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Introduction

Combinatorial design theory is the study of arranging elements of a finite set into
patterns (subsets, words, arrays) according to specified rules. Basically a design
is a pair (V,B) where V is a set of points and B is a collection of subsets of V
that satisfies suitable balance properties. According to these additional properties
we can define several kinds of designs. Because of this flexibility, design theory is
a field of combinatorics with close ties to several other branches of mathematics
including group theory, the theory of finite fields, finite geometries, number theory,
combinatorial matrix theory and graph theory. This theory has also a wide range
of applications in areas such as information theory, statistics, computer science,
biology and engineering.

Some types of designs that we will discuss in the present work include 2-designs,
pairwise balanced designs, group divisible designs and graph decompositions. In all
these cases the fundamental question is the existence question. Does a design of a
specified type exist?

Probably the most important objects under consideration are 2-designs. Specif-
ically a 2-(v, k, λ) design (also called (v, k, λ)-BIBD or balanced incomplete block
design) is a pair (V,B) where V is a set of v elements and B is a collection of subsets,
or blocks, of V such that:

• every block contains exactly k points;

• every pair of distinct points is contained in exactly λ blocks.

The concept of 2-(v, k, λ) design was introduced by R. Fisher (1934) studying the
design of experiments. These structures turn out to be very useful also in many other
fields of mathematics. Therefore now there is a vast literature on combinatorial
designs and specifically on 2-designs (thousands of papers on mathscinet). Here,
we refer the readers to [10, 38, 44] and [60] which are good introductions and surveys
to the topic and to [2, 3, 9, 43, 54] which are closely related to the present work in
techniques and topics.

In regard to the problem of existence of 2-designs, a big progress was done by
H. Hanani (see [44], 1975) who solved the case in which the blocks have size less or
equal to 5. Another remarkable result is due to R.M. Wilson (1972) who proved the
asymptotical existence of a 2-(v, k, λ) design if the well known necessary conditions
are satisfied (see Corollary 1.1.7). However, despite the fact that many authors
worked on the case 6 ≤ k ≤ 9, there are still many open cases and little is known
when 9 < k. We will review these designs in depth in Chapter 1, giving the known
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necessary conditions of existence, enunciating the existence results and listing the
open cases.

As we will see in Chapter 1, the problem of existence of a 2-(v, k, λ) design
can be described in terms of decompositions of the multigraph λKv, that is the
multigraph with v vertices and with λ edges between each pair of vertices, into
copies of the complete graph Kk. Since many other combinatorial problems can
be described in similar terms the more general definition of Λ-decomposition of Γ
(or briefly (Γ,Λ)-design) was introduced: given a multigraph Γ and a graph Λ, a
Λ-decomposition of Γ is a set C of subgraphs of Γ isomorphic to Λ whose edges
partition the set E(Γ) of the edges of Γ. Another relevant case of such designs is
given by the k-cycle decompositions of Kv, or briefly (Kv, Ck)-designs, where Ck is
a cycle of length k and Kv is the complete graph with v vertices. The existence
problem for such designs has been completely solved by B. Alspach, H. Gavlas (see
[8], 2001) and by M. Sajna (see [57], 2002, see also M. Buratti [17], 2003). However
a lot of related problems, such as the existence of k-cycle decompositions of Kv

with additional properties, are still open. A class of such designs is given by the
i-perfect k-cycle decompositions. A k-cycle decomposition is called i-perfect if, for
any pair of vertices of Kv, there is exactly one cycle of C in which x and y have
distance i. Such designs has been introduced by C.C. Lindner and C.A. Rodger
(see [48], 1991), in the case i = 2, in order to construct quasi-groups. The interest
on these decompositions is also given by the fact that being i-perfect is an invariant
property with respect to design isomorphisms. In Chapter 1, we will introduce the
known theory about these kind of designs, giving the known necessary conditions
of existence, enunciating the existence results and listing the open cases.

An important link between 2-designs and the k-cycle decompositions is given
by the construction method of difference families and more generally of relative
difference families. These methods were introduced by R.C. Bose in his seminal
paper of 1939 (see [14]) in order to construct 2-designs with suitable symmetries.
However, as we will see in Chapter 2, these kinds of methods turn out to be very
useful to construct, more in general, graph decompositions and in particular k-cycle
decompositions.

We continue this thesis by exposing, in Chapter 2, the theory of strong difference
families (SDFs). This concept was introduced by M. Buratti in [22] (and then
generalized by M. Buratti and L. Gionfriddo in [25]) in order to obtain a systematic
method of construction of difference families, graph decompositions and designs.

The study of strong difference families is the leitmotif of this thesis: in particular,
in Chapters 3 and 4, we introduce a new class of SDF s in order to approach a
problem of existence of particular combinatorial structures.

The first problem we will see concerns the existence of i-perfect k-cycle decom-
positions of the complete graph Kmk. In fact, in Chapter 3, we will present the
results of a joint work with M. Buratti and X. Wang (see [24]) on this problem.
In particular, generalizing a result here denoted by “the Buratti, Rania and Zuanni
construction” see [29], we present a construction for i-perfect k-cycle decomposi-
tions of the complete m-partite graph with parts of size k that implicitely uses the
concept of strong difference families. This tecnique works whenever an i-perfect
map f : Zk −→ R exists for a suitable ring R of cardinality m. We show that,
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in order to determe the set of all triples (i, k,m) for which such a map exists, it is
crucial to calculate the chromatic numbers of some auxiliary graphs. We completely
determine this set except for the case where k > 1000 is the product of two distinct
primes, i > 2 is even, and gcd(m, 25) = 5. Then we return to the existence problem
of i-perfect k-cycle decompositions of the complete graph Kmk. In particular, as a
consequence the above considerations, we completely solve the case k ≤ 19.

Theorem 3.6.5 (M. Buratti, S. C., X. Wang). Let m and k be odd integers. Then
there exists an i-perfect k-cycle decomposition of Kmk whenever k ≤ 19 and for any
possible i with the only exceptions of a 2-perfect (K15, C5)-design, and of a 2- and
a 4-perfect (K9, C9)-design.

Then, in Chapter 4, we provide a further generalization of the Buratti, Rania
and Zuanni construction introducing a technique that makes use of the so called
i-perfect (Zk, Ck, µ)-SDF . In this chapter we present the results of a joint work
with X. Wang (strongly inspired by the ideas of M. Buratti and by the papers [28]
and [25]), in which we study this class of strong difference families obtaining the
following result:

Theorem 4.3.4 (S. C., X. Wang). Let m and k be positive integers, then there
exists a 3-perfect k-cycle decomposition of Kmk if and only if mk is odd and k ≥ 7.
Moreover, if m 6∈ E := {3, 15, 33, 39, 51, 75, 87} and mk is odd, there exists an
i-perfect k-cycle decomposition of Kmk in the following cases:

• k a prime and any possible i;

• k < 56 odd and any possible i except for:

(i, k) ∈ {(2, 9), (4, 9), (7, 21), (13, 39), (15, 45), (6, 51)}.

Finally, in Chapter 5, we will see that it is still possible to use the SDF s in order
to construct new 2-(v, k, λ) designs. In particular we build, using a computer search,
five new SDF s and we use them to prove the existence of several infinite series of
2-designs. For this purpose, we apply also a theorem of M. Buratti and A. Pasotti
(that makes use of Weil’s theorem on the sum of multiplicative characters). Among
these series, we have found a 2-design for seven triples of values (v, k, λ) whose
existence was an open problem. The main result of the chapter is the following:

Theorem 5.4.1 (S. C., X. Wang). There exists a 2-(v, k, λ) design in the following
cases:

(v, k, λ) Possible exceptions
(694, 7, 2)
(1576, 8, 1)
(2025, 9, 1), (765, 9, 2) and (1845, 9, 2)
(459, 9, 4) and (783, 9, 4)
(13p, 13, 1) : p ≡ 1 (mod 12), prime List of 19 values
(13q, 13, 3) : q ≡ 1 (mod 4), q ≥ 13
(17p, 17, 2) : p ≡ 1 (mod 8), prime 41, 73, 89, 193
(17q, 17, 4) : q ≡ 1 (mod 4), q ≥ 17
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Chapter 1

Preliminaries

1.1 2-designs: definition and basic properties

Design theory concerns the study of arranging elements of a finite set into patterns
(subsets, words, arrays) according to specified rules. In this work a design can be
described as a pair (V,B) where V is a set of points and B is a collection of non-
empty subsets, called blocks, of V with suitable properties. In general the family
B can have repeated blocks: this is why we refer to B as a collection or a multiset
(we will use also the terms family and list) of blocks and not as a set. Because of
that we use the notation B = [B1, . . . , Bb] instead of B = {B1, . . . , Bb}. In fact,
in this work, we will use the notation { } to denote a simple set and we will use
the notation [ ] to denote the more general concept of multiset. We note that if no
element of a multiset is repeated then the multiset is a set. For example, we have
that [1, 6, 5] = {1, 6, 5} while [3, 7, 9, 3] 6= {3, 7, 9, 3} = {3, 7, 9}.

We recall the definition of 2-designs that are probably the most studied type of
designs. Here is the formal definition:

Definition 1.1.1. Let v, k and λ be positive integers such that v > k ≥ 2. A
2-(v, k, λ) design (also called (v, k, λ)-BIBD or balanced incomplete block design)
is a pair (V,B) where V is a set of v elements, called points, and B = [B1, . . . , Bb]
is a collection of subsets, called blocks, of V such that:

1 every block contains exactly k points;

2 every pair of distinct points is contained in exactly λ blocks.

Such designs are called “balanced” due to property 2.
As usual for a mathematical structures, it is interesting to define and to study

the maps that preserve that structure.

Definition 1.1.2. Two designs (V,B) and (V ′,B′) are isomorphic if there exists a
bijection α : V → V ′ mapping B into B′ or, in other words:

[{α(x) : x ∈ B} : B ∈ B] = B′.

The bijection α is called an isomorphism. If (V,B) = (V ′,B′) the map α is called
an automorphism of (V,B). We denote with Aut(V,B) the set of all automorphisms
of (V,B).

9
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We give now some examples of 2-designs that arise from a geometrical context.

Example 1.1.3 (Fano Plane). The following pair (V,B) is a 2-(7, 3, 1) design:

V := {1, 2, 3, 4, 5, 6, 7}, and

B := [{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7}, {3, 5, 6}].

This collection of blocks can be represented geometrically with the following picture:

From this picture it is clear that every pair of distinct points is contained in exactly
one block.

We remark that the Fano Plane is the projective plane over the field F2 and it is
also the smallest existent projective plane. In general all the projective planes over
a finite field are examples of 2-designs:

Example 1.1.4 (Projective plane over the field Fq). Let q be a prime power and
let us consider the finite field Fq of cardinality q.

Let (x0, x1, x2) and (y0, y1, y2) be two elements of F3
q \ {0}. Then we define the

equivalence relation ∼ as follows: (x0, x1, x2) ∼ (y0, y1, y2) if there is a non-zero
element λ ∈ Fq such that (x0, x1, x2) = λ(y0, y1, y2).

We consider the set of points given by:

V :=
F3
q \ {0}
∼

.

As collection of blocks, we consider the set B given by the subsets B of V such
that there exists a 2-dimensional subspace L of F3

q and L\{0}
∼ = B.

Then the pair (V,B) is a 2-(q2 + q + 1, q + 1, 1) design.

In fact, it is well known that, given two points of a projective planes, there
exists exactly one line through them. Moreover we have that |F3

q \{0}| = q3−1 and

each equivalence class has size q − 1 therefore |V | = q3−1
q−1

= q2 + q + 1. Similarly,

given a 2-dimensional subspace L of F3
q, we have that |L \ {0}| = q2 − 1. Thus

|L\{0}∼ | = |B| =
q2−1
q−1

= q + 1.



11

1.1.1 Necessary conditions and existence results

One of the main goals of combinatorial design theory is to determine necessary
and sufficient conditions for the existence of a 2-(v, k, λ) design. In this subsection
we list some theorems and basic properties of such designs that give us necessary
conditions of existence. We will see that, in general, it is not known whether these
conditions are sufficient.

Theorem 1.1.5. In a 2-(v, k, λ) design, every point occurs in exactly

r =
λ(v − 1)

k − 1

blocks.

Proof. Let (V,B) be a 2-(v, k, λ) design. Suppose x ∈ V and let rx denote the
number of blocks containing x. We define the set:

Ix := {(y, A) : y ∈ V, y 6= x, A ∈ B, {x, y} ⊆ A}.

We want to do a double counting of the cardinality of this set.
First, there are v − 1 ways to choose y ∈ V such that y 6= x. For each choice

there are λ ways to choose A ∈ B such that {x, y} ⊆ A. Hence,

|Ix| = λ(v − 1).

On the other hand, there are rx ways to choose a block A such that x ∈ A. For
each choice of A, there are k − 1 ways to choose y ∈ A, y 6= x. Hence,

|Ix| = rx(k − 1).

Combining these two equations, we see that:

rx =
λ(v − 1)

k − 1

is independent of x and the claim follows.

Theorem 1.1.6. A 2-(v, k, λ) design has exactly

b =
λ(v(v − 1))

k(k − 1)

blocks.

Proof. Let (V,B) be a 2-(v, k, λ) design and let b = |B|. Define the set:

I = {(x,A) : x ∈ V, A ∈ B, x ∈ A}.

We want to do a double counting of the cardinality of this set.
First, there are v ways to choose x ∈ V . For each of such choices, there are r

blocks A such that x ∈ A. Hence:

|I| = vr.
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On the other hand, there are b ways to choose a block A ∈ B. For each choice of A,
there are k ways to choose x ∈ A. Hence

|I| = bk.

Combining these equations we see that bk = vr as desired.

In particular the values b and r must be integers: through these two theorems
we can conclude that 2-designs with certain parameters do not exist.

Corollary 1.1.7. If a 2-(v, k, λ) design exists, then λ(v − 1) ≡ 0 (mod k − 1) and
λv(v − 1) ≡ 0 (mod k(k − 1)).

We give the following definition in order to get another, important, necessary
condition for the existence of such designs:

Definition 1.1.8. Let (V,B) be a design where V = {x1, . . . , xv} and B := {B1, . . . , Bb}.
The incidence matrix of (V,B) is the v × b, 0-1 matrix M = (mi,j) defined by the
rule:

mi,j :=

{
1 if xi ∈ Bj;

0 if xi 6∈ Bj.

The incidence matrix M of a 2-(v, k, λ) design satisfies the following properties:

1 Every column of M contains exactly k times the value 1: this property holds
because the size of each block is k.

2 Every row of M contains exactly r times the value 1: this property holds
because every point lies in exactly r blocks.

3 Two distinct rows of M both contains 1s in exactly λ columns: this property
holds because two distinct points lie together in exactly λ blocks.

Now we are ready to state Fisher’s Inequality:

Theorem 1.1.9 (Fisher’s Inequality). In any 2-(v, k, λ) design with v > k, we have
that the number of blocks b is greater or equal than the number of points v.

Proof. Let (V,B) be a design and let M be the incidence matrix of (V,B). We
consider the matrix N = MMT , that is a v × v matrix. Set N = (ni,j), because of
properties 2 and 3 enumerated above, we have:

ni,j =
b∑

h=1

mi,hmj,h =

{
r if i = j;

λ if i 6= j.

Since r = λ(v−1)
k−1

6= λ we have det(N) 6= 0 and hence rank(N) = v. On the other
hand

rank(MMT ) ≤ rank(M) ≤ b.

It follows that v ≤ b.

Definition 1.1.10. In case the number of blocks b of a 2-(v, k, λ) design equals the
number of points v the design is called symmetric.
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The conditions of Corollary 1.1.7 and the one of Theorem 1.1.9 are not, in
general, also sufficient conditions for the existence of a 2-(v, k, λ) design: the smallest
counterexample is given by the nonexistence of a 2-(36, 6, 1) design. Therefore one
of the main problems about such designs is now to see for which values of (v, k, λ)
those conditions are sufficient. A remarkable result is due to R.M. Wilson (see [62],
1972). He proved that, if v is big enough, then there exists a 2-(v, k, λ) design for
all parameters that satisfy the conditions of Corollary 1.1.7 and the one of Theorem
1.1.9: therefore those conditions are asymptotically sufficient. Another big progress
was done by H. Hanani (see [44], 1975) who solved the case in which the blocks have
size less or equal than 5: also in this case the conditions of Corollary 1.1.7 and the
one of Theorem 1.1.9 are sufficient. However, despite the fact that many authors
worked on the case 6 ≤ k ≤ 9, see for instance [1, 2, 31, 42] and [43], there are still
many open cases and little is known when k > 9. We recall some of these results in
the following tables. For an exhaustive treatment of the topic we refer to [38].

Table 1.1.11. In the following table we give a partial summary of known results.

Values for which a Exceptions Biggest
2-(v, k, λ) design could exist open case
(v, k, 1) : v ≡ 1, k (mod k(k − 1))
k ∈ {3, 4, 5}
(v, 6, 1) : v ≡ 1, 6 (mod 15) 16, 21, 36, 46 801
(v, 7, 1) : v ≡ 1, 7 (mod 42) 43 2605
(v, 7, 2) : v ≡ 1, 7 (mod 21) 22 994
(v, 8, 1) : v ≡ 1, 8 (mod 56) 3753
(v, 9, 1) : v ≡ 1, 9 (mod 72) 16497
(v, 9, 2) : v ≡ 1, 9 (mod 36) 1845
(v, 9, 4) : v ≡ 1, 9 (mod 18) 783.

Table 1.1.12. Values of v for which existence of a 2-(v, 6, 1) design remains unde-
cided:

51, 61, 81, 166, 226, 231, 256, 261, 286, 316, 321
346, 351, 376, 406, 411, 436, 441, 471, 501, 561, 591

616, 646, 651, 676, 771, 796, 801.

Table 1.1.13. Values of t for which existence of a 2-(42t+ 1, 7, 1) design remains
undecided:

2, 3, 5, 6, 12, 14, 17, 19, 22, 27, 33, 37, 39, 42, 47, 59, 62.

Table 1.1.14. Values of t for which existence of a 2-(42t+ 7, 7, 1) design remains
undecided:

3, 19, 34, 39.

Table 1.1.15. Values of v for which existence of a 2-(v, 7, 2) design remains unde-
cided:

274, 358, 574, 694, 988, 994.
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Table 1.1.16. Values of t for which existence of a 2-(56t+ 1, 8, 1) design remains
undecided:

2, 3, 4, 5, 6, 7, 14, 19, 20, 21, 22, 24, 25, 26
27, 28, 31, 32, 34, 35, 39, 40, 46, 52, 59, 61, 62, 67.

Table 1.1.17. Values of t for which existence of a 2-(56t+ 8, 8, 1) design remains
undecided:

3, 11, 13, 20, 22, 23, 25, 26, 27, 28.

Table 1.1.18. Values of t for which existence of a 2-(72t+ 1, 9, 1) design remains
undecided:

2, 3, 4, 5, 7, 11, 12, 15, 20, 21, 22, 24, 27, 31
32, 34, 37, 38, 40, 42, 43, 45, 47, 50, 52, 53, 56, 60

61, 62, 67, 68, 75, 76, 84, 92, 94, 96, 102, 132, 174, 191
194, 196, 201, 204, 209.

Table 1.1.19. Values of t for which existence of a 2-(72t+ 9, 9, 1) design remains
undecided:

2, 3, 4, 5, 12, 13, 14, 18, 22, 23, 25, 26, 27, 28, 31
33, 34, 38, 40, 41, 43, 46, 47, 52, 59, 61, 62, 67, 68, 76

85, 93, 94, 102, 103, 139, 148, 174, 183, 192, 202, 203, 209, 229.

Table 1.1.20. Values of v for which existence of a 2-(v, 9, 2) design remains unde-
cided:

189, 253, 505, 765, 837, 1197, 1837, 1845.

Table 1.1.21. Values of v for which existence of a 2-(v, 9, 4) design remains unde-
cided:

315, 459, 783.

1.1.2 Resolvable 2-designs

We define the following important class of 2-(v, k, λ) designs:

Definition 1.1.22. Suppose (V,B) is a 2-(v, k, λ) design. A parallel class in (V,B)
is a subset of disjoint blocks from B whose union is V . A partition of B into r
parallel classes is called a resolution of B. A 2-design, (V,B) is said to be resolvable
(or a RBIBD) if B has at least one resolution.

An interesting class of examples of resolvable designs is provided by the affine
planes.

Example 1.1.23 (Affine planes over the fields Fq). Let us consider the set of points
given by V := F2

q and the set of blocks B (called also lines) given by the blocks of
the form Ba,b := {(x, ax + b) : x ∈ Fq} where a, b ∈ Fq and by the ones of the
form Bc := {(c, x) : x ∈ Fq} where c ∈ Fq. Then the pair (V,B) is a resolvable
2-(q2, q, 1) design.
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In the case of resolvable designs we can give the following necessary conditions
for the existence:

Theorem 1.1.24. If a resolvable 2-(v, k, λ) design exists, then λ(v−1) ≡ 0 (mod (k−
1)) and v ≡ 0 (mod k).

Proof. Observe that a parallel class contains v
k

blocks and therefore a design can
have a parallel class only if v ≡ 0 (mod k). Then, because of Corollary 1.1.7, the
claim follows.

As in the general case, even here there are still many cases for which the existence
problem remains open. The following table reports some of the known results about
the existence of a resolvable 2-(v, k, λ) design for small values of k. For an exhaustive
treatment of the topic we refer to [38].

Table 1.1.25. In the following table we give a partial summary of known results.

Values for which a resolvable Exceptions Largest
2-(v, k, λ) design could exist open case
k ∈ {3, 4}, (v, k, λ) : (6, 3, 2)
λ(v − 1) ≡ 0 (mod (k − 1)) and v ≡ 0 (mod k)
(v, 5, 1), v ≡ 5 (mod 20) 645
(v, 5, 2), v ≡ 5 (mod 10) (15, 5, 2) 395
(v, 5, 4), v ≡ 0 (mod 5) (10, 5, 4), (15, 5, 4) 195
(v, 6, 5), v ≡ 0 (mod 6) none
(v, 7, 1), v ≡ 7 (mod 42) 294427
(v, 7, 6), v ≡ 0 (mod 7) 462
(v, 8, 1), v ≡ 8 (mod 56) 24480
(v, 8, 7), v ≡ 0 (mod 8) 1488.

1.1.3 Some generalizations

In this paragraph we define three generalizations of 2-designs. The first generaliza-
tion explains the role of the number 2 in the definition.

Definition 1.1.26. Let v, k and λ be positive integers such that v > k ≥ t. A
t-(v, k, λ) designs is a pair (V,B) where V is a set of v elements (called points) and
B = [B1, . . . , Bb] is a collection of subsets, called blocks, of V such that:

1 every block contains exactly k points;

2 every set of t distinct points of V is contained in exactly λ blocks.

Of course, when t equals 2 we are in the case of 2-designs. The case in which
λ = 1 is of particular interest: such designs are called also Steiner systems. We
refer to [38] for a list of classical results related to this topic. A very important
result has been recently obtained by P. Keevash (see [45], 2014) who establishes the
existence of infinitely many t-(v, k, 1) designs for all t ≥ 2.

Now we define other two generalizations that we will use in the rest of this work.
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Definition 1.1.27. Let K be a subset of positive integers and let λ be a positive
integer. A pairwise balanced design, PBD(v,K, λ), with block sizes from K is a pair
(V,B) where V is a finite set of cardinality v and B is a family of subset (blocks) of
V that satisfies:

• if B ∈ B then |B| ∈ K and

• every pair of distinct elements (points) of V occurs in exactly λ blocks of B.

The integer λ is the index of the PBD. The notation PBD(v,K) is used when
λ = 1.

It is easy to see that, when all blocks have the same size k (i.e. K = {k}), we
are in the case of 2-designs.

The following class of designs is a generalization both of 2-designs and of pairwise
balanced designs:

Definition 1.1.28. Let K and G be sets of positive integers and let λ be a positive
integer. A group divisible design (GDD) of index λ and order v is a triple (V,G,B),
where V is a finite set of cardinality v, G is a partition of V into at least two parts
(groups) whose sizes lie in G, and B is a family of subsets (blocks) of V that
satisfies:

1) if B ∈ B then |B| ∈ K;

2) every pair of distinct elements of V occurs in exactly λ blocks or in one group,
but not both.

If v = a1g1 + a2g2 + · · · + asgs, and if there are ai groups of size gi, i = 1, 2, . . . , s,
then the (K,λ)-GDD is of type ga11 g

a2
2 . . . gass . The notation (k, λ)-GDD is used

when K = {k} and the notation k-GDD is used when K = {k} and λ = 1.

When G = {1} we obtain the case of paiwise balanced designs and, when G =
{1} and K = {k}, we obtain the case of 2-designs. It is worth recalling the definition
of isomorphism between two group divisible designs.

Definition 1.1.29. Two group divisible designs (V,G,B) and (V,G ′,B′) are iso-
morphic if there exists a bijection α : V → V ′ mapping B into B′ and G into G ′
or, in other words:

[{α(x) : x ∈ B} : B ∈ B] = B′;

[{α(x) : x ∈ G} : G ∈ G] = G ′.

The bijection α is called an isomorphism. If (V,G,B) = (V,G ′,B′) the map α is
called an automorphism of (V,G,B). We denote with Aut(V,G,B) the set of all
automorphisms of (V,G,B).

A relevant application of GDDs is given by the following remark:

Remark 1.1.30. Let us suppose there exists a (k, λ)-GDD of type nm and there
exists a 2-(n, k, λ) design then we have a 2-(nm, k, λ) design.

Similarly if there exists a (k, λ)-GDD of type nm and there exists a 2-(n+1, k, λ)
design then we have a 2-(nm+ 1, k, λ) design.
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Proof. For the first part of this remark it is sufficient to cover each group of the
GDD with a copy of the 2-(n, k, λ) design. The result is a 2-(nm, k, λ) design.

For the second part of this remark we add a point p to the set of points V of
the GDD. Then, for each group G ∈ G, we cover the set G ∪ {p} with a copy of
the 2-(n+ 1, k, λ) design. The result is a 2-(nm+ 1, k, λ) design.

Also in the cases of group divisible designs and pairwise balanced designs the
most interesting problem is the existence question: we refer to [38] for a compre-
hensive list of the known results and open questions related to these topics.

1.2 k-cycle decompositions

Other combinatorial objects that are strictly related with 2-designs are the decom-
positions of a graph. In this contest we define a graph Γ as a pair (V (Γ), E(Γ))
where V (Γ) is a set of points and E(Γ) is a set of edges (unordered pairs of points).
However sometime it is useful to consider also repeated edges: in this case we speak
of multigraphs and E(Γ) is a family of edges.

The link with 2-designs is given by the fact that a 2-(v, k, 1) design can be seen
as a complete graph Kv (that is the graph on v vertices with all the possible edges)
which is decomposed into copies of complete graphs Kk. In the following picture, for
example, we can see the Fano plane, that is a 2-(7, 3, 1) design, as a decomposition
of K7 into copies of K3.

The formal definition of a decomposition of a graph Γ into subgraphs Λ1, . . . ,Λn is
the following one:

Definition 1.2.1. Let us consider a graph Γ and a set C = {Λ1, . . . ,Λn} of sub-
graphs of Γ whose edges partition E(Γ). Then the set C is called a decomposition
of the graph Γ and the pair (Γ,C) is called a (Γ,C)-design.

Of course we can give the same definition also for the decompositions of a multi-
graph Γ into a family C = [Λ1, . . . ,Λn] of its sub-multigraphs. Note that, in this
case, we can have repetition of elements in C and hence C is not, in general, a simple
set. Also in these cases the fundamental question is the existence question. Does a
decomposition of a specified type exist?

In the case of the (Γ,C)-designs, an isomorphism α has to preserve the structure
of the decomposition, more precisely:
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Definition 1.2.2. We say that a (Γ,C)-design and a (Γ′,C′)-design are isomorphic
if there exists a bijection α : V (Γ)→ V (Γ′) such that:

• α : V (Γ)→ V (Γ′) is an isomorphism between the graphs Γ and Γ′. This means
that α(V (Γ)) = V (Γ′) and α(E(Γ)) = {(α(x), α(y)) : (x, y) ∈ E(Γ)} = E(Γ′)

• Denoted with α(Λi) the graph with vertices α(V (Λi)) and edges α(E(Λi)), we
have:

[α(Λi) : Λi ∈ C] = C′.

The bijection α is called an isomorphism between the designs (Γ,C) and (Γ′,C′). If
(Γ,C) = (Γ′,C′) the map α is called an automorphism of (Γ,C). We denote with
Aut((Γ,C)) the set of all automorphisms of (Γ,C).

We will call a decomposition C of Γ regular if it admits an automorphism group
acting regularly, namely sharply transitively, on the vertex-set.

In the case that C is a set of subgraphs of Γ all isomorphic to a given graph Λ
we use the notation of (Γ,Λ)-design. Similarly, in the case that C consists of cycles
of length k (or briefly k-cycles), we say that C is a k-cycle decomposition of Γ or a
(Γ, Ck)-design. Moreover, if Γ is the complete graph on v vertices Kv, we say that
C is a k-cycle system.

The latter case is of particular relevance and its existence problem has been
completely solved. We first see the solution of this problem in the special case
where the length of the cycles, denoted by k, equals the number of vertices of Kv,
i.e. k = v and hence the cycles are Hamiltonian. In this case the v-cycle system is
said Hamiltonian or briefly a HCS(v) and the following theorem holds:

Theorem 1.2.3 (Walecki, 1890). There exists a HCS(v) if and only if v ≥ 3 is an
odd integer.

Proof. Let us suppose there exists a HCS(v), C. Then, given C ∈ C and x ∈ V (Kv),
we have that x appears in two edges of C. Therefore the degree of x in Kv is even.
Since the degree of x is v − 1 we have that v is an odd integer.

Let v = 2n + 1. Then we identify the vertices of Kv with the set (∞, 1 −
n, . . . , 0, . . . , n). We consider the following cycle:

W := (∞, 0, 1,−1, 2,−2, . . . , i,−i, . . . , n− 1, 1− n, n).
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The cycle W has the property that the differences between adjacent vertices (dif-
ferent from ∞) cover Z2n twice.

We define an action of Zv−1 = Z2n on W in the following way: t→ Wt where

Wt := (∞, 0+t, 1+t,−1+t, 2+t,−2+t, . . . , i+t,−i+t, . . . , n−1+t, 1−n+t, n+t),

and the sums are in Z2n.
Let us consider the set of cycles C := {W,W1, . . . ,Wn−1}. We want to prove

that C is a Hamiltonian decomposition of Kv.
First of all we prove that, given two cycles Wt,Wt′ of C, the intersection of their

edges is empty. In fact, by contradiction, let us suppose that the edge e = {x, y}
lies both in Wt and in Wt′ .

The edges through ∞ of Wt are {∞, t} and {∞, n+ t} while the edges through
∞ of Wt are {∞, t′} and {∞, n+t′}. We have that t 6= t′ and, since 0 ≤ t, t′ ≤ n−1,
we have also that t 6= n + t′. Therefore ∞ 6∈ e. Then we have that x = x0 + t,
y = y0 + t and x = x1 + t′, y = y1 + t′ where the pairs {x0, y0} and {x1, y1} are
adjacent in W and where x − y = x0 − y0 = x1 − y1. Because of the definition of
W we have that x0 − y0 = x1 − y1 just in the following two cases:

• x0 = x1 and y0 = y1 or,

• x0 = n+ x1 and y0 = n+ y1.

Since t 6= t′ we have that x0 6= x1 and hence x0 = n + x1 and y0 = n + y1. Thus
we have x = x0 + t = (n+ x1) + t = x1 + t′. It follows that t′ = n+ t but this is a
contradiction because t, t′ ∈ {0, . . . , n− 1}.

Therefore the edges of the cycles W,W1, . . . ,Wn−1 are all distinct. Since these
edges are n(2n+1) that is the number of edges of Kv we have that C is a Hamiltonian
decomposition of Kv.

The action of Z2n defined in this proof is called 1-rotational because it fixes one
point and acts transitively on the others.

In regard to the general case, we can easily state the following necessary condi-
tions for the existence of a k-cycle system of Kv:

Proposition 1.2.4. Let k be an integer 3 ≤ k ≤ v, then, if the graph Kv has a
k-cycle decomposition, it follows that v is odd and |E(Kv)| ≡ 0 (mod k).

Proof. Let us consider a k-cycle decomposition C of Kv, a cycle C ∈ C and a vertex
x ∈ Kv. We have that x is incident with either two or zero edges of C. Since
each edge through x lies in exactly one cycle we have that the degree of x is even.
Because the degree of Kv is v − 1 we have that v is odd.

The edges of E(Kv) are partitioned by the edges of the cycles of C. Since each
cycle has k edges, it follows that |E(Kv)| ≡ 0 (mod k).

It has been recently shown that these conditions are also sufficient. In fact the
problem of existence of a k-cycle decomposition of the complete graph Kv has been
solved by B. Alspach, H. Gavlas (see [8], 2001) and by M. Sajna (see [57], 2002, see
also M. Buratti [17], 2003):

Theorem 1.2.5. Let k be an integer 3 ≤ k ≤ v, then the graph Kv has a k-cycle
decomposition if and only if v is odd and |E(Kv)| ≡ 0 (mod k).
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1.2.1 Perfect decompositions

In this paragraph we consider a particular type of k-cycle decompositions that are
the i-perfect k-cycle decompositions. First of all we need to introduce some notation:
given two vertices x and y of a graph Γ the distance between x and y is the minimum
length of the paths connecting them.

