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Chapter 1

Motivation and Outline

Metastable phases are ubiquitous in nature, and some of them have such

a long lifetime that they are practically indistinguishable from equilibrium

phases. For example, the equilibrium phase of carbon in ordinary conditions

of temperature and pressure is graphite, but it has never been reported the ob-

servation of diamond (a metastable phase of carbon) decaying into graphite.

Different physical examples of metastable phases can be found in super-cooled

liquids [4], ferroelectrics [5] , vortex states in superconductor [6] and several

other physical systems.

Metastable phases have a clear property: if they are subject to small enough

perturbations, they act like stable phases. This evident stationarity features

suggests for a description in terms of equilibrium thermodynamics. Mean

field theories [7] provide tools for the computation of several properties of

metastable phases (e.g. the phase space region allowed, delimited by the spin-

odal line), but the lifetime of such phases turns out to be infinite in the thermo-

dynamic limit. On the other hand, if fluctuations [8] are taken into account, the

system can always relax towards the stable phase starting from a local fluctua-

tion and, the partition function being dominated by the stable phase, metasta-

bility cannot be described by a straightforward statistical mechanics treatment.

Within the above-mentioned picture of metastability, some fundamental ques-

tion should be answered:

• Can the stationarity of metastable phases be characterised as full equilibrium

and, if this is the case, to which extent?
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Chapter 1. Motivation and Outline

• Which feature (if any) must be added to equilibrium thermodynamics in order to

describe metastability?

Amore practical definition of metastability is the dynamical one [9], associated

with two characteristic time-scales τ1 and τN. For t > τ1, the properties of the

system are quasi-stationary up to t ≃ τN (with τN ≫ τ1), the time at which

the system relaxes towards equilibrium. The second time-scale τN is, hence,

identified with the lifetime of the metastable state. When this lifetime τN is of

the same order of τ1, we are at the metastability threshold, and the metastable

phase is no longer observed.

So far, no first-principle, satisfactory theory for metastability is present, even

though several attempts have been made. Among them, classical nucleation

theory [10] (CNT) in the derivation of Langer [11, 10, 12] is an attempt to rec-

oncile the static and dynamical approaches: for system described by Fokker-

Planck dynamics, a suitably defined analytical continuation of the partition

function leads to a complex free energy that encodes all the information on the

metastable phase, its real part being themetastable free energy and its complex

part giving the lifetime of the metastable state.

Most of the numerical and theoretical studies about the dynamics of first order

phase transitions have been pursued for a field-driven transition, i.e. a tran-

sition governed by a control parameter different from the temperature, with

the Ising ferromagnet below Tc being the reference model [13, 14, 15, 16, 17].

Acting on this additional field, the internal energy of the system can be tuned

to win over the entropic part of the free energy, strengthening the ordering

process. Many physical systems, however, present a temperature-driven first

order transition [18, 19, 20], requiring a different framework. Starting from the

Ising model, the simplest, but non trivial, generalisation that can be thought

of is to allow the lattice sites to assume a discrete number q of values. This

results in the Potts model [21], that has been used to describe a large variety of

phenomena, as grain growth [22, 23], QCD deconfinement [24], protein folding

[25] and ferromagnets [26]. The Potts model is the simplest model that shows

a temperature-driven first order phase transition and, the latent heat being a

function of q, permits to describe strong as well as weak first order phase transi-

tions. The Potts model is one of the most studied model of statistical physics,

and many of its static properties are known, either analytically or via numer-
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ical simulation. Once a suitable dynamics is defined, however, the picture is

less clear, because of its rich phenomenology [27, 28, 29, 30, 31, 32, 33, 34].

In particular, the metastable behaviour is a rather controversial issue, with

some authors claiming the existence of metastability in the thermodynamic

limit [35, 36, 1] and others that state the opposite [3, 2, 37].

In this thesis we will address this open issue: we will investigate the prop-

erties of the metastable phase of the 2D Ferromagnetic Potts model (2D PM)

in the thermodynamic limit. Quenching the system from infinite temperature

into the metastability temperature region, we will use a discrimination method

based on the auto-correlation function to perform measurements only in the

stationary regime described above. Our results will help to shed light on the

disappearance/survival of the metastable phase and will also provide a dy-

namical test of the droplet expansion developed for the Potts model [3], giving

a possible explanation on how this controversy can be resolved in terms of two

different kinds of metastability.

This thesis is structured as follow. In chapter 2 we introduce the funda-

mental notions about first order phase transition and metastability that will

be useful in what follows. The classical nucleation theory is presented, first

in its original derivation [38] and then within the droplet theory approach

[11]. In chapter 3 we give a short description of the Potts model, focusing

mainly on the feature of 2D PM that will be relevant in the successive chap-

ters. Chapter 4 is devoted to the review of the previous studies on metastabil-

ity in the 2D PM: starting from the first, pioneering, work of Binder [39] we

summarise the different theoretical approaches to the issue of metastability,

like pseudo-critical methods [35, 40, 1], short-time dynamics [36] and Wang-

Landau sampling [2, 37]. Particular attention is given to the droplet expansion

for the Potts model [3], that is the theory that will be tested in our simula-

tion. We present in chapter 5 a first characterisation of the metastable phase in

terms of energy, correlation function, relaxation time, lifetime and metastabil-

ity threshold, along with the definition of the method used, the Metastable En-

semble (ME). In chapter 6 we address the relationship between stationarity and

(local) equilibrium. Analysing the equilibrium fluctuation-dissipation relation

and the Maxwell-Boltzmann reweighting of the energy probability distribu-
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Chapter 1. Motivation and Outline

tion function, we have found that for a deep enough quench, metastable states

do not show equilibrium properties. The finite-size effects of the metastable

phase are discussed in chapter 7, in which we compare our numerical results

with the prediction of the droplet expansion. We identify an inverse spinodal

temperature β∗ as defined in the context of Droplet Expansion. Interestingly

enough, this inverse temperature seems to have the same size-scaling of the

metastability threshold found in chapter 5, compatible with the one of [2, 37].

Below β∗, the predictions of the DE for the lifetime of the metastable phase and

the metastable energy probability distribution function agree with our data. In

chapter 8 we discuss our results and we outline directions for future work.

4



Chapter 2

Introduction: first-order phase

transition and metastability

When a thermodynamical system is brought from one phase to another

one, some of its properties change, often discontinuously [41]. When a suit-

able thermodynamic potential is defined, Ehrenfest classification names phase

transition according to the order of the lowest derivative that is discontinu-

ous at the transition. In the case of first-order phase transition it is the first

derivative of the thermodynamic potential that is discontinuous (e.g. the mag-

netisation in a Ising system), there is a latent heat and the transition is referred

to as discontinuous. The most common example of first order phase transition

in everyday life is the liquid-vapour transition of water in ordinary conditions

of temperature and pressure and the first attempt to describe it dates back to

Van der Waals. From a statistical physics point of view, the Ising model be-

low Tc in an external magnetic field is the simplest and best suited model to

study the transition. In this chapter we will address some general properties

of first order phase transition, with a particular focus on metastability. We will

introduce the classical nucleation theory (CNT), first following the derivation

of Becker and Döring [38] , then within the Langer approach for the case of

the liquid-vapour transition [11] and for the Ising case, stressing which are the

universal aspects of metastability that can be deduced from this theory [12].

We will end the chapter with a short enumeration of alternatives theories, that

can be deepened elsewhere [7, 8].

5



Chapter 2. Introduction: first-order phase transition and metastability

2.1 General features of discontinuous transitions

It is an established fact [4] that water can exist as a liquid, even below its

freezing point. With adequate care this can happen for temperature as low as

−40 ◦C (at atmospheric pressure), but if the system is perturbed, because ei-

ther of thermal or mechanical solicitations, the freezing process starts abruptly

[42, 43]. This is because the metastable phase does not correspond to the equi-

librium one (that would be the ice), and is therefore only locally stable, or

equivalently, it is stable only under finite perturbations. In terms of free en-

ergy, we can think of the metastable phase to be a local minimum, the full

minimum being the one corresponding to the stable phase. To illustrate in a

more definite framework some features of metastability, we take an Ising sys-

tem of linear dimension R in an external magnetic field h and indicate the order

parameter (the magnetisation) as ψ(~x) (x is a vector in d dimension). We can

construct the Landau-Ginzburg free energy1 of the system [41, 8]:

F(ψ) =
∫

d~xR2(∇ψ(~x))2 + ǫψ2(~x) + ψ4(~x)− hψ(~x), (2.1)

which allows for a coarse-grained description of the system. Considering only

the case of spatially uniform order parameter (mean field) we arrive at the

following expression of the free energy per unit volume:

f (ψ) =
F(ψ)

V
= ǫψ2 + ψ4 − hψ, (2.2)

where V is the volume of the system. We are interested in reproducing the

multiple minima picture we have associated to metastability, so we require

ǫ < 0, since for ǫ > 0 eq. (2.2) would have just one minimum in ψ = 0. This

free energy density is shown in figure (2.1) for the case h = 0. It has to be

emphasised that this ’free energy density’ cannot be the correct equilibrium

one. From standard thermodynamics we know that the free energy has to be

a convex function of its variable, excluding by definition multiple minima sit-

uations. For states with −ψ0 < ψ < ψ0 the equilibrium state is not a pure

1Wewill not enter here the problemof the derivation of eq. (2.1), nor of how the parameters
defining the Landau-Ginzburg free energy can be related to the physical properties of the
system [7, 8]
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2.1. General features of discontinuous transitions

Figure 2.1: Landau-Ginzburg free energy density of eq. (2.2). The different
colours mark the different region of stability (green), metastability (blue) and
instability (red).

state and the correct free energy is given by the Maxwell construction, that is

also shown in fig. (2.1). When there is no magnetic field, the two minima of

the free energy density have the same height: both the +ψ0 and −ψ0 have the

same free energy and are equally probable. When h 6= 0, the magnetic field

lowers the free energy of the state with magnetisation parallel to the applied

field (fig. (2.3)). If we continue increasing |h| we have that for a certain value

of the magnetic field |hs| the relative minimum of the free energy shrinks into

an inflection point and metastability ceases to exist. We call this point spinodal

point and the corresponding field value the spinodal field. If we look at ψ as a

function of the magnetic field (fig. (2.2)) we have that the blue parts of f (ψ)

would imply that the system can survive with positive (negative) magnetisa-

tion even when there is an opposite negative (positive) applied field.

A system placed in the highest minimum of the free energy could relax to

the lowest minimum if a thermal fluctuation allows it to overcome the free en-

ergy barrier ∆F (shown in fig. (2.3))) and the lifetime of the metastable state is

7



Chapter 2. Introduction: first-order phase transition and metastability

Figure 2.2: Magnetisation as a function of the applied magnetic field. The
’loops’ that appear in the magnetisation are named ’Van der Waals’ loop and
are a signature of metastability behaviour.

expected to be:

τ ∼ e
∆F
kBT (2.3)

In the mean field, the only allowed fluctuation is a spatially uniform change

of the order parameter and the free energy cost of such a change is extensive.

For this reason, the free energy barriers separating the relative minima from

the absolute minima, the stable phase, are infinite in the thermodynamic limit,

and, hence, the corresponding metastable states would have an infinite life-

time.

When short-range interactions are taken into account, however, the partition

function in the thermodynamic limit is dominated by the global minimum of

the free energy and cannot account properly for metastability. Beyond mean

field, there always exist a finite probability of surmounting the free energy

density barriers in phase space by a local nucleation process and, hence, it is

not possible to state whether a given system is metastable, without making ref-

erence to a time-scale [8], and the concept of spinodal looses its full meaning.

When we further include dynamics, the situation changes. As the system

moves away from the transition, the lifetime of themetastable phase decreases.
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2.2. Becker-Döring theory and droplet expansion

When it becomes of the same order of the relaxation time2, the system relaxes

towards equilibrium without a transient stationary regime and the metastable

phase is no longer observable. This endpoint of metastability is therefore dif-

ferent from the spinodal, being related to the relaxation time of the system,

which is a purely dynamical quantity, and metastability has to be defined dy-

namically as a ’two-step’ relaxation process [9, 44]. This two-steps relaxation

is associated with two time-scales (τR and τN), such that the order parameter

and other observables are quasi-stationary in time in the interval τR < t < τN,

being τN ≫ τR.

If one wants to use equilibrium statistical mechanics to describe metastable

states, has therefore to suitably constrain the phase space, in order to hinder

the system the possibility to relax to the equilibrium phase. There are different

ways to do such a phase space restraint [45, 46] andwewill see the prescription

that comes from classical nucleation theory: in that case the system is described

in terms of droplets of the different phases and the phase space available is lim-

ited by imposing a maximum size to the droplets of the metastable phase.

2.2 Becker-Döring theory and droplet expansion

The classical theory of nucleation describes first order phase transition as a

process activated by the nucleation of a droplet of the condensed phase. Al-

though rather phenomenological, it can describe most of the physical features

of the phenomenon. In its original fashion [38], it was developed starting from

a description of the dynamical evolution of the droplets of particles that con-

stitute the system. Its main result is the nucleation rate (per unit time, per unit

volume) as a function of the thermodynamic variables. It was later shown by

Langer [11, 10, 12] that analogous expressions for the nucleation rate could be

obtained starting from an equilibrium description. We will follow an historical

route: first we will describe the Becker-Döring theory for the dynamics of the

droplets, and then we will introduce the Langer derivation (the droplet expan-

2The relaxation time is the time the system takes to reach equilibrium after being per-
turbed. A more operative definition will be given in chapter 5. We are here referring to a
system in which moving away from the transitionmeans to increase the relaxation time, as in the
case of the 2DPM, to be introduced in chapter 3.

9



Chapter 2. Introduction: first-order phase transition and metastability

Figure 2.3: Landau-Ginzburg free energy density in the case of a positive mag-
netic field. As a consequence of the non-zero magnetic field, the positively
magnetised state has a lower free energy and the free energy barrier is denoted
by ∆F.

sion (DE)), both for the liquid-vapour transition and for an Ising ferromagnet.

The main assumption of droplet theory, is that the system can be regarded as

the sum of interacting groups of particles (droplets) that do not interact with

each other. The starting point of the Becker-Döring theory is a kinetic equation

for the time dependent average number of droplets of size l, nl(t). As a ba-

sic assumption nl(t) evolves only by a condensation-evaporation mechanism

that involves a single molecule, hence neglecting coalescence and fission. The

equation of motion for nl(t) is then:

∂nl(t)

∂t
= Jl−1 − Jl l ≥ 2 (2.4)

where

Jl = Rlnl(t)− R
′
l+1nl+1(t) (2.5)

is the rate per unit volume at which droplets of size l grow to droplets of size

l+ 1. Equation (2.5) embodies the assumption that the evaporation/condensation

rates are proportional to the number of droplets of sizes l and l + 1, with coef-

ficients given by Rl and R
′
l+1. By assuming that the system is close to equilib-

10



2.2. Becker-Döring theory and droplet expansion

rium, we can relate Rl−1 and R
′
l via detailed balance:

Rl−1e
− ∆Fl−1

kBT = R
′
le
− ∆Fl

kBT (2.6)

where ∆Fl is the free energy cost of a droplet of size l. Taking l as a continuous

variable and expanding the exponential factor to first order, we can write (2.4)

as
∂nl(t)

∂t
= −∂Jl

∂l
=

∂

∂l

[

Rl

kBT

∂∆Fl
∂l

nl(t) + Rl
∂

∂t
nl(t)

]

(2.7)

This is a Fokker-Plank equation with an l-dependent diffusion coefficient Rl ,

so we can interpret the Becker-Döring theory as a stochastic process in l-space,

with all the details about the kinetics that are given by Rl . We will now assume

that the droplets are compact, so that the rate is proportional to the surface

area:

Rl ∝ l(d−1)/d (2.8)

The trivial equilibrium solution of eq. (2.7) is the one in which the current

of the continuity equation (Jl) is zero. This would mean no ’flow’ of droplet

between different area values, hence no dynamics at all. We are are looking,

instead, for a steady state solution with J constant and equal to I. The quantity

I is the nucleation rate (per unit time, per unit volume) of the system and mea-

sures the rate of production of droplets in the non-equilibrium steady state.

