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Abstract

In this dissertation we study the effect of perturbations that break integrability in two-
dimensional dimer models. We examine universal behaviors through fermionic construc-
tive Renormalization Group methods. Two different phenomenologies are considered:
perturbations of a model in the bulk of the so-called rough phase and perturbations of
a model at the edge between rough and frozen phases. In the former case, integrability
as provided by Kasteleyn’s solution is destroyed via the addition of an extensive num-
ber of extra edges that break planarity (but not bipartiteness) of the underlying square
lattice. We prove that, if the weight λ of the non-planar edges is small enough, a suit-
ably defined height function scales on large distances to the Gaussian Free Field with
a λ-dependent amplitude, that coincides with the anomalous exponent of dimer-dimer
correlations. This represents a weak-universality result as conceived by Kadanoff. In
the latter case the probability measure is perturbed by adding a weak, local interaction
between dimers that breaks integrability. We prove that approaching the boundary of
the rough phase from the inside, at distance ϵ, the Ronkin function, a.k.a. free energy,
displays a so called Pokrovsky-Talapov (PT) type of law: if the strength of the interac-
tion, λ, and ϵ, are small enough, then R(ϵ) −R(0) ∼ c(λ)ϵ3/2 for some analytic function
c(λ) = 4

√
2

3π + O(λ). This constitutes a strong-universality result for PT behavior, as
the critical exponent 3/2 is not renormalized by the interaction. As such, this suggests
a connection with a KPZ Universality Class for the fluctuation of the level lines of the
associated height function.
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OUTLINE OF THE THESIS

Chapter 1 summarizes the models studied in this thesis, the results obtained for them,
and the main strategies, contextualized in a broader introductory framework. It is struc-
tured as follows.

• In Section 1.1, we provide an introduction of the topic of universality, particularly
for critical phenomena in two-dimensional equilibrium statistical mechanics and mo-
tivate how the Renormalization Group enters the discussion. Then we provide a
more specific overview of the non-interacting dimer model and related results.

• In Section 1.2 we give the motivations for the study of interacting dimer models
in connection with the previously given overview, justifying the interest in specific
issues: in particular we motivate two distinct phenomenologies of interest that we
intend to study. The first case concerns a dimer model in the bulk of the rough
phase with interaction that breaks the planarity of the underlying graph, and hence
integrability, where we study the fluctuations of the associated random surface. The
second case concerns a dimer model in the rough phase at the rough-to-frozen tran-
sition, where we study the asymptotics of the free energy of the model. Each of the
next sections in Chapter 1 is bipartite to distinguish these two cases, which we name
“Bulk” and “Edge”.

• In Section 1.3 we introduce the necessary definitions of the models used to study
these phenomenologies.

• In Section 1.4 we state the results we obtain for the two cases together with per-
spectives and generalizations. We also give, in Section 1.4.1, an idea of the strat-
egy of the proof in both cases. These are based on the combination of rigorous
fermionic Renormalization Group techniques with the integrability structure of the
dimer model.

In Chapter 2 we discuss the construction required to prove the results of the model
in Section 1.3 (bulk). This chapter is a transposition of the contents of the article [1]
published in 2023 in collaboration with A. Giuliani and F. L. Toninelli.

• In Section 2.1 we review some useful aspects of Kasteleyn’s theory on toroidal
graphs and derive the Grassmann representation of the weakly non-planar dimer
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model, which is a novelty and turns out to be more involved with respect to the
previous works [2,3].

• In Section 2.2 we prove one of the main results of our work, concerning the logarith-
mic behavior of the height covariance at large distances and the Haldane-Kadanoff
scaling relation, assuming temporarily a sharp asymptotic result on the correlation
functions of the dimer model.

• In Section 2.3 we describe the proof of the Haldane-Kadanoff relation, based on a
generalization of the analysis carried out in [2].

• Sections 2.3.1-2.3.3 contains the main novel aspect of this part of the work, which
consists in the identification and integration of the massive degrees of freedom.

• Section 2.3.4 contains the integration of the massless degrees of freedom, for which
the discussion is reduced to the one described in [2].

• In Section 2.4, we complete the proof of the convergence of the height function to
the GFF.

Chapter 3 contains the technical analysis of the model defined in Section 1.3 (edge) and
the proof of the results in Theorems 1.4.5-1.4.4. The original aspect of this chapter is the
implementation of multiscale Renormalization Group techniques, inspired by those used
in [4], for the study of the asymptotic free energy behavior of the interacting dimer model.
More precisely, this turns out to be, to the best of our knowledge, the first proof of the
universality of the Pokrovsky-Talapov critical behavior for an interacting dimer model
near the rough-frozen transition curve. This chapter is structured as follows.

• In Section 3.1 we recall known results for the non-interacting dimer model. In
particular we prove Theorem 1.4.5 in the non-interacting case.

• Section 3.2.1 contains the Grassmannian representation of the model. Our case is
a direct Corollary of the one obtained in [2, Proposition 1].

• In Section 3.3 we set up the multiscale analysis. This section is standard and is
used to construct the inductive structure of the Renormalization Group analysis. We
choose to describe the rough-to-frozen transition via a specific parametrization in
the phase diagram which has the convenience of reducing our setting to the existent
literature. The technical analysis becomes essentially the same as the one of [4];
generalization are then commented (see Section 1.4 (edge)). In Section 3.3.1 we
set up the multiscale structure to deal with the shift of the rough-frozen transition
point caused by the interaction: this fact is one the main differences with [4], where
the transition point instead is not modified by the interaction. In Section 3.3.2
we set up the double-regime multiscale structure, which is necessary to control the
thermodynamic limit of the theory uniformly as we approach the edge of the rough
phase.

• Section 3.4 is the core of the technical analysis. It is standard and rooted in an
extensive literature. The main references for us in this context are [2, 4, 5]. The
goal of this section is to combine the ideas of [4] with the formalism developed in [2]
for an interacting dimer model. In Section 3.4.2 there are quantitative estimates,



output of the multiscale structure, necessary to check the convergence of the theory
in multiscale analysis; Section 3.4.3 contains the Gallavotti-Nicolò tree formalism
and a comparison with [4] in order to export the estimates into our framework.

• Section 3.4.1 collects the information arising from the inductive renormalization
procedure of the previous section, in terms of finite difference equations for the
“running coupling constants”, the so called Beta function equations. These equa-
tions are solved in Section 3.4.4 via a fixed point theorem in a suitable space of
sequences; the existence and smallness of the solution then implies the convergence
of renormalized perturbation theory.

• Section 3.5 contains the proof of the main Theorems 1.4.4-1.4.5





CHAPTER 1

INTRODUCTION

1.1 The framework

Universality

Universal behaviors are widespread in mathematics and physics. We vaguely say that such
a behavior occurs if, starting with an object O(P,N), characterized by a set of properties
P and a parameter N : (1) O(P,N) admits a limit O(P ; ∞) as N → ∞; (2) O(P ; ∞) is
independent of some of the properties of O(P,N) and it is possibly characterized by new
“emerging” ones.

Just to make things concrete, in Probability theory, the fundamental Central Limit
Theorem proves that the Gaussian distribution is the limiting universal object of the
diffusively-rescaled N -step of a wide class of random walks. Expanding the point of view
and endowing the object with more structure, Donsker’s Theorem promotes Brownian
motion as the continuous limiting random function of such a class of walks. In particular,
special properties like scale invariance of the process, emerge only in the limiting procedure.
Modern developments of these ideas have led to studying and characterizing more complex
“limiting” objects, as for instance: scaling limit of random geometries (Random Planar
maps and Brownian geometry [6]), spectrum of large random matrices (Tracy-Widom and
Semicircle laws [7], [8]), random interfaces (Schramm Loewner evolutions, Gaussian Free
Fields.. [9–11]), etc.

The understanding of such universal behaviors is rewarding from both a theoretical and
practical perspective. As inhabitants of the (finite) world, i.e. N < ∞, it provides a chance
to capture only the crucial properties of the object that we observe, at large but finite N .
Furthermore, it allows answering concrete questions arising from the study of real world
problems: such models are naturally found in the attempt to understand physical problems
(e.g., models for 2D quantum gravity are associated to random geometry of random planar
maps, energy levels of nuclear physics heavy atoms behavior to the spectrum of large
random matrices, etc.) and, in more recent times, also to understand complex phenomena
arising in computer science challenges.

Benefiting from the lively exchange between physics and probability, the field of statis-
tical mechanics aims to describe the macroscopic behavior of a system starting from the
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fundamental laws among its many microscopic constituents. This includes enhancing the
understanding of phenomena such as phase transitions.

In equilibrium statistical mechanics, the concept of universality, also known as the
universality hypothesis, has the following meaning: near a second-order phase transition,
it is expected that critical exponents do not depend on microscopic details of the Hamil-
tonian but only on some of its structural properties, such as symmetries, dimensionality,
etc. Therefore, models with the same “structural properties”, after suitably identifying the
parameters describing the systems and possibly changing the value of these critical param-
eters, share exactly the same critical exponents [12]. This leads to the interest in studying
different universality classes, i.e., classes of models with the same critical behavior, in the
sense just defined.

From the mid-20th century onwards, several experimental confirmations began to high-
light the validity of this hypothesis, demonstrating that models describing completely
different physical situations manifest the same critical behavior, i.e., the same critical
exponents with a suitable identification of the parameters [13]. On the theoretical front,
the formal known analogy between statistical mechanics and field theory allowed to export
ideas from the so-called Renormalization Group (RG), originally used to handle ultraviolet
divergences in particle physics, to problems of critical points in phase transitions.

The development of the RG, starting from the late 60s, clarified the concept of the
universality class and provided a fundamental explanation for the phenomenological expec-
tation that different models, even describing completely different physical situations, could
show the same critical behavior [14–18]. However, due to the mathematical complexity
emerging from any reasonable description of realistic models, a rigorous explanation of
such phenomena, and an implementation of RG ideas, were still out of reach.

Surprisingly, extremely simplified models turned out to be good candidates for cap-
turing the crucial properties even of more realistic ones. One of the most famous, the
Ising model, proposed by Lenz in 1925 as a simple model for magnetism [19,20], provided
the first rigorous demonstration of a phase transition for short-range (nearest neighbor)
interactions in two dimensions [21]. It also proved that in low dimensions the predictions
on critical exponents of mean-field theories were not correct.

The flourishing theory of integrable models provided new solvable examples, such as
1D quantum spin chains and 2D vertex models (see [22] for a review), among which some
showing the existence of new universality classes different from the Ising’s one. In par-
ticular, six-vertex and eight-vertex models (as shown by Lieb’s and Baxter’s solutions,
resp. [22–24]) emphasized the need for a reformulation of the original universality hy-
pothesis in a “weaker” sense [22, 10.12], [25]: indeed the same model could have critical
exponents that change continuously with an appropriate combination of the energy values
of vertex configurations. This was the first example of a continuous family of universal-
ity classes “parametrized” by a single constant. In this context, universality means that
all the critical exponents are simple, rational, functions of just on of them: once one of
the exponents is known, all the others can be computed via simple “universal” relations,
mainly due to Kadanoff [25].

The recent developments of techniques for integrable models led to outstanding results
in the field, to a deeper and broader understanding of critical phenomena, by establishing
fascinating connections between them and promoting the development of mathematics it-
self [26–32] etc. Unfortunately the (prevalent) impossibility of extending these results to
slightly more realistic scenarios remains unsatisfactory due to the fragility of integrability.
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To quantitatively understand the broader framework of universality, an ideal approach,
unifying the structure of integrability of simplified models together with structures surviv-
ing even when an exact solution is no longer present for more realistic ones, was needed.
Although the goal is still distant, the RG is a valid candidate for this purpose. Indeed,
at least for non-integrable models obtained as perturbations of exactly solvable ones, con-
structive fermionic RG techniques have shed light on the weak universality phenomenon
as conceived by Kadanoff [12, 25, 33], where critical exponents may vary continuously
with the intensity of the perturbation, but, are still mutually related by simple algebraic
relations that allow expressing them all in terms of a single one.

These techniques, rooted first in the ideas of [34, 35] and formalized in the 1990s
[36–39], have been successfully applied to various models since then. Examples include
quantum 1D models [40,41], quantum systems for charge transport [42–44], classic spin
models [45–47], and dimer models [2, 3].1 They allowed, among other things, a rigorous
quantification of the original concepts of relevance, marginality, and irrelevance of the RG,
which contribute to producing a change in the critical exponents of a model.

While these methods extend the verification of universality to a broader class of non-
integrable models, they are still limited to small perturbations of integrable models and
are not fully developed to address problems with general geometries, despite some progress
has been made in recent times [45, 47]. These are, anyway, the obstacles and the chal-
lenges in this field of research and we hope that the above mentioned interplay between
integrability and renormalization group could lead to many more spectacular results.

From now on, we will examine the 2D dimer model and perturbations thereof. The
dimer model represents an important framework not only for its rich integrable structure,
but also because it can be seen as a simple model for random surfaces. Moreover, since
the standard dimer model has a determinantal structure, it provides the perfect ground
to apply ideas and techniques of the renormalization group in order to test universality in
the presence of integrability-breaking perturbations, as explained above.

Dimer models

Perhaps you happened to wonder how many ways you could place domino pieces on
a chessboard, or perhaps more likely you happened to be at a party and were bound to
be paired up with someone for the final dance. In either case, you were the “victim” of a
dimer model: the big difference between the two is the underlying graph structure.

Monomer-dimer models appeared in the physics literature in 1935 in a paper by Fowler
and Rushbrooke [49] and were introduced as simplified models for liquids of anisotropic
molecules. Later on, in 1971, Heilmann and Lieb [50] proved that, in the presence of a
positive density x of monomers (i.e. vacancies on the underlying lattice), the pressure
of the model p(x) is analytic, i.e. no phase transition can occur. Moreover, they proved
that monomer-dimer correlations decay exponentially in the distance. When x = 0, the
so called “fully packed” regime (also known in graph theory as perfect matching problem)
things are more interesting. Kasteleyn [51,52] and independently, Temperley and Fisher
[53], solved the model by computing the partition function in terms of Pfaffians, thus

1See also [48] about the state of the art.
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Figure 1.1: Left: dimer configuration on a portion of Z2, dual graph dashed; Right:
domino tiling of a square.

showing its determinantal structure, when the underlying graph is planar or embedded in
the 2 dimensional torus.2 When the graph is also bipartite, a natural notion of height [58]
can be associated to each dimer configuration, which defines a discrete surface that can
be seen from the associated tiling in the dual lattice (see Figure 1.2). Such a description
is important in connection with the understanding of crystal shapes and growth [59], [60]
[61], and more in general, for the broader context of random interfaces arising in systems
with coexisting phases [62]. It also turns out to be a powerful tool to analize the model
itself: as a very first application it gives sufficient conditions for tileability of a domain [63].

Despite local dimer statistics were known at least since 1963 [64], in the early 2000’s,
such a discrete-surface representation, provided characterizations of local dimers statistics
for domino tilings in terms of variational principles of certain entropy functionals [65]:
these results were related to the first rigorous proof about the so called limit shape3 of
the height field for uniform tilings, robust under geometric deformations of the model.
Few years later in the translationally invariant case, more specifically in the case (of
our interest in this thesis) of weighted doubly-periodic bipartite and planar graphs, a
first complete characterization of the dimer model’s phase diagram, in connection with
the fluctuations property of the associated surface, was pointed out [32]. The set of
translationally invariant Ergodic Gibbs Measures was completely characterized in terms
of the slope of the height field. They unvealed a very deep algebraic structure of the model
connected to its critical behavior. Depending on the choice of the edge weights, we can
move between the so called “rough, frozen, smooth” phases of the model4.

A central object in this scenario is the so-called characteristic polynomial P (z, w),

2For higher genus surfaces, Kasteleyn postulated [54] that the partition function could be expressed
as a sum of 4g determinants but a full combinatorial proof of this fact came only quite later [55, 56]; see
also [57].

3The first proof of a limit shape existence was obtained in [66] and extended then in [65] via variational
methods and for general geometries.

4In the dimer model literature, these are sometimes also known as “liquid, frozen and gas” phases.
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Figure 1.2: Left: dimer configuration of an hexagonal domain (dual graph dashed);
Right: associated tiling configuration in the dual graph. Emerging stepped surface, ob-
tained by coloring by yellow, orange and red the lozenges respectively oriented as north-
east, north-west and horizontal. The lozenge tiling is obtained by canceling a dual dashed
edge iff it is crossed by a dimer.

where z, w are complex variables. For instance, the infinite-volume free energy is given
by an integral of log |P (z, w)| over the torus T2 = {(z, w) ∈ C2 : |z| = |w| = 1}. Also,
the large-distance decay of correlations is dictated by the so-called spectral curve, i.e. the
algebraic curve C(P ) = {(z, w) ∈ C2 : P (z, w) = 0}. When the edge weights are such that
the spectral curve intersects T2 transversally one is in the “rough” or “massless” phase,
where the two-point dimer-dimer correlation of the model decays like the inverse distance
squared. Correspondingly the height field scales to a Gaussian Free Field (GFF) and the
variance grows like the logarithm of the distance times 1/π2. Remarkably, this pre-factor
is independent of the graph weights and of the specific choice of the bipartite periodic
planar lattice. In this sense, this model displays a very strong form of universality [32].

These universality results concern the dimer model on an infinite periodic lattice. Let
us now focus on a version of the model in finite domains in the plane: here things are more
subtle. It was already pointed out in Kasteleyn’s original paper [51], even if not discussed,
and then quantitatively proved in [65] that boundaries can deeply affect dimer statistics
with a long range effect. The first simple geometry for which a heterogeneity, or phase
separation, was shown, is the so called Aztec diamond, first introduced in [67,68]. Here,
for uniformly random domino tilings, the presence of boundary was shown to produce
a macroscopic phase separation in the domain, between the so called frozen and rough
regions, where the tiling behavior changes from deterministic to random, respectively [69]:
also, in the scaling limit, the separating 1D interface tends to a deterministic curve, the
so called Arctic circle. The first results to demonstrate heterogeneity of dimer statisics
well inside the arctic circle, also called local statistics, are in [66], later extended in [65].
For dimer statistics near the arctic circle, also referred to as edge statistics, results of [70]
show locally a connection to the Tracy Widom distribution and that the entire boundary
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process (the so called north polar boundary), after an appropriate rescaling5, converges
to the so-called Airy process. Such a process, a universal scaling limit introduced in
[71], is believed to govern various phenomena related to the Kardar–Parisi–Zhang (KPZ)
universality class [72]. See [73–75]. Upon these, similar results have been obtained
in subsequent years for the edge process for lozenge tilings models in several specific
families of geometries6. These results, however, rely heavily on the explicit covariance
structure (Kasteleyn matrix asymptotics) of the model and are not robust even under
small variations of the domain’s geometry. Only in very recent times, [76, 77] a form of
universality w.r.t. the domain’s geometry, has been obtained. Far from specific singular
points of the arctic curve7, convergence of the lines boundary process of lozenge tilings
to the Airy’s line ensemble has been achieved. The techniques do not rely on the explicit
structure of the Kasteleyn matrix but rather are based on a representation of the problem
in terms of non-intersecting walks and use technical results from [78] for the arctic curve’s
regularity.

Let us also comment on the general expected effect of boundary for tiling statistics well
inside the rough region. A precise conjecture about this question was proposed in [65],
which suggests that these local statistics around some point in the bulk of the rough region
should be given by the infinite-volume, translation-invariant, extremal Gibbs measure with
slope equal to the gradient of the limit shape on that point.

This explains the relevance, for domains with boundary, of the work of [32]. This
conjecture was proved for a large class of geometries for lozenge and domino tilings8.
Most of them rely on the structure of the Kasteleyn solution, while in the direction of
universality, with techniques that are more flexible under geometry variations for lozenge
tilings, we mention: [80] for stability of the local statistics under perturbations of the
boundary and [79, 81, 82]. Particularly, [79] attains the same level of universality for
convergence of lozenge tiling local statistics as was shown for the global height profile
in [65].

At the end of this sketchy picture of the efforts made in the field, we mention some
related results, which will not be discussed further here. For more general distributions of
tilings (i.e. choice of the edge weights on the graph), one expects more than two phases to
appear. In fact, for the so called doubly periodic Aztec diamond [73], also a smooth phase
occurs where tiles correlations decay exponentially in space. For this model, [83] discusses
the dimer statistics in the transition region between rough and smooth. In addition,
they found [84] that a certain kind of line process at the boundary between rough and
smooth region converges, if properly rescaled, to an Airy process, in an appropriate limit
of the tiling measure (when certain edge weights vanish in the limit). See also [85] for a
rough-smooth boundary discussion.

Lastly, even if with very different methods from the ones which will be used here, we
cannot avoid to mention the recent breakthrough result towards a geometry-universality
and limit shape regularity for random tilings obtained in [78]. These results are a-sort-of

5For a domain of diameter of order L, the correct rescaling is L2/3 and L1/3 in the tangential and
normal direction to the arctic cirle respectively.

6See [76] for more details.
7The behavior of the process at a singular point of the arctic curve is expected to be, in general, different

from Airy’s.
8See [79] for more details.
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universality analogous of [32] in the non translation invariant case. They extend known
results relating dimers and PDEs [32, 86] to a greater level of generality. Among other
things, they obtain, for more general domains and doubly periodic weighted bipartite
underlying graphs: (1) regularity results about the limit shape at the frozen boundary
(Pokrovsky-Talapov law); (2) that the arctic curves are algebraic; (3) as a consequence of
(1), a conjectured characterization of the limiting processes describing the lines ensembles
near the Arctic curve (including Airy’s behavior in specific cases). The techniques are
based on complex analytical PDE methods and calculus of variations.

After this brief overview about the properties of dimer models, we come back to the
translation invariant setting as in [32] to study perturbations of the model that destroy
integrability as given by Kasteleyn’s solution.

Since we want to study two qualitatively different aspects of the dimer model, namely,
the universality of fluctuations of the height field in the bulk of the rough phase for a dimer
model on the square grid, and the scaling property of the free energy near the rough-frozen
transition for a dimer model on the hexagonal lattice, from now on we split in two parts
the whole discussion. In each of the following sections, there will be two distinguished
discussions, the first referred to as Bulk case, and the second as Edge case. The names
refer to the position in the phase diagram of the model, and must not be confused with
the location in some planar domain in R2 as described in the lines above. We mention
here, and clarify below that the choice of grid geometries (resp. square and hexagonal)
for the two problems we study is made for simplicity and it is not strictly necessary.

1.2 Motivations

Bulk

The understanding of the rough phase of two-dimensional random interfaces is im-
portant in connection with the macroscopic fluctuation properties of equilibrium crystal
shapes and of the separation surface between coexisting thermodynamic phases. A classi-
cal instance arises when studying the low temperature properties of the three-dimensional
(3D) Ising model in the presence of Dobrushin Boundary Conditions (DBC). If DBC are
fixed so to induce a horizontal interface between the + and − phases, it is well known [87]
that at low enough temperatures the interface is rigid9. It is conjectured that between
the so-called roughening temperature and the Curie temperature, the interface displays
fluctuations with unbounded variance (the variance diverges logarithmically with the sys-
tem size), and the height profile supposedly has a massless Gaussian Free Field (GFF)
behavior at large scales. This conjecture is completely open, in fact not even the existence
of the roughening temperature has been proved. A connected result [88] is the logarithmic
divergence of fluctuations of the 2D SOS interface at large enough temperature; however,
the result comes with no control of the scaling limit. If DBC are chosen so to induce a
‘tilted’ interface, say orthogonal to the (1, 1, 1) direction, then things are different: fluc-
tuations of the interface are logarithmic already at zero temperature; an exact mapping
of the height profile and of its distribution into the dimer model on the hexagonal lattice,

9I.e. with bounded fluctuations.
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endowed with the uniform measure, allows one to get a full control on the large scale prop-
erties of the interface fluctuations, which are now proved to behave like a GFF (see [32]
for the covariance structure, and [89], as well as [90, Section 3] for the full Gaussian
limit). It is very likely that the GFF behavior survives the presence of a small but positive
temperature; however, the techniques underlying the proof at zero temperature, based
on the exact solvability of the planar dimer problem, break down. At positive tempera-
tures, the very notion of height of the interface is not well defined, because of overhangs;
these will have a low but non-zero density at low temperature. It is likely, though, that
the height, even if not defined everywhere at a microscopic level, may be well-defined in
a coarse grained sense; therefore, one can still ask about the large-scale behavior of its
fluctuations. The coarse-grained height should admit an effective description in terms of
a dimer model, whose distribution, however, is not expected to be uniform: temperature
induces an effective ‘interaction’ among dimers.

In a series of works [2,3,90,91], the authors started developing methods for the treat-
ment of non-solvable dimer models via constructive, fermionic, Renormalization Group
(RG) techniques. They exhibited an explicit class of models, which include the 6-vertex
model close to its free-fermion point as well as several non-integrable versions thereof, for
which they proved scaling to the GFF, as well as the validity of a ‘Kadanoff’ or ‘Haldane’
scaling relation connecting the critical exponent of the so-called electric correlator with
the one of the dimer-dimer correlation. Such a scaling relation is the counterpart, away
from the free-fermion point, of the universality of the stiffness coefficient of the GFF first
observed in [32], in connection with the fact that the spectral curve of a planar bipartite
dimer model is a Harnack curve.

In this thesis, motivated by our wish to understand the height fluctuations in situations
where the height function is not locally well-defined at a microscopic level but only in a
coarse-grained sense, as in the case of the 3D Ising interface discussed above, and in
situations where the planarity assumption on the underlying graph fails to be satisfied10,
we generalize the analysis of [2] to a new setting, inspired by a problem proposed by S.
Sheffield a few years ago11. Namely, we study the large scale properties of a suitably
defined height function, for a dimer model that is two-dimensional but non-planar. In
short, we introduce a ‘weakly non-planar’ dimer model, by adding non-planar edges with
small weights to a reference planar square lattice. We do so in a periodic fashion, and
in such a way that non-planar edges are restricted to belong to cells, separated among
each other by corridors of width one, which are crossed by none of the non-planar edges.
The fact that non-planar edges avoid these corridors allows us to define a notion of height
function on the faces belonging to the corridors themselves. We prove that this height
function scales at large distances to a GFF with stiffness coefficient that is equal to the
anomalous critical exponent of the two-point dimer-dimer correlation.

10The interacting dimer model with plaquette interaction studied in [92] and in [93], which motivated
the series of works [2, 3, 90, 91], is a toy model for short range Resonance Valence Bond ground states
and for liquid crystals in two dimensions. As clear from its definition, such a model is based on drastic
simplifications of the physical phenomena one intends to study. In particular, the planarity assumption is
physically unjustified: in realistic situations, nothing prevents the presence of defects allowing the dimers
to arrange on a bond connecting pairs of sites beyond the nearest neighbors. In fact, non planar dimer
models were known already before [93] because of their connection to the 6V models with staggered
weights, see [94] and Appendix C.2. for completeness.

11Open problem session at the workshop: “Dimers, Ising Model, and their Interactions”, BIRS, 2019
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The broader context: height delocalization for discrete interface models Re-
cently, remarkable progress has been made on (logarithmic) delocalization of discrete,
two-dimensional random interfaces. We start with the result which is maybe the closest in
spirit to our work, that is [95,96]. These works prove, by means of bosonic, constructive
RG methods, that the height function of the discrete Gaussian interface model (that is
the lattice GFF conditioned to be integer-valued) has, at sufficiently high temperature,
the continuum GFF as scaling limit. In a way, this result is quite complementary to
ours, since the model considered there is a perturbation of a free bosonic model (the lat-
tice GFF), while in our case we perturb around a free fermionic one (the non-interacting
dimer model). For closely related results on the 2D lattice Coulomb gas, see also [97,98].

In a broader perspective, there has been a number of recent results (e.g. [99,100,102])
that prove delocalization of discrete, two-dimensional interface models at high tempera-
ture, even though they fall short of proving convergence to the GFF. Let us mention in
particular the recent [100], which proves with a rather soft argument a (non-quantitative)
delocalization statement for rather general height models, under the restriction, however,
that the underlying graph has maximal degree three.12 For the particular case of the
6-vertex model, delocalization of the height function is known to hold in several regions of
parameters [103–106] but full scaling to the GFF has been proven only in a neighborhood
of the free-fermion point [2].

Edge

As we tried to address in the Universality picture, the height associated with lozenge
tilings on finite regions admits a limit shape, as we scale out the lattice, which is the
solution of a variational problem.

Now we want to establish a connection between the height of the limit shape of a
volume constrained measure and the so called Ronkin function associated to the dimer
model without constraints. For definiteness, we consider the model on the hexagonal
lattice, where the phase diagram is particularly simple and explicit. As we will recall in
Chapter 3 (rough-frozen transition) the Ronkin function R(x, y) is nothing but the free
energy of the model, seen in “magnetic field” coordinates: see [32, Theorem 3.5, Section
3.2.3], namely

R(x, y) = 1
(2πi)2

∫
T2

dz

z

dw

w
log |1 + zex + wey| (1.2.1)

where T2 = {(z, w) ∈ C2 : |z| = |w| = 1}; we used that for the uniform dimer model on
the hexagonal graph the characteristic polynomial is given by P (z, w) = 1 + z + w.

Now consider the dimer model on the infinite hexagonal graph, sample a configuration
D uniformly among configurations with volume cL3 for c > 0, L > 013, where the volume
(under the surface) is meant by viewing a dimer configuration as a discrete monotone
surface in R3 (see Fig. 1.2 and Fig. 1.3), see also [107]. Rescaling the graph so that the
lattice mesh is 1/L and letting L → ∞, the dimer configuration has a deterministic limit
shape (see Fig. 1 in [108]). As explained in [32, Sec. 6], the height function of the limit

12See also [101].
13Alternatively, one can sample D with probability proportional to the exponential of −αVol(D)/L,

with α > 0 and Vol(D) the volume below the surface; the two procedures are asymptotically equivalent
for L → ∞, provided that α is chosen as a suitable function of c.
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shape is exactly the Ronkin function R defined in (3.1.14). That is, the height of the limit
shape at point (x, y) is nothing but R(x, y).

Q0

ε

-2 -1 0 1 2

-2

-1

0

1

2

Figure 1.3: Left: a volume constrained dimer configuration, seen by the surface associ-
ated to the tiling; Right: in the xy plane we approach the boundary of the amoeba from
the concave region.

The reason is that the limit shapeH of the measure with volume constraint satisfies [32,
Sec. 6]

div(∇σ ◦ ∇H) = C, (1.2.2)

with C a constant that can be fixed by properly choosing c in the volume tilt. Here,
σ is the surface tension of the non-interacting dimer model, see [32, Sec 2.2.3]. On the
other hand, the Ronkin function (or free energy) is the Legendre transform of the surface
tension [32, Sec. 3.2.4], so that it satisfies ∇σ ◦ ∇R = Id, with Id the 2 × 2 identity
matrix. This implies that indeed R solves (1.2.2) (just choose c so that C = 2), that is
H = R.

It is known that the Ronkin function R is strictly concave in the amoeba

A(P ) = {(log |z|, log |w|) : P (z, w) = 0}

and it is affine in the three components of the complement of the amoeba (frozen regions),
see [32, Sec 3.2.4].

We now want to establish a heuristic connection between the scaling behavior of the
Ronkin function near a frozen boundary and the size of fluctuations of the level lines of
the height field near such boundary.

Suppose to approach a point Q0 on the frozen boundary (as shown in Figure 1.3) where
R(Q0) = 0 14 and that R(Q) ∼ εγ with Q being a point in the interior of the amoeba at
a distance ε > 0 from Q0. Before the rescaling of the graph, this means that the typical
height at distance Lε from the frozen boundary is of order Lεγ . That is, the number of

14Since R = H and the height is defined up to a constant, we can set it to zero on a given component
of the frozen boundary
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level lines between this point and the frozen region (viewing the dimer configuration as a
discrete interface made of unit square faces, the height changes by 1 when a single level line
is crossed) is of the order Lεγ . Extrapolating to ε ≈ L−1/γ , this argument suggests that the
level lines close to the frozen region have fluctuations of the order L×ε ≈ Lν , ν = 1−1/γ.

This heuristic argument is actually not specific of the non interacting dimer model. If
we infinitesimally perturb the volume constrained measure, it is reasonable to expect that
the exact form of the limit shape of the dimer measure with volume tilt will be modified
by the interaction and the region of convexity will in general be different from A(P ) but
the considerations above about the relation between surface tension, free energy and limit
height should still hold, since they are of purely thermodynamic nature. Of course, the
perturbation may a priori also affect the value of the critical exponent γ. For the standard,
non interacting dimer model on the hexagonal lattice, near frozen boundaries of the arctic
curve in bounded domains of R2 it is known that γ = 3/2 [78, Sec. 1.3]. This behavior
goes under the name of Pokrovsky-Talapov15 law or critical behavior (PT). In this scenario,
the above reasoning suggests that the expected exponent of fluctuation of the level lines
is ν = 1/3. As already commented in Section 1.1, this fact together with the convergence
of the L1/3 rescaled process of the level lines towards the Airy process have been proved
in specific situations, for domino and lozenge random tilings in certain bounded domain
of R2, by means of techniques relying on the integrable structure of the model. However
the convergence of the rescaled level lines towards the Airy line ensemble is believed to
hold in much more general settings (see [78, Sec. 9] and also [111]). When we consider
perturbations that break integrability of the model, if on the one hand the understanding
of the limiting rescaled process of level lines becomes out of reach, on the other hand, in
virtue of the previous discussion, it is interesting to understand whether the exponent γ
is affected or not by the interaction: this will suggest the fluctuation properties of the
interacting level lines.

Thus, the key question motivating our study of the “edge case” is whether γ is, in fact,
modified or not by the integrability-breaking perturbation.

1.3 The models

Bulk

To construct the graph GL on which our dimer model is defined, we let L,m be two
positive integers with m ≥ 4 even, and we start with G0

L = (Z/(LmZ))2, which is just
the toroidal graph obtained by a periodization of Z2 with period Lm in both horizontal
and vertical directions. We can partition G0

L into L2 square cells Bx, x = (x1, x2) ∈ Λ :=
(−L/2, L/2]2 ∩Z2, of sidelength m. The graph G0

L is plainly bipartite and we color vertices
of the two sub-lattices black and white (each cell contains m2/2 vertices of each color).
Black (resp. white) vertices are denoted b (resp. w). We let e1 (resp. e2) denote the
horizontal (resp. vertical) vectors of length m and we note that translation by e1 (resp.
by e2) maps the cell Bx into B((x1+1) mod L,x2) (resp. B(x1,(x2+1) mod L)). A natural choice
of coordinates for vertices is the following one: a vertex is identified by its color (black or
white) and by a pair of coordinates (x, ℓ) where x identifies the label of the cell the vertex

15Originally appeared in [109] in the context of commensurability-incommensurability transition; see
also [110] for relations between crystal shapes and (PT) behavior.



16 Chapter 1. Introduction

belongs to, and the “type” ℓ ∈ I := {1, . . . ,m2/2} identifies the vertex within the cell. It
does not matter how we label vertices within a cell, but we make the natural choice that if
two vertices are related by a translation by a multiple of e1, e2, then they have the same
type index ℓ.

The graph GL is obtained from G0
L by adding in each cell Bx a finite number of edges

among vertices of opposite color (so that GL is still bipartite), with the constraint that GL
is invariant under translations by multiples of e1, e2 (i.e., vertex w of coordinates (x, ℓ) is
joined to vertex b of coordinates (x, ℓ′) if and only if the same holds for any other x′ ∈ Λ).
See Fig. 1.4 for an example.
Remark 1.3.1. It is easy to see that we need that m ≥ 4 for this construction to work: if
m = 2, the two black edges in the cell are already connected to the two black vertices and
there are no non-planar edges that can be added.

Note that GL is in general non-planar, even in the full-plane limit L → ∞.

e1

e2

γ1

Figure 1.4: An example of graph GL with L = 2, m = 4 and two non-planar edges (in
red) per cell. The height function is defined on the set F of dashed faces outside of cells.
Faces colored gray are those in F̄ (they share a vertex with four different cells).

Let EL denote the set of edges of GL: we write EL as the disjoint union EL = E0
L∪NL

where E0
L are the edges of G0

L (we call these “planar edges”) and NL (we call these “non-
planar edges”) are the extra ones. Each edge e ∈ EL is assigned a positive weight: since we
are interested in the situation where the weights of non-planar edges are small compared to
those of planar edges, we first take a collection of weights {t̃e}e∈EL , t̃e > 0 that is invariant
under translations by multiples of e1, e2, and then we establish that the weight of a planar
edge e is te = t̃e while that of a non-planar edge is te = λt̃e, where λ is a real parameter,
that will be taken small later.

To simplify expressions that follow, we will sometimes write x ∈ Λ instead of (x, ℓ) ∈
Λ × I for the coordinate of a vertex of GL. Also, we label the collection of edges in EL
whose black vertex has type ℓ with a label j ∈ Jℓ = {1, . . . , |Jℓ|}. The labeling is done
in such a way that two edges that are obtained one from the other via a translation by a
multiple of e1, e2 have the same label. Note that |Jℓ| ≥ 4, and it is strictly larger than
four if there are non-planar edges incident to the black vertex of type ℓ. By convention,
we label j = 1, . . . 4 the four edges of G0

L belonging to Jℓ, starting from the horizontal one
whose left endpoint is black, and moving anti-clockwise.
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The set of perfect matchings (or dimer configurations) of GL is denoted ΩL. Each
M ∈ ΩL is a subset of EL and the set of perfect matchings that contain only planar edges
is denoted Ω0

L. Our main object of study is the probability measure on ΩL given by

PL,λ(M) = w(M)
ZL,λ

1M∈ΩL , w(M) =
∏
e∈M

te, ZL,λ =
∑

M∈ΩL

w(M). (1.3.1)

We are interested in the limit where L tends to infinity while m (the cell size) is fixed.
In this limit, the graph G0

L becomes the (planar) graph G0
∞ = Z2 while GL becomes a

periodic, bipartite, non-planar graph G∞. Cells Bx of the infinite graphs are labelled by
x ∈ Z2. We let Ω (resp. Ω0) denote the set of perfect matchings of G∞ (resp. of Z2).

In the case λ = 0, the measure PL,0 is supported on Ω0
L: in fact, PL,0 is just the

Boltzmann-Gibbs measure of the dimer model on the (periodized) square grid, with edge
weights of periodicity m (we will refer to this as the “non-interacting dimer model”). The
non-interacting model is well understood via Kasteleyn’s [51, 52, 112] (and Temperley-
Fisher’s [53]) theory, that allows to write its partition and correlation functions in de-
terminantal form. According to the choice of the edge weights {te}, the non-interacting
model can be either in a rough (massless), smooth (massive) or frozen phase, see [32]. In
particular, in the rough phase correlations decay like the squared inverse distance (see for
instance (2.1.21)-(2.1.22) for a more precise statement). In this work, we assume that the
edge weights are such that for λ = 0, the model is in a massless phase.

The essential facts from Kasteleyn’s theory that are needed for the present work are
recalled in Section 2.1.1. In particular, we emphasize that all the statistical properties of
the non-interacting model are encoded in the so-called characteristic polynomial µ (see
(3.1.6)), that is nothing else but the determinant of the Fourier transform of the so-called
Kasteleyn matrix. Then, the assumption that the λ = 0 model is in the massless phase,
can be more precisely stated as follows:

Assumption 1. The edge weights {te} are such that the “characteristic polynomial” µ :
[−π, π]2 7→ C (see formula (2.1.9) below and the discussion following it) of the non-
interacting dimer model has exactly two zeros p+

0 , p
−
0 (distinct and simple).

We recall from [32] that this is a non-empty condition on the edge weights (in fact,
this set of edge weights is a non-trivial open set). We also remark that if Assumption 1 is
not satisfied, then we are in one of the following situations:

1. The edge weights are such that µ has no zeros on [−π, π]2, corresponding to the frozen
or to the gaseous phases of the non-interacting dimer model. In this case, the dimer
model can be easily shown to be stable under the addition of dimer interaction such
as those treated in [2] or of non-planar edges of small weight such as those treated
in this paper. By ‘easily’, we mean ‘via a single-step fermionic cluster expansion’,
which shows that the fluctuations of the perturbed model have the same qualitative
behavior of the unperturbed ones. In this case, the height function displays no
interesting behavior in the scaling limit.

2. The edge weights are such that µ has one double zero p0 and: either the system is
at the boundary separating the rough from the gaseous or frozen phases (in which
case ∇µ(p0) ̸= 0), or it is at a degenerate point within the rough phase (in which
case, called ‘real node’ in [32], ∇µ(p0) = 0). These cases display rich and interesting
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behaviors, particularly in connection with bounded domains or volume constrained
measures, as described in the edge case sections above.

Edge
Here the model has a more straightforward definition. We consider a graph GL =

(VL, EL), L ∈ 2N, embedded in the two-dimensional torus, defined as

GL := H/(LZ × LZ) (1.3.2)

where H stands for the infinite bipartite hexagonal graph and LZ×LZ denotes the action
of the translations with respect to directions Le⃗1, Le⃗2 (see Figure 1.5).

We remark that the choice of considering H rather than Z2 is unimportant and it is
pursued only to simplify the description and structure of the phase diagram. The choice
of H make the description the simplest possible.

Since GL is bipartite, we split the vertex set as the set of black and of white vertices:
VL = V W

L ∪ V B
L . The sets V B

L and V W
L are both isomorphic to Λ := {(x1, x2) : xi =

0, . . . , L − 1}. We assume that a black and a white vertex share the same coordinates if
and only if they are in the same copy of the fundamental domain G1. Given a vertex v,
we write x(v) = (x1(v), x2(v)) ∈ Λ for its coordinates. We define ΩL as the space of dimer
configurations or perfect matchings of GL.

A

B

C
e2

e1

Figure 1.5: The graph GL with L = 4; the fundamental domain, containing one black and
one white vertex which share the same coordinate x, is encircled. Weights of horizontal,
north-east and north-west oriented edges are A,B,C, respectively. In orange an example
of a dimer configuration.

To each M ∈ ΩL we can associate a statistical weight wλ(M), where λ ∈ R. First
we introduce a weight function t : EL → R+ which assigns a positive number to each
edge of the graph. We work in a translationally invariant setting, so we let te = A if e is
horizontal, te = B is e is north-west oriented and te = C otherwise. Note that one can
define w0(M) = ∏

e∈M te, which is nothing but the statistical weight of a non interacting
dimer model. In order to study the effect of the breaking of integrability of the model, we
introduce an interaction term with strength λ. We anticipate here that the specific choice
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of the following interaction is not necessary: it is essentially made only to mildly simplify
the so called “Grassmann representation” of the model.
Definition 1.3.1. The interacting model is then defined by the following probability
measure

Pλ,L(M) := wλ(M)
Zλ,L

, wλ(M) := ANABNBCNCeλV

Zλ,L =
∑

M∈ΩL

wλ(M), V =
∑
f∈G∗

L

1
(2)
f

(1.3.3)

where NA(M), NB(M), NC(M) are respectively the number of dimers of type A,B,C in
the configuration M ∈ ΩL. Given a face f ∈ G∗

L, we define 1
(2)
f (M) = 1 iff exactly

two “parallel” dimers appear on the edges surrounding f in the configuration M while it
evaluates 0 otherwise (see Figure below). One can write

1
(2)
f =

3∑
σ=1

1
(2)
f,σ (1.3.4)

where σ specifies which type of pair of dimers occupies f , see Fig. 1.6.

ff f

σ = 3σ = 2σ = 1

Figure 1.6: Three local dimer configurations contributing with an extra factor eλ.

Let us also define the free energy per unit volume and the generating functional as,

fλ,L = 1
L2 logZλ,L

Wλ,L(A) = log
∑

M∈ΩL

wλ(M)e
∑

e∈EL
1eAe (1.3.5)

where A = {Ae}e∈EL , Ae ∈ R, are sometimes called external fields, while 1e(M) is the
indicator function of the edge e, i.e. 1e(M) = 1 if e ∈ M and 0 otherwise. Let us also
denote by

ρ#,λ,L = Eλ,L[L−2N#] (1.3.6)

the densities of dimers of type #, for # = A,B,C.
In order to state our results in the next section we need few more preliminaries. First,

since the model is invariant under rescaling of the edge weights16, we can set A = 1.
As described in Section 1.2(edge), we are interested in studying a perturbation of a

dimer model, when its Ronkin function R(x, y) is evaluated at a point in the interior of

16This follows from the fact that NA +NB +NC = L2 (perfect matching regime).
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the amoeba A(P ), very close to its boundary; recall that P (z, w) = 1 + z + w. In order
to do this, we need to tune properly the edge weights (B,C). It is known [113] that the
free energy of the non interacting dimer model is given by

F (B,C) = 1
(2πi)2

∫
T2

dz

z

dw

w
log |1 +Bz + Cw| (1.3.7)

where T = {z ∈ C : |z| = 1}; a comparison with (1.2.1) gives F (ex, ey) = R(x, y). In order
to obtain the picture in the right of Figure 1.3, it is enough to choose

B = C = e− log 2+ε ⇔ x = y = − log 2 + ε (1.3.8)

for ε → 0+. To see why this is the case, recall that the amoeba A(P ) given below Figure
1.3, it is known to be the closure of the strictly concavity region of R(x, y). This means
that the amoeba must coincide with the locus C

C =
{

(x, y) : R2 : {(z, w) ∈ T2 : 1 + exz + eyw = 0} ≠ ∅
}

(1.3.9)

since outside C, the Ronkin function is affine17. Note that C is symmetric in x ↔ y
and a simple geometric consideration shows that C is the locus where 1, ex, ey satisfy the
triangular inequality. In particular the blue boundary in Figure 1.3 is given by ex+ey = 1.
To conclude, it is enough to observe that for ε > 0 the strict triangular condition is
satisfied.

Let us finally give the following

Definition 1.3.2. The interacting dimer model close to the liquid-frozen transition, is
given by the probability measure in (1.3.3) with the choice of edge weights A = 1, B =
C = e− log 2+ε for ε small enough, namely

Pε,λ,L(M) := wε,λ(M)
Zε,λ,L

, wε,λ(M) :=
(eε

2
)NB+NC

eλV

Zε,λ,L =
∑

M∈ΩL

wε,λ(M), V =
∑
f∈G∗

L

1
(2)
f

(1.3.10)

where NA, NB, NC and 1
(2) are as above. Correspondingly we will denote by Wε,λ,L(A)

the generating function, with fε,λ,L = L−2Wε,λ,L(0) the free energy and we will add a
label ε to all the quantities of interest to specify such choice of weights.

The infinite volume counterpart of our definitions will be denoted by the same symbols,
without the label L, e.g., fε,λ = limL→∞ fλ,ε,L for the infinite volume free energy, Pε,λ =
limL→∞ Pε,λ,L for the infinite volume measure, ρA,ε,L for the densities of dimers of type
A, and so on.

Note that, of course, one could approach any other point on the boundary, not nec-
essarily imposing B = C. We make this choice for simplicity: the symmetry B ↔ C
simplifies a little bit the technical analysis in that it reduces the number of “running cou-
plings constant” to be considered in the multiscale analysis of the model. The peculiarity
of this choice is that such technical analysis is very close to the one carried in [4] in the

17This is seen by differentiating twice under integral sign.
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context of quantum spin chains. We expect that the methods introduced in this thesis,
combined with those of [2], will allow us to extend the analysis to a generic point of the
boundary, but this goes beyond the purpose of this work.

Finally let us recall also the definition of the height function. Let h : G∗
L → R, where

G∗
L is the dual graph of GL, defined as h(η0) = 0 at some arbitrary reference η0 ∈ G∗

L,
and given through its gradients by

h(η) − h(η′) =
∑

e∈Cη′→η

σe

(
1{e∈M} − 1

3

)
(1.3.11)

where: Cη′→η is a path in the dual graph from η′ to η, σe = 1 if the edge e ∈ Cη′→η is
crossed with the black vertex on the right and σe = −1 otherwise; 1e∈M is the indicator
function of the edge e ∈ GL. 18

1.4 Results

Bulk

Our main goal is to understand the large-scale properties of the height function under the
limit measure Pλ, which is the weak limit as L → ∞ of PL,λ. The fact that this limit
exists, provided that |λ| ≤ λ0 for a sufficiently small λ0, is a byproduct of the proof.

Our first main result concerns the large distance asymptotics of the truncated dimer-
dimer correlations. We use the notation 1e for the indicator function that the edge e is
occupied by a dimer, and Eλ(f ; g) for Eλ(fg) − Eλ(f)Eλ(g).

Theorem 1.4.1. Choose the dimer weights on the planar edges as in Assumption 1. There
exists λ0 > 0 and analytic functions ν : [−λ0, λ0] 7→ R+, αω, βω : [−λ0, λ0] 7→ C \ {0}
(labelled by ω ∈ {+,−} and satisfying α+ = −α−, β+ = −β− and αω(λ)/βω(λ) ̸∈ R),
Kω,j,ℓ, Hω,j,ℓ : [−λ0, λ0] 7→ C (labelled by ω ∈ {+,−}, ℓ ∈ I, j ∈ Jℓ and satisfying Kω,j,ℓ =
K−ω,j,ℓ, Hω,j,ℓ = H−ω,j,ℓ) and pω : [−λ0, λ0] 7→ [−π, π]2 (labelled by ω ∈ {−1,+1} and
satisfying p+ = −p−) such that, for any two edges e, e′ with black vertices (x, ℓ), (x′, ℓ′) ∈
Z2 × I such that x ̸= x′ and labels j ∈ Jℓ, j′ ∈ Jℓ′,

Eλ(1e;1e′) =
∑
ω

[
Kω,j,ℓKω,j′,ℓ′

(ϕω(x− x′))2 + Hω,j,ℓH−ω,j′,ℓ′

|ϕω(x− x′)|2ν e
2ipω ·(x−x′)

]
+ Err(e, e′), (1.4.1)

where, letting x = (x1, x2),

ϕω(x) := ω(βω(λ)x1 − αω(λ)x2) (1.4.2)

and |Err(e, e′)| ≤ C|x− x′|−3+O(λ) for some C > 0 and O(λ) independent of x, x′. More-
over, ν(λ) = 1 +O(λ).

Even if not indicated explicitly, the functions ν, αω, βω,Kω,j,ℓ, Hω,j,ℓ, p
ω all depend non-

trivially on the edge weights {te}. In particular, generically, ν = 1 + c1λ+O(λ2), with c1

18To be precise, the height is a well defined function on the dual of H (the full plane triangular lattice);
on the torus is only a function of the homology class H1(GL,Z) see [32, Sec. 2.1.2].
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a non zero coefficient, which depends upon the edge weights (this was already observed
in [3] for interacting dimers on planar graphs); therefore, generically, ν is larger or smaller
than 1, depending on the sign of λ.

At λ = 0, (1.4.1) reduces to the known asymptotic formula for the truncated dimer-
dimer correlation of the standard planar dimer model, which is reviewed in Chapter 2.
The most striking difference between the case λ ̸= 0 and λ = 0 is the presence of the
critical exponent ν in the second term in square brackets in the right hand side of (1.4.1).
It shows that the presence of non-planar edges in the model qualitatively changes the large
distance decay properties of the dimer-dimer correlations. Therefore, naive universality, in
the strong sense that all critical exponents of the perturbed model are the same as those
of the reference unperturbed one, fails. In the present context the correct notion to be
used is that of ‘weak universality’, due to Kadanoff, on the basis of which we expect that
the perturbed model is characterized by a number of exact scaling relations; these should
allow us to reduce all the non-trivial critical exponents of the model (i.e., those depending
continuously on the strength of the perturbation) to just one of them, for instance ν itself.
A rigorous instance of such a scaling is discussed in Remark 1.4.1 below.

The weak universality picture is formally predicted by bosonization methods (see the
introduction of [91] for a brief overview), which allow one to express the large distance
asymptotics of all correlation functions in terms of a single, underlying, massless GFF.
Such a GFF is nothing but the scaling limit of the height function of the model, as discussed
in the following. Given a perfect matching M ∈ Ω0 of the infinite graph G0

∞ = Z2, there
is a standard definition of height function on the dual graph: given two faces ζ, η of Z2,
one defines

h(η) − h(ζ) =
∑

e∈Cζ→η

σe
(
1e∈M − 1

4
)

(1.4.3)

together with h(ζ0) = 0 at some reference face ζ0. Here, Cζ→η is a nearest-neighbor path
from ζ to η and σe is a sign which equals +1 if the edge e is crossed with the white vertex
on right and −1 otherwise). The definition is well-posed since it is independent of the
choice of the path. We recall that under P0, the height function is known to admit a GFF
scaling limit [89,90].

A priori, on a non-planar graph such as G, there is no canonical bijection between
perfect matchings and height functions. However, since the non-planarity is “local” (non-
planar edges do not connect different cells), there is an easy way out. Namely, let F denote
the set of faces of Z2 that do not belong to any of the cells Bx (see Figure 1.4). Given
a perfect matching M ∈ Ω, define an integer-valued height function h on faces ζ ∈ F by
setting it to zero at some reference face ζ0 ∈ F and by imposing (1.4.3) for any path Cζ→η

that uses only faces in F . It is easy to check that h is then independent of the choice of
path.

Our second main result implies in particular that the variance of the height difference
between faraway faces in F grows logarithmically with the distance. For simplicity, let
us restrict our attention to the subset F̄ ⊂ F of faces that share a vertex with four cells
(see Fig. 1.4): if a face in F̄ shares a vertex with Bx, Bx−(0,1), Bx−(1,0), Bx−(1,1), then we
denote it by ηx.
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Theorem 1.4.2. Under the same assumptions as Theorem 1.4.1, for x(1), . . . , x(4) ∈ Z2,

Eλ [(h(ηx(1)) − h(ηx(2))); (h(ηx(3)) − h(ηx(4)))]

= ν(λ)
2π2 ℜ

[
log (ϕ+(x(4)) − ϕ+(x(1)))(ϕ+(x(3)) − ϕ+(x(2)))

(ϕ+(x(4)) − ϕ+(x(2)))(ϕ+(x(3)) − ϕ+(x(1)))

]

+O

(
1

mini ̸=j≤4 |x(i) − x(j)|1/2 + 1

)
(1.4.4)

where ν and ϕ+ are the same as in Theorem 1.4.1

Note that in particular, taking x(1) = x(3) = x, x(2) = x(4) = y we have

VarPλ(h(ηx) − h(ηy)) = ν(λ)
π2 ℜ log(ϕ+(x) − ϕx(y)) +O(1) = ν(λ)

π2 log |x− y| +O(1)(1.4.5)

as |x− y| → ∞.

Remark 1.4.1. The remarkable fact of this result is that the ‘stiffness’ coefficient ν(λ)/π2

of the GFF is the same, up to the 1/π2 factor, as the critical exponent of the oscillating
part of the dimer-dimer correlation. There is no a priori reason that the two coefficients
should be the same, and it is actually a deep implication of our proof that this is the case.
Such an identity is precisely one of the scaling relations predicted by Kadanoff and Haldane
in the context of the 8-vertex, Ashkin-Teller, XXZ, and Luttinger liquid models, which are
different models in the same universality class as our non-planar dimers (see [91] for
additional discussion and references).

Building upon the proof of Theorem 1.4.2, we also obtain bounds on the higher point
cumulants of the height; these, in turn, imply convergence of the height profile to a massless
GFF:

Theorem 1.4.3. Assume that |λ| ≤ λ0, with λ0 > 0 as in Theorem 1.4.2. For every C∞,
compactly supported test function f : R2 7→ R of zero average and ϵ > 0, define

hϵ(f) := ϵ2
∑
x∈Z2

(
h(ηx) − Eλ(h(ηx))

)
f(ϵx). (1.4.6)

Then, one has the convergence in distribution

hϵ(f) ϵ→0=⇒ N (0, σ2(f)) (1.4.7)

where N (0, σ2(f)) denotes a centered Gaussian distribution of variance

σ2(f) := ν(λ)
2π2

∫
R2
dx

∫
R2
dyf(x)ℜ[log ϕ+(x− y)]f(y).

Remark 1.4.2 (Universality in the graph geometry). As a last Remark, we emphasize
that the massive modes would arise also in the “planar interacting dimer models” of [2,90],
if one worked on a graph whose fundamental cell contains ℓ ≥ 2 black/white vertices (an
example is the square-octagon graph, see Fig. 5 in [32], where ℓ = 4). In contrast, one has
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ℓ = 1 in the context of [2,90]. Our procedure consisting of (i) integrating out the massive
degrees of freedom and (ii) reducing to an effective massless model, implies in particular
that the results proved in [2,90] for planar interacting dimer models on the square lattice
extend to the case of general Z2-periodic two-dimensional bipartite lattices.

Edge

The interacting dimer model makes sense for every λ ∈ R, but for our results we will
actually need |λ| to be small enough (but independent of L). From now on, λ0 > 0 will
be a sufficiently small (but independent of L and of the edge weights) and B(0, λ0) will
denote the ball of radius λ0 centered at 0 in the complex plane.

Our results states the existence of the thermodynamic limit for the interacting model
and a control on the asymptotic behavior of the free energy close to the interacting frozen
boundary of the theory.

The first result says that, like for the non-interacting model, the limit of the free energy
per unit volume and the weak limit of the measure as L → ∞ exist. Moreover the model
still displays a frozen behavior in such a limit, characterized by the concentration of the
dimers densities.

Theorem 1.4.4. There exists ϵ̄ > 0 and an analytic function B(0, λ0) ∋ λ 7→ ε0(λ)
satisfying ε0(0) = 0 and ε0(λ) ∈ R for λ ∈ R, such that for every edge e ∈ EL, the
function

B(0, λ0) ∋ λ 7→ ∂AeWL,ϵ+ε0(λ),λ(A)|A≡0 (1.4.8)

is analytic and bounded uniformly in L and ϵ ≤ ϵ̄; admits a limit L → ∞ that is analytic
in λ and is a continuous function of ϵ for ϵ ≤ ϵ̄. The limit fλ,ϵ+ϵ0(λ) = limL→∞ fϵ+ε0(λ),λ,L
exists for ϵ ≤ ϵ̄ and is analytic in λ ∈ B(0, λ0).

