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Introduction

Notation and Conventions. A discrete valuation ring (in the sequel d.v.r.)
of unequal characteristic is a discrete valuation ring of characteristic zero with
residue �eld of characteristic p > 0. If, for n ∈ N, there is a distinguished primitive
pn-th root of unity ζn in a d.v.r., we write λ(n) := ζn − 1. Moreover, for any i ≤ n,
we suppose ζi−1 = ζpi . All the schemes and rings will be assumed n÷therian. If not
otherwise speci�ed the cohomology is computed in the fppf topology.

An important problem of research is the following.

Problem. Let k be an algebraically closed �eld of characteristic p > 0 and let
G be a �nite group. Let us suppose that G acts on a smooth projective k-curve C.
Is it possible to �nd a complete d.v.r R of unequal characteristic with residue �eld
k and a lifting C of C over R endowed with a G-action, such that the G-action lifts
the action on the special �ber?

If the answer is positive we will say that the action on C is liftable to characteristic
0. There are some known results. If (|G|, p) = 1, the answer is positive for any
action (SGA I). If |G| > 84(g(C)− 1) any action is not liftable because of a trivial
contradiction with the use of the Hurwitz bound for the automorphism group in
characteristic 0. If G is cyclic of order pm with (m, p) = 1 any action is liftable, as
proved in [45]. This result has induced Oort and Sekiguchi to state the following
conjecture.

Conjecture. Any action of a cyclic group on C is liftable to characteristic 0.

It has been proved that this problem is actually local: it is equivalent to lift
Spec(ÔC,y), for any closed point y ∈ C, with an action of Iy, the inertia group
at y. The �rst proof was given by Green-Matignon ([20, III 1.3]) in the case of
covers whose inertia are cyclic of order not divisible by p3. It has been proved in
general by Bertin-Mezard ([9, 3.3.4]), using deformation theory, and by Chinburg-
Guralnick-Harbater ([14, 2.2]). Therefore one can consider a local version of the
problem.

Problem (Local). Given a k-linear faithful action ϕ : G ↪→ Autk(k[[y]]) , does
there exists a lifting of ϕ to an R-linear action ϕR : G ↪→ AutR(R[[y]]), for some
R as above?

Green and Matignon have proved in [20] the conjecture for groups of order p2m,
with (m, p) = 1. The conjecture is yet open for G of order divisible by p3.
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iv INTRODUCTION

It is interesting in general to �nd groups for which the problem has positive
answer for any action. Such groups are called Oort groups, analogously groups for
which the local problem has positive answer for any action are called local Oort

groups. There are some works, for instance [8], [20], [12], and [14], which study
the problem of characterizing such groups. It seems reasonable to conjecture that,
for p > 2, among the cyclic by-p-groups the Oort groups are the cyclic groups
and dihedral groups of order 2pn. If p > 2 , in [14] it has been proved that if a
cyclic-by-p group G (i.e. an extension of a prime-to-p cyclic group by a p-group)
is an Oort group then G is cyclic or dihedral. Moreover if G is a local Oort group,
then G is a cyclic or dihedral group. If p = 2, it happens that the list of possible
Oort groups includes A4 too. In fact, Bouw has proved (unpublished) that A4 is
an Oort group.

In order to solve this kind of problems it is important to construct automor-
phisms of Spec(R[[y]]) with R a complete d.v.r. of unequal characteristic with
algebraically closed residue �eld k. This took Green and Matignon to study sys-
tematically the automorphisms of order p of the formal disc Spec(R[[y]]). Let
K be the �eld of fractions of R and K̄ an algebraic closure of K. We de�ne
D = {z ∈ K̄|vK(z) > 0}. We recall that DK = Spec(R[[Z]] ⊗ K) is naturally
in a bijective correspondence with D/Gal(K̄,K). For details see, for instance,
[26, lemma 1.3]. In [21], Green and Matignon are interested in the study of au-
tomorphisms which specialize on k to automorphisms of order p. It is possible
to show that any such automorphism has necessarily �xed points in DK . After a
�nite extension of R it is possible to assume that the �xed points are R-rational.
We consider the minimal semi-stable modelMDK of DK in which any �xed point
specializes in distinct smooth points (this can be achieved by successive formal
blow-ups). The special �bre is an oriented tree of projective lines attached to the
original generic point (π) ∈ Spec(R[[Z]]). The main result presented in loc. cit. is
associating to any automorphism of the formal disc with �xed points some di�eren-
tial forms and a "Hurwitz datum" de�ned on the exceptional curves of the minimal
semi-stable model. How do these di�erential forms arise? Before explaining it we
recall the de�nition of torsor under a group scheme.

Definition. Let G be a faithfully �at and locally of �nite type group scheme
over a scheme X. Let us suppose that G acts on an X-scheme Y . We say that
Y is a G-torsor if there is a covering {Ui −→ X} for the fppf topology on X such
that, for every i, YUi is isomorphic, as GUi-scheme, to GUi.

Using standard methods it is possible to show that, for any commutative group
scheme G over X, the G-torsors over X are classi�ed by the group H1(X,G).
If G is not commutative there is the same classi�cation but H1(X,G) is only a
pointed set. (See [32, III.4]). Since it is not easy to work in the fppf topology, it is
convenient to have other descriptions of torsors, as we will see.

We now come back to explain how Green and Matignon associate to an auto-
morphism σ of the formal disc with �xed points some di�erential forms. We use
the above notation. LetMDK be the minimal semi-stable model associated to σ.
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Let z be a double point of the special �ber ofMDK and ξ the generic point of an
irreducible component which contains z. The automorphism σ induces an action
of Z/pZ on

X = Spec(
̂

(ÔMDK,z)ξ) = Spec(R[[T ]]{T−1}),
such that XK −→ XK/(Z/pZ) is a Z/pZ-torsor. By R[[T ]]{T−1} we mean the
algebra of Laurent series f =

∑
i∈Z aiT

i such that lim
i→−∞

ai = 0. It is possible to

show that there is a group scheme G of order p on R and an action of G on X such
that G is generically isomorphic to Z/pZ (with the same action) and X −→ X/G
is a G-torsor (see later in the introduction for some references about this result).
On the special �ber we have that Xk −→ X/Gk is an αp, µp or Z/pZ-torsor. The
following result is well known (see [32, III.4.14]).

Theorem. i.1.2 Let X be a smooth scheme over a perfect �eld k of character-
istic p, then there are natural isomorphisms

d : H1(X,αp) −→ H0(XZar, BΩ1
X) = {ω ∈ H0(X,Ω1

X)| ω is locally exact},
dlog : H1(X,µp) −→ H0(XZar,Ω

1
X,log) = {ω ∈ H0(X,Ω1

X)| ω is locally logarithmic}.

So, to any αp-torsor and µp-torsor, we can associate a di�erential form on Xk.
Using this description, Henrio ([25]) constructed a Hurwitz space, i.e. a certain
graph (the dual graph of the special �ber) with an attached datum which is strictly
linked to the di�erential forms found by Green and Matignon. In loc. cit. the
author proved that this Hurwitz space classi�es automorphisms of the formal disc
with �xed points. Bouw and Wewers ([12]), using Henrio's work, have proved that
D2p, with p > 2, is an Oort group. The case p = 2 has been proved by Pagot ([34]).

The main motivation of this work is to �nd a Hurwitz space for automorphisms
of order p2 with �xed points of the formal disc. This would be useful to face the
problem of lifting tocharacteristic zero for dihedral groups of order 2p2. One can
see that for automorphisms of order p2 there are two kinds of problems:

(1) There is no interpretation through di�erential forms of torsors under �nite
group schemes of order p2.

(2) Let X be as above. Given a (Z/p2Z)K-torsor YK −→ XK does there exists
an action of a group scheme G on X, extending that of (Z/p2Z)K , such
that X −→ X/G is a G-torsor? If it is not always true when does it
happen?

We point out that, after answering these questions, it becomes reasonable to con-
struct a Hurwitz space for automorphisms of the formal disc of order p2 which give
a structure of torsor to Spec(R[[T ]]) −→ Spec(R[[T ]])/G where G is the group of
order p2 generated by the automorphisms we are considering.

We will give answers to these problems in a more general setting. In the �rst
chapter we will generalize the theorem i.1.2 in two directions:

i) in characteristic p for the group schemes µpn and αpn ;
ii) in unequal characteristic: for some �nite group schemes of order pn.
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In �i.2 we recall the de�nition of the De Rham Witt complex W•Ω•X , for a scheme
X over a perfect �eld k of characteristic p. This satis�es the equalitiesW1Ω•X = Ω•X
and W•Ω0

X = W•OX . There are de�ned the di�erential maps

dn : OX −→ WnΩ1
X

dlogn : O∗X −→ WnΩ1
X .

We de�ne WnΩ1
X,log as the image sheaf of the Z-module map dlogn and BWnΩ1

X as
the sheaf image of dn. They are both sheaves of Z-modules. For n ≥ 1 the above
maps induce the morphisms

dLogn : H1(X,µpn) −→ H0(Xet,WnΩ1
X,log),

dn : H1(X,αpn) −→ H0(Xet, BWnΩ1
X).

Then we prove the following theorem.

Theorem. i.3.2 Let X be a smooth scheme over a perfect �eld of characteristic
p > 0. Then, for any n ≥ 1

dLogn : H1(X,µpn) −→ H0(Xet,WnΩ1
X,log),

dn : H1(X,αpn) −→ H0(Xet, BWnΩ1
X).

are isomorphisms.

It is possible to show that H0(Xet, BWnΩ1
X) = H0(XZar, BWnΩ1

X). We remark
that for n = 1 the isomorphisms coincide with those of i.1.2. We now consider
a faithfully �at morphism g : X −→ Spec(R) with geometrically integral generic
�ber. For any integer n ≥ 0 we will call Ω1

X/R,log,n the sheaf of Z/pnZ-modules
Ω1
X/R,log/p

nΩ1
X/R,log. When there is no ambiguity we write Ω1

log,n.

Theorem. i.4.6 Notation as above. For any n ≥ 1, there is an isomorphism

dLogn : H1(X,µpn)/H1(Spec(R), µpn) −→ H0(XZar,Ω
1

log,n).

If Xk is smooth we show (see i.4.8) that the isomorphisms of i.3.2 and i.4.6 are
compatible, when restricted to the special �ber. We remark that the hypothesis
that Xk is smooth can be weakened: see i.3.12.

Now, let us suppose that R is a d.v.r. of unequal characteristic with no further
assumption on the residue �eld. Let us consider, for any n ≥ 1 and λ ∈ R with
v(p) ≥ pn−1(p − 1)v(λ), the group schemes Gλ,n (for its de�nition see �i.5). If R
contains a primitive pn-th root of unity ζn then the above inequality is equivalent
to v(λ) ≤ v(λ(n)). We recall that

(Gλ,n)k ' µpn , if v(λ) = 0;
(Gλ,n)k ' αpn , if 0 < pn−1(p− 1)v(λ) < v(p);
(Gλ,n)k ' αpn−1 × Z/pZ, if pn−1(p− 1)v(λ) = v(p).

We use these groups to �nd a �ltration of H1(X,µpn).
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Proposition. i.5.6 Let X be an integral normal faithfully �at R-scheme. Let
i0 = max{i|v(p) ≥ pn−1(p− 1)v(πi)}. Then, for any n, we have the following
�ltration

0 ⊆ H1(X,Gπi0 ,n) ⊆ H1(X,Gπi0−1,n) ⊆ . . . ⊆ H1(X,Gπ,n) ⊆ H1(X,µpn),

where π is the uniformizer of R.

For smooth proper curves over R and n = 1 it is essentially the �ltration
constructed by Saïdi ([41, 5.2]). Adding hypothesis on the d.v.r. we obtain also a
relative version of the above �ltration.

Proposition. i.5.9 Let us suppose that R has perfect residue �eld. Let X be
a normal integral faithfully �at R-scheme with integral special �ber. We have the
following �ltration

(1) 0 ⊆ H1(X,Gπi0 ,n)/H1(R,Gπi0 ,n) ⊆ . . . ⊆ H1(X,µpn)/H1(R, µpn)

where π is a �xed uniformizer.

In the case where X is an abelian scheme and n = 1 this �ltration coincide with
that of Andreatta-Gasbarri ([4]). Andreatta-Gasbarri moreover proved that their
�ltration coincides with the Bloch-Kato �ltration, de�ned in [10, �1]. Let X be as
in the above proposition. We construct a �ltration (i.5.12)

(2) 0 ⊆ H0(XZar,Ω
1

logπ
i0 ,n

) ⊆ . . . ⊆ H0(XZar,Ω
1
logπ ,n) ⊆ H0(XZar,Ω

1
log,n),

where Ω1
logπi ,n

are the spaces of di�erential forms de�ned in �i.5.2. We prove that
this �ltration coincides with that of i.5.9 under the isomorphism of i.4.6. More
precisely we have the following result.

Theorem. i.5.13 Let us suppose that R has perfect residue �eld. Consider
λ ∈ R such that v(p) ≥ pn−1(p − 1)v(λ) and let X be a normal integral faithfully
�at R-scheme with integral special �ber. Then there is an isomorphism

H1(X,Gλ,n)/H1(R,Gλ,n)
dLogλn−→ H0(XZar,Ω

1
logλ,n).

Moreover dLogλn is compatible with the �ltrations (1) and (2).

If 0 < pn−1(p− 1)v(λ) < v(p) we prove that this isomorphism is a deformation
of the isomorphism i.3.2 given in characteristic p.

In the second and third chapter we study the extendibility of Z/p2Z-torsors. We
suppose that R is a d.v.r. of unequal characteristic with no further assumption on
the residue �eld. We write S = Spec(R). We suppose that R contains a primitive
pn-root of unity ζn any time we talk about Z/pnZ. In that case Z/pnZ is isomorphic
to µpn on the generic �ber. Let G be an abstract group. Let X be a scheme over
R and YK → XK a GK-torsor. We remark that, since the characteristic of K is
0, any �nite group scheme is étale; so, up to an extension of R, any group scheme
over K is an abstract group. Moreover, let us assume that Y is the normalization
of X in YK . The following question arises naturally.
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Coarse Question. Is it always possible to �nd a model G of (G)K over R together

with an action on Y such that Y −→ X is a G-torsor and the action of G coincides

with that of (G)K on the generic �ber?

If the answer is positive we will say that YK −→ XK is strongly extendible. First,
we will give a weaker answer for any commutative group scheme GK .

Proposition. iii.3.10 Let X be a normal and faithfully �at scheme over R
with integral �bers. Let G be any commutative group-scheme over K and fK :
YK −→ XK a G-torsor. Let Y be the normalization of X in YK. Suppose that Yk
is integral. Up to an extension of R, there exist a (commutative) group-scheme G′

and a G′-torsor Y ′ −→ X over R which extends fK.

The point is that we do not require Y ′ to coincide with Y , i.e. we do not
require Y ′ to be normal. In such a case we speak about weak extension. Clearly
strong extension implies weak extension. We remark that in the above result it is
necessary to extend R. Indeed we can give an example of a Z/pZ-torsor not weakly
extendible if we do not extend R. We guess that it is really necessary to extend
R only if Yk is not reduced. Under the same hypothesis as above we have a more
precise statement for G = Z/pnZ. A (Z/pnZ)K-torsor can indeed be extended to a
µpn-torsor over any R which contains a primitive pn-th root of unity (see iii.3.8).

It is well known that the coarse question has a positive answer if (|G|, p) = 1.
Let us now suppose G = Z/pZ. For this group, strong extension has been proved
in some cases. For details see [37, 1.2.2] when X is the spectrum of a d.v.r, [25,
1.6] and [21, 1.1] for formal a�ne curves and [41, 2.4] for formal curves in a more
general setting. In particular the statement is true if X = Spec(R[[T ]]{T−1}),
as remarked above. See also the paper of Abramovich ([2]) for some results in
dimension 2. In the present thesis we will study also higher dimension. Let us
suppose X = Spec(A) with A a faithfully �at and factorial R-algebra, complete
with respect to the π-adic topology or X a normal local faithfully �at R-scheme.
We remark that A factorial is equivalent to say that X is normal and Cl(X) = 0
(see [24, 6.2, 6.11]). Moreover we suppose Xk integral. Now, let YK → XK be a
nontrivial Z/pZ-torsor and Y the normalization of X in YK . Let us suppose that
Yk is integral. From iii.3.8, cited above, it easily follows that [YK ], the class in
H1(XK ,Z/pZ) of the Z/pZ-torsor YK −→ XK , is induced, by restriction, by an
element of H1(X,µpn). For simplicity we think [YK ] ∈ H1(X,µpn). Then, by i.5.6,
there exists a j such that [YK ] ∈ H1(X,Gπj ,1) \ H1(X,Gπj+1,1). We then get the
following result.

Theorem. iii.4.2 Let us suppose that R contains a primitive p-th root of unity.
Let us consider

YK −→ XK ,

a nontrivial Z/pZ-torsor as above. If [YK ] ∈ H1(X,Gπj ,1) \H1(X,Gπj+1,1) then Y
is a Gπj ,1-torsor. Moreover the valuation of the di�erent of the extension OX,(π) ⊆
OY,(π) is (p− 1)(v(λ(1))− j).
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In this work we have moreover studied the case G = Z/p2Z. Before explaining
in more details our results in such a case we come back for a moment to the general
situation, presented above. We observe that any G-action on YK can be extended to
a G-action µ : G×Y −→ Y . One phenomena which may occur is that the reduced
action of G on the special �bre is not faithful. To solve this problem Romagny
([40]) has introduced the notion of e�ective models. We remark that a very close
notion, called Raynaud's group scheme, has been introduced by Abramovich ([2]).

Definition. Let G be a �nite �at group scheme over R. Let Y be a �at
scheme over R. Let µ : G× Y → Y be an action, faithful on the generic �bre. An
e�ective model for µ is a �nite �at R-group scheme G acting on Y , dominated by
G compatibly (with the actions), such that G acts faithfully on Y (i.e. the map
G −→ Aut(Y ) is injective).

We recall that to say that G dominates G means that there exists an R-
morphism G −→ G which is an isomorphism when restricted to the generic �bers.
In particular the e�ective model G is a model of GK , i.e. a �nite and �at R-group
scheme with generic �ber isomorphic to GK . Moreover if the e�ective model exists
it is unique, as Romagny has proved. The same author proved its existence in the
case that Y is of �nite type (see �iii.1 for the precise statement). The uniqueness
of the e�ective model easily implies that, using the above notation, YK −→ XK is
strongly extendible if and only if Y is a G-torsor. Hence the coarse question can
be reformulated in the following way.

Question. Which is the e�ective model (if it exists) G for a G-action? When
is Y a G-torsor?

We now treat the case G = Z/p2Z. As remarked above, the e�ective model
of a Z/p2Z-action is a model of (Z/p2Z)K . The second chapter is devoted to the
classi�cation of (Z/p2Z)K-models. We now explain more in details what we do.

Let K be a �eld of characteristic 0 which contains a primitive pn-th root of
unity. We remark that this implies µpn ' Z/pnZ. We recall the following exact
sequence

1 −→ µpn −→ Gm
pn−→ Gm −→ 1,

so-called the Kummer sequence. We stress that the Kummer sequence can be
written also as follows

1 −→ µpn −→ Gn
m

θn−→ Gn
m −→ 1

where θn((T1, . . . , Tn)) = (1 − T p1 , T1 − T p2 , . . . , Tn−1 − T pn). Let k be a �eld of
characteristic p > 0. The following exact sequence

0 −→ Z/pnZ −→ Wn(k)
F−1−→ Wn(k) −→ 0,

where Wn(k) is the group scheme of Witt vectors of length n, is called the Artin-
Schreier-Witt sequence. Let now R be a d.v.r. of unequal characteristic which con-
tains a pn-th root of unity. It has been proved, independently, by Oort-Sekiguchi-
Suwa ([45]) and Waterhouse ([58]) the existence of an exact sequence of group
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schemes over R which uni�es the above two sequences for n = 1. Later Green-
Matignon ([20]) and Sekiguchi-Suwa([53]) have, independently, constructed ex-
plicitly a unifying exact sequence for n = 2. This means that it has been found an
exact sequence

(3) 0 −→ Z/p2Z −→W2 −→W ′2 −→ 0

that coincides with the Kummer sequence on the generic �ber and with the Artin-
Schreier-Witt sequence on the special �ber. The case n > 2 is treated in [44] and
[52]. In the second chapter we will generalize this construction. First, we consider
the case n = 1 and we prove that any Z/pZ-model is isomorphic to Gλ,1 for some
λ ∈ R. This is a well known result. A proof was already given, for instance, by
Romagny in his PhD thesis. Moreover by de�nition we have that Gλ,1 is the kernel
of an isogeny, between smooth R-group schemes, which is generically isomorphic
to the Kummer sequence. Next we will consider the case n = 2. Analogously, we
will prove that for any model of (Z/p2Z)K there exists an exact sequence

0 −→ G −→ E1 −→ E2 −→ 0,

with E1, E2 smooth R-group schemes, which coincides with the Kummer sequence
on the generic �ber. We will describe explicitly all such isogenies and their kernels.
Moreover we will give a classi�cation of models of Z/p2Z.

We now explain more precisely the classi�cation we have obtained. First of
all we show that any model of Z/p2Z is an extension of Gµ,1 by Gλ,1 for some
µ, λ ∈ R \ {0}. Then the �rst step is to investigate on Ext1 (Gµ,1, Gλ,1).

We suppose p > 2. Let us de�ne the group

radp,λ(< 1 + µS >) :=

{
(F (S), j) ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ)× Z/pZ such that

F (S)p(1 + µS)−j = 1 ∈ Hom(Gµ,1|Sλp
,Gm|Sλp )

}
/ < 1 + µS, 0 > .

There is a con�ict of notation since S denote Spec(R), too. But it should
not cause any problem. For any (F, j) ∈ radp,λ(< 1 + µS >) we will explicitly
de�ne in ii.3.4 an extension E (µ,λ;F,j) of Gµ,1 by Gλ,1. We will give a description of
Ext1(Gµ,1, Gλ,1).

Theorem. ii.3.35. Suppose that λ, µ ∈ R with v(λ(1)) ≥ v(λ), v(µ). There
exists a (natural) exact sequence

0 −→ radp,λ(< 1 + µS >)
β−→ Ext1(Gµ,1, Gλ,1) −→

−→ ker

(
H1(S,G∨µ,1) −→ H1(Sλ, G

∨
µ,1)

)
,

where β is de�ned by
(F, j) 7−→ E (µ,λ;F,j).

In particular radp,λ(< 1 + µS >) ' {E (µ,λ;F,j)}.
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From this result it follows that, up to an extension of R, any group scheme
of order p2 is of the form E (µ,λ;F,j). Moreover we can determine all the models of
(Z/p2Z)K .

Theorem. ii.3.53 Let us suppose p > 2. Let G be a �nite and �at R-group
scheme such that GK ' (Z/p2Z)K. Then G ' E (πm,πn;F,1) for some v(λ(1)) ≥
m ≥ n ≥ 0. Moreover F (S) = Ep(aS) :=

∑p−1
i=0

ai

i!
Si with pa − jπm ≡ p

πm(p−1)a
p

mod πnp. Finally m,n and a ∈ R/πnR are unique.

In fact this statement is slightly weaker respect than that presented inside the
thesis. We indeed remark that we can explicitly �nd all the solutions a of the
equation pa− jπm ≡ p

πm(p−1)a
p mod πnp if m ≥ n(see ii.3.46).

The above result gives us candidates for being e�ective models for a Z/p2Z-
action. In the second part of the third chapter we study the problem of the
extendibility of Z/p2Z-torsors. We suppose that X = Spec(A) with A a facto-
rial R-algebra, complete with respect to the π-adic topology, or X a normal local
R-scheme. We moreover suppose X is essentially semire�exive (see �iii.1 for the
de�nition). This implies in particular that X −→ Spec(R) is faithfully �at. For
instance we can consider X = Spec(R[[T ]]{T−1}) or X = Spec(R[[T ]]). Let us
consider a Z/p2Z-torsor YK −→ XK and let Y be the normalization of X in YK .
It is possible to show that there is a factorization

(4) h : Y
h2−→ Y1

h1−→ X

with h1 and h2 degree p morphisms. We de�ne γi such that the valuation of the
di�erent D(hi) of hi (localized in the special �ber) is

v(D(hi)) = v(p)− (p− 1)γi

for i = 1, 2. So we can apply iii.4.2 to hi. Moreover, by i.5.6, we have that
[YK ] ∈ H1(X,Gπj ,2) \ H1(X,Gπj+1,2) for some j ≤ v(λ(2)). Finally we can prove
that Y = Spec(B) with

B = B1[T2]/

(
(1 + πγ2T2)p − 1

πpγ2
− (1 + πpjg0)H(T1)−p(1 + πγ1T1)− 1

πpγ2

)
and

B1 = A[T1]/(
(1 + πγ1T1)p − 1

πpγ1
− f1),

for some H(T1) ∈ B∗1 and g0, f1 ∈ A. H(T1) and g0 are uniquely determined
mod πγ2 , while f0 is uniquely determined mod πγ1 .

Now, given H(T1) =
∑p−1

k=0 akT1
k ∈ B∗1 , let us consider its formal derivative

H ′(T1). For any m ≥ γ1, we will say that a ∈ πR satis�es (∆)m if

aH(T ) ≡ πm−γ1H ′(T ) mod πγ2 .

Definition. We will call e�ective threshold the number

κ = min{m ≥ γ1|∃a ∈ πR which satis�es (∆)m}.



xii INTRODUCTION

For any m ≥ γ1 there exists at most one a ∈ πR which satis�es (∆)m. We will
call it αm. We will prove that we can construct a group scheme E (πκ,πγ2 ;Ep(ακS),1).

Definition. Using the previous notation we say that the degeneration type

of YK −→ XK is (j, γ1, γ2, κ).
Then we will prove the following theorem.
Theorem iii.5.7 Let X := SpecA be as above. Let YK → XK be a connected

Z/p2Z-torsor. Let Y be the normalization of X in YK and let us suppose that Yk
is integral. If YK has (j, γ1, γ2, κ) as degeneration type then its e�ective model is

E (πκ,πγ2 ;Ep(ακS),1).

We remark that the existence of the e�ective model in this case was not assured
by the above cited result of Romagny about the existence of e�ective models.
Indeed we do not assume Y to be of �nite type.

Then we give a criterion for Y to have a structure of torsor under some �nite
and �at group scheme G.

Corollary iii.5.12. Under the hypothesis of theorem iii.5.7 Y −→ X is a

G-torsor under some �nite and �at group scheme G if and only if κ = γ1.

Moreover, we will give an example in which Y is not a G-torsor under some
�nite and �at group scheme. We observe that in the case R of equal characteristic
the extension of Z/p2Z-torsors had been studied by Saïdi ([43]). We remark that,
in that case, there is no criterion to determine if a cover is a torsor under some
group scheme. Finally we observe that Romagny [40] and Saïdi [42] have given, in
equal characteristic, an example in which YK −→ XK is not strongly extendible.

We �nally try to determine 4-uples of positive integer numbers that can be
degeneration types. Since R contains ζ2 then v(p) = p(p− 1)v(ζ2 − 1)

Definition. Any 4-uple (j, γ1, γ2, κ) ∈ N4 with the following properties:

i) max{γ1, γ2} ≤ κ ≤ v(p)
p−1

;
ii) γ2 ≤ p(κ− γ1 + j) ≤ pγ2;
iii) if κ < pγ2 then γ1−j = v(p)

p
; if κ ≥ pγ2 then 0 ≤ p(γ2−j) ≤ v(p)−pγ1 +κ;

iv) pj ≤ γ1

will be called an admissible degeneration type.
Definition. Any admissible degeneration type which is the degeneration type

attached to a Z/p2Z-torsor YK → XK as above, will be called realizable.
And �nally we prove the following statement.
Theorem iii.6.7. Any admissible degeneration type (j, γ1, γ2, κ) with κ = γ1

is realizable.

If κ > γ1 we have examples of admissible degeneration types (j, γ1, γ2, κ) that
are not realizable.
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CHAPTER i

Di�erential forms and torsors under some �nite group

schemes

i.1. Classical results

Let X be a scheme over a perfect �eld k of characteristic p>0. For any Fp-
scheme Y we will denote by FY : Y −→ Y the absolute Frobenius of Y . Let us
de�ne X(p) the scheme obtained by the base change Fk, i.e.

X(p)
q //

��

X

��
Spec(k)

Fk // Spec(k)

is cartesian. We remark that q is an isomorphism (but not as k-schemes) and FX
factors in q ◦ FX/k, where the k-morphism

FX/k : X −→ X(p)

is called relative Frobenius. Let Ω•X/k = (∧Ω1
X/k, d) be the De Rham complex. The

di�erential d is OX(p)-linear (through FX/k : OX(p) −→ (FX/k)∗OX). Hence

ZΩi
X/k = ker d : Ωi

X/k −→ Ωi+1
X/k

and
BΩi

X/k = d(Ωi−1
X/k)

are sheaves of OX(p)-modules. Then H∗(Ω•X/k), the cohomology of the complex
Ω•X/k, is a graded OX(p)-algebra.

We recall that that there exists a unique homomorphism of graded OX-algebras
(i.5) C−1

X/k : Ω•X/k −→ q∗(H
∗(Ω•X/k))

which is equal to FX/k in degree zero and such that, for any section s of OX ,
C−1
X/k(d s) = [sp−1 d s] ∈ H1(Ω•X/k)

Cartier has proved the following result:

Theorem i.1.1. If X/k is smooth then C−1
X/k is an isomorphism.

Proof. See [29, 7.2] for a proof. �

1



2 I. DIFFERENTIAL FORMS AND TORSORS UNDER SOME FINITE GROUP SCHEMES

The inverse of (i.5) de�nes an OX-linear morphism CX/k : q∗ZΩ•X/k −→ Ω•X/k,
called Cartier's operation.

Let us consider the morphism of sheaves of abelian groups

d log : O∗X −→ Ω1
X/k

given by d log(s) = d s
s
. We call Ω1

log,X the image sheaf. If we look at the iso-
morphism CX/k in degree zero we have the following exact sequences of sheaves on
X

(i.6)
0 −→ O∗pX −→ O

∗
X

d log−→ ZΩ1
X/k

0 −→ OpX −→ OX
d−→ ZΩ1

X/k

We now recall that, for any commutative group scheme G over X, the group
H1(X,G) classi�es the G-torsors over X. If G is not commutative there is the
same classi�cation but H1(X,G) is only a pointed set (see [32, III.4]). Let us
consider the natural continuous map of sites f : Xfl −→ Xet. It is known that
Rif∗Gm = Rif∗Ga = 0 for i > 0 (see the proof of [32, III.3.9]). Considering the
exact sequences associated to the exact sequences in Xfl

1 −→ µp −→ Gm
p−→ Gm −→ 1

0 −→ αp −→ Ga
p−→ Ga −→ 0

and, applying the functor associated to f : Xfl −→ Xet, we obtain in Xet

1 −→ µp −→ O∗X
FX−→ O∗X −→ R1f∗µp −→ 0,

0 −→ αp −→ OX
FX−→ OX −→ R1f∗αp −→ 0

and
Rif ∗µp = Rif∗αp = 0

for any i > 1. In particular

(i.7)
O∗X/(O∗X)p ' R1f∗µp
OX/(OX)p ' R1f∗αp.

Moreover, in the étale topology the sheaves µp and αp are the zero sheaves since X
is reduced. So H i(Xet, µp) = H i(Xet, αp) = 0 for any i. Then the Leray spectral
sequences

H i(Xet,R
jf∗µp)⇒ H i+j(X,µp)

H i(Xet,R
jf∗αp)⇒ H i+j(X,αp)

give the isomorphisms

H1(X,µp)
δ−→ H0(Xet,R

1f∗µp)

H1(X,αp)
δ−→ H0(Xet,R

1f∗αp).
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We now have, by (i.6), in the étale topology, the following isomorphisms

O∗X/(O∗X)p
d log
'−→ Ω1

X,log,

OX/(OX)p
d
'−→ BΩ1

X/k,

which give the isomorphisms

dLog := d log ◦ δ : H1(X,µp) −→ H0(Xet,Ω
1
X,log),

d := d ◦ δ : H1(X,αp) −→ H0(Xet, BΩ1
X/k)

using the identi�cations of (i.7). But H0(Xet,Ω
1
X,log) = H0(XZar,Ω

1
X,log) and

H0(Xet, BΩ1
X/k) = H0(XZar, BΩ1

X/k). This is the proof (taken from [32, III.4.14])
of the following result.

Theorem i.1.2. Let X be a smooth scheme over a perfect �eld k of character-
istic p, then the maps

dLog : H1(X,µp) −→ H0(XZar,Ω
1
X,log),

d : H1(X,αp) −→ H0(XZar, BΩ1
X/k)

are isomorphisms.

We remark that the previous statement means

H1(X,αp) = {ω ∈ H0(XZar,Ω
1
X)| ω is locally exact},

H1(X,µp) = {ω ∈ H0(XZar,Ω
1
X)| ω is locally logarithmic}.

The purpose of this chapter is to generalize the previous theorem for αpn-torsors
and µpn-torsors. Moreover we obtain similar statements for some group schemes
over a d.v.r. of unequal characteristic.

i.2. De Rham-Witt V -pro-complexes

For reference see [27] where the author uses this complex to give a more explicit
description of crystalline cohomology. For any scheme X over Fp, a V -De Rham
pro-complex is a projective system

M• = {(Mn)n∈Z, R : Mn+1 −→Mn}
of sheaves of di�erential graded algebras (dga) over X, and a family of additive
maps

V : (M i
n −→M i

n+1)n∈Z

such that RV = V R and
(V1) Mn = 0 for n ≤ 0, M0

1 is an Fp-algebra, M0
n = Wn(M0

1 ), R and V are the
usual operators over Wn(M0

1 );
(V2) For any n, i, j and x ∈M i

n and y ∈M j
n we have

V (xdy) = V (x)dV (y);
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(V3) For any x ∈M0
1 and y ∈M0

n we have

V yd[x] = V (y[xp−1]d[x]).

Notation: for any A ∈ Ob(Fp-alg(X)), where Fp-alg(X) denote the category
of Fp-algebras over X, and x ∈ A we denote by [x] ∈ W (A) the Teichmüller
representant (x, 0, 0, . . . ). And [x]≤n is the image in WnΩ•X .

The De Rham V -pro-complexes form a category V DR(X). An arrow f :
M• −→ N• of V DR(X) is, by de�nition, a homomorphism of projective systems
of dga's (fn : Mn −→ Nn)n∈N such that fn+1V = V fn and f 0

n = Wn(f 0
1 ), for any

n. [27, I 1.3] ensures that there exists a left adjoint (called W•Ω•X) of the forgetful
functor

V DR(X) −→ Fp-alg(X)

M• −→M0
1

This means
HomV DR(X)(W•Ω

•
A,M•) = HomFp-alg(X)(A,M

0
1 ),

for any A ∈ ob Fp-alg(X) and M• ∈ ob V DR(X).
Moreover [27, I 1.3] also says that the homomorphism πn : Ω•Wn(A) −→ WnΩ1

A,
such that π0

n is the identity, is surjective and π1 : Ω•A −→ W1Ω•A is an isomorphism.
So we can think of any element of WnΩ1

A as a di�erential form with coe�cients in
Wn(A). In the case that X is de�ned over a perfect �eld of characteristic p then,
by [27, I 1.6], WnΩ•A is naturally a sheaf of Wn(k)-dga's.

i.2.1. Operator F. We recall that W•(OX) has a Frobenius endomorphism
denoted

F : W•OX −→ W•OX .
For Fp-schemes it is de�ned by (x0, . . . , xn) 7→ (xp0, . . . , x

p
n). It extends the absolute

Frobenius FX : OX −→ OX .
In the following we recall the de�nition of the operator F on the de Rham-Witt

complex and its principal properties.

Theorem i.2.1. Let X be an Fp-scheme. Then the homomorphism of projective
systems of rings RF = FR : W•OX −→ W•−1OX (where WiOX = 0 if i ≤ 0) can
be uniquely extended to a homomorphism of projective systems of graded algebras

F : W•Ω
•
X −→ W•−1Ω•X ,

such that

a) for any n ≥ 2 and for any x ∈ OX
F d[x] = [xp−1]≤n d[x]≤n−1;

b) for any n ≤ 1, we have

F dV = d : WnOX −→ WnΩ1
X .

Proof. [27, I 2.17]. �
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Proposition i.2.2. F has the following properties:

i) FV = V F = p : WnΩi
X −→ WnΩi

X ;
ii) d F = pF d : WnΩi

X −→ Wn−1Ωi+1
X (i.e. pi F is a morphism of dga);

iii) F dV = d : WnΩi
X −→ WnΩi+1

X ;
iv) if we denote by F : WnΩ•X −→ WnΩ•X the endomorphism de�ned functo-

rially by F : WnOX −→ WnOX , we have, for any i, the following commu-
tative diagram

WnΩi
X

pi F

%%LLLLLLLLLL
F //WnΩi

X

��
Wn−1Ωi

X

Proof. These properties are all proved in [27, I 2.18]. �

Moreover it is possible to prove the following result.

Proposition i.2.3. If X is a smooth scheme over a perfect scheme T of char-
acteristic p then, for any n, we have

Ker(Fn d : Wn+1Ωi
X −→ Ωi+1

X ) = F (Wn+2Ωi
X).

