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Introduction

Many authors refer to a speci�c date as the Birthday of the so called �Fractional Calculus�.

In a letter dated September 30th, 1695, Guillaume de L'Hopital wrote to Leibniz asking

him about the special notation he had used in his papers to denote the nth-derivative of

the linear function f(x) = x, that is Dnx
Dxn . L'Hopital asked Leibniz what would the result

be if n = 1/2. Leibniz's reply was: �An apparent paradox, from which one day useful

consequences will be drawn.� Fractional calculus was born in (or from) such words.

Fractional Calculus was primarily intended as a study reserved to the best mathematical

minds. Fourier, Euler, and Laplace are among those who got involved in fractional

calculus and its mathematical consequences [106]. Many people, using their own notation

and methodology, found de�nitions that �t somehow the concept of a non-integer order

integral or derivative. The most famous and popular ones are those due to Riemann and

Liouville, and to Grünwald and Letnikov. While there exists a number of de�nitions,

they are mostly variations on the themes of these two.

Most of the mathematical theory applicable to the fractional calculus was developed

before the end of the 20th century. However, it is only in the past 20 years that the

most intriguing advances in Engineering and applied sciences took place. In some cases,

the mathematics had to be adapted to meet the requirements of the physical models.

In 1967, in his work [19], Michele Caputo reformulated the by then classic de�nition

of the Riemann-Liouville fractional derivative in a way that allowed using initial condi-

tions of integer order, when solving certain fractional order di�erential equations [20�

24, 50, 75, 112]. Caputo de�nition of fractional derivative is now one the most used and

useful de�nitions. In 1996, Kolowankar reformulated once more the Riemann-Liouville

fractional derivative in order to perform fractional derivatives of nowhere di�erentiable

fractal functions [80].

Considering all works accomplished over the last 300 years, Leibniz's reply to L'Hopital

has proven to be at least partially correct. Indeed, by the end of the 20th century,

a number of applications and physical evidence of the usefulness of fractional calculus
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Introduction. Introduction 2

have been found. However, both, such applications and the mathematical background

underlying the fractional calculus are far from being paradoxical [114].

The recent years have witnessed a broad interest in fractional calculus, and in particular

in fractional di�erential equations. This is justi�ed by the fact that, for instance, frac-

tional time-derivatives may account for (time) delays or memory and hereditary e�ects

[91], while fractional space-derivatives may explain some nonlocal behavior, typically

observed in a power law (rather than exponential law) decay of solutions. Therefore,

transport and di�usion in certain media seem to be better modeled by fractional partial

di�erential equations. In particular, anomalous di�usion (sub- or super-di�usion) have

been described in this way by many authors [24, 31, 85]. Consequently, a number of

works pertaining to hydrology and percolation through porous media, meteorology, and

even �nancial modeling, have appeared in the recent literature [11, 12].

Modern microscopic techniques following the stochastic motion of labeled tracer particles

have uncovered signi�cant deviations from the laws of Brownian motion in a variety of

animate and inanimate systems. This kind of anomalous di�usion has been studied in

the literature adopting models which use fractional partial di�erential equations [103].

We give now some important de�nitions of fractional derivatives and their importance

in applications.

It is customary to adopt the Caputo de�nition for time derivatives, while for the space

derivatives is usual adopting the Riemann-Liouville (RL) de�nition. For a given function,

f(t), the Caputo fractional derivative or order α it is de�ned as

CD
α
t f(t) :=

1

Γ(n− α)

∫ t

0

f (n)(ξ)

(t− ξ)α−n+1
dξ, (1)

while for a given function g(x), the Riemann-Liouville (RL) fractional derivative it is

de�ned as

RLD
α
t f(t) :=

1

Γ(n− α)

dn

dtn

∫ t

0

f(ξ)

(t− ξ)α−n+1
dξ, (2)

where n ∈ N is such that n− 1 < α ≤ n, and Γ is the Euler Gamma function, see [112]

The Caputo derivative is more convenient when imposing initial values. On the other

hand, RL derivatives have been found to be useful to characterize space derivatives ??

in anomalous di�usion, Levy �ights, and traps [30, 58, 153].

The latter is de�ned as

GLD
α
xψ(x) :=

1

Γ(−α)
lim
h→0

1

hα

[ x
h

]∑
i=0

Γ(i− α)

Γ(i+ 1)
ψ(x− ih), (3)
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see [88, 112]. In several useful algorithms, is is also much used the so-called shifted

Grünwald-Letnikov derivative,

GLsD
α
xψ(x) =

1

Γ(−α)
lim
h→0

1

hα

[ x
h

]+1∑
i=0

Γ(i− α)

Γ(i+ 1)
ψ(x− (i− 1)h), (4)

where [x] denotes the integer part of x, h being the step size that will be used in the

numerical schemes [112], and Γ is the Gamma function. Clearly, the GL de�nitions are

useful in numerical schemes since they are directly related to �nite di�erences.

The de�nition can be written in sense of a series of term, obtaining the next de�nition

GL∗D
α
xψ(x) := lim

h→0

1

hα

[ x
h

]+1∑
i=0

(−1)i
(
α

i

)
ψ(x− (α− i)h), . (5)

The following coe�cients, called �normalized� Grünwald weights,

gα,i =
Γ(i− α)

Γ(−α)Γ(i+ 1)
= (−1)i

(
α

i

)
,

appear in some schemes, and have the properties

gα,i =

{
= 1, i = 0

< 0, i = 1, 2, . . .
, g1+α,i =


= 1, i = 0

< 0, i = 1

> 0, i = 2, 3, . . .

(6)

being 0 < α < 1. The gα,i's also enjoy the properties

∞∑
i=0

gα,i = 0,
∞∑
i=0

g1+α,i = 0. (7)

These coe�cients will be used explicitly in the numerical approximation of the Grünwald-

Letnikov fractional discrete operator.

About the numerical integration methods for fractional order derivatives. but also in-

tegrals fractional computations, is important the recent paper by Brzezi�nski et al. [15],

which presents high-accuracy methods.

It is also important the Riesz de�nition of fractional derivative, as the integer derivative

of Riesz potentials, see [72], the de�nition of fractional derivative by Riesz is obtained

through the Fourier transform. Consider

F{DI1−αf}(k) = (ik)|k|α−1F{f}(k) = (i sign k)|k|αF{f}(k)
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F{DĨ1−αf}(k) = (ik)(−i sign k)|k|α−1F{f}(k) = |k|αF{f}(k)

for 0 < α < 1, i being the imaginary unit, D the fractional di�erential operator, I is the

fractional integral operator, and Ĩ is the Fourier transform of I. The operator Iα applied

to a function f can be de�ned as

(Iαf)(x) =
1

Γ(α)

∫ ∞
0

yα−1f(x− y)dy.

Recall the properties (see [72]),

F{Iαf}(k) = |k|−αF{f}(k),

F{Ĩαf}(k) = (−i sign k)|k|−αF{f}(k),

where sign is the signum function. We can now consider

d
dx

(Ĩ1−αf)(x) = lim
h→0

1

h
[(Ĩ1−αf)(x+ h)− (Ĩ1−αf)(x)] (8)

as a de�nition for the Riesz fractional derivative.

Following [17], the strong Riesz fractional derivative of order α,RDα(f) of a function

f ∈ Lp(R), 1 ≤ p <∞, is de�ned through the limit

lim
h→0

∥∥∥∥1

h
(f ∗K1−α

h )−R Dα(f)

∥∥∥∥
p

= 0

whenever it exists. the convolution kernel, obtained from equation (8), is de�ned as

K1−α
h :=

1

2Γ(1− α) sin(απ/2)

[
sign(x+ h)

|x+ h|α
− signx

|x|α

]
,

see [72].

It is furthermore noteworthy to observe that whenever a given function has a continuous

(n− 1)th-order derivative with an integrable nth-order derivative, then the Caputo, the

RL, the G-L and the de�nition through the Fourier transform, of fractional derivatives

of order α, with n− 1 < α < n, coincide [89, 112].

To give an idea of the occurrence of a power law behavior, consider the Mittag-Le�er

(M-L) functions [68] . These functions are important in the framework of fractional

di�erential equations (fODE) because they play for them, in some sense, the same role

that the exponential functions do in classical ODEs. In fact, as v(t) := e−t is the unique

solution of the ODE
dv

dt
= −v, t > 0, v(0) = 1,
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so the M-L function

eα(t) := Eα(−tα) =
∞∑
n=0

(−1)n
tαn

Γ(αn+ 1)
,

with t > 0, 0 < α < 1, solves the fODE [fractional di�erential equation]

CD
α
t u = −u, t > 0, u(0+) = 1.

We may also recall here the generalized M-L functions

Eα,β(z) =
∞∑
n=0

(−1)n
zn

Γ(αn+ β)
,

with z ∈ C, α, β > 0, noting that Eα,1(z) ≡ Eα(z). Other generalizations do exist, but

we not need tem here.

It may be interesting to observe that when the celebrated Bateman project was carried

out, in the 1950s, Special Functions such as the Mittag-Le�er functions and some of its

generalizations were considered as no more than curiosities, and were relegated among

other �miscellanea functions�, in Volume 3 [56].

The aforementioned property of the M-L functions of solving the simplest Caputo fODE,

confers them some centrality within theory and applications of fODEs. Consequently,

their relevance in (pure and) applied mathematics and sciences has increased consider-

ably.

Among the numerous properties of the M-L functions, we mention that E(−tα) is an

entire function of tα, for every �xed value of α. Moreover, α can be complex, with

Re(α) > 0. Note that for α = 1 we obtain e1(t) = e−t, so that eα(t) is a generalization

of e−t. In Fig 1, we display the behavior of the M-L functions eα(t) for few values of α.

A special interest has the case of fractional relaxations as well that of fractional os-

cillations, which can de described by simple fODEs. This case is analogous to that

of the corresponding classical oscillators. Thus, we considered and solved numerically

equations where the Riemann-Liouville integrals were replaced by Erdélyi-Kober-type

integrals, obtaining more general integro-di�erential equations. In particular, the fODEs

we considered are characterized by linear fODEs of order α or 1 + α, with 0 < α < 1,

and time variable coe�cients. It seems that fODEs with such last peculiarity were not

studied yet in the literature, in particular numerically [35].
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Figure 1: graphs of the M-L functions eα(t) ≡ E(−tα), for various α (reproduced
under permission of F. Mainardi).

In chapter 1, we discussed two issues concerning the M-L functions, namely, (i) a by

now con�rmed conjecture, made by F. Mainardi on estimates of the M-L functions in

terms of certain simple rational functions, and (ii) a new numerical approach to compute

e�ciently their values.

In case of time-space dependent phenomena, fractional partial di�erential equations may

play a fundamental role. Fractional partial di�erential equations (fPDEs) are obtained

by generalizing classical partial di�erential equations (PDEs) to arbitrary (non integer)

order. Since PDEs and in many instances even better fPDEs are used to model complex

phenomena, they play a crucial role in Engineering, Physics and Applied Mathemat-

ics. Since fPDEs may account for memory e�ects, nonlocal relations in space and time,

complex phenomena can be better modeled by using such equations. Due to this fact,

applications in diverse �elds such as materials with memory and hereditary e�ects, �uid

�ow through porous media, rheology, di�usive transport, electrical networks, electromag-

netic theory, signal processing, and probability.

Flow through porous media, for instance, is a subject of interest in many branches of

applied Science and Engineering, i.e., hydrology, geology, chemical engineering, and oil

extraction. Investigating the relevant features of such processes is a major task in un-

derstanding phenomena, such as subsidence due to water shortage, or the process of

crystallization of the ores in a well thermal exit, which makes them unusable for the

heat extraction [119]. Researchers have been focusing on establishing relations among

piezometric pressure gradients, macro-scale geometric properties of the medium, ther-

mophysical properties of both, medium and �uid, and the �uid velocity �eld relative to

the solid matrix ([138]). The Darcy law is usually employed in this analysis.

However, it has been checked experimentally [5, 55, 116] that, when a �uid �ows through

a porous medium, the permeability of the matrix may vary locally in time [22, 27, 75],
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for a number of reasons. These are chemical dissolution of the medium, swelling and

�occulation, pore plugging, and precipitation reactions, transport of particles obstructing

the pores, mechanical compacti�cation, and grain crumbling due to high pressure [5, 21].

All these phenomena, together with possible chemical reactions between the �uid and

the host medium, create continuously local changes of the porosity, resulting in memory

e�ects. This means that, at a given time, the advection process is a�ected by the past

history of pressure and �ow [75]. Consequently, the equations governing advection are

a�ected by certain peculiarities, since the variation of the permeability is not known

in advance [24]. Many researchers have attempted to extend Darcy's law but, due to

the complexity of the problem, the �rst attempts merely relied on intuitive or empirical

models [77, 138].

While, historically, only one parameter was introduced in Darcy's law to relate the

pressure gradient to the �uid velocity, the �ow rate was made depend on the order

of the fractional derivative which replaces now the classical derivative, as well as on

several other parameters (the memory parameters), which describe mathematically the

changes of both, the solid matrix and the �uid characteristics, due to the aforementioned

phenomena of crumbling, mechanical compacting, and chemical reactions.

A number of laboratory experiments have validated such a generalized theory. Over

the last 30 years, fractional di�erential equations have been adopted to mimic memory

e�ects in electromagnetism [76], biology [25], chaos [92], economy [23]), and to describe

the rheological properties of solids [1, 4, 41, 82]. as for the memory e�ects on di�usion

and propagation [92], a general framework can be provided by fractional-type model

equations.

In a recent study accomplished by Ia�aldano et al. [75], the constitutive equations of

di�usion have been rewritten in such a form in order to provide a memory model for

di�usion of water through porous media. This model reproduces well the �ux rate

observed in experiments of water �ow through certain media such as sand.

Since explicit analytical solutions to fractional di�usion equations in general are not

available, several numerical methods have been constructed to evaluate them

In chapter 2, in order to give some motivation about the fractional derivatives approach

to model some physical dynamics, e.g. transport of some �uids through porous media,

have been compared numerical results with laboratory tests [75].

In [50], e.g., in order to adequately represent these phenomena, have been introduced

a memory formalism operating on some physical like pressure gradient��ux and the

pressure�density variations. The memory formalism is then represented with fractional
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order derivatives. Have been perform a number of laboratory experiments in uniformly

packed columns where a constant pressure is applied on the lower boundary. Both

homogeneous and heterogeneous media of di�erent characteristic particle size dimension

were employed. The low value assumed by the memory parameters, and in particular by

the fractional order, demonstrates that memory is largely in�uencing the experiments.

The data and theory show how mechanical compaction can decrease permeability and

consequently �ux. Have been considered the three constitutive equations of the classical

theory of advection state

q = −D∇p
p = Gm

∂m
∂t +∇q = 0

where q is the �ux rate, D is the Darcy coe�cient depending on both the porous matrix

and the �uid phase characteristics, m is the �uid mass per unit volume, and p is pressure.

Have been a constitutive equation containing a memory formalism to replace the classic

Darcy's law as

f1(t) ∗ q = −f2(t) ∗ ∇p

where the symbol � * � indicates convolution, and f1(t) and f2(t) are integro-di�erential

operators. Using some mathematics and physical considerations they attain the modi�ed

equations (
γ + ε

∂n1

∂tn1

)
q = −

(
c+ d

∂n2

∂tn2

)
∇p,(

a+ b
∂m1

∂tm1

)
p =

(
α+ β

∂m2

∂tm2

)
m

0 ≤ n1 < 1, 0 ≤ n2 < 1, 0 ≤ m1 < 1, and 0 ≤ m2 < 1, a, b, c, d, α, β, γ , and ε are the so

called �memory parameters�, see [50].

In our case, we noted that for certain values of fractional derivative orders and initial

conditions, the numerical results with laboratory tests approaches. Have been used a 1D

in space di�usion fPDE. We have considered fractional order derivatives in space and in

time, by varying those exponents we have seen that for certain values of the equation

�ts better the experimental data than in case of integer order derivatives.

In chapter 3 we have considered, as a prototype of a 2D (and a 1D) fractional di�usion

equation

∂u

∂t
= K·∇γu + f(u;x, y, t) = 0 in Ω× (0, T ],(9)
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where K = (Kx,Ky),∇γ = ( ∂γx
∂xγx ,

∂γy

∂yγy ), 1 < γx, γy ≤ 2, Ω := (0, Lx)× (0, Ly). Dirichlet

boundary conditions and an initial condition like

u(x, y, t)|∂Ω = Φ(x, y), u(x, y, 0) = ϕ(x, y), (10)

are imposed, for some given functions Φ and ϕ. Throughout this Thesis, we will assume

that such an initial-boundary value problem has a unique, su�ciently smooth solution.

Here the operator ∂γx
∂xγx denotes the fractional Riemann-Liouville derivative of order γx

with respect to x; similarly for the variable y.

In [26, 43, 44], a numerical method, third-order accurate in time, has been proposed

(but not implemented) in [26] to solve two-dimensional fPDEs of the di�usive type. This

approach consists of combining the idea of the Alternating Direction Implicit (ADI)

method with a Crank-Nicolson discretization to obtain a third-order accurate in time

�nite di�erence algorithm. Results concerning the numerical treatment of fPDEs in

several space dimensions, that can be found in the existing literature are still few, which

fact calls for e�ective numerical methods, say, for two- and three-dimensional fPDEs.

We have implemented for the �rst time (to the best of our knowledge), a third-order in

time and second-order in space accurate Crank-Nicolson �weighted and shifted� Grünwald

di�erence (CN-WSGD) scheme, to solve two-dimensional fractional di�usion and reaction

di�usion equations. In addition, a new three-step extrapolation method has been derived

and applied, also for the �rst time, to solve the same problems. Finally, an acceleration

technique consisting of an optimized extrapolation method has been introduced here to

improve the convergence rate of the aforementioned ADI-like method [64].

We remark at this point that the so-called fractional Laplacian is something di�erent.

The fractional Laplacian (−∆)α/2 is an operator which reduces to the standard Laplacian

when α = 2, used in the �eld of fractional calculus for modeling nonlocal di�usions. One

can think of −(−∆)α/2 as the most basic elliptic linear integro-di�erential operator of

order α and can be de�ned in several equivalent ways, see [18, 59]. A range of powers of

special interest is α ∈ (1, 2). A de�nition of the operator is given by a singular integral

(−∆)α/2u(x) := Cn,α

∫
Rn

u(x)− u(y)

|x− y|n+α
dy,

where the constant Cn,α is given by

Cn,α =
α2α−1Γα+n

2

πn/2Γ2−α
2
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In probability theory, the fractional Laplacian is the in�nitesimal generator of a sym-

metric α − stable Lévy process. In �nancial mathematics, it appears as an alternative

model to Brownian motion, incorporating the jumps in asset prices. These represen-

tations are shown to be equivalent in [81, 126, 136]. Many numerical method for the

fractional Laplacian have been proposed, we recall Huang and Oberman which in [74]

have introduced a method based on the singular integral representation for the operator,

the method combines �nite di�erences with numerical quadrature to obtain a discrete

convolution operator with positive weights.

In chapter 4 we consider fractional di�usion equation, for the 3D space case. It was

observed [71] that the celebrated Darcy's law, along with the assumption of continuity

of the seepage �ow in heterogeneous media, and the ensuing di�usion partial di�erential

equation (PDE), do not hold in the general case of real seepage �ows.

In this chapter, a new well �balanced�, fractional version of the Alternating Direction

Implicit (ADI) method is introduced to solve numerically 3D di�usion and reaction-

di�usion fPDEs, which can be applied, e.g., to describe �uid �ows through porous media.

We term �balanced� our scheme since we distribute the right-hand side in the ADI scheme

in equal amount among the three equations representing the three steps steps of the ADI

method, instead of using the full right-hand side in the �rst equation only. This choice

allows us to increase the space accuracy from the �rst to the second order. On the other

hand, Liu et al [88] derived a scheme accurate to the second order in space resorting to

Richardson extrapolation.

Our method is shown to be unconditionally stable for every fractional order of space

derivatives, is second-order accurate in space (as stated here above), and third-order

accurate in time. This latter property is here established resorting to an extrapolation

technique along with an optimization realized through Google's PageRank algorithm.

The method followed here to do this is similar to that used for the 2D case in [33]. Liu

et al.'s method is only of the second order in time.

The for the 3D cases we set up the typical problems, and discuss some fractional versions

of the ADI (fADI) 3D schemes, we establish a convergence result, and some details about

optimization and extrapolation are given, and a few numerical examples are presented.



Chapter 1

Some analytical and numerical

properties of the Mittag-Le�er

functions

In this Chapter we discuss two issues concerning the M-L functions, namely, (i) a conjec-

ture, made by F. Mainardi on estimates of the M-L functions in terms of certain simple

rational functions, and (ii) a new numerical approach to compute e�ciently values of

them. We �rst recall, for convenience, some known theoretical results on the Cauchy

problem for fODEs.

1.1 Ordinary fractional di�erential equations. Existence

and uniqueness theorems

In this section we give a brief overview of the results on existence and uniqueness for

ordinary di�erential equations of fractional order on a �nite interval of the real axis [79].

Most of the investigations in this �eld involve existence and uniqueness of solutions to

fractional di�erential equations with Riemann-Liouville fractional derivative (Dα
a+y)(x)

de�ned for (<(α) > 0). The "model" nonlinear di�erential equation of fractional order

α (<(α) > 0) on a �nite interval [a, b] of the real axis R has the form

(Dα
a+y)(x) = f(x, y(x)) (<(α) > 0;x > a), (1.1)

11
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with initial conditions

(Dα−k
a+ y)(a+) = bk, bk ∈ C (k = 1, . . . , n), (1.2)

where n = <(α) + 1 for α 6∈ N and α = n for α ∈ N.

In this subsection we establish the existence of a unique solution to the Cauchy type

problem (1.1),(1.2) in the space Lα(a, b) de�ned as

Lα(a, b) := {y ∈ L(a, b) : Dα
a+y ∈ L(a, b)}. (1.3)

Here L(a, b) := L1(a, b) is the space of summable functions in a �nite interval [a, b] of

the real axis R. Consider now some relations.

When 0 < <(α) < 1, the problem (1.1)-(1.2) takes the form

(Dα
a+y)(x) = f(x, y(x)), (I1−α

a+ y)(a+) = b ∈ C, (1.4)

where I1−α
a+ represents the fractional integral of order 1− α calculated in a+, see [3],

(Dα
a+y)(x) = f(x, y(x)), (α > 0), (1.5)

(Dα−k
a+ y)(a+) = bk, bk ∈ R (k = 1, . . . , n; n = −[−α]), (1.6)

and introduce the nonlinear Volterra integral equation of the second as

y(x) =

n∑
j+1

bj
Γ(α− j + 1)

(x− a)α−j +
1

Γ(α)

∫ x

a

f(t, y(t))

(x− t)1−αdt, (x > a), (1.7)

if n = 1 the Volterra nonlinear integral equation (1.7) goes into

y(x) =
b1(x− a)α−1

Γ(α)
+

1

Γ(α)

∫ x

a

f(t, y(t))

(x− t)1−αdt, (x > a, 0 < α ≤ 1). (1.8)

Here we recall few basic theorems concerning existence and uniqueness of the Cauchy

problem for fODEs [47].

Theorem 1. Let α > 0, n = −[−α]. Let G be an open set in R. and let f : (a, b]×G→ R
be a function such that f(x, y) ∈ L(a, b) for any y ∈ G. If y(x) ∈ L(a, b), then y(x)

satis�es a.e. the relations (1.5) and (1.6) if, and only if, y(x) satis�es a.e. the integral

equation (1.7).

