increasing
value of € in the interval 0 < 6 < 6y and the arrows always belong to the closest label I-1V.

°The dataset of one and two dimensional projections are available at the website http://www.nu-fit.org,
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Figure 2.5: Parametric plot of the mixing angles in the planes (sin”60;o,sin” f3).
The plots are for NO (left panels) and IO (right panels) as a function of the internal
angle 6. In upper panels we assume LEM model for NOvA neutrino flux, while in
lower panels LID. The red dots are the best fit points obtained using our x? analysis.
The categories are classified in Eq. @.II8). For the symbols and the lines see text
for further details. Note that the curves II and III partly overlap.

The red dashed lines in Fig. over the planes (sin2 61, sin? 623), represent the non trivial
lower or upper values for sin?f;5. For Case I and II we have sin? 12 > (2—¢)/(3—¢) ~ 0.28
and in Case III sin? 1 > 1/3 ~ 0.33. For the Case IV we have sin 63 < (3 — ¢)/4 ~ 0.35 for
both permutations.

The curve of Case I in Fig. (sin2 613,sin2 f12) appears to be disconnected due to the
chosen scales of the axes, thus, for clarity we mark on the curve of Case I some partic-
ular values of the internal angle 6 with different black symbols: % for § = 7/19, B for
0 = w/17, e for # = 16m/17 and A for 6 = 187/19. We also show the results in the plane

(Sin2 9137 SiIl2 923) in Fig.
Since from the data reported in Ref. there is not a strong evidence for a parabolic be-

haviour around the minimum for the atmospheric angle 63 we used a different definition
of x? in order to test the goodness of our previous results. We construct the x? using the
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Figure 2.6: Same as Fig. but in the planes (sin2 613, sin® 012) using the LEM
(upper) or LID model (lower). Notice that the curves II and III overlap in the plane.

public data available at the website http://www.nu-fit.org, see Ref. [45]. We use the one
dimensional projections xﬁ of ¢-th mixing parameter to construct the test function. The
parameters q are {sin?f1o,sin? f13,sin?fa3}. The x? is defined as

2= ng (2.119)
q

where the sum is over all the observables assuming a given ordering for the mass spec-
trum and a given model for the NOvA flux (LIM or LEM). This hypothesis introduces a
small error because we do not consider the correlations among the mixing parameters,
however this effect is small and its inclusion is beyond the scope of our work. Since the
available data are a discrete collection of points we use a first order polynomial function
to interpolate the dataset. In this way we are able to evaluate the Xg for each point in the
parameter space.

The results of our analysis are shown in Tab. 2.I1] for Case I through Case IV assuming
the LEM model for the neutrino flux, while in Tab. 2:I2] we report the case of LID model.
The data are consistent with the analysis performed with the simple x? defined in @2.55).
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Figure 2.7: Same as Fig. but in the planes (sin?#;3,sin? f53) using the LEM model
(upper) or LID (lower). The curves for Case I and II as well as for the permutations
in Case IV, respectively, lie on top of each other in the plane.

The main difference is in Case I where the local minimum becomes the global minimum
and vice versa, however the statistical significance is irrelevant. In Fig. our results
for the x? defined in (2.1T9) as a function of the internal angle 6 are shown.

Notice that the differences between LEM and LID models for the mixing angles are small.
Instead the values for x2. ., using (2.I19), are different because the y? provided by the
nu-fit collaboration strongly depends on the neutrino flux method. However, for each Case
NO or IO have the same behaviour for LEM and LID methods. For instance in Tab. 2.11]
(LEM method) Case I, assuming NO, has a larger anin with respect to 10, and the same
happens in Tab. 2.I2] (LID method). This structure is preserved for all Cases.

Our findings for the different Cases are summarized in Tab. 2.I1] and Tab. 2.12] As one
can see, these results agree well with our analytical estimates made in Sec. [2.4.] for
Q € Zs, Sec. 242 for Q € Z3 and Sec. 2.4.3for Q € V. In particular, we observe from Tab.
.11} Tab. 2.12) and Fig. 2.8 that the sum of the best fitting values of § and the second
minimum for NO and IO in Case I approximately equals , since the formulae for sin® ;o
and sin’#f;3 are invariant under the transformation # — 7 — 0, while sin® s turns into
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Case (LEM) in O sin?f12  sin?613  sin?6y3  sind

5.13 2.968 0283 0.0217 0592 0

G = Zs - Case 1 (8.65) (0.173) (0.283) (0.0215) (0.409) 0

(T%, T%2ST3ST?, SX) 5.03 2.967 0.283  0.0221  0.593 0
(12.08) (0.176) (0.283) (0.0219) (0.408) 0

Gy = Zs - Case II 560 0.175-2.967 0.283  0.0221 0.5 =

(T2, ST?ST, Xo) 7.82  0.175-2.967 0.283  0.0221 0.5 =y |

G, = Z3 - Case III 6.89  0.604-0.967 0.341  0.0216 0.5 +1
(T%2ST?, ST?ST3S, Xo) 9.18  0.603-0.967 0.341  0.0220 0.5 +1

Gy = Zy® Zo - Case IV-P1 3.40 0.253 0.331  0.0218  0.475 0
({S,T2ST3ST?}, ST?ST, Xy)  6.26 0.256 0.331  0.0222  0.477 0
Gr =7y ® Zy - Case IV-P2  3.96 0.255 0.331 0.0218 0525 O
({S,T?ST3ST?},ST?ST, Xy) 5.38 0.256 0.331 0.0221 0.523 0O

Table 2.11: Values of x2, obtained using the likelihood function assuming the LEM
method for the NOvA flux, best fit for § and PMNS parameters for patterns that
have x2. < 27. Upper rows are for NO while lower ones are for 10. In the Case I in
parenthesis we quote the local minimum. Notice that the Dirac phases are maximal
when also the atmospheric angles are maximal, otherwise ¢ is trivial. The Majorana
phases are always trivial if we want to accommodate the mixing angles.

Case (LID) xfmn Ot sin?fys  sin®60;3  sin?6y3  sind
6.35 2.968 0283 0.0219 0592 0
Gy = Zs - Case I (8.13) (0.174) (0.283) (0.0217) (0.408) 0O
(T2, T2ST3ST?,SXo) 5.17 2.967 0.283 0.0219 0592 0
(10.11) (0.175) (0.283) (0.0218) (0.408) 0O
Gy = Zs - Case II 6.01 0.175-2.967 0.283  0.0219 0.5 Fl1
(T2,ST?ST, Xo) 6.91 0.175-2.967 0283  0.0220 0.5 F1
Gy = Z3 - Case III 7.34 0.604-0.967 0.341  0.0218 0.5 +1
(T2ST?,ST?ST3S, Xo) 825 0.604-0.967 0.341  0.0218 0.5 +1
Gy = Zy® Zy - Case IV-P1  3.56 0.255 0.331 0.0219 0476 0O
({S,T2ST3ST?}, ST?ST, Xy)  5.10 0.255 0.331 0.0220 0476 O
Gy = Zy® Zy - Case IV-P2  4.65 0.255 0.331  0.0220 0.524 0
({S,T2ST3ST?}, ST?ST, Xy)  4.75 0.256 0.331  0.0219 0524 O

Table 2.12: Same as Tab. [2.11| assuming the LID method for the NOvA experiment.

cos? a3 (see (2.1050)). Similarly, the sum of the two best fitting points (the same for NO
and 10) almost equals 7 in Case II (see Sec. [2.4.1). Also related to the symmetry properties
of the formulae for the solar and the reactor mixing angles is the observation in Case
IIT those two best fitting points (for NO and 10) sum up to 7/2 (see Sec. . Case IV
does not reveal such a symmetry in the parameter § and thus we discuss in this case the
results corresponding to two different permutations that are related by the exchange of
the second and third rows of Upyng. This allows us to accommodate sin? a3 < 1/2 as well
as sin? 0oz > 1/2.

We observe maximal C'P violation when 6s3 is also maximal, otherwise ¢ is trivial. This
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is a feature of models with non-abelian discrete symmetry and C'P under certain assump-
tions which are fullfilled by the group As, see for instance Ref. [136] where a detailed
analysis was performed.
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Figure 2.8: Results for the x? constructed from the May 2016 data of Ref. [45] as a
function of the internal angle 6 for the Cases I-IV. In the Case IV the solid line is
for P; while the dashed line is for P». In the upper panels we show our results for
NO and in the lowers for IO. The left panels are obtained with the LEM assumption
of NOvA flux, while the right ones with LID.

We notice that in Tab. .11 and Tab. 2.12] the solar mixing angle ;5 differs by up to 20%
between Case I/Case II with sin®#6i5 ~ 0.283 and Case III/Case IV where larger values of
sin? f15 are obtained. In the next years planned experiments will be able to distinguish
among different mixing values. The experiment JUNO [44] will be able to reduce the error
on the best fit value of sin?f15 at 1% level, thus allowing for a discrimination among Case
I/Case II and Case IlI/Case IV. According to the RENO-50 collaboration its planned exper-
iment can achieve a similar reduction of the error, see Ref. [137]. For 623 no distinction
is possible between Case II and III, since the angle is maximal in both cases. Anyway,
the predictions for Case I and Case IV considerably differ: the atmospheric mixing angle
is larger in Case I than in Case IV. This difference is large enough to be possibly dis-
tinguished in the experiment NOvA [138]. This experiment can also help in measuring
the Dirac phase J, using the data in the appearence v, — v, and disappearence v, — v,
channels, so that a discrimination between Case II/Case III where § is maximal and Case
I/Case IV with § = 0 or m# might be possible. In contrast, the predictions for 63 are almost
the same in all cases and, hence, it is unlikely that they can be distinguished at future
neutrino facilities.

— 4] -



Models of Neutrino Masses

In the analysis performed in Chapter 2] we obtain predictions for the mixing angles based
on group theory. However, if we want to get other information about neutrino phenomenol-
ogy, such as the absolute mass scale, we need to construct an explicit model. This approach
was well established and several explict models with non-abelian discrete symmetry com-
bined with CP were studied in the literature: S, [74.75,139-141], A4 [73.[142,143], 7" [76],
A(27) [1421|]144], A(48) [78L]145], A(96) [79,146] as well as As [86].

These kind of models need new additional degrees of freedom, the scalar flavon [147].
Flavons transform as irreducible representations of the flavour symmetry. When they
acquire a non-zero vacuum expectation value (vev) we obtain the flavour structure of
the model. This approach was largely used for models based on non-abelian discrete
symmetry within a non-supersymmetric or supersymmetric framework, for a review see
Refs. [67-69,[84].

In this Chapter we want to discuss several realizations for the neutrino mass spectrum
based on As and C'P. In particular we concentrate our investigation on Case II of our pre-
vious classification. The basic facts about the neutrino mass matrix and the flavon vevs
are summarized in Sec. 3.1l A detailed classification of the different realizations based on
particular vacuum alignments is discussed in Sec. [3.3] while in Sec. [3.4 we illustrate our
numerical results. In Sec. we will discuss the results for the low energy observables:
the effective masses mg, for the g-decay, and mgg, for the Ov33-decay. As a last point, in
Sec. we will show an explicit model based on the classification performed in Sec. [3.3

3.1 Case II

We showed in Chapter [2 that four types of neutrino mixing based on A5®CP accommodate
well the observed oscillation parameters, i.e. all the mixing angles are in the allowed 3o
confidence regions. For the residual symmetry in the neutrino sector we assume Z; @ C'P.
Case I and II in our previous classification are constructed under the assumption of
Gy = Z5. Case III is based on Gy = Z3, while case IV has the Klein group Zs ® Z; as a
residual symmetry in the charged lepton sector.

In our analysis we consider Case II. Following the discussion of Sec. 2.3 a representative
touple (@, Z, X) for this category is (T, T2ST3T?, X;). We recapitulate the results discussed
in Sec. 2.4.1) for this case. In our approach the PMNS matrix is written as

Upmns = QuiRi13(0) K, (3.1)
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where the matrix Q is given by

—C¢ —S¢ 0
Qu = [ —so/V2 c/V2 —i/V2 (3.2)
—56/V2 cs/V2 i/V2

and we have defined sy = 1/v/2+ ¢ ~ 0.526, ¢, = /1 — 2 = /(1 +¢)/(2+ ¢) ~ 0.851, and

¢ = (1++/5)/2 ~ 1.618 is the Golden Ratio. The matrix Ri3(f) is a rotation matrix in the
1 — 3 plane of an angle 6 and K, is a diagonal matrix with entries £1 and +¢ needed to
have a positive mass spectrum. The neutrino mass matrix M, fulfills the conditions of
invariance under the residual symmetry in the neutrino sector G, = Z; ® CP defined in
(2.33): ZT™M,7Z = M,, and XM, X = M} where Z € Z and X is a representation of the CP
symmetry on the field space.

We then have the following texture for the neutrino mass matrix

strtz = _(s4ipy) —_(z—ipy)
2\/5 Yy 2\/5 ')
M= i( +igy) §( +iy) Ttz 33
v=mo | 52Ty gz +uy 5 (3.3)
B O C
oL : 5@ =iy

where all the parameters s,z,y and 2z are dimensionless and real and mg is the absolute
neutrino mass scale. The neutrino mass matrix (3.3) can be diagonalized by Upyngs in
(3.I) with the additional condition

27+ 11y

tan 20 = )
an 20(p+ 1)+ 220+ 1)

(3.4)

The value of # is independent on the overall sign in neutrino mass matrix M,, as ex-
pected. Notice that in the limit y — 0 the neutrino mass matrix is invariant under the
u— 7 reflection symmetry [89,90.125,126], i.e. under the action of the permutation matrix
in the 2 — 3 plane, P»3, defined in (2.50).

The atmospheric angle is fixed to be maximal by symmetry, while the reactor angle is
related to the internal angle 6 through the relation

P %0, (3.5)

sin2 (913 =

The solar mixing angle 615 is related to 613 by the sum rule

3—¢ 0276

.2
012 = o~ . 3.6
S b2 5cos?2 013 cos? O3 (3.0)
The Jarlskog invariant is
V2
Jop = — 2; ? §in26 . 3.7)

The Dirac phase ¢ in this Case is maximal, |siné| = 1. Up to first order in 6 the quantity
tan 20 ~ sin 20 hence the sign of Jcp is related to the sign of ¢, thus we expect two solutions
since we do not impose any constraints on d. The other invariants, defined in Appendix [D]
called I7 and I, are trivial (I} = I» = 0), thus the Majorana phases a and [ are zero or T.
The reactor mixing angle 613 is proportional to sin?é thus in order to obtain 13 ~ 9° a
small value of 0 is needed. Assuming the best fit value for 613 we get 0y = £0.175. Due
to the sum rule in sin? 015 ~ 0.283, which is within the 30 allowed range.
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A small value of § means that |y| < |z, |z|, see (3.4), and up to first order in y*> we can

expand sin® @ as

(11 + 7)y? N
201 + )z + (1 + 2p)2])>

sin? 6 = O®yh). (3.8)

The neutrino masses can be obtained from the diagonalization of M, as
Upnins M, Upnins = diag{rin, g, ms} (3.9)

where m; are the complex masses of the Majorana neutrinos. We indicate the absolute
value of m; as m;. Starting from our PMNS matrix we have

3p—2 3
m1 = mols — g +z “04 — e -)VRA+ e+ (1 +20):P + (B+4p)?|  (310a)
ma = my s—i—x—l—z(l—;’(p)‘ (3.10b)
x 3p—2 3 5 3
mg=mo|s — 5 +z— —+ 1(90 —2)V[2(0 + @)z + (1 + 2¢)2]% + (28 + 44p)y2|. (3.10c)

Notice that mg does not depend on y since it is the eigenvalue of the fixed column, see
@.71). Expressions for the atmospheric and solar mass differences, Am%, and Am3,, are
not difficult to obtain from Eq. (3:I0) but they are rather cumbersome (in principle they
depend on four independent parameters) and the physical properties of the mass order-
ings are difficult to extract. For this reason, we prefer to show them in the following
subsection using a perturbative expansion in the appropriate small parameter y.

For the reactor mixing angle 63, we notice that it is invariant under the replacement
6 — —0, see Eq. (B.8), and therefore, thanks to (3.4), it is invariant under the exchange
y — —y . The neutrino masses are also invariant under the same transformation; we then
expect at least two solutions {s,x,+y, z} for each point of the parameter space compatible
with the experimental data. On the other hand, the relations involving masses and angles
are independent on the overall sign in the mass matrix; hence the solutions are invariant
under {s,z,y,z} — —{s,z,y, 2} and we expect two pairs of solution for each point.

3.1.1 Flavons of Case 11

As a first step we want to compute the explicit form of the vacuum expectation values
(vev) of the flavon fields in a given representation r € As. The vev of ¢, is invariant
under G,, then it is possible to use the following relations

<¢1/,r> = Z<¢Z/,I'> (311)

which is the equation for the positive eigenvalue(s) of Z in the representation r. If we
assume a C'P symmetry in the neutrino sector we have to impose the additional condition

<¢1/,r> - Xr<¢1/,r>*- (312)

The CP matrices in representation r are classified in Sec. 2.3.3] Using the conditions
defined in (3.II) and (3.I2) we can construct the flavon vevs. In the case of G, = Z, ® CP
and Z = T?ST3T?, X = X, we obtain

(Pv,1) = v1 (3.13a)
(bus) = v(— V2", 1,1)" (3.13D)
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<¢V73/> = w(\/i% 1) 1)T (313C)

. . . . T
(Dva) = (yr — tyi, (1 + 20)yr — iyi, (L + 20)yr + iy, yr + 1y;) (3.13d)
2

) ) . ) T
(Pv5) = ( - g(% + Xr2), =Ty +10T;, Tpa — 1T, Ty + i, Ty + chx,-) (3.13e)

where all coefficients are reals.

3.1.2 Two step symmetry breaking

To obtain a small value of 8 it is possible to use a two-step symmetry breaking such as:
G — G, = Z2 37y CP — Zy ® CP. The Klein group and C'P can be used to set the
parameter y, which controls the size of 8, equal to zero. A possible choice is y x y, in
(3.I13d) and/or y x x; in (3.I3¢). In this case the parameter y is vanishing and only under
Zy ® CP it is non zero, therefore it is naturally the smallest parameter.

3.2 Constraints on neutrino masses

In the following we want to obtain testable predictions on the mass spectrum. This fact
can be achieved reducing the number of independent parameters. The easiest way is to
set some of the flavon vevs to zero: in several cases this fact is equivalent to leave out
some flavons in a model; if not, due to reduced number of fields, we have to arrange for
some vacuum alignment that leads to this.

Since we have four observables (three neutrino masses and one independent mixing angle
because of ), we expect sum rules for neutrino masses and testable correlations, see
Refs. [148-151]. These are worked out in each of the classes studied. Thus, in the following,
we will start a classification reducing the number of independent parameters.

We assume two mechanisms to generate the light neutrino masses: Mechanism I involves
the Weinberg operator [152] and Type II see-saw [153H159], while Mechanism II is based
on Type I [156-159] and Type III [160] see-saw. Under the assumption of single type of
new particles added to the SM, these three types of see-saw realizations exhaust all the
possibilities of reproducing the Weinberg operator, see Ref. [161].

In our analysis we consider two realizations for the Type I (III): Mechanism II-1 where the
Dirac mass matrix Mp is trivial, and Mechanism II-2 where the heavy Majorana mass
matrix Mys is trivial. In this way we keep the number of independent parameters as
small as possible.

We also assume different properties under As; for the matter field(s) in each mechanism:
for Mechanism I we can have L ~ 3 or 3 while for Mechanism II L and v¢ transform
as 3 and/or 3'. A schematic representation of the classification used is shown in Fig.
where all the cases are summarized.

3.2.1 Equivalence between different mechanisms

The number of independent mechanisms discussed above can be reduced using the fact
that the phenomenology of two (a priori) different cases is the same under the redefinition
of the model parameters. In the following we use the same convention of Ref. [[162] for
the field content.

e Weinberg and Type II see-saw

The first observation is that the Weinberg operator and the Type Il see-saw realization
give us the same predictions. In fact, neglecting the A5 contractions and flavour indices,
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[Case II G, = Z5J

e Weinberg operato e Type I see-saw

Mechanism 1 Mechanism II
r
e Type 1I see-saw e Type III see-saw

I-a I-b Mechanism II 1 Mechanism II 2
L~3 L~3 Mp trivial My, trivial

II-a 1I-b II-c II-d
L°~3 Le~3| |L~3 L~3
v~ 3 v~ 3

Figure 3.1: Scheme of the classification of neutrino masses used in this Chapter,
see text for further details. We highlight in red the independent cases in our
classification.

the effective operator for the Weinberg operator is

LTioyH)C(H io2 L
ﬁWeinberg = yW( 2 )A( 2 ) (3.14)

where A is the UV cutoff, C' the charge conjugation operator, o2 the Pauli matrix, L is the
usual lepton doublet and H the Higgs field. The relevant part of the Type II lagrangian is

L1 D —yn LT Coo AL + h.c. (3.15)

where A is a scalar that transforms as (1,2,2) under the SM gauge group SU(3). ®
SU((2)r ® U(1)y. The scalar A can acquire a vev through the scalar potential

Vicalar = pHT oo A*H + mA Tr{AA} + ... (3.16)

and thus (A) ~ u(H)%2/m3A. When A acquires a non-zero vev m, # 0, and for ma > (H)
and p = O(1) eV we get a light neutrino mass. Since we want to discuss the correlations
in the mass spectrum it is sufficient to study only the Weinberg operator because the
neutrino mass matrix M, is related to the one of Type II by the parameter redefinition

(H)?
yw A

— yH<A>. (3.17)

e Type I and Type III see-saw

A similar strategy is possible between Type I and Type III see-saw. In fact the lagrangian
responsible for the Majorana mass in Type I is

— M
A D —ytLooH* VC + TMVCI/C + h.c. (3.18)

where v is the right-handed neutrino. The mass matrix for the light neutrinos can be
obtained using the well know relation

M, = —-MAM;;' Mp (3.19)
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where Mp = yp(H) is the Dirac mass matrix and M), is the mass of heavy Majorana
particle. For Type III the additional field is ?, a fermionic triplet under SU(2)z, and the

lagrangian is
S o>yl Coyd  TH+mpT - T (3.20)
In exactly the same manner as before in Type I, one gets a Type III see-saw for mp > (H)
My = yimy yu (H)* (3.21)

and thus, without loss of generality, we can investigate only the Type I realizations since
we are interesting on correlations about the mass spectrum and mixing angles.

e Mechanisms I-a and I-b

In the case of Mechanism I the predictions for L ~ 3 and L ~ 3’ are the same. Using
the As generators in representation 3’ the PMNS of Case II, defined in Eq. (3.I), can be
obtained with a representative touple (Q, Z, X) = (7, 5, Xo). The vev of the flavon invariant
under the action of Z =S in the five-dimensional representation is

2

. . . . T
(Dv5) = (— g(l‘r + @r2), =@y + (1 — ©)xi, Tpo — iTi, Tpo + i, Ty +i(1— p)zi) . (3.22)

We can recover the same phenomenology under the redefinition of the vevs
V] — U1 Ty & Tp2 T — OT; (3.23)

which is equivalent to a redefinition of the neutrino mass matrix parameter in (3.3):
§ — s,z +— z and y — y.

e Mechanisms II-a and II-b

Here we can have two possibilities: trivial Mp or trivial Mj,.

o For a trivial Dirac mass matrix Mp the redefinition of the vevs is the same as before,
(3.23). In this case we can perform a redefinition of the parameters in the heavy
Majorana mass matrix M)y, (indicated with capital letters) S — S, X +— Z and
Y — Y.

o In the case of a trivial Majorana mass matrix M), we have to consider the vev of
flavons in representation 3’ invariant under S = Z. It is

_ T
(bva) =w(—vV207"1,1,)". (3.24)
We notice that with respect to the case L,v° ~ 3 € As, we have to change the vevs
as
v — w T; — goflxi Ty & Tp2 (3.25)

to reproduce the same mass matrix.

e Mechanisms II-c and II-d

In this case we need to know the vev invariant under the action of Z = S for the four-
dimensional representation

. . . . T
(Dv.a) = (yr — iyi, (3= 20)yr — iyi, (B — 20)yr + iyi, yr +iy;) - (3.26)

If we consider the light neutrino mass matrix M, we observe that it is invariant under
the vevs redefinition

Ty < £x09 x; — Fpx; yr — (14 2¢)y, Yi — Fyi. (3.27)

_ 47 _



3.3

Analytic results

In this Section we discuss the main features for the mechanisms described above. In
particular we investigate the mass spectrum and the sum rule X for the complex masses
(further details in Appendix [E). We also investigate the mass hierarchy, give predictions
for the Majorana phases and the analytical relations among the flavon vevs to get the
mass splittings and mixing angles in the allowed 30 confidence region; a discussion on
the sum of the neutrino masses and the parameters mg and mgg is also included.

The strategy adopted to achieve this program is summarized as follows:

from Eq. (3.4) we derive the expression of the internal angle 6 and, using (3.§), we
obtain a prediction for the mixing angle 6;3; this allows to identify the parameter y in
M, as the appropriate expansion parameter to be used in our analytical approximate
estimates of the physical observables; notice that, in order to make #;3 numerically
close to the experimental value, this requires a correlation among the same y and
other parameters;

masses and then mass differences are easily obtained from the mass spectrum at the
appropriate perturbative order; with them, we can study the type of neutrino mass
ordering imposing the following constraints:

o Am3, >0 and Am3, > 0 (m1 < ma < m3) for Normal Ordering (NO);
o Am3; >0 and Am3; <0 (m3 < m; < ms) for Inverted Ordering (I0);

in order to make the mass differences compatible with the experimental values, the
ratio 7o = Am3,/Am2, (¢ = 1 for NO or ¢ = 2 for 10) is built for the allowed mass
ordering and an ansatz of proportionality among the two remaining parameters is
imposed: p; = kpo; k is determined requiring r, and 613 to be in the 30 range; these
ansatze have also been numerically verified. In the case of a small spread for k we
quote only the value that accommodates well 613 and the ratio ry;

finally, the prediction for mass sum rules, phases and effective masses are drawn
when a natural expansion is possible.

In the following, we analyse more closely the relevant features of the sub-cases of each
Mechanisms. To facilitate the comparison among the different cases, at the end of the
sections we report two tables; the exact analytical predictions are highlighted in green.

3.3.1

Mechanism 1

Field L H ¢,1 ¢us
Asg 3 1 1 5

Table 3.1: Quantum numbers of the fields involved in Mechanism 1.

The effective lagrangian responsible for the neutrino masses is

[(LH1éua]

([(LHY 505
A2 ‘

L) = n A2

(3.28)

+Ys

The quantum number of the matter, Higgs and flavon fields are reported in Tab.
Since the lepton fields L are in the same representation of As only the contributions from
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singlet and pentaplet flavons are relevant in the lagrangian (L ® L]z = (0,0,0)7). The
Yukawa couplings are real, assuming our convention for the Clebsch-Gordan coefficients,
see Appendix [C] for further details. After symmetry breaking (flavour and electroweak),
we obtain a mass matrix M, for the neutrinos of the same form as in Eq. (3.3) with

U1

s= le (3.29)

(contribution from the flavon singlet) and

o Tro |2 B T /2 B Tr |2
T=—Ysp\lg Y= y5A\/; 2= Y5y 5 (3.30)

(contributions from the pentaplet). We notice that the parameter y comes from the pure
imaginary part of the vev of the flavon in the representation 5. The absolute mass scale
in this model can be set as

(3.31)

Here (H)? = 174 GeV is the Higgs vacuum expectation value and A is the UV cutoff scale.
In the case of mg = O(1) eV, the cutoff A is of order A = O(10'3) GeV.

3.3.1.1 Mechanism I: z =0

The reactor mixing angle, up to O(y?), is given by

1+ey’

T2t O(yh). (3.32)

sin2 913 =

The mass spectrum at NLO is

3
mi=mo s+ + (24 )y + O(y") (3.33a)
mo = My ’S + $| (3.33b)
3
ms =mg|s — 2x — 5(2 +)y? +0(yh|. (3.33c¢)

We can now obtain a sum rule X for the complex masses m; up to O (sin4 913), which reads
Y =1y — g + (3 — ) (g — 1he) sin® 013 + O (msin® 013) (3.34)

where the factor m is just the dimension scaling of the sum rule. From the mass spectrum,
Eq. (3.33), we derive that IO is excluded and only the NO is acceptable for the mass
spectrum, provided that z >0As< —zorz <0As> —zx.

Using the mass spectrum (3.33) we are able to predict the Majorana phases: under the
assumption m; > 0, we have a« =0 and 5 = 0.

