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Introduction

NOTATION AND CONVENTIONS. A discrete valuation ring (in the sequel d.v.r.)
of unequal characteristic is a discrete valuation ring of characteristic zero with
residue field of characteristic p > 0. If, for n € N, there is a distinguished primitive
p"-th root of unity ¢, in a d.v.r., we write A,y := ¢, — 1. Moreover, for any i < n,
we suppose (;_1 = (7. All the schemes and rings will be assumed neetherian. If not
otherwise specified the cohomology is computed in the fppf topology.

An important problem of research is the following.

PROBLEM. Let k be an algebraically closed field of characteristic p > 0 and let
G be a finite group. Let us suppose that G acts on a smooth projective k-curve C.
Is it possible to find a complete d.v.r R of unequal characteristic with residue field
k and a lifting C of C over R endowed with a G-action, such that the G-action lifts
the action on the special fiber?

If the answer is positive we will say that the action on C is liftable to characteristic
0. There are some known results. If (|G|,p) = 1, the answer is positive for any
action (SGA I). If |G| > 84(¢g(C) — 1) any action is not liftable because of a trivial
contradiction with the use of the Hurwitz bound for the automorphism group in
characteristic 0. If G is cyclic of order pm with (m,p) = 1 any action is liftable, as
proved in [45]|. This result has induced Oort and Sekiguchi to state the following
conjecture.

CONJECTURE. Any action of a cyclic group on C' is liftable to characteristic 0.

It Ea\s been proved that this problem is actually local: it is equivalent to lift
Spec(Oc¢,y), for any closed point y € C, with an action of ,, the inertia group
at y. The first proof was given by Green-Matignon (|20, IIT 1.3]) in the case of
covers whose inertia are cyclic of order not divisible by p®. It has been proved in
general by Bertin-Mezard (|9, 3.3.4]), using deformation theory, and by Chinburg-
Guralnick-Harbater ([14, 2.2]). Therefore one can consider a local version of the
problem.

PROBLEM (Local). Given a k-linear faithful action ¢ : G — Auty(k[[y]]) , does
there ezists a lifting of ¢ to an R-linear action pgr : G — Autr(R|[[y]]), for some
R as above?

Green and Matignon have proved in [20] the conjecture for groups of order p*m,
with (m,p) = 1. The conjecture is yet open for G of order divisible by p3.

iii



iv INTRODUCTION

It is interesting in general to find groups for which the problem has positive
answer for any action. Such groups are called Oort groups, analogously groups for
which the local problem has positive answer for any action are called local Oort
groups. There are some works, for instance [8], [20], [12], and [14], which study
the problem of characterizing such groups. It seems reasonable to conjecture that,
for p > 2, among the cyclic by-p-groups the Oort groups are the cyclic groups
and dihedral groups of order 2p". If p > 2, in [14] it has been proved that if a
cyclic-by-p group G (i.e. an extension of a prime-to-p cyclic group by a p-group)
is an Oort group then G is cyclic or dihedral. Moreover if G is a local Oort group,
then G is a cyclic or dihedral group. If p = 2, it happens that the list of possible
Oort groups includes A4 too. In fact, Bouw has proved (unpublished) that Ay is
an Oort group.

In order to solve this kind of problems it is important to construct automor-
phisms of Spec(R|[[y]]) with R a complete d.v.r. of unequal characteristic with
algebraically closed residue field k. This took Green and Matignon to study sys-
tematically the automorphisms of order p of the formal disc Spec(R][y]]). Let
K be the field of fractions of R and K an algebraic closure of K. We define
D = {z € K|vg(z) > 0}. We recall that Dy = Spec(R[[Z]] ® K) is naturally
in a bijective correspondence with D/Gal(K, K). For details see, for instance,
[26, lemma 1.3|. In [21], Green and Matignon are interested in the study of au-
tomorphisms which specialize on k& to automorphisms of order p. It is possible
to show that any such automorphism has necessarily fixed points in Dg. After a
finite extension of R it is possible to assume that the fixed points are R-rational.
We consider the minimal semi-stable model Mp, of Dk in which any fixed point
specializes in distinct smooth points (this can be achieved by successive formal
blow-ups). The special fibre is an oriented tree of projective lines attached to the
original generic point (7) € Spec(R[[Z]]). The main result presented in loc. cit. is
associating to any automorphism of the formal disc with fixed points some differen-
tial forms and a "Hurwitz datum" defined on the exceptional curves of the minimal
semi-stable model. How do these differential forms arise? Before explaining it we
recall the definition of torsor under a group scheme.

DEFINITION. Let G be a faithfully flat and locally of finite type group scheme
over a scheme X. Let us suppose that G acts on an X-scheme Y. We say that
Y is a G-torsor if there is a covering {U; — X} for the fppf topology on X such
that, for every i, Yy, is isomorphic, as Gy,-scheme, to Gy,.

Using standard methods it is possible to show that, for any commutative group
scheme G over X, the G-torsors over X are classified by the group H'(X,G).
If G is not commutative there is the same classification but H'(X,G) is only a
pointed set. (See |32, II1.4]). Since it is not easy to work in the fppf topology, it is
convenient to have other descriptions of torsors, as we will see.

We now come back to explain how Green and Matignon associate to an auto-
morphism o of the formal disc with fixed points some differential forms. We use
the above notation. Let Mp, be the minimal semi-stable model associated to o.
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Let z be a double point of the special fiber of Mp, and £ the generic point of an
irreducible component which contains z. The automorphism ¢ induces an action
of Z/pZ on

X = Spec((Onemy Je) = Spec( RITI{T1}),

such that X — Xy /(Z/pZ) is a Z/pZ-torsor. By R[[T|][{T~'} we mean the
algebra of Laurent series f = Y., a;T* such that lim a; = 0. It is possible to

show that there is a group scheme G of order p on R and an action of G on X such
that G is generically isomorphic to Z/pZ (with the same action) and X — X/G
is a G-torsor (see later in the introduction for some references about this result).
On the special fiber we have that X, — X/Gj is an «y, p, or Z/pZ-torsor. The

following result is well known (see [32, I11.4.14]).

1€EL

THEOREM. 1.1.2 Let X be a smooth scheme over a perfect field k of character-
wstic p, then there are natural isomorphisms

d: H(X, o) — H°(Xzar, BQY) = {w € H*(X,Q%)| w is locally exact},
dlog : H'(X, ptp) — H*(Xzar, U 10y) = {w € H*(X, Q% )| w is locally logarithmic}.

50, to any ay,-torsor and p,-torsor, we can associate a differential form on Xj.
Using this description, Henrio (|25]) constructed a Hurwitz space, i.e. a certain
graph (the dual graph of the special fiber) with an attached datum which is strictly
linked to the differential forms found by Green and Matignon. In loc. cit. the
author proved that this Hurwitz space classifies automorphisms of the formal disc
with fixed points. Bouw and Wewers ([12]), using Henrio’s work, have proved that
Ds,, with p > 2, is an Oort group. The case p = 2 has been proved by Pagot ([34]).

The main motivation of this work is to find a Hurwitz space for automorphisms
of order p? with fixed points of the formal disc. This would be useful to face the
problem of lifting tocharacteristic zero for dihedral groups of order 2p?. One can
see that for automorphisms of order p? there are two kinds of problems:

(1) There is no interpretation through differential forms of torsors under finite
group schemes of order p%.

(2) Let X be as above. Given a (Z/p*Z) g-torsor Y — Xx does there exists
an action of a group scheme G on X, extending that of (Z/p*Z)k, such
that X — X/G is a G-torsor? If it is not always true when does it
happen?

We point out that, after answering these questions, it becomes reasonable to con-
struct a Hurwitz space for automorphisms of the formal disc of order p? which give
a structure of torsor to Spec(R[[T]]) — Spec(R[[T]])/G where G is the group of
order p? generated by the automorphisms we are considering.

We will give answers to these problems in a more general setting. In the first
chapter we will generalize the theorem 1.1.2 in two directions:

i) in characteristic p for the group schemes p,» and an;
ii) in unequal characteristic: for some finite group schemes of order p".
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In §1.2 we recall the definition of the De Rham Witt complex W,Q%, for a scheme
X over a perfect field £ of characteristic p. This satisfies the equalities Q% = Q%
and W.Qg( = W,Ox. There are defined the differential maps

d, : Ox — W,Q%
dlog, : O% — W,QL.

We define WnQﬁ(’log as the image sheaf of the Z-module map dlog,, and BW, Q% as
the sheaf image of d,,. They are both sheaves of Z-modules. For n > 1 the above
maps induce the morphisms

d Log, : H'(X, ppn) — H°(Xet, Wnﬂﬁf,log)’

d, : H'(X, apn) — H(Xer, BW,Q%).

Then we prove the following theorem.

THEOREM. 1.3.2 Let X be a smooth scheme over a perfect field of characteristic
p > 0. Then, for anyn > 1

d Logn : HY(X, pipn) — H"(Xet, WnQXx 100)5
d, : HY(X, apn) — H°(Xer, BW,QY).
are 1somorphisms.

It is possible to show that H(X.., BW,QY) = H*(X 74, BW,Q%). We remark
that for n = 1 the isomorphisms coincide with those of 1.1.2. We now consider
a faithfully flat morphism g : X — Spec(R) with geometrically integral generic

fiber. For any integer n > 0 we will call Q%{/R,log,n the sheaf of Z/p"Z-modules

1

Q_lX/R,log/an,lX/R,log' When there is no ambiguity we write €, ..

THEOREM. 1.4.6 Notation as above. For any n > 1, there is an isomorphism
d Logn : Hl <X7 “p”)/Hl(SpeC(R>7 ﬂp") - HO(XZara Qllog,n)'

If X}, is smooth we show (see 1.4.8) that the isomorphisms of 1.3.2 and 1.4.6 are
compatible, when restricted to the special fiber. We remark that the hypothesis
that X}, is smooth can be weakened: see 1.3.12.

Now, let us suppose that R is a d.v.r. of unequal characteristic with no further
assumption on the residue field. Let us consider, for any n > 1 and A € R with
v(p) > p"t(p — 1)v(N), the group schemes G, ,, (for its definition see §1.5). If R
contains a primitive p”-th root of unity (, then the above inequality is equivalent
to v(A) < v(Aw)). We recall that

(G)\,n)k = fpn, if /U(A> = 07
(Gan)k = apn, if 0 < p"p—1v(\) <ov(p);
(Gan)k =~ a1 X ZJpZ, if p"1(p—1)v(N) = v(p).

We use these groups to find a filtration of H* (X, pin).
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PROPOSITION. 1.5.6 Let X be an integral normal faithfully flat R-scheme. Let
io = max{ilv(p) > p" Yp— Dv(x")}. Then, for any n, we have the following
filtration

0C HY(X,Grion) C H'(X,Grio-1,,) C ... C HY(X,Grn) € H'(X, pipn),
where m is the uniformizer of R.

For smooth proper curves over R and n = 1 it is essentially the filtration
constructed by Saidi ([41, 5.2]). Adding hypothesis on the d.v.r. we obtain also a
relative version of the above filtration.

PROPOSITION. 1.5.9 Let us suppose that R has perfect residue field. Let X be
a normal integral faithfully flat R-scheme with integral special fiber. We have the
following filtration

(1) 0C H'X,Grio )/ H(R,Grio) ... © H'(X, pipe)/H'(R, i)
where 7 s a fixed uniformizer.

In the case where X is an abelian scheme and n = 1 this filtration coincide with
that of Andreatta-Gasbarri ([4]). Andreatta-Gasbarri moreover proved that their
filtration coincides with the Bloch-Kato filtration, defined in {10, §1]. Let X be as
in the above proposition. We construct a filtration (1.5.12)

(2) 0 g HO(XZ(M”’QI 7T%’o ) g s g HO(XZ(LlelagTr n) g HO(XZarlelogn)a

where Ql logt m AXC the spaces of differential forms defined in §1.5.2. We prove that

this ﬁltratlon coincides with that of 1.5.9 under the isomorphism of 1.4.6. More
precisely we have the following result.

THEOREM. 1.5.13 Let us suppose that R has perfect residue field. Consider

A € R such that v(p) > p"'(p — 1)v(N\) and let X be a normal integral faithfully
flat R-scheme with integral special fiber. Then there is an isomorphism

H'(X, Go) [ H (R, G ) 2% HO(X 701, )

log* n)
Moreover d Log) is compatible with the filtrations (1) and (2).

If 0 < p"(p—1)v(\) < v(p) we prove that this isomorphism is a deformation
of the isomorphism 1.3.2 given in characteristic p.

In the second and third chapter we study the extendibility of Z/p*Z-torsors. We
suppose that R is a d.v.r. of unequal characteristic with no further assumption on
the residue field. We write S = Spec(R). We suppose that R contains a primitive
p"-root of unity ¢, any time we talk about Z/p"Z. In that case Z/p™Z is isomorphic
to p,» on the generic fiber. Let G be an abstract group. Let X be a scheme over
R and Yy — Xg a Gg-torsor. We remark that, since the characteristic of K is
0, any finite group scheme is étale; so, up to an extension of R, any group scheme
over K is an abstract group. Moreover, let us assume that Y is the normalization
of X in Y. The following question arises naturally.
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COARSE QUESTION. Is it always possible to find a model G of (G)k over R together
with an action on Y such that Y — X is a G-torsor and the action of G coincides
with that of (G)k on the generic fiber?

If the answer is positive we will say that Yx — X is strongly extendible. First,
we will give a weaker answer for any commutative group scheme G.

PROPOSITION. 111.3.10 Let X be a normal and faithfully flat scheme over R
with integral fibers. Let G be any commutative group-scheme over K and fi :
Yk — Xk a G-torsor. Let'Y be the normalization of X in Y. Suppose that Y},
is integral. Up to an extension of R, there exist a (commutative) group-scheme G’
and a G'-torsor Y' — X over R which extends fx.

The point is that we do not require Y’ to coincide with Y, i.e. we do not
require Y’ to be normal. In such a case we speak about weak extension. Clearly
strong extension implies weak extension. We remark that in the above result it is
necessary to extend R. Indeed we can give an example of a Z/pZ-torsor not weakly
extendible if we do not extend R. We guess that it is really necessary to extend
R only if Y} is not reduced. Under the same hypothesis as above we have a more
precise statement for G = Z/p"Z. A (Z/p"Z) k-torsor can indeed be extended to a
ppn-torsor over any R which contains a primitive p”-th root of unity (see 111.3.8).

It is well known that the coarse question has a positive answer if (|G|,p) = 1.
Let us now suppose G = Z/pZ. For this group, strong extension has been proved
in some cases. For details see [37, 1.2.2] when X is the spectrum of a d.v.r, [25,
1.6] and |21, 1.1] for formal affine curves and |41, 2.4| for formal curves in a more
general setting. In particular the statement is true if X = Spec(R[[T]]{T~'}),
as remarked above. See also the paper of Abramovich (|2]|) for some results in
dimension 2. In the present thesis we will study also higher dimension. Let us
suppose X = Spec(A) with A a faithfully flat and factorial R-algebra, complete
with respect to the m-adic topology or X a normal local faithfully flat R-scheme.
We remark that A factorial is equivalent to say that X is normal and Cl(X) =0
(see |24, 6.2, 6.11]). Moreover we suppose X, integral. Now, let Y — X be a
nontrivial Z/pZ-torsor and Y the normalization of X in Yj. Let us suppose that
Y} is integral. From 111.3.8, cited above, it easily follows that [Yk], the class in
HY(Xf,Z/pZ) of the Z/pZ-torsor Yir — X, is induced, by restriction, by an
element of H'(X, p1,n). For simplicity we think [Yx] € H'(X, pipn). Then, by 1.5.6,
there exists a j such that [Yx] € H (X, Gri1) \ HY(X,Gr+1 ). We then get the
following result.

THEOREM. 111.4.2 Let us suppose that R contains a primitive p-th root of unity.
Let us consider
YK B XK>
a nontrivial Z/pZ-torsor as above. If [Yx| € HY(X, Griq) \ HY(X,Gri+1,) then Y
is a G 1-torsor. Moreover the valuation of the different of the extension Ox r) C
Oy,(m is (p — D(v(Aw) — J)-
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In this work we have moreover studied the case G = Z/p*Z. Before explaining
in more details our results in such a case we come back for a moment to the general
situation, presented above. We observe that any G-action on Yk can be extended to
a G-action i : G XY — Y. One phenomena which may occur is that the reduced
action of GG on the special fibre is not faithful. To solve this problem Romagny
(|40]) has introduced the notion of effective models. We remark that a very close
notion, called Raynaud’s group scheme, has been introduced by Abramovich ([2]).

DEFINITION. Let G be a finite flat group scheme over R. Let' Y be a flat
scheme over R. Let u: G XY —'Y be an action, faithful on the generic fibre. An
effective model for p is a finite flat R-group scheme G acting on Y, dominated by
G compatibly (with the actions), such that G acts faithfully on Y (i.e. the map
G — Aut(Y) is injective).

We recall that to say that G dominates G means that there exists an R-
morphism G — G which is an isomorphism when restricted to the generic fibers.
In particular the effective model G is a model of G, i.e. a finite and flat R-group
scheme with generic fiber isomorphic to Gi. Moreover if the effective model exists
it is unique, as Romagny has proved. The same author proved its existence in the
case that Y is of finite type (see 81111 for the precise statement). The uniqueness
of the effective model easily implies that, using the above notation, Yx — X is
strongly extendible if and only if Y is a G-torsor. Hence the coarse question can
be reformulated in the following way.

QUESTION. Which is the effective model (if it exists) G for a G-action? When
s Y a G-torsor?

We now treat the case G = Z/p*Z. As remarked above, the effective model
of a Z/p*Z-action is a model of (Z/p*Z)r. The second chapter is devoted to the
classification of (Z/p*Z)k-models. We now explain more in details what we do.

Let K be a field of characteristic 0 which contains a primitive p"-th root of
unity. We remark that this implies pyn ~ Z/p"Z. We recall the following exact
sequence

1—>I,Lp7L —>G7np—n>Gm—>]_7
so-called the Kummer sequence. We stress that the Kummer sequence can be

written also as follows

1 — pipn — G2, G — 1

where 0,((Ty,...,T,)) = (1 = TP, Ty —T5,...,T,-1 — T?). Let k be a field of
characteristic p > 0. The following exact sequence
0 — Z/p"Z — W, (k) 2= W, (k) — 0,

where W, (k) is the group scheme of Witt vectors of length n, is called the Artin-
Schreier-Witt sequence. Let now R be a d.v.r. of unequal characteristic which con-
tains a p™-th root of unity. It has been proved, independently, by Oort-Sekiguchi-
Suwa (|45]) and Waterhouse ([58]) the existence of an exact sequence of group
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schemes over R which unifies the above two sequences for n = 1. Later Green-
Matignon (|20]) and Sekiguchi-Suwa([53]) have, independently, constructed ex-
plicitly a unifying exact sequence for n = 2. This means that it has been found an
exact sequence

(3) 0 — Z/p°7 — Wy — W'y — 0

that coincides with the Kummer sequence on the generic fiber and with the Artin-
Schreier-Witt sequence on the special fiber. The case n > 2 is treated in [44] and
[52]. In the second chapter we will generalize this construction. First, we consider
the case n = 1 and we prove that any Z/pZ-model is isomorphic to G, for some
A € R. This is a well known result. A proof was already given, for instance, by
Romagny in his PhD thesis. Moreover by definition we have that G ; is the kernel
of an isogeny, between smooth R-group schemes, which is generically isomorphic
to the Kummer sequence. Next we will consider the case n = 2. Analogously, we
will prove that for any model of (Z/p®Z) there exists an exact sequence

0—G—& — & —0,

with &, & smooth R-group schemes, which coincides with the Kummer sequence
on the generic fiber. We will describe explicitly all such isogenies and their kernels.
Moreover we will give a classification of models of Z/p*Z.

We now explain more precisely the classification we have obtained. First of
all we show that any model of Z/p*Z is an extension of G,1 by Gy, for some
1, A € R\ {0}. Then the first step is to investigate on Ext' (G ,.1,Gx1).

We suppose p > 2. Let us define the group

rad, \(< 1+ pS >) = {(F(S),j) € Homy, (G115, Gms,) ¥ Z/pZ such that

F(SYP1+uS)y 7 =1¢ Hom(Gu,llsw,Gmsw)}/ <1+ pS,0>.

There is a conflict of notation since S denote Spec(R), too. But it should
not cause any problem. For any (F,j) € rad, (< 1+ pS >) we will explicitly
define in 11.3.4 an extension &N of Gua by Gy1. We will give a description of
Eth(Gml, GA71).

THEOREM. 11.3.35. Suppose that A\, ;1 € R with v(Aqy) > v(X),v(p). There
erists a (natural) exact sequence

0 — radya(< 1+ pS >) - Ext'(G1,Gry) —
— ker (HI(S, Gry) — H'(S,, GZJ)),
where 3 1s defined by

(F,4) s £
In particular rad, \(< 1+ pS >) ~ {EWNFI]
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From this result it follows that, up to an extension of R, any group scheme
of order p? is of the form E£WAF) Moreover we can determine all the models of

(Z/p*Z)x.

THEOREM. 11.3.53 Let us suppose p > 2. Let G be a finite and flat R-group
scheme such that G ~ (Z/p*Z)k. Then G ~ ET"™ D for some v(A\y)) >
m > n > 0. Moreover F(S) = E,(aS) := 30—, @St with pa — jm™ = —L—aP
mod 7. Finally m,n and a € R/7"R are unique.

In fact this statement is slightly weaker respect than that presented inside the
thesis. We indeed remark that we can explicitly find all the solutions a of the
equation pa — jn™ = —F—5aP mod 7" if m > n(see 11.3.46).

The above result gives us candidates for being effective models for a Z/p*Z-
action. In the second part of the third chapter we study the problem of the
extendibility of Z/p*Z-torsors. We suppose that X = Spec(A) with A a facto-
rial R-algebra, complete with respect to the m-adic topology, or X a normal local
R-scheme. We moreover suppose X is essentially semireflexive (see §111.1 for the
definition). This implies in particular that X — Spec(R) is faithfully flat. For
instance we can consider X = Spec(R[[T]][{T~'}) or X = Spec(R[[T]]). Let us
consider a Z/pQZ—torsor Y — Xg and let Y be the normalization of X in Y.
It is possible to show that there is a factorization

(4) hey 22y M x

with h; and hy degree p morphisms. We define ~; such that the valuation of the
different D(h;) of h; (localized in the special fiber) is

v(D(hs)) = v(p) — (p — 1)
for i« = 1,2. So we can apply 111.4.2 to h;. Moreover, by 1.5.6, we have that
Yi] € H'(X,Gria) \ H' (X, Gri+12) for some j < v()\(2)). Finally we can prove
that Y = Spec(B) with

P2 P2

and . Y _ 1
B =am) (I =Ly
T

for some H(Ty) € By and go, fi € A. H(T1) and gy are uniquely determined
mod 772, while fy is uniquely determined mod 7.

Now, given H(T}) = Zi;é arTy* € By, let us consider its formal derivative
H'(Ty). For any m > =, we will say that a € 7R satisfies (A),, if

aH(T)=x"""H'(T) mod 7.
DEFINITION. We will call effective threshold the number
k = min{m > y1|3a € 7R which satisfies (A),,}.
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For any m > v, there exists at most one a € 7R which satisfies (A),,. We will
call it o,,. We will prove that we can construct a group scheme £ 2Ep(@xS),1)

DEFINITION. Using the previous notation we say that the degeneration type
of YK — XK is (j,’)/l,’}/g, /ﬂ?).

Then we will prove the following theorem.

THEOREM 111.5.7 Let X := Spec A be as above. Let Y — Xyi be a connected
Z/p*Z-torsor. Let'Y be the normalization of X in Y and let us suppose that Yy
is integral. If Yi has (j, V1,72, k) as degeneration type then its effective model is

g2, Ep (e S) 1)

We remark that the existence of the effective model in this case was not assured
by the above cited result of Romagny about the existence of effective models.
Indeed we do not assume Y to be of finite type.

Then we give a criterion for Y to have a structure of torsor under some finite
and flat group scheme G.

COROLLARY T111.5.12.  Under the hypothesis of theorem 111.5.7Y — X is a
G-torsor under some finite and flat group scheme G if and only if kK = ;.

Moreover, we will give an example in which Y is not a G-torsor under some
finite and flat group scheme. We observe that in the case R of equal characteristic
the extension of Z/p*Z-torsors had been studied by Saidi ([43]). We remark that,
in that case, there is no criterion to determine if a cover is a torsor under some
group scheme. Finally we observe that Romagny [40| and Saidi |42] have given, in
equal characteristic, an example in which Y — X is not strongly extendible.

We finally try to determine 4-uples of positive integer numbers that can be
degeneration types. Since R contains (y then v(p) = p(p — 1)v((s — 1)

DEFINITION. Any 4-uple (4, V1, %, k) € N* with the following properties:

v(p).
. p_l,
Yo < plk—y1+7) < py;
v(p)
p

i) max{y;,72} <k <
il

)
i) if K < pyg then v —j =
)

Jif £ > pyp then 0 < p(y2—j) < v(p) —pri+r;
) pj <m
will be called an admissible degeneration type.

DEFINITION. Any admissible degeneration type which is the degeneration type
attached to a Z/p*Z-torsor Y — X as above, will be called realizable.

And finally we prove the following statement.

THEOREM 111.6.7. Any admissible degeneration type (j,v1,7%2, k) with kK = 7
is realizable.

If Kk > 71 we have examples of admissible degeneration types (7,71, 72, <) that
are not realizable.
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CHAPTER 1

Differential forms and torsors under some finite group
schemes

I.1. Classical results

Let X be a scheme over a perfect field & of characteristic p>0. For any [F,-
scheme Y we will denote by Fy : Y — Y the absolute Frobenius of Y. Let us
define X® the scheme obtained by the base change Fy, i.e.

X @ X

| l

Spec(k) LN Spec(k)

is cartesian. We remark that ¢ is an isomorphism (but not as k-schemes) and Fx
factors in g o F'x /i, where the k-morphism

Fxp: X — XP
is called relative Frobenius. Let Q% = (/\Qﬁ(/k, d) be the De Rham complex. The
differential d is Oy -linear (through Fx/; : Oxw — (Fx/i),Ox). Hence

ZQ%X/,C = kerd : Qfx/k — Q;“/lk

and ' 4
By, = d(Qy )

are sheaves of Ox@)-modules. Then H*(QY% /), the cohomology of the complex
Q% 1> 18 a graded Ox ) -algebra.

We recall that that there exists a unique homomorphism of graded Ox-algebras
(1.5) C;(/lk P Q% — @ (H (%))
which is equal to Fx/, in degree zero and such that, for any section s of Ox,

Cyplds) =[s"""ds] € H (%)

Cartier has proved the following result:

THEOREM L.1.1. If X/k is smooth then C')_(}k s an 1somorphism.

PROOF. See [29, 7.2] for a proof. O
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The inverse of (1.5) defines an Ox-linear morphism Cy/y, : GZQ% )y — Q}/k,
called Cartier’s operation.
Let us consider the morphism of sheaves of abelian groups
dlog : Oy — Qﬁ(/k

given by dlog(s) = 9= We call Q]  the image sheaf. If we look at the iso-
morphism Cx/;, in degree zero we have the following exact sequences of sheaves on

X

- 0— OF — 0% % 204,
I.

0 — O% — Ox L>ZQ§(/,€

We now recall that, for any commutative group scheme G over X, the group
H'(X, Q) classifies the G-torsors over X. If G is not commutative there is the
same classification but H'(X,G) is only a pointed set (see [32, II1.4]). Let us
consider the natural continuous map of sites f : Xy — X, It is known that
R'f.G,, = R'f.G, = 0 for i > 0 (see the proof of [32, II1.3.9]). Considering the
exact sequences associated to the exact sequences in Xy

1—>up—>GmL>Gm—>1
0—>Ozp—>GaL>Ga—>0
and, applying the functor associated to f : Xy — X, we obtain in X,
1 — p, — O% =5 O% — R fup, — 0,

O—>ap—>(9XF—X>OX—>R1f*ap—>O
and ’ ’
R'f*u, =R fra, =0
for any ¢ > 1. In particular

X/ (O%)P = R fup,
(L7) Oi/((’)i)p ~ R!f.a,.

Moreover, in the étale topology the sheaves p,, and «,, are the zero sheaves since X
is reduced. So H'(Xe, ptp) = H'(Xet, o) = 0 for any i. Then the Leray spectral
sequences

H'(Xet, R fupy) = H (X, 1)

H' (X, R foap,) = H (X, )
give the isomorphisms

H' (X, py) = HO(Xet, R fopsy)

HY(X, o) -2 H(Xop, R fory).
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We now have, by (1.6), in the étale topology, the following isomorphisms
dlog
O /(0% ) == Qi 1ogs
d
Ox/(Ox)? — BQ
which give the isomorphisms
d Log :=dlogod : H' (X, i) — H(Xet, Vx 10g)5
d:i=dod: H(X,a,) — H°(X.;, BQ%U,C)
using the identifications of (1.7). But H°(Xe, Q% 10,) = H*(Xzar, Ux,4,,) and
HO(Xer, BQyy,) = H*(Xzar, B ;,). This is the proof (taken from [32, I11.4.14])
of the following result.

THEOREM 1.1.2. Let X be a smooth scheme over a perfect field k of character-
istic p, then the maps
d Log : Hl(Xa ,Up) - HO(XZarv Q?X,log)?
d: HY(X, ap) — H°(Xz4, BQQ/,C)
are 1somorphisms.

We remark that the previous statement means
HY (X, ap) = {w € H (X 4., 2%)| w is locally exact},
HY(X, ) = {w € H (X z4r, V)| w is locally logarithmic}.
The purpose of this chapter is to generalize the previous theorem for a,»-torsors

and pyn-torsors. Moreover we obtain similar statements for some group schemes
over a d.v.r. of unequal characteristic.

1.2. De Rham-Witt V-pro-complexes

For reference see [27]| where the author uses this complex to give a more explicit
description of crystalline cohomology. For any scheme X over F,, a VV-De Rham
pro-complex is a projective system

Mo - {(Mn)nela R: Mn—i—l — Mn}

of sheaves of differential graded algebras (dga) over X, and a family of additive
maps ’ .
Vi (M, — My )nez
such that RV = VR and
(V1) M,, =0 for n <0, M} is an F,-algebra, M? = W, (M?), R and V are the
usual operators over W, (M?);
(V2) For any n,i,j and x € M and y € MJ we have

V(xzdy) =V (x)dV (y);
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(V3) For any x € M} and y € M? we have
Vydz] = V(y[a""]d[z]).

NoTATION: for any A € Ob(F,-alg(X)), where F,-alg(X) denote the category
of F,-algebras over X, and z € A we denote by [z] € W(A) the Teichmiiller
representant (z,0,0,...). And [z]<, is the image in W, Q%.

The De Rham V-pro-complexes form a category VDR(X). An arrow f :
M, — N, of VDR(X) is, by definition, a homomorphism of projective systems
of dga’s (fn : M,, — Ny )nen such that f, \V =V f, and 0 = W,(f?), for any
n. |27, 1 1.3] ensures that there exists a left adjoint (called W,Q%) of the forgetful
functor

VDR(X) — F,-alg(X)
M, — M{)
This means
HOIHVDR(X)(W.QE, M.) = Home—alg(X) (A, M{)),
for any A € ob Fj-alg(X) and M, € ob VDR(X).

