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Abstract

In the past cryptography was mainly used by military organizations and governments for secure

communication. However today almost everyone uses it everywhere, even if most people do not

know it. Cryptography is used in many different scenarios; we use it when we login to a secure

website or to our laptops, or when we digitally sign a document; cryptocurrencies like Bitcoin

rely on it [1]; we use cryptography even when we chat with friends. As different situations

may have different requirements and constraints, there exist various kind of ciphers to answer

different needs. As an example, where resources are limited and speed is critical, we usually

rely on Stream Ciphers. They are symmetric key ciphers that try to mimic the properties of

the perfectly secure cipher One Time Pad (OTP) [2], by building a mechanism that is able to

produce a very long pseudorandom keystream that should look like a truly random sequence of

bits. This keystream is then xored with the message we want to encrypt. The keystream is serial-

ly generated starting from an initial random seed (the key and the IV) that is used to initialize

one or more Feedback Shift Registers (FSR) and sometimes some Finite State Machines (FSM)

[3, 4]. A stream cipher is said to be secure if any passive attacker can not learn anything about

the stream cipher internal state and the key by looking at the keystream bits. Furthermore, the

period1 of the cipher should be long enough to avoid reusing the same keystream for more than

one encryption. In literature [5] there exist many cryptanalysis techniques that focus on testing

the security of Stream ciphers, like Correlation attacks [6], Fast Correlation attacks [7], Alge-

braic attacks[8] and, the Cube attack [9]. The latter, presented in 2009 by Dinur and Shamir, is a

very fascinating technique that can be applied virtually to any cipher since its unique requirement

is black-box access to the target cipher. The idea is to combine offline exhaustive searches over

selected tweakable public/IV bits (the sides of the "cube") with an online key-recovery phase.

Cubes computation grows exponentially with the dimension of the cubes, so many approaches

have been proposed in the literature to optimize this process [9–12]; although, none of them fully

investigates the potentiality of Graphics Processing Units (GPUs). Since the early times of their

usage as general purpose computing devices, GPUs have been considered ideal candidates for

cryptanalysis tasks as the intensive computations usually required for cryptanalysis can benefit

1In mathematics, a periodic function is a function that repeats its values in regular intervals or periods.
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of the high level of parallelism and the computational power available on GPUs. Indeed, many

works exist in the literature as evidence that they can be successfully used [13–15]. In order

to leverage GPUs, it is mandatory to carefully design and implement the applications by taking

into account their peculiar characteristics.

In the first part of the present thesis work, the first Cube Attack Framework tailored on GPUs

[16] is presented. It has been designed and implemented as an optimized solution that is able to

perform all the steps needed by the attack; all the design choices are discussed, detailing their

respective advantages and difficulties. The framework can virtually support any cipher as the

only requirement is development of a GPU version of the target cipher. It has been successfully

validated on two different stream ciphers, Trivium [17] and Grain-128 [18]. Even though the at-

tack against Trivium has been ran with only a few preliminarily sets of Initialization Vector (IV)

bits (i.e. the cubes) - specifically selected to both validate the code and compare the obtained

results with the literature- the findings improve the state-of-the-art for attacks against reduced-

round version of Trivium; here there are presented the first full-key recovery for Trivium up

to 781 initialization rounds without brute-force, and the first ever linear equation binding only

key bits yields after 800 initialization rounds. Moreover, thanks to the framework, few new

candidate linear equations in key bits for both Trivium and Grain-128, respectively after 800

initialization rounds and after 160 initialization rounds, have been discovered; the detailed de-

scription and analysis of these results are going to released soon in a work that is currently being

finalized. Furthermore, the presented implementation allows for exhaustively assigning values

to (subsets of) public variables with negligible additional costs. This approach allows to poten-

tially weakening the assumption of a completely tweakable IV that has been done in previous

works [9]. Eventually, the evaluations of the framework on the computational speedup with

respect to a CPU-parallel benchmark, the performance dependence on system parameters and

GPU architectures (Nvidia Kepler vs Nvidia Pascal), and the scalability of the proposed solu-

tion on Multi-GPU systems [19] have been reported. By exhibiting the benefits of a complete

GPU-tailored implementations of the cube attack, this thesis work provides novel and strong

elements in support of the general feasibility of the attack, thus paving the way for future work

in the area.

In the second part of this dissertation, an automatic optimization solution for data-driven ap-

plications is presented. This solution has been developed by the canditate while he worked at

Dividiti L.t.d., as research intern. A new framework for data-driven adaptive libraries has been

designed and developed. It generates a pluggable runtime system based on Machine Learning

that is able to choose for the current input the ’optimal’ choice, according to a selected metrics,

among a set known best choices for other inputs. In order to build the prediction model, the

framework relies on the scikit-learn library [20] to generate several Decision Tree Classifiers

[21]. Three datasets have been collected on two different architectures, Nvidia Pascal and Arm

Mali Midgard and they have been used as training data to build the prediction models. The



proposed framework automatically extracts the decision rules from the models generating the

corresponding source code for the runtime system. This auto-generated code is then responsible

to pick up the configuration according to the model rules. Moreover, a proof of concept based on

the open-source OpenCL library CLBlast [22] has been proposed. The proof of concept shows

how the proposed framework can be used to optimize matrix multiplication routines for unpre-

dictable matrix sizes. Matrix multiplication is a core routine for many problems ranging from

Machine Learning [23], simulation and cryptography. The runtime system generated by the pro-

posed framework provides a speed up respect to the standard CLBlast up to 3× on Nvidia Pascal

(Tesla P100) and 2.5× on ARM Midgard (Mali-T860). Moreover the presented framework can

generate an optimized runtime system for any target library with a limited effort.
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1Road Map and Contributions

Since the early times of usage as general purpose computing devices, GPUs have been con-

sidered ideal candidates for intensive computation tasks such as cryptanalysis, simulations [26]

and, more generally, for all tasks that can benefit of the high level of parallelism and computa-

tional power provided by GPUs. In the last years, the rise of Machine Learning and Deep Learn-

ing frameworks [27–29] and libraries [30, 31] able to transparently use GPUs, breathes new

life into the research community as GPUs can offer an appreciable speedup to the algorithms

commonly used in Machine Learning and Deep Learning fields. Most of the aforementioned

frameworks and libraries provide an abstraction layer through simple APIs that allows users

to run their applications on GPUs without requiring any knowledge about their characteristics.

However, in order to fully exploit the potentiality of GPUs, an in depth knowledge of them archi-

tecture is actually needed. This is especially true for cryptanalysis and data-driven applications;

the former require to carefully design and implement the application because the computational

power and the amount of memory required usually grow exponentially; the latter may require

the implementation of new heuristics able to automatically tune the applications according to

the characteristics of the input, that are known only at runtime.

In the present thesis work are reported the two main topics the candidate worked on during

his PhD. The first part will focus on his research on cryptography and cryptanalysis. The first

Cube Attack Framework on GPU is presented as well as the findings that improve the state-of-

the-art cryptanalysis results on round-reduced version of Trivium. Moreover, all design choices

are carefully described, and their respective advantages and drawbacks with respect to GPU

architecture are discussed.

The second part of the dissertation is focused on data-driven applications. It presents a new

framework based on Machine Learning that aims at optimising libraries for data-driven applic-

ations. The framework generates a pluggable runtime system that infers the optimal choice,

1



Chapter 1. Road Map and Contributions 2

according to the selected metrics, for a given input. A proof of concept focused on optimizing

matrix multiplication for unpredictable matrix sizes is presented along with the experiments res-

ults used for its evaluation. The work presented in the second part of the present thesis was done

by the candidate while he was research intern at Dividiti L.t.d., as part of the HiPEAC Industrial

PhD Mobility Programme.

Since the two parts of the dissertation address different topics, a dedicated introduction at the

beginning of each part is provided. Therefore, this chapter mainly describes the road map of

this thesis and it summaries the main contributions the candidate provides to both topics during

his PhD. Furthermore, the candidate’s contributions to other topics not covered by the present

thesis work, are hereunder briefly described.

1.1 Road Map

• Chapter 2 introduces the cryptanalysis Cube Attack framework and describes all the

background needed to understand the attack and its components.

• Chapter 3 provides a detailed analysis of the cube attack from a practical point of view,

remarking the advantages and the drawbacks of GPUs for this kind of attack. Furthermore,

it thoroughly describes the design and implementation choices made and it reports and

discusses the results of the performance analysis experiments.

• Chapter 4 concludes the first part on cryptanalysis; it reports and examines the findings

that extend the state-of-the-art against round-reduced Trivium. Moreover, it describes

some preliminarily results against round-reduced version of Grain-128.

• Chapter 5 introduces the problem of optimizing data-driven applications and it provides

the background needed in the next chapters.

• The design and implementation choices of the proposed framework are analyzed and dis-

cussed in Chapter 6.

• Chapter 7 describes the proof of concept focus on Matrix Multiplication for unpredict-

able matrix sizes. Furthermore, it describes and analyzes the experiments results on two

different architectures, Nvidia Pascal and ARM Mali Midgard for all the models generated

by the proposed framework.

• Finally Chapter 8 summarizes and discusses the main contributions as well as the novel-

ties and the future works for both the topics.
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1.2 Contributions

Most of the content of this dissertation is extracted from some of published (or submitted) works

of the candidate; this thesis mainly collects and harmonises them. In Section 1.4, it is reported

a brief description about the topics the candidate worked on during his first year of PhD that are

not strictly related to the topics covered in this dissertation.

Part I

In Chapter 3, the candidate thoroughly analyzes and discusses the cube attack advantages and

drawbacks from a GPU perspective. Furthermore, he detailing describes the design and imple-

mentation choices aimed at fully exploiting the high level of parallelism and the computational

power of GPUs. The proposed implementation, that is to the best of his knowledge the first com-

pletely tailored on GPUs, allows to improve the state-of-the-art against reduced-round versions

of Trivium, yielding full key recovery up to 781 initialization rounds without brute-force and the

first ever maxterm after 800 initialization rounds [16]. Moreover the propose implementation al-

lows for exhaustively assigning values to (subsets of) controlled public variables with negligible

additional costs. A detailed discussion about the cryptanalysis results is provided in Chapter 4.

The candidate proposes a flexible multi-GPU framework, validated by using previous results in

literature, that virtually supports any cipher and he provides the first GPU tailored implementa-

tion of the two target cipher, Trivium and Grain-128. Furthermore, the candidate provides also

a thoroughly performance analysis in terms of speedup and scalability [19].

By exhibiting the benefits of a complete GPU-tailored implementation of the cube attack, the

candidate provides novel and strong elements in support of the general feasibility of the attack,

thus paving the way for future work in the area.

Part II

In Chapter 6 the candidate describes the requirements and architectural design of a new frame-

work for generation of data-driven runtime. He proposes a new framework based on predictive

model to select the optimal algorithm and the related tuned parameters in order to optimize

data-driven applications. The framework is able to generate a runtime representing the predict-

ive model that can be plugged on top of existing libraries.

In Chapter 7, the candidate presents a proof of concept for matrix multiplication based on gene-

rated runtime. Moreover, in the proof of concept, the candidate extends some functionalities
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of CLBlast, an OpenCL BLAS library. The proof of concept has been tested on two different

architectures, Nvidia Pascal and ARM Mali Midgard.

Finally, the candidates describes and analyzes all the experiments on both the architectures. The

experiments aim at evaluating both the theoretical and experimentally verified quality of several

models as well as the overhead of the runtime generated by the proposed framework.

The results of the experiments shows a performance speedup up to 3× on Nvidia Pascal and up

to 2.5× on ARM Mali Midgard, while the overhead in the worst case impacts less than 2% on

performance.

1.3 List of contributions

These are the works accepted or submitted that are relevant to the topics covered in this thesis:

1. Marco Cianfriglia, Stefano Guarino, Massimo Bernaschi, Flavio Lombardi and Marco

Pedicini. A Novel GPU-Based Implementation of the Cube Attack. Preliminary Results

Against Trivium. In International Conference on Applied Cryptography and Network

Security (ACNS 2017) [16];

2. M. Cianfriglia and S. Guarino. Cryptanalysis on GPUs with the Cube Attack: Design,

optimization and performance gains. In 2017 International Conference on High Perform-

ance Computing Simulation (HPCS 2017) [19].

In the following the list of my other works that are currently being finalized:

• M. Cianfriglia, S. Guarino, M. Bernaschi, F. Lombardi, M. Pedicini - A Cube Attack

Framework on GPUs. To be submitted at Journal of Cryptographic Engineering;

• M. Cianfriglia, F. Vella, C. Nugteren, M. Bernaschi, G. Fursin, A. Lokhmotov - Next

generation adaptive libraries for emerging data-driven applications. To be submitted at

The International Conference for High Performance Computing, Networking, Storage,

and Analysis - Supercomputing 2018;

1.4 Other contributions

As part of his collaboration as research associate with the Istituto per le Applicazioni del Cal-

colo (IAC) Mauro Picone - CNR, the candidate contributed to the European project ISODAC

(Indexing and Search Of Data Against Crimes). The goal of the project was the design and the
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develop an high performance solution for indexing and searching heterogeneous data. The last

IBM estimation on Big Data says that every day 2.5 quintillion bytes of data are created [32],

and this trend seems it is not going to stop. In this scenario, it is fundamental to have solu-

tions that provide an efficient way to search on huge amount of unstructured data. Searching

for words or sentences within large sets of textual documents can be very challenging unless an

index of the data has been created in advance. However, indexing can be very time consuming

especially if the text is not readily available and has to be extracted from files stored in different

formats. Several solution based on the MapReduce paradigm, have been proposed to accelerate

the process of index creation. These solutions perform well when data are already distributed

across the hosts involved in the elaboration. On the other hand, the cost of distributing data can

introduce noticeable overhead. In order to provide a solution for this problem, a new approach

aimed at improving efficiency without sacrificing reliability has been proposed, ISODAC [33].

The proposed solution reduces to the bare minimum the number of I/O operations by using a

stream of in-memory operations to extract and index text. ISODAC relies on GPUs to further

improve the performance for the most computationally intensive tasks of the indexing proced-

ure. It indexes heterogeneous documents up to 10.6× faster than other widely adopted solutions,

such as Apache Spark [34]. As proof of concept, a tool to index forensic disk images has been

developed. It provides a web interface that allows investigators to easily start indexing process

and to submit queries the indexes that are already available.

• G. Totaro, M. Bernaschi, G. Carbone, M. Cianfriglia and A. Di Marco ISODAC: A high

performance solution for indexing and searching heterogeneous data. In Journal of Sys-

tems and Software [33].



2A new Cryptanalysis Framework on
GPUs

2.1 Introduction

The security of a stream cipher relies on its ability to mimic the properties of the perfectly

secure One Time Pad (OTP): predicting future keystream bits (e.g., by recovering its inner state)

must be computationally infeasible. As a matter of fact, as highlighted by algebraic [8] and

correlation attacks [6], any statistical correlation between output bits and linear combinations

of input bits is a potential security breach for the cipher. Cryptographers are therefore caught

in between implementation requirements, which suggest the use of efficient primitives such as

Feedback Shift Registers (FSRs) or Finite State Machines (FSMs), and security requirements,

which demand for solutions able to disguise the dependence of keystream-bits on the inner

state of the registers. Many recent stream ciphers therefore rely upon irregular clocks, mutual

clock control, non-linear and/or mutual feedback among different registers, or combinations

of these solutions. The cube attack, proposed by Dinur and Shamir [9], can be classified as

an algebraic known-plaintext attack in which linear equations binding key bits are extracted

through exhaustive searches over selected public/IV bits – the edges of the cubes the attack

is named after. The success of the attack depends on its ability to detect imbalances into the

distribution of monomials in the polynomial representation of the target cipher. Since these

statistical flaws are generally unknown beforehand, the attack is often run without a clear prior

insight into a convenient strategy for selecting the cubes – an approach made possible by the

fact that the attack only requires black-box access to the attacked cipher. Possible practical

strategies include exploring cubes of different (possibly large) size, trying many different sets of

indices, and varying the binary assignment of the public bits not belonging to the tested cube,

all solutions that come at an exponential cost. As in Time-Memory-Data Trade-Off (TMDTO)

6
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attacks [35], the extensiveness of the pre-computation stage, which ultimately determines the

attack’s success rate, must be carefully tuned on the available computing power, memory, and

data.

While previous CPU-based approaches seem to pursuit a balanced use of time and memory,

we develop an implementation of the cube attack that fully leverages the potential of Graphics

Processing Units (GPUs) to boost the parallel search for suitable cubes.

The contributions of our approach are briefly summarized hereunder :

• We show how to tune the design and implementation of the cube attack to the characte-

ristics of GPUs, in order to fully exploit parallelization while coping with limited memory

[16, 19].

• We present a flexible framework to mount cube attacks against any cipher, under the sole

condition that the cipher is also implemented in GPU. The tool is independent of the GPU

architecture, and it supports extension to multi-GPU systems.

• We improve the state-of-the-art against reduced-round versions of Trivium, yielding full

key recovery up to 781 initialization rounds without bruteforce and the first ever maxterm

after 800 initialization rounds [16]. Moreover, we perform some other experiments to

further explore Trivium after 800 initialization rounds and we discover few maxterm can-

didates up to 830 rounds. We are currently verifying these new results, and we are going

to release them in a work being now finalized.

• Our implementation allows for exhaustively assigning values to (subsets of) public varia-

bles with negligible additional costs. This means extending the quest for superpolys to a

dimension never explored in previous works, and, by not being tied to a very small set of

IV combinations, potentially weakening one of the basic requirements of the cube attack,

that is, the assumption of a completely tweakable IV .

• We carefully analyse the performance of our implementation, in terms of: (i) speedup with

respect to a CPU implementation, (ii) dependence on system parameters, (iii) comparison

among different architectures (including latest generation GPU cards), and (iv) impact of

a multi-GPU distributed approach [19].

