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1
I N T R O D U C T I O N

The central topic of the thesis work is the quantum noise in the spin
transfer torque, which is a spintronics effect.1 In particular in figure 1.1
on the following page we can see some of the most studied spintronics
applications: the giant magnetoresistance (GMR), in which we have a
current in a ferromagnetic layer. Here the electrons with spin parallel
to the ferromagnet magnetizazion feel a lower resistance with respect
to the anti-parallel spin electrons. In the spin transfer torque effect
(STT), a polarized current produces a torque in the magnetization of a
ferromagnet. In the spin Hall effect (SHE), we see a spin accumulation
on the lateral surfaces of an electric paramagnetic conductor, due to
the spin-orbit interaction. Finally, in a paramagnetic conductor, we can
see in the figure a current-induced spin polarization (CISP) [41].

In particular the GMR is the effect that allows us to read the bits in
the hard drives (each bit is encoded in a ferromagnetic layer), while
the STT allows to write a hard disk bit.

In a typical STT device a hard ferromagnet (its magnetizazion does
not rotate) polarizes a current that exerts a torque on the magneti-
zazion of a second ferromagnet [51] (see figure 1.2 on the next page).

In recent years, the advances in fast time-resolved measurements
have showed that the magnetization dynamics of a nanomagnet
crossed by a polarized current presents a stochastic behaviour at
short time interval [11, 13, 14, 59].

If we want fast and small devices the stochastic behaviour becomes
important. We need to study it because:

• we do not want that the noise disturbs the device working,

• we can engineer the noise to help the magnet switching, without
increasing the current (to increase the current means to increase
dissipative effects and then heat up the device) [32].

One of the first heuristic equation considered for the magnetization
dynamics, is the Landau-Lifshitz-Gilbert equation [21] that describes
the magnetization dynamics in presence of an external magnetic field
~H:

∂ ~M
∂t

= γ̃ ~M× ~H − λ ~M× ( ~M× ~H). (1.1)

If λ = 0 we simply have the Euler equation (see the figure 2.1a
on page 10); the term proportional to λ is perpendicular to both ~M

1 “Spintronics” is a contraction between “spin” and “electronics”. In particular it studies
the electronic devices in which the information is carried by both the charge and the
spin of electrons.

1
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GMR

STT CISP

SHE

Figure 1.1: In this figure, taken from the reference [41], some of the most
studied spintronics effects are condensed.

Ferro 2Ferro 1

Figure 1.2: The scheme of a typical spin transfer torque device: an unpolar-
ized current comes from left; the first ferromagnet polarizes the
current. Then the polarized current exerts a torque on the second
ferromagnet.
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Figure 1.3: We considered a spin potential difference that induces a spin
current, flowing trough the magnet.

and the precession direction and then describes the damping (the
magnetization tends to align to the external magnetic field – see
figure 2.1b on page 10). Finally, to take into account the thermal
fluctuactions, Brown [7] introduced a stochastic magnetic field~h(t) in
the equation:

∂ ~M
∂t

= γ̃ ~M× (~H +~h(t))− λ ~M× [ ~M× (~H +~h(t))]

(see figure 2.1c on page 10).
Our aim in the thesis work is

• to find a microscopically derived equation that could describe
the magnetization dynamics in presence of a polarized current,

• to describe the thermal and the quantum noise induced in the
magnet motion by the electric current;

• to employ a formalism that is easily generalizable (electron-
electron interaction, presence and interaction of several magnets,
etc.).

To obtain that, we considered the setup described in figure 1.3 and we
employed the Keldysh formalism.

The interaction model between the magnet and the electrons that
we have considered is very simple [63]:

H = − ∂2
x̄

2 m
+ γ~B ·~J + δ(x̄) (λ0 + λ~J ·~s),

where the Hamiltonian first term is the electron kinetic energy, ~B is
a weak external magnetic field,~s is the electron spin, ~J is a spin that
represents the magnet degrees of freedom and the delta function fixes
the magnet position at x̄ = 0. Figure 1.4 on the following page shows
the potential seen by the electron.

To treat the problem with the many-body Keldysh formalism, we
considered the magnet degrees of freedom as a bosonic system, thanks
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transmitted electron

x̄ = 0 x̄

incident electron

potential seen by an electron with spin parallel to the nano-magnet spin

reflected electron

potential seen by an electron with spin anti-parallel to the nano-magnet spin

p

V+

V−

Figure 1.4: An electron that comes from left to right feels a potential V+ :=
d · (λ0 + J λ/2) and V− := d · (λ0 − J λ/2), depending whether
its spin is parallel or anti-parallel to the magnetization, where d
is the magnet length.

(a) Two-boson vertex. (b) One-boson vertex.

Figure 1.5: Feynman vertices.

to the Holstein-Primakoff bosonization (that is explained in detail in
the section 5.1 on page 52). With this representation, the interaction
between the magnet and the electrons can be depicted by the Feynman
vertices in figure 1.5: the one-boson vertex is of the order 1/

√
J, while

the two-boson vertex is of the order 1/J (this is considered in the
section 5.4 on page 56). For a typical nanomagnet J ∼ 104 [63], so we
will consider only the terms up to the 1/J-order, that is, Feynman
diagrams with a single one-boson vertex (order of magnitude 1/

√
J)

and Feynman diagrams with a couple of one-boson vertices or with a
single two-boson vertex (order of magnitude 1/J); see figures 1.6.

(a) (b)
(c)

Figure 1.6: Feynman diagrams up to the 1/J order. The “tadpole” diagram
is 1/

√
J-order, while the other two are 1/J-order.
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t
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U(t)

U(t)†

G+−

G−+
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G−−

Figure 1.7: The Keldysh time contour with the propagators.

We then applied the Keldysh formalism, that allowed us to write
the observables in term of functional integral:

〈Ô(t)〉 = tr
[
Û†

t,t0
Ô Ût,t0 ρ̂(t0)

]
=

=
∫

D[b̄+, b̄−, ψ̄+, ψ̄−, b+, b−, ψ+, ψ−]·

·O(b̄+, b̄−, ψ̄+, ψ̄−, b+, b−, ψ+, ψ−) ei S(b̄+,b̄−,ψ̄+,ψ̄−,b+,b−,ψ+,ψ−),
(1.2)

where b (complex numbers) refers to the magnet degrees of freedom
and ψ (Grassmann numbers) to the electronic ones; S is the Keldysh
action. Û†

t,t0
= Ût0,t and then in the Keldysh formalism we have both a

forward and backward in time path, with four propagators (see 1.7).
In particular the indices ± for the paths t→ b±(t) and t→ ψ±(t) refer
to the time direction. The Keldysh rotation reduces the propagators
number from four (not independent) to three; for the bosons the
Keldysh rotation is given by

bcl =
b+ + b−√

2
, bq =

b+ − b−√
2

, (1.3a)

b̄cl =
b̄+ + b̄−√

2
, b̄q =

b̄+ − b̄−√
2

; (1.3b)

note that, like in the Feynman path integral case, in the classical limit
we have a single path (for both forward and backward time direction)
and then bq = 0 (that justifies the name quantum and classical part for
bq and bcl respectively); anyway the formalism will be discussed in
the section 4.2 on page 33.

To obtain the magnet equation of motion, we traced over the elec-
tronic degrees of freedom, getting terms that can be represented by the
Feynman diagrams in figures 1.6 on the preceding page. In this way,
we found a functional integral expression for the magnet observables
of the form:

〈Ô(t)〉 = tr
[
Û†

t,t0
Ô Ût,t0 ρ̂(t0)

]
=
∫

D[I1, I2] e−
∫

dt
I2
1 (t)+I2

2 (t)
2 ·

·
∫

D[b̄cl, b̄q, bcl, bq]O(b̄cl, bcl) ei{∫ dt b̄q[i ∂tbcl+ f (bcl,θ,I1,I2)]+h.c.},

(1.4)
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where θ is the angle between the current polarization axis and the
magnetization direction ~J; we will discuss in the thesis the explicit
form of the function f , that is the sum of different contributions: in
particular, in the chapter 8 on page 69 we will calculate explicitly the
contribution corresponding to the “tadpole” diagram in figure 1.6
on page 4, while in the chapter 9 on page 73 we will consider the
other diagrams terms. I1, I2 are two auxiliary time function that allows
us to linearize the Keldysh action with respect to b.2 By performing
the integration of 1.5 with respect to the bq, b̄q, as described in the
section 8.3 on page 71, we get:

〈Ô(t)〉 =
∫

D[I1, I2] e−
∫

dt
I2
1 (t)+I2

2 (t)
2

∫
D[b̄cl, bcl]O(b̄cl, bcl)·

· δ
[
i ∂tbcl + f (bcl, θ, I1, I2)

]
δ
[
−i ∂tb̄cl + f̄ (bcl, θ, I1, I2)

]
, (1.5)

where δ is the Dirac function. This means that i ∂tbcl + f (bcl, θ, I1, I2) =

0 and the complex conjugate are the equations of the motion. t 7→
Ii(t) is a generic function that in the functional integral is weighed

by the factor e
∫
− I2

1 (t)+I2
2 (t)

2 dt. This is the same situation of the Martin-
Siggia-Rose action: the weight is the multivariate Gaussian distribution
probability, with zero mean value and unitary variance:

〈Ii(t)〉 = 0, 〈Ii(t1) Ij(t2)〉 = δ(t1 − t2) δij, (1.6)

that is, Ii must be considered as Langevin terms in the equation of
motion (see for example the discussion in the section 2.2 on page 12).

The stochastic terms presence is not surprising, since it is the typical
situation of the open quantum systems: as we will summarize in the
section 3.2 on page 19, when some degrees of freedom are traced over,
a stochastic behaviour appears.3

Finally the equation of motion for the magnet, in terms of micro-
scopical quantities, is:

∂t~J = γ ~B×~J +
(
<C1 +

− cos θ=C2 I1 +<C2 I2

sin θ

)
ẑ′ ×~J+

+

(=C1

J
+

cos θ<C2 I1 +=C2 I2

sin θ J

)
~J × (ẑ′ ×~J) (1.7)

where

• Ci depend on the scattering matrix and increase with the spin
potential difference ∆µs. ẑ′ is the current polarization axis. ẑ′ ×~J

2 that is done thanks to the Hubbard–Stratonovich transformation:

e−
a
2 x2

=

√
1

2 π a

∫
dI e−

I2
2 a−i x I ,

as described in the chapter 9 on page 73.
3 the same formalism can explain, for example, the decoherence, where the quantum

state collapses randomly in an eigen-energy state.
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and ~J × (ẑ′ ×~J) are respectively a field-like and a damping-
like term (compare with Landau-Lifshitz-Gilbert equation 1.1
on page 1), that produce respectively a precession around the
polarization current direction ẑ′ and an alignment to it;

• C1 is the contribution of tadpole diagram, while C2 corresponds
to the higher order corrections with respect to 1/

√
J (and then

disappears in the macroscopic limit J → +∞). C2 contributes
also at the zero temperature (both quantum and thermal noise).

Comparing our results with the simpler model in [53] we obtained
both the field-like and the damping-like terms and a more complex
expression for the noise (note that the field-like and damping-like
coefficients are not independent).

The thesis is organized as follow: in the first part the fundamental
concepts and techniques are introduced. In particular, in the chapter 2

on page 9 the earlier phenomenological theories for the ferromagnet
magnetization dynamics are presented. In the chapter 3 on page 17

some microscopic theory that describes the interaction between ferro-
magnetic layers and polarized currents are described. Finally in the
chapter 4 on page 29 the concepts of the Keldysh technique that we
need in the following are synthetized.

The second part contains the most original results of the thesis
work: in the chapter 5 on page 51 it is described the many-body
model that we have considered. In chapter 6 on page 59 we study the
relations between the spin potential difference and the spin current.
In the chapter 7 on page 63 the Keldysh action is calculated. In the
chapter 8 on page 69 the terms that give rise to the classical equation
of motion for the magnetization are considered, while in the chapter 9

on page 73 the quantum corrections are evaluated; from that we obtain
in particular the quantum noise. Finally in the chapter 10 on page 89

we draw a possible interesting extension of the model, while the
appendix A on page 93 describes some terms of the Keldysh action
that are typically suppressed, but that give rise to physical interesting
interpretations.





2
P R E C E S S I O N P H E N O M E N O L O G I C A L T H E O R I E S

In this chapter we consider the earlier phenomenological theories
proposed to describe the magnetization precession in a solid. In par-
ticular, we first consider the Landau–Lifshitz–Gilbert equation pro-
posed in 1955 by Gilbert (see e. g. the reprinted article [21]), which
modifies a previous equation proposed by Landau and Lifshitz in
1935 [31]. Finally we consider the thermal fluctuactions for the Lan-
dau–Lifshitz–Gilbert equation introduced by Brown [7].

2.1 landau–lifshitz–gilbert equation

In a ferromagnetic material the magnetization is mainly due to the
spin of the electrons (one can take into account the contribution of the
electrons orbital motion by simply adjusting the value of the gyromag-
netic ratio). Below the Curie temperature, the material is divided into
elementary domains that are magnetized near the saturation. Then
we may divide the material into n cells that are large enough to avoid
to consider the microscopic fluctuactions but small enough to take
into account the domain structures (that is possible, because a Weiss
domain is typically composed by 1012 − 1015 atoms). To the i-th cell, a
local magnetization field ~Mi is associated.

It is possible to assume for the magnetization the equation of motion:

d ~Mi

dt
= γ ~Mi × ~Hi (2.1)

where

γ =
−|e|
2 me

g, g ' 2 (2.2)

is the gyromagnetic ratio and ~Hi is an effective field acting on the i-th
moment:

~Hi = −
∂U
∂ ~Mi

( ~M1, . . . , ~Mn)

(the derivative is intended by components; for example (~Hx)i =

−∂( ~Mx)i
U).1

The form of the potential U is established experimentally and for a
typical ferromagnet contains five terms: the external magnetic field, the
demagnetization energy (that is a self-interaction term), the exchange
interaction energy (associated with the gradient in the orientation

1 With the definition 2.2 of γ, ~H is measured in Tesla in the SI.

9
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~Mi

~He

(a) Precession motion.

~Mi

~He

(b) Damping effect.

~Mi

~He

(c) Thermal fluctuactions.

Figure 2.1: The motion of the magnetization ~Mi around the external magnetic
field ~He.

of the magnetization), the anisotropy energy (the potential energy
depends on the magnetization orientation with respect to the crystal
axes), the magnetoelastic energy (deformation effects). In [21] the
explicit form of each term is described; for example the external field
term is:

U = −∑
i

~Mi · ~He,

where ~He is the external magnetic field. In particular it is easy to check
that, in this case, equation 2.1 on the preceding page reduces to

d ~Mi

dt
= γ ~Mi × ~He,

that is a simple precession motion, like in figure 2.1a. It is convenient
to consider the continuous limit:

~Mi

∆~r
→ ~M(~r),

U( ~M1, . . . , ~Mn)

∆~r
→ U[ ~M(~r)], ~Hi → ~H(~r),

where ~r is the position in the ferromagnet, ∆~r is the infinitesimal
volume and U becomes the density energy functional.
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We argue that the equation of motion 2.1 on page 9 can be written
in the Lagrangian form, as proposed by Gilbert:

d
dt

δL[ ~M, ~̇M]

δ ~̇M
=

δL[ ~M, ~̇M]

δ ~M
, L[ ~M, ~̇M] = T [ ~M, ~̇M]−U[ ~M];

Gilbert did not fix the form of the kinetic energy T , because he says
he was not able to find an expression for T that would correspond to
the spin of an elementary particle in quantum mechanics that made
physical sense [21].2

If, for example, we consider the case of a fixed external magnetic
field, we know from experience that the motion of ~Mi is not simply a
precession but, after a while, ~Mi will be oriented along ~He; that is, we
have some dissipative effects that produce a damping (see figure 2.1b
on the preceding page). Gilbert introduced the damping effect (for the
general case ~Hi) by adding a new term to the Euler-Lagrange equation:

d
dt

δL[ ~M, ~̇M]

δ ~̇M
− δL[ ~M, ~̇M]

δ ~M
+

δR[ ~̇M]

δ ~̇M
= 0, R :=

η

2

∫
d~r ~̇M · ~̇M

in complete analogy with the motion in a viscous fluid (R is the
Rayleigh dissipation functional). Then the Euler-Lagrange equation is

d
dt

δT [ ~M, ~̇M]

δ ~̇M
− δT [ ~M, ~̇M]

δ ~M
+
[
−~H + η ~̇M

]
= 0 (2.3a)

=⇒ ∂ ~M
∂t

= γ ~M×
[
~H − η

∂ ~M
∂t

]
(2.3b)

(indeed note that, even without specifying the form of T , comparing
with equation 2.1 on page 9, we simply have to substitute ~H with
~H − η ∂t ~M) that is the Landau-Lifshitz-Gilbert equation.

The Landau-Lifshitz-Gilbert can be put in the original Landau-
Lifshitz form [31] simply by redefining the γ coefficient: indeed, by
considering the cross product between ~M and the Landau-Lifshitz-
Gilbert equation and using the relations~a× (~b×~c) =~b (~a ·~c)−~c (~a ·~b)
and ∂t ~M · ~M = 0, one obtains immediately an expression for ~M× ∂t ~M
in terms of ~M and ~H. Substituting this expression in the Landau-
Lifshitz-Gilbert equation one gets:

∂ ~M
∂t

= γ′ ~M× ~H − λ ~M× ( ~M× ~H), (2.4a)

γ′ :=
γ

1 + γ2 η2 | ~M|2
, λ :=

γ2 η

1 + γ2 η2 | ~M|2
, (2.4b)

where the γ′ ~M× ~H field term is joined by the −λ ~M× ( ~M× ~H) damp-
ing term, which is orthogonal to both M̂ and the field term (and then
produce the damping effect of figure 2.1b on the preceding page).

2 in the next chapters we will find a Lagrangian for a magnet ~Mi that is directly
obtained from a quantum microscopical derivation.
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2.2 thermal fluctuactions

Now we want to introduce the thermal fluctuactions in the ~M dynam-
ics, by following the reference [7]. To do that, a couple of words on
the stochastic processes are useful. In particular, the one-dimensional
Brownian motion of a grain in a fluid can be modelled by:

v̇ = −β v + A(t) (2.5)

where v is the grain velocity. The interaction between the grain and
the fluid is given by two terms: the dynamical friction −β v and a
stochastic force per unit mass A(t), such that

• 〈A(t)〉 = 0;

• it is assumed that the evolution governed by the deterministic
component, v̇ = −β v, is much slower than the evolution given
by the stochastic term. This means that there exists a time interval
dt for which v is practically constant in time only considering
the deterministic evolution, while, in dt, a rapid variation of A
occurs. Typically dt is small with respect to the resolution time
and it is a good interval to discretize the time. A is due to the
fluid molecules collisions,3 which are pratically independent,
if the scattering sections between molecules are small enough.
Then we may consider A(t) and A(t+n dt) (n ∈N) independent
random variables:

〈A(t1) A(t2)〉 = µ δ(t1 − t2);

• A(t) are Gaussian random variables. There are some good rea-
sons to assume that: the central limit theorem, since the big
number of collisions in the time dt, and the fact that, under this
assumption, v(t = +∞) is Maxwellian distributed [10].

It follows that

W∆t :=
∫ t+∆t

t
A(t) dt,

is a Gaussian process (the superposition of independent Gaussian
random variables is a Gaussian random variable) with

〈W∆t〉 = 0, 〈W2
∆t〉 = µ ∆t

and independent increments; that is a Wiener process. As known,
the Wiener process does not have differentiable realizations and the
meaning of the equation 2.5 is simply:

dv = −β v dt + Wdt, (2.6)

3 each collision produces a small variation of v; typically there are few collisions
between the grain and the molecules every femtosecond.
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where

W∆t =
∫ t+∆t

t
A(t) dt := ∑

i
(Wti+1 −Wti)

is the Itô integral.
From equation 2.6 on the preceding page we get immediately

〈dv〉 = −β v dt, (2.7a)

〈dv2〉 = µ dt, (2.7b)

〈dvn〉 = O(dt2), n > 2, (2.7c)

where v is the velocity at t time, that follows immediately from the
moments of Gaussian distribution values. The process is clearly Marko-
vian, so we can write the Chapman-Kolmogorov equation:

p(v, t + dt) =
∫

dv′ p(v′, t) pdt(v|v′)

where p(v, t) is the probability distribution that the grain velocity is
v at time t and pdt(v|v′) is the conditional probability distribution to
find the velocity equal to v at time t + dt, if it was v′ at time t. In
particular:

pdt(v|v′) = 〈δ(v− dv− v′)〉 =

=

[
1 + 〈dv〉 d

dv′
+

1
2
〈dv2〉 d2

d(v′)2 + O(〈dv3〉)
]

δ(v− v′) =

= δ(v− v′)− β v′
dδ(v− v′)

dv′
dt +

1
2

µ
d2δ(v− v′)

d(v′)2 dt +O(dt2),

where relations 2.7 have been used. By inserting in the Chapman-
Kolmogorov equation, dividing by dt and taking the limit dt→ 0, one
gets:

∂p
∂t

= β
∂(p v)

∂v
+

1
2

µ
∂2 p
∂v2 ,

that is the Fokker-Planck equation.4

More in general, if we have a stochastic equation of the form

dXXXt = µµµ(XXXt, t) dt + σσσ(XXXt, t) dWWWt, (2.9)

where XXXt is an N-dimensional column vector of unknown functions,
WWWt is an M-dimensional column vector of independent standard

4 The generalization to the three-dimensional case is immediate:

∂p
∂t

= β∇v · (p~v) +
1
2

µ∇2
v p. (2.8)
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Wiener processes, µµµ is called drift vector, σσσ is an N ×M-dimensional
matrix and

DDD :=
1
2

σσσ σσσt

is called diffusion tensor, we have that equation 2.9 on the previous
page is equivalent to the probability density equation (Fokker-Planck
equation):

∂p(xxx, t)
∂t

= −
N

∑
i=1

∂

∂xi
[µi(xxx, t) p(xxx, t)] +

+
N

∑
i,j=1

∂2

∂xi ∂xj

[
Dij(xxx, t) p(xxx, t)

]
. (2.10)

Brown (nomen omen) [7] introduced the thermal fluctuactions in
the Landau-Lifshitz-Gilbert equation by assuming that the interaction
between the magnet ~M and the thermal bath is modelled by adding a
stochastic field~h(t):

∂ ~M
∂t

= γ ~M×
[
~H +~h(t)− η

∂ ~M
∂t

]
,

with the same statistical properties of the force A(t) in the equation 2.5
on page 12 (see figure 2.1c on page 10). In particular

〈hi(t)〉 = 0, 〈hi(t1) hj(t2)〉 = µij δ(t1 − t2)

and Brown principally concentrated on the isotropic case µij = µ δij.
As we will see in the next chapters, starting from a microscopi-

cal derivation, the interaction between the magnet and an electronic
current at temperature T produces terms that are analogous to that
introduced phenomenologically by Brown in the equation of motion
for ~M.