Moreover 27, I 1.3] also says that the homomorphism m, : Q) — W04,
such that 7 is the identity, is surjective and 7, : Q% — W% is an isomorphism.
So we can think of any element of W, 2} as a differential form with coefficients in
W, (A). In the case that X is defined over a perfect field of characteristic p then,
by [27, 1 1.6], W,Q% is naturally a sheaf of W,,(k)-dga’s.

1.2.1. Operator F. We recall that W,(Ox) has a Frobenius endomorphism
denoted
F: W.OX — W.Ox.
For F,-schemes it is defined by (zo, ..., z,) — (2f,...,2F). It extends the absolute
Frobenius Fy : Ox — Ox.
In the following we recall the definition of the operator F on the de Rham-Witt
complex and its principal properties.

THEOREM 1.2.1. Let X be an [Fy-scheme. Then the homomorphism of projective
systems of rings RE =F R : W,0Ox — W, 10x (where W;Ox =0 ifi <0) can
be uniquely extended to a homomorphism of projective systems of graded algebras

F W0y — W,
such that
a) for any n > 2 and for any x € Ox
Fdfz] = [2")<n 2] <n-1;
b) for any n <1, we have
FAV =d: W,0x — W,Q%.
PRrROOF. [27,1 2.17]. O
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PROPOSITION 1.2.2. F has the following properties:

i) FV=VF=p: W,Q\ — W,0%;

i) dF = pFd: W, Q% — W, 1QF" (i.e. p'F is a morphism of dga);

i) FAV =d: W, Q% — W, Q4

iv) if we denote by F : W,Q% — W,Q% the endomorphism defined functo-
rially by ¥ : W,0x — W,,Ox, we have, for any i, the following commu-
tative diagram

W, Qi — =W, Qi

p'F
W1 Qi
PROOF. These properties are all proved in [27, T 2.18]. O

Moreover it is possible to prove the following result.

PROPOSITION 1.2.3. If X is a smooth scheme over a perfect scheme T of char-
acteristic p then, for any n, we have
Ker(F"d : W, 1 Qy — QYY) = F(W,109Q%).
PROOF. See the proof of [27, 1 3.11]. O
REMARK 1.2.4. We can think of the operator F as a generalization of the inverse

Cartier operator C~1: Qf, — Q% /d Q% ', In fact it is possible to show (|27, 3.3])
that if X is smooth and T is perfect, F induces an homomorphism

F:W, Q4 — W,04/dV" Q%!
which coincides with C~! for n = 1.

1.2.2. The canonical filtration of W,Q%. In this paragraph and in the next
one we suppose that X is a connected smooth scheme over a perfect base T' of
characteristic p. Then, for any n,r € Z, we define

W%, ifn<0orr <0
Fil'w,Q% =< KerR" " :W,Q% — W,Q%, ifl <r<n;
0, ifr>n.

The following result characterizes, in another way, the previous filtration
PROPOSITION 1.2.5. For any n and 0 <1 < n we have

Ker(p' : W,Q% — W,Q%) = Fil"™"W,Q%.
PROOF. [27,1 3.4]|. O
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1.2.3. Two exact sequences. We consider the following morphisms
dlog, : O% — W,Q%

d[z]<n
xr ——
[7]<n
and
d: Ox — W,Q%
xr— d[z]<p
Then

PROPOSITION 1.2.6. For any n > 1, the sequence

F dlog,,
0— 0% 25 0 5w ol

15 exact in the étale topology.
PROOF. [27,1 3.23.2]. O
We can prove the following

PROPOSITION 1.2.7. For any n > 1 the sequence

FTL
0 — Ox —5 Ox -5 W0k
15 exact in the étale topology.
REMARK 1.2.8. Here there is an abuse of notation. In fact we recall that the
operator F in degree zero is equal to RF =F R : W, 0x — W,,_1Ox with F the
usual Frobenius.

PROOF. By 1.2.5 we see that p"W,Q% = 0. So

1.2.2(4

A[F™ ()] <p = dF"([2)<20) 2 p" F" d[a] < = 0.

We now prove Kerd C ImF" by induction. For n = 1 the result derives by
the well known Cartier isomorphism. Now suppose d[z]<, = 0 with x € Ox.
Then R(d[z]<,) = d[z]<n—1 = 0. So, by inductive hypothesis, we have, locally,
r = F""1(y), for some y € Ox. So

d[z]<n = d([F""}(y)]<n) = dF" " ([yl<2n—1) = p" 7 F" 7 d[yl<on1 = 0,
which implies, by 1.2.5, F" ' d[y]<o,_1 C Fil'W,Q%. Hence
RHE ! d[y|<on1) = F" 7 d[yl<n = 0,

which implies [y|<, = F(a) with a € W,,11Ox, by 1.2.3. Then, locally, y = F(z)
for some z € Oy and so x = F™(z), locally.
U
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1.3. Differential forms and torsors in characteristic p

DEFINITION 1.3.1. For any scheme over a perfect field of characteristic p we
define W, Q% log @S the image sheaf of the Z-module map dlog,. Moreover we

define BW, Q% as the image sheaf of d,,. They are both sheaves of Z-modules.

Following the strategy of the proof of 1.1.2, we give a description of pn-torsors
and oyn-torsors in the smooth case in terms of De Rham-Witt differential forms,
in a way similar to 1.1.2.

Let X be a smooth scheme over a perfect field of characteristic p. Let us
consider the natural continuous map of sites f: Xy — X,

Let us consider the exact sequences in Xy

1—)/,l,pn—>GanGm%1

O—>Oépn—>Gap—n>Ga—>O.
We obtain the following isomorphisms, mutatis mutandis, as in the proof of 1.1.2

(1.8) ;(/(O;()pz = le*,up"
' Ox/(Ox)P" ~ R foayn

and
on
HY(X, ) = H(Xet, R fupipn)
HY(X, o) 22 HO(X o0, R fuciyn ).

We now have, by 1.2.6 and 1.2.7, in the étale topology, the following isomor-
phisms
dlogn
;{/(O;{)p — WnQﬁ(,log’
d
Ox/(Ox)P" — BW,Q%,

which give the isomorphisms
dLogn = dlogn © 671 : Hl(Xa :up") - HO(Xeta WnQ;,log)a
d, :=dod,: H'(X, ) — H°(X, BW,QY),

using the identifications of (1.8). We remark that d Log, and d,, are defined even
if X is not smooth, but in these cases they are not in general isomorphisms. So we
have proved the following result.

THEOREM 1.3.2. Let X be a smooth scheme over a perfect field of characteristic
p. Then, for any n > 1 the maps

d Log, : H' (X, ppn) — H°(Xe, WnQ;—JOg),
dn : H1<X7 Oépn) — HO(Xet7 BWTLQ}X)

are 1somorphisms.
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Moreover d Log,, (resp. d) is compatible with the natural restrictions map
Tnm - HH_l(X’ Np") - HH—l(X» Npm)

and ' ,
r! : HZ(Xet, Qllogm) I HZ<Xet7 Qllog m)

n,m

with n > m (resp.
Trm @ H (X, apn) — HTH(X, apm)

and } A
qu%m : HZ(Xeta Qllog,n) B HZ<Xet7 Qllog m)

with n > m ) In other words

l
Tn,m

d Logm O Tnm = © dLogn7

(resp. dorpm =1, ,0d ).
REMARK 1.3.3. For n =1 we obtain theorem 1.1.2 (with the same proof).

PROOF. The statements about compatibilities are clear since all maps are func-
torial. ]

We now give a more explicit description of d Log,. By Kummer theory we
know that H'(X, pi,n) is the set (modulo isomorphism) of pairs (L,v) where L is
an invertible sheaf on X and ¢ is an isomorphism Ox — L®". This means that
any torsor Z — X is determined by an affine covering (for the Zariski topology)
(Ui = Spec(A;))ier of X, a cocycle {f;} in H'(X,0%) and g, € H(U;,0;;)
such that 5-” = ;’—; for any 4,j. So locally (for the Zariski topology) it is of type

Z; = SpeC(Ai[Zi]/(an —gi)), with z; = fi;2;. And Z — X is trivial if and only

if, up to refining the covering, there are {h;} € H°(U;, O}, ) such that f;; = % and
g J

n

a € H(X, O%) such that af;_ = hg .

This means that Z — X is a trivial torsor for the flat topology if and only if
any Z; — U, is trivial, i.e. there exists {7;} such that 7% = g;. The map which
we have defined is

d Log, - H' (X, ppn) 2 H(Xor, 0% /(O%)") L HO(Xor, Wak 10,)
d 11<n
adloh) — o) = {3y

[gz] <n

In a similar way it is possible to give explicitly d,, .

REMARK 1.3.4. Since the W, Q% are quasi-coherent sheaves over the scheme
W, (X), with T(U, W,,Q%) = W, for any U/X étale (|27, 1 1.13, 1.14]), then by
[32, I11.3.7], we have H’ (X, W,Q%) = H (X z4,, W,,S2% ) for any 4, j. In particular,
since Wnﬁklog, BW,Q% C W, QL. then H(X, WnQ}X,log) = H"(Xzar, WnQ%{,mg)
and H(X,, BW, Q%) = H*(X .., BW,QY).
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As a corollary we reobtain a result of Illusie and Raynaud (cfr [27, 5.7.2] and
27, 5.8.3]).

COROLLARY 1.3.5. For any smooth scheme X over a perfect field k there is an
1somorphism

(X, Z,(1)) = lim H' (X, i) = H(Xp0r, WO 1),
where WQ 1,, = im W, Q% .

/
n,m?

PROOF. d Log, is compatible with the natural restrictions map r,, ,, and r
defined in the above theorem, i.e.

d Logm © Tpm = 7y, © d Logy, for n > m.
Passing to inverse limits, the thesis is immediate. 0

1.3.1. Normal case. In this section we want to generalize 1.3.2 to p,»-torsors
over some particular normal schemes.

PROPOSITION 1.3.6. Let X be a normal integral scheme. For any finite and flat
commutative group scheme G over X,

i H(X,G) — H'(Spec(K (X)), Gk (x))
is injective, where i : Spec(K (X)) — X is the generic point.

PROOF. A sketch of the proof has been suggested to us by F. Andreatta. Con-
sider a G-torsor f : Y — X such that *f : i*Y — Spec(K (X)) is trivial. This
means there exists a section s of ¢* f. We consider the scheme Y, which is the clo-
sure of s(Spec(K(X))) in Y. Then fly, : Yo — X is a finite birational morphism
with X a normal integral scheme. So, by Zariski’s Main Theorem (|30, 4.4.6]), we
have that fly, is an open immersion. On the other hand, since f)y, is finite, then
it is proper. In particular it is closed. Hence it is an isomorphism. So we have a
section of f and Y is a trivial G-torsor. O

REMARK 1.3.7. If GG is not finite the proposition is not true. Take, for instance,
a scheme X with H'(X,0%) # 0. This one classifies G,,-torsors over X. But
H'(Spec(K (X)), ngec(K(X))) = 0.

COROLLARY 1.3.8. Let X be a normal integral scheme. Let f:Y — X be a
morphism with a rational section and let g : G — G’ be a map of finite and flat
commutative group schemes over X, which is an isomorphism over Spec(K(X)).
Then

ffg.: HY(X,G) — H'(Y,GY)
18 tnjective.

PROOF. By hypothesis Spec(K (X)) — X factors through f :Y — X. If

i : Spec(K (X)) — X, we have

i, : H(X,G) — H'(X,G") — H'(Y,Gy) — H'(Spec(K (X)), Gx(x))-
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Therefore, by the previous proposition, it follows that
H'(X,G) — H'(Y,GY)
is injective. O

REMARK 1.3.9. The previous corollary can be applied, for instance, to the case
f =idx or to the case f : U — X an open immersion and g = idg. Roberts ([38,
p. 692]) has proved the corollary in the case f = idx, with X = Spec(A) and A
the integer ring of a local number field.

We now prove a result of purity for u,-torsors.

PROPOSITION 1.3.10. Let X be a separated, locally factorial and integral scheme.
And leti: U C X be an open such that codim(X \ U) > 2. The map

it Hl(X’ ,un) - Hl(U7 Mn)
18 an tsomorphism, forn > 2.

PROOF. The injectivity comes from the previous corollary. We now prove the
surjectivity. Consider the following commutative diagram

HO(X> O})L>HO<X> O;()HHI(Xu MH)HH1<X7 O;()L)Hl(X’ O;()

|

H(U, 0% )——H(U, O%)——=H"(U, p1)—H" (U, 0% )——H" (U, O%)
induced by exact sequence
1—>/Ln—>GmL>Gm—>1

in the flat site. Since X is normal and the complementary of U has codimension
at least two, the first two vertical maps are isomorphisms. By [24, I1.6.5] we have
Cl(X) ~ CI(U). But, since X is separated and locally factorial, then CI(X) ~
Pic(X) and Cl(U) ~ Pic(U) and so the last two vertical maps are isomorphisms.
By the five lemma we have the thesis. U

REMARK 1.3.11. The previous proposition is not true if the scheme X is only
normal. The following example has been suggested to us by M. Roth. For instance
we consider an ordinary elliptic curve £ C IP? over an algebraically closed field k&
of characteristic p. It is projectively normal since it is an hypersurface. Then the
projective cone X over E is normal. Let ¢ be the singular point of X. By Kummer
Theory we know there is a surjective map

H' (X \ g, pipn) — ker(p" : Pie(X \ q) — Pic(X \ q)).

On the other hand Pic(X \ ¢) = CI(X \ ¢) since X \ ¢ is regular and it is well
known that CI(X) = CI(X \ q) = CI(E) = Pic(E).

We call X’ the affine cone over C. It is known that CI(X') = Cl(Ox,).
Moreover since Ox , is local then Pic(Ox,) = Pic(X') = 0. So any Cartier
divisor of X restricted to X’ is trivial, which means that any Cartier divisor of
X is contained in the hyperplane section at infinity C. So we have that Pic(X)
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is generated by the hyperplane section at infinity. This means that Pic(X) ~ Z.
Moreover we also know that since X is projective and k is algebraically closed

HY(X, ppn) =~ ker(p™ : Pic(X) — Pic(X)).

So H (X, pym) = 0.
Since E is ordinary, we can take a p,n-torsor Y over X \ ¢ with an associated

non-trivial line bundle D’ of p™-torsion. Therefore it is not possible to extend it to
all X.

COROLLARY 1.3.12. Let X be a separated, locally factorial and integral scheme
over a perfect field of characteristic p such that the set of reqular points, Reg(X),
18 open. Then we have the isomorphism

dLOgn Hl(X /,Lpn) — HO<XZar,W QX log>

REMARK 1.3.13. The condition on Reg(X) is satisfied for instance by excellent
schemes, e.g. an algebraic variety over a field or Spec(A4) with A a complete and
local ring.

PROOF. Since X is normal then codim(X \ Reg(X)) > 2 (|30, 4.2.24]). We set
U = Reg(X). By above proposition H*(X, pyn) ~ H (U, i,n). Then we have the
following commutative diagram

d Logn

Hl(Xa Hpr ) HO(XZUW'7W QX log)

~

(d Logn)u
HYU, pipn ) ——>H(U 0, W2k log)
The map (d Log, )y is an isomorphism and the second vertical map is injective
since U is an open dense of X. An easy verification shows that d Log, is an
isomorphism. O

1.3.2. Non-normal case. We now want to explain why it is not possible to
have a similar statement in general for non-normal schemes. The main reason is
that 1.3.6 is not true in general.

EXAMPLE 1.3.14. Consider X = Spec(k[z,y]/(z — y**!)) = Spec(A) and YV
the a,-torsor Spec(A[T]/(T? — y)). Generically this torsor is trivial since we have
Yy = ( )P. But Y is not trivial since y is not a p-power in A.

On the other hand we know that any (also generalized) differential form which is
trivial on an open dense is trivial over the whole scheme. This is so an obstruction
to classify a,n-torsor and pn-torsor as differential forms as we did in the smooth
case.

1.4. Differential forms and j,»-torsors in unequal characteristic

By now, R will be a d.v.r. of unequal characteristic. While K will indicate
its fraction field and k its residue field. We now want to classify p,n-torsors by
opportune differential forms. We remark that H'(X, y,n) is a Z/p"Z-module. In
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characteristic p we have seen that there are natural sheaves of Z/p"Z-modules.
In mixed characteristic we will define opportune sheaves. For any faithfully flat
morphism of schemes X — Spec(R), let us consider the map of sheaves of Z-
modules

dlog : Oy — Qﬁ(/R
defined by

We call ©j,, « the image sheaf.

DEFINITION 1.4.1. For any integer n > 0 we will call Q p,,,,, the sheaf of
Z/p"Z-modules Qﬁ(/R log/pnﬂﬁ(/R log- When there will be no possibility of confusion

. . 1
we will write {0, ..

One of the main ingredients in characteristic p was 1.2.6. We now will prove a
similar statement over a d.v.r. with fraction field of characteristic zero.

PROPOSITION 1.4.2. For any faithfully flat morphism g : X — R with geomet-
rically integral generic fiber the following sequence

— * * \p" « dlogn
l— g IOSpCC(R)(OX)p - OX - Q?X'/R,log,n —0

1S exact.

REMARK 1.4.3. Let g : X — Y be a morphism with Y a Dedekind scheme and
the generic fiber X, integral. Then it is faithfully flat if and only if X is integral
and ¢ is surjective. This follows from [30, 4.3.8] and [30, 4.3.10].

PROOF. First, we prove the following result.
PROPOSITION 1.4.4. Under the hypothesis of the above proposition
_ d
I — g 1(,)Spec(R) — OX E— Q%{/R
18 ezact.

PROOF. Since char(K) = 0 then any subextension L C K(X) is separable.
Since K (X)/L is separable, it is formally smooth (|22, 19.6.1|) and it follows that
there is an exact sequence
(1.9) 0— Qp/x ®p K(X) = Qkxyx — Qkxyr — 0

(see |22, 20.5.7]).

Now let 2 be a point of X. It is known that (¢~ Ogpec(r))s = Ospec(R).g(x)- Since
g is faithfully flat then Ogpec(r)g(2) — Ox is injective. Moreover, by definition
of relative differentials, it follows that

d
Ospec(R).g(x) — Oxo — (Ux/p)e

is the zero morphism. We now prove that kerd = Ogpec(r),gx)- We denote by B
the local ring Ospec(r),g(z)- We remark that B = K or R. Let f € Ox, be such
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that df = 0 € (U/p)e = Qo,,/B. Then df =0 € Qx5 We consider
L=K(f) € K(X). So by (1.9) we have d f = 0 in Qj;) - This means

ey =0,
In particular K(f)/K is a finite extension, thus
feEKX)NK.
But since X has geometrically integral generic fiber, then
KX)NK =K
by [23, 4.5.9]. So f € K N Ox,. If z is in the generic fibre then B = K so f € B
and we are done. If z is in the special fibre then B = R and K N Oy, is a proper
sub-R-algebra of K, thus of the form #R for some s > 0. If f € R = B we
are done, otherwise there exists n > 0 such that 7"f € R*. Since B — Ox, is
faithfully flat it follows, by [30, 1.2.17], that 7Ox , # Ox. In particular 7 ¢ O%,
and so n = 0, which implies f € B. O
We now can prove the exactness of the sequence of the statement. Clearly

g 1O% (R)(O})pn — O% is injective and dlog(gfl(’)gpec(R)(O})p”) —0.

Spec

Now let x be a point of X. Then (g—logpec(mo;f")x = ngec(R),g(m)(Ova>*pn'

If g(x) = Spec(B) as above then dlog f = 0 € (Q/z,,.,,)» means that dlog(f) =
dlog h?" for some h € O% , i.e.
fy_

This means, by (1.4.4), f = ah?", with a € B. This implies
ker leg = g_lggpec(R) (O})p"‘
The surjectivity of dlog, it follows from the definition of Q% I Rlogn- O

PROPOSITION 1.4.5. Let Y — Spec(R) be a morphism with geometrically in-
tegral fibres and G a finite flat R group scheme. If we denote by f : Yy — Yz,
the natural continuous map of sites, then

§: H'(Y,G) — H°(Yz4,, R* f.G),
induced by the Leray spectral sequence
H' (Y40, R f.G) = H'Y (Y, G),
1S an 1somorphism.

PROOF. Since f,G is G restricted to the Zariski site, the Leray spectral sequence
above gives

(1L10) 0 — H'(Yar, G) — HYY,G) -5 H(Yzer, RM.G) — H2(Yzar, G)
in low degrees. We now prove that
(L.11) H' (Y74, G) =0
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for ¢ > 0. Indeed we will prove that G is a constant sheaf over Y ,,.. In particular
it is flasque since Y is an irreducible topological space. Then, by [24, I11.2.5], we
can conclude H(Yz,,,G) = 0 for ¢ > 0.

Let us fix a presentation R[G] = R[Ty,...,T,]/(Pi,...,Py,). An element of
H°(Ugzqr, G) is an R-algebra homomorphism R[G] — H°(U,Oy) C K(Y). This is
given by the images x4, ..., x, of the generators of R[G], satisfying P;(x1,...,x,) =
0 for 1 < i < m. Since R|G] is finite over R, then R[zy,...,x,] is finite also so
the elements x; are integral. Since K(Y)N K = K we get z; € K, and since R is
integrally closed in fact z; € R. Finally

H(Uz4r,G) = {(21,...,2,) € R*s. t. Pi(x1,...,2,) =0for 1 <i<m}=G(R),
and this does not depend on U. 0

With abuse of notation, we will denote by f both the natural continuous map of
sites Xy, — Xzqr and Spec(R);; — Spec(R) zqr. It will be clear by the context

which we are considering. Since R'f.G,, x = R'f.G,, r = 0, (see the proof of |32,
III 4.9]), reasoning as in the proof of 1.3.2 we can conclude that

O3 /(03" = R fopypx.
Oépec(R)/<O§pec(R)>p ~ R f*,up",Spec(R)-
We define, using 1.4.5 and this identification,
d Log, := dlog, o 6, : H*(X, fpn) — H(X zar, Qllog,n).
THEOREM 1.4.6. Let g : X — Spec(R) be a faithfully flat morphism with
geometrically integral generic fiber. Then, for any n > 1, there is an isomorphism
d Logn : Hl <X7 MP’L)/HI(SpeC(R>7 Mp") — HO(XZaru Qllog,n)~

Moreover d Log,, is compatible with the restriction maps Ty, @ H (X, ppn) —
HY X, pym) and Tom - HY(X zary Q0g.0n) — HY X Zar, Qiog ) withn > m, i.e.

(1.12)

d Logy, o Ty = r;%m od Log,.
PROOF. The map g induces a morphism of sheaves on X
9 (R febtpr spectmy) — R futtyr x,
which is the natural map
g_l(ngec(R)/(ngec(R))pn) — O% /(0%

under the identifications of (1.12). We prove it is injective. Let x be a point of X.
Let g(z) = Spec(B) with B = R or B = K. We have to prove that

B*/(B*)" — O% /(0% )"
is injective. Suppose z € B* N (9;@’;. Then z = y*" for some y € O%,. Then

y € KNK(X). But, since X — R has geometrically integral generic fiber, then,
by [23, 4.5.9], we have KN K (X) = K. Soy € K and y*" € B*. Therefore y € B*.
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We now have in Xz,,., by 1.4.2, an exact sequence
— * * \p" * \p™ * « \pn dlog,
(1.13) l—y 1OSpeC(R)(OX)p [(O%)" — O%/(0%)” o Qg — 0.

So we have
dlog,,

le*lu’p”,X/le*,up",Spec(R) = O}/gilogpec(R) (O})p” — Qllog,m
which gives the exact sequence

dlog,,

(114) 0— H0<SpeC(R)Zara le*ﬂp",Spec(R)) I HO(XZary le*,upn,X) —
B HO(XZara Qllog,n) — Hl(speC(R)Zara le*ﬂp",Spec(H))-

We claim that

(115) Hl(SpeC(R>Zar7 le*lu’p”,Spec(R)) = 0.
Therefore, using 1.4.5 and (1.14),

(116) 0 — H'(Spec(R), jiyr) — H'(X, piyn) 5 HO(X 70r, Vo) — 0.

We have so proved that dLog, is an isomorphism. We now prove (1.15). By
(117) 1 — (ngec(R))pn

it follows

— OSpec(r) — R'f «Hpn Spec(r) — 0,
— H'(Spec(R) zar; (Opecir))” ) — H' (Spec(R) zar, R futtpr spec(r) —
- Hz(SpeC(R)Zarv (ngec(R)>pn)
Considering the exact sequence in Xz,
1 — ppn — Ox — (Ox)"" — 1,
and taking the long associated cohomology sequence, we obtain
(1.18) H'(Spec(R) z4r, O%) = H'(Spec(R) zar, (O%)P")

for i > 0. But, since R is a d.v.r. then Pic(Spec(R)) = 0. So, using the next
lemma,

H'(Spec(R) zar, (Ofpecry)” ) = H'(Spec(R) zar Opec(r)) = 0
for i = 1,2. Then
H*(Spec(R) zqr, le*upn’Spec(R)) = 0.
LEMMA 1.4.7. We have that
H?*(Spec(R) zar, Gr) = 0.
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PROOF. Any group of cohomology is computed here in the Zariski topology.
Let F be a sheaf (for the Zariski topology) on a scheme X. We define, for any
n € N, the sheaf H"(F) as the sheaf associated to the presheaf

U~ H(U. Fv).
Moreover we denote by H"(X, F) the n**-group of Cech cohomology. The following
spectral sequence (see [32, 11T 2.7|)
H'(X, H'(F)) = H"(X, F)
induces the exact sequence (since H°(X, H’(F)) = 0 for any j > 0 by [32, III 2.9])
0 — H*(X,F) — H*(X,F) — H'(X,H'(F)) — H*(X,F).
Suppose now X = Spec(R) and F = G,,,. We remark that, since
H'((Spec(R), G,,) = H'(Spec(K),G,,) =0,
H'(G,,) is the zero sheaf, which implies H'(Spec(R), H'(G,,)) = 0. Hence
H*(Spec(R),G,,,) — H?*(Spec(R),G,,)

is an isomorphism. But, since we are working in Zariski topology, Cech cohomology
can be computed using alternating cochains (see |24, I11.4]). But since in Spec(R)
there are only two open sets, then, for any i > 1, H/(X,G,,) = 0, too. Hence
H?*(Spec(R), G,,,) = 0. O

The explicit description of d Log, is as follows. By Kummer theory we know
that H*(X, pyn) is the set (modulo isomorphism) of pairs (L,) where L is an
invertible sheaf on X and ¢ is an isomorphism Ox — L®". This means that
any torsor Z — X is determined by an affine covering (for the Zariski topology)
(Ui = Spec(4;))ier of X, a cocycle {f;} in H'(X,0%) and g; € H(U;,0y),
such that Z-n = Z—; for any 4, j. So locally (for the Zariski topology) it is of type

Z; = Spec(A;[z]/ (X" — i), with z; = fi;2;. And Z — X is trivial if and only if,
refining the covering if necessary, there are {h;} € H°(U;, O};) such that f;; = Z—

and a € H°(X, O%) such that a‘p;i = L.

This means that Z — X is a trivial torsor for the flat topology if and only if
any Z; — U, is trivial, i.e. there exists {7;} such that 77 = ¢g;. The map which
we have defined is

dLogn : Hl(X7 Mp") i) H()(XZCL'I‘J O;{/<O§()pﬂ) dl—()g;LHO(XZar; Qllogn)

Wb o) — ) — w={%)

The compatibility condition is clear by construction.
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PROPOSITION 1.4.8. If, in addition to the hypothesis of the theorem, Xj is a
locally factorial and separated scheme such that the set of reqular points, Reg(X),
15 open, then the map d Log, is compatible with the restriction. This means that
there exists a map res), : H(Xzar, py.,) — H*( Xk zar, WnSlx, 10,) such that

d Logn

HO(XZara Ql

log,n)

i i resy,
d Logn,

Hl(Xkaﬂp”) H0<Xk,Zara WnQ}Q,log)
commutes (i* is the pull-back of i : X;, — X ).

HI(X7 ﬂp”)/Hl(R> ﬂp”)

PROOF. By hypothesis in the special fiber we have 1.3.12. For the functoriality
of (1.10) we have that d,, commutes with ¢*. We now define

T@S;Z : HO(XZGT7 Qllog,n) I HO(XZWN (ankk,log)

dg d [gi]
{(—t—A{-51t
9i (93]
which clearly commutes with dlog,,. 0

1.5. Differential forms and G, ,-torsors

For any A € R define the group scheme

GW = Spec(R[T )

TaT
The R-group scheme structure is given by
T—1T+TR1+NT'®T comultiplication
T — 0 counit
T .
— 7 T coinverse

We observe that if A = 0 then G ~ G,. It is possible to prove that G& ~ G
if and only if v(A) = v(u) and the isomorphism is given by 7" — ﬁT. Moreover
it is easy to see that, if A € 7R\ {0}, then g,g” ~ G, and Q}?) ~ G,,. It has been
proved by Waterhouse and Weisfeiler, in [59, 2.5|, that any deformation, as a group
scheme, of G, to G,, is isomorphic to GM for some A € 7R\ {0}. If A € R\ {0}
we can define the morphism

ot GV — G,

given, on the level of Hopf algebras, by x —— 1 + Az: it is an isomorphism on the
generic fiber. If v(\) = 0 then o is an isomorphism.

We now define some finite and flat group schemes of order p". Let A € R satisfy
the condition

(x)  w(p) =p"'(p—Dv(N).
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Then the map
Un GO — GV
(1+ TP —1
AP

T — P\,(T) :=

is an isogeny of degree p”. Let
Gn = Spec(R[T]|/P\,(T))
be its kernel. It is a commutative finite flat group scheme over R of rank p". It is
possible to prove that
(Gan)g = pipr if v(A) =0
(Goan)p = o 3" Hp = Du(A) < v(p);
(Gan)k = e X Z/pZ i p"~(p — 1)o(N) = v(p).

We observe that o is compatible with 1y ,,, i.e the following diagram is com-
mutative

(1.19) GN—>=G,,

Then it induces a map
M Gy — flpn
which is an isomorphism on the generic fiber. And if v(\) = 0 then o™" is an

isomorphism.
We remark that
|0, if v(\) <v(N);
Hom(Gxpn, G n) = { Z/p"Z, otherwise.
If v(\) > v()) the morphisms are given by
G)\,n — G/\’,n
(1+AT)" —1
)\/
fori =0,...,p" — 1. It follows easily that G, ~ G, if and only if v(\) = v(\).
In the following any time we will speak about G} ,, it will be assumed that A
satisfies (x). If R contains a primitive p™-th root of unity ¢, then, since

v(p) =" (p = Dv(Aw),
the condition () is equivalent to v(A) < v(Aw)-

T +—

REMARK 1.5.1. We report here an useful remark taken from [5]. Let R be
a complete local Aj-algebra with A, = Z[(,—1, Iﬁ] NZ, C Q,. In |33] it has
been proved that there exists a 1-1 correspondence between isomorphism classes of
finite and flat group schemes of order p and isomorphism classes of pairs (a, c) € R?
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such that ac = p. Two pairs (a,c) and (@, ') are said isomorphic if there exist
u € R* such that ¢’ = u?"'a and ¢ = u?~'c. Denote by G4, the group scheme
associated to a pair (a,c), as above. As an R-scheme, it is given by G0 =
Spec(R[T]/(T? —aT')). Under the further assumption that cw,_; admits a p — 1-th
root 3 in R we have the isomorphism G40 — G%J defined at the level of the

underlying Hopf algebra by = — Y27~/ i_li—i, where wy, ..., w,_; are the universal
constants defined in [33].