The ratio between the solar and atmospheric mass-squared differences is given by

. 2B —¢)(s+x)
' (25 — x)

sin? 013 + O(sin 6;3). (3.35)

where we used the relation defined in (3.32). To reproduce the experimental value of ry,
we find that the linear relation s = kz, with k = —20 is quite a good ansatz. Consequently,

r1 = 1.28sin? 013 + O(sin* 613) (3.36)
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giving r; = 0.031 at O¢. It is important to observe that the previous correlation between s
and z has been derived using the perturbative expansion in Eq. (3.35); however, it is well
possible that this relation could be modified by higher order effects and/or cancellations
between NLO and N21.O terms, visible in the numerical scan where all parameters are
free and no correlation is imposed (see later). For this particular case, it turns out that
k= —6 and k — —10% also give good values of r1:

1.38sin2 013 + O(sint 013) s = —103x
r = (3.37)
1.06sin% 013 + O(sin* 013) s = —6x

For k = —6 we need a large value of 613 in order to obtain a compatible value for r;, while
assuming k = —103 the best fit point of ;3 gives r; = 0.030, in good agreement with the
experimental data. Notice that the case k = —103, obtained in our numerical analysis is
a good approximation for k — —oo, which corresponds to the limit of degenerate mass
spectrum m;/mg = |s| + O(y?).

The sum of the neutrino masses is proportional to a non-trivial combination of the ratio
71 and 913

5sin? 013 — 2 1) 4 2sin? g 2
S, \/Am§1 i e —Tulp 4 D) e+ )+ Beln Dalp + ) 3.38)
J r1smevis 2 [5@ sin® 613 — 1 (3¢ + 1)]
which implies a lower bound };m; 2 0.155 eV.
Using the ansatz s = kx, our estimates for mg and mgg are:
Am3, (k+1)? 1 9 9 4
=|———F |1+ | -—5 +2¢0—6 0 @) 0 3.39
mg \/ 6k —3 +2 (k+1)2+ @ sin” 013 + O(sin” 013) (3.39)

which, taking into account the best fit values of the observables and the range of the
allowed values of k, derived in (3.37), translates into the bound

3.86 x 1072 eV <mp <620 x 1071 eV, (3.40)
and
Am%l -2 4
mgg = — 3_ 6k (kj + 1) [1 — (3 — (p) S 013 + O(Sln 915)] (3.41)
from which
3.85 x 1072 eV <mpg $6.20 x 1071 eV. (3.42)

In particular, for k = —20 we have mg ~ mgg ~ 8.24 x 1072 eV.

3.3.1.2 Mechanism I: x =0

For this case we have
2

sin? ;3 = % +O(yh). (3.43)

At LO the mass spectrum is

1
my =mg (S + 5(3(/3 — 1z + 02 (3.44a)
3¢
mo =mg |S§ — <2 — 1) z‘ (3.44b)
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ms = mg %(23 —2)+ Oy (3.44c)

which implies the following mass sum rule for the complex neutrino masses m;
Y =1y + (¢ + 1)ing — (¢ + 2)1n3 + O(msin® 6;3) (3.45)

where m is a dimensionful factor needed to correctly reproduce the right dimension of .
The solar mass difference is

2% — 1
3( 904 )Z

s(dp—2)+ (p+7)z o

Amjy /mf = — (4s+2) =3 5 P+ 0 (y). (3.46)

Eq. tells us that although the condition z = —s/4 makes zero the LO term it also
causes negative coefficients of the y2 terms in the expansion of the mass differences, for
any value of the model parameters. Thus, the positiveness of the solar mass difference
can only be obtained invoking a cancellation between LO and NLO terms. In particular,
we get that only I0 is allowed for this case, provided that z > 0A —z(p + 3)/4p < s < —z/4
or z<0A—2z/4<s<—z(p+3)/4e.

The Majorana phases could be predicted using the condition for a definite mass spectrum
and Eq. (3.44) with the additional condition m; > 0. We have a =7 and § = 7.

The expression for r2 as a function of 6,3 is given by

B (2¢ — 1)(4s + 2) 4(432(<p—8)+3(11 —7(p)z—2(g0—8)z2) ) ]
L (P (e (4s(p — 1) + (¢ — 4)2)? s’ 01y + O (sin 1)

(3.47)

and the ansatz s ~ —0.3z provides a good choice to reproduce the experimental value of
ro [l 79 ~ —0.14 + 4.33sin2 013 ~ —0.040 for sin®6;5 = 2.19 x 1072, Also in this case, we
have observed that the coefficient of the (undisplayed) sin*f;3 term can be as large as
~ 48, thus the corrections to the previous relations can be important and can partially
destroy the correlation found above. For example, for 6 = ¢, the N2LO computation gives
ry = —0.034, a roughly 10% correction to the pure O(sin?#f;3) contribution.

Using the relations derived above and the correlation between s and z we obtain for the
sum of the neutrino masses

> my=/—Am3, [2.71 4 7.49sin” 613 + O(sin? 013)] ~ 1.42 x 107" eV. (3.48)
i

For mg and mgg we get

mg =~ 1/ —AmZ, [1.08 + 2.40sin” 613 + O(sin 013)] ~ 5.61 x 1072 eV (3.49)
mgp =~ \/ —Am2, [0.46 + 0.52sin? 15 + O(sin? 613)] ~2.32 x 1072 eV (3.50)

where we used the best fit values of Am2, and 613 [45].

3.3.1.3 Mechanism I: s =0

The expression of tan2f is the same as the one quoted in Eq. (3.4) (since this does not
depend on s) and the reactor mixing angle ;3 fulfills Eq. with the same sin? § defined

"The other solution for k gives s ~ 0.9z. However this solution reproduces the wrong sign of the solar
mass difference, thus we exclude this possibility.
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in (3.8). The mass eigenstates can be expressed at LO as

my =mg|x + %(3@ — 1z + 02 (3.51a)
mo = Mg |T — <32SO — 1) z' (3.51b)
ms = my —%(41’ +2) + O(y?)] . (8.51c)

We have at LO the following exact mass sum rule for the complex neutrino masses m;
X =mq + mo + ms. (3.92)

For NO, imposing mg > m; and mz > mg we get t <0A0 <z < —2z/p or x > 0A —2x/p <
z < 0, which tell us that the z parameter can be vanishingly small. Since there are no
natural symmetry arguments behind this possibility, we will not discuss it more in detail.
For 10, imposing again mg > m; but mg < m; we obtain z < 0 A —2z/p < z < —4x or
x>0A—4dx < z < —2z/yp, that, for a generic value of the x variable, does not set a strong
restriction on the magnitude of z.

The Majorana phases are independent from the perturbative expansion and for NO (IO)
are given by a =0 and =7 (o« = 7 and § = 0). From the sum rule ¥ defined in and
assuming the best fit values for the solar and atmospheric squared-mass differences, we
get in the case of NO mpyin = my = 2.77 X 1072 eV, and for 10 mpin, = mg = 7.64 x 10~% eV.
The ratio ry is

 (2¢—1)z(4z + 2)
422 + dpxz + (9 — 4)22
N 4 (227 + 2 +22%) [4(p — 2)2? — 4(p — Dzz — 22| [(Bp + 6)x — (13 + 6)7]
[422 + dpzz + (p — 4)222 (2(p + D + 20z + 2)

ro =

Sin2 913 + O (Sin4 (913) .
(3.53)

The good ansatz in this case is © = kz with k ~ —3/10. For the sake of completeness, we
also quote here the expression of 6;3

25(39¢ + 34) 3
_— ——2z
961 10

from which we learn that y/z ~ £1/10 must be fulfilled in order to reproduce the best fit
value of 6;3. In this limit the ratio rp is given by

2
sin? 013 = % LOWY = (3.54)

o ~ —0.11 4 2.33sin” 13 + O(sin 0;3) (3.55)

thus in the 3o CL region of experimental parameter space for 8 ~ 6¢. Using the relations
among z,y and z discussed above, the sum of the neutrino masses can be expressed as

> mj =\ /—AmE, [2.00 - 0.14sin” 613 + O(sin f13)] ~ 9.9 x 1072 eV (3.56)
J

whereas for mg and mgg we have

mg =~ 1/ —Am2, [0.96 + 0.34sin® 13 + O(sin” 013)] ~ 4.79 x 1072 eV (3.57)
and
mag ~ )/ —Am3, [0.41 +0.03sin% 015 + (’)(sin4 913)] ~2.01x1072 eV, (3.58)
where the numerical estimates are obtained for Am2, = —2.449 x 1073 eV? and sin? ;3 =
2.19 x 1072,
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3.3.1.4 Mechanism I: summary tables

In this Section, we report all previous results in two different tables, to facilitate the
comparison of the physics implied by the three cases analysed above. In particular, in
Tab. [3.2] we report, for the allowed mass ordering, the predictions for the group theory
parameter 6, the reactor angle and C'P Majorana phases for Mechanism I. In Tab.
instead, we outline our results for the neutrino mass sum rules, for which we give the
coefficients a,b and ¢ of the complex masses m;, for the assumed form X(a,b,c) = am; +
bma + c¢ms, and, given the somehow intricate analytical structure, the central numerical
values of the sum of the neutrino masses and the effective masses mg and mgg (for
the case z = 0 instead we give a lower bound for Zj m; and an interval for the effective
masses because the N2LO terms in the expression of the ratio 71 turn out to be particularly
important).

z=0 z=0 5=0
ordering NO 10 both
tan 26 \/g0+2% 2\/3—<p% Eq. (34
20 1+py* y? 25(39¢ + 34) 32
1 gz o 961 £
(a,ﬁ) (070) (71',7'(‘) (0777-)7 (71-’0)

Table 3.2: Leading order predictions for the group theory parameter 6, mixing
angles and C'P phases for Mechanism I. In the first line we also report the allowed
ordering of the neutrino masses. The two values for («, ) in the case s = 0 refer
to NO and IO, respectively.

z=0 x=0 s=0-10

E(a’a bv C) (17_1_'_(90_3)8%37(3_90)5%3) (1,@—}—1,—(2—{—@)) (17]-,]-)
> my [eV] > 0.155 0.14 9.90 x 1072
mg [eV] [3.86 x 1072,6.20 x 107] 5.61 x 1072 4.79 x 1072
mgag [eV] 3.85 x 1072,6.20 x 10! 2.32 x 1072 2.01 x 102

Table 3.3: Leading order predictions for the neutrino mass sum rules and the nu-
merical values of the sum of the neutrino masses and the effective masses mg and
mgg for Mechanism 1. Here s?; is a short-hand notation for sin”6;3.

3.3.2 Mechanism II a-1

This section is devoted to the Type I see-saw mechanism with the lepton doublet and v°
in the same Ajs representation and a trivial Dirac mass matrix. The quantum numbers
of the matter, Higgs and flavon fields are reported in Tab. With this assignment, the

Field L v° H ¢u1 ¢us
Ag 3 3 1 1 5

Table 3.4: Quantum numbers of the fields involved in Mechanism II a-1.
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Dirac mass matrix Mp is as simple as
Mp =mpPag3, (3.99)

where the matrix Py3 is defined in 2.50) and mp = yp(H), yp is the Yukawa coupling and
(H) is the Higgs vev. Assuming a Yukawa coupling of order one, the Dirac mass term is
naturally of order O(10?) GeV. The Majorana lagrangian is given byE|

Ly = ;{yl [(Ucyc)lgb,,,l] ) + s [(UCZ/C)5¢V75] 1} + h.c. (3.60)

and gives rise to a mass matrix with the same form of M, defined in (3.3). In order to
avoid confusion we call with capital letters (S5, X,Y and Z) the parameter of the heavy
Majorana mass matrix. The absolute scale of the mass matrix is an arbitrary parameter
that can be chosen as the scale of heavy Majorana particles. The matrix is

3 3
S+X+7 ——(Z +ipY) —(Z —ipY
) 5 \?( pY) 5 \/5( : (2 )
. . +
My =7 2\7@(2 +ipY) §(X +13Y) S — 5 (3.61)
3 X+Z 3
——(Z — 1Y S — —(X —1iY
557 i) ; S(X —iv)
where
U= max{]ylvﬂ, lysxr|, [ysxr 2|, \y5x2]} ~ O(10'%) GeV (3.62)
and
S =y (3.63)
v
which is the contribution from the flavon in representation 1, and
Tro [2 z; [2 zy [2
X=- =1/ = =—ys—1/ = =—ys—1/ = 3.64
Y5 \/3 U5\ 3 v\ 3 (3.64)
which are the contributions from the pentaplet.
The mass of the light neutrinos can be computed using the see-saw relation
M, = —~MH M, Mp = —(M,/)*m3,. (3.65)
The parameters of Mj; can be related to those of M, by
=3
v
= U 482 4x2 Y% 2XZ —42° - YQ} 3.66
§ 4detMM[S 0 e (3.06a)
=3
— U 48X 1 4X2 +4XZ +3(Y2 - 22 4 Y2 } 3.66b
Tqon ity 15X +4X° +AXZ 312 = 22+ Y2) (3.660)
=3
:—71/[2 2X + Z(2 - ] 3.66
V= ~qean Y 292X +Z(2-3¢) (3.660)
73
= | 987 4+4X7Z+ 2%+ 3Y? ] 3.66d
S Sty |~ I TAXZ+ 23 3.664
where the neutrino mass scale mg is
2
my = @ (3.67)
v

%It is always possible to add in the Majorana lagrangian a direct mass term M. However the net effect is
to rescale the coupling of the flavon in the representation 1 as y1¢,,1 — M + y1¢.,1. Thus the parameter S
change as S — S + M/7v.
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and the determinant of the Majorana mass matrix reads

7393
det Mys = = | = 85% 468 (4X? +2XZ +3(p +2)¥? +427) + 16X°+

+12X%Z 4+ 6X (3(p +2)Y? = 72%) — 63pY?Z + Y Z — 112°|. (3.68)

The scaling of the dimensionless parameters in M, is O(1) since the parameters of M),
are by construction < 1. The condition for det M)y, # 0, which gives us a constrain on the
parameters S, X,Y and Z, guarantees the existence of Mﬂ}l.

The neutrino mass matrix M, can be diagonalized using Upyng of Case II with the addi-
tional condition on tan 26

2y/1Tp F 7Y [25 +2X — (3¢ — 2) 7]
252(p+ )X +20Z + Z) +4(p + 1) X2 —4pX Z — (5p + 4) 22

tan 20 = (3.69)
where we notice that, with respect to the Weinberg operator, also the contribution from
the singlet S appears. The expression for sin® ;3 is the same as Eq. (3.5).

The light neutrino masses are fixed by the form of Upyng; therefore we have formally the
same expressions for the neutrino mass of the Weinberg operator, defined in (3.I0) but
with the parameters s,z,y and z now defined in (3.66). The spectrum of the heavy Majo-
rana neutrinos are formally the same as those in (3.I0) but evaluated with the parameters
S, X,Y and Z.

3.3.2.1 Mechanism II a-1: Z =0

The condition Z = 0 is equivalent to have z ~ 0 in the light neutrino mass matrix M,,
because z = O(Y?) = O(x?/v?), see (3.66). In this particular limit the relations for tan 26
and 613 are the same as Mechanism [ with z = 0 with the replacement y - Y and z — X

sin?f;3 = ——— + O(Y*?). (3.70)

The neutrino mass spectrum at LO can be obtained from (3.33) with the transformation
m; — mj*l. The spectrum is

1
mi=mo |~ g + O(Y?) (3.71a)
! (3.71b)
mo = MM — .
2 01T x
1
=mg |- Y2)|. 3.71
mg =mo |~ 5% + O (3.71c)
We have the following mass sum rule for the complex masses m; at NLO
1 1 1 1
Y=——-—+0B-9p) < — — ~) sin? 613+ O (n”f1 sin® 613) (3.72)
mp 1M ms Mo

where the factor m~! is necessary to correctly reproduce the right mass dimension. Notice

that we need to include the NLO contributions because at LO m; and my are degenerate
(we have (mg1 - mfl)mo o sin? 6;3).

Using the mass spectrum (3.7I) we get that both NO and IO are allowed in this limit,
provided that X >0A (X/2< S <2XVS>2X)or X <0A(S<2XV2X <S < X/2)and
X>0AN(—X<S<X/2)or X <0A(X/2< S < —X), respectively.
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The value of the ratio ry, for both orderings, is given by

23— ¢)(S — 2X)?

) . 4
= 5- X5+ X) sin“ 613 + O (sm 913) . (3.73)

As before, the ansatz S = kX in the previous expression is used to correctly reproduce
the best fit value of r, and 6;3; we get two possible solutions: S >~ X and S ~ 44X For the
first case, S = X, we obtain at LO m;/mg ~ 1 and ms3/mg ~ 2 and non-trivial Majorana
phases a = 0 and § = « . Using the relations derived above and the relation between S
and X the sum of the neutrino masses can be expressed as

[ Am2 13
ij = 7;”31 [4 + ?\/5(2 — ) sin? 013 + O(sin’ 913)] ~1.12x 107! eV. (3.74)
J

The effective masses are predicted to be

mg = %1_3( — 3)sin? 013 + O(sin® f13) | ~ 3.16 x 1072 eV 3.75

8= 3 2g0 sin” 613 + O(sin~ 013) | ~ 3.16 X e (3.79)
Am? 1

mas = 7;31 [1 - 5(12-7¢) sin? 013 + O(sin? 913)] ~288x 1072 eV (3.76)

where we used the explicit expression of the masses and the values of the Majorana
phases, and in the numerical prediction we use the best fit values for ;3 and Am%l.

Now we consider the case S = 44X; a large value of S can be achieved if a direct mass
term for the heavy neutrinos is possible, which means M /v = O(10). This scenario is
less interesting from the phenomenology point of view because the mass spectrum is
quasi-degenerate; in fact, from @.71) we have m;/mg = [S~!|+O(Y?). Using Am3, we can
express the sum of the neutrino masses as

945 [Am3,

J

which is still marginally compatible with the PLANCK data only (which imply Zj m; <
0.590 eV @ 95% CL) but not with the CMB @& BAO data [53]] (which give Zj mj < 0.230 eV
@ 95% CL). Both Majorana phases are vanishing a =0 and § = 0, whereas simple expres-
sions mg and mgg can be obtained

1 [Am2 1
mg = o 2”;31 [5580 + 5(5908 — 17681) sin® 613 4+ O(sin* 913)} ~125x 1072 eV (3.78)
1 [Am2 1
mgs = T5‘/ 2";31 [210 + 5 (211 — 632) sin? 03 + O(sin’ 013)] ~1.25%x 1072 eV. (3.79)

Being mgg ~ >, m;/3, we have a lower bound mgg 2 0.12 eV.
The case of 10 requires S, X and Y at the same order of magnitude; thus we will not
consider such a possibility any more.

3.3.2.2 Mechanism IT a-1: X =0

Under the assumption of vanishing X the equation for sin?#;3, Eq. (3.5), can be obtained
from Mechanism I, z = 0, with the redefinition y - Y and z —» Z

2

Y
sin? 013 = Zz+ OYH). (3.80)
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The light neutrino masses at LO are related to the spectrum (3.44) with the redefinition

—1
m; — mj

2
= mg |— Y2 81
mi] = Mmy 25+(3¢—1)Z+O( ) (3.81a)
2
= - 3.81b
M2 =TS Z) — ngZ‘ (3.81b)
2
= mg |— Y?2)|. 81
ms mo 2S_Z+O( ) (38 C)
In this case the sum of the complex masses m; is
1 1 2
S P P2 o sin? 0y). (3.82)

mq ﬁlg ms

where the parameter m~! is necessary to reproduce the correct mass dimension. The

expressions for the mass-squared differences and the related ratio r, are quite cum-
bersome. From the ratios mj/mgy and ms/mg we deduce that only the NO is allowed if
Z>0NBp—-1)Z/4>S8>—-Z/4dor Bp—1)Z/4A<0NZ < S < —Z/4. The experimental
value of the (undisplayed) ratio r; is reproduced with the ansatz S = kZ for three dif-
ferent values of the real parameter k, that is k ~ 1/3, k ~ —1/4 and k ~ 2/3. (The case
k ~ —1/4 leads a natural suppression of the solar mass splitting.) Accordingly, we obtain
mi/mg ~ 1/2 and ms/mg ~ 13/2 for S = Z/3, m1/ma ~ 1 and mg/ma ~ /5 for S = —Z/4
and we have mj/mg ~ 1/3 and ms/mg ~ 9/2 for S =2Z/3.

The Majorana phases are fixed by (3.8I) and the mass ordering. In the case S/Z ~ 1/3
and S/Z ~ —1/4 we get @« = w and = m while in the case S/Z ~ 2/3 we obtain a = 7 and
B =0.

Also for } ., mj, mg and mgg we can drawn three different predictions (obtained using the
best fit values of atmospheric mass difference and the reactor mixing angle). For S = Z/3
we have

> mj = /Am}, [1.23 + 4.58sin” 13 + O(sin 13)] ~ 6.59 x 1072 eV (3.83)
J
mg =/ Am3, [0.10 + 6.91sin? 613 + O(sin” 613)] ~ 1.26 x 1072 eV (3.84)
and
mgs =/ Am3; [-0.011 + 0.93sin® 13 + O(sin? 613)] ~ 4.49 x 107 eV. (3.85)

In the case S = —Z/4 we obtain

142
§ m; = \/Am3, [ +2 Ly (9¢ — 5)sin? 13 + O(sin? f13) | ~ 1.11 x 107! eV (3.86)
j
1
ms = 15 AmZ, [5+4 (23¢ — 9)sin® 13 + O(sin’ 013)] ~ 2.78 x 1072 eV (3.87)

1
mgs = 1o AmZ, [2¢0 — 14 (13p — 9) sin® 13 + O(sin 613)] ~ 9.78 x 1072 eV. (3.88)

Finally for S =2Z/3 we have

> mj=1/Am}, [1.23 — 5.91sin” 13 + O(sin* 13)] ~5.73 x 1077 eV (3.89)
J
mg = \/Am3; [0.13 + 1.30sin? 613 + O(sin® 13)] ~ 7.74 x 1073 eV (3.90)
and
mgp = \/Am3; [~0.014 + 1.16sin® 613 + O(sin® f13)] ~ 5.63 x 10~* eV. (3.91)
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3.3.2.3 Mechanism II a-1: S=0

In this limit the reactor mixing angle becomes

(8¢ +5)[2X + (2 — 3p) Z]?
[—4(p + 1) X2 + 49X Z + (5p + 4)Z?]

sin? 615 = Y24+ 0Y?). (3.92)

Neglecting accidental cancellation in the numerator, we then expect |Y| < |X|,|Z]. We
can obtain the LO expressions for the light neutrino masses

M=o |~ 5 (32@ - +0O(Y?) (3.93a)
mo = mq |— X T (22_ 3@)2’ (3.93b)
ms = mo 4X2+ =+ o(Y?)]. (3.93c)
The sum for the complex masses m; gives the exact (to all orders) sum rule
polil, L 9%

my m2 m3

From the mass spectrum (3.93) we observe that both orderings are in principle allowed: NO
i Z>0N-Z/A< X <—pZ/20or Z<O0N—9pZ/2 <X <—-Z/4and 10 for Z <0AN2(X+Z) <
3pZ or Z >0AN2(X +Z) > 3pZ. Within this articulated parameter space, the limits X — 0
and Z — 0 give a particular simple expression for the ratio ms/ma:

1/2 Z—0
—>{3¢2 X 50 (3.95)

ms AX + 7 )
— =|- oY
ma 2X+(2—3<,0)Z+ (¥

so that X could be the smallest parameter in the case of NO while Z could be the smallest
one for 10; however, there is no clear symmetry argument behind these possibilities that
will not be addressed in the following. The Majorana phases are exact and are fixed by
the mass spectrum and the explicit form of (3.93). In the case of NO we have a = m and
B = m while for I0 we get a =0 and 8 = .

Using the value of the Majorana phases we are able to obtain a prediction for the lightest
neutrino mass Mmmi, from the sum rule ¥ defined in (3.94). Assuming the best fit values
for the solar and atmospheric squared mass differences (see Tab. [L.I) we obtain mmy, =
m1 = 1.09 x 1072 eV for NO and muin = ms = 2.84 x 1072 eV for 10.

3.3.2.4 Mechanism II a-1: summary tables

In this Section, we classify all previous results in two different tables: in Tab. the
allowed mass ordering, the predictions for the internal angle 6, sin? 015 and the CP Majo-
rana phases. In Tab. we summarize our results for the neutrino mass sum rules, for
which we give the coefficients a,b and ¢ of the complex masses m;, for the assumed form
Y(a,b,c) = ami +biny' + cmy’, and the numerical values of >_; m; and the effective
masses mg and mgg.

3.3.3 Mechanism II a-2

The cases contemplated here involve a trivial structure of the Majorana mass matrix and
a more complicated Dirac mass matrix. The quantum numbers of the matter, Higgs and
flavon fields are summarized in Tab. The lagrangian responsible for the Dirac mass
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ordering both NO both
Y Y 211 T 7[(3p — 2)Z — 2X]Y
tan 20 D— 23 — o= —
an vt b s Q‘PZ Ao+ 1)X2 — 49X Z — (5p + 4) 22
. 1+¢Y Y
_— T(pﬁ (m,m) (S =~Z/ z dS=~—Z/4 e
m,m) (S~ Z/3 an ~ — )
(o, B) (0, ) (m,0) (S ~ 27/3) (m,7),(0,7)

Table 3.5: Same as Tab. but for Mechanism IT a-1. The two values for («, ) in
the case S = 0 refer to NO and IO, respectively.

Z=0-NO X=0 S=0
S(a,be) (1,14 (p—3)sk,B-9)sl)  (Le+1,-2+¢)  (L,1,1)

0.11 (S ~ X) 6.59 x 1072 (S ~ Z/3)

>imy [eV] >0.38 (S ~ 44X) 0.11 (S ~ —Z/4) -
5.73 x 1072 (S ~27/3)
3.16 x 1072 (S ~ X) 1.26 x 1072 (S ~ Z/3)

mg [eV] 1.25 x 1072 (S ~ 44X) 2.78 x 1072 (S ~ —Z/4) -
7.74 x 1073 (S ~ 27/3)
2.88 x 1072 (S ~ X) 4.49 x 1074 (S ~ Z/3)

mgag [eV] 1.25 x 1072 (S ~ 44X) 9.78 x 1073 (S ~ —Z/4) -

5.63 x 1074 (S ~27/3)

Table 3.6: Same as Tab. but for Mechanism II a-1.

Field L v¢ H, ¢u1 ¢v3 ous
As 3 3 1 1 3 5

Table 3.7: Quantum numbers of the fields involved in Mechanism II a-2.

matrix is

¢

¢V,1 v,5
A

A

LHu +y3 |:(VCL)3%] lHu + Y5 [(VCL)5 LHu + h.c.

(3.96)

Zp =Y1(v’L)1H, + 1 [(VCL)I

where A is the UV cutoff and the Yukawa couplings are real with our convention for the
Kronecker products, see Appendix [C] A direct mass term in the previous lagrangian can
also be introduced; being proportional to the Yukawa coupling Y7, we simply redefine this
coupling. For the Majorana mass matrix My, we have

My = M Pos (3.97)

where the matrix P3 is defined in (2.50). The heavy Majorana particles are degenerated
in this framework. After the flavour and electroweak symmetry breakings we obtain a
mass matrix for the Dirac neutrinos

Mp = Mj + M} + M}, (3.98)
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where the matrices have the following form

1_ v
Mp = (H) (yl A +Y1> Pa3 (3.99)
0 -1 1
H
M3 = z'y?’jx Vol 1 0 V21 (3.100)
—1 —2p7! 0
2 3 3
- g(xr +Zr2) —\g(fvr +izip) _\2[(-1:7" —ixip)
H) \/§ 3 Ty + Tp2
ps = Ut | V3 - _\f~ . r ¥ Ir2 . 3.101
n 5 (@ + izi0) 5 (iz; + r2) 7 ( )
_ﬁ(x i) Ty T+ Tr2 \/g(ix-—x )
B r i¥P \/6 5 i 7,2

In order to reduce the number of parameters it is useful to introduce the following di-
mensionless quantities

V1 v
=y— + Y] = y3— 3.102
FEng+thn g=usy ( )
for the flavons ¢, 1 and ¢, 3. We also define
xr X xX;
=y ha=ye hi=usy (3.103)
for the vevs components in the representation 5 € As.
The neutrino mass matrix M, can be obtained by
1
M, = —~MhM,' Mp = —MMEP%MD (3.104)

where we use the explicit expression for Mjys. The form of M, is fixed by the symmetry,
thus it is equivalent to (3.3) with parameters

1
s =3 [Ue=3)g" =3 = 3(p + 2)hi — 4hy = 2hyhrp — dhyy] (3.105a)
1
v =g [49092 + 4v/3(p + )ghy + o (4hra (VB + hra) = 302 + Ahohes) + (60 + 3);@]
(3.105b)
1
V=3 [1s (26 (V6 + hoz) = (9 + 3 ) = 2V3g(phn + 2hr2)] (3.105¢)
1
z=g [—S(so — 1)g” + 8v/3gh; — 6ph] — 2h, (—2\/5]‘ +hy + 4hr,2)} . (3.105d)
The neutrino mass scale myg is
(H)?
= 1
mo = (3.106)

that is mp = O(1) eV. The relation between the vevs and 6 can be expressed as
tan 20 = —/58p + 36{2\/@(@}@ + 2hg) + By (\fz(go +3)hy — 20 (2\/§f + \@hm)) }x
X {8\/39(790 + 4)h; + 2vV6f[(5p + 3)hy + (6 + 4)hy 2]+
-1
— (14 + 9)hZ — (8¢ + 4)hphya + (120 + 8)h§,2} (3.107)
hence we notice that the parameters g and h; are relevant in the suppression of 6 in order
to obtain a small value of the reactor mixing angle 6,3, as shown in (3.5).