Theorem 2. Let α ∈ C and n − 1 < <(α) < n (n ∈ N). Let G be an open set in C
and let f : (a, b] × G → C be a function such that f(x, y) ∈ L(a, b) for any y ∈ G. If

y(x) ∈ L(a, b), then y(x) satis�es a.e. the relations (1.1) and (1.2) if, and only if, y(x)
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satis�es a.e. the equation (1.7). In particular, if 0 < <(α) < 1, then y(x) satis�es a.e.

the relations in (1.4) if, and only if, y(x) satis�es a.e. the equation (1.8).

We will consider an additional Lipschitzian-type condition on f(x, y) with respect to the

second variable: for all x ∈ (a, b] and for all y1, y2 ∈ G ⊂ C,

|f(x, y1)− f(x, y2)| ≤ A|y1 − y2|, (A > 0), (1.9)

where A > 0 does not depend on x ∈ [a, b]. First we derive a unique solution to the

Cauchy-problem (1.5)-(1.6) with a real α > 0.

Theorem 3. Let α > 0, n = −[−α]. Let G be an open set in R and let f : (a, b]×G→ R.
be a function such that f(x, y) ∈ L(a, b) for any y ∈ G and the condition (1.9) is satis�ed.

Then there exists a unique solution y(x) to the Cauchy type problem (1.5)- (1.6) in the

space L(a, b).

Theorem 3 is extended from a real α > 0 to a complex α ∈ C(<(α) > 0).

Theorem 4. Let α ∈ C, n − 1 < <(α) < n (n ∈ N). Let G be an open set in C
and let f : (a, b] × G → C be a function such that f(x, y) ∈ L(a, b) for any y ∈ G and

the condition (1.9) holds. Then there exists a unique solution y(x) to the Cauchy type

problem (1.1)- (1.2) in the space L(a, b) de�ned in (1.3). In particular, if 0 < <(α) < 1,

then there exists a unique solution y(x) to the Cauchy type problem

(Dα
a+y)(x) = f(x, y(x)) (0 < <(α) < 1) (I1+α

a+ y)(a+) = b ∈ C (1.10)

in the space L(a, b).

Now we will establish the existence of a unique solution to the Cauchy type problem

(1.5)-(1.6) in the space Cα
n−α[a, b] de�ned as

Cα
n−α[a, b] = {y(x) ∈ Cn−α[a, b] : (Dα

a+y)(x) ∈ Cn−α[a, b]}. (1.11)

under the conditions stated in the following Theorem and an additional Lipschitzian

condition (1.9).

Theorem 5. Let α > 0, n = −[−α]. Let G be an open set in R. and let f : (a, b]×G→ R
be a function such that f(x, y) ∈ Cn−α[a, b] for any y ∈ G. If y(x) ∈ Cn−α[a, b], then y(x)

satis�es the relations (1.5) and (1.6) if, and only if, y(x) satis�es the Volterra integral

equation (1.7).

Further results can be found in [47].
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1.2 Proving part of Mainardi's conjecture

In [95], F. Mainardi formulated the following conjecture: For every t > 0, and for every

�xed α, with 0 < α < 1, the estimates

gα(t) ≤ eα(t) ≤ fα(t)

hold, where

gα(t) :=
1

1 + tαΓ(1− α)
,

eα(t) :=

∞∑
n=0

(−1)n
tαn

Γ(αn+ 1)
,

fα(t) :=
1

1 + tα

Γ(1+α)

.

The three functions involved, gα(t), eα(t), and fα(t), are all known to be completely

monotone functions (at least for t > 0 and for every �xed α ∈ (0, 1)), thus they can

be considered as the Laplace transforms of positive measures (in particular, Laplace

transforms of nonnegative integrable functions). Therefore, one may expect to be able

to exploit such a property to prove this conjecture. This is still an open way to test.

An attempt was done in [149], where the authors provide better approximations for the

M-L function via global Padé approximants, but neither lower nor upper bounds have

been obtained there. In a recent paper [137], the Mittag-Le�er function eα(t) was com-

puted suitably interpolating the two functions fα(t) and gα(t), i.e., approximating it by

a linear combination of the form φα(t) fα(t) + (1 − φα(t)) gα(t), and �nding an explicit

expression for the function φα(t). This procedure, however, cannot prove anything rig-

orously and, moreover, in [137] it was even stated that, for α < 0.5 and t > 1, results

were not considered, owing to an observed numerical instability.

Instead, very recently, T. Simon was able to prove Mainardi's conjecture basing his proof

on probabilistic arguments [120]. In [34], it was proved part of Mainardi's conjecture,

only on some neighborhood of t = 0, where however the inequalities appear to be sharper.

The contribution in [34] is quite limited, but the result is obtained by simple classical

estimates, and concerns small values of t, where the conjecture seems to be more critical,

cf. Fig 1.

In [34], the results obtained by some new numerical approach where compared with

those provided by the code available through MATLAB, as well as that of Mathematica.

The method adopted in [34] consists of an adaptive predictor-corrector scheme, based

on K. Diethelm's predictor-corrector algorithm [46, 48, 49]. Even though the idea of
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computing the M-L function integrating the fODE that it solves is rather trivial, it turns

out that such algorithm outperforms the other two methods, both in terms of smaller

CPU time and of smaller RAM required. It should be noted, however, that the other

codes are more far reaching, since they are capable to evaluate the more general two-

parameters M-L function Eα,β(z), and moreover they can do it on the complex domain.

This conjecture was supported by rather extensive numerical evaluations of the three

functions, gα(t), eα(t), and fα(t). Note that the prospective upper bound [i.e., fα(t)] is

related to the convergent power series approximation

eα(t) ∼ 1− tα

Γ(1 + α)
,

valid for small values of t, while the prospective lower bound [i.e., gα(t)] refers to the

asymptotic approximation

eα(t) ∼ t−α

Γ(1− α)
,

valid for large values of t. Both approximations can be related to the [0/1] Padé approx-

imants of eα(t). More precisely, it was known that

eα(t) ∼
∞∑
n=1

(−1)n−1 t−αn

Γ(1− αn)
, t→ +∞,

(see Erdélyi et al. [56], i.e., the Bateman project's Volume 3, 1953), and that

eα(t) = 1− tα

Γ(1 + α)
+ . . . ∼ exp

[
− tα

Γ(1 + α)

]
, t→ 0+.

F. Mainardi and his collaborators reported that their numerical computations, made to

validate such conjecture, were accurate to within 1% (relative errors), see Figs. 1.1�1.5.

Figure 1.1: Graphs of gα(t), eα(t), and fα(t) for α = 0.25 (reproduced under permis-
sion of F. Mainardi).
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Figure 1.2: Graphs of gα(t), eα(t), and fα(t) for α = 0.50 (reproduced under permis-
sion of F. Mainardi).

Figure 1.3: Graphs of gα(t), eα(t), and fα(t) for α = 0.75 (reproduced under permis-
sion of F. Mainardi).

Figure 1.4: Graphs of gα(t), eα(t), and fα(t) for α = 0.90 (reproduced under permis-
sion of F. Mainardi).

We computed the same plots with a higher accuracy, wherefrom the conjecture seemed

to be valid within 0.001% (i.e., with errors less than 10−5), see Figs. 1.6�1.11. All these
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Figure 1.5: Graphs of gα(t), eα(t), and fα(t) for α = 0.99 (reproduced under permis-
sion of F. Mainardi).

are of course merely numerical experiments, and only a theoretical proof can decide on

the correctness of the conjecture.
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Figure 1.6: Our graphs of gα(t), eα(t), and fα(t) for α = 0.25.

Here we follow a direct approach to prove the conjecture, i.e., we compare certain power

series, considering that the rational functions gα and fα can be expanded in geometric

series, on suitable t-intervals. Recall that

1

1 + x
=

∞∑
n=0

(−1)nxn,

for |x| < 1, but we can write
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Figure 1.7: Our graphs of gα(t), eα(t), and fα(t) for α = 0.50.
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Figure 1.8: Our graphs of gα(t), eα(t), and fα(t) for α = 0.75.
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Figure 1.9: Our graphs of gα(t), eα(t), and fα(t) for α = 0.90.
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Figure 1.10: Our graphs of gα(t), eα(t), and fα(t) for α = 0.95.

when |x| > 1. The special case x = 1 (for us only x > 0 matters) should be treated

separately.
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Figure 1.11: Our graphs of gα(t), eα(t), and fα(t) for α = 0.99.

Figure 1.12: x = tα-axis, α = 0.6.

In our problem, either x := tαΓ(1 − α), or x := tα/Γ(1 + α). It seems natural divide it

into three cases (see Fig. 1.12), according to

(I) 0 < tα < 1/Γ(1− α) (< Γ(1 + α) < 1);

(II) 1/Γ(1− α) < tα < Γ(1 + α) (< 1)
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(III) tα > Γ(1 + α)) (> 1/Γ(1− α)).

besides the two cases for tα = 1/Γ(1 − α), and tα = Γ(1 + α). Note in fact that, being

0 < α < 1, we have

0 <
1

Γ(1− α)
< Γ(1 + α) < 1,

and recall moreover that

Γ(1− α)Γ(1 + α) =
πα

sinπα
≥ 1,

and 1 < 1 + α < 2, so that 0 < Γ(1 + α) < 1, see Fig. 1.13: 0 < Γ(x) < 1 for 1 < x < 2,

and Γ(x) > 1 for 0 < x < 1.

All series involved are alternating series, i.e., their terms have alternating sign. Recall

that, when, in

∞∑
n=0

(−1)nan = a0 − a1 + a2 − a3 + . . . ,

we have an ≥ 0 for every n, and an → 0 as n→∞ monotonically, not only convergence

is guaranteed, but estimating the sum, say S, is possible, according to:

S ≥ 0, S ≤ a0, S ≥ a0 − a1, S ≤ a0 − a1 + a2, etc.

This property holds for all the geometric series involved, but it does not hold for the M-L

functions, since

xn

Γ(αn+ 1)

does not tend to zero monotonically, as n→∞, for every �xed x > 0 (for every α with

0 < α < 1 and n ∈ N, we have 0 < αn < 1 for all n < 1/α, hence Γ(αn + 1) < 1 if

1 < αn+ 1 < 2).

In this paper, we are only able to prove part of the conjecture, proceeding as done below.

We notice, however that the interval containing the smallest values of x (or t), is also the

most critical one, since, according to the numerical results, the validity of the conjecture

is more delicate to establish for such values, see Figs. 1.1�1.5, and Figs. 1.6�1.11.

(1) We �rst show that, for every 0 < x := tα < 1/Γ(1−α) (case (I)), and for every �xed

0 < α < 1, the M-L function eα(t) is a series with alternating signs and indeed with the

general term decaying monotonically to 0 as n→∞.
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Since the two geometric series corresponding to the rational functions gα(t) and fα(t)

enjoy the same property in such interval, estimates can be established in the form

(2)
gα(t) ≤ 1− xΓ(1− α) + x2Γ(1− α)2 ≤ 1− x

Γ(1 + α)
≤ eα(t)

for the lower bound, and

(3)
eα(t) ≤ 1− x

Γ(1 + α)
+

x2

Γ(2α+ 1)

≤ 1− x

Γ(1 + α)
+

x2

Γ(1 + α)2
− x3

Γ(1 + α)3
≤ fα(t)

for the upper bound.

As for (1), we de�ne

F (x, y) :=
xy

Γ(αy + 1)
=: ϕ(y),

i.e., we replace n ∈ N, with y ∈ R+
0 , for �xed x and α, with 0 < x := tα < 1/Γ(1− α),

0 < α < 1. Thus, we obtain ϕ(0) = 1 and

ϕ′(y) < 0 if and only if ψ(αy + 1) >
1

α
lnx ≡ ln t, (1.12)

where ψ denotes the logarithmic derivative of Γ.

Now, being just t > 0, the ln t on right-hand side can be either positive or negative.

However, con�ning t to being 0 < tα < 1/Γ(1− α) (case (I)), and being

ψ(αy + 1) ≥ −γ,

where γ = 0.57721... is the Euler-Mascheroni constant (since αy+ 1 ≥ 1), we infer that

ϕ′(y) < 0 holds true provided that 0 < tα ≤ e−αγ (approximately, 0 < t < 0.56, see

Fig. 1.13, (b)).

De�ning now

G(α) := e−αγΓ(1− α)

for 0 < α < 1, we have G(0+) = 1, and

G′(α) = −e−αγΓ(1− α)[γ + ψ(1− α)],

where from G′(α) ≥ 0 since ψ(1− α) ≤ −γ. Therefore G(α) > 1 for all y > 0, and this

amounts to the validity of our claim, i.e., that indeed tα < 1/Γ(1− α) < e−αy.
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Figure 1.13: (a) The Gamma function, Γ(x) and its reciprocal (dashed line); (b) the

psi function, ψ(x) := d
dx log Γ(x) ≡ Γ′(x)

Γ(x) .

As for (2), note that

gα(t) ≤ 1− xΓ(1− α) + x2Γ(1− α)2 ≤ 1− x

Γ(1 + α)
≤ eα(t),

after a little algebra, turns out to be equivalent to

tαΓ(1− α) ≤ 1− 1

Γ(1− α)Γ(1 + α)
= 1− sinπα

πα
,

and the right-hand side is a number less than 1. Hence, we have an e�ective restriction

to the values of t in case (I). It may be useful to plot the boundaries for t given by the

previous relation, i.e., the function

F (α) :=

[(
1− sinπα

πα

)
1

Γ(1− α)

]1/α

,

for 0 < α < 1, see Fig. 1.14.

As for (3),

eα(t) ≤ 1− x

Γ(1 + α)
+

x2

Γ(2α+ 1)

≤ 1− x

Γ(1 + α)
+

x2

Γ(1 + α)2
− x3

Γ(1 + α)3
≤ fα(t),
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Figure 1.14: Function F (α) vs α, for 0 < α < 1.

it is equivalent to (after a little algebra)

0 < tα < Γ(1 + α)

(
1− Γ(1 + α)2

Γ(2α+ 1)

)
.

The fraction on the right-hand side can be shown to be positive, by Alsina and Tomàs'

inequality [2],
1

n!
≤ Γ(1 + x)n

Γ(1 + nx)
≤ 1, 0 ≤ x ≤ 1, n ∈ N.

Hence this is indeed an e�ective restriction to the values of t in case (I).

1.3 Discretization of ordinary fractional derivatives

We will show in the next a scheme used to discretize the fractional derivatives and

compute the numerical solution of a fODE as in the next paragraph. It is known that the

�left-sided� Riemann-Liouville as well as the Caputo fractional derivative, say, v(γ)(t) :=a

Dγ
xv(t), can be approximated, at each node of the evenly spaced grid t := jτ , j =

0, 1, . . . , N , being N the number of nodes for the planned simulation time, and τ the

discretization time step-size, simultaneously, by the help of an upper triangular matrix

Bγ
N , as [

v
(γ)
N v

(γ)
N−1 ...v

(α)
1 v

(α)
0

]T
= B

(α)
N

[
vN vN−1 ...v1 v0

]T
(1.13)
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where

B
(γ)
N =

1

τγ



ω
(γ)
0 ω

(γ)
1

. . . . . . ω
(γ)
N−1 ω

(γ)
N

0 ω
(γ)
0 ω

(γ)
1

. . . . . . ω
(γ)
N−1

0 0 ω
(γ)
0 ω

(γ)
1

. . . . . .

· · · · · · · · · . . . . . .
...

0 · · · 0 0 ω
(γ)
0 ω

(γ)
1

0 0 · · · 0 0 ω
(γ)
0


(1.14)

ω
(γ)
j = (−1)j

(
γ

j

)
, j = 0, 1, ..., N, (1.15)

see [113].

Here, since we have enumerated the discretization nodes in a decreasing order, the role

of the matrices B(γ)
N , originally intended for backward fractional di�erences, and F (γ)

n ,

originally intended for forward fractional di�erences, is interchanged, comparing with the

notation of [113], where such matrices were introduced for the �rst time. However, we

keep the same notation, i.e. Bγ
N and F (γ)

n , for the backward and the forward fractional

di�erence approximation, respectively.

Similarly, the �right-sided� Riemann-Liouville or Caputo fractional derivative, v(γ)(t) :=x

Dγ
b v(t), can be approximated at each node of the evenly spaced grid, t := jτ , j =

0, 1, . . . , N , simultaneously, by the help of the upper triangular matrix F γN ,[
v

(γ)
N v

(γ)
N−1 ...v

(γ)
1 v

(γ)
0

]T
= F

(γ)
N

[
vN vN−1 ...v1 v0

]T
(1.16)

F
(γ)
N =

1

τγ



ω
(γ)
0 0 0 0 · · · 0

ω
(γ)
1 ω

(γ)
0 0 0 · · · 0

ω
(γ)
2 ω

(γ)
1 ω

(γ)
0 0 · · · 0

. . . . . . . . . . . . · · ·
...

ω
(γ)
N−1

. . . ω
(γ)
2 ω

(γ)
1 ω

(γ)
0 0

ω
(γ)
N ω

(γ)
N−1

. . . ω
(γ)
2 ω

(γ)
1 ω

(γ)
0


(1.17)

The symmetric Riesz derivative of order α can be approximated as the average of the

left- and the right-sided Riemann-Liouville derivatives, see [112, 113],

dαψ(x)

d|x|α
=R D

α
xψ(x) =

1

2

(
aD

α
xψ(x) + xD

α
b ψ(x)

)
, (1.18)

hence it can be approximated as a combination of the approximated values given by (1.15)

and (1.16), of the left- and right-sided Riemann-Liouville derivatives. Alternatively, one

can use the centered fractional di�erence approximation of the symmetric Riesz derivative
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proposed by M.D. Ortigueira [107, 108]. The general formula is the same, i.e.,

[
v

(α)
N v

(α)
N−1 ...v

(α)
1 v

(α)
0

]T
= R

(α)
M

[
vM vM−1 ...v1 v0

]T
(1.19)

In the �rst case, the approximation for the left-sided Caputo derivative is evaluated one

step ahead, while that for the right-sided Caputo derivative is taken one step back. This

leads to the matrix

R
(α)
M =

h−γ

2

[
−1UM + +1UM

]
(1.20)

where −1UM is de�ned by

−1UM = S1E
−
N+1,1UN+1E

−
N+1,1S

T
N+1 (1.21)

where En is the n × n identity matrix, S1 is obtained omitting only the �rst row of E,

S1,2 is obtained omitting only the �rst and the second row of E, S2 is obtained omitting

only the second row, and, in general, Sr1,r2,...,rk is obtained omitting the rows identi�ed

by the numbers r1, r2, ..., rk, E
+
N,p, p = 1, ..., N , with 1's on p-th diagonal above the main

diagonal and zeros elsewhere, and matrices E−N,p, p = 1, ..., N , with 1's on p-th diagonal

below the main diagonal and zeros elsewhere. Note that, according to the previous

notation, E±N,0 ≡ EN coincides with the identity matrix IN . We denote with UN the

upper triangular matrix

UN =



ω0 ω1 ω2
. . . ω

(γ)
N−1 ω

(γ)
N

0 ω0 ω1
. . . . . . ωN−1

0 0 ω
(γ)
0

. . . ω2 · · ·

0 0 0
. . . ω1 ω2

... · · · · · · · · · ω0 ω1

0 0 0 · · · 0 ω0


(1.22)

while +1UM is de�ned by

+1UM = SN+1E
+
N+1,1UN+1E

+
N+1,1S

T
1 . (1.23)
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We can then construct the following symmetric matrix

R
(α)
M =



ω
(α)
0 ω

(α)
1 ω

(α)
2 ω

(α)
3 · ω

(α)
M

ω
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1 ω

(α)
0 ω

(α)
1 ω

(α)
2 · ω

(α)
M−1

ω
(α)
2 ω

(α)
1 ω

(α)
0 ω

(α)
1 · ω

(α)
M−2

...
. . . . . . . . . · · ·

...

ω
(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0 ω

(α)
1

ω
(α)
M ω

(α)
M−1

. . . ω
(α)
2 ω

(α)
1 ω

(α)
0


(1.24)

see [107],

ω
(α)
k =

(−1)kΓ(α+ 1) cos(απ/2)

Γ(α/2− k + 1)Γ(α/2 + k + 1)
, k = 0, 1, . . . ,M. (1.25)

Both these approximations of either Caputo or Riemann-Liouville derivatives yield, in

practice, the same numerical results. In view of the numerical solution of fractional

partial di�erential equations, this formulation leads to a well-posed problem for the

resulting algebraic system.

1.4 A method for computing Mittag-Le�er functions

In this section, we compute the M-L function eα(t) on some large t-interval of the real

positive line, and for several values of α, α ∈ (0, 1), solving numerically certain fODEs

satis�ed by it.

Several algorithms have been developed over the years to compute the M-L functions. As

often computing a variety of Special Functions, several di�erent methods are adopted on

di�erent intervals of t: power series for small arguments, asymptotic approximations for

large arguments, integral representations for intermediate values. A code is available in

MATLAB, based on these strategies. This code is due to I. Podlubny and M. Kacenak,

and was constructed following contributions of R. Goren�o, J. Loutchko, and Yu. Luchko,

see [66, 67]. Such MATLAB code is a routine which evaluates the Mittag-Le�er function

with two parameters (sometimes called there �generalized exponential function�), see [99].

Recently R. Garrappa has written a code available in MATLAB routines [61, 62], which

evaluates the Mittag-Le�er function with 1, 2 or 3 parameters. The three parameters

ML function is also known as the Prabhakar function.

Within Mathematica, there is the function called MittagLe�erE, suitable for both, sym-

bolic and numerical manipulations, providing values of the M-L function [98]. This code

is based on the work of Goren�o et al. [66, 67].
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Since the M-L function plays for fODEs the same role of the exponential for classical

ODEs, and in particular, eα(t) solves the simple fODE

(A) CDα
t u = −u, t > 0, u(0+) = 1,

where CDα
t u(t) is the Caputo derivative, one could evaluate eα(t) solving numerically

such a fODE. This is the method we shall adopt. More precisely, we used a predictor-

corrector (pc, for short) method, based on the so-called Grünwald-Letnikov (G-L) ap-

proximation of the Caputo derivative, developed by K. Diethelm [46]. We then improve

this algorithm setting up an adaptive (say, apc) version of it. The idea, as usual, is

to choose locally a step size inversely proportional to the size of the derivative of the

solution being computed. In practice, we choose, at the ith integration step, the time

step

hi :=
c h

|eα(ti)− eα(ti−1)|
,

for i = 1, 2, . . . , N , ti =
∑i

j=1 hj , t0 = 0, h being the initial step size, and

c =
e′α(ti−2)− e′α(ti−3)

e′α(ti−1)− e′α(ti−2)
,

where e′α denotes the (classical) �rst derivative of e′α.

Convergence and accuracy of methods of this kind were studied by K. Diethelm et al. in

[49]. An implementation with multiple corrector iterations was proposed and discussed

for �multiterm� fODEs in [48]. In such implementation, the discrete convolutions appear-

ing in the G-L formulation are evaluated by means of the FFT algorithm as described in

[70]. This allows to keep the computational cost to order O(N logN), instead of O(N2),

as it occurs in any straightforward implementation. Here N is the number of time-

points where the solution is evaluated, i.e., h = T/N , assuming [0, T ] to be the interval

of integration. The stability properties of this implementation of the aforementioned

Adams-Bashforth-Moulton-type method have been studied in [60].

In Figs. 1.15-1.19, we compare the numerical solution, u(t), to equation (A), computed by

Diethelm's pc algorithm, with ePKα (t), obtained by the MATLAB code due to Podlubny

and Kacenak.

We further validate Diethelm's pc method computing the numerical errors made in a case

when the M-L function is explicitly known, namely when α = 1/2. In fact, e1/2(t) ≡
E1/2(−t1/2) = et erfc(t1/2), which was computed in double precision. In Table 1.1, we

show such errors.
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Figure 1.15: u(t) is the numerical solution of the fODE in (A), while ePKα (t) is
computed by the MATLAB code due to Podlubny and Kacenak, for α = 0.25.
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Figure 1.16: u(t) is the numerical solution of the fODE in (A), while ePKα (t) is
computed by the MATLAB code due to Podlubny and Kacenak, for α = 0.50.