• We provide the first GPU tailored implementation, to the best of our knowledge, for

Trivium and Grain-128. We validated our framework on both the ciphers by extracting the

symbolical representation of the polynomial corresponding on round-reduced versions of

the ciphers. We then ran the attacks on some selected cubes, specifically selected from

the symbolical representations and we verified the consistency of the results.
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2.2 Background

2.2.1 The Cube Attack

The cube attack is a widely applicable method of cryptanalysis introduced by Dinur and Shamir [9],

based on a construction similar to Vielhaber’s AIDA [36]. The underlying idea, object of exten-

sions (dynamic cube attacks [37, 38], cube testers [39, 40]) and generalizations [41, 42], is to

extract from the unknown polynomial representation of the target cipher a set of linear (or low-

degree) equations binding key variables, replacing a symbolic factorization with an exhaustive

evaluation over selected public variables.

Let E(x, y) denote the target cipher, as a function of two vectors: the n public variables x (the

IV) and the k private variables y (the key K). A generic bit keystream z can be expressed as

z = p(x, y), where p is the polynomial representation of E, and all variables appear in p with

degree 1, at most. The idea of the attack is to choose a subset of m public variables xI ⊂ x
indexed by I ⊂ {1, . . . , n} and focus on the quotient pS (I)(xI , y) of the division of p(x, y) by

the monomial tI =
∏

x∈xI x. By definition, pS (I)(xI , y), called the superpoly of I in p, only

depends on public variables xI indexed by I’s complement I (other than y). If we find pS (I)(xI , y)

and assign any value vI to xI , we obtain a polynomial pS (I)(vI , y) = pS (I)(y) binding only key

variables1. If I is such that pS (I)(y) is linear, the monomial tI is called a maxterm for p with the

assignment vI . If we can identify maxterms and find the symbolic expression of their superpolys,

we obtain a system of linear equations that can be used to recover the secret key.

Unfortunately, we can not find pS (I)(xI , y) symbolically because we do not know p(x, y) in the

first place. To make up for it, we observe that all monomials in pS (I)(xI , y) do not contain any

of the variables xI , whereas all monomials in the remainder q(x, y) of the division of p(x, y) by

tI do not contain at least one of the variables in xI . For this reason, if CI(vI) denotes the cube

composed by all 2m possible binary assignments to x conditioned to xI = vI , the sum of p(x, y)

over CI(vI) yields [9] ∑
v∈CI (vI )

p(v, y) = pS (I)(vI , y) = pS (I)(y) (2.1)

regardless of the values assigned to y. In other words, we can find pS (I)(y) through an exhaustive

sum over xI .

The following example aims at clarifying the notation.

Example 1. Let n = 3, k = 1, and

p(x1, x2, x3, y1) = x1x2y1 + x1x3 + x1x2 + x2y1 + x3y1 + 1

1The standard assumption is vI = 0, but this is not actually required.
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If I = {1, 2} (i.e., xI = {x1, x2}, xI = {x3}), we have

p(x1, x2, x3, y1) = x1x2︸︷︷︸
tI

(y1 + 1︸︷︷︸
pS (I)

) + (x1x3 + x2y1 + x3y1 + 1︸                       ︷︷                       ︸
q(x1,x2,x3,v1)

)

If x3 = 1 (i.e., vI = {1}), summing p over the cube CI(vI) = {001, 011, 101, 111}, we have:

∑
v∈CI (vI )

p(v, y) = y1 + 1︸︷︷︸
p(001,y1)

+ y1 + y1 + 1︸       ︷︷       ︸
p(011,y1)

+ 1 + y1 + 1︸      ︷︷      ︸
p(101,y1)

+

+ y1 + 1 + 1 + y1 + y1 + 1︸                        ︷︷                        ︸
p(111,y1)

= y1 + 1

that is exactly pS (I)(y1).

In Figure 2.1, the representation of the cube described in Example 1.

000

010

011

001

100

110

111

101

CI(1)

F|x|2

The blue vertices define the cube CI(vI).

Figure 2.1: A toy example of cube.

2.2.2 Stream Cipher

Symmetric key ciphers can be divided in block ciphers and stream ciphers [43]. The formers

apply the encryption function at the same time and with the same key to an entire block of plain-

text bits; this means that each bit of the ciphertext depends on all the bits of the corresponding

plaintext block. On the contrary, stream ciphers encrypt the bits one-by-one; they generate a

keystream starting from a key K and Initialization Vector (IV). Each bit of the ciphertext is

typically obtained by adding a single bit of the keystream to a single bit of plaintext. There

exist synchronous ciphers where the keystream depends only on K and IV while asynchronous
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ciphers use also the generated ciphertext. Stream ciphers are typically used in all the scena-

rios where resources are limited and speed is critical, as they tend to be small and fast. As

example, they are used to guarantee confidentiality and integrity of mobile communications

[3, 4, 44]. They are generally built upon a cryptographic primitive called Linear Feedback Shift

Register (LFSR) along with some other components, like Finite State Machines, in order to

introduce non-linearity; sometimes it is possible to use just LFSRs by properly combine their

output through a non-linear equation.

A shift register is a cascade of cells, sharing the same clock, in which the content of each cell

is transferred into the next cell at each clock tic, resulting in a circuit that shifts by one position

the array stored in it. The content of the register is called its state, and the initial state of the

register is called the seed. The output of the register is the content of the first cell, whereas its

input is the new content that fills the last cell after the clock strikes. If the input of the register

is a linear function of its state, the registers is called a Linear Feedback Shift Register (LFSR).

In cryptographic applications, LFSRs are used to produce pseudo-random streams from a secret

key. The key is used to initialize the register, i.e., to define its seed, and the LFSR is designed to

produce an output stream that looks as random as possible.

Since the operation of a LFSR is deterministic, the seed completely determines the whole stream

of values produced by the register. In general, knowing the state of the register at any time t

allows to predict the output of the register at any time t′ ≥ t, based on the feedback relation.

If the register is composed of l cells, denoting the state of the register at time t as the l-tuple

(st
0, s

t
1, . . . , s

t
l−1) ∈ Fl

q, the behaviour of a typical LFSR can be described as


st+1

i = st
i+1 for all i = 0, . . . , l − 2

st+1
l−1 =

∑l
i=1 αist

l−i

where αi ∈ Fq for all i.2 The feedback relation can be described by the so-called feedback

polynomial, defined as

P(X) = 1 −
l∑

i=1

αiXi

As the register has a finite number of possible states, it must eventually enter a repeating cycle.

More precisely, the maximum possible number of states is ql and the register enters a cycle as

soon as its state equals the seed. Since the all-zero state (0, 0, . . . , 0) ∈ Fl
q is an absorbing state

(i.e., once the register enters that state it never exits it), the best possible scenario is a register

that crosses all ql−1 possible non-zero states before returning in its initial state. It can be proved

that a LFSR has a maximum period ql − 1 if and only if its feedback polynomial is primitive.

2The sum notation
∑l

i=1 can practically correspond to a bitwise xor,
⊕l

i=1, or to a sum modulo q,�l
i=1.
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The period of an LFSR plays an important role in terms of security. As we mentioned before, the

Stream Cipher tries to mimic the OTP by generating a pseudorandom key stream that is xored

with the plaintext; if we use the same keystream more than once, it is trivial to break the cipher.

2.3 Target Ciphers Specifications

In the following, we briefly describe the two ciphers we selected as test case targets for our

attack.

2.3.1 Trivium

Figure 2.2: Trivium Cipher [24].

Trivium [17] is a synchronous stream cipher conceived by Christophe De Cannière and Bart

Preneel, not patented, and specified as an International Standard under ISO/IEC 29192-3. It

is part of the eSTREAM portfolio [45]. Trivium combines a flexible trade-off between speed

and gate count in hardware, and a reasonably efficient software implementation. Quoting [24]:

“Trivium is a hardware oriented design focused on flexibility. It aims to be compact in envir-

onments with restrictions on the gate count, power-efficient on platforms with limited power

resources, and fast in applications that require high-speed encryption”. Particularly interesting

is the fact that any state bit stays unused for at least 64 iterations after it has been modified. This

means that up to 64 iterations can be parallelized and computed at once, allowing for a factor 64

reduction in the clock frequency without affecting the throughput.
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Trivium generates up to 264 bits of output from an 80-bit key K = {x1, ..., x80} and an 80-bit

Initial Vector IV = {v1, ..., v80}, and it shows remarkable resistance to cryptanalysis despite its

simplicity and its excellent performance. It is composed by a 288-bit internal state s1, ..., s288

consisting of three shift registers R1, R2 and R3 of length 93, 84 and 111, respectively. The

feedback to each of these registers and the output bit of the cipher are obtained through non-

linear combinations involving in total 15 out of the 288 internal state bits (see Figure 2.2).

During the initialization phase the key bits filled the first 80 bits of R1 whereas the IV bit fill

the first 80 bits of R2; all the remaining unfilled bits of R1, R2, and R3 are filled with 0 except

for the last three bits of R3 that are filled with 1. The three registers are updated simultaneously

using the same rules in both initialization and keystream generation modes; the only difference

is that the output z is produced only in keystream mode. The update function is defined as follow

where + denotes the bit XOR operation and the · represents the logical AND:

t1 ← s66 + s93

t2 ← s162 + s177

t3 ← s243 + s288

z← t1 + t2 + t3
t1 ← t1 + s91 · s92 + s171

t2 ← t2 + s175 · s176 + s264

t3 ← t3 + s286 · s287 + s69

(s1, ..., s93)← (t3, s1, ..., s92)

(s94, ..., s177)← (t1, s94, ..., s176)

(s178, ..., s288)← (t2, s178, ..., s287).

The initialization phase involves 1152 rounds and it guarantees that the output begins to be

produced only after all key-bits and IV-bits have been sufficiently mixed together to define the

internal state of the registers.

2.3.2 Grain-128

Grain-128 is a variant of Grain v1 [46], a stream cipher belonging to eSTREAM portfolio, pro-

posed by Hell, Johansson, Maximov and Meier [18]. It is very compact and easy to implement,

especially in hardware as stated by the authors. It supports 128 bit keys and 96 bits IV. It is

composed by a Linear Feedback Shift Register combined with a Non-linear Feedback Shift Re-

gister (NFSR) and a boolean function h(x). Both the LFSR and the NFSR have 128 bits and

altogether represent the state of the cipher. They are updated by two different feedback poly-

nomials, respectively f (x) and g(x). The update functions corresponding to f (x) and g(x) are

provided below, where si, si+1, ..., si+127 denote the LFSR states and bi, bi+1, ..., bi+127 the NFSR

states:
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Figure 2.3: Grain-128 [18].

si+128 = si + si+7 + si+38 + si+70 + si+81 + si+96

bi+128 = si + bi + bi26 + bi+56 + bi−91 + bi+96 + bi+3bi + 67 + bi + 11bi+13 + bi+17bi+18 +

bi+27bi+59 + bi+40bi+48 + bi+61bi+65 + bi+68bi+84.

Two states from the NFSR and seven from LFSR define the nine input variables x0, ..., x8 of

the boolean function h(x), corresponding to bi+12, si+8, si+13, si+20, bi+95, si+42, si+60 and si+95

respectively, hereunder reported:

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8.

The output function takes as input the output of h(x) added to si+93 and bi+ j where j ∈ A =

{2, 15, 36, 45, 64, 73, 89}.

In the initialization phase, the first 96 bits of the LFSR are filled with the IV bits whereas the

remaining 32 bits are filled with 1. On the other hand, the key bits are used to completely fill the

NFSR. Grain-128 defines 256 initialization rounds where the output of h(x) is used as feedback

both to NFSR and LFSR.

In Figure 2.3, the overview of the cipher in keystream mode is reported. A very interesting

feature of Grain-128 is that the last 31 bits of both the NFSR and the LFSR are not used in the

update function, and this allows to easily speedup by a factor of 32.

2.4 Related Work

The cube attack is a widely applicable method of cryptanalysis introduced by Dinur and Shamir [9].

The underlying idea, similar to Vielhaber’s AIDA [36], can be extended, e.g., by assigning a dy-

namic value to IV bits not belonging to the tested cube [37, 38], or by replacing cubes with
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generic subspaces of the IV space [41]. It is used in the so-called cube testers to detect non-

random behaviour rather than performing key extraction [39, 40]. Despite the cube attack and

its variants have shown promising results against several ciphers (e.g., Trivium [9], Grain [37],

Hummingbird-2 [47], Katan and Simon [38], Quavium [48]), Bernstein [49] expressed harsh

criticism to the feasibility and convenience of cube attacks. Indeed, a general trend for cube

attacks is to focus on reduced-round variants of a cipher, without any evidence that the full ver-

sion can be equally attacked. However, while Bernstein suggests that the cube attack only works

if the ANF of the cipher has low degree, Fouque and Vannet [10] argue (and, to some extent,

experimentally show) that effective cube attacks can be carried out not aiming at the maximum

degree of the ANF, but rather exploiting a nonrandom ANF by searching for maxterms of signi-

ficantly lower degree. Along this line, O’Neil [50] suggests that even the full version of Trivium

exhibits limited randomness, thus indicating the potential vulnerability of this cipher to cube

attacks.

In recent years, several implementations of the cube attack attempted at breaking Trivium, one

of the target ciphers described in Section 2.3.1. Quedenfeld et al. [51] found cubes for Trivium

up to round 446. Srinivasan [52] introduced a sufficient condition for testing a superpoly for

linearity in F2 with a time complexity O(2c+1(k2 + k)), yielding 69 extremely sparse linearly

independent superpolys for Trivium reduced to 576 rounds. In their seminal paper [9], Dinur

and Shamir found 63, 53, and 35 linearly independent superpolys after, respectively, 672, 735,

and 767 rounds. Fouque and Vannet [10] even improve over Dinur and Shamir, by obtaining 42

linearly independent superpolys after 784 rounds, and 12 linearly independent superpolys (plus

6 quadratic superpolys) after 799 rounds. To the best of our knowledge, these are the best results

against Trivium to date, making our attack comparable to (or better than) the state-of-the-art.

Several attacks have been proposed against Grain-128 and the Grain Family [53]. In particular,

Dinur and Shamir presented the dynamic cube attacks in [37] where they show an attack on a

full version of Grain-128 that is able to recover the full key when it belongs to a subset of the all

possible keys. Moreover, in [11] the authors present a distinguished attack using another variant

of cube attacks called cube testers where they rely on Field Programmable Gate Array (FPGA).

Another interesting work that uses FPGA is [12], where the authors built a dedicated FPGA-

based hardware to show the benefits of using highly parallelized hardware for cryptanalytic

tasks. However, to the best of our knowledge, there are not previous attempts against Grain-

128 that use the classical cube attack. We ran only few experiments on round-reduced versions

in order to validate the framework with it and to evaluate the performance of the attack on

a different cipher. Moreover these experiments allow us to discover few maxterm candidates

when the number of initialization rounds is 160. We are going to better describe and analyze

these finding on a work currently being finalized.
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Distributed computing and/or parallel processing have been explored in the literature to render

attacks to crypto systems computationally or storage-wise feasible/practical. Smart et al. [54]

developed a new methodology to assess cryptographic key strength using cloud computing.

Marks et al. [55] provided numerical evidence of the potential of mixed GPU(AMD, Nvidia)

& CPU technology to data encryption and decryption algorithms. Focusing on GPU, Milo et

al [56] leverage GPUs to quickly test passphrases used to protect private keyrings of OpenPGP

cryptosystems, showing that the time complexity of the attack can be reduced up to three-orders

of magnitude with respect to a standard procedure, and up to ten times with respect to a highly

tuned CPU implementation. A relevant result is obtained by Agostini [57] leveraging GPUs

to speed up Dictionary Attacks to the BitLocker technology commonly used in Windows OSes

to encrypt disks. Finally, and most closely related to the present work, Fan and Gong [47]

made use of GPUs to perform side channel cube attacks on Hummingbird-2. They describe an

efficient term-by-term quadraticity test for extracting simple quadratic equations, leveraging the

cube attack. Just like us, Fan and Gong speed-up the implementation of the proposed term-by-

term quadraticity test by leveraging GPUs and finally recovering 48 out of 128 key bits of the

Hummingbird-2 with a data complexity of about 218 chosen plaintexts. However, we present a

complete implementation of the cube attack thoroughly designed and optimized for GPUs. Our

flexible construction allows an exhaustive exploration of subsets of IV bits, thus overcoming the

limitations of dynamic cube attacks, which try to find the most suitable assignment to those bits

by analyzing the target cipher.



3Cube Attack on GPUs

In this section, we present, detail, and discuss our attack, designed to run on a cluster equipped

with Nvidia Graphics Processing Units (GPUs). As previously mentioned, the success of a cube

attack is highly dependent on suitable implementation choices. In order to better explain our

own approach, we start with an analysis of the cube attack from a more technical perspective.

We do not provide a detailing description of GPU characteristics here, interested readers can

find a brief description and some references in Appendix B.

3.1 Practical Cube Attack

At a high level, any practical implementation of the cube attack requires performing the follo-

wing steps:

Choosing a candidate maxterm tI Since the complexity of evaluating cube CI scales expo-

nentially with |I|, finding a convenient strategy to select the index set I (or, equivalently, the

candidate maxterm tI), is of primary importance. A common assumption is the existence of

a threshold degree, cutting apart monomials that yield a nonlinear superpoly from monomials

that yield a constant one. Even assuming that the degree of most maxterms lies around some

threshold, the lack of information about the distribution of monomials in p prevents any prior

educated guess at both the value of the threshold and the actual selection of variables in tI . In the

literature, a few approaches have been proposed to try to address both issues at once. Dinur and

Shamir [9] proposed a random walk over index sets, starting from a random set I and iteratively

updating I adding or subtracting random elements according to the experimentally tested degree

of the superpoly pS (I).

16
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Alternatively, Fouque and Vannet [10] used the Moebius transform to concurrently compute the

sums over all subcubes of a maximal cube CImax characterized by having the variables xI set to 0.