Definition 1.2.6. A k-cycle decomposition C of Γ is called i-perfect if for any pair
x, y of vertices there is exactly one cycle of C in which x and y have distance i.

Cycle decompositions of the complete graph Kv, which are 2-perfect or 3-perfect
are a well-studied topic, see for instance [4, 5, 30, 46, 48, 49, 50]. Larger values of i
are considered in [6] where, however, the length k of the cycles does not exceed 19.

The following is an example of 2- and 3-perfect decomposition of K7:

The following proposition generalizes the previous example:

Proposition 1.2.7. Let v be an odd prime and let i ≤ v−1
2

be an integer. Then
there exists an i-perfect HCS(v).

Proof. We identify the vertices of Kv with the set {1, . . . , v}. Let us consider the
set of cycles C := {Cj : j ∈ [1, v−1

2
]} where:

Cj := (0, j (mod v), 2j (mod v), . . . , (v − 1)j (mod v)).

Then, in the cycle Cj, the pairs of vertices at distance i have difference ±ji (mod v).
Given two vertices x and y and an integer i ∈ [1, v−1

2
], there exists only one j ∈

[1, v−1
2

] such that x−y = ±ji (mod v). This means that C is a Hamiltonian i-perfect
decomposition of Kv.

In [48] C.C. Lindner, K.T. Phelps, and C.A. Rodger introduced the idea of 2-
perfect cycle systems in order to give a construction of quasi-groups. A quasi-group
is a pair (Q, ?), where Q is a set and ? is a binary operation of Q such that, for all
a and b in Q there exist a unique element x and a unique element y that satisfy the
following equations:

• a ? x = b;

• y ? a = b.

Their construction is the following:

Theorem 1.2.8. Let C be a 2-perfect k-cycle decomposition of Kv. Then, given x
and y in Kv, there exists only one C ∈ C such that x is adjacent to y i.e:

C = (x, y, v3, . . . , vk).

Then we define x ? y = v3. We have that the pair (V (Kv), ?) is a quasi-group.
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Proof. Let us consider a, b ∈ Q.
Because C is 2-perfect, there is a unique cycle C = (a, x, b, . . . ), C ∈ C in which

a and b have distance 2. It follows that there exists a unique x such that a ? x = b.
Because C is a decomposition of Kv, there is a unique cycle C = (y, a, b, . . . ), C ∈

C in which a and b are adjacent. It follows that there exists a unique y such that
y ? a = b.

However the study of i-perfect k-cycle systems is also motivated by the fact that
being i-perfect is a property that is invariant under isomorphism:

Theorem 1.2.9. Let C be an i-perfect k-cycle decomposition of Γ and let C′ be a
k-cycle decomposition of Γ′. If (Γ,C) and (Γ′,C′) are isomorphic, as designs, then
C′ is also an i-perfect k-cycle decomposition of Γ′.

Proof. Let α be an isomorphism between (Γ,C) and (Γ′,C′). Then, given x, y ∈
V (Γ′), we consider the pair (α−1(x), α−1(y)) of vertices of Γ. There exists one and
only one C ∈ C such that α−1(x) and α−1(y) have distance i in C. Since the
distance is an invariant under isomorphism, the cycles in which α−1(x) and α−1(y)
have distance i are mapped onto the cycles in which x and y have distance i. It
follows that there exists one and only one cycle C ′ ∈ C′ such that x and y have
distance i in C ′.

In regard to the problem of existence of i-perfect k-cycle systems, the known
necessary conditions are the ones given by Proposition 1.2.4. However these condi-
tions are not, in general, also sufficient (see the exceptions of Table 1.2.10 below).
The existence problem, in the cases in which k is small, was studied essentially by
C.C. Lindner, C.A. Rodger and others (see [48, 49, 50]) for i = 2 and by P. Adams,
D.E. Bryant and others (see [4, 5, 6]) for other values of i. Their results are the
following:

Table 1.2.10. If k ≤ 19 there exists an i-perfect k-cycle decomposition of Kv for
all odd v such that v(v−1)

2
≡ 0 (mod k) up to the following exceptions ([6, 49]):

k Exceptions (v, i) Possible exceptions (v, i)
5 (15, 2)
6 (9, 2)
7, 8, 11
9 (9, 2); (9, 4) (45, 2); (45, 4)
10 (221, 2); (221, 4); (20t+ 5, 2); (20t+ 5, 4)
12, 16, 17
13 see the table below
14 (309, 2); (477, 2); (28t+ 21, 2) . . . (28t+ 21, 6)
15 see the table below
18 (217, 4); (217, 6); (36t+ 9, 2) . . . (36t+ 9, 7)
19 (57, 2); (57, 9).

Values of i and v for which existence of an i-perfect 13-cycle decomposition of
Kv remains undecided:
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i v
5 183, 209, 235, 261, 287, 339, 391, 703, 807, 885, 963,

1015, 1119, 1197, 1431, 1639,
26t+ 13 for t ≥ 1.

Values of i and v for which existence of an i-perfect 15-cycle decomposition of
Kv remains undecided:

i v
2, 4, 5, 7 55,
3, 6 55, 30t+ 21 for t ≥ 2,

30t+ 25 for t ≥ 1.

Another important result of existence has been obtained independently in [30]
by M. Buratti, G. Rinaldi and T. Traetta and in [46] by K. Kobayashi, B. McKay,
M. Mutoh, G. Nakamura and N. Nara. Before stating their result, we recall a
proposition that gives a criterion to establish whether a given (2n + 1)-cycle with
vertex set Z2n ∪ {∞} generates a 3-perfect HCS(2n+ 1).

Proposition 1.2.11. Let us consider Z2n and let C be a cycle with vertex set
Z2n∪{∞}. We denote by ∆1C = ∪{x,y}∈E(C)[x−y] and by ∆3C = ∪{x,y}∈E(C3)[x−y]
where C3 is the graph with the same vertices as C and with edges the pairs of vertices
at distance three in C.

Then, if C + n = C and both the lists ∆1C and ∆3C cover every non-zero
element of Z2n, the set of distinct translates of C under the 1-rotational action (see
Theorem 1.2.3) is an i-perfect HCS(2n+ 1).

We omit the proof of the previous proposition since it is very similar to that of
Theorem 1.2.3. Now we are ready to state the result of [30] and [46]. In particular
we follow the proof of [30].

Theorem 1.2.12 ([30] and [46]). There exists a 3-perfect HCS(k) whenever k is
odd and k ≥ 7.

Proof. Let W ∗ be the cycle obtainable from the base cycle W of the HCS(2n+ 1)
of Walecki (see Theorem 1.2.3) by joining the two neighbours 0 and n of ∞ and
moving ∞ between the two endpoints −bn

2
c and bn

2
c of the edge which is opposite

to ∞. Thus we have:

W ∗ = (0, 1,−1, 2,−2, . . . ,
n

2
,∞,−n

2
, . . . , n− 1,−(n− 1), n)

or

W ∗ = (0, 1,−1, 2,−2, . . . ,
n− 1

2
,∞,−n− 1

2
, . . . , n− 1,−(n− 1), n)

according to whether n is even or odd respectively. The figure below illustrates how
to move from W to W ∗ when n = 4.
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It is clear that W ∗ is fixed by adding n. It is also clear that the list ∆1W
∗ is

obtainable from the list ∆1W by replacing the two differences ±(bn
2
c + dn

2
e) with

the two differences ±(n − 0). On the other hand the values of these differences
coincide and are both n. Thus we have ∆1W

∗ = ∆1W . Since it is known that
considering ∆1W we have ∆1W = Z2n \ {0} it follows that considering also ∆1W

∗

as a set we have that ∆1W
∗ = Z2n \ {0}.

Now note that ∆3W
∗ can be seen as the list of all possible differences between the

two endpoints of a subpath with four vertices of W ∗. Among the 4-subpaths of W ∗

we have all those of the form Px = [x,−x,−x+1,−x−1] with x ∈ {1, . . . , n−1}\X
where X = {n

2
− 1, n

2
} or X = n−1

2
according to whether n is even or odd. Hence,

considering that the difference between the two endpoints x and −x − 1 of Px is
2x + 1 we obtain that ∆3W

∗ covers all odd elements of Z2n with the only possible
exceptions of ±1 and ±(n − 1) for n even and the only possible exceptions of ±1
and ±n for n odd.

Among the 4-subpaths of W ∗ there are also those of the form Qy = [1 −
y, y,−y, y + 1] with y ∈ {1, . . . , n − 1} \ Y where Y = {n

2
} or Y = {n−1

2
, n+1

2
}

according to whether n is even or odd respectively. Hence, considering that the
difference between the two endpoints y+ 1 and 1− y of Qy is 2y we see that ∆3W

∗

covers all even elements of Z2n \ {0} with the only possible exception of n in the
case of n even, and the only possible exception of ±(n− 1) in the case of n odd.

On the other hand, if we set

P0 = [
n

2
,∞,−n

2
,
n

2
+ 1] or P0 = [

n− 1

2
,∞,−n− 1

2
,
n+ 1

2
],

according to whether n is even or odd we see that the endpoints have differences
±1. We also see that

[n, 0, 1,−1] and [1− n, n, 0, 1]

are 4-subpath of W ∗ whose endpoints have difference ±(n− 1) and n respectively.
We conclude that, in all cases, considering ∆1W

∗ as a set, we have ∆3W
∗ = Z2n\{0}.

Thus the claim follows from Proposition 1.2.11.
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Chapter 2

Difference methods

2.1 Difference sets and difference families

The systematic use of cyclic difference sets and related methods for the construction
of 2-designs dates back to R.C. Bose and his seminal paper of 1939. However, various
examples appeared earlier than this such as those of R. Paley which date back to
1933 (see [55]). In this chapter we intend to describe such methods but first of all
we need to introduce some notation.

Given a multiset X we denote by λX the disjoint union of λ copies of X. From
now we will consider sets and multisets of elements of a finite group (G,+), we
write this group in additive form and we denote by 0 its identity element. Then, if
X is a multiset of elements of (G,+), for any g ∈ G, we define:

X + g := [x+ g : x ∈ X].

Any multiset X + g is called a translate of X. We note that if X is a simple set
also X + g is a simple set. Then we define:

Dev(X) := [X + g : g ∈ G].

Dev(X) is called the development of X. Similarly, given a family of multisets of
elements of G, say F := [X1, . . . , Xl], we define:

Dev(F) :=
l⋃

i=1

Dev(Xi),

Also in this case, Dev(F) is called the development of the family F.
Given a set D = {d1, . . . , dk} of elements of G, we define the difference table of

D as the matrix M(D) whose element mi,j is di − dj if i 6= j while it is the symbol
• if i = j. Then we define the list of differences of the set D as the list ∆D of
elements of the difference table of D that are not in the main diagonal. We can
write this list as follows:

∆D = [di − dj : i, j ∈ [1, k], i 6= j].

We note that, since for i 6= j the elements di and dj are different, 0 never belongs
to ∆D.

25
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Example 2.1.1. Let us consider the group Z7 and the subset D = {1, 2, 4} of Z7.
Then the difference table of the set D is the matrix:

M(D) :=

 • 6 4
1 • 5
3 2 •

 .

Thus the list of differences of the set D is ∆D = [1, 2, 3, 4, 5, 6].

Similarly, given a multiset X = [x1, . . . , xk] of elements of G, we define the
difference table of X as the matrix M(X) whose element mi,j is xi − xj if i 6= j
while it is the symbol • if i = j. Then we define the list of differences of the multiset
X as the list ∆X := [xi−xj : i, j ∈ [1, k], i 6= j]. In this case, since xi can be equal
to xj for i 6= j, the element 0 is allowed to belong to ∆X.

Example 2.1.2. Let us consider the group Z7 and the multiset X = [0, 1, 2, 4, 1, 2, 4]
of elements of Z7. Then the difference table of the set X is the matrix:

M(X) :=



• 6 5 3 6 5 3
1 • 6 4 0 6 4
2 1 • 5 6 0 5
4 3 2 • 3 2 0
1 0 1 4 • 6 4
2 1 0 5 1 • 5
6 3 2 0 3 2 •


.

Thus the list of differences of the multiset X is ∆X = 6[0, 1, 2, 3, 4, 5, 6].

Now we give the following definition:

Definition 2.1.3. Suppose (G,+) is a finite group of order v. Let k and λ be
positive integers such that 2 ≤ k < v. A (v, k, λ)-difference set, or briefly DS, is a
subset D ⊆ G that satisfies the following properties:

• |D| = k.

• the list ∆D contains every element of G \ {0} exactly λ.

If the group G is the cyclic group Zv the difference set D is called cyclic.

Example 2.1.4. We consider the subset D = {1, 2, 4} of Z7 of Example 2.1.1. We
have seen that ∆D = [1, 2, 3, 4, 5, 6] and hence D is a cyclic (7, 3, 1)-difference set

We note that, since the number of ordered pairs of D is k(k−1) and each element
of G \ {0} appears as a difference λ times, we have:

λ(v − 1) = k(k − 1).

Here we illustrate the “Paley difference sets”:

Theorem 2.1.5 (Paley difference sets). Let q ≡ 3 (mod 4) be a prime power. In
the additive group of Fq, we consider the set D of all non-zero squares. Then D is
a (q, q−1

2
, q−3

4
)-difference set.
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Proof. Given a generator g of the multiplicative group of Fq, we have that the non-
zero squares are the elements of the form g2i for 1 ≤ i ≤ q−1

2
. Therefore |D| = q−1

2
.

We need to prove that every non-zero element of Fq appears q−3
4

times as a difference
of two elements in D.

For any d ∈ Fq \ {0}, we define

ad = |{(x, y) : x, y ∈ D, x− y = d}|.

Given h ∈ Fq \ {0}, we have that hx − hy = h(x − y), so the number of times
that d appears as difference from D is the same as the number of times that hd
appears as a difference from hD = {hx : x ∈ D}. Now if h is a square we have that
hD = D and hence ad = ahd for all squares h ∈ D. Let now consider a non square
h ∈ Fq \ {0}. Since q ≡ 3 (mod 4) we have that −1 is not a square in Fq. It follows
that −h is a square in Fq. Hence we have that ad = a−hd. Now, since x− y = d if
and only if y − x = −d, it is clear from the definition that:

ad = |{(x, y) : x, y ∈ D, x− y = d}| = a−d = |{(y, x) : y, x ∈ D, y − x = −d}|.

It follows that ad = a−hd = ahd also for the non square elements h. Thus ad does
not depend on d, namely ad is a constant λ for all d ∈ Fq \ {0}. We can compute
λ from the equation λ(v − 1) = k(k − 1), which gives λ = q−3

4
and hence the claim

follows.

We are now ready to illustrate the utility of difference sets in order to construct
2-designs.

Theorem 2.1.6. Let D be a (v, k, λ)-difference set in the group (G,+). Then
(G,Dev(D)) is a symmetric 2-(v, k, λ) design.

This theorem is a very classical result of R.C. Bose (see [14]) and we will give
several generalizations of it. We will finally prove the more general result that is
Theorem 2.1.23 and thus we omit the proofs of all the intermediate theorems. Here
we give, as an example, an application of this theorem.

Example 2.1.7. Let us consider the Paley difference set over F7 that is D =
{1, 4, 2}. Then:

Dev(D) := [{1, 4, 2}+ g : g ∈ F7] = [{1 + g, 4 + g, 2 + g} : g ∈ F7].

It follows that:

Dev(D) = [{1, 4, 2}, {2, 5, 3}, {3, 6, 4}, {4, 0, 5}, {5, 1, 6}, {6, 2, 0}, {0, 3, 1}].

The pair (F7, Dev(D)) is a symmetric 2-(7, 3, 1) design. Specifically it is the Fano
plane (see also Example 1.1.3), and can be represented with the following picture:
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Moreover, as we will see in Theorem 2.1.23, the 2-designs constructed from
difference sets in the group G have the special property that their automorphism
group contains a copy of the group G. More precisely:

Theorem 2.1.8. Suppose (G,Dev(D)) is a 2-design constructed from a (v, k, λ)-
difference set D in the group (G,+). Then Aut(G,Dev(D)) contains a subgroup
isomorphic to G that acts sharply transitively on the set of points.

Now we give a generalization of Definition 2.1.3:

Definition 2.1.9. Suppose (G,+) is a finite group of order v. Let k and λ be
positive integers such that 2 ≤ k < v. A (v, k, λ)-difference family in (G,+) is a
collection of subsets of G, say F := [D1, . . . , Dl], such that the following properties
are satisfied:

• |Di| = k for 1 ≤ i ≤ l;

• The multiset union:

∆F :=
⋃
D∈F

∆D

contains every element in G \ {0} exactly λ times.

Example 2.1.10. We consider the family of subsets of F13 given by F := [{0, 1, 4}, {0, 2, 7}].
Then we have:

∆F = ∆{0, 1, 4} ∪∆{0, 2, 7},

where ∆{0, 1, 4} = ±[1, 3, 4] and ∆{0, 2, 7} = ±[2, 5, 7]. Thus

∆F = ±[1, 3, 4, 2, 5, 7] = F13 \ {0}.

It follows that F is a (13, 3, 1)-DF .

Here we give a first generalization of Theorem 2.1.6 to the case of difference
families.
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Theorem 2.1.11. Suppose F := [D1, . . . , Dl] is a (v, k, λ)-difference family in the
group (G,+). Then (G,Dev(F)) is a 2-(v, k, λ) design and Aut(G,Dev(F)) contains
a group isomorphic to G that acts sharply transitively on the set of points.

We will see that also this theorem is a special case of Theorem 2.1.23 and thus
we omit its proof. However we try to explain this construction through an example.

Example 2.1.12. We resume Example 2.1.10 where F := [{0, 1, 4}, {0, 2, 7}]. Here
the development of F is given by

Dev(F) := [{0, 1, 4}+ g : g ∈ F13] ∪ [{0, 2, 7}+ g : g ∈ F13].

Thus Dev(F) is given by the set of blocks:

[{0, 1, 4}, {1, 2, 5}, {2, 3, 6}.,
{3, 4, 7}, {4, 5, 8}, {5, 6, 9},
{6, 7, 10}, {7, 8, 11}, {8, 9, 12},
{9, 10, 0}, {10, 11, 1}, {11, 12, 2},
{12, 0, 3}, {0, 2, 7}, {1, 3, 8},
{2, 4, 9}, {3, 5, 10}, {4, 6, 11},
{5, 7, 12}, {6, 8, 0}, {7, 9, 1},
{8, 10, 2}, {9, 11, 3}, {10, 12, 4},
{11, 0, 5}, {12, 1, 6}].

Then the pair (F13, Dev(F)) is a 2-(13, 3, 1) design.

2.1.1 Relative difference families

The concept of a “relative difference family” is a further generalization of the idea of
“difference family”. This concept, formally introduced by M. Buratti in [21] allows
to achieve GDDs, 2-designs and other kind of combinatorial designs:

Definition 2.1.13. Given an additive group G of order v and a subgroup H of G of
order n, a (G,H, k, λ)-DF , or (v, n, k, λ)-DF over G and relative to H, is a family
F := [D1, . . . , Dl] of subsets of G of cardinality k such that the list

∆F =
l⋃

i=1

∆Di

covers G \H exactly λ times while it does not contain any element of H.
If l = 1, i.e. the family F = [D1] is given by a single set, we say that the set D1

is a (G,H, k, λ) relative difference set (see [56]).

Then it is immediate to note that, if H = {0}, we meet again the case of
difference families.

Example 2.1.14. Let us consider the set D of elements of Z5 × Z5 defined by:

D = {(0, 0), (1, 1), (1, 4), (4, 2), (4, 3)}.



30

We have that

∆D = ±[(1, 1), (1, 4), (4, 2), (4, 3), (0, 2), (2, 4), (2, 3), (2, 2), (2, 1), (0, 4)].

Therefore ∆D = (Z5 × Z5) \ (Z5 × {0}) and hence D is a (Z5 × Z5,Z5 × {0}, 5, 1)
relative difference set.

Example 2.1.15. Let us consider the family of sets of elements of Z21 given by

F := [{0, 1, 3}, {0, 8, 17}, {0, 10, 15}].

We have that

∆F = ∆{0, 1, 3} ∪∆{0, 8, 17} ∪∆{0, 10, 15}

where:

∆{0, 1, 3} = ±[1, 3, 2];

∆{0, 8, 17} = ±[8, 17, 9];

∆{0, 10, 15} = ±[10, 15, 5].

Therefore ∆F = Z21\{0, 7, 14} = Z21\〈7〉Z21
and hence F is a (Z21, 〈7〉Z21

, 3, 1)-DF .

Here we present a more elaborate example. This construction was found by M.
Buratti in [23].

Example 2.1.16 (M. Buratti). Let us consider a prime p ≡ 1 (mod 6). Then,

denoted by g a primitive root of unity of Zp, we have that ε = g
p−1
3 is a cube

primitive root of unity of Zp that is ε3 ≡ 1 (mod p) and ε 6≡ 1 (mod p). Since
0 ≡ ε3 − 1 ≡ (ε − 1)(ε2 + ε + 1) (mod p), it follows that ε satisfies the equation
ε2 + ε+ 1 = 0.

We consider the following subsets of Z8 × Zp:

Bi = {(0, 0), (1, 2εi), (3,−εi+1), (5,−εi)} i = 0, 1, 2
B3 = {(0, 2), (0, 2ε), (0, 2ε2), (1, 0)}.

Then the list
⋃3
i=0 ∆Bi can be written in the form

⋃7
i=0{i} × Li where Li = −L8−i

and:

L0 = ±2[1− ε, 1− ε2, ε− ε2],
L1 = 2[1, ε, ε2,−1,−ε,−ε2],
L2 = [−2− ε,−(2 + ε)ε,−(2 + ε)ε2,−(1− ε),−(1− ε)ε,−(1− ε)ε2],
L3 = [−ε,−ε2,−ε3, 1, ε, ε3],
L4 = ±[3, 3ε, 3ε3].

Since ε2 + ε + 1 = 0, it follows that 1 − ε2 = (1 + ε)(1 − ε) = (ε − 1)ε2 and
−2− ε = ε2 − 1 = (ε− 1)(ε+ 1) = (1− ε)ε2. Thus we have:

L0 = ±2(ε− 1)[ε, ε2, 1], L1 = ±2[ε, ε2, 1],
L2 = ±(ε− 1)[ε, ε2, 1], L3 = ±[ε, ε2, 1],
L4 = ±3[ε, ε2, 1], L5 = ±[ε, ε2, 1],
L6 = ±(ε− 1)[ε, ε2, 1], L7 = ±2[ε, ε2, 1].
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Therefore, if S is a a complete system of representatives for the cosets of 〈−ε〉 in
Z∗p, we have that:

[Li · s| s ∈ S] = Zp \ {0}, for 0 ≤ i ≤ 3.

It follows that:
F := [Bi · (1, s)| 0 ≤ i ≤ 3; s ∈ S]

is a (Z8 × Zp,Z8 × {0}, 4, 1)-DF .

Now we give a further generalization of Theorem 2.1.6 to the case of relative
difference families.

Theorem 2.1.17 ([21]). A (G,H, k, λ)-DF yields a (k, λ)-GDD of type nm, say
X , where m = |G : H| and n = |H|. Moreover Aut(X ) contains a group isomorphic
to (G,+) that acts sharply transitively on the set of points of X .

Since also this theorem is a special case of Theorem 2.1.23 we omit its proof.

Remark 2.1.18. Let G be a group of order v and let F := [D1, . . . , Dl] be a
(G,H, k, λ)-DF . In case H is {0} we have that F is a (v, k, λ)-DF . In this case
(G,G, Dev(F)) is a 2-(v, k, λ) design and Theorem 2.1.17 reduces to Theorem 2.1.11.
Moreover, if we also have that F = [D1], the set D1 is a (v, k, λ)-difference set and
we obtain Theorem 2.1.6.

Now we consider the graph K(m)
n , that is the complete m-partite graph with m

parts of size n, see for instance [58] and [59]. Given an integer λ we define also the

multigraph λK(m)
n whose vertices are the ones of K(m)

n and whose edges consist of λ
copies of the edges of K(m)

n .
We note that a (k, λ)-GDD of type nm is equivalent to a Kk-decomposition of

λK(m)
n . In fact, given a (k, λ)-GDD of type nm (V,G,B), we have that:

1) The graph with set of vertices V and whose edges are the pairs {x, y} such
that x and y are not in a same group of G is the complete m-partite graph
λK(m)

n .

2) Let us consider the set of graphs C := {KB : B ∈ B} where KB is the complete
graph whose vertices are the k elements of B. Then C is a decomposition of
λK(m)

n .

According to this link we want to extend the concept of a relative difference family to
get Γ-decompositions of complete m-partite graphs. First of all we need to consider
the following, more general, definition of relative difference families:

Definition 2.1.19 ([25]). Let us consider an additive group G of order v, a subgroup
H of G of order n and a graph Γ. A (G,H,Γ, λ)-DF , or (v, n,Γ, λ)-DF over G
and relative to H, is a collection F of injective maps from V (Γ) to G such that the
list

∆ΓF =
⋃
f∈F

[f(x)− f(y)|{x, y} ∈ E(Γ)]

covers G \H exactly λ times while it does not contain any element of H.
If the family F = [f ] is given by a single map f , we say that f is a (G,H,Γ, λ)

difference graph.
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Example 2.1.20. Let Γ be the graph with vertices V (Γ) := {v1, v2, v3, v4} and edges
E(Γ) := {{v1, v2}, {v1, v3}, {v1, v4}}. We consider the map f : V (Γ) → (Z3 × Z3)
such that:

f(v1) = (0, 0); f(v2) = (0, 1); f(v3) = (1, 1); f(v4) = (1, 2).

We have that ∆Γf = [f(x)− f(y)|{x, y} ∈ E(Γ)] = ±[(0, 1), (1, 1), (1, 2)] and hence
f is a (Z3×Z3,Z3×{0},Γ, 1) difference graph. We can represent this example with
the following picture:

Example 2.1.21. Let Γ be the same graph of Example 2.1.20, whose vertices are
{v1, v2, v3, v4} and whose edges are {{v1, v2}, {v1, v3}, {v1, v4}}. We consider the
maps f1, f2 : V (Γ)→ Z15 such that:

f1(v1) = 0; f1(v2) = 1; f1(v3) = 4; f1(v4) = 3;

f2(v1) = 0; f2(v2) = 2; f2(v3) = 8; f2(v4) = 6.

We have that ∆ΓF = [f1(x) − f1(y)|{x, y} ∈ E(Γ)] ∪ [f2(x) − f2(y)|{x, y} ∈ E(Γ)]
where

[f1(x)− f1(y)|{x, y} ∈ E(Γ)] = ±[1, 4, 3];

[f2(x)− f2(y)|{x, y} ∈ E(Γ)] = ±[2, 8, 6].

Therefore ∆ΓF = Z15 \ {0, 5, 10} = Z15 \ 〈5〉Z15
and hence F is a (Z15, 〈5〉Z15

,Γ, 1)
relative difference family. We can represent this example with the following pictures:
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Remark 2.1.22. Let us consider a (G,H,Kk, λ)-DF , say F. Then, if we identify
each map f of F with its image {f(v)| v ∈ V (Kk)}, we can see the family F as a
collection of subsets [D1, . . . , Dl] of G such that each Di has size k and

∆F :=
⋃
D∈F

[x− y : x, y ∈ D, x 6= y]

covers G \H exactly λ times while it does not contain any element of H. It follows
that a (G,H,Kk, λ)-DF is equivalent to a (G,H, k, λ)-DF .

Then, similarly to case of Theorem 2.1.17, the following theorem holds true:

Theorem 2.1.23 ([25]). A (G,H,Γ, λ)-DF yields a regular Γ-decomposition of

λK(m)
k , where m = |G : H| and k = |H|.

Proof. Let F be a (G,H,Γ, λ)-DF . We consider the graph KG:H whose vertices are
the elements of G and whose edges are the pairs of vertices {x, y} such that x and y
belong to different right cosets of H in G. Since this graph is a complete multipartite
graph, we identify KG:H with the complete m-partite graph K(m)

n where m = |G : H|
and n = |H|. For each f ∈ F and each g ∈ G, we define the graph f(Γ) + g whose
vertex set is Im(f) + g ⊆ G and whose edge set is {{f(x) + g, f(y) + g} : {x, y} ∈
E(Γ)}. We denote by C the family of all graphs f(Γ) + g such that f ∈ F and
g ∈ G. Then we want to prove that C is a regular Γ-decomposition of λKG:H or
equivalently of λK(m)

n .
Let x and y be two different elements of G. First of all we prove that, if x and

y are in different right cosets of H in G, there are exactly λ graphs Λ of C such
that {x, y} ∈ E(Λ). Denote x − y = d. Since d 6∈ H, there are exactly λ ordered
triples (x′, y′, f) such that x′ − y′ = d and {x′, y′} ∈ E(f(Γ)) for some f ∈ F. Let
these ordered triples be denoted by (xi, yi, fi), 1 ≤ i ≤ λ. For 1 ≤ i ≤ λ we have
the equality:

−xi + x = −xi + (x− y) + y = −xi + (xi − yi) + y = −yi + y.

Thus we define gi = −xi + x = −yi + y. Then we have {x, y} = {xi + gi, yi +
gi} ∈ E(fi(Γ) + gi). It follows that there exist at least λ graphs Λ of C such that
{x, y} ∈ E(Λ).

Conversely, suppose that {x, y} ∈ E(f(Γ) + g) for some f ∈ F and g ∈ G, then
we have that {x, y} = {x̄+ g, ȳ + g} where x̄− ȳ = x− y and {x̄, ȳ} ∈ E(f(Γ)). It
follows that x̄ = xi and ȳ = yi for some 1 ≤ i ≤ λ. Thus there are exactly λ graphs
Λ of C such that {x, y} ∈ E(Λ).

Now we consider x and y to be in the same right coset of H in G, i.e. x−y ∈ H.
Let us suppose that {x, y} belongs to E(f(Γ) + g) for some f ∈ F and g ∈ G.
Then we have {x, y} = {x̄ + g, ȳ + g} where x̄ − ȳ = x − y and {x̄, ȳ} ∈ E(f(Γ)).
Thus x̄− ȳ ∈ H that is a contradiction since ∆F does not cover any element of H.
Therefore the edge {x, y} does not belong to any graph of C. Since every graph of

C is isomorphic to Γ, it follows that C is a Γ-decomposition of λK(m)
n .

Now, for every g ∈ G we define the permutation g̃ of G as follows: g̃(x) = x+ g
for all x ∈ G. We define G̃ = {g̃ : g ∈ G}. Then (G̃, ◦), where the group
operation ◦ denotes composition of permutations, is a permutation group isomorphic
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to (G,+) and it is known as the permutation representation of G. Moreover (G̃, ◦)
is a subgroup of Aut(λK(m)

n ,C). In order to prove this statement it is enough to
observe that G̃ is an automorphism group of KG:H and the action of this group
maps graphs of C into graphs of C. In fact given g̃ ∈ G̃ and f(Γ) + h ∈ C we have:

g̃(f(Γ) + h) = {g̃(x) : x ∈ f(Γ) + h} = {x+ g : x ∈ f(Γ) + h} =

= {y + h+ g : y ∈ f(Γ)} = f(Γ) + h+ g.

Similarly, given a right coset H + h of H in G, we have:

g̃(H + h) = {g̃(x) : x ∈ H + h} = {x+ g : x ∈ H + h} =

= {y + h+ g : y ∈ H} = H + h+ g.

Since f(Γ) + h + g ∈ C and H + h + g is a right coset of H in G, each g̃ ∈ G̃ is

an automorphism of C and hence (G̃, ◦) is a subgroup of Aut(λK(m)
n ,C) that acts

sharply transitively on the set of points.

Remark 2.1.24. According to Remark 2.1.22, in case Γ = Kk Theorem 2.1.23
reduces to Theorem 2.1.17. Therefore also Theorems 2.1.11, 2.1.8 and 2.1.6 are
special cases of Theorem 2.1.23.

In the proof of Theorem 2.1.23 the vertex set of K(m)
n has been identified with

G and its m parts with the right cosets of H. If we consider G = Z3×Z3 and H =
Z3×{0}, as we have done in Example 2.1.20, we obtain the following representation

of the complete 3-partite graph K(3)
3 :

Then we can see the regular decomposition of the proof of Theorem 2.1.23 also in the
following way. Let us consider a collection D of subgraphs of K(m)

n all isomorphic to
a given graph Γ. In case of Example 2.1.20 the collection D is given by the following
graph:
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We call list of differences of D the multiset ∆D of all the differences x− y with
(x, y) an ordered pair of vertices which are adjacent in some graph of D. If we have
∆D = λ(G \ H), then the collection C of all translates under the group G of all

graphs of D forms the desired regular decomposition of λK(m)
n .

2.2 Strong difference families

In the nineties, several constructions of relative difference families were developed
(see, for example, [9, 20, 43]). This idea allows to achieve a plethora of GDDs
and, according to Remark 1.1.30, of 2-designs. Despite this fact, a systematic
treatment of constructions of DF s has been performed only later. The concept of
a strong difference family was introduced by M. Buratti in [22], in order to cover
such problem, as follows:

Definition 2.2.1. Let Σ := [X1, . . . , Xt] be a family of multisets of size k of an
additive group G of order g.
We say that Σ is a (G, k, µ) strong difference family (SDF ), or a (g, k, µ)-SDF
over to the group G, if the list

∆Σ =
⋃
X∈Σ

∆X,

covers all of G exactly µ times.
If t = 1, i.e. the family Σ = [X1] is given by a single multiset, we say that the

multiset X1 is a (G, k, µ) strong difference multiset (SDM).