In Tables 1.2�1.17, we compare the CPU times spent by the pc and the apc algorithm,

with those spent by the PK (Podlubny-Kacenak) MATLAB code, as well as by the

Mathematica code (labeled by M). This is done for several values of the integration step

size, h, and of the parameter α, at some times.

The results provided by the MATLAB code were obtained always requiring a 10−5 ac-

curacy, while we chose step sizes (or initial step sizes, when using the apc algorithm) so

to keep the discrepancy with the results of the PK algorithm within the same accuracy.
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Figure 1.17: u(t) is the numerical solution of the fODE in (A), while ePKα (t) is
computed by the MATLAB code due to Podlubny and Kacenak, for α = 0.75.
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Figure 1.18: u(t) is the numerical solution of the fODE in (A), while ePKα (t) is
computed by the MATLAB code due to Podlubny and Kacenak, for α = 0.90.

It turns out that the pc algorithm performs always better than the Mathematica code,

for every value of α and time, while it performs better than the PK method with some

limitations on the values of α and t.

In Table 1.2, the pc method outperforms the other two, when α is not too small and t

is not too large. Note that CTPK/CTpc is about between 3.5 and 4.5. in Table 1.3, it

is shown that at larger times the PK method wins for α larger than 0.5. This is due
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Figure 1.19: u(t) is the numerical solution of the fODE in (A), while ePKα (t) is
computed by the MATLAB code due to Podlubny and Kacenak, for α = 0.95.

h εpc(20) εapc(20) εapc(100)

0.05 2.7210 · 10−9 6.6751 · 10−10 5.1283 · 10−7

0.01 2.6820 · 10−9 6.5623 · 10−10 5.0666 · 10−7

0.005 2.3950 · 10−9 6.4983 · 10−10 5.0189 · 10−7

Table 1.1: Numerical errors, in the in�nity norm, ε†(T ) := max0≤t≤T
∣∣e†α(t)− eα(t)

∣∣,
where the superscript † stands for pc or apc and e†α(t) is the solution of equation
(A) computed by the method denoted by †. We chose α = 1/2 so that e1/2(t) ≡
E1/2(−t1/2) = et erfc(t1/2) (computed in double precision), and several values of h.

likely to a larger cumulated error in the integration of the fODE up to large time, which

suggests that an adaptive strategy may resolve the issue,

In Tables 1.4�1.11, we chose more values of α, in the same range as above. In Tables 1.12-

1.15, we also compare the CPU time spent using our apc algorithm. Clearly, such a

method outperforms the PK method, signi�cantly, for all values of α ∈ (0.25, 0.99) and

even at times as large as t = 500.

In Tables 1.16, 1.17, the CPU times spent by pc, apc, PK, and M methods are shown,

even for small values of α. When α is small, eα(t) tends rapidly to have a very smooth

behavior, but it becomes very steepen near t = 0. Therefore, the pc method, with a

constant step size, h, requires a small value of h (see Table 1.10). A clear advantage is

achieved adopting an adaptive strategy (see Table 1.11).

In Tables 1.18, 1.19, the memory (RAM) required by all methods is computed for several

values of α and t = 20 or t = 50, respectively. It seems that the apc algorithm always
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needs signi�cantly less memory than the others, while the pc algorithm may need more

memory than the PK method when α is very close to 1.

α CTpc CTPK CTM
0.25 0.4536 2.2464 0.6300
0.50 0.4212 2.1060 1.2950
0.60 0.4212 2.1528 1.8311
0.65 0.4212 2.1684 2.1641
0.70 0.4212 2.1060 2.5231
0.75 0.4212 2.1528 2.6271
0.80 0.4212 2.1372 2.7231
0.85 0.4056 2.1372 2.7691
0.90 0.4212 2.0124 2.8381
0.95 0.4212 1.7160 2.9581
0.99 0.4368 1.5132 3.4801

Table 1.2: CPU time, in seconds, spent to compute eα(t) with the predictor-corrector
(pc) method to integrate equation (A), the Podlubny-Kacenak (PK)MATLAB routine,
and the Mathematica routine (CTpc, CTPK , and CTM , respectively), for t = 20, step-

size h = 0.05, and several values of α ∈ [0.25, 0.99].

α CTpc CTPK CTM
0.25 6.7656 38.4219 12.9012
0.5 7.3906 7.0000 12.9012
0.6 6.8750 4.0781 13.5720
0.65 6.8125 3.2813 14.0868
0.7 6.6875 2.8594 14.3208
0.75 6.7969 2.5313 12.6048
0.8 6.7031 2.3438 14.4144
0.85 6.7500 2.2188 18.7356
0.9 6.9219 2.0938 19.6788
0.95 7.2813 1.9844 22.5996
0.99 6.8906 1.8438 22.8696

Table 1.3: CPU times, in seconds, spent to compute eα(t) with the pc method to
integrate equation (A), the MATLAB routine, and the Mathematica routine (CTpc,
CTPK , and CTM , respectively), for t = 1000, step-size h = 0.05, and several values of

α ∈ [0.25, 0.99].
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α CTpc CTPK CTM α CTpc CTPK CTM α CTpc CTPK CTM
0.25 2.1996 9.7345 3.1721 0.5 2.0592 10.0465 5.9003 0.75 2.0124 9.6721 12.6787
0.275 1.9656 9.5005 3.2921 0.525 2.1528 10.1089 7.0964 0.775 1.9500 9.6721 13.4957
0.3 1.9188 9.8125 3.3551 0.55 2.1372 10.0777 7.4664 0.8 1.9032 9.7033 13.6067

0.325 1.9032 9.6877 3.8442 0.575 2.3712 10.6081 8.5274 0.825 1.9500 9.5941 13.8967
0.35 2.0124 9.5005 3.9362 0.6 2.0904 10.3117 8.8475 0.85 2.3556 9.8593 14.5608
0.375 1.8876 9.5473 4.3372 0.625 2.0436 9.8437 9.7615 0.875 1.9344 9.5629 13.9978
0.4 2.3088 11.1541 4.6392 0.65 2.0592 10.3429 10.8666 0.9 1.9500 8.2993 14.1178

0.425 2.1372 10.3897 5.1662 0.675 2.3556 10.1557 11.6736 0.925 1.9501 8.2993 14.4088
0.45 2.3556 10.2181 5.8443 0.7 1.9188 9.5629 12.7507 0.9500 1.9812 7.7532 14.6948
0.475 2.1372 9.8749 6.2123 0.725 1.9032 9.5473 12.9007 0.99 2.1216 7.0202 17.0029

Table 1.4: CPU times, in seconds, spent to compute eα(t) with the pc method to
solve (A), the MATLAB routine, and the Mathematica routine (CTpc, CTPK , and
CTM , respectively), for t = 20, step-size h = 0.01, and several values of α ∈ [0.25, 0.99].

α CTpc CTPK CTM
0.25 24.5938 89.1094 33.3996
0.275 18.9375 107.5 34.6788
0.3 23.25 125.2344 35.9268

0.325 22.2656 127.9375 37.8144
0.35 20.8281 104.0313 35.0688
0.375 21.9219 93.2344 36.6288
0.4 19.2969 88.7188 30.9192

0.425 18.5 62.9375 39.0624
0.45 18.2188 52.6875 37.2528
0.475 18.1094 36.4688 37.9080

Table 1.5: CPU times, in seconds, spent to compute eα(t) with the pc method to solve
(A), the MATLAB routine, and the Mathematica routine (CTpc, CTPK , and CTM ,
respectively), for t = 500, step-size h = 0.01, and several values of α ∈ [0.25, 0.475].

α CTpc CTPK CTM
0.5 19.1094 28.5469 28.1580

0.525 18.3438 23.25 39.1248
0.55 18.8594 22.1563 39.5928
0.575 18.2656 18.375 39.8112
0.6 18.4688 16.5156 34.6632

0.625 18.3125 14.6563 39.2496
0.65 18.6719 13.1563 42.1668
0.675 20.125 11.9375 43.6800
0.7 18.5156 10.875 44.5692

0.725 19.9063 12.2656 48.7188

Table 1.6: CPU times, in seconds, spent to compute eα(t) with the pc method to solve
(A), the MATLAB routine, and the Mathematica routine (CTpc, CTPK , and CTM ,
respectively), for t = 500, step-size h = 0.01, and several values of α ∈ [0.5, 0.725].
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α CTpc CTPK CTM
0.75 18.6875 9.0938 39.9984
0.775 18.3281 8.8594 51.2148
0.8 19.9688 8.75 47.3772

0.825 19.5313 8.2969 56.5344
0.85 19.8594 7.7344 61.5141
0.875 18.9063 7.3281 58.3909
0.9 20.1563 7.3125 62.9305

0.925 20.1875 11.3281 67.9537
0.95 19.0781 6.8281 72.3997
0.99 19.7813 6.2031 81.8845

Table 1.7: CPU times, in seconds, spent to compute eα(t) with the pc method to solve
(A), the MATLAB routine, and the Mathematica routine (CTpc, CTPK , and CTM ,
respectively), for t = 500, step-size h = 0.01, and several values of α ∈ [0.75, 0.99].

α CTpc CTPK CTM
0.25 0.4536 2.2464 0.6300
0.50 0.4212 2.1060 1.2950
0.60 0.4212 2.1528 1.8311
0.65 0.4212 2.1684 2.1641
0.70 0.4212 2.1060 2.5231
0.75 0.4212 2.1528 2.6271
0.80 0.4212 2.1372 2.7231
0.85 0.4056 2.1372 2.7691
0.90 0.4212 2.0124 2.8381
0.95 0.4212 1.7160 2.9581
0.99 0.4368 1.5132 3.4801

Table 1.8: CPU times, in seconds, to compute eα(t) with the pc method to solve
(A), the MATLAB routine, and the Mathematica routine, (CTpc, CTPK , and CTM ,
respectively), for t = 20, step-size h = 0.005, and several values of α ∈ [0.25, 0.99].

α CTpc CTPK CTM
0.25 24.5938 89.1094 55.3582
0.275 18.9375 107.5 57.8141
0.3 23.25 125.2344 52.5701

0.325 22.2656 127.9375 62.8804
0.35 20.8281 104.0313 62.6102
0.375 21.9219 93.2344 57.2201
0.4 19.2969 88.7188 56.5101

0.425 18.5 62.9375 74.0241
0.45 18.2188 52.6875 77.6622
0.475 18.1094 36.4688 83.7943

Table 1.9: CPU times, in seconds, spent to compute eα(t) with the pc method to solve
(A), the MATLAB routine, and the Mathematica routine (CTpc, CTPK , and CTM ,
respectively), for t = 50, step-size h = 0.001, and several values of α ∈ [0.25, 0.475].
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α CTpc CTPK CTM
0.5 19.1094 28.5469 72.8221

0.525 18.3438 23.25 95.5402
0.55 18.8594 22.1563 102.0492
0.575 18.2656 18.375 110.0062
0.6 18.4688 16.5156 105.3102

0.625 18.3125 14.6563 116.0803
0.65 18.6719 13.1563 132.8942
0.675 20.125 11.9375 142.1564
0.7 18.5156 10.875 145.8522

0.725 19.9063 12.2656 188.9640

Table 1.10: CPU times, in seconds, spent to compute eα(t) with the pc method to
solve (A), theMATLAB routine, and theMathematica routine (CTpc, CTPK , and CTM ,
respectively), for t = 50, step-size h = 0.001, and several values of α ∈ [0.5, 0.725].

α CTpc CTPK CTM
0.75 18.6875 9.0938 199.7044
0.775 18.3281 8.8594 236.1165
0.8 19.9688 8.75 269.4684

0.825 19.5313 8.2969 288.3674
0.85 19.8594 7.7344 1142.2454
0.875 18.9063 7.3281 332.3783
0.9 20.1563 7.3125 374.6992

0.925 20.1875 11.3281 349.9398
0.95 19.0781 6.8281 352.8882
0.99 19.7813 6.2031 411.0209

Table 1.11: CPU times, in seconds, spent to compute eα(t) with the pc method to
solve (A), the MATLAB routine, and theMathematica routine (CTpc, CTPK , and CTM ,
respectively), for t = 50, step-size h = 0.001, and several values of α ∈ [0.75, 0.99].

α CTapc CTPK CTM
0.25 0.024994 6.7656 28.3452
0.275 0.023783 6.9375 29.4840
0.3 0.026653 6.8125 28.3452

0.325 0.026868 6.8906 30.6384
0.35 0.028212 6.7969 31.0908
0.375 0.029891 6.7813 28.8288
0.4 0.030899 6.8125 26.4576

0.425 0.032617 6.7813 33.9768
0.45 0.032914 6.7969 34.1172
0.475 0.033921 6.375 35.0688

Table 1.12: CPU times, in seconds, spent to compute eα(t) with our adaptive

predictor-corrector (apc) method to solve (A), the MATLAB routine, and the Math-

ematica routine (CTapc, CTPK , and CTM , respectively), for t = 200, initial step-size
h = 0.05, and several values of α ∈ [0.25, 0.475].
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α CTapc CTPK CTM
0.5 0.034191 4.8594 26.4888

0.525 0.035265 3.9688 37.1124
0.55 0.036842 3.2656 38.9688
0.575 0.035936 2.75 47.754
0.6 0.036354 2.6094 49.4718

0.625 0.035936 2.2656 48.0817
0.65 0.035936 2.4375 53.4410
0.675 0.036354 1.7188 49.8268
0.7 0.035187 1.5469 49.3858

0.725 0.035675 1.3906 57.4428

Table 1.13: CPU times, in seconds, spent to compute eα(t) with our adaptive

predictor-corrector (apc) method to solve (A), the MATLAB routine, and the Math-

ematica routine (CTapc, CTPK , and CTM , respectively), for t = 200, initial step-size
h = 0.05, and several values of α ∈ [0.5, 0.725].

α CTapc CTPK CTM
0.75 0.034593 1.2656 72.1831
0.775 0.034257 1.1563 82.9037
0.8 0.034366 1.1406 67.93488

0.825 0.032914 1.0469 78.40548
0.85 0.032242 0.96875 88.47792
0.875 0.031234 0.92188 103.7479
0.9 0.030563 0.875 109.1712

0.925 0.029891 0.8125 119.2497
0.95 0.029891 0.76563 132.8766
0.99 0.02722 0.85938 152.7927

Table 1.14: CPU times, in seconds, spent to compute eα(t) with our adaptive

predictor-corrector (apc) method to solve (A), the MATLAB routine, and the Math-

ematica routine (CTapc, CTPK , and CTM , respectively), for t = 200, initial step-size
h = 0.05, and several values of α ∈ [0.75, 0.99].

α CTapc CTPK CTM α CTapc CTPK CTM α CTapc CTPK CTM
0.25 0.024601 8.5625 3.5632 0.5 0.029357 2.6406 2.8236 0.75 0.025073 0.84375 4.3112
0.275 0.022399 8.5 3.6282 0.525 0.029085 2.2031 3.9468 0.775 0.024404 0.78125 5.8613
0.3 0.023736 8.4375 3.6022 0.55 0.029085 1.8438 4.0404 0.8 0.024058 0.78125 5.2022

0.325 0.024739 8.4063 4.2782 0.575 0.02875 1.5781 4.2120 0.825 0.022945 0.73438 6.1323
0.35 0.026076 8.4531 4.4932 0.6 0.028416 1.5 3.6816 0.85 0.021933 0.6875 6.4393
0.375 0.026995 8.4219 3.5412 0.625 0.028082 1.3281 4.2432 0.875 0.021308 0.65625 6.4583
0.4 0.028266 8.4531 3.0576 0.65 0.027748 1.1719 5.0549 0.9 0.020058 0.625 7.3984

0.425 0.028082 5.9688 3.5880 0.675 0.027332 1.2031 4.7922 0.925 0.018877 0.59375 8.0824
0.45 0.029557 4.4063 3.6660 0.7 0.02641 0.96875 4.8472 0.95 0.018053 0.5625 8.0824
0.475 0.028482 3.3906 3.8220 0.725 0.025742 0.90625 5.0542 0.99 0.016559 0.54688 8.7645

Table 1.15: CPU times, in seconds, spent to compute eα(t) with our adaptive

predictor-corrector (apc) method to solve (A), the MATLAB routine, and the Mathe-

matica routine (CTapc, CTPK , and CTM , respectively), for T = 500, step-size h = 0.1,
and several values of α ∈ [0.25, 0.99].
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α CTpc CTPK CTM
0.01 4.8828 12.5737 4.95400
0.025 3.7908 11.9029 4.6200
0.05 3.8223 12.4489 4.7620
0.1 3.6666 12.7765 4.6420
0.2 3.9312 12.5113 5.3720
0.3 4.0092 12.6361 6.0020
0.4 3.7128 12.3865 9.1880
0.5 3.8844 12.1525 13.1920
0.6 3.8688 12.1213 18.6180
0.7 3.822 12.1993 5.5400
0.8 3.7752 11.9809 27.8501
0.9 4.3992 12.0277 28.4761
0.95 4.0092 12.0121 28.2961
0.975 3.6816 11.9653 29.1401
0.99 3.8064 12.0277 30.6440

Table 1.16: CPU times, in seconds, spent to compute eα(t) with the pc method
to solve (A), the MATLAB routine, and the Mathematica routine (CTpc, CTPK , and
CTM , respectively, for t = 20, step-size h = 0.005, and several values of α ∈ [0.01, 0.99].

α CTpc CTapc CTPK CTM
0.01 8.6563 0.0164 43.7969 15.8496
0.025 8.0781 0.0091 42.7500 15.8340
0.05 8.2031 0.0074 42.8594 15.5532
0.1 8.2656 0.0116 42.5938 18.1370
0.2 8.2813 0.0221 42.5938 18.7040
0.3 9.0156 0.0329 43.2188 18.9180
0.4 8.2031 0.0449 43.8125 22.7463
0.5 8.6719 0.0581 42.7344 26.6845
0.6 8.0156 0.0731 34.5000 33.4169
0.7 8.2500 0.0849 18.0469 41.5683
0.8 8.2188 0.1109 13.9375 65.8827
0.9 8.3281 0.1194 10.3125 78.7445
0.95 8.8125 0.1326 9.2500 85.0825
0.975 8.6250 0.1352 8.2188 99.8176
0.99 8.8594 0.1428 7.6094 106.7241

Table 1.17: CPU times, in seconds, spent to compute eα(t) with the pc method,
or with our apc (adaptive predictor-corrector) method to solve (A) , the MATLAB

routine, and the Mathematica routine (CTpc, CTapc, CTPK , and CTM , respectively),
for t = 100, initial step-size h = 0.005, and several values of α ∈ [0.01, 0.99].
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α RAMpc RAMPK RAMM

0.01 4309 5484 10776
0.025 10202 12985 25512
0.05 19947 25388 49880
0.1 45056 57344 112664
0.2 111640 142087 279160
0.3 189422 241082 473656
0.4 218574 278185 546552
0.5 194835 247972 487192
0.6 276667 352122 691816
0.7 435008 553646 1087752
0.8 438456 558036 1096376
0.9 438488 558076 1096456
0.95 438488 558076 1096456
0.975 438642 558272 1096840
0.99 438888 558585 1097456

Table 1.18: RAM, in MegaBytes, required to compute eα(t) with the pc method
to solve equation (A), the MATLAB routine, and Mathematica's routine (RAMpc,
RAMPK , and RAMM , respectively), for t = 20, step-size h = 0.005, and several values

of α ∈ [0.01, 0.99].

α RAMpc RAMapc RAMPK RAMM

0.01 38191 725 193231 69928
0.025 35640 404 188613 69859
0.05 36192 320 189095 68620
0.1 36467 518 187793 80020
0.2 36537 977 187938 82522
0.3 39776 1455 190681 83466
0.4 36192 1987 193300 100356
0.5 38260 2569 188544 117732
0.6 35364 3220 152214 147435
0.7 36399 3744 80064 183379
0.8 36261 1897 61492 290674
0.9 36743 5266 45498 347420
0.95 38880 5854 40811 374383
0.975 38053 5964 36261 440395
0.99 39087 6304 33572 470866

Table 1.19: RAM, in MegaBytes, required to compute eα(t) with the pc method or
with our apc (adaptive predictor-corrector) method to solve equation (A), the MAT-

LAB routine, and Mathematica's routine (RAMpc, RAMapc, RAMPK , and RAMM ,
respectively), for t = 50, step-size h = 0.005, and several values of α ∈ [0.01, 0.99].



Chapter 2

Justifying fractional di�usion

modeling through realistic data

In this chapter, we give some justi�cation of the widespread use of fPDE to model

a number of physical phenomena, such as, for instance, �uid �ow of tracers through

porous media.

Several laboratory experiments have been performed concerning one-dimensional �ow

in order to determine the �ow rate through a uniformly packed column �lled in by

certain porous media. This measurements were done using permeability meter. The

experimental setup was designed aiming at determining the memory properties of this

kind of dynamical behavior, which is well reproduced through a suitable fPDE modeling.

Then, the parameters estimated by using the equation which describes the instantaneous

�ux rate through a given porous medium layer when a constant pressure is applied on

the medium lower boundary. One can use water as �uid, and a variety of porous media.

We made a numerical approximation of experimental data to describe anomalous di�u-

sion through porous media, and compared our numerical results with those obtained by

laboratory tests, and observed the matching for certain values of the order of fractional

derivatives and initial conditions,

2.1 Problem statement

Consider the one-dimensional fractional di�usion equation fractional in both, space and

time,

CD
γ
t u = KRLD

α
xu+ f(x, t), (2.1)

39
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where u = u(x, t) represents, e.g., pressure, K > 0, 0 < γ < 1, 1 < α < 2, x ∈
[a, b], t ∈ [0, T ], for some a, b, T > 0, along with the boundary conditions u(a, t) =

u1, u(b, t) = u2 and the initial condition u(x, 0) = u0(x), for some u1, u2, and u0(x),

f(x; t) being some external source. We solved numerically such problem using �nite

di�erence Grünwald-Letnikov (GL) approximations. We started considering a mesh in

the space-time region [a, b]× [0, T ], where numerical estimates, say U (n)
i , for the solution

u(xi, t
n) = u

(n)
i , where(xi, t

n) denote the coordinates of the (i, n) node of the mesh. We

then replaced the continuous fractional derivatives operators, in both, time and space,

in equation (2.1), with their GL approximation. Thus, we obtain a di�erence equation

whose solution leads to the �nite di�erence estimate of the exact solution, u(x, t), at the

mesh points. For a given fractional di�erential, one can consider several possible forms

of di�erence operators, and hence several di�erent �nite di�erence methods to solve the

ensuing �nite di�erence equation.

We should recall, at this point, that many authors have considered similar problems, but

in the most often adopting a fractional order only in either time or space, see Yuste et

al. [54, 146�148], e.g.

Here we assume a uniform spatial step-size, ∆x := xi+1−xi, and consider the space frac-

tional di�erential operator in the sense of Riemann-Liouville, that we will approximate

by means of �GL di�erences� while we will use fractional time derivatives in the sense of

Caputo, using again GL di�erences with a constant time step-size ∆t := tn+1 − tn.

We thus obtain a �nite di�erence algorithm ending up with a linear system like

U
(n+1)
i = (A−M)U

(n)
i ,

where A andM represent the discretized time and space operators, respectively, obtained

through the GL discretization, see the Introduction, and [113].

A code was then written to compute the parameters governing the �memory e�ects�

along with the fractional order of the derivatives, by minimizing the L2 and the L∞

norms (with respect to space) of the discrepancies between the experimental the numer-

ically computed values obtained by solving (numerically) the aforementioned anomalous

di�usion equation. These value are those of the pressure at the upper boundary of the

domain occupied by the porous medium.