Additionally, they suggested a heuristic to identify cubes expected to behave better than others,

and used it to select the most promising maximal set Imax. However, none of these two strategies

is suitable for GPUs, as we will show in Section 3.3.

Testing pS (I) for linearity In principle, assessing if tI is a maxterm requires finding the sym-

bolic expression of pS (I)(vI , y), for all possible assignments vI to variables xI . However, efficient

probabilistic linearity tests [58, 59] can be safely used in practice. Additionally, aiming at min-

imizing the degree of pS (I)(vI , y), only pS (I)(0, y) is usually considered in the literature. We

argue that this is not necessarily the best choice, as motivated by our results presented in Sec-

tion 4.1. In any case, at this stage we can omit the dependence on vI and assume that pS (I)(y)

only depends on y. Probabilistic tests involve verifying if

pS (I)(u1 + u2) = pS (I)(u1) + pS (I)(u2) + pS (I)(0) (3.1)

holds for random pairs of vectors u1,u2. In fact, (3.1) must be true for all u1,u2 if pS (I) is linear,

whereas, in general, it holds with probability 1
2 . Practically, (3.1) means

∑
v∈CI

E(v,u1 + u2) =
∑
v∈CI

E(v,u1) +
∑
v∈CI

E(v,u2) +
∑
v∈CI

E(v, 0)

thus requiring four numerical sums.

Finding linear equations Each maxterm tI yields a linear equation

pS (I)(y) =
∑
v∈CI

E(v,K) (3.2)

whose left side is a linear combination of the key variables y with coefficients found offline,

whereas the right side is a number found online, and whose solution is the sought unknown

assignment of the key K to y. Finding the right side of (3.2) involves a single sum, assuming

the availability of the 2m keystream bits produced with K assigned to y, as x takes all possible

assignments v ∈ CI . Finding the symbolic expression on the left side of (3.2) instead requires

k + 1 sums: the free term of pS (I)(y) is

pS (I)(0) =
∑
v∈CI

E(v, 0)
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whereas the coefficient of each variable yi is

pS (I)(ei) + pS (I)(0) =
∑
v∈CI

E(v, ei) +
∑
v∈CI

E(v, 0)

where ei is the unit vector with all null coordinates except yi = 1.

Solving the linear system Finally, once a set of linear superpolys have been found, we need

to solve the obtained linear system. This can be achieved with any suitable technique described

in the literature.

3.2 The Setting

Generally speaking, GPUs are processing units characterized by the following advantages and

limitations:

Computing Each unit features a large number (i.e, thousands) of simple cores, that make

possible running a much higher number of parallel threads compared to a standard CPU. More

precisely, the GPU’s basic processing unit is the warp consisting of 32 threads each. Threads are

designed to work on 32-bit words, and the performance is maximized if all threads belonging to

the same warp execute exactly the same operations at the same time on different but contiguous

data.

Memory The so-called global memory available on a GPU is limited, typically between 4 and

16 GB. Each thread can independently access data (random access is fully supported, but costly

performance-wise). However, when threads in a warp access consecutive 32-bit words, the

cost is equivalent to a single memory operation. Concurrent readings and writings by different

threads to the same resources, which require some level of synchronization, should be avoided

to prevent serialization that defeats parallelism.

The basic step of the attack is the sum of E(v, y) over all elements v of a cube CI . Each time

we sum over a cube, the key variables y are fixed, either to a random u j for the linearity tests,

or to 0 and to versors ei for determining the superpoly. In both cases exactly the same sum∑
v∈CI E(v,u j) must be performed for all elements of a set of keys {u1, . . . ,uM}.

We define the following strategy for carrying out the sums over a cube with the goal of maximi-

zing the parallelization and fully exploiting at its best the computational power offered by GPUs:
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• Assigning to all the threads within a warp the computation of the same cube CI but with a

different key u j. This choice guarantees that all threads perform the same operation at the

same time for the entire computation.

• Leveraging the GPU computing power to calculate all the elements of a cube CI , providing

to the threads just a bit-mask representing the set I. With this approach we can exploit all

available GPU memory to store the cubes evaluations and minimize, at the same time, the

number of memory access operations.

• Defining a keystream generator function E(x, y) which outputs a 32-bit word, and letting

each thread work on the whole word, fully leveraging the GPU computing model. This

approach offers two remarkable benefits: (i) considering 32 keystream bits altogether is

equivalent to concurrently attacking 32 different polynomials, and (ii) working on 32-bit

integers fits much better with the GPUs features, whereas forcing the threads to work on

single bits would critically affect the performance of the attack. As a drawback, attacking

32 keystream bits altogether increases (of a factor 32) the memory needed for storing the

cubes’ evaluation, thus imposing some limitations on the size of the cubes to be tested, as

we will clarify later.

• Choosing the number M of keys to be a multiple of the warp size in order to perform the

probabilistic linearity test on 32 keystream bits at the same time and for all M keys.

3.3 The Attack

The practical review of the cube attack presented in Section 3.1 highlighted that the attack re-

quires, for each cube, a number of calls to the target cipher E that grows exponentially, followed

by as many sums of the resulting outputs. In Section 3.2 we identified a few tips to tailor the

computation of a cube so as to unleash the potential of GPUs. However, the proposed strategy

prescribes considering altogether all M different keys per cube needed to run the linearity test.

This means that, if T denoted the available memory and |T | its size, the amount of usable memory

is de facto reduced to |T |/M, thus making even more strict the already severe memory constraints

characterizing GPUs.

In CPU-based cube attacks, main memory is mostly used to store single evaluations of the cipher

over the vertices of some maximal cube CImax . In [9], these evaluations are used to perform a

random walk that, starting from a random subset I ⊂ Imax, iteratively tests the superpoly pS (I)

to decide whether the degree of tI should be increased or decreased. In [10], the table storing

these 2|Imax | values is Moebius-transformed to compute at once the sums over
(
|Imax |

d

)
subcubes of

CImax of degree d, for d = 0, . . . , |Imax|. These cubes are all the possible subcubes CI of CImax

in which the variables xI have been set equal to 0. None of these two strategies is suitable
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for GPUs: the stochastic nature of the random walk prevents the sequence of steps from being

determined a priori, since the computation is performed only when (and if) needed; the Moebius

transform requires a rigid schema of calculations and a large number of alternating read and

write operations in memory that must be synchronized. Both approaches are conceived for

implementations in which computational power is a constraint (while memory is not), and all

advantages of using the Moebius Transform are lost in case of parallel processing.

Additionally, storing single evaluations of the cipher in T means testing only subcubes of a

maximal cube of size |Imax| = log2(|T |/M), but, with the memory available in current GPUs,

log2(|T |/M) is not large enough for any reasonably strong cipher.

The proposed design of our attack relies on the following rationale: exploring only a portion

of the maximal cube CImax , considering only subsets I ⊆ Imax characterized by a non-empty

minimal intersection Imin. Quite naturally, a similar design leads to two distinct CUDA1 kernels,

respectively responsible for: (1) computing many variants of the cube CImin , one for each of

the possible combinations of the indices in Imax \ Imin, and writing the results in memory; (2)

combining the stored results to test all cubes CI such that Imin ⊆ I ⊆ Imax. Following this

approach, the size of the explored Imax can be raised to |Imax| = |Imin| + log2(|T |/M), with read

and write memory operations carried out by different kernels.

With respect to the notation introduced in Section 2.2.1, let us distinguish the public variables x
into three sets xfix, xfree, and x∗, of size dfix, dfree, and n − d, respectively, where d = dfix − dfree.

The variables xfix correspond to the fixed components of CImax identified by Imin, i.e., Imin =

{i1, . . . , idfix}, whereas the variables xfree correspond to the remaining free components of CImax ,

i.e., Imax\Imin = { j1, . . . , jdfree} and |Imax| = d. The variables x∗ are the remaining public variables

that fall outside Imax.

The two kernels of our attack can be described as follows:

Kernel 1 It uses 2dfree warps. Since, as described before, the 32 threads belonging to the same

warp perform exactly the same operations but for different keys, in the following we simply con-

sider a representative thread per warp and ignore the private variables y.2 For t = 0, . . . , 2dfree−1,

thread (i.e., warp) s sums E(v, y) over each vertex of the cube Cs
Imin

of size dfix determined by

the assignment of the dfree-bit representation vfree of integer s to the variables xfree and of 0 to

the variable x∗. Finally, thread s writes the sum in the sth entry of table T , so that, at the end

of the execution of the kernel, each entry of T contains the sum over a cube of size dfix. These

evaluations allow for testing the monomial tImin with all the aforementioned assignments to the

1CUDA is the software framework used for programming Nvidia GPUs.
2The work that here is assigned to a single thread can be actually split among any number of threads, reassembling

the results at the end. We will not consider this possibility here for the sake of clarity.
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Figure 3.1: Kernel1 example.

other n − dfix variables. An example of the evaluations done by Kernel1 is depicted in Figure
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Figure 3.2: Kernel2 example.

Kernel 2 By simply combining the values stored in T at the end of Kernel 1, it is now possible

to explore cubes of potentially any size dfix + δ, with 0 ≤ δ ≤ dfree. Although the exploration can

potentially follow many other approaches (e.g., a random walk as in [9]), the large computing

power of our platform suggests to test cubes exhaustively. Moreover, we extend the exhaustive
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search to an area never reached, to the best of our knowledge, in the literature. For all I such

that Imin ⊆ I ⊆ Imax, this kernel considers all variants of cube CI obtained assigning all possible

combinations of values to the variables in Imax \ I. More precisely, for each possible choice

of δ ∈ [0, dfree], there are exactly
(
dfree
δ

)
2dfree−δ distinct cubes of size dfix + δ. In fact, we can

choose δ free variables (the additional dimensions of the cube) in
(
dfree
δ

)
different ways, and

we can choose the fixed assignment to the remaining dfree − δ variables in any of the 2dfree−δ

possible combinations. In Figure 3.2 as example, some of the cubes evaluated by the Kernel2
are reported.

We would like to highlight that in our scenario usually the value of dfix is grater that dfree, so

actually Kernel 2 is computationally dominated by Kernel 1, so the cost of our exhaustive search

is negligible. This way, our design allows considering any possible assignment to variables

outside the cube, to finally address the common conjecture (never proved in the literature), that

assigning 0 is the best possible solution. As a matter of fact, this means a significant gain in

terms of number of cubes tested with respect to previous works: with 2dfree bits of memory, the

approach used in [10] allows considering 2dfree cubes, whereas we are able to test 3dfree different

cubes.

Finally, let us underline the significant divergence between our work and [47], the first paper to

ever use GPUs for a cube attack. In [47], Fan and Gong use GPUs to accelerate the summation

of the polynomial p over all subcubes of a maximal cube of size 16. However, they use a rather

trivial approach: for a cube of size k, they launch 2k threads in charge of evaluating the cipher

E over each of the 2k vertices of the cube, followed by a parallel reduction process where these

2k values are summed using so-called shared memory. Basically, they just use GPUs to call E

in parallel over multiple inputs, but sums over different cubes are processed sequentially, and

the impact of the warp structure is completely overlooked. Additionally, they only consider

a very small maximal cube, not discussing whether their scheme scales to larger dimensions.

Conversely, the design and implementation of our GPU kernels thoroughly covers all steps of

the attack, maximizing the performance subject to all architectural constraints, such as warp size

and limited memory.

Besides the high-level engineering described before, we implement a few low-level optimiza-

tions:

• all computations internal to our kernels only rely on registers, that are the fastest type of

memory available on GPUs;

• the design of our architecture divides the workflow into two separate kernels and this al-

lows us to separate reads and writes on global memory so we do not need synchronization;

• the memory pattern we define to store the results guarantees memory coalescing accesses

both in reading and writing;
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• we leverage some built-in CUDA functions, such as warp shuffle, to efficiently exchange

values among threads belonging to the same warp, when needed (e.g., when we perform

the linearity tests).

3.3.1 Cluster setup

Nvidia P100 Nvidia K80
Market segment Server Server

Number and Type of GPUs 1 Tesla GP100 2 Tesla GK210B
Micro-architecture Pascal Kepler

Number of processor cores 3584 2496
(Per GPU)

Boost frequency 1353 MHz 875 MHz
Single Precision 9.3 TFLOPS 8.73 GFLOPS

Processing Power
(Per GPU)

Memory available 16 GB 12 GB
(Per GPU)

Memory type HBM2 DDR5
Memory Bandwdith 732 GB/s 240 GB/s

(Per GPU)

Table 3.1: Tested GPUs characteristics - Cube Attack.

We ran our attack on a cluster composed by 3 nodes, each equipped with 2 Tesla K80 with 24

GB of global memory and 4 Intel Xeon CPU E5-2640 with 128 GB of RAM, running CentOS

6.6 and Cuda 7.5. We recall that each K80 is in turn composed by two K40 with 12GB of

global memory each. We have also access to two additional Linux systems both equipped with

Nvidia Pascal GPUs, the first one has one Tesla P100 with 16 GB of global memory and the

second one has a Quadro P6000 with 24 GB of global memory. We used the P100 mainly to

evaluate the performance of our framework on Pascal architecture, whereas we used the P6000

to run our biggest experiment on round-reduced version of Trivium where define dfree = 26 and

dfix = 18. Thanks to this last experiment, we discover few maxterm candidates up to 830 output

bits. The description and the analysis of these results are going to appear in a work currently

being finalized. The performance experiments are deeply discussed in Section 3.4 while the

cryptographic results on the target ciphers are discussed in the corresponding Sections. See

Table 3.1 for further information about the GPUs we use for performance experiments.

3.4 Performance Analysis

To evaluate the performance of our GPU based solution, we carried out an extensive experi-

mental campaign on the previously described systems. For comparison, we also developed a

parallel CPU version of the cube attack based on OpenMP. This implementation exploits the 32

cores of the four Intel(R) Xeon(R) CPU E5-2640 and scales linearly as the size of the problem.

Each performance test has been repeated 5 times and the average time is reported. We evaluate
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Figure 3.3: Speedup of Parallel CPU vs GPU on Trivium.
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Figure 3.4: Speedup of Parallel CPU vs GPU on Grain128.
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the performance for each of the ciphers we targeted as it is a crucial factor for the feasibility of

the attack.

In Figures 3.3 and 3.4, we report the speedup gained by the GPU versions with respect to the

parallel CPU version. Anchoring the size of Imin to dfix = 16, we evaluated the two solutions

over a growing maximal cube CImax , whose size is exponential in the cardinality dfree of the index

set Imax \ Imin. The experiments show that the benefit of using the GPU version grows with the

number of free variables dfree considered, outreaching a 80× speedup when dfree = 16 on K40

and 630× on P100 for Trivium, and up to 154× on K40 and 930× on P100 for Grain-128. It is

worth noticing that all versions (GPU and CPU) rely on the same base functions to implement

the ciphers.
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Figure 3.5: Scaling experiments on Trivium.
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Figure 3.6: Scaling experiments on Grain128.

A second set of experiments aimed at evaluating how the GPU solution scales when dfree in-

creases. To this end, we measured the execution time of the attack for all the target ciphers on a
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Kepler K40 and Pascal P100, as a function of dfree, for different values of dfix. These measure-

ments, reported in Figure 3.5 and 3.6, show that: (i) varying dfix only yields an additive shift; (ii)

when the size of the problem is large enough to guarantee the full utilisation of computational

resources (dfree ≥ 9 on K40 and dfree ≥ 11 on P100), our solution scales roughly linearly with

the size of the problem, i.e., exponentially with the number of dimensions of the explored cube.

To explain why dfree = 9 for K40 and dfree = 11 for the P100 behave as a threshold, we need to

delve into some of the configuration aspects discussed in Section 3.3.

According to our design, each warp is in charge of the computation over a single subcube,

so that all the information a thread needs are computed locally, and only the final results are

stored in memory. We thus know how many warps are needed for a specific computation, and,

based on our code optimization, we can predict the exact number of GPU blocks used for that

computation. Specifically, the number of blocks Nblocks is determined as:

Nblocks =

⌈
2dfree ·

S warp

S max
block

⌉
where S warp is the warp size (i.e., number of threads per warp), while S max

block is the maximum

block size (i.e., maximum number of threads per block). In our case, S warp = 32 and S max
block =

1024, thus yielding Nblocks = d2dfree−5e. This means that dfree = 8 and dfree = 9 correspond to,

respectively, Nblocks = 8 and Nblocks = 16. These numbers should be compared with the number

of Streaming Multiprocessors (SMs) of the GPU card used, that is 13 on the K40. dfree = 9

is the first value for which the number of allocated blocks is larger than the number of SMs,

producing at least one active block per SM, and thus an use of the GPU at full operating speed.

The same math can be applied when dfree = 11 on P100. In particular, when dfix = 25, the

execution time stays roughly constant (approximately 1010 sec) when 6 ≤ dfree ≤ 10, before

suddenly doubling when dfree = 11. This is perfectly coherent with the characteristics of the

P100, as it has 60 SMs, and 211−5 = 64. As clearly highlighted in Figures 3.5, 3.6, the described

behaviour is determined by the design of our framework and it does not depend on the cipher. It

is worth noticing that the scalability of our framework does not depend on the target cipher or

on a specific architecture (i.e. Kepler and Pascal).

In order to assess the impact of the GPU architecture on the performance of our framework, we

compared the execution time of the attack on the Pascal P100 and on the Kepler K40. Interestin-

gly, running the experiments on the P100 did not require any code adjustment, we just had to

recompile our code for that architecture.

Figure 3.7b shows the significant speedup yielded by using the Pascal architecture. In particular,

when dfree = 16, the execution time on the P100 becomes more than 5× smaller with respect to

the K40. These very promising preliminary tests of the performance of the Pascal architecture
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support the viability of our approach, and suggest that the search for maxterms of a cube attack

can significantly benefit from the progress of GPU technologies.
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Figure 3.7: Speedup of multi-GPU w.r.t. mono-GPU (a) and of Pascal P100 w.r.t. Kepler K40
(b) (Trivum cipher).