Proof. See the proof of [27, I 3.11]. �

Remark i.2.4. We can think of the operator F as a generalization of the inverse
Cartier operator C−1 : Ωi

X −→ Ωi
X/ d Ωi−1

X . In fact it is possible to show ([27, 3.3])
that if X is smooth and T is perfect, F induces an homomorphism

F : WnΩi
X −→ WnΩi

X/ dV n−1Ωi−i
X

which coincides with C−1 for n = 1.

i.2.2. The canonical �ltration of W•Ω
•
X. In this paragraph and in the next

one we suppose that X is a connected smooth scheme over a perfect base T of
characteristic p. Then, for any n, r ∈ Z, we de�ne

FilrWnΩ•X =

 WnΩ•X , if n ≤ 0 or r ≤ 0;
KerRn−r : WnΩ•X −→ WrΩ

•
X , if 1 ≤ r < n;

0, if r ≥ n .

The following result characterizes, in another way, the previous �ltration

Proposition i.2.5. For any n and 0 ≤ i ≤ n we have

Ker(pi : WnΩ•X −→ WnΩ•X) = Filn−iWnΩ•X .

Proof. [27, I 3.4]. �
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i.2.3. Two exact sequences. We consider the following morphisms

dlogn : O∗X −→ WnΩ1
X

x 7−→ d[x]≤n
[x]≤n

and

d : OX −→ WnΩ1
X

x 7−→ d[x]≤n

Then

Proposition i.2.6. For any n ≥ 1, the sequence

0 −→ O∗X
FX−→ O∗X

dlogn−→ WnΩ1
X

is exact in the étale topology.

Proof. [27, I 3.23.2]. �

We can prove the following

Proposition i.2.7. For any n ≥ 1 the sequence

0 −→ OX
FnX−→ OX

d−→ WnΩ1
X

is exact in the étale topology.

Remark i.2.8. Here there is an abuse of notation. In fact we recall that the
operator F in degree zero is equal to RF = FR : WnOX −→ Wn−1OX with F the
usual Frobenius.

Proof. By i.2.5 we see that pnWnΩ1
X = 0. So

d[Fn(x)]≤n = d Fn([x]≤2n)
i.2.2(ii)

= pn Fn d[x]≤2n = 0.

We now prove Ker d ⊆ ImFn by induction. For n = 1 the result derives by
the well known Cartier isomorphism. Now suppose d[x]≤n = 0 with x ∈ OX .
Then R(d[x]≤n) = d[x]≤n−1 = 0. So, by inductive hypothesis, we have, locally,
x = Fn−1(y), for some y ∈ OX . So

d[x]≤n = d([Fn−1(y)]≤n) = d Fn−1([y]≤2n−1) = pn−1 Fn−1 d[y]≤2n−1 = 0,

which implies, by i.2.5, Fn−1 d[y]≤2n−1 ⊆ Fil1WnΩ1
X . Hence

Rn−1(Fn−1 d[y]≤2n−1) = Fn−1 d[y]≤n = 0,

which implies [y]≤n = F(α) with α ∈ Wn+1OX , by i.2.3. Then, locally, y = F (z)
for some z ∈ OX and so x = F n(z), locally.

�
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i.3. Di�erential forms and torsors in characteristic p

Definition i.3.1. For any scheme over a perfect �eld of characteristic p we
de�ne WnΩ1

X,log as the image sheaf of the Z-module map dlogn. Moreover we
de�ne BWnΩ1

X as the image sheaf of dn. They are both sheaves of Z-modules.

Following the strategy of the proof of i.1.2, we give a description of µpn-torsors
and αpn-torsors in the smooth case in terms of De Rham-Witt di�erential forms,
in a way similar to i.1.2.

Let X be a smooth scheme over a perfect �eld of characteristic p. Let us
consider the natural continuous map of sites f : Xfl −→ Xet.

Let us consider the exact sequences in Xfl

1 −→ µpn −→ Gm
pn−→ Gm −→ 1

0 −→ αpn −→ Ga
pn−→ Ga −→ 0.

We obtain the following isomorphisms, mutatis mutandis, as in the proof of i.1.2

(i.8)
O∗X/(O∗X)p

n ' R1f∗µpn
OX/(OX)p

n ' R1f∗αpn

and

H1(X,µpn)
δn−→ H0(Xet,R

1f∗µpn)

H1(X,αpn)
δn−→ H0(Xet,R

1f∗αpn).

We now have, by i.2.6 and i.2.7, in the étale topology, the following isomor-
phisms

O∗X/(O∗X)p
n

d logn
'−→ WnΩ1

X,log,

OX/(OX)p
n

d
'−→ BWnΩ1

X ,

which give the isomorphisms

dLogn := d logn ◦ δn : H1(X,µpn) −→ H0(Xet,WnΩ1
X,log),

dn := d ◦ δn : H1(X,µpn) −→ H0(Xet, BWnΩ1
X),

using the identi�cations of (i.8). We remark that dLogn and dn are de�ned even
if X is not smooth, but in these cases they are not in general isomorphisms. So we
have proved the following result.

Theorem i.3.2. Let X be a smooth scheme over a perfect �eld of characteristic
p. Then, for any n ≥ 1 the maps

dLogn : H1(X,µpn) −→ H0(Xet,WnΩ1
X,log),

dn : H1(X,αpn) −→ H0(Xet, BWnΩ1
X)

are isomorphisms.
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Moreover dLogn (resp. d) is compatible with the natural restrictions map

rn,m : H i+1(X,µpn) −→ H i+1(X,µpm)

and
r′n,m : H i(Xet,Ω

1
log,n) −→ H i(Xet,Ω

1
log,m)

with n ≥ m
(
resp.

rn,m : H i+1(X,αpn) −→ H i+1(X,αpm)

and
r′n,m : H i(Xet,Ω

1
log,n) −→ H i(Xet,Ω

1
log,m)

with n ≥ m
)
. In other words

dLogm ◦ rn,m = r′n,m ◦ dLogn,

(resp. d ◦rn,m = r′n,m ◦ d ).

Remark i.3.3. For n = 1 we obtain theorem i.1.2 (with the same proof).

Proof. The statements about compatibilities are clear since all maps are func-
torial. �

We now give a more explicit description of dLogn. By Kummer theory we
know that H1(X,µpn) is the set (modulo isomorphism) of pairs (L, ψ) where L is
an invertible sheaf on X and ψ is an isomorphism OX −→ L⊗n. This means that
any torsor Z −→ X is determined by an a�ne covering (for the Zariski topology)
(Ui = Spec(Ai))i∈I of X, a cocycle {fij} in H1(X,O∗X) and gi ∈ H0(Ui,O∗Ui)
such that fp

n

ij = gi
gj

for any i, j. So locally (for the Zariski topology) it is of type

Zi = Spec(Ai[zi]/(z
pn

i − gi)), with zi = fijzj. And Z −→ X is trivial if and only
if, up to re�ning the covering, there are {hi} ∈ H0(Ui,O∗Ui) such that fij = hi

hj
and

a ∈ H0(X,O∗X) such that ap
n

|Ui =
hp
n

i

gi
.

This means that Z −→ X is a trivial torsor for the �at topology if and only if
any Zi −→ Ui is trivial, i.e. there exists {γi} such that γp

n

i = gi. The map which
we have de�ned is

dLogn : H1(X,µpn)
δn−→ H0(Xet,O∗X/(O∗X)p

n

)
d logn−→H0(Xet,WnΩ1

X,log)

({fij}, {gi}) 7−→ {gi} 7−→ ω = {d [gi]≤n
[gi]≤n

}

In a similar way it is possible to give explicitly dn .

Remark i.3.4. Since the WnΩi
X are quasi-coherent sheaves over the scheme

Wn(X), with Γ(U,WnΩi
X) = WnΩi

U for any U/X étale ([27, I 1.13, 1.14]), then by
[32, III.3.7], we haveHj(Xet,WnΩi

X) = Hj(XZar,WnΩi
X) for any i, j. In particular,

since WnΩ1
X,log, BWnΩ1

X ⊆ WnΩ1
X , then H

0(Xet,WnΩ1
X,log) = H0(XZar,WnΩ1

X,log)

and H0(Xet, BWnΩ1
X) = H0(XZar, BWnΩ1

X).
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As a corollary we reobtain a result of Illusie and Raynaud (cfr [27, 5.7.2] and
[27, 5.8.3]).

Corollary i.3.5. For any smooth scheme X over a perfect �eld k there is an
isomorphism

H1(X,Zp(1)) := lim
←−

H1(X,µpn) ' H0(XZar,WΩ1
X,log),

where WΩ1
X,log = lim

←−
WnΩ1

X,log.

Proof. dLogn is compatible with the natural restrictions map rn,m and r′n,m,
de�ned in the above theorem, i.e.

dLogm ◦ rn,m = r′n,m ◦ dLogn for n ≥ m.

Passing to inverse limits, the thesis is immediate. �

i.3.1. Normal case. In this section we want to generalize i.3.2 to µpn-torsors
over some particular normal schemes.

Proposition i.3.6. Let X be a normal integral scheme. For any �nite and �at
commutative group scheme G over X,

i∗ : H1(X,G) −→ H1(Spec(K(X)), G|K(X))

is injective, where i : Spec(K(X)) −→ X is the generic point.

Proof. A sketch of the proof has been suggested to us by F. Andreatta. Con-
sider a G-torsor f : Y −→ X such that i∗f : i∗Y −→ Spec(K(X)) is trivial. This
means there exists a section s of i∗f . We consider the scheme Y0 which is the clo-
sure of s(Spec(K(X))) in Y . Then f|Y0 : Y0 −→ X is a �nite birational morphism
with X a normal integral scheme. So, by Zariski's Main Theorem ([30, 4.4.6]), we
have that f|Y0 is an open immersion. On the other hand, since f|Y0 is �nite, then
it is proper. In particular it is closed. Hence it is an isomorphism. So we have a
section of f and Y is a trivial G-torsor. �

Remark i.3.7. If G is not �nite the proposition is not true. Take, for instance,
a scheme X with H1(X,O∗X) 6= 0. This one classi�es Gm-torsors over X. But
H1(Spec(K(X)),O∗Spec(K(X))) = 0.

Corollary i.3.8. Let X be a normal integral scheme. Let f : Y −→ X be a
morphism with a rational section and let g : G −→ G′ be a map of �nite and �at
commutative group schemes over X, which is an isomorphism over Spec(K(X)).
Then

f ∗g∗ : H1(X,G) −→ H1(Y,G′Y )

is injective.

Proof. By hypothesis Spec(K(X)) −→ X factors through f : Y −→ X. If
i : Spec(K(X)) −→ X, we have

i∗ : H1(X,G) −→ H1(X,G′) −→ H1(Y,G′Y ) −→ H1(Spec(K(X)), GK(X)).
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Therefore, by the previous proposition, it follows that

H1(X,G) −→ H1(Y,G′Y )

is injective. �

Remark i.3.9. The previous corollary can be applied, for instance, to the case
f = idX or to the case f : U −→ X an open immersion and g = idG. Roberts ([38,
p. 692]) has proved the corollary in the case f = idX , with X = Spec(A) and A
the integer ring of a local number �eld.

We now prove a result of purity for µn-torsors.

Proposition i.3.10. Let X be a separated, locally factorial and integral scheme.
And let i : U ⊆ X be an open such that codim(X \ U) ≥ 2. The map

i∗ : H1(X,µn) −→ H1(U, µn)

is an isomorphism, for n ≥ 2.

Proof. The injectivity comes from the previous corollary. We now prove the
surjectivity. Consider the following commutative diagram

H0(X,O∗X)

��

n //H0(X,O∗X)

��

//H1(X,µn) //

��

H1(X,O∗X)

��

n //H1(X,O∗X)

��
H0(U,O∗X)

n //H0(U,O∗X) //H1(U, µn) //H1(U,O∗X)
n //H1(U,O∗X)

induced by exact sequence

1 −→ µn −→ Gm
n−→ Gm −→ 1

in the �at site. Since X is normal and the complementary of U has codimension
at least two, the �rst two vertical maps are isomorphisms. By [24, II.6.5] we have
Cl(X) ' Cl(U). But, since X is separated and locally factorial, then Cl(X) '
Pic(X) and Cl(U) ' Pic(U) and so the last two vertical maps are isomorphisms.
By the �ve lemma we have the thesis. �

Remark i.3.11. The previous proposition is not true if the scheme X is only
normal. The following example has been suggested to us by M. Roth. For instance
we consider an ordinary elliptic curve E ⊆ P2 over an algebraically closed �eld k
of characteristic p. It is projectively normal since it is an hypersurface. Then the
projective cone X over E is normal. Let q be the singular point of X. By Kummer
Theory we know there is a surjective map

H1(X \ q, µpn) −→ ker(pn : Pic(X \ q) −→ Pic(X \ q)).
On the other hand Pic(X \ q) = Cl(X \ q) since X \ q is regular and it is well
known that Cl(X) = Cl(X \ q) = Cl(E) = Pic(E).

We call X ′ the a�ne cone over C. It is known that Cl(X ′) = Cl(OX,q).
Moreover since OX,q is local then Pic(OX,q) = Pic(X ′) = 0. So any Cartier
divisor of X restricted to X ′ is trivial, which means that any Cartier divisor of
X is contained in the hyperplane section at in�nity C. So we have that Pic(X)
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is generated by the hyperplane section at in�nity. This means that Pic(X) ' Z.
Moreover we also know that since X is projective and k is algebraically closed

H1(X,µpn) ' ker(pn : Pic(X) −→ Pic(X)).

So H1(X,µpn) = 0.
Since E is ordinary, we can take a µpn-torsor Y over X \ q with an associated

non-trivial line bundle D′ of pn-torsion. Therefore it is not possible to extend it to
all X.

Corollary i.3.12. Let X be a separated, locally factorial and integral scheme
over a perfect �eld of characteristic p such that the set of regular points, Reg(X),
is open. Then we have the isomorphism

dLogn : H1(X,µpn) −→ H0(XZar,WnΩ1
X,log).

Remark i.3.13. The condition on Reg(X) is satis�ed for instance by excellent
schemes, e.g. an algebraic variety over a �eld or Spec(A) with A a complete and
local ring.

Proof. Since X is normal then codim(X \Reg(X)) ≥ 2 ([30, 4.2.24]). We set
U = Reg(X). By above proposition H1(X,µpn) ' H1(U, µpn). Then we have the
following commutative diagram

H1(X,µpn)
dLogn//

'
��

H0(XZar,WnΩ1
X,log)

��
H1(U, µpn)

(dLogn)U//H0(UZar,WnΩ1
X,log)

The map (dLogn)U is an isomorphism and the second vertical map is injective
since U is an open dense of X. An easy veri�cation shows that dLogn is an
isomorphism. �

i.3.2. Non-normal case. We now want to explain why it is not possible to
have a similar statement in general for non-normal schemes. The main reason is
that i.3.6 is not true in general.

Example i.3.14. Consider X = Spec(k[x, y]/(xp − yp+1)) = Spec(A) and Y
the αp-torsor Spec(A[T ]/(T p − y)). Generically this torsor is trivial since we have
y = (x

y
)p. But Y is not trivial since y is not a p-power in A.

On the other hand we know that any (also generalized) di�erential form which is
trivial on an open dense is trivial over the whole scheme. This is so an obstruction
to classify αpn-torsor and µpn-torsor as di�erential forms as we did in the smooth
case.

i.4. Di�erential forms and µpn-torsors in unequal characteristic

By now, R will be a d.v.r. of unequal characteristic. While K will indicate
its fraction �eld and k its residue �eld. We now want to classify µpn-torsors by
opportune di�erential forms. We remark that H1(X,µpn) is a Z/pnZ-module. In
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characteristic p we have seen that there are natural sheaves of Z/pnZ-modules.
In mixed characteristic we will de�ne opportune sheaves. For any faithfully �at
morphism of schemes X −→ Spec(R), let us consider the map of sheaves of Z-
modules

dlog : O∗X −→ Ω1
X/R

de�ned by

f 7−→ d f

f
.

We call Ω1
log,X the image sheaf.

Definition i.4.1. For any integer n ≥ 0 we will call Ω1
X/R,log,n the sheaf of

Z/pnZ-modules Ω1
X/R,log/p

nΩ1
X/R,log. When there will be no possibility of confusion

we will write Ω1
log,n.

One of the main ingredients in characteristic p was i.2.6. We now will prove a
similar statement over a d.v.r. with fraction �eld of characteristic zero.

Proposition i.4.2. For any faithfully �at morphism g : X −→ R with geomet-
rically integral generic �ber the following sequence

1 −→ g−1O∗Spec(R)(O∗X)p
n −→ O∗X

d logn−→ Ω1
X/R,log,n −→ 0

is exact.

Remark i.4.3. Let g : X −→ Y be a morphism with Y a Dedekind scheme and
the generic �ber Xη integral. Then it is faithfully �at if and only if X is integral
and g is surjective. This follows from [30, 4.3.8] and [30, 4.3.10].

Proof. First, we prove the following result.

Proposition i.4.4. Under the hypothesis of the above proposition

1 −→ g−1OSpec(R) −→ OX
d−→ Ω1

X/R

is exact.

Proof. Since char(K) = 0 then any subextension L ⊆ K(X) is separable.
Since K(X)/L is separable, it is formally smooth ([22, 19.6.1]) and it follows that
there is an exact sequence

(i.9) 0→ Ω1
L/K ⊗L K(X)→ Ω1

K(X)/K → Ω1
K(X)/L → 0

(see [22, 20.5.7]).
Now let x be a point of X. It is known that (g−1OSpec(R))x = OSpec(R),g(x). Since

g is faithfully �at then OSpec(R),g(x) −→ OX,x is injective. Moreover, by de�nition
of relative di�erentials, it follows that

OSpec(R),g(x) −→ OX,x
d−→ (Ω1

X/R)x

is the zero morphism. We now prove that ker d = OSpec(R),g(x). We denote by B
the local ring OSpec(R),g(x). We remark that B = K or R. Let f ∈ OX,x be such
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that d f = 0 ∈ (Ω1
X/R)x = Ω1

OX,x/B. Then d f = 0 ∈ Ω1
K(X)/K . We consider

L = K(f) ⊆ K(X). So by (i.9) we have d f = 0 in Ω1
K(f)/K . This means

Ω1
K(f)/K = 0.

In particular K(f)/K is a �nite extension, thus

f ∈ K(X) ∩ K̄.
But since X has geometrically integral generic �ber, then

K(X) ∩ K̄ = K

by [23, 4.5.9]. So f ∈ K ∩ OX,x. If x is in the generic �bre then B = K so f ∈ B
and we are done. If x is in the special �bre then B = R and K ∩ OX,x is a proper
sub-R-algebra of K, thus of the form 1

πs
R for some s ≥ 0. If f ∈ R = B we

are done, otherwise there exists n ≥ 0 such that πnf ∈ R∗. Since B −→ OX,x is
faithfully �at it follows, by [30, 1.2.17], that πOX,x 6= OX,x. In particular π 6∈ O∗X,x
and so n = 0, which implies f ∈ B. �

We now can prove the exactness of the sequence of the statement. Clearly
g−1O∗Spec(R)(O∗X)p

n −→ O∗X is injective and dlog(g−1O∗Spec(R)(O∗X)p
n
) = 0.

Now let x be a point of X. Then (g−1O∗Spec(R)O
∗pn
X )x = O∗Spec(R),g(x)(OX,x)∗p

n
.

If g(x) = Spec(B) as above then dlog f = 0 ∈ (Ω1
X/R,log,n)x means that dlog(f) =

dlog hp
n
for some h ∈ O∗X,x, i.e.

d

(
f

hpn

)
= 0.

This means, by (i.4.4), f = ahp
n
, with a ∈ B. This implies

ker dlog = g−1O∗Spec(R)(O∗X)p
n

.

The surjectivity of d logn it follows from the de�nition of Ω1
X/R,log,n. �

Proposition i.4.5. Let Y −→ Spec(R) be a morphism with geometrically in-
tegral �bres and G a �nite �at R group scheme. If we denote by f : Yfl −→ YZar
the natural continuous map of sites, then

δ : H1(Y,G) −→ H0(YZar, R
1f∗G),

induced by the Leray spectral sequence

H i(YZar,R
jf∗G)⇒ H i+j(Y,G),

is an isomorphism.

Proof. Since f∗G isG restricted to the Zariski site, the Leray spectral sequence
above gives

(i.10) 0 −→ H1(YZar, G) −→ H1(Y,G)
δ−→ H0(YZar,R

1f∗G) −→ H2(YZar, G)

in low degrees. We now prove that

(i.11) H i(YZar, G) = 0
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for i > 0. Indeed we will prove that G is a constant sheaf over YZar. In particular
it is �asque since Y is an irreducible topological space. Then, by [24, III.2.5], we
can conclude H i(YZar, G) = 0 for i > 0.

Let us �x a presentation R[G] = R[T1, . . . , Tn]/(P1, . . . , Pm). An element of
H0(UZar, G) is an R-algebra homomorphism R[G] → H0(U,OU) ⊂ K(Y ). This is
given by the images x1, . . . , xn of the generators of R[G], satisfying Pi(x1, . . . , xn) =
0 for 1 ≤ i ≤ m. Since R[G] is �nite over R, then R[x1, . . . , xn] is �nite also so
the elements xj are integral. Since K(Y ) ∩ K̄ = K we get xj ∈ K, and since R is
integrally closed in fact xj ∈ R. Finally
H0(UZar, G) = {(x1, . . . , xn) ∈ Ra s. t. Pi(x1, . . . , xn) = 0 for 1 ≤ i ≤ m} = G(R) ,

and this does not depend on U . �

With abuse of notation, we will denote by f both the natural continuous map of
sites Xfl −→ XZar and Spec(R)fl −→ Spec(R)Zar. It will be clear by the context
which we are considering. Since R1f∗Gm,X = R1f∗Gm,R = 0, (see the proof of [32,
III 4.9]), reasoning as in the proof of i.3.2 we can conclude that

(i.12)
O∗X/(O∗X)p

n ' R1f∗µpn,X ,
O∗Spec(R)/(O∗Spec(R))

pn ' R1f∗µpn,Spec(R).

We de�ne, using i.4.5 and this identi�cation,

dLogn := d logn ◦ δn : H1(X,µpn) −→ H0(XZar,Ω
1

log,n).

Theorem i.4.6. Let g : X −→ Spec(R) be a faithfully �at morphism with
geometrically integral generic �ber. Then, for any n ≥ 1, there is an isomorphism

dLogn : H1(X,µpn)/H1(Spec(R), µpn) −→ H0(XZar,Ω
1

log,n).

Moreover dLogn is compatible with the restriction maps rn,m : H1(X,µpn) −→
H1(X,µpm) and r′n,m : H0(XZar,Ω

1
log,n) −→ H0(XZar,Ω

1
log,m) with n ≥ m, i.e.

dLogm ◦ rn,m = r′n,m ◦ dLogn.

Proof. The map g induces a morphism of sheaves on X

g−1(R1f∗µpn,Spec(R)) −→ R1f∗µpn,X ,

which is the natural map

g−1(O∗Spec(R)/(O∗Spec(R))
pn) −→ O∗X/(O∗X)p

n

under the identi�cations of (i.12). We prove it is injective. Let x be a point of X.
Let g(x) = Spec(B) with B = R or B = K. We have to prove that

B∗/(B∗)p
n −→ O∗X,x/(O∗X,x)p

n

is injective. Suppose z ∈ B∗ ∩ O∗p
n

X,x. Then z = yp
n
for some y ∈ O∗X,x. Then

y ∈ K̄ ∩K(X). But, since X −→ R has geometrically integral generic �ber, then,
by [23, 4.5.9], we have K̄∩K(X) = K. So y ∈ K and yp

n ∈ B∗. Therefore y ∈ B∗.
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We now have in XZar, by i.4.2, an exact sequence

(i.13) 1 −→ g−1O∗Spec(R)(O∗X)p
n

/(O∗X)p
n −→ O∗X/(O∗X)p

n dlogn−→ Ω1
log,n −→ 0.

So we have

R1f∗µpn,X/R
1f∗µpn,Spec(R) ' O∗X/g−1O∗Spec(R)(O∗X)p

n
dlogn
'−→ Ω1

log,n ,

which gives the exact sequence

(i.14) 0 −→ H0(Spec(R)Zar,R
1f∗µpn,Spec(R)) −→ H0(XZar,R

1f∗µpn,X)
dlogn−→

−→ H0(XZar,Ω
1

log,n) −→ H1(Spec(R)Zar,R
1f∗µpn,Spec(R)).

We claim that

(i.15) H1(Spec(R)Zar,R
1f∗µpn,Spec(R)) = 0.

Therefore, using i.4.5 and (i.14),

(i.16) 0 −→ H1(Spec(R), µpn) −→ H1(X,µpn)
dlogn−→ H0(XZar,Ω

1
log,n) −→ 0.

We have so proved that dLogn is an isomorphism. We now prove (i.15). By

(i.17) 1 −→ (O∗Spec(R))
pn −→ O∗Spec(R) −→ R1f∗µpn,Spec(R) −→ 0,

it follows

−→ H1(Spec(R)Zar, (O∗Spec(R))
pn) −→ H1(Spec(R)Zar,R

1f∗µpn,Spec(R)) −→
−→ H2(Spec(R)Zar, (O∗Spec(R))

pn)

Considering the exact sequence in XZar

1 −→ µpn −→ O∗X −→ (O∗X)p
n −→ 1,

and taking the long associated cohomology sequence, we obtain

(i.18) H i(Spec(R)Zar,O∗X) = H i(Spec(R)Zar, (O∗X)p
n

)

for i > 0. But, since R is a d.v.r. then Pic(Spec(R)) = 0. So, using the next
lemma,

H i(Spec(R)Zar, (O∗Spec(R))
pn) = H i(Spec(R)Zar,O∗Spec(R)) = 0

for i = 1, 2. Then
H1(Spec(R)Zar,R

1f∗µpn,Spec(R)) = 0.

Lemma i.4.7. We have that

H2(Spec(R)Zar,Gm) = 0.
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Proof. Any group of cohomology is computed here in the Zariski topology.
Let F be a sheaf (for the Zariski topology) on a scheme X. We de�ne, for any
n ∈ N, the sheaf Hn(F) as the sheaf associated to the presheaf

U 7→ Hn(U,F|U).

Moreover we denote by Ȟn(X,F) the nth-group of �ech cohomology. The following
spectral sequence (see [32, III 2.7])

Ȟ i(X,Hj(F))⇒ Hn(X,F)

induces the exact sequence (since Ȟ0(X,Hj(F)) = 0 for any j > 0 by [32, III 2.9])

0 −→ Ȟ2(X,F) −→ H2(X,F) −→ Ȟ1(X,H1(F)) −→ Ȟ3(X,F).

Suppose now X = Spec(R) and F = Gm. We remark that, since

H1((Spec(R),Gm) = H1(Spec(K),Gm) = 0,

H1(Gm) is the zero sheaf, which implies Ȟ1(Spec(R), H1(Gm)) = 0. Hence

Ȟ2(Spec(R),Gm) −→ H2(Spec(R),Gm)

is an isomorphism. But, since we are working in Zariski topology, �ech cohomology
can be computed using alternating cochains (see [24, III.4]). But since in Spec(R)
there are only two open sets, then, for any i > 1, Ȟ i(X,Gm) = 0, too. Hence
H2(Spec(R),Gm) = 0. �

The explicit description of dLogn is as follows. By Kummer theory we know
that H1(X,µpn) is the set (modulo isomorphism) of pairs (L, ψ) where L is an
invertible sheaf on X and ψ is an isomorphism OX −→ L⊗n. This means that
any torsor Z −→ X is determined by an a�ne covering (for the Zariski topology)
(Ui = Spec(Ai))i∈I of X, a cocycle {fij} in H1(X,O∗X) and gi ∈ H0(Ui,O∗Ui),
such that fp

n

ij = gi
gj

for any i, j. So locally (for the Zariski topology) it is of type

Zi = Spec(Ai[zi]/(z
pn

i − gi)), with zi = fijzj. And Z −→ X is trivial if and only if,
re�ning the covering if necessary, there are {hi} ∈ H0(Ui,O∗Ui) such that fij = hi

hj

and a ∈ H0(X,O∗X) such that ap
n

|Ui = gi

hp
n

i

.
This means that Z −→ X is a trivial torsor for the �at topology if and only if

any Zi −→ Ui is trivial, i.e. there exists {γi} such that γp
n

i = gi. The map which
we have de�ned is

dLogn : H1(X,µpn)
δn−→ H0(XZar,O∗X/(O∗X)p

n

)
d logn−→H0(XZar,Ω

1
logn)

({fij}, {gi}) 7−→ {gi} 7−→ ω = {d gi
gi
}

The compatibility condition is clear by construction.
�
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Proposition i.4.8. If, in addition to the hypothesis of the theorem, Xk is a
locally factorial and separated scheme such that the set of regular points, Reg(X),
is open, then the map dLogn is compatible with the restriction. This means that
there exists a map res′n : H0(XZar,Ω

1
log,n) −→ H0(Xk,Zar,WnΩ1

Xk,log
) such that

H1(X,µpn)/H1(R, µpn)
dLogn //

i∗n
��

H0(XZar,Ω
1
log,n)

res′n
��

H1(Xk, µpn)
dLogn //H0(Xk,Zar,WnΩ1

Xk,log
)

commutes (i∗ is the pull-back of i : Xk −→ X).

Proof. By hypothesis in the special �ber we have i.3.12. For the functoriality
of (i.10) we have that δn commutes with i∗. We now de�ne

res′n : H0(XZar,Ω
1
log,n) −→ H0(XZar, (WnΩ1

Xk,log
)

{d gi
gi
} 7−→ {d [ḡi]

[ḡi]
},

which clearly commutes with d logn. �

i.5. Di�erential forms and Gλ,n-torsors

For any λ ∈ R de�ne the group scheme

G(λ) = Spec(R[T,
1

1 + λT
])

The R-group scheme structure is given by

T −→ 1⊗ T + T ⊗ 1 + λT ⊗ T comultiplication
T −→ 0 counit

T −→ − T

1 + λT
coinverse

We observe that if λ = 0 then G(λ) ' Ga. It is possible to prove that G(λ) ' G(µ)

if and only if v(λ) = v(µ) and the isomorphism is given by T −→ λ
µ
T . Moreover

it is easy to see that, if λ ∈ πR \ {0}, then G(λ)
k ' Ga and G(λ)

K ' Gm. It has been
proved by Waterhouse and Weisfeiler, in [59, 2.5], that any deformation, as a group
scheme, of Ga to Gm is isomorphic to G(λ) for some λ ∈ πR \ {0}. If λ ∈ R \ {0}
we can de�ne the morphism

αλ : G(λ) −→ Gm

given, on the level of Hopf algebras, by x 7−→ 1 + λx: it is an isomorphism on the
generic �ber. If v(λ) = 0 then αλ is an isomorphism.

We now de�ne some �nite and �at group schemes of order pn. Let λ ∈ R satisfy
the condition

(∗) v(p) ≥ pn−1(p− 1)v(λ).
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Then the map

ψλ,n :G(λ) −→ G(λp
n

)

T −→ Pλ,n(T ) :=
(1 + λT )p

n − 1

λpn

is an isogeny of degree pn. Let

Gλ,n := Spec(R[T ]/Pλ,n(T ))

be its kernel. It is a commutative �nite �at group scheme over R of rank pn. It is
possible to prove that

(Gλ,n)k ' µpn if v(λ) = 0

(Gλ,n)k ' αpn if pn−1(p− 1)v(λ) < v(p);

(Gλ,n)k ' αpn−1 × Z/pZ if pn−1(p− 1)v(λ) = v(p).

We observe that αλ is compatible with ψλ,n, i.e the following diagram is com-
mutative

(i.19) G(λ)

ψλ,n
��

αλ //Gm

pn

��
G(λp

n
) αλ

pn

//Gm

Then it induces a map
αλ,n : Gλ,n −→ µpn

which is an isomorphism on the generic �ber. And if v(λ) = 0 then αλ,n is an
isomorphism.

We remark that

Hom(Gλ,n, Gλ′,n) =

{
0, if v(λ) < v(λ′);
Z/pnZ, otherwise.

If v(λ) ≥ v(λ′) the morphisms are given by

Gλ,n −→ Gλ′,n

T 7−→ (1 + λT )i − 1

λ′

for i = 0, . . . , pn − 1. It follows easily that Gλ,n ' Gλ′,n if and only if v(λ) = v(λ′).
In the following any time we will speak about Gλ,n it will be assumed that λ

satis�es (∗). If R contains a primitive pn-th root of unity ζn then, since

v(p) = pn−1(p− 1)v(λ(n)),

the condition (∗) is equivalent to v(λ) ≤ v(λ(n)).

Remark i.5.1. We report here an useful remark taken from [5]. Let R be
a complete local Λp-algebra with Λp = Z[ζp−1,

1
p(p−1)

] ∩ Zp ⊆ Qp. In [33] it has
been proved that there exists a 1-1 correspondence between isomorphism classes of
�nite and �at group schemes of order p and isomorphism classes of pairs (a, c) ∈ R2
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such that ac = p. Two pairs (a, c) and (a′, c′) are said isomorphic if there exist
u ∈ R∗ such that a′ = up−1a and c′ = up−1c. Denote by G(a,c) the group scheme
associated to a pair (a, c), as above. As an R-scheme, it is given by G(a,c) =
Spec(R[T ]/(T p−aT )). Under the further assumption that cwp−1 admits a p−1-th
root β in R we have the isomorphism G(a,c) −→ G β

1−p ,1
de�ned at the level of the

underlying Hopf algebra by x→
∑p−1

i=1 β
i−1 yi

wi
, where w1, . . . , wp−1 are the universal

constants de�ned in [33].

i.5.1. A �ltration of H1(X,µpn). Let X be a faithfully �at R-scheme. Let
us consider the exact sequence on the étale site Xet

0 −→ G(λ) αλ−→ Gm −→ i∗Gm −→ 0,

where i denotes the closed immersion Xλ = X ⊗R (R/λR)↪→X (see [51, 1.2]. The
associated long exact sequence is the following

(i.20) 0 −→ H0(X,G(λ)) −→ H0(X,Gm) −→ H0(Xλ,Gm) −→
−→ H1(X,G(λ)) −→ H1(X,Gm) −→ H1(Xλ,Gm).

Now by the exact sequence of group schemes

0 −→ Gλ,n
i−→ G(λ) ψλ,n−→ G(λp

n
) −→ 0

we have the exact sequence of groups
(i.21)

H0(X,G(λ))
(ψλ,n)∗−→ H0(X,G(λp

n
)) −→ H1(X,Gλ,n)

i∗−→ H1(X,G(λ)) −→ H1(X,G(λp
n

)).

Definition i.5.2. We de�ne for any n ≥ 1

H1(X,Gλ,n)loc := ker(H1(X,Gλ,n)
i∗−→ H1(X,G(λ))).

Lemma i.5.3. Let X be a �at R-scheme such that H0(X,OX)∗ −→ H0(Xλ,OXλ)∗

is surjective and Pic(X) = 0. Then

H1(X,G(λ)) = 0

and
H1(X,Gλ,n) = H1(X,Gλ,n)loc

Remark i.5.4. This result will be applied to the case X a local scheme or
X = Spec(A) with A factorial π-adically complete R-algebra. For X local see
the proposition i.5.5 below. If A is factorial we recall that, by [24, 6.2, 6.11], it
follows that A factorial implies X normal and Pic(X) = 0. Moreover it is easy
to see that the restriction map H0(X,OX)∗ −→ H0(Xλ,OXλ)∗ is surjective. We
also observe that if v(λ) = 0, which corresponds to the case Gλ,n ' µpn , then
H0(X,OX)∗ −→ H0(Xλ,OXλ)∗ is always surjective, since Xλ = ∅.
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Proof. Since H1(X,Gm) = Pic(X) = 0, it follows by (i.20) and by the fact
that H0(X,OX)∗ −→ H0(Xλ,OXλ)∗ is surjective that H1(X,G(λ)) = 0. Then by
(i.21) it follows that

H1(X,Gλ,n) = H1(X,Gλ,n)loc.

�

From this lemma follows the following result which says that Hilbert's Theorem
90, as stated in [32, III 4.9], is true for any G(λ).

Proposition i.5.5. Let X be a faithfully �at R-scheme. Let f : Xfl −→ XZar

be the natural continuous morphism of sites. Then, if λ 6= 0, R1f∗(G(λ)) = 0. In
particular H1(Xfl,G(λ)) = H1(XZar,G(λ)).

Proof. It is su�cient to prove that H1(Spec(A),G(λ)) = 0 for any local ring
A �at over R. This has been proved in [51, 1.3] with the same proof that we give
here. This comes from the above lemma, just noting that, since A is local, then
H0(Spec(A),Gm) −→ H0(Spec(A/λA),Gm) is surjective and Pic(Spec(A)) = 0
(see [32, III 4.9]). Now, since R1f∗(G(λ)) = 0 it follows, by the Leray spectral
sequence, that

H1(Xfl,G(λ)) = H1(XZar,G(λ)).