This solution can be obtained with the following choice of boundary condi-

tions:

nsl −→
l→0

nl nsl −→
l→∞

0 (2.9)

that is equivalent to considering a source of droplets at l = 0 and a sink at a

specified large value l = lc
3.

The solution of eq. (2.7) that satisfies this boundary condition is:

I =
[

∫ ∞

0

dl

nlRl

]−1

nsl = I
∫ ∞

l

nl
R
l
′n

l
′
dl

′
(2.10)

3The critical droplet value lc will be defined shortly as the saddle point of the solution of
(2.7) for I. We will see later how this saddle point can be given a somehow more physical
interpretation within the Langer theory of nucleation.
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Chapter 2. Introduction: first-order phase transition and metastability

Figure 2.4: Average droplet area distribution. When δµ changes sign, the
distribution is no longer finite and to avoid the divergence of the free energy,
the summation in eq. (2.18) has to be cut to the critical droplet area lc.

Equation (2.10) contains an integral of the exponential term e
− ∆Fl

kBT included in

Rl , and we can evaluate the integral with a saddle point approximation, the

saddle point being lc, once a specific expression for ∆F is given. We will com-

pute explicitly the nucleation rate for the Ising model in section (2.3).

Before doing that, we will introduce the Langer theory of nucleation for the

liquid-vapour transition [11], that, starting from an equilibrium description,

allows to compute the nucleation rate from an analytical continuation of the

free energy. This approach leads to the same results of the Becker-Döring the-

ory, as we will see in section (2.3) for the Ising model.

Consider a mixture of liquid and vapour with temperature below the critical

temperature. The transition is a first-order one, driven by the order parameter,

the chemical potential µ, whose value at the critical point is µc. The conden-

sation of vapour to the liquid phase takes place when the thermodynamical

variables (the temperature T or the pressure P) are changed in such a way that

δµ = µ − µc goes from δµ < 0 to δµ > 0, where µ is the chemical potential of

the vapour. A metastable vapour can survive in the latter condition, but will

eventually condensate. We are interested in the properties of the metastable

phase, for which the equilibrium description fails, requiring the addition of

some out of equilibrium concepts.
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2.2. Becker-Döring theory and droplet expansion

In the vapour phase (δµ > 0) and far from the critical point, the probability of

a large droplet made of l molecules is a rapidly decreasing function of the size

l. When we cross the transition line δµ = 0, instead, large droplets become

thermodynamically important (see fig. (2.4)).

Writing the grand canonical partition function in 3 dimensions and integrating

on the momentum degrees of freedom we get:

Ξ =
∞

∑
N=0

1

N!

eβµN

λ3N

∫

dq1 · · · dqNe−βU(q1···qN). (2.11)

where λ is the thermal wavelength, U is the Hamiltonian of the system and N

the number of particles.

If we now apply the droplet expansion (DE) , we can pretend that we have a non-

interacting mixture of different species, labelled by l, each of which is present

νl times and with a chemical potential µl = µ. Under this assumption we

can rewrite the partition function, substituting µN = ∑l νlµ and N = ∑l νll.

Grouping together explicitly the partition function of each species l we have:

Ξ ≃ ∑
{νl}

∏
l≥1

1

νl!

( 1

l!λ3l

∫

dq1 · · · dql e−βU
)νl

eβνlµl = ∑
{νl}

∏
l≥1

1

νl !
qνl eβνlµl. (2.12)

where ql is the canonical partition function of the species l:

ql =
1

l!λ3l

∫

dq1 · · · dql e−βU ≡ V

λ3
e−β f̃ (l). (2.13)

We can give an explicit expression for f̃ (l), the free energy of the species l:

f̃ (l) = µc(l − 1) + γ(l − 1)2/3. (2.14)

which contains a bulk part proportional to µc and a surface term with a coeffi-

cient γ, and is chosen in order to have a vanishing free energy for a monomer

(l = 1).

The partition function then reads:

Ξ = exp
[ ∞

∑
l=1

qle
βµνl l

]

≡ exp
[

βPV
]

. (2.15)

13



Chapter 2. Introduction: first-order phase transition and metastability

Computing the average number of droplets with area l:

〈νl〉 =
1

β

∂

∂µ
lnΞ =

V

λ3
exp

[

− β( f̃ (l)− µl)
]

=
V

λ3
e−β f (l), (2.16)

where we have found that the distribution of the droplets is given by the Boltz-

mann factor.

The function f (l) is given by a contribution of two terms:

f (l) = (µc − µ)(l − 1) + γ(l − 1)2/3 = −δµ(l − 1) + γ(l − 1)2/3. (2.17)

and appears explicitly in the expression for the pressure of the system:

βPV =
∞

∑
l=1

V

λ3
e−β f (l) =

∞

∑
l=1

〈νl〉. (2.18)

For δµ < 0 eq. (2.17) increases monotonically with l and the average number

of droplet of size l is a rapidly decreasing function of l. For δµ > 0 instead,

f (l) has a maximum which corresponds to a minimum of 〈νl〉 for:

lc = 1+ (
2γ

3δµ
)2/3. (2.19)

For droplets with l > lc it is more favourable to grow than to shrink, for the

bulk term has become bigger than the surface term. As a consequence, the ex-

pansion in (2.18) is a sum of growing terms and is no longer finite. From the

physical point of view, we know that only the droplets that are smaller than

the critical size can contribute to the metastable partition function. So a simple

and physically meaningful way to restore the finiteness of the partition func-

tion is to cut off the sum in eq. (2.18) for values bigger than lc.

The simple example of the liquid-vapour transition has shown how the parti-

tion function based on a droplet expansion develops a singularity at the con-

densation point, where the chemical potential goes from positive to negative

values. We will investigate this singularity further, in the case of the Ising

model.

14



2.3. Droplet expansion for the Ising model

2.3 Droplet expansion for the Ising model

We will now consider the case of an Ising ferromagnet in an external field

H. To prepare the metastable state in this case, we can let the system equili-

brate for temperature far below the critical temperature with a small positive

magnetic field. Changing the magnetic field to small negative values, the sys-

temmay remain for a finite time in a state with positive averagemagnetisation.

We imagine the typical configuration of such a system as consisting of small

droplets of negative spins dispersed in a background of positive spins. These

negative spins droplet are so disperse that we can consider them as a gas of

non-interacting droplets.

Under these assumption we can derive an expression for the free energy anal-

ogous to the one derived for the Van der Waals liquid:

F(H) =
1

N

∞

∑
l=1

〈νl〉, (2.20)

where N is the number of lattice sites and the average number of droplets of

size l is given by the Boltzmann factor:

〈νl〉 = Ne−β fl . (2.21)

Again, we have to guess the explicit form of fl and the simplest expression we

can think of is

fl ≃ 2Hl + σl(d−1)/d σ > 0, (2.22)

which is supposed to work for large compact droplets (σ is the surface tension).

Again the free energy is a sum of a bulk term (the energy required to flip l

spins) and a surface term, whose relative balance decides whether a droplet

will shrink or grow: for H > 0 fl is a monotonically increasing function of l

and infinitely large droplets are energetically disfavoured, while for H < 0 it

has a local maximum at the critical size:

lc =

(

σ(d− 1)

2d|H|

)d

. (2.23)
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Chapter 2. Introduction: first-order phase transition and metastability

As in the Van der Waals case, droplets with l > lc will nucleate the condensa-

tion of the stable phase.

When H < 0 eq. (2.20) contains the sum of non-infinitesimal terms and thus

f (H) diverges. Also, from the physical point of view, the metastable phase

exists up to the time when a droplet reaches the critical size and start to grow,

nucleating the stable phase.

According to this consideration we cut off the sum in (2.20) at its smallest term

l = lc to get the partition function of the metastable phase:

F(H) =
1

N

lc

∑
l=1

〈νl〉. (2.24)

To further investigate the nature of the singularity of the free energy when H

approaches the condensation point H = 0 we now introduce an analytic con-

tinuation of (2.24), F̃(H). Since the diverging behaviour arises for large l, we

approximate the sum by an integral and specialising to the two-dimensional

case we have:

F̃(H) =
σ2

4H2

∫ ∞

0
dt t e

−βσ2

4H (t2+t) with l =
4H2

σ2
t2. (2.25)

We will now let H become negative, by extending H to complex values and

moving through the complex H plane to negative values. In order to do that,

wemust perform the integral modifying the integration contour in a consistent

way.

When we change H from real positive values to H1 = Heiπ, we have to

rotate the integration contour accordingly in order to get the same value of the

integral, obtaining the contour C1 in fig. (2.5). If we apply the same procedure

but rotating H clockwise (i.e. H → H2 = He−iπ) the integration contour is

the one labelled C2 in fig(2.5). The two procedures do not lead to the same

integration contour, which means that F(H) develops a branching point for

H → 0. The integrals evaluated on the two contour are related by complex

conjugation and the discontinuity along the negative real axis (that is purely
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2.3. Droplet expansion for the Ising model

Figure 2.5: Contour plot of Re(t2 + t). The integration of the analytical contin-
uation of eq. (2.25) has to be performed along C1 when H is rotated counter-
clockwise and along C2 when H is rotated clockwise. Both the integration con-
tour share the integration on the negative real axis from 0 to t̃, the saddle point
of eq. (2.25). When we want to evaluate the discontinuity along the negative
real axis we can integrate along C3 = C1 − C2.

imaginary) is given by:

F̃(H1)− F̃(H2) = − σ2

4|H|2
∫

C3

dt t e
−βσ2

4H (t2+t). (2.26)

where C3 = C1 − C2 and since |H| is small it can be evaluated by the steepest

descent method:

F̃(H1)− F̃(H2) ≈
√

4π|H|
βσ2

σ2

4|H| e
−β σ2

16|H| . (2.27)
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Chapter 2. Introduction: first-order phase transition and metastability

The resulting behaviour of the partition function for small negative values of

the magnetic field is then :

F̃(−|H| ± i0+) = F(H)± i∆(H), (2.28)

where F(H) is the free energy of the metastable phase as defined in eq. (2.24)

and comes from the integration of the analytical continuation of F between 0

and the saddle point in the t plane. The second term i∆ corresponds to the

integration on the contour that is off the real axis and for small H is equal to

one half of eq. (2.27). Although F(H) is singular for H → 0, all the derivatives

of F(H) exist at the condensation point, that turns out to be an essential singu-

larity.

We now go back to the Becker and Döring solution for the nucleation rate eq.

(2.10), and inserting the expression (2.22) for the free energy of a droplet of

area l and evaluating the integral through steepest descent we get the same

exponential term:

I ∝ e
−β σ2

16|H| (2.29)

concluding that the nucleation rate is governed by the same exponential be-

haviour both in Becker and Döring theory (that is a pure dynamical approach)

and in DE theory (which starts from a partition function, i.e. equilibrium sta-

tistical mechanics approach).

We will introduce a droplet expansion for the Potts model in section (4.4) and

the numerical validation of this theory will be the subject of chapter 7.

2.4 Other theoretical treatments

In addiction to the two framework we have discussed before, metastability

has been studied with many different approaches in a variety of systems (an

in-depth review can be found in [7, 8] and references therein). The one that

is closely related to the DE is a field-theoretical approach by Langer [10, 12]

in which the DE theory is somehow extended to a general system described

by a Fokker-Plank equation. This seems to provide a first principle theory of

nucleation for systems described by continuum models, and its main result is
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2.4. Other theoretical treatments

the nucleation in the case of an Ising ferromagnet rate expressed as:

I(T,H) = A(t)|H|b+ce−βFc(T,H) (2.30)

where Fc(T,H) is the free energy of the critical droplet, A(T) is a non-universal

function, the (non-universal) exponent c gives the field dependency of the ’ki-

netic’ pre-factor of the nucleation rate and b is a universal exponent whose

value is:

b =

{

(3− d)d/2 for 1 < d < 5, d 6= 3

− 7
3 for d = 3

The (2.30) has been tested numerically in [16] by means of dynamical numer-

ical simulations, confirming the field dependence of the nucleation rate in the

small field limit, and other tests of nucleation theory (either in its classical or

in its field theory formulation) can be found in [15, 14, 17].

Other theoretical approaches make use of Fokker-plank equations to derive a

semi-phenomenological equation of motion for the probability density, start-

ing from a ’coarse-grained’ free energy functional (usually taken of the Ginzburg-

Landau form) as done at the end of the fifties by Cahn & Hilliard [47, 48].

Numerical simulations have addressed the issue of nucleation in dynamical

systems with the aid of local algorithms, mainly Metropolis [49] dynamics and

heat bath [44]. The spatial locality of these algorithms preserves the free en-

ergy barriers that dominate the nucleation rate, giving a relatively faithful rep-

resentation of metastable dynamics. A somehow different approach is the one

of constrained transfer matrix (CTM) method [13], in which the equilibrium

theory of transfer matrix is extended to include constrained non-equilibrium

states. Numerical simulations for an Ising system with short-range interaction

[50], support the results of classical nucleation theory, even if the CTMmethod

does not rely on the concept of droplets.

As a concluding remark, it is important to stress that even if metastability is

a long-studied phenomenon, classical nucleation theory is still the reference

framework for metastability of first order phase transition in systems without

randomness.

19



Chapter 2. Introduction: first-order phase transition and metastability

20



Chapter 3

The Potts model: general features

In his Ph.D. thesis [21], Potts introduced the model that bears his name,

as a generalisation of the Ising model to more-than-two components. An ear-

lier generalisation to a four-component version of the model was first stud-

ied by Ashkin and Teller [51]. Since then, the Potts model has been studied

on different lattice types and for different dimensions [52]. Even though the

equilibrium 2D picture is relatively clear (in particular, many properties at the

transition point are analytically known for a 2D square lattice), in 3 dimen-

sions this is note the case. Also the dynamics is still subject to debate, with

again 3 dimensional cases that are not fully understood. Moreover, also for the

most clear case (the square 2D lattice case) there is no universal agreement on

the metastable behaviour in the thermodynamic limit (but we will address this

topic in chapter 4).

In this chapter we will enumerate several exact results about the equilibrium

properties of the Potts model that will be used in the successive chapters, to-

gether with some known features of the dynamics.

3.1 Definition, physical realisations and applications

The Potts model (PM) is defined on a generic lattice (in general dimension)

in which every lattice site i can assume one out of q different values, with the

Hamiltonian:

H = −J ∑
{i,j}

δσi,σj σi ∈ 1 . . . q (3.1)
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Chapter 3. The Potts model: general features

where {i, j} are two nearest neighbours, N is the number of lattice sites, J is the

coupling constant. The sign of J defines the type of interaction, either ferro-

magnetic (J > 0) or anti-ferromagnetic (J < 0). The δ symbol is the Kronecker

delta function, whose value is one if σi = σj or zero otherwise. The effect of an

external magnetic field can be modelled by adding a term:

− h
N

∑
i=1

δσi,c (3.2)

where c is the ’direction’ of the magnetic field, or with a more precise termi-

nology, the q value selected by the magnetic field. For q = 2, the Potts model

reduces to the Ising model, but its generalisation to different values of q allows

for a description of a wider variety of phenomena.

The PM (without external field) has a temperature driven transition, whose

order parameter is the magnetisation, defined as:

m =
1

q− 1

(

qmax
k

(mk)− 1

)

mk =
N

∑
i=1

δσi,k k ∈ {1 . . . q} (3.3)

where N is the number of lattice sites. We anticipate here that for high values

of q (depending on the lattice type and the dimensionality), the transition is

discontinuous, while the analogy with the Ising system implies that there is a

q range that is associated to a continuous transition.

Because of its flexibility, the Potts model has been widely used in different

fields of physics, and over the years many physical systems have been re-

garded as experimental realisations of what was at first considered to be a

purely theoretical point of view on the order-disorder transition. For exam-

ple in d = 3, the discontinuous behaviour predicted by mean field [52] for

the q = 3 case has been confirmed by using a DyAl2 cubic ferromagnet [26].