1.5.1. A filtration of H'(X, y,n). Let X be a faithfully flat R-scheme. Let
us consider the exact sequence on the étale site X,;
0— GgW N G,, — 1,G,, — 0,

where i denotes the closed immersion X, = X ®p (R/AR)—X (see [51, 1.2]. The
associated long exact sequence is the following

(1.20) 0 — H°(X,6W) — HY(X,G,,) — H°(X),G,,) —
— HY(X,6W) — HYX,G,,) — HYX,,G,,).

Now by the exact sequence of group schemes
0 — Gan —= GO 22 g g
we have the exact sequence of groups

(1.21)
HO(X, g(A)) (M* HO(X’g()\Pn)) N HI(X, GA,TL) Z_*) Hl(Xyg()\)> N Hl(ng()\Pn)).

DEFINITION 1.5.2. We define for any n > 1
Hl(X, G,\,n)loc = ker(Hl(X, Gan) AN Hl(X, g(,\))).

LEMMA 1.5.3. Let X be a flat R-scheme such that H*(X, Ox)* — H°(X,, Ox,)*
is surjective and Pic(X) = 0. Then

HY (X,6M) =0

and

HY(X,Gy,) = HY(X,Gy )"

REMARK 1.5.4. This result will be applied to the case X a local scheme or
X = Spec(A) with A factorial m-adically complete R-algebra. For X local see
the proposition 1.5.5 below. If A is factorial we recall that, by |24, 6.2, 6.11], it
follows that A factorial implies X normal and Pic(X) = 0. Moreover it is easy
to see that the restriction map H°(X,Ox)* — H°(X,,Ox,)* is surjective. We
also observe that if v(\) = 0, which corresponds to the case G, =~ p,n», then
HY(X,0x)* — HY(X),Ox,)* is always surjective, since X, = ().
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PROOF. Since H'(X,G,,) = Pic(X) = 0, it follows by (1.20) and by the fact
that H(X,Ox)* — H°(X),Ox,)* is surjective that H'(X,GW) = 0. Then by
(1.21) it follows that

HY(X,Gy,) = HY(X, Gy)
O

From this lemma follows the following result which says that Hilbert’s Theorem
90, as stated in [32, III 4.9], is true for any G,

PROPOSITION 1.5.5. Let X be a faithfully flat R-scheme. Let f : Xy — Xz
be the natural continuous morphism of sites. Then, if X # 0, R' f.(GN) = 0. In
particular H*(X7,GN) = HY (X z4r, GV).

PROOF. It is sufficient to prove that H'(Spec(A),G™) = 0 for any local ring
A flat over R. This has been proved in [51, 1.3] with the same proof that we give
here. This comes from the above lemma, just noting that, since A is local, then
H°(Spec(A),G,,) — H°(Spec(A/\A),G,,) is surjective and Pic(Spec(A)) = 0
(see [32, III 4.9]). Now, since R'f.(GMN) = 0 it follows, by the Leray spectral
sequence, that
Hl(be g()\)) = Hl(XZara g()\))

If we have a morphism Y — X then we have a commutative diagram

HY (X, Gyp) —= H'(Y,Gy0) -

| |

HY(X,gW) — H'(Y,GW)
This induces a morphism
(1.22) HY (X, Gy )" — HY(Y,Gy)".
Using 1.4.5 and the exact sequence
0— Grp — GV — G

it is possible to prove, similarly to (1.16), that H'(Spec(R), Gx,) — H'(X,G\»)
is injective. So by (1.22) and 1.5.3, applied to Spec(R), it follows that we have a
little more, i.e.
H'(Spec(R), Gxpn) — HY(X,Gxn).
We now construct a filtration of H'(X, p,»). If X is proper over R and n = 1,
it coincides with that of [41, 5.2] and [4].

PROPOSITION 1.5.6. Let X be a normal integral faithfully flat R-scheme, and
let ip = max{i|v(p) > p"'(p — v(x")}. Then, for any n, we have the following
filtration

0C HY(X,Grion) C H'(X,Grio-1,,) C ... C HY(X,Grp) C H'(X, pipn).
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PROOF. For any A, u with v(\) > v(u) we have a morphism G& —s G
defined by x — 39& and compatible with 1y, and 9, ,. So it induces a morphism

Grn — G, such that

G)\,n
Yz 'L/),u.,n
/,Lpn

commutes. We obtain the following commutative diagram

Hl(X G)\n HIXGHN)

\/

HY(X, pin)

and, applying 1.3.8, we have that ¢, ,, and ¢, ,, are injective. In this way we obtain
the desired filtration. U

REMARK 1.5.7. Let A be an integrally closed faithfully flat R-algebra. Then
we can apply the above proposition. The injection H'(X,Gy,) — H'(X, pmn)
induces the injection H*(X, Gy ,,)"¢ — H'(X, pyn)"¢. This means that the map

™" (A) 1 GV (A) fir 0, (GV(A)) — A (A"
is injective. Explicitly this means that, for any 2 € A*, 2P" = 1 mod \*" if and
only if xt =1 mod .

Before constructing a relative version of the above filtration we give locally, for
the Zariski topology, equations for G ,-torsors. If ¥ — X is a G-torsor we will
denote by [Y] its class in H'(X,G). Now let Y — X be a G ,-torsor. Let us
consider the exact sequence (1.21). By 1.5.5 we can take a covering {U; = Spec(A;)}
of X by affine subschemes such that the class (i,[Y])|y, is trivial, where i : Gy, —

GW. This means that
L+ )P —1
(123) Yiu, = Spec (Az-mm( L f»)

for some f; € A; such that 1+ \" f; € A¥. Moreover 1+ \T; = f;;(1 + \T}) with
{fij = 14 Agi;} = i.[Y] € HY(X,GW).
REMARK 1.5.8. Andreatta and Gasbarri have given a description of G ,,-torsors

from which they deduced that a G ,-torsor is locally (1.23). From this fact they
deduced that

H' (X 11,6W) = H' (X747, GM).
See [5].
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PROPOSITION 1.5.9. Let us suppose that R has perfect residue field. Let X be
a normal integral faithfully flat R-scheme with reduced special fiber. We have the
following filtration

0C H'Y(X, G,,io,n)/Hl(R, Grion) € ... C HY(X, ppn) JHY (R, ).
PROOF. We remark that it is sufficient to prove that
HY(X, Go) [ H (Spec(R), Gan) — H(X, pip)/ H (Spec(R), jip)
is injective. Indeed, if it is true, we obtain the thesis reasoning as in the proof of
1.5.6. First, we suppose that X = Spec(A) is an affine scheme. We prove that
HY (X, Gr0) B (Spec(R), Gan) — H (X, )/ H'(Spec(R), iyn)

is injective. Let [Y] be an element of H'(X,Gy,) it is given by f € GA)(A).
Let us suppose that (a}).([Y]) € H(Spec(R), y,n). This means that there exists
g € A* such that (1 + X" f)g*" = a € R*. In particular
(1.24) ¢ =a mod " A.
We remark that

(@M).([Y]) = [a] € H'(Spec(R), fiyn).
If [a] € H'(Spec(R), Gy, n) then, since v(Aw)) > v(A), [a] € H'(Spec(R), Gx,)
and we are done. We now suppose [a] € H'(Spec(R), G ) \ H'(Spec(R), Grri1,,)
for some r with v(p) > p"~1(p — 1)r. If r > v(\), reasoning as above we are done.
We now consider the case r < v(\). We will prove that this can not happen. Up
to a multiplication by a p"-power in R, which does not change the class of [a], we
can suppose a = 1 + 7" "ay with ag Z 0 mod 7P . Since A is an integral domain,
by the Theorem of Krull ([30, 1.3.13]), it follows that A is separated with respect
to the m-adic topology. Then there exists 7’ € N such that g = 1+7" g, and gy % 0
mod mA. Since the residue field k is perfect we have that there exists b € R such
that ap = 0*" mod 7. So (1 — 7"b)P" (1 + 7"""ag) = 1 mod 7P""+1. Therefore we
can suppose that ag =0 mod 7. We now have, using (1.24),

gi"” =1+ H’go)pn =14+7"""ay mod \*"
and, on the other hand, as it is easy to see,
" =1+ mod 7",
We now compare the last two equations. If ' > v(\) then
¢ =1=1+7""ay mod I\".

Since ap # 0 mod 7" then r > wv()\). This is a contradiction since we have
supposed 7 < v(\). Hence ' < v(\). Comparing again the above two equations
we have

L+ a"""ag=1+7""gt" mod \".
Since X}, is reduced then gg” # (0 mod 7. Moreover ag Z 0 mod 7", so it follows
r" = r and gg’” = a9 mod 7. But ap =0 mod 7. Hence we have gg” =0 mod T,
which is contradiction.
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We now suppose that X is possibly not affine. Let [Y] be an element of
HY(X,G),) such that (¢¥),)«[Y] € H'(Spec(R), pipn). By 1.5.5 we can take an
affine subscheme U of X faithfully flat over R such that [Yjy] € HY(U,Gy,)".
Therefore, by what we just proved, we have that [Yjy] € H'(Spec(R), G»,). This
means that there exists a Gy ,-torsor R — R such that Y|y ~ U x g R'. Therefore
Y — X and X xp R are two G ,-torsors which are isomorphic on the open U.
By 1.3.8 it follows that they are isomorphic. So [Y] € H'(Spec(R), Gn)- O

For any n € N and A € R the natural map
Dt Gan — G)\pim_i

induces a map

(125) Pny Hl (X> G)\,n) - Hl (X7 G)\Pi;n,—i)?

which associates to a G ,-torsor Y the G, .-torsor Y/kerep, ;. This map is
compatible with the filtration.

1.5.2. Deformation between d and dlog. Let g : X — Spec(R) be a
faithfully flat morphism. We consider the map of sheaves of Z-modules on Xz,

dlog* : GV — O,

defined on each open set by

da
— .
14+ Xa
Then the following diagram
slog™
(1.26) Q(A)gQﬁqR
a? l A
dlog

commutes. If X is flat over R then A is injective for A # 0.

On the generic fiber over R the vertical arrows of the previous diagram are
isomorphism. So, on the generic fiber, §log” is essentially dlog. While on the
special fiber we have

slogh, = d: GV ~ G, — Q.
Moreover we remark that, if | A, the following diagram commutes
(1.27) G —— g

ltslogA dlogh l
A

Qi(/R —— Q%(/R
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where the first horizontal map G® — G is given by S — ﬁS . From now on,

A € R satisfies condition (x), i.e. v(p) > p" ' (p—1)v(\). We now define the sheaf
of differential forms candidate for classifying G ,-torsors.

DEFINITION 1.5.10. Let Q! be the image of 6log*. When there is no

log* \ X/R
ambiguity we will simply call it Qllogx- We define
.ol 1
0: Qlogk - QlagAP”

the map such that the following diagram commutes

Ql N d Qlo

And for any n, we consider the subsheaf of Z-modules (£, 1) of Qzlogﬂ’" . We define
the sheaf of Z-modules
Qllog)‘,n = Qllog)\P" /5<Qllog)‘)'
We have in fact that 2,  is a sheaf of Z/p"Z-modules since p”QllogApn C 0(Dyp0)-
Indeed )\fv”lellogApn C Qy,,0, because

da  d(W\""la) _

L+ a 14+ AXM"la)

— NI o)
log*

A

so p"!
log

REMARK 1.5.11. We observe that dlog* depends only on v()). Indeed if v(\) =
v(X) then A\ = ¢\ with ¢ € R*. So 6log* and §log" are the same maps up the
isomorphism c : Qﬁ(/y — Qﬁf/y.

AP" log™"

1.5.3. The theorem. Let X be a normal faithfully flat R-scheme with ge-
ometrically integral generic fiber and geometrically reduced special fiber. We
will construct a filtration of H°(X .., Q) By 1.4.6, H*(X 74,2}, .) is iso-

log,n)‘ log,n
morphic to H' (X, pun)/H*(Spec(R), p,n). Moreover we constructed a filtration of
HY (X, puyn)/H' (Spec(R), ppn) in 1.5.9. We will prove that these filtrations are the

same. Let us consider the map of sheaves of Z/p"Z-modules
N, — QL

log*,n log,n*
If g | A then, using (1.27), it is easy to see that the following diagram commutes

Q1 "

logA,n

Ql

logt,n
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This implies that the following diagram

(1.28) H(X,Q! | )

log*,n

\\Qi\ "

HO(X, Q)

log, n)

HO (X Q}og“ n)

commutes, t00.

PROPOSITION 1.5.12. Notation as above. Letig = max{i|v(p) > p" ' (p — 1)v(7")}.
Then there is a filtration

0C ]—[O(XZM,QIIOQ iw ) C o CH (X zar, Qogr ) € H (X zar,

70 n log, n)

PROOF. We remark that, by (1.28), it is sufficient to prove that, for any A € R
which satisfies (x), then H%(Xz,,, Q' | ) C HY(X 747, 2} We Wlll prove a little

log*,n
more. Indeed we will show that
AP

log,n

log, n)
1

- Qlog n

is an inclusion of sheaves of Z/p"Z-modules. But it suffices to prove this in the

category of presheaves. We are so reduced to proving that for any open set U C X,
then

)\p” : HO(UZQM log AP™ )/5(HO(UZ0,77 Qllog )) g HO(UZa'I'a Qllog,U/R)/anO(UZa'r'a Qllog,U/R)'

is injective. Let w € H(Uzqy, Qz wn) be such that

Nw =
with n € H(Uzar, Q,, v/r)- Let {U; = Spec(A;)} be a covering by affine open sets
of U such that

N wiy, = dlog (1 + X" f;)

for some f; € gW’”)(Ai) and

nu, = leg 9i
for some g; € A;. Therefore

MWy, = dlog (1+ X" f;) = p" dlog g;.

Hence

(1+ X" f;)

gp

which implies, by 1.4.4, that (1 + A" f;)¢”" = r; for some 7; € R*. Using the same

argument as in the proof of 1.5.9 we obtain that g; = 14 \h; for some h; € GV (A4,).

This is the point where we use the fact that X} is reduced. So we have shown that
no, = dlog(1 + Ah;) = Adlog* (hy).

We remark that if we have dlog*(h;) and §log*(h;) then

Nnu.nu; = AdlogA(hi)|Uj = AélOgA(h]NUl

dlog( ) =0,
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So
Aolog*(h;) = Adlog™(hy)
over U; N U;. Since X is flat over R and X, is geometrically reduced then Qﬁ(/R is
flat over R; hence
Slog*(hs) = dlog™(h;).
We call o’ the element of H(Uyg,,, Qzlogx) given, on the covering {U;}, by {dlog*(h;)}.
Then
PAW) = N w,
which means, by definition of 4,

0(w') = w,
as we wanted. O
Now by
0 — Gan — GO 22 g g
we have .
R f.Gn =GN [3(GW).
So, by 1.4.5,

H(X z4r, R .Gy ) = H' (X, Gy ).
We can now define
dLog) : HY(X,Grpn) — H* (X240, Q) 5 )

log*,n

as the map induced by
Slogy : G an(G) — Qs

THEOREM 1.5.13. Let us suppose k is perfect. Let X be a normal faithfully
flat R-scheme of with geometrically integral generic fiber and geometrically reduced
special fiber. Then there is an isomorphism

d Log)

HY(X,Gyn)/HYR,Grp) —" H*(Xzar, Qr )

log*,n
Moreover

a) d Log) is compatible with the filtrations of 1.5.9 and 1.5.12;
b) d Log) is compatible with the natural restriction maps

7’27m : Hl(Xa G)\,n) E— Hl(Xa G)\,m)
and
T/':\L,m : HO(XZW’? Qllogk,n) - HO(XZW’? Qllogk,m)
with n > m, i.e.
d Logm o rpm = T;L,m od Log,;
¢) if Y — Spec(R) satisfies the conditions of the theorem and there is an
R-morphism h: Y — X, then d Log) commutes with pull-backs.
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PROOF. Clearly H'(R, G, ) C kerd Log). Now, by 1.4.6, 1.5.6, (1.26) and 1.5.12
(the last one will be useful only at the end of the proof) we have the following
commutative diagram

(1.29) 0 0

| |

d Log;)

HY(X,Gy,)/HYR, Gy ) —> HO(Xzar Qs )

- |

d Logn
0 Hl(Xv :up")/Hl(Ra ,up”) g; HO(XZaranlog,n) > ()

which proves that dLog is injective, too.
We now show the surjectivity of d Log). Let w € H%(X 74, QO

loghn)- Lhere is
a covering by affine open sets {U; = Spec(A4;)} of X such that wyy, = Slog™" f;
for some f; € GM(U;). Now M\'w gives an element of H°(X g, Qieg.) 50, by
1.4.6, it determines uniquely a class [Y] of H*(X, yyn)/H' (R, j1,n). A representant,

Y — X, is defined in the following way

Yiy, = Spec(A[L]/(T7 — (1+ X" f2))),
with T; = f,;T; for some f; € O%(Us N U;). Since f7 = }jﬁjﬁf]{; then, by 1.5.7,
fii = 1+ Mhyj for hy; € GM(U; N U;). Now, for any i, we consider W — X such

that Wy, = Spec(A;[Z:)/ (S22 =Y _ gy and Z = fi;2; + hij. If Gy, s, locally,

Spec(Ai[ﬂ]/(%) with T; = T we define the G ,-action m : Gy, x W —
Wilocally by Z;, — T;®1+1® Z; + NT; ® Z;. This action makes W a G ,,-torsor
over X. Moreover ¥, ,,([W]) = [Y] by construction. If we now look at (1.29), it is
simple to verify that d Log)}([W]) = w by a simple diagram chasing.

The statements about compatibilities are clear by construction.

4

We now show the compatibility with restrictions on the special fiber. If indeed
0 < p"'(p—1)v(A\) < v(p) then, as remarked at the beginning of the section,
G)"“\k: ~ ayn. So, if Xy is smooth, we can ask if there is compatibility between the
isomorphisms of 1.5.13 and 1.3.2. The answer is in the following proposition.

PROPOSITION 1.5.14. If we add to the hypothesis of the theorem that 0 <
P Hp — Do\ <v(p), k is perfect and X}, is smooth, then there exists a map

resy : H(Xzar, Q3 ) — H'(Xz4,, BWnQﬁ(k)

log*,n

such that the following diagram

d Log)

HI(X> GA,TL)/HI(R> GA,”)—>HO(XZ‘"’ QllogA,n)

iz: \Lresn
d

H1<Xk,Ckpn) HO(Xk,ZaraBWnQA%(k)
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commutes (i* is the pull-back of i : X; — X ).

REMARK 1.5.15. In the case v(\) = 0 the compatibility has been already treated
in 1.4.8. We recall that if v(A\) = 0 then Gy, = fin.

PROOF. We define res,, in the following way
resn : H'(Xzar, Qpn ) — H*(Xzar, (BW, Q)

log* ,n
{dlog*(g:)} — {d gi},
where g is the restriction on the special fibre of ¢ € Ox(U). The map res; is

nothing else but the restriction map. By construction of d Log) and d the diagram
commutes. 0



CHAPTER 11

Models of Z/p*Z over a d.v.r. of unequal characteristic

Let R be any discrete valuation ring with fraction field K, uniformizer 7 and
residue field k of characteristic p > 0. We will moreover suppose, till the end of
the thesis, that R is of unequal characteristic if not otherwise specified. We will
write S = Spec(R). As remarked in the introduction there will be a conflict of
notation since S will denote the indeterminate of some polynomials, too. But it
should not cause any problem. The aim of this chapter is the classification of finite
and flat R-group schemes of order p? which are isomorphic to (Z/p*Z)k on the
generic fiber, i.e. models of (Z/p*Z)k. As asserted in the introduction, we will
prove that for any such group scheme G, there exists an exact sequence

0—G—& — & —0,
with &, & smooth R-group schemes, which coincides with the Kummer sequence
on the generic fiber. We will describe explicitly all such isogenies. The explicit

description of the models of (Z/p?Z)k presented here will be used in the third
chapter to study the problem of the extension of Z/p*Z-torsors.

11.1. Néron blow-ups

We recall here the definition of Néron blow-up. For details see [11, Ch. 3], [47]
and |59]. In this section R is a not necessarily of unequal characteristic.

DEFINITION I1.1.1. Let X be a flat affine R-scheme of finite type and R[X] its
coordinate ring. Let Y be a closed subscheme of X}, defined by some proper ideal
I(Y) of R[X]. Then m € I(Y). We define the Néron blow-up (or dilatation) of Y
in X by

XY := Spec(A[xHI(Y))).

Then XY is a flat affine R-scheme of finite type and the R-homomorphism
R[X] C R[x'1(Y)] induces a morphism
XY — X,
which gives an isomorphism on the generic fiber.
The Néron-blow up is explicitly given as follows: let I = (m, f1,..., fi) with

fi € R. Then
RIXY] = R[X][x 7 f1,..., 7 fil.

29
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So XY is the open set of z € Proj(é;>0I") (the classical blow-up of X in Y'), where
I, is generated by m. Clearly it is possible to give the definition for schemes in
general (see [11, Ch. 3]).

In the following we are interested in the case where X is an affine flat group
scheme GG and Y a subgroupscheme H of G. We recall the following definitions.

DEFINITION 11.1.2. Let ¢ : G — H be a morphism of flat R-group schemes
which is an isomorphism restricted to the generic fibers. Then it is called a model
map.

DEFINITION 11.1.3. Let Hg be a group scheme over K. Any flat R-group scheme
G such that G >~ Hy is called a model of Hy.

It is possible to prove that G is a group scheme and G — G is a model
map (|59, 1.1]). We recall the following results:

PROPOSITION 11.1.4. The canonical map G? — G sends the special fiber into
H. Moreover G! has the following universal property: any model map G' — G
sending the special fiber into H factors uniquely through G*.

PROOF. [59, 1.2]. O

THEOREM 11.1.5. Any model map between affine group schemes is isomorphic
to a composite of Néron blow-ups.

PROOF. |59, 1.4]. O

EXAMPLE 11.1.6. Let us consider the group scheme G, 1 = Spec(R[S]/((lJr“##))
with v(p) > (p — 1)v(p). The only possible subgroup of (G, 1), which gives a non-
trivial blow-up is H = e. Then I(H) = (7, S) if v(u) > 0 and I(H) = (7,5 — 1)
otherwise. It is easy to see that, in both cases,

€ —
Gh1 = Gura.

So if there exists a model map G — G, ; then, using 11.1.5, G ~ G ; for some .

11.2. Models of (Z/pZ)k

As remarked in 1.5.1 every finite and flat R group scheme of order p, up to
an extension of R, is of type G, for some A € R. For (Z/pZ)k-models we have
a more precise statement, which is well known to specialists. Two proofs are for
instance given in [39, 1.4.4, 3.2.2]. The second one is essentially that we present
here. We remark that if G is a model of (Z/mZ)k and R contains a primitive m-th
root of unity then there are the following model maps

Z]mZ — G — i,

Indeed the first one is the normalization map, while the second one is the dual
morphism of the normalization Z/mZ — G (see also [35, 2.2.3] for a more
general result).
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PROPOSITION 11.2.1. Let us suppose that R contains a primitive p-th root of
unity. If G is a finite and flat R-group scheme such that Gy ~ Z/pZ then G ~ G 1
for some A € R\ {0}.

PROOF. As remarked above we have an R-model map
©: G — pip.

By 11.1.5 it is a composition of Néron blow-ups. Then, by 11.1.6, it follows that
G ~ Gy for some A € R\ {0}. O

11.3. Models of (Z/p*Z)

In this section we study models of (Z/p*Z). Throughout the section we sup-
pose that R contains a primitive p?-th root of unity. First of all we prove that any
such group is an extension of G, ; by G, for some p, A € R\ {0}.

LEMMA 11.3.1. Let G be a finite and flat R-group scheme of order p* such
that G s a constant group. Then G is an extension of G,1 by Gx1 for some

A€ R\ {0},

PROOF. If Gk is a constant group then G is isomorphic to (Z/p*Z)k or to
(Z)pZ) Kk % (Z/pZ)k. We consider the factorization

0— (Z/pZ)x — G — (Z/pZ)x — O.
We take the closure Gy of (Z/pZ)k in G. Then G is a model of (Z/pZ)k. So
by 11.2.1 it follows that G; ~ Gy for some A € R\ {0}. G/G,; is a model of

(Z/pZ)k, too. So, again by 11.2.1, we have G/G\1 ~ G, for some p € R\ {0}.
We are done. O

So we study, first of all, the group Extl(Gm, Ghr)-

11.3.1. Extensions of group schemes. We here recall some generalities on
extensions of group schemes. For more details see [15, IT1.6].

Let G and H be group schemes on S. We moreover suppose that H is commu-
tative and that G acts on H. Let us denote

Extg(G, H) = {¢ € Homsa, (G, H)|p(9g') = ¢(9) + 9(¢(9)
for any local sections ¢,¢" of G}.

We are interested in the case that G acts trivially on H. In this situation
Ext(G, H) = Hom,, (G, H).

Now H +— Ext(G, H) is a left exact functor from the category of fppf-sheaves of
G-modules on S to that of abelian groups. Let Ext% (G, H) denote the left derived
functor of H +— Ext%(G, H). Tt is known that Extg(G, H) is isomorphic to the
group of equivalence classes of extensions of G by H (see [15, III 6.2]).

Recall that an extension of G by H is by definition an exact sequence of fppf-
sheaves of groups

0—H-“FL.qg—0,
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such that i(j(g)h) = gi(h)g~"' for any local sections h of H and g of E.
Consider two extensions (E) : 0 — H — F -5 G — 0 and (F) : 0 —

H - F -5 G — 0. They are equivalent if there exists a morphism of group
schemes f : E — F which makes the following diagram

H—-p—1-G
|
(F): 0—=H—>F—">G—0
commute. Clearly such an f is an isomorphism of group schemes. If G and H are
flat affine groups over .S, then it is the same for E.
We now recall the definitions of pushforward and pull-back of extensions. Let

G and H be as above and ¢ : G — G a morphism of group-schemes. Then ¢
induces a morphism

(E):0 0

©* : Bxto(G, H) — Extg (G, H).

It is explicitly given as follows. Let
(E):0—>HL>EL>G—>O

be an extension of G by H. Then ¢*[E] is defined by the diagram

B 0—H— G ——0
L, )
(E):0—=H -E-1 G0
where the right square is cartesian.

Now consider a group scheme H' together with a G-action. If ¢ : H — H' is
a morphism which preserves the G-action then it induces a morphism

Y, Extg (G, H) — Extg(G, H'),

which we can explicitly describe as follows. Let

(E):O—>HL>EL>G—>O
be an extension of G by H. Then ,[E] is defined by the diagram
(4
B 0—=H'— > E'

G
G
where the left square is cocartesian.

Next we recall the Hochschild cohomology. Let G be a presheaf of groups on
Schis and F a presheaf of G-modules on Schjg. We define a complex {C"(G, F), 0"}
as follows: C"(G, F') denotes the set of morphisms of schemes from G™ to H and
the boundary map

0

(E):0 H—>pg—"’

&' C"(G,F) — C"YG, F)
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is defined by
(0" f)(90:91,- -, 9n) = 9of (g1, -+ gn) +

n—1
+Z(_1)i+1f<907gl7 vy 9iGir1, e 7gn) + (_1>n+2f(90a g1, - .- 7gn—1>-
=0
Put
Z"(G, F) =ker(6" : C"(G, F) — C"*YG, F)),
B"(G,F) = Im(6" ' : C"YG, F) — C™(G, F)),
and

H}(G,F)=Z"(F,G)/B"(G, F).
For our purposes we are interested in the second group of cohomology. The
following result is indeed well known.

PROPOSITION 11.3.2. Let G and H be group schemes over S. Given an action
of G on H then HZ(G,H) is isomorphic to the group of equivalence classes of
extensions of G by H which have a scheme-theoretic section.

PROOF. [15]. O
11.3.2. Sekiguchi-Suwa Theory. Here is a very partial review of results of
[47], [49] and [53]. Let u, A € 7R\{0}. For any X € R\{0} set Sy» = Spec(R/N'R).
What we call Sekiguchi-Suwa theory is their description of Homgr(gl(gz, Gumsy)

and Ext'(GW, GW) through Witt vectors.

Let Y = Spec(R[T1,. .., T,n]/(F1, ..., F,)) be an affine R-scheme of finite type.
We recall that, for any R-scheme X we have that Homg.,(X,Y) is in a bijective
correspondence with the set

{(a1,...,am) € HO(Y, Oy)"|Fi(a1,...,am) =0,...,F,(ay,...,a,) =0}

With an abuse of notation we will identify these two sets. If X and Y are R-group
schemes we will also identify Hom,, (X,Y") with a subset of

{(a1,...,am) € HO(Y, Oy)"|Fi(a1,...,am) =0,...,F,(ay,...,a,) =0}

We now fix presentations for the group schemes G,, and G with A\ € 7R.
Indeed we write G,, = Spec(R[S,1/S]) and GN = Spec(R[S,1/1 + AS]). Before
illustrating the Sekiguchi-Suwa theory we see what happens when p € R*. In this
case GW ~ G,,, and we have the following well known lemma.

LEMMA 11.3.3. For any A € TR we have
Homy, (Gynys,, Giys, ) = {S" € R[S, 1/S]|i € Z}.
In particular if v(\1) > v(A2) > 0, the restriction map
I’IOIIlgT<(Gm|s)\1 s Gm|5’)\1) — Homgr (Gm\S,\Z s Gm‘skz)
18 an isomorphism.

Moreover for the extensions group we have
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PROPOSITION 11.3.4. For any A € nR\ {0}, any S-action of G,, on GV is

trivial. Moreover
Ext! (G, GV) =0

PROOF. See [49, 1 1.6, 1T 1.4]. O

We also want to recall what happens to the extensions group when \ € R*, i.e.

GWN ~G,,.