By applying the same steps to get the Brownian Fokker-Planck
equation (here the only complication is that ~M moves on the sphere
of radius Ms := | ~M|), Brown obtained:

∂W
∂t

=
1

sin θ

∂

∂θ

{
sin θ

[(
h′

∂U
∂θ
− g′

1
sin θ

∂U
∂φ

)
W + k′

∂W
∂θ

]}
+

+
1

sin θ

∂

∂φ

[(
g′

∂U
∂θ

+ h′
1

sin θ

∂U
∂φ

)
W + k′

1
sin θ

∂W
∂φ

]
,

where

h′ =
η

1/γ2 + η2 M2
s

, g′ =
1/γ

Ms (1/γ2 + η2 M2
s )

and

W(θ, φ) dΩ = W(θ, φ) sin θ dθ dφ = p(θ, φ) dθ dφ,
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with p probability distribution to find ~M pointing in the direction
(θ, φ) (azimuthal and polar angle of the spherical coordinate system).

We may expect that the variance µ increases with temperature; to
find the relation between µ and T, Brown observed that the canonical
statistical distribution

W0 = A0 e−U(θ,φ) v/(kB T)

(v is the volume of the magnet, since in our definition U is the volume
density energy) satisfies the equilibrium (∂tW = 0) Fokker-Planck
equation and gives:

µ = 2 kB T η/v.

Until now we have considered the phenomenological models intro-
duced to describe the magnetization in a ferromagnet. In the next chap-
ter we will consider the attempts to finds microscopical derivations
of the magnet equation of motion in the form of the Landau-Lifshitz-
Gilbert and also the attempts to consider other phenomena, like in
the Slonczewski-Berger theory that takes into account the interaction
between ferromagnets and electric currents.





3
M I C R O S C O P I C D E R I VAT I O N S O F T H E D Y N A M I C S

Now we are going to consider the microscopic theory that describes
the interaction between ferromagnetic layers and polarized currents
in the section 3.1 and, after the section 3.2 on page 19 devoted to
the introduction to the open quantum systems (that is useful for the
next chapters) we will consider two microscopic models (introduced
in [62] and [53]) that can describe many aspects of the ferromagnet
magnetization dynamics.

3.1 the slonczewski-berger term

On 1996, Slonczewski [51] and Berger [3] independently considered
how a ferromagnetic layer can polarize an electric current and how
a polarized electric current can induce a magnetization rotation on a
ferromagnetic layer. This is called spin transfer torque effect and has a
large number of technical applications, especially in electronic memory
devices (in particular, combined with the giant magnetoresistance
effect, has been the leading actor in the rapid storage capacity increase
of hard disk drivers in recent years).

In particular Slonczewski considered an electrical conductor com-
posed by 5 layers: A, B, C that are paramagnetic layers and F1, F2

ferromagnetic layers crossed by a current along ξ (see fig. 3.1 on the
following page). The characteristic thickness of the layers is of the
order of the nanometer, so that the interlayer exchange coupling can
be neglected, but the spin relaxation length is large enough to consider
the electronic current as ballistic.

The ferromagnetic layers are seen by electrons as classical potentials
with two different values depending on the spin electron orientation
(parallel or anti-parallel with respect to the ferromagnet magnetiza-
tion).

Slonczewski solved the electron scattering problems in the two
regions ξ < 0 and ξ > 0 separately and then imposed the matching
conditions. To explain better, we can for example consider an electron
incident from B onto F2, that in ξ = 0 has the spin oriented along ~M1

(due to the interaction with F1). If ~M2 = ~M2(t) is the F2 magnetization
vector, one can consider the moving reference frame x̂ ŷ ẑ with ẑ ‖ ~M2

and ŷ ‖ ~M2× ~M1. Then, if θ is the angle between ~M2 and ~M1 (figure 3.1
on the next page), the electron spinor in ξ = 0 (the center of the B
region) is (cos(θ/2), sin(θ/2)) (see figure 3.2 on the following page).

In particular, by assuming that the de Broglie wavelength is short
compared with the typical variation length of the potential V± and in

17
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V−

V+

−Q2

−K2
+

−K2
−

εF = 0

ξ = 0 ξξ1

A F1 B C

~M1

x̂

θ
ẑ

~M2

ξ2

V−

V+

F2

Figure 3.1: ξ is the direction of motion for electrons that come from left
to right. A, B and C are paramagnetic layers, while F1, F2 are
ferromagnets. An electron with spin parallel to the ferromagnet
magnetization experiences a potential V− in the regions F, while
an electron with spin anti-parallel experiences a potential V+.
Electrons can have energy between −Q2 and εF = 0, where, for
simplicity, a unit system in which h̄2/(2 m) = 1 (and m is the
electron mass) has been chosen. ~M1,2 is the F1,2 magnetization
vector. This figure is present in the reference [51].

|ψ〉

θ

φ

ẑ

ŷ

x̂

Figure 3.2: The Bloch sphere representation gives a simple geometric interpre-
tation of the 1/2-spin systems. In particular, the generic spin state
|ψ〉 = α |↑z〉+ β |↓z〉 = cos(θ/2) |↑z〉+ ei φ sin(θ/2) |↓z〉 (where α
can be chosen real, since two kets that differ for a multiplicative
unitary complex number represent the same quantum state) coin-
cides with the state |↑z′〉, where ẑ′ is the direction individuated
by the polar angles (θ, φ).
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the parabolic band approximation (that is the electron is considered
free inside the layers), Slonczewski found the expression of the electron
scattering states (and then of the electron flux) thanks to the WKB
approximation.

Since the potential depends on the electron spin, after the scattering
the electrons change their spin and also the ferromagnets magnetiza-
tions must change direction because of the total angular momentum
conservation. This crucial consideration allowed Slonczewski to obtain
the equation of motion for the two ferromagnets:

d ~M1,2

dt
= I g M̂1,2 × (M̂1 × M̂2)

where I is the electrons current, M̂ = ~M/| ~M| and

g = g(θ) :=
[
−4 +

(1 + P)3 (3 + M̂1 · M̂2)

4 P3/2

]−1

,

P :=
K+ − K−
K+ + K−

(the K± parameters are described in the figure 3.1 on the preceding
page). In particular we must conclude that the presence of a polarized
current modifies the Landau–Lifshitz–Gilbert equation.

3.2 open quantum systems

Before going on and describe the models introduced in the last years
to obtain a microscopic derivation of the Landau-Lifshitz-Gilbert-
Slonczewski equation, a couple of words on the open quantum the-
ory [6, 48] are useful. Indeed we are going to consider the ferromag-
netic layer as a quantum system that is not isolated but interacts with
an electric current and an open quantum system is, by definition, a
quantum system that interacts with an other system, that we can call
environment.

The open quantum theory is useful for different reasons:

• as one can easily imagine, to have a completely isolated quantum
system is practically impossible (this is, for example, one of the
most important issue in the quantum computing implementa-
tions - also known as decoherence problem);

• it can answer to some fundamental problems of the quantum
physics; for example:

– why can’t we find the macroscopic systems in a superpo-
sition state of two distant positions (or, if you prefer, how
does the quantum to classical transition work)? Why in
most cases the microscopic quantum systems (like, for ex-
ample, the electrons in a solid or in a molecule) are found in
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an eigenstate of the Hamiltonian and not in a superposition
of two eigenstates?1

– the quantum theory is causal, that is, if we know the state
of a system at a given time (and we know the nature of the
interactions), in principle we may evaluate the state of the
system at any time. But when we perform a measurement,
as known, a stochastic behaviour appears. But how is that
possible if we assume that the whole system - quantum
system plus measurement apparatus - is a bigger quan-
tum system (and then is described by a causal dynamic
equation)?

To give a look on how the open quantum theory can approach these
questions, we can consider a simple example. But before, we need to
introduce the formalism that will be useful also in the next chapters.
In particular we know that, if we have a system in a state |ψi〉 with
probability pi, that is a mixed state, the mathematical representation
of the state is given by the density matrix

ρ̂ = ∑
i

pi |ψi〉 〈ψi| , (3.1)

in the sense that everything we can measure can be obtained from it:

〈Ô〉 = tr
[
ρ̂ Ô
]

,

where Ô is an observable. The fundamental properties of the density
matrix cen be easily checked: ρ̂† = ρ̂, 〈ψ | ρ̂ |ψ〉 ≥ 0 (positivity), tr[ρ̂] =
1. A generic linear operator ρ̂ that satisfies these three properties is a
density matrix; indeed, by using the spectral theorem for self-adjoint
operators, we can write the spectral representation

ρ̂ = ∑
λ,k

λ |λ, k〉 〈λ, k| (3.2)

and verify that λ ≥ 0, ∑λ,k λ = 1. A crucial point is that the expres-
sions 3.1 and 3.2 can be different: while ρ̂ is the same, it can happens,
for example, that the states |ψi〉 are not mutually orthogonal. From a
physical point of view, this means that we may have two mixed states
prepared in different ways that are not distinguishable by simply
performing a measurement on the system.

If we have a system that interacts with the environment, we need to
consider the Hilbert space HS ⊗HE; it is easy to check that

ρ̂S := trE[ρ̂]

(where ρ̂ is a density matrix on HS ⊗HE and trE indicates the trace
over the environment degrees of freedom) is an operator on the HS

1 Another interesting case is that the chiral molecules are always observed in chiral-
ity eigenstates, which are superpositions of different energy eigenstates; the open
quantum theory can give an interpretation also for this phenomenon [25, 42].
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space that satisfies the density matrixes properties and describes the
state of the system S, in the sense that, if ÔS is an observable that acts
only on the system S, we have

〈ÔS〉 = 〈ÔS ⊗ ÎE〉 = trS[ρ̂S ÔS]

(with a slight abuse of notation), where ÎE indicates the identity oper-
ator over HE.

The time evolution for ρ̂S is given by

ρ̂S(t) = trE[Û(t, t0) ρ̂ Û†(t, t0)];

in particular, if at time t0 = 0 the system and environment are not
correlated, that is the state is of the form ρ̂(t = 0) = ρ̂S(0)⊗ ρ̂E(0),
and the spectral decomposition of the initial environment state is
ρ̂E(0) = ∑i pi |Ei〉 〈Ei|, it is easy to check that

ρ̂S(t) = ∑
ij

pi
〈

Ej
∣∣ Û(t)

∣∣ Ei
〉

ρ̂S(0)
〈

Ei

∣∣∣ Û†(t)
∣∣∣ Ej

〉
=

= ∑
ij

Ŵij ρ̂S(0) Ŵ†
ij, (3.3)

where the Ŵij :=
√

pi
〈

Ej
∣∣ Û(t)

∣∣ Ei
〉

operators on HS are called Kraus
operators (sometimes the name refers directly to

〈
Ej
∣∣ Û(t)

∣∣ Ei
〉
).

Sometimes the equation of motion can be put in the form

d
dt

ρ̂S(t) = L[ρ̂S(t)] := −i [Ĥ, ρ̂S(t)] +D[ρ̂S(t)],

that is called master equation. This equation is local in time in the
sense that ρ̂S(t + dt) depends only on ρ̂S(t). Here L and D are super-
operators (as we will see immediately, the form of D is well defined
under reasonable assumptions), that is linear applications that acts
in the space of opearotors on HS. In particular, if D = 0, we have
the standard Heisenberg evolution equation and the system can be
considered isolated (or the only effect of the environment is to give
a particular form to Ĥ). If we assume that the evolution ρ̂(t0) 7→ ρ̂(t)
ensures the density matrix positivity and it is trace preserving,2 the
most general form of the master equation is [6]:

d
dt

ρ̂S(t) = −i [Ĥ, ρ̂S(t)]+

− 1
2 ∑

µ

κµ

{
L̂†

µ L̂µ ρ̂S(t) + ρ̂S(t) L̂†
µ L̂µ − 2 L̂µ ρ̂S(t) L̂†

µ

}
,

κµ ≥ 0, that is the Lindblad master equation. Here L̂µ are generic opera-
tors on HS, whose expression depends on the form of the interaction
between the system and the environment.

2 note that, if the master equation is exact, the positivity and the trace preserving
are given; but this is not necessarily true when the master equation is obtained by
approximations.
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electrons source

Figure 3.3: The double slit experiment.

Now we can consider the double slit experiment example: as known,
if we consider an electron that crosses a screen with two slits, we will
observe interference phenomena (figure 3.3). But if we light up the
system (or, if you prefer, if we measure which slit the electron crosses)
the interference phenomena disappears and the electron chooses a
random slit to cross the screen. It is the electron Hamletic doubt (to be
a particle or to be a wave?). The state of the whole system (electron
plus light) is pure:

ρ = |s〉 〈s| =

=

[
1√
2
|ψ1, L1〉+

1√
2
|ψ2, L2〉

] [
1√
2
〈ψ1, L1|+

1√
2
〈ψ2, L2|

]
,

where |ψi〉 is the electron state when the electron crosses the i-th slit
(i = 1, 2), while |Li〉 is the light state. By tracing over the light degrees
of freedom, we get

ρe = trL ρ =

=
1
2
[|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|] +

1
2
[|ψ1〉 〈ψ2| 〈L1 | L2〉+ h.c.] ;

we can imagine that a single photon cannot resolve well the electron
posistion, that is 〈l1 | l2〉 . 1. But, if the light is composed by a large
number of photons, that is |L〉 =

⊗N
j=1 |l〉, where j runs over the

photons,

〈L1 | L2〉 =
N

∏
j=1
〈l1 | l2〉 = 〈l1 | l2〉N N→∞−−−→ 0

and then

ρe '
1
2
[|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|] ,



3.3 microscopic models for the magnet dynamics 23

that is we have a mixed state |ψ1,2〉 with probability 1/2. Clearly
this does not mean that the whole system state is not pure, but the
reduced density matrix of electrons is not distinguishable from a
mixed state if we operate measurements that involve only the electron
observables. Then the coherence (namely the fundamental ingredient
of the quantum computation) still exits, but somehow is spread in
the environment. By using the open theory standard notation, we say
that the environment (the photons) monitors the system, producing
a decoherence in one of the two robust (with respect to the interaction
system plus environment) states |ψ1,2〉.

Most quantum systems experience one of the two following envi-
ronment monitoring (sometimes these are called classical and quantum
limit respectively):

• for macroscopic objects, the typical distance-dependent envi-
ronment interaction (for example with photons) gives rise to
decoherence into spatially localized wave packets (the eigen-
states of the position operator are the robust states). This is for
example the case of measurements, since typically the measure-
ment apparatus is macroscopic (and not isolated) [25];

• many microsopic systems are found in energy eigenstates, even
if the system-environment interaction Hamiltonian depends on
observables like the position. This happens when the typical
difference of the energy eigenstates of the system is greater than
the energies available in the environment (the environment is
able to monitor only quantities that are constants of motion) [40].

3.3 microscopic models for the magnet dynamics

In recent years, the advances in fast time-resolved measurements have
showed that the magnetization dynamics of a nanomagnet crossed
by a polarized current have a stochastic behaviour at short time inter-
vals [11, 13, 14, 59]. Motivated by that, in 2012 Wang and Sham [62,
63] proposed a model that could go behind the classical point of view
described by the Landau-Lifshitz-Gilbert-Slonczewski equation. Their
idea was that, when the magnet is in the mesoscopic range, some
quantum effects can appear.

To take into account the quantum behaviour of the ferromagnet, it
is not longer modelled as an external classical field (like in the Slon-
czewski model), but as a quantum spin ~J. Wang and Sham considered
then the Hamiltonian for the magnet plus a single electron given by

H = −1
2

∂2
x + δ(x) (λ0 + λ~s ·~J),

where the electron moves along x, Ke := − 1
2 ∂2

x is the electron kinetic
energy in a unit system in which h̄ = m = 1 (m is the electron mass),
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~s is the electron spin, the magnet is placed at x = 0 and d · (λ0 ∓ λ)

correspond to the potentials V± in the Slonczewski model (d is the
magnet thickness).

The Ĥ eigenstates can be easily evaluated by observing that Ĥ
commutes with the total spin; in particular, if

[ Ĵ + ŝ] |J , µ〉 = µ |J , µ〉 ,

[ Ĵ + ŝ]2 |J , µ〉 = J (J + 1) |J , µ〉 ,

we have

ψk(x) = |J , µ〉

L→ ei k x + L← e−i k x, x < 0

R→ ei k x + R← e−i k x, x > 0
=

= |J , µ〉

L→ 〈x | k〉+ L← 〈x | −k〉 , x < 0

R→ 〈x | k〉+ R← 〈x | −k〉 , x > 0

where, since we are interested in the incoming electrons from left to
right, R← = 0. To solve the Ĥ eingevectors problem means to obtain
the relations that allow to evaluate the reflected wave coefficient L←
and the transmitted wave coefficient R→ as function of L→, namely
the scattering matrix Ŝ .

By using the Clebsch-Gordan coefficients it is possible to write
|J , µ〉 in terms of |m, s〉 basis (where s = ± refers to the electron spin
and m = −J, −J + 1, . . . , J to the magnet spin) and then obtain the
explicit form of the Kraus operators

K̂k,s;k′,s′ :=
〈
k, s
∣∣ Ŝ
∣∣ k′, s′

〉
,

where |k, s〉 is the incoming wave, while |k′ = ±k, s′ = ±〉 is the out-
going wave. In particular Wang and Sham obtained

K̂k,s;±k,s =

(
ξ ± 1

2

)
+ s ζ Ĵz, K̂k,−s;±k,s = ζ Ĵs

where ξ and ζ are complex number that depends on (λ0, λ, J, k) and,
as usual:

Ĵ± := Ĵx ± i Ĵy. (3.4)

Before the scattering the state of the electron must be not correlated to
the magnet state and Wang and Sham assumed as initial state

ρ̂in = ∑
ss′

fss′ |k, s〉
〈
k, s′
∣∣⊗ ρ̂J

in = ρ̂e
in ⊗ ρ̂J

in

so that, after the scattering the magnet state is (see equation 3.3 on
page 21)

ρ̂J
out = ∑

±,s,s′,s′′
fss′ K̂±k,s′′;k,s ρ̂J

in K̂†
±k,s′′;k,s′ .
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Now, assuming that the the polarized current is composed by a
sequence of electrons injected one by one at equal time interval τ, with
a coarse graining time scale approximation, Wang and Sham obtained
the magnet master equation

∂tρ̂
J(t) ' ρ̂J

out − ρ̂J
in

τ
=

1
τ

[
T0(t) + ~S(t) · ~T (t)

]
(3.5)

where, after some calculations:

~S = tr[~σ ρ̂e
in],

T0(t) =
(
|ξ|2 − 1

4

)
ρ̂J(t) + |ζ|2

(
Ĵz ρ̂J(t) Ĵz + Ĵ+ ρ̂J(t) Ĵ−

)
+ h.c.,

Tx(t) = 2 ξ ζ∗ ρ̂J(t) Ĵx + |ζ|2
(

Ĵz ρ̂J(t) Ĵ+ − Ĵ+ ρ̂J(t) Ĵz

)
+ h.c.,

Ty(t) = 2 ξ ζ∗ ρ̂J(t) Ĵy + i |ζ|2
(

Ĵ+ ρ̂J(t) Ĵz − Ĵz ρ̂J(t) Ĵ+
)
+ h.c.,

Tz(t) = 2 ξ ζ∗ ρ̂J(t) Ĵz + |ζ|2
(

Ĵ+ ρ̂J(t) Ĵ− − Ĵ− ρ̂J(t) Ĵ+
)
+ h.c.

and~σ are the Pauli matrixes.
To study the quantum-classical crossover, Wang and Sham con-

sidered the spin coherent states representation. We can consider the
spin coherent states as the “classical” states for spins. In particular,
if Jz |m = J〉 = J |m = J〉, that is |m = J〉 is the state perfectly aligned
withe the ẑ axis, the generic spin coherent state is obtained by rotating
|m = J〉 in the polar direction Ω = (θ, φ):

|Ω〉 := R̂(θ, φ) |m = J〉 , 0 ≤ θ ≤ π, 0 ≤ φ < 2 π, (3.6)

where R̂(θ, φ) is the unitary operator that rotates the spin states. In
the case of 1

2 -spin, all states are also coherent states (see figure 3.2 on
page 18), while in the general case this is not true, but anyhow the set
of coherent states constitutes a (non-orthonormal) basis [2]:

(2 J + 1)
∫ dΩ

4 π
|Ω〉 〈Ω| = 1,

where dΩ is the solid angle element. The operators of the form
Ĵi |Ω〉 〈Ω| Ĵj (i, j = 0,+,−, z, where Ĵ0 := Î is the identity) are explicitly
evaluated in [37] and it is possible to write

ρ̂J(t) =
∫

dΩPJ(Ω, t) |Ω〉 〈Ω| (3.7)

and then, from a simple calculation, the master equation 3.5 can be
written in the PJ-representation:

∂

∂t
PJ(m̂, t) = −∇ · (~TPJ) +∇2(DPJ), (3.8)
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where the equation is now in Cartesian coordinate system (m̂ is the
magnetization direction) and

~T := A (m̂× ~S)× m̂ + B m̂× ~S, D := A 1− m̂ · ~S
2 J + 1

, (3.9a)

A := (2 J + 1)
|ζ|2
τ

, B := 2
=(ξ∗ ζ)

τ
. (3.9b)

The equation 3.8 on the preceding page is a Fokker-Planck-like equa-
tion (compare with 2.8 on page 13) for the “quasi-probability” distri-
bution function PJ ; in particular, it is not true in general that PJ ≥ 0 in
the equation 3.7 on the preceding page. The Fokker-Planck equation is
composed by a drift term, with the drift vector ~T, and a diffusion term,
with the diffusion coefficient D. As one can see from equations 3.9a,
~T contains a field-like term and a damping-like term (compare with
equation 2.4a on page 11). These two terms are well known [44], while
the diffusion term is peculiar of the “quantum” Wang and Sham
model and introduces magnetization fluctuations. These fluctuations
are dominants at low temperatures, while are negligible at hight tem-
peratures: the fluctuations induced by D must be compared with those
described in section 2.2 on page 12.