�

If we have a morphism Y −→ X then we have a commutative diagram

H1(X,Gλ,n)

��

// H1(Y,Gλ,n)

��

H1(X,G(λ)) // H1(Y,G(λ))

.

This induces a morphism

(i.22) H1(X,Gλ,n)loc −→ H1(Y,Gλ,n)loc.

Using i.4.5 and the exact sequence

0 −→ Gλ,n −→ G(λ) −→ G(λp
n

) −→ 0

it is possible to prove, similarly to (i.16), that H1(Spec(R), Gλ,n) −→ H1(X,Gλ,n)
is injective. So by (i.22) and i.5.3, applied to Spec(R), it follows that we have a
little more, i.e.

H1(Spec(R), Gλ,n) ↪→ H1(X,Gλ,n)loc.

We now construct a �ltration of H1(X,µpn). If X is proper over R and n = 1,
it coincides with that of [41, 5.2] and [4].

Proposition i.5.6. Let X be a normal integral faithfully �at R-scheme, and
let i0 = max{i|v(p) ≥ pn−1(p− 1)v(πi)}. Then, for any n, we have the following
�ltration

0 ⊆ H1(X,Gπi0 ,n) ⊆ H1(X,Gπi0−1,n) ⊆ . . . ⊆ H1(X,Gπ,n) ⊆ H1(X,µpn).
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Proof. For any λ, µ with v(λ) ≥ v(µ) we have a morphism G(λ) −→ G(µ)

de�ned by x −→ λ
µ
x and compatible with ψλ,n and ψµ,n. So it induces a morphism

Gλ,n −→ Gµ,n such that

Gλ,n

ψλ,n

""EE
EE

EE
EE

// // Gµ,n

ψµ,n

||yy
yy

yy
yy

µpn

commutes. We obtain the following commutative diagram

H1(X,Gλ,n)
ψλ,n

''OOOOOOOOOOOO
// H1(X,Gµ,n)

ψµ,n

wwoooooooooooo

H1(X,µpn)

and, applying i.3.8, we have that ψλ,n and ϕλ,n are injective. In this way we obtain
the desired �ltration. �

Remark i.5.7. Let A be an integrally closed faithfully �at R-algebra. Then
we can apply the above proposition. The injection H1(X,Gλ,n) −→ H1(X,µpn)
induces the injection H1(X,Gλ,n)loc −→ H1(X,µpn)loc. This means that the map

αλ
pn

(A) : G(λp
n

)(A)/ψλ,n∗(G
(λ)(A)) −→ A∗/(A∗)p

n

is injective. Explicitly this means that, for any x ∈ A∗, xpn ≡ 1 mod λp
n
if and

only if x ≡ 1 mod λ.

Before constructing a relative version of the above �ltration we give locally, for
the Zariski topology, equations for Gλ,n-torsors. If Y −→ X is a G-torsor we will
denote by [Y ] its class in H1(X,G). Now let Y −→ X be a Gλ,n-torsor. Let us
consider the exact sequence (i.21). By i.5.5 we can take a covering {Ui = Spec(Ai)}
of X by a�ne subschemes such that the class (i∗[Y ])|Ui is trivial, where i : Gλ,n −→
G(λ). This means that

(i.23) Y|Ui = Spec

(
Ai[Ti]/(

(1 + λTi)
pn − 1

λpn
− fi)

)
for some fi ∈ Ai such that 1 + λp

n
fi ∈ A∗i . Moreover 1 + λTi = fij(1 + λTj) with

{fij = 1 + λgij} = i∗[Y ] ∈ H1(X,G(λ)).

Remark i.5.8. Andreatta and Gasbarri have given a description of Gλ,n-torsors
from which they deduced that a Gλ,n-torsor is locally (i.23). From this fact they
deduced that

H1(Xfl,G(λ)) = H1(XZar,G(λ)).

See [5].
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Proposition i.5.9. Let us suppose that R has perfect residue �eld. Let X be
a normal integral faithfully �at R-scheme with reduced special �ber. We have the
following �ltration

0 ⊆ H1(X,Gπi0 ,n)/H1(R,Gπi0 ,n) ⊆ . . . ⊆ H1(X,µpn)/H1(R, µpn).

Proof. We remark that it is su�cient to prove that

H1(X,Gλ,n)/H1(Spec(R), Gλ,n) −→ H1(X,µpn)/H1(Spec(R), µpn)

is injective. Indeed, if it is true, we obtain the thesis reasoning as in the proof of
i.5.6. First, we suppose that X = Spec(A) is an a�ne scheme. We prove that

H1(X,Gλ,n)loc/H1(Spec(R), Gλ,n) −→ H1(X,µpn)loc/H1(Spec(R), µpn)

is injective. Let [Y ] be an element of H1(X,Gλ,n)loc; it is given by f ∈ G(λp
n

)(A).
Let us suppose that (αλ)∗([Y ]) ∈ H1(Spec(R), µpn). This means that there exists
g ∈ A∗ such that (1 + λp

n
f)gp

n
= a ∈ R∗. In particular

(i.24) gp
n ≡ a mod λp

n

A.

We remark that
(αλ)∗([Y ]) = [a] ∈ H1(Spec(R), µpn).

If [a] ∈ H1(Spec(R), Gλ(n),n) then, since v(λ(n)) ≥ v(λ), [a] ∈ H1(Spec(R), Gλ,n)

and we are done. We now suppose [a] ∈ H1(Spec(R), Gπr,n)\H1(Spec(R), Gπr+1,n)
for some r with v(p) > pn−1(p− 1)r. If r ≥ v(λ), reasoning as above we are done.
We now consider the case r < v(λ). We will prove that this can not happen. Up
to a multiplication by a pn-power in R, which does not change the class of [a], we
can suppose a = 1 + πp

nra0 with a0 6≡ 0 mod πp
r
. Since A is an integral domain,

by the Theorem of Krull ([30, 1.3.13]), it follows that A is separated with respect
to the π-adic topology. Then there exists r′ ∈ N such that g = 1+πr

′
g0 and g0 6≡ 0

mod πA. Since the residue �eld k is perfect we have that there exists b ∈ R such
that a0 ≡ bp

n
mod π. So (1 − πrb)pn(1 + πp

nra0) ≡ 1 mod πp
nr+1. Therefore we

can suppose that a0 ≡ 0 mod π. We now have, using (i.24),

gp
n

= (1 + πr
′
g0)p

n ≡ 1 + πp
nra0 mod λp

n

and, on the other hand, as it is easy to see,

gp
n ≡ 1 + πp

nr′gp
n

0 mod πp
nr′+1.

We now compare the last two equations. If r′ ≥ v(λ) then

gp
n ≡ 1 ≡ 1 + πp

nra0 mod λp
n

.

Since a0 6≡ 0 mod πp
n
then r ≥ v(λ). This is a contradiction since we have

supposed r < v(λ). Hence r′ < v(λ). Comparing again the above two equations
we have

1 + πp
nra0 ≡ 1 + πp

nr′gp
n

0 mod λp
n

.

Since Xk is reduced then gp
n

0 6≡ 0 mod π. Moreover a0 6≡ 0 mod πp
n
, so it follows

r′ = r and gp
n

0 ≡ a0 mod π. But a0 ≡ 0 mod π. Hence we have gp
n

0 ≡ 0 mod π,
which is contradiction.
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We now suppose that X is possibly not a�ne. Let [Y ] be an element of
H1(X,Gλ,n) such that (ψλ,n)∗[Y ] ∈ H1(Spec(R), µpn). By i.5.5 we can take an
a�ne subscheme U of X faithfully �at over R such that [Y|U ] ∈ H1(U,Gλ,n)loc.
Therefore, by what we just proved, we have that [Y|U ] ∈ H1(Spec(R), Gλ,n). This
means that there exists a Gλ,n-torsor R′ −→ R such that Y|U ' U×RR′. Therefore
Y −→ X and X ×R R′ are two Gλ,n-torsors which are isomorphic on the open U .
By i.3.8 it follows that they are isomorphic. So [Y ] ∈ H1(Spec(R), Gλ,n). �

For any n ∈ N and λ ∈ R the natural map

ϕn,i : Gλ,n −→ Gλpi ,n−i

induces a map

(i.25) ϕn,i : H1(X,Gλ,n) −→ H1(X,Gλpi ,n−i),

which associates to a Gλ,n-torsor Y the Gλpi ,n−i-torsor Y/ kerϕn,i. This map is
compatible with the �ltration.

i.5.2. Deformation between d and dlog. Let g : X −→ Spec(R) be a
faithfully �at morphism. We consider the map of sheaves of Z-modules on XZar

δlogλ : G(λ) −→ Ω1
X/R,

de�ned on each open set by

a 7−→ d a

1 + λa
.

Then the following diagram

(i.26) G(λ)

αλ

��

δlogλ //Ω1
X/R

λ
��

Gm
d log //Ω1

X/R

commutes. If X is �at over R then λ is injective for λ 6= 0.
On the generic �ber over R the vertical arrows of the previous diagram are

isomorphism. So, on the generic �ber, δlogλ is essentially d log. While on the
special �ber we have

δlogλ|k = d : G(λ)
k ' Ga −→ Ω1

Xk/k
.

Moreover we remark that, if µ | λ, the following diagram commutes

(i.27) G(λ)

δlogλ

��

// G(µ)

δlogµ

��
Ω1
X/R

λ
µ // Ω1

X/R
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where the �rst horizontal map G(λ) −→ G(µ) is given by S −→ λ
µ
S. From now on,

λ ∈ R satis�es condition (∗), i.e. v(p) ≥ pn−1(p− 1)v(λ). We now de�ne the sheaf
of di�erential forms candidate for classifying Gλ,n-torsors.

Definition i.5.10. Let Ω1
logλ,X/R

be the image of δlogλ. When there is no
ambiguity we will simply call it Ω1

logλ
. We de�ne

δ : Ω1
logλ −→ Ω1

logλ
pn

the map such that the following diagram commutes

Ω1
logλ

δ //
� _

λ
��

Ω1

logλ
pn

� _

λp
n

��
Ω1
log,X/R

� � p
n

//Ω1
log,X/R

And for any n, we consider the subsheaf of Z-modules δ(Ω1
logλ

) of Ω1

logλ
pn . We de�ne

the sheaf of Z-modules
Ω1
logλ,n := Ω1

logλ
pn /δ(Ω

1
logλ).

We have in fact that Ω1
logλ,n

is a sheaf of Z/pnZ-modules since pnΩ1

logλ
pn ⊂ δ(Ω1

logλ
).

Indeed λp
n−1Ω1

logλ
pn ⊂ Ω1

logλ
, because

λp
n−1 da

1 + λpna
=

d(λp
n−1a)

1 + λ(λpn−1a)
;

so pnΩ1

logλ
pn = δλp

n−1Ω1

logλ
pn ⊂ δΩ1

logλ
.

Remark i.5.11. We observe that δlogλ depends only on v(λ). Indeed if v(λ) =
v(λ′) then λ = cλ′ with c ∈ R∗. So δlogλ and δlogλ

′
are the same maps up the

isomorphism c : Ω1
X/Y −→ Ω1

X/Y .

i.5.3. The theorem. Let X be a normal faithfully �at R-scheme with ge-
ometrically integral generic �ber and geometrically reduced special �ber. We
will construct a �ltration of H0(XZar,Ω

1
log,n). By i.4.6, H0(XZar,Ω

1
log,n) is iso-

morphic to H1(X,µpn)/H1(Spec(R), µpn). Moreover we constructed a �ltration of
H1(X,µpn)/H1(Spec(R), µpn) in i.5.9. We will prove that these �ltrations are the
same. Let us consider the map of sheaves of Z/pnZ-modules

λp
n

: Ω1
logλ,n −→ Ω1

log,n.

If µ | λ then, using (i.27), it is easy to see that the following diagram commutes

Ω1
logλ,n

λp
n

##GG
GG

GG
GG

G

(λ
µ

)p
n

//// Ω1
logµ,n

µp
n

{{www
ww

ww
ww

Ω1
log,n
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This implies that the following diagram

(i.28) H0(X,Ω1
logλ,n

)

λp
n

((QQQQQQQQQQQQ

(λ
µ

)p
n

//// H0(X,Ω1
logµ,n)

µp
n

vvmmmmmmmmmmmm

H0(X,Ω1
log,n)

commutes, too.

Proposition i.5.12. Notation as above. Let i0 = max{i|v(p) ≥ pn−1(p− 1)v(πi)}.
Then there is a �ltration

0 ⊆ H0(XZar,Ω
1

logπ
i0 ,n

) ⊆ . . . ⊆ H0(XZar,Ω
1
logπ ,n) ⊆ H0(XZar,Ω

1
log,n).

Proof. We remark that, by (i.28), it is su�cient to prove that, for any λ ∈ R
which satis�es (∗), then H0(XZar,Ω

1
logλ,n

) ⊆ H0(XZar,Ω
1
log,n). We will prove a little

more. Indeed we will show that

λp
n

: Ω1
logλ,n −→ Ω1

log,n

is an inclusion of sheaves of Z/pnZ-modules. But it su�ces to prove this in the
category of presheaves. We are so reduced to proving that for any open set U ⊆ X,
then

λp
n

: H0(UZar,Ω
1

logλ
pn )/δ(H0(UZar,Ω

1
logλ)) ⊆ H0(UZar,Ω

1
log,U/R)/pnH0(UZar,Ω

1
log,U/R).

is injective. Let ω ∈ H0(UZar,Ω
1

logλ
pn ) be such that

λp
n

ω = pnη

with η ∈ H0(UZar,Ω
1
log,U/R). Let {Ui = Spec(Ai)} be a covering by a�ne open sets

of U such that
λp

n

ω|Ui = dlog (1 + λp
n

fi)

for some fi ∈ G(λp
n

)(Ai) and
η|Ui = dlog gi

for some gi ∈ A∗i . Therefore
λp

n

ω|Ui = dlog (1 + λp
n

fi) = pn dlog gi.

Hence

dlog(
(1 + λp

n
fi)

gp
n

i

) = 0,

which implies, by i.4.4, that (1 + λp
n
fi)g

pn

i = ri for some ri ∈ R∗. Using the same
argument as in the proof of i.5.9 we obtain that gi = 1+λhi for some hi ∈ G(λ)(Ai).
This is the point where we use the fact that Xk is reduced. So we have shown that

η|Ui = dlog(1 + λhi) = λδlogλ(hi).

We remark that if we have δlogλ(hi) and δlogλ(hj) then

η|Ui∩Uj = λδlogλ(hi)|Uj = λδlogλ(hj)|Ui .
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So
λδlogλ(hi) = λδlogλ(hj)

over Ui ∩ Uj. Since X is �at over R and Xk is geometrically reduced then Ω1
X/R is

�at over R; hence
δlogλ(hi) = δlogλ(hj).

We call ω′ the element ofH0(UZar,Ω
1
logλ

) given, on the covering {Ui}, by {δlogλ(hi)}.
Then

pnλ(ω′) = λp
n

ω,

which means, by de�nition of δ,

δ(ω′) = ω,

as we wanted. �

Now by

0 −→ Gλ,n −→ G(λ) ψλ,n−→ G(λp
n

) −→ 0

we have
R1f∗Gλ,n ' G(λp

n
)/ψλ,n(G(λ)).

So, by i.4.5,
H0(XZar, R

1f∗Gλ,n) ' H1(X,Gλ,n).

We can now de�ne

dLogλn : H1(X,Gλ,n) −→ H0(XZar,Ω
1
logλ,n)

as the map induced by

δlogλn : G(λp
n

)/ψλ,n(G(λ)) −→ Ω1
logλ,n.

Theorem i.5.13. Let us suppose k is perfect. Let X be a normal faithfully
�at R-scheme of with geometrically integral generic �ber and geometrically reduced
special �ber. Then there is an isomorphism

H1(X,Gλ,n)/H1(R,Gλ,n)
dLogλn−→ H0(XZar,Ω

1
logλ,n).

Moreover

a) dLogλn is compatible with the �ltrations of i.5.9 and i.5.12;
b) dLogλn is compatible with the natural restriction maps

rλn,m : H1(X,Gλ,n) −→ H1(X,Gλ,m)

and
r′
λ
n,m : H0(XZar,Ω

1
logλ,n) −→ H0(XZar,Ω

1
logλ,m)

with n ≥ m, i.e.

dLogm ◦ rn,m = r′n,m ◦ dLogn;

c) if Y −→ Spec(R) satis�es the conditions of the theorem and there is an
R-morphism h : Y −→ X, then dLogλn commutes with pull-backs.
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Proof. ClearlyH1(R,Gλ,n) ⊆ ker dLogλn. Now, by i.4.6, i.5.6, (i.26) and i.5.12
(the last one will be useful only at the end of the proof) we have the following
commutative diagram

(i.29) 0

��

0

��

H1(X,Gλ,n)/H1(R,Gλ,n)
dLogλn //

ψλ,n
��

H0(XZar,Ω
1
logλ,n

)

��

0 // H1(X,µpn)/H1(R, µpn)
dLogn // H0(XZar,Ω

1
log,n) // 0

which proves that dLogλn is injective, too.
We now show the surjectivity of dLogλn. Let ω ∈ H0(XZar,Ω

1
logλ,n

). There is

a covering by a�ne open sets {Ui = Spec(Ai)} of X such that ω|Ui = δlogλ
pn

fi
for some fi ∈ G(λ)(Ui). Now λp

n
ω gives an element of H0(XZar,Ω

1
log,n) so, by

i.4.6, it determines uniquely a class [Y ] of H1(X,µpn)/H1(R, µpn). A representant,
Y −→ X, is de�ned in the following way

Y|Ui = Spec(A[Ti]/(T
pn

i − (1 + λp
n

fi))),

with Ti = fijTj for some fij ∈ O∗X(Ui ∩ Uj). Since fp
n

ij = 1+λp
n
fi

1+λpnfj
then, by i.5.7,

fij = 1 + λhij for hij ∈ G(λ)(Ui ∩ Uj). Now, for any i, we consider W −→ X such

that W|Ui = Spec(Ai[Zi]/(
(1+λZi)

pn−1

λpn
− fi) and Zi = fijZj + hij. If Gλ,n is, locally,

Spec(Ai[Ti]/(
(1+λTi)

pn−1

λpn
) with Ti = Tj we de�ne the Gλ,n-action m : Gλ,n ×W −→

W locally by Zi −→ Ti⊗ 1 + 1⊗Zi +λTi⊗Zi. This action makes W a Gλ,n-torsor
over X. Moreover ψλ,n([W ]) = [Y ] by construction. If we now look at (i.29), it is
simple to verify that dLogλn([W ]) = ω by a simple diagram chasing.

The statements about compatibilities are clear by construction.
�

We now show the compatibility with restrictions on the special �ber. If indeed
0 < pn−1(p − 1)v(λ) < v(p) then, as remarked at the beginning of the section,
Gλ,n|k ' αpn . So, if Xk is smooth, we can ask if there is compatibility between the
isomorphisms of i.5.13 and i.3.2. The answer is in the following proposition.

Proposition i.5.14. If we add to the hypothesis of the theorem that 0 <
pn−1(p− 1)v(λ) < v(p), k is perfect and Xk is smooth, then there exists a map

resn : H0(XZar,Ω
1
logλ,n) −→ H0(XZar, BWnΩ1

Xk
)

such that the following diagram

H1(X,Gλ,n)/H1(R,Gλ,n)
dLogλn //

i∗n
��

H0(XZar,Ω
1
logλ,n

)

resn

��
H1(Xk, αpn)

d //H0(Xk,Zar, BWnΩ1
Xk

)
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commutes (i∗ is the pull-back of i : Xk −→ X).

Remark i.5.15. In the case v(λ) = 0 the compatibility has been already treated
in i.4.8. We recall that if v(λ) = 0 then Gλ,n ' µpn .

Proof. We de�ne resn in the following way

resn : H0(XZar,Ω
1
logλ,n) −→ H0(XZar, (BWnΩ1

Xk
)

{δlogλ(gi)} 7−→ {d ḡi},
where g is the restriction on the special �bre of g ∈ OX(U). The map res1 is
nothing else but the restriction map. By construction of dLogλn and d the diagram
commutes. �



CHAPTER ii

Models of Z/p2Z over a d.v.r. of unequal characteristic

Let R be any discrete valuation ring with fraction �eld K, uniformizer π and
residue �eld k of characteristic p > 0. We will moreover suppose, till the end of
the thesis, that R is of unequal characteristic if not otherwise speci�ed. We will
write S = Spec(R). As remarked in the introduction there will be a con�ict of
notation since S will denote the indeterminate of some polynomials, too. But it
should not cause any problem. The aim of this chapter is the classi�cation of �nite
and �at R-group schemes of order p2 which are isomorphic to (Z/p2Z)K on the
generic �ber, i.e. models of (Z/p2Z)K . As asserted in the introduction, we will
prove that for any such group scheme G, there exists an exact sequence

0 −→ G −→ E1 −→ E2 −→ 0,

with E1, E2 smooth R-group schemes, which coincides with the Kummer sequence
on the generic �ber. We will describe explicitly all such isogenies. The explicit
description of the models of (Z/p2Z)K presented here will be used in the third
chapter to study the problem of the extension of Z/p2Z-torsors.

ii.1. Néron blow-ups

We recall here the de�nition of Néron blow-up. For details see [11, Ch. 3], [47]
and [59]. In this section R is a not necessarily of unequal characteristic.

Definition ii.1.1. Let X be a �at a�ne R-scheme of �nite type and R[X] its
coordinate ring. Let Y be a closed subscheme of Xk de�ned by some proper ideal
I(Y ) of R[X]. Then π ∈ I(Y ). We de�ne the Néron blow-up (or dilatation) of Y
in X by

XY := Spec(A[π−1I(Y )]).

Then XY is a �at a�ne R-scheme of �nite type and the R-homomorphism
R[X] ⊆ R[π−1I(Y )] induces a morphism

XY −→ X,

which gives an isomorphism on the generic �ber.
The Néron-blow up is explicitly given as follows: let I = (π, f1, . . . , fk) with

fi ∈ R. Then
R[XY ] = R[X][π−1f1, . . . , π

−1fk].

29
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So XY is the open set of x ∈ Proj(⊕i≥0I
i) (the classical blow-up of X in Y ), where

Ix is generated by π. Clearly it is possible to give the de�nition for schemes in
general (see [11, Ch. 3]).

In the following we are interested in the case where X is an a�ne �at group
scheme G and Y a subgroupscheme H of Gk. We recall the following de�nitions.

Definition ii.1.2. Let ϕ : G −→ H be a morphism of �at R-group schemes
which is an isomorphism restricted to the generic �bers. Then it is called a model
map.

Definition ii.1.3. LetHK be a group scheme overK. Any �at R-group scheme
G such that GK ' HK is called a model of HK .

It is possible to prove that GH is a group scheme and GH −→ G is a model
map ([59, 1.1]). We recall the following results:

Proposition ii.1.4. The canonical map GH −→ G sends the special �ber into
H. Moreover GH has the following universal property: any model map G′ −→ G
sending the special �ber into H factors uniquely through GH .

Proof. [59, 1.2]. �

Theorem ii.1.5. Any model map between a�ne group schemes is isomorphic
to a composite of Néron blow-ups.

Proof. [59, 1.4]. �

Example ii.1.6. Let us consider the group schemeGµ,1 = Spec(R[S]/( (1+µS)p−1
µp

))

with v(p) > (p− 1)v(µ). The only possible subgroup of (Gµ,1)k which gives a non-
trivial blow-up is H = e. Then I(H) = (π, S) if v(µ) > 0 and I(H) = (π, S − 1)
otherwise. It is easy to see that, in both cases,

Ge
µ,1 = Gµπ,1.

So if there exists a model map G −→ Gµ,1 then, using ii.1.5, G ' Gλ,1 for some λ.

ii.2. Models of (Z/pZ)K

As remarked in i.5.1 every �nite and �at R group scheme of order p, up to
an extension of R, is of type Gλ,1 for some λ ∈ R. For (Z/pZ)K-models we have
a more precise statement, which is well known to specialists. Two proofs are for
instance given in [39, 1.4.4, 3.2.2]. The second one is essentially that we present
here. We remark that if G is a model of (Z/mZ)K and R contains a primitive m-th
root of unity then there are the following model maps

Z/mZ −→ G −→ µm.

Indeed the �rst one is the normalization map, while the second one is the dual
morphism of the normalization Z/mZ −→ G∨ (see also [35, 2.2.3] for a more
general result).
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Proposition ii.2.1. Let us suppose that R contains a primitive p-th root of
unity. If G is a �nite and �at R-group scheme such that GK ' Z/pZ then G ' Gλ,1

for some λ ∈ R \ {0}.

Proof. As remarked above we have an R-model map

ϕ : G −→ µp.

By ii.1.5 it is a composition of Néron blow-ups. Then, by ii.1.6, it follows that
G ' Gλ,1 for some λ ∈ R \ {0}. �

ii.3. Models of (Z/p2Z)K

In this section we study models of (Z/p2Z)K . Throughout the section we sup-
pose that R contains a primitive p2-th root of unity. First of all we prove that any
such group is an extension of Gµ,1 by Gλ,1 for some µ, λ ∈ R \ {0}.

Lemma ii.3.1. Let G be a �nite and �at R-group scheme of order p2 such
that GK is a constant group. Then G is an extension of Gµ,1 by Gλ,1 for some
µ, λ ∈ R \ {0}.

Proof. If GK is a constant group then GK is isomorphic to (Z/p2Z)K or to
(Z/pZ)K × (Z/pZ)K . We consider the factorization

0 −→ (Z/pZ)K −→ GK −→ (Z/pZ)K −→ 0.

We take the closure G1 of (Z/pZ)K in G. Then G1 is a model of (Z/pZ)K . So
by ii.2.1 it follows that G1 ' Gλ,1 for some λ ∈ R \ {0}. G/Gλ,1 is a model of
(Z/pZ)K , too. So, again by ii.2.1, we have G/Gλ,1 ' Gµ,1 for some µ ∈ R \ {0}.
We are done. �

So we study, �rst of all, the group Ext1(Gµ,1, Gλ,1).

ii.3.1. Extensions of group schemes. We here recall some generalities on
extensions of group schemes. For more details see [15, III.6].

Let G and H be group schemes on S. We moreover suppose that H is commu-
tative and that G acts on H. Let us denote

Ext0
S(G,H) = {ϕ ∈ HomSchS(G,H)|ϕ(gg′) = ϕ(g) + g(ϕ(g′))

for any local sections g, g′ of G}.
We are interested in the case that G acts trivially on H. In this situation

Ext0
S(G,H) = Homgr(G,H).

NowH 7→ Ext0(G,H) is a left exact functor from the category of fppf-sheaves of
G-modules on S to that of abelian groups. Let Ext•S(G,H) denote the left derived
functor of H 7→ Ext0

S(G,H). It is known that Ext1
S(G,H) is isomorphic to the

group of equivalence classes of extensions of G by H (see [15, III 6.2]).
Recall that an extension of G by H is by de�nition an exact sequence of fppf-

sheaves of groups
0 −→ H

i−→ E
j−→ G −→ 0,
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such that i(j(g)h) = gi(h)g−1 for any local sections h of H and g of E.
Consider two extensions (E) : 0 −→ H

i−→ E
j−→ G −→ 0 and (F ) : 0 −→

H
i−→ F

j−→ G −→ 0. They are equivalent if there exists a morphism of group
schemes f : E −→ F which makes the following diagram

(E) : 0 //H
i //E

j //

f
��

G //0

(F ) : 0 //H
i //F

j //G //0

commute. Clearly such an f is an isomorphism of group schemes. If G and H are
�at a�ne groups over S, then it is the same for E.

We now recall the de�nitions of pushforward and pull-back of extensions. Let
G and H be as above and ϕ : G′ −→ G a morphism of group-schemes. Then ϕ
induces a morphism

ϕ∗ : Ext1
S(G,H) −→ Ext1

S(G′, H).

It is explicitly given as follows. Let

(E) : 0 −→ H
i−→ E

j−→ G −→ 0

be an extension of G by H. Then ϕ∗[E] is de�ned by the diagram

ϕ∗[E] : 0 //H
i //E ′

j //

��

G′

ϕ
��

//0

(E) : 0 //H
i //E ′

j //G //0

where the right square is cartesian.
Now consider a group scheme H ′ together with a G-action. If ψ : H −→ H ′ is

a morphism which preserves the G-action then it induces a morphism

ψ∗ : Ext1
S(G,H) −→ Ext1

S(G,H ′),

which we can explicitly describe as follows. Let

(E) : 0 −→ H
i−→ E

j−→ G −→ 0

be an extension of G by H. Then ψ∗[E] is de�ned by the diagram

(E) : 0 //H
i //

ψ

��

E
j //

��

G //0

ψ∗[E] : 0 //H ′
i //E ′

j //G //0

where the left square is cocartesian.
Next we recall the Hochschild cohomology. Let G be a presheaf of groups on

Sch|S and F a presheaf ofG-modules on Sch|S. We de�ne a complex {Cn(G,F ), δn}
as follows: Cn(G,F ) denotes the set of morphisms of schemes from Gn to H and
the boundary map

δn : Cn(G,F ) −→ Cn+1(G,F )
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is de�ned by

(δnf)(g0, g1, . . . , gn) = g0f(g1, . . . , gn) +

+
n−1∑
i=0

(−1)i+1f(g0, g1, . . . , gigi+1, . . . , gn) + (−1)n+2f(g0, g1, . . . , gn−1).

Put

Zn(G,F ) = ker(δn : Cn(G,F ) −→ Cn+1(G,F )),

Bn(G,F ) = Im(δn−1 : Cn−1(G,F ) −→ Cn(G,F )),

and
Hn

0 (G,F ) = Zn(F,G)/Bn(G,F ).

For our purposes we are interested in the second group of cohomology. The
following result is indeed well known.

Proposition ii.3.2. Let G and H be group schemes over S. Given an action
of G on H then H2

0 (G,H) is isomorphic to the group of equivalence classes of
extensions of G by H which have a scheme-theoretic section.

Proof. [15]. �

ii.3.2. Sekiguchi-Suwa Theory. Here is a very partial review of results of
[47], [49] and [53]. Let µ, λ ∈ πR\{0}. For any λ′ ∈ R\{0} set Sλ′ = Spec(R/λ′R).

What we call Sekiguchi-Suwa theory is their description of Homgr(G(µ)
|Sλ ,Gm|Sλ)

and Ext1(G(µ),G(λ)) through Witt vectors.
Let Y = Spec(R[T1, . . . , Tm]/(F1, . . . , Fn)) be an a�ne R-scheme of �nite type.

We recall that, for any R-scheme X we have that HomSch(X, Y ) is in a bijective
correspondence with the set

{(a1, . . . , am) ∈ H0(Y,OY )m|F1(a1, . . . , am) = 0, . . . , Fn(a1, . . . , am) = 0}.
With an abuse of notation we will identify these two sets. If X and Y are R-group
schemes we will also identify Homgr(X, Y ) with a subset of

{(a1, . . . , am) ∈ H0(Y,OY )m|F1(a1, . . . , am) = 0, . . . , Fn(a1, . . . , am) = 0}.
We now �x presentations for the group schemes Gm and G(λ) with λ ∈ πR.

Indeed we write Gm = Spec(R[S, 1/S]) and G(λ) = Spec(R[S, 1/1 + λS]). Before
illustrating the Sekiguchi-Suwa theory we see what happens when µ ∈ R∗. In this
case G(µ) ' Gm, and we have the following well known lemma.

Lemma ii.3.3. For any λ ∈ πR we have

Homgr(Gm|Sλ ,Gm|Sλ) = {Si ∈ R[S, 1/S]|i ∈ Z}.
In particular if v(λ1) ≥ v(λ2) > 0, the restriction map

Homgr(Gm|Sλ1
,Gm|Sλ1

) −→ Homgr(Gm|Sλ2
,Gm|Sλ2

)

is an isomorphism.

Moreover for the extensions group we have
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Proposition ii.3.4. For any λ ∈ πR \ {0}, any S-action of Gm on G(λ) is
trivial. Moreover

Ext1(Gm,G(λ)) = 0

Proof. See [49, I 1.6, II 1.4]. �

We also want to recall what happens to the extensions group when λ ∈ R∗, i.e.
G(λ) ' Gm.

Proposition ii.3.5. For any µ ∈ R \ {0}, any action of G(µ) on Gm is trivial.
Moreover

Ext1(G(µ),Gm) = 0.

Proof. See [49, I 1.5, I 2.7] �

We now consider the case µ, λ ∈ πR \ {0}. We observe that by de�nitions we
have that

Homgr(G(µ)
|Sλ ,Gm|Sλ) = {F (S) ∈ (R/λR[S,

1

1 + µS
])∗|F (S)F (T ) = F (S+T+µST )}

Any action of G(µ) on G(λ) is trivial ([49, I 1.6]). We now consider the map

Homgr(G(µ)
|Sλ ,Gm|Sλ)

α−→ Ext1(G(µ),G(λ))

given by
F 7−→ E (µ,λ;F ),

where
E (µ,λ;F )

is a smooth a�ne commutative group de�ned as follows: let F̃ (S) ∈ R[S] be a
lifting of F (S), then

E (µ,λ;F ) = Spec(R[S1, S2,
1

1 + µS1

,
1

F̃ (S1) + λS2

])

(1) law of multiplication

S1 7−→S1 ⊗ 1 + 1⊗ S1 + µS1 ⊗ S1

S2 7−→S2 ⊗ F̃ (S1) + F̃ (S1)⊗ S2 + λS2 ⊗ S2+

F̃ (S1)⊗ F̃ (S1)− F̃ (S1 ⊗ 1 + 1⊗ S1 + µS1 ⊗ S1)

λ
(2) unit

S1 7−→ 0

S2 7−→
1− F̃ (0)

λ
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(3) inverse

S1 7−→ −
S1

1 + µS1

S2 7−→
1

F̃ (S1)+λS2
− F̃ (− S1

1+µS1
)

λ
We moreover de�ne the following homomorphisms of group schemes

G(λ) = Spec(R[S, (1 + λS)−1]) −→ E (µ,λ;F )

by

S1 7−→ 0

S2 7−→ S +
1− F̃ (0)

λ
and

E (µ,λ;F ) −→ G(µ) = Spec(R[S,
1

1 + µS
])

by

S −→ S1.

It is easy to see that

(ii.30) 0 −→ G(λ) −→ E (µ,λ;F ) −→ G(µ) −→ 0

is exact. A di�erent choice of the lifting F̃ (S) gives an isomorphic extension. We
recall the following theorem.

Theorem ii.3.6. For any λ, µ ∈ πR \ {0}, the map

α : Homgr(G(µ)
|Sλ ,Gm|Sλ)−→Ext1(G(µ),G(λ))

is a surjective morphism of groups. And ker(α) is generated by the class of 1 +µS.
In particular any extension of G(µ) by G(λ) is commutative.

Proof. [48, �3]. �

We now de�ne some spaces which had been used by Sekiguchi and Suwa to
describe Homgr(G(µ)

|Sλ ,Gm|Sλ) and, by the above result, Ext1(Gµ,1, Gλ,1). See [53]
for details.

Definition ii.3.7. For any ring A, let Wn(A) be the ring of Witt vectors of
length n and W (A) the ring of in�nite Witt vectors. We de�ne

Ŵn(A) =

{
(a0, . . . , an) ∈ Wn(A)|ai is nilpotent for any i and

ai = 0 for all but a �nite number of i
}
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and

Ŵ (A) =

{
(a0, . . . , an, . . . ) ∈ W (A)|ai is nilpotent for any i and

ai = 0 for all but a �nite number of i
}
.

We recall the de�nition of the so-called Witt-polynomial: for any r ≥ 0 it is

Φr(T0, . . . , Tr) = T p
r

0 + pT p
r−1

1 + · · ·+ prTr.

Then the following maps are de�ned:
- Verschiebung

V : Wn(A) −→ Wn+1(A)

(a0, . . . , an) 7−→ (0, a0, . . . , an)

- Generalization of Frobenius

F : Wn+1(A) −→ Wn(A)

(a0, . . . , an) 7−→ (F0(T), F1(T), . . . , Fn(T))

where the polynomials Fr(T) = Fr(T0, . . . , Tr) ∈ Q[T0, . . . , Tr+1] are de-
�ned inductively by

Φr(F0(T), F1(T), . . . , Fr(T)) = Φr+1(T0, . . . , Tr+1).

If p = 0 ∈ A then F is the usual Frobenius. The subring Ŵ (A) is stable respect to
these maps.

For any morphism G : Ŵ (A) −→ Ŵ (A) we will set Ŵ (A)G := kerG. And for
any a ∈ A we denote the element (a, 0, 0, . . . , 0, . . . ) ∈ W (A) by [a].

We recall the following standard result about Witt vectors.

Lemma ii.3.8. Let Sr[T,U] ∈ Z[T,U] such that, if a, b ∈ W (A), then

a + b = (S0[a, b], . . . , Sr[a, b], . . . )

If Ti and Ui have weight pi then Sr[T,U] is isobaric of weight pr.

The following lemma will be useful later.