Also the first-order structural transition occurring in several substances like

stressed SrTiO3 is in the universality class of the q = 3 PM [53], and a fluid

mixture of five (suitably chosen) components in presence of internal strains

and external mechanical stress, can be regarded as a realisation of the q = 3

PM in 3 dimensions [54]. The continuous model in 2D and 3D has been also

related to the QCD confinement problem [24], whereas the q → ∞ case is used
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3.2. The two-dimensional ferromagnetic model

in grain growth [23] and soap froths [22], each value of q representing a dif-

ferent grain or bubble. In biophysics, an extension of the PM (the cellular Potts

model) has been used to simulate the collective behaviour of cellular structures

and an inverse inference method based on the Potts model for q = 21 has led

to interesting results in the field of protein structure analysis [25]. In the last 10

years or so, the model has been extended also to topologies other than lattices

[55, 56], inspiring algorithms of community detection on networks [57, 58].

3.2 The two-dimensional ferromagnetic model

In the following we will deal with the 2D ferromagnetic Potts model (2DPM)

without an external field and with nearest neighbours (N.N.) interaction:

H = ∑
{i,j}∈N.N.

(

1− δσi,σj

)

, (3.4)

where we have chosen the coupling constant J = 1. With this choice of nor-

malisation the internal energy varies in the range [0, 2N], where N = L2 is the

number of spins and L is the linear size of the system.

3.2.1 Known equilibrium properties

For the 2DPM several equilibrium quantities at the transition point are an-

alytically known [59, 60, 61] and we will summarize some of them in this sec-

tion, mainly the ones that will be useful for our study.

The 2DPM is known to exhibit a continuous phase transition for q ≤ 4 and a

discontinuous phase transition for q > 4, at an inverse temperature of:

β = ln (1+
√
q). (3.5)

Whenever we will treat the discontinuous transition, we will refer to this tem-

perature as the transition temperature Tt (or alternatively βt), while the term

critical temperature Tc (βc) will be used only for the critical cases q ≤ 4.
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Figure 3.1: Correlation lenght at the transition temperature as a function of q,
eq. (3.12).

Specialising to q values bigger than 4 and considering the energy per site

e = 〈H〉/N, we can define the ordered (disordered) energy at the transition

eo (ed) as

eo = lim
N→∞

1

N
lim

T→T−
t

〈H〉

ed = lim
N→∞

1

N
lim

T→T+
t

〈H〉.
(3.6)

The latent heat (q > 4) in the thermodynamic limit is analytically known:

eo − ed = 2

(

2+
1√
2

)

tanh (
Θ

2
)

∞

∏
n=1

[tanh (nΘ)]2 , Θ = arccos

√
q

2
(3.7)

and since it is known also:

eo + ed = 2(1− 1√
q
) (3.8)

the value of eo and ed alone can be computed.

Another useful quantity (that will appear explicitly in the droplet theory for

the Potts model, to be explained in chapter 4) is the correlation lenght at the

24



3.2. The two-dimensional ferromagnetic model

transition point ξt [62]:

1

ξt
=

1

4

∞

∑
n=0

log

(

1+ wn

1− wn

)

, (3.9)

with

wn =
[√

2 cosh
(

(n+
1

2
)

π2

2v

)]−1
, (3.10)

and

v = ln
(1

2

[
√√

q+ 2+
√√

q− 2
])

. (3.11)

From eq. (3.9) we can extract the leading (diverging) behaviour of ξt as q → 4+

ξt ≃
1

8
√
2
e

π2

4v . (3.12)

Equation (3.12) is shown in fig. (3.1), and the divergence of ξt for q → 4+

can be seen to be quite strong. Figure (3.1) will be useful in chapter 4 when

the ’pseudo-criticality’ of the Potts model will be discussed in terms of large

correlation lengths of the q = 5, 6 cases (ξt(q = 5) ≃ 2512 is more than 100

times bigger than ξt(q = 8)).

Apart from analytically known quantities, many numerical equilibrium results

are available for the 2DPM at the transition temperature [63, 62]. Of particular

interest for the droplet theory of the Potts model (to be introduced in chapter 4)

is the specific heat of the disordered phase cd, related to the second cumulant

of the internal energy at the transition temperature f2 via f2 = cd/β2
t . Table

(3.1) summarizes all the numerical values that will be used in the following or

can be useful for comparing results coming from different values of q.

The red value appearing in tab. (3.1) is not measured numerically in reference

[63] but is extrapolated according to the scaling f2 ∝ ξt [64, 65, 66] and will be

compared to our numerical simulation in section (7.1).

A double Gaussian approximation for the internal energy distribution can be

exploited [67] to evaluate the finite-size effects of equilibrium quantities. The

result we explicitly need is

Tt(L) = Tt +
T2
t ln qeo/ed
ed − eo

1

L2
, (3.13)
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Table 3.1: Numerical values useful for comparing results from different q val-
ues. The red value is an extrapolated value (see text).

q eo ed ξ [62] f2 = cd/β2
t from [63]

7 0.455 0.879 48.095
9 0.366 0.966 14.90 12.8 (0.1)
10 0.335 1.031 10.56 9.066(20)
12 0.286 1.136 6.54 5.6244(12)
15 0.234 1.25 4.18 3,4491(23)
20 0.179 1.373 2.69 2.1228(13)

0.666

0.667

0.668

0.669

0.67

0.671

0.672

0.673

0.674

0.675

64 128 256 512 1024

T
em

p
er
at
u
re

L

Tt(L)
Tt (analytical)

Figure 3.2: Finite size transition temperature in comparison to the analytical
result for q = 12. The analytical value of Tt = 0.668418821 is marked by the
continuous line. Given the temperature range we are simulating, the small
(O(10−4)) shift in Tt for L = 64 has to be taken into account.

where Tt(L) is the transition temperature of a finite lattice. Equation (3.13) is

plotted in fig. (3.2) for q = 12. Even though the shift of the transition temper-

ature is a somewhat mild effect we are working in a temperature range very

close to the transition temperature, and a precise estimation of δβ = β − βt is

crucial for our analysis. This led us to exclude the L = 32 size from our anal-

ysis, since it is not suited for probing the temperature range we are interested

in.

In chapter 7 we will introduce the pseudo-spinodal temperature β∗ and we

will extimate it. Such a quantity could be affected by the finite size depen-

dence of the transition temperature, but this is not the case. In fig. (3.3) it

26



3.2. The two-dimensional ferromagnetic model

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

64 128 256 512

In
ve
rs
e
te
m
p
er
at
u
re

d
is
ta
n
ce

L

δβ(L) = |βt(L)− βt|
δβ∗ = βt − β∗

Figure 3.3: Effect of the finite size transition temperature compared to the
pseudo-spinodal temperature β∗, both shown in terms of inverse temperature
distance (see text). The finite size dependence of the transition temperature is
too small to account for the δβ∗ 6= 0 that we will extimate in chapter 7.

is shown the effect of the finite size transition temperature compared to this

pseudo-spinodal temperature β∗. Both quantities are shown in terms of in-

verse temperature distance from βt as δβ(L) = |βt(L)− βt| and δβ∗ = β∗ − βt.

As can be seen, δβ∗ is much larger than δβ(L), and the non vanishing δβ∗ can-

not be due to the finite size transition temperature.

3.2.2 Dynamics of the PM

When a physical system is quenched from the homogeneous phase into a

broken-symmetry phase, the dynamics towards order takes place through do-

main coarsening. Dynamical simulations have long been an invaluable tool for

investigating the ordering dynamics of physical systems, with the Ising model

that has been successfully applied in different cases, e.g. the phase separation

of binary mixtures [68, 69]. In this context, the wider generality of the Potts

model (with multiple states available to every lattice site), offers more flexi-

bility than the Ising model, with a richer behaviour: the presence of multiple,

degenerate, ordered phases can hinder the dynamic towards equilibrium in a

non-trivial way as first predicted by Lifshitz [70] and confirmed with numeri-

cal simulations in [71, 72].

The theory of ordering dynamics [73] in the case of scalar order parameter
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Figure 3.4: Different dynamical regimes of the 2DPM after a quench for tem-
peratures below the transition temperature. The mechanism responsible for
relaxation is shown, depending on the quench temperature. From [75].

postulates the so-called scaling hypothesis, which states that the system is statis-

tically invariant in time when the space is rescaled by a time-dependent char-

acteristic lenght l, proportional to the mean size of the growing domains. For

an Ising like system, this leads to a power-law growth in time, the Allen-Cahn

law l ∼ tα with α = 1/2 for non conserved order parameter dynamics, and the

system relaxes to the zero energy ground system asymptotically. In the case of

the Potts model, the situation is different. It has been shown [29, 28, 74] that

after a quench at T = 0, a 2DPM system converges to a disordered station-

ary phase (called glassy phase) with non-zero energy density, the excess energy,

e∗(q) > 0. More interestingly, the ordering of the system can be described

(after an initial transient) by a power law:

e(t, q) = e∗(q) + a(q)t−1/2 . (3.14)

Since the excess energy is proportional to the perimeter of the interfaces, the

above result implies that the domains do not grow indefinitely, but the char-

acteristic scale grows up to a limiting value l∗(q). This behaviour has been

confirmed [30] to hold (with the same a(q) and e∗(q)) also for small and pos-

itive temperature T = 0.1 up to a crossover time t̃(T, q), at which the excess

energy stops to obey the power law and the mean domain size converges to

the system size very rapidly.

For higher quench temperature (T ≃ Tt/2) a systematic study of the geomet-
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rical properties during the coarsening dynamics has been performed in [34], in

comparison with the analytical results available for the Ising case [76]. After

equilibrating at an initial temperate Ti, the system is quenched to T = Tt/c/2.

A different area distribution is found depending on the equilibration temper-

ature Ti = ∞ or Ti = Tc/t, especially in the critical cases. When the initial tem-

perature is associated with diverging correlation lenght (Ti = Tc, 2 ≤ q ≤ 4),

broad tails of the area distribution are found, compatible with a power law be-

haviour. In this cases the area distribution for the Ising case can be extended

to q = 3, 4. When instead the initial equilibration stage does involve finite

correlation lenght (q > 4 or Ti = ∞ for 2 ≤ q ≤ 4), the dynamical area dis-

tribution has an exponential tail for big area values. This temperature range

is also affected by the appearance of blocked states [75], striped metastable

states composed by two ferromagnetic states whose walls are parallel to coor-

dinate axis. The time the system takes to escape out of this metastable state is

independent of q [77] and scales as Lρ with ρ found to be smaller than 3. In

addition to these blocked states induced by the squared topology of the lattice,

there are other ones, due to the presence of q ≥ d+ 1 phases [70]. These states

are composed by macroscopic six-sided irregular polygonal domains of dif-

ferent colours, where the angles between domain walls at the threefold edges

fluctuate around 120◦ . Once such a situation is obtained the dynamics starts

again with the flipping of a spin (with an energy cost of ∆E = 1) that causes

an ’avalanche effect’ (with several spins flipping with no energy cost) leading

to the hopping of the whole structure and eventually to the relaxation of the

system. Because this type of dynamics is an activated process with a constant

energy barrier (the flipping of the first spin), the time-scale associated with this

process τ follows Arrhenius law τ ∼ e−
1
T [78].

The different regimes of the out of equilibrium dynamics after a quench for

temperatures below the transition temperature are summarized in fig. (3.4).

If the quench temperature Tf is close to the transition temperature, we have a

metastable behaviour: we will review in depth this temperature range for the

2DPM (without the external field1) in the next chapter. If we decrease the tem-

perature, simple coarsening is the mechanism of relaxation. When the quench

1This issue has been studied also in the continuous case [79, 80] and for the field driven
situation [81], but we will not discuss this subject here.
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Chapter 3. The Potts model: general features

temperature is below a threshold value Tbloc, blocked states (with striped and

six-sided irregular polygonals) do appear, and the Allen-Cahn law sets in for

longer times. When the quench temperature falls below another reference

value Tg, glassy states start to affect the dynamics, eventually dominating it

in the T → 0 limit.
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Chapter 4

Previous studies of metastability in

the 2D Potts model

As mentioned in the introduction, there have been so far several studies

addressing the existence of metastable states in the temperature-driven transi-

tion of the 2D PM, and their finite-size behaviour. Interestingly, these studies

happen to be contradictory between themselves for what concerns the survival

of metastable states in the large-size limit, as we will explain in this section.

Metastability would have implications on the equilibrium properties of the

model, as Binder first pointed out in 1981, when he defined the problem. In-

deed, the existence of a metastable phase would be related with a finite slope

of, say, the internal energy at the transition. On the other hand, the tem-

peratures T± signaling the end of the intervals [T−, Tt] and [Tt, T+] in which

metastable states exist, would correspond to a pseudo-critical point presenting

the features of a continuous phase transition, as the divergence of the suscepti-

bility and the correlation length. This was the approach pursued by Fernández

et. al. in 1992 ([35]), which actually estimated a finite interval T− < Tt. Such

an approach was also followed by Schulke et. al. [40] by Loscar et. al. [36]

and by Ferrero et. al. [1] in 2000, 2009 and 2011 respectively, whose results

confirm this picture, i.e., the existence of a finite slope of the internal energy at

the transition point, and the divergence of such quantity at a temperature T±

different from the transition temperature Tt.

So far the mentioned studies tackled the delicate and relevant question of the

finiteness or infiniteness of this thermodynamic quantity at the critical point.
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Chapter 4. Previous studies of metastability in the 2D Potts model

Table 4.1: Summary of the previous works

Work Method Metastability range q
Binder, 1981 Pseudo-critical ? 5, 6

Fernández, 1992 Pseudo-critical Yes 7, 10
Schulke et. al, 1999 Pseudo-critical Yes 5, 7

Meunier & Morel, 2000 Droplet theory No general
Loscar at al. 2009 Pseudo-critical Yes 12, 24, 48, 96, 192

Nogawa et. al, 2011 Wang-Landau No 8, 21
Ferrero, 2012 Pseudo-critical Yes 9, 15, 96

These studies were carried out in finite-size numerical realisations of the PM,

either by MC sampling in the stable phase at T > Tt, or by short-time dynamics

techniques (see below). A different approach was performed by Meunier and

Morel (M&M) in 2000 [3], which constructed a droplet expansion (DE), sim-

ilar to the one describing the Ising model field-driven transition, which was

reviewed in chapter 2. Such a droplet expansion is found to describe the disor-

dered phase along with the properties of the metastable phase at T ∈ [T∗, Tt].

Themetastable temperature limit, that wewill call T∗, however, exhibits strong

finite-size effects within M&M’s theory, and it in fact it is shown to converge

to Tt in the large-system size limit, in contrast to the results reviewed in the

precedent paragraph.

The third approach, different in nature, is a recent study by Nogawa et al

[2] in which the Wang-Landau algorithm is constructed to sample the micro-

canonical ensemble of states with fixed energy, for energies close to the ener-

gies of the order and disordered critical points. Measuring the microcanon-

ical stability conditions, they find a disordered, finite-size metastable phase,

with a metastable limit temperature Tsp, below which the stability conditions

are no longer satisfied. In agreement with the results of M&M, the interval

shrinks to zero for large system-size area A, and interestingly a law of the type

|Tsp − Tt| ∼ A−1/3 is found.

One has, hence, three different approaches leading to different answers to

the question (in Table (4.1) the reader may found a scheme with information

about all the theories on the dynamics of the 2D PM transition). In a certain

way, M&M and Nogawa et. al. approaches are similar: both consider the
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metastable temperature limit as a limit of a thermodynamic stability condition

of the metastable phase itself. On the other hand, the approaches based on

the pseudo-critical point do not investigate the (equilibrium properties) of the

phase at T < Tt.

An open question, at this point, concerns the dynamics of the system in the

metastable interval Tt > T > Tsp. To what extent the existence of metastable

phases imply the existence of a dynamic metastability with stationary proper-

ties, when a suitable local dynamics is defined? As mentioned in the Introduc-

tion 1, the natural framework to study this static–dynamic connection is the

droplet theory: in the context of the DE, it is possible to compute quantities

which have a dynamic meaning and that may be measured within a dynamic

framework: the lifetime of metastable states, and the limit Tsp itself, as exam-

ples. Such a comparison may allow to help in the solution of three fundamen-

tal problems so far unanswered by previous studies:

1. Do metastable states exist in the infinite area limit, as suggested by refer-

ences [35, 40, 36, 1], according to which Tsp < Tt, or are they a finite-size

effect, as evidenced by references [3, 2, 37], in which the metastable limit

temperature Tsp → Tt? Is the slope of the internal energy finite at the

transition? What is the relationship between Tsp, the pseudo-critical tem-

perature, and T∗, the metastability limiting temperature of reference [3]?