PROPOSITION 11.3.5. For any pn € R\ {0}, any action of G on G,, is trivial.
Moreover

Ext'(G™,G,,) = 0.
PROOF. See [49,11.5,12.7] O

We now consider the case u, A € 7R\ {0}. We observe that by definitions we
have that

Homg (G, Gnys,) = {F(S) € (RIAR[S, —

14+ uS
Any action of G on GW is trivial ([49, I 1.6]). We now consider the map

Homg, (G4), Gy, ) = Ext'(G%), GV)

DIFS)F(T) = F(S+T+pST)}

given by
F— EWAF)

where
EWAE)

is a smooth affine commutative group defined as follows: let F(S) € R[S] be a
lifting of F'(S), then
1 1

EWAF) — Spec(R[Sy, Ss, =
pec(RlS1. 2 T F(S1) + AS;

)

(1) law of multiplication
Sl P—>S1®1+1®Sl+,u51®51
Sy S5 ® F(Sy) 4+ F(S1) ® Sy + ASy @ Sy+

F(S)@F(S) —F(Si1®@1+1® 8 4+ uS @ S))
)

(2) unit
S —0
1—F(0)
A

Sy —
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(3) inverse

S| — — 51
1+ 1S,
rts — Fori)
Sy F(51)+AS2 1+p51

A
We moreover define the following homomorphisms of group schemes

G™N = Spec(R[S, (1 + AS)7']) — £WAD

by

Sl — O

1—F(0
So — S + 4
A
and
EWXNF) W —g RIS

— G pec(R] ’1‘1‘#5])

by
S — Sl-

It is easy to see that
(11.30) 00— GN — gXF) __, gw) __,

is exact. A different choice of the lifting F'(S) gives an isomorphic extension. We
recall the following theorem.

THEOREM 11.3.6. For any A\, € 7R\ {0}, the map
a: Homgr(gfgz, Gonis,)— Ext'(GW,GW)

is a surjective morphism of groups. And ker(«) is generated by the class of 1+ uS.
In particular any extension of GW by GV is commutative.

PROOF. [48, §3]. O

We now define some spaces which had been used by Sekiguchi and Suwa to
describe Homg,«(gfgj,Gm‘SA) and, by the above result, Ext'(G,1,Gx1). See [53]
for details.

DEFINITION 11.3.7. For any ring A, let W, (A) be the ring of Witt vectors of
length n and W (A) the ring of infinite Witt vectors. We define

Wh(A) = {(ag, .oy apn) € Wo(A)|a; is nilpotent for any i and

a; = 0 for all but a finite number of 2}
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W(A) = {(ao, ey py ... ) € W(A)|a; is nilpotent for any i and

a; = 0 for all but a finite number of z}

We recall the definition of the so-called Witt-polynomial: for any r > 0 it is
O, (Ty, ..., T,) =T +pTV  + -+ p'T,.
Then the following maps are defined:
- Verschiebung
Vi Wn(A) — Waa(4)
(ag,...,an) — (0,a0,...,a,)
- Generalization of Frobenius
F:Wa(A) — W,(A)
(ag,...,a,) — (Fo(T), Fi(T),..., F,(T))
where the polynomials F,.(T) = F.(Ty,...,T,) € Q[To, ..., T,.1] are de-
fined inductively by
O, (Fo(T), FA(T),...,F.(T)) = ®,01(To, ..., Try1).
If p=0 € A then F is the usual Frobenius. The subring W(A) is stable respect to
these maps. - - .
For any morphism G : W(A) — W (A) we will set W(A)¢ := ker G. And for

any a € A we denote the element (a,0,0,...,0,...) € W(A) by [a].
We recall the following standard result about Witt vectors.

LEMMA 11.3.8. Let S,.[T, U] € Z[T, U] such that, if a,b € W(A), then
a+b=(5lab,...,S[abl...)
If T; and U; have weight p* then S,[T, U] is isobaric of weight p".
The following lemma will be useful later.
LEMMA 11.3.9. Let A € R. If a = (ag,a1,...),b = (by,b1,...) € W(R/AR)F

then
a+b=(ag+bo,a1+by,...,a;+bi,...)

PROOF. We suppose that a + b = (¢co,c1,...,¢,...). By the previous lemma
we have that ¢,(a, b) is isobaric of weight p". It is a standard result that

CT(CI,7 b) = Q, + br,' + C;((CL(), ai, ... ,CLT_l), (bo, bl, e ,b,-_l)).
for some polynomial ¢.(So,...,S,—1,7y,...,T,—1). Clearly c.(a,b) is isobaric of
weight p”, too. Hence deg(c;) > p.
Let a;,b; € R be liftings of a; and b;, respectively. For any r > 1, up to changing
a with b, we can suppose that v(a;) = min{v(a;),v(b;)|i =0,...,r — 1}, for some
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0<k<r—1.Sincedegc. > pthen v(c.(a,b)) > pv(ar). But v(a?) > v(\) since
F(a) =0. Hence c.(a,b) =0 € R/AR. So

a+b=(a+by,ar+bi,...,a;+b...)

O
We now recall the definition of the Artin-Hasse exponential series
TpT o0 TpT
E,(T) :=exp (Z . ) = Hexp (—r) € Zyy)[[T1).
r>0 p r=0 p

Sekiguchi and Suwa introduced a deformation of the Artin-Hasse exponential map
in [53]. By the well known formula limy_o(1 + Az)> = exp(ax), it can be seen
that (1 + Az)> is a deformation of exp(ax). From this point of view they defined
the formal power series E,(U, A; T') € Q[U, A][[T]] by

%)pr—l)

E,(UNT) = (1+ AT)% H(l + Ap”Tp’“)p%«((%)PT—(
r=1
They proved that E,(U, A;T') has in fact its coefficients in Z, [U, A]. It is possible
to show ([53, 2.4]) that

[T )1 Bp(UATITY) s if p > 2;

-1

EP<U7A;T> - 1
T2t E (UAZ‘lTI)z{H(lZ E,(UNZ-IT%)5 | ifp=2.

Let A be a Z-algebra and a, A € A. We define E,,(a, 1; T') as E,(U, A; T') evaluated
at U =a and A = p.

EXAMPLE 11.3.10. It is easy to see that E,(a,0;T) = E,(aT) and E,(p, 1; T) =
1 + uT. Moreover if a? = uP~'a € A then (%)pr — (%)pr*1 =0 for r > 1. Hence

p—1 i— 1( k’/,L)
Ey(a,;T) = <1+MT)IL_1+ZH+

=1

T

In particular if p =0 and a”? =0 € A then

»(a,0;T) Z

If a= (ap,a1,as,...) € W(A) we define the formal power series

(1.31) Ey(a,i;T) = [[ Bolax, s T7).
k=0

The following result gives an explicit description of Homgr(gfj), Gonja)-
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THEOREM 11.3.11. Let A be a Zy)-algebra and p € A a nilpotent element. The
homomorphism

€ W(AF - Homgr(g‘(ﬁf), Gna)
a— Ey(a, 1 5)

15 bijective.

PROOF. [53, 2.19.1]. 0

And 11.3.6 and 11.3.11 give the following:

COROLLARY 11.3.12. For any A\, pu € 7R\ {0} the map

aolpig: W(R/AR W'/ < 14 uT > — Ext'(GW, G,,)
a — EQmEp(ais))

1 an isomorphism.

We now describe some natural maps through these identifications. Consider
the isogeny
TRE g(u) _ g(u”)'
Let us now suppose that p > 2. Then we have that, if p> =0 mod A,

Qﬁ;l : Homgr(g(“p)‘gk, Gm|SA) - Homgv'(ggia Gm\SA)
is given by

(11.32) ar— | b

pp=1

Ja+V(a)

(see |53, 1.4.1 and 3.8]).
For p = 2 the situation is slightly different. Let us define a variant of the
Verschiebung as follows. Define polynomials
V(T) =V (Tp,...,T,) € Q[Ty, ..., T,
inductively by Vo = 0 and
B, (Vo(T), .., Vi(T)) = p" &, 1(T, ..., T_1)

for 7 > 1. Then we have that (with possibly 22 # 0 mod \)
* 2
Wy Homg, (G495, Gy, ) — Homy, (G, G, )

is given by

2
a— [;]G’—F V(a)+ V(a)

(see [53, 3.8|).
For simplicity, to avoid to use this description of ¢
only the case p > 2.

1.1, we will consider sometimes
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Consider the morphism

(11.33) p: Homgr(gfgz, Gmys,) — Homyg, (G%)s,r, Gons,,)
F(S)— F(S)?

This morphism is such that
Ya1, 0 =aop.

Let a€ (W(R/AR))F ~*""1. Take any lifting & € W (R). Using the identifications
of 11.3.11 the morphism p above is given by

(11.34) a— pa
(see [53, 4.6]). We will sometimes simply write pa.

11.3.3. Two exact sequences. The main tools which we will use to calculate
the extensions of G by G),1 are two exact sequences. We recall them in this
subsection. See (11.35) and (11.38) below. First of all we prove that any action of
G,1on Gy is trivial.

LEMMA 11.3.13. Let ¢ : G — H be an S-morphism of affine S-groups. Assume
that G s flat over S. Then ¢ = 0 if and only if the generic fiber ¢, = 0.

PROOF. [49, 1.1]. O
LEMMA 11.3.14. Every action of G, 1 on Gy s trivial.

PRroor. Giving an action of G; on G, is the same as giving a morphism
Gu1 — Autr(Gy1). If we consider the generic fiber we have a morphism

fip, i — Autg (pp ).

The last one is the étale group scheme (Z/pZ)5,. It is a group scheme of order
p — 1. So any morphism g, x — Autg (4, i) is trivial. Applying 11.3.13 we have
the thesis. O

In the following, all the actions will be supposed trivial. Applying now the
functor Ext to the following exact sequence of group schemes

(A): 00— Gy =GN gt g
we obtain
) 0 — Homy, (G,1,6*)) -5 Ext! (G, Gay) =
II.

L ExtY (G, GW) P

We remark that ¢ is injective since
U1, + Homg, (G 1, g(A)) — Homyg, (G, go\p))

is the zero morphism. Indeed since G is flat over R, then by 11.3.13,
Hom,, (G,.1,G™) < Homy, (11, 1, G ) = Z/pZ.



40 I1. MODELS OF Z/p*Z OVER A D.V.R. OF UNEQUAL CHARACTERISTIC

And it is easy to verify that

ZIpZ, i A |
(11.36) Homg, (G, 1,9 { 0, i\ f

Let us write G, 1 = Spec(R[S]/( H“SP UESP21y) 1 A | p the group is formed by the
1

morphisms given by o; : S —— 1+“:\91 with i € Z/pZ. The map (Y1)
Hom,, (G,1,GW) — Homgr( 1, GA) is moreover nothing else but the multi-
plication by p. So it is clearly zero.

The map

(11.37) &' - Homy,(G,1,GN) — Ext!(G1, Ga)
is defined by
i — (0:)"(A),
where (0;)*(A) is explicitly
(14 uS)P —1 (1+AS2)P — (14 uSy)

SpeC(R[Slv SQ]/( T ) \P )7

with the maps
Gr — o1(A)
S —0
Sy — S

and

The structure of group scheme on o7 (A) is the unique one which makes the map
07 (A) — pye = Spec(R[21, 2] /(27 — 1, 25 — Zy))
Zl — 1+ /LSl
Zoy— 14+ A9

a morphism of group schemes.
As remarked in [49, 4.4], there is the following long exact sequence
(11.38)
5

0 — Homg, (Gp1, G*)) — Homy,(Gu1, Gr) == Homy, (G s, Gngs,, ) =
s Bt (G, G0 5 Bt (Gt Go) — Bxt (G, G, ).
We so have
(11.39) ker 04;\/ ~ Imd ~ Homg,ﬁ(GMl‘SM,Gmw&)/m/(Homgr(Gﬂ,l, Gn))-
We remark that by (11.36), setting X' = 1, it follows that
Homg, (G, 1,G,,) ~ Z/pZ
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and the group is formed by the morphisms S —— (1 + wS). While, by (11.36),
Homy, (G,.1,G™)) ~ Z/pZ if N|p and it is 0 otherwise. Hence, by (11.38), if \'|u
then ry, is the zero morphism, otherwise ry/ is an isomorphism. Hence, by (11.39),

(11.40) ker ) ~ Homgr(Gu,l‘SyaGm‘S}\/)/ <14 pS>.

In the following we give a more explicit description of the main ingredients of
the exact sequences (11.35) and (11.38).

11.3.4. Explicit description of Homgr((ﬂhl‘sA7 Gy, ). First we consider the
simplest cases. If A € 7R,

(11.41) Homy, (ttps,» Gmis,) = {S" € (R/AR)[S,1/S]|i € Z/pZ}.
While if A € R* we have Sy = 0 and Homg, (G 15, Gmys,) = {1}
Now we study Homg, (G .15, , Gms,) for p, A € TR\ {0}
PROPOSITION 11.3.15. Let A\, u € mR\ {0}. The map
i Homgr(gl(gj, Gujsy) — Homg (Guag,  Gmys, )

induced by
i Gu,l AN g(u)
18 surjective. If p > 2, 5%//\, defined in 11.5.11, induces an isomorphism

— p—1 — F—[yup(P—1)
Wi {24 vl Wiram ™ Homy (G Gos)

pp=1

PROOF. We have by definitions that

Iup
F(S)F(T) = F(S + T + pST)}

Homg, (G, Gmis,) = {F(S) € (R/ARWWO |

and

1 *
HomgT<g‘(§z7Gm|SA) = {F(S) E<R/)\R[S’ 1+ ’uS]) ‘

F(S)F(T)=F(S+T+ pST)}.
Since (G 1)) is isomorphic to «y, or Z/pZ then the group Homg, ((Gpui1)k, G i) is
trivial. So F(S) =1 mod 7. Moreover any F(S) € (R/)\R)[S]/((lﬂ‘“#) such

that F(S) = 1 mod 7 is invertible. The same is true in Homy, (GWs,, Gy s, )
since Q,g”) ~ G,. We now say that F' satisfies condition () if

F(S)=1 mod T,

F(S)F(T)=F(S+T + uST).
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Then
(1+pS)P —
H0m9T<Gu,1‘SA7Gm|S>\) = {F(S) € R/AR[S]/< /Lp

\[F(S) satifies (8))

and

1 :
n /LS“F(S) satifies (f)}.

Homy, (G, Gy, ) = {F(S) € R/ARIS, 5

Any F € R/)\R[S]/(m‘;#) can be represented by a polynomial of degree p — 1.

And if it satisfies (), it also satisfies (f) in R/AR[S
S0

’ 1+,LLS]

7 Homgr(gl(gz,Gm‘SA) — Homgr(GMJ'SA,Gm‘SA)
is surjective.
Now, by the exact sequence
(A) 0— Gua — gW
over Sy, we have the long exact sequence of cohomology

N w* i*
0— Homgr(gfg),(@ 5,) —= HOmgr(gm Gumjs,) —

) Yt g(u") 50

5" P
— Homy, (Guujs, » Gums,) ~— Ext' (G4, Gys,) — -
By 11.3.11 we have that
Homg, (G5, Gnjs,) = W(R/AR)" 1"
and, by (11.32),
* p p
iattong (07, G )) = {11

Therefore the proposition is proved. O

—~ F_[up(pfl)]
|6+ V(b)|b € W(R/AR) }

We now give a more explicit description of Homgr(G#,l| sy Gm| S5 )-

PROPOSITION 11.3.16. If A\, u € R with v(p) > (p—1)v(p) > 0 and v(p) > v(A),
then

= (a — kp)

Homy, (G, 15y Gm i52) = {Epa, p; S) =1+ 21’602—'u

=1

s.t. a € R/IAR and a? = P~ 'a € R/\R}

REMARK 11.3.17. In [47, 3.5, an inductive formula for the coefficients of the
polynomials F(T) € Hom(G™)s,, Gyns,) is given. If we consider only polynomials
of degree less or equal to p — 1, it coincides with (11.44). But for the reader’s
convenience, we prefer to give here a direct proof of this formula.

St
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REMARK 11.3.18. If v(u) > v(\) then
Homy, (G5, Gums, ) {Z —T'|a" = 0} = {E,(aT)|a” = 0}
PROOF. As seen in 11.3.15

o (G Gogs) = 1F(5) = S ey L1y

s.t. F(S) = 1 mod 7 and F(S)F(T) = F(S+ T+ uST)}.

Now
(11.42)
p—1
F(S+T+pST) =Y ai(S+T+ pST)
=0
p—1 j
SEE (s
=0 7=0 k=0
p—1 p—1 . ]
= Z (2 t l ) (2Z _ (Tl—i_ l)>lur+liaisrTl
=0 1=0 max{rl}<i<r+l v (T + ) [
and
p—1 p—1
(11.43) F(S)F(T) = a,a ST,
r=0 (=0

So we have the equality if and only if

ma= ) (22‘ - Zr + l)> <2i _@ (_r;r l>)ur+l_ia"

max{r,l}<i<r+l
(11.44) p
= X r+1— )l — DG — )"

max{r,l}<i<r+l

7‘—|—l—zai

for any 0 < r,l <p—1. Clearly ap = 1.
We now have the following lemma:

LEMMA 11.3.19. For any u, A € nR\{0}, the following statements are equivalent
r—1
i) a,,:wﬂfor any 1 <r<p-—1and[[}_ 0(a1 kup) =0;

]

i) a,_1ay = (r — Dpa,_1 + ra, for any 1 <r<p-—1;
=i for any 1 < lr <p-—1.

111) ara; = Zmax{r l}<z<’r‘+l (7‘+l z)'(z )(z T‘)"I’L

PROOF. In the following we use the convention that a; = 0if i > p — 1.
i) < ii). Tt is clear that

Ar_101 = (T - 1),“@7"—1 +ra,
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. . —ulr—1) .

is equivalent to a, = aT_l%(r), if » < p, and a,_1(a; — p(p — 1)) = 0. An easy
induction shows that this is equivalent to

roolar — kp)

a, =
7!
if r<p—1and
p—1
H(a1 — ku) =0.
k=0

i1) < iii). It is obvious.

i1) = 4i1). We will prove it by induction on [. By hypothesis a,_1a; = (r —
1)pa,—1 + ra, for any r. We now suppose that iii) is true for &k <[ —1 for any r.
Then we will prove it is also true for [ for any . We can clearly suppose [ < r,
otherwise, up to a change of [ with r, we can conclude by induction. We have

i1 a1 — l _ 1
aray 2 ar(all%)
a1 — u(l —1
frnd (aT‘all)%
induct. 7! rl—ie1 ) ay — Iu(l — 1)
(T<i;l—1 (r+l—i—=DIG—1—=DIE—r)! l

du i! rl—i—1

induct.
M;H rl—i— G —1— 1) —n"
(,u_(z'_— 14 1)a; + (i + 1)ai+1)
l

r! /
S 1~ ),
et Dat

i! r+l—i
D ((r+z—z’)!(¢—5)!<i—r—1)!1” -

rH1<i<r41—1
it —1+1) i (r+1—1(r+1)
rri-aG-+o-—nut )4 Al Gre
(3

= 2 sl

r<i<r+l

+

We come back to the proof of the proposition. In R/AR the condition

p—1

[[(a:r = kp) =0

k=0
is equivalent to a} = puP~'a;. Indeed we have the following equality in Z/pZ[S]

p—1

[[(s—k =sr-5

k=0
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since these polynomials have the same zeros. Since p =0 € R/AR, then

p—1
H(al —kp) = df — P tay.
k=0
By the lemma and 11.3.10 the thesis follows. U

We now essentially rewrite 11.3.19 in a more expressive form.

COROLLARY 11.3.20. Let A\, pu € TR\ {0} and let F(S) = Y.~ a;S* € R/AR[S]
be a polynomial of degree less than or equal to p— 1. Then the following statements
are equivalent

(i) F(S)F(T) — a2 = F(S+ T+ uST) — ag
(ii) F(S)a; = F'(S)(1 + uS) where F' is the formal derivative of F.
REMARK 11.3.21. Let us suppose v(u) > v(A). This corollary, together with
11.3.16, says that the solution of the differential equation in R/)\R[S]/((H"M#)
F'(S) = aF(S),
F(0)=1
has as unique solution F(S) = E,(aS) = 3.7, ‘Z—,S’ and a? = 0.
PROOF. By (11.44), we have that 11.3.19(iii) is equivalent to
(11.45) F(S)F(T) —aj = F(S + T + uST) — ay.

If we put [ = 1 in (11.44), we obtain the coefficient of T in both members of (11.45).
This means that 11.3.19(ii) is equivalent to

F(S)a; = F'(S)(1 + pS).

Then their equivalence comes from 11.3.19.
O

When v(u) > v(A), putting together 11.3.15 and 11.3.16, we have a simpler
description of Homg, (G15, ; Gms, )-

COROLLARY 11.3.22. Let p > 2. Let \,u € R with v(p) > (p — )v(p) > 0 and
v(p) > v(A) > 0. Then we have the following isomorphism of groups

(5??./AR)ZJ : (R/)‘R)F - Homgr(Gu,usAa Gm\sk)

given by
ar— E,(aS).
Moreover the restriction map

it Homgr(gfgz,(}mw) ~W(R/AR)¥ — Homg, (G 15, Gmys,) (R/AR)F

1s given, in terms of Witt vectors, by

a=(ap,ar,...,0,0,0,...) — > (=1)(
i=0

1)
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PROOF. We first remark that the restriction of the Teichmiiller map
T : (R/AR)" — W(R/AR)F,
given by
a — |al,
is a morphism of groups. This follows from 11.3.9. Moreover, if we consider the
isomorphism
Ehar t W(R/AR) — Homy, (G, Guys,)
and "
it Homgr(g|5A,Gm‘SA) — Homg, (Guas,, Gmys, ),
we have
"o &pnroT = (Ep/ar)p-
So (5%//\R)p is a morphism of groups. It is surjective by 11.3.16 and, by 11.3.15, its
kernel is

T((R/AR)) N {[ P 1y vip)b e W(R/)\R)F}.

prt

Let us now suppose that there exists b = (bo,b1,...) € /W(R/)\R)F and a €
(R/AR)F such that [-2<]b+ V(b) = [a]. Tt follows by the definition of Witt vector

pp=t
ring that
p p D \p
(11.46) [M”_l]b = (Mp—lbo’ el (F)zﬂbj cl)s
and
(11.47) [CL] — V(b) = ((10, —bo, —bl, .. )

Since b € W(R/)\R), there exists r > 0 such that b; = 0 for any ;7 > r.
Moreover, comparing (11.46) and (11.47) it follows

(ufl)pjbjﬂ =—b; torj=>0

p
(up_l )pbo = a.
Hence b; = a = 0 for any j > 0. Tt follows that (£3/,z)p is injective.
We now prove the second part of the statement. First of all we remark that for
any a = (ag,...,a;,...) € W(R/AR)" we have

a=>"V(la)).

It is clear that for any @ € R/AR we have i*([a]) = a. While, by 11.3.15, it
follows that i*V/(b) = —i*([;Z<]b) for any b € W(R/AR)". Hence i*V’(b) =

p—1
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(=1)7¢*([(;=)’]b) for any j > 1. From these facts it follows that

i"(a) =" (3_V/(as]))

NSy P
—%( P

11.3.5. Explicit description of §. The map
6 : Homg, (G, » Gmysy) — Ext'(G,1,6™W)

can also be explicitly described. We have the following commutative diagram
Homgr(g|(gi> Gys,) — Homgr(Gu,HsAa Gusy) —=0
| lé
Ext!(GW,GW) — "~ Ext"(G,.1,GW)

where the first horizontal map is surjective by 11.3.15. So, given
F(‘S) e HomgT(Gﬂvl‘S/\7 Gmls)\>7

we can choose a representant in Homg,.(gfgj, Gn|s,) which we denote again by F'(S)
for simplicity. Then ¢ is defined by

F(8) s EWA) .= g (£WAD)) = % (a(F(9))).
If F'(S) € R[S] is any lifting then it is defined, as a scheme, by
14 puSp)P — 1)
I ’
This extension does not depend on the choice of the lifting since the same is true
for EWAF),
So, by (11.38), we see that ker(a)) C Ext'(G,1,GW) is nothing else but the
group {EWNF)}. We recall that, by (11.39), for any X € R,
ker o) ~ HomgT(GuJ'SM, Gumys,,)/mv(Homy, (G .1, Gr)).

We have therefore proved the following proposition.

EWXF) = Spec (R[S1, Sa, (F(S1) + )\52)_1]/(
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PROPOSITION 11.3.23. Let A, u € R\ {0} with v(p) > (p — Dv(n). Then 0
mduces an 1somorphism

Homy, (Gis,» Gums, ) /rx (Homgy, (G, G ) — (£}
F(S) — EwAF)
REMARK 11.3.24. As remarked in §11.3.3, if X' | x then
ryv(Homgy, (G,q1,Gy)) =0,
otherwise
ryv(Homgy, (G, Gy)) =< 14 pS >~ Z/pZ.

EXAMPLE 11.3.25. a) Let us suppose v(p) = 0 and v(A) > 0. Since, by
(11.41) and the previous remark,

HomgT(:ums/\v Gm|S,\) = TA(HomgT(Gu,lv Gm)) = Z/pZ

then {EWXMNY = 0,
b) Let us suppose v()\) = 0. Since Sy = ), then {£WAM} = 0.

11.3.6. Interpretation of Ext'(G,.1,G,,). First of all, we briefly recall a use-
ful spectral sequence . Let Ext'(G, H) denote the fppf-sheaf on Sch g, associated
to the presheaf X —— Ext’ (G xg X, HxsX). Then we have a spectral sequence

EY = H(S,Ext (G, H)) = Ext™ (G, H),
which in low degrees gives
0 — HYS,Ext°(G, H)) — Ext'(G, H) — H°(S,Ext* (G, H)) —
— H*(S,Ext°(G, H)) — Ext*(G, H).

Moreover H*(S, Ext°(G, H)) is isomorphic to the subgroup of Ext' (G, H) formed
by the extensions E which split over some faithfully flat affine S-scheme of fi-
nite type (cf. [15, III 6.3.6]). We suppose that G acts trivially on H, then
Ext®(G,H) = Homy,(G,H). We will consider the case H = G,, and G a fi-
nite flat group scheme. In this case, Ext°(G, G,,) is by definition the Cartier dual

of G, denoted by GV. We recall the following result which will play a role in the
description of extensions of G, 1 by G (see 11.3.35 below).

(11.48)

THEOREM 11.3.26. Let G be a commutative finite flat group scheme over S.
Then the canonical map

HY(S,GY) — Ext'(G,G,,)
15 bigective.
PROOF. This is a Theorem of S.U. Chase. For a proof see [56]. We stress that

he proves Ext'(G,G,,) = 0, then he applies (11.48). We remark that he proves
everything in the fpqc site. However the same proof works in the fppf site. U
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We apply this result to G = G 1. We have that the map
H'(S,GY ) — Ext'(Gy1,G)
is an isomorphism.

By 11.3.26 and 1.3.6 we obtain the following result.

COROLLARY 11.3.27. Let G be a commutative finite flat group scheme over S.
The restriction map
Ext'(G,G,,) — Ext'(Gk, G k)
18 1njective.
Let us consider a commutative finite and flat group scheme G of order n. We

also consider the n'* power map n : G,, — G,,, . It induces a morphism n, :
Ext' (G, G,,) — Ext'(G,G,,). We have the following commutative diagram

HY(S,GY) —= Ext'(G, G,,)

HY(S,GY) — Ext (G, G,,),
where the horizontal maps are isomorphisms by 11.3.35. We remark that n, :
HY(S,GY) — H'(S,GV) is the zero morphism since the map n, : G¥ — GV,
induced by n : G,, — G,,, is the zero morphism. This proves the following lemma.
LEMMA 11.3.28. Let G be a commutative finite and flat group scheme of order

n. Then
n, : Ext'(G,G,,) — Ext'(G,G,,)

1$ the zero morphism.

11.3.7. Description of Extl(Gu,l, G1). We finally have all the ingredients to
give a description of the group Ext'(G,.1,G1). In particular we will focus on the
extensions which are isomorphic, as group schemes, to Z/p?Z on the generic fiber.

First of all we remark that if v(py) = v(u2) and v(A\;) = v(A2) then

Eth(G”hl, G/\l,l) ~ EXt1<Gu271, G,\QJ).

Indeed we know, by hypothesis, that there exist two isomorphisms ¢ : G, 1 — G,
and 1y : Gj,1 — Gy, 1. Then we have that

(¢1)* © (¢2)* : EXt1<G#1,17 G>\171) - Eth(GM,lv G/\2,1)

is an isomorphism.
We now recall what happens if v(u) = v(A) = 0. In this case we have the
following result.

PROPOSITION 11.3.29. Let A be a d.v.r or a field. Then there exists an exact
sequence

0 — Z/pZ — BExtly(uy, 1) — H'(Spec(A), Z/pZ) — 0
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PROOF. The proposition is proved in [46, 3.7] when A a is d.v.r. The same
proof works when A is a field. O

Let us define the extension of u, by u,

SP
&AzsmdAwhﬁvw?—LS%—n)
1

It is the kernel of the morphism (G,,)? — (G,,)? given by (S1, S2) — (S7, S;*S5)
Then the group Z/pZ in the above proposition is formed by the extensions &; 4.
DEFINITION 11.3.30. Let F' € Hom(G 15, , Gimys, ), J € Z/pZ such that
F(S)P(1+pS)™ =1 € Hom(Gpig,,,Gmis,,)-
Let F(S) € R[S] be a lifting of F. We denote by £ the subgroup scheme of

EWAF) given on the level of schemes by
(14 pS1)P —1 (F(Sy) 4+ AS2)P(1 + pSy) 7 — 1
P ’ \P ) '

8(”,)\7F7]) — Spec (R[Sla SQ:I/(

We moreover define the following homomorphisms of group schemes

Gy — EWNFI)

by
S — 0
1— F(0
A
and
EwXNET) Gu 1
by

S—>Sl.

It is easy to see that

A E)

0—>GM—>5( — Gy —0

is exact. A different choice of the lifting F'(S) gives an isomorphic extension. It
is easy to see that (EWANFI)) ~ (Z/p*Z)k, as a group scheme, if j # 0 and
(EWAED) e o~ (Z/pL X L/ pL) s

REMARK 11.3.31. In the above definition the integer j is uniquely determined
by F' € Hom(G 16, Gmys,) if and only if A7 { pu.

From the exact sequence over Sy

0— G, ,gw Yul G 0
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we have that
(11.49)

ker <Z* : Homgr(gfgjv Gm\SA) - Homgr(Gu,Hsy GmSA)) =P, Homgr(g|(§f)> Gm\SA)

So let F(S) € Hom(Gy15,,:Gmys,,)- By IL3.15 we can choose a representant
of F(S) in € Hom(G"s,,,Gs,,) which we denote again F(S) for simplicity.
Therefore, by (11.49), we have that F'(S)"(1+uS)™ =1 € Hom(Gp1 g, Gmys,,) i
equivalent to saying that there exists G € Hom(G"")s,,, Gy s,,) With the property
that F(S)7(1 + p8)~ = G(HHEEE=) € Hom(G™Ws,,, Gys,, ). This implies that
EWAFI) can be seen as the kernel of the isogeny

J . e(NF) , £(uPAP;G)
wu,A,F,G X3 €

p_
Sy — (1+ pS51) 1
H’p
o (F(S) £ A8 (14 i) - Gt
2

AP
where ', G € R[T) are liftings of F and G.
As remarked in 11.3.18, if v(u) > v(A) we can suppose

p—1

with a? =0 mod ).

