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Louco, sim, louco, porque quiz grandeza

Qual a Sorte a não dá.

Fernando Pessoa, D. Sebastião Rei de Portugal, in Mensagem

They all talked at once, their voices insistent and contradictory and

impatient, making of unreality a possibility, then a probability, then

an incontrovertible fact, as people will when their desires become words.

William Faulkner, in The Sound and the Fury
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Chapter 1

Introduction

It is a truth universally acknowledged, that the Standard Model (SM) must be considered one of the

greatest achievements of modern science. If the discovery of the Z and W bosons in 1983 at CERN [1–4],

had firmally cemented the status of gauge theories among competitor formalisms, the observation of the

Higgs boson in 2012, by ATLAS and CMS at the LHC [5, 6], was the triumphant closing statement to a

story that had began to be told a long time ago, and in which a succession of characters had played their

parts with determination and flair. But aren’t there any more stories to tell? Is the SM the final story

to be written? Most certainly not. Almost as famous as its ability to meet experimental results, and its

prowess in predicting them as well, are now all the shortcomings of the SM, of which the following shine

brighter: it fails to include gravity; there is no viable dark matter candidate in the SM; it cannot generate

the matter-antimatter asymmetry in the universe; it cannot explain the pattern of fermion masses and

mixing, in particular the SM keeps neutrinos massless, and when it adds mass terms it is not able to

explain their verified smallness; the SM appears to demand the fine tuning of some quantities, in both

the hierarchy and strong CP problems.

Many of the aforementioned shortcomings of the SM can be addressed introducing new particles at

the TeV scale. It only takes the direct discovery of those extra particles – whether it be the axion, or

a superpartner, or a heavy neutrino – to point to the exact solution of the problem. There is, however,

another way to point to physics beyond the SM: indirect evidence induced by virtual effects of new heavy

particles beyond the discovery reach of the present experiments. A mismatch between the prediction of

an observable and the measurement of that observable is an indirect signal of New Physics (NP), a clear

indication that the SM does not, in fact, explain that phenomenon; and although it may not provide the

exact source of the mismatch, it can nevertheless hint at the shape of physics to come. Moreover, given

the lack of detection of any supersymmetric particle, any weakly interacting massive particle, or any new

particle for that matter, indirect evidence seems more and more likely to be the first to arrive.

We are, thus, advancing further into the precision era of particle physics. In order to properly compare

results, and because deviations are not expected to be large, theory and experiment must aim at putting

out the most precise number possible. That, for sure, has been the case of flavour physics, where,

indeed, the tremendous progress of the experimental facilities has probed the flavour of the SM to an
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exquisite level of precision [7], and there has been a substantial effort on the part of the theoretical

community to go well beyond leading order computations [8]. Among all precision tests, radiative and

(semi)leptonic ∆B = 1 processes, related at the partonic level to b→ sγ, s`` transitions, appear as one of

the frontrunners in probing the SM and its NP possible extensions [9, 10]. First, because these are rare

B meson decays, mediated by flavour changing neutral currents (FCNCs), which, as a consequence of the

Glashow-Iliopoulos-Maiani mechanism [11], arise in the SM only at the loop level. This allows significant

room for sizeable contributions to this type of process from heavy new degrees of freedom. Furthermore,

an exclusive mode such as B → K∗`` permits a detailed analysis of the angular distribution of the four

final state particles, yielding rich experimental information that ranges from the full kinematic coverage

of the dilepton invariant mass [12], to – starting from Ref. [13] – experimental correlations among the

angular observables.

And it does look as if the tree is beginning to bear fruit. Recent years in B physics have witnessed

the emergence of a conspicuous pattern of flavour anomalies, arriving from multiple independent sources

of data on these rare b → s transitions. Of singular importance are: the measurement of the angular

observable denoted as P ′5 [14–17], the measurement of the ratio of branching fractions [18]:

RK ≡
BR(B+ → K+µ+µ−)

BR(B+ → K+e+e−)
, (1.1)

and, piling on top of the previous two, the recent measurement of another ratio [19]:

RK∗ ≡
BR(B → K∗µ+µ−)

BR(B → K∗e+e−)
. (1.2)

First realized by the LHCb collaboration [20, 21] and later on by the Belle collaboration as well [22],

the experimental analysis of P ′5 in the large recoil region of the decay points to a deviation of about

3σ with respect to the SM prediction presented in Ref. [23]. However, there is the possibility that the

theory suffers from hadronic uncertainties whose very estimation may currently be out of reach [24–27].

This assertion has, in fact, been the fuel of a debate in the theoretical community over the size of QCD

power corrections to the amplitude of this process, beyond the infinite mass limit [28–31]. Extending this

stalemate regarding the “P ′5 anomaly”, two new independent measurements of this angular observable

have been recently released by ATLAS [32] and CMS [33], showing, respectively, an appreciable increase

and a reduction of the tension between data and the prediction of Ref. [23].

Already in 2014, the LHCb collaboration presented for the first time the measurement of RK , in a

dilepton mass (henceforth q2) range going from 1 to 6 GeV2:

RK[1,6]
= 0.745+0.090

−0.074 ± 0.036. (1.3)

This experimental value represents a deviation of about 2.6σ with respect to the SM prediction, which

in the bin provided by LHCb is expected to be equal to 1 beyond the percent level of accuracy [34, 35].

Additionally, and unlike observables such as P ′5, one must note that RK may be, in general, regarded as

insensitive to QCD effects [34]. On a similar footing, the measurement of the ratio of branching fractions

in the K∗ channel was done in two regions of q2, the results being:

RK∗[0.045,1.1] = 0.660+0.110
−0.070 ± 0.024, (1.4)

RK∗[1.1,6] = 0.685+0.113
−0.069 ± 0.047. (1.5)
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Given the expected SM prediction is, to a very good accuracy, again equal to 1 in the central-q2 bin, and

close to 0.9 in the low-q2 one, this indicates once more a discrepancy of about 2σ between theory and

experiment.

Other smaller tensions have been around, concerning the measurement of differential branching frac-

tions of B → Kµµ [36, 37] and Bs → φµµ [38]. It is worth noting that, while for the latter mode an

explanation in terms of hadronic physics may be easily conceivable, the theoretical computation of the

former seems to be better under control [39]. Still, all these are suggestions enough that, in order to

assess the true impact of the anomalies in the pull away from the SM, and to quantify the actual size

of the combined deviations, global fits to data are in order. Indeed, several global analyses have already

been produced, and they hint at a correlation of RK with the P ′5 anomaly [9, 40–44], which has triggered

different proposals of measurements of lepton flavour universality violation (LFUV) in the angular ana-

lysis of the K∗`` channel [45, 46]. The idea of NP in LFUV currents has been further lead on by the new

RK∗ result. An analysis by the Belle collaboration, which, aiming at separating the leptonic flavours in

B → K∗`` [47], showed a deviation in the dimuon leptonic final state consistent with ∼ 2.6σ deviation

reported in Ref. [23], has also contributed to the excitement that is felt nowadays in this field. In this

thesis, we develop and make use of the publicly available package HEFfit[48] to perform a global fit to

possible shifts in SM currents due to NP contributions, taking into account state-of-the-art theoretical

predictions and experimental information, including the LHCb measurements of RK and, for the first

time ever, R∗K .

Global analyses are such a powerful tool, that when all the machinery is at hand it is quite natural

that one will apply it to many different scenarios. For a more “bottom-up” approach, one can perform

a global fit to an actual realization of physics beyond the SM, constraining not the generic shape of

what NP may be, but rather the feasibility of the model itself. One of the simplest extensions to the

SM is the two Higgs doublet model (2HDM) [49, 50]. Barring the sheer simplicity of adding a second

Higgs doublet to the theory, motivations to the 2HDM include: Gell Mann’s Totalitarian Principle,

which states that “Everything not forbidden is compulsory.” [51] – if the scalar sector is enlarged with a

particle whose quantum numbers do not break any of the symmetries of nature, the study of such a model

must be a worthwhile endeavour; perhaps the best known and most recited motivation is the fact that

supersymmetry contains two Higgs doublets, thus making the 2HDM, if not for anything else, significant

by proxy; the augmented parameter space that comes with a second scalar is another strong selling point

for this model, due to all the possible new phenomena it allows. However, as any other extension of

the SM, the 2HDM has its share of uninvited problems. Among these, stands out the fact that it yields

the presence of FCNCs at tree level, mediated by the new neutral heavy bosons. Interestingly enough,

one of the versions of the model that cures these contributions is the very version that shares its scalar

structure with the Minimal Supersymmetric Standard Model (MSSM), and, as such, it is the most studied

implementation of the 2HDM in literature: the Z2-symmetric 2HDM.

Still, for all the attention it receives, the 2HDM seems to be always one step behind supersymmetric

models. One case where it is undeniably so, is in the study of vacuum stability beyond the leading

order. In the SM, there is only one quartic coupling in the potential, which makes the calculations not
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too cumbersome enough for the analysis of the stability of the vacuum to be performed at a very high

precision level [52, 53]. With two Higgs doublets, on the other hand, the number of degrees of freedom

in the quartic sector of the scalar potential can go from five, up to ten: this means that analycity is out

of question, and even numerical minimization has its difficulties when it encounters such a parameter

space. Nevertheless, in the last years numerical methods have been used to discover extra minima in

supersymmetric models competing for stability with the minimum we live in, taking loop corrections,

and in some cases even thermal effects, into account [54–59]. In the 2HDM, output has come out very

recently concerning loop vacuum stability in the Inert Doublet Model [60, 61], but that had not been

the case with the Z2-symmetric 2HDM. At least not until early this year, when the author of Ref. [62]

set out to perform the first analysis of vacuum stability with radiative corrections included, and at times

being the sole drivers of points from apparent instability at tree-level into actual stability at loop-level,

and vice-versa. This issue of false negatives was stressed by the author of Ref. [62], who claimed the

reopening of regions of parameter space. Regions which, we point out, higher order constraints, or other

constraints not used by the author, may keep closed. We set out to use the capabilities of HEPfit to offer,

not only a second look, which is always obligatory in science, but also a more polished and, in agreement

with the theme of this thesis, more globally informed analysis.

This thesis is organized as follows: to set notation and tone, in Chapter 2 we review the SM, with

an emphasis in the flavour sector; in Chapter 3 we address weak decays within the framework of the

Operator Product Expansion (OPE) and effective Hamiltonians, which is followed by a description of

the weak transition under analysis, touching upon the ingredients needed to compute observables and on

the theoretical uncertainties associated; after a brief overview of the software used and the underlying

Bayesian framework, given in Chapter 4, we present in Chapter 5 the results of the global analysis to

b → s transitions; in Chapter 6 we provide a description of the 2HDM, focusing on its Z2-symmetric

implementation and on the form of the scalar potential beyond tree-level; Chapter 7 is reserved to an

exposition of of the constrains used in the second global analysis, elaborating more in the issue of vacuum

stability; in Chapter 8, the results of the global analysis to stability in the 2HDM are provided; finally,

our conclusions are summarized in Chapter 9.
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Chapter 2

Flavour in the Standard Model

In 1971, a PhD student from Utrecht University published two papers that would form the basis of

his dissertation [63, 64]. This student, Gerard ’t Hooft, was, however, no ordinary PhD student, for

in these papers he provided the seminal proof that Yang Mills theories could be made compatible with

renormalizability and unitarity, a problem that had been puzzling physicists for many years – models

with local gauge invariance being deemed mere intellectual fodder at the time. One of these models was

Stephen Weinberg’s Model of Leptons from 1967 [65], which immediately resurfaced to the forefront of

the theoretical stage with ’t Hooft’s proof, and was in the years that followed developed into what we

now know as the SM.

Renormalization in quantum field theory (QFT) comprises the techniques used to remove the infinities

that arise in the calculation of observable quantities. When the demand of renormalizabity is relaxed,

one can work with effective theories, a powerful tool for the treatment of multi-scale problems and the

subject of the first half of this thesis. Unitarity is, as Matthew D. Schwartz puts it, “a fancy way of

saying probabilities add up to 1” [66]. Requiring unitarity in QFT can impose strong constraints in the

parameters of a given model, as we shall see later on in the chapters dedicated to the 2HDM. For now,

we shall simply set the tone and the notation that henceforth will be employed. We do this by making a

brief overview of the SM and the flavour properties that arise once fermions enter the picture.

2.1 Spontaneous Symmetry Breaking

A key ingredient in Weinberg’s model is the spontaneous breaking of the non-Abelian local symmetry

that characterizes the electromagnetic and weak interactions; spontaneous symmetry breaking (SSB) is

also a central element in ’t Hooft’s second paper, regarding massive Yang-Mills fields. It is thus reasonable

for any description of the SM to start from its gauge group and its SSB mechanism.

The gauge group of the SM is

Glocal = SU(3)c × SU(2)L × U(1)Y . (2.1)

This local symmetry yields a covariant derivative equal to

Dµ = ∂µ − igsGaµLa − igW a
µT

a − ig′Bµ Y, (2.2)
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(a) µ2 > 0 (b) µ2 < 0

Figure 2.1: Depiction of the two possible shapes of the scalar potential: (a) a potential with a symmetry-

conserving VEV; (b) a potential with an infinite number of symmetry-breaking minima, often called the

Mexican Hat potential.

where Gaµ, W a
µ , and Bµ are, respectively, the gauge bosons of SU(3)c, SU(2)L, and U(1)Y , with gs, g,

and g′ being the corresponding coupling constants; La = λa

2 are the generators of SU(3), where λa are

the Gell-Mann matrices, and T a = τa

2 are the generators of SU(2), where τa are the Pauli matrices; the

U(1)Y charge is termed weak hypercharge and is a real multiple of the identity matrix.

SSB in the SM is accomplished via the so called Englert-Brout-Higgs mechanism [67–70], i.e. with

the introduction of a complex scalar field invariant under SU(3), in the spinor representation of SU(2)L,

and with hypercharge 1/2:

φ (1,2, 1/2). (2.3)

This scalar field, the Higgs doublet, written with charged and neutral components,

φ =

ϕ+

ϕ0

 , (2.4)

couples to itself through the most general renormalizable Higgs potential, which together with the kinetic

term of a Klein-Gordon field makes up the Higgs Lagrangian:

LH = (Dµφ)† (Dµφ)− V (φ†φ) = (Dµφ)† (Dµφ)− µ2φ†φ− λ

2
(φ†φ)2. (2.5)

Depending on the sign of the parameter µ2, the potential assumes two different shapes, as depicted in

Fig. 2.1. Without loss of generality, one can make use of the freedom of SU(2)L rotations to write the

scalar field in a basis of isospin where only the neutral component acquires a vacuum expectation value

(VEV):

〈φ〉0 = 〈0|φ|0〉 =
1√
2

0

v

 . (2.6)

When µ2 < 0, v may have a non-zero value and, from the minimization of the Higgs potential, we get a

VEV with

v =

√
−2µ2

λ
. (2.7)

Due to the rephasing invariance of the Higgs field, this situation yields an infinity of non-null vacua that

no longer preserve the gauge symmetry of the electroweak sector:

eiαX 〈φ〉0 ' (1 + iαX )〈φ〉0 6= 〈φ〉0, for X = T 1, T 2, T 3, Y. (2.8)
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Still, an abelian subgroup of SU(2)L × U(1)Y exists under which the vacuum remains invariant: for the

combination

Q = T 3 + Y (φ) = T 3 +
1

2
(2.9)

one has

Q〈φ〉0 =

1 0

0 0

0

v

 =

0

0

 , (2.10)

and the conclusion is that the vacuum state of the Higgs field breaks the electroweak part of Eq. (2.1)

into a residual U(1) symmetry which has Q as generator.

2.2 Gauge Sector

After SSB, the Higgs doublet would be most generally parametrized around the vacuum as:

φ =

 G+

(v + h+ iG0)/
√

2

 , (2.11)

where h, is a real scalar field, G0 is a real pseudoscalar field, and G+ is a complex scalar field. From

Goldstone’s Theorem, we know that by breaking a SU(2) × U(1) symmetry with four generators into a

residual U(1) there will be 4− 1 = 3 Goldstone bosons arising in the theory, one for each of the broken

generators [71, 72]. These degrees of freedom, G0, G+, and G− are dependent on the choice of gauge

fixing, and may be gauged away into the longitudinal polarization of three of the gauge bosons, generating

their masses in the process. This gauge boson mass generation is the Higgs mechanism and, in order to

inspect the mass spectrum of the SM, it’s easier to work in unitary gauge, where

φ =

 0

(v + h)/
√

2

 . (2.12)

The field h, which persists even in the unitary gauge, is known as the Higgs boson and its mass is

Mh =
√
λv.

The pure gauge interactions, which include the bilinear terms that yield the boson propagators, and

higher order couplings, are described by

Lgauge = −1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (2.13)

where the field strength tensors are defined as

Gaµν = ∂µG
a
ν − ∂νGaµ + gs f

abcGbµG
c
ν , (2.14)

W a
µν = ∂µW

a
ν − ∂νW a

µ + g εabcW b
µW

c
ν , (2.15)

Bµν = ∂µBν − ∂νBµ. (2.16)

The mass terms of the gauge bosons W a
µ and Bµ, on the other hand, come from the kinetic term of LH :

(Dµφ)† (Dµφ) =
1

2
∂µh∂

µh

+ g2 (v + h)2

8
(W 1

µ + iW 2
µ)(W 1µ − iW 2µ)

+
(v + h)2

8
(g2W 3

µW
3µ − gg′W 3

µB
µ − gg′BµW 3µ − g′2BµBµ).

(2.17)
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Instead of the fields W 1
µ and W 2

µ , it is customary to introduce two complex fields

W±µ =
W 1
µ ∓ iW 2

µ√
2

, (2.18)

whose mass Lagrangian,

LWmass = g2 v
2

4
W−µ W

+µ, (2.19)

yields immediately the W± bosons’ mass:

MW =
1

2
gv. (2.20)

Regarding W 3
µ and Bµ, their mass terms may be suitably written as

LW 3,B
mass =

v2

8

(
W 3
µ Bµ

) g2 −gg′

−gg′ g′2

W 3µ

Bµ

 . (2.21)

Introducing the Weinberg angle, θW , these bosons as rotated into their mass eigenstates,Zµ
Aµ

 =

cos θW − sin θW

sin θW cos θW

W 3
µ

Bµ

 (2.22)

and we get

LA,Zmass =
v2

8

(
Zµ Aµ

)cos θW − sin θW

sin θW cos θW

 g2 −gg′

−gg′ g′2

 cos θW sin θW

− sin θW cos θW

Zµ
Aµ


=
v2

8

(
Zµ Aµ

)g2 + g′2 0

0 0

Zµ
Aµ

 . (2.23)

This produces the following relations between coupling constants and Weinberg angle:

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

; (2.24)

the masses of the neutral bosons Z and A come to be

MZ =
v

2

√
g2 + g′2, (2.25)

MA = 0. (2.26)

The last boson, given its null mass, is identified as the photon.

One is now able to write the covariant derivative of the gauge group of electroweak theory in terms

of the physical fields. To do so, it is convenient to consider one further definition,

T± =
T 1 ± iT 2

√
2

, (2.27)

which leaves Eq. (2.2) in the form:

Dµ = ∂µ − igsGaµLa − i
g√
2

(W+
µ T

+ +W−µ T
−)− i 1√

g2 + g′2
Zµ(g2T 3 − g′2Y )− i gg′√

g2 + g′2
Aµ(T 3 + Y ).

(2.28)
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Recognizing the last term as the electromagnetic interaction, mediated by the photon, one identifies its

coefficient as the electron charge,

e =
gg′√
g2 + g′2

= g sin θW , (2.29)

and T 3 +Y as the electric charge quantum number. This is, in fact, the combination we saw in Eq. (2.9):

it becomes clear, then, that it is the electromagnetic symmetry that is preserved after SSB, and one thus

confirms that electric charge is conserved in the SM. Finally, we put the covariant derivative in a even

more suitable form, which better expresses the nature of the couplings:

Dµ = ∂µ − igsGaµLa − i
g√
2

(W+
µ T

+ +W−µ T
−)− i g

cos θW
Zµ(T 3 − sin2 θWQ)− ieAµQ (2.30)

2.3 Fermion Sector

With flavour in mind, in this section we focus on the coupling of the electroweak gauge bosons to

fermions. The structure of the electroweak theory was deduced from the 4-Fermi effective theory, whose

V −A interaction pointed towards a chiral theory [73, 74],

V −A = γµ − γµγ5 = 2γµ
1− γ5

2
, (2.31)

where fermion fields would enter through their left- and right-handed components:

ψL =
1− γ5

2
ψ = PLψ, (2.32)

ψR =
1 + γ5

2
ψ = PRψ. (2.33)

In the SM, the left-handed leptons (e, νe, µ, νµ, τ, ντ )L pair up to form SU(2)L doublets, as do the left-

handed quarks (d, u, s, c, b, t)L. In turn, the right-handed fermions happen to transform as singlets of

SU(2)L, and we have the following fermion content:

QiL (3,2, 1/6), uiR (3,1, 2/3), diR (3,1,−1/3), LiL (1,2,−1/2), `iR (1,1,−1), (2.34)

where i = 1, 2, 3 indexes the generation. Here, we have omitted right-handed neutrinos, since they have

not yet been observed, and also because the subject of neutrino masses, whether their nature is Majorana

or Dirac, is beyond the scope of this work.1 In the SM they are strictly massless, and we will leave them

as such.

The interactions of quark and lepton matter fields with the electroweak gauge boson follow directly

from the Dirac Lagrangian, with the partial derivative dropped in favour of the SU(2)L ×U(1)Y part of

covariant derivative in Eq. (2.2):

Lmatter = Q
i

L(i /D)QiL + uiR(i /D)uiR + d
i

R(i /D)diR + L
i

L(i /D)LiL + `
i

R(i /D)`iR, (2.35)

1We direct the reader towards the book in Ref. [75], the reviews in Refs. [76, 77], and references therein, for further

information on models of neutrino masses and mixing.
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where summation over the generation index in implied. In terms of the gauge boson mass eigenstates,

Lmatter becomes

Lmatter = Q
i

L(i/∂)QiL + uiR(i/∂)uiR + d
i

R(i/∂)diR + L
i

L(i/∂)LiL + `
i

R(i/∂)`iR

+ g(W+
µ J

µ+
W +W−µ J

µ−
W + ZµJ

µ
Z) + eAµJ

µ
EM, (2.36)

where the vector currents are written as follows:

Jµ+
W =

1√
2

(uiLγ
µdiL + νiLγ

µ`iL), (2.37)

Jµ−W =
1√
2

(d
i

Lγ
µuiL + `

i

Lγ
µνiL), (2.38)

JµZ =
1

cos θW

[
uiLγ

µ( 1
2 − 2

3 sin2 θW )uiL + uiRγ
µ(− 2

3 sin2 θW )uiR

+ d
i

Lγ
µ(− 1

2 + 1
3 sin2 θW )diL + d

i

Rγ
µ( 1

3 sin2 θW )diR

+ νiLγ
µ( 1

2 )νiL + `
i

Lγ
µ(− 1

2 + sin2 θW )`iL + `
i

Rγ
µ(sin2 θW )`iR

]
,

(2.39)

JµEM = uiγµ( 2
3 )ui + d

i
γµ(− 1

3 )di + `
i
γµ(−1)`i. (2.40)

Regarding fermion masses, it is often useful to think of the chiral projections of each fermion as

different particles which live in different representations of the fundamental gauge group and mix through

mass terms like

Lmass = −mf

(
fLfR + fRfL

)
. (2.41)

However, the very fact that these fields belong to different SU(2)L representations and have different

U(1)Y charges indicates that this Lagrangian is not invariant under the gauge symmetry, and one is thus

forbidden to write such terms in the theory prior to SSB. Nevertheless, our model contains a scalar field

whose VEV already endows the gauge bosons with their masses, and, as it happens, this field’s quantum

numbers allow the addition of one further gauge-invariant Lagrangian, which indeed mixes the left- and

right-handed projections of the fermion fields via scalar currents:

LY = −QiLY uij φ̃ ujR −Q
i

LY
d
ij φd

j
R − L

i

LY
`
ij φ `

j
R + h.c., (2.42)

where φ̃ = iτ2φ
∗, and ‘h.c.’ denotes the Hermitian conjugate of all of the preceding terms. These terms

are the Yukawa couplings, and each Y f is an arbitrary complex matrix. After SSB, the Higgs doublet

acquires a non-null VEV and, as designed, LY generates the terms of Lmass, now of the form:

Lmass = −uiLM ij
u u

j
R − d

i

LM
ij
d d

j
R − `

i

LM
ij
` `

j
R + h.c., (2.43)

with each fermion mass matrix defined as

Mf =
v√
2
Y f , for f = u, d, `. (2.44)

With every ingredient in place, we bring this section to an end by finally writing the full Lagrangian

of the SM, which, schematically, is

LSM = LH + Lgauge + Lmatter + LY , (2.45)

where, taking into account trivial SU(3)c additions to Lmatter, each individual Lagrangian is to be found,

respectively, in Eq. (2.5), Eq. (2.13), Eq. (2.35), and Eq. (2.42).
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2.4 Flavour-changing Currents and CP Violation

In the previous section we saw the generation of fermion masses in the Yukawa couplings after SSB.

The resulting mass matrices, in Eq. (2.44), are, however, arbitrary complex matrices. This is because

we have been working in a flavour basis that needs not be the basis of mass eigenstates. We have the

possibility, though, to transform the fermion fields into a basis which diagonalizes the Yukawa couplings

and, as a result, all Mf . Denoting the mass basis as that of the primed states given, by convention, by

the unitary transformations

uiL = V uij u
′j
L, uiR = Uuij u

′j
R, (2.46)

diL = V dij d
′j
L, diR = Udij d

′j
R, (2.47)

`iL = V `ij `
′j
L, `iR = U `ij `

′j
R, (2.48)

νiL = V `ij ν
′j
L, (2.49)

we obtain the bi-diagonalization of the mass matrices

V u †Mu U
u = diag(mu,mc,mt), (2.50)

V d †Md U
d = diag(md,ms,mb), (2.51)

V ` †M` U
` = diag(me,mµ,mτ ). (2.52)

By definition, the diagonal elements above, being the masses of the physical fermions, are real and non-

negative. The V f matrices, given the left-handedness of the weak interactions, have an effect on the

charged currents: written in terms of the mass eigenstates, the positive-charged current becomes

Jµ+
W =

1√
2

(u′
i

Lγ
µ(V u †V d)ijd

′j
L + ν′

i

Lγ
µ(V ` †V `)ij`

′j
L); (2.53)

while for the leptons we simply get the identity matrix, in the case of the quarks a non diagonal unitary

matrix arises:

V = V u †V d =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (2.54)

This matrix is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [78, 79], and is an unavoidable presence

in the theory.

One encounters the CKM again if one looks at mass diagonalization from a different angle. Before the

addition of the Yukawa Lagrangian, it happens that there is a large global symmetry in the SM which

arises without being imposed. This symmetry is a U(3)5 group, which can be decomposed as

Gflavour = U(1)5 × Gquark × Glepton, (2.55)

where

Gquark = SU(3)QL × SU(3)uR × SU(3)dR (2.56)

Glepton = SU(3)LL × SU(3)`R . (2.57)
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Three of the five U(1) can be identified with the total baryon and lepton number, both not broken by

the Yukawa couplings, and the weak hypercharge, which is gauged. Gquark and Glepton are the subgroups

controlling flavour-changing dynamics and flavour non-universality in the theory, and they are explicitly

broken by the Yukawa matrices not being proportional to the identity matrix. In the lepton sector,

because of the invariance of Lmatter under Glepton, one has all the freedom to choose the two matrices

required to diagonalize Y ` without breaking gauge invariance or any observable consequence. On the other

hand, Gquark only allows us to choose three of the four matrices necessary to diagonalize simultaneously

Y d and Y u, meaning there will be a leftover mixing matrix in the Yukawa terms if we opt to leave the

remaining SM Lagrangian untouched. If we use the flavour symmetry to choose, for example, a basis

where Y d is diagonal, we are left with one unitary transformation to eliminate either the left- or the

right-handed diagonalization matrix in the up-sector, but not both. Eliminating, for convenience, the

right-handed diagonalization matrix, one gets

Yd = λd, Yu = V † λu, (2.58)

where

λd = diag(yd, ys, yb), λu = diag(yu, yc, yt), with yq =
mq

v
. (2.59)

In principle, the CKM is a general complex unitary matrix. Still, not all the phases are physical, given

some of them may be removed by rephasing the quark fields. For a ng × ng complex matrix, there are

2n2
g real parameters. By imposing unitarity one gets n2

g conditions; the number of phases which can be

removed by rephasings is 2ng−1. One is left, therefore, with 2n2
g−n2

g−(2ng−1) = (ng−1)2 independent

real parameters. To parametrize a ng ×ng orthogonal matrix one needs ng(ng − 1)/2 Euler angles. Since

an unitary matrix is a complex extension of an orthogonal matrix, out of the (ng − 1)2 independent

parameters, ng(ng−1)/2 must be identified as rotation angles, the number of physical phases amounting

to the remaining (ng − 1)2 − ng(ng − 1)/2 = (ng − 1)(ng − 2)/2 parameters. For the 3 generations of the

SM, the CKM matrix has thus 4 parameters, 3 of which are mixing angles and 1 is a phase that can’t be

eliminated by rephasing the quark fields. A common parametrization, championed by the Particle Data

Group [80], is

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (2.60)

where sij = sin θij and cij = cos θij . The angles θij can be chosen to lie in the first quadrant and are,

in fact, relatively small. This means the CKM is nearly diagonal, thus the mass and flavour bases are

nearly identical. This if often used to write the CKM matrix in a different parametrization, named after

Lincoln Wolfenstein, its first proponent [81]. To a good approximation, θ23 and θ13 are negligible, leaving

θ12, known as the Cabibbo angle, in charge of all flavour mixing. Defining λ ≡ sin θ12,

V =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4), (2.61)

where A ∼ 1, and the parameters ρ and η should be smaller than one because |Vub|/|Vcb| ∼ λ/2.
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VudV
*
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α

βγ

Figure 2.2: Representation of the unitarity triangle.

The phase δ, or the phase in any given parametrization which remains after imposing the invariance

of V under the rephasing of fields, is the source of CP violation phenomena in the SM. Moreover, we

have that physically meaningful, and therefore measurable, functions of V must be invariant under such

rephasing. The simplest of these invariants are the moduli of the matrix elements, |Vαi|2. The next-

simplest rephasing-invariant functions of V are the ‘quartets’:

Qαiβj ≡ VαiVβjV ∗αjV ∗βi, α 6= β and i 6= j. (2.62)

Thus, if the complex phase of the CKM were to disapear in all rephasing-invariant functions of V , any

observable sensitive to δ would be real, and the theory would be CP-converving. Turning it around, there

is only CP violation in the SM if and only if any of the rephasing-invariant functions of the CKM matrix

is not real [82].

Now, the CKM matrix is unitary by construction, all of its the rows orthogonal to each other, the

same being also true to the columns. The orthogonality relation for the first and third columns of V is

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0. (2.63)

If we multiply the whole equation by VcbV
∗
cd and take the imaginary part, we obtain

Im(Qudcb) + Im(Qcbtd) = 0. (2.64)

In fact, proceeding the same way for the remaining orthogonality relations, one easily shows that the

imaginary parts of all quartets are equal up to their sign. One may, therefore, define a rephasing invariant

quantity which flags the existence of CP violation in the SM:

J ≡ Im(Quscb) = Im(VusVcbV
∗
ubV

∗
cs), (2.65)

here chosen with respect to the quartet Quscb. This quantity is known as the Jarlskog invariant [83].

Any orthogonality condition of the CKM matrix can be interpreted as representing a triangle in the

complex plane. One of these triangles, the one we wrote in Eq. (2.63), is of particular phenomenological

interest because all its sides are of the same order of magnitude. Since it is the conventional triangle,

it is often termed simply as the unitarity triangle. The unitarity triangle is represented in Fig. 2.2. Its
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Figure 2.3: The unitarity triangle with precision measurements mapped to the ρ̄− η̄ plane, where

ρ̄ ≡ ρ(1 − λ2/2) and η̄ ≡ η(1 − λ2/2). The bottom length is normalized to 1, when comparing with

Fig. 2.2, by dividing all sides by VcdV
∗
cb.

inner angles are rephasing invariants as well, constructed from the elements of the CKM matrix as

α ≡ arg

(
− VtdV

∗
tb

VudV ∗ub

)
, (2.66)

β ≡ arg

(
−VcdV

∗
cb

VtdV ∗tb

)
, (2.67)

γ ≡ arg

(
−VudV

∗
ub

VcdV ∗cb

)
. (2.68)

A particularity of these triangles arising from the orthogonality relations is that, depite having different

shapes, all have the same area:

Area =
|J |
2
, (2.69)

which grants some geometrical meaning to the Jarlskog invariant. This follows from the unique character

of |J | as being the absolute value of the imaginary parts of all the quartets, which itself follows from

the number of physical phases being just one when there are three quark generations. In the ‘standard

parametrization’,

|J | = s12 s13 s23 c12 c
2
13 c23 sin δ, (2.70)

fleshing the dependence of |J | on δ, and further evidencing it as the measure of the strength of CP

violation in the SM.

In practice, since the theory does not provide the elements of the CKM, the unitarity triangle itself is

fitted from experimental data, combining different measurements to constrain it sides lengths and angles.

