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Introduction

The main purpose of this Thesis is to explore the world of the possible
applications of sigmoidal functions approximation, both from the theoretical
point of view and for the applications.

Sigmoidal functions are merely measurable, real-valued functions, say
σ(x), such that limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1. The most known
examples are, the logistic function σ`(x) := (1+e−x)−1, x ∈ R, the hyperbolic
tangent sigmoidal function σh(x) := (1/2)(tanhx + 1), x ∈ R, and the

Gompertz functions σαβ(x) := eαe
−βx

, x ∈ R, α, β > 0. For instance,
σ` and σh are well-known for their applications to demography, economics
and statistics (see e.g. [25, 78, 129]); these functions also occur in many
di�erential models of population growth, Gompertz functions are also used
to describe tumor growth models, see e.g. [110, 3, 55].

Applications of sigmoidal functions in Approximation Theory arise, e.g.,
from the theory of neural networks (NNs), where they are introduced as a
generalization of the perceptron function (the Heaviside or unit step function)
which plays the role of the activation function of the network.

NNs are fundamental in many �elds. In particular, they have been intro-
duced to model the human brain, since they are "able to learn from a training
process� based on mathematical algorithms, see e.g. [74, 23, 124, 66, 24]. By
�training�, it is meant that the weights of an arti�cial neural network can
be chosen in such a way that the network is capable to represent the values
of a certain set of samples. The �rst proposed training algorithm was the
Delta-Rule [76], while the most popular was the back-propagation algorithm
[75].

Moreover, NNs with sigmoidal functions are well suited to applications
in circuit theory and �lter design, where simple nonlinear devices are used
to synthesize or approximate desired transfer functions [63].

The NNs are classi�ed in base of their architecture and can be mainly
divided in cyclic and acyclic networks. For instance, feed-forward neural
networks (of the acyclic type), the kind of NNs considered in this Thesis, are
usually represented by

N∑
j=0

cj σ(wj · x− θj), x ∈ Rn, n ∈ N+, (I)
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where, for every 0 ≤ j ≤ N , the θj ∈ R are the threshold values, the
wj ∈ Rn are the weights, and the cj are the coe�cients; wj · x denotes the
inner product in Rn, and σ is the activation function of the network, see
[80, 53, 94, 97, 100, 116, 121, 99, 58].

As it can be observed in (I), arti�cial neural networks possess a rather
complex structure. In particular, they involve many variables and param-
eters, which provide a very �exible tool. This fact allows us to construct
networks very well suited to approximate functions. This explain the reason
for using neural networks in Approximation Theory.

On the other hand, the idea of superposing univariate functions to ap-
proximate multivariate functions, is strictly connected to the 13th Hilbert
problem studied by Kolmogorov and Lorentz, see e.g. [86, 102]. The rela-
tion between the Kolmogorov representation theorem and neural networks
approximation was also studied by Kurková in [87].

The �rst results concerning approximation by sigmoidal functions are
due to G. Cybenko. In [63], he showed by non-constructive arguments that
the space of the neural networks of the form (I), is dense with respect to
the uniform topology in the set of all continuous functions de�ned on the
rectangle [0, 1]× ...× [0, 1] of Rn.

The problem of the density of NNs in a certain space of functions was
studied by many authors in various setting. The approach used for solving
this problem is mainly non-constructive, especially in the multivariate case.
This fact makes the application of these approximation methods very di�-
cult. However, some constructive results were obtained but by very complex
techniques. The constructive proofs were given in many cases for functions
of one variable and only rarely for functions of several variables.

Along this Thesis, we present the main approximation results concerning
this subject, and the main relevant di�culties are pointed out. In particular,
convergence results are established in both, the univariate and the multivari-
ate cases. Also, results and estimates concerning the order of approximation
achieved by superposing sigmoidal functions are analyzed. Usually, the error
estimates are given in terms of number, N, of the �neuron� making the net-
work, or both, the number of neurons and the values of the weights, which
are often related to each other. In this sense, the results obtained from dif-
ferent authors showed that, in order to approximate Lipschitz continuous
functions, or functions of bounded variation, by �nite linear combinations
of sigmoidal functions, the approximation errors decreases as 1/N , as N
tends to +∞, N being the number of superposed sigmoidal functions, see
e.g. [1, 116, 72]. In some cases, also the constants in the error estimates
can be determined (in the case of functions of bounded variation, e.g.), see
[72, 95, 96]. Moreover, when we approximate functions in a certain subspace
of L2(Rn), the approximation error decreases as N−1/2, as N → +∞ [20].
All results summarized above are presented in Chapter 1, together with a
brief introduction on neural networks and their history.
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One of the main purposes of this Thesis is to develop constructive ap-
proximation algorithms based on sigmoidal functions, useful for the theory
of NNs, and also to develop applications, e.g., to Numerical Analysis, for
solving numerically a number of problems, such as Volterra integral equa-
tions. The general approximation problem was treated in [56]; our approach
was inspired by the paper of H. Chen, T. Chen and R. Liu [48].

In [56], a constructive theory is developed for approximating functions
of one as well as several variables, by superposition of sigmoidal functions.
This is done in the uniform norm as well as in the Lp norm. Results for
the simultaneous approximation, with the same order of accuracy, of a given
function and its derivatives (whenever these exists), are obtained. The rela-
tion with NNs and radial basis functions approximation is discussed. These
results are presented in Chapter 2.

Several applications of the theory developed in [56] were proposed in
[57, 59]. In [57], a numerical collocation method was developed for solving
linear and nonlinear Volterra integral equations of the second kind, of the
form

y(t) = f(t) +

∫ t

a
K(t, s) y(t) ds, t ∈ [a, b], (II)

and

y(t) = f(t) +

∫ t

a
K(t, s; y(s)) ds, t ∈ [a, b], (III)

where f : [a, b]→ R and the kernels K are su�ciently smooth. The method
is based on the approximation of the exact solution to such equations by
sigmoidal functions, by the techniques developed in [56]. By our method,
we can solve a large class of integral equations having either continuous
or even Lp solutions. Special computational advantages are obtained using
unit step functions, and analytical representations of the solutions are also at
hand. The numerical errors are discussed, and a priori as well as a posteriori

estimates are derived for them. Many numerical examples are given to test
the method, that has been compared with the classical piecewise polynomial
collocation techniques, see, e.g., [117, 26, 14]. We recall that, a collocation

solution to a Volterra integral equation on an interval [a, b], is an element of
some �nite-dimensional function space (the collocation space), which satis�es
the equation on an appropriate �nite subset of points in [a, b]. The latter
is the set of collocation points, whose cardinality is the dimension of the
collocation spaces. Our collocation method based on sigmoidal functions is
described in Chapter 3.

To complete the set of applications to integral equations, the collocation
method given in [57] has been extended in [59] to solve Volterra integro-
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di�erential equations (VIDEs) of the neutral type, of the form

y′(t) = f(t, y(t)) +

∫ t

a
K(t, s, y(s), y′(s)) ds, y(a) = y0, (IV)

for t ∈ I := [a, b], where f and K are su�ciently smooth given functions, see
[32, 118, 119, 28]. The method is also suited to solve classical VIDEs, i.e.,

y′(t) = f(t, y(t)) +

∫ t

a
K(t, s, y(s)) ds, y(a) = y0, (V)

(where the integral term in (V) does not depend on y′(s)) as well as non-
standard VIDEs like

y′(t) = f(t, y(t)) +

∫ t

a
K(t, s, y(s), y(t)) ds, y(a) = y0, (VI)

(where the integral term depends, in addition, on y(t)) see [117, 27]. The
most known example of a non-standard VIDE is perhaps given by the logistic
equation with a memory term, see [62, 15, 16].

Computational advantages are gained using unit step functions, but in
many important applications other sigmoidal functions, such as logistic and
Gompertz functions, are used. The method allows us to obtain a simultane-
ous approximation of the solution to a given VIDE and its �rst derivative,
by means of an explicit formula. A priori as well as a posteriori estimates are
derived for the errors, and numerical examples are given for the purpose of il-
lustration. A comparison is made with other classical collocation methods as
for accuracy and CPU time. The collocation method for integro-di�erential
equations based on sigmoidal functions is discussed in Chapter 4.

The numerical methods that we proposed, are very easy to implement and
present several advantages. These are discussed in the following chapters in
more details. We stress the main peculiarity of our numerical methods, that
is that nonlinear integral and integro-di�erential equations can be solved by
means of �nite sequences of linear recursive formulae, without using itera-
tive methods for solving nonlinear algebraic systems such as, e.g., Newton's
method, as usually happens in numerical methods for solving nonlinear prob-
lems.

However, accuracy should be improved in our methods. This is because
by sigmoidal functions we are able to approximate functions both uniformly
(hence, a fortiori, pointwise) and also in Lp, but the approximation method
is merely one-order accurate.

Therefore, we have proposed new kinds of approximation techniques by
sigmoidal functions, aimed at enhancing the performance of our methods. In
Chapter 5 (see [58]), we develop a new constructive theory for approximat-
ing absolutely continuous (univariate) functions by series of certain sigmoidal
functions. Estimates for the approximation error are derived and the relation
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with neural networks approximation is discussed. The connection between
sigmoidal functions and the scaling functions of r-regular multiresolution
approximations are investigated. In this setting, we show that the approx-
imation error for C1-functions decreases as 2−j , as j → +∞. As a future
work, we plan to use the latter approach to obtain numerical methods for
solving integral and di�erential equations with high accuracy, thus improving
the performance of the methods developed in Chapters 3 and 4.

Finally, in Chapter 6, we consider the modern theory of NN operators
activated by sigmoidal functions. Anastassiou [5, 6] was the �rst to establish
neural networks approximation to continuous functions with a speci�c rate,
by special NN operators of the Cardalignet-Euvrard and Squashing types
[45]. He employed the modulus of continuity of the engaged function or its
high order derivatives. In his papers, Anastassiou produced Jackson-type
inequalities. In these theorems, the logistic and the hyperbolic tangent func-
tions are used as activation functions. In Sections 6.1 and 6.2, these results,
concerning NN operators are recalled. Then, in the last part of the chap-
ter, the results proved by Anastassiou are generalized for certain sigmoidal
functions, belonging to suitable classes. We studied the convergence and the
order of approximation for the family of operators de�ned (in the univariate
case) by

F hn (f, x) :=

bnbc∑
k=dnae

f

(
k

n

)
φh(nx− k)

bnbc∑
k=dnae

φh(nx− k)

, x ∈ [a, b], (VII)

where the density function is φσ(x) := (1/2)(σ(x+1)−σ(x−1)), x ∈ R, for a
suitable sigmoidal function σ and for any continuous functions f : [a, b]→ R,
with n ∈ N+ su�ciently large. Here, d·e and b·c denote the "ceiling� and
the "�oor� (the integral part) of a number, respectively. In some cases,
by our operators in (VII) and with some speci�c choice of σ, we were able
to improve the order of approximation with respect to that achieved by
Anastassiou. The NN operators activated by sigmoidal functions are studied
both in the univariate and the multivariate cases. These results can be found
in [60, 61]. By the NN operators we can approximate functions de�ned on
bounded rectangles. To approximate functions de�ned in the whole space,
quasi-interpolation operators were introduced and studied (see Subsections
6.5.1 and 6.7.1). Some �nal remarks are given in Chapter 7, and a discussion
about future work and possible extensions of the results established in this
Thesis is made.
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Chapter 1

Sigmoidal Functions and

Neural Networks in

Approximation Theory

1.1 A brief introduction to Neural Networks

There is no universally accepted de�nition of neural network (NN) in the
literature. There is a general agreement that NNs are a collection of models
of computation, very loosely based on biological motivations. According to
Haykin [74],

�a neural network is a massively parallel distributed processor that has a

natural propensity for storing experiential knowledge and making it available

for use. It resembles the brain in two respects:

1. knowledge is acquired by the network through a learning process;

2. inter-neuron connection strengths known as synaptic weights are used

to store the knowledge.�

This is a highly non-mathematical de�nition, but it describes very well the
ideas for which NNs have been introduced.

NNs are models useful to represent the behavior of the human brain.
The brain is made by billions of neurons. Every neuron is a cellular body
with branched extensions called dendrites, through which the neuron receives
electrical impulses from other neurons (see Fig. 1.1) . Moreover, each neuron
has a �lamentous extension called axon with a variable length (from 1 cm
to 1 m). At the end of the axon there are rami�cations, which transmit
the electrical signals to other cells, for instance, to the dendrites of other
neurons. Between the terminal of an axon and the receiving cell there is
some space. The electrical impulses pass through these spaces by means
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Figure 1.1: The biological neuron.

of chemicals called neurotransmitters. The connection point between the
terminal and a dendrite is called synapses.

A neuron is activated, i.e., it transmits an electrical impulse along its
axon, when a di�erence of electric potential between the inside and the out-
side of the cell occurs. The electrical impulse causes the release of a neuro-
transmitter from the axon terminals, which can also a�ect other neurons.

The human brain is a complex, parallel computer and although it con-
sists of very simple processing elements (the neurons), it is able to perform
complex tasks, such as recognition, perception, and control of movements.
Moreover, it is able to modify the connections among the neurons based on
their experience, that is, it is able to learn.

In the brain, there is no centralized control, in the sense that the various
areas of the brain work simultaneously, e�ecting each others and contributing
to the realization of speci�c tasks. Finally, the brain is fault tolerant, that is,
when a neuron or one of its connections is damaged, it keeps working, though
with a slightly degraded performance. In particular, the performance of the
brain processes degrades gradually while the neurons are being destroyed
(graceful degradation).

Therefore, to reproduce arti�cially the human brain behavior, a network
of very simple elements should be built up, which is a distributed structure,
massively parallel, able to learn, and then, to generalize, i.e., to produce out-
puts, correspondingly to inputs not encountered during the previous training.

1.1.1 The arti�cial neuron model

The arti�cial neuron model has a multivariate structure, having many inputs
and one output, where each input has an associated weight, which determines

10



Figure 1.2: The arti�cial neuron model proposed by McCulloch-Pitts.

the conductivity of the input channel and reproduces the synapses.
The inputs provide a weighted contribution to the neuron and represents

the electrical impulse that every neuron receives from the others to which it
is linked. From the mathematical point of view, we will denote the inputs
by the real parameters, x1, ....xn, and the associate weights by w1, ..., wn,
wk ∈ R. The weighted sum of the input values is given by

∑n
k=1 xkwk. To

every neuron a speci�c threshold value θ ∈ R (also called bias) is associated
as well as an activation function, having usually the form of a Heaviside

function (or unit step function), H(x), H(x) = 1, for x ≥ 0 and H(x) = 0
otherwise. Then, the full model of an arti�cial neuron takes on the form

F (x1, ..., xn) := H

(
n∑
k=1

xkwk − θ

)
, (x1, ..., xn) ∈ Rn. (1.1)

If the value
∑n

k=1 xkwk exceeds the threshold θ, i.e.,
∑n

k=1 xkwk − θ ≥ 0,
then the function in (1.1) yields 1 as output. This situation represents the
activated neuron. In case that

∑n
k=1 xkwk−θ < 0, we have F (x1, ..., xn) = 0,

which models a neuron that does not transmit any electrical impulse. This
neuron model is very simple and it is also known as the perceptron or also
as the McCulloch-Pitts model [111]. The name perceptron was coined by F.
Rosenblatt in [125]. Such a model is represented in Fig. 1.2. Afterwards,
Rosenblat extended the McCulloch-Pitts model so as to build neural net-
works consisting of arti�cial neurons and capable to learn from experience
[126, 127].
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Figure 1.3: The multi-layers feed-forward neural network architecture (left) and
the recursive neural network architecture (right).

1.1.2 The arti�cial neural network model

The design of a NN requires determining several components, such as the
number of neurons, the activation functions of the neurons and their archi-
tecture, i.e., their connections.

The distinction between the various kinds of NNs is made according to
the architecture that characterizes them. A classi�cation can be made in: (i)
feed-forward, and (ii) recursive NNs. The feed-forward NNs (see Fig.1.3, left)
have an acyclic structure organized in layers, where each neuron is connected
in input only with the previous layer and in output with the next layer. This
kind of networks computes an input function depending only on the weights.
Sometimes, it could have some hidden layers, i.e., layers in which the neurons
do not communicate with the outside.

The recursive NNs (see Fig.1.3, right), on the other hand, have a cyclic
structure, and the activation of the neurons determine the internal layer.
The most common recursive NNs are the Hop�eld neural networks and the
Boltzmann machines. In the Hop�eld NNs, every neuron appears in both,
input and output, and has bidirectional connections with symmetric weights.
The Boltzmann machines have hidden neurons, which are not involved in the
input and output phases.

On the basis of the NNs models, one neuron can be activated at a time,
or all neurons can be activated simultaneously. In the �rst case, we will
talk of asynchronous activation, in the second case of synchronous or parallel
activation.

From the mathematical point of view, for instance, a perceptron feed-
forward neural network with one hidden layer (the kind of NNs that we will
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consider in this Thesis), can be represented by

N∑
i=1

αiH

(
n∑
k=1

xk w
i
k − θi

)
, (1.2)

i.e., as a �nite linear combination of perceptrons, H being the unit step
function. De�ning x := (x1, ..., xn) and w i := (wi1, ..., w

i
n), we denote by

x ·w i :=
∑n

k=1 xk w
i
k the usual inner product in Rn, and then we can rewrite

(1.2) in the more compact form

N∑
i=1

αiH (x · w i − θi) . (1.3)

As observed in the previous paragraphs, since NNs are expected to behave
as the human brain, they should be able to acquire some knowledge by means
of a learning process. Mathematically speaking, this amounts to make a
suitable choice of the weights wik's of the NN in (1.2). For further details
concerning neural networks see, e.g., the monographs [74, 23, 124, 66, 24, 85,
13].

1.1.3 Training the networks

The main task of training a network is to adjust its weights so to produce
the desired responses. One of the most used training method is the su-

pervised learning, which plans to present to the network the corresponding
desired output for each training example. In general, at the beginning of
the training, the weights are initialized using some random values. Then, all
values contained in the training set are presented to the network. For each
element of the training set, the error made by the NN, i.e., the di�erence
between the desired and its real output, is computed. The size of the error is
used to adjust the weights. This process is repeated several times, changing
the order of presentation of the elements of the training set to the network.
This process ends when the errors made by the NN in all training values are
smaller than a given threshold.

After the training, the behavior of the network is tested against the values
of a suitable test set, made by di�erent elements (with respect to the training
set). This phase allows us to consider the ability of the NN to generalize,
i.e., to produce outputs, correspondingly to inputs not encountered during
the previous training.

The performance of the NN strongly depends on the choice of the training
set. These samples should be representative of the pattern that the network
is intended to represent. Training is an ad hoc process, depending on the
speci�c problem being treated.

One of the most used training algorithm is the Widrow-Ho� rule (or
Delta rule) [76]. Let x := (x1, ..., xn) the input value for a given arti�cial
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Figure 1.4: Example of classi�cation problem.

neuron, and t and y the desired and the neural network output, respectively.
The error is given by δ := t− y. For the Widrow-Ho� rule, the variation of
each weight should be computed by

∆wk = η δ xk,

where 0 < η ≤ 1 is the so-called learning rate (or learning speed).
For instance, one of the possible applications of the training of a percep-

tron NN is the so-called classi�cation problems of a class of objects, consisting
in associating each object to the correct class. Suppose that we wish to clas-
sify some objects represented by points of the plane, in two distinct classes.
If such classes are linearly separable, we can use a NN which approximates a
straight line of separation between the two classes. Then, an object will be
ranked by representing it as a point in the plane, and moreover, we can as-
sign it to one of the two classes identi�ed by the half-plane where the point is
located (see Fig.1.4). This kind of classi�cation can be obtained using, e.g.,
the Widrow-Ho� rule, a bivariate NN with one perceptron. We recall, for the
sake of completeness, that a classi�cation problem is termed linear if a line
(on the plane), or an hyperplane (on the n-dimensional space, n > 2) can be
used to separate all points. Otherwise, the problem is called nonlinear. In
general, the perceptron model can be used to solve linear classi�cation prob-
lem, in which the input values must be separated putting them in di�erent
classes.

Nonlinear problems can be solved by multi-layers NNs, see, e.g., [21]. In
this case, it can be useful to set up an algorithm for the supervised training.
The problem appearing in training of multi-layers NNs is that a technique of
adjustment of the weights, similar to the Widrow-Ho� rule, allows to update
only the weights related to the output neurons. This fact is reasonable, since
only for the neurons of the output layers we know the desired output.

This problem was solved, relatively recently, in 1986, when was intro-
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Figure 1.5: The logistic function σ` (left) and the hyperbolic tangent sigmoidal
function σh (right).

duced the back-propagation algorithm [75]. This algorithm consists in com-
puting the error of the last hidden layer neuron, and propagating back the
error computed on the output neurons linked to the last but one hidden
layer, and so on.

The back-propagation algorithm consists of two phases. First the ele-
ments of the training set go from the input to the output of the network
and then the errors are propagated back. In this second phase a weights
adjustment is made. At the beginning, the weights are initialized by random
values. The back-propagation algorithm is a generalization of the Widrow-
Ho� rule, and is a gradient descent method. Moreover, it requires that the
activation function of the network be di�erentiable, then the Heaviside func-
tion (discontinuous at x = 0) is usually replaced by the the smooth, nonlinear
function σ`, de�ned by

σ`(x) := (1 + e−x)−1, x ∈ R,

called logistic (or sigmoid) function (see Fig.1.5, left). It is clear that σ`
has the same behavior of the unit step function, and may play the role
of activation function as well. Another instance often used, for smooth,
activation function is given by the hyperbolic tangent sigmoidal function,
de�ned by

σh(x) := (1/2)(tanh(x) + 1), x ∈ R,

where tanh(x) := (e2x − 1)/(e2x + 1), see Fig.1.5 right.

1.2 Sigmoidal functions

Training by the back-propagation algorithm of multilayer neural networks re-
quires considering neural networks with smooth activation functions. Clearly,
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these functions must have a graph with the same behavior of the unit step
function, and this leads to the introduction of a new class of functions, the
sigmoidal functions. We have the following.

De�nition 1.1. A measurable function σ : R → R is called �a sigmoidal

function� whenever

lim
x→−∞

σ(x) = 0 and lim
x→+∞

σ(x) = 1.

Sometimes, boundedness, continuity and/or monotonicity may be prescribed
in addition.

Obviously, the Heaviside (unit step) function is a sigmoidal function.
Moreover, the logistic and hyperbolic tangent sigmoidal functions introduced
in the previous section are clearly examples of smooth and bounded sigmoidal
functions.

In particular, logistic functions are largely used in many �elds, such as
Biology, Physics, Biomathematics, Statistics, Economics, and Demography
(see [25, 78], e.g.) and indeed they were �rst introduced in the 19th Century
as a model to describe population growth.

Other important examples of smooth sigmoidal functions are given by
the following:

σG(x) :=
1

(2π)1/2

∫ x

−∞
e−t

2/2 dt, x ∈ R, (1.4)

the well-known Gaussian sigmoidal function (see e.g. [121]), useful in prob-
abilistic and statistical applications,

σarc(x) :=
1

π
arctan(x) +

1

2
, x ∈ R, (1.5)

the arctan sigmoidal function (see e.g. [121, 56]) and �nally, the Gompertz

functions
σα,β(x) := e−αe

−βx
, x ∈ R, (1.6)

where α, β > 0 represent an e�ective translation and a scaling term, respec-
tively (see Fig.1.6).

Gompertz functions, have been introduced by Benjamin Gompertz for
the study of his demographic model, which represents a re�nement of the
Malthus model. These functions are characterized by unsymmetrical growth
unlike σ`, σh, σG and σarc, moreover, they �nd applications in modeling
tumor growth and in population aging description, see e.g. [110, 3, 55] and
[129], respectively.

A further important example of non-smooth, continuous, sigmoidal func-
tion is given by

σR(x) =


0, for x < −1/2,
x+ 1/2, for − 1/2 ≤ x ≤ 1/2,
1, for x > 1/2,

(1.7)
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Figure 1.6: Left: The Gompertz functions σα,2 with α = 1 (black) and α = 10
(gray). Right: The Gompertz functions σ1,β with β = 1 (black) and β = 10 (gray).

the so-called ramp function (see e.g. [46, 39]).
A further generalization of the concept of sigmoidal function can be given

introducing a mathematical formulation for the activation functions. We
have the following.

De�nition 1.2. A measurable function s : R → R is called �activation

function� whenever

lim
x→−∞

s(x) = a and lim
x→+∞

s(x) = b,

with a 6= b.

1.3 A survey on approximation by sigmoidal func-

tions

In Section 1.1.3 the problem of the training neural networks is introduced.
Mathematically, this fact can be reviewed as an approximation problem.

The adaptable structure of a feed-forward neural network with one hidden
layer, composed many neurons, weights and various parameters, results very
suitable to approach this kind of problems.

Clearly, in order to obtain applications to the training of NNs, the ap-
proximation problems should be solved by constructive methods, but as we
shall see in the next sections, whenever it is possible, it results to be very
di�cult.

In fact, the approximation results proved in the last 25 years are mainly
obtained by non constructive arguments.

One of the most studied problems of approximation by neural networks
with sigmoidal functions, is the so-called density problem.
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Let σ be a given sigmoidal function. We denote by

MN (σ) :=

{
N∑
i=1

αiσ(x · w i − θi) : αi, θi ∈ R, w i ∈ Rn
}
, (1.8)

for some �xed N ∈ N+. We ask the following question:

for which σ is it true that, for any f ∈ C0(Rn), any compact subset K
of Rn and every ε > 0, there exists N ∈ N+ and a g ∈MN (σ) such that

max
x∈K
|f(x)− g(x)| < ε ? (1.9)

In other words, when do we have density of the linear space containing all
the MN (σ), for every N ∈ N+, in the space C0(Rn) with the topology of
the uniform convergence on compact sets ?

Clearly, the problem above can also be studied directly on some �xed
compact set, i.e., we can study the density in the space C0(K), with K ⊂ Rn
compact, in the uniform topology.

This result was �rst established by G. Cybenko [63] for continuous σ,
although his arguments were arranged for showing density in C0(In), where
In := [0, 1]× ...× [0, 1].

1.3.1 The Cybenko's approximation theorem

The result obtained by Cybenko in [63] is based on the particular concept
of discriminatory function. In this section we denote by M(In), the space of
signed regular Borel measures on In (see e.g. [128]).

De�nition 1.3. We say that σ : R→ R is �discriminatory� if for a measure

µ ∈M(In) ∫
In

σ(y · x+ θ) dµ(x) = 0,

for all y ∈ Rn and θ ∈ R implies that µ = 0.

Theorem 1.4 ([63]). Let σ be any continuous discriminatory function. Then

�nite sums of the form

G(x) =

N∑
j=1

αj σ(y
j
· x+ θj), x ∈ Rn,

are dense in C0(In), according to the de�nition given in (1.9).

The proof of Theorem 1.4 is non-constructive and is based on the Hahn-
Banach theorem and Riesz representation theorem.

The Cybenko's approximation theorem by superposition of sigmoidal
functions can be immediately deduced by the following lemma.
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Lemma 1.5 ([63]). Any bounded, measurable sigmoidal function, σ, is dis-
criminatory. In particular, any continuous sigmoidal function is discrimina-

tory.

The problem studied by Cybenko was suitable to applications in circuit
theory and �lter design, where simple nonlinear devices are used to synthesize
or approximate desired transfer functions. Thus, for instance, a fundamental
result in digital signal processing is the fact that digital �lters made from
unit delay and constant multipliers can approximate any continuous transfer
functions arbitrary well.

Moreover, the theory above is related to the Hilbert's 13th problem,
solved by Kolmogorov, which showed that all continuous functions of n vari-
ables have an exact representation in terms of �nite superposition and com-
position of a small number of functions of one variable [86, 102]. However, the
Kolmogorov representation involved di�erent nonlinear functions. The rela-
tion between the Kolmogorov representation theorem and neural networks
approximation was also studied by Kurková in [87].

Funahashi [67] (independently of Cybenko) proves the density in the
uniform norm on the compact sets, for any continuous monotone sigmoidal
functions. An analogous results for Lp metrics can be found in [130].

The paper of Cybenko has been superseded by a paper of Cheney and
Sun [51] and by two papers by Chui and Li [53, 54]. The papers [51] and
[53] deal with the density of the space containing all the sets{

N∑
i=1

αiσ(x · k i − θi) : αi,∈ R, θi ∈ Z, k i ∈ Zn
}
, (1.10)

for every N ∈ N+, in the space C0(K), where K ⊂ Rn is compact. The
real bene�ts over Cybenko's results is that the set in (1.10) is considerably
smaller toMN (σ), for every N ∈ N+.

1.3.2 The constructive convolution approach

We now move on to consider constructive proofs of density results showed
in the previous section. We discuss about the analysis of Cheney, Light and
Xu, as found in [49, 50]. As a general principle, the idea of convolution kernel
from a sigmoidal function is used. However, this kind of approach is very
di�cult due the nature of the problem.

First of all, we need to introduce the concept of ridge function.

De�nition 1.6. Let a ∈ Rn and g : R→ R be �xed. The function f : Rn →
R, de�ned by f(x) := g(a ·x), x ∈ Rn, is called a �ridge function� (or "plane

wave� function).

Now, let φ ∈ C0(R) and consider the ridge function

f(t) := φ(x · t), t ∈ Rn. (1.11)
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>From (1.11) we want to construct a second function which is in L1(Rn)
and whose integral is non-zero. Whit any function whose behavior for large
values of x ∈ Rn is uneven, in the sense that as x moves around on the
surface of a sphere of large radius, the function varies considerably, it is a
sound principle to average the function over the sphere. To this aim, let
Sn−1 denote the unit sphere in Rn and wn−1 the surface area of Sn−1. We
set

g(x) =
1

wn−1

∫
Sn−1

φ(x · u) dSn−1(u), x ∈ Rn. (1.12)

The following result can be found in Madych [103].

Lemma 1.7 ([103]). Let φ ∈ C0(R), n ∈ N+, n ≥ 2. De�ne g : Rn → R
by (1.12). Then g is a radial function and if g(x) = g0(‖x‖2) (here ‖ · ‖2
denotes the usual Euclidean norm in Rn) we have

g0(r) = wn−2w
−1
n−1

∫ 1

−1
φ(rs)(1− s2)(n−3)/2 ds.

We want to be able to tell not only when a ridge function is L1(Rn) but
also when a function can be integrated against ‖x‖m2 . The next lemma helps
in this process.

Lemma 1.8 ([50]). Let φ ∈ C0(R), n ∈ N+, n ≥ 2. De�ne g : Rn → R as

in Lemma 1.7. Then if ‖ · ‖m2 g(·) ∈ L1(Rn), we have∫
Rn
‖x‖m2 |g(x)| dx = wn−2

∫ +∞

0
rm+1

∣∣∣∣∫ r

−r
φ(t)(r2 − t2)(n−3)/2 dt

∣∣∣∣ dr.
For proof of Lemma 1.8, Lemma 1.7 was used. We see from Lemma

1.8 that
∫
Rn ‖x‖

m
2 |g(x)| dx = 0 if φ is an odd function and the e�ect of the

integral on the right-hand side of the equation in Lemma 1.8 is to "remove�
the odd part of the function φ. Henceforward, we can and do assume φ even.
We now tackle the integrability of g.

Theorem 1.9 ([50]). Let φ ∈ C0(R) and let g de�ned in (1.12). Moreover,

let n ∈ N+ be odd and let φ satisfy

(i)
∫
R φ(t)t2j dt = 0, 0 ≤ j ≤ (n− 3)/2;

(ii)
∫
R |φ(t)tn+m−1 dt < +∞, for some m ≥ 0.

Then the function x 7→ ‖x‖m2 g(x) is integrable to Rn.

Of course, it may turns out that g ∈ L1(Rn) but that
∫
Rn g(x) dx = 0,

which will preclude our using g to construct a convolution kernel. The next
two results address this matter.

Lemma 1.10 ([100]). Let φ and g as in Theorem 1.9 and let n ∈ N+ be odd.

In order that
∫
Rn g(x) dx 6= 0, it is necessary and su�cient that∫

Rn
φ(t)tn−1 dt 6= 0.
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The situation when n is even is very di�erent. We investigate �rst con-
ditions for the function g to belong to L1(Rn) and then we analyze the value
of
∫
Rn g(x) dx.

Lemma 1.11 ([50]). Let φ ∈ C0(R) and g as in (1.12). Moreover, let

n ∈ N+ be even. Suppose in addition that φ satisfy the following assumptions:

(i)
∫
R φ(t)t2j dt = 0, 0 ≤ j ≤ (n− 2)/2;

(ii)
∫
R |φ(t)tn−1 dt < +∞.

Then g ∈ L1(Rn).

Lemma 1.12 ([50]). Let φ and g as in Lemma 1.11 and let n ∈ N+ be even.

Then we have
∫
Rn g(x) dx = 0

It is worth noting before we proceed that the moment conditions on φ
are not only su�cient for g ∈ L1(Rn), but also in a sense necessary (see [50]
for the details). The problems caused by Lemma 1.12 can be avoided by
averaging the kernel in one dimension higher.

Lemma 1.13 ([100]). Let n be an even integer, n ≥ 2. Let φ ∈ C0(R)
satisfy

1.
∫
R φ(t)t2j dt = 0, 0 ≤ j ≤ (n− 3)/2;

2.
∫
R |φ(t)tn+m−1 dt < +∞, for some m ≥ 0.

For x ∈ (x1, ..., xn) ∈ Rn de�ne x := (x1, ..., xn, 0) ∈ Rn+1. Put

h(x) =
1

wn

∫
Sn
φ(u · x) dSn(u), u ∈ Rn+1.

Then
∫
Rn ‖x‖

m
2 |h(x)| dx < +∞. The condition

∫
R φ(t) tn−1 dt 6= 0 is neces-

sary and su�cient for
∫
Rn h(x) dx 6= 0.

We now recall the major results towards which we were aiming.

Theorem 1.14 ([50]). Let n be odd, n ≥ 3. Let φ be a uniformly continuous

function on R satisfying:

1.

∫ +∞

0
|φ(t) tn−1| dt < +∞;

2.

∫
R
φ(t) t2j dt = 0, 0 ≤ j ≤ (n− 3)/2;

3.

∫
R
φ(t) tn−1 dt 6= 0.
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Then the set of functions{
N∑
i=1

αi φ(x · u i + θi) : αi,∈ R, θi ∈ R, u i ∈ Rn, N ∈ N+

}
,

is dense in C0(Rn) with respect to the uniform topology on the compact subset

of Rn.

We now show the sketch of the proof of Theorem 1.14. By the results
showed in this section we can deduce that, under the assumptions of Theorem
1.14, the function g de�ned on (1.12) belongs to L1(R) and

∫
Rn g(x) dx = 1.

Now, by g we can de�ne the sequence

gm(x) := mng(mx), m ∈ N+.

Then, for every function f with compact support K ⊂ Rn, we have

‖gm ∗ f − f‖∞ → 0, as m→ +∞,

on K, where ∗ denotes the usual convolution product (see e.g. [26]) and

(gm ∗ f)(x) :=

∫
K
gm(x− y)f(y) dy.

The above formulae can be uniformly approximated by a sum of the form∑
A∈P

bAg(mx− za),

where bA and zA are suitable coe�cients and P is a suitable �nite set. Then,
applying a quadrature rule to each term g(mx − za), we can obtain the
following approximation formula:∑

A∈P

∑
B∈Q

cAeBφ(mxuB − zAuB),

where

eB := ω−1n−1

∫
B
dSn−1(u),

uB ∈ B, B ∈ Q, where Q is a partition of Sn−1 into a �nite, disjoint,
collection of Borel sets. A similar theorem can be established for n even.
The reader is referred to [50] for details.

Now, it is possible to show how the theory above can be applied to obtain
results concerning approximation by sigmoidal functions.

Let σ be a continuous sigmoidal function and we set φ(t) = σ(t+1)−σ(t),
t ∈ R. Then φ(t)→ 0 as t→ ±∞. The rate at which φ(t)→ 0 as t→ ±∞
depends on the rate at which σ(t)→ 0 as t→ −∞ and σ(t)→ 1 as t→ +∞.
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However, with quite mild assumptions on σ, such rate may be improved by
di�erencing.

Let ∆ be the forward di�erence operator (∆φ)(t) = φ(t + 1) − φ(t).
Suppose φ is even and has the power series expansion at +∞,

φ(t) =

∞∑
k=1

ak t
−k−α, for 0 < α ≤ 1, t > T.

Then we will denote

(∆n−1φ)(t) :=

n−1∑
j=0

(−1)n−1−j
(
n− 1

j

)
φ(t+ j),

and so for t > T ,

(∆n−1φ)(t) := (n− 1)!

+∞∑
k=1

ak ξ
−k−n+1−α
t ,

for some t < ξt < t + n − 1. It follows that (∆n−1φ)(t) = O(t−n−α) as
t→ +∞. Consequently, the function t 7→ tn−1(∆n−1φ)(t) is in L1(R). Now
put ψ := ∆n−1φ. Then for 0 ≤ k ≤ n− 1,∫
R
ψ(t)tk dt =

∫
R

(∆n−1φ)(t)tk dt = (−1)n−1 k!

∫
R
φ(t+n−1)(∆n−1Vk)(t) dt

=


0, if 0 ≤ k ≤ n− 2,

(−1)n−1 k!
∫
R φ(t) dt, k = n− 1.

Here we have used the notation Vk for the normalized monomial Vk(t) =
tk/k!. This lead to the following result.

Theorem 1.15 ([100]). Let φ ∈ C0(R) be an even function and let n be odd.

Suppose:

(a)
∫
R φ(t) dt 6= 0;

(b) φ has a descending power series expansion at +∞ of the following form:

φ(t) =

+∞∑
k=1

ak t
−k−α, 0 < α ≤ 1, t > T.

Then the set of functions{
N∑
k=1

αk φ(x · u+ θk) : u ∈ Rn, θk ∈ R, N ∈ N+

}
,

is dense in C0(Rn) with respect to the uniform topology on the compact sub-

sets of Rn.
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Theorem 1.15 may be applied to obtain a constructive proof of the de-
sired density result for suitable sigmoidal functions σ, using the convolution
techniques of Theorem 1.14. An example of sigmoidal function for which the
above approach can be applied is the logistic function σ` [100].

Given f ∈ C0(Rn), K compact in Rn and ε > 0 we can construct
(uk)k=1,...,N in Rn and (ck j)k,j=1,...,N , (θj)j=1,...,N in R such that

sup
x∈K

∣∣∣∣∣∣f(x)−
N∑

k, j=1

ck jψ(x · uk + θj)

∣∣∣∣∣∣ < ε.