Example 2.2.2. Let us consider the family of multisets of elements of Z15:

Σ := [[0, 0, 5], [0, 1, 4], [0, 2, 8], [0, 1, 4], [0, 2, 8]].

Then
∆Σ = ∆[0, 0, 5] ∪ 2∆[0, 1, 4] ∪ 2∆[0, 2, 8]

where
∆[0, 0, 5] = ±[0, 5, 5];

∆[0, 1, 4] = ±[1, 3, 4];

∆[0, 2, 8] = ±[2, 8, 6].

Therefore ∆Σ = 2Z15 and hence Σ is a (Z15, 3, 2) strong difference family.
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This idea was generalized later by M. Buratti and L. Gionfriddo in a graph
theoretic context (see [25]). We report here the more general definition that is the
following:

Definition 2.2.3. Let G be a group, Γ be a graph and let Σ := [σ1, . . . , σt] be a
family of maps such that σj : V (Γ)→ G for j ∈ {1, . . . , t}.
We say that Σ is a (G,Γ, µ) strong difference family (SDF ) if the list

∆ΓΣ =
⋃
σ∈Σ

[σ(x)− σ(y)|{x, y} ∈ E(Γ)],

covers all of G exactly µ times.
If t = 1, i.e. the family Σ = [σ1] is given by a single map, we say that the map

σ1 is a (G,Γ, µ) strong difference map (SDM).

Remark 2.2.4. Let us consider a (G,Kk, µ)-SDF , say Σ. We identify each map
σ ∈ Σ with its image X = [σ(v)|v ∈ V (Kk)]. Then the list [σ(x) − σ(y)|{x, y} ∈
E(Kk)] is equal to the list ∆X. Thus we can see the family Σ as a collection of
multisets [X1, . . . , Xt] of G such that each Xj has size k and the list

∆Σ =
⋃
X∈Σ

∆X,

covers all of G exactly µ times. It follows that a (G,Kk, µ)-SDF is equivalent to
a (G, k, µ)-SDF . Similarly a (G,Kk, µ) strong difference map (or briefly SDM) is
equivalent to a (G, k, µ) strong difference multiset (or briefly SDM).

We denote by Ck the k-cycle (x0, x1, . . . , xk−1).

Example 2.2.5. Let us consider the map σ7 : xj ∈ C7 → j2 ∈ Z7. We have that:

∆C7σ7 = [σ7(x)− σ7(y)|{x, y} ∈ E(C7)] = 2Z7.

Therefore the map σ7 is a (Z7, C7, 2)-SDM .

We can generalize this example and construct an infinite family of SDF s with the
use of the Paley difference sets (see [55]):

Theorem 2.2.6 (Paley SDM). If k is odd the map σk : xj ∈ Ck → j2 ∈ Zk is a
(Zk, Ck, 2)-SDM . Moreover, if k is an odd prime, σk : xj ∈ Kk → j2 ∈ Zk is also
a (Zk,Kk, k − 1)-SDM (or equivalently a (Zk, k, k − 1)-SDM).
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Proof. It follows from the definition that the difference

σk(xi+1)− σk(xi) = (i+ 1)2 − i2 = 2i+ 1.

Therefore, since k is odd, the list:

∆Ck
[σk] =

⋃
{x,y}∈E(Ck)

[σk(x)− σk(y)] =
k−1⋃
i=0

±{2i+ 1} = 2(Zk \ {0}).

It follows that σk is a (Zk, Ck, 2)-SDM .
We can split the proof of the second point of the claim in two parts: when the

prime k ≡ −1 (mod 4) and when k ≡ 1 (mod 4). In both cases, since the set D of
the squares of Zk has cardinality k−1

2
, we have that 0 occurs k − 1 times in the list

of differences ∆Kk
(σk). We have to show that each nonzero element of Zk appears

the same number of times in this list.
In case k ≡ −1 (mod 4) because of Theorem 2.1.5, for all d ∈ Zk \ {0}, there

are exactly k−3
4

representations of d as a difference from D. Each of them has to
be counted four times in the number of representations of d as a difference from
∆Kk

(σk). The remaining representations of d as a difference from ∆Kk
(σk) are

d = d− 0 that appears twice if d is a square, or d = 0− (−d) that appears twice if
d is not a square. Therefore d appears k − 1 times in ∆Kk

(σk).
Now consider the case k ≡ 1 (mod 4). Let d ∈ D. There are exactly k−5

4

representations of d as a difference from D (see [22]). Each of them has to be counted
four times in the number of representations of d as a difference from ∆Kk

(σk). The
remaining representations of d as a difference from ∆Kk

(σk) are d = d − 0 and
d = 0 − (−d) both present twice. Therefore d appears k − 1 times as a difference
in ∆Kk

(σk). Let now e 6∈ D. Then there are exactly k−1
4

representations of e as a
difference from D (see again [22]). Also here, each of them has to be counted four
times in the number of representations of d as a difference from ∆Kk

(σk). Then,
since no difference from ∆Kk

(σk) involving 0 gives e, we have that e appears k − 1
times in ∆Kk

(σk).

This example has been implicitly used in [9] and [20] and will be studied in
depth later in this thesis.

The following theorem motivates the study of SDF s over arbitrary graphs. First
of all we need to introduce some notation. Given multisets S and L of elements of a
finite ring R we denote by S ·L the multiset on R defined by S ·L = [s·l|s ∈ S; l ∈ L].
The group of units of R will be denoted, as usual, by U(R).

Let us consider a multiset A whose elements belong to a cartesian product G×H.
Then we can write A, univocally, as union of multisets of the form {g} × Lg where
g ∈ G and the elements of Lg belong to H. For example if we consider the multiset
A = [(0, 2), (0, 1), (1, 2), (0, 1)] whose elements belong to Z3 × Z5 then:

A = ({0} × [2, 1, 2]) ∪ ({1} × [2]) ∪ ({2} × ∅).

Theorem 2.2.7 (The fundamental construction, M. Buratti, L. Gionfriddo, [25]).
Let Γ be a graph, let G be an additive group, and let R be a ring with additive group
H. Given an n-tuple (f1, . . . , fn) of maps from V (Γ) to G×H we set:

fi(x) = (σi(x), τi(x)) ∀x ∈ V (Γ), ∀i ∈ {1, . . . , n};
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∆Γ[f1, . . . , fn] =
n⋃
i=1

⋃
{x,y}∈E(Γ)

[fi(x)− fi(y)];

as we have seen above there exist multisets Lg of elements of H such that:

∆Γ[f1, . . . , fn] =
⋃
g∈G

{g} × Lg.

Assume that the following conditions hold:

1) σi(x) = σi(y) with x 6= y =⇒ τi(x)− τi(y) ∈ U(R);

2) ∃ S ⊂ H \ {0} such that S · Lg = λ(H \ {0}) ∀g ∈ G.

Then there exists a (G×H,G× {0},Γ, λ)-DF .

Proof. For every pair (i, s) ∈ {1, . . . , n} × S, we consider the map:

fi,s : x ∈ V (Γ)→ (σi(x), s · τi(x)) ∈ G×H.

We claim that the family F = [fi,s|i = 1, . . . , n; s ∈ S] is the required (G×H,G×
{0},Γ, λ)-DF .

First of all each map fi,s is injective since if x and y are distinct vertices of V (Γ)
such that fi,s(x) = fi,s(y) then we would have (σ(x), s · τi(x)) = (σ(y), s · τi(y)) and
hence σi(x) = σi(y) and s · (τi(x)− τi(y)) = 0 that is a contradiction in view of the
condition (1).

Then note that for any fixed s ∈ S we have

∆Γ[f1,s, . . . , fn,s] =
⋃
g∈G

{g} × (s · Lg)

so that we can write:

∆ΓF =
⋃
s∈S

n⋃
i=1

∆Γfi,s =
⋃
s∈S

⋃
g∈G

{g} × (s · Lg) =
⋃
g∈G

{g} × (S · Lg).

Thus, by condition (2), we have ∆ΓF = λ[(G × H) \ (G × {0}]. The assertion
follows.

We remark that, if {f1, . . . , fn} is an n-tuple of maps satisfying the hypothesis

of the previous theorem, then each Lg has size equal to µ = λ(|H|−1)
|S| . On the other

hand it is clear that the size of Lg is the number of times that the element g appears
in the list of differences

n⋃
i=1

∆Γ[σi] =
n⋃
i=1

[σi(x)− σi(y) : {x, y} ∈ E(Γ)].

Therefore, denoted by Σ = [σ1, . . . , σn], Σ is a (G,Γ, µ)-SDF .
Usually, in the applications, we start from a SDF , Σ and we provide the family

of maps τ1, . . . , τn such that the pairs (σ1, τ1), . . . , (σn, τn) satisfy the hypothesis of
the previous theorem.

Going on with the parallelism of Remark 2.2.4, in case Γ is the complete graph
Kk, the fundamental construction becomes:
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Theorem 2.2.8 ([22]). Let Σ = [[s1
1, . . . , s

1
k], . . . , [s

n
1 , . . . , s

n
k ]] be a (G, k, µ)-SDF ,

and let R be a ring with additive group H. Given n multisets of H, [t11, . . . , t
1
k], . . . , [t

n
1 , . . . , t

n
k ],

we set:
Ai = [(sij, t

i
j), j ∈ {1, . . . , k}], ∀i ∈ {1, . . . , n};

∆[A1, . . . , An] =
n⋃
i=1

[x− y|x, y ∈ Ai, x 6= y];

as we have seen in Theorem 2.2.7, there exist multisets Lg of elements of H such
that:

∆[A1, . . . , An] =
⋃
g∈G

{g} × Lg.

Assume that the following conditions hold:

1) For i ∈ {1, . . . , n} we have: sij = sij′ with j 6= j′ =⇒ tij − tij′ ∈ U(R);

2) ∃ S ⊂ H \ {0} such that S · Lg = λ(H \ {0}) ∀g ∈ G.

Then there exists a (G×H,G× {0}, k, λ)-DF . Moreover the multisets A1, . . . , An
turn out to be simple sets.

We remark that Example 2.1.16 implicitly uses this construction and the concept
of a strong difference family. Then, as an application of the fundamental construc-
tion, it is also possible to provide the following asymptotical theorems of existence
of graph decompositions:

Theorem 2.2.9 (M. Buratti, L. Gionfriddo, [25]). If there exists a (G,Γ, µ)-SDF
with G of order n and |V (Γ)| = k then there exists a regular Γ-decomposition of

µK(m)
n for any positive integer m such that gcd(m, (k − 1)!) = 1.

Theorem 2.2.10 (M. Buratti, A. Pasotti, [26]). If there exists a (G,Γ, µ)-SDF ,

then there exists also a regular Γ-decomposition of K(q)
|G| for all prime powers q ≡ µ+1

(mod 2µ) big enough. In particular if there exists a (g, k, µ)-SDF then there exists
also a k-GDD of type gq.

In the last chapter of this work, we will return on the previous theorem in order
to give a quantitative statement of it.

2.3 Applications of SDF s

2.3.1 A construction of designs

In this subsection we present a simple example that shows how we can use Theorem
2.2.8 in order to construct an infinite family of 2-designs. This example was first
found by R.C. Bose in [14] and then rediscovered by M. Buratti in [22]. Here we
follow the proof of [22].

Example 2.3.1. Let q be a prime power such that q ≡ 1 (mod 4). Then there
exists a 2-(5q, 5, 1) design.
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Proof. Let us consider the (F5, 5, 4) strong difference multiset given by:

X = [0, 1, 1,−1,−1].

Since q ≡ 1 (mod 4) there exists ξ such that ξ2 = −1. Thus we define the following
subset of F5 × Fq whose first components are the elements of X:

A := {(0, 0), (1, 1), (1,−1), (−1, ξ), (−1,−ξ)}.

Let us consider the list ∆[A] = [x − y| x, y ∈ A, x 6= y]. Now we set ∆[A] =⋃
g∈F5
{g} × Lg where Lg ⊆ Fq. We have that:

• L0 := 2 · {1,−1, ξ,−ξ}

• L1 = L−1 := {1,−1, ξ,−ξ}

• L2 = L−2 := (1− ξ) · {1,−1, ξ,−ξ}.

We note that the set {1,−1, ξ,−ξ} is a subgroup of F∗q. In fact we have:

ξ(−ξ) = ξ(−1)(ξ) = (ξ)2(−1) = (−1)(−1) = 1.

Then, if we consider S to be a complete system of representatives for the cosets
of {1,−1, ξ,−ξ} in F∗q, it follows that S · Lg = (Fq)∗ for all g ∈ F5.

Therefore, as a consequence of Theorem 2.2.8, there exists a (F5 × Fq,F5 ×
{0}, 5, 1)-DF . Because of Theorem 2.1.17 we obtain a 5-GDD of type 5q. Since it
trivally exists a 2-(5, 5, 1) design, by Remark 1.1.30, we get a 2-(5q, 5, 1) design.

The previous example (and in particular its proof of M. Buratti) is source of
inspiration of several constructions of Chapter 5.

2.3.2 The Buratti, Rania and Zuanni construction

As we have seen in Definition 1.2.2, a k-cycle decomposition is regular if it admits
an automorphism group acting regularly, namely sharply transitively, on the vertex-
set. In this paragraph however, a k-cycle decomposition of the complete m-partite
graph K(m)

k will be said regular if the automorphism group acting regularly on the
vertices is the additive group of Zk × R where R is a finite ring with identity of
order m; the set of units of a ring R will be denoted by U(R).

Such a regular decomposition can be obtained with the methods of difference
families (see Theorem 2.1.19) as follows. Let us consider a family F = [f1, . . . , fn] of
injective maps from Ck to (Zk ×R). Let us call list of i-differences of the family F
the multiset ∆Ci

k
F (denoted also ∆iF) of all the differences f(x)− f(y) with (x, y)

an ordered pair of vertices which are at distance i in Ck and f ∈ F. If we have
∆Ck

F = (Zk×R)\ (Zk×{0}), then F is a (Zk×R,Zk×{0}, Ck, 1)-DF . Identifying

the vertices of K(m)
k with the elements of Zk×R and its m parts with the sets of the

form Zk×{y} with y a fixed element of R, the maps of F determine a set of cycles.
Then, according to the proof of Theorem 2.1.19, the collection C of all translates
under the group Zk × R of all cycles of F forms the desired k-cycle decomposition
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of K(m)
k . If, in addition, we have ∆Ci

k
F = ∆Ck

F for some value of i > 1, then C is
also i-perfect.

A general construction for regular i-perfect k-cycle decompositions of K(m)
k , here

denoted by “the Buratti, Rania and Zuanni construction” or the BRZ-construction,
has been obtained in [29] taking as R the ring Zm. In [24] we generalize that
construction assuming that R is any ring of order m. The crucial ingredient in the
construction is a special map, that we call i-perfect map defined as follows.

Definition 2.3.2. Let k, i be integers with gcd(2i, k) = 1, 2 ≤ i ≤ k−1
2

, and let R
be a ring. A map τ : Zk −→ R is said to be i-perfect if the following conditions
hold:

C1. τ is odd, i.e., τ(−x) = −τ(x) ∀x ∈ Zk;

C2. x, y ∈ Zk and x2 = y2 =⇒ x = y or τ(x)− τ(y) ∈ U(R);

C3. τ(x+ 1)− τ(x) ∈ U(R) ∀x ∈ Zk;

C4. τ(x+ i)− τ(x) ∈ U(R) ∀x ∈ Zk.

We are now able to state the following theorem that is a generalization of
theBRZ-construction (Theorem 4.2 of [29]).

Theorem 2.3.3. Let R be a ring of order m. If there exists an i-perfect map
τ : Zk −→ R, then there exists a regular i-perfect k-cycle decomposition of K(m)

k .

Proof. Assume that τ : Zk −→ R is i-perfect and consider the map f : V (Ck) →
Zk −→ R : f(x) = (x2, τ(x)).

Let Ω be a subset of Zk \ {0} such that if ω ∈ Ω then also −ω ∈ Ω. We
recall that the circulant graph of order k and with connection set Ω is the simple
graph with vertex-set Zk and whose edges are precisely those of the form {x, ω+x}
with x ∈ Zk and ω ∈ Ω. As a special case of Proposition 4.5 in [25], the map
σ : x ∈ Zk −→ x2 ∈ Zk is a (Zk,Γ, 2) strong difference map for every circulant
graph Γ of order k and connection set of the form {j,−j} with gcd(j, k) = 1. This
means that the list [σ(x+j)−σ(x), σ(x)−σ(x+j) | x ∈ Zk] covers all elements of Zk
exactly twice for any j ∈ U(Zk). It follows that for any such j the list of j-differences
of [f ] has the form ∆Cj

k
[f ] =

⋃
z∈Zk
{z}×[δj(z), εj(z)] where [δj(z), εj(z)] is a suitable

pair of elements of R. Now condition C1 easily implies that εj(z) = −δj(z) for every
z ∈ Zk. Hence, for every j ∈ {1, . . . , k−1

2
} ∩ U(Zk), the list of j-differences of [f ]

is of the form
∆Cj

k
[f ] =

⋃
z∈Zk

{z} × [δj(z),−δj(z)]

Finally, conditions C3 and C4 imply that δj(z) is a unit of R for j ∈ {1, i} and for
every z ∈ Zk. Now let S be a complete system of representatives for the equivalence
relation in R \ {0} defined by r ∼ r′ if and only if r′ = ±r. It is clear that we

have
⋃
s∈S

[sδj(z),−sδj(z)] = R \ {0} and hence, if fs is the map obtained from f by

multiplying the second coordinates of all its vertices by s, we see that F := [fs |s ∈ S]
is a (Zk × R,Zk × {0}, Ck, 1)-DF . Since we have also that ∆Ci

k
F = ∆Ck

F, this

difference family generates an i-perfect k-cycle decomposition C of K(m)
k .
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Using this construction in case R = Zm, M. Buratti, F. Rania and F. Zuanni
got i-perfect k-cycle decompositions of K(m)

k for infinitely many values of k.

Theorem 2.3.4 (M. Buratti, F. Rania, F. Zuanni). If gcd(k, 2i) = 1 there exists

an i-perfect k-cycle decomposition of K(m)
k for all m such that gcd(m, (k− 1)!) = 1.

Proof. It is sufficient to consider the map τ : Zk → Zm such that τ(x) = x for
x ∈ [0, k−1

2
] and τ(x) = x − k otherwise. This map satisfies the property C1

of Definition 2.3.2 by construction and, because gcd(m, (k − 1)!) = 1, it satisfies
also the other properties. Thus τ is i-perfect and the claim follows from Theorem
2.3.3.

Note that, if k is a prime, they obtained also an i-perfect k-cycle decomposition
of Kmk as a consequence of this theorem and of Proposition 1.2.7. Moreover, again
as a consequence of this theorem and of Theorem 1.2.12, M. Buratti, G. Rinaldi and
T. Traetta in [30], got a 3-perfect k-cycle decomposition of Kmk for all k coprime
with 6 and suitable values of m.

Theorem 2.3.5. If gcd(k, 6) = 1 then there exists a 3-perfect k-cycle decomposition
of Kmk for all m such that gcd(m, (k − 1)!) = 1.

In Chapters 3 and 4 of this work we will see that, with a careful application of
the BRZ-construction and of Theorem 2.3.3, it is possible to improve Theorems
2.3.4 and 2.3.5.



Chapter 3

Perfect decompositions
via graph colorings

In this chapter we will find infinite classes of i-perfect k-cycle decompositions of Kv

where v = mk is odd and i (≤ k−1
2

) is arbitrary. The two ingredients for achieving

this are: an i-perfect k-cycle decomposition of K(m)
k and an i-perfect Hamiltonian

decomposition of Kk, i.e., an i-perfect k-cycle decomposition of Kk.

The core of this chapter is devoted to a careful investigation about the existence
of the first object. The main tool will be the BRZ-construction, that uses a special
map (i-perfect map, see Definition 2.3.2) from Zk to a suitable ring of order m. We
will also use some elementary but useful remarks on vertex-colorings of a graph.
The main result is that an i-perfect k-cycle decomposition of K(m)

k with k odd and
i admissible exists whenever the parameters satisfy suitable conditions which, in
general, are not very strict; in the worst of the cases, k = 3`2, the existence is

assured when gcd(i, k) = 1 and each prime power factor of m is greater than 7
√
k

6
.

The best case is when k is a prime; here it is enough that gcd(m, 9) 6= 3.

Unfortunately to obtain constructions of the second object, an i-perfect Hamilto-
nian decomposition of Kk (also called Hamiltonian cycle system or briefly HCS(k)),
seems to be a much harder target in general. On the other hand the few known
results on this problem led us to a plethora of new i-perfect k-cycle decompositions
of the complete graph anyway. In particular we prove that if k is an odd prime, then
there exists an i-perfect k-cycle decomposition of Kv (or briefly a (Kv, Ck)-design)
for any v = mk odd and any admissible i with the only possible exception of the
case that we simultaneously have k ≥ 23 and gcd(m, 9) = 3.

Incidentally, we also update the known results about i-perfect k-cycle decompo-
sitions (or briefly, (Kv, Ck)-designs) with k ≤ 19 (see Table 12.50 in [15] or Table
1.2.10 of this thesis) proving the existence of a 2-perfect (K45, C9)-design, of a 2-
perfect (K57, C19)-design, and of a 5-perfect (K13m, Ck) design for any odd m.

Still more results could be obtained if we knew more about the existence of i-
perfect Hamiltonian cycle systems, a topic that we hope will receive some attention
in the near future.

43
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3.1 More about i-perfect maps

Let R be a finite ring of order m with identity; we denote by U(R) the set of units
of a ring R. It will be useful to recall that every ring R of order m is isomorphic
to a direct product R1 × · · · × Rn of rings whose orders, q1, . . . qn, are the prime
power factors of m (see, e.g., Theorem 1.1 in [53]). We will refer to this result as
the structure theorem of finite rings.

We briefly recall that (see Definition 2.3.2) an i-perfect map τ from Zk to R is an
odd map (C1) such that if x, y ∈ Zk and x2 = y2 then x = y or τ(x)− τ(y) ∈ U(R)
(C2); τ(x+1)−τ(x) ∈ U(R) ∀x ∈ Zk (C3); and finally, τ(x+ i)−τ(x) ∈ U(R) ∀x ∈
Zk (C4).

Assume now that an i-perfect map τ : Zk −→ R exists. Given x ∈ Zk \ {0}, we
have τ(x) − τ(−x) ∈ U(R) from C2 and hence, from C1, we have 2τ(x) ∈ U(R).
This implies that both 2 = 1 + 1 and τ(x) are units.

Note, in particular, that the order of R is necessarily odd; in the opposite case,
if y is an involution of the additive group of R, we would have 0 = 2y and then,
considering that 2 is a unit, we would have y = 0 which is absurd.

From C1, we have τ(0) = −τ(0) and hence 2τ(0) = 0 which implies τ(0) = 0
recalling that 2 ∈ U(R).

Now assume that the order of R is divisible by 3 but not by 9. Then, up
to isomorphism, considering that Z3 is the only ring of order 3, we have R =
Z3 × R′ for a suitable ring R′ by the structure theorem of finite rings. The
projection of the sequence (τ(0), τ(1), . . . , τ(k − 1)) onto Z3 is necessarily of the
form (0, 1, 2, 1, 2, . . . 1, 2) or (0, 2, 1, 2, 1, . . . , 2, 1) since τ(x) − τ(x + 1) cannot be
in {0} × R′ in view of C3, and we also have τ(x) /∈ {0} × R′ for x 6= 0 since, as
commented above, τ(x) is a unit for every such x. Then, for i even, we would have
τ(i+1)−τ(1) ∈ {0}×R′ and, for i odd, we would have τ(i−1)−τ(−1) ∈ {0}×R′.
In both cases C4 would be contradicted.

The above observations can be summarized as follows.

Remark 3.1.1. If there exists an i-perfect map τ : Zk −→ R then we have:

|R| is odd;

τ(0) = 0;

τ(x) ∈ U(R) ∀x ∈ Zk \ {0};

gcd(|R|, 9) 6= 3.

We will say that a triple (k, i,m) is admissible if k is odd, gcd(i, k) = 1, 1 ≤ i ≤
bk

2
c, and gcd(m, 18) = 1 or 9. In view of the above remark, it is clear that if an

i-perfect map τ : Zk −→ R exists, then (k, i, |R|) is admissible.
Given a natural number m, we will denote by R(m) the ring of order m which is

the direct product of all fields whose orders are the prime power factors of m. Note,
in particular, that R(m) = Zm if and only if m is square-free. In the next section
we will see that R(m), among all rings R of order m, is an optimal candidate for
the existence of an i-perfect map τ : Zk −→ R. So our goal will be to determine
the set of all admissible triples (k, i,m) for which there exists an i-perfect map
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τ : Zk −→ R(m). We will see that an effective way for attacking this problem is to
calculate the chromatic numbers of some auxiliary graphs associated with the pair
(k, i). In section 5 we will prove the following main result.

Theorem 3.1.2. A necessary condition for the existence of an i-perfect map
τ : Zk −→ R(m) is that (k, i,m) is admissible and that every prime power fac-
tor of m is not smaller than w(k) := 2t

√
k/k∗ where k∗ is the square-free part of

k, and t is the number of prime factors of k∗.
The condition is also sufficient with the possible exception of the case where the

following facts simultaneously hold: k > 1000 is the product of two distinct primes;
i > 2 is even; gcd(m, 25) = 5.

The exception mentioned in the theorem can be removed if one was able to prove
the bipartiteness of some special graphs of order the product of two distinct odd
primes.

In the last section we will show how our main result allows to obtain a plethora of
new i-perfect k-cycle systems of order v = mn (odd). In particular, the existence of
such a system with k a prime remains undecided only for k ≥ 23 and gcd(m, 9) = 3.

Now note that the main theorem in conjunction with Theorem 2.3.3 immediately
implies the following result.

Corollary 3.1.3. If (k, i,m) are admissible and all prime power factors of m are

at least equal to w(k), then there exists an i-perfect k-cycle decomposition of K(m)
k

with the same possible exceptions of Theorem 3.1.2.

3.2 Necessity

Given a positive odd integer k, throughout the chapter we will denote by Z2
k the

set of squares of Zk, by Z+
k the subset {1, . . . , k−1

2
} of Zk, and by Z−k the subset

{k+1
2
, . . . , k − 1} of Zk. Given σ ∈ Z2

k , we set

Aσ := {x ∈ Zk : x2 = σ}; A∗σ := Aσ \ {0}; A+
σ = Aσ ∩ Z+

k .

Let Σk be the multiset on Z2
k defined by Σk = {x2 | x ∈ Zk}. The weight of

Σk, denoted by w(k), is defined to be the maximum number of occurrences of an
integer in Σk. Equivalently, we have

w(k) := max
σ∈Z2

k

|Aσ|.

It has been proved in [29] that if k = pe11 . . . penn is the prime-factorization of k, then
we have

w(k) = 2tpg11 . . . pgnn

where gi = b ei
2
c and t is the number of odd eis.

Here we note that if we set k = k∗`2 with k∗ the square-free part of k, then a
more readable presentation of w(k) is the one given in the statement of our main
theorem:

w(k) = 2t`
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where t is the number of prime factors of k∗.
We will also need to consider the integer w∗(k) defined as follows.

w∗(k) := max
σ∈Z2

k

|A∗σ|.

It is clear that w∗(k) is either w(k)− 1 or w(k). Note that w∗(k) is always even
since, obviously, if x is an element of A∗σ, then −x is also in A∗σ. Also note that
w(k) is odd if and only if k is a square. These remarks allow us to write:

w∗(k) =

{
w(k)− 1 if k is a square;

w(k) otherwise.

Definition 3.2.1. Let us define the weight of a ring R as the integer w(R) express-
ing the maximum size of a subset of R whose list of differences is entirely contained
in U(R).

It is an easy exercise to see that w(Zm) is the least prime factor of m while
w(R(m)) is the least prime power factor of m. Now recall that every ring R of
order m is isomorphic to a direct product R1 ⊕ · · · ⊕ Rn of rings whose orders, q1,
. . . qn, are the prime power factors of m (see, e.g., Theorem 1.1 in [53]). Assume that
q1 is the least prime power factor of m and let X be a subset of R of size greater than
q1. By the pigeon hole principle, there are two elements x and y of X having the
same first coordinate so that x−y is not a unit of R. Thus ∆X, the list of differences
of X, is not entirely contained in U(R) and therefore w(R) ≤ q1 = w(R(m)). We
conclude that no ring of order m is strictly weightier than R(m).

Lemma 3.2.2. A necessary condition for the existence of an i-perfect map
τ : Zk −→ R with (k, i, |R|) admissible, is that w(R) ≥ w(k).

Proof. Let τ : Zk −→ R be i-perfect and take σ ∈ Z2
k such that |Aσ| = w(k). By

condition C2 of Definition 2.3.2, the image of Aσ is a w(k)-subset of R whose list
of differences is entirely contained in U(R).

Corollary 3.2.3. A necessary condition for the existence of an i-perfect map
τ : Zk −→ R(m) is that (k, i,m) is admissible and that every prime power fac-
tor of m is not smaller than w(k).

In view of Lemma 3.2.2, in order to construct perfect maps from Zk to a ring
R of order m, it is better to choose R as weighty as possible. Thus, for what seen
above, the ring R(m) is optimal in this sense.

3.3 The auxiliary graphs G(k, i, ρ)

and their chromatic numbers

In this section we introduce some auxiliary graphs associated with the pair (k, i)
and we show how the knowledge of their chromatic numbers may be helpful in
determining the values of m for which there exists an i-perfect map from Zk to
R(m).
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Definition 3.3.1. For any given map ρ : Z+
k −→ {1,−1}, let G(k, i, ρ) be the graph

with vertex-set Z+
k and edge-set

E(k, i, ρ) = E�(k) ∪ E(k, 1, ρ) ∪ E−(k, i, ρ) ∪ E+(k, i, ρ)

defined as follows:

{x, y} ∈ E�(k) ⇐⇒ x2 ≡ y2 (mod k);

{x, y} ∈ E(k, 1, ρ) ⇐⇒ x− y ≡ ±1 (mod k) and ρ(x) = ρ(y);

{x, y} ∈ E−(k, i, ρ) ⇐⇒ x− y ≡ ±i (mod k) and ρ(x) = ρ(y);

{x, y} ∈ E+(k, i, ρ) ⇐⇒ x+ y ≡ ±i (mod k) and ρ(x) 6= ρ(y).

We will denote by G�(k), G(k, 1, ρ), G−(k, i, ρ) and G+(k, i, ρ) the graphs whose
edge-sets are E�(k), E(k, 1, ρ), E−(k, i, ρ) and E+(k, i, ρ), respectively.

Lemma 3.3.2. Let (k, i,m) be admissible. If all prime power factors of m are
greater than twice the chromatic number of G(k, i, ρ) for a suitable map
ρ : Z+

k −→ {1,−1}, then there exists an i-perfect map τ : Zk −→ R(m).

Proof. Let ρ : Z+
k −→ {1,−1} and let t be the chromatic number of G(k, i, ρ).

Assume that all prime power factors of m are greater than 2t and let ω be an
element of R(m) whose j-th coordinate is a primitive element of the j-th factor of
R(m). Then take a vertex coloring c of G(k, i, ρ) whose colors are the elements of
the subset {ωj | 0 ≤ j ≤ t− 1} of R(m).

It is clear that for any two elements x and y of Z+
k , we have c(x) + c(y) ∈

U(R(m)). It is also clear that c(x) − c(y) ∈ U(R(m)) provided that c(x) 6= c(y).
This remark will be tacitly used in the following to show that the odd map τ :
Zk −→ R(m) defined by

τ(x) = ρ(x)c(x) ∀x ∈ Z+
k

is i-perfect.

The map τ satisfies condition C1 by definition.

The map τ satisfies Condition C2.
Let x, y be distinct elements of Zk such that x2 ≡ y2 (mod k). Set x = x or

−x according to whether x ∈ Z+
k or x ∈ Z−k , respectively. Analogously, set y = y or

−y according to whether y ∈ Z+
k or y ∈ Z−k , respectively. It is clear that we have

τ(x)− τ(y) = ±(c(x)± c(y)) for a suitable choice of the signs. We also have c(x) 6=
c(y) since {x, y} ∈ E�(k) is an edge of G(k, i, ρ). Then τ(x)− τ(y) ∈ U(R(m)).

The map τ satisfies Condition C3.
For x = 0 or k−1 we have τ(x)−τ(x+1) = ±c(1) ∈ U(R(m)) while for x = k−1

2

we have τ(x)− τ(x+ 1) = ±2c(k−1
2

) ∈ U(R(m)).
Now assume that x ∈ Z+

k \ {k−1
2
}. If ρ(x) 6= ρ(x+ 1), we have τ(x+ 1)− τ(x) =

±(c(x) + c(x+ 1)) ∈ U(R(m)). If ρ(x) = ρ(x+ 1), then {x, x+ 1} ∈ E(k, 1, ρ) is an
edge of G(k, i, ρ) so that we have c(x) 6= c(x+ 1). Then we have τ(x+ 1)− τ(x) =
±(c(x)− c(x+ 1)) ∈ U(R(m)).
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The case when x ∈ Z−k \ {k − 1} can be done similarly.