This procedure has been an enterprise of a few collaborations, one of which is the UTfit Collaboration

[84], whose latest unitarity triangle fit results are shown in Fig. 2.3. The fit to the unitarity triangle is a

landmark in the phenomenological analysis of the SM, and an inspiration to all global fits in the era of

precision measurements, including those we will present in this work.
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Chapter 3

The b→ s Transition

Motivated by the anomalies that permeate the semileptonic ∆B = 1 processes, we move now towards

the first object of our global analysis machinery: the decays related at the partonic level to b → sγ, s``

transitions. In the present chapter, we introduce all the elements necessary to produce the results we

present in a later chapter, starting by briefly surveying the formalism that underlies the weak decays of

mesons.

3.1 Weak Decays and Effective Hamiltonians: A Tale of Two

Scales

The weak decays of hadrons are mediated through the weak interactions of quarks, which are bound

into hadrons via strong interactions. This frames these phenomena as belonging to two energy scales

widely separated in magnitude: whereas weak interactions live in a scale O(MW ,MZ), the typical had-

ronic energy sits at a much lower O(1 GeV): one is, thus, prompted to derive a framework that transcribes

the weak interactions into an effective low energy theory. This is achieved with the language of effective

Hamiltonians and the OPE, a pedagogical introduction of which can be found in three works by An-

drzej J. Buras: a landmark review with Gerhard Buchalla and Markus E. Lautenbacher [85], the massive

compilation of his Les Houches lectures [86], and a recent enlightening historical account [8].

3.1.1 Operator Product Expansion

It is instructive to delineate the basic ideas of the effective theory for the case of a simple process that

occurs at tree level in the SM. Let us take the transition b → ccs, for example. As we have seen in the

previous chapter, this flavour changing interaction is described by a charged current Lagrangian that we

rewrite here as:

Lcc =
g√
2

(
W+
µ uiL γ

µ Vij d
j
L + h.c.

)
. (3.1)

The amplitude of the full theory diagram, on the left in Fig. 3.1, is thus:

A = i
g2

2
V ∗csVcb (sLγ

µcL)
gµν − kµkν

M2
W

k2 −M2
W

(cLγ
νbL) , (3.2)
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b c

c s

W −→

b c

c s

Figure 3.1: The transition b→ ccs at tree-level in the full theory, on the left, and in the effective theory,

on the right, emphasizing the “integration out” of the heavy degree of freedom.

which, expanding the W propagator in terms of k2/M2
W , can be turned into:

A = −i 4GF√
2
V ∗csVcb (sLγ

µcL) (cLγµbL) +O
(
k2

M2
W

)
, (3.3)

where

GF =

√
2 g2

8M2
W

(3.4)

is the Fermi coupling constant. If the momentum transfer through the W propagator is much smaller

than the boson mass, one may neglect the terms O(k2/M2
W ), and the amplitude is approximated to the

first term on the right-hand side of Eq. (3.3). This is, in fact, compatible with what one would obtain

from an effective Hamiltonian

Heff =
4GF√

2
V ∗csVcb (sLγ

µcL) (cLγµbL) + higher dimensional operators, (3.5)

where neglecting the higher dimensional operators in the expansion, these typically involving derivatives

of the fields, indeed corresponds to neglecting terms O(k2/M2
W ). We have, therefore, found an approx-

imation of the weak interaction term which consists in the procedure of going to an effective theory by

“integrating out” heavy degrees of freedom, here the W boson, and expand on the ensuing products of

local operators, here the product in the leading term being:

Heff =
4GF√

2
J −W,µ J

µ+
W . (3.6)

This is just a rough sketch of the formal framework of the OPE [87–89], but the main features have

surfaced: the dominant contributions in the expansion will be those from the operators with lowest

dimension, six in this example – for weak decays, higher dimensions provide faint contributions and are

usually neglected; regarding low energy dynamics, the effects of the force mediated by the heavy boson

correspond, to good approximation, to a point interaction à la Fermi. The effective theory below any

quark mass requires that field to be integrated out as well, yielding an effective nf -flavour theory, where

nf denotes the number of remaining dynamical quark fields.

3.1.2 QCD Effects and Operator Renormalization

The current-current operator in Eq. (3.6) is usually labelled Q2; factorizing CKM matrix elements:

Q2 = (sLγ
µcL) (cLγµbL) . (3.7)

16



b c
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Figure 3.2: One-loop current-current Feynman diagrams in the effective theory.

The LO QCD corrections to this operator come from gluon exchanges between the fermion legs, as shown

in Fig. 3.2, where each diagram carries a factor of 2 due to gluon exchange between the other pair of legs.

The computation of these diagrams gives rise to a second operator with a different flavour structure. In

the so-called ‘standard basis’, the form of this new operator is achieved upon reduction of triple gamma

matrices,

γµγαγρ = gµαγρ − gµργα + gαργµ − iγσγ5ε
µαρσ, (3.8)

removal of SU(3) generators, here T a instead of the La of Eq. (2.2) due to no ambiguity with the SU(2)L

sector,

T aijT
a
kl =

1

2
δilδkj −

1

2N
δijδkl, (3.9)

where N is the number of active colours in the theory, and Fierz reordering of the quark content of the

object that ensue, producing for the case under consideration:

Q1 = (sLγ
µbL) (cLγµcL) . (3.10)

The divergent integrals related with the loops of each diagram are regulated with dimensional regulariz-

ation [90, 91], where one takes the integral at D dimensions,∫
d4k

(2π)4
−→ µ2ε

∫
dDk

(2π)D
, (3.11)

with 2ε = 4−D. We will come back to this issue later in the section.

Additional operators are present if the transition contains a quark-antiquark pair, as in our case. As

seen in Fig. 3.3, there is an extra one-loop diagram which renormalizes the effective theory, referred to

as a penguin diagram, which induces effective penguins with four different flavour structures, written in

the standard basis as

Q3 =
(
sLγ

µbL
) ∑
q=u,d,s,c,b

(
qLγµqL

)
, (3.12)

Q4 =
(
siLγ

µbjL
) ∑
q=u,d,s,c,b

(
qjLγµq

i
L

)
, (3.13)

Q5 =
(
sLγ

µbL
) ∑
q=u,d,s,c,b

(
qRγµqR

)
, (3.14)

Q6 =
(
siLγ

µbjL
) ∑
q=u,d,s,c,b

(
qjRγµq

i
R

)
, (3.15)

together with a chromomagnetic dipole operator for when there is the emission of an on-shell gluon,

Q8g =
gs

16π2
mbsLσµνG

a,µνT abR, (3.16)

17



b s

q q

−→

b q

q s

(a)

b s

−→
b s

(b)

Figure 3.3: The penguin diagram introduces: a) additional four-fermion operators; b) the gluon dipole

operator.

where the mass of the strange is neglected. If renormalization due to photon exchange is considered, it

is straightforward to see that further operators have to be included: QED penguin operators,

Q7 =
3

2

(
sLγ

µbL
) ∑
q=u,d,s,c,b

Qq
(
qRγµqR

)
, (3.17)

Q8 =
3

2

(
siLγ

µbjL
) ∑
q=u,d,s,c,b

Qq
(
qjRγµq

i
R

)
, (3.18)

Q9 =
3

2

(
sLγ

µbL
) ∑
q=u,d,s,c,b

Qq
(
qLγµqL

)
, (3.19)

Q10 =
3

2

(
siLγ

µbjL
) ∑
q=u,d,s,c,b

Qq
(
qjLγµq

i
L

)
, (3.20)

and the electromagnetic dipole operator,

Q7γ =
gs

16π2
mbsLσµνF

µνbR. (3.21)

What pertains, then, to the QCD renormalization of the effective theory? Renormalization concerns

the reabsorption of the of the divergencies which occur in the limit of a vanishing regulator – the ε poles

in dimensional regularization. Let us take a generic Lagrangian written in terms of an unrenormalized,

or bare, fermion field, and a bare gluon field:

L(0) = ψ
i

0

(
i/∂ −m0

)
ψi0 + gs,0 ψ

i

0 /G
a
0 T

a
ij ψ

j
0, (3.22)

where m0 and gs,0 are, respectively, the bare mass and the bare coupling constant. One may introduce

the renormalized fields, mass, and coupling, defined as

ψ0 = Z
1/2
ψ ψ0, Gaµ,0 = Z

1/2
G Gaµ, m0 = Zmm, gs,0 = Zg gs, (3.23)

with which the Lagrangian becomes

L = Zψ ψ
i
(i/∂)ψi − ZψZmmψ

i
ψi + ZψZGZg gs ψ

i
/G
a
T aij ψ

j . (3.24)

This is, in turn, often split into a free Lagrangian plus counterterms, a shape that is better suited for

renormalized perturbation theory:

L = ψ
i (
i/∂ −m

)
ψi + gs ψ

i
/G
a
T aij ψ

j

+ (Zψ − 1)ψ
i
(i/∂)ψi − (ZψZm − 1)mψ

i
ψi + (ZψZGZg − 1) gs ψ

i
/G
a
T aij ψ

j . (3.25)
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The renormalization constants are expanded in powers of the coupling constant,

Z = 1 +

∞∑
k=1

(αs
4π

)k
Z(k), (3.26)

where αs = g2
s/(4π), each order being further expanded in powers of its ε poles:

Z(k) =

∞∑
l=0

1

εl
Z(k,l). (3.27)

It must be noted, however, that the coupling is only dimensionless if D = 4; for it to be a number we

expand in, it is rescaled following the prescription

gs,0 = Zg µ
εgs. (3.28)

Out of the many arbitrary ways to define the Z(k) factors, the modified minimal subtraction scheme

(MS) [92] is the renormalization scheme that, as the name suggests, subtracts the pole parts and, on its

way, redefines µ so as to absorb the universal constants that always appear in dimensional regularization

calculations:

µ2 → e−γE

4π
µ2, (3.29)

where γE is the Euler-Mascheroni constant. We shall be employing the MS scheme in this work.

Going back to the effective weak decays, while quark field renormalization can deal with the diver-

gences of the first diagram in Fig. 3.2, an additional renormalization is needed to remove the remaining

divergent terms: operator renormalization, which consists in the elimination of the singularity in the bare

operator by way of a renormalization constant,

Z−1(µ, ε, αs)Q
(0)(ε, αs) ≡ Q(µ, αs). (3.30)

This constant is, in general, a non-diagonal matrix, such that the operators are said to mix under

renormalization. It is worth noting that Eq. (3.8) is not valid in D dimensions; the Dirac algebra is

no longer closed, and γ5 is ill-defined. There are many ways, or schemes, to treat γ5 in D dimensions

which make the manipulation of Dirac matrices not so straightforward beyond the LO. In particular,

renormalization requires the introduction of extra operators that vanish in four dimensions, thus named

evanescent operators [93–95]. The choice of these operators is part of the definition of the renormalization

scheme of the effective theory. For an introduction to effective theory renormalization beyond the LO see

Ref. [85].

The µ-dependence of the operators implies that the effective Hamiltonian, which we write as a sum

of all possible operators, requires the introduction of scale-dependent coefficients as a compensation:

Heff =
4GF√

2
V ∗csVcb

∑
i

Ci(µ)Qi(µ). (3.31)

These coefficients are termed Wilson coefficients (WCs). Their relevance is immediately made transparent

in the process of matching, i.e. when, in accordance to the formal systematization of the treatment of

short-distance effects in weak decays [96], we demand that the physical amplitudes produced by the full

19



theory, Afull, and the effective theory, Aeff = 〈Heff〉, are the same at a given matching scale. At the LO,

this typically produces coefficients that look like

Ci(µ) = Ωi
αs
4π

ln
M2
W

µ2
+O(αs), for i 6= 2, (3.32)

C2(µ) = 1 + Ω2
αs
4π

ln
M2
W

µ2
+O(αs). (3.33)

where the Ωi are basis-dependent factors. A prompt observation that can be made is that removing the

QCD effects returns us to the case of only one operator, Q2, as expected. Moreover, the effective theory

has the property that short-distance and long-distance contributions get factorized, respectively, into the

WCs and the operator matrix elements. At the LO matching level, this is testified by the split of the

logarithms present in the full amplitudes, which span the full band between the participating energies –

the ultraviolet scale MW and the infrared scale p2 –, into a high scale, that goes into the WCs, and a low

scale part, which pertains to the matrix elements:

ln
M2
W

−p2
= ln

M2
W

µ2
+ ln

µ2

−p2
, (3.34)

where −p2 stands in for the external momenta of participating particles in the decay, and µ is the

renormalization scale, acting also as the scale separating short- and long-distance contributions. The fact

that full and effective theories share the same infrared behaviour makes the matching possible. Another

facet of WCs is that the renormalization of the effective Hamiltonian can be traded from a renormalization

of the operators, to the equivalent renormalization of coefficients. One can define

C
(0)
i = ZcijCj , (3.35)

which, again up to quark field renormalization and omitting pre-factors, is related to the matrix Z as:

Aeff = Zcij Cj 〈Qi〉(0)

Aeff = Cj〈Qj〉 = CjZ
−1
ji 〈Qi〉(0)

 Zcij = Z−1
ji . (3.36)

3.1.3 Summation of Large Logarithms

It is perfectly graspable from Eq. (3.32) that, if the matching scale µ is chosen near MW , the logarithms

in the coefficients are small and the matching is allowed to be done in fixed order perturbation theory.

Yet, the matrix elements involve scales which are typically much lower – in our case of decaying B mesons

these are of O(mb). This means that by choosing µ = µb ≈ mb to make the matrix element logarithms

small, one turns αs ln(MW /µ) into O(1) and thus spoils the fixed order perturbativity of the WCs. This

situation can be improved, however, if we take the relation in Eq. (3.36) to treat the Ci as renormalized

‘coupling constants’ of the effective Hamiltonian, and use their RGEs to sum up all the terms of the form[
αs(µ) ln

MW

µ

]n
(3.37)

in the LO – or leading logarithmic – approximation, all the terms

αs(µ)

[
αs(µ) ln

MW

µ

]n
(3.38)
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in the NLO approximation, and so on and so forth.

As our choice of renormalization scheme corresponds to a redefinition of µ, infinitesimal changes of

the scale will result in infinitesimal tweaks of the renormalized quantities to still render all physical

observables invariant; in the continuous limit these changes translate to differential equations, the RGEs

[97, 98]. It is a well known fact that the RGE of the coupling constant is related to its β function as

µ
dgs
dµ

= β(gs, ε), (3.39)

where, given Eq. (3.28),

β(gs, ε) = −εgs − Z−1
g

(
µ
d

dµ
Zg

)
gs ≡ −εgs − β(gs). (3.40)

The function β(gs), traceable order by order from Eq. (3.26) and Eq. (3.27), is known at the four-loop

level [99, 100], and follows, in the MS scheme, the expansion:

β(gs) = −β0
g3
s

(4π)2
− β1

g5
s

(4π)4
− β2

g7
s

(4π)6
− β3

g9
s

(4π)8
+O(g11

s ). (3.41)

The coefficients of the expansion are written, in full dependence on the number of active flavours, and

on the index and quadratic Casimirs of SU(3), in Appendix A.1.

By the same token, the RGE of the mass operator is governed by the mass anomalous dimension,

µ
dm

dµ
= − γmm (3.42)

which bears a relation with the corresponding renormalization constant:

γm = Z−1
m

(
µ
d

dµ
Zm

)
. (3.43)

Interestingly, up to a difference in sign, µ-independence of the bare WCs leads to a matrix RGE that has

the same shape as that of the running fermion mass:

µ
d

dµ
~C(µ) = γT (gs) ~C(µ). (3.44)

where ~C is a column vector of WCs, and γ, here transposed due to Eq. (3.36), is the anomalous dimension

matrix corresponding to the column vector of effective operators. That being said, and upon defining as

usual

γ(gs) =
g2
s

16π2
γ(0) +

(
g2
s

16π2

)2

γ(1) +

(
g2
s

16π2

)3

γ(2) + . . . , (3.45)

the solution of Eq. (3.44) mirrors, of course, the equation of the running mass:

~C(µ) = U(µ, µW ) ~C(µW ), (3.46)

where µW is the high energy matching scale, and U(µ, µW ) is the the evolution function

U(µ, µW ) = Tg exp

[∫ gs(µ)

gs(µW )

dg
γT (g)

β(g)

]
, (3.47)

Tg denoting the ordering of the coupling constants gs(µ) with increasing value from right to left.
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The result at LO is easily obtained, and relevant for future use. First, the evolution matrix comes to

be

U (0)(µ, µW ) = exp

[
γ(0)T

β0

∫ gs(µ)

gs(µW )

dg

(
−1

g

)]
. (3.48)

If one introduces

η =
αs(µW )

αs(µ)
=

(
gs(µW )

gs(µ)

)2

, (3.49)

and denotes γ
(0)
D as the diagonal matrix that contains the eigenvalues of the anomalous dimension matrix,

γ
(0)
D = V −1 γ(0)T V, (3.50)

the evolutor that takes WCs from a scale µW ≈ MW , where there are no large logarithms, down to the

renormalization scale µ,

~C(0)(µ) = U (0)(µ, µW ) ~C(0)(µW ) (3.51)

is simply

U (0)(µ, µW ) = V

(
η
γ
(0)
D

2β0

)
V −1, (3.52)

where η to the power of a diagonal matrix is algebraically equivalent to a matrix with diagonal entries

that consist of η to the power of the corresponding eigenvalue. Running beyond the LO will be sketched

in the next sections.

3.2 The ∆B = 1 Effective Hamiltonian

In the previous section we managed to provide the basics of the formalism. In what follows we

will list the complete basis of operators needed for our analysis, the state-of-the-art of their matching

conditions and anomalous dimensions, and the form of the evolutor in the presence of both QCD and QED

corrections. We point the reader towards Refs. [101, 102] for recent reviews that address this subject.

3.2.1 Operator Basis

Our illustration of the OPE for weak decays was done in the so-called ‘standard basis’, where, as we

said there, triple products of Dirac matrices are reduced with the help of the identity in Eq. (3.8), and the

generators T a are removed into Kronecker deltas according to Eq. (3.9). However, proceeding in the same

manner in the calculations at the two-loop level and beyond requires, as identified by Chetyrkin, Misiak,

and Münz [103, 104], the introduction of several more evanescent operators and leads to problematic

traces with γ5. It is thus customary to work in the basis put forward by those authors, which, aiming

at the least convoluted definition of evanescent operators possible, leaves gamma products in penguins

as they stand, and, for convenience, keeps the colour structure as it is. This choice of basis allows the

convenient use of fully anticommuting γ5 at any number of loops, at the leading order in the Fermi

coupling.

In the Chetyrkin-Misiak-Münz basis, the effective Hamiltonian that is relevant to b → sγ, sll trans-

itions involves the following set of dimension six operators within the SM:
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� Current-current operators (C)

Qp1 = (sLγµT
apL) (pLγ

µT abL) , (3.53)

Qp2 = (sLγµpL) (pLγ
µbL) , (3.54)

� QCD penguin operators (P)

P3 = (sLγµbL)
∑
q

(qγµq) , (3.55)

P4 = (sLγµT
abL)

∑
q

(qγµT aq) , (3.56)

P5 = (sLγµ1γµ2γµ3bL)
∑
q

(
qγµ1γµ2γµ3q

)
, (3.57)

P6 = (sLγµ1γµ2γµ3T
abL)

∑
q

(
qγµ1γµ2γµ3T aq

)
, (3.58)

� Chromo- and Electromagnetic dipole operators (M)

Q8g =
gs

16π2
mbsLσµνG

a,µνT abR, (3.59)

Q7γ =
e

16π2
mbsLσµνF

µνbR, (3.60)

where Fµν = ∂µAν − ∂νAµ,

� Semileptonic operators (L)

Q9V =
αe
4π

(sLγµbL)
(
`γµ`

)
, (3.61)

Q10A =
αe
4π

(sLγµbL)
(
`γµγ5`

)
, (3.62)

which occur only in the semileptonic mode,

� Electroweak penguin operators (Q)

P3Q = (sLγµbL)
∑
q

Qq (qγµq) , (3.63)

P4Q = (sLγµT
abL)

∑
q

Qq (qγµT aq) , (3.64)

P5Q = (sLγµ1γµ2γµ3bL)
∑
q

Qq
(
qγµ1γµ2γµ3q

)
, (3.65)

P6Q = (sLγµ1γµ2γµ3T
abL)

∑
q

Qq
(
qγµ1γµ2γµ3T aq

)
, (3.66)

when QED corrections are taken into account, and penguins with the exchange of a photon are non-

negligible. Above, p = u, c, since top is integrated out in an effective 5-flavour theory, ` = e, µ, τ , αe

is the electromagnetic counterpart of αs, Qq is the electric charge of a corresponding quark q, and we

have neglected the chirally suppressed SM dipoles. If higher order electroweak effects are considered, one

further, “evanescent-like”, operator is required:
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b u, c, t s

W

γ

b W s

u,c,t

γ,Z

` `

b u, c, t s

W W

` ν `

Figure 3.4: Examples of typical radiative and semileptonic channels of the b → s transition within the

SM.

� The operator Qb (B)

Qb =
1

12

[
(sLγµ1γµ2γµ3bL)

(
bγµ1γµ2γµ3b

)
− 4 (sLγµbL)

(
bγµb

)]
, (3.67)

which corresponds in four dimensions to (sLγµbL)
(
bLγ

µbL
)
, and receives contributions from electroweak

boxes [105, 106].

The removal of the top allows for the CKM pre-factors of sums over quark-blind operators to be

simplified using one of the unitarity conditions of the CKM matrix:

V ∗usVub + V ∗csVcb = −V ∗tsVtb. (3.68)

Writing each combination V ∗isVib as λi, the ∆B = 1 effective Hamiltonian is cast, in full generality, as a

combination of two distinct parts:

H∆B=1
eff = Hhad

eff +Hsl+γ
eff , (3.69)

where the hadronic term involves the usual first seven operators – current-current operators, QCD pen-

guins, and the chromomagnetic dipole operator – together with the QED-related PiQ and Qb,

Hhad
eff =

4GF√
2

[ ∑
p=u,c

λp (C1Q
p
1 + C2Q

p
2)− λt

(
6∑
i=3

CiPi + C8Q8g +

6∑
i=3

CiQPiQ + CbQb

)]
, (3.70)

while the second piece includes the electromagnetic dipole and semileptonic operators:

Hsl+γ
eff = −4GF√

2
λt

(
C7Q7γ + C9Q9V + C10Q10A

)
. (3.71)

3.2.2 Matching Conditions for Wilson Coefficients

Ever since the work of Inami and Lim [107], the calculation of penguin and box diagrams has been

systematized, with each possible type of FCNC process having its own loop described by a given function

of xt = m2
t/M

2
W . In Fig. 3.4, we display some examples of the lowest order penguin and box diagrams

contributing to the matching conditions. The Inami-Lim functions and the matchings that follow come,

unless specifically said otherwise, from the QCD calculations of Ref. [108] and the QED conditions added

in Ref. [109]. Due to their large expressions, we collect in Appendix B the functions not provided in

either of those two references.

Given the prevalence of factors 4π in matching conditions and anomalous dimensions, we introduce

the modified couplings α̃s,e = αs,e/(4π), and define the ratio κ = α̃e/α̃s. Although the orders in QED
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Order label α̃ns κ
m e− s relation

LOQED κ α̃e / α̃s

NLOQED,11 α̃s κ α̃e

NLOQED,21 α̃2
s κ α̃e α̃s

NLOQED,02 κ2 α̃2
e / α̃

2
s

NLOQED,12 α̃s κ
2 α̃2

e / α̃s

NLOQED,22 α̃2
s κ

2 α̃2
e

Table 3.1: Structure and labelling of the orders in QED. How each order translates to powers of α̃e and

α̃s is given for clarity in the last column.

will mainly be given in numeric form, with two indices (n,m) that represent the power of, respectively,

α̃s and κ, the labelling in Table 3.1 is also used throughout the work. We can, therefore, organize the

expansion in terms of coupling constants of a WC at the matching scale as follows [109]:

Ci(µW ) = C00
i (µW ) + α̃s(µW )C10

i (µW ) + α̃2
s(µW )C20

i (µW )

+ α̃s(µW )κ(µW )C11
i (µW ) + α̃2

s(µW )κ(µW )C21
i (µW ) +O(α̃3

s, α̃
2
s κ

2),
(3.72)

where C00
i , C10

i , and C20
i are, respectively, the QCD LO, NLO and NNLO terms of the WC, while

matchings at LOQED, C01
i , and at NLOQED,02 and NLOQED,12 are absent at high energy. For C9 and

C10, contributions at NLOQED,22 are also implemented.

As with the list of operators in the previous subsection, we go here block by block, each block moniker

being the suitably chosen letter that we put in between parenthesis for each type of operator [108, 109]:

� Matching conditions for C

C00
2 (µW ) = 1, (3.73)

C10
1 (µW ) = 15 + 6L, (3.74)

C20
1 (µW ) = −T (xt) +

7987

72
+

17

3
π2 +

475

6
L+ 17L2, (3.75)

C20
2 (µW ) =

127

18
+

4

3
π2 +

46

3
L+ 4L2, (3.76)

C11
2 (µW ) = −22

9
− 4

3
Lz +

1

9
, (3.77)

where L = ln
(
µ2
W /M

2
W

)
, Lz = ln

(
µ2
W /M

2
Z

)
, and the NLOQED,11 matching of C2 is as given in Ref. [110].

� Matching conditions for P

C10
4 (µW ) = E0(xt)−

7

9
+

2

3
L, (3.78)

C20
3 (µW ) = Gt1(xt)−

680

243
− 20

81
π2 − 68

81
L− 20

27
L2, (3.79)

C20
4 (µW ) = Et1(xt) +

950

243
+

10

81
π2 +

124

27
L+

10

27
L2, (3.80)

C20
5 (µW ) = − 1

10
Gt1(xt) +

2

15
E0(xt) +

68

243
+

2

81
π2 +

14

81
L+

2

27
L2, (3.81)

C20
6 (µW ) = − 3

16
Gt1(xt) +

1

4
E0(xt) +

85

162
+

5

108
π2 +

35

108
L+

5

36
L2, (3.82)
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C11
3 (µW ) = − 2

9s2
W

(
2B0(xt) + C0(xt)

)
, (3.83)

C11
5 (µW ) =

1

9s2
W

(
B0(xt) +

1

2
C0(xt)

)
, (3.84)

C21
3 (µW ) =

1

s2
W

(
4

9
Bd1 (xt) +

4

27
B̃d1 (xt) +

2

9
Bu1 (xt) +

2

27
B̃u1 (xt)−

2

9
C1(xt)

+
320

27
B0(xt) +

160

27
C0(xt)

)
, (3.85)

C21
4 (µW ) =

16

27
C0(xt) +

1

s2
W

(
8

9
B̃d1 (xt) +

4

9
B̃u1 (xt)−

2

9
G(xt, xz)−

88

9
B0(xt)−

184

27
C0(xt)

)
,

(3.86)

C21
5 (µW ) =

1

s2
W

(
− 1

9
Bd1 (xt)−

1

27
B̃d1 (xt)−

1

18
Bu1 (xt)−

1

54
B̃u1 (xt) +

1

18
C1(xt)

− 32

27
B0(xt)−

16

27
C0(xt)

)
, (3.87)

C21
6 (µW ) =

1

s2
W

(
−2

9
B̃d1 (xt)−

1

9
B̃u1 (xt) +

1

18
G(xt, xz) +

4

3
B0(xt) +

2

3
C0(xt)

)
, (3.88)

where s2
w = sin2 θW , xz = M2

Z/M
2
W , and the contributions C21

i , calculated in the ‘standard basis’ in

Ref. [111], were kindly provided to us by Mikolaj Misiak and Ulrich Haisch.

� Matching conditions for M

C00
7 (µW ) = −1

2
A0(xt)−

23

36
, (3.89)

C00
8 (µW ) = −1

2
F0(xt)−

1

3
, (3.90)

C10
7 (µW ) = −1

2
At1(xt) +

713

243
+

4

81
L− 4

9
C10

4 (µW ), (3.91)

C10
8 (µW ) = −1

2
F t1(xt) +

91

324
− 4

27
L− 1

6
C10

4 (µW ), (3.92)

C20
7 (µW ) = C

t,(3)
7,mt

(xt) + C
t,(3)
7,loop(xt)−

(
C
c,(3)
7,MW

(xt) +
13763

2187
L+

814

729
L2

)
− 1

3
C20

3 (µW )− 4

9
C20

4 (µW )− 20

3
C20

5 (µW )− 80

9
C20

6 (µW ), (3.93)

C20
8 (µW ) = C

t,(3)
8,mt

(xt) + C
t,(3)
8,loop(xt)−

(
C
c,(3)
8,MW

(xt) +
16607

5832
L+

397

486
L2

)
+ C20

3 (µW )− 1

6
C20

4 (µW )− 20C20
5 (µW )− 10

3
C20

6 (µW ), (3.94)

C11
7 (µW ) =

1

s2
W

[
1.11− 1.15

(
1− m2

t

1702

)
− 0.444 ln

Mh

100
− 0.21 ln2 Mh

100
− 0.513 ln

Mh

100
ln
mt

170

]
+

(
8

9
C00

7 (µW )− 104

243

)
L, (3.95)

C11
8 (µW ) =

1

s2
W

[
− 0.143 + 0.156

(
1− m2

t

1702

)
− 0.129 ln

Mh

100
− 0.0244 ln2 MH

100

− 0.037 ln
Mh

100
ln
mt

170

]
+

(
4

9
C00

8 (µW )− 4

3
C00

7 (µW )− 58

81

)
L. (3.96)

It cannot go without remark that these matching conditions are not those of the plain dipole operators,

but of effective operators which are given by the combinations that actually enter the calculation of
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physical observables [103, 112]:

C7(µ) −→ C7(µ) +

6∑
i=3

yi

[
Ci(µ)− 1

3
CiQ(µ)

]
, (3.97)

C8(µ) −→ C8(µ) +

6∑
i=3

zi

[
Ci(µ)− 1

3
CiQ(µ)

]
, (3.98)

where y = (−1/3, −4/9, −20/3, −80/9), z = (1, −16, 20, −10/3). Unlike C7 and C8 alone, the effective

coefficients are regularization scheme independent at LO [113, 114], and do not depend on the basis

of physical operators. C
t,(3)
i,mt

, C
c,(3)
i,MW

, and C
t,(3)
i,loop correspond to power expansions and a loop function

appearing in the 3-loop matching calculated in Ref. [115], all given in Appendix B.1. The QED contri-

butions, only known up to NLOQED,11, were provided in Ref. [110] in the accurate approximate formulas

above.

� Matching conditions for L

C11
9V (µW ) =

1

s2
W

Y0(xt) +W0(xt) +
4

9
− 4

9
Lt, (3.99)

C11
10A(µW ) = − 1

s2
W

Y0(xt), (3.100)

C21
9V (µW ) =

1− 4s2
W

s2
W

Ct1(xt)−
1

s2
W

Bt1(xt)−Dt
1(xt) +

1

s2
W

+
524

729
− 128

243
π2 − 16

3
L− 128

81
L2,

(3.101)

C21
10A(µW ) =

1

s2
W

[
Bt1(xt)− Ct1(xt)

]
− 1

s2
W

, (3.102)

C22
9V (µW ) = − x2

t

32s2
W

(
4s2
W − 1

) [
3 + τ

(2)
b (xht)−∆t(µW , xht)

]
, (3.103)

C22
10A(µW ) = − x2

t

32s2
W

[
3 + τ

(2)
b (xht)−∆t(µW , xht)

]
, (3.104)

where Lt = ln
(
µ2
W /m

2
t

)
, and τ

(2)
b and ∆t, with xht = M2

h/m
2
t , are auxiliary functions from Ref. [116],

written here in Appendix B.2. For C10, the expression of the NLOQED,22 matching refers to the large-mt

expansion of Ref. [116]. We have used, however, the full mt dependence found in Ref. [117], which is

attached to the paper on arXiv as a Mathematica package.

� Matching conditions for Q

C11
3Q(µW ) = 4C0(xt) + D̃0(xt) +

4

9
L− 1

s2
W

(
10

3
B0(xt)−

4

3
C0(xt)

)
, (3.105)

C11
5Q(µW ) =

1

s2
W

(
5

6
B0(xt)−

1

3
C0(xt)

)
, (3.106)

C21
3Q(µW ) = 4C1(xt) + 4Dt

1(xt) +
320

9
C0(xt) +

1

s2
W

(
− 2

3
Bd1 (xt)−

2

9
B̃d1 (xt) +

2

3
Bu1 (xt)

+
2

9
B̃u1 (xt) +

4

3
C1(xt) +

800

9
B0(xt)−

640

9
C0(xt)

)
, (3.107)

C21
4Q(µW ) = −4

3
G(xt, xz)−

16

3
H(xt, xz)− 32C0(xt) +

1

s2
W

(
− 4

3
B̃d1 (xt) +

4

3
B̃u1 (xt)

+
4

3
G(xt, xz)− 80B0(xt) +

112

3
C0(xt)

)
, (3.108)

27



C21
5Q(µW ) = −32

9
C0(xt) +

1

s2
W

(
1

6
Bd1 (xt) +

1

18
B̃d1 (xt)−

1

6
Bu1 (xt)−

1

18
B̃u1 (xt)

− 1

3
C1(xt)−

80

9
B0(xt) +

64

9
C0(xt)

)
, (3.109)

C21
6Q(µW ) =

1

3
G(xt, xz) +

1

3
H(xt, xz) + 4C0(xt) +

1

s2
W

(
1

3
B̃d1 (xt)−

1

3
B̃u1 (xt)

− 1

3
G(xt, xz) + 10B0(xt)−

16

3
C0(xt)

)
, (3.110)

where the matchings for C21
iQ were, as with the case of the QCD penguins, obtained from personal notes

of Mikolaj Misiak and Ulrich Haisch.

