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Introduction

The Brill-Noether theory for smooth curves is the study of special line bundles, i.e. of the
line bundles L on a curve C such that H1(C,L) 6= 0. By Riemann-Roch this means that
the H0 cohomology or space of holomorphic sections is larger than expected, hence that
the divisor corresponding to the line bundle moves in a larger linear system. This theory
is a broad and classical area of algebraic geometry, which dates back to Riemann and his
work on Abelian functions [R876]. However, the study has been deeply and extensively
carried out by Brill and Noether in the XIX century ([BN873]). Through the years many
aspects of the theory of special linear series have been investigated, so that each of them
has inspired a separate research area. Among these areas, for instance, we recall the
classical study of the Brill-Noether varieties

W r
d (C) = {L ∈ PicdC : h0(L) > r},

and their dimension. This study focused on the properties of linear series on a curve C,
hence suggesting the possible projective models of C. The original motivation to study
these varieties was to classify differences among curves. To this aim the structure of the
Brill-Noether varieties becomes interesting only when we look at special linear series.

In this setting there are other aspects coming up, such as the projective normality
of curves, which is the property for a canonically embedded curve of having a complete
linear series cut by the hypersurfaces of the ambient space in any degree. We notice that
the canonical bundle is special.

Moreover it is worth mentioning Abel maps (we will recall the definition later), which
take values in the Brill-Noether varieties W 0

d (X). If the degree is g− 1 we have that when
X is smooth the variety W 0

g−1(X) is a divisor inside Picg−1X, the so called Theta divisor
of the Jacobian variety of X. From this point of view we can include the study of the
Theta divisor in the Brill-Noether theory, and this naturally leads to approach the Torelli
theorem (for details on all of these subjects see [ACGH]).

The Brill-Noether theory for smooth curves has been widely developed, but when we
think of families of curves we have to consider singular curves as well. However, for
singular curves not much is known yet. We point out some recent developments in the
case of binary curves in [C5].

In this thesis we present some generalizations of Brill-Noether problems for distin-
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guished classes of curves: singular and tropical curves. The study of singular curves and
their properties is still very active and open: many of the classical theorems proved for
smooth curves hold no longer for singular ones. We will work on curves with at most
planar singularities. Of course the easiest to handle are nodal curves, and in particular
stable curves, that allow us to work with their moduli.

Tropical geometry is a recent branch of mathematics which relates algebro-geometric
objects to purely combinatorial ones in such a way that ideally one should be able to obtain
results in algebraic geometry after studying their combinatorial tropical counterpart. A
tropical curve C of genus g in the sense of [BMV09] is a marked graph Γ endowed with
some extra data (see Definitions 2.2.1 and 2.2.3). Given their graph nature, we can inter-
pret tropical curves as degenerations of smooth curves, but we can as well find a different
and deeper relation between stable curves and tropical ones given by duality. Indeed a
tropical curve is associated to a graph which can be thought of as the dual graph of a sta-
ble curve (see subsection 2.5.3). So we can actually view singular and tropical curves as
being part of the class of degenerate curves, i.e. curves arising as limits of smooth curves
through a degenerating process.

The motivations for my work are, on the one hand, my interest in the Brill-Noether
theory itself, since there is a lot of beautiful classical geometry involved. Moreover many
proofs of general facts concerning moduli of curves have been obtained in history by look-
ing at the properties of suitable degenerate curves, as singular and tropical curves are.
Hence in this perspective I hope that my results can help interpret in an easier way clas-
sical problems.

The problems

Chapter 1 is devoted to singular curves, and we tackle the following problems:
1. Given a smooth projective curve C of genus g and a natural number d ≥ 1, we can

consider the product Cd and define the Abel map of degree d

αd
C : Cd −→ PicdC, (p1, . . . , pd) 7→ OC(

d∑

i=1

pi);

it is a regular map, and in degree 1 it is injective when g ≥ 1. In the smooth case the
image Imαd

C of the Abel map coincides with the Brill-Noether variety W 0
d (C). Of course it

is interesting to approach the problem of extending Abel maps to singular curves in such
a way that they have a geometric meaning.

