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Abstract

Access control is currently one of the most important topics in ICT security.
The main areas of research related to access control concern the identifica-
tion of methodologies and models to efficiently administer user entitlements.
With the ever-increasing number of users and IT systems, organizations have
to manage large numbers users’ permissions in an efficient manner. Role-based

access control (RBAC) is the most wide-spread access control model. Yet, com-
panies still find it difficult to adopt RBAC because of the complexity of iden-
tifying a suitable set of roles. Roles must accurately reflect functions and re-
sponsibilities of users in the organization. When hundreds or thousands of
users have individual access permissions, adopting the best approach to engi-
neer roles saves time and money, and protects data and systems. Among all
role engineering approaches, searching legacy access control systems to find de

facto roles embedded in existing permissions is attracting an increasing inter-
est. Data mining techniques can be used to automatically propose candidate
roles, leading to a class of tools and methodologies referred to as role mining.

This thesis is devoted to role mining techniques that help security analysts
and administrators maximize the benefits of adopting RBAC. To this aim, we
consider the role mining problem from several viewpoints. First, we propose a
cost-driven approach to identify candidate roles. This approach measures and
evaluates cost advantages during the entire role-set definition process. This
allows to easily integrate existing bottom-up approaches to role engineering
with top-down information. Second, we provide a new formal framework to
optimize role mining algorithms. Applying this framework to real data sets
consistently reduces running time and often improves output quality. Another
key problem that has not previously been adequately addressed is how to au-
tomatically propose roles that have business meaning. To do this, we provide a
formal framework that leverages business information, such as business pro-
cesses and organization structure, to implement role mining algorithms. Fur-
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iv Abstract

thermore, we address the problem of reducing the role mining complexity in
RBAC systems by removing “noise” from data; i.e., permissions exceptionally or
accidentally granted or denied. We propose a new methodology to elicit stable
candidate roles, by contextually simplifying the role selection task. Finally, we
address the problem of effectively managing the risk associated with granting

access to resources. We propose a new divide-and-conquer approach to role
mining that facilitates attributing business meaning to automatically elicited
roles and reduces the problem complexity.

Each of the above results is rooted on a sound theoretical framework and
supported by extensive experiments on real data.
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1
Introduction

I n computer security, access control represents the process of mediating re-
quests to data and services, and determining whether the requests should
be granted or denied [32]. In recent years significant research has fo-

cused on providing formal representations of access control models [104].
In this context, role-based access control (RBAC) [19] has become the norm
for managing entitlements within commercial applications. RBAC simplifies
entitlement management by using roles. A role uniquely identifies a set of
permissions, and users are assigned to appropriate roles based on their re-
sponsibilities and qualifications. When users change their job function, they
are assigned new roles and old roles are removed from their profile. This re-
sults in users’ entitlements matching their actual job functions. While RBAC
is not a panacea for all ills related to access control, it offers great benefits
to users managers and administrators, especially non-technical people. First,
RBAC helps business users define security policies [45]. Second, RBAC im-
plements the security engineering principles that support risk reduction, such
as separation of duties (SoD) and least privilege [26]. Finally, roles minimize
system administration effort by reducing the number of relationships among
users and permissions [5].

Despite the widespread adoption of RBAC-oriented systems, organizations
frequently implement them without due consideration of roles. To minimize
deployment effort or to avoid project scope creep, organizations often neglect
role definition in the initial part of the deployment project. Very often, organi-
zations do not invest enough time to define roles in detail; rather, they define
high-level roles that do not reflect actual business requirements. The result of
this careless role definition process is that deployed RBAC systems do not de-
liver the expected benefits. Additionally, it also leads to role misuse [26]. This
is the main reason why many organizations are still reluctant to adopt RBAC.
The role engineering discipline [28] addresses these problems. Its aim is to





 Chapter 1. Introduction

properly customize RBAC systems in order to capture the needs and functions
of the organizations. Yet, choosing the best way to design a proper set of roles
is still an open problem. Various approaches to role engineering have been
proposed, which are usually classified as: top-down and bottom-up. Top-down
requires a deep analysis of business processes to identify which access permis-
sions are necessary to carry out specific tasks. Bottom-up seeks to identify de
facto roles embedded in existing access control information. Since bottom-up
approaches usually resort to data mining techniques, the term role mining is
often used. In practice, top-down approaches may produce results that con-
flict with existing permissions, while bottom-up approaches may not consider
the high-level business structure of an organization [54]. For maximum ben-
efit, therefore, a hybrid of top-down and bottom-up is often the most valid
approach.

The bottom-up approach has recently attracted many researchers, since
it can be easily automated [40, 69]. Indeed, companies which plan to de-
ploy RBAC-oriented systems usually find themselves migrating from several
“conventional” access control systems [58]. Thus, role mining uses data min-
ing techniques to generate roles from the access control information of this
collection of legacy and standard systems. Current role mining approaches,
however, must deal with some practical issues:

Meaning of Roles Automatically elicited roles often have no connection to
business practice [5]. Existing role mining algorithms can be classified
in two different classes [69], both of which suffer from the same prob-
lem. The first class seeks to identify complete RBAC states, minimizing
the resulting system complexity [3, 41, 68, 92]. It is dubious, however,
that automated techniques can overcome and replace the cognitive ca-
pacity of humans. This is particularly true when complex security poli-
cies also allow for exceptions. As a result, organizations are unwilling to
deploy automatically elicited roles that they cannot fully understand or
trust. To gain greater flexibility, a second class of algorithms proposes a
complete list of roles [4, 94], so role designers can manually select the
most relevant ones. However, there is the risk of missing the complete
view of data due to the typically large number of candidate roles and
unavoidable exceptions.

Algorithm Performance Several works prove that the role mining problem is
reducible to many other well-known N P -hard problems, such as clique
partition, binary matrix factorization, bi-clustering, graph vertex color-
ing [6, 7, 98] to name a few. As a result, many role mining algorithms
entail long running times and huge memory footprints. Moreover, when
hundreds of thousands of existing user-permission assignments need to
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be analyzed, the number of candidate roles may be so high that trying
to analyze them is often impractical.

Noise Within Data The number of elicited roles is often very large mainly
due to “noise” within the data—namely, permissions exceptionally or
accidentally granted or denied. In such a case, classical role mining al-
gorithms elicit multiple small fragments of the true role [49]. Recently,
a number of methods have been proposed to discover approximate pat-
terns in the presence of noise [39, 49]. However, they usually require
tuning several parameters that can greatly affect algorithm performance
and the quality of results. Another problem is that the adopted noise
model may not fit real cases, mainly when exceptions are legitimate and
cannot be avoided. Further, the number of exceptions may be so high to
make it difficult to navigate and analyze them.

Problem Complexity Introducing new users, permissions, or relationships
between them into the access control system may require reassessing
the role-set in use. In other words, the RBAC system could require a
complete re-design of its roles in order to reduce the overall administra-
tion cost. Another important observation is related to the typically large
number of candidate roles, which hampers the selection of the most
meaningful ones for the organization. Furthermore, matching top-down
information with bottom-up results is often impracticable.

Risk of Unmanageable Roles As stated before, a superficial application of
standard data mining approaches often yields roles that are merely a set
of permissions, with no connection to the business practices. It is dif-
ficult to incorporate such roles into an organization’s risk management
framework. Thus, poorly designed roles directly increase the risk of in-
correctly authorized users [26].

1.1 Candidate’s Contribution

This thesis collects and harmonizes all the contributions of the candidate to
address the aforementioned issues. Such contributions are witnessed by sev-
eral conference and journal papers. These publications are summarized in
Table 1.1. For each paper, the table indicates: the bibliographical reference
that gives full details of the conference/journal, the paper title, an outline of
the contribution, and the chapters of this thesis to delve into work details. In
the bibliography at the end of the document, the authors of papers cited by
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Table 1.1 Summary of Candidate’s Contribution

Ref. Title Contribution Ch.

[3] A Cost-Driven Approach to Role En-

gineering

The cost-function to measure the system complex-
ity, as well as a role mining algorithm to use it

3

[4] Leveraging Lattices to Improve Role

Mining

A formal framework to improve the performance of
role mining algorithms such as [3]

4

[7] A Probabilistic Bound on the Basic

Role Mining Problem and its Appli-

cations

A sharp estimation of the minimum number of roles
that can be elicited by role mining algorithms

4

[5] A Formal Framework to Elicit Roles

with Business Meaning in RBAC

Systems

A metric to evaluate the meaning of roles, to use
in conjunction with [3]

5

[10] Mining Business-Relevant RBAC

States Through Decomposition

An entropy-based measure of the expected uncer-
tainty in locating homogeneous users and permis-
sions and its applications

5

[6] Mining Stable Roles in RBAC Easing the mining task by discarding user-permis-
sion assignments that lead to “unstable” roles

6

[12]∗ Taming Role Mining Complexity in

RBAC

Efficient algorithms to implement the approach
proposed in [6]

6

[8] ABBA: Adaptive Bicluster-Based

Approach to Impute Missing Values

in Binary Matrices

A novel approach to identify missing user-permis-
sion assignments that could simplify the role mining
task

6

[11]∗ A New Role Mining Framework to

Elicit Business Roles and to Mitigate

Enterprise Risk

Two metrics to estimate the expected complexity
of analyzing mining outcome, as well as a divide-
and-conquer approach that use them

7

[9] Evaluating the Risk of Adopting

RBAC Roles

A framework to rank users and permissions by the
risk related to markedly deviating from “peers”

7

[1]∗ CONCISE: COmpressed ’N’ Com-

posable Integer SEt

Compressed data structure to increase the perfor-
mance of role mining algorithms, to use with [3]

–

[13]∗† Visual Role Mining: A Picture Is

Worth a Thousand Roles

A graphical view of user-permission assignments
that allows for quick analysis and role elicitation

–

[14]∗† A novel Approach to Impute Miss-

ing Values and Detecting Outliers in

Binary Matrices

Simplifying the role mining task by automatically
detecting and discarding exceptions from analyzed
data

–

[15]∗† Privacy Preserving Role-Engineering An approach for a privacy-preserving outsourcing
of the role engineering task

–

[2]† An Activity-Based Model for Sepa-

ration of Duty

Activity model to define SoD constraints, also used
to model business processes in [5]

–

∗Journal paper
†Unpublished and under review process
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Table 1.1 are reported in alphabetical order, but the candidate is actually the
first author for the majority of papers, and the second one for the remaining.

More details about the cited work follows. First, in [3] we tackle the prob-
lem of designing meaningful roles by providing a cost-driven approach to role
engineering. The main idea is to identify candidate roles based on the mea-
surement and evaluation of “cost” advantages during the entire role-finding
process. This allows to effectively integrate existing bottom-up approaches
to role engineering with top-down information to match organization needs.
In particular, the cost concept allows to evaluate the good quality of roles by
leveraging the available modeling of business. Additionally, in [5] we describe
how to design a cost function that measures the meaning of roles. This is done
by evaluating the spreading of roles among business processes or organization
structure. The business process model is mainly inspired by [2], a work that,
while being an additional candidate’s contribution, is not strictly related to
role engineering topic. Hence, it is not further detailed in this thesis.

Second, the candidate devised another solution for the problem of elic-
iting meaningful roles. This contribution is complementary to the previous
one. Both [11] and [10] suggest to restrict the role mining analysis to sets
of data that are homogeneous from an enterprise perspective. The key ob-
servation is that users sharing the same business attributes will essentially
perform the same task within the organization. Consequently, it will be easier
for an analyst to assign a business meaning to the roles elicited via bottom-
up approaches. Partitioning data also introduces benefits in terms of execu-
tion time of algorithms, hence providing a solution to the complexity problem
mentioned in the previous section. To apply this divide-and-conquer strategy,
in [11] we describe two indices that measure the expected complexity to find
roles with clear business meaning. Alternatively, in [10] we describe an index
that provides, for a given partition, the expected uncertainty in locating ho-
mogeneous set of users and permissions that are manageable with the same
role. By choosing the decomposition with the highest values for any of such
indices, we most likely identify roles with a tight business meaning.

Third, the candidate addressed the performance problem of role mining al-
gorithms. In [4] a new formal framework to optimize role mining algorithms is
proposed. In particular, we describe how to efficiently enumerate interesting
patterns among user-permission assignments by discarding redundant infor-
mation. We demonstrate that, when applied to real data sets, it consistently
reduces the running time of certain role mining algorithms and, in some cases,
also greatly improves output quality. In addition to this fundamental result,
in [7] we address the issue of minimizing the number of roles. In this case,
our main contribution is to prove that the minimum number of roles is sharply
concentrated around its expected value. This result can be applied as a stop
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condition when striving to minimize the number of roles through fast approx-
imation algorithms. The proposal can also be used to decide whether it is
advisable to undertake the efforts to renew a RBAC state. To further improve
the performance of role mining algorithms, in [1] we describe a novel com-
pression scheme that allows for fast set operations (i.e., intersection, union,
difference) over a compressed representations of integral numbers. Hence,
reducing the memory required to store data. We demonstrate that this scheme
is more efficient than other well-known data structures such as arrays, lists,
hash tables, and self-balancing binary search trees. Since this contribution is
not strictly related to the role engineering problem, we will not further de-
scribe it in this thesis—as indicated in Table 1.1.

As for the identification of exceptionally/accidentally granted/denied per-

missions, in [6] we propose a new methodology that allows role engineers to
elicit “stable” candidate roles, namely roles that likely remains unchanged dur-
ing their lifecycle. To obtain this result, we offer a theoretical framework that
allows to identify and then discard assignments that can only be managed via
“unstable” roles. Then in [12] we introduce fast algorithms that implement
such a strategy. Hence, avoiding the generation of unstable roles during the
application of any role mining algorithm. The dual problem of selecting as-
signments related to unstable roles is represented by the identification of miss-

ing assignments: those permissions that, if granted to certain users, would
simplify the mining task. In [8] we describe a viable and effective approach to
identify such missing values. Furthermore, [14] gather all the contributions
related to exception identification in access control by offering a holistic ap-
proach to this problem. Since [14] has been submitted for publication to a
journal and the corresponding review process is not yet complete, we will not
further describe this contribution in the thesis.

Finally, we confront the question of effectively managing the risk derived

from granting access to resources. In particular, [9] describes a framework to
highlight users and permissions that markedly deviate from those “similar” to
them. That is, bringing out users that have a permission-set different from
other users with the same business attributes (i.e., job title, department, cost
center, etc.) since they are likely prone to error when roles are operating. Sim-
ilarly, permissions that shares the same attributes (e.g., application, supported
business activity, etc.) granted to different user-sets are reported. Focusing
on such users and permissions during the role definition process likely miti-
gates the risk of unauthorized accesses and role misuse. Moreover, in [11] we
discuss how a divide-and-conquer approach to role mining allows for better
enforcement and actually reduces the risk related to illegal accesses. In partic-
ular, we describe a risk model that assesses the risk related to entitling users
to not expected operations, or hampering their jobs by not granting required
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permissions. The likelihood of an administration error is estimated through
two indices provided in the paper.

As reported in Table 1.1, there are two additional papers that have been
submitted for publication to journals. Since the review processes are not yet
complete, we will just outline the contribution without further describing them
in the reminder of this thesis. The first one is [13], where a new approach re-
ferred to as visual role mining is delineated. The key idea is that of adopting a
visual representation of existing user-permission assignments, hence allowing
for a quick analysis and elicitation of meaningful roles. We formally intro-
duce the problem by defining a metric for the quality of the visualization. We
also prove that finding the best representation according to the defined metric
is N P -hard. In turn, we propose novel algorithms that seek to best repre-
sent user-permission relationships. The second paper is represented by [15].
We face up the problem of outsourcing the role engineering task to consul-
tants external to the analyzed organization, while preserving the privacy of
the organizations itself. In particular, we demonstrate that it is possible to use
specific data encryption techniques to guarantee the confidentiality of data
without compromising the ability of conducting the role engineering task.

1.2 Outline of the Thesis

The remainder of the thesis is organized as follows. Chapter 2 offers some
preliminaries required for the subsequent chapters. In particular, the basics of
RBAC are first provided. The chapter also offers a formal description of the
RBAC model through the ANSI/INCITS 359-2004 standard. Subsequently, we
briefly survey the state-of-the-art in role engineering. In particular, the chap-
ter also introduces the automated part of role engineering, namely role mining

techniques. Binary matrices are introduced as a tool to formally describe the
role mining problem. The identification of exceptional values in binary matri-
ces is also discussed.

Chapter 3 fills a gap of several role engineering methods, by providing
a metric to measure the “quality” of candidate roles. We introduce the con-
cept of measuring the “cost” of RBAC administration. Further, we describe an
algorithm that leverages the cost metric to find candidate role-sets with the
lowest possible administration cost. We provide several examples showing the
sensibility of assumptions made by the algorithm.

Chapter 4 offers a rigorous analysis of identifiable patterns in access per-
mission data. We show that this analysis can practically be applied to optimize
role mining algorithms. Moreover, we prove that the minimum number of
roles is sharply concentrated around its expected value. We show how this
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result can be used to decide whether it is advisable to undertake the efforts to
renew an RBAC state.

Chapter 5 copes with the problem of assigning a business meaning to roles.
To this aim, two different approaches are detailed. First, we introduce a new
metric to assess how “good” are roles from a business perspective, by mea-
suring the spreading of a role among business processes or the organization
structure. Second, we propose a methodology that helps analysts decompose
the dataset into smaller subsets homogeneous from a business perspective. By
using practical examples, we demonstrate that this approach likely leads to
roles with a clear business meaning.

Chapter 6 addresses the problem of reducing the role mining complexity

in RBAC systems. The chapter introduces the meaning of exceptional assign-
ments. We also propose a three-steps methodology to identify and discard
user-permission assignments that cannot belong to so-called “stable” roles.
Furthermore, we also consider the possibility that analyzed data present some
missing user-permission assignment. Thus, we propose an algorithm that to
efficiently impute such missing values.

Chapter 7 describes a risk model to analyze the proneness of RBAC con-
figurations to allow for unauthorized access to resources. To measure the
likelihood of having meaningful and manageable roles within the system, we
recall the methodology described in Chapter 5 where data to analyze are de-
composed into smaller subsets according to the provided business informa-
tion. We show how this processing decreases the probability of making errors
in role management, and consequently reduces the risk of role misuse. Ad-
ditionally, we introduce an approach to highlight users and permissions that
markedly deviate from others, and that might consequently be prone to error
when roles are operating.

To conclude, Chapter 8 offers final remarks.



2
Background and

Related Work

T he purpose of this chapter is to acquaint the reader with the prerequi-
site knowledge and required mathematical formalism. It starts with a
brief overview of RBAC and role-based concepts, as well as a formal de-

scription according to the ANSI/INCITS 359-2004 standard. Subsequently, we
explain the way an organization can migrate from other access control models
to RBAC through role engineering methodologies. The typical classification of
the various role engineering approaches is presented. The chapter also intro-
duces the automated part of role engineering, namely role mining techniques.
To conclude, binary matrices are introduces by showing the relationship with
role mining. A short survey of existing methodologies for exception identifica-
tion in binary matrices is also presented.

2.1 Role-Based Access Control

In ICT security, we refer to access control as the process of mediating requests
to data and services maintained by a system, and determining whether the re-
quests should be granted or denied [32]. The earliest forms of access control
systems assigned privileges to users. Conventionally, managing entitlements
has been considered technical, as they are related to vertically-managed appli-
cations without much business involvement. However, with the publication of
regulatory requirements such as the US Sarbanes-Oxley Act [82], US Health
Insurance Portability and Accountability Act (HIPAA) [53], Gramm-Leach-
Biley Act (GLBA) [48], and EU Privacy Protection Directive 2002/58/EC [47],
it is increasingly important to revise the entitlement management process from


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a business perspective, as it becomes a security governance and compliance
issue. The addition of user groups improved that situation. Many legacy sys-
tems and applications managed user permissions by means of groups. Under
this model, permissions are assigned to groups, while users get permissions
granted by being a member of a group. The ability to assign permissions to
a group and determine who can inherit the permission is considered discre-

tionary since it is typically decided by system owners. However, authority to
assign members to a group is deemed non-discretionary and usually is per-
formed by the security staff.

Role-based access control (RBAC) [19] is the next evolutionary step in ac-
cess control. The fundamental concept of RBAC is that roles aggregate priv-
ileges. Users inherit permissions by being members of roles. Based on the
least privilege access principle, they are given no more than what is required
to perform their job function. In this case, assignment of permissions to a role
and determining membership of roles is supposed to be non-discretionary. The
National Institute of Standards and Technology (NIST) delivered in 2004 a stan-
dard for RBAC [19] via the INCITS fast track process. The standard provides
users and vendors of information technology products with a coherent and
uniform definition of RBAC features. It also offers a formal description of all
the entities provided by the RBAC model. In the following, we only summarize
the entities of interest for the present thesis:

◮ PERMS, the set of all possible access permissions;
◮ USERS, the set of all system users;
◮ ROLES, the set of all roles;
◮ UA⊆ USERS×ROLES, the set of user-role assignments;
◮ PA⊆ PERMS×ROLES, the set of permission-role assignments;
◮ RH⊆ ROLES×ROLES, the set of hierarchical relationships between pairs

of roles.

For the sake of simplicity, we do not consider other entities provided by the
standard such as sessions or separation of duty constraints. Indeed, such enti-
ties are not relevant for the purpose of this thesis.

The previous entities are also depicted in Figure 2.1. As for role hierarchy,
RH derives from the partial order [31] based on permission-set inclusion.1

Hence, 〈r1, r2〉 ∈ RH indicates that all the permissions assigned to r1 are also

1The RBAC chapters that mention role hierarchy most often treat it as a partial order.
By maintaining only a partial order it is not possible to distinguish role dominance relation-
ships explicitly added from those implied [59]. Since consensus (on this matter) has yet
to be reached among researchers, we only consider hierarchical relationships derived from
permission-set inclusion.
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USERS ROLES PERMS

RH

UA PA

Figure 2.1 RBAC entities

assigned to r2, and some more permissions are assigned to r2. The symbol ‘�’
indicates the ordering operator. If r1 � r2, then r1 is referred to as the senior

of r2, namely r1 adds certain permissions to those of r2. Conversely, r2 is the
junior of r1. Additionally, the symbol ‘⋗’ also indicates the ordering operator,
but there is no intermediate elements between operands. In other words,

∀r1, r2 ∈ ROLES : r1⋗ r2 =⇒

∄r ′∈ ROLES : r ′ 6= r1 ∧ r ′ 6= r2 ∧ r1 � r ′ ∧ r ′ � r2.

If r1 ⋗ r2 then r1 is referred to as an immediate senior of r2, while r2 is re-
ferred to as an immediate junior of r1. In Chapter 4 we will extensively use the
proposed mathematical formalism. We will also use other well-known con-
cepts such as the partial order, lattice, powerset, Hasse diagrams, and directed
acyclic graphs. Further details on these subjects can be found in [31].

The following functions are also provided by the ANSI standard:

◮ ass_users : ROLES → 2USERS to identify users assigned to a role and to
none of its senior roles.2

◮ auth_users : ROLES→ 2USERS to identify users assigned to a role or to at
least one of its seniors.
◮ ass_perms: ROLES → 2PERMS to identify permissions assigned to a role

and to none of its senior roles.3

◮ auth_perms: ROLES→ 2PERMS to identify permissions assigned to a role
or to at least one of its seniors.

2The RBAC standard does not make a clear distinction between base and derived re-
lations [59]. We therefore consider the functions ass_users as derived from UA, that is
ass_users(r) = {u ∈ USERS | 〈u, r〉 ∈ UA}. We also assume that users assigned to a role
are not assigned to its seniors.

3Analogous to ass_users, we consider the function ass_perms as derived from PA, that is
ass_perms(r) = {p ∈ PERMS | 〈p, r〉 ∈ PA}. We also assume that permissions assigned to a
role are not assigned to its juniors.
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The following relation holds true:

∀r1, r2 ∈ ROLES : r1 � r2 =⇒ auth_users(r1)⊆ auth_users(r2) ∧

auth_perms(r1)⊇ auth_perms(r2). (2.1)

2.2 Role Engineering

As organizations start deploying RBAC-oriented access control solutions, it is
becoming increasingly important to devise a common set of roles that can be
reused and easily maintained over the time. One of the challenges often faced
is that, if defined incorrectly, roles are ineffective and fail to meet the organiza-
tion’s requirements. Roles can be defined at an abstract level from a business
perspective, or context-specific to an application or system from a technology
perspective. At an abstract level, a role can be a simple “label” that defines the
corresponding job function and the set of business activities that users have to
perform to accomplish their responsibilities. Notice that at an abstract level,
there is no enforcement capability. Each role has specific entitlements that
enable a user to execute transactions with certain limits. How this is config-
ured within the application and how it is enforced is specific to the individual
application capability. Whether an organization looks at defining roles either
abstract or specific to a context, the requirements to define roles are important
and role definition is a critical step in deploying any RBAC system.

Role engineering [28, 29] is the process of defining roles and related infor-
mation, such as permissions, constraints, and role hierarchies, as they pertain
to the user’s functional use of systems, applications, and business processes.
It is one of the critical steps in deploying role-based access control systems.
Organizations often implement RBAC systems without much consideration for
roles. To minimize deployment effort, role definition is often not considered
as a part of the deployment project. Organizations frequently do not invest
enough time to define roles in sufficient detail; rather, they tend to define high-
level roles that do not reflect actual organizational job functions. Permissions
mapped to high-level roles are usually generic in nature. The result of this
“random” process is that additional efforts are required to manage job-specific
permissions manually, outside the RBAC system. Hence, without exploiting
all the RBAC benefits. The process of defining roles should be based on a
complete analysis of the given organization, including the input from a wide
spectrum of users such as business line managers and human resources. In
general, role definition and management requires alignment between business

and IT. It requires a strong commitment and cooperation among the business
units, as a role engineering initiative could transcend the enterprise.
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Choosing the best role engineering approach is still an open problem. Vari-
ous approaches can be found in the current literature, which are usually classi-
fied as: top-down and bottom-up. The former requires a deep analysis of busi-
ness processes to identify which access permissions are necessary to carry out
specific tasks. The latter seeks to identify de facto roles embedded in existing
access control information. Since bottom-up approaches usually resort to data
mining techniques, the term role mining [58] is often used as a synonym for
bottom-up. Both top-down and bottom-up approaches have pros and cons. To
maximize benefits, bottom-up should be used in conjunction with top-down,
leading to an hybrid approach. As a matter of fact, top-down may ignore ex-
isting permissions and exceptions, whereas bottom-up may not consider the
business functions of an organization [54]. Hence, hybrid approaches lever-
age normalized roles derived from role mining and align them to job functions,
with the involvement of the business staff. In the following, we summarize the
state-of-the-art for both top-down and bottom-up approaches.

Top-Down This approach is primarily business-driven, and roles are defined
based on the responsibilities of a given job function. For roles to be effective, a
strong alignment between business and IT objectives is of utmost importance.
Roles are defined by reviewing organizational business and job functions and
mapping the permissions for each job function. This approach provides busi-
ness oversight and alignment of roles with business functions and reusability.

Top-down role engineering was first illustrated by Coyne [28]. He places
system users’ activities as high-level information for role identification; this
approach is only conceptual, thus it lacks technical details. Fernandez and
Hawkins [37] propose a similar approach where use-cases are used to deter-
mine the needed permissions. Röckle et al. [78] propose a process-oriented
approach that analyzes business processes to deduce roles. The role-finding

concept is introduced to deduce roles from business needs or functions. Infor-
mation is organized in three different layers: process layer, role layer, and ac-
cess rights layer. Crook et al. [30] leverage organizational theory to elicit role-
based security policies. Neumann and Strembeck [70] present a more concrete
approach to derive roles from business processes. They offer a scenario-based
approach where a usage scenario is the basic semantic unit to analyze. Work-
patterns involving roles are analyzed and decomposed into smaller units. Such
smaller units are consequently mapped with system permissions. Shin et
al. [87] use a system-centric approach supported by the UML language to
conduct top-down role engineering. Role engineering is discussed from the
perspective of systems to be protected, assisting with the general understand-
ing of RBAC roles and permissions in conjunction with business processes.
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Epstein and Sandhu [35] also use UML to address role engineering. Kern
et al. [54] propose an iterative and incremental approach based on the role
life-cycle, pertaining to analysis, design, management, and maintenance. The
book of Coyne and Davis [29] is a practical reference that helps to assess some
of the previously cited role engineering approaches.

Bottom-Up This approach is based on performing role-mining/discovery by
exploring existing user permissions in current applications and systems. Once
roles has been elicited, the next step is to perform role normalization and
rationalization. In this approach, roles are defined to meet specific application
or system access requirements. One of the challenges of this sampling is that it
requires viable tools to perform role mining. An alternate approach is to select
a set of representative users and extract the entitlements that best describe
the job function. If the user population is significant, it would be ideal to
sample a certain percentage of the population to validate the accuracy of the
results. One of the outcomes of this approach is that users often accumulate
entitlements based on their previous job functions performed over a period
of time; it can become too daunting to validate roles without the business
involvement. This is a key aspect of role rationalization to be considered as
part of a bottom-up approach.

Kuhlmann et al. [58] first introduced the term “role mining”, trying to ap-
ply existing data mining techniques to elicit roles from existing access data.
Indeed, role mining can be seen as a particular application of Market Basket

Analysis (MBA, also known as association-rule mining), a method of discover-
ing customer purchasing patterns by extracting associations or co-occurrences
from transactional store databases. This translation can be done by simply
considering permissions, roles and users instead of products, transactions and
customers, respectively. Among all possible algorithms used in this area, Apri-
ori [17] is the most common. After the first proposal, the community started
to identify specific algorithms to solve this particular problem instead of using
existing approaches. The first algorithm explicitly designed for role engineer-
ing was ORCA [86] which applies hierarchical clustering techniques on per-
missions. However, this approach does not allow for permission overlapping
among roles that are not hierarchically related. Vaidya at al. [94] applied sub-
set enumeration techniques to generate a set of candidate roles, computing all
possible intersections among permissions possessed by users. Subset enumera-
tion techniques had been advocated earlier by Rymon [81]. More recently, the
same authors of [94] also studied the problem of finding the minimum num-
ber of roles that cover all permissions possessed by users [92, 93]. By lever-
aging binary integer programming, Lu et al. [63] presented a unified frame-
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work for modeling the role number minimization problem. Ene et al. [34]
offered yet another alternative model to minimize the number of roles, reduc-
ing it to the well-known problem of the minimum biclique covering. Zhang
et al. [103] provide an attempt to contextually minimize the number of user-
role, permission-role, and role-role relationships. Frank et al. [39] model the
probability of user-permission relationships, thus allowing to infer the role-
user and role-permission assignments so that the direct assignments become
more likely. The authors offer a sampling algorithm that can be used to infer
their model parameters. Several works prove that the role mining problem is
reducible to many other well-known N P -hard problems, such as clique par-
tition, binary matrix factorization, bi-clustering, graph vertex coloring (see
Chapter 6) to cite a few. Recently, Frank et al. [40] provided a detailed anal-
ysis of the requirements for role mining as well as the methods used to assess
results. They also proposed a novel definition of the role mining problem that
fulfills the requirements that real-world enterprises typically have.

The main limitation of all the cited role mining approaches is that they do
not always lead to the optimal set of roles from a business perspective. To the
best of our knowledge, the work described in thesis and first introduced in [3]
represents the first approach that allows for the discovery of roles with busi-
ness meanings through a role mining algorithm. The most similar approach
to ours has been provided by Molloy at al. [68]. It tackles the problem in
two settings. When only user-permission relations are available, the authors
propose to discover roles by resorting to formal concept analysis (FCA). FCA
is a theory of data analysis which identifies conceptual structures among data
sets. The mathematical lattices that are used in FCA can be interpreted as
classification systems. If user attributes are additionally available, they uti-
lize user attributes to provide a measurement of the RBAC state complexity,
called “weighted structural complexity”. The authors observe that adopting
the RBAC model reduces the number of relationships to be managed and give
a cost (weight) for each parameter of the global structural complexity.

2.3 Candidate Role-Sets

In addition to RBAC concepts, this thesis introduces other entities required to
formally describe the proposed approach. In particular, we define:

◮ UP ⊆ USERS × PERMS, the set of the existing user-permission assign-
ments to be analyzed;
◮ perms: USERS → 2PERMS, the function that identifies permissions as-

signed to a user. Given u ∈ USERS, it is defined as perms(u) = {p ∈
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PERMS | 〈u, p〉 ∈ UP}.
◮ users: PERMS → 2USERS, the function that identifies users that have

been granted a given permission. Given p ∈ PERMS, it is defined as
users(p) = {u ∈ USERS | 〈u, p〉 ∈ UP}.

After having introduced the entities above, we can formally define the main
objective of role mining. In particular, the outcome of any role mining tool is
a set of candidate roles, that is roles which requires an attestation by business
people, according to the observations of the previous section. More formally:

Definition 2.1 (System Configuration) Given an access control system, we
refer to its configuration as the tuple ϕ = 〈USERS, PERMS, UP〉, that is the set
of all existing users, permissions, and the corresponding relationships between
them within the system.

A system configuration is the users’ authorization state before migrating to
RBAC, or the authorizations derivable from the current RBAC implementation.

Definition 2.2 (RBAC State) An RBAC state is represented by tuple ψ =
〈ROLES, UA, PA, RH〉, namely an instance of all the sets that characterize the
RBAC model.

An RBAC state is used to obtain a system configuration. Hence, the role engi-
neering goal is to find a state that correctly describes a given configuration. In
particular we are interested in the following:

Definition 2.3 (Candidate Role-Set) Given a system configurationϕ, a can-

didate role-set is the set of roles of a given RBAC state ψ that “covers” all possi-
ble combinations of permissions possessed by users according to ϕ, namely a
set of roles whose union of permissions matches exactly with the permissions
possessed by the user. Formally:

∀u ∈ USERS,∃R⊆ ROLES :
⋃

r∈R

auth_perms(r) = {p ∈ PERMS | 〈u, p〉 ∈ UP}.

Please also note that every system configuration may allow for multiple can-
didate role sets. In Chapter 3 we will explain how to select the “best” one
according to organization requirements.

Definition 2.4 (Support of a Role) Given a role r ∈ ROLES, its support in-
dicates the percentage of users possessing all permissions assigned to that role,
that is support(r) = |auth_users(r)|/|USERS|.

Definition 2.5 (Degree of a Role) The degree of a candidate role indicates
the number of permissions assigned to it, that is degree(r) = |auth_perms(r)|.
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Definition 2.6 (Confidence Between Roles) Given a pair of hierarchically
related candidate roles, confidence is the percentage of users possessing per-
missions assigned to both parent and child roles, that is confidence(r2 � r1) =

|auth_users(r2)|/|auth_users(r1)|.

Lemma 2.1 Given r1, r2 ∈ ROLES such that r2 � r1, the confidence between

r1, r2 is given by the ratio between supports of child and parent roles:

confidence(r2 � r1) = support(r2)/support(r1).

PROOF By definition, confidence(r2 � r1) is equal to:

|auth_users(r2)|

|auth_users(r1)|
·
|USERS|

|USERS|
=

support(r2)

support(r1)

for any given role pair r1, r2. �

Lemma 2.2 Given r1, r2, . . . , rn−1, rn ∈ ROLES such that rn � rn−1 � . . .� r2 �

r1, the confidence between r1, rn is equal to the product of confidences between

intermediate roles of the given hierarchical path between those two roles:

confidence(rn � r1) =
∏n

i=2 confidence(ri � ri−1).

PROOF It follows for Lemma 2.1 that:

confidence(rn � rn−1) · . . . · confidence(r2 � r1) =

=
support(rn)

support(rn−1)
·

support(rn−1)

support(rn−2)
· . . . ·

support(r2)

support(r1)
=

=
support(rn)

support(r1)
= confidence(rn � r1)

for any chosen intermediate roles r2, . . . , rn−1. �

Let us consider Equation (2.1). Given two roles r1, r2 ∈ ROLES such that
r2 � r1, if r1 6= r2 then the role r2 adds permissions to role r1. Instead, the
users possessing the permissions assigned to role r2 can be the same as those
possessing the permissions assigned to role r1. Moreover, we can have the
following case:

Definition 2.7 (Role-Role Equivalence) Given the roles r1, r2 ∈ ROLES, we
say that they are equivalent, and indicate this with r1 ≡ r2, if auth_users(r1) =

auth_users(r2).
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Lemma 2.3 The equivalence relation is transitive, meaning that ∀r1, r2, r3 ∈

ROLES : r1 ≡ r2 ∧ r2 ≡ r3 =⇒ r1 ≡ r3.

PROOF According to Definition 2.7, we have that ass_users(r1) = ass_users(r2)

and ass_users(r2) = ass_users(r3), thus ass_users(r1) = ass_users(r3). �

Lemma 2.4 Given r1, r2 ∈ ROLES : r1 � r2, if confidence(r1 � r2) = 1 then

r1 ≡ r2.

PROOF From Definition 2.6, confidence(r1 � r2) = 1 =⇒ |ass_users(r1)| =

|ass_users(r2)|. Moreover, from Equation (2.1), we have that ass_users(r1) ⊆

ass_users(r2) =⇒ ass_users(r1) = ass_users(r2). �

In addition to the equivalence between a role pair, referred to as “1:1”, it
is possible to consider an equivalence relationship between a role and a set of
roles, that is “1:n”. In particular:

Definition 2.8 (Role-Roleset Equivalence) Given a role r ∈ ROLES and a
set of roles {r1, . . . , rn} ⊆ ROLES they are equivalent, and thus indicated as
r ≡ {r1, . . . , rn}, when

auth_users(r) =
⋃n

i=1 auth_users(ri).

2.4 Binary Matrices and Exceptions

As described in [63, 92, 103], the problem of finding a candidate role-set can
be mathematically expressed as the solution of the equation C = A⊗ B, where
A, B, C are binary matrices, that is

◮ C ∈ {0, 1}m×n, the matrix representation of UP, where m = |USERS|, n =

|PERMS|, and ci j = 1 when the ith user of USERS has the jth permission
of PERMS granted;
◮ A ∈ {0, 1}m×k, the matrix representation of UA, where m = |USERS|,

k = |ROLES|, and aiℓ = 1 when the ith user of USERS is assigned to the
ℓth role of ROLES;
◮ B ∈ {0, 1}k×n, the matrix representation of PA, where k = |ROLES|, n =

|PERMS|, and bℓ j = 1 when the ℓth role of ROLES has the jth permission
of PERMS assigned;

◮ the operator “⊗” is such that ci j =
∨k

ℓ=1(aiℓ ∧ bℓ j).
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The set RH can be represented by decomposing the matrix B. For instance, if
there is a two-level hierarchy of roles, two matrices B′ and B′′ can be identified
such that B = B′ ⊗ B′′.

Having multiple candidate role-sets for a given system configuration equals
to stating that several values for A and B are solution of the equation C = A⊗B.
According to Definition 2.3, the goal is to identify candidate role-sets such
that it is always possible to identify a suitable subset of roles whose union of
permissions matches exactly with the permissions possessed by each user. This
is equivalent to decomposing A⊗B in order to exactly have the given matrix C .

Besides role mining, binary matrices abound in a large variety of fields:
market basket data analysis [16], ecology and paleontology [75], just to cite
a few. In particular, they have been largely studied in genetic [21, 56, 88].
Outliers and missing values are two of the main aspects to consider when an-
alyzing this kind of data. Indeed, data collected for a number of applications
can be subject to random noise or measurement error. Missing values are in-
complete data, namely portions of data that are unavailable or unobserved.
Outliers are values far from the rest of the data according to a given distance
measure, that is a value that appears to deviate markedly from other values
of the dataset in which it occurs. We generically refer to this “noise” as sus-

picious values. In an access control context, suspicious values are represented
by permissions exceptionally or accidentally granted or denied to users. This
poses new challenges for the efficient discovery of useful information within
noisy data. Especially when dealing with large amount of data, or when time
constraints do matter, automatic mechanisms for the recognition of inaccurate
values are of utmost importance. Indeed, the presence of noise makes classical
data mining algorithms (roles mining included) elicit multiple small fragments
of the true, interesting patterns [49]. Chapter 6 describes our contribution to
solve the noise isolation problem in an access control scenario. In the follow-
ing we report on many imputation methods that have been developed to deal
with suspicious values in binary matrices.

Missing Values Since the seminal paper of Rubin [79], much work has been
done in the statistical field about imputing missing values [60,83]. A complete
survey can be found in [84]. In [38], Figueroa et al. propose to apply a discrete
approach to the clustering problem of DNA array hybridization experiments.
The authors first highlight the strength of using the binarized version of a
dataset of real numbers that describes microarrays data, and then they define
the binary clustering with missing values problem. The target of this problem
is to set missing values in such a way as to find a minimum cardinality partition
of the rows.
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When dealing with missing values, one of the best established method is
multiple imputation [80], that is a simulation technique that replaces each
missing data with a set of m > 1 plausible values. The m versions of the
complete data are analyzed by standard complete-data methods. In Chap-
ter 6 we will describe a multiple imputation method for an access control
scenario. To date, several algorithms have been proposed to evaluate miss-
ing values. The most frequently used algorithms are probably the k-nearest

neighbors (KNN) [90], and the local least squares imputation [55]. In KNN,
missing values are imputed by averaging over the corresponding values of the
k-neighboring rows. The metric used to calculate the distance between rows is
typically the average Euclidean distance. The problem in this algorithm is that
the missing values are imputed by considering a fixed number of rows that
have to be chosen depending on the dataset being analyzed. The local least
squares imputation method is a regression based estimation method that takes
into account the local correlation of data. It is made up of two steps: the first
one is to select k genes by the L2-norm or by Pearson correlation coefficients.
The second one is regression and estimation, regardless of how the k genes
are selected. Unfortunately, also in this case, the parameter k is not adap-
tive. Another algorithm has been proposed by Oba et al. [71], based on [24],
that uses the bayesian principal component analysis [77]. Also in this case a
fixed parameter comparable with the k of KNN is used, that is the number of
principal axes (eigenvectors).

Outliers One possible approach to outlier detection is based on the analysis
of the distribution of datasets. Outliers are determined according to a given
probability distribution. In [99], Yamanishi et al. proposes a Gaussian mixture
model to present the normal behaviors of data. The main problem with these
kinds of approaches is that the user might simply not have enough knowledge
about the underlying data distribution. To tackle this issue, distance-based

methods have been proposed. A distance-based outlier in a dataset D is a data
object with a given percentage of the objects in D having a distance greater
than dmin away from it. The definition of distance can be extended by con-
sidering the distance of a point from its k-nearest neighbor [57, 76], or as
the sum of distances from its k-nearest neighbors [20]. It has been shown
that dealing with large datasets nested loop algorithms, that in the worst case
have quadratic complexity, perform better than other approaches [44]. The
algorithm proposed by Bay and Schwabacher in [22] is probably the state-of-
the-art distance-based outlier detection algorithm. It is based on a nested loop,
but a randomization procedure is used to process non-outlier points relatively
quickly.
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2.5 Graph Theory

We now summarize some graph-related concepts that are required by chapters
4 and 6. In particular, a graph G is an ordered pair G = 〈V, E〉, where V is the
set of vertices, and E is a set of unordered pairs of vertices (or edges). The
endpoints of an edge 〈v, w〉 ∈ E are the two vertices v, w ∈ V . Two vertices in
V are neighbors if they are endpoints of an edge in E. We refer to the set of all
neighbors of a given vertex v ∈ V as N(v), namely N(v) = {v′∈ V | 〈v, v′〉 ∈ E}.
The degree of a vertex v ∈ V is indicated with d(v) and represents the number
of neighbors of v, that is d(v) = |N(v)|. The degree of a graph G = 〈V, E〉 is
the maximum degree of its vertices, namely ∆(G) =maxv∈V{d(v)}.