� Matching condition for B

C11
b (µW ) = − 1

2s2
W

S0(xt). (3.111)

Coding in HEPfit, whose structure shall be overviewed in the next chapter, all QED contributions

and the totality of the Q and B blocks, putting all blocks together in a coherent set of SM matchings,

was an integral part of the student’s work.

3.2.3 The Anomalous Dimension Matrix

In this subsection we survey the QCD and QED anomalous dimension matrices of our operator basis.

By QCD, we mean the matrices γn0 in the augmented expansion we now make in powers of α̃s and α̃e:

γ(µ) =
∑
n,m=0
n+m≥1

γ(nm) α̃ns (µ) α̃me (µ). (3.112)

Ordering the operators by block, with the same order as was used to list the operators, only with a slight

swap in M to follow convention – such that Q7γ precedes Q8g –, we mimic Ref. [109] in dividing the

matrix at any given order n,m into combinations of blocks, its generic structure being

γ(nm) =



[
γ

(nm)
CC

]
2×2

[
γ

(nm)
CP

]
2×4

[
γ

(nm)
CM

]
2×2

[
γ

(nm)
CL

]
2×2

[
γ

(nm)
CQ

]
2×4[

γ
(nm)
PP

]
4×4

[
γ

(nm)
PM

]
4×2

[
γ

(nm)
PL

]
4×2

[
γ

(nm)
PQ

]
4×4[

γ
(nm)
MM

]
2×2 [

γ
(nm)
LL

]
2×2[

γ
(nm)
QP

]
4×4

[
γ

(nm)
QM

]
4×2

[
γ

(nm)
QL

]
4×2

[
γ

(nm)
QQ

]
4×4[

γ
(nm)
BP

]
1×4

[
γ

(nm)
BL

]
1×2

[
γ

(nm)
BQ

]
1×4

[
γ

(nm)
BB

]
1×1


(3.113)

where the vanishing elements were left blank so as to optimize readability.

Before presenting the state-of-the-art of each combination in Eq. (3.113), a few general issues may be

addressed. First there is the issue of nf -dependence: while most QCD matrices are known from literature

with number of active flavours unfixed, all QED matrices, and the QCD matrices associated with the Q

and B blocks, have been provided in Refs. [106, 109] only for nf = 5. Moreover, on that first reference

one encounters also the predicament that the operators are written in the so-called rescaled basis, where

dipole and semileptonic operators are divided by powers of the strong coupling constant, which has the
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effect of moving some QCD contributions around, and some QED anomalous dimensions get mixed into

their QCD counterparts. For the combinations of blocks that are blind to the rescaling, we still managed

to salvage many elements that were omitted in Ref. [109].

Let us proceed, then, one by one, through all the known non-vanishing sub-matrices of Eq. (3.113),

writing only the orders that either were not present in Ref. [109], or for which we found an nf -dependent

formulation, referencing at every step whence they were obtained. For all the remaining parts, we refer

the reader to that paper. We present nf = 5 cases in matrix form, expanding the nf -dependent matrices

element by element; in order to avoid writing too many zeros, we stick to the non-null matrix elements.

Notice that for the C, P, and Q blocks, nf dependence of the QED anomalous dimension is known in

the standard basis [118–120], but nf -dependent rotation matrices for the three blocks is not available at

NLO. The exercise of deriving an nf -dependent matrix falls from the scope of the present thesis, and is

thus left for the future.

CC: The QCD anomalous dimension matrix is known at NNLO, with nf -dependence [121]:

� γ(20)

γCC(0, 0) = −145

3
+ nf

16

9
, (3.114)

γCC(0, 1) = −26 + nf
40

27
, (3.115)

γCC(1, 0) = −45 + nf
20

3
, (3.116)

γCC(1, 1) = −28

3
, (3.117)

� γ(30)

γCC(0, 0) = −1927

2
+ nf

257

9
+ n2

f

40

9
+ ζ(3)

(
224 + nf

160

3

)
, (3.118)

γCC(0, 1) =
475

9
+ nf

362

27
− n2

f

40

27
− ζ(3)

(
896

3
+ nf

320

9

)
, (3.119)

γCC(1, 0) =
475

9
+ nf

362

27
− n2

f

40

27
− ζ(3)

(
896

3
+ nf

320

9

)
, (3.120)

γCC(1, 1) =
1298

3
− nf

76

3
− ζ(3) 224, (3.121)

where ζ(3) is Apéry’s constant.

CP: Again from Ref. [121], this sub-matrix of Eq. (3.113) is known at NNLO in QCD, with nf -

dependence:

� γ(30)

γCP(0, 0) =
269107

13122
− nf

2288

729
− ζ(3)

1360

81
, (3.122)

γCP(0, 1) = −2425817

13122
+ nf

30815

4374
− ζ(3)

776

81
, (3.123)

γCP(0, 2) = −343783

52488
+ nf

392

729
+ ζ(3)

124

81
, (3.124)

γCP(0, 3) = −37573

69984
+ nf

35

972
+ ζ(3)

100

27
, (3.125)

γCP(1, 0) =
69797

2187
+ nf

904

243
+ ζ(3)

2720

27
, (3.126)
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γCP(1, 1) =
1457549

8748
− nf

22067

729
− ζ(3)

2768

27
, (3.127)

γCP(1, 2) = −37889

8748
− nf

28

243
− ζ(3)

248

27
, (3.128)

γCP(1, 3) =
366919

11664
− nf

35

162
− ζ(3)

110

9
. (3.129)

CM: The QCD anomalous dimension matrix has been determined, in Ref. [122], at NNLO and with

nf -dependence:

� γ(10)

γCM(0, 0) =
8

243
−Qu

4

3
, (3.130)

γCM(0, 1) =
173

162
, (3.131)

γCM(1, 0) = −16

81
+Qu 8, (3.132)

γCM(1, 1) =
70

27
, (3.133)

� γ(20)

γCM(0, 0) =
12614

2187
− nf

64

2187
−Qu

374

27
+ nfQu

2

27
, (3.134)

γCM(0, 1) =
65867

5832
+ nf

431

5832
, (3.135)

γCM(1, 0) = −2332

729
+ nf

128

729
+Qu

136

9
− nfQu

4

9
, (3.136)

γCM(1, 1) =
10577

486
− nf

917

972
, (3.137)

� γ(30)

γCM(0, 0) =
77506102

531441
− nf

875374

177147
+ n2

f

560

19683
−Qu

9731

162
+ nfQu

11045

729
+ n2

fQu
316

729

+Q
3695

486
+ ζ(3)

(
− 112216

6561
+ nf

728

729
+Qu

25508

81
− nfQu

64

81
−Q 100

27

)
, (3.138)

γCM(0, 1) = −421272953

1417176
− nf

8210077

472392
− n2

f

1955

6561
+ ζ(3)

(
− 953042

2187
− nf

10381

486

)
, (3.139)

γCM(1, 0) = −15463055

177147
+ nf

242204

59049
− n2

f

1120

6561
+Qu

55748

27
− nfQu

33970

243
− n2

fQu
632

243

−Q 3695

81
+ ζ(3)

(
365696

2187
− nf

1168

243
−Qu

51232

27
− nfQu

1024

27
+Q

200

9

)
, (3.140)

γCM(1, 1) =
98548513

472392
− nf

5615165

78732
− n2

f

2489

2187
+ ζ(3)

(
− 607103

729
− nf

1679

81

)
, (3.141)

where Qu = 2/3, Qd = −1/3, and Q = nuQu + ndQd, with nu and nd the number of, respectively,

up-type and down-type quarks in a given nf -flavour theory. In Ref. [123], the leading QED anomalous

dimension matrix is found for the basis with non-rescaled dipole operators, for nf = 5 only:

• γ(01)
CM =

−
832

729

22

243

208

243
−116

81

 . (3.142)
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PP: Like CC and CP, this sub-matrix has been given in Ref. [121], at NNLO in QCD, with nf -dependence:

� γ(10)

γPP(0, 1) = −52

3
, (3.143)

γPP(0, 3) = 2, (3.144)

γPP(1, 0) = −40

9
, (3.145)

γPP(1, 1) = −160

9
+ nf

4

3
, (3.146)

γPP(1, 2) =
4

9
, (3.147)

γPP(1, 3) =
5

6
, (3.148)

γPP(2, 1) = −256

3
, (3.149)

γPP(2, 3) = 20, (3.150)

γPP(3, 0) = −256

9
, (3.151)

γPP(3, 1) = −544

9
+ nf

40

3
, (3.152)

γPP(3, 2) =
40

9
, (3.153)

γPP(3, 3) =
2

3
, (3.154)

� γ(20)

γPP(0, 0) = −4468

81
, (3.155)

γPP(0, 1) = −29129

81
− nf

52

9
, (3.156)

γPP(0, 2) =
400

81
, (3.157)

γPP(0, 3) =
3493

108
− nf

2

9
, (3.158)

γPP(1, 0) = −13678

243
+ nf

368

81
, (3.159)

γPP(1, 1) = −79409

243
+ nf

1334

81
, (3.160)

γPP(1, 2) =
509

486
− nf

8

81
, (3.161)

γPP(1, 3) =
13499

648
− nf

5

27
, (3.162)

γPP(2, 0) = −244480

81
− nf

160

9
, (3.163)

γPP(2, 1) = −29648

81
− nf

2200

9
, (3.164)

γPP(2, 2) =
23116

81
+ nf

16

9
, (3.165)

γPP(2, 3) =
3886

27
+ nf

148

9
, (3.166)

γPP(3, 0) =
77600

243
− nf

1264

81
, (3.167)
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γPP(3, 1) = −28808

243
+ nf

164

81
, (3.168)

γPP(3, 2) = −20324

243
+ nf

400

81
, (3.169)

γPP(3, 3) = −21211

162
+ nf

622

27
, (3.170)

� γ(30)

γPP(0, 0) = −4203068

2187
+ nf

14012

243
− ζ(3)

608

27
, (3.171)

γPP(0, 1) = −18422762

2187
+ nf

888605

2916
+ n2

f

272

27
+ ζ(3)

(
39824

27
+ nf 160

)
, (3.172)

γPP(0, 2) =
674281

4374
− nf

1352

243
− ζ(3)

496

27
, (3.173)

γPP(0, 3) =
9284531

11664
− nf

2798

81
− n2

f

26

27
− ζ(3)

(
1921

9
+ nf 20

)
, (3.174)

γPP(1, 0) = −5875184

6561
+ nf

217892

2187
+ n2

f

472

81
+ ζ3

(
27520

81
+ nf

1360

9

)
, (3.175)

γPP(1, 1) = −70274587

13122
+ nf

8860733

17496
− n2

f

4010

729
+ ζ(3)

(
16592

81
+ nf

2512

27

)
, (3.176)

γPP(1, 2) =
2951809

52488
− nf

31175

8748
− n2

f

52

81
− ζ(3)

(
3154

81
+ nf

136

9

)
, (3.177)

γPP(1, 3) =
3227801

8748
− nf

105293

11664
− n2

f

65

54
+ ζ(3)

(
200

27
− nf

220

9

)
, (3.178)

γPP(2, 0) = −194951552

2187
+ nf

358672

81
− n2

f

2144

81
+ ζ(3)

87040

27
, (3.179)

γPP(2, 1) = −130500332

2187
− nf

2949616

729
+ n2

f

3088

27
+ ζ(3)

(
238016

27
+ nf 640

)
, (3.180)

γPP(2, 2) =
14732222

2187
− nf

27428

81
+ n2

f

272

81
− ζ(3)

13984

27
, (3.181)

γPP(2, 3) =
16521659

2916
+ nf

8081

54
− n2

f

316

27
− ζ(3)

(
22420

9
+ nf 200

)
, (3.182)

γPP(3, 0) =
162733912

6561
− nf

2535466

2187
+ n2

f

17920

243
+ ζ(3)

(
174208

81
+ nf

12160

9

)
, (3.183)

γPP(3, 1) =
13286236

6561
− nf

1826023

4374
− n2

f

159548

729
− ζ(3)

(
24832

81
+ nf

9440

27

)
, (3.184)

γPP(3, 2) = −22191107

13122
+ nf

395783

4374
− n2

f

1720

243
− ζ(3)

(
33832

81
+ nf

1360

9

)
, (3.185)

γPP(3, 3) = −32043361

8748
+ nf

3353393

5832
− n2

f

533

81
+ ζ(3)

(
9248

27
− nf

1120

9

)
. (3.186)

PM: The QCD anomalous dimension matrix is known at NNLO, with nf -dependence [122]:

� γ(10)

γPM(0, 0) = −176

81
, (3.187)

γPM(0, 1) =
14

27
, (3.188)

γPM(1, 0) =
88

243
− nf

16

81
, (3.189)

γPM(1, 1) =
74

81
− nf

49

54
, (3.190)
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γPM(2, 0) = −6272

81
, (3.191)

γPM(2, 1) =
1736

27
+ nf 36, (3.192)

γPM(3, 0) =
3136

243
− nf

160

81
+Q 48, (3.193)

γPM(3, 1) =
2372

81
+ nf

160

27
, (3.194)

� γ(20)

γPM(0, 0) =
97876

729
− nf

4352

729
−Q 112

3
, (3.195)

γPM(0, 1) =
42524

243
− nf

2398

243
, (3.196)

γPM(1, 0) = −70376

2187
− nf

15788

2187
+ n2

f

32

729
−Q 140

9
, (3.197)

γPM(1, 1) = −159718

729
− nf

39719

5832
− n2

f

253

486
, (3.198)

γPM(2, 0) =
1764752

729
− nf

65408

729
−Q 3136

3
, (3.199)

γPM(2, 1) =
2281576

243
+ nf

140954

243
− n2

f

14

,
(3.200)

γPM(3, 0) =
4193840

2187
− nf

324128

2187
+ n2

f

896

729
−Q 1136

9
− nfQ

56

3
, (3.201)

γPM(3, 1) = −3031517

729
− nf

15431

1458
− n2

f

6031

486
, (3.202)

� γ(30)

γPM(0, 0) =
102439553

177147
− nf

12273398

59049
+ n2

f

5824

6561
+Q

26639

81
− nfQ

8

27
+ ζ(3)

(
3508864

2187

− nf
1904

243
−Q 1984

9
− nfQ

64

9

)
, (3.203)

γPM(0, 1) =
3205172129

472392
− nf

108963529

314928
+ n2

f

58903

4374
+ ζ(3)

(
− 1597588

729
+ nf

13028

81
− n2

f

20

9

)
,

(3.204)

γPM(1, 0) = −2493414077

1062882
− nf

9901031

354294
+ n2

f

243872

59049
− n3

f

1184

6561
−Q 49993

972
+ nfQ

305

27

+ ζ(3)

(
− 1922264

6561
+ nf

308648

2187
− n2

f

1280

243
+Q

1010

9
− nfQ

200

27

)
, (3.205)

γPM(1, 1) = −6678822461

2834352
+ nf

127999025

1889568
+ n2

f ∗
1699073

157464
+ n3

f

505

4374
+ ζ(3)

(
2312684

2187

+ nf
128347

729
+ n2

f

920

81

)
, (3.206)

γPM(2, 0) =
8808397748

177147
− nf

174839456

59049
+ n2

f

1600

729
−Q 669694

81
+ nfQ

10672

27

+ ζ(3)

(
123543040

2187
− nf

207712

243
+ n2

f

128

27
−Q 24880

9
− nfQ

640

9

)
, (3.207)

γPM(2, 1) =
29013624461

118098
− nf

64260772

19683
− n2

f

230962

243
− n2

f

148

27
+ ζ(3)

(
− 69359224

729

− nf
885356

81
− n2

f

5080

9

)
, (3.208)
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γPM(3, 0) =
7684242746

531441
− nf

351775414

177147
− n2

f

479776

59049
− n2

f

11456

6561
+Q

3950201

243
− nfQ

130538

81

− n2
fQ

592

81
+ ζ(3)

(
7699264

6561
+ nf

2854976

2187
− n2

f

12320

243
−Q 108584

9
− nfQ

1136

27

)
,

(3.209)

γPM(3, 1) = −72810260309

708588
+ nf

2545824851

472392
− n2

f

33778271

78732
− n3

f

3988

2187
+ ζ(3)

(
− 61384768

2187

− nf
685472

729
+ n2

f

350

81

)
. (3.210)

In Ref. [123], the leading QED anomalous dimension matrix is found for the basis with non-rescaled

dipole operators, for nf = 5 only:

• γ(01)
PM =



− 20

243

20

81

−176

729

14

243

−22712

243

1328

81

−6272

729
−1180

243


. (3.211)

MM: For this block, we cite Ref. [124], and write the following expressions of the QCD anomalous

dimension matrix up to NNLO, with nf -dependence:

� γ(10)

γMM(0, 0) =
32

3
, (3.212)

γMM(1, 0) = Qd
32

3
, (3.213)

γMM(1, 1) =
28

3
, (3.214)

� γ(20)

γMM(0, 0) =
1936

9
− nf

224

27
, (3.215)

γMM(1, 0) = Qd
368

3
− nfQd

224

27
, (3.216)

γMM(1, 1) =
1456

9
− nf

61

27
, (3.217)

� γ(30)

γMM(0, 0) =
307448

81
− nf

23776

81
− n2

f

352

81
+ ζ(3)

(
− 1856

27
− nf

1280

9

)
, (3.218)

γMM(1, 0) = −Q 1600

27
+Qd

159872

81
− nfQd

17108

81
− n2

fQd
352

81
+ ζ(3)

(
Q

640

9
−Qd

1856

27

− nfQd
1280

9

)
, (3.219)

γMM(1, 1) =
268807

81
− nf

4343

27
− n2

f

461

81
+ ζ(3)

(
− 28624

27
− nf

1312

9

)
. (3.220)
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Regarding the QED anomalous dimension matrix, we read the following contributions from Ref. [106],

which has fixed nf = 5:

• γ(01)
MM =


16

9
0

−8

3

8

9

 , (3.221)

• γ(11)
MM =

−
256

27
−152

9

128

81
−40

27

 . (3.222)

QP: Once more from Ref. [106], here are this combination’s QED anomalous dimensions, fixed at nf = 5:

• γ(01)
QP =



40

27
0 − 4

27
0

0
40

27
0 − 4

27

256

27
0 −40

27
0

0
256

27
0 −40

27


, (3.223)

• γ(11)
QP =



−2240

81

39392

729

224

81
−92

27

2176

243

84890

2187
−184

243
−224

81

−23552

81

399776

729

2240

81
−752

27

23296

243

933776

2187
−1504

243
−2030

81


. (3.224)

QM: The QCD anomalous dimension matrix was derived in Ref. [123] for the non-recaled basis, at LO

and with nf = 5:

• γ(01)
QM =



176

243
−14

81

−136

729
−295

486

6272

243
−764

81

39152

729
−1892

243


. (3.225)

QQ: As a rescaling-blind sub-matrix of the anomalous dimension, we take its first two orders in QED

from Ref. [106], given with nf = 5:

• γ(01)
QQ =



332

27
0 −2

9
0

32

81

20

9
0 −2

9

3152

27
0 −20

9
0

512

81

128

9
0 −20

9


, (3.226)
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• γ(11)
QQ =



−5888

729

13916

81

112

27
−812

81

−2552

2187

15638

243
−176

81
−2881

486

−90944

729

90128

81

1120

27
−1748

81

1312

2187

102488

243
−1592

81
−6008

243


. (3.227)

BP: This mixing constitutes a row vector, which has a non-zero element at NLO in QED, as given in

Ref. [106], for nf = 5:

• γ(11)
BP =

(
0 −232

81
0 0

)
. (3.228)

BQ: A row vector as well, these QED entries can be obtained from Ref. [106], for nf = 5:

• γ(01)
BQ =

(
−16

9
0 0 0

)
, (3.229)

• γ(11)
BQ =

(
0

580

27
0 −94

27

)
. (3.230)

BB: Finally, the QED contributions to this matrix element read from Ref. [106], for nf = 5:

• γ(01)
BB =

4

3
, (3.231)

• γ(11)
BB = −388

9
. (3.232)

3.2.4 Renormalization Group Evolution

Regarding the running of WCs from the matching scale down to the typical scale of B decays, µb, we

follow once more Ref. [109], which stands as the current last word on the evolution with both QCD and

QED contributions. The system of RGEs for α̃s and α̃e can be written as
µ
dα̃s
dµ

= −2 α̃2
s

∑
n,m=0

βsnm α̃
n
s α̃

m
s

µ
dα̃e
dµ

= +2 α̃2
e

∑
n,m=0

βenm α̃
n
e α̃

m
s

, (3.233)

where the βn0 correspond to the already mentioned pure-QCD coefficients, βn, given, in the MS scheme,

in Appendix A.1. Solving for α̃s with an initial condition at µW , perturbatively in α̃s(µW ) and α̃e(µW ),

but exactly in the denominators of the LO solution,

vs = 1 + 2βs00 α̃s(µW ) ln
µ

µW
, (3.234)

ve = 1− 2βe00 α̃e(µW ) ln
µ

µW
, (3.235)
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one obtains, including all 3-loop contributions plus the QCD NNNLO term [109]:

α̃s(µ) =
α̃s(µW )

vs
− α̃2

s(µW )

v2
s

(
βs10

βs00

ln vs −
βs01

βe00

ln ve

)
+
α̃3
s(µW )

v3
s

[
βs20

βs00

(1− vs) (3.236)

+

(
βs10

βs00

)2

(ln2 vs − ln vs + vs − 1) +

(
βs01

βe00

)2

ln2 ve +
βs01β

s
10

βs00β
e
00

(−2 ln vs ln ve + ρ ve ln ve)

]
+
α̃2
s(µW ) α̃e(µW )

v2
sve

[
βs02

βe00

(ve − 1) +
βs11

βs00

ρve ln
ve
vs

+
βs01β

e
10

(βe00)2
(ln ve − ve + 1) +

βs01β
s
10

(βs00)2
ρ ln vs

+
βs01β

e
01

βs00β
e
00

(
ρ ve ln

vs
ve
− ln vs

)]
+
α̃4
s(µW )

v4
s

[
βs30

βs00

1− v2
s

2
+
βs20β

s
10

(βs00)2

(
(2 vs − 3) ln vs + v2

s − vs
)

+

(
βs10

βs00

)3(
− ln3 vs +

5

2
ln2 vs + 2 (1− vs) ln vs −

1

2
(vs − 1)2

)]
+O(α̃5

s, α̃
2
s α̃

2
e, α̃

3
s α̃e),

where

ρ =
βs00 α̃s(µW )

βs00 α̃s(µW ) + βe00 α̃e(µW )
. (3.237)

By the same token, the solution for α̃e follows much the same structure, with obvious replacements

applied: α̃s ↔ α̃e, vs ↔ ve, and βsnm ↔ −βenm. For this coupling, we keep the terms up to O(α̃3
e, α̃

2
e α̃

2
s).

As with the pure-QCD coefficients, the expressions of βenm, and those of βsnm with m 6= 0 are pushed to

Appendix A.2.

To solve the RGE of the WCs, in Eq. (3.44), one acknowledges that α̃e � α̃s and defines

λ =
βe00

βs00

κ(µW ), ω = 2βs00 α̃s(µW ), (3.238)

on which one will expand the evolutor, to O(ω3, λ3, ω2λ2). It also proves useful to define the quantities

b1 =
βs10

2(βs00)2
, b2 =

β20

2(βs00)2
− b21, b3 =

βs01

2βs00β
e
00

,

b4 =
βs11

4(βs00)2βe00

− 2 b1 b3, b5 =
βe01

2βs00β
e
00

− b1
(3.239)

together with a normalized version of the anomalous dimension matrices we encountered in the previous

subsection:

W (nm) =

(
γ(nm)

)T
2(βs00)n(βe00)m

. (3.240)

It can be shown that, recalling η = α̃s(µW )/α̃s(µW ), the RGE can be cast as [109]:

d

dη
~C =

1

η

[
W (10) +

2∑
k=−2

B(k)ηk + ω λ2 b5W
(01)η ln η +O(ω3, λ3, ω2λ2)

]
~C, (3.241)

where B(k) are η-independent matrices:

B(−2) = ω2
(
W (30) − b1W (20) − b2W (10)

)
, (3.242)

B(−1) = ω
(
W (20) − b1W (10)

)
+ ω2λ

(
W (21) − b1W (11) − b2W (01) −−b3W (20) − b4W (10)

)
, (3.243)

B(0) = ω λ(1− λ)
(
W (11) − b1W (01) − b3W (10)

)
, (3.244)

B(1) = λ(1− λ)W (01) + ω λ2
(
W (02) +W (11) − (b1 + b3)W (01) − b3W (10)

)
, (3.245)

B(2) = λ2W (01). (3.246)
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In this form, the evolution of each WC becomes

Ca(µ) = Vai

{
Dij(η) +

2∑
k=−2

E
(k)
ij f

(k)
ij (η) +

2∑
k,l=−2

∑
p

[
E

(k)
ip E

(l)
pj

]
g

(kl)
ipj (η) (3.247)

+

2∑
k,l,m=−2

∑
p,q

[
E

(k)
ip E

(l)
pqE

(m)
qj

]
h

(klm)
ipqj (η) +Rij r

(1)
ij (η) +O(ω3, λ3, ω2λ2)

}
V −1
ib Cb(µW ),

where V is the matrix that diagonalizes the LO anomalous dimension matrix,[
V −1W (10) V

]
ij

= θi δij , (3.248)

such that the matrices D, E(k), and R are are equal to:

Dij = ηθi δij , (3.249)

E
(k)
ij =

[
V −1B(k) V

]
ij
, (3.250)

Rij = ω λ2 b5

[
V −1W (01) V

]
ij
. (3.251)

The remaining objects are tensors, which are functions of both η and the eigenvalues θi:

f
(k)
ij (η) =

 ηθi ln η, if θj + k − θi = 0,

1
θj+k−θi , otherwise,

(3.252)

r
(k)
ij (η) =


1
2η
θi ln2 η, if θj + k − θi = 0,

1
θj+k−θi

(
ηθi+k ln η − f (k)

ij (η)
)
, otherwise,

(3.253)

g
(kl)
ipj (η) =

 r
(k)
ip (η), if θj + l − θp = 0,

1
θj+l−θp

(
f

(k+l)
ij (η)− f (k)

ip (η)
)
, otherwise,

(3.254)

h
(klm)
ipqj (η) =



1
6η
θi ln3 η if θp + k − θi = θq + l − θp =

= θj +m− θq = 0,

1
θp+k−θi

(
1
2η
θp+k ln2 η − r(k)

ip (η)
)
, if θq + l − θp = θj +m− θq = 0,

1
θq+l−θp

(
r

(k+l)
iq (η)− g(kl)

ipq (η)
)
, if θj +m− θq = 0,

1
θj+m−θq

(
g

(k,l+m)
ipj (η)− g(kl)

ipq (η)
)
, otherwise.

(3.255)

This solution to the RGE has WCs at the low scale, obtained from a series written in terms of, and

truncated in, couplings at the high scale. If one wants to express the low scale coefficients as

Ca =

2∑
n,m=0

α̃ns (µb)κ
m(µb)C

(nm)
a (µb) +O(α̃3

s, κ
3), (3.256)

one must take into consideration

α̃s(µW ) = η α̃s(µb), (3.257)

which holds at all orders, and, obtainable from the invertion of the solution to the RGE of the coupling

constant, the following relation [109]:

κ(µW ) =
κ(µb)

η
+
βe00

βs00

1− η
η2

κ2(µb) +

(
βe00β

s
10

(βs00)2
− βe01

βs00

)
ln η

η
α̃s(µb)κ

2(µb) +O(κ2α̃s, κ
3). (3.258)
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3.3 The Exclusive Sector

The inclusive decay B → Xsγ notwithstanding, it being the “K2 mountain” of weak decays [8], which

branching fraction has been measured at percent level [125–127] and to which we reserve a brief spot in

this section, experimental novelty and, more importantly, flavour anomalies lie nowadays with exclusive

channels of the b→ s transition. At the hadronic level, these comprehend rare semileptonic and radiative

decays into vector mesons, such as B → K∗`+`−/γ, for a spectator d-quark, and B → φ`+`−/γ, for

a spectator s-quark; the rare semileptonic mode B → K`+`−/γ; and, when b and s form themselves a

bound state, the leptonic B decay into muons, Bs → µ+µ−. Baryonic modes, like Λb → Λ`+`−, still have

large uncertainties associated [128] and will, thus, not be considered.

We dedicate this section to the observables whose experimental information we have used in the

global analysis that follows this chapter. The specifications of how we treat hadronic contributions in the

semileptonic (radiative) modes, plus a comment on the ratios sensible to lepton flavour universality, are

subsequently provided.

3.3.1 Definition of Observables

The K∗ channel is very rich from the quantity of information standpoint. The full semileptonic decay

is, in fact, B̄ → K̄∗
[
→ K̄π

]
`+`−, where K̄ = K̄0 or K̄−, and π = π+ or π0. This allows a precise

angular reconstruction of the decay, resulting in twelve different observables. Since different conventions

to the kinematic variables can be found in literature, it is important to define the one we use. With an

on-shell K∗, the decay is completely determined by four independent kinematic variables: the dilepton

invariant mass squared, q2, and the three angles: φ, the angle between the normals to the planes defined

by K−π+ and `+`−, in the B meson rest frame; θK , the angle between the direction of flight of the B̄

and the `−, in the dilepton rest frame; θK , the angle between the direction of motion of the B̄ and the

K̄ in the dimension the dimeson rest frame. Thus, the full differential decay rate can be shown to be

[129, 130]:

d4Γ

dq2d(cos θ`)d(cos θK)dφ
=

9

32

(
I1s sin2 θK + I1c cos2 θK + (I2s sin2 θK + I2c cos2 θK) cos 2θ`

+ I3 sin2 θK sin2 θ` cos 2φ+ I4 sin 2θK sin 2θ` cosφ

+ I5 sin 2θK sin θ` cosφ+ (I6s sin2 θK + I6c cos2 θK) cos θ`

+ I7 sin 2θK sin θ` sinφ+ I8 sin 2θK sin 2θ` sinφ

+ I9 sin2 θK sin2 θ` sin 2φ

)
.

(3.259)

The angular coefficients Ii are functions of q2, and their expressions depend on the choice of basis used

to describe B → V form factors. Here, we follow Ref. [24] and write these coefficients in terms of the

helicity amplitudes that appear in the SM,

I1s = F

(
1

2
(|H0

V |2 + |H0
A|2) + |HP |2 +

2m2
`

q2
(|H0

V |2 − |H0
A|2)

)
, (3.260)

I1c = F

(
β2 + 2

8
(|H+

V |2 + |H−V |2 + |H+
A |2 + |H−A |2) +

m2
`

q2
(|H+

V |2 − |H−V |2 − |H+
A |2 + |H−A |2)

)
, (3.261)
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I2c = −F β2

2
(|H0

V |2 + |H0
A|2), (3.262)

I2s = F
β2

8
(|H+

V |2 + |H−V |2 + |H+
A |2 + |H−A |2), (3.263)

I3 = −F
2

Re[H+
V (H−V )∗ +H+

A (H−A )∗], (3.264)

I4 = F
β2

4
Re[(H−V −H+

V )(H0
A)∗ + (H−A −H+

A )(H0
V )∗], (3.265)

I5 = F
β

4
Re[(H+

V +H−V )(H0
V )∗ + (H+

A +H−A )(H0
A)∗], (3.266)

I6s = F βRe[H−V (H−A )∗ −H+
V (H+

A )∗], (3.267)

I6c = 0, (3.268)

I7 = F
β

2
Im[(H+

A +H−A )(H0
V )∗ + (H+

V +H−V )(H0
A)∗], (3.269)

I8 = F
β2

4
Im[(H−V −H+

V )(H0
V )∗ + (H−A −H+

A )(H0
A)∗], (3.270)

I9 = F
β2

4
Im[H+

V (H−V )∗ +H+
A (H−A )∗], (3.271)

where Hλ
V , Hλ

A, and HP are helicity amplitudes, and

F =

√
λβ q2

3× 25 π3m3
B

BR(K∗ → Kπ), β =

√
1− 4m2

`

q2
,

λ = m4
B +m4

V + q4 − 2(m2
Bm

2
V +m2

Bq
2 +m2

V q
2).

(3.272)

We shall come back to the helicity basis and the form of each helicity amplitude in the next subsection.

For the CP-conjugate decay, one uses the angles as defined in the B̄ decay with K− → K+, but still

referring to `− (corresponding to θl → θl − π and φ → −φ), such that with conjugated CKM elements

the angular coefficients become:

I1s(c),2s(c),3,4,7 −→ Ī1s(c),2s(c),3,4,7, I5,6s(c),8,9 −→ −Ī5,6s(c),8,9. (3.273)

Given both B̄ → K̄∗`+`− and its CP-conjugate decay, B → K∗`+`−, produce the same number of

observables, it is useful to define twelve CP-averaged combinations. Two different prescriptions have

been advocated in the literature: while the authors of Ref. [130] have proposed

Si =

(
Ii + Īi

)/
d(Γ + Γ̄)

dq2
, (3.274)

together with twelve CP asymmetries,

Ai =

(
Ii − Īi

)/
d(Γ + Γ̄)

dq2
, (3.275)

most experiments employ the so-called “clean” observables championed by the authors of Ref. [14]:

Σi =
Ii + Īi

2
, ∆i =

Ii − Īi
2

. (3.276)

With the Σi in hand, one goes one step further on, and defines the following angular observables:

P1 =
Σ3

2Σ2s
, P2 =

Σ6s

8Σ2s
, P3 =

Σ9

4Σ2s
,

P ′4 =
Σ4√−Σ2sΣ2c

, P ′5 =
Σ5

2
√−Σ2sΣ2c

, P ′6 =
Σ7

2
√−Σ2sΣ2c

, P ′8 =
Σ8√−Σ2sΣ2c

.