If X is a singular curve we can still define Abel maps: we consider the decomposition
of X in irreducible components, X = C1 ∪ . . . ∪ Cγ , and set Ẋ := X \Xsing, where Xsing is
the set of singular points of X, and Ċi = Ci∩ Ẋ. Then, let d = (d1, . . . , dγ) be a multidegree
with di ≥ 0 for any i, and set

Ẋd := Ċd1
1 × · · · × Ċdγ

γ ;
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Ẋd is a smooth irreducible variety of dimension d = |d|, open and dense in Xd := Cd1
1 ×

· · · × C
dγ
γ . We set

α
d
X : Ẋd −→ PicdX, (p1, . . . , pd) 7→ OX(

d∑

i=1

pi),

and we call it the Abel map of multidegree d; it is a regular map. Abel maps for integral
curves have been studied by Altman and Kleiman in [AK80], and later on in [EGK00],
[EGK02], [EK05]. We notice that the completion of Abel maps for integral curves was
a major step to prove autoduality of the compactified Jacobian ([EGK02]). This is an
important property connected with the study of the fibers of the Hitchin fibration for GL(n)

([AIK76], [N10]).
For reducible curves, the problem of completing the Abel maps is open with a few

exceptions as we shall explain. As it is well known, the non separatedness of the Picard
functor, together with combinatorial hurdles, make the case of reducible curves much
more complex. The first step in this direction was taken by Caporaso and Esteves in
[CE06], where they construct Abel maps of degree 1 for stable curves. However, they do not
describe explicitly the closure of the image of the completion of the map. It is interesting
to notice that they consider stable curves as limits of smooth ones, approaching this way
the study of Abel maps for families of curves. In this setting, the completion of α1

X can be
viewed as a specialization to the singular fiber of the Abel maps of the smooth fibers.

Further improvements have been achieved for Gorenstein curves by Caporaso, Coelho
and Esteves in [CCE08] using torsion free sheaves, and by Coelho and Pacini in [Co07]
and [CP09], where, respectively, they construct Abel maps of degree 2 for curves with two
components and two nodes, and in any degree for curves of compact type. So in all other
cases this problem remains open.

On the other hand the situation is better understood in case d = g− 1 in [C2]: if X is a
nodal connected curve of genus g, denote by Ad(X) the closure of Imα

d
X inside PicdX. Let

Wd(X) := {L ∈ PicdX : h0(L) > 0};

in Theorem 3.1.2. the author proves that if d is a stable multidegree such that |d| = g − 1,
then

Ad(X) = Wd(X),

and hence that the Brill-Noether variety Wd(X) is irreducible. Let P g−1
X be the compact-

ified Jacobian in degree g − 1; it has a polarization given by the Theta divisor Θ(X), and
the pair (P g−1

X , Θ(X)) is a semiabelic stable pair as in [A02]. It turns out that the varieties
Ad(XS) = Wd(XS), where XS is a partial normalization of X at a set S of nodes, are the
sets which give a stratification of Θ(X) (see Theorem 4.2.6. in [C2]).

In the first section of Chapter 1 we generalize this stratification in lower degree and
give a characterization of the closure of the image of the Abel map of multidegree d for
some classes of nodal curves, inside the compactified Picard variety P d

X constructed in
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[C1]. We recall that in this construction every point of P d
X corresponds to a pair (X̂S , M̂S)

where X̂S is the blow up of X at a set S of nodes of X, and M̂S is a balanced line bundle
(see below) of multidegree d on X̂S up to equivalence. So our question can be posed in the
following way: which points of P d

X are limits of effective Weil divisors on X?
We will study the following cases: irreducible curves on the one hand, and two types

of reducible curves, namely curves of compact type and binary curves. Curves of compact
type have the advantage and the special property that the generalized Jacobian is com-
pact. Binary curves are nodal curves made of two smooth rational components meeting at
g +1 points. They form a remarkable class of reducible curves since they present the basic
problems as all reducible curves, yet simpler combinatorics. Indeed, they have been used
in the past as test cases for results later generalized to all stable curves, see for instance
[C5],[Br99].