Moreover, in order to evaluate the scalability of our framework on multi-GPU systems we com-

pared the execution time of the attack on cubes of size dfix = 25 and dfree ∈ {6, 11, 16}, when

the workload is equally distributed among 1, 2, 4, and 8 K40s. The distribution process splits a

cube of size |I| among 2l GPUs by assigning to each GPU a subcube of size |I− l|. It then merges

all 2l partial computations altogether obtaining the original cube. As mentioned before for the

mono-GPU experiments, in order to use the GPUs at operating speed, for each of them the num-

ber of allocated blocks should be larger than the number of SMs. For this reason, as reported

in Figure 3.7a, the speedup is linear with respect to the number of GPUs only for dfree = 16.

We report the results of the multi-gpu experiments only for Trivium cipher as the scalability of

our framework does not depend on the target cipher (as clearly stated in the previous scaling

experiments). We could not carry out this last experiments on Pascal architecture as we have

access to one P100 only.

Finally, we ran the attack, for both the target ciphers, under the control of the Nvidia pro-

filer in order to measure the ALU occupancy achieved by our Kernels. Kernel1 is invoked

just once to fill the whole table T, with an occupancy consistently over 95% when dfree ≥ 10.

Kernel2 is instead invoked once per each δ ∈ [0, dfree] to compute all available cubes of size

dfix + δ. The maximum occupancy exceeds 95% as soon as dfree =≥ 12, with an average of

approximately 50%. In either case the impact of dfix, which determines the load of each thread,

is negligible. Considering that dfree should be maximized to improve the attack success rate, our

kernels guarantee an excellent use of resources in any realistic application. For instance in our

experiments we set dfree = 16, which guarantees an occupancy above 99% for Kernel1, and a

maximum occupancy above 98% for Kernel2.
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4.1 The Attack on Trivium

This Section reports the results obtained by our GPU implementation of the cube attack against

reduced-round Trivium. We recall that the attack ran on a cluster composed by 3 nodes, each

equipped with 2 Tesla K80 with 24 GB of global memory and 4 Intel Xeon CPU E5-2640 with

128 GB of RAM.

We performed a formal evaluation of our implementation, by checking our experimental re-

sults against Trivium’s polynomials, explicitly computed up to 400 initialization rounds. In

the following, the number of initialization rounds instead matches (and slightly overtakes) the

best results from the literature, thus reaching a point where a symbolic evaluation would be

prohibitive. Still, the results we exhibit are obtained from experiments specifically designed

to reproduce tests carried out in the recent past [10], so as to provide, at the same time: (i) a

direct comparison of our results with the state-of-the-art; (ii) an immediate means to assess the

advantages of our approach, and (iii) a further validation of the correctness of our code.

4.1.1 Experimental setting

In our attack, we consider two different reduced-round variants of Trivium, corresponding to

768 and 800 initialization rounds, respectively. As explained and motivated in Section 3.2, in

our scheme, each call to Trivium produces 32 key-stream bits, which we use in our concurrent

search for superpolys. The most significant practical consequence of a similar construction is

the ability to devise attacks to Trivium reduced to any number of initialization rounds ranging

from 768 to 831, at the cost of just two attacks, although the number of available superpolys

decreases with the number of rounds. As a matter of fact, the jth output bit after 768 rounds can

28
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also be interpreted as the ( j − i)th bit of output after 768 + i initialization rounds, for any j ≥ i.

In other words, an attack to Trivium reduced to 768 + i initialization rounds can count upon all

superpolys found in correspondence of the jth output bit after 768 rounds, for all j ≥ i.

For each of the two attacks (768 and 800 initialization rounds), we ran 12 independent runs,

corresponding to 12 different choices for the pair of sets of variables Imin, Imax (with Imin ⊂ Imax)

that define the minimal and maximal tested cubes CImin and CImax . The size of Imin and Imax \ Imin

is dfix = 25 and dfree = 16, respectively, for all runs, so that all maximal cubes have size

d = dfix + dfree = 41. Peculiarly to our implementation, when we test the monomial composed

of all variables in some set Imin ⊆ I ⊆ Imax, we exhaustively assign values to all public variables

in Imax \ I, thus concurrently testing the linearity of 241−|I| possibly different superpolys. This

feature of our attack – a possibility overlooked in the literature, but almost free-of-charge in our

framework – provides primary benefits, as described in Section 4.2.

In all the reported experiments, we use a complete-graph linearity test based on combining 10

randomly sampled keys.

As mentioned before, we implemented two attacks, against Trivium reduced to 768 (Trivium-

768 in the following) and 800 (Trivium-800) initialization rounds, respectively. In both cases,

our setting allows obtaining superpolys corresponding to 32 output bits altogether, at the cost of

a single attack.

4.1.2 Results against Trivium-768

For the attack against Trivium-768, we took inspiration from [10]: we launched 12 runs based

on 12 different pairs Imin, Imax, chosen so as to guarantee that each of the 12 linearly independent

superpolys found in [10] after 799 initialization rounds had to be found by one of our runs. The

rationale of reproducing results from [10] was to both test the correctness of our implementation,

and provide a better understanding of the advantages of our implementation with respect to

the state-of-the-art. In this sense, let us highlight that a single run of ours cannot be directly

compared with all results presented in [10], because each of our runs only explores the limited

portion of the maximal cube CImax composed by all super-cubes of CImin .

To better describe our results, let us introduce the binary matrix A whose element A(i, j) is the

coefficient of variable y j in the ith available superpoly. The rank of A, denoted rk(A), clearly

determines the number of key bits that can be recovered in the online phase of the attack based

on the available superpolys, before recurring to brute-force.

As described before, the superpolys yielded by the ith output bit after round 768 are usable

to attack Trivium for any number of initialization rounds between 768 and 768 + i. It is pos-

sible to define 32 different matrices A768, . . . , A799: A768 includes all superpolys found, while
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Figure 4.1: Comparison with previous work.

each matrix A768+i is obtained by incrementally removing the superpolys yielded by output bits

0, . . . , i−1. Figure 4.1 shows rk(Ai) as a function of i, comparing our findings with those of [10].

Overall, our results extend the state-of-the-art in a remarkable way, especially if we consider

that our quest for maxterms was circumscribed to multiples of 12 base monomials of degree 25.

In particular, let us highlight a few aspects that emerge from Figure 4.1:

• Since our runs were designed to include all 12 maxterms found in [10] after 799 initial-

ization rounds, it is not surprising that rk(A799) is at least 12. Yet, it is indeed larger: we

found 3 more linearly independent superpolys, reaching rk(A799) = 15.

• Although we did not force our tested cube to include the maxterms found in [10] after 784

rounds, we have rk(A784) = 59, compared with rank 42 found in [10].

• Finally, and probably most important, our attack allows a full key recovery up to 781

initialization rounds.

Selected superpolys that guarantee the above ranks are reported in Section 4.4, together with the

corresponding maxterms. Very interesting is also how novel superpolys were found, a point that

is better described in the following.

4.1.3 Results against Trivium-800

To provide a further test of the quality of our attack, we launched a preliminary attack against

Trivium-800. We kept unvaried all the parameters of the attack (12 independent runs, 25 fixed
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plus 16 free public variables considered per run, 32 output bits attacked altogether), but this time

we chose the sets Imin, Imax at random. In total, we could find a single maxterm corresponding

to 800 rounds, and no maxterms afterwards. Although our findings only allow to cut in half the

complexity of a brute force attack, this is the first ever superpoly found considering more than

799 initialization rounds. However, as stated in Section 3.3.1, we ran an additional experiment

against Trivium-800 where dfree = 26 and dfix = 18 and we discover few candidate maxterms up

to 830 output bit; we are going to discuss deeply this last results as well as the corresponding

superpolys in a work currently being finalized.

4.2 Further Discussion

Hereafter, we provide a more detailed analysis and a further discussion of our findings, conside-

ring two aspects in particular: the reliability of commonly used linearity tests, and the peculiar

advantages of our attack design. Unless otherwise specified, in the following we always focus

on Trivium-768.

4.2.1 On probabilistic linearity.

A common practice in the cube attack related literature consists in using a probabilistic linea-

rity test, meaning that a (small) chance exists that the superpolys found by an attack are not

actually linear. In particular, the best results obtained with the cube attack against Trivium use

a complete-graph test, which, with respect to the standard BLR test, trades-off accuracy for

efficiency. The viability of a similar choice is supported by previous works [59, 60], showing

that the complete-graph test behaves essentially as a BLR test in testing a randomly chosen

function f , with the quality of the former being especially high if the nonlinearity (minimum

distance from any affine function) of f is large, that is, when the result of the test is particularly

relevant.

Following the trend, we chose to implement a complete-graph test based on a set of 10 randomly

chosen keys, exactly as done in [10]. However, while increasing the number of tests done du-

ring the attack was costly for us (it impacts on memory usage), implementing further tests on the

superpolys found at the end of the attack was not. We therefore decided to put our superpolys

through additional tests involving other 15 keys chosen uniformly at random. Figure 4.2 com-

pares rk(Ai) as a function of i, for our full results and our filtered results, in which all superpolys

that failed at least one of the additional tests have been removed. Let us stress once more that

these two sets of results cannot be defined as wrong and correct, but they rather correspond to

two different levels of trust in the found superpolys. In a sense, choosing between the two sets is

equivalent to selecting the desired trade-off between efficiency and reliability of the attack: our
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Figure 4.2: Impact of probabilistic linearity.

full results permit a faster attack, which however may fail for a subset of all possible keys. Of

course, several intermediate approaches are possible.

4.2.2 On using 32 output bits

A significant novelty of our implementation consists in the ability to concurrently attack 32 dif-

ferent polynomials, which describe 32 consecutive output bits of the target cipher. This choice is

induced by GPUs features – as discussed in Section 3.2 – yet it is natural to assess what benefits

it introduces. In Section 3.2 we showed that looking at 32 output bits altogether can be con-

sidered a way to concurrently attack 32 different reduced-round variants of Trivium. However,

aiming to extend the attack to the full version of the cipher, our implementation can be used to

check whether the same set of monomials yield different superpolys, hopefully involving diffe-

rent key variables, when we focus on different output bits. To this end, let us introduce a new

set of matrices B0
768, . . . , B

31
768, where each B j

768 is obtained considering only the superpolys yiel-

ded by output bits 0, . . . , j after 768 initialization rounds (i.e., A768 = B31
768). Figure 4.3 shows

rk(B j
768) as a function of j, for both our full results and our filtered results. What the figure

highlights is that considering several output bits altogether for the same version of the cipher,

albeit possibly causing issues related to memory usage, introduces the expected benefit, indeed

a remarkable benefit if the matrix rank is initially (e.g., when j = 0) low. This is the first ever

result showing that considering a larger set of output bits is a viable alternative to exploring a

larger cube.
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Figure 4.4: Impact of exhaustive search.

4.2.3 On the advantages of the exhaustive search

As described before, our implementation allows to find significantly more linearly independent

superpolys than previous attempts from the literature. One of the reasons of our findings is the

parallelization that makes possible to carry out, at a negligible cost, an exhaustive search over

all public variables in Imax \ I when the cube CI is under test. Figure 4.4 shows how rk(Ai) varies

with i for our full results, in comparison to what happens when we impose that all variables in

Imax \ I are set to 0, as usually done in related work. What emerges is that through an exhaustive

search it is indeed possible to remarkably increase rk(Ai). Significantly, the exhaustive search

is what allows us to improve on the state-of-the-art for i = 799, which, among other things,



Chapter 4. Cryptanalysis Results 34

suggests that the benefits of the exhaustive search are particularly relevant when increasing the

number of tested cubes would be difficult otherwise (e.g., by considering other monomials).

Another consequence of implementing an exhaustive search is that we found many redundant

superpolys, i.e., superpolys that are identical or just linearly dependent with the ones composing

the maximal rank matrix Ã. A similar finding is extremely interesting as we expect it to provide

a wide choice of different IV combinations yielding superpolys that compose a maximal rank

submatrix Ã, thus weakening the standard assumption that cube attacks require a completely

tweakable IV .

4.3 The Attack on Grain-128

We perform a formal evaluation also of our Grain-128 implementation, by checking our experi-

mental results against the polynomials, explicitly computed up to 96 initialization rounds. In

literature there are some works focus on attacking Grain-128 by using Cube Attack variants,

in particular in [12], [11]. However, to the best of our knowledge, Grain-128 has never been

targeted using the original cube attack. We ran few preliminarily attacks against Grain-128

where the number of initialization rounds is reduced to 160 and the indexes of controlled IV-bits

are randomly selected and we discovered few candidate maxterms. A detailed description of our

findings against Grain-128 as well as the results against other new ciphers will appear in a work

currently being finalized.

4.4 Tables of maxterms and superpolys

In the following there are reported the tables containing some maxterms and the corresponding

superpolys we discover in the attack.

maxterm bits superpoly round

3, 6, 8, 10, 12, 14, 18, 19, 20, 23, 25, 27, 31, 33, 38, 40, 43, 45, 48, 53, 54, 56, 58, 60, 62, 63, 69, 75,

77, 79, 80

x55 781

1, 5, 7, 8, 10, 15, 16, 18, 20, 23, 25, 27, 32, 33, 36, 38, 40, 41, 43, 47, 49, 52, 53, 54, 56, 58, 63, 69,

71, 75, 77, 80

x69 781

1, 6, 7, 8, 10, 12, 16, 19, 21, 24, 25, 27, 31, 33, 36, 38, 40, 41, 43, 47, 49, 52, 53, 56, 58, 63, 67, 69,

71, 73, 77, 80

x60 781

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 19, 21, 23, 25, 27, 36, 38, 40, 43, 45, 47, 49, 54, 56, 58, 60, 62, 69,

71, 73, 74, 80

x51 + 1 781

1, 2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 25, 27, 36, 38, 40, 43, 45, 47, 52, 54, 56, 58, 60, 62, 69, 71,

73, 76, 79, 80

x45 781

1, 2, 5, 6, 7, 8, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 43, 45, 47, 49, 52, 54, 56, 58, 62, 65, 69,

71, 73, 76, 80

x43 + x58 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 27, 33, 36, 38, 40, 43, 45, 47, 52, 54, 56, 58, 60, 62, 69, 71,

73, 74, 79, 80

x23 781

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 65, 69, 71,

75, 77, 79, 80

x8 + x35 + x64 781

1, 5, 7, 8, 10, 12, 14, 15, 16, 18, 20, 23, 24, 25, 27, 32, 33, 36, 40, 41, 43, 47, 49, 52, 53, 56, 58, 63,

69, 71, 75, 77, 80

x67 + 1 781

3, 5, 6, 8, 10, 12, 14, 16, 18, 19, 20, 23, 24, 25, 27, 31, 33, 38, 43, 45, 48, 53, 54, 56, 58, 60, 62, 63,

69, 75, 77, 79, 80

x2 781

Table 4.1: Maxterms and superpolys after 781 initialization rounds of Trivium (continue).
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maxterm bits superpoly round

6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33, 36, 38, 40, 41, 42, 45, 49, 54, 56, 60, 62,

63, 69, 73, 75, 80

x58 781

1, 2, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 23, 27, 36, 38, 40, 43, 45, 47, 49, 52, 54, 56, 58, 60, 62, 69, 71,

73, 74, 76, 79, 80

x62 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 25, 30, 31, 32, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 63,

69, 71, 73, 75, 80

x3 + x25 + x39 + x40 + x51 + x66 + x67 + x78 + 1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 25, 27, 31, 33, 38, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60, 63,

69, 71, 73, 75, 80

x10 + x13 + x14 + x19 + x25 + x28 + x29 + x31 +

x37 + x40 + x46 + x52 + x53 + x55 + x56 + x57 +

x60 + x61 + x62 + x64 + x66 + x68 + x69 + 1
781

1, 3, 5, 7, 12, 14, 15, 16, 18, 19, 20, 21, 24, 25, 27, 31, 33, 36, 40, 41, 45, 49, 54, 56, 58, 60, 62, 63,

66, 71, 73, 75, 77, 80

x57 781

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 36, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69,

71, 75, 77, 79, 80

x43 + x58 + x64 + x66 + x70 781

1, 3, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 36, 38, 40, 43, 45, 47, 49, 52, 54, 56, 58, 62, 65,

69, 71, 73, 76, 79, 80

x65 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 31, 32, 33, 36, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56,

63, 69, 71, 73, 75, 80

x23 + x39 + x50 + x66 + x67 + x79 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 25, 30, 31, 32, 33, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60,

63, 69, 71, 73, 75, 80

x9 + x18 + x24 + x26 + x32 + x33 + x34 + x42 + x51 +

x53 +x54 +x58 +x59 +x64 +x66 +x68 +x69 +x80 +1
781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 31, 32, 33, 36, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56,

63, 69, 71, 73, 75, 80

x52 + x66 + x67 + x79 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 21, 25, 27, 31, 33, 38, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60,

63, 69, 71, 73, 75, 80

x13 + x14 + x19 + x25 + x27 + x28 + x29 + x31 +

x39 + x41 + x42 + x46 + x51 + x52 + x54 + x55 +

x56 + x57 + x61 + x62 + x64 + x65 + x66 + x69 + x78

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 31, 32, 33, 36, 38, 40, 41, 45, 47, 48, 49, 53, 54, 56, 60,

63, 69, 71, 73, 75, 80

x16 + x26 + x27 + x38 + x43 + x53 + x54 + x56 +

x65 + x67 + x80
781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38, 40, 41, 45, 47, 49, 50, 53, 54, 56, 60,

63, 69, 71, 73, 75, 80

x25 + x27 + x30 + x54 + x57 781

1, 2, 3, 5, 6, 7, 8, 12, 14, 15, 16, 19, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 52, 54, 56, 58, 60, 62, 65,