(3.277)
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The traditional observables themselves, branching fraction – here CP-averaged –, longitudinal component,

and forward-backward asymmetry, can be written as functions of the angular coefficients Σi as well:

Γ′ =
1

2

dΓ + dΓ̄

dq2
=

1

4
[(3 Σ1c − Σ2c) + 2 (3 Σ1s − Σ2s)] , (3.278)

FL =
3 Σ1c − Σ2c

4 Γ′
, (3.279)

AFB =
3 Σ6s

4 Γ′
. (3.280)

An aside must be reserved for the fact that there is a difference in the conventions used by the

theoretical community, and at the LHCb for experimental measurements. Nevertheless, the numerical

results between the two are related, that relation being [131]:

PLHCb
2 = −PT

2 , P ′4
LHCb

= −1

2
P ′4

T
, P ′6

LHCb
= −P ′6

T
, P ′8

LHCb
=

1

2
P ′8

T
, (3.281)

where the observables marked with T correspond to theory definitions. Also concerning the experimental

side of things, these observables are, in fact, measured in binned data, divided in regions of the dilepton

invariant mass. The binning of the angular coefficients in done by integrating in each q2 interval,

〈Σi〉 =

∫ q2max

q2min

dq2 Σi(q
2); (3.282)

as such, one notes that for the angular observables, relevant are the ratios of binned coefficients, rather

than the direct binning of ratios [15]:

〈P1〉 =
〈Σ3〉

2〈Σ2s〉
, P2 =

〈Σ6s〉
8〈Σ2s〉

, P3 =
〈Σ9〉

4〈Σ2s〉
,

〈P ′4〉 =
〈Σ4〉√
−〈Σ2sΣ2c〉

, 〈P ′5〉 =
〈Σ5〉

2
√
−〈Σ2sΣ2c〉

, 〈P ′6〉 =
〈Σ7〉

2
√
−〈Σ2sΣ2c〉

, 〈P ′8〉 =
〈Σ8〉√
−〈Σ2sΣ2c〉

.

(3.283)

In the same vein, the binned branching fraction, FL, and AFB are defined as

〈Γ′〉 = 〈Σ1c + 4Σ2s〉, 〈FL〉 =
〈3 Σ1c − Σ2c〉

4 〈Γ′〉 , 〈AFB〉 =
3 〈Σ6s〉
4 〈Γ′〉 . (3.284)

All we have been defining for K∗ can be used for any B → V `+`− decay [24]. Therefore, for the

decay with φ, one defines everything much in the same way. Regarding the other semileptonic decay,

B → K`+`−, the main distinction stems from its different decay form factors and different kinematics:

a decay into a pseudoscalar meson, B → P , whereas the previous cases were decays into vector mesons.

Still, once the form factors are translated to helicity amplitudes, one proceeds in defining exactly the

same kind of observables. A similar remark can be made for both of the exclusive radiative decays we’re

using in our global analysis, B → K∗γ and B → φγ: their helicity amplitudes are a subset of those

involved in the B → V `+`− decay, this meaning that, although with a reduced complexity, they follow

the framework we’ve been addressing. We will touch upon this when we discuss the hadronic uncertainties

in these channels.

For Bs → µ+µ−, we have used its branching fraction. Since there is a sizeable decay width difference

in the Bs system [7],

ys =
∆Γs
2 Γs

' 0.065, (3.285)
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implies that there is a deviation between the branching fraction at a time t = 0, and the time-integrated,

and CP-averaged, branching fraction. Defining the mass-eigenstate rate asymmetry by

Aµµ =
Γ(BHs → µ+µ−)− Γ(BLs → µ+µ−)

Γ(BHs → µ+µ−) + Γ(BLs → µ+µ−)
(3.286)

where BHs and BLs denote, respectively, the heavy and light eigenstates of the Bs system, the relation

between both branching fractions is

BR(Bs → µ+µ−) =
1 +Aµµ ys

1− y2
s

BR[t=0](Bs → µ+µ−). (3.287)

In the SM, i.e. discarding NP scalar and pseudoscalar operators, Aµµ = 1, and the factor above becomes

just (1−ys)−1. Not considering scalar currents has also the effect of making the instantaneous branching

fraction solely determined by the WC C10:

BR[t=0](Bs → µ+µ−) =
G2
F α

2
e

16π2
|λt|2f2

BsτBsmBsm
2
µ

√
1− 4

m2
µ

m2
Bs

|C10|2, (3.288)

where fBs is the Bs decay constant,

〈0|sγµγ5b|Bs(p)〉 = ifBspµ, (3.289)

and τBs is the lifetime of said meson. For this observable we evaluate the WC at NLO in QED, including

NNLO QCD corrections, as sketched in the previous section. The numerical expression of the C10

evolution can be found in Refs. [117, 132]. For the meson decay constant we used a value from lattice

QCD calculations, as discussed in the global analysis chapter.

A final word goes to B → Xsγ, whose branching fraction is used in the analysis. A detailed explan-

ation of the inclusive sector would require a dedicated section, with definitions of both QCD and QED

contributions to the observable, bremsstrahlung corrections, and power corrections to the infinite mass

limit. This is beyond the scope of this presentation, but for the reader’s sake, we write here the LO

expression of the decay rate:

Γ(B → Xsγ) =
G2
F m

5
b αe

32π4
|λt|2 C2

7 . (3.290)

It is clear that we use the high precision measurement of this observable to constrain the contribution of

the electromagnetic dipole operator, leaving little room for NP contributions to C7, as we shall witness

in the chapter of results. For the actual analyses we perform in this thesis at NNLO in αs and NLO in

αe, the decay rate goes by a formula with the shape

Γ(B → Xsγ)Eγ>E0
= N

8∑
i,j=1

Ci(µb)Cj(µb)Gij(E0,mb), (3.291)

where N collects the pre-factor in Eq. (3.290), and E0 is the photon energy cutoff. The functions Gij ,

which reduce to δi7δj7 at LO, encapsulate the higher order corrections. We follow Ref. [133], and references

therein.

Last but not least, one can build the binned ratios of branching fractions

RM
[q2

min
,q2max]

=

∫ q2max

q2min
dq2 Γ(B →Mµ+µ−)∫ q2max

q2min
dq2 Γ(B →Me+e−)

, with M = K, K∗, φ. (3.292)

which are free from most hadronic uncertainties and sensitive to the breaking of lepton flavour universality,

i.e. to a preference of a channel with one type of leptons, over a channel with another flavour.
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3.3.2 Treatment of the Hadronic Uncertainties

We turn now to form factors and the definition of the helicity amplitudes present in Eq. (3.260). With

our definition of the effective Hamiltonian, in Eq. (3.69), the decay amplitudes of B → V `+`− have two

distinct parts:

A = 〈M`+`−|Hsl
eff|B〉+ 〈M`+`−|Hhad

eff |B〉. (3.293)

The contribution of the semileptonic Hamiltonian factorizes (in the “naive” sense of factorization) into a

sum of leptonic currents multiplied by hadronic currents,

Asl = 〈`+`−|Hsl
eff|0〉〈V |Hsl

eff|B〉 (3.294)

= LµV aV µ + LµA aAµ + LS aS + LPaP + LµTL aTL,µ + LµTR aTR,µ, (3.295)

where we have kept vector, axial, scalar, pseudoscalar, and tensor operators. The leptonic currents are

given by [24]:

LµV = 〈`+`−|`γµ`|0〉, LµA = 〈`+`−|`γµγ5`|0〉,

LµS = 〈`+`−|``|0〉, LµP = 〈`+`−|`γ5`|0〉,

LµTL =
i√
q2
〈`+`−|qν`σµνPL`|0〉, LµTR =

i√
q2
〈`+`−|qν`σµνPL`|0〉.

(3.296)

In turn, the hadronic currents aXµ are parametrized by seven B → V form factors. The standard basis

in which these form factors are presented is the transversality basis, which labels them as V (q2), A0(q2),

A1(q2), A2(q2), A3(q2), T1(q2), T2(q2), and T3(q2) [134].1 We shall be working in a different basis,

however, which defines seven helicity form factors appearing in the SM as follows [24]:

−imB ṼLλ(q2) = 〈M(λ)|s/ε∗(λ)PLb|B〉, (3.297)

m2
B T̃Lλ(q2) = ε∗µ(λ)〈M(λ)|sqνσµνPRb|B〉, (3.298)

imB S̃L(R)(q
2) = 〈M(λ = 0)|sPR(L)b|B〉, (3.299)

with M an arbitrary charmless final meson state, and εµ(λ), for λ = ±1, 0, denoting a spin-1 helicity

triplet of polarization vectors, for a vector particle of momentum qµ and mass
√
q2. In fact, taking into

account the completeness relation

ηµν = εt,µε
∗
t,µ −

∑
λ=±1,0

εµ(λ)ε∗ν(λ) (3.300)

where εµt = qµ/
√
q2, one may carry out an helicity decomposition of the semileptonic matrix element,

obtaining:

Asl = −
∑

λ=±1,0

εµ(λ)LµV H
λ
V −

∑
λ=±1,0

εµ(λ)LµAH
λ
A + LSHS + LPHP

−
∑

λ=±1,0

εµ(λ)LµTLH
λ
TL −

∑
λ=±1,0

εµ(λ)LµTRH
λ
TR, (3.301)

1For completeness, the transversality form factors are provided in Appendix C, together with the relation between both

bases.
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where the coefficients

Hλ
V = ε∗µ(λ) aµV , (3.302)

Hλ
A = ε∗µ(λ) aµA, (3.303)

Hλ
S = aµS , (3.304)

Hλ
P = aµP +

2m`

q2
qµa

µ
A, (3.305)

Hλ
TL = ε∗µ(λ) aµTL, (3.306)

Hλ
TR = ε∗µ(λ) aµTR, (3.307)

are the helicity amplitudes. The axial current obeys qµL
µ
A = 2m`LP , which allows the spin-zero axial

vector amplitude to be absorbed into HP [130]. One can immediately see that the amplitudes that receive

contributions in the SM are Hλ
V , Hλ

A, and HP .

Now, regarding the hadronic part of the Hamiltonian, Hhad
eff , it does not naively factorize, for it involves

two additional insertions of the electromagnetic current, one leptonic and, the source of difficulties, one

hadronic, in order to mediate the semileptonic decay:

Ahad = −i e
2

q2

∫
d4x e−iq·x〈`+`−|jlept

em,µ(x)|0〉
∫
d4y eiq·y〈M |T{jhad,µ

em (y)Hhad
eff (0)}|B〉

≡ e2

q2
LµV a

had
µ , (3.308)

where jhad,µ
em = e

∑
q Qq qγ

µq. While non-factorizable, these hadronic contributions can, nevertheless, be

absorbed into aV µ. Sticking to the helicity amplitudes relevant for a SM computation,2 one has:

Hλ
V = −iN

{
C9 ṼLλ +

m2
B

q2

[
2mb

mB
C7 T̃Lλ − 16π2 hλ

]}
, (3.309)

Hλ
A = −iN C10 VLλ, (3.310)

HP = iN
2m`mb

q2
C10

(
S̃L −

ms

mB
S̃R

)
, (3.311)

where N is a normalization factor,

N = −4GFmB√
2

e2

16π2
λt, (3.312)

and hλ contains all the non-factorizable hadronic effects. From the definition of Hλ
V above, one observes

that the radiative decay B → V γ is but a mere subset of the amplitudes that describe the semileptonic

counterpart, such that its decay amplitude can be written as [24]:

A(B → V (λ)γ(λ)) =
iN m2

B

e

[
2mb

mB
C7 T̃Lλ(q2 = 0)− 16π2 hλ(q2 = 0)

]
. (3.313)

In the case of B → P`+`−, instead of seven form factors one has three instead, which, in the notation

of Ref. [135], are f+, fT , and f0. Following again Ref. [24], they are translated into the helicity basis by:

ṼL0(q2) = i f+(q2), (3.314)

T̃L0(q2) = i
2mB

mB +mP
fT (q2), (3.315)

S̃L = S̃R =
1 + ms

mb

1− ms
mb

m2
B −m2

P√
λ

f0(q2), (3.316)

2For the full basis, we refer the reader to Ref. [24].
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where λ = 4m2
B |~k|2, with ~k being the 3-momentum of the recoiling meson, in the B rest frame. These

are consequently combined to make up the helicity amplitudes, and one has once more all the ingredients

to define the angular coefficients Ii and all the observables that ensue.

Form factor calculation, as well as estimates of the non-factorizable corrections used in this analysis,

will be discussed in Chapter 5.
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Chapter 4

HEPfit and the Bayesian Analysis

Framework

The two global analyses that make up this thesis are powered by HEPfit, a code for the combination

of indirect and direct constraints on high energy physics models [48]. HEPfit is a publicly available

package1 that aims at performing globally correlated studies of observables in the Standard Model, or

in any given realization of NP – model-independent generalizations of flavour or electroweak operators,

supersymmetry, the 2HDM, etc. This is made possible by one of the main strengths of HEPfit, its

modularity, which allows for any number of NP models to be seamlessly appended to the code, either

as package-ready modules added by new developers, or, in the absence of some specific model from the

latest release of HEPfit, as straightforward external user inputs.

Generically, HEPfit follows a simple streamlined configuration: the model is chosen, the values of the

parameters are given, the desired observables are computed. If the observables have experimental input

they can be used in a global fit of the model, if not, they can be predicted in the fit. The fits in this

code are based on a Bayesian framework, and to explain what is meant by that, let us delve briefly into

HEPfit’s data analysis procedure, before turning to the structure of modules and a succinct description

of usage.

4.1 Bayesian Interlude

In the Bayesian approach to probability, density functions are not seen as frequency distributions,

as in the frequentist approach, but rather as degrees of belief [136]. Our degree of belief in the set of

parameters of a model ~θ, given existing experimental data D, can be obtained with Bayes’ Theorem,

which relates this P (~θ |D) with the probability that D will be the outcome of an observation once the

parameters are fixed, P (D|~θ ):

P (~θ |D) =
P (D|~θ )P (~θ )

P (D)
. (4.1)

1Available under the GNU General Public License from https://github.com/silvest/HEPfit.
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The set of P (~θ ) constitute our initial belief in the parameters of the model, before the considered set of

measurements is performed, and for this they are called priors and denoted as π(~θ ); P (D|~θ ) is known as

the likelihood, L(D|~θ ), which updates our knowledge by turning the priors into the final set of probability

density functions, which one terms posteriors and writes as p(~θ |D). Bayes’ Theorem can thus be re-

expressed as:

p(~θ |D) =
L(D|~θ )π(~θ )∫
d~θ L(D|~θ )π(~θ )

, (4.2)

such that ∫
d~θ p(~θ |D) = 1. (4.3)

The full posterior contains all the information one could wish to know. By marginalizing the full posterior,

one extracts the probability distribution of a single parameter θi,

p(θi|D) =

∫
dθj 6=i p(~θ |D), (4.4)

upon which one can define, for example, the mean of a parameter,

µi =

∫
dθi θi p(θi|D), (4.5)

the mode,

Mode(θi) = argmax [p(θi|D)] , (4.6)

the variance,

σ2
i =

∫
dθi θ

2
i p(θi|D)− µ2

i , (4.7)

or the correlation between two parameters,

ρij =

∫
dθi dθj θi θj p(θi, θj |D)− µi µj

σi σj
. (4.8)

To determine posteriors, HEPfit uses BAT [137], a Bayesian analysis toolkit that is provided as a C++

library. This software receives as inputs the priors of one model, and the likelihood, composed of a set of

observables distributed according to experimental values and uncertainties; to compute the full posterior,

BAT uses a Markov Chain Monte Carlo. A Markov Chain is a stochastic sequence of numbers, or vectors

of numbers, whose main property is that the choice of elements in the sequence is memoryless, i.e. the

probability distribution for the next state depends only on the current state, and not on any previous

history of the chain. A Markov Chain Monte Carlo is a method that generates ergodic (non-dependent

on the starting point) Markov Chains which have a well-defined asymptotic, or equilibrium, probability

distribution. The algorithm implemented in BAT to sample from the desired equilibrium distribution, the

full posterior of a given model in our case, is the Metropolis algorithm [138], which can be described as

follows:

1. the sequence starts in a state ~xt;

2. a random point ~y is generated around ~xt via a certain symmetric ‘proposal distribution’ – e.g. a

Breit-Wigner, or a Gaussian;

3. being Eq. (4.2) the distribution one is mapping out:
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� if f(~y ) = L(~y |D)π(~y ) is non-zero, one sets ~xt+1 = ~y with an ‘acceptance probability’

A(~xt → ~y ) = min

(
1,

f(~y )

f(~xt)

)
, (4.9)

� the sequence remains at ~xt otherwise, ~xt+1 = ~xt;

4. a new random point ~y is generated around ~xt+1, and step 3 is repeated.

To ensure convergence of the Markov Chain and to find reasonable run parameters, BAT performs a pre-

run before doing the actual sampling and analysis run. The pre-run consists in a user-defined number

of chains that run in parallel, starting from a random value in parameter space, and iterating over

consecutive steps for each parameter. After a given number of iterations, the efficiencies for accepting or

rejecting new points are evaluated, such that the proposal distributions are updated until an efficiency

between 10% and 50% is found for each input parameter. The chains converge when the R-value [139],

given by

R =

√
V

W
(4.10)

where V is the estimated variance of the equilibrium distribution, and W is the mean of variances of all

chains, is approximately 1. The default criterion used in BAT is to consider convergence is reached when

R < 1.1, simultaneously for all parameters and the full posterior density function. The sampling and

analysis run is performed for a defined (large) number of iterations, using the parameters obtained in the

pre-run. During sampling, the mode of the full posterior, the global mode, is compared to the current

point, histograms are filled for all marginalized distributions, and the likelihood of the function being

fitted is evaluated.

As the χ2 goodness-of-fit test is not applicable to Bayesian analyses, in order to compare different

scenarios we resort to the Information Criterion [140, 141], defined as

IC = −2logL+ 4σ2
logL, (4.11)

where logL is the average of the log-likelihood, and σ2
logL is its variance. The second term in Eq. (4.11)

takes into account the effective number of parameters in the model, allowing for a meaningful comparison

of models with different number of parameters. Preferred models are expected to be those with smaller

IC values.

4.2 Structure and Usage

Returning to the concept of modularity, HEPfit allows the user to turn BAT on or off, such that when

turned off the code runs in Single Event Mode, which simply computes observable predictions with the

central values of parameters priors, or in Library Mode, which allows for using the coded models and

observables for statistical analysis in different approaches. Other sectors include modules with auxiliary

functions and configurations, modules for input parsing and event generation, one module for each of

the available models, which can also be turned on or off depending on the analysis in course, a module

for flavour observables, another focused on electroweak observables, and so on and so forth. While a full
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Yn
Yd
Yu
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gslpp::matrix< T > < gslpp::complex >
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EWSMTwoFermionsLEP2

myTwoFermionsLEP2

Figure 4.1: Collaboration diagram for the StandardModelMatching class.

description of the structure of the code can be found in the documentation of HEPfit,2 here we will touch

upon the modules which saw direct contribution from the student.

Let us start with the module for the SM. Here the code saw the update of WC matchings already

mentioned in Chapter 3, where QED matchings were not merely updated, but fully added to the code. The

class dedicated to this is StandardModelMatching, and a Doxygen-generated diagram of its dependencies

and relations within the code is represented in Fig. 4.1. Without going into much detail, it is perceptible

in the diagram how the matching sector depends on QCD definitions, Standard Model parameters and

functions, and on the auxiliary modules that define WCs, generic model matching, even complex numbers

and complex matrices. To account for the full QCD and QED running of WCs, a new coefficient block-

dependent evolution method for ∆F = 1 processes was designed inside the Flavour module, together

with a new class that puts together the corresponding effective Hamiltonian, the HeffDF1 class, depicted

in Fig. 4.2. This class links to the matchings from StandardModel, and evolves them inside EvolDF1

according to Eq. (3.247), thus depending on the auxiliary RGEvolutor class built in the code.

Participation of the student on code development also includes the building of the inclusive sector of

b→ s transitions, currently on a finalization stage for a subsequent global analysis [142], and the creation

of a module for general 2HDMs other than just the Z2-symmetric realization studied in this thesis.3

Usage of HEPfit, our final topic of this chapter, must start with a step zero, which pertains the

required installation of all the software dependencies:

� C++ compiler;

� GSL and boost, for numerical solutions to integration, algebra, differential equations, etc.;

� BAT, the aforementioned library for Bayesian analyses;

2Currently available at http://hepfit.roma1.infn.it/doc/v1.0-RC1.
3A full list of contributions can be found at https://github.com/silvest/HEPfit/graphs/contributors.
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Figure 4.2: Collaboration diagram for the HeffDF1 class.

� ROOT, for graphical output of the resulting histograms;

� openMPI, in case the user opts for parallelized fits.

Then, and after downloading the HEPfit-x.x.tar.gz archive from hepfit.roma1.infn.it, a concise run of

tar zxvf HEPfit-x.x.tar.gz

cd HEPfit-x.x

cmake . -DLOCAL INSTALL ALL=ON -DMPIBAT=ON

make

make install

brings the user to a position where a first fit can be done with:

./analysis StandardModel.conf MonteCarlo.conf

The two configuration files contain all the information the code needs, from the user-defined num-

ber of chains, pre-run iterations, sampling and analysis run iterations, and other BAT options that

one gives in MonteCarlo.conf, to the detailed listing of model parameters and observables provided

in StandardModel.conf. An example of the general form of the model configuration file is presented in

Fig. 4.3. The first line indicates the model name. All the model parameters have then to be given, usually

in the format of lines 3 and 4,

ModelParameter <name> <central value> <Gaussian error> <flat error>

or, when applicable, in correlated form as seen from line 6 to line 10, the last two lines representing the

correlation matrix. The observables which will determine the likelihood follow, from line 14 to line 33 of

the sketched file. They come in the format

Observable <name> <obs label> <histolabel> <min> <max> MCMC weight

<central value> <Gaussian error> <flat error>

or in correlated form as well, and a prediction from the fit is asked by writing simply

Observable <name> <obs label> <histolabel> <min> <max> noMCMC noweight
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Figure 4.3: An example of a configuration file for StandardModel.

As line 35 suggests, the observables below are output 2D correlations between two observables, and can

be obtained with:

Observable2D <name> <obs1 label> <histolabel1> <min1> <max1> noMCMC noweight

<obs2 label> <histolabel2> <min2> <max2>

or

Observable2D <name> MCMC weight

(Binned)Observable <obs label 1> <histolabel 1> <min> <max> <central value>

<Gaussian error> <flat error> (<bin min> <bin max>)

(Binned)Observable <obs label 2> <histolabel 2> <min> <max> <central value>

<Gaussian error> <flat error> (<bin min> <bin max>)

The directive in the last line of the example shows how more parameters and observables can be added

to the configuration, either for reasons of organization, such as having a file with the information related

with a separate module, like Flavour, or to add the parameters and observables of an extension to the

SM, as the is the case of the 2HDM.

51



Chapter 5

Global Analysis of b→ s Transitions

In this chapter we present the results of the first of two global analysis that compose this thesis. These

are original results, most of which have been published in Ref. [143]. The different scenarios for WCs

and the approaches to hadronic uncertainties that were adopted in that reference are outlined in the first

section of this chapter. After a delineation of the experimental information and all the inputs used, we

present the numerical and graphical output of the fit.

5.1 Scenarios and Approaches

While a general ultraviolet completion of the SM may enter all the couplings of the effective Hamilto-

nian in Eq. (3.69), general NP effects in b→ sγ, s`` can be phenomenologically parametrized as shifts of

a subset of WCs, namely those of Hsl+γ
eff :

Ci(µb) −→ Ci(µb) + CNP
i (µb), i = 7, 9, 10. (5.1)

The most general basis for NP effects in radiative and (semi)leptonic B decays is enlarged by the presence

scalar, pseudo-scalar and tensorial semileptonic operators, together with right-handed counterparts of the

Q7γ , Q9V , Q10A SM operators [24, 144]. In our work, motivated by previous literature concerning LFUV

[41–43] and the recent measurements of RK and RK∗ , we focus only on the contributions of the left-

handed shifts described in Eq. (5.1). A comprehensive analysis with different chiral structures and a

more general effective theory framework is left for a future global analysis [142]. It must also be noted

that here we restrict ourselves to CP-conserving effects, thus keeping all WCs real even beyond the SM.

In order to access possible LFUV in NP, the shifts in semileptonic operators are discriminated between

couplings to muon and to electron fields, both in the axial and vector leptonic currents. We characterize

our phenomenological analysis through six different benchmark scenarios, studying the impact of the

following combinations of NP WCs:

(I) CNP
9,µ and CNP

9,e varied in the range [−4, 4], i.e. adding to the SM two NP parameters;

(II) CNP
9,µ and CNP

10,µ varied in the range [−4, 4], i.e. adding to the SM again two NP parameters;
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(III) CNP
9,µ and CNP

9,e varied in the range [−4, 4], and CNP
7 varied in the range [−0.5, 0.5], i.e. a scenario

with three NP parameters;

(IV) CNP
10,µ and CNP

10,e varied in the range [−4, 4], and CNP
7 varied in the range [−0.5, 0.5], i.e. adding

again to the SM three NP parameters;

(V) CNP
9,µ = −CNP

10,µ and CNP
9,e = −CNP

10,e varied in the range [−4, 4], and CNP
7 varied in the range

[−0.5, 0.5], i.e. a NP scenario again described by three different parameters.

(VI) CNP
7 , CNP

9,µ , CNP
9,e , CNP

10,µ and CNP
10,e varied simultaneously in the respective ranges defined above, i.e.

a NP scenario described by five different parameters.

We remark that while benchmarks (I) and (II) have been already studied in literature, none of the

other cases has been analysed so far. In particular, scenarios (III) and (IV) allow one to study, for

the first time, the interesting impact of a NP radiative dipole operator in combination with vector-like

and axial-like LFUV effects generated by NP. Scenario (V) puts the correlation CNP
9 = −CNP

10 under

analysis, making room for possible hints of a SU(2)L preserving theory beyond the SM. As an additional

interesting case to explore, we eventually generalize to the simultaneously nonvanishing of all the WCs

in case (VI).

Another novelty in this study is that the six benchmarks defined above are studied for the first time

under two different approaches in the estimate of QCD hadronic power corrections. A previous endeavour

of some of the authors of Ref. [143] concerned a detailed treatment of hadronic contributions in the angular

analysis of B → K∗`` [27, 30, 145]. The non-factorizable contributions, introduced in Eq. (3.309) and

given by

hλ(q2) =
ε∗µ(λ)

m2
B

∫
d4y eiqy〈K∗|T{jhad,µ

em (y)Hhad
eff (0)}|B〉, (5.2)

are not fully calculable with known non-perturbative techniques. The sole estimate present in literature

[146] was obtained by combining a LCSR calculation of the hadronic amplitude at q2 = 1 GeV2 in the

single soft gluon approximation, with a dispersion relation that is then used to extend the result to higher

invariant masses. Although a remarkable computation in itself, it was pointed by its very authors that

the adopted approximations and techniques impart large uncertainties to the result, some of which are

not entirely under control. These concerns were also raised by the authors of Ref. [27], who decided

to study how large the hadronic effects could be if one assumes that the LHCb data on the branching

fractions and the angular distributions of these decay modes can be described within the SM. For that

purpose, four hypotheses to the hadronic contributions were considered, with increasing theoretical input

from the phenomenological analysis of Ref. [146]. The underlying functional form that was envisaged for

the non-factorizable hadronic contribution is the truncated series

hλ(q2) = h
(0)
λ +

q2

1 GeV2 h
(1)
λ +

q4

1 GeV4 h
(2)
λ , (5.3)

where the authors fitted for the complex, helicity-dependent, coefficients h
(i)
λ (i = 0, 1, 2) using the data

and the phenomenological model in Ref. [146]. Since h0 enters the decay amplitude with an additional

factor of
√
q2 with respect to h±, h

(2)
0 is neglected in the analysis. The dominant hadronic terms
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correspond to the insertions of four-quark operators with charm, usually called charm-loop contributions:

hλ(q2)|cc =
3

2

ε∗µ(λ)

m2
B

∫
d4y eiqy〈K∗|T{[cγµc](y) [Cc1Q

c
1 + Cc2Q

c
2](0)}|B〉. (5.4)

For convenience, the authors of Ref. [146] expressed these contributions as corrections to C9, which, in

the absence of NP effects, would thus become

C9 −→ C9 + ∆C9(q2). (5.5)

They divide the decay amplitude of B → K∗`+`− in three parts, each receiving its distinct charm-loop

contribution. In turn, they decompose those ∆Ci9(q2) in two terms – one with the factorizable corrections,

and one that encodes the non-factorizable charm-loop contributions:

∆Ci9(q2) = (3C1 + C2) g(m2
c , q

2) + 2C2 g̃i(q
2). (5.6)

The g̃1,2,3 in the non-factorizable contributions to ∆Ci9(q2) are functions of combinations of hλ, respect-

ively, h−(q2)− h+(q2), h−(q2) + h+(q2), and h−(q2) + h+(q2) together with h0(q2) [27]. The full form of

these relations, as well as the expression of the function g(m2
c , q

2), are provided in Appendix C.2.

For the present analysis, which requires a re-evaluation of the hadronic uncertainties, we proceed much

in the same way and use the functional parameterization as given in Eq. (5.3). Yet, only two hadronic

models are now considered: the first, corresponding to the most widely used assumption, relies completely

on the phenomenological model in Ref. [146] below q2 < 4m2
c . The second is a more conservative approach,

where one imposes the latter only in the large recoil region, at q2 ≤ 1 GeV2, while letting the data drive

the hadronic contributions in the higher invariant mass region. The first approach will be referred to

as phenomenological model driven (PMD), whereas the second is labelled as phenomenological and data

driven (PDD). In our fit we vary the hiλ parameters over generous ranges, in accordance to the detailed

discussions of Refs. [27, 30].

This global analysis requires one to address further decay modes, namely B → K``, Bs → φ`` and

Bs → φγ. The decay B → K`` has been studied in detail in [39], where the authors show that the

hadronic uncertainties are smaller than in B → K∗``. A comparison of the LCSR estimate of the soft

gluon contribution and the QCDF estimate of the hard gluon contribution reveals that the soft gluon

exchange is subdominant with respect to QCDF hard gluon exchange, which means that, although in

principle the same concerns on the soft gluon contribution raised for B → K∗ apply also for this mode, in

practice the overall effect of soft gluons can be reasonably neglected. For this fit we include, therefore, only

hard gluon exchange computed using the QCDF formalism in Ref. [147]. Barring the obvious difference in

spectator quarks, the long distance contributions for Bs → φ`` and Bs → φγ follow a similar theoretical

derivation as, respectively, those for B → K∗`` and B → K∗γ. Since no theoretical estimates of power

corrections to the infinite mass limit are available for the Bs → φ``/γ decays, one has to rely on the

ones for B → K∗``/γ to get a handle on the long distance contributions: the spectator quark effects can

come through the hard spectator scattering involving matrix elements of Q2, P6, and Q8g computable

in QCD factorization [147], which are included in our computations. We do not include, however, the

sub-leading QCDF power corrections to spectator scattering involving Q8g [148–150], and contributions

54



to weak spectator scattering involving Q8g computed in LCSR [151–153]. The effect of the difference in all

these spectator contributions is expected to be low, firstly because they are numerically small, secondly

because the effect is proportional to the small flavour SU(3) breaking. Different approaches in relating

the long distance contributions in the B → K∗``/γ channels to the ones in the B → φ``/γ channels have

been used in the literature [41, 42, 154]. The distinguishing factor is the choice of the degree of correlation

between the two channels: Ref [42] uses uncorrelated hadronic uncertainties, while Refs. [41, 154] have

opted for the two contributions to be highly correlated, noting that the spectator contribution should be

numerically small. Taking into account the insensitivity of the current data to such effects, this analysis

follows the latter approach, by using the same value of power corrections in B → K∗ and Bs → φ

amplitudes, even though this choice pertains to a quite oversimplifying and optimistic attitude. Again,

a deeper look at this assumption, where one relaxes the correlation between the hadronic contributions

in the two modes, is left to a subsequent work [142].

5.2 Experimental Information and Input Parameters

Regarding the information used in the global fit, we start by bringing attention to the fact that for

the exclusive modes we make use only of measurements in the large recoil region. This choice harbours

on the fact that the QCD long distance effects in the low recoil region are substantially different from the

large recoil regime [155–158], and that it would require a dedicated analysis. For this fit, the following

experimental information was considered:

� B → K∗``

For the B → K∗µµ channel we use the LHCb measurements of CP-averaged angular observables

extracted by means of the unbinned maximum likelihood fit, along with the provided correlation

matrix [21]. Moreover, we employ the recent results for CP-averaged angular observables from

ATLAS [32] and the ones measured by CMS [33, 159] as well.1 Finally, we use the CP-averaged op-

timized angular observables recently measured by Belle [47].2 Regarding the differential branching

fractions, we use the recently updated measurements from LHCb [160] and the ones from CMS [159].