Moreover, for ϵ ≤ 0, the density of horizontal dimers (i.e. associated to statistical
weight A = 1) is maximal

ρA,ϵ+ε0(λ),λ = 1, ϵ ≤ 0. (1.4.9)

Beyond the existence of the thermodynamic limit of the interacting theory, this results
has to be interpreted as the persistence of a liquid-frozen transition, at a critical point
ε0(λ), which is different from the one of the non-interacting model ε0(0) = 0. Indeed, as
the next Corollary 1.4.5.1 shows, for ϵ > 0 the measure is no longer in a frozen phase,
i.e. the dimer densities are no longer concentrated: ρA,ϵ+ε0(λ),λ < 1. The fact that the
transition point is affected by the interaction is a general feature of interacting models
and here it is one of the main differences with the close setting of [4], where instead
the transition point is “protected against renormalization”, i.e. it is not modified by the
presence of interaction. A first order calculation of ε0(λ) is done in Section B.3.3 which
shows that ε′

0(0) = −2.

Remark 1.4.3. Note that to show the existence of the weak limit of the interacting measure
Pε,λ,L, one should study the more general case of the function

λ →
∏
e∈E

∂AeWL,ϵ+ε0(λ),λ(A)|A=0,

for any finite E ⊂ EL. This is avoided here just because not needed for our next, main,
result. If desired, this can be done as in [2] where the analysis is performed for a dimer
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model in the bulk of the rough phase. Note that when |E| ≥ 2, translation invariance of
such function is lost and the discussion becomes a bit more involved. The interested reader
can look at [2, Sec. 6.5].

The next result concerns the asymptotic behavior of the free energy close to the inter-
acting critical point.

Theorem 1.4.5. Let λ0, ε̄ > 0 and ε0(·) be as in Theorem 1.4.4. The function ϵ 7→
fϵ+ε0(λ),λ is C∞ in (−∞, 0) ∪ (0, ϵ̄). Moreover, as ϵ → 0,

fϵ+ε0(λ),λ = λ+ 1{ϵ≥0}c(λ)ϵ
3
2 (1 +O(ϵθ′)) (1.4.10)

for some analytic function λ 7→ c(λ) satysfying c(λ) = 4
√

2
3π +O(λ). Here θ′ can be chosen

in (0, 1/2)19.

This result must be seen as a universality result for the scaling behavior of the free
energy as explained in the next Remark: before we comment let us collect an immediate
consequence on of the previous theorems on the dimers densities for ϵ > 0.

Corollary 1.4.5.1. Let λ0, ε̄ as in the hypotheses of Theorem 1.4.5. If ϵ > 0, we have
that

ρB,ϵ+ε0(λ),λ = ρC,ϵ+ε0(λ),λ = 3
2c(λ)ϵ1/2(1 +O(ϵθ)), ϵ → 0+ (1.4.11)

where θ and c(λ) are the same of (1.4.10).

Proof. Note that from the definitions in (1.3.10), we have that ρB,ϵ+ε0(λ),L = ρC,ϵ+ε0(λ),L =
∂ϵfϵ+ε0(λ),λ,L. From Theorem 1.4.4 we have the existence of fϵ+ε0(λ),λ= limL→∞ fϵ+ε0(λ),λ,L
which is convex in ϵ. Since by Theorem 1.4.5, the limit is differentiable, we can exchange
limit and derivative and obtain

ρB,ϵ+ε0(λ) = lim
L→∞

ρB,ϵ+ε0(λ) = ∂ϵfϵ+ε0(λ),λ = 3
2c(λ)ϵ1/2(1 +O(ϵθ)), ϵ → 0+ (1.4.12)

and by symmetry the same holds for ρC,ϵ+ε0(λ).

Remark 1.4.4. (Pokrovsky-Talapov’s strong universality)

• At λ = 0 we saw that (see (1.3.7)and below) fϵ,0 = R(log 1/2 + ϵ, log 1/2 + ϵ) =
H(log 1/2 + ϵ, log 1/2 + ϵ), where R and H are respectively the Ronkin function and,
the limit shape of a volume constrained dimer model. Thus (1.4.10) at λ = 0, is
exactly the Pokrosvky-Talapov law (PT) (as in [78, Th. 1.4], see also discussion
below Fig. 1.3) for the limit shape: as ϵ → 0+

H(log 1/2 + ϵ, log 1/2 + ϵ) = 4
√

2
3π ϵ3/2(1 +O(ϵθ)). (1.4.13)

• When λ ̸= 0 small, (1.4.10) can be seen as a universality result for (PT) critical
behavior: the effect of the interaction is, indeed, to change the coefficient c(0) into

19As a by product of the technical analysis necessary to obtain the result, bounds are not uniform as
θ → 1/2−.
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some non trivial analytic function c(λ), and to shift the liquid-frozen transition point
by ε0(λ), but not the scaling exponent 3/2. This is a highly non trivial result in
virtue of the fact that, in general, perturbations changes the critical exponents of the
model, as shown for the dimer-dimer correlation in the bulk of the rough phase (see
for instance Theorem 1.4.1). In virtue of the weak universality picture given in the
introduction, this result stands instead as a strong universality result.20 Moreover,
in view of the discussion in Section 1.2 (edge), our result supports the conjecture
that the fluctuation exponents of the level lines close to the liquid-frozen boundary
is 1/3, independently of the interaction parameter λ, and thus a universal scaling
towards the Airy’s process of such lines is expected.

As already anticipated in Section 1.3 (edge), the specific choice of the parametrization
to approach the boundary of the liquid frozen transition, or, the specific choice of the
interaction we made, are both not strictly necessary.

Remark 1.4.5. (Generalizations)

• The results are given for the explicit parametrization B = C = elog 1/2+ϵ of the non
interacting model. Approaching the frozen boundary along the symmetry axis of the
rough phase as ϵ → 0+ (see Figure 1.3-3.3) has the advantage to keep alive an extra
symmetry of the model which is generally not present. From the Renormalization
Group point of view, this turns out to be the simplest case to analyze and the analysis
becomes almost the same as the one carried out in a quantum spin chain model
belonging to the same universality class, see [4]. In the general, asymmetric case,
one can approach the blue boundary of Fig. 1.3 at a generic point Q0(t) via the
parametrization Qϵ(t) = (log t+ ϵ, log(1 − t) + ϵ) for t ∈ (0, 1) and obtain

fλ,ϵ+ε0,t(λ) = λ+ 1{ϵ≥0}ct(λ)ϵ3/2(1 +O(ϵθ)) (1.4.14)

where ε0,t(λ) is the analogous of ε0(λ) for t generic. The breaking of the symmetry
B ↔ C, for t ̸= 1/2, implies that the structure of the interacting dimer model
no longer resembles that of [4], and the analysis must be carried out in a different
way. Technically speaking, the symmetry loss reflects in a more complicated structure
of the so-called “Beta function equations” due to the emergence of extra “running
coupling constants”, and which, in the multiscale analysis, has to be controlled via
the choice of suitable counter-terms.21 In order to obtain (1.4.14), the setting of [4]
it is therefore not sufficient and an implementation of the double regime multiscale
analysis of [4] with the RG asymmetric tractation of [2] becomes necessary. We
postpone the detailed discussion of this technical point to a future work.

• The specific choice of the interaction (see (1.3.3)), belongs to a wide class on inter-
actions studied in [2]. From a technical point of view the analysis we made can be
performed as well for a generic element of this class. The specific form of the result
will depend weakly on such a choice: namely, the analytic functions a(λ), c(λ), ε0(λ)

20The presence of two kind of universalities was stressed in related models in [114].
21An analogous situation appears when considering a perturbation of dimer model with flat (uniform

measure) [3] or tilted [2] associated surface (non uniform measure): in the first case the presence of extra
symmetries reduces significantly the complexity of the RG analysis; see the discussion after (1.2) of [2].
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such that
fϵ+ε0(λ),λ = a(λ) + 1ϵ≥0c(λ)ϵ3/2(1 +O(ϵθ)) (1.4.15)

will in general depend on the interaction chosen.

As last, we connect our results with some recent close literature. It is known that
dimer models are closely related to vertex models [22]. An instance of this connection was
already discussed in [2] for an interacting dimer model on the square lattice Z2 in the bulk
of the rough phase: when the interaction is of the “plaquette type” on staggered faces of
the dual square lattice 22, it is known that the model is equivalent23 to a six-vertex (6V)
model close to the free-fermion point (FP). This connection allowed to extablish the GFF
nature of the height field of the 6V model in a small neighborhood of the FP, [2].
In our case, the interacting dimer model on the hexagonal lattice can be mapped to
an interacting five-vertex model (5V).24 Indeed, the non interacting dimer model on the
hexagonal lattice is known to be equivalent25 to a 5V model at the FP, when the vertex
weights are suitable functions of A,B,C in (1.3.3) (in appendix C we recall the mapping
between the two models). In [115] (then extended to [116]) the authors study a version of
the 5V away from the FP by tuning with a parameter r (such that for r = 1 the model is at
the FP) certain local vertex configurations26 and give an exhaustive characterization of the
thermodynamic properties of the model, by computing in particular surface tension, free
energy and limit shape. What emerges is that regions of phase coexistence (r < 1, given by
regions of non-strict surface tension convexity) and new frozen regions (r > 1) are observed
in a FP neighbourhood (see [115, Fig. 21], [116, Fig. 5-6]). The situation becomes even
more interesting when higher periodicity is allowed on local energies configurations [116,
Fig. 10]. This shows that the FP is a sensitive point and that perturbations around it
can change the nature of the model (free energy particularly); this is where our result fits
in. Despite our techniques do not give access to the same amount of informations, they
stand on a ground where integrability-based techniques, as the Bethe-Ansatz, cannot be
applied.27.

1.4.1 Outline of the proofs

Bulk
As in [2, 90], the proof is based on an exact representation of the dimer model as a

system of interacting lattice fermions and in a rigorous multiscale analysis of the effective

22This is the same kind of interaction chosen here, see Figure 1.6, with the difference that: (i) on the
square lattice there are only two possible parallel configurations at a face; (ii) the interaction V runs only
over faces with, e.g., black top-right vertex.

23There is a map between dimer configurations and vertex configurations such that their partition
functions equal after a suitable identification of the parameters of the model. See [2, Section 2.3] and
references therein.

24The 5V model can be obtain as a limiting case of the 6V, when the energy value of a local arrow
configuration diverges.

25Dimer configurations on the hexagonal lattice can be bijectively mapped to five vertex configurations,
also known as monotone non-intersecting lattice paths (MNLP). Equivalence again as identification of
partition functions of the models after suitable identification of the parameters.

26In the MNLP picture, corners of lattice paths are weighted with statistical factor r > 0.
27The mapping between our dimer model and the 5V it is such that we cannot embedd the interaction

parameter in the vertex energies (as done in [2]).



28 Chapter 1. Introduction

fermionic model, which has the structure of a lattice regularization of a Luttinger-type
model. With respect to the previous works [2, 90], obtaining a fermionic representation
turns out to be much less trivial, due to the loss of planarity. The infrared (i.e., large-scale)
analysis of the lattice fermionic model is performed thanks to a comparison with a solvable
reference continuum fermionic model, which has been studied and constructed in a series
of works by G. Benfatto and V. Mastropietro [40, 41, 117–121], partly in collaboration
also with P. Falco [117,118,122]. The GFF behavior and the Kadanoff-Haldane scaling
relation of the dimer model follow from a careful comparison between the emergent chiral
Ward Identities of the reference model with exact lattice Ward Identities of the dimer
model.

The first novelty of the present work, as compared to [2, 90, 91], is related to the
fermionic representation of the weakly non-planar model. The presence of non-planar
edges requires a quite non-trivial adaptation of Kasteleyn’s theory, which is needed for
the very formulation of the finite-volume model in terms of a non-Gaussian Grassmann
integral. In fact, our non-planar model can in general be embedded on a surface of minimal
genus g ≈ L2 (of the order of the number of non-planar edges) and Kasteleyn’s theory
for the dimer model on general surfaces [55, 56] would express its partition function as
the sum of 4g determinants, i.e. of 4g Gaussian Grassmann integrals, a rewriting that is
not very useful for extracting thermodynamic properties. In this respect, the remarkable
aspect of Proposition 2.1.1 below is that it expresses the partition function of just four
Grassmann integrals, which are, however, non-Gaussian. The second novel ingredient of
our construction is the identification (via the block-diagonalization procedure of Section
2.3.2) of massive modes associated with the Grassmann field which enters the fermionic
representation of the model. The fact that the elementary cell of our model consists of
m2 sites, with m an even integer larger or equal to 4, implies that the basic Grassmann
field of our effective model has a minimum of 16 components. It is well known [123,124]
that multi-component Luttinger models, such as the 1D Hubbard model [125], to cite the
simplest possible example, do not necessarily display the same qualitative large distance
features as the single-component one: new phenomena and quantum instabilities, such as
spin-charge separation and metal-insulator transitions accompanied with the opening of
a Mott gap may be present and may drastically change the resulting picture. Therefore,
it is a priori unclear whether the height function of our model should still display a GFF
behavior at large scales. Remarkably, however, the fact that the characteristic polynomial
of the reference model has at most two simple zeros, as proven in [32], directly implies that
all but two of the components of the effective Grassmann field are massive, and they can
be preliminarily integrated out. This way, one can at last re-express the effective massless
model in terms of just two massless fields (quasi-particle fields), in a way suitable for the
application of the multi-scale analysis developed in [2, 90]. At this point, a large part
of the multi-scale analysis is based on the tools developed in our previous works, which
we will refer to for many technical aspects, without repeating the analysis in the present
slightly different setting.

Edge

The logic of the proof goes as follows: again, the starting point is a representation of
the model (1.3.10) in terms of a non Gaussian Grassmann integral. As already mentioned,
the interaction taken under examination belongs to a wider class of interactions for which
Grassmann representations for dimer models on the square lattice Z2 are known [2]. This
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representation, in our case, is a direct Corollary of [2, Proposition 1]: indeed, our doubly
periodic hexagonal lattice with minimal fundamental cell can be obtained from the one
in [2] by setting an edge weight to zero.

With such a representation at hand we set a multiscale Renormalization Group anal-
ysis to show that quantities such as fλ,ε, ∂AeWλ,ε(A)|A=0 exist and satisfy the desired
properties of Theorem 1.4.4 (analiticity in λ, differentiability in ϵ etc.), when ε = ϵ + ε0
and ε0 is uniquely fixed as a function of λ. The existence part is a relatively standard re-
sult, based on the literature on the fermionic constructive Renormalization. The function
ε0(λ) takes into account the effect of the interaction on the location of the critical point,
which is shifted from ε = 0 to ε = ε0(λ). The fact that ε0(λ) ̸= ε0(0) is a main difference
with the close setting of [4]. The multiscale analysis depends on the sign and on the size
of ϵ: in the most interesting case, for ϵ > 0 small, to obtain analiticity in λ of the theory,
uniformly in ϵ, one really needs to distinguish between two different regimes of scales.
This discussion is inspired by the analogous double regime integration of [4]. When ϵ < 0
fixed, the existence of the thermodynamic limit of the theory can be proved via a single
step of integration (no multiscale) provided that λ is sufficiently small: however as ϵ → 0−

a single step of integration is not enough to obtain a radius of analyticity in λ uniform in
ϵ. In this case a multiscale analysis is needed, but a single regime of scales turns out to
be sufficient.

Once the existence of ∂AeWλ,ε(A)|A=0 is known, one can obtain the last statement
of Theorem 1.4.4 concerning dimer densities. The idea is to export the freezing property
of the non interacting measure Pϵ,0, which is well known for ϵ ≤ 0, to the interacting
one by means of “naive” perturbation theory, i.e., without the multiscale Grassmannian
framework.

With Theorem 1.4.4 at hand, one can deduce a portion of the statement of Theorem
1.4.5: namely the result in (1.4.10) for ϵ ≤ 0. Indeed the concentration of dimers densi-
ties of Theorem 1.4.4 implies, via thermodynamic arguments not requiring the multiscale
expansion, that the free energy does not depend on ϵ and indeed equals λ (cf. (1.4.10)).

To obtain the remaining part of Theorem 1.4.5, it is necessary to exploit the infor-
mations carried by the multiscale analysis, particular for the part of (1.4.10) concerning
ϵ > 0. The idea is that we can write

fϵ+ε0(λ),λ =
∑
h≤0

F
(h)
ϵ,λ (1.4.16)

where F (h)
ϵ,λ is the “contribution on scale h” to the free energy. The multiscale analysis

provides a way to bound and control the contributions F (h)
ϵ,λ . In particular, for ϵ > 0

small, this bound depends on the scale we are looking at: there exists a separating scale
h∗ = O(log2 ϵ) for which such bound changes behavior. By appropriately combining the
multiscale expansion with these estimates, using (1.4.16), one can find that

fϵ+ε0(λ),λ = a(λ) + ϵb(λ) + c(λ)ϵ3/2(1 +O(ϵθ)) (1.4.17)

for some analytic function a, b, c of λ for |λ| small enough. Then, the idea is to repeat this
strategy for ϵ < 0, by recalling that the multiscale structure is a bit simpler: this provides
an expression analogous to the one above with coefficients a′(λ), b′(λ), c′(λ). If on the
one hand these coefficients are not explicit analytic function of λ, which can be computed
order by order in perturbation theory, a comparison between the multiscale structures of
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the cases ϵ > 0 and ϵ < 0 shows that they must satisfy a = a′, b = b′. Using then, as
previously discussed, that a′ = λ, b′ = 0, one obtains the full statement in (1.4.10). Finally,
the regularity property of fϵ+ε0(λ),λ away from ϵ ̸= 0 follows from a detailed analysis of
the multiscale construction.



CHAPTER 2

INTERACTING DIMERS I: BULK OF
THE ROUGH PHASE

In order to prove Theorem 1.4.2, we organize this chapter as follows. In Section 2.1 we
review some useful aspects of Kasteleyn’s theory on toroidal graphs and derive the Grass-
mann representation of the weakly non-planar dimer model. In Section 2.2 we prove one
of the main results of our work, concerning the logarithmic behavior of the height covari-
ance at large distances and the Kadanoff-Haldane scaling relation, assuming temporarily
a sharp asymptotic result on the correlation functions of the dimer model. The proof of
the latter is based on a generalization of the analysis of [2], described in Section 2.3. As
mentioned above, the novel aspect of this part consists in the identification and integra-
tion of the massive degrees of freedom (Sections 2.3.1-2.3.3), while the integration of the
massless ones (Section 2.3.4) is completely analogous to the one described in [2]. Finally,
in Section 2.4, we complete the proof of the convergence of the height function to the
GFF.

2.1 Grassmann representation of the generating function

In this section we rewrite the partition function ZL,λ of (1.3.1) in terms of Grassmann
integrals (see Sect.2.1.3). As a byproduct of our construction, we obtain a similar Grass-
mann representation for the generating function of correlations of the dimer model. We
also observe that the Grassmann integral for the generating function is invariant under a
lattice gauge symmetry, whose origin has to be traced back to the local conservation of the
number of incident dimers at lattice sites, and which implies exact lattice Ward Identities
for the dimer correlations (see Sect.2.1.4).

Before diving into the proof of the Grassmann representation, it is convenient to recall
some preliminaries about the planar dimer model, its Gaussian Grassmann representation
and the structure of its correlation functions in the thermodynamic limit. This will be
done in the next two subsection, Sect.2.1.1, 2.1.2
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2.1.1 A brief reminder of Kasteleyn theory

Here we recall a few basic facts of Kasteleyn theory for the dimer model on a bipartite
graph G = (V,E) embedded on the torus, with edge weights {te > 0}e∈E . For later
purposes, we need this for more general such graphs than just G0

L. For details we refer
to [55], which considers the more general case where the graph is not bipartite and it is
embedded on an orientable surface of genus g ≥ 1. For the considerations of this section,
we do not need the edge weights to display any periodicity, so here we will work with
generic, not necessarily periodic, edge weights.

As in [55], we assume that G can be represented as a planar connected graph G0 =
(V,E0) (we call this the “basis graph of G”), embedded on a square, with additional edges
that connect the two vertical sides of the square (edges E1) or the two horizontal sides
(edges E2). Note that E = E0 ∪E1 ∪E2. See Figure 2.1. We always assume that the basis
graph G0 is connected and actually1 that it is 2−connected (i.e. removal of any single
vertex together with the edges attached to it does not make G0 disconnected). We also
assume that G0 admits at least one perfect matching and we fix a reference one, which we
call M0.

Following the terminology of [55], we introduce the following definition.

Definition 2.1.1 (Basic orientation). We call an orientation D0 of the edges E0 a “basic
orientation of G0” if all the internal faces of the basis graph G0 are clock-wise odd, i.e. if
running clockwise along the boundary of the face, the number of co-oriented edges is odd
(since G0 is 2-connected, the boundary of each face is a cycle).

A basic orientation always exists [55], but in general it is not unique. Next, one defines
4 orientations of the full graphG as follows (these are called “relevant orientations” in [55]).
First, one draws the planar graphs Gj , j = 1, 2 whose edge sets are E0 ∪Ej , as in Fig. 2.1.

G0 = (V,E0)
G0 = (V,E0)

E1

E2

Figure 2.1: The basis graph G0 is schematically represented by the gray square (the
vertices and edges inside the square are not shown). In the left (resp. right) drawing is
pictured the planar graph G1 (resp. G2)

1 [55] develops Kasteleyn’s theory without assuming that G0 is 2−connected. We will avoid below
having to deal with non-2-connected graphs, which would entail several useless complications
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Note that there is a unique orientation Dj of the edges in E0 ∪Ej that coincides with
D0 on E0 and such that all the internal faces of Gj are clockwise odd. Then, we define the
relevant orientation Dθ of type θ = (θ1, θ2) ∈ {−1,+1}2 of G as the unique orientation of
the edges E that coincides with D0 on G0 and with θ1Dj on the edges in Ej , j = 1, 2. Given
one of the four relevant orientations Dθ of G, we define a |V | × |V | antisymmetric matrix
ADθ by establishing that for v, v′ ∈ V , ADθ(v, v′) = 0 if (v, v′) ̸∈ E, while ADθ(v, v′) = te
if v, v′ are the endpoint of the edge e oriented from v to v′, and ADθ(v, v′) = −te if e is
oriented from v′ to v. Then, [55, Corollary 3.5] says that

ZG =
∑

M∈ΩG

w(M) =
∑

θ∈{−1,+1}2

cθ
2

Pf(ADθ)
s(M0) (2.1.1)

where ΩG is the set of the perfect matchings of G, w(M) = ∏
e∈M te, and

c(−1,−1) = −1 and cθ = 1 otherwise. (2.1.2)

In (2.1.1), Pf(A) denotes the Pfaffian of an anti-symmetric matrix A and s(M0) denotes
the sign of the term corresponding to the reference matching M0 in the expansion of the
Pfaffian Pf(ADθ). Since by assumption M0 contains only edges from E0 whose orientation
does not depend on θ, s(M0) is indeed independent of θ.

In our case, in contrast with the general case considered in [55], the graphG is bipartite.
By labeling the vertices so that the first |V |/2 are black and the last |V |/2 are white, the
matrices ADθ(v, v′) have then a block structure of the type

ADθ =
(

0 +Kθ

−Kθ 0

)
(2.1.3)

We view the |V |/2 × |V |/2 “Kasteleyn matrices” Kθ as having rows indexed by black
vertices and columns by white vertices.

By using the relation [126, Eq. (16)] between Pfaffians and determinants, one can
then rewrite the above formula as

ZG =
∑

θ∈{−1,+1}2

c̃θ
2 det(Kθ), c̃θ = cθ

(−1)(|V |/2−1)|V |/4

s(M0) . (2.1.4)

Remark 2.1.1. Note that changing the order in the labeling of the vertices changes the
sign s(M0). We suppose henceforth that the choice is done so that the ratio in the definition
of c̃θ equals 1, so that c̃θ = cθ.

2.1.2 Thermodynamic limit of the planar dimer model

In the previous section, Kasteleyn’s theory for rather general toroidal bipartite graphs
was recalled, without assuming any type of translation invariance. In this subsection,
instead, we specialize to G = G0

L (the periodized version of Z2 introduced in Section 1.3
(edge)) and, as was the case there, we assume that the edge weights are invariant under
translations by multiples of e1, e2.

With Kasteleyn’s theory at hand, one can compute the thermodynamic and large-scale
properties of the dimer model on G0

L as L → ∞. We refer to [32,89,107] for details. In
the case where G = G0

L, the basis graph G0 is a square grid with Lm vertices per side
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and we choose its basic orientation D0 so that horizontal edges are oriented from left to
right, while vertical edges are oriented from bottom to top on every second column and
from top to bottom on the remaining columns. With this choice, the orientations D1, D2
of G1, G2 are like in Fig. 2.2. Note that, if e = (b, w) ∈ E0

L is an edge of G0
L, then for

θ = (θ1, θ2) ∈ {−1,+1}2, Kθ(b, w) equals K(+1,+1)(b, w) multiplied by (−1)(θ1−1)/2 if e
belongs to E1 (see Fig. 2.1) and by (−1)(θ2−1)/2 if e belongs to E2. Observe also that the

G1 G2

Figure 2.2: The graphs G1, G2 corresponding to the basis graph of G0
L (for Lm = 4),

together with their orientations D1, D2.

matrix K(−1,−1) is invariant under translations by multiples of e1, e2. Define

P(θ) :=
{
k = (k1, k2) : kj = 2π

L

(
nj + θj + 1

4

)
,−L/2 < nj ≤ L/2

}
. (2.1.5)

Let Pθ be the orthogonal (Lm)2/2 × (Lm)2/2 matrix whose columns are indexed by
(k, ℓ), k ∈ P(θ), ℓ ∈ I = {1, . . . ,m2/2}, whose rows are indexed by (x, ℓ), x ∈ Λ, ℓ ∈ I, and
such that the column indexed (k, ℓ) is the vector

fℓ,k : ((x, ℓ′) ∈ Λ × I) 7→ fℓ,k(x, ℓ′) = 1
L
e−ikx1ℓ′=ℓ. (2.1.6)

Then, P−1
θ KθPθ is block-diagonal with blocks of size |I| labelled by k ∈ P(θ). The block

corresponding to the value k is a |I|×|I| matrix M(k) of elements [M(k)]ℓ,ℓ′ with ℓ, ℓ′ ∈ I
and

[M(k)]ℓ,ℓ′ =
∑
e:ℓ e∼ℓ′

K(−1,−1)(b, w)e−ikxe . (2.1.7)

In this formula, the sum runs over all edges e joining the black vertex b of type ℓ in the
cell of coordinates x = (0, 0) to some white vertex w of type ℓ′ (w can be either in the
same fundamental cell or in another one); xe ∈ Z2 is the coordinate of the cell to which w
belongs.

The thermodynamic and large-scale properties of the measure PL,0 are encoded in the
matrix M : for instance the infinite volume free energy exists and it is given by [32]

F =: lim
L→∞

1
L2 logZL,0 = 1

(2π)2

∫
[−π,π]2

log |µ(k)|dk (2.1.8)
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where µ (the “characteristic polynomial”) is

µ(k) := detM(k), (2.1.9)

which is a polynomial in eik1 , eik2 . Kasteleyn’s theory allows one to write multi-point
dimer correlations (in the L → ∞ limit) in terms of the so-called “infinite-volume inverse
Kasteleyn matrix” K−1: if w (resp. b) is a white (resp. black) vertex of type ℓ in cell
x = (x1, x2) ∈ Z2 (resp. of type ℓ′ and in cell 0), then one has

K−1(w, b) := 1
(2π)2

∫
[−π,π]2

[(M(k))−1]ℓ,ℓ′e−ikxdk. (2.1.10)

As can be guessed from (2.1.10), the long-distance behavior of K−1 is related to the zeros of
the determinant of M(k), that is, to the zeros of µ on [−π, π]2. It is a well known fact [32]
that, for any choice of the edge weights, µ can have at most two zeros. Our Assumption
1 means that we restrict to a choice of edge weights such that µ has exactly two zeros,
named p+

0 , p
−
0 , with p+

0 ̸= p−
0 mod (2π, 2π). We also define the complex numbers

α0
ω := ∂k1µ(pω0 ), β0

ω := ∂k2µ(pω0 ), ω = ±. (2.1.11)

Note that, since the Kasteleyn matrix elements Kθ(b, w) are real2, from (2.1.7) we have
the symmetry

[M(−k)]ℓ,ℓ′ = [M(k)]ℓℓ′ (2.1.12)

and in particular

p+
0 + p−

0 = 0 (2.1.13)
α0

− = −α0
+, β0

− = −β0
+. (2.1.14)

It is also known [32] that α0
ω, β

0
ω are not collinear as elements of the complex plane:

α0
ω/β

0
ω ̸∈ R. (2.1.15)

Note that from (2.1.14) it follows that Im(β0
+/α

0
+) = −Im(β0

−/α
0
−). From now on, with

no loss of generality, we assume that

Im(β0
+/α

0
+) > 0, (2.1.16)

which amounts to choosing appropriately the labels +,− associated with the two zeros of
µ(k).

If we denote by adj(A) the adjugate of the matrix A, so that A−1 = adj(A)/detA, the
long-distance behavior of the inverse Kasteleyn matrix is given [32] as

K−1(w, b) |x|→∞= 1
2π

∑
ω=±

[adj(M(pω))]ℓ,ℓ′
e−ipω0 x

ϕ0
ω(x) +O(|x|−2) (2.1.17)

2In [2,91] etc, a different choice of Kasteleyn matrix was done, with complex entries. As a consequence,
in that case one had p+

0 + p−
0 = (π, π) instead.
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where

ϕ0
ω(x) = ω(β0

ωx1 − α0
ωx2). (2.1.18)

Note that since the zeros pω0 of µ(k) are simple, the matrix adjM(pω0 ) has rank 1. This
means that we can write

adjM(pω0 ) = Uω ⊗ V ω (2.1.19)

for vectors Uω, V ω ∈ C|I|, where ⊗ is the Kronecker product. Let e = (b, w), e′ = (b′, w′)
be two fixed edges of G0

L: we assume that the black endpoint of e (resp. of e′) has
coordinates x = (x, ℓ) (resp. x′ = (x′, ℓ′)) and that the white endpoint of e (resp. e′) has
coordinates (x+ v(e),m) with m ∈ I (resp. coordinates (x′ + v(e′),m′)). Of course, v(e)
is either (0, 0) or (0,±1) or (±1, 0), and similarly for v(e′). Note that the coordinates of
the white endpoint of e are uniquely determined by the coordinates of the black endpoint
and the orientation label3 j ∈ {1, . . . , 4} of e: in this case we will write v(e) =: vj,ℓ,
K(b, w) =: Kj,ℓ and in (2.1.19), Um =: Uj,ℓ. The (infinite-volume) truncated dimer-dimer
correlation under the measure PL,0 is given as4

E0(1e;1e′) = lim
L→∞

EL,0(1e;1e′) = −K(b, w)K(b′, w′)K−1(w′, b)K−1(w, b′). (2.1.20)

where recall Eλ(f ; g) = Eλ(fg) −Eλ(f)Eλ(g). As a consequence of the asymptotic expres-
sion (2.1.17), we have that as |x′ − x| → ∞,

E0[1e;1e′ ] = Aj,ℓ,j′,ℓ′(x, x′) +Bj,ℓ,j′,ℓ′(x, x′) +R0
j,ℓ,j′,ℓ′(x, x′) (2.1.21)

with

Aj,ℓ,j′,ℓ′(x, x′) =
∑
ω=±

K0
ω,j,ℓK

0
ω,j′,ℓ′

(ϕ0
ω(x− x′))2

Bj,ℓ,j′,ℓ′(x, x′) =
∑
ω=±

H0
ω,j,ℓH

0
−ω,j′,ℓ′

|ϕ0
ω(x− x′)|2 e

2ipω0 (x−x′)

|R0
j,ℓ,j′ℓ′(x, x′)| ≤ C|x− x′|−3.

(2.1.22)

where

K0
ω,j,ℓ := 1

2πKj,ℓe
−ipω0 vj,ℓUωj,ℓV

ω
ℓ

H0
ω,j,ℓ := 1

2πKj,ℓe
ipω0 vj,ℓU−ω

j,ℓ V
ω
ℓ .

(2.1.23)

3recall the conventions on labeling the type of edges, in Section 1.3 (edge).
4the index θ ∈ {−1,+1}2 in Kθ(b, w) is dropped, since the dependence on r is present only for edges

at the boundary of the basis graph G0 (see Figure 2.2, so that for fixed (b, w) and L large, Kθ(b, w) is
independent of r
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2.1.3 A fermionic representation for ZL,λ

In this subsection, we work again with generic edge weights, i.e., we do not assume that
they have any spatial periodicity.

Determinants and Grassmann integrals

We refer for instance to [5] for an introduction to Grassmann variables and Grassmann
integration; here we just recall a few basic facts. To each vertex v of GL we associate a
Grassmann variable. Recall that vertices are distinguished by their color and by coordi-
nates x = (x, ℓ) ∈ Λ = Λ × I. We denote the Grassmann variable of the black (resp.
white) vertex of coordinate x as ψ+

x (resp. ψ−
x ). We denote by

∫
Dψf(ψ) the Grassmann

integral of a function f and since the variables ψ±
x anti-commute among themselves and

there is a finite number of them, we need to define the integral only for polynomials f .
The Grassmann integration is a linear operation that is fully defined by the following
conventions: ∫

Dψ
∏

x∈Λ
ψ−

x ψ
+
x = 1, (2.1.24)

the sign of the integral changes whenever the positions of two variables are interchanged
(in particular, the integral of a monomial where a variable appears twice is zero) and
the integral is zero if any of the 2|Λ| variables is missing. We also consider Grassmann
integrals of functions of the type f(ψ) = exp(Q(ψ)), with Q a sum of monomials of even
degree. By this, we simply mean that one replaces the exponential by its finite Taylor
series containing only the terms where no Grassmann variable is repeated.

For the partition function ZL,0 = ZG0
L

of the dimer model on G0
L we have formula

(2.1.4) of previous subsection where the Kasteleyn matrices Kθ are fixed as in Section
2.1.2, recall also Remark 2.1.1. Using the standard rewriting of determinants as Gaussian
Grassmann integrals (i.e. Grassmann integrals where the integrand is the exponential of
the corresponding quadratic form), one immediately obtains

ZL,0 = 1
2

∑
θ∈{−1,+1}2

cθ

∫
Dψ e−ψ+Kθψ

−
, (2.1.25)

where ψ+Kθψ
− is a short notation for ∑x,y∈Λ ψ

+
xKθ(x,y)ψ−

y and Kθ(x,y) stands for
Kθ(b, w) if the black vertex b (white v. w) has coordinates x ∈ Λ (resp. y ∈ Λ).

The partition function as a non-Gaussian, Grassmann integral

The reason why the r.h.s. of (2.1.4) is the sum of four determinants (and ZL,0 is the
sum of four Gaussian Grassmann integrals) is that G0

L is embedded on the torus, which
has genus 1: for a dimer model embedded on a surface of genus g, the analogous formula
would involve the sum of 4g such determinants [55,56]. This is clearly problematic for the
graph GL with non-planar edges, since in general it can be embedded only on surfaces of
genus g of order L2 (i.e. of the order of the number of non-planar edges) and the resulting
formula would be practically useless for the analysis of the thermodynamic limit. Our first
crucial result is that, even when the weights of the non-planar edges NL are non-zero, the
partition function can again be written as the sum of just four Grassmann integrals, but
these are non Gaussian (that is, the integrand is the exponential is a polynomial of order
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higher than 2). To emphasize that the following identity holds for generic edge weights,
we will write ZL,t for the partition function.

Proposition 2.1.1. One has the identity

ZL,t =
∑

M∈ΩL

∏
e∈M

te = 1
2

∑
θ∈{−1,+1}2

cθ

∫
Dψe−ψ+Kθψ

−+Vt(ψ) (2.1.26)

where cθ are given in (2.1.2), Λ = (−L/2, L/2]2 ∩ Z2 as above,

Vt(ψ) =
∑
x∈Λ

V (x)(ψ|Bx) (2.1.27)

and V (x) is a polynomial with coefficients depending on the weights of the edges incident
to the cell Bx, ψ|Bx denotes the collection of the variables ψ± associated with the vertices
of cell Bx (as a consequence, the order of the polynomial is at most m2). When the edge
weights {te} are invariant by translations by e1, e2, then V (x) is independent of x.

The form of the polynomial V (x) is given in formula (2.1.35) below; the expression in
the r.h.s. can be computed easily when either the cell size m is small, or each cell contains
a small number of non-planar edges. For an explicit example, see Appendix A.1.

Proof. We need some notation. If (b, w) is a pair of black/white vertices joined by the
edge e of weight te, let us set

ψθ(e) :=
{

−teψ+
b ψ

−
w if e ∈ NL

−Kθ(e)ψ+
b ψ

−
w if e ∈ E0

L
(2.1.28)

with Kθ(e) = Kθ(b, w) the Kasteleyn matrix element corresponding to the pair (b, w),
which are the endpoints of e. We fix a reference dimer configuration M0 ∈ Ω0

L, say the
one where all horizontal edges of every second column are occupied, see Fig. 2.3.

Then, we draw the non-planar edges on the two-dimensional torus on which G0
L is

embedded, in such a way that they do not intersect (i.e. do not cross) any edge in M0
(the non-planar edges will in general intersect each other and will intersect some edges
in E0

L that are not in M0). Given J ⊂ NL, we let PJ be the set of edges in E0
L that are

intersected by edges in J . The drawing of the non-planar edges can be done in such a way
that resulting picture is still invariant by translations of e1, e2, the non-planar edges do
not exit the corresponding cell and the graph obtained by removing the edges in NL∪PNL
(i.e. all the non-planar edges and the planar edges crossed by them) is 2−connected. See
Figure 2.3.

Reorganizing the set of configurations with these definitions we start by rewriting

ZL,t =
∑
J⊂NL

∑
S⊂PJ

∑
M∈ΩJ,S

w(M) (2.1.29)

where ΩJ,S is the set of dimer configurations M such that a non-planar edge belongs to M
iff it belongs to J , and an edge in PJ belongs to M iff it belongs to S. Given M ∈ ΩJ,S ,
we write M as the disjoint union M = J ∪ S ∪ M ′ and w(M) = w(M ′)w(S)w(J), since
by its definition (see just below (2.1.1)) w(M) factorizes on such decomposition. In this
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Figure 2.3: A single cell Bx, with the reference configuration M0 (thick, blue edges). The
non-planar edges (red) are drawn in a way that they do not intersect the edges of M0 and
do not exit the cell. Note that non-planar edges can cross each other. The dotted edges,
crossed by the planar edges, belong to PNL . If the non-planar edges cross only horizontal
edges in the same column (shaded) of the cell and vertical edges from every second row
(shaded), the graph obtained by removing red edges and dotted edges is 2-connected.

way (2.1.30) becomes

ZL,t =
∑
J⊂NL

w(J)
∑
S⊂PJ

w(S)
∑

M ′∼J,S
w(M ′) (2.1.30)

where M ′ ∼ S, J means that M ′ ∪ S ∪ J is a dimer configuration in ΩJ,S . To proceed, we
use the following

Lemma 2.1.0.1. There exists ϵJS = ±1 such that

∑
M ′∼J,S

w(J)w(S)w(M ′) = ϵJS
∑

θ∈{−1,+1}2

cθ
2

∫
Dψ e−ψ+Kθψ

− ∏
e∈J∪S

ψ(e). (2.1.31)

Here, ψ(e), e ∈ J ∪S is the same as ψθ(e): we have removed the index θ because, since the
endpoints b, w of e belong to the same cell, the right hand side of (2.1.28) is independent of
θ. If J = S = ∅, the product of ψ(e) in the right hand side of (2.1.31) should be interpreted
as being equal to 1. Moreover, ϵ∅∅ = 1 and, letting Jx (resp. Sx) denote the collection of
edges in J (resp. S) belonging to the cell Bx, x ∈ Λ, one has

ϵJS =
∏
x∈Λ

ϵJxSx . (2.1.32)

Let us assume for the moment the validity of Lemma 2.1.0.1 and conclude the proof
of Proposition 2.1.1. Going back to (2.1.30), we deduce that

ZL,t =
∑
θ

cθ
2

∫
Dψ e−ψ+Kθψ

− ∏
x∈Λ

∑
Jx

∑
Sx⊂PJx

ϵJxSx

∏
e∈Jx∪Sx

ψ(e)

 . (2.1.33)

The expression in brackets in (2.1.33) can be written as

1 + Fx(ψ) = eV
(x)(ψ|Bx ) (2.1.34)
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where Fx(ψ) is a polynomial in the Grassmann fields of the box Bx, such that Fx(0) = 0
and containing only monomials of even degree, and

V (x)(ψ|Bx) =
∑
n≥1

(−1)n−1

n
(Fx(ψ))n . (2.1.35)

Proof of Lemma 2.1.0.1. First of all, let us define a 2−connected graph GJ,S , embedded
on the torus, obtained from GL as follows:

1. the edges belonging to NL ∪ PJ are removed. At this point, every cell Bx contains
a certain number (possibly zero) of faces that are not elementary squares, and the
graph is still 2-connected, recall the discussion in the caption of Figure 2.3.

2. the boundary of every such non-elementary face η contains an even number of vertices
that are endpoints of edges in J ∪ S. We connect these vertices pairwise via new
edges that do not cross each other, stay within η and have endpoints of opposite
color. See Figure 2.4 for a description of a possible procedure. We let EJ,S denote
the collection of the added edges.

w1 b1

w2

b2

w4

b4 w3 b3

w5

b5

b6

w6
η

Figure 2.4: Left drawing: a cell with a collection J of non-diagonal edges (red) and of
edges S ⊂ PJ (thick blue edges). The dotted edges are those in PJ \ S. Center drawing:
the non-elementary face η obtained when the edges in NL ∪ PJ are removed. Only the
endpoints of edges in J ∪ S are drawn. Right drawing: a planar, bipartite pairing of the
endpoints of J ∪ S. The edges in EJ,S are drawn in orange. A possible algorithm for the
choice of the pairing is as follows: choose arbitrarily a pair (w1, b1) of white/black vertices
that are adjacent along the boundary of η and pair them. At step n > 1, choose arbitrarily
a pair (wn, bn) that is adjacent once the vertices wi, bi, i < n are removed. Note that some
of the edges in EJ,S may form double edges with the edges of G0

L on the boundary of η
(this is the case for (b1, w1) and (b3, w3) in the example in the figure).

The first observation is that the l.h.s. of (2.1.31) can be written as( ∏
e∈J∪S

te
)( ∑

M∈ΩGJ,S :
M⊃EJ,S

w(M)
)∣∣∣
te=1,e∈EJ,S

(2.1.36)

where ΩGJ,S is the set of perfect matchings of the graph GJ,S and as usual w(M) is the
product of the edge weights in M . The new edges EJ,S are assigned a priori arbitrary
weights {te}e∈EJ,S , to be eventually replaced by 1, and the partition function on GJ,S is
called ZGJ,S .



2.1. Grassmann representation of the generating function 41

Let KJ,S
θ , θ ∈ {−1,+1}2 denote the Kasteleyn matrices corresponding to the four

relevant orientations Dθ of GJ,S , for some choice of the basic orientation on GJ,S (recall
Definition 2.1.1). Since GJ,S is embedded on the torus and is 2-connected, Eq.(2.1.4)
guarantees that the sum in the second parentheses in (2.1.36) can be rewritten (before
setting te = 1 for all e ∈ EJ,S) as

∑
M∈ΩGJ,S
M⊃EJ,S

w(M)=

 ∏
e∈EJ,S

te∂te

ZGJ,S = 1
2
∑
θ

cθ

 ∏
e∈EJ,S

te∂te

detKJ,S
θ . (2.1.37)

In fact, the suitable choice of ordering of vertices mentioned in Remark 2.1.1 (and therefore
the value of signs cθ) is independent of J, S, because the reference configuration M0 is
independent of J, S.

Using the basic properties of Grassmann variables, the r.h.s. of (2.1.37) equals

1
2
∑
θ

cθ

 ∏
e∈EJ,S

te∂te

∫ Dψ e−ψ+KJ,S
θ

ψ−

= 1
2
∑
θ

cθ

∫
Dψ e−ψ+KJ,S

θ
ψ−

 ∏
e∈EJ,S

ψJ,Sθ (e)

 (2.1.38)

where, in analogy with (2.1.28), ψJ,Sθ (e) = −KJ,S
θ (b, w)ψ+

b ψ
−
w . We claim:

Lemma 2.1.0.2. The choice of the basic orientation of GJ,S can be made so that the
Kasteleyn matrices KJ,S

θ satisfy:

(i) if e = (b, w) ∈ GJ,S \ EJ,S, then KJ,S
θ (b, w) = Kθ(b, w), with Kθ the Kasteleyn

matrices of the graph G0
L, fixed by the choices explained in Section 2.1.2.

(ii) if instead e = (b, w) ∈ EJ,S and is contained in cell Bx, then KJ,S
θ (b, w) = teσ

Jx,Sx
e

with σJx,Sxe = ±1 a sign that depends only on Jx, Sx.

Assuming Lemma 2.1.0.2, and letting EJx,Sx denote the subset of edges in EJ,S that
belong to cell Bx, we rewrite (2.1.38) as

1
2
∑
θ

cθ

∫
Dψ e−ψ+Kθψ

− ∏
x

∏
e=(b,w)∈EJx,Sx

(−teσJx,Sxe ψ+
b ψ

−
w ), (2.1.39)

where we could replace KJ,S
θ by Kθ at exponent, because

e−ψ+KJ,S
θ

ψ−

 ∏
e∈EJ,S

ψJ,Sθ (e)

 =
( ∏
e=(b,w)∈GJ,S\EJ,S

e−ψ+
b
KJ,S
θ

(b,w)ψ−
w

) ∏
e∈EJ,S

ψJ,Sθ (e)


=
( ∏
e=(b,w)∈GJ,S\EJ,S

e−ψ+
b
Kθ(b,w)ψ−

w

) ∏
e∈EJ,S

ψJ,Sθ (e)

 = e−ψ+Kθψ
−

 ∏
e∈EJ,S

ψJ,Sθ (e)

 ,
(2.1.40)
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thanks to the Grassmann anti-commutation properties and the fact that KJ,S
θ (b, w) =

Kθ(b, w) for any (b, w) ∈ GJ,S \ EJ,S . Eq.(2.1.39) can be further rewritten as∏
e∈EJ,S te∏
e∈J∪S te

∑
θ

cθ
2

∫
Dψ e−ψ+Kθψ

− ∏
x

(
ϵJxSx

∏
e∈Jx∪Sx

ψ(e)
)
, (2.1.41)

where ϵJxSx is a sign, equal to

π(Jx, Sx)
( ∏
e∈EJx,Sx

σJx,Sxe

)( ∏
e∈Sx

sign(Kθ(e))
)
, (2.1.42)

and π(Jx, Sx) is the sign of the permutation needed to recast ∏(b,w)∈EJx,Sx ψ
+
b ψ

−
w into the

form ∏
(b,w)∈Jx∪Sx ψ

+
b ψ

−
w ; note also that, for e ∈ Sx, Kθ(e) is independent of θ. Putting

things together, the statement of Lemma 2.1.0.1 follows.

Proof of Lemma 2.1.0.2. Recall that GJ,S is a 2-connected graph, with the same vertex
set as G0

L, and edge set obtained, starting from EL, by removing the edges in NL ∪ PJ
and by adding those in EJ,S . We introduce a sequence of 2-connected graphs G(n), n =
0, . . . , z = |EJ,S | embedded on the torus, all with the same vertex set. Label the edges in
EJ,S as e1, . . . , ez (in an arbitrary order). Then, G(0) is the graph G0

L with the edges in
NL ∪ PJ removed and G(n), 1 ≤ n ≤ z is obtained from G(0) by adding edges e1, . . . , en.
Note that G(z) = GJ,S . We will recursively define the basic orientation D(n) of G(n), in
such a way that for n = z the properties stated in the Lemma hold for the Kasteleyn
matrices K(z)

θ = KJ,S
θ . The construction of the basic orientation is such that for n > m,

D(n) restricted to the edges of G(m) is just D(m). That is, at each step n > 1 we just need
to define the orientation of en.

For n = 0, G(0) is a sub-graph of G0
L and we simply define D(0) to be the restriction

of D (the basic orientation of G0
L) to the edges of the basis graph of G(0). Since the

orientation of these edges will not be modified in the iterative procedure, point (i) of the
Lemma is automatically satisfied. We need to show that D(0) is indeed a basic orientation
for G(0), in the sense of Definition 2.1.1. In fact, an inner face η of the basis graph of
G(0) is either an elementary square face (which belongs also to the basis graph of G0

L), or
it is a non-elementary face as in the middle drawing of Fig. 2.4. In the former case, the
fact that the boundary of η is clockwise odd is trivial, since its orientation is the same as
in the basic orientation of G0

L. In the latter case, the boundary of η is a cycle Γ of Z2

that contains no vertices in its interior. The fact that Γ is clockwise odd for D then is
well-known [127, Sect.V.D].

Assume now that the basic orientation D(n) of G(n) has been defined for n ≥ 0 and
that the choice of orientation of each e = (b, w) ∈ EJ,S that is an edge of G(n) contained
in the cell Bx, has been done in a way that depends on J, S only through Jx, Sx. If n = z,
recalling how Kasteleyn matrices Kθ are defined in terms of the orientations, claim (ii) of
the Lemma is proven. Otherwise, we proceed to step n+1, that is we define the orientation
of en+1 as explained in Figure 2.5. This choice is unique and, again, depends on J, S only
through Jx, Sx. The proof of the Lemma is then concluded.
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η Γ1

Γ2

η1

η2en+1

Figure 2.5: An inner face η of G(n) and the edge en+1. After adding en+1, η split into
two inner faces η1, η2 of G(n+1). By assumption, the boundary Γ of η is clockwise-odd
for the orientation D(n). Therefore, exactly one of the two paths Γ1,Γ2 contains an odd
number of anti-clockwise oriented edges and there is a unique orientation of en+1 such
that the boundaries of both η1, η2 are clockwise odd. Since, by induction, the orientation
of Γ depends on J, S only through Jx, Sx, with x the label of the cell the face belongs to,
the same is true also for the orientation of en+1.

2.1.4 Generating function and Ward Identities

In this subsection we consider again dimer weights that are periodic under translations by
integer multiples of e1, e2.

In view of Proposition 2.1.1, the generating function WL(A) of dimer correlations,
defined, for A : EL → R, by

eWL(A) :=
∑

M∈ΩL

w(M)
∏
e∈EL

eAe1e(M), (2.1.43)

can be equivalently rewritten as eWL(A) = 1
2
∑
θ∈{1,−1}2 cθe

W(θ)
L (A), where

eW(θ)
L (A) =

∫
DψeSθ(ψ)+V (ψ,A), (2.1.44)

where Sθ(ψ) = −ψ+Kθψ
− and V (ψ,A) := −ψ+KA

θ ψ− − Sθ(ψ) + Vt(A)(ψ)5. Here, KA
θ

(resp. Vt(A)(ψ)) is the Kasteleyn matrix as in Section 2.1.2 (resp. the potential as in
(2.1.27)) with edge weights t(A) = {teeAe}e∈EL .

As in [2, Sect.3.2], it is convenient to introduce a generalization of the generating
function, in the presence of an external Grassmann field coupled with ψ. Namely, letting
ϕ = {ϕ±

x }x∈Λ a new set of Grassmann variables, we define

eWL(A,ϕ) := 1
2

∑
θ∈{1,−1}2

cθe
W(θ)
L (A,ϕ),

with eW(θ)
L (A,ϕ) :=

∫
Dψ eSθ(ψ)+V (ψ,A)+(ψ,ϕ)

(2.1.45)

and (ψ, ϕ) := ∑
x∈Λ(ψ+

x ϕ
−
x + ϕ+

xψ
−
x ). The generating function is invariant under a local

gauge symmetry, which is associated with the local conservation law of the number of
incident dimers at each vertex of Λ. By a gauge symmetry we mean invariance of the
generating functional under a local phase change of Grassmann variables ψ±

x → ψ±
x e

iα±
x

5The arbitrary choice of inserting Sθ(ψ) in V (ψ,A) is so that the quadratic Grassmannian part does
not depend on A.
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as described in the following

Proposition 2.1.2 (Chiral gauge symmetry). Given two functions α+ : Λ → R and
α− : Λ → R, we have

WL(A, ϕ) = −i
∑
x∈Λ

(α+
x + α−

x ) +WL(A+ iα, ϕeiα) (2.1.46)

where, if e = (b, w) ∈ EL with x and y the coordinates of b and w, respectively, (A+iα)e :=
Ae + i(α+

x + α−
y ), while (ϕeiα)±

x := ϕ±
x e

iα∓
x .

The proof simply consists in performing a change of variables in the Grassmann inte-
gral, see [91, Proof of Prop.1].

The gauge symmetry (2.1.46), in turn, implies exact identities among correlation func-
tions, known as Ward Identities. Given edges e1, . . . , ek and a collection of coordinates
x1, . . . ,xn,y1, . . . ,yn, define6 the truncated multi-point correlation associated with the
generating function WL(A, ϕ):

gL(e1, . . . , ek; x1, . . . ,xn; y1, . . . ,yn)
:= ∂Ae1

· · · ∂Aek∂ϕ−
y1

· · · ∂ϕ−
yn
∂ϕ+

x1
· · · ∂ϕ+

xn
WL(A, ϕ)

∣∣
A≡0,ϕ≡0.

(2.1.47)

Three cases will play a central role in the following: the interacting propagator G(2), the
interacting vertex function G(2,1) and the interacting dimer-dimer correlation G(0,2), which
deserve a distinguished notation: letting x = (x, ℓ),y = (y, ℓ′), z = (z, ℓ′′), and denoting
by e (resp. e′) the edge with black vertex x = (x, ℓ) (resp. y = (y, ℓ′)) and label j ∈ Jℓ
(resp. j′ ∈ Jℓ′), we define

G
(2)
ℓ,ℓ′;L(x, y) := gL(∅; x; y)

G
(2,1)
j,ℓ,ℓ′,ℓ′′;L(x, y, z) := gL(e; y; z)

G
(0,2)
j,j′,ℓ,ℓ′;L(x, y) := gL(e, e′; ∅; ∅).

(2.1.48)

As a byproduct of the analysis of Section 2.3, the L → ∞ of all multi-point correlations
gL(e1, . . . , ek,x1, . . . ,xn,y1, . . . ,yn) exist; we denote the limit simply by dropping the
index L. Let us define the Fourier transforms of the interacting propagator and interacting
vertex function via the following conventions: for ℓ, ℓ′, ℓ′′ ∈ I and j ∈ Jℓ, we let

Ĝ
(2)
ℓ,ℓ′(p) :=

∑
x∈Z2

eipxG
(2)
ℓ,ℓ′(x, 0)

Ĝ
(2,1)
j,ℓ,ℓ′,ℓ′′(k, p) :=

∑
x,y∈Z2

e−ipx−ik·yG
(2,1)
j,ℓ,ℓ′,ℓ′′(x, 0, y).

(2.1.49)

Proposition 2.1.3 (Ward identity). Given ℓ′, ℓ′′ ∈ I, we have∑
e∈E

Ĝ
(2,1)
j(e),ℓ(e),ℓ′,ℓ′′(k, p)(e

−ip·v(e) − 1) = Ĝ
(2)
ℓ′,ℓ′′(k + p) − Ĝ

(2)
ℓ′,ℓ′′(k) (2.1.50)

6We refer e.g. to [91, Remark 5] for the meaning of the derivative with respect to Grassmann variables
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where E is the set of edges e = (b(e), w(e)) having an endpoint in the cell B(0,0) and the
other in B(0,−1) ∪ B(−1,0). Also, ℓ(e) ∈ I is the type of b(e), j(e) ∈ Jℓ(e) is the label
associated with the edge e, while v(e) ∈ {(0,±1), (±1, 0)} is the difference of cell labels of
w(e) and b(e), see discussion after (2.1.19).

Proof. We start by differentiating both sides of the gauge invariance equation (2.1.46): fix
x = (x, ℓ) ∈ Λ, differentiate first with respect to α+

x and set α ≡ 0:

1 =
∑

e=(b,w)∈EL
x(b)=x

∂AeWL(A, ϕ) + ϕ−
x ∂ϕ−

x
WL(A, ϕ) (2.1.51)

where x(b) = (x(b), ℓ(b)) is the coordinate of the black endpoint b of the edge e. The
above sum thus contains as many terms as the number of edges incident to the black site
of coordinate x, i.e. as the number of elements in Jℓ(b). Then, differentiate with respect
to ϕ−

z and ϕ+
y and set A ≡ ϕ ≡ 0:∑

e=(b,w)∈EL
x(b)=x

gL(e; y; z) + δx,zgL(∅; y; z) = 0. (2.1.52)

Repeating the same procedure but differentiating first with respect to α−
x rather than α+

x ,
and setting α ≡ 0 we obtain the analogous of (2.1.51):

1 =
∑

e=(b,w)∈EL
x(w)=x

∂AeWL(A, ϕ) + ϕ+
x ∂ϕ+

x
WL(A, ϕ). (2.1.53)

Then we differentiate with respect to ϕ−
z and ϕ+

y , set ϕ ≡ 0 to obtain the analogous of
(2.1.52): ∑

e=(b,w)∈EL
x(w)=x

gL(e; y; z) + δx,ygL(∅; y; z) = 0 (2.1.54)

where x(w) is the coordinate of the white vertex of e. Now we sum both (2.1.54) and
(2.1.52) over ℓ ∈ I (the type of the vertex x) with the cell index x fixed; then we take the
difference of the two expressions thus obtained and we send L → ∞. When taking the
difference, the contribution from edges whose endpoints both belong to cell Bx cancel and
we are left with∑

e=(x′,j,ℓ)∈E∂Bx

(−1)δx,x′G
(2,1)
j,ℓ,ℓ′,ℓ′(x

′, y, z) = (δx,z − δx,y)G(2)
ℓ′,ℓ′′(y, z), (2.1.55)

where we used the notation in (2.1.48), and we denoted by E∂Bx the set of edges of
E0 having exactly one endpoint in the cell Bx. Note that in the first sum, in writing
e = (x′, j, ℓ), we used the usual labeling of the edge e in terms of the coordinates (x′, ℓ)
of its black site and of the label j ∈ Jℓ. Note also that, if e = (x′, j, ℓ) ∈ E∂Bx , then x′

is either x or x ± (0, 1), x ± (1, 0). See Figure 2.6. Using the last remark in the caption
of Fig.2.6, we can rewrite the sum in the left hand side of (2.1.55) as a sum over edges in
E1,x ∪ E2,x, each term containing the difference of two vertex functions G(2,1)

j,ℓ,ℓ′,ℓ′′ . Passing
to Fourier space via (2.1.49), we obtain (2.1.50), as desired.
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Bx

E1

E2 E ′
2

E ′
1

e

e′

C1

C2

Figure 2.6: The cell Bx (only vertices on its boundary are drawn) together with the
edges in E∂Bx = E1,x ∪ E2,x ∪ E ′

1,x ∪ E ′
2,x. To each edge e in E1,x (resp. in E2,x) there

corresponds a unique edge e′ in E ′
1,x (resp. E ′

2,x) whose endpoints are of the same type.