69, 70, 71, 73, 74, 76, 80

x42 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 25, 27, 30, 31, 32, 33, 38, 40, 41, 43, 45, 47, 48, 49, 53, 54,

56, 63, 69, 71, 73, 75, 80

x14 + x29 + x41 + x55 + x61 + x62 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 31, 32, 33, 36, 38, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54,

56, 63, 69, 71, 73, 75, 80

x39 + x66 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 25, 30, 31, 32, 33, 38, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56,

60, 63, 69, 71, 73, 75, 80

x24 + x55 + x61 + x66 + x67 + 1 781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60,

63, 69, 70, 71, 73, 75, 80

x12 + x27 + x32 + x33 + x40 + x42 + x51 + x53 +

x57 + x58 + x60 + x64 + x80 + 1
781

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60,

63, 69, 70, 71, 73, 75, 80

x27 +x32 +x42 +x53 +x58 +x60 +x64 +x78 +x80 +1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40, 41, 45, 47, 49, 50, 53, 54, 56, 60,

63, 69, 70, 71, 73, 75, 80

x11 + x24 + x25 + x29 + x30 + x31 + x40 + x41 +

x45 + x50 + x52 + x53 + x54 + x56 + x58 + x61 +

x65 + x66 + x67 + x68 + x77 + x79 + x80 + 1
781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56,

60, 63, 69, 71, 73, 75, 80

x14 + x16 + x27 + x29 + x30 + x31 + x40 + x41 + x42 +

x43 +x54 +x55 +x56 +x57 +x58 +x64 +x79 +x80 +1
781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 32, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 60,

63, 69, 70, 71, 73, 75, 80

x28 + x29 + x32 + x33 + x40 + x41 + x42 + x44 +

x50 + x51 + x55 + x56 + x57 + x59 + x61 + x62 +

x64 + x66 + x67 + x68 + x70 + x78 + 1
781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 30, 31, 33, 36, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56, 60,

63, 69, 70, 71, 73, 75, 80

x38 + x39 + x41 + x44 + x45 + x50 + x51 + x52 + x53 +

x55 +x57 +x58 +x60 +x66 +x68 +x72 +x78 +x79 +1
781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 24, 25, 31, 33, 36, 38, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56, 60,

63, 69, 70, 71, 73, 75, 80

x43 + x50 + x52 + x55 + x58 + x66 + x70 + x77 + 1 781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56,

60, 63, 69, 70, 71, 73, 75, 80

x41 + x53 + x55 + x58 + x61 + x68 781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56,

60, 63, 69, 70, 71, 73, 75, 80

x29 + x41 + x42 + x53 + x55 + x56 + x58 + x61 +

x64 + x66 + x67 + x68 + x69
781

1, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 27, 30, 31, 32, 33, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56,

60, 63, 69, 70, 71, 73, 75, 80

x14 + x55 + x58 + x61 + x64 + x66 + x68 + x80 781

1, 5, 6, 10, 12, 14, 15, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 33, 36, 38, 40, 41, 42, 45, 48, 49, 54,

60, 62, 63, 69, 73, 75, 77, 80

x64 781

5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 31, 33, 36, 38, 40, 41, 42, 45, 48, 49, 54,

60, 62, 63, 69, 73, 75, 77, 80

x66 + 1 781

1, 2, 3, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 27, 33, 36, 38, 40, 43, 45, 47, 52, 54, 56, 58, 60, 62,

69, 70, 71, 73, 74, 76, 79, 80

x56 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 65,

69, 71, 74, 75, 77, 78, 79, 80

x21 + x36 + x48 + x58 + x63 + 1 781

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 65,

69, 71, 74, 75, 77, 78, 79, 80

x19 + x27 + x45 + x54 + x64 + x66 + x72 + 1 781

1, 3, 5, 6, 8, 12, 14, 15, 16, 18, 19, 24, 25, 30, 31, 32, 33, 36, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54, 56,

60, 63, 69, 70, 71, 73, 75, 80

x5 + x8 + x24 + x26 + x32 + x33 + x39 + x40 + x41 +

x42 + x44 + x47 + x51 + x54 + x57 + x59 + x60 +

x65 + x66 + x68 + x69 + x78 + x79

781

1, 3, 5, 6, 8, 12, 14, 15, 16, 19, 21, 25, 27, 31, 32, 33, 36, 38, 40, 41, 45, 47, 49, 50, 53, 54, 56, 60, 63,

69, 71, 73, 75, 80

x25 + x52 + 1 782

1, 5, 6, 7, 8, 10, 12, 14, 15, 19, 21, 24, 25, 27, 31, 36, 38, 39, 40, 41, 45, 47, 49, 53, 56, 58, 62, 63, 66,

69, 71, 73, 77, 80

x40 782

1, 3, 5, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 56, 58, 61, 62, 63, 65,

69, 71, 74, 75, 77, 78

x25 + 1 782

Table 4.1: Maxterms and superpolys after 781 initialization rounds of Trivium (continue).
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maxterm bits superpoly round

1, 3, 5, 6, 10, 12, 14, 15, 16, 18, 19, 21, 25, 27, 31, 32, 33, 38, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54,

56, 60, 63, 69, 71, 73, 75, 80

x13 + x16 + x19 + x25 + x29 + x33 + x35 + x36 +

x37 + x38 + x39 + x40 + x42 + x45 + x51 + x52 +

x53 + x54 + x55 + x62 + x63 + x64 + x65 + x67 +

x69 + x70 + x71 + x73 + x79 + x80 + 1

782

5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40, 45, 47, 48, 49, 53, 54, 56, 58, 60, 62,

63, 69, 71, 80

x38 + 1 783

3, 5, 6, 7, 8, 10, 14, 15, 16, 21, 23, 25, 27, 33, 34, 36, 38, 40, 45, 47, 48, 49, 53, 54, 55, 56, 58, 61, 62,

63, 69, 71, 74, 80

x27 + 1 783

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 24, 25, 27, 30, 31, 32, 33, 38, 40, 41, 45, 47, 48, 49, 50, 53,

54, 56, 63, 69, 71, 73, 75, 80

x32 + x49 + x52 + x56 + x59 + x61 + x62 + x79 + 1 783

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 21, 24, 25, 31, 33, 36, 38, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54,

56, 60, 63, 69, 71, 73, 75, 80

x7 + x16 + x40 + x43 + x49 + x52 + x58 + x62 +

x70 + x79 + 1
783

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 24, 25, 30, 31, 32, 33, 36, 38, 40, 41, 43, 45, 47, 49, 50, 53, 54,

56, 60, 63, 69, 71, 73, 75, 80

x26 + x66 + x68 + 1 783

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69,

71, 75, 77, 80

x4 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 55, 56, 58, 60, 62,

63, 67, 69, 71, 80

x53 + 1 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36, 38, 40, 41, 42, 45, 48, 49, 54, 60,

62, 63, 69, 73, 75, 80

x37 784

3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 60, 62,

63, 69, 71, 74, 80

x36 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36, 38, 40, 41, 45, 47, 49, 53, 58, 60, 63,

71, 75, 76, 80

x12 + 1 785

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 63, 65, 69,

71, 74, 75, 77, 78, 80

x34 785

1, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 52, 54, 56, 58, 60, 62,

69, 71, 73, 79, 80

x54 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 69,

71, 74, 75, 77, 78, 80

x13 + x55 + x60 + x64 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 65,

69, 71, 74, 75, 77, 78, 80

x22 + x49 + x64 786

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 74, 75, 77, 78, 80

x14 + x23 + x41 + x47 + x49 + x50 + x58 + x64 786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 74, 75, 77, 78, 80

x3+x4+x20+x22+x30+x34+x38+x40+x42+x45+

x49 + x51 + x58 + x61 + x65 + x67 + x69 + x72 + x78
786

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71,

75, 77, 79

x9 + x29 + x30 + x32 + x42 + x43 + x49 + x51 +

x57 + x58 + x59 + x60 + x62 + x64 + x66 + x67 +

x68 + x69 + x70 + x72 + x76

791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71,

75, 77, 80

x17 + x26 + x30 + x32 + x41 + x43 + x47 + x57 +

x62 + x65 + x66 + x70 + x72 + x74 + 1
791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71,

75, 77, 80

x14 + x17 + x26 + x30 + x43 + x47 + x50 + x57 +

x58 + x59 + x65 + x70 + x72 + x74 + x77 + 1
791

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 56, 58, 63, 65, 69,

71, 75, 77, 79

x12 + x26 + x30 + x39 + x41 + x45 + x47 + x57 +

x58 + x59 + x62 + x64 + x74 + x76 + 1
791

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63,

65, 69, 71, 75, 77

x5 + x18 + x20 + x26 + x28 + x29 + x30 + x31 + x32 +

x41 + x42 + x44 + x50 + x51 + x56 + x57 + x62 +

x64 + x67 + x69 + x70 + x71 + x74 + x77 + x78 + 1
791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61, 62,

63, 65, 69, 71, 75, 77

x1 + x28 + x32 + x47 + x58 + x59 + x62 + x64 + x74 791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61, 62, 63,

65, 69, 71, 75, 77, 80

x10 + x11 + x12 + x13 + x15 + x17 + x19 + x20 +

x29 + x31 + x32 + x33 + x37 + x39 + x40 + x41 +

x42 + x44 + x46 + x48 + x49 + x50 + x53 + x57 +

x60 + x67 + x70 + x71 + x76 + x78 + x79

791

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36, 38, 40, 41, 42, 45, 47, 49, 53, 58, 63,

69, 71, 72, 76, 79, 80

x61 791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63,

69, 71, 74, 75, 77, 78, 80

x43 + x47 + x58 + x70 + x74 + 1 791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63,

69, 71, 75, 77, 80

x12 + x17 + x26 + x27 + x29 + x30 + x32 + x40 +

x43 + x45 + x46 + x49 + x53 + x54 + x56 + x59 +

x62 + x64 + x65 + x67 + x69 + x72 + x74 + x75

792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61,

63, 69, 71, 75, 77, 78, 79, 80

x12 + x14 + x26 + x30 + x40 + x41 + x47 + x48 +

x56 + x66 + x67 + x68 + x74 + x75 + 1
792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58,

63, 69, 71, 74, 75, 77, 78, 79, 80

x16 + x43 + x56 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61,

63, 65, 69, 71, 75, 77, 78, 79, 80

x14 + x16 + x26 + x29 + x30 + x41 + x45 + x55 + x56 +

x59 + x62 + x64 + x66 + x68 + x70 + x71 + x72 + 1
792

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 63,

69, 71, 75, 77, 80

x45 + x72 793

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 30, 31, 33, 38, 40, 43, 45, 47, 49, 51, 52, 56, 58, 63, 67,

69, 71, 73, 77, 80

x10 + x55 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 65,

69, 71, 74, 75, 77, 80

x36 + x52 + x60 + x63 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 74, 75, 77, 80

x6 + x11 + x25 + x33 + x36 + x53 + x60 + x62 +

x63 + x64 + x79
798

Table 4.1: Maxterms and superpolys after 781 initialization rounds of Trivium.
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maxterm bits superpoly round

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 65, 69,

71, 75, 77, 80

x4 784

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 29, 31, 33, 36, 38, 40, 41, 42, 45, 49, 54, 60,

62, 69, 73, 75, 80

x60 784

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62,

63, 67, 69, 71, 80

x56 + 1 784

1, 3, 5, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 63, 65,

69, 71, 75, 77, 78

x2 + x9 + x13 + x14 + x22 + x23 + x30 + x36 + x38 +

x39 + x40 + x42 + x47 + x48 + x51 + x56 + x65 +

x67 + x68 + x69 + x74 + x75

784

1, 3, 5, 6, 8, 10, 12, 14, 15, 16, 19, 21, 25, 30, 31, 32, 33, 38, 40, 41, 43, 45, 47, 48, 49, 50, 53, 54, 56,

63, 69, 71, 75, 80

x38 784

1, 3, 6, 7, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 63,

69, 71, 75, 77, 78, 79

x38 + x47 + x74 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 55, 56, 58, 60, 62,

63, 67, 69, 71, 80

x53 + 1 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

67, 69, 71, 74, 80

x58 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36, 38, 40, 41, 42, 45, 48, 49, 54, 60,

62, 63, 69, 73, 75, 80

x37 784

1, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36, 38, 40, 41, 45, 48, 49, 54, 56, 60,

62, 69, 73, 75, 77, 80

x64 784

3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 60, 62,

63, 69, 71, 74, 80

x36 784

6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 25, 27, 29, 33, 36, 38, 40, 41, 45, 48, 49, 54, 56, 60, 62,

63, 69, 73, 75, 77, 80

x66 784

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40, 43, 45, 47, 49, 53, 54, 55, 56, 58,

60, 62, 63, 69, 71, 74, 80

x67 + 1 784

5, 6, 8, 10, 12, 14, 15, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 33, 36, 38, 40, 41, 42, 45, 49, 54, 60,

62, 63, 69, 73, 75, 77, 80

x62 784

1, 5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40, 43, 45, 47, 48, 49, 53, 54, 56, 58,

60, 61, 62, 63, 69, 71, 74, 80

x69 + 1 784

3, 5, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 48, 49, 53, 54, 56, 58, 60,

61, 62, 63, 67, 69, 71, 74, 80

x40 784

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36, 38, 40, 41, 45, 47, 49, 53, 58, 60, 63,

71, 75, 76, 80

x12 + 1 785

1, 5, 6, 7, 10, 12, 16, 19, 21, 23, 24, 25, 27, 31, 33, 36, 38, 40, 41, 43, 47, 49, 52, 56, 58, 60, 63, 67,

69, 71, 73, 77, 80

x42 785

1, 5, 6, 10, 12, 14, 15, 16, 19, 21, 25, 27, 30, 31, 33, 36, 38, 40, 41, 43, 45, 47, 48, 49, 53, 54, 56, 63,

69, 71, 73, 75, 80

x55 785

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 63, 65, 69,

71, 74, 75, 77, 78, 80

x34 785

1, 5, 6, 7, 8, 12, 13, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 52, 54, 56, 58, 60, 62,

69, 71, 73, 79, 80

x54 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 69,

71, 74, 75, 77, 78, 80

x13 + x55 + x60 + x64 785

1, 3, 5, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 65,

69, 71, 74, 75, 77, 78, 80

x22 + x49 + x64 786

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63, 65,

69, 71, 74, 75, 77, 78, 80

x3 + x4 + x7 + x12 + x20 + x22 + x30 + x36 + x39 +

x42 + x43 + x45 + x47 + x51 + x58 + x63 + x69 +

x70 + x72 + x78 + 1
786

1, 3, 6, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 74, 75, 77, 78, 80

x14 + x23 + x41 + x47 + x49 + x50 + x58 + x64 786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 74, 75, 77, 78, 80

x3+x4+x14+x22+x30+x34+x38+x41+x42+x45+

x47 + x49 + x51 + x58 + x61 + x65 + x69 + x72 + x78
786

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 74, 75, 77, 78, 80

x3+x4+x20+x22+x30+x34+x38+x40+x42+x45+

x49 + x51 + x58 + x61 + x65 + x67 + x69 + x72 + x78
786

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71,

75, 77, 79

x9 + x29 + x30 + x32 + x42 + x43 + x49 + x51 +

x57 + x58 + x59 + x60 + x62 + x64 + x66 + x67 +

x68 + x69 + x70 + x72 + x76

791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71,

75, 77, 80

x17 + x26 + x30 + x32 + x41 + x43 + x47 + x57 +

x62 + x65 + x66 + x70 + x72 + x74 + 1
791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71,

75, 77, 80

x1 + x17 + x26 + x28 + x41 + x43 + x47 + x49 + x59 +

x62 + x64 + x65 + x66 + x70 + x72 + x74 + x76 + 1
791

1, 3, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63, 69, 71,

75, 77, 80

x14 + x17 + x26 + x30 + x43 + x47 + x50 + x57 +

x58 + x59 + x65 + x70 + x72 + x74 + x77 + 1
791

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 40, 41, 43, 45, 47, 49, 53, 56, 58, 63, 65, 69,

71, 75, 77, 79

x12 + x26 + x30 + x39 + x41 + x45 + x47 + x57 +

x58 + x59 + x62 + x64 + x74 + x76 + 1
791

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63,

65, 69, 71, 75, 77

x5 + x18 + x20 + x26 + x28 + x29 + x30 + x31 + x32 +

x41 + x42 + x44 + x50 + x51 + x56 + x57 + x62 +

x64 + x67 + x69 + x70 + x71 + x74 + x77 + x78 + 1
791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61, 62, 63, 65,

69, 71, 75, 77, 80

x7 + x9 + x10 + x11 + x12 + x13 + x15 + x17 + x19 +

x20 + x26 + x30 + x31 + x33 + x37 + x39 + x40 +

x41 + x42 + x44 + x45 + x46 + x47 + x48 + x50 +

x51 + x53 + x56 + x59 + x60 + x64 + x67 + x68 +

x70 + x71 + x72 + x74 + x78 + x79 + 1

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61, 62,

63, 65, 69, 71, 75, 77

x1 + x28 + x32 + x47 + x58 + x59 + x62 + x64 + x74 791

Table 4.2: Maxterms and superpolys after 784 initialization rounds of Trivium (continue).
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maxterm bits superpoly round