Finally Wang and Sham simplified the Fokker-Planck equation by
considering the limit J � 1 and employing the WKB approximation
at the lowest order:

PJ(M̂, t) = e−J W(m̂,t)
∞

∑
n=0

1
Jn φn(m̂, t) ' e−J W(m̂,t)

and explored some numerical solutions.
Generalizing the method proposed by Wang and Sham to more

complicated situations could be quite difficult. In particular, one could
want to include the electron-electron interaction, or go behind the
coarse graining time scale approximation, or consider the interac-
tion (and then the quantum noise effects) mediated by the current
in presence of several magnets.3 To obtain a good framework we
then considered the Keldysh formulation and the Holstein–Primakoff
semi-classical approximation (see next chapters). These methods have
been already employed to study the spin transfer torque. In particular
Swiebodzinski, Chudnovskiy, Dunn, and Kamenev [53] considered
the simple case of two ferromagnets separated by an insulator; the
first ferromagnet was considered blocked (hard ferromagnet) and its
role was to polarize the current, while the second could rotate; by con-
sidering a weak tunnel effect, they obtained for the free ferromagnet
magnetization the equation of motions:

∂t~J = γ [~H ×~J]− α(θ)

J
[~J × ∂t~J] +

1
J2 [~J × [(~Is +~j(t))×~J]],

3 in particular, the comparison with the case described in [36] could be very interesting.
Here a polarization laser beam go trough two atomic ensembles producing a steady-
state entangled.
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where ~H is an external magnetic field that interacts with the free
layer; α(θ) is the damping term coefficient and its explicit expression
depends on the angle between the free layer and the blocked layer; ~Is

is the spin current, while~j is a Gaussian stochastic current with zero
mean value and

〈jl(t) jm(t′)〉 = D(θ) δ(t− t′) δlm, l, m = x, y, z.

As we will see, with the Wang and Sham model we will obtain a
richer form for the magnet equation of motion, in particular with a
more complicated expression for the stochastic part.





4
N O N - E Q U I L I B R I U M F O R M A L I S M

This chapter is devoted to the introduction of the Keldysh formalism.
We will follow quite closely the reference [28]. Since it is a technical
chapter, it can be left out if the reader is already familiar.

4.1 generalities on many-body physics

In this section we review the basics of quantum many-body systems
to introduce the formalism that will be used in the following.

4.1.1 Creation and annihilation operators

If we have a system of N particles and { |α〉 }α is a basis for a single
particle (for example α = (~p, s), where ~p is the momentum and s the
spin), a basis for the total system is { |α1〉 · · · |αN〉 }. If particles are
identical, we assume that a general state must satisfy the relation:

|Ψ〉 = ∑
α1,...,αN

cα1···αN |α1〉 · · · |αN〉 =

= ζsign(π) ∑
α1,...,αN

cα1···αN

∣∣∣απ(1)

〉
· · ·
∣∣∣απ(N)

〉
,

where π is a permutation of 1, 2, . . . , N; ζ is 1 for bosons and −1 for
fermions.

4.1.1.1 Bosons

Then a basis for states of identical bosons is given by |nα1 , nα2 , . . .〉,
where nαi is the number of bosons in the single-particle state |αi〉.

In analogy with the harmonic oscillator, we may introduce creation
and annihilation operators:

ĉ†
αk
|. . . , nαk , . . .〉 =

√
nαk + 1 |. . . , nαk + 1, . . .〉 ,

ĉαk |. . . , nαk , . . .〉 = √nαk |. . . , nαk − 1, . . .〉 ,

that is

ĉαk = ∑
nα1 ,...,nαk ,...

√
nαk

∣∣. . . , nαk−1 , nαk − 1, nαk+1 , . . .
〉
·

·
〈
. . . , nαk−1 , nαk , nαk+1 , . . .

∣∣

29
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and

ĉ†
αk
= ∑

nα1 ,...,nαk ,...

√
nk + 1

∣∣. . . , nαk−1 , nαk + 1, nαk+1 , . . .
〉
·

·
〈
. . . , nαk−1 , nαk , nαk+1 , . . .

∣∣ ,

where ĉ† is the hermitian conjugated of ĉ. They satisfy the commutator
relations

[ĉαk , ĉ†
αl
]− := [ĉαk , ĉ†

αl
] = δkl , [ĉαk , ĉαl ] = [ĉ†

αk
, ĉ†

αl
] = 0

and

|nα1 , nα2 , . . .〉 = 1√
nα1 ! nα2 ! · · · (ĉ

†
α1
)nα1 (ĉ†

α2
)nα2 · · · |0〉 .

If we have several bosonic species, since operators associated to
different species commute, all the expressions obtained are still valid
simply considering an extra index in α that specifies the kind of
particle (for example α = (~p, s, b), where ~p is the momentum, s the
spin and b = gluon, Higgs’, . . . ).

4.1.1.2 Fermions

A basis for states of an identical fermions system is given by

|nα1 , nα2 , . . .〉 = |α 7→ nα〉 ,

where nα is the number of fermions in the state of single particle |α〉.
Unlike the bosonic case, we need ĉ† |1〉 = 0, from which we expect

that {ĉ, ĉ†} = 1. Then we may introduce creation and annihilation
operators:

ĉ†
αk

∣∣. . . , nαk−1 , 0, nαk+1 , . . .
〉
=

= (−1)nα1+···+nαk−1
∣∣. . . , nαk−1 , 1, nαk+1 , . . .

〉
,

ĉ†
αk

∣∣nα1 , . . . , nαk−1 , 1, nαk+1 , . . .
〉
= 0,

ĉαk

∣∣. . . , nαk−1 , 0, nαk+1 , . . .
〉
= 0,

ĉαk

∣∣. . . , nαk−1 , 1, nαk+1 , . . .
〉
=

= (−1)nα1+···+nαk−1
∣∣. . . , nαk−1 , 0, nαk+1 , . . .

〉
,

that is

ĉαk = ∑
nα1 ,...,nαk−1 ,nαk+1 ,...

(−1)nα1+···+nαk−1 ·

·
∣∣. . . , nαk−1 , nαk = 0, nαk+1 , . . .

〉 〈
. . . , nαk−1 , nαk = 1, nαk+1 , . . .

∣∣
and

ĉ†
αk
= ∑

nα1 ,...,nαk−1 ,nαk+1 ,...
(−1)nα1+···+nαk−1 ·

·
∣∣. . . , nαk−1 , nαk = 1, nαk+1 , . . .

〉 〈
. . . , nαk−1 , nαk = 0, nαk+1 , . . .

∣∣ .
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They satisfy the anticommutator relations

[ĉαk , ĉ†
αl
]+ = {ĉαk , ĉ†

αl
} = δkl , {ĉαk , ĉαl} = {ĉ†

αk
, ĉ†

αl
} = 0

and

|nα1 , nα2 , . . .〉 = (ĉ†
α1
)nα1 (ĉ†

α2
)nα2 · · · |0〉 .

Like in the bosons case, one can show that for several fermions all
previous relation are still valid by simply adding to α an index for the
fermionic species.

4.1.1.3 Basis change

If { |β〉 }β is a different single-particle states basis, it is easy to show
that

ĉ†
β = ∑

α

〈α | β〉 ĉ†
α, ĉβ = ∑

α

〈β | α〉 ĉα.

For example, if β = (~x, s) is the position-spin basis, we have

ψ̂s(~x) := ĉ~x,s = ∑
α

ψα,s(~x) cα, ψα(~x) := 〈~x, s | α〉 ,

where ψα,s is the wave-function associated to the state of single par-
ticle |α〉 and ψ̂s(~x) is called field operator (in the language of second
quantization). In particular ĉ†

~x,s = ψ̂†
s (~x) creates a particle in the state

|~x, s〉, that is, a particle with spin s in ~x. By considering the continuous
limit

∑
~x,s
→∑

s

∫
dx, δ(~x1,s1),(~x2,s2) → δs1s2 δ(~x1 − ~x2)

the (anti-)commutation relations for the ĉ~x,s operators give:[
ψ̂s1(~x1), ψ̂s2(~x2)

]
ζ
=
[
ψ̂†

s1
(~x1), ψ̂†

s2
(~x2)

]
ζ
= 0,[

ψ̂s1(~x1), ψ̂†
s2
(~x2)

]
ζ
= δ(~x1 −~x2) δs1s2 ,

where ζ = ±1 for bosons and fermions.

4.1.2 Observables

Observables are operators that tranform |nα1 , nα2 , . . .〉 in some others∣∣n′α1
, n′α2

, . . .
〉
; then we may expect that can be written in terms of

creation and annihilation operators. Here we see some examples:

• n̂αk := ĉ†
αk

ĉαk counts the number of particles in the state of single
particle |αk〉, indeed

n̂αk

∣∣. . . , nαk−1 , nαk , nαk+1 , . . .
〉
=

= nαk

∣∣. . . , nαk−1 , nαk , nαk+1 , . . .
〉

.
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Furthermore, if Ô |α〉 = Oα |α〉 for some single-particle observ-
able Ô, we have

Ô = ∑
α

Oα n̂α;

• if V̂ is a single-particle operator, that is1 V̂ |α1, . . . , αn〉 = ∑i V̂ |αi〉
(for example, in the position representation, a potential V̂ =

∑i V(~xi) where ~xi is the i-nth particle position; or also the kinetic
energy: T̂ = −h̄2 ∑i∇2

~xi
/(2 m)), it is quite easy to show

V̂ = ∑
α,α′

〈
α
∣∣ V̂
∣∣ α′
〉

ĉ†
α ĉα′ ; (4.1)

• if V̂ is a two-particle operator V̂ |α1, . . . , αn〉 = 1
2 ∑i 6=j V̂

∣∣αi, αj
〉
:

V̂ =
1
2 ∑

α1,α′1,α2,α′2

〈
α1, α2

∣∣ V̂
∣∣ α′1, α′2

〉
ĉ†

α1
ĉ†

α2
ĉα′2

ĉα′1
. (4.2)

If we apply these considerations to the field operator, we get:

• ρ̂s(~x) = ψ̂†
s (~x) ψ̂s(~x) is the particle density operator; in particular

the total particles number operator is

N̂ := ∑
s

∫
d3x ψ̂†

s (~x) ψ̂s(~x);

• be V̂ a single-particle operator that assumes the diagonal form
V̂~x in the |~x〉 representation; for example, V̂ could be a scalar
potential〈

~x, s
∣∣ V̂
∣∣ φ
〉
= ∑

~x′,s′

〈
~x, s

∣∣ V̂
∣∣~x′, s′

〉 〈
~x′, s′

∣∣ φ
〉
=

= ∑
s′

Vs,s′(~x) φs′(~x) = ∑
s′

V̂~x,s,s′ φs′(~x)

from which:〈
~x, s

∣∣ V̂
∣∣~x′, s′

〉
= δ(~x−~x′) V̂~x,s,s′ ; (4.3)

or be V̂ the momentum:〈
~x, s

∣∣ V̂
∣∣ φ
〉
= ∑

~x′

〈
~x, s

∣∣ V̂
∣∣~x′, s′

〉 〈
~x′, s′

∣∣ φ
〉
=

= −i h̄ ∑
s
∇~x φs(~x) = ∑

s
V̂~x φs(~x),

from which〈
~x, s

∣∣ V̂
∣∣~x′, s′

〉
= δ(~x−~x′) δss′ V̂~x. (4.4)

1 with a slight abuse of notation we indicate with the same symbol the operator that
acts on a single particle space and the operator that acts on the n-particles space.
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Then combining equation 4.1 on the facing page with 4.3 on the
preceding page or 4.4 on the facing page, we get

V̂ = ∑
ss′

∫
d3x ψ̂†

s (~x) V̂~x,s,s′ ψ̂s′(~x);

and

V̂ss′(~x) := ψ̂†
s (~x) V̂~x,s,s′ ψ̂s′(~x)

is called second-quantized density for the observable V̂;

• in the same way, if V̂ is, for example, a two-particle interaction
potential that assume the form V(~x1,~x2) in the |~x〉 representation,
from equation 4.2 on the preceding page we get:

V̂ =
1
2

∫
d3x1

∫
d3x2 ψ̂†(~x1) ψ̂†(~x2)V(~x1,~x2) ψ̂(~x2) ψ̂(~x1).

4.2 keldysh formalism

In this section we briefly review the key concepts of the Keldysh
formalism, which allows to treat the non-equilibrium many-body
problems. It is the fundamental tool used in the next chapters.

4.2.1 Keldysh contour motivation

As we know from quantum mechanics, everything we may measure
(for example the probability of finding some particle in a space region
at a given time, etc.) is the mean value of some observable. In the
Schrödinger picture we have

〈Ô(t)〉 = tr
[
Ô Ût,t0 ρ̂(t0) Û†

t,t0

]
,

where ρ̂ is the density matrix for a mixed state of the system and Û
the unitary evolution operator:

Ûdt := Ût+dt,t = 1− i Ĥ dt = e−i Ĥ dt,

Ût,t0 = Ût,t−dt Ût−dt,t−2 dt · · · Ût0+dt,t0 ,

which is true only in the limit dt→ 0. Furthermore Ût,t0 = e−i Ĥ (t−t0)

if Ĥ does not depend on time (in our case, we assume in general that
Ĥ = Ĥ(t)).

We know that solving exactly the evolution problem for an inter-
acting many-body system is hopeless in the general case, but we may
put H = H0 + H1, where H0 is a single particle component of the
Hamiltonian:

H0 = ∑
α

εα ĉ†
α ĉα.
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C

t+∞t0

Figure 4.1: C is the path along the real axis that goes from t = t0 to t = +∞
and from t = +∞ to t = t0 again.

H0 could be, for example, the free particle Hamiltonian, or a mean
field approximation Hamiltonian. We may assume that α also contains
an index for the particle species. If we want to expand in terms of
Ĥ1, the simplest way is to use the cyclic property of traces and the
unitarity of Û and write

〈Ô(t)〉 = tr
[
Ût0,t Ô Ût,t0 ρ̂(t0)

]
= tr

[
Û−t Ô Û+

t ρ̂(t0)
]

,

where Û+
t is the forward and Û−t the backward evolution operator

from t0 to t. Now we want to include Ô in Û; to do that, we define

Ĥ±(t) := Ĥ(t)± Ô η(t)/2,

where η(t) is a generic time function, and we introduce two evolution
operators: Û+ is the forward operator between t = t0 and t = +∞
under the action of the Hamiltonian Ĥ+, while Û− is the backward
operator from t = +∞ to t = t0 under the action of the Hamiltonian
Ĥ−. Finally we put

Z[η] := tr[Û− Û+ ρ̂(t0)] =: tr[ÛC ρ̂(t0)], (4.5)

where C is the Keldysh contour2 (see figure 4.1). Then it is easy to
check that3

〈Ô(t)〉 = i
δZ[η]
δη(t)

∣∣∣∣
η=0

, ∀t > t0 (4.6)

or, if ρ̂ is not normalized (tr[ρ̂(t0)] 6= 1):

〈Ô(t)〉 = i
δ

δη(t)
log Z[η]

∣∣∣∣
η=0

.

Now we may expand the whole operator ÛC ; but expanding opera-
tors is not so easy, since they do not commute. A way to escape from
nested commutators is to transform operators in numbers by means of
the path integral formulation. But before going on, it is useful to briefly
compare the Keldysh contour with typical equilibrium techniques.

2 this technique was originally invented by Schwinger and then improved by Keldysh.
3 the functional differentiation rules can be easily found by discretizing the time:

η(t) d−→ ηi, η(t′) d−→ ηi′ ,

δZ[η]
δη(t)

d−→ ∂Z(η1, η2, . . .)
∂ηi

,
δη(t)
δη(t′)

d−→ ∂ηi
∂ηi′

= δii′
d←− δ(t− t′).
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4.2.1.1 Equilibrium and non-equilibrium formalisms

The equilibrium theory comes with a trick. Assume for example that
we want to evaluate 〈IGS|Ô|IGS〉, where |IGS〉 indicates the ground
state of an interacting system (this discussion can be generalized
to the case of grand-canonical mixed state). Typically only the non-
interacting ground state |NIGS〉 is well known and so one introduces
an evolution operator Ût,−∞ that adiabatically4 switches on the inter-
action, so that

|IGS〉 = Ût,−∞ |NIGS〉 ;

if we assume that at the t = +∞ time the interaction is adiabatically
switched off we may argue that

Û+∞,−∞ |NIGS〉 = ei L |NIGS〉 ; (4.7)

by using this trick, it is easy to check that

〈
IGS

∣∣ Ô ∣∣ IGS
〉
=

〈
NIGS

∣∣ Û+∞,t Ô Ût,−∞
∣∣NIGS

〉〈
NIGS

∣∣ Û+∞,−∞
∣∣NIGS

〉
and then only the forward-path is necessary. It can be shown that the
denominator produce in particular the cancellation of the disconnected
vacuum Feynman diagrams. Anyway this strategy complicates the
calculations in some cases; for example, in the theory of disordered
systems, the phase ei L depends on the particular realization of the
disorder and then the denominator must be included in every disorder
averaging.

In any case this trick does not work in the non-equilibrium case
since the interactions may lead the system far from the equilibrium
and we cannot find a relation similar to 4.7.

4.2.2 Coherent states

We have seen that observables can be written in terms of creation
and annihilation operators; we assume that we are dealing with ob-
servables that have zero mean value when no particles are present:
〈nα = 0|Ô|nα = 0〉 = 0. This means that, if we write Ô in terms of
creation and annihilation operators, in all the creation/annihilation
operators products, all creation operators are on the left with respect
to the annihilation operators (the observables are normally ordered).

To introduce the path integral formulation we need to obtain the
eigenvectors of annihilation operators; for bosons we have no prob-
lems:

ĉα

∣∣∣ξ〉 = ξα

∣∣∣ξ〉 , (4.8)

4 if a system at the beginning is in an eigenstate of the initial Hamiltonian, at the
end of the adiabatic evolution it will be in the corresponding eigenstate of the final
Hamiltonian.
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Property Comment

|ξ〉 = eζ ∑α ξα ĉ†
α |0〉 coherent states

〈ξ | ξ ′〉 = e∑α ξ̄α ξ ′α overlap relations

〈nα | ξ〉 〈ξ | n′α〉 = 〈ζ ξ | n′α〉 〈nα | ξ〉 scalar product∫
d[ξ̄, ξ] e−∑α ξ̄α ξα |ξ〉 〈ξ| = 1 complet. relation∫
d[ξ̄, ξ] e−ξ† M ξ+η† ξ+η ξ†

= (det M)−ζ eη† M−1 η Gaussian integrals∫
d[ξ̄, ξ] P(ξ̄, ξ) =

∣∣ ∂(ξ̄,ξ)
∂(θ∗,θ)

∣∣ζ ∫ d[θ∗, θ] P(ξ̄, ξ) linear var. change

d[ξ̄, ξ] := ∏α dξ̄α dξα/N measure definition

Table 4.1: Some coherent states properties and useful tools. Note that ζ = 1
is for bosons and ζ = −1 for fermions. The integral for fermions
is the Berezin integral, while for bosons dξ̄α dξα := d<ξα d=ξα and
the normalization is N = π for bosons and N = 1 for fermions.
In the Gaussian integrals formula we used the notation ξ† M ξ =

∑αβ ξ̄α Mαβ ξβ and we have to assume that all eigenvalues of M
have non-negative real part.

where ξα are complex numbers since ĉα is not Hermitian. To avoid
confusion in this section we use the notation ξ = (ξα1 , ξα2 , . . .), but
note that in table 4.1 and in the future, ξ is used for ξ. It is easy to

check that
∣∣∣ξ〉 are given by:

∣∣∣ξ〉 = ∏
α

∞

∑
nα=0

ξn
α√
nα!
|n〉 = ∏

α

eξα ĉ†
α |0〉 = e∑α ξα ĉ†

α |0〉

and are said coherent states; they form a set of super-complete (not
orthonormal) states. Indeed it is easy to evaluate

〈
ξ
∣∣∣ ξ ′
〉

(table 4.1)
and the completeness relation can be obtained from the Gaussian
integral (see again table 4.1):

∫ d<ξα d=ξα

π
e−|ξα|2 (ξ̄α)

n ξn′
α =

=
∂n+n′

∂ηn
α ∂(η∗α)n′

∫ d<ξα d=ξα

π
e−|ξα|2+ξ̄α ηα+η∗α ξα

∣∣∣∣
η∗α=ηα=0

G
=

=
∂n+n′eη∗α ηα

∂ηn
α ∂(η∗α)n′

∣∣∣∣
η∗α=ηα=0

= n! δnn′

( G
= means = because of the Gaussian integrals) and the relation

∑nα1 ,nα2 ,... |nα1 , nα2 , . . .〉 〈nα1 , nα2 , . . .| = 1.
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The situation is more involved for fermions, since annihilation
operators do not commute; if we assume relation 4.8 on page 35, we
have

ĉα1 ĉα2

∣∣∣ξ〉 = ξα1 ξα2

∣∣∣ξ〉 = −ĉα2 ĉα1

∣∣∣ξ〉 = −ξα2 ξα1

∣∣∣ξ〉
=⇒ ξα1 ξα2 = −ξα2 ξα1

and then ξα cannot be complex numbers. These anti-commutation
relations make sense if we extend the states Hilbert space to a larger
super-Hilbert space H such that

〈ψ | φ〉 ∈ G and θ1 |ψ〉+ θ2 |φ〉 ∈ H, θ1, θ2 ∈ G,

where G are not complex numbers but the so called Grassmann num-
bers. We need G to be an algebra – that is, summation and (non
commutative) multiplication are defined in G – over C (that is, the
product between complex number and Grassmann number is again a
G-number and complex numbers commutate with Grassmann num-
bers). We even have to consider ξ̄α defined as〈

ξ
∣∣∣ ĉ†

α =
〈

ξ
∣∣∣ ξ̄α.