Remark 2.1.2. For later reference, note that, if e crosses the path C1 (resp. C2) of Figure
2.6, i.e., if e ∈ E1,x (resp. e ∈ E2,x), then, for any p = (p1, p2) ∈ R2 and v(e) defined as in
the statement of Proposition 2.1.3,

p · v(e) =
{

−p2σe if e crosses C1

+p1σe if e crosses C2,
(2.1.56)

with σe = ±1 the same sign appearing in the definition (1.4.3) of height function.

2.2 Proof of Theorem 1.4.2

One important conclusion of the previous section is Proposition 2.1.3, which states the
validity of exact identities among the (thermodynamic limit of) correlation functions of
the dimer model. In this section we combine these exact identities with a result on the
large-distance asymptotics of the correlation functions, which includes the statement of
Theorem 1.4.1, and use them to prove Theorem 1.4.2. The required fine asymptotics of the
correlation functions is summarized in the following proposition, whose proof is discussed
in Section 2.3. In the following we will denote with λ → f a function f of λ.

Proposition 2.2.1. There exists λ0 > 0 such that, for |λ| ≤ λ0, the interacting dimer-
dimer correlation for x ̸= y can be represented in the following form:

G
(0,2)
j,j′,ℓ,ℓ′(x, y) = 1

4π2Z2(1 − τ2)
∑
ω=±

K
(1)
ω,j,ℓK

(1)
ω,j′,ℓ′

(ϕω(x− y))2 (2.2.1)

+ B

4π2

∑
ω=±

K
(2)
ω,j,ℓK

(2)
−ω,j′,ℓ′

|ϕω(x− y)|2(1−τ)/(1+τ) e
2i pω ·(x−y) +Rj,j′,ℓ,ℓ′(x, y) ,

where: λ 7→ Z, λ 7→ τ and λ 7→ B are real-valued analytic functions satisfying Z =
1 +O(λ), τ = O(λ) and B = 1 +O(λ); ϕω(x) := ω(βωx1 − αωx2) where λ 7→ αω, λ 7→ βω

are complex-valued analytic functions satisfying α+ = −α−, β+ = −β−; λ 7→ K
(i)
ω,j,ℓ with
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i ∈ {1, 2} are complex-valued analytic functions of λ satisfying K(i)
+,j,ℓ = K

(i)
−,j,ℓ; λ 7→ pω

are analytic functions with values in [−π, π]2 for λ real, satisfying p+ = −p− and 2p+ ̸= 0
mod (2π, 2π); the correction term Rj,j′,ℓ,ℓ′(x, y) is translational invariant and satisfies
|Rj,j′,ℓ,ℓ′(x, 0)| ≤ C|x|−1+C|λ| for some C > 0.

Moreover, there exists an additional set of complex-valued analytic function λ 7→
Iω,ℓ,ℓ′ , ω = ±1, ℓ, ℓ′ ∈ I, such that the Fourier transforms of the interacting propagator
and of the interacting vertex function satisfy:

Ĝ
(2)
ℓ,ℓ′(k + pω) k→0= Iω,ℓ,ℓ′Ĝ

(2)
R,ω(k)[1 +O(|k|1/2)], (2.2.2)

and, if 0 < c ≤ |p|, |k|, |k + p| ≤ 2c,

Ĝ
(2,1)
j,ℓ,ℓ′,ℓ′′(k + pω, p) c→0= −

∑
ω′=±

K
(1)
ω′,j,ℓIω,ℓ′,ℓ′′Ĝ

(2,1)
R,ω′,ω(k, p)[1 +O(c1/2)] , (2.2.3)

where K(1)
ω,j,ℓ is the same as in (2.2.1) and Ĝ(2)

R,ω(k),Ĝ(2,1)
R,ω,ω′(k, p) are two functions satisfy-

ing, for Dω(p) = αωp1 + βωp2,

∑
ω′=±

Dω′(p)Ĝ(2,1)
R,ω′,ω(k, p) = 1

Z(1 − τ)
[
Ĝ

(2)
R,ω(k) − Ĝ

(2)
R,ω(k + p)

](
1 +O(λ|p|)

)
, (2.2.4)

with Z, τ the same as in (2.2.1), and

Ĝ
(2,1)
R,−ω,ω(k, p) = τ

Dω(p)
D−ω(p)Ĝ

(2,1)
R,ω,ω(k, p)

(
1 +O(|p|)

)
. (2.2.5)

Finally, Ĝ
(2)
R,ω(k) ∼ c1|k|−1+O(λ2) as k → 0, and, if 0 < c ≤ |p|, |k|, |k + p| ≤ 2c,

Ĝ
(2,1)
R,ω,ω′(k, p) ∼ c2c

−2+O(λ2) as c → 0, for two suitable non-zero constants c1, c2.

A few comments are in order. First of all, the statement of Theorem 1.4.1, (1.4.1),
follows from (2.2.1), which is just a way to rewrite it: it is enough to identify Kω,j,ℓ with
(2πZ

√
1 − τ2)−1K

(1)
ω,j,ℓ, Hω,j,ℓ with (

√
B/2π)K(2)

ω,j,ℓ, and ν with (1 − τ)/(1 + τ).
Moreover, we emphasize that Proposition 2.2.1 is the analogue of [2, Prop.2] and its

proof, discussed in the next section, is a generalization of the corresponding one. The main
ideas behind the proof remain the same: in order to evaluate the correlation functions of
the non-planar dimer model we start from the Grassmann representation of the generating
function, (2.1.45), and we compute it via an iterative integration procedure, in which we
first integrate out the degrees of freedom associated with a length scale 1, i.e., the scale
of the lattice, then those on length scales 2, 4, . . . , 2−h, . . ., with h < 0. The output
of the integration of the first |h| steps of this iterative procedure can be written as a
Grassmann integral similar to the original one, with the important difference that the
‘bare potential’ V (ψ,A) + (ψ, ϕ) is replaced by an effective one, V (h)(ψ,A, ϕ), that, after
appropriate rescaling, converges to a non-trivial infrared fixed point as h → −∞. The
large-distance asymptotics of the correlation functions of the dimer model can thus be
computed in terms of those of such an infrared fixed-point theory, or of those of any
other model with the same fixed point (i.e., of any other model in the same universality
class, the Luttinger universality class). The reference model we choose for this asymptotic
comparison is described in [2, Section 4], which we refer the reader to for additional details.
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It is very similar to the Luttinger model, and differs from it just for the choice of the
quartic interaction: it describes a system of Euclidean chiral fermions in R2 (modeled by
Grassmann fields denoted ψ±

x,ω, with x ∈ R2 the space label and ω ∈ {+,−} the chirality
label), with relativistic propagator and a non-local (in both space dimensions, contrary to
the case of the Luttinger model) density-density interaction7. The bare parameters of the
reference model, in particular the strength of its density-density interaction, are chosen
in such a way that its infrared fixed point coincides with the one of our dimer model of
interest. The remarkable feature of the reference model is that, contrary to our dimer
model, it is exactly solvable in a very strong sense: its correlation functions can all be
computed in closed form. For our purposes, the relevant correlations are those denoted8

G
(2,1)
R,ω,ω′ (the vertex function of the reference model, corresponding to the correlation of the

density of chirality ω with a pair of Grassmann fields of chirality ω′), G(2)
R,ω (the interacting

propagator, corresponding to the correlation between two Grassmann fields of chirality ω),
S

(1,1)
R,ω,ω (the density-density correlation between two densities with the same chirality ω)

and S(2,2)
R,ω,−ω (the mass-mass correlation between two masses – see footnote 7 – of opposite

chiralities): these are the correlations, in terms of which the asymptotics of the vertex
function, interacting propagator and dimer-dimer correlation of our dimer model can be
expressed.

Remark 2.2.1. The connection between the interacting propagator of the dimer model and
that of the reference model can be read from (2.2.2); similarly, the one between the vertex
functions of the two models can be read from (2.2.3). Moreover, in view of the asymptotics
of S(1,1)

R,ω,ω and of S(2,2)
R,ω,−ω, see [2, Eqs.(4.17) and (4.19)], (2.2.1) can be rewritten as

∑
ω=±

[
K

(1)
ω,j,ℓK

(1)
ω,j′,ℓ′S

(1,1)
R,ω,ω(x, y) +K

(2)
ω,j,ℓK

(2)
−ω,j′,ℓ′S

(2,2)
R,ω,−ω(x, y)e2ipω ·(x−y)] (2.2.6)

plus a faster decaying remainder, which explains the connection between the dimer-dimer
correlation and the density-density and mass-mass correlations of the reference model.

The fact that the infrared behavior of the dimer model discussed in this paper can be
described via the same reference model used for the dimer model in [2] is a priori non-
obvious. In fact, the Grassmann representation of our non-planar dimer model involves
Grassmann fields labelled by x ∈ Λ and ℓ ∈ I = {1, . . . ,m2/2}: therefore, one could
expect that the infrared behavior of the system is described in terms of a reference model
involving fields labelled by an index ℓ ∈ I. This, a priori, could completely change
at a qualitative level the nature of the infrared behavior of the system, which crucially
depends on the number of mutually interacting massless fermionic fields. For instance, it
is well known that 2D chiral fermions with an additional spin degree of freedom (which
is the case of interest for describing the infrared behavior of the 1D Hubbard model),
behaves differently, depending on the sign of the density-density interaction: for repulsive
interactions it behaves qualitatively in the same way as the Luttinger model [122], while

7By ‘density’ of fermions with chirality ω we mean the quadratic monomial ψ+
x,ωψ

−
x,ω; the reference model

we consider has an interaction coupling the density of fermions with chirality + with that of fermions with
opposite chirality, see [2, Eq.(4.11)]. For later reference, we also introduce the notion of fermionic ‘mass’
of chirality ω, associated with the off-diagonal (in the chirality index) quadratic monomial ψ+

x,ωψ
−
x,−ω.

8The label R stands for ‘reference’ or ‘relativistic’.
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for attractive interaction the model dynamically generates a mass and enters a ‘Mott-
insulator’ phase [125]. In our setting, remarkably, despite the fact that the number of
Grassmann fields used to effectively describe the model is large for a large elementary cell
(and, in particular, is always larger than 1), the number of massless fields is the same as
in the case of [2]: in fact, out of the m2/2 fields ψ±

(x,ℓ) with ℓ ∈ {1, . . . ,m2/2}, all but one
of them are massive, i.e., their correlations decay exponentially to zero at large distances,
with rate proportional to the inverse lattice scaling (this is a direct consequence of the fact
that, as proven in [32], the characteristic polynomial µ has only two zeros). Therefore,
for the purpose of computing the generating function, we can integrate out the massive
fields in one single step of the iterative integration procedure, after which we are left with
an effective theory of a single massless Grassmann field with chirality index ω associated
with the two zeros of µ, see (3.1.6), completely analogous to the one studied in [2, Section
6]. See the next section for details.

While the proof of the fine asymptotic result summarized in Proposition 2.2.1 is hard,
and based on the sophisticated procedure just described, the proof of Theorem 1.4.2 given
Proposition 2.2.1 is relatively easy, and close to the analogous proof discussed in [2, Section
5]. We provide it here. Let us start with one definition. Given the face η0 ∈ F̄ (F̄ and
ηx, x = (x1, x2) were defined in Section 1.4, just before Theorem 1.4.2), let E1,0 (resp. E2,0),
be the set of vertical (resp. horizontal) edges crossed by the horizontal (resp. vertical)
path Cη0→η′ connecting η0 to the face η′ ∈ F̄ given by η′ = η(1,0) (resp. η′ = η(0,1)). See
Fig.2.6, where the same paths and edge sets around the cell Bx rather than B0 are shown.
For e ∈ Eq,0, q = 1, 2, we let (x(e), ℓ(e)) denote the coordinates of its black vertex and
j(e) ∈ Jℓ(e) the type of the edge. We also recall from Section 1.4 that σe = ±1 is defined
in (1.4.3).

Proposition 2.2.2. For q = 1, 2 and ω = ±, one has

∑
e∈Eq,0

σe
K

(1)
ω,j(e),ℓ(e)

Z
√

1 − τ2
= −iω

√
ν dqϕω (2.2.7)

where ν = (1 − τ)/(1 + τ), and

d1ϕω := ϕω(x+ (1, 0))) − ϕω(x) = ωβω,

d2ϕω := ϕω(x+ (0, 1))) − ϕω(x) = −ωαω.
(2.2.8)

Proof. Start with the Ward Identity in Fourier space (2.1.50) evaluated for k replaced
by k + pω and substitute (2.2.2) and (2.2.3) in it for c → 0. Recalling that 0 < c <
|k|, |p|, |k + p| < 2c we obtain for c small∑

ω′=±
Dω′(p)G(2,1)

R,ω′,ω(k, p) = (G(2)
R,ω(k) −G

(2)
R,ω(k + p))(1 +O(c1/2)) (2.2.9)

where Dω(p) := −i
∑
e∈E K

(1)
ω,j(e),ℓ(e)p · v(e), with E = E1,0 ∪ E2,0 the set of edges defined in

Proposition 2.1.3. Now comparing the above relation with the identity (2.2.4), by using
(2.2.5) and by identifying terms at dominant order for |p| small we obtain (recall the
definition of Dω(p) right before (2.2.4)):

Dω(p)D−ω(p) + τD−ω(p)Dω(p) = Z(1 − τ2)Dω(p)D−ω(p). (2.2.10)
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Letting p = (p1, p2), v(e) = (v1(e), v2(e)), imposing p2 = 0, p1 ̸= 0 first and p1 = 0, p2 ̸= 0
then, we find a linear system for the coefficients −i

∑
e∈E Kω,ℓ(e),j(e)vq(e), for q = 1, 2 and

ω = ± whose solution is ∑
e∈E

K
(1)
ω,j(e),ℓ(e)v1(e) = iZ(1 − τ)αω,∑

e∈E
K

(1)
ω,j(e),ℓ(e)v2(e) = iZ(1 − τ)βω.

(2.2.11)

Note that, by the very definition of E = E1,0 ∪ E2,0, if e ∈ E , then v1(e) ̸= 0 iff e ∈ E2,0,
while v2(e) ̸= 0 iff e ∈ E1,0. Recall also the relation between v(e) and σe outlined in
Remark 2.1.2: in view of this, (2.2.11) is equivalent to

∑
e∈E1,0

K
(1)
ω,j(e),ℓ(e)

Z
√

1 − τ2
σe = −i

√
1 − τ

1 + τ
βω = −iω

√
ν d1ϕω (2.2.12)

∑
e∈E2,0

Kω,j(e),ℓ(e)

Z
√

1 − τ2
σe = i

√
1 − τ

1 + τ
αω = −iω

√
ν d2ϕω, (2.2.13)

where we used ν = (1 − τ)/(1 + τ) and the definition (2.2.8).

Proof of Theorem 1.4.2. Given Proposition 2.2.2, the proof of Theorem 1.4.2 is essentially
identical to that of [2, Eq.(2.47)] and of [90, Proof of (7.26)]. Here we give only a sketch
and we emphasize only the role played by the relation (2.2.7) that we have just proven.

First of all, we choose a path Cη
x(1) →η

x(2) from face ηx(1) to ηx(2) that crosses only edges
that join different cells. Since ηx(1) , ηx(2) ∈ F̄ , the path Cη

x(1) →η
x(2) visits a sequence of

faces ηy(1) , . . . , ηy(k) ∈ F̄ , with y(1) = x(1), y(k) = x(2) and |y(a) − y(a+1)| = 1. The set of
edges crossed by the path between ηy(a) and ηy(a+1) , denoted E(a), is a translation of either
E1,0 (if y(a+1)−y(a) is horizontal) or E2,0 (if y(a+1)−y(a) is vertical). Similarly, one defines a
path Cη

x(3) →η
x(4) and correspondingly a sequence of faces ηz(1) , . . . , ηz(k′) ∈ F̄ and E ′

(a) the
set of edges crossed by the path between ηz(a) and ηz(a+1) . The two paths can be chosen so
that Cη

x(1) →η
x(2) is of length O(|x(1) − x(2)|) and Cη

x(3) →η
x(4) is of length O(|x(3) − x(4)|),

while they are at mutual distance at least of order min(|x(i) − x(j)|, i ̸= j). See [90] for
more details.

From the definition (1.4.3) of height function, we see that

Eλ [(h(ηx(1)) − h(ηx(2))); (h(ηx(3)) − h(ηx(4)))] =
∑

1≤a<k,
1≤a′<k′

∑
e∈E(a),

e′∈E ′
(a′)

σeσe′Eλ[1e;1e′ ]. (2.2.14)

As a consequence of Proposition 2.2.1, for edges e, e′ with black sites of coordinates
(x, ℓ), (x′, ℓ′) and with orientations j, j′, respectively, we have that

Eλ[1e;1e′ ] =
∑
ω=±

K
(1)
ω,j,ℓ

Z
√

1 − τ2

K
(1)
ω,j′,ℓ′

Z
√

1 − τ2
1

4π2(ϕω(x− x′))2

+ B

4π2

∑
ω=±

K
(2)
ω,j,ℓK

(2)
−ω,j′,ℓ′

|ϕω(x− x′)|2(1−τ)/(1+τ) e
2ipω(x−x′) +Rj,j′,ℓ,ℓ′(x, x′).

(2.2.15)
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At this point we plug this expression into (2.2.14). The oscillating term in (2.2.15),
proportional to B, and the error term Rj,ℓ,j′,ℓ(x, x′), once summed over e, e′, altogether
end up in the error term in (1.4.4) (see the analogous argument in [90, Section 3.2 and
7.3]). As for the main term involving K

(1)
ω,j,ℓ, we observe that if we fix a, a′, then for

e ∈ E(a), e
′ ∈ E ′

(a′) we can replace in (2.2.15) ϕω(x− x′) by ϕω(y(a) − z(a′)), up to an error
term of the same order as Rj,j′,ℓ,ℓ′(x, x′), which again contributes to the error term in
(1.4.4). We are thus left with

∑
ω=±

∑
1≤a<k,
1≤a′<k′

1
4π2(ϕω(y(a) − z(a′)))2

∑
e∈E(a)

σe
Kω,j(e),ℓ(e)

Z
√

1 − τ2

∑
e′∈E ′

(a′)

σe′
Kω,j(e′),ℓ(e′)

Z
√

1 − τ2

= −ν
∑
ω=±

∑
1≤a<k,
1≤a′<k′

(y(a+1) − y(a)) · dϕω (z(a′+1) − z(a′)) · dϕω
4π2(ϕω(y(a) − z(a′)))2

= − ν

2π2 ℜ
[ ∑

1≤a<k,
1≤a′<k′

(y(a+1) − y(a)) · dϕ+ (z(a′+1) − z(a′)) · dϕ+
(ϕ+(y(a) − z(a′)))2

]
(2.2.16)

where in the first step we used Proposition 2.2.2 and defined dϕω := (d1ϕω,d2ϕω). As
explained in [2, Section 5.2] and [90, Section 7.3] (see also [32, Section 4.4.1] in the non-
interacting case), this sum equals the integral in the complex plane

− ν

2π2 ℜ
∫ ϕ+(x(2))

ϕ+(x(1))
dz

∫ ϕ+(x(4))

ϕ+(x(3))
dz′ 1

(z − z′)2 (2.2.17)

(which equals the main term in the r.h.s. of (1.4.4)), plus an error term (coming from the
Riemann approximation) estimated as in the r.h.s. of (1.4.4).

2.3 Proof of Proposition 2.2.1

In this section we give the proof of Proposition 2.2.1 (which immediately implies Theorem
1.4.1, as already commented above), via the strategy sketched after its statement. As
explained there, the novelty compared to the proof in [2, Section 6] is the reduction to
an effective model involving a single Grassmann critical field φ, of the same form as the
one analyzed in [2, Section 6]. Therefore, most of this section will be devoted to the
proof of such reduction, which consists of the following steps. Our starting point is the
generating function of correlations in its Grassmann form, see (2.1.45). In (2.1.45), we first
integrate out the ‘ultraviolet’ degrees of freedom at the lattice scale, see Section 2.3.1 below;
the resulting effective theory can be conveniently formulated in terms of a collection of
chiral fields {ψ±

x,ω}ω∈{+,−}
x∈Λ , where ψ±

x,ω are Grassmann vectors with |I| components, which
represent fluctuation fields supported in momentum space close to the unperturbed Fermi
points pω0 . Next, we perform a ‘rigid rotation’ of these Grassmann vectors via a matrix B
that is independent of x but may depend on the chirality index ω; the rotation is chosen
so to block-diagonalize the reference quadratic part of the effective action, in such a way
that the corresponding covariance is the direct sum of two terms, a one-dimensional one,
which is singular at pω0 , and a non-singular one, of dimension |I| − 1; the components
associated with this non-singular (|I| − 1) × (|I| − 1) block are referred to as the ‘massive
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components’, which can be easily integrated out in one step, see Section 2.3.2 below (this is
the main novel contribution of this section, compared with the multiscale analysis in [2]).
In Section 2.3.3 below we reduce essentially to the setting of [2], that is, to an effective
theory that involves one single-component “quasi-particle” chiral massless field, which can
be analyzed along the same lines as [2, Section 6]. Finally, in Section 2.3.4 we conclude
the proof of Proposition 2.2.1.

2.3.1 Integration of the ultraviolet degrees of freedom

We intend to compute the generating function (2.1.45) with θ boundary conditions. We
introduce Grassmann variables in Fourier space via the following transformation:

ψ̂±
k :=

∑
x∈Λ

e∓ikxψ±
x , ψ±

x = 1
L2

∑
k∈P(θ)

e±ikxψ̂±
k , (2.3.1)

where we recall that each ψ±
x and each ψ̂±

k has |I| components and indeed we assume that
ψ+
x = (ψ+

x,1, . . . , ψ
+
x,|I|) is a row vector while similarly ψ−

x is a column vector (whenever
unnecessary, we shall drop the ‘color’ index ℓ ∈ I); in this way the transformation above
is performed component-wise.

For each θ ∈ {−1,+1}2, we let pωθ , ω = ±1 denote the element of P(θ) that is closest
to pω0 9, we rewrite

ψ±
x = ψ′±

x + Ψ±
x

with
ψ′±
x = 1

L2

∑
k ̸∈{p+

θ
,p−
θ

}

e±ikxψ̂±
k , Ψ±

x = 1
L2

∑
k∈{p+

θ
,p−
θ

}

e±ikxψ̂±
k . (2.3.2)

Noting that

Sθ(ψ) = Sθ(Ψ) + Sθ(ψ′) := − 1
L2

∑
k∈{p+

θ
,p−
θ

}

ψ̂+
kM(k)ψ̂−

k − 1
L2

∑
k ̸∈{p+

θ
,p−
θ

}

ψ̂′+
k M(k)ψ̂′−

k ,

we rewrite

eW(θ)
L (A,ϕ) =

( ∏
k ̸∈{p+

θ
,p−
θ

}

µ(k)
) ∫

DΨ eSθ(Ψ)
∫
P (Dψ′) eV (ψ,A)+(ψ,ϕ), (2.3.3)

where DΨ = ∏
k∈{p+

θ
,p−
θ

}
(
L2|I|DΨ̂k

)
and the Grassmann “measure” DΨ̂k is defined, as

usual, so that ∫ ( ∏
k∈{p+

θ
,p−
θ

}

DΨ̂k

) ( ∏
k∈{p+

θ
,p−
θ

}

∏
ℓ∈I

Ψ̂−
k,ℓΨ̂

+
k,ℓ

)
= 1,

while we have
∫ (∏

k∈I DΨ̂k

)
Q(Ψ) = 0 wheneverQ(Ψ) is a monomial in {Ψ̂±

k,ℓ}k∈{p+
θ
,p−
θ

},ℓ∈I
of degree strictly lower or strictly larger than 4|I|. Moreover, P (Dψ′) is the Grassmann

9In the case of more than one momentum at minimum distance, any choice of p±
θ will work. The

dependence on L of p±
θ is understood.
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Gaussian integration, normalized so that
∫
P (Dψ′) = 1, associated with the propagator

g′(x, y) =
∫
P (Dψ′)ψ′−

x ψ
′+
y = L−2 ∑

k ̸∈{p+
θ
,p−
θ

}

e−ik(x−y)(M(k))−1. (2.3.4)

Note that, since ψ′±
x is a vector with |I| components, g′(x, y) is an |I| × |I| matrix, for

fixed x, y.

Remark 2.3.1. We emphasize also that, since the zeros of µ are simple, µ(k) ̸= 0 for
every k ̸∈ {p+

θ , p
−
θ } (this is the reason why we singled out the two momenta pωθ where µ

possibly vanishes and M is not invertible).

Next we introduce the following

Definition 2.3.1. We let χω : R2 −→ [0, 1], ω = ±1 be two C∞ functions in the Gevrey
class of order 2, see [90, App.C], with the properties that:

(i) χω(k) = χ−ω(−k),

(ii) χω(k) = 1 if |k − pω0 | ≤ c0/2, and χω(k) = 1 if |k − pω0 | > c0, with c0 a small
enough positive constant, such that in particular the support of χ+ is disjoint from
the support of χ−.

We will specify later a more explicit definition of χω. We rewrite g′ = g(0) + g(1), with

g(0)(x, y) = L−2 ∑
ω=±

∑
k ̸∈{p+

θ
,p−
θ

}

e−ik(x−y)χω(k)(M(k))−1,

g(1)(x, y) = L−2 ∑
k∈P(θ)

e−ik(x−y)(1 − χ+(k) − χ−(k))(M(k))−1.
(2.3.5)

Since the cutoff functions χω are Gevrey functions of order 2, the propagator g(1) has
stretched-exponential decay at large distances

∥g(1)(x, y)∥ ≤ Ce−κ
√

|x−y|, (2.3.6)

for suitable L-independent constants C, κ > 0, cf. with [2, Eq. (6.21)] |I| × |I| (recall that
the propagators are |I| × |I| matrices; the norm in the l.h.s. is any matrix norm). In
(2.3.6), |x− y| denotes the graph distance between x and y on GL.

Using the addition principle for Grassmann Gaussian integrations [90, Proposition 1],
we rewrite (2.3.3) as

eW(θ)
L (A,ϕ) =

( ∏
k ̸∈{p+

θ
,p−
θ

}

µ(k)
) ∫

DΨ eSθ(Ψ)
∫
P(0)(Dψ(0))

×
∫
P(1)(Dψ(1)) eV (Ψ+ψ(0)+ψ(1),A)+(Ψ+ψ(0)+ψ(1),ϕ)

=
( ∏
k ̸∈{p+

θ
,p−
θ

}

µ(k)
)
eL

2E(0)+S(0)(J,ϕ)
∫
DΨ eSθ(Ψ)

∫
P(0)(Dψ(0)) eV (0)(Ψ+ψ(0),J,ϕ) (2.3.7)
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where: P(0) and P(1) are the Grassmann Gaussian integrations with propagators g(0) and
g(1), respectively, i.e., letting Oω = {k ∈ P(θ) \ {p+

θ , p
−
θ } : χω(k) ̸= 0,

P(0)(Dψ) =
∏
ω

(
L2|I||Oω |∏

k∈Oω Dψ̂k
)

exp
(

− L−2∑
k∈Oω(χω(k))−1ψ̂+

kM(k)ψ̂−
k

)
(∏

k∈Oω µ(k)(χω(k))−|I|
) ,

(2.3.8)
and a similar explicit expression for P(1) holds; J = {Je}e∈EL with Je = eAe −1; E(0), S(0)

and V (0) are defined via

L2E(0) + S(0)(J, ϕ) + V (0)(ψ, J, ϕ) = log
∫
P(1)(Dψ(1))eV (ψ+ψ(1),A)+(ψ+ψ(1),ϕ), (2.3.9)

with E(0), S(0) fixed uniquely by the condition that V (0)(0, J, ϕ) = S(0)(0, 0) = 0. Pro-
ceeding as in the proof of [2, Eq.(6.24)], one finds that the effective potential V (0) can be
represented as follows:

V (0)(ψ, J, ϕ) =
∑
n>0
m,q≥0
n+q∈2N

∗∑
x,y,z

ℓ,ℓ′,ℓ′,
s,σ,σ′

ψ
σ
x,ℓJy,ℓ′,sϕ

σ′

z,ℓ′′
Wn,m,q;a(x, y, z) (2.3.10)

where the second sum runs over x ∈ Λn, y ∈ Λm, z ∈ Λq, ℓ ∈ In, ℓ′ ∈ Im, ℓ′′ ∈ Iq,
s ∈ Jℓ1 × · · · × Jℓm , σ ∈ {+,−}n, σ′ ∈ {+,−}q (the ∗ on the sum indicates the constraint
that ∑n

i=1 σi +∑q
i=1 σ

′
i = 0), and we defined Jy,ℓ′,s := ∏m

i=1 Jyi,ℓ′i,si (here Jy,ℓ,s stands for
Je when the edge e ∈ EL has black site of coordinates (y, ℓ) and orientation s ∈ Jℓ),
ψ
σ
x,ℓ := ∏n

i=1 ψ
σi
xi,ℓi

, and similarly for ϕσ
′

z,ℓ′′
; finally, a := (ℓ, σ, ℓ′, s, ℓ′′, σ′). Without loss

of generality, we can assume that the kernels Wn,m,q;(ℓ,σ,ℓ′,s,ℓ′′,σ′) are symmetric under
permutations of the indices (y, ℓ′, s) and antisymmetric both under permutations of (x, ℓ, σ)
and of (z, ℓ′′, σ′). A representation similar to (2.3.10) holds also for S(0)(J, φ) with kernels
W 0,m,q

a (y, z), where a = (ℓ′, s, ℓ′′, σ′). As discussed after [2, Eq.(6.27)], using the Battle-
Brydges-Federbush-Kennedy determinant formula and the Gram-Hadamard bound [5, Sec.
4.2] one finds that E(0) and the values of the kernels Wn,m,q;a(x, y, z) at fixed positions
x, y, z are real analytic functions of the parameter λ, for |λ| ≤ λ0 and λ0 sufficiently small
but independent of L. Moreover, in the analyticity domain, |E(0)| ≤ C|λ|, and

∥Wn,m,q∥κ,0 ≤ Cn+m+q|λ|1n+q>2 max{1,c(n+q)} (2.3.11)

for suitable positive constants C, c independent of L. Here the weighted norm ∥ · ∥κ,0 is
defined as

∥Wn,m,q∥κ,0 := L−2 sup
a

∑
x,y,z

|Wn,m,q;a(x, y, z)|e
κ
2
√
δ(x,y,z), (2.3.12)

where κ > 0 is the same as in (2.3.6), and δ(·) denotes the tree distance, that is the length
of the shortest tree on the torus connecting points with the given coordinates.

Remark 2.3.2. The kernels of the effective potential V (0), of S(0), as well as the constant
E(0), depend on θ, because both the interaction V (ψ,A) in (2.3.9) and the propagator g(1)

involved in the integration do. Both these effects can be thought of as being associated
with boundary conditions assigned to the Grassmann fields, periodic in both coordinate
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directions for θ = (−,−), anti-periodic in both coordinate directions for θ = (+,+), and
mixed (periodic in one direction and anti-periodic in the other) in the remaining two cases.
Therefore, using Poisson summation formula (see e.g. [90, App. A.2], where notations
are different), both g(1) and the kernels of V (0) and S(0) can be expressed via an ‘image
rule’, analogous to the summation over images in electrostatics, of the following form:

g(1)(x, y) =
∑

n=(n1,n2)∈Z2

(−1)
θ1+1

2 n1+ θ2+1
2 n2g(1),∞(x− y + nL), (2.3.13)

where g(1),∞(x) = limL→∞ g(1)(x, 0) (an analogous sum rule holds for the kernels of V (0)

and S(0)). From this representation, together with the decay bounds mentioned above on
g(1) and on the kernels of the effective potential, it readily follows that the dependence
upon θ of these functions is a finite-size effect that is stretched-exponentially small in L.
Similarly, the dependence upon θ of E(0) corresponds to a stretched-exponentially small
correction as L → ∞ (see also [90, Appendix A.2]). Therefore, all these corrections
are irrelevant for the purpose of computing the thermodynamic limit of thermodynamic
functions and correlations. For this reason and for ease of notation, here and below we
will not indicate the dependence upon θ explicitly in most of the functions and constants
involved in the multiscale construction.

2.3.2 Integration of the massive degrees of freedom

Using (2.3.8) in (2.3.7) and renaming Ψ + ψ(0) ≡ ψ, we get

eW(θ)
L (A,ϕ) = eL

2(t(0)+E(0))+S(0)(J,ϕ)

×
∫
Dψ e

−L−2
∑

ω

∑
k∈Bω

(χω(k))−1ψ̂+
k
M(k)ψ̂−

k eV
(0)(ψ,J,ϕ) (2.3.14)

where, recalling that Oω was defined right before (2.3.8),

Bω := Oω ∪ {pωθ } = {k ∈ P(θ) : χω(k) ̸= 0},

Dψ := ∏
ω=±

(
L2|I||Bω |∏

k∈Bω Dψ̂k
)

and we have set

t(0) := 1
L2

∑
k∈(∪ωBω)c

logµ(k) + |I|
L2

∑
ω

∑
k∈Oω

logχω(k).

Since p+
0 is a simple zero of µ(k), there exists an invertible complex matrix B+ such

that
B+M(p+

0 )B−1
+ =

(
0 0
0 A+

)
(2.3.15)

for an invertible (|I| − 1) × (|I| − 1) matrix A+. Clearly, B+ (and, therefore, A+) is not
defined uniquely; we choose it arbitrarily, in such a way that (2.3.15) holds, and fix it once
and for all. Taking the complex conjugate in the above equation and using the symmetry
of M , see (2.1.13), one finds that the same relation holds at p−

0 with matrices B− := B+,
A− := A+. Let Mω(k) := BωM(k)B−1

ω , and define the matrices Tω(k),Wω(k), Uω(k) and
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Vω(k) of sizes 1 × 1, (|I| − 1) × (|I| − 1), 1 × (|I| − 1) and (|I| − 1) × 1, respectively, via(
Tω(k) Uω(k)
Vω(k) Wω(k)

)
:= Mω(k). (2.3.16)

Analyticity of M(k) in k implies, in particular, that Tω(k+pω0 ), Uω(k+p0) and Vω(k+pω0 )
are all O(k) as k → 0, while Wω(k+ pω0 ) = Aω +O(k). Let B(2)

ω ⊃ Bω be the ball centered
at pω0 with radius 2c0 , and assume that c0 is so small that inf

k∈B(2)
ω

| detWω(k)| is positive.
Taking the determinant at both sides of (2.3.16), letting ρω := detAω, we find that

µ(k)
k→pω0= ρωTω(k) +O((k − pω0 )2)

so that, recalling (2.1.11),

Tω(k + pω0 ) k→0= α0
ωk1 + β0

ωk2
ρω

+O(k2). (2.3.17)

Since Wω(k) is non singular on Bω, for k ∈ Bω we can block diagonalize Mω as

Mω(k) =
(

1 Uω(k)W−1
ω (k)

0 1

)(
Tω(k) 0

0 Wω(k)

)(
1 0

W−1
ω (k)Vω(k) 1

)
(2.3.18)

where Tω(k) := Tω(k) − Uω(k)W−1
ω (k)Vω(k) is the Schur complement of the block Wω.

Note that from the properties of Uω, Vω,Wω, the function Tω satisfies

Tω(k + pω0 ) k→0= α0
ωk1 + β0

ωk2
ρω

+O(k2),

like Tω. In view of this decomposition, we perform the following change of Grassmann
variables: for k ∈ Bω we define

(φ̂+
k , ζ̂

+
k,1, . . . , ζ̂

+
k,|I|−1) := ψ̂+

k B
−1
ω

(
1 Uω(k)W−1

ω (k)
0 1

)

(φ̂−
k , ζ̂

−
k,1, . . . , ζ̂

−
k,|I|−1)T :=

(
1 0

W−1
ω (k)Vω(k) 1

)
Bωψ̂

−
k .

(2.3.19)

For later convenience, we give the following
Lemma 2.3.0.1. Define ψ±

x := L−2∑
ω

∑
k∈Bω e

±ikxψ̂+
k and

ζ±
x (ω) := L−2 ∑

k∈Bω
e±ikxζ̂+

k , φ±
x (ω) := L−2 ∑

k∈Bω
e±ikxφ̂+

k .

Then, the inverse of the transformation (2.3.19) in x space is

ψ+
x,ℓ =

∑
ω

(
φ+
x (ω)(Bω)1ℓ + (φ+(ω) ∗ τ+

ω,ℓ)x +
|I|∑
j=2

ζ+
x,j−1(ω)(Bω)jℓ

)

ψ−
x,ℓ =

∑
ω

(
(B−1

ω )ℓ1φ−
x (ω) + (τ−

ω,ℓ ∗ φ−(ω))x +
|I|∑
j=2

(B−1
ω )ℓjζ−

x,j−1(ω)
) (2.3.20)
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where

τ+
ω,ℓ(x) := −L−2 ∑

k∈P(θ)

|I|∑
j=2

eikxχω
(k+pω0

2
)
(Uω(k) ·W−1

ω (k))j(Bω)jℓ

τ−
ω,ℓ(x) := −L−2 ∑

k∈P(θ)

|I|∑
j=2

e−ikxχω
(k+pω0

2
)
(B−1

ω )ℓj(W−1
ω (k) · Vω(k))j .

(2.3.21)

Proof. The proof is essentially an elementary computation (one inverts the linear relation
(2.3.19) for given k and then takes the Fourier transform to obtain the expression in
real space) but there is a slightly delicate point, that is to see where the cut-off function
χω
(k+pω0

2
)

comes from. After a few elementary linear algebra manipulations, one finds that
ψ+
x,ℓ equals an expression like in the r.h.s. of (2.3.20), where the term (φ+(ω) ∗ τ+

ω,ℓ)x is
replaced by

1
L2

∑
ω

∑
k∈Bω

φ̂+
k f

ω
ℓ (k)eikx, fωℓ (k) := −

|I|∑
j=2

(
Uω(k)W−1

ω (k)
)
j
(Bω)jℓ.

Since the sum is restricted to k ∈ Bω, we can freely multiply the summand by χω
(k+pω0

2
)
,

which is identically equal 1 there, since the argument is at distance at most c0/2 from pω0 .
At that point, we use the fact that

φ̂+
k 1k∈Bω =

∑
x

φ+
x (ω)e−ikx

and we immediately obtain that (2.3.2) coincides with (φ+(ω) ∗ τ+
ω,ℓ)x, with τ+

ω,ℓ as in
(2.3.21).

At this point we go back to (2.3.14), that we rewrite as

eW(θ)
L (A,ϕ) = eL

2(t(0)+E(0))+S(0)(J,ϕ)

×
∫
Dφe

−L−2
∑

ω

∑
k∈Bω

(χω(k))−1φ̂+
k

Tω(k)φ̂−
k

∫
PW (Dζ) eṼ (0)(φ,ζ,J,ϕ) (2.3.22)

where
t(0) := L−2 ∑

k∈O′

logµ(k) + L−2 ∑
ω=±

∑
k∈Bω

(
log detWω(k) + logχω(k)

)
,

Dφ := ∏
ω=±

(
L2|Bω |∏

k∈Bω Dφ̂k
)
, PW (Dζ) is the normalized Gaussian Grassmann inte-

gration with propagator (which is a (|I| − 1) × (|I| − 1) matrix)

gWω,ω′(x, y) :=
∫
P (Dζ) ζ−

x (ω)ζ+
y (ω′) = δω,ω′

L2

∑
k∈P (θ)

e−ik(x−y)χω(k)(Wω(k))−1, (2.3.23)

and Ṽ (0)(φ, ζ, J, ϕ) is the same as V (0)(ψ, J, ϕ), once ψ is re-expressed in terms of the new
variables (φ, ζ), as in Lemma 2.3.0.1.

Remark 2.3.3. Note that, because of χ(·), the sums (2.3.21) defining τ±
ω,ℓ(x) are restricted

to momenta k ∈ B(2)
ω where Wω is indeed invertible. Note also that, from the smoothness
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of τ̂±
ω,ℓ(k) it follows that τ±

ω,ℓ(x) decays to zero in a stretched-exponential way, similar to
(2.3.6). That is, ψ is essentially a local function of φ, ζ. As a consequence, the kernels of
Ṽ (0) satisfy qualitatively the same bounds as those of V (0).

Since Wω(·) is smooth and invertible in the support of χω, we see from (2.3.23) that
the propagator of the variables {ζx(ω)} decays as

∥gW (x, y)∥ ≤ Ce−κ
√

|x−y|

uniformly in L, a behavior analogous to (2.3.6). For this reason, we call the variables
{ζx(ω)} massive. On the other hand, we call critical the remaining {φx(ω)} variables.

The integration of the massive fields ζ, which is performed in a way completely analo-
gous to the one of ψ(1) in (2.3.9), produces an expression for the generating functional in
terms of a Grassmann integral involving only the critical fields φ:

eW(θ)
L (A,ϕ) = eL

2E(−1)+S(−1)(J,ϕ)
∫
Dφe

−L−2
∑

ω

∑
k∈Bω

φ̂+
k

(χω(k))−1Tω(k)φ̂−
k eV

(−1)(φ,J,ϕ)

(2.3.24)
where

L2(E(−1) − t(0) − E(0)) + S(−1)(J, ϕ) − S(0)(J, ϕ) + V (−1)(φ, J, ϕ)

= log
∫
PW (Dζ)eṼ (0)(φ,ζ,J,ϕ) (2.3.25)

and V (−1), S(−1) are fixed in such a way that V (−1)(0, J, ϕ) = S(−1)(0, 0) = 0. The effective
potential V (−1) can be represented in a way similar to (2.3.10), namely

V (−1)(φ, J, ϕ) =
∑
n>0
m,q≥0
n+q∈2N

∗∑
x,y,z

ℓ′,ℓ′′,ω
s,σ,σ′

φσx(ω)Jy,ℓ′,sϕ
σ′

z,ℓ′′
W (−1)
n,m,q;a(x, y, z;ω) (2.3.26)

where ω ∈ {−1,+1}n and φσx(ω) := ∏n
i=1 φ

σi
xi(ωi), while the other symbols and labels have

the same meaning as in (2.3.10). In virtue of the decay properties of the propagator gWω,ω′ ,
the kernels W (−1)

n,m,q;a(x, y, z;ω) of V (−1)(φ, J, ϕ) satisfy the same bounds as (2.3.11).

2.3.3 Reduction to the setting of [2]

We are left with the integral of the critical variables, which we want to perform in a way
analogous to that discussed in [2, Section 6]. In order to get to a point where we can
literally apply the results of [2], a couple of extra steps are needed. First, in order to
take into account the fact that, in general, the interaction has the effect of changing the
location of the singularity in momentum space of the propagator of φ, as well as the value
of the residues at the singularity, we find it convenient to rewrite the ‘Grassmann action’
in (2.3.24),

−L−2∑
ω

∑
k∈Bω

φ̂+
k (χω(k))−1Tω(k)φ̂−

k + V (−1)(φ, J, ϕ),

in the form of a reference quadratic part, with the ‘right’ singularity structure, plus a
remainder, whose specific value will be fixed a posteriori via a fixed-point argument. More
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precisely, we proceed as described in [2, Section 6.1]: we introduce

N(φ) = L−2∑
ω

∑
k∈Bω

φ̂+
k (−Tω(pω) + aω(k1 − pω1 ) + bω(k2 − pω2 ))φ̂−

k (2.3.27)

where pω, aω, bω will be fixed a posteriori, and are assumed to satisfy

|pω − pω0 | ≪ 1 (2.3.28)

for λ small, p+ = −p− and a+ = −a−, b+ = −b−. Define also

Cω(k) := Tω(k) − χω(k)
(
Tω(pω) − aω(k1 − pω1 ) − bω(k2 − pω2 )

)
(2.3.29)

and note that it satisfies Cω(pω) = 0,

∂k1Cω(pω) = ∂k1Tω(pω) + aω =: αω, ∂k2Cω(pω) = ∂k2Tω(pω) + bω =: βω, (2.3.30)

as well as the symmetry C−ω(−k) = Cω(k).
Let us introduce the matrix M (the same as in [2, Eq.(4.1)]) given by

M = 1√
∆

(
β1 β2

−α1 −α2

)
(2.3.31)

where α1 and α2 (resp. β1 and β2) are, respectively, the real and imaginary part of α+
(resp. β+), see (2.3.30), and ∆ := α1β2−α2β2 is a positive real number, in agreement with
(2.1.16): note, in fact, that at λ = 0 the sign of ∆ is the same as the sign of Im(β+/α+).
At this point, we can finally fix the cut-off functions χω of Definition 2.3.1 as follows:

χω(k) := χ(|M−1(k − pω)|)

where χ : R 7→ [0, 1] is a compactly supported function in the Gevrey class of order 2. It
is immediate to verify that χ can be chosen so that that properties (i)-(ii) of Definition
2.3.1 are verified.

Given this, we rewrite (2.3.24) as

eW(θ)
L (A,ϕ) = eL

2E(−1)+S(−1)(J,ϕ)
∫
Dφe

−L−2
∑

ω

∑
k∈Bω

φ̂+
k

(χω(k))−1Cω(k)φ̂−
k eN(φ)+V (−1)(φ,J,ϕ).

(2.3.32)
In the above integration, the momenta closest to the zeros of Cω (i.e., close to pω) play

a special role and have to be treated at the end of the multiscale procedure, as discussed
in [2, Section 6.5]. For a given θ ∈ {−1,+1}2, denote by k±

θ ∈ Bω the closest momenta to
p± respectively (with the same remark as in footnote 9 in case of several possible choices)
and note that they satisfy k+

θ = −k−
θ . Next we define Φ̂±

ω := φ±
kω
θ
, Φ±

ω,x := L−2e±ikωθ xΦ̂±
ω

and P ′(θ) := P(θ) \ {k±
θ }. Since Cω does not vanish on P ′(θ), we can rewrite (2.3.32) as

eW(θ)
L (A,ϕ) = eL

2E(−1)+S(−1)(J,ϕ)

×
∫
DΦe−L−2

∑
ω

Φ+
ωCω(kωθ )Φ−

ω

∫
P̃(≤−1)(Dφ)eN(φ,Φ)+V (−1)(φ,Φ,J,ϕ) (2.3.33)
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where, letting B′
ω := Bω ∩ P ′(θ),

E(−1) = E(−1) + L−2∑
ω

∑
k∈B′

ω

(logCω(k) − logχω(k)).

Moreover, DΦ := L4DΦ̂+DΦ̂− and P̃(≤−1)(Dφ) is the normalized Grassmann Gaussian
integration with propagator∫

P̃(≤−1)(Dφ)φ−
ω,xφ

+
ω′,y = δω,ω′

1
L2

∑
k∈B′

ω

e−ik(x−y)χω(k)(Cω(k))−1. (2.3.34)

Finally, we remark that since the momenta k in (2.3.34) are close to pω, the propagator
(2.3.34) has an oscillating prefactor e−ipω(x−y) that it is convenient to extract. To this end,
we define quasi-particle fields φ±,(≤−1)

x,ω via

φ±
x (ω) =: e±ipωxφ±,(≤−1)

x,ω .

Note that the propagator of the quasi-particle fields equals∫
P(≤−1)(dφ≤−1)φ−,(≤−1)

x,ω φ
+,(≤−1)
y,ω′ = δω,ω′g(≤−1)

ω (x, y)

g(≤−1)
ω (x, y) := 1

L2

∑
k∈P ′

ω(θ)

e−ik(x−y)χ(k + pω − pω0 )χ(|M−1k|)
Cω(k + pω) , (2.3.35)

where P ′
ω(θ) = {k : k + pω ∈ P ′(θ)}. Of course, the r.h.s. of (2.3.35) is just the r.h.s. of

(2.3.34) multiplied by eipω(x−y). We now rewrite (2.3.33) as

eW(θ)
L (A,ϕ)

= eL
2E(−1)+S(−1)(J,ϕ)

∫
DΦe−L−2

∑
ω

Φ+
ωCω(kωθ )Φ−

ω

∫
P(≤−1)(Dφ(≤−1))eV(−1)(φ(≤−1),Φ,J,ϕ),

(2.3.36)

where
V(−1)(φ,Φ, J, ϕ) := N(Φ, φ) + V (−1)(Φ, φ, J, ϕ), (2.3.37)

and in the r.h.s. it is meant that the φ variables are expressed in terms of the quasi-particle
fields as in (2.3.3). That is, we have simply re-expressed V (−1) in terms of the quasi-particle
fields and we included the counter-terms in the definition of effective potential. After this
rewriting, we find that the following representation holds for V(−1):

V(−1)(φ, J, ϕ) =
∑
n>0
m,q≥0
n+q∈2N

∗∑
x,y,z

ℓ′,ℓ′′,ω
s,σ,σ′

φσx,ωJy,ℓ′,sϕ
σ′

z,ℓ′′
W(−1)
n,m,q;ω,a(x, y, z), (2.3.38)

with kernels W(−1)
n,m,q;ω,a satisfying the same estimates as in (2.3.11). The kernels W(−1)

n,m,q;ω,a

are the analogues of W (−1)
n,m;ω,r in [2, Eq.(6.24)] and satisfy the same properties spelled

in [2, Eq.(6.25)] and following lines. Here the labels a denote the collection of labels
(σ, ℓ′, s, ℓ′′, σ′).
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At this point, we have reduced precisely to the fermionic model studied in [2, Sec. 6].

2.3.4 Infrared integration and conclusion of the proof of Proposition
2.2.1

Once the partition function is re-expressed as in (2.3.36), we are in the position of applying
the multiscale analysis of [2, Section 6]: note in fact that (2.3.36) has exactly the same
form as [2, Eq. (6.19)] with its second line written as in [2, Eq.(6.22)]. Therefore, at
this point, we can integrate out the massless fluctuation field φ via the same iterative
procedure described in [2, Section 6.2.1] and following sections. Such a procedure allows
us to express the thermodynamic and correlation functions of the theory in terms of an
appropriate sequence of effective potentials V(h), h < 0. The discussion in [2, Section 6.4]
implies that we can fix pω, aω, bω uniquely as appropriate analytic functions of λ, for λ
sufficiently small (so that, in particular, (2.3.28) is satisfied), in such a way that the whole
sequence of the effective potentials is well defined for λ sufficiently small, their kernels
are analytic in λ uniformly in the system size, and they admit a limit as L → ∞. In
particular, the running coupling constants characterizing the local part of the effective
potentials are analytic functions of λ and the associated critical exponents are analytic
functions of λ, see [2, Sects.6.4.5 to 6.4.9]. The existence of the thermodynamic limit of
correlation functions follows from [2, Section 6.5]. The proofs of (2.2.1), (2.2.2) and (2.2.3)
in Proposition 2.2.1 follow from the discussion in [2, Section 6.6] (they are the analogues
of [2, Eqs. (5.1),(5.2) and (5.3) in Proposition 2]) and this, together with the fact that
(2.2.4) and (2.2.5) are just restatements of [2, Eq.(4.24)] and [2, Eq.(5.8)], respectively,
concludes the proof of Proposition 2.2.1.

A noticeable, even though mostly aesthetic, difference between the statements of
Proposition 2.2.1 and [2, Proposition 2] is in the labeling of the constants K(1)

ω,j,ℓ and
K

(2)
ω,j,ℓ in (2.2.1), as compared to those in [2, Eq.(5.1)], which are called there K̂ω,r and

Ĥω,r, and in the presence of the constants Iω,ℓ,ℓ′ in (2.2.2)-(2.2.3), which are absent in
their analogues in [2, Eq.(5.2)-(5.3)]. This must be traced back to the different labeling
of the sites and edges and, correspondingly, of the external fields ϕ and A, used in this
paper, as compared to [2].

First of all, in this paper the edges and the external fields of type A are labelled (x, j, ℓ),
with (j, ℓ) playing the same role as the index r in [2]; correspondingly, the analogues of
the running coupling constants Yh,r,(ω1,ω2) defined in [2, Eq.(6.49)] should now be labelled
Yh,(j,ℓ),(ω1,ω2); by repeating the discussion in [2, Section 6.6] leading to [2, Eq.(6.160)], it
is apparent that the analogues of the constants K̂ω,r, Ĥω,r should now be labelled (ω, j, ℓ),
as anticipated.

Concerning the constants Iω,ℓ,ℓ′ , they come from the local part of the effective potentials
in the presence of the external fields ϕ. After having integrated out the massive degrees of
freedom, the infrared integration procedure involves at each step a splitting of the effective
potential into a sum of its local part LV(h) and of its ‘renormalized’, or ‘irrelevant’, part
RV(h), as discussed in [2, Section 6.2.3]. In [2, Section 6], for simplicity, we discussed
the infrared integration only in the absence of external ϕ fields. In their presence, the
definition of localization must be adapted accordingly. When acting on the ϕ-dependent
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part of the effective potential, using a notation similar to [2, Eq.(6.37)], we let

L
(
V(h)(φ, J, ϕ) − V(h)(φ, J, 0)

)
=
∑
x∈Λ

∑
ω,ℓ

(
φ+
x,ωϕ

−
x,ℓe

ipω ·xŴ(h),∞
1,0,1;ω,(+,ℓ,−)(0)

+ φ−
x,ωϕ

+
x,ℓe

−ipω ·xŴ(h),∞
1,0,1;ω,(−,ℓ,+)(0)

)
.

(2.3.39)

Next, in analogy with [2, Eq.(6.49)], we let

I±
h,ω,ℓ := 1√

Zh−1
Ŵ

(h),∞
1,0,1;ω,ℓ,(±,∓)(0), (2.3.40)

where Zh is a real, scalar, function of λ, called the ‘wave function renormalization’, re-
cursively defined as in [2, Eq.(6.45)]. Eq.(2.3.40) defines the running coupling constant
(r.c.c.) associated with the external field ϕ. Note that such r.c.c. naturally inherit the
label ℓ from the corresponding label of the external field ϕ. A straightforward generaliza-
tion of the discussion in [2, Section 6.4] shows that I±

h,ω,ℓ are analytic in λ and converge as
h → −∞ to finite constants I±

−∞,ω,ℓ, which are, again, analytic functions of λ. Therefore,
by repeating the discussion in [2, Section 6.6] for Ĝ(2)

ℓ,ℓ′(k + pω) and Ĝ
(2,1)
j,ℓ0,ℓ,ℓ′

(k + pω, p),
we find that the dominant asymptotic behavior of these correlations as k, p → 0 is pro-
portional to I+

−∞,ω,ℓI
−
−∞,ω,ℓ′ , times a function that is independent of ℓ, ℓ′. Building upon

this, we obtain (2.2.2) and (2.2.3), with Iω,ℓ,ℓ′ proportional to I+
−∞,ω,ℓI

−
−∞,ω,ℓ′ . Additional

details are left to the reader.

2.4 Proof of Theorem 1.4.3

In order to prove Theorem 1.4.3 we proceed as in [90, Section 7.3]: using the fact that
convergence of the moments of a random variable ζn to those of a Gaussian random
variable ζ implies convergence in law of ζn to ζ, we reduce the proof of (1.4.7) to that of
the following identities:

lim
ϵ→0

Eλ(hϵ(f);hϵ(f)) = ν(λ)
2π2

∫
dx

∫
dy f(x) f(y)R[log ϕ+(x− y)].

lim
ϵ→0

Eλ(hϵ(f); · · · ;hϵ(f)︸ ︷︷ ︸
n times

) = 0, n > 2 (2.4.1)

where the l.h.s. of the second line denotes the nth cumulant of hϵ(f). The first equation
is a straightforward corollary of Theorem 1.4.2, for additional details see [90, p.161, proof
of (7.26)]. For the proof of the second equation we need to show that, for any 2n-ple of
distinct points x1, . . . , x2n,

Eλ(h(ηx1) − h(ηx2); · · · ;h(ηx2n−1) − h(ηx2n)) = O(( min
1≤i<j≤2n

|xi − xj |)−θ), (2.4.2)

for some constant θ > 0. In fact, by proceeding as in [90, p.162, Proof of (7.27)], Eq. (2.4.2)
readily implies the second line of (2.4.1). In order to prove (2.4.2), we first expand each
difference within the expectation in the left side as in (1.4.3), thus getting

LHS of (2.4.2) =
∑

e1∈Cηx1 →ηx2

· · ·
∑

en∈Cηx2n−1 →ηx2n

σe1 · · ·σenEλ(1e1 ; · · · ;1en). (2.4.3)
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At a dimensional level, the truncated n-point correlation in the right hand side decays like
d−n(1+O(λ)), where d is the minimal pairwise distance among the edges e1, . . . , en; therefore,
the result of the n-fold summation in (2.4.3) is potentially unbounded as maxi<j |xi−xj | →
∞. In order to show that this is not the case, and actually the result of the n-fold
summation is bounded as in the right hand side of (2.4.2), we need to exhibit appropriate
cancellations. Once more, we use the comparison of the dimer lattice model with the
infrared reference model, which allows us to re-express the multi-point truncated dimer
correlation Eλ(1e1 ; · · · ;1en) as a dominant term, which is the multi-point analogue of
(2.2.6), plus a remainder, which decays faster at large distances. More precisely, by using
a decomposition analogous to [90, Eq. (7.7)] and using the analogue of [90, Eq. (6.90)], if
ei has labels (xi, ji, ℓi), we rewrite

Eλ(1e1 ; · · · ;1en) =
∑

ω1,...,ωn=±
s1,...,sn=1,2

( n∏
r=1

K
(sr)
ωr,jr,ℓr

( ∏
r:sr=2

e2ipωr ·xr))S(s1,...,sn)
R;ω1,...,ωn

(x1, . . . , xn)

+ Err(e1, . . . , en),
(2.4.4)

where S(s1,...,sn)
R;ω1,...,ωn

are the multi-point density-mass correlations of the reference model (de-
fined as in [90, Eq. (6.85)] or as the multi-point analogue of [2, Eq. (4.15)-(4.16)]). More-
over, if Dx is the diameter of x = (x1, . . . , xn) and if the minimal separation among the
elements of x is larger than c0Dx for some positive constant c0, then, for θ equal to, say,
1/2 (in general, θ can be any positive constant smaller than 1 − O(λ)) the remainder
term is bounded as |Err(e1, . . . , en)| ≤ Cn,θ(c0)D−n−θ

x . The latter bound is the analogue
of [90, Eq. (6.90)]. Moreover10, the functions S(s1,...,sn)

R;ω1,...,ωn
are non-zero only if the quasi-

particle indices satisfy the constraint ∑i:si=2 ωi = 0 (this is the multi-point generalization
of [90, Eq. (6.92)]). Finally, and most importantly, if s1 = · · · = sn = 1, then

S
(1,...,1)
R;ω1,...,ωn

(x1, . . . , xn) ≡ 0, n > 2, (2.4.5)

which is the analogue of [90, Eq.(6.94)] and is an instance of ‘bosonization’ for the reference
model: in fact, (2.4.5) can be interpreted by saying that the n-point (with n > 2) truncated
density correlations of the reference model (recall Footnote 7 for the definition of ‘density’
and ‘mass’ observables) are all identically equal to zero.