Lemma ii.3.9. Let λ ∈ R. If a = (a0, a1, . . . ), b = (b0, b1, . . . ) ∈ Ŵ (R/λR)F

then
a + b = (a0 + b0, a1 + b1, . . . , ai + bi, . . . )

Proof. We suppose that a + b = (c0, c1, . . . , ci, . . . ). By the previous lemma
we have that cr(a , b) is isobaric of weight pr. It is a standard result that

cr(a , b) = ar + br + c′r((a0, a1, . . . , ar−1), (b0, b1, . . . , br−1)).

for some polynomial c′r(S0, . . . , Sr−1, T0, . . . , Tr−1). Clearly c′r(a , b) is isobaric of
weight pr, too. Hence deg(c′r) ≥ p.

Let ãi, b̃i ∈ R be liftings of ai and bi, respectively. For any r ≥ 1, up to changing
a with b, we can suppose that v(ãk) = min{v(ãi), v(b̃i)|i = 0, . . . , r − 1}, for some
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0 ≤ k ≤ r− 1 . Since deg c′r ≥ p then v(c′r(ã , b̃)) ≥ pv(ãk). But v(ãpk) ≥ v(λ) since
F(a) = 0. Hence c′r(a , b) = 0 ∈ R/λR. So

a + b = (a0 + b0, a1 + b1, . . . , ai + bi, . . . )

�

We now recall the de�nition of the Artin-Hasse exponential series

Ep(T ) := exp

(∑
r≥0

T p
r

pr

)
=
∞∏
r=0

exp

(
T p

r

pr

)
∈ Z(p)[[T ]].

Sekiguchi and Suwa introduced a deformation of the Artin-Hasse exponential map
in [53]. By the well known formula limλ→0(1 + λx)

α
λ = exp(αx), it can be seen

that (1 + λx)
α
λ is a deformation of exp(αx). From this point of view they de�ned

the formal power series Ep(U,Λ;T ) ∈ Q[U,Λ][[T ]] by

Ep(U,Λ;T ) := (1 + ΛT )
U
Λ

∞∏
r=1

(1 + ΛprT p
r

)
1
pr

((U
Λ

)p
r−(U

Λ
)p
r−1

)

They proved that Ep(U,Λ;T ) has in fact its coe�cients in Z(p)[U,Λ]. It is possible
to show ([53, 2.4]) that

Ep(U,Λ;T ) =


∏

(i,p)=1 Ep(UΛi−1T i)
(−1)i−1

i , if p > 2;∏
(i,2)=1Ep(UΛi−1T i)

1
i

[∏
(i,2)=1Ep(UΛ2i−1T 2i)

1
i

]−1

, if p = 2.

Let A be a Z(p)-algebra and a, λ ∈ A. We de�ne Ep(a, µ;T ) as Ep(U,Λ;T ) evaluated
at U = a and Λ = µ.

Example ii.3.10. It is easy to see that Ep(a, 0;T ) = Ep(aT ) and Ep(µ, µ;T ) =

1 + µT . Moreover if ap = µp−1a ∈ A then ( a
µ
)p
r − ( a

µ
)p
r−1

= 0 for r ≥ 1. Hence

Ep(a, µ;T ) = (1 + µT )
a
µ = 1 +

p−1∑
i=1

∏i−1
k=0(a− kµ)

i!
T i.

In particular if µ = 0 and ap = 0 ∈ A then

Ep(a, 0;T ) =

p−1∑
i=0

ai

i!
T i.

If a= (a0, a1, a2, . . . ) ∈ W (A) we de�ne the formal power series

(ii.31) Ep(a , µ;T ) =
∞∏
k=0

Ep(ak, µ
pk ;T p

k

).

The following result gives an explicit description of Homgr(G(µ)
|A ,Gm|A).
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Theorem ii.3.11. Let A be a Z(p)-algebra and µ ∈ A a nilpotent element. The
homomorphism

ξ0
A : Ŵ (A)F−[µp−1] −→ Homgr(G(µ)

|A ,Gm|A)

a 7−→ Ep(a, µ;S)

is bijective.

Proof. [53, 2.19.1]. �

And ii.3.6 and ii.3.11 give the following:

Corollary ii.3.12. For any λ, µ ∈ πR \ {0} the map

α ◦ ξ0
R/λR : Ŵ (R/λR)F−[µp−1]/ < 1 + µT > −→ Ext1(G(µ),Gm)

a 7−→ E (λ,µ;Ep(a,λ;S))

is an isomorphism.

We now describe some natural maps through these identi�cations. Consider
the isogeny

ψµ,1 : G(µ) −→ G(µp).

Let us now suppose that p > 2. Then we have that, if p2 ≡ 0 mod λ,

ψ∗µ,1 : Homgr(G(µp)
|Sλ ,Gm|Sλ) −→ Homgr(G(µ)

|Sλ ,Gm|Sλ)

is given by

a 7−→ [
p

µp−1
]a + V (a)(ii.32)

(see [53, 1.4.1 and 3.8]).
For p = 2 the situation is slightly di�erent. Let us de�ne a variant of the

Verschiebung as follows. De�ne polynomials

Ṽr(T) = Ṽr(T0, . . . , Tr) ∈ Q[T0, . . . , Tr]

inductively by Ṽ0 = 0 and

Φr(Ṽ0(T), . . . , Ṽr(T)) = pp
r

Φr−1(T0, . . . , Tr−1)

for r ≥ 1. Then we have that (with possibly 22 6≡ 0 mod λ)

ψ∗µ,1 : Homgr(G(µ2)
|Sλ ,Gm|Sλ) −→ Homgr(G(µ)

|Sλ ,Gm|Sλ)

is given by

a 7−→ [
2

µ
]a + V (a) + Ṽ (a)

(see [53, 3.8]).
For simplicity, to avoid to use this description of ψ∗µ,1, we will consider sometimes

only the case p > 2.
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Consider the morphism

(ii.33)
p : Homgr(G(µ)

|Sλ ,Gm|Sλ) −→ Homgr(G(µ)
|Sλp ,Gm|Sλp )

F (S) 7−→ F (S)p

This morphism is such that

ψλ,1∗ ◦ α = α ◦ p.

Let a∈ (Ŵ (R/λR))F−[µp−1]. Take any lifting ã ∈ W (R). Using the identi�cations
of ii.3.11 the morphism p above is given by

(ii.34) a 7−→ pã

(see [53, 4.6]). We will sometimes simply write pa .

ii.3.3. Two exact sequences. The main tools which we will use to calculate
the extensions of Gλ,1 by Gµ,1 are two exact sequences. We recall them in this
subsection. See (ii.35) and (ii.38) below. First of all we prove that any action of
Gµ,1 on Gλ,1 is trivial.

Lemma ii.3.13. Let ϕ : G −→ H be an S-morphism of a�ne S-groups. Assume
that G is �at over S. Then ϕ = 0 if and only if the generic �ber ϕK = 0.

Proof. [49, 1.1]. �

Lemma ii.3.14. Every action of Gµ,1 on Gλ,1 is trivial.

Proof. Giving an action of Gλ,1 on Gµ,1 is the same as giving a morphism
Gµ,1 −→ AutR(Gλ,1). If we consider the generic �ber we have a morphism

µp,K −→ AutK(µp,K).

The last one is the étale group scheme (Z/pZ)∗K . It is a group scheme of order
p− 1. So any morphism µp,K −→ AutK(µp,K) is trivial. Applying ii.3.13 we have
the thesis. �

In the following, all the actions will be supposed trivial. Applying now the
functor Ext to the following exact sequence of group schemes

(Λ) : 0 −→ Gλ,1
i−→ G(λ) ψλ,1−→ G(λp) −→ 0,

we obtain

(ii.35)
0 −→ Homgr(Gµ,1,G(λp))

δ′−→ Ext1(Gµ,1, Gλ,1)
i∗−→

−→ Ext1(Gµ,1,G(λ))
ψλ,1∗−→ Ext1(Gµ,1,G(λp)).

We remark that δ′ is injective since

ψλ,1∗ : Homgr(Gµ,1,G(λ)) −→ Homgr(Gµ,1,G(λp))

is the zero morphism. Indeed since G is �at over R, then by ii.3.13,

Homgr(Gµ,1,G(λ)) ↪→ Homgr(µp,K ,GmK) ' Z/pZ.
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And it is easy to verify that

(ii.36) Homgr(Gµ,1,G(λ)) =

{
Z/pZ, if λ | µ
0, if λ - µ

Let us write Gµ,1 = Spec(R[S]/( (1+µS)p−1
µp

)). If λ | µ the group is formed by the

morphisms given by σi : S 7−→ (1+µS)i−1
λ

with i ∈ Z/pZ. The map (ψλ,1)∗ :

Homgr(Gµ,1,G(λ)) −→ Homgr(Gµ,1,G(λp)) is moreover nothing else but the multi-
plication by p. So it is clearly zero.

The map

(ii.37) δ′ : Homgr(Gµ,1,G(λp)) −→ Ext1(Gµ,1, Gλ,1)

is de�ned by
σi 7−→ (σi)

∗(Λ),

where (σi)
∗(Λ) is explicitly

Spec(R[S1, S2]/(
(1 + µS1)p − 1

µp
,
(1 + λS2)p − (1 + µS1)i

λp
),

with the maps

Gλ,1 −→ σ∗i (Λ)

S1 7−→ 0

S2 7−→ S

and

σ∗i (Λ) −→ Gµ,1

S 7−→ S1

The structure of group scheme on σ∗i (Λ) is the unique one which makes the map

σ∗i (Λ) −→ µp2 = Spec(R[Z1, Z2]/(Zp
1 − 1, Zp

2 − Zi
1))

Z1 7−→ 1 + µS1

Z2 7−→ 1 + λS2

a morphism of group schemes.
As remarked in [49, 4.4], there is the following long exact sequence

(ii.38)
0 −→ Homgr(Gµ,1,G(λ′)) −→ Homgr(Gµ,1,Gm)

rλ′−→ Homgr(Gµ,1|Sλ′
,Gm|Sλ′ )

δ−→

−→ Ext1(Gµ,1,G(λ′))
αλ
′
∗−→ Ext1(Gµ,1,Gm) −→ Ext1(Gµ,1|Sλ′

,Gm|Sλ′ ).

We so have

(ii.39) kerαλ
′

∗ ' Imδ ' Homgr(Gµ,1|Sλ′
,Gm|S′λ)/rλ′(Homgr(Gµ,1,Gm)).

We remark that by (ii.36), setting λ′ = 1, it follows that

Homgr(Gµ,1,Gm) ' Z/pZ
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and the group is formed by the morphisms S 7−→ (1 + µS)i. While, by (ii.36),
Homgr(Gµ,1,G(λ′)) ' Z/pZ if λ′|µ and it is 0 otherwise. Hence, by (ii.38), if λ′|µ
then rλ′ is the zero morphism, otherwise rλ′ is an isomorphism. Hence, by (ii.39),

(ii.40) kerαλ
′

∗ ' Homgr(Gµ,1|Sλ′
,Gm|Sλ′ )/ < 1 + µS > .

In the following we give a more explicit description of the main ingredients of
the exact sequences (ii.35) and (ii.38).

ii.3.4. Explicit description of Homgr(Gµ,1|Sλ ,Gm|Sλ). First we consider the
simplest cases. If λ ∈ πR,
(ii.41) Homgr(µp|Sλ ,Gm|Sλ) = {Si ∈ (R/λR)[S, 1/S]|i ∈ Z/pZ}.

While if λ ∈ R∗ we have Sλ = ∅ and Homgr(Gµ,1|Sλ ,Gm|Sλ) = {1}.
Now we study Homgr(Gµ,1|Sλ ,Gm|Sλ) for µ, λ ∈ πR \ {0}.

Proposition ii.3.15. Let λ, µ ∈ πR \ {0}. The map

i∗ : Homgr(G(µ)
|Sλ ,Gm|Sλ) −→ Homgr(Gµ,1|Sλ ,Gm|Sλ)

induced by
i : Gµ,1 ↪→ G(µ)

is surjective. If p > 2, ξ0
R/λ, de�ned in ii.3.11, induces an isomorphism

Ŵ (R/λR)F−[µp−1]/

{
[
p

µp−1
]b + V (b)|b ∈ Ŵ (R/λR)

F−[µp(p−1)]
}
−→ Homgr(Gµ,1|Sλ ,Gm|Sλ)

Proof. We have by de�nitions that

Homgr(Gµ,1|Sλ ,Gm|Sλ) = {F (S) ∈
(
R/λR[S]/(

(1 + µS)p − 1

µp
)

)∗
|

F (S)F (T ) = F (S + T + µST )}
and

Homgr(G(µ)
|Sλ ,Gm|Sλ) = {F (S) ∈

(
R/λR[S,

1

1 + µS
]

)∗
|

F (S)F (T ) = F (S + T + µST )}.
Since (Gµ,1)k is isomorphic to αp or Z/pZ then the group Homgr((Gµ,1)k,Gm,k) is
trivial. So F (S) ≡ 1 mod π. Moreover any F (S) ∈ (R/λR)[S]/( (1+µS)p−1

µp
) such

that F (S) ≡ 1 mod π is invertible. The same is true in Homgr(G(µ)
|Sλ ,Gm|Sλ)

since G(µ)
k ' Ga. We now say that F satis�es condition (]) if
F (S) ≡ 1 mod π;
F (S)F (T ) = F (S + T + µST ).
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Then

Homgr(Gµ,1|Sλ ,Gm|Sλ) = {F (S) ∈ R/λR[S]/
((1 + µS)p − 1

µp
)
|F (S) sati�es (])}

and

Homgr(G(µ)
|Sλ ,Gm|Sλ) = {F (S) ∈ R/λR[S,

1

1 + µS
]|F (S) sati�es (])}.

Any F ∈ R/λR[S]/( (1+µS)p−1
µp

) can be represented by a polynomial of degree p− 1.
And if it satis�es (]), it also satis�es (]) in R/λR[S, 1

1+µS
].

So
i∗ : Homgr(G(µ)

|Sλ ,Gm|Sλ) −→ Homgr(Gµ,1|Sλ ,Gm|Sλ)

is surjective.
Now, by the exact sequence

(Λ′) 0 −→ Gµ,1
i−→ G(µ) ψµ,1−→ G(µp) −→ 0

over Sλ, we have the long exact sequence of cohomology

0 −→ Homgr(G(µp)
|Sλ ,Gm|Sλ)

ψ∗µ,1−→ Homgr(G(µ)
|Sλ ,Gm|Sλ)

i∗−→

−→ Homgr(Gµ,1|Sλ ,Gm|Sλ)
δ′′−→Ext1(G(µp)

|Sλ ,Gm|Sλ) −→ . . .

By ii.3.11 we have that

Homgr(G(µ)
|Sλ ,Gm|Sλ) ' Ŵ (R/λR)F−[µp−1]

and, by (ii.32),

ψ∗µ,1(Homgr(G(µp)
|Sλ ,Gm|Sλ)) '

{
[
p

µp−1
]b + V (b)|b ∈ Ŵ (R/λR)

F−[µp(p−1)]
}
.

Therefore the proposition is proved. �

We now give a more explicit description of Homgr(Gµ,1|Sλ ,Gm|Sλ).

Proposition ii.3.16. If λ, µ ∈ R with v(p) ≥ (p−1)v(µ) > 0 and v(p) ≥ v(λ),
then

Homgr(Gµ,1|Sλ ,Gm|Sλ) = {Ep(a, µ;S) = 1 +

p−1∑
i=1

∏i−1
k=0(a− kµ)

i!
Si

s.t. a ∈ R/λR and ap = µp−1a ∈ R/λR}

Remark ii.3.17. In [47, 3.5], an inductive formula for the coe�cients of the
polynomials F (T ) ∈ Hom(G(µ)

|Sλ ,Gm|Sλ) is given. If we consider only polynomials
of degree less or equal to p − 1, it coincides with (ii.44). But for the reader's
convenience, we prefer to give here a direct proof of this formula.
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Remark ii.3.18. If v(µ) ≥ v(λ) then

Homgr(Gµ,1|Sλ ,Gm|Sλ) = {
p−1∑
i=0

ai

i!
T i|ap = 0} = {Ep(aT )|ap = 0}

Proof. As seen in ii.3.15

Homgr(Gµ,1|Sλ ,Gm|Sλ) = {F (S) =

p−1∑
i=0

aiS
i ∈R/λR[S]/(

(1 + µS)p − 1

µp
)

s.t. F (S) ≡ 1 mod π and F (S)F (T ) = F (S + T + µST )}.
Now

(ii.42)

F (S + T + µST ) =

p−1∑
i=0

ai(S + T + µST )i

=

p−1∑
i=0

i∑
j=0

j∑
k=0

(
i

j

)(
j

k

)
µi−jaiS

k+i−jT i−k

=

p−1∑
r=0

p−1∑
l=0

∑
max{r,l}≤i≤r+l

(
i

2i− (r + l)

)(
2i− (r + l)

i− l

)
µr+l−iaiS

rT l

and

(ii.43) F (S)F (T ) =

p−1∑
r=0

p−1∑
l=0

aralS
rT l.

So we have the equality if and only if

(ii.44)

aral =
∑

max{r,l}≤i≤r+l

(
i

2i− (r + l)

)(
2i− (r + l)

i− l

)
µr+l−iai

=
∑

max{r,l}≤i≤r+l

i!

(r + l − i)!(i− l)!(i− r)!
µr+l−iai

for any 0 ≤ r, l ≤ p− 1. Clearly a0 = 1.
We now have the following lemma:

Lemma ii.3.19. For any µ, λ ∈ πR\{0}, the following statements are equivalent

i) ar =
∏r−1
k=0(a1−kµ)

r!
for any 1 ≤ r ≤ p− 1 and

∏p−1
k=0(a1 − kµ) = 0;

ii) ar−1a1 = (r − 1)µar−1 + rar for any 1 ≤ r ≤ p− 1;
iii) aral =

∑
max{r,l}≤i≤r+l

i!
(r+l−i)!(i−l)!(i−r)!µ

r+l−iai for any 1 ≤ l, r ≤ p− 1.

Proof. In the following we use the convention that ai = 0 if i > p− 1.
i)⇔ ii). It is clear that

ar−1a1 = (r − 1)µar−1 + rar
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is equivalent to ar = ar−1
a1−µ(r−1)

r
, if r < p, and ap−1(a1 − µ(p− 1)) = 0. An easy

induction shows that this is equivalent to

ar =

∏r−1
k=0(a1 − kµ)

r!
if r < p− 1 and

p−1∏
k=0

(a1 − kµ) = 0.

ii)⇐ iii). It is obvious.
ii) ⇒ iii). We will prove it by induction on l. By hypothesis ar−1a1 = (r −

1)µar−1 + rar for any r. We now suppose that iii) is true for k ≤ l − 1 for any r.
Then we will prove it is also true for l for any r. We can clearly suppose l ≤ r,
otherwise, up to a change of l with r, we can conclude by induction. We have

aral
ii)
= ar(al−1

a1 − µ(l − 1)

l
)

= (aral−1)
a1 − µ(l − 1)

l
induct.

=

( ∑
r≤i≤r+l−1

i!

(r + l − i− 1)!(i− l − 1)!(i− r)!
µr+l−i−1ai

)
a1 − µ(l − 1)

l

induct.
=

∑
r≤i≤r+l−1

i!

(r + l − i− 1)!(i− l − 1)!(i− r)!
µr+l−i−1

(
µ(i− l + 1)ai + (i+ 1)ai+1

l
)

=
r!

l!(r + 1− l)!
µl(r + 1− l)ar+

+
∑

r+1≤i≤r+l−1

(
i!

(r + l − i)!(i− l)!(i− r − 1)!l
µr+l−i+

+
i!(i− l + 1)

(r + l − i)!(i− l + 1)!(i− r)!l
µr+l−i

)
ai +

(r + l − 1)!(r + l)

r!l!
ar+l

=
∑

r≤i≤r+l

i!

(r + l − i)!(i− l)!(i− r)!
µr+l−iai.

�

We come back to the proof of the proposition. In R/λR the condition
p−1∏
k=0

(a1 − kµ) = 0

is equivalent to ap1 = µp−1a1. Indeed we have the following equality in Z/pZ[S]

p−1∏
k=0

(S − k) = Sp − S,
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since these polynomials have the same zeros. Since p = 0 ∈ R/λR, then
p−1∏
k=0

(a1 − kµ) = ap1 − µp−1a1.

By the lemma and ii.3.10 the thesis follows. �

We now essentially rewrite ii.3.19 in a more expressive form.

Corollary ii.3.20. Let λ, µ ∈ πR \ {0} and let F (S) =
∑p−1

i=0 aiS
i ∈ R/λR[S]

be a polynomial of degree less than or equal to p−1. Then the following statements
are equivalent

(i) F (S)F (T )− a2
0 = F (S + T + µST )− a0

(ii) F (S)a1 = F ′(S)(1 + µS) where F ′ is the formal derivative of F .

Remark ii.3.21. Let us suppose v(µ) ≥ v(λ). This corollary, together with
ii.3.16, says that the solution of the di�erential equation in R/λR[S]/( (1+µS)p−1

µp
){

F ′(S) = aF (S),
F (0) = 1

has as unique solution F (S) = Ep(aS) =
∑p−1

i=0
ai

i!
Si and ap = 0.

Proof. By (ii.44), we have that ii.3.19(iii) is equivalent to

(ii.45) F (S)F (T )− a2
0 = F (S + T + µST )− a0.

If we put l = 1 in (ii.44), we obtain the coe�cient of T in both members of (ii.45).
This means that ii.3.19(ii) is equivalent to

F (S)a1 = F ′(S)(1 + µS).

Then their equivalence comes from ii.3.19.
�

When v(µ) ≥ v(λ), putting together ii.3.15 and ii.3.16, we have a simpler
description of Homgr(Gµ,1|Sλ ,Gm|Sλ).

Corollary ii.3.22. Let p > 2. Let λ, µ ∈ R with v(p) ≥ (p− 1)v(µ) > 0 and
v(µ) ≥ v(λ) > 0. Then we have the following isomorphism of groups

(ξ0
R/λR)p : (R/λR)F −→ Homgr(Gµ,1|Sλ ,Gm|Sλ)

given by
a 7−→ Ep(aS).

Moreover the restriction map

i∗ : Homgr(G(µ)
|Sλ ,Gm|Sλ) ' Ŵ (R/λR)F −→ Homgr(Gµ,1|Sλ ,Gm|Sλ) ' (R/λR)F

is given, in terms of Witt vectors, by

a = (a0, a1, . . . , 0, 0, 0, . . . ) 7−→
∞∑
i=0

(−1)i(
p

µp−1
)iai
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Proof. We �rst remark that the restriction of the Teichmüller map

T : (R/λR)F −→ Ŵ (R/λR)F,

given by
a 7−→ [a],

is a morphism of groups. This follows from ii.3.9. Moreover, if we consider the
isomorphism

ξ0
R/λR : Ŵ (R/λR)F −→ Homgr(G(µ)

|Sλ ,Gm|Sλ)

and
i∗ : Homgr(G(µ)

|Sλ ,Gm|Sλ) −→ Homgr(Gµ,1|Sλ ,Gm|Sλ),

we have
i∗ ◦ ξ0

R/λR ◦ T = (ξ0
R/λR)p.

So (ξ0
R/λR)p is a morphism of groups. It is surjective by ii.3.16 and, by ii.3.15, its

kernel is

T ((R/λR)F) ∩
{

[
p

µp−1
]b + V (b)|b ∈ Ŵ (R/λR)

F
}
.

Let us now suppose that there exists b = (b0, b1, . . . ) ∈ Ŵ (R/λR)
F
and a ∈

(R/λR)F such that [ p
µp−1 ]b+ V (b) = [a]. It follows by the de�nition of Witt vector

ring that

(ii.46) [
p

µp−1
]b = (

p

µp−1
b0, . . . , (

p

µp−1
)p
j

bj, . . . ),

and

(ii.47) [a]− V (b) = (a0,−b0,−b1, . . . ).

Since b ∈ Ŵ (R/λR), there exists r ≥ 0 such that bj = 0 for any j ≥ r.
Moreover, comparing (ii.46) and (ii.47) it follows

(
p

µp−1
)p
j

bj+1 = −bj for j ≥ 0

(
p

µp−1
)pb0 = a.

Hence bj = a = 0 for any j ≥ 0. It follows that (ξ0
R/λR)p is injective.

We now prove the second part of the statement. First of all we remark that for
any a = (a0, . . . , aj, . . . ) ∈ Ŵ (R/λR)F we have

a =
∞∑
j=0

V j([aj]).

It is clear that for any a ∈ R/λR we have i∗([a]) = a. While, by ii.3.15, it
follows that i∗V (b) = −i∗([ p

µp−1 ]b) for any b ∈ Ŵ (R/λR)F. Hence i∗V j(b) =
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(−1)ji∗([( p
µp−1 )j]b) for any j ≥ 1. From these facts it follows that

i∗(a) = i∗(
∞∑
j=0

V j([aj]))

=
∞∑
j=0

(i∗(V j([aj])))

=
∞∑
j=0

(−1)j(
p

µp−1
)jaj.

�

ii.3.5. Explicit description of δ. The map

δ : Homgr(Gµ,1|Sλ ,Gm|Sλ) −→ Ext1(Gµ,1,G(λ))

can also be explicitly described. We have the following commutative diagram

Homgr(G(µ)
|Sλ ,Gm|Sλ) //

α

��

Homgr(Gµ,1|Sλ ,Gm|Sλ)

δ

��

// 0

Ext1(G(µ),G(λ))
i∗ // Ext1(Gµ,1,G(λ))

where the �rst horizontal map is surjective by ii.3.15. So, given

F (S) ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ),

we can choose a representant in Homgr(G(µ)
|Sλ ,Gm|Sλ) which we denote again by F (S)

for simplicity. Then δ is de�ned by

F (S) 7−→ Ẽ (µ,λ;F ) := i∗(E (µ,λ;F )) = i∗(α(F (S))).

If F̃ (S) ∈ R[S] is any lifting then it is de�ned, as a scheme, by

Ẽ (µ,λ;F ) = Spec
(
R[S1, S2, (F̃ (S1) + λS2)−1]/

(1 + µS1)p − 1

µp
)
.

This extension does not depend on the choice of the lifting since the same is true
for E (µ,λ;F ).

So, by (ii.38), we see that ker(αλ∗) ⊆ Ext1(Gµ,1,G(λ)) is nothing else but the
group {Ẽ (µ,λ;F )}. We recall that, by (ii.39), for any λ′ ∈ R,

kerαλ
′

∗ ' Homgr(Gµ,1|Sλ′
,Gm|Sλ′ )/rλ′(Homgr(Gµ,1,Gm)).

We have therefore proved the following proposition.
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Proposition ii.3.23. Let λ, µ ∈ R \ {0} with v(p) ≥ (p − 1)v(µ). Then δ
induces an isomorphism

Homgr(Gµ,1|Sλ ,Gm|Sλ)/rλ′(Homgr(Gµ,1,Gm)) −→ {Ẽ (µ,λ;F )}

F (S) 7−→ Ẽ (µ,λ;F )

Remark ii.3.24. As remarked in �ii.3.3, if λ′ | µ then

rλ′(Homgr(Gµ,1,Gm)) = 0,

otherwise
rλ′(Homgr(Gµ,1,Gm)) '< 1 + µS >' Z/pZ.

Example ii.3.25. a) Let us suppose v(µ) = 0 and v(λ) > 0. Since, by
(ii.41) and the previous remark,

Homgr(µp|Sλ ,Gm|Sλ) ' rλ(Homgr(Gµ,1,Gm)) ' Z/pZ

then {Ẽ (µ,λ;F )} = 0.
b) Let us suppose v(λ) = 0. Since Sλ = ∅, then {Ẽ (µ,λ;F )} = 0.

ii.3.6. Interpretation of Ext1(Gµ,1,Gm). First of all, we brie�y recall a use-
ful spectral sequence . Let Exti(G,H) denote the fppf-sheaf on Sch/S, associated
to the presheaf X 7−→ Exti (G×S X,H×SX). Then we have a spectral sequence

Eij
2 = H i(S, Extj(G,H))⇒ Exti+j(G,H),

which in low degrees gives

(ii.48)
0 −→ H1(S, Ext0(G,H)) −→ Ext1(G,H) −→ H0(S, Ext1(G,H)) −→

−→ H2(S, Ext0(G,H)) −→ Ext2(G,H).

MoreoverH1(S, Ext0(G,H)) is isomorphic to the subgroup of Ext1(G,H) formed
by the extensions E which split over some faithfully �at a�ne S-scheme of �-
nite type (cf. [15, III 6.3.6]). We suppose that G acts trivially on H, then
Ext0(G,H) = Homgr(G,H). We will consider the case H = Gm and G a �-
nite �at group scheme. In this case, Ext0(G,Gm) is by de�nition the Cartier dual
of G, denoted by G∨. We recall the following result which will play a role in the
description of extensions of Gµ,1 by Gλ,1 (see ii.3.35 below).

Theorem ii.3.26. Let G be a commutative �nite �at group scheme over S.
Then the canonical map

H1(S,G∨) −→ Ext1(G,Gm)

is bijective.

Proof. This is a Theorem of S.U. Chase. For a proof see [56]. We stress that
he proves Ext1(G,Gm) = 0, then he applies (ii.48). We remark that he proves
everything in the fpqc site. However the same proof works in the fppf site. �
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We apply this result to G = Gλ,1. We have that the map

H1(S,G∨λ,1)−→Ext1(Gλ,1,Gm)

is an isomorphism.
By ii.3.26 and i.3.6 we obtain the following result.

Corollary ii.3.27. Let G be a commutative �nite �at group scheme over S.
The restriction map

Ext1(G,Gm) −→ Ext1(GK ,Gm|K)

is injective.

Let us consider a commutative �nite and �at group scheme G of order n. We
also consider the nth power map n : Gm −→ Gm . It induces a morphism n∗ :
Ext1(G,Gm) −→ Ext1(G,Gm). We have the following commutative diagram

H1(S,G∨) //

n∗
��

Ext1(G,Gm)

n∗
��

H1(S,G∨) // Ext1(G,Gm),

where the horizontal maps are isomorphisms by ii.3.35. We remark that n∗ :
H1(S,G∨) −→ H1(S,G∨) is the zero morphism since the map n∗ : G∨ −→ G∨,
induced by n : Gm −→ Gm, is the zero morphism. This proves the following lemma.

Lemma ii.3.28. Let G be a commutative �nite and �at group scheme of order
n. Then

n∗ : Ext1(G,Gm) −→ Ext1(G,Gm)

is the zero morphism.

ii.3.7. Description of Ext1(Gµ,1, Gλ,1). We �nally have all the ingredients to
give a description of the group Ext1(Gµ,1, Gλ,1). In particular we will focus on the
extensions which are isomorphic, as group schemes, to Z/p2Z on the generic �ber.

First of all we remark that if v(µ1) = v(µ2) and v(λ1) = v(λ2) then

Ext1(Gµ1,1, Gλ1,1) ' Ext1(Gµ2,1, Gλ2,1).

Indeed we know, by hypothesis, that there exist two isomorphisms ψ1 : Gλ1,1 −→ Gλ2,1

and ψ2 : Gµ2,1 −→ Gµ1,1. Then we have that

(ψ1)∗ ◦ (ψ2)∗ : Ext1(Gµ1,1, Gλ1,1) −→ Ext1(Gµ2,1, Gλ2,1)

is an isomorphism.
We now recall what happens if v(µ) = v(λ) = 0. In this case we have the

following result.

Proposition ii.3.29. Let A be a d.v.r or a �eld. Then there exists an exact
sequence

0 −→ Z/pZ −→ Ext1
A(µp, µp) −→ H1(Spec(A),Z/pZ) −→ 0
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Proof. The proposition is proved in [46, 3.7] when A a is d.v.r. The same
proof works when A is a �eld. �

Let us de�ne the extension of µp by µp

Ei,A = Spec(A[S1, S2]/(Sp1 − 1,
Sp2
Si1
− 1)).

It is the kernel of the morphism (Gm)2 −→ (Gm)2 given by (S1, S2) −→ (Sp1 , S
−1
1 Sp2)

Then the group Z/pZ in the above proposition is formed by the extensions Ei,A.

Definition ii.3.30. Let F ∈ Hom(Gµ,1|Sλ ,Gm|Sλ), j ∈ Z/pZ such that

F (S)p(1 + µS)−j = 1 ∈ Hom(Gµ,1|Sλp
,Gm|Sλp ).

Let F̃ (S) ∈ R[S] be a lifting of F . We denote by E (µ,λ;F,j) the subgroup scheme of
E (µ,λ;F ) given on the level of schemes by

E (µ,λ;F,j) = Spec

(
R[S1, S2]/

((1 + µS1)p − 1

µp
,
(F̃ (S1) + λS2)p(1 + µS1)−j − 1

λp
))
.

We moreover de�ne the following homomorphisms of group schemes

Gλ,1 −→ E (µ,λ;F,j)

by

S1 7−→ 0

S2 7−→ S +
1− F̃ (0)

λ
and

E (µ,λ;F,j) −→ Gµ,1

by

S −→ S1.

It is easy to see that

0 −→ Gλ,1 −→ E (µ,λ;F ) −→ Gµ,1 −→ 0

is exact. A di�erent choice of the lifting F̃ (S) gives an isomorphic extension. It
is easy to see that (E (µ,λ;F,j))K ' (Z/p2Z)K , as a group scheme, if j 6= 0 and
(E (µ,λ;F,0))K ' (Z/pZ× Z/pZ)K .

Remark ii.3.31. In the above de�nition the integer j is uniquely determined
by F ∈ Hom(Gµ,1|Sλ ,Gm|Sλ) if and only if λp - µ.

From the exact sequence over Sλ

0 −→ Gµ,1
i−→ G(µ) ψµ,1−→ G(µp) −→ 0
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we have that
(ii.49)

ker

(
i∗ : Homgr(G(µ)

|Sλ ,Gm|Sλ) −→ Homgr(Gµ,1|Sλ ,Gm|Sλ)

)
= ψµ,1∗Homgr(G(µp)

|Sλ ,Gm|Sλ)

So let F (S) ∈ Hom(Gµ,1|Sλp
,Gm|Sλp ). By ii.3.15 we can choose a representant

of F (S) in ∈ Hom(G(µ)
|Sλp ,Gm|Sλp ) which we denote again F (S) for simplicity.

Therefore, by (ii.49), we have that F (S)p(1+µS)−j = 1 ∈ Hom(Gµ,1|Sλp
,Gm|Sλp ) is

equivalent to saying that there exists G ∈ Hom(G(µp)
|Sλp ,Gm|Sλp ) with the property

that F (S)p(1 + µS)−j = G( (1+µS)p−1
µp

) ∈ Hom(G(µ)
|Sλp ,Gm|Sλp ). This implies that

E (µ,λ;F,j) can be seen as the kernel of the isogeny

ψjµ,λ,F,G : E (µ,λ;F ) −→ E (µp,λp;G)

S1 7−→
(1 + µS1)p − 1

µp

S2 7−→
(F̃ (S1) + λS2)p(1 + µS1)−j − G̃( (1+µS1)p−1

µp
)

λp

where F̃ , G̃ ∈ R[T ] are liftings of F and G.
As remarked in ii.3.18, if v(µ) ≥ v(λ) we can suppose

F̃ (S) =

p−1∑
i=0

ai

i!
Si

with ap ≡ 0 mod λ.

Example ii.3.32. This example has been the main motivation for our de�nition
of the group schemes E (µ,λ;F,j). Let us de�ne

η =

p−1∑
k=1

(−1)k−1

k
λk(2).

We remark that v(η) = v(λ(2)). We consider

F (S) = Ep(ηS) =

p−1∑
k=1

(ηS)k

k!

It has been shown in [53, �5] that, using our notation,

Z/p2Z ' E (λ(1),λ(1);Ep(ηS),1).

A similar description of Z/p2Z was independently found by Green and Matignon
([20]).
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Example ii.3.33. It is easy to see that the group scheme Gλ,2 is isomorphic to

E (λp,λ;1,1).

Moreover if we have an extension of type E (µ,λ;F,j) with F (S) = 1 then v(µ) ≥ pv(λ).
Indeed we have that

E (µ,λ;1,j) = Spec

(
A[S1, S2]/

(
(1 + µS1)p − 1

µp
,
(1 + λS2)p(1 + µS1)−j − 1

λp

))
.

Since (1 + λS2)p = 1 ∈ Homgr(Gµ,1|Sλp
,Gm|Spλ) then (1 + λS2)p(1 + µS1)−j = 1 ∈

Homgr(Gµ,1|Sλp
,Gm|Sλp ) if and only if v(µ) ≥ pv(λ). In particular we remark that,

in such a case, v(λ) ≤ v(λ(2)). Otherwise

pv(λ) > pv(λ(2)) = v(λ(1)) ≥ v(µ),

which is not possible.

Let us de�ne, for any µ, λ ∈ R with v(µ), v(λ) ≤ v(λ(1)), the group

radp,λ(< 1 + µS >) :=

{
(F (S), j) ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ)× Z/pZ such that

F (S)p(1 + µS)−j = 1 ∈ Hom(Gµ,1|Sλp
,Gm|Sλp )

}
/ < (1 + µS, 0) > .

We de�ne
β : radp,λ(< 1 + µS >) −→ Ext1(Gµ,1, Gλ,1)

by
(F (S), j) 7−→ E (µ,λ;F (S),j)

We remark that the image of β is the set {E (µ,λ;F (S),j)}.

Lemma ii.3.34. β is a morphism of groups. In particular the set {E (µ,λ;F (S),j)}
is a subgroup of Ext1(Gµ,1, Gλ,1).