The map τ satisfies Condition C4.
For x = 0 or x = k − i we have τ(x)− τ(x+ i) = ±c(i) ∈ U(R(m)).
Assume that both x and x + i are in Z+

k . If ρ(x) 6= ρ(x + i), we have τ(x) −
τ(x + i) = ±(c(x + i) + c(x)) ∈ U(R(m)). If ρ(x) = ρ(x + i), then {x, x + i} ∈
E−(k, i, ρ) is an edge of G(k, i, ρ) so that we have c(x) 6= c(x + i). Then we have
τ(x)− τ(x+ i) = ±(c(x)− c(x+ i)) ∈ U(R(m)).

The case when both x and x+ i are in Z−k can be done similarly.
Now assume that x ∈ Z+

k and x + i ∈ Z−k so that y := −x − i ∈ Z+
k . If

ρ(x) 6= ρ(y), then {x, y} ∈ E+(k, i, ρ) so that we have c(x) 6= c(y). Then we have
τ(x)− τ(x+ i) = τ(x) + τ(y) = ±(c(x)− c(y)) ∈ U(R(m)). If ρ(x) = ρ(y), then we
have τ(x)− τ(x+ i) = τ(x) + τ(y) = ±(c(x) + c(y)) ∈ U(R(m)).

The case when x ∈ Z−k and x+ i ∈ Z+
k can be done similarly.

The above lemma is crucial for proving our main result. Indeed, given positive
integers k and i with i ≤ k−1

2
and gcd(2i, k) = 1, our strategy will be to find a

suitable map ρ : Z+
k −→ {1,−1} such that the graph G(k, i, ρ) has chromatic index

equal to w∗(k)
2

.

3.4 A pair of elementary lemmas

on vertex-graph-colorings

In order to determine the chromatic numbers of some graphs G(k, i, ρ) we need two
easy lemmas on vertex-graph-colorings. For a given graphG we will use the standard
notation χ(G) and ∆(G) to denote the chromatic number and the maximum degree
of G, respectively.

Lemma 3.4.1. Let G be a graph of chromatic number at least two (hence with at
least one edge) whose connected components are complete graphs and let M be a
matching on V (G). Then we have χ(G ∪ M) = χ(G).

Proof. The assertion will be proven if we show that χ(H) ≤ χ(G) for any connected
component H of G ∪ M . This is clear if H is entirely contained in G. So, from
now on, H will denote a connected component of G ∪ M having at least one edge
in E(M) \ E(G).

Assume that H is a complete graph and let e ∈ E(M) \ E(G). Since each
component of G is complete, e must join two components of G; these components
must each be K1 since H is complete. So H = K2. Now assume H is a cycle with
at least one edge e ∈ E(M). Since each component of G is complete, H must be an
even cycle in which the edges are alternately in E(M) \E(G) and in E(G) \E(M).
So χ(H) = 2 ≤ χ(G).

If H is neither a complete graph nor a cycle then χ(H) does not exceed ∆(H)
by Brooks’ Theorem on vertex colorings (see, e.g., [61]). On the other hand we have
∆(H) ≤ ∆(G) + ∆(M) = (χ(G) − 1) + 1 = χ(G) and hence χ(H) ≤ χ(G) once
again.
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The next lemma is in the same spirit of Proposition 2.2 of [7].

Lemma 3.4.2. Let G be a graph whose connected components are complete graphs
and let χ(G) ≥ 3. Let H be a graph with the same vertex-set as G and connected
components that are edges and a path P of order 3. Then χ(G ∪ H) = χ(G).

Proof. Let G and H be graphs as in the statement and set P = (x, y, z). By Lemma
3.4.1 there exists a proper vertex-coloring γ of G ∪ (H−{x, y}) using the colors of a
set C of size χ(G). Of course γ is also a proper vertex-coloring of G ∪ H in the case
that we have γ(x) 6= γ(y). So, let assume that γ(x) = γ(y) = c. Having χ(G) ≥ 3,
there is at least one color c∗ of C\{c} for which we have γ(z) 6= c∗. It is convenient to
denote these special colors c and c∗ by 1 and −1. Let X = (x0, x1, . . . , xn) be a path
of maximum length in the set X of all {1,−1}-colored subpath of G∪ (H −{x, y})
(in the fixed coloring γ) with an endpoint in x0 = x.

Since γ(x) = 1, it is evident that γ(xi) is 1 or −1 according to whether i is
even or odd, respectively. Considering the forms of the graphs G and H, it is also
evident that {xi, xi+1} is in E(G) or in E(H) according to whether i is even or odd,
respectively. So, denoting by Ai the connected component of G through xi, we have
V (Ai) ∩ V (X) = {xi, xi+1} for i < n even or {xi, xi−1} for i odd. We also have
V (An) ∩ V (X) = {xn} when n is even.

In view of the above remarks we also notice that y 6∈ V (X). Indeed in the
opposite case we would have y = xi for an even i > 0 since we are supposing
γ(x) = γ(y) = 1. Therefore {xi−1, xi} ∈ E(H) and then xi−1 is either x or z
considering that the only edges of E(H) through y are {x, y} and {y, z}. In the
former case we would have y = x1 and then γ(y) = −1, a contradiction. In the
latter case we have γ(z) = γ(xi−1) ∈ {1,−1} which is also a contradiction.

If 0 ≤ i < n, the vertex xi is incident with just one edge of E(H), and hence all
neighbors of xi not in X (except y when i = 0) must be in a clique of G, so cannot
be colored either 1 or −1. Since X is maximal, the only neighbors in G ∪ H of
xn colored the negative of the color of xn must be in X. Therefore interchanging
colors along X produces a proper coloring of G ∪ H.

3.5 Existence of i-perfect maps

Now we have all necessary ingredients for proving our main result. We split the
proof into two parts according to whether i is odd or even.

Proposition 3.5.1. The necessary condition given by Corollary 3.2.3 is also suf-
ficient except, possibly, in the case that k > 1000 is the product of two distinct
primes, i > 2 is even and gcd(m, 25) = 5.

Proof. Case 1: Suppose that i is odd.

Let ρ : x ∈ Z+
k −→ (−1)x ∈ {1,−1}. One can see that both G(k, 1, ρ) and

G−(k, i, ρ) are totally disconnected so that G(k, i, ρ) is the union of G�(k) and
G+(k, i, ρ). It is clear that the connected components of G�(k) are the complete
graphs on all sets of the form A∗σ ∩ Z+

k with σ ∈ Z�
k . Thus it is obvious that the
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chromatic number of G�(k) is w∗(k)
2

. Moreover we see that G+(k, i, ρ) is a matching
since we have

E+(k, i, ρ) = {{j, i− j} | 1 ≤ j ≤ i− 1

2
}.

For k prime or k = 9 we have w(k) = 2 or 3, respectively. In both cases the graph
G�(k) is totally disconnected so that G(k, i, ρ) is a matching and then its chromatic
number is 2. If q is a prime power factor of m we have by assumption q ≥ w(k)
but also q ≥ 5 since the triple (k, i,m) is admissible and hence gcd(m, 18) ∈ {1, 9}.
Thus we have q ≥ 5 > 2χ(G(k, i, ρ)) = 4 and the assertion follows from Lemma
3.3.2.

For all other values of k the graph G�(k) is not totally disconnected. Therefore,
by Lemma 3.4.1, the chromatic number ofG(k, i, ρ) is equal to the chromatic number

of G�(k) that is w∗(k)
2

. For every prime power factor q of m we have q ≥ w(k) by
assumption. Then we can write

q ≥ w(k) ≥ w∗(k) = 2χ(G(k, i, ρ)).

Thus we certainly have q > 2χ(G(k, i, ρ)) because q must be odd and the assertion
follows from Lemma 3.3.2.

Case 2: Suppose that i is even.
Let k−i−1

2
= ni + r be the Euclidean division of k−i−1

2
by i so that we have

k = (2n + 1)i + 2r + 1 with 0 ≤ r < i. Now let ρ : Z+
k −→ {1,−1} be the map

implicitly defined by the rules

ρ(1) = 1; ρ(x) = ρ(x+ 1)⇐⇒ x ≡ r (mod i) (3.1)

and let G∗(k, i, ρ) be the subgraph of G(k, i, ρ) obtained by removing all edges of
E�(k).

By (4.1), we have ρ(x) = ρ(x+ 1) if and only if x ≡ r (mod i). Thus we have

E(k, 1, ρ) = {{r, r + 1}, {i+ r, i+ r + 1}, . . . , {vi+ r, vi+ r + 1}}

with v = bk−3−2r
2i
c and hence we see that G(k, 1, ρ) is a matching.

Assume that x and x + i are elements of Z+
k . Recall that we have 0 ≤ r < i,

therefore there is exactly one element ξ ∈ Z+
k such that x ≤ ξ < x + i and ξ ≡ r

(mod i). It is clear by (4.1) that for x ≤ z ≤ ξ we have ρ(z) = ρ(x) if and only if x
and z have the same parity. Applying this remark in the particular case z = ξ we
get:

ρ(ξ) = (−1)x+ξρ(x). (3.2)

Analogously, by (4.1), for ξ + 1 ≤ z ≤ x + i we have ρ(z) = ρ(ξ + 1) if and
only if z and ξ + 1 have the same parity. Thus, in particular, we have ρ(x + i) =
(−1)ξ+1+x+iρ(ξ + 1). By (4.1) again, we have ρ(ξ + 1) = ρ(ξ) since ξ ≡ r (mod i).
Hence, using (4.2) and recalling that i is even, we can write:

ρ(x+ i) = (−1)ξ+1+x+iρ(ξ) = (−1)2ξ+2x+i+1ρ(x) = −ρ(x). (3.3)

The above equality guarantees that E−(k, i, ρ) is empty.
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The set of pairs of elements of Z+
k summing up to i or −i modulo k is the union

of the two matchings M and M ′ defined as follows:

M = {{j, i− j} | 1 ≤ j ≤ i
2
− 1};

M ′ = {{k−1
2
− i+ j, k+1

2
− j} | 1 ≤ j ≤ i

2
}

For 1 ≤ j < i
2

we have ρ(j) = −ρ(i − j) if and only if j ≤ r ≤ i − j − 1. Thus
the pairs {j, i− j} of M belonging to E+(k, i, ρ) are those having j ≤ r if r < i

2
or

those having j ≤ i− r − 1 if r ≥ i
2
.

By definition of r, the element ξ := k−1
2
− i

2
is the only element of the interval

[k−1
2
− i, k−1

2
] which is congruent to r modulo i. Now note that we have k−1

2
− i+j ≤

ξ < k+1
2
− j for 1 ≤ j ≤ i

2
. Hence, with the same reasoning leading to (4.3), we

have that ρ(x) = ρ(y) for every pair {x, y} ∈ M ′. Thus no pair of M ′ belongs to
E+(k, i, ρ).

We conclude that we have

E+(k, i, ρ) =

{
{{j, i− j} | 1 ≤ j ≤ r} if r < i

2

{{j, i− j} | 1 ≤ j ≤ i− r − 1} if r ≥ i
2
.

Note, in particular, that E+(k, i, ρ) is empty when r = 0 or i− 1. Thus, in the
extremal cases that r = 0 or i − 1, which means k ≡ i ± 1 (mod 2i), the graph
G∗(k, i, ρ) is a matching.

For 1 ≤ r ≤ i − 2 the graph G∗(k, i, ρ) fails to be a matching just because,
among its connected components there is a path on 3 vertices that is (i− r, r, r+ 1)
or (i− r − 1, r + 1, r) according to whether r < i

2
or not, respectively.

Case 2.1: r = 0 or r = i− 1.
Here, for what said above, the graph G∗(k, i, ρ) with ρ defined as in (4.1) is a

matching. Hence the graph G(k, i, ρ) = G�(k) ∪ G∗(k, i, ρ) has chromatic number
w∗(k)

2
by Lemma 3.4.1. If q is any prime power factor of m, we have q ≥ w(k)

by assumption so that q ≥ w∗(k) = 2χ(G(k, i, ρ)). The assertion follows again by
Lemma 3.3.2.

Note that the case i = 2 is a special case of Case 2.1.

Case 2.2: 0 < r < i− 1.

Consider again the graph G(k, i, ρ) = G�(k) ∪ G∗(k, i, ρ) with ρ defined as in
(4.1). In this case we have seen that the connected components of G∗(k, i, ρ) are
single edges and a path on three vertices. Also recall that the connected components
of G�(k) are complete graphs and that the chromatic number of G�(k) is w∗(k)

2
.

Case 2.2.1: k is a prime or k = 9.
We have w(k) = 2 or 3 and the graph G�(k) is totally disconnected so that
G(k, i, ρ) = G∗(k, i, ρ) has chromatic number equal to 2. Then it is enough to
reason as in Case 1.

Case 2.2.2: k = 25.
We have w(k) = 5, hence every prime power factor of m is at least equal to 5.
Take an element ω of R(m) whose j-th coordinate is a primitive element of the j-th



52

factor of R(m). Now consider the odd maps τ1 and τ2 from Z25 to R(m) defined as
follows:

τ1(x) =


1 for x ∈ {1, 4, 7, 10};
−1 for x ∈ {6, 9, 12};
ω for x ∈ {2, 5, 8, 11};
−ω for x = 3.

τ2(x) =


1 for x ∈ {1, 3, 6, 8, 10};
ω for x ∈ {5, 7, 12};
−ω for x ∈ {2, 4, 9, 11}.

One can check that τ1 is i-perfect for i = 2 and i = 4 while τ2 is i-perfect for every
i ∈ {6, 8, 12}.

Case 2.2.3: 9 6= k 6= 25 and k is not the product of two distinct primes.
The hypotheses on k easily imply that w(k) ≥ 6 and hence the chromatic number
of G�(k) is at least 3. It follows, by Lemma 3.4.2, that the chromatic number of

G(k, i, ρ) is also equal to w∗(k)
2

. Then the assertion again follows from Lemma 3.3.2.

Case 2.2.4: k is the product of two distinct primes and gcd(m, 25) 6= 5.
Here the chromatic number of G�(k) is 2, hence Lemma 3.4.2 cannot be applied. On
the other hand, it is clear that every connected component of G(k, i, ρ) is a path or
a cycle or a cycle with a pendent path so that its chromatic number does not exceed
3. Thus, for the hypotheses that (k, i,m) is admissible and that gcd(m, 25) 6= 5,
we have q ≥ 7 > 2χ(G(k, i, ρ)) for every prime power factor q of m. The assertion
follows again from Lemma 3.3.2.

Case 2.2.5: k < 103 is the product of two distinct primes and gcd(m, 25) = 5.
Here we have checked by computer that the graph G(k, i, ρ) has chromatic index
2, i.e., it is bipartite. Thus we have q ≥ 5 > 2χ(G(k, i, ρ)) for every prime power
factor q of m and the assertion follows once again from Lemma 3.3.2.

Putting together Corollary 3.2.3 and the above proposition we finally get The-
orem 3.1.2.

By Lemma 3.3.2, the exception mentioned in the main theorem could be removed
if one proves that when k > 1000 is the product of two distinct primes and i > 2 is
even there is a suitable graph G(k, i, ρ) which is bipartite, namely with chromatic
number equal to 2. So we have the following open question.

Problem 3.5.2. Given k = pq with p, q odd distinct primes, and given i even with
gcd(k, i) = 1 and 4 ≤ i ≤ pq−1

2
, establish whether G(k, i, ρ) with ρ defined as in

(4.1) is bipartite or not.

3.6 Infinite classes of i-perfect k-cycle systems

The knowledge of an i-perfect cycle decomposition of a complete multipartite graph
is sometimes crucial for establishing the existence of an i-perfect cycle decompo-
sition of the complete graph of the same order. This is because of the following
straightforward result.
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Lemma 3.6.1. If there exists an i-perfect k-cycle decomposition of K(m)
n and an

i-perfect k-cycle decomposition of Kn, then there exists an i-perfect k-cycle decom-
position of Kmn.

As recalled in Chapter 1, a Hamiltonian cycle system of order k, or HCS(k)
for short, is a k-cycle decomposition of Kk. Note that, as a special case of the
above lemma, the main result of this chapter allows to get an i-perfect k-cycle
decompositions of Kkm whenever (i, k,m) is admissible, no prime power factor of
m is less than w(k), and an i-perfect HCS(k) is available.

If k is a prime, we have w(k) = 2 and the 2-transitive HCS(k) (see [12]) is a
Steiner k-cycle system, i.e., it is i-perfect for any possible i. Thus, by Corollary
3.1.3 and Lemma 3.6.1, the existence of an i-perfect (Kv, Ck)-design with k a prime
and v ≡ k (mod 2k) remains undecided only when gcd( v

k
, 9) = 3. We do not have

these uncertain cases for the smallest primes k up to 19 in view of the results of
Adams and Bryant [6] apart from the cases of an i-perfect (K57, C19)-design with
i = 2 or 9, and of a 5-perfect (K13m, C13)-design for any odd m (see also [15], Table
12.50). The only other open case in [6] of an i-perfect (Kv, Ck)-design with k ≤ 19
and v ≡ k (mod 2k), is that of an i-perfect (K45, C9)-design with i = 2 or 4. We
solve these cases in the next two propositions.

Proposition 3.6.2. There exists a 2-perfect and a 4-perfect (K45, C9)-design. There
exists a 2-perfect and a 9-perfect (K57, C19)-design.

Proof. Consider the following four 9-cycles with vertices in Z45:

A = (0, 5, 10, 15, 20, 25, 30, 35, 40); B = (0, 1, 3, 15, 16, 18, 30, 31, 33);
C = (0, 3, 7, 1, 8, 19, 4, 40, 23); D = (0, 8, 22, 38, 13, 26, 7, 34, 24).

One can check that

{A+ j | 0 ≤ j ≤ 4} ∪ {B + j | 0 ≤ j ≤ 14} ∪ {C + j,D + j | 0 ≤ j ≤ 44}

is a (cyclic) 2-perfect (K45, C9)-design.
Now consider the following two 19-cycles with vertices in Z56 ∪ {∞}:

A = (∞, 0, 26, 36, 1, 23, 47, 4, 33, 22, 50, 5, 32, 19, 51, 29, 8, 54, 28);

B = (0, 1, 3, 6, 2, 8, 13, 4, 19, 11, 27, 20, 43, 5, 22, 34, 54, 12, 31).

Here one can check that [A+j | 0 ≤ j ≤ 27]∪ [B+j | 0 ≤ j ≤ 55] is a (1-rotational)
2-perfect (K57, C19)-design.

The above two constructions immediately give a 4-perfect (K45, C9)-design and
a 9-perfect (K57, C19)-design, respectively. This is because, as observed in [6], the
existence of an i-perfect (Kv, Ck)-design implies that of a j-perfect (Kv, Ck)-design
for any j such that 1 ≤ j ≤ k−1

2
and ij ≡ ±1 (mod k).

Now we solve the existence question concerning 5-perfect (K13m, C13)-designs
with m odd. In view of our result concerning i-perfect (Kkm, Ck) designs with k an
arbitrary prime, it is enough to assume that gcd( v

13
, 9) = 3, i.e., that v = 39t with

t odd and not divisible by 3.
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Proposition 3.6.3. Let t be a positive odd integer not divisible by 3. Then there
exists a 5-perfect (K39t, C13)-design.

Proof. We split the proof into two cases.

Case 1: t = 1.
Consider the following two 13-cycles with vertices in Z38 ∪ {∞}:

A = (∞, 0, 14, 37, 16, 5, 15, 34, 24, 35, 18, 33, 19),

B = (0, 1, 3, 6, 2, 7, 13, 4, 11, 31, 9, 34, 26).

One can check that [A + j | 0 ≤ j ≤ 18] ∪ [B + j | 0 ≤ j ≤ 37] is a (1-rotational)
5-perfect (K39, C13)-design.

Case 2: t > 1.
Consider the following three cycles with vertices in Z39×Zt where, in order to save
space, we will write xy instead of (x, y).

C1 = (00, 181, 37−1, 222, 9−2, 251, 14−1, 141, 25−1, 92, 22−2, 371, 18−1);

C2 = (00, 11, 3−1, 61, 2−1, 71, 13−1, 41, 11−1, 192 , 9−2, 262, 12−2);

C3 = (00, 1−1, 31, 6−1, 21, 7−1, 131, 4−1, 111, 19−2 , 92, 26−2, 122).

It is straightforward to check that we have:

3⋃
j=1

∆i[Cj] =
⋃
x∈Z39

{x} × [ui(x),−ui(x)] for i = 1 and 5

where

u1(x) =


1 for x ∈ {±1,±18};
2 for x ∈ {0,±2,±3,±4,±5,±6,±7,±9,±11,±12,±19};
3 for x ∈ {±8,±15,±16};
4 for x ∈ {±10,±13,±14,±17}.

and where

u5(x) =


1 for x ∈ {±6,±7,±9,±10,±11,±14,±15,±18± 19};
2 for x ∈ {±1,±4,±5,±12,±16};
3 for x ∈ {±2,±3,±8,±13,±17};
4 for x = 0.

Considering that t is odd and not divisible by 3 by assumption, we have that u1(x)
and u5(x) are units of Zt for any x ∈ Z39. Thus we can write
[sui(x),−sui(x) | 1 ≤ s ≤ t−1

2
] = Zt \ {0} for i = 1 and 5. Then, setting

C = [(1, s) · Cj | 1 ≤ s ≤ t−1
2

; 1 ≤ j ≤ 3], we have

∆1(C) = ∆5(C) = (Z39 × Zt) \ (Z39 × {0})

which means that C is a set of base cycles of a 5-perfect (K(t)
39 , C13)-design. The

assertion then follows by Lemma 3.6.1 because we also have a 5-perfect (K39, C13)-
design constructed in Case 1.
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To find general constructions for i-perfect HCS(k) with k a non-prime does not
seem to be easy. The 1-rotational approach seems to be the more promising; it
consists in finding a k-cycle C whose vertices are the elements of Zk−1 ∪ {∞} with
the following properties:

• C + k−1
2

= C;

• every x ∈ Zk−1\{0} can be represented as a difference of two adjacent vertices
of C and also as a difference of two vertices which are at distance i in C.

Indeed, if one has a cycle C as above, then {C + i | 0 ≤ i ≤ k−3
2
} is an i-perfect

HCS(k).
In [30] and, independently, in [46], it has been recently proved that there exists

a 1-rotational 3-perfect HCS(k) whenever k is an odd integer greater than 5. Using
a computer (see results in the Appendix 1) we have been able to prove the following
result making believable that an i-perfect HCS(k) exists for almost all possible
pairs (i, k).

Proposition 3.6.4. There exists an i-perfect HCS(k) for any possible pair (i, k)
with k < 56 except for (i, k) ∈ {(2, 9), (4, 9)} and, possibly, for (i, k) ∈ {(7, 21),
(6, 51), (13, 39), (15, 45)}.

In view of Corollary 3.1.3, Lemma 3.6.1, and all the above results we can state
the following theorem.

Theorem 3.6.5 (M. Buratti, S. C., X. Wang). Let k ≥ 3 and let v = mk be odd.
An i-perfect k-cycle decomposition of Kv exists in each of the following cases:

• k ≤ 19 and any possible i with the only definite exceptions of a 2-perfect
(K15, C5)-design, a 2-perfect HCS(9), and a 4-perfect HCS(9);

• k ≥ 23 prime and any possible i provided that gcd(m, 9) 6= 3;

• i = 3 and any k ≥ 7 provided that gcd(m, 9) 6= 3 and no prime power factor
of m is less than w(k);

• k ∈ {21, 25, 33, 35, 39, 51, 55} and any possible i provided that gcd(i, k) = 1
and gcd(m, 9) 6= 3;

• k ∈ {27, 45, 49} and any possible i provided that gcd(i, k) = 1 and
gcd(m, 9 · 25) ∈ {1, 9, 25, 9 · 25}.
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Chapter 4

Perfect decompositions
via strong difference families

In Chapter 3 we used the BRZ-construction in order to find i-perfect decomposi-
tions of the m-partite graphs K(m)

k . We succeeded for all odd values m and k such
that the prime power factors of m are big enough. The strength of our work is that
this result is independent of the value of i. On the contrary the weak point of this
procedure is the assumption on m. In fact if k is odd it could be possible to get the
existence of i-perfect decompositions of the m-partite graphs K(m)

k for all odd m.
In this chapter instead we will focus our attention just on some special values of

i but we try to get the existence of i-perfect k-cycle decompositions of the m-partite
complete graphs K(m)

k for all odd values of mk without any additional hypothesis
on m.

For this purpose we introduce and study a new class of strong difference fami-
lies: the i-perfect strong difference families (SDF s). In particular also the BRZ-
construction turns out to use, implicitly, an i-perfect SDF . A first family of exam-
ples of i-perfect strong difference families in fact is given by the Paley SDMs used in
the BRZ-construction. Then we develop a recursive construction of i-perfect strong
difference maps and, focusing our attention on the values of i ∈ {3, 5, 7, 9, 11}, we
provide infinite families of i-perfect SDMs.

Using this tool we prove that, if i ∈ {3, 5, 7, 9, 11}, there exists an i-perfect k-

cycle decomposition of the complete m-partite graph K(m)
k for all odd k > 2i and

for all odd m up to a set of seven possible exceptions. In case i = 3 we are able
to remove these exceptions. Then, as usual, according to Lemma 3.6.1, we apply
these new i-perfect decompositions of the m-partite graphs in order to achieve new
i-perfect decompositions of the complete graphs Kmk. In particular, for i = 3, using
the known result on the existence of a Hamiltonian 3-perfect decomposition of Kk

(see [30] and [46]), we prove that there exists a 3-perfect k-cycle decomposition of
the complete graph Kmk if and only if mk is odd and k ≥ 7.

4.1 The i-perfect SDF s

The concept of relative difference families has been introduced by M. Buratti (see
[21]) in order to provide constructions of GDDs and then considered also over an
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arbitrary graph in order to obtain decompositions of the complete m-partite graphs
(see Definition 2.1.19 and Theorem 2.1.23). Here we recall the definition of i-perfect
relative difference family (briefly DF ) given by M. Buratti and A. Pasotti in [28].

Definition 4.1.1. Let Γ be a graph and let Γi be the graph with the same vertices
as Γ and whose edges are the pairs of vertices at distance i in Γ.
An i-perfect (G,H,Γ, λ)-DF is a collection F of injective maps from V (Γ) to G
such that both the lists

∆ΓF :=
⋃
f∈F

[f(x)− f(y)| {x, y} ∈ E(Γ)]

∆ΓiF :=
⋃
f∈F

[f(x)− f(y)| {x, y} ∈ E(Γi)]

cover G \H exactly λ times while they do not contain any element of H.

This kind of DF s have been introduced in order to construct i-perfect decom-
positions of the complete m-partite graphs. The link between i-perfect DF s and
i-perfect decompositions is explained by the following proposition (see [28]):

Proposition 4.1.2 (M. Buratti, A. Pasotti). An i-perfect (G,H,Ck, λ)-DF yields

an i-perfect k-cycle decomposition of λK(m)
n where m = |G : H| and n = |H|.

Proof. Let F be an i-perfect (G,H,Ck, λ)-DF . Then, because of Theorem 2.1.23,

we have that F yields a k-cycle decomposition C of λK(m)
n .

Given a graph Γ we denote by Γi the graph with the same vertices as Γ and
whose edges are the pairs of vertices at distance i in Γ (see Definition 4.1.1). More-
over, since F is i-perfect, we have that F is a (G,H,Ci

k, λ)-DF . Therefore, again
because of Theorem 2.1.23, also the family of cycles Ci := [Ci : C ∈ C] is a k-cycle

decomposition of λK(m)
n . But this means that C is an i-perfect k-cycle decomposition

of λK(m)
n

As we have seen in Chapter 2, M. Buratti and L. Gionfriddo introduced the
concept of a strong difference family over an arbitrary graph Γ in order to obtain a
construction of DF s. Here we define a class of strong difference families, in order
to obtain a construction of i-perfect DF s.

Definition 4.1.3. Given a graph Γ let Γi be the graph with the same vertices as Γ
and whose edges are the pairs of vertices at distance i in Γ (see Definition 4.1.1).
Let G be a group and let Σ := [σ1, . . . , σt] be a family of maps σj : V (Γ)→ G for j ∈
{1, . . . , t}.
We say that Σ is an i-perfect (G,Γ, µ)-SDF if both the lists:

∆ΓΣ =
⋃
σ∈Σ

[σ(x)− σ(y)| {x, y} ∈ E(Γ)]

∆ΓiΣ =
⋃
σ∈Σ

[σ(x)− σ(y)| {x, y} ∈ E(Γi)]

cover all of G exactly µ times.
In case the family is formed by just one map, i.e. Σ := [σ] we say that σ is a

(G,Γ, µ) strong difference map (SDM).
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The first example of i-perfect SDF we provide is given by a Paley SDM . We
have already seen these maps in Theorem 2.2.6. Moreover the fact that these maps
are i-perfect has been implicitly used in Chapter 2 in the proof of Theorem 2.3.3.
As usual we denote by Ck := (v0, . . . , vk−1) a cycle of length k.

Example 4.1.4. Let us consider the map σ7 : vj ∈ C7 → j2 ∈ Z7. We have already
seen in Theorem 2.2.6 that σ7 is a (Z7, C7, 2)-SDM . Moreover we have that, for i
equals to 2 and for i equals to 3,

∆Ci
7
σ = [σ(x)− σ(y)| {x, y} ∈ E(Ci

7)]

cover all of G exactly twice. Therefore σ is a 2- and 3-perfect (Z7, C7, 2)-SDM .

In the following pictures are shown ∆C7{σ7} and ∆C2
7
{σ7}:

We can generalize this example getting the following theorem.

Theorem 4.1.5 (Paley SDM). Let k be an odd integer. The map σk : vj ∈ Ck →
j2 ∈ Zk is an i-perfect (Zk, Ck, 2)-SDM (strong difference map) for all i’s such that
gcd(i, k) = 1.

Proof. Let Ω be a subset of Zk \ {0} such that if ω ∈ Ω then also −ω ∈ Ω. We
recall that the circulant graph of order k and with connection set Ω is the simple
graph with vertex-set Zk and whose edges are precisely those of the form {x, ω+x}
with x ∈ Zk and ω ∈ Ω. As a special case of Proposition 4.5 in [25], the map
σk : j −→ j2 is a (Zk,Γ, 2) strong difference map for every circulant graph Γ of
order k and connection set of the form {l,−l} with gcd(l, k) = 1. It follows that
the map σk : vj ∈ Ck → j2 ∈ Zk is an i-perfect (Zk, Ck, 2)-SDM for all i’s such
that gcd(i, k) = 1.
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4.1.1 The fundamental construction II

In this paragraph we follow the underlying idea, and the notation, of the funda-
mental construction of [25] (see Theorem 2.2.7) adapted to the i-perfect case. In
this way we will get a construction of i-perfect difference families.

The following Theorem formalizes a simple but effective idea, that has been
already implicitly used in [24] (see Theorem 2.3.3) and in [29] in order to construct
i-perfect decompositions of the complete graph Kv and of the complete m-partite
graph K(m)

n .

Theorem 4.1.6. Let Γ be a graph, let G be an additive group, and let R be a ring
with additive group H. Given an n-tuple (f1, . . . fn) of maps from V (Γ) to G ×H
we set:

fj(x) = (σj(x), τj(x)) ∀x ∈ V (Γ),∀j ∈ {1, . . . , n}

∆Γ[f1, . . . , fn] =
n⋃
j=1

⋃
{x,y}∈E(Γ)

[fj(x)− fj(y)];

as we have seen in Chapter 2, there exist multisets Lg of elements of H such that:

∆Γ[f1, . . . , fn] =
⋃
g∈G

{g} × Lg.

Similarly, given a positive integer i, we set:

∆Γi [f1, . . . , fn] =
n⋃
j=1

⋃
{x,y}∈E(Γi)

[fj(x)− fj(y)];

as above, there exist multisets Lig of elements of H such that:

∆Γi [f1, . . . , fn] =
⋃
g∈G

{g} × Lig.

Assume that the following conditions hold:

1) σj(x) = σj(y) with x 6= y =⇒ τj(x)− τj(y) ∈ U(R),∀j ∈ {1, . . . , n};

2) ∃S ⊂ H \ {0} such that S · Lg = S · Lig = λ(H \ {0}) ∀g ∈ G.

Then there exists an i-perfect (G×H,G× {0},Γ, λ)-DF .

Proof. Because of Theorem 2.2.7 there exists a (G×H,G× {0},Γ, λ)-DF that we
denote by F. Moreover, we also have that

∆Γi [f1, . . . , fn] =
⋃
g∈G

{g} × Lig.

Therefore, again because of Theorem 2.2.7, F is also a (G×H,G× {0},Γi, λ)-DF
and hence F is an i-perfect (G×H,G× {0},Γ, λ)-DF .