Given a set S ⊆ V , the subgraph induced by S is the graph whose vertex
set is S, and whose edges are the members of E such that the corresponding
endpoints are both in S. We denote with G[S] the subgraph induced by S. A
bipartite graph G = 〈V1 ∪ V2, E〉 is a graph where the vertex set can be parti-
tioned into two subsets V1 and V2, such that for every edge 〈v1, v2〉 ∈ E, v1 ∈ V1

and v2 ∈ V2. A clique is a subset S of V such that the graph G[S] is a complete
graph, namely for every two vertices in S an edge connecting the two exists.
A biclique in a bipartite graph, also called bipartite clique, is a pair of vertex
sets B1 ⊆ V1 and B2 ⊆ V2 such that 〈b1, b2〉 ∈ E for all b1 ∈ B1 and b2 ∈ B2. In
the rest of the chapter we will say that a set of vertices S induces a biclique
in a graph G if G[S] is a complete bipartite graph. In the same way, we will
say that a set of edges induces a biclique if their endpoints induce a biclique.
A maximal (bi)clique is a set of vertices that induces a complete (bipartite)
subgraph and is not a subset of the vertices of any larger complete (bipartite)
subgraph. Among all maximal (bi)cliques, the largest one is the maximum

(bi)clique. The problem of enumerating all maximal cliques in a graph is usu-
ally referred to as the (maximal) clique enumeration problem. As for maximal
biclique, Zaki and Ogihara [102] showed that there exists a one-to-one corre-
spondence among maximal bicliques and several other well-known concepts
in computer science, such as closed item sets (maximal sets of items shared
by a given set of transactions) and formal concepts (maximal sets of attributes
shared by a given set of objects). Indeed, many existing approaches to role
mining have reference to these concepts [34,63,68,94].

A clique partition of G = (V, E) is a collection of cliques C1, . . . , Ck such
that each vertex v ∈ C is a member of exactly one clique. It is a partition of
the vertices into cliques. A minimum clique partition (MCP) of a graph is the
smallest collection of cliques such that each vertex is a member of exactly one
clique. A biclique cover of G is a collection of biclique B1, . . . , Bk such that for
each edge 〈u, v〉 ∈ E there is some Bi that contains both u and v. We say that
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Bi covers 〈u, v〉 ∈ E if Bi contains both u and v. Thus, in a biclique cover, each
edge of G is covered at least by one biclique. A minimum biclique cover (MBC)
is the smallest collection of bicliques that covers the edges of a given bipartite
graph. The minimum biclique cover problem can be reduced to many other
NP -complete problems, like binary matrices factorization [63, 89] and tiling
database [43] to cite a few. Several role mining approaches leverage these
concepts [34,63,92].

2.6 Posets, Lattices, Hasse Diagrams, and Graphs

This section introduces some concepts required by Chapter 4. In computer
science and mathematics, a directed acyclic graph (DAG) is a directed graph
with no directed cycles. For any vertex v, there is no non-empty directed
path starting and ending on v, thus DAG “flows” in a single direction. Each
DAG provides a partial order to its vertices. We write u� v when there exists a
directed path from v to u. The transitive closure is the reachability order “�”. A
partially ordered set (or poset) formalizes the concept of element ordering [31].
A poset 〈S,�〉 consists of a set S and a binary relation “�” that indicates,
for certain element pairs in the set, which element precedes the other. A
partial order differs from a total order in that some pairs of elements may
not be comparable. The symbol “�” often indicates a non-strict (or reflexive)
partial order. A strict (or irreflexive) partial order “≻” is a binary relation that
is irreflexive and transitive, and therefore asymmetric. If “�” is a non-strict
partial order, then the corresponding strict partial order “≻” is the reflexive
reduction given by: a ≻ b ⇔ a � b ∧ a 6= b. Conversely, if “≻” is a
strict partial order, then the corresponding non-strict partial order “�” is the
reflexive closure given by: a � b ⇔ a ≻ b ∨ a = b. An antichain of 〈S,�〉
is a subset A⊆ S such that ∀x , y ∈ A : x � y =⇒ x = y. We write x ‖ y if
x 6� y ∧ y 6� x . A chain is a subset C ⊆ S such that ∀x , y ∈ C : x � y ∨ y � x .
Given a poset 〈S,�〉, the down-set of x ∈ S is ↓ x = {y ∈ S | x � y}, while the
up-set of x ∈ S is ↑ x = {y ∈ S | y � x}. Given a � b, the interval [a, b] is the
set of points x satisfying a � x ∧ x � b. Similarly, the interval (a, b) is set of
points x satisfying a ≻ x ∧ x ≻ b.

The transitive reduction of a binary relation R on a set S is the smallest re-
lation R′ on S such that the transitive closure of R′ is the same as the transitive
closure of R. If the transitive closure of R is antisymmetric and finite, then R′

is unique. Given a graph where R is the set of arcs and S the set of vertices, its
transitive reduction is referred to as its minimal representation. The transitive
reduction of a finite acyclic graph is unique and algorithms for finding it have
the same time complexity as algorithms for transitive closure [18]. A Hasse
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diagram is a picture of a poset, representing the transitive reduction of the par-
tial order. Each element of S is a vertex. A line from x to y is drawn if y ≻ x ,
and there is no z such that y ≻ z ≻ x . In this case, we say y covers x , or y is
an immediate successor of x , also written y ⋗ x . A lattice is a poset in which
every pair of elements has a unique join (the least upper bound, or lub) and
a meet (the greatest lower bound, or glb). The name “lattice” is suggested by
the Hasse diagram depicting it. Given a poset 〈L,�〉, L is a lattice if ∀x , y ∈ L

the element pair has both a join, denoted by x ç y, and a meet, denoted by
x æ y within L. Let 〈L,�,ç,æ〉 be a lattice. We say that 〈Λ,�,ç,æ〉 : Λ ⊆ L is
a sublattice if and only if ∀x , y ∈ Λ : x ç y ∈ Λ ∧ x æ y ∈ Λ. In general, we
define:

◮
b
Λ = {x ∈ L | ∀ℓ ∈ L,∀λ ∈ Λ : ℓ� λ =⇒ ℓ� x}, the join of Λ (lub);

◮
c
Λ = {x ∈ L | ∀ℓ ∈ L,∀λ ∈ Λ : λ� ℓ =⇒ x � ℓ}, the meet of Λ (glb).

In particular, x ç y =
b
{x , y} and x æ y =

c
{x , y}. Both

b
Λ and

c
Λ are

unique.
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3
Cost-Driven

Role Engineering

T he objective of this chapter is to fill a typical gap existing in several role
engineering methods, which lack a metric for measuring the “quality”
of candidate roles produced. To this aim, we propose a new approach

guided by a cost-based metric, where “cost” represents the effort to adminis-
ter the resulting RBAC configuration. Further, we propose RBAM (Role-Based

Association-rule Mining), an algorithm that leverages the cost metric to find
candidate role-sets with the lowest possible administration cost. We provide
several examples showing the sensibility of assumptions made by the algo-
rithm. Further, applications of the algorithm to real data highlight the im-
provements over other solutions. This chapter summarizes the contribution
previously published in [3].

3.1 Cost Analysis

As stated in Chapter 1, the RBAC model must be properly customized in order
to maximize the its advantages. Moreover, in Section 2.3 we showed that
for a given access control configuration, several RBAC states—that is, several
candidate role-sets—can be found. Therefore, the objective of any role mining
algorithm should be to select the “best” candidate role-set among all possible
solutions to the problem. Surprisingly, existing role engineering approaches
lack a formal metric to capture the “interest” or “quality” of candidate roles.
Although this problem has recently been addressed by other authors, there
exist some limitations in the suggested resolutions. For instance, in [103]


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only the number of role-user and role-permission relationships are analyzed.
[92] restricts the analysis to the number of roles and shows that identifying
the optimal solution has exponential complexity. Unfortunately, no heuristic
method is proposed to attack the problem.

In the following we propose a cost-driven approach for the identification of
candidate role-sets based on the measurement and evaluation of cost advan-
tages during the entire role-set definition process.

3.1.1 Problem Description

A cost function is a combination of several cost elements, each of them consid-
ering a particular business- or IT-related aspect. Among the data available to
the organization, it is possible to find information that might either directly in-
fluence the required system administration effort (e.g., number of roles, num-
ber of role-user relationships to be administered, etc.) or information that
might help role engineers assign business meaning to roles (e.g., business pro-
cesses, organization structure, etc.). Once an organization has identified the
relevant data for access control purposes, this data should be “translated” into
cost elements and then combined into a cost function. This makes it possible
to identify the optimal candidate roles which best describes the actual needs
of the organization. More specifically, minimizing the cost function can simul-
taneously optimize the administration effort as well as the business meaning
related to the elicited roles. Hence allowing for a hybrid approach to role
engineering.

Starting from the concepts introduced in Section 2.3, the proposed ap-
proach is founded on the following definitions:

Definition 3.1 (Cost Function) Let Φ,Ψ be respectively the set of all possi-
ble system configurations and RBAC states. We define the cost function as

cost: Φ×Ψ→ R
+

where R
+ indicates positive real numbers including 0. It represents an admin-

istration cost estimate for the state ψ used to obtain the configuration ϕ.

Leveraging the cost metric enables to find candidate role-sets with the low-
est effort to administer them:

Definition 3.2 (Optimal Candidate Role-Set) Given a configuration ϕ, an
optimal candidate role-set is the corresponding configuration ψ that simulta-
neously represents a candidate role-set for ϕ and minimized the cost function
cost(ϕ,ψ).
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In order to find the optimal candidate role-set, different kinds of cost func-
tions could be proposed. Selecting a cost function that better fits the needs
of an organization is further discussed in Chapter 5. In particular, finding the
optimal candidate role-set can be seen as a multi-objective optimization prob-

lem [33]. An optimization problem is multi-objective when there are a number
of objective functions that are to be minimized or maximized. Multi-objective
optimization often means to trade-off conflicting goals. In a role engineering
context, possible objectives are: minimizing the number of roles; minimizing
the number of role possessed by each user; maximizing the business meaning
of roles. The dependencies among role engineering objectives might be quite
complex and not obvious1. For example, if on one side |ROLES| decreases,
there is a strong chance that more roles will be required to cover all the per-
missions possessed by users, causing |UA| to increase. On the other hand, if
we want to reduce the average number of roles per user, we will need more
ad-personam roles, then |ROLES| will likely increase.

For the sake of simplicity, in the following we just consider a “flat” RBAC
model, in which permission inheritance between roles does not exist. In this
case, auth_perms(r) = ass_perms(r), while auth_users(r) ⊇ ass_users(r).
Given this hypothesis, a reasonable cost function could be:

f = α|UA|+ β |PA|+ γ|ROLES|+ δ
∑

r∈ROLES

c(r) (3.1)

where α,β ,γ,δ ≥ 0. A linear combination of the cost factors is only one
of many possibilities, even if the simplest. The following analysis, however,
can be easily adapted to other types of costs. The function c : ROLES → R

expresses an additional cost related to other business information different
from |ROLES|, |UA| and |PA|. For example, the cost function can be used in a
bottom-up approach to discard roles which increment the administration cost
of the candidate role-set. In this case, when a complete or partial role design
is available from a top-down engineering process, we can avoid deletion of all
pre-defined roles representing them with c(r) → −∞. Thus, creating a hy-
brid role engineering method. Similarly, we could think about a “blacklist” in
which all roles have c(r)→ +∞. This could be useful in implementing separa-
tion of duties rules, assigning an infinite cost to combinations of permissions
which allow incompatible activities. Another important aspect to be taken

1Arguably, reasonable cost metric formulas are difficult to obtain synthetically: they must
result from data gathered from real-world RBAC settings, e.g., companies that convert to
RBAC and have experience in post-conversion management. If defining a sensible cost func-
tion is not feasible for the given company, Section 5.4 describes a more viable solution to
crafting meaningful roles. Additionally, [13] offers a new, promising approach to role engi-
neering.
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into account via c(r) relates to user attributes. For example, a role exclusively
used within a given organizational unit may have a higher cost than a role
used across multiple organizational units, as it requires the co-ordination of
various user managers. The actual utilization of permissions, derivable from
system log analysis, can also influence the administration cost. Furthermore,
permission validity is often time limited [23]. Permanently and temporarily
assigned permission could be distinguished during the role mining process by
c(r)→ +∞ for those roles containing permissions with a set expiration time
for some user. Alternatively, a lesser value of c(r) could be given to roles
with assigned profiles of longer duration. Finally, when hierarchical RBAC is
adopted, c(r) could take into account the number of hierarchical associations.

The following section describes how to identify possible complete candi-
date role-sets starting from the set UP, analyzing how the cost changes as
roles are deleted.

3.1.2 Permission Lattice and Roles

Suppose we define a role for each possible permission combination, that is, a
candidate role-set based on the PERMS lattice. Such a set is interesting in that
it is a superset of every possible candidate role-set.

The administration cost of the role-set built upon the PERMS lattice is nei-
ther a maximum nor a minimum of the cost function. In fact, it is possible
to increase the cost by increasing the number of role-user relationships. For
example, let PERMS = {1, 2, 3} so that ROLES= { {1}, {2}, {3}, {1, 2}, {1, 3},
{2, 3}, {1, 2, 3} }. If the role {1, 2, 3} is removed from ROLES, a combination
of the remaining candidate roles must be used to cover its permissions, such as
{1, 2} and {1, 3}. This doubles the number of relationships in UA. Depending
on α, β , γ, δ, c(r) and the number of users assigned to {1, 2, 3}, this could
increase the cost even if ROLES and PA are smaller. Moreover, the cost is
greater than the optimal. In fact, if we delete all roles representing combina-
tions of permissions not possessed by any user, the cardinality of ROLES and
PA diminishes while UA remains the same. If c(r) ≥ 0, the cost diminishes as
well.

Therefore, the objective is to analyze which combinations should be re-
moved from the lattice in order to converge toward the optimal candidate
role-set.

3.1.3 Discarding Candidate Roles

Suppose that we want to delete a role r whose permissions can be obtained
from the union of permissions assigned to a subset of ROLES. Removing r
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does not alter the completeness property of the role-set, but could lead to
positive or negative fluctuation of the cost function value. In particular, the
new administration cost would be changed by:

−αur +αµrur − βpr − γ−δc(r) (3.2)

in that:

◮ −γ indicates a role is removed from ROLES;
◮ −βpr indicates that pr relationships are removed from PA, where pr =

|auth_perms(r)|;
◮ −αur indicates that ur relationships are removed from UA, where ur =

|ass_users(r)|;
◮ +αµrur indicates that role r must be replaced with different µr roles,

so that each user having a relationship with role r would now have new
relationships with µr different roles;
◮ −δc(r) indicates that the cost related to other business information

about r is no longer needed.

In order to reduce the administration cost, Equation (3.2) must thus be nega-
tive, that is:

(µr − 1)ur ≤ σpr +τ+υc(r) (3.3)

where σ = β/α, τ = γ/α and υ = δ/α. According to Equation (3.3), delet-
ing a role from the candidate role-set is advantageous when the role is not
supported by a sufficient number of users. The deletion becomes more ad-
vantageous as the role’s degree increases or as the number of roles needed to
replace it decreases. It should be noted that:

◮ when τ= 0 (that is γ= 0) no weight is given to the number of roles;

◮ when σ = 0 (that is β = 0) no weight is given to the management of
role-permission assignment;

◮ when σ,τ,υ→∞ (that is α→ 0) no weight is given to the management
of role-user assignment. Since Equation (3.3) is always true, deleting
roles not affecting the completeness property is always worthwhile.

The choice of parameters σ, τ and υ is clearly dependent on the company we
analyze, while c(r) fluctuates based on its specific definition. However, pr is
constant respecting the role, while ur and µr vary according to deletion of
other roles, as follows:
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u r analysis Given two roles r1, r2 ∈ ROLES such that r1 ≻ r2, it is more advan-
tageous that all users possessing all the child r1 permissions be assigned
to r1 and not to the parent r2. In fact, in the latter case further user-role
assignments would be necessary. If r1 is deleted, users assigned to r1

would probably be assigned to r2, resulting in an increase in the vari-
able ur2

. Only direct parents of the deleted role are affected. In the case
in which role r1 has one or more 1:1 or 1:n equivalent children, no user
will be assigned to role r1, thus we will have ur1

= 0. This implies that all
candidate roles having equivalent children can always be deleted since
Equation (3.3) is always true.

µr analysis The roles which may replace r have to be exclusively sought
among direct parents, as it is preferable to assign a user to the deep-
est child role in a hierarchy. Deleting a parent role can result in growth
of µr if, for instance, instead of such a parent we choose roles with lower
degrees. In other cases, deletion of a parent role may prevent the dele-
tion of role r.

3.1.4 Finding Optimal Candidate Role-Sets

In the previous section we detailed how the administration cost can vary after
the deletion of a candidate role. The optimal set is certainly to be a subset
of the PERMS lattice. The aim is thus to identify which combinations must be
deleted from the PERMS lattice to obtain the minimum cost while maintaining
the completeness property.

The order in which the deletions take place is relevant when testing Equa-
tion (3.3). In particular, deleting a role exclusively affects the cost of direct
parents and children. However, deleting a parent or child role can affect the
deletion of other roles. Thus, the problem of identifying the correct set of
roles to delete is not trivial. One possible solution is to scan the whole solu-
tions space in search of a set that minimizes administration cost. Although
such an algorithm leads to the optimal set, it is unfeasible as it has exponen-
tial complexity. In fact, given that α,γ = 1, and β ,δ = 0 in Equation (3.1),
the identification of the optimal set is equivalent to the Role Mining Problem

(RMP) described in [92], which has proved to be N P -complete.
Next section introduces an algorithm that allows us to approximate the

optimal solution.
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3.2 Approximating the Optimum

The following algorithm, called RBAM (Role-Based Association-rule Mining)
offers a sub-optimal solution for the problem of identifying the optimal candi-
date role-set. Approximations introduced by RBAM are discussed throughout
the section, highlighting how these do not invalidate the quality of the ob-
tained output. Supporting examples will be given at the end of this section.

3.2.1 Lattice Generation

The generation of the candidate role-set based on the PERMS lattice is derived
from the Apriori algorithm [17]. Apriori can be seen as an algorithm for the
generation of a partial lattice. The solutions space is obtained by pruning
the combinations whose support is lower than a pre-established and constant
minimum. We now provide the following definition:

Definition 3.3 Among all users possessing the permissions assigned to role r,
only a subset will likely be assigned to r. Therefore, we define actual support,
as actual_support(r) = |ass_users(r)|/|USERS|.

Equation (3.3) shows that the gain introduced by a role is related to the
number of users assigned to such a role. Since ur = |ass_users(r)| then
actual_support(r) = ur/|USERS|, so that Equation (3.3) becomes:

(µr − 1)actual_support(r) ≤ σ̄pr + τ̄+ ῡc(r) (3.4)

where σ̄, τ̄ and ῡ are obtained from σ, τ and υ dividing them by |USERS|.
Equation (3.4) presents the advantage of being normalized by the number of
users, thus σ̄, τ̄ and ῡ may be specified as parameters independent from the
set UP to be analyzed.

Equation (3.4) may be used to implement an Apriori version with variable

minimum support. Only roles not increasing the administration cost of pre-
viously calculated roles will be generated. The proposed RBAM algorithm is
consequently composed of the following steps:

Step 1 An initial analysis of the set UP provides the set R1 containing candi-
date roles of degree 1 with a support greater than the minimum.

Step k When k ≥ 2 set Rk is generated merging all possible role pairs in Rk−1

(join step). In order not to generate roles with the same permission
set, a lexicographical order for the permission is given. Thus, only
role pairs differing in the greater permission are considered. Combi-
nations not meeting minimum support constraints are rejected (prune
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step). Hierarchical association set Hk is also identified, relating roles
in Rk whose assigned permissions are a superset of permissions as-
signed to roles in Rk−1.

Stop The algorithm completes when Rk = ;, returning ROLES as the union
of all calculated Ri and RH as the union of all calculated Hi.

Compared to the Apriori algorithm, the produced set RH is equivalent to
“association-rules” between itemsets. Since we supposed a non hierarchical
RBAC model, RH is not intended for inheritance of role-permission or role-
user assignments. Nevertheless, identifying hierarchical relationships is still
worthwhile, since it provides a means to “navigate” the candidate roles.

The first difference from Apriori is represented by the pruning operation.
The minimum support constraint used in the prune step is a particular case of
Equation (3.4). In fact:

◮ During the step k, level-(k + 1) roles are not yet generated. Thus, we
have that support(r) = actual_support(r) for each r ∈ Rk.
◮ The join step combines role pairs calculated in the previous step which

differ by only one permission. Then, all roles in Rk have degree k. This
means that pr = k for each r ∈ Rk.
◮ Each role in Rk is established by merging a pair of roles in Rk−1, therefore

it is always µr = 2.

Starting from Equation (3.4), we can define the following pruning condition:

support(r)> σ̄k+ τ̄+ ῡc(r). (3.5)

In order to preserve all the properties of the Apriori algorithm, the correct-
ness of the prune step must be ensured through the following theorem:

Theorem 3.1 Given r1, r2 ∈ ROLES such that r1 � r2 and c(r1) ≥ c(r2), if a

role does not satisfy Equation (3.5), then none of its child roles will be generated.

PROOF If in step k the role r is not generated, then its support is such that
support(r)≤ σ̄k+ τ̄+ ῡc(r). Any child role r ′ will be generated from step k+

1 onward. Furthermore, because of Equation (2.1) at page 12, we have
auth_users(r ′) ⊆ auth_users(r) and thus support(r ′) ≤ support(r). Further-
more, c(r ′) ≥ c(r). Therefore, support(r ′) ≤ σ̄k+ τ̄+ ῡc(r) ≤ σ̄(k+ 1) +
τ̄+ ῡc(r ′). �

On the basis of Theorem 3.1, if a role r is rejected because of minimal
support, then all its child roles will certainly not be generated (see Figure 3.1).
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R1 =
{

1 2 3 4
}

H2 =

{ }

R2 =

{

1, 2 1, 3 1, 4 2, 3 2, 4 3, 4
}

H3 =

{ }

R3 =

{

1, 2, 3 1, 2, 4 1, 3, 4 2, 3, 4
}

H4 =

{ }

R4 =
{

1, 2, 3, 4
}

low support

role

Figure 3.1 An instance of Theorem 3.1

This is coherent with the Apriori approach, but it does not always lead to the
optimal administration cost. In fact, a role r with degree k+1, by construction
of the algorithm, should be generated at step k+1. The generation of r could
result in the deletion of level-k roles as it decreases users assigned to parents.
However, Equation (3.5) does not take into account that generation of a role
may result in the deletion of other roles.

Another important observation is that applying Equation (3.5) when k =

1 implies that all permissions whose support is too low are rejected. This
means that the candidate role-set is not always complete. Rejected permissions
must be individually managed through the creation of an ad hoc role for each
permission. The number of users with such permissions is low, hence the
approximation is usually acceptable.

Notice that when children of r are generated in step k+ 1, the value of ur

will decrease. This means that immediately after the generation of level-
(k + 1), Equation (3.4) must be checked again for all level-k roles. At the
end of level k the RBAM-purge procedure performs such an operation. This
represents the other main difference from Apriori. RBAM-purge is described
in the following section.

3.2.2 Removing High-Cost Roles

Since the generation of level-k roles influences the variable ur of level-(k− 1)
roles, further deletion of generated roles may thus be necessary. Algorithm 3.1
details the RBAM-purge procedure used to do so. The algorithm performs
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3.1 RBAM-purge procedure, used to implement RBAM as a customized version of Apriori

1: procedure RBAM-purge(Rk−1, Hk, Hk−1,PA,UA, σ̄, τ̄, ῡ)
2: {Remove from parents the users also assigned to children}
3: UA← {〈u, r〉 ∈ UA | u 6∈

⋃
h∈Hk:h.prnt=r ass_users(h.child)}

4: for all r ∈ Rk−1 do

5: r.act_supp← |{〈u, r ′〉 ∈ UA | r ′= r}|/|USERS|
6: end for

7: {Identify removable roles with low support}
8: ∆←

�
r ∈ Rk−1 | r.act_supp = 0 ∨

�
r.act_supp ≤ σ̄(k− 1)+ τ̄+ ῡc(r) ∧

9: r.supp · |USERS| =
��⋃

h∈Hk−1:h.child=r ass_users(h.prnt)
���	

10: {Remove roles with low support}
11: for all r ∈∆ do

12: {Transfer only direct hierarchies}
13: for all hp∈Hk−1,hc∈Hk : hp.child=hc.prnt= r do

14: if ∄h′∈ Hk : h′.child = hc .child ∧ h′.prnt 6∈∆ ∧
15: ∧ ass_perms(h′.prnt)⊇ass_perms(hp.prnt) then

16: h.prnt← hp.prnt
17: h.child← hc .child
18: h.conf← hp.conf · hc.conf
19: Hk← Hk ∪ {h}

20: end if

21: end for

22: {Transfer users to parents, then remove r}
23: UA← {〈u, r ′〉 | ∃h ∈ RH,u ∈ USERS : h.prnt = r ′ ∧ h.child = r ∧ 〈u, r〉 ∈ UA}
24: for all r ′∈ {h.prnt | h ∈ RH∧ h.child = r} do

25: r ′.act_supp← |{〈u, r ′′〉 ∈ UA | r ′′= r ′}|/|USERS|
26: end for

27: Rk−1← Rk−1 \ {r}

28: Hk−1← {h ∈ Hk−1 | h.child 6= r}

29: Hk← {h ∈ Hk | h.prnt 6= r}

30: PA← {〈p, r ′〉 ∈ PA | r ′ 6= r}

31: UA← {〈u, r ′〉 ∈ UA | r ′ 6= r}

32: end for

33:

34: return 〈Rk,Rk−1, Hk, Hk−1,PA,UA〉
35: end procedure
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operations upon the following data structures:

◮ The set ROLES. It represents the union of all the sets Rk. For each r ∈

ROLES are identified:

• r.supp: role r support;
• r.act_supp: role r actual support;
• r.degree: the number of permissions assigned to r.

◮ The set RH that hierarchically links candidate roles to one another. It
represents the union of all sets Hk. This means that only direct relation-

ships are determined. For each h ∈ RH are identified:

• h.prnt and h.child: parent and child roles hierarchically related;
• h.conf: confidence value between roles.

◮ The set PA. This set merely correlates candidate roles with their assigned
permissions.
◮ The set UA. It contains the proposed role-user assignments. At the end

of step k, relationships between users and permissions assigned to the
level-k roles are added to the set.

Algorithm 3.1 provides the following steps:

◮ Lines 3–6: Among the users assigned to level-(k−1) roles, those assigned
to level k children are removed from UA, thus updating the actual sup-
port.
◮ Lines 8–9: All level-(k − 1) roles that meet Equation (3.5) are identi-

fied after level-k role generation. Such roles can be deleted only if they
preserve the completeness property, that is ur = 0 (there is a 1:1 or 1:n
equivalence with their children) or there are suitable sets of parent roles
to replace them.
◮ Lines 11–32: Users assigned to roles being deleted are transferred to

their parents. Hierarchies are transferred to children, ensuring that in-
direct hierarchy relationships are not generated. Then roles are deleted.

The algorithm introduces some approximations. Indeed, if a level-k role
is deleted, the value of ur relating to a level-(k − 1) role r could grow, so
that Equation (3.4) is not likely to be satisfied. However, before step k is
performed, Equation (3.4) could have been satisfied for role r. Thus it could
have been deleted. If this is the case, the algorithm does not undelete r.

Another approximation is represented by lines 8–9. Variable µr does not
explicitly appear as it is presumed to always be equal to 2. This gets rid of the
need to calculate the actual value of µr , but it can result in a higher number
of deletions with respect to the optimal solution.
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Another simplification is introduced in lines 23–23, which “transfer” the
users assigned to deleted roles to all their parents, without identifying a min-
imum set of parent roles to replace deleted roles. In this way, it is likely to
have proposed more role-user assignments than actually needed, leaving to
the administrator the burden of selecting the best subset among all proposed
roles. This cannot be avoided without providing further elements defining role
semantics.

Regarding hierarchical relationships, when a role is deleted all the hierar-
chical relationships with the parents must be “transferred” to the child roles.
When a path between the child role and the inherited parent already exists,
this operation can create indirect hierarchical relationships. Analyzing the
set PA helps us determine if a hierarchical relationship must (or must not)
be inherited. Given r1, r2 ∈ ROLES such that r1 → r2, where r2 is the role
being deleted, r1 inherits p ∈ ROLES such that of r2 → p if and only if:
∄p′ ∈ ROLES : r1 → p′ ∧ ass_perms(p′) ⊇ ass_perms(p). This is reflected
in lines 14–15. In this way, we guarantee that RH only contains direct rela-
tionships. According to Lemma 2.2, the confidence of a new relationship is
calculated as the product of confidences along the hierarchical path.

3.2.3 Examples

Two instances of the RBAM algorithm are provided below and summarized
in Figure 3.2. Edges in the represented graph show confidence values, while
values next to nodes show support() in bold and actual_support() between
brackets.

Figure 3.2(a) shows the application of the algorithm to the data in Fig-
ure 3.2(c), given τ= 1/11 and σ,υ = 0. The cost of this model is:

|UA|+σ|PA|+τ|ROLES|= 14+ 0× 12+ 1× 5 = 19

where the obtained value is divided by the parameter α. Since τ 6= 0, the algo-
rithm produces a low number of roles and attempts to minimize the number
of user-role relationships. In fact, each user is assigned to a single role except
for F , I , and J who are assigned to two roles. To understand the minimality
of the result, it should be noted that the set ROLES = { {1}, {2}, {3}, {4}, {5} }
also consists of five roles. In this case, the number of user-role assignments
would be higher as each user should be assigned to a number of roles equal to
the permissions held, that is |PA|= 31.

Figure 3.2(b) details the case in which τ,υ= 0 and σ = 1/11. The cost of
the obtained model divided by α is:

|UA|+σ|PA|+τ|ROLES|= 19+ 1× 13+ 0× 7= 32.
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(a) σ̄ = 0, τ̄ = 1/11

3 5 4

1, 2 3, 4

1, 2, 3 1, 2, 4

60% 50%

80%

44%

83%

56%

45% (9%) 55% (9%)18% (18%)

82%
(27%)

27%
(27%)

36% (36%) 45% (45%)

(b) σ̄ = 1/11, τ̄ = 0

User Permissions Roles (a) Roles (b)

A 3 {{{3}}} {{{3}}}

B 4 {{{4}}} {{{4}}}

C 1, 2 {{{1, 2}}} {{{1, 2}}}

D 1, 2 {{{1, 2}}} {{{1, 2}}}

E 1, 2 {{{1, 2}}} {{{1, 2}}}

F 1, 2, 3 {{{1, 2}}} + {{{3}}} {{{1, 2, 3}}}

G 1, 2, 3, 4 {{{1, 2, 3, 4}}} {{{1, 2, 3}}} + {{{1, 2, 4}}} + {{{3, 4}}}

H 1, 2, 3, 4 {{{1, 2, 3, 4}}} {{{1, 2, 3}}} + {{{1, 2, 4}}} + {{{3, 4}}}

I 1, 2, 3, 4, 5 {{{1, 2, 3, 4}}} + {{{1, 2, 4, 5}}} {{{1, 2, 3}}} + {{{1, 2, 4}}} + {{{3, 4}}}+ {{{5}}}

J 1, 2, 4 {{{1, 2}}} + {{{4}}} {{{1, 2, 4}}}

K 1, 2, 4, 5 {{{1, 2, 4, 5}}} {{{1, 2, 4}}} + {{{5}}}

(c) Input user-permission assignment and proposed role-user assignment for ex-
amples (a) and (b)

Figure 3.2 Application of RBAM to toy examples

Since σ 6= 0, the algorithm generates roles with lower degree than the pre-
vious example. However, due to the approximations introduced by the algo-
rithm, three roles are proposed for G, H, and I , even if only two are strictly
necessary. Indeed, for these users it is sufficient to assign only one couple
among { {1, 2, 3}, {3, 4} }, { {1, 2, 4}, {3, 4} } and { {1, 2, 3}, {1, 2, 4} }. The final
decision can only be made by an administrator who knows the actual mean-
ing of the permissions grouping. By deleting the redundant role {1, 3}, the
administration cost would become 16+ 1× 11+ 0× 6= 27.

The cost advantage obtained through the RBAM algorithm can be seen in
comparison to the administration cost of an access control system which does
not rely on the RBAC model. We can think about an RBAC model consisting of
roles having only one permission, simulating a situation in which the permis-
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sions are directly assigned to users. The administration cost of role-permission
relationships can be overlooked (that is σ = 0) as it could be easily automated.
Given τ= 1/11 the cost without RBAC would be:

|UA|+τ|ROLES|= 31+ 1× 5= 36.

Using RBAM the cost is almost half compared to the result provided in Fig-
ure 3.2(a).

3.2.4 Comparative Analysis

The analysis proposed in this chapter includes and extends similar studies. It
can in fact be lead to [103] given that α,β ,γ= 1 and δ = 0 in Equation (3.1),
while the analogy with [92] derives from α,γ = 1 and β ,δ = 0. Compared
to [92,103], the RBAM algorithm additionally offers a way to obtain a reason-
able approximation of the optimal solution. The algorithm also allows higher
level data to be taken into consideration, such as the roles designed with a
top-down approach, permissions incompatibility data, user attributes etc., of-
fering a chance to implement a hybrid role engineering approach. Another
advantage concerns the possibility of choosing whether to implement or not
implement a hierarchical RBAC model, given that not all commercial access
control products offer this option. Furthermore, the RBAM algorithm also
proposes possible users to roles assignment, further simplifying the work of
the system administrator.

3.2.5 Testing With Real Data

To assess the efficiency of the RBAM algorithm, many tests have been con-
ducted using real data. In order to highlight the properties of the algorithm,
consider analysis results of data from an application presenting a heteroge-
neous distribution of permissions among users. Thus, the resulting authoriza-
tion situation was virtually unanalyzable using standard role mining tools. In
total, 4743 users possessing 2907 permissions were analyzed. By applying the
RBAM algorithm with τ̄ = 200/4743 = 4.2% and σ̄ = 0, the total of 42 roles
were generated. The related cost is:

|UA|+σ|PA|+τ|ROLES|= 6547+ 0× 100+ 200× 42 = 14947.

Not all the 2907 permissions were analyzed by RBAM, since only 23 per-
missions were held by at least 200 users (that is τ̄ = 4.2%). In particular,
4161 users (88%) were possessing these permissions. Without RBAC, the ad-
ministration cost of the aforementioned 23 permissions would be:

|UA|+σ|PA|+τ|ROLES|= 31557+ 0× 23+ 200× 23= 36157
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reducing the cost by 59%. Of course, the result can drastically improve if more
complex cost functions are used.

The remaining 2907 − 23 = 2884 permissions were scattered over 4654
users through 32182 user-permission associations. Consequently, permissions
must be individually managed. Alternatively, the value of τ should be de-
creased so that more permissions can be considered. Otherwise, the analysis
can be restricted to only those permission belonging to a single application
module.

Finally, we consider computational complexity. It could be showed that
in the worst case scenario RBAM is N P -complete, as it derives from Apri-
ori [100]. However, performing tests on real data sets has shown the algo-
rithm to be quite efficient when using suitable values for parameters σ̄ and τ̄
despite the tens of thousands of users and thousands of permissions. For ex-
ample, if the value of τ̄ is high (i.e. we find only permission sets belonging to a
large number of users) most of the permission lattice is pruned, thus reducing
the combinations being analyzed.

3.3 Final Remarks

In this chapter we described a formal model to derive optimal role-users as-
signment. This model is driven by a cost-based function, where the cost is ex-
pressed in terms of the administration effort in managing the resulting RBAC
model.

Further, we proposed the RBAM algorithm, that approximates the optimal
solution (known to be N P -complete) for this cost-based model. For specific
parameter settings, the proposed algorithm even emulates other known algo-
rithms. Further, as preliminary testing over real data sets shows, tuning its
parameters it achieves even better performances than such known algorithms.
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4
Pattern Identification in

Users’ Entitlements

I n the following we describe a new formal framework applicable to role
mining algorithms. This framework is based on a rigorous analysis of
identifiable patterns in access permission data. In particular, it is possible

to derive a lattice of candidate roles from the permission powerset. We formally
prove some interesting properties about such lattices in a role engineering
context. These properties can be used to optimize role mining algorithms.
Data redundancies associated with co-occurrences of permissions among users
can be easily identified and eliminated, allowing for increased output quality
and reduced processing time. Moreover, we leverage the equivalence of the
role identification problem above with the vertex coloring problem. Our main
result is the proof that the minimum number of roles is sharply concentrated
around its expected value. A further contribution is to show how this result
can be applied to decide whether it is advisable to undertake the efforts to
renew an RBAC state. This chapter summarizes the contribution previously
published in [4,7].

4.1 Patterns and Redundancies

As stated in Chapter 2, several role mining techniques proposed to date in
literature seek to derive candidate roles through the identification of data pat-
terns in existing access rights. Despite important differences among the var-
ious techniques, almost all can take advantage of some common principles
summarized by the following:

◮ If two access permissions always occur together among users, these should


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simultaneously belong to the same candidate roles. Without further ac-
cess data semantics, a bottom-up approach cannot differentiate between
a role made up of two permissions and two roles containing individual
permissions [94]. Moreover, defining roles made up of as many per-
missions as possible minimizes the administration cost by reducing the
number of role-user assignments (see Chapter 3).

◮ If no user possesses a given combination of access permissions, it makes no

sense to define a role containing such combination. Similar to the previous
point, if no user actually performs a task for which a certain permission
set is necessary, it is usually better not to define a role containing such
an unassignable set.

◮ It is quite common within an organization to have many users possessing

the same set of access permissions. This is one of the main justifications
that brought about the RBAC model. The creation of a role in connection
with a set of co-occurring permissions is typically more advantageous
since the number of relationships to be managed is reduced.

The following example clarifies the assertions just made, particularly that of
the first point presented. If of the given four permissions p1, p2, p3, p4, the pair
p1, p2 is always found together with p3, p4, it is advisable not to define two
distinct roles {p1, p2} and {p3, p4} but, rather, a single role {p1, p2, p3, p4}. This
is different from saying that no user possesses only p1, p2 without also having
some other permission. Suppose some users possess only p3, others only p4,
others p1, p2, p3 and still others p1, p2, p4. In this case, even if p1, p2 never
occur “by themselves”, it could be convenient to define the role {p1, p2} since
roles {p3} and {p4} will certainly already exist individually. Thus, avoiding
roles {p1, p2, p3} and {p1, p2, p4}.

Existing role mining techniques do not always exploit the above-mentioned
observations, even though analyzing such data “recurrences” could improve
the quality of proposed candidate roles or increase computational efficiency
of the algorithms. To this aim, this chapter provides a new model capable
of increasing output quality and reducing process time of role mining algo-
rithms. The model revolves around identifiable patterns in access permissions
data. Through analysis of user permissions, a lattice [31] of candidate roles
can be constructed from the permission powerset. Notable properties of this
lattice will be discussed to substantiate their effectiveness in optimizing role
mining algorithms. Leveraging our results, data redundancies associated with
co-occurrence of permissions among users can be easily identified and elimi-
nated, thus improving the role mining output. To prove the merit of our pro-
posal, we have applied our results to two algorithms: Apriori [17] and RBAM



4.2. Roles Based on Permission-Powerset Lattice 

(see Chapter 3). Applying them to a realistic data set yielded drastic reduc-
tions in running time and often provided significant redundancy elimination.

4.2 Roles Based on Permission-Powerset Lattice

In this section we shall investigate the relationship among candidate role-sets
and permission powerset. Moreover, we shall formally prove some interesting
properties about the lattice of such a powerset.

4.2.1 Mapping Patterns to Roles

We now introduce the model on which the following analysis is based. Con-
sider the powerset of a set S (the set of all subsets of S) written as 2S. The set
2S can easily be ordered via subset inclusion “⊇”. It can be demonstrated that
〈2S,⊇,∪,∩〉 is a lattice [31]. Setting S = PERMS makes it possible to build an
RBAC model based on all derivable roles from a given permission set. As the
operator “�” (see Section 2.1) is based on the inclusion operator “⊇” applied
to permissions assigned to roles, it is thus natural to map the operators “ç”
to “∪” (the join of two roles represented by the union of all assigned permis-
sions) and “æ” to “∩” (the meet of two roles represented by shared permis-
sions). Every permission combination of the lattice 〈2PERMS,�,ç,æ〉 identifies
the following: 1) an element of ROLES, 2) its corresponding relationships
in PA to such permissions, 3) all permission inclusions in RH which involve
the role and 4) all relationships in UA to users possessing such combination.
RH is defined to represent the transitive reduction of the graph associated
to the lattice. Moreover, if a user is assigned to a role r, then UA will con-
tain relationships between r, its juniors and users assigned to them, namely
∀r ∈ ROLES,∀ j ∈ ↓ r : ass_users(r)⊆ ass_users( j).

For simplicity sake, from now on the lattice 〈2PERMS,�,ç,æ〉 is identified
only with the set ROLES. The following are some basic properties of this lat-
tice:

Lemma 4.1 Removing a role r from ROLES, and its corresponding relation-

ships in PA, UA, RH, such that ass_perms(r) 6=
⋂

r′∈ROLES ass_perms(r ′) and

ass_perms(r) 6=
⋃

r′∈ROLES ass_perms(r ′), the resulting set ROLES is still a lat-

tice.

PROOF The role r such that ass_perms(r) =
⋂

r′∈ROLES ass_perms(r ′) represents
a lower bound for any role pairs. Analogously, we have that ass_perms(r) =⋃

r′∈ROLES ass_perms(r ′) represents an upper bound, thus lattice properties are
preserved. �
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Note 4.1 Given r ∈ ROLES then ∀s ∈ ↑ r : support(r) ≥ support(s). In fact,
users possessing permission combination ass_perms(r) do not necessarily pos-
sess other permissions. Analogously, ∀ j ∈ ↓ r : support(r) ≤ support( j). Apri-
ori [17] and RBAM (see Chapter 3) algorithms use this property as a pruning
condition to limit the solution space.

Based on the initial hypothesis of Section 4.1, roles to which unused per-

mission combinations are assigned do not represent significant candidate roles.
Such roles have support equal to 0 and can be eliminated from ROLES, ex-
cept for the meet and join which are required to preserve lattice properties
(see Lemma 4.1). Removing such roles results in a lattice that satisfies the
following property:

Lemma 4.2 The immediate seniors of a role r ∈ ROLES differ from r by a single

permission, that is ∀r, s ∈ ROLES : s⋗ r =⇒ degree(s) = degree(r) + 1.

PROOF For Equation (2.1) at page 12, any role represented by a subset of
ass_perms(s) has support > 0 and is at least assigned to users ass_users(s).
Thus, ROLES contains all roles obtained by removing a single permission from
ass_perms(s), including r. �

4.2.2 Equivalent Sublattices

Let ROLES be the lattice based on 2PERMS in which roles with support equal
to 0 have been eliminated, except for the meet and join. Such set has a very
simple property: every candidate role set is contained within, since it provides
all user-assignable permission combinations. Beyond eliminating roles having
support equal to 0, this section shows that it is also possible to remove roles pre-

senting equivalence with other roles, as they do not belong to any “reasonable”
candidate role set.

Table 4.1 shows an example of UP presenting equivalence relationships.
By observing the data, it can be noted that all users simultaneously possessing
permissions 3 and 4 also always have permissions 2, 5 and 6. Figure 4.1
shows the role lattice built on the given set UP with junior roles above and
senior roles below. Despite this being a directed graph, direction indicators
are absent (from top to bottom) to avoid complicating the figure. Thicker
lines represent hierarchical relationships with confidence equal to 1, namely
equivalence relationships (see Lemma 2.4).