In conclusion, in the right hand side of (2.4.3) we can replace Eλ(1e1 ; · · · ;1en) by the
right hand side of (2.4.4), where the term with s1 = · · · = sn = 1 vanishes. Therefore, all
the terms we are left with either involve oscillating factors∏r:sr=2 e

2ipωr ·xr or the remainder
term Err(e1, . . . , en). In both cases, exactly like in the case n = 2, the contribution of these
terms to the n-fold summation over e1, . . . , en in (2.4.3) is bounded better than the naive
dimensional estimate, and we are led to the bound in (2.4.2). For a detailed discussion of
how the estimate of the summation is performed, we refer the reader to [90, Section 7.2].

10See the discussion after [90, Eq. (6.94)] for references about the properties of S(s1,...,sn)
R;ω1,...,ωn

that are
discussed in this paragraph.





CHAPTER 3

INTERACTING DIMERS II:
LIQUID-FROZEN TRANSITION

In order to prove Theorems 1.4.4-1.4.5, this chapter is structured as follows.

In Section 3.1 we recall known results for the non-interacting dimer model. In par-
ticular we prove Theorem 1.4.5 in the non-interacting case. Section 3.2.1 contains the
Grassmannian representation of the model. Our case is a direct Corollary of [2]. In Sec-
tion 3.3 we set up the multiscale analysis. This section is standard and is used to set up
the inductive structure of the Renormalization Group analysis. It is essentially the same
as the analysis in [4]. In Section 3.3.1 we set up the multiscale structure to deal with the
shift of the liquid-frozen transition point caused by the interaction: this fact is one the
main differences with [4]. In Section 3.3.2 we set the double-regime multiscale structure,
which is necessary to control the thermodynamic limit of the theory uniformly as we ap-
proach the edge of the frozen phase. Section 3.4 is the core of the technical analysis. It is
standard and rooted in an extensive literature. The main references for us in this context
are [2, 4, 5]. The goal of this section is to combine the ideas of [4] with the formalism
developed in [2] for an interacting dimer model. In Section 3.4.2 there are quantitative
estimates, output of the multiscale structure, necessary to check the convergence of the
theory in multiscale analysis; Section 3.4.3 contains the Gallavotti-Nicolo’ tree formalism
and a comparison with [4] in order to export the estimates into our framework. Sec-
tion 3.4.1 collects the information arising from the inductive renormalization procedure in
terms of a system of equations in a space of sequences, the so called Beta function; this is
used in Section 3.4.4 to reformulate the convergence of the perturbative theory in terms
of a fixed point solution for the Beta function. Section 3.5 contains the proof of the main
Theorems 1.4.4-1.4.5

3.1 The non-interacting dimer model and the liquid-frozen
transition

In this section, we recall some basic definitions and results about the integrable (or non-
interacting) dimer model on the infinite honeycomb bipartite graph H. For the reader’s

65
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convenience we also report here some of the definitions given in Sec. 1.3.

A

B

C
e2

e1

Figure 3.1: The graph GL with L = 4; the fundamental domain, containing one black and
one white vertex which share the same coordinate x, is encircled. Weights of horizontal,
north-east and north-west oriented edges are A,B,C, respectively. In orange an example
of a dimer configuration.

• We work on the graph GL = (VL, EL), L ∈ 2N, embedded in the two-dimensional
torus, defined as

GL := H/(LZ × LZ) (3.1.1)

where H stands for the infinite bipartite hexagonal graph and LZ ×LZ denotes the
action of the translations with respect to directions Le⃗1, Le⃗2 (see Figure 3.1).

• GL is bipartite, so we color with black and white its vertices and we decompose
VL = V W

L ∪ V B
L where, the sets V B

L and V W
L are both isomorphic to Λ := {(x1, x2) :

xi = 0, . . . , L − 1}. We assume that a black and a white vertex share the same
coordinates if and only if they are in the same copy of the fundamental domain
G1.Given a vertex v, we write x(v) = (x1(v), x2(v)) ∈ Λ for its coordinates in the
basis e⃗1, e⃗2.

• We denoted by ΩL the space of dimer configurations or perfect matchings of GL. To
each M ∈ ΩL we associate a statistical weight w(M) = ∏

e∈M te = ANABNBCNC

where we recall that t : EL → R+ assigns a positive number to each edge of the
graph: since we work in a translationally invariant setting, we let te = A if e is
horizontal, te = B is e is north-west oriented and te = C otherwise.

• The probability measure PL (with corresponding expectation EL) on ΩL is defined
by

PL(M) := w(M)
ZL

, w(M) =
∏
e∈M

te = ANABNBCNC (3.1.2)

with partition function ZL = ∑
M∈ΩL w(M). Here, NA, NB, NC denote the number

of dimers of type A,B,C in the configuration M , respectively. The free energy per
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unit volume and the generating functional are given by

fL = 1
L2 logZL

eWL(A) =
∑

M∈ΩL

w(M)e
∑

e∈EL
1{e∈M}Ae

(3.1.3)

where A = {Ae}e∈EL is a collection of real parameters.

Definition 3.1.1 (Kasteleyn Matrix). For vertices b ∈ V B
L , w ∈ V W

L define b ∼ w iff
(b, w) ∈ EL. Denote by K the t-weighted adjacency matrix of GL, i.e. the matrix whose
rows and columns are indexed by black and white vertices of VL respectively and whose
entries are given for b ∈ V B

L , w ∈ V W
L by

K(b, w) =
{
te b ∼ w, e = (b, w)
0 b ̸∼ w.

(3.1.4)

3.1.1 Kasteleyn theory and thermodynamics of the non-interacting model

The non-interacting dimer model is integrable and there are explicit determinantal for-
mulas for its correlation functions and partition function. In this section, we recall the
minimal amount of known facts, needed for the rest of this work. We refer to [82, 113]
for more details.

Definition 3.1.2. Given θ = (θ1, θ2) ∈ {0, 1}2 we define the θ-altered Kasteleyn matrix
Kθ as follows: Kθ(b, w) = (−1)θ1K(b, w) if x1(w) = 0 and x1(b) = L − 1, Kθ(b, w) =
(−1)θ2K(b, w) if x2(w) = 0 and x2(b) = L− 1 and Kθ(e) = K(e) otherwise.

Notice that K00 ≡ K; we call K00 the Kasteleyn matrix with periodic-periodic bound-
ary conditions, K10 the one with antiperiodic-periodic b.c. and similarly for K01 and K11.
The matrix Kθ can be diagonalized by the Fourier basis { e−ikx

L } with x ∈ Λ and k ∈ D(θ)
given by

D(θ) :=
{

(k1, k2) : ki = 2π
L

(
ni + θi

2

)
, −L

2 ≤ ni <
L

2
}

⊂ [−π, π]2. (3.1.5)

The corresponding eigenvalues are given by

µ(k) = A+Beik1 + Ceik2 . (3.1.6)

The following proposition summarizes what we need about the determinantal structure of
the non-interacting mode:

Proposition 3.1.1. The partition function can be written as

ZL =
∑

θ∈{0,1}2

cθ
2 detKθ, detKθ =

∏
k∈Dθ

µ(k). (3.1.7)

where (c00, c10, c01, c11) = (−1, 1, 1, 1) if L is even1. Assume that detKθ ̸= 0 for all

1see [113] for a proof
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θ. Given distinct edges e1, . . . , en, the multipoint correlation function is given (with 1e

denoting the indicator function of the event that there is a dimer occupying the edge e) by

EL[1e1 · · ·1en ] =

∑
θ
cθ
2 (∏n

i=1Kθ(ei)) detKθ det
(
K−1
θ (wi, bj)

)n
i,j=1

ZL
(3.1.8)

where wi, bi are the white/black endpoints of ei.

The inverse of Kθ is given as

K−1
θ (w, b) = 1

L2

∑
k∈Dθ

e−ik(x−y)

µ(k) (3.1.9)

where the white and black vertices w, b have coordinates x, y ∈ Λ respectively. The
following proposition summarizes the results in the infinite volume limit:

Proposition 3.1.2. The infinite-volume limit of the free energy per unit volume exists
and equals

f(A,B,C) = lim
L→∞

1
L2 logZL = 1

(2π)2

∫
[−π,π]2

log |µ(k)|dk (3.1.10)

The infinite-volume limit of the correlation functions is given by

E[1e1 · · ·1en ] =
(

n∏
i=1

K(ei)
)

det
(
K−1(xi − yj)

)n
i,j=1

(3.1.11)

where xi/yi are the coordinates of wi/bi and

K−1(x) := 1
(2π)2

∫
[−π,π]2

e−ikx

µ(k) dk = 1
(2πi)2

∫
T2

dz

z

dw

w

z−x1w−x2

A+Bz + Cw
(3.1.12)

where T2 := {(z, w) ∈ C2 : |z| = |w| = 1}.

Since the probability measure PL is unchanged when all weights are multiplied by the
same factor, we will from now on set A = 1.

To describe the phase diagram of the model it is convenient to define the “magnetic
fields” (Bx, By) ∈ R2 via B = eBx , C = eBy . Also, it is useful to introduce the following

Definition 3.1.3. Let Log : (C \ {0})2 → R2 defined by Log(z, w) = (log |z|, log |w|).
Then the amoeba of the polynomial P (z, w) = 1 + z + w is defined as

A(P ) := {Log(z, w) : P (z, w) = 0}. (3.1.13)

Note that the denominator in (3.1.12) has zeros on T2 (so that the integrand is singular)
if and only if (Bx, By) belong to A(P ). The latter is known to be a simply connected
subset of R2 with non-empty interior, such that its complement is made of three infinite
connected components. See Fig. 3.3. In terms of the weights A = 1, B, C, the condition
(Bx, By) ∈ A(P ) is equivalent to the condition that A = 1, B,C satisfy the triangular
inequality. The phase diagram of the model is summarized in the following
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Proposition 3.1.3. • (r Rough region) If A = 1, B,C satisfy strictly the triangle
inequality (equivalently, if (Bx, By) belongs to the interior of A(P )), then the func-
tion µ in (3.1.6) has two simple zeros p± ∈ [−π, π]2, p+ = −p−. Explicitly, p+ =
(π − θC ,−π + θB) where θB, θC are defined geometrically as in Fig. 3.2. Moreover,
the so-called “Ronkin function” [32]

R(Bx, By) := f(1, eBx , eBy) (3.1.14)

is a strictly convex function of (Bx, By) in the interior of A(P ) and the infinite-
volume limit ρA, ρB, ρC of the density of dimers of type A,B,C is θA/π, θB/π, θC/π,
respectively.

• (Frozen region) In the three connected components of the complement of A(P ),
R(Bx, By) is an affine function and the function µ has no zeros on [−π, π]2. In
particular, if A > B + C (resp. B > A + C or C > A + B) then R(Bx, By) = 0
(resp. R(Bx, By) = Bx or R(Bx, By) = By) and ρA (ρB or ρC) is 1.

A

B

C

θB

θC

θA

p+1

Figure 3.2: Geometric interpretation of the dimer densities θA/π, θB/π, θC/π.

The liquid-frozen transition

We are interested in the liquid-frozen transition. For the non-interacting model, according
to Proposition 3.1.3, this corresponds to the limit where the magnetic fields lie on the
boundary of the amoeba. Otherwise stated, one of the three weights equals the sum of the
other two: e.g. A = 1, B+C = 1. Without loss of generality, we consider the limit where
(B,C) tends to (t, 1 − t) for some t ∈ (0, 1). The case where t = 0 or t = 1 is somewhat
degenerate and will not be considered here; it corresponds to (Bx, By) tending to infinity
along one of the three “tentacles” of the amoeba. We refer the reader to [128] for the
asymptotic behavior of dimer models in the tentacles of the amoeba in relation to the so
called Bead model.

To approach the point (B,C) = (t, 1 − t), we can choose for instance (B,C) =
(B(ε), C(ε)) = eε

2 (t, 1 − t) and let ε → 0. Changing ε corresponds to changing linearly
the magnetic fields. For ε > 0 (resp. ε < 0) we are in the rough (resp. frozen) region.
From Proposition 3.1.3, R(log t+ ε, log(1 − t) + ε) = f(1, B(ε), C(ε)) is zero for ε < 0 and
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B

C

1

1

ε → 0 (e
ε

2 ,
eε

2 )

Bx

By

ϵ → 0

-2 -1 0 1 2

-2

-1

0

1

2

Figure 3.3: Left: in the shaded region the triangle condition for A = 1, B,C holds. The
blue segment corresponds to (B,C) = (t, 1−t), t ∈ [0, 1]. The midpoint can be approached
for instance choosing (B,C) = ( eε2 ,

eε

2 ), ε → 0. Right: the amoeba A(P ) is the unbounded
triangular region delimited by the three colored curves.

non-zero for ε > 0 (because the free energy is strictly convex in the rough region). The
free energy is zero at the transition point (because of convexity). The way it vanishes as
ε → 0+ is easily determined:

Theorem 3.1.1. Let t ∈ (0, 1). As ε → 0,

R(log t+ ε, log(1 − t) + ε) = 1ε≥0

(
2
√

2
3π
√
t(1 − t)

ε3/2 +O(ε5/2)
)
. (3.1.15)

Note the symmetry t ↔ 1 − t, corresponding to the symmetry B ↔ C of the dimer
model.

Proof of Theorem 3.1.1. Let ε > 0. Note that ∂BxR(Bx, By) = ρB = θB/π and ∂ByR(Bx, By) =
ρC = θC/π, the densities of dimers of type B and C. Therefore,

R(log t+ ε̄, log(1 − t) + ε̄) = 1
π

∫ ε̄

0
(θB + θC)dε. (3.1.16)

Recalling Fig. 3.2 and applying the law of cosines,

θB = arccos
(cosh ε

1 − t
− teε

1 − t

)
=
√

2ε t

1 − t
+O(ε3/2),

θC = arccos
(
eε − sinh ε

t

)
=
√

2ε1 − t

t
+O(ε3/2) (3.1.17)

and the claim follows from (3.1.16).

Theorem 3.1.1, is the Pokrovsky-Talapov law for the non interacting Ronkin function
near a generic point on the boundary between the frozen and rough regions. This proves
the statement of Theorem 1.4.5 for λ = 0 and t = 1/2.
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3.2 Fermionic setting

In this section we want to derive a Grassmann representation for the partition function of
the interacting model, Zλ,ε,L and more generally for the generating functional Wλ,ε,L(A).
Let us recall the necessary definitions. Given A = {Ae}e∈EL , let

eWε,λ,L(A) =
∑

M∈ΩL

wε,λ(M)e
∑

e∈EL
1eAe

, Zε,λ,L = eWε,λ,L(0)

wε,λ(M) :=
(eε

2
)NB+NC

eλV , V =
∑
f∈G∗

L

1
(2)
f

(3.2.1)

where NB, NC are the numbers of dimers of type B,C respectively, in the configuration
M ; 1e is the indicator function of the event that a dimer occupies the edge e ∈ EL while,
given a face f in the dual graph G∗

L, 1(2)
f = 1 iff two parallel dimers surround the face f

and it is zero otherwise. We can also write

1
(2)
f =

3∑
σ=1

1
(2)
f,σ (3.2.2)

where σ specifies which type of dimers occupies f , among types A,B,C (horizontal, North-
West, North-East oriented) see Fig. 3.4.

ff f

σ = 3σ = 2σ = 1

Figure 3.4

Next, we need a Grassmann algebra. We assign to each vertex of the lattice a Grass-
mann variable ψ±

x where x ∈ Λ, with the convention that ψ+ is associated to black vertices
and ψ− to white ones (recall that the graph is bipartite). They satisfy by definition the
anticommutation relation

ψσxψ
σ′
x′ = −ψσ′

x′ψσx , x, x′ ∈ Λ, σ, σ′ = ±. (3.2.3)

Given the Grassmann algebra generated by {ψσx}σ=±
x∈Λ , sometimes here also called Grass-

mann field, we can consider its Fourier transform, namely the Grassmann algebra gener-
ated by {ψ̂σk}σ=±

k∈Dθ satisfying the following relation

ψ±
x = L−2 ∑

k∈Dθ

e±ikxψ̂σk . (3.2.4)

where Dθ is the same as in (3.1.5).
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3.2.1 Grassmann representation

We start from the formula (3.1.7) of the partition function of the non-interacting model. It
is well known that determinants can be written in terms of Gaussian Grassmann integrals
(see e.g. [5]) so that we can express Zε,0,L as

Zε,0,L = 1
2

∑
θ∈{−1,1}2

cθ

∫
DψeSθ,ε(ψ),

Sθ,ε(ψ) := −
∑
e∈EL

Eε,θ,e(ψ), Eε,θ,e(ψ) := Kε,θ(b, w)ψ+
b ψ

−
w

(3.2.5)

where b, w are the black and white vertices of the edge e; we specified the dependence on ε
in the Kasteleyn matrixKθ (see Section 3.1.1) for the choice of weightsA = 1, B = C = 1

2e
ε

and cθ are the same signs as in Proposition 3.1.1. Note that for later convenience, using
the conventions in Fourier space, we can also write

Sε,θ(ψ) = −L−2 ∑
k∈Dθ

ψ̂+
k µε(k)ψ̂−

k , µε(k) = 1 + 1
2e

ε(eik1 + eik2) (3.2.6)

In order to obtain a Grassmann representation for the interacting partition function, or
more in general for the interacting generating functional, notice that the interaction V
(see (3.2.1)) can be written as

V =
∑
x∈Λ

f(τxM), f(M) = 1e11e4 + 1e21e5 + 1e31e6 (3.2.7)

where τx is a lattice translation by x1e⃗1 + x2e⃗2 and we denote by e1, . . . , e6 the edges
around fixed face, ordered clockwise starting from the horizontal one at the bottom. This
is a specific instance of perturbation belonging to a wider class studied in [2] (see Sec.
2.3); also, the different lattice structure used here is a sub-case of the one discussed there2.
There, a Grassmann representation of generating function was obtained (see Prop. 1 [2]).
We report here the statement and the proof in this special case:

Proposition 3.2.1. The generating functional Wε,λ,L(A) (3.2.1) can be written as

eWε,λ,L(A) =
∑

θ∈{−1,1}2

cθ
2

∫
DψeSε,θ(ψ)+V (ψ,A)

(3.2.8)

where Sε,θ(ψ) is given above and

V (ψ,A) =
∑
e∈EL

(eAe − 1)Eε,θ,e(ψ) +
∑
γ

c(γ)
∏
e∈γ

E
(A)
ε,θ,e(ψ) (3.2.9)

with E
(A)
ε,θ,e(ψ) := eAeEε,θ,e(ψ) and the sum runs over collections γ ⊂ EL, |γ| ≥ 2, of

parallel adjacent edges, so one can write γ = {e1, . . . , e|γ|} with ei and ei+1 adjacent, for
i = 1, · · · , |γ| − 1. We say that two parallel edges are adjacent if they surround the same

2This is seen by setting t4 in [2, Sec: 2.1] in which case the square graph becomes isomorphic to the
hexagonal one.
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face η ∈ G∗
L (as in Figure 3.4); c(γ) = (eλ − 1)|γ|−1(−1)|γ|.

Proof. We can rewrite the generating functional (3.2.1) as

eWε,λ,L(A) =
∑

M⊂ΩL

wA(M)eV (M), wA(M) =
(
eε

2

)NB+NC
e

∑
e∈EL

Ae1e
. (3.2.10)

Using the definition of V ,

eWε,λ,L(A) =

=
∑

M⊂ΩL

wA(M)
∏
η∈G∗

L

(1 + α
3∑

σ=1
1

(2)
η,σ) =

∑
M⊂ΩL

wA(M)
∏
η∈G∗

L

3∏
σ=1

(1 + α1(2)
η,σ)

(3.2.11)

where α = eλ − 1 and we used the identity, for η fixed, eλ1
(2)
η = 1 + (eλ − 1)1(2)

η ; then we
used (3.2.2), and the fact that for σ ̸= σ′, 1(2)

η,σ1
(2)
η,σ′ = 0 for all configurations M . Now the

following equality holds

∏
η∈G∗

L

3∏
σ=1

(1 + α1(2)
η,σ) =

∑
n≥0

∗∑
γ1,...,γn

n∏
i=1

c̃(γi)
∏
e∈γi

1e (3.2.12)

where the value of the sum when n = 0 is 1 by definition, and:

1. γi is a set of edges of EL such that each of its edges has the same orientation (i.e. it
comes from the same choice of σ, see Figure 1.6), meaning that there exist a lattice
translation τ such that e = τe′, for every pair (e, e′) ∈ γ× γ; moreover for every non
trivial partition γ = γ1 ∪ γ2 there exist ej ∈ γj , j = 1, 2, and η ∈ G∗

L such that e1, e2
belongs to η.

2. the ∗ in the sum means that the γi’s are pairwise disjoint and for every i ̸= j, ej ∈ γj
with j = 1, 2, e1, e2 do not belong to the same face of G∗

L.

3. c̃(γ) := α|γ|−1

Then, plugging (3.2.12) in (3.2.11) we can rewrite, changing the order of summation,

eWε,λ,L(A) =
∑
n≥0

∗∑
γ1,...,γn

 n∏
i=1

c(γi)
∏
e∈γi

∂Ae

 eWϵ,0,L(A). (3.2.13)

Now, since eWϵ,L,0(A) can be seen as the partition function of a non interacting dimer model
with modified edge weights teeAe , we can express it in terms of a Gaussian Grassmann
integral, in the same spirit as (3.2.5), namely

eWϵ,L,0(A) =
∑

θ∈{−1,1}2

cθ

∫
DψeS

(A)
θ

(ψ) (3.2.14)

where S(A)
ε,θ is the same as Sε,θ (cf. (3.2.5)) where Eε,θ,e(ψ) is replaced by E

(A)
ε,θ,e(ψ) :=
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eAeEε,θ,e(ψ); so (3.2.13) becomes

eWε,λ,L(A) =
∑
n≥0

∗∑
γ1,...,γn

∑
θ

cθ
2

∫
DψeS

(A)
ε,θ

(ψ)
n∏
i=1

c(γi)
∏
e∈γi

E
(A)
ε,θ,e(ψ), (3.2.15)

where c(γ) := (−1)|γ|c̃(γ). Finally notice that

e
∑

γ
c(γ)

∏
e∈γ E

(A)
ε,θ,e

(ψ) =

=
∑
n≥0

1
n!

∑
γ

c(γ)
∏
e∈γ

E
(A)
ε,θ,e(ψ)

n =
∑
n≥0

∗∑
γ1,...,γn

n∏
i=1

c(γi)
∏
e∈γi

E
(A)
ε,θ,e(ψ)

(3.2.16)

since the E(A)
ε,θ,e(ψ) commute among themself and the ∗ comes from ψ2 = 0 for every field

ψ.

3.2.2 Symmetries

For λ = 0, note that that for general weights A,B,C the free model (Proposition 3.1.1
and above) display the symmetry under complex conjugation

µ(−k) = µ(k) (3.2.17)

which is a consequence of choosing the Kasteleyn matrix to be real (as it follows from
(3.1.9)). Moreover if B = C, one also has (cf. (3.1.6))

µ(k̃) = µ(k), k̃ := (k2, k1) (3.2.18)

where k = (k1, k2). Let us describe the effect of these symmetries, in terms of transfor-
mations S1,S2 on the Grassmann algebra generated by {ψx}x∈Λ. Note first that (3.2.17)
implies that the action Sθ(ψ) defined in (3.2.5) is left invariant by S1 defined by

S1 : ψ̂±
k −→ ψ̂±

−k, c → c (3.2.19)

for c ∈ C, meaning that in every Grassmann polynomial, each Grassmann field ψ̂ is
replaced as above and every constant c is replaced by its complex conjugate. This is a
consequence of −Dθ = Dθ, for every θ ∈ {0, 1}2, and of (3.2.6). Instead, the consequence
of (3.2.18) is that, if we define

S2 : ψ̂±
k −→ ψ̂±

k̃
, c → c (3.2.20)

we find S2(Sθ(ψ)) = Sθ̃(ψ), as a consequence of D̃θ = Dθ̃. Notice that since c(0,1) = c(1,0)
in (3.2.5), then Ŝ2 is a symmetry for the free theory, if B = C.

For λ ̸= 0, we need to check also the symmetries of the bare potential V (ψ) defined
in (3.2.8). Rewriting the symmetries in terms of the fields {ψ±

x } instead of their Fourier
transform, we find

S1 : ψ±
x −→ ψ±

x , c → c, S2 : ψ±
x −→ ψ±

x̃ , c → c (3.2.21)

where again x̃ = (x2, x1) if x = (x1, x2). Since V (ψ) has real coefficients, (cfr. Proposition
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3.2.1), then V is symmetric under S1; moreover making explicit the dependence on θ in
V (ψ) (cfr. (3.2.8) and (3.2.5)) one can see that S2(Vθ(ψ)) = Vθ̃(ψ), if B = C. Indeed, it is
enough to note that (1) S2 is an involution that sends NW-oriented edges in NE-oriented
ones so that it is a bijection from the set of edges {γ} in the definition of V (ψ) in itself;
(2) Eθe (ψ) does not depend on θ if e is an horizontal edge: (3) S2E

θ
e (ψ) = E θ̃e (ψ).

3.3 RG approach: multiscale decomposition

In this Section we set the multiscale integration procedure, by exploiting the Grassmann
representation obtained in Proposition 3.2.1. We will define an iterative procedure to
obtain the value of Wε,λ,L(A), as well as of fε,λ,L. We first show the construction for the
so called critical case in Section 3.3.1, namely we choose ε = ϵ+ ε0 with ϵ = 0 and we set
temporarily the external fields A = 0 to lighten the notation. Here ε0 plays the role of a
free parameter. It will be fixed, in order to obtain a convergent perturbative expansion,
in Section 3.4.4. Next we generalize the iterative procedure to the case ϵ ̸= 0, A ≠ 0 in
Section 3.3.2.

3.3.1 The critical theory

At the rough-frozen transition point ε = 0 (i.e., B = C = 1/2 = A/2) of the non-
interacting model, the two zeros p± of the function µ coincide modulo (2π, 2π), and they
equal (π, π) (recall Proposition 3.1.3). One of the effects of the interaction V is, in general,
to change the location of the critical point. This means that the critical behavior that
we observe at ε = 0 for the non interacting λ = 0 model must be expected, when we
switch on the interaction, at some λ-dependent value ε0(λ), yet to be determined, such
that ε0(0) = 0. For the moment, we take some ε0 ∈ R which will be suitably fixed later,
as a function of λ.
In order to simplify as much as possible the construction, we set the external fields A = 0.
We will describe in the next Sections the complete procedure for A ≠ 0, and ε = ϵ+ ε0(λ)
with ϵ ̸= 0. Thanks to Proposition 3.2.1 our starting point is Zλ,ε,L,θ = ∑

θ
cθ
2 Zλ,ε,L,θ

where for a fixed θ ∈ {0, 1}2

Zλ,ε,L,θ := eL
2ε0

∫
DψeS̄0,θ(ψ)+ν0N(ψ)+V̄ (ψ),

S̄θ(ψ) := −L−2 ∑
k∈Dθ

ψ+
k

(
1 + eik1 + eik2

2

)
ψ−
k ,

N(ψ) := −L−2 ∑
k∈Dθ

ψ+
k ψ

−
k , ν0 := e−ε0 − 1

(3.3.1)

where the factor eL2ε0 comes from the rescaling of the Grassmann variables ψ 7→
√
e−ε0ψ,

while S̄0,θ, V̄ (ψ) are the rewritings of S0,θ, V of Proposition 3.2.1 in terms of the rescaled
fields. Notice that µ0(k) = 1 + 1

2(eik1 + eik2) (cf. (3.2.6)) has a unique zero at kF = (π, π)
(mod (2π, 2π)) which belongs to Dθ only for θ = (0, 0), for every L. This means that for
θ = (0, 0) we must single out such a momenta and study it after the multiscale integration
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procedure.3 Let us postpone the discussion of this technical aspect (see Remark 3.3.6).
For θ ̸= (0, 0) we can normalize the integration and write

Zλ,ε,L,θ = eL
2ε0+F (0)

0

∫
Pθ(dψ)eν0N(ψ)+V̄ (ψ), F

(0)
0 := L−2 log detK0,θ (3.3.2)

(cf. (3.2.5) for K0,θ), with the property that for x, x′ ∈ Λ,
∫
Pθ(dψ)ψ−

x ψ
+
x′ = L−2 ∑

k∈Dθ

e−ik(x−x′)

1 + eik1 +eik2
2

= K−1
0,θ (x, x′) (3.3.3)

A suitable change of coordinates

For the particular choice of the weights we made, when B = C, an extra symmetry is
preserved, so that it is convenient to introduce the following change of variables for the
discussion to come. Given k ∈ Dθ, let{

k1 = q1 − q2

k2 = q1 + q2
(3.3.4)

which can be written as k = Rq. Define then

Dθ,R := R−1Dθ = {q : Rq ∈ Dθ}. (3.3.5)

In terms of the new variables

µ̃(q) := µ(Rq) = 1 + eiq1 cos q2.

This allow us to rewrite K−1 in (3.3.3) as

K−1
θ (x, 0) = gL,θ(RTx, 0), gL,θ(y, y′) := L−2 ∑

q∈Dθ,R

e−iq(y−y′)

µ̃(q) . (3.3.6)

Since the covariance naturally depends on x through RTx = (x1+x2, x2−x1), we introduce
the set, Λ̃ := RTΛ = {(y1, y2) : y = RTx, x ∈ Λ}, as shown in Figure 3.5. We will use
the symbol x (resp. y) for coordintes belonging to Λ (resp. Λ̃) and notice that a natural
constraint appears on y = (y1, y2), i.e. y1 = y2 (mod 2). In terms of the Grassmann
variables, we denote

φ̂±
q := ψ̂±

Rq, φ±
y := ψ±

(RT )−1y
(3.3.7)

which of course satisfy the analogous of (3.2.4), namely

φ±
y = L−2 ∑

q∈DR,θ

e±iqyφ̂±
q . (3.3.8)

More in general we have a covariant description of (3.3.1) in terms of the new coordinates,
obtained by replacing sums over k in Dθ with analogous over q ∈ DR,θ (similarly x ∈ Λ

3Exactly as done in [2, Sec. 6.1].
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x1

x2

y2

y1

1

2

1(0, 0) (0, 0) 2

Λ Λ̃

Figure 3.5: On the left the coordinate system defined in Section 1, on the lattice Λ; on
the right the orthogonal coordinates system of Λ̃, with the constraint that y1 ≡2 y2, since
y1 = x1 + x2, y2 = x2 − x1.

with y ∈ Λ̃), every ψ with φ and writing every expression of k as a function of q. In
particular note that

S̄θ(ψ(φ)) = L−2 ∑
q∈Dθ,R

φ̂+
q µ̃(q)φ̂−

q

Ñ(φ) = L−2 ∑
q∈Dθ,R

φ̂+
q φ̂

−
q

(3.3.9)

so that we can start the following analysis from (3.3.2), which becomes

ZL,θ,λ
eL2ε0ZL,θ,0

=
∫
Pθ(dφ)eν0Ñ(φ)+Ṽ (φ),

∫
Pθ(dφ)φ−

y φ
+
0 = gL,θ(y, 0) (3.3.10)

where Ñ , Ṽ are the rewritings of N, V̄ in terms of the new variables.

Remark 3.3.1. The choice to introduce Λ̃ is not strictly necessary, but we prefer to do
so in order not to carry the label RTx in every expression.

Integration of the ultraviolet degrees of freedom

Let χ : R2 → [0, 1] be a smooth, compactly supported function in the Gevrey-2 class4 on
the torus, such that

χ(k) =
{

1 |k|s ≤ δ

0 |k|s > 2δ
(3.3.11)

4We refer to [3, Appendix C] and [129, Appendix A] for an explicit instance and properties of such
class of function.
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with δ > 0 small; | · |s is a stretched distance on the torus, i.e.

|k|2s =
∣∣∣∣k1 + k2

2

∣∣∣∣2
T

+ 1
2

∣∣∣∣k2 − k1
2

∣∣∣∣4
T

where we define | · |T := min{| · −2πn| : n ∈ N}. Then let

χ−1(q) := χ(R−1k) (3.3.12)

and let also f0(q) := 1 −χ−1(q). We introduce a smooth partition of DR,θ via the identity
1 = χ−1(q − qF ) + f0(q − qF ) in such a way that we have the decomposition gL(y, 0) =
(−1)y2(g(≤−1)

L (y, 0) + g
(0)
L (y, 0)), where

g
(≤−1)
L (y, 0) = 1

L2

∑
q∈D′

θ,R

e−iqyχ−1(q)
µ̃(q + qF ) = 1

L2

∑
q∈D′

θ,R

e−iqyχ−1(q)
1 − eiq1 cos q2

. (3.3.13)

and
D′
θ,R = Dθ,R − qF , qF := R−1kF = (π, 0) (3.3.14)

(cfr. below (3.3.1) and (3.3.6)). Note that, compared to K−1, now gL,θ(y, y′) is still
translation invariant, but θ periodic (in the same sense as just after eq. (6.25) of [2])
in the directions e⃗1 + e⃗2 and e⃗2 − e⃗1. The decomposition above naturally reflects on the
Grassmann integration via the Addition Principle of Grassmann measures (see [5] Eq.
(4.21)): we can write,

φσy = (−1)y1(φσ,(≤−1)
y + ψσ,(0)

y ) (3.3.15)

where ∫
P (≤0)(dφ(≤−1))φ+,(≤−1)

y φ
−,(≤−1)
y′ = g

(≤−1)
L (y, y′) (3.3.16)

(similarly for g(0)
L ) and decompose

ZL,θ,λ =

= eL
2F (0)

∫
P (≤−1)(dφ(≤−1))

∫
P (0)(dφ(0))eν0N(φ(≤−1)+φ(0))+V ((φ(≤−1)+φ(0))

= eL
2F (−1)

∫
P (≤−1)(dφ(≤−1))eV (−1)(φ(≤−1))

(3.3.17)

with
F (0) := ε0 + L−2 logZL,θ,0 (3.3.18)

and the effective potential V (−1) and the u.v. contribution to the free energy, F (−1) −F (0),
satisfying V (−1)(0) = 0 and

L2
(
F (−1) − F

(0)
L

)
+ V (−1)(φ) =

=
∑
n≥1

1
n!E

T
(0)(ν0N(φ+ ·) + V (φ+ ·); . . . ; ν0N(φ+ ·) + V (φ+ ·)︸ ︷︷ ︸

n times

), (3.3.19)

where ET(0) is the truncated expectation, (see Sec. 4 of [5]) with respect to the integration
P (0).
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Remark 3.3.2. Since the cutoff function χ−1 in (3.3.11) is a Gevrey function of order 2,
the propagator g(0) has stretched-exponential decay at large distances:

|g(0)(y, y′)| ≤ Ce−κ
√

|y−y′|, (3.3.20)

for suitable L-independent constants C, κ > 0, if |y − y′| is the distance on the torus
Λ̃. This is seen by writing g(0) via the Poisson summation formula as a sum of Fourier
integrals, as in [3, App. A]; each integral decays in the desired way because it is the Fourier
transform of a Gevrey function [130], [129, App. A]

From (3.3.19) it follows that V (−1) is a polynomial in the φ(≤−1) fields made of even
monomials only. In particular it admits the following representation, which is an implicit
definition of the kernels W (−1)

n : setting ϕ = φ(≤−1),

V (−1)(ϕ) =
∑
n≥2
n even

∑
y∈Λ̃n

W (−1)
n (y)ϕ+

y1ϕ
−
y2 · · ·ϕ+

yn−1ϕ
−
yn (3.3.21)

where yi ∈ Λ̃, and y = (y1, . . . , yn); note that by definition they include the oscillatory
factors, arising from (3.3.15), Wn(y) = (−1)

∑n

k=1 yk1W̃n(y) where we denoted yi ∈ Λ̃ with
yi = (yi1, yi2). The kernels are not uniquely identified by such representation, due to
anticommutation of the Grassmann variables. We assume then that they are antisym-
metric separately under permutations of the variables y with even and odd index, i.e.
Wn(yπ(1), y2, . . . , yπ(n−1), yn) = Wn(y1, y2, . . . , yn−1, yn) for any permutation π, and sim-
ilarly for coordinates with even position. For later convenience, using the convention of
Grassmann variables in Fourier space ((3.3.8) considering the shift around qF ), we can
rewrite

V (−1)(ϕ) = L−2(n−1)∑
q

Ŵ (−1)(q2, . . . , qn)ϕ̂+
q1+qF · · · ϕ̂−

qn+qF δ(q) (3.3.22)

where Ŵ (q1, . . . , qn) is the Fourier transform of W̃ computed at momenta q2 +qF , . . . , qn+
qF which depends on n − 1 variables due to translation invariance; q = (q1, . . . , qn) and
qi ∈ D′

R,θ defined in (3.3.13), and

δ(q) =
{

1 ∑n
j=1(−1)jqj = 0

0 otherwise.
(3.3.23)

Then using the so called Battle-Brydges-Federbush-Kennedy determinant formula and
the Gram Hadamard bound for determinants (see Section 4.2 of [5]), applied to the trun-
cated expectation in (3.3.19), we find that F (−1)−F (0) and W (−1)

n (y) are absolutely conver-
gent series and real analytic function of (ν0, λ) (recall ν0 = e−ε0 − 1) if max{|ν0|, |λ|} ≤ δ̄,
with δ̄ > 0 small enough. Moreover the following bounds hold,

|F (−1) − Fθ(0)| ≤ cδ̄

∥W (−1)
n ∥κ,−1 ≤ Cnδ̄max{1,cn}, n > 0

(3.3.24)
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for L independent constants c, C and where we introduced the norm

∥W (−1)
n ∥κ,−1 := L−2 ∑

y∈Λ̃n
|W (−1)

n (y)|eκ
√

2−1d(y) (3.3.25)

with d(y1, . . . , ym) being the length of the shortest tree in Λ̃ connecting the m points
y1, . . . , ym. The reason for the use of this norm is related to the exponential decay of the
single scale propagator involved in the truncated expectation, see (3.3.20). For a proof of
(3.3.24) in a similar context, see [46, Sec. III A].

Remark 3.3.3. (1) Since the kernels W (−1)
n are absolutely convergent series in λ, ν0,

and have estimates uniform in L, their L → ∞ limit is well defined and satisfy the
same estimates: this follows from the fact that each term in their expansion admits
an L → ∞ limit. Indeed every propagator g(0)

L,θ will be replaced by its L → ∞ limit
g

(0)
∞

g(0)
∞ (y, 0) = 1

π2

∫
R−1[0,2π]2

dq
e−iqyf0(q)
µ̃(q + qF ) (3.3.26)

and every sum of coordinates over the torus Λ̃ will be replaced with the sum over
y ∈ RTZ2. For later reference we will denote this L → ∞ limit of the kernels by
W

(−1);∞
n and similarly for its Fourier transform.

The output of this section is that we have now a description of the partition function
ZL,θ,λ, see (3.3.17), in terms of an effective interaction V (−1) involving only “infrared
degrees of freedom” φ(≤−1) and for which we have bounds on its kernels, see (3.3.24). At
this point one could iterate the idea by writing φ(≤−1) = φ(−1) + φ(≤−2) and integrating
the field φ(−1) associated to a propagator g(−1)

L , with the same expression as (3.3.26) where
f0 replaced by f−1(q) := χ−1(q) − χ−2(q), with χ−2(q) := χ−1(2q). This will produce an
effective interaction V (−2), for which one could deduce similar bounds as above, involving
only fields φ(≤−2). Then the iteration stops on a scale hL = O(log2(L)) for which the
support of χ(≤hL) does not intersect anymore the lattice Dθ,R. Integrating the last field
φ(hL) then one obtain the partition function Zλ:

ZL = eF
(hL)

, F (hL) = F (0) + (F (−1) − F (0)) + · · · + (F (hL) − F (hL+1)) (3.3.27)

where for h = 0, .., hL, F (h) − F (h+1) is the contribution coming from the integration
on scale h, compare with (3.3.19). The problem of this naive iteration is that it does
not allow to obtain uniform bounds in L, as explained in [3, Section 5.2] or [5, Section
5.4]. In order to cure this apparent divergence, one has to renormalize some terms. In
order to distinguish which are the dangerous terms, the scaling behavior of the propagator
G(h), on scale h, is a key ingredient; G(h) is given by (3.3.26) where f0(q) is replaced by
fh(q) = χh − χh−1 and replacing µ̃(q + qF ) with its Taylor approximation at q = 0. By a
rescaling argument one has that G(h)(y1, y2) = 2h/2G(0)(2hy1, 2h/2y2). With such a scaling
at hand, repeating the same discussion of [3, Sec. 5.2.1] one finds that a kernel W (h)

n on
scale h, can be bounded as ∥W (h)

n ∥κ,h ≤ Cnλmax{1,cn}2h( 3
2 −n

4 ) for constants c, C(L) > 0,
with C(L) a priori not uniformly bounded in L. As explained in [3, Sec. 5.2.2], the
potentially dangerous terms for a convergent perturbative expansion uniform in L, are
those appearing in the effective potentials that are associated to a non-negative scaling
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dimension Dsc(n) := 3
2 − n

4 . In the Renormalization Group jargon, terms for which
D is positive, negative or zero are respectively called relevant, marginal and irrelevant.
This means that some procedure has to be implemented for the terms with n = 2, 4, 6
Grassmann fields (note in fact that Dsc(2) = 1, Dsc(4) = 1/2, Dsc(6) = 0 while Dsc(n) < 0
for n > 6). Let us now describe the so called localization procedure acting on marginal
and relevant terms.

Inductive scheme: localization operator

After the integration of the ultraviolet degrees of freedom we are left with the following
representation given in the third line of (3.3.17) where V (−1) is given in (3.3.21). Now
we describe a single step of the anticipated renormalization procedure which will lead
us to represent ZL,θ,λ in terms of an analogous expression as above, with the scale label
−1 replaced by −2. In virtue of the previous brief discussion, let us define a localization
operator L1,0

5, acting on the effective potential. We will write

V (−1) = L1,0V
(−1) + R1,0V

(−1) (3.3.28)

where R1,0 is called renormalization operator and it is a rewriting of 1 − L1,0, with L1,0
acting as follows: using the Fourier representation in (3.3.22), we define

L1,0V
(−1)(ϕ) :=

L−2 ∑
q∈D′

θ,R

ϕ+
q+qF ϕ

−
q+qF

(
Ŵ

∞;(−1)
2 (0) + q · ∂Ŵ∞;(−1)

2 (0) + 1
2q

2
2∂

2
2Ŵ

∞;(−1)
2 (0)

)
(3.3.29)

where ϕ = φ(≤−1) and recall Ŵ∞;(−1) is the same as in Remark 3.3.3; ∂i is the partial
derivative on the component i = 1, 2, and qF as below (3.3.13).

The reader may notice that L1,0 has no effect on the contributions with 4 or 6 Grass-
mann variables, even if we claimed in the previous discussion that something has to be
done. The point is that, as a consequence of the Pauli exclusion principle, i.e. φ2

y = 0 for
every y ∈ Λ̃, one can automatically rewrite, e.g. the quartic term V

(−1)
4 (ϕ) of V (−1)(ϕ), as

V
(−1)

4 (ϕ) =
∑
y∈Λ̃4

ϕ+
y1ϕ

−
y2(ϕ+

y3 − ϕ+
y1)(ϕ−

y4 − ϕ−
y1)W (−1)

4 (y) (3.3.30)

and similarly for the term with 6 Grassmann variables. Using the convention in Fourier
space (3.3.22) this can be rewritten as

L−6 ∑
i,j=1,2

∑
q

ϕ̂+
q1+qF ϕ̂

−
q2+qF ϕ̂

+
q3+qF ϕ̂

−
q4+qF δ(q)q3iq4jIijW (−1)

4 (q2, q3, q4) (3.3.31)

where we denoted q3 = (q31, q32) and the interpolated kernel IijW4 is given by

IijW4(q2, q3, q4) :=
∫ 1

0

∫ 1

0
dsdt∂i∂jW

(−1)
4 (q2, tq3, sq4).

5The pedices stands respectively for “first regime” and ϵ = 0: they refer to the fact that when ε = ε0 +ϵ,
ϵ = 0, only a first regime survives; for a better understanding compare with Sec 3.3.2.
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By anti-trasforming the equation above one can obtain (see Appendix B.1) an expression
in coordinates space in terms of pseudo differential operators ∂̂i, of the form

V
(−1)

4 (ϕ) =
∑
y

ϕ+
y1ϕ

+
y2 ∂̂iϕ

+
y3 ∂̂jϕ

−
y4R̃ijW

(−1)
4 (y) (3.3.32)

where R̃W (−1)
4 (y) is the antitransform of the interpolated kernel and

∂̂iϕ
±
y := L−2 ∑

q∈D′
θ,R

e∓iqyϕ̂±
q+qFχ−1(q)qi. (3.3.33)

A similar representation holds as well for the kernels associated to 6 Grassmann variables
and moreover for the rewriting of 1 − L1,0 acting on the term with 2 fields, coming from
(3.3.29). For more details see Appendix B.1. The point of such rewriting is that it will
allow, in the multiscale iterative construction, to obtain “dimensional gains” showing that
such terms, originally potentially dangerous, are instead irrelevant. This is discussed in
Remark 3.3.5.

Remark 3.3.4. (1) The above discussion suggests that we have to think at the contri-
butions to effective potentials, when seen in coordinates space Λ̃, as labeled not only
by the number and the coordinates of the grassmann fields they are associated to, but
also by extra labels which carry informations about the derivatives ∂̂i. Indeed, if we
intend to iterate the integration procedure, they will naturally appear as a by product
of the renormalization operator effect as shown above.

(2) As explained in Section B.4, since the bare potential V̄ (c.f (3.3.1)) and the quadratic
action associated to P (0) (cf. (3.3.17)) are both invariant under the symmetries (1)
φ

(≤−1)
q → φ

(≤−1)
q , together with the complex conjugation of the constants c → c, and

(2) φ(≤−1)
q → φ

(≤−1)
q̂ with q̂ = (q1,−q2), we have that V (−1) is invariant under the

same symmetries and as a consequence its kernels satisfy

Ŵ
∞;(−1)
2 (0) ∈ R,

∂1Ŵ
∞;(−1)
2 (0) ∈ iR,

∂2Ŵ
∞;(−1)
2 (0) = 0,

∂2
2W

∞;(−1)
2 (0) ∈ R.

(3.3.34)

In particular, (3.3.29) can be rewritten as

L−2 ∑
q∈D′

R,θ

φ̂+
q+qF φ̂

−
q+qF (Ŵ∞;(−1)

2 (0) − iζ̃−1q1 + 1
2q

2
2 ã−1) (3.3.35)

for some real constants ζ̃−1, ã−1.

(3) A comparison with [4], shows that for kernels with 4 or 6 legs, the renormalization
operator is exactly the same, compare (3.3.30) with [4, (30)]. Instead note that the
localization procedures differs only for two irrelevant contributions, as we now point
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out. If one writes the localization L1 in [4, (43)] in Fourier space, one finds

L1,0V =
∫
dkψ+

k ψ
−
k

(
Ŵ2(0) − ik0∂0Ŵ2(0) + (cos k − 1)∂2

1Ŵ2(0)
)

(3.3.36)

with the conventions given in [4], e.g. k = (k0, k). Then the two differences between
L1 and L1,0 above are given by “finite size effects”, Ŵ∞

2 (0) − Ŵ2(0) and by terms
of order O(q4

2) (the identification is (k0, k1) ↔ (q1, q2). Both terms are irrelevant in
the sense discussed before the beginning of this section. For a discussion concerning
the former, which is not object of further discussion here, the reader can look at [2,
Appendix B]. For the latter note that a term of order O(q4

2) can be rewritten in
coordinate space as ∑

y

∂̂2
2φ

+
y ∂̂

2
2φ

−
y w2(y) (3.3.37)

where ∂̂ is the same as in (3.3.33) (for a similar computation see Appendix B.1).
As shown in the next Remark, the presence of extra derivatives produce dimensional
gains associated to irrelevant contributions.

Now, we start from (3.3.17), decompose V (−1) = (L1,0 + R1,0)V (−1), and use some of
the term of the local part L1,0V

(−1) to define a new Grassmann measure P̃ (≤−1)(dφ(≤−1))
such that the following holds

(3.3.17) = eL
2(F (−1)+t(−2))

∫
P̃ (≤−1)(dφ(≤−1))e2−1ν−1N(φ(≤−1))+R1,0V (−1)(φ(≤−1)) (3.3.38)

where, renaming µ̃−1 := µ̃, the Grassmann measure P̃ (≤−1)(dφ(≤−1)) is associated to the
following propagator

g̃
(≤−1)
L (y, 0) := L−2 ∑

q∈D′
R,θ

e−iqyχ−1(q)
µ̃−1(q + qF ) + χ−1(q)(−iq1ζ̃−1 + q2

2
2 ã−1)

(3.3.39)

where the term t(−2), obtained by the change of measure is given by

t(−2) := L−2 ∑
q∈D′

R,θ

log
µ̃−1(q + qF ) + χ−1(q)(−iq1ζ̃−1 + q2

2
2 ã−1)

µ̃−1(q + qF ) . (3.3.40)

Note that expanding µ̃−1(q+qF ) = D−1(q)+ρ(q), where D−1(q) is the leading contribution
for |q| small defined at the beginning of Section 3.3.1, and ρ(q) = 1 − eiq1 cos q2 + iq1 − q2

2
2 ,

one has that the denominator in the r.h.s. of (3.3.39) can be rewritten as D−2(q) + ρ(q)
with

D−2(q) := −iq1(1 + ζ−2(q)) + q2
2
2 (1 + α−2(q))

ζ−2(q) := ζ−1 + χ−1(q)ζ̃−1

α−2(q) := α−1 + χ−1(q)ã−1

(3.3.41)

where ζ−1, α−1 = 0 are introduced just for consistency with the notation of the general
case of the next pages and ζ̃−1, ã−1 are given in (3.3.35). Then, we use the addition
principle to the decomposition of the propagator g̃(≤−1)

L (y, 0) = g
(≤−2)
L (y, 0) + g̃

(−1)
L (y, 0)
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where
g̃

(−1)
L (y, 0) := L−2 ∑

q∈D′
R,θ

e−iqy f−1(q)
D−2(q) + ρ(q) (3.3.42)

obtained by replacing χ−1 = f−1+χ−2, with χ−2(q) := χ−1(2q), which allows us to rewrite
(3.3.38) as

eL
2(F (−2)+t(−1))

∫
P (≤−2)(dφ(≤−2))eV (−2)(φ(≤−2))

eV
(−2)(φ)+L2(F (−2)−F (−1)) :=

∫
P̃ (−1)(dφ′)eν−1N(φ+φ′)+R1,0V (−1)(φ+φ′)

(3.3.43)

where P (≤−2), P̃ (−1) are the Grassmann measures associated respectively to the prop-
agators g

(≤−2)
L , g̃(−1)

L . Note that in the support of χ−2, ζ−1(q) = ζ−1(0) =: z1 and
α−1(q) = α−1(0) =: α1 so that the propagator g(≤−2)

L is obtained by (3.3.13) by shifting
the scale index −1 7→ −2, cfr. the definitions of µ̃0, µ̃−1. Finally ν−1 appearing in (3.3.38)
it is given by

2−1ν−1 := Ŵ
∞;(−1)
2 (0) (3.3.44)

The effect of this single scale integration is to give a description of the partition function
in terms of a new effective interaction V (−2) integrated against a new covariance P (≤−2)

involving degrees of freedom with smallest momenta in Fourier space. It is natural then
to extend this procedure to any finite step, until the covariance is supported on some
point of Dθ,R. We now state and discuss what is the expression for ZL,θ,λ after h steps
of integration, without explicitly proving such a statement. The proof will be given in a
more general setting in Section 3.3.2.

Inductive statement There exists a scale hL = O(log2 L), such that, for any integer
−hL ≤ h ≤ −1, the following identity holds

ZL,θ,λ = eL
2(F (h)+t(h))

∫
P (≤h)(dφ(≤h))eV (h)(φ(≤h)) (3.3.45)

where hL is given explicitly below and F (h), V (h), P (≤h) are inductively described as
follows.
(1) First, let χh(q) := χh+1(2q) and χ−1 was defined in (3.3.12). Thus the stopping scale
hL is defined by

hL := min{h ≤ 0 : suppχh ∩ D′
θ,R ̸= ∅}. (3.3.46)

Note that hL = O(log2 L).
The Grassmann integration P (≤h) is associated to the propagator

g
(≤h)
L (y, y′) = L−2 ∑

q∈D′
R,θ

e−iq(y−y′)χh(q)
µ̃h(q + qF ) (3.3.47)

where µ̃h it is defined by
µ̃h(q + qF ) := Dh(q) + ρ(q) (3.3.48)
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with ρ(q) being the same as below (3.3.41) while Dh(q) = −iq1(1 + ζh) + 1
2q

2
2(1 +αh) with

ζh = ζh+1 + i∂1Ŵ
(h+1);∞
2 (0)

αh = αh+1 + ∂2
2Ŵ

(h+1);∞
2 (0).

(3.3.49)

The kernels Ŵ (h+1) of the effective potential V (h+1) are known by induction. The effective
potential on scale h satisfies V (h)(0) = 0 and it is given by

V (h)(φ) +L2F (h) = L2F (h+1) + log
∫
P̃ (h+1)(dϕ)e2h+1νh+1N(φ+ϕ)+R1,0V (h+1)(φ+ϕ) (3.3.50)

which is also a definition of F (h) − F (h+1) by setting φ = 0.
As commented in Remark 3.3.4 and above, if one represents the effective potential in

coordinate space, then “derivative” operators ∂̂ (see (3.3.33)) can appear on Grassmann
variables: indeed if ϕ = φ(≤h), then V (h)(ϕ) can be written as

V (h)(ϕ) =
∑
n∈2N
D

V
(h)
n,D(ϕ)

V
(h)
n,D(ϕ) :=

∑
y∈Λ̃n

∂̂D1ϕ+
y1 · · · ∂̂Dnϕ−

ynW
(h)
n,D(y), ∂Djϕσy := ∂̂

Dj1
1 ∂̂

Dj2
2 ϕσy

(3.3.51)

where D = (D1, . . . , Dn) with Dj = (Dj1, Dj2) ∈ {0, 1, 2} × {0, 1, 2, 3} keeps track of the
amount and direction of the derivatives: The above expression is not unique but the point
is that it exists. Anyway, by writing such an expression in Fourier space (see conventions
(3.3.22)), we have that

V (h)(ϕ) =
∑
n∈2N

L−2(n−1) ∑
q∈(D′

θ,R
)n
ϕ̂+
q1+qF . . . ϕ̂

−
qn+qF δ(q)Ŵ

(h)
n (q2, . . . , qn) (3.3.52)

where Ŵ (h)
n is expressed in terms of a combination of the Fourier transforms of the kernels

Wn,D and includes the factors qDi ’s coming from the effect of ∂̂ (cf. (3.3.33)). This
representation has the advantage of not distinguishing between the derivatives labels in
the Grassmann monomial.

Next, the Grassmann integration P̃ (h+1) in (3.3.50) is associated to the propagator

g̃
(h+1)
L (y, y′) = L−2 ∑

q∈D′
R,θ

e−iq(y−y′)fh+1(q)
Dh(q) + ρ(q) (3.3.53)

with fh(q) := χh+1(q) − χh(q), Dh(q) := −iq1(1 + ζh(q)) + 1
2q

2
2(1 + αh(q)) where

ζh(q) = ζh+1(q) + iχh+1(q)∂1Ŵ
(h+1);∞
2 (0)

αh = αh+1 + χh+1(q)∂2
2Ŵ

(h+1);∞
2 (0)

(3.3.54)

and observe that Dh(q) ≡ Dh(q) in the support of χh(q). Next, in the argument of the
exponential in the r.h.s. of (3.3.50),

2h+1νh+1 := Ŵ
(h+1);∞
2 (0), (3.3.55)
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and N(φ) was defined in (3.3.9); the renormalization operator R1,0 acts on effective po-
tentials of any given scale h, as a rewriting of 1 − L1,0 in exactly the same way as ex-
plained above Remark 3.3.4, where on a generic scale h, the localization operator acts as
L1,0Vn,D = 0 if n > 2 and for n = 2 as

L1,0

∑
D

V2,D(ϕ)

 =

L−2 ∑
q∈D′

θ,R

ϕ+
q+qF ϕ

−
q+qF

(
Ŵ

∞;(h)
2 (0) + q · ∂Ŵ∞;(h)

2 (0) + 1
2q

2
2∂2Ŵ

∞;(h)
2 (0)

) (3.3.56)

where ϕ = φ(≤h). Finally, the constant t(h) in (3.3.45) satisfies

t(h) − t(h+1) =
∑

q∈D′
R,θ

χh+1(q)) ̸=0

log Dh(q) + ρ(q)
Dh+1(q) + ρ(q) . (3.3.57)

Remark 3.3.5. (1) At any given scale h, the quadratic part of the measure P̃ (h) pre-
serves the symmetries (1)-(2) of Remark 3.3.4 (applied to the fields φ(≤h)), as it
follows from its explicit expression and by induction. As a consequence, the prop-
erties listed in (3.3.29) are valid replacing the scale label (−1) with (h) and as a
particular consequence ζh, αh, νh ∈ R. This also implies µ̃h(q + qF ) vanishes only at
q = (0, 0) for every h ≥ hL.