As a consequence of Theorem 4.1.6 we can provide the main construction of this
chapter. We first give the following definition.
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Definition 4.1.7. Let σ be an i-perfect (Zk, Ck, 2)-SDM . We consider the family
of graphs Ω = Ω(i, k, ρ) : V (Ω) = {1, . . . , k−1

2
}, ρ is a function Zk → {−1, 1} and

the edges are given by Eσ ∪ E(k, 1, ρ) ∪ E−(k, i, ρ) ∪ E+(k, i, ρ) where:

{x, y} ∈ Eσ ⇐⇒ σ(vx) = σ(vy) or, with abuse of notation, σ(x) = σ(y);

{x, y} ∈ E(k, 1, ρ) ⇐⇒ x− y ≡ ±1 (mod k) and ρ(x) = ρ(y);

{x, y} ∈ E−(k, i, ρ) ⇐⇒ x− y ≡ ±i (mod k) and ρ(x) = ρ(y);

{x, y} ∈ E+(k, i, ρ) ⇐⇒ x+ y ≡ ±i (mod k) and ρ(x) 6= ρ(y).

Then we define the function w(σ) as two times the minimum χ(Ω) (chromatic num-
ber of Ω) where Ω lies in the family Ω(i, k, ρ).

We are now ready to provide a further generalization of the BRZ-construction
that shows how we use the i-perfect SDMs in order to construct i-perfect k-cycle
decompositions of K(m)

k .

Theorem 4.1.8 (Generalized BRZ-construction). Let σ be an i-perfect (Zk, Ck, 2)-
SDM such that σ(vj) = σ(vk−j).

Then there exists an i-perfect k-cycle decomposition of K(m)
k whenever mk is odd

and all prime power factors of m are greater than the function w(σ).

Proof. As done in Chapter 3, given a natural number m, we denote by R(m) the ring
of order m which is the direct product of all fields whose orders are the prime power
factors of m. Let ρ : Z+

k = {1, . . . , k−1
2
} −→ {1,−1} and let t be the chromatic

number of Ω(k, i, ρ). Assume that all prime power factors of m are greater than 2t
and let ω be an element of R(m) whose j-th coordinate is a primitive element of
the j-th factor of R(m). Then take a vertex coloring c of Ω(k, i, ρ) whose colors are
the elements of the subset {ωj | 0 ≤ j ≤ t− 1} of R(m).

Then, identified V (Ck) with Zk, we consider the odd function τ : V (Ck) = Zk →
R(m) such that: 

τ(0) = 0;

τ(x) = ρ(x)c(x) for x ∈ {1, . . . , k−1
2
};

τ(x) = −τ(k − x) for x ∈ {k+1
2
, . . . , k − 1}.

We want to prove that such function satisfies the hypothesis of Theorem 4.1.6. Let
S be a complete system of representatives for the equivalence relation in R \ {0}
defined by r ∼ r′ if and only if r′ = ±r. By the symmetry of σ and τ we have:

∆Ck
[(σ, τ)] =

⋃
g∈Zk

{g} × Lg =
⋃
g∈Zk

{g} × [δ(g),−δ(g)]

and

∆Ci
k
[(σ, τ)] =

⋃
g∈Zk

{g} × Lig =
⋃
g∈Zk

{g} × [δi(g),−δi(g)].
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Since all prime power factors of m are greater than 2t we have that δ(g) ∈ U(R(m))
and δi(g) ∈ U(R(m)). Hence it follows that:

S · Lg = S · Lig = (H \ {0}) ∀g ∈ Zk.

Because of the hypothesis on the prime power factors of m:

σ(x) = σ(y) =⇒ τ(x)− τ(y) ∈ U(R(m)).

Therefore, by Theorem 4.1.6, we obtain the existence of an i-perfect (Zk×R(m),Zk×
{0}, Ck, 1)-DF . It follows that there exists an i-perfect decomposition of the m-

partite graph K(m)
k .

In view of the Definition 4.1.7 and Theorem 4.1.8 the main result of [24], that
is Theorem 3.1.2 of the previous section, can be seen as follows:

Theorem 4.1.9 (M. Buratti, S. C., X. Wang). Let us consider the Paley SDM σk.
We have that w(σk) := max(4, 2t

√
k/k∗) where k∗ is the square-free part of k, and t

is the number of prime factors of k∗ with the possible exception of the case where the
following facts simultaneously hold: k > 1000 is the product of two distinct primes;
i > 2 is even; gcd(m, 25) = 5.

Now, similarly to what we have done in Chapter 3 (see also [24]), given an odd
integer k and l ∈ Zk, we define the sets Al(σ) := {x| x ∈ {1, . . . , k−1

2
} and σ(x) = l}.

We want to use the size maxl∈Zk
|Al(σ)| in order to give an upperbound to the

function w(σ). In this regard we use Lemma 3.4.1 and Lemma 3.4.2 of Chapter 3.
These results are consequences of Brooks’ Theorem on vertex colorings (see, e.g.,
[61]). Here we apply these lemmas in the same spirit of Proposition 3.5.1 providing
the following bound:

Lemma 4.1.10. Let σ be an i-perfect (Zk, Ck, 2)-SDM and let

M = max
l∈Zk

|Al(σ)|.

Then we have that w(σ) = max(4, 2M) with the possible exception of the case in
which M = 2 and i is even. In this case w(σ) ∈ {4, 6}.

The proof of this Lemma is essentially the same as of Proposition 3.5.1, we just
have to replace w∗(k)

2
with M , G with Ω and G�(k) with Ωσ that is the graph with

the same vertices as Ω and with edges set Eσ. However, for completeness, we write
the proof anyway.

Proof. We divide the proof in two cases.
Case 1: Suppose that i is odd.
Let us consider the map ρ̄ : Zk → {−1, 1} such that ρ̄(x) := (−1)x. Since i is

odd, the edges of Ω(i, k, ρ̄) are the following ones:

E(Ω) :=

{
Eσ := {x, y} : x 6= y and σ(x) = σ(y)

{x, y} : x+ y = i.
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Since the edges of the form {x, y} : x+y = i are a matching, if M > 1 because of
Lemma 3.4.1 we have that the chromatic number of Ω that of Ωσ that is the graph
with the same vertex set of Ω and with edges set Eσ. Since Ωσ is a disjoint union of
complete graphs we have that, in case M > 1, χ(Ωσ) = χ(Ω) = M . In case M = 1
we have that Eσ = ∅ and therefore χ(Ω) = 2. It follows that w(σ) ≤ 2(M + 1) and
the equality holds if and only if M = 1.

Case 2: Suppose that i is even.
Let k−i−1

2
= ni+r, with 0 ≤ r ≤ i, be the Euclidean division of k−i−1

2
by i so that

we have k = (2n + 1)i + 2r + 1 with 0 ≤ r < i. Now let ρ : Z+
k = {1, . . . , k−1

2
} −→

{1,−1} be the map implicitly defined by the rules

ρ(1) = 1; ρ(x) = ρ(x+ 1)⇐⇒ x ≡ r (mod i) (4.1)

and let Ω∗(k, i, ρ) be the subgraph of Ω(k, i, ρ) obtained by removing all edges of
Eσ. By (4.1), we have ρ(x) = ρ(x+ 1) if and only if x ≡ r (mod i). Thus we have

E(k, 1, ρ) = {{r, r + 1}, {i+ r, i+ r + 1}, . . . , {vi+ r, vi+ r + 1}}

with v = bk−3−2r
2i
c and hence we see that Ω(k, 1, ρ) is a matching.

Assume that x and x + i are elements of Z+
k . Recall that we have 0 ≤ r < i,

therefore there is exactly one element ξ ∈ Z+
k such that x ≤ ξ < x + i and ξ ≡ r

(mod i). It is clear by (4.1) that for x ≤ z ≤ ξ we have ρ(z) = ρ(x) if and only if x
and z have the same parity. Applying this remark in the particular case z = ξ we
get:

ρ(ξ) = (−1)x+ξρ(x) (4.2)

Analogously, by (4.1), for ξ + 1 ≤ z ≤ x + i we have ρ(z) = ρ(ξ + 1) if and
only if z and ξ + 1 have the same parity. Thus, in particular, we have ρ(x + i) =
(−1)ξ+1+x+iρ(ξ + 1). By (4.1) again, we have ρ(ξ + 1) = ρ(ξ) since ξ ≡ r (mod i).
Hence, using (4.2) and recalling that i is even, we can write:

ρ(x+ i) = (−1)ξ+1+x+iρ(ξ) = (−1)2ξ+2x+i+1ρ(x) = −ρ(x) (4.3)

The above equality guarantees that E−(k, i, ρ) is empty.
The set of pairs of elements of Z+

k summing up to i or −i modulo k is the union
of the two matchings N and N ′ defined as follows:

N = {{j, i− j} | 1 ≤ j ≤ i
2
− 1};

N ′ = {{k−1
2
− i+ j, k+1

2
− j} | 1 ≤ j ≤ i

2
}

For 1 ≤ j < i
2

we have ρ(j) = −ρ(i− j) if and only if j ≤ r ≤ i− j − 1. Thus
the pairs {j, i− j} of N belonging to E+(k, i, ρ) are those having j ≤ r if r < i

2
or

those having j ≤ i− r − 1 if r ≥ i
2
.

By definition of r, the element ξ := k−1
2
− i

2
is the only element of the interval

[k−1
2
− i, k−1

2
] which is congruent to r modulo i. Now note that we have k−1

2
− i+j ≤

ξ < k+1
2
− j for 1 ≤ j ≤ i

2
. Hence, with the same reasoning leading to (4.3), we

have that ρ(x) = ρ(y) for every pair {x, y} ∈ N ′. Thus no pair of N ′ belongs to
E+(k, i, ρ).
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We conclude that we have

E+(k, i, ρ) =

{
{{j, i− j} | 1 ≤ j ≤ r} if r < i

2

{{j, i− j} | 1 ≤ j ≤ i− r − 1} if r ≥ i
2

Note, in particular, that E+(k, i, ρ) is empty when r = 0 or i− 1. Thus, in the
extremal cases that r = 0 or i − 1, which means k ≡ i ± 1 (mod 2i), the graph
Ω∗(k, i, ρ) is a matching.

For 1 ≤ r ≤ i − 2 the graph Ω∗(k, i, ρ) fails to be a matching just because,
among its connected components there is a path on 3 vertices that is (i− r, r, r+ 1)
or (i − r − 1, r + 1, r) according to whether r < i

2
or not, respectively. Anyway,

because of Lemma 3.4.2 (see also [24]), if M ≥ 3 we have that χ(Ω) = M . Moreover
if M = 1 we have that Eσ is empty and therefore χ(Ω) = 2. Lastly, if M = 2 we
consider Ω − {x, y}, that is the graph with the same vertices as Ω and with edges
E(Ω)−{x, y}. Because of the Lemma 3.4.1 we have χ(Ω−{x, y}) = 2 and therefore
χ(Ω) ≤ 3 = M + 1. It follows w(σ) ≤ 2(M + 1) and the equality holds if M = 1
and possibly if M = 2.

4.2 A recursive construction

This section, that is the core of this chapter, is devote to provide a recursive con-
struction of i-perfect SDF s that works for odd values of i and k. We first show a
special case of it.

We note that, identifying V (Ck) = (v0, . . . , vk−1) with Zk, we can see a (Zk, Ck, 2)-
SDM , say σ, as the k-tuple of elements of Zk given by:

(σ(0), σ(1), . . . , σ(k − 2), σ(k − 1)).

Example 4.2.1. Let now k = 15 and let us consider the following map:

σ := (5,−3, 3,−2, 2,−1, 1, 0, 0, 1,−1, 2,−2, 3,−3).

Here we check that σ is a 3-perfect (Z15, C15, 2)-SDM . In fact we have that

∆C15(σ) = ±(2[5 + 3,−3− 3, 3 + 2,−2− 2, 2 + 1,−1− 1, 1− 0] ∪ [0]) = 2Z15

and

∆C3
15

(σ) = ±(2[−3− 3, 5 + 2,−3− 2, 3 + 1,−2− 1, 2 + 0,−1 + 0] ∪ [0]) = 2Z15.

We call, with abuse of language, negative the terms that appear with a minus sign
in σ and positive the others. We extend the map σ adding 1 to the positive terms,
subtracting 1 to the negative ones and to the zeros and finally inserting the string
(1, 0, 0, 1) in the middle of σ. This procedure gives us the following map:

σ′ := (6,−4, 4,−3, 3,−2, 2,−1, 1, 0, 0, 1,−1, 2,−2, 3,−3, 4,−4).

Then, by reiterating this process, if k = 4l − 1 we obtain the following map:

σk := (l + 1, 1− l, l − 1, . . . ,−2, 2,−1, 1, 0, 0, 1,−1, 2,−2, . . . , l − 1, 1− l).

We will prove in Proposition 4.2.6 that also this map is a 3-perfect strong difference
map.
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In order to generalize this example we need, as an ingredient, a suitable kind of i-
perfect SDMs. Let k = 2h+1 be an odd positive integer, we denote Z+

k = {1, . . . , h}
and Z−k = {−h, . . . ,−1} = {h, . . . , k − 1}.

Definition 4.2.2. Let σ : V (Ck) → Zk = Z2h+1 be an i-perfect (Zk, Ck, 2)-SDM .
We say that σ is recursive if, identifying V (Ck) = (v0, . . . , vk−1) with Zk := {0, 1, . . . ,
k − 1}, we have:

1 σ(j) = σ(k − j) for all j ∈ Zk.

2 σ(h− j) = (−1)j+1d j
2
e for 0 ≤ j ≤ i. In particular σ(h) = 0.

3 Let 0 < j ≤ h then σ(h− j) ∈ Z+
k if j is odd and σ(h− j) ∈ Z−k if j is even.

Remark 4.2.3. We remark that, if σ is a recursive i-perfect (Z2h+1, C2h+1, 2)-
SDM , then i is necessarily odd. In fact, by contradiction, let us suppose that i
is even. Then we would have that:

i

2
= σ(h)−σ(h−i) = σ(h−i+1)−σ(h+1) = σ(h+1)−σ(h+1+i) = σ(h+i)−σ(h).

Therefore the value i
2

would appear at least four times in the list ∆Ci
2h+1

(σ). But

this is a contradiction since the list ∆Ci
2h+1

(σ) should cover every element of Z2h+1

exactly twice.

This definition is inspired by the Walecki construction (see Theorem 1.2.3): in
fact, in these SDMs, the labels σ(h− i), . . . , σ(h) of the vertices between vh−i and
vh are the same of the ones of the cycle of Theorem 1.2.3. We can understand better
this property with the following example:

Example 4.2.4. Let us consider the map of Example 4.2.1:

σ := (5,−3, 3,−2, 2,−1, 1, 0, 0, 1,−1, 2,−2, 3,−3).

We can check that σ is a recursive 3-perfect (Z15, C15, 2)-SDM . Moreover the labels
of the vertices (v1, v2, v3, v4, v5, v6, v7) are (−3, 3,−2, 2,−1, 1, 0), that are the same
of the Walecki sequence.

Then, given a recursive SDM , we obtain an infinite family of SDMs as follows:

Construction 4.2.5. Let σ be a recursive i-perfect (Zk, Ck, 2)-SDM . Then there
exists a recursive i-perfect (Zk′ , Ck′ , 2)-SDM , σ′, for all k′ ≡ k (mod 4) greater
than k. Moreover we have that:

max
l∈Zk

|Al(σ)| = max
l∈Zk′
|Al(σ′)|.

Proof. We proceed by induction. Therefore it is sufficient to prove the existence
of a recursive i-perfect (Zk+4, Ck+4, 2)-SDM . Let us consider σ′ : Zk+4 → Zk+4

defined as:

• σ′(j) = σ(j) + 1 if 0 ≤ j ≤ h (where k = 2h+ 1) and h− j is odd.

• σ′(j) = σ(j)− 1 if 0 ≤ j ≤ h and h− j is even.



66

• σ′(h+ 2) = 0 and σ′(h+ 1) = 1.

• σ′ is symmetric i.e. σ′(j) = σ′((k + 4)− j), ∀j ∈ Zk+4.

First of all we note that, since σ(h − j) = (−1)j+1d j
2
e for all 0 ≤ j ≤ i, we have

that σ′(h+ 2− j) = (−1)j+1d j
2
e for all 0 ≤ j ≤ i+ 2. Thus σ′ satisfies the property

2 of Definition 4.2.2.
We set ∆1(σ′) = [σ′(x) − σ′(y)|{x, y} ∈ E(Ck+4)] and ∆i(σ

′) = [σ′(x) −
σ′(y)|{x, y} ∈ E(Ci

k+4)]. Let us prove that ∆1(σ′) = 2Zk+4. Since σ is a strong
difference map such that σ(j) = σ(k − j), we know that the list:⋃

j∈{0,..., k−1
2
−1}

±[σ(j + 1)− σ(j)] = Zk \ {0}.

Since if σ′(j) = σ(j) + 1 then σ′(j + 1) = σ(j + 1)− 1 and viceversa, it follows that⋃
j∈{0,..., k−1

2
−1}

±[σ′(j + 1)− σ′(j)] = Zk+4 \ [0, 1,−1, 2,−2].

Since σ′(h+ 1)− σ′(h) = 2 and σ′(h+ 2)− σ′(h+ 1) = −1 we obtain that:⋃
j∈{0,..., k−1

2
+1}

±[σ′(j + 1)− σ′(j)] = Zk+4 \ {0}.

As consequence, because of the symmetry of σ′, we have that ∆1(σ′) = 2Zk+4.
Similarly we prove that ∆i(σ

′) = 2Zk+4. In fact we know that:

Zk \ {0} =
⋃

j∈{− i−1
2
,..., k−i

2
−1}

±[σ(j + i)− σ(j)] =

( ⋃
j∈{− i−1

2
,..., k−i

2
−i}

±[σ(j + i)− σ(j)]
)
∪
( ⋃
j∈{ k−i

2
−i+1,..., k−i

2
−1}

±[σ(j + i)− σ(j)]
)
.

Moreover, since σ is recursive (because of the property 2 of Definition 4.2.2) we
have that ⋃

j∈{ k−i
2
−i+1,..., k−i

2
−1}

±[σ(j + i)− σ(j)] = ±{1, . . . , i− 1}

and hence ⋃
j∈{− i−1

2
,..., k−i

2
−i}

±[σ(j + i)− σ(j)] = Zk \ ±{0, . . . , i− 1}.

Then, because of the definition of σ′ we have that, for j ∈ {− i−1
2
, . . . , k−i

2
− i} if

σ′(j) = σ(j) + 1 then σ′(j + i) = σ(j + i)− 1 and viceversa. Thus

|σ′(j + i)− σ′(j)| = |(σ(j + i)− σ(j))|+ 2.
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It follows that:⋃
j∈{− i−1

2
,..., k−i

2
−i}

±[σ′(j + i)− σ′(j)] = Zk+4 \ ±{0, . . . , i− 1 + 2}.

Since we also have that σ′(h+ 2− j) = (−1)j+1d j
2
e for 0 ≤ j ≤ i+ 2, we get:⋃

j∈{ k−i
2
−i+1,..., k−i

2
−1+2}

±[σ′(j + i)− σ′(j)] = ±{1, . . . , i− 1 + 2}.

Therefore ⋃
j∈{− i−1

2
,..., k−i

2
+1}

±[σ′(j + i)− σ′(j)] = Zk+4 \ {0}.

It follows that σ′ is an i-perfect SDM . Since, for construction, σ′ realizes also
the other properties (1 and 3) of the definition of recursive SDM we obtain the
existence of a recursive, i-perfect (Zk+4, Ck+4, 2)-SDM .

For the second part of the theorem we only need to show that

max
l∈Zk

|Al(σ)| = max
l∈Zk+4

|Al(σ′)|,

where σ′ is the i-perfect (Zk+4, Ck+4, 2)-SDM defined above, then the conclusion
follows by induction. Suppose that σ′(x) = σ′(y) and 1 ≤ x < y ≤ (k + 3)/2. We
have the following three possibilities.

Case 1: 1 ≤ x < y ≤ (k − 1)/2 = h, x and y have the same parity, and
σ(x) = σ(y).

Case 2: y = (k + 1)/2 = h + 1, and σ′(x) = σ′(y). Then σ′(y) = 1, we get
σ′(x) = 1 for 1 ≤ x ≤ h. Since 1 ∈ Z+

k+4 and σ′ is recursive we have that h+ 2− x
is odd. Therefore also h − x is odd and hence σ(x) = 0. It follows that we have
x = h due to σ(x) = 0, and hence h− x = 0 which is a contradiction.

Case 3: y = (k + 3)/2 = h + 2, and σ′(x) = σ′(y). Then σ′(y) = 0, and thus
σ′(x) = 0. Since σ′ is recursive and 0 6∈ (Z+

k+4 ∪ Z−k+4) we have σ′(x) 6= 0 for all
0 ≤ x ≤ h+ 1. Hence a contradiction occurs.

Therefore, only Case 1 may occur. It follows that:

max
l∈Zk

|Al(σ)| ≥ max
l∈Zk′
|Al(σ′)|.

Since, for 0 ≤ x < y ≤ h, whenever σ(x) = σ(y) we also have that σ′(x) = σ′(y),
the conclusion follows.

Now we improve the results of Chapter 3 by looking for a strong difference map
σ with w(σ) as small as possible. In particular we obtain the following proposition:

Proposition 4.2.6. There exists an i-perfect (Zk, Ck, 2)-SDM , denoted by σ, such
that w(σ) = 4 and σ(j) = σ(k − j) in the following cases:

1 k a prime and any possible i;

2 k < 56 odd and any possible i.
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3 i ∈ {3, 5, 7, 9, 11} and any odd k ≥ 2i+ 1;

Proof. CASE 1. If k is an odd prime then, because of the proof of Theorem 2.3.3
the Paley SDM σk is an i-perfect (Zk, Ck, 2)-SDM (see also Theorem 4.1.5).

We also know that w(σk) := max(4, 2t
√
k/k∗) where k∗ is the square-free part

of k, and t is the number of prime factors of k∗ (see Theorem 4.1.9). In this case,
since k is a prime k∗ = k and therefore w(σk) = 4.

CASE 2. We cover these cases with a complete computer search (see Appendix
2).

CASE 3. Construction 4.2.5 and a computer search (see case 2) give us the
existence of an i-perfect (Zk, Ck, 2)-SDM for i ∈ {3, 5, 7, 9, 11} and any odd k ≥
2i+ 1.

In particular we use the following recursive i-perfect SDMs. Because of the
symmetry we write just the first half of each map.

• For i = 3:

k = 11, (4,−2, 2,−1, 1, 0, . . . );

We remark that this map generates Example 4.2.1.

k = 9, (−3, 2,−1, 1, 0, . . . ).

• For i = 5:

k = 19, (3,−4, 7,−3, 3,−2, 2,−1, 1, 0, . . . );

k = 17, (−2, 4,−6, 3,−2, 2,−1, 1, 0, . . . );

• For i = 7:

k = 29, (20, 7, 15, 5,−4,−19,−7, 4,−3, 3,−2, 2,−1, 1, 0, . . . );

k = 31, (−21,−7,−16,−5, 5, 21, 8,−4, 4,−3, 3,−2, 2,−1, 1, 0, . . . ).

• For i = 9:

k = 33, (−7,−18,−4, 7,−6, 4,−5,−20,−4, 4,−3, 3,−2, 2,−1, 1, 0, . . . );

k = 39, (−34,−19,−32,−14,−25,−9,−21,−7, 12,−5, 5,−4, 4,−3, 3,−2, 2,−1, 1, 0, . . . ).

• For i = 11:

k = 39, (9, 21, 4,−9, 6,−8,−29,−13, 6,−5, 5,−4, 4,−3, 3,−2, 2,−1, 1, 0, . . . );

k = 41, (25, 12,−6,−22,−10, 5,−9,−33,−14, 6,−5, 5,−4, 4,−3, 3,−2, 2,−1, 1, 0, . . . ).

Moreover for all these SDMs, σ, set M = maxl∈Zk
|Al(σ)| = maxl∈Zk

|{x : x ∈
{1, . . . , k−1

2
}, σ(x) = l}|, we have that M = 1 or M = 2 therefore, using Construc-

tion 4.2.5, we obtain the required SDMs with w(σ) = 4.
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4.3 Infinite classes of i-perfect k-cycle systems II

Because of Theorem 4.1.8, the SDMs of Proposition 4.2.6 immediately give us
many families of i-perfect decompositions of the complete m-partite graphs K(m)

k .
Unfortunately our construction always fails for m = 3. However, if i = 3, we can
attack this case directly:

Lemma 4.3.1. There exists a regular 3-perfect (K(3)
k , Ck)-design for all odd integers

k ≥ 11.

Proof. Let β be the map from Ck = Zk to Z3k defined by β(i) = bi where:

bi = (−1)i(3i+ 10) for 1 ≤ i ≤ k − 7,

bk−6 = 6, bk−5 = −5, bk−4 = 18, bk−3 = 5, bk−2 = 12, bk−1 = 11, bk = −8.

It is easy to see that the bi’s are pairwise distinct. Observing that

Z3k − 〈3〉Z3k
= ±[6x+ 1| 0 ≤ x ≤ k − 1],

it suffices to check that 6x+ 1 ∈ ∆1[β] and ∆3[β] for each x ∈ {0, 1, . . . , k − 1}.

(1) 6x+ 1 ∈ ∆1[β] for each x ∈ {0, 1, . . . , k − 1}, in fact:
6× 0 + 1 = bk−2 − bk−1, 6× 1 + 1 = bk−2 − bk−3,
6× 2 + 1 = bk−4 − bk−3, 6× 3 + 1 = bk−1 − bk,
6× (k − 4) + 1 = bk−5 − bk−4, 6× (k − 3) + 1 = bk−7 − bk−6,
6× (k − 2) + 1 = bk−5 − bk−6, 6× (k − 1) + 1 = b1 − bk,
6× x+ 1 = (−1)x(bk−x−4 − bk−x−3) for 4 ≤ x ≤ k − 5.

(2) 6x+ 1 ∈ ∆3[β] for each x ∈ {0, 1, . . . , k − 1}, in fact:
6× 0 + 1 = bk−6 − bk−3, 6× 1 + 1 = bk−4 − bk−1,
6× 2 + 1 = bk−3 − bk, 6× 3 + 1 = bk−8 − bk−5,
6× 4 + 1 = bk−2 − b1, 6× (k − 5) + 1 = bk−7 − bk−4,
6× (k − 4) + 1 = bk−9 − bk−6, 6× (k − 3) + 1 = bk−5 − bk−2,
6× (k − 2) + 1 = b3 − bk, 6× (k − 1) + 1 = bk−1 − b2,
6× x+ 1 = (−1)x(bk−x−2 − bk−x−5) for 5 ≤ x ≤ k − 6.

Therefore [β] is a 3-perfect (Z3k, 〈3〉Z3k
, Ck, 1)-DF and the claim follows by The-

orem 4.1.2.

We obtain even more i-perfect decompositions by using the recursive method of
[6]. The structures that underlie this method are the pairwise balanced designs (see
Definition 1.1.27). Let K be a subset of positive integers and let λ be a positive
integer. We recall that a pairwise balanced design (PBD(v,K, λ)) of order v with
block sizes from K is a pair (V,B) where V is a finite set (the point set) of cardinality
v and B is a family of subsets (blocks) of V that satisfy:

• if B ∈ B then |B| ∈ K;

• every pair of distinct elements of V occurs in exactly λ blocks of B.
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The notation PBD(v,K) is often used when λ = 1.
This concept turns out to be very useful for getting decompositions of the com-

plete m-partite graph K(m)
k . In fact the following theorem holds true.

Theorem 4.3.2 (P. Adams, D.E. Bryant [6]). Let M = {m1, . . . ,mn} be a set of
positive integers. Let us suppose there exists a PBD(m,M, 1), which we denote by

P, then there exists also a decomposition of the complete m-partite graph K(m)
k in

the complete mi partite graphs K(mi)
k with mi ∈M .

Proof. We identify K(m)
k with the graph with vertices the ordered pairs (x, y) : x ∈

{1, . . .m} and y ∈ {1, . . . , k} and with edges the pairs of vertices {(x1, y1); (x2, y2)}
such that x1 6= x2.

Let B be a block of P of size mi; we define the subgraph KB
k of K(m)

k , that is a
complete mi-partite graph, with vertices (x, y) : x ∈ B and y ∈ {1, . . . , k} and with
edges {(x1, y1); (x2, y2)} such that x1 6= x2.

Given e = {(x1, y1); (x2, y2)} ∈ E(K(m)
k ) there exists a unique block B of P such

that {x1, x2} ⊆ B. Therefore there exists a unique KB
k such that e ∈ E(KB

k ) and

the subgraphs KB
k : B ∈ B, decompose K(m)

k . Since the graph KB
k is isomorphic to

the graph K(mi)
k , where |B| = mi, we obtain the claim.

We recall the following results of existence of PBDs (see page 253 of [38]):

Proposition 4.3.3. Let us consider the set OQ≥t given by:

OQ≥t := {x : x is a prime power; x ≥ t, x is odd}.

Then:

• there exists a PBD(v,OQ≥3) for all odd integers v > 1 and

• there exists a PBD(v,OQ≥5) for all odd integers v > 1 with the exceptions of
3, 15, 33, 39 and with the possible exceptions of 51, 75 and 87.

Now we first find decompositions of the complete m-partite graphs K(m)
k and

then we fill them using i-perfect HCS(k)s according to Lemma 3.6.1. For this
purpose we use the known results about the existence of i-perfect HCS(k)s (see
Proposition 3.6.4, [30] and [46]). We are ready to state the main result of this
chapter:

Theorem 4.3.4 (S. C., X. Wang). Let m and k be positive integers, then there
exists a 3-perfect k-cycle decomposition of Kmk if and only if mk is odd and k ≥ 7.
Moreover, if m 6∈ E := {3, 15, 33, 39, 51, 75, 87} and mk is odd, there exists an
i-perfect k-cycle decomposition of Kmk in the following cases:

• k a prime and any possible i;

• k < 56 odd and any possible i except for:

(i, k) ∈ {(2, 9), (4, 9), (7, 21), (13, 39), (15, 45), (6, 51)}.
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Proof. CASE 1, i = 3: Because of Proposition 1.2.4 and Definition 1.2.6, if there
exists a 3-perfect k-cycle decomposition of Kmk then mk is necessarily odd and
k ≥ 7.

Let us suppose that i = 3 and k is odd. Then, because of Proposition 4.2.6,
there exists a 3-perfect (Zk, Ck, 2)-SDM σ with w(σ) = 4. According to Theorem

4.1.8, we have a 3-perfect decomposition of K(m)
k for all odd m whose prime power

factors are greater than 4. Because of Lemma 4.3.1, if k ≥ 11, there exists also a 3-
perfect decomposition of K(3)

k . Therefore, because of Theorem 4.3.2 and Proposition

4.3.3, if k ≥ 11, there exists a 3-perfect decomposition of K(m)
k for all odd m > 1.

Then, since the existence of a Hamiltonian 3-perfect decomposition of Kk has been
obtained in [30] (see also [46]) and the case k < 11 has been solved in [6], there
exists a 3-perfect k-cycle decomposition of Kmk for all odd m and all k ≥ 7.

CASE 2, k is a prime: Let us suppose that k is an odd prime. Then, because of
Proposition 4.2.6, there exists an i-perfect (Zk, Ck, 2)-SDM σ with w(σ) = 4. As in

the previous case, this means that there exists an i-perfect decomposition of K(m)
k

for all odd m > 1 with prime power factors different from 3. Therefore, because of
Theorem 4.3.2 and Proposition 4.3.3, there exists also an i-perfect decomposition
of K(m)

k for all odd m > 1 not in the set E. Then, since it is known that there
exists a Hamiltonian i-perfect decomposition of Kk for the prime values of k (see
Proposition 1.2.7), there exists an i-perfect k-cycle decomposition of Kmk for all
m 6∈ E.

CASE 3, k < 56: Let us suppose that k < 56. Then, because of Proposition
4.2.6 there exists an i-perfect (Zk, Ck, 2)-SDM σ with w(σ) = 4. As in the previous

cases, this means that there exists an i-perfect decomposition of K(m)
k for all odd m

with prime power factors different from 3. Therefore, because of Theorem 4.3.2 and
Proposition 4.3.3, there exists also an i-perfect decomposition of K(m)

k for all odd
m > 1 not in the set E. Then, since the existence of a Hamiltonian i-perfect decom-
position of Kk has been obtained in Proposition 3.6.4, up to the listed exceptions,
there exists an i-perfect k-cycle decomposition of Kmk for all m 6∈ E.

Remark 4.3.5. With the same proof of Theorem 4.3.4 we get the existence of an
i-perfect k-cycle decomposition of K(m)

k , i ∈ {5, 7, 9, 11} for all odd m 6∈ E and

we get the existence of a 3-perfect k-cycle decomposition of K(m)
k , for all odd m.

Therefore, according to Lemma 3.6.1, we get an i-perfect k-cycle decomposition of
Kmk whenever an i-perfect HCS(k) exists.

Due to Theorem 4.3.4 we can improve the known results on the existence of
i-perfect k-cycle decompositions of Kv with v = mk odd obtaining the following
table:
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k Exceptions (v, i) Possible exceptions (v, i)
5 (15; 2)
7, 11, 13, 15, 17, 19
9 (9, 2); (9, 4)
21 (v, 7); (km, i) : m ∈ E, i 6= 3
23, 25, 27, 29, 31, 33, 35, 37 (km, i) : m ∈ E, i 6= 3
41, 43, 47, 49, 53, 55 (km, i) : m ∈ E, i 6= 3
39 (v, 13); (km, i) : m ∈ E, i 6= 3
45 (v, 15); (km, i) : m ∈ E, i 6= 3
51 (v, 6); (km, i) : m ∈ E, i 6= 3

We point out that the red cases have been obtained using i-perfect SDMs either
here or in [24].