In order to answer our question, let XS be a partial normalization of a nodal curve X

at a set S of nodes. We define the set

W+
dS

(XS) = {L ∈ PicdS XS : h0(Z,L|Z) > 0 for all subcurves Z ⊆ XS},
and consider the union of the W+

dS
(XS) when S varies among the subsets of Xsing and dS

is the restriction to XS of a balanced multidegree d̂S on the partial blow up X̂S . Similarly
to [C2][Theorem 4.2.6], we define

W̃d(X) :=
⊔

∅⊂S⊂XsingbdS∈B
≥0
d

(bXS)

W+
dS

(XS),

where B
≥0

d (X̂S) is the set of strictly balanced multidegrees d̂S ≥ 0 on X̂S such that |d̂S | = d,
and dS = d̂S |XS

.
In paragraph 1.2.1 we study directly the closure inside P d

X of Ad(X) for irreducible
curves, and we prove that Ad(X) = Wd(X) giving a description of it in terms of the Brill-
Noether varieties W 0

d−δS
(XS) where XS is the normalization of X at a set of nodes S, and

δS = ]S.
In paragraph 1.2.2 we turn our attention to reducible curves: we describe the struc-

ture of the varieties Wd(X) for curves of compact type, which is quite natural, and in the
last part we develop the study of Ad(X) and its closure inside P d

X for binary curves. We
characterize it in terms of the varieties WdS

(XS). If X is a binary curve of genus g and
1 ≤ d ≤ g − 1, we prove that the closure inside P d

X of the union of the varieties Ad(X) as d

varies among balanced multidegrees on X, is exactly W̃d(X). In other words, we define

Ad(X) :=
⋃

d∈B
≥0
d (X)

Ad(X) ⊂ P d
X ,

then the main theorem states that

W̃d(X) = Ad(X) ⊂ P d
X . (1)
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Finally we study the simpler case when d = 1 giving a characterization of the closure of
the image of the Abel map for all the stable curves such that the set B≥0

1 (X) of strictly
balanced multidegrees d ≥ 0 is nonempty, i.e. the so called d-general curves.

2. Let C be a smooth curve of genus g over an algebraically closed field k. The canonical
bundle ωC induces an embedding of C in Pg−1 if and only if C is not hyperelliptic; we
indicate the power ω⊗n

C by ωn
C for any n ∈ N. One says that C is projectively normal if the

maps
H0(Pg−1,OPg−1(k)) → H0(C, ωk

C) (2)

are surjective for every k ≥ 1. In other words, C is projectively normal if and only if the
hypersurfaces of degree k in Pg−1 cut a complete linear series on C for any k. If k = 1 and
the map (2) is surjective, we say that C is linearly normal, which means that the curve
is embedded via a complete linear series. If ωC is ample, then an equivalent formulation
states that C is projectively normal if the maps

SymkH0(C, ωC) → H0(C, ωk
C) (3)

are surjective for every k ≥ 1, because the surjectivity of all these maps when ωC is ample
implies the very ampleness of ωC .

If C is a smooth, non-hyperelliptic curve, Castelnuovo and Noether proved that its
canonical model is projectively normal (see [ACGH]). For curves, though, the problem
becomes harder: in the case of integral curves, in [KM09] the authors generalize Castel-
nuovo’s approach proving that linear normality is equivalent to projective normality. For
reducible curves yet not much is known: properties of the canonical map for Goren-
stein curves, i.e. the map induced by the dualizing sheaf, are investigated in [CFHR99],
whereas in [F04] the author gives a sufficient condition for line bundles on non-reduced
curves to be normally generated (see 1.4.9). The projective normality of reducible curves
is studied in [S91]; more in general, since the problem of studying projective normality
reduces to the study of multiplication maps, we refer to [B01] and [F04] for these items.