Recently, in [50], experimental results have been obtained to estimate the physical pa-

rameters governing the dynamical behavior of the �ow of tracers through a certain porous

medium, in particular about the aforementioned memory e�ects, described by param-

eters such as, for instance, the order of the fractional derivative with respect to time.
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Memory e�ects may also due to the size of the tank containing the porous medium,the

particle size distribution, the stability of the initial particle distribution, etc.

The function to minimize is then the error, the discrepancy, between the numerically

computed value, U (n), and the pressure obtained by laboratory experiments say u, that

is ‖u− U (n)‖k, k = 2 or k =∞,

2.2 Discretization of partial derivatives in time and space

The simplest implicit discretization scheme (the stencil) for classical di�usion equations

is shown on Fig. 2.1, where two nodes are used to approximate the time derivative, and

nodes are used for a symmetric approximation of the the space derivative. Therefore, the

stencil in Fig. 2.1 involves only two time levels. When considering fractional-order time

derivatives, all time levels should be involved, starting from the very beginning. This is

shown in Fig. 2.2 (where �ve time levels are shown).

Similarly, if, in addition to a fractional time derivative, some fractional-order space

derivatives are involved, all spatial nodes, from the leftmost to the rightmost, at all

time levels, should be used. This more general case is depicted in Fig. 2.3.

Let us consider the nodes (ih; jτ), j = 0, 1, 2, ..., n, corresponding to all time levels at

i-th space discretization node; here h is the space discretization step, and then the

approximation through the B matrix introduced above[
u

(γ)
i,N u

(γ)
i,N−1 ...u

(γ)
i,2 u

(γ)
i,1 u

(γ)
i,0

]T
= B

(γ)
N

[
ui,N ui,N−1 ...ui,2 ui,1 ui,0

]T
(2.2)

In order to obtain a simultaneous approximation of the time derivative, and then of the

space derivatives of u(x; t) of order γ, in time for instance,at each grid point shown in

Fig. 1.1, we need to arrange all function values, uij , at the discretization nodes, in a

column vector,

uNM =

[
uM,N uM−1,N · · · u1,N u0,N

uM,N−1 uM−1,N−1 · · · u1,N−1 u0,N−1

· · · · · ·

uM,1 uM−1,1 · · · u1,1 u0,1

uM,0 uM−1,0 · · · u1,0 u0,0

]T
(2.3)
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Figure 2.1: A stencil for integer-order derivatives.

Figure 2.2: A stencil in case of fractional time derivative.

Figure 2.3: A stencil in case of fractional time and spatial derivatives.

So, as shown in (2.4), we can put all the numerical values of the solution in a matrix,

which contains the numerical results for every discretized value of time and space. The

matrix before represent the iteration matrix which give the discretization U
(γ)
t of the

fractional partial derivative of order γ with respect to time, it can be written as the

Kronecker product of the matrix B(γ)
N , corresponding to the fractional ordinary derivative

of order γ, and the identity matrix, IM . Recall that here N is the number of time steps

and M is the number of space discretization nodes,

T
(γ)
MN = B

(γ)
N ⊗ IM , (2.4)

this stencil is depicted in Fig. 2.5.

Similarly, the matrix governing the transformation of the vector U into the vector U (α)
x

of the fractional partial space derivative of order α can be obtained as the Kronecker
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Figure 2.4: Nodes and their right-to-left, and bottom-to-top numbering.

Figure 2.5: Discretization nodes of partial derivatives.

product of the unit matrix IN , whereN is the number of the space nodes in the mesh. The

matrix R(α)
N , which corresponds to a symmetric ordinary derivative of order α [107, 108],

where N is the number of time steps is

S
(γ)
MN = IN ⊗R(α)

M . (2.5)

All this is illustrated in Fig.2.5, where the nodes in black and gray (corresponding to all

discretization nodes, from the leftmost to the rightmost ones) are used to approximate

the symmetric fractional-order derivative at the node in gray.

With these approximations for the fractional partial derivatives made with respect to

both variables, we can discretize at once the fractional di�usion equation in (4.1), (see
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Figure 2.6: Discretization nodes of partial derivatives and of the equation.

Fig. 2.6), that is, writing χ := a,

C
0 D

γ
t − χ

∂α

∂|x|α
= f(x; t), (2.6)

we obtain {
B

(γ)
M ⊗ IN − χIM ⊗R

(α)
N

}
uMN = fMN . (2.7)

Here, the system's matrix has the structure shown in Fig. 2.7.

Figure 2.7: The structure of the matrix of the resulting algebraic system.



Fractional di�usion modeling through realistic data 45

2.3 Numerical examples

Example 1. Consider the one-dimensional fractional di�usion equation in space and

time

CD
γ
xu = KGLD

α
xu, (x, t) ∈ (0, 1)× (0, T ], (2.8)

satis�ed by u = u(x, t), with K > 0, 0 < γ < 1, 1 < α < 2, under the boundary

conditions u(0, t) = u(1, t) = 0, and the initial condition u0(x) = 2
5x(1− x); u represent

the solution provided by the experimental data.

Figure 2.8: The data.

Given the data in Fig. 2.1, i.e., the values of u(x, t) obtained experimentally, we performed

a �tting of them through equation (2.8), for several values of the parameters involved

by the model. All data were normalized in the space range [0, 1], by dividing the space

values for bigger one of them.

In the next tables, are results of discrepancy between the numerical solution and the

laboratory data, applied to the equation with varying values of γ ed α, we computed

also the time T when the minimum discrepancy between the numerical solution the

solution provided by the experimental data is attained.

In the following Tables, Nx is the number of points of the space-grid, and Nt is the

number of time iterations, T2 and T∞ are the times required to attain the aforemen-

tioned minimum discrepancy between u and Un(), computed in l2 and in l∞ norm. We

considered a few values for γ and α, and chose K = 1.

Inspecting all the previous tables, we can see that, in general, the best results are achieved

for α = 1.9, and, more precisely, correspondingly to the pair (γ, α) = (0.7, 1.9). When,

roughly, γ = 0.8 or 0.9, the best results are obtained in the �nal time. This suggests that
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(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
(0.1, 1.1) 21 37 1 1 10.310497 2.747557
(0.1, 1.2) 21 37 1 1 8.520539 2.309313
(0.1, 1.3) 21 37 1 1 6.989970 1.920353
(0.1, 1.4) 21 37 1 1 5.700736 1.583714
(0.1, 1.5) 21 37 1 1 4.626083 1.297250
(0.1, 1.6) 21 37 1 1 3.736588 1.056232
(0.1, 1.7) 21 37 1 1 3.003789 0.854992
(0.1, 1.8) 21 37 1 1 2.402051 0.687873
(0.1, 1.9) 21 37 1 1 1.909298 0.549699

Table 2.1: γ = 0.1 and α = 1.1, ..., 1.9.

(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
(0.2, 1.1) 21 37 1 1 4.974169 1.289789
(0.2, 1.2) 21 37 1 1 4.407628 1.147597
(0.2, 1.3) 21 37 1 1 3.854292 1.008202
(0.2, 1.4) 21 37 1 1 3.327019 0.875724
(0.2, 1.5) 21 37 1 1 2.835534 0.752893
(0.2, 1.6) 21 37 1 1 2.386288 0.641281
(0.2, 1.7) 21 37 1 1 1.982675 0.541553
(0.2, 1.8) 21 37 1 1 1.625573 0.453704
(0.2, 1.9) 21 37 1 1 1.314016 0.377275

Table 2.2: γ = 0.2 and α = 1.1, ..., 1.9.

(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
(0.3, 1.1) 21 37 1 1 1.972317 0.570971
(0.3, 1.2) 21 37 1 1 1.804314 0.517336
(0.3, 1.3) 21 37 1 1 1.628181 0.462917
(0.3, 1.4) 21 37 1 1 1.447909 0.420117
(0.3, 1.5) 21 37 1 1 1.267220 0.375917
(0.3, 1.6) 21 37 1 1 1.089604 0.331684
(0.3, 1.7) 21 37 1 1 0.918333 0.288565
(0.3, 1.8) 21 37 1 1 0.756458 0.247465
(0.3, 1.9) 21 37 1 1 0.606827 0.209066

Table 2.3: γ = 0.3 and α = 1.1, . . . , 1.9.

(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
(0.4, 1.1) 21 37 1 1 0.602885 0.277140
(0.4, 1.2) 21 37 1 1 0.553072 0.252688
(0.4, 1.3) 21 37 1 1 0.499804 0.228431
(0.4, 1.4) 21 37 1 1 0.445729 0.205266
(0.4, 1.5) 21 37 1 1 0.394087 0.183812
(0.4, 1.6) 21 37 1 1 0.348678 0.164408
(0.4, 1.7) 21 37 1 1 0.313716 0.147160
(0.4, 1.8) 21 37 1 1 0.293120 0.132018
(0.4, 1.9) 21 37 1 1 0.288937 0.118841

Table 2.4: γ = 0.4 and α = 1.1, . . . , 1.9.
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(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
(0.5, 1.1) 21 37 2 2 0.505385 0.219545
(0.5, 1.2) 21 37 2 2 0.489804 0.203944
(0.5, 1.3) 21 37 3 2 0.457177 0.187583
(0.5, 1.4) 21 37 3 2 0.421077 0.176299
(0.5, 1.5) 21 37 3 3 0.387604 0.175057
(0.5, 1.6) 21 37 3 3 0.359919 0.157268
(0.5, 1.7) 21 37 4 3 0.321337 0.141324
(0.5, 1.8) 21 37 4 3 0.290557 0.135579
(0.5, 1.9) 21 37 5 4 0.261397 0.122400

Table 2.5: γ = 0.5 and α = 1.1, . . . , 1.9.

(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
(0.6, 1.1) 21 37 7 5 0.504675 0.204418
(0.6, 1.2) 21 37 7 5 0.483886 0.201709
(0.6, 1.3) 21 37 8 6 0.457695 0.189959
(0.6, 1.4) 21 37 8 6 0.427616 0.178937
(0.6, 1.5) 21 37 9 7 0.393911 0.165700
(0.6, 1.6) 21 37 10 8 0.359888 0.155612
(0.6, 1.7) 21 37 11 8 0.326056 0.142089
(0.6, 1.8) 21 37 12 9 0.293451 0.130169
(0.6, 1.9) 21 37 13 10 0.263494 0.120598

Table 2.6: γ = 0.6 and α = 1.1, . . . , 1.9.

(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
(0.7, 1.1) 21 37 16 12 0.508688 0.206358
(0.7, 1.2) 21 37 17 13 0.488374 0.201000
(0.7, 1.3) 21 37 18 13 0.463273 0.191483
(0.7, 1.4) 21 37 19 15 0.433532 0.180530
(0.7, 1.5) 21 37 20 16 0.400183 0.167638
(0.7, 1.6) 21 37 21 17 0.365007 0.154422
(0.7, 1.7) 21 37 23 18 0.330013 0.142221
(0.7, 1.8) 21 37 24 20 0.296473 0.131737
(0.7, 1.9) 21 37 26 22 0.266198 0.122152

Table 2.7: γ = 0.7 and α = 1.1, . . . , 1.9.

(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
(0.8, 1.1) 21 37 30 23 0.512595 0.207893
(0.8, 1.2) 21 37 32 24 0.492909 0.201485
(0.8, 1.3) 21 37 33 26 0.468352 0.190574
(0.8, 1.4) 21 37 35 28 0.439412 0.180699
(0.8, 1.5) 21 37 36 30 0.406605 0.168859
(0.8, 1.6) 21 37 36 32 0.375159 0.156266
(0.8, 1.7) 21 37 36 34 0.349118 0.143818
(0.8, 1.8) 21 37 36 36 0.331122 0.132073
(0.8, 1.9) 21 37 36 36 0.322888 0.134611

Table 2.8: γ = 0.8 and α = 1.1, . . . , 1.9.
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(γ, α) Nx Nt T2 T∞ ||u− U (n)||2 ‖u− U (n)‖∞
||un − Un||2 ‖un − Un‖∞

(0.9, 1.1) 21 37 36 36 0.589970 0.225874
(0.9, 1.2) 21 37 36 36 0.584715 0.226410
(0.9, 1.3) 21 37 36 36 0.578677 0.226932
(0.9, 1.4) 21 37 36 36 0.572355 0.227418
(0.9, 1.5) 21 37 36 36 0.566443 0.227847
(0.9, 1.6) 21 37 36 36 0.561712 0.228198
(0.9, 1.7) 21 37 36 36 0.558880 0.228465
(0.9, 1.8) 21 37 36 36 0.558494 0.228677
(0.9, 1.9) 21 37 36 36 0.560850 0.228916

Table 2.9: γ = 0.9 and α = 1.1, . . . , 1.9.

Figure 2.9: Error surface in log scale for k = 1, Nt = 37 and Nx = 21.



Fractional di�usion modeling through realistic data 49

the error can be minimize by increasing the �nal time T . Using Nt = 148 iterations, we

obtained for (α, γ) = (0.8, 1.9), Nx = 21, and Nx = 148,

T2 = 46, T∞ = 39

||u− U (n)||2 = 0.269241, ||u− U (n)||∞ = 0.122342,

which is possible that do not represent the best case, (α, γ) = (0.7, 1.9). In fact we will

show in the following Chapters, the next step is to re�ne the spatial grid, change the

initial condition, or add a reaction term, say f(x, t), on the right-hand side of equation

(2.8), and consider also the case of higher space dimensions.

We now apply to the experimental data a �lter based on a wavelet decomposition of the

data, see [141]. The best results are obtained correspondingly to (γ, α) = (0.7, 1.9). The

smallest discrepancy is now observed on the �rst decimal digit.

(γ, α) Nx Nt T2 T∞ ||u− U (n)||2
(0.7, 1.1) 21 37 15 12 0.509395 0.195058
(0.7, 1.2) 21 37 16 12 0.488999 0.183744
(0.7, 1.3) 21 37 17 13 0.464047 0.174749
(0.7, 1.4) 21 37 18 14 0.434435 0.164367
(0.7, 1.5) 21 37 19 15 0.400974 0.152417
(0.7, 1.6) 21 37 21 16 0.365235 0.141848
(0.7, 1.7) 21 37 22 18 0.328055 0.130333
(0.7, 1.8) 21 37 24 19 0.292461 0.118418
(0.7, 1.9) 21 37 26 21 0.259294 0.109248

Table 2.10: γ = 0.7 and α = 1.1, . . . , 1.9 with �ltered data.

When α = 2 and γ = 1 (that is the case of classical di�usion), we obtained larger errors,

at least three times larger in the in�nite norm. The best results are obtained for α = 2

(classical Laplacian), but with a time fractional derivative of order γ = 2.0. In this case

we obtain about ‖u− U (n)‖∞ = 0.100303.
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Figure 2.10: Error for a = 1, N = 37,M = 21.



Chapter 3

Numerical solution of

two-dimensional fractional di�usion

equations by a high-order ADI

method

Fractional partial di�usion or reaction-di�usion di�erential equations in several space

dimensions can be used to model several phenomena in many �elds of Science, and

in particular in Meteorology. In case of anomalous di�usion, generalized models using

fractional derivatives, thus leading to fractional partial di�usion equations have indeed

been proposed, especially to describe di�usion and transport dynamics in complex sys-

tems [6, 31, 65, 93]. In fact, such equations may describe �uid �ow through porous

media better than classical di�usion equations. For instance, fractional time-derivatives

may account for (time) delays, while fractional space-derivatives may explain a nonlo-

cal behavior, typically characterized by power law (rather than exponential law) decay.

Equations like these are also used in groundwater hydrology to model the transport of

passive tracers carried by �uid �ows in porous media and seepage [8�10].

3.1 High-order approximations for Riemann-Liouville frac-

tional derivatives

In this section, we recall some known results concerning fractional derivatives. We be-

gin with the de�nition of the Riemann-Liouville (RL) fractional derivatives, and the

properties of their Fourier transform.

51
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De�nition 3.1. [112] If n− 1 < α ≤ n for some n ∈ N, the RL fractional left and right

derivative of order α of the function u(x), whose domain is [a, b], at the point x ∈ [a, b],

are de�ned as follows.

1. left Riemann-Liouville fractional derivative:

aD
α
xu(x) :=

1

Γ(n− α)

dn

dxn

∫ x

a

u(ξ)

(x− ξ)α−n+1
dξ;

2. right Riemann-Liouville fractional derivative:

xD
α
b u(x) :=

−1

Γ(n− α)

dn

dxn

∫ b

x

u(ξ)

(ξ − x)α−n+1
dξ,

where Γ(·) denotes the Gamma function.

When α = n, aDα
x = dn

dxn and xD
α
b = (−1)n dn

dxn .

The following property is important (see [57]). Let be α > 0, u ∈ C∞0 (Ω), being Ω

open and Ω ⊆ R. The Fourier transforms of the left and right RL fractional derivatives

(denoted by F) satisfy
F [−∞D

α
xu(x)] = (iω)αû(ω),

F [xD
α
∞u(x)] = (−iω)αû(ω),

where û(ω) is the ordinary Fourier transform of u,

û(x) :=

∫ +∞

−∞
eiωxu(x) dx.

In [101], it was shown that the �shifted Grünwald di�erence operator�, de�ned as

Aαh,pu(x) :=
1

hα

∞∑
k=0

g
(α)
k u(x− (k − p)h), (3.1)

where p is an integer, and g(α)
k := (−1)k

(
α
k

)
, approximates the left RL fractional derivative

of order α, uniformly, with �rst-order accuracy, i.e.,

Aαh,pu(x) = −∞D
α
xu(x) +O(h), (3.2)

The g(α)
k in (3.1) are the coe�cients of the power series expansion of (1− z)α,

(1− z)α =
∞∑
k=0

(−1)k
(
α

k

)
zk =

∞∑
k=0

g
(α)
k zk, (3.3)
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for all |z| ≤ 1, and can be evaluated recursively,

g
(α)
0 = 1, g

(α)
k =

(
1− α+ 1

k

)
g

(α)
k−1, k = 1, 2, ... (3.4)

Lemma 1. The coe�cients g(α)
k in (3.1) enjoy the properties

g
(α)
0 = 1, g

(α)
1 = −α < 0,

1 ≥ g(α)
2 ≥ g(α)

3 ≥ . . . ≥ 0,
∞∑
k=0

g
(α)
k = 0,

m∑
k=0

g
(α)
k < 0 for every m ≥ 1,

(3.5)

provided that 1 < α ≤ 2.

Theorem 6. Let be u ∈ L1(R), and hence (as is known), −∞Dα+2
x u and its Fourier

transform also belong to L1(R), and de�ne the �weighted and shifted� Grünwald di�er-

ence (WSGD) operator LDαh,p,q by

LDαh,p,qu(x) :=
α− 2q

2(p− q)
Aαh,pu(x) +

2p− α
2(p− q)

Aαh,qu(x). (3.6)

Then, we have

LDαh,p,qu(x) = −∞Dαxu(x) +O(h2) (3.7)

uniformly for x ∈ R, where p,q ∈ {−1, 0, 1}, with p 6= q.

Note that p and q enter symmetrically in (4.9), since LDαh,q,pu(x) = LDαh,p,qu(x).

Remark 3.2. For the right RL fractional derivative, being p and q integers, and

Bα
h,qu(x) :=

1

hα

∞∑
k=0

g
(α)
k u(x+ (k − q)h), (3.8)

we can check that, as in Theorem 6.

LDαh,p,qu(x) =
α− 2q

2(p− q)
Bα
h,pu(x) +

2p− α
2(p− q)

Bα
h,qu(x) = xD

α
∞u(x) +O(h2), (3.9)

uniformly for x ∈ R, under the condition that u, xD
α+2
∞ ∈ L1(R) and the Fourier

transform of the latter belongs to L1(R).

Remark 3.3. Let u(x) be de�ned on the bounded interval [a, b]. If u(a) = 0 or u(b) = 0,

we extend u(x) to be zero for x < a or for x > b, respectively. Then, the left and right

RL fractional derivatives of u(x), of order α, at each point x, can be approximated by
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the WSGD operators with second-order accuracy,

aD
α
xu(x) =

λ1

hα

[x−a
h

]+p∑
k=0

g
(α)
k u(x+ (k − p)h)

+ λ2
hα
∑[x−a

h
]+q

k=0 g
(α)
k u(x+ (k − q)h) +O(h2),

xD
α
b u(x) =

λ2

hα

[ b−x
h

]+p∑
k=0

g
(α)
k u(x+ (k − p)h)

+ λ2
hα
∑[ b−x

h
]+p

k=0 g
(α)
k u(x+ (k − q)h) +O(h2),

(3.10)

where λ1 := α−2q
2(p−q) , λ2 := 2p−α

2(p−q) .

Remark 3.4. Note that p [q] represents the number of points located at the right [left]

of the point x, used for evaluating the left [right] RL fractional derivative of order α at

x, respectively. Hence, when employing the di�erence method with (3.10) to approx-

imate FDEs with non-periodic boundary conditions, p and q should be chosen in the

set {−1, 0, 1}, to ensure that the nodes where the values of u are needed in (3.10) lie

inside the (bounded) interval. Otherwise, when x is close to the right or to the left end-

point of the interval, another kind of discretization for the fractional derivative should

be used, see [44]. Using the pair (p, q) = (0,−1), the approximation method turns out

to be unstable for time-dependent problems, see [44]. The two sets of values for (p, q) to

set up a di�erence scheme for FDEs, (1, 0) and (1,−1) should be chosen instead. The

corresponding weights in (4.9) and (3.9) are then (α2 ,
2−α

2 ) and (2+α
4 , 2−α

4 ). For α = 2,

the WSGD operator in (4.9) turns out to be the centered di�erence approximation of the

second-order derivative, when (p, q) = (1, 0) or (p, q) = (1,−1). For α = 1, (p, q) = (1, 0),

the centered di�erence scheme for �rst-order derivative is recovered.

Therefore, the simpli�ed forms of the discrete approximations for RL fractional deriva-

tives with (p, q) = (1, 0), (1,−1) given in (3.10) are

aD
α
xu(xi) =

λ1

hα

[x−a
h

]+p∑
k=0

w
(α)
k u(xi−k+1) +O(h2),

xD
α
b u(xi) =

λ1

hα

[x−a
h

]+p∑
k=0

w
(α)
k u(xi+k−1) +O(h2),

(3.11)

where

(p, q) = (1, 0), w
(α)
0 :=

α

2
g

(α)
0 , w

(α)
k :=

α

2
g

(α)
k +

2− α
2

g
(α)
k−1, k ≥ 1;

(p, q) = (−1, 1), w
(α)
0 :=

2 + α

4
g

(α)
0 , w

(α)
1 :=

2 + α

4
g

(α)
1 ,

w
(α)
k :=

2 + α

4
g

(α)
k +

2− α
4

g
(α)
k−2, k ≥ 2.

(3.12)
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Third-order approximations (in time) can be obtained. As in case of second-order ap-

proximations for the RL fractional derivatives, we give here a combination of three shifted

Grünwald di�erence operators,

LGαh,p,q,ru(x) := λ1A
α
h,pu(x) + λ2A

α
h,qu(x) + λ3A

α
h,ru(x), (3.13)

where p, q, r are some given mutually di�erent integers, and [43]

λ1 := 12qr−(6q+6r+1)α+3α2

12(pr−pq−pr+p2)
,

λ2 := 12pr−(6p+6r+1)α+3α2

12(pr−pq−qr+q2)
,

λ3 := 12pq−(6p+6q+1)α+3α2

12(pq−pq−qr+r2)
.