(2) Note that we can write, for h ≤ −1,

νh = 2νh+1 +Bν
h (3.3.58)

where Bν
h is the “ν-component” of the so called Beta function, which is implicitly

defined as follows. To see the above identity, note that the contributions to the
effective potential V (h) given by the second term in the RHS of (3.3.50), can be
written in terms of truncated expectations, exactly as in (3.3.19), with ET(0) replaced
by ET(h+1) associated to the covariance P̃ (h+1). Then, from n = 1 in (3.3.19) we
obtain

E(h+1)
(
2h+1νh+1N(φ+ ·) + R1,0V

(h+1)(φ+ ·)
)
. (3.3.59)

When applying L1,0 to such terms, it is easy to see that the only surviving is ex-
actly 2h+1νh+1N(φ) (cfr. (3.3.9) for N), because L1,0(1 − L1,0) = 0 (see (3) of
Remark 3.3.4). In particular the contributions to Bν

h comes only from the analogous
of (3.3.19) at scale (h+ 1) when n ≥ 2.

(3) By repeating the discussion in (3.3.30) and lines below, we have an analogous rewrit-
ing of the operator 1 − L1,0 acting e.g. on the quartic terms V (h)

4 (ϕ) as obtained by
replacing the label −1 with h. We want to motivate, at least with the tools introduced
up to now, that such a rewriting has a non trivial effect by extracting dimensional
gains. Note first that the two derivatives appearing in the Fourier representation of
RijW

(h)
4 , act on the Fourier symbol of some propagator (3.3.53) on scale h′ ≥ h,

with the effect of producing a term of the order 2−h′
, 2−h′/2, respectively if the deriva-

tive is ∂i with i = 1, 2. This is due to the presence of the cutoff fh′(q) = f0(2−h′
q)
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(see (3.3.54)): either ∂i acts on (Dh(q) + ρ(q))−1 or on fh′(q), and its action can
be bounded by using the support properties of fh′(q) itself. On the other hand, the
derivative fields ∂̂iφ (see (3.3.33)) will be contracted on some scale h′′ < h, producing
a ∂̂ig̃

(h′′). As shown in (B.2.6), the effect of such a derivative on the bound of the
propagator is an extra factor 2h′′

, 2h′′/2, respectively for i = 1, 2. This discussion im-
plies that if we have a way to bound W (h)

4 , the rewriting of 1−L1,0 in the interpolated
form provides at least a dimensional improvement 2h′′−h′ w.r.t to the original bound6.
This procedure turns out to be enough to cure the apparent divergences arising from
the naive multiscale analysis, as described below (3.3.27).7

Kernels estimates and running constants

The inductive construction of the previous section provides a description at any given scale
of the observables of the original system. Among other things, this allows in principle
to compute the infinite volume interacting free energy via limh→−∞ F (h) + t(h) (see cf.
(3.3.45). In order to control such limit, we need to have a control on the size of the single
scale contributions F (h) −F (h+1), in the same way as we did for the first scale integration,
see (3.3.24). These bounds will be a special case (ϵ = 0) of a general discussion for the
so called “off-critical” regime, i.e. when ε = ϵ + ε0 (see Section 3.3.2): we postpone the
precise construction of the expansion needed to prove such bounds (see Section 3.4.3). We
only keep here the implications on the kernels built up to this point and thus on to the
running constants αh, ζh, νh. For a justification of these facts, see Sections 3.4.2-3.4.4.

As observed in Remark 3.3.2, the scaling properties of the propagators involved in
the truncated expectation were crucial to derive bounds on the kernels of a single step of
integration (see (3.3.24). The same holds for a generic scale h if one has bounds on the
single scale propagators (see (3.3.53)) g̃(h′) on higher scales h′ ≥ h. We have that

Lemma 3.3.0.1. If there exists C > 0, independent of L, such that

sup
k≥h

max{|αk|, |ζk|} ≤ C|λ| (3.3.60)

then, for λ small enough, there exist L, λ independent constants c0, κ > 0 such that

|g̃(h)(y)| ≤ c02
h
2 e−κ

√
d(h)(y) (3.3.61)

where d(h)(y) := 2h|y1| + 2h/2|y2|.

A more detailed discussion about these Lemma can be found in Appendix B.2, and
Lemma B.2.0.18. This Lemma is important in order to obtain the following

Proposition 3.3.1. Let δ0 > 0 small enough. Suppose that

sup
h′>h

max{|λ|, |αh′ |, |ζh′ |, 2−θh′ |νh′ |} ≤ δ0, (3.3.62)

6This is because we have two derivatives in the rewriting of the quartic term in (3.3.30); the same
reasoning applies with more derivatives: e.g. for the sextic term we will have at least a factor 2 3

2 (h′′−h′).
7For the counter part of this discussion in coordinate space see also [3, Sec. 6.1.4]
8In such Lemma, to recover the analogy with the present case it is sufficient to set rh = 0. This is

because as the next Section shows, the constant rh arises in the first regime of scale only when ϵ ̸= 0.
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then there exist C > 0 independent of L, h, such that

∥W (h)
n,D∥κ,h ≤ Cnδ

max{1,cn}
0 2h(

3
2 +θ−n

4 −|D|(1)) (3.3.63)

where |D|(1) := ∑n
i=1

∑
j=1,2Dij2−1{j=2} and θ can be chosen in (0, 1/2); the norm is

defined by
∥W (h)

n,D∥κ,h := L−2 sup
s

∑
y

|W (h)
n,m,D(y)|eκ

√
d(h)(y) (3.3.64)

where d(h)(y) is a scale weighted tree distance given by 2hd1(y)+2h/2d2(y), where d1, d2 are
the total displacements of the shortest lattice tree connecting the points (y) in the directions
1, 2 respectively.

This result resumes the effect of the localization-renormalization procedure on the
bounds of the kernels of the effective potentials. In particular, it translates the original
hard problem of potentially divergent contributions to the perturbative expansion into a
simpler problem of controlling the flow of a finite number of running constants (νh, αh, ζh).
These bounds are a special case (ϵ = 0) of those discussed in Section 3.4.2 and they are
the analogous in our context of those of [4]: in Sections 3.4.2 and 3.4.3 we discuss the
general case and the main differences with [4].

As a last point let us state in the following Proposition one of the outputs of Section
3.4.4 about the flow of such constants. This involves the way of fixing the parameter ε0 as
a function of λ as explained at the beginning of Section 3.3.1, which is the same function
appearing in Theorem 1.4.5. The point of Section 3.4.4 is that there is a unique way to
fix ε0 = ε0(λ), for |λ| small enough, such that the hypotheses of the previous proposition
hold uniformly in h, or otherwise stated:

Proposition 3.3.2. There exists λ0 small such that for |λ| ≤ λ0 there exist analytic
functions ε0, α−∞, ζ−∞ of λ, all of order O(λ), such that if one chooses ε0 in (3.3.1) as
ε0 = ε0(λ)), then

|νh| ≤ c0|λ|2θh, |αh − α−∞| ≤ c0|λ|2θh, |ζh − ζ−∞| ≤ c0|λ|2θh (3.3.65)

for some constant c0 > 0 independent of L, h, λ.

For more details see Proposition 3.4.3 and comments below.

3.3.2 The off critical theory: a double regime

Let us describe now, how to construct the thermodynamic limit of the interacting theory
for ε = ϵ+ ε0, with ϵ ̸= 0 and ε0 = ε0(λ) fixed as in the last Proposition 3.3.2 of previous
section. This guarantees that the bounds on the kernels of the critical theory (Proposition
3.3.1) are valid for all the scales h ≤ 0.

Again, Proposition 3.2.1 implies that we can write

eWε,λ,L(A) =
∑

θ∈{0,1}2

cθ
2 e

W(θ)
ε,λ,L

(A)
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where for a fixed θ ∈ {0, 1}2

eW(θ)
ε,λ,L

(A) := eL
2(ϵ+ε0)

∫
DφeS̃ϵ,θ(φ)+ν0N(φ)+Ṽϵ(φ,A),

S̃ϵ,θ(φ) := −L−2 ∑
q∈D′

θ,R

φ̂+
q+qF (1 + r0 − eiq1 cos q2)φ̂−

q+qF ,

N(φ) := −L−2 ∑
q∈D′

θ,R

φ̂+
q+qF φ̂

−
q+qF , r0 := (e−ϵ − 1)e−ε0

(3.3.66)

where Ṽϵ, S̃ϵ,θ are the rewritings of V, S given in Proposition 3.2.1, in terms of the com-
position of the transformations ψ →

√
e−ε0−ϵψ and ψ → ψ(φ) (cfr. Section 3.3.1 and

(3.3.7)); we recall that D′
θ,R = Dθ,R − qF , with qF = (π, 0), ν0 = e−ε0 − 1.

The first thing to note is that now, in the rhs of the second line in (3.3.66),

1 + r0 − eiq1 cos q2 = 0 (3.3.67)

may have two distinct solutions, denoted with q±
ϵ , or not, depending on the sign of ϵ.

• Non massive case: ϵ > 0:
If ϵ > 0 then r0 < 0 and the two solutions satisfy q+

ϵ = −q−
ϵ with q+

ϵ = (0, arccos(1+
r0)). It is easy to see from the definition of r0 that for ϵ > 0 sufficiently small,
they belong to a ball of radius 4

√
ϵ centered at 0. This property is at the base of

the double regime multiscale analysis that will be performed for ϵ > 0. As it was
for the critical case, in order to start the u.v. integration we must take care of the
case when possibly q±

ϵ ∈ D′
θ,R (see analogous comment after (3.3.1)). One can see

that for θ ̸= (0, 0), (1, 1) then q±
ϵ ̸∈ D′

θ,R for every ϵ, L, so we will fix θ in this way.
Anyway, since we are interested only in deriving properties of L → ∞ quantities, we
will not be anymore interested in the dependence on L (see Remark 3.3.6).

• Massive case: ϵ < 0
In this case, controlling the thermodynamic limit of the theory turns out to be
easier: in particular, for a fixed ϵ, one can integrate all the scales at once, in the
same spirit as we did a single step in Section 3.3.1. This is because r0 now plays
the role of a mass and the propagator itself, without any cutoff on momenta, decays
exponentially in the distance, allowing a single step to be sufficient to obtain a
convergent perturbative expansion. Anyway, when ϵ → 0− (i.e. r0 → 0+), since
the rate of the exponential decay vanishes, a single step integration is not sufficient
to obtain uniform bounds in ϵ. A single regime multiscale analysis turns out to
be sufficient for that purpose, and a posteriori useful for a comparison with the
analogous regime for ϵ > 0, to obtain Theorem 1.4.5.

In both cases, under the assumption given, we can rewrite the first equation in (3.3.66) as
(analogous to (3.3.2) of the critical case)

eW(θ)
ε,λ,L

(A) = eL
2F

(0)
ϵ

∫
P (φ)eν0N(φ)+Ṽϵ(φ,A)

F (0)
ϵ = ϵ+ ε0 + L−2 log

∏
q∈D′

θ,R

(1 + r0 − eiq1 cos q2) (3.3.68)
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with the integration Pθ,ϵ(dφ), given by
∫
Pθ(dφ)φ−

y φ
+
y′ = L−2 ∑

q∈D′
θ,R

e−iq(y−y′)

1 + r0 − eiq1 cos q2
(3.3.69)

q+ε

q+εq+ε

q−ε

q−ε

(I) (II) (III)

Figure 3.6: (I): The black circle on the left is on scale of order 1; we start a multiscale
decomposition up to a scale h∗ (red circle) that is of the same order of the mutual distance
between the singularities q±

ϵ . (II)-(III) After that scale we must split around the two
singularities (blue circle) and carry on the multiscale down in the infrared h → −∞.

Remark 3.3.6. Since we want to prove results (Theorem 1.4.5) for the infinite volume free
energy, and since at every single step, the kernels W (h) admits a natural infinite volume
limit W (h);∞ (see Remark 3.3.3), we only care of defining a meaningful rigorous procedure
at finite L for at least one boundary condition. From this we can extrapolate the infinite
volume contribution which of course will not depend on the specific θ. A discussion of finite
size effects is not the objective of this thesis; we defer the interested reader to [2, Appendix
C].

ϵ > 0: The first regime

Ultraviolet integration We intend to proceed in the following way. The u.v. inte-
gration is almost the same as in Section 3.3.1, except for the dependence on ϵ and the
presence of the external fields A which were absent there, so we do not report it here
the whole discussion but just its consequence: repeating the discussion one obtains the
following representation for W(θ)

ϵ+ε0,L,λ
(A) (see (3.3.66))

e
W(θ)
ϵ+ε0,L,λ

(A) = eF
(−1)
ϵ +S(−1)

ϵ (J)
∫
P (≤−1)
ϵ (dφ(≤−1))eV

(−1)
ϵ (φ(≤−1),J) (3.3.70)

where

1. P (≤−1)
ϵ has covariance g(≤−1)

L,ϵ which has the same expression of (3.3.13), with the
denominator in the rhs replaced by (3.3.67) (and similarly g(0)

L,ϵ).

2. The “effective potentials” F (−1)
ϵ , V

(−1)
ϵ (φ, J), S(−1)(J) are given as in (3.3.17) with

the replacements F (−1) → F
(−1)
ϵ + S

(−1)
ϵ (J), V (−1)(φ) → V

(−1)
ϵ (φ, J) and ν0N +

V (·) → ν0N + Ṽϵ(·, J) where Ṽϵ is given in (3.3.66) and we expressed the variables
{A}e∈EL in terms of {J}e∈EL via

Je := eAe − 1 (3.3.71)
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for every edge e ∈ EL. In particular the structure of the equation (3.3.66) implies
that V (−1)

ϵ (φ, J) admits the following expression, for ϕ = φ(≤−1) (analogous to cfr.
(3.3.21), (3.3.22) with the presence of the external fields J)

V (−1)
ϵ (ϕ, J) =

∑
m∈N
n∈2N+

∑
y,x,s

W (−1)
n,m,ϵ,s(y, x)ϕyJx,s =

= L−2(n+m−1) ∑
q,p,s

Ŵ (−1)
n,m,ϵ,s(q2, . . . , qn, p)ϕ̂q+qF Ĵp,sδ(q, p)

(3.3.72)

where y ∈ Λ̃n, x ∈ Λm and ϕy := ϕ+
y1ϕ

−
y2 · · ·ϕ+

yn−1ϕ
−
yn ; q + qF = (q1 + qF , . . . , qn+ qF )

with qi ∈ D′
θ,R; Jx,s = ∏m

i=1 Jxi,si where Jx,s denotes Je when the edge e has black
vertex of coordinate x ∈ Λ and is of type s = A,B,C (see Figure 3.1); p ∈ (D0)m
(cfr. (3.1.5)) and

Jx,s =
∑
p∈D0

e−ipxĴp,s. (3.3.73)

finally δ(q, p) enforces global momentum conservation, i.e. equals 1 if∑n
i=1(−1)iRqi =∑m

i=1 pi and 0 otherwise.

3. the kernels of the effective potential satisfy ∥W (−1)
n,m ∥κ,−1 ≤ Cn+m|λ|max{1,cn} where

∥W (−1)
n,m,ϵ∥κ,−1 := L−2 sup

s

∑
x,y

|W (−1)
n,m,ϵ,s(y, x)|eκ

√
2−1d(y,x) (3.3.74)

which is a natural generalization of the norm given below (3.3.24), and δ(y, x) is
the tree distance between the two sets of points y, x, namely the length of the
shortest tree on the torus Λ connecting x and (RT )−1y9. Moreover, in the Fourier
representation the satisfy the following symmetries (see Appendix B.4)

Ŵ
(−1)
n,ϵ,θ (q) = W

(−1)
n,ϵ,θ (−q), Ŵ

(−1)
n,ϵ,θ (q̂) = W

(−1)
n,ϵ,θ̃

(q). (3.3.75)

Inductive statement There exists an integer h∗, which will be defined along the in-
ductive procedure (see (3.3.101)), satisfying, for |λ| small,

c1 log ϵ ≤ h∗ ≤ c2 log ϵ (3.3.76)

for some constant c1, c2 > 0 which are L, ϵ, λ independent. For any h s.t. max{h∗, hL} ≤
h ≤ −1, if we set ϕ = φ(≤h), the following identity holds

e
W(θ)
ϵ+ε0,L,λ = eL

2(F (h)
ϵ +t(h)

ϵ )+S(h)(J)
∫
P (≤h)
ϵ (dϕ)eV

(h)
ϵ (ϕ,J) (3.3.77)

where

9The coordinates of the external fields have no reason to be thought in terms of Λ̃, while the Grassmann
fields are naturally functions of RTΛ via the transformation in Fourier space given in (3.3.4).
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1. the Grassmann measure P (≤h)
ϵ is associated to the propagator

g
(≤h)
L,ϵ = L−2 ∑

q∈D′
R,θ

e−iqyχh(q)
rh + µ̃h(q + qF ) (3.3.78)

with χh, µ̃h being the same functions appearing in (3.3.48), while rh is a real constant
that will be defined inductively.

2. The constants F (h)
ϵ and t(h)

ϵ , as well the effective potentials V (h)
ϵ , S(h) are inductively

described shortly. We will show that V (h)
ϵ admits an expression analogous to the

second line in (3.3.72), with the scale label (−1) replaced by (h), and that its kernels
satisfy the same symmetries of item 3 above, namely

Ŵ
(h)
n,ϵ,θ(q) = W

(h)
n,ϵ,θ(−q), Ŵ

(h)
n,ϵ,θ(q̂) = W

(h)
n,ϵ,θ̃

(q). (3.3.79)

Remark 3.3.7. We will look at the kernels of the effective potential V (h)
ϵ , as functions

of the running constants of higher scales, {rk, αk, zk, νk}k>h, thought of as independent
variables. In particular, the dependence on ϵ of the kernels will be mediated by single scale
propagators {g̃(h′)

L,ϵ }h′>h

g̃
(h′)
L,ϵ (y, y′) = L−2 ∑

q∈D′
θ,R

e−iq(y−y′)f̃h′(q)
rh′(q) + Dh′(q) + ρ(q) (3.3.80)

(where Dh′ , ρ are the same as in the critical case see (3.3.54)), through a sequence of
smooth functions rh′(q; r) themselves depending on the constants of higher scales r =
(rh′+1, . . . , r0) (defined inductively, see (3.3.90)), and q being the relative momentum to
qF . In (3.3.78) above, rh′ := rh′(0). With this in mind we will sometimes use the following
notation,

Ŵ
(h)
2,m,s(·, ·; r) := Ŵ

(h)
2,m,ϵ,s(·, ·) (3.3.81)

where r = {rk}k>h.10

Base of the induction For h = −1, in virtue of the u.v. integration, i.e. (3.3.70)
the representation holds if we set t(−1)

ϵ = 0. As for the covariance, recall that µ̃−1 := µ̃
(see below (3.3.38)) and that µ̃(q + qF ) = 1 − eiq1 cos q2 so that defining r−1 := r0 the
representation holds for h = −1, Lastly, the dependence on ϵ of the kernels can indeed be
seen through r0 in the single scale propagators g̃(0)

L,ϵ contributing to it (recall item 2 above
and (3.3.19)).

Inductive step The idea behind the localization here is the following: in order to han-
dle the dependence on ϵ we insert, at each scale, not only the critical (i.e. evaluated at
ϵ = 0) renormalization constants αh, ζh in the measure (which contributes to the function

10To avoid heavy notations, the symbol r, whenever it appears as argument of some Ŵ (h), will stand
for {rk}k>h.
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Dh appearing in µ̃h in (3.3.48)) as we did in (3.3.38), but also the linear term11 in ϵ of
Ŵ

(h)
2,0,ϵ(0) − Ŵ

(h)
2,0,ϵ(0): this will iteratively define the function rh vanishing for ϵ → 0.

More precisely, assume the inductive statement to be true up to scale h. Recall that,
as explained in Section 3.3.1, the iterated action of the ϵ = 0 part of the renormalization
procedure produce, in the effective potential representation in coordinate space, the pres-
ence of pseudo differential operators ∂̂ (cf. (3.3.33)) applied to the Grassmann fields. In
formulas, if ϕ = φ(≤h)

V (h)
ϵ (ϕ, J) =

∑
n∈2N
m∈N

V (h)
ϵ,n,m(ϕ, J), V (h)

ϵ,n,m(ϕ, J) =
∑
D,s

V
(h)
ϵ,n,m,D,s(ϕ, J)

V
(h)
ϵ,n,m,D,s(ϕ, J) :=

∑
y∈Λ̃n

∂̂D1ϕ+
y1 · · · ∂̂Dnϕ−

ynJx1,s1 · · · Jxn,snW
(h)
ϵ,n,m,D,s(y, x)

(3.3.82)

with the conventions of (3.3.51) and (3.3.72). In Fourier this reads

V (h)
ϵ (ϕ, J) = L−2(n+m−1) ∑

q,p,s

Ŵ (h)
n,m,ϵ,s(q2, . . . , qn, p)ϕ̂q+qF Ĵp,sδ(q, p) (3.3.83)

where Ŵ (h)
ϵ,n,m,s is expressed in terms of a combination of the Fourier transforms of the

kernels Wϵ,n,m,D,s and includes the factors qDi ’s coming from the effect of ∂̂, see (3.3.33).
We now split V (h)

ϵ in (3.3.77), as

V (h)
ϵ = L1,ϵV

(h)
ϵ + R1,ϵV

(h)
ϵ ,

where we define L1,ϵV
(h)
ϵ,n,m(ϕ, J) = 0 if n > 2 or m > 1 and

L1,ϵV
(h)
ϵ,2,0(ϕ, J) =

L−2 ∑
q∈D′

θ,R

ϕ̂+
q+qF ϕ̂

−
q+qF

[
Ŵ

∞;(h)
2,0,0 (0) + q · ∂Ŵ∞;(h)

2,0,0 (0) + 1
2q

2
2∂

2
2Ŵ

∞;(h)
2,0,0 (0) +

+ T
(
Ŵ

∞;(h)
2,0,ϵ (0) − Ŵ

∞;(h)
2,0,0 (0)

) ]
,

L1,ϵV
(h)
ϵ,2,1(ϕ, J) =

∑
x∈Λ

∑
s=A,B,C

ϕ+
RT x

ϕ−
RT x

Jx,sŴ
∞;(h)
2,1,0,s(0, 0)

(3.3.84)

where, in the first equation, T is an operator which extract the linear part in ϵ of the
infinite volume kernel Ŵ∞;(h)

2,0,ϵ , through an expansion in the sequence r (cfr. (3.3.81)):

T
[
Ŵ

∞;(h)
2,0,ϵ (0) − Ŵ

∞;(h)
2,0,0 (0)

]
:=
∑
k>h

rk∂rkŴ
∞;(h)
2,0 (0; 0). (3.3.85)

11Now the Taylor expansion will be performed separately both in momenta q close to qF and in ϵ.
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In the second equation of (3.3.84), since both the Grassmann and the external fields are
evaluated at the same point on the lattice, we used that if y ∈ Λ̃, y = RTx (see (3.3.4)).

Note that the first line of the first equation in (3.3.84) depends only on the critical
theory, because ϵ is set to zero: it corresponds to the action of the operator L1,0 as
described in Section 3.3.1. The operator R1,ϵ is a suitable rewriting of 1 − L1,ϵ, as it was
briefly discussed in the lines below (3.3.29) in the case of ϵ = 0. Note that the rewriting of
1 − L1,0 produce extra operators ∂̂ on the associated Grassmann monomial in coordinate
space (as a consequence of the interpolation in Fourier space, e.g. (3.3.31)), instead for
ϵ ̸= 0 the rewriting of 1 − T it is given by

(1 − T )
[
Ŵ

∞;(h)
2,0,ϵ (0) − Ŵ

∞;(h)
2,0,0 (0)

]
=
∫ 1

0
dt

∑
ℓ,m≥h

rℓrm∂
2
rℓ,rm

W
∞;(h)
2,0,ϵ (0; tr). (3.3.86)

The renormalizing effect of such term will be discussed in the tree expansion framework
of Section 3.4.3 (point (2) below Proposition 3.4.0.1).

Now we insert all but the terms 2hνh (cfr. (3.3.55) for its definition) and the last one
in (3.3.84), in the propagator, defining a new measure P̃ (≤h)

ϵ in such a way to rewrite

(3.3.77) = eF
(h)
ϵ +t(h−1)

ϵ +S(h)(J)
∫
P̃ (≤h)
ϵ (ϕ)e2hνhN(ϕ)(ϕ)+

∑
x,s

Y
(h)
s,ε FY (ϕ,J)+R1,ϵV

(h)
ϵ (ϕ,J)

.

(3.3.87)
where we defined

F
(h)
Y ;ϵ(ϕ, J) =

∑
x,s

ϕ+
x ϕ

−
x Jx,s, Y

(h)
s,0 := W

∞;(h)
2,1,0,s(0, 0). (3.3.88)

The integration P̃
(≤h)
ϵ has covariance

g̃(≤h)
ϵ (y, y′) = L−2 ∑

q∈D′
θ,R

e−iq(y−y′)χh(q)
rh−1(q) + Dh−1(q) + ρ(q) (3.3.89)

where Dh−1 and ρ are the same of the previous Section, see resp. (3.3.53)-(3.3.54), while
rh−1(q) satisfies

rh−1(q) := rh + χh(q)
∑
k>h

rk∂rkŴ
∞;(h)
2,0,0 (0; 0) (3.3.90)

and finally
t̃(h−1)
ϵ = t(h−1)

ϵ − t(h)
ϵ (3.3.91)

is obtained from the change of measure (cfr. rhs of (3.3.57) with the scale index h replaced
by h − 1, where the numerator and the denominator have extra summands, respectively,
rh−1 and rh). Now we decompose χh = fh + χh−1, with χh−1(q) = χh(2−1q), to write

g̃
(≤h)
L,ϵ = g̃

(h)
L,ϵ + g

(≤h−1)
L,ϵ (3.3.92)

where the single scale propagator g̃(h)
L,ϵ has the same expression as (3.3.89) with χh replaced
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by fh and admits bounds as in the following Lemma. Then g
(≤h−1)
L,ϵ can be written as

g
(≤h−1)
L,ϵ (y, y′) := L−2 ∑

q∈D′
θ,R

e−iq(y−y′)χh−1(q)
rh−1 +Dh−1(q) + ρ(q) , rh−1 := rh−1(0) (3.3.93)

in fact in the support of χh−1 one has χh ≡ 1, cfr. with (3.3.89). Note that the flow of
rh, via (3.3.90), guarantees by inductive hypothesis on the symmetries of the kernels (see
(3.3.79))12 that rh−1 is a real constant (see also Appendix B.4). Finally using the addition
principle of measures with such decomposition (exactly as in (3.3.43)) we can rewrite, if
ϕ = φ(h) + ϕ′, ϕ′ := φ(≤h−1)

(3.3.87) = eF
(h−1)
ϵ +t(h−1)

ϵ +S(h−1)(J)
∫
P (≤h−1)
ϵ (ϕ′)eV

(h−1)
ϵ (ϕ′,J) (3.3.94)

where

L2(F (h−1)
ϵ − F (h)

ϵ ) + S(h−1)(J) − S(h)(J) + V (h−1)
ϵ (ϕ′, J) =

=
∑
n≥1

1
n!E

T
(h)

(
V(h)
ϵ (ϕ′ + ·, J); · · · ; V(h)

ϵ (ϕ′ + ·, J)
) (3.3.95)

where
V(h)
ϵ (ϕ, J) := 2hνhN(ϕ) +

∑
x,s

Y (h)
s,ϵ F

(h)
Y (ϕ, J) + R1,ϵV

(h)
ϵ (ϕ)

(cf. with (3.3.88)) and the truncated expectation ET(h) is with respect to the propagator g̃(h)

above. In particular, repeating the discussion after (3.3.19), considering that now R1,ϵV
(h)
ϵ

carries fields with derivatives ∂̂, one obtains that V (h−1)
ϵ has an expression (3.3.82)-(3.3.83)

with the scale index replaced by (h−1). The kernels of V (h−1)
ϵ satisfy the same symmetries

of those of V (h): this is because by induction the arguments of (3.3.95) satisfy such
symmetries and the covariance P̃ (h) is symmetric under the same symmetries, so that one
uses the argument of the beginning of Section B.4.

The single scale propagator of the first regime The integration procedure of the
first regime, h > h∗, produces a single scale propagator given by

g̃
(h)
L,ϵ(y, y

′) = L−2 ∑
q∈D′

θ,R

e−iq(y−y′) fh(q)
rh(q) + Dh(q) + ρ(q) (3.3.96)

12From (3.3.79) follows that the kernels are real valued, independently of the value of r, so that also
their derivative with respect to some rk is still real.
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where we recall fh(q) = f(2−h|iq1 + q2
2
2 |) with f(q) = χ(q) − χ(2q) see (3.3.11); Dh(q) :=

−iq1(1 + ζh(q)) + 1
2q

2
2(1 + αh(q)) and

rh(q) = rh+1 + χh+1(q)
∑
k>h

rk∂rkŴ
∞;(h+1)
2,0,0 (0; 0)

ζh(q) = ζh+1 + iχh+1(q)∂1Ŵ
(h+1);∞
2 (0)

αh = αh+1 + χh+1(q)∂2
2Ŵ

(h+1);∞
2 (0)

ρ(q) = 1 − eiq1 cos q2 + iq1 − q2
2
2 .

(3.3.97)

We have then

Lemma 3.3.0.2. Let h ≥ h∗. If there exists C > 0, independent of L, such that

sup
h′≥h

max{|αk|, |ζk|} ≤ C|λ|, sup
h′≥h

|rh| ≤ C|r0| (3.3.98)

then there exist L, ϵ independent constants c0, c1, κ > 0 such that

|g̃(h)
L,ϵ(y)| ≤ c02h/2e−κ

√
d(h)(y) (3.3.99)

where d(h)(y) := 2h|y1| + 2h/2|y2|.

For more details, see Appendix B.2.

The flow of rh and the scale h∗ Let us begin with a motivation for the stopping scale
h∗. Notice that, differently from the critical case, here each “dressing” of the propagator
with local terms of V (h)

ϵ produces a shift in the location of the zeros of the inverse propa-
gator: this is exactly caused by the sequence r. Since the flow of r is linear (cfr. (3.3.90)
for q = 0), then we can write

rh = r0Qh(λ) (3.3.100)

for some real function Qh(λ) s.t. Q−1(λ) = 113. The fact that Qh(λ) depends only on
kernels of the critical theory, which admits good bounds (cfr. Prop. 3.3.2) will imply (see
next Lemma) that Qh(λ) = 1 + O(λ) uniformly in h, so that rh stays close to the initial
datum uniformly in h. In other words the shift of the zeros is still of order ϵ, independently
of the scale. Anyway the multiscale procedure must stop when the support of χh does not
contain the zeros anymore. Neglecting the higher order corrections of ρ to Dh in (3.3.78),
the shifted zeros at the hth step, (0,±qF,h), satisfy rh + 1/2q2

F,h(1 +αh) = 0. Then we will
stop the procedure at a scale h∗ such that

h∗ := min
{
h ≤ −1 : |rh|

(1 + αh) < 2hδ
}

(3.3.101)

where δ enters the definition of χ (cfr. (3.3.11)), and αh is the same as in (3.3.48)−(3.3.49).
This choice guarantees that χh∗(qF,h∗) = 1, which will be used later. Using then the just
mentioned property of Qh, recalling those of αh, ε0 in Prop 3.3.2 and the definition of r0

13Recall that we set r1 := r0.
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one can see that indeed h∗ satisfies (3.3.76), for ϵ and λ sufficiently small, in particular

h∗ = min{h ≤ −1 : δ2h > ϵ}, (3.3.102)

which implies that 2h∗ = Θ(ϵ).
Let us now state and prove the desired property for the flow of rh.
Lemma 3.3.0.3. Under the conditions of Proposition 3.3.2, there exists a constant C > 0,
independent of h∗, such that, for |λ| small

max
{

sup
h≥h∗

∣∣∣∣rhr0
− 1

∣∣∣∣ , sup
h≥h∗

∣∣∣∣ rhrh∗
− 1

∣∣∣∣
}

≤ C|λ|. (3.3.103)

As a consequence, writing rh = r0Qh(λ), then |Qh(λ)−1| ≤ C|λ|; finally |rh|2−h ≤ C2h∗−h.

Proof. We proceed by induction, assuming that there exists a constant C ′ > 0 such that
suph′>h |rh′ − r0| ≤ C ′|r0λ|. From the definition of the flow (3.3.90) at q = 0, we can
bound

|rh−rh+1| ≤ |r0|(1+C|λ|)
∑

k≥h+1
|∂rkŴ

∞;(h+1)
2 (0; 0)| ≤ C̃(r0, λ)

∑
k≥h+1

2(1+θ)h−k (3.3.104)

for C̃(r0, λ) = c0|r0λ|(1 + C ′|λ|), c0 as in Proposition 3.3.2, which implies that rh is a
Cauchy sequence. In the second inequality we used that a derivative with respect to rk
of Ŵ∞;(h+1)

2 (qF ; r), evaluated at r = 0, produces an extra factor 2−k with respect to
the bound of W∞;(h+1)

2 (qF ; 0) = 2h+1νh+1 which is given by Proposition 3.3.2. This is
because such derivative acts on some propagator on scale k ≥ h+ 1 and its effect can be
dimensionally bounded using Lemma B.2.0.1.14. Thus using (3.3.104) we can write

|rh − r0| ≤ C̃(r0, λ)
−2∑
j=h

2θj ≤ C ′|r0||λ| (3.3.105)

where we used that for |λ| small enough, since θ is bounded away from 015, (1+C ′|λ|)c0 ≤
C ′2θ(2θ − 1). In particular, writing rh = r0Qh(λ), thanks to the linearity of its flow, for
some function Qh(λ), then (3.3.105) immediately implies the property of Qh(λ).
Now we can write ∣∣∣ rh

rh∗
− 1

∣∣∣ =
∣∣∣Qh(λ) −Qh∗(λ)

Qh∗(λ)
∣∣∣ ≤ 2C ′|λ|

1 − C ′|λ|
≤ 4C ′|λ| (3.3.106)

for |λ| small. To conclude, notice using the definition of h∗,

|rh2−h| ≤
∣∣∣ rh
rh∗

2h∗−h4(1 + αh∗)δ
∣∣∣ ≤ C ′′2h∗−h (3.3.107)

for some constant C ′′ which depends on C ′, δ but not on |λ|, h. Then one can choose

14For a proof this fact we need to know a bit more on the structure one uses to obtain the bounds in
Proposition 3.3.2. We will come back to reasoning of this type in a more concrete setting, given by Section
3.4.3.

15We recall θ can be chosen within the range (0, 1/2).
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C = max{C ′′, 4C ′} to complete the statement.

The transition to the second regime

After the first regime we are left with the following representation for the partition function

eWϵ+ε0,L,θ,λ = eL
2(F (h∗)

ϵ +t(h
∗)

ϵ )+S(h∗)(J)
∫
P (≤h∗)
ϵ (dφ(≤h∗))eV

(h∗)
ϵ (φ(≤h∗),J) (3.3.108)

where Pϵ(dφ(≤h∗)) has propagator given by the same of (3.3.93) with the scale index
replaced by h∗. For h < h∗, in order to deal with a shift of the singularities, as well of the
analogous of the coefficients of the function Dh, (see (3.3.48)) we now proceed differently:
instead of dynamically modifying such constants at each scale, we fix the structure of
the propagator, modulo a global factor Zh, to be inductively defined, by introducing free
parameters νh∗,ω, ah∗,ω, bh∗,ω, for ω = ±, also called counterterms. Their value will
be uniquely determined via a fixed point argument (see Section 3.4.4) in order for the
perturbative expansion to be convergent uniformly in L as L → ∞.

More precisely, we start by rewriting the effective interaction in (3.3.108): we split as
usual V (h∗)

ϵ = L1,ϵV
(h∗)
ϵ + R1,ϵV

(h∗)
ϵ , and we insert in the Grassmann integration P

(≤h∗)
ϵ

not only the usual part of L1,ϵ (as described in (3.3.87) and above) but also the quadratic
counterterm M(ϕ), for ϕ = φ(≤h∗), given by

M(ϕ) := L−2 ∑
q∈D′

θ,R

ϕ̂+
q+qFM(q)ϕ̂−

q+qF

M(q) :=
∑
ω=±

χ̃h∗(q − ωqF )(2h∗
νh∗,ω − iq1ah∗,ω + (q2 − q̃ωF )bh∗,ω).

(3.3.109)

This means that we rewrite (3.3.108) as

(3.3.108) = eL
2(F (h∗)

ϵ +t(h
∗−1)

ϵ )+S(h∗)(J)
∫

˜̃P (≤h∗)
ϵ (dϕ)eF

(h∗)
Y (ϕ,J)+R1,ϵV (h∗)(ϕ,J)+M(ϕ)

(3.3.110)
where th∗−1

ϵ − th
∗
ϵ is obtained by the change of measure P̃ → ˜̃P (as described in (3.3.57))

where ˜̃P (dφ(≤h∗)) has propagator ˜̃g(≤h∗)
L,ϵ which is the same as in (3.3.89), except that in the

denominator in the rhs, h∗ is replaced by h∗−1 and we added the term 2h∗
νh∗+χh∗(q)M(q).

In (3.3.109) we have that

• qF := (0, q̃F ) with q̃F to be fixed. It is assumed to satisfy

|q̃F − qF,h∗ | ≤ C|λ|
√
ϵ (3.3.111)

for some C > 0; here ±qF,h∗ are the singularities of the propagator of the first regime
of scales, after h∗ − 1 steps of integration (see the lines above (3.3.101)),

• νh∗,ω, ah∗,ω, bh∗,ω ∈ R are free parameters, to be fixed later, which we assume to
satisfy, νh∗,ω, ah∗,ω, bh∗,ω = O(λ), and

νh∗,ω = νh∗,−ω, ah∗,ω = ah∗,−ω, bh∗,ω = −bh∗,−ω, bh∗,+ = O(λ
√
ϵ). (3.3.112)
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The first three equations are natural in view of the original symmetries of the
model, carried along the first regime of integration (see Appendix B.4). This choice
guarantees that this intermediate integration does not break such symmetries. In
view of (3.3.112) we have only three independent real parameter to play with
νh∗,+, ah∗,+, bh∗,+. The last assumption, plays a role in the following item.

• χ̃h(q) := χ(c02−h|iq1 + q2vF |) where c0 is a positive, big enough constant, such that
χ̃h∗(q − qF )χ̃h∗(q + qF ) = 0 for every q, and

vF := sin q̃F + q̃Fαh∗−1 + bh∗,+
cos q̃F + ζh∗−1 + ah∗,+

. (3.3.113)

Note first that for c0 big enough and |λ| small enough we have that ∪ω{q ∈ D′
θ,R :

χ̃h∗(q − ωqF ) > 0} ⊂ {q ∈ D′
θ,R : χh∗(q) = 1}. Secondly, by the assumption of the

previous points, since qF,h∗ = O(
√
ϵ) (see (3.3.101) and lines above) we have that

vF = O(
√
ϵ).

We can then rewrite
χh∗(q) =

∑
ω=±

χ̃h∗−1(q − ωqF ) + f̃h∗(q) (3.3.114)

which implicitly defines f̃h∗(q), being such that in its support q1 = O(2h∗), q2 = O(2h
∗

2 ).
Then, using the addition principle coming from (3.3.114) associated to the fields decom-
position

φσ,(≤h
∗)

y =
∑
ω=±

e−iσωyqFφσ,(≤h
∗−1)

y,ω + φσ,(h
∗)

y (3.3.115)

and to the propagators decomposition

˜̃g(≤h∗)
L,ϵ =

∑
ω=±

e−iσωyqF g
(≤h∗−1)
L,ϵ,ω + g

(h∗)
L,ϵ , (3.3.116)

we can rewrite

(3.3.110) = eL
2(F (h∗−1)

ϵ +t(h
∗−1)

ϵ )+S(h∗−1)(J)
∫
P (≤h∗−1)
ϵ (dφ(≤h∗−1))eṼ

(h∗−1)
ϵ (φ(≤h∗−1),J)

(3.3.117)
where the effective interaction S(h∗−1)

ϵ , Ṽ
(h∗−1)
ϵ and the energy term F

(h∗−1)
ϵ are related as

usual by the analogous formula (3.3.95) with the following replacements: the scale label
h is replaced with h∗, in V(h∗)

ϵ the term associated to ν is replaced by the counterterm M

defined in (3.3.109), and the truncated expectation is taken w.r.t. g(h∗)
L,ϵ .

Now the integration P
(≤h∗−1)
ϵ is diagonal in the ω index, i.e.∫

P (≤h∗−1)(dϕ)ϕ−
y,ωϕ

+
z,ω′ = δω,ω′

1
Zh∗−1

g
(≤h∗−1)
L,ϵ,ω (y, z) (3.3.118)

and its propagator can be rewritten as

1
Zh∗−1

g
(≤h∗−1)
L,ϵ,ω (y, z) = L−2 ∑

q∈D′
R,θ,ω

e−iq(y−z)χ̃h∗−1(q)
Zh∗−1Dh∗−1,ω(q) + ρh∗−1,ω(q) ,

Zh∗−1 = cos q̃F + ζh∗−1 + ah∗,+, Dh∗−1,ω(q) := −iq1 + ωq2vF

(3.3.119)
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where: D′
R,θ,ω = D′

R,θ − ωqF ; vF is the same as in (3.3.113); ρh∗−1(q) is such that
|ρh∗−1(q)| ≤ C22h∗ in the support of χ̃h∗−1. To obtain the representation (3.3.119), one
can proceed in the following way. First note that from the conditions on δ0, |λ|, the de-
nominator in the expression of g(≤h∗−1)

L,ϵ,ω (see (3.3.93) for h = h∗ where we added the
counterterm M) can be rewritten as

rh∗−1 +Dh∗−1(q+ωqF ) + ρ(q+ωqF ) + 2h∗(νh∗ + νh∗,+) − iq1ah∗,+ +ωq2bh∗,+. (3.3.120)

Then expanding in Taylor series at q = 0, using the definition ofDh and ρ ((3.3.48),(3.3.41))
and imposing the following relation for q̃F and νh∗,+,

1 + rh∗−1 − cos q̃F + (q̃F )2

2 αh∗−1 + 2h∗(νh∗ + νh∗,+) = 0, (3.3.121)

the expression in (3.3.119) follows.
We now stress how the given equations above, relating the free parameters, must be

looked at:

Remark 3.3.8. First recall that rh∗−1, αh∗−1, νh∗ are known by the integration of the first
regime and they respectively are O(ϵ), O(λ), O(λ). Then, (3.3.121) must be seen as an
equation for νh∗,+ given q̃F . This equation fixes the singularities of the propagator g(≤h∗)

exactly at the not yet determined points ±qF = ±(0, q̃F ): q̃F will be indeed determined by
such relation only when νh∗,+ will be fixed in the multiscale construction in order for the
perturbative expansion to be absolutely convergent (uniformly in L, ϵ etc..). More precisely,
in order to obtain such a convergence, νh∗,+, ah∗,+, bh∗,+ will be determined via a fixed point
equation in a certain space of sequences, making them functions of the multiscale expansion
of the second regime, and thus of q̃F , vF , Zh∗−1. Then, with such counterterms fixed, one
can solve via the Implicit Function the system of equations

1 + rh∗−1 − cos q̃F + (q̃F )2

2 αh∗−1 + 2h∗(νh∗ + νh∗,+) = 0

Zh∗−1 − cos q̃F − ζh∗−1 + ah∗,+ = 0
Zh∗−1vF − sin q̃F − q̃Fαh∗−1 − bh∗,+ = 0

(3.3.122)

finding then the desired functions q̃F (λ, ϵ), vF (λ, ϵ), Zh∗−1(λ, ϵ) with the desired properties.
This will be studied in Section 3.4.4, more precisely in Section 3.4.5-3.4.5.

Observe that the assumption of point (1) above is an automatic consequence of the fact
(to be proven later) that νh∗,+ = O(λ); moreover when such a condition is true for q̃F ,
proving also that bh∗,+ = O(

√
ϵ) guarantees automatically that vF = O(

√
ϵ). This will be

crucial in estimating the kernels.

Localization procedure: second regime

Inductive statement First, since the second regime h < h∗ can be present only if
ϵ > 0, the dependence on it will be present, but not explicited, in every expression. Let
us assume that the fields φ(h∗−1), . . . , φ(h+1), h ≥ hL, have been integrated out, and that
after their integration the generating function has the following structure
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eW
(θ)
L,ϵ(A,0) = eL

2(F (h)+t(h))+S(h)(J)
∫
P (≤h)(dφ(≤h))eV (h)(

√
Zhφ

(≤h),J), (3.3.123)

for a suitable real constant E(h) and suitable “effective potentials” S(h)(J), V (h)(φ, J),
to be defined inductively below, and fixed in such a way that V (h)(0, J) = S(h)(0) = 0.
P (≤h)(dψ) is the Grassmann Gaussian integration with propagator (diagonal in the index
ω)

1
Zh
g

(≤h)
L,ϵ,ω(y, y′) = 1

Zh

1
L2

∑
q∈D′

R,θ,ω

e−iq(y−y′) χ̃h(q)
µh,ω(q) (3.3.124)

for some real constant Zh, inductively defined, and

µh,ω(q) := Dh∗−1,ω(q) + ρh∗−1,ω/Zh (3.3.125)

where Dh∗−1,ω, ρh∗−1 are the same as in (3.3.119), in particular ρh∗−1 is of order 22h in
the support of f̃h := χ̃h − χ̃h−1. We will also prove inductively that:

1. V (h)(φ, J) has the same structure as in the second line of (3.3.72), with the ker-
nels being specified by the extra label ω = (ω1, . . . , ωn) carried by the Grassmann
variables ϕ̂q,ω = ϕ̂+

q1,ω1 · · · ϕ̂−
qn,ωn , with ϕ̂±

q,ω := ϕ̂±
q+qF+ωqF . Note that in terms of

lattice coordinates, the dependence on ω in the kernels W
(h)
n,m;ω,s(y, x) is due to

the oscillatory factors e−iqF
∑n

i=1(−1)iωiyi coming from (3.3.116): then we denote
W

(h)
n,m;ω,s(y, x) = e−iqF

∑n

i=1(−1)iωiyiW̃
(h)
n,m;s(y, x).

2. the kernels of V (h)(φ, J) satisfy the following symmetry, in Fourier space:

Ŵ
(h)
n,m;−ω,s(q, p) = Ŵ

(h)
n,m;ω,s(−q,−p)

Ŵ
(h)
n,m;−ω,s(q, p) = Ŵ (h)

n,m;ω,s(q̂, p)
(3.3.126)

where Ŵ (h)
n,m;ω,s(q, p) is the Fourier transform of W̃ (h)

n,m;s(y, x) computed at momenta
(q2 + ω2qF , . . . , qn + ωnqF , p1, . . . , pm); q̂ := (q̂2, . . . , q̂n) where for q ∈ R2, q̂ :=
(q1,−q2).16

Remark 3.3.9. As it was for the first regime, we emphasize that we view the kernels
W

(h)
n,m;ω,s, h ≤ h∗ − 2, as functions of:

(i) a sequence of running coupling constants

{λh′ , νh′,ω, ah′,ω, bh′,ω, Yh′,r,(ω,ω′)}h<h′≤h∗−1.

(ii) a sequence of single-scale propagators {g(h′)
ω /Zh′−1}h<h′≤h∗−1, of the form

1
Zh−1

g(h)
ω (x, y) := 1

L2

∑
q∈D′

R,θ,ω

e−iq(y−y′) f̃h(q)
Z̃h−1(k)Dh∗−1,ω(q) + ρh∗−1,ω(q)

, (3.3.127)

16See Appendix B.4, for a discussion with A = 0.
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where f̃h(q) = χ̃h(q) − χ̃h−1(q) and

Z̃h−1(q) = Zh−1χ̃h(q) + Zh(1 − χ̃h(q));

(iii) the irrelevant part of V (h∗−1), denoted by R2V
(h∗−1).

The actual values of the running coupling constants (RCCs) will be defined via an induc-
tive procedure in Sections 3.3.2-3.3.2, the outcome of which is the beta function equation
(3.4.1). In Section 3.4.4, we will show that there is only one specific choice of the initial
data (νh∗,+, ah∗,+, bh∗,+), which we will determine via a fixed point argument, guaranteeing
that the flow of RCCs is uniformly bounded for all h ≤ 0. For the fixed point argument
itself, it is convenient to allow the beta function, as well as the kernels of the effective
potential, to be computed at values of the RCCs different from the final, ‘correct’, ones.
This is what we mean by saying that W (h)

n,m;ω,s will be thought of as functions of the RCCs:
we will allow ourselves to think of the RCCs as independent variables, which can be varied
freely, as long as they remain sufficiently small; similarly for the dependences on g(h)

ω /Zh−1
and R2V

(h∗−1) mentioned in items (ii)-(iii): for certain manipulations discussed below,
we will allow ourselves to modify the definition of the kernels by modifying the form of the
single-scale propagators or of the kernel of the irrelevant part at scale h∗ − 1, keeping the
rest of the iterative definition unchanged.

Base of the induction: h = h∗ − 1 The representation (3.3.123) is valid at the ini-
tial step, h = h∗ − 1, with F (h∗−1) + t(h

∗) = F
(h∗−1)
ϵ + th

∗−1
ϵ , S(h∗−1) = S

(h∗−1)
ϵ and

V (h∗−1)(·, J) = Ṽ
(h∗−1)
ϵ (Z−1/2

h∗−1(·), J) as one can check by comparing with (3.3.117) after
the integration of the transition modes.

To see that (3.3.126) holds for h = h∗ − 1, note that it is equivalent to requiring that
V (h∗−1) is invariant under the following transformations (1) : φ±

y,ω → φ±
y,ω together with

complex conjugation of the kernels and (2) : φ±
y,ω → φ±

ŷ,−ω, where ŷ = (y1,−y2). On the
other hand the assumption on the counterterms (3.3.112), guarantees that the potential
V (h∗)(φ, J) is invariant under such symmetries. The statement (3.3.126) for h = h∗ − 1
easily follows from the relation between V (h∗) and V (h∗−1), compare (3.3.110), (3.3.117)
and below, together with the fact that the grasmmann integration P (h∗−1) is invariant
under the same transformations (1) − (2), see Appendix B.4.

The inductive step We assume that (3.3.123) holds with V (h) satisfying the properties
specified in the inductive statement, and we discuss here how to get the same represen-
tation at the next scale h − 1. First, we split V (h) into its local and irrelevant parts:
V (h) = L2V

(h) +R2V
(h) where, denoting by Ŵ (h),∞

n,m;ω,s the infinite volume limit of Ŵ (h)
n,m;ω,s,

LV (h)(φ, J) := (3.3.128)
= L−2∑

ω

∑
q∈D′

R,θ,ω

ϕ̂+
q,ω[Ŵ (h),∞

2,0;(ω,ω)(0) + q · ∂qŴ (h),∞
2,0;(ω,ω)(0)

]
ϕ̂−
q,ω

+
∑
y∈Λ̃

∑
ω1,...,ω4

ϕ+
y,ω1ϕ

−
y,ω2ϕ

+
y,ω3ϕ

−
y,ω4Ŵ

(h),∞
4,0;(ω1,...,ω4)(0, 0, 0)

+
∑
x∈Λ

∑
ω1,ω2,r

Jx,rϕ
+
RT x,ω1

ϕ−
RT x,ω2

eikF x(ω2−ω1)Ŵ
(h),∞
2,1;(ω1,ω2),s(0,kF (ω2 − ω1)).
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where kF = RqF (cfr. item 1 below (3.3.109).

Remark 3.3.10. A few remarks about this definition are in order:

1. The existence of the limit of Ŵ (h)
n,m;ω,r as L → ∞ is a corollary of the inductive bounds

on the kernels of V (h), which are uniform in L, as it was the case for h = −1, cf.
with Remark 3.3.3. More details on the inductive bounds on the kernels of V (h) are
discussed below.

2. The reason why, in the second line of (3.3.129), we only include terms where the
Grassmann fields have the same index ω, is that the terms with opposite ω indices
give zero contribution to the generating function, due to the support properties of the
Grassmann fields. In fact, in (3.3.123) we need to compute V (h) at Grassmann fields
φ̂

(≤h)±
q,ω that, in momentum space, have the same support as ĝ(≤h)

L,ω (q), i.e., |q| = O(2h)
(note that the support properties of ĝ(≤h)

ω are the same as those of χh (see lines above
(3.3.113) in Item 3). If h ≤ h∗ − 1 and c0 is sufficiently big, quadratic terms of the
form φ̂

(≤h),+
q,ω φ̂

(≤h),−
q+2ωqF ,−ω would involve two fields that cannot both satisfy this support

property.

3. Due to the Grassmann anti-commmutation rules and the anti-symmetry of the ker-
nels, the quartic term in (3.3.129) can be rewritten as

4
∑
y∈Λ̃

φ+
y,+φ

−
y,+φ

+
y,−φ

−
y,−Ŵ

(h),∞
4,0;(+,+,−,−)(0, 0, 0). (3.3.129)

Along the induction step, we will need a function W
(h),R
2,0;(ω,ω)(y1, y2) (the upper index

‘R’ stands for “relativistic”, and it is different from the matrix R appearing in the trans-
formation in (3.3.4)) which should be thought of as the kernel for n = 2,m = 0 of a
relativistic model. More precisely, at step h = h∗ −1, one simply let W (h∗−1),R

2,0;(ω,ω) (y1, y2) ≡ 0.
For h < h∗ − 1, W (h),R

2,0;(ω,ω) is defined as a suitable modification of W (h),∞
2,0;(ω,ω) (that, by the

induction hypothesis, has already been defined); more precisely, W (h),R
2,0;(ω,ω) is obtained by

making the following replacements in W (h),∞
2,0;(ω,ω) (which should be thought of as a function

of the running coupling constants, of the single scale propagators and of the irrelevant
part of V (h∗−1), as explained in Remark 3.3.9):

(i) the running coupling constants {νh′,ω, ah′,ω, bh′,ω}h′>h are set to zero, (note that the
running coupling constants λh′ are not set equal to zero);

(ii) the single-scale propagators g(h′)
ω /Zh′−1 are replaced by the ‘relativistic’ single-scale

propagators g(h′)
R,ω /Zh′−1, for all h < h′ ≤ h∗ − 1, where

g
(h′)
R,ω (y, y′)
Zh′−1

=
∫
R2

dq

(2π)2 e
−iq(y−y′) f̃h′(q)

Z̃h′−1Dh∗−1,ω(q)
; (3.3.130)

(iii) RV (h∗−1) is set to zero.
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The function W
(h),R
2,0;(ω,ω) will be shown to satisfy both the identity (3.3.126) and the

extra symmetry

W
(h),R
2,0;(ω,ω)(vF q2, v

−1
F q1) = iωŴ

(h),R
2,0;(ω,ω)(q) (3.3.131)

where vF is the same of (3.3.119). This symmetry is a special case of the one discussed
in [2] (see in particular Appendix A and Section 4). Let us assume that W (h′),R

2,0;(ω,ω), h
′ ≥ h

has been already shown to satisfy (3.3.131) and below we explain how to prove the same
at scale h− 1.

In order to define the running coupling constants on scale h, we decompose the term
containing ∂qŴ (h),∞

2,0;(ω,ω)(0) in (3.3.129), by rewriting

∂qŴ
(h),∞
2,0;(ω,ω)(0) = ∂qŴ

(h),R
2,0;(ω,ω)(0) + ∂qŴ

(h),S
2,0;(ω,ω)(0), (3.3.132)

(’S’ stands for ‘subdominant’). From the symmetries (3.3.131), a straightforward compu-
tation shows that

q · ∂qŴ (h),R
2,0;(ω,ω)(0) = −zh(−iq1 + ωvF q2) = −zhDh∗−1,ω(q), (3.3.133)

for some real number zh17. We now combine this term with the Grassmann Gaussian
integration P (≤h)(dφ), and define:

P (≤h)(dφ)e
−zhZhL−2

∑
ω

∑
q∈D′

R,θ,ω
Dh∗−1,ω(q)φ̂+

q,ωφ̂
−
q,ω

≡ eL
2(th−1−th)P̃ (≤h)(dφ), (3.3.134)

where P̃ (≤h)(dφ) is the Grassmann Gaussian integration with propagator

g̃
(≤h)
L,ω (y, y′)
Zh−1

= 1
L2

∑
q∈D′

R,θ,ω

e−iq(y−y′) χ̃h(q)
Z̃h−1(q)Dh∗−1,ω(q) + ρh∗−1,ω(q)

, (3.3.135)

with

Z̃h−1(q) := Zh(1 + zhχ̃h(q)), Zh−1 := Z̃h−1(0) = Zh(1 + zh), (3.3.136)

and eL
2th is a constant that normalizes P̃ (≤h)(dφ) to 1:

th = 1
L2

∑
ω

∑
q∈D′

R,θ,ω

log
(
1 + zhχ̃h(q)Dh∗−1,ω(q)

Dh∗−1,ω(q) + ρh∗−1,ω(q)/Zh

)
. (3.3.137)

By using (3.3.134), we rewrite the Grassmann integral in the right side of (3.3.123) as

(3.3.123) = eL
F (h)+t(h−1))+S(h)(J)

∫
P̃ (≤h)(dφ)eV̂ (h)(

√
Zh−1φ,J) (3.3.138)

17That zh is real follows from the fact that the relativistic kernels satisfy as well (3.3.126).
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where

V̂ (h)(φ, J) = L−2∑
ω

∑
q∈D′

R,θ,ω

φ̂+
q,ω

(
2hνh,ω + iah,ωq1 + bh,ωq2

)
φ̂−
q,ω

+ λh
∑
y∈Λ̃

φ+
y,+φ

−
y,+φ

+
y,−φ

−
y,− (3.3.139)

+
∑

ω1,ω2,s

Yh,s,(ω1,ω2)
Zh−1

∑
x∈Λ

Jx,re
i(ω2−ω1)kF xφ+

RT x,ω1
φ−
RT x,ω2

+ R2V
(h)(

√
Zh/Zh−1 φ, J),

and the running coupling constants at scale h are defined as

2hνh,ω = Zh
Zh−1

Ŵ
(h),∞
2,0;(ω,ω)(0), (3.3.140)

ah,ω = −i Zh
Zh−1

∂q1Ŵ
(h),S
2,0;(ω,ω)(0), bh,ω = Zh

Zh−1
∂q2Ŵ

(h),S
2,0;(ω,ω)(0),

λh = 4
( Zh
Zh−1

)2
Ŵ

(h),∞
4,0;(+,+,−,−)(0, 0, 0),

Yh,s,(ω1,ω2) = ZhŴ
(h),∞
2,1;(ω1,ω2),s(0, (ω2 − ω1)kF ).