2. What is the dynamic meaning of Tsp? Are the predictions of the DE of

reference [3] confirmed in a dynamical framework?

Wewill address questions 1 and 2 in chapter 7. The relevance of the dynamical

study that we propose in this thesis has been also pointed out by the authors

of references [3, 2]. In the first one, one reads:

In the droplet picture, as well as in field theoretic approaches, the

point βt is a branch point, and analytic continuation above βt is ill-

defined. An important question, not considered in this paper, con-

cerns the associated dynamics. An extensive review can be found

in [8]; see also [11]. This field is still subject to active research in

the context of Ising-like or liquid-vapour transitions. After Langer

[4,35] and followers, the nucleation rate of a metastable state is pro-

portional to the imaginary part of the free energy along the cut.
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Chapter 4. Previous studies of metastability in the 2D Potts model

Most of the recent results concern the Ising case (see for example

[36,38]). To our knowledge, these dynamical aspects have not been

studied for the Potts model above qc.

while in [2] it is claimed that

For finite size system in microcanonical ensemble, we observe neg-

ative (inverse) specific heat in the coexisting region and over/under-

hang of temperature, that corresponds to the thermodynamic spin-

odal point in canonical ensemble. The scaling behaviour |Tsp −
Tt| ∼ A−1/3 suggests an existence of a diverging length scale, Rs(T) ∼
|T − Tt|−1/3. This means that a supersaturation state at given tem-

perature T becomes unstable at a length scale above Rs. Although

this length is related to the equilibrium spinodal point, it is not clear

whether it also has some meanings in non-equilibrium dynamics,

which may be an interesting open problem.

4.1 Definition of the problem: the pseudo-critical

points (Binder, 1981)

The first discussion of the metastability properties of the Potts model can

be traced back to Binder [39]. Studying the static and dynamical behaviour of

the model for q = 3, 4, 5, 6 he found a good agreement with the exact results

or energy and free energy in the critical (q = 3, 4) cases and he found that for

q = 5, 6 the transition is in fact weakly first-order, with strong pseudo-critical

phenomena taking place. As explained in section 3.2.1, the correlation length

of the 2D PM at the transition temperature diverges in the q →+ 4 limit, in

such a way that for low values of q − 4 the correlation length may be larger

than the system size used in a numerical simulation (see fig. (3.1)). In this case,

critical properties, corresponding to a continuous transition of a scale invari-

ant system, instead of those characteristic of a discontinuous transition, will

appear; in particular, divergent specific heat and susceptibility (with pseudo-

critical exponents) will be observed. From a dynamical point of view, critical

slowing down, instead of the stationarity typical of metastable states, may on-

set in this situation.
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4.1. Definition of the problem: the pseudo-critical points (Binder, 1981)

(a) (b)

Figure 4.1: Schematic representation of the two pictures discussed. In the first
case (a), the specific heat diverges at the transition point, while in the second
one (b) the specific heat at the transition point is finite, giving rise to two well
defined metastable branch of the energy per site.

This phenomenology, called pseudo-critical behaviour, led Binder to the formu-

lation of two mutually excluding pictures, represented in fig. (4.1). In the first

one the specific heat divergence would be a true power law divergence and

this would imply, for the internal energy per site e:

e(T < Tt) = eo − A−
(

1− T

Tt

)1−α−

e(T > Tt) = ed + A+

(

1− Tt
T

)1−α+
(4.1)

with α+, α− > 0. On the other hand, if well defined metastable states exist, the

specific heat would be a divergent quantity when the temperature approaches

the pseudo-critical temperatures T+, T− giving:

e(T < Tt) = e− − Ã−
(

1− T

T+

)1−α̃−

e(T > Tt) = e+ + Ã+

(

1− T−

T

)1−α̃+
(4.2)
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Chapter 4. Previous studies of metastability in the 2D Potts model

If eq. (4.2) is the right one, we should have α+,α− ≃ 0, since the divergence at

the spinodal point would imply a finite slope at the transition temperature.

Supposing that Tt = (T+ + T−)/2 and that e− = e+, the difference between

spinodal temperature and transition temperature is estimated as: ∆T/Tt =

|T± − Tt|/Tt ≈ 10−3 for q = 6. Because of finite-size rounding phenomena,

in order to distinguish between these two kind of behaviour, a lattice of lin-

ear size L ∼ 103 would be required for this value of q, a size that was beyond

the compute capabilities available at that time. The weakness of the transition,

results in pseudo-critical phenomena also when dynamics is included: close

to the transition point, a dynamical slowing down is observed for small lattice

sizes. In systems with linear size L of the order of the correlation length ξ, such

a pseudo-critical slowing down leads to off-equilibrium properties (anomalous

energy distributions obtained by MC sampling), which were examined in ref-

erences [82, 83]. Such anomalous behaviour, however, was shown to disappear

when L ≫ ξ.

The pseudo-critical behaviour in the 2D PM reflects also in the probability dis-

tributions for the droplet areas, which results in a scale-free distribution for

small systems [83], while such a power-law distribution is to be corrected with

an exponential decay in larger systems. We will re-examine this point in sec-

tion 4.4 in the context of the DE.

The weak/strong classification of the first order transition (usually based on

a loose evaluation of the latent heat) can be given in terms of the pseudo-

critical temperatures [35]: the weak (strong) transition are the ones for which

the pseudo-critical temperature is close (far) from the transition temperature,

with the continuous transition case that is the limit T± → Tt. The difference

|T± − Tt| is taken then as a physical quantity, that discriminates between the

continuous, weak discontinuous and strong discontinuous cases. The work

[35] performs an estimation of the pseudo-critical temperature T−. By MC

sampling of the disordered phase T > Tt in lattices of linear size L = 96, the

pseudo-critical temperature T− < Tt is estimated as the extrapolated temper-

ature at which the quantities ξ and cv diverge. Although no Finite Size-Scaling

(FSS) analysis is performed, this study leads to a non-zero metastable interval.

A more up-to-date analysis in very the same spirit of the work by Binder [39]

has been done in [1]. Using a parallel GPU-based algorithm, simulations up
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4.2. Pseudo-critical points and short-time dynamics

to large lattice sizes have been carried out, investigating by (equilibrium) MC

sampling the internal energy near the transition point in order to discriminate

between both scenarios in fig. (4.1), which correspond to equations (4.1) and

(4.2). The GPU-based algorithm allows to the study of systems of linear size

up to L = 2048, which is claimed to be enough to discriminate between both

pictures. The result is shown in fig. (4.2), which reports evidence of a non-

zero interval [T− : Tt]. We stress that in [1] no dynamical method is used, but

an equilibrium sampling above Tt. The results, hence, support the existence of

metastable states, at least up to the largest size studied. Another indication that

was found in [1] is that the two pseudo-critical temperature are not symmetric

with respect to the transition temperature. This is a widely used assumption,

whose validity has been questioned only recently [84].

4.2 Pseudo-critical points and short-time dynamics

The same pseudo critical way of thinking led to the idea of describing the

metastable temperature regime T− < T < Tt (Tt < T < T+) with the tools

Figure 4.2: Normalised energy distance starting from a disordered initial state
(T > Tt). The lines are power law fits and the points correspond to the simula-
tions. From [1].
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developed for continuous transition. It has been discovered [85] that, during

the critical relaxation after a sudden quench of a thermodynamic variable (v.g.

the temperature), the system displays scaling properties also in the intermedi-

ate time range: after a first time range governed by non-universal microscopic

processes, the system enters a critical initial slip, that eventually crosses over to

the long time asymptotic behaviour. Such a regime, named short time dynamics

(STD) respects precise scaling relations for the order parameter if the system

is quenched to a critical equilibrium point, hence allowing the computation

of critical exponents and temperature from the first stages of the MC dynam-

ics. This method has been applied to the metastable regime of the 2D Potts

model in references [40, 36] for q = 5, 7 and q = 12, 24, 48, 96, 192 respectively,

finding that the scaling relation holds for a q-dependent time range. In the

last reference, the resulting pseudo-critical point at T±, whose estimation is

supposed to be finite-size independent within this approach, is observed to be

non-zero, growing with q roughly as ln(q− 3), and compatible with other es-

timated values of T− obtained by the the previous studies [35, 40] and a more

recent analysis [1].

4.3 Microcanonical energy sampling (Nogawa et. al.

2011)

A different numerical method for simulating the dynamics of first and sec-

ond order phase transition ismulticanonical energy sampling (orWang-Landau

method) [86]. Instead of simulating the lattice of the system, a randomwalk in

energy space is performed. The driving idea is that if the random walk proba-

bilities are chosen as the inverse of the density of states Ω(e), then the energy

histogramwill be flat. To obtain this result, every time a randomwalker ’visits’

the energy value ẽ, the corresponding density of states Ω(ẽ) is multiplied for a

factor f > 1. This approximately ensures the flatness of the energy histogram

and results in a method for sampling the equilibrium density of states which

does not depend on temperature, hence not suffering from (possibly critical)

slowing down. Once the density of states is obtained one can derive the mi-
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4.3. Microcanonical energy sampling (Nogawa et. al. 2011)

crocanonical temperature as

βmc = ∂e ln(Ω(e)). (4.3)

and look for a metastable behaviour, that would imply a non monotonic rela-

tion between βmc and e (the so named Van der Waals loops).

This method has been applied to the q = 8, 21 Potts model in [2, 37]. The

resulting microcanonical temperatures as a function of the energy are shown

in fig. (4.3a) for q = 8. Two extrema of the inverse microcanonical tempera-

ture β are found, corresponding to the inverse spinodal temperatures β±
s . The

metastability interval [βt, β−
s ] being, hence, defined in this context as the in-

terval in which the stability condition cv > 0 is satisfied. The horizontal lines

in fig. (4.3a) mark the critical temperature and the the upper (lower) spinodal

temperature for L = 32. For increasing system size it is found that the spinodal

(a) (b)

Figure 4.3: Inverse temperature as a function of internal energy (left). The
spinodal inverse temperature β±

s for L = 32 is marked by horizontal lines, as
well as the inverse transition temperature βt. For increasing system size, the
spinodal temperatures converge to the transition temperature, with a power
law scaling L−µ (right). From [2]
.
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temperatures approach the critical temperature as

|β±
s − βt| ∝ L−µ. (4.4)

with µ ≃ 0.70 as it is shown in fig. (4.3b), both for the high energy and for the

low energy phase. This value of the exponent µ is supposed to be compatible

with d
d+1 , following the discussion of reference [87] in which an investigation

of the Ising model phase transition in terms of condensation/evaporation of

droplet is done.

According to this equilibrium approach, all the metastability phenomenology

would be a finite-size effect. This is somehow conflicting with the results ob-

tained within the pseudo-critical approach described in the precedent subsec-

tion [36, 1, 35, 40]. At this point, an unavoidable question is what is the rela-

tion between the pseudo-spinodal temperature in the context of ref [2] and the

pseudo-critical point estimated by the rest of the references. A puzzling and

interesting question is whether the metastable states predicted by the pseudo-

critical approaches for T ∈ [T± : Tt] satisfy the stability condition cv > 0 in the

large size limit.

4.4 The droplet expansion (DE)

We now proceed to introduce the droplet theory developed for the Potts

model [3]. This theory allows for the computation of the Energy per site Prob-

ability Density Function (EPDF), fromwhich several quantities can be derived.

We want to first compute the free energy of the disordered phase, stable above

Tt, and then continue it analytically for T < Tt.

As for the droplet theory for the Ising model (see section 2.3), we need a spe-

cific expression for the free energy of the ensemble of droplets with area a to

start from, f (a, β). For consistency with previous exact results [65, 66], in [3]

this quantity is postulated to be

f (a, β) = a−τe−ωaσ+(β−βt)a 1/2 < σ < 1. (4.5)
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4.4. The droplet expansion (DE)

where βt is the inverse transition temperature, ω is an effective surface tension,

with the units of an energy density per unit of effective perimeter. The term

a−τ accounts for themany different ways of constructing a droplet of fixed area

a on a lattice. The free energy is again made up of a bulk term and a surface

term, whose relative balance will determine the stability of the droplet, with

the inverse temperature playing the role of the Ising field of the bulk term, and

with a non-geometrical exponent 1/2 < σ < 1 in the surface term, accounting

for non-geometrical (ramified) droplets [8].

Although in eq. (4.5) one recognises the bulk and the surface terms of the Ising

model, the physical meaning of the bulk term is completely different. While in

the Ising case the bulk energy comes from the external field, ha, in the present

case it has an entropic origin and for β < βt represent the tendency of droplets

to be confined, the confinement being entropically advantageous.

Equation (4.5) has beenmodelled on the assumption that close to the transition

temperature, at least for low values of q > 4, the free energy reflects the scaling

properties of the critical point at q = 4 [65]. This assumption was motivated at

first from the estimation of the free energy cumulants, and then confirmed by

expansion of the Padé approximant of the free energy in the low q region1 [66]

and is rather appealing, giving a unified description in a q-scalable fashion.

Equation (4.5) is exponentially decreasing above the transition temperature

(β < βt), and it is expected to describe the disordered phase. Consequently,

when we define the full free energy, summing over the droplets area:

F(β) = C
∞

∑
a=1

a−τe−ωaσ+(β−βt)a. (4.6)

we get a finite free energy for the disordered phase, as expected. When, in-

stead, we move to β > βt, the distribution of the droplet area is no longer

finite, because arbitrarily large droplets of the disordered phase are favoured.

This non-physical situation (with large droplets of the disordered phase above

βt) results in the divergence of the free energy, which has to be analytically

continued, or regularised by truncating the sum at the critical droplet area, as

explained in chapter 2. All these considerations apply to the free energy of the

ordered phase as well, since the ordered and disordered free energy are related

1This ’small q region ’ extends up to q ≈ 30
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by duality relations [52, 60] .

When the size of the system tends to infinity, the allowed values of the variable

a become continuous, and the sum can be replaced by an integral

F(β) = C
∫ ∞

0
a−τe−ωaσ+(β−βt)a da. (4.7)

Fixing the τ, σ exponents

We report the arguments in [3] leading to the fixation of the exponents in

4.5. At the transition point, the derivative of order n of the free energy with

respect to β is related to the nth order energy cumulant as:

fn = (−1)n
dn

dβn
F(β)

∣

∣

β=βt
. (4.8)

It is known from large q expansion [64] and numerical studies [65, 66] that the

free energy cumulants are related to the correlation2 length as:

f2 ∝ ξ. (4.9)

f3
f2

∝ ξ3/2. (4.10)

On the other hand, from eq. (4.5) it is possible to compute the expressions of

f2 and f3 as a function of σ, τ 3:

f2 =∝
1

ω
3−τ

σ

f3
f2

∝ ω−1/σ. (4.12)

2The correlation length at the transition point ξt, that scales with q according to eq. (3.9).In
the following we will use the short notation ξ for ξt

3Starting from 4.5 one gets for a generic energy cumulant:

fn = c(−1)n
∫ ∞

0
dae−ωaσ

an−τ =
c(−1)n

σω
n−τ+1

σ

Γ(
n− τ + 1

σ
). (4.11)
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One has that the known relations (4.9,4.10) can be satisfied by setting:

ω =
f

f2
∝

1

ξ

σ =
2

3

τ =
7

3

(4.13)

being f nearly constant in q (the q dependency of ω is given by f2 ∝ ξ). Com-

paring eq. (4.11) with numerical simulations [3], f can be fixed and the energy

cumulants up to order 8 can be reproduced for different values of q, with a

simple scaling behaviour in q, that comes from the inverse proportionality be-

tween ω and ξ.