Next, we want to demonstrate that when a role has more equivalent seniors,

the combination of its assigned permissions still represents an equivalent role.
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Table 4.1 An example for UP

User Perms

u1 {1}
u2 {2}
u3 {3}
u4 {4}
u5 {5}
u6 {6}
u7 {1,2}

User Perms

u8 {1,3}
u9 {1,4}
u10 {1,5}
u11 {1,6}
u12 {2,5}
u13 {2,6}
u14 {3,5}

User Perms

u15 {3,6}
u16 {4,5}
u17 {4,6}
u18 {1,2,3}
u19 {1,2,4}
u20 {1,2,5}
u21 {1,2,6}

User Perms

u22 {1,3,5}
u23 {1,3,6}
u24 {1,4,5}
u25 {1,4,6}
u26 {2,3,5}
u27 {2,3,6}
u28 {2,4,5}

User Perms

u29 {2,4,6}
u30 {1,2,3,5}
u31 {1,2,3,6}
u32 {1,2,4,5}
u33 {1,2,4,6}
u34 {2,3,4,5,6}
u35 {1,2,3,4,5,6}

null
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Figure 4.1 Hasse diagram of permission powerset derived from Table 4.1
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For example, {3, 4} ≡ {2, 3, 4}, {3, 4} ≡ {3, 4, 5} and {3, 4} ≡ {3, 4, 6} implies
{3, 4} ≡ {2, 3, 4, 5, 6}. Moreover, the set of equivalent seniors forms a sublat-
tice. We will now formalize this with a series of theorems demonstrating that:
(1) given an interval of roles, if the bounds are equivalent then all roles on the
interval are equivalent with each other; (2) by analyzing immediate equiva-
lent seniors, the equivalent role with the maximum degree can be determined;
(3) an interval of equivalent roles having the equivalent role with the maxi-
mum degree as upper bound is a sublattice of ROLES; (4) such sublattice is
replicated in ROLES with the same “structure”.

Theorem 4.1 Given a role pair r1, r2 ∈ ROLES such that r2 � r1 and r1 ≡ r2,

then all roles on the interval [r1, r2] are equivalent to each other:

∀r, r1, r2 ∈ ROLES : r2 � r � r1 ∧ r1 ≡ r2 =⇒ r ≡ r1 ≡ r2.

PROOF According to Equation (2.1) at page 12, the following equation holds
true: ass_users(r2) ⊆ ass_users(r) ⊆ ass_users(r1). But we also have that
ass_users(r1) = ass_users(r2), therefore the following equality holds as well:
ass_users(r2) = ass_users(r) = ass_users(r1). �

Theorem 4.2 A role r ∈ ROLES is equivalent to the role represented by the

union of permissions assigned to any set of its equivalent seniors:

∀r ∈ ROLES, ∀R⊆ ↑ r, ∀r ′∈ R : r ′≡ r =⇒

=⇒ ∃s ∈ ROLES : r ≡ s ∧ ass_perms(s) =
⋃

r′∈R
ass_perms(r ′).

PROOF Users possessing a role are those possessing all the permissions as-
signed to that role, namely

∀r ′∈ ROLES : ass_users(r ′) =
⋂

p∈ass_perms(r′) perm_users(p).

According to the hypothesis, ∀ri ∈ R : ri ≡ r, so all roles in R are assigned with
the same users. Then

⋂
r′∈R

�⋂
p∈ass_perms(r′) perm_users(p)

�
= ass_users(r).

Such an equality can also be written as
⋂

p∈
⋃

r′∈R ass_perms(r′) perm_users(p) = ass_users(r)

but the set
⋃

r′∈R
ass_perms(r ′) represents the set of all permissions assigned

to the role s. �
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Definition 4.1 Given r ∈ ROLES, the maximum equivalent role of r, written r̄,
is the role represented by the union of permissions of its immediate equivalent
seniors:

ass_perms(r̄) =
⋃

r′∈ROLES | r′⋗r ∧ r′≡r
ass_perms(r ′).

The name attributed to the role r̄ is justified by the following theorem:

Theorem 4.3 Given r ∈ ROLES, r̄ is the equivalent role with the highest degree:

∀r ′ ∈ ROLES : r ′ ≡ r ∧ r ′ 6= r̄ =⇒ degree(r ′) < degree(r̄).

PROOF Seeking a contradiction, suppose that rmax ∈ ROLES : rmax 6= r̄ is the
highest degree role among all those equivalent to r. Since the same users
possess both r̄ and rmax, then ass_perms(r̄) ⊆ ass_perms(rmax). If this was not
the case, then there would exist another role within ROLES made up of the
union of permissions assigned to r̄ and rmax having a larger degree than both
of these. This other role would also be equivalent to r̄ and rmax, since it is
possessed by the same users. However, this contradicts the fact that rmax is of
the highest degree.

Let ∆ = ass_perms(rmax) \ ass_perms(r̄). If ∆ 6= ;, then it is possible to
identify “intermediate” roles ̺ ∈ [r, rmax] such that ∃p ∈∆ : ass_perms(̺) =
ass_perms(r) ∪ {p}. For Lemma 4.2, ̺ ⋗ r, while for Theorem 4.1, ̺ ≡ r.
Since r̄ is obtained by the union of all permissions assigned to all equivalent
immediate seniors, it contains all the permissions of ∆. Consequently, it must
be that ∆= ; and so r̄ = rmax. �

Theorem 4.4 Given r, s ∈ ROLES : s � r, the interval [r, s] is a sublattice of

ROLES.

PROOF As long as [r, s] is a lattice, it must be true that ∀r1, r2 ∈ [r, s] : r1ç r2 ∈

[r, s] ∧ r1æ r2 ∈ [r, s]. Given r1, r2 ∈ [r, s], let rub be an upper-bound role such
that ass_perms(rub) = ass_perms(r2)∪ass_perms(r2). Since s � r1, r2 then the
permissions of s include the union of the permissions of r1, r2, so s � rub. Thus,
rub ∈ [r, s]. Similarly, it can be demonstrated that [r, s] contains a lower-bound
role rlb such that ass_perms(rlb) = ass_perms(r2)∩ ass_perms(r2). �

Definition 4.2 Given a role r ∈ ROLES, we define the equivalent sublattice of
r, indicated by ǫ(r), the interval [r, r̄], that is ǫ(r) = [r, r̄].
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Note 4.2 The set ǫ(r) does not represent all the equivalent roles of r, rather,
only a subset. In fact, we could have r ′∈ ROLES such that r ≡ r ′ even though
r ‖ r ′. However, for Theorem 4.3, from the union of permissions assigned to
immediate equivalent seniors of r or r ′, the same maximum equivalent role
is obtained, that is r̄ ≡ r̄ ′. In fact, in Figure 4.1, roles {3, 4} and {5, 6} are
antichain but, being equivalent to each other, they share the same maximum
equivalent role {2, 3, 4, 5, 6}.

Note 4.3 If a role has equivalent seniors, then no user possesses only its per-
missions, namely

∃r ′∈ (↑ r) \ r : r ≡ r ′ =⇒ ass_users(r) \
⋃
̺∈(↑ r)\r

ass_users(̺) = ;.

The converse is not true. Particularly, if there is no user possessing a given
permission combination, it is unknown whether the role made up of such
permissions has immediate equivalent seniors. This is verified in Table 4.1.
Permissions 3 and 4 are always found together with 2, 5 and 6. Thus, no user
is assigned to role {3, 4} unless also assigned to one of its seniors. Yet, the
contrary is not true: even though {2, 3} has no immediate equivalent seniors,
it is not assigned with any user.

Theorem 4.5 Given a role r ∈ ROLES, let E = {r ′ ∈ ROLES | r ′ ⋗ r ∧ r ′ ≡ r}

be the set of immediate equivalent seniors of r. Then |ǫ(r)|= 2|E|.

PROOF For Lemma 4.2, ∀r ′ ∈ E : degree(r ′) = degree(r) + 1. Thus, permis-
sions assigned to the maximum equivalent role of r include those of r plus a
number of other permissions equal to |E|, that is degree(r̄) = degree(r) + |E|.
Further, ǫ(r) contains all roles whose permission combinations are between
ass_perms(r) and ass_perms(r̄), all of which have support greater than 0.
Hence, the number of permission combinations between ass_perms(r) and
ass_perms(r̄) is 2|E|. �

Theorem 4.6 Let there be r, s ∈ ROLES such that s is an immediate equivalent

senior of r. If there is s′∈ ROLES, an immediate non-equivalent senior or r, then

certainly there is a role s′′ ∈ ROLES, an immediate equivalent senior of s′ and

immediate senior of s, represented by the union of permissions of s, s′:

∀r, s, s′∈ ROLES : s⋗ r ∧ s′⋗ r ∧ s ≡ r ∧ s′ 6≡ r =⇒ ∃s′′∈ ROLES :

s′′⋗ s ∧ s′′⋗ s′ ∧ s′≡ s′′ ∧ ass_perms(s′′) = ass_perms(s)∪ ass_perms(s′).
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PROOF The role s′′ is a senior of both s, s′ since ass_perms(s′′) ⊇ ass_perms(s)
and ass_perms(s′′)⊇ ass_perms(s′). But we also have that r ≡ s, consequently
ass_users(s′′) = ass_users(s)∩ass_users(s′) = ass_users(r)∩ass_users(s′). Fur-
thermore, ass_users(s′) ⊆ ass_users(r) because of s′⋗ r, then ass_users(s′′) =
ass_users(s′). Finally, for Lemma 4.2 roles s and s′ have an additional permis-
sion to that of r. If s 6= s′ then degree(s′′) = degree(r) + 2. Hence, s′′ is an
immediate senior to both s, s′. �

Note 4.4 The previous theorem can be observed in Figure 4.1. The role {3, 4}
has three immediate equivalent senior roles, while {1, 3, 4} represents an im-
mediate non-equivalent senior. For Theorem 4.6, this means that {1, 3, 4} has
at least three immediate equivalent seniors, identifiable by adding the per-
mission 1 to equivalent seniors of {3, 4}; according to Theorem 4.6, further
immediate equivalent seniors of {1, 3, 4} are allowed.

Theorem 4.7 Let there be r, s ∈ ROLES such that s ⋗ r and s 6≡ r. Let also

p = ass_perms(s) \ ass_perms(r). Then there is a replica of the sublattice ǫ(r)

obtained by adding permission p to those of ǫ(r).

PROOF For Theorem 4.6, role s has among its immediate equivalent seniors at
least those obtainable by adding permission p to immediate equivalent seniors
of r. Let then s′ ∈ ROLES be the senior of s represented by the union of
such immediate equivalent seniors, meaning ass_perms(s′) = ass_perms(r̄) ∪
{p}. According to Theorem 4.2, s ≡ s′, while for Theorem 4.4 the interval
[s, s′] is a sublattice. Let σ be a role defined from role ̺ ∈ ǫ(r) such that
ass_perms(σ) = ass_perms(̺)∪{p}. Then, s′ � σ since ass_perms(r̄)∪{p} ⊇
ass_perms(̺)∪ {p} and σ � s because ass_perms(̺)∪ {p} ⊇ ass_perms(r)∪
{p}. Hence, σ ∈ [s, s′]. �

A direct consequence of the preceding theorem can be seen in Figure 4.1.
The equivalent sublattice ǫ({1, 3, 4}) can be obtained from ǫ({3, 4}) by adding
the permission 1 to all roles. In the Hasse diagram of ROLES it is therefore pos-
sible to identify a certain number of equivalent sublattice replicas determined
by:

Theorem 4.8 Given a role r ∈ ROLES let S be the set of immediate non-

equivalent seniors, S = {̺ ∈ ROLES | ̺ ⋗ r ∧ ̺ 6≡ r}. Then ROLES has a

number of ǫ(r) replicas between |S| and 2|S|− 1.

PROOF For Theorem 4.7, for all roles s ∈ S the sublattice ǫ(r) is replicated by
adding permission ass_perms(s)\ass_perms(r) to every role in ǫ(r). So, there
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are at least |S| sublattice replicas. Starting from S, let P =
⋃

s∈S
ass_perms(s)\

ass_perms(r) the set of permissions added to r from non-equivalent seniors of
r. For Lemma 4.2, the difference of degree between r and s ∈ S is equal to 1,
thus |P| = |S|. Every role s ∈ S has at most |S| − 1 immediate non-equivalent
seniors, meaning those represented by ass_perms(s) to which are added one
of the permissions of P \ (ass_perms(s) \ ass_perms(r)). If, by contradiction,
there was a role s′, an immediate non-equivalent senior of s, for which p =

ass_perms(s′)\ass_perms(s) ∧ p 6∈ P, then a role r ′ such that ass_perms(r ′) =
ass_perms(r) ∪ {p} would have a support greater than 0 and would belong
to S. This means that, still for Theorem 4.7, the role s can produce, at most,
another |S| − 1 replicas. Reiterating the same reasoning for all seniors of r,
it can be deduced that at most 2|S| − 1 replicas can be constructed by roles of
ǫ(r) to which are added permission combinations of 2P \ {;}. �

4.3 Leveraging Role Equivalence to Improve Role

Mining

The previous section analyzed some properties of a role lattice based on the
powerset of permissions excluding combinations of support equal to 0. It
was shown that a certain number of equivalent sublattice replicas could ex-
ist within such lattice. Based on the premises of Section 4.1, all these replicas

can be eliminated from the set of candidate roles except for maximum equivalent

roles. In fact, a maximum equivalent role can be considered a “representa-
tive” of all sublattices to which it belongs. Removing equivalent sublattices
prunes the candidate role set solution space. Given a role r ∈ ROLES, let
E = {r ′ ∈ ROLES | r ′⋗ r ∧ r ′ ≡ r} be the set of immediate equivalent se-
niors and S = {r ′ ∈ ROLES | r ′⋗ r ∧ r ′ 6≡ r} be the set of immediate non-

equivalent seniors. For Theorem 4.5, the equivalent sublattice generated by
r contains |ǫ(r)| = 2|E| roles, all of which can be eliminated from ROLES ex-
cept for r̄. Based on the theorems of the preceding section, ǫ(r) and r̄ can be
derived from r and E. Prospective algorithms calculating roles based on the
permission-powerset lattice could benefit from eliminating equivalent sublat-
tices if 2|E| > |E|+ 1, namely when the cost of calculating ǫ(r) is greater than
the cost of calculating only the roles necessary for identifying r̄. For simplicity,
operating costs necessary for constructing role r̄ from r and E are deemed
negligible. The inequality 2|E| > |E|+ 1 is always true when |E| > 1, namely
when role r has more than one equivalent junior. For Theorem 4.8, every
equivalent sublattice has at least |S| number of replicas derivable from r, E, S.
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4.1 Procedure Remove-Equivalent-Sublattices, used to obtain improved versions of Apriori and
RBAM

Require: Rk, Hk,PA,UA, k

Ensure: Rk, Hk,PA,UA, Mi

1: W ← ; {Set of equivalent roles to be deleted}
2: Mi ← ; {Set of maximum equivalent roles}

3: for all ̺ ∈ {h.junior | h ∈ Hk : h.confidence= 1} do

4: {Identify equivalences in Rk to be deleted and maximum equivalent role permissions}
5: E← {h.senior | h ∈ Hk : h.junior = ̺ ∧ h.confidence= 1} {Equivalent seniors}
6: S ← {h.senior | h ∈ Hk : h.junior = ̺ ∧ h.confidence< 1} {Non-equivalent seniors}
7: P ← (

⋃
r∈E ass_perms(r)) \ ass_perms(̺) {Perms diff between maximum equiv role}

8: W ←W ∪ E {Mark equivalent immediate seniors for deletion}

9: {Transform ̺ into its maximum equivalent role. Enrich roles in S with permissions P.}
10: for all σ ∈ S ∪ {̺} do

11: σ.degree← σ.degree+ |P|, PA← PA∪ (P × {σ}), Mi ← Mi ∪ {σ}

12: end for

13: end for

14: {Delete equivalent roles in Rk}
15: Rk← Rk \W, PA← {〈p, r〉 ∈ PA | r 6∈W}, UA← {〈u, r〉 ∈ UA | r 6∈W}

16: Hk← {h ∈ Hk | h.senior 6∈W}

It is thus advantageous to remove these when (|S|+1)2|E| > |E|+ |S|+1, that
is true when |E|> 1, where (|S|+ 1)2|E| represent the amount pruned.

4.3.1 Equivalent Sublattice Pruning in Apriori

This section introduces the RB-Apriori (Role-Based Apriori) algorithm to iden-
tify roles based on permission-powerset lattices with no equivalent sublat-
tices. Using the Apriori [17] algorithm makes it possible to generate a par-
tial lattice by pruning permission combinations whose support is lower than a
pre-established threshold smin (see Chapter 3). RB-Apriori extends Apriori re-
moving equivalent sublattices except for the maximum equivalent roles. The
following are the main steps of Apriori summarized. The set Rk ⊆ ROLES de-
notes all roles calculated at step k of the algorithm, while Hk ⊆ RH gathers
the immediate hierarchical relations among roles in Ri and Ri−1.

Step 1 An initial analysis of UP provides the set R1 containing candidate
roles of degree 1 with a support greater than the minimum.
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Step k When k ≥ 2, the set Rk is generated merging all possible role pairs
in Rk−1 (join step). In order not to generate roles with the same
permission set, only role pairs differing in the greater permission
are considered. Combinations not meeting minimum support con-
straints are rejected (prune step). Hierarchical associations (Hk) are
also identified, relating roles in Rk whose assigned permissions are a
superset of permissions of roles in Rk−1.

Stop The algorithm completes when Rk = ;, returning ROLES as the union
of all calculated Ri and RH as the union of all calculated Hi.

The algorithm RB-Apriori is obtained from Apriori by calling the procedure
Remove-Equivalent-Sublattices procedure at the end of every step k. The
procedure is described in Algorithm 4.1. Given r ∈ ROLES, r.degree indi-
cates the number of permissions assigned to it; given h ∈ RH, h.junior and
h.senior indicate the pair of roles hierarchically related, while h.confidence
is the confidence value between them. Step 3 of Algorithm 4.1 identifies all
roles calculated in step k − 1 presenting immediate equivalent seniors in Rk.
For each of these roles, the steps immediately following determine sets E, S

and the permission set P to be added to the role in order to obtain the max-
imum equivalent role. Steps 10–12 make up the maximum equivalent role
by adding permissions P to the current role. The immediate non-equivalent
seniors are also enriched with the same permissions; if not, eliminating roles
E (Steps 8, 15–16) could prevent identification of the combination of per-
missions assigned to those roles during step k + 1. Based on the Note 4.4,
enriching permissions assigned to immediate non-equivalent seniors with P it
is not definite that the respective maximum equivalent roles will be generated.
This means that RB-Apriori prunes only one sublattice at a time, without also
simultaneously eliminating any replicas.

As described in Note 4.2, there could exist r1, r2 ∈ ROLES : r1 ≡ r2 ∧ r1 ‖

r2. In Figure 4.1, roles {3, 4} and {5, 6} are equivalent and share the same
maximum equivalent role {2, 3, 4, 5, 6}. According to Algorithm 4.1, the role
{2, 3, 4, 5, 6} is built twice. This means that after the last step (“Stop”) of RB-
Apriori it is necessary to check for duplicate roles. Particularly, given the set
M =

⋃
Mi of identified maximum equivalent roles, for every m ∈ M each

r ∈ ROLES \ {m} : ass_perms(r) ⊆ ass_perms(m) ∧ support(r) = support(m)
needs to be discarded.

4.3.2 Testing on Real Data

To assess the efficiency of the RB-Apriori algorithm described in the previous
section, many tests have been conducted using real data. In order to highlight
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the properties of the algorithm, consider the results obtained from analyzing
data of an application with a heterogeneous distribution of user permissions.
In the analyzed data set, 954 users were possessing 1,108 different permis-
sions. By applying the Apriori algorithm with smin = 10%, a total of 299 roles
were generated in about 119 seconds through the adopted Apriori implemen-
tation. These 299 roles were assigned with only 16 of the available 1,108 per-
missions resulting in 890 users possessing these permissions. Using the same
minimum support, with RB-Apriori we obtained only 109 roles in 87 seconds,
thus reducing the number of roles by 64% and the computation time by 27%.
The difference in improvement between role number and computation time
was due to time “wasted” in identifying equivalent sublattices. Actually, the
algorithm identified 167 roles; although 58 of the 167 were subsequently elim-
inated as equivalents, time was saved avoiding computation of entire equiv-
alent sublattices. Changing the minimum support to smin = 5%, 8,979 roles
were produced with Apriori in about 3,324 seconds, involving 31 permissions
and 897 users. With RB-Apriori we obtained only 235 roles in 349 seconds,
thus reducing the number of roles by 97% and computation time by 90%.

4.3.3 Comparison With RBAM

The RBAM algorithm (see Chapter 3) leverages the RBAC administration cost
estimate to find the lowest cost candidate role-sets, implementing an extended
version of Apriori to identify the optimal role set. Pruning operations are based
on the variable minimum support concept. According to Chapter 3, a role r ∈

ROLES can be removed when the percentage of users assigned to r but none of
its seniors is below a threshold related to the administration cost of r. When
r has equivalent seniors, this percentage is equal to 0 because of Note 4.3.
Thus, RBAM always removes its equivalent sublattice. Since RBAM is an
extended version of Apriori, it is easy to improve performances of the RBAM
algorithm, basing it on RB-Apriori instead of Apriori. While producing the
same candidate role sets, computation of the entire equivalent sublattices is
avoided, thus improving the efficiency and obtaining performance comparable
to RB-Apriori.

4.4 Finding the Minimum Number of Roles

In this section we provide a probabilistic method to estimate the number
of roles needed to cover all the existing user-permission assignments. The
method leverages a known reduction of the role number minimization prob-
lem to the chromatic number of a graph. We prove that the optimal role num-
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ber is sharply concentrated around its expected value. We also show how this
result can be used as a stop condition when striving to find an approximation
of the optimum for any role mining algorithm. The corresponding rational is
that if a result is close to the optimum, and the effort required to discover a
better result is high, it might be appropriate to accept the current result.

4.4.1 Martingales and Azuma-Hoeffding Inequality

We shall now present some definitions and theorems that provide the math-
ematical basis we will further discuss later on in this chapter. In particular,
we introduce: martingales, Doob martingales, and the Azuma-Hoeffding in-
equality. These are well known tools for the analysis of randomized algo-
rithms [67,97].

Definition 4.3 (Martingale) A sequence of random variables Z0, Z1, . . . , Zn

is a martingale with respect to the sequence X0, X1, . . . , Xn if for all n ≥ 0, the
following conditions hold:

◮ Zn is function of X0, X1, . . . , Xn,
◮ E[

��Zn

��]≤∞,
◮ E[Zn+1 | X0, . . . , Xn] = Zn,

where the operator E[·] indicates the expected value of a random variable. A
sequence of random variables Z0, Z1, . . . is called martingale when it is a mar-
tingale with respect to himself. That is E[

��Zn

��] ≤∞ and E[Zn+1 | Z0, . . . , Zn] =

Zn.

Definition 4.4 (Doob Martingale) A Doob martingale refers to a martingale
constructed using the following general approach. Let X0, X1, . . . , Xn be a se-
quence of random variables, and let Y be a random variable with E[|Y |] <∞.
(Generally Y , will depend on X0, X1, . . . , Xn.) Then

Zi = E[Y | X0, . . . , X i], i = 0, 1, . . . , n,

gives a martingale with respect to X0, X1, . . . , Xn.

The previous construction assures that the resulting sequence Z0, Z1, . . . , Zn is
always a martingale.

A useful property of the martingales that we will use in this chapter is the
Azuma-Hoeffding inequality [67]:

Theorem 4.9 (Azuma-Hoeffding inequality) Let X0, . . . , Xn be a martingale

s.t.

Bk ≤ Xk − Xk−1 ≤ Bk + dk,
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for some constants dk and for some random variables Bk that may be functions

of X0, X1, . . . , Xk−1. Then, for all t ≥ 0 and any λ > 0,

Pr(
��X t − X0

��≥ λ)≤ 2exp

 
−2λ2

∑t

k=1 d2
k

!
. (4.1)

The Azuma-Hoeffding inequality applied to the Doob martingale gives the
so called Method of Bounded Differences (MOBD) [66].

4.4.2 Problem Modeling

The main goal related to mining roles is to find optimal candidate role-sets. We
focus on optimizing a particular cost function. Let cost indicate the number of
needed roles. The role mining objective then becomes to find a candidate role-
set that has the minimum number of roles for a given system configuration.
We will show that this problem is equivalent to that of finding the chromatic
number of a given graph. Using this problem equivalence, we will identify a
useful property on the concentration of the optimal candidate role-sets. This
allows us to provide a stop condition for any iterative role mining algorithm
that approximates the minimum number of roles.

Given the configuration ϕ = 〈USERS, PERMS, UP〉 we can build a bipar-
tite graph G = 〈V, E〉, where the vertex set V is partitioned into the two dis-
joint subset USERS and PERMS, and where E is a set of pairs 〈u, p〉 such that
u ∈ USERS and p ∈ PERMS. Two vertices u and p are connected if and only if
〈u, p〉 ∈ UP. A biclique coverage of the graph G identifies a unique candidate
role-set for the configuration ϕ [34], that isψ= 〈ROLES, UA, PA〉 . Indeed, ev-
ery biclique identifies a role, and the vertices of the biclique identify the users
and the permission assigned to this role. Let the function cost (see Chapter 2)
return the number of roles, that is:

cost(ϕ,ψ) = |ROLES| (4.2)

In this case, minimizing the cost function is equivalent to finding a candidate
role-set that minimizes the number of roles. Let B a biclique coverage of a
graph G, we define the function cost′ as:

cost′(B ) = cost(ϕ,ψ)

where ψ is the state 〈UA, PA, ROLES〉 that can be deduced by the biclique cov-
erage B of G, and G is the bipartite graph built from the configuration ϕ that
is uniquely identified by 〈USERS, PERMS, UP〉. In this model, the problem of
finding an optimal candidate role-set can be equivalently expressed as finding
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a biclique coverage for a given bipartite graph G that minimizes the number of
required bicliques. This is exactly the minimum biclique coverage (MBC) prob-
lem. In the following we first recall both the reduction of the MBC problem to
the minimum clique partition (MCP) problem [34] and the reduction of MCP
to the chromatic number problem.

From the graph G, it is possible to construct a new undirected unipartite
graph G′ where the edges of G become the vertices of G′: two vertices in G′

are connected by an edge if and only if the endpoints of the corresponding
edges of G induce a biclique in G. Formally:

G′ =



E, {〈e1, e2〉 | e1, e2 induce a biclique in G}
�

The vertices of a (maximal) clique in G′ correspond to a set of edges of
G, where the endpoints induce a (maximal) biclique in G. The edges covered
by a (maximal) biclique of G induce a (maximal) clique in G′. Thus, every
biclique edge cover of G corresponds to a collection of cliques of G′ such that
their union contains all of the vertices of G′. From such a collection, a clique
partition of G′ can be obtained by removing any redundantly covered vertex
from all but one of the cliques to which it belongs to. Similarly, any clique par-
tition of G′ corresponds to a biclique cover of G. Thus, the size of a minimum
biclique coverage of a bipartite graph G is equal to the size of a minimum
clique partition of G′.

Finding a clique partition of a graph G = 〈V, E〉 is equivalent to finding a
coloring of its complement G = 〈V, (V × V ) \ E〉. This implies that the biclique
cover number of a bipartite graph G corresponds to the chromatic number of
G′ [34].

4.5 A Concentration Result for Role Number Min-

imization

Using the model described in the previous section, we will prove that the cost
of an optimal candidate role-setψ for a given system configuration ϕ is tightly
concentrated around its expected value. We will use the concept of martin-
gales and the Azuma-Hoeffding inequality to obtain a concentration result for
the chromatic number of a graph G [66,67]. Since finding the chromatic num-
ber is equivalent to both MCP and MBP, we can conclude that the minimum
number of roles required to cover the user-permission relationships in a given
configuration is tightly concentrated around its expected value.

Let G be an undirected unipartite graph, and χ(G) its chromatic number.
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Theorem 4.10 Given a graph G with n vertices, the following equation holds:

Pr(
��χ(G)−E[χ(G)]

��≥ λ)≤ 2exp

�
−2λ2

n

�
(4.3)

PROOF We fix an arbitrary numbering of the vertices from 1 to n. Let Gi be the
subgraph of G induced by the set of vertices 1, . . . , i. Let Z0 = E[χ(G)] and
Zi = E[χ(G) | G1, . . . , Gi]. Since adding a new vertex to the graph requires
no more than one new color, the gap between Zi and Zi−1 is at most 1. This
allows to apply the Azuma-Hoeffding inequality, that is Equation (4.1) where
dk = 1. �

Note that this result holds even without knowing E[χ(G)]. Informally,
Theorem 4.10 states that the chromatic number of a graph G is sharply con-
centrated around its expected value. Since finding the chromatic number of
a graph is equivalent to MCP, and MCP is equivalent to MBC, this result holds
also for MBC. Translating these concepts in terms of RBAC entities, this means
that the cost of an optimal candidate role-set of any configuration ϕ with
|UP|= n is sharply concentrated around its expected value according to Equa-
tion (4.3), where χ(G) is equal to the minimum number of required roles. It
is important to note that n represents the number of vertices in the coloring
problem but, according to the proposed model, it is also the number of edges
in MBP; that is, the user-permission assignments of the system configuration.

Figure 4.2(a) shows the plot of the Equation (4.3) for n varying between 1
and 500,000, and λ less than 1,500. It is possible to see that for n = 500,000 it
is sufficient to choose λ = 900 to assure that Pr(

��χ(G)−E[χ(G)]
��≥ λ) ≤ 0.1.

In the same way, choosing λ = 600, then Pr(
��χ(G)−E[χ(G)]

�� ≥ λ) is less
than 0.5. Figure 4.2(b) shows the values for λ and n to have the left part of
the inequality in Equation (4.3) to hold with probability less than 0.5, 0.3, and
0.1 respectively.

Setting λ =
p

n log n, Equation (4.3) can be expressed as:

Pr(
��χ(G)−E[χ(G)]

��≥
p

n log n)≤
2

n2 (4.4)

That is, the probability that our approach differ from the optimum more thanp
n log n is less than 2/n2. This probability becomes quickly negligible as n in-

creases. To support the viability of the result, note that in a large organization
there are usually thousands user-permission assignments.
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4.5.1 Applications of the Bound

Assuming that we can estimate an approximation Ẽ[χ(G)] for E[χ(G)] such
that

��Ẽ[χ(G)−E[χ(G)]
�� ≤ ǫ for any ǫ > 0, Theorem 4.10 can be used as a

stop condition when striving to find an approximation of the optimum for any
role mining algorithm. Indeed, suppose that we have a probabilistic algorithm
that provides an approximation of χ(G), and suppose that its output is χ̃(G).
Since we know Ẽ[χ(G)], we can use this value to evaluate whether the output
is acceptable and therefore decide to stop the iterations procedure. Indeed, we
have that:

Pr(
��χ(G)− Ẽ(χ(G))

��≥ λ+ ǫ) ≤ 2exp

�
−2λ2

n

�
.

This is because

Pr(
��χ(G)− Ẽ(χ(G))

��≥ λ+ ǫ) ≤ Pr(
��χ(G)−E(χ(G))

�� ≥ λ)

and, because of Theorem 4.10, this probability is ≤ 2exp
�
−2λ2/n

�
. Thus, if��χ̃(G)− Ẽ[χ(G)]

��≤ λ+ǫ holds, then we can stop the iteration, otherwise we
have to reiterate the algorithm until it outputs an acceptable value.

For a direct application of this result, we can consider a system configura-
tion with |UP| = x . If λ = y, the probability that

��χ(G)−E[χ(G)]
�� ≤ y is

greater than 2exp
�
−2y2/x

�
. We do not know E[χ(G)], but since we have

that
��Ẽ[χ(G)]−E[χ(G)]

��≤ ǫ we can conclude that
��χ(G)− Ẽ[χ(G)]

��< y +

ǫ with probability at least 2exp
�
−2y2/x

�
. For instance, we have considered

the real case of a large size company, with 500,000 user-permissions assign-
ments. With λ = 1, 200 and ǫ = 100, the probability that

��χ(G)− Ẽ[χ(G)]
��<

λ+ǫ is at least 99.36%. This means that, if Ẽ[χ(G)] = 24, 000, with the above
probability the optimum is between 22,700 and 25,300. If a probabilistic role
mining algorithm outputs a value χ̃(G) that is estimated quite from this range,
then it is appropriate to reiterate the process in order to find a better result.
Conversely, let us assume that the algorithm outputs a value within the given
range. We know that the identified solution differs, from the optimum, by at
most 2(λ+ ǫ), with probability at least 99.36%. Thus, one can assess whether
it is appropriate to continue investing resources in the effort to find a better
solution, or to simply accept the provided solution. This choice can depend on
many factors, such as the computational cost of the algorithm, the economic
cost due to a new analysis, and the error that we are prone to accept, to name
a few.

There is also another possible application for this bound. Assume that
a company is assessing whether to renew its RBAC state, just because it is
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several years old [93]. By means of the proposed bound, the company can
establish whether it is the case to invest money and resources in this process.
Indeed, if the cost of the RBAC state in use is between Ẽ[χ(G)]− λ− ǫ and
Ẽ[χ(G)]+λ+ǫ, the best option would be not to renew it because the possible
improvement is likely to be marginal. Moreover, changing the RBAC state
requires a huge effort for the administrators, since they need to get used to
the new configuration. In our proposal it is quite easy to assess if a renewal is
needed. This indication can lead to important time and money saving.

Note that in our hypothesis, we assume that the value of Ẽ[χ(G)] is known.
Currently, not many researchers have addressed this specific issue in reference
to a generic graph, whereas plenty of results have been provided for Random
Graphs. In particular, it has been proven [25,64] that for G ∈ Gn,p:

E[χ(G)] ∼
n

2 log 1
1−p

n

We are presently striving to apply a slight modification of the same probabilis-
tic techniques used in this chapter, to derive a similar bound for the class of
graphs used in our model.

4.6 Final Remarks

This chapter introduced a new formal framework based on a rigorous pattern
analysis in access permissions data. In particular, it is possible to derive a lat-

tice of candidate roles from the permission powerset. We have proved some in-
teresting properties about the above-defined lattice useful for optimizing role
mining algorithms. By leveraging our results, data redundancies associated
with co-occurrence of permissions among users can be easily identified and
eliminated, hence increasing output quality and reducing process time of data
mining algorithms. To prove the effectiveness of our proposal, we have applied
our results to two role mining algorithms: Apriori and RBAM. Applying these
modified algorithms to a realistic data set, we drastically reduced the running
time, while the output quality was either unaffected or even improved. Thus,
we confirmed our analytical findings.

Further, we proved that the optimal administration cost for RBAC, when
striving to minimize the number of roles, is sharply concentrated around its
expected value. The result has been achieved by adopting a model reduction
and advanced probabilistic tools. Further, we have shown how to apply this
result to deal with practical issues in administering RBAC; that is, how it can
be used as a stop condition in the quest for the optimum.



5
Devising Meaningful Roles

T his chapter copes with the problem of assigning a business meaning to
roles. To this aim, two different approaches are proposed. First, we
introduce a new metric to assess how “good” are roles from a business

perspective. Our key observation is that a role is likely to be meaningful from a
business perspective when it involves activities within the same business pro-
cess or organizational units within the same branch. To measure the spreading

of a role among business processes or organization structure, we resort to cen-
trality indices. Such indices are used in our cost-driven approach during the
role mining process. Second, we propose a methodology where the dataset is
decomposed into smaller subsets that are homogeneous from a business per-
spective. We introduce some indices that provide, for a given partition, the
expected uncertainty in locating homogeneous set of users and permissions
that are manageable with the same role. Therefore, by choosing the decom-
position with the highest indices values, we most likely identify roles with a
clear business meaning. This chapter summarizes the contribution previously
published in [5,10].

5.1 Modeling Business

In this section we shall provide some models to formally describe business in-
formation. These models will be later used to formalize the main contribution
of this chapter.


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5.1.1 Business Activities

Activities (or tasks) are a natural way to think about user actions and their con-
texts. Activities usually arise from the decomposition of the business processes

of an organization. A business process is a collection of inter-related activities
that accomplish a specific goal. From an access control point of view, an ac-
tivity induces a set of permissions necessary to perform an elementary part of
a more complex job. Activities are typically assigned to users on the basis of
their job positions [72].

Since the activity and the role concepts are similar in that they both group
permissions, one might think that there is no difference between them. How-
ever, they have completely different meanings and characteristics. A role fo-
cuses on “actors” and places emphasis on how the business should be orga-
nized, while an activity focuses on “actions” and emphasizes what should be
done. For example, a typical workflow management system requires that each
actor should complete certain tasks. In this case, each task may be performed
by several actors with different business roles. It would be ineffective to as-
sign an RBAC role to each task. Neither should an activity be considered a
“sub-role”: role-permission relationships are identified with different ratio-
nales from activity-permission relationship identification.

It is important to highlight that defining and maintaining the activity model
up to date can increase the workload of business users within the company.
However, a good understanding of the organization is a mandatory require-
ment when implementing an access control management framework. There-
fore, the activity model is already available within an organization.

In the following we formally describe the activity concept.

Activity Tree Decomposing the business processes of an organization usu-
ally results in an activity tree structure. For the sake of simplicity, we do not
make a formal distinction between business processes and activities. In partic-
ular:

◮ The set ACTVT contains all activities.
◮ The set ACTVT-H ⊆ ACTVT× ACTVT×R defines a partial order on the

hierarchy tree. The pair 〈ap, ac, w〉 ∈ ACTVT-H indicates that the activity
ap is the parent of the activity ac, whereas w is the weight of the connec-
tion between ap and ac (see below). The existence of the tuple 〈ap, ac, w〉

in ACTVT-H may alternatively be indicated as ac

w
−→ ap. The simplified

notation ac → ap can also be used when w is always 1.
◮ ∀a ∈ ACTVT, the activity a has only one direct parent, namely ∀ap, ac ∈

ACTVT : ac → ap =⇒ ∄a
′
p
∈ ACTVT : a′

p
6= ap, ac → a′

p
.
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◮ The activity tree has only one root.

Given a pair ap, ac ∈ ACTVT, the ordering operator ac � ap indicates the exis-
tence of a hierarchical pathway of “→” from ac to ap. Note that, without loss
of generality, it is always possible to identify a unique root for a set of activi-
ties; for example, a virtual activity that “collects” all the high level activities of
the organization can always be defined.

Given an activity a ∈ ACTVT, the following sets can be defined out of
convenience:

◮ ↑a = {a′ ∈ ACTVT | a � a′} represents all possible parents of a. Since
each activity has only one direct parent in the tree, ↑a contains the path
from a to the root of ACTVT-H. Note that |↑a| is the length of this path.
Given a pair a1, a2 ∈ ACTVT, the value of |↑a1 ∩ ↑a2| represents the
length of the path from the root to the “nearest” common parent of both
a1, a2.
◮ ↓a = {a′∈ ACTVT | a′� a} represents all possible children of a.

Each activity is supported by sets of permissions which allow the activity to
be performed. To execute a given activity, a user must have all the permissions
associated to it. This concept can be formalized as follows:

◮ The set ACTVT-A⊆ ACTVT×PERMS expresses the origin of a permission
in a given activity.
◮ The function actvt_perms: ACTVT→ 2PERMS provides the set of permis-

sions associated to an activity. Given a ∈ ACTVT, it can be formalized
as: actvt_perms(a)={p∈PERMS | ∃〈a, p〉∈ACTVT-A}.
◮ The function actvt_perms∗ : ACTVT → 2PERMS provides all the permis-

sions assigned to a and its children, namely it takes into account the
activity breakdown structure. Given a ∈ ACTVT, it can be formalized as:
actvt_perms∗(a) = {p ∈ PERMS | ∃a′∈ ↓a : 〈a′, p〉 ∈ ACTVT-A}.

A permission can belong to multiple activities. Moreover, given the activity
pair a1, a2 ∈ ACTVT such that a1 � a2 and p ∈ PERMS, if 〈p, a1〉 ∈ ACTVT-A
then we require that 〈p, a2〉 6∈ ACTVT-A since a2 inherits p from its child.

Connection Weights Assigning a weight to connections between activities
is a flexible way to model the business process break-down structure. In par-
ticular, weights indicate if there is a strong or a weak decomposition. For
example, there is likely to be a large weight value between the root activity
and activities such as “Human Resources Management” or “Inventory Man-
agement”. Conversely, the weight between the parent activity “Customer Data
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Figure 5.1 Relationships among activities, organization units, and RBAC entities.

Management” and its child “Customer Data Update” is likely to be weak. How
weights are derived depends on the given organization, however this topic is
not further analyzed in this chapter.

The given weight definition can easily be extended to the partial order as
the sum of weights along the path between activities. Given ac, ap ∈ ACTVT :
ac � ap, the weight of the path between them is:

wactvt(ac�ap) =
∑
ω∈Ωω, Ω = {ω∈R | ∀a, a′∈ACTVT,

∃〈a, a′,ω〉 ∈ ACTVT-H : ac � a′, a � ap}. (5.1)

Figure 5.1 gives a graphical representation of the aforementioned entities
and the interaction with the RBAC entities. It also depicts other elements
described in next section.

5.1.2 Organization Units

An organization unit (OU) is a group of employees which collaborate to per-
form certain business tasks. The organizational structure is designed by the
top management and defines the lines of authority and the division of work.
A typical organization is organized as a tree structure, represented by an or-
ganization chart. From an access control point of view, it is likely that users of
the same OU have the same access permissions. For this reason, users usually
have roles located within the organization units [74].

There are many examples of benefits related to the introduction of the
organization structures into the access control model. For instance, OUs are
used in various frameworks as a means to identify user pools [73,74]. In some
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of these works, roles can be assigned directly with OUs instead of individually
with users. In this chapter, we prefer to directly assign users to roles, thus
allowing a complete delegation of organization unit maintenance to HR.

The following is a formal description of the organization unit structure,
that reflects the notation used in Section 5.1.1.

Organization Unit Tree Organization units can usually be represented in a
tree structure. In particular:

◮ The set OU contains all organization units.
◮ The set OU-H ⊆ OU× OU×R defines a partial order on the hierarchy

tree. The pair 〈op, oc, w〉 ∈ OU-H indicates that the organization unit
op is the parent of the organization unit oc, whereas w is the weight of
the connection between op and oc (see below). The existence of the

tuple 〈op, oc, w〉 in OU-H may alternatively be indicated as oc

w
−→ op. The

simplified notation oc → op can also be used when w is always 1.
◮ ∀a ∈ OU, the organization unit a has only one direct parent, namely
∀op, oc ∈ OU : oc → op =⇒ ∄a

′
p
∈ OU : a′

p
6= op, oc → a′

p
.

◮ The organization unit tree has only one root.

Given a pair op, oc ∈ OU, the ordering operator oc � op indicates the existence
of a hierarchical pathway of “→” from oc to op. Note that, without loss of
generality, it is always possible to identify a unique root for the organization
units—namely, a unit representing the entire organization. Given an organi-
zation unit o ∈ OU, we define:

◮ ↑o = {o′∈ OU | o � o′} represents all possible parents of o. It contains
the path from o to the root of OU-H, thus |↑o| is the length of this path.
Given o1, o2 ∈ OU, |↑o1 ∩ ↑o2| is the length of the path from the root to
the “nearest” common parent of both o1, o2.
◮ ↓o = {o′∈ OU | o′� o} is the set of all children of o.

Each organization unit contains a sets of users. This concept can be for-
malized as follows:

◮ The set OU-A ⊆ OU× USERS expresses the origin of a user in a given
organization unit.
◮ The function ou_users: OU→ 2USERS provides the set of users belonging

to an organization unit. Given an organization unit o ∈ OU, it can be
formalized as: ou_users(o) = {u ∈ USERS | ∃〈o, u〉 ∈ OU-A}.
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◮ The function ou_users∗ : OU → 2USERS provides all the users belong-
ing to o and its children, namely it takes into account the organiza-
tion unit breakdown structure. Given o ∈ OU, it can be formalized as:
ou_users∗(o) = {u ∈ USERS | ∃o′∈ ↓o : 〈o′, u〉 ∈ OU-A}.