For the B → K∗ee channel we consider the LHCb results from Ref. [161], and the Belle results

from Ref. [47]. The RK∗ observable is considered according to the recently presented measurements

by LHCb in both the low-q2 and central-q2 bins [19]. As mentioned in Chapter 3, our theoret-

ical predictions are computed in the helicity basis, the same framework being employed to study

B → K∗γ, Bs → φµµ, Bs → φγ and B → K`` channels. For the latter, we use the full set of form

factors extrapolated from the lattice results, along with the provided correlation matrix [162]; for

the remaining channels, we use the full set of form factors estimated combining LCSR and lattice

1For all CMS data we use the 7, 8 TeV combined results, which can be found in https://twiki.cern.ch/twiki/bin/

view/CMSPublic/PhysicsResultsBPH13010 .
2Belle measures the B0 → K∗0µµ and B+ → K∗+µµ channels together, without providing the mixture ratio. On the

theoretical side, one can use these measurements under the approximation that QCD power corrections decoupling the

amplitudes of both channels are small. We have numerically checked that the impact of known QCD power corrections

[147] is indeed at the percent level in the observables of interest.
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results, along with the correlation matrices [163]. For the factorizable and non-factorizable QCD

power corrections, we refer to the section above.

� B → K∗γ

We include in our analysis the HFAG average for the branching fractions from Ref. [7].

� Bs → φµµ

We consider the LHCb CP-averaged angular observables and differential branching fractions meas-

urements, along with the provided correlation matrix [38].

� Bs → φγ

We use the LHCb measurement of the branching fraction from Ref. [164].

� B → K``

We employ the LHCb measurement of B → Kee differential branching fraction and RK from

Ref. [18].

� Bs → µµ

We consider the latest measurement from LHCb [165], and do not consider the measurement from

CMS [166], which has the same central value as LHCb, but larger uncertainty. Moreover, we chose

not to use results for Bd → µµ, since, so far, only upper bounds exist for this decay channel

[165, 166].

� B → Xsγ

We use the HFAG average from Ref. [7]. We perform our theoretical computation at NNLO in αs

and NLO in αem, following Ref. [133] and references therein.

All the experimental data in the bullets above is fitted using the 16 real free parameters that charac-

terize the non-factorizable power corrections – in accordance to Ref. [27] – along with the set of NP WCs

necessary for each of the six scenarios devised in the previous section. To the hadronic parameters and

the NP WCs, we assign flatly distributed priors in the relevant ranges, as mentioned when the scenarios

were described. The remaining parameters used in the fit are listed in Table 5.1, where fM is the usual

decay constant of a meson M ; the Gegenbauer parameters, an, and λB are quantities present in the

parametrization of light-cone distribution amplitudes of B decays [147]. The Gegenbauer parameters

and λB have flat priors with half width reported in the third column; the remaining parameters have

Gaussian priors. Meson masses, lepton masses, s-quark mass and electroweak couplings are fixed at their

PDG value [167].

5.3 Results of the Global Fit

The results for the several scenarios of NP in WCs under consideration can be found in Fig. 5.1, and

from Fig. 5.4 to Fig. 5.8, where the IC value for each model is also reported. The left green panels

show the results for the PMD approach, whereas the right red panels show the results for the PDD
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Parameters Mean Value Uncertainty Reference

αs(MZ) 0.1181 0.0009 [167, 168]

µW (GeV) 80.385 −

mt (GeV) 173.34 0.76 [169]

mc(mc) (GeV) 1.28 0.02 [170]

mb(mb) (GeV) 4.17 0.05 [171]

fBs (MeV) 226 5 [172]

fBs/fBd 1.204 0.016 [172]

∆Γs/Γs 0.129 0.009 [7]

λ 0.2250 0.0006 [84, 173]

A 0.829 0.012 [84, 173]

ρ̄ 0.132 0.018 [84, 173]

η̄ 0.348 0.012 [84, 173]

fK∗,|| (MeV) 204 7 [163]

fK∗,⊥(1GeV) (MeV) 159 6 [163]

fφ,|| (MeV) 233 4 [163]

fφ,⊥(1GeV) (MeV) 191 4 [163]

λB (MeV) 350 150 [174]

a1(K̄∗)⊥, || 0.04 0.03 [175]

a2(K̄∗)⊥, || 0.05 0.1 [176]

a2(φ)⊥, || 0.23 0.08 [177]

a1(K) 0.06 0.03 [175]

a2(K) 0.115 − [135]

Table 5.1: Parameters used in the global analysis of b→ s transitions.

one. In the 1D distributions we show the 16th, 50th and 84th percentile marked with dashed lines. In the

correlation plots we show the 1, 2 and 3σ contours in decreasing degrees of transparency. The blue square

and lines identify the values of the NP WCs in the SM limit. The numbers at the bottom left corner

of the 2D plots refer to the correlation. This graphical output is complemented by the information in

Tables 5.2–5.3. In Tables 5.4–5.5, we report the results of the fit for observables of interest. An immediate

observation that can be made is that all cases have comparable IC values, except cases (IV) and (V),

which are disfavoured in the PMD approach, while remaining viable scenarios in the PDD approach. The

main difference between the two approaches is that angular observables, in particular P ′5, call for a NP

contribution from CNP
9,µ in the PMD approach, whereas in the PDD approach they can be accommodated

within the SM.

But let us discuss the various scenarios in more detail. For scenario (I), presented in Fig. 5.1, the

evidence for NP that comes out of the fit amounts to more than 5σ in the PMD approach. For the PDD

approach, however, the NP evidence gets significantly reduced, to roughly between 3σ and 4σ. This

reduction in the significance can be explained by the larger hadronic uncertainties in the PDD approach,

which weaken the constraining power of the angular observables on the NP WCs. We also performed
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the fit in a basis where the hadronic contributions and the NP shifts can be disentangled in one of the

coefficients,

C9,− =
C9,µ − C9,e

2
−→ C9,− + CNP

9,−, (5.7)

C9,+ =
C9,µ + C9,e

2
−→ C9,+ + CNP

9,+ + ∆C9, (5.8)

with the resulting posteriors shown in Fig. 5.2. The fitted value of CNP
9,− does not depend on the chosen

approach to treat the non-factorizable hadronic contributions, as can be seen from the individual histo-

gram for that WC given in both cases. This means that, regardless of the way ∆C9 is computed, there

is indeed a deviation of approximately 3.5σ from the SM expectation for CNP
9,−, which indicates, at this

certainty level, first that CNP
9,µ and CNP

9,e cannot be equal, and then that either of them is non-zero, or

both are simultaneously non-zero. The choice of how to deal with the hadronic effects appears completely

in the distribution of CNP
9,+: whereas the PMD plot favours the case of a non-zero and dominating NP
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Figure 5.3: Comparison of 2C2 |g̃fit
i | with the value of C9 with perturbative charm-loop contributions

included, CSD
9 , and the additional QCDF corrections, CQCDF

9 . KMPW denotes the estimate of Ref. [146].

(Taken from Ref. [145], ©2017 Elsevier B.V.; ref. [7] in that paper corresponds to Ref. [146] here.)

shift in C9,µ, the aforementioned larger uncertainty present in the PDD approach clearly shows in the

histogram and 2D distribution on the right, and leaves more room for any case, as was also evident from

the allowed regions at 3σ already shown in Fig. 5.1.

Another direction to possibly disentangle the charm-loop contribution to C9 and some CNP
9 , which

we feel couldn’t go unmentioned, was put forward in Refs. [27, 30, 145]. There, the authors performed a

fit to the functions g̃i, with and without the theoretical estimate of Ref. [146]. The relevant portion of

their results is quoted here, in Fig. 5.3. The main takeaway is that the precise extraction from data of the

slope in the charm-loop contributions would constitute a unique access to the information of the size of

the hadronic amplitudes, and thus provide a more reliable SM prediction, mandatory for unequivocal NP

searches. While the current results are still non-conclusive, upcoming experimental data could shed some

light on the issue. One comment must also be reserved to the size of the fitted corrections: even if they

can amount to 5 − 6 times the size of the estimate from Ref. [146], and that of the QCDF corrections,

mainly in the case where no theoretical input is used in the fit, and more pronounced near the charm

resonances, it is apparent in the plots that they are always, nevertheless, smaller than the leading value

of the coefficient. Here and there they get to be a O(50% – 60%) correction to CSD
9 , but no leading order

vs. sub-leading order considerations are ever breached in the region of interest.

Concerning scenarios (II) and (III), respectively in Fig. 5.4 and Fig. 5.5, we observe very similar
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evidences for NP as the ones obtained in (I). Even with a third NP WC added, the fact that scenario (III)

follows suit is because the effective coupling for the radiative dipole operator is very well constrained,

especially from the inclusive B → Xsγ branching fraction. The reduction in the significance between

approaches, PMD and PDD, can be explained for scenarios (II) and (III) with the same arguments

already given above.

Regarding scenario (IV), in which we vary the three NP parameters CNP
7 , CNP

10,µ and CNP
10,e, the model

comparison between the PDD and PMD realization of this NP benchmark is quite informative: NP

effects in the dipole operator and in the axial semileptonic currents cannot address at the same time

RK,K∗ ratios and the P ′5 anomaly in a satisfactory way when we stick to small non-factorizable QCD

power corrections; however, this is no longer true when we allow for a more conservative estimate of

the hadronic uncertainties. In particular, the tension in the fit coming from the angular analysis of
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Figure 5.6: The three NP parameter fit using CNP
10 , CNP

10,µ, and CNP
10,e.
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Figure 5.7: The three NP parameter fit using CNP
7 , CNP

9,µ , CNP
9,e , and CNP

10,µ,e = −CNP
9,µ,e.

B → K∗µµ can be now addressed by large QCD effects as given in Eq. (5.3), while a CNP
10,e 6= 0 at about

3σ can successfully describe all the observational hints of LFUV shown by current measurements. This

interesting possibility of axial lepton-flavor violating NP is not found in other global analyses [41–44], as

it proceeds from the conservative treatment of hadronic uncertainties proposed in Ref. [27].

Concerning Tables 5.4–5.5, we would like to point out the pattern displayed by the transverse ratios

RTK∗ and RTφ : cases (I)–(III) predict these values to be ∼ 1 with a small error, while the remaining cases

give different predictions with the central value ranging between ∼ 0.7 and ∼ 0.8. Therefore, obtaining

experimental information on transverse ratios may help in discerning between the different NP scenarios.

We then show results for scenario (V), in which we vary CNP
7 , CNP

9,µ , CNP
9,e and correlate the semileptonic

vector and axial currents according to CNP
9,µ = −CNP

10,µ and CNP
9,e = −CNP

10,e. In analogy to case (IV),
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Figure 5.8: The five NP parameter fit using CNP
7 , CNP

9,µ , CNP
9,e , CNP

10,µ, and CNP
10,e.

only within the PDD approach we find for this NP benchmark a fairly good description of data, with

CNP
9,µ = −CNP

10,µ compatible with zero at ∼ 2σ. Again, we are presented with the case where deviations in

angular observables are addressed by large QCD power corrections, while LFUV is driven by semielec-

tronic operators. Looking back at Tables 5.4–5.5, we note that for this scenario, as well as for (IV) and

(VI), both transverse and longitudinal muon over electron ratios in the central-q2 bin, namely RTK,K∗,φ

and RLK,K∗,φ , are characterized by similar central values.

We close our presentation with an analysis of scenario (VI) in which we float simultaneously all 5

NP WCs. As can be seen from Fig. 5.8, current measurements are informative enough to constrain, at

the same time, all the NP WCs both in the PMD and PDD approaches. In particular, within the latter

case, a nontrivial interplay among NP effects encoded both in CNP
9,µ and CNP

10,e, together with the hadronic

contributions reported in Table 5.3, produces the weakest hint in favour of NP provided by our global

analysis – sitting between 2σ and 3σ level – while allowing for a very good description of the entire

data set, similar to the other cases. The power corrections we found are larger than those obtained in

Ref. [146], but smaller than those required by the SM fit of B → K∗µµ [27]. As discussed in detail in

Refs. [30, 145], the size obtained for the power corrections is compatible with the naive power counting

relative to the leading amplitude. We stress, once more, that a more optimistic attitude towards the

estimate of QCD power corrections (PMD approach) leads to the a much stronger claim in favour of NP,

at a statistical significance larger than 5σ.

In Tables 5.2–5.3 we report mean and standard deviation for the NP WCs and absolute values of hλ

for all the scenarios considered in the analysis. It is also relevant to observe that, once we switch on NP

effects through CNP
9,µ in order to attempt at simultaneously explaining observables such as RK,K∗ and

P ′5 in the PDD approach we find values for |h(1,2)
λ | compatible with zero at ∼ 1σ. Conversely, if we set

CNP
9,µ = 0 then a nonvanishing |h(2)

− | is needed to account for the angular observables, as found in Ref. [27],

showing that one cannot disentangle hadronic uncertainties and NP in B → K∗µµ at present.
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Par. (I) (II) (III) (IV) (V) (VI)

CNP
7 − − 0.015± 0.014 −0.011± 0.013 0.003± 0.013 0.015± 0.014

CNP
9,µ −1.58± 0.28 −1.53± 0.25 −1.66± 0.29 − −0.54± 0.17 −1.64± 0.29

CNP
9,e −0.10± 0.45 − −0.18± 0.46 − 0.09± 0.25 −1.6± 1.0

CNP
10,µ − 0.03± 0.16 − −0.12± 0.22 0.54± 0.17 0.009± 0.200

CNP
10,e − − − −1.22± 0.37 −0.09± 0.25 −0.91± 0.76

|h(0)0 | · 104 2.1± 1.2 2.0± 1.2 2.2± 1.3 1.8± 1.2 1.3± 1.0 2.0± 1.3

|h(0)+ | · 104 0.079± 0.067 0.079± 0.067 0.076± 0.065 0.083± 0.069 0.086± 0.072 0.076± 0.064

|h(0)− | · 104 0.53± 0.19 0.54± 0.19 0.52± 0.19 0.56± 0.20 0.60± 0.21 0.52± 0.19

|h(1)0 | · 104 0.30± 0.23 0.30± 0.22 0.30± 0.23 0.45± 0.26 0.32± 0.24 0.28± 0.22

|h(1)+ | · 104 0.22± 0.20 0.22± 0.19 0.22± 0.19 0.21± 0.19 0.26± 0.22 0.22± 0.19

|h(1)− | · 104 0.23± 0.19 0.23± 0.19 0.23± 0.20 0.30± 0.21 0.32± 0.22 0.23± 0.19

|h(2)+ | · 104 0.052± 0.045 0.053± 0.045 0.052± 0.044 0.046± 0.042 0.064± 0.053 0.050± 0.044

|h(2)− | · 104 0.046± 0.038 0.046± 0.039 0.046± 0.039 0.092± 0.050 0.070± 0.047 0.045± 0.038

Table 5.2: Results from the fit for WCs and hadronic contributions in the PMD approach, for each of

the scenarios under study.

Par. (I) (II) (III) (IV) (V) (VI)

CNP
7 − − 0.013± 0.014 0.008± 0.014 0.011± 0.014 0.014± 0.014

CNP
9,µ −1.47± 0.63 −1.17± 0.46 −1.58± 0.64 − −0.43± 0.23 −1.43± 0.64

CNP
9,e 0.007± 0.620 − −0.08± 0.63 − 0.21± 0.29 −1.2± 1.2

CNP
10,µ − 0.26± 0.23 − 0.27± 0.26 0.43± 0.23 0.20± 0.25

CNP
10,e − − − −0.86± 0.4 −0.21± 0.29 −0.60± 0.99

|h(0)0 | · 104 2.6± 1.6 2.3± 1.4 2.6± 1.6 1.7± 1.3 1.7± 1.3 2.6± 1.6

|h(0)+ | · 104 0.075± 0.066 0.081± 0.070 0.077± 0.067 0.086± 0.075 0.087± 0.075 0.077± 0.067

|h(0)− | · 104 0.52± 0.21 0.55± 0.22 0.52± 0.21 0.60± 0.23 0.59± 0.23 0.53± 0.21

|h(1)0 | · 104 0.40± 0.32 0.41± 0.34 0.39± 0.32 0.50± 0.36 0.46± 0.37 0.40± 0.33

|h(1)+ | · 104 0.40± 0.29 0.42± 0.30 0.40± 0.29 0.39± 0.29 0.42± 0.30 0.41± 0.30

|h(1)− | · 104 0.47± 0.35 0.52± 0.38 0.48± 0.36 0.82± 0.46 0.73± 0.43 0.50± 0.37

|h(2)+ | · 104 0.138± 0.087 0.160± 0.099 0.131± 0.086 0.139± 0.094 0.160± 0.100 0.145± 0.095

|h(2)− | · 104 0.112± 0.085 0.126± 0.098 0.111± 0.083 0.190± 0.100 0.170± 0.110 0.124± 0.094

Table 5.3: Results from the fit for WCs and hadronic contributions in the PDD approach, for each of the

scenarios under study.
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Chapter 6

The Two Higgs Doublet Model

In this chapter we turn to the second target of our use of global analyses as means towards uncovering

signs of NP in state-of-the-art experimental data, or, more appropriate to this second case, how such

data still allows a particular direction for NP to go along. The model studied henceforth is the 2HDM,

one of the simplest extensions to the SM compatible with SU(2)L ×U(1)Y , consisting in the addition of

one scalar with the exact same quantum numbers of the one already present in the theory.

The parameter space and mass spectrum of the 2HDM is the subject of the following sections, first in

its general form, then in the simplified Z2-symmetric case – the model we will analyse in the subsequent

chapters. We finish this one with a section dedicated to the Coleman-Weinberg potential, the go-to

one-loop effective potential when probing vacuum stability, both in the SM and the 2HDM.

6.1 The Higgs Basis and the Scalar Mass Terms

The 2HDM comprehends two doublets of SU(2)L, both with hypercharge Y = 1/2:

φ1 =

ϕ+
1

ϕ0
1

 , φ2 =

ϕ+
2

ϕ0
2

 . (6.1)

The addition of another Higgs doublet has a considerable effect on the Higgs sector as defined in Eq. (2.5):

one has now a kinetic term for each doublet, and the most general renormalizable, i.e. quartic, scalar

potential can now be written as

VH = m2
11φ
†
1φ1 +m2

22φ
†
2φ2 − (m2

12φ
†
1φ2 + h.c.)

+
1

2
λ1(φ†1φ1)2 +

1

2
λ2(φ†2φ2)2 + λ3(φ†1φ1)(φ†2φ2) + λ4(φ†1φ2)(φ†2φ1)

+

[
1

2
λ5(φ†1φ2)2 + λ6(φ†1φ1)(φ†1φ2) + λ7(φ†2φ2)(φ†1φ2) + h.c.

]
.

(6.2)

The parameters m2
12, λ5, λ6, and λ7 are unprotected by the hermiticity of the potential and may thus

be complex parameters. Due to the rephasing-invariance of the scalar sector, one of the complex phases

can be rotated away, the number of parameters in a general 2HDM version of this sector counting to 13

parameters, almost seven times the number we had encountered in the SM.
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After SSB both scalars acquire a VEV. The doublets can be parametrized linearly around the vacuum,

as one does in the case of the SM,

φ1 =

 ϕ+
1

(v1 + ρ1 + i η1)/
√

2

 , φ2 =

 ϕ+
2

(v2 + ρ2 + i η2)/
√

2

 , (6.3)

where we have chosen the VEVs to be real. Demanding the vacuum solution to lie in a stationary point

of VH gives a set of relations between the VEVs and the parameters of the potential. These relations,

the so-called minimum conditions, arise from the minimization of the potential,

∂VH

∂φ†i

∣∣∣∣∣
φi=vi

= 0, i = 1, 2, (6.4)

∂VH
∂φi

∣∣∣∣
φi=vi

= 0, i = 1, 2, (6.5)

and allow us to trade m2
11 and m2

22 for v1 and v2, and rephase away the imaginary part of m2
12:

m2
11 =

v2

v1
Re
(
m2

12

)
− 1

2
v2

1 λ1 −
1

2
v2

2 [λ3 + λ4 + Re(λ5)]− 3

2
v1v2 Re(λ6)− 1

2

v3
2

v1
Re(λ7) , (6.6)

m2
22 =

v1

v2
Re
(
m2

12

)
− 1

2
v2

2 λ2 −
1

2
v2

1 [λ3 + λ4 + Re(λ5)]− 1

2

v3
1

v2
Re(λ6)− 3

2
v1v2 Re(λ7) , (6.7)

Im
(
m2

12

)
=

1

2
v1v2 Im(λ5) +

1

2
v2

1 Im(λ6) +
1

2
v2

2 Im(λ7) . (6.8)

Now, contrary to the case of the SM, in the 2HDM the doublets φi are not physical, i.e. the fields in

this basis do not correspond to scalar mass eigenstates. This means that any unitary transformation of

the doublets will produce the same physical predictions. One such transformation is of singular interest

for it rotates the doublets to a particular basis where only one Higgs doublet acquires a VEV after SSB:H1

H2

 =
1

v

 v1 v2

−v2 v1

φ1

φ2

 , (6.9)

where v =
√
v2

1 + v2
2 . To emphasize the rotating character of this transformation, it is customary to

introduce an angle β such that tanβ = v2/v1, so as to have insteadH1

H2

 =

 cosβ sinβ

− sinβ cosβ

φ1

φ2

 . (6.10)

In this basis, commonly known as the Higgs basis and first introduced in Ref. [178], the vacuum state

becomes

〈H1〉0 =
1√
2

0

v

 , 〈H2〉0 =

0

0

 , (6.11)

thus making it clear that only H1 breaks SU(2)L×U(1)Y , that one may take v as the VEV that outlines

the electroweak scale, and that the parametrization of H1 and H2 around the vacuum can have the

following form:

H1 =

 G+

(v + S1 + iG0)/
√

2

 , H2 =

 H+

(S2 + i S3)/
√

2

 , (6.12)

where G+ and G0 are the Goldstone bosons associated with the symmetry-breaking doublet.
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The charged scalars mix only among themselves, and hence, in the Higgs basis, their mass terms come

equal to

LG±,H± = −
(
G− H−

)0 0

0
Re(m2

12)
sin β cos β −

v2

2
[λ4 + Re(λ5) + cotβRe(λ6) + tanβRe(λ7)]

G+

H+

 ,

(6.13)

which is often used to trade Re(λ5) for the mass of the charged Higgs:

Re(λ5) = − 2

v2

(
M2
H± −M2

)
− λ4 − cotβRe(λ6)− tanβRe(λ7) , (6.14)

where, for convenience, the parameter M2 has been introduced, itself defined as

M2 =
Re
(
m2

12

)
sinβ cosβ

. (6.15)

Regarding the neutral sector, the rotation to the Higgs basis decouples the neutral Goldstone boson

from the other three scalars, thus leaving a block diagonal mass matrix,

LG0,Si = −1

2

(
S1 S2 G0 S3

)

M2

11 M2
12 0 M2

13

M2
12 M2

22 0 M2
23

0 0 0 0

M2
13 M2

23 0 M2
33




S1

S2

G0

S3

 , (6.16)

where we took advantage of the fact that the neutral mass terms compose a symmetric form [179], each

independent entry of the associated matrix being

M2
11 = s2

2β

(
M2 −M2

H±

)
+ v2

[
c4β λ1 + s4

β λ2 +
s2

2β

2
λ3 + 2 sβ c

3
β Re(λ6) + 2 s3

β cβ Re(λ7)

]
, (6.17)

M2
12 = −s2β

4

{
4 c2β

(
M2
H± −M2

)
+ v2 [λ1 − λ2 + c2β (λ1 + λ2 − 2λ3) + 2 s2β Re(λ6 − λ7)]

}
, (6.18)

M2
13 = −v2

[
sβ cβ Im(λ5) + c2β Im(λ6) + s2

β Im(λ7)
]
, (6.19)

M2
22 =

1

2

{
(1 + c4β)M2 + (1− c4β)M2

H± +
v2

4
(1− c4β) (λ1 + λ2 − 2λ3)

+ v2
[(

4 s3
β cβ − t−1

β

)
Re(λ6) +

(
4 sβ c

3
β − tβ

)
Re(λ7)

]}
,

(6.20)

M2
23 = −v

2

2
[c2β Im(λ5)− s2β Im(λ6 − λ7)] , (6.21)

M2
33 = 2M2

H± −M2 + v2 λ4 +
v2

2

(
t−1
β λ6 + tβ λ7

)
, (6.22)

with sx, cx, tx standing as abbreviations for, respectively, sinx, cosx, tanx. These expressions are, in

turn, also often used to further change the parametrization of the model, by trading λ1−4 for M2
11, M2

12,

M2
22, M2

33:

λ1 =
1

v2

[
M2

11 + t2β
(
M2

22 −M2
)
− 2 tβM

2
12

]
+

1

2
tβ
[
t2β Re(λ7)− 3 Re(λ6)

]
, (6.23)

λ2 =
1

v2

[
M2

11 + t−2
β

(
M2

22 −M2
)

+ 2 t−1
β M2

12

]
+

1

2
t−1
β

[
t−2
β Re(λ6)− 3 Re(λ7)

]
, (6.24)

λ3 =
1

v2

(
2M2

H± −M2 +M2
11 −M2

22 + t−1
2β M

2
12

)
−
t−1
β

2
Re(λ6)− tβ

2
Re(λ7) , (6.25)

λ4 =
1

v2

(
M2 − 2M2

H± +M2
33

)
−
t−1
β

2
Re(λ6)− tβ

2
Re(λ7) . (6.26)
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At this point, there is one final step we take for the sake of clarity. The remaining 3× 3 mass matrix

from Eq. (6.16) is a real symmetric matrix and therefore orthogonally diagonalizable. This means there

is a matrix such that

RT M2
Si R = diag(m2

1,m
2
2,m

2
3), (6.27)

where (M2
Si

)ij = M2
ij , and m2

i are the masses of the three physical neutral Higgs bosons. Being an

orthogonal matrix, R can be parametrized as

R =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (6.28)

=


cα1

cα2
sα1

cα2
−sα2

cα1
sα2

sα3
− sα1

cα3
sα1

sα2
sα3

+ cα1
cα3

cα2
sα3

cα1
sα2

cα3
+ sα1

sα3
sα1

sα2
cα3
− cα1

sα3
cα2

cα3

 . (6.29)

This immediately allows us to consider M2
ij ≡ M2

ij(m
2
1,2,3, α1,2,3), such functions being for the cases at

hand:

M2
11 = m2

1R
2
11 +m2

2R
2
12 +m2

3R
2
13, (6.30)

M2
12 = m2

1R11R21 +m2
2R12R22 +m2

3R13R23, (6.31)

M2
22 = m2

1R
2
21 +m2

2R
2
22 +m2

3R
2
23, (6.32)

M2
33 = m2

1R
2
31 +m2

2R
2
32 +m2

3R
2
33. (6.33)

Moreover, using Eq. (6.27) and taking into account that the elements (1, 3) and (2, 3) of M2
Si

depend

only on parameters that would naturally be input parameters of a general 2HDM (see Eq. (6.19) and

Eq. (6.21)), we can make one final trade by writing m2
2 and m2

3 in terms of m2
1 – which one may, without

loss of generality, take to be the SM Higgs boson mass –, elements of R, the VEV v, the angle β, and

Im(λ5,6,7):

m2
2 =

1

(R13R22 −R12R23)R32

{
m2

1 (R11R23 −R13R21)R31 +
v2

2

[
Im(λ5)(R23 s2β −R13 c2β)

+ 2 Im(λ6)(R23 c
2
β +R13 sβcβ) + 2 Im(λ7)(R23 s

2
β −R13 sβcβ)

]}
,

(6.34)

m2
3 =

1

(R13R22 −R12R23)R33

{
m2

1 (R12R21 −R11R22)R31 +
v2

2

[
Im(λ5)(−R22 s2β +R12 c2β)

− 2 Im(λ6)(R22 c
2
β +R12 sβcβ)− 2 Im(λ7)(R22 s

2
β −R12 sβcβ)

]}
.

(6.35)

At last, one reaches a point where one would have the model described by

v, tanβ, α1,2,3, m
2
1, M

2
H± , Re(m2

12), Im(λ5,6,7), Re(λ6,7), (6.36)

counting a total of 13 independent parameters, just as we counted at the start of the section, and as

should always be the total for any parametrization of a 2HDM with no symmetries imposed [180]. That
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is not the case of the Z2-symmetric 2HDM, its softly-broken version introduced after we briefly take on

the new couplings a second Higgs adds to the Yukawa sector.

6.2 The Yukawa Sector

The addition of another SU(2)L doublet with hypercharge Y = 1/2 also extends the Yukawa sector

of the SM. The most general Yukawa Lagrangian in a 2HDM reads:

LY = −QL
(
Y u1 φ̃1 + Y u2 φ̃2

)
uR −QL

(
Y d1 φ1 + Y d2 φ2

)
dR − LL

(
Y `1 φ1 + Y `2 φ2

)
`R + h.c. (6.37)

After SSB, the scalar doublets acquire a VEV, generating, as in the case of the SM, fermion mass matrices

which are then bi-diagonalized:

Mf =
1√
2

(
v1 Y

f
1 + v2 Y

f
2

)
−→ 1√

2
V f †

(
v1 Y

f
1 + v2 Y

f
2

)
Uf , for f = u, d, `. (6.38)

By using the parametrization around the vacuum of Eq. (6.12), and expanding the resulting products

of fields, it is straightforward to derive the fermion-scalar couplings in the 2HDM. Whereas in the SM the

diagonalization of the mass matrices also diagonalizes the fermion-scalar couplings, in the 2HDM this is

no longer necessarily true. One may easily illustrate this by switching once more to the Higgs basis. The

β rotation of Eq. (6.10) yields

LY = −QL
[
Y u1

(
cosβ H̃1 − sinβ H̃2

)
+ Y u2

(
sinβ H̃1 + cosβ H̃2

)]
uR

−QL
[
Y d1 (cosβ H1 − sinβ H2) + Y d2 (sinβ H1 + cosβ H2)

]
dR

− LL
[
Y `1 (cosβ H1 − sinβ H2) + Y `2 (sinβ H1 + cosβ H2)

]
`R

+ h.c.,

(6.39)

which, upon rearrangement and the identification that v1 = v cosβ, v2 = v sinβ, gives us the Yukawa

Lagragian expressed in the Higgs basis prior to the bi-diagonalization:

LY = −
√

2

v
QL
(
Mu H̃1 +Nu H̃2

)
uR −

√
2

v
QL
(
MdH1 +NdH2

)
dR −

√
2

v
LL
(
M`H1 +N`H2

)
`R + h.c.,

(6.40)

where

Nf =
v√
2

(
− sinβ Y f1 + cosβ Y f2

)
, for f = u, d, `. (6.41)

Here the fact that only H1 acquires a VEV is made even more significant, by making it the Higgs doublet

which is associated with the mass matrices. The expansion in terms of the fields from the parametrization

in Eq. (6.12) yields – again, in the absence of neutrino masses –,

LY = − uLMu uR − dLMd dR − `LM` `R +
√

2 dL
Mu

v
G− uR −

√
2 uL

Md

v
G+ dR

−
√

2 νL
M`

v
G+ `R +

√
2 dL

Nu
v
H− uR −

√
2 uL

Nd
v
H+ dR −

√
2 νL

N`
v
H+ `R

− uL
Mu

v
S1 uR − dL

Md

v
S1 dR − `L

M`

v
S1 `R − uL

Nu
v
S2 uR − dL

Nd
v
S2 dR

− `L
N`
v
S2 `R + i uL

Nu
v
S3 uR − i dL

Nd
v
S3 dR − i `L

N`
v
S3 `R + h.c.

(6.42)
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Figure 6.1: Example of tree-level FCNCs mediated by neutral scalars. The currents mediated by actual

neutral scalar mass eigenstates come via rotations that include S2 and S3, the unphysical states associated

with the non-diagonal matrices Nf .

By rotating the fermions to their mass eigenstates, the Nf matrices also transform according to

Nf −→ N ′f = V f †Nf U
f , for f = u, d, `. (6.43)

and, dropping the primes for simplicity, one has in the Higgs basis together with the fermion mass basis:

LY = −
(

1 +
S1

v

)(
uMu u+ dMd d+ `M` `

)
+
√

2
G+

v
[u (Mu V PL − VMd PR) d− ν M` PR ` ]

+
√

2
G−

v

[
d
(
V †Mu PR −Md V

†PL
)
u− `M` PL ν

]
+ i

G0

v

(
uMu γ5 u− dMd γ5 d− `M` γ5 `

)
+
√

2
H+

v

[
u
(
N†u V PL − V Nd PR

)
d− ν N` PR `

]
+
√

2
H−

v

[
d
(
V †Nu PR −N†d V †PL

)
u− `N†` PL ν

]
− S2

v

[
u
(
Nu PR +N†u PL

)
u+ d

(
Nd PR +N†d PL

)
d+ `

(
N` PR +N†` PL

)
`
]

+ i
S3

v

[
u
(
Nu PR −N†u PL

)
u− d

(
Nd PR −N†d PL

)
d− `

(
N` PR −N†` PL

)
`
]
.

(6.44)

While the matrices Mf are diagonal, real and positive by definition, the matrices Nf are not necessarily

so – they are, in general, completely arbitrary and complex. This leads to the Yukawa interactions with

the neutral scalars not being diagonal, thus opening the possibility for having FCNCs at tree level in a

generic 2HDM. This is a major departure from the SM.