EXAMPLE 11.3.32. This example has been the main motivation for our definition
of the group schemes EWNFI) . Tet us define

p—1 -
(=D
k=1
We remark that v(n) = v(A)). We consider
p—1 k
nS)
F($) = Byns) = Y 1
k=1

It has been shown in [53, §5] that, using our notation,
Z/pQZ ~ EQWA)Ep(S)1)
A similar description of Z/p*Z was independently found by Green and Matignon

(120]).
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EXAMPLE 11.3.33. It is easy to see that the group scheme G) 5 is isomorphic to
ENALI)
Moreover if we have an extension of type £WA#9) with F(S) = 1 then v(u) > pv(N).

Indeed we have that
] P _ p -Jj _
EWALI) — Spec (A[Sl, Sz]/((l - Mj;) 17 1+ 25) (1): 1) 1))

Since (1 4+ A\S)? =1 € Homgr(Gml‘Sw,Gmw;) then (1 +AS)P(1+uS)) ™7 =1 €
Homg, (G5, ,, Gms,,) if and only if v(p) = pv(A). In particular we remark that,
in such a case, v(A) < v(A(g)). Otherwise

pv(A) > pu(Ae) = v(Aqy)) = v(p),

which is not possible.

Let us define, for any p, A € R with v(i),v(A) < v(A)), the group

rad, (< 14+ pS >) = {(F(S),j) € Homy, (G 15, Gmys,) X Z/pZ such that

F(SY(1+4+puS) 7 =1c¢ Hom(GmHSw’GmISw)}/ < (1+usS,0)>.
We define
B:rady\(< 14 pS >) — Ext'(G,1,Gr1)
by
(F(9),7) — EWAF(S).5)
We remark that the image of 3 is the set {£WNF(9).)},

LEMMA 11.3.34. 3 is a morphism of groups. In particular the set {5(“”\;F(S)’j)}
is a subgroup of Ext'(G1,Gx1).

PROOF. Let i : Gy 1 — GW. We remark that
in(B(F, j)) = i, (EWNFEND)Y = EWAF) — 5(F)
for any (F,j) € rad, (< 1+ pS >). Moreover by construction
(EWNFEN) e = (&) € Ext! (1 s tp i )-

Let (F1,71), (F2, j2) € rad, z(< 1+ pS >). Then
(11.50) i (B(F1, 1) +B(Fy, j2) = B(F1+ Fa, ji+j2)) = 0(F1)+0(Fy) —0(Fi+Fy) =0
since ¢ is a morphism of groups. And
(11.51) (B(F1, 1) + B(Fy, j2) — B(FL + Fo, i+ j2) )k = Ejy ik + Ejp ik — Ejyrinx = 0,

since Z/pZ ~ Ext'(u, x, ptpx) through the map j — & x. By (11.50) it follows
that
B(E1, j1) + B(F, j2) — B(F1 + Fa, ji + ja) € keris.
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and then, by (11.35) and (11.37), we have
B(EY, ji) + B(F, j2) — B(Fy + Fo, j1 + ja2) = (05)"A.
for some j € Z/pZ. By (11.51) it follows that
((05)" Nk =&k =0,

therefore 7 = 0. So [ is a morphism of groups. The last assertion is clear. O

We now give a description of Ext' (G, 1, Gx1).

THEOREM 11.3.35. Suppose that X\, i € R with v(Axy) > v(A),v(w). The follow-
ing sequence

B aloiy

0 — rady)(< 14+ pS >) — Ext'(G,1,Gry) —
— ker (Hl(S, Gy 1) — H(S), G}Vhl))

is exact. In particular 3 induces an isomorphism rad, (< 14+ pS >) ~ {EWAFIY,

PROOF. Using (11.38) and 11.3.23, we consider the following commutative dia-

gram
(11.52)

- )
0—— {g(%)\;F)} - EXt1<Gu,17 g(A)) - Eth(Gu,lv Gm) - Eth(GHJ‘SA’ Gm|5>\)

lm iw/\,l* \LP* \LP*
AP

0 — {ErA0)} — Bxt! (1, GN)) “o Ext! (G, Gpn) —> Ext! (G, - Gunis,)

The map @7}11/*, induced by ¥y, : Ext'(G,1,G™) — Ext'(G,1,G™"), is given
by EWNE)  EWNFY)  Now, since G .1 is of order p then, p, : Ext'(G,1,G,,) —
Ext!'(G,1,G,,) is the zero map (see 11.3.28). Moreover, by (11.48) and 11.3.26, we
have the following situation

0——=H"(S,G) ) 0

Eth(Gml, Gm)

OHH%S)\, G/\;J)*) Eth(Gﬂvl|S)\’ Gm\S/\)

which implies that I'm(a?) ~ ker(H'(S, G}, ;) — H'(Sx, G} ,)).
So applying the snake lemma to (11.52) we obtain
(11.53)

0— ker(ﬁ) 9, ker(x1.) o, ker (Hl(S, Gy — H(S,, GX}J).

We now divide the proof in some steps.

’ Connection between ker(vy;,) and rad, (< 14 pS >). ‘We are going to give
the connection in the form of the isomorphism (11.57) below. We recall that, by
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(11.35), i : Gy1 — G™ induces an isomorphism
(11.54) Ty Extl(Gml, Ga1)/0' (Homy, (G1, Q(’\p))) — ker(¢1,);

for the definition of ¢ see (11.37).
By 11.3.23 we have an isomorphism

0: Homgr(Gﬂvl\SM Gm|5x>/r>\’<HomgT(Gu,17 Gm)) E— {g(lh)\;F)}
Through this identification we can identify ker(m) with

{F(S) € Homg, (G5, Gmys, )| Fi € rar (Homg, (Gy,1, Gin)) such that
(11.55)
F(SY14puS)y"=1¢ Hom(GmlSAp,Gmww)}/ <14 pS>.

Moreover
(11.56)

5 ker(yy.) = Ext!(G,1, Ga)/6 (Homy, (G,1,G*)) C Ext!(G,1,GY)

is defined by 0(F) = §(F) = EWAH),
We now define a morphism of groups

L: ker(zz;,l/*) — ry(Homyg, (Gu1, Gr))

as follows: for any F'(S) € ker(m), t(F) = ipis the unique i € ry» (Hom,, (G, 1,G))
such that F(S)"(1 + pS)™" =1 € Hom(Gya g, Gmys,,). The morphism of groups
(1L.57) ker(¥x1.) x Homgy (G,1, GM)) — radya(< 1+ pS >)

is an isomorphism. We prove only the surjectivity since the injectivity is clear.
Now, if A? { i then Homg, (G,,.1,G*) = 0 and ry»(Homy, (G .1, G,,)) = Z/pZ. So,

if (F,j) € rad, (< 1+ pS >), then j € ry(Homy, (Gpu1,Gr)). So ip = j. Hence
(F,0) — (F,ip) = (F,j). While if \? | u then Homg,(G,1,G*")) = Z/pZ and
ryw(Homgy, (G,1,G,,)) = 0. Hence

ker(vy1,) = {F(S> € Homg, (G g, Gmis))[F(S)” =1 € H0m<Gu,1|svem|Sm>}-

Let us now take (F,j) € rad, (< 1+ S >). This means that
F(S)" = (1+uS)y =1 € Hom(Gpg,,Gms,,)-

Therefore F(S) € ker(1x;_) and ip = 0. So
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] Interpretation of 3. \ We now define the morphism of groups
0: ker(m) — Ext'(GL1,Gr1)
F— B(F,ip) = EWAEir)
We recall the definition of ¢’ given in (11.37):
5 Homgr(Gujl,g(Ap)) — Extl(Gml, Gir1)
is defined by ¢'(0;) = of(A). Then, under the isomorphism (I11.57), we have
B=o0+0": ker(z/p;:) x Homg, (G1,G™))— Ext'(G1,Ga1)

| Injectivity of 3. | First of all we observe that & factors through o, i.e.

(IL58) 5 =i.00: ker(try.) 2 Bxt (G, Gat) — ker(ihys).
Indeed ‘ _ B
i 0 o(F) = i (EWNEIF)y = gAE) = 5(F),
In particular, since § is injective, p is injective, too.
We now prove that § = o+ ¢’ is injective, too. By (11.54),

ix0d =0.
Now, if (0 + ¢')(F,0;) = 0, then o(F) = —d'(0;). So
0(F) = i(o(F)) = in(=0'(0:)) = 0.

But 0 is injective, so F' = 1. Hence ¢'(0;) = 0. But by (11.35), also ¢’ is injective.
Then o; = 0. B

| Calculation of Im/3. | We finally prove Im(o+d") = ker(aoi,). Since § = i,0p,
a}od =0 andi,od =0 then

aioi*o(Q—I—é'):ai‘oi*og—i—aio(i*oél):aioi*ogzaiog:().

So Im(o + ') C ker(a} oi,). On the other hand, if E € Ext'(G,1,Gx1) is
such that o) o i,(E) = 0, then, by (11.53), there exists F' € ker(m) such that
i.(E) = 0(F) = i,(o(F)). Hence, by (11.54), E — o(F) € Im(8'). Therefore
Im(o + &) = ker(a o i*). Moreover since i, : Ext'(G,1,Gr1) — ker(wyy,) is
surjective then I'm(a?) = Im(a) oi,). We have so proved, using also (11.53), that
the following sequence

o / aoiy
0 — ker(¢)y 1) x Homg,(G,1,G™") o, Ext'(Gp1, Ga1) =
— ker (HI(S, G/\j,l) — HI(S,\, Gl\i;))

is exact. Finally, by definitions, it follows that
ﬁ(’r’adp7,\(< 14+ S >)) = {g(,u,)\;F,j)}.
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EXAMPLE 11.3.36. Let us suppose v(A) = 0. In such a case rad, (< 1+ pT" >
) = Z/pZ. Hence by the theorem we have

0— {S(M’A;l’j)|j €Z/pl} — Extl(G%l,up) — H'(S, G;\:,l) — 0.
EXAMPLE 11.3.37. Let us now suppose v(u) = 0 and v(A) > 0. In such a case
Homyg, (pps, , Gmysy) =<1+ pT > .
Hence it is easy to see that
rad, (< 1+ pT >) = 0.
Therefore, by the theorem,

Ext'(,, Gy1) — ker (Hl(S, 7)pZ) — Hl(SA,Z/pZ)>

is an isomorphism.

COROLLARY 11.3.38. Under the hypothesis of the theorem, any extension E &€
Extl(G“’l,G,\J) is of type EWAI) yp to an estension of R. In particular any
extension is commutative.

PROOF. Let E € Ext' (G,.1,Gx1). Suppose that (i, E) =[], with $' — S
a G/ |-torsor. We consider the integral closure S” of S in Sj. Up to a localization
(in the case S” — S is étale), we can suppose S” local. So S” = Spec(R") where
R" is a noetherian local integrally closed ring of dimension 1, i.e. a d.v.r. (see |7,
9.2]). Since S} ~ S}, then Sj X S} is a trivial Ex-torsor over S}.. By 1.3.6 we
have that S’ xg S” is a trivial E-torsor trivial over S”. So, if we make the base
change f : §” — S, then a)(i.(Es)) = 0. By 11.3.35, this implies that E” is of
type

EWAF])

Hence any E € Extl(G#,l, G1) is a commutative group scheme over an extension

R’ of R. So it is a commutative group scheme over R.
O

By 11.3.2 the extensions of Z/pZ by 7Z/pZ over K, which are extensions of
abstract groups, are classified by H2(Z/pZ,Z/pZ) ~ Z/pZ (see for instance [46,
2.7]). This group is formed by &; x with j € Z/pZ. If j # 0 we have that &, x
is isomorphic, as a group scheme, to Z/p®Z, while if j = 0 it is isomorphic to
Z]pZ x 7./ pZ. We also define the following morphism of extensions

Qun EWAE]) Eir
(11.59) Sl — 14 ,U/Sl
SQ [a— F(Sl) + /\SQ
It is an isomorphism on the generic fiber. Now, by the theorem, we get that £#Ai#7)
are the only extensions which are isomorphic to £; x on the generic fiber.
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COROLLARY 11.3.39. The extensions of type EWNEI) qre the only extensions
£ e Extl(Gml,GM) which are isomorphic, as extensions, to £k on the generic
fiber. In particular they are the unique finite and flat R-group schemes of order p?
which are models of constant groups. More precisely, they are isomorphic on the
generic fiber, as group schemes, to Z/p?Z if j # 0 and to Z/pZ x Z/pZ if j = 0.

PROOF. As above remarked any £#*F9) has the properties of the statement.
We now prove that they are the unique extensions of G, by G to have these
properties. Let £ € Extl(GMl, G1) be such that Ex ~ &; i as group schemes. By
11.3.26, 11.3.29 and 11.3.35 we have the following commutative diagram

ozioi*

Ext'(G,1,Gr1) — ker (Hl(S, Gy 1) — H(S), lehl))

. |

Extye (p, 1) = Extic (11, Gm) =~ H' (Spec(K), Z/pZ) —= 0

where the vertical maps are the restrictions to the generic fiber. Suppose now that
Ex is of type & k. By 11.3.29 it follows that o 0 i.(Ex) = 0. Since the above
diagram commutes, this means that (a 04,(€))x = 0. By 1.3.6 we have that the
second vertical map of the diagram is injective. This means that

a0, (E) = 0.
So 11.3.35 implies that £ is of type £ Now, if G is a model of a constant
group, by 11.3.1 we have that G is an extension & of G, ;1 by G 1. Moreover, since

Ex is a constant group, then Ex € Ext'(Z/pZ, Z/pZ). Therefore Ex ~ &; for some
§. So, by what we just proved, £ is of type £ The last assertion is clear. [

11.3.8. Ext'(G,1,Gy,1) and the Sekiguchi-Suwa theory. We now give a
description of £#WAF9) through the Sekiguchi-Suwa theory. We study separately
the cases A { p and A|p.

COROLLARY 11.3.40. Let i, A € R be with v(Aq)) > v(A) > v(u). Then, no
£ € Ext'(G1,Gx1) is a model of (Z/p*Z) k. Moreover, if p > 2 and v(u) > 0, the
group {EWNEIDY s isomorphic to

F —[puP~! F —[ur(P=1)]

{a € W(R/\R) o e WrRAR) T such that

W —_ —[ypp—1)
pa= [qul}b +V(b) € W(R/APR)}/ < [ul, {[Mfl]’” V(b)[b eW(R/VR) " }} >
through the map

a+— 5(#7)‘§Ep(aa“§s)a0) .

REMARK 11.3.41. We know by 11.3.16, 11.3.15 and 11.3.10 that any element of
the set defined above can be chosen of the type [a] for some a € (R/AR)F ~W™',
So, if we have two elements as above of the form [a] and [b] then [a] + [b] = [¢] for
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some ¢ € (R/AR)F ~W "1, We are not able to describe explicitly this element. If
we were able to do it we could have a simpler description of the above set, as it
happens in the case v(u) > v(A). We will see this in 11.3.42.

PROOF. We now prove the first statement. We remark that by 11.3.39 it is
sufficient to prove the statement only for the extensions in {£WAF)Y Let us
consider the restriction map

T Homgr(Gu,llsw, Gm|SAP) — Homgr(GuJ‘S}\, Gmw)\).
The morphism p : Homgr(g|(gi7 Gumysy)— Homgr(g(“)ww , Grs,, ) defined in (11.33)
is given by F(S) — F(S)P and induces a map
HOmgr(GMl'S)\, Gm\SA) L Homgr(GuJ'Sw, Gm‘S)\p)'
Then
Homy: (G s, Gimis, ) == Homgr (Glujs,,» Gms,,) = Homgr(Gruijs, Gmys,)
is the trivial morphism. Indeed
(T Op)(F(S)) = F(S)p € HomgT<G,u,,l|SA7Gm|S)\)7

which is zero by definition of group scheme morphisms and by the fact that G,
has order p. Now let us take

F(S) € radyy(< 1+ pS >) o~ {gWNFDY,

By definition A
F(S)p(l + /’LS>_] = 1 c Hom(G’u,’”SAp?GmlS)\P)’

for some j € Z/pZ. Hence
r(F(SP(1+uS) ) =1+uS) 7 =1¢ HomgT(GMllSA,Gmm).
If (EWAFD) e ~ (Z/p*Z) i then j # 0. Therefore
(1+pS)™ =1 € Homg (G, Gumys, )
means v(u) > v(A). So, if v(u) < v(A), necessarily j = 0. Hence

rad, \(< 1+ pS >) = {F(S) € Homy, (G, Ginjs, ) such that

F(SY=1¢ Hom(GmlSw,GmSAp)}/ <1+ pS>.

Therefore by 11.3.35, 11.3.15 and (11.34) we have the thesis. O
>

COROLLARY 11.3.42. Let us suppose p > 2. Let i, A € R\ {0} be with v(\))
v(p) > v(A). Then, {EWNEDY s isomorphic to the group

Pun = {(a,j) € (R/AR)Y x Z/pZ such that pa — ju = P_ore R/)\pR},

pp=t
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through the map '
(a,7) — SWNTIZy 4 5%)

REMARK 11.3.43. It is clear that if (0,5) € ®,, with j # 0, then p = 0
mod NP,

PROOF. By 11.3.15, 11.3.22, (11.34) and 11.3.36 (for the case v(A\) = 0) it follows
that rad, »(< 1+ S >) is isomorphic to
(11.60)

{(a, j) € (R/AR)F x Z/pZ|3b € W(R/MR)"

p
prt

such that pla] — jlu] =[——]b+ V(b) € W(R/APR)}.

Let a,j and b= (b, by,...) be as above.
By [53, 5.10],
pla] = (pa,a”,0,...) mod p?.

Since [u] € W(R/APR)F it follows by 11.3.9 that

(11.61) Jlul = lin]
and
(1L.62) pla] — j[u] = (pa — jp, a?,0,0,...,0,...) € W(R/NR).

We recall that

p P Py
[ﬂpil]b:(upilbo,...,( Wb, .. .),
then, again by 11.3.9, we have

p b p
(11.63) [[Lp_l]b + V(b) = (Fbo, (Mp_l )pbl + bo, cey (

p
prt

)piJrle_l + bi7 c. )

Since b € /W(R/)J’R) there exists » > 0 such that b; = 0 for any i > r.
Moreover, comparing (11.62) and (11.63), it follows

(/Lf_1>pibi+1 +b,=0 forv>1
(ufl )Pby + by = a”
(Mf—1>pb0 = pa — j.
So b =0if i > 1, by = a” and pa — ju = LzaP. -

EXAMPLE 11.3.44. Let us suppose u = A = Aq). Then G, =~ Z/pZ. By
11.3.32, 11.3.42 and 11.3.35 we have that

{(kn, k)|k € Z/pZ} C Py 2y = radpy,, (< 1+ Aa)s >).
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On the other hand by 11.3.35 and 11.3.39 it follows that rad, (< 1+ A\1)S >) ~
H§(Z/pZ,Z/pZ) =~ Z/pZ. Therefore {(kn, k)|k € Z/pZ} =~ rady (< 1+ \1)S >
).

We now concentrate on to the case v(u) > v(A), which is the unique case, as
proved in 11.3.40, where extensions of G, 1 by Gy could be models of Z/p*Z, as
group schemes. Our task is to find explicitly all the solutions (a,j) € (R/AR)"
the equation pa — ju = a? € R/APR. By 11.3.42 this means finding explicitly all
the extensions of type £®AF9), Let us consider the restriction map

r: {EWATDY — Extic(uy, pp) = Z/pZ.

We remark that it coincides with the projection

Po {(a,j) € (R/AR)Y x Z/pZ such that pa — ju = Mflap € R/)\pR} — Z/pZ

So there is an extension of G, 1 by Gy 1 which is a model of (Z/p*Z) if and only
if py is surjective. First of all we describe explicitly the kernel of the above map.

LEMMA 11.3.45. We have
ker py = {(a, 0) € RIARXZ/pPZ s. t., for any lifting a € R,

pol@) 2 max () + (= Do) — vlp), o0}
In particular ps is injective if and only if v(A) <1 or v(p) — (p — Dv(p) < p.
PROOF. Let (a,0) € kerps N R/AR x Z/pZ. By the definitions we have that

p
P’ € R/NR.

pa =

Let a € R be a lift of a. Since v(u) > v(\), if a # 0 then v(a) < v(u). Hence

(11.64) v(p) +v(a) > pv(a) +v(p) — (p — Do(p)
Therefore

—a” € R/NR

a—p
pa= -

if and only if
p

T

_a” =0 € R/N'R,

if and only if

pv(a) +v(p) — (p = Do(p) = po(A).
We remark that a”? = 0 € R/AR means pv(a) > v(A). So we have proved the first
assertion. Now if v(A) < 1 or v(p) — (p— 1)v(u) < p it is easy to see that there are
no nonzero elements in ker po. While if v(A) > 1 and v(p) — (p — 1)v(u) > p, take
a € R/AR with a lifting a € R of valuation v(\) — 1. Therefore

p(v(A) = 1) = max{pv(A) = v(p) + (p — Do(p), v(A)}.



I1.3. MODELS OF (Z/p*Z)x 61

Hence (a,0) € ker p. O

We remark that ker p, depends only on the valuations of ¢ and A. So we can
easily compute @, 5, too.

PROPOSITION 11.3.46. Let us suppose p > 2. Let u, A € R\{0} be with v(Aq)) >
() = v(A).
a) If v(pn) < pu(X) then py is surjective if and only if pv(pn) — v(A) > v(p).
And, if ps is surjective, ®,, 5 is isomorphic to the group

{(jn% +a,§)|(a,0) € ker(py) and j € Z/pZ}

For the definition of n see 11.3.32.
b) If v(p) > pu(X) then py is surjective and @,y is isomorphic to

{(a, j)|(e,0) € ker(pg) and j € Z/pZ} ~ ker py X Z/pZ.
c) If po is not surjective then py is the zero morphism. So @, » = ker ps.

REMARK 11.3.47. Let us suppose v(i) < pv(A). Let (b,j) € @, with 7 # 0.
By 11.3.43, then b # 0. Let b € R be any of its lifting. Then v(b) = U(nﬁ) =

v(p) — %. Indeed, by the theorem, we have b = n% + o for some a € R/AR
with v(&) > U(ﬁx%) — v(p) — Y2 where & € R is any lifting of a.

p 3
PRrROOF. a) First, we suppose that ps is surjective. This is equivalent to
saying that
. p
(11.65) pa— jp = = a’ € R/AR

has a solution a € (R/AR)¥ if j # 0. Since v(u) < v(p), by (11.64) it
follows that

(11.66) v(p) = v(p) — (p— Do(p) + pv(a),
with @ € R a lifting of a. Since a € (R/AR)Y we have pv(a) > v()).
Hence, by (11.66), pv(u) — v(X) > v(p).
Conversely let us suppose that pv(u) —v(A) > v(p). We know by 11.3.32
and 11.3.39 that

p
p—1
(1)

We recall that v(n) = v(A@g). Since pv(Aq)) —v(Aq)) + @ > pu > pA, if
we divide the above equation by

= Ay = n” € R/ R

—’\Ll) we obtain

p Hoo\p

—_— € R/)NPR.
“(pfl) ()\(1) /)7) /

We remark that 77% € (R/AR)Y, since, by hypothesis, v((nﬁ)p) =
pv(p)—v(p) > v(A). Clearly jnﬁ is a solution of (11.65) for any j € Z/pZ.

-t ==
Ay
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In particular it follows that, if p, is surjective, ®, ) is isomorphic to
the group

{(jn% +a,)](a,0) € ker(py) and j € Z/pZ}

b) If v(u) > pv(A) then we have that u = 0 € R/NR. We remark that
(0,7) € ®,». This implies that p, is surjective and that («, j) € R/AR X
Z/pZ N P,y if and only if (o, 0) € ker(ps).

¢) Since ps is a morphism of groups with target Z/pZ then the image of ps is
a subgroup of Z/pZ. Then the image of ps is trivial or it is equal to Z/pZ.

The assertion follows.
O

EXAMPLE 11.3.48. Let us suppose v(p) = v(Aw)), i.e. Gu1 ~ Z/pZ. For
simplicity we will suppose pt = A;1). Then p, is an isomorphism. Indeed in this
case ker(py) = 0 by 11.3.45 and it is surjective by 11.3.46(a)-(b). This means that, in
this case, any extension £ is uniquely determined by the induced extension
over K. Let us now consider the map

Eth(G/\(l)v]-’ G)\(1)71> — Eth(G)\(l),].’ G)\,l)

induced by the map Z/pZ ~ Grpya — G given by S — %S. It is easy to see
that EQAFI) is the image of £XWAWiEM9).9) through the above map. Indeed
from the above proposition we have that F'(S) = E,(nS) mod A. We remark that
if pu(A) < v(Aqy) then n =0 mod A, indeed in such a case v(A) < v(A2)) = v(7n).

11.3.9. Classification of models of (Z/p*Z). By the previous subsections
we have a classification of extensions of GG, 1 by G\ whose generic fibre is isomor-
phic, as group scheme, to Z/p*Z. But this classification is too fine for our tasks.
We want here to forget the structure of extension. We are only interested in the
group scheme structure. We observe that it can happen that two non isomorphic
extensions are isomorphic as group schemes. We here study when it happens.

First of all we recall what the model maps between models of Z/pZ are. Let us
suppose 0,0 € R with v(0),v(2) < v(A@)). Since Gy is flat over R, by 11.3.13 it
follows that the restriction map

Homy, (G o1, Gp) — Homg ((Go)k, (Gpa),) = Z/pZ
in an injection. It follows easily by (11.36) that

[ z/pz, ifv(e) > v(d);
Homgr(GQ,hG@J) = { 0, if v(o) < v(0),

where, in the first case, the morphisms are given by S — % with r € Z/pZ.

We remark that, if v(p) = v(p) and r # 0, these morphisms are isomorphisms.
We now recall that by 11.3.1, 11.3.39, 11.3.42 and 11.3.40 any model of (Z/p°Z)x is
of the form £#AFI) such that § # 0, v(Aqy) > v(g) > v(\) and F(S) = Y77 &5

=0 ¢!

with (a,j) € ®,. See 11.3.46 for the explicit description of ®, . For i = 1,2 let
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us consider £WAiFudi) models of (Z/p*Z)k. First of all we remark that there is
an injection

ric - Hom(EWaAuFdn) gl i)y — Homy (€, k., £, k)

given by
fr— (aﬂ2u>\2)K o fro (O‘u17>\1)1_(1
See (11.59) for the definition «, . We recall that
Hom(&;,,E),) ~ Homk (&), k. &y i)
and the elements are the morphisms
(P 5]‘1 - 53‘27

which, on the level of Hopf algebras, are given by

i1

(11.67) Sy — S
(11.68) Sy — 5755,
for some r € Z/pZ and s € Z/pZ. Moreover the map

Hom(gjl ) EjQ) - Z/pQZ

Yy g 1T+ L
W)

is an isomorphism. So Hom (&#Au i) gm2resfe.i2)) jg 4 subgroup of Z/p*Z through
the map rx. We remark that the unique nontrivial subgroup of Hom(¢&j,,&;,) is
{os|s € Z/pZ}. Finally we have that any morphism &#1:A1F1.01) — £k2.02.F2.2))
is given by

(I+mS)7» —1
H2
(11.69) ri)

(F1(51) +Ai55) (1 + mSh)° - F2((l+mi¢)

A2 ’

for some r, s € Z/pZ. With abuse of notation we call it ¢, ;. We remark that the
morphisms ), , : EWALFLI) o £i2A2F2.02) which are model maps correspond,
by (11.67), to r # 0. In such a case 1), s is a morphism of extensions, i.e. there exist
morphisms ¢y : Gy1 — Grg and ¢y : G, 1 — G2 such that

Sl—>

SQ—>

()4>G>\1714>5(H1,>\1,F1,j1) Guin 0
(11.70) lwl J{w J{w
OHG}QJHE(HQ»AQaFQJé) GM271 0

i1
commutes. More precisely ¢ is given by S +— % and 1, by S — Wﬁ#
We now Calculate Hom(g(;ul’)ﬂyFl)jl)’ 5(#2)>‘27F2)j2)).
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PROPOSITION 11.3.49. For i = 1,2, if F;(S) = E,(a;S) = > h_ é‘;, St and & =
EWiiskiii) qre models of (Z)p*Z)k we have

0, if v(p) < v(A2);
{Urs} = Z/P°Z, if v(p2) < v(p), v(A2) < v(\p)
and a; = ;—;%ag mod Ay

{Yos} ~ZJ/pZ, otherwise.
PROOF. It is immediate to see that ¢y, € Hom(&1, &), with s # 0, if and only
if v(p1) > v(A2). We now see conditions for the existence of ¢, s with r # 0. If it

exists, in particular, we have two morphisms G, 1 — G, 1 and Gy, 1 — Gy, 1.
This implies v(u1) > v(u2) and v(Ay) > v()\g) Moreover we have that

Hom(é”l, gg) =

1+M151) » 1

H2
Since v(p1) > v(pe) > v(A2), we have

RS (L4 mSh)* = Fy( ) € Hom(Gpy 15, Gmis,, ).

14 )% —1
(1L71) Fi(S)) = Ry LM N”
2

If we define the morphism of groups

25T
[E] : Hom(Gm’l‘SM,Gm‘S&) — Hom(G%l‘SM,Gm‘SM)

) € HOm(GMhllSAZ,GmIS)\Q).

F(S)) —> F(&Sl)
M2
then

14 )% —1 14 S % —1
FQ(( H1 1) ) [,ul] <F2<< H1 1) ))
2 H2 H1

— (M (my(sy) %

H2
%51 i
= Fy(—(Sy)) 72
(2 ()
Therefore we have
(1.72) Fi(S)) = (B(%Sl))jz € Hom(Gi, 5, sy, )-

Every element of Hom(Gm,lm, Gunys,) has order p. Let t be an inverse for r

modulo p. Then raising the equality to the -

Fl(Sl) ( ( Sl))m S Hom(G#1:1|S)\27Gm|S)\2)‘

-power we obtain

By 11.3.22 this means

a) = j—l'u—aQ mod As.

J2 M2
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It is conversely clear that, if v(py) > v(ug), v(A1) > v(Ag) and

Fi(S) = %(fsl))?é € Hom(Gyy 1y, , Gms,,):
2 2

then (11.69) defines a morphism of group schemes.
U

We have the following result which gives a criterion to determine the class of

isomorphism, as a group scheme, of an extension of type &),

COROLLARY 11.3.50. For i = 1,2, let F;(S) = E,(aS) = Y02} (L—TS’“ and let
& = EWiAiFidi) be models of (Z.)p*Z)k. Then they are isomorphic if and only if
v(pr) = v(pe), v(A1) = v(A2) and ay = ?—;%ag mod Ay. Moreover if it happens
then any model map between them is an isomorphism.

PROOF. By the proposition we have that a model map v, 5 : ElArnFg)
Em22F252) exists if and only if v(uy) > v(pa), v(A1) > v(X) and a; = ;—;Z—;ag
mod As. It is a morphism of extensions as remarked before the proposition. Let us
consider the commutative diagram (11.67). Then v, ; is an isomorphism if and only
if ¢; is an isomorphism for ¢ = 1,2. By the discussion made at the beginning of
this section this is equivalent to requiring v(u;) = v(p2) and v(A\;) = v(Ag). This
also proves the last assertion. O

We remarked that if v(u1) = v(u2) and v(A;) = v(Ag) then
Ext' (G, 1, G 1) = BExt' (G, Gag)-
The following is a more precise statement for extensions of type &),
COROLLARY 11.3.51. Let EWAiEn(@9)3) € Ext! (G, 1, G, 1) be a model of Z/p*7Z.
Then for any s, Ao such that v(uy) = v(p2) and v(A) = v(Ae) we have

8(#17>\1§Ep(a5)7j) ~ g(MQ’)\Q;EP(%%S)J)

as group schemes.