In the second section of chapter 1 we investigate the projective normality of reducible
curves restricting the problem to suitable subcurves. The first step is to study the quadratic
normality, i.e. the surjectivity of the maps in (2) for k = 2. Let X be a connected, reduced
and Gorenstein projective curve of genus g with ωX very ample. Assume that X has pla-
nar singularities at the points lying on at least two irreducible components. Our main
result about quadratic normality is the following theorem.

Theorem 1. Let X be a curve as above, and set X = A ∪B with A,B connected subcurves
being smooth at D := A ∩B. If A 6= ∅ and the map

µωA,ωX |A : H0(A,ωA)⊗H0(A,ωX |A) → H0(X, ωA ⊗ ωX |A)

is surjective, then X is quadratically normal.
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We also study certain multiplication maps in order to establish sufficient conditions
that imply the surjectivity of the map in (3) for some k (k-normal generation) assuming to
know the surjectivity for (k−1) (see Proposition 1.4.23). Moreover at the end of the section
we carry out a proof of the projective normality for binary curves following the approach
suggested by Castelnuovo-Noether in [ACGH], and see some applications of our results.
This part is based on a joint work with Edoardo Ballico (see [BB10]).

3. In the third section of chapter 1 we study some properties of semistable curves that
are related to Brill-Noether theory: in subsection 1.3.1 we prove Martens’ theorem and
Mumford’s theorem for irreducible nodal curves generalizing the approach described in
[ACGH]. Then, in subsection 1.3.2 we turn our attention to the possible projective models
of semistable k−gonal curves. A nodal curve is said to be k−gonal if it admits a regular
smoothing such that the general fiber is a smooth curves having a g1

k (i.e. a pencil of degree
k).

We study nodal curves with two components (which are often called vine curves) in-
vestigating about sufficient and necessary conditions in order for them to be k−gonal. In
other words we list the properties that a vine curve must have in order to be k-gonal,
and vice-versa. This study is carried out more extensively for trigonal curves, and the
techniques we use refer to [Br99], [C2], [C6], [EM02] and to [HM82] for the specific use
of admissible covers. We also introduce the concept of weakly k−gonal curves, defined as
the curves possessing a g1

k, and in the case of weakly trigonal curves we investigate, as
Caporaso does for hyperelliptic curves in [C6], if they are trigonal. As one can expect the
answer is negative.

Chapter 2 is devoted to tropical curves, and more in general to tropical moduli. The
classical Torelli map tg : Mg → Ag is the modular map from the moduli space Mg of
smooth curves of genus g to the moduli space Ag of principally polarized abelian varieties
of dimension g, sending a curve C into its Jacobian variety Jac(C), naturally endowed
with the principal polarization given by the class of the theta divisor ΘC . The Torelli map
has been widely studied as it allows to relate the study of curves to the study of linear
(although higher-dimensional) objects, i.e. abelian varieties. Among the many known
results on the Torelli map tg, we mention: the injectivity of the map tg (proved by Torelli
in [T13]) and the many different solutions to the so-called Schottky problem, i.e. the
problem of characterizing the image of tg (see the nice survey of Arbarello in the appendix
of [M99]).

The aim of this chapter is to define and study a tropical analogous of the Torelli map
and is based on a joint work with Margarida Melo and Filippo Viviani (see [BMV09]).
In the paper [MZ07], Mikhalkin and Zharkov study abstract tropical curves and tropical
abelian varieties. They construct the Jacobian Jac(C) and observe that the naive gen-
eralization of the Torelli theorem, namely that a curve C is determined by its Jacobian
Jac(C), is false in this tropical setting. However, they speculate that this naive general-
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ization should be replaced by the statement that the tropical Torelli map ttrg : M tr
g → Atr

g

has tropical degree one, once it has been properly defined!
In [CV1], Caporaso and Viviani determine when two tropical curves have the same