Unscrambling all this gives the approximation

N∑
k, j=1

ck jψ(x · uk + θj)

=
N∑

k, j=1

ck j

n∑
`=1

e` [σ(xuk + θj + `+ 1)− σ(xuk + θj + `)]

=
N∑

k, j=1

ck j

{
n+1∑
`=0

e′` σ(xuk + θj + `) + e′′` σ(xuk + θj + `)

}

=

N∑
k, j=1

ck j

{
n+1∑
`=0

(e′` + e′′` )σ(xuk + θj + `)

}
.

This is the required sigmoidal approximation. Note that even if the decay
properties of σ at ±∞ are not very strong, it can be expected that the
di�erencing applied to generate the function ψ will greatly improve this
decay.

There are alternative approaches to these ideas of generating in a prac-
tical way appropriate sigmoidal function approximation. An algorithm is
proposed by Chui and Li in [54], where they �rst approach the approxima-
tion problem by using the Bernstein operators and then applying again the
convolution technique.

Other constructive approach has been proposed in [48], but we will ana-
lyze it in detail in the next chapters.

1.3.3 The Mhaskar-Micchelli results and the k-th sigmoidal

functions

The idea proposed by Mhaskar and Micchelli in [115], is to construct a suit-
able operator which is polynomial preserving. The present approach focuses
on only to approximation of univariate functions. First of all, we recall the
following de�nition.
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De�nition 1.16. Given a continuous sigmoidal function σ and n ∈ N+, we

de�ne An to be the smallest positive integer such that:

(a) |σ(x)| ≤ n−1 for x ≤ −An;

(b) 1− n−1 ≤ σ(x) ≤ 1 + n−1 for x ≥ An.

The operator introduced by Mhaskar and Micchelli are de�ned by

(Gnf)(x) = f(0) +

n∑
ν=1

{
f
(ν
n

)
− f

(
ν − 1

n

)}
σ (An(nx− ν)) ,

x ∈ R, where σ is any continuous sigmoidal function and f ∈ C0(R).
In order to recall the main results obtained in [115] concerning sigmoidal

function approximation, we must introduce the well-known notion ofmodulus

of continuity, very important in Approximation Theory.

De�nition 1.17. For any continuous function f de�ned on the interval

[a, b], we denote by

ω(f, δ) := sup
x,y∈[a,b], |x−y|≤δ

|f(x)− f(y)|,

the �modulus of continuity of f �.

Note that, the above de�nition can be easily extended to the case of
functions de�ned on the whole real line. Now, we have the following.

Theorem 1.18 ([115]). There exists a constant c > 0 such that for f ∈
C0(R)

sup
x∈[0,1]

|f(x)− (Gnf)(x)| ≤ c ω(f, 1/n),

for every n ∈ N+.

Theorem 1.18 is a constructive approximation result with rate.
Always in [115], a generalization of the concept of sigmoidal function has

been introduced.

De�nition 1.19. A �k-th degree sigmoidal function� is a function σ : R→ R
such that

lim
x→−∞

σ(x)

xk
= 0 and lim

x→+∞

σ(x)

xk
= 1,

and σ is bounded by a polynomial of degree at most k on R.

Mhaskar and Micchelli provide constructive proof, drawing upon ideas
from the area of spline functions in the univariate case. However, this kind
of approach does not generate a pure sigmoidal approximation, since the
sigmoidal part is augmented by a polynomial. For further details see [115].
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To approximate multivariate functions, the method proposed in [115]
consists, �rst, to approximate a given function by means of a suitable average
of Fourier series. The average is taken so as to generate an approximation
with a su�ciently high degree of accuracy. Then the univariate result is used
to obtain a sigmoidal approximation.

Others important papers concerning neural networks approximation are
[116, 114, 99]. These results are obtained for 2π-periodic functions and also
for non necessarily periodic functions (see e.g. [116]). In [99] neural networks
are constructed by wavelet recovery formula and wavelet frame. Finally, the
optimal order of approximation for NNs with a single hidden layer was proved
in [114] for functions assumed to posses a given number of derivatives.

1.3.4 Multivariate approximation based on Lebesgue-Stieltjes-

type convolution operators

In Lenze [94] an original constructive approach for multivariate approxima-
tion with sigmoidal functions has been developed. The basic idea was of
use an hyperbolic-type argument in σ in place of ridge like typical argument
x · u k − θk. This results were obtained by using the theory of the Lebesgue-
Stieltjes convolution operators. We start with the following notations.

Let R ⊂ Rn, R := [a1, b1]× ...× [an, bn]. Denote by

Cor(R) := {x ∈ Rn : xi = ai or xi = bi, for every i = 1, ..., n} ,

and by

γ(x, a) := |{i ∈ {1, ..., n} , xi = ai}| , x ∈ Cor(R),

where a := (a1, ..., an) and here, the | · | denotes the number of distinct
elements of the set under consideration. Now, for every f : Rn → R de�ne

∆f (R) :=
∑

x∈Cor(R)

(−1)γ(x, a) f(x).

De�nition 1.20. A function f : Rn → R is said to be of �(uniform) bounded

variation� on Rn, if there exists a �nite constant K ≥ 0 such that ∆f (R),
R ⊂ Rn, de�ned by

∆f (R) :=sup

{
r∑
i=1

|∆f (Ri)| : Ri⊂R, Ri∩Rj =∅, i 6= j, 1≤ i, j ≤r, r∈N+

}
,

satis�es

sup
{

∆f (R) : R ⊂ Rn
}

= K < +∞. (1.13)

In this case we will write f ∈ BV (Rn).
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As this is well-known, a function f ∈ BV (Rn) induces a signed Borel
measure mf , the so-called Lebesgue-Stieltjes measure associated to f . This
measure determines the Lebesgue-Stieltjes integral with respect to f , and
then, all the integrals in this subsection have to be interpreted in Lebesgue-
Stieltjes sense. For major details see [94].

We now introduce the Lebesgue-Stieltjes convolution operators induced
by a continuous sigmoidal function.

Theorem 1.21 ([94]). For f ∈ BV (Rn) with lim‖t‖→+∞ f(t) = 0 (here

‖t‖ := max {|ti| : i = 1, ..., n}), the operators Ωρ, ρ > 0, de�ned by

Ωρ(f)(x) := (−1)n 21−n
∫
Rn
σ

(
ρ

n∏
k=1

(tk − xk)

)
df(t),

for every x ∈ Rn, are well-de�ned and map into the space C0(Rn). Moreover,

they are linear and with K ≥ 0 given by (1.13), they are bounded by

sup
x∈Rn

|Ωρ(f)(x)| ≤ 21−nK‖σ‖∞,

where ‖σ‖∞ := supt∈R |σ(t)|.
In case of f continuous at x ∈ Rn we have the local approximation results

lim
ρ→+∞

Ωρ(f)(x) = f(x).

Since we are interested in practical approximation method, in order to
approximate f we have to evaluate the convolution integral appearing in
Theorem 1.21 approximatively, using e.g. a simple Riemann-type midpoint
quadrature rule and get the discrete operators Ω(h) (here ρ = h−n in order
to obtain operators depending only from the parameter h > 0), de�ned by

Ω(h)(f)(x) := (−1)n 21−n
∑
k∈Zn

σ

 n∏
j=1

(kj +
1

2
− xj

h
)

∆f (R̃hj,k)

where R̃hj,k := [hk1, h(k1 + 1)] × ... × [hkn, h(kn + 1)]. In the following, we

examine the properties of the discrete operators Ω(h).

Theorem 1.22 ([94]). Let σ be a continuous sigmoidal function. For f ∈
BV (Rn) with lim‖t‖→+∞ f(t) = 0, the operators Ω(h), h > 0, are well-de�ned
and map into the space C0(Rn). Moreover, they are linear and with K ≥ 0
given by (1.13), they are bounded by

sup
x∈Rn

∣∣∣Ω(h)(f)(x)
∣∣∣ ≤ 21−nK‖σ‖∞.
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We now pass over the approximation properties of the operators Ω(h),
h > 0. We introduce the following de�nition:

BV C0(Rn) :=

{
f ∈ BV (Rn) ∩ C0(Rn) : lim

‖t‖→+∞
f(t) = 0

}
.

We obtain the following.

Theorem 1.23 ([94]). Let σ be a continuous sigmoidal function and consider

Ω(h), h > 0. For all f ∈ BV C0(Rn) and for every x ∈ Rn we have

lim
h→0+

‖Ω(h)(f) − f‖∞ = 0.

For a discussion on the practical applications to neural networks of the
present theory see [94].

1.3.5 About the order of approximation

A problem of interest in Approximation Theory is to study the order of
approximation.

Bounds for the error of approximation by neural networks with sigmoidal
functions are usually given in terms of the number of neurons, and sometimes
are related both to the number of the neuron and the weights. In some cases,
these estimate are given in term of the modulus of continuity of the function
f that we wish to approximate.

This subject has been addressed by many authors. Debao Chen [47]
proved an estimate for univariate functions f ∈ C0[0, 1]. We have the fol-
lowing.

Theorem 1.24 ([47]). Let σ a given sigmoidal function. For every f ∈
C0[0, 1] we have

dist(f,MN (σ)) ≤ ‖σ‖∞ ω(f, 1/N),

for every N ∈ N+, whereMN (σ) is the set of functions de�ned in (1.8) and

dist(f,MN (σ)) = infg∈MN (σ) ‖f − g‖∞.

Clearly, from the error of approximation estimates given by the modulus
of continuity of f also the convergence of the approximation method can be
deduced. In fact, if a general function f : R→ R is bounded and uniformly
continuous, we have

lim
N→+∞

ω(f, 1/N) = 0. (1.14)

An extension of Theorem 1.24 for suitable functions de�ned on the whole
real line has been proved in [72]. The order of approximation was studied
for functions belonging to the following set:

C 0(R) :=

{
f : R→ R : f continuous and lim

x→+∞
f(x), lim

x→−∞
f(x) arefinite

}
.

The following result has been proved.
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Theorem 1.25 ([72]). Let σ be a bounded sigmoidal function and f ∈
C 0(R). For every N ∈ N+ we have

dist(f,MN (σ)) ≤ ‖σ‖∞ ω
(
f,

2A1

N + 1

)
,

where the positive constant A1 depends on f and σ only.

As a corollary of Theorem 1.25 we can deduce an order of approximation
for continuous functions de�ned on bounded intervals [a, b]. In this case the
constant 2A1 can be replaced by the constant b−a. If [a, b] = [0, 1] we obtain
again Theorem 1.24.

Moreover, in [72] is also proved that the approximation error derived
in Theorem 1.25 for certain continuous functions, when σ(x) = H(x) (the
Heaviside function), is almost the best possible, i.e., a tight bound for the
approximation error is derived.

We recall that, a tight bound is a simultaneous upper and lower estimate
of the approximation error given either with the same modulus of continuity
(or O symbol) and di�erent constants.

A similar result to that proved by Debao Chen in Theorem 1.24 has been
proved by Gao and Xu [68] for univariate functions of bounded variation,
de�ned on the interval [0, 1]. In particular, they showed that in this case
the error of approximation depends on the total variation of f . Recall that,
for univariate functions de�ned on bounded intervals of R the de�nition of
function with bounded variation can be simpli�ed with respect to that given
in De�nition 1.20.

De�nition 1.26. Let f : [a, b]→ R. The �total variation of f � in [a, b] ⊂ R
is de�ned by:

V (f)[a, b] :=sup


r−1∑
j=0

|f(xj+1)− f(xj)| : a=x0 < x1 <...< xr=b, r∈N+

 .

If V (f)[a, b] < +∞, f is called a �bounded variation function on [a, b]�. The
set of all functions of bounded variation on [a, b] will be denoted by BV [a, b].

We have the following.

Theorem 1.27 ([68]). Let σ be a bounded sigmoidal function. Then, there

is a positive constant c, depending on σ only, such that for every N ∈ N+

and for each f ∈ BV [0, 1],

dist(f,MN (σ)) ≤ c V (f)[0, 1]N−1.

The idea of the proof is very similar to that proposed by Chen, Chen
and Liu [48], in their convergence theorem for neural networks activated by
sigmoidal functions in one-dimension.

Theorem 1.27 has been extended in [95] by Lewicki and Marino for func-
tions of bounded φ-variation. We recall the following.
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De�nition 1.28. Let φ : R+ → R+ be a continuous, strictly increasing

function such that φ(0) = 0. Moreover, let f : [a, b] → R. The �φ-variation
of f � in [a, b] ⊂ R is de�ned by:

Vφ(f)[a,b] :=sup


r−1∑
j=0

φ (|f(xj+1)−f(xj)|) : a=x0<x1<...<xr=b, r∈N+

 .

If Vφ(f)[a, b] < +∞, f is called a �bounded φ-variation function on [a, b]�.
The set of all functions of bounded φ-variation on [a, b] will be denoted by

BVφ[a, b].

The �rst remarkable result proved in [95] was the following.

Theorem 1.29 ([95]). Let φ : R+ → R+ be a continuous, strictly increasing

function such that φ(0) = 0. Moreover, let f ∈ C0[a, b] satisfy the following

property

(P) there exists a constant C > 0 such that for every N ∈ N+ we can select

a partition a = x0 < x1 < ... < xn = b such that for every i = 1, ..., N ,

if x, y ∈ Ii = [xi−1, xi], then

|f(x)− f(y)| ≤ φ−1
(
C

N

)
,

and let σ be a bounded sigmoidal function. Then

dist(f,MN (σ)) ≤ (1 + 8‖σ‖∞)φ−1
(
C

N

)
.

Note that the class of functions satisfying property (P) is larger then
the class of functions of bounded φ-variation. Moreover, if a function f is α-
Holder continuous, with 0 < α ≤ 1, condition (P) is ful�lled with φ(t) = tα,
then the estimate provided by Theorem 1.29 becomes

dist(f,MN (σ)) ≤ (1 + 8‖σ‖∞)

(
C

N

)1/α

.

Finally, again as a consequence of Theorem 1.29 and by the above observa-
tions it is immediate to prove the following.

Theorem 1.30 ([95]). Let σ be a bounded sigmoidal function and let f ∈
C0[a, b] ∩BVφ[a, b]. Then

dist(f,MN (σ)) ≤ (1 + 8‖σ‖∞)φ−1
(
Vφ(f)[a, b]

N

)
,

for every N ∈ N+.
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The results concerning the order of approximation studied in this sub-
section deal only for univariate functions. To �nd results in a multivariate
setting is certainly more di�cult.

For instance, some approximation bounds for the superposition of sig-
moidal function in several variables has been proved by Barron [20].

In order to obtain results in this sense, Barron introduced a smoothness
property of the function to be approximated, expressed in terms of its Fourier
representation.

In its paper [20], Barron considered the class of functions f : Rn → R for
which there is the following representation:

f(x) =

∫
Rn
ei w·x f̂(w) dw,

where f̂ denotes the Fourier transform of f for which w f̂(w) is integrable.
Moreover, the following term was introduced:

Cf :=

∫
Rn

(w · w)1/2|f̂(w)| dw,

where in the above formula |f̂(w)| is the modulus of a complex-valued func-
tion. We will denote by ΓC the set of all functions f such that Cf ≤ C.
Functions with Cf �nite are continuously di�erentiable on Rn and the gra-
dient of f has the Fourier representation

∆f(x) =

∫
Rn
ei w·x ∆̂f(w) dw,

where ∆̂f(w) = i w f̂(w).
The �nite linear combination of sigmoidal functions considered by Barron

are of the form

fN (x) :=

N∑
i=1

αi σ(x · w i − θi) + α0, (1.15)

where the shifted term α0 is introduced. Similar to MN (σ), we de�ne by
GN (σ) the set of all functions of the form in (1.15), for every αi, θi ∈ R, w i ∈
Rn and N ∈ N+. The order of approximation achieved in [20] is measured by
the integrated squared error with respect to an arbitrary probability measure
µ on the closed ball Br ⊂ Rn centered in the origin and with radius r > 0.

Theorem 1.31 ([20]). Let σ a bounded sigmoidal function. For every func-

tion f with Cf �nite and every N ∈ N+, there exists a linear combination of

sigmoidal functions fN (x) of the form in (1.15), such that∫
Br

(f(x)− fN (x))2 dµ(x) ≤
c′f
N
,
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where c′f = (2rCf )2. Moreover, for functions in ΓC , the coe�cients of the

linear combination in (1.15) may be restricted to satisfy
∑N

i=1 |αi| ≤ 2rC
and α0 = f(0).

Re�nements of the above results are also showed in [20] using elements
of functional analysis. Substantially, the main goal of the paper is the proof
that the L2-error of approximation for certain functions, goes to zero as
1/
√
N , for N → +∞. Moreover, the following theorem is also proved in

[20].

Theorem 1.32 ([20]). Let Sn−1 ⊂ Rn denotes the unit Euclidean ball of Rn
and let ν̃ a probability Borel measure on Sn−1. Moreover, let µ a real valued

Radon measure on Rn and assume additionally that∫
Rn
‖t‖2dµ(t) < +∞,

where here |µ| denotes the variation of µ. De�ne for x ∈ Sn−1,

h(x) :=

∫
Rn
eit·x dµ(t).

Then there is a constant C > 0, such that

distL2(h,GN (σ)) ≤ C/
√
N,

for every N ∈ N+, σ bounded sigmoidal function, where distL2(h,GN (σ)) =
infg∈GN (σ) ‖h− g‖L2 and L2 = L2(Sn−1) with respect to the measure ν̃.

A generalization of Theorem 1.32 is produced by Lewicki and Marino
[96]. In particular, they consider functions of the ridge-type

h(x) :=

∫
Rn
f(t · x) dµ(t), (1.16)

where µ is a �nite Radon measure on Rn and f : R → R is a continuous
function of bounded variation on R (the theory showed in [96] is valid also
for complex-valued function). Lewicki and Marino proved that functions of
the form in (1.16) can be approximated in L2-norm by elements of the form
(1.15), with σ bounded.

Theorem 1.33 ([96]). Let B, D ⊂ Rn and D be a compact set. Suppose

that µ be a real-valued Radon measure on B with variation |µ| < +∞. Let

ν be a �nite Borel measure on D. Assume f : R → R is a continuous and

bounded function such that f ∈ BV [a, b], for every [a, b] ⊂ R and

V (f) := sup {V (f)[a, b] : [a, b] ⊂ R} < +∞.
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Set for x ∈ D, h(x) =
∫
B f(t ·x) dµ(t). Then there is C > 0, depending only

on f , D and ν, such that

distL2(h,GN (σ)) ≤ C/
√
N,

where L2 = L2(D) with respect to the measure ν.

The same result holds true for f : R → R satisfying the Lipschitz con-
dition under the additional assumption that

∫
Rn ‖t‖2d|µ(t)| < +∞, see [96]

again.
For more results concerning the order of approximation see e.g. [80, 1,

88, 89, 82, 83, 91, 92, 73, 41].
A further generalization in the theory of NNs with sigmoidal functions

in Approximation Theory is the study of the order of approximation in the
general framework of Hilbert spaces. Results in this context were �rstly
given in Barron [20] and Makovoz [104, 105]. Upper bounds are derived by
many authors, e.g., Gnecco, Kainen, Kurkova and Sanguineti in [69, 71, 70,
93, 81, 90].

In particular, tight bounds for the error of approximation were derived
in [104, 93].
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Chapter 2

Constructive Approximation

by Superposition of Sigmoidal

Functions

In this chapter, a constructive theory is developed for approximating func-
tions of one or more variables by superposition of sigmoidal functions. This
is done in the uniform norm as well as in the Lp norm. Results for the simul-
taneous approximation, with the same order of accuracy, of a function and
its derivatives (whenever these exist), are obtained. The relation with neural
networks and radial basis functions approximations is discussed. Numerical
examples are given for the purpose of illustration. Comparisons with the
results of Chapter 1 are made.

The readers, can be found the present theory in [56].

2.1 Notation and preliminary results

In this chapter, by Ĉn[a, b], n ∈ N+, we will denote the set of all functions f
such that f ∈ Cn(a′, b′) for some open real interval (a′, b′) such that [a, b] ⊂
(a′, b′). Furthermore, Q ⊂ R2 will denote the square Q := [a, b]× [c, d], with
b− a = d− c, and ‖(x, y)‖2 := (x2 + y2)1/2, (x, y) ∈ R2, the Euclidean norm
in R2.

Now we give a constructive proof of Cybenko's approximation theorem,
inspired to the proof given in [48] by Chen, Chen and Liu, for functions
belonging to C0[a, b]. In particular, in our approach some little changes have
been introduced with respect to [48]. We will prove these density theorem
since the proof it is useful to let better understand our proofs below, in next
sections, concerning the constructive multivariate theory.

The following statement, that we display as a lemma, can be obtained as
an immediate consequence of De�nition 1.1.
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Lemma 2.1. Let x0, x1, ..., xN ∈ R, N ∈ N+, be �xed. For every ε, h > 0,
there exists w := w(ε, h) > 0 such that, for every w ≥ w and k = 0, 1, ..., N ,

we have

1. |σ(w(x− xk))− 1| < ε, for every x ∈ R such that x− xk ≥ h;

2. |σ(w(x− xk))| < ε, for every x ∈ R such that x− xk ≤ −h.

Now we are able to prove the following

Theorem 2.2. Let σ be a bounded sigmoidal function and let f ∈ C0[a, b]
be �xed. For every ε > 0, there exist N ∈ N+ and w > 0 (depending on N
and σ), such that, if

(GNf)(x) :=
N∑
k=1

[f(xk)−f(xk−1)]σ(w(x−xk))+f(x0)σ(w(x−x−1)) (2.1)

for x ∈ [a, b], h := (b− a)/N , and xk := a+ kh, k = −1, 0, 1, ..., N , then

‖GNf − f‖∞ < ε.

We stress that continuity of σ is not required and its boundedness in the
sup-norm, ‖σ‖∞ := supx∈R |σ(x)|, su�ces.

Proof. Let ε > 0 be �xed. Since f is uniformly continuous, correspondingly
to η := ε/(‖f‖∞+2 ‖σ‖∞+2) there exists δ > 0 such that |f(x)− f(y)| < η
for every x, y ∈ [a, b], with |x− y| < δ. We �x N ∈ N+, N > 3, such that
h := (b − a)/N < δ/2 and 1/N < η. Moreover, we �x w ≥ w(1/N, h) ≡
w(1/N) > 0, where w(1/N) is obtained using Lemma 2.1 with 1

N , h > 0 and
with xk = a + hk, k = −1, 0, 1, ..., N . Now, consider GNf de�ned in (2.1)
with w. Let x ∈ [a, b] be �xed and i, i = 1, ..., N , such that x ∈ [xi−1, xi].
Set

Li(x) := f(a) + [f(x2)− f(x1)]σ(w(x− x2)) + [f(x1)− f(x0)]σ(w(x− x1))

for i = 1, 2, and

Li(x) :=

i−2∑
k=1

[f(xk)− f(xk−1)] + f(a) + [f(xi−1)− f(xi−2)]σ(w(x− xi−1))

+ [f(xi)− f(xi−1)]σ(w(x− xi))

for i ≥ 3. In any case,

|(GNf)(x)− f(x)| ≤ |(GNf)(x)− Li(x)|+ |Li(x)− f(x)| =: I1 + I2.

We now estimate I1 and I2 only for i ≥ 3, since similar estimates can be
obtained also for i = 1, 2. Being x − xk ≥ h for k = −1, 0, 1, ..., i − 2 and

35



x − xk ≤ −h for k = i + 1, ..., N , by conditions 1 and 2 of Lemma 2.1, it
follows that

I1 ≤
i−2∑
k=1

|f(xk)− f(xk−1)| |σ(w(x− xk))− 1|

+ |f(a)| |σ(w(x− x−1))− 1|

+
N∑

k=i+1

|f(xk)− f(xk−1)| |σ(w(x− xk))| <
N∑
k=1

η
1

N
+

1

N
|f(a)|

≤ (1 + ‖f‖∞) η.

It may be observed that here above just |f(a)| in place of ‖f‖∞ would
su�ce. Using the identity

i−2∑
k=1

[f(xk)− f(xk−1)] + f(a) = f(xi−2),

and being |xi−2 − x| ≤ |xi−2 − xi−1|+ |xi−1 − x| ≤ 2h < δ, we can estimate
I2 as

I2 = |f(xi−2) + [f(xi−1)− f(xi−2)]σ(w(x− xi−1))
+ [f(xi)− f(xi−1)]σ(w(x− xi))− f(x)|
≤ |f(xi−1)− f(xi−2)| |σ(w(x− xi−1))|+ |f(xi)− f(xi−1)| |σ(w(x− xi))|
+ |f(xi−2)− f(x)| < (2 ‖σ‖∞ + 1) η.

From such estimates for I1 and I2, it follows that

|(GNf)(x)− f(x)| ≤ I1 + I2 < (‖f‖∞ + 2 ‖σ‖∞ + 2) η = ε.

Therefore, being x ∈ [a, b] arbitrary, we conclude that ‖GNf − f‖∞ < ε.

Note that, when σ is continuous, Theorem 2.2 can be viewed as a density
result in C0[a, b] for the set containing all functions of MN (σ), for every
N ∈ N+, with respect to the uniform norm. In addition, as a consequence of
Lemma 2.1, we also observe that ‖GNf − f‖∞ < ε for every w ≥ w, where
w = w(1/N) > 0 is chosen as in Theorem 2.2.

2.2 Constructive approximation in Lp[a, b]

Theorem 2.2 was extended also to Lp-functions in [63] and then in [48], but by
non-constructive methods. Results in Lp were also showed in [67, 1, 43, 44].

In this section, we give a constructive proof of an approximation theorem
for functions f ∈ Lp[a, b], 1 ≤ p < ∞, by elements of MN (σ), with σ
bounded. First of all, we have the following theorem.
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Theorem 2.3. Let σ be a bounded sigmoidal function and let 1 ≤ p < ∞
be �xed. For every f ∈ C0[a, b] and ε > 0, there exist N ∈ N+ and w > 0
(depending on N and σ), such that the function GNf de�ned in (2.1) with

w as scaling parameter, is such that

‖GNf − f‖Lp[a,b] < ε.

Proof. Let f ∈ C0[a, b] and ε > 0 be �xed. By Theorem 2.2, correspondingly
to η := ε/(b − a)1/p, there exist N ∈ N+, N > 3, and w > 0, depending on
N , such that ‖GNf − f‖∞ < η. Therefore,

‖GNf − f‖Lp[a,b] =

(∫ b

a
|(GNf)(x)− f(x)|p dx

)1/p

<

(∫ b

a
ηp dx

)1/p

= ε.

Now we can prove the following constructive approximation result in
Lp[a, b].

Theorem 2.4. Let σ be a bounded sigmoidal function and let f ∈ Lp[a, b],
1 ≤ p < ∞, be �xed. Then, for every ε > 0 there exists N ∈ N+ and a

function GN ∈MN (σ), such that

‖GN − f‖Lp[a,b] < ε.

Proof. The proof is constructive. De�ne the function f̃ : R→ R as

f̃(x) :=

{
f(x), x ∈ [a, b],
0, otherwise.

(2.2)

Note that f̃ ∈ Lp(R) and f̃ = f on [a, b]. Let {ρn}n∈N+ , ρn : R→ R, be a se-
quence of molli�ers, i.e., ρn ∈ C∞c (R), supp ρn ⊆ [−1/n, 1/n],

∫
R ρn(x) dx =

1, and ρn(x) ≥ 0 for every x ∈ R, n ∈ N+. De�ne the family {fn}n∈N+ by

fn(x) := (ρn ∗ f̃)(x) =

∫
R
ρn(x− y) f̃(y) dy, x ∈ R, (2.3)

where ∗ denotes convolution. By the general properties of sequences of mol-
li�ers and of convolution products [26], it turns out that fn = ρn∗ f̃ ∈ C0(R)
for every n ∈ N+, and fn → f̃ in Lp(R) as n → +∞. Let ε > 0 be �xed.
Then, there exists n ∈ N+ such that

‖fn − f‖Lp[a,b] =
∥∥∥fn − f̃∥∥∥

Lp[a,b]
≤
∥∥∥fn − f̃∥∥∥

Lp(R)
<
ε

2
,

for every n ≥ n. Let now n ≥ n be �xed. Being fn ∈ C0(R) ⊂ C0[a, b], as
a consequence of Theorem 2.3, correspondingly to ε/2 there exist N ∈ N+,
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N > 3, and w > 0 (depending on N and σ), such that the function GNfn
de�ned in (2.1) with w as scaling parameter, is such that

‖GNfn − fn‖Lp[a,b] =
∥∥∥GN (ρn ∗ f̃)− (ρn ∗ f̃)

∥∥∥
Lp[a,b]

<
ε

2
.

Hence, we can conclude that

‖GNfn − f‖Lp[a,b] ≤ ‖GNfn − fn‖Lp[a,b] + ‖fn − f‖Lp[a,b] <
ε

2
+
ε

2
= ε.

Setting GN (x) := (GNfn)(x) completes the proof.

We stress that the proof of Theorem 2.4 is constructive and by choosing
a speci�c sequence of molli�ers a precise analytic form of the sums GNfn
(fn de�ned in (2.3)) would be obtained, which approximates f ∈ Lp[a, b].

One could construct a sequence of molli�ers starting from a single func-
tion ρ ∈ C∞c (R), such that supp ρ ⊂ [−1, 1], and ρ ≥ 0 on R. For instance,
choosing

ρ(x) :=

{
e1/(|x|

2−1), |x| < 1,
0, |x| ≥ 1,

(2.4)

we obtain a sequence of molli�ers setting

ρn(x) := C nρ(nx), x ∈ R, (2.5)

where C := (
∫
R ρ(x) dx)−1, [26, 97]. In this case, the approximating sums

take on the form

GN (ρn ∗ f̃)(x) =

N∑
k=1

αk σ(w(x− xk)) + α0 σ(w(x− x−1)), x ∈ [a, b],

where N ∈ N+, w > 0, xk = a+ kh, k = −1, 0, 1, ..., N , for h = (b− a)/N ,
f̃ de�ned in (2.2) and then the coe�cients are

αk =

∫ b

a
[ρn(xk − y) − ρn(xk−1 − y)] f(y) dy,

for k = 1, ..., N , while α0 =
∫ b
a ρn(a− y) f(y) dy, for n su�ciently large.

2.3 Simultaneous approximation of functions and

their derivatives

The theory presented in Section 2.1, allows to approximate any given func-
tion f ∈ C0[a, b] by means of functions like GNf , de�ned in (2.1) and hence,
if f is su�ciently smooth, say, e.g., f ∈ Ĉ1[a, b], then its derivative, f ′, could
also be approximated by means of GNf

′. In particular, we can choose the
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same number N ∈ N+ to construct simultaneous approximations of f and
f ′, using GNf and GNf

′. In this way, we can also choose the same value for
w > 0. However, 2(N + 1) coe�cients, namely the values f(xk) and f

′(xk)
for k = 0, 1, ..., N , will be needed, in this case.

Similarly, we could construct simultaneous approximations to f , f ′, ...,
f (n), by means of approximants like GNf,GNf

′, ..., GNf
(n), respectively, for

every given f ∈ Ĉn[a, b], requiring (n+ 1)(N + 1) coe�cients.
In view of a number of applications, it could be useful to be able to

approximate f along with some of its derivatives, by superposing sigmoidal
functions but using only the N + 1 coe�cients entering the approximation
formula for f .

Remark 2.5. Let f ∈ Ĉ1[a, b] be �xed and σ ∈ C1(R) be a bounded
sigmoidal function. Moreover, let ε > 0 such that ‖GNf − f‖∞ < ε, for
suitable values N and w > 0. Consider (GNf)′, the �rst derivative of GNf ,
which is of the form

(GNf)′(x) =
N∑
k=1

w [f(xk)− f(xk−1)] σ
′(w(x−xk))+w f(x0)σ

′(w(x−x−1)),

(2.6)
for x ∈ [a, b]. First of all, note that, in general, (GNf)′ is not a sum of
sigmoidal functions, but its coe�cients, which are the same appearing in
the sum GNf , multiplied by the scaling term w > 0, are known. Besides,
σ′(w(x−xk)), k = −1, 1, ..., N , are also known. Hence, f ′ could be uniformly
approximated by (GNf)′, but in general the condition ‖(GNf)′ − f ′‖∞ < ε
will not be ful�lled. A similar problem would arise if we try to approximate
f ′ by a sum of sigmoidal functions like GM [(GNf)′].

Consider for instance f(x) = x on [0, 1] and σ`(x) = (1 + e−x)−1. Then,
f ′(x) = 1 and σ′`(x) = e−x/(1+e−x)2, while the sum GNf takes on the form

(GNf)(x) = h
N∑
k=1

σ`(w0(x− xk)), x ∈ [0, 1],

where h = 1/N and xk = k/N , k = 1, ..., N . Assume that ‖GNf − f‖∞ < ε
for ε > 0, N ∈ N+, and a �xed value of w0 > 0, depending on N . As noted
in Section 2.1, we also have ‖GNf − f‖∞ < ε if we replace w0 in GNf with
w ≥ w0. Moreover, consider

(GNf)′(x) = w h
N∑
k=1

σ′`(w(x− xk)), x ∈ [0, 1].

Let now x ∈ [0, 1] be �xed. Then,

(GNf)′(x) = w h

N∑
k=1

σ′`(w(x− xk)) =: wC,
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where C = C(w) is such that 0 < C ≤ 1 for every w > 0. Since limw→+∞(wC−
1) = +∞, a condition like∣∣(GNf)′(x)− f ′(x)

∣∣ = |wC − 1| < ε

cannot be satis�ed, in general, if w > 0 is su�ciently large.

We now introduce some notation. For any �xed f ∈ C[a, b], and for any
given uniform partition {x0, x1, ..., xN} of the interval [a, b], with x0 = a,
xN = b and h = xk − xk−1, k = 1, ..., N , we de�ne

∆j
kf :=

1

hj

j∑
ν=0

(
j

ν

)
(−1)νf(xk+j−ν), (2.7)

for j ∈ N, j ≤ N , and k = 0, 1, ..., N − j. We can establish the following

Theorem 2.6. (Simultaneous approximation of f and its derivatives). Let
σ be a bounded sigmoidal function and let f ∈ Ĉn+1[a, b], n ∈ N+, be �xed.

For every ε > 0, there exist N ∈ N+ and w > 0 (depending on N and σ),
such that, for every j = 1, ..., n, de�ning

(GjNf)(x) :=

N−j∑
k=1

(
∆j
kf −∆j

k−1f
)
σ(w(x−xk))+∆j

0f σ(w(x−x−1)), (2.8)

for x ∈ [a, b], h := (b− a)/N and xk := a+ kh, k = −1, 0, 1, ..., N , it turns

out that ∥∥∥GjNf − f (j)∥∥∥∞ < ε.

Proof. Let j = 1, ..., n and ε > 0 be �xed. Since f (j) ∈ Ĉ1[a, b] is uniformly
continuous, correspondingly to

η :=
(

4Cj ‖σ‖∞ + 2 ‖σ‖∞ + 3Cj +
∥∥∥f (j)∥∥∥

∞
+ 2
)−1

ε,

where Cj = Cj(f
(j+1), a, b) is a �xed constant that will be determined later,

there exists δ > 0 such that, for every x, y ∈ [a, b] with |x− y| < δ, we have∣∣f (j)(x)− f (j)(y)
∣∣ < η. We choose N ∈ N+, N > j + 3 su�ciently large

so that h := (b − a)/N < δ/max {2, j} and 1/N < η. Moreover, we �x
w ≥ w(1/N, h) ≡ w(1/N) > 0, where w(1/N) is obtained using Lemma 2.1
with 1/N , h > 0 and with the points xk = a+ hk, k = −1, 0, 1, ..., N . Now
consider the sum GjNf de�ned in (2.8) with w, and let x ∈ [a, b] be �xed.
Then, there exists i = 1, ..., N such that x ∈ [xi−1, xi]. Set

Li(x) := ∆j
0f +

(
∆j

2f −∆j
1f
)
σ(w(x− x2)) +

(
∆j

1f −∆j
0f
)
σ(w(x− x1))
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for i = 1, 2,

Li(x) :=
i−2∑
k=1

(
∆j
kf −∆j

k−1f
)

+ ∆j
0f +

(
∆j
i−1f −∆j

i−2f
)
σ(w(x− xi−1))

+
(

∆j
if −∆j

i−1f
)
σ(w(x− xi)),

for i = 3, ..., N − j,

Li(x) :=

N−j−1∑
k=1

(
∆j
kf −∆j

k−1f
)

+∆j
0f+

(
∆j
N−jf −∆j

N−j−1f
)
σ(w(x−xN−j))

for i = N − j + 1, and

Li(x) :=

N−j∑
k=1

(
∆j
kf −∆j

k−1f
)

+ ∆j
0f,

for i = N − j + 2, ..., N . We now write∣∣∣(GjNf)(x)− f (j)(x)
∣∣∣ ≤ ∣∣∣(GjNf)(x)− Li(x)

∣∣∣+
∣∣∣Li(x)− f (j)(x)

∣∣∣ =: J1 + J2

and start estimating J1. We con�ne only to i = 3, ..., N − j, since similar
estimates can be obtained in the same way in all the other cases.

Being x − xk ≥ h for k = −1, 0, 1, ..., i − 2 and x − xk ≤ −h for k =
i+ 1, ..., N − j, it follows by conditions 1 and 2 of Lemma 2.1 that

J1 ≤
i−2∑
k=1

∣∣∣∆j
kf −∆j

k−1f
∣∣∣ |σ(w(x− xk))− 1|+

∣∣∣∆j
0f
∣∣∣ |σ(w(x− x−1))− 1|

+

N−j∑
k=i+1

∣∣∣∆j
kf −∆j

k−1f
∣∣∣ |σ(w(x− xk))|

<
1

N

N−j∑
k=1

∣∣∣∆j
kf −∆j

k−1f
∣∣∣+

1

N

∣∣∣∆j
0f
∣∣∣

≤ 1

N

N−j∑
k=1

∣∣∣∆j
kf − f

(j)(xk)
∣∣∣+

1

N

N−j∑
k=1

∣∣∣f (j)(xk)− f (j)(xk−1)∣∣∣
+

1

N

N−j∑
k=1

∣∣∣f (j)(xk−1)−∆j
k−1f

∣∣∣+
1

N

∣∣∣∆j
0f − f

(j)(x0)
∣∣∣+

1

N

∣∣∣f (j)(x0)∣∣∣ .
We now observe that, for every k = 0, 1, ..., N − j, the terms ∆j

kf provide
an approximation to f (j)(xk), obtained by forward �nite di�erences. It is
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well known that there exists a positive constant, C̃j > 0, depending only on
f (j+1), such that∣∣∣∆j

kf − f
(j)(xk)

∣∣∣ ≤ C̃j h = C̃j
(b− a)

N
=:

Cj
N
, (2.9)

for every k = 0, 1, ..., N − j, where Cj = Cj(f
(j+1), a, b). Then, using (2.9),

the uniform continuity of f (j), and the previous inequality for J1, we obtain

J1 ≤ 2

N−j+1∑
k=1

Cj
N2

+
1

N

N−j∑
k=1

η +
1

N

∥∥∥f (j)∥∥∥
∞
< 2Cj η + η +

∥∥∥f (j)∥∥∥
∞
η.