At the end we may simply assume that
{

ξ̄, ξ
}

ξ
are anti-commutant

and generate the algebra, that is, G is the smallest algebra that contains
all the products of such numbers. It is natural to require that

¯̄ξ = ξ, ξ ξ ′ · · · = · · · ξ̄ ′ ξ̄, a1 ξ + a2 ξ ′ = ā1 ξ̄ + ā2 ξ̄ ′,

where a ∈ C, and it is useful to observe that, for example, the
Grassmann number θ1 = ξ ξ ′ commutes with any other number
θ2 = a1 + a2 ξ ′′ + a3 (ξ ′′′)∗ ξ ′′′′ + · · · , since it is an even products of
anti-commutant generators. We also have ξ2 = 0 and Taylor expanding
any analytic function we must have

f (ξ) = f0 + f1 ξ, A(ξ̄, ξ ′) = a0 + a1 ξ ′ + a∗1 ξ̄ + a12 ξ̄ ξ ′.

It is possible to define the derivatives (identical to the complex number
case) but one needs to pay attention to the order:

∂

∂ξ ′
(ξ̄ ξ ′) =

∂

∂ξ ′
(−ξ ′ ξ̄) = −ξ̄.

To define an integral over Grassmann numbers, for which we have not
a sup and an inf definitions, we don’t use the Riemann approach. We
may consider an algebraic definition; in particular we want∫

dξ [a1 f (ξ) + a2 g(ξ)] = a1

∫
dξ f (ξ) + a2

∫
dξ g(ξ),

δ(ξ − ξ ′) =
∫

dξ ′′ e−ξ ′′(ξ−ξ ′),
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where the last is motivated by the ordinary Fourier representation of
the Dirac delta. In particular, Taylor expanding∫

dξ ′ δ(ξ − ξ ′) f (ξ ′) =
∫

dξ ′
∫

dξ ′′ [1− ξ ′′(ξ − ξ ′)] ( f0 + f1 ξ ′)

!
= f0 + f1 ξ,

from which∫
dξ 1 = 0,

∫
dξ ξ = 1.

Then we have the Berezin integral definition:∫
dξ :=

∂

∂ξ
,

∫
dξ̄ :=

∂

∂ξ̄
.

It is easy to obtain the linear variables change rule for Berezin in-
tegrals (see table 4.1 on page 36; the difference with respect to the
complex numbers case is the inverse of the Jacobian, as one may expect
since Berezin integrals behave like derivatives) and then the Gaussian
integral for Grassmann numbers (again table 4.1 on page 36).

Finally we may introduce the fermionic coherent states; but before
it is convenient to fix the following algebra rules for the ĉα operators
and their eigenvalues:

[ξ̃, c̃]+ = 0, ξ̃ |0〉 = |0〉 ξ̃, ξ̃ 〈0| = 〈0| ξ̃, (ξ̃ c̃)† = c̃† ξ̃∗

where ξ̃ ∈
{

ξ̄α, ξα

}
and c̃ ∈

{
ĉ†

α, ĉα

}
(the second rule establishes the

relation between ξ and ξ̄). As immediate consequence, ξ̃ commutes
with fermionic even numbers states and anti-commutes with fermionic
odd numbers states. With these rules it is quite easy to check that the
eigenvectors are∣∣∣ξ〉 = e−∑α ξα ĉ†

α |0〉 = ∏
α

(1− ξα ĉ†
α) |0〉

and to obtain the overlap relation
〈

ξ ′
∣∣∣ ξ
〉

and the resolution of the
identity in table 4.1 on page 36. Another useful relation, which can be
easily verified, holds:〈

nα1 , nα2 , . . .
∣∣∣ ξ
〉 〈

ξ
∣∣∣ n′α1

, n′α2
, . . .

〉
=

=
〈
−ξ
∣∣∣ n′α1

, n′α2
, . . .

〉 〈
nα1 , nα2 , . . .

∣∣∣ ξ
〉

. (4.9)

In summary, we can write normally-ordered observables for bosons
and fermions in the following way:〈

ξ
∣∣∣O(ĉ†, ĉ)

∣∣∣ ξ ′
〉
=
〈

ξ
∣∣∣ ξ ′
〉

O(ξ̄, ξ ′) = e∑α ξ̄α ξ ′α O(ξ̄, ξ ′),

where O(ξ̄, ξ ′) must be a commutant Grassmann number (compare
with section 4.1.2 on page 31).
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t+∞t0

C I1 I2 IN

IN+1I2N−1I2N

Figure 4.2: Position along the Keldysh contour of the resolution of the iden-

ties Ij =
∫

d[φ̄j, ψ̄j, φj, ψj] e−φ†
j φj−ψ†

j ψj
∣∣φj, ψj

〉 〈
φj, ψj

∣∣ .

4.2.3 Keldysh path integral

We indicate with b̂α the bosonic annihilation operators and b̂α|φ〉 =
φα|φ〉; for fermions we use instead the notation ĉα|ψ〉 = ψα|ψ〉. Then
consider the definition 4.5 on page 34:

Z =
1

tr[ρ̂0]
tr[ρ̂0 Û− Û+] =

=
1

tr[ρ̂0]
∑

nα1 ,nα2 ,...
〈nα1 , nα2 , . . . | ρ̂0 Û−−dt · · · Û−−dt︸ ︷︷ ︸

N

1·

· Û+
+dt · · · Û+

+dt︸ ︷︷ ︸
N

| nα1 , nα2 , . . .〉

that is true in the limit N → ∞. By inserting the resolution of the
identity for the coherent states between the operators, as depicted in
figure 4.2, by using relations 4.9 on the facing page and ∑ |nα〉 〈nα| = 1
and by observing that〈

φi, ψi
∣∣U±±dt

∣∣ φi−1, ψi−1
〉
= eφ†

i φi−1 eψ†
i ψi−1 e∓i Ĥ±(ψ̄i ,φ̄i ,ψi−1,φi−1) dt

(where e. g. ψ†
i ψi−1 = ∑α(ψ̄i)α (ψi−1)α),5 we get

Z =
1

tr(ρ̂0)

∫
D[φ̄, ψ̄, φ, ψ]·

· 〈φ1,−ψ1 | ρ̂0 | φ2N , ψ2N〉 e−φ†
1 φ1−ψ†

1 ψ1 ei S[φ̄,ψ̄,φ,ψ], (4.10)

where

S[φ̄, ψ̄, φ, ψ] =
2N

∑
j=2

(
i φ†

j
φj − φj−1

dt
dt + i ψ†

j
ψj − ψj−1

dt
dt
)
+

− i
N

∑
j=2

H+(ψ̄j, φ̄j, ψj−1, φj−1) dt+

+ i
2N

∑
j=N+2

Ĥ−(ψ̄j, φ̄j, ψj−1, φj−1) dt (4.11)

5 remember that α is an index that describes the single particle state and the particle
species. For compactness we used α for both fermions and bosons; to make this
notation consistent we then have to require that, when α refers to a boson, we have
ψα = 0 while, if it refers to a fermion, φα = 0.
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and

D[φ̄, ψ̄, φ, ψ] =
2N

∏
j=1

d[φ̄j, φj] d[ψ̄j, ψj].

Considering the limit N → ∞, we have to substitute to j a continuous
parameter that runs along the forward-backward contour of figure 4.2
on the previous page:

(φ1, φ2, . . . , φN)→
(φ+(t0), . . . , φ+(+∞))→ φ+(t) forward-path,

(φN+1, φN+2, . . . , φ2N)→
(φ−(+∞), . . . , φ−(t0))→ φ−(t) backward-path

and analogous substitutions for ψ. Then we get:

S[φ̄, ψ̄, φ, ψ] =

=
∫ +∞

t0

dt
[

φ̄+(t) i ∂t φ+(t) + ψ̄+(t) i ∂t ψ+(t)+

− H+(ψ̄+(t), φ̄+(t), ψ+(t), φ+(t))
]
+

−
∫ +∞

t0

dt
[

φ̄−(t) i ∂t φ−(t) + ψ̄−(t) i ∂t ψ−(t)+

− H−(ψ̄−(t), φ̄−(t), ψ−(t), φ−(t))
]

(4.12)

and
∫

D[φ̄, ψ̄, φ, ψ] becomes a functional integration.6

In the following section we will use the notation

〈· · ·〉 :=
∫

D[φ̄, ψ̄, φ, ψ]
〈
φ+(t0),−ψ+(t0)

∣∣ ρ̂0
∣∣ φ−(t0), ψ−(t0)

〉
·

· e−(φ+)†(t0) φ+(t0)−(ψ+)†(t0)ψ+(t0) ei S[φ̄,ψ̄,φ,ψ] · · · .

(compare with equation 4.10 on the preceding page).

4.2.4 Two-point Green function

If we want to perform an expansion to calculate the Keldysh path
integral, a central role is played by the two-point Green function:

i ĜT(1, 2) :=
〈
ψ+

α1
(t1) ψ̄+

α2
(t2)

〉
, (4.13a)

i Ĝ<(1, 2) :=
〈
ψ+

α1
(t1) ψ̄−α2

(t2)
〉

, (4.13b)

i Ĝ>(1, 2) :=
〈
ψ−α1

(t1) ψ̄+
α2
(t2)

〉
, (4.13c)

i ĜT̃(1, 2) :=
〈
ψ−α1

(t1) ψ̄−α2
(t2)

〉
, (4.13d)

6 Since in the N → ∞ limit we are working with distributions (such as the Dirac delta
function in the footnote 3 on page 34), it would be more proper to write, for exam-
ple, H+(ψ̄+(t), φ̄+(t), ψ+(t−), φ+(t−)) instead of H+(ψ̄+(t), φ̄+(t), ψ+(t), φ+(t)), to
indicate that ψ+(t), φ+(t) must be evaluated before ψ̄+(t), φ̄+(t) (compare with the
relation 4.11 on the previous page). Anyway we will follow the classical notation, but
consider for example the discussion in the Kamenev book [28, p. 25] for more details.
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and same definitions for bosons.7 Furthermore we put:

Ǧ(1, 2) :=

(
ĜT(1, 2) Ĝ<(1, 2)

Ĝ>(1, 2) ĜT̃(1, 2)

)

and we may think to Ǧ as an operator over α, t and contour region
indexes, in the sense that:

∑
2

Ǧ(1, 2)

(
ψ+(2)

ψ−(2)

)
=

= ∑
α2,t2

(
GT(1, 2)ψ+

α2
(t2) + G<(1, 2)ψ−α2

(t2)

G>(1, 2)ψ+
α2
(t2) + GT̃(1, 2)ψ−α2

(t2)

)
,

where the summation over t3 becomes an integral in the contimìnuum
limit. The motivation of that will be clear soon.

Now be d̂ = b̂α, ĉα a generic annihilation operator. We indicate with
d̂H(t) the time evolution of d̂ in the Heisenberg representation; for
semplicity we assume that Ĥ± = Ĥ (that is, we are not including
observables in the time evolution). Then the time ordered product is
defined as:

T[d̂H(1) d̂†
H(2)] =

d̂H(1) d̂†
H(2) t1 > t2,

ζ d̂H(2)† d̂H(1) t2 > t1,

where ζ is 1 for bosons and −1 for fermions; in the same way, the time
anti-oredered product is

T̃[d̂H(1) d̂†
H(2)] =

d̂H(1) d̂†
H(2) t2 > t1,

ζ d̂H(2)† d̂H(1) t1 > t2.

Then we put

i Ĝ++(1, 2) :=
〈

T[d̂H(1) d̂†
H(2)]

〉
ρ0

, (4.14a)

i Ĝ+−(1, 2) := ζ
〈

d̂†
H(2) d̂H(1)

〉
ρ0

, (4.14b)

i Ĝ−+(1, 2) :=
〈

d̂H(1) d̂†
H(2)

〉
ρ0

, (4.14c)

i Ĝ−−(1, 2) :=
〈

T̃[d̂H(1) d̂†
H(2)]

〉
ρ0

, (4.14d)

where 〈· · · 〉ρ0 = tr(ρ0 · · · ); note that we may easily interpret the Ĝ±±

as a time ordered product along the Keldysh contour 4.1 on page 34

(Ĝ++ is the ordered product when t1, t2 are both in the forward-path;

7 here the notation is: 1 = (α1, t1) and 2 = (α2, t2). In particular, the term “two-point”
refers to (α1, t1) and (α2, t2); typically in the second quatization theory “two-point”
refers to two space-temporal points, since |α〉 = |x〉.
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C

<tt0 +∞

Figure 4.3: Kadanoff-Baym contour in the complex time plane.

Ĝ+− is the case in which t1 is in the forward-path and t2 is in the
backward-path, and so on). Furthermore it is useful to observe that
they are not independent:

G++ + G−− = G+− + G−+

(remember that we are considering Ĥ± = Ĥ in this case) and, as we
will see soon, the so called Keldysh rotation is a smart way to reduce
their number.

By considering that d̂H(t) = Û† d̂ Û, writing

Û = Ûdt · · · Ûdt, Û† = Û−dt · · · Û−dt

and repeating the same steps of the section 4.2.3 on page 39 to put
Ĝ±± in a functional integral form, after a long but straightforward
calculation, one obtains

Ĝ++(1, 2) = ĜT(1, 2), Ĝ+−(1, 2) = Ĝ<(1, 2),

Ĝ−+(1, 2) = Ĝ>(1, 2), Ĝ−−(1, 2) = ĜT̃(1, 2),

for t1 6= t2. Note that when t1 = t2 particular care is needed; for the
bosonic case for example, it must be:

〈[b̂α, b̂†
α]〉ρ0 = 1 = −i

[
lim

t2→t+1
G++

αα (t1, t2)− lim
t2→t−1

G++
αα (t1, t2)

]

but 〈
φ+

α (t1) φ̄+
α (t1)

〉
−
〈
φ̄+

α (t1) φ+
α (t1)

〉
= 0.

4.2.4.1 The choice of ρ0

In the typical applications we may imagine that the system is at
equilibrium at time t0:

ρ̂0 = e−β (Ĥ−∑p µp N̂p) = e−β ĤS

where H contains both the free part H0 and the interaction HI between
particles, and at time t0 a term H1(t) that drives the system out the
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equilibrium is switched on. In this case, typically we cannot calculate
ρ0 exactly because of the interaction HI and we need to expand even

e−β ĤS = ÛHS
−i dβ · · · Û

HS
−i dβ,

where i dβ can be interpreted as an imaginary time step in the so
called Kadanoff-Baym contour depicted in figure 4.3 on the preceding
page.

Luckily in most cases we don’t need that; for example, if we are
not interested in transient phenomena at the initial times, we may
consider t0 = −∞ and, after a sufficient long time, we may expect that
the system lose the memory of the initial correlations. Then we can
simply put

ρ̂0 = e−β (Ĥ0−∑p µp N̂p),

including the interactions only in the time evolution operator: Ûdt =

1− i [Ĥ0 + ĤI + Ĥ1(t)] dt (see [46] for more details).

4.2.4.2 Free Green function

Now we want to calculate the two point Green function for the single
particle Hamiltonian H0:

ρ̂0 = e−β (Ĥ0−∑p µp N̂p), Ût2,t1 = e−i Ĥ0 (t2−t1).

Without loss of generality, we may assume in this section that |α〉
are the single particle states that diagonalize H0 (remember that in α

it is even included an index that select the species of the particle), so
that

H0 = ∑
α

εα d̂†
α d̂α = ∑

α

εα N̂α

and then:

ρ̂0 = e−β ∑α(εα−µα) N̂α , Ût2,t1 = e−i εα N̂α (t2−t1).

In particular:

• 〈φ|xN̂α |φ′〉 = eφ̄α φ′α x for bosons,8 then:〈
φ
∣∣∣ e−β (εα−µα) b̂†

α b̂α

∣∣∣ φ′
〉
= exp

[
φ̄α φ′α e−β (εα−µα)

]
;

• form fermions an analogous calculation leads to:〈
−ψ

∣∣∣ e−β (εα−µα) ĉ†
α ĉα

∣∣∣ψ′
〉
= exp

[
−ψ̄α ψ′α e−β (εα−µα)

]
;

8 this relation can be proved simply by observing that f (b̂†
α, b̂α) b̂α = b̂α f (b̂†

α, b̂α − 1)
hence:

∂x〈φ|xb̂†
α b̂α |φ′〉 = 〈φ|b̂† b̂ xb̂†

α b̂α−1|φ′〉 = 〈φ|b̂† xb̂†
α b̂α b̂α|φ′〉 = φ̄α φ′α 〈φ|xb̂†

α b̂α |φ′〉.
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• finally:

H0(ψ̄, φ̄, ψ′, φ′) = ∑
α

εα

(
ψ̄α ψ′α + φ̄α φ′α

)
.

Collecting all terms, we have that equation 4.10 on page 39 is of the
form:

Z0 =
1

tr(ρ̂0)

∫
D[φ̄, ψ̄, φ, ψ]·

· exp
{

∑
α,α′,t,t′

[(
ψ̄+

α (t) ψ̄−α (t)
)

M̌αα′(t, t′)

(
ψ+

α′ (t
′)

ψ−α′ (t
′)

)
+

+
(

φ̄+
α (t) φ̄−α (t)

)
M̌αα′(t, t′)

(
φ+

α′ (t
′)

φ−α′ (t
′)

)]}
,

(where the 0-subscript indicates that we are considering the free
case)9 that is a Gaussian integral.10 Furthermore, since Ĥ± = Ĥ0,
it is Z0 = tr(Û† Û ρ̂0)/ tr(ρ̂0) = 1. But by differentiating the Gaussian
integral in table 4.1 on page 36 with respect to ∂η̄α ∂ηα′ |η=η̄=0

11 one gets
immediately〈

ψα(t) ψ̄α′(t′)
〉

0 = M̌−1
αα′(t, t′)

and analogous relation for bosons. Comparing with the definition 4.13

on page 40, we must conclude that

M̌α1α2(t1, t2) = Ǧ−1
0 (1, 2).

9 to be more explicit, the form of M̌ is

M̌αα′ (j, j′) = δα,α′ ·

·



. . . ζ ρ(εα)

. . . −1

h−(εα) −1

h−(εα) −1

1 −1

h+(εα) −1

h+(εα) −1
. . .

. . .


where j, j′ = 1, . . . , 2N are the discretized time indexes, ζ = ±1 respectively for
bosons and fermions, ρ(εα) = e−β (εα−µα) and h±(εα) = 1± i εα dt.

10 that reflects the fact that typically we know how to perform calculations without an
expansion only in the free case.

11 the terms (det M)−ζ cancel with 1/ tr(ρ̂0), since Z0 = 1.
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Now we can use 4.14 on page 41 to easily evaluate the free Green
functions:12

i Ĝ<
0 (1, 2) = ζ nB/F(εα1) e−i εα1 (t1−t2) δα1,α2 ,

i Ĝ>
0 (1, 2) = [ζ nB/F(εα1) + 1] e−i εα1 (t1−t2) δα1,α2 ,

i ĜT
0 (1, 2) = θ(t1 − t2) i Ĝ>(1, 2) + θ(t2 − t1) i Ĝ<(1, 2),

i ĜT̃
0 (1, 2) = θ(t2 − t1) i Ĝ>(1, 2) + θ(t1 − t2) i Ĝ<(1, 2),

where, as usual, ζ = 1 for bosons and −1 for fermions and

nB/F(εα) :=
1

eβ (εα−µα) − ζ

are the bosonic/fermionic occupation numbers.13

4.2.5 Keldysh rotation

4.2.5.1 Bosons case

When Feynman introduced the path integral formalism, he wanted to
obtain a formulation of quantum mechanics that could lead easily to
the classical limit. In particular, while a “full quantum” particle that
goes from x1 to x2 can follow every path, in the classical limit h̄→ 0
the probability that it follows a path different from the classical one
goes to zero. In our case the state of the system evolves following the
Keldysh countour and, in the full quantum case, it could choose a
path in the forward time direction and another for the backward one.
We may expect that in the classical limit, when no observables are
included in the evolution operators (H± = H), we have only one path
and then:

φ+(t)− φ−(t) = φ̄+(t)− φ̄−(t) = 0,

12 if we want for example evaluate G<
0 for bosons, we may observe that in the free case

(b̂α)H(t) = exp

(
i ∑

α′
εα′ b̂†

α′ b̂α′

)
b̂α exp

(
−i ∑

α′′
εα′′ b̂†

α′′ b̂α′′

)
=

= exp
(

i εα b̂†
α b̂α

)
b̂α exp

(
−i εα b̂†

α b̂α

)
=

= exp
(

i εα b̂†
α b̂α

)
exp

(
−i εα (b̂†

α b̂α + 1)
)

b̂α = ei εα t b̂α

and h. c. At the end we have

i Ĝ<
0 (1, 2) =

〈
e−i εα2 t2 e−i εα1 t1 b̂†

α2
b̂α1

〉
ρ0

= e−i εα1 (t1−t2) nB(εα1 ) δα1,α2 .

13 If Ĥ0 is not diagonal with respect to |α〉 but it is still a single particle operator, that is
Ĥ0 = ∑αα′ εαα′ d̂†

α′ d̂α (for example |α〉 = |x〉 and H0 is diagonal with respect to |p〉),
the expression for Green function is a bit more complicated but the calculation is
similar.
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that suggests to introduce the change of variables:

φcl =
φ+ + φ−√

2
, φq =

φ+ − φ−√
2

,

φ̄cl =
φ̄+ + φ̄−√

2
, φ̄q =

φ̄+ − φ̄−√
2

(classical and quantum fields). The
√

2 factor guarantees that the
Jacobian is unitary in the functional integral and for the free case it is
easy to check that

Z0 =
1

tr(ρ̂0)

∫
D[φ̄cl, φ̄q, φcl, φq]·

· exp

[
∑

α,α′,t,t′

(
φ̄cl

α1
(t1) φ̄

q
α1(t1)

)
Ǧ−1

0 (1, 2)

(
φcl

α2
(t2)

φ
q
α2(t2)

)]

where we must substitute the Ǧ0 defined in the previous sections with

i Ǧ0(1, 2) =

(
i ĜK

0 (1, 2) i ĜR
0 (1, 2)

i ĜA
0 (1, 2) 0

)
=

=
{ 〈

φ
j
α1(t1) φ̄k

α2
(t2)

〉 }
j,k=cl,q

and

i ĜR
0 (1, 2) = θ(t1 − t2) e−i εα1 (t1−t2) δα1,α2 ,

i ĜA
0 (1, 2) = −θ(t2 − t1) e−i εα1 (t1−t2) δα1,α2 ,

i ĜK
0 (1, 2) = [1 + 2 nB(εα1)] e−i εα1 (t1−t2) δα1,α2 .