Jacobians. They use this to prove that the tropical Torelli map is indeed of tropical degree
one, assuming the existence of the moduli spaces M tr

g and Atr
g as well as the existence of

the tropical Torelli map ttrg : M tr
g → Atr

g , subject to some natural properties. Indeed, a
construction of the moduli spaces M tr

g and Atr
g for every g remained open so far, at least to

our knowledge. However, the moduli space of n-pointed rational tropical curves M tr
0,n was

constructed by different authors (see [SS2], [Mi4], [GKM09], [KM09]). The aim of chapter
2 is to define the moduli spaces M tr

g and Atr
g , the tropical Torelli map tg : M tr

g → Atr
g and

to investigate an analogue of the Torelli theorem and of the Schottky problem.
With that in mind, we introduce slight generalizations in the definition of tropical

curves and tropical principally polarized abelian varieties. A tropical curve C of genus
g in the sense of [BMV09] is given by a marked graph (Γ, w, l) where (Γ, l) is a metric
graph and w : V (Γ) → Z≥0 is a weight function defined on the set V (Γ) of vertices of Γ,
such that g = b1(Γ) + |w|, where |w| :=

∑
v∈V (Γ) w(v) is the total weight of the graph, and

the marked graph (Γ, w) satisfies a stability condition (see Definitions 2.2.1 and 2.2.3). A
(principally polarized) tropical abelian variety A of dimension g is a real torus Rg/Λ as
before, together with a flat semi-metric coming from a positive semi-definite quadratic
form Q with rational null-space (see Definition 2.3.1). To every tropical curve C = (Γ, w, l)

of genus g, it is associated a tropical abelian variety of dimension g, called the Jacobian of
C and denoted by Jac(C), which is given by the real torus (H1(Γ,R)⊕R|w|)/(H1(Γ,Z)⊕Z|w|),
together with the positive semi-definite quadratic form Q(Γ,l) which vanishes on R|w| and
is given on H1(Γ,R) by Q(Γ,l)(

∑
e∈E(Γ) ne · e) =

∑
e∈E(Γ) n2

e · l(e). The advantage of such a
generalization in the definition of tropical curves and tropical abelian varieties is that the
moduli spaces we will construct are closed under specializations (see subsection 2.2.1 for
more details).

The construction of the moduli spaces of tropical curves and tropical abelian varieties
is performed within the category of what we call stacky fans (see section 2.1.1). A stacky
fan is, roughly speaking, a topological space given by a collection of quotients of rational
polyhedral cones, called cells of the stacky fan, whose closures are glued together along
their boundaries via integral linear maps (see definition 2.1.1).

The moduli space M tr
g of tropical curves of genus g is a stacky fan with cells C(Γ, w) =

R|E(Γ|)
>0 / Aut(Γ, w), where (Γ, w) varies among stable marked graphs of genus g, consisting

of all the tropical curves whose underlying marked graph is equal to (Γ, w) (see defini-
tion 2.2.5). The closures of two cells C(Γ, w) and C(Γ′, w′) are glued together along the
faces that correspond to common specializations of (Γ, w) and (Γ′, w′) (see Theorem 2.2.8).
Therefore, in M tr

g , the closure of a cell C(Γ, w) will be equal to a disjoint union of lower
dimensional cells C(Γ′, w′) corresponding to different specializations of (Γ, w).

We describe the maximal cells and the codimension one cells of M tr
g and we prove that
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M tr
g is pure dimensional and connected through codimension one (see Proposition 2.2.9).

Moreover the topology with which M tr
g is endowed is shown in [C8] to be Hausdorff.