For this mechanism the Majorana phases are always vanishing, a = 8 = 0.

~ 60 —



3.3.3.1 Mechanism II a-2: h; = f =0

We start considering a vanishing singlet vev, f = 0 and vanishing complex part of the
vev of the 5 representation, h; = 0. In this limit the reactor angle is then

12(21p + 13)g? N
[hr(990 + 5) - 2hr,2(390 + 2)]2

sin? 613 = O(g%). (3.108)

The mass spectrum at LO is

my =g |2 (1= 3p)hy — 2he2)? + O(g?) (3.109)
ma = mo —é ((3p — 2)hy — 2hy0)? (3.109D)
ms = mg —é(hr + 4h,.9)* + O(¢%) (3.109¢)
hence the following sum rule at LO for the complex masses m; is fulfilled
¥ = (1 + My — m3)? — dimymg + O(m? sin® 613) (3.110)

where m is a dimensionful parameter needed for consistency. Notice that the undisplayed
coefficient of order sin? 63 is proportional to h, +4h, 2 < y/ms3/mp hence we expect that the
sum rule works better in the case of I0.

The solar mass-squared difference is

1

(20 = Dhy(hy + 4hy2) (23R2 + 4hyhy s + 8h25) + O(g°) (3.111)

Am3, /mi = —
therefore a natural suppression is expected for h, ~ 0 or for h, ~ —4h,>. The second case
is related to I0, because in this limit ms3/mg ~ 0, see (3.109¢). Similar relations can be
obtained for the atmospheric mass differences, which depend on a different combination of
hy and h, 5 than that shown by the solar mass difference; we then expect ry  hy,(h, +4h;2).
In this case both hierarchies are allowed: NO if h,o < 0A0 < h, < 2(2 — 3¢)h,2/11 or
hro2 > 0A 22— 3¢)hy2/11 < h, < 0 and 10 if h,2 < 0A(2—2¢p)hp2 < hy < —4h,2 or
hyo > 0N —4hp o < hy < (2 —2¢)hy 2.

If we assume that h, ~ 0 (NO) we obtain for the reactor mixing angle
2

sin? 013 = 3hg22 L0 h=0 (3.112)

thus we expect g/h,2 ~ £1/10 in order to recover the best fit value sin® 013 = 2.19 x 1072,

In this limit we have mi/mg ~ 1 and mg/mo ~ 4. Assuming instead h, = —4h,» (1I0), we
have
g
sin? i3 = — -+ O(g")  hy = —4h» (3.113)
15 12, ’

therefore we expect that g/h,2 ~ £1/2. In this limit we also expect that m;/my ~ 1 and
mg/mg ~ 0.
We can estimate Zj mj, mg and mgg. We obtain for NO

3 26(p—1
ij = /Am3, [2 =t (;[3) sin? 013 + O(sin* 613) | ~ 7.48 x 1072 eV (3.114)
J

[40 — 2+ (1 + 10¢p) sin® 013 + O(sin® 613)] ~ 1.39 x 1072 eV (3.115)
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and

1 [Am2
mgs = 5\/% [2¢0 — 1 — (49 — 5) sin® 13 + O(sin” 013)] ~ 1.26 x 1072 eV (3.116)

where in the numerical evaluation we used the best fit values of Am%l and 63 [45]. A
similar analysis can be done for 10; we obtain

> my=1/—Am}, [242(3 — @) sin® 613 + O(sin® 613)] ~ 1.02 x 107" eV (3.117)
j

mg = \/ —Am3, [1 + %sin2 013+ O(sin* 013)| ~ 5.11 x 1072 eV (3.118)
and
mgg = \/ —Am3, [1+ sin® 013 4+ O(sin? 013)] ~ 5.06 x 1072 eV. (3.119)

3.3.3.2 Mechanism II a-2: h; = h, =0

The second possibility we explore is the case where, beside h; = 0, one of the real vev
of ¢, 5 is null, h, = 0. This case is quite similar to the Weinberg operator with z = 0
discussed in Sec. [3.3.1.1] because the mass matrix parameter z is almost close to zero (in
fact z = O(g?), see (3.105d)). The reactor mixing angle as a series in g has the following
leading contribution

2

) 39
sin? 13 = ———— + O(g%). (3.120)
(V6] + hra)”

In the limit |g| < |f],|hr2| we can obtain the mass spectrum at LO

mi = myg —% (\/gf - \/ihr,2>2 + O(g%) (3.121a)
g = mg —% (\/ﬁf - ﬁhr,g)2‘ (3.121D)
ms = mo —% (\/§f + 2\/51%2)2 + 0(g?) (3.121c)

where we notice that m; = my in the LO approximation. A different kind of neutrino mass
sum rule can be obtained:

Y = (g — m2)? + 2(3 — @) (11 — 31ig) (1 — 1) sin? 013+
+ 20( — 2)7hg (1 — 21y + m3) sin® O3 + O(m? sin® 6;3) (3.122)
In this case we need to include terms up to O(sin* 63) since the difference (mg—my)/mg o

sin? 613. To obtain the solar mass-squared difference we need to consider also the (undis-
played) NLO contributions for the masses. We obtain

A(p — 3) (3VO > — 182hy s + 6V6fh2, — 4h3,) "
f ) ) +0 . 3.123
3(V6f + hy2) / ) ( )

2 2
Amy /mi =

For the atmospheric mass differences AmgZ it is enough to consider only the LO term. Only
NO is allowed, provided that h,.2 < 0A+/2/3h,2 < f < —hryz/\/é or hyo > 0A —hm/\/é < f<

NCYEIY
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As usual, the ratio r; can be expressed as a function of 63 using the relation defined in

(3.120)
(9 —3) (VBf +hp2) (3613 — 18f2hy 5 + 66 fh2, — 4h3 )
3mﬂ(&ﬁﬁ3+9ﬁhm+4w%ﬂﬁ2+5@2)

sin? 613 + O(sin? 613). (3.124)

If we assume a linear relation between f and h;,» of the form f = kh,> we can obtain the
value of the coefficient £ assuming both r; and 613 in the 3o confidence region. We obtain
that the best value that accommodates both data with the constraint zj m; < 0.23 eV is
k ~ —7/20, for which r; ~ 1.19 sin?#;5. As in the case of Mechanism I with z = 0, discussed
in Sec. we have a large spread for k: it is constrained between k ~ —7/22 and the
values k = —1/4/6, where the mass spectrum is degenerate at LO m;/my = 3hZ’2/2 +0O(g?).
Another correlation between g and f can be found, again in the limit f = —7/2Ohr72, from
the expression of the reactor angle:

600 g° 7

) 4
sin?f3=—— 24O =

hy.2 (3.125)
thus we expect g ~ £h;2/100.
As a final remark we predict at LO and for f = —7h,2/20 that m;/mg ~ 1 and ms3/mgy ~

6/5. The effective mass for f-decay and Ovff-decay can be obtained under the same
assumption. We have

1.
mg = Am%l % + 0.04 sin 913 + O(Sin2 913) ~ 7.88 X 10_2 eV (3.126)
S1n 013
and
9 1.35 . .92 -2
mgg = \/ Ams, Y +0.01sin 63 + O(sin“ by3) | ~ 7.88 x 107~ eV (3.127)
13

where the best fit values for Am3; and ;3 have been considered. Notice that the effective
masses are constrained to be mg (mgg) = 5.49 x 1072 eV when k ~ —7/22. A non-trivial
relation for Zj m; as a function of rq, Am%l and 613 exists, but it is quite cumbersome and
we do not discussed it in details. We only mention the lower bound Zj m; 2 0.19 eV.

3.3.3.3 Mechanism II a-2: h; = h,.2 =0
Starting from we can obtain 63

24(21¢p + 13)g?

O(gh). .
V20p + 5 —4v3Gp 2 ) (3128

sin2 913 =

In the limit |g| < |f],|h,| we can obtain the mass spectrum at LO

mq=7m)—%(v%f+(1—&Mh02+CXf) (3.129a)
mQ:7m)—é(v%f+(3¢—2y%)j (3.129h)
ms = mo —é(v%f+4%>2+cxg%. (3.129¢)

At LO we can obtain the following sum rule for the complex masses m;
Y = (11 + (3¢ + 2)g — 5(¢ + 1)im3)? — 4(3p 4 2)myrg + O(m? sin® 613) (3.130)
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where we notice that the coefficient in front of the masses are (O(10), therefore we expect
large deviation to the sum rule.
The solar mass difference is

L2~ 1)h, ( 2\ff) (12f2 — 2v/6fh, +23h2) +O(g?) (3.131)

Am3 /mf = — 12

which is proportional to h,(h, —2v/6f). The atmospheric mass differences are proportional
to h,. Therefore a possibility to suppress the ratio r, is to make the solar mass difference
almost vanishing, that is to impose h, ~ 2\/6f. The ansatz is compatible only for 10, for
which the neutrino masses are mj = my = mod5f2 + O(g?) and mz = me9f2 + O(g?) and so
mi/mg ~ 1 and ms/mg ~ 1/5. It is interesting to observe that mg could be close to zero if
f =~ —h,/\/6, see (3.129¢), but this condition is not enough to obtain a small ratio r2, so we
expect mg always different from zero.

The 10 is the only hierarchy allowed in this case, for f < 0A2V6f < h, < 2v6f/(30 — 2)
or f>0A2V6f/(3p —2) < h, < 2V6f.

The relation h, ~ 2/6f provides to be adequate to reproduce the (undisplayed) ro; this in
turn gives sin? ;3 approximated by

1oy +O(GY  hy=2V6f (3.132)

i.2
f1q =
s~ 013 = 18 f2

so, to reproduce also its experimental value, we need g ~ +£7/20f. Simple predictions for
>_;mj, mg and mgg are possible:

A 11 163¢p — 244
> - -2 - 0+ Ofsint )] = L1 x 107 v 3133)

A 188560 — 1132
—a Tgsz [2 4 V188569 — 1132959 g -+ O(sin' 913)} ~ 510 1072 eV (3.134)

60
and
Am? —
mas = W B — w sin” 013 + O(sin’ 913)] ~5.07x107% eV (3.135)
where we used sin? 613 = 2.19 x 1072 and Am3, = —2.449 x 1073 eV2.

3.3.3.4 Mechanism IT a-2: g= f =0

In this particular case the reactor angle is

(55¢ + 34)h?
[(5¢ + 3)hy + (6 + 4)hr2]”

sin? 03 = +O(h}). (3.136)

Since the LO mass matrix M, is the same as the case h; = f = 0, the mass spectrum is
the same as Sec. We emphasize that in this case the sum rule defined in (3.I10)
is exact (in the case of Sec. we have O(sin?#;3) corrections), thus it is possible to
use it to find the lightest neutrino mass mmpi, assuming the best fit values for the solar
and atmospheric mass differences. In the case of NO we get My, = my = 1.13 x 1072 eV,
while in the case of I0 we obtain My, = ms = 2.97 x 1076 V.

Since mg/mg < (hy + 4hr,2)2 and Am%l/m% X hy(hy +4hy2), see and (3.ITI), we can
argue that h, ~ 0 for NO and h, ~ —4h, o for 10. In the first case we have

sinf3 = ———-+0OMh})  h.=0 (3.137)



therefore h; ~ £h,2/5. We remind that in this case we expect m;/mg ~ 1 and ms/mg ~ 4.
In the case of 10, starting from (3.136), we obtain

sinf13 = —— - + O(h})  h, = —4h,» (3.138)

thus for sin® 63 = 2.19 x 1072 we get h; ~ +2h, /5. In this case we predict m;/mas ~ 1 and
ms/ma ~ 0. We can obtain in this limit the values for Zj mj, mg and mgg. In the case of
NO, we get

1 2 —1
zj:mj = g \/34m3, [\/5 + 7 - sin 613 + O(sin? 013) | ~ 7.73 x 1072 eV (3.139)
= L AT o (14 960) sin? By + O(sin® f13)] ~ 155 x 102 6V (3.140
ms =15 3 [cp— + (1 + 26¢) sin” 613 + O(sin 13)]— .55 x e (3.140)
and
mps = ¢ 3 [1—2¢ — (4p 4 5)sin” 613 + O(sin” b13)] ~ 1.42 x 107% eV (3.141)

A similar analysis can be done for 10, we obtain at NLO the same relations of the case

h; = f =0 10 (see Sec. [3.3.3]).

3.3.3.5 Mechanism IT a-2: g=h, =0

Assuming g = h, = 0 we obtain that the mixing angle ;3 can be expressed as

.. 92 (;0_‘_1 h% 4
sSin (913 = Th$2 + O(hz) (3.142)

We can then expand the observables as a series in the parameter h;. At LO the mass
spectrum and the sum rule for the neutrino complex masses are the same as h; = h, =0,
Sec. [3.3:32] The sum rule is formally the same as the case h; = h, = 0, which is defined
in Eq. 3:122), with the same coefficients. However due to NLO corrections the value of
the solar mass splitting is different

+2) (3v6 3 — 18f2h,9 + 63/6fh%, — 4h3
Am%l/m%:((’p ) (367 J;h 2+ v6fhy T’Q)h?JrO(h;*). (3.143)
7,2

The atmospheric mass-squared difference at LO is the same as case h; = h, = 0 defined in
Sec. [3.33.2] From then we infer that the only allowed mass hierarchy is the NO, when
hro <OAf <+/2/3hy2 or hya >0A f > /2/3h.2. At order h? the ratio r; can be expressed
as a function of the reactor mixing angle using (3.142):

~ B=9) (3VES® —18f%hp + 6V6 SR, — 4h,)
(3\/6 34 9f2hs + 6V6fR2, + 5h§72>

sin? @13 + O(sin 613). (3.144)

The linear correlation f = kh,2 with £ ~ 20 allows to reproduce the experimental value
of r; in the 30 confidence region with the additional constraint Zj m; < 0.23 eV, (in fact,
we get 1 ~ 1.14sin% 013 + O(sin* 13)). As in the case h; = h, = 0, discussed in Sec.
there exists a spread for the parameter k: it is bounded between k£ ~ 17 and k — oo
(that is O(10%) in our numerical scan), where the mass spectrum at LO is degenerate,
mj/mo = f* + O(h3).

As in the case of h; = h, = 0 we do not report the relation for the sum of the neutrino
masses because it is a cumbersome function of 71, Am3; and 613, nonetheless we get the
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lower bound }>,m; 2 0.19 eV. The effective masses mg and mgs can be evaluated in this
framework. We obtain

mg = \/Am3, [1.27 — 1.70sin? 13 4+ O(sin* 013)] ~6.12x 1072 eV (3.145)
and
mgp = \/ Am3, [1.27 — 1.75sin? 013 + O(sin* 913)] ~6.13 x 1072 eV (3.146)

where in the numerical evaluation we used the best fit values of Am3; and ;3. Due to
the spread in k we get the interval 5.53 x 1072 eV < mg (mgg) < 4.85 x 1071 eV.
3.3.3.6 Mechanism II a-2: g =h,2 =0

The reactor mixing angle is
2 h? 4
sin 913 = hf% + O(hl) (3.147)

In this case the LO expressions for the neutrino spectrum are the same as h; = h,o = 0,
Sec. thus we do not report here the predictions for the mass ordering and 3. In
this case only IO is allowed, and we predict m;/mgy ~ 1 and ms/mg ~ 1/5. The sum of the
neutrino masses Zj m; and the parameters mg and mgg are

Am2, [11 17+ 14
ij - ,/_% [2 + Wsnﬂ 013 + O(sin* 013)} ~1.18 x 107! eV (3.148)
j

mp = —A?g’? [2 + W sin? 013 + O(sin? 913)] ~5.36 x 1072 eV (3.149)
and

mas = \/ —A’f? B + % sin? 013 + O(sin? 913)] ~5.32x 1072 eV (3.150)
where we used sin? 013 = 2.19 x 1072 and Am3, = —2.449 x 1073 eV2

3.3.3.7 Mechanism II a-2: summary tables

As done before we report all previous results in two different tables, to facilitate the
comparison of physics implied by the six cases analysed above. In particular, in Tab. [3.§]
we report the admitted mass ordering, the predictions for tan 20 and the reactor angle. The
Majorana phases are always vanishing, («,5) = (0,0). In Tab. we outline our results
for the neutrino mass sum rules and the numerical values of Zj m; and the effective
masses mg and mgg.

3.3.4 Mechanism II ¢-2

In this section we want to describe an alternative realization of the Type I see-saw where,
with respect to the previous case, the right-handed neutrinos transform as a 3', see Tab.
[3.I0] The lagrangian responsible for the Dirac mass is

L =y [@CLM%} Hu+ys [(VCL)E,%] Hut e, (3.151)

where A is the UV cutoff scale.
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hi=f=0 hi=hy =0 hi=hpa =0

ordering both NO 10
20 4,/87¢p + 54g 249 -3¢y 44/6y/29¢ + 18¢
e (9 + 5) = 2hra(3p +2) VOf 4 hra V20994 5)he —4V3(30 +2)f
sin? 01 12(21¢ + 13)g i 39 i 24(21p + 13)g i
[hr (99 +5) — 2hr2(30 + 2)I°  [V6f + he2]”  [V2(9¢ + 5)hr — 4V3(3p + 2) f]
g:f:() g:hT:() g=hr,2:O
ordering both NO 10
2/T6p + 47h; h; h
tan 20 Vo F2 23—~
! (5 + 3)hr + (60 + Dz 7T e h
sin? 0,5 12(21p + 13)g ©+1 h2 h?
[hr (99 + 5) — 2hy2(3¢ + 2))? 4 hi, h?
Table 3.8: Same as Tab. but for Mechanism II a-2.
hi=f=0 hi=h.=0 hi =hy2 =0
% (171 + 1 — mg)? — dimaing Eq. (3.122) Eq. (3.130)
>o;my [eV] 748 x 107 (NO), 1.02 x 10~ (T0) > 0.19 1.11 x 1071
mg [eV]  1.39 x 1072 (NO), 5.11 x 1072 (10) > 5.49 x 1072 5.10 x 1072
mgs [eV]  1.26 x 1072 (NO), 5.06 x 1072 (10) > 5.49 x 1072 5.07 x 1072
g=f=0 g=nh-=0 g="hrp=0
b (171 + Mg — 1i13)? — iy Eq. 3.122) Eq. 3.I30)
>o;mj [eV]  7.73 x 107% (NO), 1.02 x 107! (I0) > 0.19 1.18 x 107!

mg [eV]  1.55 x 1072 (NO), 5.11 x 1072 (I0) [5.53 x 1072,4.85 x 1072]  5.36 x 1072
mgps [eV] 142 x 1072 (NO), 5.06 x 1072 (I0) [5.52 x 1072,4.85 x 1072]  5.32 x 102

Table 3.9: Same as Tab. E but for Mechanism II a-2.

Field L v° H, ¢va ¢us
As 3 3 1 4 5

Table 3.10: Quantum numbers of the fields involved in Mechanism II c-2.

There are two contributions to the Dirac mass matrix from the flavons in representation
4 and 5. Using our convention of Kronecker products, see Appendix [C} and the vevs of
¢v,a and ¢, 5 (see (B.I3)) we obtain the following matrices:

0 zyr( — Y —Yi — 1Y
. i +i(20 + 1)y, Yi — Yy
o o Vi
At y4§\ ) | vi —i(2¢ + 1)y, V2 DY (3.152)
Yi + 1yr 20+ Dy, — i

(20 + Dy,
yi +i(20 + 1)y 7 7
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_\/g(wr + xr,?) Tr + 1T Ty — 1Xp

V3 V3
H i + 2 2
M3 = ?/51 ) (5 j_[; 2 \/;(wr,z — ix;) \/;(ﬂ?r + iz ) (3.153)
r2 = ) 3 2 . 2 .
% §($’” —ixip) \/;(wcZ + z,2)

where the Yukawa couplings y4 and ys are real. The total Dirac mass matrix is
Mp = M3 + M3, (3.154)

In this case we assume that the heavy Majorana mass matrix is trivial as in (3.97), hence
My; = M Py3 where P,3 is the matrix defined in Eq. and M is the direct mass term of
heavy neutrinos. Note that the three right-handed neutrinos are exactly degenerate. The
light neutrino mass matrix is the same as (3.104), M, = —M}LPy3Mp/M. We can estimate
the scale of the light neutrinos as O((H)?v;v;/MA?) where v;v; are generic combination
of the flavon vew.

It is convenient to redefine the parameters in M, introducing the following dimensionless
quantities

Y U
fr =4 A fi= y4A (3.1595)

for the flavon in the representation 4 € As. A similar position is possible for ¢, 5

Ly

A

Ty

K.

Lr,2

A

hy = ys hro = ys hi = ys (3.156)

We expect that these parameters are of O(1). The neutrino mass matrix M, has the same
form as (3.3) with

5= —% [ (3(¢ + 2)h7 + 4h} + 2h, by g + 4h7 o) + (97 + (360 + 27)f7) ] (3.157a)

z= 3 [ (5 + 1)h% — h2y — dhyhys) + (4\/§hrfi — 2VBhafi + 2V3(4p + 1)h; fr) — 6y ff}
(3.157b)

Y= g [hi (2¢hra — (¢ — 2)hy) + V3hifi + f ((\/3 - x/ﬁ) hy — \/§hT,2) +3(p + 2)frfi]
(3.157¢)

z= —% [ ((p = Dhi = hi+hiy) - (2\/§(<P + )b fr — 2V3(hs + hr,2)fz') + (159 + 9)f3] :
(3.157d)

As for Mechanism II a-2 discussed in Sec. [3.3.3] the absolute mass scale mg is my =
(H)?/M, see Eq. (3.I06). The angle ¢ is related to the vevs by the relation

tan20 = 24/11¢p + 7{hi (—(ap —2)h, + 2phyo + \/gf,) +
+ f, ((\/§+ Vﬁ) hy — V/3hy2 + 3(p + 2)f¢) }x
X {h?(ﬂﬂ +2)(3p + 1) + 4V3hi(w + 1) (3¢ + 1) fr + @h? — 4(¢ + 1)h hy ot

-1
+2V3h f; — (20 + 1)h% 5 — 2V3(3p + 2)hrafi — 3(3p + 1) (4o + 3)1;?} . (3.158)
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We need h; or f, (z; and y, in the vev language) small compared to the other vevs due to
the fact that y can be vanishing when h; = 0 and f, = 0. Hence the relevant parameters
for having a small 6, and thus a small reactor angle, are h; and f,. Notice that the case
h; = 0 is equivalent to ¢, 5 invariant under Z ® Z> ® CP, while f, = 0 corresponds to ¢, 4
invariant under Zs ® Z, ® C'P, see Sec. [3.1.2]

As in Mechanism II a-2, Sec. the Majorana C'P phases are vanishing, o = 3 = 0.

3.3.4.1 Mechanism II ¢c-2: h; = f; =0
In this limit the reactor mixing angle, up to corrections of order O(f?), is
3(8¢0 4 5)(hra — 2¢h,)?

SiIl2 913 =
(—soh% +4(e + Dhrhrz + (20 + 1)h3,2>

SfE+O0(F. (3.159)

We notice that 613 could also be very small if h.o ~ 2¢h,, but this possibility is not
motivated by any symmetry argument based on residual symmetry for the flavon vevs
and will not be considered any more. The masses of the light neutrinos are

2
mi = mg ~3 ((p—1D)h, + @hr72)2 + O(ff) (3.160a)
2
me = mg —3 (phy + (¢ — 1)h7«72)2' (3.160Db)
my = mo |~ (hy — hea)? + O(f2)]. (3.1600)

The mass spectrum is the same as for Mechanism II a-2 with h; = f = 0, discussed in Sec.
[3:3:331] if we perform the vevs redefinition

1
h, — ia(hT — 2hr72) hng — :i:(hr + hryg) (3.161)

Using the expressions for the neutrino masses at LO we can obtain the same sum rule
as for Mechanism II a-2 with h; = f = 0 for the complex masses, defined in (B.I10),
¥ = (1 +me — m3)2 — 4y + O(m? sin? 013). It is interesting to notice that the (undis-
played) coefficient in front of sin?#;3 is proportional to (h, — hy.2) ~ \/m3/mo, see (3.160d),
thus we expect that the sum rule works better in the case of 10.

The solar mass squared difference is

4
Am32,/m2 = 520 = 1) (hr = hyp) (b + hy) (3hy + Ahyhy g + 3h75) + O (f7) (3.162)

thus a small value of the solar splitting can be achieved for h, ~ £h,>. The possibility
h, ~ +h.2 is related to 10, because for the mass m3 we have at LO m3/mg o< (h, — hy2)?,
hence it can be vanishing, see Eq. (3.160c). From the mass spectrum defined in we
see that both orderings are allowed: NO if h, < 0Ah,(p —2) < hy2 < —hy, or hy > 0A—h, <
hyo < hp(p —2), 10 if hy. < hpo < hy /(24 3¢) or by > 0A R /(24 3¢) < hyo < hy.

Using the fact that h, ~ +h,2 we can obtain a simplified expression for 613. In the case
of NO, h, ~ —h;2, we have

13+21g0]£

5t o () Bro = —hy (3.163)

SiIl2 013 =
hence we have f, ~ +2h, /50 to get a value of sin#;5 in the 30 CL. While in the other case
we have h, = +h,2 (I0) and we obtain

3(1+<,0)fj

st o (f) hro = +hy (3.164)

SiIl2 913 =
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hence f, ~ +h,/10 to obtain a value of the reactor mixing angle compatible with the
current data. It is possible to obtain the ratio of neutrino masses at LO assuming h, ~
+h, 2. With these assumptions we have m;/mg ~ 1 for both orderings and mg/mg ~ 4 for
NO and ms/mg ~ 0 for 10.

The sum of the neutrino masses > ;m; and the effective masses mg and mgs can be
obtained using the limits discussed above. We get for NO

ij = \/Amgl
J

[Am32, 1
mg = 7;31 o [4p — 2+4(415 — 238¢) sin? A3 + O(sin? 013)] ~ 1.47 x 1072 eV (3.166)

1
2 % — 37\/3(89 — 55p) sin? 013 + O(sin? 013) | ~ 7.62 x 1072 eV (3.165)

A 2
mgs = \/%f [1— 20 + 4(32¢ — 53) sin® 013 + O(sin® 013)] ~ 1.34 x 1072 eV (3.167)

where we used the best fit values of Am3, and 6,3 reported in Tab. For 10 we obtain
similar results

> mj=/—Am3, [2+3(2 + @) sin® 615 + O(sin" f13)] ~ 1.11 x 1072 eV (3.168)
j
1
mg =/ —Am3, [1 + 5(6@ + 5)sin? 013 + O(sin? 013) | ~ 5.75 x 1072 eV (3.169)
and
mgs =/ —AmZy [1 + (2 + 3p) sin® 13 + O(sin 013)] ~ 5.69 x 1072 eV (3.170)
where in the numerical evaluation Am3, = —2.449 x 1073 eV? and sin? 613 = 2.19 x 1072

3.3.4.2 Mechanism II ¢-2: h; =h, =0

In this case, h, =0, the reactor mixing angle is

2
sin? 03 = (B¢ +5) (V3hyz = 3o+ 2)11) FF+o((fh. (3.171)

hZ, [(2¢ + Dhra +2V3(3p + 2) fi] ?

A small reactor mixing angle can be obtained also for h,o ~ V3(2 4 ¢)fi, but no clear
symmetry argument can be invoked to explain such a relation.
The masses of the light neutrinos at LO are

2 2
my = mo |~ (hra + V3F) +O(f2) (3.172a)

2 2
my =mo | —3 <(<P —Dhyp — \/gfz) ’ (3.172b)

2 2 9
ms = myg -3 (hm — \/gfz> +O(f2)]. (3.172¢)

We can write the following sum rule for the complex masses as

Y = (m1+ (21e + 13)m2 — 5(3¢p + 2)fn3)2 — (84¢ + 52)myg + O(m?sin? 0;3). (3.173)
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In this case the coefficient in front of sin® 63 can be large, thus we expect that the sum
rule can be invalidated by NLO corrections.
The solar mass-squared difference is

Am3, /m3 = —%(2(,0 ~ Dl (e +2V3i) (3025 +2VBhafi +6/2) + O () (3.174)
hence we expect a natural suppression for r;, in the case of f; ~ —1/2\/§h,~,2 because
Am?,}e o hyo. This case is only compatible with NO, provided that k.o > 0A f; < —hT72/2\/§
or th <OA f; > —hng/Qﬁ.