6.3 The 2HDM with a Softly-broken Z2 Symmetry

One could say that the tree-level FCNC problem is the defining predicament of the 2HDM. However

sizable as NP contributions may be, as we saw in the b→ s transition in Chapter 5, it seems reasonable

that contributions at tree-level order would be sizable enough to exceed the experimental bounds for this

type of phenomena – e.g. the oscillations in the neutral meson systems, or the leptonic decays of neutral

mesons, examples of which can be found in Fig. 6.1. For this reason, ever since the introduction of the
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model, many have been the proposed mechanisms to get rid of these tree-level FCNCs, regardless of how

viable models with these currents may still be.

An instant look back at Eq. (6.44) and the S2,3 terms, tells us that if, say, Nf ∝Mf , the diagonaliz-

ation of mass terms would also diagonalize the other neutral Yukawa couplings, thus leaving the theory

free of the pernicious tree-level currents. This is precisely the idea behind the Aligned 2HDM [181]. The

proportionality coefficients are, in general, complex and, therefore, possible new sources for CP violation,

one of the main attractions of this model. The alignment is, however, ad hoc: the relations may be im-

posed at whichever scale and are, in principle, not radiatively stable [182]. There have been, nevertheless,

efforts to provide a UV completion to this model [183], to find a symmetry-based justification for the

alignment hypothesis [184, 185], and it has even been noted that the loop correction may comply with

Minimal Flavour Violation [186–188].

If, on the other hand, one looks at Eq. (6.39), it is clear that another way to achieve flavour-

conservation, again by only having one matrix per flavour, would be to make the matrices coupling

to H2 the same as those H1 couples to, which, barring judicious choices of β, comes down to making

those matrices either Y f1 or Y f2 , for each f = u, d, `, and never a combination of both. In other words, if

all fermions of a given charge and helicity transform according to the same irreducible representation of

SU(2), correspond to the same value of T3, and if a basis exists in which they receive their contributions

in the mass matrix from a single source, the absence of FCNCs at tree-level is guaranteed [50]. This is

the condition for Natural Flavour Conservation (NFC), which was formalized simultaneously by Glashow

and Weinberg [189], and Paschos [190]. In the 2HDM, NFC may be achieved by imposing discrete or

continuous symmetries; with a Z2, the simplest discrete symmetry that yields NFC, the are four different

possibilities, usually called types I, II, X (or lepton-specific), and Y (or flipped) [191].

6.3.1 Types I, II, X, Y

By convention, one fixes the couplings of up-quarks only to Y u2 , i.e. only to φ2. From Eq. (6.37),

one can easily construct the following transformation assignments which define the four types of the

Z2-symmetric 2HDM:

� type I: φ1 → −φ1

All fermions acquire their mass terms from their couplings to φ2.

� type II: φ1 → −φ1, dR → −dR, `R → −`R
Up-quarks acquire their mass terms from their couplings to φ2;

Down-quarks and charged leptons acquire their mass terms from their couplings to φ1.

� type X: φ1 → −φ1, `R → −`R
Quarks acquire their mass terms from their couplings to φ2;

Charged leptons acquire their mass terms from their couplings to φ1.

� type Y: φ1 → −φ1, dR → −dR
Up-quarks and charged leptons acquire their mass terms from their couplings to φ2;

Down-quarks acquire their mass terms from their couplings to φ1.
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Regardless of one’s choice, the impact of a Z2 on the scalar sector is uniform, since all types share

the same Higgs doublets’ charge assignments. With

φ1 → −φ1, φ2 → φ2, (6.45)

it follows automatically from Eq. (6.2) that

m2
12 = λ6 = λ7 = 0. (6.46)

Because one has the freedom to rephase the remaining parameter unprotected by hermiticity, the imagin-

ary part of λ5 can also be put to zero. Thus, on top of freeing the theory from possibly dangerous FCNCs,

and any CP violation associated with complex and non-diagonal Yukawa matrices, we have obtained a

scalar potential that is CP-conserving as well. Additionally, because one of the main motivations for

2HDMs is the Higgs sector of the MSSM, one tends to mimic the soft-breaking of supersymmetry and

the mixed bilinear term that originates there1: one introduces the soft-breaking of Z2 by bringing back

m2
12, still keeping it real to preserve the CP properties of the model. The potential in Eq. (6.2) becomes,

in a softly-broken Z2-symmetric 2HDM (which, for simplicity, we will henceforth refer to simply as the

2HDM):

VH = m2
11φ
†
1φ1 +m2

22φ
†
2φ2 −m2

12(φ†1φ2 + φ†2φ1) +
1

2
λ1(φ†1φ1)2 +

1

2
λ2(φ†2φ2)2

+ λ3(φ†1φ1)(φ†2φ2) + λ4(φ†1φ2)(φ†2φ1) +
1

2
λ5

[
(φ†1φ2)2 + (φ†2φ1)2

]
.

(6.47)

We have now 8 independent real parameters in VH . As before, we would like to inspect the mass

spectrum of the scalar sector and, en route, define a better set of input parameters for the numerical

analysis ahead. The minimum conditions have reduced to two. One may still use the trivially modified

conditions in Eqs. (6.6) and (6.7) to trade m2
11 and m2

22 for v and tanβ. The square of the charged Higgs

mass becomes

M2
H± = M2 − v2

2
(λ4 + λ5) , (6.48)

and we write again λ5 in terms of it. Regarding the neutral scalars, the situation has changed considerably.

Looking at Eqs. (6.17)–(6.22), it is clear that

M2
13 = M2

23 = 0, (6.49)

and that, from Eq. (6.16), S3 has decoupled from S1,2, and is a mass eigenstate with

M2
33 = 2M2

H± −M2 + v2 λ4. (6.50)

Since CP is conserved, CP itself is defined in the mass basis: this physical pseudoscalar is a CP-odd state,

which, by convention, one calls the A boson. Setting M2
A = M2

33, the relations in Eqs. (6.23)–(6.26) have

the new form:

λ1 =
1

v2

[
M2

11 + t2β
(
M2

22 −M2
)
− 2 tβM

2
12

]
, (6.51)

λ2 =
1

v2

[
M2

11 + t−2
β

(
M2

22 −M2
)

+ 2 t−1
β M2

12

]
, (6.52)

λ3 =
1

v2

(
2M2

H± −M2 +M2
11 −M2

22 + t−1
2β M

2
12

)
, (6.53)

λ4 =
1

v2

(
M2 − 2M2

H± +M2
A

)
. (6.54)

1See, for example, Ref. [192] for a comprehensive review of Higgs bosons in the MSSM.
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In turn, the CP-even mass eigenstates are obtained after the diagonalization of the remaining 2 × 2

block in Eq. (6.16). By convention, these neutral scalars are denoted h and H, and it is also conventional

to take Mh < MH . Instead of three mixing angles, only one is needed now, and, following Ref. [191], we

write H
h

 = R(α)

ρ1

ρ2

 , (6.55)

where ρ1,2 are the fields in the original basis, and

R(x) =

 cosx sinx

− sinx cosx

 . (6.56)

In terms of the fields from the Higgs basis, this is simplyH
h

 = R(α)RT (β)

S1

S2

 = RT (β − α)

S1

S2

 =

cβ−α −sβ−α
sβ−α cβ−α

S1

S2

 . (6.57)

One takes this rotation to get – in agreement with, for example, Ref. [180] –

M2
11 = M2

h s
2
β−α +M2

H c
2
β−α, (6.58)

M2
22 = M2

h s
2
β−α +M2

H s
2
β−α, (6.59)

M2
12 =

(
M2
h −M2

H

)
cβ−α sβ−α, (6.60)

reaching a point where one would have a 2HDM described by

v, tanβ, β − α, M2
H± , M

2
h , M

2
H , M

2
A, m

2
12, (6.61)

counting a total of 8 independent parameters, just as we counted above.

The Yukawa sector is quite straightforward. If one is working with, say, the 2HDM of type II, the

charge assignments amount to taking in Eq. (6.37)

Y u1 −→ 0, (6.62)

Y n2 −→ 0, for n = d, `. (6.63)

From Eq. (6.39), one sees that Mf , the matrices associated with H1, are

Mu =
v√
2

sinβ Y u2 , (6.64)

Mn =
v√
2

cosβ Y n1 , for n = d, `, (6.65)

and that Nf , the matrices associated with H2, are

Nu =
v√
2

cosβ Y u2 = cotβMu, (6.66)

Nn = − v√
2

sinβ Y n1 = − tanβMn, for n = d, `. (6.67)
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Whereas the mass terms are, by construction, stable under these redefinitions, the fermion-scalar coup-

lings in Eq. (6.44) have gained the following shape:

L2HDM
Y = − S1

v

(
uMu u+ dMd d+ `M` `

)
− S2

v

[
u (cotβMu)u− d (tanβMd) d− ` (tanβM`) `

]
+ i

A

v

[
u (cotβMu γ5)u+ d (tanβMd γ5) d+ ` (tanβM` γ5) `

]
+
√

2
H+

v
[u (cotβMu V PL + tanβ VMd PR) d+ ν (tanβM` PR) ` ]

+
√

2
H−

v

[
d
(
cotβ V †Mu PR + tanβMd V

†PL
)
u+ ` (tanβM` PL) ν

]
.

(6.68)

Using Eq. (6.57), the first two lines in the equation above can be rewritten, this time in terms of the

mass eigenstates of the CP-even scalars:

− h

v
(u ξuhMu u+ n ξnhMn n)− H

v
(u ξuHMu u+ n ξnHMn n) , (6.69)

where

ξuh = sβ−α + cβ−α cotβ =
cosα

sinβ
, (6.70)

ξnh = sβ−α − cβ−α tanβ = − sinα

cosβ
, for n = d, `, (6.71)

ξuH = cβ−α − sβ−α cotβ =
sinα

sinβ
, (6.72)

ξnH = cβ−α + sβ−α tanβ =
cosα

cosβ
, for n = d, `. (6.73)

If, finally, one defines further ξ coefficients for A,

ξuA = cotβ, (6.74)

ξnA = tanβ, for n = d, `, (6.75)

and taking advantage of the fact that the coefficients ξfH± would always be equal, one may put L2HDM
Y

in a condensed notation, introduced by Aoki et al. [191]:

L2HDM
Y = −

∑
f=d,u,`

mf

v

(
ξfh ffh+ ξfH ffH − i ξfA fγ5 fA

)

+

[√
2

v
Vud u

(
mu ξ

u
APL +md ξ

d
APR

)
dH+ +

√
2

v
ν`
(
m` ξ

`
APR

)
`H+ + h.c

]
,

(6.76)

where all matrix multiplications have been fleshed out, and u, d, and ` stand, respectively, for each

individual up-type quark, down-type quark, and charged lepton, the sum over which is implicit.

Proceeding accordingly for the other three types of 2HDM, one arrives at the coefficients that char-

acterize the Yukawa Lagrangian for each type, collected in Table 6.1.

6.4 The Coleman-Weinberg Potential

The vacuum structure of a model and its relation with SSB have, at tree-level, a geometrical meaning:

the vacuum states sit at the bottom of the deepest well in the potential surface, producing a breakdown of
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Type I Type II Type X Type Y

ξuh cosα/ sinβ cosα/ sinβ cosα/ sinβ cosα/ sinβ

ξdh cosα/ sinβ − sinα/ cosβ cosα/ sinβ − sinα/ cosβ

ξ`h cosα/ sinβ − sinα/ cosβ − sinα/ cosβ cosα/ sinβ

ξuH sinα/ sinβ sinα/ sinβ sinα/ sinβ sinα/ sinβ

ξdH sinα/ sinβ cosα/ cosβ sinα/ sinβ cosα/ cosβ

ξ`H sinα/ sinβ cosα/ cosβ cosα/ cosβ sinα/ sinβ

ξuA cotβ cotβ cotβ cotβ

ξdA − cotβ tanβ − cotβ tanβ

ξ`A − cotβ tanβ tanβ − cotβ

Table 6.1: Yukawa couplings of up-type quarks, down-type quarks, and charged leptons to the neutral

scalars h, H, and A. The coefficients of the charged Higgs are equal to those of the pseudoscalar.

the theory’s symmetry in the case of a non-null VEV. This was the scenario we encountered in the SM, in

Chapter 2, and in the sections above for the 2HDM. This geometrical picture may, however, be somewhat

obscured by the complexity that comes with corrections beyond the leading order. Take statistical

mechanics, for example: at zero temperature, the thermodynamic ground state is the state of lowest

energy; when thermal fluctuations are considered, on the other hand, the natural statistical quantities

of the internal energy are no longer good descriptors of the system, and one no longer necessarily finds

a minimum at the preferred thermodynamic state [193]. Nevertheless, a generalization of the principle

of minimum energy is at hand, the geometrical picture being recovered if one minimizes the Gibbs free

energy instead. Here we follow Peskin and Schroeder [194], and start by writing the Helmholtz free

energy, F (H), of a magnetic system:

Z(H) = e−βF (H) =

∫
Ds exp

[
− β

∫
dx
(
H[s]−Hs(x)

)]
, (6.77)

where H is an external magnetic field, H[s] is the spin energy density, s(x) is the local spin field, and

β = (kT )−1. The magnetization of the system is found by differentiating F at a fixed temperature,

− ∂F
∂H

=
1

β

∂

∂H
lnZ

=
1

Z

∫
dx

∫
Ds s(x) exp

[
− β

∫
dx
(
H[s]−Hs(x)

)]
=

∫
dx 〈s(x)〉 ≡M, (6.78)

and defining the Gibbs free energy as a Legendre transform of F ,

G = F +MH, (6.79)

we obtain:
∂G

∂M
=
∂F

∂H

∂H

∂M
+M

∂H

∂M
+H = H. (6.80)

If the external field H is zero, G(M) reaches a minimum for the given value of M .
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One has to find a quantity in QFT which (analogously to G) gives a picture of the preferred vacuum

(thermodynamic) state that is geometrical and, at the same time, includes all effects of quantum (thermal)

fluctuations. Let us introduce a quantum scalar field φ, and an external source J(x). We define an energy

functional W [J ] by

Z[J ] = eiW [J] =

∫
Dφ exp

[
i

∫
d4x
(
L[φ] + J(x)φ

)]
, (6.81)

where W [J ] is playing the part of the Helmholtz free energy. As in the previous example, we take a

derivative of the functional with respect to the external source,

δ

δJ(x)
W [J ] = −i δ

δJ(x)
lnZ[J ]

=

∫
Dφφ(x) exp

[
i
∫
d4x
(
L+ Jφ

)]∫
Dφ exp

[
i
∫
d4x
(
L+ Jφ

)]
= 〈φ(x)〉J ≡ φcl(x), (6.82)

arriving at a quantity we call the classical field, which is related to the quantum field φ(x) much in the

same way the magnetization M was related with s(x). The QFT version of the Gibbs free energy is,

then, a functional of the classical field, defined as the Legendre transform of W [J ]:

Γ[φcl] = W [J ]−
∫
d4xJ(x)φcl(x). (6.83)

This object is known as the effective action, and it is trivial do derive that

δ

δφcl(x)
Γ[φcl] = −J(x), (6.84)

in complete analogy with Eq. (6.80). If the external source is set to zero, the functional derivative of the

effective action is zero. Moreover, since Γ is, just like G, an extensive quantity, it is proportional to the

volume of the spacetime region over which the functional integral is taken. Thus, we write:

Γ[φcl] = −(V T ) · Veff(φcl), (6.85)

where T is the time extent of the integration region, V is its three-dimensional volume, and Veff, the

effective potential, is exactly what we ordered – a function of the classical field that satisfies

∂

∂φcl
Veff(φcl) = 0. (6.86)

6.4.1 One-loop Effective Potentials

Taking two functional derivatives of W [J ] with respect to the external source gets us

δ2

δJ(x)δJ(y)
W [J ] = i 〈φ(x)φ(y)〉J , (6.87)

where, for simplicity, we have omitted the state in the matrix element. Using Eq. (6.82), we also have

δ2

δJ(x)δJ(y)
W [J ] =

δ

δJ(x)
φcl, (6.88)

which, taking into account Eq. (6.84), gives in turn:

δ2

δφcl(x)δφcl(y)
Γ[φcl] = − δ

δφcl(x)
J(y) = i

(
〈φ(x)φ(y)〉J

)−1
. (6.89)
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Figure 6.2: The one-loop diagrams which contribute to VCW in the λφ4 model.

(Figure taken from Ref. [195], ©1973 American Physical Society)

For the field configuration where φcl is given by the true expectation value of φ, i.e. when J = 0 and the

effective action is minimized, this is nothing but the inverse of the two point function of scalar theory,

δ2

δφcl(x)δφcl(y)
Γ[φcl] ≡ iG(x, y)−1. (6.90)

It can be shown, if we go on to take up to the n-th order derivative, that the effective action can be

written as a series that generates all 1PI Green’s functions with i = 1, . . . , n external legs. Denoting

Γ(n)(x1, . . . , xn) as the sum of all 1PI Feynman diagrams with n external legs,

Γ[φcl] =
∑
n

1

n!

∫
d4x1 . . . d

4xn Γ(n)(x1, . . . , xn)φcl(x1) . . . φcl(xn), (6.91)

and, evaluating the spacetime integrals, it is not difficult to make out that Veff reads

Veff = −
∑
n

1

n!
Γ(n)(0, . . . , 0)φcl(x)n. (6.92)

In their foundational paper [195], Sidney Coleman and Erik Weinberg advocated for a loop expansion

of the effective potential, instead of the expansion in powers of the coupling constant, and that is indeed

the common practice, which we also adhere to in this work. In tree-level approximation, the effective

potential is just the ordinary potential, VH , whereas the one-loop contributions compose what is known

as the Coleman-Weinberg potential. Adding the necessary set of counterterms to treat the divergences

introduced by the loop corrections, we define

V
(1)
eff = VH + V

(1)
CW + δV. (6.93)

Let us work out VCW for the simple λφ4 single scalar theory. The tree-level effective potential is given

by the scalar potential with the quantum field replaced by its classical counterpart:

VH =
1

2
m2φ2

cl +
λ

4!
φ4

cl. (6.94)

Since we only have even powers of φcl, no diagrams with odd external legs are generated, meaning V
(1)
CW

is a sum of the one-loop diagrams with an even number of external legs; these are the polygon diagrams

that are represented in Fig. 6.2. Thus we obtain

V
(1)
CW = i

∞∑
n=1

∫
d4k

(2π)4

1

2n

( 1
2 λφ

2
cl

k2 −m2 + iε

)n
, (6.95)

where 1/2n is a combinatorial factor that accounts for rotations and reflections of the n-sided polygon,

and for the swapping of external legs, replacing the factor 1/n! in that process. Performing the usual

Wick rotation into Euclidean space, k2 → −k2
0 −~k2 = −k2

E , dropping the ‘E’ for simplicity, summing the

series,

ln(1 + x) = −
∞∑
n=1

(−1)n xn

n
(6.96)
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and also dropping iε, one has

V
(1)
CW =

1

2

∫
d4k

(2π)4
ln

(
1 +

1
2 λφ

2
cl

k2 +m2

)
=

1

2

∫
d4k

(2π)4

[
ln

(
k2 +m2 +

1

2
λφ2

cl

)
− ln

(
k2 +m2

)]
. (6.97)

This integral has an ultraviolet divergence and needs to be regularized if one wants to evaluate it. The

second term does not depend on the field: it will, therefore, merely give a constant contribution to the

effective potential, which we can neglect without loss of generality. If one differentiates what remains

with respect to φcl, one obtains

∂

∂φcl
V

(1)
CW =

1

2

∂m2
eff

∂φcl

∫
d4k

(2π)4

1

k2 +m2
eff

, (6.98)

where we have introduced

m2
eff ≡ m2

eff(φcl) = m2 +
1

2
λφ2

cl. (6.99)

This integral in momentum has the typical shape of the expressions we commonly evaluate using dimen-

sional regularization. Recalling that in D dimensions∫
d4k

(2π)4
−→ µ4−D

∫
dDk

(2π)D
, (6.100)

and that we define 4−D = 2ε, we get:

∂

∂φcl
V

(1)
CW =

1

2

∂m2
eff

∂φcl

[
µ2ε

(4π)2−ε
Γ(ε)

ε− 1

(
m2

eff

)1−ε]
=

1

2

∂m2
eff

∂φcl

[
− m2

eff

(4π)2

(
ln

(
4πµ2

m2
eff

)
+ 1 +

1

ε
− γE +O(ε)

)]
=

m2
eff

32π2

∂m2
eff

∂φcl

[
ln

(
m2

eff

µ̃2

)
− 1− 1

ε
+O(ε)

]
, (6.101)

where µ̃2 = 4πµ2e−γE . To integrate back over the field, we simply have to make a change of variables,

m2
eff = µ̃2 x,

∂m2
eff

∂φcl
dφcl = µ̃2 dx, (6.102)

such that ∫
dxx

[
lnx+ b

]
=
x2

2

[
lnx+ b− 1

2

]
, (6.103)

yields, in our case:

V
(1)
CW =

m4
eff

64π2

[
ln

(
m2

eff

µ̃2

)
− 3

2
− 1

ε

]
. (6.104)

The parameter we introduced above as m2
eff can be viewed as a field-dependent effective mass, hence

the reason we wrote it with the moniker ‘eff’, and is the main driver of the one-loop corrections to the

tree-level potential.

6.4.2 Field-dependent Effective Mass Terms

Proceeding much in the same way, only now to include diagrams with external scalar legs and a gauge

boson in the loop, we will get the following contribution:

V
(1)
CW = 3

m4
eff,B

64π2

[
ln

(
m2

eff,B

µ̃2

)
− 5

6
− 1

ε

]
. (6.105)
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h H A H± G0 G± Zµ W±µ t b τ

Ni 1 1 1 2 1 2 3 6 −12 −12 −4

Ci 3/2 3/2 3/2 3/2 3/2 3/2 5/6 5/6 3/2 3/2 3/2

Table 6.2: The values of the constants in Eq. (6.107) for each of the relevant particles in the 2HDM.

For a fermionic loop, on the other hand, the result would be

V
(1)
CW = − 4

m4
eff,F

64π2

[
ln

(
m2

eff,F

µ̃2

)
− 3

2
− 1

ε

]
. (6.106)

Bringing back the “master formula” in Eq. (6.93), a given choice of δV translates to a different renormal-

ization scheme. The authors of Ref. [195], for example, demanded that the second and fourth derivatives

of the effective potential produced, respectively, the mass and coupling constant of the scalar. In the MS

scheme, which we employ in this work, the counterterms are chosen in such a way that the divergent term

with ε is cancelled, and µ̃2 is simply µ. So, for a model that has neutral scalar fields h, H, A, charged

scalars H±, Goldstone bosons G0, G±, massive gauge bosons Zµ, W
±
µ , third generation fermions t, b,

and third generation charged lepton τ , one writes the total Coleman-Weinberg potential as a sum over

the contributions of each mass eigenstate:

V
(1)
CW =

∑
i

Ni
64π2

M4
i (φ)

[
ln

(
M2
i (φ)

µ2

)
− Ci

]
, (6.107)

where, for economy of notation, a generic effective mass is now M2
i (φ), and, taking into account the

number of colours and the mass degeneracy of charged bosons, the constants Ni and Ci are as given in

Table 6.2. It should be noted that the Goldstone bosons, while not massive themselves, can have an

effective mass term and, therefore, their contributions must be included. Also worth of note is the fact

that, in the MS scheme, one is left with a dependence on the renormalization scale µ in the logarithms.

However, up to higher order effects, the masses and VEVs should not depend on this scale, and, as long

as it still renders the loop expansion meaningful, it can be chosen to take the value of a natural scale of

the model. In order to have all fractions in the logarithms close to 1, µ should be of the order of the

physical masses; thus, we choose the closest natural scale around those values, the electroweak scale:

µ ∼ v = 246 GeV. (6.108)

What are, then, the effective mass terms in the 2HDM? First, we rewrite the Higgs doublets in

Eq. (6.12), which are in the convenient basis where only H1 is associated with mass generation, this time

parametrized with the fields of the Z2-symmetric model

H1 =

 G+[
v + S1(h,H) + iG0

]
/
√

2

 , H2 =

 H+[
S2(h,H) + i A

]
/
√

2

 , (6.109)

where S1,2(h,H) follow from the rotation with β − α from Eq. (6.57). The fields on which the effective

masses depend on represent the possibility that beyond tree-level the quantum fields above may acquire

themselves non-null VEVs, thus shifting our vacuum configuration towards another stationary point.
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Numerically speaking, these classical fields are simply variables that are surveyed computationally in

order to minimize the effective potential. If we keep the Goldstone bosons from having a classical

counterpart, for they are not physical fields, and do not allow the charged Higgs to possibly get a VEV,

i.e. charge-breaking minima, the effective mass terms will be functions of h, H, and A:

M2
i (φ) ≡M2

i (h,H,A). (6.110)

Since the kinetic terms of the doublets are invariant under basis transformations, the effective masses

of the gauge bosons come from the kinetic term of H1, and are thus given by their interactions with

v + S1:

M2
Z(φ) =

g2

4

[
v + S1(h,H)

]2
, (6.111)

M2
W±(φ) =

g2 + g′2

4

[
v + S1(h,H)

]2
. (6.112)

Regarding the fermions, let us write the top mass in terms of its Yukawa coupling:

mt =
v√
2

sinβ (Y u2 )33 =
v√
2
yt, (6.113)

denoting the bottom and tau masses as well by

mn =
v√
2
yn, for n = b, τ, (6.114)

so that the differences between types I, II, X, and Y are encoded inside SM-like Yukawas. With this

prescription, the relevant terms for fermion effective masses – the actual mass term plus the first line of

Eq. (6.76) – are given by

Leff.mass = −
∑

f=t,b,τ

yf√
2
f
(
v + ξfh h+ ξfH H − i ξfA γ5A

)
f, (6.115)

the squared effective masses being, therefore

M2
f (φ) =

y2
f

2

[(
v + ξfh h+ ξfH H

)2

+ ξf 2
A A2

]
, for f = t, b, τ. (6.116)

For the scalars, we must go back to the tree-level potential and consider both quadratic and, so as to

account for the field-dependence, quartic terms. With VH as in Eq. (6.47), expanded in terms of the

fields in Eq. (6.109), and with the parametrization changed to that of Eq. (6.47), the mass of H± would

simply be

M2
H± =

∂2VH
∂H± 2

(6.117)

evaluated at the VEV of the doublets, i.e. setting all fields to zero after differentiation. By keeping all

couplings, one has to trace the definition of this mass further back, to Eq. (6.13), where it was but the

surviving eigenvalue of a mass matrix

M2
G±,H± =


∂2VH
∂G± 2

∂2VH
∂G± ∂H±

∂2VH
∂G± ∂H±

∂2VH
∂H± 2

 . (6.118)
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In keeping all terms with h,H,A after taking the derivatives, one achieves the effectivization of the masses

above,M2
G±,H± →M2

G±,H±(φ), the contributions to the sum over mass eigenstates of Eq. (6.107) being

simply the eigenvalues

M2
G±,H±(φ) =

1

2

[
M2

11 +M2
22 ±

√
(M2

11 −M2
22)

2
+ 4 |M2

12|
2
]
. (6.119)

By the same token, the effective masses of neutral scalar must be obtained from matrices of second deriv-

atives as well. Respecting the fact that with a Z2 symmetry the physical fields are also CP eigenstates,

the CP-even scalars contribute via the eigenvalues

M2
h,H(φ) =

1

2

[
M2

11 +M2
22 ±

√
(M2

11 −M2
22)

2
+ (M2

12)
2
]

(6.120)

of an effective mass matrix

M2
h,H(φ) =


∂2VH
∂S2

1

∣∣∣∣
S1,2(h,H)

∂2VH
∂S1 ∂S2

∣∣∣∣
S1,2(h,H)

∂2VH
∂S1 ∂S2

∣∣∣∣
S1,2(h,H)

∂2VH
∂S2

2

∣∣∣∣
S1,2(h,H)

 , (6.121)

whereas for the pseudoscalars the 2× 2 mass terms are

M2
G0,A(φ) =


∂2VH
∂G0 2

∂2VH
∂G0 ∂A

∂2VH
∂G0 ∂A

∂2VH
∂A2

 , (6.122)

with the eigenvalues M2
G0,A(φ) following the same same formula as M2

h,H(φ). Since the expressions for all

these terms are large, and are mere algebraic manipulations of all the information we have been presenting

above, they can be provided upon request in the form of a Mathematica package.
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Chapter 7

Vacuum Stability and Other

Constraints

An unconstrained 2HDM is a model whose theoretical self-consistency is left to chance, and whose

parameter space is allowed to produce observables inconsistent with experimental data. Demanding that

the 2HDM is a well-behaved model will lead to several bounds within which our parameters can be

deemed reasonable with a given level of confidence. In this chapter, we go through the constraints we will

impose in the numerical analysis, focusing on the issue of the stability of the vacuum at one-loop level.

7.1 Positivity, or: Boundedness from Below

The vacuum we live in should be a stable vacuum, one that hasn’t decayed within the present age

of the universe. What are the necessary sufficient conditions to guarantee stability? A very first step

towards a stable vacuum is to require that, in very least, the scalar potential should be bounded from

below, i.e. that its parameters are such that they ensure that in no direction in field space the potential

tends to minus infinity. To see how this constraint, usually termed positivity, translates into bounds on

our parameters, we consider here a different notation for the potential. This notation emphasizes the

fact that the scalar potential has field bilinears φ†aφb as its building blocks, and can be traced back to the

work of Velhinho et al. [196], subsequent refinements of the formalism being those of Refs. [197–200].

If one arranges the bilinears that compose the 2HDM potential into the following Hermitian matrix:

R :=

φ†1φ1 φ†2φ1

φ†1φ2 φ†2φ2

 , (7.1)

and exploiting the completeness of the Pauli matrices together with the identity matrix to write R by its

decomposition

Rij = φ†jφi =
1

2

(
r0 δij + ra σaij

)
, (7.2)

where δij is the Kroenecker delta, and σa (a = 1, 2, 3) are the Pauli matrices, one can derive a 4-vector
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rµ by inverting Eq. (7.2):

rµ = (r0, r1, r2, r3) =


φ†1φ1 + φ†2φ2

φ†1φ2 + φ†2φ1

i
(
φ†2φ1 − φ†1φ2

)
φ†1φ1 − φ†2φ2

 . (7.3)

The scalar potential of the 2HDM is thus written in allusion to a Minkowski space, and with standard

Minkwoski space conventions, in the form:

VH = −Mµr
µ +

1

2
Λµνr

µrν , (7.4)

where, in our Z2-symmetric case, it is easy to show that the covariant vector Mµ and the tensor Λµν are

given by

Mµ = −1

2

(
m2

11 +m2
22, −2m2

12, 0, m2
11 −m2

22

)
(7.5)

Λµν =
1

2


(λ1 + λ2)/2 + λ3 0 0 (λ1 − λ2)/2

0 λ4 + λ5 0 0

0 0 λ4 − λ5 0

(λ1 − λ2)/2 0 0 (λ1 + λ2)/2 + λ3

 . (7.6)

It has been proved [199, 201] that, in this language, the positivity constraint amounts to requiring

that, being Λ0,Λ1,Λ2,Λ3 the eigenvalues of the mixed Λνµ:

� All eigenvalues must be real;

� Λ0 > 0 ;

� Λ0 > {Λ1,Λ2,Λ3} .