. a K2
PROOF. Firstly we prove that there exists the group scheme g2 A2 Bp(5125).1).

By 11.3.42 we have that a € (R/AR)" and

(11.73) pa — juy = /sz_lap mod M.
Then, multiplying (11.73) by %%, we have
P
p% — g = 5—1 (%) mod .
JH1 Mo JH1

. a K2
Hence £#2 25 g 5 group scheme (see again 11.3.42). Then by the above

proposition we can conclude that

EW1A15Bp(a8),5) ~ g(u27/\2;Ep(%%S),1)
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as group schemes.
O

EXAMPLE 11.3.52. Let p, A € R be such that v(u) = v(A) = v(Aq)). We now
want to describe Z/p?Z as £ We recall that we defined

p—1 k—1
(=" &
n=> My
k=1
By 11.3.32 and the previous corollary we have

We conclude the section with the complete classification of (Z/p*Z)x-models.
The following theorem summarizes the results of this chapter.

THEOREM 11.3.53. Let us suppose p > 2. Let G be a finite and flat R-group
scheme such that Gy ~ (Z/p*Z)k. Then G ~ E" ™ Ex@S)D for some v(A)) >
m>n>0 and (a,1) € Oym . Moreover m,n and a € R/m"R are unique.

REMARK 11.3.54. The explicit description of the set ®.m r» has been given in
11.3.46 and 11.3.45.

PROOF. By 11.3.1, 11.3.39, 11.3.40, 11.3.42 and 11.3.51 any model of (Z/p*Z) is
of type "™ Ep(@9):1) with m > n and (a,1) € ®pm . By 11.3.50, it follows that,
(c/'(ﬂ’ml,ﬂ'"l,Ep(alS),l) ~ 5(7rm2,71'"2,E'p(aQS),1)

as group schemes if and only if m; = mg, ny = ny and a1 = ay € R/7™ R. O

11.4. Torsors under &£#AE(5).1)

We now give an explicit description of £#AFJ)_torsors. It will be useful in the
next chapter for the study of the extensions (in the sense of 111.2) of (Z/p*Z)x-
torsors. We have seen that there is the following exact sequence

0 s SWAF))) L, gudF(S) VARG cuaG(s) _
for G(S) € Homy, (G*")s,,, Gynjs,,) such that F(S)P(1+ pS)™ = G((H’L#) €
Homgr(g(“)ww, Gn|s,p)- The associated long exact sequence is

J
(wﬂw)\vaG)*
e

HO(X, EmNG9))y SN HY(X, EWXFS):0)) Loy
— HY(X, g(u,A;F(S))) — HY(X, g(u,A;F(S))) -

LEMMA 11.4.1. Let X be a faithfully flat R-scheme and let [ : Xy — Xz
wAE) e

L HO(X’g(u,/\;F(S)))

be the natural continuous morphism of sites. For any R-group scheme &'
have R f(EWND)) = 0. In particular HY (X, EWA) = HY (X g,,, EWAD),
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PROOF. Let us consider the exact sequence (11.30), in the fppf topology,
0—s GW s gwXE) g (.
If we apply the functor f, we obtain
N le*g(k) — R, (g(u,/\;F)) — R'f. g

By 1.5.5 it follows that R'f,(GWM) = R'f,(GW) = 0. Hence R'f,(E “’\?F)) =0. Us-
ing the Leray spectral sequence we conclude that H'(Xp;, EWN)) = HY(X z,,, EWAT).
U

We remark that
HO(X, EWNFEN) = {(f1, f2) € H'(X, Ox) x H'(X, Ox))]
1+ pufy eHY(X,0x)* and F(f)) + Mo € H(X,Ox)*},
for some lift F of F, and
HO(X, EWNCEN) = [(f1, f,) € H(X,0x) x H' (X, Ox)|
L+ P fi € HY(X,Ox)" and G(f1) + N fo € H'(X, Ox)"},

for some lift G of G. The map (wi,A,F,G>* C HO(X, EWAFI))) —— HO(X, EWAGE)
is given by

(14 pf)? —1 (F(A) + Af2)P(L+ pf) ™ - G(W#))
) X

(f1, f2) ¢ (

Now let us suppose that X = Spec(A). We describe explicitly the map §. Let
F(S),G(S) be liftings of F(S) and G(S) in R[S]. Then

HO(X EWXNCENY = [(f, o) € Ax Al + pPfy € A" and G(fy) + N fy € A*}.

and ((f1, f2)) is, as a scheme,
(11.74)

Y = SpecA[Tl,Tg]/<

/'Lp

(1+ MT;)p Y (F(Ty) + \T,)P (1); ply) ™ — é(fl)_fé).
m

and the £WAFS)I) action over Y is given by
Ty —S, + 11 + pSiTh
Ty S F(T)) + F(S) Ty + ASyTo+
F(S)F(T) — F(Si +Ti + pSiTh)

A

Now let X be any scheme. If Y — X is a EWAF)9) torsor then, by 11.4.1 there
exists a Zariski covering {U; = Spec(4;)} such that (v.)y,([Y]) =0, for any 4. This

means that Y|y, = Spec A;[T1, T3]/ mf#—ﬁm (F(T1)+)\T2)p(i:ﬂl =Gl —fai

for some f1;, fo; as above. By a standard argument we can see that the cocycle
L([Y]) € HY (X 247, E#AF)) permits to patch together the torsors Y]y, to obtain Y.
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In the next chapter we will consider the case X affine and we are interested only
to EWNEI) torsors of the form (11.74).

11.5. Reduction on the special fiber of the models of (Z/p?Z)x

In the following we study the special fibers of the extensions of type &3
with v(p) > v(A). In particular, by 11.3.40, this includes the extensions which are
models of (Z/p*Z)k as group schemes. We study separately the different cases
which can occur.

11.5.1. Case v(u) = v(A) =0. We have (Gr1), ~ (Gu1), =~ ip. The exten-
sions of type EM#if%9) are the extensions & with ¢ € Z/pZ. The special fibers of
the extensions & with i € Z/pZ are clearly &; ;. See also 11.3.29.

11.5.2. Case v(\)) > v(i) > v(A) = 0. In such a case we have (G 1), ~ 1.

It is immediate by the definitions that any extension £#*19) is trivial on the special
fiber.

11.5.3. Case v(\1)) > v() > v(A) > 0. Then (Gp1), = (Gaa)e = oy

First, we recall some results about extensions of group schemes of order p over
a field k. See [15, III §6 7.7.] for a reference.

THEOREM IL.5.1. Let us suppose that oy, acts trivially on oy, over k. The exact

sequence 0 — o, — G, ER Gy — 0 induces the following split exact sequence
0 — Homy(ay, G,) — Ext'(ay, a,) — Ext'(a,, G,) — 0.
It is also known that
Ext' (G, G,) ~ HF (G,, G,) — Hi(ap, G,) ~ Ext!(a,, G,).
is surjective. Since Ext'(G,, G,) ~ H3(G,, G,) is freely generated as a right k[F]-

module by C; = XX 2O yng D = XY7 for all i € N\ {0}, it follows that

H2(ay, G,) ~ Ext'(a,, G,) is freely generated as right k-module by the class of the

cocycle O = w. So Ext'(a,, G,) ~ k.
Moreover it is easy to see that Homy(ay,, G,) ~ k. The morphisms are given by

T — aT with a € k. By these remarks we have that the isomorphism
Homy (e, G,) x Ext!(ay, Gy) — Ext!(ay, a,),

deduced from 11.5.1, is given by

(ﬁa ’}/Cl) = Eﬁﬁ'
The extension g, is so defined:

Ej = Spec(k[S1, 5] /(57,55 — 051))
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(1) law of multiplication
51 l—>81®1+1®51

P R14+1057—-(S191+1®5,)P
Sor—S5 R1+1® 5 +7v ! 1= (% )

p
(2) unit
S —0
Sy —— 0
(3) inverse
S| — —5;
Sg — — S5

It is clear that all such extensions are commutative. In [53, 4.3.1] the following
result was proved.

PROPOSITION 11.5.2. Let A, pu € 7R\{0}. Then [EX# **)] ¢ H2(G,, Gay)
coincides with the class of

k=1
where @ is a lifting of a € W(R/AR).
We deduce the following corollary about the extensions of «,, by G,.

COROLLARY IL5.3. Let A, u € wR\ {0}. Then [EWF( @15 ¢ Hi(ap ,, Gay)
coincides with the class of

where a is a lifting of a € /W(R/AR).
PROOF. This follows from the fact that Eé“’A;Ep(a’”’S)) — g,g“”\;Ep(a’“’S)) through
the map
Ext'(Ga, G,) ~ HF (G, G,) — Hi(ap, G,) ~ Ext'(a,, G,).
0

Let us take an extension EWAEr(@5):9) Let @ be a lifting of a. We have that on
the special fiber this extension is given as a scheme by

p—1 a* Qi —j
. , L SYP(1 Sy)7 -1
EPNEH099)  Spec(k(S;, Sl (T, 55 — (— =0 1) (Apﬂb Iy,

By 11.3.42 we know that

P —0eRr/\

prt

pa— jp—
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In the proof of the same corollary we have seen that

pla) = 1] = [ = V@) = lpa = ju =

Iup

a’) € W(R/N'R).

By the definitions we have the following equality in Hom(gl(gzp,Gm SAp>
| » 1+ puS)P —1 -
&9 r(Plal =i~ [~ a?| =V ([a7]) = Ep(aS))?(1+45)) (E ((( o )>> |

I ft
Moreover we have

. P . p
Eppor(lpa — ju— 1) = Byllpa = ju— 2 50)5)

So we have that

p 1 ~' pfl o _ p Sz
pa J o —La
i=0 i=0
1 S1)P—1
0 mod )J’(R[Sl]/(( 15 )).
MP
Hence
(S G811+ pS) 7 —1 _ Sy P E T g
AP AP
p ‘ Lra
E( >Sl mod 7.

\P
On the other hand gY@, gWAEE)) through the map Ext!(ay, o) —
Ext!(ay, G,).
Therefore £XN59) ~ By with g = (
mod 7). We have so proved the following result.

PROPOSITION 11.5.4. Let A\, € TR be such that v(\) < v(pu) < v(Aqy). Then
[S,EM’A;E”(GS)’J)] € Exty(ay, o) coincides with the class of

pa_jﬂ’_uppfla'p ELPC
AP D

o p
PG—JM—FGP
AP

where a is a lifting of a € R/AR.
11.5.4. Case v(A(1)) = v(u) > v(A) > 0. In this situation we have
(Gup), ~Z/pZ and  (Gyrq), =~ ap.
PROPOSITION 11.5.5. Let A\, ;u € TR be such that v(p) = v(Aq)) > v(A). Then

7,\;F,’ . .. .
5,&“ ) s the trivial extension.
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PROOF. We can suppose p = A(;). From 11.3.48 it follows that EQWAFI) i in
the image of the morphism

Eth(GA<1>,1, G)\(l),1> — Eth(GA(U,l, Gxi)

induced by the map Z/pZ ~ Gy, 1 — Gi1 given by S — %S. But this
morphism is the zero morphism on the special fiber. So we are done. O
11.5.5. Case v(A\1)) = v(i) = v(A). We have
(Gup), ~Z/pZ  and (Gin), =~ Z/pZ.
For simplicity we will consider the case = A = A\(;). We recall the following result.
PROPOSITION 11.5.6. Let suppose that 7./ pZ acts trivially on Z/pZ over k. The

exact sequence 0 — Z/pZ — G, =t G, — 0 induces the following exact sequence
Hom,, (Z/pZ, G,) ~ k “= Homy, (Z/pZ, G,) ~ k — Ext}(Z/pZ, Z/pZ) —>
— Extl(Z/pZ, G,) ~ k Z= ExtL(Z/pZ, G,) ~ k
PROOF. [15] O

We observe that ker (Extl(Z/pZ, Ga) = Ext'(Z/pZ, Ga)) ~ Z/pZ. 1t is pos-

sible to describe more explicitly Ext!(Z/pZ, Z/pZ). We recall that Ext(Z/pZ, G,) =

HZ(Z/pZ,G,) is freely generated as a right k-module by the class of the cocycle
O, = XX (X4v).

There is an isomorphism, induced by the maps of 11.5.6,
K/ (F —1)(k) X Z/pZ —> Bxt!(Z/pZ, /pT),
given by
(a,b) — Eqp.
The extension E, is so defined: let a € k a lifting of a,
E., = Spec(k[St, Sa] /(ST — 51,85 — Sy —aSh))
(1) law of multiplication
S S ®1+1®5

SPR1+10SP —(S,01+1®S,)P
S S 1410 S+ b PR14+1057 - (S1®@1+1®5))

p
(2) unit
S;— 0
Sy — 0
(3) inverse
S — —5;

Sy — =55
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We remark that the extensions which are isomorphic to Z/p*Z as group schemes
are the extensions Ey, with b # 0. By 11.3.44 we have that any extension of Z/pZ
by Z/pZ is given by EXmA®iEp(m9)3)  We now study its reduction on the special
fiber.

PROPOSITION 11.5.7. For any j € Z/pZ,
A)sA ) Ep(9nS),d
[gQOAOEIDIY _ o e Bxtl(Z/pZ, Z/pTZ).

PROOF. As group schemes, EAWAEM09) ~ 7, /027, if j # 0, and EAWAD10) ~

Z/pZ x 7./ pZ otherwise. In particular 5,5/\(1)’/\(1>;Ep(jns)
A1) 1) Ep(inS),7)

J) .
has a scheme-theoretic sec-

tion. It is easy to see that S,E ~ Fy;, with
b= (—j—T dm)=j
= (—j~—F—; mod ) =j
Amy(p—1)!
p
since 2~ = 2@ =1 mod 7 and (p—1)'= -1 mod 7 (Wilson Theorem). O

A T A



CHAPTER 111

Extension of torsors

111.1. Effective models

Here we recall some definitions and results about effective models which will
play a key role in our results about extensions of Z/p?Z-torsors. For more details
see [40|, which is the source where most of the material of this paragraph has been
taken.

In this section char(K) is not necessarily 0. Let Y be a flat K-scheme endowed
with a faithful action of a finite group scheme G. Given an R-model Y to which the
action extends, it may happen that the reduced action on the special fibre acquires
a kernel, especially if p divides |G|. The effective models are the objects which
solve this problem.

In [35, § 2|, the relation of domination between models of a group scheme has
been introduced.

DEFINITION I11.1.1. Let GGy and Gy be finite flat group schemes over R with
an isomorphism ug: Gy g — Ga k. We say that G; dominates G2 and we write
G > Go, if we are given an R-morphism u: G; — G5 which restricts to ux on the
generic fibre. The map wu is also called a model map. If moreover G; and G5 act on
Y, we say that Gy dominates Gy compatibly (with the actions) if g1 = pg o (u x id).

We now recall the definition of a faithful action.

DEFINITION 111.1.2. Let GG be a group scheme which acts on a scheme Y over
a scheme T'. This action is faithful if the induced morphism of sheaves of groups,
in the fppf topology of T,

G — Autp(Y)

is injective.

We recall here the definition of effective model given by Romagny.

DEFINITION 111.1.3. Let GG be a finite flat group scheme over R. Let Y be a flat
scheme over R. Let u: G xY — Y be an action, faithful on the generic fibre. An
effective model for p is a finite flat R-group scheme G acting on Y, dominated by
GG compatibly, such that G acts faithfully on Y.

EXAMPLE 111.1.4. Let X be a flat scheme over R and G a finite and flat group
scheme over R. Let Y — X be a G-torsor over R. Then G is already an effective
model. Indeed let us suppose that G — Autr(Y) is not injective. Then there
exists a faithfully flat morphism U — Spec(R) and g € G(U) \ {0} such that

gxid xid

Y XpULS GxY xpUS Y xpY xpgU
73
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isequal to A X id : Y XxgU — Y Xgp Y Xgp U where A : Y — Y Xp Y is the
diagonal morphism. By the definition of G-torsor G Xz Y xxr U pxid Y xpY xgU

is an isomorphism. Then

gxid wxid uxid) 1

Y ) U LS G xpV xpUS Y xnV xpU "2 G xp¥ xpU
is the zero section, against assumptions.
We report here some results about effective models.

PROPOSITION 111.1.5. An effective model is unique up to unique isomorphism,
of it exists.

PROOF. [40, 1.1.2]. O
We will constantly use the following crucial remark in the next sections.

REMARK I111.1.6. Let G be a finite and flat group scheme over R and Y a flat
scheme over R. Let u: G x Y — Y be an action. Moreover we suppose that
Yk — Yk /Gk is a Gg-torsor. Then by 111.1.5 we have that the effective model
G whose action extends that of Gk is unique if it exists. By 111.1.4 this means
that if there exists a model G’ of G, compatible with the action, such that Y is
a G’'-torsor, then G’ is the effective model for p.

We recall that an action p : G x X is admissible if X can be covered by
G-stable open affine subschemes. We here state the main results about effective
models obtained in [40].

PROPOSITION 111.1.7. Let G be a finite flat group scheme over R. Let X be
a flat scheme over R and u : G x X — X an admissible action, faithful on the
generic fiber. Assume there exists an effective model G. Then

(i) If H is a finite flat subgroup of G the restriction of the action to H has an
effective model H which is the schematic image of H in G. If H is normal
i G, then H is normal in G.
(ii) The identity of X induces an isomorphism X/G ~ X/G.
(iii) Assume that there exists an open subset U C X which is schematically
dense in any fiber of X — Spec(R) such that G acts freely on U. Then
for any normal subgroup H < G the effective model of G/H acting on

X/H is G/H.
PROOF. [40, 1.1.3]. O

THEOREM 111.1.8. Let X be a flat R-scheme and j1: G x X — X an action.
Assume that X is covered by G-stable open affines U; with function ring separated
for the m-adic topology, such that G acts faithfully on the generic fibre U; k. Denote
by F the family of all closed subschemes Z C X which are finite and flat over R.
Assume that Fy is schematically dense in Xy. Then there exists an effective model
for the action of G.

PROOF. [40, 1.2.2]. O
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For algebraic schemes we have the following:

COROLLARY 111.1.9. Let G be a finite flat group scheme over R. Let Y be a
flat scheme of finite type over R and let p: G XY — Y be an action. We assume
that Y is covered by G-stable open affines U; with function ring separated for the
m-adic topology, such that G acts faithfully on the generic fibre U, k. Then, if Y
has reduced special fibre, there exists an effective model for the action of G.

PROOF. [40, 1.2.3|. O

We remark that the condition about the separatedness of the function rings of
U, is assured if, for instance, we assume Y integral. This follows from the Theorem
of Krull (|30, 1.3.13]).

If we add some hypothesis on Y then we have an useful criterion to see if a
group scheme which acts on Y is the effective model for the action.

Recall that a module M over a ring A is called semireflexive if the canonical
map from M to its bidual is injective. Equivalently M is a submodule of some
product module Af. Indeed, consider the set I = Hom(M, A) and the morphism
a: M — Al mapping = to the collection of values (f(z))ser for all linear forms
f. By definition, if M is semireflexive then for each nonzero z € M there exists a
linear form such that f(x) # 0, so a is injective. The converse is easy.

REMARK I11.1.10. A semireflexive module over a d.v.r. R is faithfully flat and
separated with respect to the m-adic topology. Indeed since M C R! for some set
I then M is torsion free, hence flat over R. Moreover let x € Na™ M. Then for
any linear form f we have f(z) € N7™R = 0. Since M is semireflexive this implies
Nr™M = 0. So M is separated with respect to the m-adic topology. But, over a
d.v.r, being flat and separated with respect to the m-adic topology implies faithfully
flat. Indeed since NT™M = 0 in particular M # 7M. So M is faithfully flat (see
[30, 1.2.17]). We do not know if the converse is true too, i.e. if any (faithfully) flat
R-module separated with respect to the m-adic topology is semireflexive.

EXAMPLE I11.1.11. Any free R-module over R is semireflexive, e.g. R[T},...,T,].
Other examples, not free, are R[[T},...,T,]] or R[[Ty,..., T,J{T, ..., T}

The following lemma will be useful in §111.5.

LEMMA 111.1.12. Let R be a d.v.r. Let A be an R-algebra which is semireflexive
as an R-module and let B be a flat R-algebra. If there exists a finite R-morphism
of modules

A— B,

such that By is semireflerive as an Ax-module, then B is semireflezive as an

R-module.

REMARK 111.1.13. In particular any finite and flat R-algebra is semireflexive as
an R-module.

PROOF. Let us consider Bg. It is a vector space over K, so in particular it is
semireflexive over K. Since A and B are flat over R the natural maps A — A and
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B — By are injective. We now prove that B is semireflexive over A. Let b € B
and let us take an Ag-linear form f : By — Ak such that f(b) # 0. It exists
since B is semireflexive over Ag. Let by,...,0b,, generators of B as an A-module
and let n € N such that 7" f(b;) € Afor i =1,...,m. Then we have 7" f(B) C A.
Moreover 7" f(b) # 0, since A is flat over R by 111.1.10. So n"f : B — A is a
linear form with 7 f(b) # 0. Then B is semireflexive as an A-module. But A is
semireflexive over R. Therefore B is semireflexive over R. Indeed for any b € B
let us take an A-linear form g : B — A with ¢g(b) # 0. Moreover let us consider
an R-linear form h : A — R such that h(g(b)) # 0. Then hog: B — R is an
R-linear form with h o g(b) # 0. Hence B is semireflexive over R. O

DEFINITION 111.1.14. We will say that a morphism of schemes f : X — T is
essentially semireflerive if there exists a cover of T' by open affine subschemes T;,
an affine faithfully flat T;-scheme 7} for all i, and a cover of X! = X xr T/ by
open affine subschemes X/;, such that the function ring of X/, is semireflexive as a
module over the function ring of 5.

This is a generalization of the definition of an essentially free morphism given in
[1]. The proofs of the following two lemmas have been suggested to us by Romagny.

LEMMA 111.1.15. Let X be essentially semireflerive and separated over T'. Let
G be a T-group scheme acting on X — T. Then the kernel of the action is repre-
sentable by a closed subscheme of G.

PROOF. Proceeding like in [1] we are reduced to proving the analogue of |1,
6.4]. Then the proof given in [1] works in our case, because the only property of
free modules that is used in the proof is that they are semireflexive. 0

The next lemma is the reason because we are interested in essentially semire-
flexive schemes. Indeed in such a case we have an useful criterion to check if a
finite group scheme is an effective model.

LEMMA 111.1.16. Assume furthermore that T = Spec(R) where R is a discrete
valuation ring, and G is finite and flat over T. Then the action of G is faithful if
and only the action of Gy on the special fibre is faithful.

PROOF. Ouly the if part needs a proof. Let I5 be the augmentation ideal
of G and let J be the ideal defining the kernel H of the action. Since H is a
subgroup-scheme of H and Hj, is trivial then

(111.75) JClg and Ig + 7R[G] = J + 7nR[G]
Moreover, since R[G]/I is flat over R then
(111.76) I N7R|G| = 7lg.

We now claim that

IG =J+ 7ng.
Clearly J + wlg C Ig. We now prove the converse. Let a € Ig, then from
(111.75) it follows a = b + mc for some b € J and ¢ € R[G]. Since J C I then
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e € I N R[G]. Therefore by (111.76) we have ¢ € J. Hence Ig C J + 7lg.
We have so proved I = J + wlg. Then I5/J is an R-module of finite type and
(Ig/))®@k =1g/(J+7lg) =0, so Ig/J = 0 by Nakayama’s lemma. Hence the
kernel is trivial. O

111.2. Presentation of the problem

We now recall the problem which we will study in this chapter. In the following,
K is of characteristic zero. Let G be a finite abstract group. Let X be a faithfully
flat scheme over R and Yy — X a Gg-torsor. We remark that, since K is of
characteristic 0, any finite group scheme is étale. Moreover let us consider Y the
normalization of X in Y. A natural question is:
is it always possible to find a model G of (G) over R together with an action on
Y such that Y is a G-torsor and the action of G coincides with that of (G)x on the
generic fiber?

We will say that the G-torsor Yy — Xk can be strongly extended if the
previous question has positive answer. We also consider another notion of extension
of torsors. We say that Yy — X can be weakly extended if there exists a model
G of (G)k over R together with an action over a scheme Y’, with Y}, ~ Y}, such
that Y’ is a G-torsor and the action of G coincides with that of (G) on the generic
fiber. Tt is clear that strong extension implies weak extension. The converse is not
true as we will see. The point is that in general Y’ is not equal to Y. For instance
if X is normal, which is the case which we will study, Y is normal (see 111.3.7), but
in general Y is not normal.

Using the theory of effective models the above question can be reformulated in
another way. First of all we observe that, since Y is the normal closure of X in
Yk, any G-action on Yy can be extended to a G- action on Y. Then we can ask
what the effective model of this action is, if it exists. Moreover, by II1.1.6, we see
that the previous question can be rewritten in the following way:
does there always exist an effective model G for the action of G which makes Y a
G-torsor?

111.3. Weak extension of torsors under commutative group schemes

The aim of this section is to prove a result of weak extension for torsors under
commutative group schemes over normal schemes with some hypothesis.

111.3.1. Preliminary results. We here state some results which will be useful
in what follows.

PROPOSITION 111.3.1. Let i = 1,2. Let Z; be a faithfully flat S-scheme and
let G; be an affine flat S-group scheme, together with an admissible action, over a
faithfully flat Z;-schemes Y;. Moreover we suppose that Yo — Zy is a Go-torsor
and that there exists a morphism

v (G1)k — (Go)k-
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Let us suppose we have a commutative diagram

v, — v,
Z Z

of S-schemes such that fx is an isomorphism compatible with the actions. Then
there exists a unique morphism

p:G1— G
which extends py and such that f is compatible with the actions.

PROOF. For 1 = 1,2 we call o; : G; xg Y; — Y, the actions. Since Yy — Z5
is a Go-torsor then o9 X id is an isomorphism. So by

i oo xid)~?!
Gr xr Vi Y 5 Vi DL Yy %, Ve YT Gy xR Y

we obtain a morphism
Gi Xp Y1 — Gy Xp Y.
If we compose it with the projection p; : Go X Yo — G5 we obtain a morphism
G xp Y, — G
Moreover we consider the projection
p2: G XpY) — Y.
Therefore we have a map
(111.77) oy,  G1 Xgp Y1 — G2 Xg Y1.

We now prove that it is compatible with ¢, i.e. ¢y, and g induce the same
morphism G X g (Y1)xk — G2 Xg (Y1)x. We observe that ¢y, and ¢ induce two
morphisms, (¢y,)x and (¢g)y; respectively, which are compatible with fx. For
any ¢ : Gy Xg (Y1)xk — G5 xg (Y1)k, to be compatible with fx means that the
following diagram

G1 xr (V1)K ——— (Y1)x
(id fo)owJ/ lfx
Gy X (Y2)K s (Y2)k
commutes. Hence o3 o (id X fx) 0 1) = fx 0 1. So we have
o2 0 (Id X fi) o (¢y, )k =020 (id X fk) o (¢ )y, = fr 001
Since (Y2)x — (Z2)k is a (Ga)k-torsor then
(id X fx) o (¢y, )k = (id X fx) © (¢ )ys -

For i = 1,2, let p; be the projections from G5 X g (Y1) x and let p; be the projections
from Go X (Y2)g. Then

p1o (py,)x =Py o (id X fx) o (oy, )k = P} o (id X fx) o (¢x )y = P10 (Pr)vi-
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and

fropao(py, )k = pyo(id X fi) o (py, )k = pho (id X fx) o (0x)vi = frop20 (i )vs-
Since fx is an isomorphism then pyo(¢y. )k = P20 (P )y;- Hence (py, )k = (@r)vis
i.e. g Is compatible with ¢y.. By the next descent lemma we have a unique
morphism of schemes ¢ : G; — G2 which extends g and ¢y,. Since Gy is flat
over R and ¢ is a morphism of group schemes it follows easily from 11.3.13 that

¢ is a morphism of group schemes. By construction it is clear that, through ¢, the
morphism f preserves the actions. U

We now prove the descent lemma used in the previous proof.

LEMMA 111.3.2. Let R be a d.v.r, S = Spec(R), and let " — S be a faithfully
flat morphism of schemes. Let X1, X5 be affine S-schemes with Xy flat over S.
Given two morphisms ¢ : (X1)k — (Xo)kx and pg : X1 Xg 5" — X5 xg 5" that
coincide on S, there is a unique morphism ¢ : X1 — Xy that extends them.

PROOF. Up to restricting ourselves to an affine subscheme of S”, we can suppose
S" = Spec(A). For i = 1,2, let us consider X; = Spec(B;). In terms of function
rings we have two morphisms

(111.78) o =L (Xaxg8"): By®r A — By Qp A
and
(111.79) o= ' ((X))k) : By®r K — B, Qr K.

Moreover, by compatibility, it follows that the above morphisms induce the same
map
gpﬁAK = (%) ®idg = (¢%) Qida, : By ®r A®r K — B ®r A®r K.

First of all we prove the uniqueness of . Since X, is flat over S then the inclusion
(X2)xk — X3 induces an injection By < By®pg K. Therefore if (any) ¢ exists then
it is given, on the level of function rings, by the restriction of cpﬁK to By. Therefore
it is unique.

We now prove the existence of . First of all we have the following commutative

diagram with the obvious maps
®r A

Bz®RA®RK

/

B, ®@r K

/s

Since S’ — S is flat in particular the induced map R — A is injective. Moreover
Bs is a flat R-algebra, then for ¢ = 2 all the maps of the above diagram are injective.
We remark that (111.78) and (111.79) imply goﬁAK(Bg) C(Bi®@rK)N(B1®rA). We

claim that @&K (B2) C Bj. Let us suppose that there exists b € By such that
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goﬁAK(b) ¢ B;. Then there exists n > 1 such that ﬂ”gp’iAK(b) € B; and W"*1¢%K(b) ¢
B;. Hence

7"k (b) € ByNw(B; ®p A).
We remark that since S” — S is surjective then S; = Spec(A/mA) is nonempty.
Now, since any scheme over a field is flat,

Bl/ﬂ'Bl — (Bl KR A)/W(Bl KRR A) >~ B1/7TB1 Xk A/WA

is injective. Therefore
Bl N 7T(Bl ®r A) = 7TBl,

which implies ﬂ”_lcp&K(b) € By. This is a contradiction. So goﬂAK induces a mor-
phism

(pﬁ . B2 — Bl.
We have so proved that ¢r : (Y1)k — (Y2)k is extendible to a morphism
Y] — Ys. 0

The previous descent lemma has as consequence the following result, which
however will not be used in the rest of the thesis.

PROPOSITION 111.3.3. Let G be an affine flat and commutative S-group scheme.
Then HY(S,G) — H'(K,G[) is injective.

REMARK 111.3.4. For X = S this result is stronger than 1.3.6 (we have removed
the hypothesis G finite over 5).