From the expression of r; as a function of sin? 0,3, we need f; ~ —1/2\/§hr,2 to reproduce
the best fit values of both observables. Adopting this ansatz, we obtain

3 2 h
2 - ) r 4 = T2 . 17
sin” 013 1 (35¢ + 26) h72«72 + O (f) f V3 (3.175)

and thus f. ~ £1/50h, 2 if we want to reproduce sin? ;3 = 2.19 x 1072

From the mass spectrum, defined in .172), in the limit f; = —h,.2/2v/3, we get my/mg ~ 1
and ms/mg ~ 9/5. Using the relations derived above and the condition f; = —hr72/2\/§ we
obtain

ij = \/Am3; [2.54 — 1.97sin® 013 + O(sin 013)] ~ 1.24 x 107! eV (3.176)
j
mg = 1/ Am3, [0.67 — 0.03sin? 013 + O(sin? f13)] ~ 3.31 x 1072 eV (3.177)
and
mgs =/ Am3, [0.67 — 0.25sin? 013 + O(sin® f13)] ~ 3.29 x 1072 eV (3.178)

where in the numerical evaluations we used the best fit values for the atmospheric mass
difference and reactor mixing angle [49].

3.3.4.3 Mechanism II ¢-2: h; = h,2 =0
The reactor mixing angle is

(8¢ +5) (2v3ph, +3(p +2) ;)
h2 [oh, +2v/3f;)"

sin? 615 = 2+0(f. (3.179)

From symmetry argument we expect that |f,| < 1; however we could also have h, ~
V3(1 = 2¢)f;/2 ~ —1.94f; , but this condition is not related to any symmetry argument.
The masses at LO are

mip = my —% (((p —1)h, + \/§f1>2 + O(ff) (3.180a)
ma = mo —% (gohr - \/Efi)Q‘ (3.180h)
ms3 = my —% (hr + \/§f1)2 + O(ff) . (3.1800)

We obtain the following sum rule for the complex masses, which is exact at LO
Y = (1 + (34 — 219) Mg + 5(3¢ — 5)1m3)? + (84 — 136)mymmg + O(m? sin? 0;3) (3.181)

where, as in the case h, = 0 discussed in Sec. [3.3.4.2] the coefficient in front of sin®#;3 is
large.
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We observe that the mass-squared differences are related, at LO, to the ones of the previous
case (h, = 0, discussed in Sec. [3.3.4.2); in fact

3.182
fi— —fi Am3;, — +Am3, ( :

Thus the allowed spectra in this case are both NO (for h, > 0A (¢ —1)/2v3h, < f; < hy/2V/3
or hy <0A(p— 1)/2\/§hr > f; > hr/2\/§) and 10 (for h, < OA6f; > —/3ph, or h, > 0A6f; <
—V/3ph,). In the following we will not deal with IO case since this hierarchy is realized
at the price of having all the non-vanishing vevs at the same order of magnitude; thus
there is no clear symmetry argument behind this realization.

To obtain a relation among h, and f; we need to consider the NLO corrections to the ratio
r1 expressed as a series in sin® 6;3. Fixing both r; and 613 to their best fit values we get
h, = 2/3f; ~ 3.46f;. Notice that this relation gives us a natural suppression for the solar

mass splitting, see and (3.182).
With this condition, we get

3(119 74) £2
Sinzelsz(i—i—)'}ingO(ff) fi=

hy
2v3

and thus we need f, ~ £h,/100 to obtain a compatible value of the reactor angle.

(3.183)

We can obtain the relative hierarchy of the neutrino mass spectrum starting from the LO
expression for the masses; for f; ~ h,/2v/3 we have mi/ms ~ 1 and m3/ma ~ 9/5. In this
limit we get for NO the values of >, m;, mg and mgz. We have

> my=/Am3, [2.54 — 3.03sin® 613 + O(sin® 013)] ~ 1.23 x 107" eV (3.184)
J
mg =/ Am3; [0.67 — 0.50sin? 613 + O(sin? 613)] ~ 3.26 x 1072 eV (3.185)
and
mgg = \/Am3; [0.67 — 0.71sin” 13 + O(sin” 613)] ~ 3.23 x 107> eV (3.186)

where we used the best fit values for the atmospheric mass difference and reactor mixing
angle [49]. As discussed above the 10 gives all the vevs with the same order of magnitude
thus we do not discuss here the analytical predictions.

3.3.4.4 Mechanism II ¢-2: f. = f; =0

In this case only the flavon in representation 5 € As is relevant for the Dirac mass. The
light neutrino mass matrix is M, = —(M2)T Pys(M32)/M, where M3, is defined in 3.I53).
In this case the reactor angle 6;3 is

(o +1)h? [(@ — 3)hy — 2(3phr 2 + hr,2>:| ’

sin? 615 = 5+ O (hY) (3.187)

[(1 —2¢)h2 +4(¢ +2)hhro + (3¢ + 1)’7»3,2]

where we neglect higher order terms in h;. The mass spectrum at LO is the same as the
case h; = f; = 0 discussed in Sec. [3.3.4.1] see (3.160). Also the sum rule ¥ and the mass
splittings are the same, so we can ignore the discussion regarding the mass spectrum in
the following.

Using the fact that h, ~ —h;2 for NO we have

(To +10) b7
9 2

+O (Y hy=—hns (3.188)

)

Sin2 913 =
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whereas for 10 (h, ~ 4+h,2) we obtain

3p +2) h?
sin® 013 = “Dgr)h; +O(h})  hy=+h (3.189)
T
thus h;/h, ~ +1/10 for values of 613 compatible with the experimental determination, for
both orderings.

For the sum of the neutrino masses and the effective masses, in the case of NO, we have

> my=/Am}, [1.55 — 2.55sin” 613 + O(sin® f13)] ~ 7.40 x 107% eV (3.190)
J
mg = 1/ Am3, [0.26 + 0.65sin” 013 + O(sin® f13)] ~ 1.35 x 1072 eV (3.191)
and
mag\/ Am3, [0.26 — 0.51sin? 013 + O(sin? 613)] ~ 1.22 x 1072 eV (3.192)

where in the numerical evaluations we used the best fit values for Am%, and 6;3. For 10
we have instead:

> my=/—Am}, [2 - 3(4p — T)sin® 615 + O(sin® 613)] ~ 1.01 x 107" eV (3.193)
j
1
mg = \/ —AmZ, [1 + 5(11 — 6y) sin? 013 + O(sin? 013) | ~ 5.02 x 1072 eV (3.194)
and
mas = \/ —AmZ, [L + (5 — 3p) sin® O15 + O(sin’ 013)] ~ 4.96 x 1072 eV. (3.195)

3.3.4.5 Mechanism II ¢-2: f, =h, =0
The reactor angle is

(5+ 8¢) (2¢hy2 + \/gfi)2

. 92 -
sin“ 013 = 3
h2, [(20 4+ 1)hra +2V3(3¢ + 2) fi]

hi + O (h}). (3.196)

A possible partial cancellation occurs for h,.o ~ —/3(¢ — 1) fi/2 =~ —0.54f; but no symmetry
argument can be invoked to explain such a relation.

In the limit of small |h;| the LO terms for the solar and the atmospheric mass differences
are the same as Sec. [3.3.4.2] therefore we discard the discussion about the mass ordering.
Also the relation f; = kh, 2 invoked to get the ratio r; compatible with the data requires
the same k ~ —1/2v/3. This in turn implies that

s 2 4 7,2
n“ o —*33(,04-25 L +O h; i = — 3.197

and then h;/h,2 ~ £3/100 to get a compatible value of 6;3.
The value of mg and mgg are different with respect to the case discussed in Sec. [3.3.4.2]
because of the NLO corrections. We have

> mj = /Am}, [2.54 — 3.94sin” 013 + O(sin 13)] ~1.22 x 107! eV (3.198)
i
mg = \/Am3, [0.67 — 0.87sin” 613 + O(sin" 013)] ~ 3.22 x 1072 eV (3.199)
and
mgg = \/Am3; [0.67 — 1.10sin” 13 + O(sin” 613)] ~ 3.19 x 107> eV (3.200)

where we used the best fit values of Am3; and sin? @13 quoted in Ref. [45].
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3.3.4.6 Mechanism II ¢-2: f, =h,.2=0

In this case the reactor angle 6;3 is

(54 80)h2 (V3fi — (¢ — 2)h,)
h2 [ph, +2v/3f;]"

sin 013 = +0 (h7). (3.201)

As for the previous case (h, = 0) the predictions for the LO terms in the solar and at-
mospheric mass-squared differences are the same as ¢, 5 invariant under Z; ® Z; ® CP,
because M, has the same form at LO, thus the relations for the mass spectrum and . are

the same as Sec. when h,2 = h; = 0.

We can obtain a relation between f; and h, of the form f; = kh, in the limit of small h;
using the NLO expression for r; as series of 613. We get that k ~ 1/2\/§ assures a natural
suppression in the ratio r;. Under this assumption the reactor angle reads

13 —3p h}
4 2

hy
2V/3

hence we need h; ~ +h,/10 to obtain sin? 013 = 2.19 x 10~2. The mass spectrum in this limit
is constrained to have mj/ms ~ 1 and ms/my ~ 9/5, as discussed in the case of NO in Sec.

3.3.4.3, The value of >, m;, mg and mgg are:

sin? 013 = +0O(h})  fi= (3.202)

ij = \/Am3, [2.54 — 7.64sin® 013 + O(sin 013)] ~ 1.18 x 107! eV (3.203)
j
mg =/ Am3, [0.67 — 2.28sin? 013 + O(sin? f13)] ~ 3.06 x 1072 eV (3.204)
and
magy/ Am3, [0.67 — 2.50sin? 013 + O(sin® 613)] ~ 3.04 x 1072 eV (3.205)

where we used the best fit values of Am2; and sin® ;3.

3.3.4.7 Mechanism II c-2: summary table

Differently to the other mechanisms we report our results in one table only because of
cumbersome formulae for tan 26 and 613. In Tab. [3.11 we summarize our numerical results
for the neutrino mass sum rules and the numerical values of Ej m; and the effective
masses mg and mgg.

3.4 Numerical results

In this Section we discuss the validity of our analytical estimates, discussed in Sec. [3.3]
with respect to the numerical evaluation. The results for the observables mg and mgg are
discussed in Sec. In the following we outline the procedure used to get our numerical
results for the neutrino observables [}

e We generate the parameters of M, with a flat distribution in the range [—1,+1]. The
overall scale mg is left as a free parameter and will be determined later on.

o We diagonalize the product MJM,, and we check that the numerical PMNS matrix is
in the 30 allowed region, for both orderings, referring to the matrix in Eq. (L.16).

3We double checked the obtained results with independent codes written in Mathematica and C.
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hi=fi=0 hi=h, =0 h;="h2=0
= (1 + g — mg)? — dmyg Eq. 3I73) Eq. (3:I81)
>o;my [eV] 7.62x 1072 (NO), 1.11 x 1072 (10)  1.24 x 107" 1.23 x 10~

mg [eV]  1.47 x 1072 (NO), 5.75 x 1072 (I0) 3.31 x 1072  3.26 x 1072
mgp [eV]  1.34 x 1072 (NO), 5.69 x 1072 (I0) 3.29 x 1072  3.23 x 1072

fT’:fZ:O fr:hr:() fT:hr,QZO
by (1 + o — mg)? — dmyme Eq. BI73) Eq. (3I80)
>o;mj [eV]  7.40 x 1072 (NO), 1.01 x 107! (10) 1.22x 107"  1.18 x 107"

mg [eV]  1.35x 1072 (NO), 5.02 x 1072 (I0) 3.22x 1072  3.06 x 102
mgpg [eV] 122 x 1072 (NO), 4.96 x 1072 (I0) 3.19 x 1072  3.04 x 1072

Table 3.11: Same as Tab. but for Mechanism 11 ¢-2.

e Since the mass ordering is fixed by the form of Upyng we can construct the spectrum
and the squared-mass differences. We can determine the ordering and test if the
obtained r, is inside the 30 regions reported in Eq. (I.I§) for NO and (L.I9) for IO.

e We can now fix the value of mg comparing the best fit value of Am3; with our
numerical estimate (whose overall undetermined scale is precisely mg) thus we can
obtain the mass spectrum.

e Using the values of mixing angles and mass splittings we compute the x? for the
allowed orderings. We use the same definition of (2.IT9) and the data of Ref. [45].

In our numerical scan we generate O(10%) points and the sampling efficiency is O(10~ (%)
for four (or more) free parameters and O(10~6%6) for three free parameters.

For a given observable ¢ we can define an associated error as

Full _ _(N)LO
A= "9 7 (3.206)

gFull
where the superscript Full refers to the full numerical evaluation obtained in the numer-
ical scan while (N)LO refers to the order of the analytical quantity q. We observe that
the error on the reactor mixing angle 03 is a linear function of its full numerical value.
In fact, in terms of the small variable v, sin? 013 can be written as a series of the form
st Loy? + si5nLoyt + O(y%), thus

2
Asin? 05 ~ Slgﬂgf o sin? fy3. (3.207)

513 LO
At the beginning of each subsection we report the tables with the best fit values for the
x? obtained in our numerical scan with the additional constraint Zj m; < 0.23 eV (except
in Tab for Mechanism II a-1 with Z = 0 and |S| > |X| where this constraint cannot
be satisfied. In this case we show the x? with the constraint Zj m; < 0.59 eV). To quantify
the contribution of the mixing angles and the mass splittings in the total x? we introduce
the parameters x2 and x2, which are defined as

2 2 2 2 2
Xa =D Xre, X =Xamz, T Xame, (3.208)
i#j
where ¢ = 1 for NO and ¢ = 2 for 10. For the sake of completeness we also report the y? for
cases that cannot be expressed as a series in the natural small parameter not considered
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in the analytical part. These are marked with X.

3.4.1 Mechanism I

z=0 =0 s=0-NO s=0-1I0K

X2 11.78 5.62 4.90 5.76
x2, 119 0.32 1.63 0.90
Y2 1297 5.94 6.53 6.66

Table 3.12: Minimum of the y? in the case of Mechanism I.

3.4.1.1 Mechanism I: 2 =0

The model discussed in Sec. [3.3.1.1] has many interesting features. In particular, as
discussed in (3.37), the proportionality between the two parameters = and s is not fixed
to a single relation but different values of the proportionality constant k are possible.
To confirm this analytic result and to better quantify the whole range of correlation
between z and s, we have reported the results of our numerical scan (for the allowed
points only) in the left panel in Fig. [3.2] where we also indicated the analytic correla-
tions found in Sec. Interestingly enough, for these points, we confirm the bound
r1 2 (3 — ¢)sin 63 ~ 1.38sin 613 (right panel of Fig. [3.2), related to the limit 2 — 0 dis-
cussed in (3:37), where the mass spectrum at LO is degenerate, m;/mo = |s| + O(y?).

As shown in Fig. we cannot have both r; and 613 close to the experimental best fit
points if we require that the sum of the neutrino masses is lower than the cosmological
upper bound using the PLANCK & BAO data. Notice that the behaviour of Zj m; is in
agreement with the prediction discussed in (3.3§).

As a final remark, we can quantify the goodness of the expansion in the small |y|. We
observe that the corrections for r; and sin?#;3 are roughly 10% for the whole parameter
space. For 613 we observe a linear correlation as discussed in (3.207).

3.4.1.2 Mechanism I: =0

In this case the prediction discussed in Sec. [3.3.1.2) are in good agreement with our nu-
merical scan. In particular we observe a strong correlation between s and z, as discussed
in (3.47). This happens for all the points in the allowed 30 confidence region for mass
splittings and mixing angles. We observe that the corrections to the mixing angle 63
and the ratio 7y using (3.43) and (3.47) with respect to the full numerical evaluation are
of order 10% and 15% =+ 20 % in the whole parameter space.

3.4.1.3 Mechanism I: s =0

In this case the analysis performed for I0 in Sec. [3.3.1.3] is in good agreement with
our numerical scan. In particular, we observe the strong correlation between x and z
discussed in (3.53). The values for Asin?#6;3 (|Ars|) are of order 10% (5%).

On the other hand, we also found points compatible with NO, but the smallest parameter
in the neutrino mass matrix M, turns out to be z, i.e. |z| < |y|. However, there are no
(clear) symmetry arguments behind this possibility that we do not investigate anymore.
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Figure 3.2: (Left plot) Distribution of the parameter s and x in the plane (s,z)
for Mechanism I with z = 0. The points satisfy the experimental constraints on
mixing angles and mass splittings at 30 CL. The red dashed line is the theoretical
expectation for the excluded region at order y? and the blue dashed line is the the-
oretical expectation between s and = given by (3.36). The green dashed lines are
the upper and lower limit on k, see Eq. (3.37). (Right plot) Scatter plot in the plane
(r1,sin?@13). The red (green) region indicates the lo confidence region on sin?#;3
(r1) and the dashed red (green) lines the 30 confidence region on the same param-
eter extracted from Ref. [45]. The green dashed line is the lower bound obtained
from (3:37) where the mass spectrum is degenerate. The purple star indicates the
minimum of the x? in Tab. [3.12
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Figure 3.3: Scatter plots in the plane (sin? 013,>;m;) (left plot) and (ri,)>_;m;)
(right plot) assuming Mechanism I and z = 0. The orizontal dashed red line indicates
the upper bound on the sum of neutrino masses by PLANCK Collaboration @ 95%
CL [[53], the green region indicates the lo confidence region and the vertical dashed
green line the 30 confidence region on sin® 015 (r1) extracted from Ref. [45]. The
purple star indicates the minimum of the y? under the assumption Zj m; <0.23 eV.
The green lines indicate the region of the planes which are admitted using the

predictions of (3:38) for the compatible values of r; and 6;3.
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3.4.2 Mechanism II a-1

Z =0 (NO) Z=0 X =0 (NO) $=0
S| =|X| |S|>|X| 10X S~Z/3 S~-Z/4 X~27Z/3 NOX 10X
X2 438 6.09 551  4.37 4.38 4.36 436 791
Y, 0.02 8.56 0.16  0.09 0.00 0.02 0.01 1.06
Y2 440 1465 567  4.46 4.38 4.38 437 8.96

Table 3.13: Minimum of the x? in the case of Mechanism II a-1.

3.4.2.1 Mechanism II a-1: Z =0

In Sec. [3.3.2.])we found that two correlations are possible between S and X, namely S ~ X
and |S| > |X|. Our numerical scan confirms these analytical estimates. The corrections
to the analytical expression of r and ;3 given in Sec. turn out to be roughly 10%
for both observables assuming |S| ~ |X]| or |S| > |X|. In particular, the case |S| > |Z| has
a positive Ar; while S ~ X has a negative Ar;. We also observe 10, but in this case the
parameters |S|,|X| and |Y| have the same order of magnitude.

3.4.2.2 Mechanism IT a-1: X =0

As discussed in Sec. [3.3.2.2] it is possible to have three different correlations between S
and Z. This is also confirmed to a very good accuracy by the numerical scan. We observe
that there is not a specific pattern in the plane (ry,sin?#;3) for the different correlations
between S and Z, see also Tab. where the values for x2. are similar. This also
reflects on the fact that the NLO corrections to r; are not completely negligible; in fact,
we found that at LO in the expansion parameter Y |Ari| ~ 50% while Asin? 613 ~ 10%.

3.4.2.3 Mechanism II a-1: S=0

This possibility was not discussed analytically in detail since it is related to patterns with
a non-natural hierarchy among the vevs. In fact for NO we get from our numerical scan
|Z] > |Y| > |X| while for 10 |X| > [Y| > |Z], see Sec. We do not discuss this
situation any more.

3.4.3 Mechanism II a-2

NO x IO NO NOX 10 NOXx IO NO (0]
Xz 436 5.76 11.73 471 571 437 552 12.05 6.20
2001 0.14 4.64 0.01 0.01 0.00 0.0l 6.06 0.00
X2 437 590 16.37 472 572 447 553 18.11 6.20

Table 3.14: Minimum of the y? in the case of Mechanism II a-2.

3.4.3.1 Mechanism II a-2: h; = f =0

The analytical predictions, performed in Sec. [3.3.3.1} for the strong correlation between
h, and h,2 are well confirmed. Also the prediction for the mixing angles are confirmed by
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our numerical scan because Asin?#0;3 ~ 10%. For the mass splittings the LO predictions
(discussed in Sec. [3.3.3.1) do not correctly reproduce the numerical results. For NO we
observe that |h,| < |g| (this condition is necessary to have a small rq, see (3.IT1)), where g is
the naturally smallest parameter, and we get |Ary| ~ 40% with our analytical predictions.
For 10 the NLO corrections to mass splittings are important, e.g. the solar mass-squared
difference is O(10%) larger with respect to the experimental value. However these were
cumbersome and we did not report the full expansion in our analytical discussion. If we
include the undisplayed NLO corrections for the mass splittings, these are in agreement
with the full numerical evaluation at 10% = 20% level.

3.4.3.2 Mechanism II a-2: h; =h, =0

This particular realization, discussed in detail in Sec. [3.3.3.2] has a similar phenomenol-
ogy as Mechanism I with z = 0. In fact there exists a lower bound for the allowed
region in the plane (ry,sin?63), as in the right plot of Fig. The lower bound is a
consequence of the limit f = —hr’g/\/é, where the mass spectrum is degenerate at LO,
mj/mo = 3hZ,/2 + O(g?). In this case the relation between r; and 63 is the same as
k ~ —10% discussed in B.37): r1 = (3 — ¢)sin? 613 + O(sin* f13). Also the scans of >.;mj as
a function of r; or 613 are similar to those shown in Fig. In fact there exists a lower
bound }>;m; 2 0.19 eV for 63 close to the upper limit at 30 CL, (in the case of Mechanism
I with z = 0 the lower bound is Zj mj 2 0.155 eV). This is a consequence of a non trivial
relation among Zj mj, 013, Am3, and the ratio 71, as discussed in Sec. Also the
parameters Asin? 615 and |Arq| are similar to those discussed in the case of Mechanism I
with z = 0.

3.4.3.3 Mechanism II a-2: h; = h,2 =0

The predictions for the mixing angles discussed in Sec. [3.3.3.3] are in agreement with our
numerical discussion; however our numerics also shows that NO is allowed for the mass
spectrum of quasi-degenerate type. This is realized when |h,| < |g| < |f|, thus with h, as
the smallest parameter. This possibility cannot be explained using symmetry arguments.
For the case discussed in the analytical Section we observe that the corrections for the
mixing angles are of O(10 %) with respect to the full numerical evaluation: instead
the corrections for the solar mass difference, and then r;, are important. We observe
|AAMZ,| ~ |Ary| ~ 50% <+ 90%. The NLO effects (that we did not report in Sec. [3.3.3.3)
reduce the discrepancy between the analytical prediction and the full numerical scan at
the level of 10%.

3.4.3.4 Mechanism II a-2: g= f =0

We observe a strong correlation between h, and h,2, as discussed in the analytical part.
The analytical predictions, assuming IO, for the mixing angles performed in Sec. [3.3.3.4]
are in good agreement with our numerical scan. The error for 63 is roughly 10%, while
|Ari| ~ 60%-+90% using the LO expansions for the mass-squared differences. If we include
the NLO corrections for the mass splittings we obtain |Ar;| ~ 10%. For NO we observe

that |h,| < |hi|, as discussed in Sec. (3.3.3.4

3.4.3.5 Mechanism II a-2: g=~h, =0

As discussed in details in Sec. this case is quite similar to h; = h, = 0 because
the LO predictions are the same. Also this case is in good agreement with our numerical
scan in the parameter space, with similar results for Asin?#;3 and |Ary], see Sec. [3.4.3.2
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3.4.3.6 Mechanism IT a-2: g = h;2 =0

This realization, discussed in Sec. [3.3.3.6] has a phenomenology similar to the case
hi = hy2 = 0 discussed above in Sec. The numerics confirms that only 10 is
allowed. The LO results for 63 are in agreement with the numerical evaluation to a high
degree of precision while for the mass splittings we obtain Am2, = O(10™*) eV? and thus
we need to consider also the NLO corrections to correctly reproduce the full numerical
evaluation. Using the NLO formulae we obtain [AAm3,| ~ |Arg| ~ 20%.

3.4.4 Mechanism II c-2

hi=fi=0 hi=h=0 hi=h2=0 fr=f=0 fr=h =0 fr=hp=0

NO IO NO NO I0x NO 10O NO NO
X2 436 5.55 4.37 8.81 580 436 5.51 5.95 4.39
X2, 0.00 0.01 0.01 0.00 0.02 0.00 0.01 0.31 0.05
x? 4.36 5.56 4.38 8.81 5.82 436 5.52 5.86 4.44

Table 3.15: Minimum of the x? in the case of Mechanism II c-2.

3.4.4.1 Mechanism II ¢-2: h; = f; =0

The numerical scan in the parameter space for NO is in good agreement with the analyt-
ical expansions performed in Sec. [3.3.4.2] in particular we observe the strong correlation
between h, and h,2. We observe that the corrections are roughly 3% (13%) for sin? @13 (r1) in
the whole parameter space. Assuming 10 the NLO corrections to the mass splitting are im-
portant and cannot be neglected. For instance in the case of the solar mass splitting at LO
we get a negative value Amg; = —O(10™%) eV? while at NLO we get Amag; = O(107°) V2,

3.4.4.2 Mechanism II ¢-2: h; = h, =0

The analysis performed in Sec. [3.3.4.2] is compatible with the numerical analysis per-
formed in our numerical scan: we observed that the approximations correctly reproduce
the numerical values, being the deviations roughly 5% for |Ar;| and Asin? 05.

3.4.4.3 Mechanism II ¢-2: h; = h,p =0

For NO the analytical expansion for small values of |f,| correctly reproduces the reactor
angle: the corrections are roughly Asin® ;5 ~ 10% in the whole 30 region for 6,3, while
for |Ar| we observe a 35+ 60% deviation with respect to the full numerical evaluation.
Including the NLO corrections we obtain a good agreement because |Ary| ~ 5% = 10%.

3.4.44 Mechanism II ¢-2: f, = f; =0

The prediction for mixing angles discussed in Sec. [3.3.4.4] are in agreement with our
numerical analysis. In particular, the reactor mixing angle obtained using the analytical
expansion is about 15% <+ 20% different with respect to the full numerical evaluation
for NO while it is only 5% for 10. At LO the predictions for the mass splittings partially
reproduce the numerical values, because Ary ~ 40%+60% for NO and Am3, = O(107%) eV?
for 10. If we include the NLO correction we reduce the discrepancy between the full
numerical result and the analytical prediction. As an example of the NLO corrections for
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the ratio r, we shown in Fig. the results of |Ary| as a function of r,. We notice that
the corrections to the NLO predictions of ry, are about 5 + 10% (5 + 15%) for NO (10).
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Figure 3.4: Distribution of the corrections with respect to the full numerical eval-
uation in the planes (r¢, |Ar¢|) in the case of Type I see-saw Mechanism II ¢-2 with
fr = fi = 0 using the NLO relations. The green (blue) region indicates the lo CL for
r1 (|r2]) extracted from Ref. [45]. The points satisfy the experimental constraints on
mixing angles and mass splittings at 30 CL. The purple star indicates the values
with x2. assuming NO while the purple triangle assuming 10, see Tab.

3.4.4.5 Mechanism II ¢-2: f. =h, =0

The predictions discussed in Sec. are in agreement with our numerical scan.
However, we have observed that also other realizations with all the parameters in M, with
the same order of magnitude are possible. In this case no clear symmetry arguments can
be invoked to explain the absence of hierarchy. Concerning the validity of the analytical
formulae, the correction are of order 10% for sin? 6;5., while their impact on r; is roughly
45 + 80% in the admitted confidence region. Just to make a comparison, in the case of
Mechanism II c-2 (h; = h, = 0) that has the same LO prediction for the mass spectrum,
as discussed in the analytical part, the corrections to r; are roughly at the 5% level. A
possible explanation for these differences can be found using the NLO coefficients of ;.
In the limit f;/hyo = —1/2v/3 we have

NLO coefficient ;1 Mechanism II ¢: h; = h, =0 3

= (15 — 9p)*5
NLO coefficient r;y Mechanism Il c: f, =h, =0 ( 2 h?

9
= (15— — ~(.1
(15 9@)25 0.15757
(3.209)

where we used the approximate relations among f, and h, 2 obtained after (3.179) and that
among h; and h,9 derived after (3.197). Hence the corrections in the case of Mechanism
II ¢-2 h; = h, = 0 are smaller than those of the Mechanism II ¢-2 f, = h, = 0, thus we
expect a qualitative difference between these two realizations.

3.44.6 Mechanism II ¢-2: f, =h,2 =0

This case was discussed in Sec. In our numerical scan we found that also other
configurations of NO with all the parameters at the same order of magnitude are allowed,
but these cannot be predicted using symmetry arguments and were not discussed in the
analytic part. The predictions for the natural case, |h;|] < 1, are in agreement with our
numerical scan. In fact Asin?6;3 ~ 30 +45% and |Ary| ~ 5% + 15%. With respect to the
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case h; = h,2 = 0, which has the same LO predictions for the mass spectrum, discussed
in Sec. [3.44.3] we observe a different behaviour. Using the NLO coefficients of 7 (in the
limit f;/h, = 1/2v/3) we have

NLO coefficient 7y Mechanism II ¢: h; = hp.2 =0 (394 63@)£ _ 39 + 63

= ~ 1.40936
NLO coefficient 71 Mechanism 1II ¢: f. = hy.o =0 h? 100

(3.210)

where we used the approximate relation among f, and h, obtained after (3.I83) and that
among h; and h, derived after (3.202), thus the corrections in the case of model with
h; = hy2 = 0 are larger than those of f, = h,2 = 0.