Usually, each user belongs to only one organization unit. Hence, given
o1, o2 ∈ OU and u ∈ USERS, if 〈u, o1〉 ∈ OU-A, then 〈u, o2〉 6∈ OU-A.

Connection Weights Weighting connections between OUs is a new con-
cept when compared to the existing framework related to OUs. It is a more
flexible way to model the organization break-down structure. For example,
user sets can be divided into various administrative domains represented by
organization unit branches [73]. It is assumed that each domain is indepen-
dently administered. In such a case, weights may indicate whether domains
are loosely or tightly coupled. Another case is when OUs are decomposed
into a set of branches to model geographic areas; this often represents a weak
partitioning since there are no big differences among users across different
geographic areas. Decomposing a project in various working teams is another
example of weak partitioning, since all users work for the same objectives.
Conversely, domains represented by business units are more important as they
usually identify users assigned with completely different jobs. Therefore, this
is an example of strong OU partitioning.

The weight concept can be easily extended to the partial order as the sum
of all weights between units along the shortest path between them. Given
oc, op ∈ OU : oc � op, the weight of the path between them is:

wou(oc � op) =
∑
ω∈Ωω, Ω = {ω ∈ R | ∀o, o′∈ OU,

∃〈o, o′,ω〉 ∈ OU-H : oc � o′, o � op}. (5.2)

Figure 5.1 gives a representation of the aforementioned entities and the
interaction with standard RBAC entities.

5.2 Measuring the Meaning of Roles

In this section we demonstrate how the business processes model (see Chap-
ter 3) and the organization structure model (see Section 5.1.2) can be lever-
aged to evaluate the business meaning of roles elicited by role mining algo-
rithms. We define a metric for evaluating the business meaning of candidate
role-sets. This metric is used during the role mining algorithm execution to
establish which roles should be included in the candidate role-set. The key in-
sight is that a role is likely to be meaningful from a business perspective when:
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it involves activities within the same business process; or, it involves users be-
longing to the same organization structure branch. To measure the “spread-
ing” of a role among business processes or organization units we resort to
centrality, a well-known concept in graph theory. In particular, we define two
different centrality indices, namely the activity-spread and the organization-

unit-spread. Leveraging our cost-driven approach (see Chapter 3) makes it
feasible to take into account the proposed indices during the role mining pro-
cess. Finally, we demonstrate the effectiveness of our proposal through a few
examples and applications to real data. To measure the business meaning of
roles, we introduce the following indices:

◮ activity-spread (detailed in Section 5.2.2) that measures the “dispersion”
of business activities that are enabled by permissions assigned to a role;
◮ organization-unit-spread (detailed in Section 5.2.3) that measures the

“dispersion” of organization units that users assigned to roles belong to.

The reason why we resort to business processes and organization struc-
ture is quite simple. Given r ∈ ROLES, it identifies both a set of permissions
(auth_perms(r)) and a set of users (auth_users(r)). Hence, both these sets
should be analyzed in order to evaluate the “quality” of the candidate role. Re-
garding the user set, the structure of the organization is probably the most sig-
nificant business-related information that is always available in every medium
to large sized organization. As a matter of fact, it is usually found within the
HR-related IT systems. Similarly, business activities represent the main justi-
fication for the adoption of IT applications within a company. Indeed, each
application is usually introduced to support business activities. Usually, the
business activity tree can be provided by business staff.

Once activity-spread and organization-unit-spread indices are defined, we
propose to adopt our cost-driven approach to take them into account during
the role mining process. In particular, leveraging the cost function concept
makes it possible to combine such indices with other “cost” elements in a sin-
gle metric (function) to be used for the evaluation of elicited roles during the
role mining process. Minimizing such a function means eliciting those roles
that contextually minimize the overall administration effort and fit the needs
of an organization from a business perspective. This approach is particularly
suitable for role mining algorithms since it makes it possible to introduce busi-
ness elements within the analyzed data, thus leading to a hybrid role engineer-
ing approach. Note though that identifying cost elements and then combining
them in a cost function is something that can be done in several ways. This,
however, is a completely separate subject of research and it is only marginally
addressed here. Instead, we mainly focus on the formal description of business
elements that can contribute in defining a suitable cost function.
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5.2.1 Farness

We first introduce a tool that is particularly useful in topology and related
areas in mathematics. This tool will be adapted to our analysis in order to
consider business information during the role mining process. Given a graph,
we usually refer to a sequence of vertices connected by edges as a walk. We
also refer to a walk with no repeated vertices as a path, while the shortest
path between two vertices is referred to as a geodesic. These concepts make
it possible to introduce the farness index, namely a quantity related to the
lengths of the geodesics from one vertex to every other vertex in the graph.
Vertices that “tend” to have long geodesic distances to other vertices within the
graph have higher farness. In the literature it is more common to find another
index in place of farness, that is the closeness index. Closeness is the inverse
of farness, so they can be considered perfectly equivalent. Both farness and
closeness are examples of centrality measures [95].

The farness index that is used in this chapter can be defined in every metric
space where a notion of distance between elements is defined. Given a vertex
v j, its farness f is

f =

∑n

i=1 d(i, j)

n− 1
, (5.3)

where d(i, j) is the distance between the vertices vi and v j.
Other centrality measures such as betweenness, degree, and eigenvector cen-

trality [95] might be applicable to our analysis. Since farness is the most
suitable and simple one for our analysis, we omit discussions of the others.

5.2.2 Activity-Spread

We now describe an index intended to evaluate business meaning. It is based
on the analysis of business processes and their decomposition into activities.
For this purpose, we observe that a typical organization is unlikely to have
users that perform activities derived from different business processes. For
example, given the processes “Human Resources Management” and “Inven-
tory Management”, it is very difficult that the organization needs a role that
simultaneously allows activities within both these processes. This observation
might also be applicable to the decomposition of a business process into sim-
pler activities. It is difficult to have the same users involved in “Training and
development” and “Recruitment” of employees, even though they are both ac-
tivities of “Human Resources Management”. However, this constraint becomes
weaker as we compare simpler activities; for example, “Screening” and “Se-
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lection” might be two possible activities of “Recruitment”, but it now becomes
possible for a single user to perform both of them.

In general, given a role and the activities involved with it, the basic idea is
that a role is likely to have a business meaning when such activities are “close”
to one another within the process break-down structure. According to this,
“Screening” and “Selection” are close since they are both children activities
of “Recruitment”; instead, “Screening” is far from any other activity below
“Inventory Management”.

To measure the spreading of a role within the activity tree we resort to
the farness concept introduced in Section 5.2.1. Given a role, farness may
be used to evaluate the distances among activities granted by the role. After
having calculated the farness index for each involved activity, averaging such
indices offers a metric to capture the “degree of spread” of the role among its
activities. We refer to such an index as activity-spread of a role. The higher the
activity-spread is, the less business meaning the role has.

Distance Function Before describing the activity-spread index in a formal
way, we need to introduce the distance among two activities a, a′∈ ACTVT as:

dactvt(a, a′) =wactvt(a � ā) +wactvt(a
′� ā),

ā = {α ∈ (↑a ∩ ↑a′) | ∀α′∈ (↑a ∩ ↑a′) : α � α′}, (5.4)

whereas ā is the nearest common parent of a, a′. If weights between activities
are always equal to 1, the following alternative distance definition can be
given:

dactvt(a, a′) = |↑a|+ |↑a′| − 2 |↑a ∩ ↑a′|. (5.5)

Since activities are organized as a tree with a unique root, Equation (5.5) rep-
resents the number of edges between a and a′. Indeed, the distance between
two vertices is the number of edges in the geodesic connecting them. Further-
more, it can be easily shown that the activity set is a metric space, since the
provided function dactvt is a metric; that is, given activities a, a′, a′′ ∈ ACTVT
the following properties holds:

◮ Distance is positive between two different activities, and precisely zero
from an activity to itself, namely: dactvt(a, a′) ≥ 0, and dactvt(a, a′) =

0 ⇐⇒ a = a′.
◮ The distance between two activities is the same in either directions,

namely: dactvt(a, a′) = dactvt(a
′, a).

◮ The distance between two activities is the shortest one along any path,
namely: dactvt(a, a′′)≤ dactvt(a, a′) + dactvt(a

′, a′′) (triangle inequality).
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Activity-Spread Formalization Given a role r ∈ ROLES, we identify the set
of activities allowed by the role r as

A r = {a ∈ ACTVT | ∄a′∈ (↓a) \ {a}, auth_perms(r)⊇ actvt_perms∗(a),

auth_perms(r) ⊇ actvt_perms∗(a′)}. (5.6)

Equation (5.6) requires that all the permissions needed to execute the activi-
ties of A r must be assigned to the role r. Thus, A r contains only those activities
that are allowed by assigning a user just to the role r. Further, given a ∈ A r

none of the parents of a are contained in A r , that is A r contains only activities
that are farther from the root.

We therefore define the activity farness for a ∈ A r as:

dA r
(a) =

1

|A r | − 1

∑

a′∈A r

dactvt(a, a′). (5.7)

Equation (5.7) directly derives from Equation (5.3) (see Section 5.2.1) by
adopting the distance function dactvt. The greater dA r

(a) is, the farther a is
from all other activities allowed by permissions assigned to r.

Now we define a metric that takes into consideration the farness generated
among all activities in A r . To this aim, the variance concept is likely to be the
most intuitive and suitable to use. Given the arithmetic mean of all the farness
indices calculated over A r , namely

d̄A r
=

1

|A r |

∑

a∈A r

dA r
(a) =

1

|A r |(|A r | − 1)

∑

a,a′∈A r

dactvt(a, a′), (5.8)

we define the activity-spread of a role r ∈ ROLES as the farness variance among
all the activities in A r , that is:

actvt_spread(r) =
�

1

|A r |

∑

a∈A r

d2
A r
(a)

�
− d̄

2

A r
. (5.9)

Note that the value of actvt_spread(r) should be adjusted in order to assign
a higher value to those roles associated with permissions that do not allow the
execution of any activity. This way, it is possible to “dissuade” a role engineer-
ing process from eliciting roles where the corresponding permissions are not
associated to any activities. Indeed, when a role contains permissions that are
not related to any activities, it becomes harder to identify a business meaning
for it. The number of permissions not related to activities are:��auth_perms(r) \

⋃
a∈A r

actvt_perms(a)
��. (5.10)

If Equation (5.10) is equal to 0, there is no need to adjust actvt_spread(r).
Otherwise, actvt_spread(r) may be multiplied by a coefficient that is propor-
tional to Equation (5.10).
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5.2.3 Organization-Unit-Spread

We now describe an index to evaluate business meaning of roles by analyzing
the organization unit structure. With this aim in mind, note that users located
into different OUs are likely to perform different tasks. Moreover, a role used
across multiple organization units may require the co-ordination of various ad-
ministrators; thus, requiring a higher administration effort than one for roles
used exclusively within a single organizational unit. Hence, the idea is that
the more distant the involved organization units are from each other, the less
business meaning the role has. The ideal situation is when a role is almost
exclusively assigned with users belonging to the “most central” OUs. Similar
to the previous section, we calculate a farness index for each OU involved by
a role—namely those OUs which contain the users assigned to this role. After
having calculated the farness index for each involved OU, averaging such in-
dices offers a metric to capture the “degree of spread” of the role among OUs.
We refer to such an index as organization-unit-spread of a role. The higher the
organization-unit-spread is, the less business meaning the role has.

Distance Function Before formally describing the organization-unit-spread
index, we need to introduce the distance among two organization units o, o′∈

OU as:

dou(o, o′)=wou(o� ō)+wou(o
′� ō), ō={ω ∈ (↑o ∩ ↑o′) |

∀ω′∈ (↑o ∩ ↑o′) :ω�ω′}, (5.11)

whereas ō is the nearest common parent of o, o′. If weights between organiza-
tion units are always equal to 1, the following alternative distance definition
can be given:

dou(o, o′) = |↑o|+ |↑o′| − 2 |↑o ∩ ↑o′|. (5.12)

Since organizational units are organized as a tree with a unique root, Equa-
tion (5.12) represents the number of edges between o and o′. Furthermore,
given o, o′, o′′∈ OU, for both distance definitions it can be demonstrated that:

◮ The distance is positive between two different organization units, and
precisely zero from an organization unit to itself: dou(o, o′) ≥ 0, and
dou(o, o′) = 0 ⇐⇒ o = o′.
◮ The distance between two organization units is the same in either direc-

tion: dou(o, o′) = dou(o
′, o).

◮ The distance between two organization units is the shortest one along
any path: dou(o, o′′) ≤ dou(o, o′) + dou(o

′, o′′) (triangle inequality).
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Organization-Unit-Spread Formalization Note that the number of users
supporting each organization unit can influence the administration cost of
roles. Indeed, bigger OUs require more effort from a single administrator or
perhaps require multiple administrators. For this reason, the spreading index
must be influenced both by the organization structure and by the percentage
of users assigned to a given role and contextually belonging to the same orga-
nization unit.

Given a role r ∈ ROLES, we define the following sets:

◮ The set O r = {o ∈ OU | ∄o′ ∈ (↓o) \ {o}, auth_users(r) ⊇ ou_users∗(o),
auth_users(r) ⊇ ou_users∗(o′)}, namely the set of organization units
being involved with the role r.
◮ The set U r = auth_users(r), namely the set of users assigned to r.
◮ Given o ∈ O r , then U o = ou_users∗(o) is the set of users assigned to an

organization unit o.

Given o ∈ O r none of the parents of o is contained in O r , that is O r contains
only OUs that are farther from the root. We therefore define the OU farness

index for o ∈ O r as:

dO r
(o) =

1

|U r |

∑

o′∈O r

|U o′ ∩U r |dou(o, o′). (5.13)

We assume that (1/|U r |)
∑

o∈O r
|U o ∩ U r | = 1, namely organization units in

O r contain all the users assigned to r and no user simultaneously belongs to
more than one OU. The greater dO r

(o) is, the farther o is from OUs containing
the majority of users assigned to r. For example, if there is one particular OU
containing most of the users of the role, then dO r

(o) is close to the distance
between o and such an OU.

Now we define the variance of all farness indices related to organization
units in O r . Given the weighted arithmetic mean of all the farness indices
calculated upon O r , namely

d̄O r
=

1

|U r |

∑

o∈O r

|U o ∩U r |dO r
(o) =

1

|U r |
2

∑

o,o′∈O r

|U o ∩U r | |U o′ ∩U r |dou(o, o′),

(5.14)

the organization-unit-spread is defined as

ou_spread(r) =
�

1

|U r |

∑

o∈O r

|U o ∩U r |d
2
O r
(o)

�
− d̄

2

O r
. (5.15)

Note that the value of ou_spread(r) grows when: OUs contain many users—
identified through |U o ∩ U r |; or, OUs are far from each other—according to
d2
O r
(o).
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5.2.4 Revising the Cost Function

In this section we briefly explain how cost elements can be combined in a
global cost function, leveraging our cost-driven approach. In general, finding
the optimal candidate role-set can be seen as a multi-objective optimization

problem [33]. An optimization problem is multi-objective when there are a
number of objective functions that are to be minimized or maximized. Multi-
objective optimization often means to trade-off conflicting goals. In a role
engineering context, possible objectives are:

◮ Minimize the number of roles;
◮ Minimize the number of role possessed by each user;
◮ Maximize the business meaning of roles, that corresponds to minimiz-

ing the activity-spread and/or the organization-unit-spread indices of all
elicited roles.

The previous statements can be formalized as:

◮ min{|ROLES|};
◮ min

¦∑
r∈ROLES ass_users(r)

©
=min{|UA|};

◮ min
¦∑

r∈ROLES actvt_spread(r)
©

;

◮ min
¦∑

r∈ROLES ou_spread(r)
©

.

The constraint of this optimization problem is that elicited roles must “cover”
all possible combinations of permissions, namely they represent a candidate
role-set.

The dependencies among these objectives are quite complex. For example,
if on one side |ROLES| decreases, there is a strong chance that more roles will
be required to cover all the permissions possessed by users, causing |UA| to
increase. Since each role has a high number of assigned users, it is likely that
the number of involved organization units is high, thus increasing the value of
the ou_spread function. On the other hand, if we want to reduce the average
number of roles per user, we will need more ad-personam roles, then |ROLES|
will likely increase.

Hence, there is little use in the quest for a global maximum or a global
minimum. Since trade-off for conflicting criteria can be defined in many ways,
there exist multiple approaches to define what an optimum is. The simplest
approach is that of computing a weighted sum [33]: multiple objectives are
transformed into an aggregated scalar objective function by multiplying each
objective by a weighted factor and summing up all contributors. As for role
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engineering, we can combine all the proposed objectives as follows:

min
n

wr |ROLES|+wu|UA|+wa

∑

r∈ROLES

actvt_spread(r) +wo

∑

r∈ROLES

ou_spread(r)
o

.

(5.16)

where the wi indicate the importance of the ith objective in the overall opti-
mization problem. Section 5.3.2 will show a real application of Equation (5.16)
to a role mining algorithm.

5.3 Spread Index in Action

In this section we will analyze the distinguishing features of the proposed
framework through some practical examples. We first show a use case of
the activity-spread index via a simple example. Then, we demonstrate the
effectiveness of the organization-unit-spread index through the RBAM role
mining algorithm (see Chapter 3) applied to an existing company. Due to
space limitation, we do not provide examples of the combined usage of both
indices.

5.3.1 Example of Activity-Spread

Figure 5.2 depicts a possible candidate role set and an activity tree. At the
top there are representations of RBAC entities, namely roles and permissions.
Example of roles are ass_perms(r1) = {p1, p2}, ass_perms(r6) = {p3}, while
we have that auth_perms(r6) = {p1, p2, p3, p4} since r1 � r6 and r2 � r6. At
the bottom of the figure, there are activities organized in a tree structure.
For instance, a11 is the root of the tree, while a9 → a11 and a7 � a11 holds.
To ease exposition, weights of connections between activities are not repre-
sented in Figure 5.2, and they are all assumed to be equal to 1. Further,
↓a8 = {a3, a4, a8} and ↑a1 = {a1, a7, a9, a11}. Activity a7 is performed when a
user possesses the permissions p1, p2 (that allows for the child activity a1) and
p2, p3, p4 (that are related to the child activity a2).

As for the business meaning estimation, let us calculate the activity-spread
of role r6. By looking at Figure 5.2 it is easy to verify that role r6 allows for
the execution of the activities A r6

= {a1, a2}. In line with Equation (5.7), the
farness index for each activity in A r6

is:

dA r6
(a1) =

dactvt(a1 ,a1)+dactvt(a1,a2)

2−1
= 0+2

2−1
= 2,

dA r6
(a2) =

dactvt(a2 ,a1)+dactvt(a2,a2)

2−1
= 2+0

2−1
= 2.
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Figure 5.2 An example of activity model

For such indices we have d̄A r6
= 2+2

2
= 2 and thus:

actvt_spread(r6) =
22+22

2
− 22 = 0.

The activity spread is 0 since the activities associated to r6 are somewhat “bal-
anced” within the tree. Thus, r6 is probably a good role; indeed, it allows the
execution of activities a1, a2, and consequently the execution of a7.

A different result is obtained by analyzing role r5. In this case, A r5
=

{a4, a5, a6}. Then:

dA r5
(a4)=

dactvt(a4 ,a4)+dactvt(a4,a5)+dactvt(a4,a6)

4−1
= 0+5+5

3−1
=5,

dA r5
(a5)=

dactvt(a5 ,a4)+dactvt(a5,a5)+dactvt(a5,a6)

4−1
= 5+0+2

3−1
= 7

2
,

dA r5
(a6)=

dactvt(a6 ,a4)+dactvt(a6,a5)+dactvt(a6,a6)

4−1
= 5+2+0

3−1
= 7

2
.

Notice that a4 has the largest farness, hence it is far from other activities.
These observations can also be graphically justified by observing Figure 5.1.
The arithmetic mean of such indices is d̄A r5

=
5+7/2+7/2

3
= 4 and thus:

actvt_spread(r5) =
(5)2+(7/2)2+(7/2)2

3
− 42 = 0.5.
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This means that r5 has less business meaning than r6, since r5 is more spread
out among its activities.

Finally, it is worth noticing that both the farness index and the activity-
spread make up useful information that could also be visualized in a role
engineering tool for each activity that is involved within a given role. Hav-
ing access to this information could help users validate roles from a business
perspective.

5.3.2 Organization-Unit-Spread on Real Data

To highlight the framework viability in real applications, we examined a large
private company. In particular, we analyzed permissions related to an ERP
application. The system configuration was made up of 1,139 permissions that
were used by 1,034 users within 231 organization units, resulting in 10,975
user-permission assignments.

To test the effectiveness of our approach, we used an improved version of
the RBAM algorithm (see Chapter 4 for further details), seeking to elicit roles
which minimize the function

c= wr |ROLES|+wu|UA|+ wo

∑

r∈ROLES

ou_spread(r). (5.17)

The algorithm was set to discard permission combinations possessed by less
than 4 users. Moreover, we assigned a weight 1 to all direct hierarchical re-
lationships between organization units. Then, we compared the algorithm
output obtained in two distinct settings: in the first one (from now on in-
dicated as “Experiment 1”), we did not considered the contribution of the
organization-unit-spread index, by using wo = 0 and wr = 10, wu = 1; in the
second one (from now on indicated as “Experiment 2”), we considered all the
cost elements provided by Equation (5.17), using wo = 1 and the same values
for the other weights, namely wr = 10, wu = 1.

The first thing that we can observe from Experiment 2 is that the number
of elicited roles is greater than the number of elicited roles in Experiment 1. In
particular, we have 157 roles in the first case (that cover 7,857 user-permission
assignments with 2,191 role-user relationships) and 171 roles in the second
(that cover 7,857 user-permission assignments with 2,196 role-user relation-
ships). The justification for this behavior is that when using wo 6= 0 (namely,
taking into account the organization-unit-spread) in some cases it is necessary
to reduce the number of users assigned to a role by introducing additional
roles to be assigned with a subset of such users. Indeed, the greater the num-
ber of users assigned to a role are, the more organization units are likely to
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Figure 5.3 An example of elicited roles with different values for wo

be involved. Hence, according to Equation (5.15), the value of the function
ou_spread is likely to be higher.

Figure 5.3 shows an interesting example—to protect company privacy, the
names of the organization units are slightly different from the original ones.
In Experiment 1 (wo = 0), we noticed that 2 out of 1,139 permissions were
possessed by 22 users, and these users were granted these permissions by
assigning them to only one of the two roles which the algorithm automat-
ically called role107 and role594. Moreover, role � role, while
|auth_perms(role)| = 2 and |auth_perms(role)| = 15. Further, we
have that |ass_users(role)| = 5 and users were belonging to 3 differ-
ent organization units, namely ‘FISCAL ADMINISTRATION’, ‘PC/SERVICE
AREA’ and ‘PLANNING AND GENERAL SERVICES’. Because of the spread-
ing of users among these OUs, ou_spread(role) = 12.243. Figure 5.3 also
offers a partial view of the entire organization structure, showing the already
cited organization units with a bold font. Conversely, in Experiment 2 (where
wo = 1) the same 2 permissions were completely covered by 4 roles that
the algorithm automatically called role107, role752, role293, role594.
Roles with the same name between the two experiments contain the same
permission set, but are assigned with different user sets. Indeed, by ob-
serving Figure 5.3 it is possible to verify that the same 5 users from the
other experiment now spread among 3 roles, having |ass_users(role)| =
1, |ass_users(role)| = 2, and |ass_users(role)| = 2. In this case,
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Figure 5.4 Roles obtained via different values of wo and sorted by spread

each of these roles have assigned users who belong to only one organization
unit. Moreover, role � role and role � role. One role has
|auth_perms(role)|= 13 and the other one has |auth_perms(role)|=
8. Their organization-unit-spread is equal to 0, thus demonstrating that taking
the organization-unit-spread into account may help identify roles with higher
business meaning.

Another interesting behavior of the RBAM algorithm, if used with the cost
function described in Equation (5.17), is that increasing the value of wo causes
the decrease of the average organization-unit-spread. Indeed, when wo = 0 we
have an average value of

�∑
r∈ROLES ou_spread(r)

�
/|ROLES| = 5.96. Instead,

when wo = 1 the average spread drops down to 4.86, and wo = 10 causes an
average spread of 2.87. This means that a high value of wo allows to elicit
roles with a more relevant business meaning on average. In such a case, the
price to pay to obtain more meaningful roles is in terms of the cardinality
of ROLES. By analyzing Figure 5.4, it could also be noted that even though
Experiment 2 has more roles, the percentage of roles with spread equal to 0 is
increased in comparison with Experiment 1.
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5.4 Using Business Model Before Mining Roles

A possible viable solution to value business requirements in role mining may
be to restrict the analysis to sets of data that are homogeneous from an enter-

prise perspective. The key observation is that users sharing the same business
attributes will essentially perform the same task within the organization. Sup-
pose we know, from a partial or coarse-grained top-down analysis, that a cer-
tain set of users perform the same tasks, but the analysis lacks information
about which permissions are required to execute these tasks. In this scenario,
restricting role mining techniques to these users only—instead of analyzing
the organization as a whole—, will ensure that elicited roles are only related
to such tasks. Consequently, it will be easier for an analyst to assign a business
meaning to the roles suggested by the bottom-up approach. Moreover, elic-
itation of roles with no business meaning can be avoided by grouping users
that perform similar tasks together first, and then analyzing each group sep-
arately. Indeed, investigating analogies among groups of users that perform
completely different tasks is far from being a good role mining strategy. Parti-
tioning data also introduces benefits in terms of execution time of role mining
algorithms. Indeed, most role mining algorithms have a complexity that is not
linear compared to the number of users or permissions to analyze [34,94]. To
apply this divide-and-conquer strategy, a lot of enterprise information can be
used. Business processes, workflow tasks, and organization unit trees are just
a few examples of business elements that can be leveraged. Notice that very
often such information is already available in most companies before starting
the role engineering task—for instance within HR systems. When dealing with
information from several sources, the main problem is thus ascertaining which
information induces the partition that improves the role engineering task the
most.

To address all the aforementioned issues, this section proposes a method-
ology that helps role engineers to leverage business information during the
role mining process. In particular, we propose to divide the access data into
smaller subsets that are homogeneous according to a business perspective, in-
stead of performing a single bottom-up analysis on the entire organization.
This eases the attribution of business meaning to roles elicited by any existing
role mining algorithm and reduces the problem complexity. To select the busi-
ness information that induces the most suitable partition, an index referred
to as “ENTRUSTABILITY” (entropy-based role usefulness predictability) is identi-
fied. Rooted on information theory, it measures the expected uncertainty in
locating a homogeneous set of users and permissions that can be managed as
a whole by a single role. The decomposition with the highest ENTRUSTABILITY
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value is the one that most likely leads to roles with a clear business meaning.
Several examples illustrate the practical implications of the proposed method-
ology and related tools, which have also been applied on real enterprise data.
Results support the quality and viability of the proposal.

5.4.1 A Divide-And-Conquer Approach

In this section we describe how to condition existing role mining algorithms
to craft roles with business meaning and to downsize the problem complexity.
By leveraging the observations of the previous section, it is possible to exploit
available business information, or top-down analysis results, in order to drive
a bottom-up approach. In particular, a business attribute (e.g., organizational
units, job titles, applications, tasks, etc.) naturally induces a partition of the
user-permission assignment set UP to analyze, where each subset is made up of
all the assignments that share the same attribute values. Decomposing the role
mining problem into smaller sub-problems is a best practice, especially when
dealing with large datasets. Typical steps of a generic role mining process
are [58]:

1. Choice of Information Sources. From the available data, a subset has to
be selected which is most promising to yield suitable information for role
creation.

2. Data preparation. The data is collected from various locations, cleaned
up from obvious or known as incorrect information, and transformed
into a format in which it can then be processed by the data mining soft-
ware.

3. Exploration. This phase is crucial for the whole role mining process.
It will provide a “feeling” for the data contents and the expected role
scheme. The results of this phase are suitable attribute sets for the
unique representation of organizational and functional roles and suit-
able parameters for the role mining algorithms.

4. Mining. The role mining algorithm is performed.
5. Role creation. The outcome of the data mining run are used to derive

candidate organizational and functional roles.
6. Check, approval and implementation of resulting roles. The resulting roles

have to be checked for plausibility and correctness.
7. User Assignment. The elicited roles are finally assigned to users.

In this scenario, leveraging ENTRUSTABILITY allows for the identification of the
business information that “best fits” with the access control data, namely the
information that induces a decomposition which most simplifies the identifi-
cation of a business meaning for roles elicited in the role mining phase. The
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index can be calculated in the exploration step and used to guide the subse-
quent role mining steps.

When several business attributes are at our disposal, the difficulty arises
in the selection of the one that induces a partition for UP that simplifies the
subsequent mining steps. To this end, for each business information we calcu-
late an index referred to as ENTRUSTABILITY, which measures the uncertainty in
identifying homogeneous sets of users and permissions that can be managed
through a single role. The decomposition with the highest ENTRUSTABILITY

value is the one that most likely leads to roles with a clear business mean-
ing. Before formally defining the ENTRUSTABILITY index, in the following, we
first introduce the pseudo-role concept as a means to identify sets of users and
permissions that can be managed by the same role. In turn, we describe EN-
TRUSTABILITY as a measure of how much a partition reduces the uncertainty in
locating such sets of users and permissions in each subset of the partition.

5.4.2 Pseudo-Roles

The following definition introduces an important concept of the proposed
methodology:

Definition 5.1 Given a user-permission assignment 〈u, p〉 ∈ UP, the pseudo-

role generated by 〈u, p〉 is a role made up of users users(p) and permissions
perms(u).

Pseudo-roles are also described in Chapter 6, with the alternative name of
“pseudo-biclusters”. In such a chapter we will also discuss pseudo-roles from
a graph theory perspective. We will propose a mapping between binary matri-
ces and undirected graphs where a pseudo-role represent all the neighbors of
a given node. We will provide efficient algorithms for viable computation of
pseudo-roles. In this chapter, pseudo-roles will be employed to identify those
user-permission assignments that can be managed together with a given as-
signment through a single role. Notice that all users users(p) should not neces-
sarily be granted all permissions perms(u)—this is the reason for the “pseudo”
prefix. Since a pseudo-role r̂ is not an actual role, with abuse of notation
we refer to its users as ass_users(r̂) and to its permissions as ass_perms(r̂).
Several user-permission assignments can generate the same pseudo-role. In
particular:

Definition 5.2 The percentage of user-permission assignments of UP that gen-
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erates a pseudo-roles r̂ is referred to as its frequency, defined as:

ϕ(r̂) =
1

|UP|

��{〈u, p〉 ∈ UP | ass_users(r̂) = users(p) ∧

ass_perms(r̂) = perms(u)}
��.

The introduction of the pseudo-roles concept is supported by the following
theorem:

Theorem 5.1 Given a user-permission assignment 〈u, p〉 ∈ UP, let r̂ be the

pseudo-role generated by 〈u, p〉. Then

UP̂r =
�
ass_users(r̂)× ass_perms(r̂)

�
∩UP

is the set of all possible user-assignment relationships that can be covered by any

role to which 〈u, p〉 belongs to. Hence, for each RBAC state 〈ROLES, UA, PA〉 that

covers the assignments in UP the following holds:

∀r ∈ ROLES : u ∈ ass_users(r), p ∈ ass_perms(r) =⇒

ass_users(r)× ass_perms(r)⊆ UP̂r .

PROOF First, we prove that any assignment that can be managed together with
〈u, p〉 must be within UP̂r . Let 〈u′, p′〉 ∈ UP be an assignment outside the
pseudo-role r̂, namely 〈u′, p′〉 6∈ UP̂r . If, by contradiction, 〈u, p〉 and 〈u′, p′〉

can be managed through the same role r ′, then by definition all the users
ass_users(r ′) must have permissions ass_perms(r ′) granted. Hence, both the
assignments 〈u′, p〉 and 〈u, p′〉 must exist in UP. But, according to Defini-
tion 5.1, u′ ∈ ass_users(r̂) = users(p) and p′ ∈ ass_perms(r̂) = perms(u),
that is a contradiction.

Now we prove that any assignment within UPr̂ can be managed together
with 〈u, p〉 via a single role. Given 〈u′′, p′′〉 ∈ UPr̂ , Definition 5.1 yields u′′ ∈

ass_users(r̂) = users(p) and p′′ ∈ ass_perms(r̂) = perms(u). Thus, both the
assignments 〈u′′, p〉 and 〈u, p′′〉 exist in UP, completing the proof. �

According to the previous theorem, a pseudo-role groups all user-permis-
sion assignments that are manageable through any of the roles that also covers
the pseudo-role generators. The pseudo-role frequency indicates the mini-
mum number of assignments covered by the pseudo-role (i.e., the generators)
that are manageable through the same role. Consequently, the higher the fre-
quency of a pseudo-role is, the more pseudo-role assignments can be managed
by one role. Similarly, the lower the frequency is, the more likely it is that the
assignments covered by a pseudo-role cannot be managed by a single role.
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Therefore, the ideal situation is when pseudo-role frequencies are either close
to 1 or close to 0: frequent pseudo-roles circumscribe a portion of assignments
that are worth investigating since they likely contain a role for managing most
of the assignments; conversely, unfrequent pseudo-roles identify assignment
sets that are not worth analyzing.

5.4.3 Entrustability

Based on the previous observations, we are interested in finding the decom-
position that produces pseudo-roles with frequencies either close to 1 or to
0. In the following we show that the entropy concept [27] is a natural way
to capture these circumstances. Let A be the set of all values assumed by
a given business information—for instance, A can represent the “job title”
information, and one of the actual values a ∈ A can be “accountant”. Let
P = {UPa1

, . . . , UPan
} be a n-partition of UP induced by the business informa-

tion A such that the number of subsets are n = |A |, each subset is such that
UPai

⊆ UP, the subset indices are ∀i ∈ 1, . . . , n : ai ∈ A , and the subset are such
that UP =

⋃
a∈A

UPa. UPa indicates all assignments that “satisfy” the attribute
value a (e.g., if A represents the “job title” information, all the assignments
where users are “accountant” are one subset). Notice that, according to the
previous partition definition, subsets can overlap, namely

��UPa ∩UPa′

�� ≥ 0
when users or permissions can be associated to more than one attribute value.
Let R a be the set of all pseudo-roles that can be generated within the subset
UPa, and R =

⋃
a∈A
R a ∪ R ∗ where R ∗ represents the pseudo-roles belonging

to UP before decomposing it. Notice that the same pseudo-role might belong
to both R ∗ and another set R a, namely |R ∗ ∩ R a| ≥ 0, but not necessarily with
the same frequencies.

Let A∈ A be the random variable that corresponds to a value of the given
business attribute, while the random variable R ∈ R denotes a pseudo-role
generated by a generic user-permission assignment. Let Pr(r̂) be the empirical
probability of a pseudo-role r̂ ∈ R being generated by an unspecified user-
permission assignment. More specifically,

Pr(r̂) =
1

|UP|

∑

ω∈UP

g(ω, r̂)

where

g(ω, r̂) =

(
1, ω generates r̂ in UP;

0, otherwise.

Similarly, the empirical probability of a pseudo-role being generated by an
unspecified user-permission assignment that “satisfies” the business attribute
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a is

Pr(r̂ | A= a) =
1��UPa

��
∑

ω∈UPa

ga(ω, r̂)

where

ga(ω, r̂) =

(
1, ω generates r̂ in UPa;

0, otherwise.

Notice that, for each attribute value a, when r̂ ∈ R a, then Pr(r̂) corresponds
to the frequency definition. Conversely, if r̂ ∈ R \ R a, then Pr(r̂) = 0.

As stated before, the natural measure for the information of the random
variable R is its entropy H(R). The binary entropy, defined as

H(R) =−
∑

r̂∈R

Pr(r̂) log2 Pr(r̂),

quantifies the missing information on whether the pseudo-role r̂ is generated
from some unspecified user-permission assignment when considering the set
UP as a whole. By convention, 0 × log2 0 = 0. The conditional entropy is
defined as

H(R | A) = −
∑

a∈A

Pr(a)
∑

x r̂∈R

Pr(r̂ | A= a) log2 Pr(r̂ | A= a),

where Pr(a) = |UPa|/
∑

a∈A
|UPa| measures the empirical probability of choos-

ing an assignment that satisfies a. H(R | A) quantifies the missing informa-
tion on whether the pseudo-role r̂ is generated from some unspecified user-
permission assignment when A is known. The mutual information

I(R; A) = H(R)−H(R | A)

measures how much the knowledge of A changes the information on R. Hence,
I(R; A)measures how much the knowledge of the business information A helps
us to predict the set of users and permissions that are manageable by the same
role within each subset. Since I(R; A) is an absolute measure of the entropy
variation, we introduce the following measure for the fraction of missing in-
formation removed by the knowledge of A with respect to the entropy H(R)

before partition:

ENTRUSTABILITY(A) =
I(R; A)

H(R)
= 1−

H(R | A)

H(R)
.

By selecting the decomposition with the highest ENTRUSTABILITY value, we
choose the decomposition that simplifies the subsequent role mining analy-
sis most. Notice that the previous equations consider one business attribute at
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Table 5.1 ENTRUSTABILITY values of the analyzed business information

Attribute User Perm entrustability

Job Title ! 1.00

Unit ! 0.93

Cost Center ! 0.85

Organizational Unit ! 0.82

Building ! 0.58

Application ! 0.49

Division ! 0.46

Surname ! 0.02

a time. Given ℓ business information A 1, . . . ,A ℓ, it is simple to extend the defi-
nition of the ENTRUSTABILITY index by partitioning UP in subsets of assignments
that contextually satisfies all business information which has been provided.

5.5 Entrustability in Real Cases

We now show an application to a real case. Our case study has been car-
ried out on a large private organization. Due to space limitation, we only re-
port on a representative organization branch that contained 50 users with 31
granted permissions, resulting in a total of 512 user-permission assignments.
We adopted several user and permission attributes at our disposal. In order to
protect organization privacy, some names reported in this chapter for business
attributes are different from the original ones.

According to the proposed approach, we computed the ENTRUSTABILITY in-
dex for each available business information. To further demonstrate the re-
liability of the methodology, we introduced a control test. That is, we try
to categorize users according to the first character of their surname. Since
this categorization does not reflect any access control logic, our methodology
reveals that—as expected—partitioning by surname does not help the min-
ing phase. Table 5.1 reports on the outcome of the analysis—it also specifies
whether the attributes were used to partition user-permission assignments by
users or by permissions. According to the reported values, the “Job Title” in-
formation induces the most suitable partition for the attribution of business
meaning to roles. As a matter of fact, when ENTRUSTABILITY equals 1, each
subset can be managed by just one role. Unsurprisingly, the categorization
by surname leads to an ENTRUSTABILITY index that is very close to 0, indicat-



 Chapter 5. Devising Meaningful Roles

ing that the role engineering task does not substantially change its complexity
after decomposition.

To better understand the meaning of the ENTRUSTABILITY values obtained
from our analysis, Figure 5.5 depicts user-permission relationships involved
with subsets for each partition. In particular, we report on the attribute values
that identify each subset, the entropy value H(R) computed for each subset,
and a matrix representation of user-permission assignments, where each black
cell indicates a user (row) that has a certain permission (column) granted.
Figure 5.5(a) visually demonstrates why the Job Title information leads to a
value for ENTRUSTABILITY that equals 1. Indeed, in this case all users sharing
the same job title always share the same permission set. Therefore, by creating
one role for each subset, we provide roles that can straightforwardly be associ-
ated with users whenever they join the organization (and get their job title for
the first time) or change their business functions (and thus likely change their
job title). Another piece of information that induces a good partition is Unit.
As is noted from Figure 5.5(b), almost all users within each group share the
same permission sets. For example, within the unit “Personal Communication
Unit” there is one user (the first one) that has an additional permission granted
compared to other users of the same unit. For this reason, the identification
of roles needed to manage these users requires a little more investigation—
hence, leading to a non-zero entropy value, that is, H(R) = 0.98. This ex-
ample also raises another important point: even though the ENTRUSTABILITY

value for Job Title is higher than for Unit, the Unit information induces fewer
and larger subsets, hence allowing to cover all user-permission relationships
with fewer roles. In general, the smaller the subsets, the more likely it is that
the ENTRUSTABILITY index is high. However, small subsets reduce the benefits
introduced by RBAC in terms of administration effort, due to the limited num-
ber of user-permission relationships that can be managed via a single role.
Hence, a trade-off should be reached between ENTRUSTABILITY value and sub-
set dimensions. An alternative approach could be to further partition those
subsets that have high entropy values by introducing other pieces of business
information. In the previous case, the subset identified by the unit named “CS
Operations Unit II” (see Figure 5.5(b)) involves users with two job titles: if we
recursively apply our methodology and divide the unit “CS Operations Unit II”
according to the Job Unit information, we will obtain an ENTRUSTABILITY value
that equals 1. Hence, obtaining larger roles when compared to the partition
by Job Title only.

Figure 5.5(g) also demonstrates that not every bit of business information
improves the role finding task. Although analyzing the data as a whole is obvi-
ously more difficult than analyzing smaller subsets, in this case there are still
uncertainties regarding the identification of roles. For instance, it is not triv-
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Consultant H(R) = 0.00

Category Manager H(R) = 0.00

Product Manager H(R) = 0.00

Customer Services Assistant H(R) = 0.00

Senior Product Manager H(R) = 0.00

CS Tech.Spec.–VPN H(R) = 0.00

Vice President Partnership H(R) = 0.00

CS Tech.Supp.Admin.–VPN H(R) = 0.00

CS Tech.Supp.Admin.–Res. H(R) = 0.00

Senior Category Manager H(R) = 0.00

Fraud Analysis Specialist H(R) = 0.00

Assistant H(R) = 0.00

CS Tech.Spec.–Res. H(R) = 0.00

Junior Fraud Analysis Specialist H(R) = 0.00

Inform. & Knowledge Base Manager H(R) = 0.00

Temporary Assistant H(R) = 0.00

Member of Fraud Analysis Team H(R) = 0.00

Senior Marketing Project Manager H(R) = 0.00

CS Consultant H(R) = 0.00

Revenue Assurance Specialist H(R) = 0.00

(a) Job Title

Sales Unit H(R) = 0.00

Fraud Management Unit H(R) = 0.00

Preproducts Unit H(R) = 1.26

Revenue Assurance & Billing Unit H(R) = 0.00

N/A H(R) = 0.00

Marketing Projects Management Unit H(R) = 0.00

Personal Communication Unit H(R) = 0.98

CS Operations Unit H(R) = 0.00

Terminal Management Unit H(R) = 0.00

CS Operations Unit II H(R) = 1.62

Technical, Data & Multimedia Support H(R) = 0.00

Information & Knowledge Base Unit H(R) = 0.00

(b) Unit

78300 H(R) = 0.00

59000 H(R) = 0.00

63002 H(R) = 0.00

49000 H(R) = 1.65

71800 H(R) = 0.00

52000 H(R) = 1.83

72400 H(R) = 0.00

72100 H(R) = 1.62

(c) Cost Center

Customer Service H(R) = 0.00

External Customers H(R) = 1.86

Internal Customers H(R) = 1.95

Technical Rep. H(R) = 0.00

Sales H(R) = 0.00

Finance H(R) = 1.65

Marketing H(R) = 1.07

Product Division H(R) = 0.00

Customer Service II H(R) = 1.23

(d) Organizational Unit

Alabama H(R) = 1.76

Alaska H(R) = 3.48

Arizona H(R) = 3.69

Arkansas H(R) = 0.00

California H(R) = 0.00

Colorado H(R) = 0.00

Connecticut H(R) = 1.92

(e) Building

App1 App2 App3 App4 App5

H(R) = 3.96 H(R) = 2.89 H(R) = 0.68 H(R) = 0.00 H(R) = 3.68

(f) Application

Marketing H(R) = 2.33

Sales H(R) = 0.00

Cust.Serv. H(R) = 3.80

Finance H(R) = 1.65

(g) Division

A-M

H(R) = 5.68

N-Z

H(R) = 5.32

(h) Surname

Figure 5.5 Graphical representation of each partition and corresponding entropy values
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(a) ϕ = 32/70 (b) ϕ = 24/70 (c) ϕ = 8/70 (d) ϕ =3/70 (e) ϕ = 2/70 (f) ϕ = 1/70

Figure 5.6 Pseudo-roles (top figures, highlighted in red) and corresponding generators (bottom
figures, highlighted in yellow)

ial to assign a meaning to possible roles—without any further information—
within the division “Cust.Serv.”, namely the division with the highest entropy
value. Finally, Figure 5.5(h) clearly shows that surname information is com-
pletely useless. In fact, if we compute the entropy of the entire user-permission
assignment, we obtain the value H(R) = 5.69. In this case, the entropy values
for users “A-M” and “N-Z” are almost the same as before the decomposition.