Finally, we estimate J2, separately in four cases, resorting to the same argu-
ments followed to establish the previous inequalities.

Case 1: i = 1, 2. Being |x0 − x| ≤ 2h ≤ max {2, j} h < δ, we have

J2 ≤
(∣∣∣∆j

2f − f
(j)(x2)

∣∣∣+
∣∣∣f (j)(x2)− f (j)(x1)∣∣∣+

∣∣∣f (j)(x1)−∆j
1f
∣∣∣) ‖σ‖∞

+
(∣∣∣∆j

1f − f
(j)(x1)

∣∣∣+
∣∣∣f (j)(x1)− f (j)(x0)∣∣∣+

∣∣∣f (j)(x0)−∆j
0f
∣∣∣) ‖σ‖∞

+
∣∣∣∆j

0f − f
(j)(x0)

∣∣∣+
∣∣∣f (j)(x0)− f (j)(x)

∣∣∣
≤ (4Cjη + 2η) ‖σ‖∞ + Cj η + η.

Case 2: i = 3, ..., N − j. We obtain, as above,

J2 < (4Cjη + 2η) ‖σ‖∞ + Cjη + η.

Case 3: i = N − j + 1.

J2 ≤
(∣∣∣∆j

N−jf − f
(j)(xN−j)

∣∣∣+
∣∣∣f (j)(xN−j)− f (j)(xN−j−1)∣∣∣

+
∣∣∣f (j)(xN−j−1)−∆j

N−j−1f
∣∣∣) ‖σ‖∞ +

∣∣∣∆j
N−j−1f − f

(j)(xN−j−1)
∣∣∣

+
∣∣∣f (j)(xN−j−1)− f (j)(x)

∣∣∣ < (2Cjη + η) ‖σ‖∞ + Cjη + η.

Case 4: i = N − j + 2, ..., N − j.

J2 ≤
∣∣∣∆j

N−jf − f
(j)(xN−j)

∣∣∣+
∣∣∣f (j)(xN−j)− f (j)(x)

∣∣∣ ≤ Cjη + η,

since |xN−j − x| ≤ j h ≤ max {2, j} h < δ. Thus,∣∣∣(GjNf)(x)− f (j)(x)
∣∣∣ ≤ J1 + J2 < 2Cjη + η +

∥∥∥f (j)∥∥∥
∞
η + Cjη + η

+ (4Cjη + 2η) ‖σ‖∞ =
(

4Cj ‖σ‖∞ + 2 ‖σ‖∞ + 3Cj +
∥∥∥f (j)∥∥∥

∞
+ 2
)
η = ε.
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In particular, we have
∣∣∣(GjNf)(x)− f (j)(x)

∣∣∣ < ε for every x ∈ [a, b], hence∥∥∥GjNf − f (j)∥∥∥∞ < ε. This completes the proof.

For example, if we want to approximate f ′, being f ∈ Ĉ2[a, b], by a
superposition of sigmoidal functions, with the same coe�cients used for ap-
proximating f , we can consider the sum G1

Nf , which takes on the form

(G1
Nf)(x) =

N−1∑
k=1

f(xk+1)− 2f(xk) + f(xk−1)

h
σ(w(x− xk))

+
f(x1)− f(x0)

h
σ(w(x− x−1)), x ∈ R.

At this point, we want to estimate the error made approximating a given
function as well as its derivatives, by a superposition of sigmoidal functions.

For results concerning the order of approximation by sigmoidal functions
approximation see Subsection 1.3.5 (see also [112, 42, 38, 40]). There, it was
proved that the error made approximating f by linear combinations of N
sigmoidal functions is of order O(1/N) (for N su�ciently large). Here we can
prove that the same order of approximation can be established approximating
the jth derivative of f with sums of the form GjNf , for every j. In fact,

Theorem 2.7. Let σ be a bounded sigmoidal function, and let f ∈ Ĉn+1[a, b],
n ∈ N+, and j = 1, ..., n be �xed. For every N ∈ N+, N > j+ 3, there exists
w > 0 (depending on N and σ), such that, for every w ≥ w and GjNf de�ned

in (2.8) with w, we obtain∥∥∥GjNf − f (j)∥∥∥∞ <
1

N
[Lj(b− a) (2 ‖σ‖∞ + 1 + max {2, j})

+ C̃j(b− a) (4 ‖σ‖∞ + 3) +
∥∥∥f (j)∥∥∥

∞

]
,

where C̃j > 0 is a constant, depending only on f (j+1), and Lj > 0 is the

Lipschitz constant of f (j).

Proof. Let j = 1, ..., n and N ∈ N+, N > j+ 3, be �xed. Set h := (b− a)/N
and xk := a + hk, for k = −1, 0, 1, ..., N . Moreover, let w = w(1/N, h) =
w(1/N) > 0 obtained using Lemma 2.1 with 1/N , h > 0 and with the points
xk = a + hk, k = −1, 0, 1, ..., N . Consider now GjNf de�ned in (2.8) for
w ≥ w, and let x ∈ [a, b] be �xed. Then, there exists i = 1, ..., N such that
x ∈ [xi−1, xi]. We set, as in Theorem 2.6,

Li(x) := ∆j
0f +

(
∆j

2f −∆j
1f
)
σ(w(x− x2)) +

(
∆j

1f −∆j
0f
)
σ(w(x− x1))
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for i = 1, 2,

Li(x) :=

i−2∑
k=1

(
∆j
kf −∆j

k−1f
)

+ ∆j
0f +

(
∆j
i−1f −∆j

i−2f
)
σ(w(x− xi−1))

+
(

∆j
if −∆j

i−1f
)
σ(w(x− xi))

for i = 3, ..., N − j,

Li(x) :=

N−j−1∑
k=1

(
∆j
kf −∆j

k−1f
)

+∆j
0f+

(
∆j
N−jf −∆j

N−j−1f
)
σ(w(x−xN−j))

for i = N − j + 1, and

Li(x) :=

N−j∑
k=1

(
∆j
kf −∆j

k−1f
)

+ ∆j
0f

for i = N − j + 2, ..., N . We then write∣∣∣(GjNf)(x)− f (j)(x)
∣∣∣ ≤ ∣∣∣(GjNf)(x)− Li(x)

∣∣∣+
∣∣∣Li(x)− f (j)(x)

∣∣∣ =: J1 + J2

and estimate J1 (only for i = 3, ..., N − j, the other cases being similar),
using the same arguments as in deriving the estimates in Theorem 2.6. We
obtain

J1 <
1

N

N−j∑
k=1

∣∣∣∆j
kf − f

(j)(xk)
∣∣∣+

1

N

N−j∑
k=1

∣∣∣f (j)(xk)− f (j)(xk−1)∣∣∣
+

1

N

N−j∑
k=1

∣∣∣f (j)(xk−1)−∆j
k−1f

∣∣∣+
1

N

∣∣∣∆j
0f − f

(j)(x0)
∣∣∣+

1

N

∣∣∣f (j)(x0)∣∣∣ .
By inequality (2.9) and being f (j) ∈ Ĉ1[a, b] Lipschitz continuous, if Lj > 0
is the Lipschitz constant of f (j), we have

J1 <
1

N

(
2C̃j(b− a) + Lj(b− a) +

∥∥∥f (j)∥∥∥
∞

)
,

where C̃j = C̃j(f
(j+1)) > 0. We now estimate J2 in the four di�erent cases.

Case 1: i = 1, 2.

J2 ≤
(∣∣∣∆j

2f − f
(j)(x2)

∣∣∣+
∣∣∣f (j)(x2)− f (j)(x1)∣∣∣+

∣∣∣f (j)(x1)−∆j
1f
∣∣∣) ‖σ‖∞

+
(∣∣∣∆j

1f − f
(j)(x1)

∣∣∣+
∣∣∣f (j)(x1)− f (j)(x0)∣∣∣+

∣∣∣f (j)(x0)−∆j
0f
∣∣∣) ‖σ‖∞

+
∣∣∣∆j

0f − f
(j)(x0)

∣∣∣+
∣∣∣f (j)(x0)− f (j)(x)

∣∣∣
≤

(
4
C̃j(b− a)

N
+ 2Lj

(b− a)

N

)
‖σ‖∞ +

C̃j(b− a)

N
+ 2Lj

(b− a)

N
.
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Case 2: i = 3, ..., N − j. Proceeding as above,

J2 ≤

(
4
C̃j(b− a)

N
+ 2Lj

(b− a)

N

)
‖σ‖∞ +

C̃j(b− a)

N
+ 2Lj

(b− a)

N
.

Case 3: i = N − j + 1. Similarly,

J2 ≤

(
2
C̃j(b− a)

N
+ Lj

(b− a)

N

)
‖σ‖∞ +

C̃j(b− a)

N
+ 2Lj

(b− a)

N
.

Case 4: i = N − j + 2, ..., N − j.

J2 ≤
∣∣∣∆j

N−jf − f
(j)(xN−j)

∣∣∣+
∣∣∣f (j)(xN−j)− f (j)(x)

∣∣∣ ≤ C̃j(b− a)

N

+ Lj |xN−j − x| ≤
C̃j(b− a)

N
+ j Lj

(b− a)

N
.

Then,∣∣∣(GjNf)(x)− f (j)(x)
∣∣∣ ≤ J1 + J2 <

1

N
[Lj(b− a) (2 ‖σ‖∞ + 1 + max {2, j})

+ C̃j(b− a) (4 ‖σ‖∞ + 3) +
∥∥∥f (j)∥∥∥

∞

]
.

In particular, the estimates above holds for every x ∈ [a, b]. Therefore,∥∥∥GjNf − f (j)∥∥∥∞ <
1

N
[Lj(b− a) (2 ‖σ‖∞ + 1 + max {2, j})

+ C̃j(b− a) (4 ‖σ‖∞ + 3) +
∥∥∥f (j)∥∥∥

∞

]
.

2.4 Constructive multivariate approximation

In this section, we propose a multivariate extension of the constructive theory
developed in Sections 2.1 and 2.2. For simplicity, the proofs will be given
only for functions of two variables, but their extension to higher dimensions
is straightforward.

We �rst establish the following lemma, obtained as an easy consequence
of De�nition 1.1. This represents a generalization of Lemma 2.1.

Lemma 2.8. Let (x0, y0), (x1, y1), ..., (xN , yN ) ∈ R2, for some �xed N ∈ N+.

For every ε and h > 0, there exists w := w(ε, h) > 0 such that, for every

w ≥ w and k = 0, 1, ..., N , we have
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1. |σ(w ‖(x, y)− (xk, yk)‖2)− 1| < ε;

2. |σ(−w ‖(x, y)− (xk, yk)‖2)| < ε,

for every (x, y) ∈ R2 such that ‖(x, y)− (xk, yk)‖2 ≥ h.

Note that here the function σ(‖(x, y)‖2) is actually a radial basis function
(RBF). We can now prove the following theorem, where we stress that no
continuity assumption on σ is made.

Theorem 2.9. Let σ be a bounded sigmoidal function, and let f ∈ C0(Q),
where Q := [a, b]× [c, d] ⊂ R2 with b− a = d− c = l �xed. For every ε > 0,
there exist N ∈ N+ and w > 0 (depending on N and σ), such that, if

(G̃Nf)(x, y)

:=

N∑
i=1

N∑
j=1

[f(xi, yj)− f(xi, yj−1)] σ
(
wχij(x, y)

∥∥(x, y)− (txi , tyj )
∥∥
2

)

+

N∑
i=1

f(xi, y0)σ
(
wχi0(x, y) ‖(x, y)− (txi , ty0)‖2

)
, (2.10)

where (x, y) ∈ Q, h := l/N , xi := a + h i, yj := c + h j, for i, j =
−1, 0, 1, ..., N and txi := (xi−1 + xi)/2, tyj := (yj−1 + yj)/2 for i, j =
0, 1, ..., N , and moreover

χij(x, y) :=

{
+1, if x ∈ (xi−1, xi] and y ≥ yj ,
−1, otherwise.

for i = 2, ..., N and j = 0, ..., N , while

χ1j(x, y) :=

{
+1, if x ∈ [x0, x1] and y ≥ yj ,
−1, otherwise.

for j = 0, ..., N , then ∥∥∥G̃Nf − f∥∥∥
∞
< ε.

Proof. Let ε > 0 be �xed. Since f is uniformly continuous, correspondingly
to η := ε/(‖f‖∞+‖σ‖∞+2), there exists δ > 0 such that |f(x, y)− f(z, t)| <
η for every (x, y), (z, t) ∈ Q with ‖(x, y)− (z, t)‖2 < δ. Now, choose
N ∈ N+ such that h := l/N < δ/

√
2 and 1/N < η. Moreover, �x w ≥

w(1/N2, h/2) = w(1/N2) > 0, where w(1/N2) is obtained from Lemma 2.8
with 1/N2, h/2 > 0 and with the points (txi , tyj ), i, j = 0, 1, ..., N . Consider

G̃Nf de�ned in (2.10) for w, and let (x, y) ∈ Q be �xed. Thus, there exist
k, µ = 1, ..., N , such that (x, y) ∈ (xk−1, xk] × [yµ−1, yµ] provided k ≥ 2 or
(x, y) ∈ [x0, x1]× [yµ−1, yµ] otherwise. Set

Lkµ(x, y) := f(xk, y0)
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+ [f(xk, y1)− f(xk, y0)] σ(wχkµ(x, y) ‖(x, y)− (txk , ty1)‖2),

if µ = 1, and

Lkµ(x, y) :=

µ−1∑
j=1

[f(xk, yj)− f(xk, yj−1)] + f(xk, y0)

+ [f(xk, yµ)− f(xk, yµ−1)] σ(wχkµ(x, y)
∥∥(x, y)− (txk , tyµ)

∥∥
2
),

if µ ≥ 2. In both cases, let write∣∣∣(G̃Nf)(x, y)− f(x, y)
∣∣∣ ≤ ∣∣∣(G̃Nf)(x, y)− Lkµ(x, y)

∣∣∣
+ |Lkµ(x, y)− f(x, y)| =: H1 +H2.

We �rst estimate H1 when µ ≥ 2, obtaining

H1 ≤
N∑
i=1
i 6=k

N∑
j=1

|f(xi, yj)− f(xi, yj−1)|
∣∣σ(wχij(x, y)

∥∥(x, y)− (txi , tyj )
∥∥
2
)
∣∣

+
N∑
i=1
i 6=k

|f(xi, y0)|
∣∣σ(wχi0(x, y) ‖(x, y)− (txi , ty0)‖2)

∣∣
+

µ−1∑
j=1

|f(xk, yj)− f(xk, yj−1)|
∣∣σ(wχkj(x, y)

∥∥(x, y)− (txk , tyj )
∥∥
2
)− 1

∣∣
+

N∑
j=µ+1

|f(xk, yj)− f(xk, yj−1)|
∣∣σ(wχkj(x, y)

∥∥(x, y)− (txk , tyj )
∥∥
2
)
∣∣

+ |f(xk, y0)|
∣∣σ(wχk0(x, y) ‖(x, y)− (txk , ty0)‖2)− 1

∣∣ .
Being ‖(xi, yj)− (xi, yj−1)‖2 < δ for every i, j = 1, ..., N ,

∥∥(x, y)− (txi , tyj )
∥∥
2
≥

h/2 for every (txi , tyj ) 6= (txk , tyµ), by conditions 1 and 2 of Lemma 2.8 and
the de�nition of χij , we obtain

H1 <
1

N2

N∑
i=1
i 6=k

N∑
j=1

η +
1

N2

N∑
i=1
i 6=k

‖f‖∞ +
1

N2

µ−1∑
j=1

η +
1

N2

N∑
j=µ+1

η

+
1

N2
‖f‖∞ ≤ η +

1

N
‖f‖∞ < (1 + ‖f‖∞) η.

Note that the same estimate for H1 also holds if µ = 1. Finally, if we note
that

µ−1∑
j=1

[f(xk, yj)− f(xk, yj−1)] + f(xk, y0) = f(xk, yµ−1)
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and that ‖(x, y)− (xk, yµ−1)‖2 ≤
√

2h < δ, we obtain

H2 < |f(xk, yµ−1)− f(x, y)|+ η ‖σ‖∞ = (‖σ‖∞ + 1) η, (2.11)

((2.11) holds also in case µ = 1). We conclude that∣∣∣(G̃Nf)(x, y)− f(x, y)
∣∣∣ ≤ H1 +H2 < (‖σ‖∞ + ‖f‖∞ + 2) η = ε,

and since (x, y) ∈ Q is arbitrary, it follows that
∥∥∥G̃Nf − f∥∥∥

∞
< ε.

Remark 2.10. We remark that the results obtained in Theorem 2.9 di�er
substantially from those established by G. Cybenko in [63] and by B. Lenze in
[94]. In particular, others than Cybenko's theory, ours is constructive, while
Lenze considered a di�erent argument of the sigmoidal functions, aiming at
describing some special kind of neural networks. Our results lead to RBF

neural networks [120, 115, 122, 116, 98, 99] (see (G̃Nf)(x, y) in (2.10)), and
reduce, essentially, to the one-dimensional case of Section 2.1 (where the
nodes xk should be replaced by the midpoints of the kth subinterval, as
chosen in [48]).

Remark 2.11. Note that, the functions χij in the arguments of the functions
σ allow us to update the values of the weights of networks, on the basis of
the input values received. This fact is quite natural since, as discussed in
Chapter 1, neural networks should be able to learn from the experience, i.e.,
the weights must be chosen in base of the values that the network wants to
represent.

Remark 2.12. Theorem 2.9 holds true also when instead of G̃Nf , N ∈ N+,
we have sums of the form

(GNf)(x, y)

:=

N∑
j=1

N∑
i=1

[f(xi, yj)− f(xi−1, yj)] σ(w χ̃ij(x, y)
∥∥(x, y)− (txi , tyj )

∥∥
2
)

+

N∑
j=1

f(x0, yj)σ(w χ̃0j(x, y)
∥∥(x, y)− (tx0 , tyj )

∥∥
2
), (2.12)

where (x, y) ∈ Q := [a, b] × [c, d], h := l/N with l = b − a = d − c, xi :=
a + h i, yj := c + h j for i, j = −1, 0, 1, ..., N and txi := (xi−1 + xi)/2,
tyj := (yj−1 + yj)/2 for i, j = 0, 1, ..., N , and moreover

χ̃ij(x, y) :=

{
+1, for x ≥ xi and y ∈ (yj−1, yj ],
−1, otherwise.

for i = 0, ..., N and j = 2, ..., N , while

χ̃i1(x, y) :=

{
+1, for x ≥ xj and y ∈ [y0, y1],
−1, otherwise.
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for i = 0, ..., N , when f ∈ C(Q). The proof is similar to that of Theorem 2.9,
and again equation (2.12) contains RBF neural networks with sigmoidal
activation function.

By simple modi�cations in the proof of Theorem 2.9, the following esti-

mate for the approximation error, i.e., for
∥∥∥G̃Nf − f∥∥∥

∞
, can be obtained.

Theorem 2.13. Let σ be a bounded sigmoidal function, and f ∈ C0(Q) be

an Hölder-continuous function of order α, 0 < α ≤ 1 and Hölder constant

L > 0. Then, for every N ∈ N+, N > 2, there exists w > 0 (depending on

N and σ), such that for every w ≥ w, G̃Nf de�ned in (2.10) with w, is such
that∥∥∥G̃Nf − f∥∥∥

∞
<

1

Nα

[
L 2α/2+1 (b− a)α + 2α/2 (b− a)α ‖σ‖∞ + ‖f‖∞

]
.

Proof. Let N ∈ N+, N > 2, be �xed. Set h := (b − a)/N = (d − c)/N ,
xi := a+ h i, yj := c+ h j for i, j = −1, 0, 1, ..., N and txi := (xi−1 + xi)/2,
tyj := (yj−1 + yj)/2 for i, j = 0, 1, ..., N . Moreover, let w = w(1/N2, h/2) =
w(1/N2) > 0 obtained using Lemma 2.8 with 1/N2, h/2 > 0 and with the
points (txi , tyj ), i, j = 0, 1, ..., N . Consider G̃Nf de�ned in (2.10) for w ≥ w
and let (x, y) ∈ Q be �xed. Adopting the same notation and following the
same steps as in the proof of Theorem 2.9, we obtain∣∣∣(G̃Nf)(x, y)− f(x, y)

∣∣∣ ≤ ∣∣∣(G̃Nf)(x, y)− Lkµ(x, y)
∣∣∣

+ |Lkµ(x, y)− f(x, y)| =: H1 +H2.

Now, we can estimate H1 and H2 as in Theorem 2.9, obtaining

H1 <
1

N2

N∑
i=1

N∑
j=1

|f(xi, yj)− f(xi, yj−1)|+
1

N2

N∑
i=1

‖f‖∞

≤ L 2α/2
1

N2

N∑
i=1

N∑
j=1

(b− a)α

Nα
+

1

N
‖f‖∞

≤ L 2α/2
(b− a)α

Nα
+

1

N
‖f‖∞ .

Moreover,

H2 < L 2α/2
(b− a)α

Nα
+ 2α/2

(b− a)α

Nα
‖σ‖∞ .

Hence, ∣∣∣(G̃Nf)(x, y)− f(x, y)
∣∣∣ ≤ H1 +H2 < L 2α/2+1 (b− a)α

Nα

+ 2α/2
(b− a)α

Nα
‖σ‖∞ +

1

N
‖f‖∞

≤ 1

Nα

[
L 2α/2+1 |b− a|α + 2α/2 (b− a)α ‖σ‖∞ + ‖f‖∞

]
,
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and since (x, y) ∈ Q is arbitrary, it follows that∥∥∥G̃Nf − f∥∥∥
∞
<

1

Nα

[
L 2α/2+1 (b− a)α + 2α/2 (b− a)α ‖σ‖∞ + ‖f‖∞

]
.

Aiming at building a constructive theory also in Lp(Q), 1 ≤ p < ∞, we
prove the following theorem, which parallels that established in Section 2.2
for the univariate case.

Theorem 2.14. Let σ be a bounded sigmoidal function, and 1 ≤ p < ∞ be

�xed. For any f ∈ C0(Q), Q ⊂ R2, and ε > 0, there exist N ∈ N+ and

w > 0 (depending on N and σ), such that G̃Nf de�ned in (2.10) with w, is
such that ∥∥∥G̃Nf − f∥∥∥

Lp(Q)
< ε.

Proof. Let f ∈ C0(Q) and ε > 0 be �xed. By Theorem 2.9, correspondingly

to η := ε/ |Q|1/p (|Q| denoting the Lebesgue measure of Q), there exist N ∈
N+ and w > 0, depending on N , such that

∥∥∥G̃Nf − f∥∥∥
∞
< η. Therefore,

∥∥∥G̃Nf − f∥∥∥
Lp(Q)

=

(∫
Q

∣∣∣(G̃Nf)(x, y)− f(x, y)
∣∣∣p dxdy)1/p

<

(∫
Q
ηp dxdy

)1/p

= ε.

We are now able to prove an approximation theorem in Lp(Q).

Theorem 2.15. Let σ be a bounded sigmoidal function and let f ∈ Lp(Q),
1 ≤ p <∞, Q ⊂ R2 be �xed. Then, for every ε > 0, there exists N ∈ N+ and

G̃N , that is a linear combination of sigmoidal functions based on σ, having
the bivariate form introduced in Theorem 2.9, such that∥∥∥G̃N − f∥∥∥

Lp(Q)
< ε.

Proof. De�ne the function f̃ : R2 → R by

f̃(x, y) :=

{
f(x, y), for (x, y) ∈ Q,
0, otherwise.

(2.13)

Now, f̃ ∈ Lp(R) and f̃ = f on Q. Let {ρn}n∈N+ , ρn : R2 → R, be a sequence
of (bivariate) molli�ers (ρn enjoys the same properties listed in Theorem 2.4
for the univariate case). De�ne the family of functions {fn}n∈N by

fn(x, y) = (ρn ∗ f̃)(x, y) :=

∫
R2

ρn(x− z, y − t) f̃(z, t) dz dt,
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where (x, y) ∈ R2 and ∗ denotes, as usually, the convolution product. By
general properties of the sequences of molli�ers and of convolution [26], it
turns out that fn = ρn ∗ f̃ ∈ C(R2) for every n ∈ N+, and fn → f̃ in Lp(R2)
as n→∞. Let ε > 0 be �xed. Then, there exist n ∈ N such that

‖fn − f‖Lp(Q) =
∥∥∥fn − f̃∥∥∥

Lp(Q)
≤
∥∥∥fn − f̃∥∥∥

Lp(R2)
<
ε

2

for every n ≥ n. Let now n ≥ n be �xed. Since fn ∈ C(R2) ⊂ C(Q), it
follows that, as a consequence of Theorem 2.14, correspondingly to ε/2 there
exist N ∈ N+ and w > 0, depending on N , such that G̃Nfn de�ned in (2.10)
with w, is such that∥∥∥G̃Nfn − fn∥∥∥

Lp(Q)
=
∥∥∥G̃N (ρn ∗ f̃)− (ρn ∗ f̃)

∥∥∥
Lp(Q)

<
ε

2
.

Therefore, we obtain by the previous estimates∥∥∥G̃Nfn − f∥∥∥
Lp(Q)

≤
∥∥∥G̃Nfn − fn∥∥∥

Lp(Q)
+ ‖fn − f‖Lp(Q) <

ε

2
+
ε

2
= ε.

Setting G̃N (x, y) := (G̃Nfn)(x, y) completes the proof.

Examples of sequences of bivariate molli�ers (or, more generally, of mul-
tivariate molli�ers) are given in [26, 97], e.g. In particular, if we consider
ρ̃(x1, ..., xn) = ρ(‖(x1, ..., xn)‖2), n ∈ N+, the natural extension to the mul-
tivariate case of the function ρ de�ned in (2.4), we can build the sequence of
molli�ers ρ̃k(x1, ..., xn) := C kn ρ̃(kx1, ..., kxn), where

C :=

(∫
Rn
ρ̃(x1, ..., xn) dx1... dxn

)−1
.

2.5 Applications based on speci�c sigmoidal func-

tions

As a �rst example of sigmoidal function we can consider the logistic-function
σ`, which was already used in Remark 2.5 and in the previous chapter,
de�ned by σ`(x) := (1 + e−x)−1, x ∈ R. Using the logistic function above,
we can see that, if x0, x1, ..., xM ∈ R, M ∈ N+, for every N ∈ N+, N > 2,

and h > 0, there exists w :=
1

h
log(N − 1) > 0 such that, for every w > w

and k = 0, 1, ...,M , we have

1. |σ`(w(x− xk))− 1| < 1

N
, for every x ∈ R such that x− xk ≥ h;

2. |σ`(w(x− xk))| <
1

N
, for every x ∈ R such that x− xk ≤ −h.
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In fact, let N ∈ N+, N > 2, be �xed. Then, being 0 < σ`(x) < 1, for every
x ∈ R,

|σ`(x)− 1| = 1− 1

1 + e−x
<

1

N
for x > log(N − 1),

and

|σ`(x)| = 1

1 + e−x
<

1

N
for x < − log(N − 1).

Therefore, for every w > w := 1
h log(N − 1) and for every x ∈ R with

x − xk ≥ h, k = 0, ...,M , we have w(x − xk) > wh = log(N − 1), hence
|σ`(w(x− xk))− 1| < 1

N . Similarly, for every w > w and x ∈ R with
x− xk ≤ −h, we have |σ(w(x− xk))| < 1

N .
The previous inequalities provide an estimate for w > 0 in case of ap-

proximations made by �nite linear combination of sigmoidal functions based
on the logistic function. Consequently, by the above estimates, using Theo-
rem 2.2 and Theorem 2.6 we obtain the following.

Corollary 2.16. Let σ`(x) = (1 + e−x)−1 and f ∈ Ĉn+1[a, b], n ∈ N+, be

�xed. Denote by

(GNf)(x) :=
N∑
k=1

[f(xk)− f(xk−1)]σ` (w (x− xk)) + f(x0)σ` (w (x− x−1)) ,

and

(GjNf)(x) :=

N−j∑
k=1

(
∆j
kf −∆j

k−1f
)
σ` (w (x− xk)) + ∆j

0f σ` (w (x− x−1)) ,

x ∈ [a, b], N ∈ N+, j = 1, ..., n, with w > N
(b−a) log(N − 1), and xk =

a + k (b−a)
N , k = −1, 0, 1, ..., N . Then, for every ε > 0 there exists N ∈ N+,

N > n+ 3, such that

(i) ‖GNf − f‖∞ < ε;

(ii)
∥∥∥GjNf − f (j)∥∥∥∞ < ε, for every j = 1, ..., n,

for every w > N
(b−a) log(N − 1).

Note that, the above estimates for the scaling parameter w hold also for
the case of multivariate approximation with sigmoidal functions discussed in
Section 2.4.

Other interesting examples of sigmoidal functions are provided by the
Gompertz functions σαβ , de�ned by

σαβ(x) := e−α e
−βx

, x ∈ R,
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with α, β > 0. Note that, if x0, x1, ..., xM ∈ R, and M ∈ N+, for every
N ∈ N+, N > 2 and h > 0, there exists

w :=
1

hβ
max

{∣∣∣∣log

(
− 1

α
log

(
N − 1

N

))∣∣∣∣ , ∣∣∣∣log

(
1

α
log (N)

)∣∣∣∣}
such that, for every w > w and k = 0, 1, ...,M , we have

1. |σαβ(w(x− xk))− 1| < 1

N
, for every x ∈ R such that x− xk ≥ h,

2. |σαβ(w(x− xk))| <
1

N
, for every x ∈ R such that x− xk ≤ −h.

In fact, let N ∈ N+, N > 2 be �xed. Then, being 0 < σαβ(x) < 1 for every
x ∈ R, we have

|σαβ(x)− 1| = 1− e−α e−βx < 1

N
for x > − 1

β
log

(
− 1

α
log

(
N − 1

N

))
,

and

|σαβ(x)| = e−α e
−βx

<
1

N
for x < − 1

β
log

(
1

α
log (N)

)
.

Set

w :=
1

hβ
max

{∣∣∣∣log

(
− 1

α
log

(
N − 1

N

))∣∣∣∣ , ∣∣∣∣log

(
1

α
log (N)

)∣∣∣∣} .
For every w > w and for every x ∈ R such that x− xk ≥ h, k = 0, ...,M , we

have w(x−xk) > wh ≥
∣∣∣ 1β log

(
− 1
α log

(
N−1
N

))∣∣∣, then |σαβ(w(x− xk))− 1| <
1
N . Similarly, for every w > w and x ∈ R such that x − xk ≤ −h, we
have |σαβ(w(x− xk))| < 1

N . Consequently, by the above estimates, using
Theorem 2.2 and Theorem 2.6 we obtain the following

Corollary 2.17. Let σαβ(x) = e−α e
−βx

, α, β > 0, and f ∈ Ĉn+1[a, b],
n ∈ N+, be �xed. De�ne

(GNf)(x) :=

N∑
k=1

[f(xk)− f(xk−1)]σαβ(w(x− xk)) + f(x0)σαβ(w(x− x−1)),

and

(GjNf)(x) :=

N−j∑
k=1

(
∆j
kf −∆j

k−1f
)
σαβ(w(x− xk)) + ∆j

0f σαβ(w(x− x−1)),

where

w > w :=
N

(b− a)β
max

{∣∣∣∣log

(
− 1

α
log

(
N − 1

N

))∣∣∣∣ , ∣∣∣∣log

(
1

α
log (N)

)∣∣∣∣} ,
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x ∈ [a, b], N ∈ N+, j = 1, ..., n, δ > 0, and xk = a + k (b−a)
N , k =

−1, 0, 1, ..., N . Then, for every ε > 0 there exists N ∈ N+, N > n + 3,
such that

(i) ‖GNf − f‖∞ < ε;

(ii)
∥∥∥GjNf − f (j)∥∥∥∞ < ε, for every j = 1, ..., n,

for every w > w.

The estimates given in Corollary 2.17 for w, can be easily extended to
the multivariate case.

Another example of sigmoidal function, very useful in the theory of neural
networks, is the unit step function (or Heaviside function). In this case, all
the linear combination of unit step function of the form considered in this
chapter are independent of the choice of the parameter w > 0.

2.6 Some numerical examples

In this section, we give some examples to illustrate applications of approxi-
mations of functions by means of linear combination of sigmoidal functions.

Example 2.18. Consider the function

f(x) := (cos2 x+ 2) sinx+ 2x+
1

8
x2 + 4, x ∈ R. (2.14)

We �rst construct approximations of f on the interval [−5, 5], obtained
by the superposition of logistic sigmoidal functions σ` (Fig.s 2.1 and 2.2),
for N = 25 and N = 50 and by the Gompertz function σαβ with α = 8 and
β = 0.5 (Fig. 2.3), for N = 50. The choice of the parameter w > 0 was done
according to Corollaries 2.16 and 2.17, i.e., w = N2/(b − a) in the case of
σ(x) = (1 + e−x)−1, and w = N2/((b − a)αβ), in case of σαβ(x) (α = 8,
β = 0.5).

Note that the choice of a speci�c sigmoidal function, σ, a�ects the quality
of the approximation, which turns out to be better in case of σ`(x) = (1 +
e−x)−1. In addition, we have

f ′(x) :=
(
cos2 x+ 2

)
cosx− 2 sin2 x cosx+

1

4
x+ 2 x ∈ R,

and, as a consequence of Theorem 2.6, we can also approximate f ′ on the
interval [−5, 5] by means of the functions G1

Nf , N ∈ N+. The graphs of
f ′ and its approximation obtained for N = 25 with logistic functions, w =
N2/(b− a), are plotted in Fig. 2.4.

Note that the approximation obtained for f ′ is better compared to those
for f , according to the results concerning the size of the approximation errors
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Figure 2.1: Approximation of f (black) of Example 2.18 by GNf (grey), N = 25,
de�ned by σ` and with w = N2/(b− a). Here ‖GNf − f‖∞/‖f‖∞ ≈ 1.08× 10−1.

Figure 2.2: Approximation of f (black) of Example 2.18 by GNf (grey), N = 50,
de�ned by σ` and with w = N2/(b− a). Here ‖GNf − f‖∞/‖f‖∞ ≈ 5.88× 10−2.

Figure 2.3: Approximation of f (black) of Example 2.18 by GNf (grey), N = 50,
de�ned by σαβ , α = 8, β = 0.5 and with w = N2/((b − a)αβ). Here ‖GNf −
f‖∞/‖f‖∞ ≈ 7.27× 10−2.
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Figure 2.4: Approximation of f ′ (black) by G1
Nf (grey) of Example 2.18, N = 25

with σ` and with w = N2/(b− a). Here ‖G1
Nf − f ′‖∞/‖f ′‖∞ ≈ 9.40× 10−2.

in Theorem 2.7. In fact, this states that such an error depends on the sup-
norm (on the �xed interval [a, b]) of the function being approximated, and
here ‖f‖∞ ≈ 15.13, while ‖f ′‖∞ ≈ 5.

Now, we show an application of the constructive theory developed in
Section 2.2 for Lp-functions.

Example 2.19. Let g ∈ L1(R) be de�ned by

g(x) :=



4

x2 − 2
, x < −2

−3, −2 ≤ x < 0

5

2
, 0 ≤ x < 2

3x+ 2

x3 − 1
, x ≥ 2.

(2.15)

We consider approximations of g on the interval [−5, 5] by �nite linear
combinations of sigmoidal functions of the form GN (ρn ∗ g̃), where ρn are
the molli�ers de�ned in (2.5), and g̃ is the extension of g de�ned by

g̃(x) :=

{
g(x), −5 ≤ x < 5,
0, otherwise.

In Fig.s 2.5 and 2.6 such approximations, obtained with GN (ρn ∗ g̃) for
n = 10 and, respectively, N = 50 and N = 100, using logistic functions with
w = N2/(b− a), are shown. In Fig. 2.7, the approximation obtained by the
Gompertz function σαβ(x), with α = 8, β = 0.5, n = 10, N = 100 and with
w = N2/((b− a)αβ), is shown.

We can observe that the approximation improves as N increases, as one
would expect. In addition, the error made approximating g with the same
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Figure 2.5: Approximation of the function g (black) of Example 2.19, by GN (ρn∗g̃)
(grey), n = 10, N = 50, w = N2/(b− a), and σ`.

Figure 2.6: Approximation of the function g (black) of Example 2.19 by GN (ρn∗ g̃)
(grey), n = 10, N = 100, w = N2/(b− a), and σ`.

Figure 2.7: Approximation of the function g (black) of Example 2.19 by GN (ρn∗ g̃)
(grey), n = 10, N = 100, σαβ , α = 8, β = 0.5 and w = N2/((b− a)αβ).
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values of N is larger than that made in the cases of regular functions, as
were f and f ′ in the previous example.

Finally, here is an example of multivariate approximation.

Example 2.20. Consider the function of two variables, h : [−4, 4]×[−4, 4]→
R (see Fig. 2.8), de�ned as

h(x, y) :=
(
y4 − 2y

)
sinx− xy3 +

x

3
+

1

x16/30 + e−3|y|/50 + 1/100
.

Figure 2.8: Graph of the bivariate function h of Example 2.20.

Fig.s 2.9 and 2.10 was obtained using the functions G̃Nh de�ned in (2.10)
for N = 25 and N = 50, respectively, where σ` is the logistic function.
Similar approximations can be obtained using sums GNh like those in (2.12).
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Figure 2.9: Approximation for the function h in Example 2.20 by G̃Nh, forN = 25,
w = N2/8 and σ`.

Figure 2.10: Approximation for the function h in Example 2.20 by G̃Nh, for
N = 50, w = N2/8, σ`.
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Chapter 3

Applications to the Numerical

Solution of Volterra Integral

Equations of the Second Kind

In this chapter, a numerical collocation method is developed for solving linear
and nonlinear Volterra integral equations of the second kind. The method
is based on the approximation of the (exact) solution by superposition of
sigmoidal functions and allows us to solve a large class of integral equations
having either continuous or Lp solutions. Special computational advantages
are obtained using unit step functions, and analytical approximations of the
solutions are also at hand. The numerical errors are discussed, and a priori

as well as a posteriori estimates are derived for them. Numerical examples
are given for the purpose of illustration.