3.5 Predictions for mg and mgg

In this Section we discuss our results for the effective masses mg and mgg. The analytical
estimates are summarized in Tabs. and We show our results in several
plots in the planes (mmin, mgg) and (mg, mgg) where we also indicate the bounds on mmin
with red vertical dashed lines. These are obtained from the cosmological data : Mmin <
0.19 eV assuming PLANCK data and mpi, < 0.07 eV using PLANCK & BAO data. For
mg we indicate with a red vertical dashed line the expected sensitivity for the KATRIN
experiment: 0.2 eV @ 90% CL . The excluded region for mgg, in both planes, is the
area over the horizontal purple dashed line, mgg > 0.19 eV obtained using the 90% CL
limit on the half-life of "Ge . A recent result using the 13%Xe, T§72(136Xe) > 1.07 x
10% years @ 90% CL [66], gives the lower bound for the excluded region mgg > 0.083 eV
(ga = 1.269), but this result has a large uncertainty due to the bad knowledge on the
nuclear matrix element.

3.5.1 Mechanism I

In the case of Mechanism I, discussed in Sec. [3.3.If we obtain different predictions for
mgp Or mg assuming a particular vacuum alignment for the flavon fields (see Tab. [3.3).
In Fig. we show our results for mgg as a function of my, (left panel) and mg (right
panel) assuming s =0, x =0 or z = 0.

10° : : : 10°
X Y =~ 10!
3 3
e . Lo =10 4 o x-o b
= 5 iz =
S Q é S
I+3 10 3
1073 G - e 1079 s=0
|O§ |
[ I
i ‘ I I ‘ |
1074 ‘ ‘ - 1074 - - .
104 102 102 10! 100 10 10 10
Mmin [€V] mg [eV]

Figure 3.5: Effective mass mgg for the neutrinoless double beta decay as a function
of mmin (left plot) and mg (right plot) in the case of Mechanism I. Gray circles are
for NO while black diamonds for 10. The green (blue) region is the allowed area for
mgg at 3c CL of mixing parameters assuming NO (IO0) while the green (blue)
lines contain the region at 1o.

_ 82—



The predictions, summarized in Tab. [3.3] for the cases z =0, z = 0 and s = 0 (I0) are in
agreement with the numerical evaluation performed in our numerical scan. We also show
the results for the case s = 0, assuming NO, where it does not exist a natural expansion
in the small parameter y.

We observe that the high mass region in the case z = 0 is already excluded by cosmology
and the current experiments on neutrinoless double decay. Future experiments, discussed
in Sec. [L.2.1} could probe the 10 and quasi-degenerate region with a sensitivity mgg ~
0.01 + 0.05 eV (for a recent review see Ref. [59]). Thus we expect to confirm or reject
different realizations of Mechanism I using neutrinoless double beta decay experiments,
while mg is far from the expected sensitivity of the KATRIN experiment except for the
case z = 0.

3.5.2 Mechanism II a-1

In the case of Mechanism II a-1, discussed in Sec. [3.3.2] we have many predictions because
of different vacuum alignments, see for instance Tab. [3.6l Our results are shown in Fig.
[3.6) where we use the same conventions as Fig. [3.5

100

1072 101 100
mg [eV]

Figure 3.6: Same as Fig. but in the case of Mechanism IT a-1.

The predictions discussed in the various cases are in agreement with our numerical scan,
even for the case S = 0 where we only discussed the value of the lightest neutrino mass
Mmin because no simple expansion in the natural smallest parameter Y is possible. The
case Z = 0 with [S| > |X| is close to the excluded region and already excluded using
the PLANCK & BAO data, as discussed in Sec. [3.3.2.I] In this Mechanism of A; @ CP
the future neutrinoless double beta decay experiments could probe only the cases Z =0
and S = 0 (10), while the realizations for X = 0 and S = 0 (NO) are beyond the expected
sensitivity. For mg only the case Z =0 and |S| > |X]| is close to the KATRIN sensitivity.

3.5.3 Mechanism II a-2

In the case of Mechanism II a-2, described in Sec. [3.3.3] the situation is quite intricate
because several realizations for the vacuum alignment are possible. In Fig. [3.7 we show
our results for the numerical scan in the parameter space (we also show the results for
hi = hy2 = 0 with NO, which does not have an expansion in small |g|). We indicate as “1”
the cluster made by the cases h; = f =0 NO (grey) and g = f = 0 NO (pink); “2”: g=f =0
10 (green); “3”: h; = f = 010 (black); “4” g = h,2 = 0 10 (green) and h; = h,> = 0 10 (black);
“9”: g = h, = 0 NO (pink), h; = h, = 0 NO (grey) and h; = h,» = 0 NO (grey). We observe
that the predictions for mgg in the cases marked as 2, 3 and 4 are quite similar, thus it
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is difficult, from the experimental point of view, to distinguish among these realizations.
The results are in agreement with the analytical predictions discussed above in Sec. [3.3.3]
see Tab.

; ; 4
IGEX+HdM+GERDA |

1075 107 1073 1072 107! 10° 1072 107! 10°
Mmin [CV] mg [GV]

Figure 3.7: Same as Fig. but in the case of Mechanism II a-2. See text for
further details.

For both cases h; = h, = 0 and g = h, = 0 (marked as 5) the predictions for mgg are
quite similar to those of Mechanism I with z = 0, see Sec. [3.5.1] thus it is impossible to
distinguish among these cases. In the plane (mg, mgg) we observe that the predictions for
the cases with g = 0 or h; = 0 are the same, so there is no way to disentangle these two
cases. However, the predictions for the lightest neutrino mass mmui, are quite different in
cases with g = f = 0 assuming 10 with respect to the other 10 realizations (see clusters
2, 3 and 4), thus we expect that the next cosmological experiments, such as EUCLID
combined with the PLANCK data, could improve the knowledge on mpui,, because the
expected sensitivity on the sum of the neutrino masses is O(1072) eV.

3.5.4 Mechanism IT c-2

This Mechanism, discussed in Sec. [3.3.4] contains six different realizations of the vacuum
alignment. The results for the numerical scan over the parameter space are shown in
Fig. [3.§ where we observe that the data are in agreement with our analytical predictions,
summarized in Tab. @ We also show the results for h; = h, o with IO, that does not have
a natural expansion in the parameter |f,.|. We indicate with “1” the cluster with h; = f; =0
NO (pink) and f, = f; = 0 NO (grey); label “2”: h; = f; = 0 10 (green) and f, = f; = 0 10
(black); label “3”: h; = h, = 0 NO (pink), h; = h.2 = 0 NO (pink), f. = h, = 0 NO (grey) and
fr = hr2 =0 NO (grey); label “4”: h; = h,» = 0 10 (green).

This realization is similar to the Mechanism II a-2 discussed above in Sec. because
the prediction in the plane (mg,mgg) is the same in the two cases with f, =0 and h; =0,
see clusters 1,2 and 3 (while in Mechanism II a-2 for ¢ = 0 and h; = 0) and far from the
expected KATRIN sensitivity, thus it is difficult to distinguish among different realizations.
Also the predictions for myi, are similar for the cases with f; =0, h, = 0 or h,.2 = 0, thus
it is difficult to disentangle these cases.
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Figure 3.8: Same as Fig. Hbut in the case of Mechanism II c-2.

3.6 Model for Mechanism II ¢-2: f. = f, =0

In this Section we want to construct an explicit realization for the neutrino mass spectrum
based on the classification discussed above in Sec. [3.3] We concentrate our investigation
on Mechanism II ¢-2 with f, = f; = 0, discussed in Sec. [3.3.4.4], where the lepton doublet
transforms as a 3 € A; while the right-handed neutrino as a 3'. This realization is
equivalent to have only a flavon in the pentaplet representation.

The prototype model of how a non-Abelian discrete symmetry can reproduce a given
mixing pattern is the model of Altarelli and Feruglio based on A4 [163]. We consider a
SUSY realization to generate the neutrino and charged lepton masses in the As ® C'P
framework. However additional symmetries are needed to correctly reproduce the right
vacuum alignment and prevent some unwanted couplings. We consider an abelian Z3
symmetry (see Appendix [B] for more details about abelian groups) and an abelian charge,
the Froggatt-Nielsen (FN) charge U(1)pn [147] spontaneously broken through the vev of a
scalar field ©1 . As usual in SUSY, we also take into account the continuous R-symmetry
U(1)r that has the usual R-parity as a subgroup; terms in a superpotential should always
have total R-charge equal to two, see Ref. [164] for further details. The quantum numbers
for the matter fields are summarized in Tab.

Field L v FE Hy H, ¢vs 3 Pz ©5 X5 X3 ©5 X5 X3

As 3 3 3 1 1 5 3 3 5 5 3 5 5 3
Z3 w3 wg w3 wg wg w§ w3 w3 w3 w% wg w3 w% wg
Ul)pw O O 1/3 0 0 O O 0 -1/3 23 -1 -1/12 -1/6 -1/4

Ul)p, 1 1 1 o o O O o 0O 0O O 0 0 O

Table 3.16: Quantum numbers of the fields involved in the Model.

In the flavon sector, we would like to build a potential for the field ¢, 5 such that the
minimum is as in and |z;| < |z;|,|zr2|. The method of the driving fields is the
appropiate one. They do not get vevs but merely help the other flavons to do so. In the
following we present a SUSY case in which the U(1)px is gauged such that a field ©4
gets its vev through a D-term. The quantum numbers of the driving fields and ©; are
summarized in Tab. B.I7
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Field ¢)s5 d)i X5 Xz xi Xz Xz X ©s

As 5 1 5 3 1 5 3/ 1 1
73 w3 w3 w3 wg wg w3 wg wg wg
U(1)rn 0 0O 23 1 1 /6 1/4 1/4 -2
U)r 2 2 2 2 2 2 2 2 0

Table 3.17: Quantum numbers of the driving fields and ©4 involved in the Model.

The scalar potential can be written as

Vscalar = VP + VD (3.211)
where the F-term and D-term are
ow|? 1, 5 o2
Vi = ﬁzl; 0D Vb = 5 (Mpr = gen|©1]%)" (3.212)
elds

The D-term can be constructed in the same way as Refs. [165,166]. In Vp the parameter
grN is the U(1)pN charge and Mpy is the contribution of the Fayet-Iliopoulos term. There
are SUSY minima such that Vr = Vp = 0. The vanishing of Vp requires
M2
[(01)* = —£L. (3.213)
gFN

The superpotential can be written as
W=W,+W, (3.214)

where W, is the relevant part for the neutrino (charged lepton) driving fields. These
can be expressed as series of A~!, where A is the UV cutoff scale

W= (WEC + WiO) + (SW, + W) + ... (3.215)

3.6.1 LO superpotential

At LO we can study WO and W}O separately because of FN charges.

3.6.1.1 Neutrino superpotential: W}O

The superpotential is

WO = 5 [$h5005]; + A [005(bv3dws)s], + As [@0,5(Snsdra)s], +
+ Xy [8),5(dv3bua)s]y + 95 [601(0v.3003)5], + 95 [0)1(Pu,3 35 (3.216)

where us, A\, A3, A3/, 93,93 € R as a consequence of the Clebsh-Gordan coefficients, see Ap-
pendix C| The components of the (¢, 5) in can be parametrized as

T =T; +0x; T =Tp + 0T, Tr2 = Tr2 + 5$T,2' (3.217)

The terms dz;, 0z, and dx,2 are the quantum corrections, that we ignore at this order in
the A~! expansion. The equations for the minimum, Vz = 0, give us the following vevs

w=1i, ] (¢—1)v (3.218)
gs
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where v is unconstrained. Since we need v and w real the parameters in the potential
fulfill the condition g3g3 < 0; similar bounds hold in other models with C'P, see for
instance Ref. [74]]. The other vevs are

=0 (3.219a)
2 - 2 _ _
5 — 3wy = 6vMs(p — 1) = 2wvA(p £ 1) (3.219D)
Vs
2y, 2 2 -2
Tra = 6w=Azp + 3vA3 + 2w (p ), (3.219¢)
Vs

Using (3.2I8), (3.219h) and we get
Tr o Tr _ 2v/=9393A3p —4) +3[293A3 (1 — 20) + g3 A3(2 + )]

~

Tra Tz 2¢/—9393 M1+ 3¢) — 3[2g3A3 (1 — 2¢) + g3 A3(p — 3)]

which is compatible with z,/z,2 ~ £1, see Sec. [3.3.4.4] assuming a tuning among the
parameters in WLO.

(3.220)

3.6.1.2 Charged lepton superpotential: W}O
This analysis is similar to the one discussed in Ref. [113]. The superpotential at the
renormalizable level is
WeLO = [X?(XS‘PS)l] T ma [X%rXs/] 1 T p3 [ng(X5<,05)3/] 1 T ms [Xng,] 1t
+ pa [X8(0505)51], + P [XB(0505)52], +
+17 [X1(Xs@s)1]y + 7 [XaXa]y + Py [Xa(XsPs)w]y + 175 [X5Xs], +
+ P [X5(P5@5)51]1 + /v [X5(P585)52 ], (3.221)

where all coefficients are real. A particular solution for the vevs at LO is

(xa') = (0,0,0)"  (¥s) = (0,0,0)" (3.222a)
(xs) = (0,0,0,0,v,)"  (¥s) = (0,0,0,0,5,)" (3.222b)
(p5) = (0,0,v,,0,0)"  (@5) = (0,0,%,,0,0)" (3.222¢)
where
_ 200 +3py Ve 2pa+ 30 U5

— = 3.223
x V6 ms x N ( )

and vy, v, are unconstrained.

3.6.2 NLO corrections
3.6.2.1 Neutrino superpotential: §WW,

Due to Zs and U(l)pn charges the corrections in the sector with the neutrino driving
fields do not contain x5, X5, ¥5, @5, X3 and xz. We have two possible contractions with
the driving fields ¢) 5 and ¢0: ¢, 50,5013 and ¢, 56, 50,3, so in principle four kinds
of operators, up to contractions, are possible. Since we have two identical fields we can
use the antisymmetry of the Clebsh-Gordan coefficients in order to reduce the number of
non-vanishing operators. We get only six independent operators, collected in Appendix
Notice that there are no correction to the driving field qﬁ(,j,l at NLO

ow,  owke
061 0%y,

L= (3.224)
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where dots indicate N2LO corrections, thus év and dw satisfy the LO relation, see Eq.
(3:218). With the above operators we could find the corrections to the vevs defined in

(B:219). We get

1 0°

0z, = —0xy2 (3.225)
where dz; is a function of the couplings g?(?’/) and the LO vevs (3:2I8) and (3.219), hence

dx; = O(v?/A) with the natural condition v = O(us). Thus we get the required hierarchy
|zi| < |zr], |2y 2]. In order to obtain the correct size of 613, see Eq. (3.I87), we can assume

w v Ty  Tro x; 0w 9

—_— ~N — ~N — ~ =~ —_— = — 22

ATAT AT A Y RT v (3.226)
where A¢ is the sine of the Cabibbo angle, A\c ~ 0.22 [[167]. From the see-saw mechanism
we could predict the scale of the heavy Majorana particles

<HU>2 bivj (Hu>2
M A2

thus for m, = 0.1 eV and sin 8 ~ 1 we get M = O(10'3) GeV.

M = sin? B< ) (3.227)

my ~

3.6.2.2 Charged lepton superpotential: )V,

In §W, it is possible to have contractions among the driving fields x2, x3, and x} and
all the scalar flavon fields. We get twenty-eight operators with the pentaplet x2, sixteen
with x3,, seven with x§, twelve with x2, seven with x3, and only four with x}. These are
discussed in Appendix [F.Il Thus we have 28+ 16+ 7+ 1247+ 4 = 74 operators at NLO. The
effect of these operators is to modify the vacuum alignment of (3:222). We get

(x3) = (6x3/, x5, 6xa)" (3.228a)
(x5) = (55, 0XE, 6XE, OX5, Uy + vy)” (3.228b)
(p5) = (68, 593, vy + 60y, 65, 58 ) " (3.228¢)
(X3) = (6X3, 0X5, 6Xa)" (3.2284)
(X5) = (6X5,6X3, 6X8, 05, Dy + 60y)" (3.228¢)
(B5) = (6@8, 0%, Ty + 60y, 6@, 608)" (3.2281)

where all 6x% are different from zero. Note that not all variations are independent because
we have more dx%, (twenty-six) than equations (sixteen) thus ten vevs are functions of the
others. Notice that the fields y3 and xs are needed to obtain a solution for the NLO
equations. The expressions for the field variations are quite cumbersome and thus we do
not include them here.

3.6.3 Neutrino mass spectrum

At LO the model is the one discussed in Mechanism II ¢-2 with f. = f; = 0 (this is
equivalent to no flavon in representation 4 € As) and the light neutrino mass matrix is
M, = —MgTng,Mg/M where M3}, is defined in Eq. (3:I53). At LO h; = 0 thus 613 = 0.

3.6.3.1 NLO corrections

The Dirac lagrangian at NLO can be written as

ZH° =Hu{y§3/ [(VCL)4 <¢”"j’£"3'> ] + Yl [(VCL)s <¢3qu3> } +
411 511
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¢ ) ¢ ) ¢ y /¢ ,3/
+ 3 | (VL) ( S ) | e |°D)s (T : (3.229)
5s 1 55 1
The Yukawa couplings are real. The Dirac mass can be written as
Mp = ME® + MO + . (3.230)

where we expect the naive scaling ME° ~ (H,)v;/A and MNY© ~ (H,)vivj/A? and v; is a
generic vev defined as in (3.226). We obtain that (Im MBLO)” = 0, thus this term does not
contribute to 613. The matrix is

a e e
d b c (3.231)
d ¢ b

where a,b,c,d are O(1) real coefficients.
The Majorana lagrangian at NLO islﬂ

511 511

where \2; and )\23, are real parameters. The mass matrix for the heavy Majorana particles
can be written as

My = MEP + MO + . = M Py + MM© + ... (3.233)

where we used Eq. (3:.97) for MIP. From the NLO corrections we get

NLO vw O~ _f f
My~ ~ z’T —f f 0 (3.234)
0 —f

where f =+v2pf and f = O(1). The light neutrino mass matrix can be obtained as
M, = MO + MNO (3.235)

where the LO term is discussed in Sec. 3.3.4.4] and the NLO term can be written as

1
MO = —— [(MgLOTP%MBO + MBOTngMgLC)) - M})OTMAIELOM})O] . (3.236)

The term in parentheses is real, thus it does not contribute to 613 (see the discussion after
Eq. (3:3)), while the last term has the following structure

1 T _ vivjv (Tp — Tpo) _
MMBO MYFOMEC — i(H,)2 2 A]3 T T d g g 0 (3.237)
g -9

where § = v/2pg and g = O(1). This part of the neutrino mass matrix is important to get
013 # 0. Notice that in the case of 10 this term is negligible because z, —,2 ~ T, =7, 2 ~ 0,
see Sec. [3.3.4.4] and a non-zero reactor angle is a consequence of dz; defined in (3.225).
The form of M, is the same M!© thus the neutrino phenomenology does not change at
this order.

*Notice that terms proportional to one flavon fields are forbidden by Z3 and U(1)px charges.
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3.6.4 Charged lepton masses

At LO the Yukawa lagrangian responsible of the lepton mass is the following

© (X5X5)51 (X5X5)s52
Ly =y-Hg [(ECL)5 f‘} T Y Hy [(ECL)5 AQ] ) + 1y Hyg [(ECL)5A2‘ )
+ysHg [(ECL)g(Xiés):;] +ysHy [(ECL)s(X:?éS)S} + h.c. (3.238)
1 1

therefore m, = yr\/3/2(Hg)vy/A, my = y)(Hg)03 /2A* and m, = 0. Including the effect of
the vevs shifts, (3.228), in the Yukawa lagrangian (3.238) we obtain corrections for the
charged lepton mass matrix M,. We get

) —0ph ol —Lopd
. , 0 3 vy Yr | VBs 5 3¢ 4 151
M, = (Hy) diag 40, yumuyT A + <Hd>X 45705 \/;5805 5005 (3.239)

~Fogy Yok /3o,

where the mass matrix at NLO is symmetric because of the Kronecker products. We get
corrections for Upyng by charged leptons through U/, see Sec. These corrections can
change the LO prediction #23 = w/4 and are useful to accommodate the recent hint by
NOvA of a deviation from a maximal atmospheric mixing. To obtain the right hierarchy
we need dp¢ ~ 0, which is a particular solution for (3.228). As discussed in Ref. [113] the
correction dpf can be smaller than the others 6<p]5¢1. In fact, embedding As to its double
cover Z' it is possible to solve this issue because Z' has a doublet representation that can
be used for the right-handed charged leptons. This approach was used in Ref. [168] to
reproduce the mass hierarchy in the quark sector.

The matrix U, can be written as

mi2 V\x mi3 V \x
1 v (m22 A) (77133/5\‘)/2
~ _mi2 V. _(Mmi1/2V=\x
Uy ~ Y 1 ( Tias A2) (3.240)
_mizV mu/2V? 1
m3z A m33z A2

where we indicate as m;; = (M;);; the matrix elements of M, and V is the scale of the
vevs, defined through the relation (3.223) at LO. The ratio between the vevs and the cutoff
scale is fixed by phenomenology
2 MV

Ao m. ~ (3.241)
where A¢ ~ 0.22 is the Cabibbo angle. However, a certain degree of fine-tuning is needed
in this model to have m¢/m, ~ A%, The estimate in (3.24]) is also useful to investigate
the size of the reactor angle. The PMNS matrix is the product UJU,,, where, at this order
in A™! expansion, U, is defined as in (3J). To quantify the effect of U, we can assume
6 = 0, so the Golden Ratio (GR) mixing angle 615 is modified by a factor (’)(AZC) while the
reactor and atmospheric angles change at (9()\‘("7) (113]

sin? 0o = 3‘% [1+0()] sin? 013 = O(\S)  sin? a3 = % [1+00)]. (3.242)
At order A=2 no operators are relevant for the lepton masses. We have 4 + 11 + 19 = 34
operators at order A3, four with EC°® L ~ 1, eleven with E°® L ~ 3 and nineteen with
E‘® L ~ 5, see Sec. [F.2] In general these operators give a mass for e and also corrections
to m, and m,. All these operators are suppressed at least as A}, due to (3.226) and (3.24]),
thus we could ignore the effects on the PMNS matrix.
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Figure 3.9: Scheme of the contributions to the PMNS matrix from the charged
lepton and neutrino sector.

3.6.5 PMNS matrix summary

We want to summarize the results discussed above, in particular the order of magnitude
of the mixing angles. Each angle has four contributions at NLO, as shown in Fig. [3.9
These corrections come from:

e the neutrino matrix U,, which is obtained from

1 the neutrino lagrangian (3.I5I) (with y4 = 0), using (¢,r) evaluated at NLO
3:225);
2 the effective operators for neutrino masses, defined in the Dirac (3.229) and

Majorana (3.232) lagrangians, using (¢, r) at LO, see Eqgs. (3.2I8) and (3.219);

e the charged-lepton matrix Uy, which is obtained from

3 the Yukawa lagrangian (3.238), using (xr) at NLO (3.228);
4 the effective operators for charged-leptons masses (F.9a),(F-I0) and (F.I1), with
(xr) and (¢, r) evaluated at LO, see (3.2I8), (3.219) and (3.222).

In this model the LO prediction for Upyns is the Golden Ratio matrix, which has 613 = 0,
a maximal atmospheric angle and a non-trivial value of 6;2 (see the discussion after
Eq. @7I9) in Chapter ). Only at NLO the reactor angle acquires a non-zero value as
summarized above. Using the formula for sin? ;5 as a function of the neutrino flavons
vevs, Eq. (3.I87), and the corrections from U, we get

— * *
2l T2 (i) ¥
2 msy  miz) A
where sinf = O(\¢), see Eq. (3:226), and V/A is O(A\%), see Eq. (3:24]). Thus we expect

that the phenomenology of 6,3 is the same as As ® CP assuming O(1) coefficients in M,.
The atmospheric angle 63 receives corrections at order A3, as discussed above

2

sin? 03 ~ (3.243)

1 4+2 Im{(V/A 5015

sin? 03 ~ = |14 1/ 7 sing m{ (V/A)(migmaz + m;2m33)m22m33} (3.244)
2 5 |magamss|
hence to get 03 # m/4 we need large coefficients in M,. The solar angle 65 is
: 3—¢ sin 1 <m12 mig > V]
2

sin” 619 ~ 1+ - + +cec | |- 3.245
2 5 [ 5 V10 \maa  mg3 A ( :
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Note that the sum rule between the solar and reactor angles, defined in (3.6), is broken
by the quantum corrections. Using the above relations we could obtain a mixing pattern
that is in agreement at the level of 30 with the current experimental data: 03 # 7/2 and
913 ~ 9°,
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New Physics at Neutrino Facilities

After the discovery of the non-vanishing reactor mixing angle 613 in 2012 and its mea-
surement in the Double Chooz [39], Daya Bay [40] and RENO [41] reactor experiments,
experimental efforts in the neutrino sector are now devoted to establishing the presence
of C'P violation in the lepton sector, the neutrino mass ordering and the absolute mass
scale.

The large value of the reactor angle, 613 about 9°, allows to search for the C'P Dirac
phase § in Long Baseline (LBL) neutrino experiments, such as Tokai to Kamioka (T2K) [35],
NOvA [138] and in future LBL experiments such as Hyper-Kamiokande [42], the Deep Un-
derground Neutrino Experiment (DUNE) [[169] and the proposed ESSvSB [170].

The observation of 28 electron neutrino events in T2K [35] confirmed the v, — v, transi-
tion at more than 70 and provided a first weak indication for the value of the C'P Dirac
phase 4. In fact, a combined analysis of the appearance and disappearance channels
in T2K, which also includes the reactor constraints on the reactor angle [171], disfavors
d/m € [0.15,0.83] for NO and [—0.18,1.09] for 10 at 90% CL, with a best fit point around
maximal C'P violation, § ~ 37/2. This shows the large increase of sensitivity in the de-
termination of § when performing a combined analysis of reactor and super-beam data,
see Refs. [45,[47,[48, 110].

The strength of such a procedure can also be used to test the presence of physics beyond
the Standard Model (SM) in the neutrino sector that affects neutrino oscillation proba-
bilities, and to investigate its impact on the determination of the standard oscillation
parameters. This analysis was performed in Ref. [172].

In this Chapter, we consider two possible scenarios, discussed in Section @, in the
effective field theory approach: the so called Large Extra Compactificated Dimensions
(LED) model, where sterile neutrinos can propagate in a larger than three-dimensional
space whereas the SM left-handed neutrinos are confined to a four-dimensional space-time
brane; and Non-Standard Neutrino Interactions (NSI), where the neutrino interactions with
ordinary matter are parametrized at low energy in terms of effective flavour-dependent
couplings. In Section [d.2] we discuss the statistical procedure adopted in our analysis while
in Section [71;3] we show our results assuming SM, LED or NSI oscillation probabilities.

4.1 Effective Theory

In this Section we want to review the two models and their impact on neutrino oscillation
probabilities. In our work, following similar analysis performed in Refs. [173l|174], we use
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an effective field theory approach, which means that the theory is valid up to a certain
energy scale A. We assume that this scale is far from the usual electroweak scale, i.e.
A > my, and we can write an effective lagrangian .Z¢// that contains the effect of New
Physics for each specific model. In both models we can consider the effect of NP on
oscillation phenomena as a perturbation of the SM neutrino amplitude

A(va = vg) = Asm(Va — vg) + 0 A(va — v3). 4.1)

41.1 Large Extra Dimensions

This is a model of sterile neutrinos that propagate in LED giving rise to Kaluza-Klein (KK)
modes. The Standard Model LH neutrinos are confined to a 4D spacetime brane [[175-177].
In this case the right-handed neutrinos, as gravity, can propagate in the bulk.