To conclude, Figure 5.6 depicts all the pseudo-roles that can be identified
in a simple case represented by the cost center named “52000” (from Fig-
ure 5.5(c)), which numbers 8 users, 11 permissions, and 70 user-permission
assignments. Each figure from Figure 5.6(a) to Figure 5.6(f) shows a dif-
ferent pseudo-role. At the top of each figure, a binary matrix shows all the
user-permission assignments covered by the pseudo-role (dark red cells are
existing assignments covered by the pseudo-role, light red are non-existing as-
signments). At the bottom, another matrix shows the assignments that gener-
ate the pseudo-role (highlighted in yellow). Notice that when the pseudo-role
frequency is high (e.g., Figure 5.6(a) and Figure 5.6(b)), it likely contains a
role for managing most of the assignments. Conversely, unfrequent pseudo-
roles (e.g., Figure 5.6(e) and Figure 5.6(f)) identify assignment sets that are
not worth investigating due to the reduced number of assignments that can be
managed by a single role.

5.6 Final Remarks

This chapter provides a new formal framework for the role engineering prob-
lem. It allows to implement a concrete hybrid approach through the com-



5.6. Final Remarks 

bination of existing role mining algorithms (bottom-up) and business anal-
ysis (top-down). Once the business processes of an organization have been
correctly modeled, we then analyze roles in order to evaluate their business
meaning. In particular, a role is likely to be meaningful when it involves ac-
tivities within the same business process. Thus, we measure the spreading of
a role among business processes by introducing the spread index. Leverag-
ing the cost-driven approach makes it possible to take into account the spread
during the role engineering process. The proposed framework has been im-
plemented on a real case, and the results support the its viability.

We also described a methodology that helps role engineers to leverage
business information during the role mining process. In particular, we demon-
strate that by dividing data into smaller, more homogeneous subsets, it practi-
cally leads to the discovery of more meaningful roles from a business perspec-
tive, decreasing the risk factor of making errors in managing them. To drive
this process, the ENTRUSTABILITY index has been introduced to measure the ex-
pected uncertainty in locating homogeneous set of users and permissions that
can be managed by a single role. Leveraging this index allows to identify the
decomposition that increases business meaning in elicited roles in subsequent
role mining steps, thus simplifying the analysis. The quality of the index is
also guaranteed by analysis. Several examples, developed on real data, illus-
trate how to apply the tools that implement the proposed methodology, as
well as its practical implications. Those results support both the quality and
the practicality of the proposal.
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6
Taming Role Mining

Complexity

I n the following we address the problem of reducing the role mining com-

plexity in RBAC systems. The main idea is to identify those exceptional

assignments (i.e., permissions exceptionally or accidentally granted or de-
nied) which badly bias any role mining analysis. To this aim, we propose
a three steps methodology: first, we associate a weight to roles; second, we
identify user-permission assignments that cannot belong to roles with a weight
exceeding a given threshold; and third, we restrict the role-finding problem to
user-permission assignments identified in the second step. We formally show
that this methodology allows role engineers for the elicitation of stable can-
didate roles, by contextually simplifying the role selection task. Furthermore,
we also consider the possibility that analyzed data present some missing user-
permission assignment. Thus, we propose a novel algorithm that is able to
impute such missing values in a very efficient and effective way. This chapter
summarizes the contribution previously published in [6,8,12].

6.1 Stability Concept

To address all the above mentioned issues, this chapter proposes a methodol-
ogy that helps role engineers: to identify roles that are stable; and, to minimize
the effort required to select the most meaningful roles for the organization.
The proposed approach allows to prune user-permission assignments which
lead to unstable roles and that increase the complexity of the role mining task.
In this way, we are able to build a core set of roles that have the above men-


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tioned features. These results have been formally proven through sound graph
theory. In particular, we leverage the mapping between role mining and some
well-known graph problems (i.e., biclique cover, clique partition, vertex color-
ing, and maximal clique enumeration). A further contribution of this chapter
is the adoption of the clustering coefficient as a metric to evaluate the role
mining complexity. To Furthermore, efficient deterministic and randomized
algorithms that implement the proposed pruning approach are also described.
A thorough analysis on the quality of the results provided by these algorithms
is reported. Finally, applications of the methodology to real-world data are
shown.

6.1.1 Assignment and Role Stability

The cost function is thoroughly described in Chapter 3 and Chapter 5. A sim-
ilar concept is provided by [68], where the authors utilizes user attributes to
provide a measurement of the RBAC state complexity. In general, finding the
optimal candidate role-set can be seen as a multi-objective optimization prob-
lem. An optimization problem is multi-objective when there are a number of
objective functions that are to be minimized or maximized. For the purposes
of this chapter, we thus introduce the following metric for roles:

Definition 6.1 (Role Weight) Given a role r ∈ ROLES, let Pr and Ur be the
sets of permissions and users associated to r, that is Pr = {p ∈ PERMS | 〈p, r〉 ∈

PA} and Ur = {u ∈ USERS | 〈u, r〉 ∈ UA}. We indicate with w : ROLES→ R the
weight function of roles, defined as

w(r) = cu |Ur | ⊕ cp |Pr | , (6.1)

where the operator “⊕” represents a homogeneous1 binary function of de-
gree 1, while cu and cp are real numbers greater than 0.

In the following, we use the role weight as an indicator of the “stability” of
a role:

1A function is homogeneous when it has a multiplicative-scaling behavior, that is if the
argument is multiplied by a factor, then the result is multiplied by some power of this factor.
Formally, if f : V → W is a function between two vector spaces over a field F , then f is
said to be homogeneous of degree k if f (αv) = αk f (v) for all nonzero α ∈ F and v ∈ V .
When the vector spaces involved are over the real numbers, a slightly more general form of
homogeneity is often used, requiring only that the previous equation holds for all α > 0. Note
that any linear function is homogeneous of degree 1, by the definition of linearity. Since we
require functions with two parameters, we can alternatively state that the multiplication must
be distributive over “⊕”. Thus, an example of valid “⊕” operator is the sum, as shown in
Section 6.5.3.
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(a) Before adding the
assignment

(b) After adding the
assignment

Figure 6.1 Behavior of stable and unstable assignments when new assignments are
added. Candidate roles are highlighted with different colors.

Definition 6.2 (Role Stability) Let r ∈ ROLES be a given role, w be the role
weight function, and t ∈ R be a real number that we refer to as a “threshold”.
We say that r is stable with respect to t if w(r) > t . Otherwise, r is unstable.

Definition 6.3 (Assignment Stability) Let the pair 〈u, p〉 ∈ UP be a given
assignment, and t ∈ R be a real number that we refer to as a “threshold”. Let
R〈u,p〉 be the set of roles that contains the assignment 〈u, p〉, namely R〈u,p〉 =

{r ∈ ROLES | 〈u, r〉 ∈ UA, 〈p, r〉 ∈ PA}, and let w be the role weight function.
We say that 〈u, p〉 is stable with respect to t if it belongs to at least one stable
role, namely ∃r ∈ R〈u,p〉 : w(r) > t . Otherwise, the assignment is unstable, that
is ∀r ∈ R〈u,p〉 : w(r) ≤ t .

If a role is composed by few user-permission relationships, its weight will
be limited, and subsequently it will be unstable. Indeed, when a change of the
access control configuration happens, there is the need to recalculate the opti-
mal candidate role-set. In this case, the introduction of a new user-permission
assignment could drastically change the configuration of an unstable role, ac-
cording to the specific cost function considered. To better understand this
concept, Figure 6.1 shows an example of assignment addition in a context
where assignments that belong to roles with different weights are present. In
particular, Figure 6.1(a) shows a possible system configuration. On the left
side there are users {A,B,C,D}, while on the right side there are permissions
{1,2,3,4}. A “link” between a user and a permission indicates that the given
user is granted the given permission. The picture also highlights a candidate
role-set, represented by the roles:
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◮ Role r1: users Ur1
= {A,B}, permissions Pr1

= {1,2,3};
◮ Role r2: users Ur2

= {C}, permissions Pr2
= {3,4};

◮ Role r3: users Ur3
= {D}, permissions Pr3

= {4}.

Suppose that we want user D to be granted permission 3. Figure 6.1(b) shows
the resulting new configuration and proposes a new candidate role-set, repre-
sented by the following roles:

◮ Role r1: users {A,B}, permissions {1,2,3};
◮ Role r4: users {C,D}, permissions {3,4}.

Intuitively, by replacing roles r2 and r3 with the new role r4 we get more
advantages than creating a new role to manage the newly introduced assign-
ment. Instead, role r1 exists in both the solutions, due to the high number of
users and permissions involved. Thus, it is not advantageous to modify the
definition of r1 in order to manage the new assignment. As a consequence of
the previous observation, the administration of unstable assignments through
roles requires more effort. Hence, the direct assignment of permissions to
users could be more profitable.

In general, once an optimal set of roles has been found, the introduction
of a new user or a new permission may change the system equilibrium when-
ever roles with limited weight exist. This translates in higher administration
cost, which is something that RBAC administrators tend to avoid. Therefore,
roles with a consistent weight are preferable, since they are more stable and
less affected by the modifications of the existing user-permission assignments.
The main idea is thus to identify and “discard” the user-permission relation-
ships that only belong to roles with a limited weight—that is, unstable assign-
ments. Put another way, we do not manage unstable assignments with any
roles. Equivalently, we can create as many single-permission roles as the per-
missions involved with unstable assignments. Thus, restricting the role mining
problem to the remaining user-permission assignments only. In this way, the
elicited roles are representative and stable. Representative since they are used
by several users or they cover several permissions. Stable because they are not
greatly affected by the introduction of new users or new permissions.

6.2 Pruning Unstable Assignments

This section formally describes a strategy for the reduction of the role mining
complexity by pruning unstable assignments. We first explain the mapping
between the role engineering problem, the biclique cover and the clique par-
tition problems, as in [34]. Then we introduce our three-step methodology.
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Moreover, we prove the relation between the degree of a graph nodes and
their instability. Finally, we explain how to identify unstable assignments and
show some possible applications to role mining.

6.2.1 Role Engineering and Biclique Cover

We first observe that a given configuration ϕ = 〈USERS, PERMS, UP〉 can be
represented by a bipartite graph

G =


V1 ∪ V2, E

�
=


USERS∪ PERMS, UP

�
, (6.2)

where two vertices u ∈ USERS and p ∈ PERMS are connected by an edge if
the user u is granted permission p, namely 〈u, p〉 ∈ UP. A biclique cover of the
graph G univocally identifies a candidate role-set ψ= 〈ROLES, UA, PA〉 for the
configuration ϕ. Indeed, every biclique identifies a role, and the vertices of
the biclique identify the users and the permissions assigned to this role [34].
Thus, finding the optimal role-set is equivalent to identifying the biclique cover
such that the corresponding roles are optimal.

By starting from the bipartite graph G, it is possible to construct an undi-
rected unipartite graph G′ in the following way: each edge in G (i.e., an as-
signment of UP) becomes a vertex in G′, and two vertices in G′ are connected
by an edge if and only if the endpoints of the corresponding edges of G induce
a biclique. To ease the exposition, we define the function B: UP→ 2UP that in-
dicates all edges in UP which induces a biclique together with the given edge,
namely:

B(〈u, p〉) =
�
〈u′, p′〉 ∈ UP | 〈u, p′〉, 〈u′, p〉 ∈ UP ∧ 〈u, p〉 6= 〈u′, p′〉

	
. (6.3)

Note that two edges ω1 = 〈u1, p1〉 and ω2 = 〈u2, p2〉 of UP that share the same
user (that is, u1 = u2) or the same permission (that is, p1 = p2) induce a bi-
clique. Also, 〈u1, p1〉 and 〈u2, p2〉 induce a biclique if the pair 〈u1, p2〉, 〈u2, p1〉 ∈

UP exist. Moreover, given ω1,ω2 ∈ UP, it can be easily verified that ω1 ∈

B(ω2) ⇐⇒ ω2 ∈ B(ω1) and ω1 ∈ B(ω2) =⇒ ω1 6= ω2. Therefore, the
undirected unipartite graph G′ induced from G can be formally defined as:

G′ = 〈V ′, E′〉 =


UP,

�
〈ω1,ω2〉 ∈ UP×UP |ω1 ∈ B(ω2)

	�
(6.4)

In this way, the edges covered by a biclique of G induce a clique in G′. Thus,
every biclique cover of G corresponds to a collection of cliques of G′ such that
their union contains all of the vertices of G′. From such a collection, a clique
partition of G′ can be obtained by removing any redundantly covered vertex
from all but one of the cliques it belongs to. Similarly, any clique partition of
G′ corresponds to a biclique cover of G.
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(a) Bipartite view (b) Unipartite view

Figure 6.2 An assignment (green) and those that induce a biclique with it (red),
in both graph G and G′.

To clarify this concept, Figure 6.2 show a simple example, where USERS =
{A,B,C,D}, PERMS = {1,2,3,4}, and UP =

�
〈A,1〉, 〈A,2〉, 〈A,3〉, 〈B,1〉,

〈B,2〉, 〈B,3〉, 〈C,3〉, 〈C,4〉, 〈D,4〉
	
. In the figure, the assignment 〈B,2〉 rep-

resents an edge in the bipartite graph (Figure 6.2(a)) and a vertex in the uni-
partite graph (Figure 6.2(b)). The figures show in red and thicker lines all the
assignments that induce a biclique with 〈B,2〉, according to Equation (6.3); for
example, 〈B,3〉 share the same user of 〈B,2〉, while 〈A,1〉 induce a biclique
with 〈B,2〉 since the assignments 〈B,1〉 and 〈A,2〉 exist.

It is known that finding a clique partition of a graph is equivalent to finding
a coloring of its complement [34] (see also Chapter 4). To this aim, let the
graph G′ made up of the same vertices of G′, but edges of G′ are the comple-
ment of edges of G′. Given an assignment ω ∈ UP, we indicate with B(ω) the
assignments that do not induce a biclique together with ω, namely

B(ω) = (UP \ {ω}) \ B(ω). (6.5)

Hence, the graph G′ can be formally defined as:

G′ = 〈V ′, E′〉 =


UP,

�
〈ω1,ω2〉 ∈ UP×UP |ω1 ∈ B(ω2)

	�
(6.6)

Any coloring of the graph G′ identifies a candidate role-set of the given system
configuration ϕ = 〈USERS, PERMS, UP〉, from which we have generated G.
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(a) Biclique cover in
G

(b) Clique partition in G′ (c) Vertex coloring in G′

Figure 6.3 Relationship among biclique cover, clique partition, and vertex coloring.

Thus, finding a proper coloring for G′ means finding a candidate role-set that
covers all possible combinations of permissions possessed by users according
to ϕ; namely, a set of roles such that the union of related permissions matches
exactly with the permissions possessed by the users.

The aforementioned properties are graphically depicted in Figure 6.3. In
particular, Figure 6.3(a) shows a possible biclique cover. This cover is com-
posed by 3 different bicliques:

�
〈A,1〉, 〈A,2〉, 〈A,3〉, 〈B,1〉, 〈B,2〉, 〈B,3〉

	
(green),

�
〈B,4〉

	
(yellow), and

�
〈C,4〉, 〈C,5〉, 〈C,6〉, 〈D,4〉, 〈D,5〉, 〈D,6〉

	
(red). Figure 6.3(b) represents the same information in the unipartite view in
terms of clique partition. Figure 6.3(c) demonstrates that the same informa-
tion represents a vertex coloring in the complement of the unipartite graph.
Edges in G belonging to the same biclique have the same color, and vertices
in G′ and G′ have the same color of their corresponding edges in G. More-
over, vertices in G′ that belong to the same clique are connected with an edge
with the same color of their vertices, while dashed lines indicate that their
endpoints do not belong to any clique of the chosen partition.
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6.2.2 Methodology

To generate a candidate role-set that is stable and easily analyzable, we split
the problem in three steps:

Step 1 Define a weight-based threshold.
Step 2 Catch the unstable user-permission assignments.
Step 3 Restrict the problem of finding a set of roles that minimizes the ad-

ministration cost function by only using stable user-permission as-
signments.

In particular, we introduce a pruning operation on the vertices of G′ that cor-
responds to identifying unstable user-permission assignments. We suggest to
not manage these assignments with roles, but to directly assign permission to
users or, equivalently, to create “special” roles composed by only one permis-
sion. In this way, we are able to limit the presence of unstable roles.

Moreover, we will show that the portion of the graph that survives after
the pruning operation can be represented as a graph G′ with a limited degree.
Since the third step corresponds to coloring G′, the information about the
degree can be leveraged to select an efficient coloring algorithms among those
available in the literature that make assumptions on the degree. The choice
of which algorithm to use depends on the definition of the administration cost
function.

It is also important to note that when the graph G is not connected, it is
possible to consider any connected component as a separate problem. Hence,
the union of the solutions of each component will be the solution of the origi-
nal graph, as proven in the following lemma:

Lemma 6.1 A biclique cannot exist across two or more disconnected components

of a bipartite graph G.

PROOF Let G1, . . . , Gm be the disconnected components of G. We will show
that a biclique across two components Gi and Gk, with i 6= k, cannot exist. Let
B the biclique across Gi and Gk, with i 6= k, and let B i and B k be the sets of
vertices of B belonging respectively to Gi and Gk. From the biclique definition,
it follows that edges between the two vertex sets of B i and B k must exist. But
it is a contradiction, since Gi and Gk are two disconnected components, hence
edges between their vertices cannot exists. �

Since a biclique corresponds to a role, the previous lemma states that a role
r, made up of users Ur and permissions Pr , cannot exist if all the users in Ur do
not have all the permissions in Pr . If this were the case, we would have intro-
duced some user-permission relationships that were not in the configuration
ϕ = 〈USERS, PERMS, UP〉. This lemma has an important implication:
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Theorem 6.1 If G is disconnected, the union of the biclique covers of each com-

ponent of G is a biclique cover of G.

PROOF From Lemma 6.1, we know that a biclique across two or more discon-
nected components of G cannot exist. Thus, each disconnected component has
a biclique cover that cannot intersect with the biclique cover of any other com-
ponent. Therefore, the union of these biclique covers will be a cover of G. �

As a main consequence of the theorem, if the graph G is disconnected, we
can study each component independently. In particular, we can use the union
of the biclique cover of the different components to build a biclique cover of
G. According to what we will see in the next section, we can use this result to
limit the degree of G′ when the bipartite graph G is disconnected.

6.2.3 Unstable Assignment Identification

In our model, the role mining problem corresponds to finding a proper col-
oring for the graph G′. Depending on the cost function used, the optimal
coloring can change. For instance, if the cost function is defined as the to-
tal number of roles, the optimal coloring is the one which uses the minimum
number of colors. In this section we will analyze the degree of the graph G′

by highlighting how this information can affect the assignment stability and,
as a consequence, the administration effort.

According to Equation (6.6) the degree of G′ can be expressed as:

∆(G′) =max
ω∈UP
|B(ω)| . (6.7)

To understand the relation between the graph degree and the stable assign-
ment identification problem, it is useful to recall the graph meaning in terms
of RBAC semantic. A vertex of G′ is a user-permission relationship in the set
UP. An edge in G′ between two vertices ω1 and ω2 exists if the correspond-
ing user-permission relationships cannot be in the same role, due to the fact
that the user in ω1 does not have the permission in ω2, or the user in ω2

does not have the permission in ω1. Consequently, a vertex of G′ that has a
high degree means that this vertex cannot be colored using the same colors
of a high number of other vertices. In other words, this user-permission re-
lationship cannot be in the same role together with a high number of other
user-permission relationships.

The previous considerations have an important aftermath: if a user-perm-
ission relationship cannot be in the same role together with a high number
of other user-permission relationships, it will belong to a role with few user-
permission relationships, and we can estimate the maximal weight of such a
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role. Hence, we can prune those user-permission relationships which can only
belong to roles with a weight that is lower than a fixed threshold. In particular,
suppose that for each edge ω ∈ UP of the bipartite graph G there are at least d

other edges such that the corresponding endpoints induce a biclique together
with the endpoints of ω. In this case, every edge of G will not be in biclique
with less than |UP| − d other edges, according to the following lemma:

Lemma 6.2 Let UP be the set of edges of the bipartite graph G. Then:

∀ω ∈ UP, |B(ω)|> d =⇒ ∆(G′) ≤ |UP| − d

PROOF Since ∀ω ∈ UP, |B(ω)| > d, according to Equation (6.5) the following
holds: ∀ω ∈ UP, |B(ω)| < |UP| − d − 1. The proof follows from ∆(G′) =
maxω∈UP |B(ω)|. �

Thus, given a suitable value for d, the idea is to prune the graph G′ by
deleting the vertices that have a degree higher than |E(G)| − d. This cor-
responds to pruning edges in G that induce a biclique with at most d other
edges. Moreover:

Theorem 6.2 The pruning operation based on removing from G′ verticesω such

that |B(ω)| ≤ d will prune only user-permission assignments that cannot belong

to any role r ∈ ROLES such that w(r) > d × (cU ⊕ cP).

PROOF Let ω be the assignment we would like to prune since |B(ω)| ≤ d. The
corresponding vertex in G′ has a degree strictly greater than |UP| − d. Such
a vertex cannot be colored with the colors of his neighbors, thus it can be
colored with at most the same colors of the (|UP| − 1)− (|UP| − d − 1) = d

remaining vertices. Hence, there exist at most d assignments that can belong
to the same roleω belongs to. Let r be such a role. According to Definition 6.1,
the maximal weight of r will be (cU × d)⊕ (cP × d) = d× (cU ⊕ cP), since each
assignment belonging to r could add at most one user and one permission to
the role. �

Note that many coloring algorithms known in the literature make assump-
tions on the degree of the graph. Since our pruning approach limits the degree
of G′, it allows for an efficient application of this class of algorithms. Without
our pruning operation, the degree of the graph G′ could be high, up to |UP|−1.
This is the case when a user-permission assignment that must be managed
alone in a role exists. Note also that when the graph G is disconnected in two
or more components, any edge of one component does not induce a biclique
together with any edge of the other components. Thus, in these cases ∆(G′) is
very high. But, for Theorem 6.1, we can split the problem by considering the
different components distinctly, and then join the results of each component.
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6.2.4 Applications to Role Mining

Having a bound for ∆(G′) makes it possible to use many known algorithms to
color a graph in addition to the classical role mining algorithms mentioned in
Section 6.1.1. Indeed, finding a coloring for G′ corresponds to finding a can-
didate role-set for the given access control system configuration. The choice
of which algorithm to use depends on what we are interested in. For exam-
ple, a company could be interested in obtaining no more than a given number
of roles, and to manage the remaining user-permission assignments through
single-permission roles or directly. The following are two possible approaches
to this problem.

Naïve Approach It is known that any graph with maximum degree ∆ can
be colored with ∆+1 colors by choosing an arbitrary ordering of the vertices,
and then coloring them one at time by labeling each vertex with a color not
already used by any of its neighbors. In other words, we can find ∆(G′) + 1
roles which cover all the user-permission assignments that survived the prun-
ing. With the pruning operation, we disregard some user-permission assign-
ments; this is the cost to pay in order to have a limited degree for G′. Due to
Theorem 6.2, the neglected user-permission assignments will belong to roles
with a limited weight. Thus, it is better to directly manage them or to cre-
ate single-permission roles for them. Note that the value ∆(G′) + 1 does not
represent the minimal number of roles, but it is only an upper bound for the
chromatic number of G′.

Randomized Approach By applying the randomized approach described
in [46] to our case, it is possible to generate ∆(G′)/k roles that cover all the
user-assignments which survive after the pruning, where k = O (log∆(G′)).
This is a good result when minimizing the number of roles. The hypothesis for
this result to hold are basically two: the graph must be a∆-regular graph, with
∆≫ log n (where n is the number of vertices that, in our case, corresponds to
|UP|), and it must have a girth (i.e., the length of the shortest cycle contained
in the graph) of at least 4. The former can be easily verified by adding some
null nodes and the corresponding edges to the pruned graph G′, thus obtain-
ing a ∆-regular graph. The latter is more complex and we next discuss how to
deal with this hypothesis. A triangle (i.e., a cycle of length 3) in G′ means that
there are three edges of G such that they do not pairwise induce a biclique.
Given two edges of G, let A be the event “these two edges induce a biclique”
and let Pr(A) = p. If A is the complement of A, then Pr(A) = 1 − p. Given
three edges, if B is the event “these three edges do not induce a biclique”, then
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Pr(B) = (Pr(A))3. Indeed, every unordered pair of the chosen triplet of edges
must induce a biclique. Thus, Pr(B) = (1−p)3. This is also the probability that,
having chosen three vertices in G′, they compose a triangle. In other words,
the probability to have a triangle in G′, depends on the number of edges of the
graph G. Therefore, it depends on how many user-permission assignments ex-
ist in the given access control configuration. Indeed, if the number of edges of
G is close to the maximal number of edges, the probability p will be very high,
and Pr(B) will be close to 0. However, suppose that G′ is not completely free
of triangles, but there are only a few of them. We can still use the randomized
approach by removing an appropriate edge for such triangles, hence breaking
them. Note that removing an edge from G′ corresponds to forcing two edges
of G to induce a biclique. This means that we are adding some user-permission
assignments not present in the given access control configuration. The roles
obtained can then be sanitized by removing those users that do not have all
the permissions of the role, and managing these users in other ways, i.e. by
creating single-permission roles.

6.3 Measuring Role Engineering Complexity

In this section we will discuss about the application of the clustering coefficient

in RBAC. In particular, we will show that the clustering coefficient can mea-
sure the complexity of the identification and selection of the roles required to
manage existing user-permission assignments. We will show that the pruning
operation proposed in Section 6.2.3 not only does identify the user-permission
assignments that are unstable, but it is also able to simplify the identification
and selection of stable roles among all the candidate roles. The main result is
that stable assignments may have a low value for clustering coefficient due to
the presence of unstable assignments. A low value for clustering coefficient is
a synonym for high role engineering complexity. This can be summarized with
the following statement:

assignments with unstable neighbors

=⇒ low clustering coefficient

=⇒ complex role engineering task.

6.3.1 Clustering Coefficient

Another mathematical tool used is this chapter is the clustering coefficient. It
was first introduced by Watts and Strogatz [96] in the social network field,
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to measure the cliquishness of a typical neighborhood. Given G = 〈V, E〉, we
indicate with δ(v) the number of triangles of v, formally:

δ(v) =
���〈u, w〉 ∈ E | 〈v, u〉 ∈ E ∧ 〈v, w〉 ∈ E

	�� . (6.8)

A path of length two for which v is the center node is called a triple of the
vertex v. We indicate with τ(v) the number of triples of v, namely:

τ(v) =
���〈u, w〉 ∈ V × V | 〈v, u〉 ∈ E ∧ 〈v, w〉 ∈ E

	�� . (6.9)

The clustering coefficient of a graph G is defined as:

C(G) =
1

|V |

∑

v∈V

c(v), (6.10)

where

c(v) =





δ(v)

τ(v)
, τ(v) 6= 0;

1, otherwise

(6.11)

quantifies how close the vertex v and its neighbors are to being a clique. The
quantity c(v) is also referred to as the local clustering coefficient of v, while
C(G) is average of all local clustering coefficients, and it is also referred to
as the global clustering coefficient of G. Thus, C(G) can be used to quantify
“how well” a whole graph G is partitionable in cliques—in Section 6.3 we will
further explain what does “well” means in an access control scenario. Another
possible definition for the clustering coefficient is to set to 0 when there are
no triples. Anyway, our definition is more suitable for our purposes.

6.3.2 Clustering Coefficient in G′

Let G′ be the unipartite graph derived from user-permission assignments UP
according to Equation (6.4). Consequently, Equation (6.9) becomes:

τ(ω) =
���〈ω1,ω2〉 ∈ UP×UP |ω1,ω2 ∈ B(ω), ω1 6=ω2

	�� , (6.12)

namely τ(ω) is the set of all possible pairs of elements in UP that both induce
a biclique with ω. Further, Equation (6.8) becomes:

δ(ω) =
���〈ω1,ω2〉 ∈ UP×UP |ω1,ω2 ∈ B(ω), ω1 ∈ B(ω2)

	�� , (6.13)
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namely δ(ω) is the set of all possible pairs of elements in UP that both induce
a biclique with ω, and that also induce a biclique with each other.

The clustering coefficient index (Equation (6.10)) of the graph G′ derived
from an access control system configuration is thus defined as:

C(G′) =
1

|UP|

∑

ω∈UP

c(ω), (6.14)

where c(ω) is the local clustering coefficient of ω (see Equation (6.11)) de-
fined as:

c(ω) =





δ(ω)

τ(ω)
, τ(ω) 6= 0;

1, otherwise.

(6.15)

The value of c(ω) quantifies how close ω and its neighbors are to being
a biclique. In our model, this corresponds to measure how close ω and its
neighbors are to being a role. Hence, C(G′) quantifies how well the bipartite
graph, induced by the user-permission relationships UP, is coverable with dis-
tinct bicliques. That is, the easiness of identifying a candidate role set for the
analyzed data—see below what “easy” means. Notice that, according to Equa-
tion (6.15), when a user-permission assignment does not induce a biclique
with any other assignment, or it induces biclique with just one another as-
signment, its local clustering coefficient is conventionally set to 1. This case is
identified by τ(ω) = 0. Moreover, equations (6.14) and (6.15) only require UP
and B(·) to be provided, by neglecting whether we are considering the bipar-
tite or the unipartite graph. Thus, in the remainder of this chapter we indicate
with both C(G′) and C(G) the global clustering coefficient of the given system
configuration represented by UP, while c(ω) is the local clustering coefficient
without specifying G or G′.

In the remaining of this section we explain the relationship between the
clustering coefficient and the complexity of the role mining problem. In par-
ticular, let G the bipartite graph set up from UP according to Equation (6.2).
Given a role r ∈ ROLES, let Pr = {p ∈ PERMS | 〈p, r〉 ∈ PA} be the set of its
assigned permissions, and Ur = {u ∈ USERS | 〈u, r〉 ∈ UA} be the set of its
assigned users. If the following equation holds

∄U ⊆ USERS, ∄P ⊆ PERMS : U × P ⊆ UP, Ur × Pr ⊂ U × P, (6.16)

then the role r represents a maximal biclique in G. Indeed, according to its
definition, a maximal biclique in G is a pair of vertex sets U ⊆ USERS and P ⊆
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PERMS that induces a complete subgraph, namely ∀u ∈ U , ∀p ∈ P : 〈u, p〉 ∈

UP, and is not a subset of the vertices of any larger complete subgraph, that is
∄U ′⊂ USERS and ∄P ′⊂ PERMS such that ∀u ∈ U ′, ∀p ∈ P ′ : 〈u, p〉 ∈ UP and
contextually U ′⊂ U and P ′⊂ P.

Informally, a role delineated by a maximal biclique is “representative” for
all the possible subset of permissions shared by a given set of users. The key
observation behind a maximal bicliques in RBAC is that two permissions which
always occur together among users should simultaneously belong to the same
candidate roles. Moreover, defining roles made up of as many permissions
as possible likely minimizes the administration effort of the RBAC system by
reducing the number of required role-user assignments. The properties of
roles represented by maximal biclique are further detailed in Chapter 4, which
also proposes an efficient algorithm to identify all possible roles associated to
maximal biclique within G.

The following theorem relates the clustering coefficient index to the com-
plexity of the role mining problem in terms of number of maximal bicliques:

Theorem 6.3 Let M be the set of all possible maximal bicliques that can be

identified in G. Given a user-permission assignment ω ∈ UP, let M (ω) ⊆ M

be the set of all possible maximal bicliques the given user-permission assignment

belongs to. Then, the following holds:

◮ c(ω) = 1 ⇐⇒ |M (ω)|= 1;

◮ c(ω) = 0 ⇐⇒ |M (ω)|= |B(ω)|;
◮ c(ω) ∈ (0, 1) ⇐⇒ |M (ω)| ∈ (1, |B(ω)|).

PROOF To simplify the notation, given a role r ∈ ROLES we indicate the set of
users assigned to the role with Ur = {u ∈ USERS | 〈u, r〉 ∈ UA}, and the set of
permissions assigned to that role with Pr = {p ∈ PERMS | 〈p, r〉 ∈ PA}.

First, we analyze the case c(ω) = 1. Let r be a role made up of the
users and permissions involved by the assignments ω and B(ω), formally
Ur =

�
u ∈ USERS | ∃p ∈ PERMS, 〈u, p〉 ∈ B(ω) ∪ {ω}

	
and Pr =

�
p ∈

PERMS | ∃u ∈ USERS, 〈u, p〉 ∈ B(ω) ∪ {ω}
	
. We now demonstrate that at

least one maximal biclique exists and it is represented by r. According to
Equation (6.3), ∀〈u1, p1〉, 〈u2, p2〉 ∈ B(ω) ∪ {ω} =⇒ ∃〈u1, p2〉, 〈u2, p1〉 ∈ UP,
namely both users u1, u2 have permissions p1, p2 granted. According to Equa-
tion (6.15), c(ω) = 1 =⇒ τ(ω) = δ(ω), thus the previous consideration
holds for every possible pair of user-permission relationships in B(ω) ∪ {ω}.
This means that B(ω)∪ {ω} = Ur × Pr . We now prove by contradiction that r

is a maximal biclique. If r were not a maximal biclique, two sets U ⊆ USERS
and P ⊆ PERMS would exist such that Ur × Pr ⊂ U × P ⊆ UP. Let ω = 〈u, p〉.
Yet, for each 〈u′, p′〉 ∈ (U × P) \ (Ur × Pr) it can be easily shown that both the



 Chapter 6. Taming Role Mining Complexity

assignments 〈u, p′〉, 〈u′, p〉 always exists in U × P. Hence, according to Equa-
tion (6.3), 〈u′, p′〉 ∈ B(ω), meaning that (U × P) \ (Ur × Pr) = ;. Therefore,
r is a maximal biclique. We now demonstrate that another maximal biclique
that contains ω cannot exist. Indeed, if r ′ is a maximal biclique containing ω
(i.e., ω ∈ Ur ′ × Pr ′), for all ω′∈ Ur ′ × Pr ′ \ {ω} it can be shown that ω′∈ B(ω).
Hence, r = r ′. Finally, having only one maximal biclique that contains ω im-
plies that c(ω) = 1. Let r be such a maximal biclique. Since it is the only
maximal biclique, for each pair ω1,ω2 ∈ Ur × Pr such that ω1 6= ω2 we have
ω1 ∈ B(ω2). Thus, δ(ω) = τ(ω), which corresponds to state that c(ω) = 1.

When c(ω) = 0, we now demonstrate that it is possible to identify |B(ω)|
distinct maximal bicliques made up ofω combined with each element of B(ω).
Let ω = 〈u, p〉. First, observe that such maximal bicliques are distinct since
c(ω) = 0 =⇒ δ(ω) = 0. We want to show that for each 〈ui, pi〉 ∈ B(〈u, p〉),
the role r i is such that Ur i

= {u, ui} and Pr i
= {p, pi} is a maximal biclique.

We now prove by contradiction that r i is a maximal biclique. If r i were not
a maximal biclique, two sets U ⊆ USERS and P ⊆ PERMS would exist such
that {u, ui} × {p, pi} ⊂ U × P ⊆ UP. Let 〈u′, p′〉 ∈ (U × P) \ ({u, ui} × {p, pi}).
It can be easily shown that 〈u′, p′〉 ∈ B(〈ui, pi〉), thus δ(ω) 6= 0. But, accord-
ing to Equation (6.15), this means that c(ω) > 0, which is a contradiction.
Moreover, more than |B(ω)| distinct maximal bicliques that contain ω cannot
exist. Indeed, let n ∈ N : n > |B(ω)| be the number of the distinct maxi-
mal bicliques that contain ω. Let r i indicate the ith maximal biclique, and let
ωi ∈ (Ur i

×Pr i
)\{ω}. Thus, ∀i ∈ 1 . . . n :ωi ∈ B(ω), contradicting the inequal-

ity B(ω) < n. We now prove that having |B(ω)| maximal bicliques implies that
c(ω) = 0. Let r i indicate the ith maximal biclique, and letωi ∈ (Ur i

×Pr i
)\{ω}.

Since the roles are distinct, ∀i, j ∈ 1 . . . |B(ω)| : i 6= j we have that ωi 6∈ B(ω j).
Thus, δ(ω) = 0 and, according to Equation (6.15), c(ω) = 0.

Finally, by excluding the previous two cases we merely have that c(ω) ∈

(0, 1) ⇐⇒ 1 < |M (ω)|< |B(ω)|. �

The previous theorem allows us to make some considerations on the com-
plexity of the role mining problem. Given a user-permission assignment ω,
the higher its local clustering coefficient is, the less the number of possible
maximal bicliques to analyze is. Thus, given two assignments ω1,ω2 ∈ UP
such that c(ω1) = 1 and c(ω2) = 0, it will be more difficult to choose the
best maximal biclique to “cover” ω2 than selecting the best maximal biclique
to cover ω1. Indeed, in the first case we have only one choice, while in the
second case we have |B(ω2)| choices.
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6.3.3 Clustering Coefficient and Vertex Degree

In the previous section we demonstrated that the local clustering coefficient
of a given assignment expresses the ambiguity in selecting the best maximal
biclique to cover it when finding the best biclique cover. Hereafter, we show
that the local clustering coefficient value and the number of assignments that
induce a biclique are bound. In particular, we prove that the presence of un-
stable assignments decreases the maximum local clustering value allowed for
stable assignments. Therefore, keeping unstable assignments within the data
to analyze hinders the role engineering process by increasing the ambiguity in
selecting the best roles to cover stable assignments.

Theorem 6.4 Let ω ∈ UP be a user-permission assignment such that |B(ω)| >
1. Then, the following holds:

c(ω)≤

avg
ω′∈B(ω)

|B(ω′)| − 1

|B(ω)| − 1
. (6.17)

PROOF According to its definition, the local clustering coefficient of a vertex
in G′ is the ratio between its triangles (Equation (6.13)) and its triples (Equa-
tion (6.12)). All the neighbors of a vertex ω are represented by B(ω). Thus,
we have

τ(ω) =

�
|B(ω)|

2

�
=
|B(ω)|

�
|B(ω)| − 1

�

2
.

Each neighbor pair requires that they are also neighbors between them in
order to be a triangle. Thus, each neighbor ω′ of ω can belong to at most
|B(ω′)| − 1 triangles of ω, where ‘−1’ allows for discarding ω among the set
of the neighbors of ω′. Therefore, the number of triangles of ω is at most the
sum of all the maximal “contributions” of its neighbors, namely

δ(ω)≤
1

2

∑

ω′∈B(w)

|B(ω′)| − 1,

where ‘1/2’ is required to take into account that each triangle is considered
twice. By combining the previous equations, we obtain:

c(ω) =
δ(ω)

τ(ω)
≤

1

2

∑

ω′∈B(w)

��B(ω′)
��− 1

|B(ω)| (|B(ω)| − 1)

2

=

avg
ω′∈B(ω)

|B(ω′)| − 1

|B(ω)| − 1
,

�

completing the proof.
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Notice that c(ω) = 1 means that all the neighbors of ω in G′ have, among
their neighbors, all the neighbors of ω. Thus, the right side of the inequality
in Equation (6.17) is equal to or greater than 1. Similarly, c(ω) = 0 means
that each pair of neighbors of ω are not neighbors among them. Thus, the
right side of the inequality in Equation (6.17) is equal to or greater than 0.

Finally, let us assume that all the neighbors of ω have a degree that is
lower than the degree of ω, namely ∀ω′ ∈ B(ω) : |B(ω′)| < |B(ω)|. Then,
c(ω) < 1. This likely happens to assignments that have a high degree and
many unstable assignments as neighbors. Hence, unstable assignments make
the task of selecting the best maximal clique to cover stable assignments more
difficult. From this point of view, unstable assignments are a sort of “noise”
within the data, that badly bias any role mining analysis. Indeed, the num-
ber of elicited roles may be large when compared to the number of users and
permissions, mainly due to noise within the data—namely, permissions ex-
ceptionally or accidentally granted or denied. In such a case, classical role
mining algorithms discover multiple small fragments of the true role, but miss
the role itself [61]. The problem is even worse for roles which cover many
user-permission assignments, since they are more vulnerable to noise [65].

In Section 6.5 we will show through experiments on real data that the
clustering coefficient increases when pruning unstable assignments.

6.4 Pruning Algorithms

In the following we describe two different methods to compute, for each
assignment in UP, the number of assignments that induce biclique with it.
Hence, enabling the pruning strategy thoroughly described in Section 6.2. We
propose two algorithms: the first one is deterministic and has a computational
complexity of O (|UP|2); the second one uses a randomized approach, leading
to a complexity of O (k |UP|), where k represents the number of the chosen
random samples. Furthermore, we prove a bound for the approximation in-
troduced by the randomized algorithm.

6.4.1 Deterministic Approach

The idea behind the deterministic approach is the following: we scan each
assignment ω ∈ UP to identify all the neighbors, namely the set B(ω). In turn,
we increase by 1 the neighbor-counter of each assignment in B(ω) in order
to say that “assignments in B(ω) have one more neighbor, that is ω”. This
schema is perfectly equivalent to directly associating the value |B(ω)| to ω,
without increasing the complexity. Yet, it can be easily randomized, as we will



6.4. Pruning Algorithms 

6.1 The deterministic algorithm to prune unstable assignments

1: procedure CountNeighbors(UP)
2: for all 〈u, p〉 ∈ UP do

3: for all 〈u′, p′〉 ∈ Neighbors(〈u, p〉,UP) do

4: count[〈u′, p′〉]← count[〈u′, p′〉] + 1
5: end for

6: end for

7: return count[·]/ |UP|
8: end procedure

9: procedure Neighbors(〈u, p〉,UP)
10: U ← {u′∈ USERS | 〈u′, p〉 ∈ UP}
11: P ← {p′∈ PERMS | 〈u, p′〉 ∈ UP}
12: return (U × P \ {〈u, p〉}) ∩UP
13: end procedure

see in the next section.
We now show that computing the set of all neighbors of an assignmentω =

〈u, p〉 just requires a search on UP for all the users possessing the permission
p and all the permissions possessed by u. In particular, the following lemma
holds:

Lemma 6.3 Given an assignment ω = 〈u, p〉 ∈ UP, let Uω = {u
′ ∈ USERS |

〈u′, p〉 ∈ UP} be the set of all users possessing the corresponding permission, and

Pω = {p
′ ∈ PERMS | 〈u, p′〉 ∈ UP} be the set of all permissions possessed by the

corresponding user. Then B(ω) = (Uω× Pω)∩UP.