(3.14)

Assuming u ∈ L1(R), and taking the Fourier transform in (3.13), we obtain

F [LGαh,p,q,ru(x)](ω) = (iω)α (λ1Wp(iωh) + λ2Wq(iωh) + λ3Wr(iωh)) ũ(ω)

= (iω)α
(
1 + C(iωh)3

)
û(ω),

(3.15)

where

Wr(z) :=

(
1− e−z

z

)α
erz = 1 +

(
r − α

2

)
+O(z2),

being r = p or q. The function Wr(z) is called the Wright function, and is known to play

a fundamental role in various applications of fractional calculus, see [94].

If −∞Dα+3
x u(x) and its Fourier transform both belong to L1(R), we have

∣∣[
LGαh,p,q,ru(x)− −∞Dα

xu(x)
]

(ω)
∣∣ ≤ 1

2π

∫ +∞

−∞

∣∣F [LGαh,p,q,ru− −∞Dα
x

∣∣ dx
≤ C ‖F [−∞D

α+3
x ](ω)‖L1 h3 = O(h3).

(3.16)

We have also

LGαh,p,q,ru(x) = λ1B
α
h,pu(x) + λ2B

α
h,qu(x) + λ3B

α
h,ru(x)

= −∞D
α
xu(x) +O(h3),

(3.17)

uniformly for x ∈ R. The operator Bα
h,s is given in (3.8), and the λi's, i = 1, 2, 3, are the

same as in (3.14).

As stated in Remark 3.4, the third-order WSGD operator can be used to approximately

solve RL fractional di�erential equations on bounded domains by �nite di�erence meth-

ods, choosing the triplet (p, q, r) = (1, 0,−1) and then the corresponding weight coe�-

cients given in (3.14), hence λ1 = 5
24α+ 1

8α
2, λ2 = 1 + 1

12α−
1
4α

2, λ3 = − 7
24α−

1
8α

2.
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For a function u(x) with u(a) = u(b) = 0, the matrix

G1 = λ1



gα1 gα0

gα2 gα1 gα0
... gα2 gα1

. . .

gαn−2 . . .
. . . . . . gα0

gαn−1 gαn−2 . . . gα2 gα1


+ λ2



gα0

gα1 gα0
... gα1 gα0

gαn−3 . . .
. . . . . .

gαn−2 gαn−3 . . . gα1 gα0



+ λ3



0

gα0 0
... gα0 0

gαn−4 . . .
. . . . . .

gαn−3 gαn−4 . . . gα0 0



(3.18)

with (p, q, r) = (1, 0,−1) and on the grid points {xk = a + kh, h = (b − a)/n, k =

1, ..., n− 1}, is a �nite-dimensional approximation of the operator in (3.13).

3.2 Fractional di�usion equations in two space dimensions

In this section, we review a few numerical methods which have been proposed in the

literature to solve FDEs. These will provide the grounds we need to construct our

scheme.

Inspired by the de�nition of the shifted Grünwald di�erence operator given in (3.1),

and by the idea of the fractional steps methods, a second-order approximation has been

derived for the RL fractional derivatives, which are used as space operator, while the time

derivative remains classical, see [43]. Consider the following FDE in two dimensions,

∂u
∂t =

(
K+

1 aD
α
xu+K+

2 xD
α
b u
)

+
(
K−1 cD

β
yu+K−2 yD

β
du
)

+ f(x, y, t),

(x, y, t) ∈ Ω× [0, T ],

u(x, y, 0) = u0(x, y), (x, y, t) ∈ Ω,

u(x, y, 0) = ϕ(x, y, t), (x, y, t) ∈ ∂Ω× [0, T ],

(3.19)

where u ≡ u(x, y, t).

Here Ω := (a, b)× (c, d), aDα
x , xD

α
b , and cD

β
y , yD

β
d are RL fractional operators with 1 <

α, β ≤ 2. The di�usion coe�cients are given, and satisfy the inequalities K+
i ,K

−
i ≥ 0,

i = 1, 2, (K+
1 )2 + (K+

2 )2 6= 0, and (K−1 )2 + (K−2 )2 6= 0. The boundary value, ϕ, satis�es
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the condition ϕ(a, y, t) = 0 if K+
1 6= 0; ϕ(b, y, t) = 0 if K−1 6= 0; ϕ(x, c, t) = 0 if K+

2 6= 0;

ϕ(x, d, t) = 0 if K−2 6= 0. We assume that the problem in (3.19) has a unique su�ciently

smooth solution.

3.2.1 The CN-WSGD scheme

In this section we derive a Crank-Nicolson di�erence scheme by using the WSGD formula

(3.10) for problem (3.19). The resulting schemes which implement this method are named

compact [37, 44]. We make a partition of the domain Ω by a uniform mesh with space

steps hx := (b− a)/Nx, hy := (d− c)/Ny, and time step τ := T/M , where Nx, Ny, and

M are positive integers. Then, the grid points will be xi := ihx, yj := jhy, and tn := nτ ,

for 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, and 0 ≤ n ≤ M . Let de�ne tn+1/2 := (tn + tn+1)/2 for

0 ≤ n ≤M − 1, and use the following notation

uni.j := u(xi, yj , tn), f
n+1/2
i,j := f(xi, yj , tn+1/2), δtu

n
i,j :=

un+1
i,j − uni,j

τ
.

Time discretization of (3.19) leads to

δtu
n
i,j =

1

2

[
K1

+ (aD
α
xu)n+1

i,j +K2
+ (xD

α
b u)n+1

i,j +K1
− (cD

β
yu)n+1

i,j +K2
− (yD

β
du)n+1

i,j

+K1
+ (aD

α
xu)ni,j +K2

+ (xD
α
b u)ni,j +K1

− (cD
β
yu)ni,j +K2

− (yD
β
du)ni,j)

]
+ f

n+1/2
i,j +O(τ2).

(3.20)

For the space discretization we used the WSGD operators LDαhx,p,qu, RDαhx,p,qu, and

LDβhy ,p,qu, RD
β
hy ,p,q

u, to approximate the fractional di�usion terms aD
α
xu, xD

α
b u, and

cD
β
yu, yD

β
du, respectively. Multiplying both sides of (3.20) by τ and separating the time

levels (i.e., un and un+1), we obtain(
1−

K1
+τ

2
LDαhx,p,q −

K2
+τ

2
RDαhx,p,q −

K1
−τ

2
LDβhy ,p,q −

K2
−τ

2
RDβhy ,p,q

)
un+1
i,j

=

(
1 +

K1
+τ

2
LDαhx,p,q +

K2
+τ

2
RDαhx,p,q +

K1
−τ

2
LDβhy ,p,q +

K2
−τ

2
RDβhy ,p,q

)
uni,j

+ τf
n+1/2
i,j + τ εni,j ,

(3.21)

where εni,j denotes the local truncation error, |εni,j | ≤ c̃ (τ2 + h2). Let de�ne also

δαx := K+
1 LDαhx,p,q +K+

2 RDαhx,p,q, δβy := K−1 LDβhy ,p,q +K−2 RDβhy ,p,q.
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We chose, for simplicity, the same step sizes, hx = hy = h. By Taylor expansion, we

obtain
τ2

4
δαx δ

β
y (un+1

i,j − u
n
i,j) (3.22)

=
τ3

4

((
K1

+ aD
α
x +K2

+ xD
α
b

) (
K1
− cD

β
y +K2

− yD
β
d

)
ut

)n+1/2

i,j
+O(τ5 + τ2h2).

Taking into account formula (3.22) on the right-hand side of (3.21), and factoring, leads

to (
1− τ2

2
δαx

)(
1− τ2

2
δβy

)
un+1
i,j (3.23)

=

(
1 +

τ2

2
δαx

)(
1 +

τ2

2
δβy

)
uni,j + τ f

n+1/2
i,j + τ εni,j +O(τ3 + τ3h2).

If Uni,j denotes the numerical approximation to uni,j , we obtain the �nite di�erence ap-

proximation for problem (3.19),(
1− τ2

2
δαx

)(
1− τ2

2
δβy

)
Un+1
i,j =

(
1 +

τ2

2
δαx

)(
1 +

τ2

2
δβy

)
Uni,j + τ f

n+1/2
i,j . (3.24)

In order to solve (3.24) e�ciently, the following techniques can be adopted.

A) The Peaceman-Rachford ADI scheme [127],(
1− τ2

2
δαx

)
V n
i,j =

(
1 +

τ2

2
δβy

)
Uni,j + τ f

n+1/2
i,j , (3.25a)(

1− τ2

2
δβx

)
Un+1
i,j =

(
1 +

τ2

2
δαy

)
V n
i,j + τ f

n+1/2
i,j . (3.25b)

B) The Douglas ADI scheme [52],

(1− τ2

2
δαx )V n

i,j = (1 +
τ2

2
δαy + τδβy )Uni,j + τf

n+1/2
i,j , (3.26a)

(1− τ2

2
δβx )Un+1

i,j = V n
i,j −

τ2

2
δβxU

n
i,j . (3.26b)

C) The D'Yakonov ADI scheme [127],(
1− τ2

2
δαx

)
V n
i,j =

[(
1 +

τ2

2
δβy

)
+ τδβy

]
Uni,j + τ f

n+1/2
i,j , (3.27a)(

1− τ2

2
δβx

)
Un+1
i,j = V n

i,j . (3.27b)
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A simple calculation shows that

τ3

2
δαx δ

β
xf

n+1/2
i,j =

τ3

2

(
K1

+ aD
α
x +K2

+ xD
α
b

) (
K1
− cD

β
y +K2

− yD
β
d

)
f
n+1/2
i,j (3.28)

+O(τ3h2).

Then, it follows from (3.23) and (3.28) that(
1− τ2

2
δαx

)(
1− τ2

2
δβy

)
un+1
i,j (3.29)

=

(
1 +

τ2

2
δαx

)(
1 +

τ2

2
δβy

)
uni,j + τ f

n+1/2
i,j +

τ3

2
δαx δ

β
xf

n+1/2
i,j + τ ε̃ni,j ,

where

ε̃ni,j = εni,j −
τ2

2
(K1

+ aD
α
x +K2

+ xD
α
b )(K1

− cD
β
y +K2

− yD
β
d )f

n+1/2
i,j (3.30)

+O(τ2 + τ2h2).

Eliminating the truncating error, we have(
1− τ2

2
δαx

)(
1− τ2

2
δβy

)
Un+1
i,j (3.31)

=

(
1 +

τ2

2
δαx

)(
1 +

τ2

2
δβy

)
Uni,j + τ f

n+1/2
i,j +

τ3

2
δαx δ

β
xf

n+1/2
i,j .

Introducing the intermediate variable V n
i,j , we obtain the locally one-dimensional (LOD)

scheme mentioned in [115, 140],(
1− τ2

2
δαx

)
V n
i,j =

(
1 +

τ2

2
δαx

)
Uni,j +

τ

2

(
1 +

τ2

2
δαx

)
f
n+1/2
i,j , (3.32a)(

1− τ2

2
δβy

)
Un+1
i,j =

(
1 +

τ2

2
δβy

)
V n
i,j +

τ

2

(
1 +

τ2

2
δβy

)
f
n+1/2
i,j , (3.32b)

3.2.2 A third-order CN-WSGD scheme

In the space discretization, we choose the so-called 3-WSGD operators, i.e., the weighted

and shifted Grünwald di�erence operators, third-order accurate in time, namely LGαhx,p,q,ru,

RGαhy ,p,q,ru, and LGβhy ,p,qu, RG
β
hy ,p,q

u, to approximate the fractional di�usion terms aDα
xu,

xD
α
b u, and cD

β
yu, yD

β
du, respectively, see [128]. Multiplying both sides of (3.20) by τ ,
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and separating the terms containing un and un+1, we have(
1−

K1
+τ

2
LGαhx,p,q −

K2
+τ

2
RGαhx,p,q −

K1
−τ

2
LGβhy ,p,q −

K2
−τ

2
RGβhy ,p,q

)
un+1
i,j

=

(
1 +

K1
+τ

2
LGαhx,p,q +

K2
+τ

2
RGαhx,p,q +

K1
−τ

2
LGβhy ,p,q +

K2
−τ

2
RGβhy ,p,q

)
uni,j

+ τ f
n+1/2
i,j + τ εni,j ,

(3.33)

where εni,j denotes the (local) truncation error, and we have |εni,j | ≤ c̃ (τ2 + h3). We also

write

δαx = K+
1 LGαhx,p,q +K+

2 RGαhx,p,q, δβy = K−1 LGβhy ,p,q +K−2 RGβhy ,p,q.

We chose again the same step sizes, hx = hy = h. A Taylor expansion yields

τ2

4
δαx δ

β
y

(
un+1
i,j − u

n
i,j

)
=
τ3

4

[(
K1

+ aD
α
x +K+

2 xD
α
b

) (
K−1 cD

β
y +K−2 yD

β
d

)
ut

]n+1/2

i,j

+O(τ5 + τ2h3).

(3.34)

3.3 A new numerical method with examples

In this section, we construct a numerical method to solve two-dimensional fractional dif-

fusion problems. Examples are then given to illustrate the performance of the algorithm.

3.3.1 Theoretical considerations

In [153], a numerical method of the ADI type was proposed to solve FDEs in 2D which

is second-order accurate in space and third-order in time. This method however was

not implemented there. Here we did implement it, but, in addition, we generalized

their extrapolation technique so to optimize the algorithm. In this way, we were able to

accelerate it, and this was accomplished exploiting the PageRank method, widely used

by computer scientists, but not much by numerical analysts. Some details follow.

A considerable amount of computing time can be saved just resorting to an extrapolation

technique. This procedure may also increase the accuracy of the method up to the third

order in time [97]. Let describe such a technique.
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Step 1. Compute the numbers ζ1, ζ2, and ζ3, solving the three linear algebraic equations
ζ1 + ζ2 + ζ3 = 1

ζ1 + 1
2ζ2 + 1

4ζ3 = 0

ζ1 + 1
3ζ2 − 1

9ζ3 = 0.

An extrapolated solution, depending on Un, is then used to solve the problem. The quan-

tity Un requires evaluating certain coe�cients, which can be obtained by the �PageRank

accelerating method� [64]. The previous algebraic system yields the optimal coe�cients

ζ1, ζ2, ζ3.

Step 2. Compute the solution Un of a compact di�erence scheme [43, 125, 131, 153] (see

below, at step 3), with the three time step sizes τ , 2
3τ , and

τ
3 [131]. This kind of methods

is usually adopted for steady convection-di�usion numerical problems on uniform grids

(see [125]), rather than for time-dependent problems.

Step 3. Evaluate the extrapolated solution, Wn(τ), by

Wn(τ) = ζ1 U
n(τ) + ζ2 U

n

(
2

3
τ

)
+ ζ3 U

n
(τ

3

)
,

where we have displayed the precise dependence of Un on τ .

3.3.2 Numerical examples

Consider now the model problem

Example 1. Let be the FDE

0D
γ
t u = 0D

α
xu+ xD

α
1 u+ 0D

β
yu+ yD

β
1u+ f(x, y, t) (3.35)

on the space domain Ω := (0, 1)× (0, 1), for t > 0, subject to the boundary conditions

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, 1],

with the initial value

u(x, y, 0) = x3(1− x)3y3(1− y)3 (x, y) ∈ [0, 1]× [0, 1].

Note that, whenever the fractional order α is less than but close to 2 (subdi�usion),

the �rst two terms on the right-hand side of (3.35) replace, in some sense, the second
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derivative uxx appearing in the classical di�usion equations. Similarly, the third and

fourth terms replace uyy. Moreover even anisotropic di�usion e�ects can be included in

this formulation, since α and β do not need to be equal.

Generally speaking, according to the values of the fractional orders, α and β, some

derivatives might be considered as replacing gradient terms rather than di�usion. For

instance, in this model, choosing for α some values between 1 and 2, and for β some

value between 0 and 1, one might think to simulate some fractional generalization of the

advection-di�usion equation ut = uxx + uy + f(x, y, t).

If in (3.35), we choose the source term to be

f(x, y, t) =− e−tx3(1− x)3y3(1− y)3

+ (
3!

Γ(4− α)
(x3−α + (1− x)3−α)− 3 · 4!

Γ(5− α)
(x3−α + (1− x)3−α)

+
3 · 5!

Γ(6− α)
(x5−α + (1− x)5−α)− 6!

Γ(7− α)
(x6−α

+ (1− x)6−α))y3(1− y)3

+
3!

Γ(4− β)
(y3−β + (1− y)3−β)− 3 · 4!

Γ(5− β)
(y4−β + (1− y)4−β)

+
3 · 5!

Γ(6− α)
(y5−β + (1− y)5−β)− 6!

Γ(7− β)
(y6−β

+ (1− y)6−β))x3(1− x)3,

the analytical solution to this problem turns out to be known, and is

u(x, y, t) = e−tx3(1− x)3y3(1− y)3, (3.36)

see [44]. This choice is useful to validate our algorithm and test its performance. Then,

we will be con�dent that the code is as good as in this case also when di�erent sources,

possibly re�ecting speci�c problems of practical interest replace the forcing term above.

In Fig. 4.1, the e�ect of replacing ordinary derivatives (α,β,γ) = (2, 2, 1) with fractional

derivatives, in a given di�usion equation, e.g., with (α,β,γ) = (1.1, 1.7, 1), thus accounting

for anomalous di�usion, is clear. In general, such a modi�cation implies new geometric

patterns in the solution, and a possibly anisotropic behavior. Even a di�erent speed of

propagation, depending on the order of the fractional derivatives can be reproduced in

this way. Indeed, all these features are observed, e.g., in certain porous media through

which a �uid �ows [36, 129].

In Fig. 3.2, the numerical errors ‖un −Wn
FADI‖ are plotted in the L2 and in the L∞

norms, on an exponential scale (here, un denotes the exact solution to the FDE).
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Figure 3.1: (a) Classical solution (obtained by a �ne grid numerical ADI method
with τ = h/16), and (b) exact (analytical) fractional di�usion solution with (α, β, γ) =

(1.1, 1.7, 1). The same forcing function was used in both cases.

Let de�ne, for some θ > 0, the convergence rate, say r, in the norm (·), for a given

numerical method of order p > 1, as

r := log2

‖ũh
θ
− un‖(·)

‖ũ h
2θ
− un‖p(·)

,

where ũh
θ
is the numerical solution computed with the discretization step τ = h

θ .

In Tables 3.1 and 3.2, the absolute numerical errors ||un −Wn||∞ and ‖un −Wn‖2, as
well as the corresponding convergence rates achieved using di�erent space step sizes, are

shown. Figure 3.2 shows the in�nity norm and the L2 norm errors for Example 1, when

the compact di�erence scheme is implemented, at times t = 1, for several values of N ,

and �xed α, β, and γ.
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(α, β, γ) N ‖un −Wn‖∞ time-rate space-rate ||un −Wn||2 time-rate space-rate
(1.1, 1.7, 1) 8 5.1772E-5 −− −− 6.1824E-5 −− −−

16 2.3137E-6 2.93 1.92 1.1849E-6 2.89 1.87
32 9.8789E-6 2.98 1.98 8.9028E-6 2.97 1.95
64 5.1584E-7 2.99 1.99 3.2641E-6 2.99 1.98
128 3.3393E-7 3.00 2.00 8.3237E-7 3.00 2.00
256 5.0727E-12 3.00 2.00 1.1372E-11 3.00 2.00
512 3.0138E-13 3.00 2.00 5.7824E-13 3.00 2.00

(1.4, 1.4, 0.6) 8 4.1884E-5 −− −− 5.8541E-5 −− −−
16 3.7581E-6 2.91 1.89 1.7852E-6 2.91 1.89
32 4.8541E-7 2.97 1.96 3.7851E-6 2.96 1.93
64 5.7822E-7 2.99 1.98 5.7852E-7 2.98 1.98
128 2.7851E-8 2.99 1.99 6.7852E-7 3.00 1.99
256 4.0887E-12 3.00 2.00 2.7851E-10 3.00 2.00
512 7.7852E-13 3.00 2.00 6.4852E-13 3.00 2.00

(1.8, 1.8, 0.8) 8 4.7885E-6 −− −− 3.7852E-6 −− −−
16 6.7854E-6 2.95 1.94 3.8524E-7 2.91 1.89
32 8.7852E-7 2.98 1.98 6.7852E-7 2.96 1.93
64 1.8521E-8 3.00 1.99 6.7852E-8 2.98 1.98
128 8.7852E-9 3.00 2.00 2.7852E-8 3.00 1.99
256 3.7852E-12 3.00 2.00 6.8521E-11 3.00 2.00
512 3.7852E-14 3.00 2.00 7.7852E-13 3.00 2.00

(2.0, 2.0, 0.8) 8 6.7852E-7 −− −− 4.7852E-7 −− −−
16 6.7854E-7 2.97 1.98 1.1236E-8 2.96 1.95
32 9.7453E-8 3.00 1.99 6.9173E-8 2.99 1.98
64 6.7852E-9 3.00 2.00 5.7785E-9 3.00 2.00
128 6.7852E-10 3.00 2.00 3.7852E-9 3.00 2.00
256 4.8521E-12 3.00 2.00 6.8785E-12 3.00 2.00
512 6.7852E-14 3.00 2.00 3.7185E-14 3.00 2.00

Table 3.1: L∞ and L2 norm errors and convergence rates for Example 1, when the
(LOD) CN-WSGD scheme, that is a FADI method, is used, at time t = 1, for several

values of (α, β, γ), N , and τ = h.

(α, β) N ||un −Wn||∞ time-rate space-rate ||un −Wn||2 time-rate space-rate
(1.1, 1.7) 8 3.4852E-7 −− −− 9.745252E-5 −− −−

16 2.4585E-8 2.95 1.92 7.7852E-5 2.93 1.87
32 2.7852E-8 2.99 1.98 5.3255E-6 2.98 1.95
64 4.8420E-9 3.00 1.99 4.7852E-6 2.99 1.98
128 1.9651E-9 3.00 2.00 5.4525E-7 3.00 2.00
256 4.4582E-11 3.00 2.00 3.6321E-10 3.00 2.00
512 3.8512E-14 3.00 2.00 6.78521E-13 3.00 2.00

Table 3.2: L∞ and L2 norm errors, and convergence rates for Example 1, when the
(LOD) CN-WSGD scheme, that is a FADI method, is used, at time t = 5, for several

values of N , and τ = h.
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Figure 3.2: Absolute numerical error between the exact and the numerical solution
of the FDE of Example 1, at t = 1, with (α, β, γ) = (1.1, 1.7, 1).

Figure 3.3: L∞ and L2 discrepancy between the numerical solution of the classical
problem and that of the fractional problem with (α, β, γ) = (1.1, 1.7, 1), at t = 1.

In Fig. 3.3, the discrepancies between the numerical solutions to the classical and the

fractional equations, obtained by the ADI and the FADI method, respectively, i.e.

‖Wn
ADI −Wn

FADI‖, are plotted in the L2 and in the L∞ norms, on an exponential scale.

This is done to appreciate the di�erences when one switches from one to the other model.

In Tables 3.3 and 3.4, such discrepancies ||Wn
ADI −Wn

FADI ||∞ and ‖Wn
ADI −Wn

FADI‖2,
as well as the corresponding convergence rates, achieved using di�erent space step sizes,

are shown. Here, again, Wn
i (τ) := − 1

36U
n
i (τ)− 1

4U
n
i ( 5

36τ) + 1
6U

n
i ( τ3 ) is the extrapolated

solution, and Uni satis�es the compact scheme (3.32). Figure 3.3 shows the convergence

rates of the maximum norm and the L2 norm errors for Example 1, when the compact

di�erence scheme is implemented, at times t = 1, for several values of N , and �xed α, β,
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and γ.