Thanks to the symmetry (3.3.126) of the kernels (that by inductive hypothesis holds at
step h) the running coupling constants are real valued, νh,ω, ah,ω, bh,ω, λh, Yh,s,(ω1,ω2) ∈ R
and satisfy the following (see Appendix B.4):

νh,ω = νh,−ω, ah,ω = ah,−ω, bh,ω = −bh,−ω, Yh,r,ω = Yh,r,−ω. (3.3.141)

For later reference, we rewrite the local part of V̂ (h)(φ, J) as

LV̂ (h)(φ, J) =
∑
ω

[
2hνh,ωFν;ω(φ) + ah,ωFa;ω(φ) + bh,ωFb;ω(φ)

]
+ λhFλ(φ) +

∑
s,ω

Yh,s,ω
Zh−1

FY ;s,ω(φ, J), (3.3.142)

(for the definitions of Fν;ω(φ), Fa;ω, Fb;ω, etc., compare (3.3.142) with the first two lines of
(3.3.139)).

We now decompose the propagator (3.3.135) as

g̃
(≤h)
L,ω (y, y′) = g

(h)
L,ω(y, y′) + g

(≤h−1)
L,ω (y, y′),

with g(≤h−1)
ω as in (3.3.124) and g(h)

ω as in (3.3.127). The scaling bounds of g(h)
ω , used in the

contraction at every scale, are given in the next paragraph. To see that this decomposition
holds, note that Z̃h−1(k) ≡ Zh−1 on the support of χ̄h−1(·).

Then, rewrite (3.3.138) as∫
P (≤h)(dφ)eV (h)(

√
Zh(φ,J) =

∫
P (≤h−1)(dφ)

∫
P (h)(dφ′)eV̂ (h)(

√
Zh−1(φ+φ′,J), (3.3.143)
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which implies the validity of the representation (3.3.123) at scale h − 1, with F (h−1),
S(h−1)(·) and V (h−1)(·) defined by

eL
2F (h−1)+S(h−1)(J)+V (h−1)(

√
Zh−1φ,J) = (3.3.144)

= eL
2F (h)+S(h)(J)

∫
P(h)(dφ′)eV̂ (h)(

√
Zh−1(φ+φ′),J),

that is,

L2(F (h−1) − F (h)) + (S(h−1)(J) − S(h)(J)) + V (h−1)(φ, J) (3.3.145)

=
∑
n≥1

1
n!E

T
(h)(V̂ (h)(

√
Zh−1(φ+ φ′), J); · · · ; V̂ (h)(

√
Zh−1(φ+ φ′), J)︸ ︷︷ ︸

n times

,

with ET(h) the truncated expectation w.r.t. the Grassmann Gaussian integration P (h)(dφ),
and F (h−1), S(h−1)(·) fixed as usual by the conditions S(h−1)(0) = 0 and V (h−1)(0, J) = 0.

To conclude the proof of the induction step, it remains to prove that the kernels
of V (h−1) satisfy (3.3.126) and that (3.3.131) holds, at scale h − 1. The proof of both
statements follow from the inductive hypothesys and the fact that the covariance is still
symmetric under the same symmetries, see Appendix B.4.

The single scale propagator of the second regime The integration procedure just
described, for h < h∗ − 1, produces a single scale propagator given by

1
Zh−1

g
(h)
ω,L(x, y) := 1

L2

∑
q∈D′

R,θ,ω

e−iq(y−y′) f̃h(q)
Z̃h−1(q)Dh∗−1,ω(q) + ρh∗−1,ω(q)

, (3.3.146)

where f̃h(q) = f(2−h|iq1 + vF q2|), and f same as above; Dh∗−1,ω(q) := −iq1 +ωq2vF with

Z̃h−1(q) := Zh(1 + zhχ̃h(q))
Zh−1 := Z̃h−1(0) = Zh(1 + zh)

vF := sin q̃F + q̃Fαh∗−1 + bh∗,+
cos q̃F + ζh∗−1 + ah∗,+

ρh∗−1(q) = ρ(q + ωqF ) − ρ(ωqF ) − q · ∂ρ(ωqF ).

(3.3.147)

where ρ is the same as in (3.3.97) and qF is defined below (3.3.109). Then we have

Lemma 3.3.0.4. If there exists C > 0, such that suph≤h′<h∗ |zh| ≤ Cδ1 then there exist
L, ϵ independent constants c0, c1, κ > 0 such that

|g̃(h)
ω (y)| ≤ c0v

−1
F 2h(1+n1+n2)e−κ

√
2h(|y1|+v−1

F |y2|). (3.3.148)

and ∑
y∈RTZ2

|ym1
1 ym2

2 g̃
(h);n
R,ω (y)|e

κ
2

√
2h(|y1|+v−1

F |y2|) ≤ c1v
−1−n2−n0+m2
F 2h(1+n1+n2−m2−m1).

(3.3.149)
Moreover, g̃(h);n

S,ω satisfy the same estimates times an extra factor 2h.
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For more details, see Appendix B.2. See also [4] for an analogous bound.

ϵ < 0: The massive case

Proceeding as in Section 3.3.1, it is possible to show that for a fixed ϵ < 0, a single step
of integration is sufficient to obtain bounds for fϵ,λ,L which are uniform in L, and to show
the existence of its thermodynamic limit. Indeed one can write

W(θ)
ε0(λ)+ϵ,L,λ(A) = L2(F (0)

ϵ + F̃ (0)) + S(0)(A) (3.3.150)

where F (0)
ϵ is the same as in (3.3.68), while

L2F̃ (0) + S(0)(A) =
∑
n≥1

1
n!E

T
ϵ (ν0N(·) + V (·,A); . . . ; ν0N(·) + V (·,A)︸ ︷︷ ︸

n times

) (3.3.151)

and the truncated expectation ETϵ is associated to the propagator

gϵ(y, y′) = L−2 ∑
q∈D′

θ,R

e−iq(y−y′)

1 + r0 − eiq1 cos q2

r0 = e−ε0(λ)(e−ϵ − 1).

(3.3.152)

Since r0 > 0 iff ϵ < 0, then gϵ decays exponentially18 in the distance on the torus, the
discussion above (3.3.24) applies and, in particular, we obtain bounds which are uniform
in L, but not as ϵ → 0− (the rate of the exponential decay tends to 0). If ϵ → 0−, we need
to perform a multiscale analysis. In particular we can repeat exactly the same multiscale
procedure of Section 3.3.2, by obtaining an inductive structure as in (3.3.101) and below
by recalling that now all the quantities depending on ϵ are evaluated at some negative
small value. The stopping scale for the first regime of integration has the same definition
as in (3.3.76):

h∗(ϵ) = min
{
h ≤ −1 : |rh|

(1 + αh) < 2hδ
}

(3.3.153)

where rh is given by (3.3.100) and satisfies Lemma 3.3.0.3. Note in particular that since
Qh, αh do not depend on ϵ, the only difference in h∗ arising by changing sign to ϵ comes
from r0. It is easy to see that h∗(−|ϵ|) ≥ h∗(|ϵ|) and h∗(−ϵ) = h∗(ϵ) if |ϵ| is small enough.
Since we are free to choose ϵ as small as we like, we choose it so that the parity holds.
When we reach scale h∗, then we can integrate all the lower scale at once. Recall indeed
that rh > 0 for every h < h∗ since it satisfies rh = r0Qh(λ), with |Qh − 1| = O(λ) by
Lemma 3.3.0.3. Then we have that

g
(≤h∗)
L,ϵ (y, y′) = L−2 ∑

q∈D′
θ,R

e−iq(y−y′)χh∗(q)
rh∗ +Dh∗ (q) + ρ(q) (3.3.154)

has the same scaling of the single scale propagator at scale h∗ as in Lemma B.2.0.1, as it
is seen by rescaling (q1, q2) = (2hp1, 2h/2p2) and using the definition of χ and the fact that

18It is the Fourier transform of an analytic function.
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D is linear in q while 2−h∗
ϵ = O(1).

3.4 RG approach: dimensional bounds and flow of the run-
ning constants

In this Section we collect the informations coming from the iterative construction of the
previous Sections 3.3.1-3.3.2 and we reformulate the problem of obtaining a convergent
perturbative expansion in terms of the study of a discrete flow equation (the Beta function
equation). The content of this Section is based on a somehow standard approach and we
take as references [2–5]. The definition of the flow equations is given in Section 3.4.1;
the bounds on the kernels built in Sections 3.3.1-3.3.2 are discussed in Section 3.4.2 in
terms of the flow’s properties. Since the iterative construction we made is very similar
to the one of [4], we discuss only the main differences and we do not report the whole
proof of such bounds. In Section 3.4.3, we recall how these kernels bounds are derived and
what is the impact of the differences with [4] acts by means of the so called Gallavotti-
Nicolo tree expansion. Finally in Section 3.4.4 we reformulate the convergence of the
perturbative expansion in terms of a fixed point problem for a map on a sequence space.
This reformulates the discussion of [4] in the direction of the same framework of [2, Sec.
6.4].

3.4.1 The beta function

The iterative integration scheme described above in Section 3.3.2 allows us to express the
kernels of V (h) and, in particular, the running coupling constants (RCC) at scale h, as
functions of the sequence of RCC and of the single-scale propagators on higher scale and
of irrelevant part of the interaction at the “first” scale (see Remark 3.3.9). More precisely,

• if h ≥ h∗, the kernels W (h)
n,m,ϵ,s, are viewed as functions of the running coupling

{νk}h<k≤0, of the renormalization constants {rk, αk, ζk}h≤k≤−1, of the single scale
propagators {g̃(k)

L }k≥h (cf. (3.3.92)) and of the irrelevant part of the interaction
R1V

−1
ϵ .

• If instead h < h∗, the kernels W (h)
n,m,ω,s are viewed as functions of the sequence of run-

ning coupling {(νj,ω, aj,ω, bj,ω, λj)}h≤j≤h∗ , of the renormalization constant {zj}h≤j<h∗ ,
of the single scale propagators {Z−1

h−1g
(j)}h≤j<h∗ (cf. (3.3.127)), and of the irrelevant

part of the interaction, at the transition scale, R2V
(h∗−1).

In particular we rewrite the relation between contiguous scale constants in the form

(h ≥ h∗) :



νh−1 = 2νh +Bν
h

rh−1 = rh +Br
h

ζh−1 = ζh +Bζ
h

αh−1 = αh +Ba
h

Yh−1,s = Yh,s +BY
h,s

(h ≤ h∗) :



νh−1,ω = 2νh,ω +Bν
h,ω

ah−1,ω = ah,ω +Ba
h,ω

bh−1,ω = bh,ω +Bb
h,ω

λh−1 = λh +Bλ
h

Yh−1,s,ω = Yh,s,ω +BY
h,s,ω

(3.4.1)

which is just a reformulation of (3.3.49),(3.3.58),(3.3.90)-(3.3.93), (3.3.88) for h ≥ h∗, and
of (3.3.140) for h < h∗. Here B#

h,·, h ≤ −1, is the so-called Beta function. One has to
think of B#

h,· as well as a function of the RCC on higher scales. Note the following
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(0) the equations in the lhs of (3.4.1) make sense also with h = 0 by defining α0 =
0, ζ0 = 0, Yh,s = 0, Bζ

0 = 0, Bα
0 = 0, Br

0 = 0: recall indeed that ζ−1 = α−1 = 0 (cf.
(3.3.41)) and that r−1 = r0 (cf. below (3.3.81)). The first equation is instead non
trivial and expresses the relation between ν−1 and the counterterm ν0 = e−ε0 − 1.
For h = h∗ they are meaningful with νh∗−1 = Yh∗−1,s = 0 (which is also a definition
of the associated beta function, Bν

h∗ = −2h∗
νh∗ and similarly for BY ).

The rhs of (3.4.1) is as well meaningful also for h = h∗: the first three equations
relate the evolution of the counterterms (ah∗,ω, bh∗,ω, νh∗,ω) after the integration at
the transition scale; a simple calculation shows that Yh∗,s,ω = Yh∗,s, while the fourth
equation is valid with λh∗ = 0 : recall indeed that on scale h∗ the local quartic term
still vanishes. After that scale, introducing the “quasi-particle decomposition” in
(3.3.116), one has istead the first non vanishing quartic local term λh∗−1.

(1) For h ≥ h∗, Bν , Bα, Bζ do not depend on {Yh,·, rh}h≥h∗ ,

(2) By construction, the beta function B#
h,· depends on Zh′ only via the combinations

Zh′/Zh′−1 = (1 + zh′)−1, with h < h′ < h∗. For later reference, we rewrite the
definition of zh, (3.3.133), in a form analogous to (3.4.1),

zh−1 = Bz
h, h ≤ h∗, (3.4.2)

where the right side is thought of as a function of (λh′ , zh′)h≤h′<h∗ , with the conven-
tion that zh∗ = zh∗−1 = 0 (the latter is because W (h∗−1),R

2,0;(ω,ω) ≡ 0).

(3) The components of the beta function for νh,ω, ah,ω, bh,ω, λh are independent of Yh′,r,ω, h
′ >

h. Therefore, we can first solve the flow equation for νh,ω, ah,ω, bh,ω, λh and then in-
ject the solution into the flow equation for Yh,r,ω.

3.4.2 Dimensional bounds for the kernels

Before we proceed in describing the dimensional bounds satisfied by the kernels of the
effective potential, let us comment on their structure. We have proven inductively that
V (h) has, in momentum space, the same structure as in (3.3.72). If one writes V (h) in
real space, due to the iterative action of the R operator in the inductive procedure, the
structure that naturally emerges is that of a polynomial with pseudo differential operators
∂̂ acting on some of the Grassmann fields φ±

y,ω if h < h∗ or φ±
y if h ≥ h∗. This was

discussed for the integration of the first regime of scales (h ≥ h∗): see Section 3.3.1 (cf.
(3.3.51)) and Appendix B.3.4. With an analogous discussion for h < h∗, one finds that
V (h) can be as well represented as

V (h)(φ, J) =
∑

n,m≥0:
n even, n≥2

∑
y, x, ω, s,D

W
(h)
n,m,D;ω,s(y, x) ×

× ∂̂D1φ(≤h)+
y1,ω1 · · · ∂̂Dnφ(≤h)−

yn,ωn Jx1,s1 · · · Jxm,sm . (3.4.3)

The main difference between this formula and the one in the first line of (3.3.72), be-
sides the different scale label, is the presence of the indices D = (D1, . . . , Dn) with
Dj = (Dj1, Dj2) ∈ {0, 1, 2}2 associated to the operators ∂̂Dj = ∂̂

Dj1
1 ∂̂

Dj2
2 acting on the

Grassmann fields: we recall that ∂̂Di is a pseudo differential operator, dimensionally equiv-
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alent to a derivative of order D in direction i (cf. (3.3.33)). Let us stress that the rep-
resentation in (3.4.3) is not unique: the claim is that there exists such a representation,
with the kernels satisfying natural dimensional estimates, discussed below. Of course a
similar representation holds for the kernels of the first regime as well, where in particular
the ω label is absent.

In order for the iterative construction to allow us to compute the thermodynamic limit
of the generating function, and in particular to prove the existence of the free energy with
the desired properties of Theorem 1.4.4, we need to prove that:

(1) The running constants of the first regime, νh, rh/r0 − 1, αh,ω, ζh are small, uniformly
in h and in the separating scale h∗ (say, smaller than a sufficiently small constant
δ0), provided the function ε0 (see (3.3.1)), i.e. ν0, have been properly fixed as a
function of λ;

(2) The running constants of the second regime νh,, ah,ω, bh,ω, λh, zh are as well small in
the same sense as above, but also λh, bh,ω = O(

√
ϵ) uniformly in h, provided now

that (νh∗,+, ah∗,+, bh∗,+) are uniquely fixed as functions of λ (cf. (3.3.109)).

The reason behind these two requirements is the following Proposition, which we comment
here and will be the output of the next section. Again, we assume L to be much bigger
than ϵ−1 so that hL < h∗ (cf. lines above (3.3.45) with (3.3.76)-(3.3.101))

Proposition 3.4.1. Let h ≥ h∗ − 1 and δ0 > 0 small enough. Suppose that

sup
h′>h

max{|λ|, |αh′ |, |ζh′ |, 2−θh′ |νh′ |, |rh′/r0 − 1|} ≤ δ0, (3.4.4)

then there exist C(θ) > 0 independent of L, ϵ, h, such that

∥W (h)
n,m,ϵ,D∥κ,h ≤ Cn+mδ

max{1,cn}
0 2h( 3

2 +θ−n
4 −m−|D|(1))

(
sup
h′>h

|Yh′,·|
)m

(3.4.5)

where |D|(1) := ∑n
i=1

∑
j=1,2Dij2−1{j=2}, Yh′,· := sups Yh′,s and θ can be chosen in (0, 1/2)19;

the norm is defined by

∥Wn,m,ϵ,D∥κ,h := L−2 sup
s

∑
y,x

|W (h)
n,m,ϵ,D,s(y, x)|eκ

√
d(h)(y,x) (3.4.6)

where d(h)(y, x) is a scale weighted tree distance, given by 2hd1(x, y) + 2h/2d2(x, y), where
d1, d2 are the total displacements of the shortest lattice tree connecting the points (x, y) in
the directions 1, 2 respectively20.

Note that the expression of |D|(1) follows from the scaling properties of the single scale
propagator of the first regime (Lemma B.2.0.1): indeed recall that derivatives in different
directions i = 1, 2 produce different scaling factors, respectively 2h, 2h/2. With Proposition
3.4.1 at hand, we can obtain also bounds for the second regime of integration. Namely

19The bounds are not uniform as θ → 1
2

−, so we can fix, e.g., θ = 1
420In terms of d1, d2 the usual tree distance δ(,y) is given by d1(x, y) + d2(x, y).
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Proposition 3.4.2. Let hL ≤ h < h∗ − 1, δ0 > 0 small enough and suppose that (3.4.4)
holds together with

sup
h≤h′<h∗

{|νh′,+|, |zh′ |} ≤ δ0, sup
h≤h′<h∗

{|λh′ |, |bh′,+|} ≤ 2h∗/2δ0, (3.4.7)

then there exists C > 0 independent of L, ϵ, h, such that

∥Wn,m,D,s∥κ,h ≤ Cn+mδ
max{1,cn}
0 2h∗(− 1

2 +n
4 )2h(2−n

2 −m−|D|)
(

sup
h<h′≤h∗−1

|Yh′,·|
Zh′

)m
(3.4.8)

where |D| = ∑n
i=1

∑
j=1,2Dij and Yh′,· := sups,ω Yh′,s,ω and the norm is given by

∥Wn,m,D∥κ,h := L−2 sup
s

∑
y,x

|W (h)
n,m,D,s(y, x)|eκ

√
2hδ(x,y) (3.4.9)

where δ(x, y) is the tree distance of the points (x, y).

These results show that having control on the size of the coupling constants, uniformly
in h ≤ 0, gives access to bounds of the kernels for all the scales h ≤ 0, which are uniform
in L.

Anyway, the boundedness of the complete flow of the running constants will be the
final outcome of our technical analysis, and we want to stress the logic behind the proof.
Note first the following two facts: both the propositions are true even if one views the
running constants of higher scale as independent variables, not necessarily related by the
beta equations (3.4.1) (see also Remark 3.3.9): this follows from the scaling properties of
the single scale propagators (Lemmas B.2.0.1 and B.2.0.2) and iterated application of the
so called Battle-Brydges-Federbush-Kennedy (BBFK) formula in the framework of the so
called Gallavotti-Nicolo’s tree expansion (see next Section 3.4.3); Proposition 3.4.2 is built
upon the estimates of Proposition 3.4.1, and, by its very definition, rh depends only on
kernels of the critical theory (see (3.3.90), (3.3.93)), i.e. at ϵ = 0, as well as the other
running constant in the hypothesis of Proposition 3.4.1. Thus

(1) We first obtain boundedness for {αh, νh, ζh}h≤0 of the critical theory (Sec. 3.3.1),
i.e. at ϵ = 0. In this case Proposition 3.4.1 applies as well, with h∗ = −∞ (cf.
(3.3.76)), and as a particular case it provides bounds on the components of the
beta function Bν

h, B
α
h , B

ζ
h (cf. (3.4.1)): this opens the way to an inductive proof for

the boundedness of such constant, via a fixed point argument, in the spirit of [2].
Anyway the discussion is simplified by the special structure of the Beta function:
in this regime the local quartic term (the analogous of λh for h < h∗) is zero. For
the argument to work we need λ small enough and to uniquely fix ν0 = ν0(λ), see
(3.3.1).

(2) Fix ν0 = ν0(λ). For ϵ ̸= 0, the previous point and Lemma 3.3.0.3 implies that the
hypothesis of Proposition 3.4.1 are satisfied, uniformly in h∗.

(3) From the previous point, for h < h∗ − 1, Proposition 3.4.2 implies that, assum-
ing also (3.4.7) up to a given scale, one can obtain bounds on the same scale
beta components of such constants, opening a way , through (3.4.1), for an in-
ductive proof of the boundedness of the constants of the second regime. For this
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to hold, we need a comparison with a “relativistic model”, the kernels of which
were introduced below (3.3.129). The special structure of the relativistic model
beta functions, in particular its “vanishing property” of the λ-component, allows
one to control the beta Bλ

h of our dimer model and obtain finally boundedness of
the full flow {zh, λh, νh,+, ah,+, bh,+}h≤h∗−1, provided that |λ| is small enough and
νh∗,+, ah∗,+, bh∗,+ are uniquely fixed as functions of λ. The discussion is an adapta-
tion of [2] to our case; in particular in order to control the small factors arising from
the choice of ϵ small, we will follows the ideas first appeared in [4].

3.4.3 The tree expansion for the effective potential

As already anticipated, the detailed structure of the kernels of V (h), arising from the
iterative construction of the two regimes described in Sections 3.3.1-3.3.2 can be naturally
represented in terms of trees. This follows from the fact that each step of integration is
characterized by the following relation, for any given scale h,

L2(F (h−1) − F (h)) + S(h−1)(J) − S(h)(J) + V (h−1)(ϕ′, J) =

=
∑
n≥1

1
n!E

T
(h)

(
V(h)(ϕ′ + ·, J); · · · ;V(h)(ϕ′ + ·, J)

) (3.4.10)

where V(h) depends on the regime of integration, namely

V(h)(ϕ, J) =



2hνhN(ϕ) +∑
x,s Y

(h)
s,ϵ F

(h)
Y (ϕ, J) + R1,ϵV

(h)
ϵ (ϕ) (h ≥ h∗)

∑
ω

(
2hνh,ωFν;ω(φ) + ah,ωFa;ω(φ) + bh,ωFb;ω(φ)

)
+

+λhFλ(φ) +∑
s,ω

Yh,s,ω
Zh−1

FY ;s,ω(φ, J) + R2V
(h)(

√
Zh/Zh−1 φ, J) (h < h∗)

see (3.3.95) and (3.3.139).

FY

Fν

Fλ

Fa

FY

R2V

ETh
v0

h+ 1hh− 1

Figure 3.7: An instance of a single step tree in the second regime.

The many contributions to the l.h.s. of the above equation can be pictorially schema-



3.4. RG approach: dimensional bounds and flow of the running constants 113

tized as in the Figure below, when we associate the following symbols to the terms ap-
pearing in the argument of the truncated expectation:

- • to represent the action of ETh ,

- to the terms corresponding to N,Fν,ω, Fλ, Fa,ω, Fb,ω: the “normal endpoints”,

- □ to the terms FY , FY,ω: the “special endpoints”,

- to the term corresponding to R1,ϵ,R2.

where, the converging lines of Figure 3.7 from the symbols , □, to •, represent the
fact that the truncated expectation must connect its arguments. Note that, associated
to a graphical representation there are many contrbution coming from the choices of the
Grassmann fields ϕ′ + · in each of the arguments of ETh , which in particular already set a
constrain on such choices.
Then, one can iterate the above procedure by applying (3.4.10) to every term associated
to , until it is associated to R1,ϵV

(0) or R2V
(h∗−1), or no more endpoints of such type

are present: in both case the procedure stops. The result of the iteration is a tree structure
τ as in Figure 3.7 above, with endpoints on all the possible scales.21 This expansion have
been discussed in several contexts, some of which very close to ours. We mention [5],
for a complete, self consistent discussion (Sec. 5.1 and 8.2 for the renormalized tree
expansion); [3] (Sec. 6.2) for the expansion in a context closer to ours; [4] (Sec. 2.1) for
an expansion which considers a double regime integration; [45] for an updated discussion
treated in greater generality. Since the tree expansion depends in our case on the regime
of integration, let us distinguish two cases:

Tree expansion for h ≥ h∗

For the first regime of scales, we refer to [4, Sec. 2.1], for the necessary definitions; we
will discuss the main differences with our case22. In particular, the trees involved in our
construction are characterized by the following, different, features

1. A GN tree τ contributing to V
(h)
ϵ , S̃(h)

ϵ (J) := S
(h)
ϵ (J) − S

(h+1)
ϵ (J), or to F̃

(h)
ϵ =

F
(h)
ϵ − F

(h+1)
ϵ has root on scale h and can have endpoints (either normal or special,

represented as black dots or white squares, as in the Figure above) on all possible
scales between h+2 and 0. The endpoints v on scales hv < 0 are preceded by a node
v′ of τ , on scale hv′ = hv−1, that is necessarily a branching point. The family of GN
trees with root on scale h, Nn normal endpoints and Ns special endpoints is denoted
by T (h)

Nn,Ns
. Note that in [4] (see e.g. eq. (53)) the endpoints can be only normal

(because no external fields were considered) and on scale 0, because the interaction
is only made of renormalized terms23.

2. A normal endpoint v on scale hv ≤ 0 can be of two different types, ν or RV (−1). If
v is of type ν, then it is associated with 2hνhFν(φ(≤hv′ )), ; in this case, the node v′

21recall indeed that if h < h∗ − 1 then the inductive construction stop at scale h = h∗ − 1.
22Recall that in the first regime we specify the dependence on ϵ of the kernels while in the second regime

we drop the label, because the second regime it is built upon ϵ ̸= 0
23The term analogous to our ν is used to dress the integration.
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immediately preceding v on τ , of scale hv′ = hv −1, is necessarily a branching point.
If v is of type RV (−1), then hv = 0, and v is associated with (one of the monomials
contributing to) R1,ϵV

(−1)(φ(≤−1), 0); in this case, the node immediately preceding
v on τ , of scale hv − 1, is not necessarily a branching point.

3. A special endpoint v on scale hv ≤ 0 can be either local, or non-local. If v is local,
then it is associated with Yhv′ ,sFY ;s(φ(≤hv′ ), J) for some s ∈ {A,B,C}; in the case
that v is local, the node v′ immediately preceding v on τ , of scale hv′ = hv − 1, is
necessarily a branching point. If v is non-local, then hv = 0, and v is associated
with (one of the monomials contributing to) V (−1)

ϵ (φ(≤−1), J) − V
(−1)
ϵ (φ(≤−1), 0); in

this case, the node immediately preceding v on τ , of scale hv − 1, is not necessarily
a branching point.

In addition to the items above, let us recall that each vertex of the tree that is not an
endpoint and that is not the special vertex v0 (the leftmost vertex of the tree, immediately
following the root on τ) is associated with the action of an R1,ϵ operator. In particular,
note the following main difference with the renormalization operator, R1, used in [4] (see
Eq. (36) and the following lines). From Remark 3.3.4 follows that we can write

R1,ϵ − R1 = ∆R1P0 + RT (1 − P0) (3.4.11)

where P0 is the operator that maps effective potentials in the critical (ϵ = 0) counterpart;
RT := (1 − T ); and ∆R1 := R1,0 − R1. As already commented, the operator ∆R1 has
a renormalization effect coming from “finite size effect” due to our choice of localizing
infinite volume kernels, see [2, Appendix B] for more details. The renormalization effect
of the operator RT (1 − P0) will instead be justified shortly (see point (2) below).

In terms of the tree expansion, we can express the effective potential and the single-
scale contributions to the free energy and generating function as

L2F̃ (h)
ϵ + S̃(h)

ϵ (J) + V (h)
ϵ (φ, J) =

∑
Nn,Ns≥0:
Nn+Ns≥1

∑
τ∈T (h)

Nn,Ns

V (h)(τ, φ, J), (3.4.12)

where

V (h)(τ, φ, J) =
∑

P∈Pτ

∑
D

∑
xv0

W
(h)
τ,P,T,D(xv0)φD(Pφv0) J(P Jv0) . (3.4.13)

Where we recall that Pψv0 and P Jv0 are two sets of indices that label the Grassmann external
fields and the external fields of type J , respectively; moreover, J(P Jv0) = ∏

f∈PJv0
Jx(f),s(f)

and
φD(Pφv0) =

∏
f∈Pφv0

∂̂D(f)φ
σ(f)
y(f),ω(f) . (3.4.14)

The equation (3.4.13) above is the analogue of [4, (80)] or [3, (6.64)] (in this formula, the
indices D replace the multi-indices β ∈ BT [3, (6.64)]); we denote D(f) = (D1(f), D2(f))
so that ∂̂D(f) := ∂̂

D1(f)
1 ∂̂

D2(f)
2 .

When we restrict to trees τ for which R1,ϵ acts as the identity at every vertex of the
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tree, then W
(h)
τ,P,T,D(xv0) can be written as

W
(h),∗
τ,P,T (xv0) =

=
( ∏
v e.p.

K(hv)
v (xv)

) ∏
v not e.p.

1
sv!

∫
dPTv(tv) det(Mhv ,Tv(tv))

∏
ℓ∈Tv

g
(hv)
ℓ

(3.4.15)

which can be obtained by the iterative application of the so called determinant formula
(BBFK) (see [4, (75)], [3, Lemma 3, (6.63)]), to the truncated expectation EThv at each v
which is not an endpoint (“e.p.” stands for endpoints, see). Of course a similar represen-
tation, carrying all the extra labels of the non trivial action of R1,ϵ, exists but in order
to not overwhelm the notation we prefer to skip such details (see [131, Sec. 3.10] for a
complete derivation of such representation).

Then we have the following

Lemma 3.4.0.1. There exists L-independent constants δ0, C, c, κ > 0, θ ∈ (0, 1/2) such
that, if h ≥ h∗ and

sup
h′>h

{|λ|, 2−θh′ |νh′ |, |αh′ |, |ζh′ |, |rh′/r0 − 1|} ≤ δ0, (3.4.16)

and τ ∈ T (h)
Nn,Ns

, then

∥W (h)
τ,P,T,D∥κ,h ≤ CNs (Cδ0)max{Nn,c|Iψv0 |} 2h

(
3
2 − 1

4 |Pψv0 |−|PJv0 |−|D|(1))
)

(3.4.17)

×

 ∏
v n.e.p.
hv<−1

2θhv


( ∏
v s.e.p.

sup
s

|Yhv−1,s|
) ∏
v not
e.p.

C |Qv |

sv!
2(hv−hv′ )

(
3
2 − 1

4 |Pψv |−|PJv |−z1(Pv)
)
,

where: |Iψv0 | = ∑
v e.p. |Pψv | is the total number of Grassmann fields associated with the end-

points of the tree; |Qv| = ∑sv
i=1 |Pvi | − |Pv| is the number contracted fields on the vertex v;

the first product in the second line runs over the special endpoints, while the second over all
the vertices of the tree that are not endpoints. Moreover |D|(1) = ∑

f∈Pψv0

∑
j=1,2Dj(f)2−1j=2

and

z1(Pv) =



2 if (|Pψv |, |P Jv |) = (6, 0),
3
2 if (|Pψv |, |P Jv |) = (2, 0),
1 if (|Pψv |, |P Jv |) = (4, 0)
1
2 if (|Pψv |, |P Jv |) = (2, 1)
0 otherwise.

(3.4.18)

The proof of this lemma is very similar to the one in [4, Lemma 2], so we do not report
it here. Let us comment on the analogies and main differences, setting for simplicity
J = 0.24 The main points are the following:

(0) the fact that we have trees which can have endpoints on scales h < −1, only of type
ν, is related of course to the first factor in the second line, as it follows from the

24The presence of the external fields does not imply substancial changes, and we will discuss it when
necessary later.
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hypothesis (3.4.16). This term is crucial to obtain the factor 2θh as it appears in
Proposition 3.4.1, see the discussion below.

(1) the scaling dimension dv := 3/2 − |Pv|/4 appearing at each vertex v which is not
an endpoint, is the same because of same the scaling properties of the propagators,
compare [4, (60)] with (B.2.6), as follows from an iterative application of the BBFK
formula and the Gram-Hadamard bound for determinants (cf. [4, (80)]).

(2) the renormalization factor z1(Pv) is obtained when R1,ϵ is applied to a branching
vertex v ∈ τ : if one picks R1,0P0 in (3.4.11), then the resulting z1(Pv) is the same
as the one discussed in [4] see also the third item of Remark 3.3.4. When instead
one chooses RT (1 − P0), only if ϵ ̸= 0, then necessarily |Pv| = 2 and |Dv| = 0. In
this case, from the definition of T (see (3.3.84)) and the definition above of RT , the
resulting term to bound is the Taylor remainder in the sequence r, namely∫ 1

0
dt

∑
ℓ,m≥hv

rℓrm∂
2
rℓ,rm

W
∞;(hv)
τv ,Pv ,T (v)(xv; tr) (3.4.19)

where we recall, τv is the subtree of τ rooted at v, Pv = ∪w≥vPw (≥ is the partial
order of the tree τ), T (v) := ∪w≥vTw is the union of the spanning trees coming from
the truncated expectations in the subtree τv and xv is the collection of coordinates
of the endpoints following v. Each derivative ∂rj apply to one of the propagators
involved in the truncated expectation (via the application of BBFK, cf. (3.4.15)) at
some vertex w ≥ v, with hw = j which dimensionally produces an extra 2−j factor
25 (cf. with Lemma B.2.0.1 with n0 = 1). Thus we can repeat the bound as if no R
operator acted at v, with the extra dimensional factor∑

ℓ,m≥hv
rℓrm2−ℓ2−m ≤ (C ′r0)22−2hv ≤ C ′′22(h∗−hv) (3.4.20)

with constants C ′, C ′′ > 0 independent of hv, ϵ, λ. We used that from the hypothesis,
supj>h |rj | ≤ |r0|(1 + δ0) ≤ |r0|C ′ and that |r0| ≤ C ′′/C ′2h∗ as it follows from the
definition (3.3.101). This extra term is of course enough to renormalize the vertex
v, since 22(h∗−hv) ≤ 22(hv′ −hv) ≤ 2(hv′ −hv)z1(Pv) with |Pv| = 2 (cf. (3.4.18)) but also
all the vertices v0 < w ≤ v, since h∗ − hv = ∑

v0<w≤v(hw′ − hw).

(3) the way the intgration over the spatial variables xv is carried is modified by the
presence of the norm ∥·∥(1)

κ,h; its definition is related to the analogous decay properties
of the propagator of the first regime (cf. Lemma 3.3.0.2). We refer to [45, Prop 4.6]
(see also (4.46) and lines below) for a discussion on how to include such exponential
factors, which can be easily adapted to our context.

Note that, the kernels in (3.4.3) are obtained by summing Wτ,P,T,i,D(xv0) over τ ∈
T (h)
Nn,Ns

and over Nn, Ns, under the constraint that the number of external fields of type ψ
and J is equal to n and m, respectively, that the elements of D are the same as D, etc.
Similarly, the kernels of the single scale contribution to the generating function, S̃(h)(J),

25There is also a combinatorial factor |Qw|2/4 ≤ C|Qw|/4 for C > 0 big enough, where recall |Qw| =∑sw

i=1 |Pwi | − |Pw|, which can be reabsorbed in the product of Proposition 3.4.0.1
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which we denote by W (h)
0,m;r(y), are obtained by summing the tree values Wτ,P,T over τ ∈

T (h)
Nn,Ns

and over Nn, Ns, under the constraint that Pψv0 = ∅ and that ∪f∈PJv0
{(y(f), r(f))}

matches the tuple (y, s); finally, the single scale contribution to the free energy, L2Ẽ(h) is
obtained by an analogous sum over GN trees, under the constraint that Pψv0 = P Jv0 = ∅.

Then, to obtain the bound in Proposition 3.4.1, it is enough to perform the sum (3.4.17)
over τ ∈ T (h)

Nn,Ns
, over T ∈ T, and over P ∈ Pτ , under the constraint that |Pφv0 | = n and

|P Jv0 | = m. This is possible because all the renormalized scaling dimensions are now
negative, thanks to the presence of z1(Pv) (see [5, App. 6.1] for details on how to sum
over the labels. Actually, from (3.4.18), also

d
(1)
v,θ′,z := 3/2 − 1

4 |Pφv | − |P Jv | − z1(Pv) + θ′ < 0 (3.4.21)

for every θ′ < 1/2. Now, a generic τ has at least one endpoint w which carries a factor
2θhw (if w is on scale h = −1, then up to an overall constant we have such factor) we
can denote by Γτ (w) := (v1, . . . , w), where (v0, v1, . . . , w) is the ordered (vi ≥ vi−1 with
respect to the partial order of the tree) collection of vertices from v0 to w so that we can
write

2θhw
∏
v not
e.p.

2(hv−hv′ )dv,0,z = 2θh2hw(θ−θ′) ∏
v not
e.p.

2(hv−hv′ )
(

3
2 − 1

4 |Pψv |−|PJv |−z1(Pv)+θ′
1v∈Γτ

)
(3.4.22)

which gives, if θ′ ≥ θ (cf. (3.4.16)), and after the summation over the labels, the desired
bound of Proposition 3.4.1.

Tree expansion for h < h∗

In the second regime we still refer to [4], but also to [2], thanks to the similarity of the
inductive structure, to set the ground of the next Section. In this case the trees are
differently characterized, with respect to the previous case, by the following features

• A tree τ contributing to V (h), S̃(h)(J) := S(h)(J) − S(h+1)(J), or to F̃ (h) = F (h) −
F (h+1) can have endpoints (either normal or special as before) at each scale between
h+ 2 and h∗ − 1. The family of GN trees with root on scale h, Nn normal endpoints
and Ns special endpoints is denoted again by T (h)

Nn,Ns
, h < h∗ − 1.

• Normal endpoints v on scale hv ≤ 0 can be of five different types, ν,a,b,λ or RV (h∗−1).
They are respectively associated to the terms in the second line of (3.4.11): if
v is of type ν, then it is associated with ∑

ω 2hνh,ωFν,ω(φ(≤hv′ )), and so on for
a, b, λ,RV (h∗−1).

• A special endpoint v is now associated to ∑ω Yhv′ ,s,ωFY ;s,ω(φ(≤hv′ ), J).

Of course we can repeat the above discussion (cf. (3.4.12) and below) and represent the
contributions to the lhs of (3.4.10) in terms of such trees: we obtain a representation
similar to (3.4.13) where the Grassmann fields φ, and the kernels, have the extra label ω.
Then the analogous of Proposition 3.4.0.1, on these trees, reads
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Lemma 3.4.0.2. There exists L-independent constants δ0, C, c, κ > 0 such that, if (3.4.16)
holds with

sup
h′>h

{|λ|, |νh′,+|, |ah′,+|, |zh′ |} ≤ δ0, {|λh′ |, |bh′,+|} ≤ vF δ0 (3.4.23)

and τ ∈ T (h)
Nn,Ns

, then

∥W (h)
τ,P,T,D∥κ,h ≤ CNs (Cδ0)max{Nn,c|Iψv0 |} v

−1+
|Pφv0 |

2 +|D2|
F 2h

(
2− 1

2 |Pψv0 |−|PJv0 |−|D|)
)

(3.4.24)

×
( ∏
v s.e.p.

sup
s,ω

∣∣∣∣Yhv−1,s,ω
Zh′−1

∣∣∣∣
) ∏
v not
e.p.

C |Qv |

sv!
2(hv−hv′ )

(
2− 1

2 |Pψv |+δ0|Pv |−|PJv |−z2(Pv)
)
,

where |D| = ∑
f∈Pφv0

∑
j=1,2Dj(f) and |D2| := ∑

f∈Pφv0
D2(f). Moreover

z2(Pv) =


2 if (|Pψv |, |P Jv |) = (2, 0),
1 if (|Pψv |, |P Jv |) = (4, 0), (2, 1),
0 otherwise.

(3.4.25)

In this case the proof is a mixture of the results of [4, Lemma 3.2] and [2, Proposition
3]. To simplify the following discussion, set again J ≡ 0: the general case can be treated
similarly.

The presence of the small factors v−1+|Pv0 |/2+|D2|
F is a Corollary of [4, Lemma 2] because

of:

(1) the propagators have the same scaling properties; particularly their ∥·∥∞ and ∥·∥1
norms: compare Lemma B.2.0.2 with [4, Lemma 3.1],

(2) the endpoints v of the tree of type a (which are not present there) do not change the
bound; each of them produce an extra term δ02hv′ which can be safely included in
the last line of [4, eq. (128)] (note that our δ0, bh play the same role, respectively of,
λ, δh). The origin of such factors is related to the fact that ahv ,+ is associated to a
Grassmann term L−2∑

q∈Dθ φ̂
+
q,+φ

−
q,+iq1 which can be rewritten26 as ∑y∈Λ̃ φ

+
y ∂̂1φ

−
y .

(3) the difference between the two renormalization operators R2,ϵ and R2 of [4] con-
tributes with irrelevant terms27, in the same spirit as the discussion for the critical
case ∆R = R1,0 − R1, made below (3.4.11);

Of course one of the main points is to show that indeed |λh|, |bh| ≤ δ0vF for all the
scales h ≤ 0. Note that, while such a statement for bh,+ will follow by suitably fixing the
counterterm bh∗,+ (which is assumed up to now to satisfy such a condition), as shown in
the next Section, we have no freedom to choose λh∗ , and it is not a direct consequence
of [4] that it satisfies such a condition. Anyway we are lucky enough that λh∗ = O(λvF )
also in our case, as we will see in the next Section (see Lemma 3.4.0.4).

26See Appendix B.1
27In other words, by repeating the estimates using ∆R2 := R2,ϵ − R2, one obtains a renormalization

factor ∆z2(Pv) > z2(Pv) for every Pv.
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Remark 3.4.1. Let us comment first the presence of the factor v−1+|Pφv0 +|D|2
F : since vF =

O(
√
ϵ), as explained in Remark 3.3.8 (and after suitably fixing the counterterms, introduced

in (3.3.113), as in Sec. 3.4.4) we have that such factor, in particular, plays a crucial role
in the ϵ asymptotics for the free energy of Theorem 1.4.5. Secondly, note that if we had
ϵ = O(1), then vF = O(1) and the result would be exactly the same as in [2] (by a
renaming of δ0, reabsorbing the power of vF in the constant factor). If instead ϵ ∼ 0,
the first regime produces a significant contribution to the kernels of the second regime (as
explained in [4, Lemma 3.2.]) which otherwise would have poor bounds as ϵ → 0. Note also
that, around the transition scale h∗, since 2h∗ = O(ϵ) (see (3.3.101)), thus vF = O(2h∗/2)
and we have that the bounds for the two regimes indeed agree: if n = |Pφv0 |,

2h∗/2(−1+n/2−|D2|)2h∗(2−n/2−|D) = 2h∗(3/2−n/4−|D|+|D2|/2) = 2h∗(3/2−n/4−|D|(1)). (3.4.26)

As it was for the first regime of scales, to obtain the bound in Proposition 3.4.0.1, one
has to sum (3.4.17) over τ ∈ T (h)

Nn,Ns
, over T ∈ T, and over P ∈ Pτ , under the constraint

that |Pφv0 | = n and |P Jv0 | = m. This is possible again because all the renormalized scaling
dimensions are now negative, thanks to the presence of z2(Pv). Now, a generic endpoint
v of the tree does not carry a factor 2hv as in the previous case. Anyway the following
remark shows that trees with long branches gains exponentially small factors (the so called
short memory property) (see also see Remark 16 after [3, Proposition 8]):

Remark 3.4.2. If we sum (3.4.17) over τ ∈ T (h)
Nn,Ns

, T ∈ T, P ∈ Pτ , with |Pψv0 | = n,
|P Jv0 | = m, under the additional constraint that τ has at least one node on scale k > h,
then we get a bound that is the same as (3.4.24) times an additional gain factor 2θ′(h−k),
where θ′ is a positive constant, smaller than 1 (estimates are not uniform as θ′ → 1−;
from here on, we will choose θ′ = 3/4).

The fact that here θ′ is not bounded by 1/2 as in the first regime, is related to the fact
that in the second regime the renormalization z2, as one can check from (3.4.0.2), makes
the scaling dimension satisfying

d(2)
v,z := 2 − 1

2 |Pψv | + δ0|Pv| − |P Jv | − z2(Pv) ≤ −1 +O(δ0) (3.4.27)

so that in particular for every fixed θ′ ∈ (0, 1), also d
(2)
v,θ′,z := dv,z + θ < 0 for δ0 small

enough (cf. with the discussion (3.4.21)).

3.4.4 The space of sequences: the flow of the running constants

With the previous Sections at hand, we are ready to discuss how to fix the initial data
of the problem, ν0 first, and νh∗,+, ah∗,+, bh∗,+ then, in order for the running constants
νh, αh, ζh, rh, νh,+, ah,+, bh,+, λh, zh to be small uniformly in h ≤ 0, in the sense of the
hypothesis of Proposition 3.4.1 and Proposition 3.4.2.
Definition 3.4.1. Let S := RZ≤0 be the space of sequences. We define operators τ, ρ, π∗ :
S → S given by

(τs)h := sh−1

ρs = (vF )−1s

(π∗s)h = sh1{h<h∗}

. (3.4.28)
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where, as usual, 1A is the characteristic function of the set A. We define also norms
∥·∥θ, ∥·∥∗

θ : S → R,

∥ν∥θ := sup
h≤0

2−θh|νh|, θ ∈ (0, 1/2)

∥ν∥∗
θ := sup

h≤h∗
2−θ(h−h∗)|νh|, θ ∈ (0, 1)

Next, we consider u = (u0, u1) ∈ S9, where

u0 := (ν, α, ζ), u1 := (r, ν+, a+, b+, λ, z)

and ν = (νh)h≤0, α = (αh)h≤0, ζ = (ζh)h≤0 ∈ S etc. are arbitrary sequences: for the
moment they do not have to be the sequences driven by the beta equations in (3.4.1).
Given F : S9 −→ S9, we denote F(u) = (Fν(u), . . . ,Fz(u)); note that we can rewrite the
beta equations in (3.4.1)-(3.4.2), in terms of a fixed point equation

u = B(u) (3.4.29)

for a map B = (Bν , . . . ,Bz) such that, e.g., B#(u) = (B#
h (u))h≤0, for # = ν, α, ζ satisfy

Bνh(u) = 2νh+1 +Bν
h+1(u), Bαh (u) = αh+1 +Bα

h+1(u), Bζh(u) = ζh+1 +Bζ
h+1(u)

(3.4.30)

where B#
h are the same appearing in (3.4.1); or similarly Br(u) = (Brh(u))h≤0

Brh(u) =
{
rh+1 +Br

h+1(u) h ≥ h∗ − 1
0 h < h∗ − 1

(3.4.31)

or again Bν+(u) = (Bν+
h (u))h≤0 with

Bν+
h (u) =

{
2νh+1,+ +Bν

h+1,+ h < h∗

0 h ≥ h∗ (3.4.32)

and a similar representation holds for the other components. The equations above show
that depending on the component of B we look at, the image of a sequence u, is a sequence
that can have a finite or infinite number of zero components. This follows from the iterative
integration scheme of Sections 3.3.1-3.3.2 and the structure of the Beta equations (3.4.1).
In terms of (3.4.28), this means that B#(u) = π∗B#(u) for # = ν+, α+, b+, λ, Y+.
Remark 3.4.3. • In order for the fixed point equation u = B(u) to be well defined,

we need to restrict our focus to sequences which are small, in the same sense as
in Lemma 3.4.0.1-3.4.0.2, which indeed guarantees that the components of the Beta
function are well defined. This leads to the definition of a normed space of sequences
as defined below.

• B#
h depends only on u(h) := (ν(h), . . . , z(h)) where e.g. ν(h) := (νh′)h′>h and similarly

for the others. This is because B#
h does depend only on constants on scales h′ > h

(see (3.4.1)).

• The system of equations can be decoupled, by isolating the critical (i.e. ϵ = 0 part,
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cf. Section 3.3.1): more precisely, we have{
u0 = B0(u0, 0)
u1 = B1(u0, u1)

(3.4.33)

where B0 := (Bν ,Bα,Bζ),B1 = (Br,Bν+ ,Ba+ ,Bb+ ,Bλ,Bz).

• Even if not explicited, B# depends on λ; we will write B#(u, λ) when necessary.

Then the strategy is to first solve the first equation above, finding a solution u∗
0, then

to plug it into u1 = B1(u∗
0, u1), and then solving for u1. Recall that we have the freedom

to choose the initial data of the flow, but we cannot fix λ, which tunes the interaction.
The general idea (in both the steps) to obtain a bounded solution (in the sense of

the hypothesis of Proposition 3.4.1 and 3.4.2), is first to define a suitable Banach space
(S3+6j , ∥·∥(j)), j = 0, 1; on such we can “reverse” the equation, i.e. there exist a map B̂j
such that uj solves (3.4.29) if and only if uj = B̂j(uj); then one wants to show that if
X(j)
δ := {u0 : ∥u0∥(j) ≤ δ} and δ, |λ| are small enough then

(1) B̂j(X
(j)
δ ) ⊂ (X(j)

δ )

(2) B̂j is a contraction on the metric space Y(j) := (X(j)
δ , d) where d is a suitable distance

related to ∥·∥(j).

These two results, otherwise stated allow to: (1) show that the beta function B maps
“small” sequences into “small” sequences, with a suitable definition of “size”; (2) via the
standard Fixed Point Theorem, there is then a unique solution of the problem u∗

j = B̂j(u∗
j ),

then of (3.4.29), in the set in X(j)
δ and thus a unique choice of the counterterms, which

are particular elements of the sequence. This can be rephrased in terms of the original
problem: there is a unique choice of the counterterms such that the beta function generates
a “bounded” flow. Of course the notion of size of such sequences, thus ∥·∥(i)

θ , depends on
the structure of the flow one needs to consider and in particular on the dimensional scaling
properties of theory, thus of the single scale propagator.

We will study now in detail the flow of u0. As far as it concerns u1, we will refer
to [2] since the structure of the flow is qualitatively the same: we will discuss the main
differences in order to single out the dependence on the small parameter ϵ, following ideas
of [4].

Boundedness of {νh, αh, ζh}h≤0

In view of the desired properties of such constants, (3.4.4), we define for u0 ∈ S3,

∥u0∥(0) := max
{

∥ν∥θ,Kθ∥(τ − 1)α∥θ,Kθ∥(τ − 1)ζ∥θ
}
, Kθ := 1 − 2−θ (3.4.34)

where τ, ∥·∥θ are as in Definition 3.4.1. Note that (S3, ∥·∥(0)) is a Banach space of conver-
gent sequences; moreover, νh → 0 and there exist α−∞, ζ−∞ ∈ R such that αh → α−∞,
ζh → ζ−∞ exponentially with rate θ; finally |αh|, |ζh| ≤ δ0 for every h ≤ 0, by using
αh = ∑

k≥h ak − ak+1 and similarly for ζ.
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We look for a solution of the problem u0 = B0(u0) in this space28. Note that, from
(3.4.1), we can rewrite the flow of the constants as

νh = −
∑
j≤h 2j−hBν

j (λ, u0)
αh = ∑

j≥hB
α
j (λ, u0)

ζh = ∑
j≥hB

ζ
j (λ, u0),

(3.4.35)

which can be compactly written as u0 = B̂0(u0). Observe that now the lhs of the first line
depends upon the whole sequence u0, while the other two components still depends on a
finite number of elements, as in Remark 3.4.3.

For the ν component, we used the following relation, valid for any k < h, as it follows
from (3.4.1):

νh = 2k−hνk −
∑

k<j≤h
2j−hBν

j (λ0, u), (3.4.36)

and then send k → −∞.
Next we consider a ball of radius δ,

X(0)
δ := {u0 :∥u0∥(0) ≤ δ}

and we want to show that for |λ| sufficiently small, B̂0(X(0)
δ ) ⊂ X(0)

δ , that is

∥B̂0(X(0)
δ )∥(0) ≤ δ.

Let us focus on the ν component of B̂0(u0) first.

The bound on B̂ν0 : We intend to prove that |(B̂ν0 )h| ≤ 2θhδ uniformly in h, if |λ| is
small enough. In virtue of the tree expansion (cf. Section 3.4.3, (3.4.12)), we can rewrite

Bν
j (λ, u0) =

∑
N≥1

∑
τ∈T (j)

N,0

∑
P∈Pτ

∑
T∈T

Bν
j (λ, u0; τ,P, T ), (3.4.37)

which can be further decomposed, by extracting the first order contribution in (λ, u0)29,

Bν
j (λ, u0) = Cνj λ+

∗∑
N≥1

∑
τ∈T (j)

N,0

∑
P∈Pτ

∑
T∈T

Bν
j,ω(λ, u0; τ,P, T ), (3.4.38)

where |Cνj | ≤ C̄2θj from the short memory property since it correspond to an endpoint
on scale 0; the ∗ means that the sum is restricted either to trees that have one endpoint
of type R1V

−1 of order λ2, or to trees with at least two endpoints. In this case one can
bound

|Bν
j | ≤ 2θj

(
C̄|λ| + C1 max{λ2, δ|λ|, δ2}

)
(3.4.39)

28Since B0 does not depend on u1, we denote by the same symbol its projection on S3.
29The first order contribution in (λ, u0) is of order λ because we have endpoints only of type R1V

−1 or
ν: in the latter case we already extracted the first order term in ν in (3.4.1), which plays no role in the
contribution to Bν .
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where the constant C1 comes from the sum over τ , P etc, as explained below (3.4.22),
while the factor 2θj comes from Proposition 3.4.130. To conclude,

|(B̃ν0 )h| ≤ 2θh−2δ(1 + 2C1δ)
∑
k≤0

2k ≤ δ2θh (3.4.40)

where we chose λ = δ
2 min{1, C̄−1} and δ small enough, e.g. δ < (2C1)−1.

The bound on B̂α0 , B̂ζ0: One can reason in a similar way for the components of α, ζ.
Since (B̂α0 )h−(B̂α0 )h+1 = Bα

h , we want to prove that suph≤0 2−θh|Bα
h | ≤ δ. Also in this case

the first order contribution in (λ, u0) is independent of u0
31, so one obtain an expression

analogous to (3.4.38), with constant |Cαj | ≤ 2θjC̄ ′. Now to extract the dimensional factor
from the second term, we use Proposition 3.4.1 by noting that αh (cf. (3.3.49)) is associated
in the coordinate space, as it follows from Appendix B.1, to a term ∑

x φ
+
x ∂̂

2
2φ

−
x , thus

|D|(1) = 1 and the 2θj follows.
At this point we want to show that B̂0 is a contraction on the metric space Y(0) =

(X(0)
δ , d0) with respect to the metric d0 induced by the norm

∥u0∥ := max{∥ν∥θ, ∥α∥0, ∥ζ∥0} (3.4.41)

see Definition 3.4.1: note that ∥·∥0 is the usual ℓ∞ norm. More precisely we prove that,
for λ, δ small enough, ∀u0, u

′
0 ∈ X(0)

δ ,

∥B̂0(u0) − B̂0(u′
0) ∥ ≤ 1

2∥u0 − u′
0∥ (3.4.42)

We only discuss the bound for the ν component, since it will include all the ideas to discuss
similarly the bounds for ζ, α.

The contraction: the ν component By definition (cf. (3.4.35)), we can write(
B̂ν0 (λ, u0) − B̂ν0 (λ, u′

0)
)
h

=
∑
j≤h

2j−h
(
Bν
j (λ, u0) −Bν

j (λ, u′
0)
)

(3.4.43)

then using the tree expansion for Bν
j , we can rewrite

Bν
j (λ, u0) −Bν

j (λ, u′
0) =

∫ 1

0
dt
∑
N≥2

∑
τ∈T (j)

N,0

∑
P∈Pτ

∗∑
T∈T

d

dt
Bν
j (λ, u0(t); τ,P, T ) (3.4.44)

where u′
0(t) = tu0 + (1 − t)u0. Note that the sum is restricted to trees with at least two

endpoints: contributions coming from trees with exactly one endpoint, RV (−1), (among
which the first term in (3.4.38)) cancel out because they do not depend on u; moreover,
Bν
j (λ, u0(t); τ,P, T ) satisfies a bound analogous to the one in (3.4.39), uniformly in t ∈

30Note that the term contributing to
∑∗, when summed over the labels, leads to a bound analogous to

(3.4.5) with the difference that we already extracted the factor 2j in the definition of ν, cf. (3.3.55).
31A tree with exactly one endpoint v, of type ν, can contribute only to νhv−1, F̃

(hv−1), where F̃ (hv−1) =
F (hv−1) − F (hv) is the single scale contribution to the free energy.
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[0, 1]. The effect of the derivative instead can be of two types:

• When it acts on an endpoint v on scale k > h of type ν, then it replaces νk(t) with
νk − ν ′

k

• if it acts on some propagator g̃(k) then its effect is, dimensionally, to multiply by
αk − α′

k or ζk − ζ ′
k.32

Then in analogy with (3.4.39) we obtain

|Bν
j (λ, u0) −Bν

j (λ, u′
0)| ≤ C22θj∥u0 − u′

0∥(|λ| + 2δ) (3.4.45)

where, C2 is the analogous of C1, and we used that since all the trees have at least two
endpoints, not both of type λ, we have two kind of contributions: λν and ν2 up to higher
order. A factor ν−ν ′ can be bounded by ∥u0−u′

0∥ while the other by 2δ since u0, u
′
0 ∈ X(0)

δ .
Then one chooses λ, δ small and obtains the claim.

Recalling that u0 solves (3.4.35) if and only if it solves the first line in (3.4.33), then
we have just proven that

Proposition 3.4.3. There exist δ0, 0 < λ0(δ0) < δ0 such that if |λ| ≤ λ0 and δ ≤ δ0, there
exists a unique solution u∗

0 ∈ X(0)
δ of the problem

u0 = B0(u0) (3.4.46)

This can be read by saying that fixing ν0 as ν∗
0 , the iterative construction of Section

3.3.1, produces a flow {ν∗
h, α

∗
h, ζ

∗
h} ∈ X(0)

δ . In particular, since the flow is just a function
of the coupling λ, using the analiticity properties in λ of the beta functions, as they
follows from the kernel bounds of Proposition 3.4.1, we will be able to implicitly determine
the analytic functions ν0(λ), α−∞, and ζ−∞(λ) of λ in the ball |λ| ≤ λ0 appearing in
Proposition 3.3.2; this fixed also the function ε0(λ) = log(1 + ν0(λ)) described at the
beginning of Section 3.3.1.