This is a strong requirement of boundedness from below, for it demands the quartic sector of the potential,

V4, to be strictly positive for all φi →∞, discarding possibly interesting models where V4 is asymptotically

zero in those directions. Such a marginal positivity constraint, namely V4 ≥ 0, would demand, however,

an inspection of the quadratic sector in those points, so as to guarantee V2 ≥ 0 when V4 → 0. The usual

positivity conditions in terms of the quartic couplings of the scalar potential can be obtained from the

bullets above by diagonalizing Λνµ = gναΛµα – the same entries as the tensor Λµν , but with second, third,

and fourth columns multiplied by minus 1. If we rescale the doublets as

φ1 −→ q φ1, φ2 −→ q−1 φ2, with q =

(
λ2

λ1

)1/8

(7.7)

we observe the following transformation of the parameters

m2
11 −→ q2m2

11, m2
22 −→ q−2m2

22, λ1 −→
√
λ1λ2, λ2 −→

√
λ1λ2. (7.8)

From Eq. (7.6), it is immediate to check that this transformation indeed diagonalizes the covariant tensor,
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the eigenvalues of the mixed one thus being

Λ0 =
1

2

(√
λ1λ2 + λ3

)
, (7.9)

Λ1 = −1

2

(
λ4 + λ5

)
, (7.10)

Λ2 =
1

2

(
λ5 − λ4

)
, (7.11)

Λ3 =
1

2

(
λ3 −

√
λ1λ2

)
. (7.12)

Imposing the bulleted conditions on these expressions, the demand of positivity comes equal to

λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2, λ3 + λ4 − |λ5| > −

√
λ1λ2. (7.13)

7.2 The Tree-level Global Minimum

After making sure that our potential respects positivity, one can ensure that the vacuum we live in is

stable if it is the global minimum of the potential, i.e. if we reside in the lowest, stablest configuration

possible. With a Z2 symmetry, the electroweak vacuum has real VEVs, this type of vacua being usually

categorized as natural vacua. The absolute stability of a natural vacuum depends, at tree-level, on the

category the extra vacuum falls upon [202, 203]: if the value of the potential at a minimum corresponding

to a natural vacuum is VN, and VCB is the value for a charge-breaking vacuum configuration,

〈φ1〉CB =
1√
2

 0

v′1

 , 〈φ2〉CB =
1√
2

α

v′2

 , (7.14)

it has been shown that the natural minimum sits always at a deepest stationary point, VCB − VN > 0; if

it is a vacuum with an unremovable complex phase and, therefore, spontaneously CP-violating,

〈φ1〉CP =
1√
2

 0

v′1

 , 〈φ2〉CP =
1√
2

 0

v′2 e
iθ

 , (7.15)

it has been shown that a coexisting natural minimum will always be lower, VCP − VN > 0; if, however,

there exists a second minimum which is also categorized as natural, with VEVs {v′1, v′2}, their squared

sum falling either above or below the square of the electroweak scale, the authors of Ref. [201] have shown

that the conclusion on whether our vacuum or this one is the global minimum will depend on the precise

value of these VEVs:

VN′ − VN =
m2

12

4 v1v2

(
1− v1v2

v′1v
′
2

)(
v1v
′
2 − v2v

′
1

)2
. (7.16)

Also in Ref. [201], it was demonstrated that it is possible, nevertheless, to devise a discriminant that

signals if a vacuum of a CP-conserving model sits, indeed, at the global minimum. Using the Minkowski-

like formalism we defined above, the authors concluded that such vacuum, with VEVs {v1 = v cosβ, v2 =

v sinβ}, is the global minimum of the potential if and only if, for intermediate discriminants D1 = M̂1 r̂
1

and D3 = M̂3 r̂
3,

D = D1D3 > 0, (7.17)
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where r̂i and M̂i are, respectively, the i-th elements of the 4-vectors from Eq. (7.3) and Eq. (7.5), evaluated

in the basis where Λνµ is diagonal. That basis is the basis where the doublets are rescaled according to

Eq. (7.7), from whence it follows that, for the Z2-symmetric 2HDM,

D1 = v2 sinβ cosβ m2
12, (7.18)

D3 = v2 q2 cos2 β
(
tan2 β − q−4

)(
m2

11 − q−4m2
22

)
. (7.19)

Introducing a parameter k, defined as

k2 ≡
[(

λ1

λ2

)1/4
]2

= q−4, (7.20)

one gets for the multiplication:

D1D3 =
v4 k−2

4
cos3 β sinβ m2

12

(
tanβ − k

)(
tanβ + k

)(
m2

11 − k2m2
22

)
, (7.21)

and, recalling that β is taken in the first quadrant, one may remove the terms that are positive by

definition and write the global minimum condition with a simplified discriminant: our vacuum is the

global minimum of the potential if and only if

D = m2
12

(
tanβ − k

)(
m2

11 − k2m2
22

)
> 0. (7.22)

If one imposes this discriminant to be verified, together with the positivity conditions turned on, one

is sure to have a resulting range of the parameter space where stability is respected and our vacuum is the

true vacuum of nature. This is however, as we’ve been stressing here and there throughout this chapter,

only true at tree level. This discriminant was derived by minimizing the tree-level potential, and we

know from the previous chapter that there is an object whose minimization provides better information

on the stationary points of the potential with loop corrections – the effective potential. In fact, the

corrections arriving from the Coleman-Weinberg term in V
(1)
eff may modify completely the shape of the

potential sheet, which, in the worst case scenario for the tree-level analysis, may include the introduction

of new minima or the lowering of existing ones into the status of the true global minimum; they may

even turn a gauge symmetric vacuum into a radiatively breaking one [195, 204]. Furthermore, the very

positivity conditions may lead to inaccurate conclusions of boundedness from below when loop corrections

are considered: these too were derived inspecting only the behaviour of VH in the infinite directions of

field space. It may happen that we sit in a point where one of the quartic couplings are near a turning

point, e.g. λ1 or λ2 near zero, and the loop-induced terms may provide the necessary nudge to unmask

an unbounded potential. By running the quartic couplings with their RGEs, and thus RGE-improving

the scalar potential, one may, nevertheless, rescue the positivity conditions – as long as one remains

within the perturbative regime, where replacing tree-level couplings by running couplings in a tree-level

potential can still be considered a good approximation.

7.3 Vacuum Decay in Field Theory

How does one proceed when the stability constraint is to be imposed on the loop corrected potential?

First of all, for the one-loop effective potential there is no device in the vein of the tree-level discriminant
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we found in the previous section. What remains to be done is to minimize V
(1)
eff ‘by hand’, and assert

which vacuum corresponds to the lowest minimum. Such a state we call a true vacuum; a minimum sitting

above the global minimum is referred to as a false vacuum. The plethora of minima of the 2HDM can

be quite complex, an analytical solution being too involved to be practical: the tree-level potential and

the Coleman-Weinberg potential, with its field-dependent masses, need to be simultaneously minimized,

thus, assuming vacua to be either natural or CP-violating, a system of first derivatives with respect to

h, H, A gets easily out of hand. Several computer programs exist which use homotophy continuation

methods to find all the stationary points of a polynomial systems, among these one can cite HOM4PS-2.0

[205], or Bertini [206]. This means we can use a polynomial solver for the tree-level potential, get all the

stationary points (maxima, minima, and saddle points), and take these as starting points for a gradient-

based numerical minimizer (MINUIT [207] or later versions in C++; in Python the iminuit package,1 for

example) that does inspect the whole expression of V
(1)
eff . This is the course taken by the first section of

Vevacious [208].

After computing all the minima of the loop-corrected potential, an interesting situation, or, as Barroso

et al. put it [209], a panic situation, happens when our vacuum is not the global minimum and may,

therefore, decay into the actual true vacuum. At first glance, such a model would be deemed unstable.

If, however, one computes the tunnelling rate between our state and that of the deepest minimum, and

that rate comes out to be larger than the age of the universe, our vacuum would have been stable at least

up until now, notwithstanding the fact that the fate of the universe would have to be left uncertain. One

ground state with a lifetime larger than the age of the universe must be accepted as valid, this situation

being labelled one of metastability.

7.3.1 Instantons in Particle Mechanics

To compute the decay rate of the electroweak vacuum in the situations it is a false vacuum, one must

introduce the concept of vacuum decay in field theory. This is described by the semiclassical formalism

whose groundwork is found in the seminal papers of Sidney Coleman and Curtis Callan [210, 211]. This is

the formalism that underlies the physics of bubble nucleation and instantons, and it is not our intention

to give here a thorough account of these subjects.2 Our aim is to rather give a reasonable description of

the ingredients relevant to the calculation of the tunnelling between a false vacuum and the true vacuum.

Let us start with simple particle mechanics. Our intuition for tunnelling comes from Quantum Mech-

anics, and Coleman even goes as far as to say that every child knows that the amplitude for transmissions

obeys the WKB formula [204]:

|T (E)| = exp

[
−1

~

∫ b

a

dx
√

2(V − E)

]
(1 +O(~)) , (7.23)

where E is the energy of the state, a and b are the classical turning points in the potential barrier, and

the factors of ~ were left explicit to lay bare the semiclassical nature of this approximation. For a particle

1One can find the code and all the documentation from http://iminuit.readthedocs.io/en/latest/.
2The interested reader is pointed to the compiled Erice lectures of Sidney Coleman [204], or a recent review by Andreassen,

Farhi, Frost, and Schwartz [212], and references therein.
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Figure 7.1: Illustrations of, respectively, a symmetric double-well potential, a double-well with a false

and a true vacuum, and the inverted potential of the skewed case.

in, say, a well, hitting the barrier at a rate A, and each time tunnelling with a probability given by the

transmission amplitude, one expects the decay rate to take the form

Γ ∼ A |T (E)|2 = Ae−B/~ (1 +O(~)) . (7.24)

In order to find the analogous of the WKB approximation in QFT, one should investigate the transition

between two states in the path integral formulation. For an interaction with duration T , starting at xi

and finishing at xf ,

Z ≡ 〈xf |e−HT/~|xi〉 =

∫
Dx e−SE [x]/~. (7.25)

The measure Dx denotes the “sum over histories”, i.e. the integration over all possible paths with

boundary conditions x(−T/2) = xi, and x(T/2) = xf ; in turn, SE [x] is the Euclidean action (imaginary

time), and for a spinless particle with unit mass it is

SE [x] =

∫ T/2

−T/2
dt

[
1

2

(
dx

dt

)2

+ V (x)

]
. (7.26)

In the semiclassical limit (small ~), the path integral is dominated by the stationary points of the action:

denoting one such point by x̄, the functional derivative of SE ,

δSE
δx̄

= −d
2x̄

dt2
+ V ′(x̄) = 0, (7.27)

comes to describe the equations of motion of a unit mass particle moving in a potential minus V , whence

it follows that

E =
1

2

(
dx̄

dt

)2

− V (x) (7.28)

is a constant of the motion of a given stationary x̄.

Now, let us imagine that the particle is in a symmetric double-well potential as illustrated in the left

panel of Fig. 7.1. The inverted potential consists of two hills, at ±a, and a valley between them. Two

trivial stationary paths are those where the particle remains fixed in either of the hilltops. To evaluate

the corresponding amplitudes, one may take advantage of the usual expansion in energy eigenstates,

〈xf |e−HT/~|xi〉 =
∑
n

e−EnT/~〈xf |n〉〈n|xi〉, (7.29)

whose leading term for large T keeps the energy and wave function of the lowest-lying energy eigenstate.

Since, to a good approximation, the static particle is in the ground-state of a harmonic oscillator, we
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Figure 7.2: The shape of an instanton in the symmetric double-well potential.

simply have

E0 =
1

2
~ω (1 +O(~)) , (7.30)

whereas for large T and a Gaussian intermediate state |0〉 we get

〈±a|e−HT/~| ± a〉 =
( ω
π~

)1/2
e−ω T/2 (1 +O(~)) , (7.31)

where we have introduced ω defined by: ω2 = V (±a). There is, however, another, potentially interesting,

solution: one where the particle starts at the top of the −a hill at −T/2, rolls down through the valley,

and moves up towards the a hilltop, where is stops at T/2. Since we are interested in the large T limit,

we consider the form of the solution where the particle sits at the top of the hills at plus and minus

infinity. In this case, the constant of the motion E is actually zero, which yields

dx

dt
=
√

2V , (7.32)

or, equivalently,

t = t0 +

∫ x

0

dy
1√

2V (y)
, (7.33)

where t0 is the time at which x vanishes – zero for this symmetric motion. This object, sketched in

Fig. 7.2, is called an instanton: ‘instant-’ because it is a mathematical structure in Euclidean time,

narrowly centered in t0 (’t Hooft even suggested the name Euclidean-gauge soliton [213]); ‘-on’ because it

is a particle-like solution of classical field theories (Polyakov suggested the name pseudoparticle [214, 215],

still used in some literature). The inverse transition, from a to −a, is called an anti-instanton. The action

of an (anti-)instanton, S0, is easily derived from Eq. (7.32):

S0 =

∫
dt

[
1

2

(
dx

dt

)2

+ V

]
=

∫
dt

(
dx

dt

)2

=

∫ a

−a
dx
√

2V , (7.34)

and we are starting to see the signs of a possible WKB-like expression.

To compute 〈a|e−HT/~| − a〉, we must sum over all possible paths, which translates to the sum over

a sequence of n instantons and anti-instantons distributed between −a and a, and centered at each tn

with −T/2 < t1 < t2 < . . . < tn < T/2. Moreover, this distribution is actually not arbitrary: since we

want to start at −a and move forward with an instanton, followed by and anti-instanton, followed by an

instanton, so on and so forth, ending at a with another instanton, n must be an odd number. Likewise,

to start at −a and finish back at −a, one must have an even number of motions. If one considers that
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� each small time interval containing an (anti-)instanton provides a correction K to the harmonic-

oscillator matrix-element,

� the total action is the sum of n (anti-)instanton actions, SE = nS0,

� time integration is done over the locations of centers tn, all adding up to Tn/n!,

one gets

〈a|e−HT/~| − a〉 =
( ω
π~

)1/2
e−ω T/2

∑
odd n

(
Ke−S0/~ T

)n
n!

(1 +O(~)) , (7.35)

while to end back at −a one has the same expression, but summing instead over even n’s. The calculation

of both sums is trivial, and it produces:

〈±a|e−HT/~| − a〉 =
( ω
π~

)1/2
e−ω T/2

1

2

[
exp
(
Ke−S0/~ T

)
∓ exp

(
−Ke−S0/~ T

)]
(1 +O(~)) , (7.36)

which, recalling the expansion in energy eigenstates of Eq. (7.29), means this system comprises two

ground-states with energies

E± =

[
1

2
~ω ± ~Ke−S0/~

]
(1 +O(~)) , (7.37)

where it is clear that each eigenstate is, in first approximation, a harmonic-oscillator eigenstate centered

at the bottom of each well, with the degeneracy of the two states broken by a term proportional to a

barrier penetration factor e−S0/~.

We are, of course, interested in a more asymmetrical configuration. Going back to Fig. 7.1, we want

to focus not in the double well on the left, but rather in the skewed version of that potential, in the center

panel, where a false vacuum and a true vacuum coexist. The inverse is shown in the right panel, and one

may observe there that now, besides the static solution at a, another stationary path also starting in the

false vacuum is one where the particle rolls down towards the valley, but, without the necessary energy

to go up to c, it simply bounces off the classical turning point in the barrier, at b, and returns to the top

of the hill at a. This motion is, accordingly, called the bounce. Denoting the action of the bounce by B,

and taking into account that in this case there is no restriction to an even or odd number of bounces,

meaning the exponential series that we found for the potential well must be summed in its entirety, we

obtain

〈a|e−HT/~|a〉 =
( ω
π~

)1/2
e−ω T/2 exp

(
Ke−B/~ T

)
, (7.38)

and ground state energy eigenvalue is

E0 =
1

2
~ω ± ~Ke−B/~, (7.39)

where the factors of (1 +O(~)) are omitted and implied. An argument could be made that these calcula-

tions have generated a correction to the static energy that may be small compared with ~2 terms which

have been neglected; furthermore, the very state we are trying to compute, should not appear in the

spectrum of the Hamiltonian, for it has a barrier penetration term that renders it unstable and, there-

fore, not an eigenstate of real energy. That is, however, the very fact that makes this exactly what we

wanted to derive: the second term may indeed be small compared to higher-order terms, but, given this

is an unstable state, its energy must have an imaginary part, and this should be its leading contribution:

Im(E0) ≡ Γ

2
∼ ~ |K| e−B/~. (7.40)
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7.3.2 The O(4) Bounce Formalism

The decay of the false vacuum has a homologous process in thermodynamics, which has been used

ever since Ref. [210] to shed light on the qualitative features of this type of phenomena. One can imagine

the central potential in Fig. 7.1 to be a plot describing the nucleation in the boiling of a superheated

liquid: the false vacuum corresponds to the superheated fluid phase, the true vacuum is the vapour phase,

both being minima of the free energy as a function of density. Here and there, bubbles appear in the

liquid due to thermodynamic fluctuations; for a small bubble, the increase in volume energy that occurs

with the materialization of the bubble is compensated with the loss in surface energy, causing the bubble

to diminish back to nothing; at one point, however, a large enough bubble may be formed such that it

is energetically favourable for it to expand, and thus drive the conversion of liquid to vapour phase until

it encompasses the whole system (or coalesce with other expanding bubbles and together take on what

remains of the fluid). Since the probability per unit time that such a critical bubble will form in a given

system is proportional to the latter’s volume, the quantity one is after is, in fact, a decay probability per

unit time per unit volume: Γ/V.

In field theory, one changes thermodynamic fluctuations to quantum fluctuations, with bubbles of

true vacuum expanding within a false stationary state of nature, converting the vacuum configuration of

the universe in their stride. Denoting the bounce as a field φb, its Euclidean action being

B ≡ SE [φb] =

∫
d4x

[
1

2
(∂µφb)

2
+ V (φb)

]
, (7.41)

where x0 → ix0, Eq. (7.40) tells us that we can write, to leading order in ~, and returning to natural

units,
Γ

V = Ae−B . (7.42)

The prefactor A is formally given by a ratio of two functional determinants [211]. Their evaluation is,

however, too cumbersome for most field theories of interest, so much so that usually it is more practical

to simply estimate the prefactor by dimensional analysis: A has dimensions of [mass]4 and is, therefore,

expected to be of the order of a characteristic mass of the theory [216–218]:

A ∼ ηM4, (7.43)

where η is a dimensionless number of order unity. Indeed, taking, as we did for the Coleman-Weinberg

potential, the natural mass scale of the theory to be v, and citing a Hubble constant converted to natural

units from the values of Refs. [219, 220]:

� A ∼ (246 GeV)4,

� H0 ∼ 9× 10−42 GeV,

we find that a metastable universe, where a false vacuum must respect

Γ

V . H4
0 , (7.44)

implies that

B & − ln

(
H4

0

A

)
' 400.067. (7.45)
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This means that, as soon as we compute the action of the bounce, our assessment of metastability of the

2HDM comes down a simple imposition of this inequality.

Fleshing out the Euclidean nature of the action by separating the time and spatial derivatives in

Eq. (7.41), one has

B =

∫
dt d3x

[
1

2

(
∂φb
∂t

)2

+
1

2
(∇φb)2

+ V (φb)

]
. (7.46)

The Euclidean equation of motion of the bounce is thus(
∂2

∂t2
+∇2

)
φb = V ′(φb), (7.47)

where the prime denotes differentiation with respect to φb. The bounce is defined by its motion, which

can be translated into the following boundary conditions:

∂φb
∂t

(0, x) = 0, (7.48)

and,

lim
t→±∞

φb(t, x) = φfv (7.49)

where φfv is the value of the local minimum that corresponds to the false vacuum. In turn, it is easy to

see that, in order for the B integral to be finite, it is necessary that φb takes a finite value also at spatial

infinities; to be consistent with the description of false vacuum decay as a bubble of true vacuum that

appears somewhere, with false vacuum undisturbed outside and far from the bubble, that value should,

in fact, be φfv:

lim
|x|→∞

φb(t, x) = φfv. (7.50)

Defining r =
√
t2 +

∑
x2
i , these conditions hint at a radius-dependent, O(4)-invariant bounce, whose

boundary conditions at infinity would combine into a single equation:

lim
r→∞

φb(r) = φfv. (7.51)

This reasonable guess that φb might only depend on the distance from a point in Euclidean space was,

indeed, developed into a proof that an O(4)-invariant bounce always exist, and that its action is always

smaller than that of an O(4)-noninvariant bounce [221].3 For an O(4)-invariant bounce, the first boundary

condition becomes
dφb
dr

∣∣∣∣
r=0

= 0, (7.52)

the equation of motion turns into
d2φb
dr2

+
3

r

dφb
dr

= V ′(φb), (7.53)

and the Euclidean action is

B = 2π2

∫ ∞
0

dr r3

[
1

2

(
dφb
dr

)2

+ V (φb)

]
. (7.54)

Generalization to our problem with more than one field is straightforward: with the three fields of the

2HDM – h, H, A – in one-to-one correspondence with three φi, such that we denote the multi-dimensional

3We refrain from providing here that proof, offering the following quote from Coleman as an excuse: “The rigor of our

proof is matched only by its tedium; I would not lecture on it to my worst enemy” [204].
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bounce by ~φb = (φ1, φ2, φ3), the equation of motion becomes a system of coupled ordinary differential

equations:

d2φi
dr2

+
3

r

dφi
dr

=
∂V
(
~φb
)

∂φi
. (7.55)

A trivial vectorization of the boundary conditions and the expression of B ensues. It is worth recalling

that V
(
~φb
)

is to be identified with the one-loop effective potential of Eq. (6.93).

7.3.3 Numerical Solutions of Tunnelling Rates

Finding the solution of the tunnelling rate between vacua comprehends finding the solution to the

bounce equation of motion. In its 1D form, an equation like Eq. (7.53) can be seen as representing a

particle that moves in the inverted potential −V (φ) under the influence of a velocity-dependent friction

term. Exact analytical solutions to this kind of motion are not easy to get, even though for certain

approximations, such as that of a bubble with a thin-wall separating the two regimes, or for some special

potentials, such as the case of quartic bounces produced by the single-field λφ4 theory, exact solutions

can be found in literature [222–225].

For generic, realistic cases, one must resort to finding numerical solutions to the bounce equation of

motion. This is, however, not without its difficulties. A straightforward method to solve Eq. (7.53) would

be the traditional shooting method, where the boundary condition in Eq. (7.52) is imposed together

with an initial guess at zero, φb(0) = φ0, which is then iteratively optimized until the solution produces

the other boundary condition, in Eq. (7.51) – too large or too small values of φ0 cause the particle to

overshoot or undershoot φfv at large r. Each step of this method requires the determination of the

solution at the center of the bubble, where the friction term is divergent: if not treated carefully, like

expanding the potential around φ0 as suggested in Ref. [212], the particle cannot start rolling from r = 0

without a numerical singularity. Additionally, a simple shooting method may be plagued by instabilities

associated with faster descending (or ascending in the upside-down potential) modes that can drive the

solution away from the mode we are after. This can be avoided by a multi-shooting scheme, where one

shoots over small ranges of r, integrating only in microscopic intervals between each φn and φn+1, and

choosing enough intermediate rn points so as to ensure that the unstable modes do not overcome the

final macroscopic field evolution. An efficient implementation of such a numerical procedure has been

recently put forward [226], and is available as a Mathematica package called AnyBubble. Although this

program works for any number of fields, it becomes slow when the system of coupled equations of motion

becomes too complex, taking a time in the order of seconds to compute bounce and action for potentials

with 3 fields, minutes even for 4 fields and more. Because of this speed issue, the same authors have

even proposed in their subsequent work an approximation of the tunnelling for large multi-dimensional

field spaces based on transitions between minima via 1D paths through the saddle points of the potential

[227].

Another numerical method that tackles vacuum decay with multiple fields is the one proposed and

implemented in CosmoTransitions [228]. The idea behind it is quite simple: one starts with an initial

guess that assumes as well that the tunnelling occurs on a 1D path in field space, ~φguess = ~φb(s), where s
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parametrizes the path. If s is chosen in such a way that
∣∣∣d~φbds ∣∣∣ = 1, the equations of motion in Eq. (7.55),

which can be split into a part parallel to the path and a part perpendicular to it, take the form:

d2s

dr2
+

3

r

ds

dr
=

∂

∂s
V
(
~φb(s)

)
, (7.56)

d2~φb
ds2

(
ds

dr

)2

= ∇⊥V
(
~φb
)
, (7.57)

where ∇⊥V denotes the components of the gradient of the potential that are perpendicular to s. Using

again the particle analogy, the equation parallel to the path describes the forces only concerned with the

speed of the particle along its motion. The other equation, on the other hand, does not affect directly

the kinematics of the particle: it can be seen as describing the normal force,

N =
d2~φb
ds2

(
ds

dr

)2

−∇⊥V
(
~φb
)
, (7.58)

that the path exerts to keep the particle from falling off of it. The equation parallel to s is an usual

one-dimensional equation of motion and can be solved with a shooting method. With this at hand, and

taking into account that these solutions must also be solutions of the equality that renders the normal

force null, CosmoTransitions consists in the method of iterative path deformations in the direction of

field space which converges towards N = 0.

CosmoTransitions is available as a Python package, and, due to its multiple field capabilities, com-

prises one of the sectors inside of Vevacious. It is also our choice of vacuum decay calculator, used in

the analysis detailed in the following chapter.

7.4 Further Theoretical Constrains

Before presenting our results for the analysis of vacuum stability in the 2HDM at the loop level, let

us touch upon the other constraints that we imposed on this model. Apart from positivity and stability,

the list of theoretical constraints must also include unitarity and perturbativity.

7.4.1 Unitarity

As was already mentioned at the very start of Chapter 2, unitarity is nothing but the conservation of

probability in physical amplitudes. One of the implications of this is the requirement that the S-matrix

is a unitary matrix, and good visualization of such condition at play is the optical theorem, which can be

stated in its general form as4

A(i→ f)−A∗(f → i) = i
∑
X

∫
dΠX(2π)4δ4(pi − pX)A(i→ X)A∗(f → X), (7.59)

where the sum is over single- and multi-particle states |X〉 which define the completeness of the Hilbert

space, ∑
X

∫
dΠX |X〉〈X| = 1, (7.60)

4We follow here Ref. [66].
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and

dΠX =
∏
j∈X

d3pj
(2π)3

1

2Ej
. (7.61)

For a two-particle state |Φ〉, and considering the process Φ → Φ in the center-of-mass frame, one can

write the optical theorem in its more familiar form:

Im
(
A(Φ→ Φ)

)
= 2ECM|~pi|

∑
X

σtot(Φ→ X), (7.62)

which says that the imaginary part of the forward scattering amplitude is proportional to the total

scattering cross section.

The total cross section of a 2 → 2 elastic scattering process is a well-known result, which is for two

particles φa and φb:

σtot(φaφb → φaφb) =
1

32πE2
CM

∫
d cos θ |A(θ)|2 (7.63)

where θ is the usual scattering angle. Moreover, one may make use of the formalism of the partial wave

expansion to express the amplitude as

A(θ) = 16π

∞∑
j=0

(2j + 1) aj Pj(cos θ), (7.64)

where j is the quantum number of the angular momentum, and Pj(cos θ) are the Legendre Polynomials

which satisfy Pj(1) = 1 and ∫ 1

−1

d cos θ Pj(cos θ)Pk(cos θ) =
2 δjk

2j + 1
. (7.65)

This brings the total cross section of the φaφb → φaφb scattering to be

σtot(φaφb → φaφb) =
32π

E2
CM

∞∑
j=0

(2j + 1) |aj |2, (7.66)

and, going back to Eq. (7.62), the imaginary part of the amplitude at θ = 0 is simply

Im
(
A(φaφb → φaφb|θ = 0)

)
= 16π

∞∑
j=0

(2j + 1) Im(aj). (7.67)

Taking the high energy limit, in which each particle mass can be neglected and |~pa,b| = ECM/2, and

considering that ∑
X

σtot(φaφb → X) ≥ σtot(φaφb → φaφb), (7.68)

we can finally convey the optical theorem in terms of a partial wave unitarity bound :

Im(aj) ≥ |aj |2. (7.69)

In the Argand plane, the equality relation corresponds to a circle centered at i/2, with a radius of 1/2,

such that it becomes apparent that partial wave unitarity can be translated into the following bounds:

|aj | ≤ 1, 0 ≤ Im(aj) ≤ 1, |Re(aj)| ≤
1

2
. (7.70)

On a 2HDM, the partial wave amplitudes aj are the eigenvalues of a matrix aj , since each quartic

coupling of the scalar potential induces scatterings with all combinations of the four doublets in initial
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Y τ Z2-even Z2-odd

0 0

1√
2
(φ†1φ1) 1√

2
(φ†1φ2)

1√
2
(φ†2φ2) 1√

2
(φ†2φ1)

0 1

1√
2
(φ†1τ

kφ1) 1√
2
(φ†1τ

kφ2)

1√
2
(φ†2τ

kφ2) 1√
2
(φ†2τ

kφ1)

1 0 — 1√
2
(φ̃1φ2)

1 1

1
2
(φ̃1τ

kφ1) 1√
2
(φ̃1τ

kφ2)

1
2
(φ̃2τ

kφ2)

Table 7.1: Two-particle states for 2 → 2 scattering in a 2HDM. The Z2-even, Y = 1, τ = 0 states are

identically zero.

and final states, each doublet being itself an SU(2)L vector with a neutral and a charged component. In

the high energy limit, ECM � |λi|v2 � M2
W , the SU(2)L × U(1)Y symmetry is manifest, meaning that

the electroweak generators are unbroken, which itself implies that weak isospin, τ , and hypercharge, Y ,

are conserved in 2 → 2 scattering processes at tree level. This prompted the authors of Refs. [229, 230]

to write the two-particle states in a basis with definite isospin and hypercharge, such that the LO of aj

breaks down in blocks. Also at tree-level, and for the energies of interest for the unitarity analysis, the

only non-trivial partial wave is the j = 0 wave, and so one only considers a0.

These blocks a0 can be further divided into smaller blocks by noting that, at tree-level, Z2-even and

-odd states do not mix. Recalling that we consider Higgs doublets with Y = 1/2, the total hypercharge

of a state with two Higgs fields can be Y = {−1, 0, 1}. Regarding the weak isospin, it relates to the

completeness of Pauli matrices together with the identity matrix, such that states with τ = 1 can be

classified according to the τk matrix, k = {1, 2, 3}, present in that block. We collect the possible states

for 2→ 2 scattering in Table 7.1, where the states with Y = −1 can be obtained from those with Y = 1

by charge conjugation. In the basis where τ1 and τ2 are replaced with τ+ and τ−, and dropping the

j = 0 index for simplicity, each block of the partial wave amplitude can thus be labelled as aZ2

Y τ(±);

omitting the eigenvalues that are identically zero, one has at LO [231]:5

−16π aeven,LO
01± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)

2
+ 4λ2

4

)
, (7.71)

−16π aodd,LO
01± = λ3 ± λ5, (7.72)

−16π aeven,LO
11± =

1

2

(
λ1 + λ2 ±

√
(λ1 − λ2)

2
+ 4λ2

5

)
, (7.73)

−16π aodd,LO
11 = λ3 + λ4, (7.74)

−16π aeven,LO
00± =

1

2

(
3λ1 + 3λ2 ±

√
(3λ1 − 3λ2)

2
+ 4 (2λ3 + λ4)

2

)
, (7.75)

−16π aodd,LO
00± = λ3 + 2λ4 ± 3λ5, (7.76)

−16π aodd,LO
10 = λ3 − λ4. (7.77)

The one-loop corrections to the partial wave amplitude were recently computed in Ref. [231]. Although,

5These eigenvalues are related to the ones defined in [230] by aZ2
Y τ(±)

= −32π2ΛZ2
Y τ(∓)

.
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in general, the loop-corrections do not respect the block diagonal structure of a0 at tree-level, the authors

of that reference have shown that this structure is only broken by numerically negligble wavefunction

corrections. As such, the one-loop eigenvalues come to be [231, 232]:

32π aeven,NLO
00± = B1 +B2 ±

√
(B1 −B2)2 + 4B2

3 , (7.78)

32π aodd,NLO
00± = 2B4 ± 2B6, (7.79)

32π aeven,NLO
01± = B7 +B8 ±

√
(B7 −B8)2 + 4B2

9 , (7.80)

32π aodd,NLO
01± = 2B13 ± 2B15, (7.81)

32π aodd,NLO
10 = 2B19, (7.82)

32π aeven,NLO
11± = B20 +B21 ±

√
(B20 −B21)2 + 4B2

22, (7.83)

32π aodd,NLO
11 = 2B30, (7.84)

where each block-diagonal element Bn is given in Eq. (B.n) from Ref. [231]. The condition of unitarity

is fulfilled if all eigenvalues

aZ2

Y τ(±) = aZ2,LO
Y τ(±) + aZ2,NLO

Y τ(±) (7.85)

respect Eq. (7.70).

7.4.2 Perturbativity

Another condition required is that all our perturbative expansions are indeed valid expansions. What

one means by this is that, in the case of unitarity, the higher order corrections should not exceed in

magnitude the LO terms. Thus, perturbative unitarity is achieved by demanding that [231]

R′1 ≡
|aZ2,NLO
Y τ(±) |
|aZ2,LO
Y τ(±)|

< 1. (7.86)

To avoid the exclusion of points with accidentally small LO contributions – such as a small aodd,LO
10 by

the mere fact that λ3 ≈ λ4, whereas the NLO contribution has a dependence on other quartic couplings

– we follow Ref. [232] in using R′1 only in cases where |aZ2,LO
Y τ(±)| & 1/(16π).

Other perturbative series that are made to be stable are the running quartic couplings λi with which

we impose the positivity constraint. Here, the perturbative criterion consists in demanding that they do

not exceed 4π in the range of scales over which the renormalization group evolution is performed.

7.5 Experimental Constraints

We finish this chapter with an exposition of the experimental information we use to constrain the

parameter space of the 2HDM. A first word goes to the signal strengths of Higgs decays, which need to

comply with LHC data if the boson discovered by ATLAS and CMS is allowed to be part of an extended

Higgs sector. Similar to this is the lack of direct observation of the heavy scalars, which comes in the

form of exclusion limits in searches of X → H/A → Y processes and their mass ranges. In the present

analysis we do not use this information, but take nevertheless advantage of the conclusions of Ref. [233]
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to fix the value of β − α in Type-II, shown there to be heavily constrained due to h signal strengths,

to π/2: this removes one parameter from the fit and, consequently, improves the Markov Chain Monte

Carlo convergence.

7.5.1 Oblique Parameters

Being an extension of the scalar sector of the SM, a strong constraint on a 2HDM is that the new

heavy degrees of freedom contribute to electroweak precision observables through virtual loops only. The

dominant NP effects can thus be parametrized by three variables which absorb the radiative corrections

produced by new contributions to the vacuum polarization of the vector bosons. These are known as

oblique parameters, and a popular parametrization used in literature is the one by Peskin and Takeuchi,

where the parameters are S, T , and U [234]. The high precision of the electroweak observables allows to

constrain the parameter space of NP models that produce contributions to S, T, U .

The contributions to S, T, U in the 2HDM have long been available in literature [235–237], and their

collected expressions can be found in Eqs. (21)–(23) of Ref. [238]. Mentioned there and worth of mention

here is the fact that the 2HDM oblique corrections do not depend on the type of the model, since the

four types differ in the Yukawa sector only, and Yukawa couplings do not enter the oblique parameters

at one-loop order.