The readers, can be found the present theory in [57].

We recall that, a collocation solution to a Volterra integral equation on
an interval [a, b], is an element from some �nite-dimensional function space
(the collocation space), which satis�es the equation on an appropriate �nite
subset of points in [a, b]. The latter is the set of collocation points, whose
cardinality matches the dimension of the collocation spaces.

We will study linear as well as nonlinear Volterra integral equations of
the second kind, of the form

y(t) = f(t) +

∫ t

a
K(t, s) y(t) ds, t ∈ [a, b],

and

y(t) = f(t) +

∫ t

a
K(t, s; y(s)) ds, t ∈ [a, b],

where f : [a, b] → R and the kernels K are su�ciently smooth. Collocation
methods have been widely used to solve integral equations like those above.

60



The most popular of these methods are based on piecewise polynomial collo-
cation spaces (see [14, 117, 27], e.g.). Other methods are based on wavelets
or on Bernstein polynomials approximation (see [135, 107], e.g.).

A neural network approach for solving numerically integral equations of
the Fredholm type and di�erential equations was used in [106, 37].

Here, the choice of the collocation spaces generated by the unit step
functions, allows us to solve a large class of integral equations, having either
continuous or Lp solutions, with some computational advantages. In fact,
in case of linear equation, the method reduces merely to solve a linear lower
triangular algebraic system. In the nonlinear case, the method instead leads
to a nonlinear system, that can be always solved explicitly by means of a
direct formula, without using any iteration (such as, e.g., Newton's meth-
ods). In both cases, an analytical form for the approximate solutions can be
obtained and the numerical algorithm is very fast.

Moreover, for linear equations with a convolution kernel, K(t, s) ≡ K(t−
s), we can show that the square matrices of the related linear algebraic
system, turn out to be lower triangular Toeplitz matrices.

For the sake of completeness, we recall that a matrix A is said to be a
Toeplitz matrix if its entries are constants along all the principal diagonals.

Furthermore, under suitable conditions on K, some estimates for the
condition number of such a matrices in the in�nity norm, can also be derived.

3.1 Preliminary remarks

Before introducing our collocation method for solving second kind Volterra
integral equations, we point out some preliminary observations concerning
the approximation results showed in the previous chapter, that will be useful
in this chapter.

Remark 3.1. The form of the coe�cients in (2.1) of Theorem 2.2 is inde-
pendent of the choice of the sigmoidal function σ. Therefore, one can provide
various approximations of f using di�erent sigmoidal functions, keeping the
same coe�cients. The scaling parameter w > 0 in (2.1) depends on N and
σ.

Now we consider the special case of unit step (or Heaviside) functions,
H(t) := 1 for t ≥ 0, and H(t) := 0 for t < 0. In this case, the results estab-
lished in Theorem 2.2 and in Theorem 2.4 hold true. In case of Theorem 2.2,
sums of the form (2.1) reduce to

(GNf)(t) :=
N∑
k=1

[f(tk)− f(tk−1)]H(t− tk) + f(t0)H(t− t−1), (3.1)

t ∈ R, where f ∈ C0[a, b], h := (b−a)/N , and tk := a+hk, k = −1, 0, 1, ..., N .
Note that in (3.1) GNf is independent of the scaling parameter, w > 0 and
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the same happens in Theorem 2.4 when applied to the case of Heaviside
functions.

Remark 3.2. Set Hk(t) := H(t − tk), with Hk : [a, b] → R, tk := a + hk,
h := (b− a)/N , for k = −1, 1, ..., N , and

ΣN := span {Hk : k = −1, 1, 2, ..., N} .

Then, the vector function space ΣN is an N + 1 dimensional space and the
set {Hk : k = −1, 1, 2, ..., N} is a basis for ΣN . Indeed, it can be proved that
the functions Hk's are linearly independent: if

∑N
k=1 αkHk + α0H−1 ≡ 0,

i.e.,
N∑
k=1

αkH(t− tk) + α0H(t− t−1) = 0,

for every t ∈ [a, b], we have, in particular,

N∑
k=1

αkH(ti − tk) + α0H(ti − t−1) = 0,

for every i = 0, 1, ..., N . Then, for i = 0 we have α0 = 0, and for i > 0 we
obtain

∑N
k=i αk + α0 = 0, hence, necessarily α0 = α1 = ... = αN = 0.

3.2 A collocation method for linear Volterra inte-

gral equations based on unit step functions

In this section, we describe a collocation method for solving linear Volterra
integral equations of the second kind, of the form

y(t) = f(t) +

∫ t

a
K(t, s) y(s) ds, t ∈ [a, b], (3.2)

a, b ∈ R, where the function f : [a, b] → R and the kernel K : D → R,
D := {(t, s) : a ≤ t, s ≤ b}, are su�ciently smooth.

Our method, based on unit step functions, consists of determining ap-
proximate solutions to equation (3.2), of the form GNy as de�ned in (3.1),
i.e., GNy belonging to the collocation space ΣN , N ∈ N+. Set

(GNy)(t) =
N∑
k=1

ykH(t− tk) + y0H(t− t−1), t ∈ [a, b], (3.3)

where the coe�cients y0, ..., yN , N ∈ N+, in (3.3) are unknowns, and tk :=
a+hk, k = −1, 0, ..., N , h := (b−a)/N . Inserting GNy in place of the exact
solution y in (3.2), we obtain

(GNy)(t) = f(t) +

∫ t

a
K(t, s) (GNy)(s) ds, t ∈ [a, b],
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and rearranging all terms, we have

N∑
k=1

yk

[
H(t− tk)−

∫ t

a
K(t, s)H(s− tk) ds

]

+y0

[
H(t− t−1)−

∫ t

a
K(t, s)H(s− t−1) ds

]
= f(t),

for every t ∈ [a, b]. If CN := {t0, t1, ..., tN} is the set of the collocation points,
we can evaluate the equation above at such points. Set

mi0 := H(ti − t−1)−
∫ ti

a
K(ti, s)H(s− t−1) ds,

mik := H(ti − tk)−
∫ ti

a
K(ti, s)H(s− tk) ds,

for ti ∈ CN , i = 0, ..., N , and k = 1, 2, ..., N . We obtain the following linear
algebraic system of N + 1 equations,

N∑
k=0

mik yk = f(ti), (3.4)

for i = 0, 1, ..., N . Now, settingMN := (mik)i,k=0,1,...,N , YN := (y0, y1, ..., yN )t,
and FN := (f(x0), f(x1), ..., f(xN ))t, the linear system (3.4) can be written
as MNYN = FN , N ∈ N+. Solving (3.4), we can determine y0, y1, ..., yN ,
the coe�cients providing an analytical representation of the solution, y(t),
of (3.2), as a superposition of unit step functions as in (3.3).

Remark 3.3. By Theorems 2.2 and 2.4, the collocation method based on
unit step functions can be applied to linear Volterra integral equations with
either regular solutions on [a, b], or solutions in Lp[a, b], 1 ≤ p <∞, such as
equations with singular kernels.

We can now prove the following.

Theorem 3.4. The collocation method for solving (3.2), based on Heaviside

functions, admits a unique solution. Moreover, the square matrix MN of

the linear system associated with the method is lower triangular, for every

N ∈ N+.

Proof. Let i = 0, 1, ..., N be �xed. We have H(ti − tk) = 0 for every k > i,
and H(ti − tk) = 1 for k ≤ i. Besides,∫ ti

a
K(ti, s)H(s− tk) ds = 0, (3.5)
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for k > i, since H(· − tk) = 0 on [a, ti] (equation (3.5) also holds for i = 0,
i.e., for t0 = a). Furthermore,∫ ti

a
K(ti, s)H(s− t−1) ds =

∫ ti

a
K(ti, s) ds,

and, ∫ ti

a
K(ti, s)H(s− tk) ds =

∫ ti

tk

K(ti, s) ds,

for k ≤ i, with k 6= 0, since H(· − tk) = 0 on [a, tk) and H(· − tk) = 1 on
[tk, ti]. Hence, we obtain

mik :=


0, for k > i,
1, for k = i,

1−
∫ ti
tk
K(ti, s) ds, for k < i,

(3.6)

for i, k = 0, 1, ..., N . Then, the (N + 1)× (N + 1) matrix MN of our method
is lower triangular, for every N ∈ N+, i.e.,

MN :=


1 0 0 · · · 0
m10 1 0 · · · 0

m20 m21
. . .

. . .
...

...
...

. . .
. . . 0

mN0 mN1 · · · mNN−1 1

 (3.7)

Hence, det(MN ) = 1, and the linear system MNYN = FN admits a unique
solution, for every N ∈ N+.

Note that, in Theorem 3.4, an integrability assumption on the kernel K
of the integral equation in (3.2) is needed. The entries of MN of the form
1−
∫ ti
tk
K(ti, s) ds can be evaluated by exact (analytical) integration, in many

instances, or, more generally, upon numerical quadratures.
The method based on unit step functions can be implemented easily, and,

in addition, it is de�nitely characterized by an extremely low computational
cost.

In the special (but noteworthy) case of integral equations of the convo-

lution type, the linear Volterra integral equations of the second kind,

y(t) = f(t) +

∫ t

a
K(t− s) y(s) ds, t ∈ [a, b], (3.8)

we have the following

Corollary 3.5. The collocation method for solving (3.8), based on unit step

functions, admits a unique solution. Moreover, the real-valued matrix MN is

a lower triangular Toeplitz matrix, for every N ∈ N+.

64



Proof. By Theorem 3.4, MN is lower triangular with det(MN ) = 1, for
every N ∈ N+, then the method admits a unique solution. Moreover, if h :=
(b− a)/N is the step-size separating the collocation points ti, i = 0, 1, ..., N ,
we obtain changing variable, s = z − h,∫ ti

tk

K(ti − s) ds =

∫ ti+h

tk+h
K(ti + h− z) dz =

∫ ti+1

tk+1

K(ti+1 − z) dz.

Then, mi,k = mi+1,k+1 for every k < i (see (3.6)), and thusMN is seen to be
constant along all its diagonals. This means that MN is a Toeplitz matrix,
and it can be represented as

MN :=



1 0 0 · · · 0

m1 1 0
. . . 0

m2 m1
. . .

. . .
...

...
. . .

. . .
. . . 0

mN · · · m2 m1 1


, (3.9)

where

mi := 1−
∫ ti

a
K(ti − s) dt,

for every i = 1, 2, ..., N .

In the case of equations with convolution kernel, the required computa-
tional cost is much lower than in case of general kernels. In fact, by Corol-
lary 3.5, for every N ∈ N+, the linear systems to be solved is characterized
by lower triangular Toeplitz matrices, and thus to compute all entries ofMN

it su�ces to evaluate only the N terms m1, ...,mN .

Remark 3.6. The approach proposed above can also be useful to determine
approximate solutions to initial value problems (IVP) for ordinary di�erential
equations. In fact, generally speaking, every linear IVP, e.g., of the second
order, say

y′′ +A(t)y′ +B(t)y = g(t), y(a) = c1, y
′(a) = c2,

where A, B and g are su�ciently smooth functions, is equivalent to a linear
Volterra integral equation of the second kind (see [79], e.g.), like that in (3.2),
where

f(t) :=

∫ t

a
(t− s) g(s) ds+ (t− a)[c1A(a) + c2] + c1,

and
K(t, s) := (s− t)[B(s)−A′(s)]−A(s).
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At this point, we introduce some notation. Given the kernel K, we de�ne

K(t) :=

∫ t

a
K(t, s) ds, t ∈ [a, b]. (3.10)

Under suitable conditions on K, we can obtain some estimates for κ(MN ),
the condition number ofMN in the in�nity norm, in case of integral equations
of the convolution type, (3.8). Recall that for every nonsingular real-valued
matrix A := (ai,j)i,j=0,1,...,N ,

κ(A) := ‖A‖∞‖A−1‖∞,

where ‖A‖∞ := maxi=0,1,...,N
∑N

j=0 |ai,j |.
We can establish the following.

Theorem 3.7. Let (3.8) be a Volterra integral equation with convolution

kernel, K. Let K be de�ned in (3.10), and such that

(i) 0 ≤ K(t) ≤ 1, for every t ∈ [a, b];
(ii) K is non decreasing.

Then, the square matrix MN , N ∈ N+, obtained applying our collocation

method to (3.8), enjoys the property

κ(MN ) ≤


2

1−K(b)

(
1−K(b)[

N
2 ]+1

)
(N(1−K(t1)) + 1) , K(b) < 1,

2
([
N
2

]
+ 1
)

(N(1−K(t1)) + 1) , K(b) = 1,

where [·] means taking the integer part, for every N ∈ N+. In particular, if

K(b) < 1, we have

κ(MN ) <
2

1−K(b)
(N(1−K(t1)) + 1) .

Proof. By Corollary 3.5, MN is a lower triangular Toeplitz matrix of the
form in (3.9). By (i) and (ii), we have 0 ≤ K(t0) ≤ K(t1) ≤ ... ≤ K(tN ) ≤ 1,
where ti, i = 0, 1, ..., N ,are the collocation points, and then, the elements of
MN satisfy the inequalities

1 ≥ m1 ≥ m2 ≥ ... ≥ mN ≥ 0.

Hence, by well-known results concerning lower triangular Toeplitz matrices
with non-increasing monotonic entries (see [22], Theorem 1.1, and [132]), we
obtain the bounds

‖M−1N ‖∞ ≤


2

1−K(b)

(
1−K(b)[

N
2 ]+1

)
, K(b) < 1,

2
([
N
2

]
+ 1
)
, K(b) = 1.
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Now, since ‖MN‖∞ ≤ N(1 − K(t1)) + 1, and κ(MN ) := ‖MN‖∞‖M−1N ‖∞,
the proof of the �rst part of the theorem is complete. Moreover, if we note

that in case of K(b) < 1, there is
(

1−K(b)[
N
2 ]+1

)
< 1, we have

κ(MN ) <
2

1−K(b)
(N(1−K(t1)) + 1) .

3.3 A collocation method for solving nonlinear Volterra

integral equations

In this section, we use the collocation method based on unit step functions
to solve general nonlinear Volterra integral equations of the second kind, like

y(t) = f(t) +

∫ t

a
K(t, s; y(s)) ds, t ∈ [a, b], (3.11)

a, b ∈ R, where the function f : [a, b] → R and the kernel K : Ω → R,
Ω := D × R, are su�ciently smooth. Proceeding as in Section 3.2, we can
approximate the solution to (3.11) on the interval [a, b] by means of (3.3),
i.e.,

(GNy)(t) :=
N∑
k=1

ykH(t− tk) + y0H(t− t−1),

where H is the Heaviside function, tk := a + hk with h := (b − a)/N ,
k = −1, 0, 1, ..., N , and the coe�cients y0, y1, ..., yN are unknown. Inserting
GNy for y in (3.11), we obtain

(GNy)(t) = f(t) +

∫ t

a
K(t, s; (GNy)(s)) ds, t ∈ [a, b].

Again, to obtain an approximate solution to (3.11) in the form of a superpo-
sition of unit step functions, we should determine the unknown coe�cients
y0, y1, ..., yN . Given the set CN := {t0, t1, ..., tN} of collocation points, we
evaluate the equation at such points as in the linear case. Now we obtain
the system of N + 1 nonlinear equations

N∑
k=1

ykH(ti − tk) + y0H(ti − t−1)

= f(ti)+

∫ ti

a
K

(
ti, s;

N∑
k=1

ykH(s− tk) + y0H(s− t−1)

)
ds, i = 0, 1, ..., N.

(3.12)

67



It is easy to check that, for i = 0, (3.12) reduces to y0 = f(t0). Let now i > 0
be �xed. In this case, H(ti− tk) = 1 for every k = 0, ..., i and H(ti− tk) = 0
for k > i. Moreover,∫ ti

a
K

(
ti, s;

N∑
k=1

ykH(s− tk) + y0H(s− t−1)

)
dt

=
i∑

ν=1

∫ tν

tν−1

K

(
ti, s;

N∑
k=1

ykH(s− tk) + y0

)
ds

=
i∑

ν=1

∫ tν

tν−1

K

(
ti, s;

ν−1∑
k=0

yk

)
ds,

since, for every ν = 1, ..., i, there is H(· − tk) = 1 on [tν−1, tν ] for k =
0, ..., ν − 1 and H(· − tk) = 0 on [tν−1, tν ] for k ≥ ν. Therefore, (3.12)
reduces to the nonlinear system

y0 = f(t0),

i∑
k=0

yk = f(ti) +

[
i∑

ν=1

∫ tν

tν−1

K

(
ti, s;

ν−1∑
k=0

yk

)
ds

]
, i = 1, ..., N,

which admits a unique solution that can be given by the formula
y0 = f(t0),

yi = f(ti) +
i∑

ν=1

[∫ tν

tν−1

K(ti, s;
ν−1∑
k=0

yk) ds

]
−

i−1∑
k=0

yk, i = 1, ..., N,

(3.13)
for every N ∈ N+.

We stress that the nonlinear system in (3.12) can be solved explicitly, and
its solution does not required any iterative method (such as the Newton's
method, e.g.). Note also that (3.13) provides an algorithm for solving a
large class of nonlinear Volterra integral equations. Only an integrability
assumption on the kernel K(t, ·; y) on [a, t] for every y ∈ R and t ∈ [a, b] is
required.

In the special case of Volterra-Hammerstein integral equations of the sec-
ond kind, i.e., when the kernel is of the form K(t, s; y(s)) := K̃(t, s)G(y(s)),
where G and K̃ are su�ciently smooth functions, (3.13) reduces to

y0 = f(t0),

yi = f(ti) +

i∑
ν=1

[
G

(
ν−1∑
k=0

yk

)∫ tν

tν−1

K̃(ti, s) ds

]
−

i−1∑
k=0

yk, i = 1, ..., N.
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Also in this case, the integrals
∫ tν
tν−1

K̃(ti, s) ds can be evaluated by an exact

(analytical) integration, in many speci�c instances, or, more generally by
numerical quadrature. As in case of linear integral equations, our colloca-
tion method can be applied to nonlinear Volterra integral equations having
either regular or Lp[a, b] solutions (with 1 ≤ p < ∞), in view of the results
on approximation through superposition of sigmoidal functions discussed in
Chapter 2.

3.4 Error analysis

In this section, we discuss the various sources of errors which a�ect our
method. Our numerical method is based on using for the sought solution
y its approximate representation in terms of bounded sigmoidal functions,
(see GNf in (2.1)). In view of Theorem 2.2 (and also Theorem 2.4), we can
write

y(t) = (GNy)(t) + eN (t), (3.14)

provided that y(t) is continuous (or in Lp[a, b]), where the error term, eN (t),
can be estimated uniformly (or in Lp-norm), for every ε > 0, as

‖eN (t)‖∞ < ε, (3.15)

for a suitable N ∈ N+ (and w > 0, depending on N).
Clearly, (3.15) holds when GNy is written with the coe�cients computed

in Chapter 2. In the following theorem, we establish an estimate for eN ,
de�ned in (3.14), when GNy is represented in terms of unit step functions
(recall that in this case GNy is independent of w > 0), and with the co-
e�cients yk determined applying our collocation method to the nonlinear
integral equation in (3.11).

Theorem 3.8. Let (3.11) be a given nonlinear Volterra integral equation of

the second kind. Suppose that the function f is Lipschitz continuous, with

Lipschitz constant Lf > 0, and that the kernel K ∈ C0(Ω) satis�es the

following conditions:

(i) there exist L1 > 0 and L2 > 0 such that

|K(t1, s, y)−K(t2, s, y)| ≤ L1|t1 − t2|, for all (t1, s, y), (t2, s, y) ∈ Ω,

|K(t, s, y1)−K(t, s, y2)| ≤ L2|y1 − y2|, for all (t, s, y1), (t, s, y2) ∈ Ω;

(ii) for every bounded function y : [a, b] → R, there exists C = C(y) > 0
such that

|K(t, s, y(s))| ≤ C, for all (t, s) ∈ D.

Then, for every N ∈ N+, we have

|eN (t)| ≤ (b− a)

N
[Lf + L1(b− a) + C] eL2(t−a), t ∈ [a, b],
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where eN is de�ned in (3.14), GNy being represented in terms of unit step
functions and with coe�cients, yk, determined applying our collocation method

to (3.11).

Proof. Let N ∈ N+ and t ∈ [a, b] be �xed. De�ne j := max {i : ti ≤ t, i =
0, 1, ..., N}, where ti := a + ih, h := (b − a)/N , i = 0, 1, ..., N are the
collocation points. We can write

|eN (t)| = |y(t)− (GNy)(t)| ≤ |y(t)− y(tj)|+ |y(tj)− (GNy)(t)|.

Now, observing that (GNy)(t) = (GNy)(tj) (since GNy is written in terms
of unit step functions), we obtain

|eN (t)| ≤ |y(t)− y(tj)|+ |y(tj)− (GNy)(tj)|

=

∣∣∣∣f(t) +

∫ t

a
K(t, s, y(s)) ds− f(tj)−

∫ tj

a
K(tj , s, y(s)) ds

∣∣∣∣
+

∣∣∣∣∫ tj

a
K(tj , s, y(s)) ds−

∫ tj

a
K(tj , s, (GNy)(s)) ds

∣∣∣∣
≤ |f(t)− f(tj)|+

∫ tj

a
|K(t, s, y(s))−K(tj , s, y(s))| ds

+

∫ t

tj

|K(t, s, y(s))| ds+

∫ tj

a
|K(tj , s, y(s))−K(tj , s, (GNy)(s))| ds.

Using condition (i), (ii) and the Lipschitz continuity of f , we have

|eN (t)| ≤ Lf (t− tj) + L1(t− tj)(tj − a) + C(t− tj)

+ L2

∫ tj

a
|y(s)− (GNy)(s)| ds

≤ (t− tj)[Lf + L1(b− a) + C] + L2

∫ tj

a
|eN (s)| ds

≤ (b− a)

N
[Lf + L1(b− a) + C] + L2

∫ t

a
|eN (s)| ds.

The inequality above holds for every t ∈ [a, b], and then, by Gronwall's
lemma we obtain

|eN (t)| ≤ (b− a)

N
(Lf + L1(b− a) + C)[1 + L2

∫ t

a
eL2(t−s) ds],

for every t ∈ [a, b]. Being L2

∫ t
a e

L2(t−s) ds = eL2(t−a) − 1, it follows that

|eN (t)| ≤ (b− a)

N
(Lf + L1(b− a) + C) eL2(t−a), t ∈ [a, b].
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Theorem 3.8 provides an a priori estimate for the approximation errors
of our collocation method applied to the nonlinear equations in (3.11). In
addition, we can infer from Theorem 3.8 that ‖eN‖∞ → 0 as N → +∞,
and then that the sequence approximations for the solution to (3.11), as
determined by our method, converges uniformly to the (exact) solution y.

Remark 3.9. In Theorem 3.8, the Lipschitz condition on the kernel K, with
respect to y, is global. Hence, Theorem 3.8 cannot cover, e.g., the case of
nonlinear equations like that in (3.11) with kernels of the form K(t, s; y) =
K̃(t, s) yp, with p > 1.

Clearly, in the special case K(t, s, y(s)) = K̃(t, s) y(s), equation (3.11)
reduces to the linear equation (3.2) with kernel K̃. Therefore, if f is Lipschitz
continuous with Lipschitz constant Lf and K̃ ∈ C0(D) is such that

|K̃(t1, s)− K̃(t2, s)| ≤ L1|t1 − t2|,

for all (t1, s), (t2, s) ∈ D and some positive constants L1, we infer from
Theorem 3.8 that

|eN (t)| ≤ (b− a)

N
(Lf + L1(b− a) +M‖y‖∞) eM(t−a), t ∈ [a, b], (3.16)

where y is the (exact) continuous solution to (3.2) with kernel K̃ and M :=
max(t,s)∈D |K̃(t, s)|, for every N ∈ N+. Also in this case we obtain that
‖eN‖∞ → 0 as N → +∞. Now, being ‖y‖∞ = ‖GNy + eN‖∞, (3.16)
becomes

‖eN‖∞ ≤
(b− a)

N
(Lf + L1(b− a) +M‖GNy‖∞ +M‖eN‖∞) eM(b−a),

and we have

‖eN‖∞
(

1−M (b− a)

N
eM(b−a)

)
≤ (b− a)

N
(Lf+L1(b−a)+M‖GNy‖∞) eM(b−a).

Now, for N su�ciently large, we have M (b−a)
N eM(b−a) < 1, and hence

‖eN‖∞ ≤
(b− a)

N −M(b− a) eM(b−a) (Lf + L1(b− a) +M‖GNy‖∞) eM(b−a),

(3.17)
which represents an a posteriori estimate for the approximation error made
in case of the linear equations (3.2), when GNy is given in terms of unit step
functions.

Now we can use the estimate provided by Theorem 3.8 to derive another
interesting estimate for eN (t). This can be obtained when the approximate
solution is expressed by a superposition of general bounded sigmoidal func-
tions. We denote with GHNy the collocation solution to (3.11) represented
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in terms of unit step functions, and with GσNy the solution obtained by su-
perposing general bounded sigmoidal functions. Note that, the collocation
solution can also be represented by GσNy, in view of Remark 3.1. Setting

(GσNy)(t) = (GHNy)(t) + sN (t), t ∈ [a, b],

we obtain

|sN (t)| ≤ |(GσNy)(t)− (GHNy)(t)|

= |
N∑
k=1

yk[σ(w(t− tk))−H(t− tk)] + y0[σ(w(t− t−1))− 1]|.

Observing that

σ(w(t− tk))−H(t− tk) :=

{
σ(w(t− tk))− 1, t ≥ tk
σ(w(t− tk)), t < tk,

for every k = 1, ..., N , we have

|sN (t)| ≤
∑
k:tk≤t

|yk||σ(w(t− tk))− 1|+
∑
k:tk>t

|yk||σ(w(t− tk))|.

Therefore, under the conditions of Theorem 3.8, we obtain

|eN (t)| = |y(t)− (GσNy)(t)| = |y(t)− (GHNy)(t)− sN (t)|
≤ |y(t)− (GHNy)(t)|+ |sN (t)|

≤ (b− a)

N
[Lf + L1(b− a) + C] eL2(t−a)

+
∑
k:tk≤t

|yk||σ(w(t− tk))− 1|

+
∑
k:tk>t

|yk||σ(w(t− tk))|, (3.18)

for every t ∈ [a, b]. Now, we know by De�nition 1.1 that for w > 0 su�ciently
large, the terms |σ(w(t− tk))− 1| and |σ(w(t− tk))| in (3.18) are small.

In (3.18), a bound is given for the approximation error, in terms of the
yk's. These have been computed in our collocation method, and thus this
can be view as an a posteriori estimate. Note that, in general, from (3.18)
we cannot infer that GσNy converges to y.

Using (3.16), considerations similar to those above can be made, to ob-
tain an a posteriori bound for eN in the case of linear equations, where the
approximate solution is given by GσNy.

3.5 Numerical examples for Volterra integral equa-

tions of the second kind

In this section, we apply the method developed above, in this chapter, to
solve numerically some linear as well as nonlinear Volterra integral equations.
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3.5.1 Linear Volterra integral equations of the second kind

Here are some examples of linear Volterra equations of the second kind.

Example 3.10. Consider the Volterra equation (3.2) with

K(t, s) = ets, f(t) = e2t − 1

t+ 2
(et(t+2) − e−(t+2)),

on the interval [a, b] = [−1, 1]. Its solution is y(t) = e2t.

We test our collocation method based on step functions for solving this
equation. By Remark 3.1, we know that various approximation of y(t) can
be obtained using di�erent sigmoidal functions, using the same coe�cients.
We denoted by

εiN :=
‖GiNy − y‖∞
‖y‖∞

, i = 1, 2, 3, (3.19)

where y is the exact solution of the integral equation and GiNy, i = 1, 2, 3, is
its approximation obtained as a superposition of sigmoidal functions, of the
Heaviside, logistic and Gompertz (with α = 0.85 and β = 0.1) type, respec-
tively. The GiNy's are all obtained evaluating the coe�cients y0, y1, ..., yN ,
solution of the linear system MNYN = FN . In the cases of G2

Ny and G3
Ny,

the scaling parameter w was chosen accordingly to Corollaries 2.16 and 2.17,
respectively, yielding w = N2/(b− a) for G2

Ny, and w = N2/[(b− a)αβ] for
G3
Ny. In Table 3.1, the relative errors εiN are shown. The condition num-

bers in the in�nity norm of the matrices MN , say κ(MN ), are for instance,
κ(M10) ≈ 39.84, κ(M50) ≈ 125.73, κ(M500) ≈ 816, 39. In Fig.s 3.1 and 3.2,
the approximate solutions G1

Ny, G
2
Ny for N = 20 and N = 60 are plotted,

respectively.

N ε1N ε2N ε3N
10 4.45× 10−1 3.80× 10−1 4.15× 10−1

20 2.73× 10−1 2.59× 10−1 2.73× 10−1

30 1.95× 10−1 1.94× 10−1 1.95× 10−1

40 1.50× 10−1 1.50× 10−1 1.50× 10−1

50 1.20× 10−1 1.20× 10−1 1.20× 10−1

60 9.98× 10−2 9.98× 10−2 9.98× 10−2

500 1.16× 10−2 1.21× 10−2 1.26× 10−2

1000 4.10 ×10−3 6.10× 10−3 6.40× 10−2

Table 3.1: Numerical results for Example 3.10.

Example 3.11. Consider the following initial value problem of the second
order,

y′′ − t

2
y′ + y =

t

2
sin t, y(0) = −1, y′(0) = 0.
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Figure 3.1: Approximate solution G1
Ny of Example 3.10, for N = 20 and N = 60.

Figure 3.2: Approximate solution G2
Ny of Example 3.10, for N = 20 and N = 60.
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Its solution is y(t) = t2 + cos t− 2.

To such an IVP, a linear Volterra integral equation like that in (3.2) can
be associated (indeed, it is equivalent to it), with

K(t, s) := 2s− 3

2
t, f(t) := − t

2
sin t− cos t,

see Remark 3.6. Consider such an integral equation on the interval [a, b] =
[0, 1]. In Table 3.2, the relative errors εiN , i = 1, 2, 3 are shown, as in Ex-
ample 3.10. The same observation can be made on the condition number of
the MN 's. In Fig.s 3.3 and 3.4, the approximate solutions G1

Ny, G
2
Ny for

N = 10 and N = 50 are shown.
Our method can be compared with other classical collocation methods,

e.g., those based on piecewise polynomials [27]. We have compared the
numerical errors made applying both methods to Example 3.11, choosing for
the latter method quadratic polynomials on the subintervals of [0, 1], when
the same number of collocation points are used. Taking M subintervals, we
need N = 3M collocation points. The relative approximation errors, εpM ,
made with M = 7, M = 10, and M = 15, turn out to be εp7 = 3.03× 10−2,
εp10 = 2.82 × 10−2, and εp15 = 2.55 × 10−2, respectively. These should be
compared with the results shown in Table 3.2.

N ε1N ε2N ε3N
10 9.52× 10−2 7.08× 10−2 8.82× 10−2

20 4.31× 10−2 4.21× 10−2 4.31× 10−2

30 3.02× 10−2 2.86× 10−2 3.02× 10−2

40 2.12× 10−2 2.12× 10−2 2.12× 10−2

50 1.06× 10−2 1.07× 10−2 1.24× 10−2

500 8.09× 10−5 1.10× 10−3 1.20× 10−3

1000 4.06× 10−5 5.38× 10−4 6.22× 10−4

Table 3.2: Numerical results for Example 3.11.

Example 3.12. Consider the following singular Volterra integral equation
(of the Abel's type), with convolution kernel as in (3.8), with

K(t, s) = − 1√
t− s

, f(t) = t2 +
16

15
t5/2,

whose solution is y(t) = t2, see [135] e.g.

We consider this equation on the interval [a, b] = [0, 1]. The numerical
results obtained by our collocation method with unit step functions are de-
scribed in Table 3.3. The computed relative errors εiN , i = 1, 2, 3 are those
de�ned in (3.19).
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Figure 3.3: Approximate solution G1
Ny of Example 3.11, for N = 10 and N = 50.

Figure 3.4: Approximate solution G2
Ny of Example 3.11, for N = 10 and N = 50.
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N ε1N ε2N ε3N
10 1.07× 10−1 6.47× 10−2 9.53× 10−2

20 4.61× 10−2 4.43× 10−2 4.61× 10−2

30 3.56× 10−2 3.27× 10−2 3.56× 10−2

40 2.32× 10−2 2.32× 10−2 2.32× 10−2

50 1.28× 10−2 7.20× 10−3 1.00× 10−2

500 1.20× 10−3 7.85× 10−4 1.10× 10−3

1000 6.02× 10−4 3.97× 10−4 5.42× 10−4

Table 3.3: Numerical results for Example 3.12.

Example 3.13. Finally, consider the singular Volterra integral equation (3.2)
with

K(t, s) = − 1√
t− s

, f(t) = 1 + 3
√
t+

π

2
t,

on the interval [a, b] = [0, 1]. Its solution is y(t) = 1 +
√
t, which has an

unbounded derivative at t = 0.

The numerical results for such example, obtained by our collocation
method with unit step functions, are given in Table 3.4. From the tables,

N ε1N ε2N ε3N
10 1.5× 10−1 1.21× 10−1 1.41× 10−1

20 10−1 9× 10−2 10−1

30 8.66× 10−2 8.1× 10−2 8.66× 10−2

40 7.07× 10−2 7.07× 10−2 7.07× 10−2

50 5× 10−2 5× 10−2 5× 10−2

500 8× 10−4 1.8× 10−3 2.2× 10−3

1000 3.78× 10−4 9.01× 10−4 1.1× 10−3

Table 3.4: Numerical results for Example 3.13.

one can observe that the convergence of the method is rather slow, and its
accuracy poor. This is due to the basic approximation result based on sig-
moidal functions, see Chapter 1. One should note, however, that the method
can be applied under very weak assumptions on the kernel and the data. A
large class of integral equations can then be solved in this way, and analytical
representations of the solutions can also be obtained (as a superposition of
sigmoidal functions), at a low computational cost. In fact, all coe�cients (of
GNy) needed to approximate a given solution, are evaluated just solving a
lower triangular algebraic system. In the special case of integral equations
of the convolution type, such matrices are Toeplitz matrices, hence only N
integrals must be computed. It follows that the methods we propose may
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actually be very fast, but the so-obtained solution could also be used as a
starting point of other methods.

3.5.2 Nonlinear Volterra integral equations of the second

kind

Here are some examples of nonlinear Volterra equations.

Example 3.14. Consider the nonlinear Volterra-Hammerstein equation (3.11)
with

K(t, s; y(s)) := K̃(t, s)G(y(s)) := ey(s) cos s, f(t) := sin t− esin t + 1,

on the interval [a, b] = [0, 1]. The solution is y(t) = sin t, see [108], e.g..

The numerical results obtained applying our method with unit step func-
tions (introduced in Section 3.3), are shown in Table 3.5. As above, we com-
puted the relative errors εiN , i = 1, 2, 3 de�ned in (3.19). In Fig.s 3.5 and 3.6,
the approximate solutions G1

Ny, G
2
Ny are depicted, for N = 30 and N = 80.

N ε1N ε2N ε3N
10 1.66× 10−1 1.53× 10−1 1.63× 10−1

20 8.76× 10−2 8.70× 10−2 8.76× 10−2

30 6.00× 10−2 5.90× 10−2 6.00× 10−2

40 4.53× 10−2 4.53× 10−2 4.53× 10−2

50 3.34× 10−2 3.37× 10−2 3.46× 10−2

60 3.09× 10−2 3.09× 10−2 3.09× 10−2

70 2.74× 10−2 2.74× 10−2 2.74× 10−2

80 2.31× 10−2 2.31× 10−2 2.31× 10−2

500 2.90× 10−3 3.50× 10−3 3.60× 10−3

1000 1.40× 10−3 1.80× 10−3 1.80× 10−3

Table 3.5: Numerical results for Example 3.14.

Example 3.15. Consider the nonlinear Volterra-Hammerstein equation (3.11)
with

K(t, s; y(s)) := K̃(t, s)G(y(s)) = es−t
(
e−y(s) + y(s)

)
, f(t) := e−t,

on the interval [a, b] = [0, 1]. The solution is y(t) = ln(t+ e), see [108], e.g.

As above, we show in Table 3.6 the relative numerical errors εiN , i =
1, 2, 3. Again, we plotted in Fig.s 3.7 and 3.8 the approximate solutions
G1
Ny, G

2
Ny, for N = 10 and N = 50.
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Figure 3.5: Approximate solution G1
Ny of Example 3.14, for N = 30 and N = 80.

Figure 3.6: Approximate solution G2
Ny of Example 3.14, for N = 30 and N = 80.
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Figure 3.7: Approximate solution G1
Ny of Example 3.15, for N = 10 and N = 50.

Figure 3.8: Approximate solution G2
Ny of Example 3.15, for N = 10 and N = 50.
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N ε1N ε2N ε3N
10 2.73× 10−2 2.06× 10−2 2.38× 10−2

20 1.38× 10−2 1.14× 10−2 1.16× 10−2

30 8.40× 10−3 8.10× 10−3 8.40× 10−3

40 6.90× 10−3 5.80× 10−3 5.80× 10−3

50 3.40× 10−3 3.40× 10−3 3.70× 10−3

500 1.40× 10−4 3.45× 10−4 3.75× 10−4

1000 7.03× 10−5 1.72× 10−4 1.87× 10−4

Table 3.6: Numerical results for Example 3.15.

As in case of linear equations, our collocation method exhibits slow con-
vergence and poor accuracy. However, the procedure in (3.13) yields fast all
coe�cients that can be used in an analytical approximate representation for
the solutions in terms of sigmoidal functions, to a large class of nonlinear
equations. The low computational cost of the algorithm allows to increase
considerably the number N of collocation points, and hence the number of
the superposed sigmoidal functions, so to obtain an higher accuracy.
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Chapter 4

Applications to the Numerical

Solution of Volterra

Integro-Di�erential Equations

of the Neutral Type

Continuing with the study of the applications in Numerical Analysis of sig-
moidal functions approximation, in this chapter, a numerical collocation
method is developed for solving nonlinear Volterra integro-di�erential equa-
tions (VIDEs) of the neutral type, as well as other non-standard and classical
VIDEs. Sigmoidal functions approximation is used to suitably represent the
solutions. Special computational advantages are obtained using unit step
functions, and important applications can be obtained also using other sig-
moidal functions, such as logistic and Gompertz functions. The method
allows to obtain a simultaneous approximation of the solution to a given
VIDE and its �rst derivative, by means of an explicit formula. A priori

as well as a posteriori estimates are derived for the numerical errors, and
numerical examples are given for the purpose of illustration. A comparison
is made with the classical piecewise polynomial collocation method as for
accuracy and CPU time.