(α, β, γ) N ‖Wn
ADI −Wn

FADI‖∞ ||Wn
ADI −Wn

FADI ||2
(1.1, 1.7, 1) 256 5.1025E-12 1.1295E-11

512 3.0148E-13 5.6952E-13
(1.4, 1.4, 0.6) 256 4.0887E-12 2.4284E-10

512 7.8152E-13 6.4985E-13
(1.8, 1.8, 0.8) 256 3.8025E-12 6.8521E-11

512 3.7825E-14 7.7745E-13
(2.0, 2.0, 0.8) 256 4.8521E-12 6.7852E-12

512 6.8658E-14 3.7758E-14

Table 3.3: L∞ and L2 norm discrepancy for Example 1, when the (LOD) CN-WSGD
scheme, that is with a FADI method, is used, at time t = 1, for several values of N ,

and τ = h.

(α, β, γ) N ||Wn
ADI −Wn

FADI ||∞ ||Wn
ADI −Wn

FADI ||2
(1.1, 1.7, 1) 256 4.4582E-11 3.4852E-10

512 3.8145E-14 6.6695E-13

Table 3.4: L∞ and L2 norm discrepancy for Example 1, when the (LOD) CN-WSGD
scheme, that is with a FADI method, is used, at time t = 5, for several values of N ,

and τ = h.

Example 2. Let choose (α,β,γ) = (1.1, 1.7, 1) in equation (3.35), and the source term

f(u) =
u

2
,

instead of the source f(x, y, t) de�ned above. This is a kind of forcing term often used

for instance in modeling dissolution and precipitation in porous media [63, 143].

In Table 3.5, we show the corresponding numerical results obtained using the ADI and

the FADI method for the FDE with (α,β, γ) = (1.1, 1.7, 1).

N τ ‖Wn
ADI −Wn

FADI‖2 time-rate space-rate
16 h/16 1.8512E − 7 −− −−
32 h/16 6.4852E − 8 3.00 2.00
64 h/16 2.8962E − 10 3.00 2.00

Table 3.5: L2 norm discrepancies, and convergence rates for Example 2, when the
(LOD) CN-WSGD scheme (that is a FADI method) is used, at time t = 1, source term

f(u) = 1
2u, (α,β,γ) = (1.1, 1.7, 1) and several values of N .

Note that, in both examples, the numerical results shown in the tables provide an evi-

dence of second-order accuracy in space and third-order in time, as claimed.

Consider now the following problem.
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Example 3. Let be the fractional space-time di�usion equation

0D
γ
t u = 0D

α
xu+ xD

α
1 u+ 0D

β
yu+ yD

β
1u (3.37)

on the space domain Ω := (0, 1)× (0, 1), for t > 0, subject to the boundary conditions.

u(x, y, t) = 0, (x, y) ∈ ∂Ω, t ∈ [0, 1],

and to the initial value

u(x, y, 0) = ex+y, (x, y) ∈ [0, 1]× [0, 1].

If (α, β, γ) = (2, 2, 1), we obtain the classical di�usion equation

ut = ∆u, (3.38)

whose analytical solution, with the previous initial and boundary conditions, is u(x, y, t) =

ex+y+2t.

Consider now the analytical solution of (3.37) with α = β = 2, γ = 1, the numerical

obtained by the classical ADI method [51, 53], and a �close� fractional generalization of

it, namely the case α = β = 1.4, γ = 0.6, computed by its fractional (LOD) version.

In Fig. 3.4 the absolute numerical errors between the exact solution and the numerical

solution obtained by a FADI method, in Fig. 3.5 the absolute numerical errors between

the numerical classical ADI method and the numerical solution obtained by the FADI

method, both are plotted in the L2 norm.

The Table 3.6 show the convergence rates in time and space, of the L2 norm errors in

Example 3, when the compact di�erence scheme is implemented, at times t = 1, for

several values of τ and N , and �xed α and β. Here, un is the exact solution, while Wn
ADI

is the solution obtained by classical ADI method, and Wn
FADI is that obtained by the

FADI method.

As one would expect, in both, the classical ADI and the FADI methods, a faster conver-

gence is observed as the grid is re�ned.

Example 4. If one wants to predict the �uid motion for a concentrate introduced at the

left side of a tank, which advects rightwards and di�uses in the y direction, the fractional

evolutionary advection-di�usion equation

0D
γ
t u = K1(0D

α
xu+ yD

α
1 u) +K2(0D

β
yu+ yD

β
1u) + a1

∂u

∂x
+ a2

∂u

∂2
, (3.39)
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Figure 3.4: Numerical absolute errors ‖un−Wn
FADI‖ for three values of the time and

the space stepsizes, τ = h (solid-red), τ = h/2 (dashed-green), τ = h/4 (dashed and
dotted-blue), for α = β = 1.4, γ = 0.6, on an exponential scale.

Figure 3.5: Discrepancy ‖Wn
ADI −Wn

FADI‖ for three values of the time and the space
stepsizes, τ = h (solid-red), τ = h/2 (dashed-green), τ = h/4 (dashed and dotted-blue),

for α = β = 1.4, γ = 0.6, on an exponential scale.

can be solved, for suitable values of the fractional orders, α, β, and γ. An example of

a real case, where a dye is continuously introduced into a tank �lled in with a �uid, is

shown in Fig. 3.6. Here, the di�usion occurring in the direction of the y-axis is due to

turbulence. Classical di�usion yields a parabolic pro�le, while in the picture the �ow

described by anomalous di�usion looks conic (in 3D) [38, 110].

Let consider the space domain Ω := [0, 10] × [0, 10], for t ∈ [0, 10]. We impose the

boundary condition

u(10, y, t) = uy(x, 0, t) = uy(x, 10, t) = 0, (3.40)
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N τ ‖un −Wn
FADI‖2 ‖Wn

ADI −Wn
FADI‖2 time-rate(un −Wn

FADI) space-rate(un −Wn
FADI)

16 h 6.7601E − 5 2.5656E − 4 −− −−
32 h 1.0083E − 5 1.2561E − 4 −− −−
64 h 2.1252E − 6 1.2634E − 5 −− −−
16 h/2 1.7516E − 5 1.0226E − 5 2.92− 2.89 2.00− 1.98
32 h/2 2.1312E − 6 1.5877E − 5 2.99− 2.97 2.00− 1.99
64 h/2 1.3699E − 6 9.5152E − 6 3.00− 2.99 2.00− 2.00
16 h/4 2.0125E − 6 6.2565E − 6 2.98− 2.96 2.00− 1.99
32 h/4 1.1075E − 6 4.1485E − 6 3.00− 2.99 2.00− 2.00
64 h/4 1.8248E − 7 8.6635E − 7 3.00− 3.00 2.00− 2.00

Table 3.6: L2 norm errors, discrepancies and convergence rates for Example 3, when
the (LOD) CN-WSGD (that is a FADI) scheme is used, with α = β = 1.4, γ = 0.6, at

time t = 1, for several values of N and τ .

Figure 3.6: Example of an advecting plume, which is better described through anoma-
lous rather than classical di�usion (from [38]).

and the initial condition

u(0, y, 0) = δ(y − 5). (3.41)

What we are doing is setting the boundary back to its initial value each time step. We

do not want to allow to pass through the horizontal walls of the tank so the boundary

conditions for both y axis are set to zero.

Setting then K1 = a2 = 0, we obtain

0D
γ
t u = K2(0D

β
yu+ yD

β
1u) + a1

∂u

∂x
. (3.42)

Note that, if (α, β, γ) = (2, 2, 1), K1 = K2 = 1, and a = (a1, a2), we obtain the classical

advection-di�usion equation

ut = ∆u+ a · ∇u, (3.43)

Consider now the solution of equation (3.42) by the classical ADI method (α = β =
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2, γ = 1) [51, 53], and its fractional generalization (the LOD version). We will consider

for the fractional exponents the values α = β = 1.6, γ = 0.6. In Fig. 3.7, the numerical

results are shown for the advection-di�usion plume, corresponding to the parameters

K2 = 1, a1 = 2, ∆x = ∆y = 1/20, ∆t = 0.002.

Figure 3.7: Numerical results for advection-di�usion plume, α = β = 1.6, γ = 0.6
(from [38]).



Chapter 4

An ADI method for the numerical

solution of 3D fractional di�usion

equations in porous media

In 1998, J. He [71] proposed a generalized version of the Darcy's law, containing fractional

Riemann-Liouville derivatives,

q = −K∇αp, ∇α :=

(
∂α1

∂xα1
,
∂α2

∂yα2
,
∂α3

∂zα3

)
,

where p ≡ p(x, y, z, t) is the pressure, q = (qx, qy, qz) is the �uid velocity, K = (Kx,Ky,Kz)

is the percolation tensor (here assumed to be diagonal), and α := (α1, α2, α3).

Therefore, the more general equation for seepage �ow with fractional Riemann-Liouville

derivatives proposed by J. He [71] is

1

ν

∂p

∂t
= ∂β1

∂xβ1

(
Kx

∂α1p
∂xα1

)
+ ∂β2

∂yβ2

(
Ky

∂α2p
∂yα2

)
+ ∂β3

∂zβ3

(
Kz

∂α3p
∂zα3

)
+ f(p;x, y, z, t), (x, y, z) ∈ Ω.

(4.1)

Here, 1
ν is the speci�c storage coe�cient (assumed to be constant), f(p;x, y, z, t) is a

source or sink term, Ω is a given open bounded domain of R3, where the percolation

takes place, t is time, and 0 < βi < 1, 0 < αi ≤ 1, and 1 < βi + αi ≤ 2, for i = 1, 2, 3,

see [88]. Moreover, the boundary condition

p(x, y, z, t)|∂Ω = Φ(x, y, z, t), (4.2)

71
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as well as the initial condition

p(x, y, z, 0) = ϕ(x, y, z). (4.3)

are imposed, with suitable functions Φ and ϕ.

Given the interest for models based on fractional partial di�erential equations (fPDEs),

and recalling, needless to say, that analytic solutions to most fPDEs are usually not

available, a number of authors have proposed over the years a few numerical methods

to solve fPDEs, see, e.g., [26, 28, 29, 69, 83�87, 100, 102, 117, 121, 122, 135, 150�

153]. However, in the existing literature, numerical methods capable to handle higher-

dimensional fPDEs seem to be rather few, not to mention their performance. It should

be observed that, being the fractional derivatives nonlocal operators, discretizing fPDEs

can be expected to be more demanding, e.g., in terms of memory storage and CPU time,

compared to classical PDEs. All this calls for devising e�ective numerical methods to

solve high-dimensional fPDE problems.

In this Thesis, we will consider the 3D fractional seepage �ow equation in (4.1), on the

bounded domain, Ω := (0, Lx)×(0, Ly)×(0, Lz), on the time interval (0, T ]. Moreover, we

assume that such an initial-boundary value problem equation has a unique, su�ciently

smooth solution, when the Dirichlet boundary conditions

p(0, y, z, t) = Φ1(y, z, t) = 0, p(Lx, y, z, t) = Φ2(y, z, t)

p(x, 0, z, t) = Φ3(x, z, t) = 0, p(x, Ly, z, t) = Φ4(x, z, t)

p(x, y, 0, t) = Φ5(x, y, t) = 0, p(x, y, Lz, t) = Φ6(x, y, t),

(4.4)

and the initial condition

p(x, y, z, 0) = ϕ(x, y, z),

are imposed, for some given functions Φi, i = 1, . . . , 6, and ϕ. The operator ∂α1
∂xα1 is the

fractional Riemann-Liouville derivative of order α1 with respect to x.

A new well �balanced�, fractional version of the Alternating Direction Implicit (ADI)

method is introduced to solve numerically 3D di�usion and reaction-di�usion fPDEs,

which can be applied, e.g., to describe �uid �ows through porous media. We term

�balanced� our scheme since we distribute the right-hand side in the ADI scheme in equal

amount among the thre equations representing the three steps steps of the ADI method,

instead of using the full right-hand side in the �rst equation only, see subsection 2.1

below. This choice allows us to increase the space accuracy from the �rst to the second

order. On the other hand, Liu et al [88] derived a scheme accurate to the second order

in space resorting to Richardson extrapolation.
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Our method is shown to be unconditionally stable for every fractional order of space

derivatives, is second-order accurate in space (as stated here above), and third-order

accurate in time. This latter property is here established resorting to an extrapolation

technique along with an optimization realized through Google's PageRank algorithm.

The method followed here to do this is similar to that used for the 2D case in [33]. Liu

et al.'s method is only of the second order in time.

The for the 3-D cases we set up the typical problems, and discuss some fractional versions

of the ADI (fADI) 3D schemes, we establish a convergence result, and some details about

optimization and extrapolation are given, and a few numerical examples are presented.

4.1 Fractional di�usion and seepage �ow in homogeneous

media

To construct our fADI scheme on a bounded domain, we �rst discretize space and time,

as usual, setting xi := ihx, for i = 0, 1, 2, . . . ,Mx, with hx := Lx/Mx; yj := jhy,

for j = 0, 1, 2, . . . ,My, with hy := Ly/My; zk := khz, for k = 0, 1, 2, . . . ,Mz, with

hz := Lz/Mz; and tn := nτ , for n = 0, 1, 2, . . . , N , τ := T/N . Here, Mx,My,Mz,

and N are positive integers, while hx, hy, hz, and τ are the space and time step sizes,

respectively. The numerical approximation to p(xi, yj , zk, tn) provided by the scheme

at such points will be then denoted by pni,j,k. Similarly, we write fni,j,k to denote an

approximation of f(p(xi, yj , zk, tn);xi, yj , zk, tn) for the source term, p0
i,j,k = ϕi,j,k for

ϕ(xi, yj , zk, 0), the initial value, and pn0,j,k = Φ1(yj , zk, tn) = 0, pnMx,j,k
= Φ2(yj , zk, tn) =

0, pni,0,k = Φ3(xi, zk, tn) = 0, pni,My ,k
= Φ4(xi, zk, tn), pni,j,0 = Φ5(xi, yj , tn) = 0, and

pni,j,Mz
= Φ6(xi, yj , tn), for the boundary conditions.

We discretize the fPDE, approximating the �rst-order derivative ∂p
∂t in (3.1) by forward

�nite di�erences. Assuming that the solution, p, has a �rst-order continuous space

derivative and that its second-order space derivatives are integrable, the operators ∂γ1
∂xγ1 ,

∂γ2
∂yγ2 , and

∂γ3
∂zγ3 in (3.1) can be discretized using the shifted fractional Grünwald-Letnikov

derivative in (4). Thus we obtain the implicit �nite-di�erence scheme

pn+1
i,j,k − p

n
i,j,k

τ
= Kx

h
γ1
x

∑i+1
s=0 gγ1,sp

n+1
i+1−s,j,k +

Ky
h
γ2
y

∑j+1
s=0 gγ2,sp

n+1
i,j+1−s,k

+ Kz
h
γ3
z

∑k+1
s=0 gγ3,sp

n+1
i,j,k+1−s + fn+1

i,j,k .
(4.5)

It is known that the fractional discrete operator

δγ1x p
n+1
i,j,k :=

1

hγ1x

i+1∑
s=0

gγ1,sp
n+1
i+1,j,k, (4.6)
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provides an O(hx) approximation to the Grünwald-Letnikov shifted fractional derivative

of order γ1 [100]. Similarly, the discrete operators

δγ2y p
n+1
i,j,k :=

1

hγ2y

j+1∑
s=0

gγ2,sp
n+1
i,j+1,k, δγ3z p

n+1
i,j,k :=

1

hγ3z

k+1∑
s=0

gγ3,sp
n+1
i,j,k+1, (4.7)

provide, respectively, O(hy) and O(hz) approximations to the Grünwald-Letnikov shifted

fractional derivatives of order γ2 and γ3. Using such operators, the implicit di�erence

scheme in (4.5) can be rewritten in a more compact form as

(1−Kxτδ
γ1
x −Kyτδ

γ2
y −Kzτδ

γ3
z ) pn+1

i,1,k = pni,j,k + τfni,j,k, (4.8)

Note that, evaluating fni,j,k on the right-hand side at time tn, makes it more tractable the

case when f depends on p. In Section 4.2, we will show that this scheme is characterized

by a local truncation error of the order O(τ) + O(hx) + O(hy) + O(hz), and is uncon-

ditionally stable. However, adopting suitable strategies, we have been able to improve

such orders attaining the order O(τ) +O(h2
x) +O(h2

y) +O(h2
z).

Equation (4.8) (or (4.5)) yields a linear system of equations satis�ed by pn+1
i,j,k . The

corresponding system's matrix, however, is neither sparse nor band structured, as it

happens in the corresponding classical ADI method. This implies that the scheme in

(4.8) requires, at each step, the solution of a large dense linear system of equations.

Therefore, we are facing a computationally demanding numerical problem. This calls for

constructing suitable e�cient numerical schemes, possibly unconditionally stable.

To this purpose, we exploit the idea of the classical ADI method to design an implicit

di�erence scheme for each direction, but in the framework of fractional di�erential equa-

tions. The aim is to split the computations into three steps, each requiring a reduced

computational load. On the �rst step, we solve the problem in the x-direction, on the

second one we solve it in the y-direction, and in the third one in the z-direction.

To devise such a splitting, we add an extra higher-order term to the left-hand side of

(4.8), so that we are able to factor the operator into three factors,

(KxKyτ
2δγ1x δ

γ2
y +KxKzτ

2δγ1x δ
γ3
z

+KyKzτ
2δγ2y δ

γ3
z −KxKyKzτ

3δγ1x δ
γ2
y δ

γ3
z ) pn+1

i,j,k , (4.9)

into three factors, without a�ecting the overall convergence rate, thus obtaining the

scheme

(1−Kxτδ
γ1
x )(1−Kyτδ

γ2
y )(1−Kzτδ

γ3
z ) pn+1

i,j,k = pni,j,k + τfni,j,k. (4.10)
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Splitting now (4.10) in the three dimensions, we obtain the unbalanced version scheme

which provides the solution at time tn+1,

(1−Kxτδ
γ1
x ) p

n+1/3
i,j,k = pni,j,k + τfni,j,k,

(1−Kyτδ
γ2
y ) p

n+2/3
i,j,k = p

n+1/3
i,j,k ,

(1−Kzτδ
γ3
z ) pn+1

i,j,k = p
n+2/3
i,j,k ,

(4.11)

which ends up with the solution at time tn+1 and turns out to be of the �rst order in

space [88]. We can however choose to distribute the e�ect of the source term among the

three steps in a more balanced way, obtaining from (4.10) the fADI scheme

(1−Kxτδ
γ1
x ) p

n+1/3
i,j,k = pni,j,k + τ

3 f
n
i,j,k,

(1−Kyτδ
γ2
y ) p

n+2/3
i,j,k = p

n+1/3
i,j,k + τ

3 f
n
i,j,k,

(1−Kzτδ
γ3
z ) pn+1

i,j,k = p
n+2/3
i,j,k + τ

3 f
n
i,j,k.

(4.12)

which also provide the solution at time tn+1. The algorithm (4.12) is of the second-order

in space and of the third-order in time. These facts will be established in Section 4.2

below.

As it will be clear in the Examples below, it is noteworthy that the �balanced� algorithm

wins over the previous one, where the entire forcing term, τ fni,j,k, a�ects only the �rst

equation in (4.12). The balanced scheme, instead, distributes an equal fraction of the

forcing term, i.e., one third of it, among the three equations. Of course, equally unbal-

anced (and less performing) schemes are obtained if the full forcing term is introduced

on the right-hand side of the second and third equations in (4.12). The �unbalanced�

scheme is accurate to the �rst order in space and requires a little shorter computing time,

compared to the better �balanced� scheme. The latter however is accurate to the second

order in space, see Theorem 3.1 below.

Therefore, it seems that using a more balanced scheme, which equally a�ects all (the

three) directions, results in a better method. This algorithm seems to be new, even

within the framework of three-dimensional fractional ADI methods.

Thus, the computations are split into three (time) fractional steps, in each of which a

one-dimensional equation is solved at time, as follows:

Step 1. Solve the problem in the x-direction (for each �xed pair (yj , zk)), to obtain the

intermediate value of the solution, say pn+1/3
i,j,k , from the �rst equation in (4.12).
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Step 2. Solve the problem in the y-direction (for each �xed pair (xi, zk)), to obtain the

intermediate value pn+2/3
i,j,k , from the second equation in (4.12), using the results obtained

at Step 1.

Step 3. Solve the problem in the z-direction (for each �xed pair (xi, yj)), from the third

equation in (4.12), using the results of Step 2.

Taking into account the boundary values pn+1/3
0,j,k and pn+2/3

Mx,j,k
, we can construct the coef-

�cients of the matrix A := {as,t} of the linear system in (4.12): for each �xed (j, k), we

have

as,t =


0, t ≥ s+ 2, s = 1, 2, . . . ,Mx − 3,

−Kx
τ
h
γ1
x
gγ1,0, t = s+ 1, s = 2, ...,Mx − 2,

1−Kx
τ
h
γ1
x
gγ1,1, t = s = 2, . . . ,Mx − 1,

−Kx
τ
h
γ1
x
gγ1,s−t+1, t ≤ s− 1, s = 2, . . . ,Mx − 1.

(4.13)

Then, using the boundary values pn+2/3
i,0,k and pn+2/3

i,My ,k
, we obtain the matrix B := {bs,t} of

the linear system in the second equation of (4.12). For each �xed (i, k), such a matrix

turns out to be similar to A (given in (4.13)). Finally, using the boundary values pn+1
i,j,0

and pn+1
i,j,Mz

, we obtain the matrix C := {cs,t} of the linear system in the third equation

in (4.12), which, again, for each �xed (i, j), is similar to A.

Of course, as in the classical ADI Peaceman-Rachford algorithm [109], used to solve

�integer-order� (i.e., non-fractional) PDEs, it is necessary to provide certain boundary

values to be associated to the di�usion in the x-direction, that is pn+1/3
0,j,k and p

n+1/3
Mx,j,k

,

as well as pn+2/3
i,0,k and pn+2/3

i,My ,k
, associated to the di�usion along y, and similarly for the

di�usion along z, when solving the systems with the coe�cient matrices A, B, and C.

For instance, we need the boundary values pn+1/3
0,j,k , pn+1/3

Mx,j,k
, which can be obtained from

p
n+1/3
i,j,k = (1−Kyτδ

γ2
y )(1−Kzτδ

γ3
z ) pn+1

i,j,k , i = 0, . . . ,Mx,

for j = 1, 2, . . . ,My − 1, k = 1, 2, . . . ,Mz − 1, n = 0, 1, . . . , N − 1, and pn+2/3
i,0,k , pn+2/3

i,My ,k
,

which can be obtained from

p
n+2/3
i,j,k = (1−Kzτδ

γ3
z ) pn+1

i,j,k , i = 0, . . . ,My,

for i = 1, 2, . . . ,Mx − 1, k = 1, 2, . . . ,Mz − 1, n = 0, 1, . . . , N − 1.

Examining the three coe�cient matrices A, B, C, above, it can be seen that, at each

time step, it is merely required to solve, for each �xed pair (j, k) (at each x-level) a linear

upper triangular system of size Mx − 1, or, for each �xed pair (i, k) (at each y-level),

a linear upper triangular system of size My − 1, or, for each �xed pair (i, k) (at each

z-level) a linear upper triangular system of size Mz − 1.
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4.2 Theoretical analysis of the 3D fADI algorithm

As mentioned in Section 4.1, the fractional discrete operators in (4.6), (4.7) provide an

O(hx), O(hy), and O(hz) approximation to the Grünwald-Letnikov shifted fractional

derivative of order γ1, γ2, and γ3, respectively, see [100, 132].

The �unbalanced� implicit di�erence scheme (4.11), is characterized by a local truncation

error of order O(τ) +O(hx) +O(hy) +O(hz), and is unconditionally stable. These facts

were established in [123]. Let us now consider our better �balanced� scheme, (4.12). We

will prove the following

Theorem 7. The scheme in (4.12) is unconditionally stable, third-order accurate in time,

and second-order accurate in space, for every choice of the (space) fractional orders, γi,

i = 1, 2, 3.