PROOF. Let f : Y — S be a G-torsor. This means that there exists a faithfully
flat S-scheme T such that Yy := Y xx T — T is trivial. (For instance we
can chose 7" = Y). Then it has a section ¢ : T — Yr. Moreover let us
suppose that Y — S is trivial as Gg-torsor on Xg. Then there is a section
i : Spec(K) — Y of Y — Spec(K). Since G is affine then f: Y — Sis an
affine morphism. So Y is affine. From the previous lemma the thesis follows. [

LEMMA 111.3.5. Let X, Y be integral flat schemes over S. Moreover let us sup-
pose that X is normal. If f :Y — X s an integral dominant R-morphism then
fr is schematically dominant, i.e. f,g 1 Ox, — f:Oy, is injective. In particular if
Y} 1s integral then Xy is integral, too.

PROOF. Since any integral morphism is affine by the definition it is enough to
prove the lemma in the affine case. So we can suppose X = Spec(A), Y = Spec(B)
with an integral injection A — B. We will prove that Ay, — By. This is equivalent
to proving 7B N A = wA. One inclusion is obvious. Now let a € 7B N A, then
a = b with b € B. We remark that b = > € Agx N B is integral over A. But A is
integrally closed by hypothesis. Therefore b € A.

Now let us suppose that By is an integral domain. Then A, — B;, implies that
Ay is an integral domain, too. O

LEMMA 111.3.6. Let R be a d.v.r. with field of fractions K and residue field k.
Let X be a flat R-scheme. If Xy s normal and Xy, reduced, then X is normal.

PROOF. For a proof see [30, 4.1.18|. O
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111.3.2. Weak extension. We now consider a normal separated and faithfully
flat R-scheme X with integral fibers. Let Yy — Xx be a connected G g-torsor,
for some finite group-scheme G over K, and Y the normalization of X in Yx. We
remark that Yx is normal, too. In particular Yk is integral, hence Y is integral.
We denote by ¢g the morphism ¥ — X. We observe that g : Y — X is finite
(see |30, 4.1.25]), in particular it is affine. We remark that Y has the following
properties.

LEMMA 111.3.7. Let f : Z — X be an integral morphism of R-flat schemes
such that there exists an X-isomorphism hy : Y — Zy. Then there exists an
X-morphism h 1Y — Z, which uniquely extends hg, such that

g= foh.
Moreover

i) Y is normal;
ii) of Z is normal, too, then h is an isomorphism;

PROOF. As remarked above Y — X is affine. So, first, we suppose X =
Spec(A), Y = Spec(B) and Z = Spec(C). By hypothesis we can suppose

ACCCCk

with C' integral over A and Cx = Bg. But, since B is the integral closure of A in
By, then C C B. So we have

ACCCB.
If we rewrite all this in terms of schemes, it is easy to see that this is equivalent to
the existence of h. The uniqueness of hy derives from the fact that X = Spec(A)
is a separated scheme (over Spec(R)), Xk is an open dense of X and Y is reduced.

We now prove that Y is normal, i.e. B is integrally closed. Since Y} is normal
then By is integrally closed. So if b € Frac(B) is integral over B then b € By.
On the other hand B is integral over A, then b is integral over A. But B is the
integral closure of A in By, therefore b € B.

We now consider the general case. Let X = UU; with U; affine open sub-
schemes. Since f and g are affine morphisms then f~'(U;) and g~ '(U;) are affine
open subschemes of Y and Z, respectively. By hypothesis,

hir = N1 (FHU))x — (67 (Ui))k

is an isomorphism. Then, by what we just proved in the affine case, we have, for any
i, an unique morphism h; : f~1(U;) — ¢~ '(U;) which extends h;x. Now, since X
is separated over R and the morphisms Y — X and Z — X are separated, then
Y and Z are separated over R too. Hence f~1(U;) N f~4(U;) and ¢~ (U;) N g1 (U;)
are affine (see [30, 3.3.6]). So, again by the uniqueness of h in the affine case, we
have h; = hj on f~Y(U;) N f~1(U;). So there exists an X-morphism h : Y — Z
which extends hx. Moreover, since normality is a local property, Y is normal. We
have so proved i), too.

ii) If Z is normal then, by definition of the integral closure of X in Yy, we have
that h is an isomorphism.
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We now prove a result of weak extension of Z/mZ-torsors.

PROPOSITION 111.3.8. Let m > 1 be an integer. Let X be a normal and faithfully
flat scheme over R with integral fibers. Let fr : Y — Xk be a connected Z/mZ-
torsor. Let'Y be the normalization of X in Yi. Suppose that Yy is integral. If R
contains a primitive m-th root of unity, there exists a unique fu,,-torsor Y' over X
which extends fi.

PROOF. First, we consider the affine case X = Spec(A) and
Yk = Spec(Ax[Z]/(Z™ = [))

with f € Aj. Since Y — X is an affine morphism then Y = Spec(B) for
some normal and finite A-algebra B. Multiplying f by an m'* power of 7 if
necessary, which does not change the p,,-torsor Yy, we can suppose f € A and
0 < vx.(f) < m (since X and Y are normal and Xj and Y} are integral, then
Oy,(r) and Ox (x) are both d.v.r.; moreover Oy, (r)/Ox () has index of ramification
1). We call Y’ = Spec(A[Z]/(Z™ — f)). We prove that Y’ is a p,-torsor over X,
ie. f € A*. Since Y’ is flat over R and Y} is connected and normal then Y is

integral. Moreover Y/ — X is an integral morphism, so Y’ is dominated by Y.
So Z € B. Now by Z™ = f in B, we have

vaﬂT(Z) - UY,W(f)‘

But, since vy (f) = vx(f) < m, then vy,(f) = vx.(f) = 0. And since f € A}
there exists g € A\ 7A and [ € N such that f% = 1. So fg = 7. But X is
integral. Then [ = 0, which implies f € A*.

We now consider the general case. By Kummer theory we have that there exists
a covering {U; = Spec(4;)} of X, f; € H(U; k., Oy, ) and {g;;} € H'(Xk, O%,)
such that (Yi)u, = Spec(A; x[Ti]/(T]" — fi)) and gj} = ]Jf—J As proved in the affine
case, we can suppose f; € Af. So ]’f—] € HO(UU,(’){,M). But, since U;; is normal,
9ij € H°(Uyj, Op,.). So {Y/ = Spec(A[Ti)/(T]" — f;)) } is & pm-torsor which extends
the Z/mZ—torsor‘ Yx — Xg. The uniqueness comes from 1.3.8. ]

REMARK 111.3.9. We remark that Y does not usually coincide with Y’. This
means that Y’ is possibly not normal.

COROLLARY 111.3.10. Let X be as above and let Gk be any commutative group-
scheme over K. Let us consider a connected Gy -torsor fr : Yix — Xg. Let Y be
the normalization of X in Yi and let us suppose that Yy, is integral. Possibly after

an extension of R, there exists a (commutative) group-scheme G' and a G'-torsor
Y' — X over R which extends fx.

REMARK 111.3.11. As we will see in the proof, the extension of R depends only
on the group G. We do not know if it is really necessary to extend R.
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PROOF. First of all we remark that, since K is of characteristic 0, then G is
étale. So, up to an extension of R, we can suppose that GG is an abstract group.
Now, since GG is commutative, by the classification of abelian groups we have that
G=7Z/mZx---x7Z/m,Z for some my,...,m, € N. We moreover assume that R
contains a primitive m;-th root of unity for : = 1,...,r. We remark that, since we
are only adding roots of unity, Y} is again reduced. We firstly state the following
lemma.

LEMMA 111.3.12. Let Gy, ..., G, be finite and flat group schemes over a scheme
X. Let Y, — X be a G;-torsor for any i. Then'Y =Y, Xx --- Xx Y, is a
G1 X -+ X G-torsor, with the action induced by those of G;.

PROOF. We prove the lemma for r = 2. The lemma follows by induction. First
of all we remark that, since Y7 — X and Y5 — X are faithfully flat the Y — X
is faithfully flat, too. We now call o;, for i = 1,2, the action of GG; on Y;. Then,
since Y; is a (G;-torsor,
o;xid: Gy xY, — Y, xx Y;

is an isomorphism. We call ¢ = o1 X g9 the action of G; x G5 on Y] xx Y5, We
now prove that Y] X x Y5 is a G; X Ga-torsor. We consider the morphism
oxid
(Gy x Go) x (Y1 xx Ya) 55 (V1 xx Vo) xx (V1 xx Ya).
But there are natural isomorphisms
g1 (G1 X Go) x (Y1 xx Y2) — (G x Y]) xx (Gy X Y5)

and
g2 : (Yl XXx YQ) Xx (Y1 XX YQ) — (Y1 Xx Y1) Xx (YQ) Xx Y2),
such that

(G x Gy) x (Y1 xx Ya)
(G1 x Y1) x (G2 x Ya)

commutes. Since the second horizontal morphism is an isomorphism, then o x id
is an isomorphism, too. So Y] x x Y5 is a G; x (Go-torsor.

oxid

(Y1 xx Y2) xx (Y1 xx Y3)

lgz

(Yl Xx Yl)xX(YQ XX Yz)

(o1 xid) x (o2 xid)

O

We now come back to the proof of the corollary. We call G; = Z/m;Z for
i =1,...,7. Moreover we call G; = Gy X -+ X G; X --- X G,. Let us define
(Y ik = Yk /(G;), then (Y;) is a Gy-torsor. For any i, we call o; the action of G;
induced by that of G on (Y;)x. Hence
o; x1d 1 Gy x (Yi)k — (Yi)x Xx, (Yi)k
is an isomorphism. By the above lemma we have that (Y1) Xx, -+ Xx, (Y)k is
a G-torsor. Moreover the natural map

q:Yx — (Yl)K XXg """ XXk (Yr)K
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preserves the G-actions, therefore it is a morphism of G-torsors. But, as it is well
known, any morphism of G-torsors is an isomorphism of schemes; hence ¢ is an
isomorphism.

For i = 1,...,r, we denote by Y; the normalization of X in (Y;)g. Since Y
is integral it easily follows that Y; is integral for any i. Since ¥ — Y} is an
integral morphism, we have by 111.3.5, that (Y;); is integral. So, by 111.3.8, for any
i=1,...,r, there exists a p,,,-torsor Y/ — X which extends (Y;)x — Xk. Now
let us consider Y’ =Y/ xx --- xx Y. Using the above lemma again, it follows that
Y'is a iy, X -+ X iy, -torsor. O

REMARK 111.3.13. We want to stress the spirit of this corollary. Let X be an
integral scheme faithfully flat over R and = an R-point of X. Let us consider the
fundamental group schemes of Gasbarri m(X,x) over R(see [17]) and 7(Xg, k).
Then Antei, in |6], proved that the natural morphism

o :m(Xg,rx) — (X, 2)k

is a quotient morphism and that ker(p) = 0 if and only if, for any reductive group
scheme G over K (i.e. m(Xg,xx) — G is a quotient morphism), any G g-torsor
Yk — Xk is weakly extendible to a G-torsor Y — X over R, for some model G
of Gk. So the previous proposition gives us information about ker(¢). In the next
remark there is an example in which ¢ is not injective.

REMARK 111.3.14. The hypothesis on Y, can be weakened to Y irreducible.
Indeed it has been proved by Epp(|16]) that up to an extension of R it is pos-
sible to suppose Y reduced. But we remark that if Y, is not reduced then it
is necessary to extend R. For instance take X = Spec(R[Z,1/Z]) and Y =
Spec(K|[Z,1/Z][T)/(TP — nZ)) as Z/pZ-torsor over Xg. It is not too hard to see
that Y = Spec(R[Z,1/Z][T]|/(T? — wZ)) is normal (see for example |30, 8.2.6]), so
it is the normalization of X in Yj. Moreover the action of u, = Spec(R[S]/(SP—1))
over Y given by T — ST is clearly faithful. So p, is the effective model. Using
111.3.1 it follows that, if Y — X is weakly extendible by a G’-torsor, then there
is a model map y, — G’. Hence G’ ~ p,,, since 1, does not dominate any group
scheme except itself. We now claim that there is no p,-torsor Y’ — X which
extends Yy — Xx. We remark that by the Kummer theory we have

. — H'(X,G,,) - H(X,G,,) — H'(X,p,) — Pic(X) — ...

Since Pic(R[Z,1/Z]) = 0 we would have Y’ = Spec(R[Z,1/Z][T)/(T? — f)), for
some f € R[Z,1/Z]* such that there exists g € K[Z,1/Z]" with fg? = nZ. If
g =25, with m > 0 and gy € 7R[Z,1/Z], then fgy =0 mod 7R[Z,1/Z]. Since
X}, is integral this is a contradiction, by the definition of f and go. In particular
Yk — Xk is also not strongly extendible.

111.4. Strong extension of Z/pZ-torsors

Before studying the problem of extension of Z/pZ-torsors we consider for a
moment the case of Z/p"Z-torsors. What we say will be useful in the next section,
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too. Let us suppose that R contains a primitive p”-th root of unity. Let us consider
X = Spec(A) with A a faithfully flat and factorial R-algebra, complete with respect
to the m-adic topology, or X a normal local faithfully flat R-scheme. We moreover
suppose that X is integral. By 1.5.3 and 1.5.4 it follows that

(X, ) = A7/ (A"
Therefore any p»-torsor Y/ — X is of type Y’ = Spec(A[T]/(T? — f)) — X

for some f € A*. By the filtration of H'(X, p,») described in 1.5.6, it follows that
V'] € HY(X, G, ) for some A\ € R. But, again by 1.5.3 and 1.5.4, we have that

HY(X,Gxn) =GN (A)/(thrn) . (GV(A)).

The following lemma explains in terms of the element f € A* the meaning of [Y]
being in H'(X, Gx.).

LEMMA 111.4.1. Notation as above. Let us denote by Y = Spec(B) the nor-
malization of X in Y},. We moreover suppose that Yy, is reduced. Then, using the
filtration of 1.5.6, [Y'] € HY(X, G ) if and only if there exists g € A* such that
fg?" =1+ 7" fy for some fy € A.

Let us suppose moreover j < v(Apy). If [Y'] € HY(X,Grin) \ HY(X, Gris1 )
and fg*" =1+ wP" fy, for some fo € A and g € A*, then fy is not a p"-th power
mod 7.

PROOF. The first assertion follows from the fact that the injection
HY(X,Grip) € HY(X, pipn)
corresponds to the injection

G D (A) ) (3,) G (A) — A" (A"
We now prove the second statement. Let us suppose that [Y'] € HY(X,G i) \
HY(X,Gx,ym)- We take any g € A* such that fg*" = 1+ 77" fo, for some fo € A.
If Y] € HY(X,Gpi+1,,), then, by what just proved, fo # 0 mod #?". In fact we

will prove fo Z 0 mod 7 in A. Since the torsor Y} = Spec(A[T]/((lJr”;j# —
fo)), associated to [Y'] € H'(X,G,i,), is integral over X and its generic fiber
is isomorphic to Yy, then, by 111.3.7, the morphism Y — X factors through Y;.
Moreover Y — Y] is a dominant morphism between integral affine schemes, hence
T € B\ {0}. The fact that fy Z0 mod 7?" A implies T # 0 mod 7B. Otherwise,
if T = 7Ty for some Ty € B, then TP" =0 mod 7" B. And, since j + 1 < v(A\g),
we have i
fo= (4 ,7;0) -1 =0 mod 7" B.
TIP

So, by 11.3.5, fo = 0 mod 7?" A against the assumptions. Therefore T % 0
mod 7B. Now if fo = 0 mod A, then, since j < v(Apy), TP" = 0 mod 7B.
But, as we just proved, T'# 0 mod 7B, which contradicts the fact that Y} is re-
duced. So fo #0 mod mA. We finally prove that f; is not a p™-th power mod 7.

Indeed, if fo = ¢/ mod 7 for some gy € A\7A then f = (1+77gy)”" mod 77" +1,
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By the hypothesis on A, 1 + 7wigy is invertible. Multiplying f by (1 + n/go)~"",
we can suppose f = 1 mod 7"+ which implies, by what we have just proved,
V'] € HY(X, Gj+1,,); this contradicts the hypothesis of maximality of j. O

We now consider the case n = 1 and we prove the strong extension. Let X be

as above. Let
YK e XK

be a nontrivial Z/pZ-torsor. We remark that A is factorial, too. So Pic(Ak) =0,
which implies H'(Xg, p,) =~ Al /(A%)P", by 1.5.3 and 1.5.4. Therefore Y =
Spec(Ax[T]/(T?" — f)) with f € Aj. So the class [Yx] € H'(Xx, ppn) corresponds
to the class of [f] in A} /(A% )P. Let Y be the normalization of X in Yx. We
suppose that Y} is integral. There exists, by 111.3.8, a unique fp,-torsor Y/ — X
such that Y}, — Xy is isomorphic to the Z/pZ-torsor Y — Xk. So Yi defines
uniquely an element [Y'] € H'(X, u,). We remark that this means that, up to a
multiplication by a p"-th power, we can suppose f € A*. The proof of the following
theorem is close to that of Henrio (|25, 1.6]) for formal curves, but rewritten in an
other language.

THEOREM 111.4.2. Notation as above. If [Yx| € HY (X, G 1) \ H' (X, G 1)
then Y is a Grv1-torsor. Moreover the valuation of the different of the extension

Ov,(m)/Ox,(x) 15 (p — 1)(v(A1)) — 7).

PROOF. We have Yy = Spec(Ax[T]/(TP — f) for some f € Aj.. As remarked
above, we can suppose f € A*. Moreover Y’ = Spec(A[T]/(TP — f)) is the p,-
torsor which extends Yx. We now study the different cases which may occur.

If v = 0 then f is not a p-power mod 7 (otherwise, by 111.4.1, up to a mul-
tiplication by a p'-power, we can suppose f =1 mod 7 and so v > 0). So Y’ is
normal by 111.3.6. Since Y’ is integral over X and its generic fiber is isomorphic to
Yk then, by 111.3.7, the morphism Y — X factors through Y/ — X i.e. we have

Yy —Y' — X.
But, since it is normal, Y’ coincides with the integral closure of X in Yk, i.e.
Y ~Y.
If v = v(A@1)) then it is an étale torsor and we are done.

If (X)) > v > 0 we can suppose, by 111.4.1, f = 1+777 f; with fo #0 mod m
in A. Let us consider the G~ ;-torsor

(14+mT)yY —1
Y - f(]))
By 111.4.1 fy # g5 mod 7 for any go € A\ 7A. So (Y1) is reduced and, by 111.3.6,
Y; is normal. Moreover we have, by 111.3.7, the following factorization
Y —Y), — X.

But, since Y] is normal, it follows that Y} ~ Y by 111.3.7. The statement about the
valuation of the different is clear.

Y1 = Spec(A[T]/(

U
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111.5. Strong extension of Z/p*Z-torsors

111.5.1. Setup and degeneration types. From now on we will suppose that
R contains a primitive p*-th root of unity. Therefore we have (Z/p*Z)xk ~ (1,2 k.
We moreover suppose p > 2. Let X := Spec A be with the same hypothesis used
in §111.4. We moreover assume that X is essentially semireflexive. Let hg : Y —
Xk be a connected Z/p*Z-torsor. Then we consider the factorization

Yie P25 (v B x
with both (h1)k, (he)x nontrivial Z/pZ-torsors. Let Y; = Spec(Bj) be the nor-
malization of X in (Y1)x and Y = Spec(B) the normalization of X in Y. We
moreover suppose that Y} is integral. By well known facts about integral closure,
we have that Y is the integral closure of Y] in Yx. So we have the factorization

hey 2y, M ox

with h; and ho degree p morphisms. Since X is normal, by 111.3.7 it follows that
Y and Y are normal schemes. By 111.3.5 we have that, since Y} is integral, then
(Y1)x is integral, too.

Now, by 111.3.8, we can extend Y to a p2-torsor Y’ over X. So we can suppose
Yi = Spec(Ax[T]/(T?" — f)) for some f € A*/(A*)P’. We can also write

YK = SPGC<A[T1, TQ}/(Tlp - f, ?_,—21 - 1))

Therefore we have
(Y1)x = Spec(Ax[T1]/(T{ — [))

and
TP
Vie = Spec((Ba)lT2)/ (7~ 1),

We remark that By is finite and free as an Ag-module. In particular it is semire-
flexive over Agx. From I11.1.12 it follows that Y is an essentially semireflexive
scheme over Spec(R). Therefore we can apply 111.1.16 to check if a group scheme is
an effective model for the Z/p*Z-action on Y. We now want to attach to the cover
Yk — X four invariants. We have seen in the previous section that there exists
an invariant, which we called v, that is sufficient to solve the problem of strong
extension of (Z/pZ)k-torsors. So the first two invariants are simply the invariants
~ which arise from the two (Z/pZ) g-torsors Y — (Y1)x and (Y1) — Xk. We
are now more precise. By the above discussion it follows that h; satisfies hypothesis
of §111.4, hence we can apply 111.4.2. Then, if we define v, < v(A(1)) such that

[(le)K} € H1<X7 Gfr"fl,l) \ Hl(Xv GTr'Vl"’l,l)a

it follows that Y7 — X is a G j1-torsor. We stress that 7 is also determined
by the valuation of the different D(hq) of hy : Spec(Oy, (r)) — Spec(Ox (x)). We
indeed have

v(D(h1)) =v(p) — (p— D)m.
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We can apply 111.4.2 also to the morphism hs : ¥ — Yj. Then, if we define
72 < v(Aq)) such that

[(Y)k] € H' (Y1, Grnag) \ H' (Y1, Gz 1),

it follows that ¥ — Y} is a Gz j-torsor. The invariant 7, is determined by the
different of hy : Spec(Oy,(r)) — Spec(Oy; (r)), too. Indeed

v(D(hs)) = v(p) — (p — 2.
The third invariant is linked to the filtration 1.5.6 of H' (X, u,2). It is the integer
J <v(Ag) such that [Yx] € H'(X,Gio) \ H(X, Gri+12). We observe that there
exists a Gy o-torsor Y which extends Yx — Xg. By 111.3.7 we have morphisms
Y — Y"and Yy — Y” /G, 1 such that the following diagram commutes

(111.80) Y Y”
| |
Yy Y"/Gria
N\

By definition of j, up to a multiplication of f by an element of (A% )" 2, which does
not change the p,2-torsor on the generic fiber, we can suppose f =1+ 7P° fy with
fo€ A, And, if j <wv(Ng)), by IIL4.1 f; is not a p*-power mod .

Before introducing the last invariant we describe explicitly the scheme Y. By
definition of v; and by the proof of 111.4.2, there exists g € A* such that fg™? =
1 + 7" fy with f; € A. By 1ur4.1 it follows that, if 1 < v(Aq)), fi is not a
p"-power mod 7. Therefore Y; = Spec(B;) with
(1+mmTy)P —1

PN

By = A[T]/(

- fi)

If Y/ — Y} is the p,-torsor which extends Y — (Y7)x then Y is the normaliza-

tion of Y] in ’
N 15
(YK = SpeC((BDK[Tz]/(m —9))-

Then, reasoning as above, there exists H(T}) € Bj, such that
g(1+7"T)(H(T1)) =1 mod n"B;.
Therefore Y = Spec(B) with
1 2P —1 1 Pigo)H (T1)~P(1 nry) —1
B:Bl[Tz]/(( + 7T) (L7 go)H(Ty) (1 + 7Th) )

P72 P72
We remark that Y — X is a faithfully flat morphism. Indeed, since Y — Y}
and Y7 — X are, respectively, a G j-torsor and a G j-torsor, they are in
particular faithfully flat morphisms. Therefore, by transitivity of flatness, it follows
that Y — X is faithfully flat, too.
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We remark that the definition of g and H (7)) depends on the choice of the
representant f of [Yx| € H' (X, u,2). We now see how they vary as f varies. We
stress that we require f =1 mod 777, Let us substitute a?” f to f, with a € A*
and a” f =1 mod 777, Since X}, is integral it follows from 1.5.7 that o’ f = 1
mod 777 is equivalent to a = 1 mod 7. Now it is immediate to see that we have
to substitute a”g to g and H(T}) by a~'H(T;). We now prove that, for a fixed f,
the elements g and H(77) are uniquely determined in a certain sense.

LEMMA 111.5.1. Using above notation we have that any g, H(Ty) as above are
of the form

g=1+7Pgy with go #0 mod TA
H(Tl) =1 +7TjH1(T1) with Hl(Tl) ¢ A mod 7TB1.

If j < v(Ag)) then go is not a p™-power mod wA and Hy(Ty) is not a p™-power
mod wB;. Moreover, for any representant f = 1 + 7Tp2jf0 of [Yk] € HY(X, pp2),
the element g is uniquely determined mod 7 and H(T}) is uniquely determined

mod 7. Finally, if j > 0, up to a change of the representant f, we can suppose

H(0) =1.

PROOF. Since A is separated with respect to the w-adic topology and ¢ = f
mod 7, we can suppose that ¢ = 1 + 7gy with go Z 0 mod 7. Moreover as
remarked we can suppose f = 1+ 77" f with fy not a p?-th power mod m. By
definition of g

(1+ 77 fo) = (1 +7"go)? mod 7.
Then
(111.81) (1+77f)) = (1+ gl + prfg) mod P,

Since pj < v(A@)) then h < v(Aq)). Otherwise fo =0 mod 7 and in particular fj
would be a p? — th power. This contradicts the hypothesis on fy. Hence v(p) >
(p —1)h, which implies v(p) +h > ph. So, since X}, is integral, by (111.81) it follows
that

h = jp.
Hence by (111.81) we obtain fo = g5 mod . Therefore gy is not a p™-power
mod 7, otherwise f; would be a p?>-th power mod 7 against hypothesis on fy. Let
us suppose there exists ¢ € A* such that

¢’ = ¢” mod 7.
Reasoning as above it is easy to show that

(2/) =1 mod ™.

Since g7 =1 mod 7P’ By then H(T})» =1 mod 7P B;. Hence, in a similar way
as above we have H(T) = 1+ 7 H\(Ty) with H,(T1) # 0 mod 7B;. Now let us
suppose there exists a € A such that H;(7}) = a mod B;. Then it follows

1 +7Pa? =1+ 1Pg, mod P*!
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This means
a’? =gy mod 7w

which contradicts what we have just proved. As above it is easy to prove the
statements about the reduction mod 7 of H;(77) and the uniqueness of H (7))
mod 772. We now prove the last statement. We assume that j > 0. Let us suppose
that H(0) # 1. By what we just proved we know that H(0) = 1 mod 7/A. So,
since A is m-adically complete or A is local, it follows that H(0) € A*. Hence
H(T\) = H(0)Hy(Ty) with Ho(Ty) € B} and Hy(0) = 1. If we change f into
fH(0)", by the discussion before the lemma we have that we have to replace
H(Ty) with Hy(T7). So we are done.

O

Now, given H(T) = SP_  a,Ti" € By, let us consider H'(T}) as its formal
derivative. Using the above lemma we suppose ag = 1 if j > 0. For any m > 4,
we will say that a € 7R satisfies (A),, if

aH(Ty) =7a"""H'(Ty) mod 7.
We finally give the definition of the fourth invariant.
DEFINITION 111.5.2. We will call effective threshold the number
x = min{m > v1|3a € TR which satisfies (A),,}.
If we take m > v, + 72 and a = 0 we see that such a minimum exists.

LEMMA 111.5.3. For any m > k there exists an unique solution, mod 72, of
(A). We will call o, € TR any of its lifting. If H(0) = ag = 0 mod wA then
o, =0 mod 72,

REMARK 111.5.4. By 111.4.1 it follows that the case H(0) =0 mod 7 can only
happen if j = 0.

PROOF. Let us firstly suppose ag 0 mod wA. If b;, for i = 1,2, are solutions
of (A),, it follows that for any m > ~; we have in particular b;ag = 7" May
mod 772. Therefore

a0(1)1 — bg) =0 mod 7.
But ag € mA and X, is integral, therefore by = by mod 72,

We now consider the case ay € mA. Since H(T) € (R/AR[T])* and a9 € TA
then there exists 0 < i < p — 1 such that a; € 7A. Let ¢ be the least integer with
this property.

Let a be a solution solution of (A),, and suppose that a Z 0 mod 7?2. In
particular

aa; = (1 + 1)az 7™ "
and
aa;_q = ia;T" .
Therefore, by the minimality of i and by the fact that a # 0 mod 772,
v(a) > o(@™™ ) > v(a)
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which is a contradiction. Therefore, if ag € mA, then a =0 mod 772. 0

DEFINITION 111.5.5. Using the previous notation we say that the degeneration
type of Y — Xx is (j,71,72, k).

We now give some restrictions on the degeneration type.

LEMMA 111.5.6. We have the following relations.
i) pj <m,
i) j <,
i) 1 <k <+ —j. In particular v = j implies Kk = 1.

PROOF. Let us consider the diagram (111.80).
i) We recall that Y7 — X is a G 1-torsor and Y /G i1 — X is a Gopi -
torsor. So by 111.3.1 we have a morphism Grn;1 — Gpwii. Therefore
T =D
ii) We recall that Y — Y7 is G i-torsor and Y — Y" /G 1 is a G -
torsor. Again by I111.3.1 we have a morphism Gy — G ;. Therefore
Y2 2 J- ‘
iii) By 111.5.1 H'(T) =0 mod 7. Therefore if we take m = v + y5 — j then

7" MH(T)=0 mod 7.
Therefore a = 0 satisfies (A),,. This implies k < v, + 75 — j. Now, if
Y9 = 7, then k < ;. But, by definition of x, we have x > ~;. Hence
K= "7.
O

111.5.2. The main theorem. We here prove the main theorem of the chapter.

THEOREM 111.5.7. Let us consider X = Spec(A) with A a factorial R-algebra,
complete with respect to the m-adic topology, or X a normal local R-scheme. We
moreover assume X essentially semireflexive (see §111.1). Let Y — Xg be a
connected Z/p*Z-torsor and let Y be the normalization of X in Yx. Let us suppose
that Yy is integral. If Yi has (j, 71,72, k) as degeneration type then ils effective
model s

g(ﬂ"‘,ﬂ72;Ep(aNS),1).
Moreover if a,, 20 mod 72 then v(a,) = k — v + j. Otherwise kK — 1 + j = 2.

PROOF. As we proved in the previous section Y = Spec(B) with
(1+mnTy)P -1 4 (L+m2Ty)P =1 (L+7Pgo)H(T) P(1+7"Th) — 1>_

P71 P72 P72

B = B[Tl,Tg]/<

By the definition of integral closure of X in Yy the Z/p*Z-action on Y can be
extended to an action on Y. We now explicitly describe this action. If we set

7.(.1}()\(1)) ,R_’U()\(l)) p—1 (_1)]671

T]:
A Ay =k

= Aoy
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then we can write, by 11.3.52,
(111.82)
(Bp(neS1)+r" (1)) 55)p
(1 + 71.1)(/\(1))81)? -1 P 1+;U(A(1))Sl EZ— )
(M) ! aPr(Aw) '

7./p*7 = Spec(A[S, SQ]/(

Since Yk is a p,2- torsor, on the generic fiber the action is given by
14+ T — (1 4+ 7°C0) S (1 4 n72T7)
(L4 72Ty H(TY) — (Ey(n: 1) + 7"00)8,)(1 4+ 72 1) H(TY),
so it is globally given by
Ty — 701G + Ty + 7005 T

v(A (1+772T2)H(T)
(Ep(11251) + w01).8y) (H(ﬂvo‘(l”VISI+’2]‘1+7TU1(A(1))SITI)> —1

Ty —
T2

The proof of the theorem is obtained as a consequence of several lemmas.