The present theory can be found by the readers in [59].

We solve numerically by collocation, nonlinear Volterra integro-di�erential
equations (VIDEs) of the neutral type, of the form

y′(t) = f(t, y(t)) +

∫ t

a
K(t, s, y(s), y′(s)) ds, y(a) = y0,

for t ∈ I := [a, b], where f and K are su�ciently smooth given functions,
see [32, 118, 119, 28]. The method is also suited to solve classical VIDEs,
i.e., equations where the integral term in (I) does not depend on y′(s), as
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well as non-standard VIDEs, i.e., classical equations where the integral term
depends in addition on y(t), see [117, 27]. The most known example of a
non-standard VIDE is perhaps given by the logistic equation with a memory

term, see [62, 15, 16]. Collocation methods are widely used to solve integral
equations, see, e.g., [2, 14, 30, 31, 27].

Our collocation method consists in �rst approximating y′ by neural net-
works with unit step (Heaviside) sigmoidal functions, H. Upon integrating
the NN that approximate y′, we then obtain an approximation for y as well.
At this point, replacing y and y′ in the integro-di�erential equations with
their approximations and evaluating the equations at suitable collocation
points on the interval I, we can determine the coe�cients of the collocation
solutions.

The choice of using unit step functions allows to solve a large class of
integral equations with some computational advantages. In particular, we
can determine an explicit formula for calculating the coe�cients of the collo-
cation solutions. In this way, an analytical representation for the collocation
solutions can be obtained. Moreover, we can show that approximate solu-
tions can also be given in terms of other sigmoidal functions, such as for
instance logistic and Gompertz functions.

The numerical errors made approximating y and y′ are analyzed, and
some a priori as well as a posteriori estimates are derived for such errors. A
number of numerical examples are presented, and the results compared with
those obtained by the classical piecewise polynomial collocation method. The
collocation method based on sigmoidal functions developed here, seems to be
competitive regarding the CPU time it requires. As for its accuracy, it per-
forms better than piecewise polynomial collocation when integro-di�erential
equations with weakly singular kernels are involved.

4.1 A collocation method for Volterra integro-di�erential

equations

In this section, we introduce a collocation method aimed at solving nonlinear
Volterra integro-di�erential equations (VIDEs) of the neutral type.

In what follows, we consider initial value problems of the form

y′(t) = f(t, y(t)) +

∫ t

a
K(t, s, y(s), y′(s)) ds, y(a) = y0, (4.1)

for t ∈ I := [a, b], where f : I × R → R, and K : Ω → R, being Ω :=
I × I × R× R, are su�ciently smooth functions.

Suppose that (4.1) admits of a classical solution y, with y ∈ C1(I).
Hence, y′ ∈ C0(I) and then, as a consequence of Theorem 2.2, y(t) could
be uniformly approximated on I by a superposition of bounded sigmoidal
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functions. We choose to use unit step (sigmoidal) functions, and set

(GNy
′)(t) :=

N∑
k=1

αkH(t− tk) + α0H(t− t−1), t ∈ I, (4.2)

with GNy
′ ∈ ΣN , N ∈ N+. This will be a neural network which approx-

imates y′. Here, the coe�cients αk, k = 0, 1, . . . , N , are unknowns, and
tk = a + kh, h = (b − a)/N , for k = −1, 0, . . . , N . Integrating GNy

′, we
de�ne

(SNy)(t) :=

∫ t

a
(GNy

′)(s)ds+ y0

=

N∑
k=1

αk

∫ t

a
H(s− tk)ds+ α0

∫ t

a
H(s− t−1) ds+ y0,(4.3)

for t ∈ I, where y0 is the initial data in (4.1). Clearly, SNy approximates
y. Note that GNy

′ and SNy are both characterized by the same unknowns
coe�cients αk. By the de�nition of Heaviside functions, we have for every
t ∈ I ∫ t

a
H(s− t−1) ds = t− a, and

∫ t

a
H(s− tk) ds = t− tk,

for every k such that tk ≤ t, and∫ t

a
H(s− tk) ds = 0,

for every k with tk > t, k = 1, . . . , N . Then (4.3) becomes

(SNy)(t) :=
∑
k:tk≤t

αk(t− tk) + y0, t ∈ I. (4.4)

Inserting SNy and GNy
′ in (4.1), in place of y and y′, respectively, we obtain

the collocation equation

(GNy
′)(t) = f(t, (SNy)(t)) +

∫ t

a
K(t, s, (SNy)(s), (GNy

′)(s)) ds. (4.5)

If CN := {t0, t1, . . . , tN} denotes the set of the collocation points, we can
evaluate (4.5) at such points, obtaining

(GNy
′)(ti) = f(ti, (SNy)(ti)) +

∫ ti

a
K(ti, s, (SNy)(s), (GNy

′)(s)) ds, (4.6)

for every �xed i, i = 0, 1, . . . , N . This is a nonlinear algebraic system of
N + 1 equations where the unknowns are the αk's, k = 0, 1, . . . , N . Solving
such nonlinear system we obtain the αk's and then SNy and GNy

′.
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We will show that SNy and GNy
′ do provide a simultaneous approxi-

mation of the solution, y, to (4.1) and of its �rst derivative y′. We can
prove that system (4.6) always has a unique solution. Indeed, the following
theorem holds.

Theorem 4.1. The nonlinear algebraic system (4.6) has a unique solution

α0, . . . , αN , i.e., the collocation method based on unit step functions, used

for solving the nonlinear integro-di�erential equations of the neutral type in

(4.1), admits of a unique solution, SNy, for every N ∈ N+. In particular,

the coe�cients αi of SNy (and GNy
′), can be determined by the following

explicit formula:

α0 := f(a, y0), (4.7)

α1 := f (t1, α0(t1 − a) + y0)−α0+

∫ t1

a
K (t1, s, α0(s− a) + y0, α0) ds, (4.8)

and

αi := f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+
i∑

ν=1

∫ tν

tν−1

K

(
ti, s,

ν−1∑
k=0

αk(s− tk) + y0,
ν−1∑
k=0

αk

)
ds, (4.9)

for every i, i = 2, . . . N .

Proof. By equation (4.6), for i = 0, 1, . . . , N , N ∈ N+, and the de�nition of
SNy and GNy

′, we have

N∑
k=1

αkH(ti − tk) + α0H(ti − t−1) = f

(
ti,

i∑
k=0

αk(ti − tk) + y0

)

+

∫ ti

a
K

(
ti, s,

N∑
k=1

αk

∫ s

a
H(z − tk) dz + α0

∫ s

a
H(z − t−1) dz

+y0,
N∑
k=1

αkH(s− tk) + α0H(s− t−1)

)
ds,

that can also be rewritten as

N∑
k=1

αkH(ti − tk) + α0H(ti − t−1) = f

(
ti,

i∑
k=0

αk(ti − tk) + y0

)

+
i∑

ν=1

∫ tν

tν−1

K

(
ti, s,

N∑
k=1

αk

∫ s

a
H(z − tk) dz + α0

∫ s

a
H(z − t−1) dz
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+y0,
N∑
k=1

αkH(s− tk) + α0H(s− t−1)

)
ds. (4.10)

For i = 0, equation (4.10) reduces to α0 = f(a, y0). For i = 1, (4.10) reduces
to

α0 + α1 = f (t1, α0(t1 − a) + y0) +

∫ t1

a
K (t1, s, α0(s− a) + y0, α0) ds,

and then we have

α1 = f (t1, α0(t1 − a) + y0)− α0 +

∫ t1

a
K (t1, s, α0(s− a) + y0, α0) ds,

that can be immediately evaluated since α0 is known from the previous step.
Note that, in general, for every �xed i, i = 2, . . . , N , H(ti− tk) = 0 for every
k > i, and H(ti− tk) = 1 for every k ≤ i. Moreover, it is easy to see that, for
every ν = 1, . . . , i, there is H(·− tk) = 1 on [tν−1, tν ] for k = 0, . . . , ν−1 and
H(·−tk) = 0 on [tν−1, tν ] for k ≥ ν. Finally note that, again for ν = 1, . . . , i,
if s ∈ [tν−1, tν ], we have

N∑
k=1

αk

∫ s

a
H(z − tk) dz + α0

∫ s

a
H(z − t−1) dz =

ν−1∑
k=0

αk(s− tk).

Thus, for the general case i = 2, . . . , N , (4.10) becomes

i∑
k=0

αk = f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)

+
i∑

ν=1

∫ tν

tν−1

K

(
ti, s,

ν−1∑
k=0

αk(s− tk) + y0,

ν−1∑
k=0

αk

)
ds,

so we can conclude that

αi = f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+
i∑

ν=1

∫ tν

tν−1

K

(
ti, s,

ν−1∑
k=0

αk(s− tk) + y0,
ν−1∑
k=0

αk

)
ds.

This shows that (4.6) admits of a unique solution, α0, . . . , αN .

Note that, in Theorem 4.1 integrability of the kernel, K, in the integro-
di�erential equation (4.1) is required. We emphasize the peculiarities of the
present collocation method: (i) one can determine all coe�cients αk in a very
simple way, and (ii) a simultaneous approximation of y and y′ is provided
by SNy and GNy

′, respectively, as well as the analytical form of SNy and
GNy

′.
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Remark 4.2. Note that, if the kernel in equation (4.1) is of the convolution
type, i.e., K(t, s, y(t), y′(s)) = k(t− s)G(y(t), y′(s)), and it does not depend
on y(s) (for all s ∈ [0, t]), then, formulae (4.8) and (4.9) in Theorem 4.1
reduce to

α1 := f (t1, α0(t1 − a) + y0)− α0 +G (α0(t1 − a) + y0, α0)

∫ t1

a
k (t1 − s) ds,

and

αi := f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+
i∑

ν=1

G

(
ν−1∑
k=0

αk(ti − tk) + y0

ν−1∑
k=0

αk

)∫ tν

tν−1

k (ti − s) ds,

for every i, i = 2, . . . N . Now, changing variable in the integrals, setting
z = s+ h (where h is step-size of the collocation points), we obtain∫ tν

tν−1

k (ti − s) ds =

∫ tν+h

tν−1+h
k (ti + h− z) dz =

∫ tν+1

tν

k (ti+1 − z) dz.

(4.11)
Relation (4.11) can be used to simplify the implementation of the collocation
method in this case. In fact, in order to determine the coe�cients αi, now
we need to compute only one additional integral. In general we evaluate i
integrals at each step, while in the present approach we are able to reduce
signi�cantly the CPU time needed by our method.

The method can also be applied to other problems, such as classical
nonlinear integro-di�erential equations of the form

y′(t) = f(t, y(t)) +

∫ t

a
K(t, s, y(s)) ds, y(0) = y0, (4.12)

for t ∈ I := [a, b], where f : I×R→ R and K : I×I×R→ R are su�ciently
smooth functions.

Moreover, a further class of VIDEs to which our collocation method
can be applied is that of non-standard Volterra integro-di�erential equations
having the typical general form

y′(t) = f(t, y(t)) +

∫ t

a
K(t, s, y(t), y(s)) ds, y(0) = y0, (4.13)

where K : I × I × R × R → R is su�ciently smooth and the integrand
depends on both, y(s) and y(t). The best known example of such a non-
standard VIDE is given by the so-called logistic equation with memory term,
see [117, 62, 15, 16, 27]. Assume as above, that (4.12) or (4.13) admits of
a classical solution. Proceeding as with neutral VIDEs, that is replacing y
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and y′ with SNy and GNy
′ in (4.12) or (4.13), and evaluating the ensuing

collocation equations at the collocation points, we obtain nonlinear algebraic

systems similar to those in (4.6). The following theorems can be established
by a straightforward adaptation of the proof of Theorem 4.1. For clarity, we
state these results explicitly here.

Theorem 4.3. The collocation method based on unit step functions for

solving the nonlinear VIDE (4.12), has a unique solution, SNy, for every

N ∈ N+. In particular, the coe�cients αi of SNy (and GNy
′), can be deter-

mined by the following explicit formula:

α0 := f(a, y0), (4.14)

α1 := f (t1, α0(t1 − a) + y0)− α0 +

∫ t1

a
K (t1, s, α0(s− a) + y0) ds; (4.15)

and

αi := f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+
i∑

ν=1

∫ tν

tν−1

K

(
ti, s,

ν−1∑
k=0

αk(s− tk) + y0

)
ds, (4.16)

for every i, i = 2, . . . N .

Theorem 4.4. The collocation method based on unit step functions, for

solving the non-standard VIDE (4.13), has a unique solution, SNy, for ev-

ery N ∈ N+. In particular, the coe�cients αi of SNy (and GNy
′), can be

determined by the following explicit formula:

α0 := f(a, y0), (4.17)

α1 := f (t1, α0(t1 − a) + y0)− α0

+

∫ t1

a
K (t1, s, α0(t1 − a) + y0, α0(s− a) + y0) ds, (4.18)

and

αi := f

(
ti,

i−1∑
k=0

αk(ti − tk) + y0

)
−

i−1∑
k=0

αk

+
i∑

ν=1

∫ tν

tν−1

K

(
ti, s,

i−1∑
k=0

αk(ti − tk) + y0

ν−1∑
k=0

αk(s− tk) + y0

)
ds, (4.19)

for every i, i = 2, . . . N .
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Remark 4.5. Suppose that y ∈ C1(I) is the classical solution of a VIDE
of the form in (4.1), and that SNy is its collocation solution, written with
coe�cients αk provided by Theorem 4.1. Moreover, GNy

′ is given in term
of unit step functions, and this represents an approximation of y′. Let now
σ be a �xed bounded sigmoidal function. By Remark 3.1, we know that
various approximation of any given continuous function can be obtained us-
ing various di�erent sigmoidal functions, still retaining the same coe�cients.
Therefore, using the same αk, we can de�ne

(GσNy
′)(t) :=

N∑
k=1

αkσ(w(t− tk)) + α0σ(w(t− t−1)), t ∈ I, (4.20)

where w is a suitable positive parameter depending on σ and N , and the tk's
are the uniformly spaced nodes in the interval [a, b] de�ned above. It follows
that GσNy

′ provides a further approximation to y′, and hence we obtain, by
integration,

(SσNy)(t) :=
N∑
k=1

αk

∫ t

a
σ(w(s− tk))ds+ α0

∫ t

a
σ(w(s− t−1))ds+ y0, t ∈ I,

(4.21)
which provides a further approximation to y on I, for every N ∈ N+.

The same observation can be made when our collocation method is ap-
plied to VIDEs of the form (4.12) or (4.13), using the same coe�cients αk
determined in Theorem 4.3 and Theorem 4.4, respectively.

4.2 Analysis of the numerical errors

In this section, we analyze the various sources of numerical errors which
a�ect our collocation method.

4.2.1 A priori estimates

We start considering our collocation method with unit step functions, ap-
plying it to the VIDEs of neutral type in (4.1).

First of all, we de�ne the error function for y′,

eN (t) := y′(t)− (GNy
′)(t), t ∈ I := [a, b], (4.22)

where y is the classical solution of (4.1) and GNy
′ is the neural network

given in (4.2) and written with coe�cients αk determined by our collocation
method for (4.1). Integrating eN , we obtain

EN (t) :=

∫ t

a
eN (z)dz = y(t)− (SNy)(t), t ∈ I := [a, b], (4.23)

that is the error function for y. The following theorem provides some a priori
estimates for eN and EN .
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Theorem 4.6. Let (4.1) a given VIDE of the neutral type, which admits of a

classical solution y ∈ C1(I). Assume that, there exist the positive constants

Lf , C, L1 and L2, such that

(i) For every (t1, s1), (t2, s2) ∈ I × R,

|f(t1, s1)− f(t2, s2)| ≤ Lf ‖(t1, s1)− (t2, s2)‖2,

where ‖ · ‖2 is the Euclidean norm in R2;

(ii) For every (t, s, x, z) ∈ I × I × [−‖y‖∞,+‖y‖∞]× [−‖y′‖∞,+‖y′‖∞], we
have |K(t, s, x, z)| ≤ C;
(iii) for every (t1, s, x, z), (t2, s, x, z) ∈ I×I×[−‖y‖∞, ‖y‖∞]×[−‖y′‖∞, ‖y′‖∞],

|K(t1, s, x, z)−K(t2, s, x, z)| ≤ L1 |t1 − t2|;

(iv) For every (t, s, x1, z1), (t, s, x2, z2) ∈ I × I × R× R,

|K(t, s, x1, z1)−K(t, s, x2, z2)| ≤ L2 ‖(x1, z1)− (x2, z2)‖2.

Then,

|eN (t)| ≤ (b− a)M1

N
eM2 (t−a), t ∈ I := [a, b],

and

|EN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)
, t ∈ I,

for every N ∈ N+, where M1 and M2 are suitable positive constants not

depending on N .

Proof. Let N ∈ N+ and t ∈ I := [a, b] be �xed. De�ne

j := max {i : ti ≤ t, ti ∈ CN , i = 0, 1, . . . , N} ,

where ti = a+ kh, h := (b−a)/N , k = 0, 1, ..., N , are the collocation points.
We can write

|eN (t)| ≤ |eN (t)− eN (tj)|+ |eN (tj)| ≤ |y′(t)− y′(tj)|

+|(GNy′)(t)− (GNy
′)(tj)|+ |eN (tj)| = |y′(t)− y′(tj)|+ |eN (tj)|,

because (GNy
′)(t) = (GNy

′)(tj), since the function GNy
′ is written as a

superposition of unit step functions and hence it is piecewise constant. Now,

|eN (t)| ≤ |y′(t)− y′(tj)|+ |eN (tj)| = |f(t, y(t))

+

∫ t

a
K(t, s, y(s), y′(s)) ds− f(tj , y(tj))−

∫ tj

a
K(tj , s, y(s), y′(s)) ds

∣∣∣∣
+

∣∣∣∣f(tj , y(tj)) +

∫ tj

a

[
K(tj , s, y(s), y′(s))−K(tj , s, (SNy)(s), (GNy

′)(s))
]
ds
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−f(tj , (SNy)(tj))| ≤ |f(t, y(t))− f(tj , y(tj))|

+

∫ t

tj

∣∣K(t, s, y(s), y′(s))
∣∣ ds+∫ tj

a

∣∣K(t, s, y(s), y′(s))−K(tj , s, y(s), y′(s))
∣∣ ds

+|f(tj , y(tj))− f(tj , (SNy)(tj))|+
∫ tj

a
|K(tj , s, y(s), y′(s))

−K(tj , s, (SNy)(s), y′(s))| ds+

∫ tj

a
|K(tj , s, (SNy)(s), y′(s))

−K(tj , s, (SNy)(s), (GNy
′)(s))| ds =: J1 + J2 + J3 + J4 + J5 + J6.

We �rst estimate J1 and J4. Being y ∈ C1(I), y is Lipschitz continuous on I,
with some Lipschitz constant, say, Ly > 0. Thus, we obtain from condition
(i)

J1 ≤ Lf
√

(t− tj)2 + (y(t)− y(tj))2 ≤ Lf
√
h2(1 + L2

y) =: hM,

and moreover

J4 ≤ Lf |y(tj)− (SNy)(tj)| = Lf |EN (tj)| ≤ Lf
∫ tj

a
|eN (z)| dz.

As for J2, we can easily infer from condition (ii) that J2 ≤ C (t−tj) ≤ Ch.
Turning our attention to J3, we have by condition (iii)

J3 ≤ L1 |t− tj | (tj − a) ≤ L1 (tj − a)h ≤ L1 (b− a)h.

We �nally estimate J5 and J6. From condition (iv), we have

J5 ≤ L2

∫ tj

a
|y(s)− (SNy)(s)| ds = L2

∫ tj

a
|EN (s)| ds,

and similarly

J6 ≤ L2

∫ tj

a

∣∣y′(s)− (GNy
′)(s)

∣∣ ds = L2

∫ tj

a
|eN (s)| ds.

Therefore, combining all such estimates we conclude that

|eN (t)| ≤ h [M+C+L1 (b−a)]+L2

∫ tj

a
|EN (s)| ds+(Lf+L2)

∫ tj

a
|eN (z)| dz

= h [M+C+L1 (b−a)]+L2

∫ tj

a

∣∣∣∣∫ s

a
eN (z) dz

∣∣∣∣ ds+(Lf +L2)

∫ tj

a
|eN (z)| dz

≤ h [M+C+L1 (b−a)]+L2

∫ tj

a

[∫ tj

a
|eN (z)| dz

]
ds+(Lf+L2)

∫ tj

a
|eN (z)| dz
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≤ h [M + C + L1 (b− a)] + [L2 (b− a+ 1) + Lf ]

∫ tj

a
|eN (z)| dz

≤ h [M + C + L1 (b− a)] + [L2 (b− a+ 1) + Lf ]

∫ t

a
|eN (z)| dz

=: hM1 +M2

∫ t

a
|eN (z)| dz.

The previous inequality holds for every t ∈ I, and thus we obtain, by Gron-
wall's lemma,

|eN (t)| ≤ hM1 e
M2 (t−a) =

(b− a)M1

N
eM2 (t−a), t ∈ I,

for every N ∈ N+. Moreover,

|EN (t)| ≤
∫ t

a
|eN (s)| ds ≤ (b− a)M1

N

∫ t

a
eM2 (s−a) ds,

=
(b− a)M1

NM2

(
eM2 (t−a) − 1

)
,

for every N ∈ N+.

Remark 4.7. We can infer from Theorem 4.6 that

‖eN‖∞ ≤
(b− a)M1

N
eM2 (b−a),

and

‖EN‖∞ ≤
(b− a)M1

NM2

(
eM2 (b−a) − 1

)
,

so that we can conclude that ‖eN‖∞ → 0 and ‖EN‖∞ → 0 as N → +∞:
SNy and GNy

′ converge both uniformly on I, to y and y′, respectively.

Remark 4.8. In Theorem 4.6, the Lipschitz conditions (i) and (iv) are
global. This is a technical assumption, which circumvents the need of having
an a priori boundedness of SNy and GNy

′. For such a reason, Theorem 4.6
cannot cover, e.g., the case of VIDEs like (4.1) with kernels of the form
K(t, s, x, z) = K̃(t, s)xpzp, or f(t, s) = f̃(t) sp, with p > 1, see also [57].

Theorem 4.6 can also be extended in such a way to apply our collocation
method to (4.12). Clearly, the coe�cients αk of SNy (and GNy

′) in (4.12)
are the same obtained in Theorem 4.3 (or in Theorem 4.4, in case of the
equations of the kind in (4.13)). The following can be proved.
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Theorem 4.9. Let be given a VIDE like in (4.12), which admits of a classical

solution y ∈ C1(I). Assume that, there exist the positive constants Lf , C,
L1 and L2, such that

(i) For every (t1, s1), (t2, s2) ∈ I × R,

|f(t1, s1)− f(t2, s2)| ≤ Lf ‖(t1, s1)− (t2, s2)‖2;

(ii) For every (t, s, x) ∈ I × I × [−‖y‖∞,+‖y‖∞], we have |K(t, s, x)| ≤ C;
(iii) for every (t1, s, x), (t2, s, x) ∈ I × I × [−‖y‖∞, ‖y‖∞],

|K(t1, s, x)−K(t2, s, x)| ≤ L1 |t1 − t2|;

(iv) For every (t, s, x1), (t, s, x2) ∈ I × I × R,

|K(t, s, x1)−K(t, s, x2)| ≤ L2 |x1 − x2|.

Then,

|eN (t)| ≤ (b− a)M1

N
eM2 (t−a), t ∈ I := [a, b],

and

|EN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)
, t ∈ I,

for every N ∈ N+, where M1 and M2 are suitable positive constants not

depending on N .

The proof of this theorem is similar to that of Theorem 4.6, and thus is
omitted. Moreover, in case of non-standard VIDEs like those in (4.13), we
have the following.

Theorem 4.10. Let be a �xed non-standard VIDE like that in (4.13), which

admits of a classical solution y ∈ C1(I). Assume that, there exist the positive

constants Lf , C, L1 and L2, such that

(i) For every (t1, s1), (t2, s2) ∈ I × R,

|f(t1, s1)− f(t2, s2)| ≤ Lf ‖(t1, s1)− (t2, s2)‖2;

(ii) For every (t, s, x, z) ∈ I × I × [−‖y‖∞,+‖y‖∞] × [−‖y‖∞,+‖y‖∞], we
have |K(t, s, x, z)| ≤ C;
(iii) for every (t1, s, x, z), (t2, s, x, z) ∈ I×I×[−‖y‖∞, ‖y‖∞]×[−‖y‖∞, ‖y‖∞],

|K(t1, s, x, z)−K(t2, s, x, z)| ≤ L1 |t1 − t2|;

(iv) For every (t, s, x1, z1), (t, s, x2, z2) ∈ I × I × R× R,

|K(t, s, x1, z1)−K(t, s, x2, z2)| ≤ L2 ‖(x1, z1)− (x2, z2)‖2.

Then,

|eN (t)| ≤ (b− a)M1

N
eM2 (t−a), t ∈ I := [a, b],
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and

|EN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)
, t ∈ I,

for every N ∈ N+, where M1 and M2 are suitable positive constants not

depending on N .

Proof. As in the proof of Theorem 4.6 (and with the same notation), we can
write, for every �xed t ∈ I,

|eN (t)| ≤ |y′(t)− y′(tj)|+ |eN (tj)| = |f(t, y(t))

+

∫ t

a
K(t, s, y(t), y(s)) ds− f(tj , y(tj))−

∫ tj

a
K(tj , s, y(tj), y(s)) ds

∣∣∣∣
+

∣∣∣∣f(tj , y(tj)) +

∫ tj

a
[K(tj , s, y(tj), y(s))−K(tj , s, (SNy)(tj), (SNy)(s))] ds

−f(tj , (SNy)(tj))| ≤ |f(t, y(t))− f(tj , y(tj))|

+

∫ t

tj

|K(t, s, y(t), y(s))| ds+

∫ tj

a
|K(t, s, y(t), y(s))−K(tj , s, y(tj), y(s))| ds

+|f(tj , y(tj))− f(tj , (SNy)(tj))|+
∫ tj

a
|K(tj , s, y(tj), y(s))

−K(tj , s, (SNy)(tj), y(s))| ds+

∫ tj

a
|K(tj , s, (SNy)(tj), y(s))

−K(tj , s, (SNy)(tj), (SNy)(s))| ds =: J1 + J2 + J3 + J4 + J5 + J6.

The terms J1, J2, and J4 can be estimated as in Theorem 4.6. As for J3, J5,
and J6, we obtain, exploiting (iii) and (iv) and the fact that y is Lipschitz
continuos with Lipschitz constant Ly > 0,

J3 ≤ L1 (tj − a)
√

(t− tj)2 + (y(t)− y(tj))2 ≤ L1 (tj − a)
√
h2(1 + L2

y)

≤ L1 (b− a)
√

(1 + L2
y) h,

and

J5 ≤ L2 |EN (tj)|
∫ tj

a
ds ≤ L2 (b− a) |EN (tj)| ≤ L2 (b− a)

∫ t

a
|eN (z)| dz,

and �nally,

J6 ≤ L2

∫ tj

a
|EN (s)| ds ≤ L2 (b− a)

∫ tj

a

∫ s

a
|eN (z)| dz ds

≤ L2 (b− a)2
∫ tj

a
|eN (z)| dz ≤ L2 (b− a)2

∫ t

a
|eN (z)| dz.

The proof then follows as in Theorem 4.6.
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4.2.2 A posteriori estimates

As noted in Remark 4.8, the a priori estimates made in Section 4.2.1 hold
only for equations with kernels K and data f which are globally Lipschitz.
However, if we replace conditions (i) and (iv) in Theorem 4.6 with a local

Lipschitz condition, some a posteriori error estimates can be established.
Indeed, the following can be proved.

Theorem 4.11. Let a given VIDE of the neutral type like that in (4.1) have

a classical solution y ∈ C1(I), and assume that conditions (ii) and (iii) of

Theorem 4.6 hold for some positive constants C and L1, respectively. Sup-

pose in addition that:

(a) There exist a constant Lf > 0 and a function Lf : R+
0 → R+

0 , such

that, for every γ > 0,

|f(t1, s1)− f(t2, s2)| ≤ Lf (γ) |f(t1, s1/γ)− f(t2, s2/γ)|,

for every (t1, s1), (t2, s2) ∈ I × R, and such that

|f(t1, s1)− f(t2, s2)| ≤ Lf ‖(t1, s1)− (t2, s2)‖2,

for every (t1, s1), (t2, s2) ∈ I × [−1, 1];

(b) There exist a constant L2 > 0 and a function LK : R+
0 → R+

0 such

that, for every constant γ > 0,

|K(t1, s1, x1, z1)−K(t2, s2, x2, z2)|

≤ LK(γ) |K(t1, s1, x1/γ, z1/γ)−K(t2, s2, x2/γ, z2/γ)|,
for every (t1, s1, x1, z1), (t2, s2, x2, z2) ∈ I × I × R× R, and such that

|K(t, s, x1, z1)−K(t, s, x2, z2)| ≤ L2 ‖(x1, z1)− (x2, z2)‖2,

for every (t, s, x1, z1), (t, s, x2, z2) ∈ I × I × [−1, 1]× [−1, 1].
Then,

|eN (t)| ≤ (b− a)M1

N
eMN (t−a), t ∈ I = [a, b],

and,

|EN (t)| ≤ (b− a)M1

NMN

(
eMN (t−a) − 1

)
, t ∈ I,

where

MN :=
M2

γN
{Lf (γN ) + LK(γN )} ,

M1 and M2 being suitable positive constants not depending on N , and

γN := max
{
‖y‖∞, ‖y′‖∞, ‖SNy‖∞, ‖GNy′‖∞

}
, (4.24)

for every N ∈ N+.
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Proof. We de�ne Ji, i = 1, . . . , 6 as in the proof of Theorem 4.6, for t ∈ I
�xed. We �rst estimate J1, J2, and J3, as in the proof of Theorem 4.6. Now,
we estimate J4, J5 and J6. Let γN > 0 be the constant de�ned in (4.24).
Using condition (a), we obtain

J4 ≤ Lf (γN ) |f (tj , y(tj)/γN )− f (tj , (SNy)(tj)/γN )|

≤ Lf
Lf (γN )

γN
|EN (tj)| ≤ Lf

Lf (γN )

γN

∫ t

a
|eN (s)| ds,

with |y(tj)|/γN , |(SNy)(tj)|/γN ≤ 1. Furthermore, we have from condition
(b)

J5 ≤ LK(γN )

∫ tj

a

∣∣∣∣K(tj , s,
y(s)

γN
,
y′(s)

γN
)−K(tj , s,

(SNy)(s)

γN
,
y′(s)

γN
)

∣∣∣∣ ds
≤ L2 LK(γN )

∫ tj

a
|y(s)/γN − (SNy)(s)/γN | ds = L2

LK(γN )

γN

∫ tj

a
|EN (s)| ds

≤ L2
LK(γN )

γN

∫ tj

a

∫ s

a
|eN (z)| dz ds ≤ L2 (b− a)

LK(γN )

γN

∫ t

a
|eN (z)| dz.

Similarly,

J6 ≤ L2
LK(γN )

γN

∫ tj

a
|eN (s)| ds ≤ L2

LK(γN )

γN

∫ t

a
|eN (s)| ds.

Proceeding as in Theorem 4.6,

|eN (t)| ≤ hM1 +M2

{
Lf (γN )

γN
+
LK(γN )

γN

}∫ t

a
|eN (z)| dz

for every t ∈ I = [a, b], with h = (b − a)/N , the constant M1 being de�ned
as in Theorem 4.6 and M2 := 2 max {Lf , L2 (b− a), L2}. Then, we obtain
from Gronwall's lemma

|eN (t)| ≤ (b− a)M1

N
eMN (t−a), t ∈ I = [a, b],

where

MN :=
M2

γN
{Lf (γN ) + LK(γN )} ,

and moreover,

|EN (t)| ≤ (b− a)M1

NMN

(
eMN (t−a) − 1

)
, t ∈ I,

for every N ∈ N+.
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Note that all examples of functions f and kernels K mentioned in Re-
mark 4.8 do satisfy conditions (a) and (b) of Theorem 4.11.

Remark 4.12. Theorem 4.11 can be easily extended to provide estimates
for the error a�ecting our method for VIDEs like (4.12) and (4.13), as in
Theorem 4.9 and Theorem 4.10.

We can now use the estimate provided by Theorem 4.6 (or Theorem 4.11)
to derive other estimates for the errors a�ecting the variant of our method
introduced in Remark 4.5 for equations like (4.1).

Let σ be a �xed bounded sigmoidal function. In what follows, we denote
by

eσN (t) := y′(t)− (GσNy
′)(t), t ∈ I := [a, b], (4.25)

where GσNy
′ is de�ned in (4.20) and it is written with the coe�cients αk

determined by our collocation method for equation (4.1). Furthermore, we
denote by

EσN (t) :=

∫ t

a
eσN (z) dz = y(t)− (SσNy)(t), t ∈ I := [a, b], (4.26)

that is the error function for y, when the approximate solution is expressed
by SσNy de�ned in (4.21). The following theorem provides some a posteriori

estimates for the error functions eσN and EσN .

Theorem 4.13. Let σ be a bounded sigmoidal function, and let (4.1) be a

given VIDE of the neutral type, which admits of a classical solution, y ∈
C1(I). Under the assumptions (i), (ii), (iii), and (iv) of Theorem 4.6, we

have

|eσN (t)| ≤ (b− a)M1

N
eM2(t−a)

+
∑
k:tk≤t

|αk| |σ(w (t− tk))− 1|+
∑
k:tk>t

|αk| |σ(w (t− tk))|,

for every t ∈ I. Furthermore,

|EσN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)

+|α0|
∫ t

a
|σ(w (s− t−1))− 1| ds+

N∑
k=1

|αk|
∫ t

a
|σ(w (s− tk))| ds,

for every t ∈ [a, t1], and

|EσN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)
+ |α0|

∫ t

a
|σ(w (s− t−1))− 1| ds

+

i−1∑
k=1

|αk|
[∫ tk

a
|σ(w (s− tk))| ds+

∫ t

tk

|σ(w (s− tk))− 1| ds
]
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+
N∑
k=i

|αk|
∫ t

a
|σ(w (s− tk))| ds.

for every t ∈ [ti−1, ti], i = 2, . . . , N , and N ∈ N+, where M1 and M2 are

suitable positive constants not depending on N .

Proof. We �rst write (GσNy
′)(t) =: (GNy

′)(t)+RN (t), where GNy
′ is de�ned

in (4.2) with the coe�cients αk determined in Theorem 4.1, and RN is a
suitable function. Let t ∈ I := [a, b] be �xed. We have

|RN (t)| = |(GσNy′)(t)− (GNy
′)(t)|

=

∣∣∣∣∣
N∑
k=1

αk [σ(w (t− tk))−H(t− tk)] + α0 [σ(w (t− t−1))− 1]

∣∣∣∣∣ ,
where w > 0 is a suitable parameter depending on σ and N ∈ N+. We can
observe that σ(w (t − tk)) − H(t − tk) = σ(w (t − tk)) − 1 if t ≥ tk, and
σ(w (t − tk)) − H(t − tk) = σ(w (t − tk)) if t < tk, for every k = 1, . . . , N .
Thus,

|RN (t)| ≤
∑
k:tk≤t

|αk| |σ(w (t− tk))− 1|+
∑
k:tk>t

|αk| |σ(w (t− tk))|.

By the inequality above and Theorem 4.6, we can write

|eσN (t)| = |y′(t)− (GσNy
′)(t)| ≤ |y′(t)− (GNy

′)(t)|+ |(GNy′)(t)− (GσNy
′)(t)|

= |eN (t)|+ |RN (t)| ≤ (b− a)M1

N
eM2 (t−a)

+
∑
k:tk≤t

|αk| |σ(w (t− tk))− 1|+
∑
k:tk>t

|αk| |σ(w (t− tk))|,

for every t ∈ I. Finally, we can also obtain

|EσN (t)| ≤
∫ t

a
|eσN (s)| ds ≤ (b− a)M1

N

∫ t

a
eM2 (s−a) ds

+|α0|
∫ t

a
|σ(w (s− t−1))− 1| ds+

N∑
k=1

|αk|
∫ t

a
|σ(w (s− tk))| ds,

for every t ∈ [a, t1], i.e.,

|EσN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)

+|α0|
∫ t

a
|σ(w (s− t−1))− 1| ds+

N∑
k=1

|αk|
∫ t

a
|σ(w (s− tk))| ds,
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for every t ∈ [a, t1], where the positive numbers M1 and M2 are those de-
termined in the proof of Theorem 4.6. Moreover, we have, for t ∈ (ti−1, ti],
i = 2, . . . , N ,

|EσN (t)| ≤ (b− a)M1

N

∫ t

a
eM2 (s−a) ds+ |α0|

∫ t

a
|σ(w (s− t−1))− 1| ds

+
i−1∑
k=1

|αk|
[∫ tk

a
|σ(w (s− tk))| ds+

∫ t

tk

|σ(w (s− tk))− 1| ds
]

+
N∑
k=i

|αk|
∫ t

a
|σ(w (s− tk))| ds,

or, equivalently,

|EσN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)
+ |α0|

∫ t

a
|σ(w (s− t−1))− 1| ds

+
i−1∑
k=1

|αk|
[∫ tk

a
|σ(w (s− tk))| ds+

∫ t

tk

|σ(w (s− tk))− 1| ds
]

+

N∑
k=i

|αk|
∫ t

a
|σ(w (s− tk))| ds.

Note that, from the de�nition itself of sigmoidal functions, the terms
|σ(w (t − tk)) − 1| and |σ(w (t − tk))| in the estimates of Theorem 4.13 are
small, when the positive parameter w is su�ciently large.

Now, we apply Theorem 4.13 to the special case of logistic sigmoidal
functions. This yields the following.