Proof. In [144], the unbalanced scheme in (4.11) was analyzed and its numerical stability

proved. Consider now our balanced scheme in (4.12). Here we use the so called �Lubich

second-order backward �nite di�erence� [124], which is de�ned, at time n, in the x-

direction, at the point xi+1, and for �xed y and z, as

Lδγ1x p
∣∣∣
xi+1

:=
1

hγ1x

∑
c

ωγ1c p
n
i−c,j,k. (4.14)

Here, c ∈ {−1, 0,−1}, γ1 represents the fractional order derivative, and the ωγ1c 's are the

�rst three coe�cients of the Taylor expansions of the corresponding generating function,

say fa(z), see [124]. Here, a denotes the order of accuracy, and for a = 2 such function

is given by

fγ12 (z) :=

(
3

2
− 2z +

1

2
z2

)γ1
. (4.15)

The Grünwald-Letnikov de�nition of the discretized Riemann-Liouville fractional deriva-

tive di�ers from that given by Lubich by an O(h2
x) term, see [124]. Thus, evaluating the

fractional Riemann-Liouville derivatives at the point xi+1, to approximate the space

fractional derivative in the sense of Lubich of order γ1 in the x-direction, we obtain

δγ1x p
∣∣∣
xi+1

=
3p
n+1/3
i+1,j,k − 4p

n+1/3
i,j,k + p

n+1/3
i−1,j,k

2τγ1
+O(h2

x), (4.16)

where τ = hx. To be more general, we could set τ := s hx, for some s > 0, but this

would not entail any loss of generality because the stability analysis would not a�ect

the location of the roots by this. This holds for each �xed i and n, j, k. Using the
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approximation (4.16) in (4.12), we obtain

p
n+1/3
i+1,j,k −Kxτ

3p
n+1/3
i+1,j,k − 4p

n+1/3
i,j,k + p

n+1/3
i−1,j,k

2τγ1
= pni−1,j,k +

τ

3
fni,j,k, (4.17)

with a truncation error of order O(h2
x). We now approximate the x-space operator

applied to pn+1/3
i+1,j,k [144] by a second-order Taylor expansion, obtaining

1−Kx τ δ
γ1
x = Lx +

4

3
hx∂x −

4

9
h2
xDx (4.18)

where Dx := ∂xx and Lx := 1 + θhxDx, 0 < θ < 1. Then, we can replace the O(h3
x) with

the explicit form of pn+1/3
i+1,j,k given by the extrapolation formula

p̃
n+1/3
i+1,j,k : =

147

2500
p
n+1/3
i+1,j,k −

29409

100000
pn+∗∗
i+i,j,k −

147

2500
pn+∗
i+1,j,k +

147

2500
pni+1,j,k

= p
n+1/3
i+1,j,k +O(h2

x)(4.19)

(see (4.24) in Section 4.1 below, and (4.27) in Section 4.2), where ∗ and ∗∗ represent
respectively the �rst and the second intermediate sub-steps between n and n+ 1/3, and

p
n+1/3
i+1,j,k is implicitly de�ned through (4.17). We can then insert Lx in (4.18) p̃n+1/3

i+1,j,k,

obtaining

Lxp
n+1/3
i+1,j,k = (1−Kxτ)p̃

n+1/3
i+1,j,k −

4

3
τ∂xp̃

n+1/3
i+1,j,k +

4

9
τ2Dxp̃

n+1/3
i+1,j,k. (4.20)

Subtracting Lxp̃
n+1/3
i+1,j,k from both sides of (4.20), we obtain �nally

Lxv = −(Kxτ + θhxδ
γ1
x )p̃

n+1/3
i+1,j,k − (1 +

4

3
τ∂x + θhxδ

γ1
x )p̃

n+1/3
i+1,j,k

−(1 + θhx +
4

9
τ2)δγ1x p̃

n+1/3
i+1,j,k,(4.21)

where we set, for short, v := p
n+1/3
i+1,j,k − p̃

n+1/3
i+1,j,k, and replaced the classical second order

derivative Dx with his fractional version, δγ1x . A von Neumann stability analysis of (4.21)

yields an equation for the ampli�cation factor, σ,

(θhx −Kxτ)σ4(σ − 1)2 =
7

3
(1 +Kxθτ)σ3(σ − 1)− 8

3
τσ2(2σ − 1). (4.22)

Similar results can be obtained for the y and the z directions. It can be proved that

the roots of (4.22) are in the range 0 ≤ |σ| ≤ 1, for every value of Kx, Ky, Kz, θ, hx

and τ [142]. Consequently, the scheme in (4.21) turns out to be of the second order in

space, and unconditionally stable. The third-order accuracy in time can be established

proceeding as in the 2D case worked out in [33].
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4.3 The numerical implementation and some examples

In this section, we apply our numerical method to solve 3D fractional di�usion as well

as reaction-di�usion problems. Examples, including reaction-di�usions, are then given

to illustrate the performance of the algorithm.

4.3.1 Some theoretical preliminary considerations

We set up an extrapolation technique to optimize our algorithm, thus attaining an ap-

preciable acceleration. This can be accomplished exploiting the PageRank algorithm,

widely used by Computer Scientists, but not so much in Numerical Analysis.

The Google's PageRank algorithm [78] makes it possible to index material in Internet,

using the degree of popularity of a given web page, to de�ne the position in searching re-

sults through the computation of certain optimal coe�cients. In this way, this algorithm

provides for instance an optimization method to make it faster a given web search. This

approach will be associated to an extrapolation technique, to determine the coe�cients

which make it optimal. Not only a considerable amount of CPU time can be saved in

this way, [26], but this procedure also increases the accuracy of the overall method up to

the third order in time, see [33, 97]. Let us describe such a technique.

Step 1. Compute �rst the array Ψ = (ψ1, ψ2, ψ3, ψ4)T , solving the system

Ψ = v + dL Ψ, (4.23)

of four linear algebraic equations, where d is the so-called damping factor, in general

assumed to be around 0.85 (see [16]; such a numerical value for d was determined by

empirical trials), v := (1−d)
(
0, (N − 2)−1, (N − 1)−1, N−1

)T
, N being the dimension of

the problem, which in our case is equal to 4, and L = {`ij} for i, j = 1, . . . , 4, where lij are

certain nonnegative coe�cients such that, for each j,
∑N

i=1 li,j = 1. Note that (4.23) is an

implicit but linear equation for Ψ, hence immediately solvable. An extrapolated solution,

depending on pn ≡ pni,j,k, is then used to solve the problem. The quantity pn requires

evaluating certain coe�cients, which can be obtained by the �PageRank accelerating

algorithm� [78]. The previous algebraic system yields the optimal coe�cients array Ψ.

Step 2. Compute the solution pn to a compact di�erence scheme [125, 131, 134, 153]

(see step 3 below), with the four time step sizes τ , 3
4τ ,

τ
2 , and

τ
4 [131]. This kind of

methods is usually adopted to treat steady convection-di�usion numerical problems on

uniform grids [125], rather than time-dependent problems.
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Step 3. Evaluate the extrapolated solution, qn(τ), by

qn(τ) = ψ1 p
n(τ) + ψ2 p

n

(
3

4
τ

)
+ ψ3 p

n
(τ

2

)
+ ψ4 p

n
(τ

4

)
, (4.24)

where the dependence of pn on τ has been displayed.

4.3.2 Numerical examples

In this section, we present a few numerical results to support the theoretical analysis

developed in the previous sections. In the following, the symbol aDα
b p will be used to

de�ne the fractional Riemann-Liouville derivative of p of order α, in the interval [a, b].

Example 1. Consider the three dimensional fPDE

∂p

∂t
= K1x 0D

α
xp+K2x xD

α
2 p+K1y 0D

β
y p+K2y yD

β
2 p+K1z 0D

γ
z p+K2z zD

γ
2p

+ dx
∂p

∂x
+ dy

∂p

∂y
+ dz

∂p

∂z
+ f(x, y, z, t),(4.25)

that is a linear transport-di�usion model equation (with ordinary transport and fractional

di�usion), on the domain (x, y, z) ∈ [0, 2]3, 0 < t ≤ T , with coe�cients

K1x := Γ(3− α)xα, K2x = Γ(3− α)(2− x)α

K1y := Γ(3− β) yβ, K2y = Γ(3− β)(2− y)β

K1z := Γ(3− γ)xγ , K2z = Γ(3− γ)(2− z)γ ,

dx :=
x

4
, dy := y

4 , dz := z
4 .

We de�ne the forcing term

f(x, y, z, t) := −4 e−tx2y2z2(x− 2)(y − 2)(z − 2)(3xyz − 5x− 5y − 5z + 8)

− [lα(x, z, t) + lγ(z, x, t) + lα(y, x, t) + lβ(x, y, t) + lβ(z, y, t) + lγ(y, z, t)] ,(4.26)

where lδ(u, v, t) := g(u, t)hδ(v), being

g(u, t) := 32 e−tu2(2− u)2,

and

hδ(u) := u2 + (2− u)2 −
3
[
u3 + (2− u)3

]
3− δ

+
3
[
u4 + (2− u)4

]
(3− δ)(4− δ)

,
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and impose furthermore, for all t > 0, the homogeneous Dirichlet boundary conditions

p(0, y, z, t) = p(x, 0, y, t) = p(x, y, 0, t) = 0,

p(2, y, z, t) = p(x, 2, y, t) = p(x, y, 2, t) = 0,

as well as the initial condition

p(x, y, z, 0) = 4x2(2− x)2y2(2− y)2z2(2− z)2.

The (exact) analytical solution to equation (4.25), under such initial and boundary con-

ditions, is known, and is given by

p(x, y, z, t) = 4x2e−t(2− x)2y2(2− y)2z2(2− z)2,

see [45]. All this can be used to validate our 3D algorithm and test its performance. We

will feel then con�dent that it might perform well also when other source terms, that

might be encountered in real world problems, enter the model. Below, we will indeed

replace the special forcing term in (4.25) with some other more realistic ones.

From Fig. 4.1, it is clear what is the e�ect of replacing ordinary derivatives, (α, β, γ)

= (2, 2, 2), with fractional derivatives, in a given di�usion equation. Here, (α, β, γ) =

(1.4, 1.5, 1.6), thus accounting for anomalous di�usion. In general, such a modi�cation

implies new geometric patterns in the solution, and a possibly anisotropic behavior. Even

a di�erent speed of propagation, depending on the order of the fractional derivatives, can

be reproduced in this way. Indeed, all these features have been observed, e.g., in certain

porous media through which some �uid �ows [36, 129]. Hereafter T denotes the �nal

time at which the solution is computed.

In Fig. 4.2, the numerical errors ‖qn − pn‖ are plotted in the L2 and in the L∞ norms,

on a log-scale, where pn ≡ p(xi, yj , zk, tn) denotes the exact solution to the fPDE (on

the grid points de�ned in Section 2.1, and qn ≡ qn(τ) is its approximation given by our

scheme through equation (4.24).

In order to assess the convergence rate when space and time step size are re�ned, we

write our approximate solution qn as q(h, τ) to display its dependence on the space step

sizes, hx = hy = hz = h (assumed to be equal), and the time step size, τ . The, we de�ne,

for every N ∈ N, the time and the space convergence rate, in the 2-norm, for a given

method of order m > 1, as

rtime(N) := log2

[
‖q(h, hN )− pn‖2
‖q(h, h

2N )− pn‖m2

]
, rspace(N) := log2

[
‖q( hN , h)− pn‖2
‖q( h

2N ), h)− pn‖m2

]
.
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Figure 4.1: (a) Classical solution (obtained by a �ne grid numerical ADI method with
τ = h/16 and h = 1/64), and (b) exact (analytical) fractional di�usion solution with
(α, β, γ) = (1.4, 1.5, 1.6), for z = 1 and T = 2. The same forcing function was used in

both cases.
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Figure 4.2: Absolute numerical error εN (in log scale) between the exact and the
numerical solution of the fPDE of Example 1, at T = 2, with (α, β, γ) = (1.4, 1.5, 1.6).

In Tables 4.1 and 4.2, the absolute numerical errors ‖qn−pn‖∞ and ‖qn−pn‖2, as well as
the corresponding convergence rates attained using di�erent space step sizes, are shown.

Figure 4.2 displays the in�nity norm and the L2 norm errors for Example 1, when the

optimized di�erence scheme is implemented in (4.24), at times T = 1 and T = 2, for

several values of hx = hy = hz = h = τ = 2/N , N = 8, 16, 32, 64, and �xed α, β, and γ.

Here there is evidence that numerical errors decrease when increasing N , i.e., decreasing
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τ . Note that, due to the logarithmic scale, smaller and smaller errors correspond to

larger and larger values.

Table 4.1: L∞ and L2 norm errors (in log scale) and convergence rates for Example 1,
when the balanced scheme is used, at time T = 1, for several values of (α, β, γ), N .

(α, β, γ) N ‖qn − pn‖∞ rspace ‖qn − pn‖2 rspace rtime
(1.2, 1.2, 1.2) 8 1.5023 · 10−2 −− 7.5264 · 10−2 −− −−

16 2.8925 · 10−3 2.002 1.6581 · 10−2 2.015 3.009
32 6.8952 · 10−4 2.000 5.3265 · 10−3 2.007 3.006
64 2.3561 · 10−4 1.996 2.3654 · 10−4 1.999 3.001

(1.4, 1.5, 1.6) 8 2.0253 · 10−2 −− 3.2564 · 10−2 −− −−
16 2.9541 · 10−3 2.001 3.1254 · 10−2 2.011 3.010
32 7.1254 · 10−4 2.000 7.9856 · 10−3 2.007 3.005
64 2.5648 · 10−4 1.988 2.8930 · 10−2 1.998 2.998

(1.9, 1.9, 1.9) 8 2.324 · 10−2 −− 3.5852 · 10−2 −− −−
16 3.5984 · 10−3 2.005 3.9852 · 10−2 2.009 3.002
32 7.5214 · 10−4 2.002 7.7815 · 10−3 2.008 3.001
64 2.8594 · 10−4 1.992 3.2852 · 10−4 1.989 3.000

(2.0, 2.0, 2.0) 8 5.2154 · 10−3 −− 6.7952 · 10−3 −− −−
16 6.7854 · 10−4 2.001 7.1248 · 10−4 2.001 3.000
32 5.7453 · 10−5 1.999 7.9173 · 10−5 1.998 3.000
64 6.7852 · 10−5 2.000 7.7945 · 10−5 2.000 2.999

Table 4.2: L∞ and L2 norm errors, and convergence rates for Example 1, when the
balanced scheme is used, at time T = 2, for several values of N .

(α, β, γ) N ‖qn − pn‖∞ rspace ‖qn − pn‖2 rspace rtime
(1.4, 1.5, 1.6) 8 8.2654 · 10−3 −− 9.7452 · 10−3 −− −−

16 2.6584 · 10−4 2.001 2.7852 · 10−3 2.001 3.002
32 7.0145 · 10−5 2.000 5.3255 · 10−4 1.999 3.000
64 1.2420 · 10−5 1.999 4.7852 · 10−5 2.000 2.999
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Figure 4.3: L∞ and L2 discrepancy, again denoted by εN (in log scale) between the
numerical solution of the classical problem and that of the fractional problem with

(α, β, γ) = (1.4, 1.5, 1.6), at T = 2.
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In Fig. 4.3, the discrepancies between the numerical solutions to the classical and the

fractional di�erential equations, obtained by the ADI and the fADI method, respec-

tively, i.e., ‖qnADI − qnfADI‖, are plotted in the L2 and in the L∞ norms, on an log-scale.

This is done to appreciate the di�erences visible when one switches from one to the other

model. In Tables 4.3 and 4.4, such discrepancies, ‖qnADI−qnfADI‖∞ and ‖qnADI−qnfADI‖2,
as well as the corresponding convergence rates, achieved using di�erent space step sizes,

are shown. Here again qn(τ), given by

147

2500
pn(τ)− 29409

100000
pn
(

3

4
τ

)
− 147

2500
pn
(τ

2

)
+

147

2500
pn
(τ

4

)
, (4.27)

is the extrapolated solution, and pn ≡ pni,j,k satis�es the optimized scheme in (4.8).

Figure 4.3 shows the convergence rates of the maximum norm and the L2 norm errors

for Example 1, when the optimized di�erence scheme in (4.27) is implemented, at times

T = 1, for several values of N , and �xed α, β, and γ.

Table 4.3: L∞ and L2 norm discrepancy for Example 1, when the balanced scheme is
used, at time T = 1, for several values of N .

(α, β, γ) N ‖qnfADI − qnADI‖∞ ‖qnfADI − qnADI‖2
(1.2, 1.2, 1.2) 256 6.1758 · 10−7 3.8458 · 10−6

512 2.2548 · 10−7 7.8442 · 10−7

(1.4, 1.5, 1.6) 256 2.8287 · 10−7 1.1205 · 10−6

512 3.7852 · 10−8 3.7854 · 10−7

(1.9, 1.9, 1.9) 256 1.1582 · 10−7 5.7852 · 10−7

512 1.7855 · 10−8 5.0023 · 10−7

(2.0, 2.0, 2.0) 256 8.1158 · 10−8 8.7852 · 10−7

512 1.7852 · 10−8 6.7852 · 10−8

Table 4.4: L∞ and L2 norm discrepancy for Example 1, when the balanced scheme is
used, at time T = 2, for several values of N .

(α, β, γ) N ‖qnfADI − qnADI‖∞ ‖qnfADI − qnADI‖2
(1.4, 1.5, 1.6) 256 5.7854 · 10−7 1.4002 · 10−8

512 2.7584 · 10−8 7.7852 · 10−8

Table 4.5 shows CPU times by our algorithm on a Dual Core Pentium with 4GB RAM

and with 32bit-MATLAB programs, for di�erent values of fractional orders and advection

coe�cients dx, dy, dz. The CPU time is measured in terms of clocks ticks.

Tables 4.5 and 4.6, indicate that the our balanced ADI method's performance is compa-

rable to that proposed in [88], though slightly worse. Recall that our method and that

of Liu et al. di�er in the strategies followed to accelerate them. Our unbalanced method

however performs better than that, requiring smaller CPU times. This is due to the fact

that the model problem is anisotropic, behaving along the direction x rather di�erently

than along the other directions. Indeed, all Tables, 4.7, 4.8, and 4.9, show that when the
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Table 4.5: CPU times in clocks ticks units (CT ) for the unbalanced and the balanced
versions of the fADI scheme, CTbal, and CTunbal, respectively, required to attain an
error of order 10−5, for h = 1/100 and several values of the fractional orders, α, β, γ

and the advection coe�cients dx, dy, dz.

(α, β, γ) (dx, dy, dz) CTunbal CTbal
(1.8, 1.5, 1.2) (10, 5, 1) 2.256 · 10−3 8.236 · 10−2

(1.8, 1.5, 1.3) (8, 4, 1) 4.365 · 10−3 4.255 · 10−2

(1.8, 1.6, 1.4) (7, 3, 1) 3.256 · 10−2 5.778 · 10−2

(1.8, 1.6, 1.5) (5, 2, 1) 7.289 · 10−2 2.389 · 10−3

(1.8, 1.7, 1.6) (3, 1, 1) 6.258 · 10−1 1.756 · 10−3

(1.8, 1.7, 1.7) (2, 1, 1) 8.236 · 10−1 1.586 · 10−3

(1.8, 1.8, 1.8) (1, 1, 1) 9.266 · 10−1 1.256 · 10−3

Table 4.6: CPU times in clocks ticks units (CT ) for the unbalanced and the balanced
versions of the fADI scheme, CTbal, and CTunbal, respectively, required to attain an
error of order 10−5, for N = 100 and several values h = 1

γN , and of the fractional
orders, α, β, γ.

(α, β, γ) h CTunbal CTbal
(1.8, 1.5, 1.2) 0.08 5.256 · 10−3 7.256 · 10−2

(1.8, 1.5, 1.3) 0.08 6.001 · 10−2 3.856 · 10−2

(1.8, 1.6, 1.4) 0.07 7.898 · 10−2 4.258 · 10−2

(1.8, 1.6, 1.5) 0.07 8.856 · 10−2 1.759 · 10−2

(1.8, 1.7, 1.6) 0.07 4.125 · 10−1 1.896 · 10−2

(1.8, 1.7, 1.7) 0.06 7.156 · 10−1 1.325 · 10−3

(1.8, 1.8, 1.8) 0.05 8.780 · 10−1 1.126 · 10−3

anisotropy occurs in another direction, others than x, an appropriately balanced method

wins over the others.

Table 4.7: CPU times in clocks ticks units (CT ) for the unbalanced and the balanced
versions of the fADI scheme, CTbal, and CTunbal, respectively, required to attain an
error of order 10−5, for h = 1/100 and several values of the fractional orders, α, β, γ

and the advection coe�cients dx, dy, dz.

(α, β, γ) (dx, dy, dz) CTunbal CTbal
(1.5, 1.8, 1.2) (5, 10, 1) 7.152 · 10−2 8.256 · 10−2

(1.5, 1.8, 1.3) (4, 8, 1) 9.856 · 10−2 7.026 · 10−2

(1.6, 1.8, 1.4) (3, 7, 1) 6.856 · 10−1 5.785 · 10−2

(1.6, 1.8, 1.5) (2, 5, 1) 7.019 · 10−1 3.256 · 10−3

(1.7, 1.8, 1.6) (1, 3, 1) 8.786 · 10−1 1.756 · 10−3

(1.7, 1.8, 1.7) (1, 2, 1) 9.325 · 10−1 1.586 · 10−3

(1.8, 1.8, 1.8) (1, 1, 1) 1.256 1.025 · 10−3

Table 4.8: CPU times in clocks ticks units (CT ) for the unbalanced and the balanced
versions of the fADI scheme, CTbal, and CTunbal, respectively, required to attain an
error of order 10−5, for N = 100 and several values h = 1

γN , and of the fractional
orders, α, β, γ.

(α, β, γ) h CTunbal CTbal
(1.5, 1.8, 1.2) 0.08 7.266 · 10−2 5.125 · 10−2

(1.5, 1.8, 1.3) 0.08 9.014 · 10−2 4.856 · 10−2

(1.6, 1.8, 1.4) 0.07 5.888 · 10−1 2.558 · 10−2

(1.6, 1.8, 1.5) 0.07 7.896 · 10−1 1.325 · 10−3

(1.7, 1.8, 1.6) 0.07 3.965 · 10−1 1.756 · 10−3

(1.7, 1.8, 1.7) 0.06 7.156 1.256 · 10−3

(1.8, 1.8, 1.8) 0.05 8.780 9.254 · 10−4
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Table 4.9: CPU times in clocks ticks units (CT ) for the unbalanced and the balanced
versions of the fADI scheme, CTbal, and CTunbal, respectively, required to attain an
error of order 10−5, for h = 1/100, dx = dy = dz = 0, and several values of the fractional

orders, α, β, γ.

(α, β, γ) CTunbal CTbal
(1.5, 1.5, 1.5) 8.458 7.758 · 10−4

(1.3, 1.8, 1.3) 2.786 · 10−1 7.256 · 10−2

(1.2, 1.5, 1.2) 6.289 · 10−1 2.389 · 10−3

(1.5, 1.7, 1.5) 6.258 · 10−1 1.756 · 10−3

(1.7, 1.8, 1.7) 3.276 · 10−1 5.785 · 10−3

(1.8, 1.8, 1.8) 1.256· 8.785 · 10−4

Example 2. Let choose, in equation (4.25), (α, β, γ) = (1.4, 1.5, 1.6) and the nonlinear

source term f(p) = p
2 , instead of the linear source f(x, y, z, t) de�ned in (4.26) above.

Therefore, we now face a fractional reaction-di�usion problem (a semilinear fractional

PDE). A forcing term like this occurs often, for instance, in modeling dissolution and

precipitation phenomena in porous media [63, 139].

In Table 4.10, we show the numerical results pertaining to this problem, obtained using

the the fADI method for the fPDE with (α, β, γ) = (1.4, 1.5, 1.6).