7.5.2 Flavour Observables

Of the plethora of flavour observables with various levels of significance for the 2HDM [239], we use

two of the observables most relevant for multi-Higgs analyses: the aforementioned branching fraction

of the radiative decay B → Xsγ, and the mass difference of the Bs system. For the weak radiative

B-meson decays, we take once more Ref. [133] and references therein. To provide here some explanation

of how the 2HDM contributes to the branching fraction, let us start by noting that the leading additions

to the transition within SM come via the exchange of a charged Higgs boson instead of the W in the

radiative penguin from Fig. 3.4. Quoting from Ref. [133], contributions from physics beyond the SM are

parametrized as changes to the WCs C7,8, which in turn produce a shift in the branching fraction:

BR(B → Xsγ) = BR[SM](B → Xsγ) + α7 ∆C7 + α8 ∆C8. (7.87)

This is a linearized expression, where α7,8 are coefficients of the linearization. It assumes that quadratic

terms in ∆C7,8 can be neglected when they enter with O(1) coefficients into the branching fraction. If

that is not the case, a detailed analysis of the QCD corrections of the NP model is necessary. Such

endeavour has been pursued in the 2HDM, where, for Type-II, corrections to ∆C7,8 are known at NLO

[240–242] and NNLO [243].

Regarding Bs− B̄s mixing, it is a ∆F = 2 process which we did not discuss in our sections dedicated

to b → s transitions. Nevertheless, and in complete similarity with the radiative decay, the LO 2HDM

contributions arrive via the exchange of charged Higgs bosons, here in box diagrams like the one from

Fig. 3.4, with the leptonic line replaced by the suitable quarks. If the SM loop function is SWW , then
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the difference between the heavy and light mass eigenstates of this system in the 2HDM can be written

as [239, 244]:

∆ms =
G2
F

24π2
|λt|2 ηBmBm

2
t f

2
BsBBs(SWW + SWH + SHH), (7.88)

where ηB is the SM QCD correction, ∼ 0.55 at NLO [85], and BBs is the bag parameter. The loop

functions, which correspond respectively to the replacement of none, one, or both W lines with a charged

Higgs, are given in Eqs. (21)–(23) of Ref. [239].

Of course other flavour observables should be used in a global analysis. Of those, worth of mention is

the leptonic decay Bs → µ+µ−, which receives tree-level contributions in the general 2HDM, and, with

FCNCs absent when the Z2 symmetry is imposed, can still get sizeable contributions from the heavy

scalars – mainly from boxes with, again, W bosons replaced with H±. The impact this observable has

on the 2HDM can be seen for example, in the recent analysis of Ref. [245]. On the tanβ-charged Higgs

mass plane, as shown there, this impact concerns, for Type-II, the region of large tanβ and low M2
H± .

Since this region is already heavily constrained by the radiative b→ s transition [246], this also pointed

out by the authors of Ref. [245], and by the theoretical constraints, the inclusion of Bs → µ+µ− is, for

now, redundant and can be left out.
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Chapter 8

On the Metastability of the 2HDM

We have finally arrived at the chapter which concerns the results of the second global analysis we

set out to perform. Without further ado, we will recapitulate the procedure of the analysis. After an

exposition of the values of the inputs and observables we use in the fits, we present our numerical results.

Closing remarks and a discussion of the thesis as a whole is then left for a final chapter of conclusions.

8.1 Procedure and Samples

We use this section not to restate what has already been said in terms of the necessary steps that lead

to a computation of tunnelling rates, but rather to clarify the order in which everything is put together,

and the different scenarios that will be considered. In the first global analysis we resorted to HEPfit alone

to do all the calculations. In going beyond the leading order in stability, however, we sought the aid of

publicly available third-party software, since we deemed it would be unpractical to build from scratch a

homotopy continuation algorithm in HEPfit, and the implementation of a C++ calculator of decay rates

would have been too time consuming. As software goes, therefore, we are, for now, using HEPfit, followed

by a Python script of our own making, which incorporates HOM4PS-2, iminuit and CosmoTransitions.

It should come as no surprise that such a convoluted configuration was the source of many problems in

the numerics of this analysis, not least because of the limited control (or even lack of control, in the case

of HOM4PS-2) one always has over third-party software. Dividing the analysis in steps that correspond to

the software being used at that stage, we can describe the procedure as follows:

1. We start in HEPfit, where we generate with a Markov Chain Monte Carlo sets of points which

comply with a given combination of imposed constraints. These combinations characterize the

sampling being made, the samples we consider here being:

� PT: A global minimum condition is never imposed in the HEPfit runs, since it would remove

the points that we want to see being saved by the calculation of metastability. A study of

potentials unbounded from bellow being rescued by the loop corrections was done in Ref. [62].

In this thesis, on the other hand, we can rather focus on the impact of constraints the author

of that reference did not have at hand, meaning we want to start with potentials that are
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already bounded from below. The RGE-improved positivity conditions together with the

perturbativity of the quartic couplings (P) will thus be present in every sampling. This first

category consists then of how the other theoretical constraints (T), namely NLO unitarity and

the R′1 condition, influence the stability of the model.

� PE: For this scenario, the output points respect both positivity and the the current bounds

on the experimental observables (E) we consider in this work. Given these constraints impact

heavily the charged sector, this scenario allows one to see how bounds on that sector are related

to bounds on instability and metastability.

� PTE: The final type of sampling we do with HEPfit corresponds to the global analysis, where

all of the constraints above – positivity, the other theoretical constrains, and the experimental

constraints – are simultaneously turned on.

2. With sets of already good points (up to the issue of stability), we move on to the steps comprised

in our Python script. Passing first through HOM4PS-2, one computes and collects all the extrema of

the tree-level potential characterized by the parameter values of each point. As such, the question

of tree-level stability can be addressed immediately at this point.

3. All the extrema computed in the previous step are then used as starting points to iminuit, which

will obtain all the minima towards which the tree-level maxima, minima and saddle points roll,

when the loop corrections from the Coleman-Weinberg potential are also taken into account. At

this point, one can finally evaluate if the effective potential contains, or not, lower vacua than the

one we attribute to our universe.

4. For the vacua that are lower than the electroweak vacuum, we move further down in our script

and call CosmoTransitions to compute the action of the bounce. As explained in the previous

chapter, for values lower than 400 that configuration would produce an unstable vacuum, for values

above that threshold the point under scrutiny would at least allow for a decay long enough that

our universe would have been stable up until now.

The points from each sample, PT, PE, or PTE, are classified with the new information, and can then be

colour-coded according to the type of universe with which they are associated. We provide the resulting

2D scatter plots two sections bellow.

8.2 Inputs and Experimental Values

The 2HDM with a softly-broken Z2 symmetry is described by 8 parameters, which we have chosen

to be those in Eq. (6.61). Since the VEV and the Higgs mass can be fixed to their observed values,

one usually deals with 6 parameters, all given as inputs with generous flat priors. We will be working

in Type-II only, given its interest and ubiquity in literature, to take advantage of the order of precision

reached in flavour for this type of 2HDM, and also due to the limited time we had after all our issues

related with software had been solved. Moreover, as we alluded to in Chapter 7, we will be making use
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Parameter tanβ mH ,mA,mH± m2
12

Range [0.25; 100] [130; 1100] GeV [−1; 7]× 105 GeV2

Table 8.1: Priors on the 2HDM parameters.

Parameters Mean Value Uncertainty Reference

mτ (MeV) 1776.86 0.12 [80]

BBs 0.888 0.040 [170]

A 0.825 0.010 [248]

ρ̄ 0.145 0.015 [248]

η̄ 0.350 0.013 [248]

Table 8.2: Parameters used in the global analysis.

Observable Value Correlation matrix

S 0.09± 0.10 1 0.86 −0.56

T 0.11± 0.12 0.86 1 −0.84

U −0.01± 0.09 −0.56 −0.84 1

Table 8.3: S, T , U values and correlations from Ref. [247].

Observable Value Reference

∆mBs 17.757± 0.021 ps−1 [249]

BR(B̄ → Xsγ) (3.43± 0.21± 0.07)× 10−4 [249]

Table 8.4: Flavour observables used in the fits.

of the results of Ref. [233] for β −α in Type-II, which permits us to fix it at π/2, yielding a scalar sector

fully described by 5 2HDM parameters:

tanβ, M2
H± , M

2
H , M

2
A, m

2
12. (8.1)

The priors we give to these parameters are shown in Table 8.1. Further parameters being used in the fits,

chiefly quark masses and the parameters present in the formulas of flavour observables, can be consulted

in Table 5.1; the ones we add or update for this analysis are provided in Table 8.2.

Regarding the experimental information itself, needed for the PE and PTE fits, we report the S, T, U

values from Ref. [247] in Table 8.3, where the correlation matrix computed by those authors is also

provided. The values of the flavour observables considered here are given in Table 8.4.

8.3 Numerical Results

Let us start with the case of PT sampling. We collect in Fig. 8.1 the combinations of quartic couplings

which have produced a potential stable, unstable, or metastable at the one-loop level, the colours that
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Figure 8.1: Scatter plots of stability for case PT, projected in the λi−λj planes. The colour-coding is the

following: blue points represent potentials completely stable at the one-loop level, red points correspond

to unstable potentials at the one-loop level, and yellow points stand for potentials with metastability at

the one-loop level.

represent each option being explained in the caption of that same figure. A general assessment that can

be made is that, obviously, instability and metastability are bundled together, for a small change in one

parameter or another can be sufficient to make the true vacuum move a little bit lower or higher, to make

the tunnelling rate go a little above or below the metastability threshold. In terms of identifying a clear

region of instability/metastability, these planes in parameter space may show some hints of an organizing

principle, but there is always a big overlap with a region of absolutely stable points. The quartic coupling

2D plots with NLO perturbative unitarity imposed had already been computed in Ref. [232], and here,

even though with lower statistics and without a definition of the 1σ, 2σ, 3σ regions, we manage to find

more or less the same shape, and we get the same bounds on the size of the couplings, i.e. a constraint

that they must be smaller than at least ∼ 5 in magnitude. We get a bigger tendency for λ5 < 0, a

tendency that is, of course, followed by the red and yellow points. The strongest hint is that instability

or metastability would occur for λ3 > 0, which can be seen in the planes with λ1 and λ2, and also in the

λ3 − λ4 plane, this one also showing a slight preference for the red/yellow points to sit in the legs with

negative λ4, which could be argued that is also discernible in the tendency for these points to be in the

region closer to the third quadrant of the λ4 − λ5 plot.

If one looks in other directions of parameter space, it becomes apparent that the hints in the λi − λj
planes were mainly due to correlations between observables. This because in Fig. 8.2 we find a clear
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Figure 8.2: Scatter plots of stability for case PT, projected in planes with tanβ, MH −MA, MH± , and

m2
12. For the colour-coding see the caption of Fig. 8.1.

indication that instability/metastability at the one-loop level happens for m2
12 < 0, a behaviour mimicked

by the lower values of the correlated parameter MH± . The interpretation of this is twofold: first, it makes

us go back to Eq. (7.22), where the discriminant to ensure the global minimum condition at tree-level was

heavily dependent on the sign of m2
12; one could infer that, with perturbativity imposed, our Coleman-

Weinberg terms should be small and thus mere corrections to the issue of instability, which would then

always come from the existence of extra minima already at tree-level. On a similar footing, this could be

the result of the known difficulty in finding extra minima with MINUIT, since we are rolling down the

steepest directions of the effective potential sheet with the tree-level extrema as starting points, and there

is no guarantee that this will find us the extra minima created by the loop corrections, beyond the extra

minima that might already exist in the leading order. In fact, our code never finds extra minima at the

one-loop level when there were none beyond the EW minimum at tree-level. Moreover, and pointed out

by the authors of Vevacious,1 homotopy continuation algorithms compute, in principle, all the extrema

of the tree-level potential, however, because of finite-precision and finite-step-size issues, an algorithm

like HOM4PS-2 will sometimes miss some extrema.

Either way, for this analysis, it looks like everything comes down to identifying the problematic regions

of m2
12. Would this mean that one might advocate the implementation of the tree-level condition and the

matter of stability would be solved? Not really. Loop-corrections and the calculation of the tunnelling

rate are, nevertheless, able to save many points with negative m2
12 that would otherwise be deemed

unstable and removed from the parameter space. This can be seen in the plots of Fig. 8.3, where green

points, made stable by the Coleman-Weinberg terms, and the blue region, made metastable after the

1See the README file that comes with their software, available at https://github.com/benoleary/Vevacious.
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Figure 8.3: Points misidentified as unstable in a PT sample, rescued by loop-corrections and the cal-

culation of the tunnelling rate: green points become stable at the one-loop level, blue points become

metastable, red points remain unstable; grey points are stable at both levels.

Figure 8.4: Scatter plots of stability for case PE, projected in the λi−−λj planes. For the colour-coding

see the caption of Fig. 8.1.

calculation of the decay rates with CosmoTransitions, would have been eliminated together with the

red band. In the second panel, it is visible how the coloured regions from the left panel really break into

phases of stability dependent on the size of m2
12.

Regarding the PE scenario, we present the same plots we did for PT, with exactly the same colour

labelling as used before. In Fig. 8.4, we show the regions that are allowed when electroweak precision

observables and flavour observables are switched on, and perturbative unitarity is no longer being deman-

ded. This last detail explains the regions of very large quartic coupling that are now available. Indeed,

for these regions, we can see that instability and metastability became very well pronounced. Still, we

chose a log scale for λ1 in order to make clear that, although the Markov Chains have preferred the mode

with very large λ’s, and therefore many points that are unstable or metastable at the one-loop level, the
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Figure 8.5: Scatter plots of stability for case PE, projected in planes with tanβ, MH −MA, MH± , and

m2
12. For the colour-coding see the caption of Fig. 8.1.

Figure 8.6: Points misidentified as unstable in a PE sample, rescued by loop-corrections and the calcu-

lation of the tunnelling rate: for the colour-coding see the caption of Fig. 8.3.

mode with small couplings we found in the presence of unitarity is still there, and it is completely stable.

The same can be said for the planes with tanβ, MH − MA, MH± , and m2
12, found in Fig. 8.5.

There, we chose a log scale to present tanβ as well, and, by doing so, we find the sources of the bi-modal

distributions: in the tanβ −m2
12 plane, there is a solution which fits the experimental observables with

small tanβ and positive m2
12, and there is also a solution with large tanβ and negative m2

12, expected from

the expressions of flavour observables in the 2HDM, namely where by pushing tanβ to very large values

you can make the NP contributions to Bs−B̄s mixing as small as you want and always be within a fitting

parameter space, whereas in tanβ−MH± we can discern in the large tanβ mode a truncated piece of the

profile of the renowned exclusion region from b→ sγ, that indeed corresponds to the red/yellow region we

find in the panel bellow, for negative m2
12. This to say that it is again this parameter which is dominating

the determination of stable or unstable potentials, appearing in other planes by its correlation with the

other parameters. Furthermore, we can make our case for the usage of the effective potentials and the
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Figure 8.7: Example of output histograms from HEPfit and stability points for PTE.

evaluation of tunnelling rates: we observe a large portion of points that would be labelled unstable, but

are stable because of loop-corrections, or even metastable, for the cases where the decay from our vacuum

to the true vacuum would not have happened within the age of universe. In Fig. 8.6, these points are

shown, respectively, in green and blue for the case of the PE fit.

For the global analysis, PTE, when we include simultaneously all constraints, one can guess the

results even before computing them. In fact, because NLO unitarity will pick the small quartic couplings

and will favour the mode with small tanβ, and given the experimental constraints curtail negative values

of m2
12 in that mode, it is easy to infer that, for the configuration of software and algorithms we have

used in this analysis, there will be no region of either instability, or metastability. And indeed that is

what we get when we perform our runs. Since it would be redundant to plot again the blue regions of

quartic couplings from the PT scenario, we simply provide in Fig. 8.7 the relevant planes, those with

tanβ, MH± , and m2
12, presenting both the histograms that come out of HEPfit – which we note have

log(tanβ) instead of tanβ – and the corresponding scatter plots that we obtain after passing the points

through the one-loop treatment of our Python script. Regardless of what has caused m2
12 to dominate

our findings and make the issue of stability/instability here so tree-level-like, we can finish this chapter

with the reasonable message that performing global analyses can take care of some unattended problems

of a given model: in our example, positivity, unitarity, and experimental constraints turned out to impose

what a global minimum condition would.
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Chapter 9

Conclusions

It is a long established fact that the SM, although remarkable in itself, is not the “final theory”. The

lack of NP signals from past and ongoing experiments as launched us on a quest to reach better and

better levels of precision in both experimental observations and theoretical calculations. Inspired by this

Precision Era that is being lived in particle physics, we perform in this thesis two global analyses. On

a general note, we can say that global analyses prove to be worthwhile endeavours in the pursuit of NP,

allowing for the combination of a variety of contraints, direct an indirect, theoretical and experimental,

both on the parameter space of a given model or in a model-independent way. Our work was mainly

concerned with the development and usage of HEPfit [48]. While the implementation of a coherent

∆F = 1 effective Hamiltonian with both QCD and QED corrections was included in this thesis, there

are indeed modules of the code which received participation of the student and were left out for future

employment: these consist of the entire inclusive sector of semileptonic b→ s transitions, and the module

for general 2HDMs.

Our first global analysis was a study of b→ s transitions, where so-called flavour anomalies, deviations

from SM predictions, keep appearing in many decay channels. The global analysis consisted on performing

fits to model-independent shifts to the WC that contribute to radiative and (semi)leptonic decays of B

mesons. We critically examined several NP scenarios in order to possibly explain the growing pattern of

the B anomalies, recently enriched by the measurement of RK∗ by LHCb [19]. The analysis was carried

out in an effective field theory framework, describing the non-factorizable power corrections by means

of 16 free parameters, this done in accordance with the previous procedure of Ref. [27]. These fits were

performed here using two different approaches to the hadronic contributions: the first approach, labelled

PMD, relies completely on the phenomenological model from Ref. [146] and corresponds to the choice

that is more widely used in literature; the second one, labelled PDD, imposes the result of Ref. [146]

only at q2 ≤ 1, allowing the current data to drive the hadronic contributions in the higher invariant mass

region.

Regarding the NP contributions, six different benchmark scenarios were considered, distinguished

by the respective combination of NP WCs employed in the fits: scenario (I) allows for CNP
9,µ and CNP

9,e ;

scenario (II) considers the scenario with CNP
9,µ and CNP

10,µ; case (III) studies NP effects coming as CNP
7 ,
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CNP
9,µ and CNP

9,e ; case (IV) is the same as the case (III), but with CNP
10 instead of CNP

9 ; case (V) studies

the possibility described in case (III), with CNP
10,µ = −CNP

9,µ and CNP
10,e = −CNP

9,e enforced; finally, case

(VI) considers the general case with all the five NP WCs being allowed to float independently. Our main

results are collected in Figs. 5.1–5.8, supported by the information in Tables 5.2–5.5.

By means of comparing the IC of each fit, we have found that all the considered cases are on the

same footing except for scenarios (IV) and (V). These are strongly disfavoured in the PMD approach,

as there is no CNP
9,µ in case (IV) to account for the deviation in P ′5, while in case (V) CNP

9,µ is constrained

by its correlation with CNP
10,µ and the measured value of BR(Bs → µµ). Overall, from our analysis it is

possible to identify two classes of viable NP scenarios:

� The widely studied CNP
9,µ 6= 0 scenario, as we find a remarkable & 5σ evidence in favour of CNP

9,µ 6= 0

in the PMD approach. One must point that it is indeed nontrivial that a single NP WC can explain

all the present anomalies in b→ s transitions [9, 40–44]. In the more conservative PDD approach,

however, the significance of a nonvanishing CNP
9,µ drops to about 3σ, driven mainly by the LFUV

observables.

� An alternative scenario with nonvanishing CNP
10,e, which emerges in the presence of large hadronic

corrections to the infinite mass limit, namely our PDD approach. To our knowledge, a NP elec-

tronic axial current has not been studied in the literature, since it does not provide a satisfactory

description of the angular observables within the commonly used PMD approach. As we have noted,

the present theoretical status of power correction calculations is not robust enough, thus making it

impossible to discard this interesting NP scenario until the hadronic sector is fully under control.

In the most general fit we performed, that of scenario (VI), one confirms in the PDD approach that both

classes above are viable, even though a slight preference for CNP
9,µ 6= 0 is found. More data are needed

to disentangle NP shifts from charm-loop contributions, and, in case the flavour anomalies persist, to

assess what kind of NP scenario is realized in Nature. Channels such as the inclusive semileptonic decay

B → Xs`
+`−, or the semileptonic baryon decay Λb → Λ`+`−, could be the providers of that definitive

constraint which will point us in the right direction; these are among the processes that will be studied

in the eagerly awaited Belle II experiment, expected to begin taking data early next year, and set to fuel

the following years of B physics together with LHCb.

We then permitted ourselves a second venture, consisting in the analysis of metastability in the

2HDM with a softly-broken Z2 symmetry. In more detail, this was a first attempt at a study of the issue

of stability of the scalar potential at the one-loop level, in the context of a global analysis, imposing

many theoretical and experimental constraints. For this we devised three scenarios, corresponding to

the constraints used in the preliminary fit performed in HEPfit: the first one, PT, provides a set of

points that comply with positivity, NLO perturbative unitarity, and perturbativity of the 2HDM quartic

couplings; the second, PE, trades perturbative unitarity for experimental constraints, which comprise

electroweak precision observables, and two flavour observables, the mass difference in Bs − B̄s mixing

and the branching fraction of B → Xsγ. Although we do not use Higgs signal strengths, we employ a

recent result from Ref. [233] and fix β − α = π/2 in Type-II; the third and final fit, PTE, corresponds
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to the simultaneous imposition of the constraints from PT and PE.

Stability at the one-loop level is assessed by making use of the effective one-loop Hamiltonian with

Coleman-Weinberg contributions. Metastability, on the other hand, is evaluated by computing the va-

cuum tunnelling rate in the O(4) bounce formalism. For the PT scenario we found theory to favour a

region with small tanβ, and with just a few metastable or unstable points, due to a small region where

m2
12 is allowed to be negative. This preponderance for the sign of m2

12 to dictate the stability of the po-

tential was also found for PE, where a bigger region of m2
12 < 0 and large tanβ is also allowed, yielding

huge sectors of instability all over the parameter space. In both cases, however, we observed that either

by loop corrections, or by decay rates being larger that the age of the universe, a considerable amount of

points were always being rescued from what would be a classification of instability and removal from the

accepted regions of parameters. This goes along the lines of the rates of misidentification put forward by

Ref. [62]. PE produces a bi-modal distribution, and for the mode with small tanβ these constraints cut

out any possibility of having negative values for m2
12. This means that when both sets of constraints are

put together, the Markov Chain Monte Carlo of HEPfit results in a sample with m2
12 > 0, such that the

last global fit finds absolutely nothing but stability in both the tree- and the one-loop level.

To say that PTE resolves completely the issue of vacuum stability in the 2HDM would be a long claim,

and we are certainly not prepared to make it. First, because it seems highly unlikely that one parameter

would control the stability of the one-loop effective potential. More so because this parameter corresponds

exactly to parameter whose signal has an immediate impact on the discriminant of the tree-level global

minimum condition. In our chapter of results we alluded to the possibility that in the perturbative regime

the existence of extra minima in the potential could be bound to the tree-level sheet, with loop corrections

merely adjusting the relative depth of each minimum. The most probable scenario, however, may be that

we are falling prey of our own configuration to try to find all possible minima of the one-loop potential:

even assuming that the homotopy continuation algorithm is finding all the tree-level extrema, one can

never say for certain that giving those values as starting points to the numerical minimizer will roll us

down into all the extra minima that can be created with the inclusion of the Coleman-Weinberg terms.

The authors of Vevacious [208], for example, try to solve this by rolling in the direction of steepest

descent and rolling in the exact opposite direction as well. Another option, which we want to implement

in our scripts next, is to use the tree-level extrema as starting points – which, mind, did not get us any

new minima when there was none initially – and to have also a generator of randoms throwing a few

starting values and see where they might lead us. Neither this or Vevacious’ solution is a guarantee of

success, but either, or both, can be a path towards the improvement of our results.

On a final note, we point to the fact that current analyses of loop vacuum stability in the softly-broken

Z2-symmetric 2HDM [62], or the Inert Doublet Model [60, 61], have been performed mainly with scatter

plots, as we did in this thesis. With a tool as powerful as HEPfit, and given the modular nature of

the project, it is natural to set a goal that in the near future we will implement successfully homotopy

continuation and vacuum tunnelling calculation in the code, in order to have a full Bayesian analysis,

with proper Markov Chain Monte Carlo and proper posterior histograms, so as to have stability as a

means to an end, and not the other way around.
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Appendix A

Beta Functions

A.1 Coefficients of the QCD Beta Function

The coefficients of Eq. 3.41 are given by [99, 100]:
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c + 6)

48

(
512

9
− 1664

3
ζ3

)
+ n2

f

N4
c − 6N2

c + 18

96N2
c

(
−704

9
+

512

3
ζ3

)
+
N2
c (N2

c + 36)

24

(
−80

9
+

704

3
ζ3

)
, (A.4)

where, for an SU(N) group:

TF =
1

2
, CF =

N2
c − 1

2Nc
, CA = Nc. (A.5)

A.2 Coefficients of Beta Functions with QED Corrections

We provide here the coefficients needed for the QCD and QED renormalization group evolution

championed in Ref. [109]:

βs01 = −4TFQ2, βs11 = (4CF − 8CA)TFQ2, βs02 =
11

3
TFQ2βe00 + 2tFQ4,

βe00 =
4

3

(
Q2Nc + 3Q2

`

)
, βe10 = 4

(
Q4Nc + 3Q4

`

)
, βe01 = 4CFNcQ2,

(A.6)

where

Qn = nuQ
n
u + ndQ

n
d . (A.7)
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Appendix B

Loop Functions

B.1 Functions Used in M Matchings

The loop functions and power expansions present in the matching conditions for the M block can be

read from Ref. [115]:

C
t,(3)
7,loop(x) = Lt

[−592x5 − 22x4 + 12814x3 − 6376x2 + 512x

27(x− 1)5
Li2

(
1− 1

x

)
+
−26838x5 + 25938x4 + 627367x3 − 331956x2 + 16989x− 460

729(x− 1)6
lnx

+
34400x5 + 276644x4 − 2668324x3 + 1694437x2 − 323354x+ 53077

2187(x− 1)5

]
+ L2

t

[−63x5 + 532x4 + 2089x3 − 1118x2

9(x− 1)6
lnx

+
1186x5 − 2705x4 − 24791x3 − 16099x2 + 19229x− 2740

162(x− 1)5

]
, (B.1)

where Lt = ln
µ2
W

m2
t

.

C
c,(3)
7,MW

(z) ' 1.525− 0.1165z + 0.01975z ln z + 0.06283z2 + 0.005349z2 ln z + 0.01005z2 ln2 z

− 0.04202z3 + 0.01535z3 ln z − 0.00329z3 ln2 z + 0.002372z4 − 0.0007910z4 ln z +O(z5),

(B.2)

where z =
1

x
.

C
t,(3)
7,mt

(z) ' 12.06 + 12.93z + 3.013z ln z + 96.71z2 + 52.73z2 ln z + 147.9z3 + 187.7z3 ln z

− 144.9z4 + 236.1z4 ln z +O(z5). (B.3)
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C
t,(3)
8,loop = Lt

[−148x5 + 1052x4 − 4811x3 − 3520x2 − 61x

18(x− 1)5
Li2

(
1− 1

x

)
+
−15984x5 + 152379x4 − 1358060x3 − 1201653x2 − 74190x+ 9188

1944(x− 1)6
lnx

+
109669x5 − 1112675x4 + 6239377x3 + 8967623x2 + 768722x− 42796

11664(x− 1)5

]
+ L2

t

[−139x4 − 2938x3 − 2683x2

12(x− 1)6
lnx

+
1295x5 − 7009x4 + 29495x3 + 64513x2 + 17458x− 2072

216(x− 1)5

]
, (B.4)

C
c,(3)
8,MW

(z) ' −1.870 + 0.1010z − 0.1218z ln z + 0.1045z2 − 0.03748z2 ln z + 0.01151z2 ln2 z (B.5)

− 0.01023z3 + 0.004342z3 ln z + 0.0003031z3 ln2 z − 0.001537z4 + 0.0007532z4 ln z +O(z5),

C
t,(3)
8,mt

(z) ' −0.8954− 7.043z − 98.34z2 − 46.21z2 ln z − 127.1z3 − 181.6z3 ln z + 535.8z4

− 76.76z4 ln z +O(z5). (B.6)

B.2 Functions Used in L Matchings

Regarding the auxiliary functions from the large-mt expansion of Ref. [116] for the L block, one has:

τ
(2)
b (x) = 9− 13

4
x− 2x2 − x

4
(19 + 6x) lnx− x2

4
(7− 6x) ln2 x−

(
1

4
+

7

2
x2 − 3x3

)
π2

6

+
(x

2
− 2
)√

x g(x) + (x− 1)2

(
4x− 7

4

)
Li2(1− x)−

(
x3 − 33

4
x2 + 18x− 7

)
f(x); (B.7)

∆t(µ, x) = 18 ln
µ

mt
+ 11− x

2
+
x(x− 6)

2
lnx+

x− 4

2

√
x g(x). (B.8)

In the functions above,

g(x) =


2
√

4− x arccos
√
x/4 for 0 ≤ x ≤ 4,

√
x− 4 ln

(
1−
√

1−4/x

1+
√

1−4/x

)
for x ≥ 4,

(B.9)

and

f(x) =

∫ 1

0

dt

[
Li2(1− r(t, x)) +

r(t, x)

r(t, x)− 1
ln r(t, x)

]
, with r(t, x) =

1 + (x− 1)t

t(1− t) . (B.10)
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Appendix C

Form Factors

C.1 Form Factors in the Transversality Basis

The B → V form factors are, in the transversality basis and with the parametrization of Ref. [24]:

〈V (k, λ)|q̄γµb|B(p)〉 = εµνρσε
∗ν
λ p

ρkσ
2

mB +mV
V (q2), (C.1)

〈V (k, λ)|q̄γµγ5b|B(p)〉 = i(ε∗λ · q)
qµ
q2

2mVA0(q2)

+ i(mB +mV )

(
ε∗µλ −

(ε∗λ · q)qµ
q2

)
A1(q2)

− i(ε∗λ · q)
(

(2p− q)µ
mB+mV

− (mB−mV )
qµ

q2

)
A2(q2), (C.2)

qν〈V (k, λ)|q̄σµνb|B(p)〉 = 2 i εµνρσε
∗ν
λ p

ρkσT1(q2), (C.3)

qν〈V (k, λ)|q̄σµνγ5b|B(p)〉 =
(
ε∗λ;µ(m2

B −m2
V )− (ε∗ · q)(2p− q)µ

)
T2(q2)

+ (ε∗ · q)
(
qµ −

q2

m2
B −m2

V

(2p− q)µ
)
T3(q2). (C.4)

Furthermore, from partially conserved axial current,

i〈V (k, λ)|q̄γ5b|B(p)〉 =
2mV

mb +mq
(ε∗ · q)A0(q2), (C.5)

〈V (k, λ)|q̄PL,Rb|B(p)〉 = ∓i mV

mb +mq
(ε∗ · q)A0(q2). (C.6)

Upon the rescaling the helicity-0 form factors as

V0(q2) =
2mB

√
q2

λ1/2
ṼL0(q2),

T0(q2) =
2m3

B√
q2λ1/2

T̃L0(q2),

S(q2) = −2mB(mb +ms)

λ1/2
S̃L(q2), (C.7)

where λ = 4m2
B |~k|2 and SR = −SL, and defining as well

V±(q2) ≡ ṼL±(q2), (C.8)

T±(q2) ≡ T̃L±(q2), (C.9)
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the seven helicity basis form factors can be related with those written in the traditional basis:

V±(q2) =
1

2

[(
1 +

mV

mB

)
A1(q2)∓ λ1/2

mB(mB +mV )
V (q2)

]
, (C.10)

V0(q2) =
1

2mV λ1/2(mB +mV )

[
(mB +mV )2(m2

B − q2 −m2
V )A1(q2)− λA2(q2)

]
, (C.11)

T±(q2) =
m2
B −m2

V

2m2
B

T2(q2)∓ λ1/2

2m2
B

T1(q2), (C.12)

T0(q2) =
mB

2mV λ1/2

[
(m2

B + 3m2
V − q2)T2(q2)− λ

(m2
B −m2

V )
T3(q2)

]
, (C.13)

S(q2) = A0(q2). (C.14)

C.2 Auxiliary Functions in Charm-loop Contributions

The g̃i(q
2) in Eq. (5.6) are related to hλ(q2) as follows [27]:

g̃1 = − 1

2C1

16m3
B(mB +mK∗)π

2√
λ(q2)V (q2)q2

(
h−(q2)− h+(q2)

)
, (C.15)

g̃2 = − 1

2C1

16m3
Bπ

2

(mB +mK∗)A1(q2)q2

(
h−(q2) + h+(q2)

)
, (C.16)

g̃3 =
1

2C1

[
64π2m3

BmK∗
√
q2(mB +mK∗)

λ(q2)A2(q2)q2
h0(q2)

− 16m3
Bπ

2(mB +mK∗)(m
2
B − q2 −m2

K∗)

λ(q2)A2(q2)q2

(
h−(q2) + h+(q2)

) ]
. (C.17)

The charm-loop coefficient function g(m2
c , q

2) is given by [146]:

g(m2
c , q

2) = −8

9
ln

(
mc

mb

)
+

8

27
+

4

9
y(q2)− 4

9

[
2 + y(q2)

]√
y(q2)− 1 arctan

[
1√

y(q2)− 1

]
(C.18)

where y(q2) = 4m2
c/q

2.
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