LEMMA 111.5.8. If an effective model G for the action of Z/p*Z exists then it is
of the form E™" 3B with v(A1y) > m > max{y2, 1 }.

PROOF. Since the effective model is a model of (Z/p*Z)k, by 11.3.53, it follows
that the effective model G is of the form 7™ ™*BD with v(Aq) > m > 7.
Moreover G/Grw 1 ~ Gym; has an X-action over Y. But V) — X is a G -
torsor. So, by I11.3.1, we have a model map G m 1 — Gz 1. Then m > ;. ]

Let us now consider a group scheme of type £ 7D We consider the
normalization map ¢ : Z/p?Z — E™" 2D We give necessary and sufficient
conditions to have an action of £ %D on Y compatible with . By 11.3.53 we
have that 1 nSp - 1

+mh5)" =100,
F(S) = By(a8) € (R Rs) (LS L)
for some a € R/77 R. In the following we take a lifting @ € R of a € R/7"*R and
we consider F/(S) = 377 4.5 € R[S as a lifting of F(S).

LEMMA 111.5.9. There exists an action of E™ %Y on'Y compatible with o
of and only if

FS)H(T)—-H(@™ MS+T+7mST)=0 mod 7

PROOF. Let us suppose that such an action exists. Reasoning as above, it is
possible to show that the action is given by

T1 — 7Tm_7151 + T1 + 7Tm81T1

(F(Sl)+7r7252)(H( (Lt 2 Ty HIT) )— 1

M1 S1+T1+7Tm51T1)

T2 >
T2
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F(S1)+7172 S5 (1+n2Tp) H(Ty) 1
(F(S1) )

H(x™ ™18 +T1 +7™M 51 Ty)

Then, in particular, — belongs to
(F(S1)+m72S5)P
14+7m8)P —1 —Tms — — 1
B ® A[S, Sz]/( —mp 5 -
So we have
(F(50) + 7252) (SRS ) 1
T2 B
F(S)H(Ty) — H(z™ "8, + Ty + 7S, T) F(S))H(Ty)

+ 15

e H(mm S + Ty + 7S Th) +

(]_ + W’YQTQ)H(Tl)
H(mmnS; + Ty + 7S Th)
This implies
F(Sl)H(Tl) —H(@™™MS +T1+7"5T)) =0 mod 7.

[‘[(71'”1771 Sy + T + 7Tm51T1>

+ Sy

But it is clear that this condition is also sufficient to define the wanted action. O

The next lemma, together with 111.5.9, links the definition of the effective thresh-
old with the existence of an action of a model of Z/p?Z on Y.

LEMMA 111.5.10. Let b € wR. Let us consider G(S) = 30—, IZ—,SZ € R[S]. The
following statements are equivalent.
(i) ~C?(S)H(T) =H(m"™ "S+T+7"ST) mod 77%;
(i) bH(T) = 7™ " H'(T) mod 72 where H' is the formal derivative of H.
Moreover they imply the following assertions.
(1) Let us consider R[Grm 1] = R[S] /(W2 S2L) - Then,

Tmp

G(S) (- Hom(GﬂTrL’l‘Sj\'g s GmlSZQ)
and .
GS)P=1+7"5 mod mR[G,1].
(2) If m > v, then
G(S)H(T) — H(x™ S +T +7™ST) _ bH(T) — 7™ " H'(T)

= mod 7
T2 T2

PROOF. (i) = (ii). Let us suppose
G(S)H(T) = H(@™ "S + T+ x™ST) mod 772

We consider both members as polynomials in S with coefficients in R[T']. Then if
we compare the coefficients of S we obtain (ii).
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(1) <= (ii). Let H®(T) denote the k' formal derivative of H(T). We remark
that (i) is equivalent to
VH(T) = (7™ H®(T) mod 77
for 0 < k <p—1. We prove a little more. We prove that

(111.83) FH(T) = (7" HO(T)  mod m=rmin{(k=1e@),t-10m—)}

For k = 0 it is obvious. Let us now suppose it is true for k, we prove it for k + 1.
If we multiply (111.83) by b we obtain

(1.84)  BFTUH(T) = b(a™ )P HW(T)  mod a2 tmin{(k=1v®)(=1)(m—)}+o()

Moreover if we differentiate the equation (ii) k& times, we obtain

(111.85) bH®(T) = 7™ HED(T)  mod 772,
Multiplying (111.85) by 7#(™=71) we obtain
(111.86) bk M=) g®(T) = (=) kD gD () mod g2 tRm=n),

Then (111.84) and (111.86) give
FHLH(T) = (e )R LHEH(T)  mod goztmin{ke@lkm=)),
as we wanted. So (¢) and (2) are proved. Let us now suppose (i) true.
(1) We recall that H(T) = Y07 a, 7% € (A[T]/(WHZ2D= — ) = B If
ag € TAthen b= 0 mod 72 by 111.5.3. Let us now suppose that ag & TA.
We now think H(S) € A[S]/(UH=23"1y — R[G,n,1]. We consider the

TP
morphism ¢zm n : Grm 1 — Grnq. Then

Yrm 7o (H(S)) = H(7™75)
On the other side if we compare the coefficients of 7" in (i) we obtain
H(z™M8) = agG(S) mod 772,
Therefore .
Vrm o (H(S)) = aoG(S) mod 77,
Let us now consider id X9zm zn 1 Gem 1 X Gam 1 — Grm 1 X G 1. Hence
if we apply id Xt} 1+, to (i) we obtain
apG(S)G(T) = ayG(S + T +7™ST) mod 7
which implies, since ag  TA and Grm 1 X Grm ;1 is flat over A,
G(S)G(T)=G(S+ T+ 7™ST) mod 7.

This means G(S) € Homg, (Gam,1 g . Gms o, ). Moreover we know that
(111.87) H(TY =g '(1+7"T) mod n"*B;.

Hence

(H(T)G(S))P = g (1 + 7" T)G(S)? mod 772(R[Grm 1] ® By).
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Moreover it is easy to see that

R[Gyni1] ® By = RIS, T]/(<(1 FT (LS 1 (L4 "S) 1)7

T T

then we can substitute (H“MT)ﬂ(le”mS)*l to T in (111.87) and we obtain
(H(x™ MS+T+a"ST))P =g (1 +7"S)(1 +7"T) mod 77 (R[Grm 1] ® By)
By hypothesis we have that
G(S)H(T) = H(x™ " S + T +7™ST) mod m
and therefore
g A+ T)G(S)P =g ' (1 +7mS)(1 +7"T) mod 772(A; ® By).
This implies

G(S)P=(1+7™S) mod n"2A;.
U

We are now able to find a candidate to be the effective model.

LEMMA 111.5.11. If an effective model for the Z/p*Z-action exists it must be the
group scheme 7?51 - In particular (o, 1) € Drr 2. Moreover 75 < Kk <
U()\(l)).

PROOF. Since, as we have seen, Z/p*Z acts on Y then, by 111.5.9 and the
previous lemma it follows that 7, satisfies (A)y(,,). Therefore £ < v(Aq)).

By 111.5.8 it follows that the effective model is of the form ™75 for some
m < v(A@y) and F € HomgT(Gﬂm,l‘SHQ,Gm‘sww). By 111.5.9 and 111.5.10 we have
that if a group scheme £ 8D acts on Y then F = E,(,,S) with o, € 7R
which satisfies (A),,. Conversely if m < v(Aq)) and a,, € TR satisfies (A),,, then
by 111.5.9 and 111.5.10(1) we can construct the group scheme & *:Fp(@mS):1) anq
it acts on Y. We remark that by 111.5.3 the equation (A),, has (unique) solution if
and only if m > k. Moreover, for any v()\(l)) > m' > m there exists a model map
g 2By (@ 8)1) L, g™ w2 By (emS))) - [ndeed by definition of m, we have that
there exists «,,, € 7R such that

anH(T) =7"""H'(T) mod 7.

Therefore
™ o H(T) = 7™ " H'(T) mod 2.
But we know that
O H(T) = 7™ "M H'(T) mod 2.
And, as seen in I11.5.3, the solution of the above equation is a unique mod 772.
Therefore 7" ~™q,, = o,y mod 72. So, by 11.3.49, there exists a model map

(c:(ﬂm, 25 Ep (a1 S),1) WH,TF’YQ;EP(OlmS),l).

— &l
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We recall that for any m > k the action of 8(”m,’”72?EP(am’S)’1)

Ty —a™ NS + T + ™S Th
F(S1)H(Ty) — H(x™ "8, + Ty + n™S1Ty)
2 H(mmnS) + T + 75 1Th)
F(S1)H(Ty) (1+m7215)H(Th)
H(mm=nS, + Ty +7mSTy)  H(rmnS, + T + 7S Th)

The above model map is compatible with the actions on Y. In particular we have,
for any v(A¢1y)) > m > K, a model map

is given by

T —

+ 715

g(ﬂ'er'VQ ;Ep(amS),l) _ 8(7r”,7r72 ;Ep(anS),l) ]

compatible with the actions. Since the above model map is not an isomorphism,
there is a non trivial kernel H of the morphism restricted to the special fiber. Since
the map is compatible with the actions then H C (£ 7% Ep(@mS)D)Y “acts trivially
on Y. So
£ 772 By (0 S),1)

is not the effective model of the Z/p?Z-action if m > k. Hence if an effective
model exists it must be £ (@51 " GQince the group £ exists it
follows, by 11.3.53, that kK > 72 and (a, 1) € Ppr 1. d

We remark that if X was of finite type then Y would be of finite type. So
applying the theorem of existence of effective models 111.1.9 we would have finished.
We now prove that (™7 %Ep(@x5):1) g the effective model for the action of Z/p*Z
in the general case. By construction the action is faithful on the generic fiber. We
now check the faithfulness on the special fiber. Let us suppose that the map

gk — (g(ﬂ“,ﬂW%E'p(anS)vl))k — AUtk(Yk)

has nontrivial kernel K. Since the action of (Grvz21)k on Yy, is faithful by definition

of v, then K Xg, (Grv21)g is the trivial group scheme. Therefore K is a group
scheme of order p and

((C:(W'“,Tr“*?;Ep(a,iS)vl))k ~ (wa,l)k Xk K

Since (€™ 2iEp(@x9):1)), s an extension of (Gyx1)r by (Groe1)r We have that
K ~ (Grry)p. We distinguish two cases.

The action (Grn 1)k Xk Yi/(Grvz 1)k — Yi/(Grrz21)k is induced by
the action K x r Yr — Yy, which is trivial by definition of K. But by definition
of v1, (Gzn 1)k acts faithfully on Yi/(Gre1)k. So K is trivial and the action of
Mm% Ep(anS).1) g faijthful on the special fiber.

We remark that necessarily 7o > 0. Indeed if 5 = 0 then, by 111.5.6(i)
and (iii) necessarily k = 7;. It is also clear that x > 0. Now, by 7, > 0 and
111.5.10(2), it follows that the action on the special fiber is given by the reduction



IT1.5. STRONG EXTENSION OF Z/p*Z-TORSORS 97

mod 7 of
T — 17
a H(Ty) — " H'(TY)
m2H(TY)
We remark that if 7 > 0 then H(77) =1 mod 7. We now prove that
a.H(Ty) — n~"H'(Ty)

TQF—> 51+T2—|-52

111.88 S1 # bS d

( ) ﬂ_,mH(Tl) 1 7_é 1 moam

for any b € R. Let us suppose O‘”H(T;)W;”HH(;T)H/(Tl)Sl = bS; mod 7 with b € R.
Then

OZHH(Tl) — Wnilel(Tl)

T2

Sl = bH(Tl)Sl mod

with b € R. Therefore
(OCH — bﬂ'/m)H(Tl) — H,<T1)

T2

=0 mod 7.

It clearly follows that
K b
uH(Tl) =71 H(T)) mod 77
T
Then o = @ satisfies (A\),_1; it is easy to see that this implies o1 € TR.
The minimality of x is contradicted. So we have proved (111.88).
We now consider three different cases. If 75, K < v(A()) then

(£ 2B xS DY~ o) % o, = Spec(k[Sh, Sa]/(SY, SB)).

Its subgroups of order p different from (G 1), are the subgroups Sy 4+ bS; = 0
with b € k. If 95 < k = v(A(1)), then

(5(#",7772;Ep(a,$5),1))k ™~y Xg Z/pZ = Spec(k[Sl, SQ]/(S{), Sg — S2))

and the only subgroup isomorphic to K ~ Z|pZ is Sy = 0. Finally if v9 = k =
U()\(l)) then

(2B (nS) DY~ 7, /T x4, 7/ pZ = Spec(k[Sy, Sa] /(S — Sy, SE — Sy))

and the only subgroups isomorphic to K ~ Z/pZ different from (Grvz21)k are the
subgroups Sz + bS; = 0 with b € F,. In any case, by (111.88) the action restricted
to any subgroup of (£ ?Fp(ex)1)), i not trivial.

We now prove the last sentence of the theorem. We have, by definition,

(111.89) a.H(T)) = 7" H'(T)) mod 7
Moreover H(T1) € By and, if we consider H'(Ty) € By, we have
(111.90) v(H'(Th)) = 7,

by 111.5.1. If o, =0 mod 72 then, by (111.89) and (111.90), it follows 7"~ 117 = ()
mod 772. Therefore k — v, + j > 72. So, by 111.5.6(iv), we have Kk — v + j = 7.
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While, if a,; # 0 mod 72, it follows by (111.89) that v(ay) = kK — v + j. The
theorem is proved. [l

We here give a criterion to determine when Y has a structure of torsor.

COROLLARY II1.5.12. Let us suppose we are in the hypothesis of the theorem.
Then'Y — X is a G-torsor under some finite and flat group scheme G if and only
if K ="1. Moreover k =7, if and only if y1 > 2 and H(T) = E,(aT) mod 72,
for some a € TA such that a® =0 mod 2. In such a case G = ETHm%H1)

REMARK 111.5.13. The degeneration type of any &7 "2:Fp(@xS):1)_torsor is

(v(a); Y1, 72 M1)-
This follows from 111.5.7 and 111.5.12.

PROOF. We remarked in 111.1.6 that if Y — X is a G-torsor for some finite and
flat group scheme then G must coincide with the effective model G of Z/p*Z acting
on Y. In other words Y — X is a G-torsor if and only if it is a G-torsor. By the
theorem we have that the effective model for the Z/p?Z-action is £ *iFp(@xS)1),
Moreover there is the following exact sequence

i D
0— Gﬂ-“/QJ — Q — ngl — 0

By 11.1.7 (i) we have that G+ is the effective model of the action of Z/pZ C
Z/p*Z onY. Now if Y — X is a G-torsor then it satisfies the hypothesis of 111.1.7
(iii), then G« ; is the effective model of the action of Z/p*Z/Z/pZ on Y;. But
by the definition of 7; we have that Y7 — X is a G 1-torsor. Then, again by
111.1.6, we have Gx 1 >~ G 1, which implies kK = ;.

Let us now suppose that x = 7;. We recall that

L 4amT)P =1, (1+a2T)P —1 ¢ 'H(T)P(1+anTy) —

1

Y = Spec(A[Tl,Tﬂ/(( —f1,

TP P2 P2
Moreover by definition of k we have o, H(T) = H'(T) mod 772. Then by 11.3.21 it
follows that H(T') = E,(a,T) mod 772. We recall that we suppose, using IIL1.5.1,
H(0) = 1. Now let us substitute T5H (7}) to To. Then we obtain
<1+7T71T1>p— 1 (H(Tl) +772T2)p<1+7T’YlT1)_1 —g_l
f2061 — Y2 )
T s

By definition of £ Ep(@xS) 1) there exists G € Hom(G™ g .., Gs ., ) such
that

Ep(axS)P(1+778) 7" = G(

Y = Spec(A[Ty, T5]/(

(147185 —1

) e Hom(g(ﬂ-vl)‘sﬂ.p’vz Y GTH‘SWp'yQ )

P71
We remark that, if we thm E,(a;T1),G(T) € Bf, the previous equation gives
E,(a,Th)P(1 + 7T"’1T) (f) mod 772 B; On the other hand we have that
H(T)P(1+7mTy) ! = ( TV)P(1 +71Ty)~' = g7' mod 772 B;. Therefore we
have

=G(f1) mod A

)
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ie. g7 = G(f1) + w2 f, for some f, € A. Hence, by §11.4, Y — X is a
£ 12:Bp(enS) 1) _torsor.

We now have, by definition of k, that k = ~; if and only if there exists o, € A
such that

(111.91) a.H(Ty) = H'(Ty) mod 7™

We remark that, since Kk > 75, K = vy, only if 74 > 7. In such a case, by 11.3.21,
H(T)) satisfies (111.91) if and only if there exist o, € mA such that o? =0 mod 77
and H(Ty) = Ey(a,T1) mod 772,

O

COROLLARY 111.5.14. If 1 < 75 then Y — X has no structure of torsor.

PrROOF. We know by 111.5.11 that K > 75. So by hypothesis we have kK > ;.
By the above corollary the thesis follows. U

REMARK I111.5.15. Unfortunately we have no example of coverings with v, < 7.
So we don’t know if this case can really occur.

EXAMPLE 111.5.16. We here give an example, for any p > 3, where ¥ — X
is not a G-torsor under any group scheme G. We suppose that A; # A;P. Let
X = Spec(A) be as above. Take 7,7, such that v(p) > py; > p*y > 0. In
particular we have v(p) > (p — 1)y1 + py2. Let us consider any a; € A*. Moreover
take f; € A* and f, € A such that they are not a p'*-power mod m. Moreover let
us consider g~! = af (f1 +72f5) € A*. For instance we can take A = R[[Z]][{Z '},
n=p+l,w=1a =1, fi=fo=Zand go' = Z(1+7P72). So the Z/p*Z-torsor

over Spec(Ag) is Spec(Ag[T) /(T — %))

Then we consider Y; = Spec(B;) = Spec(A[T]/(%# — f1)). Since fi
is not a p"-power mod 7 then Y; is normal (see 111.3.6). We remark that by
hypothesis we have that 77 = f; mod 772!, We now take H(T) = a,Ty € B;.

Then we have, by construction,
H(Tl)p — g_l(l + 7T%T1)

P2

al fo mod .

So we consider
1+ 72Ty —1  H(Ty) g '(1+a"Ty) — 1

7T77p 72 TPV2

Y = Spec(B1[Ts]/(

)

Then
Yy, = Spec(A[Ty, To]/(TV — fo, T35 — f1))

Hence Y is integral and Y normal. We remark that
Yic = Spec(Ag[T]/(T" = (L+ 77 fi)g ™).

Since a; ¢ mA then, by 111.5.12, we have that Y — X has no structure of torsor.
The degeneration type of Yy is (0,71, 72,71 + 72). Indeed H'(T}) = ay. So

a(aTy) = 7" a; mod 7
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if and only if @ = 0 mod 7% and kK — v, > 7. This means xk = y; + 7y, since
k <7 + v — 7 and j = 0. The effective model is

G _ g(7r71+7277r72;171)
Since kK = 7, + 72 > 7 then Y is not a G-torsor by the previous corollary.

111.6. Realization of degeneration types

We have shown in the above section that the degeneration type has to satisfy
some restrictions. We here want to study the problem of determining which are
the elements of N* which can be degeneration type of some cover Y — X.

DEFINITION 111.6.1. Any 4-uple (j, 71,72, k) € N* with the following properties:
i) max{v, 72} <k < v(Aw);
i) 72 < p(k = m +7) < pp;
iii) if K < pye then 11 — j = v(Ap)) — v(Ag)) = @; if K > pys then 0 <
- P —J) <o) —pn Atk
iv) pj <m;
will be called an admissible degeneration type.
REMARK 111.6.2. We remark that if k < pv, then j is uniquely determined from
71 and moreover i) and iii) imply iv). The first assertion follows from iii). For the
second we note that, if K < py,, multiplying iii) by p we have py;—j = (p—1)v(A)),
since pA2) = A(1). Therefore, by i), we have v —pj = (p — 1)(v(Ax)) —71) > 0.
Moreover we remark that

Kk — 71 +J < min{ye, v(A@)}-
By ii) we have only to prove x — v + j < v(A(2)). Moreover, since A1y > £ > py,

implies 2 < v(A(2)), we have only to consider the case k < py,. But by iii) and i)
it follows that
v(p)

K—m+Jj=kr— p <v(Aw) —v(A@) Fv(A2) = v(Ag).

LEMMA 111.6.3. Any degeneration type (j, V1,72, ) attached to a Z/p*Z-torsor
Yi — Xk 1s admissible.

PROOF. i) comes from definitions and 111.5.11. While iv) has been proved in
111.5.6(1). We now prove ii). By 111.5.7 it follows that the effective model of the
action of Z/p*Z on Y is £ (@) ) with v(ay) = k — v + 7, if a, # 0; and
K —y +J =" if ay, = 0. Since, by 11L.5.11, (ay, 1) € Prr 12 then
(111.92) a? =0 mod 772,

Hence we have
Y2 < p(k—m +J).
By 111.5.6(iii) it follows that K —y; + j < 7. This proves ii).
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Let us now suppose kK < pys. Since (v, 1) € $rr 12, by 11.3.42 and 11.3.47, we
have that

, v
H—V1+]:ﬁ—@
p

which implies v, — 5 = @. While, if & > pys, by 11.3.42 we have that

po(aw) =p(k =71 +7) 2 pye+ (p— 1)k —v(p)
which gives
p(y2 —Jj) <vlp) —pn + 5.
We remark that v — j > 0 comes from 111.5.6. Hence iii) is proved. U

DEFINITION T111.6.4. Any admissible degeneration type which is the degener-
ation type attached to a Z/p*Z-torsor Yy — Xjg as in §111.5, will be called
realizable.

We now see, as a consequence of theorem 111.5.7, what happens in some par-
ticular cases. Moreover we observe that, by I111.5.14, one can imagine to find a
generically Z/p*Z-torsor with no global structure of torsor in some easier cases.
For instance v; < v(A@1)) and 7, = v(A@py). But the following result shows in
particular that any such admissible degeneration types are not realizable.

PROPOSITION 111.6.5. Let us suppose Y has (j, 71,72, k) as degeneration type.
i) If j < v(\g) then pj = v if and only if Y is a Gria-torsor. Moreover
the degeneration type is (j,p7, j,pj). In particularY is a p,2-torsor if and

only if 1 =0, i.e. v(D(hy)) =v(p).

ii) 7 =v(Ag) if and only if Y is an g W) x12:8,(1e).1) gorsor. Necessarily
Y2 > v(A2)) and the degeneration type is (v(A2)), v(Aq)), Y2, v(Aq)))-

iii) vo = 7 if and only if Y is a E™ 7Y torsor. Necessarily y1 > pys and
the degeneration type is (y2,71,72,Y1). In particular Y is a ETHLL.
torsor if and only if v = 0, i.e. v(D(hs)) = v(p).

iv) Y is a Z/p*L-torsor if and only if v2 = v(Ay)), i.e. v(D(hy)) = 0. And
the degeneration type is (v(X2)), v(A@)), v(Aq)), v(Aw)))-

v) If i = v(Aq)), i.e. v(D(h1)) =0, then j = min{y,, v(A2))}. So we are in
the case (ii) or (iii).

PrROOF.

i) Let us suppose vy; = pj. By the previous lemma (j, 71,72, ) is an admis-
sible degeneration type. If K < pys then by 111.6.1(iii) it follows

(h—1)j =y —j— % — (p— oA,

but this is in contradiction with j < v(A)). Hence x > pv(v2). Therefore,
by 111.6.1(ii),

=Dy <s—m<n—7=@—J)
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ii)

iii)

iv)
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But, by 111.6.1(iii), 72 > j. Hence 75 = j. So, by 111.5.6(iii), x = 1. Then,
by 111.5.12, we have that Y is a £ LU torsor. But, as we have seen in
the example 11.3.33,

5(7rj,7rpj;1,1) ~ G

— 72

Conversely, as remarked in 111.5.13 (7, pj, 7, pj) is the degeneration type of
a G o-torsor.

We now observe that, in particular, Y is a p,-torsor if and only if
v = pj = 0. But since pj < 71 (see 111.5.6(i)) then it is true if and only if
v1 = 0, as stated.
Let us suppose j = v(A)). By 111.5.6 we have v, = pj = v(\q)) and
k = v(A@1)). Therefore by the theorem we have that £ W) w123 (08),1)
is the effective model. In particular there is a model map

(A A (A
Z/p2Z ~ 8(7’1’1( (1)),7ru( (1>);Ep(777r5’),1) N g(wz( (1))77r’Y2;Ep(a,$S),1)‘

Hence by 11.3.49 it follows that
Qi =N, mod 772,

. V1)) . . .
So, by 111.5.12, YV is a £ 20 m02,B, (1x5).1)_torsor. Conversely if Y is a

v(Aqy)
Em D Lm2Ey (125),1)_torgor then, by 111.5.13, the degeneration type is

(V(Mx), v(A@))s Y25 v(A1y))-
So j = v(n) = v(A2)). We observe that j = v(\2)) < 72 by I11.5.6.
By 111.5.6(iii) we have x = 7;. Therefore Kk = v; + 2 — j. Hence, by 111.5.7,
it follows that Y is a £77L ) torsor. By 11.3.33 it follows that v, > pys.
And the degeneration type is (v, 71,72, 71). Now if 75 = 0 then j = 0 and

we have the last sentence.
By 111.5.13 it follows that a Z/p?*Z-torsor Y — X has

(v(A@), v(A@)), v(A@)s v(A@))

as degeneration type. Now let us suppose 72 = v(A¢1)). Since k£ > 7, then
k = v(A\@)). Therefore the effective model for Y is Z/p*Z, since it is a
model of Z/p?Z which is an extension of Z/pZ by Z/pZ (see 11.3.49). Let
o be a generator of Z/p?Z. Since y5 = v(A1)) then, by 111.4.2, Y — Y}
is a <oP>-torsor. In particular <oP> has no inertia at the generic point
of the special fiber. This implies that Z/p*Z =<0 > has no inertia at the
generic point of the special fiber, too. Let us now consider the action
of <o>/<oP> on Y, = Y/<oP>. If oyy,), = id then we will have the
following commutative diagram

Y Z Yy
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This is a contradiction, since oy, # id. So <o>/<oP> has no inertia at
the generic fiber therefore Y7 — X is a Z/pZ-torsor, by 111.4.2. Hence
Y1 = k = Aqqy. Which implies, by 111.5.12, that Y — X is a Z/p*Z-torsor.

v) Since 11 < k < v(Ag)), if 1 = v(A@)) then kK =7;. So iii) of the definition
of admissible degeneration type gives

j=v(\@)
if i <pye (ie. 12 >v(Ag)), and
J =2

if y1 > py (e 72 < v(A)-

REMARK I11.6.6. Let us suppose that p|v(p). Then, for instance,

(J, % + 7, v(A@), v(A@w))

is admissible for 0 < j < v(A(2)) but is not realizable, if j # v(A(2)), by the point
iv) of the proposition.

We have so seen that in general not all the degeneration types are realizable.
But we now see that it is true for admissible degeneration types with xk = v;. They
are degeneration types attached to (Z/p*Z) k-torsors which are strongly extendible.

THEOREM 111.6.7. Any admissible degeneration type (j,v1,72, k) with k =~ is
realizable.

PROOF. We recall that in this case to be an admissible degeneration type means

i) 7 <v(Aw);
i) 72 < pj < pye;
i) if 1 < pye then v —j = v(Ag)) — v(A) =
p(v2—17) < (p— Dw(Aw)) —n);
iv) pj < m;

We remark that (iv) is in fact implied by the others. Indeed let us suppose
that pj > 71. Then by (ii) we have py, > pj > ;. But we know by 111.6.2 that if
py2 > 1 then pj > 7.

Since k = 7, it follows, by 111.5.12, that if (j, 71,72, k) is realizable it is the
degeneration type of a 017289 _torsor, with v(a,,) = j if a,, # 0. For
any vi, 2 as in the degeneration type, by 11.3.53 and 11.3.46, there exists a group
scheme (772 Ep(9).1) 1f g £ 0 then we can choose a such that v(@) = j, if & € R
is a lifting of a. In fact if 4 < p7ys it is automatic, by 11.3.47 and iii), that v(a) = j.
We call a = a,.

We now construct a normal £0172Ep(@19):1) torsor. First of all we remark
that if 7, = 0 then 7o = 0 then £0172E(@nS)D ~ 15 So if we take Y =
Spec(A[T]/(T”" — f) with f not a p-power mod 7 then Y} is integral.

up).
p ?

if 1 > py. then
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We now suppose y; > 0. As seen in §11.4, for any fi, fo € A such that 14+7f; €
A*J(A*)P and Ep(a., f1) + fo € A*/(A*)P we can define the £172:Ep(@1 9.1 _torsor
(see §11.4)

1+ 7T'71T1>p —1 (Ep(OZWTl) + 7T72T2)p(1 + 71-’YlTl)ik - Ep(aglfl)

Y = Spec (A[Tl,Tg]/(< J1,

P71 P2

We have only to find f; and f, such that Y has integral special fiber. If v; = v(Aq))
then Y7 — X is a nontrivial Z/pZ-torsor, so the special fiber is integral. Otherwise
take f; such that f; is not a p'"-power mod m. Then we have that the special

fiber of
(1 + 7T’71T1)p — 1
— f1)

P71

Y1 = Spec(By) = Spec <A[T1]/(
is integral. We now consider
V2T \P 7 -1 _
Y = Spec (Bl[TQ]/((EP(a’YlTI) +m TQ) (1 +m Tl) Ep(a“ﬂfl) _ f2>>

P2
If 9 = v(A)) then Y — Y; is a Z/pZ-torsor so Y}, is integral. Let us suppose
Y2 < v(A2)). The special fiber is

Vi = Spec ((Boufn)/(17 - ORI S )

If G(Th) = EP(O‘“Tl)_p(lt;ZTl)Ep(a“fl)fl — fo is not a pt"-power then Y} is reduced.

While if G(T1) + fo = G1(T1)? mod 7 for some G(71) € Bj then we substitute
fo+ f3 to fo with f3 not a p'"-power mod wA. Indeed, if

G(Th) + fo+ f3 = Go(Th)?  mod 7B,
for some Go(T}) € By, then
fs = (Ga(Th) — G1(17))? mod 7B;.

But by 111.3.5 it follows that f3 is a p-power mod wA, against hypothesis on f;.
Finally we verify that Y has (j,71,72,71) as degeneration type. Since k = 7,

by 111.5.7 we have that the degeneration type is (v(aw,), 71, 72,71) if @, # 0 and

(72,71, 72, 11) if @y, = 0. But since we have chosen « such that a,, =0 and j =y,

or v(a.,) = j and «,, # 0 then we have the thesis.
U

—fz))
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