The flow of u1: boundedness of {ν+, a+, b+, λ,z}

We fix u0 = u∗
0 and |λ| ≤ λ0, δ ≤ δ0. As an immediate consequence, since rh depends only

on u∗
0, we have that Lemma 3.3.0.3 holds for the sequence r∗

h = rh(u∗
0). This implies that

Proposition 3.4.1 holds, uniformly in h∗. In particular to determine the unique solution
u∗

1 it is enough to study ũ1 = (ν+, a+, b+, λ, z).33

For this part we intend to follow closely the construction of [2, Sec. 6.4], because of the
analogies of the structure of the flow. Recall indeed that we have exactly the same running
constants, except for the fact that here ah,ω, bh,ω are real instead of complex valued. This
is related to our relativistic model, which is a particular case of the one used in [2, Sec. 4]
for the choice ᾱω = 1 and β̄ω = ωvF (compare [2, Eq. (4.4)] with (3.3.119)). Anyway there
is still an important difference with our setting, namely the fact that the trees involved in

32The derivatives ∂αk , ∂ζk applied to g̃(k) are dimensionless, i.e. they do not change its scaling. This
can be seen from (3.3.53) and the support properties of fk.

33Recall u1 = (r, ũ1).
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the second regime have endpoints on scale h∗ − 1 instead of 0 and that vF is vanishing as
ϵ → 0.

In view of (3.4.7), we now consider the Banach space of sequences (S5, ∥ũ1∥(1)), where

∥ũ1∥(1) :=
{

∥ν+∥∗
θ, ∥a+∥∗

θ, ∥ρb+∥∗
θ,Kθ∥(τ − 1)ρλ∥∗

θ, ∥(τ − 1)z∥∗
θ

}
, (3.4.47)

where Kθ = 1 − 2−θ is the same as in (3.4.34) and the definitions of ∥·∥∗
θ, τ, ρ are given in

Def. 3.4.1.

Remark 3.4.4. • Denote B̃1 := (Bν+ ,Ba+ ,Bb+ ,Bλ,Bz). From the structure of the
flow in (3.4.1), which follows from the inductive scheme of Section 3.3.2, it fol-
lows that B#,# = ν+, a+, . . . has the first h∗ entries zero, and it actually depends
only on the its arguments ũ1 only through the components h < h∗. We can still
think of B# as an element of S with the following identity B#(u0, r, ν+, . . . , z) =
π∗B#(u0, r, π∗ν+, . . . π∗z). In particular, note e.g.,

∥Bz∥∗
θ = sup

h≤h∗
2−θ(h−h∗)|Bzh(π∗λ, π∗z)|.

• Note that from the definition of Kθ, by writing λh = ∑h∗−1
k=h (λk −λk+1) one has that

suph<h∗ |λh| ≤ vF δ
′, i.e.

∥ρλ∥∗
0 ≤ δ′. (3.4.48)

If we define as usual, the ball

X(1)
δ′ := {ũ1 :∥ũ1∥(1) ≤ δ′},

then we have that

Proposition 3.4.4. Under the hypothesis of the previous Proposition, there exist constants
δ1, δ0(δ1), λ0(δ0) such that if δ′ ≤ δ1, δ ≤ δ0, λ ≤ λ0, then the problem

ũ1 = B̃1(u∗
0, r

∗, ũ1) (3.4.49)

admits a unique solution ũ∗
1 ∈ X(1)

δ′ , where u∗
0 is the solution of (3.4.46) and r∗ is defined

at the beginning of this section.

In order to skecth a proof of this result, by a comparison with [2], let us first explain
how to manage the dependence on the small factors vF for the reference model, which is
crucial in order to control the flow of the constants of this regime.

The relativistic beta function Recall that zh was defined in terms of a suitable
modification of the kernels associated to two external Grassmann fields, as explained below
(3.3.129). In particular its beta function Bz depends only on (λ, z). The same procedure
can be of course made for the kernels with four legs and so on. Let us attach an extra label
R to kernels, as well to the components of the beta function whenever, in their expansion,
we apply the substitutions of points (i), (ii), (iii) below (3.3.129); of course Bz = Bz,R. Let
us also denote by B#,R

v the relativistic beta function evaluated at parameter vF = v (cf.
(3.3.130) and (3.3.119)): of course B#,R

vF
= B#,R. We have then (cf. Definition 3.4.1 for the

notations):
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Lemma 3.4.0.3. The beta function of the relativistic model satisfies,

• Parity:
Bν,R(z, λ) = 0 (3.4.50)

• Shift: If we restrict B#;R to sequences λ with λh∗−1 = 0, then we have that(
B#,R(z, λ)

)
h−1

=
(
B#,R(τz, τλ)

)
h

(3.4.51)

or, more compactly, τB#,R(λ, z) = B#,R(τλ, τz); # = z, λ.

• Rescaling:

Bz,RvF (λ, z) = Bz,R(ρλ, z), Bλ,RvF
(λ, z) = vFBz,R(ρλ, z) (3.4.52)

• “Vanishing”: ∣∣∣(Bλ,R(λ, z)
)
h

∣∣∣ ≤ ∥π∗λ∥02θ(h−h∗), (3.4.53)

where we recall that ∥π∗λ∥0 = suph≤0 |(π∗λ)h| = suph<h∗ |λh|. While the first three
items follows directly from the properties of the single scale relativistic propagator in
(3.3.130), the last one has a different deep nature: we refer to [119,120] for its proof.

Sketch of the proof of Proposition 3.4.4.

First we want to prove that B̃1(X(1)
δ′ ) ⊂ X(1)

δ′ .

The z component: We start with Bz, since it couples only z, λ: we take any given
λ satysfing ∥(τ − 1)ρλ∥∗

θ ≤ δ′, and note that it implies that ∥ρλ∥∗
0 ≤ Kθδ

′ as described in
(3.4.48). In view of the previous Lemma, we can write

(τ − 1)Bz(λ, z) = τ (Bz(ρλ, z) − Bz(ρp∗λ, z)) +
∫ 1

0
dt
d

dt
Bz(ρλ(t), z(t)) (3.4.54)

where the integral is meant componentwise; the operator p∗ : S → S pins to zero the h∗ −1
component; λ(t) := tτλ+ (1 − t)λ and similarly for z(t). Now, since Bzh = Bz

h contributes
to ∂1Ŵ

∞;(h),R
2 , as it follows from (3.4.2) and (3.4.29), it admits a tree expansion, as in

(3.4.37); we write then

Bz
h(λ, z) =

∑
N≥2

∑
τ∈T (h)

N,0

∑
P∈Pτ

∑
T∈T

Bz
h(λ, z, τ,P, T ), (3.4.55)

where we used that the trees with only one endpoint, necessarily of type λ, do not con-
tribute to Bz

h.34 By using such expansion in the r.h.s (3.4.54), we find that the first term
is non vanishing only for trees that have at least one endpoint on scale h∗ − 1: these con-
tributions can be bounded by C ′δ2

12θ(h−h∗), where we used ∥ρλ∥∗
0 on the endpoints and the

34This is related to the fact that either we contract two of the four fields on a scale k > h or on k = h.
While the latter contributes only to νh, the former cannot contribute to a local part because of the action
of R on each vertex in the scales between k and h.
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short memory property to obtain the factor 2θ(h−h∗). The latter admits the same bound
with an extra factor cδ′2θ(h−h∗ coming from the action of the derivative35. We have an
overall bound, for δ′ small enough,

|((τ − 1)Bz(λ, z))h| ≤ cδ′22θ(h−h∗). (3.4.56)

where c > 0 does not depend on h, L, λ, ϵ.
The ν+, a+, b+, λ components: First we reverse the equations for ν, a, b, as we did in
the previous section on for ν (cf. (3.4.35)), by rewriting

νh,+ = −
∑
j≤h 2j−hBν

j,+(λ, u),
ah,+ = −

∑
j≤hB

a
j,+(λ, u),

bh,+ = −
∑
j≤hB

b
j,+(λ, u)

λh−1 = λh∗−1 +∑h∗−1
j=h Bλ

j (λ, u),

(3.4.57)

because in the space under consideration ah,+, bh,+ → 0 as h → −∞, and we used the
definition of λh in (3.4.1). The system is meaningful for h ≤ h∗ by thinking in the last
equation the sum in the r.h.s. vanishing for h = h∗.

Again, we think of such equations as a fixed point equation (ν+, a+, b+, λ) = B̂1(λ, u).
To prove that B̂1(X(1)

δ′ ) ⊂ X(1)
δ′ , i.e., ∥B̂ν+

1 ∥∗
θ ≤ δ′ etc. we comment only the main points in

order to apply the strategy of [2, Sec. 6.4.3].

The ν+ component: From the parity property of Lemma 3.4.0.3 one need to show
|Bν+
h − Bν+,R

h | ≤ δ′2−θ(h−h∗), uniformly in h ≤ h∗. Using, (3.4.57) and the tree expansion
together with Lemma 3.4.0.2, one proceeds in the same way of the mentioned paper, and
obtains the desired result by noting the small differences: a tree with only endpoints of
type λ contributes at least as

h∗−2∑
k=h

(vF δ′)22k

v2
F

2θ′(h−k) ≤ δ′23h∗/22θ′(h−h∗) ≤ δ′

3 2θ′(h−h∗) (3.4.58)

where k is the scale of the propagator difference Z−1
h−1(g̃(k) − g̃

(k)
R ) and we used that it

has the same estimates as g̃(k) times an extra 2k;36 the factor 2θ′(h−h∗) comes from the
short memory property37. For an unique endpoint of type RV h∗−1, we have a bound
Cδ02θ(h−h∗) where δ0 is the same of Proposition 11 and the other factor comes from the
short memory property for an endpoint on scale h∗. So one chooses Cδ0 < δ′/338. From
trees with at least two endpoints, among which one of type ν, a, b,RV h∗−1, one obtains
the bound C2θ(h−h∗) max{δ2

0 , δ
′δ0} ≤ (δ′/3)2θ(h−h∗), for δ0, δ

′ small.

35On the component h, the derivatives produce an extra λk − λk+1, or zk − zk+1 with k > h, which can
be bounded by the properties of

36Indeed the propagator difference has an extra O(q2
1) or O(q3

2vF ) at the numerator and a square at the
denominator.

37Indeed we must have at least an endpoint on scale k to make there a contraction.
38i.e. λ small by Proposition 11
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The a, b components: The desired bound on Bah,Bbh, (3.4.57), follows if show that
|Ba

h−1 − Ba
h| ≤ δ′2θ(h−h∗), |Bb

h−1 − Bb
h| ≤ vF δ

′2θ(h−h∗). Since a, b are defined in terms of
W

∞;(h)
2 − W

(h),R
2 , the bounds for Ba, Bb can be discussed in analogy with the previous

point, via the tree expansion. Note only that to extract the factor vF for Bb, one uses
that since bh is associated to the Grassmann monomial φ+∂̂2φ

−, then |D2| = 1 and from
Lemma 3.4.0.2 one has an extra vF .

The λ component: From (3.4.57), we want to show |Bλ
h | ≤ vF δ

′2θ(h−h∗). It turns out
that Bλ

h is at least of second order in (λ, u): indeed, by definition of Bλ
h , the first order in

the sequence λ does not contribute to Bλ
h while the first order contribution in λ coming

from the bare potential, contributes in local part to λh∗−1 or to R2V
h∗−1, which both

cannot contribute to a local part on scale h < h∗ − 1. Thus we already get a factor
max{δ′2, δ′δ0, δ

2
0}. To obtain the remaining factor vF 2θ(h−h∗), we use both the rescaling

and the vanishing of Bλ,R, by first rewriting Bλ
h = Bλ,R

vF ,h
+ Bλ

h − Bλ,R
vF ,h

. From the just
mentioned properties of the relativistic beta we get that, for δ′ small enough

|Bλ,R
vF ,h

(λ, z)| = |vFBλ,R
1,h(ρλ, z)| ≤ C2θ(h−h∗)vF δ

′2 ≤ δ′

2 vF 2θ(h−h∗). (3.4.59)

Here δ′2 comes from the norm of the endpoints ∥ρλ∥∗
0 ≤ δ′, see (3.4.48), where ρλ follows

from the rescaling property in Lemma 3.4.0.3. To obtain the desired factor for the remain-
ing term Bλ

h −Bλ,R
vF ,h

, one can use Lemma 3.4.0.2: the factor vF comes from vF = v
−1+4/2
F .

For the exponential factor, when expanding in trees Bλ
h −Bλ,R

h , among the two endpoints,
we always have at least one of type ν, a, b,R2V

(h∗−1) on some scale h < k < h∗, as it
follows from the definition of the relativistic beta: so, the short memory property (see
Remark 3.4.2) and the hypothesis on ∥ν+∥∗

θ, etc., produces respectively 2θ(h−k) × 2θ(k−h∗)

so that one recovers also 2θ(h−h∗). Collecting these considerations one obtains the bound

|Bλ
h −Bλ,R

vF ,h
| ≤ cmax{δ′2, δ0δ

′, δ2
0}vF 2θ(h−h∗) ≤ δ′

2 vF 2θ(h−h∗) (3.4.60)

where we chose δ0, δ
′ small enough.

Once we showed how to extract the dependence on vF , to prove that B̂1 is a contrac-
tion on the metric space Y(1) = (X(1)

d′ , d1) with the distance d1 induced by

∥ũ1∥ := max{∥ν+∥θ, ∥a+∥θ, ∥ρb+∥θ, ∥ρλ∥0, ∥z∥0}, (3.4.61)

one can proceed by reasoning as we did for (3.4.43). Then one finds a unique solution of
(3.4.57), thus z∗(λ∗) and then the unique solution ũ1 of (3.4.4).

In order to obtain the desired unique solution, there is still a point to be stressed:

Remark 3.4.5. Proposition 3.4.4 tells us that, fixed λ, δ0 small enough such that (u∗
0, r

∗)
exists, then there exists a unique sequence of running constants of the second regime satis-
fying the beta equations in (3.4.1)-(3.4.2), which stay in the ball X(1)

δ′ , for δ′ small, possibly
after shrinking λ a bit more. Anyway there is a big difference with the first regime: it is not
guaranteed that we can find a datum in the ball X(1)

δ′ w.r.t. the norm ∥·∥(1)
θ . This is because

while in the h∗ component we have the right to fix the counterterms νh∗,+, ah∗,+, bh∗,+ (for
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the ν, a, b components), in the h∗ − 1 component we have λh∗−1, which is the output of the
integration of the first regime.

This means that one needs to check that |λh∗ | ≤ vF δ
′ in order for a solution to exists.

This calculation is done in the next Lemma.

Recall that u∗
0 denotes the unique solution of (3.4.46), and r∗ := r(u∗

0) the correspond-
ing sequence r of the first regime.

Lemma 3.4.0.4 (Bound on λh∗). Let λ, δ0 as in the hypotheses of Proposition 3.4.3, then
there exists a costant C > 0 independent of h∗, λ, δ0 such that

|λh∗ | ≤ Cδ02h∗( 1
2 +θ) (3.4.62)

where θ can be chosen in (0, 1/2), and estimates are not uniform as θ → 1/2−.

Note that in virtue of the assumptions on the counterterms q̃F , bh∗,+ in the lines below
(3.3.110), we have that (see (3.3.113)) vF = Θ(

√
ϵ) = Θ(2h∗/2) so in particular for δ0 small

enough as a function of δ′, we have that |λh∗ | ≤ δ′vF .

Proof of Lemma 3.4.0.4. Once we reach the scale h∗, the integration in (3.3.117), produce
a generic quartic term in the Grassmann fields of the form

V
(h∗−1)

4 (ϕ) =
∑
h≥h∗

∑
y,ω,D

∂̂D1ϕ+
y1 ∂̂

D2ϕ−
y2 ∂̂

D3ϕ+
y3 ∂̂

D4ϕ−
y4W

(h)
4,D(y) (3.4.63)

where y = (y1, y2, y3, y4) and similarly for D which are respectively the number and the
directions of the derivative operators ∂̂ (see (3.3.33)) associated to the fields ϕ (see (3.4.3)
for the notations), and we denoted

ϕσy =
∑
ω

eiωσqF yϕσy,ω, ϕσy,ω = φσ, (≤h∗−1)
y,ω (3.4.64)

as a consequence of the decomposition (3.3.116). Here h represents the last scale for which
the truncated expectation ETh acted non trivially.

Now, let us temporarily assume that once we transform the Grassmann variables with
(3.4.64), the operator ∂̂j acts as follows

∂̂j(eiωqF yϕ+
y,ω) = eiωqF y

(
ω(qF )jϕ+

y,ω + ∂̂jϕ
+
y,ω

)
. (3.4.65)

This means that, in order for a term in (3.4.63) to survive the action of the operator L2,ϵ
and to contribute to λh∗ (local quartic term without derivatives ∂̂), it must be associated
to a label D satisfying Dj1 = 0 for each j = 1, 2, 3, 4 and the action of each ∂̂

Dj2
2 must

be Dj2 times on the oscillating factor in (3.4.65). This is because qF = (0, q̃F ) (recall the
definition above (3.3.111)). Then we have that

λh∗ =
∑
h≥h∗

∑
y2,y3,y4∈RTZ2

∗∑
ω

(−1)ω1ω2
4∏
j=1

(ωj q̃F )Dj2W
∞;(h)
4,D (y) (3.4.66)

where we used that λh∗ is defined in terms of infinite volume kernels; the ∗ means that
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the sum is restricted to ω ∈ {1,−1}4 such that ∑j ωj = 0. Then we can bound

|λh∗ | ≤ C ′′ ∑
h≥h∗

|q̃F ||D|∥W∞;(h)
4 ∥κ,h ≤ C ′δ0q̃

|D|
F 2h∗( 1

2 +θ− 1
2 |D|) ≤ Cδ02h∗( 1

2 +θ) (3.4.67)

where |D| = ∑
j Dj2, and we used Proposition 3.4.1: note that since Dj1 = 0, then

|D|(1) = 2−1|D| and that 1
2 + θ − 1

2 |D| < 0 as a consequence of the renormalization
procedure. In the last step we used that from the hypotheses on the counterterms, we
have that q̃F = Θ(

√
ϵ) = Θ(2h∗/2). We are left with showing (3.4.65). From its definition

∂̂jϕ
+
y = L−2 ∑

q∈D′
θ,R

eiqyχ(q)qjϕ̂+
q+qF =

L−2∑
ω

eiqωqF y
∑

q∈Dθ,R,ω

eiqyϕ̂+
q,ωχ(q + ωqF )(q + ωqF )j + L−2 ∑

q∈D′
θ,R

eiqyϕ̂+
q+qF ,oχ(q)qj

(3.4.68)

where we used ϕ̂+
q+qF = ϕ̂+

q−ωqF ,ω + ϕ̂+
q+qF ,o with ϕ̂+

·,ω, ϕ̂
+
·,o that are respectively supported

in χ̃h∗(·), f̃h∗(·) as a consequence of the decomposition (3.3.114); D′
R,θ,ω = D′

R,θ − ωqF as
below (3.3.119). This means that if we define

∂̂jϕ
+
y,ω = L−2 ∑

q∈Dθ,R,ω

eiqyϕ̂+
q,ωqj , ϕ+

y,ω = L−2 ∑
q∈Dθ,R,ω

eiqyϕ̂+
q,ω

we have (3.4.65)39.

Actually, as shown in the Appendix B.3.3, the lowest order in λ in the contribution to
λh∗ is O(λϵ), showing that θ = 1/2 in (3.4.62) can be reached (at least in this case).

3.4.5 Inversion of the counterterms

In this section we want to show how the free parameters introduced along the multiscale
construction, ε0,qF , vF , Zh∗1 (see Sections 3.3.1-3.3.2) are fixed as functions of the orig-
inal parameters of the model λ, ϵ. By definition, they are related to the counterterms
ν0, ah∗,+, bh∗,+, namely the initial data of the flow of running constants built in Sections
3.3.1-3.3.2: these relations that we recall shortly are given in (3.3.1) and Section 3.3.2.
We now show how, the fixing of such counterterms as described in the previous Sections
can be used to determine the desired functions.

If, on the one hand, the tree expansion allowed us to obtain Proposition 3.4.4, as a
consequence of Lemma 3.4.0.2-3.4.0.1, by thinking at the sequence of running constants as
to independent variables, on the other hand they will be only functions of the parameters
of the theory: the bare coupling λ and ϵ.

39Note that in the support of χ̃h∗ (q), χ(q + ωqF ) ≡ 1.
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Inversion of ν∗
0 : fixing ε0(λ)

Let u∗
0 = (ν∗, α∗, ζ∗), with ν∗ = (ν∗

h)h≤0 etc., as usual denote the unique solution of
(3.4.46). From (3.4.35), we have that

ν∗
0 = −

∑
h≤0

2hBν
h(λ, u∗

0). (3.4.69)

From the iterative construction of Section 3.3.2, and the fact that it solves (3.4.46), one
sees that u∗

0 depends only on (λ, ν∗
0), so Bν

h does. This means that the above equation can
be written as

G(λ, ν∗
0) = 0, G(0, 0) = 0 (3.4.70)

For |λ| ≤ λ0 with λ0 small enough, since ∂ν0G(0, 0) = 1, from the Implicit Function
Theorem (IFT) we can find a unique ν∗

0(λ) s.t. ν∗
0(0) = 0 and G(λ, ν∗

0(λ)) = 0. Since the
r.h.s. in the equation above is analytic in λ40, we have that ν∗

0(λ) is analytic in |λ| ≤ λ0.
The function ε0(λ) of Theorem 1.4.5 is given by

ε0(λ) = log(1 + ν∗
0(λ))

as it follows from the definition of ν0, (3.3.1).
An explicit calculation shows that (see Appendix B.3.3), at lowest order in λ

ε0(λ) = ν0(λ) = −2λ+O(λ2). (3.4.71)

Inversion of ν∗
h∗,+, a

∗
h∗,+, b

∗
h∗,+: fixing qF = (0, q̃F ), vF , Zh∗−1

As mentioned few lines above, in this Section we want to discuss the relation between
the counterterms of the second regime of integration and the free parameter introduced
at the transition scale h∗ integration. Since we want to discuss also the regularity of
these functions w.r.t the original parameter of the theory, λ, ϵ, we assume temporarily to
work out of the discrete jump set J2 of the transition scale h∗(ϵ) (see Appendix B.3.1).
This guarantees that h∗(ϵ) is indeed constant in ϵ. We will discuss how to deal with this
problem in Section 3.5.2, about the regularity in ϵ of the free energy.

We denote by ũ1 = (ν∗
+, a

∗
+, b

∗
+, λ

∗, z∗) the unique solution of (3.4.4), given that the flow
of the critical theory (u0, r) has been fixed as the solution (u∗

0, r
∗) of (3.4.46). Since ũ1

solves (3.4.57) this means that ν∗
h∗,+, a

∗
h∗,+, b

∗
h∗,+ solve the implicit equations

ν∗
h∗,+ = −

∑
h≤h∗ 2h−h∗

Bν
h,+(λ, u∗),

a∗
h∗,+ = −

∑
h≤h∗ Ba

h,+(λ, u∗),
b∗
h∗,+ = −

∑
h≤h∗ Bb

h,+(λ, u∗)
(3.4.72)

where u∗ = (u∗
0, r

∗, ũ∗
1). Note that, the constants of the first regime, (u∗

0, r
∗) depend

only on λ, ϵ: the former because u∗
0 depends on λ, since we fixed ν0(λ) as in the previous

Section and the latter because recall rh = Qh(λ)r0 = Qh(λ)e−ε0(λ)(e−ϵ − 1) with Qh(λ) =

40This follows from the fact that Bνh is analytic in the sequence u∗
0 and the components of u∗

0 are analytic
in λ for |λ| ≤ λ0, as it follows from the dimensional bounds.
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1 + O(λ) analytic (see (3.3.66), (3.3.100) and Lemma 3.3.0.3). As far as concerns the
dependence on the flow of the second regime ũ∗

1, since it solves (3.4.4), this means that
the constants at any given scale are only function of (λ, ϵ), through the contributions
coming from the first regime of integration, and of (qF , vF , Zh∗−1, ν

∗
h∗,+, a

∗
h∗,+, b

∗
h∗,+) which

characterize the second regime of integration. Using the tree expansion e.g. for the ν
component of the beta function

Bν
h,+(λ, ϵ, ũ∗

1) =
∑
N≥1

∑
τ∈T (h)

N,0

∑
P∈Pτ

∑
T∈T

Bν
h,+(λ, ϵ, ũ∗

1; τ,P, T ) (3.4.73)

we can see more explicitly how the dependence on λ, ϵ,qF , vF , Zh∗−1 works:

• the ϵ, λ explicit dependence comes, as already anticipated, from the first regime and
it is associated with endpoints of τ of type RV h∗−1 on scale h∗ − 1,

• the dependence on qF it is given as well only by endpoints of type RV h∗−1, through
the oscillating factors eiωqF y coming from the field decomposition (3.3.116),41

• the dependence on vF is mediated by the single scale propagators g(h′) (see (3.3.127)).
Moreover, since Zh = Zh∗−1

∏h∗−1
k=h (1 + zk) as it follows from (3.3.136), we have that

the dependence on Zh∗−1 is mediated as well by the single scale propagators g(h′).42

Now we want to determine the functions qF (λ, ϵ) = (0, q̃F (λ, ϵ)), vF (λ, ϵ) and Zh∗−1(λ, ϵ),
by applying the (IFT) to the following system

1 + r∗
h∗−1 − cos q̃F + (q̃F )2

2 α∗
h∗−1 + 2h∗(ν∗

h∗ + ν∗
h∗,+) = 0

Zh∗−1vF = sin q̃F + q̃Fα
∗
h∗−1 + b∗

h∗,+
Zh∗−1 = cos q̃F + ζ∗

h∗−1 + a∗
h∗,+

(3.4.74)

where ν∗
h∗,+, a

∗
h∗,+, b

∗
h∗,+ are the solutions of (3.4.72) and, as explained in terms of the tree

expansion, are functions of (λ, ϵ, q̃F , vF , Zh∗−1). The system above can be written also as

H(λ, ϵ, q̃F , vF , Zh∗−1) = 0 (3.4.75)

We want to find the solution around the point (0, ϵ̄, q̄, v̄, Z̄), with ϵ ̸= 0, where it is
readily seen that, using α∗

h∗−1, ν
∗
h∗ , ν∗

h∗,+, b
∗
h∗,+, ζ

∗
h∗−1 = O(λ),

cos q̄ = e−ϵ̄, Z̄ = e−ϵ̄, v̄ = sin q̄. (3.4.76)

Now, assume the following

Lemma 3.4.0.5. Let # = a∗
h∗−1, ν

∗
h∗,+, b

∗
h∗,+. Then there exists λ0 s.t. for |λ| ≤ λ0 there

exists a constant C > 0 independent of λ, ϵ, vF , Zh∗−1, q̃F , such that

|∂q̃F#| ≤ C|λ|2−h∗
vF |∂vF#| ≤ C|λ|v−1

F , |∂Zh∗−1#|C|λ|v−2
F . (3.4.77)

41Indeed any other endpoint, since it is local, does not have such oscillating factor.
42Note that any endpoint depend on the sequence Z only through ratios Zh/Zh−1 = (1 + zk)−1 (see e.g.

(3.3.139)) and thus not on Zh∗−1.
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Then we have that the Hessian of H w.r.t. (q̃F , vF , Zh∗−1) evaluated at (0, ϵ̄, q̄, v̄, Z̄)
has determinant given by − sin q̄ ̸= 0 if ϵ̄ ̸= 0 as can be checked from (3.4.74). This means
that in a neighborhood of (0, ϵ̄) we can find uniquely the desired functions

(λ, ϵ) 7→ q̃F , vF , Zh∗−1 (3.4.78)

satisfying (3.4.74). We are left with proving the Lemma above.

Proof of Lemma 3.4.0.5. There is no qualitative difference in the choice of #, so we restrict
to ν∗

h∗,+. Let us discuss the effect of the derivatives on such term. Recall that it satisfies
(3.4.72), so that a derivative acts on the beta Bν

h,+ at some scale k ≥ h. Using the tree
expansion, if we consider ∂vF or ∂Zh∗−1 we have that they act on some propagator g(k)

in the expansion. In the former case, as it follows from Lemma B.2.0.2, ∂vF modifies the
bound of the propagator by adding an extra factor v−1

F . In the latter, a derivative ∂Zh∗−1

on g
(k)
ω gives

∂Zh∗−1g
(k)
ω (y) = 1

ZkZh∗−1(2π)2

∫
R2
dqe−iqy f̃k(q)ρh∗−1(q)

(Dh∗−1,ω(q) + ρh∗−1/Zk)2 . (3.4.79)

where we used that and that Zk = Zh∗−1
∏h∗−1
j=k (1 + zj). Next, recall that ρh∗−1(q) is

quadratic in q, that in the support of f̃k(q) one has q1 = Θ(2h), q2 = Θ(2hv−1
F ). Then

using that there exist constants c, c1, c2 > 0, with c1, c2 small as needed if |λ| is small
enough, such that ce−c1|k−h∗| ≤ |Zk| ≤ cec2|k−h∗| we find that

|∂Zh∗−1g
(k)
ω | ≤ C

2k
vF

2k+c1|k−h∗|

v2
F

≤ C
2k
vF

2θk
v2
F

. (3.4.80)

This means that the derivative produce an extra 2θk/v2
F , for some 0 < θ < 1 if λ is small

enough, with respect to the original bound of g(k). When we sum over k ≥ h, we have
that the latter contribution is bounded by a constant, uniformly in h: using the bound for
Bν
h,+ of Lemma 3.4.0.2, one finds

|∂Zh∗−1ν
∗
h∗,+| ≤ C|λ|

v2
F

.

In the former case, such a sum produce dangerous factor |h− h∗|. This can be safely ab-
sorbed with the short memory factor 2θ(h−h∗) coming from the bound of Bν

h,+, as discussed
in the lines below (3.4.58), in order to perform summations over h ≤ h∗. Thus we obtain

|∂vF ν
∗
h∗,+| ≤ C|λ|

vF
.

To conclude, it is possible also to show (see Appendix B.3.2 for more details) that |∂q̃F νh∗,+| ≤
C|λ|2−h∗vF .

Regularity and properties of qF , vF , Zh∗−1

Properties Let λ small enough and q̃F (λ, ϵ), vF (λ, ϵ), Zh∗−1(λ, ϵ) fixed as above: let us
first discuss their properties.
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First notice that q̃F (λ, ϵ) → 0 as ϵ → 0. From the first line in (3.4.74), since 2h∗

and r∗
h∗ are O(ϵ), we have that 1 − cos q̃F + α∗

h∗−1q̃
2
F /2 = 0 iff q̃F = 0 (remember that

α∗
h∗−1 = O(λ)). Then, for ϵ, λ small, the reverse triangular inequality applied to the first

line of (3.4.74) gives

q̃2
F ≤ C

(
|1 − cos q̃F | − q̃2

F

2 αh∗−1

)
≤ C|r∗

h∗−1 + 2h∗(ν∗
h∗−1 + ν∗

h∗,+)|

for some C > 0 independent of λ, ϵ, vF , so that q̃F = O(
√
ϵ)(1 +O(λ)). To prove (3.3.111)

note that at λ = 0 again (3.4.74) reduces to (3.3.67), and the same happens for the
equation defining qh∗,F

43: showing that q̃F (0, ϵ) = qh∗,F (0, ϵ) = q+
ϵ .

Next, note that from the first line in (3.4.74) Zh∗−1 = 1 + O(λ). Regarding vF , to
show that vF = O(

√
ϵ), recall that |b∗

h∗,+| ≤ C|λ|vF 44; thus for λ small enough

|vF | ≤ |(1 +O(λ)) sin q̃F + α∗
h∗−1q̃F | ≤ C

√
ϵ(1 +O(λ)). (3.4.81)

Regularity From the (IFT), the regularity of the functions (λ, ϵ) 7→ q̃F , vF , Zh∗−1 is the
same as that of the function H in (3.4.75). We now show that

• (λ, ϵ) 7→ q̃F , vF , Zh∗−1 are analytic in λ for |λ| ≤ λ0 and C∞ in ϵ for ϵ ̸∈ J2, where
J2 is the discontinuity set of the step function h∗(ϵ) (see Appendix B.3.1)

From the bounds for the beta function and the flow, it follows that H is analytic in λ for
|λ| ≤ λ0, λ0 small enough. Let us discuss the regularity in the other variables: we start
with ϵ. Then, if ϵ ̸∈ J2,

∂nϵ H = (∂nϵ r∗
h∗−1 + 2h∗

∂nϵ ν
∗
h∗−1, ∂

n
ϵ b

∗
h∗−1, ∂

n
ϵ a

∗
h∗−1). (3.4.82)

and similarly for the other derivatives, using (3.4.74). For n large we must control the
effect of the derivatives on a∗

h∗−1, ν
∗
h∗,+, b

∗
h∗,+, since r∗

h∗−1 depends analitically on ϵ. In this
case, using the tree expansion as in (3.4.73), the derivatives can only act on a propagator
of the first regime g(k) for some k ≥ h∗, as explained below (3.4.73). Such a derivative
produce dimensionally an extra factor 2−k (see Lemma B.2.0.1): by summing over k ≥ h∗

these contributions can be bounded with an extra Cϵ−1 wrt to the bound on Bν
h,+. By

iteration, this implies that νh∗,+ is C∞ in (0,+∞) \ J2.
A similar reasoning works for ∂vF , ∂Zh∗−1 and ∂q̃F . Let us discuss only the former: the
derivative acts on propagators of the second regime g(k), k < h∗ and produce dimensionally
an extra v−1

F by Lemma B.2.0.1. Repeating the argument as in the proof of Assumption
3.4.0.5, we find that ∂nvF produce an extra v−n

F to the bound of νh∗,+, ah∗,+, bh∗,+.

43The equation is the same as the one of q̃F , without the term proportional to 2h
∗

and by replacing the
scale label h∗ − 1 with h∗.

44b∗
h∗,+ = −

∑
k≤h∗ B

b
k(λ, u) (see (3.4.57)) and |Bbk| ≤ vF from (3.3.113)
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3.5 Proof of Theorems 1.4.4- 1.4.5

3.5.1 Proof of Theorem 1.4.4

Let us first discuss the existence part, by starting with the infinite volume free energy fε,λ.
Recall that fϵ+ε0,λ,L = L−2 logZϵ+ε0,λL = eWϵ+ε0,λ,L(0), as it follows from Definition 1.3.1.
Then, thanks to the Grassmann representation of Proposition 3.2.1 and the inductive
construction of Section 3.3.2 we are able to write (cf. (3.3.66) with (3.3.123))

eWϵ+ε0,L,λ(A) =
∑

θ∈{0,1}2

cθ
2 e

W(θ)
ϵ+ε0,L,λ

(A)

e
W(θ)
ϵ+ε0,L,λ

(A) = eL
2(F (hL)

ϵ,λ
+t(hL)
ϵ,λ

)+S(hL)
ϵ,λ

(J)

(3.5.1)

where of course the r.h.s depends also on θ, L. Recall that hL is the last scale before the
integration procedure stops (cf. (3.3.46)) and Je = eAe − 1 (cf. (3.3.71)). We can rewrite

F
(hL)
ϵ,λ =

−1∑
k=hL

F̃
(k)
ϵ,λ + F

(0)
ϵ,λ , t

(hL)
ϵ,λ =

−1∑
k=hL

t̃
(k)
ϵ,λ (3.5.2)

where F
(0)
ϵ,λ is given in (3.3.68), while F̃

(k)
ϵ,λ = F

(k)
ϵ,λ − F

(k+1)
ϵ,λ t̃

(k)
ϵ,λ , are the single scale

contributions to the free energy obtained from the action of the truncated expectation (see
e.g. (3.3.95)) and from the change of Grassmann measure (c.f. (3.3.91)) respectively. Since
F̃

(k)
ϵ,λ is nothing but the kernel associated with no external fermionic legs at scale k, it admits

a tree expansion (cf. Section 3.4.3) and satisfies the bounds, uniform in L, of Lemma
3.4.0.1-3.4.0.2 thus of Proposition 3.4.1-3.4.2, with n,m = 0. As mentioned in Remark
3.3.10 we also know that it admits a natural L → ∞ limit, which we denote by F (k);∞

ϵ,λ
45; of

course t̃(h)
ϵ,λ and F

(0)
ϵ,λ have an L → ∞ limit too, as it follows from their explicit definition.

We write F
(k)
ϵ,λ = F

(k);∞
ϵ,λ + δ(θ)F (k) and similarly for t̃, where δ(θ) represents the finite

size contribution to the free energy. If we choose ν0(λ), ah∗,+(λ, ϵ), bh∗,+(λ, ϵ), νh∗,+(λ, ϵ)
uniquely as in Section 3.4.546, recalling that ε0 depends on ν0 via ε0 = log(1 + ν0), we can
rewrite from (3.5.1)

fϵ+ε0(λ),λ = lim
L→∞

fϵ+ε0(λ),λ,L =
∑
h<0

(F̃ (h);∞
ϵ,λ + t̃

(h);∞
ϵ,λ ) + F

(0);∞
ϵ,λ . (3.5.3)

Let us discuss now the existence of the limit L → ∞ of ∂AeWϵ+ε0(λ),λ,L(A)|A=0. Again,
the multiscale analysis allows to write

Wϵ+ε0(λ),λ,L(A) =
∑

hL≤h<0
S̃

(h)
ϵ,λ (J) (3.5.4)

where recall eAe = Je − 1 for e ∈ EL, and S̃(h)
ϵ,λ (J) = S

(h−1)
ϵ,λ (J) −S

(h)
ϵ,λ (J) is the single scale

contribution to the generating function, see (3.3.95). Recall that ∂AeWϵ+ε0(λ),λ,L(A)|A=0

45Obtained by replacing in its tree expansion, every single scale propagator with its L → ∞ limit, and
every sum in Λ̃ with the counterpart in RTZ2 (see Section 3.3.1 for the definitions).

46That is, we choose u = (u∗
0, u

∗
1) as in section 3.4.4 as the unique solution of Proposition 3.4.4.
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depends, by translation invariance of the model, only on the orientation of the edge e,
namely on the label s = A,B,C of the associated external fields J . If e is of type s, we
have ∂AeWϵ+ε0(λ),λ,L(A)|A=0 = ρs,ϵ+ε0(λ),λ,L where the densities are the same appearing in
Theorem 1.4.4 and Corollary 1.4.5.1. On the other hand, using the multiscale construction
we can rewrite, for e of type s ∈ {A,B,C}

∂AeWϵ+ε0(λ),λ,L(A)|A=0 =
∑

hL≤h<0
W

(h)
0,1,s(0) (3.5.5)

where the kernels W (h)
0,1,s are the same appearing in (3.4.3) for n = 0,m = 1. and without

labels D which are absent since n = 0. In particular, by translation invariance, W (h)
0,1,s(0) ≤

∥W (h)
0,1 ∥κ,h where the bounds on this kernel norm are given in Proposition 3.4.1-3.4.2.

Finally the existence of the L → ∞ limit in the equation above is a consequence of two
facts: (1) the kernels admit bounds uniform in L as a consequence of Propositions 3.4.1-
3.4.2; (2) the kernels W (h)

0,1,s admits a well defined L → ∞ limit W (h);∞
0,1,s (exactly as used

up to now for the kernel with (n, 0) kernels, see Remark 3.3.10). This means that we can
write47

ρs,ϵ+ε0(λ) =
∑
h<0

W
(h);∞
0,1,s (0). (3.5.6)

Continuity in ϵ of the limit follows from absolute convergence of the expansion, which is
uniform in ϵ, thanks to the double regime multiscale analysis.

We now prove the statement regarding the concentration of the dimers densities (1.4.9).
Proving that the limit density of dimers of type A is 1 for ϵ < 0 is equivalent to proving
that the density of dimers of type B,C is zero. For any fixed edge,

Pλ,ϵ+ε0(λ)(e ∈ M) = lim
L→∞

∂AeWϵ+ε0(λ),λ,L(A)|A=0. (3.5.7)

Thanks to the previous discussion, the limit exists and can be expanded as

Pϵ+ε0(λ),λ(e ∈ M) =
∑
n≥0

λn

n! cn(ϵ) (3.5.8)

where

cn(ϵ) = lim
L→∞

∂Ae∂
n
λ logEϵ,0,L[eBλ(M)+

∑
e∈EL

Ae1e ]A,λ=0

Bλ(M) := λV (M) + ε0(λ)(NB(M) +NC(M)).
(3.5.9)

To evaluate cn in (3.5.8), one can first expand in (λ, ε0) and then expand ε0(λ), which is

47The reader can look at Sec. 6.5 of [2] for more details about finite size effects and higher order
correlation functions.
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analytic, in powers of λ. Namely, cn is the coefficient of λn in T given by

T :=
∑
s,t≥0

λsεt0(λ)
s!t! ds,t(ϵ), ε0(λ) =

∑
k≥1

λk

k! ε
(k)
0 (0) (3.5.10)

where
ds,t(ϵ) = lim

L→∞
Eϵ,0,L[V ; · · · ;V︸ ︷︷ ︸

s times

;NB +NC ; · · · ;NB +NC︸ ︷︷ ︸
t times

;1e] (3.5.11)

is the joint cumulant, with respect to Pϵ,0,L, of its s+ t+ 1 arguments. Let us now show
that for every s, t,

ds,t(ϵ) = 0. (3.5.12)

which will imply that cn(ϵ) = 0. Let us prove the more general result:

Lemma 3.5.0.1. For i = 1, ..,m, let Si ⊂ EL be such that ∪mi=1Si contains at least one
edge ē of type B or C. Then∣∣∣Eϵ,0,L[1S1 ; · · · ;1Sm

]∣∣∣ ≤ c(m)e−γL, 1S :=
∏
e∈S

1e (3.5.13)

for some c(m), γ > 0.

Proof of Lemma 3. Expanding the truncated correlation in simple expectations, we find
that

Eϵ,0,L
[
1S1 ; · · · ;1Sm

]
=
∑
π

(−1)|π|−1(|π| − 1)!
∏
Y ∈π

Eϵ,0,L[1Y ] (3.5.14)

where the sum runs over partitions π of {1, . . . ,m} in sets Y1, . . . Y|π| and 1Y = ∏
i∈Y 1Si

48.
Note that in every π, at least one Yj in contains the label k ∈ {1, . . . ,m} of the set Sk
that contains the edge ē not of type A. Thus we can bound (3.5.14) by c(m)Pϵ,0,L(ē ∈
M) ≤ c(m)e−γL for some c(m) > 0. The exponential decay follows from (3.1.8), that can
be applied without difficulty since for ϵ < 0, the function µ has no zeros on [−π, π]2 and
the determinants of Kθ are non-zero. Then, if e.g. ē = (w̄, b̄) is of type B,

Pϵ,0,L(ē ∈ M) ≤ B sup
θ

|K−1
θ (w̄, b̄)| (3.5.15)

and the desired exponential decay follows from (B.3.24) and (B.3.25), because the differ-
ence of coordinates of w̄ and b̄ is (−1, 0), so that K−1((−1, 0)) = 0 (similarly (0,−1) for
ē of type C).

To conclude, recall that V is the sum over faces f of 1f,A + 1f,B + 1f,C and note that
1f,A equals 1 minus the indicator function that at least one among the two bottom vertices
or the two top vertices of the face f is contained in a dimer of type B or C. Therefore,
Eϵ,0,L[V ; · · · ;V︸ ︷︷ ︸

s times

;NB +NC ; · · · ;NB +NC︸ ︷︷ ︸
t times

;1e] can be written, by the multilinearity of the

cumulant, as a linear combination of terms each having an expression as in the LHS of
(3.5.14), with at least one of the Si containing an edge of type B or C. The number

48Of course each set Yi depends on π but we understand the label to keep the notation lighter.
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of terms in this linear combination is O(L2(t+s)). In particular, by Lemma 3.5.0.1 the
cumulant can be bounded by a constant times L2(t+s)e−γL and (3.5.12) follows.

3.5.2 Proof of Theorem 1.4.5

Recall that we want to prove two facts about fϵ+ε0(λ) (which exists thanks to Theorem
1.4.4): namely that

(1) (Pokrovsky-Talapov law): as ϵ → 0,

fϵ+ε0(λ),λ = λ+ 1{ϵ≥0}c(λ)ϵ
3
2 (1 +O(ϵθ′))

for an analytic function c(λ) = 4
√

2
3π +O(λ) and θ′ ∈ (0, 1/2).

(2) ϵ 7→ fϵ+ε0(λ),λ is C∞ in (−∞, 0) ∪ (0, ϵ̄)

Note that these two points are proven, when the case λ = 0, in Theorem 3.1.1. Let us
start with item (1). We dinstinguish the case ϵ ≤ 0 from ϵ > 0.

Proof of (1): ϵ ≤ 0

In this case, point (1) follows directly from Theorem 1.4.4 without any use of the multiscale
expansion.

Lemma 3.5.0.2. For ϵ ≤ 0, λ as in Theorem 1.4.4, we have that fϵ+ε0(λ),λ = λ.

Proof. Note that the derivative with respect to ϵ of the free energy is the density of dimers
of type B plus the density of dimers of type C. We have seen from the previous Section
that this is zero in the thermodynamic limit, so the infinite-volume free energy is constant
for ϵ < 0. We want to show that this constant is just λ. Restricting the partition sum
to the single configuration containing only type-A dimers, one has fϵ+ε0(λ),λ ≥ λ. As for
the opposite bound, take δ > 0 small. The partition function restricted to configurations
where all except at most L2δ dimers are of type A is at most e(λ+Rδ)L2 with Rδ tending
to zero as δ → 0, where the term exp(RδL2) is a bound on the number of configurations
satisfying this constraint. As for the configuration with at least L2δ dimers not of type
A, they contribute at most 2L2

eL
2(λ−ϵδ) ≤ 1 to the partition function, where for the last

bound we need |ϵ| to be large enough, as a function of δ. Taking L → ∞ first and δ →
after wards, and recalling that the free energy is constant as a function of ϵ, the claim
follows for ϵ < 0. Since fϵ+ε0(λ),λ is continuous, being convex, the statement follows.

We now move to the proof of item (1) by means of the multiscale expansion.

Proof of (1): ϵ > 0

Recall that we want to study fϵ+ε0(λ),λ − fλ,ε0(λ), where, as it follows from Section 3.5.1
we can write

fϵ+ε0(λ),λ = F
(0);∞
ϵ,λ +

∑
h<0

(F̃ (h);∞
ϵ,λ + t̃

(h);∞
ϵ,λ ). (3.5.16)

We introduce for later convenience

∆F (h);∞
ϵ,λ := F̃

(h);∞
ϵ,λ − F̃

(h);∞
0,λ (3.5.17)
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and similarly for ∆t(h);∞
ϵ,λ , ∆F (0);∞

ϵ,λ . We can of course rewrite

fϵ+ε0(λ),λ − fε0(λ),λ = ∆F (0);∞
ϵ,λ +

∑
h<0

(∆F (h);∞
ϵ,λ + ∆t(h);∞

ϵ,λ ). (3.5.18)

We now study separately the contributions coming from different ∆’s. We start with
∆F (h);∞

ϵ,λ and we postpone the discussion of the other two, which is simpler, to the end
of this part. Using the fact that for ϵ > 0 the multiscale integration provides estimates
which are different, depending in which of the two regimes we are, we split∑

h<0
∆F (0);∞

ϵ,λ =
∑

h∗≤h<0
∆F (0);∞

ϵ,λ︸ ︷︷ ︸
(I)

+
∑
h<h∗

∆F (0);∞
ϵ,λ︸ ︷︷ ︸

(II)

. (3.5.19)

The contribution (II): From Proposition 3.4.1-3.4.2 we know that there exists a con-
stant c > 0, (that will change from line to line) independent of λ, h, ϵ, such that

|F̃ (h);∞
0,λ | ≤ c|λ|2( 3

2 +θ)h h ≤ 0

|F̃ (h);∞
ϵ,λ | ≤ c|λ|v−1

F 22h h ≤ h∗
(3.5.20)

so that ∑
h<h∗

|∆(h)
ϵ,λ | ≤ c|λ|

∑
h<h∗

(
2( 3

2 +θ)h + 22h2−h∗
2

)
≤ c|λ|ϵ

3
2 (1 +O(ϵθ)) (3.5.21)

where we used that v2
F = Θ(2h∗) = Θ(ϵ).

The contribution (I) For the remaining term in (3.5.18) we need to exploit some
cancellation between the critical and off critical theories: indeed since now the sum runs
over h∗ ≤ h < 0 the same reasoning as above would unnecessarily produce an O(1)
quantity in ϵ. Notice that for h ≥ h∗, the dimensional bound for the free energy reads
(again Proposition 3.4.1),

|F̃ (h);∞
ϵ,λ | ≤ c|λ|2( 3

2 +θ)h (3.5.22)

uniformly in ϵ small, thus in h∗. Using the tree expansion (Section 3.4.3), and as mentioned
in Remark 3.3.7 we view F̃

(h);∞
ϵ,λ as functions of the sequence {vh, rh, αh, ζh} and of the

infinite volume single scale propagators g(h) (see (B.2.1))49, which satisfy Lemma 3.1.1.
In particular, the dependence on ϵ is only given by such propagators through rh(r) as
explained in Remark 3.3.7. Recall also that r satisfies the properties of Lemma 3.3.0.3. In
this spirit, we write

F̃
(h);∞
λ (r) = F̃

(h);∞
ϵ,λ

∆(h);∞
λ (r) = ∆F (h);∞

ϵ,λ .
(3.5.23)

49We denoted with g(h) = limL→∞ g
(h)
L .
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So we Taylor expand ∆(h);∞
λ (r) in the sequence {rk}k≥h, and obtain the expression

∆(h);∞
λ (r) =

∑
ℓ>h

rℓ∂rℓF̃
(h);∞
λ (0) +

∑
ℓ,m≥h

rℓrm

∫ 1

0
dt(1 − t)∂2

rℓrm
F̃

(h);∞
λ (tr) (3.5.24)

Now, in the tree expansion for F̃ (h);∞, a derivative ∂rℓ acts on some propagator g(j) with
h < j < ℓ and it can be bounded dimensionally by 2−ℓ. Indeed a derivative ∂rℓg(j) acts
as ∂rhg

(j), which gives a 2−j (cf. Lemma B.2.0.1), times a dimensional factor 2(1+θ)j−k

coming from ∂rℓrj . Then sum over j produce the claimed factor: see a similar discussion
in (3.4.19).

Thus, the first term in (3.5.24), summed over h ≥ h∗ can be bounded by

∑
h∗≤h<0

∑
ℓ≥h

|rℓ∂rℓF̃
(h);∞
λ (0)| ≤ C|λ|

∑
h∗≤h≤0

2( 3
2 +θ)h∑

ℓ≥h

|rℓ|
2ℓ ≤ C ′|λ|ϵ (3.5.25)

where we used Lemma 3.3.0.3 and 2h∗ = Θ(ϵ). On the other hand, since rh is exactly
linear in r0, (3.3.100), one finds that∑

h∗≤h≤0

∑
ℓ≥h

rℓ∂rℓF̃
(h);∞
λ (0) = I(λ)r0 +O(ϵ3/2+θ) = I(λ)e−ε0(λ)ϵ+O(ϵ3/2+θ)

I(λ) :=
∑
h≤0

∑
ℓ≥h

Qℓ(λ)∂rℓF̃
(h);∞
λ (0)

(3.5.26)

where Qℓ(λ) is defined by rℓ = Qℓ(λ)r0 (3.3.100). To obtain the factor O(ε3/2+θ) in
the middle equation in the first line above, we used that |Qℓ| = 1 + O(λ) and that
|∂rℓF̃

(h);∞
λ (0)| ≤ C2h(3/2+θ)−ℓ. In the last equation instead, we used the definition of

r0 = e−ε0(λ)(e−ϵ − 1). Note that I(λ) is associated to a linear contribution in ϵ that is not
present in (1.4.10). We shortly show that it cancels out with other linear contributions,
by using the knowledge on the case ϵ ≤ 0 of the previous paragraph. Note also that I(λ)
depends only on the critical theory, i.e. it does not depend on ϵ.

Let us show now that the contribution coming from the remainder term in (3.5.24)
is O(ϵ 3

2 +θ). Recalling that |∂2
rℓrm

F̃
(h);∞
λ (tr)| ≤ c|λ|2−ℓ−m2( 3

2 +θ)h uniformly in t, we can
bound the Taylor remainder in (3.5.24) as∣∣∣∣∣∣

∫ 1

0
dt(1 − t)

∑
h≥h∗

∑
ℓ,m≥h

rℓrm∂
2
rℓrm

F̃
(h);∞
λ (tr)

∣∣∣∣∣∣ ≤

≤ c|λ|
∑
h≥h∗

2( 3
2 +θ)h

∑
ℓ≥h

|rℓ|2−ℓ

2

≤ c|λ|22h∗ ∑
h≥h∗

2(− 1
2 +θ)h ≤ |λ|O(ϵ

3
2 +θ)

(3.5.27)

where we used that |rh|2−h ≤ C2h∗−h as it follows from Lemma 3.3.0.3.
Note that up to now, a term of exactly order ϵ3/2 may only come from the contribution∑

h<h∗
F̃

(h);∞
ϵ,λ (3.5.28)

which contributes to the function c(λ) appearing in the statement but which we do not
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derive here in an explicit form.

We now discuss the contributions to (3.5.18) coming from the scale h = 0 of the free
energy and from the change of Grassmann integration: let us discuss the former first.

The h = 0 contribution of the free energy

From the definition of (3.3.68), it is easy to see that F (0);∞
ϵ,λ is a shifted version of the

infinite volume free energy of a non-interacting dimer model with edge weights modified
by the interaction. More precisely

F
(0):∞
ϵ,λ = ϵ+ ε0(λ) + f

(
1 + r0,

1
2 ,

1
2

)
, r0 = e−ε0(λ)(e−ϵ − 1) (3.5.29)

where f is the free energy of the non-interacting model given in (3.1.10). By a rescaling
argument we rewrite f(1+r0, 1/2, 1/2) = log(1+r0)+f(1, 1/2(1+r0), 1/2(1+r0)). Then,
defining

eβ := 1 + r0, β ≥ 0 ⇐⇒ ϵ ≥ 0

we can apply Theorem 3.1.1 with t = 1/2 and find that

F
(0);∞
ϵ,λ = ε0(λ) + ϵ(1 − e−ε0(λ)) + 1{ϵ≥0}

4
√

2
3π (e−ε0(λ)ϵ)3/2(1 +O(ϵ))

where we used that β = e−ε0(λ)ϵ(1 +O(ϵ)). This implies that

∆F (0);∞
ϵ,λ = ϵ(1 − e−ε0(λ)) + 1{ϵ≥0}

4
√

2
3π (e−ε0(λ)ϵ)3/2(1 +O(ϵ)). (3.5.30)

The change of measure contribution

Recall (3.5.2) and that h ≥ h∗

t̃
(h);∞
ϵ,λ = 1

π2

∫
dq log

(
1 + χh−1(q)(iq1ζh−1 + q2

2αh−1)
rh +Dh(q) + ρ(q)

)
(3.5.31)

while for h < h∗

t̃
(h);∞
ϵ,λ =

∑
ω

1
π2

∫
dq log

(
1 + zhχ̃h(q)Dh∗−1,ω(q)

Dh∗−1,ω(q) + ρh∗−1/Zh

)
. (3.5.32)

Repeating exactly the same discussion as in ((C.8) and lines below, [2]) we have

|t̃(h);∞
ϵ,λ | ≤ c|λ|

{
2 3

2h h ≥ h∗ − 1
v−1
F 22h h < h∗ − 1

(3.5.33)

where the only difference is the support of the cutoff functions χh: for h < h∗ its size
is O(22hv−1

F ), while for h ≤ h∗, we have that | suppχh| = O(2 3
2h). Then we can write

the contribution of ∆t(h);∞
ϵ,λ in (3.5.18) by splitting the sum in the two regimes of scales,
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h < h∗ and h ≥ h∗ respectively, so that

∑
h<0

|∆t(h);∞
ϵ,λ | ≤ c|λ|

ϵ3/2 +
∑
h≥h∗

|∆t(h);∞
ϵ,λ |

 ≤ c|λ|ϵ(1 + ϵ1/2) (3.5.34)

where in the first step we used the triangular inequality and (3.5.33); for the second
inequality above we used (3.5.31) to rewrite ∆t(h);∞

ϵ,λ and that (1 + A(B + C)−1)(1 +
AC−1)−1 = (1 + B(C + A)−1)(1 − B(B + C)−1) with B = rh = O(ϵ). Note that we can
then write

∆t(h);∞
ϵ,λ = T (λ)ϵ+O(λϵ3/2) (3.5.35)

for some analytic function T (λ) = O(λ), implicitly defined50.

Completion of the proof of (1)

Let us collect what we proved for the item (1) of the beginning of this Section. For ϵ ≤ 0,
the statement is proven, while for ϵ > 0 we found

fϵ+ε0(λ),λ = λ+ ϵ
(
1 + T (λ) + (I(λ) − 1)e−ε0(λ)

)
+ c(λ)ϵ3/2(1 +O(ϵθ)) (3.5.36)

where T (λ), I(λ) are analytic functions collected only from the first regime of scales h ≥ h∗,
respectively from the change of measures contribution ∆t(h);∞

ϵ,λ (see few line above) and
from ∆F (h);∞

ϵ,λ in (3.5.27); ϵ(1 − e−ε0(λ)) comes from the first scale contribution ∆F (0);∞
ϵ,λ

in (3.5.30). Instead, c(λ) = 4
√

2
3π e

− 3
2 ε0(λ) +O(λ) is analytic and the error term O(λ) comes

from the change of measure contribution and from the second regime of scales involving
∆F (h);∞

ϵ,λ , see (3.5.21)-(3.5.28). Note that, correctly, c(0) = 4
√

2
3π . We now want to show

that the coefficient of the linear term in ϵ is indeed 0, to complete the proof of Theorem
1.4.5.