PROOF First, we prove that B(ω) ⊆ Uω×Pω. By contradiction, suppose that an
assignment 〈u′, p′〉 ∈ UP exists such that 〈u′, p′〉 ∈ B(ω) but u′ 6∈ Uω and/or p′ 6∈

Pω. According to Equation (6.3), 〈u′, p′〉 ∈ B(ω) implies one of the following
cases: 1) u′ = u; 2) p′ = p; 3) ∃〈u, p′〉, 〈u′, p〉 ∈ UP. In all these three
cases there is a contradiction, since by construction of Pω, Uω, there must be
p′ ∈ Pω and u′ ∈ Uω. Finally, by intersecting Uω × Pω with UP we discard all
the assignments that do not exist. �

Lemma 6.3 is used to define the procedure NEIGHBORS in Algorithm 6.1.
Line 10 computes all possible users possessing the given permission, Line 11
computes all possible permissions assigned to given user, while Line 12 elimi-
nates from the Cartesian product of these sets all the assignments that not exist
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within UP. Note that NEIGHBORS has a complexity of O (|UP|). Indeed, both
Line 10 and Line 11 can be executed in O (|UP|) by simply scanning over all
the assignments. In the same way, the intersection of Line 12 can be executed
in O (|UP|).

COUNTNEIGHBORS implements the described counting strategy. The loop
from Line 2 to Line 6 scans all possible assignments in order to check their
neighborhood. Lines from 3 to 5 scan all the neighborhood of the current as-
signment to increment the corresponding neighbor-counter count[·]. Notice
that Line 4 can be performed in O (1), while the inner loop in O (|UP|) and the
outer loop in O (|UP|). Hence, the computational complexity of COUNTNEIGH-
BORS is O (|UP|2). Line 7 gives the resulting neighbor-counts. All the values are
normalized by dividing them by |UP|. In this way, we assign a value to each
assignment that ranges from 0 to 1, thus the threshold d must range in this
interval as well.

Finally, to implement our pruning strategy, we only need a procedure that
searches for assignments such that count[ω] ≤ d. It is reasonable to give an
efficient implementation for it with a computational complexity of O (log |UP|),
for instance through a binary tree. However, this requires count[·] to be sorted
at the end of the procedure COUNTNEIGHBORS. This takes O (|UP| log |UP|),
hence without changing the complexity of the procedure COUNTNEIGHBORS.

It is very important to note that the neighbor-counters are inferred with
only one COUNTNEIGHBORS run, that has a complexity of O (|UP|2). In turn,
by changing a threshold d that does not require the complete re-imputation
of neighbor-counters, it is possible to generate m versions of the dataset in
O (mlog |UP|). Each run can be subsequently analyzed by trying to find the
one that better reaches a certain target function. The tuning of the threshold
d depends on the final objective of the data analysis problem. First, we can
define a metric that measures how well the objective has been reached. Then,
this metric can be used to evaluate the imputed dataset. This can be an iter-
ative process, executed several times with different thresholds, thus choosing
the threshold value that provides the best result. Section 6.5 shows a practical
application of this methodology in a real case.

6.4.2 Randomized Approach

In the previous section we offered an algorithm that computes the number of
neighbors for each assignment in a time O (|UP|2). Then, in O (log |UP|) it is
possible to identify those assignments that have a number of neighbors below
the threshold, namely unstable assignments. In the following we present an
alternative algorithm to be used in place of procedure COUNTNEIGHBORS of Al-
gorithm 6.1, which compute in O (k |UP|) an approximated neighbor-counter
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6.2 The randomized algorithm to prune unstable assignments

1: procedure RandomizedCountNeighbors(UP, k)
2: for all i = 1 . . . k do

3: 〈u, p〉 ← choose an assignment in UP uniformly at random
4: for all 〈u′, p′〉 ∈ Neighbors(〈u, p〉,UP) do

5: count[〈u′, p′〉]← count[〈u′, p′〉] + 1
6: end for

7: end for

8: return count[·]/k
9: end procedure

value for the assignments, where k is a parameter that can be arbitrarily cho-
sen. Moreover, we will show how to select the best value for k, and, when
k ≪ |UP|, it achieves good results in a significantly shorter time. Notice
that the pruning procedure can still be performed in O (log |UP|) only if the
neighbor-counters are sorted at the end of the procedure RANDOMIZEDCOUNT-
NEIGHBORS. Since this operation requires O (|UP| log |UP|), the complexity of
RANDOMIZEDCOUNTNEIGHBORS does not change if log |UP|= O (k).

Algorithm 6.2 describes RANDOMIZEDCOUNTNEIGHBORS as an alternative ap-
proach for the procedure COUNTNEIGHBORS of Algorithm 6.1. These two pro-
cedures have the same structure, apart from one aspect: instead of checking
the neighborhood of all assignments in UP, we select only k assignments uni-
formly at random (see Line 3). The rest of the algorithm is exactly the same
of the deterministic one, apart from Line 8 that normalizes all the counters by
dividing them by k. Therefore, RANDOMIZEDCOUNTNEIGHBORS has a computa-
tional complexity of O (k |UP|).

The following theorem demonstrates the bound on the approximation in-
troduced by RANDOMIZEDCOUNTNEIGHBORS:

Theorem 6.5 Let ω = 〈u, p〉 be an assignment, and let d̃ k(ω) be the output of

the procedure RANDOMIZEDCOUNTNEIGHBORS described in Algorithm 6.2 for such

an assignment. Then

Pr

�����d̃ k(ω)−
|B(ω)|

|UP|

���� ≥ ǫ
�
≤ 2exp

�
−2kǫ2

�
.

PROOF We will use the Hoeffding inequality [51] to prove this theorem. It
says that if X1 . . . Xk are independent random variables such that 0 ≤ X i ≤ 1,
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then

Pr

 �����
k∑

i=1

X i −E




k∑

i=1

X i



����� ≥ t

!
≤ 2exp

�
−

2t2

k

�
, (6.18)

where E[·] is the expected value of a random variable. In our case, X i indicates
whether ω induce a biclique with a randomly chosen assignment ωi ∈ UP,
namely

X i =

(
1, ω ∈ B(ωi);

0, otherwise.

Hence, Equation (6.18) can be rewritten as

Pr

 �����
1

k

k∑

i=1

X i −E


1

k

k∑

i=1

X i



�����≥ ǫ

!
≤ 2exp

�
−2kǫ2

�
, (6.19)

where ǫ = t/k. Notice that the value 1
k

∑k

i=1 X i is exactly the output of Algo-
rithm 6.2. Hence, in order to prove that the algorithm gives an approximation
of |B(ω)|/|UP|, we have to prove that E

�1
k

∑k

i=1 X i

�
is equal to |B(ω)|/|UP|.

Because of the linearity of the expectation, the following equation holds:

E


1

k

k∑

i=1

X i


= 1

k

k∑

i=1

E[X i]. (6.20)

Since the assignment ωi is picked uniformly at random, the probability to
choose it is 1/ |UP|. Thus,

∀i ∈ 1 . . . k, E[X i] =

|UP|∑

j=1

X j

|UP|
,

completing the proof. �

For practical applications of Algorithm 6.2, it is possible to calculate the
number of samples needed to obtain an expected error less than ǫ with a
probability greater than p. The following equation directly derives from The-
orem 6.5:

k >−
1

2ǫ2 ln
�

1− p

2

�
. (6.21)

For example, if we want an error ǫ < 0.05 with probability greater than 98.6%,
it is enough to choose k ≥ 993.
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6.4.3 Threshold Tuning

Notice that in Definition 6.3 we introduced a “threshold” to define the stability
concept. However, both algorithms 6.1 and 6.2 do not require such a threshold
to be defined beforehand. Put another way, changing the threshold t does
not require a complete re-computation of the number of neighbors for each
assignment. The tuning of the threshold t depends on the final objective of
the data analysis. First, a metric must be defined to measure how well the
objective has been reached. Then, it is possible to use this metric to evaluate
the imputed matrix. This can be an iterative process, executed several times
with different thresholds, thus choosing the threshold value that provides the
best result. Moreover, notice that automatically discarding all the assignments
not covered by stable roles might not always be appropriate. Rather, it would
be advisable to submit these results to a checker. In our case, we should
not forget that security still remains the main objective. Hence, the system
administrator should carefully check resulting stable roles.

Finally, notice that checking all possible stable roles could be an unfeasible
task. By having a list of roles sorted by their stability values, a system adminis-
trator can only focus on the most relevant ones, evaluating them in the reverse
order. In this case, a reasonable metric for the objective achievement could be
the number of clusters generated by a role mining algorithm. This approach
is similar to that of Section 6.7.1, where similar considerations are made for
missing values.

6.5 Pruning Examples

To prove the viability of our approach, we applied it to several real-world
datasets at our disposal. In the following, we first report the application of our
model to the access control configuration related to users of an organization
unit of a large company. Then, by using the previous dataset, we highlight the
effect of the pruning operation on the role mining complexity. Finally, we show
how it is possible to compute the optimal threshold to use with our pruning
strategy. In all the tests we used the approximated version of our pruning
algorithm (with k = 1000), and normalized values for the pruning threshold,
as detailed in Section 6.4.

6.5.1 A Real Case

Figure 6.4 shows an example of our strategy when applied to a real dataset.
Figure 6.4(a) represents the bipartite graph G built from the access control
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configuration relative to users of an Organization Unit (OU) of a large com-
pany. The OU analyzed counts 7 users (nodes on the left) and 39 permissions
(nodes on the right), with a total of 71 user-permission assignments. We have
chosen an OU with few users and permissions to ease graph representation.
According to a pruning threshold equal to 0.39, stable assignments are de-
picted with thicker edges, while unstable assignments with thinner edges. Fig-
ure 6.4(b) depicts the unipartite graph G′, built according to Equation (6.4).
The user-permission assignments of G correspond to the vertices of G′, and
two vertices are connected by an edge if they induce a biclique. Dashed edges
indicate that one of the two endpoints will be pruned. Figure 6.4(c) shows
only the stable assignments, namely the ones that will survive to the pruning
operation. By comparing these last two figures it is possible to see that the
main component of the whole graph survives after the pruning, while pruned
assignments correspond to “noise”. Indeed, the pruned vertices induce a bi-
clique with only a small fraction of nodes of the main component.

6.5.2 Effects of the Pruning on the Mining Complexity

Theorem 6.4 states that the local clustering coefficient of a vertex is upper
bounded by the ratio of the average neighborhoods degrees and its own de-
gree. As a consequence, stable assignments have a limited clustering coef-
ficient because of the low degree of their neighbors. This means that these
assignments are difficult to manage in a role mining process. Yet, they also are
the most “interesting” one since they are stable assignments. Our pruning op-
eration is able to increase the average degrees of neighbors, and, at the same
time, to decrease the degree of stable assignments. Thus, it is able to increase
the above limitation of the local clustering coefficient. In the following, we
will experimentally show that when the pruning is executed, not only does
the above local clustering coefficient limit increase, but even the clustering
coefficient grows.

Figure 6.5 graphically shows this behavior. The dataset analyzed is the
same that has been used in Section 6.5.1. The clustering coefficient has been
reported for all the assignments, which are ordered by descending degree (i.e.,
descending stability), and for different pruning thresholds. For representation
purposes, we have assigned 0 to the clustering coefficient of pruned assign-
ments. By analyzing Figure 6.5, it turns out that originally stable assignments
have a limited clustering coefficient. Indeed, all the assignments numbered be-
tween 0 and 20 have a clustering coefficient lower than 0.73 when no pruning
operation is executed (threshold = 0). Further, it turns out that the clustering
coefficient increases when a higher pruning threshold is used. For example,
when the threshold is equal to 0.39, all the assignments numbered between
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Figure 6.5 Pruning effect on local clustering coefficient

10 and 50 have a clustering coefficient equal to 1. Note that, according to The-
orem 6.3 in these cases only one maximal biclique which they can belong to
exists. In terms of RBAC, there exists only one role (represented by a maximal
biclique) that they can belong to. Furthermore, the pruned assignments are
only 20 out of 71, the assignments with a clustering coefficient equal to 1 are
40, while only 10 assignments have a clustering coefficient between 0 and 1.
Anyway, the clustering coefficient of 5 out of these 10 assignments increased
from 0.52 to 0.65, while it was almost steady for the other 5 assignments. This
means that the mining complexity has been actually reduced.

6.5.3 Threshold Tuning

The tuning of the threshold to use in our pruning algorithm depends on the
final objective of the data analysis problem. In particular, we first need to de-
fine a metric that measures how well the objective has been reached. Then, it
is possible to use this metric to choose the best threshold. The metric that we
used in our tests is a multi-objective function that considers different aspects of
the role engineering problem. Multi-objective analysis often means to trade-
off conflicting goals. In a role engineering context, for example, we execute
the pruning while requiring to minimize the complexity of the mining, min-
imize the number of pruned assignments, and maximize the stability of the
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candidate role-set.
A viable approach to solve a multi-objective optimization problem is to

build a single aggregated objective function from the given objective functions
[33]. One possible way to do this is combining different functions in a weighted

sum, with the following general formulation:
∑

fi∈F

αi fi. (6.22)

F is the set of the functions to optimize, and αi is a scale parameter that can be
different for each function fi ∈ F . Put another way, one specifies scalar weights
for each objective to be optimized, and then combines them into a single func-
tion that can be solved by any single-objective optimizer. Once we defined
the aggregated objective function, the problem of finding the best trade-off
corresponds to the minimization of this function. The weight parameters can
be negative or positive, according to the need of minimizing or to maximizing
the corresponding function. Clearly, the solution obtained will depend on the
values (more precisely, the relative values) of the specified weights. Thus, it
may be noticed that the weighted sum method is essentially subjective, in that
an analyst needs to supply the weights.

As for the practical computation of the best threshold, we identified the
following objective functions:

◮ Clustering Coefficient, that indicates the global clustering coefficient of
the unipartite graph G′ built from UP. It is a measure of the mining
complexity.
◮ Pruned Assignments, that is the number of assignments that are pruned

by our algorithm.
◮ Maximal Bicliques, namely the number of maximal bicliques identifiable

in G. They represent the number of maximal roles of the underlying
access control configuration.
◮ Average Weight, that is the average weight of the roles relative to the

set of maximal bicliques. The weight of a role r is defined as
��Ur

��×
��Pr

��.

These objectives have been combined in the following multi-objective func-
tion:

Index =−Clustering Coefficient+
0.3×Pruned Assignments

max(Pruned Assignments)

+
0.8×Maximal Bicliques

max(Maximal Bicliques)
−

0.8×Average Weight

max(Average Weight)
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Finding the “best” threshold means to minimize the previous equation.
Weights have been chosen by giving a higher relevance to the clustering coef-
ficient; an intermediate relevance to the maximal bicliques number and to the
average weight; and finally, a low relevance to the number of pruned assign-
ments. Thus, we are willing to reduce the number of pruned assignments, by
contextually reducing the complexity of the role mining task, the number of
maximal bicliques, and maximizing the average weight.

In Figure 6.6, we report two examples of the threshold tuning applied
to two real datasets at our disposal. The two analyzed cases concern two
organization units of a large company. They are comparable with respect to
their size: the first one counts 54 users and 285 permissions, with a total of
2,379 assignments; the second one is composed of 48 users, 299 permissions,
and a total of 2,081 assignments. The difference between them mainly lies on
the mining complexity: the first one has a global clustering coefficient higher
than the second one (0.84 vs. 0.66). In particular:

◮ Dataset A: high clustering coefficient (0.84), 54 users, 285 permissions,
and 2,379 assignments.
◮ Dataset B: low clustering coefficient (0.66), 48 users, 299 permissions,

and 2,081 assignments.

By using the given cost function, a high relevance is given to Clustering Coeffi-
cient, a medium one is given to Average Weight and Maximal Bicliques, while
less relevance is given to Pruned Assignments. In this way, we are willing
to prune a high number of assignments to reduce the complexity of the role
mining task, by contextually minimizing the number of maximal bicliques and
maximizing the average weight. Figures 6.6(a) and 6.6(b) represent the ag-
gregated functions for these two organization unit. Figures 6.6(c) and 6.6(d)
show the four functions that compose the aggregated one. In both cases, the
minimum of the aggregated function is highlighted with a vertical dashed line.

As for the first organization unit, the minimum is reached when the thresh-
old is equal to 0.39. Indeed, in Figure 6.6(c) it can be seen that this is a
good trade-off among all the four single functions: the pruned assignments
are 1,001 out of 2,379; the average weight (that indicates the average stabil-
ity) has grown almost 9 times from the original average weight; the number
of maximal bicliques has been decreased from 350 to 2; finally the clustering
coefficient has been increased from 0.84 to 0.96. Note that, since we have
only 2 maximal bicliques, we are able to manage all the assignments survived
to the pruning with only 2 roles. Put another way, we found two stable roles
that together are able to manage 1,378 out of 2,379 assignments.

As for the second organization unit, the minimum of the multi-objective
function is reached when the threshold is equal to 0.28 (see Figure 6.6(b)).



6.5. Pruning Examples 

-2
-1.8
-1.6
-1.4
-1.2

-1
-0.8
-0.6
-0.4
-0.2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

In
de

x

Threshold

(a) Dataset A. Best threshold: 0.39.

-1.6
-1.5
-1.4
-1.3
-1.2
-1.1

-1
-0.9
-0.8
-0.7
-0.6

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

In
de

x

Threshold

(b) Dataset B. Best threshold: 0.28.

 0

 500

 1000

 1500

 2000

 2500

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

Pr
un

ed
 A

ss
ig

nm
en

ts

Threshold

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

Av
er

ag
e 

Ar
ea

Threshold

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

M
ax

im
al

 C
liq

ue
s

Threshold

 0.82
 0.84
 0.86
 0.88
 0.9

 0.92
 0.94
 0.96
 0.98

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7

C
lu

st
er

in
g 

C
oe

ffi
ci

en
t

Threshold

(c) Objective functions of Figure (a)
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Figure 6.6 Finding the best threshold
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In this case, the pruned assignments are 1,367, the average weight increased
from 120 to 151, the number of maximal bicliques has been decreased from
3,000 to 266, while the clustering coefficient has been increased from 0.66
to 0.78. At first sight, it seems that we pruned too much assignments, but
these results depend both on the dataset we are analyzing and on the targets
that role engineers want to reach. Indeed, this dataset has a higher complexity
with respect to the first one, and we provided high weights for Clustering
Coefficient and Maximal Bicliques. If we gave less relevance to these two
parameters, a lower threshold would have been a good trade off. In that case,
the pruned assignments would have been less than 1,367, and the average
weight would have been higher than the original one. In general, the role
engineers mission is to establish the weights of the multi-objective aggregated
function in such a way to get as close as possible to the target that they want
to reach.

6.6 Missing Values

When dealing with binary matrices (see Chapter 2), a fundamental problem
that analysts need to deal with is incomplete data, namely portions of data
that are unavailable or unobserved. We refer to this data as missing values.
Missing values arise in many practical situations. For example, in almost all
medical studies important data may be missing for some subjects for a variety
of reasons: from malfunctioning hardware components, to indecision due to
the rounding of some measurement values, from mistakes made by the med-
ical personnel, to refusal or inability of the patients to provide information.
But, when a complete dataset is required, as is the case for most data mining
and clustering tools, data analysts typically have three options before per-
forming the analysis: to discard the rows that contain missing data, to replace
missing data values with some constant, or to estimate values of missing data
entries [91]. The inappropriate handling of missing values can pose serious
problems. It may introduce bias on the final results, and sometimes it can also
affect the generalization of the research results. For instance, when missing
values are present, classical data mining algorithms discover multiple small
fragments of the real cluster, but miss the cluster itself [62]. The problem is
even worse for clusters which cover many rows and columns, since they are
more vulnerable to this kind of “noise” [65].

In general, missing values in a binary matrix can be classified in two cate-
gories: flagged and non-flagged. In the first case, missing values are explicitly
“highlighted” with a special value (e.g., with a ‘∗’). In the second case, miss-
ing values are not explicitly flagged, but they are embedded in the 0’s data—



6.6. Missing Values 

namely each 0 is potentially a missing value. An example of flagged missing
values comes from biology. In DNA micro-array experiments, we would like
to translate hybridization intensity values into binary values where 1 indicates
hybridization and 0 indicates the opposite. Unfortunately, given the inten-
sity values provided by the scanned array, it is not always easy to determine
which clones hybridized and which did not, so in the final data set we will not
only have 1’s and 0’s but also some ‘∗’. As an example of non-flagged miss-
ing values, consider the presence/absence data from paleontology or ecology.
Rows represent sites, columns represent species, and 1 indicates that the cor-
responding species have been found in that site. In this case, we often have
the situation where the 1’s are reasonably certain, but the 0’s can be missing
values.

One solution to the missing value problem could be to repeat the exper-
iment. However, this approach is not always viable. Indeed, depending on
the investigation field and on the data that will be analyzed, repeating the
experiment for each missing value could either require a high cost or even
be impossible. In turn, it is impossible to avoid missing values when they
are generated by the uncertainty associated to the collected data—this hap-
pens, for example, in DNA fingerprints [38]. Yet, replacing the missing items
with “plausible” values always gives better results than ignoring missing data
points. One possibility is to impute them by analyzing uncovered structures
that reveal the nature of the relationship among the rows and the columns
of the binary dataset. This approach is rooted on the consideration that in a
dataset many rows and many columns are implicitly bound to one another.
For example, in a paleontology dataset many sites (rows) are geographically
close to each other, so that it is predictable that they host the same species
(columns), even if physical evidences have not been found. Therefore, look-
ing at the data makes it possible to uncover their embedded relationships and
leverage them to impute missing values. However, caution should be taken:
a missing value imputed in this way is not real data. It is only an estimation,
and it could not reflect the real value. A conservative approach consists in
suggesting which missing values should be analyzed first in order to improve
the subsequent mining analysis. Indeed, checking all possible missing values
could be an unfeasible task. By having a sorted list of the missing row-column
relations based on some “relevance” index, we can focus on the most relevant
missing values, thus repeating the experiment only for those values if neces-
sary.

An approach that is often used to impute missing values is the k-nearest

neighbors (KNN) [90]: for each row that has a missing value in the column i,
the k-nearest rows that do not have a missing value in the column i are used
to impute the missing value. This set of k-nearest rows is found according to
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some similarity metric. In turn, the missing value is replaced with the average
value for the cells on the column i within the k-nearest rows. One of the
critical issues using the KNN is the choice of the parameter k. On one hand,
if parameter k has a high value, rows that are significantly different from the
analyzed ones can decrease the imputing accuracy. Indeed, a “neighborhood”
that is too large could decrease the imputing accuracy. On the other hand, if
k is too small, an overemphasis is given to small patterns. In fact, the optimal
selection of k likely depends on the size of the identifiable clusters within the
given dataset. Another aspect of applying KNN is the choice of a threshold t to
decide if the imputed value has to be a 0 or a 1. Once each missing value has
been imputed, it assumes a value between 0 and 1: the threshold t is used to
switch it to 1 or to 0. To the best of our knowledge, the most frequently used
approaches for missing value imputation in binary matrices always require
that a parameter comparable to k is fixed a-priori [55,71,90].

In this chapter we address the challenge posed by the imputation of flagged
and non-flagged missing values. In particular, we propose an algorithm re-
ferred to as AB BA(Adaptive Bicluster-Based Approach) that leverages the iden-
tifiable patterns within the data to infer missing values in binary matrices. Our
approach provides several distinguishing features when compared to the other
approaches similar to the k-nearest neighbors (KNN). The most important one
is that AB BAdoes not require to fix any parameter a-priori. Indeed, the main
issue in KNN-like approaches is that a fraction of the rows, fixed before running
the algorithm, is used to impute a missing value, regardless of the identifiable
patterns within the data. Further, our algorithm shows a better computational
complexity for a wide range of parameters when compared to KNN. More-
over, the relevance of missing values are inferred by only one algorithm run.
Another distinguishing feature is that our approach leverages the actual pat-
terns that are identifiable within the available data, thus making it adaptive.
Conversely, changing k in KNN requires a new run of the algorithm. Thus,
obtaining the desired results with more computational time.

A thorough analysis of the proposed algorithm is performed. We tested
our algorithm on both simulated and real data, and compared its performance
to KNN. Results shows that our proposal overcome the KNN approach, espe-
cially in the difficult cases when the rate of missing values is high, and binary
matrices are sparse.

6.6.1 Formal Description

Let M be a n×m binary matrix. We denote with [n] = {i ∈ N | 1 ≤ i ≤ n}

the indices of the rows of M , and with [m] = { j ∈ N | 1 ≤ j ≤ m} the column
indices. Moreover, we denote the ith row of M with mi∗, the jth column of
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Figure 6.7 Some examples of data patterns

M with m∗ j, and the element that is intersection of the ith row with the jth

column with mi j, and we write mi j ∈ M . The cardinality of M is the number
of elements equal to 1, and it is indicated by |M | =

��{mi j ∈ M | mi j = 1}
��. A

binary matrix with flagged missing values is a matrix where some elements
are set to ‘∗’. Our target is to impute missing data by leveraging identifiable
patterns within available data.

Definition 6.4 (Bicluster) Given a matrix M , a bicluster B is a pair 〈R, C〉 :
R ⊆ [n], C ⊆ [m] such that the submatrix of M identified by selecting only
the rows R and the columns C is completely filled by 1’s, namely:

∀i ∈ R, ∀ j ∈ C : mi j = 1.

Definition 6.5 (Maximal Bicluster) Let B = 〈R, C〉 be a bicluster in the ma-
trix M . It is also a maximal bicluster if:

∄ a bicluster B′= 〈R′, C ′〉 : R× C ⊂ R′× C ′.

Informally, a maximal bicluster is “representative” for all its possible sub-
sets of rows (or columns) that are filled by 1’s for a given subset of columns (or
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rows). The key observation behind a maximal bicluster is that two columns
(or rows) which always contain 1’s in a certain set of rows (columns) should
simultaneously belong to the same bicluster. Many real-world examples justify
the interest in maximal biclusters. In data mining applications, what we refer
to as maximal bicluster is also known as closed itemset [101]. Applications in-
clude the discovery of association rules, strong rules, correlations, sequential
rules, episodes, multidimensional patterns, and many other important discov-
ery tasks [50]. Thus, a maximal bicluster definitely represents an interesting
pattern to identify among the available data.

Figure 6.7(a) shows an example of binary matrix and also highlight some
of the biclusters that can be identified within it. For example, the last three
rows and last two columns—the cell grouping denoted by ‘B’ in the figure—
contains cells filled by 1’s. Hence, they represent a bicluster. However, they
do not represent a maximal cluster, because the third from last column also
contains 1’s in the last three rows. Indeed, the cells denoted by ‘E’ in Fig-
ure 6.7(b) represent a maximal bicluster; indeed, ‘E’ cannot be “expanded” by
adding other rows and/or column. Further, the maximal bicluster ‘E’ contains
the bicluster ‘B’.

In the following we will extend the bicluster concept given in definitions
6.4 and 6.5:

Definition 6.6 (Pseudo-Bicluster) Given a matrix M , a pseudo-bicluster B is
a pair 〈R, C〉 : R ⊆ [n], C ⊆ [m] that has at least one row and one column
filled by 1’s, formally:

∃i ∈ R, ∃ j ∈ C , ∀ℓ ∈ R, ∀k ∈ C : mik = 1, mℓ j = 1.

For ease of exposition, for a given pseudo-bicluster B = 〈R, C〉 we also denote
with R̂ ⊆ R the set of rows filled by 1’s, and with Ĉ ⊆ C the set of columns
filled by 1’s, that is:

∀i ∈ R̂,∀ j ∈ C : mi j = 1,

∀ j ∈ Ĉ ,∀i ∈ R : mi j = 1.

Definition 6.7 (Maximal Pseudo-Bicluster) Let B = 〈R, C〉 be a pseudo-
bicluster in the matrix M . It is also a maximal pseudo-bicluster if:

∄ a pseudo-bicluster B′= 〈R′, C ′〉 : R̂× Ĉ ⊂ R̂′× Ĉ ′.

A maximal pseudo-bicluster is a pseudo-bicluster such that its rows and
columns filled by 1’s cannot be “expanded” by adding columns and rows. Fig-
ure 6.7(c) shows some examples of pseudo-biclusters. In particular, the matrix
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portion denoted by ‘H’ has all cells equal to 1 for the fourth row and the fourth
column of the matrix. However, it is not a maximal pseudo-bicluster, since the
fourth row and the fourth column contain other cells equal to 1 that are not
contained within ‘H’. Hence, the pseudo-bicluster ‘H’ can be “expanded” to
the area denoted by ‘J’ in Figure 6.7(d), which represents a maximal pseudo-
bicluster. Note that, in this case, there is more than one column filled by 1’s.

The following lemma relates biclusters to pseudo-biclusters:

Lemma 6.4 If B = 〈R, C〉 is a bicluster, it is also a pseudo-bicluster.

PROOF Since B = 〈R, C〉 is a bicluster, then ∀i ∈ R, ∀ j ∈ C : mi j = 1. This also
means that ∀ℓ ∈ R : mℓ j = 1 and ∀k ∈ C , mik = 1, namely C = Ĉ and R = R̂.
Thus, B is a pseudo-bicluster according to Definition 6.6. �

Definition 6.8 (Maximal Pseudo-Bicluster Generator) An element mi j ∈

M is referred to as a generator of the maximal pseudo-bicluster B = 〈R, C〉 if
R= {ℓ ∈ [n] | mℓ j = 1} and C = {k ∈ [m] | mik = 1}. If mi j ∈ M is a generator
of B, we will also say that B is the maximal pseudo-bicluster generated by mi j,
and we indicate it as Bmi j

.

The key idea behind the generator concept is that, given a cell mi j ∈ M ,
we can easily identify the bicluster generated from it by just selecting all the
1’s in the same row and the same column. Further, the generators of a max-
imal pseudo-bicluster B all belong to rows/columns that have 1’s in the same
columns/rows, as is shown in the following theorem:

Theorem 6.6 All the generators of a maximal pseudo-bicluster B = 〈R, C〉 be-

long to rows and columns that have 1’s in the same positions, formally:

∀mi j, mℓk ∈ M : mi j and mℓk generate B =⇒

∀t ∈ Ĉ , ∀s ∈ R̂ : mi t = 1, mℓt = 1, ms j = 1, msk = 1

PROOF The proof is by contradiction. Let mi j and mℓk be two elements of the
matrix M that generate respectively the maximal pseudo-bicluster B = 〈R, C〉

and B′= 〈R′, C ′〉, and suppose B = B′. If mi j and mℓk belong to two columns
that do not have 1’s in the same positions, then R 6= R′; indeed, R = {s ∈ [n] |

ms j = 1} and R′= {s ∈ [n] | msk = 1}, and so B 6= B′. If mi j and mℓk belong
to two rows that do not have 1’s in the same positions, then C 6= C ′; indeed,
C = {t ∈ [m] | mi t} and C ′= {t ∈ [m] | mℓt}. Therefore, it must be B 6= B′,
and this is a contradiction. �
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Note that each cell that intersects a row and a column both filled by 1’s is
definitely a generator. Further, every pseudo cluster has at least one generator,
since a pseudo-bicluster has at least one row and one column filled by 1’s
by definition. For instance, in Figure 6.7(d) the maximal pseudo-bicluster
denoted by ‘J’ has two columns (the fourth and the fifth) and one row (the
fourth) completely filled by 1’s. Thus, cells m44 and m45 are generators of ‘J’.
Note that an element mi j generates exactly one maximal pseudo-bicluster, but
a maximal pseudo-bicluster can be generated by several elements mi j ∈ M . In
particular:

Lemma 6.5 Let MPBS be the set of all the maximal pseudo-biclusters that exist

within the matrix M. Then, |MPBS| ≤ |M |.

PROOF Proof follows from the previous observations. Indeed, each cell that is
equal to 1 generates exactly one maximal pseudo-bicluster, and each maximal
pseudo-bicluster is generated by at least one cell. Since we have exactly |M |
cells equal to 1 within the matrix, then |MPBS| ≤ |M |. �

The reason why we introduced the maximal pseudo-bicluster concept is
that it can be used to impute missing data, for both flagged and non-flagged
missing values. For each element mi j ∈ M that is equal to 1, it is possible
to generate a maximal pseudo-bicluster B = 〈R, C〉 from mi j by setting R =
{ℓ ∈ [n] | mℓ j = 1} and C = {k ∈ [m] | mik = 1}. As we have seen before, a
bicluster can contain 0, 1, and ‘∗’ in the case of matrices with flagged missing
values. The intuition is that the cells of a maximal pseudo-bicluster equal to
0 (in the non-flagged matrices) or equal to ‘∗’ (in the flagged matrices) are
likely to be ‘1’ since they belong to a pattern. Note that the less cells are equal
to 0 and/or ‘∗’ within a maximal pseudo-bicluster B, the more B is close to
being a bicluster, and the more the missing values contained in B are likely to
be 1’s. This is the rationale that we will use to impute missing data in binary
matrices. Next section details our approach.

6.6.2 Tools

We now introduce a metric to measure the relevance of a maximal pseudo-
bicluster as a pattern for imputing missing values. Our analysis is mainly
based upon two considerations. First, the more a maximal pseudo-bicluster
B is close to being a maximal bicluster—namely, it is “almost” filled by 1’s—,
the more the pattern represented by B correctly describes the available data.
The second consideration is that the more a maximal pseudo-bicluster B has
a large area—that is, a large number of involved cells—, the more it should
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be considered a significant pattern, and subsequently it should have a higher
relevance. In more details:

1. We prefer maximal pseudo-biclusters that are close to being maximal
biclusters because, in this way, the rows and the columns of the matrix
M that are involved in the maximal pseudo-biclusters are likely to be
more similar.

2. We prefer maximal pseudo-biclusters with a large area because they
identify patterns that involve many rows and many columns. Indeed,
having a large number of rows and columns usually makes it easier to
detect missing values when compared to the case when the missing val-
ues are present in a smaller pattern.

Both considerations represent a possible way to select good “candidate” pat-
terns to be used to infer missing values. The following index captures both
points described above:

Definition 6.9 (Relevance of a Maximal Pseudo-Bicluster) Let MPBS be
the set of all maximal pseudo-bicluster existing in M , and B ∈ MPBS. The
relevance of B is defined as:

̺(B) =
��{mi j ∈ M | mi j is a generator of B}

�� =
∑

mi j∈B

γ(mi j, B),

where

γ(mi j, B) =

(
1, mi j generates B;

0, otherwise.

The index ̺(B) counts the number of generators of the maximal pseudo-
bicluster B. Informally, this index implicitly considers both the number of
involved cells and the closeness of B to be a maximal bicluster. As for the
area, the generators mi j of B = 〈R, C〉 are definitely elements of B. Thus, if
the area |R| × |C | is small, the value of ̺(B) cannot be high. As for closeness,
notice that generators are the intersection of rows and columns filled by 1’s—
see Theorem 6.6 in the previous section. Hence, the more rows and columns
belonging to B are similar, the higher ̺(B) is. In particular:

Theorem 6.7 If a maximal pseudo-biclusters B = 〈R, C〉 is a maximal bicluster,

then ̺(B) = |R| × |C |

PROOF Since B is a bicluster, the submatrix of M induced by R ⊆ [n] and
C ⊆ [m] is a 1’s matrix. Moreover, since B is a maximal bicluster, then
∄ a bicluster B′ = 〈R′, C ′〉 : R × C ⊂ R′× C ′. Thus, for Theorem 6.6 each
element mi j ∈ B is a generator of B. Since there are |R| × |C | elements in B,
then ̺(B) = |R| × |C |. �
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As stated before, the value of ̺(B) is related to the area of the maximal
pseudo-biclusters B = 〈R, C〉 and its closeness to being a maximal bicluster.
According to Theorem 6.7, when B is a maximal bicluster, ̺(B) is exactly
equal to its area. Otherwise, ̺(B) < |R| × |C |. Indeed, some elements of B

are set to 0 or ‘∗’—otherwise, B would be a maximal bicluster. This means
that there are rows and columns belonging to B that are not equal to each
other, and thus, because of Theorem 6.6, not all the elements of B will be its
generators. Subsequently, ̺(B)< |R| × |C |.

We will now introduce another relevance index for each element mi j ∈ M

that is based on the relevance of maximal pseudo-biclusters. With this in-
dex, we will be able to evaluate missing values mi j by leveraging all the pat-
terns represented by the maximal pseudo-bicluster which mi j belongs to. This
means that each missing value of M will be evaluated using all the patterns
(i.e., maximal pseudo-roles) that we are able to discover within the available
data, weighted by their relevance.

Definition 6.10 (Relevance of a Cell) Given an element mi j ∈ M , and let
MPBS be the set of all existing maximal pseudo-biclusters within the data, the
relevance of mi j is the sum of the indices ̺(B) of all the maximal pseudo-
biclusters B which mi j belongs to. Formally:

σ(mi j) =
∑

B∈MPBS:mi j∈B

̺(B).

It is possible to normalize the value of eachσ(mi j)with respect to the maximal
index found in the matrix M . In this way, the index value will range from 0
to 1. In the following, we will always consider this normalized version.

By evaluating σ(mi j) for a given mi j that is equal to ‘∗’ (flagged matrix)
or 0 (non-flagged matrix) we can impute the missing value according to the
identified patterns within the available data. In this way, each missing value
is imputed considering all and only those patterns that could involve it. This
does not happen in other approaches such as KNN. Indeed, in that case each
missing value is evaluated using a fixed number of rows (i.e., the k-nearest
rows): it may occur that the result is biased, because of not having considered
a sufficient number of relevant rows, or, even worse, by averaging rows that
are completely unrelated. Conversely, in our approach each missing value is
evaluated using a variable number of patterns, that depends on the given data
set. A high value for the index σ(mi j) indicates both a high relevance and a
high number of patterns involved.

As for flagged matrices, we will evaluate the relevance index for each el-
ement equal to ‘∗’. Instead, when we are dealing with non-flagged missing
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values, we will evaluate the relevance of all the elements mi j ∈ M such that
mi j = 0.

6.7 AB BA: Adaptive Bicluster-Based Approach

In order to identify an algorithm that evaluates the relevance of missing val-
ues, we first make some considerations on the introduced indices. In particu-
lar, definitions 6.9 and 6.10 suggest a way to practically compute the relevance
values. By simply combining the two indices, the following holds:

σ(mi j) =
∑

B∈MPBS:mi j∈B

̺(B) =
∑

B∈MPBS:mi j∈B

∑

mℓk∈B

γ(mℓk, B).

Notice that elements which do not belong to B cannot generate it, thus we can
replace B with M in the second sum. Moreover, only elements equal to 1 can
be generators. Hence, we can rewrite the previous equation in the following
way:

σ(mi j) =
∑

B∈MPBS:mi j∈B

∑

mℓk∈M :mℓk=1

γ(mℓk, B)

=
∑

mℓk∈M :mℓk=1

∑

B∈MPBS:mi j∈B

γ(mℓk, B),

Since γ(mℓk, B) holds true only when mℓk generates B, the second sum has
non-zero elements only when B is the maximal pseudo-bicluster generated by
mℓk, namely Bmℓk

. Additionally, according to the second sum we have that mi j

must belong to maximal pseudo-biclusters Bmℓk
. Formally:

σ(mi j) =
∑

mℓk∈M :mℓk=1

δ(mi j, Bmℓk
) (6.23)

where

δ(mi j, Bmℓk
) =

(
1, mi j ∈ Bmℓk

0, otherwise.

We used Equation (6.23) to define an algorithm referred to as AB BA
(Adaptive Bicluster-Based Approach), that is described in Algorithm 6.3. First,
we calculate the set of all maximal pseudo-biclusters by scanning all elements
mi j ∈ M : mi j = 1. In turn, the relevance of missing values is determined
by checking their membership to the generated maximal pseudo-biclusters. In
this way, all the identifiable data patterns that could have some relation with
the missing value are involved in its imputation, according to their relevance.
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6.3 The AB BAalgorithm

1: procedure EvaluateMissing(M)
2: for all mℓk ∈ M s.t. mℓk = 1 do

3: for all mi j ∈ Bmℓk
s.t. mi j = ‘∗’ do

4: mi j.count← mi j .count+ 1
5: end for

6: end for

7: return M

8: end procedure

9: procedure Binarize(M , t)
10: for all mi j ∈ M s.t. mi j .count> 0 do

11: if mi j .count> t then

12: mi j ← 1
13: else

14: mi j ← 0
15: end if

16: end for

17: return M

18: end procedure

Algorithm 1 is next described. The loop from Line 2 to Line 6 generates
a maximal pseudo-bicluster for each element mi j = 1 of the matrix M . The
loop from Line 3 to Line 5 increases the counter of each missing value con-
tained in the maximal pseudo-bicluster just created. Notice that the condition
mi j = ‘∗’ in Line 3 assumes that we are dealing with a flagged matrix. If this
is not the case, we can just replace this condition with mi j = 0. At the end of
the algorithm, each missing value (i.e., elements with mi j = ‘∗’ in the flagged
version, mi j = 0 in the non-flagged version) will contain a value that corre-
sponds to σ(mi j) in its data field referred to as ‘count’. Then, each counter can
be optionally normalized with the maximum value found for the index. After
having calculated the relevances through EVALUATEMISSING, the procedure BI-
NARIZE can be called. It takes in input the matrix M and a threshold t for the
relevance index, thus giving back the final binarized version of M .

The correctness of Algorithm 6.3 is guaranteed by Equation (6.23). As
for its computational complexity, it is O (µ |M |), where |M | is the number of
elements of the matrix M that are set to 1, and µ is the number of missing
values. Indeed, the first loop is executed for each element of the matrix M
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that is equal to 1. The maximal pseudo-bicluster can be determined in constant
time, for example by using an hash table that gives all columns with 1’s for
a given row, and all rows with 1’s for a given column—the hash table can be
created in O (|M |). The internal loop is executed at most µ times, and the
operation of Line 4 can be executed in constant time. The worst case is when
µ = |M | = (nm/2), namely when half the matrix is filled by 1’s half by ‘∗’
(in the flagged version) or 0’s (in the non-flagged version). Yet, this seldom
happens. When the number of missing values represents a small fraction of
the data, or the matrix is sparse, our approach outperforms other algorithms
such as KNN, that has a computational complexity O (n2m) [90].

6.7.1 Threshold Tuning

As stated in Section 2.4, the multiple imputation method [80] is a simulation
technique that replaces each missing data with a set of m > 1 plausible values.
The m versions of the complete data are analyzed by standard complete-data
methods. According to this definition, our approach can be considered a mul-
tiple imputation method. Indeed, we first impute missing values with the
procedure EVALUATEMISSING described in Algorithm 6.3. In turn, by changing
a threshold t that does not require the complete re-imputation of missing data,
it is possible to generate m versions of the dataset through the procedure BI-
NARIZE. Each version can subsequently be analyzed by trying to find the one
that better reaches the target function. The tuning of the threshold t depends
on the final objective of the data analysis. First, a metric must be defined to
measure how well the objective has been reached. Then, it is possible to use
this metric to evaluate the imputed matrix. This can be an iterative process,
executed several times with different thresholds, thus choosing the threshold
value that provides the best result.

As a possible application of our algorithm, consider the problem of mini-
mizing the number of biclusters required to “cover” all the 1’s within the ma-
trix. Many real-world examples require the identification of a “compressed”
matrix representation through a list of biclusters, such as minimizing the num-
ber of relationships required to manage permissions granted to users (see
Chapter 3). In particular, let us consider the case of a binary access con-
trol matrix, where rows represent users, and columns represent permissions.
A cell representing a user-permission assignment is then set to 1 if the user
must have the permission granted, 0 if not, and ‘∗’ in the case that he could
have that permission granted but it is not strictly needed to accomplish his
work, or in the case that it is not clear whether he should have that permis-
sion granted or not. The so called role mining problem (see Chapter 5) is to
find subsets of users that share the same subset of permissions minimizing a
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given cost function, thus creating a set of roles that can be efficiently man-
aged by security administrators. Typically, missing values in this scenario are
neglected, or more often they are not flagged missing values. Thus, the qual-
ity of the clustering is severely biased by them. Yet, automatically switching
all the imputed values might not always be appropriate. Rather, it would be
advisable to submit these results to a checker. In our example, we should not
forget that security still remains the main objective. Hence, the system admin-
istrator should carefully check the missing values, one by one. Checking all
possible missing values could be an unfeasible task. By having a sorted list of
the missing user-permission relations based on the computed relevance index,
a system administrator can only focus on the most relevant ones, evaluating
them in the reverse order. In this case, a reasonable metric for the objective
achievement could be the number of generated biclusters. The main require-
ment is thus identifying which missing values actually reduce the final number
of biclusters if switched to 1. In this way, we only focus on the most “useful”
values. Once missing values are imputed through EVALUATEMISSING, it is only
necessary to apply a clustering algorithm over the data sets obtained through
the procedure BINARIZE by using given list of thresholds. Then, the threshold
that assures the best result (i.e., the minimum number of biclusters) is chosen.
Conversely, in KNN requires to choose the threshold t , and the parameter k

should be changed as well. Yet, by changing that parameter k we also need to
recompute all the missing data, that is definitely more expensive.