Chapter 5

New 2-designs
via strong difference families

In Chapter 2 we presented a powerful idea for obtaining GDDs and 2-designs: the
concept of “relative difference family” (see Definition 2.1.13 and Theorem 2.1.17).
In the nineties, M. Buratti, R.J.R. Abel, M. Greig and other authors developed
several constructions of relative difference families (see for example [1, 2, 9, 16, 20,
31, 43, 63]) and, as a consequence, they obtained a lot of new 2-designs. However,
a systematic treatment of constructions of DFs, has been performed only later: M.
Buratti introduced the concept of strong difference families in [22] in order to cover
such problem. Then he generalized this idea with L. Gionfriddo in [25]. Here we
recall his first definition:

Definition 2.2.1 (M. Buratti). Let Σ := [X1, . . . , Xt] be a family of multisets of
size k of an additive group G of order g.
We say that Σ is a (G, k, µ) strong difference family (SDF ), or a (g, k, µ)-SDF
over to the group G, if the list

∆Σ =
⋃
X∈Σ

[x− y|x, y ∈ X, x 6= y],

covers all of G exactly µ times.
If t = 1, i.e. the family Σ = [X1] is given by a single multiset, we say that the

multiset X1 is a (G, k, µ) strong difference multiset (SDM).

Through the use of SDF s, as a consequence of the “fundamental construction”
(see Theorem 2.2.8), it was possible to provide a lot of new DF s and to rediscover
many old ones. We recall the statement of this theorem:

Theorem 2.2.8. Let Σ = [[s1
1, . . . , s

1
k], . . . , [s

n
1 , . . . , s

n
k ]] be a (G, k, µ)-SDF , and let

R be a ring with additive group H. Given n multisets of H, [t11, . . . , t
1
k], . . . , [t

n
1 , . . . , t

n
k ]

we set:

Ai = [(sij, t
i
j), j ∈ {1, . . . , k}], ∀i ∈ {1, . . . , n};

∆[A1, . . . , An] =
n⋃
i=1

[x− y|x, y ∈ Ai, x 6= y];
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as we have seen in Chapter 2 there exist multisets Lg of elements of H such that:

∆[A1, . . . , An] =
⋃
g∈G

{g} × Lg.

Assume that the following conditions hold:

1) For all i ∈ {1, . . . , n} we have: sij = sij′ with j 6= j′ =⇒ tij − tij′ ∈ U(R);

2) ∃ S ⊂ H \ {0} such that S · Lg = λ(H \ {0}) ∀g ∈ G.

Then there exists a (G×H,G× {0}, k, λ)-DF . Moreover the multisets A1, . . . , An
turn out to be simple sets.

Before this idea was formalized by M. Buratti, it was implicitly used in several
papers, see for instance [9, 20, 31, 40, 41] and [43].

We recall that, despite the fact that many authors worked on the existence of
2-(v, k, λ) designs with 6 ≤ k ≤ 9, there are still many open cases and little is
known when 9 < k. In this chapter we show that, with a careful application of the
“fundamental construction”, it is possible to establish the existence of a 2-(v, k, λ)
design in some of the open cases.

In particular to obtain such designs we proceed as follows. First of all, through
a careful analysis of the open cases (see Chapter 1), we try to understand which
(G × F∗q, G × {0}, k, λ)-DF s are useful for our purpose. Then, with the use of a
computer, we construct a (G, k, µ)-SDF .

Secondary for getting a (G×F∗q, G×{0}, k, λ)-DF , using the notation of Theorem
2.2.8, we have to provide multisets [t11, . . . , t

1
k], . . . , [t

n
1 , . . . , t

n
k ] of second components

on F∗q that satisfy the assumptions of the“fundamental construction”. This is the less
trivial part of the procedure and in order to do it we need to apply an asymptotical
result of M. Buratti and A. Pasotti (see [26], Theorem 5.1.2 and its consequences) or
to do a computer research. Then, because of Theorem 2.2.8, we get a (G× F∗q, G×
{0}, k, λ)-DF . Finally we apply this relative difference family, as done in Example
2.3.1, to obtain the required design.

Within this procedure we can establish the existence of a 2-(v, k, λ) design for
seven values of (v, k, λ), with 7 ≤ k ≤ 9, for which the existence problem was open
and in one of this cases we find a new resolvable design (see Definition 1.1.22). In
particular, regarding the case of 2-(v, 9, 4) designs, we left the problem of existence
open only for v = 315. We also provide infinite series of 2-designs with k = 13 and
k = 17, values for which little was previously known.

In conclusion, although the procedure followed in this chapter seems to be tech-
nical and quite standard, we believe that the results we obtain are interesting. We
also believe that the way in which we apply Theorem 5.1.2 can be generalized and
can still give new existence results for 2-designs, GDDs and resolvable 2-designs.

5.1 Weil’s theorem

The theorem of Weil on the sum of multiplicative characters has been recently used
by several authors (M. Buratti, A. Pasotti [26], Y. Chang, L. Ji [32], K. Momihara
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[54] and many others, see for example [3, 23, 33, 52, 64]) in order to obtain new
DF s, 2-designs and other combinatorial structures. We introduce some notations
in order to give the statement of Weil’s theorem. As usual, we denote by Fq the
finite field of order q and by F∗q its multiplicative group. If q ≡ 1 (mod e) then Ce

0

will denote its subgroup of nonzero eth powers. Once a primitive root g has been
fixed we set Ce

i = giCe
0 .

We recall that a multiplicative character of Fq is an homomorphism χ from F∗q
to the multiplicative group C∗ of non negative complex numbers i.e a map χ such
that such that: χ(1) = 1; χ(xy) = χ(x)χ(y) for any x, y ∈ Fq. By convention we
set χ(0) = 0. Here is the statement of Weil’s theorem on the sum of multiplicative
characters (see [47]):

Theorem 5.1.1. Let χ be a multiplicative character of order m > 1 of Fq and
let f ∈ Fq[χ] be a polynomial that is not of the form kgm for some k ∈ Fq and
g ∈ Fq[χ]. Then, we have: ∣∣∣∑

x∈Fq

χ[f(x)]
∣∣∣ ≤ (d− 1)

√
q

where d is the number of distinct roots of f in its splitting field over Fq.

In their paper [26], M. Buratti and A. Pasotti proved the following consequence
of Theorem 5.1.1 that concerns cyclotomic systems. Let

Q(e,m, d) =
1

4
(U +

√
U2 + 4em−1(m+ ed))2 where U =

m∑
h=1

(
m

h

)
(e− 1)h(h− 1).

If d = 0 we denote Q(e,m) := Q(e,m, 0).

Theorem 5.1.2 ([26]). Let q ≡ 1 (mod e) be a prime power, let B = {β1, . . . , βm}
be an arbitrary m-subset of Fq and let (b1, . . . , bm) be an arbitrary element of Zme .
Set X = {x ∈ Fq : x − βi ∈ Ce

bi
for i = 1, . . . ,m}. Then we have that, for

q > Q(e,m, d), the set X is such that |X| > d .

In [26] is also given the following application of Weil’s theorem that makes use
of strong difference families:

Theorem 5.1.3 ([26]). If there is a (G, k, µ)-SDF , then there exists a (G×Fq, G×
{0}, k, 1)-DF for any prime power q ≡ µ+ 1 (mod 2µ) greater than Q(µ, k − 1).

Theorem 5.1.3 is essentially a quantitative statement of Theorem 2.2.10. K.
Momihara (see [54]) provide also the following generalization of Theorem 5.1.3:

Theorem 5.1.4. If there is a (G, k, µ)-SDF with µ = 2dλ then there exists a
(G×Fq, G×{0}, k, 2λ)-DF for any prime power q ≡ 1 (mod d) with q ≥ Q(d, k−1).

5.2 New 2-designs via SDF s I

The aim of this chapter is to obtain DF s via Theorem 2.2.8. Given a SDF , the
crucial part in this process is to provide suitable multisets of elements of Fq, as done
in Example 2.3.1. In this section we solve this problem by a computer search and
by applying the asymptotical results of Theorems 5.1.3 and 5.1.4.
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5.2.1 A 2-(694, 7, 2) design

Lemma 5.2.1. There exists a (63p, 63, 7, 1)-DF for any prime p ≡ 3 (mod 4) such
that p ≥ 11.

Proof. We first construct a (Z63, 7, 2)-SDF , say Σ1 as follows:

Σ1 := [[0, 4, 15, 23, 37, 58, 58], [0, 1, 3, 7, 13, 25, 39], [0, 1, 3, 11, 18, 34, 47]].

Now we want to apply Theorem 2.2.8, as done in Example 2.3.1, in order to get a
(63p, 63, 7, 1)-DF . For this purpose we consider the following blocks on Z63 × Fp
having, as first coordinates, the elements of Σ1:

A1 := {(0, 0), (4, y1), (15, y2), (23, y3), (37, y4), (58, y5), (58,−y5)},
A2 := {(0, 0), (1, y6), (3, y7), (7, y8), (13, y9), (25, y10), (39, y11)},
A3 := {(0, 0), (1, y12), (3, y13), (11, y14), (18, y15), (34, y16), (47, y17)}.

Using the notation of Theorem 2.2.8 we have that ∆[A1, A2, A3] =
⋃62
i=0{i} × Li

where Li = −L63−i and:

L0 = ±[2y5], L1 = [y6, y12], L2 = [y7 − y6, y13 − y12],
L3 = [y7, y13], L4 = [y1, y8 − y7], L5 = ±[y5],
L6 = [y8 − y6, y9 − y8], L7 = [y8, y15 − y14], L8 = [y3 − y2, y14 − y13],
L9 = [y1 − y5, y1 + y5], L10 = [y9 − y7, y14 − y12], L11 = [y2 − y1, y14],
L12 = [y9 − y6, y10 − y9], L13 = [y9, y17 − y16], L14 = [y4 − y3, y11 − y10],
L15 = [y2, y15 − y13], L16 = [y16 − y15,−y17], L17 = [y15 − y12, y12 − y17],
L18 = [y15, y10 − y8], L19 = [y3 − y1, y13 − y17], L20 = [y2 − y5, y2 + y5],
L21 = [y5 − y4,−y5 − y4], L22 = [y10 − y7, y4 − y2], L23 = [y3, y16 − y14],
L24 = [y10 − y6,−y11], L25 = [y10, y6 − y11], L26 = [−y4, y11 − y9],
L27 = [y7 − y11, y14 − y17], L28 = [y3 − y5, y3 + y5], L29 = [−y16, y17 − y15],
L30 = [y1 − y4, y12 − y16], L31 = [y16 − y13, y8 − y11].

Let S be C2
0 . Let us suppose that the two elements of each set Li, 0 ≤ i ≤ 31 belong

to different cosets of F∗p respect to C2
0 . Then it would follows that:

S · Li =
⋃
s∈S

sLi = F∗p.

Therefore the blocks A1, . . . , A3 and the set S would satisfy the assumptions of
Theorem 2.2.8.

We can find these second components, using a computer, for all primes p ≡
3 (mod 4) such that 11 ≤ p ≤ Q(2, 6). In fact, for these values of p, a computer
search shows that there exists a 17-tuple (y1, . . . , y17) such that the two elements of
each set Li, 0 ≤ i ≤ 31 belong to different cosets of F∗p respect to C2

0 . For example,
when p = 11, we can take the values:

y1 = 3, y2 = 5, y3 = 6, y4 = 8, y5 = 1, y6 = 2, y7 = 4, y8 = 6,
y9 = 1, y10 = 10, y11 = 8, y12 = 4, y13 = 7, y14 = 9, y15 = 2, y16 = 3, y17 = 5.
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It follows that, for these choices of second components, the blocks A1, A2, A3 satisfy
the hypothesis of Theorem 2.2.8. Hence there exists a (63p, 63, 7, 1)-DF for all
primes 11 ≤ p ≤ Q(2, 6) with p ≡ 3 (mod 4).

Because of Theorem 5.1.3 there exists a (63p, 63, 7, 1)-DF for any prime p ≡
3 (mod 4) such that p > Q(2, 6). We conclude that there exists a (63p, 63, 7, 1)-DF
for any prime p ≡ 3 (mod 4) such that p ≥ 11.

Using the previous lemma we construct the following 2-designs.

Proposition 5.2.2. There exists a 2-(63p + 1, 7, 2) design for any prime p ≡ 3
(mod 4) such that p ≥ 11.

Proof. By Lemma 5.2.1, there exists a (63p, 63, 7, 1)-DF , which gives a 7-GDD of
type 63p. According to Theorem 1.1.30, we start with a (7, 2)-GDD of type 63p,
then we add a point and we cover the groups of this GDD with a 2-(64, 7, 2) design
through the new point. We get a 2-(63p+ 1, 7, 2) design.

In the case p = 11 we obtain the following new 2-design:

Corollary 5.2.3. There exists a 2-(694, 7, 2) design.

5.2.2 A 2-(459, 9, 4) design and a 2-(783, 9, 4) design

Lemma 5.2.4. There exists a (27q, 27, 9, 4)-DF for all odd prime powers q ≥
Q(2, 8) and for q ∈ {17, 29}.

Proof. We start by considering the following (27, 9, 8)-SDF , say Σ2:

[[0, 3, 3, 8, 8, 17, 17, 23, 23], [0, 1, 2, 3, 19, 4, 5, 8, 12], [0, 1, 2, 3, 19, 6, 11, 13, 17]].

Now we want to apply Theorem 2.2.8, as done in Example 2.3.1, in order to get a
(27q, 27, 9, 1)-DF . We first construct the following blocks on Z27 × Fq having, as
first coordinates, the elements of Σ2:

A1 := {(0, 0), (3, y1), (3,−y1), (8, y2), (8,−y2), (17, y3), (17,−y3), (23, y4), (23,−y4)},
A2 := {(0, 0), (1, y5), (2, y6), (3, y7), (19, y8), (4, y9), (5, y10), (8, y11), (12, y12)},
A3 := {(0, 0), (1,−y5), (2,−y6), (3,−y7), (19,−y8), (6, y13), (11, y14), (13, y15), (17, y16)}.

Using the notation of Theorem 2.2.8 we have that ∆[A1, A2, A3] =
⋃26
i=0{i} × Li

where Li = −L27−i and:
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L0 = ±[2y1, 2y2, 2y3, 2y4],
L1 = [±(y5 − y6),±(y7 − y6),±y5, y9 − y7, y10 − y9],
L2 = [±y6,±(y7 − y5), y9 − y6, y10 − y7, y14 − y15, y10 + y8],
L3 = [±y7, y9 − y5, y10 − y6, y11 − y10, y13 + y7,±y1],
L4 = [y9, y11 − y9,±y4, y10 − y5, y12 − y11, y13 + y6, y16 − y15],
L5 = [±(y1 ± y2), y10, y7 − y11, y13 + y5, y14 − y13],
L6 = [y13,±(y3 ± y4), y11 − y6, y15 + y8, y16 − y14],
L7 = [±(y4 ± y1), y8 − y12, y11 − y5, y15 − y13, y10 − y12],
L8 = [±y2, y11, y12 − y9, y14 + y8,±y8, y14 + y7],
L9 = [±(y8 − y5), y12 − y7, y14 + y6,±(y2 ± y3)],
L10 = [±y3, y16,±(y8 − y6), y12 − y6, y14 + y5, y15 + y7],
L11 = [y14, y5 + y16, y12 − y5, y8 − y11,±(y8 − y7), y15 + y6, y16 − y13],
L12 = [±(y2 ± y4), y15 + y5, y8 − y9, y2, y16 − y6],
L13 = [±(y1 ± y3), y15, y8 + y13, y16 + y7, y8 − y10].

Let S be C2
0 . Let us suppose that four elements of each Li belong to C2

0 and four
elements of each Li belong to C2

1 . Then it would follows that:

S · Li =
⋃
s∈S

sLi = 4F∗q.

Therefore the blocks A1, . . . , A3 and the set S would satisfy the assumptions of
Theorem 2.2.8. Using a computer we can find these second components for q ∈
{17, 29}. In fact we find a 16-tuple (y1, . . . , y16) of elements of F17 and another
16-tuple of elements of F29 such that for each Li four elements lie in C2

0 and four
elements lie in C2

1 . The explicit solutions are, respectively, the following:

For q = 17 :
A1 := {(0, 0), (3, 1), (3,−1), (8, 2), (8,−2), (17, 3), (17,−3), (23, 5), (23,−5)},
A2 := {(0, 0), (1, 1), (2, 2), (3, 7), (19, 11), (4, 10), (5, 5), (8, 14), (12, 16)},
A3 := {(0, 0), (1,−1), (2,−2), (3,−7), (19,−11), (6, 3), (11, 2), (13, 12), (17, 13)}.

For q = 29 :
A1 := {(0, 0), (3, 1), (3,−1), (8, 2), (8,−2), (17, 3), (17,−3), (23, 4), (23,−4)},
A2 := {(0, 0), (1, 1), (2, 2), (3, 4), (19, 11), (4, 15), (5, 5), (8, 13), (12, 21)},
A3 := {(0, 0), (1,−1), (2,−2), (3,−4), (19,−11), (6, 11), (11, 19), (13, 10), (17, 22)}.

If follows that, for these choices of second components, the blocks A1, A2, A3 sat-
isfy the hypothesis of Theorem 2.2.8. Hence, for q ∈ {17, 29}, there exists a
(27q, 27, 9, 4)-DF . Moreover because of Theorem 5.1.4 there exists a (27q, 27, 9, 4)-
DF also for all prime powers q ≥ Q(2, 8).

As a consequence of this lemma we get the following result:

Corollary 5.2.5. There exists a 2-(459, 9, 4) design and a 2-(783, 9, 4) design.

Proof. We start with a (27q, 27, 9, 4)-DF , for q ∈ {17, 29}, which defines a (9, 4)-
GDD of type 27q. According to Theorem 1.1.30, since there exists a 2-(27, 9, 4)
design, we can fill the groups of this GDD in order to obtain a 2-(459, 9, 4) design
and a 2-(783, 9, 4) design.

This corollary leaves the existence of a 2-(v, 9, 4) design open only for v = 315.
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5.3 New 2-designs via SDF s II

Also in this section, given a SDF , we want to obtain a DF via Theorem 2.2.8.
We recall that the crucial part in this process is to provide suitable multisets of
elements of Fq, as done in Example 2.3.1. In the examples we discuss in this section
we solve this problem by applying directly Theorem 5.1.2.

5.3.1 2-designs from the Paley (13, 13, 12)-SDM

We start by considering the Paley (13, 13, 12)-SDM , say σ13. Proceeding as in
Lemma 5.2.1 and using Theorem 5.1.3 we could easily obtain the existence of a
2-(13q, 13, 1) design for all prime powers q ≥ Q(12, 12) such that q ≡ 13 (mod 24).
However, since this bound is huge we apply directly Theorem 5.1.2. We obtain the
following result:

Proposition 5.3.1. There exists a 2-(13p, 13, 1) design for all primes p ≡ 1 (mod 12)
up to the following possible exceptions:

{37, 61, 73, 97, 109, 181, 313, 337, 349, 373, 409, 421, 541, 577, 829, 853, 1129, 1741, 2473}.

Proof. Let us consider the Paley (13, 13, 12)-SDM :

σ13 := [0, 1, 1,−1,−1, 3, 3,−3,−3, 4, 4,−4,−4].

We consider the block A of elements of F13 × Fp having, as first coordinates, the
elements of σ13:

A := {(0, 0), (1, 1), (1,−1), (−1, ξ), (−1,−ξ), (3, y1),

(3,−y1), (−3, y1ξ), (−3,−y1ξ), (4, y2), (4,−y2), (−4, y2ξ), (−4,−y2ξ)},

where g is a primitive rooth of Fp, ξ = g
p−1
4 and p ≡ 1 (mod 12).

Using the notation of Theorem 2.2.8 we have that ∆[A] =
⋃12
i=0{i} × Li. We set

Li = {1,−1, ξ,−ξ} ·Di where Di = D13−i and:

D0 = 2 · [1, y1, y2], D1 = [1, y1 − y2, y1 + y2],
D2 = [1− ξ, y1 − 1, y1 + 1], D3 = [y1, y2 − 1, y2 + 1],
D4 = [y2, y1 − ξ, y1 + ξ], D5 = [y2 + ξ, y2 − ξ, y2(1− ξ)],
D6 = [y1(1− ξ), y1 + y2ξ, y1 − y2ξ].

Let us consider S to be a complete set of representatives for the cosets of {+1,−1,−ξ, ξ}
in C3

0 . Let us suppose that each Di contains an element of C3
0 , an element of C3

1

and an element of C3
2 . Then we would have that:

S · Li =
⋃
s∈S

s{+1,−1,+ξ,−ξ} ·Di = F∗p.

Therefore the block A would satisfies the assumptions of Theorem 2.2.8. Hence,
in order to get a (13p, 13, 13, 1)-DF , we want that each Di contains an element of
C3

0 , an element of C3
1 and an element of C3

2 . We can impose these conditions by
considering y1 and y2 to be the solutions of one of the following cyclotomic systems,
according to the class of 1− ξ in F∗p:
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• Case 1: If 1− ξ ∈ C3
0 :

We need y1 and y2 such that:

C1 :=



y1 ∈ C3
1 ;

y1 − 1 ∈ C3
1 ;

y1 + 1 ∈ C3
2 ;

y1 − ξ ∈ C3
0 ;

y1 + ξ ∈ C3
1 ;

C2 :=



y2 ∈ C3
2 ;

y1 − y2 ∈ C3
1 ;

y1 + y2 ∈ C3
2 ;

y2 − 1 ∈ C3
0 ;

y2 + 1 ∈ C3
2 ;

ξ + y2 ∈ C3
0 ;

ξ − y2 ∈ C3
1 ;

ξy2 + y1 ∈ C3
0 ;

ξy2 − y1ξ ∈ C3
2 .

• Case 2: If 1− ξ ∈ C3
1 :

We need y1 and y2 such that:

C1 :=



y1 ∈ C3
1 ;

y1 − 1 ∈ C3
0 ;

y1 + 1 ∈ C3
2 ;

y1 − ξ ∈ C3
0 ;

y1 + ξ ∈ C3
1 ;

C2 :=



y2 ∈ C3
2 ;

y1 − y2 ∈ C3
1 ;

y1 + y2 ∈ C3
2 ;

y2 − 1 ∈ C3
0 ;

y2 + 1 ∈ C3
2 ;

ξ + y2 ∈ C3
2 ;

ξ − y2 ∈ C3
1 ;

ξy2 + y1 ∈ C3
0 ;

ξy2 − y1ξ ∈ C3
1 .

• Case 3: If 1− ξ ∈ C3
2 :

We need y1 and y2 such that:

C1 :=



y1 ∈ C3
1 ;

y1 − 1 ∈ C3
1 ;

y1 + 1 ∈ C3
0 ;

y1 − ξ ∈ C3
0 ;

y1 + ξ ∈ C3
1 ;

C2 :=



y2 ∈ C3
2 ;

y1 − y2 ∈ C3
1 ;

y1 + y2 ∈ C3
2 ;

y2 − 1 ∈ C3
0 ;

y2 + 1 ∈ C3
2 ;

ξ + y2 ∈ C3
2 ;

ξ − y2 ∈ C3
0 ;

ξy2 + y1 ∈ C3
2 ;

ξy2 − y1ξ ∈ C3
1 .

Because of Theorem 5.1.2 these systems have solution for p > Q(3, 9). Therefore,
for these choices of y1, y2 each Di contains an element of C3

0 , an element of C3
1 and

an element of C3
2 .
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Instead, for the primes p ≡ 1 (mod 12) such that p < Q(3, 9), we can find
directly, by a computer search, a pair y1, y2, such that each Di contains an element
of C3

0 , an element of C3
1 and an element of C3

2 up to a small set of exceptions. In
fact we have that 1010 > Q(3, 9) and hence, because of the prime number theorem,
the cases that we need to check are ≈ 1010

4 log 1010
< 108. Beside the fact that this

number seems to be huge, with a suitable code, it is possible to check more than
20 cases each second and, surprisingly, the speed of the checks is almost constant
in this range. However we have not checked the case in which p is a prime power
because this case runs too slowly. We add a GAP code for doing this check as an
Appendix (see Appendix 3), but we remark that the same code written in C is even
faster (but less clear to read). Running this program we found only the following
possible exceptions:

{37, 61, 73, 97, 109, 181, 313, 337, 349, 373, 409, 421, 541, 577, 829, 853, 1129, 1741, 2473}.

Thus, for these choices of y1, y2, the block A satisfies the hypothesis of Theorem
2.2.8. It follows that there exists a (13p, 13, 13, 1)-DF for all primes p ≡ 1 (mod 12)
up to the exceptions listed above. Because of Theorem 2.1.17 we obtain a 13-
GDD of type (13)p and hence, according to Theorem 1.1.30, we get a 2-(13p, 13, 1)
design.

In a very similar way we can prove that:

Proposition 5.3.2. There exists a 2-(13q, 13, 3) design for all prime powers q ≡ 1
(mod 4) such that q ≥ 13.

Proof. Let us consider the Paley (13, 13, 12)-SDM :

σ13 := [0, 1, 1,−1,−1, 3, 3,−3,−3, 4, 4,−4,−4].

We consider the block of elements of F13 × Fq having, as first coordinates, the
elements of σ13:

A := {(0, 0), (1, 1), (1,−1), (−1, ξ), (−1,−ξ), (3, y1),

(3,−y1), (−3, y1ξ), (−3,−y1ξ), (4, y2), (4,−y2), (−4, y2ξ), (−4,−y2ξ)},

where g is a primitive rooth of Fq, ξ = g
q−1
4 and q ≡ 1 (mod 4).

Using the notation of Theorem 2.2.8 we have that ∆[A] =
⋃12
i=0{i} × Li. We set

Li = {1,−1, ξ,−ξ} ·Di where Di = D13−i:

D0 = 2 · [1, y1, y2], D1 = [1, y1 − y2, y1 + y2],
D2 = [1− ξ, y1 − 1, y1 + 1], D3 = [y1, y2 − 1, y2 + 1],
D4 = [y2, y1 − ξ, y1 + ξ], D5 = [y2 + ξ, y2 − ξ, y2(1− ξ)],
D6 = [y1(1− ξ), y1 + y2ξ, y1 − y2ξ].

We note that if q ≥ 13 we can choose y1, y2 such that all elements of each Di are
nonzero. In this case let us consider S to be a complete set of representatives for
the cosets of {+1,−1,−ξ, ξ} in F∗q. Then we have that:

S · Li =
⋃
s∈S

s{+1,−1,+ξ,−ξ} ·Di = 3F∗q.
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Therefore the block A satisfies the hypothesis of Theorem 2.2.8. It follows that there
exists a (13q, 13, 13, 3)-DF for all prime powers q ≥ 13 with q ≡ 1 (mod 4). Because
of Theorem 2.1.17 we obtain a (13, 3)-GDD of type (13)q and hence, according to
Theorem 1.1.30, we get a 2-(13q, 13, 3) design.

Summing up Propositions 5.3.1 and 5.3.2, it follows that:

Theorem 5.3.3 (S. C., X. Wang). There exists a 2-(v, k, λ) design in the following
cases:

(v, k, λ) Possible exceptions
(13p, 13, 1) : p ≡ 1 (mod 12), prime List of 19 values
(13q, 13, 3) : q ≡ 1 (mod 4), q ≥ 13.

5.3.2 2-designs from the Paley (17, 17, 16)-SDM

Now we consider the Paley (17, 17, 16)-SDM , say σ17. Proceeding as in Lemma
5.2.1 and using Theorem 5.1.3 we could easily obtain the existence of a 2-(17q, 17, 1)
design for all prime powers q ≥ Q(16, 16) such that q ≡ 13 (mod 24). However,
since this bound is huge we apply directly Theorem 5.1.2. We get the following
result:

Proposition 5.3.4. There exists a 2-(17q, 17, 1) design for all prime powers q ≥
Q(4, 13) such that q ≡ 1 (mod 16).

Proof. Let us consider the Paley (17, 17, 16)-SDM :

σ17 := [0, 1, 1,−1,−1, 2, 2,−2,−2, 4, 4,−4,−4, 8, 8,−8,−8].

We consider the block A of elements of F17 × Fq having, as first coordinates, the
elements of σ17:

{(0, 0), (1, 1), (1,−1), (−1, ξ), (−1,−ξ), (2, y1), (2,−y1), (−2, y1ξ), (−2,−y1ξ),

(4, y2), (4,−y2), (−4, y2ξ), (−4,−y2ξ), (8, y3), (8,−y3), (−8, y3ξ), (−8,−y3ξ)},

where g is a primitive root of Fq, ξ = g
q−1
4 and q ≡ 1 (mod 16).

Using the notation of Theorem 2.2.8 we have that ∆[A] =
⋃16
i=0{i} × Li. We set

Li = {1,−1, ξ,−ξ} ·Di where Di = D17−i and:

D0 = 2 · [1, y1, y2, y3], D1 = [1, 1− y1, 1 + y1, y3(1− ξ)],
D2 = [1− ξ, y1, y1 − y2, y1 + y2], D3 = [y1 + ξ, y1 − ξ, y1 − y2, y1 + y2],
D4 = [y2, y2 − y3, y2 + y3, y1(1− ξ)], D5 = [y2 + ξ, y2 − ξ, y3 + y2ξ, y3 − y2ξ],
D6 = [y2 + y1ξ, y2 − y1ξ, y3 − y1, y3 + y1], D7 = [y3 + y1ξ, y3 − y1ξ, y3 − 1, y3 + 1],
D8 = [y3, y2(1− ξ), y3 − ξ, y3 + ξ].

Let us consider S to be a complete set of representatives for the cosets of {+1,−1,−ξ, ξ}
in C4

0 . Let us suppose that each Di contains an element of C4
0 , an element of C4

1 ,
an element of C4

2 and an element of C4
3 . Then we would have that:

S · Li =
⋃
s∈S

s{+1,−1,+ξ,−ξ} ·Di = F∗q.
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Therefore the block A would satisfies the assumptions of Theorem 2.2.8. Hence,
in order to get a (17q, 17, 17, 1)-DF , we want that each Di contains an element of
C4

0 , an element of C4
1 , an element of C4

2 and an element of C4
3 . We can impose this

condition by considering y1, y2 and y3 to be the solutions of one of the following
cyclotomic systems, according to the class of 1− ξ in F∗q:

• Case 1: If 1− ξ ∈ C4
0 :

We need y1, y2 and y3 such that:

C1 =



y1 ∈ C4
1 ;

y1 − 1 ∈ C4
1 ;

y1 + 1 ∈ C4
2 ;

y1 − ξ ∈ C4
1 ;

y1 + ξ ∈ C4
0 .

C2 =



y2 ∈ C4
2 ;

y2 − y1 ∈ C4
2 ;

y2 + y1 ∈ C4
3 ;

y2 − 1 ∈ C4
2 ;

y2 + 1 ∈ C4
3 ;

y2 + ξ ∈ C4
0 ;

y2 − ξ ∈ C4
1 ;

y2ξ + y1 ∈ C4
0 ;

y2ξ − y1 ∈ C4
1 .

C3 =



y3 ∈ C4
3 ;

y3 − y1 ∈ C4
2 ;

y3 + y1 ∈ C4
3 ;

y3 − 1 ∈ C4
2 ;

y3 + 1 ∈ C4
3 ;

y3 + ξ ∈ C4
0 ;

y3 − ξ ∈ C4
1 ;

y3ξ + y1 ∈ C4
0 ;

y3ξ − y1 ∈ C4
1 ;

y3ξ + y2 ∈ C4
2 ;

y3ξ − y2 ∈ C4
3 ;

y3 − y2 ∈ C4
0 ;

y3 + y2 ∈ C4
3 .

• Case 2: If 1− ξ ∈ C4
1 :

We need y1, y2 and y3 such that:

C1 =



y1 ∈ C4
3 ;

y1 − 1 ∈ C4
1 ;

y1 + 1 ∈ C4
3 ;

y1 − ξ ∈ C4
1 ;

y1 + ξ ∈ C4
0 .

C2 =



y2 ∈ C4
2 ;

y2 − y1 ∈ C4
0 ;

y2 + y1 ∈ C4
2 ;

y2 − 1 ∈ C4
2 ;

y2 + 1 ∈ C4
3 ;

y2 + ξ ∈ C4
0 ;

y2 − ξ ∈ C4
1 ;

y2ξ + y1 ∈ C4
0 ;

y2ξ − y1 ∈ C4
1 .

C3 =



y3 ∈ C4
1 ;

y3 − y1 ∈ C4
2 ;

y3 + y1 ∈ C4
3 ;

y3 − 1 ∈ C4
2 ;

y3 + 1 ∈ C4
3 ;

y3 + ξ ∈ C4
0 ;

y3 − ξ ∈ C4
2 ;

y3ξ + y1 ∈ C4
0 ;

y3ξ − y1 ∈ C4
1 ;

y3ξ + y2 ∈ C4
2 ;

y3ξ − y2 ∈ C4
3 ;

y3 − y2 ∈ C4
1 ;

y3 + y2 ∈ C4
3 .