The moduli space Atr
g of tropical abelian varieties of dimension g is first constructed as

a topological space by forming the quotient Ωrt
g / GLg(Z), where Ωrt

g is the cone of positive
semi-definite quadratic forms in Rg with rational null space and the action of GLg(Z) is via
the usual arithmetic equivalence (see definition 2.3.5). In order to put a structure of stacky
fan on Atr

g , one has to specify a GLg(Z)-admissible decomposition Σ of Ωrt
g (see definition

2.3.6), i.e. a fan decomposition of Ωrt
g into (infinitely many) rational polyhedral cones that

are stable under the action of GLg(Z) and such that there are finitely many equivalence
classes of cones modulo GLg(Z). Given such a GLg(Z)-admissible decomposition Σ of Ωrt

g ,
we endow Atr

g with the structure of a stacky fan, denoted by Atr,Σ
g , in such a way that the

cells of Atr,Σ
g are exactly the GLg(Z)-equivalence classes of cones in Σ quotiented out by

their stabilizer subgroups (see Theorem 2.3.7).
Among all the known GLg(Z)-admissible decompositions of Ωrt

g , one will play a special
role in this paper, namely the (second) Voronoi decomposition which we denote by V . The
cones of V are formed by those elements Q ∈ Ωrt

g that have the same Dirichlet-Voronoi
polytope Vor(Q) (see definition 2.3.9). We denote the corresponding stacky fan by Atr,V

g (see
definition 2.3.11). We describe the maximal cells and the codimension one cells of Atr,V

g

and we prove that Atr,V
g is pure-dimensional and connected through codimension one (see

Proposition 2.3.12). Atr,V
g admits an important stacky subfan, denoted by Azon

g , formed by
all the cells of Atr,V

g whose associated Dirichlet-Voronoi polytope is a zonotope. We show
that GLg(Z)-equivalence classes of zonotopal Dirichlet-Voronoi polytopes (and hence the
cells of Azon

g ) are in bijection with simple matroids of rank at most g (see Theorem 2.3.16).
After having defined M tr

g and Atr,V
g , we show that the tropical Torelli map

ttrg : M tr
g → Atr,V

g

C 7→ Jac(C),

is a map of stacky fans (see Theorem 2.4.5).
We then prove a Schottky-type and a Torelli-type theorem for ttrg . The Schottky-type

theorem says that ttrg is a full map whose image is equal to the stacky subfan Agr,cogr
g ⊂

Azon
g , whose cells correspond to cographic simple matroids of rank at most g (see Theorem

2.4.10). The Torelli-type theorem says that ttrg is of degree one onto its image (see Theorem
2.4.15). Moreover, extending the results of Caporaso and Viviani [CV1] to our generalized
tropical curves (i.e. admitting also weights), we determine when two tropical curves have
the same Jacobian (see Theorem 2.4.14).

Finally, we define the stacky subfan M tr,pl
g ⊂ M tr

g consisting of planar tropical curves
(see definition 2.5.7) and the stacky subfan Agr

g ⊂ Azon
g whose cells correspond to graphic

simple matroids of rank at most g (see definition 2.5.1). We show that Agr
g is also equal

to the closure inside Atr,V
g of the so-called principal cone σ0

prin (see Proposition 2.5.4). We
prove that ttrg (C) ∈ Agr

g if and only if C is a planar tropical curve and that ttrg (M tr,pl
g ) =
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Agr,cogr
g := Acogr

g ∩Agr
g (see Theorem 2.5.12).

As an application of our tropical results, we study a problem raised by Namikawa in
[N80] concerning the extension tg of the (classical) Torelli map from the Deligne-Mumford
compactification Mg of Mg to the (second) Voronoi toroidal compactification Ag

V of Ag

(see subsection 2.5.3 for more details). More precisely, in Corollary 2.5.13, we provide
a characterization of the stable curves whose dual graph is planar in terms of their im-
age via the compactified Torelli map tg, thus answering affirmatively to [N80, Problem
(9.31)(i)]. The relation between our tropical moduli spaces M tr

g (resp. Atr,V
g ) and the com-

pactified moduli spaces Mg (resp. Ag
V ) is that there is a natural bijective correspondence

between the cells of the former and the strata of the latter; moreover these bijections are
compatible with the Torelli maps ttrg and tg. This allows us to apply our results about ttrg

to the study of tg, providing thus the necessary tools to solve Namikawa’s problem.
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Chapter 1