6.8 Missing Values in Real Data

To test the quality of the results produced by AB BA, we now introduce a mea-
sure based on the Jaccard’s coefficient [36] that has already been used in [38]
to compare the similarity of two matrices. Let ni j be the number of entries on
which two matrices M and R have values i and j, respectively. Thus, n11 is
the number of detected “mates”—namely, the number of 1’s in both matrices
M and R in the same cell positions—, n00 is the number of non-mates, while
n10 and n01 count the disagreements between the true and suggested solu-
tion. The Jaccard’s coefficient is defined as n11/(n11 + n10 + n01). It represents
the proportion of the correctly identified mates to the sum of the correctly
identified mates plus the total number of disagreements. Hence, the Jaccard’s
coefficient should score one when all the missing values are correctly identi-
fied. Conversely, the closer this index is to zero, the less the two matrices can
be considered similar.
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6.8.1 Testing on Synthetic Data

In the following simulations we first generate a matrix M then, uniformly at
random, we introduce in M a fraction of missing values, generating a 0-1-‘∗’
matrix M ′. In turn, M ′ is given as an input to our algorithm, which generates
a matrix R. Using the Jaccard’s coefficient to measure the similarity of R (the
rebuilt matrix) and M (the original matrix), we capture the quality of the
rebuilt matrix, that is, how close it is to the original one (M).

To implement our experiments, we generated sample matrices composed
by 600 rows and 100 columns. Each matrix has been generated with the
next described procedure. First, 20 subsets of rows and columns have been
randomly chosen. Each subset of rows, and each subset of columns, counts a
number of elements that are proportional to MaxRows× x y and MaxColumns×

x y , where x is a random number uniformly chosen between 0 and 1, while y,
MaxRows and MaxColumns are integer variables. The elements of the matrix
M that belongs to one of such subsets are set to 1, while the other ones are
set to 0. The exponent y allows to change the number of small and large
patterns created. Note that y = 1 corresponds to the uniform distribution.
By increasing y we are able to generate a higher number of patterns of small
dimension, and some of high dimension.

Figure 6.9 reports the value of the Jaccard’s coefficient, considering the
threshold t and the fraction of missing values introduced in M . To plot each
point of the surface, 20 matrices have been generated according to the de-
scribed method, with y = 2, MaxRows = 60 and MaxColumns = 10. Then, the
average value of the Jaccard’s coefficients has been calculated. It can be seen
that the threshold plays a fundamental role. Indeed, using a threshold t = 0
means switching all the missing values that are involved in some patterns to
1, though it may be an unimportant one. Conversely, when the threshold is
close to 1, a missing value is switched to 1 only if it is involved in a relevant
pattern. As exposed in Section 6.7.1, depending on the target function, it is
possible to select the best threshold t to use. As for the Jaccard’s coefficient,
by analyzing Figure 6.9 it is possible to note that the best results are obtained
using a threshold between 0.1 and 0.2. Additionally, Figure 6.9 shows that
our algorithm is able to reach a Jaccard’s coefficient equal to 0.8 even if the
missing values rate is equal to 0.4.

In order to show the advantages provided by our approach, we compared
our algorithm with KNN. Table 6.1 summarizes the results for some sample
matrices. To be fair, we reported several results for KNN obtained by using
different k. Note that selecting the best k corresponds to an additional opera-
tion, and that it is not needed in AB BA. Each row of the table corresponds to a
sample matrix generated as above using the indicated parameters, and y = 5.
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(a) Original (b) t = 0.73 (c) t = 0.36 (d) t = 0

Figure 6.8 An application of AB BAto non-flagged missing values
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Figure 6.9 Comparing the rebuilt matrix with the original one

To have more reliable results, the results correspond to the average of 20 sim-
ulations, where the threshold t that assures the best results is reported. The
best result for each configuration in a row is highlighted in gray. It can be seen
that our algorithm performs better than KNN (for any k used). The difference
is more noticeable when the matrix is sparse (lower values for MaxRows and
MaxColumns), mainly when the number of missing values is high.

6.8.2 Testing on Real Data

As an application of our algorithm to discover non-flagged missing data, we
have chosen to analyze a real dataset coming from an access control appli-
cation. In particular, the dataset is composed by a binary matrix where rows
represent users, and columns are permissions. A user-permission pair is set to
1 if the user must have the permission granted, 0 otherwise. We evaluated the
dataset using our algorithm with the target to discover data that are set to 0,
but that could be set to 1. This operation, if carefully devised, can drastically
reduce the number of biclusters (referred to as “roles” in the access control ter-
minology) that are needed to manage an access control system. The analyzed
data involves a set of 323 users and 49 permissions related to a particular
organization unit of a private company, counting a total of 2342 permissions
granted—that correspond to almost 15% of cells set to 1. Figure 6.8 graphi-
cally shows the achieved results. Figure 6.8(a) is the original matrix, where
black pixels corresponds to 1’s (i.e., a permission granted to a user), while
white pixels to 0’s. Figure 6.8(b) shows the imputed matrix, where some of the
initial 0-values have been switched to 1 according to a threshold t = 0.73 and
highlighted in light blue. Figures 6.8(c) and 6.8(d) differs from Figure 6.8(b)
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Table 6.1 A comparison between KNN and AB BA

MaxRows
Max-

Columns

Missing
rate

KNN(4) KNN(16) KNN(32) KNN(64) AB BA

30 6

0.1 0.885 0.895 0.896 0.896 0.914
0.2 0.786 0.791 0.794 0.791 0.836
0.3 0.702 0.715 0.715 0.716 0.811
0.4 0.611 0.618 0.618 0.618 0.724
0.5 0.500 0.507 0.508 0.507 0.679

60 8

0.1 0.911 0.921 0.925 0.925 0.949
0.2 0.821 0.836 0.841 0.842 0.885
0.3 0.703 0.717 0.720 0.727 0.854
0.4 0.604 0.616 0.616 0.616 0.750
0.5 0.497 0.505 0.509 0.513 0.719

90 12

0.1 0.942 0.944 0.944 0.944 0.949
0.2 0.848 0.862 0.867 0.865 0.903
0.3 0.747 0.767 0.771 0.777 0.861
0.4 0.620 0.638 0.644 0.653 0.811
0.5 0.500 0.514 0.514 0.523 0.708

120 16

0.1 0.938 0.944 0.945 0.944 0.949
0.2 0.827 0.833 0.834 0.831 0.887
0.3 0.772 0.793 0.802 0.803 0.850
0.4 0.614 0.635 0.637 0.639 0.756
0.5 0.549 0.577 0.584 0.586 0.772

150 20

0.1 0.957 0.958 0.959 0.959 0.959
0.2 0.914 0.925 0.929 0.930 0.930
0.3 0.817 0.838 0.842 0.844 0.883
0.4 0.671 0.698 0.706 0.709 0.783
0.5 0.587 0.622 0.633 0.637 0.751

180 24

0.1 0.958 0.960 0.960 0.959 0.952
0.2 0.913 0.922 0.923 0.923 0.920
0.3 0.795 0.808 0.807 0.808 0.858
0.4 0.711 0.732 0.738 0.738 0.812
0.5 0.611 0.644 0.657 0.659 0.771

only for the used threshold, that is equal to 0.36 in the first case and 0 in the
other one.

It is possible to seen that, the more the threshold t is decreased, the larger
the number of user-permission assignments switched to 1 are. Once we sub-
mitted these results to the system administrators, they recognized that the
user-permissions assignments found using the threshold t = 0.2 are actually
permissions that could be granted to the corresponding users. This means
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that only 96 out of 13,485 possible cells that were 0’s have been switched to
1. The new access control scheme, that corresponds to the matrix rebuilt ac-
cording to this threshold, contains 102 maximal biclusters, with respect to the
127 maximal biclusters that can be identified within the original access control
scheme. This means that, for each user-permission assignment, the ambiguity
of selecting the role (i.e., the bicluster) needed to manage them is lower.

6.9 Final Remarks

In this chapter we proposed a three steps methodology, rooted on sound graph
theory, to reduce the role mining complexity in RBAC systems. The method-
ology is implemented by two different algorithms: a deterministic one and a
probabilistic one. The latter trades off computation time with a (slight, yet
tunable) decrease in the quality of the provided results. To show the viability
of the proposal, the methodology is applied to a concrete case. Extensive ex-
periments on real data set do confirm its viability, as well as the quality of the
results achieved by the related algorithms.

In this chapter we also proposed a solution to the missing values imputa-
tion problem in binary matrices. In particular, we proposed a novel algorithm
AB BA(Adaptive Bicluster-Based Approach) that leverages the underlying im-
plicit relationships among data to address the issue. A thorough formal frame-
work has been provided to justify the rationales behind our algorithm. Further,
AB BAenjoys some relevant features when compared to its direct competitor
(KNN): its tuning is much easier and the computational complexity is reduced
for a wide range of parameters. Moreover, experimental results on simulated
data confirmed that the output of AB BAis always better than KNN, mainly in
the difficult case when the rate of missing values is high. Finally, we applied
our algorithm to a real problem in order to impute non-flagged missing val-
ues, also observing that our approach can improve the results achieved by a
subsequent data analysis task.
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7
The Risk of

Unmanageable Roles

T he last contribution of this thesis is represented by the analysis of the
risk derived from granting access to resources, and how RBAC allows
to effectively manage such a risk. In particular, we point out that exist-

ing role mining techniques are not able to elicit roles with an associated clear
business meaning. Hence, it is difficult to mitigate risk, to simplify business
governance, and to ensure compliance throughout the enterprise. To elicit
meaningful roles, we recall the methodology described in Chapter 5 where
data to analyze are decomposed into smaller subsets according to the provided
business information. We show how this leads to a decrease in the likelihood
of making errors in role management, and consequently reduces the risk of
role misuse. Additionally, we extend the concepts proposed in Chapter 6 by
introducing an approach to highlight users and permissions that markedly de-
viate from others, and that might consequently be prone to error when roles
are operating. By focusing on such users and permissions during the role def-
inition process, it is possible to mitigate the risk of unauthorized accesses and
role misuse. This chapter summarizes the contribution previously published
in [9,11].

7.1 Reducing the Risk of Unmanageable Roles

To address all the aforementioned issues, this section proposes a methodol-
ogy that helps role engineers leverage business information during the role
mining process. In particular, we propose to divide the access data to analyze


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into smaller subsets that are homogeneous according to some business data,
instead of performing a single bottom-up analysis on the entire organization.
This eases the attribution of business meaning to automatically elicited roles
and reduces the problem complexity, thus allowing for better enforcement of
security policies and reducing the risk related to illegal accesses. In order to
select the best business information that improves the subsequent role min-
ing process, as well as to establish how deeply the data must be partitioned,
two indices, referred to as minability and similarity, are identified. Minability
and similarity are both rooted on sound mathematical theory. These indices
are used to measure the expected complexity of analyzing the outcome of the
bottom-up approaches. Leveraging these indices allows for the identification
of business information that best fits with the access control data, namely the
information that induces a decomposition which increases the business mean-
ing of the roles elicited in the role mining phase and, at the same time, sim-
plifies the analysis. This leads to a decrease in the likelihood of making errors
in role management, and consequently reduces the risk of role misuse. The
chapter also introduces two fast probabilistic algorithms to efficiently compute
such indices, making them suitable also for big organization with hundreds of
thousands of users and permissions. The quality of the indices is also formally
assured. Several examples illustrate the practical implications of the proposed
methodology and related tools, which have also been applied on real enter-
prise data. Results support the quality and viability of the proposal.

7.2 Preliminaries

7.2.1 Jaccard and Clustering Coefficients

In this chapter we extensively use two mathematical tools. The first one is
represented by the Jaccard coefficient [52] that is a measure of the similarity
between two sets. Given two sets S1, S2, the coefficient is defined as the size
of the intersection divided by the size of their union:

JS1S2
= |S1 ∩ S2|/ |S1 ∪ S2| . (7.1)

The Jaccard coefficient is widely used in statistic. However, to our knowl-
edge, the only application to RBAC is given by Vaidya et al. [93], that offers
a method to consider previously defined roles during the role mining process
in order to minimize the “perturbation” introduced by new candidate roles. In
Section 7.3.1 we will use the Jaccard index to measure the similarities among
users of an access control configuration.
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The other mathematical tool is the clustering coefficient, described in Sec-
tion 6.3.1. In this section, however, we use an alternative form: in particular,
please note that Equation (6.10) at page 103 can also be written as:

C(G) =
1

|V |

∑

v∈V

∑

π∈Πv

X (π)

τ(v)
+
|{v ∈ V | τ(v) = 0}|

|V |
,

where X : Πv → {0, 1} is such that X (π) is equal to 1 if there is an edge be-
tween the outer nodes of the triple π, and 0 otherwise. The first addendum
is the local clustering coefficient of the subset of vertices that have τ(v) 6= 0,
while the second one corresponds to the local clustering coefficient of the set
of vertices such that τ(v) = 0. Leveraging this definition of the clustering coef-
ficient, C(G) can be computed by considering each triple of the graph G, and
then checking if it is a triangle or not. Further details follows in Section 7.3.2.

7.2.2 Risk Model

To better clarify the benefits introduced by the proposed approach, we first re-
call some risk management concepts. In particular, a typical risk management
approach is made up of two key components: risk analysis (or assessment) and
risk control. During risk analysis we identify potential risks and assess proba-
bilities of negative events together with their consequences. With risk control
we establish the tolerable level of risk for the organization, hence providing
controls for failure prevention as well as actions to reduce the likelihood of a
negative event—such an activity is usually referred to as risk mitigation.

Plugging the previous concepts in a RBAC environment, three essential
components should be considered: users, roles, and permissions. Among
them, particular attention must be taken on risk incurred by users. Indeed,
the main threat in an access control scenario is to allow a user to execute an
illegitimate operation over an object or a resource. A system which is only
supposed to be used by authorized users must attempt to detect and exclude
unauthorized ones. Accesses are therefore usually controlled by insisting on an
authentication procedure to determine with some established degree of confi-
dence the identity of the user, hence granting permissions authorized to that
identity. RBAC mitigate the risk of unauthorized accesses by restricting user’s
permission to predefined role definitions. In a usual RBAC setting, users are
assigned to roles which are then granted permissions to perform predefined
tasks [42].

In this scenario, and assuming that it is not possible to by-pass the ac-
cess control mechanism, the risk of illegitimate credentials is prevented by
adopting a RBAC system. But, there is an important aspect that has not been
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considered so far: the role lifecycle. Roles are not static, but they follow the
evolution of the organization: new users may join, existing users may leave or
may change their job position, applications may be replaced with new ones,
etc.. Hence, an important aspect to consider when evaluating the risks related
to RBAC systems is the risk introduced by roles that are difficult to manage,
mainly due to an unclear understanding of their meaning. Indeed, the more
a role is intelligible and well designed, the less error prone it will be. A com-
prehensive risk management approach should consider these aspects starting
from the creation of roles, that is the role mining phase. More specifically, we
focus on the following risk-related aspects of a generic RBAC system:

◮ Vulnerabilities. They correspond to roles that are not meaningful enough
from the administrator’s perspective, namely roles that are difficult to
manage and to maintain.
◮ Threats. They are errors and wrong administration actions, unintention-

ally committed while managing roles during their lifecycle.
◮ Risks. They correspond to allowing users to execute operations that are

not permitted, or hampering their jobs by not granting required permis-
sions. In both cases, the consequences could raise financial loss.

To evaluate such risks, in this chapter we propose a general risk formula
that involves multiple factors with different probabilities, namely:

Risk=
n∑

i=1

Pi × Ci, (7.2)

where Pi denotes the probability of each risk factor i, and Ci quantifies the
consequences of these risk factors. In our model, risk factors are represented
by homogeneous groups of users. Indeed, every user does not have the same
degree of importance. For example, there could be users in charge of activities
that are critical for the main business of the organization, while other users
could be assigned to roles that have a marginal importance for the business.
In general, we need to assign various degree of importance to each risk factor
by taking the consequence of its execution into consideration. This process
requires a thorough analysis of the organization. We assume that the impact
evaluation is provided by experts. As for the probability of occurrence, we are
able to propose two metrics that are suitable to evaluate the likelihood that an
administration error is made when managing roles. In such a way, we evaluate
the risk of an error in role management, and subsequently we are able to drive
the definition of roles that mitigate this risk.
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7.3 New Metrics for Role Mining

In this section we describe two indices that can help role engineers to condition
role mining in order to craft roles with business meaning and to downsize the
problem complexity, hence reducing risk issues as well as required role mining
effort. The first index is referred to as similarity, and its value is proportional
to the number of permissions a given set of users share. The second one is
minability, and it measures the complexity of selecting candidate roles given
a set of user-permission assignments. Both indices provide a measure of how
easy it is to analyze a given set of user-permission assignments through a
bottom-up approach, but using different perspectives. Indeed, roles may be
classified in two categories, as described in [29, Ch. 5] and [70]:

◮ Organizational or Structural Roles, which depend on employee’s position
within a homogeneous group of users—for instance, an organization
unit or all users that have the same job title, e.g., doctor, nurse, bank
teller. Common permissions are usually assigned to these kinds of roles,
and each user typically has only one organizational role.

◮ Functional Roles, which depend on the task that need to be performed in
a particular position. Detailed permissions are usually assigned to this
kind of roles. Functional roles are supposed to provide further access
rights in addition to those being granted by organizational roles—i.e.,
for a given organizational role “Specialist”, we can provide specialized
roles such as “Cardiologist”. or “Oncologist” Any number of functional
roles can be assigned to a user.

Since the similarity index helps identify situations where all users share the
majority of their permissions, its usage is most suitable when evaluating how
easy identifying organizational roles is. Instead, the minability index indicates
the level of complexity involved in identifying subsets of users that share the
same permissions; thus, it is suitable to evaluate whether finding roles, both
functional and organizational, is a simple task or not.

By leveraging the previous observations, it possible to use information re-
sulting from a top-down approach in order to drive a bottom-up analysis. The
key idea is to partition the data-set to analyze into smaller subsets according to
some business information. For instance, a top-down analysis might identify
groups of users that are homogeneous from an enterprise perspective. Then,
user-permission assignments can be partitioned such that each subset contains
only assignments related to users of the same group. For each subset, we calcu-
late the minability and similarity indices, thus getting a prediction about how
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complex a subsequent role mining task on the subset will be. This decompo-
sition process can be performed for each available business information, thus
generating different data partitions; by selecting the one with the highest in-
dex values, we choose the partition that most simplifies the subsequent role
mining analysis. Furthermore, each subset might be iteratively partitioned in
even smaller subsets until we reach a given threshold for minability and sim-
ilarity. The application of role mining algorithms on each subset will produce
roles with more business meaning when compared to the outcome of the same
algorithms applied on the whole data-set: since subsets are identified accord-
ing to some business criteria, elicited roles will likely have a business meaning
and the probability that administrators select a wrong role to assign to users
will decrease, hence reducing the related risk.

In the following, we formally describe the minability and similarity indices,
then in Section 7.4 we will introduce a methodology to apply them in practice
within the proposed risk model.

7.3.1 Similarity

In order to introduce the similarity index, we leverage the Jaccard coefficient
defined in Section 7.2.1. In particular, referring to Equation (7.1), we provide
the following definition:

Definition 7.1 (Similarity Between Two Users) Given two users u1, u2 ∈

USERS, the similarity index between them is formally defined as:

s (u1, u2) =

��perms(u1)∩ perms(u2)
��

��perms(u1)∪ perms(u2)
�� . (7.3)

The following observations about permission overlapping and inclusion are
useful for the sequel:

◮ u1 “contains” u2 if perms(u1)⊃ perms(u2), namely permissions of u1 are
also possessed by u2, but are not equal (perms(u1) 6= perms(u2)). In
such a case, s (u1, u2) ∈ (0, 1).
◮ u1 is “equivalent” to u2 if perms(u1) = perms(u2), namely u1, u2 share

the same permission set. Hence, we have that s (u1, u2) = 1.
◮ u1 “overlaps” u2 when perms(u1) ∩ perms(u2) 6= ; but perms(u1) 6⊇

perms(u2) and perms(u2) 6⊇ perms(u1), namely u1, u2 share some per-
mission but neither does u1 contain u2 nor does u2 contain u1. This
means that s (u1, u2) ∈ (0, 1).
◮ u1 is “not related” to u2 if perms(u1) ∩ perms(u2) = ;, namely u1, u2 do

not share any common permissions. As a result, s (u1, u2) = 0.
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Definition 7.2 (Similarity Among a Set of Users) For a given set of users
USERS, the similarity index is the average similarity between all possible (un-
ordered) user pairs. Formally,

S (USERS) =





1
�|USERS|

2

�
∑

u1,u2∈USERS:
u1 6=u2

s (u1, u2), |USERS|> 1;

1, otherwise.

(7.4)

Notice that Equation (7.3) and Equation (7.4) can be extended to also con-
sider other enterprise information. For instance, similarities can be evaluated
over shared activities, involved organization units, etc.. We can define a simi-
larity index for each kind of business data. In general, the most suitable sim-
ilarity definition depends on specific organization needs and role engineering
requirements. To ease exposition, in this chapter the term “similarity” indi-
cates only the percentage of permissions shared among users, according to
the previous definitions.

7.3.2 Minability

An access control system configuration can be represented by a bipartite graph
B =



USERS ∪ PERMS, UP

�
, where two vertices u ∈ USERS and p ∈ PERMS

are connected by an edge if the user u is granted permission p, namely 〈u, p〉 ∈

UP. A biclique cover of this graph B univocally identifies a candidate role-set

(see Chapter 3 and Chapter 5), namely a set of roles, and for each role a
set of users and permissions, such that all the user-permission assignments
belonging to UP can be covered by at least one role. Indeed, every biclique
identifies a role, and the vertices of the biclique identify the users and the
permissions assigned to this role [34] (see also Chapter 4). Starting from the
bipartite graph B set up via the user-permission relations in UP, it is possible
to construct an undirected unipartite graph G in the following way: each edge
in B (i.e., a user-permission relationship of UP) becomes a vertex in G, and
two vertices in G are connected by an edge if and only if the endpoints of the
corresponding edges of B induce a biclique. To ease exposition, we define the
function B : UP→ 2UP that indicates all edges in UP which induces a biclique
together with the given edge, namely:

B(〈u, p〉) =
�
〈u′, p′〉 ∈ UP | 〈u, p′〉, 〈u′, p〉 ∈ UP ∧ 〈u, p〉 6= 〈u′, p′〉

	
. (7.5)

Note that a pair of edges ω1 = 〈u1, p1〉 and ω2 = 〈u2, p2〉 of UP that share
the same user (that is, u1 = u2) or the same permission (that is, p1 = p2)
induce a biclique. Also, 〈u1, p1〉 and 〈u2, p2〉 induce a biclique if another pair
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〈u1, p2〉, 〈u2, p1〉 ∈ UP exists. Moreover, given ω1,ω2 ∈ UP, it can be easily
verified that ω1 ∈ B(ω2) ⇐⇒ ω2 ∈ B(ω1) and ω1 ∈ B(ω2) =⇒ ω1 6= ω2.
Therefore, the undirected unipartite graph G induced from UP can be defined
as:

G =


UP, {〈ω1,ω2〉 ∈ UP×UP |ω1 ∈ B(ω2)}

�
. (7.6)

Any clique partition of G corresponds to a biclique cover of B as well as to a
possible solution for the role mining problem represented by the sets USERS,
UA, and PA (see Chapter 4).

Given the previous graph model, the minability index measures how com-
plex it is to identify and select the roles required to manage existing user-
permission assignments. To do this, we will redefine the clustering coefficient
(see Section 6.3.1) to be used with bipartite graphs that represent the user-
permission assignments of an organization. In particular, given a user-per-
mission assignment ω ∈ UP, we define the function triples: UP→ 2UP×UP as

triples(ω) =
�
〈ω1,ω2〉 ∈ UP×UP |ω1,ω2 ∈ B(ω) ∧ ω1 6=ω2

	
, (7.7)

namely the set of all possible pairs of elements in UP that both induce a bi-
clique with ω. We also define the function triangles: UP→ 2UP×UP as

triangles(ω) =
�
〈ω1,ω2〉 ∈ triples(ω) |ω1 ∈ B(ω2)

	
, (7.8)

namely the set of all possible pairs of elements in UP that both induce a bi-
clique with ω, and that also induce a biclique with each other.

Definition 7.3 (Minability) The minability index of an access control system
configuration represented by the set UP is defined as

M (UP) =
1

|UP|

∑

ω∈UP

m (ω), (7.9)

where

m (ω) =





|triangles(ω)|

|triples(ω)|
, triples(ω) 6= ;;

1, otherwise.

(7.10)

The value of m (ω) is also referred to as the local minability index of ω, and
it quantifies how close ω, together with all the edges which induce a biclique
with it, are to being a biclique. Equation (7.9) can be alternatively written as

M (UP) =
1

|UP|

∑

ω∈UP

∑

〈ω1,ω2〉∈triples(ω)

Y (ω,ω1,ω2)

|triples(ω)|
+
|{ω ∈ UP | triples(ω) = ;}|

|UP|
,

(7.11)
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where Y : UP×UP×UP→ {0, 1} returns 1 if their parameters induce a biclique,
and 0 otherwise. Formally:

Y (ω,ω1,ω2) =

�
1, 〈ω1,ω2〉 ∈ triangles(ω);
0, otherwise.

With the above formulation, the minability index M (UP) can be computed by
considering each tuple 〈ω,ω1,ω2〉 ∈ UP×UP× UP such that ω1,ω2 ∈ B(ω),
and checking whether the condition ω1 ∈ B(ω2) holds true.

The following lemma defines a mapping between the clustering coefficient,
as defined in Equation (6.10), and the minability index:

Lemma 7.1 If G is the unipartite graph constructed from UP according to Equa-

tion (7.6), then M (UP) = C(G), that is the minability of UP is equal to the

clustering coefficient of G.

PROOF It follows by construction of the graph G in Equation (7.6), and defini-
tions of M (UP) in Equation (7.9) and C(G) in Equation (6.10). �

Lemma 7.1 will be used in Section 7.3.3 and Section 7.4.3 to offer a graph
representation for the given examples. A relevant observation relates similar-
ity with minability, and it is represented by the following lemma:

Lemma 7.2 Given a set of users USERS that have been granted permissions in

PERMS through the corresponding assignments UP, then S (USERS) = 1 =⇒

M (UP) = 1.

PROOF When S (USERS) = 1 and |USERS| = 1, there is only one user that
possesses all the permissions in PERMS. Instead, when S (USERS) = 1 and
|USERS|> 1, all users share the same permission set, that is ∀u1, u2 ∈ USERS :
perms(u1) = perms(u2). In both cases, UP = USERS× PERMS. According to
Equation (7.7) and Equation (7.8), ∀ω ∈ UP : triples(ω) = triangles(ω). The
proof immediately follows from minability definition Equation (7.9). �

The previous lemma states that the similarity index is tighter than the
minability index. Indeed, a similarity index equal to 1 requires that all users
share the same set of permissions, whereas minability can be equal to 1 even
if the users do not share all the same permissions. Further, notice that the
inverse of Lemma 7.2 does not hold. The example depicted in Figure 7.1(a) is
one possible case of M (UP) = 1 and S (USERS) < 1. In the following section
we will offer more details on this example.

In the remainder of this section we introduce definitions and prove theo-
rems that help to better understand the relationship between the minability
index and the complexity of the role mining problem. In particular, the fol-
lowing definition is required to formalize all the subsequent considerations:
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Definition 7.4 (Maximal Equivalent Roles (MERs)) Given a
role r ∈ ROLES, it is a Maximal Equivalent Role (MER) if:

∄U ⊆ USERS, ∄P ⊆ PERMS : U × P ⊆ UP ∧

ass_users(r)× ass_perms(r) ⊂ U × P. (7.12)

Informally, a MER is a role that is “representative” of all possible subsets of
permissions shared by a given set of users (see Chapter 4). The key obser-
vation which is made regarding a MER is that two permissions which always
occur together among users should simultaneously belong to the same can-
didate roles. Without further business semantics of access control data, a
bottom-up approach to role engineering cannot differentiate between a role
made up of two permissions and two roles that contain individual permis-
sions. Moreover, defining roles made up of as many permissions as possible
likely minimizes the administration effort of the RBAC system by reducing the
number of required role-user assignments. MERs properties are further de-
tailed in Chapter 4, which also proposes a variant of the Apriori algorithm to
efficiently identify all possible MERs within UP.

The following theorem relates the minability index to the complexity of the
role mining problem in terms of number of MERs:

Theorem 7.1 Let ROLES be the set of all possible MERs that can be derived

from UP. Given a user-permission assignment ω ∈ UP, let MERSω be the set of

all MERs that “cover” the given user-permission assignment, that is MERSω =
{r ∈ ROLES |ω ∈ ass_users(r)× ass_perms(r)}. Then, the followings holds:

◮ m (ω) = 1 ⇐⇒ |MERSω|= 1;

◮ m (ω) = 0 ⇐⇒ |MERSω|= |B(ω)|;
◮ m (ω) ∈ (0, 1) ⇐⇒ 1< |MERSω|< |B(ω)|.

PROOF The proof immediately follows from Theorem 6.3 by using MERs in
lieu of maximal bicliques. �

The previous theorem allows us to make some consideration on the com-
plexity of the role mining problem. Given a user-permission assignmentω, the
higher its local minability is, the less the number of possible MERs to analyze
is. The following subsection and Section ?? offer practical examples about this
property.

7.3.3 Examples

We now show some examples to demonstrate how minability and similarity in-
dices can actually provide role mining engineers with the expected complexity
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(a) M (UP) = 1, S (USERS) = 0.33 (b) M (UP) = 0, S (USERS) = 0.22

(c) M (UP) = 0.94 S (USERS) = 0.58

Figure 7.1 Access control configurations as bipartite graphs and corresponding unipartite graphs

to find functional and/or organizational roles. In Figure 7.1, three different
and simple access control configurations are depicted. In each one, we have
4 users and 6 permissions, but with different user-permission assignments.
To better illustrate these indices, we also report the corresponding unipartite
graphs constructed according to Equation (7.6).

In Figure 7.1(a) the minability index is 1. In this case, it is straightforward
to verify that a possible clique cover of the unipartite graph is represented
by cliques C1 =

�
〈A,1〉, 〈A,2〉, 〈A,3〉, 〈B,1〉, 〈B,2〉, 〈B,3〉

	
and C2 =

�
〈C,4〉,
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〈C,5〉, 〈C,6〉, 〈D,4〉, 〈D,5〉, 〈D,6〉
	
. In RBAC terms, C1 and C2 correspond to

two maximal equivalent roles: the first one made up of permissions {1,2,3}
and it is assigned with users {A,B}, the second one made up of permis-
sions {4,5,6} and assigned with users {C,D}. As for the similarity index,
S ({A,B,C,D}) = 1/3.

Figure 7.1(b) shows another access control configuration such that the
minability index is equal to 0. According to Th. 7.1, it represents the most
ambiguous case. Indeed, in this example we have two possible MERs to man-
age each user-permission assignment (one is composed by one user and two
permissions, the other one is made up of one permission and two users). Yet,
without further business semantics of access control data, it is not clear which
is the best choice. Another observation is that in Figure 7.1(b) the similarity
index is smaller than in Figure 7.1(a). Indeed, since each permission is used by
2 users, it is impossible to define a role that has to be assigned to the majority
of users.

Figure 7.1(c) shows a slightly more complicated configuration, where the
minability index is between 0 and 1, while the similarity is higher than in
all previous cases. It is quite clear that the unipartite graph can be covered
with two cliques (i.e., two MERs), and this suggests that the minability must
be very close to 1. Indeed, we have an ambiguity only for the user-permission
assignment 〈D,1〉: it can belong to both the cliques C1 =

�
〈A,1〉, 〈B,1〉, 〈C,1〉,

〈D,1〉
	

and C2 =
�
〈D,1〉, 〈D,2〉, 〈D,3〉, 〈D,4〉, 〈D,5〉, 〈D,6〉

	
. M (UP) = 0.94

is in line with the previous observation.

7.4 Applications of Minability and Similarity

As shown in the previous section, minability and similarity are estimates of the
expected complexity to select roles within the role mining results. As a con-
sequence, they are also metrics for the likelihood of making administration
errors when managing roles throughout their lifecycle. For instance, given a
group of users, when the minability index equals 1 for user-permission assign-
ments involved in the group, according to Th. 7.1 there will be just one pos-
sible maximal equivalent role for managing those assignments. This means,
for example, that new permissions introduced within the system will likely be
assigned to all users of the group (via the single role) or to none of them, and
new users that join such a group will likely be granted the same permissions
of other users (namely, all the permissions contained within the single role).
Moreover, the business meaning of the role is strictly related to business as-
pects that users within the group have in common. Therefore, the probability
of making wrong access control decisions is low.
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One possible application of the minability and similarity indices is to help
data analysts guide a divide-and-conquer approach to role mining described in
Section 5.4. The reason why minability and similarity change after decompos-
ing the problem can be analyzed in terms of the graph model. As a matter of
fact, partitioning the set UP is equivalent to partitioning the unipartite graph
G constructed according to Equation (7.6) in subgraphs, since each element in
UP corresponds to a node in G. Hence, partitioning UP means discarding all
the relationships between user-permission assignments that are in two differ-
ent subsets of the partition—they will no longer induce a biclique—, namely
removing edges in G that connect distinct subgraphs. In other words, the par-
tition “breaks” roles that spread across multiple subsets into more parts; that
is, roles without a clear meaning according to the business information that
induced the partition. However, an important problem arises: how to be sure
that the roles selected to be broken down are less relevant from a business per-
spective. The following section explains how minability and similarity indices
can practically be used in conjunction with a divide-and-conquer approach to
role mining to elicit business roles and to mitigate enterprise risk.

7.4.1 Choosing the Best Decomposition

When we have several business information at our disposal (e.g., organization
units, job titles, applications, etc.), we have to select the one that induces a
partition for UP, which minimizes the risk for each subset and that simplifies
the subsequent mining steps. The best partition can change depending on the
organization needs. To guide the decomposition process, it is useful to have a
metric that allows data analysts:

◮ To decide what business information most reduces the risk of a poor role
definition and simplifies the subsequent mining steps.
◮ To predict whether splitting the problem into more sub-problems actu-

ally reduces the risk of having ill-defined roles. In particular, we can
decide to iteratively decompose the data before executing the mining
step, by applying a different decomposition at each iteration until given
minability and similarity thresholds are reached for each subset.
◮ To verify that partitioning does not actually reduce the role mining com-

plexity. If this is the case, access control information should thus be
reviewed in order to improve their manageability.

In all previous cases, similarity and minability are a means to estimate the
risk related to the data being analyzed. In fact, since both indices express the
likelihood of making bad administration decisions due to the unclear meaning
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of roles, they can be used in conjunction with the risk formula Equation (7.2)
proposed in Section 7.2.2. Depending on the kind of roles that role engineers
are looking for (organizational or functional), the similarity or the minability
value can be combined with the importance of each subset to evaluate the
risk of incurring a poor role design. In particular, the following indicators can
support the partition selection problem:

Definition 7.5 (Similarity-Based Risk) Let USERS be a set of users to ana-
lyze, and PERMS, UP be the corresponding permissions and assignments. The
similarity-based risk of USERS is defined as:

RiskS (USERS) =
�
1− S (USERS)

�
× C , (7.13)

where C is the importance of the user group USERS, while S (USERS) is the
similarity value computed over the users belonging to USERS.

Definition 7.6 (Minability-Based Risk) Let UP be a set of user-permission
assignments between users in USERS and permissions in PERMS. The minabil-

ity-based risk of UP is defined as:

RiskM (UP) =
�
1−M (UP)

�
× C , (7.14)

where C is the importance of the data represented by the assignment set UP,
while M (UP) is the similarity value computed over the user-permission as-
signments belonging to UP.

The previous definitions offer an estimate for the risk related to each sub-
set. However, if the objective is to identify the best partition, we will compare
the values obtained for similarity-based and/or minability-based risks on all
subsets and choose the partition with the lowest “average” risk. Similarly,
when we want to check if further decomposing the problem actually reduces
the role mining complexity, we have to compare the “average” risk that we
have with and without the decomposition. The following section shows a pos-
sible approach to summarize the risk related to a partition.

7.4.2 Conditioned Indices

Instead of analyzing the risk values calculated on each subset of a given par-
tition, in most case it is more advantageous to have a risk value that “summa-
rizes” the simplification introduced by the partition. To this aim, we need to
review all the aforementioned indices to condition them by the given partition.
The conditioning concept will apply on both similarity and minability indices
(we therefore speak of conditioned similarity and minability) and risk evalua-
tion metrics (we therefore speak of conditioned similarity- or minability-based

risk).
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Conditioned Similarity and Similarity-Based Risk

Let Ω = {Ω1, . . . ,Ωk} be a k-partition of UP such that Ωi ⊆ UP and UP =⋃k

i=1Ωi. Each subset Ωi induces a set of users Υi, such that Υi = {u ∈ USERS |
∃p ∈ PERMS, 〈u, p〉 ∈ Ωi}. According to Equation (7.4), we can define the
similarity of Υi in the following way:

S (Υi) =





1
�|Υi|

2

�
∑

u1,u2∈Υi :
u1 6=u2

sΩi
(u1, u2), |U |> 1;

1, otherwise.

(7.15)

where SΩ(u1, u2) is the similarity of the users u1 and u2 obtained by only con-
sidering the permissions that are involved in Ωi. Equation (7.15) can also be
rewritten in the following way:

S (Υi) =
1

σi +
�|Υi|

2

�


σi +

∑

u1,u2∈Υi :
u1 6=u2

sΩi
(u1, u2)


 ,

where

σi =

�
1,
��Υi

�� = 1;
0, otherwise.

We can then offer the following definition:

Definition 7.7 (Conditioned Similarity) Given a partition Ω = {Ω1, . . . ,Ωk}

for UP such that UP =
⋃k

i=1Ωi and the induced sets of users Υi = {u ∈ USERS |
∃p ∈ PERMS, 〈u, p〉 ∈ Ωi}, we define the similarity index conditioned by Ω as

SΩ(USERS) =

∑k

i=1 S (Υi)
�
σi +

�|Υi|
2

��

∑k

i=1

�
σi +

�|Υi|
2

�� =

∑k

i=1σi +
∑k

i=1 S (Υi)
�|Υi|

2

�
∑k

i=1σi +
∑k

i=1

�|Υi|
2

� .

(7.16)

Notice that Equation (7.16) holds since S (Υi) = 1 when σi = 1. Another
important observation is that the conditioned index Equation (7.16) is a sort
of “modified” version of Equation (7.4), where the pairs of users that belong
to different subsets are discarded.

As for risk analysis, Def. 7.7 can be extended in order to take into account
the importance of each subset. In particular, we provide the following defini-
tion:
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Definition 7.8 (Conditioned Similarity-Based Risk) Given the k-partition
Ω = {Ω1, . . . ,Ωk} of UP and the induced sets of users Υi = {u ∈ USERS |
∃p ∈ PERMS, 〈u, p〉 ∈ Ωi}, we define the similarity-based risk conditioned by Ω

as

RiskSΩ(USERS,Ω) =

∑k

i=1

�
1− S (Υi)

�
Ci

�
σi +

�|Υi|
2

��

∑k

i=1

�
σi +

�|Υi|
2

�� , (7.17)

where Ci is the importance of the user group Υi.

In particular, RiskSΩ(USERS,Ω) is a weighted average of the risks related to
each subset, where the weights are proportional to the subset cardinalities.

Conditioned Minability and Minability-Based Risk

Given a k-partition Ω = {Ω1, . . . ,Ωk} of UP, according to Equation (7.9) the
minability index of each subset Ωi is

M (Ωi) =
1��Ωi

��
∑

ω∈Ωi

mΩi
(ω),

where mΩi
(ω) indicates the local minability of ω obtained considering only

the user-permission assignments belonging to Ωi. This leads to the following
definition:

Definition 7.9 (Conditioned Minability) Given a k-partition
Ω = {Ω1, . . . ,Ωk} of UP the minability index conditioned by Ω is

M Ω(UP) =

∑k

i=1M (Ωi)
��Ωi

��
∑k

i=1

��Ωi

�� =
1

|UP|

k∑

i=1

∑

ω∈Ωi

mΩi
(ω)

=
1

|UP|

∑

ω∈UP

mΩi
(ω).

(7.18)

It is possible to note that the conditioned index Equation (7.18) is similar to
the basic minability index Equation (7.9), except that relationships between
user-permission assignments that belong to different subsets are no longer
considered.

As for risk analysis, Def. 7.9 can be extended in order to take into account
the importance of each subset. In particular, we provide the following defini-
tion:
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Definition 7.10 (Conditioned Minability-Based Risk) Given a k-partition
Ω = {Ω1, . . . ,Ωk} of the set UP we define the minability-based risk conditioned

by Ω as

RiskM Ω(UP,Ω) =

∑k

i=1

�
1−M (Ωi)

�
Ci

��Ωi

��
∑k

i=1

��Ωi

�� , (7.19)

where Ci is the importance of the subset Ωi.

In particular, RiskM Ω(UP,Ω) is a weighted average of the risks related to each
subset, where the weights are represented by the subset cardinalities.

7.4.3 Examples

In this subsection we show a simple application of our indices. Let us assume
that the access control configuration to analyze is the one depicted in Fig-
ure 7.2(a). The unipartite graph corresponding to the analyzed access control
configuration is shown in Figure 7.2(b). The values of the indices are reported
in the caption. We now try to split the problem into several sub-problems
by leveraging some available business information in order to check whether
the minability and similarity values increase, and consequently the risk in-
dices decrease. For this purpose, suppose that we have two different business
information at our disposal: the organization unit the user belongs to, and
the applications involved by the given permission set. This information is de-
picted in Figure 7.2(a). In particular, the organization unit U1 is composed of
the users A, B, and C, while the organization units U2 and U3 are composed of
the users D and E, respectively. As for the applications, Ax is composed of the
permissions 1,2,3, and 4; Ay is composed of the permissions 5 and 6; while Az

is made up of permissions 7,8, and 9.
Given these pieces of information, we have to choose which one induces

the partition that most simplifies the successive role mining steps. To ease
exposition, we assume that all the subsets have the same importance. Fig-
ure 7.2(c) shows the subsets generated by partitioning according to the or-
ganization units. Notice that both minability and similarity indices are equal
to 1 for each subset, whereas the risk values are 0. Hence, the conditioned
basic and risk indices equal 1 and 0, respectively. Figure 7.2(d) shows the sub-
sets generated by partitioning according to applications and the corresponding
minability and similarity values for each subset.