Corollary 4.14. If σ`(t) = (1 + e−t)−1, t ∈ R, and (4.1) is a given VIDE

of the neutral type, having a classical solution, y ∈ C1(I), we have, under

the assumptions (i), (ii), (iii), and (iv) of Theorem 4.6, for every w >
N
b−a ln(N − 1),

|eσN (t)| ≤ (b− a)M1

N
eM2(t−a)

+
∑
k:tk≤t

|αk|
e−w (t−tk)

1 + e−w (t−tk)
+
∑
k:tk>t

|αk| (1 + e−w (t−tk))−1,

for every t ∈ I. Furthermore,

|EσN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)
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+

{
|α0| ln

(
1 + e−w (b−a)/N

1 + e−w (t−t−1)

)
+

N∑
k=1

|αk| ln

(
1 +

ew (t−a)

1 + ew (tk−a)

)}
b− a

N ln(N − 1)
,

for every t ∈ [a, t1], and

|EσN (t)| ≤ (b− a)M1

NM2

(
eM2 (t−a) − 1

)
+

{
|α0| ln

(
1 + e−w (b−a)/N

1 + e−w (t−t−1)

)

+ 2 ln 2

[
i−1∑
k=1

|αk|

]
+

N∑
k=i

|αk| ln

(
1 +

ew (t−a)

1 + ew (tk−a)

)}
b− a

N ln(N − 1)
.

for every t ∈ (ti−1, ti], i = 2, . . . , N , and N ∈ N+, N > 2, where M1 and

M2 are suitable positive constants not depending on N .

Proof. The proof is a direct consequence of Theorem 4.13 and Corollary 2.16,
just observing that∫ tk

a
|σ`(w (s−tk))| ds+

∫ t

tk

|σ`(w (s−tk))−1| ds ≤ 2 ln 2w−1 ≤ 2 ln 2 (b− a)

N ln(N − 1)
,

for k = 1, . . . , i − 1, where i = 2, . . . , N , is such that t ∈ (ti−1, ti], for
w > N

b−a ln(N − 1), and N ∈ N+, N > 2.

Clearly, the analogue of Corollary 4.14 can be established for the case of
the Gompertz sigmoidal functions.

Remark 4.15. Theorem 4.13 and Corollary 4.14 can also be extended to the
case of VIDEs like (4.12) and (4.13), thus obtaining a posteriori estimates
for the corresponding errors, eσN and EσN . Further estimates can be obtained
replacing the assumptions of Theorem 4.6 with those of Theorem 4.11, in
Theorem 4.13 (and in Corollary 4.14)

4.3 Numerical examples

In this section, we apply the collocation method developed earlier in this
paper, to solve numerically some VIDEs of the form (4.1), (4.12), and (4.13).

Example 4.16. Consider the nonlinear VIDE, of the form (4.1),

y′(t) = 2e−t − e−y(t) + 2

∫ t

0
es−t−y(s)

[
2− y′(s)− ln

(
e (1 + s)y′(s)

)]
ds,

with initial condition y(0) = 0, for t ∈ [0, 1]. Its solution is y(t) = ln(1 + t).
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N ‖EN‖∞ ‖Eσ`N ‖∞ ‖EσαβN ‖∞ 1/(N lnN)

5 2.11× 10−2 1.86× 10−2 2.6× 10−2 1.24× 10−1

10 9.9× 10−3 9.6× 10−3 1.13× 10−2 4.34× 10−2

15 6.4× 10−3 6.4× 10−3 7.1× 10−3 2.46× 10−2

30 3.2× 10−3 3.2× 10−3 3.3× 10−3 9.8× 10−3

40 2.4× 10−3 2.4× 10−3 2.5× 10−3 6.8× 10−3

100 9.44× 10−4 9.44× 10−4 9.60× 10−4 2.2× 10−3

200 4.71× 10−4 4.71× 10−4 4.75× 10−4 9.43× 10−4

Table 4.1: Numerical results for Example 4.16. EN , E
σ`
N , and E

σαβ
N are the errors

on y, see Section 4.2. The scaling parameters, w of the collocation solutions Sσ`N y
and S

σαβ
N y are w = N2 and w = N2/(αβ), respectively, see Corollary 2.16 and

Corollary 2.17.

In Table 4.1, the corresponding numerical errors, obtained by our collo-
cation method with unit step functions, are shown. In the same table, we
also show the numerical errors made when logistic functions, σ`, and Gom-
pertz functions, σαβ with α = 0.85 and β = 0.1, are used. >From the results
of Table 4.1 it seems that the numerical errors pertaining to Example 4.16
decay to zero roughly as 1/(N lnN), when N gets large, hence faster than
shown by the theoretical results given in Section 4.2.

In order to assess accuracy and performance of our collocation method,
based on sigmoidal functions, we compared it with the classical piecewise
polynomial collocation method. In what follows, such a comparison is made
considering the collocation solutions in the space of piecewise polynomials
whose degree does not exceedm = 2, with collocation parameters c1 = 0 and
c2 = 1, i.e., the well-known Lobatto points, see [27]. Here, hN := (b − a)/N
is the uniform mesh size, and N is the number of subintervals of [a, b] where
the collocation is accomplished. In Table 4.2, the absolute errors for such a
piecewise collocation method are given, for several values of N , for the VIDE
of the neutral type in Example 4.16.

N : 5 10 15 30 100

Errors: 1.5× 10−3 1.13× 10−3 1.11× 10−3 6.47× 10−4 2.09× 10−4

Table 4.2: Numerical errors for the piecewise polynomial collocation method for
the equation in Example 4.16.

Comparing the numerical errors in Table 4.2 with those in Table 4.1, we
see, in general, the piecewise polynomial collocation methods, which are local
in nature, are more accurate than the method based on sigmoidal functions.
Moreover, for piecewise polynomial collocation method, mN = 2N collo-
cation points are needed, where N is the number of subintervals of [a, b].
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We should then compare the numerical results in Table 4.2 with those of
Table 4.1, when the same number of collocation points are used.

However, our method is simpler and o�ers some computational advan-
tages. Indeed, to solve nonlinear equations, we do not need to compute the
solutions of a sequence of nonlinear algebraic systems, as it happens using
the piecewise polynomial collocation method. To determine the coe�cients
of our collocation solutions, we can merely apply the explicit linear recur-
sive formulae given in Theorem 4.1. All integrals in such formulae can be
computed by numerical quadrature. In Table 4.3, we show the CPU times
needed to compute the solutions with the sigmoidal and piecewise polynomial
collocation methods for Example 4.16, for various N .

N sigmoidal functions piecewise polynomial

5 0.012895 0.069862
10 0.037928 0.097894
15 0.076565 0.149001
30 0.292096 0.314933

Table 4.3: Comparison between the CPU time (in seconds) for sigmoidal and
piecewise collocation methods for the problem in Example 4.16.

Comparing the CPU times given in Table 4.3 we can observe that the
numerical solutions by the collocation method with sigmoidal functions are
computed in a shorter time than the piecewise polynomial collocation method.

In addition, our method provides a simultaneous approximation of the
�rst derivative of the solution by a superposition of sigmoidal functions. In
Example 4.16, y′(t) = (1 + t)−1, t ∈ [0, 1]. In Table 4.4, the numerical errors
made in the approximation of y′ with GNy

′, Gσ`N y
′ and G

σαβ
N y′, α = 0.85 and

β = 0.1 are shown.

N ‖eN‖∞ ‖eσ`N ‖∞ ‖eσαβN ‖∞
5 1.50× 10−1 8.37× 10−2 1.25× 10−1

10 8.26× 10−2 6.17× 10−2 7.6× 10−2

15 5.66× 10−2 4.60× 10−2 5.61× 10−2

30 2.91× 10−2 2.75× 10−2 2.91× 10−2

40 1.96× 10−2 1.96× 10−2 1.96× 10−2

100 1.9× 10−3 4.9× 10−3 5.6× 10−3

200 9.70× 10−4 2.4× 10−3 2.8× 10−3

Table 4.4: Numerical results for Example 4.16. eN , e
σ`
N and e

σαβ
N are the errors

made computing y′, see Section 4.2. The scaling parameters, w, of the Gσ`N y
′ and

G
σαβ
N y′ are w = N2 and w = N2/(αβ), respectively.

Here the numerical errors in the approximation of y′ are larger than those
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made approximating y.

Example 4.17. Let be a classical nonlinear VIDE like (4.12), with a weakly
singular kernel, K, i.e.,

y′(t) =
1

8 y(t)
+
√
t

(
t

3
+

1

2

)
−
∫ t

0

y2(s)√
t− s

ds,

with initial condition y(0) = 1/2, for t ∈ [0, 1]. Its solution is y(t) =
(
√
t+ 1)/2.

Weakly singular kernels are not Lipschitz continuous near the right-points
of the interval [0, t], with t ∈ [0, 1]. This fact represents a problem for the
convergence of the numerical method. The numerical errors for such example
are shown in Table 4.5.

N ‖EN‖∞ ‖Eσ`N ‖∞ ‖EσαβN ‖∞ 1/(N lnN))

5 4.1× 10−3 3.6× 10−3 4.6× 10−3 1.24× 10−1

10 1.8× 10−3 1.8× 10−3 2× 10−3 4.34× 10−2

15 1.2× 10−3 1.2× 10−3 1.3× 10−3 2.46× 10−2

30 5.73× 10−4 5.71× 10−4 5.92× 10−4 9.8× 10−3

40 4.26× 10−4 4.25× 10−4 4.37× 10−4 6.8× 10−3

100 1.67× 10−4 1.67× 10−4 1.69× 10−4 2.2× 10−3

Table 4.5: Numerical results for Example 4.17. EN , E
σ`
N , and E

σαβ
N with α = 0.85

and β = 0.1, are the errors made evaluating y. The scaling parameters, w, of Sσ`N y
and S

σαβ
N y are w = N2 and w = N2/(αβ), respectively.

In Example 4.17, the numerical errors seem to decay roughly as 1/(N lnN),
as well as in Example 4.16.

In Example 4.17, again, it is more interesting to compare the numerical
errors of Table 4.5 with those obtained by piecewise collocation. In Table 4.6,
we show the absolute errors of the piecewise polynomial method applied to
the equation in Example 4.17 on [0, 1].

N : 5 10 15 30 100

Errors: 5.44× 10−2 1.7× 10−2 9× 10−3 3.1× 10−3 5.03× 10−4

Table 4.6: Numerical errors for the piecewise polynomial collocation method
for the equation in Example 4.17.

Comparing the results in Tables 4.5 and 4.6, we can observe that the col-
location method with sigmoidal functions is more accurate than the piecewise
polynomial collocation method. Therefore, our numerical method seems to
be competitive in case of equations with weakly singular kernels.
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Example 4.18. We consider the non-standard VIDE of the form (4.13),

y′(t) = y(t)

(
f̃(t) +

∫ t

0
e−(t−s)y(s) ds

)
,

where
f̃(t) := e−2t − e−t − 2,

and initial condition y(0) = 1, t ∈ [0, 1], whose solution is y(t) = e−2t, see
[29].

The corresponding numerical errors are given in Table 4.7.

N ‖EN‖∞ ‖Eσ`N ‖∞ ‖EσαβN ‖∞
5 8.99× 10−2 7.85× 10−2 1.01× 10−1

10 4.09× 10−2 3.98× 10−2 4.47× 10−2

15 2.63× 10−2 2.61× 10−2 2.82× 10−2

30 1.29× 10−2 1.28× 10−2 1.34× 10−2

40 9.6× 10−3 9.6× 10−3 9.9× 10−3

100 3.8× 10−3 3.8× 10−3 3.8× 10−3

200 1.9× 10−3 1.9× 10−3 1.9× 10−3

Table 4.7: Numerical results for Example 4.18. EN , E
σ`
N and E

σαβ
N with α = 0.85

and β = 0.1 are the errors made evaluating y. The scaling parameters, w, of Sσ`N y
and S

σαβ
N y are w = N2 and w = N2/(αβ), respectively.

Again, in Example 4.18, the same observation made for Example 4.16
and Example 4.17 applies, concerning the decay rate of the numerical errors.
Here, ‖EN‖∞, ‖Eσ`N ‖∞ and ‖EσαβN ‖∞ seem to decrease as C/(N lnN), being
C > 1 a suitable constant.

Similar considerations can be made for Example 4.18, as for Exam-
ple 4.16. In Table 4.8, the numerical errors obtained using piecewise polyno-
mial collocation on [0, 1] are given. Also in this case, the errors of Table 4.8
turn out to be smaller then those in Table 4.7.

N : 5 10 15 30 100

Errors: 1.33× 10−2 6.40× 10−3 4.2× 10−3 2.1× 10−3 6.34× 10−4

Table 4.8: Numerical errors for the piecewise polynomial collocation method for
the equation in Example 4.18.

Example 4.19. Consider the nonlinear VIDE of the neutral type:

y′(t) = 2t3 − 2y2(t)− 6t2 + 13t+ 12e−t − 12 +

∫ t

0
et−sy(s)(y′(s))2 ds,
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for t ∈ [0, 1], subject to the initial condition y(0) = 0. Its solution is y(t) =
(1/2)t2.

The numerical errors for such example are shown in Table 4.9.

N ‖EN‖∞ ‖Eσ`N ‖∞ ‖EσαβN ‖∞
5 6.28× 10−2 2.59× 10−2 5.57× 10−2

10 5× 10−3 3.9× 10−3 6.8× 10−3

15 2.8× 10−3 2.5× 10−3 3.9× 10−3

30 1.4× 10−3 1.3× 10−3 1.6× 10−3

40 1× 10−3 1× 10−3 1.1× 10−3

100 4.07× 10−4 4.06× 10−4 4.21× 10−4

200 2.03× 10−4 2.03× 10−4 2.07× 10−4

Table 4.9: Numerical results for Example 4.19. EN , E
σ`
N and E

σαβ
N with α = 0.85

and β = 0.1 are the errors made evaluating y. The scaling parameters, w, of Sσ`N y
and S

σαβ
N y are w = N2 and w = N2/(αβ), respectively.

N : 5 10 15 30 100

Errors: 3.8× 10−3 1.7× 10−3 1.1× 10−3 5.33× 10−4 1.54× 10−4

Table 4.10: Numerical errors for the piecewise polynomial collocation method for
the equation in Example 4.19.

In Example 4.19, we can determine all parameters required, to obtain
the a posteriori error estimates of Section 4.2.2. The constants M1 and M2

in Theorems 4.6 and 4.11 (which do depend neither on the number N of
sigmoidal functions nor on the mesh size, h) are

M1 = M + C + L1, M2 = 2L2 + Lf ,

where M =
√
L2
y + 1 =

√
2, C = L1 = e/2, L2 = 2e, and Lf = 16, hence,

M1 =
√

2 + e, M2 = 4e+ 16.

Moreover, the functions introduced in conditions (a) and (b) of Theorem 4.11
are Lf (γ) = γ2 and LK(γ) = γ3, γ ≥ 0, and �nally

γN := max
{

1, ‖SNy‖∞, ‖GNy′‖∞
}
,

and,

MN =
(4e+ 16)

N

(
γN + γ2N

)
.
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Therefore, the a posteriori estimate provided by Theorem 4.11 for the
collocation solutions of such neutral equation is given by

|EN (t)| ≤ (
√

2 + e)

NMN

(
eMN t − 1

)
=: RN (t),

for every t ∈ [0, 1]. This estimate is very sharp, especially when t is near to
zero. In Table 4.11, a comparison between the numerical errors |EN (t)| and
the a posteriori error estimates RN (t) of Theorem 4.11, for Example 4.19, is
given. As a rule, a priori estimates provide overestimates for the numerical

N t |EN (t)| RN (t)

5 0.05 0.0013 0.2106
5 0.07 0.0025 0.6466

30 0.05 5.8332× 10−4 0.0351
30 0.07 8.5885× 10−4 0.1078
30 0.1 0.0011 0.5507

40 0.05 5.3125× 10−4 0.0263
40 0.1 7.9136× 10−4 0.4130

100 0.05 1.9677× 10−4 0.0105
100 0.1 3.0052× 10−4 0.1652
100 0.13 3.3732× 10−4 0.8315

Table 4.11: Comparison between the numerical errors |EN (t)| and the a posteriori

error estimates RN (t) of Theorem 4.11, for Example 4.19.

errors. Clearly, since in the error inequality appear an exponential function
with exponentMN t depending on the (large) constantMN , for larger values
of t the previous estimate cannot be very sharp. Similar considerations can
be made in case of a posteriori estimate obtained approximating solutions
to neutral integro-di�erential equations by logistic or Gompertz functions.
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Chapter 5

Approximation by Series of

Sigmoidal Functions with

Applications to Neural

Networks

As shown in the last two chapters, the approximation results of Chapter 2
can be used to obtain numerical solutions of Volterra integral and integro-
di�erential equations. The numerical methods that have been proposed, are
very easy to implement and they present various advantages, which we have
been previously described in details.

However, our numerical methods have not high accuracy. Then, we study
new kinds of approximation techniques by sigmoidal functions, in order to
use them to improve the accuracy of our numerical methods.

In this chapter, we develop a constructive theory for approximating ab-
solutely continuous functions by series of certain sigmoidal functions. Esti-
mates for the approximation error are also derived. The relation with neural
networks approximation is discussed. The connection between sigmoidal
functions and the scaling functions of r-regular multiresolution approxima-
tions are investigated. In this setting, we show that the approximation error
for C1-functions decreases as 2−j , as j → +∞. Examples with sigmoidal
functions of several kinds, such as logistic, hyperbolic tangent, and Gom-
pertz functions, are given.

For the present theory the readers refer to [58].

The main idea introduced in this chapter, is to start from appropriate
real valued functions, φ, normalized so that

∫
R φ(t) dt = 1, and to construct

sigmoidal functions having the integral form σφ(x) :=
∫ x
−∞ φ(t) dt, x ∈ R.
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In this way, we can de�ne the operators

(S
σφ
w f)(x) :=

∑
k∈Z

[∫ b

a
φ(wy − k)f ′(y) dy

]
σφ(wx− k) + f(a),

x ∈ [a, b], where f is an absolutely continuous function on [a, b] ⊂ R, and
w > 0.

We can show that, the family (S
σφ
w f)w>0 converges to f uniformly on

[a, b]. Moreover, we derive estimates for the approximation error and the
truncation error of the series.

A remarkable result is obtained when φ is the real-valued wavelet scaling
function associated to an r-regular multiresolution approximation of L2(R),
constructed by a suitable procedure, see [109, 52, 64, 113]. In this setting,
we replace the weights w with 2j , j ∈ N+, as it seems more natural in view of
the relation that φ has with the multiresolution approximation. Also in this
case, we can show that the family of the operators (S

σφ
w f)w>0 converges to

f as j → +∞, uniformly on [a, b] Approximating C1−functions, we obtain
an approximation error decreasing to zero as 2−j when j → +∞.

Such a theory, in the present form, however, does not cover the important
cases of NNs activated by either logistic, hyperbolic tangent or Gompertz
sigmoidal functions. Therefore, we propose an extension of the theory previ-
ously developed, which includes such cases, also providing estimates for the
approximation errors for functions belonging to suitable Lipschitz class.

5.1 Approximation by series of sigmoidal functions

In what follows, we denote by AC[a, b] the sets of all absolutely continuous
functions, f : [a, b] → R, on the bounded closed nonempty interval [a, b].
Moreover, we recall that, by Ĉn[a, b], n ∈ N+, we will denote the set of
all functions f ∈ Cn(a′, b′), for some open real interval (a′, b′), such that
[a, b] ⊂ (a′, b′).

Let introduce the class of functions we will work with.

De�nition 5.1. The function φ : R → R+
0 is said to belong to the class Φ,

if it satis�es the following conditions:

(ϕ1) φ is continuous on R and there exists C > 0 such that

φ(x) ≤ C(1 + |x|)−α,

for every x ∈ R, and for some α ≥ 2;

(ϕ2)
∑
k∈Z

φ(x− k) = 1, for every x ∈ R.
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Remark 5.2. The condition (ϕ2) is equivalent to

φ̂(k) :=

{
0, k ∈ Z \ {0} ,
1, k = 0,

where φ̂(v) :=
∫
R φ(t) e−ivt dt, v ∈ R, is the Fourier transform of φ; see [36].

In particular, it turns out that φ̂(0) =
∫
R φ(t) dt = 1.

For any �xed φ ∈ Φ, the function Kφ : R2 → R+
0 , de�ned by

Kφ(x, y) :=
∑
k∈Z

φ(x− k)φ(y − k), (x, y) ∈ R2, (5.1)

will be called the kernel associated to φ. Clearly, it follows from condition
(ϕ2) and by Remark 5.2 that∫

R
Kφ(x, y) dy = 1, for every x ∈ R. (5.2)

Moreover, using (ϕ1), it is easy to see that

Kφ(x, y) ≤ L (1 + |x− y|)−α, for every x, y ∈ R, (5.3)

for some positive constant L. Under the previous assumptions on Kφ, the
following lemma, which will turn out to be useful later, could be established.
Its proof is classical and can be found in [113].

Lemma 5.3. Let (Tw)w>0 be the family of operators de�ned explicitly by

(Twf)(x) := w

∫
R
K(wx,wy) f(y) dy, x ∈ R,

for f : R → R (or C), and where the kernel K : R2 → R (or C) meets the

conditions (5.2) and (5.3). Then, for any uniformly continuous and bounded

function f , we have

lim
w→+∞

‖Twf − f‖∞ = 0.

Moreover, for every f ∈ Lp(R), 1 ≤ p < +∞, it results

lim
w→+∞

‖Twf − f‖p = 0.

Let now φ ∈ Φ be �xed and de�ne the function σφ : R→ R+
0 as

σφ(x) :=

∫ x

−∞
φ(t) dt, x ∈ R. (5.4)

Clearly, from condition (ϕ2) and Remark 5.2, such a function σφ is a sig-
moidal function. We can now give the following
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De�nition 5.4. For every �xed function φ ∈ Φ, we de�ne the family of

operators (S
σφ
w )w>0 by

(S
σφ
w f)(x) :=

∑
k∈Z

[∫ b

a
φ(wy − k) f ′(y) dy

]
σφ(wx− k) + f(a), x ∈ [a, b],

(5.5)
for every f ∈ AC[a, b] and w > 0. We call S

σφ
w f the �series of sigmoidal

functions for f , based on φ�, for the given value of w > 0.

Clearly, when f is a constant function, the De�nition 5.4 becomes trivial.
Now we can prove the following

Theorem 5.5. Let φ ∈ Φ be �xed. For any given f ∈ AC[a, b], the family

(S
σφ
w f)w>0 converges uniformly to f on [a, b], i.e.,

lim
w→∞

‖Sσφw f − f‖∞ = 0.

Moreover, if f ∈ Ĉ1[a, b], we have

‖Sσφw f − f‖∞ ≤ C̃w−1,

for some positive constant C̃ and for every w > 0.

Proof. Since f ∈ AC[a, b], f(x) =
∫ x
a f
′(z) dz + f(a) for every x ∈ [a, b].

Then, setting f̃ ′(z) = f ′(z) for z ∈ [a, b] and f̃ ′(z) = 0 for z /∈ [a, b], we
obtain

|(Sσφw f)(x)−f(x)| =

∣∣∣∣∣∑
k∈Z

[∫ b

a
φ(wy − k) f ′(y) dy

]
σφ(wx− k)−

∫ x

a
f ′(z) dz

∣∣∣∣∣
=

∣∣∣∣∣∑
k∈Z

[∫
R
φ(wy − k) f̃ ′(y) dy

] ∫ wx−k

−∞
φ(t) dt−

∫ x

−∞
f̃ ′(z) dz

∣∣∣∣∣ .
Changing variable, by setting t = wz − k, we get

|(Sσφw f)(x)− f(x)|

≤
∫ x

−∞

∣∣∣∣∣∑
k∈Z

[
w

∫
R
φ(wy − k) f̃ ′(y) dy

]
φ(wz − k)− f̃ ′(z)

∣∣∣∣∣ dz
=

∫ x

−∞

∣∣∣∣w ∫
R
Kφ(wz,wy) f̃ ′(y) dy − f̃ ′(z)

∣∣∣∣ dz
≤

∫ +∞

−∞

∣∣∣∣w ∫
R
Kφ(wz,wy) f̃ ′(y) dy − f̃ ′(z)

∣∣∣∣ dz. (5.6)

Being f̃ ′ ∈ L1(R), we obtain by Lemma 5.3 and inequality (5.6)

lim
w→+∞

‖Sσφw f − f‖∞ ≤ lim
w→+∞

‖Twf̃ ′ − f̃ ′‖1 = 0,
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which completes the proof of the �rst part of the theorem.
Consider now f ∈ Ĉ1[a, b]. Note that, by conditions (ϕ2) and (5.2), we

have

w

∫
R
Kφ(wz,wy) dy = 1, for every z ∈ R and w > 0.

Then, again from inequality (5.6), we obtain

|(Sσφw f)(x)− f(x)|

≤
∫
R

∣∣∣∣w ∫
R
Kφ(wz,wy) f̃ ′(y) dy − f̃ ′(z)w

∫
R
Kφ(wz,wy) dy

∣∣∣∣ dz
≤ w

∫
R

∫
R
Kφ(wz,wy) |f̃ ′(y)− f̃ ′(z)| dy dz

≤ 2w‖f ′‖∞
∫
R

∫
R
Kφ(wz,wy) dy dz. (5.7)

Changing the variables z and y in the last integral in (5.7) with z1/w and
y1/w, respectively, we obtain, in view of condition (5.3),

‖Sσφw f − f‖∞ ≤ 2w−1‖f ′‖∞
∫
R

∫
R
Kφ(z1, y1) dy1 dz1

≤ 2w−1‖f ′‖∞ L
∫
R

∫
R

(1 + |z1 − y1|)−α dy1 dz1 =: C̃w−1,

for every w > 0, for some C̃ > 0, and where α ≥ 2 is the constant of condition
(ϕ1). This completes the proof of the second part of the theorem.

Examples of functions φ ∈ Φ will be given in the next sections.

5.2 Application to neural networks

Here we give some applications of the theory developed in the previous sec-
tions to NNs activated by the sigmoidal functions generated by (5.4).

We will denote by ΦC the subset of Φ of functions having a compact
support.

Let φ ∈ ΦC be �xed, and let M1, M2 > 0 such that suppφ ⊆ [−M1,M2].
In this case, we have for any f ∈ AC[a, b] and w > 0,∫ b

a
φ(wy − k)f ′(y) dy = 0,

for every k < wa−M2 and k > wb+M1, k ∈ Z, since for these values of k,
[wa−k,wb−k]∩ [−M1,M2] = ∅. Then, the series appearing in the de�nition
of the operator S

σφ
w f reduces to a �nite sum, i.e.,

(S
σφ
w f)(x) =

dwb+M1e∑
k=bwa−M2c

[∫ b

a
φ(wy − k) f ′(y) dy

]
σφ(wx− k) + f(a), (5.8)
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for every x ∈ [a, b], where the functions dxe and bxc denote the upper and the
lower integer part of x ∈ R, respectively. Now, we introduce the following
modi�cation in De�nition 5.4 for the case φ ∈ ΦC . For any f ∈ AC[a, b], set

(G
σφ
w f)(x) :=

dwb+M1e∑
k=bwa−M2c

[∫ b

a
φ(wy − k) f ′(y) dy

]
σφ(wx− k) + f(a)σφ(w(x− a+ 1)),

for every x ∈ [a, b] and w > 0. The G
σφ
w f 's are a kind of NNs. They

approximate f , uniformly on [a, b], as w → +∞. The proof of this claim
follows from the same arguments made in Theorem 5.5, taking into account
that

sup
x∈[a,b]

|f(a)||1− σφ(w(x− a+ 1))| ≤ |f(a)||1− σφ(w)| = 0, (5.9)

for w > 0 su�ciently large. Indeed, by the de�nition of σφ, for every w > M2

we have

σφ(w) =

∫ w

−∞
φ(x) dx =

∫
R
φ(x) dx = 1. (5.10)

Moreover, again by Theorem 5.5, if f ∈ Ĉ1[a, b] we obtain the convergence
rate given by ‖Gσφw f − f‖∞ ≤ C̃w−1, for some positive constants C̃ and for
every su�ciently large w > 0.

In addition, our proofs are constructive in nature, and allow us to deter-
mine explicitly the form of the NN. In particular, we show that the set of
NNs G

σφ
w f is dense in the set AC[a, b], with respect to the uniform norm.

Now, we show that we can obtain NNs also starting from functions φ ∈ Φ
which are not necessarily compactly supported. Let �rst prove the following

Lemma 5.6. The series
∑

k∈Z φ(wx−k) converges uniformly on the compact

subsets of R, for every �xed w > 0.
In particular, we have for every [a, b] ⊂ R

sup
x∈[a,b]

∑
|k|>N

φ(wx− k) ≤ C
{

(N − wb+ 1)−(α−1) + (N + wa+ 1)−(α−1)
}
,

for some C > 0, for every N > wmax {|a|, |b|}, N ∈ N+, where α ≥ 2 is the

constant of condition (ϕ1).

Proof. Let [a, b] ⊂ R be �xed. By condition (ϕ1) and forN > wmax {|a|, |b|}
we have

sup
x∈[a,b]

∑
|k|>N

φ(wx− k) ≤ C sup
x∈[a,b]

∑
|k|>N

(1 + |wx− k|)−α
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= C

{
sup
x∈[a,b]

∑
k>N

(1 + |wx− k|)−α + sup
x∈[a,b]

∑
k>N

(1 + |wx+ k|)−α
}

≤ C

{∑
k>N

(1 + k − wb)−α +
∑
k>N

(1 + wa+ k)−α

}
≤ C

{∫ +∞

N
(1 + x− wb)−αdx

+

∫ +∞

N
(1 + wa+ x)−αdx

}
=: C

{
(N − wb+ 1)−(α−1) + (N + wa+ 1)−(α−1)

}
.

The proof then follows.

We can now establish the following

Theorem 5.7. (i) For any f ∈ AC[a, b], we denote by

(G
σφ
N,wf)(x) :=

N∑
k=−N

[∫ b

a
φ(wy − k) f ′(y) dy

]
σφ(wx− k)

+f(a)σφ(w(x− a+ 1)), (5.11)

for x ∈ [a, b], w > 0, and N ∈ N+. Then, for every ε > 0 there exist w > 0
and N ∈ N+ such that

‖GσφN,wf − f‖∞ < ε.

(ii) Moreover, for any f ∈ Ĉ1[a, b] we have

‖GσφN,wf − f‖∞ ≤ C1

{
(N − wb+ 1)−(α−1) + (N + wa+ 1)−(α−1)

}
+C2w

−1 + C3w
−(α−1),

for some constants C1, C2, C3 > 0, and for every w > 0 with N >
wmax {|a|, |b|}, N ∈ N+, where α ≥ 2 is the constant appearing in con-

dition (ϕ1).

Proof. (i) Let ε > 0 be �xed. For every x ∈ [a, b] we have

|(GσφN,wf)(x)− f(x)| ≤ |(GσφN,wf)(x)− (S
σφ
w f)(x)|+ |(Sσφw f)(x)− f(x)|

≤
∑
|k|>N

[∫ b

a
φ(wy − k) |f ′(y)| dy

]
σφ(wx− k) + |f(a)||1− σφ(w(x− a+ 1))|

+ ‖Sσφw f − f‖∞ =: S1 + S2 + S3. (5.12)

Proceeding as in (5.9) and using (ϕ1), we can write

S2 ≤ |f(a)||1− σφ(w)| = |f(a)|
∫ +∞

w
φ(x) dx
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≤ |f(a)|C
∫ +∞

w
(1 + x)−αdx =: C (1 + w)−(α−1), (5.13)

where α ≥ 2 is the constant appearing in condition (ϕ1), and C > 0, then
S2 < ε for w > 0 su�ciently large. Moreover, we obtain from Theorem 5.5
that S3 < ε for w > 0 su�ciently large. Finally, we can estimate S1. Being
‖σφ‖∞ ≤ 1, we obtain for S1

S1 ≤ ‖σφ‖∞
∑
|k|>N

[∫ b

a
φ(wy − k) |f ′(y)| dy

]

≤

 sup
y∈[a,b]

∑
|k|>N

φ(wy − k)

∫ b

a
|f ′(y)| dy. (5.14)

We have by Lemma 5.6, for every �xed and su�ciently large w > 0,

sup
y∈[a,b]

∑
|k|>N

φ(wy − k) ≤ C
{

(N − wb+ 1)−(α−1) + (N + wa+ 1)−(α−1)
}
,

(5.15)
for some constant C > 0 and for every N > wmax {|a|, |b|} with N ∈ N+.
Then, for N su�ciently large we obtain S1 < ε. This completes the proof of
(i).
(ii) For any f ∈ Ĉ1[a, b], Theorem 5.5 shows that S3 ≤ C̃w−1 uniformly with
respect to x ∈ [a, b], for every w > 0. Moreover, we obtain by (5.13) and
(5.15)

S1 + S2 + S3 ≤ C
[∫ b

a
|f ′(y)| dy

]{
(N − wb+ 1)−(α−1)

+ (N + wa+ 1)−(α−1)
}

+ C̃ w−1 + C (1 + w)−(α−1)

≤ C1

{
(N − wb+ 1)−(α−1) + (N + wa+ 1)−(α−1)

}
+ C2w

−1 + C3w
−(α−1),

uniformly with respect to x ∈ [a, b], for some constants C1, C2, C3 > 0, and
for w > 0 su�ciently large, with N > wmax {|a|, |b|}.

Remark 5.8. Setting C3 = 0 in Theorem 5.7 (ii), we also obtain an estimate
for the truncation error for the series of sigmoidal functions introduced in
Section 5.1. Note that, when the weight, w, increases, we need a higher
number of neurons, N , which depends on w.

We now construct few examples of sigmoidal functions, σφ, providing �rst
some examples of functions φ ∈ ΦC satisfying all hypotheses of our theory.
Recall that the �central B-splines� of order n ∈ N+, are de�ned as

Mn(x) :=
1

(n− 1)!

n∑
i=0

(−1)i
(
n

i

)(n
2

+ x− i
)n−1
+

,
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where (x)+ := max {x, 0} is the positive part of x ∈ R [34]. The Fourier
transform of Mn is given by

M̂n(v) := sincn
( v

2π

)
, v ∈ R,

where the sinc function is de�ned by

sinc(x) :=

 sin(πx)

πx
, x ∈ R \ {0} ,

1, x = 0.

The Mn's are bounded and continuous on R for all n ∈ N+, and are com-
pactly supported on [−n/2, n/2]. This implies thatMn ∈ L1(R) and satis�es
condition (ϕ1) for every α ≥ 2. Finally, condition (ϕ2) holds, in view of Re-
mark 5.2, hence, Mn ∈ ΦC for every n ∈ N+. Therefore, we can construct
explicitly the NNs G

σMn
w f , n ∈ N+.

As an example of function φ ∈ Φ which is not compactly supported,
consider the continuous function

F (x) :=
1

2π
sinc2

( x
2π

)
, x ∈ R.

Clearly, F (x) = O(x−2−ε) as x → ±∞, ε > 0, hence F satis�es condition
(ϕ1) with α = 2, see [34]. Moreover, its Fourier transform is

F̂ (v) :=

{
1− |v|, |v| ≤ 1,
0, |v| > 1,

(see [34] again). By Remark 5.2, F satis�es also condition (ϕ2), and then
F ∈ Φ.

Remark 5.9. Note that the theory developed in this section cannot be
applied to the case of NNs activated by the logistic functions, σ`(x) :=
(1 + e−x)−1, or to the hyperbolic tangent sigmoidal functions, σh(x) :=
1
2 + 1

2 tanh(x) = 1
2 + e2x−1

2(e2x+1)
. In fact, σ` and σh can be generated by (5.4)

from φ`(x) := e−x(1 + e−x)−2 and φh(x) := 2e2x(e2x + 1)−2, respectively.

However, φ̂`(v) = πv/ sinh(πv) and φ̂h(v) = πv/(2 sinh(πv/2)), respectively,
which do not meet the condition in Remark 5.2, i.e., do not satisfy condition
(ϕ2). In Section 5.4 below, an extension of the theory developed above is
proposed, which allows to use NNs activated by σ` or σh.

5.3 Sigmoidal functions and multiresolution approx-

imation

In this section, we will show a connection between the theory of multiresolu-
tion approximation and our theory for approximating functions by series of
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sigmoidal functions. We �rst recall some basic facts concerning the multires-
olution approximation. For the detailed theory, see [109, 52, 64, 113, 134].
We start recalling the following.

De�nition 5.10. A �multiresolution approximation� of L2(R) is an increas-

ing sequence, Vj, j ∈ Z, of linear closed subspaces of L2(R), enjoying the

following properties:⋂
j∈Z

Vj = {0} ,
⋃
j∈Z

Vj is dense in L2(R); (5.16)

for all f ∈ L2(R) and all j ∈ Z,

f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1; (5.17)

for all f ∈ L2(R) and all k ∈ Z,

f(x) ∈ V0 ⇐⇒ f(x− k) ∈ V0; (5.18)

there exists a function, h(x) ∈ V0, such that the sequence

(h(x− k))k∈Z is a Riesz basis of V0. (5.19)

Recall that a sequence of functions (hk)k∈Z is a Riesz basis of an Hilbert
space,H ⊆ L2(R), if there exist two constants, C1 and C2, with C1 > C2 > 0,
such that, for every sequence of real or complex numbers (ak)k∈Z ∈ l2(Z), it
turns out that

C2

(∑
k∈Z
|ak|2

)1/2

≤

∥∥∥∥∥∑
k∈Z

akhk

∥∥∥∥∥
L2(R)

≤ C1

(∑
k∈Z
|ak|2

)1/2

,

and the vector space of �nite linear combinations of hk, is dense in H.

De�nition 5.11. A multiresolution approximation, Vj, j ∈ Z, is called �r-

regular� (r ∈ N+), if the function h in (5.19) is such that h ∈ Cr(R) and

|h(i)(x)| ≤ Cm(1 + |x|)−m, x ∈ R, (5.20)

for each integer m ∈ N+ and for every positive index i ≤ r.

For every r-regular multiresolution approximation Vj , j ∈ Z, we can
de�ne the function φ ∈ L2(R), called scaling function, as

φ̂(v) := ĥ(v)

(∑
k∈Z
|ĥ(v + 2πk)|2

)−1/2
, v ∈ R. (5.21)

In [113, Ch. 2] it is proved that
∑

k∈Z |ĥ(v+ 2πk)|2 ≥ c > 0, hence φ is well-
de�ned. Moreover, by the regularity of h, we have, as a consequence of the
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Sobolev's embedding theorem, that
∑

k∈Z |ĥ(v+2πk)|2 is a C∞(R) function.
Furthermore, the family (φ(x− k))k∈Z turns out to be an orthonormal basis
of V0, [64, 113], and from (5.17) and (5.18) we obtain by a simple change of
scale, that (2j/2φ(2jx− k))k∈Z forms an orthonormal basis of Vj .

Now, by smoothness and periodicity of
(∑

k∈Z |ĥ(v + 2πk)|2
)−1/2

, the

latter can be written by means of its Fourier series
∑

k∈Z αke
ikv, where the

coe�cients αk decrease rapidly. We thus obtain φ̂(v) =
(∑

k∈Z αke
ikv
)
ĥ(v)

which gives φ(x) =
∑

k∈Z αk h(x + k), and then it follows that the scaling
function φ satis�es the estimates in (5.20). In particular, we have

|φ(x)| ≤ C̃α (1 + |x|)−α, x ∈ R, (5.22)

for some C̃α > 0, for every integer α ∈ N+, i.e., φ satis�es condition (ϕ1) for
for every α ∈ N+.