The idea is that such function of λ is the same coefficient of the linear part in ϵ
appearing in the multiscale analysis performed for ϵ < 0: this, a posteriori, thanks to
Lemma 3.5.0.1, is zero. More precisely:

As explained in Section 3.3.2, when ϵ → 0−, as in our case, we have only a first regime
integration: once we reach the transition scale h∗, we can integrate the scales h < h∗ at
once with a propagator that has the same scaling of the single one, namely as given in
Lemma B.2.0.1, (B.2.6). In this situation the free energy is given by

fϵ+ε0(λ),λ =
∑
h≥h∗

(F̃ (h);∞
ϵ,λ + t̃

(h);∞
ϵ,λ ) + F

(0);∞
ϵ,λ + F

(<h∗);∞
ϵ,λ . (3.5.37)

where F (0);∞
ϵ,λ is the same as in the previous section. In virtue of the discussion above

and of Section 3.3.2, Proposition 3.4.1 implies that |F (h);∞
ϵ,λ | ≤ c|λ|2h(3/2+θ) and the same

bound is satisfied by F (≤h∗);∞
ϵ,λ with h replaced by h∗.

Using the same definitions in (3.5.17), we extract from fϵ+ε0(λ)λ − fε0(λ),λ, the linear

50The dependence on λ is given by ζh, αh, rh which are analytic of λ for |λ| ≤ λ0
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term in ϵ. From the just mentioned bounds for F (<h∗);∞
ϵ,λ , we have that

∆F (≤h∗);∞
ϵ,λ = O(ϵ3/2+θ), (3.5.38)

which means that the linear term in ϵ comes from the first regime of scales. By repeating
exactly the same arguments above, for ∆F (h);∞

ϵ,λ ,∆t(h);∞
ϵ,λ ,∆, for h > h∗ and F

(0);∞
ϵ,λ , we

obtain that

fϵ+ε0(λ),λ − fε0(λ),λ = (1 − e−ε0(λ) + T (λ) + I(λ)e−ε0(λ))ϵ+O(ϵ3/2), ϵ → 0− (3.5.39)

where T (λ), I(λ) that are the same functions appearing in the ϵ > 0 case. Then we apply
Lemma 3.5.0.1 to find that

1 − e−ε0(λ) + T (λ) + I(λ)e−ε0(λ) = 0. (3.5.40)

Note that the same reasoning does not show that c(λ) = c(0): when ϵ > 0 there are a
priori terms coming from the second regime of scales contributing to it (see (3.5.28)).

We are left now with item (2).

Proof of (2)

We want to show that fϵ+ε0(λ),λ is indeed C∞ in ϵ ∈ (−∞, 0) ∪ (0, ϵ̄) as in the claim of
Theorem 1.4.5. Recall that ϵ̄ is an arbitrary small parameter, chosen in order to deal
with the asymptotics of the free energy but it is not strictly necessary for its regularity
properties.

The statement is trivially true for ϵ < 0, since fϵ+ε,λ = λ. For ϵ ∈ (0, ϵ̄) fixed, we use
the multiscale structure. From the previous analysis we know that we can write

fϵ+ε0(λ),λ = F
(0);∞
ϵ,λ +

∑
h<0

F̃
∞;(h)
ϵ,λ + t̃

∞;(h)
ϵ,λ (3.5.41)

where F∞;(0)
ϵ,λ , F

∞;(h)
ϵ,λ , t̃∞;(h)

ϵ,λ are the same scale contributions appearing in the proof of
item (1). In particular, from its expression F

∞;(0)
ϵ,λ it is easily seen to be smooth (3.5.29).

For the other contributions, there is a point to be stressed: h∗(ϵ) does depend on ϵ and
it is a step right continuous function with discontinuity set J2 accumulating at ϵ = 0
(see Appendix B.3.1). So let ϵ ∈ (0, ϵ̄) ∩ J c

2 . In this set the dependence it is only given
through the single scale contributions in the equation above. In particular from its explicit
expression, the contribution associated to t̃(h);∞

ϵ,λ is seen to be C∞((0, ϵ̄) ∩ J c
2 ).

Let us focus on the more interesting term Ωϵ,λ = ∑
h<0 F̃

(h);∞
ϵ,λ . Recall that each F̃ (h);∞

ϵ,λ

admits a tree expansion, which is absolutely convergent for λ small, uniformly in ϵ in our
set. In particular since Ωϵ,λ is given by an absolute convergent series, uniformly in λ, ϵ
small we study its regularity in ϵ by means of the regularity of each tree in the expansion.
We can write

Ωϵ,λ =
∑
h<0

∑
N≥1

∑
τ∈T (h)

N,0

∑
P∈Pτ

∑
T∈T

F (h);∞
ϵ (λ, τ,P, T ) (3.5.42)

using the notations of Section 3.4.3. Recall that, depending on whether h ≥ h∗ or not,
the dependence on ϵ of F (h);∞

ϵ (λ, τ,P, T ) has a different nature (see Sections 3.4.3-3.4.3).
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• For h ≥ h∗, F (h);∞
ϵ (λ, τ,P, T ) depends on ϵ only through the sequence r = (rh)h≥h∗

(see (3.3.100)), and the dependence of rh on ϵ is analytic (3.3.66))

• For h < h∗ the dependence on ϵ is instead given through vF (λ, ϵ), q̃F (λ, ϵ), Zh∗−1,
and RV h∗−1, where the former functions are the same as in (3.4.78), which are
C∞((0, ϵ̄) ∩ J c

2 ), while the latter arise from trees which have an irrelevant endpoint
on scale h∗ − 1.

We want to show that the effect of a derivative ∂ϵ on Ω evaluated at ϵ̃ ∈ (0, ϵ̄) ∩ J c
2

can be bounded by ϵ̃−1.
If the derivative applies to F

(h);∞
ϵ (λ, τ,P, T ), it acts on some propagator on scale

k > h of the first regime. We already discussed below (3.5.24) that its effect is to produce
dimensionally an extra factor 2−k to the bound of the tree. The derivative of rh in ϵ
contributes instead as O(1). Summing over k ≥ h and h ≥ h∗ we obtain indeed an extra
factor 2−h∗ = O(ϵ−1) with respect to the bound without derivative.

If the derivative instead acts on F
(h);∞
ϵ (λ, τ,P, T ) for h < h∗ then we have that the

desired bound follows from two facts: (1) we already showed in 3.4.5 that the tree expan-
sion of the second regime is C∞ in (vF , q̃F , Z) away from (0, 0, Z). In particular, e.g., a
derivative in vF produce an extra v−1

F ; (2) the functions vF , q̃F , Z are C∞ in ϵ ∈ (0, ϵ̄)∩J c
2 .

For instance, since vF = Θ(
√
ϵ), when a derivative in ϵ acts on vF in the tree expansion,

we get the desired extra ϵ−1. 51 By iterating the strategy one finds that ∂nϵ produce an
extra factor C(n)ϵ−n with respect to the bound without derivatives. This implies that
Ωϵ,λ ∈ C∞(0, ϵ̄) ∩ J c

2 .
In order to recover smoothness on the whole (0, ϵ̄), we reason as follows. The way

the multiscale analysis was carried along has several degrees of freedom. In particular we
could decide to iteratively cutoff momenta by setting, for any γ > 2,

χh(q) = χh+1(γq) (3.5.43)

instead of γ = 2 as we did. This means that every dimensional bound changes, as given in
Propositions 3.4.1-3.4.2, by replacing 2h 7→ γh, as a consequence of the different scaling of
the propagator (e.g. in the first regime we would have that |g(h)| ≤ Cγh/2 etc. ). Anyway
the double regime multiscale analysis persists and in particular the scale h∗ = h∗

γ(ϵ), for
λ sufficiently small, has discontinuity set given by Jγ = {ϵ > 0 : γh = |ϵ|} (see Appendix
B.3.1). Since, e.g. J3∩J2 = ∅, this means that in order to study the regularity of fϵ+ε0(λ),λ,
by repeating the multiscale analysis with γ = 3 and using the same considerations above,
we can indeed recover smoothness also on the set J2 ∩ (0, ϵ̄) ⊂ (0, ϵ̄) ∩ J3. □

51The other cases are treated similarly; Anyway the worst case of the effect of ∂ϵ, as ϵ → 0, remains a
bound of the type ϵ−1.



APPENDIX A

A.1 An explicit example of non-planar dimer model

Here, we work out the Grassmann potential V for the easiest but non-trivial example
of non-planar dimer model. Choose m = 4 for the cell size and let the edge weights
be invariant by translations by multiples of m, so that Vx in Proposition 3.1.1 does not
depend on x. In this example we add just one non planar edge per cell, denoted by eλ,
connecting the leftmost black site in the second row to the rightmost white in the same row;
it crosses two vertical edges, denoted by e1, e2, see Figure A.1. Let ψ(eλ), ψ(e1), ψ(e2) be

Figure A.1: A 4 × 4 cell with the edges eλ, e1, e2 colored in red, blue, green, respectively.

the Grassmann monomials defined in (2.1.28) (we drop the index θ). From the definition
(2.1.35), one can check that the potential satisfies V (ψ) = F (ψ) and that it is given by

V (ψ) = ε
{eλ}
∅ ψ(eλ)+ε{eλ}

{e1}ψ(eλ)ψ(e1)+ε{eλ}
{e2}ψ(eλ)ψ(e2)+ε{eλ}

{e1,e2}ψ(eλ)ψ(e1)ψ(e2). (A.1.1)

The computation of the signs εJS can be easily done starting from (2.1.42) and with the
help of Fig. A.2; details are left to the reader. The final result is that

ε
{eλ}
∅ = ε

{eλ}
{e1,e2} = 1, ε{eλ}

{e1} = ε
{eλ}
{e2} = −1. (A.1.2)
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(a)

(c)

(b)

(d)

Figure A.2: The set of edges EJ,S with J = {eλ}, S = ∅ (drawing (a)), J =
{eλ}, S = {e1} (drawing (b)), J = {eλ}, S = {e2} (drawing (c)), J = {eλ}, S = {e1, e2}
(drawing (d)), colored in orange. Here the orientation of black edges coincides with that
on G0

L (see Fig. 2.2), while that of orange edges is the one described in Lemma 2.1.0.2
and in the caption of Figure 3.5.



APPENDIX B

B.1 The renormalization operator

B.1.1 Coordinate space

We want to discuss here how to represent the renormalization operator R1,0 = 1 − L1,0
defined in (3.3.84)-(3.3.29). Even if not necessary1, let us first discuss the rewriting of the
operator L1,0 in coordinate space. Of course the constant term can be rewritten, dropping
the scale label of the fields, just by using (2.3.1),(3.3.7),(3.3.8) as L−2∑

q∈Dθ,R φ̂
+
q φ̂

−
q =∑

y ϕ
+
y ϕ

−
y . For the linear term in the Taylor expansion, we can rewrite

L−2 ∑
q∈D′

θ,R

φ̂+
q+qF φ̂

−
q+qF qi =

∑
y,y′

φ+
y φ

+
y′Oi(y − y′) =

∑
y

φ+
y ∂̂iφ

−
y (B.1.1)

which is a definition of the operators2

∂̂iφ
−
y :=

∑
y′

Oi(y − y′)φ+
y′

O(y) := L−2 ∑
q∈D′

θ,R

e−iqyχh+1(q)qi.
(B.1.2)

One can iterate then to obtain a representation also for the quadratic term. As far as
concerns R1,0, first notice that we can rewrite

Ŵ∞
2 (q) − Ŵ∞

2 (0) − q · ∂Ŵ∞
2 (0) = (q,Hqq)

Hq :=
∫ 1

0
dt

∫ t

0
ds∂2Ŵ∞

2 (qs)
(B.1.3)

where we denote by ∂ and ∂2 the gradient and the Hessian matrix of W∞
2 . If we had not

the local term of order q2
2, (which is the case in the second regime, see (3.3.129)) then we

1Recall that the local terms are used to dressed the measure, so we do not need an explicit expression
in terms of coordinates in Λ.

2We can freely add the function χh+1 in the definition of O because the fields associated to a kernel on
scale h (as we are assuming) have the same support of χh, over which χh+1 = 1 by definition.
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could write

R1,0V = L−2∑
q

φ+
q (q,Hqq)φ−

q =
∑

i,j=1,2

∑
y,y′

∂̂iφ
+
y RW (y − y′)∂̂jφ−

y (B.1.4)

where ∂̂φ are the same as above while RW (y−y′) := L−2∑
q e

−iq(y−y′)(Hq)ij . To take into
account also the quadratic term, then one can iterate (B.1.3), which gives an expression
analogous to (B.1.4), where more derivatives has to be considered.

B.2 The propagator

B.2.1 First regime

We recall that the integration procedure of the first regime Section 3.3.2, h > h∗, produce
a single scale propagator given by

g̃
(h)
L,ϵ(y, y

′) = L−2 ∑
q∈D′

θ,R

e−iq(y−y′) fh(q)
rh(q) + Dh(q) + ρ(q) (B.2.1)

where fh(q) = f(2−h|iq1 + q2
2
2 |) with f(q) = χ(q) − χ(2q) see (3.3.11); Dh(q) := −iq1(1 +

ζh(q)) + 1
2q

2
2(1 + αh(q)) and

rh(q) = rh+1 + χh+1(q)
∑
k>h

rk∂rkŴ
∞;(h+1)
2,0,0 (0; 0)

ζh(q) = ζh+1 + iχh+1(q)∂1Ŵ
(h+1);∞
2 (0)

αh = αh+1 + χh+1(q)∂2
2Ŵ

(h+1);∞
2 (0)

ρ(q) = 1 − eiq1 cos q2 + iq1 − q2
2
2 .

(B.2.2)

Note that by fixing ν0(λ) as in Proposition 3.3.2,i.e. as done in Section 3.4.5, we have that
(recall ζh := ζh(0)), |ζh(q)−ζh| ≤ c0|λ| for every q in the support of fh, uniformly in h, and
similarly for the other constants. Moreover, in the support of fh, c12h ≤ |q1|, |q2|2 ≤ c22h;
also, rh = r0Qh(λ) (see. (3.3.100)) that is |rh| = O(ϵ) = O(2h∗) ≤ c2h. Finally ρ(q) is of
second order in q. This considerations implies that the denominator in (B.2.1) is of order
2h in the support of fh.

More precisely, given n = (n0, n1, n2) ∈ N3 define

g̃
(h);n
L (y, y′) := ∂n0

rh
∂̂n1

1 ∂̂n2
2 g̃

(h)
L (y, y′) (B.2.3)

where ∂̂i is the same as in the previous section and the action on a propagator is naturally
given in terms of Grassmann expectations. Since we are only interested in L → ∞ limit of
the theory, we consider the continuum version of the propagator above, which we denote
by dropping the L label 3. For brevity we denote g(y − y′) = g(y, y′). Next define the

3It is obtained by simply replacing the sum with the integral, with the appropriate normalization factor.
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usual norms

∥g(h),n∥Λ̃,∞ := sup
RTZ2

|g(h);n(y)|, ∥g(h);n∥1 :=
∑

y∈RTZ2

|g(h);n(y)|. (B.2.4)

We have the following

Lemma B.2.0.1. Let h ≥ h∗. If there exists C > 0, independent of L, such that

sup
h′≥h

max{|αk|, |ζk|} ≤ C|λ|, sup
h′≥h

|rh| ≤ C|r0| (B.2.5)

then there exist L, ϵ independent constants c0, c1, κ > 0 such that

|g(h);n(y)| ≤ c02h
( 1+n2

2 +n1−n0
)
e−κ

√
d(h)(y) (B.2.6)

where d(h)(y) := 2h|y1| + 2h/2|y2|. Moreover∑
y∈RTZ2

|ym1
1 ym2

2 g(h);n(y)|eκ/2
√

2h|y1|+2h/2|y2| ≤ c12h
1+n2−m2

2 +n1+n0 (B.2.7)

Sketch of the proof. Take first m1,m2 = 0, n = 0. Set (q1, q2) = (2hp1, 2h/2p2) in order to
rewrite

g̃(h)(y) = 2h/2G
(0)
h (2hy1, 2h/2y2), G

(0)
h (y) = 1

2π2

∫
R2
dp
e−ipyf0(p)
Dh(p) (B.2.8)

where now Dh(p) has a weak dependence on h, namely |Dh(p)| = O(1) uniformly in h4.
Using then that f0, is a Gevray-2 function, one obtains the desired decay

|G(0)
h (y)| ≤ ce−κ

√
|y1|+|y2| (B.2.9)

for c > 0 independent of h. For more details, one can look at [129, Appendix A]. The
reader can also look at [4, Appendix B] for a derivation, without exponential decay, in a
similar context. Recall then that ∂̄i acts as a multiplication in Fourier space by a factor
qi, so that, using the comments above one obtains an extra factor 2n1h+n2h/2. Then, since
the dependence on rh is only in the denominator, ∂rh produces an extra 2−h. To conclude
and obtain (B.2.7), it is enough to use (B.2.6) rescale variables 2hy1 = z1, 2h/2y2 = z2.

Remark B.2.1. Under the validity of Proposition 3.3.2, the hypotesis of the Lemma are
satisfied. Thus, fixing the counterterm ν0 of the critical theory, guarantees that every
propagator g̃(h) satisfy such estimates, uniformly in h, and in particular in h∗.

4We used also that 2−hrh = O(1), uniformly in h.
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B.2.2 Second regime

The integration procedure of the second regime in Section 3.3.2, h < h∗ − 1, produce a
single scale propagator given by

1
Zh−1

g
(h)
ω,L(x, y) := 1

L2

∑
q∈D′

R,θ,ω

e−iq(y−y′) f̃h(q)
Z̃h−1(q)Dh∗−1,ω(q) + ρh∗−1,ω(q)

, (B.2.10)

where f̃h(q) = f(2−h|iq1 + vF q2|), and f same as above; Dh∗−1,ω(q) := −iq1 +ωq2vF with

Z̃h−1(q) := Zh(1 + zhχ̃h(q))
Zh−1 := Z̃h−1(0) = Zh(1 + zh)

vF := sin q̃F + q̃Fαh∗−1 + bh∗,+
cos q̃F + ζh∗−1 + ah∗,+

ρh∗−1(q) = ρ(q + ωqF ) − ρ(ωqF ) − q · ∂ρ(ωqF ).

(B.2.11)

where ρ is the same as in the previous section, and qF = (0, q̃F ) is defined below (3.3.109).
Note that by fixing the counterterms ν0, νh∗,+, ah∗,+, bh∗,+ for the running constants to
converge, as described in Section 3.4.4 and more precisely in Section 3.4.5, from Remark
3.3.8 and Section 3.4.5 one has that vF = q̃F = O(

√
ϵ) = O(2h∗/2). Now, from the support

properties of fh, c12h ≤ |q1|, vF |q2| ≤ c22h; ρ(q) is of second order in q. Note also that, if zh′

in (3.3.136) satisfies |zh′ | ≤ δ0 uniformly in L, h′ < h∗, then e−cδ0|h−h∗| ≤ Zh ≤ ecδ0|h−h∗|.
As a consequence, on the basis of the previous considerations so that ρh∗−1(q)/Zh−1 is
negligible w.r.t. Dh∗−1,ω(q). Denoting with g̃(h)

ω the L → ∞ limit of g̃(h)ω,L, we can write
g

(h)
ω (x, y) = g

(h)
R,ω(x, y) + g

(h)
S,ω(x, y) where we recall from (3.3.130),

g
(h)
R,ω(x, y) = 1

2π2

∫
R2
e−iq(y−y′) Zh−1f̃h(q)

Z̃h−1(−iq1 + vFωq2)
(B.2.12)

and g
(h)
S,ω is given by the difference. Recall

g̃
(h);n
L (y) := ∂n0

vF
∂̂n1

1 ∂̂n2
2 g̃

(h)
L (y) (B.2.13)

where ∂̂i are the same of the previous section. We have the following

Lemma B.2.0.2. If there exists C > 0, such that suph≤h′<h∗ |zh| ≤ Cδ1 then there exist
L, ϵ independent constants c0, c1, κ > 0 such that

|g̃(h);n
R,ω (y)| ≤ c0v

−1−n2−n0
F 2h(1+n1+n2)e−κ

√
2h(|y1|+v−1

F |y2|). (B.2.14)

and ∑
y∈RTZ2

|ym1
1 ym2

2 g̃
(h);n
R,ω (y)|e

κ
2

√
2h(|y1|+v−1

F |y2|) ≤ c1v
−1−n2−n0+m2
F 2h(1+n1+n2−m2−m1).

(B.2.15)
Moreover, g̃(h);n

S,ω satisfy the same estimates times an extra factor 2h.

Sketch of the proof. Take first m1,m2 = 0, n = 0. Set, (q1, q2) = 2h(p1, p2v
−1
F ), so one
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finds that5

g̃
(h)
R,ω,vF (y) = 2h

vF
g

(0)
R,ω,1(2hy1, 2hv−1

F y2) (B.2.16)

Using again that f0, is a Gevrey-2 function, the desired decay follows: (see analogous
discussion in the previous proof)

|g(0)
R,ω,1(y)| ≤ ce−κ

√
|y1|+|y2| (B.2.17)

for c > 0 independent of h. Again, ∂̂i acts as a multiplication in Fourier space by a factor
qi, so using the structure of fh we obtain extra factor v−n2

F 2h(n1+n2) with respect to the
previous estimate. Then, a derivative ∂vF produce dimensionally a factor v−1

F both if it
applies to the denominator or to f̃h. To conclude and obtain (B.2.15), it is enough to use
the desired strecthed exponential decay and rescale variables 2hy1 = z1, 2hv−1

F y2 = z2.
For the last statement we can rewrite

g̃
(h)
S,ω(y) = 1

2π2

∫
dq

Zh−1e
−iqyf̃h(q)ρh∗−1(q)

(Z̃h−1Dh∗−1,ω(q) + ρh∗−1,ω(q))(Z̃h−1Dh∗−1,ω(q))
. (B.2.18)

Then, from the definition of ρh∗−1(q), which is of second order, the leading contribution
for q small are given by O(q2

1), O(ϵq2
2) as it follows from an explicit computation. Then

recalling that vF q2, q1 ∼ 2h one obtains the extra 2h by repeating the above discussion.

Note that the factor vF in 3.3.148 plays an important role. When vF (λ, ϵ) is fixed in
Section 3.4.5, it satisfies vF = O(

√
ϵ) which implies that the bounds on the single scale

propagator are deeply affected by taking ϵ → 0+.

B.3 Some technical facts

B.3.1 The transition scale h∗(ϵ)
Let us define for γ ≥ 2,

h∗
γ(ϵ) = min

{
h ≤ 0 : γh > |e−ϵ − 1||Qh|

(1 + αh)δ

}
. (B.3.1)

and note that h∗
2(ϵ) = h∗ (3.3.76). To simplify things, since Qh = 1 +O(λ), α = 1 +O(λ)

and δ = O(1), we have that for ϵ, λ small enough, we can approximate h∗ with

hγ(ϵ) = min{h : γh > ϵ}.

Then hγ is a right continuous step function and has as a discontinuity set Jγ := {ϵ : ϵ ∈ Dγ}
where Dγ = {γh : h ≤ 0}. Note that Jγ ∩ Jγ′ = ∅ as long as γ′ ̸= γz for every z ∈ Z.

B.3.2 Completion of Lemma 3.4.0.5

We want to show that |∂q̃F νh∗,+| ≤ C|λ|2−h∗
vF . As discussed in the second item below

(3.4.73), the dependence on q̃F is only given by endpoint of the tree on scale h∗−1, through

5We specified the dependence on vF of the propagator g̃R,ω.
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irrelevant terms RV h∗−1. This term is associated to a Grassmann monomial given by

e
−iqF

∑
f∈Pφ

v∗
ω(f)y(f)

W
(h∗−1);∞
τ∗,P∗,T ∗,D(yv∗)φD,i(Pφv∗) (B.3.2)

and we are using the notations of (3.4.14) for the Grassmann part and: τ∗ is the sub-tree
of τ rooted at v∗, which is the vertex on scale h∗ − 1 associated to RV h∗−1; P∗, T ∗,y∗ are
respectively the set of fields label, the spanning tree and the coordinates of the enpoints of
the subtree τ∗; Pφv∗ is the set of external fields associated to v∗. Now, when the derivative
∂q̃F acts, we obtain a “zero” factor ∑n

i=1(−1)iωiyi2,6 which multiplies the above kernel
(where we numbered the field labels in Pφv∗ , s.t. |Pφv∗ | = n even). We distinguish two cases

(1) ∑i ωi = 0. In this case the “zero” factor can be written as a sum of gradients
coordinates, yj − yj−1, which can be bounded with propagators along the spanning
tree T ∗. This produces w.r.t the original bound an extra 2−h∗

vF , as it follows from
(B.2.15).

(2) ∑i ωi ∈ 2Z \ {0}. In this case, writing (B.3.2) in Fourier we have that the global
momentum on the vertex v∗ must be preserved, namely∑

i=1
(−1)i(qi + ωiqF ) = 0. (B.3.3)

Using that the fields φ(≤h∗−1) are supported on small momenta, i.e. |qi| ≤ O(2h∗),
we can deduce that for some constant C > 0

n2h∗ ≥ Cq̃F ⇒ n ≥ Cq̃F /ϵ (B.3.4)

where as usual 2h∗ = Θ(ϵ); this means that as ϵ → 0+, this situation occurs only
when we have an huge number of external fields associated to v∗. On the other
hand, since we are studying contributions to Bν

h,+ that preserves the ω on scale h7,
and, since every contraction of Grassmann variables preserves as well the ω’s of the
contracted fields, this scenario can occur only for trees τ having pairs of vertices
with this property. So let’s discuss only the case of a pair and denote by ṽ∗ the twin
vertex of v∗, on scale h∗ − 1 of irrelevant type.
Now, when we apply ∂q̃F to the tree, we produce a zero factor given by

n∑
i=1

(−1)iωiyi2 +
ñ∑
i=1

(−1)iω̃iỹi2 =
n+ñ−1∑
j=1

zj2 − z(j+1)2 (B.3.5)

where ∑n
i=1(−1)iωiyi2 and ∑ñ

i=1(−1)iω̃iỹi2 come respectively from the oscillatory
factors associated to v∗, ṽ∗. In the r.h.s we used the conservation of ω + ω̃ and we
denoted with z the union of the coordinates y, ỹ, relabeled in such a way to single
out gradients. Now, let v̄ the vertex on scale h̄ < h∗ − 1 which is the first parent of
both v∗, ṽ∗ in the tree. If we denote by n̄ < n + ñ the number of Grassmann fields

6Recall that qF = (0, q̃F ) and we use the component notation yi = (yi1, yi2).
7The same holds for any other running constants which preserves the ω on scale h, and also for the free

energy contributions. See item 2 of Remark 3.3.10.
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immediately before the contraction on v̄, we have that since ω, ω̃ are separately not
preserved, by reasoning as in (B.3.4) we must have n̄ ≥ C2−h̄/q̃F . This means
that we have at least a good factor |λ|2−h̄−h∗/2. This term is more than sufficient
to conclude the bound of the effect of ∂q̃F . Indeed we can estimate the gradients
zj2 − z(j+1)2 together with propagators along the spanning tree T̄ associated to v̄,
as in point (1): this produces an extra dangerous 2−h̄vF which is compensated by
|λ|2−h̄−h∗/2.

Summarizing this shows that point (2) occurs only in extremely high order perturbation
theory and that the potentially dangerous factor 2−h coming from the integration of the
gradients zj − zj+1 along the spanning trees, are indeed negligible when summed over
h ≤ h∗. This shows that

|∂q̃F νh∗,+| ≤ C|λ|
vF

. (B.3.6)

B.3.3 Lowest order calculations

First order contribution to λ∗
h

The lowest order contribution in λ comes necessarily from trees of the first regime of scale
with only one endpoint of type R1,ϵV

(−1) (compare with the proof of Lemma 3.4.0.4. In
particular this happens when in the r.h.s. of (3.3.19) we pick the Grassmann monomials
of the bare potential V̄ , which are of lowest order (quartic monomials), and we do not con-
tract any fields in the truncated expectation. This are exactly the Grassmann monomials
appearing in the Figure 3.4: in formulas

(eλ − 1)
∑
y∈Λ̃

(
EH,y(ϕ)EH,y+(0,2)(ϕ) + 2EO,y(ϕ)EO,y+(1,1)(ϕ)

)
,

EH,y(ϕ) = e−ϵ−ε0(λ)ϕ+
y ϕ

−
y , EO,y(ϕ) = 1

2ϕ
+
y ϕ

−
y+(−1,1).

(B.3.7)

H stands for horizontal and O for oblique: recall that from the symmetry of the model,
the second and the third contribution in Figure 3.4 are equal. Using (3.4.64) and taking
the local part L1,ϵ (cf. (3.3.129)) we find

∑
y∈Λ̃

∑
ω

ϕ+
y,ω1ϕ

−
y,ω2ϕ

+
y,ω3ϕ

−
y,ω4

(
e−2ϵ−2ε0e2iq̃F (ω3−ω4) + 1

2e
iq̃F (−ω2+ω3−2ω4)

)
. (B.3.8)

From the anticommutation of the Grassmann variables one finds that ω can assume only
four values (+,+,−,−), (−,−,+,+), (+,−,−,+), (−,+,+,−), which carry relative signs
among them in the associated Grassmann monomial. Putting things together one finds
that the contribution to λh∗ it is given by

(eλ − 1)(1 − cos q̃F )(2e−2ϵ−2ε0 + 1) (B.3.9)

which is indeed O(λϵ), using that by hypothesis, q̃F = Θ(
√
ϵ) (see below (3.3.110)).
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First order contribution to ε0(λ)

Recall that ε0(λ) = log(1 + ν0(λ)), so that the lowest order of ε0 coincides with that of ν0.
On the other hand ν0 satisfies the implicit equation

ν0 = −
∑
h≤0

2hBν
h(λ, ν0). (B.3.10)

Recall that from (3.4.1),(3.3.55) and (3.3.58), 2hBν
h is nothing but the kernel Ŵ (h):∞

2 (0)
where we extracted the linear term in the sequence ν (namely 2h+1νh+1). This means
that, as in the previous Section, the lowest order comes from trees having only exactly one
endpoint that is of type R1,0V

(−1). In particular in, (3.3.19) we must pick the Grassmann
monomials of the bare potential V̄ , which are of lowest order (quartic monomials), and we
do not contract any fields in the truncated expectation on that scale. Indeed to contribute
to a local quadratic part on scale h, in virtue of the renormalized tree expansion we must
contract exactly two of the four Grassmann variables on scale h. In formulas we have that
the first order contribution to ν0 is given by the coefficient of the grassmann monomial

(eλ − 1)
∑
h≤0

ETh,∗
(
EH,y(ϕ+ ·)EH,y+(0,2)(ϕ+ ·) + 2EO,y(ϕ+ ·)EO,y+(1,1)(ϕ+ ·)

)
(B.3.11)

where the ∗ in the expectation means that we contract only two fields and EH,y, EO,y
are the same of the previous section. A simple computation shows that we can write the
coefficient of (B.3.11)

∑
h≤0

(
2g(h)
λ (0) − g

(h)
λ (−2ê2) − g

(h)
λ (2ê2) + 1

2
(
2g(h)
λ (ê1 − ê2) − g

(h)
λ (−2ê2) − g

(h)
λ (2ê2)

))
(B.3.12)

where ê1 = (1, 0), ê2 = (0, 2), while the propagator associated to ETh,∗ is given by

g
(h)
λ (y1, y2) =

∫
R−1[0,2π]2

dq
e−iqyfh(q)

1 − eiq1 cos q2 − iq1ζh + q2
2
2 αh

(B.3.13)

as it follows from (B.2.1), by taking the L → ∞ limit: note indeed in that Dh(q) + ρ(q)
it is nothing but the dressing with the running constant ζ,α of the original propagator
in (3.3.13); R is the same transformation matrix in (3.3.4). Using that α, ζ = O(λ) we
finally have that the first order contribution to ν0 is given by

−λ
(

2g0(0) − g0(−2ê2) − g0(2ê2) + 1
2 (2g0(ê1 − ê2) − g0(−2ê2) − g0(2ê2))

)
(B.3.14)

where

g0(y) =
∑
h≤0

g
(h)
0 (y) = 1

π2

∫
R−1[0,2π]2

dq
e−iqy

1 − eiq1 cos q2
= (−1)x2−x1K−1(x, 0) (B.3.15)

where we used the definition of the cutoff functions∑h≤0 fh = 1 and the change of variables
k = Rq, y = RTx in the last step: K−1 is the infinite volume inverse Kasteleyn operator
given by the L → ∞ limit of (3.3.3) (see also (3.1.12)). It has an explicit expression
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(B.3.25). Thus we have that

ν0(λ) = −2K−1(0)λ+O(λ2) = −2λ+O(λ2). (B.3.16)

B.3.4 Frozen phase for the integrable model

We start with two standard results.

Lemma B.3.0.1. Let f : Cn −→ C be analytic in each argument in the strip Sη := {z :
|ℑz| ≤ η,ℜz ∈ [−π, π]} and be 2π-periodic in each argument. Then,∣∣∣ 1

(2π)n
∫ π

−π
dϕ1 . . . dϕnf(ϕ)e−ix·ϕ

∣∣∣ ≤ e−η|x|1 sup
ϕ∈Sη×···×Sη

|f(ϕ)| (B.3.17)

with x = (x1, . . . , xn) ∈ Rn and |x|1 = |x1| + · · · + |xn|.

Lemma B.3.0.2 (Poisson summation). If F̂ : [−π, π]2 → C is C∞, then

L−2 ∑
k∈P(θ)

F̂ (k) =
∑
n∈Z2

F (n1L, n2L)(−1)θ1n1+θ2n2 (B.3.18)

where
F (x) = 1

(2π)2

∫
[−π,π]2

dke−ik·xF̂ (k) (B.3.19)

and D(θ) is the same as in (3.1.5).

If A = 1, B = C = eϵ

2 with ϵ < 0, we have that

f(z1, z2) = 1
1 + eϵ

2 (eiz1 + eiz2)
(B.3.20)

is separately analytic in the strip S ϵ
2
, thus by Lemma B.3.0.1,

|K−1(x)| ≤ e− ϵ
2 |x|1 sup

S ε
2

×S ε
2

|f(z)|, |x|1 = |x1| + |x2|

K−1(x) :=
∫

[−π,π]2

dk

(2π)2
e−ikx

1 + eϵ

2 (eik1 + eik2)
.

(B.3.21)

Lemma B.3.0.3. Assume that there exists η > 0 such that |K−1(x)| ≤ cηe
−η|x|1 for every

x ∈ Z2. Then,

sup
x,y∈Λ:|x1−y1|,|x2−y2|≤L/2

|K−1
θ (x, y) −K−1(x− y)| ≤ C(η)e−L/C(η) (B.3.22)

for some C(η) < ∞.

The restriction on x, y does not entail a loss of generality, since for any two vertices
on the L−torus the horizontal and vertical distances are at most L/2. However, the
formula written without the restriction woudl be false, since for instance x = (0, 0) and
y = (L− 1, 0) are at distance 1 on the torus but at distance L on Z2.
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Proof. Assume without loss of generality that y = 0, and set F̂ (k) := e−ikx

1+ eε

2 (eik1 +eik2 ) ,
which is C∞ on [−π, π]2 if ε < 0. Then we can use Poisson summation to write

K−1
θ (x, 0) −K−1(x) =

∑
n∈Z2\{(0,0)}

K−1(x1 + n1L, x2 + n2L)(−1)n1θ1+n2θ2 . (B.3.23)

Since |x1 + n1L| + |x2 + n2L| ≥ L/2, the sum is easily seen to be exponentially small in
L.

From (B.3.21) we see then that Lemma B.3.0.3 holds with 2η = ϵ and cη = sup{|f(z)| :
z ∈ Sη × Sη} = 1

1−e
ϵ
2

. Therefore,

sup
x,y∈Λ:|x1−y1|,|x2−y2|≤L/2

|K−1
θ (x, y) −K−1(x− y)| ≤ C(ε)e−L/C(ε). (B.3.24)

Lemma B.3.0.4. Let A,B,C such that A > B + C, then the infinite volume inverse
Kasteleyn operator K−1 (cfr. (3.1.9) can be explicitly computed:

K−1(x, 0) = 1{x1,x2≥0}
(−1)x1+x2

A

(
B

A

)x1 (C
A

)x2
(
x1 + x2
x1

)
. (B.3.25)

In particular,

|K−1(x, 0)| ≤ 1{x1,x2≥0}
1
A

(
B + C

A

)x1+x2

. (B.3.26)

Proof. We start from

K−1(x) = 1
(2πi)2

∫
|z|=1

dz

∫
|w|=1

dw
z−x1−1w−x2−1

A+Bz + Cw
. (B.3.27)

We perform the integral over z. Since A > B+C, the only pole inside the circle |z| = 1 is
at z = 0 (if x1 ≥ 0, otherwise there is no pole inside and the integral is zero). The residue
theorem then gives

1x1≥0(−B)x1 1
2πi

∫
|w|=1

dw
w−x2−1

(A+ Cw)x1+1 . (B.3.28)

The integral over w is performed similarly: for x2 < 0 it is zero because there is no pole
inside |w| = 1, and for x2 ≥ 0 the residue theorem leads to (B.3.25). As for (B.3.26), it is
enough to note that

(
B

B+C

)x1 (
C

B+C

)x2 (x1+x2
x1

)
≤ 1.

B.4 Symmetries of the effective theory

Let us recall that the original symmetries of the non interacting model, for λ = 0, are
given in terms of mappings S1,S2 on the Grassmann algebra by (see Section 3.2.2)

S1 : ψ̂±
k −→ ψ̂±

−k c → c, S2 : ψ̂±
k −→ ψ̂±

k̃
c → c

S1 : ψ±
x −→ ψ±

x c → c, S2 : ψ±
x −→ ψ±

x̃ c → c,
(B.4.1)

where x = (x1, x2) and x̃ = (x2, x1) (similarly for k); they mean that in every Grassmann
polynomial, each Grassmann field ψ, ψ̂ is replaced as above and every constant c ∈ C is
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replaced by its complex conjugate only for the action of S1.
For λ ̸= 0, we showed in Section 3.2.2 that they are also symmetries of the interacting

model. Then we want to check the effect of these symmetries on the multiscale construc-
tion. Note that in terms of the coordinates in Λ̃ and Dθ,R introduced in (3.3.4), we have
that, e.g., S2 reads

S2 : φ±
y −→ φ±

ŷ c → c, S2 : φ̂±
q −→ φ̂±

q̂ c → c, (B.4.2)

where ŷ = (y1,−y2) and similarly for q ∈ Dθ,R. Note that q̂ comes k̃ via the relation
R̂Tk = RT k̃.

Symmetries for the effective potential

We use the following general fact: if a Grassmann integration P (dψ) and an interaction
V (ψ) are symmetric under a symmetry S acting on the Grassmann algebra {ψ}x∈Λ as
described above, then V ′ given by the relation

eV
′(φ) =

∫
P (dψ)eV (ψ+φ) (B.4.3)

is still symmetric under S. By a measure to be symmetric we mean that its quadratic
part is symmetric, i.e. P (dψ) = N −1DψeQ(ψ) with SQ(ψ) = Q(ψ), where N is the
normalization constant. As a consequence of the above general fact we have that the
symmetries satisfied by the bare action, S + V of (3.2.8), are preserved at each scale by
the multiscale construction of Section (3.3.2), in the following form. For simplicity let us
set the external fields A to zero: a similar discussion holds also in that case.8

Lemma B.4.0.1. The kernels of the effective potential V (h)
ϵ (cfr. (3.3.77)) satisfy

(h ≥ h∗) :

W
(h)
n,ϵ,θ(y) ∈ R

W
(h)
n,ϵ,θ(ŷ) = W

(h)
n,ϵ,θ̃

(y)
(h < h∗) :

W
(h)
n,ϵ,θ,ω(y) = W

(h)
n,ϵ,θ,−ω(y)

W
(h)
n,ϵ,θ,ω(ŷ) = W

(h)
n,ϵ,θ̃,−ω(y)

(B.4.4)

where y = (y1, . . . , yn) and ω = (ω1, . . . , ωn) with yi ∈ Λ̃, and ωi = ±1; ŷ := (ŷi, . . . , ŷn)
with ŷ := (y1,−y2); θ = (θ1, θ2) and θ̃ = (θ2, θ1). In terms of momenta,

(h ≥ h∗) :

Ŵ
(h)
n,ϵ,θ(q) = W

(h)
n,ϵ,θ(−q)

Ŵ
(h)
n,ϵ,θ(q̂) = W

(h)
n,ϵ,θ̃

(q)
(h < h∗) :

Ŵ
(h)
n,ϵ,θ,ω(q) = Ŵ

(h)
n,ϵ,θ,−ω(−q)

Ŵ
(h)
n,ϵ,θ,ω(q̂) = Ŵ

(h)
n,ϵ,θ̃,−ω(q)

(B.4.5)

Proof of Lemma. Let’s start with h ≥ h∗. Since the bare action S + V ((3.2.8)) is sym-
metric under S1,S2, in virtue of (B.4.3) above, we just need to check that at each scale
the integration P (h) associated to the expectation in (3.3.95) is indeed symmetric. The

8The external fields are real value, so they do not change the conjugation symmetry and do not interact
with the symmetries acting only on the Grassmann algebra.



158 Appendix B.

integration P (h)(dφ(h)) can be written as, let ϕ = φ(h)

P (h)(dϕ) ∝ Dϕ(h)eS
(h)
θ

(ϕ),

S
(h)
θ (ϕ) = −L−2 ∑

q∈Dθ,R
fh(q−qF ̸=0)

ϕ̂+
q (fh(q − qF ))−1µ̃h(q)ϕ̂−

q (B.4.6)

where µ̃h(q) = rh(q) + Dh(q) + ρ(q) see (B.2.1) for the necessary definitions; recall that
qF = R−1kF = (0, π). Since D̂θ,R = Dθ̃,R and fh, µ̃h, qF are symmetric, we have that

S2(S(h)
θ (ϕ) = S

(h)
θ̃

(ϕ(h)). (B.4.7)

Note that µ̃h it symmetric under q̂, since it is given from an even function in q2 (see below
(3.3.4)) by adding even terms in q2, i.e. χh(q), αh(q) (cf. (B.2.1). One can repeat the
same, in simpler form, for S1.

This means that the effective interaction V (h), and its kernels are indeed symmetric at
each h ≥ h∗. Since the symmetries preserve the degree of Grassmann monomials, we find
the desired statement in the l.h.s. of (B.4.5)(see below for a derivation of this conclusion
in the simplest case).

Once we reach scale h∗ we introduce (see just above (3.3.114)) the field decomposition

φσ,(≤h
∗)

y = φσ,(≤h
∗−1)

y + φσ,(h
∗−1)

y , φσ,(≤h
∗−1)

y =
∑
ω=±

e−iσωyqFφσ,(≤h
∗−1)

y,ω (B.4.8)

which shows that in order for the fields φ(≤h∗) to preserve the symmetries Si, i = 1, 2,
they act on “quasi particles” fields ϕσy,ω = φ

σ,(≤h∗−1)
y,ω as

S1 : ϕσy,ω −→ ϕσy,−ω, c → c, S2 : ϕσy,ω −→ ϕσŷ,−ω, c → c. (B.4.9)

In Fourier space they reads

S1 : ϕ̂σq,ω −→ ϕ̂σ−q,−ω, c → c, S2 : ϕ̂σq,ω −→ ϕ̂σq̂,−ω, c → c (B.4.10)

where ϕ̂σq,ω := ϕ̂σq+qF+ωqF . This can be seen by writing ϕσy,ω = L−2∑
q∈D′

θ,R,ω
eσiqyϕ̂σq,ω and

noting that D′
θ,R,−ω = −D′

θ,R,ω, see (3.3.119) and lines below. Using the representation in
Fourier space it is readily seen that the counterterm M(ϕ), introduced at the transition
scale (3.3.109), is symmetric under these transformations (using (3.3.112)). This means
that M preserves separately the symmetry of the Grassmann integration and of the ef-
fective interaction on scale h∗ − 1. Then a repetitive application of (B.4.3) implies that
the symmetries (B.4.9)-(B.4.10) are preserved at each scale h < h∗. Since the symmetries
preserve the degree of every Grassmann monomial, then we have that the statement in the
r.h.s. in (B.4.5) also holds. Let us derive for concreteness, using the Fourier representation
of the effective potentials (see (3.3.126) and lines above), the case n = 2. We have that
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the following term is preserved by S1,S2 (let’s work out only S2)

L−2 ∑
q∈D′

θ,R,ω

ϕ̂+
q,ωŴ

(h)
2,0,ω,θ(q)ϕ̂

−
q,ω

S2= L−2 ∑
q∈D′

θ,R,ω

ϕ̂+
q̂,−ωW

(h)
2,0,ω,θ(q)ϕ̂

−
q̂,−ω =

= L−2 ∑
q∈D′

θ,R,ω

ϕ̂+
q,ωŴ

(h)
2,0,−ω,θ̃(q̂)ϕ̂

−
q,ω

(B.4.11)

where we used that D′
θ,R,−ω = −D′

θ,R,ω and D̂θ,R,ω = Dθ̃,R,ω where recall q̂ = (q1,−q2),
θ̃ = (θ2, θ1) if θ = (θ1, θ2). This implies that

Ŵ
(h)
2,0,−ω,θ̃(q̂) = Ŵ

(h)
2,0,ω,θ(q). (B.4.12)

Note finally that taking the infinite volume kernels, which do not depend on boundary
conditions θ we obtain

Ŵ
(h);∞
2,0,ω (q̂) = Ŵ

(h);∞
2,0,−ω(q). (B.4.13)

Corollary B.4.0.1. As a consequence we have that the running coupling constants satisfy:

νh, rh, αh, ζh, zh, λh, νh,+, iah,+, bh,+ ∈ R
νh,ω = νh,−ω, ah,ω = ah,−ω, bh,ω = −bh,−ω

(B.4.14)

Proof of Corollary. Note that almost all the running constants are originally defined in
Fourier space. See (3.4.1) and lines below for the definition of the constants.

For the first regime constants, we obtain, after taking the L → ∞ of the kernels,

Ŵ
(h);∞
2,ϵ (0) ∈ R, ∂1Ŵ

(h);∞
2,ϵ (0) ∈ iR, ∂2Ŵ

(h);∞
2,ϵ (0) = 0, ∂2

2Ŵ
(h);∞
2,ϵ (0) ∈ R (B.4.15)

as it follows by deriving the equations in (B.4.5). This implies the desired statement for
the constants νh, rh, αh, ζh. For the second regime of constants instead we obtain

Ŵ
(h);∞
2,ω (0) ∈ R, Ŵ

(h);∞
2,ω (0) = Ŵ

(h);∞
2,−ω (0)

∂1Ŵ
(h);∞
2,ω (0) ∈ iR, ∂1Ŵ

(h);∞
2,ω (0) = ∂1Ŵ

(h);∞
2,−ω (0)

∂2Ŵ
(h);∞
2,ω (0) ∈ R, ∂2Ŵ

(h);∞
2,ω (0) = −∂2Ŵ

(h);∞
2,−ω (0)

(B.4.16)

which implies the statement for all the remaining constants but λh. In this case notice
that the r.h.s. of (B.4.5) for n = 4, L = ∞ evaluated at q2, q3, q4 = 0 does the job.





APPENDIX C

CONNECTION WITH VERTEX
MODELS

C.1 Honeycomb dimers and the 5V model

In this appendix we discuss some mapping between dimer models and the 6V model. The
6V model on the torus is defined as follows. Let L > 0 even and as usual G̃L = (Z/LZ)2

be the torus of side L1. An arrow configuration ω (or six-vertex configuration) is a choice
of orientation for every edge of G̃L such that every vertex of GL has two incoming and
two outgoing edges in ω (ice rule), as shown in Figure C.1. If Ω6V denotes the space of
6V configurations, then the partition function is given by

Z6V =
∑

ω∈Ω6V

W (ω)

where the product runs over vertices of G̃L and the weight of a configuration W (ω) is
given by

W (ω) =
∏
v∈G̃L

aσ(v) =
6∏
i=1

anii

where σ(ω) : V → {1, . . . , 6} identifies the type of v in the configuration ω and ni(ω) is
the number of vertices of type i (Fig. C.1) in ω.

Given a six-vertex configuration ω, if we keep track only of North and West going
arrows at each vertex, we obtain a lattice path model, as shown Figure C.2.

When we specialize to the case a3 = 0, it is seen that the lattice paths cannot intersect
anymore: this model goes under the name of monotone, non-increasing lattice paths model
(MNLP) [115]. Instead, in terms of the vertex model, it is called five-vertex model (5V). It
is known that dimer configurations on the hexgonal periodic lattice are bijectively mapped
to MNLP configurations. Consider a dimer configuration on the graph GL (1.3.2) as in the
non interacting edge case, as in Figure 1.5. Contracting each horizontal edge in the graph

1with respect to translation in the standard orthonormal basis
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Figure C.1: The six possible vertex configurations. Each type comes with a weight
a1, . . . , a6.

Figure C.2: Left: six-vertex configuration on G̃4. Right: a lattice paths configuration:
paths are colored green and orange.

GL, i.e. gluing into a single vertex the black and white vertices of the fundamental cell, we
obtain exactly the graph G̃L and the dimer configuration becomes a MNLP configuration,
see Figure C.3.

Since MNLP are nothing but 5V configurations, we have that if we choose the vertex
weights as follows

a1 = B a2 = C a4 = A a5 = a6 =
√
BC

we obtain that
ZL(A,B,C) = Z5V

where ZL(A,B,C) is the partition function of the dimer model on GL as below (3.1.2)
and Z5V is the same as Z6V given above when a3 = 0. A simple check shows that with
the choice above, the weights of the configurations in Figure C.3 are

w(M) = A8B4C4 W (ω) = a8
4a

2
1a

2
2a

2
5a

2
6
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Figure C.3: The mapping between dimer configurations on GL and MNLP configurations
on G̃L. The fundamental domains enclosing horizontal edge are mapped, by contraction
of the edge, bijectively in the set of vertices of G̃L.

and indeed w(M) = W (ω) with the choice of (a1, . . . , a6) above. Note also that the
free-fermion condition (FP) for the 6V model reads

a1a2 + a3a4 − a5a6 = 0

and for the 5V (a3 = 0)
a1a2 − a5a6 = 0

which is satisfied with the choice above. Indeed 6V it is known to be determinantal exactly
at the FP which corresponds to the determinantal structure of the dimer model.
Then, the interacting dimer model of Section 1.3 (edge), see (1.3.3), is equivalent to an
interacting 5V (or MNLP) model where interaction acts on faces of the lattice by promoting
(λ > 0) or disfavoring (λ < 0) empty faces and faces with parallels paths, see Figure C.4.

Figure C.4: The interaction modifies the weight of a configuration by an extra eλ for
every of the faces above. In the MNLP model paths prefer or not certain patterns de-
pending on the sign of λ.
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C.2 6V model as non-planar square-octagon dimers

If we allow vertex weights in the 6V to have some periodicity, by varying from site to site,
it is known that a connection with non planar dimer models can be extablished (together
with connections to other lattice statistical mechanics models), if the family distinct family
of weights satisfy the free-fermion condition [94]. The simplest way to realize it is to
consider staggered vertex weights, namely two sets of arrows weights associated to the
two sublattices of the graph G̃L, the color of which are black and white for simplicity as
in Figure (a) C.5; we denote also by VB and VW the set of black and white vertices of
G̃L. Finally, denote a1, . . . , a6 and a′

1, . . . , a
′
6 vertex weights associated to black and white

vertices, respectively. The free-fermion condition on the weights then reads

a5a6 − a3a4 = a1a2, a′
5a

′
6 − a′

3a
′
4 = a′

1a
′
2.

The generating function of the model is

ZS
6V =

∑
ω∈Ω6V

W (ω)

where now

W (ω) =

 ∏
v∈VB

aσv

 ∏
v∈VW

a′
σv

 =
6∏
i=1

a
nBi
i (a′

i)n
W
i ,

with n#
i (ω) being the number of # vertices of type i, where # = black or white. There is

(a) (b)

(c) (d)

Figure C.5: (a): a vertex configuration on the bipartite graph (vertex of type 1 are
encircled). (b): the associated expanded graph and the dimer configuration. (c): the
expansion procedure, a vertex becomes a city. (d): type 1 vertex configurations correspond
to two possible dimer covering of the associated city.

a way to associate to the 6V model a dimer configuration on an expanded graph. Expand
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each vertex of G̃L in a “city” of four vertices connected by edges as shown in Figure C.5
(c). This gives the graph structure of Figure C.5 (b). Then, place a dimer on horizontal
or vertical edges of an octagon face iff they correspond to edges of G̃L with a leftwards of
rightwards arrow. This gives a unique dimer configuration on the expanded graph except
on cities corresponding to vertices of type i = 1 in G̃L, as shown in Figure C.5 (b), (d),

where two possible dimer configurations occupy the city, one of which is non planar. It
is known [52] that non-planar graphs G do not have in general a clockwise odd Kasteleyn
orientation O such that the partition function of the dimer model on G can be written as∑
θ
cθ
2 Pf(Dθ), where Pf is the Pfaffian of the antisymmetric weighted adjacency matrix

Dθ associated to the orientation O on the graph G2, cf. [52]. Anyway, there exists an
orientation O such that every non self intersecting loop in the expanded graph is indeed
counterclockwise odd [52, Figure 8]: together with the free-fermion condition on the vertex
weights and the local nature of the non planarity, this allows to obtain ZS

6V in terms of∑
θ
cθ
2 Pf(Dθ) [94], where Dθ is the weighted adjacency matrix on the expanded graph

weighted as in [94, Figure 5]. This is a generalization of the idea used by Kasteleyn [52]
to obtain the Ising partition function in terms of dimers on similar non planar graphs3.

2θ here represents the possible 4 boundary conditions (periodic-periodic, periodic-antiperiodic, etc.) as
in, e.g., (2.1.1) and χθ are signs s.t.

∑
θ
cθ = 1.

3Here the free-fermion condition on the weights plays a crucial role for the argument to work.
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[58] H. W. J. Blöte and H. J. Hilhorst, Roughening transitions and the zerotemperature
triangular Ising antiferromagnet., J. Phys. A Vol. 15, 1982, L631-L637.

[59] T. Bodineau, D. Ioffe, Y. Velenik Rigorous probabilistic analysis of equilibrium crystal
shapes. J. Math. Phys. 1 March 2000; 41 (3): 1033–1098.

[60] Chhita, S., Toninelli, F.L. A (2 + 1)-Dimensional Anisotropic KPZ Growth Model
with a Smooth Phase. Commun. Math. Phys. 367, 483–516 (2019).

[61] A. Borodin, F. L. Toninelli, Two-dimensional Anisotropic KPZ growth and limit
shapes J. Stat. Mech. (2018) 083205

[62] Y. Velenik, Localization and delocalization of random interfaces., Probability Surveys
3 (2006): 112-169.

[63] W. Thurston, Conway’s tiling groups., Am. Math. Monthly, Vol. 97, 1990, pp. 757-
773.

[64] E. W. Montroll, R. B. Potts Correlations and Spontaneous Magnetization of the Two-
Dimensional Ising Model J. Math. Phys. 1963; 4 (2): 308–322

https://arxiv.org/pdf/2110.09372.pdf


Bibliography 173

[65] H. Cohn, R. Kenyon, J, Propp A Variational Principle for Domino Tilings., Journal
of the American Mathematical Society, 14 (2001) (2): pp. 297–346

[66] H. Cohn, N. Elkies, J. Propp, Local statistics for random domino tilings of the Aztec
diamond, Duke Math. J. 85 (1996), 117–166

[67] N. Elkies, G. Kuperberg, M. Larsen et al. Alternating-Sign Matrices and Domino
Tilings (Part I)., Journal of Algebraic Combinatorics 1, 111–132 (1992).

[68] N. Elkies, G. Kuperberg, M. Larsen et al. Alternating-Sign Matrices and Domino
Tilings (Part II)., Journal of Algebraic Combinatorics 1, 219–234 (1992).

[69] W. Jockusch, J. Propp, P. Shor, Random Domino Tilings and the Arctic Circle The-
orem, arXiv:math/9801068v1

[70] K. Johansson, The arctic circle boundary and the Airy process, Annals of Probability
33 (2005), 1–30.

[71] M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process.
Journal of Statistical Physics 108, 1071–1106 (2002)

[72] M. Kardar, G. Parisi, Y.C. Zhang Dynamic scaling of growing interfaces. Phys. Rev.
Lett. 56 (9):889, 1986.

[73] K. Johasson, Edge fluctuations of limit shapes, arxiv.org/abs/1704.06035

[74] J. Quastel Introduction to KPZ. In Current developments in mathematics, (2011)
125–194.

[75] I. Corwin, The Kardar-Parisi-Zhang equation and universality class,
arxiv.org/abs/1106.1596

[76] A. Aggarwal, J. Huang, Edge statistics for lozenge tilings of polygons, II: Airy line
ensemble., arXiv:2108.12874v3

[77] J. Huang Edge Statistics for Lozenge Tilings of Polygons, I: Concentration of Height
Function on Strip Domains, Probab. Theory Relat. Fields 188, 337–485

[78] K. Astala, E. Duse, I. Prause, X. Zhong Dimer Models and Conformal Structures,
arXiv:2004.02599v6

[79] A. Aggarwal, Universality for lozenge tiling local statistics, arXiv:1907.09991v4

[80] B. Laslier, Local limits of lozenge tilings are stable under bounded boundary height
perturbations., Probab. Theory Relat. Fields 173, 1243–1264 (2019)

[81] B.Laslier Central limit theorem for lozenge tilings with curved limit shape,
arXiv:2102.05544v1

[82] V. Gorin, Bulk Universality for Random Lozenge Tilings Near Straight Boundaries
and for Tensor Products. Commun. Math. Phys. 354, 317–344 (2017).

[83] K. Johansson, S. Mason, Dimer–Dimer Correlations at the Rough–Smooth Boundary.,
Commun. Math. Phys. 400, 1255–1315 (2023).

https://arxiv.org/abs/math/9801068
https://arxiv.org/abs/1704.06035
https://arxiv.org/abs/1106.1596
https://arXiv.org/abs/2108.12874v3
https://arXiv.org/abs/2004.02599v6
https://arxiv.org/abs/1907.09991
https://arxiv.org/pdf/2102.05544.pdf


174 Bibliography

[84] K. Johansson, S. Mason, Airy process at a thin rough region between frozen and
smooth, arXiv:2302.04663v1

[85] V. Beffara, S. Chhita, K. Johansson, Airy point process at the liquid-gas boundary,
Annals of Probability 46 (2018), 2973–3013.

[86] R. Kenyon, A. Okounkov, Limit shapes and the complex Burgers equation., Acta Math
199, 263–302 (2007).

[87] R. L. Dobrushin, The Gibbs state that describes the coexistence of phases for a three-
dimensional Ising model, Teor. Verojatnost. i Primenen., 17 (1972), 619–639.
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