When comparing the conditioned indices of the two partitions, it can be
easily seen that the organization-units based partition is preferable to the
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(a) Access configuration

M (UP) = 0.89,
S (USERS) = 0.38,
RiskM (UP) = 0.11,
RiskS (USERS) = 0.62

(b) Without partitioning
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(d) Partitioning by permission attributes

Figure 7.2 A partitioning example
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7.1 Approximation of the similarity index

1: procedure eS (USERS, k)
2: ℓ← 0
3: if |USERS| = 1 then

4: return 1
5: else

6: for i = 1 . . . k do

7: Select u1,u2 ∈ USERS : u1 6= u2 uniformly at random
8: ℓ← ℓ+ s (u1,u2)

9: end for

10: return ℓ/k

11: end if

12: end procedure

applications-based partition. Indeed, the minability conditioned by applica-
tions is 0.88, which is even worse than the not-conditioned minability. Parti-
tioning by organization units is also preferable when evaluating other condi-
tioned indices.

7.5 Fast Index Approximation

In this section, we illustrate two algorithms to efficiently compute the indices
introduced in Section 7.3.1 and Section 7.3.2.

7.5.1 Approximating the Similarity

Let us analyze the computation time required to determine the exact value
of S (USERS). In particular, according to its definition Equation (7.4), it can
be calculated in O (|PERMS| |USERS|2) time. Indeed, O (|USERS|2) time is re-
quired to identify all possible user pairs. For each pair u1, u2 ∈ USERS, the
cardinality of both the intersection and the union of their granted permissions
can be computed in O (|PERMS|). In particular, by scanning UP only once, we
can build a hashtable of permissions that each user has been granted. Notice
that |UP| ≤ |USERS| |PERMS|. Hence, checking if a permission is in perms(u1)

requires O (1). This check should be done for every permission in perms(u2),
thus requiring O (|PERMS|). Altogether, the similarity index can be calculated
in O (|PERMS| |USERS|2).
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To reduce the computation time, we propose the ǫ-approximated algorithm
listed in Algorithm 7.1. The algorithm performs uniform sampling over all
possible user pairs and then computes the average similarity among them. In
particular, in each of the k sampling (Line 6), a user pair u1, u2 is randomly
chosen (Line 7). Then, the variable ℓ is incremented by the similarity value of
this pair (Line 8). In accordance with our definition, the returned result is ℓ/k.
We now show that the algorithm is totally correct: it terminates in a finite time
and provides a correct result. First, Algorithm 7.1 always terminates because
its core is a finite loop. Then, the following theorem proves that the computed
result is probabilistically correct:

Theorem 7.2 The value eS (USERS, k) computed by a run of Algorithm 7.1 sat-

isfies:

Pr
���eS (USERS, k)− S (USERS)

��≥ ǫ
�
≤ 2exp

�
−2kǫ2

�
.

PROOF If |USERS| = 1 the proof is immediate. Let us consider the case when
|USERS|> 1. We will use the Hoeffding inequality [51] to prove this theorem.
The cited inequality states that if X1 . . . Xk are independent random variables
such that 0≤ X i ≤ 1, then

Pr

 �����
k∑

i=1

X i −E




k∑

i=1

X i



����� ≥ t

!
≤ 2exp

�
−

2t2

k

�
, (7.20)

where E[·] indicates the expected value of a random variable. In our case, X i

indicates the similarity of a randomly chosen user pair. Equation (7.20) can
be rewritten as

Pr

 �����
1

k

k∑

i=1

X i −E


1

k

k∑

i=1

X i



�����≥ ǫ

!
≤ 2exp

�
−2kǫ2

�
, (7.21)

where ǫ = t/k. Notice that the value 1
k

∑k

i=1 X i is exactly the output of Algo-
rithm 7.1. Hence, in order to prove that the algorithm gives an approximation
of S (USERS), we have to prove that E

�
1
k

∑k

i=1 X i

�
is equal to S (USERS). Be-

cause of the linearity of the expectation, the following equation holds:

E


1

k

k∑

i=1

X i


= 1

k

k∑

i=1

E[X i]. (7.22)

Since the user pair used to calculate X i is picked uniformly at random, the
corresponding similarity value is produced with a probability of 1/

�|USERS|
2

�
—

that is, one out of all the possible (unordered) pairs. Thus, the expected value
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of X i is

∀i ∈ 1 . . . k, E[X i] =
∑

u1,u2∈USERS:
u1 6=u2

s (u1, u2)�|USERS|
2

� .

The previous equation is the definition of S (USERS) as in Equation (7.4) when
|USERS|> 1, completing the proof. �

For practical applications of Algorithm 7.1, it is possible to calculate the
number of loops needed to obtain an expected error that is less than ǫ with a
probability greater than p. The following is an application of Th. 7.2:

k >−
1

2ǫ2 ln
�

1− p

2

�
. (7.23)

For instance, if we want an error ǫ < 0.05 with probability greater than 98.6%,
it is enough to choose k ≥ 993.

Finally, we shall demonstrate that the computational complexity of Algo-
rithm 7.1 is O (|UP| |PERMS|). Indeed, according to the observation made at
the beginning of this section, we can build a hashtable of permissions pos-
sessed by users in O (UP). The loop in Line 6 is repeated k times, and we
reasonably assume that k ∈ O (|UP|). Computing the similarity of two users in
each loop requires O (|PERMS|) thanks to the hashtable. Therefore, the total
complexity is O (|UP| |PERMS|), that is advantageous when compared to the
exact similarity calculation if the number of users is greater than the number
of permissions and, most of all, when the user set is large.

7.5.2 Approximating the Minability

Here we will show that the computational complexity of calculating M (UP) is
O (|UP|3). In the case of a large-size organization, computation may be unfeasi-
ble since UP can count hundreds of thousands of user-permission assignments.
For this reason, we propose an approximation algorithm for M (UP) that has
a computational complexity of O (k |UP|).

First, let us consider the complexity of computing the exact value ofM (UP).
In Equation (7.11), the first sum is over all the user-permission assignments
ω ∈ UP, while the second one is over all the triples 〈ω1,ω2〉 ∈ triples(ω)—
that, for a given ω, are (|UP|−1)(|UP|−2) in the worst case. Each addendum
of the sum corresponds to checking whether the selected triple is also a trian-
gle. It is a triangle if the two outer nodes ω1 = 〈u, p〉 and ω2 = 〈u

′, p′〉 of the
selected triple induce a biclique. This occurs if u = u′, or p = p′, or other two
edges ω3 = 〈u, p′〉 and ω4 = 〈u

′, p〉 exist in UP. It is possible to check if u = u′



 Chapter 7. The Risk of Unmanageable Roles

7.2 Approximation of the minability index

1: procedure fM (UP, k)
2: ℓ← 0
3: for i = 1 . . . k do

4: Select ω ∈ UP uniformly at random
5: if triples(ω) 6= ; then

6: Select 〈ω1,ω2〉 ∈ triples(ω) uniformly at random
7: if ω1 ∈ B(ω2) then

8: ℓ← ℓ+ 1
9: end if

10: else

11: ℓ← ℓ+ 1
12: end if

13: end for

14: return ℓ/k

15: end procedure

or p = p′ in a constant time. Instead, the search for the pair ω3,ω4 can be
executed in O (1) after having built a hashtable of all possible user-permission
assignments in O (|UP|). The total computational cost is thus O (|UP|3).

To reduce the computation time, we propose the ǫ-approximated algorithm
listed in Algorithm 7.2, that is inspired by [85] but adapted to the bipartite
graph case. In each of the k steps, a user-permission assignmentω is randomly
chosen (Line 4). Then, two random user-permission pairs among those that
induce a biclique together with ω (if any) are selected (Line 6). If these two
user-permission assignments induce a biclique, the counter ℓ is incremented
by 1 since we have found a triple that is also a triangle (Line 7). The ratio of
the number of found triangles ℓ to the number of sampled triples k (Line 14)
represents the approximated minability value.

In the following, we show that the algorithm terminates and returns a
correct result. First, notice that the core of Algorithm 7.2 is a finite loop, thus
it always outputs a result in a finite amount of time. The following theorem
proves that this answer is probabilistically correct:

Theorem 7.3 The value fM (UP, k) computed by a run of Algorithm 7.2 satisfies:

Pr
���fM (UP, k)−M (UP)

��≥ ǫ
�
≤ 2exp

�
−2kǫ2

�
.

PROOF We follow the same proof schema of Th. 7.2. Let X1 . . . Xk be inde-
pendent random variables, where X i = 1 if, for a randomly selected tuple
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〈ω,ω1,ω2〉 ⊆ UP×UP×UP such that 〈ω1,ω2〉 ∈ triples(ω), eitherω1 ∈ B(ω2)

or triples(ω) = ;. Otherwise, X i = 0. In this case,Equation (7.21) still holds
and, in particular, 1

k

∑k

i=1 X i is exactly the output of Algorithm 7.2. Hence,
in order to prove that the algorithm gives an approximation of M (UP), we
have to prove that E

�
1
k

∑k

i=1 X i

�
is equal to M (UP). Because of the linear-

ity of the expectation,Equation (7.22) still holds. To calculate X i we first
pick a user-permission relationship uniformly at random, then we pick two
user-permission relationships that make up a triple. Thus, the corresponding
minability value is produced with a probability of 1/(|UP| |triples(ω)|). Con-
sequently, the expected value of X i is

∀i ∈ 1 . . . k, E[X i] =
∑

ω∈UP

∑

〈ω1,ω2〉∈triples(ω)

Y (ω,ω1,ω2)

|UP| |triples(ω)|
+

∑

ω∈UP:triples(ω)=;

1

|UP|
.

The previous equation is equivalent to the definition of M (UP) as in Equa-
tion (7.11), completing the proof. �

In the same way as the similarity index, it is possible to calculate the num-
ber of times it takes the loop in Algorithm 7.2 to obtain an expected error
which is less than ǫ with a probability greater than p. By analyzing Th. 7.3 it
can be seen that the same result Equation (7.23) holds for this case.

As for computational complexity, we will now show that Algorithm 7.2 re-
quires a time O (k |UP|) to run. The loop in Line 3 is repeated k times. In
each loop, a random user-permission relationship ω ∈ UP can be selected in
constant time (Line 4). Let us consider ω= 〈u, p〉. In order to randomly select
a pair 〈ω1,ω2〉 that belongs to triples(ω), we have to calculate the set B(ω),
then every possible pair of this set is in triples(ω) (Line 5). Equation (7.5)
states that B(ω) =

�
〈u′, p′〉 ∈ UP | 〈u, p′〉, 〈u′, p〉 ∈ UP ∧ 〈u, p〉 6= 〈u′, p′〉

	
.

The number of elements of B(ω) is at most |UP| − 1, and each element can
be found in O (1) after having built a hashtable of all possible user-permission
assignments in O (|UP|). Then, the computational cost incurred to identify a
biclique is at most O (|UP|). Line 7 can be executed in O (1) since it represents
a search in the hashtable to verify the conditions in Equation (7.5). Therefore,
the computational complexity of Algorithm 7.2 is O (k |UP|), which greatly im-
proves over the time required to calculate the exact value M (UP). This im-
provement is traded-off with a slight (tunable) decrease in the precision of the
computed value fM (UP, k).

7.5.3 Approximation of Conditioned Indices

We now demonstrate that the amount of approximation introduced by the pro-
posed randomized algorithms, when applied to the calculation of conditioned
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indices, is comparable to the approximation of the non-conditioned indices.

Theorem 7.4 Let SΩ(USERS), RiskSΩ(USERS,Ω), M Ω(UP),
and RiskM Ω(UP,Ω) be the exact indices conditioned by a given partition Ω ac-

cording to definitions 7.7, 7.8, 7.9, and 7.10, respectively. Let eSΩ(USERS, k),
ÞRiskSΩ(USERS,Ω, k), fM Ω(UP, k), and ÞRiskM Ω(UP,Ω, k) be the corresponding ap-

proximated values computed by adopting Algorithm 7.1 and Algorithm 7.2 for

each subset Ωi ∈ Ω. Then:

Pr
���eSΩ(USERS, k)− SΩ(USERS)

�� ≥ ǫ
�
≤ 2exp

�
−2kǫ2

�

Pr
����ÞRiskSΩ(USERS,Ω, k)−RiskSΩ(USERS,Ω)

���≥ ǫ
�
≤ 2exp

�
−2kǫ2

�

Pr
���fM Ω(UP, k)−M Ω(UP)

�� ≥ ǫ
�
≤ 2exp

�
−2kǫ2

�

Pr
����ÞRiskM Ω(UP,Ω, k)−RiskM Ω(UP,Ω)

���≥ ǫ
�
≤ 2exp

�
−2kǫ2

�
.

PROOF We first demonstrate that the theorem holds true for the approximation
introduced by the given algorithms for the conditioned minability. Let ǫi be
the approximation for each subset Ωi, namely:

fM (Ωi, k) =M (Ωi) + ǫi

The approximated conditioned value will thus be:

fM Ω(UP, k) =

∑fM (Ωi, k)
��Ωi

��
∑��Ωi

�� =M Ω(UP) +

∑
ǫi

��Ωi

��
∑��Ωi

�� (7.24)

According to Th. 7.3, we have that
��ǫi

��≥ ǫ with probability less than 2exp
�
−

2kǫ2�, hence
��∑ǫi |Ωi|/

∑
|Ωi|
��≥ ǫ with probability less than 2exp

�
−2kǫ2�.

Put another way, Pr
��� fM Ω(UP, k) − M Ω(UP)

�� ≥ ǫ� ≤ 2exp
�
− 2kǫ2�. Thus

completing the proof for the approximated conditioned minability.
The proof for other conditioned indices can simply be obtained by replac-

ing Equation (7.24) with the corresponding index definitions. �

7.6 Analysis of a Real Case

To demonstrate the usefulness of the proposed indices, we show how they
have been applied to a real case. Our case study has been carried out on a
large private organization. We examined a representative organization branch
that contained 1,363 users with 5,319 granted permissions, resulting in a total
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of 84,201 user-permission assignments. To apply our approach we used two
information sources: the organization unit (OU) chart, and a categorization of
the users based on their job titles. In order to protect organization privacy, all
names reported in this chapter for organization units and job titles are slightly
different from the original ones. We calculated all the indices described in
the previous sections by adopting Algorithm 7.1 and Algorithm 7.2 with k =

5, 000, hence obtaining an error of less than 0.02 with a probability higher
than 96%.

The remainder of this section is organized as follows. In Section 7.6.1 we
will show two examples that have different values for minability and similar-
ity, thus making it possible to better understand the meaning of having high
or low values associated to these indices. In turn, in Section 7.6.2 we will
apply our methodology in order to select the best available top-down infor-
mation to decompose the problem. To further demonstrate the reliability of
the methodology, we borrow from biology the methodology of introducing a
control test. That is, we try to categorize users according to the first character
of their surname. Since this categorization does not reflect any access control
logic, we will analytically show that—as expected—it never helps the mining
phase. Finally, in Section 7.6.3 we will use the proposed methodology in con-
junction with the organizational unit chart to “drill-down” into smaller role
mining problems.

7.6.1 High and Low Values of Minability and Similarity

Figure 7.3 shows the user-permission assignments for two distinct sets of users
that belong to two chosen branches of the analyzed organization. The two OUs
are comparable in terms of number of users, permissions, and user-permission
assignments: Figure 7.3(a) is related to 54 users who possess 285 permissions
through 2,379 user-permission assignments; Figure 7.3(b) represents 48 users
who possess 299 permissions through 2,081 user-permission assignments. As-
signments are depicted in a matrix form, where each row represents a user,
each column represents a permission, and a black cell indicates a user with
a given permission granted. By using the role mining algorithm described in
Chapter 4, we computed all possible maximal equivalent roles. Then, rows
and columns have been sorted so that roles with the largest number of users
and permissions appear as “big” areas of contiguous painted cells.

Figure 7.3(a) is an example of high values for minability (i.e., 0.84) and
similarity (i.e., 0.43). It visually demonstrates how, in this case, it is easy to
identify candidate roles—few groups of contiguous cells that cover most of the
assignments can be easily identified via a visual inspection. The role identifica-
tion task clearly requires more effort in Figure 7.3(b), in line with lower values
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(a) Example of high similarity (0.43) and high minability (0.84)

(b) Example of low similarity (0.21) and low minability (0.66)
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(c) Local minabilities for Figure (a)
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(d) Local minabilities for Figure (b)
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(f) MERs for Figure (b)

Figure 7.3 Examples of different values for similarity and minability. Figures (a) and (b) depict
user-permission assignments in a matrix form, where each black cell indicates a user
(row) that has a certain permission (column) been granted. Figures (e) and (f) show
the number of MERs which cover each user-permission assignment, sorted by the
descending local minability values reported in (c) and (d).
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for minability (0.66) and similarity (0.21). Indeed, it is impossible to define
an organizational role composed of as many users and permissions as in the
previous case, and it is harder to identify roles in general. This intuition is also
supported by Figure 7.3(e) and Figure 7.3(f). In these pictures we show the
number of possible MERs that can be used to manage each user-permission
assignment of Figure 7.3(a) and Figure 7.3(b), respectively. Assignments are
sorted by descending local minabilities, and the corresponding minability val-
ues are reported in Figure 7.3(c) and Figure 7.3(d). In the first case, the
number of assignments with a local minability close to 1 is higher than in the
second case. This is reflected by the number of MERs that cover each user-
permission assignment, that is lower in the first case. Put another way, the
ambiguity of selecting the role to manage each user-permission assignment
is lower in the first example. This is in line with Th. 7.1, which states that
when the local minability of an assignment is equal to 1, there is only one
MER to choose. The more the minability is far from 1, the more the number of
MERs that can be used to manage that assignment increases, indicating that
the identification of the “best” role-set requires more effort and, consequently,
it is more error prone.

7.6.2 Selection of the Best Business Information

In this section we summarize an implementation of our divide-and-conquer
approach. As anticipated before, we had at our disposal two top-down pieces
of information—OU and job titles—, and we wanted to choose the one that
mostly simplifies the subsequent mining steps. As a control, we also introduced
a third “artificial” information without any relation to the business—the first
letter of user’s surname. We generated three groups of users: A–G, H–P, and
Q–Z. Obviously, we did not expect that this information would help the iden-
tification of roles. Indeed, experimental results confirmed our expectations, as
shown later on.

The information about job titles was only available inside OU branches at
the second level of the OU tree. Therefore, we first decomposed the prob-
lem by using the first OU level. Table 7.1 sums up the results for one of
the first level OUs, namely the branch Operations. As required by Def. 7.8
and Def. 7.10, for both OUs and job titles we estimated the impact of harm-
ful administration actions for each potential group of users—due to the large
number of involved job titles, in Table 7.2 we only report the impact classifi-
cation for OUs. Each group of users had been classified as “Low”, “Medium”,
or “High” impact. Adopting a three-point scale made it easier to reach consen-
sus among administrators. The values assigned to those impact classes were
conventionally set by administrators to 1, 5, and 10, respectively.
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Table 7.1 Conditioned indices for the sample organization branch

Organization Unit Index Type Similarity Minability
Similarity-

Based Risk
Minability-

Based Risk  Roles  msec 
Operations

Manufacturing
Not Conditioned 0.08 0.68 4.59 1.58 10,001      242

Conditioned by Alphabetical Groups 0.08 0.74 7.30 1.70 4,422        134

Conditioned by Organization Units 0.10 0.78 4.40 0.97 4,424        125

Conditioned by Job Titles 0.29                  0.89                  3.23 0.53 918           59             

Product Development
Not Conditioned 0.20 0.82 4.01 0.92 4,007        150

Conditioned by Alphabetical Groups 0.20 0.84 6.24 1.11 2,511        73

Conditioned by Organization Units 0.37 0.86 4.83 1.05 2,080        76

Conditioned by Job Titles 0.38                  0.90                  5.63 0.64 818           36             

Material Management
Not Conditioned 0.28 0.76 0.72 0.24 36,620      276

Conditioned by Alphabetical Groups 0.28 0.80 5.58 1.28 3,504        48

Conditioned by Organization Units 0.33 0.85 0.69 0.17 1,224        25

Conditioned by Job Titles 0.28                  0.82                  0.72 0.21 21,614      105           

Sales
Not Conditioned 0.07 0.63 4.64 1.85 61,933      471

Conditioned by Alphabetical Groups 0.08 0.72 8.15 2.23 11,659      81

Conditioned by Organization Units 0.11 0.67 1.63 1.39 50,314      301

Conditioned by Job Titles 0.11                  0.80                  4.21 0.73 1,757        30             

Quality
Not Conditioned 0.08 0.89 4.61 0.57 40             2

Conditioned by Alphabetical Groups 0.08 0.94 8.35 0.58 36             1

Conditioned by Organization Units 0.12 0.94 5.92 0.45 24             2

Conditioned by Job Titles 0.21                  0.96                  3.61 0.22 25             1               

Logistics
Not Conditioned 0.24 0.71 3.78 1.43 1,677        19

Conditioned by Alphabetical Groups 0.24 0.80 6.47 1.60 642           13

Conditioned by Organization Units 0.33 0.80 3.35 0.87 854           16

Conditioned by Job Titles 0.64 0.83 0.59 0.45 357           12

For each index, the best values among all available partitions is highlighted
in gray in Table 7.1. First, notice that alphabetical groups are never preferred,
since they do not capture any pattern or commonality among users within
access control data. For the other pieces of information, different cases can be
identified:

◮ Within Manufacturing, partitioning by job titles is the best choice ac-
cording to all indices. This means that job title is a good user’s attribute
to use when defining administration rules for the assignment of roles
with users belonging to Manufacturing.

◮ Even though the job title concept is closer to the “role” concept, parti-
tioning by job titles is not always the best choice. Material Management
shows a case where the best partition is based on OUs. In this case, this is
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justified by the fact that the majority of the users have the same job title.
Hence, partitioning does not actually improve the mining complexity.

◮ The unit Sales shows a configuration where the minability and similarity
indices suggest to partition by job title, but the risk indices promote the
OU information. This happens because the unit Logistics contains many
users that have a medium impact, and such users are not as similar
among them as those having job titles with medium impact.

◮ Partitioning is not always advantageous. For instance, all users within
the unit Product Development have some commonalities in their per-
missions that will be lost when decomposing—as a matter of fact, users
within Marketing have a medium impact and are not similar among
them. Thus, if the role engineering objective is to find organizational
roles for Product Development, it is better to analyze the unit as a whole.

◮ As for the mining complexity, the number of maximal roles elicited by the
role mining algorithm described in Chapter 4 is in line with the minabil-
ity and similarity indices. Few roles also means less elaboration time,
thus resulting in faster algorithm runs.

The previous examples also demonstrate that, in general, the choice of the best
index to use (similarity, minability, similarity-based risk index, or minability-
based risk index) depends on the main objective of the role engineering task.

7.6.3 Drill Down

We now show an application of the proposed methodology when hierarchical
information is available. Suppose that the only available top-down informa-
tion is the organizational unit chart. Table 7.2 shows index values obtained
by iteratively applying a decomposition based on OUs for the unit Operations.
First, notice that partitioning users according to the second level of the OU tree
raised the values of both indices for most OUs. For instance, Product Devel-
opment, which holds approximately one third of the branch Operations, has a
minability of 0.82 and a similarity of 0.20. Conversely, Manufacturing still has
low values for those indices. This means that it would be easier to find optimal
organizational and functional roles for Product Development rather than for
Manufacturing. Moreover, the average increase of minability is reflected by a
lower number of possible MERs, dropped down from 219,086 to 114,278.

Another observation is that partitioning always reduces the number of
users, permissions, and user-permission assignments to analyze, but the values
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Table 7.2 Further decomposition of the sample organization branch

Users Permissions

 User-Perms

Assignments Impact Similarity Minability

Similarity-

Based Risk

Minability-

Based Risk Roles msec

Operations 946                  3,647               56,905             Medium 0.07                 0.65                 4.63 1.73 219,086 3,637

Manufacturing 379                  1,810               20,400             Medium 0.08                 0.68                 4.59 1.58 10,001 242

Parent 1                      64                    64 Low 1.00 1.00 0.00 0.00 1 0

Technology 49                    323                  2,342 Low 0.35 0.92 0.65 0.08 127 6

Control 26                    577                  2,396 Low 0.30 0.81 0.70 0.19 254 7

Test & Quality 8                      226                  301 Low 0.09 0.92 0.91 0.08 17 1

Production 288                  1,452               15,226 Medium 0.09 0.75 4.54 1.26 4,013 111

Plants 7                      39                    71                    Low 0.12                 0.83                 0.88 0.17 12 0

Product Development 319                  1,341               14,222             Medium 0.20                 0.82                 4.01 0.92 4,007 150

Parent 2                      32                    33 Low 0.03 0.98 0.97 0.02 3 0

Engineering 77                    559                  2,898 Medium 0.36 0.82 3.22 0.90 564 16

Design #1 88                    361                  3,275 Medium 0.41 0.84 2.94 0.80 10 1

Design #2 121                  739                  6,965 High 0.35 0.87 6.48 1.34 232 10

Design #3 6                      115                  214 Medium 0.14 0.93 4.28 0.36 1,205 47

Marketing 17                    404                  663 Medium 0.08 0.91 4.58 0.45 57 2

Innovation 8                      92                    174                  Medium 0.23                 0.97                 3.85 0.16 9 0

Material Management 58                    1,038               8,670               Low 0.28                 0.76                 0.72 0.24 36,620 276

Parent 3                      286                  368 Low 0.17 0.95 0.83 0.05 6 1

Purchase Dept #1 23                    549                  3,043 Low 0.27 0.80 0.73 0.20 745 10

Purchase Dept #2 13                    407                  2,136 Low 0.49 0.89 0.51 0.11 382 6

Purchase Dept #3 7                      406                  1,054 Low 0.29 0.77 0.71 0.23 56 3

Purchase Dept #4 5                      311                  972 Low 0.69 0.91 0.31 0.09 15 2

Saving Control 3                      203                  303 Medium 0.32 0.86 3.40 0.70 7 1

Analysis & Reporting 4                      376                  794                  Low 0.35                 0.87                 0.65 0.13 13 2

Sales 100                  1,531               9,483               Medium 0.07                 0.63                 4.64 1.85 61,933 471

Parent 1                      68                    68 Low 1.00 1.00 0.00 0.00 1 0

Logistics 36                    1,142               6,836 Medium 0.24 0.63 3.78 1.84 49,256 279

Support 63                    795                  2,579               Low 0.07                 0.76                 0.93 0.24 1,057 22

Quality 16                    272                  697                  Medium 0.08                 0.89                 4.61 0.57 40 2

Parent 1                      20                    20 Low 1.00 1.00 0.00 0.00 1 0

Certification 2                      40                    46 Low 0.15 0.92 0.85 0.08 3 0

Audit 6                      188                  352 High 0.20 0.94 8.00 0.60 7 1

Quality Center 7                      151                  279                  Medium 0.07                 0.93                 4.67 0.36 13 1

Logistics 73                    1,078               3,432               Medium 0.24                 0.71                 3.78 1.43 1,677 19

Parent 0                      0                      0 Low - - 1.00 1.00 0 0

Methodologies 2                      350                  549 Low 0.57 0.92 0.43 0.08 3 1

Planning 7                      311                  682 Low 0.41 0.88 0.59 0.12 38 2

Distribution #1 62                    464                  1,780 Medium 0.32 0.70 3.38 1.52 810 12

Distribution #2 2                      351                  421 Medium 0.20 0.93 4.00 0.37 3 1

Organization Unit

of minability and the similarity do not rise proportionally. For example, Logis-
tics has a minability of 0.71, but his child Distribution #1 has a minability of
0.70, indicating that the “mess” of Logistics is likely concentrated in Distribu-
tion #1, as confirmed by the number of MERs. Further, Product Development
has much more users than Logistics, but it also has a higher minability. More-
over, high values for similarity imply high minability as well, but the inverse
does not hold. If similarity is close to 1, then all users possess the same per-
missions; thus, minability is also close to 1. The opposite is false. For example,
Distribution #2 shows a high minability (0.93) and a low similarity (0.20).

There are other examples of different trends for minability and similar-
ity when compared to the number of users or permissions. For instance, let
us consider Marketing and Purchase Dept #2 which have similar number
of users and permissions. In the first case, we have 0.91 for minability and
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0.08 for similarity, while in the second case we have 0.89 for minability (less
than the previous case) and 0.49 for similarity (more than the previous case).
Thus, this confirms that there is no direct relation between these two indices,
but both are helpful to address role elicitation by highlighting two different
aspects of the user-permission set. Indeed, if the objective of role engineers is
to elicit organizational roles, the similarity helps to identify the OUs where an
organizational role that covers a relevant number of user-permission assign-
ment exists. This happens, for instance, for Purchase Dept #4 because of the
similarity of 0.69. On the other hand, if the objective of role engineers is to
find functional roles, they have to consider the minability index. For example,
the sub-branch Innovation is likely to be an easily solvable sub-problem due to
a minability of 0.97, as confirmed by the low number of possible MERs.

As for risk indices, Table 7.2 highlights the behavior with respect to minabil-
ity and similarity. For example, although the unit Audit has higher values for
minability and similarity than the parent unit Quality, the high impact of the
tasks performed by involved users compels a careful role design. According
to this example, decomposing is a possible way to highlight data that requires
particular attention from a risk management perspective. Another aspect to
take into account is the required granularity for the partition. The most sen-
sible approach is probably to stop decomposing when the risk indices do not
increase or even increase slightly. For example, as shown in Table 7.1, by par-
titioning Product Development according to its sub-units, the similarity-based
risk index increases from 4.01 to 4.83, while the minability-based risk index
grows from 0,92 to 1,05, reducing the gain in performing sub-unit driven anal-
ysis.

7.7 Ranking Users and Permissions

In this chapter, we introduce a risk analysis framework that allows to evalu-
ate the risk incurred when managing users and permissions through RBAC. A
distinguishing feature of our approach is that it can be used without having
already defined roles, namely in a pre-engineering phase. By evaluating the
risk level of a single user or a single permission, we make it possible to pro-
duce a ranking of users and permissions, highlighting those that most deviate
from others in comparison to available user-permission relationships. Conse-
quently, we are able to identify those users and permissions that represent the
most (likely) dangerous and error prone ones from an administration point of
view. Having this ranking available during the role engineering phase allows
data analysts and role engineers to highlight users and permissions that are
more prone to error and misuse when designed roles will be operating.
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Definition 7.11 (Role Weight) Given a role r ∈ ROLES, let Ur and Pr be the
sets of users and permissions associated to r, that is Ur = {u ∈ USERS | 〈u, r〉 ∈

UA} and Pr = {p ∈ PERMS | 〈p, r〉 ∈ PA}. We indicate with w : ROLES→ N the
weight function of roles, defined as w(r) = |Ur | × |Pr |.

Definition 7.12 (t -stability) Let ΣUP be the set of all RBAC states that cover
the user-permission assignments of UP, that is all 〈ROLES, UA, PA〉 ∈ ΣUP such
that ∀〈u, p〉 ∈ UP =⇒ ∃r ∈ ROLES : 〈u, r〉 ∈ UA, 〈p, r〉 ∈ PA. Given 〈u, p〉 ∈

UP, let R : UP→ 2(
⋃
〈ROLES,UA,PA〉∈ΣUP

ROLES) be the function that identifies the roles
which could be used to manage 〈u, p〉, that is:

R (〈u, p〉) =
⋃
〈ROLES,UA,PA〉∈ΣUP

{r ∈ ROLES | 〈u, r〉 ∈ UA, 〈p, r〉 ∈ PA}.

We say that 〈u, p〉 is t-stable if it can be managed with at least one role r with
weight w(r) ≥ t , namely ∃r ∈ R (〈u, p〉) : w(r) ≥ t .

If an assignment 〈u, p〉 ∈ UP is t-stable, it is also (t − i)-stable for each i =

1, . . . , t . We are thus interested in the maximal stability of a given assignment,
namely the maximum t that verifies the t-stability condition:

Definition 7.13 (Maximal Stability) The maximal stability of an assignment
〈u, p〉 ∈ UP is the maximum t such that the assignment is t-stable. It is identi-
fied by the function t∗ : UP→ N such that t∗(〈u, p〉) =maxr∈R (〈u,p〉)w(r).

The rational behind the introduction of the stability concept is that if an as-
signment can only be managed by roles with a limited weight, it represents an
outlier. Indeed, only few users and permissions are involved in a role together
with that assignment. System administrators are willing to manage roles with
high weights—that is, which involve many users and many permissions—for
several reasons. First, the benefits of using RBAC increase because there are
fewer user-role and role-permission relationships to manage. Second, these
roles represent relevant portions of the whole access control system of the
company. Because of this relevance, they have a greater meaning for system
administrators. Conversely, when an assignment cannot be managed with a
high-weight role, it represents a portion of data which appears to be inconsis-
tent with the remainder of that dataset. It might not be an error, but from the
system administrator point of view, it is riskier than others. In other words, the
risk of making mistakes when managing roles with a limited weight is higher:
they are roles that are not used frequently, and are in some way obscure to ad-
ministrators. We now introduce another function that will be used to evaluate
the risk incurred when managing a single assignment:
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Definition 7.14 The function N : UP→ 2UP indicates the assignments of UP
which can be managed together with the given assignment, namely:

N (〈u, p〉) =
�
〈u′, p′〉 ∈ UP | 〈u, p′〉, 〈u′, p〉 ∈ UP, 〈u, p〉 6= 〈u′, p′〉

	
.

The following Lemma relates N (〈u, p〉) with the t-stability concept:

Lemma 7.3 Given an assignment ω = 〈u, p〉 ∈ UP, then |N (ω)| is an upper

bound for t∗(ω).

PROOF By definition, all the single assignments that could be managed in the
same role together with 〈u, p〉 belongs to N (ω). Hence, a role that contains
more than |N (ω)| assignments cannot exist, concluding the proof. �

In Chapter 6 we proposed a practical approach to calculate |N (ω)| for each
ω ∈ UP. We described two algorithms: a deterministic algorithm that is able
to calculate the exact value for |N (ω)| in O (|UP|2) time, while a randomized
algorithm offers an ǫ-approximated result with a computational complexity of
O (k |UP|), where k is a parameter that can be arbitrarily chosen. Therefore,
the joint usage of Lemma 7.3 and the algorithms described in Chapter 6 makes
it possible to practically find an upper-bound for the maximal stability of each
assignment belonging to UP. In the next section, we will show how to lever-
age this information to assign a risk level to a particular user or a particular
permission.

We will adapt the risk model of Section 7.2.2. Further, we will use the
t-stability concept to give to each user-permission assignment a probability
of occurrence for each risk factor. In particular, given the assignment ω =
〈u, p〉 ∈ UP, we define the risk probability of ω as:

Definition 7.15 (Risk Probability of an Assignment) Given an assignment
〈u, p〉 ∈ UP, the risk probability of 〈u, p〉 is a function ass_risk : UP → [0, 1]
such that:

ass_risk(〈u, p〉) = 1−
t∗(〈u, p〉)

|UP|
.

The rationale behind the risk probability function is the following: The
more t∗(〈u, p〉) is close to |UP|, the more the risk level of the assignment ω
is close to 0. Indeed, if an assignment can be managed by a single role that
covers almost all assignments in UP, the user-permission assignment reflects
a permission granted to the majority of the users in the dataset. Note that
we are not assuming the presence of such a role among those used in the
RBAC configuration, but we are only saying that such a role can exist. This
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consideration allows us to use our risk model in a pre-mining phase, when
roles have not yet been decided on.

According to Lemma 7.3, we can quickly estimate an upper bound for
t∗(〈u, p〉), and therefore a lower bound for the risk function:

Lemma 7.4 (Lower-Bound for Risk Probability of an Assignment) Given

an assignment 〈u, p〉 ∈ UP, then

ass_risk(〈u, p〉)≤ 1−

��N (〈u, p〉)
��

|UP|
.

PROOF The proof immediately follows from Definition 7.15 and Lemma 7.3.�

By leveraging the above concepts, we can evaluate the risk probability for
users and permissions in the following way:

Definition 7.16 (Risk Probability of a User) Given an user u ∈ USERS, the
risk probability of u is a function user_risk: USERS→ [0, 1] defined as:

user_risk(u) =

È∑
p∈perms(u) ass_risk2(〈u, p〉)

|perms(u)|
. (7.25)

Definition 7.17 (Risk Probability of a Permission) Given a permission p ∈

PERMS, the risk probability of p is a function perm_risk: PERMS → [0, 1]
defined as:

perm_risk(p) =

s∑
u∈users(p) ass_risk2(〈u, p〉)

��users(p)
�� . (7.26)

By considering the root mean square instead of the arithmetic mean we
give more importance to high risk values.

7.7.1 Experimental Results

We now show an application of our risk framework to a set of real data. Our
case study has been carried out on a large private organization. Due to space
limitation, we only report on a representative organization branch that con-
tains 17 users and 72 permissions, counting 560 assignments.

Figure 7.4(a) depicts user-permission assignments in a matrix form, where
each row represents a user, each column represents a permission, and a black
cell indicates a user with a granted permission. Figure 7.4(b) depicts the same
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(a) Input Data

(b) Risk probabilities

Figure 7.4 Risk probability of users and permissions in UP

access control configuration, but the assignments colors indicate the corre-
sponding risk probabilities. In particular, the cell color goes from red to white:
Red means that the assignment has a high risk level when managed through
RBAC; white means that it has a low risk level. Histograms on columns and
rows borders respectively report the risk probability of managing permissions
and users. Note that there are 6 users that are likely to be risky, mainly be-
cause they have a set of granted permissions that the majority of the other
users do not have. This set is easily identifiable by looking at the permission
histograms: Almost all the first half of the permissions are risky to manage.
It is also possible to note that among the high risk users, two users have a
slightly minor risk level compared to the other four. Indeed, these two users
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(a) Input data

(b) Risk probabilities

Figure 7.5 Low risk users and permissions

have similar permissions granted, and this is recognized as a kind of pattern
within the data that reduces the overall risk.

Figure 7.5(a) depicts another access control configuration relative to a dif-
ferent branch of the same organization, while Figure 7.5(b) depicts the result
of our risk function applied to this branch. Here, the risk levels of all the users
are lower than 0.30. It means that, when adopting RBAC, the risk level is gen-
erally lower than in the previous example. In other words, role administration
should make less mistakes in this second branch than in the first one.
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7.8 Final Remarks

This chapter describes a methodology that helps role engineers leverage busi-
ness information during the role mining process. In particular, we demonstrate
that by dividing data to analyze into smaller, more homogeneous subsets, it
practically leads to more meaningful roles from a business perspective, hence
decreasing the risk to make errors in managing them. To drive this process,
two indices, referred to as minability and similarity, have been introduced.
These indices are used to measure the expected complexity of analyzing the
outcome of bottom-up approaches. In particular, we have shown how to apply
such indices: to predict the effort needed to execute a role mining task over a
set of user-permission assignments, thus being able to choose when to split a
problem in several sub-problems; and, to select the top-down information that
most simplifies the subsequent mining steps when more top-down information
is available to role engineers. Leveraging these indices allows to identify the
decomposition that increases business meaning in elicited roles in subsequent
role mining steps, thus simplifying the analysis. We also introduced two fast
probabilistic algorithms to efficiently compute such indices, making them also
suitable for big organization with hundreds of thousands of users and permis-
sions. The quality of the indices is also formally assured.

Several examples, developed on real data, illustrate how to apply the tools
that implement the proposed methodology, as well as its practical implications.
Achieved results support the quality and the viability of the proposal.

The risk management framework introduced in this chapter allows role
engineers and system administrators of an RBAC system to highlight those
users and permissions that are more prone to error and misuse when roles
are operating. A distinguishing feature of our proposal, other than that of
being rooted on sound theory, is that role definition is not an input parameter
for the risk analysis to be performed; indeed, our model only needs to know
the access control configuration of the organization, optionally enriched with
other business information. Finally, it has been applied on a real case, and
results obtained showed the usefulness and viability of the proposal.
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Conclusion

T his chapter concludes the thesis by offering some final remarks on the
contributions first summarized in Chapter 1 and then detailed in the
subsequent chapters 3–7. We also point out some future research di-

rections of the candidate.

8.1 Remarks on Contributions

In this thesis we addressed a key challenge of RBAC-oriented solutions: devis-
ing a common set of roles that meet organization’s requirements. We demon-
strated that all the solutions to this problem should be characterized by two
main aspects. First, we pointed out the importance of basing the role-definition
process on a complete analysis of how an organization functions. A wide range
of users, including IT administrators, business-line managers, and human re-
sources, should feed this process. Most important, the alignment between
business and IT is of utmost importance. Second, we demonstrated that the
workload of security analysts and role engineers can largely be alleviated via
automated approaches to role engineering.

Starting from the list of issues drawn up in Chapter 1, the following addi-
tional observations can be made:

Meaning of Roles By introducing the administration cost concept, Chapter 3
represented a first step towards the automation of deriving optimal role-
to-permission and role-to-user assignments. Further, Chapter 5 described
a first attempt to measure the business meaning of roles. Hence, the
joint usage of such methodologies definitely help role engineers deliver
meaningful and administrable role sets.

Algorithm Performance We tackled performance issues from several view-


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points. In Chapter 4 we first described how to remove redundancy
within user-permission assignments, thus leading to improved mining
algorithm performances. Then, we described how to estimate the min-
imum number of roles identifiable in the given dataset, hence allowing
for the implementation of fast, approximating role mining algorithms.
Finally, in Chapter 5 we introduced a divide-and-conquer approach that,
by dividing the dataset in smaller parts, allows for reduced running time
of mining algorithms.

Noise Within Data We demonstrated that the automatic recognition of ex-
ceptional access control data (i.e., exceptionally or erroneously granted
or denied entitlements) can greatly simplify the elicitation of meaningful
roles. In particular, we proposed the concept of “unstable” assignments
in Chapter 6, showing that certain user’s entitlements can be discarded
from the analysis when they do not benefit from adopting RBAC. Fur-
thermore, we showed that imputing “missing” assignments can also be
beneficial, that is granting permissions to users without increasing the
risk of unauthorized accesses.

Problem Complexity We accomplished a reduction of the role mining prob-
lem complexity in Chapter 6 through two different approaches: on the
one hand, we offered a means to isolate the unavoidable noise within
data; on the other hand, we described how to decompose a complex
problem in simpler sub-problems.

Risk of Unmanageable Roles In Chapter 7 we offered a ranking of users and
permissions to prioritize them according to their estimated risk level.
This way, we can pay more attention to users and permission that likely
lead to administration problems. Additionally, we proposed an adap-
tation of a traditional risk assessment framework to the access control
case. To make this practicable, we described how to evaluate the likeli-
hood that elicited roles would be misused.

To conclude, this thesis provided several fundamental results for role en-
gineering and, in particular, for role mining. Several examples, developed on
both synthetic and real data, support our claims.

8.2 Future Work

Possible extensions of the current work are:
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◮ As for the cost function concept, we are currently striving to identify
some “rule of thumb” to define cost functions as close as possible to the
actual needs of the organization. Indeed, it is still not clear what is
the best way to define such a function. We are also investigating other
business models that can be used to estimate the business meaning of
elicited roles.

◮ In this thesis we proposed an heuristic that leverages the cost concept to
identify a sub-optimal role set. Nonetheless, other heuristic or approx-
imation algorithms can be implemented to offer better solutions to the
problem of minimizing the cost of deploying RBAC configurations. We
also demonstrated that there is a sharp concentration of the number of
elicited roles around the expected value. Hence, we could leverage this
theoretical result to implement approximation algorithms.

◮ The divide-and-conquer approach to role mining is limited to the iden-
tification of subsets of users/permissions that share the same values for
a single attribute. More complex attribute combinations can be thought
in order to identify the partition that best “fit” the actual organization’s
way to work.

◮ As for the identification of stable user-permission assignments, it is worth
investigating how to choose an optimal value for the threshold that is
required to decide which assignments are stable and which are not. An
analogous threshold are used for missing values. As a matter of fact,
although not expensive to tune, this parameter can hamper the applica-
bility of the proposed methodologies. If an optimal value were automat-
ically identified, role mining algorithm could directly be applied without
any preventive human action, hence putting analysts out of the loop.

The aforementioned extensions strengthen the contributions of this thesis by
paving the way to several research directions.
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