Computation of the energy PDF

We start from the partition function of the system of area A at inverse tem-

perature β is:

ZA(β) =
∫

de ΩA(e) e
−βAe, (4.14)

with ΩA(e) the number of states with an energy per site e. The PDF for the

energy per site is:

Pβ,A =
ΩA(e)e

−βAe

A
, (4.15)

and we define a pseudo-free energy (−1/β times the standard one):

fA =
ln(ZA)

A
. (4.16)

If we now compute:

eA[ fA(β)− fA(βt)] =
ZA(β)

ZA(βt)
, (4.17)

we can make use of (4.14,4.15) and get:

eA[ fA(β)− fA(βt)] =
∫

de Pβt ,A(e) e
Ae(β−βt), (4.18)
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and multiplying both terms for f1 = ∂β fA|βt
= 〈e(βt)〉 = ed we arrive to

eA[ fA(β)− fA(βt)− f1(β−βt)] =
∫

de Pβt ,A(e) e
A(e−ed)(β−βt), (4.19)

in which now appear the distance from the transition point in terms of inverse

temperature and energy, both explicitly q dependent quantity.

We now introduce rescaled variables4, to eliminate the q explicit dependence:

Ar = f
( f

f2

)2
A

ǫ =
1

f

( f2
f

)1/2
(e− ed)

z = −
( f2
f

)3/2
(β − βt)

. (4.20)

and the rescaled free energy is defined by:

Arφ(z) = A[ fA(β)− fA(βt)− f1(β − βt)], (4.21)

to get:

eArφ(z) =
∫

dǫ eǫArzP̃βt ,A(ǫ), (4.22)

with P̃βt ,A(ǫ) that is now function of the rescaled variables.

Equation (4.22) relates the energy PDF to the free energy, both expressed in

terms of rescaled variables.

According to (4.7 and 4.11) φ(z) is:

φ(z) =
∫ ∞

0

dt

t3
e−t
(

e−zt3/2 − 1+ zt3/2
)

. (4.23)

Equation (4.23) is obviously finite for positive values of z, that is the stability

region of the disordered phase (β < βt). The function φ(z) can be analytically

continued to complex values of z, deforming the integration contour in t. As

for the Ising model, the only singularity is a branch point at z = 0.

4With this choice of normalisation, the exponent has the old form, with rescaled variables
A(e− ed)(β − βt) = Arǫz
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The singular part of φ(z) is given by:

φdiv(z) =
∫ ∞

t0

dt

t3
e−t−zt3/2 z < 0, (4.24)

for a generic t0. When z is continued to z = |z|e±iπ, the integration path has

to be rotated accordingly to [t0,∓∞], with φdiv(z) developing a discontinuity

along the negative real axis, the jump being:

∆ = φdiv(−|z| + iǫ)− φdiv(−|z| − iǫ)

= −
∫ t0+i∞

t0−i∞

dt

t3
e−t−zt3/2

(4.25)

in complete analogy with the Ising model (compare to eq. (2.26)).

The integral in (4.25) can be evaluated within the saddle point approximation,

giving an expression for Im(φ(z)) for small z, that will be useful later on. The

saddle point equation is:

t
1
2 = −2

3

1

z
, (4.26)

which gives for the Im(φ(z)):

Im(φ(z)) ∼
√

π

(

3

2
z

)5

e
− 4

27
1
z2 z ≃ 0. (4.27)

.

The Probability density function of the disordered phase

The EPDF of the disordered phase at the transition temperature is given by

the inverse Laplace transform of (4.23):

P̃βt ,A(ǫ) =
Ar

2iπ

∫ z0+i∞

z0−i∞
dz eAr [φ(z)−ǫz]. (4.28)

This quantity may be measured in numerical simulations, as we will do in

chapter 7. The integration in eq. (4.28) can be further simplified. Due to the

analytic properties of φ, the result is constant in z0 ≥ 0. Taking z0 = 0, the

integral is on the imaginary axis. For ǫ < 0, the contour can be deformed to

get Cα = {−x + iαx, x ∈ [0,∞]} ∪ {x − iαx, x ∈ [−∞, 0]} (α real), and for a
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generic function g, it is:

∫

Im
dzg(z) =

∫

Cα

dzg(z) =
∫ 0

−∞
dxg(x− iαx) +

∫ ∞

0
dxg(x+ iαx). (4.29)

If g satisfies g(z̄) = ḡ(z) we have:

lim
α→0

∫

Cα

dzg(z) =
∫ 0

−∞
dx(−2i)Im[g(x)], (4.30)

and taking as g the integrand of 4.28 one gets:

P̃βt ,Ar
(ǫ) =

−Ar

π

∫ 0

−∞
dxeAr

[

−ǫx+Re[φ(x)]
]

sin (Im[φ(x)]). (4.31)

This integration can be done numerically and the PDF that are obtained (for

generic temperature, as explained in the following) are shown in fig. (4.4).

The integration of eq. (4.31) can be addressed also analytically, under some

assumption that we will illustrate in the next section. In what follows, we will

refer to the numerically integrated version of eq. (4.31) simply as the energy

density PDF, and to the analytical (approximated) version of eq. (4.31) as the

saddle point PDF (SPPDF).

4.4.1 Saddle point approximation of the PDF

For large |ǫ|, the integrand of eq. (4.31) is exponentially damped, and we

can suppose |x| to be small, using the expression (4.27) for the imaginary part

of φ(z) and neglecting its real part. Moreover we can approximate the sine

appearing in eq. (4.31) with its argument, and using a saddle point approxi-

mation, with the saddle point given by:

xs =
2

3
(

1

|ǫ|Ar
)
1
3 , (4.32)

we have for the probability density function of the energy per site :

1

A2
r
P̃βt ,Ar

(ǫ) =
2

3
(Ar|ǫ|)−

7
3 e−(Ar|ǫ|)

2
3 , (4.33)
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or, in non-rescaled variables:

Pβt ,Ar
(e)

A2
=

2

3
f 2ω4

(

ω
3
2 A|e− ed|

)− 7
3 e−ω(A|e−ed|)

2
3 . (4.34)

The eq. (4.34) gives an analytical expression that can be be tested numerically

at the transition point and moreover, on a finite lattice, it can be extrapolated

for generic values of β, by reweighting the distribution according to the right

Boltzmann factor.

4.4.2 Reweighting of the Pβt,A(e) for generic temperature

Given the energy distribution of the pure disordered phase at the transition

temperature, the distribution for a generic value of β is:

Dβ,A(e) = e−A(e−ed)(β−βt)Pβt ,A(e), (4.35)

with Dβ,A(e) that has to be properly normalised and an analogous relation that

holds for rescaled-variables quantities.

All the phenomenology of the metastable state can be extracted from the D(e).

In fig. (4.4) it is shown Dβ,A(e) for q = 9 and different values of the inverse

temperature, ranging from δβ = β − βt = −2× 10−3 to δβ = 2× 10−3, with

the dotted line marking the transition temperature (δβ = 0). For z large, the ex-

ponential growth wins over the Pβt ,A(e) behaviour, and the distribution even-

tually blows up. This leads to a minimum at e = em visible for the lowest

temperature case. For values e < em, the contribution of the ordered phase has

to be taken into account and the D(e) is no longer the right energy distribution:

we are in the instability region of fig. (2.1).

4.4.3 Spinodal temperature from the Dβ,A(e)

It has to be emphasised that the depth of the minimum relative to the peak

height is a measure of the barrier the system has to overcome in order to relax

to the stable state, controlling the lifetime of the metastable state. Also the

spinodal point can be obtained from the Dβ,A(e), so the energy PDF encodes
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Chapter 4. Previous studies of metastability in the 2D Potts model

Figure 4.4: Energy PDFS of the energy per site for different values of the in-
verse temperature, ranging from δβ = β − βt = −2× 10−3 to δβ = 2× 10−3,
with the dotted line marking the transition temperature (δβ = 0). As the
temperature decreases, a minimum in the distribution appears from the left.
The cross marks the inflection point, that does not depend on the temperature.
From [3]

most of the information we are interest in5.

Starting from the definition of the probability energy density:

Dβ,A(e) =
1

ZA(β)
ΩA(e)e

−βeA, (4.36)

where ΩA(e) is the number of states with fixed energy density e and ZA(e) is

the pseudo-free energy (− 1
β the standard one) defined before. By a derivative

of the logarithm of Dβ,A(e) we have:

∂e
ln (Dβ,A(e))

A
= −β + ∂e

lnΩA(e)

A
=

= −β + ∂eSA(e)

= −β + βA(e)

. (4.37)

5It does not,however, help to shed light on the microscopic behaviour of the system.
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4.4. The droplet expansion (DE)

Figure 4.5: Representative energy density PDF. This PDF is characteristic
of metastability for the whole energy range (since we are above βt). The
blue (continuous) line identifies the metastable region with ∂2eeSA(e) < 0
(∂2eeSA(e) > 0), the cross marks the inflection point and the red continuous
line is the instability region.

where SA(e) is the microcanonical entropy, whose derivative with respect to

the energy is the microcanonical temperature βA(e).

Stability requires ∂β〈e〉 < 0, that is equivalent to ∂eβA(e) < 0, and since S is

related to the EPDF via (4.37) this turns into

∂2ee
ln (Dβ,A(e))

A
= ∂2eeSA(e) < 0. (4.38)

We can then identify the convex part of the PDF of the energy density as the

equilibrium one. At a given inverse temperature β and a given A, the allowed

metastable energies are the ones above the minimum (since below em we are

in the instability region, i.e. in the negative susceptibility region) but below

the inflection point e∗ where the second derivative of
ln (Dβ,A(e))

A changes sign.

Figure (4.5) summarizes this picture.

As we can see qualitatively from fig. (4.4), when we increase β, the minimum

em increases and eventually becomes equal to e∗. In this condition there is no

more metastability, and one can then define the spinodal inverse temperature
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β∗(A) as the one at which this happens. Considering eq. (4.37) we have:

∂e
ln (Dβ,A(e))

A

∣

∣

∣

e∗
= −β + β∗(A). (4.39)

In [3] eq. (4.39) has been compared to numerical simulations for q = 9 and

for single lattice size, allowing to identify the spinodal temperature for that

size. We will do a similar and more exhaustive comparison in chapter 7, for

q = 12 and for different lattice sizes .
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Chapter 5

Dynamical study of the 2D Potts

model metastability

5.1 Aim andmethods: theMetastable Ensemble (ME)

In the present chapter we illustrate the original method that we use to

analyse the metastable behaviour in finite-size realisations of the 2D PM at

temperatures below the first-order transition point. As we will explain, this

method allows to compute expectation values of operators and, in principle,

of correlators, which are supposed to correspond to the average in a restricted

metastable ensemble, whenever this exists. The time autocorrelation function

of the system is the key quantity to construct such an ensemble, build up of sta-

tionary realisations. In contrast to, for example, microcanonical energy sam-

pling [86], canonical simulations offer the advantage of monitoring the full

dynamics of the system, allowing for averages of any observable (e.g. geomet-

rical properties of the clusters that appears during the evolution[76, 34]).

Afterwards, we will use the method to compute several observables in the

metastable phase, as functions of the temperature and the system size. In par-

ticular we will present results for the internal energy, self-correlation function,

correlation time, lifetime of themetastable phase, and fraction of metastable re-

alisations. As explained in the chapter 2, on very general grounds [7] we know

that, in finite-dimensional systems with short-range interactions, the concept

of spinodal point is not unambiguously defined as it is in mean-field approxi-
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Chapter 5. Dynamical study of the 2D Potts model metastability

mation. In mean field systems there is a critical value of the thermodynamical

variable h driving the transition, hs, belowwhich no realisation of the system is

metastable. In finite dimensions, on the other hand, metastability is a stochas-

tic phenomenon, and only a fraction of the realisations, depending on h, will

exhibit metastable behaviour with different lifetimes. We can then define the

probability according to which a realisation of the system will be metastable,

and we will show in the case of the PM, for which the control parameter is

the inverse temperature β, that a metastability limit, βs, can be defined accord-

ingly. Furthermore, it will be explained how this quantity exhibits a clear size

dependence, which is also obeyed by a alternative definition of the metastabil-

ity limit, defined in terms of the lifetime of the stationary, metastable phase.

5.1.1 The Metastable Ensemble

From standard theory of equilibrium Monte Carlo simulations [88, 44], we

know that the Metropolis algorithm allows for sampling all configurations

with the Bolzmann weight, and the large t limit of the MC sampling becomes

equivalent to a thermodynamic canonical sampling. This is because theMetropo-

lis dynamics evolves (for sufficiently long times) any configuration in a state

that is stationarily distributed according to the Maxwell-Boltzmann distribu-

tion. In the 2D system with q > 4, after a quench to low values of δβ = β − βt,

the time spent (in the disordered phase, since δβ > 0) to achieve the station-

ary Boltzmann distribution of the stable configurations may be very large: we

know that there are evidences that the (average) lifetime of the metastable

phase diverges for low δβ (at least in finite size systems).

The MC scheme described before, hence, does not provide a method for sam-

pling the properties of the metastable phase since, for large times, one will

sample the ordered phase for δβ > 0. This is related with the limits of the

ensemble methods in statistical physics to describe metastability: the partition

function is dominated by the weights of the stable solution of the equation of

state. As already explained in chapter 2, this problem may be circumvented

in some cases with the construction of a restricted ensemble, in particular by

considering the ensemble of critical droplets with under-critical areas, in the

context of the droplet theory. Another approach, completely different, is the
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5.1. Aim and methods: the Metastable Ensemble (ME)

purely dynamic one, according to which metastable states are those present-

ing stationary quantities. We now introduce away of characterisingmetastable

states which conciliates both. The droplet expansion for the PM presented in

the previous chapter shows how, at least in finite-size systems, there is a tem-

perature range below the transition point in which stability conditions for the

metastable phase apply, eventually leading to a stationary solution, if a suit-

able dynamics is defined1. Motivated by this argument, what we assume is

that there is a probability distribution in phase space wm that is the analogous

of the (equilibrium) Maxwell-Boltzmann distribution during finite intervals

of the time variable t.2 In this picture, the distribution wm defines what we

will call the metastable ensemble (ME). The average of an observable O in the

metastable ensemble will be denoted by:

〈O〉m = ∑
σ

wm(σ)O[σ]. (5.1)

An interesting question is whether this ensemble is equivalent to some re-

stricted ensemble, as the one restricted to under-critical droplets, or the one

given by the analytic continuation of the DE free energy of the PM to posi-

tive values of δβ (see the previous chapter). In other words, the question is

whether:

wm(σ) =
e−βH[σ]

Zm
, (5.2)

Zm being the partition function of the restricted ensemble U
′ ⊂ U. We will

show in the present chapter and in the following one, that, to some extent, this

is the case.

1Such a dynamics could be implemented, for example, defining a Markov process on a
restricted space of configurations U

′ ∈ U, with U the space of all spins configurations σ =
{σj}N1 , σi = 1, . . . , q

2The time intervals in which the solution of such a dynamic is stationary (or quasi-
stationary) would correspond to states in which the configurations excluded in U

′ (see the
precedent footnote) are still not being visited by the Markov process.
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Figure 5.1: Average energy density per site (left) and dynamical correlation

functions Ct(t
′
) (right). The correlation functions Ct(t

′
) show the transition

from the lowly long-time auto-correlated disordered state to the highly long-
time auto-correlated ordered state.

5.1.2 How the ME is constructed in practice

For the construction of the ME we will use a local Monte-Carlo spin flip

with theMetropolis algorithm [49]. To perform the averages in theME, we will

discard sequences of configurations not presenting stationarity, as we have just

explained. This is done in practice requiring time translational invariance to the

two-point temporal self-correlation function. This quantity is defined as

C(t, t
′
) =

q

q− 1

〈 1

N

N

∑
1

(δ
σi(t),σi(t

′
) −

1

q
)
〉

. (5.3)

For a stationary state this quantity becomes a function of the single variable

t− t′. Defining:

Ct(t
′
) = C(t, t+ t

′
), (5.4)

we expect that as long as the system is time-translational invariant (TTI) in a

time interval I, the correlation functions Ct(t
′
)will be very similar to each other

for t ∈ I.

A qualitative example of this prediction is given by fig. (5.1) which shows

the energy per site of a single realisation of the MC dynamics as a function of

the number of MCS (left), after a sudden quench to an under-transition tem-

perature, from a completely disordered configuration. The considered realisa-

tion presents a sudden energy decrease, which may be interpreted as a nucle-
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ation event, the horizontal lines signals the values of 〈e(o,d)〉. The right panel

(b) presents Ct(t
′
) for various t = n × 1000 MCS. After a 4000- MCS tran-

sient, which corresponds to non-equilibrium, non-stationary, relaxation from

the disordered state, energy gets stationary and the correlation function is ap-

proximately TTI up to, roughly, t = 2.2× 106MCS . When t & 2.5× 106 MCS,

the system has reached the stable equilibrium (the ordered phase), and the cor-

relation function is TTI again, now with a higher value of residual correlation

after tmax = 1000 MCS. The plot of the energy in fig. (5.1) confirms this inter-

pretation in terms of ordered and disordered phase.