Observe that the advanced and retarded Green functions ĜA/R
0 contain

information about the spectrum, while the Keldysh Green function
ĜK

0 contains statistical information.
The Green functions depends only on the time difference (a conse-

quence of the time invariance present in the free-particle case) and we
may Fourier tranform with respect the time

ĜR
0 (1, 2) F.T.−→

(
ε− εα1 + i 0+

)−1
δα1,α2 ,

ĜA
0 (1, 2) F.T.−→

(
ε− εα1 − i 0+

)−1
δα1,α2 ,

ĜK
0 (1, 2) F.T.−→ −2 π i [1 + 2 nB(ε)] δ(ε− εα1) δα1,α2 .

By observing that

1 + 2 nB(ε) = coth
β (ε− µ)

2

and using the Sokhotski–Plemelj theorem:

1
x + i 0±

= P
1
x
∓ i π δ(x)
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(where P stands for the Cauchy principal value), we get immediately

ĜK
0 (ε) = coth

β (ε− µα)

2

[
ĜR

0 (ε)− ĜA
0 (ε)

]
that constitutes the fluctuation-dissipation theorem (remember that
in this case the statistical Hamiltonian coincides with the evolution
Hamiltonian Ĥ0 and then we are not going out of equilibrium).

We may write the action in terms of classical and quantum field and
observe that for H± = H

S[φ̄cl, φcl, φ̄q = φq = 0] = 0, (4.15)

since in that case the forward-path contribution cancels the backward
one (see equation 4.12 on page 40).

At the end, the classical limit is obtained with the saddle point
equation and requiring that the quantum field is zero:

δS
δφ̄cl =

δS
δφcl = 0

δS
δφ̄q = δS

δφq = 0

φ̄q = φq = 0

⇐⇒ δS
δφ̄q

∣∣∣∣
φ̄q=φq=0

=
δS
δφq

∣∣∣∣
φ̄q=φq=0

= 0,

(4.16)

because of 4.15. One may ask if there are solutions of the saddle point
equation

δS
δφ̄cl =

δS
δφcl = 0

δS
δφ̄q = δS

δφq = 0

for which φq is not identically zero. The answer is positive when
Ĥ+ 6= Ĥ− and some examples include tunneling, thermal activation
and oscillatory contributions to the level statistics (see [28]).

4.2.5.2 Fermion case

The Grassmann number have no classical meaning but it is useful
to introduce a Keldysh rotation for them also (we have reduced the
number of Green function Ǧ0 for bosons after the Keldysh rotation).
In particular we are more free in the choice of the rotation and we
may follow Larkin and Ovchinnikov notation:

ψ1 =
ψ+ + ψ−√

2
, ψ2 =

ψ+ − ψ−√
2

,

ψ̄1 =
ψ̄+ − ψ̄−√

2
, ψ̄2 =

ψ̄+ + ψ̄−√
2

.

Note that, with this choice, ψ̄i is not the conjugate of ψi as defined in
the previuos sections.
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After the Keldysh rotation, for the free case we obtain

Z0 =
∫ D[ψ̄1, ψ̄2, ψ1, ψ2]

tr(ρ̂0)
·

· exp

[
∑

α,α′,t,t′

(
ψ̄1

α1
(t1) ψ̄2

α1
(t1)

)
Ǧ−1

0 (1, 2)

(
ψ1

α2
(t2)

ψ2
α2
(t2)

)]

where

i Ǧ0(1, 2) =

(
i ĜR

0 (1, 2) i ĜK
0 (1, 2)

0 i ĜA
0 (1, 2)

)
=

=
{ 〈

φi
α1
(t1) φ̄

j
α2(t2)

〉 }
i,j=1,2

and

i ĜR
0 (1, 2) = θ(t1 − t2) e−i εα1 (t1−t2) δα1,α2 , (4.17a)

i ĜA
0 (1, 2) = −θ(t2 − t1) e−i εα1 (t1−t2) δα1,α2 , (4.17b)

i ĜK
0 (1, 2) = [1− 2 nF(εα1)] e−i εα1 (t1−t2) δα1,α2 . (4.17c)

The Larkin and Ovchinnikov choise presents some advantages for
the calculations (remember that the product of lower triangular matri-
ces is again a lower triangular matrix).

Finally the fluctuation-dissipation theorem for fermions reads

ĜK
0 (ε) = tanh

β (ε− µα)

2

[
ĜR

0 (ε)− ĜA
0 (ε)

]
.

Note that the only difference with respect to the bosonic case is that
the hyperbolic tangent takes the place of the hyperbolic cotangent.

4.2.6 Expansions and Wick theorem

To introduce the Wick theorem, we consider the fermionic case (the
bosonic one is similar). The Wick theorem for Grassmann number is
easily obtained by differentiating the Gaussian integral in table 4.1 on
page 36 with respect to ∂η̄α1

· · · ∂η̄αn
∂ηα′1
· · · ∂ηα′n

|η̄=η=0:

〈ψα1 · · ·ψαn ψ̄α′n · · · ψ̄α′1
〉0 =

= det(M)∑
π

sign(π) M−1
απ(n)α

′
n
· · ·M−1

απ(1)α
′
1
,

where π are permutations.
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We now assume that in equation 4.10 on page 39 we have S =

S0 + S1 (S0 and S1 are commuting Grassmann numbers - compare
with section 4.1.2 on page 31) and then

Z =
∫ D[ψ̄1, ψ̄2, ψ1, ψ2]

tr(ρ̂0)
〈−ψ1 | ρ̂0 |ψ2N〉 e−ψ†

1 ψ1 ei S[ψ̄1,ψ̄2,ψ1,ψ2] =

=
1

tr(ρ̂0)

∫
D[ψ̄1, ψ̄2, ψ1, ψ2]·

· exp

[
∑

α,α′,t,t′

(
ψ̄1

α1
(t1) ψ̄2

α1
(t1)

)
Ǧ−1

0 (1, 2)

(
ψ1

α2
(t2)

ψ2
α2
(t2)

)]
·

· ei S1[ψ̄
1,ψ̄2,ψ1,ψ2] =

〈
ei S1[ψ̄

1,ψ̄2,ψ1,ψ2]
〉

0
,

where, when S1 = 0, we deal with a Gaussian integral (as we have
seen, this is the case when Ĥ0 is a single particle operator). Finally we
may expand the exponential:

Z =
∞

∑
n=0

1
n!

〈(
i S1[ψ̄

1, ψ̄2, ψ1, ψ2]
)n〉

0
;

to fix ideas, we may assume that S1 is the Keldysh action associated to
a Coulomb interaction (that is something of the form 4.2 on page 32)
and then, by applying Wick theorem, we may evaluate each order of
the expansion by simply knowing the two point free Green function
(and associate Feynman diagrams to each term).





5
T H E M A N Y- B O D Y M O D E L

Motivated by quantum optics works like [36], our original idea was
to try to generalize the Wang and Sham model to the case of several
nanomagnets. We tried to use the same methods of Wang and Sham
(namely the derivation of a master equation for the magnets, in the
coarse graining time scale approximation - see section 3.3 on page 23),
but that was infeasible from a mathematical point of view. Instead
we found that the Keldysh formalism [16] is a promising framework
as basis to generalize the Wang and Sham model in many directions
(several magnets, electron-electron interaction,. . . ) and produces a
dynamic equation for the magnet with an easy physical interpretation.
I detail the results of this original research in this chapter and the
following.

Therefore we consider the Wang and Sham single-electron Hamilto-
nian with a weak external magnetic field ~B:

Ĥ = − ∂2
x̄

2 m
+ γ ~B ·~J + δ(x̄)

(
λ0 + λ~s ·~J

)
,

where γ is the electron gyromagnetic ratio, m is the electron mass and
we have chosen a unit system in which h̄ = 1. As in [63], we considered
the electron moving only in the x̄ direction. But in principle the model
is easily generalizable: if the electric current flows in a lead with
nanometric transverse dimensions, one can quantize the electron state
along ȳ and z̄ and consider the eigenstates along these directions as
current channels [38]. The only mathematical complication is that
the magnetic scattering center in x̄ = 0 produces a mixing between
the channels. Anyhow the single channel approximation is good for
nanometric leads [1, p. 747].

The Keldysh formalism will allow us to treat that model directly in a
many-electrons framework, but to do that we need to translate also the
magnet degrees of freedom in the many-body language. How it was
done in [53], we will consider the Holstein-Primakoff bosonization,
which allows to consider directly a semi-classical approximation for
the magnet dynamics.

51
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5.1 holstein-primakoff bosonization

We consider the operators

Ŝ+ := s

√2− b̂† b̂
s

 b̂√
s

, Ŝ− := s
b̂†
√

s

√2− b̂† b̂
s

 ,

Ŝz := s− b̂† b̂

and

Ŝx :=
S+ + S−

2
, Ŝy :=

S+ − S−
2 i

(compare with the definition 3.4 on page 24), where b̂† and b̂ are
bosonic creation and annihilation operators, that is

[b̂, b̂†] = 1, [b̂, b̂] = [b̂†, b̂†] = 0.

By using these relations and Taylor expanding the square root in the
Ŝ± definition, one gets:

[Ŝi, Ŝj] = i εijk Ŝk, i, j, k = x, y, z,

where εijk is the Levi-Civita symbol, that is the standard commutation
relations for the spin operators. This is called Holstein-Primakoff
bosonization.

To have a perfect corrispondence between bosons and spin, we need
only to restrict the Fock space to states that count a number of bosons
between 0 and 2 s, since Ĵz has eigenvalues −s,−s + 1, . . . , s. Further-
more the Holstein-Primakoff representation is useful for the semi-
classical approximation; indeed, the zero-boson state |0〉 = |m = s〉 is
the generic spin coherent state up to a rotation (see definition 3.6 on
page 25). For that state, we have〈

0
∣∣∣ b̂
∣∣∣ 0
〉
=
〈

0
∣∣∣ b̂†

∣∣∣ 0
〉
=

=
〈
m = s

∣∣ Ŝx
∣∣m = s

〉
=
〈
m = s

∣∣ Ŝy
∣∣m = s

〉
= 0

and for large s and slight deviation from the coherent state, that is, for
states that are combination of few bosons states (i. e. for states such
that 〈Ŝx,y〉 � s), we obtain

〈b̂〉√
s

,
〈b̂†〉√

s
= O

(
1√

s

)
, 〈b̂† b̂〉 � s.

This means that we are considering states that have slight quantum
and thermal fluctuations around the ẑ axis.

We may apply all these considerations to our magnet spin ~J: we
may assume that ẑ is, in a moving Cartesian coordinate system, the
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Ĵ+ ∝ b̂ Ĵ− ∝ b̂†

· · ·

J J − 1 J − 2 J − 3 −J

Ĵz

Figure 5.1: Representation of the Holstein-Primakoff bosonization in the
semi-classical approximation. The zero bosons case coincides
with the classical limit. To create a boson means decreasing the
spin value along ẑ.

direction of the magnet in the classical limit. Then, to obtain the semi-
classical approximation, we Taylor expand the relations 5.1 on the
preceding page:

Ĵ+ = J

[√
2

b̂√
J
+ O

(
1
√

J3

)]
=
√

2 J b̂ + O
(

1√
J

)
, (5.1a)

Ĵ− = J

[√
2

b̂†
√

J
+ O

(
1
√

J3

)]
=
√

2 J b̂† + O
(

1√
J

)
, (5.1b)

Ĵz = J

[
1− b̂†
√

J
b̂√

J

]
= J

[
1− b̂†
√

J
b̂√

J
+ O

(
1
√

J3

)]
=

= J − b̂† b̂ + O
(

1√
J

)
;

(5.1c)

in particular we will consider the terms of order J, the terms with
one bosonic (creation or annihilation) operator – that are suppressed
by a factor 1/

√
J with respect to the J order terms – and the terms

with two bosonic operators – that are suppressed by a factor 1/J (see
figure 5.1).

5.2 the many-body hamiltonian

Now we may write the many-body Hamiltonian as:

Ĥ = Ĥm + Ĥ0e + Ĥb,

where:

• the magnet part is:

Ĥm = γ ~B ·~J = γ
√

J√
2

B+ b̂† +
γ
√

J√
2

B− b̂ + γ Bz

(
J − b̂† b̂

)
(again B± := Bx ± i By);
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• the part of the single-electron Hamiltonian that does not contain
the bosonic operators is Ĥ0e = − ∂2

x̄
2 m + (λ0 + λ J sz) δ(x̄); it is

diagonal with respect to the scattering states Ψks given by:

Ψ|k|s(x̄) = |s〉 ⊗ N ·

ei |k| x̄ + rs(k) e−i |k| x̄, x̄ < 0,

ts(k) ei |k| x̄, x̄ > 0,
(5.2a)

Ψ−|k|s(x̄) = |s〉 ⊗ N ·

ts(k) e−i |k| x̄, x̄ < 0,

e−i |k| x̄ + rs(k) ei |k| x̄, x̄ > 0,
(5.2b)

that constitute a basis for electrons (respectively coming from
left to right and from right to left), where

Ĥ0eΨks = εks Ψks, εks = εk =
k2

2 m
, s = ± (5.3a)

rs(k) =
1

−1 + i |k|
m (λ0+λ s J/2)

, ts(k) =
1

1 + i m (λ0+λ s J/2)
|k|

,

(5.3b)

N is a real normalization constant1 and |s〉 is the spinor with
respect to the quantization axis z. Then the many-electrons free
Hamiltonian is written as

Ĥ0e = ∑
ks

εk ĉ†
ks ĉks,

where ĉks creates an electron in the state Ψks. It is important
to stress that the choice to consider an expansion based on the
scattering eigenfuctions Ψks is a key point in our argumentation
that allows us to go beyond the Wang-Sham approach;

• Ĥb is the remaining Hamiltonian part that contains the b̂, b̂†

operators. It can be considered a perturbative term. Indeed,
while Ĥ0e contains the terms λ0 and λ J that can be considered
of the similar order (see figure 3.1 on page 18), it is easy to
check that Ĥb is given by the sum of terms that contain a single
bosonic operator (b̂ or b̂†) which is of the order λ

√
J (and then

suppressed by a factor 1/
√

J with respect to λ J) and a term
proportional to b̂ b̂† which is of the order λ (and then suppressed
by a factor 1/J with respect to λ J). Therefore we can say that
Ĥ0e is zero-order in 1/

√
J, terms with a single bosonic operators

is of the first order and the term with two bosonic operators is of
the second order. We neglect higher order terms, as described in
formula 5.1 on the preceding page, since for typical applications
J ∼ 104 [63]. Anyhow we will write the explicit form of Ĥb in a
next section.

1 for example, if we consider that electron are bounded in a region of x̄ with dimension
L and with periodic boundary conditions, we have N = 1/

√
L; if L is much greater

with respect to the characteristic electron wave length, we may consider the continuous
limit for k and N = 1/

√
2 π.
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ẑ

ẑ′

θ

φ

x̂

ŷ

Figure 5.2: ẑ is the quantization axis for the magnet, while ẑ′ is current
polarization axis.

5.3 initial state

The incoming current is polarized with respect to the ẑ′ axis (see
figure 5.2). The spin states in the two quantization axis are related by

Û(θ, φ) |s〉 =
∣∣s′〉 ,〈

s′1
∣∣ Û ∣∣ s′2

〉
=
〈
s1
∣∣ Û ∣∣ s2

〉
=

(
e−i φ/2 cos θ

2 −e−i φ/2 sin θ
2

ei φ/2 sin θ
2 ei φ/2 cos θ

2

)
,

where Û = e−i ŝz φ e−i ŝy θ . If ĉ†
ks creates an electron in the state |k, s〉, ĉ†

ks′

creates an electron in the state |k, s′〉:

ĉ†
ks1

= ∑
s′2

〈
s′2
∣∣ s1
〉

ĉ†
ks′2

= ∑
s′2

〈
s′2
∣∣∣ Û†

∣∣∣ s′1
〉

ĉ†
ks′2

. (5.4)

Since the H0e eigenvalues do not depend on s, we may write

Ĥ0e = ∑
ks′

εk ĉ†
ks′ ĉks′ .

Then we assume that the incoming electrons density matrix is given
by

ρ̂s′,d
0 =

1
Zs′,d

exp

[
−β ∑

k

(
εk − µs′,d

)
ĉ†

d|k|,s′ · ĉd|k|,s′

]
, s, d = ±,

where the index d describes the direction of the electrons motion. This
means that we are introducing a differential potential between the left
and right regions:

µs′,d = εF + e Vd
0 + s′ 2 µB Bd

0 ,

where εF is the Fermi energy, Vd
0 is an electric potential, Bd

0 is a
magnetic field and µB is the Bohr magneton. In particular, in the
typical cases, Bd

0 is the magnetic field due to the presence of hard
ferromagnetic layers (see figure 5.3 on the following page).
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x̄

~J

~B+
0 ~B−0

Figure 5.3: In a possible experimental setup, the nano-magnet is placed
between two hard ferromagnetic contacts. In particular ~B± ‖ ẑ′

and ~J ‖ ẑ.

(a) ẑ-parallel contribution vertex. It
involves two bosons and it is of
the second order in 1/

√
J with

respect to Ĥ0e, as described in sec-
tion 5.2 on page 53.

(b) ẑ-perpendicular contribution ver-
tex. It involves a single boson and
it is of the first order in 1/

√
J

with respect to Ĥ0e, as described
in section 5.2.

Figure 5.4: Ĥb vertices.

5.4 Hb hamiltonian component

The operator that annihilates (creates) an electron in x with spin s is
given by

ψ̂s(x) = ∑
k

Ψks(x; s) cks, ψ̂†
s (x) = ∑

k
Ψ∗ks(x; s) c†

ks,

where Ψks(x; s) := 〈s|Ψks(x), from which

ψ̂s(0) = N ∑
k

ts(k) cks, ψ̂†
s (0) = N ∑

k
t∗s (k) c†

ks.

Then

Ĥb = λ ∑
s1s2

∫
dx̄
[
−1

2
b̂† b̂ σ3

s2s1
+

√
2 J
2

σ+
s2s1

b̂† +

√
2 J
2

σ−s2s1
b̂
]
·

· ψ̂†
s2
(x̄) ψ̂s1(x̄) δ(x̄);

integrating over x̄ and using relation 5.4 on the previous page:

Ĥb = ∑
s′2s′1k2k1

{
b̂† b̂Ms2s1

k2k1
(‖) ĉ†

k2s′2
ĉk1s′1

+

+
[
b̂Ms2s1

k2k1
(⊥) ĉ†

k2s′2
ĉk1s′1

+ h.c.
]}

= Hb‖ + Hb⊥,

where
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• the ẑ-parallel contribution coefficient is given by

Ms′2 s′1
k2 k1

(‖) := −λ

4
N2·

·
[
t∗+(k2) t+(k1)Ls′2s′1

+ (‖) + t∗−(k2) t−(k1)Ls′2s′1
− (‖)

]
,

with

Ls′2s′1
+ (‖) =

(
1 + cos θ − sin θ

− sin θ 1− cos θ

)
,

Ls′2s′1
− (‖) =

(
cos θ − 1 − sin θ

− sin θ −1− cos θ

)

and we will indicate this contribution with the vertex in fig-
ure 5.4a on the facing page;

• while the ẑ-perpendicular contribution coefficient is

Ms′2 s′1
k2 k1

(⊥) = λ

√
2 J
2

N2 t∗−(k2) t+(k1)Ls′2s′1(⊥),

with

Ls′2s′1(⊥) = e−i φ

(
sin θ

2 − sin2 θ
2

cos2 θ
2 − sin θ

2

)

and we will indicate this contribution with the vertex in fig-
ure 5.4b on the preceding page.

It is relevant to note that using the scattering states makes simple
the form of the free Green function, as we will see. Furthermore, in the
Ĥb Hamiltonian, the ẑ-perpendicular part has a simple interpretation:
if an electron is flipped up (the σ+ b̂† term) a boson is created (that
is the magnet spin along ẑ is decreased) and vice versa. This is a
consequence of the total angular momentum conservation.





6
T H E C L A S S I C A L C U R R E N T

In this chapter we are going to calculate the electric current flowing in
the magnet, without considering the quantum fluctuations (that we
will call classical current) and assuming that the fermionic dynamics is
much faster than the bosonic one.

To discard the quantum fluctuations of the magnet, we need b̂, b̂† →
0. In particular, the Hamiltonian reduces to H0e, except for constant
terms.

The calculation is substantially similar to that proposed in [52]. The
differences are that:

• in our case, the delta function modelizes a three-layer system.
Instead in [52] a two-layer system is considered: the electrons
move from a non-magnetic to a magnetic layer. This is obtained
with a step potential model, which produces a different form
for the reflection and transmission amplitudes (in particular the
transmission amplitudes are real for the step potential);

• in [52] the one-dimensional approximation is not considered;
anyway the interface is considered flat and then the transverse
wave function component remains unchanged during the scat-
tering.

By using the language of the scattering matrix [38], we may write
the wave functions 5.2 on page 54 as:

Ψ|k|L→(x) = N ×

|L→〉 ei |k| x̄ + r̂(k) |L→〉 e−i |k| x̄, x̄ < 0,

t̂(k) |L→〉 ei |k| x̄, x̄ > 0,
(6.1a)

Ψ−|k|R←(x) = N ×

t̂(k) |R←〉 e−i |k| x̄, x̄ < 0,

|R←〉 e−i |k| x̄ + r̂(k) |R←〉 ei |k| x̄, x̄ > 0,
(6.1b)

where |L→〉 and |R←〉 are spinors and t̂, r̂ are spinor operators given
by

〈s1 | r̂(k) | s2〉 =
(

r+(k) 0

0 r−(k)

)
,

〈
s1
∣∣ t̂(k)

∣∣ s2
〉
=

(
t+(k) 0

0 t−(k)

)

59
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with respect to the ẑ-quantization axis. We may transform the opera-
tors in the ẑ′-quatization axis:

〈
s′1
∣∣ t̂(k)

∣∣ s′2
〉
= ∑

s3s4

〈
s1

∣∣∣ Û†
∣∣∣ s3

〉 〈
s3
∣∣ t̂(k)

∣∣ s4
〉 〈

s4
∣∣ Û ∣∣ s2

〉
=

=

(
t+(k) cos2 θ

2 + t−(k) sin2 θ
2 − 1

2 [t+(k)− t−(k)] sin θ

− 1
2 [t+(k)− t−(k)] sin θ t−(k) cos2 θ

2 + t+(k) sin2 θ
2

)
(6.2)

where θ, φ may be considered as time-depending parameters in our
case (fermionic dynamics much faster than bosonic one), and analog
formula for r̂(k).