There exist several bounds on the number of extra dimensions in the context of LED
from astrophysics experiments [[167]. We focus our attention to a 6D picture. The extra
dimensions are compactified, the fifth (sixth) is a circle of radius R (R'). We use, in
practice, a 5D approach, because we consider the limit R > R’ [1784182]. From torsion
experiment on Newton’s law we have the following bound on the radius [183]

R <37 pm @ 95% CL. (4.2)

We consider a framework where we have a Dirac mass term for the three active neutrinos.
This model is often indicated as the (3,3) LED model. The action of 5D massless bulk
neutrinos ¥(z,,y), interacting with the standard LH neutrinos v, is

S=i / d'z dy T (2, y)T 40 U (2, ) + / Az [TEIVE + AagHPU (@4,0) + he| + Sy
(4.3)

where I'y are the Dirac matrices in five dimensions A = 0,1,2,3,4, A\,3 the Yukawa cou-
plings and H the Higgs doublet. S; is the part of the action responsible for neutrino
interaction with matter. After electroweak symmetry breaking the neutrino mass ma-
trix can be extracted from the Lagrangian. Following the conventions of Ref. [184] the
effective lagrangian in 4D is

LAL = L + Lec (4.4)
where
=k
Z mag{ Vs, Lva R + \[Z Va Lu } + Z Z Eﬁgf)LuaI% (4.5a)
o k=1
Loo = ﬁ ;eaw(n — ) Wi+ hee. (4.5b)

Here we have indicated with o = e, u, 7 the flavour eigenstates, ¢ = 1,2,3 the mass eigen-
states and k£ € N\ {0} the KK modes. In this lagrangian the zero mode is the SM left-
handed neutrino and the KK modes are the particles of New Physics. The matrix mqg is
the Dirac mass matrix.

In this framework y(k% and y(kg% are massive linear combinations of the bulk fermion

fields, which are coupled to SM neutrinos 1/( )
To evaluate the probability amplitude A(v, = yﬁ) in this model we need to know the mass

(k)

eigenstates m;" and the matrix elements of transition between the zero mode and the

tower of KK states Wj(k). In Appendix |G| we report further details about the evaluation of
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these terms. This diagonalization can be done by a unitary transformation with respect
to the active flavours

VSB-J = Z UaiVZ'((B (4.6a)
v (? Z Rmy (4.6Dh)
aR_ZRM zR k=1 (4.6¢)

where U,; are the PMNS matrix elements. The condition

N UlimagRe; = 69 M <= (UTmR) , = ding (M,z') 4.7)

must be satisfied. Notice that this is not a matrix product, but only a condition on matrix
elements. In this model the oscillation amplitude is

())2
(N)L

SRPE, (4.8)

1

Ok 0k
Alva > vg) =) Z UaiUp;W; )VVI(J )
i, k=0

In vacuum we have a diagonal matrix element of transition, W;; o d;; (see Appendix ,
thus we get

A(vg = vg) = ZZUWUB]WV 2 exp |i-=2

— 4.
j k=0 2R°E, @

Thus the probability is

() 2y () (A7) = ()’

- * * 2 2 -\ 7 ?

Plva = vg) = [A(va = v3) ‘ ;k; UajUsiUsiUs W P 2 exp lz ST L].
(4.10)

This means that the SM probability is slightly modified by the extra dimensions, in fact the
mass of new particles is heavier than zero modes and the matrix elements are suppressed:

Wj(kzl) ~ k=1, We can recover the SM probability in the limit of R,mo — 0, as shown in
Fig. 4.4, for the channel v, — v, for a baseline of L =295 km and E, =1 GeV.

The deformed probability depends on two parameters: the radius R of the extra dimension
and the mass of lightest neutrino mgy through the dimensionless perturbative parameter
¢, defined as ]

& =V2Rm;, j=1,2,3. (4.11)

In the case of reactor experiments, the above-mentioned procedure allows to calculate the
LED contribution to the total amplitude A(v, — vg) = Asm(Va — vg) + SALED (Ve — v3) as
discussed in [184]
SALED (Ve = Ve) = & |Uar|* + & |Ueal® + & [Ues|*
~ 5% cos? 015 cos® 013 + 55 cos? 013 sin? 015 + 532, sin? 013. (4.12)

In the NO case (m3 > ma > mi = my), 0ALED(Ve — Ve) is dominated by the last term,
in fact fg x m%, and thus suppressed by the small reactor angle 6;3. For the 10 case

(k=0)

'Notice that m; = =m; , which are the mass eigenstates that we observe in current experiments.
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Figure 4.1: In this plot we show the limit R — 0 for the LED oscillation probabilities
assuming NO (dashed green) or IO (solid purple). These reproduce the SM probabili-
ties for both mass ordering (small dashed lines). The LED probabilities are obtained
for a baseline L =295 km, mg =0 eV and E, =1 GeV.

(mg > my1 > m3 = myg) the first two terms dominate the amplitude and no suppressing
factor is at work; we then expect the IO scenario to give us better constraints on IR and
mg than the NO case. The situation is quite different for the v, — v, and v, — v, channels.
Indeed for the disappearance channel we have

2 2 2
5ALED(VM — Vu) = 5% ‘Uu1| + fg |Uu2| "’5?2, |Uu3’ =
~ f% c0s? O93 sin® 015 + f% cos? 015 cos? a3 + 532, cos? 015 sin® O3+

+ 2(5% — 5%) cos 015 cos 053 sin B15 sin H13 sin fa3 cos § + (Q(Sim2 013) (4.13)

and, due to the absence of the sinfj3 suppression in the gg term, we do not expect a
significant difference in sensitivity between NO and IO. This channel is also expected to
give better constraints than the v, — v, appearance one; in fact, in this last case the
amplitude reads

SALED (Vy = Ve) = GUa Uy + EUeUy + E3Ues Uiy ~
~ ({% - 5%) c0s 019 sin 015 cos 013 cos O3 + 532, sin 013 cos 013 sin 023671’64‘

— sin 013 sin 053 cos nge_i‘s(f% cos? 019 + f% sin? 012) (4.14)
and every term is suppressed by either &2 — ¢2 oc Am3; or sinf3.

The global effects are reported in Fig. @ for the channels 7. — 7, and v, — v, as a
function of the neutrino energy. In our numerical study we used only the first five KK
resonances since the effects for more particles is meaningless.

4.1.2 Non Standard Interactions

In this Section we want to describe a model of interaction for neutrino in the low energy
regime called NSI which can describe NP effects in a model independent way. The im-
portance of NSI in the context of neutrino oscillations has pointed out in [185] and there
exists a large literature about this topic, see Ref. [I86] for a recent review. We follow the
conventions of Ref. [I87] (see also Refs. [I73|174] for a similar analysis).

If we consider only lepton number conserving operators, AL = 0, the most general NSI
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Figure 4.2: Probability of oscillation as a function of the neutrino energy in the
channel 7, — 7. at L =1 km (left) or v, — v, at L = 275 km (right) using the LED
probabilities. These are obtained fixing mo =0eV, R = 0.5 um, § =0, sin® 2613 = 0.09,
sin? 015 = 3.08x10~2 and Am3, = 7.54x10~° eV?. For NO we use Am3, = 2.5x1073 eV?
and sin?fy; = 4.37 x 1072, while for 10 Am3, = —2.3 x 1073 eV? and sin®fy3 =
4.55 x 1072,

effective lagrangian reads
L = Brin+ Lsip+ Lr (4.15)

where the subscripts indicated the Lorentz structure of the operator

Lyia = 3; >0 (EUViA)i’éN [’/M”(ﬂ - 75)%] [f/%(ﬂ + 75)f] +
o8 £.F

T 32 >, (57\7/11A)£ﬁ [Vm”(ﬂ - %)Ea] [f%(ll + %)f] (4.16a)
B f.f

Lsrp = G\/g > (%ip)i’g/ [V,B(]l - 75)54 [f/(]l T 75)f] (4.16b)
a8 f.f

2= LSS @l oot (ot . (4160

B f.f

Here « is the index of generations, o = {e,u, 7} and f, f’ are the component of an arbitrary
weak doublet which is a partner of the neutrinos. In the tensor operator o, = i[v,,7-]/2.
The dimensionless tensor € in flavour space gives the strength of non-standard interaction
relative to G, the Fermi constant. The superscript v stands for vacuum effects and m for
matter effects. We expect that these effects are suppressed as

2
| ~ W (4.17)
m2
NSI

where mygr is the typical mass of New Physics, myst < A and A is the UV cutoff scale.
Since there are many free parameters to constraint, we can use several arguments in
order to reduce their number [187]:

1. In experiments for neutrino oscillations in vacuum we can set f, f' = u,d, therefore
we can write (ev)éé = (&")ap without loss of generality. The same consideration holds

for matter oscillations, so that (z—:m)ig = (e™)ap-
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2. For the non-standard matter effects only couplings to electrons, up and down quarks
are important.

3. The lepton 7 in detector beam source can be neglected because 7 production is almost
impossible in reactor and beam experiments, thus (e{.4) 5 = (€44p), 4 = (€7),5 =0
for all 8 = {e,u,7}. For the same reason we can neglect muons in reactor experi-
ments and electrons in superbeam since they are the subdominant background.

4. In muon interaction there is still room for non (V — A)(V — A) interactions [188].

5. Tensor interactions are forbidden in pion decay because the operator must have a
parity odd in the interaction.

6. In the detection processes involving muons the (S + P)(S + P) and TT interactions
are suppressed by a factor m,/E, = O(1073) for neutrino energy of O(1) GeV. We
also neglect possible interference effects that can strongly modify the oscillation
amplitude.

7. Interaction of the type (V —A)(V + A) may in general be important in cross sections,
so we cannot neglect them.

8. The measurements of angular distribution in nuclear § decay strongly constrained
the TT and (S + P)(S + P) operators, thus we can set (57§ip)65 = (¢f),3 = 0 for all

B ={e u,1}.

9. In electron interactions there is still room for (V —A)(V 4 A) operators with electrons
because these terms are chirally suppressed, thus the coefficient could be large. It
is possible to obtain bounds on the effective axial and vector couplings using proton
and neutron data, but due to the fact of non perturbative nature of low energy QCD
these are strongly model dependent, see Ref. [L89].

Using these arguments we can write a more compact expression for the oscillation prob-
ability in vacuum because we consider only interactions with (V — A)(V £ A) Lorentz
structure. Therefore in our analysis effects of NSI can appear at low energy through
vacuum couplings, defined as £p 5 = €0 = |eag| exP idag-

Notice that these new couplings can affect neutrino production and detection [[10,[I190L[191],
so the neutrino at production s and detection d states are a superposition of the orthonor-
mal flavour eigenstates |v,), see for instance Refs. [186,192,193]]. We have

i) =1lva) + Y ehglvs) = [(1+ss)|u>]a (4.18a)
B=e,u,T

Wil = (sl + Y elglval = [<u|(1+ad)]ﬁ. (4.18b)
a=e,[L,T

The oscillation probability can be obtained by squaring the amplitude (Vg|e_iHL|u3>, where
H is the hamiltonian in the mass eigenstates basis:

2

Pvs = v) = [(vhle T H ) = '(1 +e%y5(e7 ) (14 )as (4.19)

We can obtain a numerical expression for the probability but is more useful to introduce a
perturbative formalism to understand the dependence of NP on the parameters. All those
expressions are reported in Appendix Notice that the states |v3) and (zxg, in general,
do not form a complete set of states, so the norm is not automatically set to one

D wal #1 WSl #£as D WAWEI AT (VYA # dap. (4.20)
o B
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This implies effects which occur when L = 0, they are the so-called zero distance effects.
In this way the disappearance channel may have large deviations with respect to the SM
prediction.

For e,p there exist model independent bounds, derived in Ref. [194], which at 90% CL read

< 0.013 .
(4.21)

lcee| < 0.041, |eeu| < 0.025, |eer| < 0.041, [e59] < 0.026, |e5d] < 0.078, [e5d

For a more recent review on the NSI bounds see for instance Ref. [195]. In Fig. @ we
show the P(v. — v.) and P(v, — v,) oscillation probabilities. The effect of NSI is shown
for a particular choice of the parameters.

0.09
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\ — 0.06|
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T 085 Ti ol
By N 0.04»;,;: -
S~ o 1 N
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Figure 4.3: Probability of oscillation as a function of the neutrino energy in the
channel v, — v, at L = 1 km (left) or v, — v, at L = 275 km (right) assuming
NSI probabilities obtained fixing § = 0, the mixing angles sin® 26,3 = 0.09, sin® 65 =
3.08 x 10~2 and sin? fy3 = 4.37 x 102, The mass splittings are Am3, = 7.54 x 10~ eV?,
Am3, = 2.5 x 1073 eV?. For NSI-I we fixed €5, = €ep = €er = 1072 and all the phases
are zero, while in the case NSI-II e., =4 x 1072 and ¢., = 0.

4.2 Statistical Analysis

In this Section we want to summarize the main features of the T2K and Daya Bay exper-
iments and the statistical procedure that we use in our study. We analyze the data using
a modified version of the software GLoBES , see Refs. [196,[197] as well as the documenta-
tion at the following URL: https://www.mpi-hd.mpg.de/personalhomes/globes/index.html.
The software is designed to simulate the oscillation experiments taking into account all
the systematics and uncertainties.

42.1 T2K Experiment

T2K (Tokai to Kamioka) is a long-baseline neutrino experiment in Japan, and is studying
neutrino oscillations. The T2K experiment sends an intense beam of muon neutrinos from
Tokai, which is on the east coast of Japan, to Kamioka at a distance of Lgx = 295 km in
western Japan. The neutrino beam is made in collisions between a proton beam and a
graphite target; these collisions produce pions, which decay to muon neutrinos H

2Technical details are available at http://t2k-experiment.org/t2k/
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Super-Kamiokande J-PARC
I Near Detector 280 m

| 1000 m

Neutrino Beam

295 km

Figure 4.4: Schematic layout of T2K experiment.

T2K studies neutrino oscillations with two separate detectors, both of which are 2.5 degrees
away from the centre of the neutrino beam. The ND280 near detector is Lypagg = 280 me-
tres from the target, and measures the number of muon neutrinos in the beam before any
oscillations occur. The off-axis configuration allows to obtain an almost monochromatic
neutrino energy by the relation E|

mZ —m2
~ 0.68 GeV (4.22)

E, =
2 (E7r — D COS (9)

where 0 is the angle respect to the neutrino beam, and the numerical value is the energy
peak, at pr = mycotd. In the left panel of Fig. @ we report the neutrino energy E, as a
function of the pion momentum p, for different axis configuration.

1.2

®,[a.u.]

E, [GeV]

Figure 4.5: (Left) Energy of neutrino products by pion decay as a function of pion
momentum. Are reported several angles, in red the off-axis configuration at T2K.
(Right) Flux of T2K experiment as a function of neutrino energy for various flavour
for Run I+II, data taken from [19§].

For the analysis we used the public data for the disappearance channel [34], for the ap-
pearance ones [35] at the far detector and the data collected at the near detector [19§].
During Run I-IV in disappearance Super-Kamiokande (SK) has 120 events and 28 in ap-
pearance, see Ref. |34, 35] while the ND280 has collected 17369 events of CCQE with zero
pions in the final state [198]. Important parameters of the experiment are the fiducial
mass of near and far detectors. We have [

F Mnpago = 1529 kg F Mgk = 22.5 kton. (4.23)

The measured event rates at the near detector have been estimated rescaling the non
oscillated measured event rates at the far detector using the scale factor L%K/L%\ID%O X

3The neutrinos are mainly produced from pions and kaon decay. In the off-axis configuration the pions
are the most relevant contribution.
*Private communication, see Ref. [199].
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F Mxpaso/F Msk, i.e. we use Gauss theorem for the flux of the experiment, constrained
with the 17369 observed events. The neutrino flux has been estimated from Ref. [198], see
the right panel in Fig. E] We normalize all the events with a bin-to-bin normalization
constant, NJ‘?', extracted using the T2K best fit for each channel.

The energy bin pre-smearing is performed assuming a resolution function of gaussian
form

(4.24)

e 2= o[ BB

exp | —
opV2m P [ 20%3

where E, is the energy after the smearing processes. The energy resolution is assumed
to be [200]]

0B _ 0.085 GeV

4.25
B, z, (4.29)

This value is based on the programmatic report of T2K [201]. In our simulation we see
that this values does not influence the analysis since the main contribution comes from
the normalization of each bin N]d, extracted from the best fit. Besides other functional
dependences for op give us consistent results. The post-smearing efficiency is evaluated
in the same way.

All these effects are subleading because of low statistics, but can be important when we
combine the analysis of T2K with other experiments, as for example the reactor Daya Bay
experiment.

We have simulated the systematics of the experiment, which are summarized in the upper
panel of Tab. [4.3] All the o’s are the standard deviations of the systematic parameters,
which are expressed as gaussians with zero means. The parameter o, contains the sys-
tematics uncertainties in the c-th channel, corresponds to (o,,,0,,) = (8.8%, 8.1%), which
values extracted from Table II of Ref. [35] and Table I of Ref. [|34]], oq, is the fiducial mass
uncertainty for the d-th detector (cq, and oq, have been estimated to be of the order of
1% for the far and the near detectors similarly to [202]), ag and ay are free parameters
which represent the energy scale for predicted signal events with uncertainty o,, and
Oans> (Oags Tay = 1% [203]).

4.2.2 Daya Bay Experiment

The Daya Bay (DB) Reactor Neutrino Experiment is a China-based multinational particle
physics project studying neutrinos. It is situated at Daya Bay, approximately 52 kilo-
meters northeast of Hong Kong and 45 kilometers east of Shenzhen. At present time
the experiment consists of eight Antineutrino Detectors (AD), clustered in three locations
within 1.9 km of six nuclear reactors. Each detector consists of 20 ton of liquid scintilla-
tor (linear alkylbenzene doped with gadolinium) surrounded by photomultiplier tubes and
shielding. [f

The Daya Bay experimental setup that we take into account consists of six reactors [40],
emitting 7.. The flux of arriving 7, has contributions from the isotopes 235U, 238U, 239Pu,
and ?*'Pu, with weights reported in Tab. whose spectra have been recently estimated
in Refs. [2035206].

The total flux of arriving v, at the six ADs has been estimated using the convenient
parametrization discussed in Ref. [205] and taking into account all the distances between

®Available at| http://t2k-experiment.org/results/nd280data-numu-cc-inc-xs-on-c-2013
®Further details can be found at http://dayabay.ihep.ac.cn/twiki/bin/view/Public/
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Figure 4.6: Schematic layout of DB experiment, from Ref. [204].

235U 238U 239Pu 241 Pu

ADl 633 122 195 4.8
AD2 63.3 122 19.5 4.8
AD3 610 12.5 21.5 49
AD4 615 124 215 4.9
ADS 615 124 21.5 49
AD6 615 124 21.5 4.9

Table 4.1: Ratio of 7. from isotope in percentage. See the presentation at NuFact
2013 by S. Jetter (1ink).

the detectors and the reactors, see Tab. 4.2] For this analysis we use the data set accu-
mulated during 217 days extracted from Fig. 2 of Ref. [207]. The antineutrino energy E,
is reconstructed by the prompt energy deposited by the positron E,ompt using the approx-
imated relation [40] E, ~ Eyompt + 0.8 MeV. The energy resolution function is a Gaussian
function, as discussed in the case of the T2K experiment, see @, parametrized accord-
ing to

E, <1.8 MeV

o= {%/E/Me\/ 0.8 E, > 18 MeV (4.26)

with v = 0.08 MeV. The cross section for the inverse beta decay (IBD) 7. +p — e™ +n
process has been taken from Ref. [208].

We use the following systematics, see Tab. [4.3] for a summary. The parameter o. is
the reactor flux uncertainty (0. ~ 3%), the parameter o, is the uncorrelated detection
uncertainty (o4 = 0.2%) and o, is the background uncertainty of the d-th detector obtained
using the information given in Ref. [207]: op, = op, = 8.21, op, = 5.95, o, = 0B, =
o, = 1.15 and o, = 0.8% is the correlated reactor uncertainties. The corresponding pull
parameters are (g,eq,N4,r). With this choice of nuisance parameters we are able to
reproduce the lo, 20 and 30 confidence level results presented in Fig. 3 of Ref. [207] with
high accuracy. The differences are at the level of few percent (see for instance Tab. I and
Tab. II of Ref. [173] where this analysis was already performed).
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D1 D2 L1 L2 L3 14

ADlI 362 372 903 817 1354 1265
AD2 358 368 903 817 1354 1266
AD3 1332 1358 468 490 558 499
AD4 1920 1894 1533 1534 1551 1525
ADS 1918 1892 1535 1535 1555 1528
AD6 1925 1900 1539 1539 1556 1530

Table 4.2: Baselines from antineutrino detectors AD1-6 to reactors D1, D2, and L1-4
in meters, the data are summarised in Tab. 2 of Ref. [40].

4.2.3 Definition of Ay?

We introduce the systematics in the signal through priors and we perform a minimization
of these in the x? using the software GLoBES [196,197]. Our analysis is performed by the
so-called pull method, see Refs. [200,209]. We construct the total x? as the sum of T2K,
XAox> and DB, x5, contributions

X*(6) = min [XFok (6; p) + xD(6; p)] (4.27)

where 6 = {sin2 613, sin? 093, 0, Amgl} is the vector of parameters that we want to estimate
and p is the vector of the fifteen systematics considered in our analysis and discussed
above. See Tab. for a complete list. In the following O;i is the observed event in the
j-th bin of detector d and Tjd is the test event. The test events rate in each energy bin, of
width AEj, is calculated using GLoBES by the relation

1
TJd(O,p) = Nd/ ) dE @, (E)P(ve — vp)(E;0)0,,(E)e(E) (4.28)

where ®,, is the neutrino flux, P(v, — v) the probability of oscillations, o,, the cross
section of the processes and e the detector efficiency. As discussed above de is the nor-
malization, which is extracted from the best fit in the case of T2K, or from the unoscillated
events in the case of Daya Bay. In the x? the sum is performed over all c-th channel and

d-th detectors.

The T2K x? is given by a Poisson function [203]

bzns

Xk (0; p) = ZZQ

c=1 i=1

Of¢
07 —T5(0,p) - (1 + pc + €2) + Of log -

T5(6,p) - (1 + pe + €2c) "

Mhins

+> 2

1=1

ON
OlN—TNO,p- 1+p1+p2+Qn +OlNlog L
i (8.0 ) TN(0,p) - (1+p1+p2+ Q)

QQ
+ Z ( + ) + TN + Priors (4.29)
Pd g

Qn

where ng; . is the number of bins in c-th channel at SK, while né\i[ns at ND280.

The Daya Bay x? is a gaussian function. Its definition can be found in Ref. [40]

6 26 d d
Of —T7(0, l+e+ Y, wla, +e4) +
Xba(0;p) = [ (6.0) Od+; )+ +—+§
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Name Pull Error Value Reference

Appearance Systematic o1 o, 0.088 139]
Disappearance Systematic  ps Ty 0.081 [34]
Fiducial mass SK T Q4 oq, 001 (202]
Fiducial mass ND280 T Qy oq, 0.01 [202]
Energy SK T ag  0a, 001 [203]
Energy ND280 t an Oay 0.01 [203]
Reactor Flux € O¢ 0.03 [207]
Uncorrelated Energy €d o 0.02 [207]]
Correlated Energy © Q oy 0.08 [1207]
Background ADI1 m oB, 8.21 1207]
Background AD2 2 0B, 8.21 [1207]
Background AD3 73 0Bs 9.95 1207
Background AD4 N4 0B, 1.15 [1207]
Background ADS 5 O Bs 1.15 [207]
Background AD6 M6 O Bg 1.15 [1207]

Table 4.3: Systematics uncertainties used in our simulation for T2K (upper panel)
and DB (lower panel). The values taken from T2K collaboration are estimated for
sin2(2913) = 0.1 by Monte Carlo simulation. The values with T instead, are consid-
ered in a conservative scenario. The value with © is obtained at E, ~ 1 MeV.

2 2
i M

-y

d=1

+ Priors (4.30)

04 9B,

where O¢ are the measured IBD events of the d-th detector ADs in the i-th bin, B
the corresponding background. The parameter w? is the fraction of IBD contribution
of the r-th reactor to the d-th detector AD, determined by the approximated relation
wd ~ L;dz (8, 1/L?,), where L,4 is the distance between the d-th detector and the r-

th reactor which are reported in Tab. [4.2]

42.4 Priors

In our analysis we marginalized over the parameters not shown in the plots, unless
explicitly stated. In particular we considered 63, #23, § and Am§1 as free parameters
completely unconstrained; we used gaussian priors on the solar mixing angle and mass
difference defined through the mean value and the lo error as follows: sin® 619 = 0.306 +
20% and Am3, = (7.64+5%)x107° eV?, according to Ref. [110]. The software GLoBES searches
for the parameters in the allowed 30 range using a gaussian distribution. The same scan
is performed for the nuisance parameters quoted in Tab. 4.4

The NSI parameters are considered as free parameters constrained by the upper limits,
Eq. (.2I), while in the case of LED we impose the additional constraint to be in the
perturbative regime, i.e. {; < 0.2 and R fulfils the condition (4.2).

4.3 Results

In this Section we want to summarize the main results of our procedure. In particular in
Section [4.3.1) we discuss the analysis performed using the T2K @ Daya Bay data for the
standard oscillation parameters assuming SM, LED or NSI oscillation probabilities. In the
Sections [4.3.2] and [4.3.3] we discuss the bounds that we obtained for the NP scenarios.
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4.3.1 Standard oscillation parameters

We show our results for SM oscillation probabilities in Fig. 4.7 after performing a com-
bined fit to the Daya Bay [207] and T2K [34}35] data. We show the lo, 20, 30 confidence
regions of Ax? = x2 — x2. for 1 degree of freedom (dof) in the (§,sin?6;3), (J,sin? fa3),
(sin? 13, sin? f3), (Amgl,sin2 023) and (Am%l,sim2 2013) planes in the case of NO (I0) with
dotted, dashed and solid lines (red, orange and yellow), respectively. We cut the x? at 1
dof as done in Ref. [110] in order to easily compare our results.

The obtained best fit points are indicated with a circle for NO and with a cross for 10. The
figures have been obtained using the standard oscillation probabilities relevant for the
Ve — Ve, vV, — Ve and v, — v, channels (these were computed using the software GLoBES )
see Appendix [A] for the appropriate formulae.

The obtained best fit points and the 30 confidence level regions are summarized in Tab.
[E} The results that we obtained are in agreement with Ref. [110] and we observe that the
recent hint for maximal C'P violation in the leptonic sector, § ~ 37/2, is achieved mainly
using the latest Daya Bay and T2K results, however due to the low statistics of the T2K
experiment these results are very preliminary.

Notice that the definition sz that we use is based on Wilks’ theorem, which is not ap-
plicable to discrete choices (such as NO vs 10, see for instance Ref. [210]) or to cyclic
variables (such as the Dirac C'P phase §, see a detailed discussion in the global analysis
of Ref. [48]). In the hierarchy tests, it has been observed that the above Ax? prescription
is useful to investigate the statistical difference between normal or inverted ordering
with good approximation [211]. For C'P violation tests, the prescription appears to lead (in
general) to more conservative bounds on §, as compared with the results obtained from
numerical experiments, see Refs. [212,213].

As it can been seen from Fig. [£.7] and in Tab. [4.4] the differences between the two mass
ordering schemes is small and therefore the hierarchy cannot be established. We would
like to remark that our results are in agreement with the ones obtained with a more so-
phisticated technique taking into account all the available data from neutrino oscillation
experiments in [45,47,/110], see also the analysis performed by the T2K Collaboration in
Ref. [I71].

SM LED NSI

Parameter Best-fit 30 range  Best-fit 30 range Best-fit 3o range

2511000 2.34—2.69 2537000 2.37—-2.73 2567000 2.31—2.74
2547008 237 —2.73 2547007 235 -2.71 2567008 2.32 — 2.77
53706  40-63 53705 41-63 52708  38-6.5
53702 41-62 53757  41-63 52708 3.9-65
23705 1.6-30 23757  14-30 3979 07-51

|Am3, /1073 [eV?]

sin® 923/1071

s 02 -2
sin”013/10 24102 16-30 22f)7 13-29 3870° 07-51
5/ 1.5370:32 - 1477032 - 1.65%0:22 -
i 1.48+036 : 1.59+030 - 1.3510 1 -

Table 4.4: Best fit (£10) and 3o errors of the standard parameters obtained in the fit
of T2K @ Daya Bay data, using the SM, LED and NSI probabilities. If two values are
given, the upper one corresponds to Normal Ordering and the lower one to Inverted
Ordering.
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Figure 4.7: Best fit points and 1o, 20 and 30 confidence region obtained from the T2K
and Daya Bay data using the SM oscillation probabilities in the planes (§,sin’6;3),
(6,sin? B3) and (sin? f;3,sin” fa3) (upper panel), (Am3,,sin®26;3) and (Am3,,sin? fy3)
(lower panel) in the case of NO (IO) with dotted, dashed and solid lines (red, orange
and yellow), respectively. The best fit point is marked with a circle for NO and a
cross for 10.

We show our results in Fig. [4.§] for LED and in Fig. [49] for NSI after performing a
combined fit to the Daya Bay and T2K data. Fig. and Fig. have been
obtained using the LED and the NSI oscillation probabilities relevant for the interesting
channels, see Section |4.1.1] for LED and Section for NSI. The obtained best fit points
and confidence level regions at 30 are summarized in Tab. .4 for both models.