Proof. Let i : Gλ,1 −→ G(λ). We remark that

i∗(β(F, j)) = i∗(E (µ,λ;F (S),j)) = Ẽ (µ,λ;F ) = δ(F )

for any (F, j) ∈ radp,λ(< 1 + µS >). Moreover by construction

(E (µ,λ;F (S),j))K = (Ej)K ∈ Ext1(µp,K , µp,K).

Let (F1, j1), (F2, j2) ∈ radp,λ(< 1 + µS >). Then

(ii.50) i∗(β(F1, j1)+β(F2, j2)−β(F1+F2, j1+j2)) = δ(F1)+δ(F2)−δ(F1+F2) = 0

since δ is a morphism of groups. And

(ii.51) (β(F1, j1) +β(F2, j2)−β(F1 +F2, j1 + j2))K = Ej1,K + Ej2,K −Ej1+j2,K = 0,

since Z/pZ ' Ext1(µp,K , µp,K) through the map j 7→ Ej,K . By (ii.50) it follows
that

β(F1, j1) + β(F2, j2)− β(F1 + F2, j1 + j2) ∈ ker i∗.
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and then, by (ii.35) and (ii.37), we have

β(F1, j1) + β(F2, j2)− β(F1 + F2, j1 + j2) = (σj)
∗Λ.

for some j ∈ Z/pZ. By (ii.51) it follows that

((σj)
∗Λ)K = Ej,K = 0,

therefore j = 0. So β is a morphism of groups. The last assertion is clear. �

We now give a description of Ext1(Gµ,1, Gλ,1).

Theorem ii.3.35. Suppose that λ, µ ∈ R with v(λ(1)) ≥ v(λ), v(µ). The follow-
ing sequence

0 −→ radp,λ(< 1 + µS >)
β−→ Ext1(Gµ,1, Gλ,1)

αλ∗◦i∗−→

−→ ker

(
H1(S,G∨µ,1) −→ H1(Sλ, G

∨
µ,1)

)
is exact. In particular β induces an isomorphism radp,λ(< 1+µS >) ' {E (µ,λ;F,j)}.

Proof. Using (ii.38) and ii.3.23, we consider the following commutative dia-
gram
(ii.52)

0 // {Ẽ (µ,λ;F )} //

ψ̃λ,1∗
��

Ext1(Gµ,1,G(λ))
αλ∗ //

ψλ,1∗
��

Ext1(Gµ,1,Gm)

p∗

��

// Ext1(Gµ,1|Sλ ,Gm|Sλ)

p∗
��

0 // {Ẽ (µ,λp;G)} // Ext1(Gµ,1,G(λp))
αλ

p
∗ // Ext1(Gµ,1,Gm) // Ext1(Gµ,1|Sλ ,Gm|Sλ)

The map ψ̃λ,1∗ , induced by ψλ,1∗ : Ext1(Gµ,1,G(λ)) −→ Ext1(Gµ,1,G(λp)), is given
by Ẽ (µ,λ;F ) 7−→ Ẽ (µ,λp;F p). Now, since Gµ,1 is of order p then, p∗ : Ext1(Gµ,1,Gm)→
Ext1(Gµ,1,Gm) is the zero map (see ii.3.28). Moreover, by (ii.48) and ii.3.26, we
have the following situation

0 //H1(S,G∨µ,1) //

��

Ext1(Gµ,1,Gm)

��

//0

0 //H1(Sλ, G
∨
µ,1) // Ext1(Gµ,1|Sλ ,Gm|Sλ)

which implies that Im(αλ∗) ' ker(H1(S,G∨µ,1) −→ H1(Sλ, G
∨
µ,1)).

So applying the snake lemma to (ii.52) we obtain
(ii.53)

0 −→ ker(ψ̃λ,1∗)
δ̃−→ ker(ψλ,1∗)

αλ∗−→ ker

(
H1(S,G∨µ,1) −→ H1(Sλ, G

∨
µ,1)

)
.

We now divide the proof in some steps.
Connection between ker(ψ̃λ,1∗) and radp,λ(< 1 + µS >). We are going to give

the connection in the form of the isomorphism (ii.57) below. We recall that, by
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(ii.35), i : Gλ,1 −→ G(λ) induces an isomorphism

(ii.54) i∗ : Ext1(Gµ,1, Gλ,1)/δ′(Homgr(Gµ,1,G(λp))) −→ ker(ψλ,1∗);

for the de�nition of δ′ see (ii.37).
By ii.3.23 we have an isomorphism

δ : Homgr(Gµ,1|Sλ ,Gm|Sλ)/rλ′(Homgr(Gµ,1,Gm)) −→ {Ẽ (µ,λ;F )}

Through this identi�cation we can identify ker(ψ̃λ,1∗) with

(ii.55)

{
F (S) ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ)|∃i ∈ rλp(Homgr(Gµ,1,Gm)) such that

F (S)p(1 + µS)−i = 1 ∈ Hom(Gµ,1|Sλp
,Gm|Sλp )

}
/ < 1 + µS > .

Moreover
(ii.56)

δ̃ : ker(ψ̃λ,1∗) ↪→ Ext1(Gµ,1, Gλ,1)/δ′(Homgr(Gµ,1,G(λp))) ⊆ Ext1(Gµ,1,G(λ))

is de�ned by δ̃(F ) = δ(F ) = Ẽ (µ,λ;F ).
We now de�ne a morphism of groups

ι : ker(ψ̃λ,1∗) −→ rλp(Homgr(Gµ,1,Gm))

as follows: for any F (S) ∈ ker(ψ̃λ,1∗), ι(F ) = iF is the unique i ∈ rλp(Homgr(Gµ,1,Gm))
such that F (S)p(1 + µS)−i = 1 ∈ Hom(Gµ,1|Sλp

,Gm|Sλp ). The morphism of groups

ker(ψ̃λ,1∗)× Homgr(Gµ,1,G(λp)) −→ radp,λ(< 1 + µS >)(ii.57)

(F, j) 7−→ (F, iF + j)

is an isomorphism. We prove only the surjectivity since the injectivity is clear.
Now, if λp - µ then Homgr(Gµ,1,G(λp)) = 0 and rλp(Homgr(Gµ,1,Gm)) = Z/pZ. So,
if (F, j) ∈ radp,λ(< 1 + µS >), then j ∈ rλp(Homgr(Gµ,1,Gm)). So iF = j. Hence
(F, 0) 7→ (F, iF ) = (F, j). While if λp | µ then Homgr(Gµ,1,G(λp)) = Z/pZ and
rλp(Homgr(Gµ,1,Gm)) = 0. Hence

ker(ψ̃λ,1∗) =

{
F (S) ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ)|F (S)p = 1 ∈ Hom(Gµ,1|Sλp

,Gm|Sλp )

}
.

Let us now take (F, j) ∈ radp,λ(< 1 + µS >). This means that

F (S)p = (1 + µS)j = 1 ∈ Hom(Gµ,1|Sλp
,Gm|Sλp ).

Therefore F (S) ∈ ker(ψ̃λ,1∗) and iF = 0. So

(F, j) 7−→ (F, iF + j) = (F, j).
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Interpretation of β. We now de�ne the morphism of groups

% : ker(ψ̃λ,1∗) −→ Ext1(Gµ,1, Gλ,1)

F 7−→ β(F, iF ) = E (µ,λ;F,iF )

We recall the de�nition of δ′ given in (ii.37):

δ′ : Homgr(Gµ,1,G(λp)) −→ Ext1(Gµ,1, Gλ,1)

is de�ned by δ′(σi) = σ∗i (Λ). Then, under the isomorphism (ii.57), we have

β = %+ δ′ : ker(ψ̃λ,1∗)× Homgr(Gµ,1,G(λp))−→Ext1(Gµ,1, Gλ,1)

Injectivity of β. First of all we observe that δ̃ factors through %, i.e.

(ii.58) δ̃ = i∗ ◦ % : ker(ψ̃λ,1∗)
%−→ Ext1(Gµ,1, Gλ,1)

i∗−→ ker(ψλ,1∗).

Indeed
i∗ ◦ %(F ) = i∗(E (µ,λ;F,iF )) = Ẽ (µ,λ,F ) = δ̃(F ).

In particular, since δ̃ is injective, % is injective, too.
We now prove that β = %+ δ′ is injective, too. By (ii.54),

i∗ ◦ δ′ = 0.

Now, if (%+ δ′)(F, σi) = 0, then %(F ) = −δ′(σi). So

δ̃(F ) = i∗(%(F )) = i∗(−δ′(σi)) = 0.

But δ̃ is injective, so F = 1. Hence δ′(σi) = 0. But by (ii.35), also δ′ is injective.
Then σi = 0.

Calculation of Imβ. We �nally prove Im(%+δ′) = ker(αλ∗◦i∗). Since δ̃ = i∗◦%,
αλ∗ ◦ δ̃ = 0 and i∗ ◦ δ′ = 0 then

αλ∗ ◦ i∗ ◦ (%+ δ′) = αλ∗ ◦ i∗ ◦ %+ αλ∗ ◦ (i∗ ◦ δ′) = αλ∗ ◦ i∗ ◦ % = αλ∗ ◦ δ̃ = 0.

So Im(% + δ′) ⊆ ker(αλ∗ ◦ i∗). On the other hand, if E ∈ Ext1(Gµ,1, Gλ,1) is
such that αλ∗ ◦ i∗(E) = 0, then, by (ii.53), there exists F ∈ ker(ψ̃λ,1∗) such that
i∗(E) = δ̃(F ) = i∗(%(F )). Hence, by (ii.54), E − %(F ) ∈ Im(δ′). Therefore
Im(% + δ′) = ker(αλ∗ ◦ i∗). Moreover since i∗ : Ext1(Gµ,1, Gλ,1) −→ ker(ψλ,1∗) is
surjective then Im(αλ∗) = Im(αλ∗ ◦ i∗). We have so proved, using also (ii.53), that
the following sequence

0 −→ ker(ψ̃λ,1∗)× Homgr(Gµ,1,G(λp))
%+δ′−→ Ext1(Gµ,1, Gλ,1)

αλ∗◦i∗−→

−→ ker

(
H1(S,G∨µ,1) −→ H1(Sλ, G

∨
µ,1)

)
is exact. Finally, by de�nitions, it follows that

β(radp,λ(< 1 + µS >)) = {E (µ,λ;F,j)}.
�
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Example ii.3.36. Let us suppose v(λ) = 0. In such a case radp,λ(< 1 + µT >
) = Z/pZ. Hence by the theorem we have

0 −→ {E (µ,λ;1,j)|j ∈ Z/pZ} −→ Ext1(Gµ,1, µp) −→ H1(S,G∨µ,1) −→ 0.

Example ii.3.37. Let us now suppose v(µ) = 0 and v(λ) > 0. In such a case

Homgr(µp|Sλ ,Gm|Sλ) =< 1 + µT > .

Hence it is easy to see that

radp,λ(< 1 + µT >) = 0.

Therefore, by the theorem,

Ext1(µp, Gλ,1) −→ ker

(
H1(S,Z/pZ) −→ H1(Sλ,Z/pZ)

)
is an isomorphism.

Corollary ii.3.38. Under the hypothesis of the theorem, any extension E ∈
Ext1(Gµ,1, Gλ,1) is of type E (µ,λ;F,j), up to an extension of R. In particular any
extension is commutative.

Proof. Let E ∈ Ext1 (Gµ,1, Gλ,1). Suppose that αλ∗(i∗E) = [S ′], with S ′ −→ S
a G∨µ,1-torsor. We consider the integral closure S ′′ of S in S ′K . Up to a localization
(in the case S ′′ −→ S is étale), we can suppose S ′′ local. So S ′′ = Spec(R′′) where
R′′ is a noetherian local integrally closed ring of dimension 1, i.e. a d.v.r. (see [7,
9.2]). Since S ′′K ' S ′K , then S

′
K ×K S ′′K is a trivial EK-torsor over S ′′K . By i.3.6 we

have that S ′ ×S S ′′ is a trivial E-torsor trivial over S ′′. So, if we make the base
change f : S ′′ → S, then αλ∗(i∗(ES′)) = 0. By ii.3.35, this implies that E ′′ is of
type

E (µ,λ,F,j).

Hence any E ∈ Ext1(Gµ,1, Gλ,1) is a commutative group scheme over an extension
R′ of R. So it is a commutative group scheme over R.

�

By ii.3.2 the extensions of Z/pZ by Z/pZ over K, which are extensions of
abstract groups, are classi�ed by H2

0 (Z/pZ,Z/pZ) ' Z/pZ (see for instance [46,
2.7]). This group is formed by Ej,K with j ∈ Z/pZ. If j 6= 0 we have that Ej,K
is isomorphic, as a group scheme, to Z/p2Z, while if j = 0 it is isomorphic to
Z/pZ× Z/pZ. We also de�ne the following morphism of extensions

(ii.59)
αµ,λ : E (µ,λ;F,j) −→ Ej,R

S1 7−→ 1 + µS1

S2 7−→ F (S1) + λS2.

It is an isomorphism on the generic �ber. Now, by the theorem, we get that E (µ,λ;F,j)

are the only extensions which are isomorphic to Ej,K on the generic �ber.
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Corollary ii.3.39. The extensions of type E (µ,λ;F,j) are the only extensions
E ∈ Ext1(Gµ,1, Gλ,1) which are isomorphic, as extensions, to Ej,K on the generic
�ber. In particular they are the unique �nite and �at R-group schemes of order p2

which are models of constant groups. More precisely, they are isomorphic on the
generic �ber, as group schemes, to Z/p2Z if j 6= 0 and to Z/pZ× Z/pZ if j = 0.

Proof. As above remarked any E (µ,λ;F,j) has the properties of the statement.
We now prove that they are the unique extensions of Gµ,1 by Gλ,1 to have these
properties. Let E ∈ Ext1(Gµ,1, Gλ,1) be such that EK ' Ej,K as group schemes. By
ii.3.26, ii.3.29 and ii.3.35 we have the following commutative diagram

Ext1(Gµ,1, Gλ,1)
αλ∗◦i∗//

��

ker

(
H1(S,G∨µ,1) −→ H1(Sλ, G

∨
µ,1)

)
��

Ext1
K(µp, µp)

αλ∗◦i∗ // Ext1
K(µp,Gm) ' H1(Spec(K),Z/pZ) // 0

where the vertical maps are the restrictions to the generic �ber. Suppose now that
EK is of type Ej,K . By ii.3.29 it follows that αλ∗ ◦ i∗(EK) = 0. Since the above
diagram commutes, this means that (αλ∗ ◦ i∗(E))K = 0. By i.3.6 we have that the
second vertical map of the diagram is injective. This means that

αλ∗ ◦ i∗(E) = 0.

So ii.3.35 implies that E is of type E (µ,λ;F,j). Now, if G is a model of a constant
group, by ii.3.1 we have that G is an extension E of Gµ,1 by Gλ,1. Moreover, since
EK is a constant group, then EK ∈ Ext1(Z/pZ,Z/pZ). Therefore EK ' Ej for some
j. So, by what we just proved, E is of type E (µ,λ;F,j). The last assertion is clear. �

ii.3.8. Ext1(Gµ,1, Gλ,1) and the Sekiguchi-Suwa theory. We now give a
description of E (µ,λ;F,j) through the Sekiguchi-Suwa theory. We study separately
the cases λ - µ and λ|µ.

Corollary ii.3.40. Let µ, λ ∈ R be with v(λ(1)) ≥ v(λ) > v(µ). Then, no
E ∈ Ext1(Gµ,1, Gλ,1) is a model of (Z/p2Z)K. Moreover, if p > 2 and v(µ) > 0, the
group {E (µ,λ;F,j)} is isomorphic to{

a ∈ Ŵ (R/λR)
F−[µp−1]

|∃b ∈ Ŵ (R/λpR)
F−[µp(p−1)]

such that

pa = [
p

µp−1
]b + V (b) ∈ Ŵ (R/λpR)

}/
< [µ],

{
[
p

µp−1
]b + V (b)|b ∈Ŵ (R/λpR)

F−[µp(p−1)]
}
>,

through the map
a 7−→ E (µ,λ;Ep(a,µ;S),0).

Remark ii.3.41. We know by ii.3.16, ii.3.15 and ii.3.10 that any element of
the set de�ned above can be chosen of the type [a] for some a ∈ (R/λR)F−[µp−1].
So, if we have two elements as above of the form [a] and [b] then [a] + [b] = [c] for
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some c ∈ (R/λR)F−[µp−1]. We are not able to describe explicitly this element. If
we were able to do it we could have a simpler description of the above set, as it
happens in the case v(µ) ≥ v(λ). We will see this in ii.3.42.

Proof. We now prove the �rst statement. We remark that by ii.3.39 it is
su�cient to prove the statement only for the extensions in {E (µ,λ;F,j)}. Let us
consider the restriction map

r : Homgr(Gµ,1|Sλp
,Gm|Sλp ) −→ Homgr(Gµ,1|Sλ ,Gm|Sλ).

The morphism p : Homgr(G(µ)
|Sλ ,Gm|Sλ)−→Homgr(G(µ)

|Sλp ,Gm|Sλp ) de�ned in (ii.33)
is given by F (S) 7→ F (S)p and induces a map

Homgr(Gµ,1|Sλ ,Gm|Sλ)
p−→ Homgr(Gµ,1|Sλp

,Gm|Sλp ).

Then

Homgr(Gµ,1|Sλ ,Gm|Sλ)
p−→ Homgr(Gµ,1|Sλp

,Gm|Sλp )
r−→ Homgr(Gµ,1|Sλ ,Gm|Sλ)

is the trivial morphism. Indeed

(r ◦ p)(F (S)) = F (S)p ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ),

which is zero by de�nition of group scheme morphisms and by the fact that Gµ,1

has order p. Now let us take

F (S) ∈ radp,λ(< 1 + µS >) ' {E (µ,λ;F,j)}.
By de�nition

F (S)p(1 + µS)−j = 1 ∈ Hom(Gµ,1|Sλp
,Gm|Sλp ),

for some j ∈ Z/pZ. Hence
r(F (S)p(1 + µS)−j) = (1 + µS)−j = 1 ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ).

If (E (µ,λ;F,j))K ' (Z/p2Z)K then j 6= 0. Therefore

(1 + µS)−j = 1 ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ)

means v(µ) ≥ v(λ). So, if v(µ) < v(λ), necessarily j = 0. Hence

radp,λ(< 1 + µS >) :=

{
F (S) ∈ Homgr(Gµ,1|Sλ ,Gm|Sλ) such that

F (S)p = 1 ∈ Hom(Gµ,1|Sλp
,Gm|Sλp )

}
/ < 1 + µS > .

Therefore by ii.3.35, ii.3.15 and (ii.34) we have the thesis. �

Corollary ii.3.42. Let us suppose p > 2. Let µ, λ ∈ R \ {0} be with v(λ(1)) ≥
v(µ) ≥ v(λ). Then, {E (µ,λ;F,j)} is isomorphic to the group

Φµ,λ :=

{
(a, j) ∈ (R/λR)F × Z/pZ such that pa− jµ =

p

µp−1
ap ∈ R/λpR

}
,
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through the map

(a, j) 7−→ E (µ,λ;
∑p−1
i=0

ai

i!
Si,j).

Remark ii.3.43. It is clear that if (0, j) ∈ Φµ,λ, with j 6= 0, then µ ≡ 0
mod λp.

Proof. By ii.3.15, ii.3.22, (ii.34) and ii.3.36 (for the case v(λ) = 0) it follows
that radp,λ(< 1 + µS >) is isomorphic to
(ii.60){

(a, j) ∈ (R/λR)F × Z/pZ|∃b ∈ Ŵ (R/λpR)
F

such that p[a]− j[µ] =[
p

µp−1
]b + V (b) ∈ Ŵ (R/λpR)

}
.

Let a, j and b = (b0, b1, . . . ) be as above.
By [53, 5.10],

p[a] ≡ (pa, ap, 0, . . . ) mod p2.

Since [µ] ∈ Ŵ (R/λpR)F it follows by ii.3.9 that

(ii.61) j[µ] = [jµ]

and

(ii.62) p[a]− j[µ] = (pa− jµ, ap, 0, 0, . . . , 0, . . . ) ∈ Ŵ (R/λpR).

We recall that
[
p

µp−1
]b = (

p

µp−1
b0, . . . , (

p

µp−1
)p
i

bi, . . . ),

then, again by ii.3.9, we have

(ii.63) [
p

µp−1
]b + V (b) = (

p

µp−1
b0, (

p

µp−1
)pb1 + b0, . . . , (

p

µp−1
)p
i+1

bi+1 + bi, . . . ).

Since b ∈ Ŵ (R/λpR) there exists r ≥ 0 such that bi = 0 for any i ≥ r.
Moreover, comparing (ii.62) and (ii.63), it follows

(
p

µp−1
)p
i

bi+1 + bi = 0 for i ≥ 1

(
p

µp−1
)pb1 + b0 = ap

(
p

µp−1
)pb0 = pa− jµ.

So bi = 0 if i ≥ 1, b0 = ap and pa− jµ = p
µp−1a

p. �

Example ii.3.44. Let us suppose µ = λ = λ(1). Then Gλ(1)
' Z/pZ. By

ii.3.32, ii.3.42 and ii.3.35 we have that

{(kη, k)|k ∈ Z/pZ} ⊆ Φλ(1),λ(1)
' radp,λ(1)

(< 1 + λ(1)S >).
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On the other hand by ii.3.35 and ii.3.39 it follows that radp,λ(1)
(< 1 + λ(1)S >) '

H2
0 (Z/pZ,Z/pZ) ' Z/pZ. Therefore {(kη, k)|k ∈ Z/pZ} ' radp,λ(1)

(< 1 + λ(1)S >

).

We now concentrate on to the case v(µ) ≥ v(λ), which is the unique case, as
proved in ii.3.40, where extensions of Gµ,1 by Gλ,1 could be models of Z/p2Z, as
group schemes. Our task is to �nd explicitly all the solutions (a, j) ∈ (R/λR)F of
the equation pa − jµ = ap ∈ R/λpR. By ii.3.42 this means �nding explicitly all
the extensions of type E (µ,λ;F,j). Let us consider the restriction map

r : {E (µ,λ;F,j)} −→ Ext1
K(µp, µp) ' Z/pZ.

We remark that it coincides with the projection

p2 :

{
(a, j) ∈ (R/λR)F × Z/pZ such that pa− jµ =

p

µp−1
ap ∈ R/λpR

}
−→ Z/pZ

So there is an extension of Gµ,1 by Gλ,1 which is a model of (Z/p2Z)K if and only
if p2 is surjective. First of all we describe explicitly the kernel of the above map.

Lemma ii.3.45. We have

ker p2 =

{
(a, 0) ∈ R/λR×Z/pZ s. t., for any lifting ã ∈ R,

pv(ã) ≥ max{pv(λ) + (p− 1)v(µ)− v(p), v(λ)}
}

In particular p2 is injective if and only if v(λ) ≤ 1 or v(p)− (p− 1)v(µ) < p.

Proof. Let (a, 0) ∈ ker p2 ∩R/λR× Z/pZ. By the de�nitions we have that

pa =
p

µp−1
ap ∈ R/λpR.

Let ã ∈ R be a lift of a. Since v(µ) ≥ v(λ), if a 6= 0 then v(ã) < v(µ). Hence

(ii.64) v(p) + v(ã) > pv(ã) + v(p)− (p− 1)v(µ)

Therefore
pa =

p

µp−1
ap ∈ R/λpR

if and only if
p

µp−1
ap = 0 ∈ R/λpR,

if and only if
pv(ã) + v(p)− (p− 1)v(µ) ≥ pv(λ).

We remark that ap = 0 ∈ R/λR means pv(ã) ≥ v(λ). So we have proved the �rst
assertion. Now if v(λ) ≤ 1 or v(p)− (p− 1)v(µ) < p it is easy to see that there are
no nonzero elements in ker p2. While if v(λ) > 1 and v(p)− (p− 1)v(µ) ≥ p, take
a ∈ R/λR with a lifting ã ∈ R of valuation v(λ)− 1. Therefore

p(v(λ)− 1) ≥ max{pv(λ)− v(p) + (p− 1)v(µ), v(λ)}.
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Hence (a, 0) ∈ ker p2. �

We remark that ker p2 depends only on the valuations of µ and λ. So we can
easily compute Φµ,λ, too.

Proposition ii.3.46. Let us suppose p > 2. Let µ, λ ∈ R\{0} be with v(λ(1)) ≥
v(µ) ≥ v(λ).

a) If v(µ) < pv(λ) then p2 is surjective if and only if pv(µ) − v(λ) ≥ v(p).
And, if p2 is surjective, Φµ,λ is isomorphic to the group

{(jη µ

λ(1)

+ α, j)|(α, 0) ∈ ker(p2) and j ∈ Z/pZ}

For the de�nition of η see ii.3.32.
b) If v(µ) ≥ pv(λ) then p2 is surjective and Φµ,λ is isomorphic to

{(α, j)|(α, 0) ∈ ker(p2) and j ∈ Z/pZ} ' ker p2 × Z/pZ.
c) If p2 is not surjective then p2 is the zero morphism. So Φµ,λ = ker p2.

Remark ii.3.47. Let us suppose v(µ) < pv(λ). Let (b, j) ∈ Φµ,λ with j 6= 0.
By ii.3.43, then b 6= 0. Let b̃ ∈ R be any of its lifting. Then v(b̃) = v(η µ

λ(1)
) =

v(µ) − v(p)
p
. Indeed, by the theorem, we have b̃ = η µ

λ(1)
+ α for some α ∈ R/λR

with v(α̃) > v(η µ
λ(1)

) = v(µ)− v(p)
p
, where α̃ ∈ R is any lifting of α.

Proof. a) First, we suppose that p2 is surjective. This is equivalent to
saying that

(ii.65) pa− jµ =
p

µp−1
ap ∈ R/λR

has a solution a ∈ (R/λR)F if j 6= 0. Since v(µ) < v(p), by (ii.64) it
follows that

(ii.66) v(µ) = v(p)− (p− 1)v(µ) + pv(ã),

with ã ∈ R a lifting of a. Since a ∈ (R/λR)F we have pv(ã) ≥ v(λ).
Hence, by (ii.66), pv(µ)− v(λ) ≥ v(p).

Conversely let us suppose that pv(µ)−v(λ) ≥ v(p). We know by ii.3.32
and ii.3.39 that

pη − λ(1) =
p

λp−1
(1)

ηp ∈ R/λp(1)R.

We recall that v(η) = v(λ(2)). Since pv(λ(1)) − v(λ(1)) + µ ≥ pµ ≥ pλ, if
we divide the above equation by λ(1)

µ
we obtain

pη
µ

λ(1)

− µ =
p

µ(p−1)
(
µ

λ(1)

η)p ∈ R/λpR.

We remark that η µ
λ(1)
∈ (R/λR)F, since, by hypothesis, v(

(
η µ
λ(1)

)p
) =

pv(µ)−v(p) ≥ v(λ). Clearly jη µ
λ(1)

is a solution of (ii.65) for any j ∈ Z/pZ.
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In particular it follows that, if p2 is surjective, Φµ,λ is isomorphic to
the group

{(jη µ

λ(1)

+ α, j)|(α, 0) ∈ ker(p2) and j ∈ Z/pZ}

b) If v(µ) ≥ pv(λ) then we have that µ = 0 ∈ R/λpR. We remark that
(0, j) ∈ Φµ,λ. This implies that p2 is surjective and that (α, j) ∈ R/λR ×
Z/pZ ∩ Φµ,λ if and only if (α, 0) ∈ ker(p2).

c) Since p2 is a morphism of groups with target Z/pZ then the image of p2 is
a subgroup of Z/pZ. Then the image of p2 is trivial or it is equal to Z/pZ.
The assertion follows.

�

Example ii.3.48. Let us suppose v(µ) = v(λ(1)), i.e. Gµ,1 ' Z/pZ. For
simplicity we will suppose µ = λ(1). Then p2 is an isomorphism. Indeed in this
case ker(p2) = 0 by ii.3.45 and it is surjective by ii.3.46(a)-(b). This means that, in
this case, any extension E (λ(1),λ;F,j) is uniquely determined by the induced extension
over K. Let us now consider the map

Ext1(Gλ(1),1, Gλ(1),1) −→ Ext1(Gλ(1),1, Gλ,1)

induced by the map Z/pZ ' Gλ(1),1 −→ Gλ,1 given by S 7→ λ(1)

λ
S. It is easy to see

that E (λ(1),λ;F,j) is the image of E (λ(1),λ(1);Ep(ηS),j) through the above map. Indeed
from the above proposition we have that F (S) ≡ Ep(ηS) mod λ. We remark that
if pv(λ) ≤ v(λ(1)) then η ≡ 0 mod λ, indeed in such a case v(λ) ≤ v(λ(2)) = v(η).

ii.3.9. Classi�cation of models of (Z/p2Z)K. By the previous subsections
we have a classi�cation of extensions of Gµ,1 by Gλ,1 whose generic �bre is isomor-
phic, as group scheme, to Z/p2Z. But this classi�cation is too �ne for our tasks.
We want here to forget the structure of extension. We are only interested in the
group scheme structure. We observe that it can happen that two non isomorphic
extensions are isomorphic as group schemes. We here study when it happens.

First of all we recall what the model maps between models of Z/pZ are. Let us
suppose %, %̃ ∈ R with v(%), v(%̃) ≤ v(λ(1)). Since G%,1 is �at over R, by ii.3.13 it
follows that the restriction map

Homgr(G%,1, G%̃,1) −→ Homgr((G%,1)K , (G%̃,1)
K

) ' Z/pZ

in an injection. It follows easily by (ii.36) that

Homgr(G%,1, G%̃,1) =

{
Z/pZ, if v(%) ≥ v(%̃);
0, if v(%) < v(%̃),

where, in the �rst case, the morphisms are given by S 7−→ (1+%S)r−1

%̃ with r ∈ Z/pZ.
We remark that, if v(%) = v(%̃) and r 6= 0, these morphisms are isomorphisms.

We now recall that by ii.3.1, ii.3.39, ii.3.42 and ii.3.40 any model of (Z/p2Z)K is
of the form E (µ,λ;F,j) such that j 6= 0, v(λ(1)) ≥ v(µ) ≥ v(λ) and F (S) =

∑p−1
i=0

ai

i!
Si

with (a, j) ∈ Φµ,λ. See ii.3.46 for the explicit description of Φµ,λ. For i = 1, 2 let
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us consider E (µi,λi;Fi,ji), models of (Z/p2Z)K . First of all we remark that there is
an injection

rK : Hom(E (µ1,λ1,F1,j1), E (µ2,λ2,F2,j2)) −→ HomK(Ej1,K , Ej2,K)

given by
f 7−→ (αµ2,λ2)K ◦ fK ◦ (αµ1,λ1)−1

K

See (ii.59) for the de�nition αµ,λ. We recall that

Hom(Ej1 , Ej2) ' HomK(Ej1,K , Ej2,K).

and the elements are the morphisms

ψr,s : Ej1 −→ Ej2 ,
which, on the level of Hopf algebras, are given by

S1 7−→ S
rj1
j2

1(ii.67)

S2 7−→ Ss1S
r
2 ,(ii.68)

for some r ∈ Z/pZ and s ∈ Z/pZ. Moreover the map

Hom(Ej1 , Ej2) −→ Z/p2Z

ψr,s 7−→ r +
p

j1

s

is an isomorphism. So Hom(E (µ1,λ1,F1,j1), E (µ2,λ2,F2,j2)) is a subgroup of Z/p2Z through
the map rK . We remark that the unique nontrivial subgroup of Hom(Ej1 , Ej2) is
{ψ0,s|s ∈ Z/pZ}. Finally we have that any morphism E (µ1,λ1,F1,j1) −→ E (µ2,λ2,F2,j2))
is given by

(ii.69)

S1 −→
(1 + µ1S1)

rj1
j2 − 1

µ2

S2 −→
(F1(S1) + λ1S2)r(1 + µ1S1)s − F2( (1+µ1S1)

rj1
j2 −1

µ2
)

λ2

,

for some r, s ∈ Z/pZ. With abuse of notation we call it ψr,s. We remark that the
morphisms ψr,s : E (µ1,λ1,F1,j1) −→ E (µ2,λ2,F2,j2) which are model maps correspond,
by (ii.67), to r 6= 0. In such a case ψr,s is a morphism of extensions, i.e. there exist
morphisms ψ1 : Gλ,1 −→ Gλ,2 and ψ2 : Gµ,1 −→ Gµ,2 such that

(ii.70)

0 //Gλ1,1
//

ψ1

��

E (µ1,λ1,F1,j1)

ψr,s
��

//Gµ1,1
//

ψ2

��

0

0 //Gλ2,1
//E (µ2,λ2,F2,j2) //Gµ2,1

//0

commutes. More precisely ψ1 is given by S 7→ (1+λ1S)r−1
λ2

and ψ2 by S 7→ (1+µS1)
rj1
j2 −1

µ2
.

We now calculate Hom(E (µ1,λ1,F1,j1), E (µ2,λ2,F2,j2)).
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Proposition ii.3.49. For i = 1, 2, if Fi(S) = Ep(aiS) =
∑p−1

k=0
aki
k!
Si and Ei =

E (µi,λi;Fi,ji) are models of (Z/p2Z)K we have

Hom(E1,E2) =


0, if v(µ1) < v(λ2);
{ψr,s} ' Z/p2Z, if v(µ2) ≤ v(µ1), v(λ2) ≤ v(λ1)

and a1 ≡ j1
j2

µ1

µ2
a2 mod λ2;

{ψ0,s} ' Z/pZ, otherwise.

Proof. It is immediate to see that ψ0,s ∈ Hom(E1,E2), with s 6= 0, if and only
if v(µ1) ≥ v(λ2). We now see conditions for the existence of ψr,s with r 6= 0. If it
exists, in particular, we have two morphisms Gµ1,1 −→ Gµ2,1 and Gλ1,1 −→ Gλ2,1.
This implies v(µ1) ≥ v(µ2) and v(λ1) ≥ v(λ2). Moreover we have that

F1(S1)r(1 + µ1S1)s = F2(
(1 + µ1S1)

rj1
j2 − 1

µ2

) ∈ Hom(Gµ1,1|Sλ2
,Gm|Sλ2

).

Since v(µ1) ≥ v(µ2) ≥ v(λ2), we have

(ii.71) F1(S1)r = F2(
(1 + µ1S1)

rj1
j2 − 1

µ2

) ∈ Hom(Gµ1,1|Sλ2
,Gm|Sλ2

).

If we de�ne the morphism of groups

[
µ1

µ2

]∗ : Hom(Gµ2,1|Sλ2
,Gm|Sλ2

) −→ Hom(Gµ1,1|Sλ2
,Gm|Sλ2

)

F (S1) 7−→ F (
µ1

µ2

S1)

then

F2(
(1 + µ1S1)

rj1
j2 − 1

µ2

) = [
µ1

µ2

]∗
(
F2

(
(1 + µ1S1)

rj1
j2 − 1

µ1

))
= [

µ1

µ2

]∗(F2(S1))
rj1
j2

= F2(
µ1

µ2

(S1))
rj1
j2 .

Therefore we have

(ii.72) F1(S1)r = (F2(
µ1

µ2

S1))
rj1
j2 ∈ Hom(Gµ1,1|Sλ2

,Gm|Sλ2
).

Every element of Hom(Gµ1,1|Sλ ,Gm|Sλ) has order p. Let t be an inverse for r
modulo p. Then raising the equality to the tth-power we obtain

F1(S1) = (F2(
µ1

µ2

S1))
j1
j2 ∈ Hom(Gµ1,1|Sλ2

,Gm|Sλ2
).

By ii.3.22 this means

a1 ≡
j1

j2

µ1

µ2

a2 mod λ2.
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It is conversely clear that, if v(µ1) ≥ v(µ2), v(λ1) ≥ v(λ2) and

F1(S1) = (F2(
µ1

µ2

S1))
j1
j2 ∈ Hom(Gµ1,1|Sλ2

,Gm|Sλ2
),

then (ii.69) de�nes a morphism of group schemes.
�

We have the following result which gives a criterion to determine the class of
isomorphism, as a group scheme, of an extension of type E (µ,λ;F,j).

Corollary ii.3.50. For i = 1, 2, let Fi(S) = Ep(aS) =
∑p−1

k=0
aki
k!
Sk and let

Ei = E (µi,λi;Fi,ji) be models of (Z/p2Z)K. Then they are isomorphic if and only if
v(µ1) = v(µ2), v(λ1) = v(λ2) and a1 ≡ j1

j2

µ1

µ2
a2 mod λ2. Moreover if it happens

then any model map between them is an isomorphism.

Proof. By the proposition we have that a model map ψr,s : E (µ1,λ1,F1,j1) −→
E (µ2,λ2,F2,j2) exists if and only if v(µ1) ≥ v(µ2), v(λ1) ≥ v(λ2) and a1 ≡ j1

j2

µ1

µ2
a2

mod λ2. It is a morphism of extensions as remarked before the proposition. Let us
consider the commutative diagram (ii.67). Then ψr,s is an isomorphism if and only
if ψi is an isomorphism for i = 1, 2. By the discussion made at the beginning of
this section this is equivalent to requiring v(µ1) = v(µ2) and v(λ1) = v(λ2). This
also proves the last assertion. �

We remarked that if v(µ1) = v(µ2) and v(λ1) = v(λ2) then

Ext1(Gµ1,1, Gλ1,1) ' Ext1(Gµ2,1, Gλ2,1).