In particular, ĉ†
±|k|s′ creates an electron in the single-particle state

Ψ±|k|s′ (given by relations 6.1 on the previous page, with |L→〉 = |s′〉
and |R←〉 = |s′〉 respectively).

The current must be conserved along x̄ in our stationary case; in
particular we may concentrate on the transmitted waves. The current
associated to a plane wave Ψ(x̄) = A e±i |k| x̄ is given by

I =
e
m
= (Ψ∗ ∂x̄Ψ) = ± e

m
|k| |A|2, (6.3)

where e < 0 is the electron charge. If we are interested in the spin
current, e must be substituted by 1/2.

By using relations 6.2, we obtain the spin currents:

• for electrons with spin |↑′〉 coming respectively from left to right
(+ direction) and vice versa (− direction), we have a transmitted
↑′-component:

I↑
′↑′
± = ±∑

|k|
nµ↑

′±

F (εk)
N2 |k|
2 m

∣∣∣∣t↑(k) cos2 θ

2
+ t↓(k) sin2 θ

2

∣∣∣∣2,

and a transmitted ↓′-component:

I↑
′↓′
± = ±∑

|k|
nµ↑

′±

F (εk)
N2 |k|
2 m

|t↑(k)− t↓(k)|2
sin2 θ

4
;

• for electrons with spin |↓′〉:

I↓
′↑′
± = ±∑

|k|
nµ↓

′±

F (εk)
N2 |k|
2 m

|t↑(k)− t↓(k)|2
sin2 θ

4
,

I↓
′↓′
± = ±∑

|k|
nµ↓

′±

F (εk)
N2 |k|
2 m

∣∣∣∣t↑(k) sin2 θ

2
+ t↓(k) cos2 θ

2

∣∣∣∣2,

(to simplify the notation, here we indicate the direction of electrons
motion along x̄ with ± and the spin with ↑↓).
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We define

Is′ := ∑
d,s′0

Is′0s′

d , Ispin := I↑
′ − I↓

′
.

In the continuous limit for k (that is the linear dimension of the
system along x̄ is much greater with respect to the characteristic
electron wavelength) and in the low temperature limit, it is possible to
calculate all the currents by using the Sommerfeld expansion:

∫ +∞

0
dε nµ

F(ε) H(ε) =
∫ µ

0
dε H(ε) +

π2

6 β2 H′(µ) + O
(

1
β µ

)4

.

To compare with results obtained in [63], we consider the zero temper-
ature limit and we assume that all the chemical potentials have similar
values: µs′d ' εF (Ohmic limit); in particular

nµ
F(ε) = θ(ε− µ) ' θ(ε− εF) + δ(ε− εF) (µ− εF). (6.4)

Since the currents may be written as

Is′1s′2
± = ∑

|k|
nµs′1±

F (εk) f s′1s′2(k) =
∫ +∞

0
dε

m
|kε|

nµs′1±

F (ε) f s′1s′2(kε)

(the fact that f does not depend on the electron motion direction ± is
a consequence of the parity symmetry), by using approximation 6.4
we have

Is1s′2
+ + Is′1s′2

− =
m
kF

f s′1s′2(kF)∆µs′1 ,

where ∆µs′1 =: µs′1+ − µs′1− is the difference of chemical potentials for
the two electron motion directions. In particular for example

Ispin =
N2

8

{
∆µspin

[
|t↑ + t↓|2 + |t↑ − t↓|2 cos(2 θ)

]
+

+ 2 ∆µcharge
(
|t↑|2 − |t↓|2

)
cos θ

}
, (6.5)

where t↑↓ := t↑↓(kF) and

∆µspin := ∆µ↑
′ − ∆µ↓

′
, ∆µcharge := ∆µ↑

′
+ ∆µ↓

′
;

this means that

• if the scattering potential does not depend on the spin, that is
t↑ = t↓ =: t,

Ispin =
N2 |t|2

2
∆µspin

and there is a linear relation between the the spin current and
the polarization potential;
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• if the polarization potential ∆µspin is zero, we still have a polar-
ized current due to the magnet interaction:

Ispin =
N2

4
∆µcharge

(
|t↑|2 − |t↓|2

)
cos θ.

The charge current is given instead by:

Icharge = 2 e
(

I↑
′
+ I↓

′)
=

N2 e
2
[
|t↑|2

(
∆µcharge + ∆µspin cos θ

)
+

|t↓|2
(
∆µcharge − ∆µspin cos θ

)]
(6.6)

and we have a potential/current linear relation that does not depend
on the magnet orientation when

• the scattering potential does not depend on the spin

Icharge = N2 e |t|2 ∆µcharge;

• the polarization potential is zero:

Icharge = N2 e
(
|t↑|2 + |t↓|2

)
∆µcharge.

We may summarize relations 6.5 on the preceding page and 6.6:(
Icharge

Ispin

)
= Ĝ(θ)

(
∆µcharge

∆µspin

)
. (6.7)

Note that the conductance Ĝ does not depend on φ, as one may expect
from the symmetry of the model.

It is also useful to introduce

∆µL
spin = µ↑

′+ − µ↓
′+, ∆µR

spin = µ↑
′− − µ↓

′−,

Indeed, in [63] some polarized electrons are sent only from left to
right; in that case, we have to assume that ∆µR

spin = 0, which means
∆µspin = ∆µL

spin.



7
K E L D Y S H A C T I O N

7.1 magnet-electrons action

The magnet-electrons Keldysh action for our system (see section 4.2
on page 33) is given by

S =
∫ +∞

−∞
dt
(

b̄+ i ∂t b+ + ∑
ks′
(ψ̄+)ks′ i ∂t (ψ+)ks′+

− H[b̄+, ψ̄+, b+, ψ+]

)
+

−
∫ +∞

−∞
dt
(

b̄− i ∂t b− + ∑
ks′
(ψ̄−)ks′ i ∂t (ψ−)ks′+

− H[b̄−, ψ̄−, b−, ψ−]
)

=
∫

dtL

where b± are number that correspond to the bosonic degree of freedom
and ψ± are Grassmann number for fermions modes.

We introduce the Keldysh rotation:

bcl =
b+ + b−√

2
, bq =

b+ − b−√
2

,

b̄cl =
b̄+ + b̄−√

2
, b̄q =

b̄+ − b̄−√
2

,

for bosons and

ψ1 =
ψ+ + ψ−√

2
, ψ2 =

ψ+ − ψ−√
2

,

ψ̄1 =
ψ̄+ − ψ̄−√

2
, ψ̄2 =

ψ̄+ + ψ̄−√
2

,

for fermions. Then the action is the sum of the components:

• from Lm = b̄+ i ∂t b+ − Hm[b̄+, b+]− b̄− i ∂t b− + Hm[b̄−, b−], we
get:

Sm =
∫

dt
(

b̄cl b̄q
)( 0 i ∂t + γ Bz

i ∂t + γ Bz 0

)(
bcl

bq

)
+

−
∫

dt
[

γ
√

J√
2

B+

(
b̄+ − b̄−

)
+

γ
√

J√
2

B− (b+ − b−)
]
=

=
∫

dt
[
b̄q (i ∂t + γ Bz) bcl − γ

√
J B+ b̄q

]
+ h.c., (7.1)

where the first integral has been evaluated by parts;

63
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• consider now

L0e = ∑
ks′
(ψ̄+)ks′ i ∂t (ψ+)ks′ − Hm[ψ̄+, ψ+]+

−∑
ks′
(ψ̄−)ks′ i ∂t (ψ−)ks′ + Hm[ψ̄−, ψ−];

we introduce:

ψ̄ =

((
ψ̄1↑′+ ψ̄2↑′+

) (
ψ̄1↓′+ ψ̄2↓′+

)
(

ψ̄1↑′− ψ̄2↑′−
) (

ψ̄1↓′− ψ̄2↓′−
))

and

ψ =



(
ψ1↑′+
ψ2↑′+

)
(

ψ1↓′+
ψ2↓′+

)
(

ψ1↑′−
ψ2↑′−

)
(

ψ1↓′−
ψ2↓′−

)


,

where ↑′↓′ refer to spin along ẑ′, ± to the electron motion di-
rection and each ψis′d is a block indexed by the momentum
|k|:

ψ̄is′± =
(

ψ̄is′±|k1| ψ̄is′±|k2| · · ·
)

, ψis′± =


ψis′±|k1|
ψis′±|k2|

...

 .

With this notation,

S0e =
∫

dt ∑
ks

(
ψ̄1ks ψ̄2ks

)(i ∂t − εk 0

0 i ∂t − εk

)(
ψ1ks

ψ2ks

)
=
∫

dt ψ̄ Ǧ−1
0 ψ,

where

Ǧ−1
0 = Î4 ⊗ Ĝ−1

0 ⊗ γ̂cl

with Î4 the 4× 4-identity matrix and we use the standard nota-
tion:

γ̂cl =

(
1 0

0 1

)
, γ̂q =

(
0 1

1 0

)
,(

Ĝ−1
0 (t)

)
|k1||k2|

= δ12 (i ∂t − εk1) .
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Observe that the classical gamma matrix is diagonal in the
Keldysh space, while the quantum gamma matrix flips the
Keldysh components;

• from Hb‖ we obtain

Sb‖ = −
∫

dt ∑
s′2s′1k2k1

1
2
Ms′2s′1

k2k1
(‖)
[(

b̄cl bcl + b̄q bq
)
·

·
(

ψ̄1k2s′2
ψ1k1s′1

+ ψ̄2k2s′2
ψ2k1s′1

)
+

+
(

b̄cl bq + b̄q bcl
) (

ψ̄2k2s′2
ψ1k1s′1

+ ψ̄1k2s′2
ψ2k1s′1

)]
=

= −1
2

∫
dt ψ̄

[(
b̄cl bcl + b̄q bq

)
M̂(‖)⊗ γ̂cl+

+
(

b̄cl bq + b̄q bcl
)
M̂(‖)⊗ γ̂q

]
ψ,

where

M̂(‖) :=


M̂↑′↑′

++(‖) M̂↑′↓′
++(‖) M̂↑′↑′

+−(‖) M̂↑′↓′
+−(‖)

M̂↓′↑′
++(‖) M̂↓′↓′

++(‖) M̂↓′↑′
+−(‖) M̂↓′↓′

+−(‖)
M̂↑′↑′
−+(‖) M̂↑′↓′

−+(‖) M̂↑′↑′
−−(‖) M̂↑′↓′

−−(‖)
M̂↓′↑′
−+(‖) M̂↓′↓′

−+(‖) M̂
′↓↑′
−−(‖) M̂↓′↓′

−−(‖)


and (

M̂s′2s′1
d2d1

(‖)
)
|k2|,|k1|

:=Ms′2s′1
d2|k2|,d1|k1|(‖), d1, d2 = ±;

• from Hb⊥ we obtain

Sb⊥ =

− 1√
2

∫
dt ψ̄

{
∑

α=cl,q

[
bα M̂(⊥) + b̄α M̂†(⊥)

]
⊗ γ̂α

}
ψ,

with analogous meaning of the symbols.

7.2 magnet action

The total action is of the form

S = Sm + S0e + Sb‖ + Sb⊥ =

= Sm +
∫

dt ψ̄
[

Ǧ−1
0 + Q̌(b̄cl, b̄q, bcl, bq)

]
ψ =

= Sm +
∫

dt ψ̄
[

Ǧ−1
0 + Q̌b⊥ + Q̌b‖

]
ψ;
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to obtain the motion law for the magnet, we have to trace over
fermions:∫ D[ψ̄ ψ]

∏s′d tr
[
ρs′d

0

] exp
{

i
∫

dt ψ̄
[

Ǧ−1
0 + Q̌(b̄cl, b̄q, bcl, bq)

]
ψ

}
=

=
1

∏s′d tr
[
ρs′d

0

] det
[
i
(

Ǧ−1
0 + Q̌(b̄cl, b̄q, bcl, bq)

)]
=

= det
[

Ǐ + Ǧ0 Q̌(b̄cl, b̄q, bcl, bq)
]
=

= etr ln[ Ǐ+Ǧ0 Q̌(b̄cl,b̄q,bcl,bq)] = ei Sm−e ,

where in the first identity the Gaussian integrals have been used and,
in the second, the fact that det

[
i Ǧ−1

0

]
= ∏s′d tr

[
ρs′d

0

]
(see [29, p. 229]).

In the semi-classical limit, we may expand the logarithm:

Sm−e = −i tr ln
[

Ǐ + Ǧ0 Q̌(b̄cl, b̄q, bcl, bq)
]
'

' −i tr
[

Ǧ0 Q̌(b̄cl, b̄q, bcl, bq)
]
+

+
i
2

tr
{[

Ǧ0 Q̌(b̄cl, b̄q, bcl, bq)
]2
}
'

' −i tr
[
Ǧ0 Q̌b⊥

]
− i tr

[
Ǧ0 Q̌b‖

]
+

i
2

tr
[
Ǧ0 Q̌b⊥ Ǧ0 Q̌b⊥

]
, (7.2)

where we took into account only terms up to the second order in
1/
√

J. In particular, the first term is the lowest order term: we have a
free electron propagator and a vertex with a single boson; the fermions
degrees of freedom are traced over and then we can represent it with
the Feynman diagram in figure 1.6a on page 4. The other two terms are
corrections (both of the same order): in particular, in the second term
we have a single fermionic line and a two-boson vertex (figure 1.6b on
page 4), while the third term is composed by two fermionic lines and
two single-boson vertices (figure 1.6c on page 4).

The Green functions matrix is given by:

Ǧ0 =


Ĝ0↑′+ 0 0 0

0 Ĝ0↓′+ 0 0

0 0 Ĝ0↑′− 0

0 0 0 Ĝ0↓′−

 ,

Ĝ0s′d =

(
ĜR

0s′d ĜK
0s′d

0 ĜA
0s′d

)
, s′ =↑′, ↓′, d = ±

where (see equations 4.17 on page 48)

• the four retarded Green functions are equal: ĜR
0↑′↓′± =: ĜR

0 , with[
ĜR

0 (t
′, t)
]
|k2||k1|

= −i δ21 θ(t′ − t) e−i εk1
(t′−t) =

= Rk1(t
′ − t) δ21

F.T.−→
(
ε− εk1 + i 0+

)−1
δ21, (7.3)
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• similarly for the advanced Green functions: ĜA
0↑′↓′± =: ĜA

0 , with

[
ĜA

0 (t
′, t)
]
|k2||k1|

= i δ21 θ(t− t′) e−i εk1
(t′−t) =

= Ak1(t
′ − t) δ21

F.T.−→
(
ε− εk1 − i 0+

)−1
δ21, (7.4)

• while for s′ =↑′, ↓′ and d = ±, the Keldysh Green functions are
given by[

ĜK
0s′d(t

′, t)
]
|k2||k1|

=

= −i δ21

[
1− 2 ns′d

F (εk1)
]

e−i εk1
(t′−t) = Ks′d

k1
(t′ − t) δ21 →

F.T.−→ −2 π i δ21

[
1− 2 ns′d

F (εk1)
]

δ(ε− εk1); (7.5)

where for simplicity we wrote δ12 instead of δ|k1||k2|.
Note that the ĜA,R

0 Green function evaluated in the scattering states
have the same simple form of the plane waves functions. Furthermore
the (θ, φ)-dependence is in theM interaction matrices.

It is useful to observe that (since Ĥ± = Ĥ and the forward-path
contribution cancels the backward one) we must have

S[b̄cl, bcl, b̄q = 0, bq = 0] = 0 (7.6)

(see equations 4.15 on page 47); in particular we have no linear terms
in bcl.
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8.1 action

The non vanishing linear terms in the b̄, b-expansion (that is up to the
order 1/

√
J) are given by (see equation 7.2 on page 66):

S1 = −i tr
[
Ǧ0 Q̌b⊥

]
=

= −i tr
[

Ǧ0

{
− 1√

2

[
bq M̂(⊥) + b̄q M̂†(⊥)

]
⊗ γ̂q

}]
=

=
i√
2

∑
s′d

tr
[
bq GK

0s′dMs′s′
dd (⊥)

]
+ h.c. =

=
1√
2

∫
dt bq ∑

|k1||k2|s′d
δ21

[
1− 2 ns′d

F (εk1)
]
·

· λ N2
√

2 J
2

t∗↓(|k2|) t↑(|k1|) s e−i φ sin θ

2
+ h.c. =

= −N2√J λ

2

∫
dt bq e−i φ sin θ·

·∑
|k|d

[
n↑
′d

F (εk)− n↓
′d

F (εk)
]

t∗↓(k) t↑(k) + h.c. =

= −C∗1
√

J
∫

dt bq e−i φ sin θ + h.c.; (8.1)

in the zero temperature and low differential potential limits:

C1 =
N2 λ m t∗↑(kF) t↓(kF)

2 kF

(
∆µL

spin + ∆µR
spin

)
.

In particular the nanomagnet action up to the first order is given by
Sm + S1.

8.2 classical limit

The classical limit is obtained from δS
δbq |bq=b̄q=0 = δS

δb̄q |bq=b̄q=0 = 0 (see
equations 4.16 on page 47):(i ∂t + γ Bz) bcl − γ

√
J B+ − C1

√
J ei φ sin θ = 0,

(−i ∂t + γ Bz) b̄cl − γ
√

J B− − C∗1
√

J e−i φ sin θ = 0.
(8.2)

69
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With the substitutions

bcl =
b+ + b−√

2
→ 2√

2
b =

J+√
J
,

b̄cl =
b̄+ + b̄−√

2
→ 2√

2
b̄ =

J−√
J
,

J = Jz + O
(

1
J

)
→ Jz,

(remember that, with the S1 action term, we are considering per-
turbation terms up to 1/

√
J order) the classical equations become:

∂t Jx = γ [~B×~J]x + Jz sin θ (=C1 cos φ +<C1 sin φ) ,

∂t Jy = γ [~B×~J]y − Jz sin θ (<C1 cos φ−=C1 sin φ) ,
(8.3a)

⇐⇒

∂t Jx = γ [~B×~J]x +<C1 [ẑ′ ×~J]x + =C1
J [~J × (ẑ′ ×~J)]x,

∂t Jy = γ [~B×~J]y +<C1 [ẑ′ ×~J]y + =C1
J [~J × (ẑ′ ×~J)]y,

(8.3b)

where, for the last passage, see figure 5.2 on page 55; the equations are
completed by the condition ~J · ∂t~J = 0 (indeed Ĵz = J up to the 1/

√
J

order), which gives rise to

∂t~J = γ ~B×~J +<C1 ẑ′ ×~J +
=C1

J
~J × (ẑ′ ×~J). (8.4)

Note that C1 depends on the product t∗↑(kF) t↓(kF). In particular, in
the Slonczewski theory [51] an electron may change its polarization
flowing through a magnetic layer: this variation constitutes the spin-
pumping effect and we must consider a spin-mixing conduction. Con-
sequently, considering the total angular momentum conservation, the
magnet must change its magnetization direction. Then our results are
in agreement for example with [5, 56, 65].1

1 Indeed observe that we are considering a single channel model; furthermore, with
our scattering potential, we have t↓↑ = i g↓↑ r↓↑, where gs := m (λ0 + s λ J/2)/|k| (see
equations 5.3b on page 54).
If for example the left reservoir produces a net flux of |↑′〉 = cos θ

2 |↑〉+ ei φ sin θ
2 |↓〉

electrons while the right reservoir is ∆µR
spin = 0, after the scatterings the transmitted

spinor is

t̂
∣∣↑′〉 = t↑ cos

θ

2
|↑〉+ t↓ ei φ sin

θ

2
|↓〉

(since t̂ is diagonal in the |↓↑〉 basis) and a σ± flux is produced:

I+ ∝ i

[
Ψ†

t σ+ dΨt
dx̄
− dΨ†

t
dx̄

σ+ Ψt

]
∝ ei φ sin θ t∗↑ t↓,

I− = I∗+

(where here ∝ indicates “proportional by means a real factor”). These fluxes must be
absorbed by the reservoirs to restore the equilibrium and, by using the conservation
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One may also observe that the classical equation includes a field-
like and a damping-like term, proportional respectively to <C1 and
=C1; in the zero temperature and low differential potential limits and
considering ∆µR

spin = 0, by using the inverse relations of 6.7 on page 62,
we may write the first order classical equation as

∂t~J = γ ~B×~J +<Cspin
1 (θ)~Ispin ×~J +<Ccharge

1 (θ)~Icharge ×~J+

+
=Cspin

1 (θ)

J
~J × (~Ispin ×~J) +

=Ccharge
1 (θ)

J
~J × (~Icharge ×~J),

where both ~Ispin and ~Icharge are directed along the spin polarization
axis ẑ′ and

C1 =
N2 λ m t∗↑(kF) t↓(kF)

2 kF

[
(Ĝ−1(θ))21 Icharge + (Ĝ−1(θ))22 Ispin

]
Ccharge

1 :=
N2 λ m t∗↑(kF) t↓(kF)

2 kF
[Ĝ−1(θ)]21,

Cspin
1 :=

N2 λ m t∗↑(kF) t↓(kF)

2 kF
[Ĝ−1(θ)]22

and Ĝ is defined in 6.7 on page 62.
Finally we may also note that in the spin transfer torque effect,

the electrons intercat with the magnet producing the variation in
the magnetization direction and reciprocally the magnet can cause
the electrons spin flipping. This situation is quite complicated with
respect to the case of a simple external magnetic field. But we can
simplify the system by considering the limit λ → 0. In this case the
the potential seen by the electrons does not depend on their spins
and t∗↑(kF) t↓(kF) = |t∗↑(kF)|2; in particular the imaginary part of C1

disappears and, for ~B = 0, the magnet classical motion is simply a
precession around the current polarization axis. This is not surprising:
in this case the magnet cannot mix the electrons channels (producing,
for example, a spin flip on an electron coming from left to right taken
from the larger spin population) and the “dissipative” damping-like
term disappears.