We show the best fit points, a circle for NO and a cross for 10, and the 20, 30 confi-
dence regions for 1 degree of freedom (dof) in the (,sin? 613), (4, sin? fa3), (sin? O13, sin? fa3),
(Am3,,sin? fa3) and (Am2,sin? 2613) planes assuming NO (I0) with dashed and solid lines
(orange and yellow), respectively.

We do not show the lo confidence regions due to the low sensitivity in the NSI case to the
CP violation phase as it can been understood from the one dimensional projections of the

Ax? = x? — x2,,, function, shown in Fig for NO and in Fig. for 10.

The presence of LED parameters in the oscillation formulae does not affect too much the
shape of the contours, see Fig. [£.7 and Fig. [£.8 as well as Tab. [£.4 in this respect, the
importance of including the T2K data in our analysis is mainly visible in the determina-
tion of Am§1- In fact, in the analysis of the Daya Bay data only performed in Ref. ,
the 30 confidence region for the atmospheric mass splitting was roughly 5% larger with
respect to the SM determination, whereas in the present analysis this difference is re-
duced to roughly 1%. The reactor angle 63 is strongly constrained from the Daya Bay
data, see Ref. , and it is very close to the SM result as shown in the one dimensional

projections of Ax? in Figs. and

In the NSI scenario the presence of the new complex couplings ¢,5 enlarges the confi-
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dence regions of the standard oscillation parameters and, in particular, reduces the hints

for maximal CP violation since the whole [0,27] range for the Dirac phase ¢ is allowed

at 20 confidence level, see the one dimensional projections in Figs. 4.10[ and 4.11

This effect is caused by the new sources of the C'P violation, encoded in the unconstrained
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phases ¢4 in the oscillation probabilities, see Appendix [H| for the relevant probabilities.
A large effect is also found in the determination of the reactor angle 6;3. Indeed, in the
NSI case, the 30 confidence region of sin?#;3 is roughly twice as large as in the SM case,
as can be observed from Tab. 4.4 The main reason for such a behaviour is the strong
correlation among the reactor angle and the NSI parameters: for large enough ¢;,, and/or
€eu,r (and an appropriate choice of the related C'P phases), huge cancellations can occur
with the standard part of the probability, thus causing an increase of the allowed 6;3; the
opposite can also happen: positive interferences can decrease the expected value of the

reactor angle, see for instance Ref. [173].
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Figure 4.10: Ay? as a function of sin?6;3 (left panel), sin®#,3 (middle-left panel),
§ (middle-right panel) and Am2, (right panel) using the SM (solid blue line), LED
(small dashed orange line) and NSI (large dashed green line) oscillation probabili-

ties assuming NO neutrino mass spectrum.
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Figure 4.11: Same as Fig. , but assuming IO neutrino mass spectrum.

We can easily notice in the one dimensional projections, Figs. [.I0] and [.I1] that the
atmospheric mixing angle 633 is close to SM result for both models of NP. The same

happens for the mass splitting Am%l.

4.3.2 LED fit
We consider the bounds on the size of the largest extra dimension R after performing
a fit with the T2K data only or with a combined analysis of the T2K and the Daya Bay

data, our results are shown in Fig. [£.12] The purple horizontal dashed line represent the
expected sensitivity on the lightest neutrino mass from the KATRIN experiment [51]. In

Fig. [I2] we show the 20 and 3o exclusion limits with dashed and solid lines for NO
and with orange and yellow regions for IO neutrino mass spectrum. The circles and the
stars represent the 20 bounds obtained using the IceCube 1C-40 and IC-79 data set [214],

respectively, from which we have the following constraints: R < 0.54 pm (R < 0.34 pm )
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using the IC-40 (IC-79) data set at 1 dof ﬂ
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Figure 4.12: Exclusion regions at 20 and 3¢ confidence level for 1 dof with the
dashed and solid lines for NO and with the orange and yellow regions for 10 neu-
trino mass spectrum for the LED model in the (log,,(R),log,q(mo))-plane, where mg
is the lightest neutrino mass and R the large extra dimension size, obtained fitting
the data of T2K experiment (left panel) and the Daya Bay and the T2K experiments
(right panel). The circles and the stars represent the 20 bounds obtained using the
IceCube IC-40 and IC-79 data set [214] at 1 dof, respectively.

In our analysis we obtain an upper bound on the size of the largest extra dimension R for
T2K R <£0.93 pm for normal and inverted ordering at 20 CL and R < 0.60 ym for NO and
R <0.17 pm for 10 at 20 CL in the combined analysis. All these bounds are summarised
in Tab. We do not show the obtained best fit points for mg and R since the x? is almost
flat in the allowed region (white areas in Fig. [£.12), they are meaningless.

The T2K data we used in the analysis consist on 28 appearance events and 120 disappear-
ance events, but the relevant constraint in T2K on the size of the largest extra dimension
R comes mainly from the v, — v, channel, see (FF_I'SD and the relative discussion, which
is more sensitive. The combined analysis is dominated by the Daya Bay experiment, as
expected due to the higher statistics, see (.12) for 7. — v, and #.I4) for v, — v..

DB T2K T2K & DB IC-40 IC-79
Ref. [173] [172] 172 214] [214]
NO 057 0.93 0.60 0.54 0.34
I0 019 093 0.17 0.54 0.34

Table 4.5: Upper bounds on R in pm at 20 using different datasets.

4.3.3 NSI fit

Finally we analyze the bounds on the new couplings e,4 arising from the latest data of

the T2K and the Daya Bay experiments. In Fig. #.I3] we show the 20 and 3¢ confidence
regions for 6 = 0 for the zero distance terms in the v, — v, oscillation probability in

"We thank A. Esmaili, O. L. G. Peres and Z. Tabrizi for providing us the x? function of their LED analysis
with the IceCube data.
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which the NSI parameters not shown in the plots are set to zero. The relevant parameters
in P(v. — 7,.) are discussed in Ref. [173] (see also Ref. [195] for a recent review). The
results for other values of the C'P violation phase § are similar to the case § = 0 because
these couplings enter as a constant shift of the neutrino flux, see Appendix

1.0 ‘ — ‘ ‘ 1.0 ,
0.5} 0.5}
k : 8 :
S 0.0 : > 0.0 :
w 3 ! w I !
- ! hs) .
-0.5} —-0.5}
L85 =55 20 -15 -10 L8555 20 -15 =10
log; 557 log; Eiu

Figure 4.13: Allowed regions at 20 and 30 confidence level for 1 dof with in the
planes (g5, ¢;,) (left panel) (e}, ,, #;,) (right panel). The dashed vertical lines are
e, = 0.013 and ¢;,, = 0.078, see (4.21).

Similarly we show in Fig. the confidence regions for the other NSI couplings but
fixing 0 = 0,m,37/2 in the upper, middle and lower panels, respectively. As show in Fig.
the confidence regions depend on the choice of § because this parameter is not well
defined at 1o confidence level, as discussed above, see for instance Fig. and
for the one dimensional projections of Ax? For this reason we have to show the results
for fixed values of . The other parameters are marginalized over. Thus we can obtain
a bound for the absolute values of ¢,5 that are correlated to the values of the relative

phases ¢z, see Tab.

Gep/m /7 Upper bound @ 20 CL ¢;./m dJ/m Upper bound @ 20 CL

0 0 4.85 x 1073 0 0 6.28 x 1073
1 1 9.94 x 1073 1 1 9.96 x 103
12 32 3.50 x 102 1/2 32 3.12 x 102

Table 4.6: Upper bounds on the parameter ¢, and ¢, at 20 CL for particular choices
of the phases ¢, and ¢;,, and 4, the values are obtained from Fig.

For example at § = 0 in the range ¢, € [—1.41,1.33] we have ., < 0.025 at 30 CL (the
bound quoted in Ref. [194]), and for ¢., = 0 we obtain e., < 4.9 x 102 at 30 CL which are
stronger bounds respect to what found in Ref. [194]. However, for maximal C'P violation,
d = 37/2 we obtain a less stringent bound for the same parameter. The same analysis is
possible for e.. and e;,.. For this last parameter we obtain in the region ¢, € [~1.17,1.50]
that €7, < 0.026 at 30 CL (the bound quoted in Ref. [194]) and in particular for ¢ = 0 and

ne = 0.20 we have g/, < 6.2 x 1073 at 30 confidence level. Again the bound obtained
for § = 3w /2 is less relevant compared to the analysis of Ref. [194]. See Tab. for a
summary of the bounds that we obtained for the NSI couplings.
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Figure 4.14: Allowed regions in the (48, ¢og)-planes at 20 and 3o confidence level
for 1 dof and 6 = 0,7,37w/2 in the upper, middle and lower panels, respectively. The
vertical lines are at ec, = 0.025, e., = 0.041 and ¢;,, = 0.026, see (@.21).

4.4 Discussion

While the impact of LED on the best fit values and lo errors of the standard oscillation
parameters is almost negligible (the largest difference is found for sin? ;3 where the 3¢
LED confidence region is almost 10% larger than the standard model), this is not the case
for the NSI scenario, where particularly the allowed values of 613 and ¢ are different from
the standard determination. Indeed the lo confidence region for 6,3 is roughly six times
larger than the standard model analysis.

The situation is similar for the Dirac phase §, where the presence of new phases from the
NSI complex couplings ¢,5 reduces the sensitivity with respect to the standard physics.
In fact, although the best fit is still around the standard solution 6 ~ 37/2 (as found
in [45,47/48110]), the presence of NSI effects makes this value statistically less significant.
As for the bounds on the parameters of the LED and NSI models at 20 CL (1 dof), we have
found the following results:
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e using the T2K data only we obtain R < 0.93 pym for both NO and IO.

e in the combined analysis of the T2K & Daya Bay data we obtain R < 0.60 ym for NO
and R <0.17 ym for 10

o for [ec,| < 4.85 x 107 and ef,] < 6.28 x 1073 (for § = 0); |ecu| < 9.94 x 107% and
le5.] < 9.96 x 1072 (for & = 7).

Following the discussion of the previous Section, the current bounds on the NSI parame-
ters are expected to be improved after a better determination of the standard C'P phase J.
For the LED parameters, an effort must be done in order to constrain the absolute mass
mo and, consequently, the value of R.
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Conclusions

After the discovery of a non-zero reactor angle 6;3 in 2012 we are entering in the age of
CP discovery. However, from a theoretical point of view, we do not know yet the origin of
the lepton mixing and why the neutrino masses are lighter compared to others leptons.
The models of NP that we investigated in this Thesis deal with these topics. In particular
we analysed three different realizations of physics beyond the SM that are interesting for
neutrino phenomenology: generalized C'P symmetry, Large Extra Dimensions and Non-
Standard neutrino Interactions.

In the first part (Chapter [2) we studied a mechanism to generate the lepton mixing based
on non-abelian discrete symmetry combined with the so-called generalized C'P symme-
try. The PMNS matrix is given by the misalignment between the residual symmetries
in the charged and neutrino sector. We assumed the group of even permutations of five
elements, As, as a symmetry in the full leptonic sector. The predictions based on this
approach lead to mixing angles that are functions of a single parameter, the internal an-
gle 8. We have found that four mixing patterns, based on different residual symmetries,
accommodate well the mixing angles in the experimental allowed range, for a particular
choice of the free parameter 6.

In Chapter [3] we constructed several realizations of the neutrino mass spectrum based on
the residual symmetry Z5 in the charged lepton sector. In this approach the flavour struc-
ture of the model is given by additional scalar fields, the flavons, with non-zero vacuum
expectations values. We performed a classification, reducing the number of independent
parameters in the neutrino mass matrix, to obtain testable relations among the mixing
parameters. These relations can be checked at present and future neutrino facilities. We
also showed the predictions for the low energy observables, the effective masses mg and
mgg. As a last point of our analysis we discussed a particular scenario, based on Type
I see-saw mechanism, with a particular vacuum alignment with only three independent
parameters. We discussed the origin of the charged lepton masses and the corrections to
Upmns from the charged sector.

The effect of NP in the neutrino sector can modify the oscillation phenomenology and
might produce a bias in the extraction of the oscillation parameters. In Chapter [ we
studied this phenomenon in the context of two extension of the SM: Large Extra Dimen-
sions and Non-Standard Interactions. We used the data of the Daya Bay reactor and T2K
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beam experiments to investigate how these models of NP can modify the oscillation am-
plitude. We found that LED slightly modifies our knowledge on mixing parameters with
respect to the SM. In the NSI scenario the reactor angle and the Dirac phase ¢ are not well
defined at the level of 1o due to the new complex couplings ¢ that enter in the oscillation
amplitude. We also use the experimental data to constraint the parameter space of NP:
the radius of the largest extra dimensions in LED and the absolute values of the complex
couplings for NSI.

In conclusion, we are in an exciting era for neutrino physics. Several experiments are
ongoing and many others are planned. In the next years we will be able to obtain in-
formation about the mixing parameters with higher accuracy and, probably, we can get
information on the absolute mass scale from [-decay, Ov33-decay and cosmology exper-
iments. In the spirit of this impressive progress we expect that the mechanism of NP
described in this Thesis can be confirmed or rejected at a certain confidence level.

-114 -



SM oscillation probabilities

In this Appendix we summarized the SM oscillation probabilities that are relevant in the
analysis performed in Chapter These can be found in Ref. [215], where the Authors
perform a complete analysis studying the matter effect on neutrino oscillation. Since the
experiments T2K and Daya Bay (DB) have a small baseline we could ignore the matter
effects at this level. The formulae can be expressed as a series in the small parameters
sin 13 and Am3, < |Am3,|.

The approximated formula Psm (v, — v,) (relevant to T2K experiment) can be found in
Ref. [216]. It reads

Am3, L>

Psm(vy = vy) =1 — [sin2 2053 — sin? a3 sin® 2613 cos 2023] sin® ( 1B

Am?2, L . . ~ . Am2, L
- <4E112/) [sln2 612 sin” 2023 + J sin® O3 cos J] sin (2];1?:) +
Am%Q L 2 4 .2 .92 .92 Am%f} L
15 cos” f93 sin“ 2615 + sin® 019 sin” 26053 cos 5 ) (A1)
14 14

Here J = cos 013 sin 260715 sin 2073 sin 2693 is the Jarkslog-like invariant. The other relevant
channel is v;, — ve. The probability is

Am?2, L
Pam (v — ve) ~ sin? 093 sin® 26,5 sin® (ZE’l) +
. .sin26012sin2623 . o . (Am3, L\ . o (Am3 L
—sinf———=— 20 A2
sin 5 sin 1 sin” 26013 sin 1E, sin 1E, (A.2)
For the DB experiment
Am2, L
Psm(Ue = Ue) ~ 1 — cos? 013 sin? 2614 sin? L) e +
4F,
Am3, L Am3, L
— sin? 2013 [Cos2 01 sin® <Z§’j> + sin? ;5 sin® <Z§j>] . (A.3)

Notice that |[Am3,| < |AmZ,| and ¢ = 1,2, thus at the DB detector the argument of the
square bracket in the second line can be approximated with an effective mass Am2,, see
for instance Ref. [217]. This is the parameter measured by the DB collaboration.
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Non abelian discrete groups

In this Appendix we recapitulate some basic facts about group theory, in particular we
focus on non abelian discrete symmetries, which are used in our analysis developed in
Chapter 2]

B.1 Group theory

We want to recall some basic definitions about group theory. We follow Refs. [218-220]
and [67]. The couple {G,-}, where G is a generic set and - some operation well defined, is
call a group if the following four properties are satisfied

1. Clousure: V 1,92 €G, g1-g2=¢g3€G
2. Associativity: V g1,92,93 € G, g1-(92-93) = (91 - 92) - 93

3. Identity: 3'ec G : e-g=g-e=g, VgegG

1 1

4. Inverse: VgeG3Ig!l:g-gl=glg=e

The order is the number of the elements in G; the order of a finite group is finite.

The group is called abelian if all of their elements are commutable each others. i.e.
g1 - g2 = g2 - g1 Tor all elements of the group. If all elements do not satisfy the commuta-
tivity the group is called non-abelian.

The simplest example of finite groups are the cyclic group of order N, called Zy, which
consists of

{e,wN,w]QV,...w]J\\,[_l} € Zn (B.1)

where w% =e. The Zy group can be represented as discrete rotations, whose generator

wy corresponds to 27 /N rotation, see Fig.
In the case of non-abelian groups a simple example is given by the groups of permutations

of N objects, Sy, with order N!. For instance we consider here the group of permutations
of three elements S3. We call the elements G = {1,2,3} and the 3! = 6 operations are

€ =7123 = (17273) Y23 = (17372) Y12 = (2a 1a3) (B2)
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Figure B.1: Elements of Zy for N = 3,4,5 on the unitary circle.

1312 = (3,1,2) 13 = (3,2,1) Y31 = (2,3,1). (B.3)

These operations form a group. Therefore the product of elements is still an element of G

Y127312(1,2,3) = 712(3,1,2) = (1,3,2) € G (B.4a)
’)/312")/12(1, 2, 3) = ’)/312(2, 1, 3) = (3, 2, 1) (S Q (B4b)

and so on. Notice that the group is non-abelian, in fact y312712 # Y127312-

If a subset H of the group G is also a group, H is called the subgroup of G. The Lagrange’s
theorem tells us that the order of the subgroup H must be a divisor of the order of G (for
a modern proof see Ref. [67]).

If a subgroup N of G satisfies g'N¢g = N for any element g € G, the subgroup N is called
a normal subgroup or an invariant subgroup. The subgroup H and normal subgroup N of
G satisfy HN = N'H and it is a subgroup of G, where

NH = {n; - hj such that n; € N',h; € H} (B.5)

and similar for HN.

When ¢" = e for an element g € G, the number h is called the order of g. The elements,
{e,g,9%, ...9" 1}, form a subgroup, which is the abelian Z;, group with the order h.
The elements g~ -a-g for g € G are called elements conjugate to the element a. The set
including all elements to conjugate to an element a of G, {g7'-a-g, V g € G}, is called a
conjugacy class. All of elements in a conjugacy class have the same order because

Yg)ra-(ghg)ag =g g =geg =g g7 = (BO)

h

(g-a-g)'=g-alg

The conjugacy class including the identity e consists of the single element e.

B.2 Representations and characters

In the following we need to know the action of the group elements g € G in the vectorial
space V. The representation r is the omomorphism

[ G — GL(V)
' { g€G s r(g) € GL(V) (B.7)
such that
r(g1-g92) =r(g)r(g2) VY g1,92€G (B.8a)
r(e) = 1. (B.8b)
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We can note that the map r is not a one-to-one relation. The vector space V, on which rep-
resentation matrices act, is called a representation space such as r(g);jv; with j =1,...,n.
The dimension n of the vector space V is called as a dimension of the representation.
A subspace in the representation space is called invariant subspace if r(g);;v; for any
vector v; in the subspace and any element g € G also corresponds to a vector in the same
subspace. If a representation has an invariant subspace, such a representation is called
reducible. A representation is irreducible if it has no invariant subspace. In particular, a
representation is called completely reducible if r(g) for g € G are written as the following
block diagonal form

ri(g) 0
0 rg) O
0 r3(9) (B.9)
Tm(9)
where each ry(g) for ¢ =1,...,m is irreducible. This implies that a reducible representa-

tion 7(g) is the direct sum of ry(g), 7(g9) = D211, ®ry(g). Every (reducible) representation
of a finite group is completely reducible. Furthermore, every representation of a finite
group is equivalent to a unitary representation. The simplest (irreducible) representation
is found that r(g) = 1 for all elements g, that is, a trivial singlet.

The matrix representations satisfy the following orthogonality relation

_ N,
> r(9)ijralg™ I = nfgépqéuéjk (B.10)
g€eg P

where Ng is the order of the group G and n, is the dimension of the representation r,(g).

The character "9 of a representation r(g) is the trace of the representation matrix

dg
Xl =Te{r(g)} = > r(9)ii- (B.11)
=1

A representation is real if it has real characters and the representation matrices can be
written as real matrices. If the representation has real characters but its representation
matrices cannot be written in a real form, it is called pseudo-real. If the representation
has complex characters, it is called complex and then also its representation matrices
are complex. In all groups the number of complex representations is even, since each
complex representation r(g) has its complex conjugate r(g)*. The representation matrices
of r(g) are the complex conjugated ones of r(g), up to a similarity transformation.

The element conjugate to a has the same character because of the property of the trace

Te{r(g™" - a-g9)} = Te{r(g " )r(a)r(9)} = Tr{r(a)} (B.12)

that is, the characters are constant in a conjugacy class. The characters fulfill the fol-
lowing orthogonality relation,

Z yra @y lrgr (9] — Nglyq- (B.13)
geg

Therefore the characters of different irreducible representations are orthogonal and dif-
ferent from each others. In addition, they satisfy the following orthogonality relation

N
S lralol*lryr@)] nfgécicj- (B.14)
geg p
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where C; denotes the conjugacy class of g; and n; denotes the number of elements in the
conjugacy class C;.

If there are d,, n-dimensional irreducible representations, the elements of the group in a
given representation r(g) are represented by (n x n) matrices. The identity e is always
represented by the (n x n) identity matrix 1, and the character of x"@(C}) for the
conjugacy class C7 = e is found to be n for the n-dimensional representation. It is possible
to show that the number of unitary irreducible representations should be equal to the
number of conjugacy classes, thus

Z d, = number of conjugacy classes. (B.15)

n

Using the and the results quoted above it is possible to show that
> e 9l(Cn))? = " dun® = dy + 4dy + 9ds + - = Ng (B.16)
p n

where n is a natural number.

B.3 The group 5;

The group S; is the permutation group of order four, it has 4! = 24 elements and it is
isomorphic to the symmetry group of the cube. The algebra, introduced in (2.7), contains
two generators, S and T, that satisfied the condition S? = T* = (ST)3 = 1.

Sy ¢ 3¢ el ecl! scl

o1 1 1 1 1
A | 1 1 1 1
Y22 2 0 0 -1
Y83 1 -1 0
Bl 3 -1 -1 1 0

Table B.1: Characters of the Sy group.

The group contain five irreducible representations, two singlet 1 and 1/, one doublet 2 and
two triplets 3 and 3’. The (non trivial) tensor products are

101 =1 (B.17a)

1'®2=2 (B.17b)

1'®3=3 (B.17¢)

123 =3 (B.17d)

202=1, 02,01, (B.17e)
203=23 =333 (B.17f)
33=3®3=1,92,03,33, (B.17g)
33 =1020303 (B.17h)

where the subscript s (a) denotes symmetric (antisymmetric) combinations. The Sy ele-
ments can be classified by the order h of each element, where w” = e. These are classified
in Tab. where the five conjugacy classes are summarized with their characters. We
have 1+ 3+ 64 6 + 8 = 24 elements in each class and the superscript indicates the order
of each element in the conjugacy classes. The same classification is adopted for Ay in the
main text, see for instance Tab. 2.2]
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Kronecker products of Aj;

We report here the complete list of the Kronecker products for the group As ® C'P. With
respect to the simple group As we need the to impose additional condition

[X(r ® r’)*} = [X(r)* ® X(r’)*] Vo e A; (C.1)
r’ r’’

where X is the CP matrix for the representation r € As.

We report the Kronecker products in the case of X = X,. We assigne a = (a1, as,a3)” and

b = (b1,ba,b3)" to the 3 representation, while a’ = (a},a),a5)” and v/ = (b}, b, b5)T belong

to the 3’ representation, ¢ = (c1,ca,¢3,¢4,¢5)7 and d = (dy,ds,ds,dy,ds)” are pentaplets;

f=(f1,f2, f3, f1)* and g = (91,92, 93,94)" are tetraplets.

[ ] 3®3:15@3a@55

1 = a1b1 + asbs + agbs (C.2a)
T
3= i(a2b3 - a3b2, ale — agbl, a3b1 — CL153) (C.Zb)
b b T
5= (Cle — % — @ \/g(albg + agbl \/>a2b2, \/>a3b3, a1b3 + agbl))
(C.20)

e 323 =103, ®5;

1 = a}b + ajds + asb) (C.3a)
T
3 = i(a’Qb’ albh, aibl — ahbl, alb, — agbg) (C.3b)
abbl,  ahbl 3 V3 V3 3 T
5= (it — 0~ BB D g i), ~ Y2 it + ), — St
(C.3c)

e 323 =405

) asb! asbl asb. asbo\T
4= Z(agbll — %, —alb’Q \3& s 1b3 %, —agbll + %) (C.4a)
B ’ (Zlel + \/iagblg alb’Q + \/iagbg albg + \/Eagbé agb/l + \/éagbé T
5= (albla - ) ) ) )> (C4b)
V3 V3 V3 V3
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e 3R4=33405
3 = i(a294 —azg L(\/%192 + a2g1 + azgs) _L(\ﬁalgi% + azgs + a3g4))T (C.5a)
T
4= Z'<CL191 + V2a392, —a1g2 + V2ag1, a193 — V2a3ga, —aiga — \@a2g3> (C.5b)
2
5= <a391 + a294, g(\/ialgl — azg2),

1 2 T
—(V2a193 — 3azgs + asga), \/;(—\/%194 + a293))

1
—(v2a195 — 3asgs + a ,
( 192 393 291) \/6
(C.5¢)

V6

03 4=3%4¢5
. / / 1 ! ! ! 1 ! ! ! T
3= z(ang — 392, ﬁ(\/ialgl + asgs — azgs), ﬁ(—\@alm +axg2 — a3g1)) (C.6a)
T
4 =:i(a391 +V2d}g3, d\ g2 — V2d4g4, —dl g3 + V2dhg1, —ags — w/iaégz> (C.6b)
1 2
5= (aég2 + a5gs, %(\@aﬂgl — 3ahgs — azg3), —\/;(\/5@/192 + azga),
2 T
—¢§%M%+%m\f(¢%m+mm+%m0 (C.60)

e35=303 3485

2a1c asc asc T
3= (% + aszco — aocs, —% + ajcy — \/iagcg, —% —aics — \/5@204) (C.7a)
3 (a1c1 N ascs — azca aics +v/2(azcq — ases) arcy +v2(azes + a305)>T (C.7h)
4 = (4@102 + 2\/§a201 + \@a363, 2a1c3 — 2\/5@262 — 3\/5(1364,
T
2a1c4 — 3\66@63 + 2\/5&365, —4aqcs + \6(1264 + 2\/§a301> (C.7¢)
5 i(a205 + ascs, ascy — aicy +V2ascs _2a1c3+ V2azcs
- 9 \/g 9 \/3 9
2a1c4 — V2a3c ai1cs — V2asca\T
14\/§\f357a301+ 1C5 \/\?24) (C.7d)
e 3®R5=393 0485
3 (a'lcl N abhes + a/204’ —ayca + V2(ahes + a’205)’ ahes + V/2(dbes — aé@))T (C.8a)
V3 V3 V3
2ah ¢ ahe T
3 = <% — aéC'g, - a/264, —2731 — CL/163 \fa305, \/3 CL164 + \fa202) (C.8b)

4 = (2a'102 + 3\/§a'205 — 2\/§ag04, —4alcs + 2\/§a’261 + \@a505,

T
— 4a'104 — \/5&'202 + 2\/§agcl, —2a'105 — 2\/5&'203 — 3\/5(1%62) (C.8¢)
5 _ i(a' et — dhes 2a)c2 + V2dje4 e — aycs —\/2dscs
2 3-3 \/g ) 2 \/g )
dher + aley +\/\§/§a,262, —2a’105\—/|—§\/§a’203>7" (C.84)
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e 424=1,03,9 3, ®4; ® 54

1= fig1+ fog3 + f392 + fagn (C.9a)
3= i<f1g4 — fagi + f392 — f293,V2(f201 — fag2), V2(fr93 — f391)>T (C.9Db)
= i<f1g4 — fag1+ fogs — f392, V2(faga — f1g3) V2(f1g2 — f291)>T (C.90)
4= i<f393 — fa92 — f294, 191 + [394 + fag3, —fag94 — f192 — fa91,
— J292 + fr93 + f391)T (C.9d)
= (f194 + fagr — f3g2 — fags, —\/E(Qf:ags + f294 + fag2), \/2(-2}”191 + f394 + fag3),
\/g(—2f494 + f201 + f192), \/§(2f292 + figs + fsgl))T (C.9e)
e 485=303 0485, &5,
8= (4f165 — 4faca = 2fses — 2fac1, ~2V3frer = V2A(2acs — Bfsca + facs),
ﬂ( frea + 3facs + 2f300) — 2ff4c1)T (C.10a)
"= (2f1c5 — 2f1ca + Afscs + Afaca, —2VB foer + VIR iea + 3fiea — facs),
V2(facz — 3facs + 2fics) — 2\ff3cl)T (C.10b)
4= (3f1e1 + VB(facs + fsea — 2facs), ~3foer + VB(facs — frea + 2fscs),
— 8501+ VO(fres + facs — 2fse). Bfscr +VB(foes — facr — 2fre)) (C.100)
51 = i(fics + 2foct — 2facs + fica, ~2fre1 + V6 facs, facr + \/g(—fm — facs +2faca),
— facr — \/g(fQCQ + facs +2f1c3), —2fact — \/6f362)T (C.10d)
52 = i( facs — fres —frer + 207 %4 - f463,—\/§(f1c2 4 fyes — faca),
- \/g(flcgg T facr + facs)—facr — 2327 {}g“ + fQC?’)T (C.10e)
e 505=1,83,53, P4, P4; B 515D 5o
1= e1dy + e3dy + cads — cods — csds (C.11a)
3= i<2(04d3 — e3d1) + eads — csda, V3(cady — crda) + vV2(cads — cxds),
V3(csdy — crds) + V2(cads — c2d4))T (C.11b)
8 = i(2(cads — esdz) + cady — cads, V3(cody — e1ds) + V2(eads — csda),
V3(erdy — cady) + V/2(csdy — chg))T (C.11c)

<C3d5 + C5d3) — 4cydy

V6
(ngg + 63d2) + 4esds

V6

<C4d5 + C5d4) — 4cody
\/6 ’
T
(62d4 + C4d2) + 403d3> (C.11d)
V6

4y = i<(61d2 + cody) — —(c1d3 + c3dy) —

(c1da + cady) — , (e1ds + esdy) —
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. 3 3
4, = z((cldg —cody) + \/;(ngg, — c5ds), (c1ds — e3dy) + \/;(C4d5 — c5dy),
3 3 T
(cady — crdy) + 5(03612 — cad3), (c1ds — c5dy) + §(C4d2 - C2d4)> (C.11e)
d d 3
5 = (Cldl + cods + c5dy + %, —(CldQ + Cle) + \/;64(14,

1
§(C1d3 + e3dy — V6(cads + c5dy)),

%(Cldzl + cady + \/6(02d3 + ngQ)), —(Cld5 + C5d1) — \/263(13)T (C.11f)
52 _ (261d1 + 02d5 + C5d27 —3(Cld2 + C2d1) + \/6(2C4d4 + 63d5 + C5d3) 7
2 6
2c4ds + 2c5dy + cado
_ \/6 ,
2¢ods + 2c3dy — csds —3(Cld5 + C5d1) + \/6(—263(13 + cody + C4d2)>T e 11g)
V6 ’ 6 '
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C'P invariants

The mixing angles can be extracted using the PMNS matrix defined in (I.2). Using the
PMNS matrix elements we get

gy |Ur2]? gy 2 .2 |Uas|?
sin® @19 = W sin® 013 = |Uys|®  sin®fe3 = W (D.1)
With this convention we can define the Jarlskog invariant Jcp [109] as
Jop = Im |:U11UT3U§1U33:| = é sin 26015 sin 263 sin 26013 cos #13 sin 4. (D.2)
Similar invariants, called I; and I, can be defined for the Majorana phases
I =Im |:U12U12UT1UT1:| = sin? 015 cos? 012 cos? B3 sin (D.3)
I, =Im [UlgUlgUflUl*l} = sin? 013 cos? O3 cos® B3 sin 3. (D.4)
A third non-independent invariant can also be introduced
I3 =Im [U13U13U1*2Uf2] = cos? 015 sin? 613 cos? O3 sin( — ). (D.5)

Notice that the Dirac phase § has a physical meaning only if all mixing angles are
different from 0 and 7/2. Analogously, the vanishing of the invariants I only implies
sina = 0, sin 8 = 0, if solutions with sin 2615 = 0, cosf13 = 0 or sin2613 = 0, cosfi1o = 0 are
discarded. Furthermore, notice that one of the Majorana phases becomes unphysical, if
the lightest neutrino mass vanishes.