The following is a more precise statement for extensions of type E (µ,λ;F,j).

Corollary ii.3.51. Let E (µ1,λ1;Ep(aS),j) ∈ Ext1(Gµ1,1, Gλ1,1) be a model of Z/p2Z.
Then for any µ2, λ2 such that v(µ1) = v(µ2) and v(λ1) = v(λ2) we have

E (µ1,λ1;Ep(aS),j) ' E (µ2,λ2;Ep(a
j
µ2
µ1
S),1)

as group schemes.

Proof. Firstly we prove that there exists the group scheme E (µ2,λ2;Ep(a
j
µ2
µ1
S),1).

By ii.3.42 we have that a ∈ (R/λR)F and

(ii.73) pa− jµ1 =
p

µp−1
1

ap mod λp1.

Then, multiplying (ii.73) by µ2

µ1

1
j
, we have

p
aµ2

jµ1

− µ2 ≡
p

µp−1
2

(
aµ2

jµ1

)p
mod λp2.

Hence E (µ2,λ2;Ep(a
j
µ2
µ1
S),1) is a group scheme (see again ii.3.42). Then by the above

proposition we can conclude that

E (µ1,λ1;Ep(aS),j) ' E (µ2,λ2;Ep(a
j
µ2
µ1
S),1)
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as group schemes.
�

Example ii.3.52. Let µ, λ ∈ R be such that v(µ) = v(λ) = v(λ(1)). We now
want to describe Z/p2Z as E (µ,λ;F,1). We recall that we de�ned

η =

p−1∑
k=1

(−1)k−1

k
λk(2)

By ii.3.32 and the previous corollary we have

Z/p2Z ' E
(µ,λ;Ep(η µ

λ(1)
S),1)

.

We conclude the section with the complete classi�cation of (Z/p2Z)K-models.
The following theorem summarizes the results of this chapter.

Theorem ii.3.53. Let us suppose p > 2. Let G be a �nite and �at R-group
scheme such that GK ' (Z/p2Z)K. Then G ' E (πm,πn;Ep(aS),1) for some v(λ(1)) ≥
m ≥ n ≥ 0 and (a, 1) ∈ Φπm,πn. Moreover m,n and a ∈ R/πnR are unique.

Remark ii.3.54. The explicit description of the set Φπm,πn has been given in
ii.3.46 and ii.3.45.

Proof. By ii.3.1, ii.3.39, ii.3.40, ii.3.42 and ii.3.51 any model of (Z/p2Z)K is
of type E (πm,πn;Ep(aS),1) with m ≥ n and (a, 1) ∈ Φπm,πn . By ii.3.50, it follows that,

E (πm1 ,πn1 ,Ep(a1S),1) ' E (πm2 ,πn2 ,Ep(a2S),1)

as group schemes if and only if m1 = m2, n1 = n2 and a1 = a2 ∈ R/πn1R. �

ii.4. Torsors under E (µ,λ;F (S),j)

We now give an explicit description of E (µ,λ;F,j)-torsors. It will be useful in the
next chapter for the study of the extensions (in the sense of iii.2) of (Z/p2Z)K-
torsors. We have seen that there is the following exact sequence

0 −→ E (µ,λ;F (S),j) ι−→ E (µ,λ;F (S))
ψjµ,λ,F,G−→ E (µ,λ;G(S)) −→ 0

for G(S) ∈ Homgr(G
(µp)
|Sλp ,Gm|Sλp ) such that F (S)p(1 + µS)−j = G( (1+µS)p−1

µp
) ∈

Homgr(G(µ)
|Sλp ,Gm|Sλp ). The associated long exact sequence is

. . . −→ H0(X, E (µ,λ;F (S)))
(ψjµ,λ,F,G)

∗−→ H0(X, E (µ,λ;G(S)))
δ−→ H1(X, E (µ,λ;F (S),j))

ι∗−→
−→ H1(X, E (µ,λ;F (S))) −→ H1(X, E (µ,λ;F (S))) −→ . . .

Lemma ii.4.1. Let X be a faithfully �at R-scheme and let f : Xfl −→ XZar

be the natural continuous morphism of sites. For any R-group scheme E (µ,λ;F ) we
have R1f∗(E (µ,λ;F )) = 0. In particular H1(Xfl, E (µ,λ;F )) = H1(XZar, E (µ,λ;F )).
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Proof. Let us consider the exact sequence (ii.30), in the fppf topology,

0 −→ G(λ) −→ E (µ,λ;F ) −→ G(µ) −→ 0.

If we apply the functor f∗ we obtain

. . . −→ R1f∗G(λ) −→ R1f∗(E (µ,λ;F )) −→ R1f∗G(µ) −→ . . .

By i.5.5 it follows that R1f∗(G(λ)) = R1f∗(G(µ)) = 0. Hence R1f∗(E (µ,λ;F )) = 0. Us-
ing the Leray spectral sequence we conclude thatH1(Xfl, E (µ,λ;F )) = H1(XZar, E (µ,λ;F )).

�

We remark that

H0(X, E (µ,λ;F (S))) = {(f1, f2) ∈ H0(X,OX)×H0(X,OX)|
1 + µf1 ∈H0(X,OX)∗ and F̃ (f1) + λf2 ∈ H0(X,OX)∗},

for some lift F̃ of F , and

H0(X, E (µ,λ;G(S))) = {(f1, f2) ∈ H0(X,OX)×H0(X,OX)|
1 + µpf1 ∈ H0(X,OX)∗ and G̃(f1) + λpf2 ∈ H0(X,OX)∗},

for some lift G̃ of G. The map (ψjµ,λ,F,G)∗ : H0(X, E (µ,λ;F (S))) −→ H0(X, E (µ,λ;G(S)))
is given by

(f1, f2) 7−→ (
(1 + µf1)p − 1

µp
,
(F̃ (f1) + λf2)p(1 + µf1)−j − G̃( (1+µf1)p−1

µp
)

λp
)

Now let us suppose that X = Spec(A). We describe explicitly the map δ. Let
F̃ (S), G̃(S) be liftings of F (S) and G(S) in R[S]. Then

H0(X, E (µ,λ;G(S))) = {(f1, f2) ∈ A× A|1 + µpf1 ∈ A∗ and G̃(f1) + λpf2 ∈ A∗}.
and δ((f1, f2)) is, as a scheme,
(ii.74)

Y = SpecA[T1, T2]/

(
(1 + µT1)p − 1

µp
−f1,

(F̃ (T1) + λT2)p(1 + µT1)−j − G̃(f1)

λp
−f2

)
.

and the E (µ,λ;F (S),j)-action over Y is given by

T1 7−→S1 + T1 + µS1T1

T2 7−→S2F̃ (T1) + F̃ (S1)T2 + λS2T2+

F̃ (S1)F̃ (T1)− F̃ (S1 + T1 + µS1T1)

λ

Now letX be any scheme. If Y −→ X is a E (µ,λ;F (S),j)-torsor then, by ii.4.1 there
exists a Zariski covering {Ui = Spec(Ai)} such that (ι∗)Ui([Y ]) = 0, for any i. This

means that Y|Ui = SpecAi[T1, T2]/

(
(1+µT1)p−1

µp
−f1,i,

(F̃ (T1)+λT2)p(1+µT1)−j−G̃(f1)
λp

−f2,i

)
for some f1,i, f2,i as above. By a standard argument we can see that the cocycle
ι∗([Y ]) ∈ H1(XZar, E (µ,λ;F )) permits to patch together the torsors Y|Ui to obtain Y .
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In the next chapter we will consider the case X a�ne and we are interested only
to E (µ,λ;F,j)-torsors of the form (ii.74).

ii.5. Reduction on the special �ber of the models of (Z/p2Z)K

In the following we study the special �bers of the extensions of type E (λ,µ,;F,j)

with v(µ) ≥ v(λ). In particular, by ii.3.40, this includes the extensions which are
models of (Z/p2Z)K as group schemes. We study separately the di�erent cases
which can occur.

ii.5.1. Case v(µ) = v(λ) = 0. We have (Gλ,1)k ' (Gµ,1)k ' µp. The exten-
sions of type E (λ,µ,;F,j) are the extensions Ei with i ∈ Z/pZ. The special �bers of
the extensions Ei with i ∈ Z/pZ are clearly Ei,k. See also ii.3.29.

ii.5.2. Case v(λ(1)) ≥ v(µ) > v(λ) = 0. In such a case we have (Gλ,1)k ' µp.
It is immediate by the de�nitions that any extension E (µ,λ;1,j) is trivial on the special
�ber.

ii.5.3. Case v(λ(1)) > v(µ) ≥ v(λ) > 0. Then (Gµ,1)k ' (Gλ,1)k ' αp,k.
First, we recall some results about extensions of group schemes of order p over

a �eld k. See [15, III �6 7.7.] for a reference.

Theorem ii.5.1. Let us suppose that αp acts trivially on αp over k. The exact

sequence 0 −→ αp → Ga
F→ Ga → 0 induces the following split exact sequence

0 −→ Homk(αp,Ga) −→ Ext1(αp, αp) −→ Ext1(αp,Ga) −→ 0.

It is also known that

Ext1(Ga,Ga) ' H2
0 (Ga,Ga) −→ H2

0 (αp,Ga) ' Ext1(αp,Ga).

is surjective. Since Ext1(Ga,Ga) ' H2
0 (Ga,Ga) is freely generated as a right k[F]-

module by Ci = Xpi+Xpi−(X+Y )p
i

pi
and Di = XY pi for all i ∈ N \ {0}, it follows that

H2
0 (αp,Ga) ' Ext1(αp,Ga) is freely generated as right k-module by the class of the

cocycle C1 = Xp+Xp−(X+Y )p

p
. So Ext1(αp,Ga) ' k.

Moreover it is easy to see that Homk(αp,Ga) ' k. The morphisms are given by
T 7→ aT with a ∈ k. By these remarks we have that the isomorphism

Homk(αp,Ga)× Ext1(αp,Ga) −→ Ext1(αp, αp),

deduced from ii.5.1, is given by

(β, γC1) 7→ Eβ,γ.

The extension Eβ,γ is so de�ned:

Eβ,γ = Spec(k[S1, S2]/(Sp1 , S
p
2 − βS1))
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(1) law of multiplication

S1 7−→S1 ⊗ 1 + 1⊗ S1

S2 7−→S2 ⊗ 1 + 1⊗ S2 + γ
Sp1 ⊗ 1 + 1⊗ Sp1 − (S1 ⊗ 1 + 1⊗ S1)p

p

(2) unit

S1 7−→ 0

S2 7−→ 0

(3) inverse

S1 7−→ −S1

S2 7−→ −S2

It is clear that all such extensions are commutative. In [53, 4.3.1] the following
result was proved.

Proposition ii.5.2. Let λ, µ ∈ πR\{0}. Then [E (µ,λ;Ep(a,µ,S))
k ] ∈ H2

0 (Ga,k,Ga,k)
coincides with the class of

∞∑
k=1

(F−[µp−1])(ã)

λ
Ck,

where ã is a lifting of a ∈ Ŵ (R/λR).

We deduce the following corollary about the extensions of αp by Ga.

Corollary ii.5.3. Let λ, µ ∈ πR \ {0}. Then [Ẽ (µ,λ;Ep(a,µ,S))
k ] ∈ H2

0 (αp,k,Ga,k)
coincides with the class of

(F−[µp−1])(ã)

λ
C1,

where ã is a lifting of a ∈ Ŵ (R/λR).

Proof. This follows from the fact that E (µ,λ;Ep(a ,µ,S))
k 7→ Ẽ (µ,λ;Ep(a ,µ,S))

k through
the map

Ext1(Ga,Ga) ' H2
0 (Ga,Ga) −→ H2

0 (αp,Ga) ' Ext1(αp,Ga).

�

Let us take an extension E (µ,λ;Ep(aS),j). Let ã be a lifting of a. We have that on
the special �ber this extension is given as a scheme by

E (µ,λ;Ep(aS),j)
k = Spec(k[S1, S2]/(Sp1 , S

p
2 − (−

(
∑p−1

i=0
ãi

i!
Si)p(1 + µS1)−j − 1

λp
))).

By ii.3.42 we know that

pa− jµ− p

µp−1
ap = 0 ∈ R/λp
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In the proof of the same corollary we have seen that

p[a]− j[µ]− [
p

µp−1
ap]− V ([ap]) = [pa− jµ− p

µp−1
ap] ∈ Ŵ (R/λpR).

By the de�nitions we have the following equality in Hom(G(µ)
|Sλp ,Gm|Sλp )

ξ0
R/λpR(p[a]−j[µ]−[

p

µp−1
ap]−V ([ap])) = Ep(aS1)p(1+µS1)−j

(
Ep

(
ap
(

(1 + µS1)p − 1

µ

)))−1

.

Moreover we have

ξ0
R/λpR([pa− jµ− p

µp−1
ap]) = Ep((pa− jµ−

p

µp−1
ap)S1)

So we have that

(

p−1∑
i=0

ãi

i!
Si1)p(1 + µS1)−j − 1 ≡

p−1∑
i=0

(pa− jµ− p
µp−1a

p)iSi1

i!
− 1

≡ 0 mod λp
(
R[S1]/(

(1 + µS1)p − 1

µp
)

)
.

Hence

(
∑p−1

i=0
ãi

i!
Si1)p(1 + µS1)−j − 1

λp
≡
∑p−1

i=0

(pa−jµ− p

µp−1 a
p)i

i!
Si1 − 1

λp

≡
(pa− jµ− p

µp−1a
p)

λp
S1 mod π.

On the other hand E (µ,λ;Ep(aS),j)
k 7→ Ẽ (µ,λ;Ep(aS))

k through the map Ext1(αp, αp) →
Ext1(αp,Ga).

Therefore E (µ,λ;Ep(aS),j)
k ' Eβ,γ with β = (

pã−jµ− p

µp−1 ã
p

λp
mod π) and γ = ( ã

p

λ
mod π). We have so proved the following result.

Proposition ii.5.4. Let λ, µ ∈ πR be such that v(λ) ≤ v(µ) < v(λ(1)). Then

[E (µ,λ;Ep(aS),j)
k ] ∈ Ext1

k(αp, αp) coincides with the class of(
−
pã− jµ− p

µp−1 ã
p

λp
,
ãp

λ
C1

)
,

where ã is a lifting of a ∈ R/λR.

ii.5.4. Case v(λ(1)) = v(µ) > v(λ) > 0. In this situation we have

(Gµ,1)k ' Z/pZ and (Gλ,1)k ' αp.

Proposition ii.5.5. Let λ, µ ∈ πR be such that v(µ) = v(λ(1)) > v(λ). Then

E (µ,λ;F,j)
k is the trivial extension.



II.5. REDUCTION ON THE SPECIAL FIBER OF THE MODELS OF (Z/p2Z)K 71

Proof. We can suppose µ = λ(1). From ii.3.48 it follows that E (λ(1),λ;F,j) is in
the image of the morphism

Ext1(Gλ(1),1, Gλ(1),1) −→ Ext1(Gλ(1),1, Gλ,1)

induced by the map Z/pZ ' Gλ(1),1 −→ Gλ,1 given by S 7→ λ(1)

λ
S. But this

morphism is the zero morphism on the special �ber. So we are done. �

ii.5.5. Case v(λ(1)) = v(µ) = v(λ). We have

(Gµ,1)k ' Z/pZ and (Gλ,1)k ' Z/pZ.
For simplicity we will consider the case µ = λ = λ(1). We recall the following result.

Proposition ii.5.6. Let suppose that Z/pZ acts trivially on Z/pZ over k. The

exact sequence 0→ Z/pZ→ Ga
F−1→ Ga → 0 induces the following exact sequence

Homgr(Z/pZ,Ga) ' k
F−1−→ Homgr(Z/pZ,Ga) ' k −→ Ext1

k(Z/pZ,Z/pZ) −→

−→ Ext1
k(Z/pZ,Ga) ' k

F−1−→ Ext1
k(Z/pZ,Ga) ' k

Proof. [15] �

We observe that ker

(
Ext1(Z/pZ,Ga)

F−1−→ Ext1(Z/pZ,Ga)

)
' Z/pZ. It is pos-

sible to describe more explicitly Ext1(Z/pZ,Z/pZ). We recall that Ext1(Z/pZ,Ga) =
H2

0 (Z/pZ,Ga) is freely generated as a right k-module by the class of the cocycle
C1 = Xp+Xp−(X+Y )p

p
.

There is an isomorphism, induced by the maps of ii.5.6,

k/(F−1)(k)× Z/pZ −→ Ext1(Z/pZ,Z/pZ),

given by
(a, b) 7→ Ea,b.

The extension Ea,b is so de�ned: let ā ∈ k a lifting of a,

Ea,b = Spec(k[S1, S2]/(Sp1 − S1, S
p
2 − S2 − āS1))

(1) law of multiplication

S1 7−→S1 ⊗ 1 + 1⊗ S1

S2 7−→S2 ⊗ 1 + 1⊗ S2 + b
Sp1 ⊗ 1 + 1⊗ Sp1 − (S1 ⊗ 1 + 1⊗ S1)p

p

(2) unit

S1 7−→ 0

S2 7−→ 0

(3) inverse

S1 7−→ −S1

S2 7−→ −S2
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We remark that the extensions which are isomorphic to Z/p2Z as group schemes
are the extensions E0,b with b 6= 0. By ii.3.44 we have that any extension of Z/pZ
by Z/pZ is given by E (λ(1),λ(1);Ep(jηS),j). We now study its reduction on the special
�ber.

Proposition ii.5.7. For any j ∈ Z/pZ,

[E (λ(1),λ(1);Ep(jηS),j)

k ] = E0,j ∈ Ext1
k(Z/pZ,Z/pZ).

Proof. As group schemes, E (λ(1),λ(1);Ep(jηS),j) ' Z/p2Z, if j 6= 0, and E (λ(1),λ(1);1,0) '
Z/pZ×Z/pZ otherwise. In particular E (λ(1),λ(1);Ep(jηS),j)

k has a scheme-theoretic sec-
tion. It is easy to see that E (λ(1),λ(1);Ep(jηS),j)

k ' E0,b with

b = (−j ηp

λ(1)(p− 1)!
mod π) = j,

since ηp

λ(1)
≡

λp
(2)

λ(1)
≡ 1 mod π and (p− 1)! ≡ −1 mod π (Wilson Theorem). �



CHAPTER iii

Extension of torsors

iii.1. E�ective models

Here we recall some de�nitions and results about e�ective models which will
play a key role in our results about extensions of Z/p2Z-torsors. For more details
see [40], which is the source where most of the material of this paragraph has been
taken.

In this section char(K) is not necessarily 0. Let YK be a �at K-scheme endowed
with a faithful action of a �nite group scheme G. Given an R-model Y to which the
action extends, it may happen that the reduced action on the special �bre acquires
a kernel, especially if p divides |G|. The e�ective models are the objects which
solve this problem.

In [35, � 2], the relation of domination between models of a group scheme has
been introduced.

Definition iii.1.1. Let G1 and G2 be �nite �at group schemes over R with
an isomorphism uK : G1,K −→ G2,K . We say that G1 dominates G2 and we write
G1 ≥ G2, if we are given an R-morphism u : G1 −→ G2 which restricts to uK on the
generic �bre. The map u is also called a model map. If moreover G1 and G2 act on
Y , we say that G1 dominates G2 compatibly (with the actions) if µ1 = µ2 ◦ (u× id).

We now recall the de�nition of a faithful action.

Definition iii.1.2. Let G be a group scheme which acts on a scheme Y over
a scheme T . This action is faithful if the induced morphism of sheaves of groups,
in the fppf topology of T ,

G −→ AutT (Y )

is injective.

We recall here the de�nition of e�ective model given by Romagny.

Definition iii.1.3. Let G be a �nite �at group scheme over R. Let Y be a �at
scheme over R. Let µ : G×Y −→ Y be an action, faithful on the generic �bre. An
e�ective model for µ is a �nite �at R-group scheme G acting on Y , dominated by
G compatibly, such that G acts faithfully on Y .

Example iii.1.4. Let X be a �at scheme over R and G a �nite and �at group
scheme over R. Let Y −→ X be a G-torsor over R. Then G is already an e�ective
model. Indeed let us suppose that G −→ AutR(Y ) is not injective. Then there
exists a faithfully �at morphism U −→ Spec(R) and g ∈ G(U) \ {0} such that

Y ×R U
g×id−→ G × Y ×R U

µ×id−→ Y ×R Y ×R U
73
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is equal to ∆ × id : Y ×R U −→ Y ×R Y ×R U where ∆ : Y −→ Y ×R Y is the
diagonal morphism. By the de�nition of G-torsor G ×R Y ×R U

µ×id−→ Y ×R Y ×R U
is an isomorphism. Then

Y ×R U
g×id−→ G ×R Y ×R U

µ×id−→ Y ×R Y ×R U
(µ×id)−1

−→ G ×R Y ×R U
is the zero section, against assumptions.

We report here some results about e�ective models.

Proposition iii.1.5. An e�ective model is unique up to unique isomorphism,
if it exists.

Proof. [40, 1.1.2]. �

We will constantly use the following crucial remark in the next sections.

Remark iii.1.6. Let G be a �nite and �at group scheme over R and Y a �at
scheme over R. Let µ : G × Y −→ Y be an action. Moreover we suppose that
YK −→ YK/GK is a GK-torsor. Then by iii.1.5 we have that the e�ective model
G whose action extends that of GK is unique if it exists. By iii.1.4 this means
that if there exists a model G′ of GK , compatible with the action, such that Y is
a G′-torsor, then G′ is the e�ective model for µ.

We recall that an action µ : G × X is admissible if X can be covered by
G-stable open a�ne subschemes. We here state the main results about e�ective
models obtained in [40].

Proposition iii.1.7. Let G be a �nite �at group scheme over R. Let X be
a �at scheme over R and µ : G × X −→ X an admissible action, faithful on the
generic �ber. Assume there exists an e�ective model G. Then

(i) If H is a �nite �at subgroup of G the restriction of the action to H has an
e�ective model H which is the schematic image of H in G. If H is normal
in G, then H is normal in G.

(ii) The identity of X induces an isomorphism X/G ' X/G.
(iii) Assume that there exists an open subset U ⊆ X which is schematically

dense in any �ber of X −→ Spec(R) such that G acts freely on U . Then
for any normal subgroup H C G the e�ective model of G/H acting on
X/H is G/H.

Proof. [40, 1.1.3]. �

Theorem iii.1.8. Let X be a �at R-scheme and µ : G ×X −→ X an action.
Assume that X is covered by G-stable open a�nes Ui with function ring separated
for the π-adic topology, such that G acts faithfully on the generic �bre Ui,K. Denote
by F the family of all closed subschemes Z ⊂ X which are �nite and �at over R.
Assume that Fk is schematically dense in Xk. Then there exists an e�ective model
for the action of G.

Proof. [40, 1.2.2]. �
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For algebraic schemes we have the following:

Corollary iii.1.9. Let G be a �nite �at group scheme over R. Let Y be a
�at scheme of �nite type over R and let µ : G×Y −→ Y be an action. We assume
that Y is covered by G-stable open a�nes Ui with function ring separated for the
π-adic topology, such that G acts faithfully on the generic �bre Ui,K. Then, if Y
has reduced special �bre, there exists an e�ective model for the action of G.

Proof. [40, 1.2.3]. �

We remark that the condition about the separatedness of the function rings of
Ui is assured if, for instance, we assume Y integral. This follows from the Theorem
of Krull ([30, 1.3.13]).

If we add some hypothesis on Y then we have an useful criterion to see if a
group scheme which acts on Y is the e�ective model for the action.

Recall that a module M over a ring A is called semire�exive if the canonical
map from M to its bidual is injective. Equivalently M is a submodule of some
product module AI . Indeed, consider the set I = Hom(M,A) and the morphism
a : M → AI mapping x to the collection of values (f(x))f∈I for all linear forms
f . By de�nition, if M is semire�exive then for each nonzero x ∈ M there exists a
linear form such that f(x) 6= 0, so a is injective. The converse is easy.

Remark iii.1.10. A semire�exive module over a d.v.r. R is faithfully �at and
separated with respect to the π-adic topology. Indeed since M ⊆ RI for some set
I then M is torsion free, hence �at over R. Moreover let x ∈ ∩πmM . Then for
any linear form f we have f(x) ∈ ∩πmR = 0. Since M is semire�exive this implies
∩πmM = 0. So M is separated with respect to the π-adic topology. But, over a
d.v.r, being �at and separated with respect to the π-adic topology implies faithfully
�at. Indeed since ∩πmM = 0 in particular M 6= πM . So M is faithfully �at (see
[30, 1.2.17]). We do not know if the converse is true too, i.e. if any (faithfully) �at
R-module separated with respect to the π-adic topology is semire�exive.

Example iii.1.11. Any freeR-module overR is semire�exive, e.g. R[T1, . . . , Tn].
Other examples, not free, are R[[T1, . . . , Tn]] or R[[T1, . . . , Tn]]{T−1

1 , . . . , T−1
n }.

The following lemma will be useful in �iii.5.

Lemma iii.1.12. Let R be a d.v.r. Let A be an R-algebra which is semire�exive
as an R-module and let B be a �at R-algebra. If there exists a �nite R-morphism
of modules

A −→ B,

such that BK is semire�exive as an AK-module, then B is semire�exive as an
R-module.

Remark iii.1.13. In particular any �nite and �at R-algebra is semire�exive as
an R-module.

Proof. Let us consider BK . It is a vector space over K, so in particular it is
semire�exive overK. Since A and B are �at over R the natural maps A −→ AK and
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B −→ BK are injective. We now prove that B is semire�exive over A. Let b ∈ B
and let us take an AK-linear form f : BK −→ AK such that f(b) 6= 0. It exists
since BK is semire�exive over AK . Let b1, . . . , bm generators of B as an A-module
and let n ∈ N such that πnf(bi) ∈ A for i = 1, . . . ,m. Then we have πnf(B) ⊆ A.
Moreover πnf(b) 6= 0, since A is �at over R by iii.1.10. So πnf : B −→ A is a
linear form with πmf(b) 6= 0. Then B is semire�exive as an A-module. But A is
semire�exive over R. Therefore B is semire�exive over R. Indeed for any b ∈ B
let us take an A-linear form g : B −→ A with g(b) 6= 0. Moreover let us consider
an R-linear form h : A −→ R such that h(g(b)) 6= 0. Then h ◦ g : B −→ R is an
R-linear form with h ◦ g(b) 6= 0. Hence B is semire�exive over R. �

Definition iii.1.14. We will say that a morphism of schemes f : X → T is
essentially semire�exive if there exists a cover of T by open a�ne subschemes Ti,
an a�ne faithfully �at Ti-scheme T ′i for all i, and a cover of X ′i = X ×T T ′i by
open a�ne subschemes X ′ij, such that the function ring of X ′ij is semire�exive as a
module over the function ring of S ′i.

This is a generalization of the de�nition of an essentially free morphism given in
[1]. The proofs of the following two lemmas have been suggested to us by Romagny.

Lemma iii.1.15. Let X be essentially semire�exive and separated over T . Let
G be a T -group scheme acting on X → T . Then the kernel of the action is repre-
sentable by a closed subscheme of G.

Proof. Proceeding like in [1] we are reduced to proving the analogue of [1,
6.4]. Then the proof given in [1] works in our case, because the only property of
free modules that is used in the proof is that they are semire�exive. �

The next lemma is the reason because we are interested in essentially semire-
�exive schemes. Indeed in such a case we have an useful criterion to check if a
�nite group scheme is an e�ective model.

Lemma iii.1.16. Assume furthermore that T = Spec(R) where R is a discrete
valuation ring, and G is �nite and �at over T . Then the action of G is faithful if
and only the action of Gk on the special �bre is faithful.

Proof. Only the if part needs a proof. Let IG be the augmentation ideal
of G and let J be the ideal de�ning the kernel H of the action. Since H is a
subgroup-scheme of H and Hk is trivial then

(iii.75) J ⊆ IG and IG + πR[G] = J + πR[G]

Moreover, since R[G]/IG is �at over R then

(iii.76) IG ∩ πR[G] = πIG.

We now claim that
IG = J + πIG.

Clearly J + πIG ⊆ IG. We now prove the converse. Let a ∈ IG, then from
(iii.75) it follows a = b + πc for some b ∈ J and c ∈ R[G]. Since J ⊆ IG then
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πc ∈ IG ∩ R[G]. Therefore by (iii.76) we have c ∈ J . Hence IG ⊆ J + πIG.
We have so proved IG = J + πIG. Then IG/J is an R-module of �nite type and
(IG/J) ⊗ k = IG/(J + πIG) = 0, so IG/J = 0 by Nakayama's lemma. Hence the
kernel is trivial. �

iii.2. Presentation of the problem

We now recall the problem which we will study in this chapter. In the following,
K is of characteristic zero. Let G be a �nite abstract group. Let X be a faithfully
�at scheme over R and YK −→ XK a GK-torsor. We remark that, since K is of
characteristic 0, any �nite group scheme is étale. Moreover let us consider Y the
normalization of X in YK . A natural question is:
is it always possible to �nd a model G of (G)K over R together with an action on

Y such that Y is a G-torsor and the action of G coincides with that of (G)K on the

generic �ber?

We will say that the G-torsor YK −→ XK can be strongly extended if the
previous question has positive answer. We also consider another notion of extension
of torsors. We say that YK −→ XK can be weakly extended if there exists a model
G of (G)K over R together with an action over a scheme Y ′, with Y ′K ' YK , such
that Y ′ is a G-torsor and the action of G coincides with that of (G)K on the generic
�ber. It is clear that strong extension implies weak extension. The converse is not
true as we will see. The point is that in general Y ′ is not equal to Y . For instance
if X is normal, which is the case which we will study, Y is normal (see iii.3.7), but
in general Y ′ is not normal.

Using the theory of e�ective models the above question can be reformulated in
another way. First of all we observe that, since Y is the normal closure of X in
YK , any G-action on YK can be extended to a G- action on Y . Then we can ask
what the e�ective model of this action is, if it exists. Moreover, by iii.1.6, we see
that the previous question can be rewritten in the following way:
does there always exist an e�ective model G for the action of G which makes Y a

G-torsor?

iii.3. Weak extension of torsors under commutative group schemes

The aim of this section is to prove a result of weak extension for torsors under
commutative group schemes over normal schemes with some hypothesis.

iii.3.1. Preliminary results. We here state some results which will be useful
in what follows.

Proposition iii.3.1. Let i = 1, 2. Let Zi be a faithfully �at S-scheme and
let Gi be an a�ne �at S-group scheme, together with an admissible action, over a
faithfully �at Zi-schemes Yi. Moreover we suppose that Y2 −→ Z2 is a G2-torsor
and that there exists a morphism

ϕK : (G1)K −→ (G2)K .
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Let us suppose we have a commutative diagram

Y1

��

f //// Y2

��
Z1

//// Z2

of S-schemes such that fK is an isomorphism compatible with the actions. Then
there exists a unique morphism

ϕ : G1 −→ G2

which extends ϕK and such that f is compatible with the actions.

Proof. For i = 1, 2 we call σi : Gi ×R Yi −→ Yi the actions. Since Y2 −→ Z2

is a G2-torsor then σ2 × id is an isomorphism. So by

G1 ×R Y1
σ1×id−→ Y1 ×Z1 Y1

f×f−→ Y2 ×Z2 Y2
(σ2×id)−1

−→ G2 ×R Y2

we obtain a morphism
G1 ×R Y1 −→ G2 ×R Y2.

If we compose it with the projection p1 : G2 ×R Y2 −→ G2 we obtain a morphism

G1 ×R Y1 −→ G2.

Moreover we consider the projection

p2 : G1 ×R Y1 −→ Y1.

Therefore we have a map

(iii.77) ϕY1
: G1 ×R Y1 −→ G2 ×R Y1.

We now prove that it is compatible with ϕK , i.e. ϕY1
and ϕK induce the same

morphism G1×R (Y1)K −→ G2×R (Y1)K . We observe that ϕY1
and ϕK induce two

morphisms, (ϕY1
)K and (ϕK)Y1 respectively, which are compatible with fK . For

any ψ : G1 ×R (Y1)K −→ G2 ×R (Y1)K , to be compatible with fK means that the
following diagram

G1 ×R (Y1)K

(id×fK)◦ψ
��

σ1 // (Y1)K

fK
��

G2 ×R (Y2)K
σ2 // (Y2)K

commutes. Hence σ2 ◦ (id×fK) ◦ ψ = fK ◦ σ1. So we have

σ2 ◦ (id×fK) ◦ (ϕY1
)K = σ2 ◦ (id×fK) ◦ (ϕK)Y1 = fK ◦ σ1.

Since (Y2)K −→ (Z2)K is a (G2)K-torsor then

(id×fK) ◦ (ϕY1
)K = (id×fK) ◦ (ϕK)Y1 .

For i = 1, 2, let pi be the projections from G2×R (Y1)K and let p′i be the projections
from G2 ×R (Y2)K . Then

p1 ◦ (ϕY1
)K = p′1 ◦ (id×fK) ◦ (ϕY1

)K = p′1 ◦ (id×fK) ◦ (ϕK)Y1 = p1 ◦ (ϕK)Y1 .
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and

fK ◦p2 ◦ (ϕY1
)K = p′2 ◦ (id×fK)◦ (ϕY1

)K = p′2 ◦ (id×fK)◦ (ϕK)Y1 = fK ◦p2 ◦ (ϕK)Y1 .

Since fK is an isomorphism then p2◦(ϕY1
)K = p2◦(ϕK)Y1 . Hence (ϕY1

)K = (ϕK)Y1 ,
i.e. ϕK is compatible with ϕY1

. By the next descent lemma we have a unique
morphism of schemes ϕ : G1 −→ G2 which extends ϕK and ϕY1

. Since G2 is �at
over R and ϕK is a morphism of group schemes it follows easily from ii.3.13 that
ϕ is a morphism of group schemes. By construction it is clear that, through ϕ, the
morphism f preserves the actions. �

We now prove the descent lemma used in the previous proof.

Lemma iii.3.2. Let R be a d.v.r, S = Spec(R), and let S ′ → S be a faithfully
�at morphism of schemes. Let X1, X2 be a�ne S-schemes with X2 �at over S.
Given two morphisms ϕK : (X1)K → (X2)K and ϕS′ : X1 ×S S ′ → X2 ×S S ′ that
coincide on S ′K, there is a unique morphism ϕ : X1 → X2 that extends them.

Proof. Up to restricting ourselves to an a�ne subscheme of S ′, we can suppose
S ′ = Spec(A). For i = 1, 2, let us consider Xi = Spec(Bi). In terms of function
rings we have two morphisms

(iii.78) ϕ]A := ϕ]S′(X2 ×S S ′) : B2 ⊗R A −→ B1 ⊗R A
and

(iii.79) ϕ]K := ϕ]K((X ′2)K) : B2 ⊗R K −→ B1 ⊗R K.
Moreover, by compatibility, it follows that the above morphisms induce the same
map

ϕ]AK := (ϕ]A)⊗ idK = (ϕ]K)⊗ idAK : B2 ⊗R A⊗R K −→ B1 ⊗R A⊗R K.
First of all we prove the uniqueness of ϕ. Since X2 is �at over S then the inclusion
(X2)K −→ X2 induces an injection B2 ↪→ B2⊗RK. Therefore if (any) ϕ exists then
it is given, on the level of function rings, by the restriction of ϕ]K to B2. Therefore
it is unique.

We now prove the existence of ϕ. First of all we have the following commutative
diagram with the obvious maps

Bi ⊗R A

(QQQQQQQQQQQQ

(QQQQQQQQQQQQ

Bi

:uuuuuuuuuu

:uuuuuuuuuu

$III
III

III
I

$III
III

III
I Bi ⊗R A⊗R K

Bi ⊗R K

6mmmmmmmmmmmm

6mmmmmmmmmmmm

Since S ′ −→ S is �at in particular the induced map R −→ A is injective. Moreover
B2 is a �at R-algebra, then for i = 2 all the maps of the above diagram are injective.
We remark that (iii.78) and (iii.79) imply ϕ]AK (B2) ⊆ (B1⊗RK)∩ (B1⊗RA). We
claim that ϕ]AK (B2) ⊆ B1. Let us suppose that there exists b ∈ B2 such that
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ϕ]AK (b) 6∈ B1. Then there exists n ≥ 1 such that πnϕ]AK (b) ∈ B1 and πn−1ϕ]AK (b) 6∈
B1. Hence

πnϕ]AK (b) ∈ B1 ∩ π(B1 ⊗R A).

We remark that since S ′ −→ S is surjective then S ′k = Spec(A/πA) is nonempty.
Now, since any scheme over a �eld is �at,

B1/πB1 −→ (B1 ⊗R A)/π(B1 ⊗R A) ' B1/πB1 ⊗k A/πA
is injective. Therefore

B1 ∩ π(B1 ⊗R A) = πB1,

which implies πn−1ϕ]AK (b) ∈ B1. This is a contradiction. So ϕ]AK induces a mor-
phism

ϕ] : B2 −→ B1.