Let now Ej be the orthogonal projection of L2(R) onto Vj , given by

(Ejf)(x) :=
∑
k∈Z

[
2j
∫
R
f(y)φ(2jy − k) dy

]
φ(2jx− k), f ∈ L2(R), (5.23)

where φ is the complex conjugate of φ. Let de�ne E(x, y) :=
∑

k∈Z φ(y −
k)φ(x − k), the kernel of the projection operator E0, hence 2j E(2jx, 2jy),
j ∈ Z will be the kernel of the projection operator Ej .

Again in [113], it is proved the following remakable property for the
kernel, E, ∫

R
E(x, y) yα dy = xα, for every x ∈ R, (5.24)

for every integer α ∈ N and α ≤ r. From (5.24) with α = 0, the integral
property ∫

R
E(x, y) dy = 1, for every x ∈ R,

follows. Moreover, since φ satis�es (5.22), it is easy to see that

|E(x, y)| ≤ Cα(1 + |x− y|)−α, ∀ (x, y) ∈ R2, and ∀ α ∈ N+,

where Cα > 0. Hence, E is a bivariate kernel satisfying conditions (5.2) and
(5.3). Then, by Lemma 5.3, we infer that ‖Ejf − f‖p → 0 as j → +∞, for
every f ∈ Lp(R) and 1 ≤ p <∞. Moreover, exploiting the properties of the
projection operators Ej , the quantity

Σ(x, v) :=
∑
k∈Z

ei2πkx φ̂(v + 2kπ) φ̂(v), x, v ∈ R,

can be de�ned, which satis�es the condition Σ(x, 0) = 1, for every x ∈ R,
[113]. This yields ∑

k∈Z
ei2πkxφ̂(2kπ) φ̂(0) = 1. (5.25)
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Now, we can adjust the scaling function φ merely multiplying φ̂ by a suitable
constant of modulus 1, so that φ̂(0) =

∫
R φ(t) dt = 1, while preserving all

the other properties, [113]. By the regularity of φ, the Poisson summation
formula holds, and from (5.25) we obtain

1 =
∑
k∈Z

ei2πkx φ̂(2kπ) =
∑
k∈Z

φ(x+ k) =
∑
k∈Z

φ(x− k), x ∈ R,

i.e., the scaling function φ satis�es condition (ϕ2). Using (5.4), we can now
consider the function σφ constructed by the scaling function φ. Clearly, if φ
is real valued, σφ turns out to be a sigmoidal function. Then, we have the
following

Theorem 5.12. Let φ be a real valued scaling function like that constructed

above, associated to an r-regular multiresolution approximation of L2(R).
(i) Then, for any f ∈ AC[a, b], the sequence of operators (S

σφ
j f)j∈N+ , de�ned

by

(S
σφ
j f)(x) :=

∑
k∈Z

[∫ b

a
φ(2jy − k) f ′(y) dy

]
σφ(2jx− k) + f(a),

for every x ∈ [a, b], converges uniformly to f on [a, b].
In particular, if f ∈ Ĉ1[a, b], we have

‖Sσφj f − f‖∞ ≤ C 2−j ,

for some positive constant C and for every positive integer j.
(ii) Denote by S

σφ
N,jf , N ∈ N+, the truncated series S

σφ
j f , i.e.,

(S
σφ
N,jf)(x) :=

N∑
k=−N

[∫ b

a
φ(2jy − k) f ′(y) dy

]
σφ(2jx− k) + f(a).

Then, for every f ∈ Ĉ1[a, b], we have

‖SσφN,jf−f‖∞ ≤ C1 2−j+C2,α

{
(N − 2jb+ 1)−(α−1) + (N + 2ja+ 1)−(α−1)

}
,

for some positive constants C1 and C2,α, for every j ∈ N+, and N >
2j max {|a|, |b|}, where α ∈ N+ is an arbitrary integer.

The proof of Theorem 5.12 (i) follows as the proof of Theorem 5.5, taking
into account that, the sequence (Ejf)j∈Z, f ∈ L1(R), converges to f in
L1(R). Moreover, the proof of Theorem 5.12 (ii) follows, as the proof of
Theorem 5.7 (ii), using condition (5.22) and Lemma 5.6, where we have 2j

in place of w.
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Remark 5.13. Note that, in the special setting of r-regular multiresolution
approximations, we are able to prove that the real-valued scaling functions φ,
constructed above, are such that φ ∈ Φ. Moreover, condition (5.17) in De�-
nition 5.10 allows us to consider the weights in the basis (2j/2φ(2jx−k))k∈Z,
and then in the series S

σφ
j f , as 2j , i.e., the weights increase exponentially

with respect to j. Then, the error of approximation of C1-functions decreases
as 2−j . Moreover, conditions (5.20) and (5.22) are crucial to prove that the
truncation error also decrease rapidly.

Examples of r-regular multiresolution analysis satisfying the conditions
above can be given, assuming h to be generated by spline wavelets of order
r + 1 (see e.g. Fig. 5.1). These are de�ned by

hr(x) :=
1

r!

r+1∑
i=0

(−1)i
(
r + 1

i

)
(x− i)r+ , x ∈ R, (5.26)

which can be viewed just as shifted central B-splineMn. Generally speaking,
the de�nition of hn is given in terms of convolution, i.e., hn can be de�ned
as the convolution of r + 1 characteristic functions of the interval [0, 1), see
[131]. Note that, also the central B-spline can be de�ned similarly, in terms
of convolutions of the characteristic functions of the interval [−1/2, 1/2), see
[34]. The Fourier transform of hr can be easily obtained by

ĥr(v) := e−iv(r+1)/2 sincr+1
( v

2π

)
, v ∈ R.

The scaling function φ associated to the spline wavelet multiresolution ap-
proximation can be obtained using (5.21) and the normalization procedure
described above, see [113, 131, 65]. In Fig. 5.2 the sigmoidal function σφh2
obtained from φh2 is plotted.

5.4 An extension of the theory for neural network

approximation

The theory developed in the previous sections of this chapter, concerning
the approximation by means of series of sigmoidal functions based on σφ, is
beset by the technical di�culty of checking that φ satis�es condition (ϕ2).
To this purpose, we could use the condition given in Remark 5.2. However,
this does not simplify the problem. In fact, evaluating the Fourier transform
of a given function is often a di�cult task. Moreover, as noticed in Remark
5.9, the sigmoidal functions most used for NN approximation do not satisfy
(ϕ2). Below, we propose an extension of the theory developed in the pre-
vious sections, aiming at obtaining approximations with NNs activated by
sigmoidal functions σφ, without assuming that condition (ϕ2) be satis�ed by
φ.
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Figure 5.1: The scaling function φh2 , plotted using Mathematica.

Figure 5.2: The sigmoidal function σφh2 obtained from φh2 , plotted using Mathe-

matica.
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Through this section, we consider functions φ : R→ R+
0 , with

∫
R φ(t) dt =

1 and satisfying condition (ϕ1) with α > 2. Moreover, we set

ψφ(t) := σφ(t+ 1)− σφ(t) > 0, t ∈ R,

and assume in addition that ψφ satis�es:

(Ψ1) ψφ(t) ≤ A(1 + |t|)−α,

for every t ∈ R and some A > 0. We denote by T the set of all functions φ
satisfying such conditions. We can now prove the following

Lemma 5.14. For any given φ ∈ T , the relation∑
k∈Z

ψφ(x− k) = 1, x ∈ R

holds.

Proof. Let x ∈ R be �xed. Then,

N∑
k=−N

ψφ(x−k) =
N∑

k=−N
[σφ(x−k+1)−σφ(x−k)] = σφ(x+N+1)−σφ(x−N),

since the sum is telescopic. Passing to the limit for N → +∞, we obtain
immediately

+∞∑
k=−∞

ψφ(x− k) = lim
N→+∞

[σφ(x+N + 1)− σφ(x−N)] = 1.

Let now introduce the bivariate kernel

Kφ,ψ(x, y) :=
∑
k∈Z

ψφ(x− k)φ(y − k), (x, y) ∈ R2.

As made in Section 5.1 for the kernel Kφ, we can show, using Lemma 5.14
and conditions (ϕ1) and (Ψ1), that Kφ,ψ satisfy both, (5.2) and (5.3). Now,

for any given φ ∈ T , we consider the family of operators (F φw)w>0, de�ned
by

(F φwf)(x) :=
∑
k∈Z

w

[∫
R
φ(wy − k)f(y) dy

]
ψφ(wx− k)

:= w

∫
R
Kφ,ψ(wx,wy)f(y) dy, x ∈ R,

for every bounded f : R→ R, w > 0.
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Remark 5.15. Note that, by Lemma 5.3, for every uniformly continuous and
bounded function f , the family of operators (F φwf)w>0 converges uniformly
to f on R, as w → +∞.

To study the order of approximation for the operators above, we de�ne
the Lipschitz class of the Zygmund type we will work with. Let us de�ne

Lip(ν) :=
{
f : R→ R : f ∈ C0(R), ‖f(·)− f(·+ t)‖∞ = O(|t|ν) as t → 0

}
,

for every 0 < ν ≤ 1. We can now prove the following lemma concerning the
order of approximation of (F

σφ
w f)w>0 to f(x):

Lemma 5.16. Let f ∈ Lip(ν), 0 < ν ≤ 1, be a �xed bounded function.

Then, there exist C1 > 0 and C2 > 0 such that

sup
x∈R
|(F φwf)(x)− f(x)| ≤ C1w

−ν + C2w
−(α−1),

for every su�ciently large w > 0, where α > 2 is the constant of condition

(ϕ1).

Proof. Let x ∈ R be �xed. Since f ∈ Lip(ν), there exist M > 0 and γ > 0
such that

‖f(·)− f(·+ t)‖∞ ≤M |t|ν ,

for every |t| ≤ γ. Moreover, we infer from condition (5.2)

w

∫
R
Kφ,ψ(wx,wy) dy = 1, x ∈ R, (5.27)

and then we can write

|(F φwf)(x)− f(x)| ≤ w
∫
R
Kφ,ψ(wx,wy) |f(y)− f(x)| dy

=

[∫
|y−x|≤γ

+

∫
|y−x|>γ

]
wKφ,ψ(wx,wy) |f(y)− f(x)| dy =: J1 + J2.

Let �rst estimate J1. From (5.3) and (5.27), by the change of variable y =
(t/w) + x, and being f ∈ Lip(ν), we obtain for w > 0 su�ciently large

J1 =

∫
w−1|t|≤γ

Kφ,ψ(wx, t+ wx) |f (x+ t/w)− f(x)| dt

≤M

[∫
|t|≤w γ

Kφ,ψ(wx, t+ wx)

∣∣∣∣ tw
∣∣∣∣ν dt

]
≤ L̃w−ν

∫
R

(1 + |t|)−α |t|ν dt,
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where L̃ > 0 is a suitable constant. Now, since α > 2, we have L̃
∫
R(1 +

|t|)−α |t|ν dt =: C1 < +∞, then J1 ≤ C1w
−ν , for w > 0 su�ciently large.

Moreover, setting t = wy and using again condition (5.3), we have

J2 =

∫
|t−wx|>wγ

Kφ,ψ(wx, t)|f(t/w)− f(x)| dt

≤ 2‖f‖∞
∫
|t−wx|>wγ

Kφ,ψ(wx, t) dt ≤ L
∫
|t−wx|>wγ

(1 + |t− wx|)−α dt,

where L is a suitable positive constant. Changing now the variable t into z,
setting z = t− wx in the last integral, we obtain

J2 ≤ L
∫
|z|>wγ

(1 + |z|)−α dz ≤ C2w
−(α−1),

for every w > 0. This completes the proof.

We can now prove the following

Theorem 5.17. Let φ ∈ T be �xed. De�ne the NNs

(Nφ
N,wf)(x) :=

N∑
k=−N

w

[∫
R
φ(wy − k) f(y) dy

]
ψφ(wx− k), x ∈ R,

where w > 0, N ∈ N+, and f : R→ R is a bounded function on R.

(i) Let f ∈ C0[a, b] be �xed. Then, for every ε > 0, there exist w > 0 and

N > wmax {|a|, |b|}, such that

‖Nφ
N,wf̃ − f‖∞ = sup

x∈[a,b]
|(Nφ

N,wf̃)(x)− f(x)| < ε,

where f̃ is a continuous extensions of f such that f̃ has compact support and

f̃ = f on [a, b].

(ii) Let f ∈ Lip(ν), 0 < ν ≤ 1, and [a, b] ⊂ R be �xed. Then, we have

‖Nφ
N,wf − f‖∞ = sup

x∈[a,b]
|(Nφ

N,wf)(x)− f(x)|

≤ C1w
−ν +C2w

−(α−1) +C3

{
(N − wb+ 1)−(α−1) + (N + wa+ 1)−(α−1)

}
,

for every su�ciently large w > 0 and N > wmax {|a|, |b|}, for some positive

constants C1, C2, and C3.
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Proof. (i) Suppose for the sake of simplicity that ‖f‖∞ = ‖f̃‖∞, and note
that f̃ is uniformly continuous. Let now ε > 0 and x ∈ [a, b] be �xed. We
can write

|(Nφ
N,wf̃)(x)− f(x)| ≤ |f(x)− (F φw f̃)(x)|+ |(F φw f̃)(x)− (Nφ

N,wf̃)(x)|
=: I1 + I2.

By Remark 5.15 we have I1 < ε for w > 0 su�ciently large. Moreover,

I2 ≤
∑
|k|>N

w

[∫
R
φ(wy − k) |f̃(y)| dy

]
ψφ(wx− k).

Hence, w
∫
R φ(wy − k) dy = 1, and since (Ψ1) holds, we obtain for ψφ the

same estimate given in Lemma 5.6 for φ, then for every �xed su�ciently
large w > 0 we have

I2 ≤ ‖f‖∞ sup
x∈[a,b]

∑
|k|>N

[
w

∫
R
φ(wy − k) dy

]
ψφ(wx− k)

= ‖f‖∞

 sup
x∈[a,b]

∑
|k|>N

ψφ(wx− k)


< ‖f‖∞C̃

{
(N − wb+ 1)−(α−1) + (N + wa+ 1)−(α−1)

}
< ε, (5.28)

for some positive constant C̃, N ∈ N+, N > wmax {|a|, |b|}, and then, (i) is
proved being ε > 0 arbitrary.

(ii) Let now f ∈ Lip(ν) be a �xed. We have by Lemma 5.16

I1 ≤ C1w
−ν + C2w

−(α−1),

for every su�ciently large w > 0 and for some positive constants C1 and C2.
Moreover, we obtain from (5.28)

I2 ≤ C3

{
(N − wb+ 1)−(α−1) + (N + wa+ 1)−(α−1)

}
,

for a suitable constant C3 > 0. Then, the second part of the theorem is
proved.

As a �rst example, we can consider the case of the logistic function, σ`
(see e.g. [38]), generated by φ`(x) := e−x(1 + e−x)−2. Clearly, conditions
(ϕ1) and (Ψ1), are ful�lled, since φ` and

ψ`(x) := σ`(x+ 1)− σ`(x) =
e (e− 1) e−x

(1 + e−x−1)(1 + e−x)
,
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decay exponentially as x → ±∞. A second example, is given by the hyper-
bolic tangent sigmoidal function (see, e.g., [7, 8]),

σh(x) :=
1

2
+

1

2
tanh(x) =

1

2
+

e2x − 1

2(e2x + 1)
.

This can be generated by φh(x) = 2 e2x (e2x+1)−2, whose associated function
ψh is

ψh(x) =
(e2 − 1) e2x

(e2x+2 + 1)(e2x + 1)
.

It can be easily checked that such a function φh belongs to T .
Finally, we recall that another remarkable example of sigmoidal function,

for which the theory can be applied, is provided by the class of Gompetz
functions σαβ .

Remark 5.18. Note that, in closing, in order to approximate functions
by the NNs G

σφ
N,w, the half of the number of sigmoidal functions needed to

approximate functions by the NNs Nφ
N,w, would now su�ce. The theory

developed in this section, however, can be applied to important sigmoidal
functions for which the theory earlier discussed in Sections 5.1 and 5.2 cannot
be applied.
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Chapter 6

Neural Network Operators

In this chapter, we introduce a modern way to study neural network approx-
imation by means of the Operator Theory.

Our purpose is again to study other kinds of sigmoidal functions approx-
imation, in order to develop numerical methods able to achieve an higher
accuracy with respect to the methods developed in Chapters 3 and 4.

6.1 Cardalignet-Euvrard and Squashing neural net-

work operators

In [5, 6], Anastassiou was the �rst to establish neural networks approxima-
tion to continuous functions with rates by very speci�cally neural network
operators of the Cardalignet-Euvrard and squashing types [45], by employing
the modulus of continuity of the engaged function or its high order deriva-
tive. In his papers, Anastassiou produced a Jackson-type inequalities. We
recall the following.

De�nition 6.1. A function b : R → R is said to be �bell-shaped� if b ∈
L1(R) and its integral is nonzero, if it is nondecreasing on (−∞, a) and non-

increasing in [a,+∞), with a ∈ R. In particular, b(x) is non-negative an at

the point a the function b take a global maximum (a is said to be the "center�

of the bell-shaped function). A bell-shaped function is said "centered� if its

center is zero.

The function b may have jump discontinuities. Now, for every continuous
and bounded function f : R → R, the Cardalignet-Euvrard neural network

operators ([45]) are de�ned by:

(Fn(f))(x) := fn(x) :=
n2∑

k=−n2

f(k/n)

BT nα
b
(
n1−α(x− k/n)

)
, (6.1)

where 0 < α < 1, b is a bell-shaped function with compact support, BT :=∫ T
−T b(x) dx, supp b ⊂ [−T, T ], x ∈ R, n ∈ N+.
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In what follows, we will denote by d·e and b·c the ceiling and the integral
part of a number, respectively.

In [4] the following results are proved.

Theorem 6.2 ([4]). Let x ∈ R, n ∈ N+ such that n ≥ max
{
T + |x|, T−1/α

}
.

Then

|fn(x)− f(x)| ≤ |f(x)|

∣∣∣∣∣∣
bnx+Tnαc∑

k=dnx−Tnαe

1

BT nα
b
(
n1−α(x− k/n)

)
− 1

∣∣∣∣∣∣
+

b∗

BT
(2T + 1/nα)ω(f, T/n1−α),

where ω is the modulus of continuity of f , and b∗ = b(0) is the maximum of

b. The inequality above becomes equality over constant functions.

To completely understand the theorem above we need of the following
lemma.

Lemma 6.3 ([4]). It holds that

Sn(x) :=

bnx+Tnαc∑
k=dnx−Tnαe

1

BT nα
b
(
n1−α(x− k/n)

)
→ 1

pointwise, as n→ +∞, where x ∈ R.

Another important result for these operators is obtained for functions
with high order derivatives.

Theorem 6.4 ([4]). Let x ∈ R and n ∈ N+ such that n ≥ max
{
T + |x|, T−1/α

}
.

Let f ∈ CN (R) such that f (N) is a uniformly continuous function or f (N) is

continuous and bounded. Then

|fn(x)− f(x)| ≤ |f(x)|

∣∣∣∣∣∣
bnx+Tnαc∑

k=dnx−Tnαe

1

BT nα
b
(
n1−α(x− k/n)

)
− 1

∣∣∣∣∣∣
+
b∗

I
(2T+1/nα)

 N∑
j=1

|f (j)(x)|T j

nj(1−α)j!

 + ω(f (N), T/n1−α)
TN b∗

BT N !nN(1−α) (2T+1/nα).

The inequality above is attained by constant functions.

We now recall the following de�nition (see [45, 4]).

De�nition 6.5. Let the nonnegative function S : R → R, S has compact

support contained in [−T, T ], T > 0, and is non decreasing there and it

can be continuously only on either (−∞, T ] or [−T, T ]. S can have jump

discontinuities. We call S the �squashing function�.
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Let f : R→ R be either uniformly continuous or continuous and bounded.
Assume that

B∗T :=

∫ T

−T
S(t) dt > 0.

For x ∈ R de�ne the squashing operator

(Gn(f))(x) :=
n2∑

k=−n2

f(k/n)

B∗T n
α
b
(
n1−α(x− k/n)

)
, (6.2)

where 0 < α < 1, S is a squashing function, x ∈ R, n ∈ N+. Similarly to
the case of the Cardalignet-Euvrard neural network operators, convergence
theorems with rate can be proved for the squashing operators.

Theorem 6.6 ([4]). Let x ∈ R, n ∈ N+ such that n ≥ max
{
T + |x|, T−1/α

}
.

Then, under the above assumptions we obtain

|(Gn(f))(x)− f(x)| ≤ |f(x)|

∣∣∣∣∣∣
bnx+Tnαc∑

k=dnx−Tnαe

1

B∗T n
α
S
(
n1−α(x− k/n)

)
− 1

∣∣∣∣∣∣
+
S(T )

B∗T
(2T + 1/nα)ω(f, T/n1−α),

where ω is the modulus of continuity of f , and S(T ) is the maximum of S.
The inequality above becomes equality over constant functions.

To completely understand the theorem above we need of the following
lemma.

Lemma 6.7 ([4]). It holds that

Dn(x) :=

bnx+Tnαc∑
k=dnx−Tnαe

1

B∗T n
α
S
(
n1−α(x− k/n)

)
→ 1

pointwise, as n→ +∞, where x ∈ R.

Another important result for these operators is obtained for functions
with high order derivatives.

Theorem 6.8 ([4]). Let x ∈ R and n ∈ N+ such that n ≥ max
{
T + |x|, T−1/α

}
.

Let f ∈ CN (R) such that f (N) is a uniformly continuous function or f (N) is

continuous and bounded. Then

|(Gn(f))(x)− f(x)| ≤ |f(x)|

∣∣∣∣∣∣
bnx+Tnαc∑

k=dnx−Tnαe

1

B∗T n
α
S
(
n1−α(x− k/n)

)
− 1

∣∣∣∣∣∣
+
S(T )

B∗T
(2T+1/nα)

 N∑
j=1

|f (j)(x)|T j

nj(1−α)j!

 + ω(f (N), T/n1−α)
TN S(T )

B∗T N !nN(1−α) (2T+1/nα).

The inequality above is attained by constant functions.
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6.2 The neural network operators with logistic and

hyperbolic tangent functions

In order to study operators of the Cardalignet-Euvrard type, and motivated
by the applications to the theory on neural networks, in Anastassiou [7] the
hyperbolic tangent neural network operators has been introduced. More-
over, the results of [7] are also inspired by the paper of Cao and Chen [38]
concerning the neural network operators activated by the logistic function.

Here, we now consider only the case of [7]. Let φh(x) := 1
2(σh(x + 1) −

σh(x−1)), where σh is the well-known hyperbolic tangent sigmoidal function,
and x ∈ R. We have the following (see [7]).

De�nition 6.9. Let f ∈ C0[a, b] and n ∈ N+ such that dnae ≤ bnbc. We

introduce and de�ne the �positive linear neural network operator�

F hn (f, x) :=

bnbc∑
k=dnae

f

(
k

n

)
φh(nx− k)

bnbc∑
k=dnae

φh(nx− k)

, x ∈ [a, b].

For su�ciently large n ∈ N+ we always obtain dnae ≤ bnbc. Also,
a ≤ k

n ≤ b, i� dnae ≤ k ≤ bnbc, and since f is bounded, F hn (f, x) is well-
de�ned, for all x ∈ [a, b].

Note that the de�nition of neural network operators with hyperbolic
tangent was extended by Anastassiou to the multivariate case in [8].

For the operators in De�nition 6.9 the following approximation theorem
with rates has been obtained.

Theorem 6.10 ([7]). Let f ∈ C0[a, b], 0 < α < 1, x ∈ R and n ∈ N+ such

that dnae ≤ bnbc. Then

|F hn (f, x)− f(x)| ≤ (4.1488766)
[
ω(f, 1/nα) + 2e4‖f‖∞e−2n

1−α
]
.

Clearly, the estimates in Theorem 6.10 holds uniformly for every x ∈
[a, b].

The high order of approximation was studied by using the smoothness of
f .

Theorem 6.11 ([7]). Let f ∈ CN [a, b], 0 < α < 1, x ∈ R and N , n ∈ N+

such that dnae ≤ bnbc. Then

|F hn (f, x)− f(x)| ≤ (4.1488766)


N∑
j=1

|f (j)(x)|
j!

[
1

nα j
+ e4(b− a)je−2n

1−α
]
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+

[
ω(f (N), 1/nα)

1

nαNN !
+

2e4‖f (N)‖∞(b− a)N

N !
e−2n

1−α

]}
.

In particular

|F hn (f, x)− f(x)| ≤ (4.1488766)


N∑
j=1

‖f (j)‖∞
j!

[
1

nα j
+ e4(b− a)je−2n

1−α
]

+

[
ω(f (N), 1/nα)

1

nαNN !
+

2e4‖f (N)‖∞(b− a)N

N !
e−2n

1−α

]}
.

Furthermore, in [7] also the complex-value neural network operators are
studied and convergence estimates with rates are derived also in this case.

In [8], all the results above are generalized in a multivariate setting, as
required for the applications to NNs.

Finally, the special case of the so-called quasi-interpolation operators with
hyperbolic tangent functions is also considered ([7]).

De�nition 6.12. Let f ∈ C0(R) and n ∈ N+. We introduce and de�ne the

�quasi-interpolation operator with hyperbolic tangent function�:

F
h
n(f, x) :=

∑
k∈Z

f

(
k

n

)
φh(nx− k), x ∈ [a, b].

Also for the quasi-interpolation operators in De�nition 6.12, results sim-
ilar to that proved in Theorem 6.10 and Theorem 6.11 are proved in [7].

The operators F
h
n are a particular case of the generalized sampling opera-

tors introduced by the German mathematician P.L. Butzer (see e.g. [35, 36,
33]) and studied by many others authors (see e.g. [123, 18, 19, 133]). These
operators are very important for their applications to Sampling Theory and
Signal Processing.

Moreover, Anastassiou studied neural network operators of the kind de-
�ned in this section, but activated by the logistic function, both in univariate
and multivariate setting in [9, 11]. These operators, that we will denote by
F `n are de�ned like that with the hyperbolic tangent function, but replacing
σh (i.e., φh) with σ` (i.e., φ`). Similarly we will have the quasi-interpolation

operators with logistic functions F
`
n.

The approach of Anastassiou of studying neural network operators with
logistic functions is little di�erent by the approach used in [38] by Cao and
Chen.

In [11] the following results were proved.

Theorem 6.13 ([11]). Let f ∈ C0[a, b], 0 < α < 1, x ∈ R and n ∈ N+ such

that dnae ≤ bnbc. Then

|F `n(f, x)− f(x)| ≤ (5.250312578)
[
ω(f, 1/nα) + 6.3984 e4‖f‖∞e−n

1−α
]
.
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Also in this case, the estimate in Theorem 6.13 holds uniformly for every
x ∈ [a, b].

Theorem 6.14 ([11]). Let f ∈ CN [a, b], 0 < α < 1, x ∈ R and N , n ∈ N+

such that dnae ≤ bnbc. Then

|F `n(f, x)−f(x)| ≤ (5.250312578)


N∑
j=1

|f (j)(x)|
j!

[
1

nα j
+(3.1992)(b− a)j e−n

1−α
]

+

[
ω(f (N), 1/nα)

1

nαNN !
+

(6.3984) ‖f (N)‖∞(b− a)N

N !
e−n

1−α

]}
.

In particular

‖F `n(f, ·)−f(·)‖∞≤(5.250312578)


N∑
j=1

‖f (j)‖∞
j!

[
1

nα j
+(3.1992)(b− a)je−n

1−α
]

+

[
ω(f (N), 1/nα)

1

nαNN !
+

(6.3984) ‖f (N)‖∞(b− a)N

N !
e−n

1−α

]}
.

Furthermore, in [11] also the complex-value neural network operators are
studied and convergence estimates with rates are derived also in this case.

In [9], all the results above for the neural network operators with logistic
functions are generalized in a multivariate setting, as it is typical in NNs
applications.

NN operators activated by the ramp sigmoidal functions has been studied
in [39].

Concerning the results discussed above the readers can consult the book
[10]. Others important kinds of neural network operators, such as fuzzy-

random and fractional type have been studied in [6] and [12], respectively.

6.3 Neural network operators activated by sigmoidal

functions

In the next sections, we study pointwise and uniform convergence, as well
as the order of approximation, for a family of linear positive neural network
operators activated by certain sigmoidal functions. Both the cases of func-
tions of one and several variables are considered. Our approach allows to
extend the results discussed in the previous sections about NNs operators.
The order of approximation is studied for functions belonging to suitable
Lipschitz classes and using a moment-type approach, i.e., we introduce the
discrete absolute moments for suitable density functions, φσ, de�ned by the
sigmoidal functions σ. The approximation error is analyzed in connection
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to both the weights and the number of neurons of the network, in the sup
norm. The special cases of neural network operators activated by logistic,
hyperbolic tangent, and ramp sigmoidal functions are considered and com-
pared with the results obtained by Anastassiou and others discussed in the
previous sections. In particular, we show that for C1-functions, the order of
approximation for our operators with logistic and hyperbolic tangent func-
tions achieved by our approach, is higher with respect to that established in
some previous papers (see Section 6.4).

The case of univariate and multivariate quasi-interpolation operators con-
structed with sigmoidal functions is also considered.

For the univariate theory of neural network operators activated by sig-
moidal functions, the readers can see [60], while, for the multivariate theory
see [61].

6.4 Univariate theory: preliminary results

In this section, we establish some preliminary results that will be useful in the
next sections. In what follows, we consider non-decreasing sigmoidal func-
tions, σ, such that σ(2) > σ(0), and such that all the following assumptions
are satis�ed:

(Σ1) gσ(x) := σ(x)− 1/2, is an odd function;

(Σ2) σ ∈ C2(R), and is concave for x ≥ 0;

(Σ3) σ(x) = O(|x|−1−α), as x→ −∞, for some α > 0.

The condition σ(2) > σ(0) is merely technical.
For any given non-decreasing function σ, satisfying all such assumptions,

de�ne

φσ(x) :=
1

2
[σ(x+ 1)− σ(x− 1)], (x ∈ R). (6.3)

In the following lemmas, we prove a number of important properties of φσ.

Lemma 6.15. (i) φσ(x) ≥ 0 for every x ∈ R, and in particular, φσ(1) > 0;
(ii) lim

x→±∞
φσ(x) = 0; (iii) φσ(x) is an even function.

Proof. (i) Trivially, φσ(x) ≥ 0 since σ is non-decreasing, and the assumption
σ(2) > σ(0) implies that φσ(1) > 0.

(ii) By the de�nition of sigmoidal function, it follows that lim
x→±∞

φσ(x) = 0.

(iii) By condition (Σ1), we have for every x ≥ 0

2[φσ(x)− φσ(−x)] = σ(x+ 1)− σ(x− 1)− σ(−x+ 1) + σ(−x− 1)

=

[
σ(x+ 1) + σ(−x− 1)− 1

2
− 1

2

]
−
[
σ(x− 1) + σ(−x+ 1)− 1

2
− 1

2

]
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= [gσ(x+ 1) + gσ(−x− 1)]− [gσ(x− 1) + gσ(−x+ 1)]

= [gσ(x+ 1)− gσ(x+ 1)]− [gσ(x− 1)− gσ(x− 1)] = 0.

Lemma 6.16. For every x ∈ R, we have
∑
k∈Z

φσ(x− k) = 1.

Proof. Let x ∈ R be �xed. For every �xed and su�ciently large n ∈ N+, we
have

n∑
k=−n

[σ(x+ 1− k)− σ(x− k)] = σ(x+ n+ 1)− σ(x− n),

n∑
k=−n

[σ(x− k)− σ(x− 1− k)] = σ(x+ n)− σ(x− n− 1),

then,
n∑

k=−n
φσ(x− k)

=
1

2

{
n∑

k=−n
[σ(x+ 1− k)− σ(x− k)] +

n∑
k=−n

[σ(x− k)− σ(x− 1− k)]

}

=
1

2
{σ(x+ n+ 1)− σ(x− n) + σ(x+ n)− σ(x− n− 1)} .

Passing to the limit for n→ +∞, we obtain∑
k∈Z

φσ(x− k) = lim
n→+∞

n∑
k=−n

φσ(x− k)

= lim
n→+∞

1

2
{σ(x+ n+ 1)− σ(x− n) + σ(x+ n)− σ(x− n− 1)} = 1.

Lemma 6.17. φσ(x) is non-decreasing for x < 0 and non-increasing for

x ≥ 0.

Proof. By condition (Σ2) and being σ non-decreasing, we have for every
x ≥ 0 that σ′(x) ≥ 0 is a non-increasing function. Then, for every x ≥ 1,
φ′σ(x) = (1/2)[σ′(x+ 1)−σ′(x− 1)] ≤ 0. Moreover, using condition (Σ1) we
obtain that σ(x) = 1− σ(−x), and we can write

φσ(x) =
1

2
[σ(x+ 1) + σ(1− x)− 1].

Then, we have for every 0 ≤ x < 1, φ′σ(x) = (1/2)[σ′(x+ 1)− σ′(1− x)] ≤ 0
being 0 ≤ 1−x ≤ x+ 1. Finally, φσ(x) is even by Lemma 6.15 (iii), and this
completes the proof.
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We recall that, b·c denotes the integral part of any given number and d·e
is the ceiling.

Lemma 6.18. Let x ∈ [a, b] ⊂ R and n ∈ N+ so that dnae ≤ bnbc. Then

1
bnbc∑

k=dnae

φσ(nx− k)

≤ 1

φσ(1)
.

Proof. >From Lemma 6.15 (iii) and Lemma 6.16 we see that, for every x ∈
[a, b],

1 =
∑
k∈Z

φσ(nx−k) ≥
bnbc∑

k=dnae

φσ(nx−k) =

bnbc∑
k=dnae

φσ(|nx−k|) ≥ φσ(|nx−k0|),

for every k0 ∈ [dnae, bnbc]∩Z. Now, we can choose k0 such that |nx−k0| ≤ 1,
and using Lemma 6.15 (i) and Lemma 6.17 we obtain φσ(|nx−k0|) ≥ φσ(1) >
0, then the proof follows.

Remark 6.19. Note that smoothness and concavity of σ are only used to
prove Lemma 6.17. However, Lemma 6.17 is also crucial to prove Lemma 6.18.
Then, the assumption (Σ2) could be omitted, and we could directly assume
that the conditions in Lemma 6.17 are satis�ed. In this case, Lemma 6.18 still
holds true, and we can apply our theory also to non-smooth sigmoidal func-
tions. In fact, proving Lemma 6.18, only the fact that φσ is non-increasing
for x ≥ 0 was exploited, to infer that φσ(|nx− k0|) ≥ φσ(1).

Lemma 6.20. φσ(x) = O(|x|−1−α), as x→ ±∞.

Proof. By assumption (Σ3), there exist C > 0, M > 0 such that σ(x) ≤
C|x|−1−α, for every x < −M , for some given α > 0. Then,

φσ(x) ≤ σ(x+ 1) ≤ C |x|−1−α,

for every x < −M−1. Moreover, using assumptions (Σ1) and (Σ3), we have
for every x > M + 1

φσ(x) ≤ 1− σ(x− 1) = σ(1− x) ≤ C |x|−1−α,

and then the proof follows.

Finally, we can prove the following

Lemma 6.21. For every γ > 0, we have

lim
n→+∞

∑
|x−k|>γn

φσ(x− k) = 0,

uniformly with respect to x ∈ R.
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Proof. For every x ∈ R we denote by x0 = x − bxc, with 0 ≤ x0 < 1.
Moreover, k̃ := k − bxc be integer for every k ∈ Z. Let now γ > 0 be �xed.
Then, by Lemma 6.20, we can write for every n ∈ N+ su�ciently large,∑

|x−k|>γn

φσ(x− k) =
∑

|k̃−x0|>γn

φσ(x0 − k̃) ≤
∑

|k̃|>γn−1

φσ(x0 − k̃)

≤ sup
u∈[0,1]

∑
|k̃|>γn−1

φσ(u− k̃) ≤ C sup
u∈[0,1]

∑
|k̃|>γn−1

|u− k̃|−1−α

≤ C

 ∑
k̃>γn−1

|1− k̃|−1−α +
∑

k̃<1−γn

|k̃|−1−α
 ,

and passing to the limit for n→ +∞, the assertion follows.

Remark 6.22. Following the line of the proof of Lemma 6.21, it is easy to
show that the series

∑
k∈Z φσ(x − k) converges uniformly on the compact

subsets of R. In fact, by Lemma 6.20 and for every subset [a, b] ⊂ R, we
have for every N ∈ N+ su�ciently large,

sup
u∈[a,b]

∑
|k|>N

φσ(u− k) ≤ C sup
u∈[a,b]

∑
|k|>N

|u− k|−1−α

≤ C

{∑
k>N

|b− k|−1−α +
∑
k<−N

|a− k|−1−α
}
,

and passing to the limit for N → +∞, the claim holds.

Remark 6.23. The results of this section are new, and some of them provide
a generalization of the properties established in [7] for the hyperbolic tangent
sigmoidal functions, to other functions σ satisfying conditions (Σ1), (Σ2),
and (Σ3).

6.5 Univariate theory: the main results

Recall the operators that we will study in this section.

De�nition 6.24. Let f : [a, b]→ R be a bounded function, and n ∈ N+ such
that dnae ≤ bnbc. The positive linear neural network operators activated by
the sigmoidal function σ, are de�ned as

Fn(f, x) :=

bnbc∑
k=dnae

f

(
k

n

)
φσ(nx− k)

bnbc∑
k=dnae

φσ(nx− k)

, x ∈ [a, b].
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For su�ciently large n ∈ N+ we always obtain dnae ≤ bnbc. Also,
a ≤ k

n ≤ b, i� dnae ≤ k ≤ bnbc, and since f is bounded, Fn(f, x) is well-
de�ned, for all x ∈ [a, b].

We recall that, a linear operator T : E → F between two ordered vector
spaces, E and F , is termed positive if and only if T (f) ≥ 0 for every f ≥ 0,
f ∈ E.

First of all, we study the pointwise and uniform convergence of such
operators. We can prove the following.

Theorem 6.25. Let f : [a, b]→ R be bounded. Then,

lim
n→+∞

Fn(f, x) = f(x),

at any point x ∈ [a, b] of continuity of f . Moreover, if f ∈ C0[a, b], then

lim
n→+∞

sup
x∈[a,b]

|Fn(f, x)− f(x)| = 0.