8.3 equation of motion

As explained in the section 4.2 on page 33, the action S describes the
complete dynamics of the system and we can go behind the classical

argument of Slonczewski, they must give us the J± rate of change . Comparing with
equation 8.2 on page 69, we find that it must actually be

C1 ∝ t∗↑ t↓.
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limit equations 4.16 on page 47. Indeed for an action linear in bq, b̄q,
of the form

S =
∫

dt
[
b̄q (i ∂t + α) bcl + β b̄q

]
+ h.c., (8.5)

(like Sm + S1), if we consider an observable Ô that, after the Keldysh
rotation, depends only on the classical field O(b̄cl, bcl), we have:

〈Ô(t)〉 =
∫

D[b̄, b]O(b̄cl(t), bcl(t)) ei S =

=
∫

D[b̄cl, bcl]O(b̄cl(t), bcl(t))·

·
∫

D[b̄q, bq] ei
∫

dt [b̄q(i ∂t+α)bcl+β b̄q+h. c.] =

=
∫

D[b̄cl, bcl]O(b̄cl(t), bcl(t))·

· δ[(i ∂t + α) bcl + β] δ[(−i ∂t + α∗) b̄cl + β∗],

(up to multiplicative terms that we can include in D[b̄, b]) that is, the
dynamics of each observable O(b̄cl(t), bcl(t)) is exactly determined by
the equations 4.16 on page 47.

In particular, b̂(t) and b̂†(t) depend only on the classical field; in-
deed, from equations 4.6 on page 34 and 4.10 on page 39:

〈b̂(t)〉 = i
δZ

δη(t)

∣∣∣∣
η=0

=

=
∫

D[b̄, b]
b+(t) + b−(t)

2
ei S =

∫
D[b̄, b]

bcl(t)√
2

ei S

(we have again included the multiplicative terms 〈b+(t0) | ρ̂0 | b−(t0)〉
and e−b̄+(t0) b+(t0) in the definition of D[b̄, b]) and analogously

〈b̂†(t)〉 =
∫

D[b̄, b]
b̄cl(t)√

2
ei S,

from which one gets equation 8.3 on page 70. Note that the footnote 6

on page 40 caveat must be considered in evaluating observables.
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We consider the quadratic corrections in b̄, b. They are suppressed
by a factor 1/

√
J with respect to the linear terms. We can consider

corrections up to quadratic terms (see the expansion 5.1 on page 53).
At this order, we have Feynman diagrams with both one and two

fermionic propagators. In particular, the one propagator term is (see
equation 7.2 on page 66):

S2−1 = −i tr
[
Ǧ0 Q̌b‖

]
,

while the two-fermionic propagator term have the form:

S2−2 =
i
2

tr
[
Ǧ0 Q̌b⊥ Ǧ0 Q̌b⊥

]
.

Before describing the calculations, in the next section we will show
what kind of corrections S2−1 and S2−2 give rise to in the equation of
motion 8.4 on page 70.

In particular we will see that they produce, among others, a term
that is quadratic in bq, which is not of the form 8.5 on the preceding
page. But to include it in our dynamics equation we will show that it
is mathematically indistinguishable from a linear action provided you
include some stochastic terms. This is not surprising from a physical
point of view, since we have shown in the section 3.2 on page 19 that,
when we trace over some degrees of freedom, a pure state can be not
distinguishable from a mixed state.

9.1 corrections to the motion equation

The term with the single fermionic propagator is of the form

S2−1 =
∫

dt B̃2−1
z (θ) b̄cl bq + h. c.; (9.1)

comparing with the equation 7.1 on page 63, we see that the contri-
bution to the equation of motion of this term can be considered as a
correction (which depends on the angle θ between the magnet and the
polarizzazion of the current) to the z-component of the external mag-
netic field. Anyway the form of the equations 8.2 on page 69 remains
unchanged. As discussed in the section 8.3 on page 71, this equation
is valid when we are in a (moving) frame of reference such that the
number of bosons is negligeable with respect to J. If we assume that
the system decoheres in a classical spin coherent state in a time that
is much shorter with respect to the magnet-dynamics typical times,

73
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we can consider also Jz = J at any time and then ~J · ∂t~J = 0. This
means that the contribution of the term 9.1 on the preceding page to
the dynamics equation is zero (since it is parallel to ~J at any time).

The two-fermionic propagator action S2−2 gives rise to two terms:
one with both classical and quantum bosonic legs Scl-q and one with
two quantum legs Sq-q.1

In particular:

Scl-q = i
∫

dt1

∫
dt2

(
b̄cl(t1) b̄q(t1)

)
·

·
(

0 DA(t1 − t2)

DR(t1 − t2) 0

)(
bcl(t2)

bq(t2),

)
(9.2)

where the D-functions depend on the electronic dynamics. From the
fermions point of view, they are the spin-spin response functions of
the Kubo formula.

In the typical situations the magnet dynamics is much slower than
the fermionic dynamics; for example, in the reference [63] the typical
flipping times for the magnet are of the order of the nanosecond, while
the typical electrons Fermi energy εF is given by some electronvolts,
that is the typical frequencies are of the order of εF/h̄ ∼ 1016 s−1. As
we will see, this mean that we can expand D in frequencies:

D(ω) ∼ D0 + ω D1;

we will consider the first order in ω in the appendix A on page 93

(even if it could be a negligible term, we will consider it, as done also
in [53], since it gives rise to a Gilbert damping term – see equation 2.3b
on page 11).

The terms =DA
0 = =DR

0 give rise to an action of the form:∫
dt B̃cl-q b̄cl bq + h.c.

and we can repeat the same considerations for the action 9.1 on the
preceding page.

The terms <DA
0 = −<DR

0 give rise to an action of the form:

i
∫

dt<DA
0 (θ) b̄cl bq + h.c.

produce a correction of the form <DR
0 Jx and <DR

0 Jy to the right side
of the first and, respectively, the second equation in 8.3 on page 70.2

1 the case with two classical bosonic legs is forbidden because of the equation 4.15 on
page 47.

2 Observe that, in our expression 9.2, DA/R
0 is an addend of −i [G−1]A/R. In particular,

the fact that <DA
0 = −<DR

0 and =DA
0 = =DR

0 guarantees that the action component
Scl-q is real.
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In particular, if ~J · ∂t~J = 0, we must have again that the term is zero.
Indeed in the moving reference frame we chose, it must be

Jz = J, Jx = Jy = ∂t Jz = 0.

Finally we consider the Sq-q component of the action; for simplicity
we consider the low temperature and differential potential limits, but
the generalization is easy. For compactness, we write

cq =

√
π m λ2 J N4

8

(
|∆µL

spin|+ |∆µR
spin|

)
e−i φ

t↑ t∗↓√
εF

bq,

then:

Sq-q = i
∫

dt
[
4 c̄q cq − sin2 θ (c̄q + cq)2] .

This term is not more linear in bq and then we cannot apply the
considerations in the section 8.3 on page 71 directly. To linearize this
term we will use the Hubbard–Stratonovich transformation (you can
compare the following calculations with the simpler case in [53]).

We have:

ei Sq-q = e−
∫

dt[4 c̄q cq−sin2 θ (c̄q+cq)2] = e
− 1

2

(
cq c̄q

)
A

c̄q

cq



where

A = 2

(
2− sin2 θ − sin2 θ

− sin2 θ 2− sin2 θ

)
⊗ It,

A = U†

[
4

(
cos2 θ 0

0 1

)
⊗ It

]
U,

U =
1√
2

(
1 1

1 −1

)
⊗ It

and It is the identity over times. Then, if we put

c1 := 2 cos θ (cq + c̄q) /
√

2,

c2 := 2 (cq − c̄q) /(i
√

2),

we obtain

ei Sq-q = e−
1
2

∫
dt(|c1|2+|c2|2) =

=
∫
D[y∗, y] e−

∫
dt |y1 |2+|y2 |2

2 e−
i
2

∫
dt(c̄1 y1+c̄2 y2+h.c.) =

=
∫
D[y∗, y] e−

∫
dt |y1 |2+|y2 |2

2 e−
i
2

∫
dt
[

4√
2
(cos θ<y1+i<y2)c̄q+h.c.

]
=

=
∫
D[I1, I2] e−

∫
dt

I2
1+I2

2
2 e−[(C

∗
2 I1+i C∗2 cos θ I2)

√
J e−i φ bq+h.c.],
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where in the second equality we used the Hubbard–Stratonovich
transformation, in the last equality we integrated over =yi putting
Ii := <yi and

C2 :=

√
π m λ2 N4

4 εF

(
|∆µL

spin|+ |∆µR
spin|

)
t∗↑ t↓.

By comparing with the 8.1 on page 69 and the Martin-Siggia-Rose
actions, we see that Sq-q introduces a correction

(− cos θ=C2 I1 +<C2 I2)
1

sin θ
ẑ′ ×~J+

+ (cos θ<C2 I1 +=C2 I2)
1

sin θ J
~J × (ẑ′ ×~J),

in the right side of equation 8.4 on page 70, where Ii are Gaussian
stochastic processes with zero mean values and

〈Ii(t1) Ij(t2)〉 = δ(t1 − t2) δij.

In the next sections we will show the calculations to obtain the
quadratic corrections to the action.

9.2 one fermionic propagator

The non-vanishing one propagator term is given by:

S2−1 = −i tr
{

Ǧ0

[
−1

2

(
b̄cl bq + b̄q bcl

)
M̂(‖)⊗ γ̂q

]}
=

=
i
2 ∑

s′d
tr
[(

b̄cl bq + b̄q bcl
)

GK
0s′dMs′s′

dd (‖)
]
=

=
i
2 ∑

s′d

∫
dt b̄cl bq tr

[
GK

0s′dMs′s′
dd (‖)

]
+ h.c. =

=
1
2

∫
dt b̄cl bq ∑

|k1||k2|s′d
δ21

[
1− 2 ns′d

F (εk1)
]
Ms′s′

d|k2|,d|k1|(‖)+

+ h.c. =

=
λ N2

4

∫
dt b̄cl bq ∑

|k|d

{[
n↑
′d

F (εk)− n↓
′d

F (εk)
]
·

·
[
|t↑(k)|2 (cos θ + 1) + |t↓(k)|2 (cos θ − 1)

]
+

−
[
1− 2 n↓

′d
F (εk)

] [
|t↑(k)|2 − |t↓(k)|2

]}
+ h.c.,

where we have used the property

M↑′↑′
|k||k|(‖) = −M

↓′↓′
|k||k|(‖)−

λ

2
N2 [|t↑(k)|2 − |t↓(k)|2] .

Then, comparing with the term 7.1 on page 63, we see that it can be
considered a correction to the z-component of the external magnetic
field. The low temperature and low differential potentials limit can be
evaluated easily.
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9.3 cl-q two fermionic propagator

The second order, two fermionic-propagator terms are:

S2−2 =

=
i
2

tr

{
Ǧ0

[
− 1√

2
∑

α2=q,cl

[
bα2 M̂(⊥) + b̄α2 M̂†(⊥)

]
⊗ γ̂α2

]
·

· Ǧ0

[
− 1√

2
∑

α1=q,cl

[
bα1 M̂(⊥) + b̄α1 M̂†(⊥)

]
⊗ γ̂α1

]}
.

Terms that do not contain at least a bq or a b̄q vanish (see e. g. 7.6 on
page 67) and it remains a cl-q term and a q-q one: S2−2 = Scl-q + Sq-q.

For the cl-q term, if we write

Ǎα :=
[
bα M̂(⊥) + b̄α M̂†(⊥)

]
⊗ γ̂α = Âα ⊗ γ̂α, α = q,cl,

we have

Scl-q =
i
4

tr
[

Ǧ0 Ǎcl Ǧ0 Ǎq + Ǧ0 Ǎq Ǧ0 Ǎcl
]
=

=
i
2

tr
[

Ǧ0 Ǎcl Ǧ0 Ǎq
]
=

=
i
2 ∑

1,2,3,4

[
ĜR

0 (1, 2) Âcl(2, 3) ĜK
0 (3, 4) Âq(4, 1)+

+ ĜK
0 (1, 2) Âcl(2, 3) ĜA

0 (3, 4) Âq(4, 1)
]
=

= i
∫

dt1

∫
dt2 ∑

ab
bcl

a (t1) Dab(t1, t2) bq
b (t2),

where e. g. 1 = (s′1, d1, |k1|, t1) and ba, bb = b, b̄; in particular:

Dab(t1, t2) =

=
1
2 ∑

s′1,d1,|k1|,
s′2,d2,|k2|,

3,4

[
ĜK

0 (2, 1) M̂a(⊥; 1, 3) GA
0 (3, 4) M̂b(⊥; 4, 2)+

+ ĜR
0 (2, 1) M̂a(⊥; 1, 3) GK

0 (3, 4) M̂b(⊥; 4, 2)
]
=

= ∑
d1,s′1,|k1|,

s′2,|k2|

S(t1 − t2)Ms′1s′2
a|k1||k2|(⊥, t1)Ms′2s′1

b|k2||k1|(⊥, t2) ∼

∼ ∑
d1,s′1,|k1|,

s′2,|k2|

S(t1 − t2)Ms′1s′2
a|k1||k2|(⊥)M

s′2s′1
b|k2||k1|(⊥);
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in the last approximation we used the fact that the fermionic dynamics
is much faster than the bosonic one3 and we have defined:

S(t1 − t2) :=
1
2

[
Ks′1
|k1|d1

(t2 − t1) A|k2|(t1 − t2) +

+ R|k1|(t2 − t1)Ks′2
|k2|d1

(t1 − t2)

]
→

F.T.−→ 1
2

∫
dt ei ω t

[
Ks′1
|k1|d1

(−t) A|k2|(t) + R|k1|(−t)Ks′2
|k2|d1

(t)
]
=

=
1
2

∫ dε

2 π

[
Ks′1
|k1|d1

(ε) A|k2|(ε + ω) + R|k1|(ε−ω)Ks′2
|k2|d1

(ε)
]
=

= i
ns′1d1

F (ε|k1|)− ns′2d1
F (ε|k2|)

ε|k1| − ε|k2| + ω− i 0+
=

= i
[
ns′1d1

F (ε|k1|)− ns′2d1
F (ε|k2|)

]
f̂ (ε|k1| − ε|k2| + ω)

where we used relations 7.3, 7.4 and 7.5 on page 67. Since [L(⊥)]2 = 0,
the terms that multiplies b b and b̄ b̄ disappear and we may adjust the
surviving terms to obtain the expression 9.2 on page 74, where:

• the term that multiplies b̄cl bq is

DA(ω) = ∑
d,s′1,|k1|,

s′2,|k2|

i
ns′1d

F (ε|k1|)− ns′2d
F (ε|k2|)

ε|k1| − ε|k2| + ω− i 0+
·

· (M†)
s′1s′2
|k1||k2|(⊥)M

s′2s′1
|k2||k1|(⊥) =

= i
λ2 J2 N4

2 ∑
d,s′1,|k1|,

s′2,|k2|

|t↑(k1) t↓(k2)|2
ns′1d

F (ε|k1|)− ns′2d
F (ε|k2|)

ε|k1| − ε|k2| + ω− i 0+
·

· (L†)s′1s′2(⊥)Ls′2s′1(⊥); (9.3)

• the term that multiplies bcl b̄q:

DR(ω) = ∑
d,s′1,|k1|,

s′2,|k2|

i
ns′1d

F (ε|k1|)− ns′2d
F (ε|k2|)

ε|k1| − ε|k2| −ω− i 0+
·

·Ms′1s′2
|k1||k2|(⊥) (M

†)
s′2s′1
|k2||k1|(⊥) =

= i
λ2 J2 N4

2 ∑
d,s′1,|k1|,

s′2,|k2|

|t↑(k1) t↓(k2)|2
ns′1d

F (ε|k1|)− ns′2d
F (ε|k2|)

ε|k1| − ε|k2| + ω + i 0+
·

· (L†)s′1s′2(⊥)Ls′2s′1(⊥) (9.4)

3 a similar approximation is made in [63], since only one electron scattering per time is
considered.
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We may now assume that ε� ω, where ε are the typical electrons
energies:4

S(ω) = i
[
ns′1d1

F (ε|k1|)− ns′2d1
F (ε|k2|)

]
f̂ (ε|k1| − ε|k2| + ω) ∼

∼ i
[
ns′1d1

F (ε|k1|)− ns′2d1
F (ε|k2|)

]
·

·
[

f̂ (ε|k1| − ε|k2|) + ω f̂ ′(ε|k1| − ε|k2|)
]

F.T.←−

← i
[
ns′1d1

F (ε|k1|)− ns′2d1
F (ε|k2|)

]
·

·
[
δ(t1 − t2) f̂ (ε|k1| − ε|k2|) + i δ′(t1 − t2) f̂ ′(ε|k1| − ε|k2|)

]
=

= S0 + S1, (9.5)

where S1 is the term that contain the first order Dirac delta derivative.
We concentrate here on the term S0. The suppressed term S1 is

considered in the appendix A on page 93. By using the formula of
Sokhotski–Plemelj, it gives rise to:

D0
ab(t1 − t2) =

= i ∑
d1,s′1,s′2

∫ ∞

0
d|k1|

∫ ∞

0
d|k2|

[
ns′1d1

F (ε|k1|)− ns′2d1
F (ε|k2|)

]
·

· δ(t1 − t2)

[
i π δ(ε|k1| − ε|k2|) + P

1
ε|k1| − ε|k2|

]
·

·Ms′1s′2
a|k1||k2|(⊥)M

s′2s′1
b|k2||k1|(⊥).

The non vanishing terms are:

• the term DA
0 that multiplies b̄cl bq, with:

<DA
0 (t1 − t2) = −π δ(t1 − t2)·

· ∑
d,s′1,s′2

∫ ∞

0
dε
[
ns′1d

F (ε)− ns′2d
F (ε)

]
·

· m
2 ε

(
M†

)s′1s′2

|kε||kε|
(⊥)Ms′2s′1

|kε||kε|(⊥) =

= −δ(t1 − t2)
π λ2 J N4 m

4
cos θ·

·∑
d

∫ ∞

0
dε
[
n↑
′d

F (ε)− n↓
′d

F (ε)
] |t↑(k) t↓(k)|2

ε

4 In particular, for sufficiently small values of ω, we have that the the contribution to
S(ω) is non negligeable only for ε|k1| ∼ ε|k2|; but in that case, for temperatures and

differential potentials sufficiently small, ns′1d1
F (ε|k1|)− ns′2d1

F (ε|k2|) is non zero only for
ε|k1| ∼ ε|k2| ∼ εF. So we have to assume εF � ω.
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and in the low temperature and low differential potentials limit:

<DA
0 (t1 − t2) = −δ(t1 − t2)

π λ2 J N4 m
4

cos θ·

· |t↑ t↓|2
εF

[
∆µL

spin + ∆µR
spin

]
,

where t↑↓ are evaluated at the Fermi wavenumber. In the same
way, the principal value of the integral gives rise to:

=DA
0 (t1 − t2) = δ(t1 − t2)

λ2 J N4 m
8 ∑

d

∫ ∞

0

dε1√
ε1

∫ ∞

0

dε2√
ε2
·

·
{

n↑
′d

F (ε1) + n↓
′d

F (ε1) +
[
n↑
′d

F (ε1)− n↓
′d

F (ε1)
]

cos θ+

− n↑
′d

F (ε2)− n↓
′d

F (ε2) +
[
n↑
′d

F (ε2)− n↓
′d

F (ε2)
]

cos θ

}
·

· |t↑(k1) t↓(k2)|2 P
1

ε1 − ε2
;

in the low temperature limit, we may integrate analytically. For
example:∫ µ̄

0

dε1√
ε1
|t↑(k1)|2

∫ ∞

0

dε2√
ε2
|t↓(k2)|2 P

1
ε1 − ε2

=

=
∫ µ̄

0

dε1√
ε1
|t↑(k1)|2·

· P
√ε1 log|

√
ε2+
√

ε1√
ε2−
√

ε1
| − 2 g↓ arctan

√
ε2

g↓

ε1 + g2
↓

∞

ε2=0

=

= −
∫ µ̄

0

dε1√
ε1
|t↑(k1)|2

g↓ π

ε1 + g2
↓
=

= 2 g↓ π
g↑ arctan

√
µ̄

g↑
− g↓ arctan

√
µ̄

g↓

g2
↓ − g2

↑
,

where g↑↓ =
√

m (λ0 ± λ J/2)/
√

2. Collecting all terms together,
in the low differential potentials limit:

=DA
0 (t1 − t2) = δ(t1 − t2)

λ2 J N4 m π

8
·

·
{

4
g↑ arctan

(√
εF

g↑

)
− g↓ arctan

(√
εF

g↓

)
g↓ − g↑

+ ∑
d

[√εF (g↑ − g↓) (µ↑
′d − µ↓

′d) cos θ(
g2
↓ + εF

) (
g2
↑ + εF

) +

+

√
εF (g↑ + g↓)(2 εF − µ↑

′d − µ↓
′d)(

g2
↓ + εF

) (
g2
↑ + εF

) ]}
;
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• similarly for the term DR
0 that multiplies bcl b̄q, we have:

<DR
0 = −<DA

0 , =DR
0 = =DA

0 .