• Case 3: If 1− ξ ∈ C4
2 :

We need y1, y2 and y3 such that:
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C1 =



y1 ∈ C4
1 ;

y1 − 1 ∈ C4
3 ;

y1 + 1 ∈ C4
2 ;

y1 − ξ ∈ C4
1 ;

y1 + ξ ∈ C4
0 .

C2 =



y2 ∈ C4
2 ;

y2 − y1 ∈ C4
0 ;

y2 + y1 ∈ C4
3 ;

y2 − 1 ∈ C4
2 ;

y2 + 1 ∈ C4
3 ;

y2 + ξ ∈ C4
0 ;

y2 − ξ ∈ C4
1 ;

y2ξ + y1 ∈ C4
0 ;

y2ξ − y1 ∈ C4
1 .

C3 =



y3 ∈ C4
3 ;

y3 − y1 ∈ C4
2 ;

y3 + y1 ∈ C4
3 ;

y3 − 1 ∈ C4
2 ;

y3 + 1 ∈ C4
3 ;

y3 + ξ ∈ C4
2 ;

y3 − ξ ∈ C4
1 ;

y3ξ + y1 ∈ C4
0 ;

y3ξ − y1 ∈ C4
1 ;

y3ξ + y2 ∈ C4
2 ;

y3ξ − y2 ∈ C4
3 ;

y3 − y2 ∈ C4
0 ;

y3 + y2 ∈ C4
1 .

• Case 4: If 1− ξ ∈ C4
3 :

We need y1, y2 and y3 such that:

C1 =



y1 ∈ C4
1 ;

y1 − 1 ∈ C4
1 ;

y1 + 1 ∈ C4
3 ;

y1 − ξ ∈ C4
1 ;

y1 + ξ ∈ C4
0 .

C2 =



y2 ∈ C4
2 ;

y2 − y1 ∈ C4
2 ;

y2 + y1 ∈ C4
0 ;

y2 − 1 ∈ C4
2 ;

y2 + 1 ∈ C4
3 ;

y2 + ξ ∈ C4
0 ;

y2 − ξ ∈ C4
1 ;

y2ξ + y1 ∈ C4
0 ;

y2ξ − y1 ∈ C4
1 .

C3 =



y3 ∈ C4
3 ;

y3 − y1 ∈ C4
2 ;

y3 + y1 ∈ C4
3 ;

y3 − 1 ∈ C4
2 ;

y3 + 1 ∈ C4
3 ;

y3 + ξ ∈ C4
0 ;

y3 − ξ ∈ C4
2 ;

y3ξ + y1 ∈ C4
0 ;

y3ξ − y1 ∈ C4
1 ;

y3ξ + y2 ∈ C4
2 ;

y3ξ − y2 ∈ C4
3 ;

y3 − y2 ∈ C4
1 ;

y3 + y2 ∈ C4
3 .

Because of Theorem 5.1.2 these systems have solutions for q > Q(4, 13). Therefore,
for these choices of y1, y2, y3 each Di contains an element of C4

0 , an element of C4
1 ,

an element of C4
2 and an element of C4

3 . Thus the block A satisfies the hypothesis of
Theorem 2.2.8. It follows that there exists a (17q, 17, 17, 1)-DF for all prime powers
q ≥ Q(4, 13) with q ≡ 1 (mod 16). Because of Theorem 2.1.17 we obtain a 17-
GDD of type (17)q and hence, according to Theorem 1.1.30, we get a 2-(17q, 17, 1)
design.

Moreover, by a computer search, we can find directly y1, y2 and y3 such that each
Di contains an element of C4

0 , an element of C4
1 , an element of C4

2 and an element
of C4

3 for several others values of q and hence we can construct many 2-(17q, 17, 1)
designs. In the following table we list those with q smaller than 104:
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2-(17q, 17, 1) design for q ∈
{17, 881, 929, 1009, 1297, 1409, 1601, 1873, 2017, 2081, 2129, 2161, 2417, 2609,
2657, 2753, 2801, 2897, 3041, 3089, 3121, 3169, 3217, 3313, 3329, 3361, 3457,
3617, 3697, 3761, 3793, 3889, 4001, 4049, 4129, 4241, 4273, 4289, 4337, 4481,
4561, 4657, 4673, 4721, 4801, 4817, 4993, 5009, 5153, 5233, 5281, 5297, 5393,
5441, 5521, 5569, 5857, 5953, 6113, 6257, 6337, 6449, 6529, 6577, 6673, 6689,
6737, 6833, 6961, 6977, 7057, 7121, 7297, 7393, 7457, 7489, 7537, 7649, 7681,
7793, 7841, 7873, 7937, 8081, 8161, 8209, 8273, 8353, 8369, 8513, 8609, 8641,
8689, 8737, 8753, 8849, 8929, 9041, 9137, 9281, 9377, 9473, 9521, 9601, 9649,
9697, 9857}.

In a very similar way we can prove that:

Proposition 5.3.5. There exists a 2-(17p, 17, 2) design for all primes p ≡ 1 (mod 8)
up to the following set of possible exceptions: {41, 73, 89, 193}.

Proof. Let us consider the Paley (17, 17, 16)-SDM :

σ17 := [0, 1, 1,−1,−1, 2, 2,−2,−2, 4, 4,−4,−4, 8, 8,−8,−8].

As in the previous proposition we consider the block A of elements of F17 × Fp
having, as first coordinates, the elements of σ17:

{(0, 0), (1, 1), (1,−1), (−1, ξ), (−1,−ξ), (2, y1), (2,−y1), (−2, y1ξ), (−2,−y1ξ),

(4, y2), (4,−y2), (−4, y2ξ), (−4,−y2ξ), (8, y3), (8,−y3), (−8, y3ξ), (−8,−y3ξ)},

where g is a primitive root of Fp, ξ = g
p−1
4 and p ≡ 1 (mod 8).

Using the notation of Theorem 2.2.8 we have that ∆[A] =
⋃16
i=0{i} × Li. We set

Li = {1,−1, ξ,−ξ} ·Di where Di = D17−i and:

D0 = 2 · [1, y1, y2, y3], D1 = [1, 1− y1, 1 + y1, y3(1− ξ)],
D2 = [1− ξ, y1, y1 − y2, y1 + y2], D3 = [y1 + ξ, y1 − ξ, y1 − y2, y1 + y2],
D4 = [y2, y2 − y3, y2 + y3, y1(1− ξ)], D5 = [y2 + ξ, y2 − ξ, y3 + y2ξ, y3 − y2ξ],
D6 = [y2 + y1ξ, y2 − y1ξ, y3 − y1, y3 + y1], D7 = [y3 + y1ξ, y3 − y1ξ, y3 − 1, y3 + 1],
D8 = [y3, y2(1− ξ), y3 − ξ, y3 + ξ].

Let us consider S to be a complete set of representatives for the cosets of {+1,−1,−ξ, ξ}
in C2

0 . Let us suppose that each Di contains two elements of C2
0 and two elements

of C2
1 . Then we would have that:

S · Li =
⋃
s∈S

s{+1,−1,+ξ,−ξ} ·Di = 2F∗p.

Therefore the block A would satisfies the assumptions of Theorem 2.2.8. Hence, in
order to get a (17p, 17, 17, 2)-DF , we want that each Di contains two elements of
C2

0 and two elements of C2
1 . We can impose this condition by considering y1, y2 and

y3 to be the solutions of one of the following cyclotomic systems, according to the
class of 1− ξ in F∗p:
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• Case 1: If 1− ξ ∈ C2
0 :

We need y1, y2 and y3 such that:

C1 =



y1 ∈ C2
1 ;

y1 − 1 ∈ C2
1 ;

y1 + 1 ∈ C2
0 ;

y1 − ξ ∈ C2
1 ;

y1 + ξ ∈ C2
0 .

C2 =



y2 ∈ C2
0 ;

y2 − y1 ∈ C2
0 ;

y2 + y1 ∈ C2
1 ;

y2 − 1 ∈ C2
0 ;

y2 + 1 ∈ C2
1 ;

y2 + ξ ∈ C2
0 ;

y2 − ξ ∈ C2
1 ;

y2ξ + y1 ∈ C2
0 ;

y2ξ − y1 ∈ C2
1 .

C3 =



y3 ∈ C2
1 ;

y3 − y1 ∈ C2
0 ;

y3 + y1 ∈ C2
1 ;

y3 − 1 ∈ C2
0 ;

y3 + 1 ∈ C2
1 ;

y3 + ξ ∈ C2
0 ;

y3 − ξ ∈ C2
1 ;

y3ξ + y1 ∈ C2
0 ;

y3ξ − y1 ∈ C2
1 ;

y3ξ + y2 ∈ C2
0 ;

y3ξ − y2 ∈ C2
1 ;

y3 − y2 ∈ C2
0 ;

y3 + y2 ∈ C2
1 .

• Case 2: If 1− ξ ∈ C2
1 :

We need y1, y2 and y3 such that:

C1 =



y1 ∈ C2
1 ;

y1 − 1 ∈ C2
1 ;

y1 + 1 ∈ C2
1 ;

y1 − ξ ∈ C2
1 ;

y1 + ξ ∈ C2
0 .

C2 =



y2 ∈ C2
0 ;

y2 − y1 ∈ C2
0 ;

y2 + y1 ∈ C2
0 ;

y2 − 1 ∈ C2
0 ;

y2 + 1 ∈ C2
1 ;

y2 + ξ ∈ C2
0 ;

y2 − ξ ∈ C2
1 ;

y2ξ + y1 ∈ C2
0 ;

y2ξ − y1 ∈ C2
1 .

C3 =



y3 ∈ C2
1 ;

y3 − y1 ∈ C2
0 ;

y3 + y1 ∈ C2
1 ;

y3 − 1 ∈ C2
0 ;

y3 + 1 ∈ C2
1 ;

y3 + ξ ∈ C2
0 ;

y3 − ξ ∈ C2
0 ;

y3ξ + y1 ∈ C2
0 ;

y3ξ − y1 ∈ C2
1 ;

y3ξ + y2 ∈ C2
0 ;

y3ξ − y2 ∈ C2
1 ;

y3 − y2 ∈ C2
1 ;

y3 + y2 ∈ C2
1 .

Because of Theorem 5.1.2 these systems have solutions for p ≥ Q(2, 13). Therefore,
for these choices of y1, y2, y3 each Di contains two elements of C2

0 and two elements
of C2

1 .
Instead, for the primes p ≡ 1 (mod 8), p < Q(2, 13), we can find directly, by a

computer search, y1, y2, y3, such that each Di contains two elements of C2
0 and two

elements of C2
1 with the possible exceptions of 41, 73, 89, 193. Also here we have not

checked the case in which p is a prime power only because this case runs too slowly.
Thus, for these choices of y1, y2 and y3, the block A satisfies the hypothesis of

Theorem 2.2.8. It follows that there exists a (17p, 17, 17, 2)-DF for all primes p ≡ 1
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(mod 8) with the possible exceptions of 41, 73, 89, 193. Because of Theorem 2.1.17
we obtain a (17, 2)-GDD of type (17)p and hence, according to Theorem 1.1.30, we
get a 2-(17p, 17, 2) design.

Finally we obtain the following result that is analogous to the one of Proposition
5.3.2:

Proposition 5.3.6. There exists a 2-(17q, 17, 4) design for all prime powers q ≥ 17
such that q ≡ 1 (mod 4).

Proof. Let us consider the Paley (17, 17, 16)-SDM :

σ17 := [0, 1, 1,−1,−1, 2, 2,−2,−2, 4, 4,−4,−4, 8, 8,−8,−8].

We consider the block A of elements of F17 × Fq having, as first coordinates, the
elements of σ17:

{(0, 0), (1, 1), (1,−1), (−1, ξ), (−1,−ξ), (2, y1), (2,−y1), (−2, y1ξ), (−2,−y1ξ),

(4, y2), (4,−y2), (−4, y2ξ), (−4,−y2ξ), (8, y3), (8,−y3), (−8, y3ξ), (−8,−y3ξ)},

where g is a primitive root of Fq, ξ = g
q−1
4 and q ≡ 1 (mod 4).

Using the notation of Theorem 2.2.8 we have that ∆[A] =
⋃16
i=0{i} × Li. We set

Li = {1,−1, ξ,−ξ} ·Di where Di = D17−i and:

D0 = 2 · [1, y1, y2, y3], D1 = [1, 1− y1, 1 + y1, y3(1− ξ)],
D2 = [1− ξ, y1, y1 − y2, y1 + y2], D3 = [y1 + ξ, y1 − ξ, y1 − y2, y1 + y2],
D4 = [y2, y2 − y3, y2 + y3, y1(1− ξ)], D5 = [y2 + ξ, y2 − ξ, y3 + y2ξ, y3 − y2ξ],
D6 = [y2 + y1ξ, y2 − y1ξ, y3 − y1, y3 + y1], D7 = [y3 + y1ξ, y3 − y1ξ, y3 − 1, y3 + 1],
D8 = [y3, y2(1− ξ), y3 − ξ, y3 + ξ].

We note that if q ≥ 17 we can choose y1, y2, y3 such that all elements of each Di are
nonzero. In this case let us consider S to be a complete set of representatives for
the cosets of {+1,−1,−ξ, ξ} in F∗q. Then we have that:

S · Li =
⋃
s∈S

s{+1,−1,+ξ,−ξ} ·Di = 4F∗q.

Therefore the block A satisfies the hypothesis of Theorem 2.2.8. It follows that there
exists a (17q, 17, 17, 4)-DF for all prime powers q ≥ 17 with q ≡ 1 (mod 4). Because
of Theorem 2.1.17 we obtain a (17, 4)-GDD of type (17)q and hence, according to
Theorem 1.1.30, we get a 2-(17q, 17, 4) design.

Summing up Propositions 5.3.5 and 5.3.6 it follows that:

Theorem 5.3.7 (S. C., X. Wang). There exists a 2-(v, k, λ) design in the following
cases:

(v, k, λ) Possible exceptions
(17p, 17, 2) : p ≡ 1 (mod 8), prime 41, 73, 89, 193
(17q, 17, 4) : q ≡ 1 (mod 4), q ≥ 17.
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5.3.3 2-designs from a (63, 8, 8)-SDF

Now we present a (63, 8, 8)-SDF , say Σ3. Proceeding as in Lemma 5.2.1 and using
Theorem 5.1.3 we could easily obtain the existence of a (63q, 63, 8, 1)-DF for all
prime powers q ≥ Q(8, 7) with q ≡ 9 (mod 16). However, since this bound is huge
we apply directly Theorem 5.1.2. We get the following result:

Lemma 5.3.8. There exists a (63q, 63, 8, 1)-DF for all prime powers q such that
q ≡ 1 (mod 8) with the possible exceptions of q = 17 and q = 81.

Proof. We define a (63, 8, 8)-SDF , say Σ3 = [X1, . . . , X9] by giving the following
multisets:

X1 := [20, 20,−20,−20, 29, 29,−29,−29];
X2 = X3 = X4 = X5 := [0, 1, 3, 7, 19, 34, 42, 53];
X6 = X7 = X8 = X9 := [0, 1, 4, 6, 26, 36, 43, 51].

Let us consider q ≡ 1 (mod 8), g a generator of Fq and ξ = g
q−1
4 . We define the

following blocks on Z63 × Fq having, as first coordinates the elements of Σ3:

A1 := {(20, 1), (20,−1), (−20, ξ), (−20,−ξ), (29, y1), (29,−y1), (−29, y1ξ), (−29,−y1ξ)};
A2 = {(0, 0), (1, y2), (3, y3), (7, y4), (19, y5), (34, y6), (42, y7), (53, y8)};
A3 = (1,−1) · A2; A4 = (1,−1) · A5; A3 = (1,−1) · A2; A6 = (1,−1) · A2;
A6 = (1,−ξ) · A9 = {(0, 0), (1, y9), (4, y10), (6, y11), (26, y12), (36, y13), (43, y14), (51, y15)};
A7 = (1,−1) · A2; A8 = (1,−1) · A5; A9 = (1,−1) · A2; A10 = (1,−1) · A2.

Using the notation of Theorem 2.2.8 we have that ∆[A1, . . . , A9] =
⋃62
i=0{i} × Li

where each Li = {+1,−1, ξ,−ξ} ·Di, Di = D63−i and:

D0 = 2 · [1, y1], D1 = [y2, y9], D2 = [y3 − y2, y11 − y10],
D3 = [y3, y10 − y9], D4 = [y4 − y3, y10], D5 = [y1(1− ξ), y11 − y9],
D6 = [y4 − y2, y11], D7 = [y4, y14 − y13], D8 = [y15 − y14, y7 − y6],
D9 = [y1 + 1, y1 − 1], D10 = [y8, y13 − y12], D11 = [y8 − y2, y8 − y7],
D12 = [y5 − y4, y15], D13 = [y8 − y3, y15 − y9], D14 = [y1 + ξ, y1 − ξ],
D15 = [y6 − y5, y15 − y13], D16 = [y5 − y3, y15 − y10], D17 = [y8 − y4, y14 − y12],
D18 = [y5 − y2, y15 − y11], D19 = [y5, y8 − y6], D20 = [y14, y12 − y11],
D21 = [y7, y14 − y9], D22 = [y7 − y2, y12 − y10], D23 = [1− ξ, y7 − y5],
D24 = [y7 − y3, y14 − y10], D25 = [y12 − y9, y15 − y12], D26 = [y12, y14 − y11],
D27 = [y6 − y4, y13], D28 = [y7 − y4, y13 − y9], D29 = [y6, y8 − y5],
D30 = [y6 − y2, y13 − y11], D31 = [y6 − y3, y13 − y10].

Let us consider S to be a complete set of representatives for the cosets of {+1,−1,−ξ, ξ}
in C2

0 . Let us suppose that each Di contains an element of C2
0 and an element of

C2
1 . Then we would have that:

S · Li =
⋃
s∈S

s{+1,−1,+ξ,−ξ} ·Di = F∗q.
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Therefore the block A would satisfies the assumptions of Theorem 2.2.8. Hence, in
order to get a (63q, 63, 8, 1)-DF , we want that each Di contains an element of C2

0

and an element of C2
1 .

In case q < Q(2, 7) is a prime power q ≡ 1 (mod 8), we can find directly, by a
computer search, a 15-tuple y1, . . . , y15, such that each Di contains an element of
C2

0 and an element of C2
1 with the exceptions of q = 17 and q = 81.

In case q ≥ Q(2, 7) is a prime power q ≡ 1 (mod 8), similarly to Theorem 5.3.1,
we can write a suitable cyclotomic systems C1, . . . ,C15 such that given a common
solution y1, . . . , y15 of them, each Di contains one element of C2

0 and one element
of C2

1 . Because of Theorem 5.1.2 these systems have a common solution y1, . . . , y15

for all prime powers q ≥ Q(2, 7) with q ≡ 1 (mod 8). Therefore, for these choices
of y1, . . . , y15, each Di contains one element of C2

0 and one element of C2
1 .

Therefore the blocks A1, . . . , A9 satisfy the hypothesis of Theorem 2.2.8. It
follows that there exists a (63q, 63, 8, 1)-DF for all prime powers with q ≡ 1 (mod 8)
with the possible exceptions of 17 and 81.

Using the previous lemma we construct the following 2-designs.

Proposition 5.3.9. Let q be a prime power q ≡ 1 (mod 8) different from 17 and
81. Then there exists a 2-(63q + 1, 8, 1) design.

Proof. Because of Lemma 5.3.8 there exists a (63q, 63, 8, 1)-DF and hence we get
an 8-GDD of type 63q with set of points V . According to Theorem 1.1.30 we add a
point to V and we cover each group of this GDD with a 2-(64, 8, 1) design through
the new point. We obtain a 2-(63q + 1, 8, 1) design.

This result is very interesting when q = 25: in fact 1576 = 63 · 25 + 1 and this
value was a possible exception for the existence of such design! Therefore we can
state:

Corollary 5.3.10 (S. C., X. Wang and S. C., T. Feng). There exists a 2-(1576, 8, 1)
design.

To be clear, we write explicitly the solution of this case.
Called g a generator of F25 and ξ = g6, we consider the following blocks1:

A1 : {(20, 1), (20,−1), (−20, ξ), (−20,−ξ), (29, g), (29,−g), (−29, gξ), (−29,−gξ)};
A2 : {(0, 1), (1, g6), (3, g18), (7, g11), (19, g23), (34, g5), (42, g12), (53, g17)};
A6 : {(0, 1), (1, g6), (4, g17), (6, g18), (26, g23), (36, g12), (43, g5), (51, g11)};
A3 : (1,−1)× A2; A4 : (1, ξ)× A2; A5 : (1,−ξ)× A2;
A7 : (1,−1)× A6; A8 : (1, ξ)× A6; A9 : (1,−ξ)× A6.

Then we multiply each block by (1, x) where x runs over S and S is a complete sys-
tem of representatives of the cosets of {1,−1, ξ,−ξ} in the multiplicative subgroup
C2

0 of F∗25 (note that ξ and −ξ are squares) and we obtain a (63 · 25, 63, 8, 1)-DF
and therefore a 2-(63 · 25 + 1, 8, 1) design. Moreover we can check using a computer
that this design is actually resolvable.

1The first 2-(1576, 8, 1) design we found, had different blocks and was not resolvable. This
example has been found in a joint work, still in progress, with T. Feng.
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5.3.4 2-designs from a (81, 9, 8)-SDF

Now we present a (81, 9, 8)-SDF , say Σ4. Proceeding as in Lemma 5.2.1 and using
Theorem 5.1.3 we could easily obtain the existence of a (81q, 81, 9, 1)-DF for all
prime powers q ≥ Q(8, 8) with q ≡ 9 (mod 16). However, since this bound is huge
we apply directly Theorem 5.1.2. We obtain the following result:

Lemma 5.3.11. There exists a (81q, 81, 9, 1)-DF for all prime powers q such that
q ≡ 1 (mod 8) with the possible exceptions of q = 9, 17, 41 and q = 81.

Proof. We define a (81, 9, 8)-SDF , say Σ4 = [X1, . . . , X9] by giving the following
multisets:

X1 := [0, 4, 4,−4,−4, 37, 37,−37,−37];
X2 = X3 = X4 = X5 := [0, 1, 4, 6, 17, 18, 38, 63, 72];
X6 = X7 = X8 = X9 := [0, 2, 7, 27, 30, 38, 53, 59, 69].

Let us consider q ≡ 1 (mod 8), g a generator of Fq and ξ = g
q−1
4 . We define the

following blocks on Z81 × Fq having, as first coordinates the elements of Σ4:

A1 := {(0, 0), (4, 1), (4,−1), (−4, ξ), (−4,−ξ), (37, y1), (37,−y1), (−37, y1ξ), (−37,−y1ξ)};
A2 = {(0, 0), (1, y2), (4, y3), (6, y4), (17, y5), (18, y6), (38, y7), (63, y8), (72, y9)};
A3 = (1,−1) · A2; A4 = (1, ξ) · A2; A3 = (1,−ξ) · A2;
A6 = {(0, 9), (2, y10), (7, y11), (27, y12), (30, y13), (38, y14), (53, y15), (59, y16), (69, y17)};
A7 = (1,−1) · A6; A8 = (1, ξ) · A6; A9 = (1,−ξ) · A6.

Using the notation of Theorem 2.2.8 we have that ∆[A1, . . . , A9] =
⋃80
i=0{i} × Li

where each Li = {+1,−1, ξ,−ξ} ·Di, Di = D81−i and:

D0 = 2 · [1, y1], D1 = [y2, y6 − y5],
D2 = [y4 − y3, y10], D3 = [y3 − y2, y13 − y12],
D4 = [1, y3], D5 = [y4 − y2, y11 − y10],
D6 = [y4, y16 − y15], D7 = [(1− ξ)y1, y11],
D8 = [1− ξ, y14 − y13], D9 = [y9, y9 − y8],
D10 = [y9 − y2, y17 − y16], D11 = [y5 − y4, y14 − y12],
D12 = [y6 − y4, y17], D13 = [y5 − y3, y9 − y3],
D14 = [y6 − y3, y17 − y10], D15 = [y9 − y4, y15 − y14],
D16 = [y5 − y2, y17 − y15], D17 = [y5, y6 − y2],
D18 = [y6, y8], D19 = [y8 − y2, y17 − y11],
D20 = [y7 − y6, y12 − y11], D21 = [y7 − y5, y16 − y14],
D22 = [y8 − y3, y16], D23 = [y13 − y11, y15 − y13],
D24 = [y8 − y4, y16 − y10], D25 = [y8 − y7, y12 − y10],
D26 = [y9 − y5, y15 − y12], D27 = [y9 − y6, y12],
D28 = [y15, y13 − y10], D29 = [y16 − y11, y16 − y13],
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D30 = [y13, y15 − y10], D31 = [y14 − y11, y17 − y14],
D32 = [y7 − y4, y16 − y12], D33 = [y1 − 1, y1 + 1],
D34 = [y7 − y3, y9 − y7], D35 = [y8 − y5, y15 − y11],
D36 = [y8 − y6, y14 − y10], D37 = [y1, y7 − y2],
D38 = [y7, y14], D39 = [y17 − y12, y17 − y13],
D40 = [y1 + ξ, y1 − ξ],

Let us consider S to be a complete set of representatives for the cosets of {+1,−1,−ξ, ξ}
in C2

0 . Let us suppose that each Di contains an element of C2
0 and an element of

C2
1 . Then we would have that:

S · Li =
⋃
s∈S

s{+1,−1,+ξ,−ξ} ·Di = F∗q.

Therefore the block A would satisfies the assumptions of Theorem 2.2.8. Hence, in
order to get a (81q, 81, 9, 1)-DF , we want that each Di contains an element of C2

0

and an element of C2
1 .

In case q < Q(2, 8) is a prime power q ≡ 1 (mod 8), we can find directly, by a
computer search, a 17-tuple y1, . . . , y17, such that each Di contains an element of
C2

0 and an element of C2
1 with the exceptions of q = 9, 17, 41 and q = 81.

In case q ≥ Q(2, 8) is a prime power q ≡ 1 (mod 8), similarly to Theorem 5.3.1,
we can write a suitable cyclotomic systems C1, . . . ,C17 such that given a common
solution y1, . . . , y17 of them, each Di contains one element of C2

0 and one element
of C2

1 . Because of Theorem 5.1.2 these systems have a common solution y1, . . . , y17

for all prime powers q ≥ Q(2, 8) with q ≡ 1 (mod 8). Therefore, for these choices
of y1, . . . , y17, each Di contains one element of C2

0 and one element of C2
1 .

Thus the blocks A1, . . . , A9 satisfy the hypothesis of Theorem 2.2.8. It follows
that there exists an (81q, 81, 9, 1)-DF for all prime powers q ≡ 1 (mod 8) with the
possible exceptions of 9, 17, 41 and 81.

Using the previous lemma we construct the following 2-designs:

Proposition 5.3.12. Let q be a prime power q ≡ 1 (mod 8) different from 9, 17, 41
and 81. Then there exists a 2-(81q, 9, 1) design.

Proof. For this kind of q, according to Theorem 2.1.17, we get a 9-GDD of type
81q and, covering the groups of this GDD with a 2-(81, 9, 1) design, we obtain a
2-(81q, 9, 1) design.

This result is very interesting when q = 25: in fact 2025 = 25 · 81 and this value
was a possible exception for the existence of such design! Therefore we can state:

Corollary 5.3.13. There exists a 2-(2025, 9, 1) design.

In order to be clear we write explicitly the solution of this case.
Called g a generator of F25 and ξ = g6 we consider the following blocks:
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A1 : {(0, 0), (4, 1), (4,−1), (−4, ξ), (−4,−ξ), (37, g1), (37,−g1), (−37, g1ξ), (−37,−g1ξ)};
A2 : {(0, 0), (1, 1), (4, g), (6, g2), (17, g3), (18, g6), (38, g4), (63, g5), (72, g7)};
A6 : {(0, 0), (2, g), (7, g8), (27, g12), (30, g11), (38, g5), (53, g15), (59, g18), (69, g21)};
A3 : (1,−1)× A2; A4 : (1, ξ)× A2; A5 : (1,−ξ)× A2;
A7 : (1,−1)× A6; A8 : (1, ξ)× A6; A9 : (1,−ξ)× A6.

Then we multiply each block by (1, x) where x runs over S and S is a complete sys-
tem of representatives of the cosets of {1,−1, ξ,−ξ} in the multiplicative subgroup
C2

0 of F∗25 (note that ξ and −ξ are squares) and we obtain a (81 · 25, 81, 9, 1)-DF
and therefore a 2-(81 · 25, 9, 1) design.

5.3.5 2-designs from a (45, 9, 8)-SDF

Now we present a (45, 9, 8)-SDF , say Σ5. Proceeding as in Proposition 5.2.4 and
using Theorem 5.1.4 we could easily obtain the existence of a (45q, 45, 9, 2)-DF for
all prime powers q ≥ Q(4, 8) with q ≡ 1 (mod 4). However, also in this case we can
get a better bound by applying directly Theorem 5.1.2. We obtain the following
result:

Lemma 5.3.14. There exists a (45q, 45, 9, 2)-DF for all prime powers q ≥ Q(2, 8),
q ≡ 1 (mod 4) and for q ∈ {17, 41}.

Proof. We define a (45, 9, 8)-SDF , say Σ5 = [X1, . . . , X5] by giving the following
multisets:

X1 := [0, 2, 2, 15, 15, 23, 23, 33, 33];
X2 = X3 := [0, 1, 4, 5, 6, 7, 13, 22, 33];
X4 = X5 := [0, 2, 5, 11, 21, 25, 28, 36, 40];

Let us consider q ≡ 1 (mod 4). We define the following blocks on Z45 × Fq having,
as first coordinates the elements of Σ5:

A1 := {(0, 0), (2, 1), (2,−1), (15, y1), (15,−y1), (23, y2), (23,−y2), (33, y3), (33,−y3)};
A2 = {(0, 0), (1, y4), (4, y5), (5, y6), (6, y7), (7, y8), (13, y9), (22, y10), (33, y11)};
A4 = {(0, 0), (2, y12), (5, y13), (11, y14), (21, y15), (25, y16), (28, y17), (36, y18), (40, y19)}.
A3 = (1,−1) · A2; A5 = (1,−1) · A4.

Using the notation of Theorem 2.2.8 we have that ∆[A1, . . . , A5] =
⋃44
i=0{i} × Li

where each Li = {+1,−1} ·Di, Di = D45−i and:

D0 = 2 · [1, y1, y2, y3], D1 = [y4, y6 − y5, y7 − y6, y8 − y7],
D2 = [1, y7 − y5, y8 − y6, y12], D3 = [y5 − y4, y8 − y5, y13 − y12, y17 − y16],
D4 = [y5, y6 − y4, y16 − y15, y19 − y18], D5 = [y6, y7 − y4, y13, y19],
D6 = [y7, y8 − y4, y9 − y8, y14 − y13], D7 = [y8, y9 − y7, y19 − y12, y17 − y15],
D8 = [y2 − y1, y2 + y1, y9 − y6, y18 − y17], D9 = [y9 − y5, y10 − y9, y18, y14 − y12],
D10 = [y3 − y2, y3 + y2, y19 − y13, y15 − y14], D11 = [y11 − y10, y14, y17 − y12, y18 − y16],
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D12 = [y3, y9 − y4, y11, y19 − y17], D13 = [y1 − 1, y1 + 1, y9, y11 − y4],
D14 = [y3 − 1, y3 + 1, y18 − y13, y16 − y14], D15 = [y1, y10 − y8, y18 − y15, y19 − y16],
D16 = [y11 − y5, y10 − y7, y15 − y13, y19 − y14], D17 = [y10 − y6, y11 − y6, y17, y17 − y14],
D18 = [y3 − y1, y3 + y1, y10 − y5, y11 − y7], D19 = [y11 − y8, y15 − y12, y17 − y12, y19 − y15],
D20 = [y11 − y9, y16, y16 − y13, y18 − y14], D21 = [y2 − 1, y2 + 1, y10 − y4, y15],
D22 = [y2, y10, y16 − y12, y17 − y13]

Let us consider S to be a complete set of representatives for the cosets of {+1,−1}
in C2

0 . Let us suppose that two elements of each Di belong to C2
0 and two elements

of each Di belong to C2
1 . Then it would follows that:

S · Li =
⋃
s∈S

sLi = 2F∗q.

Therefore the blocks A1, . . . , A5 and the set S would satisfy the assumptions of
Theorem 2.2.8. Using a computer we can find these second components for q ∈
{17, 41}. In fact we find a 19-tuple (y1, . . . , y19) of elements of F17 and another
19-tuple of elements of F41 such that for each Di two elements lie in C2

0 and two
elements lie in C2

1 . The explicit solutions are, respectively, the following:

q=41:
A1 = {(0, 0), (2, 1), (2,−1), (15, 2), (15,−2), (23, 3), (23,−3), (33, 6), (33,−6)};
A2 = {(0, 0), (1, 1), (4, 7), (5, 21), (6, 12), (7, 15), (13, 24), (22, 4), (33, 34)};
A3 = (1,−1) · A2;
A4 = {(0, 0), (2, 3), (5, 31), (11, 32), (21, 15), (25, 9), (28, 40), (36, 25), (40, 35)};
A5 = (1,−1) · A4.
q=17:
A1 = {(0, 0), (2, 1), (2,−1), (15, 2), (15,−2), (23, 3), (23,−3), (33, 5), (33,−5)};
A2 = {(0, 0), (1, 1), (4, 2), (5, 3), (6, 6), (7, 9), (13, 4), (22, 11), (33, 15)};
A3 = (1,−1) · A2;
A4 = {(0, 0), (2, 3), (5, 8), (11, 6), (21, 12), (25, 7), (28, 9), (36, 2), (40, 13)};
A5 = (1,−1) · A4.