We have so proved that ϕK : (Y1)K −→ (Y2)K is extendible to a morphism
ϕ : Y1 −→ Y2. �

The previous descent lemma has as consequence the following result, which
however will not be used in the rest of the thesis.

Proposition iii.3.3. Let G be an a�ne �at and commutative S-group scheme.
Then H1(S,G) −→ H1(K,GK) is injective.

Remark iii.3.4. For X = S this result is stronger than I.3.6 (we have removed
the hypothesis G �nite over S).

Proof. Let f : Y −→ S be aG-torsor. This means that there exists a faithfully
�at S-scheme T such that YT := Y ×X T −→ T is trivial. (For instance we
can chose T = Y ). Then it has a section ϕT : T −→ YT . Moreover let us
suppose that Y −→ S is trivial as GK-torsor on XK . Then there is a section
ϕK : Spec(K) −→ YK of YK −→ Spec(K). Since G is a�ne then f : Y −→ S is an
a�ne morphism. So Y is a�ne. From the previous lemma the thesis follows. �

Lemma iii.3.5. Let X, Y be integral �at schemes over S. Moreover let us sup-
pose that X is normal. If f : Y −→ X is an integral dominant R-morphism then
fk is schematically dominant, i.e. f ]k : OXk −→ f∗OYk is injective. In particular if
Yk is integral then Xk is integral, too.

Proof. Since any integral morphism is a�ne by the de�nition it is enough to
prove the lemma in the a�ne case. So we can suppose X = Spec(A), Y = Spec(B)
with an integral injection A ↪→ B. We will prove that Ak ↪→ Bk. This is equivalent
to proving πB ∩ A = πA. One inclusion is obvious. Now let a ∈ πB ∩ A, then
a = πb with b ∈ B. We remark that b = a

π
∈ AK ∩ B is integral over A. But A is

integrally closed by hypothesis. Therefore b ∈ A.
Now let us suppose that Bk is an integral domain. Then Ak ↪→ Bk implies that

Ak is an integral domain, too. �

Lemma iii.3.6. Let R be a d.v.r. with �eld of fractions K and residue �eld k.
Let X be a �at R-scheme. If XK is normal and Xk reduced, then X is normal.

Proof. For a proof see [30, 4.1.18]. �
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iii.3.2. Weak extension. We now consider a normal separated and faithfully
�at R-scheme X with integral �bers. Let YK −→ XK be a connected GK-torsor,
for some �nite group-scheme GK over K, and Y the normalization of X in YK . We
remark that YK is normal, too. In particular YK is integral, hence Y is integral.
We denote by g the morphism Y −→ X. We observe that g : Y −→ X is �nite
(see [30, 4.1.25]), in particular it is a�ne. We remark that Y has the following
properties.

Lemma iii.3.7. Let f : Z −→ X be an integral morphism of R-�at schemes
such that there exists an XK-isomorphism hK : YK −→ ZK. Then there exists an
X-morphism h : Y −→ Z, which uniquely extends hK, such that

g = f ◦ h.
Moreover

i) Y is normal;
ii) if Z is normal, too, then h is an isomorphism;

Proof. As remarked above Y −→ X is a�ne. So, �rst, we suppose X =
Spec(A), Y = Spec(B) and Z = Spec(C). By hypothesis we can suppose

A ⊆ C ⊆ CK

with C integral over A and CK = BK . But, since B is the integral closure of A in
BK , then C ⊆ B. So we have

A ⊆ C ⊆ B.

If we rewrite all this in terms of schemes, it is easy to see that this is equivalent to
the existence of h. The uniqueness of hK derives from the fact that X = Spec(A)
is a separated scheme (over Spec(R)), XK is an open dense of X and Y is reduced.

We now prove that Y is normal, i.e. B is integrally closed. Since YK is normal
then BK is integrally closed. So if b ∈ Frac(B) is integral over B then b ∈ BK .
On the other hand B is integral over A, then b is integral over A. But B is the
integral closure of A in BK , therefore b ∈ B.

We now consider the general case. Let X = ∪Ui with Ui a�ne open sub-
schemes. Since f and g are a�ne morphisms then f−1(Ui) and g−1(Ui) are a�ne
open subschemes of Y and Z, respectively. By hypothesis,

hiK := h|(f−1(Ui))K : (f−1(Ui))K −→ (g−1(Ui))K

is an isomorphism. Then, by what we just proved in the a�ne case, we have, for any
i, an unique morphism hi : f−1(Ui) −→ g−1(Ui) which extends hiK . Now, since X
is separated over R and the morphisms Y −→ X and Z −→ X are separated, then
Y and Z are separated over R too. Hence f−1(Ui)∩ f−1(Uj) and g−1(Ui)∩ g−1(Ui)
are a�ne (see [30, 3.3.6]). So, again by the uniqueness of h in the a�ne case, we
have hi = hj on f−1(Ui) ∩ f−1(Uj). So there exists an X-morphism h : Y −→ Z
which extends hK . Moreover, since normality is a local property, Y is normal. We
have so proved i), too.

ii) If Z is normal then, by de�nition of the integral closure of X in YK , we have
that h is an isomorphism.
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�

We now prove a result of weak extension of Z/mZ-torsors.

Proposition iii.3.8. Let m ≥ 1 be an integer. Let X be a normal and faithfully
�at scheme over R with integral �bers. Let fK : YK −→ XK be a connected Z/mZ-
torsor. Let Y be the normalization of X in YK. Suppose that Yk is integral. If R
contains a primitive m-th root of unity, there exists a unique µm-torsor Y

′ over X
which extends fK.

Proof. First, we consider the a�ne case X = Spec(A) and

YK = Spec(AK [Z]/(Zm − f))

with f ∈ A∗K . Since Y −→ X is an a�ne morphism then Y = Spec(B) for
some normal and �nite A-algebra B. Multiplying f by an mth power of π if
necessary, which does not change the µm-torsor YK , we can suppose f ∈ A and
0 ≤ vX,π(f) < m (since X and Y are normal and Xk and Yk are integral, then
OY,(π) and OX,(π) are both d.v.r.; moreover OY,(π)/OX,(π) has index of rami�cation
1). We call Y ′ = Spec(A[Z]/(Zm − f)). We prove that Y ′ is a µm-torsor over X,
i.e. f ∈ A∗. Since Y ′ is �at over R and YK is connected and normal then Y ′ is
integral. Moreover Y ′ −→ X is an integral morphism, so Y ′ is dominated by Y .
So Z ∈ B. Now by Zm = f in B, we have

mvY,π(Z) = vY,π(f).

But, since vY,π(f) = vX,π(f) < m, then vY,π(f) = vX,π(f) = 0. And since f ∈ A∗K
there exists g ∈ A \ πA and l ∈ N such that f g

πl
= 1. So fg = πl. But Xk is

integral. Then l = 0, which implies f ∈ A∗.
We now consider the general case. By Kummer theory we have that there exists

a covering {Ui = Spec(Ai)} of X, fi ∈ H0(Ui,K ,O∗Ui,K ) and {gij} ∈ H1(XK ,O∗XK )

such that (YK)Ui = Spec(Ai,K [Ti]/(T
m
i − fi)) and gmij = fi

fj
. As proved in the a�ne

case, we can suppose fi ∈ A∗i . So fi
fj
∈ H0(Uij,O∗Uij). But, since Uij is normal,

gij ∈ H0(Uij,O∗Uij). So {Y
′
i = Spec(Ai[Ti]/(T

m
i −fi))} is a µm-torsor which extends

the Z/mZ-torsor YK −→ XK . The uniqueness comes from i.3.8. �

Remark iii.3.9. We remark that Y does not usually coincide with Y ′. This
means that Y ′ is possibly not normal.

Corollary iii.3.10. Let X be as above and let GK be any commutative group-
scheme over K. Let us consider a connected GK-torsor fK : YK −→ XK. Let Y be
the normalization of X in YK and let us suppose that Yk is integral. Possibly after
an extension of R, there exists a (commutative) group-scheme G′ and a G′-torsor
Y ′ −→ X over R which extends fK.

Remark iii.3.11. As we will see in the proof, the extension of R depends only
on the group G. We do not know if it is really necessary to extend R.
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Proof. First of all we remark that, since K is of characteristic 0, then G is
étale. So, up to an extension of R, we can suppose that G is an abstract group.
Now, since G is commutative, by the classi�cation of abelian groups we have that
G = Z/m1Z×· · ·×Z/mrZ for some m1, . . . ,mr ∈ N. We moreover assume that R
contains a primitive mi-th root of unity for i = 1, . . . , r. We remark that, since we
are only adding roots of unity, Yk is again reduced. We �rstly state the following
lemma.

Lemma iii.3.12. Let G1, . . . , Gr be �nite and �at group schemes over a scheme
X. Let Yi −→ X be a Gi-torsor for any i. Then Ỹ = Y1 ×X · · · ×X Yr is a
G1 × · · · ×Gr-torsor, with the action induced by those of Gi.

Proof. We prove the lemma for r = 2. The lemma follows by induction. First
of all we remark that, since Y1 −→ X and Y2 −→ X are faithfully �at the Ỹ −→ X
is faithfully �at, too. We now call σi, for i = 1, 2, the action of Gi on Yi. Then,
since Yi is a Gi-torsor,

σi × id : Gi × Yi −→ Yi ×X Yi
is an isomorphism. We call σ = σ1 × σ2 the action of G1 × G2 on Y1 ×X Y2. We
now prove that Y1 ×X Y2 is a G1 ×G2-torsor. We consider the morphism

(G1 ×G2)× (Y1 ×X Y2)
σ×id−→ (Y1 ×X Y2)×X (Y1 ×X Y2).

But there are natural isomorphisms

g1 : (G1 ×G2)× (Y1 ×X Y2) −→ (G1 × Y1)×X (G2 × Y2)

and
g2 : (Y1 ×X Y2)×X (Y1 ×X Y2) −→ (Y1 ×X Y1)×X (Y2)×X Y2),

such that

(G1 ×G2)× (Y1 ×X Y2) //

g1

��

σ×id // (Y1 ×X Y2)×X (Y1 ×X Y2)

g2

��
(G1 × Y1)× (G2 × Y2) //

(σ1×id)×(σ2×id)
// (Y1 ×X Y1)×X (Y2 ×X Y2)

commutes. Since the second horizontal morphism is an isomorphism, then σ × id
is an isomorphism, too. So Y1 ×X Y2 is a G1 ×G2-torsor.

�

We now come back to the proof of the corollary. We call Gi = Z/miZ for
i = 1, . . . , r. Moreover we call G̃i = G1 × · · · × Ĝi × · · · × Gr. Let us de�ne
(Yi)K = YK/(G̃i), then (Yi)K is a Gi-torsor. For any i, we call σi the action of Gi

induced by that of G on (Yi)K . Hence

σi × id : Gi × (Yi)K −→ (Yi)K ×XK (Yi)K

is an isomorphism. By the above lemma we have that (Y1)K ×XK · · · ×XK (Yr)K is
a G-torsor. Moreover the natural map

q : YK −→ (Y1)K ×XK · · · ×XK (Yr)K
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preserves the G-actions, therefore it is a morphism of G-torsors. But, as it is well
known, any morphism of G-torsors is an isomorphism of schemes; hence q is an
isomorphism.

For i = 1, . . . , r, we denote by Yi the normalization of X in (Yi)K . Since Y
is integral it easily follows that Yi is integral for any i. Since Y −→ Yi is an
integral morphism, we have by iii.3.5, that (Yi)k is integral. So, by iii.3.8, for any
i = 1, . . . , r, there exists a µmi-torsor Y

′
i −→ X which extends (Yi)K −→ XK . Now

let us consider Y ′ = Y ′1 ×X · · ·×X Y ′r . Using the above lemma again, it follows that
Y ′ is a µm1 × · · · × µmr -torsor. �

Remark iii.3.13. We want to stress the spirit of this corollary. Let X be an
integral scheme faithfully �at over R and x an R-point of X. Let us consider the
fundamental group schemes of Gasbarri π(X, x) over R(see [17]) and π(XK , xK).
Then Antei, in [6], proved that the natural morphism

ϕ : π(XK , xK) −→ π(X, x)K

is a quotient morphism and that ker(ϕ) = 0 if and only if, for any reductive group
scheme GK over K (i.e. π(XK , xK) −→ G is a quotient morphism), any GK-torsor
YK −→ XK is weakly extendible to a G-torsor Y −→ X over R, for some model G
of GK . So the previous proposition gives us information about ker(ϕ). In the next
remark there is an example in which ϕ is not injective.

Remark iii.3.14. The hypothesis on Yk can be weakened to Yk irreducible.
Indeed it has been proved by Epp([16]) that up to an extension of R it is pos-
sible to suppose Yk reduced. But we remark that if Yk is not reduced then it
is necessary to extend R. For instance take X = Spec(R[Z, 1/Z]) and YK =
Spec(K[Z, 1/Z][T ]/(T p − πZ)) as Z/pZ-torsor over XK . It is not too hard to see
that Y = Spec(R[Z, 1/Z][T ]/(T p− πZ)) is normal (see for example [30, 8.2.6]), so
it is the normalization of X in YK . Moreover the action of µp = Spec(R[S]/(Sp−1))
over Y given by T −→ ST is clearly faithful. So µp is the e�ective model. Using
iii.3.1 it follows that, if YK −→ XK is weakly extendible by a G′-torsor, then there
is a model map µp −→ G′. Hence G′ ' µp, since µp does not dominate any group
scheme except itself. We now claim that there is no µp-torsor Y ′ −→ X which
extends YK −→ XK . We remark that by the Kummer theory we have

. . . −→ H0(X,Gm)
p−→ H0(X,Gm) −→ H1(X,µp) −→ Pic(X) −→ . . .

Since Pic(R[Z, 1/Z]) = 0 we would have Y ′ = Spec(R[Z, 1/Z][T ]/(T p − f)), for
some f ∈ R[Z, 1/Z]∗ such that there exists g ∈ K[Z, 1/Z]∗ with fgp = πZ. If
g = g0

πm
, with m ≥ 0 and g0 6∈ πR[Z, 1/Z], then fgp0 ≡ 0 mod πR[Z, 1/Z]. Since

Xk is integral this is a contradiction, by the de�nition of f and g0. In particular
YK −→ XK is also not strongly extendible.

iii.4. Strong extension of Z/pZ-torsors

Before studying the problem of extension of Z/pZ-torsors we consider for a
moment the case of Z/pnZ-torsors. What we say will be useful in the next section,
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too. Let us suppose that R contains a primitive pn-th root of unity. Let us consider
X = Spec(A) with A a faithfully �at and factorial R-algebra, complete with respect
to the π-adic topology, or X a normal local faithfully �at R-scheme. We moreover
suppose that Xk is integral. By i.5.3 and i.5.4 it follows that

H1(X,µpn) = A∗/(A∗)p.

Therefore any µpn-torsor Y ′ −→ X is of type Y ′ = Spec(A[T ]/(T p − f)) −→ X
for some f ∈ A∗. By the �ltration of H1(X,µpn) described in i.5.6, it follows that
[Y ′] ∈ H1(X,Gλ,n) for some λ ∈ R. But, again by i.5.3 and i.5.4, we have that

H1(X,Gλ,n) = G(λp
n

)(A)/(ψλ,n)∗(G(λ)(A)).

The following lemma explains in terms of the element f ∈ A∗ the meaning of [Y ]
being in H1(X,Gλ,n).

Lemma iii.4.1. Notation as above. Let us denote by Y = Spec(B) the nor-
malization of X in Y ′K. We moreover suppose that Yk is reduced. Then, using the
�ltration of i.5.6, [Y ′] ∈ H1(X,Gπj ,n) if and only if there exists g ∈ A∗ such that
fgp

n
= 1 + πjp

n
f0 for some f0 ∈ A.

Let us suppose moreover j < v(λ(n)). If [Y ′] ∈ H1(X,Gπj ,n) \ H1(X,Gπj+1,n)
and fgp

n
= 1 + πjp

n
f0, for some f0 ∈ A and g ∈ A∗, then f0 is not a pn-th power

mod π.

Proof. The �rst assertion follows from the fact that the injection

H1(X,Gπj ,n) ⊆ H1(X,µpn)

corresponds to the injection

G(πp
nj)(A)/(ψπj ,n)∗G(πj)(A) −→ A∗/(A∗)p

n

.

We now prove the second statement. Let us suppose that [Y ′] ∈ H1(X,Gπj ,n) \
H1(X,Gλ(n),n). We take any g ∈ A∗ such that fgp

n
= 1 + πjp

n
f0, for some f0 ∈ A.

If [Y ′] 6∈ H1(X,Gπj+1,n), then, by what just proved, f0 6≡ 0 mod πp
n
. In fact we

will prove f0 6≡ 0 mod π in A. Since the torsor Y1 = Spec(A[T ]/( (1+πjT )p
n−1

πjpn
−

f0)), associated to [Y ′] ∈ H1(X,Gπj ,n), is integral over X and its generic �ber
is isomorphic to YK , then, by iii.3.7, the morphism Y −→ X factors through Y1.
Moreover Y −→ Y1 is a dominant morphism between integral a�ne schemes, hence
T ∈ B \ {0}. The fact that f0 6≡ 0 mod πp

n
A implies T 6≡ 0 mod πB. Otherwise,

if T = πT0 for some T0 ∈ B, then T p
n ≡ 0 mod πp

n
B. And, since j + 1 ≤ v(λ(n)),

we have

f0 =
(1 + πj+1T0)p

n − 1

πjpn
≡ 0 mod πp

n

B.

So, by iii.3.5, f0 ≡ 0 mod πp
n
A against the assumptions. Therefore T 6≡ 0

mod πB. Now if f0 ≡ 0 mod πA, then, since j < v(λ(n)), T p
n ≡ 0 mod πB.

But, as we just proved, T 6≡ 0 mod πB, which contradicts the fact that Yk is re-
duced. So f0 6≡ 0 mod πA. We �nally prove that f0 is not a pn-th power mod π.
Indeed, if f0 ≡ gp

n

0 mod π for some g0 ∈ A\πA then f ≡ (1+πjg0)p
n

mod πjp
n+1.
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By the hypothesis on A, 1 + πjg0 is invertible. Multiplying f by (1 + πjg0)−p
n
,

we can suppose f ≡ 1 mod πjp
n+1, which implies, by what we have just proved,

[Y ′] ∈ H1(X,Gπj+1,n); this contradicts the hypothesis of maximality of j. �

We now consider the case n = 1 and we prove the strong extension. Let X be
as above. Let

YK −→ XK

be a nontrivial Z/pZ-torsor. We remark that AK is factorial, too. So Pic(AK) = 0,
which implies H1(XK , µp) ' A∗K/(A

∗
K)p

n
, by i.5.3 and i.5.4. Therefore YK =

Spec(AK [T ]/(T p
n−f)) with f ∈ A∗K . So the class [YK ] ∈ H1(XK , µpn) corresponds

to the class of [f ] in A∗K/(A
∗
K)p. Let Y be the normalization of X in YK . We

suppose that Yk is integral. There exists, by iii.3.8, a unique µp-torsor Y ′ −→ X
such that Y ′K −→ XK is isomorphic to the Z/pZ-torsor YK −→ XK . So YK de�nes
uniquely an element [Y ′] ∈ H1(X,µp). We remark that this means that, up to a
multiplication by a pn-th power, we can suppose f ∈ A∗. The proof of the following
theorem is close to that of Henrio ([25, 1.6]) for formal curves, but rewritten in an
other language.

Theorem iii.4.2. Notation as above. If [YK ] ∈ H1(X,Gπγ ,1) \H1(X,Gπγ+1,1)
then Y is a Gπγ ,1-torsor. Moreover the valuation of the di�erent of the extension
OY,(π)/OX,(π) is (p− 1)(v(λ(1))− γ).

Proof. We have YK = Spec(AK [T ]/(T p − f) for some f ∈ A∗K . As remarked
above, we can suppose f ∈ A∗. Moreover Y ′ = Spec(A[T ]/(T p − f)) is the µp-
torsor which extends YK . We now study the di�erent cases which may occur.

If γ = 0 then f is not a p-power mod π (otherwise, by iii.4.1, up to a mul-
tiplication by a pth-power, we can suppose f ≡ 1 mod π and so γ > 0). So Y ′ is
normal by iii.3.6. Since Y ′ is integral over X and its generic �ber is isomorphic to
YK then, by iii.3.7, the morphism Y −→ X factors through Y ′ −→ X, i.e. we have

Y −→ Y ′ −→ X.

But, since it is normal, Y ′ coincides with the integral closure of X in YK , i.e.
Y ' Y ′.

If γ = v(λ(1)) then it is an étale torsor and we are done.
If v(λ(1)) > γ > 0 we can suppose, by iii.4.1, f = 1 +πpγf0 with f0 6≡ 0 mod π

in A. Let us consider the Gπγ ,1-torsor

Y1 = Spec(A[T ]/(
(1 + πγT )p − 1

πpγ
− f0)).

By iii.4.1 f0 6≡ gp0 mod π for any g0 ∈ A \ πA. So (Y1)k is reduced and, by iii.3.6,
Y1 is normal. Moreover we have, by iii.3.7, the following factorization

Y −→ Y1 −→ X.

But, since Y1 is normal, it follows that Y1 ' Y by iii.3.7. The statement about the
valuation of the di�erent is clear.

�
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iii.5. Strong extension of Z/p2Z-torsors

iii.5.1. Setup and degeneration types. From now on we will suppose that
R contains a primitive p2-th root of unity. Therefore we have (Z/p2Z)K ' (µp2)K .
We moreover suppose p > 2. Let X := SpecA be with the same hypothesis used
in �iii.4. We moreover assume that X is essentially semire�exive. Let hK : YK −→
XK be a connected Z/p2Z-torsor. Then we consider the factorization

YK
(h2)K−→ (Y1)K

(h1)K−→ X

with both (h1)K , (h2)K nontrivial Z/pZ-torsors. Let Y1 = Spec(B1) be the nor-
malization of X in (Y1)K and Y = Spec(B) the normalization of X in YK . We
moreover suppose that Yk is integral. By well known facts about integral closure,
we have that Y is the integral closure of Y1 in YK . So we have the factorization

h : Y
h2−→ Y1

h1−→ X

with h1 and h2 degree p morphisms. Since X is normal, by iii.3.7 it follows that
Y1 and Y are normal schemes. By iii.3.5 we have that, since Yk is integral, then
(Y1)k is integral, too.

Now, by iii.3.8, we can extend YK to a µp2-torsor Y ′ over X. So we can suppose
YK = Spec(AK [T ]/(T p

2 − f)) for some f ∈ A∗/(A∗)p2
. We can also write

YK = Spec(A[T1, T2]/(T p1 − f,
T p2
T1

− 1)).

Therefore we have
(Y1)K = Spec(AK [T1]/(T p1 − f))

and

YK = Spec((B1)K [T2]/(
T p2
T1

− 1)).

We remark that BK is �nite and free as an AK-module. In particular it is semire-
�exive over AK . From iii.1.12 it follows that Y is an essentially semire�exive
scheme over Spec(R). Therefore we can apply iii.1.16 to check if a group scheme is
an e�ective model for the Z/p2Z-action on Y . We now want to attach to the cover
YK → XK four invariants. We have seen in the previous section that there exists
an invariant, which we called γ, that is su�cient to solve the problem of strong
extension of (Z/pZ)K-torsors. So the �rst two invariants are simply the invariants
γ which arise from the two (Z/pZ)K-torsors YK −→ (Y1)K and (Y1)K −→ XK . We
are now more precise. By the above discussion it follows that h1 satis�es hypothesis
of �iii.4, hence we can apply iii.4.2. Then, if we de�ne γ1 ≤ v(λ(1)) such that

[(Y1)K ] ∈ H1(X,Gπγ1 ,1) \H1(X,Gπγ1+1,1),

it follows that Y1 −→ X is a Gπγ1 ,1-torsor. We stress that γ1 is also determined
by the valuation of the di�erent D(h1) of h1 : Spec(OY1,(π)) −→ Spec(OX,(π)). We
indeed have

v(D(h1)) = v(p)− (p− 1)γ1.
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We can apply iii.4.2 also to the morphism h2 : Y −→ Y1. Then, if we de�ne
γ2 ≤ v(λ(1)) such that

[(Y )K ] ∈ H1(Y1, Gπγ2 ,1) \H1(Y1, Gπγ2+1,1),

it follows that Y −→ Y1 is a Gπγ1 ,1-torsor. The invariant γ2 is determined by the
di�erent of h2 : Spec(OY,(π)) −→ Spec(OY1,(π)), too. Indeed

v(D(h2)) = v(p)− (p− 1)γ2.

The third invariant is linked to the �ltration i.5.6 of H1(X,µp2). It is the integer
j ≤ v(λ(2)) such that [YK ] ∈ H1(X,Gπj ,2) \H1(X,Gπj+1,2). We observe that there
exists a Gπj ,2-torsor Y ′′ which extends YK −→ XK . By iii.3.7 we have morphisms
Y −→ Y ′′ and Y1 −→ Y ′′/Gπj ,1 such that the following diagram commutes

(iii.80) Y

��

//// Y ′′

��
Y1

//

��@
@@

@@
@@

@
// Y ′′/Gπj ,1

zzuuuuuuuuu

X

By de�nition of j, up to a multiplication of f by an element of (A∗K)p
2

, which does
not change the µp2-torsor on the generic �ber, we can suppose f = 1 + πjp

2
f0 with

f0 ∈ A. And, if j < v(λ(2)), by iii.4.1 f0 is not a p2-power mod π.
Before introducing the last invariant we describe explicitly the scheme Y . By

de�nition of γ1 and by the proof of iii.4.2, there exists g ∈ A∗ such that fg−p =
1 + πpγ1f1 with f1 ∈ A. By iii.4.1 it follows that, if γ1 < v(λ(1)), f1 is not a
pth-power mod π. Therefore Y1 = Spec(B1) with

B1 = A[T1]/(
(1 + πγ1T1)p − 1

πpγ1
− f1).

If Y ′1 −→ Y1 is the µp-torsor which extends YK −→ (Y1)K then Y is the normaliza-
tion of Y1 in

(Y ′1)K = Spec((B1)K [T2]/(
T p2

1 + πγ1T1

− g)).

Then, reasoning as above, there exists H(T1) ∈ B∗1 , such that

g(1 + πγ1T1)(H(T1))−p ≡ 1 mod πγ2B1.

Therefore Y = Spec(B) with

B = B1[T2]/

(
(1 + πγ2T2)p − 1

πpγ2
− (1 + πpjg0)H(T1)−p(1 + πγ1T1)− 1

πpγ2

)
.

We remark that Y −→ X is a faithfully �at morphism. Indeed, since Y −→ Y1

and Y1 −→ X are, respectively, a Gπγ2 ,1-torsor and a Gπγ1 ,1-torsor, they are in
particular faithfully �at morphisms. Therefore, by transitivity of �atness, it follows
that Y −→ X is faithfully �at, too.
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We remark that the de�nition of g and H(T1) depends on the choice of the
representant f of [YK ] ∈ H1(X,µp2). We now see how they vary as f varies. We
stress that we require f ≡ 1 mod πp

2j. Let us substitute ap
2
f to f , with a ∈ A∗

and ap
2
f ≡ 1 mod πp

2j. Since Xk is integral it follows from i.5.7 that ap
2
f ≡ 1

mod πp
2j is equivalent to a ≡ 1 mod πj. Now it is immediate to see that we have

to substitute apg to g and H(T1) by a−1H(T1). We now prove that, for a �xed f ,
the elements g and H(T1) are uniquely determined in a certain sense.

Lemma iii.5.1. Using above notation we have that any g,H(T1) as above are
of the form

g = 1 + πjpg0 with g0 6≡ 0 mod πA

H(T1) = 1 + πjH1(T1) with H1(T1) 6∈ A mod πB1.

If j < v(λ(2)) then g0 is not a pth-power mod πA and H1(T1) is not a pth-power

mod πB1. Moreover, for any representant f = 1 + πp
2jf0 of [YK ] ∈ H1(X,µp2),

the element g is uniquely determined mod πγ1 and H(T1) is uniquely determined
mod πγ2. Finally, if j > 0, up to a change of the representant f , we can suppose

H(0) = 1.

Proof. Since A is separated with respect to the π-adic topology and gp ≡ f
mod π, we can suppose that g = 1 + πhg0 with g0 6≡ 0 mod π. Moreover as
remarked we can suppose f = 1 + πjp

2
f0 with f0 not a p2-th power mod π. By

de�nition of g
(1 + πjp

2

f0) ≡ (1 + πhg0)p mod πpγ1 .

Then

(iii.81) (1 + πjp
2

f0) ≡ (1 + πhpgp0 + pπhg1) mod πpγ1 .

Since pj < v(λ(1)) then h < v(λ(1)). Otherwise f0 ≡ 0 mod π and in particular f0

would be a p2 − th power. This contradicts the hypothesis on f0. Hence v(p) >
(p−1)h, which implies v(p) +h > ph. So, since Xk is integral, by (iii.81) it follows
that

h = jp.

Hence by (iii.81) we obtain f0 ≡ gp0 mod π. Therefore g0 is not a pth-power
mod π, otherwise f0 would be a p2-th power mod π against hypothesis on f0. Let
us suppose there exists g′ ∈ A∗ such that

gp ≡ g′p mod πpγ1 .

Reasoning as above it is easy to show that

(
g

g′
) ≡ 1 mod πγ1 .

Since g−1 ≡ 1 mod πpjB1 then H(T1)p ≡ 1 mod πjpB1. Hence, in a similar way
as above we have H(T1) = 1 + πjH1(T1) with H1(T1) 6≡ 0 mod πB1. Now let us
suppose there exists a ∈ A such that H1(T1) ≡ a mod B1. Then it follows

1 + πpjap ≡ 1 + πjpg0 mod πpj+1
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This means
ap ≡ g0 mod π

which contradicts what we have just proved. As above it is easy to prove the
statements about the reduction mod π of H1(T1) and the uniqueness of H(T1)
mod πγ2 . We now prove the last statement. We assume that j > 0. Let us suppose
that H(0) 6= 1. By what we just proved we know that H(0) ≡ 1 mod πjA. So,
since A is π-adically complete or A is local, it follows that H(0) ∈ A∗. Hence
H(T1) = H(0)H0(T1) with H0(T1) ∈ B∗1 and H0(0) = 1. If we change f into
fH(0)p

2
, by the discussion before the lemma we have that we have to replace

H(T1) with H0(T1). So we are done.
�

Now, given H(T1) =
∑p−1

k=0 akT1
k ∈ B∗1 , let us consider H ′(T1) as its formal

derivative. Using the above lemma we suppose a0 = 1 if j > 0. For any m ≥ γ1,
we will say that a ∈ πR satis�es (4)m if

aH(T1) ≡ πm−γ1H ′(T1) mod πγ2 .

We �nally give the de�nition of the fourth invariant.

Definition iii.5.2. We will call e�ective threshold the number

κ = min{m ≥ γ1|∃a ∈ πR which satis�es (4)m}.

If we take m ≥ γ1 + γ2 and a = 0 we see that such a minimum exists.

Lemma iii.5.3. For any m ≥ κ there exists an unique solution, mod πγ2, of
(4)m. We will call αm ∈ πR any of its lifting. If H(0) = a0 ≡ 0 mod πA then
αm ≡ 0 mod πγ2.

Remark iii.5.4. By iii.4.1 it follows that the case H(0) ≡ 0 mod π can only
happen if j = 0.

Proof. Let us �rstly suppose a0 6≡ 0 mod πA. If bi, for i = 1, 2, are solutions
of (4)m it follows that for any m ≥ γ1 we have in particular bia0 = πm−γ1a1

mod πγ2 . Therefore
a0(b1 − b2) ≡ 0 mod πγ2 .

But a0 6∈ πA and Xk is integral, therefore b1 ≡ b2 mod πγ2 .
We now consider the case a0 ∈ πA. Since H(T ) ∈ (R/λR[T ])∗ and a0 ∈ πA

then there exists 0 < i ≤ p− 1 such that ai 6∈ πA. Let ī be the least integer with
this property.

Let a be a solution solution of (4)m and suppose that a 6≡ 0 mod πγ2 . In
particular

aaī = (̄i+ 1)aī+1π
m−γ1

and
aaī−1 = īaīπ

m−γ1 .

Therefore, by the minimality of ī and by the fact that a 6≡ 0 mod πγ2 ,

v(a) ≥ v(πm−γ1) > v(a)
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which is a contradiction. Therefore, if a0 ∈ πA, then a ≡ 0 mod πγ2 . �

Definition iii.5.5. Using the previous notation we say that the degeneration
type of YK −→ XK is (j, γ1, γ2, κ).

We now give some restrictions on the degeneration type.

Lemma iii.5.6. We have the following relations.

i) pj ≤ γ1,
ii) j ≤ γ2,
iii) γ1 ≤ κ ≤ γ1 + γ2 − j. In particular γ2 = j implies κ = γ1.

Proof. Let us consider the diagram (iii.80).
i) We recall that Y1 −→ X is a Gπγ1 ,1-torsor and Y ′′/Gπj ,1 −→ X is a Gπpj ,1-
torsor. So by iii.3.1 we have a morphism Gπγ1 ,1 −→ Gπpj ,1. Therefore
γ1 ≥ pj

ii) We recall that Y −→ Y1 is Gπγ2 ,1-torsor and Y ′′ −→ Y ′′/Gπj ,1 is a Gπj ,1-
torsor. Again by iii.3.1 we have a morphism Gπγ2 ,1 −→ Gπj ,1. Therefore
γ2 ≥ j.

iii) By iii.5.1 H ′(T ) ≡ 0 mod πj. Therefore if we take m = γ1 + γ2 − j then
πm−γ1H ′(T ) ≡ 0 mod πγ2 .

Therefore a = 0 satis�es (4)m. This implies κ ≤ γ1 + γ2 − j. Now, if
γ2 = j, then κ ≤ γ1. But, by de�nition of κ, we have κ ≥ γ1. Hence
κ = γ1.

�

iii.5.2. The main theorem. We here prove the main theorem of the chapter.

Theorem iii.5.7. Let us consider X = Spec(A) with A a factorial R-algebra,
complete with respect to the π-adic topology, or X a normal local R-scheme. We
moreover assume X essentially semire�exive (see �iii.1). Let YK −→ XK be a
connected Z/p2Z-torsor and let Y be the normalization of X in YK. Let us suppose
that Yk is integral. If YK has (j, γ1, γ2, κ) as degeneration type then its e�ective
model is

E (πκ,πγ2 ;Ep(ακS),1).

Moreover if ακ 6≡ 0 mod πγ2 then v(ακ) = κ− γ1 + j. Otherwise κ− γ1 + j = γ2.

Proof. As we proved in the previous section Y = Spec(B) with

B = B[T1, T2]/

(
(1 + πγ1T1)p − 1

πpγ1
−f1,

(1 + πγ2T2)p − 1

πpγ2
−(1 + πpjg0)H(T1)−p(1 + πγ1T1)− 1

πpγ2

)
.

By the de�nition of integral closure of X in YK the Z/p2Z-action on YK can be
extended to an action on Y . We now explicitly describe this action. If we set

ηπ =
πv(λ(1))

λ(1)

η =
πv(λ(1))

λ(1)

p−1∑
k=1

(−1)k−1

k
λk(2)
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then we can write, by ii.3.52,
(iii.82)

Z/p2Z = Spec(A[S1, S2]/

(
(1 + πv(λ(1))S1)p − 1

πpv(λ(1))
,

(Ep(ηπS1)+π
v(λ(1))

S2)p

1+π
v(λ(1))

S1

− 1

πpv(λ(1))

)
).

Since YK is a µp2- torsor, on the generic �ber the action is given by

1 + πγ1T1 7−→ (1 + πv(λ(1))S1)(1 + πγ2T1)

(1 + πγ2T2)H(T1) 7−→ (Ep(ηπS1) + πv(λ(1))S2)(1 + πγ2T2)H(T1),

so it is globally given by

T1 7−→ πv(λ(1))−γ1S1 + T1 + πv(λ(1))S1T1

T2 7−→
(Ep(ηπS1) + πv(λ(1))S2)

(
(1+πγ2T2)H(T1)

H(π
v(λ(1))−γ1S1+T1+π

v(λ(1))
S1T1)

)
− 1

πγ2

The proof of the theorem is obtained as a consequence of several lemmas.

Lemma iii.5.8. If an e�ective model G for the action of Z/p2Z exists then it is
of the form E (πm,πγ2 ;F,1) with v(λ(1)) ≥ m ≥ max{γ2, γ1}.

Proof. Since the e�ective model is a model of (Z/p2Z)K , by ii.3.53, it follows
that the e�ective model G is of the form E (πm,πγ2 ;F,1) with v(λ(1)) ≥ m ≥ γ2.
Moreover G/Gπγ2 ,1 ' Gπm,1 has an X-action over Y1. But Y1 −→ X is a Gπγ1 ,1-
torsor. So, by iii.3.1, we have a model map Gπm,1 −→ Gπγ1 ,1. Then m ≥ γ1. �

Let us now consider a group scheme of type E (πm,πγ2 ,F,1). We consider the
normalization map ϕ : Z/p2Z −→ E (πm,πγ2 ,F,1). We give necessary and su�cient
conditions to have an action of E (πm,πγ2 ;F,1) on Y compatible with ϕ. By ii.3.53 we
have that

F (S) = Ep(aS) ∈ ((R/πγ2R)[S]/(
(1 + πγ1S)p − 1

πpγ1
))∗

for some a ∈ R/πγ2R. In the following we take a lifting ã ∈ R of a ∈ R/πγ2R and
we consider F̃ (S) =

∑p−1
i=0

ãi

i!
Si ∈ R[S] as a lifting of F (S).