Table 4.10: L2 norm discrepancies, and convergence rates for Example 2, when the
balanced scheme is used, at time T = 2, source term f(p) = p

2 , (α, β, γ) = (1.1, 1.7, 1),
h = 1/N , and several values of N .

N τ ‖qnfADI − qnADI‖2 ratespace ratetime
16 h/16 8.5825 · 10−4 −− −−
32 h/16 3.8501 · 10−4 2.000 3.001
64 h/16 1.7854 · 10−5 2.000 3.000

Example 3. Consider now the linear fractional di�usion equation with an impulsive

source,

∂p

∂t
= Kx

∂αp

∂xα
+Ky

∂βp

∂yβ
+Kx

∂γp

∂zγ
+ c δ(x− x0, y − y0, z − z0, t− t0), (4.28)

where δ is the Dirac delta function, c, x0, y0, z0, and t0 are all positive constants,

(x, y, z) ∈ Ω = (x1, x2)×(y1, y2)×(z1, z2), t > 0, and subject to the boundary conditions

p(x, y, z, t)|∂Ω = h(x, y, z, t), (x, y, z) ∈ ∂Ω, t ∈ (0, T ],

for some T > 0, and to the initial value

p(x, y, z, 0) = p0(x, y, z), (x, y, z) ∈ Ω.

Here, the forcing term mimics the behavior of a seepage �ow in a porous medium which

can be either isotropic or even anisotropic in the x, y, and z direction (depending on the
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coe�cients Kx, Ky, Kz). In view of a numerical treatment of such a problem, we replace

the ideally impulsive source with a function likely to have a similar behavior, see [39].

Let be α = β = γ = 1.8, the domain Γ = (0, 1)3,

Kx = 0.1
Γ(1.4)

Γ(3.2)
, Ky = 0.1

Γ(1.2)

Γ(3)
, Kz = 0.1

Γ(1.4)

Γ(3)
,

and the source term, which reproduces approximately the behavior of the δ function in

(4.28),

f(x, y, z, t) = −e−t (x2.2 y2z2 − 0.1x0.4 y2z2+

−0.1x2y0.2 z2 − 0.1x2y2z0.4).

We impose the boundary conditions

p(0, y, z, t) = p(x, 0, y, t) = p(x, y, 0, t) = 0,

p(1, y, z, t) = e−ty2z2, p(x, 1, y, t) = e−tx2.2 z2, p(x, y, 1, t) = e−tx2.2 y2,

and the initial value

p0(x, y, z) = 0.

The analytic solution to this problem is known to be

p(x, y, z, t) = e−tx2.2 y2z2, (4.29)

see [88]. Note that, when (α, β, γ) = (2, 2, 2), we obtain the classical linear forced

di�usion equation pt = ∆p+ f .

We now compare the previous numerical solution with α, β, γ in the range [1.2, 1.8],

computed using our balanced fADI method, with that of a classical (i.e., nonfractional)

case, that we can consider rather �close� to it, taking α = β = γ = 2 and the same source

term de�ned in (4.29).

In Fig. 4.4 the absolute numerical errors between the exact solution and the numerical

solution obtained by a fADI method are shown. In Fig. 4.5 the same is done for the

absolute numerical errors between the numerical classical ADI method and the numerical

solution obtained by the fADI method. Both errors are plotted in the L2 norm.

Table 4.11 illustrates the convergence rates of the algorithm, measured in the L2 norm,

in Example 3 for several values of τ and N , and �xed α, β, and γ. Here, pn is the exact

solution, while qnADI is the solution obtained by the classical ADI method, and qnfADI is

that provided by the fADI method.
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Figure 4.4: Numerical absolute errors ‖qnfADI − pn‖ for three values of the time and
the space step-sizes, τ = h (solid-red), τ = h/2 (dashed-green), τ = h/4 (dashed and

dotted-blue), for α = β = γ = 1.8, h = 1/N , on a log-scale.

Figure 4.5: Discrepancy ‖qnfADI−qnADI‖ for three values of time and space step-sizes,
τ = h (solid-red), τ = h/2 (dashed-green), τ = h/4 (dashed and dotted-blue), for

α = β = γ = 1.8, h = 1/N , on a log-scale.

As one would expect in the fADI methods, coupled with the optimized extrapolation, a

faster convergence is observed as the grid is re�ned. In the following, we show these

results in a table of computational times, see Table 4.12.

Table 4.13 shows CPU times and memory used by our algorithm for various grid sizes.

The CPU time is evaluated at T = 1. Table 4.13 indicates that the balanced ADI

method performs slightly worse than that one proposed in [88]. However, this little price

is paid to obtain a third-order (instead of a second-order) in time method. It was also
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Table 4.11: L2 norm errors, discrepancies and convergence rates for Example 3, when
the balanced scheme is used, with α = β = γ = 1.8, at time T = 1, for h = 1/N and
several values of N and τ . The two numbers in the rates columns refer to the �rst and

second algorithms, respectively.

N τ ‖qnfADI − pn‖2 ‖qnfADI − qnADI‖2 space conv. rates time conv. rates

16 h 2.0122 · 10−1 2.5684 −− −−
32 h 3.8524 · 10−2 1.8524 · 10−1 −− −−
64 h 2.1852 · 10−3 3.2658 · 10−2 −− −−
16 h/2 5.7616 · 10−1 1.0226 1.96− 1.82 2.98− 2.92
32 h/2 3.1658 · 10−2 2.5802 · 10−1 1.99− 1.93 2.99− 2.95
64 h/2 3.5800 · 10−3 6.3552 · 10−2 1.98− 1.89 2.99− 2.96
16 h/4 1.7525 · 10−2 3.2753 2.00− 1.96 3.00− 2.98
32 h/4 2.1358 · 10−3 2.1258 · 10−1 2.00− 1.98 3.00− 2.99
64 h/4 3.3654 · 10−4 9.4528 · 10−2 2.00− 2.00 3.00− 3.01

Table 4.12: Computational times (in seconds) for the unbalanced and balanced version
of the fADI scheme, respectively, Tunbal and Tbal, with (α, β, γ) = (1.8, 1.6, 1.4), at time

T = 1, for h = 1/N and several values of N and τ .

N τ Tunbal Tbal
16 h 7 7
32 h 15 16
64 h 32 34
16 h/2 11 12
32 h/2 20 23
64 h/2 37 39
16 h/4 19 20
32 h/4 41 43
64 h/4 83 81

observed that balanced and unbalanced algorithm require about the same computational

resources.

Table 4.13: CPU times in clocks ticks units (CT ), and memory (RAM in MB)
for the unbalanced and the balanced versions of the fADI scheme, CTbal, RAMbal and
CTunbal, RAMunbal, respectively, with (α, β, γ) = (1.8, 1.6, 1.4), at time T = 1, for

h = 1/N and several values of N and τ .

N τ CTbal RAMbal CTunbal RAMunbal

16 h 1.944 · 10−3 0.15 2.778 · 10−3 0.23
32 h 4.416 · 10−3 0.23 5.278 · 10−3 0.34
64 h 8.889 · 10−2 0.81 1.027 · 10−2 0.92
16 h/2 3.050 · 10−2 0.24 3.611 · 10−3 0.33
32 h/2 5.555 · 10−3 0.42 6.944 · 10−3 0.51
64 h/2 1.028 · 10−2 1.23 1.361 · 10−2 1.38
16 h/4 5.278 · 10−3 0.59 6.389 · 10−3 0.67
32 h/4 1.139 · 10−2 0.83 1.310 · 10−3 0.95
64 h/4 2.778 · 10−2 1.70 2.667 · 10−2 1.92

Example 4. We consider the semilinear (reaction-di�usion) equation [7]

∂p

∂t
= C

∂αp

∂xα
+D

∂βp

∂yβ
+ E

∂γp

∂zγ
+ fr,k(p), (4.30)
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on the set

Ω = Ω1 × Ω2 × Ω3 = ([−20, 10]× I2
20)× ([10, 20]× [2, 4]× I20)× ([20, 100]× I2

20),

where I20 := (−20, 20), t ≥ 0, (D,E, F ) is the percolation tensor, and fr,k(p) := rp
(
1− p

k

)
is the well-known Kolmogorov-Fisher function [104, 105], often adopted in population bi-

ology to model the spread of invasive species. Here, r and k are parameters, r representing

the intrinsic increase rate of the �uid, and k the environmental carrying capacity, that

is the maximum sustainable �uid density. We computed the numerical solution to the

initial-boundary value problem above, assuming the radially symmetric initial condition

p(x, y, z, 0) = min
(x,y,z)∈Ω1

{0.8, 10 e−(x2+y2+z2)}, (4.31)

and the boundary conditions

p(x, y, z, t)|∂Ω = py(x,±20, z, t) = px(±20, y, z, t) = px(10, y, z, t) = 0.(4.32)

Next, we consider the solution to a fPDE like that in (4.30), but with a reaction term

having space variable coe�cients. Let be C = 0.15, D = 0, 4, E = 1, r = 0.2, and assume

that k varies in space as follows: for (x, y, z) ∈ Ω′ := Ω′1 ∪ Ω′2 ∪ Ω′3,

k = k(x, y, z) :=

{
10−6 for (x, y, z) ∈ Ω′1 := (−30, 10)× I2

20

1 for (x, y, z) ∈ Ω′2 := (20, 10)× I2
20,

and k being smoothly interpolated in Ω′3 := (10, 20)× (2, 4)× I20, see Figs. 4.6, 4.7, 4.8.
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Figure 4.6: Domain for the variable reaction term coe�cient k(x, y, z) divided into
the regions Ω′1 (dotted blue), Ω′3 (dotted green) and Ω′2 (dotted magenta).
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In many applications to meteorology, this case may model a region which can contains

at most a certain given amount of �uid, due to certain environmental conditions. The

geometry is a silt barrier through which the �uid will eventually penetrate. We �rst

consider the case α = β = γ = 2. In Fig. 4.5 the solution pertaining to this case is

shown, in a plan view, at time T = 90. Here, due to classical di�usion along x, the

pressure can be seen to penetrate the barrier very slowly.

Figure 4.7: Solution to equation (4.30), at time T = 90, with the initial condition
(4.31) and parameters α = β = γ = 2, C = 0.15, D = 0.4, r = 0.2, on the cross section
in the plane (x, y), this plane is divided into two regions, the pressure propagates slowly
from a region (left) to the other (right) through a silt barrier which links them [7].

We then changed parameters, choosing α = 1.7, β = γ = 2, to represent a certain anoma-

lous di�usion. In Fig. 4.8, it is shown that at time T = 50, even before the �snapshot

time� T = 90 (which refers to Fig. 4.7), the pressure has penetrated signi�cantly the

barrier, and it spreads at the same time in the y direction.

This is a striking peculiarity of fractional reaction-di�usion model which allows to predict

the e�ects of controlling the �uid �ow, for instance describing pollution due to a pollutant

expanding from a given environment to another.
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Figure 4.8: Solution to equation (4.30), at time T = 50, with initial condition (4.31)
and parameter values α = 1.7, β = γ = 2, C = 0.15, D = 0.4, r = 0.2. This creates a
slit barrier, through which the �uid is shown to penetrates when fractional derivative

model is adopted [7].



Conclusions and future directions

Here we give some conclusions from the investigations conducted in the course of this

Thesis and suggest future directions of research.

In chapter 1, we gave a partial contribution to the Mainardi's conjecture, concerning only

small intervals of the variable t. The method we proposed to evaluate numerically the

M-L function eα(t) ≡ Eα(−tα), is based on the integration of a simple fODE satis�ed

by it. We did it using the predictor-corrector algorithm of K. Diethelm, and showed

that it always wins, in terms of CPU time and RAM, over the code implemented by

Mathematica code, for all values of α ∈ (0, 1) and for arbitrary times. It also wins over

the MATLAB code with some limitations on α and t. An adaptive predictor-corrector

algorithm we then implemented, however, always outperformed even the MATLAB code,

for all α and t. No comparison can be made with the evaluation of the more general

two-parameters M-L functions as well as with that of the one-parameter M-L function

on the complex domain, that we did not consider.

In chapter 1, a few models describing fractional relaxation as well as fractional oscillations

have been studied. These are based on simple fractional fODEs, some being related to

the so-called Érdelyi-Kober operators.

In chapter 2, we compared the numerical results, obtained modeling one-dimensional

anomalous di�usion by fPDEs, with some experimental (hence realistic) data, and showed

that the numerical solution of the aforementioned fPDE �ts the laboratory results better

than using classical PDEs (with integer order derivatives). More precisely, we found

that, in the cases considered, the results match within a small error, both in L2 and in

L∞ norm, when the space fractional order is slightly below 2 (say, about 1.9, but the

time fractional exponent seems to be optimal choosing a value around 0.6 − 0.7. This

shows that indeed several porous media exhibit memory e�ects and the departure from

the classical description is evident.
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In chapter 3, a weighted and shifted Grünwald-Letnikov di�erence (WSGD) operator is

used to approximate RL fractional di�usion operators. It is shown that indeed third-

order accuracy in time can be achieved solving numerically two-dimensional fPDEs by

ADI-like methods. A new technique, designed to accelerate the algorithm, which is

competitive with respect to the methods existing to date in the literature [44], has also

been developed. While the present method seems to outperform all the other existing

algorithms, using very dense grids to attain low errors may require, however, as one may

expect, a considerable computational time.

In chapter 4 we introduced a new well �balanced�, fractional version of the ADI method,

to solve numerically a number of 3D di�usion as well as reaction-di�usion problems for

fPDEs. These are important in a variety of problems arising from porous media modeling.

We proved that such a method is unconditionally stable for every fractional order of the

space derivatives, second-order accurate in space, and third-order accurate in time. The

speed of convergence has been improved adopting an extrapolation technique, coupled

with the optimization method used by the PageRank algorithm.

Future directions can easily be envisaged, since nowadays fPDEs seem to be relevant

in many other �elds, such as Economy and Finance, Biology and Demography, are be-

ing involved beside the more traditional of Viscoelasticity and Seismology. There is an

increasing demand for numerical methods to tackle complex problems in several dimen-

sions. Researchers, especially mathematicians, should resist the temptation of �fraction-

alizing� every classical model equation, checking �rst whether this kind of generalization

ha sound (e.g. physical) bases which motivates this choice. It may be however useful to

explore what could be extracted, which further or better explanation could be inferred

form such approach.

Con�ning to the models considered in chapter 3 and chapter 4, it would be interesting to

study the e�ects of anisotropy due to di�erent fractional orders a�ecting di�erent space

directions.

Another sensible topic is the identi�cation of the fractional orders themselves (inverse

problems), in a given fractional di�erential equation. To date, very little can be found

in the literature [13, 14]. Such identi�cation was attempted, over the years, in a few

laboratory experiments, hence basing on real measurements, e.g., for anomalous di�usion

in several kinds of porous media [50, 75].



Appendix A

The Page Rank Algorithm

PageRank is an algorithm used by Google Search to rank websites in their search engine

results. PageRank was named after Larry Page, one of the founders of Google. PageRank

is a way of measuring the importance of website pages. According to Google:

PageRank works by counting the number and quality of links to a page to

determine a rough estimate of how important the website is. The underlying

assumption is that more important websites are likely to receive more links

from other websites.

It is not the only algorithm used by Google to order search engine results, but it is the

�rst algorithm that was used by the company, and it is the best-known.

PageRank is a link analysis algorithm and it assigns a numerical weighting to each

element of a hyperlinked set of documents, such as the World WideWeb, with the purpose

of "measuring" its relative importance within the set. The algorithm may be applied

to any collection of entities with reciprocal quotations and references. The numerical

weight that it assigns to any given element E is referred to as the PageRank of E and

denoted by PR(E). Other factors like Author Rank can contribute to the importance of

an entity.

A PageRank results from a mathematical algorithm based on the web graph, created by

all World Wide Web pages as nodes and hyperlinks as edges, taking into consideration

authority hubs such as cnn.com or usa.gov. The rank value indicates an importance of

a particular page. A hyperlink to a page counts as a vote of support. The PageRank

of a page is de�ned recursively and depends on the number and PageRank metric of all

pages that link to it ("incoming links"). A page that is linked to by many pages with

high PageRank receives a high rank itself.
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Numerous academic papers concerning PageRank have been published since Page and

Brin's original paper. In practice, the PageRank concept may be vulnerable to ma-

nipulation. Research has been conducted into identifying falsely in�uenced PageRank

rankings. The goal is to �nd an e�ective means of ignoring links from documents with

falsely in�uenced PageRank.

Other link-based ranking algorithms for Web pages include the HITS algorithm invented

by Jon Kleinberg (used by Teoma and now Ask.com), the IBM CLEVER project, the

TrustRank algorithm and the hummingbird algorithm.

The PageRank algorithm outputs a probability distribution used to represent the likeli-

hood that a person randomly clicking on links will arrive at any particular page. PageR-

ank can be calculated for collections of documents of any size. It is assumed in several

research papers that the distribution is evenly divided among all documents in the col-

lection at the beginning of the computational process. The PageRank computations

require several passes, called "iterations", through the collection to adjust approximate

PageRank values to more closely re�ect the theoretical true value.

A probability is expressed as a numeric value between 0 and 1. A 0.5 probability is

commonly expressed as a "50% chance" of something happening. Hence, a PageRank of

0.5 means there is a 50% chance that a person clicking on a random link will be directed

to the document with the 0.5 PageRank.

Assume a small universe of four web pages: A,B,C and D. Links from a page to itself,

or multiple outbound links from one single page to another single page, are ignored.

PageRank is initialized to the same value for all pages. In the original form of PageRank,

the sum of PageRank over all pages was the total number of pages on the web at that time,

so each page in this example would have an initial value of 1. However, later versions of

PageRank, and the remainder of this section, assume a probability distribution between

0 and 1. Hence the initial value for each page is 0.25.

The PageRank transferred from a given page to the targets of its outbound links upon

the next iteration is divided equally among all outbound links.

If the only links in the system were from pages B, C, and D to A, each link would

transfer 0.25 PageRank to A upon the next iteration, for a total of 0.75.

PR(A) = PR(B) + PR(C) + PR(D).

Suppose instead that page B had a link to pages C and A, page C had a link to page A,

and page D had links to all three pages. Thus, upon the next iteration, page B would
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transfer half of its existing value, or 0.125, to page A and the other half, or 0.125, to

page C. Page C would transfer all of its existing value, 0.25, to the only page it links to,

A. Since D had three outbound links, it would transfer one third of its existing value,

or approximately 0.083, to A. At the completion of this iteration, page A will have a

PageRank of 0.458.

PR(A) =
PR(B)

2
+
PR(C)

1
+
PR(D)

3
.

In other words, the PageRank conferred by an outbound link is equal to the document's

own PageRank score divided by the number of outbound links L()̇.

PR(A) =
PR(B)

L(B)
+
PR(C)

L(C)
+
PR(D)

L(D)
.

In the general case, the PageRank value for any page u can be expressed as:

PR(u) =
∑
v∈Bu

PR(v)

L(v)
,

i.e. the PageRank value for a page u is dependent on the PageRank values for each page

v contained in the set Bu (the set containing all pages linking to page u), divided by the

number L(v) of links from page v.

The PageRank theory holds that an imaginary surfer who is randomly clicking on links

will eventually stop clicking. The probability, at any step, that the person will continue

is a damping factor d. Various studies have tested di�erent damping factors, but it is

generally assumed that the damping factor will be set around 0.85.

The damping factor is subtracted from 1 (and in some variations of the algorithm, the

result is divided by the number of documents (N) in the collection) and this term is

then added to the product of the damping factor and the sum of the incoming PageRank

scores. That is,

PR(A) =
1− d
N

+ d

(
PR(B)

L(B)
+
PR(C)

L(C)
+
PR(D)

L(D)
+ · · ·

)
.

So any page's PageRank is derived in large part from the PageRanks of other pages. The

damping factor adjusts the derived value downward. The original paper, however, gave

the following formula, which has led to some confusion:
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PR(A) = 1− d+ d

(
PR(B)

L(B)
+
PR(C)

L(C)
+
PR(D)

L(D)
+ · · ·

)
.

The di�erence between them is that the PageRank values in the �rst formula sum to one,

while in the second formula each PageRank is multiplied by N and the sum becomes N .

A statement in Page and Brin's paper that "the sum of all PageRank is one" and claims

by other Google employees support the �rst variant of the formula above.

Page and Brin confused the two formulas in their most popular paper "The Anatomy

of a Large-Scale Hypertextual Web Search Engine", where they mistakenly claimed that

the latter formula formed a probability distribution over web pages.

Google recalculates PageRank scores each time it crawls the Web and rebuilds its index.

As Google increases the number of documents in its collection, the initial approximation

of PageRank decreases for all documents.

The formula uses a model of a random surfer who gets bored after several clicks and

switches to a random page. The PageRank value of a page re�ects the chance that the

random surfer will land on that page by clicking on a link. It can be understood as a

Markov chain in which the states are pages, and the transitions, which are all equally

probable, are the links between pages.

If a page has no links to other pages, it becomes a sink and therefore terminates the

random sur�ng process. If the random surfer arrives at a sink page, it picks another

URL at random and continues sur�ng again.

When calculating PageRank, pages with no outbound links are assumed to link out to all

other pages in the collection. Their PageRank scores are therefore divided evenly among

all other pages. In other words, to be fair with pages that are not sinks, these random

transitions are added to all nodes in the Web, with a residual probability usually set to

d = 0.85, estimated from the frequency that an average surfer uses his or her browser's

bookmark feature.

So, the equation is as follows:

PR(pi) =
1− d
N

+ d
∑

pj∈M(pi)

PR(pj)

L(pj)

where p1, p2, ..., pN are the pages under consideration, M(pi) is the set of pages that link

to pi, L(pj) is the number of outbound links on page pj , and N is the total number of

pages.
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The PageRank values are the entries of the dominant eigenvector of the modi�ed ad-

jacency matrix. This makes PageRank a particularly elegant metric: the eigenvector

is

R =


PR(p1)

PR(p2)
...

PR(pN )


where R is the solution of the equation

R =


(1− d)/N

(1− d)/N
...

(1− d)/N

+ d


`(p1, p1) `(p1, p2) · · · `(p1, pN )

`(p2, p1)
. . .

...
... `(pi, pj)

`(pN , p1) · · · `(pN , pN )

R

where the adjacency function `(pi, pj) is 0 if page pj does not link to pi, and normalized

such that, for each j

N∑
i=1

`(pi, pj) = 1,

i.e. the elements of each column sum up to 1, so the matrix is a stochastic matrix (for

more details see the computation section below). Thus this is a variant of the eigenvector

centrality measure used commonly in network analysis.

Because of the large eigengap of the modi�ed adjacency matrix above, the values of the

PageRank eigenvector can be approximated to within a high degree of accuracy within

only a few iterations.

As a result of Markov theory, it can be shown that the PageRank of a page is the

probability of arriving at that page after a large number of clicks. This happens to equal

t−1 where t is the expectation of the number of clicks (or random jumps) required to get

from the page back to itself.

One main disadvantage of PageRank is that it favors older pages. A new page, even a

very good one, will not have many links unless it is part of an existing site (a site being

a densely connected set of pages, such as Wikipedia).

Several strategies have been proposed to accelerate the computation of PageRank.



Appendix A. The Page Rank Algorithm 100

Various strategies to manipulate PageRank have been employed in concerted e�orts to

improve search results rankings and monetize advertising links. These strategies have

severely impacted the reliability of the PageRank concept, which purports to determine

which documents are actually highly valued by the Web community.

Since December 2007, when it started actively penalizing sites selling paid text links,

Google has combated link farms and other schemes designed to arti�cially in�ate PageR-

ank. How Google identi�es link farms and other PageRank manipulation tools is among

Google's trade secrets [145].
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