9.4 q-q two fermionic propagator

Reproducing the passages analogous to the previous case, we get

Sq-q =
i
4

tr
[
Ǧ0 Ǎq Ǧ0 Ǎq] =

= i
∫

dt1

∫
dt2 ∑

ab
bq

a (t1) Dab(t1 − t2) bq
b (t2)

where

Dab(t1 − t2) = ∑
d,s′1,s′2
|k1|,|k2|

S(t1 − t2)Ms′1s′2
a|k1||k2|(⊥)M

s′2s′1
b|k2||k1|(⊥)

and

S(t) :=
1
4

[
Ks′1d
|k1|(−t)Ks′2d

|k2|(t) + R|k1|(−t) A|k2|(t) + A|k1|(−t) R|k2|(t)
]
=

=
1
4

{
Ks′1d
|k1|(−t)Ks′2d

|k2|(t)+

−
[
R|k1|(−t)− A|k1|(−t)

] [
R|k2|(t)− A|k2|(t)

]}
=

=
1
4

Ks′1d
|k1|(−t)Ks′2d

|k2|(t)−
Ks′1d
|k1|(−t)

1− 2 ns′1d
F (ε|k1|)

Ks′2d
|k2|(t)

1− 2 ns′2d
F (ε|k2|)


F.T.−→ 1

4

∫ dε

2 π

[
Ks′1d
|k1|(ε)Ks′2d

|k2|(ε + ω)+

−
Ks′1d
|k1|(ε)

1− 2 ns′1d
F (ε|k1|)

Ks′2d
|k2|(ε + ω)

1− 2 ns′2d
F (ε|k2|)

]
=

=
π

2
δ(ε|k1| − ε|k2| + ω)·

·
{

1−
[
1− 2 ns′1d

F (ε|k1|)
] [

1− 2 ns′2d
F (ε|k2|)

]}
.

We may simplify the expression by observing that:

1− 2 nµ
F(ε) = tanh

β (ε− µ)

2
,

1− tanh x tanh y = coth(x− y) [tanh x− tanh y] ,

from which

S(ω) = π δ(ε|k1| − ε|k2| + ω)·

· coth
β (µs′1d − µs′2d + ω)

2

[
ns′1d

F (ε|k1|)− ns′2d
F (ε|k2|)

]
;

in particular, Sq-q is given by the sum of three terms:
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• a term i
∫

dt1
∫

dt2 bq(t1) D̃+(t1 − t2) bq(t2), where:

D̃+(ω) = π
λ2 J N4

2
∑

d,s′1,|k1|,
s′2,|k2|

t∗↓(k1) t∗↓(k2) t↑(k1) t↑(k2) δ(ε|k1| − ε|k2| + ω)·

· coth
β (µs′1d − µs′2d + ω)

2
·

·
[
ns′1d

F (ε|k1|)− ns′2d
F (ε|k2|)

]
Ls′1s′2 Ls′2s′1 ;

• a term i
∫

dt1
∫

dt2 b̄q(t1) D̃−(t1 − t2) b̄q(t2), where D̃−(ω) is the
complex conjugate of D̃−(ω):

D̃−(ω) = D̃∗+(ω)

• a term i
∫

dt1
∫

dt2 b̄q(t1) DK(t1 − t2) bq(t2), where:

DK(ω) = π
λ2 J N4

2 ∑
d,s′1,|k1|,

s′2,|k2|

[
ns′1d

F (ε|k1|)− ns′2d
F (ε|k2|)

]
·

·
[
coth

β (µs′1d − µs′2d + ω)

2
δ(ε|k1| − ε|k2| + ω)·

· |t↑(k1) t↓(k2)|2 (L†)s′1s′2 Ls′2s′1+

+ coth
β (µs′1d − µs′2d −ω)

2
δ(ε|k1| − ε|k2| −ω)·

· |t↓(k1) t↑(k2)|2 Ls′1s′2 (L†)s′2s′1
]
.

If we consider the equilibrium limit, that is µs′d = εF, since L2(⊥) = 0
and tr[L† L] = 1, we have (see 9.3 and 9.4 on page 78):

D̃eq
± (ω) = 0,

DA
eq(ω) = i

λ2 J2 N4

2 ∑
d,|k1|,|k2|

|t↑(k1) t↓(k2)|2
nF(ε|k1|)− nF(ε|k2|)

ε|k1| − ε|k2| + ω− i 0+

DR
eq(ω) = i

λ2 J2 N4

2 ∑
d,|k1|,|k2|

|t↑(k1) t↓(k2)|2
nF(ε|k1|)− nF(ε|k2|)

ε|k1| − ε|k2| + ω + i 0+

and

DK
eq(ω) = π λ2 J N4 coth

β ω

2
·

· ∑
d,|k1|,|k2|

|t↑(k1) t↓(k2)|2
[
nF(ε|k1|)− nF(ε|k2|)

]
δ(ε|k1|− ε|k2|+ω)

from which we obtain the fluctuation-dissipation theorem:

DK
eq(ω) = coth

β ω

2

[
DR

eq(ω)− DA
eq(ω)

]
.
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Far from equilibrium instead, that is in the limit ω → 0, we have:

S(t1 − t2) =
π

2
δ(t1 − t2) δ(ε|k1| − ε|k2|)·

·
{

1−
[
1− 2 ns′1d

F (ε|k1|)
] [

1− 2 ns′2d
F (ε|k2|)

]}
and then for Dab we have

• the term proportional to bq bq:

D̃+(t1 − t2) = δ(t1 − t2) ∑
d,s′1,s′2
|k1|,|k2|

π

2
δ(ε|k1| − ε|k2|)·

·
{

1−
[
1− 2 ns′1d

F (ε|k1|)
] [

1− 2 ns′2d
F (ε|k2|)

]}
·

·Ms′1s′2
|k1||k2|(⊥)M

s′2s′1
|k2||k1|(⊥) =

= −δ(t1 − t2)
π m λ2 J N4

8
e−2 i φ sin2 θ·

·∑
d

∫ ∞

0

dε

ε

[
t∗↓(k) t↑(k)

]2 [
n↑
′d

F (ε)− n↓
′d

F (ε)
]2

and in the low temperature and differential potentials limit

[
n↑
′d

F (ε)− n↓
′d

F (ε)
]2

=

=
[
n↑
′d

F (ε)− n↓
′d

F (ε)
]

sign(µ↑
′d − µ↓

′d) ∼
∼ δ(ε− εF)|µ↑

′d − µ↓
′d|;

• the term proportional to b̄q b̄q, that is D̃−(t1 − t2) = D̃∗+(t1 − t2);

• the term proportional to b̄q bq:

DK(t1 − t2) = 2 δ(t1 − t2) ∑
d,s′1,s′2
|k1|,|k2|

π

2
δ(ε|k1| − ε|k2|)·

·
{

1−
[
1− 2 ns′1d

F (ε|k1|)
] [

1− 2 ns′2d
F (ε|k2|)

]}
·

·
(
M†

)s′1s′2

|k1||k2|
(⊥)Ms′2s′1

|k2||k1|(⊥) =

= δ(t1 − t2)
π m λ2 J N4

8
·

·∑
d

∫ ∞

0

dε

ε
|t↓(k) t↑(k)|2

{[
n↑
′d

F (ε)− n↓
′d

F (ε)
]2
·

·
(
−2 sin2 θ

)
+ 4

[
n↑
′d

F (ε) + n↓
′d

F (ε)− 2 n↑
′d

F (ε) n↓
′d

F (ε)
]}
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and in the low temperature and differential potentials limit,

where
(

ns′d
F

)2
= ns′d

F :

[
n↑
′d

F (ε)− n↓
′d

F (ε)
]2 (
−2 sin2 θ

)
+

+ 4
[
n↑
′d

F (ε) + n↓
′d

F (ε)− 2 n↑
′d

F (ε) n↓
′d

F (ε)
]
=

= 2
[
n↑
′d

F (ε)− n↓
′d

F (ε)
]2 (

2− sin2 θ
)
=

= 2 |µ↑′d − µ↓
′d|
(
2− sin2 θ

)
δ(ε− εF).

9.5 comparison with brown thermal noise

Consider for simplicity the case ~B = 0 and ∆µR = 0. In particular, if
we assume that the magnetization of the left layer in figure 5.3 on
page 56 interacts significantly with the nano-magnet only by means
of the interaction mediated by the polarized current and we assume
that we have thermal fluctuations that change the magnitude and the
direction of the left layer, we simply have to operate the substitution

ẑ′ → ẑ′ +~h(t)

in the dynamics equation 1.7 on page 6, where~h(t) is a Brown stochas-
tic term. As discussed in [62], the quantum noise must be dominant
with respect to the Brown fluctuations at the low temperature; in a real-
istic case the two kind of fluctuations are comparable at a temperature
of some Kelvin degrees.

9.6 numerical example

We consider the numerical example proposed in [63]. It is convenient to
use the SI units. In this example the external magnetic field ~B and the
temperature are relevant only for the initial state but, following [63],
they can be neglected in the dynamical equations. Furthermore it is
considered only a polarized current coming from left to right and we
can put: ∆µR

spin = 0 and ∆µL
spin =: ∆µspin. It is also convenient to write

the equation 1.7 on page 6 in the form

∂t ~M =

(
<C1 +

− cos θ=C2 I1 +<C2 I2

|C2| sin θ

)
ẑ′ × ~M+

+

(=C1

M
+

cos θ<C2 I1 +=C2 I2

|C2| sin θ M

)
~M× (ẑ′ × ~M) (9.6)

where ~M = |γ| h̄~J is the magnetization (γ ' e/m is the electron
gyromagnetic ratio),

〈Ii(t1) Ij(t2)〉 = |C2|2 δij δ(t1 − t2)
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Element Value Unit

t↑(kF) 0.067− 0.251 i

t↓(kF) 0.924− 0.265 i

∆µspin 9.990 · 10−29/tn J

C1 (3.312 + 5.509 i)/tn s−1

C2 (0.009 + 0.014 i)/
√

tn s−1/2

B 0.05 T
~B direction (θ, φ) = (2.8, 1.0) rad

T 1 K

Table 9.1: To reproduce the simulation in [63], we consider λ0 = 3.36 ·
10−28J m, λ = 5.76 · 10−32J m, J = 104 and kF = 13.6 nm−1; fur-
thermore ∆µspin = 2 π 1.5 · 105 h̄/tn.

and

C1 =
∆µspin λ m t↓(kF) t∗↑(kF)

4 π h̄3 kF
,

C2 = t↓(kF) t∗↑(kF)

√
∆µspin λ2 m

π 16 εF h̄3 .

In [63] it is assumed that ne = 1.5 · 105 electrons are coming from left
to right with spin up (and then are partially transmitted and partially
reflected by the magnet) in a time tn. In particular, comparing with
equation 6.3 on page 60, we must have

∆µspin =
2 π ne h̄

tn
.

The other values are described in the table 9.1. The initial state is
given by

P(ẑ, t = 0) = C e−β E = C eβ ~M·~B = C eβ |γ| h̄ J ẑ·~B

where ẑ is the ~J direction, E is the magnetic energy and C is the
normalization constant:

C−1 =
∫ 2 π

0
dφ

∫ π

0
dθ sin θ eβ |γ| h̄ J B cos θ =

=
4 π sinh(β B |γ| h̄ J)

β B |γ| h̄ J
;

the temperature and the magnetic field chosen in [63] are reported



86 quadratic corrections in b

(a) The initial probability distribution. (b) The distribution for t = 0.3 · tn.

(c) The distribution for t = 0.5 · tn. (d) The distribution for t = tn.

Figure 9.1: The probability distribution for (θ, φ) in radians.

in the table 9.1 on the previous page. In particular, the figure 9.1a
represents the initial distribution probability for (θ, φ):

p0(θ, φ) = p(θ, φ; t = 0) = P(ẑ, t = 0) sin θ.

Comparing C1 and C2
2 , we see that we may neglect the quantum

corrections at a first time. For C2 = 0, choosing the θ = 0 axis parallel
to the current polarization, the equation 9.6 on page 84 gives us

sin[θ(t)]
{
=C1 cos[θ(t)] sin[φ(t)]−<C1 cos[φ(t)]+

+φ′(t) cos[φ(t)]
}
+ θ′(t) cos(θ(t)) sin(φ(t)) = 0,

sin[θ(t)]
{
=C1 sin[θ(t)] + θ′(t)

}
= 0

from which we have the solution:θS(t, θ0) = θ(t) = 2 cot−1
[
cot
(

θ0
2

)
e=C1 t

]
,

φS(t, φ0) = φ(t) = <C1 t + φ0,

where θ0 and φ0 are the angles for t = 0. Observe that θ(t) is a
decreasing function that, for t → +∞, goes to 0 (this represents the
damping effect).

In particular, we can evaluate the time evolution for p(θ, φ) simply
by considering the evolution of each trajectory:

p(θ, φ; t) = p0[θS(−t, θ), φS(−t, φ)]

∣∣∣∣∂[θS(−t, θ), φS(−t, φ)]

∂(θ, φ)

∣∣∣∣,
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(a) Mean value. (b) Fluctuation.

Figure 9.2: Mean value and fluctuation of ~J/J during the time interval [0, tn].

where |∂(θS, φS)/∂(θ, φ)| is the absolute value of the Jacobian deter-
minant. p(θ, φ; t) is depicted in the figures 9.1 on the facing page for
different values of time; the mean value and the fluctuation of ~J are
depicted in the figures 9.2. As expected (comparing the order magni-
tude of C2

2 and C1), these figures are similar to the figures in [63]. Only
the probability density depicted in 9.1d on the facing page shows a
smaller fluctuation with respect to the Wang and Sham corresponding
figure (in any case, observe that this figure is much more zoomed with
respect to the other three along θ). This is not surprising: for large t
the damping produces a fluctuation decrease (all trajectories converge
to θ = 0) and then the quantum noise becomes relevant.

9.6.1 Quantum corrections

In the same way we can consider also the quantum corrections. By
using the equation 2.10 on page 14, it is also possible to obtain the
corresponding Fokker-Planck equation.

Because of the damping effect, it is interesting to consider the small
θ limit. From 9.6 on page 84 we get:

θ′(t) = −=C1 sin θ − I1(t)<C2 cos θ + I2(t)=C2

|C2|
'

' −=C1 θ − I1(t)<C2 + I2(t)=C2

|C2|
; (9.7)

the last term is a linear combination of Gaussian stochastic processes
and then

I(t) := − I1(t)<C2 + I2(t)=C2

|C2|
(9.8)

is a Gaussian stochastic process with

〈I(t)〉 = 0, 〈I(t1) I(t2)〉 = |C2|2 δ(t1 − t2). (9.9)
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In particular, equation 9.7 on the previous page reduces to the Orn-
stein–Uhlenbeck process. The corresponding Fokker-Plank equation
is:

∂t p(θ, t) = =C1 ∂θ [θ p(θ, t)] +
|C2|2

2
∂2

θ p(θ, t), (9.10)

whose stationary solution is a Gaussian distribution with zero mean
value and |C|2/(2=C1) variance (' 5 · 10−5, in our numerical example;
this means that the standard deviation is of the order of ' 1/100
radians, that is consistent with the difference between the figure 9.1d
on page 86 and the numerical solution in [63]):

p∞(θ) =

√
=C1

π |C|2 e−=C1 θ2/|C2|2 .
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P O S S I B L E M O D E L E X T E N S I O N S

In conclusion we considered a relatively simple model that allowed
us to describe the quantum noise in the spin transfer torque effect.
We used the Keldysh technique, that lends itself particularly well to
various kinds of generalizations.

Furthermore, as noted in [62], “the development of quantum optics
after the laser operation was understood by semiclassical theory pro-
vides perhaps an optimistic historical guide for the development of
coherent magnetization dynamics after the successes of the semiclassi-
cal STT theory”.

Then, as possible further applications, we can consider some quan-
tum optics setups and try to find a correlation in the spintronics field.
An example could be the setup proposed in the reference [36] and
depicted in figure 10.1. Here a strong ŷ-polarization laser beam goes
trough two atomic ensembles placed in a magnetic field ~B along x̂. By
tracing over the light degrees of freedom and using the master equa-
tion, in [36] it is shown that the steady-state is entangled. That could
inspire a similar setup for the spintronics model that we considered,
in which two nano-magnets are coupled by a polarized equation.

More in general, the model that we have considered is interesting
because it could be a step in a cross-fertilization framework between
the open quantum physics and the spintronics. Indeed, in recent years,
the techniques typically used in the open quantum physics – such
as the master equation – and those typically used in the solid state

Ix

Iy
Iz

Ic)

R

B
B

Figure 10.1: In this figure, taken from the reference [36], a laser beam couples
two atomic ensembles.

89
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physics – such as the Keldysh approach – came into contact, producing
some interesting results and showing a strong correlation between
them [35, 49].
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A
G I L B E RT D A M P I N G T E R M

In this appendix we consider the first order term in ω in the expan-
sion 9.5 on page 79 and the corrections produced by this term in the
magnet dynamics equation.

a.1 action S1

In the same way followed for the calculation of D0 in section 9.3 on
page 77, we may proceed for D1:

D1
ab(t) = δ′(t)

m
2 ∑

d1,s′1,s′2

∫ ∞

0

dε1√
ε1

∫ ∞

0

dε2√
ε2

[
ns′1d1

F (ε1)− ns′2d1
F (ε2)

]
·

·Ms′1s′2
a|k1||k2|(⊥)M

s′2s′1
b|k2||k1|(⊥)

1

(ε1 − ε2 − i 0+)2

and the non vanishing terms are:

• the term that multiplies b̄cl bq is:

DA
1 (t) = δ′(t)

λ2 J N4 m
8 ∑

d

∫ ∞

0

dε1√
ε1

∫ ∞

0

dε2√
ε2
·

·
{

n↑
′d

F (ε1) + n↓
′d

F (ε1) +
[
n↑
′d

F (ε1)− n↓
′d

F (ε1)
]

cos θ+

− n↑
′d

F (ε2)− n↓
′d

F (ε2) +
[
n↑
′d

F (ε2)− n↓
′d

F (ε2)
]

cos θ

}
·

· |t↑(k1) t↓(k2)|2
1

(ε1 − ε2 − i 0+)2 ;

then in the low temperature limit, we have terms, for example,
of the form∫ µ̄

0

dε1√
ε1
|t↑(k1)|2

∫ ∞

0

dε2√
ε2
|t↓(k2)|2

1

(ε1 − ε2 − i 0+)2 =

=
∫ µ̄

0

dε1√
ε1
|t↑(k1)|2

∫ ∞

0

dε2√
ε2
|t↓(k2)|2 ∂ε2

1
ε1 − ε2 − i 0+

=

= −
∫ µ̄

0

dε1√
ε1
|t↑(k1)|2·

·
∫ ∞

0
dε2

[
i π δ(ε1 − ε2) + P

1
ε1 − ε2

]
∂ε2

|t↓(k2)|2√
ε2

,
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where the Sokhotski–Plemelj formula has been used; the imagi-
nary part of the integral gives

− π
∫ µ̄

0
dε
|t↑(k)|2√

ε
∂ε
|t↓(k)|2√

ε
=

= −π

[
µ̄(

µ̄ + g2
↓
) (

g2
↑ − g2

↓
)+

+

(
g2
↑ + g2

↓
)(

log
µ̄+g2

↑
g2
↑
− log

µ̄+g2
↓

g2
↓

)
2
(

g2
↑ − g2

↓
)2

]

while the real one:

−
∫ µ̄

0

dε1√
ε1
|t↑(k1)|2

1(
g2
↓ + ε1

)2 ·

· P
[
(g2
↓ − ε1) log

∣∣∣√ε1+
√

ε2√
ε1−
√

ε2

∣∣∣
2
√

ε1
+

+

√
ε2

(
g2
↓ + ε1

)
g2
↓ + ε2

+ 2 g↓ arctan
√

ε2

g↓

]∞

ε2=0

=

= −
∫ µ̄

0

dε1√
ε1
|t↑(k1)|2

π g↓(
g2
↓ + ε1

)2 =

= −π g↓

[ √
µ̄(

g2
↓ − g2

↑
) (

g2
↓ + µ̄

)+
+

(
g2
↓ + g2

↑
)

arctan
(√

µ̄
g↓

)
g↓
(

g2
↓ − g2

↑
)2 −

2 g↑ arctan
(√

µ̄
g↑

)
(

g2
↑ − g2

↓
)2

]
.

At the end, in the low differential potentials limit, we obtain:

=DA
1 (t) = −δ′(t)

λ2 J N4 m π

8
1(

εF + g2
↑
)2 (

εF + g2
↓
)2 ·

·∑
d

[
4 ε3

F + ε2
F

(
2 g2
↑ + 2 g2

↓ − µ↑
′d − µ↓

′d
)
+

− εF cos θ
(

g2
↑ − g2

↓
)
(µ↑

′d − µ↓
′d) + g2

↑ g2
↓ (µ

↑′d + µ↓
′d)

]
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and

<DA
1 (t) = −δ′(t)

λ2 J N4 m π

8
1

(g↓ − g↑)2 ·

·∑
d

{ √
εF (g↓ − g↑)(

εF + g2
↓
)2 (

εF + g2
↑
)2

[
2 ε3

F + 6 ε2
F g↓ g↑+

−
(

g2
↓ − g2

↑
)

cos θ
(

µ↓
′d − µ↑

′d
)
(εF + g↓ g↑)+

+ εF

(
4 g3
↓ g↑ + g2

↓
(
−2 g2

↑ + µ↓
′d + µ↑

′d
)
+ 4 g↓ g3

↑+

− 2 g↓ g↑
(

µ↓
′d + µ↑

′d
)
+ g2

↑
(

µ↓
′d + µ↑

′d
))

+

+ g↓ g↑

(
g2
↓
(

2 g2
↑ − µ↓

′d − µ↑
′d
)
+ 2 g↓ g↑

(
µ↓
′d + µ↑

′d
)
+

− g2
↑
(

µ↓
′d + µ↑

′d
))]

+ 2 arctan
√

εF

g↓
− 2 arctan

√
εF

g↑

}
;

• similarly for the term DR
1 that multiplies bcl b̄q:

<DR
1 = <DA

1 , =DR
1 = −=DA

1 .

a.2 S1
corrections in the dynamics equation

Finally we may write the action as:

S1 = i
∫

dt1

∫
dt2

(
b̄cl(t1) b̄q(t1)

)
·

·
(

0 DA
1 (t1 − t2)

DR
1 (t1 − t2) 0

)(
bcl(t2)

bq(t2)

)
=

=
∫

dt
(

b̄cl(t) b̄q(t)
)( 0 −α∗ ∂t

α ∂t 0

)(
bcl(t)

bq(t)

)
=

= α
∫

dt b̄q ∂tbcl + h.c.

and it is easy to check that it gives rise to a correction in the right side
of the dynamics equation 8.4 on page 70 of the form:

−<α

J
~J × ∂t~J +=α ∂t~J,

that is, a damping term plus a time re-scaling for the nano-magnet
dynamics.
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