Lemma iii.5.9. There exists an action of E (πm,πγ2 ;F,1) on Y compatible with ϕ
if and only if

F̃ (S)H(T )−H(πm−γ1S + T + πmST ) ≡ 0 mod πγ2

Proof. Let us suppose that such an action exists. Reasoning as above, it is
possible to show that the action is given by

T1 7−→ πm−γ1S1 + T1 + πmS1T1

T2 7−→
(F̃ (S1) + πγ2S2)

(
(1+πγ2T2)H(T1)

H(πm−γ1S1+T1+πmS1T1)

)
− 1

πγ2
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Then, in particular,
(F̃ (S1)+πγ2S2)

(
(1+πγ2T2)H(T1)

H(πm−γ1S1+T1+πmS1T1)

)
−1

πγ2
belongs to

B ⊗ A[S1, S2]/

(
(1 + πmS1)p − 1

πmp
,

(F̃ (S1)+πγ2S2)p

1+πmS1
− 1

πpγ2

)
So we have

(F̃ (S1) + πγ2S2)

(
(1+πγ2T2)H(T1)

H(πm−γ1S1+T1+πmS1T1)

)
− 1

πγ2
=

F̃ (S1)H(T1)−H(πm−γ1S1 + T1 + πmS1T1)

πγ2H(πm−γ1S1 + T1 + πmS1T1)
+ T2

F̃ (S1)H(T1)

H(πm−γ1S1 + T1 + πmS1T1)
+

+ S2
(1 + πγ2T2)H(T1)

H(πm−γ1S1 + T1 + πmS1T1)
.

This implies

F̃ (S1)H(T1)−H(πm−γ1S1 + T1 + πmS1T1) ≡ 0 mod πγ2 .

But it is clear that this condition is also su�cient to de�ne the wanted action. �

The next lemma, together with iii.5.9, links the de�nition of the e�ective thresh-
old with the existence of an action of a model of Z/p2Z on Y .

Lemma iii.5.10. Let b̃ ∈ πR. Let us consider G̃(S) =
∑p−1

i=0
b̃i

i!
Si ∈ R[S]. The

following statements are equivalent.

(i) G̃(S)H(T ) ≡ H(πm−γ1S + T + πmST ) mod πγ2;

(ii) b̃H(T ) ≡ πm−γ1H ′(T ) mod πγ2 where H ′ is the formal derivative of H.

Moreover they imply the following assertions.

(1) Let us consider R[Gπm,1] = R[S]/( (1+πmS)p−1
πmp

). Then

G̃(S) ∈ Hom(Gπm,1|Sγ2
π
,Gm|Sγ2

π
)

and
G̃(S)p ≡ 1 + πmS mod πγ2R[Gµ,1].

(2) If m > γ1 then

G̃(S)H(T )−H(πm−γ1S + T + πmST )

πγ2
≡ b̃H(T )− πm−γ1H ′(T )

πγ2
mod π

Proof. (i)⇒ (ii). Let us suppose

G̃(S)H(T ) ≡ H(πm−γ1S + T + πmST ) mod πγ2 .

We consider both members as polynomials in S with coe�cients in R[T ]. Then if
we compare the coe�cients of S we obtain (ii).
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(i) ⇐ (ii). Let H(k)(T ) denote the kth formal derivative of H(T ). We remark
that (i) is equivalent to

b̃kH(T ) ≡ (πm−γ1)kH(k)(T ) mod πγ2

for 0 ≤ k ≤ p− 1. We prove a little more. We prove that

(iii.83) b̃kH(T ) ≡ (πm−γ1)kH(k)(T ) mod πγ2+min{(k−1)v(b̃),(k−1)(m−γ1)}

For k = 0 it is obvious. Let us now suppose it is true for k, we prove it for k + 1.
If we multiply (iii.83) by b̃ we obtain

(iii.84) b̃k+1H(T ) ≡ b̃(πm−γ1)kH(k)(T ) mod πγ2+min{(k−1)v(b̃),(k−1)(m−γ1)}+v(b̃).

Moreover if we di�erentiate the equation (ii) k times, we obtain

(iii.85) b̃H(k)(T ) ≡ πm−γ1H(k+1)(T ) mod πγ2 .

Multiplying (iii.85) by πk(m−γ1) we obtain

(iii.86) b̃πk(m−γ1)H(k)(T ) ≡ (πm−γ1)(k+1)H(k+1)(T ) mod πγ2+k(m−γ1).

Then (iii.84) and (iii.86) give

b̃k+1H(T ) ≡ (πm−γ1)k+1H(k+1)(T ) mod πγ2+min{kv(b̃),k(m−γ1)}.

as we wanted. So (i) and (2) are proved. Let us now suppose (i) true.

(1) We recall that H(T ) =
∑p−1

i=0 aiT
i ∈ (A[T ]/( (1+πγ1T )p−1

πγ1p
− f1))∗ = B∗1 . If

a0 ∈ πA then b̃ ≡ 0 mod πγ2 by iii.5.3. Let us now suppose that a0 6∈ πA.
We now think H(S) ∈ A[S]/( (1+πγ1S)p−1

πγ1p
) = R[Gπγ1 ,1]. We consider the

morphism ψπm,πγ1 : Gπm,1 −→ Gπγ1 ,1. Then

ψ∗πm,πγ1 (H(S)) ≡ H(πm−γ1S)

On the other side if we compare the coe�cients of T in (i) we obtain

H(πm−γ1S) = a0G̃(S) mod πγ2 .

Therefore
ψ∗πm,πγ1 (H(S)) ≡ a0G̃(S) mod πγ2 .

Let us now consider id×ψπm,πγ1 : Gπm,1×Gπm,1 −→ Gπm,1×Gπγ1 ,1. Hence
if we apply id×ψ∗πm,πγ1 to (i) we obtain

a0G̃(S)G̃(T ) ≡ a0G̃(S + T + πmST ) mod πγ2

which implies, since a0 6∈ πA and Gπm,1 ×Gπm,1 is �at over A,

G̃(S)G̃(T ) ≡ G̃(S + T + πmST ) mod πγ2 .

This means G̃(S) ∈ Homgr(Gπm,1|Sπγ2
,Gm|Sπγ2

). Moreover we know that

(iii.87) H(T )p ≡ g−1(1 + πγ1T ) mod πγ2B1.

Hence

(H(T )G̃(S))p ≡ g−1(1 + πγ1T )G̃(S)p mod πγ2(R[Gπm,1]⊗B1).
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Moreover it is easy to see that

R[Gπm,1]⊗B1 = R[S, T ]/

(
((1 + πγ1T )(1 + πmS))p − 1

πpγ1
− f1,

(1 + πmS)p − 1

πmp

)
,

then we can substitute (1+πγ1T )(1+πmS)−1
πγ1

to T in (iii.87) and we obtain

(H(πm−γ1S + T + πmST ))p ≡ g−1(1 + πmS)(1 + πγ1T ) mod πγ2(R[Gπm,1]⊗B1)

By hypothesis we have that

G̃(S)H(T ) ≡ H(πm−γ1S + T + πmST ) mod πγ2

and therefore

g−1(1 + πγ1T )G̃(S)p ≡ g−1(1 + πmS)(1 + πγ1T ) mod πγ2(A1 ⊗B1).

This implies

G̃(S)p ≡ (1 + πmS) mod πγ2A1.

�

We are now able to �nd a candidate to be the e�ective model.

Lemma iii.5.11. If an e�ective model for the Z/p2Z-action exists it must be the
group scheme E (πκ,πγ2 ;Ep(ακS),1). In particular (ακ, 1) ∈ Φπκ,πγ2 . Moreover γ2 ≤ κ ≤
v(λ(1)).

Proof. Since, as we have seen, Z/p2Z acts on Y then, by iii.5.9 and the
previous lemma it follows that ηπ satis�es (4)v(λ(1)). Therefore κ ≤ v(λ(1)).

By iii.5.8 it follows that the e�ective model is of the form E (πm,πγ2 ;F,1) for some
m ≤ v(λ(1)) and F ∈ Homgr(Gπm,1|Sπγ2

,Gm|Sπγ2
). By iii.5.9 and iii.5.10 we have

that if a group scheme E (πm,πγ2 ;F,1) acts on Y then F = Ep(αmS) with αm ∈ πR
which satis�es (4)m. Conversely if m ≤ v(λ(1)) and αm ∈ πR satis�es (4)m then
by iii.5.9 and iii.5.10(1) we can construct the group scheme E (πm,πγ2 ;Ep(αmS),1) and
it acts on Y . We remark that by iii.5.3 the equation (4)m has (unique) solution if
and only if m ≥ κ. Moreover, for any v(λ(1)) ≥ m′ ≥ m there exists a model map
E (πm

′
,πγ2 ;Ep(αm′S),1) −→ E (πm,πγ2 ;Ep(αmS),1). Indeed by de�nition of m, we have that

there exists αm ∈ πR such that

αmH(T ) ≡ πm−γ1H ′(T ) mod πγ2 .

Therefore
πm
′−mαmH(T ) ≡ πm

′−γ1H ′(T ) mod πγ2 .

But we know that
αm′H(T ) ≡ πm

′−γ1H ′(T ) mod πγ2 .

And, as seen in iii.5.3, the solution of the above equation is a unique mod πγ2 .
Therefore πm

′−mαm ≡ αm′ mod πγ2 . So, by ii.3.49, there exists a model map

E (πm
′
,πγ2 ;Ep(αm′S),1) −→ E (πκ,πγ2 ;Ep(αmS),1).
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We recall that for any m ≥ κ the action of E (πm
′
,πγ2 ;Ep(αm′S),1) is given by

T1 7−→πm−γ1S1 + T1 + πmS1T1

T2 7−→
F (S1)H(T1)−H(πm−γ1S1 + T1 + πmS1T1)

πγ2H(πm−γ1S1 + T1 + πmS1T1)
+

+ T2
F (S1)H(T1)

H(πm−γ1S1 + T1 + πmS1T1)
+

(1 + πγ2T2)H(T1)

H(πm−γ1S1 + T1 + πmS1T1)

The above model map is compatible with the actions on Y . In particular we have,
for any v(λ(1)) ≥ m > κ, a model map

E (πm,πγ2 ;Ep(αmS),1) −→ E (πκ,πγ2 ;Ep(ακS),1).

compatible with the actions. Since the above model map is not an isomorphism,
there is a non trivial kernel H̃ of the morphism restricted to the special �ber. Since
the map is compatible with the actions then H̃ ⊆ (E (πm,πγ2 ;Ep(αmS),1))k acts trivially
on Yk. So

E (πm,πγ2 ;Ep(αmS),1)

is not the e�ective model of the Z/p2Z-action if m > κ. Hence if an e�ective
model exists it must be E (πκ,πγ2 ;Ep(ακS),1). Since the group E (πκ,πγ2 ;Ep(ακS),1) exists it
follows, by ii.3.53, that κ ≥ γ2 and (ακ, 1) ∈ Φπκ,πγ2 . �

We remark that if X was of �nite type then Y would be of �nite type. So
applying the theorem of existence of e�ective models iii.1.9 we would have �nished.
We now prove that E (πκ,πγ2 ;Ep(ακS),1) is the e�ective model for the action of Z/p2Z
in the general case. By construction the action is faithful on the generic �ber. We
now check the faithfulness on the special �ber. Let us suppose that the map

Gk = (E (πκ,πγ2 ;Ep(ακS),1))k −→ Autk(Yk)

has nontrivial kernel K̃. Since the action of (Gπγ2 ,1)k on Yk is faithful by de�nition
of γ2 then K̃ ×Gk (Gπγ2 ,1)k is the trivial group scheme. Therefore K̃ is a group
scheme of order p and

(E (πκ,πγ2 ;Ep(ακS),1))k ' (Gπγ2 ,1)k ×k K̃
Since (E (πκ,πγ2 ;Ep(ακS),1))k is an extension of (Gπκ,1)k by (Gπγ2 ,1)k we have that
K̃ ' (Gπκ,1)k. We distinguish two cases.

κ = γ1. The action (Gπγ1 ,1)k ×k Yk/(Gπγ2 ,1)k −→ Yk/(Gπγ2 ,1)k is induced by
the action K̃ ×k Yk −→ Yk, which is trivial by de�nition of K̃. But by de�nition
of γ1, (Gπγ1 ,1)k acts faithfully on Yk/(Gπγ2 ,1)k. So K̃ is trivial and the action of
E (πγ1 ,πγ2 ;Ep(ακS),1) is faithful on the special �ber.

κ > γ1. We remark that necessarily γ2 > 0. Indeed if γ2 = 0 then, by iii.5.6(i)
and (iii) necessarily κ = γ1. It is also clear that κ > 0. Now, by γ2 > 0 and
iii.5.10(2), it follows that the action on the special �ber is given by the reduction
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mod π of

T1 7−→ T1

T2 7−→
ακH(T1)− πκ−γ1H ′(T1)

πγ2H(T1)
S1 + T2 + S2

We remark that if j > 0 then H(T1) ≡ 1 mod π. We now prove that

(iii.88)
ακH(T1)− πκ−γ1H ′(T1)

πγ2H(T1)
S1 6≡ bS1 mod π

for any b ∈ R. Let us suppose ακH(T1)−πκ−γ1H′(T1)
πγ2H(T1)

S1 ≡ bS1 mod π with b ∈ R.
Then

ακH(T1)− πκ−γ1H ′(T1)

πγ2
S1 ≡ bH(T1)S1 mod π

with b ∈ R. Therefore
(ακ − bπγ2)H(T1)− πκ−γ1H ′(T1)

πγ2
≡ 0 mod π.

It clearly follows that
ακ − bπγ2

π
H(T1) ≡ πκ−1−γ1H ′(T1) mod πγ2

Then ακ−1 = ακ−bπγ2

π
satis�es (4)κ−1; it is easy to see that this implies ακ−1 ∈ πR.

The minimality of κ is contradicted. So we have proved (iii.88).
We now consider three di�erent cases. If γ2, κ < v(λ(1)) then

(E (πκ,πγ2 ;Ep(ακS),1))k ' αp ×k αp = Spec(k[S1, S2]/(Sp1 , S
p
2)).

Its subgroups of order p di�erent from (Gπγ2 ,1)k are the subgroups S2 + bS1 = 0
with b ∈ k. If γ2 < κ = v(λ(1)), then

(E (πκ,πγ2 ;Ep(ακS),1))k ' αp ×k Z/pZ = Spec(k[S1, S2]/(Sp1 , S
p
2 − S2))

and the only subgroup isomorphic to K̃ ' Z/pZ is S2 = 0. Finally if γ2 = κ =
v(λ(1)) then

(E (πκ,πγ2 ;Ep(ακS),1))k ' Z/pZ×k Z/pZ = Spec(k[S1, S2]/(Sp1 − S1, S
p
2 − S2))

and the only subgroups isomorphic to K̃ ' Z/pZ di�erent from (Gπγ2 ,1)k are the
subgroups S2 + bS1 = 0 with b ∈ Fp. In any case, by (iii.88) the action restricted
to any subgroup of (E (πκ,πγ2 ;Ep(ακS),1))k is not trivial.

We now prove the last sentence of the theorem. We have, by de�nition,

(iii.89) ακH(T1) ≡ πκ−γ1H ′(T1) mod πγ2

Moreover H(T1) ∈ B∗1 and, if we consider H ′(T1) ∈ B1(π), we have

(iii.90) v(H ′(T1)) = j,

by iii.5.1. If ακ ≡ 0 mod πγ2 then, by (iii.89) and (iii.90), it follows πκ−γ1+j ≡ 0
mod πγ2 . Therefore κ − γ1 + j ≥ γ2. So, by iii.5.6(iv), we have κ − γ1 + j = γ2.
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While, if ακ 6≡ 0 mod πγ2 , it follows by (iii.89) that v(αk) = κ − γ1 + j. The
theorem is proved. �

We here give a criterion to determine when Y has a structure of torsor.

Corollary iii.5.12. Let us suppose we are in the hypothesis of the theorem.
Then Y −→ X is a G-torsor under some �nite and �at group scheme G if and only
if κ = γ1. Moreover κ = γ1 if and only if γ1 ≥ γ2 and H(T ) ≡ Ep(aT ) mod πγ2,
for some a ∈ πA such that ap ≡ 0 mod πγ2. In such a case G = E (πγ1 ,πγ2 ;H,1).

Remark iii.5.13. The degeneration type of any E (πγ1 ,πγ2 ;Ep(ακS),1)-torsor is

(v(ακ), γ1, γ2, γ1).

This follows from iii.5.7 and iii.5.12.

Proof. We remarked in iii.1.6 that if Y −→ X is a G-torsor for some �nite and
�at group scheme then G must coincide with the e�ective model G of Z/p2Z acting
on Y . In other words Y −→ X is a G-torsor if and only if it is a G-torsor. By the
theorem we have that the e�ective model for the Z/p2Z-action is E (πκ,πγ2 ;Ep(ακS),1).
Moreover there is the following exact sequence

0 −→ Gπγ2 ,1
i−→ G p−→ Gπκ,1 −→ 0

By iii.1.7 (i) we have that Gπγ2 ,1 is the e�ective model of the action of Z/pZ ⊆
Z/p2Z on Y . Now if Y −→ X is a G-torsor then it satis�es the hypothesis of iii.1.7
(iii), then Gπκ,1 is the e�ective model of the action of Z/p2Z/Z/pZ on Y1. But
by the de�nition of γ1 we have that Y1 −→ X is a Gπγ1 ,1-torsor. Then, again by
iii.1.6, we have Gπκ,1 ' Gπγ1 ,1, which implies κ = γ1.

Let us now suppose that κ = γ1. We recall that

Y = Spec(A[T1, T2]/(
(1 + πγ1T1)p − 1

πpγ1
−f1,

(1 + πγ2T2)p − 1

πpγ2
−g
−1H(T1)−p(1 + πγ1T1)− 1

πpγ2
))

Moreover by de�nition of κ we have ακH(T ) ≡ H ′(T ) mod πγ2 . Then by ii.3.21 it
follows that H(T ) ≡ Ep(ακT ) mod πγ2 . We recall that we suppose, using iii.5.1,
H(0) = 1. Now let us substitute T2H(T1) to T2. Then we obtain

Y = Spec(A[T1, T2]/(
(1 + πγ1T1)p − 1

πpγ1
−f1,

(H(T1) + πγ2T2)p(1 + πγ1T1)−1 − g−1

πpγ2
))

By de�nition of E (πγ1 ,πγ2 ;Ep(ακS),1) there exists G ∈ Hom(G(πγ1 )
|Sπpγ2

,Gm|Sπpγ2
) such

that

Ep(ακS)p(1 + πγ1S)−1 = G(
(1 + πγ1S)p − 1

πpγ1
) ∈ Hom(G(πγ1 )

|Sπpγ2
,Gm|Sπpγ2

).

We remark that, if we think Ep(ακT1), G(T1) ∈ B∗1 , the previous equation gives
Ep(ακT1)p(1 + πγ1T1)−1 ≡ G(f1) mod πγ2B1 On the other hand we have that
H(T1)p(1 + πγ1T1)−1 ≡ Ep(ακT1)p(1 + πγ1T1)−1 ≡ g−1 mod πpγ2B1. Therefore we
have

g−1 ≡ G(f1) mod πpγ2A
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i.e. g−1 = G(f1) + πpγ2f2 for some f2 ∈ A. Hence, by �ii.4, Y −→ X is a
E (πγ1 ,πγ2 ;Ep(ακS),1)-torsor.

We now have, by de�nition of κ, that κ = γ1 if and only if there exists ακ ∈ A
such that

(iii.91) ακH(T1) ≡ H ′(T1) mod πγ2

We remark that, since κ ≥ γ2, κ = γ1 only if γ1 ≥ γ2. In such a case, by ii.3.21,
H(T1) satis�es (iii.91) if and only if there exist ακ ∈ πA such that αpκ ≡ 0 mod πγ2

and H(T1) ≡ Ep(ακT1) mod πγ2 .
�

Corollary iii.5.14. If γ1 < γ2 then Y −→ X has no structure of torsor.

Proof. We know by iii.5.11 that κ ≥ γ2. So by hypothesis we have κ > γ1.
By the above corollary the thesis follows. �

Remark iii.5.15. Unfortunately we have no example of coverings with γ1 < γ2.
So we don't know if this case can really occur.

Example iii.5.16. We here give an example, for any p ≥ 3, where Y −→ X
is not a G-torsor under any group scheme G. We suppose that A∗k 6= A∗k

p. Let
X = Spec(A) be as above. Take γ1, γ2 such that v(p) > pγ1 > p2γ2 > 0. In
particular we have v(p) > (p− 1)γ1 + pγ2. Let us consider any a1 ∈ A∗. Moreover
take f1 ∈ A∗ and f2 ∈ A such that they are not a pth-power mod π. Moreover let
us consider g−1 = ap1(f1 +πpγ2f2) ∈ A∗. For instance we can take A = R[[Z]]{Z−1},
γ1 = p+1, γ2 = 1, a1 = 1, f1 = f2 = Z and g−1 = Z(1+πpγ2). So the Z/p2Z-torsor
over Spec(AK) is Spec(AK [T ]/(T p

2 − 1+πp(p+1)Z
Zp(1+πp)p

)).

Then we consider Y1 = Spec(B1) = Spec(A[T ]/( (1+πγ1T1)p−1
πpγ1

− f1)). Since f1

is not a pth-power mod π then Y1 is normal (see iii.3.6). We remark that by
hypothesis we have that T p1 ≡ f1 mod πpγ2+1. We now take H(T ) = a1T1 ∈ B1.
Then we have, by construction,

H(T1)p − g−1(1 + πγ1T1)

πpγ2
≡ ap1f2 mod π.

So we consider

Y = Spec(B1[T2]/(
(1 + πγ2T2)p − 1

ππ
pγ2

− H(T1)−pg−1(1 + πγ1T1)− 1

πpγ2
))

Then
Yk = Spec(A[T1, T2]/(T p1 − f0, T

p
2 − f1))

Hence Yk is integral and Y normal. We remark that

YK ' Spec(AK [T ]/(T p
2 − (1 + πγ1f1)g−p)).

Since a1 6∈ πA then, by iii.5.12, we have that Y −→ X has no structure of torsor.
The degeneration type of YK is (0, γ1, γ2, γ1 + γ2). Indeed H ′(T1) = a1. So

a(a1T1) ≡ πκ−γ1a1 mod πγ2
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if and only if a ≡ 0 mod πγ2 and κ − γ1 ≥ γ2. This means κ = γ1 + γ2 since
κ ≤ γ1 + γ2 − j and j = 0. The e�ective model is

G = E (πγ1+γ2 ,πγ2 ;1,1).

Since κ = γ1 + γ2 > γ1 then Y is not a G-torsor by the previous corollary.

iii.6. Realization of degeneration types

We have shown in the above section that the degeneration type has to satisfy
some restrictions. We here want to study the problem of determining which are
the elements of N4 which can be degeneration type of some cover Y −→ X.

Definition iii.6.1. Any 4-uple (j, γ1, γ2, κ) ∈ N4 with the following properties:
i) max{γ1, γ2} ≤ κ ≤ v(λ(1));
ii) γ2 ≤ p(κ− γ1 + j) ≤ pγ2;
iii) if κ < pγ2 then γ1 − j = v(λ(1)) − v(λ(2)) = v(p)

p
; if κ ≥ pγ2 then 0 ≤

p(γ2 − j) ≤ v(p)− pγ1 + κ;
iv) pj ≤ γ1;

will be called an admissible degeneration type.

Remark iii.6.2. We remark that if κ < pγ2 then j is uniquely determined from
γ1 and moreover i) and iii) imply iv). The �rst assertion follows from iii). For the
second we note that, if κ < pγ2, multiplying iii) by p we have pγ1−j = (p−1)v(λ(1)),
since pλ(2) = λ(1). Therefore, by i), we have γ1 − pj = (p− 1)(v(λ(1))− γ1) ≥ 0.

Moreover we remark that

κ− γ1 + j ≤ min{γ2, v(λ(2))}.
By ii) we have only to prove κ− γ1 + j ≤ v(λ(2)). Moreover, since λ(1) ≥ κ ≥ pγ2

implies γ2 ≤ v(λ(2)), we have only to consider the case κ < pγ2. But by iii) and i)
it follows that

κ− γ1 + j = κ− v(p)

p
≤ v(λ(1))− v(λ(1)) + v(λ(2)) = v(λ(2)).

Lemma iii.6.3. Any degeneration type (j, γ1, γ2, κ) attached to a Z/p2Z-torsor
YK −→ XK is admissible.

Proof. i) comes from de�nitions and iii.5.11. While iv) has been proved in
iii.5.6(i). We now prove ii). By iii.5.7 it follows that the e�ective model of the
action of Z/p2Z on Y is E (πκ,πγ1 ;Ep(ακ),1) with v(ακ) = κ − γ1 + j, if ακ 6= 0; and
κ− γ1 + j = γ2 if ακ = 0. Since, by iii.5.11, (ακ, 1) ∈ Φπκ,πγ2 then

(iii.92) αpκ ≡ 0 mod πγ2 .

Hence we have
γ2 ≤ p(κ− γ1 + j).

By iii.5.6(iii) it follows that κ− γ1 + j ≤ γ2. This proves ii).
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Let us now suppose κ < pγ2. Since (ακ, 1) ∈ Φπκ,πγ2 , by ii.3.42 and ii.3.47, we
have that

κ− γ1 + j = κ− v(p)

p

which implies γ1 − j = v(p)
p
. While, if κ ≥ pγ2, by ii.3.42 we have that

pv(ακ) = p(κ− γ1 + j) ≥ pγ2 + (p− 1)κ− v(p)

which gives
p(γ2 − j) ≤ v(p)− pγ1 + κ.

We remark that γ2 − j ≥ 0 comes from iii.5.6. Hence iii) is proved. �

Definition iii.6.4. Any admissible degeneration type which is the degener-
ation type attached to a Z/p2Z-torsor YK −→ XK as in �iii.5, will be called
realizable.

We now see, as a consequence of theorem iii.5.7, what happens in some par-
ticular cases. Moreover we observe that, by iii.5.14, one can imagine to �nd a
generically Z/p2Z-torsor with no global structure of torsor in some easier cases.
For instance γ1 < v(λ(1)) and γ2 = v(λ(1)). But the following result shows in
particular that any such admissible degeneration types are not realizable.

Proposition iii.6.5. Let us suppose YK has (j, γ1, γ2, κ) as degeneration type.

i) If j < v(λ(2)) then pj = γ1 if and only if Y is a Gπj ,2-torsor. Moreover
the degeneration type is (j, pj, j, pj). In particular Y is a µp2-torsor if and
only if γ1 = 0, i.e. v(D(h1)) = v(p).

ii) j = v(λ(2)) if and only if Y is an E (π
v(λ(1))

,πγ2 ;Ep(ηπS),1)-torsor. Necessarily
γ2 ≥ v(λ(2)) and the degeneration type is (v(λ(2)), v(λ(1)), γ2, v(λ(1))).

iii) γ2 = j if and only if Y is a E (πγ1 ,πγ2 ;1,1)-torsor. Necessarily γ1 ≥ pγ2 and
the degeneration type is (γ2, γ1, γ2, γ1). In particular Y is a E (πγ1 ,1;1,1)-
torsor if and only if γ2 = 0, i.e. v(D(h2)) = v(p).

iv) Y is a Z/p2Z-torsor if and only if γ2 = v(λ(1)), i.e. v(D(h2)) = 0. And
the degeneration type is (v(λ(2)), v(λ(1)), v(λ(1)), v(λ(1))).

v) If γ1 = v(λ(1)), i.e. v(D(h1)) = 0, then j = min{γ2, v(λ(2))}. So we are in
the case (ii) or (iii).

Proof.

i) Let us suppose γ1 = pj. By the previous lemma (j, γ1, γ2, κ) is an admis-
sible degeneration type. If κ < pγ2 then by iii.6.1(iii) it follows

(p− 1)j = γ1 − j =
v(p)

p
= (p− 1)v(λ(2)),

but this is in contradiction with j < v(λ(2)). Hence κ ≥ pv(γ2). Therefore,
by iii.6.1(ii),

(p− 1)γ2 ≤ κ− γ2 ≤ γ1 − j = (p− j)j.
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But, by iii.6.1(iii), γ2 ≥ j. Hence γ2 = j. So, by iii.5.6(iii), κ = γ1. Then,
by iii.5.12, we have that Y is a E (πj ,πpj ;1,1)-torsor. But, as we have seen in
the example ii.3.33,

E (πj ,πpj ;1,1) ' Gπj ,2

Conversely, as remarked in iii.5.13 (j, pj, j, pj) is the degeneration type of
a Gπj ,2-torsor.

We now observe that, in particular, Y is a µp2-torsor if and only if
γ1 = pj = 0. But since pj ≤ γ1 (see iii.5.6(i)) then it is true if and only if
γ1 = 0, as stated.

ii) Let us suppose j = v(λ(2)). By iii.5.6 we have γ1 = pj = v(λ(1)) and

κ = v(λ(1)). Therefore by the theorem we have that E (π
v(λ(1))

,πγ2 ;Ep(ακS),1)

is the e�ective model. In particular there is a model map

Z/p2Z ' E (π
v(λ(1))

,π
v(λ(1))

;Ep(ηπS),1) −→ E (π
v(λ(1))

,πγ2 ;Ep(ακS),1).

Hence by ii.3.49 it follows that

ακ ≡ ηπ mod πγ2 .

So, by iii.5.12, Y is a E (π
v(λ(1))

,πγ2 ;Ep(ηπS),1)-torsor. Conversely if Y is a
E (π

v(λ(1))
,πγ2 ;Ep(ηπS),1)-torsor then, by iii.5.13, the degeneration type is

(v(ηπ), v(λ(1)), γ2, v(λ(1))).

So j = v(ηπ) = v(λ(2)). We observe that j = v(λ(2)) ≤ γ2 by iii.5.6.
iii) By iii.5.6(iii) we have κ = γ1. Therefore κ = γ1 +γ2− j. Hence, by iii.5.7,

it follows that Y is a E (πγ1 ,π
γ
2 ;1,1)-torsor. By ii.3.33 it follows that γ1 ≥ pγ2.

And the degeneration type is (γ2, γ1, γ2, γ1). Now if γ2 = 0 then j = 0 and
we have the last sentence.

iv) By iii.5.13 it follows that a Z/p2Z-torsor Y −→ X has

(v(λ(2)), v(λ(1)), v(λ(1)), v(λ(1)))

as degeneration type. Now let us suppose γ2 = v(λ(1)). Since κ ≥ γ2 then
κ = v(λ(1)). Therefore the e�ective model for Y is Z/p2Z, since it is a
model of Z/p2Z which is an extension of Z/pZ by Z/pZ (see ii.3.49). Let
σ be a generator of Z/p2Z. Since γ2 = v(λ(1)) then, by iii.4.2, Y −→ Y1

is a <σp>-torsor. In particular <σp> has no inertia at the generic point
of the special �ber. This implies that Z/p2Z =<σ> has no inertia at the
generic point of the special �ber, too. Let us now consider the action
of <σ>/<σp> on Y1 = Y/<σp>. If σ|(Y1)k = id then we will have the
following commutative diagram

Yk

%%LLLLLLLLLLL
//σ // Yk

yyrrrrrrrrrrr

(Yk)/ < σp >
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This is a contradiction, since σ|Yk 6= id. So <σ>/<σp> has no inertia at
the generic �ber therefore Y1 −→ X is a Z/pZ-torsor, by iii.4.2. Hence
γ1 = κ = λ(1). Which implies, by iii.5.12, that Y −→ X is a Z/p2Z-torsor.

v) Since γ1 ≤ κ ≤ v(λ(1)), if γ1 = v(λ(1)) then κ = γ1. So iii) of the de�nition
of admissible degeneration type gives

j = v(λ(2))

if γ1 < pγ2 (i.e. γ2 > v(λ(2))), and

j = γ2

if γ1 ≥ pγ2 (i.e. γ2 ≤ v(λ(2))).
�

Remark iii.6.6. Let us suppose that p|v(p). Then, for instance,

(j,
v(p)

p
+ j, v(λ(1)), v(λ(1)))

is admissible for 0 ≤ j ≤ v(λ(2)) but is not realizable, if j 6= v(λ(2)), by the point
iv) of the proposition.

We have so seen that in general not all the degeneration types are realizable.
But we now see that it is true for admissible degeneration types with κ = γ1. They
are degeneration types attached to (Z/p2Z)K-torsors which are strongly extendible.

Theorem iii.6.7. Any admissible degeneration type (j, γ1, γ2, κ) with κ = γ1 is
realizable.

Proof. We recall that in this case to be an admissible degeneration type means
i) γ1 ≤ v(λ(1));
ii) γ2 ≤ pj ≤ pγ2;
iii) if γ1 < pγ2 then γ1 − j = v(λ(1)) − v(λ(2)) = v(p)

p
; if γ1 ≥ pγ2 then

p(γ2 − j) ≤ (p− 1)(v(λ(1))− γ1);
iv) pj ≤ γ1;

We remark that (iv) is in fact implied by the others. Indeed let us suppose
that pj > γ1. Then by (ii) we have pγ2 ≥ pj > γ1. But we know by iii.6.2 that if
pγ2 > γ1 then pj ≥ γ1.

Since κ = γ1, it follows, by iii.5.12, that if (j, γ1, γ2, κ) is realizable it is the
degeneration type of a E (γ1,γ2;Ep(αγ1S),1)-torsor, with v(αγ1) = j if αγ1 6= 0. For
any γ1, γ2 as in the degeneration type, by ii.3.53 and ii.3.46, there exists a group
scheme E (πγ1 ,πγ2 ;Ep(aS),1). If a 6= 0 then we can choose a such that v(ã) = j, if ã ∈ R
is a lifting of a. In fact if γ1 < pγ2 it is automatic, by ii.3.47 and iii), that v(ã) = j.
We call a = αγ1 .

We now construct a normal E (γ1,γ2;Ep(αγ1S),1)-torsor. First of all we remark
that if γ1 = 0 then γ2 = 0 then E (γ1,γ2;Ep(αγ1S),1) ' µp2 . So if we take Y =

Spec(A[T ]/(T p
2 − f) with f not a p-power mod π then Yk is integral.
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We now suppose γ1 > 0. As seen in �ii.4, for any f1, f2 ∈ A such that 1 +πf1 ∈
A∗/(A∗)p and Ep(αγ1f1) + f2 ∈ A∗/(A∗)p we can de�ne the E (γ1,γ2;Ep(αγ1S),1)-torsor
(see �ii.4)

Y = Spec

(
A[T1, T2]/

((1 + πγ1T1)p − 1

πpγ1
−f1,

(Ep(αγ1T1) + πγ2T2)p(1 + πγ1T1)−k − Ep(αpγ1
f1)

πpγ2
−f2

))
We have only to �nd f1 and f2 such that Y has integral special �ber. If γ1 = v(λ(1))
then Y1 −→ X is a nontrivial Z/pZ-torsor, so the special �ber is integral. Otherwise
take f1 such that f1 is not a pth-power mod π. Then we have that the special
�ber of

Y1 = Spec(B1) = Spec

(
A[T1]/(

(1 + πγ1T1)p − 1

πpγ1
− f1)

)
is integral. We now consider

Y = Spec

(
B1[T2]/(

(Ep(αγ1T1) + πγ2T2)p(1 + πγ1T1)−1 − Ep(αγ1f1)

πpγ2
− f2)

)
.

If γ2 = v(λ(2)) then Y −→ Y1 is a Z/pZ-torsor so Yk is integral. Let us suppose
γ2 < v(λ(2)). The special �ber is

Yk = Spec

(
(B1)k[T2]/

(
T p2 −

Ep(αγ1T1)−p(1 + πγ1T1)Ep(αγ1f1)− 1

πpγ2
− f2

))
If G(T1) =

Ep(αγ1T1)−p(1+πγ1T1)Ep(αγ1f1)−1

πpγ2
− f2 is not a pth-power then Yk is reduced.

While if G(T1) + f2 ≡ G1(T1)p mod π for some G1(T1) ∈ B∗1 then we substitute
f2 + f3 to f2 with f3 not a pth-power mod πA. Indeed, if

G(T1) + f2 + f3 ≡ G2(T1)p mod πB1

for some G2(T1) ∈ B∗1 , then
f3 ≡ (G2(T1)−G1(T1))p mod πB1.

But by iii.3.5 it follows that f3 is a p-power mod πA, against hypothesis on f3.
Finally we verify that Y has (j, γ1, γ2, γ1) as degeneration type. Since κ = γ1,

by iii.5.7 we have that the degeneration type is (v(αγ1), γ1, γ2, γ1) if αγ1 6= 0 and
(γ2, γ1, γ2, γ1) if αγ1 = 0. But since we have chosen α such that αγ1 = 0 and j = γ2

or v(αγ1) = j and αγ1 6= 0 then we have the thesis.
�
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