Proof. Let x ∈ [a, b] be a �xed point of continuity of f . By Lemma 6.18 we
have

|Fn(f, x)− f(x)| =

∣∣∣∣∣∣
bnbc∑

k=dnae

f

(
k

n

)
φσ(nx− k)− f(x)

bnbc∑
k=dnae

φσ(nx− k)

∣∣∣∣∣∣
bnbc∑

k=dnae

φσ(nx− k)

≤ 1

φσ(1)

bnbc∑
k=dnae

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣φσ(nx− k),

for every n ∈ N+ su�ciently large. Let now ε > 0 be �xed. From the
continuity of f at x, there exists γ > 0 such that, for every y ∈ [x − γ, x +
γ] ∩ [a, b], |f(y)− f(x)| < ε. Hence,

|Fn(f, x)− f(x)| ≤ 1

φσ(1)


bnbc∑
k=dnae
| k
n
−x|≤γ

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣φσ(nx− k)

+

bnbc∑
k=dnae
| k
n
−x|>γ

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣φσ(nx− k)

 =:
1

φσ(1)
{I1 + I2} .
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We �rst estimate I1. Using Lemma 6.16 and the continuity of f at x, we
obtain

I1 < ε
∑
k∈Z

φσ(nx− k) = ε.

Furthermore, by Lemma 6.21, we have for n su�ciently large

I2 ≤ 2‖f‖∞
∑

|nx−k|>nγ

φσ(nx− k) < 2‖f‖∞ε,

uniformly with respect to x ∈ R. The proof of the �rst part of the theorem
then follows since ε is arbitrary. When f ∈ C0[a, b], the second part of the
theorem follows similarly, replacing γ > 0 with the parameter of the uniform
continuity of f on [a, b].

Now, we want to study the order of approximation for the family of the
linear positive neural network operators in C0[a, b]. It is natural to introduce
the Lipschitz classes in which we will work. We de�ne, for 0 < ν ≤ 1,

Lip(ν) :=
{
f ∈ C0[a, b] : such that there exist γ, C > 0 such that, for each

x ∈ [a, b], |f(x)− f(x+ t)| ≤ C |t|ν , for every |t| ≤ γ with x+ t ∈ [a, b]} .

Moreover, for ν > 0, we introduce for the functions φσ, the discrete absolute
moment of order ν, de�ned by

mν(φσ) := sup
x∈R

∑
k∈Z
|x− k|νφσ(x− k).

Now, we are able to prove the following

Theorem 6.26. Suppose that mν(φσ) < +∞ for some ν > 0. Then, if

0 < ν ≤ 1, we have for every f ∈ Lip(ν)

sup
x∈[a,b]

|Fn(f, x)− f(x)| = O(n−ν), as n→ +∞.

While, if ν > 1, we have for every f ∈ Lip(1)

sup
x∈[a,b]

|Fn(f, x)− f(x)| = O(n−1), as n→ +∞.

Proof. Observe �rst that if ν > 1, we havem1(φσ) ≤ mν(φσ) < +∞. Indeed,∑
k∈Z
|x− k|φσ(x− k) =

∑
|x−k|≤1

|x− k|φσ(x− k) +
∑
|x−k|>1

|x− k|φσ(x− k)

≤
∑
|x−k|≤1

φσ(x− k) +
∑
|x−k|>1

|x− k|νφσ(x− k) ≤ 1 +mν(φσ) < +∞.
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Then we can lead us back to study the case ν = 1. Therefore, we consider
0 < ν ≤ 1 and let f ∈ Lip(ν) be �xed. As made in the proof of Theorem 6.25,
we can write, for every x ∈ [a, b],

Fn(f, x)− f(x)| ≤ 1

φσ(1)

bnbc∑
k=dnae

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣φσ(nx− k).

Let now γ, C > 0 the constants whereby f belongs to Lip(ν). We have

|Fn(f, x)− f(x)| ≤ 1

φσ(1)


bnbc∑
k=dnae
| k
n
−x|≤γ

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣φσ(nx− k)

+

bnbc∑
k=dnae
| k
n
−x|>γ

∣∣∣∣f (kn
)
− f(x)

∣∣∣∣φσ(nx− k)

 =:
1

φσ(1)
{J1 + J2} .

Since f belongs to Lip(ν), if |(k/n) − x| ≤ γ, we have |f(k/n)− f(x)| ≤
C |(k/n)− x|ν , and we obtain for J1

J1 ≤ C
∑

| k
n
−x|≤γ

∣∣∣∣kn − x
∣∣∣∣ν φσ(nx− k) ≤ Cmν(φσ)n−ν < +∞,

for every �xed su�ciently large n ∈ N+. Moreover,

J2 ≤ 2‖f‖∞
∑

|nx−k|>γn

φσ(nx− k) = 2‖f‖∞
∑

|nx−k|>γn

|nx− k|ν

|nx− k|ν
φσ(nx− k)

<
2‖f‖∞
γνnν

∑
|nx−k|>γn

|nx− k|νφσ(nx− k) ≤ 2‖f‖∞
γν

mν(φσ)n−ν < +∞,

for every �xed n ∈ N+. This completes the proof.

Remark 6.27. Note that, if σ(x) = O(|x|−1−β−α), as x→ −∞, by Lemma
6.20 we have φσ(x) = O(|x|−1−β−α), as x→ ±∞, for some α, β > 0. In this
case, it is easy to show that mν(φσ) < +∞ for every 0 < ν ≤ max {α, β},
see e.g. [34].

Examples of smooth sigmoidal functions satisfying all the assumptions
of our theory are provided by the well-known logistic function, σ`(x) = (1 +
e−x)−1, x ∈ R [38, 9, 10, 11, 56], and by the hyperbolic tangent sigmoidal
function, σh(x) := (1/2)(tanhx + 1), x ∈ R [7, 8, 10, 56]. In particular, σ`
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and σh satisfy condition (Σ3) for all α > 0, and then, in view of Remark 6.27,
mν(φσ`), mν(φσh) < +∞, for every ν > 0.

An example of non-smooth sigmoidal function is also provided by the
ramp function, σR(x), de�ned by σR(x) := 0 for x < −1/2, σR(x) := 1 for
x > 1/2, and σR(x) := x + (1/2) for −1/2 ≤ x ≤ 1/2 [46, 39]. Condition
(Σ3) is satis�ed for every α > 0, and the corresponding function φσR(x) is
compactly supported. The discrete absolute moments are now mν(φσR) <
+∞, for every ν > 0, by Remark 6.27.

For the sigmoidal functions σ`(x), σh(x), and σR(x), the following corol-
lary holds.

Corollary 6.28. For every f ∈ Lip(ν), 0 < ν ≤ 1, we have

sup
x∈[a,b]

|Fn(f, x)− f(x)| = O(n−ν), as n→ +∞.

Remark 6.29. Note that, when f ∈ C1[a, b] we have f ∈ Lip(1), then, for
all the sigmoidal functions considered in Corollary 6.28, supx∈[a,b] |Fn(f, x)−
f(x)| = O(n−1) as n→ +∞. This fact improves the result concerning the
order of approximation for neural network operators activated by hyperbolic
tangent and logistic functions, when f ∈ C1[a, b], established by Anastassiou
in [7, 11]. In fact, Anastassiou proved that supx∈[a,b] |Fn(f, x) − f(x)| =

O(n−θ) as n→ +∞, where 0 < θ < 1 and f ∈ C1[a, b].

Finally, others examples of sigmoidal functions satisfying the assumptions
of our theory, can be constructed starting from

Mn(x) :=
1

(n− 1)!

n∑
i=0

(−1)i
(
n

i

)(n
2

+ x− i
)n−1
+

, x ∈ R,

the well-known B-spline of order n ∈ N+ ([34]), by a simple procedure de-
scribed in Chapter 5 ([58]). Here, the function (x)+ := max {x, 0} denotes
the positive part of x ∈ R. We de�ne the sigmoidal function σMn(x) by

σMn(x) :=

∫ x

−∞
Mn(t) dt, x ∈ R.

Note that, σM2(x) coincides exactly with the ramp function, σR(x).
Examples of sigmoidal functions to which the present theory cannot be

applied, are provided by the class of Gompertz functions σα,β . The Gom-
pertz functions are characterized by unsymmetrical growth, hence they fail
to satisfy condition (Σ1).

6.5.1 Univariate quasi-interpolation operators with sigmoidal

functions

In the present context, we can use sigmoidal functions, σ, also to study
convergence and order of approximation of a class of quasi-interpolation op-
erators, de�ned through the function φσ (see Section 6.4). Let f : R→ R be
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a bounded function. We de�ne the so-called quasi-interpolation operators

Gn(f, x) :=
∑
k∈Z

f

(
k

n

)
φσ(nx− k), x ∈ R,

for every n > 0, see, e.g., [38, 7, 11]. Using Lemma 6.16 and the boundedness
of f , it easy to show that Gn(f, x) are well-de�ned, for all x ∈ R and n > 0.
Note that, for every x ∈ R, using Lemma 6.16 again, we can write

|Gn(f, x)− f(x)| =

∣∣∣∣∣Gn(f, x)− f(x)
∑
k ∈Z

φσ(nx− k)

∣∣∣∣∣
≤
∑
k ∈Z

∣∣∣∣f (kn
)
− f (x)

∣∣∣∣φσ(nx− k).

Then, using this inequality, we can prove pointwise convergence for the family
(Gn(f, ·))n>0, for bounded functions f ∈ C0(R), as well as uniform conver-
gence, whenever the function f is uniformly continuous and bounded on R.
The proof follows as that of Theorem 6.25. Note that condition (Σ2) can
be dropped since Lemma 6.18 is not used for studying quasi-interpolation
operators. Finally, recall that the de�nition of Lipschitz classes for functions
de�ned on the whole R becomes

Lip(ν) :=
{
f ∈ C0(R) : such that‖f(·)− f(·+ t)‖∞ = O(|t|ν), as t→ 0

}
,

for 0 < ν ≤ 1, then Theorem 6.26 could also be easily extended to the case
of quasi-interpolation operators.

6.6 Multivariate theory: preliminary lemmas

In what follows, we consider non-decreasing functions σ and φσ, such that
considered in Section 6.4. In the next sections we will denote the multivariate
spaces by Rs and Zs, s ∈ N+.

We now de�ne the multivariate function

Ψσ(x) := φσ(x1) · φσ(x2) · ... · φσ(xs), x := (x1, ..., xs) ∈ Rs. (6.4)

In the following lemmas, we prove some important properties of such a func-
tion. We denote with k = (k1, ..., ks) ∈ Zs the vectors whose components
are ki ∈ Z.

Lemma 6.30. For every x ∈ Rs,
∑

k∈Zs Ψσ(x− k) = 1.

Proof. Note that, for every x ∈ Rs, the series
∑

k∈Zs Ψσ(x − k) can be
rewritten as∑

k∈Zs
Ψσ(x− k) =

∑
k1∈Z

φσ(x1 − k1) · ... ·
∑
ks∈Z

φσ(xs − ks), (6.5)

then the proof follows immediately from Lemma 6.16.
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In what follows, we denote by ‖ · ‖ the usual maximum norm of Rs, i.e.,
‖x‖ := max {|xi|, i = 1, ..., s}, for every x ∈ Rs. We recall that in Rs all
norms are equivalent, hence all results below are independent of the choice
of the speci�c norm we may work with.

Lemma 6.31. The series
∑

k∈Zs Ψσ(x−k) converges uniformly on the com-

pact sets of Rs.

Proof. Let K ⊂ Rs be a given compact subset of Rs. For every x ∈ Rs, we
can write

∑
k∈Zs

Ψσ(x− k) =
∑
kj∈Z

φσ(xj − kj)

 ∑
k[j]∈Zs−1

Ψ[j]
σ (x[j] − k[j])

 ,
where

Ψ[j]
σ (x[j]−k[j]) := φσ(x1−k1)· ... ·φσ(xj−1−kj−1)·φσ(xj+1−kj+1)· ... ·φσ(xs−ks),

being x[j] := (x1, ..., xj−1, xj+1, ..., xs) ∈Rs−1, k[j] := (k1, ..., kj−1, kj+1, ..., ks) ∈
Zs−1, for every j = 1, ..., s. Let now be K[j] ⊂ R a compact set containing
the j-th projection of all elements of K. For every �xed and su�ciently large
N ∈ N+ and by Lemma 6.30, we have

sup
x∈K

∑
‖k‖>N

Ψσ(x− k)

≤ sup
x∈K

s∑
j=1

 ∑
|kj |>N

φσ(xj − kj)

 ∑
k[j]∈Zs−1

Ψ[j]
σ (x[j] − k[j])


≤

s∑
j=1

 sup
xj∈K[j]

∑
|kj |>N

φσ(xj − kj)

 ,

then the proof follows from Remark 6.22.

Lemma 6.32. For every γ > 0, we have

lim
n→+∞

∑
‖x−k‖>γn

Ψσ(x− k) = 0,

uniformly with respect to x ∈ Rs. In particular, for every γ > 0 and for

every 0 < ν < α,∑
‖x−k‖>γn

Ψσ(x− k) = O(n−ν), as n→ +∞,

where α > 0 is the constant appearing in condition (Σ3).
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Proof. For every �xed x ∈ Rs, we de�ne x0 := x − bx c, where bx c :=
(bx1c, ..., bxsc), and note that x0 ∈ I := [0, 1] × ... × [0, 1] ⊂ Rs. Moreover,
k̃ := k − bx c belongs to Zs for every k ∈ Zs. Let now γ > 0 be �xed. For
every n ∈ N+ su�ciently large, we can write∑

‖x−k‖>γn

Ψσ(x− k) =
∑

‖k̃−x0‖>γn

Ψσ(x0 − k̃ )

≤
∑

‖k̃‖>γn−1

Ψσ(x0 − k̃ ) ≤ sup
x0∈I

∑
‖k̃‖>γn−1

Ψσ(x0 − k̃ ),

and passing to the limit for n → +∞, the �rst part of the lemma holds in
view of Lemma 6.31.

Let now 0 < ν < α be �xed. Using Lemma 6.30 and adopting the same
notation of Lemma 6.31, we obtain, for n ∈ N+ su�ciently large,∑

‖x−k‖>γn

Ψσ(x− k)

≤
s∑
j=1

 ∑
|xj−kj |>γn

φσ(xj − kj)

 ∑
k[j]∈Zs−1

Ψ[j]
σ (x[j] − k[j])


≤

s∑
j=1

 ∑
|xj−kj |>γn

φσ(xj − kj)

 =
s∑
j=1

 ∑
|xj−kj |>γn

φσ(xj − kj)
|xj − kj |ν

|xj − kj |ν


<

1

γν nν

s∑
j=1

 ∑
|xj−kj |>γn

φσ(xj − kj) |xj − kj |ν
 . (6.6)

We now recall the de�nition of the discrete absolute moment of order ν of
the function φσ, de�ned by

mν(φσ) := sup
x∈R

∑
k∈Z

φσ(x− k) |x− k|ν . (6.7)

By Lemma 6.20, φσ(x) = O(|x|−1−α) as x→ ±∞, and it is well known that,
under this assumption, mν(φσ) < +∞ for 0 < ν < α, see [34, 60]. Therefore,
we infer from (6.6)∑

‖x−k‖>γn

Ψσ(x− k) < n−ν
s

γν
mν(φσ) < +∞,

and thus the second part of the lemma is also proved.
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Remark 6.33. Note that, since in Rs all norms are equivalent, both, con-
vergence and order of approximation results established in Lemma 6.32 are
independent on the choice of the speci�c norm being used. In fact, if ‖ · ‖∗
denotes a speci�c norm in Rs, we have ‖x‖∗ ≤ C‖x‖ for every x ∈ Rs, for a
suitable positive constant C, and hence we can write, for every �xed n ∈ N,∑

‖x−k‖∗>γn

Ψσ(x− k) ≤
∑

‖x−k‖>γn/C

Ψσ(x− k),

from which the claim follows.

Finally, we show that, as a direct consequence of Lemma 6.18, the fol-
lowing lemma holds true:

Lemma 6.34. Let x ∈ [a1, b1] × ... × [as, bs] ⊂ Rs and n ∈ N+, so that

dnaie ≤ bnbic for every i = 1, ..., s. Then,

1

s∏
i=1

bnbic∑
k=dnaie

φσ(nxi − ki)

≤ 1

[φσ(1)]s
.

Proof. Since σ is non-decreasing and 0 ≤ σ(x) ≤ 1, it is easy to see that
σ(2) − σ(0) < 2, hence we infer that 0 < φσ(1) < 1, and thus 1/φσ(1) > 1.
Then, by Lemma 6.18,

1
bnb1c∑

k=dna1e

φσ(nx1 − k1)

· ... · 1
bnbsc∑

k=dnase

φσ(nxs − ks)

≤ 1

φσ(1)
· ... · 1

φσ(1)
,

hence what had to be proved.

Remark 6.35. We stress that the results of this section are new, and some
of them represent a generalization of the properties established in [60] for
the univariate case.

6.7 Multivariate theory: the main results

In what follows, we denote by R the s-dimensional interval R := [a1, b1] ×
... × [as, bs] ⊂ Rs. Let us de�ne now the operators that will be studied in
this section.

De�nition 6.36. Let f : R → R be a bounded function, and n ∈ N+ such
that dnaie ≤ bnbic for every i = 1, ..., s. The linear positive multivariate NN
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operators Fn(f, x), activated by the sigmoidal function σ, and acting on f ,
are de�ned by

F sn(f, x) :=

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

f (k/n) Ψσ(nx− k)

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

Ψσ(nx− k)

,

for every x ∈ R and k/n := (k1/n, ..., ks/n).

For n ∈ N+ su�ciently large, we always obtain dnaie ≤ bnbic, i = 1, ..., s.
Moreover, ai ≤ ki

n ≤ bi if and only if dnaie ≤ ki ≤ bnbic, and since f is
bounded, F sn(f, x) turns out to be well de�ned for all x ∈ R. Note that
F sn(1, x) = 1, for every n su�ciently large.

First of all, we study pointwise and uniform convergence of sequences of
such operators. We can prove the following

Theorem 6.37. Let f : R → R be bounded. Then,

lim
n→+∞

F sn(f, x) = f(x)

at each point x ∈ R of continuity of f. Moreover, if f ∈ C0(R), then

lim
n→+∞

sup
x∈R
|F sn(f, x)− f(x)| = lim

n→+∞
‖F sn(f, ·)− f(·)‖∞ = 0.

Proof. Let x ∈ R be a point where f is continuous. We obtain from
Lemma 6.34

|F sn(f, x)− f(x)| =

∣∣∣∣∣∣
bnb1c∑

k1=dna1e

...

bnbsc∑
ks=dnase

[f(k/n)− f(x)] Ψσ(nx− k)

∣∣∣∣∣∣
bnb1c∑

k1=dna1e

...

bnbsc∑
ks=dnase

Ψσ(nx− k)

≤ 1

[φσ(1)]s

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

|f(k/n)− f(x)|Ψσ(nx− k),

for every n ∈ N+ su�ciently large. Let now ε > 0 be �xed. From the
continuity of f at x, there exists γ > 0 such that |f(y)− f(x)| < ε for every
y ∈ R with ‖y − x‖2 < γ, ‖ · ‖2 being the euclidean norm. Hence, de�ning

S1 :=
{
k : dnaie ≤ ki ≤ bnbic, i = 1, ..., s, and ‖k/n− x‖ ≤ γ/

√
s
}
,
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and

S2 :=
{
k : dnaie ≤ ki ≤ bnbic, i = 1, ..., s, and ‖k/n− x‖ > γ/

√
s
}
,

we can write,

|F sn(f, x)− f(x)| ≤ 1

[φσ(1)]s

∑
k∈S1

|f(k/n)− f(x)|Ψσ(nx− k)

+
∑
k∈S2

|f(k/n)− f(x)|Ψσ(nx− k)

 =:
1

[φσ(1)]s
(I1 + I2) .

Let �rst estimate I1. Using Lemma 6.30, the continuity of f at x, and that
‖k/n− x‖2 ≤

√
s ‖k/n− x‖ ≤ γ whenever k ∈ S1, we obtain

I1 < ε
∑
k∈S1

Ψσ(nx− k) ≤ ε.

Furthermore, by the boundedness of f and Lemma 6.32, we have, for n
su�ciently large,

I2 ≤ 2 ‖f‖∞
∑

‖nx−k‖>nγ/
√
s

Ψσ(nx− k) < 2 ‖f‖∞ ε,

uniformly with respect to x ∈ Rs. The proof of the �rst part of the theorem
then follows by the arbitrarity of ε. When f ∈ C0(R), the second part of the
theorem follows similarly, replacing γ > 0 with the parameter of the uniform
continuity of f in R.

Now, we want to study the order of approximation for the family of
the linear positive NN operators in C0(R). It is natural to introduce the
Lipschitz classes for multivariate functions, within which we will work. We
de�ne, for 0 < ν ≤ 1,

Lip(ν) :=
{
f ∈ C0(R) : such that there exist γ > 0, C > 0 so that, for each

x ∈ R, |f(x+ t)− f(x)| ≤ C ‖t‖ν2 for every ‖t‖2 ≤ γ with x+ t ∈ R} .

Now, we are able to prove the following

Theorem 6.38. Suppose that σ meets the decay condition (Σ3) for some

α > 1, and let be f ∈ Lip(ν) for some ν, with 0 < ν ≤ 1. Then,

‖F sn(f, ·)− f(·)‖∞ = O(n−ν), as n→ +∞.
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Proof. Let be f ∈ Lip(ν) for some ν, with 0 < ν ≤ 1. As in the proof of
Theorem 6.37, we can write, for every x ∈ R,

|F sn(f, x)− f(x)| ≤ 1

[φσ(1)]s

bnb1c∑
k1=dna1e

...

bnbsc∑
ks=dnase

|f(k/n)− f(x)|Ψσ(nx− k).

If γ > 0 and C > 0 are the constants related to f , in the de�nition of Lip(ν),
we have

|F sn(f, x)− f(x)| ≤ 1

[φσ(1)]s

∑
k∈S1

|f(k/n)− f(x)|Ψσ(nx− k)

+
∑
k∈S2

|f(k/n)− f(x)|Ψσ(nx− k)

 =:
1

[φσ(1)]s
(J1 + J2) ,

where S1 and S2 are those de�ned in the proof of Theorem 6.37 with the
value of γ > 0 �xed above, (in the de�nition of Lip(ν)). Since f ∈ Lip(ν),
we have for k ∈ S1, ‖(k/n)− x‖2 ≤

√
s ‖(k/n)− x‖ ≤ γ, and hence

|f(k/n)− f(x)| ≤ C‖(k/n)− x‖ν2 ≤ Csν/2 ‖(k/n)− x‖ν . (6.8)

Proceeding as in the proof of Lemma 6.32 and by (6.8), we obtain for J1 the
estimate

J1 ≤ n−ν C sν/2
∑
k∈S1

Ψσ(nx− k) ‖nx− k‖ν

≤ n−ν C sν/2
s∑
j=1

∑
kj∈Z

φσ(xj − kj) |nxj − kj |ν
 ∑
k[j]∈Zs−1

Ψ[j]
σ (x[j] − k[j])


≤ n−ν C sν/2

s∑
j=1

∑
kj∈Z

φσ(xj − kj) |nxj − kj |ν
 ≤ n−ν C s1+ν/2mν(φσ),

where mν(φσ) is de�ned as in (6.7). As it was observed in the proof of
Lemma 6.32, mν(φσ) < +∞, since ν < α. It then follows that J1 = O(n−ν)
as n→ +∞. Moreover, by the second part of Lemma 6.32, it turns out that

J2 ≤ 2 ‖f‖∞
∑
k∈S2

Ψσ(nx− k) = O(n−ν), as n→ +∞,

and this completes the proof.

The most important instances of sigmoidal functions do satisfy condition
(Σ3) with α > 1, and this explains why it was reasonable to make such
assumption in Theorem 6.38. However, an order of approximation can be
determined even when 0 < α ≤ 1. In fact, we can establish the following
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Theorem 6.39. Assume that σ meets the decay condition (Σ3) for some

0 < α ≤ 1, and let be f ∈ Lip(ν) for some ν, with 0 < ν ≤ 1. Then,

(i) if ν < α,

‖F sn(f, ·)− f(·)‖∞ = O(n−ν), as n→ +∞; (6.9)

(ii) if α ≤ ν ≤ 1, we have

‖F sn(f, ·)− f(·)‖∞ = O(n−α+ε), as n→ +∞; (6.10)

for every 0 < ε < α.

Proof. (i) For functions f ∈ Lip(ν) with 0 < ν < α, we have

‖F sn(f, ·)− f(·)‖∞ = O(n−ν), as n→ +∞, (6.11)

and this can be proved exactly as it was done in Theorem 6.38.

(ii) Every function f ∈ Lip(ν) with α ≤ ν ≤ 1 is, in particular, such that
f ∈ Lip(β) with β := α−ε, for every �xed but arbitrary ε, 0 < ε < α. Thus,
we obtain 0 < β < α and, in view of (i),

‖F sn(f, ·)− f(·)‖∞ = O(n−β) = O(n−α+ε), as n→ +∞.

This completes the proof.

Remark 6.40. The approach adopted in this paper (and in [60]) to study the
order of approximation di�ers from those of [104, 93]. Here we obtain esti-
mates in the uniform norm for neural network operators applied to functions
belonging to Lipschitz classes, and exploiting a moment-type approach. In
Makovoz [104], tight bounds for multivariate neural networks with sigmoidal
functions were derived using techniques of functional analysis, in the more
general context of Lp-spaces, and particular estimates were derived for func-
tions belonging to L2(D), where D ⊂ R2 is an open convex set. Kurková
and Sanguineti [93] have established tight bounds for NNs in Hilbert spaces,
extending some results earlier obtained in [104]. Our operators Fn are af-
fected by the pointwise behavior of the functions f , and hence they are not
suited to Lp-approximations.

Examples of smooth sigmoidal functions, satisfying all assumptions re-
quired by our theory, are provided by the well known logistic function, σ`,
and by the hyperbolic tangent function, σh(x). In particular, σ` and σh sat-
isfy condition (Σ3) for all α > 0, in view of their exponential decay to zero
as x→ −∞.

An example of a non-smooth sigmoidal function is provided by the ramp

function, σR(x), de�ned by σR(x) := 0 for x < −1/2, σR(x) := 1 for x > 1/2,
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and σR(x) := x + 1/2 for −1/2 ≤ x ≤ 1/2 [46, 39]. Condition (Σ3) is also
satis�ed for every α > 0 and the corresponding function φσR(x) is compactly
supported.

For the sigmoidal functions σ`(x), σh(x), and σR(x), the following corol-
lary holds.

Corollary 6.41. For every f ∈ Lip(ν), 0 < ν ≤ 1, we have

‖Fn(f, ·)− f(·)‖∞ = O(n−ν), as n→ +∞.

Remark 6.42. Note that, when f ∈ C1(R), also f ∈ Lip(1), and then, for
all sigmoidal functions considered in Corollary 6.41, ‖Fn(f, ·) − f(·)‖∞ =
O(n−1) as n → +∞. This fact improves the result concerning the order
of approximation for NN operators activated by hyperbolic tangent or by
logistic functions when f ∈ C1(R), earlier established by Anastassiou [8, 9].
In fact, Anastassiou proved that, for every f ∈ C1(R), ‖Fn(f, ·)− f(·)‖∞ =
O(n−θ) as n→ +∞, where 0 < θ < 1.

Other examples of sigmoidal functions satisfying the assumptions made
in our theory can be constructed starting from the well-known B-splines of
order n ∈ N+ [34],

Mn(x) :=
1

(n− 1)!

n∑
i=0

(−1)i
(
n

i

)(n
2

+ x− i
)n−1
+

, x ∈ R.

This can be done by means of a simple procedure described in Chapter 5
([58]). In the previous formula, the function (x)+ := max {x, 0} denotes �the
positive part� of x ∈ R.

Finally, as an example of sigmoidal functions to which the present the-
ory cannot be applied, we mention the (class of) Gompertz functions. These
functions are characterized by unsymmetrical growth, hence they fail to sat-
isfy condition (Σ1).

6.7.1 Multivariate quasi-interpolation operators with sigmoidal

functions

In the present context, we can use sigmoidal functions also to study con-
vergence and order of approximation of a class of quasi-interpolation oper-
ators, de�ned using the function Ψσ introduced in (6.4) in Section 6.6. If
f : Rs → R is a bounded function, we de�ne the so-called quasi-interpolation
operators

Gsn(f, x) :=
∑
k∈Zs

f(k/n) Ψσ(nx− k), x ∈ Rs,

for every n > 0, see e.g., [38, 7, 11, 60]. Using Lemma 6.30 and the bounded-
ness of f , it easy to show that all Gsn(f, x)'s are well-de�ned for every x ∈ Rs
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and for every n > 0. Note that, using Lemma 6.30 again, we can write, for
every x ∈ Rs,

|Gsn(f, x)− f(x)| =

∣∣∣∣∣∣Gsn(f, x)− f(x)
∑
k ∈Zs

Ψσ(nx− k)

∣∣∣∣∣∣
≤
∑
k∈Zs
|f(k/n)− f (x)| Ψσ(nx− k).

Using this inequality, we can then establish pointwise convergence for the
family (Gsn(f, ·))n>0, for every bounded function f ∈ C0(Rs), as well as
uniform convergence whenever f is uniformly continuous and bounded on
Rs. The proof can be obtained as in Theorem 6.37. Moreover, note that
condition (Σ2) can be dropped. This can be done since Lemma 6.34 is
not used for studying quasi-interpolation operators and the proof of such
lemma is entirely based on the claim of Lemma 6.18 (see also Remark 6.19).
Finally, observe that the de�nition of Lipschitz class for functions de�ned on
the whole of Rs becomes

Lip(ν) :=
{
f ∈ C0(Rs) : so that ‖f(·)− f(·+ t)‖∞ = O(‖t‖ν2), as ‖t‖2 → 0

}
,

for 0 < ν ≤ 1. Therefore, Theorem 6.38 and Theorem 6.39 could also be
extended immediately to the case of quasi-interpolation operators.
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Chapter 7

Conclusions and Future

Developments

7.1 Final remarks and conclusions

In this Thesis, we studied the problem of sigmoidal functions approximation.
The relation with the theory of neural networks (NNs) has been analyzed.
NNs are widely used as models for the human brain and their �exibility �ts
very well to a bunch of real world applications.

Sigmoidal functions arise naturally from the theory of NNs, where they
play the role of activation functions of the networks. From a theoretical point
of view, we stress that it is very di�cult to obtain constructive approximation
algorithms, especially in the multivariate case, which is the most important
and the most natural when dealing with NNs.

Along the last twenty years, some constructive results have been ob-
tained, mainly based on a convolution approach. In fact, as shown in Chap-
ter 1, certain convolution operators have been constructed by using sigmoidal
functions, and following a ridge-type approach. Then, NNs were constructed
applying suitable quadrature rules [94, 100, 121].

In this Thesis, we propose various kinds of approximation algorithms, to
construct both univariate and multivariate approximations. One of our main
purposes is to devise an easier way to approximate functions by means of sig-
moidal functions, compared to the usual and well-known methods discussed
in Chapter 1. Moreover, we would like to obtain high-order approximations,
and �nally to use these results for applications to Numerical Analysis, to
develop new competitive numerical methods.

Concerning the univariate approximation, we have followed two approaches.
The �rst one (see Chapter 2), is inspired to a paper of H. Chen, T. Chen, and
R. Liu [48]. The second one, is completely new, see Chapter 5. In particular,
in the latter case we consider special kinds of sigmoidal functions, de�ned by
suitable integral forms. Also the coe�cients of the NNs that we introduced
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are of the integral type.
The approach proposed in Chapter 5 is related to the theory of multireso-

lution approximations of L2(R) [113, 64]. In fact, if the sigmoidal function is
generated by the scaling function of an r-regular multiresolution approxima-
tion, then the approximation error for approximating C1-functions decreases
as 2−j , when j → +∞, i.e., the approximation error decreases exponentially.

Moreover, also in case of multivariate approximation we propose two
possible approaches. The �rst one consists of introducing a kind of radial
basis functions (RBF) networks, composing sigmoidal functions σ with the
Euclidean norm in Rn (see Section 2.4). In the second approach, we use
products of univariate sigmoidal functions (see Chapter 6). Clearly, these
results are easier to apply with respect to those based on convolution showed
in Chapter 1.

Finally, concerning the theoretical analysis performed in this Thesis, we
should mention the theory of NNs operators, a modern approach to study
NNs approximation. This theory was �rst introduced by G.A. Anastassiou
in [4, 7, 8, 9, 10]. The basic idea there is to study operators of Cardaliagnet-
Euvrard and squashing type [45]. In Chapter 6, we study and generalize some
theorems concerning NN operators, both in a univariate and in a multivariate
setting. In the latter context, constructive approximation algorithms are
more easily obtained, even in the multivariate setting. We stress that some
results established in this Thesis represent an improvement of those proved
by Anastassiou in its papers. In particular, the order of approximation
for C1-functions can be improved by means of our operators, compared to
certain existing results given in [7, 8, 9].

From the NN operators activated by sigmoidal functions, useful to ap-
proximate functions de�ned on bounded intervals, the theory of quasi-interp-
olation operators can be easily derived. With the latter operators, we are
able to approximate functions de�ned on the whole real line. In particular,
this approach is similar to and reminiscent of that approximation made by
the generalized sampling operators introduced by P.L. Butzer [35, 36, 33].

Furthermore, several applications to Numerical Analysis are given to
show the �exibilities and the peculiarities of sigmoidal functions approxi-
mation (see Chapters 3 and 4). For instance, applications to the solution
of linear and nonlinear Volterra integral equations of the second kind by
collocation, are very easy to obtain, the method performs very well, and is
competitive from the computational point of view in comparison to piece-
wise polynomials collocation methods. In some cases, e.g., in case of integral
equations with weakly singular kernels, our method allows to achieve an
higher accuracy with respect to the classical piecewise polynomial colloca-
tion methods (see Chapter 3).

Analogous advantages can be obtained by our collocation method for
solving Volterra integro-di�erential equations. In particular, the CPU time
required by our collocation method is smaller with respect to the case of
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piecewise polynomial methods. Basing on collocation methods for Volterra
integral and integro-di�erential equations, ordinary di�erential equations can
also be solved. Numerical examples are given in Chapters 3 and 4.

7.2 Future developments

As future works, starting from the problems analyzed in this Thesis, we in-
tend to continue studying sigmoidal functions approximation by constructive
multivariate algorithms and applications.

Several open problems still wait for a satisfactory solution. Constructive
approximations results are available only for functions de�ned on special
domains, such as intervals of Rn. Extensions of the multivariate theory to
approximate functions de�ned on domains which are not necessarily inter-
vals of Rn would be desirable. Moreover, a relevant problem is to develop
numerical methods which allows us to approximate solutions of integral or
di�erential equations with an high-order of accuracy. To this purpose, the
theory developed in Chapter 5 could help. The numerical methods proposed
in this Thesis are typically global in nature, then one possibility to enhance
their accuracy is to apply the methods locally, i.e., to every subset of a par-
tition of the original domain of the problem. This is what happens in case of
classical �piecewise� methods, such as, for instance, for the piecewise poly-
nomial collocation methods to solve Volterra integral and integro-di�erential
equations [117, 26].

One of the possible �eld of applications of the approximation results
by sigmoidal functions is the numerical solution of partial di�erential equa-
tions, such as conservation and balance laws. Concerning the latter, since
hyperbolic problems often possess solutions with sharp fronts or even jump
discontinuities (shocks), we may expect that smooth sigmoidal functions,
might be well suited to represent this kind of solutions. Clearly, since large
errors can be made, due to the rapid variation of such functions, it would
be desirable to track the sharp front or the discontinuities of the solutions.
This idea reminds that developed in [77], where the discontinuities of the
solutions of certain hyperbolic conservation laws are tracked to obtain high
accurate numerical solutions for this kind of problems.

Moreover, various aspects of the modern theory of NN operators could
be also analyzed. For instance, the high order of approximation can be in-
vestigated for functions with high order derivatives, i.e., the results obtained
by G.A. Anastassiou in this direction could be extended for the operators
activated by sigmoidal functions belonging to the class of these functions in-
troduced in Chapter 6. The idea is to apply Taylor formula with a reminder
in the integral form to estimate the error of approximation. In addition,
the theory of neural network operators could be extended to approximate
functions belonging to Lp-spaces. In this case, the form of the coe�cients
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of such operators should be adapted. In fact, in we consider for instance
the univariate case, for functions f belonging to Lp, the coe�cients f(k/n),
which depend on the pointwise behavior of f , should be replaced by the
mean values of the function f into the rectangles [k/n, (k+ 1)/n], i.e., with

n
∫ (k+1)/n
k/n f(u) du. Then, the neural network operators in the Lp (univariate)

setting should assume the following form:

Kσ
n(f, x) :=

bnbc−1∑
k=dnae

[
n

∫ (k+1)/n

k/n
f(u) du

]
φσ(nx− k)

bnbc−1∑
k=dnae

φσ(nx− k)

, x ∈ [a, b] (7.1)

for n ∈ N+ su�ciently large, f : [a, b] → R belonging to Lp[a, b], and where
φσ is the density function de�ned in Chapter 6 with the sigmoidal function
σ.

Replacing the value f(k/n) with the mean values n
∫ (k+1)/n
k/n f(u) du to

switch from the study of pointwise operators to operators in Lp, is quite
natural. Indeed, such replacements have been made by Kantorovich in [84]
when he generalized the Bernstain polynomials to the Lp setting to obtain
a proof of the Weierstrass approximation theorem in Lp(0, 1). Moreover,
the same approach has been adopted in [17] where the authors introduced
sampling operators of the Kantorovich type to obtain applications for the
reconstruction of non necessarily continuous signals.

Convergence and order of approximation of neural network operators of
the form in (7.1) could be studied in this new framework. For the latter
problem we should introduce suitable Lipschitz classes related to the norms
of the space Lp[a, b].

Another problem that can be investigated concerns interpolation by neu-
ral networks and sigmoidal functions. Interpolation of functions on certain
�nite sets of points by NNs (see e.g. [101]) is a problem strictly connected
to the training of networks and to the exact representation of the values of
certain test set (see Subsection 1.1.3).

Further applications of the theory of approximating functions by neu-
ral network operators could be developed. A typical �eld of application
for multivariate approximation algorithms falls in the context of image re-
construction and image enhancement. In particular, the multivariate form of
the operators in (7.1) could be well suited to applications concerning images,
since images are usually represented by discontinuous functions.
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