The Dirac C'P phase can be extracted from (D.2) and the mixing angles (D.I) as

8Jcp
sin 2619 sin 26093 sin 2613 cos O3

sind = (D.6)
We can extract the Majorana phases from the numerical PMNS mixing matrix taking into
the account that there exist unphysical phases, J. , -, parametrized by a diagonal matrix
diag{exp ide, expid,, expid; } that multiplies Upyns from the left. These can be eliminated
with a redefinition of the charged lepton fields. A similar procedure is discussed in [221]
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using a different parametrization for the PMNS matrix. [I] We can obtain the Majorana

phases
Uiz }
oa=2arg{ — D.7
g { U (D.7)
Uis }
=2argq — ;. D.8
B g { Uns (D.8)
For the sake of completeness we report how to extract the values of the unphysical phases
de = arg{Ui1} (D.9)
0y = arg {Ugge*i(ﬁ/“é)} (D.10)
0 = arg {Ugge_i(ﬂ/%ré)} . (D.11)

'For further details see the webpage http://reapmpt.hepforge.org/.
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Neutrino mass sum rules

In the models we have considered we can define a sum rules ¥, i.e. a relation for the
complex masses ;. The complex masses are defined as

mi; = m Mo = moe'® s = mge'® (E.])

where we use the same convention of Ref. [148] (see also Refs. [[I149-151]). In this case
m; are the absolute values of the light neutrino masses and o and 3 are the Majorana
phases, see (I.2) for our PMNS convention. The sum rule is a generic function of the
complex masses, ¥ = 3(my,me,m3) that is equal to zero in a given model. In general the
masses appear as ﬁz? where p € Z depends on the type of neutrino masses. For instance
in the case of Mechanism I p =1, in Mechanism II with trivial Dirac mass matrix p = —1
and otherwise p = 2.

x N X Hb
d —— 7 ————m
-5 -4 -3 -2 -1 -4 -3 -2 -1
loglo 52 loglo 52

Figure E.1: Distribution of the of log;, 02 for Mechanism I (left plot) and Mechanism
IT a-1 (right plot). We show only the results for z (X) and z (Z) equal to zero in the
case of Mechanism I (Mechanism II a-1) because for s =0 (S = 0) the parameter 6%
is zero. The gray lines indicate the range for the parameter ¢%, the white line is
the mean of the distribution while the gray region is the lo range.

Notice that the sum rule is defined as series in the expansion parameter, which depends
on the particular model. In order to quantify the deviation of the LO (or NLO/N2LO for
some particular sum rules) prediction we introduce the following dimensionless parame-
ter, evaluated for the full numerical values of the neutrino masses

by
D
Zj mj/3

which is independent on the absolute scale of the neutrino masses. An alternative defini-
tion could be 6¥ = ¥/[(3_; m;)?/3]; in this case the value of 6¥ can be different with respect

ox = ‘ (E.2)
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Figure E.2: Same as Fig. [E.1| but for Mechanism II a-2 (left plot) and Mechanism I
c-2 (right plot). In the left panel for h, = 0 we rescaled the distribution by a factor
200 because the NLO corrections are important, as discussed in the main text, see

Sec. @

to those obtained with the previous definition, however the relative goodness among the
sum rules in the various cases is conserved.

For the sake of completeness we show our results for 6% obtained from our numerical
scans. The results are shown in Fig.s [E]] and [E2] where we observe that the relative
goodness of the different cases in each Mechanism is in agreement with the prediction
of Chapter 3] In particular for Mechanism II a-2 (c-2) we observe that in the case of
hi=f=0(h; =f; =0and f. = f; =0) 10 has a smaller value of 4% with respect to NO.
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Effective operators

We collect the operators that are relevant for the model discussed in Sec.

F.1 Superpotential )V

e NLO operators in 6V,
We have six operators for W, at NLO

g3 g8 g3
K4 {‘ﬁg,s [(¢u,5¢u,5)4s¢u,3]5}1 Tl {leo,,s [(¢u,5¢u,5)5§¢u,3] 5}1 TQ {éf)g,s [(¢u,5¢u,5)5g¢u,3]5}1
(F.1a)
98 ;0 93/ 0 ggl 0
A {d05 [(Dv50v5)a, 0035}, e { V5 [(¢u,5¢u,5)5g¢u,3f]5}1 e { V5 [(¢u,5¢u,5)5g¢u,3']5}1 :
(F.1b)
e NLO operators in 6V,
We get twenty-eight operators with the pentaplet x3
e {x8 [(Xs5X5)3®s]5 }, 1{ {x5 [(X5X5)4.P55, I, K {x5 [(XsX5)4,%5]5, };
C~L55 &55
20 L8 [(sxe)srdsly, }, 22 {08 [(Rs%e)s@sl, |
&55 (~155
5;{52 {Xg [(56525)53@5]51}1 55\’52 {Xg [(5(55(5)53955]52}1 (F.2a)
a3 CL3/ CL3
% {x8 [(pv,500,3)3X5])5 }, % {x3 [(¢v,500,3)3 x5]5 }4 Tl {x8 [(br.50v,3)ax5]51 H
al al al
152 {X(5) [(¢V,5¢V,3)4X5]52}1 51&51 {Xg [<¢V,5¢V,3)5X5]51 }1 % {Xg [(¢V,5¢V,3)5X5]52}1
(F.2b)
a§:5 0 ag:,5 0 ai:51 0
e {x5 [(bv500,3)3X5] 5}, A {x3 [(bv500,3)3x5] 5}, A {x5 [(bv50v,3)ax5]5 }4
CL3/ CL3/ CL3/
208 (Gustns)axslsety,  —2 138 [(Gsdua)sxs] )y~ {38 [(Gusdns)sxs]se ),
(F.2¢)
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~ 53’ d53’ ~ 53’

Winslsh, o (81 Te)axals)y o {8 (@sia)axsls

~53' ~53' ~53’

45 55 55
—2 {x3 [(@sXs)axslse b, — {x8[(PsXs)sx5ls }y 2 {x8[(@5X3)sx5]52},  (F2d)

~3 3/ ~3I3/ ~3/3/

{Xs (Xs/X3')1X5]52 |4 [(XaX3')5 X551 }4 a%{xg [(XaX3')5X52]52 }, - (F.2e)

We have sixteen operators with x?,/

b 4 b3, i i
-+ {Xsf <P5X5)1X3/]3/} A {Xsf 805X5)3'X3/]3/} ﬁ{xf%/ [(805)(5)41)(3/]3/}1
b3 b ) b3
{Xsf (P5X5)a2X3)3 }; {Xsf [(@5x5)5 X3']3 }4 {X3/ (P5x5)5.X3]3 },  (F.3a)
b5 b
f {x% [(¢505)a.95]3 }4 Zl {x:y [(505)5105) }1 =2 {Xsf wsws)sgws]s,}l (F.3b)
3 o b3 b3
A X [(XsXs)a.xs]ar by % {xgl [(Xs5X5)5:x5] }1 -2 {x:»,/ (X5X5)52X5) 4 }1 (F.30)
b3
KA‘ {x% [(Pv3x3)adv5)s }q K5 {x% [(Pv3X3)5Pv5]5 (F.3d)
b3, b
3 s [(%,3/)(3/)3'%,5}3/}1 % {x% [(%,3/)(3')5%,5]3/}1 . (F.3e)

In the case of xJ we have only seven non vanishing operators

5 5

C% {Xg [(905905)5%“)5]1}1 C% {X? [(<P5<P5)53<P5]1}1 (F.4a)
EEA?H {X({ [()25)25)59(5]1}1 E/g\l {X? [(5(5)25)53)(5]1}1 (F.4b)
ig {X1 [(Dv.3x3)5¢05)1 1 (F.4c)
Cfg, {2 [(bvarxs)sus]i by (F.4d)
5;;1 {x1 X5P5)3 Xal1 }y - (F.4e)

We get twelve operators with the pentaplet )Zg

d3 d3, d3
25 {%2 [(¢,561,3)3 5] }1 5L e [(¢u,5¢u,3)3'>25}5}1 Lo {8 [(¢u,5¢u,3)45€5]51}1

A
d3 d d3
% {8 [(Pv500,3)aX5)52 }1 5 {X8 [(br,500,3)5 X551 H 5/’\52 {x2 [(hv,5600.3)5X5]52 }4
(F.5a)
a3 J3’ 43
/3\’5 {8 [(%,5%,3/)3)25]5}1 3\5 2 [(dr.500, 3)3/X5) 5 } % {3 [(¢u,5¢y,3')4>~<5]51}1
73/ bl B
152 {xs [(%,5%,3')4)25]52}1 51&51 {8 [(¢u,5</>u,3/)5>25]51}1 51’\52 {8 [(%,5%,3/)55(5]52}1-
(F.5h)

We have seven operators with x3,

B8 esemnelydy 2 (o [oseslsinly ). 22 (3 [enonlsesly b (6w
A V@ (0505)a.0sly 1y 4 (Xar [(0s9s)s195] 5 7\ Xar [(9595)5205 )5 1 :
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b3 b2
K4 {x% [(¢v,3x3)adv5)g }, KS {x% [(Pv,3X3)500,5]3 }4 (F.6b)
bi 0 bj 0 F.6
A {X3/ [(%,3’)(3’)3'%,5}3,}1 A {X3/ [(¢u,3/X3')5¢u,5}3,}1- (F.6¢)
We have seven operators with )2?,,,
€3 10 1a - . B [0 (1o~ . By (<0 (15~ .
3 (% [(PP5)aPsla }y 1 {x:y [(@5@5)5g¢5}3,}1 - {Xs/ [(@5@5)53905}3,}1 (F.7a)
e (. 3 e . 5
A X [(busXs)adusly by 2 {Xs [(drsXs)sdvsly } (F.7b)
& 0 . e 0 .
A {xXs [(¢u,3'X3/)3'¢u,5}3,}1 N {xXs [(¢u,3/X3/)5¢u,5]3,}1 : (F.7¢)
In the case of ¥} we have only four non vanishing operators
B fcotia o By {0 tpm sy s
e {x? [(25%5)51 @5 1}1 e {Xl [(B5Ps)525) 1}1 (F.8a)
73
% {x} [(bv,3X3)50u5]; |4 (F.8b)
"
f% {(x [(%,3/5(3/)5%,5]1}1 . (F.8¢c)
F.2 Operators for charged lepton masses
With three flavons we have four operators with E€® L ~ 1
1 c bv5P5\ Pu3 1 . busPs )  Duz
A2 Jg AL, A e ATy
8, Ha {(E“Lh (“ﬁ?) R } 8, Ha {(ECLh [(ﬁf"’) Xf] } . (F9D)
55 1)1 55 1)1

We also have

3 c ¢V75905 ¢l/,3 3 c ¢V,5S05 ¢I/,3
yg’lHd{(E L)s K A? )1 A ]3}1 yg’ng{(E L)s {< A? )3 A ]3}1
C QSV, ¢V7 c (bu, (Z)V,
Z/g’,slHd {(E L)s [( 1305)51 A3]3}1 y§,52Hd {(E L)s [( A52905>52 ASL}I (F.10a)

D505 bu3 3 D505 vz
9 9y ’ ECL 9 )
( A2 )43 A . Y3 ,4aHd ( )3 A2 A A o)
3 . bu505 bu.3 3 . bu505 b3
; ; F.10b
sl (52), ) oo (), 5] e
gin{wCL)s[(*ﬁfS) % } g?:lHd{wCL)a (B2) © }
4, 51
s 3)1 s 3)1
z}é’;Hd{<ECL>3[<¢Zf5> s } (F.100)
53 3)1
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therefore we have eleven operators with E°® L ~ 3. We also have nineteen operators with

EC®QL~5

i (227) 5

y§,4st {(ECL)5

Y35, Ha {(ECL)s [(

Y3 3. Ha {(ECL)S K

¢1/,5 251 ¢V,3’
A2 4, A

%5%)
¢u5§05> ¢I/, ’:| }
3 5

A
5}1

Yy 4, Ha {(ECL)5

aafirn[(527), %

505\ Xs
A2 ), A

75, aHg {(ECL)l

g55)1,51Hd {(ECL)5

72, 5,Ha {(ECL)5

¢u5<P5> ¢u,3] } 5 {ECL [(%,5%05) ¢u3} }
5 )1 y373a d ( )5 A2 o A S,
} Y34, Ha {(ECL)E»

qbyg] }1 ygSQHd{(ECL)sK A2

3/:3?',3ng {(ECL)S [( A2

¢u,5§05> ¢V,3’] } y§/,52Hd {(ECL>5 [( e
51 571

P55\ X5
AZ ), A

¢1/,5 ¥5 ¢u,3
A2 ), A
a 571

%,5%05) %,3} } (F.11a)
52 5)1

A
%,5@5) %,3/} }
3/ 5)1

A

¢V,5 ©5 ¢I/,3/
A2 ), A
a 571

%,5@5) %,3/]} (F.11b)
52 5)1

A

J,
J,
J

Y3 4, Ha {(ECL)5

P5P5)  Xs
AZ ) A

(@5%55) X5
A2 g A

Uo aHa {(ECL)l

gg2,51Hd {(ECL)5

(@5855) X5
A7 ) A

78, 5, Ha {(ECL)s

),

(F.11c)
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LED mass eigenstates and matrix elements

In this Appendix we want to discuss how to compute the mass eigenstates for the neutrinos
in the LED framework. We use the same conventions of Ref. [I84]. The mass matrix
follows Eq. (4.7), and can be written as

m;R 0 0 0 2712¢;, 0 0 0
V2miR 1 0 0 & 10 0
RM; = lim V2miR 0 2 0 = lim & 02 0 (G.1)
—00 . —00
V2miR 0 0 ... k & 00 ...k

where we used the definition of ¢;, given in Eq. (.I1), §; = \@ij. Notice that the matrix
M; has two indeces in the KK subspace. We can define two vectors, for mass and flavour
eigenstates

I/((IO) Vi(O)
Vo = 1/(9) v, = e a=euT 1=1,2,3. (G.2)

We can also define a unitary matrix to rotate the two vectors using the relation

Vo = Uoﬂ'l/i (G3)
so U is
_ Uai 0
Uui = ( 0 Rm-> (G.4)

where the matrices U and R are defined by Eq. (4.6). To diagonalize the mass matrix
M we need two rotations, so we need to diagonalize both MtTM and MMT. Since we are
interested only on SM fields we can diagonalize only the product MTM.

The neutrino evolution equation is

d
i&”i,L =H;vi L (G.5)
where the hamiltonian H is
0;i
Hij = —= M M; + (U'VU (G.6)
2E, i



Here V is the matter matrix, defined as
V =605V = diag{Ve, V,,, V; }. (G.7)

As the matrix U, the matter matrix V lives in a 2 x 2 subspace; in fact we have

o Vai 0 _ 5o¢eVCC+VNc 0
e (fy 1) (e ) o

where the interaction with matter produces the potentials Voo = V2Grn. and Vo =
—2_1/2Gan. With this definition we can reformulate the hamiltonian H as the sum of

two contributions, the mass MM and the mixing V, defined as

Vij =2R°E, Y UkiUajVa. (G.9)

The squared mass matrix is then

(k+1/2)& & 26 ... k&
& 1 0 ... O
M? = R*M]M; = lim 265 0 4 ... 0 (G.10)
k—o0 .
k&; 0 0 ... Kk?
that can be written as
T
2 _ U ’Uj
M kli)ngo <’Uj KQ) (G.11)
with the following definitions
1
_ 1) 2 o |? 2 _ g 2
nj = k‘—|—2 & v;=§ | . K~ = diag{1,4,9,...k}. (G.12)
k

We can separate the zero mode and the KK modes using a rescaling hamiltonian H such
that

H = (njéij + W"j)oo <va) 0k (G.13)

W), (),

where the subscripts indices live in KK space. To diagonalize this hamiltonian, i.e. to
solve the secular problem, we need to solve

det <2R2EVH — /\2]1) =0. (G.14)

We can use the Gauss algorithm for triangularization. We find for a finite k&

k k
KXoo - AQ) - Z M] H <Xnn - /\2> =0 (G.15)

n=1 n=1
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where X = 2R?E,H and it has three indices in mass space, one over KK modes and two
in flavour space

. 1
Xoo = QRQEV I:(;U <k + 2)5]2 + Wij] (G.16a)
Xok = Xpo = 0Y2R%E, k (G.16b)
X = 092R?E, 2 (G.16¢)

therefore Eq. (G.13) becomes

k k
. 1 . 2
2R’E, [5” (k + 2)5? — XV — 69 E n2n_v] H (n2 — )\2) =0. (G.17)

n=1

Using the fact that k = Zﬁ:l we have

N 1 k )\2 k
|:Vij +61¢2 (2 A2 Z M)} H <n2 — )\2) =0. (G.18)

n=1 n=1
Taking the limit £k — oo and using the Taylor series for the cotangent function

-> 5 = ;<m cot(m)) — 1) (G.19)

n=1

we find that the secular problem is the same as to solve
detT =0 T, =V +67¢ <m cot(mA) — )\2>. (G.20)

The solution of this equation gives the mass of KK modes; in fact we have that )\gk) =

(k)

ngk). To find the eigenvectors w; we have to solve

2
Hu = (A7) wl. (G.21)

We can define the component of the vector as

(k") ’
(w?) " = Wi (G.22)
J
so for k' = 0 we have
2
O+ Z ng; Wi + Z VW = (W) Wi =0 (G.23)
and for k' # 0
2
KEW [k’Q (A9) }W}f’” 0. (G.24)

We notice that the equation for the matrix element of transition between the zero mode
and the KK is of the form of Eq. (G.I§), so in the limit k¥ — oo we have, for each value of

)\Ek), the equation

ST, WY = . (G.25)



To obtain the correct normalization for the eigenvectors wgk)

(k) (k)

we need to use the condition

{ wj(-k — i gk’ (G.26)
thus
3
Z WO KD — i gkt (G.27)
In this way we must solve the following equation
3 2 ot 2 )\ (F) (k) 2
£0)\ 2 T cote A mcot TAp T

p=1

that we obtained using Eq. (G.25) into the normalization condition Eq. (G:27). It is also
possible to find the non diagonal element in the KK space with the same procedure

(kE") _ 0k
the details of the calculation can be found in Ref. [182].
G.1 Oscillation in vacuum
In vacuum we can set V;; = 0, in this way
()’
_ J (k) 2 (k) \ _
det T = -~/ 11 <2)\j — & cot TA; ) = 0. (G.30)
j=1

This is a trascendental equation, but we can use a perturbative expansion in the region
of parameter space R~! > m;, which means &; < 1.

6 j j ] j
— 7 &2 cot(nl) £ =05 ! i !
&2 cot(rd) £ =011 i k=2- 7
| I
-] 3 I B k=1 .~ i# ,,,,,,,,,,,,,,,,,,,
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, L W
2 . |
1\ S N BN ]
o< s UUHRL S
00 05 10 15 20 25 30

A

Figure G.1: Numerical solution of Eq. (G.30). The KK tower are the dots in the plot

for different values of &.

First of all we can write the master equation in the form

7r)\§-k) = arctan

2
J

(k)
2,

+ km
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Using the fact that arctanx ~ = we can rewrite as

&
oAk

J

(k) _
A=

+k+0(&)  keN. (G.32)

Now we assume a perturbative expansion in the form
k N T 5 b
AW =20 gal + 202+ 0(ed) (G.33)

where the bar over the number means the perturbative order, not the KK index. In this
way we get

)\gkzl) —k+ ;2{ _ 4553 + (9(5]3,). (G.34b)
Using the Eq. (G.28) we obtain
WO % _ i’g +o(eh) (G.35b)

In Tab. [G.I] we report some values for the eigenvalues and for the matrix elements of
transition evaluated numerically and using the approximate relations at first order in §;.
It is clear that the relations are in good agreement with the true numerical values.

0.2351 0.2500 0.0499 0.0500 0.0171 0.0250
0.1620 0.1667 0.0342 0.0333 0.0134 0.0167
0.1230 0.1250 0.0250 0.0250 0.0125 0.0125

k £=05 £€=0.1 £ =0.05
0 02949 02809 0.0701 0.0701 0.0353 0.0353
1 11084 1.1250 1.0050 1.0050 1.0013 1.0013
A§k) 2 20600 20625 2.0025 2.0025 2.0004 2.0006
3 3.0409 3.0417 3.0017 3.0016 3.0003 3.0004
4 40309 40312 40013 4.0013 4.0003 4.0003
0 0.8262 07944 09918 0.9912 0.9979 0.9979
09 1 04072 05000 0.0992 0.1000 00499 0.0500
2
3
4

Table G.1: Values of AEk) and Wi(j%) calculated numerically using the software
Mathematica (left columns) and with the perturbative relations at order &; of Eq.

(G.34) and (G.35) (right columns).

G.2 Sum rule for probability

In our code we use some test for the probability we evaluated numerically. In particular
we used the fact that

27’% —vg) = ZP(Va —vg)=1 (G.36)
o ]
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as in SM. We can easily test the relation in vacuum starting from Eq. @I0). At order &2
we have

S Wenowe [ A= ()
Y PWa—=vp) =33 Y UajUsiUsiUy W™ P W 2 exp | i~ L| =
E 8

2
i,j k,k'=0 2R°E
> k K’
=53 U WP, (G.37)
j k,k'=0

where we used the fact that UpMNSU;f,MNS = UII'MNSUPMNS = 1. Using the expression
reported in Eq. (G.39) we obtain

2 o0 2 o]
Srin =3 |(1-5e) 83 [T ve 3
B k=1 k'=1

J

12215 (G.38)

Now we recognize that the Riemann zeta function is defined for Re(s) > 1 as

<1 2
;ks ¢(2) = © (G.39)

¢(s)

thus we get at order ¢? the validity of Eq. (G.36). Similar relations hold for the sum over
initial states. It is easy to understand that the relation is verified also at the next order
in the same way because ((4) = 7#/90.
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NSI oscillation probabilities

In this Appendix we report the main formulae for the oscillation probability in the contex
of NSI scenario. For the experiments of interest for this Thesis we can neglect the matter
effect in the propagation of the neutrino states. Hence we can write the Hamiltonian of
(4.19) approximatively as

0 0 0
Uaj [0 Am3; 0 (Urs (H.1)
0 0 Am3,

1

Hap = 9F,

jk
where the U is the PMNS matrix in the Standard parametrization. From the (4.19) and
expanding for small ¢ (the absolute value of the NSI coupling) and neglecting terms of

order O(g?), the oscillation probability for the disappearance channel at T2K is simplified
as

Py — vu) = Psm(vy — vu) + 2|e,,| cos 67, + 2[€z#| cos gbzu—i—

Am3, L
a {2|€Z“‘ €08 dy, + 2’52u| cos ¢ﬁu} sin® 263 sin’ [ZEI] +

Am2, L
—2 (|5f”| cos ¢y, + |€ﬁ#\ cos qbﬁ“) cos 2053 sin 2053 sin? [ZE’,}/} +

v

2 2
Amg, L] O <Am21> + O(sin b13¢) + O(€2>

. d | . .d . .
+ (]527\ sin ¢, + |7, sin ¢w> sin 26,3 sin [ Am,

(H.2)
where the SM part is discussed in (A.).

Notice that in this formula exhibits zero distance effects that modify the probability with
respect to the SM also for L = 0.

Using the same procedure it is possible to obtain the appearance probability

4B,
Am3, L

Am?, L
P, — ve) = sin? O3 sin? 20,3 sin? <m31> +

Am3, L

— 25sin 26015 sin 26053 sin ( ) sin 013 cos? 613 sin? ( 1B ) sind + Py + P

(H.3)

14
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where Py are the leading and next to leading effect of NSI parameters evaluated with
perturbative procedure

Am2, L
Po = —4ej,| sin 013 sin O3 cos(d + ¢y,.) sin? <m?’1> +

4F,
Am2, L Amd, L
— 4[e5, | sin O sin O3 sin(3 + 65,) sin (ZE) (ZE) i
Am3; L
— 4éeey 8in 013 8in Oa3 cos(§ — ¢e,,) cos 2093 sin’ (TESI> +
v
Am2 L Am3, L
— deey sin 13 sin 023 sin (0 — @eyy) sin ( Zlg’i ) o (ZE) i

Am3, L
4F,
+ O(EZT sin? 013) + O(Efw sin? 013) + O(wa sin® 013) + O(Ee#(e.,.) sin® 013) + 0(52) (H.4a)
Am2,L
2F,

+ 8¢y sin 013 sin® Oy3 cos fag cos(d — der) sin? < ) + O(sge sin? 013)+

_l’_

A 2 2
my L sin Amsg, L n
4F, 2F,

P = —]Efw| sin 26015 cos a3 sin gf)ie

+ 2¢e¢, sin 2012 sin? 093 cos O3 cos Dep

A 2 L A 2 L
+ €ep 8in 2012 cos O3 sin ¢, ;nEm {1 — 25in? 3 sin’ (Z?)] +

A 2 2
m3, L sin Ams, L
4F, 2F,

+ 2e¢; sin 2019 sin Oa3 cos? Hag cos Oer

Am2. L Am2, L Am2, L
— 2¢,r sin 2612 sin Ba3 cos? Oaz Sin der ;nEQj sin? (ZE}/) +0 (z-: sin 613 anj > + (’)(52)
(H.4b)

For DB the relevant formula is

Am3, L

PO —7)=1- sin? 26,3 sin? < 1E,

> + 4ece SIN Pee+
Am2, L

— 4 [g¢y, 810 2613 sin O23 cos 2013 cos(0 — dep)] sin? (mgl) +

— 4 [er sin 2013 sin O3 cos 2013 cos(0 — Per )] sin? () + O(e%) (H.5)

where in the first line the zero-distance term is proportional to eee.
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