Now, similarly to Theorem 5.3.1, we can write a suitable cyclotomic systems C1, . . . ,C19

such that given a common solution of them y1, . . . , y19, each Di contains two ele-
ments of C2

0 and two elements of C2
1 . Because of Theorem 5.1.2 these systems have

a common solution y1, . . . , y19 for all prime powers q ≥ Q(2, 8) with q ≡ 1 (mod 2).
Therefore, for these choices of y1, . . . , y19, each Di contains two elements of C2

0 and
two elements of C2

1 .

Thus the blocks A1, . . . , A5 satisfy the hypothesis of Theorem 2.2.8. It follows
that there exists a (45q, 45, 9, 2)-DF for all prime powers q ≥ Q(2, 8) such that
q ≡ 1 (mod 4) and for q ∈ {17, 41}.

Using the previous lemma we construct the following new 2-designs:

Corollary 5.3.15. There exists a 2-(v, 9, 2) design for v ∈ {45 · 17, 45 · 41}.
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Proof. We consider (9, 2)-GDDs of type 4517 and of type 4541 defined respectively
by a (45·17, 45, 9, 2)-DF and a (45·41, 45, 9, 2)-DF (see Theorem 2.1.17). According
to Theorem 1.1.30 we fill the groups of these GDDs with a 2-(45, 9, 2) design and
we obtain the required 2-(v, 9, 2) design.

5.4 Concluding remarks

First of all it is worth summarizing the main results of this chapter in the following
theorem:

Theorem 5.4.1 (S. C., X. Wang). There exists a 2-(v, k, λ) design in the following
cases:

(v, k, λ) Possible exceptions
(694, 7, 2)
(1576, 8, 1)
(2025, 9, 1), (765, 9, 2) and (1845, 9, 2)
(459, 9, 4) and (783, 9, 4)
(13p, 13, 1) : p ≡ 1 (mod 12), prime List of 19 values
(13q, 13, 3) : q ≡ 1 (mod 4), q ≥ 13
(17p, 17, 2) : p ≡ 1 (mod 8), prime 41, 73, 89, 193
(17q, 17, 4) : q ≡ 1 (mod 4), q ≥ 17

We also remark that, as we have seen in the second part of this chapter, in some
cases, given a (g, k, λ)-SDF , by applying directly Theorem 5.1.2 it is possible to get
theoretically a much better bound for the existence of a (gq, g, k, 1)-DF , compared
to that of Theorem 5.1.3. In a joint work, still in progress, with X. Wang we have
seen that this idea works for all Paley (q1, q1, q1 − 1)-SDMs with q1 ≡ 5 (mod 8).
In this case we get the following theorem:

Theorem 5.4.2. Let q and q1 be prime powers. Then there exists a 2-(v, k, λ)
design in the following cases:

1) A 2-(q1q, q1,
q1−1

4
) design where q, q1 ≡ 1 (mod 4) and q ≥ q1;

2) A 2-(q1q, q1, λ) design where q1 ≡ 5 (mod 8), q ≡ 1 (mod q1−1
λ

) and q ≥
Q( q1−1

4λ
, q1 − 4);

3) A 2-(q1q, q1, λ) design where q1 ≡ 1 (mod 2), q ≡ 1 (mod q1−1
λ

) and q >

Q( q1−1
2λ
, q1 − 1).

We omit the proof since it is very similar but much longer and even more tech-
nical than that of Proposition 5.3.1 and because it goes out of the purposes of this
discussion. However, in accordance to Proposition 5.3.4, we conjecture that the
result of point 2 can be obtained also for all prime powers q1 ≡ 1 (mod 4) that
are not powers of 3. More generally, our future project is to write explicitly the
hypothesis under which a SDF leads to such good bound (in a future joint work
with T. Feng and X. Wang). In fact we believe that these ideas can still give new
existence results for 2-designs, GDDs and resolvable 2-designs.
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Appendix 1

Here we present the generating cycle Ci
k of a 1-rotational HCS(k) for all pairs (i, k)

that are necessary for proving Proposition 3.6.4. Thus, if a pair (i, k) with k < 56
is missing, it is either because it is one of the exceptional pairs mentioned in the
statement or because an i-perfect HCS(k) can be deduced from already known
facts. So we omit to consider all pairs with k a prime or i = 3. We also omit all
pairs with i = 2 and k ∈ {15, 21, 25, 27, 33, 35, 39} because in this case a 2-perfect
1-rotational HCS(k) has been given in [29]. Finally, for the reason explained in the
end of the proof of Proposition 3.6.2, if an i-perfect HCS(k) is known or we report
Ci
k, then we omit to report Cj

k whenever we have ij ≡ ±1 (mod k) with j 6= i.

Each Ci
k is presented by giving one of the two subpaths of it of order k+1

2
with

an endpoint in∞. This is because its remaining part can be determined by the rule
that to add k−1

2
(mod k − 1) reflects Ci

k around its axis through ∞.

C2
45 : [∞, 0, 1, 3, 6, 2, 8, 13, 27, 36, 18, 7, 38, 19, 12, 33, 4, 20, 10, 37, 17, 9, 21]

C2
49 : [∞, 0, 2, 1, 4, 8, 13, 3, 9, 21, 36, 5, 14, 43, 17, 35, 42, 15, 31, 44, 16, 30, 22, 47, 10]

C2
51 : [∞, 0, 3, 2, 4, 8, 1, 12, 6, 23, 39, 44, 7, 22, 42, 30, 16, 43, 35, 9, 49, 21, 40, 11, 20, 38]

C2
55 : [∞, 0, 2, 1, 4, 8, 13, 3, 9, 16, 32, 41, 17, 52, 34, 20, 46, 12, 49, 6, 21, 42, 11, 23, 45, 53, 24, 37]

C4
15 : [∞, 0, 2, 3, 6, 1, 11, 5]

C4
21 : [∞, 0, 1, 3, 6, 17, 9, 14, 8, 12, 5]

C4
25 : [∞, 0, 1, 3, 7, 18, 8, 5, 21, 2, 11, 4, 10]

C4
27 : [∞, 0, 1, 3, 8, 11, 15, 23, 17, 7, 22, 5, 19, 12]

C4
33 : [∞, 0, 1, 3, 7, 2, 5, 25, 15, 8, 14, 28, 4, 13, 26, 11, 22]

C4
35 : [∞, 0, 1, 3, 6, 2, 9, 28, 12, 33, 4, 24, 13, 22, 14, 8, 32, 10]

C4
39 : [∞, 0, 21, 22, 25, 30, 23, 32, 26, 24, 36, 9, 33, 8, 12, 35, 15, 37, 29, 1]

C4
45 : [∞, 0, 21, 23, 24, 27, 31, 42, 33, 38, 28, 3, 10, 18, 34, 19, 36, 30, 4, 17, 29, 15, 35]

C4
49 : [∞, 0, 2, 1, 4, 8, 3, 10, 16, 35, 7, 21, 33, 41, 20, 43, 13, 39, 30, 14, 47, 36, 46, 29, 42]

C4
51 : [∞, 0, 24, 26, 27, 30, 34, 28, 39, 46, 37, 32, 45, 35, 16, 8, 23, 43, 31, 17, 40, 11, 44, 22, 4, 38]

C4
55 : [∞, 0, 2, 1, 4, 8, 3, 10, 16, 5, 13, 42, 51, 41, 53, 21, 47, 17, 33, 52, 34, 19, 50, 36, 49, 12, 45, 11]

C5
25 : [∞, 0, 1, 3, 7, 18, 9, 17, 10, 20, 14, 11, 16]

C5
27 : [∞, 0, 1, 3, 6, 20, 12, 22, 5, 24, 4, 8, 23, 2]

C5
33 : [∞, 0, 1, 3, 6, 2, 25, 30, 15, 4, 11, 21, 29, 23, 10, 28, 8]

C5
35 : [∞, 0, 1, 3, 6, 2, 8, 15, 24, 12, 26, 5, 10, 33, 14, 30, 4, 28]

C5
39 : [∞, 0, 1, 3, 6, 2, 7, 28, 15, 24, 32, 16, 31, 11, 23, 37, 10, 17, 27, 33]

C5
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 4, 20, 12, 36, 19, 37, 16, 30, 5, 17, 10, 21, 11, 40, 9]

C5
49 : [∞, 0, 20, 21, 23, 26, 22, 27, 33, 25, 37, 28, 11, 41, 16, 32, 42, 7, 14, 36, 15, 29, 10, 43, 6]

C5
51 : [∞, 0, 22, 23, 26, 24, 28, 33, 42, 29, 39, 45, 37, 44, 11, 46, 7, 31, 15, 38, 9, 27, 41, 10, 30, 18]

C5
55 : [∞, 0, 24, 25, 28, 26, 30, 35, 29, 38, 31, 46, 33, 49, 5, 17, 39, 16, 37, 18, 36, 47, 7, 15, 41, 21, 50, 13]

C6
15 : [∞, 0, 2, 3, 6, 1, 11, 5]

C6
21 : [∞, 0, 1, 4, 8, 6, 13, 2, 7, 15, 9]

C6
27 : [∞, 0, 1, 3, 9, 6, 18, 25, 7, 11, 21, 4, 15, 10]

C6
33 : [∞, 0, 1, 3, 6, 10, 27, 2, 21, 31, 23, 9, 14, 20, 29, 8, 28]

C6
35 : [∞, 0, 1, 3, 6, 2, 8, 33, 11, 24, 13, 32, 22, 27, 9, 29, 21, 14]

C6
39 : [∞, 0, 1, 3, 6, 2, 7, 15, 5, 16, 32, 12, 29, 17, 23, 8, 33, 9, 18, 11]

C6
45 : [∞, 0, 15, 16, 18, 21, 17, 23, 28, 20, 34, 14, 2, 13, 4, 29, 8, 25, 32, 19, 9, 27, 11]

C6
49 : [∞, 0, 20, 21, 23, 26, 31, 25, 39, 30, 38, 22, 43, 33, 40, 27, 10, 32, 36, 11, 29, 41, 4, 37, 18]

C6
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 45, 14, 31, 16, 35, 19, 51, 11, 36, 15, 25, 5, 17, 53, 10, 23, 49]
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C7
25 : [∞, 0, 1, 3, 6, 20, 16, 7, 23, 17, 22, 9, 2]

C7
33 : [∞, 0, 1, 3, 6, 2, 12, 31, 23, 11, 29, 20, 26, 5, 30, 25, 8]

C7
35 : [∞, 0, 1, 3, 6, 2, 7, 32, 11, 22, 10, 25, 31, 4, 30, 12, 26, 16]

C7
39 : [∞, 0, 1, 3, 6, 2, 7, 15, 27, 10, 16, 9, 36, 13, 23, 37, 24, 33, 11, 31]

C7
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 5, 12, 41, 10, 38, 14, 40, 15, 26, 43, 11, 20, 30, 9, 39]

C7
49 : [∞, 0, 1, 3, 6, 2, 7, 13, 4, 12, 29, 41, 9, 46, 23, 44, 10, 43, 8, 15, 45, 35, 16, 42, 14]

C7
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 49, 33, 21, 48, 9, 40, 22, 12, 45, 10, 39, 17, 41, 5, 18]

C7
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 8, 42, 25, 44, 12, 53, 41, 23, 9, 24, 47, 18, 48, 22, 32, 16, 37]

C8
21 : [∞, 0, 1, 3, 17, 2, 18, 5, 14, 6, 9]

C8
27 : [∞, 0, 1, 3, 6, 25, 10, 5, 11, 15, 7, 17, 8, 22]

C8
35 : [∞, 0, 1, 3, 6, 2, 8, 30, 7, 15, 5, 10, 26, 11, 31, 4, 29, 16]

C8
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 5, 34, 18, 32, 39, 26, 37, 16, 42, 8, 43, 19, 31, 14, 33]

C8
51 : [∞, 0, 2, 1, 4, 8, 3, 9, 17, 10, 22, 5, 41, 20, 38, 12, 40, 31, 44, 14, 49, 18, 7, 23, 46, 36]

C9
21 : [∞, 0, 1, 4, 9, 18, 12, 16, 3, 5, 17]

C9
25 : [∞, 0, 1, 3, 7, 10, 21, 16, 8, 18, 11, 17, 2]

C9
27 : [∞, 0, 1, 3, 6, 10, 24, 4, 12, 22, 5, 20, 15, 8]

C9
33 : [∞, 0, 1, 3, 6, 10, 15, 7, 25, 12, 21, 27, 20, 8, 18, 29, 14]

C9
39 : [∞, 0, 1, 3, 6, 2, 8, 17, 10, 31, 11, 23, 37, 14, 9, 34, 7, 35, 13, 5]

C9
45 : [∞, 0, 1, 3, 6, 2, 8, 13, 27, 14, 31, 39, 32, 7, 16, 4, 37, 11, 21, 42, 18, 34, 19]

C9
49 : [∞, 0, 23, 25, 26, 29, 33, 45, 37, 30, 41, 35, 44, 27, 32, 10, 40, 7, 39, 4, 18, 38, 19, 46, 36]

C9
51 : [∞, 0, 24, 26, 27, 30, 34, 39, 46, 31, 48, 38, 32, 43, 11, 33, 19, 35, 4, 16, 45, 37, 28, 15, 42, 22]

C10
25 : [∞, 0, 1, 3, 6, 2, 8, 23, 7, 21, 16, 5, 22]

C10
33 : [∞, 0, 1, 3, 6, 2, 28, 11, 29, 9, 14, 21, 10, 20, 7, 15, 24]

C10
35 : [∞, 0, 1, 3, 6, 2, 7, 33, 11, 31, 13, 26, 32, 25, 10, 21, 12, 22]

C10
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 32, 15, 39, 9, 38, 12, 21, 40, 27, 4, 14, 30, 41, 33]

C10
55 : [∞, 0, 2, 1, 4, 8, 3, 9, 16, 24, 12, 32, 22, 53, 37, 23, 40, 21, 6, 42, 20, 41, 11, 52, 7, 18, 46, 17]

C11
33 : [∞, 0, 1, 3, 6, 2, 7, 15, 25, 14, 29, 10, 28, 21, 27, 4, 24]

C11
35 : [∞, 0, 1, 3, 6, 2, 9, 25, 11, 33, 12, 31, 7, 15, 21, 10, 5, 30]

C11
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 4, 11, 22, 9, 23, 39, 19, 37, 45, 35, 8, 41, 15, 30, 42, 21, 49, 18]

C11
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 32, 49, 37, 18, 51, 25, 36, 20, 44, 12, 43, 53, 14, 50, 21, 35, 15]

C12
27 : [∞, 0, 1, 3, 8, 2, 25, 18, 7, 11, 23, 6, 22, 4]

C12
33 : [∞, 0, 1, 3, 6, 2, 9, 20, 10, 5, 28, 13, 31, 7, 27, 8, 14]

C12
39 : [∞, 0, 1, 3, 6, 2, 7, 15, 24, 13, 28, 16, 37, 23, 29, 36, 8, 33, 11, 31]

C12
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 31, 42, 17, 27, 40, 8, 16, 33, 19, 4, 32, 12, 21, 14, 37]

C12
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 33, 22, 44, 24, 16, 40, 4, 23, 11, 46, 12, 30, 17, 34, 43, 14]

C12
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 31, 53, 42, 11, 24, 5, 19, 35, 18, 44, 14, 50, 25, 10, 22, 43, 9]

C13
49 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 35, 14, 28, 40, 9, 41, 22, 47, 39, 21, 32, 12, 34, 43, 5, 18]

C13
55 : [∞, 0, 2, 1, 4, 8, 3, 9, 16, 5, 13, 39, 23, 37, 47, 18, 41, 21, 42, 6, 51, 34, 46, 22, 44, 25, 38, 53]

C14
35 : [∞, 0, 1, 3, 6, 2, 9, 22, 30, 8, 33, 28, 12, 31, 7, 27, 4, 32]

C14
39 : [∞, 0, 1, 3, 6, 2, 7, 14, 24, 37, 10, 31, 15, 23, 32, 17, 11, 35, 9, 27]

C14
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 5, 30, 39, 18, 11, 38, 4, 34, 14, 43, 15, 41, 10, 42, 31]

C14
49 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 12, 32, 10, 21, 11, 43, 9, 42, 15, 38, 47, 28, 41, 5, 22, 40]

C15
33 : [∞, 0, 1, 3, 6, 2, 9, 27, 4, 23, 15, 21, 10, 30, 8, 13, 28]

C15
35 : [∞, 0, 1, 3, 6, 2, 9, 15, 25, 13, 21, 7, 12, 33, 14, 5, 28, 10]

C15
39 : [∞, 0, 1, 3, 6, 2, 7, 13, 35, 24, 14, 37, 30, 4, 34, 9, 29, 12, 36, 27]

C15
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 41, 24, 12, 47, 17, 33, 19, 48, 9, 36, 4, 46, 18, 5, 14, 40]

C15
55 : [∞, 0, 2, 1, 4, 8, 3, 9, 16, 5, 13, 45, 33, 12, 53, 38, 24, 49, 14, 23, 47, 19, 42, 25, 7, 17, 37, 21]

C16
39 : [∞, 0, 1, 3, 6, 2, 7, 36, 29, 11, 28, 4, 16, 27, 33, 18, 31, 15, 5, 13]

C16
51 : [∞, 0, 2, 1, 4, 8, 3, 9, 16, 24, 11, 39, 18, 6, 23, 32, 13, 45, 21, 35, 19, 30, 40, 17, 37, 22]

C16
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 31, 14, 37, 50, 18, 26, 16, 52, 32, 17, 42, 9, 21, 12, 38, 19, 49, 35, 51]

C17
49 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 36, 19, 11, 41, 5, 21, 42, 14, 23, 8, 22, 33, 4, 39, 16]

C17
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 33, 18, 39, 30, 44, 16, 34, 22, 42, 23, 40, 29, 21, 37, 11, 24]

C18
39 : [∞, 0, 1, 3, 6, 2, 7, 24, 33, 11, 17, 32, 12, 23, 10, 34, 27, 35, 9, 37]

C18
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 38, 26, 34, 10, 37, 18, 5, 14, 43, 9, 30, 41, 11, 39]

C18
49 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 12, 40, 4, 19, 32, 41, 11, 33, 47, 22, 38, 21, 42, 5, 15, 34]

C18
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 11, 44, 14, 29, 47, 23, 37, 8, 46, 24, 34, 18, 10, 41, 30, 17, 40]

C19
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 42, 32, 19, 36, 16, 30, 21, 40, 12, 33, 26, 37, 5, 31, 39]

C19
55 : [∞, 0, 2, 1, 4, 8, 3, 9, 16, 5, 13, 53, 18, 34, 46, 17, 37, 52, 39, 22, 48, 15, 47, 24, 6, 50, 41, 11]
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C20
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 4, 14, 32, 40, 19, 12, 42, 15, 39, 8, 33, 21, 5, 16, 31]

C20
49 : [∞, 0, 1, 3, 6, 2, 7, 13, 21, 28, 41, 5, 35, 12, 34, 43, 14, 47, 33, 22, 39, 18, 8, 40, 20]

C20
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 33, 42, 11, 19, 30, 47, 18, 40, 16, 4, 34, 49, 12, 48, 14, 46]

C20
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 12, 21, 41, 53, 37, 23, 8, 32, 43, 11, 52, 15, 46, 36, 17, 45, 24, 49, 31]

C21
45 : [∞, 0, 1, 3, 6, 2, 7, 13, 4, 17, 37, 9, 34, 19, 36, 10, 40, 8, 16, 27, 20, 43, 33]

C21
49 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 29, 10, 21, 33, 47, 14, 35, 15, 28, 12, 43, 17, 42, 32, 40, 22]

C21
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 41, 18, 30, 48, 12, 4, 19, 40, 24, 33, 46, 22, 11, 39, 9, 42]

C21
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 18, 52, 38, 17, 43, 26, 50, 15, 4, 19, 41, 32, 48, 12, 35, 22, 51, 9]

C22
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 12, 24, 43, 15, 49, 38, 9, 46, 25, 35, 50, 14, 5, 45, 21, 44, 31, 53, 37]

C24
51 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 34, 49, 19, 37, 29, 40, 18, 47, 11, 42, 30, 21, 8, 41, 14, 48]

C25
55 : [∞, 0, 1, 3, 6, 2, 7, 13, 20, 10, 18, 32, 50, 21, 49, 25, 44, 11, 24, 8, 53, 14, 36, 19, 39, 16, 4, 15]



102



Appendix 2

Given k < 56 and admissible i, here we list an i-perfect (Zk, Ck, 2)-SDM for all val-
ues of k and i that are not covered by Theorem 4.1.9 and by Case 3 of Proposition
4.2.6. All the following SDMs are of type σ := (b0, b1, . . . , b(k−1)/2, b(k−1)/2, . . . , b1)
and such that w(σ) = 4. Because of the symmetry, we only list b0, b1, . . . , b(k−1)/2

as follows.

The 5-perfect (Z15, C15, 2)-SDF is: 2,−3, 6,−2, 2,−1, 1, 0
The 6-perfect (Z15, C15, 2)-SDF is: 0, 1, 3, 7, 10, 5, 13, 4
The 6-perfect (Z21, C21, 2)-SDF is: 0, 1, 3, 6, 2, 9, 18, 7, 12, 4, 19
The 7-perfect (Z21, C21, 2)-SDF is: 13, 7, 3,−4,−9,−17,−8, 2,−1, 1, 0
The 9-perfect (Z21, C21, 2)-SDF is: 10, 15, 19, 14, 17, 10, 18, 9,−1, 1, 0
The 10-perfect (Z25, C25, 2)-SDF is: 0, 1, 3, 6, 2, 7, 15, 21, 14, 24, 8, 22, 9
The 6-perfect (Z33, C33, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 4, 12, 24, 9, 28, 11, 18, 29, 19, 32
The 11-perfect (Z33, C33, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 4, 14, 27, 5, 20, 12, 26, 9, 21, 28
The 12-perfect (Z33, C33, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 4, 19, 30, 18, 11, 31, 23, 9, 25, 15
The 15-perfect (Z33, C33, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 4, 26, 11, 30, 20, 12, 28, 21, 9, 29
The 10-perfect (Z35, C35, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 4, 11, 31, 23, 33, 10, 27, 8, 22, 9, 20
The 14-perfect (Z35, C35, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 4, 11, 23, 34, 19, 27, 10, 29, 8, 30, 20
The 15-perfect (Z35, C35, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 4, 11, 32, 16, 31, 9, 17, 5, 30, 12, 23
The 6-perfect (Z39, C39, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 21, 32, 18, 36, 14, 33, 17, 25, 37, 22, 35
The 12-perfect (Z39, C39, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 32, 17, 37, 25, 36, 20, 10, 28, 14, 31
The 13-perfect (Z39, C39, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 26, 14, 24, 35, 15, 37, 21, 36, 10
The 15-perfect (Z39, C39, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 31, 18, 35, 21, 36, 8, 28, 5, 26, 16
The 18-perfect (Z39, C39, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 9, 30, 14, 27, 8, 20, 34, 12, 36, 25
The 6-perfect (Z51, C51, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 21, 9, 17, 30, 8, 22, 43, 27, 44, 25, 45, 20, 31, 46, 23, 5, 29
The 12-perfect (Z51, C51, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 24, 39, 10, 31, 48, 35, 16, 36, 9, 21, 49, 23
The 15-perfect (Z51, C51, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 27, 47, 30, 17, 45, 18, 39, 24, 12, 41, 16, 32
The 17-perfect (Z51, C51, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 20, 36, 23, 47, 16, 41, 9, 32, 17, 38, 21, 50
The 18-perfect (Z51, C51, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 32, 45, 28, 48, 9, 30, 49, 34, 50, 24, 46, 18
The 21-perfect (Z51, C51, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 27, 42, 25, 45, 22, 35, 14, 40, 16, 28, 12, 41
The 24-perfect (Z51, C51, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 25, 44, 16, 45, 10, 34, 47, 27, 39, 14, 35, 50
The 10-perfect (Z55, C55, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 9, 21, 8, 38, 53, 20, 43, 12, 48, 22, 49, 31, 51, 17, 33
The 11-perfect (Z55, C55, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 10, 23, 38, 8, 39, 22, 44, 16, 28, 46, 17, 51, 31, 50, 18
The 15-perfect (Z55, C55, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 20, 37, 52, 24, 46, 27, 40, 16, 32, 12, 35, 14, 44, 18
The 20-perfect (Z55, C55, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 9, 21, 34, 54, 29, 47, 32, 53, 22, 51, 12, 40, 17, 39, 20
The 22-perfect (Z55, C55, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 20, 37, 10, 39, 52, 22, 38, 18, 51, 32, 9, 24, 45, 14
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The 25-perfect (Z55, C55, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 20, 35, 18, 43, 14, 30, 49, 16, 37, 10, 52, 28, 48, 25
The 2-perfect (Z27, C27, 2)-SDF is: 0, 1, 3, 6, 2, 8, 15, 25, 7, 18, 23, 9, 17, 5
The 4-perfect (Z27, C27, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 5, 16, 25, 10, 24, 4, 14
The 6-perfect (Z27, C27, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 5, 21, 4, 22, 10, 23, 16
The 7-perfect (Z27, C27, 2)-SDF is: −9,−1, 6,−5,−14,−4,−16,−3, 3,−2, 2,−1, 1, 0
The 8-perfect (Z27, C27, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 4, 11, 24, 5, 20, 9, 19
The 9-perfect (Z27, C27, 2)-SDF is: −20,−10,−3,−19,−11,−5, 4, 16, 3,−2, 2,−1, 1, 0
The 10-perfect (Z27, C27, 2)-SDF is: 0, 1, 3, 6, 2, 7, 13, 23, 9, 16, 24, 15, 26, 11
The 11-perfect (Z27, C27, 2)-SDF is: 0, 1, 3, 6, 2, 7, 16, 24, 12, 5, 15, 4, 17, 23
The 12-perfect (Z27, C27, 2)-SDF is: 0, 1, 3, 6, 2, 7, 16, 8, 18, 4, 25, 5, 20, 9
The 13-perfect (Z27, C27, 2)-SDF is: 0, 1, 3, 6, 2, 7, 14, 23, 9, 15, 5, 13, 24, 12
The 2-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 8, 13, 4, 19, 11, 33, 44, 20, 27, 43, 18, 28, 42, 10, 22, 39, 12, 31
The 4-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 5, 14, 4, 17, 24, 35, 11, 37, 10, 27, 43, 28, 40, 9, 32, 12
The 6-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 21, 9, 17, 31, 15, 28, 5, 30, 12, 29, 40, 14, 38, 8
The 8-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 27, 38, 20, 44, 28, 41, 21, 36, 8, 34, 12
The 10-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 32, 10, 40, 16, 34, 23, 43, 31, 44, 25, 9
The 11-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 35, 20, 32, 9, 25, 38, 17, 44, 18, 29, 12
The 12-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 33, 8, 30, 14, 25, 42, 9, 24, 37, 18, 39
The 13-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 42, 27, 8, 30, 18, 38, 20, 41, 9, 37
The 14-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 37, 18, 31, 20, 44, 26, 41, 8, 28, 12, 29
The 15-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 32, 43, 31, 44, 17, 40, 10, 35, 16, 37, 21
The 16-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 17, 30, 10, 26, 15, 43, 25, 35, 12, 38, 8, 29
The 17-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 9, 21, 36, 12, 25, 41, 16, 35, 8, 30
The 18-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 44, 29, 17, 41, 16, 42, 24, 37, 20, 31, 9
The 19-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 31, 10, 40, 17, 29, 9, 27, 38, 21, 8, 34
The 20-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 28, 10, 22, 38, 17, 40, 29, 14, 42, 23, 43
The 21-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 32, 12, 24, 40, 16, 43, 28, 41, 30, 8, 34
The 22-perfect (Z45, C45, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 41, 30, 12, 44, 21, 37, 25, 8, 38, 17, 42
The 2-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 8, 13, 4, 19, 11, 27, 37, 5, 25, 36, 10, 46, 24, 17, 45, 26, 12, 43, 31, 7
The 4-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 5, 14, 4, 17, 24, 35, 11, 25, 46, 12, 43, 10, 33, 45, 18, 48, 19, 36
The 6-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 21, 9, 17, 30, 8, 29, 40, 14, 28, 44, 20, 38, 19, 39, 5, 22
The 8-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 14, 32, 12, 25, 41, 9, 28, 43, 20, 48, 24, 46
The 10-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 9, 32, 8, 38, 10, 47, 29, 14, 27, 43, 16, 36
The 11-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 10, 29, 14, 43, 30, 18, 40, 9, 33, 16, 44, 21
The 12-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 9, 42, 23, 44, 18, 38, 20, 33, 48, 24, 36, 14
The 13-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 36, 9, 25, 40, 28, 47, 27, 14, 46, 21, 44
The 14-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 35, 16, 48, 33, 46, 17, 45, 29, 41, 18, 43
The 15-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 24, 37, 9, 21, 36, 16, 39, 17, 42, 12, 29
The 16-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 16, 26, 10, 42, 23, 35, 14, 29, 9, 22, 45, 18, 36, 12
The 17-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 14, 35, 48, 28, 43, 17, 39, 9, 41, 16, 34, 18
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The 18-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 42, 14, 33, 48, 17, 41, 24, 47, 25, 12, 32, 44
The 19-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 10, 46, 31, 48, 18, 44, 16, 41, 14, 43, 25, 37
The 20-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 42, 14, 34, 21, 43, 28, 10, 35, 9, 46, 16, 33
The 21-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 39, 27, 43, 21, 42, 8, 34, 17, 36, 12, 32, 14
The 22-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 8, 45, 28, 12, 34, 9, 24, 47, 17, 30, 10, 38
The 23-perfect (Z49, C49, 2)-SDF is:
0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 9, 40, 17, 41, 29, 8, 24, 37, 22, 42, 23, 45
The 24-perfect (Z49, C49, 2)-SDF is:

0, 1, 3, 6, 2, 7, 13, 4, 11, 19, 5, 15, 26, 43, 16, 28, 9, 38, 10, 44, 31, 47, 22, 45, 14
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Appendix 3

Here we write the cyclotomic systems and the code we used to find a 2-(13p, 13, 1)
design, for all primes p ≡ 1 (mod 12) such that p ∈ [2 ·104, 1010]. For values smaller
than 2 ·104 this code obtain some failures but, if we change the cyclotomic systems,
we can cover also this range up to the possible exceptions of Proposition 5.3.1.

We denote by g a generator of Fp and by ξ := g
p−1
4 . We start with the case in

which ξ − 1 ∈ C3
0 . In this case we considered the following cyclotomic systems and

we used the following code:

C1 :=



x1 ∈ C3
1 ;

x1 − 1 ∈ C3
1 ;

x1 + 1 ∈ C3
2 ;

x1 − ξ ∈ C3
0 ;

x1 + ξ ∈ C3
1 ;

C2 :=



x2 ∈ C3
2 ;

x1 − x2 ∈ C3
1 ;

x1 + x2 ∈ C3
2 ;

x2 − 1 ∈ C3
0 ;

x2 + 1 ∈ C3
2 ;

ξ + x2 ∈ C3
0 ;

ξ − x2 ∈ C3
1 ;

ξx2 + x1 ∈ C3
0 ;

ξx2 − x1ξ ∈ C3
2 .
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Here we write the cyclotomic systems and the code we used to find a 2-(13p, 13, 1)
design, for all primes p ≡ 1 (mod 12) such that, if we denote by g a generator of

Fp and by ξ := g
p−1
4 , we have ξ − 1 ∈ C3

1 and p ∈ [2 · 104, 1010].

C1 :=



x1 ∈ C3
1 ;

x1 − 1 ∈ C3
0 ;

x1 + 1 ∈ C3
2 ;

x1 − ξ ∈ C3
0 ;

x1 + ξ ∈ C3
1 ;

C2 :=



x2 ∈ C3
2 ;

x1 − x2 ∈ C3
1 ;

x1 + x2 ∈ C3
2 ;

x2 − 1 ∈ C3
0 ;

x2 + 1 ∈ C3
2 ;

ξ + x2 ∈ C3
2 ;

ξ − x2 ∈ C3
1 ;

ξx2 + x1 ∈ C3
0 ;

ξx2 − x1ξ ∈ C3
1 .
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Finally, here we write the cyclotomic systems and the code we used to find a
2-(13p, 13, 1) design, for all primes p ≡ 1 (mod 12) such that, if we denote by g a

generator of Fp and by ξ := g
p−1
4 , we have ξ − 1 ∈ C3

2 and p ∈ [2 · 104, 1010].

C1 :=



x1 ∈ C3
1 ;

x1 − 1 ∈ C3
1 ;

x1 + 1 ∈ C3
0 ;

x1 − ξ ∈ C3
0 ;

x1 + ξ ∈ C3
1 ;

C2 :=



x2 ∈ C3
2 ;

x1 − x2 ∈ C3
1 ;

x1 + x2 ∈ C3
2 ;

x2 − 1 ∈ C3
0 ;

x2 + 1 ∈ C3
2 ;

ξ + x2 ∈ C3
2 ;

ξ − x2 ∈ C3
0 ;

ξx2 + x1 ∈ C3
2 ;

ξx2 − x1ξ ∈ C3
1 .