According to our definition of ME, we will sample the desired observables

in the realisation in fig. (5.1) only in the time interval in which it presents

stationarity, roughly for 4000 < t < 2.2× 106 MCS. In practice, we will require

the following quantity

I(ti) =
1

t∗

t∗

∑
t′=0

∣

∣Cti(t
′
)− Cti+1

(t
′
)
∣

∣ ti ≡ i∆t = i× 103MCS (5.5)

to be smaller that a certain threshold It, that can be set by direct comparison

to correlation functions of realisations (of the same size) with very small δβ,

which can be safely classified as metastable (like in fig. 5.3 c) ). Our discrimi-

nation method depends, in this way, on two arbitrary quantities: the first one is

the threshold It below which two correlation functions are conceived as sim-

ilar. The second arbitrary quantity is a threshold time tt: whenever I < It
within a time interval larger than tt, the sequence of configurations within the

interval is said to be stationary, and it is used to compute averages of operators

in eq. (5.1).

As mentioned before, time translational invariance is a necessary condition for

equilibrium: it connects the time averages to the ensemble averages. Discard-

ing the non time-translational invariant systems, we are discarding the data

that can not be described by an equilibrium approach.

It follows an illustration of the utility of the ME, an of how it prevents to

collect inte off-equilibrium data. Figure (5.2) shows a comparison of the prob-

ability density function of the energy per site (EPDF) for two different δβ. In

both figures it is reported the P(e) of the metastable state and the P(e) ob-
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Figure 5.2: Energy histograms for the full time range (red) and for the
metastable time range (green). As δβ increases, the time for which the sys-
tem is metastable decreases, and the discrimination of the metastable systems
is required for a correct evaluation of the probability density function of the
energy per site.

tained without discriminating metastable systems. Figure (5.2a) corresponds

to δβ = 0.002. This δβ is in the ’nucleation free’ range, that is a temperature

range close enough to the transition point that the system, on average, does

not nucleate in the simulation time. This can be seen from the probability of

small values of the energy per site, that is of the order of the number of sam-

plings (that is O(10−6) ) and with a large error. The metastable and the full

P(e) are consequently very similar, with a small normalisation mismatching

due to the low energy tail of the full P(e). When we move to lower tempera-

ture (as in fig. (5.2b), that corresponds to δβ = 0.008) the situation is different:

for this temperature, taking the P(e) over the full time range would result in

sampling also the ordered low-energy state. It is therefore crucial to discrimi-

nate the metastable realisation and to identify the nucleation time, in order to

collect just those energies that are actually relevant for probing the metastable

state. Figure (5.2b) can be considered as the motivation for the discrimination

technique described in Section (5.1.2). Without a criterion for metastability

discrimination we would get wrong results (corresponding to off-equilibrium

relaxation), the more so the more the quench temperature is lowered (or the

simulation time is increased).

56



5.2. Numerical details

5.2 Numerical details

We have simulated the q = 12 ferromagnetic PM in the square lattice of lin-

ear size L = 64, 128, 256, 512, with periodic boundary conditions. The number

of lattice sites N = L2 is sometimes referred to as the area of the system A.

Preparing the system at infinite temperature, we have cooled it down abruptly

(quenched) to temperatures below the transition temperature, but not too far

from it (T − Tt ≤ 10−4). At first we have developed a serial CPU algorithm,

easier to code but slower than a parallel algorithm, for a preliminary analysis,

with the aim of identifying the relevant temperature range. Afterwards, we

have implemented a parallel GPU-algorithm for the Metropolis [49] dynam-

ics.

The number of simulated issues of the system ranged from 1.5× 103 to 3× 103

for every temperature, the precise value depending on the lattice size and on

the temperature considered. Instead of indicating the temperature, all our re-

sults are shown in term of inverse temperature distance from the transition

point δβ = β − βt. The minimum time required for a plateau to be considered

(tt) has been set to 4000 MCS, and the time over which eq. (5.5) is integrated is

t∗ = 500 MCS. The threshold value of I(t) in eq. (5.5) has been set to a size-

dependent quantity Il(L)and the used values are in table (5.1).

The simulations have been performed on two high-end GPU card Tesla K20

Table 5.1

L Il(L) t∗ (MCS) tt(MCS)
64 0.023 500 4000
128 0.012 500 4000
256 0.0075 500 4000
512 0.0054 500 4000

[89], kindly donated by NVIDIA Corporation c©within the ’University Partner-

ship program’ [90]
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5.3 General features of the metastable states

5.3.1 Energy as a function of MC time

From a dynamical point of view, metastability can be seen as a plateau

(quasi-stationarity) of the energy density after a sudden quench to sub crit-

ical temperatures. After the quench, the typical situation is as described in

fig. (5.3). The energy density is shown as a function of time, for several re-

alisations in systems with different lattice sizes and values of q. Figure 5.3 a)

and b) show realisations of a system with q = 12 and linear sizes L = 64 and

L = 256 respectively. Each realisation differs from another in the initial con-

figuration and in the sequence of the random numbers used for the attempt

and the acceptance weight of the Metropolis algorithm. It is apparent a strong

finite-size effect: while the smaller size realisations present plateaus, that we

identify with metastable states, the larger realisations present no metastabil-

ity at all, instead off-equilibrium relaxation towards the ordered phase, for the

same value of δβ. This means that the temperature region for which metasta-

bility occurs is a size-dependent quantity, which requires finite size scaling

analysis in order to define a dynamical spinodal temperature. The metastable

region depends on q: it grows with q along with the lifetime of the metastable

phase. Figure (5.3 c)) corresponds to q = 20, larger that q = 12 of fig. (5.3 a,b)

and the same δβ: the metastable plateau is present again and the simulation

time is not long enough for the system to escape the metastable state.

Temperature dependence of the energy

The first metastable quantity that we present is the energy 〈e〉m as a func-

tion of temperature for several under-critical quench temperatures and sizes.

One observes that this quantity is a decreasing function of β. From fig. (5.4)

it is apparent how these curves and their derivatives are continuous functions

at δβ = 0. The difference between the curves labelled “cooling” and “heating”

in fig. 5.4, obtained by an (unrestricted, i.e., without the ME) MC simulation

and the off-equilibrium hysteresis cycles (as, for example, the ones in reference

[79]) is that, in the last case case, the slopes of the e(β) curves corresponding

to different cooling rates at the transition βt depend in general on the cooling

rate.
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Figure 5.3: Energy density as a function of time after a quench to δβ = β −
βt = 0.008, corresponding to a quench temperature of 0.665748826 (q = 12)
and 0.668418821 (q = 20). Figure a) (top) and b) (middle) correspond to q = 12
and L = 64, 256, respectively, while fig. c) (bottom) corresponds to q = 20
and L = 256. In fig a) and c) the energy density is quasi-stationary for a finite
time (bigger than the simulation time for fig. c)), while in fig. b) there is no
quasi-stationarity.
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limit.
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5.3.2 Fraction of metastable realisations

Figure (5.5) shows the fraction of metastable realisations ρ(δβ) as a function of

δβ for different lattice sizes. We consider that a realisation presents metasta-

bility whether there is a time interval larger that tt = 4000MCS in which the

stationarity criterion eq. (5.5) is satisfied, regardless of the lifetime of the

subsequent plateau.3 The ratio of the number of such metastable realisations,

with respect to the total number of realisations analysed, defines ρ.

Given a δβ, the fraction of metastable realisations decreases with L for large

values of δβ and increases with L for small δβ, the crossover, that we will call

cross inverse temperature βc being roughly independent on L. This suggests

that, in the large L limit, the function ρ behaves as a step function centered

in δβc = βc − βt. This important result would indicate that, albeit the strong

finite-size behaviour illustrated in fig. (5.5), in the large-L all the realisations

with δβ < δβc are metastable, and vice-versa.

Formally, the function ρ is an average over differentMC sequences {σ1,σ2, . . .},
of a binary variable determining whether the story presents a plateau or not.

Figure (5.5) is of capital importance in our simulations: it has to be kept in

mind that all the averages 〈·〉m corresponding to high δβ will come from a re-

duced subset of realisations, the available statistics being limited by the fact

that not all the simulated issues of the system are metastable. We stress that

whenever we will average observables, like energy, the number of configura-

tions used in the ensemble average eq. (5.5) will depend not only on ρ but

also on the average lifetime of the metastable series of configurations along

different realisations. This quantity will be discussed in what follows.

5.3.3 Lifetime of the metastable state

We define the nucleation time τN(δβ, A) as the lifetime of the metastable

phase, i.e., as the length of the stationary time interval after the quench from a

3We safely exclude ordered configurations of the stable phase by requiring, along with
stationarity, that the configurations present energy larger that twice the energy of the ordered
state at the corresponding temperature.
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Figure 5.6: Average nucleation time τN as a function of δβ. The standard devi-
ation grows as δβ decreases (see figure (5.7) and text).

disordered configuration, averaged over different MC sequences of stationary

configurations, according to the definition in the previous subsection. Figure

(5.6) shows the nucleation time as a function of δβ for different lattice sizes.

As δβ decreases, the average nucleation time increases, consistently with a di-

vergence in the δβ → 0 limit, as predicted by the droplet theory. A remark-

able point is that the standard deviation of the nucleation time decreases with

δβ: as we reach the transition temperature, the relative error of the nucleation

time reaches 1, as can be seen in fig. (5.7). This is reminiscent of the single

droplet/multi droplet picture in the context of the size-dependent nucleation

theory for the field-driven Ising model [16]: when the nucleation rate is small

the actual nucleation time has a wide distribution. When instead the nucle-

ation rate is large enough, many independent nucleation events may occur,

and the resulting lifetime of the metastable state is less fluctuating.

This effect shows up also in the distribution of the nucleation time. Figure

(5.8) shows the un-normalised distribution of the nucleation time for different

temperatures. Far from the transition temperature, the P(τ) is a short-tailed
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5.3. General features of the metastable states

Figure 5.7: Relative standard deviation of the nucleation time. The increasing
of στN/τN establishes the change in the physical mechanism responsible for
nucleation (see text).

function. When we get closer to the transition temperature the distribution

broadens, requiring very long simulation times to achieve nucleation in all the

simulated issues.

5.3.4 Correlation function of the metastable state

In Figure (5.9) it is shown the average correlation function C(t) of themetastable

state for different temperatures and different lattice sizes. C(t) it is built up av-

eraging over different stationary intervals of different metastable realisations.

For example in the realisation of fig. (5.1-b) we would average the Ci(t) for

i . 2× 106 MCS. As the δβ is increased, the residual correlation (defined as the

correlation after 1000 MCS) increases, demonstrating how also the metastable

state tends to order as the temperature is decreased. It has to be noticed, how-

ever, that the final value of the correlation even for the lowest (higher) tem-

perature (δβ) is nearly an order of magnitude less than the final value of the

correlation function of the ordered state (compare with fig. (5.1)). For every δβ
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Figure 5.8: Unnormalised distribution of the nucleation time. The normalisa-
tion has been set arbitrarily for every δβ to help appreciate the broadening of
the distribution. The data correspond to the L = 64 case.

it is displayed the corresponding exponential fit at late times of the correlation

function fromwhich we can roughly estimate the relaxation time of the system

C(t) ∼ e
− t

τR large t. (5.6)

Figure (5.10) shows the relaxation time for the different lattice sizes as a func-

tion of the inverse temperature distance from the transition point. The relax-

ation time increases with δβ for small δβ. For large enough values of δβ, ours

is an underestimation of τR since we measure the correlation up to a maximum

value tmax = 1000, Ct(tmax). As a consequence our estimation is less reliable

the larger δβ is.

A salient feature of the relaxation time is that, as happens to the self-correlation

function, it exhibits s strong size-dependence, τR increasing with L for fixed

δβ. This property is unconventional for systems in equilibrium, and can be

explained in terms of the unusual size dependence of the 2D PM explained in

[3]. The relaxation time increases with δβ, this feature being consistent with

[36], in which such behaviour was characterised as a true divergence of the
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Figure 5.9: Correlation function of the metastable state. As can be seen, as the
temperature decreases the ending point of the correlation function (the resid-
ual correlation) increases (see text).

relaxation time in the thermodynamic limit for δβ = 0.0096(2).

5.3.5 Metastability threshold inverse temperature δβs

A simple (and naive) approach for the estimation of the spinodal temper-

ature is to use the fraction of metastable realisation fig. (5.5) as the driving

quantity. If we set an arbitrary reference value on the number of metastable

realisations ρ (e.g. ρ = 0.5), we can associate to every lattice size a metastability

threshold δβs(A, ρ) for systems of size A, in such a way that, according to the

results of fig. (5.5), for δβ > δβs(ρ, A), less than ρ × 100% of the realisations in

systems of area A will present a plateau. The result for different values of the
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Chapter 5. Dynamical study of the 2D Potts model metastability

threshold is shown in fig. (5.11a). All the different values of the threshold are

supposed to give the same result in the thermodynamic limit, this value would

coincide in this case with the crossing inverse temperature that we defined in

subsection 5.3.2, δβs(ρ,∞) = δβc ∀ρ.

Figure (5.11a), in which we show δβs versus L
−2/3 = A−1/3, presents numer-

ical evidence for the metastability threshold inverse temperature to satisfy a

scaling of the type:

δβs(ρ, A) = δβc + Cρ A
−1/3. (5.7)

A remarkable point is that the A−1/3 scaling seems to be satisfied for any value

of the threshold ρ. Moreover, the outcome of the fit in fig. (5.11a) suggests that

the A → ∞ limit of this quantity, δβc, is independent of ρ: see fig. (5.11b), in

which we present δβc, as an outcome of the linear fit (of δβs versus L
−2/3) as a

function of the threshold value. In chapter 7we will justify such a scaling with

an argument based on the DE for the 2D PM (that we have reviewed in chapter

4).

We now demonstrate that a scaling similar to (5.7) is also found with an
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Figure 5.10: Relaxation time τR. It increases with L and with δβ. The ver-
tical lines indicate the metastability threshold inverse temperature defined in
section 5.3.5, one for every lattice size (see text).
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Figure 5.11: Finite size metastability inverse temperature threshold for differ-
ent values of ρ (a) and extrapolated δβs(∞, ρ) in the thermodynamic limit (b).
The green line marks the threshold inverse temperature δβc averaged over dif-
ferent values of ρ.

alternative, purely dynamical, definition of the metastability threshold, that

we will call nucleation threshold inverse temperature βn, which is based on an

analysis of the nucleation time. We suppose that the limit of metastability is

the temperature below which metastability disappears (in average), so we de-

fine δβn = βn − βt as the the δβ at which the nucleation time, a decreasing

function of δβ, becomes a microscopic time, i.e., becomes of the order of the

relaxation time [4]. In practice, we estimate it as the temperature at which

τN(δβ, A) reaches the minimum time to detect metastability in our algorithm,

that is tt = 4000MCS (see section 5.1.2). It turns out that, on such a circum-

stance, i.e., at the endpoint of metastability, almost no realisations of the system

present a plateau, and, for this reason, one needs to extrapolate the data of τN

from lower values of δβ, where the fraction of stationary realisations is larger.

Figure (5.12a) shows the logarithm of the nucleation time as a function of tem-

perature. The final, approximately linear (in log scale), range has been fitted

in order to extrapolate the β for which the nucleation time is 4000 MCS. Be-

low this temperature, we will not be able to correctly identify energy plateaus,

since the system nucleates before our minimal observation time.