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61, 62, 63,

65, 69, 71, 75, 77, 80

x3 + x4 + x6 + x7 + x9 + x10 + x13 + x15 + x19 +

x22 + x28 + x30 + x33 + x34 + x35 + x38 + x39 +

x40 + x41 + x43 + x44 + x47 + x48 + x49 + x50 +

x53 + x54 + x55 + x56 + x58 + x61 + x62 + x65 +

x66 + x67 + x68 + x69 + x71 + x72 + x76 + x77 + x78

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61, 62, 63,

65, 69, 71, 75, 77, 80

x10 + x11 + x12 + x13 + x15 + x17 + x19 + x20 +

x29 + x31 + x32 + x33 + x37 + x39 + x40 + x41 +

x42 + x44 + x46 + x48 + x49 + x50 + x53 + x57 +

x60 + x67 + x70 + x71 + x76 + x78 + x79

791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61, 62, 63,

65, 69, 71, 75, 77, 80

x10 + x11 + x12 + x13 + x14 + x15 + x17 + x19 +

x20 + x26 + x29 + x31 + x33 + x37 + x39 + x40 + x42 +

x44 + x46 + x48 + x53 + x57 + x58 + x59 + x60 + x66 +

x67 + x68 + x70 + x71 + x72 + x77 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 75, 77, 79

x3 + x4 + x6 + x11 + x15 + x17 + x19 + x20 + x22 +

x30 + x34 + x35 + x37 + x38 + x43 + x47 + x51 +

x54 + x57 + x58 + x60 + x61 + x64 + x65 + x67 +

x68 + x70 + x72 + x74 + x77 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 75, 77, 79

x3 + x4 + x6 + x11 + x12 + x15 + x17 + x18 + x19 +

x20 + x22 + x30 + x34 + x35 + x37 + x38 + x39 +

x42 + x43 + x45 + x47 + x50 + x54 + x56 + x57 +

x58 + x61 + x65 + x69 + x70 + x74 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69,

71, 74, 75, 77, 78, 80

x1 + x5 + x9 + x14 + x18 + x20 + x26 + x28 + x32 +

x41 + x42 + x43 + x45 + x47 + x49 + x66 + x67 +

x69 + x70 + x76 + x78

791

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 29, 31, 33, 36, 38, 40, 41, 42, 45, 47, 49, 53, 58, 63,

69, 71, 72, 76, 79, 80

x61 791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62,

63, 65, 69, 71, 75, 77, 79

x3 + x4 + x6 + x7 + x9 + x11 + x17 + x18 + x20 +

x22 + x26 + x28 + x29 + x31 + x34 + x35 + x37 + x38 +

x39 + x41 + x46 + x50 + x51 + x54 + x55 + x56 + x58 +

x61 + x65 + x66 + x67 + x74 + x76 + x78 + x79 + 1

791

1, 3, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63,

69, 71, 74, 75, 77, 78, 80

x43 + x47 + x58 + x70 + x74 + 1 791

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 41, 43, 45, 47, 49, 53, 56, 58, 62, 63,

69, 71, 75, 77, 80

x12 + x17 + x26 + x27 + x29 + x30 + x32 + x40 +

x43 + x45 + x46 + x49 + x53 + x54 + x56 + x59 +

x62 + x64 + x65 + x67 + x69 + x72 + x74 + x75

792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58,

63, 69, 71, 75, 77, 78, 79, 80

x12 + x26 + x39 + x56 + x68 + 1 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 56, 58, 61,

63, 69, 71, 75, 77, 78, 79, 80

x12 + x14 + x26 + x30 + x40 + x41 + x47 + x48 +

x56 + x66 + x67 + x68 + x74 + x75 + 1
792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58,

63, 69, 71, 74, 75, 77, 78, 79, 80

x16 + x43 + x56 792

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61,

63, 65, 69, 71, 75, 77, 78, 79, 80

x14 + x16 + x26 + x29 + x30 + x41 + x45 + x55 + x56 +

x59 + x62 + x64 + x66 + x68 + x70 + x71 + x72 + 1
792

1, 3, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 41, 43, 45, 47, 49, 53, 54, 56, 58, 61, 63,

69, 71, 75, 77, 80

x45 + x72 793

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 27, 30, 31, 33, 38, 40, 43, 45, 47, 49, 51, 52, 56, 58, 63, 67,

69, 71, 73, 77, 80

x10 + x55 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 65,

69, 71, 74, 75, 77, 80

x36 + x52 + x60 + x63 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 65,

69, 71, 74, 75, 77, 80

x10 + x17 + x27 + x36 + x37 + x40 + x52 + x59 +

x60 + x63 + x66 + x67
798

1, 3, 5, 6, 7, 8, 10, 12, 14, 16, 19, 21, 23, 25, 33, 36, 38, 40, 43, 45, 47, 49, 53, 56, 58, 61, 62, 63, 65,

69, 71, 74, 75, 77, 78, 79

x27 + x54 + x60 798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 74, 75, 77, 80

x6 + x11 + x25 + x33 + x36 + x53 + x60 + x62 +

x63 + x64 + x79
798

1, 3, 5, 6, 7, 8, 10, 12, 15, 16, 19, 21, 23, 25, 27, 33, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 61, 62, 63,

65, 69, 71, 74, 75, 77, 80

x6 + x11 + x25 + x33 + x36 + x52 + x53 + x60 +

x62 + x63 + x64 + x79
798

5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 34, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 60,

61, 62, 63, 67, 69, 71, 74, 80

x65 + x66 + x67 + 1 798

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 54, 56, 58, 62, 69,

71, 73, 80

x25 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 56, 58, 63, 69, 71,

75, 77, 80

x12 + x38 + x39 + x40 799

Table 4.2: Maxterms and superpolys after 784 initialization rounds of Trivium.
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maxterm bits superpoly round

1, 6, 8, 10, 12, 14, 18, 20, 23, 25, 27, 31, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62, 63, 69, 73,
75, 77, 80

x60 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 54, 56, 58, 62, 69,
71, 73, 80

x25 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 56, 58, 63, 69, 71,
75, 77, 80

x25 + x40 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 40, 43, 45, 47, 49, 53, 56, 58, 63, 69, 71,
75, 77, 80

x12 + x38 + x39 + x40 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 18, 20, 23, 25, 27, 33, 36, 38, 40, 41, 43, 47, 49, 53, 56, 58, 63, 69, 71,
75, 77, 80

x67 + 1 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 31, 33, 36, 38, 40, 41, 45, 47, 49, 53, 56, 58, 63, 69,
71, 75, 80

x42 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 19, 21, 23, 25, 27, 31, 36, 38, 40, 41, 45, 47, 49, 53, 56, 58, 63, 69, 71, 73,
75, 77, 80

x53 799

1, 5, 6, 8, 10, 12, 14, 15, 16, 18, 19, 20, 21, 23, 25, 27, 31, 33, 36, 38, 40, 41, 45, 49, 54, 56, 62, 69,
73, 75, 77, 80

x64 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62,
63, 69, 71, 80

x36 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 40, 41, 43, 45, 47, 49, 53, 56, 58, 63, 65, 69,
71, 75, 77, 80

x38 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 54, 56, 58, 60, 62, 65, 69,
70, 71, 73, 80

x56 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 33, 34, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62,
63, 69, 71, 74, 80

x69 + 1 799

1, 6, 7, 8, 10, 12, 14, 16, 19, 21, 25, 27, 30, 31, 33, 36, 38, 40, 41, 43, 45, 47, 49, 51, 52, 56, 58, 63,
67, 69, 71, 73, 77, 80

x66 + 1 799

1, 3, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 25, 27, 33, 34, 36, 38, 40, 43, 45, 47, 49, 53, 54, 56, 58, 62,
63, 67, 69, 71, 74, 80

x58 799

1, 5, 6, 7, 8, 10, 12, 14, 15, 16, 19, 21, 23, 25, 27, 33, 36, 38, 40, 43, 45, 47, 49, 53, 54, 55, 56, 58, 62,
63, 67, 69, 71, 74, 80

x37 799

Table 4.3: Maxterms and superpolys after 799 initialization rounds of Trivium.

maxterm bits superpoly round

0, 5, 6, 7, 9, 11, 13, 17, 19, 20, 22, 24, 26, 30, 32, 33, 35, 37, 39, 42, 44, 46, 48, 52, 55, 57, 61, 62, 66,
68, 72, 74, 76, 79

x63 800

Table 4.4: Maxterms and superpolys after 800 initialization rounds of Trivium.



5A Data-Driven Framework for
Adaptive Libraries

5.1 Introduction

Mainstream High Performance Computing (HPC) scientific applications are built around mono-

lithic fast parallel routines, that in most cases are customized for a specific target architecture.

With the advent of Big Data era and data-driven applications such as graph analytics or image

recognition, the traditional design of parallel routines does not provide performance portability

mainly due to unpredictable size or structure of the data. As an example, due to the ubiquity

of Matrix Multiplications in many scientific applications, Basic Linear Algebra Subprograms

(BLAS) and, in particular, Generic Matrix Multiplication (GEMM) routines are the main target

of optimizations. Several BLAS implementations provide outstanding performance on a target

architecture by assuming a fixed data size or structure (i.e., square matrices) [61–63]. However,

the matrices involved in the training of Deep Learning frameworks, for example, expose dif-

ferent sizes and shapes (usually strongly rectangular) [64]. As a consequence, it is hard to find

a good optimization which takes into account the wide range of data sizes involved. In prac-

tice, most of BLAS libraries often provide several GEMM implementations for specific input

characteristics. Such user-transparent implementations are selected by trivial heuristics based on

customized decision rules. Moreover, with the wide variety of parallel architectures available

on the market ranging from traditional parallel processors to accelerators (GPUs, FPGA) and

System on Chip architectures (SoC), the development of portable, high performance code has

become extremely challenging. Parametric implementations and auto-tuning techniques have

partially mitigated the problem by reducing the problem of performance portability by adapting

the underlying memory hierarchies and/or data thread mapping to a specific parallel architec-

ture. Within this context, a plethora of hardware-oblivious BLAS libraries has been developed

40
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[22, 65]. This work aims at offering a new prospective on adaptive libraries and performance

portability. Focusing on GPU architectures, we present a new framework based on a predictive

model to select the optimal algorithm and the related tuning parameters in order to improve the

performance of data-driven applications. The contributions of this work are manifold:

• we describe and provide three different training datasets generated from a tunable BLAS

library for GEMM routines on GPUs;

• we analyze several configurations of Decision Trees, a simple univariate supervised clas-

sifier, in order to predict an optimized GEMM implementation and related tuned paramet-

ers;

• we describe a suitable framework and workflow able to build the decision rule inside

BLAS library;

• we validate our study by providing exhaustive experimental results where we evaluate

several metrics ranging from the accuracy of each model to the overhead of the decision

rules passing through a detailed analysis of the performance;

• we define two metrics to experimentally evaluate the quality of the models generated by

our framework;

• the integration of our solution in a OpenCL BLAS library, CLBlast [22], shows up 3x

and 2.5x of speed-up both on high-end NVIDIA GPU architectures and on a low-power

embedded ARM Mali GPU.

5.2 Background

We first introduce the notation and basic concepts used hereunder starting from the matrix mul-

tiplication problem definition. Then, we provide a concise description of the CLBlast library.

Finally, we introduce in a simplified form the concept of Decision Trees classifier.

5.2.1 Generic Matrix Multiplication

The matrix-multiplication is one of the key computational kernels of traditional scientific applica-

tions and more recently of deep learning and other Machine Learning algorithms. For instance

almost all deep neural networks use dense multiplication for implementing fully connected la-

yers. BLAS libraries define the general matrix multiplication as follows:

C = α ∗ A ∗ B + β ∗C s.t. A ∈ CMxK , B ∈ CKxN ,C ∈ CMxN (5.1)
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Figure 5.1: An example of matrix multiplication where α = 1 and β = 0.

where A and B are the input matrices, C is the output and α and β are constants [66]. Further-

more, A and B can be either or both optionally transposed. In general, a matrix multiplication

is represented by the triple (M, N, K) describing the sizes of the matrices involved (see Figure

5.1).

The naive algorithm sequentially calculates each element of C by using three nested loops. This

algorithm solves the problem in O(n3) time step [67], assuming A and B are square matrices of

size n × n. However, in practice, the actual performance varies depending on the maximization

of data-reuse and the minimization of latency. In general, parameters such as tiling, threads

organization and scheduling influence the final performance [68]. For example, for most target

architectures different values of tiles strongly impact on data-reusing. Tuners explore a huge

search space looking for parameters that offer the best performance for a specific input size (M,

N, K) and architecture. Notable solutions and techniques about BLAS libraries and auto-tuning

are reported in the related work Section (5.3).

5.2.2 CLBlast Library

CLBlast is a modern, lightweight, fast and tunable OpenCL BLAS library written in C++11

[69]. It is designed to leverage the full performance potential of a wide variety of OpenCL

devices from different vendors, including desktop and laptop GPUs, embedded GPUs, and other

accelerators. The library implements BLAS routines: basic linear algebra subprograms oper-

ating on vectors and matrices. Specifically to GEMM, at a high level, there are two kernels to

choose from: a ‘direct’ kernel covering all GEMM use-cases, and an ‘in-direct’ kernel making

several assumptions about the layout and sizes of the matrices. The ‘in-direct’ kernel can thus

not be used on its own and requires several helper kernels to pad and/or transpose matrices to

meet those assumptions. Thus, there is a trade-off between running the more generic slower
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‘direct’ kernel versus a faster ‘in-direct’ kernel (O(n3)) plus several helper kernels (O(n2)). Fur-

thermore, at a kernel level, there are many tunable parameters. They include varying the work-

group size, the amount of work per thread or work-group, the vector width of computation and

loads/stores, the use of local memory for caching, and so on. In total the search space for a

GEMM kernel can easily grow to a hundred thousand realistic combinations. For more details

we refer to the CLBlast and CLTune papers [22, 70].

5.2.3 Decision Tree Classifier

Decision Trees are a non-parametric supervised learning method used for classification and

regression [71, 72]. The aim is to create a model that predicts the value of a target variable by

learning simple decision rules inferred from the data features. Some advantages of Decision

Trees are:

• simple to understand and to interpret;

• requires little data preparation;

• most of the operation in a Decision Tree are logarithmic in the number of data points used

to train the tree;

• uses a white box model, unlike (e.g., in an artificial neural network), results may be more

difficult to interpret;

• easy code translation. Decision Trees naturally encode IF-THEN-ELSE statements.

On the other hand, Decision Trees exhibit several disadvantages:

• Decision Tree learners can create over-complex trees that do not generalise the data well

(overfitting);

• it can be unstable because small variations in the data might result in a completely different

tree being generated;

• the problem of learning an optimal Decision Tree is known to be NP-complete. Con-

sequently, practical algorithms cannot guarantee to return the actual optimal Decision

Tree (low accuracy).

We rely on the Python library scikit-learn to build several Decision Trees [20]. It implements

an optimized version of the CART algorithm. This library provides several parameters in order

to define different split criteria (e.g., the maximum high of tree), minimum number of samples

required to split of an internal node and other metrics (e.g., Gini impurity).
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5.3 Related Work

Several optimized linear algebra and BLAS libraries have been released [69, 73–75] in the past.

Some of them have been designed for accelerators [22, 76, 77] or for specific GPU architec-

tures only [62]. Several works have previously published auto-tuning [78] and optimization

approaches to accelerate GEMM [79–81]. The problem of the exploration of huge search space

of tunable parameters has been partially mitigated by the use of meta-heuristics optimization

approaches [70] and Machine Learning techniques (e.g., regression). The formers are able to

predict parameters by starting from the exploration of a small search space[82–84]. Input-aware

auto-tuning arose recently [85, 86] as a way to address the problem of performance portability on

data-driven applications [87, 88]. From industrial prospective, the vendors libraries (e.g., MKL

[63], cuBLAS [62]) still use manual heuristics in order to select at runtime highly-optimized

code for specific inputs. A notable recent approach, called ISAAC [89], exploits multi-layer

perceptron (MLP) to generate high optimized parametric-code in the training step. Then, at

runtime, the library infers the best parameters for the specific input.



6Data-Driven Framework Description

In the present Chapter, we introduce a new framework for the generation of a data-driven

runtime. We identify three desirable characteristics of the framework. First, it should be able

to select the best routine among multiple possible choices according to a specific metrics for a

given input. For example, let A be a finite set of the implementations which solve a specific

problem (i.e. Matrix Multiplication), let f be a specific metric (i.e. Floating Point Operation

per Second, FLOPS), and let I be an input domain for A (i.e. the set of all triples (M, N, K));

the framework should find a = maxa f(ai) where a ∈ A for each domain i ∈ I of A. Second,

the framework should be able to build a predictive model starting from the set (training-set)

of the collected a. Third, the framework should be able to auto-generate the code which im-

plements the model. The model and the code auto-generated should also satisfy the following

requirements:

1. soundness: the model should work on the same input domain of the original library;

2. cost-aware: the auto-generated code should have negligible overhead. In other words,

the cost to select the best routine must be lower than the improvement. Formally, f (a) <

f (a + c) where c is the cost to select a.

From a implementation point of view, we decide to use the simplest classifier Decision Trees to

build the predictive model. Specifically, we use the scikit-learn [20] implementation of them.

Although Decision Trees, theoretically speaking, may provide low accuracy in several applica-

tions, as described in 5.2, they are easy to analyze. Furthermore, they can be naturally translated

in IF-THEN-ELSE statements. We now provide the description of the framework from an ar-

chitectural point of view and then, in Chapter 7.1, we analyze several predictive models and the

experimental results.
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6.1 Architectural Design

The framework is composed by two different parts, as depicted in Figure 6.1. In the first one,

the training set (optionally) and the predictive model are built offline. The reason is that those

operations are computationally expensive. In the end of the offline phase, a complex IF-THEN-

ELSE statement is defined and plugged into the target library. In other words, the offline phase

is responsible for collecting the dataset (if needed), building the model, extracting the decision

rules from the model and use them to automatically generate the corresponding source code

function F implementing the rules. As last step, F has to be plugged on top of the target library

L and L has to be re-built.

We now describe more in detail all the actions and components composing our framework start-

ing from those belonging to the offline phase.

Figure 6.1: The data-driven framework architecture.