Figure (5.12a) and (5.12b) show, respectively, the average nucleation time ex-

trapolated down to low values of τN and the resulting nucleation threshold

inverse temperature distance δβn compared with its partner δβs. It is remark-
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Figure 5.12: Extrapolation of the nucleation time (a) and a comparison be-
tween the nucleation threshold so obtained, δβn, and the metastability thresh-
old from the finite size scaling, δ betas (b). The results are in a good agreement
(see text).

able that both quantities, completely different in nature (the first one being

independent on time-scales), seem to present the ∼ A−1/3 scalingwith a com-

patible value of the y-intercept according to the δβ vs L−2/3 fit:

δβc = 0.00863± 0.00002 δβn(L → ∞) = 0.00859± 0.00005. (5.8)

5.4 Outline of results

• The metastable ensemble (ME) for the 2D PM is defined as a criterion

to average quantities for β > βt, quantities which correspond to the

metastable, disordered phase, and not to the stable, ordered state. Such

a criterion is based on sampling over series of high energy, stationary

realisations only.

• We have measured the fraction of the metastable realisations presenting

a plateau of the energy, as a function of the system size and of the temper-

ature ρ(δβ, A). Our numerical results suggest that this quantity behaves

as a step function centered at a value δβc > 0 for large A, such that all

the realisations of a very large system present stationary behaviour of the

energy for δβ < δβc
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• The nucleation time τN(δβ, A) or the lifetime of themetastable phase, has

been defined and estimated. It is a decreasing function of δβ for fixed A,

and a decreasing function of A for fixed δβ. Both trends are compatible

with the predictions of the DE, as wewill show in chapter 7. The variance

of this quantity decreases with δβ, suggesting a possible connection with

the microscopic theory of the nucleation in the Ising model.

• The self-correlation function between instants t and t+ t′, Ct(t
′) (non de-

pending on t by construction), and the relaxation time τR of themetastable

phase are estimated. Both quantities depend on δβ and present a non-

trivial dependence on the system size. The relaxation time increases with

δβ, this behaviour being compatible with the observed divergence at the

pseudo-spinodal point as estimated by previous works (see chapter 4).

• Two conceptually different quantities referring to the stability limit of the

metastable phase have been defined and estimated. The first one is called

metastability threshold inverse temperature βs(ρ, A) and is based on the

fraction of metastable realisations. On the other hand, the nucleation

threshold inverse temperature βn(A), is the inverse temperature at which

the nucleation time decreases down to a given threshold. Interestingly,

both quantities present the same scaling c A1/3 + βc, with a similar βc.

This suggests the existence of a well-defined metastability temperature

interval in the thermodynamic limit.
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Chapter 6

Metastability as local equilibrium

So far we have characterised metastable states in terms of stationary quan-

tities, different from their values in the equilibrium, ordered phase. A relevant

question is whether, from their physical properties, these plateaus can be in-

terpreted as metastable equilibrium states, in other words, as phases satisfying

thermodynamic equilibrium relations. In the present chapter we test two of

them.

6.1 Measure of stability condition

Equilibrium1 fluctuation-dissipation relations [91, 92] allow to connect the

fluctuations of a quantity to its related susceptibility. For the specific heat of

the system this implies:

d〈e〉
dβ

= N(〈e〉2 − 〈e2〉) (∝ Cv) (6.1)

Figure (6.1) shows the results for the quantities appearing in eq. (6.1), with

the numerical derivative computed from a polinomial interpolation of the av-

erage metastable energy per site 〈e〉m. In the low (δβ . 0.003) region the

fluctuation-dissipation relation is satisfied, while for increasing δβ there is an

increasing discrepancy between the fluctuations and the derivative of the en-

ergy. In particular, for δβ & 0.004 (in the L = 256 case) the two quantities of

1We will use only equilibrium fluctuation-dissipation relation in this thesis. We therefore
drop the ’equilibrium’ specification in what follows.
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Figure 6.1: Test of fluctuation dissipation relation, eq. (6.1) and metastable
energy 〈e〉m as a function of δβ (inset) for L = 128 and L = 256.
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Figure 6.2: Reweighing of the probability density function for different lattice
sizes, with δβ ranging from δβ = 10−4 to δβ = 5× 10−3 with an increment of
∆δβ = 2× 10−4. The 40 different energy histograms coincide with each other
within errors.

eq. (6.1) do not agree within the error. We will see in the next section how this

temperature marks a crossover also for the probability density function.
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6.2. Reweighting of the energy probability distribution function

6.2 Reweighting of the energy probability distribu-

tion function

For systems at equilibrium, we know that the probability of finding a con-

figuration with a certain energy E can be predicted with Maxwell-Boltzmann

statistics Pβ(E) ∼ e−βE. In equilibrium systems the probability of an energy E

at β′ can be computed from that at β, E via reweighting

Pβ(E) = Pβ′(E)e
−∆β ∆β = β − β′ (6.2)

The validity of the reweighting procedure can be used as a local equilibrium

test for metastable states.

Figure (6.2) shows the probability distribution functions of the energy per site

for different temperature, ranging from δβ = 10−4 to δβ = 5× 10−3, taken

every ∆δβ = 2× 10−4 for the two smallest lattice sizes L = 64 and L = 128.

Every one of the 40 different P(e) is multiplied by the Boltzmann factor in eq.

(6.2) and the rescaling we get is remarkable. The energy of the disordered state

at the transition temperature ed is marked, and coincides with the peak of the

distribution within the binning error.

Figure (6.2) confirms that the reweighting procedure works very well in the
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Figure 6.3: Reweighting of the probability density function. The logarithmic
scale and the line plot allow to appreciate the tiny discrepancy for probabilities
that are smaller then the simulationally allowed probability range (O(10−6))
(error bars not shown).
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peak region, but since we are dealing with probabilities, we would like to

know up to which values of P(e) the rescaled function are indistinguishable

and compare this value with our number of samples. Figure (6.3) is the same

as (6.2), just with a logarithmic y-axis and with lines instead of points. As

can be seen, the rescaling property extends down to values of the probability

O(10−6), that is the actual order of sampled energies in these simulations.

Surprisingly, we have found, however, that, for sufficient large sizes L, there

seems to exist an inverse temperature, decreasing with size, above which the

reweighting of the EPDF is no longer satisfied. Figure (6.4) indicates this effect

in the L = 256 case, showing that for δβ & 0.005 the reweighting does not

apply any longer. This effect is present also in the L = 512 case, for inverse

temperature distance δβ & 0.004. We emphasise that at this value of δβ the

nucleation time is not a small quantity and that the fraction of metastable re-

alisations is not small (see fig. (5.5) ), so there are evidences for the existence

of long-living metastable states not presenting reweightable EPDFs. This lack

of stability is compatible with the results summarised in the previous section,

although the conclusion was not that evident: for large δβ, the system seems

to be no longer characterisable as an equilibrium system obeying the Maxwell-

Boltzmann distribution.
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Figure 6.4: Reweighting of the probability density function forL = 256. For δβ
large enough, the reweighting is no longer satisfied.
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6.2. Reweighting of the energy probability distribution function

In the next chapter we will analyse in depth the metastable EPDF, and we

will show how this inverse temperature threshold signaling the validity limit

of the reweighting procedure can be put into relation with a key concept in the

context of the DE: the spinodal temperature β∗.
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Chapter 7

Comparison with the droplet

expansion

In this chapter we will perform a finite size analysis. This is the study of

the dependence of the quantities presented in chapter 5 on the system area

A, which allows for a quantitative comparison of our dynamical results with

the DE in reference [3]. We will first perform a numerical comparison of the

droplet area distribution with the postulated droplet expansion free energy,

eq. (4.7) . Furthermore, we will show several points of agreement between our

dynamical data and the theory. In particular, we will test theoretical predic-

tions on the nucleation time, the pseudo-spinodal temperature and the energy

probability distribution.

One of the main results of reference [3] is the existence of a pseudo-spinodal

inverse temperature above which metastability is forbidden and for which the

stability conditions are no more satisfied. This pseudo-spinodal temperature

happens to converge to the transition temperature for large system sizes. On

the other hand, we have found in chapter 5 the existence of ametastability limit

which is believed to remain finite at large sizes, with a value that we called βc

(> βt), this result being in agreement with previous studies (4). Although

we find a similar limit of stability β∗ which, in agreement with Meunier and

Morel, becomes very small for large sizes, we still observe stationary states for

β∗ < β < βc, different in nature with respect to those for β < β∗, not describ-

able by the DE.
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Chapter 7. Comparison with the droplet expansion

Figure 7.1: Area distribution at the transition temperature for L = 128 . The
continuous line is a fit of the form of eq. (7.1) performed with fixed exponents
σ = 2/3 and τ = 7/3 (left) or with fixed ω = 0.05307(45) (right).

7.1 Area distribution at the transition temperature

We will start with a numerical test of the free energy ansatz of the droplet

model at the transition temperature. More than a purely preliminary test, this

allows us to check possibility of describing different values of q with just one

q-independent parameter. Using the same value of the parameter f used in

[3], c.f. eq. (4.13), we can extract the surface tension ω that appears in the free

energy eq. (4.7). The droplet theory predicts a specific q dependence of ω (ω ∝

1/ξ), so ω values at different q (measured independently) can be compared,

giving a consistency check of the theory.

We recall the free energy ansatz of the droplet theory on a 2D lattice:

F(β) = C
∞

∑
a=1

a−τe−ωaσ+(β−βt)a =
∞

∑
a=1

〈na〉, (7.1)

with τ = 7/3, σ = 2/3 and ω to be determined.

As a check of the free energy ansatz (7.1), we will measure numerically the

probability distribution of droplet areas, and will compare it with 〈na〉. We

take, as a definition of droplet, a set of connected spins with the same spin value.

In Fig. (7.1) it is shown the fit of 〈na〉 performed with the DE prediction. Un-

fortunately, for this to work we first need to fix ω, and then check the auto

consistency of this picture, that lies in the possibility of describing different q

values with the same law, once ω is fixed. The ω parameter is related to the
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second energy cumulant through ω =
f
f2

with f (the only parameter of the

theory, nearly constant in q) and has a postulated scaling ω ∝ 1/ξ. Using the

same value of f = 0.295± 0.003 used in [3] and the scaling relation for ω we

can compare the result of our fit with the numerical results available for q = 9

[63]:

ωq=12 =
ξ(9)

ξ(12)
ωq=9 =⇒ ωq=12 = 0.0525± 0.0006

ωfit = 0.0531± 0.0005

(7.2)

with the two values that agree with each other, supporting the possibility of

describing different values of q with just one parameter.

7.2 Consequences of the DE

In this section we will analyse the DE that we reviewed in chapter 4. In

particular, the energy PDF Dβ,A in SPA will be worked out to extract informa-

tion about the nucleation time, and the pseudo-spinodal temperature in the

context of the DE, an analysis which constitute an original work. Furthermore,

the exact DE energy PDF is computed and compared with our numerical data

for the EPDF.

7.2.1 Nucleation time

Let us start from the DE in SPA, equations (4.34). In this context we can esti-

mate the nucleation time τN(δβ, A) supposing that it is inversely proportional

to the probability of the minimum Em, Dβ,A(Em), since it is proportional to the

time needed to get a fluctuation E ≤ Em, that drives the system away from the

metastable phase. We assume, however, that this proportionality is to be taken

in units of the relaxation time τR, since, in our MC simulation, configurations

corresponding to consecutive times are not uncorrelated, but only those sepa-

rated by a time of the order of τR are.

We will now take the specific form of Dβ,A resulting from the saddle point ap-

proximation and estimate from it the expression for the nucleation time τN in

the β → βt limit, as we just have explained.
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Chapter 7. Comparison with the droplet expansion

We define the following variables, relevant for the calculation:

δβ = β − βt

y = ed − e

dβ,A =
ln(Dβ,A)

A

Dm(β, A) = Dβ,A(em(β, A))

(7.3)

and we will study the nucleation time as a function of δβ and A.

In this notation the probability density function of the energy per site in the

saddle point approximation is :

Pβ,A(y) =
2

3
fω

1
3 A− 1

3y−
7
3 e−(ω

2
3 Ay)

2
3
eAyδβ, (7.4)

with the last exponential that is given by the reweighting method, eq.(4.35).

Up to a constant, d is then:

dβ,A(y) = −1

3

ln A

A
− 7

3

ln y

A
− 2

3

(ω
3
2y)

2
3

A
1
3

+ yδβ + κ(A), (7.5)

and the equation for the minimum ym = ed − em turns to be:

− 7

3

1

A
− 4

9

ω(ym)
2
3

A
1
3

+ δβym = 0 (7.6)

When δβ → 0 the value of ym diverges and as a consequence we can neglect

the first term in the above equation, resulting in

ym(β, A) =
1

A

( 4ω

9δβ

)3
(7.7)

and substituting in dβ,A we get the probability of the minimum of the energy:

dβ,A(em) =
ln A

A
− 7

A
ln(

4ω

9δβ
)− 4

9

ω3

Aδ2β
. (7.8)

Keeping only the leading diverging term for δβ → 0, and supposing that

the δβ dependence of τR and κ are slower than the leading term, we have that
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Figure 7.2: Nucleation time versus δβ−2. The prediction of the DE seem to be
correct for the biggest lattice size for small δβ.

the saddle point approximation predicts for the nucleation time:

τN(δβ → 0, A) ∝
τR
Dm

∼ e
C

δβ2 . (7.9)

Figure (7.2) shows the nucleation time versus δβ−2, with the continuous line

that are a fit of the form (7.9). It can be seen how the scaling (7.9) is satisfied

for the smallest δβ, available for L = 512 and L = 128.

7.2.2 Energy probability distribution function

The method of ME allows us to have access to the EPDFs in the metastable

phase, so that it can be compared with its value in the DE theory. This quantity

plays a central role in the DE since it allows for the definition of the pseudo-

spinodal inverse temperature β∗, so it is a key quantity to compare with our

dynamical data in order to obtain information on the validity range of the the-

ory.
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Figure 7.3: Energy density distribution P(e) at the transition temperature for
different lattice sizes. The continuous line is the prediction eq. (7.11). Away
from the peak, the saddle point approximation gives a reasonable result.

P(e) at the transition temperature

As a first comparison between the EPDF in SPA and our data, we have per-

formed a long simulation at the transition temperature to obtain the probabil-

ity density function of the energy density P(e), also called in what follows en-

ergy histogram. As explained in section (4.4.1) a saddle point approximation,

valid away from the peak of the distribution ed gives for the distribution
1:

Pβt ,A(y) =
2

3
f 2w1/2A−1/3y−7/3 exp

{

−w (Ay)2/3
}

(7.11)

As can be seen in fig. (7.3), eq. (7.11) gives a good approximation of the P(e)

for small e. Close to the peak of the distribution (fig. (7.3)) the saddle point

approximation breaks up, giving a diverging result for e = ed.

Beyond SPA, it is possible to numerically solve the contour integral in eq.

1The variables appearing in 7.11 are the ’rescaled variables’:

ǫ = cAξ
1
2 (e− ed) Ar =

c

ξ2
A z = ξ

3
2 (β − βt) (7.10)

defined in eq. (4.20)
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Figure 7.4: Energy PDF at the transition point for different lattice sizes. The
continuous line is the result of the numerical integration of eq. (4.28).

(4.31), which is the Laplace transformation leading the EPDF from the droplet

free energy. The numerical integration is performed calculating numerically

the steepest descent contour of the integrand in (4.23), as explained in [3]. We

have used this technique to have access to Pβt ,A beyond SPA for several values

of A. The resulting EPDFs are compared with our simulations in figure 7.4.

In agreement with the result of [3], we find that the energy histogram at the

transition point is well described by the DE.

Metastable P(e): general features

Figure (7.5) shows the P(e) at different quench temperatures for the various

lattice sizes involved in our analysis. The number of displayed temperatures

varies from size to size, since the statistics available at fixed temperature and

at fixed lattice size is given by the product of the fraction of metastable con-

figurations (fig. (5.5)) and the average nucleation time (fig. (5.6)), and as the

lattice size increases the temperatures for which an adequate statistics can be

collected decrease.
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Chapter 7. Comparison with the droplet expansion

The peak of the distribution emax moves to lower values of the energy per site

when the temperature is decreased, as can be seen more clearly in fig. (7.6).

An important feature predicted by DE is the decreasing slope of the P(e) for

e < emax, as the temperature decreases: it is this mechanism that is respon-

sible for the disappearance of metastability in the thermodynamic limit of the

droplet expansion, since for large δβ the slope of the P(e) at the inflection point

becomes zero. The temperature for which this happens is nothing but the ther-

modynamic pseudo-spinodal temperature β∗, for which the minimum of the

free energy becomes an inflection point and metastability turns into instability.