The Datasets Generation

The generation of the datasets is the most expensive task in our framework. The dataset D is a

collection of records, where each entry is composed by a pair (I,C): I is the input description and

C is the corresponding class. The input description is an object containing several information

about the input: the size (for instance the triple (M, N, K) for a matrix multiplication), the

structure, and any further information or metrics that can characterise the input (i.e. the density

of a matrix or the matrix layout). In our case, a class represents the best configuration for a
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given input according to a selected metrics. For example, for the matrix multiplication problem,

a possible metrics is the number of floating point operations per second (FLOPS) whereas, C

can represent the best (in terms of FLOPS) GEMM routine and related tuning parameters. As a

note, since collecting the dataset is the most time consuming step, a collaborative/community-

driven approach can easily provide several datasets [90]. Each dataset D is then divided into two

disjoint subsets X and Y such that D = {X} ∪ {Y}. The subsets X and Y are respectively called

the Training set and the Test set of D and they correspond, respectively, to 80% and 20% of the

whole dataset D. The training sets are used to build the models whereas the corresponding test

sets to evaluate them.

The Model Building and the Generation of the Runtime

The next step, once the datasets are available, is the generation of the model. We use each train-

ing subset X to create the corresponding models. In order to generate a Decision Tree Classifier

we have to identify the set of features and labels in the training set; we select as features the

input descriptions I and the configuration descriptions C as labels. After the generation of the

Decision Tree, the system automatically traverses it and extracts all the rules defined in the tree

internal nodes and all the selected configurations that are the tree leaves. It then produces the

source code of the function F, representing the Decision Tree, that we use at runtime to choose

a configuration. Once F has been generated, it is plugged into the target library, and then the

system is responsible of re-building the library to enable the runtime.

The Online Phase

In the online phase, the target library is ready to be used. It transparently provides the data-

driven adaptation mechanism to any application that relies on the library. Our experiments, that

are described in detail in Chapter 7.1, show that the proposed solution may provide up to 3×

performance improvement over the traditionally optimized and tuned CLBlast library on two

very different architectures. Moreover, the experiments show that the overhead of choosing the

best configuration for each input impacts less than 2% in the worst case.



7Proof Of Concept on Matrix
Multiplication

We present a proof of concept for matrix multiplication that shows the effectiveness of our

framework. We focused on GEMM routines as they are a building block for several applica-

tions ranging from Machine Learning to Cryptography. We selected execution time as reference

metrics because we were interested in the optimisation of Machine Learning frameworks that

heavily rely on Matrix Multiplication. We chose as target library CLBlast [22] (version 0.10.0),

an OpenCL library that implements BLAS routines by exposing several tunable parameters. We

extended some functionalities of the original CLBlast to support multiple configurations for the

same kernel and we also developed a new client to easily validate a new configuration without

rebuilding the library. Moreover, we used CLTune [70], to discover the best configurations for

xgemm and xgemm_direct kernels for large set of matrices. CLTune allows for defining the

search-space for all the tunable parameters and to select the search strategy. We customized the

default search space of xgemm and xgemm_direct to the target architectures to maximize the

performance of the two routines. We decided to exhaustively explore the search space as this

guarantees the tuner always selects the best possible configuration respect to the search space.

Moreover, search strategies based on heuristics may introduce a probability distribution on the

search space that may negatively influence the prediction model.

We relied on the Collective Knowledge framework [90] for collecting the datasets, generating

several Decision Trees and evaluating their performance.

We created three datasets called AntonNet, PowerOf2 (po2) and GridOf2 (go2). The entries of

each dataset are composed by a triple (M, N, K) representing the size of the matrices involved

in the multiplication and the corresponding best configuration we discovered with the tuner.
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The first dataset, AntonNet, contains all the matrix sizes collected from three widely known

neural networks, AlexNet [91], GoogleNet [23] and SqueezeNet1.1 [92]. We collected the

matrices where batch size ranging from 2 up to 128, and it is incremented every 2 steps.

We propose this dataset since we think it can be representative: for instance the collected

matrices expose different sizes and shapes and they are usually highly rectangular (see Tables

A.1, A.2 and, A.3 in Appendix A). Moreover, we identified a large number of unique best con-

figurations respect to the number of entries in this dataset. This is probably due to the fact that

the matrices sizes are irregular.

The second dataset go2 is composed by all the matrices where M, N and K have values ranging

from 256 to 3840 and the value has to be a multiple of 256. This dataset contains approximately

10 times the number of entries with respect to AntonNet. However the number of unique best

configurations is about one third with respect to the AntonNet case.

The last dataset, po2 collects the best configurations for all the matrices having M, N and K that

are power of 2 ranging from 64 to 2048. We understand that those matrices may not be the best

choice as they represent a special case. However, we could not collect the go2 dataset on both

the architectures we tested due to time constraints. For that reason, we decided to collect po2 to

evaluate at least two datasets for each architecture. A detailed summary of the three datasets for

both the tested architectures (Nvidia Pascal and ARM Mali Midgard) is reported in Table 7.4

and Table 7.5.

We divided each dataset in the two disjoint subsets X (training-set) and Y (test-set) as described

in Section 6.1. We then used the X sets to build the models by using the scikit-learn library.

In order to evaluate the accuracy and the effectiveness of our approach, we generated several

Decision Trees where we tuned some tree parameters exposed by the scikit-learn library, like

the maximum tree depth and the minimum samples to split an internal node. Moreover, we

developed a Python script to extract other features from the generated Decision Tree, like for

example the number of leafs and the tree height, as those information are not directly available.

These statistics helped us to better understand the model and the experimental results. The same

Python script is responsible of traversing the Decision Trees and extracting from them all the

rules defined in the internal nodes and all the configurations that are the tree leaves.

Consequently the script uses the extracted information to automatically generate the C++ source

code for the function F that implements the extracted model. This function is responsible for

the selection at runtime of the best configuration according to the input. Then the framework

inserts the source code of F into our extended version of CLBlast. It also adds the configurations

extracted from the decision tree to the CLBlast database and then it builds the library.
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An example of one Decision Tree generated by the proposed framework is depicted in Figure

7.1.

Figure 7.1: An example of one Decision Tree generated by the proposed framework.

7.1 Experimental Results

7.1.1 Experimental Setup

We evaluated the proof of concept based on several runtime generated by our framework on

two different GPUs representing architectures quite different each other. The first device is the

Nvidia Tesla P100 with 16GB of memory, based on Nvidia Pascal architecture, an accelerator

for HPC systems and datacenter. The second device is the Mali-T860 GPU based on ARM

Midgard architecture. More details on both the GPUs can be found in Table 7.1.

Nvidia P100 ARM Mali-T860
Market segment Server System on Chip

Micro-architecture Pascal Midgard 4th gen
Number of available cores 3584 Cuda Core 2 Cortex-A72

(GP100) and
4 Cortex-A53

Boost frequency 1353 MHz 2000 MHz
Processing Power 9.7 TFLOPS 23.8 GFLOPS
Memory available 16 GB 4 GB

Memory type HBM2 DDR3

Table 7.1: Tested GPUs characteristics - data-driven framework.

7.1.2 Experiments

We conducted an extensive experiments campaign in order to evaluate the runtime generated by

our framework. The experiments aimed at investigating the following aspects:

• the quality of the models in terms of accuracy;

• the quality of the models experimentally evaluated;

• the overhead of the runtime generated by our framework;

• the performance comparison of the CLBlast library that uses our runtime against:
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Decision Tree Accuracy DTPR DTTR Total Decision Tree Min Number of Number of Number of Number of
Name (%) number of Height Samples Unique Config. Unique Config. Leaves Leaves

Leaves PerSplit Gemm GemmDirect Gemm GemmDir
h1-L1 62 0.376 0.637 2 1 1 1 1 1 1
h1-L2 62 0.376 0.637 2 1 2 1 1 1 1
h1-L4 62 0.376 0.637 2 1 4 1 1 1 1

h1-L0.1 62 0.376 0.637 2 1 0.1 1 1 1 1
h1-L0.2 62 0.376 0.637 2 1 0.2 1 1 1 1
h1-L0.3 59 0.436 0.736 2 1 0.3 0 2 0 2
h1-L0.4 56 0.444 0.735 2 1 0.4 1 1 1 1
h1-L0.5 51.5 0.433 0.734 1 0 0.5 0 1 0 1
h2-L1 62 0.433 0.734 4 2 1 1 2 2 2
h2-L2 62 0.416 0.703 4 2 2 1 2 2 2
h2-L4 62 0.415 0.702 4 2 4 1 2 2 2

h2-L0.1 62 0.415 0.702 4 2 0.1 1 2 2 2
h2-L0.2 62 0.416 0.703 3 2 0.2 1 2 1 2
h2-L0.3 59 0.416 0.982 3 2 0.3 0 3 0 3
h2-L0.4 56 0.606 0.736 2 1 0.4 1 1 1 1
h2-L0.5 51.5 0.445 0.734 1 0 0.5 0 1 0 1
h4-L1 67 0.687 1.120 16 4 1 1 5 2 14
h4-L2 67 0.688 1.122 16 4 2 1 5 2 14
h4-L1 67 0.686 1.119 16 4 4 1 5 2 14

h4-L0.1 65.5 0.576 0.931 8 4 0.1 1 4 2 6
h4-L0.2 62 0.506 0.845 4 3 0.2 1 3 1 3
h4-L0.3 59 0.605 0.981 3 2 0.3 0 3 0 3
h4-L0.4 56 0.445 0.737 2 1 0.4 1 1 1 1
h4-L0.5 51.5 0.434 0.735 1 0 0.5 0 1 0 1
h8-L1 67 0.806 1.340 215 8 1 1 9 4 211
h8-L2 66.5 0.807 1.341 201 8 2 1 8 4 197
h8-L4 66 0.806 1.304 175 8 4 1 6 4 171

h8-L0.1 65.5 0.576 0.931 8 4 0.1 1 4 2 6
h8-L0.2 62 0.506 0.845 4 3 0.2 1 3 1 3
h8-L0.3 59 0.606 0.982 3 2 0.3 0 3 0 3
h8-L0.4 56 0.445 0.736 2 1 0.4 1 1 1 1
h8-L0.5 51.5 0.433 0.734 1 0 0.5 0 1 0 1

hMax-L1 60 0.852 1.424 1290 19 1 1 11 4 1286
hMax-L2 58.5 0.848 1.418 790 18 2 1 8 4 786
hMax-L4 64 0.846 1.412 430 15 4 1 6 4 426

hMax-L0.1 65.5 0.574 0.927 8 4 0.1 1 4 2 6
hMax-L0.2 62 0.506 0.844 4 3 0.2 1 3 1 3
hMax-L0.3 59 0.606 0.982 3 2 0.4 0 3 0 3
hMax-L0.4 56 0.445 0.737 2 1 0.4 1 1 1 1
hMax-L0.5 51.5 0.433 0.734 1 0 0.5 0 1 0 1

Table 7.2: Decision Trees on go2 dataset - P100. The row corresponding to the best Decision
Tree for this dataset and architecture is highlighted.

– the auto-tuned version of CLBlast;

– the peak performance of the tuner.

We ran the experiments on all the datasets and for both the target architectures. We evaluated

several decision trees where we specified different values for the maximum height and/or the

minimum number of samples to split an internal node. In particular we defined H, the set of

possible values that the depth of the tree can assume, as H = {1, 2, 4, 8,Max}, where Max means

we do not specify any limitation, and the set L of possible values for the minimum number of

samples as L = {1, 2, 4, 0.1, 0.2, 0.4, 0.5} where the decimal values represent the percentage of

the samples.

To estimate the quality of the models, we calculated the accuracy by using scikit-learn. The

accuracy provides a measure of the percentage of right predictions the model does on the test

set.

This is a standard measure for classification problems since it is very easy to calculate. Moreover,

it represents well the quality of the prediction model when the classes are well defined. How-

ever, in our scenario the possible prediction classes are represented by the set of configurations

we discover with the tuner. This is the only information we have on these configurations. For
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Decision Tree Accuracy DTPR DTTR Total Decision Tree Min Number of Number of Number of Number of
Name (%) number of Height Samples Unique Config. Unique Config. Leaves Leaves

Leaves PerSplit Gemm GemmDirect Gemm GemmDir
h1-L1 55 0.692 1.085 2 1 1 0 2 0 2
h1-L2 55 0.560 0.828 2 1 2 0 2 0 2
h1-L4 55 0.600 0.895 2 1 4 0 2 0 2

h1-L0.1 55 0.702 1.092 2 1 0.1 0 2 0 2
h1-L0.2 55 0.631 0.955 2 1 0.2 0 2 0 2
h1-L0.3 42 0.619 0.918 2 1 0.3 0 1 0 2
h1-L0.4 42 0.559 0.822 2 1 0.4 0 1 0 2
h1-L0.5 42 0.418 0.691 2 1 0.5 0 2 0 2
h2-L1 52.5 0.638 1.012 4 2 1 0 2 0 4
h2-L2 52.5 0.544 0.823 4 2 2 0 2 0 4
h2-L4 52.5 0.500 0.749 4 2 4 0 2 0 4

h2-L0.1 55 0.572 0.863 4 2 0.1 0 2 0 4
h2-L0.2 55 0.540 0.820 3 2 0.2 0 2 0 3
h2-L0.3 42 0.555 0.831 2 1 0.3 0 1 0 2
h2-L0.4 42 0.560 0.838 2 1 0.4 0 1 0 2
h2-L0.5 42 0.499 0.715 2 1 0.5 0 2 0 2
h4-L1 56.5 0.641 1.005 16 4 1 1 2 1 15
h4-L2 58 0.517 0.781 16 4 2 1 2 0 15
h4-L1 56.5 0.677 1.062 15 4 4 1 2 0 14

h4-L0.1 55 0.577 0.878 7 4 0.1 0 4 0 7
h4-L0.2 55 0.446 0.681 4 3 0.2 0 3 0 4
h4-L0.3 42 0.502 0.742 2 1 0.3 0 1 0 2
h4-L0.4 42 0.529 0.778 2 1 0.4 0 1 0 2
h4-L0.5 42 0.440 0.617 2 1 0.5 0 2 0 2
h8-L1 55 0.584 0.863 84 8 1 5 13 6 78
h8-L2 56.5 0.466 0.669 60 8 2 2 9 3 57
h8-L4 52.5 0.551 0.826 45 8 4 1 7 2 43

h8-L0.1 55 0.473 0.682 8 5 0.1 0 5 0 8
h8-L0.2 55 0.466 0.669 4 3 0.2 0 3 0 4
h8-L0.3 42 0.571 0.850 2 1 0.3 0 1 0 2
h8-L0.4 42 0.592 0.885 2 1 0.4 0 1 0 2
h8-L0.5 42 0.591 0.865 2 1 0.5 0 2 0 2

hMax-L1 52.5 0.846 1.008 166 17 1 9 16 15 151
hMax-L2 54 0.570 0.858 95 15 2 3 12 4 91
hMax-L4 52.5 0.554 0.815 53 10 4 1 7 2 51

hMax-L0.1 55 0.487 0.708 8 5 0.1 0 5 0 8
hMax-L0.2 55 0.438 0.667 4 3 0.2 0 3 0 4
hMax-L0.3 42 0.628 0.954 2 1 0.3 0 1 0 2
hMax-L0.4 42 0.604 0.895 2 1 0.4 0 1 0 2
hMax-L0.5 42 0.496 0.714 2 1 0.5 0 2 0 2

Table 7.3: Decision Trees on AntonNet dataset - Mali-T860. The row corresponding to the
best Decision Tree for this dataset and architecture is highlighted.



Chapter 7. Proof Of Concept on Matrix Multiplication 53

Dataset Dataset Number of Number of Best Best Best Best
Name Size Unique Config. Unique Config. Decision Tree DecisionTree Decision Tree Decision Tree

Xgemm XgemmDirect Name accuracy DTPR DTTR
AntonNet 456 1 81 h4-L1 36 0.484 1.013

PowerOf2(po2) 216 2 41 hMax-L1 21 0.431 0.931
GridOf2(go2) 3375 6 22 hMax-L1 60 0.852 1.424

Table 7.4: Decision Trees statistics summary for each dataset - P100.

Dataset Dataset Number of Number of Best Best Best Best
Name Size Unique Config. Unique Config. Decision Tree DecisionTree Decision Tree Decision Tree

Xgemm XgemmDirect Name accuracy DTPR DTTR
AntonNet 456 28 35 h1-L0.1 55 0.702 1.092

PowerOf2(po2) 216 29 1 h8-L0.1 45 0.551 1.121

Table 7.5: Decision Trees statistics summary for each dataset - Mali-T860.

instance, we do not know if, for a matrix mi, a configuration C′mi
, Cbest

mi
exists, whose perfor-

mance are closer to the best. This means that there is not a sharp division among classes. For

this reason, we defined the following two metrics in order to experimentally evaluate the quality

of decision trees generated by the framework. The first metrics is the average ratio between the

performance of a model and the peak performance of the tuner. The second one is the average

ratio between the performance of a model over the performance of the auto-tuned version of CL-

Blast. We respectively named them DTPR (DTPeakRatio) and DTTR (DTTuneRatio). These

two metrics provide a better estimation of our models as they are able to take into account the

cases where the model infers a wrong class in terms of classification, but that are actually quite

good in terms of performance. In Tables 7.2 and 7.3, we report all the statistics and metrics

about the decision trees that our framework generates starting from the training set of go2 and

AntonNet, respectively for the P100 and the Mali. The best model for P100, according to the

latter two metrics, is the hMax-L1 even if it has not the highest value for the accuracy whereas

for the Mali is the h1-L0.1.

Figure 7.2: Percentage of accuracy of Decision Trees - P100.

In Figures 7.2 and 7.3, we report the accuracy of all the decision trees generated by our frame-

work, respectively for the P100 and the Mali devices. The value of accuracy strictly depends on

the distribution and the number of classes belong to the dataset (see Table 7.4 and Table 7.5),
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Figure 7.3: Percentage of accuracy of Decision Trees - Mali-T860.

Figure 7.4: Average performance ratio between Decision Trees and the auto-tuned version of
CLBlast (DTTR) - P100.

Figure 7.5: Average performance ratio between Decision Trees and the auto-tuned version of
CLBlast (DTTR) - Mali-T860.
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Figure 7.6: Average performance ratio between Decision Trees and the peak of the tuner
(DTPR) - P100.

Figure 7.7: Average performance ratio between Decision Trees and the peak of the tuner
(DTPR) - Mali-T860.

and it seems to be not really affected by the trees parameters. For example on P100, the accuracy

value of go2 is stable compared to AntonNet and po2; the same behaviour can be detected on

Mali as well.

Figures 7.4 and 7.5, report the DTTR values of all the decision trees generated by our framework,

respectively for the P100 and the Mali devices, while the DTPR values are reported in Figures

7.6 and 7.7. The values of these two metrics are indeed close related to the tree parameters. In

particular, they are strictly affected by the value of the minimum number of samples splitting an

internal node. We expected that behaviour, as that parameter implicitly assigns a weight to the

classes; the values of these weights are proportional to the number of occurrences of the class in

the training set. The DTTR values are also interesting as they provide a measure of how good

it is a decision tree with respect to the standard CLBlast in terms of performance. Indeed, the
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DTPR values give an estimation of how close a decision tree is to the theoretically best solution

where we select for each matrix its best configuration.

As we are interested in evaluating the overhead of our generated runtime, we measured the time

to pick up a configuration for all the matrices we tested. In the worst case, when we evaluated

the hMax-L1 on go2 that has more than 1200 leaves (see Table 7.2), our runtime introduced an

overhead in terms of performance that is less than 2% on small matrices that decreases as the

size of the matrices grow. On average, the overhead impacts less than 1% on execution time so

it can be considered negligible.

Figure 7.8: Comparison of three version of CLBlast(Peak of the tuner, h4-L1 and Tune) on
AntonNet-P100 - N = 1000, K = 4096.

Figure 7.9: Comparison of three version of CLBlast(Peak of the tuner, hMax-L1 and Tune) on
go2-P100 - M = 2048.

Finally, we show the performance of the best decision tree generated by our framework for each

dataset. We report the comparison between the performance of CLBlast using the runtime, the
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Figure 7.10: Comparison of three version of CLBlast(Peak of the tuner, hMax-L1 and Tune)
on po2-P100 - M = 1024.

Figure 7.11: Comparison of three version of CLBlast(Peak of the tuner, h1-L0.1 and Tune) on
AntonNet-Mali-T860 - N = 1000 and K = 1024.

auto-tuned CLBlast and the peak performance of the tuner. For the experiments, we used the

matrices belonging to the test sets in order to fairly evaluate the models.

The results on AntonNet, go2 and po2 on P100 are reported respectively in Figures 7.8, 7.9

and 7.10, while the results on AntonNet and po2 on Mali-T860 are presented in Figures 7.11

and 7.12. On P100, the performance of the best decision tree on go2 is very close to the peak

performance of the tuner and it outperforms up to 3× the performance of the auto-tuned CL-

Blast. On the other two datasets, our best decision tree performance is closer to the standard

CLBlast. These results are in agreement with the values of the DTPR and DTTR metrics. Fur-

thermore, both AntonNet and po2 on P100 have an unbiased distribution of the configurations.
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Figure 7.12: Comparison of three version of CLBlast(Peak of the tuner, h8-L0.1 and Tune) on
po2-Mali-T860 - M = 1024.

By looking at Table 7.4, we can see that for the two datasets almost all configurations corre-

spond to xgemm_direct; an unbiased distribution of the configurations may affect negatively the

prediction as the experiments show.

On Mali-T860 instead, the configurations of AntonNet and po2 belong to both the kernels

xgemm and xgemm_direct (see Table 7.5). The experiments show that, in this case, the per-

formance of our library is close to the peak of tuner for most of the matrices. In particular, our

adaptive libraries are able to outperform up to 2.5× the performance compared to the by-hand

optimised and tuned CLBlast Library on Mali-T860.



8Concluding Remarks

In the present dissertation, the candidate presented the main contributions of his PhD related to

two different topics: in the first part, a cryptanalysis framework of the Cube attack for GPUs is

presented along with a detailed discussion about its design and implementation as well as the

state-of-the-art cryptanalytic results obtained by using it against a round-reduced version of the

Trivium cipher. In the second part, the candidate proposed a new runtime system to speedup

data-driven applications that leverages on Machine Learning techniques. He also presented a

proof of concept to speedup matrix multiplication for unpredictable matrix sizes along with a

detailed performance analysis.

The main contributions of each part are hereunder summarized.

8.1 Part I

In the first part of the thesis, the candidate presented and discussed the first all-round GPU-

tailored implementation of the Cube attack, resulting in a flexible and powerful framework,

validated against known results in the literature, and soon to be released into the public domain.

The tool can be used against any cipher (with minimal effort), and it supports both latest gene-

ration GPU architectures and workload distribution over multi-GPU systems. The framework

allows to improve the state-of-art attacks against reduced-round versions of Trivium.

Moreover, he provided a careful performance analysis that shows the feasibility and the scala-

bility of the proposed approach. This opens new prospects related to the possibility of expanding

the quest for superpolys to a dimension never explored in previous works.

More generally, the proposed framework is expected to be the starting point of future attacks,

thus paving the way for further research able to assess the real potential of the still disputed yet

praised Cube attack.

59
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In particular, the candidate:

1. shows how to tune the design and implementation of the Cube attack to the characteristics

of GPUs, in order to fully exploit parallelization while coping with limited memory [16,

19].

2. presents a flexible framework to mount Cube attacks against any cipher, under the sole

condition that the cipher is as well implemented in GPU. The tool is independent of the

GPU architecture, and it supports extension to multi-GPU systems.

Moreover,

3. The framework proposed by the candidate improves the state-of-the-art against reduced-

round versions of Trivium, yielding full key recovery up to 781 initialization rounds

without bruteforce and the first ever maxterm after 800 initialization rounds [16]. In

addition, some new candidate maxterms for both Trivium after 800 initialization rounds

and for Grain-128 after 160 initialization rounds have been discovered by running some

new experiments. The detailed description and analysis of these results are going to be

released soon in a work that is now being finalized.

4. The candidate proposes an implementation that allows for exhaustively assigning values

to (subsets of) public variables with negligible additional costs. This means extending

the quest for superpolys to a dimension never explored in previous works, and, by not

being tied to a very small set of IV combinations, potentially weakening one of the basic

requirements of the Cube attack, that is, the assumption of a completely tweakable IV .

5. He carefully analyses the performance of the proposed implementation, in terms of: (i)

speedup with respect to a parallel CPU implementation, (ii) dependence on system para-

meters, (iii) comparison among different architectures (including latest generation GPU

cards), and (iv) impact of a multi-GPU distributed approach [19].

6. He provides the first GPU tailored implementation, to the best of his knowledge, for

Trivium and Grain-128. He validates the framework on both the ciphers by extracting

the symbolical representation of the polynomial corresponding to round-reduced versions

of the ciphers. He then runs the attacks on some selected cubes, specifically selected from

the symbolical representations to verify the consistency of the results.
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8.2 Part II

The second part of the dissertation discussed the prospective of a new generation of adaptive

high-optimized libraries based on Machine Learning techniques. The candidate started his ana-

lysis by evaluating a simple supervised classifier to build a predictive model for GEMM on

GPUs. He analysed the performance of several models by taking into account different para-

meters. From a theoretical prospective, as expected, Decision Trees showed very low accuracy.

However, from a more practical point of view the impact in terms of performance of the sub-

optimal classification is mitigated. The candidate also showed how to generate datasets from

tuners, as well as, how to integrate predictive models in existing libraries like CLBlast. Finally,

he presented a proof of concept for generating adaptive library for matrix multiplication and he

evaluated the generated libraries on two different GPU architectures (Nvidia Pascal and ARM

Mali Midgard). In both cases, the adaptive libraries allow to obtain a speed-up by up to 3x and

2.5x over a traditionally optimized and tuned library. There are several possible directions of

future work. First, it is worth investigating more complex techniques in order to improve the ac-

curacy of the models. Second, it will be interesting to investigate how to generate representative

and compact training sets. This aspect is particular crucial for embedded architectures where

the generation of the training set is expensive (i.e., the generation of po2 required 7 days). Both

the source code and the datasets used in the experiments are going to be release soon.

The candidate in the second part:

1. describes and provides three different training datasets generated from a tunable BLAS

library for GEMM routine on GPUs;

2. analyzes several configurations of a simple univariate supervised classifier, Decision Trees,

used to predict an optimized GEMM implementation and related tuning parameters;

3. describes a suitable framework and workflow able to build the decision rule inside BLAS

library;

4. validates the proposed study by providing exhaustive experimental results where he evalua-

tes several metrics ranging from the accuracy of each model to the overhead of the de-

cision rules passing through a detailed analysis of the performance;

5. shows as the integration of the proposed solution in a OpenCL BLAS library, CLBlast

[22], offers up to 3x and 2.5x of speed-up both on high-end NVIDIA GPU architecture

and a low power embedded ARM Mali GPU.
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M N K
2l, l ∈ {1, ... , 64} 1000 1
2l, l ∈ {1, ... , 64} 1000 4096
2l, l ∈ {1, ... , 64} 4096 1

2l, l ∈ {1, ... , 64} \ {63} 4096 4096
2l, l ∈ {1, ... , 64} \ {63} 4096 9216

{128} {169} {1728}
{128} {729} {1200}
{192} {169} {1728}
{256} {169, 729} {1}
{384} {169} {1, 2304}

Table A.1: Matrix sizes collected from AlexNet - batch size 2 to 128.
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M N K
2l, l ∈ {1, ... , 64} 1000 {1, 1024}
{16, 96, 192} {196} {1, 480}
{16} {784} {1, 192}

{24, 112, 144} {196} 1 {1, 512}
{32, 48, 160, 192, 256} {49} {1, 832}

{32, 160} {196} {1, 512, 528}
{32} {784} {1, 192, 256, 400}
{48} {196} {1, 400}
{64} {196} {1, 480, 512, 600, 800}
{64} {784} {1, 192, 256}
{64} {3136} {1, 64}
{64} {12544} {1, 147}
{96} {784} {1, 192, 800}
{128} {196} {1, 512, 528, 800}
{128} {784} {1, 256, 864}
{192} {784} {1, 1152}
{192} {3136} {1, 576}
{208} {196} {1, 864}
{224} {196} {1, 1008}
{256} {196} {1, 528, 1152}
{288} {196} {1, 1296}
{320} {49, 196} {1, 1440}
{384} {49} {1, 832, 1728}

Table A.2: Matrix sizes collected from GoogleNet - batch size 2 to 128.

M N K
{16} {3136} {1, 64, 128}
{32} {784} {1, 128, 256}
{48} {196} {1, 256, 384}
{64} {196} {1, 384, 512}
{64} {3136} {1, 16, 144}
{64} {12769} {1, 27}
{128} {784} {1, 32, 288}
{192} {196} {1, 48, 432}
{256} {196} {64, 576}
{1000} {196} {1, 512}

Table A.3: Matrix sizes collected from SqueezeNet 1.1 - batch size 2 to 128.
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Since their advent as general purpose devices, GPUs have been exploited in many scientific

fields like Bioinformatics, Computational Finance, Physics, Data Science, Cryptography, Ma-

chine Learning and so on. Their high level of parallelism and computational power combined

with high level API and libraries attracted researchers and companies and nowadays GPUs are

considered to be crucial for many tasks, as demonstrated by the last Top 500 Supercomputer list,

where 2 supercomputers equipped with GPUs belong to the top ten1.

In the following, a brief description of the GPU architecture that summarises their characteristics

is provided; it will use the Nvidia CUDA terminology as it is the same used in the first part of

this dissertation.

Figure B.1: Floating-Point Operations per Second for the CPU and GPU [25].

1https://www.top500.org/list/2017/11/
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As illustrated in Figure B.1, the extraordinary computational horsepower of GPUs may offer

up to 7× of FLOPS compared to CPU. This due the fact that GPUs are designed for compute-

intensive and highly parallel computation therefore they have more transistors devoted to data

processing rather than data caching and flow control, as schematically illustrated by Figure B.2.

Figure B.2: The GPU Devotes More Transistors to Data Processing [25].

In particular, GPUs are ideal candidates to address problems where the same flow of operations,

with high arithmetic intensity, is executed on many data elements in parallel: the main pros of

executing the same flow of operations on each data element is a lower requirement for soph-

isticated flow control; the high arithmetic intensity combined with the concurrent execution on

many data elements allow to hide the memory access latency with calculations, without the need

of big data caches.

In 2006, Nvidia proposed a general purpose parallel computing platform and programming

model, CUDA, that allow to exploit the parallel compute engine of its GPUs to solve many

computational problems efficiently than the CPU. Nvidia also provides a software environment

that allows developers to use C as high-level programming language and a rich set of libraries.

From hardware perspective, the basic components of an Nvidia GPU are the general-purpose

processors called streaming multiprocessors (SMs). Each SM contains many CUDA cores, so

the total number of CUDA cores available is equal to the number of cores per multiprocessor

multiplies to the number of SM. The multiprocessor is designed to execute hundreds of threads

concurrently; to manage such a large amount of threads, it employs a unique architecture called

SIMT (Single-Instruction, Multiple-Thread) [25]. The SM creates, manages, schedules, and

executes threads in groups of 32 parallel threads called warps. Individual threads composing

a warp start together at the same program address, but they have their own instruction address

counter and register state and are therefore free to branch and execute independently. Although

fully supported, divergent branch of threads should be avoided, if possible, as it forces divergent

threads to be executed sequentially and negatively impacts the performance. Furthermore, each

SM contains thousands of 32-bit registers that can be partitioned among threads of executions,

warp schedulers, and a parallel data cache or shared memory.

From software perspective, Nvidia provides the CUDA programming, that has been designed

to help programmers in developing parallel applications, composed by device functions called

kernel, able to transparently exploit newest device capabilities and scale as more processor cores
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become available. It exposes to developers a minimal set of language extensions that provides

three main abstractions: a hierarchy of thread groups, shared memories and barrier synchro-

nization. These abstractions support different kind of parallelism from fine-grained (data and

thread) to coarse-grained (data and task) and they help the programmer to partition the pro-

blem into coarse sub-problems that can be solved independently in parallel by blocks of threads;

within the blocks each sub-problem can be partitioned into finer pieces and all the threads be-

long to the block can cooperatively in parallel solve it. The blocks of threads are then executed

independently from each other on SMs. The threads of a thread block execute concurrently on

one multiprocessor, and multiple thread blocks can execute concurrently on one multiprocessor.

As thread blocks terminate, new blocks are launched on the vacated multiprocessors.

Thread blocks are required to execute independently: it must be possible to execute them in any

order, in parallel or in series. This independence requirement allows thread blocks to be schedu-

led in any order across any number of cores as illustrated by Figure B.3, enabling programmers

to write code that scales with the number of cores. Each block can contain up to a predefined

Figure B.3: Automatic Scalability [25].

number of threads (1024 on current GPUs), since all these threads are expected to reside on the

same processor core and must share the limited memory resources of that core.

Threads can access different types of GPU memory: registers, local memory, shared memory,

and global memory. The fastest but smallest memory is provided by the registers that are located

on-chip; they are equally divided across active threads in each multiprocessor. As each multi-

processor has a fixed number of registers, an excessive use of them (i.e. high register pressure)

limits the number of threads that can run simultaneously and it may expose memory latency.

The global memory is the biggest and slowest available and it includes also the local memory;
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the global can be accessed by all the threads and it is the default space for the GPU input data

and the kernels output data. The local memory is private to each thread and it is used to store

data that does not fit in the registers, reducing the register pressure. Both registers and local

memory are managed by the compiler and the programmers do not have directly access to them.

The shared memory is visible visible to all threads of the block and with the same lifetime as

the block; it is quite fast as it resides on-chip. There are also two additional read-only memory

spaces accessible by all threads: the constant and texture memory spaces. Each memory types

is optimized for different memory usages and the memory access pattern may heavily influence

the performance of the application; interested readers may find an in depth discussion about it

in [93]. For example, for global memory, as a general rule, the more scattered the addresses

are, the more reduced the throughput is. The reason is that global memory is accessed via 32-,

64, or 128-byte byte memory transactions. When a warp executes an instruction that accesses

global memory, it coalesces the memory accesses of the threads within the warp into one or more

of these memory transactions depending on the size of the word accessed by each thread and

the distribution of the memory addresses across the threads. In general, the more transactions

are necessary, the more unused words are transferred in addition to the words accessed by the

threads, reducing the instruction throughput accordingly. It is therefore fundamental to maxim-

ize coalescing memory accesses in order to achieve high memory bandwidth. The throughput

of global memory influences the overall application performance as the global memory is the

default space for GPU’s input and output; for this reason, the memory access pattern plays a

fundamental role in the design and implementation of the applications.

In the present dissertation the problem of optimising GPU applications has been addressed from

two different point-of-view. In the first part, a cryptanalysis framework specifically tailored on

GPUs has been proposed, all the design and implementation choices are carefully described and

the pros and cons highlighted. The framework’s kernels and the ciphers were painstakingly de-

signed and implemented by avoiding high registers pressure and divergent branches; moreover,

the enforced memory access pattern provides full coalescing thus maximizing the throughput.

In the second part of the present thesis, a new strategy for automatically tune GPU applications

leverage on Machine Learning has been proposed. The tuning process plays with low-level

implementation choices as, for example, memory padding and striding access to identify the

memory access pattern that maximize the throughput and, consecutively, the overall perfor-

mance. As already mentioned, developing GPU applications that are able to efficiently exploit

the potentiality of GPUs is an hard process; the programmers have to design parallel algorithms

and they have to take care about low-level implementation’s details, like for example the memory

access pattern, registers pressure, and divergent branches, to develop high performance applica-

tions that really exploit all the GPUs potentiality.
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