This is indeed the case of the energy histograms we have measured, and this

argumentation can be exploited in order to define a pseudo-spinodal temper-

ature.

7.2.3 Spinodal temperature δβ∗

The foremost question we would like to address is whether or not metasta-

bility is a finite size effect. We have seen that the concept of spinodal is rigor-

ously defined only in mean field theories. Nevertheless it is a rather appeal-

ing concept: we would like to identify a temperature2 that marks the end of

metastability.

In the droplet picture, this point β∗ is identified using the probability distribu-

tion function of the energy density Dβ,A(e) (eq. (4.35)). Since Dβ,A(e) describes

only the metastable disordered phase, it is not expected to work for indefi-

nitely low energies. The distribution has a minimum at em(δβ, A), such that

the metastable phase is defined only for e > em(δβ, A), and such that a fluctu-

ation leading to e < em would destroy it and make the system evolve towards

the stable phase.

In our simulation the inflection point of P(e) can be easily identified (see fig.

(7.7)) and the above picture takes place when the slope of the distribution at

the inflection point vanishes (that is, when the inflection point and the mini-

mum coincide).

2Since the Potts model has only the temperature as a control parameter, the spinodal point
reduces to a spinodal temperature.
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Figure 7.5: Metastable energy histograms for different lattice sizes. Every
graphic shows one lattice size, with the different δβ given by the key. The
lines are just guide to the eyes.

In the saddle point approximation, a correct computation of β∗ is not possi-

ble. This is because the second derivative of eq. (4.33) does not vanish for any

e (since the approximation e >> em does not hold for the inflection point, es-

pecially when the temperature decreases and the metastability range shrinks).

However, one can estimate the pseudo-spinodal temperature by evaluating

the derivative in (4.39) at a fixed value of e and then check the dependence of

the resulting pseudo-spinodal temperature β∗
SPA. Even if such a calculation is

somehow inconsistent (since at the give energy e the second derivative of D

does not vanish), we now will proceed this way. From (4.33) and using (4.39)
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Chapter 7. Comparison with the droplet expansion

Figure 7.6: Peak of the energy PDF as a function of temperature, for different
lattice sizes.
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Figure 7.7: Metastable EPDF (a) and derivative of its logarithm (b). The data
corresponds to L = 64 , δβ = 0.0058. The inflection point can be identified by
mean of the numerical derivative.

one has, for the pseudo-spinodal temperature:

β∗
SPA(A) ∼ βt + c A−1/3 large A (7.12)
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Figure 7.8: Slope of the energy histogram at the inflection point as a function
of δβ for different lattice sizes (a) and pseudo-spinodal temperature extracted
for the lattice sizes involved (b).

where c is a constant in A. From this equation one sees that, in the saddle

point approximation, the metastability interval [βt, β∗
SPA(A)] vanishes in the

thermodynamic limit and the pseudo-spinodal temperature approaches βt as

β∗
SPA(A) ∼ βt + CA− 1

3 for large A. As we have seen in chapter 4, the same

(approximate) exponent has been found in [2, 37], with a study of the micro-

canonical energy distribution.

This argumentation, and a qualitative analysis of the P(e) obtained from the

free energy ansatz, led the authors of [3] to conclude that in the thermodynam-

ical limit the pseudo-spinodal temperature would coincide with the transition

temperature.

Coming back to numerical simulations, fig. (7.7) shows the energy his-

togram along with the derivative of its logarithm in a representative case. As

can be seen, the energy histogram allows for a smooth first derivative accord-

ing to which the inflection point e∗ can be identified.

Measuring the slope of the energy histogram at the inflection point for different

δβ we have obtained fig. (7.8a). A linear fit of the data in fig. (7.8a) for the slope

at the inflection point gives an estimation of the pseudo-spinodal temperature,

and the corresponding δβ∗ is shown in fig. (7.8b). The x-axis corresponds to

L−2/3 [2, 37], alongside with the data, we report the result of a linear fit which

perfectly confirms the scaling∼ L−2/3 (7.12) predicted byMeunier andMorel’s

theory in SPA. Interestingly, the y-intercept of the fit, although very small, is
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Figure 7.9: Emerging metastability picture. Below δβ∗(L) the system shows
metastability that can be described as local equilibrium, obeying fluctuation-
dissipation relation and the reweighting property. At a given system size L,
for δβ∗(L) < δβ < δβn a fraction of the simulated issue of the system presents
stationarity, but the metastable EPDF can not be reweighed into each other. At
a given system size L , for δβ > δβn(L), none of the simulated issues of the
system presents stationarity.

not zero within the fit errors. It is important to remind that this behaviour

β∗ ∼ A−1/3 was also exhibited by the metastability threshold βs and by the

nucleation metastability threshold βn. While these functions presented a sim-

ilar, non-zero value in the A−1/3 → 0 limit, the equivalent quantity δβ∗(∞)

is a very small value. We compare the quantities δβs, δβn and δβ∗ in fig. 7.9.

An intriguing question is why the curves of δβ∗ and δβn present a very simi-

lar slope. It is to be stressed that our estimations for β∗ are lower than that of

the thresholds βs(A, ρ) and βn(A) for all the sizes studied. On the other hand,

our data in the interval [β∗ : βn(A)] clearly present a convex EPDF (see, for

instance, the L = 512 for δβ > 0.006 fig. (7.5) and are not contemplated by

the DE theory (for which metastability is only possible for β < β∗(A)). .Fur-

thermore, as we will discuss in the next section, the data indicate that, in this

temperature range [β∗(A) : βn(A)], the EPDFs do not obey the reweighting
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equation (6.2), and, hence they could not be derivable from the EPDF at the

transition point in the context of the DE theory.

7.3 Comparison of the EPDF with the DE: onset of

unconventional metastable states

In the precedent section we have seen that we observe a metastable region,

ending at a temperature larger that the pseudo-spinodal temperature, in which

there exist stationary states. Differently from the interval δβ∗, the thresholds

δβn,s are definitely non-zero for large A, according to the ∼ A−1/3 scaling.

Figure (7.5) shows how, for sufficiently large δβ, there is an onset of EPDFs

which overlaps each other, and this happens for lower δβ’s the larger the L.

These EPDFs are clearly not reweightable, and, as a consequence, they can-

not be obtained by the transition EPDF in the context of the DE, their origin

being necessarily different. In chapter 6 we showed that for sufficiently high

temperature within the metastable region, the reweighting of the EPDFs does

no longer apply, we claim that the region in which this happens is precisely

β > β∗.

A further support to the claim that our stationary states at δβ > δβ∗ are not

describable within Meunier and Morel’s theory follows from the direct com-

parison of the numerical EPDFs with the numerical integration of eq. (4.28).

In fig. (7.10) we show such a comparison for the L = 64 system. The EPDFs

predicted by equation (4.28) are shown as continuous curves. For δβ ≤ 0.008,

the slope of the theoretical EPDFs is positive at the inflexion point, somewhere

for negative y: the theory predicts the stability of the metastable phase. In

this temperature range, our numerical data are well described by the the-

ory. Contrary to this case, for δβ = 0.012, the theory predicts a non-convex,

monotonously decreasing EPDF, or the instability of the metastable phase. In

fact, we observe a stable metastable state, with convex EPDF, not described by

the theoretical curve. The threshold were this disagreement occurs is compat-

ible with our estimation of δβ∗(64) = 0.011(3) , whose mean value belongs to

[0.008 : 0.012].
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The DE predicts the existence of metastable states describable by the EPDFs

given by equation (4.28). The slope of these curves at the inflexion point e∗(A)

decreases linearly to zero at the pseudo-spinodal temperature, above which

the EPDF becomes non-convex and the metastable phase is no longer stable.

We indeed observe a EPDF with a linearly decreasing slope at the inflexion

point (c.f. fig. (7.8)), and the β∗ obtained extrapolating the slope to zero satis-

fies the right scaling ∼ A−1/3, to a very small value at infinite area. For large

values of δβ, however, we do not find such disappearance of metastability, pre-

dicted by the DE. We instead continue observing stationary states, presenting

a convex EPDF. Indeed, for β very near β∗, the slope of the EPDF at the inflex-

ion point (e∗(A) for β < β∗) does not becomes zero, but it starts growing (see

L = 512 data in fig (7.8)), even though for larger inverse temperature the point

e∗(A) is no longer an inflexion point of the EPDF.

In the light of the results that we have presented in chapters 5 and 6 and

in the present chapter, we first conclude that the DE theory indeed describes

correctly the EPDFs in an interval βt : β∗(A), shrinking to a very small value

at large areas. On the other hand, there exist an interval [β∗(A) : βn(A)], re-

maining finite for large areas, in which a fraction of the realisations present

quasi-stationarity, which however, is not correctly described by the DE (which

indeed predicts disappearance of metastability at β∗), whose EPDFs do not

obey the reweighting equation (and indeed they are almost independent on

temperature), and for which the equilibrium fluctuation-dissipation relation is

not satisfied. We further conclude that the 2D PM presents two different kinds

of dynamic metastability, the first one well described by the DE in [3], and the

other one, that we refer to as unconventional, corresponding to states not com-

ing from a en ensemble in local equilibrium, and not governed by a Boltzmann

energy distribution. Figure (7.9) illustrates this picture.
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Figure 7.10: Energy PDF in logarithmic scale, for different values of δβ in the
case L = 64. The corresponding δβ∗(64) = 0.011(3) and, as a consequence, the
PDEs corresponding to δβ = 0.012 > δβ∗(64) can not be described (see text).

7.4 Outline of results

• The expression for the droplet area probability PDF, which is the start-

ing point of the DE for the 2D PM, has been tested at the transition point

against MC sampling in finite size numerical realisations. The data sup-

port the ansatz of the exponents σ, τ hypothesised in [3].

• The temperature and area dependence of the metastable phase lifetime

τN has been studied. For fixed system area and small δβ we find evi-

dence of a divergence as ∼ δβ−2, this behaviour being compatible with

DE predictions in SPA.

• We measured the metastable EPDF, averaged with the ME explained in

chapter 5. From it, we have estimated the pseudo-spinodal point β∗ as

corresponding to its definition in reference [3], i.e., the β at which the

extrapolated value of ∂eDβ,A(e
∗(A)) vanishes eq. (4.39). The numerical

pseudo-spinodal point satisfies the relation ∼ A−1/3, compatible with
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the prediction of the DE in SPA, which has also been observed in refer-

ences [2, 37]. Our estimation of δβ∗ is lower than that of the metastability

thresholds defined in chapter 5 for all sizes, and its fitted value at infinite

size is small.

• We have computed the EPDFs within the DE theory beyond SPA by nu-

merically optimising the contour in integral (4.24). The dynamical EPDFs

result to be weakly described by the theory for low values of δβ < δβ∗.

Above this value the EPDFs exhibit a characteristic shape, nearly inde-

pendent on the temperature. We have checked that this value β∗ ap-

proximately coincides, for all sizes, with the value above which the sta-

tionary states, that we call unconventional metastable, no longer satisfy the

reweighting relation (6.2). We claim that this is also the limit of validity

of the equilibrium fluctuation-dissipation relation discussed in chapter 6.
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Chapter 8

Conclusions, discussion and

perspectives

Our motivation to study the dynamical behaviour of the 2D Potts model

metastability has been to provide answers to three questions. The first one

is why different theoretical approaches provide a different answer to the sur-

vival of a metastable phase in the thermodynamic limit. As we have explained

in chapter 4, references [2, 37, 3] provide a negative answer, while [35, 36, 1]

claim for the positive answer. A related question, that a dynamical study can

help to clarify, is about the validity range of the droplet theory [3], and to

what extent a dynamical study would reproduce its results on the lifetime of

metastable states and their existence interval (together with their dependence

on the number of state q and system size A). Last but not least, what is the

microscopic origin of the size dependence of the disappearance of metastabil-

ity in the context of the droplet theory? This last question does not have an

evident answer. Indeed, if one assumes that the microscopic origin of the de-

cay of a system in a metastable plateau is given by nucleation-like events, then

the macroscopic properties of the metastable phase should no longer depend

on size, for system sizes much larger than the microscopic size involved in the

nucleation processes. This is what happens, for example, in the Ising model

case, for which a finite-size theory of classical nucleation can be constructed

[16]. Unfortunately, in the 2D PM case, a microscopic condensation theory,

providing a microscopic explanation to the existence/absence of metastability,

is lacking. The last question remains, in this way, open.
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So far our study has helped to partially solve the first two questions. First,

we have found that within a dynamical approach there exist well-definedmetastable

states in a temperature interval which seems to remain finite for large system

sizes. We have found a consistency (in the area dependence) of two indepen-

dent definitions of the metastability threshold. A crucial point is whether such

a metastability threshold is compatible with the predictions of previous refer-

ences (see below). Secondly, the present study supports the predictions of the

droplet theory in [3], up to the pseudo-spinodal point β∗, above which we ob-

serve unconventional stationary states with non-reweightable Energy Probabil-

ity Density Functions and evidence of lack of local equilibrium. This scenario

conciliates the two contradictory pictures on the subject, and indicates the need

for a complete microscopic explanation, accounting for both the known and

the unconventional metastable states and elucidating their origin.

We now present a list of the possible directions that our future work could

follow, as a roadmap for completing our answers to the first two questions.

1. An accurate comparison between our numerical results in theMetastable

Ensemble and the predictions of the theory beyond Saddle Point Ap-

proximation (i.e. through the Energy Probability Density Function in eq.

(4.28)) is to be done, both for what concerns the β and A dependence of

nucleation time and the A dependence of the pseudo spinodal tempera-

ture δβ∗. So far our analysis agrees with the Saddle Point Approximation

in the fundamental scalings δβ∗ ∼ A−1/3 and ln τN ∼ δβ−2. The full En-

ergy PDF, however, should allow for a quantitative comparison of these

quantities for specific values of A, δβ, i.e, a full comparison between the

theory and our measurements. In particular, a very interesting point, not

discussed in details in [3], is whether the theory indeed predicts a van-

ishing or a finite δβ∗(∞).

2. In the present study we have performed a dynamical test of the 2D PM

droplet theory for q = 12. The theory is formulated in terms of scaling

variables in such a way that all its conclusions are explicitly independent

on q. An immediate extension of the present study to different values of
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q would allow to test such a scaling behaviour, and to search for scaling

relations in q of the relevant quantities. Even more important, measuring

the metastable thresholds for different values of q would allow to estab-

lish whether our estimation of such quantities coincides with estimation

of references [35, 36, 1].

3. A systematic investigation on the validity of the stability conditions (see

chapter 6) would be useful to verify our claim that the point at which the

stability conditions break down is precisely β∗.

4. We believe that it is important to establish the robustness of our results

with respect to the dynamical evolution algorithm and to the lattice topol-

ogy. We propose to use a different kind of local dynamic MC update to

check which among the studied quantities remain unchanged. In the

same spirit, we propose such a comparison in the 2D PM defined, for

instance, in the triangular lattice. A non-trivial question is, for exam-

ple, whether the scenario described in fig. (7.9) remains qualitatively and

quantitatively unchanged.

For what concerns the third question, we now propose a possible progres-

sion of our work in the direction of a microscopic approach. Unfortunately,

the approach in reference [3] does not discuss the metastable behaviour of mi-

croscopic quantities such as the droplet area distribution na, its discussion of

metastability being instead based on the Energy PDF. We propose an analo-

gous treatment in terms of microscopic quantities, which would allow for an

insight on the microscopic origin of the disappearance of the metastable phase

described by Meunier & Morel in [3], and, hopefully, may account for the un-

conventional phase that we have encountered. In that approach, the droplet

free energy φ is first written for an infinitely large system. The finite-size En-

ergy PDF at the transition is then accessed through a Laplace transform and,

finally, the metastable Energy PDF is obtained by reweighting it. An alterna-

tive approach would be instead to access the finite-size Energy PDF, possibly

along with other quantities, directly by a finite-size expression for the droplet

free energy, which would be written in terms of finite-size averaged distribu-

tion of droplet areas nA(a), FA(β) = ∑a nA(a). A first glimpse of the form of

the size-dependence of nA(a) can be given by a dynamical MC sampling of the
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