Aspects of Brill-Noether theory
for singular curves

1.1 Notation

Let us recall some basic facts about the construction in [C1] that we will use in what
follows. We work over an algebraically closed field k. Throughout the paper a curve will
be a reduced projective variety of pure dimension 1 over k. Moreover, we will deal with
nodal curves, although some statements are more general. Let then X be a nodal curve,
and let Xν ν−→ X be its normalization; if Xν = tγ

i=1C
ν
i is the decomposition of Xν into

smooth components of genus gi for every i = 1, . . . , γ, then the arithmetic genus of X is
g =

∑γ
i=1 gi+δ−γ+1. If Z is a subcurve of X of genus gZ and Zc = X \ Z, we will denote by

δZ = ]Z∩Zc and if ωX is the dualizing sheaf of X, we set degZ ωX = deg ωX |Z = 2gZ−2+δZ .
A curve X of genus g ≥ 2 is said to be stable if it is connected and if every component

E ∼= P1 is such that δE ≥ 3, which is equivalent to saying that the curve has finite auto-
morphism group. By a quasistable curve we mean a connected curve X such that every
subcurve E ∼= P1 has δE ≥ 2 and the ones with δE = 2, i.e. the exceptional components,
don’t intersect. If S is a set of nodes of a stable curve X, throughout the paper we will
denote by XS the normalization of X at the nodes in S, and by X̂S the quasistable curve
obtained by “blowing up” X at S. In what follows we will often call X̂S a partial blow up
of X. Obviously XS is the complement in X̂S of all the exceptional components.

In [C1] Caporaso constructs a compactification P d,g → Mg of the universal Picard
variety, such that the fiber over a smooth curve X of genus g ≥ 2 is its Picard variety
PicdX, whereas if X is a stable curve in Mg, then the fiber over it is P d

X , a connected and
projective scheme, which has a meaningful description in terms of line bundles on the
partial blowups of X.

Indeed, let X be a quasistable curve of genus g and L ∈ PicdX; we denote the multide-
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gree of L by
d = (d1, . . . , dγ),

where, if X =
⋃γ

i=1 Ci is the decomposition of X in irreducible components, we have di =

deg L|Ci and d = |d|. We say that d is balanced if for any connected subcurve Z of X we
have that

d
wZ

2g − 2
− δZ

2
≤ di ≤ d

wZ

2g − 2
+

δZ

2
, (1.1)

where wZ = degZ ωX , and for any exceptional component E of X we have L|E = OE(1).
We say d is strictly balanced if strict inequalities hold in (1.1) for every Z  X such

that Z ∩ Zc 6⊂ Xexc, where Xexc is the subcurve of the exceptional components of X (see
[C7]). We will denote by Bd(X) the set of balanced multidegrees on X, and by Bd(X) its
subset of strictly balanced ones.

We are going to introduce the scheme P d
X by looking at its stratification; so let X be a

stable curve of genus g ≥ 2, then, for any d, P d
X is a connected, reduced scheme of pure

dimension g, such that
P d

X =
∐

∅⊂S⊂Xsing

d∈Bd(bXS)

P
d
S , (1.2)

where P
d
S
∼= PicdS XS , XS ⊂ X̂S as above, and dS = d|XS

. In particular, the points in
P d

X are in one-to-one correspondence with equivalence classes of strictly balanced line
bundles. Any such class is determined by S and by M ∈ PicXS . Hence a point of P d

X can
be denoted by [M, S], where if M̂S is a class of line bundles in Bd(X̂S), then M := M̂S |XS ,
and, by construction, when restricted to every exceptional component of X̂S , M̂S is equal
to O(1).

A node n of X is said to be separating if X \ {n} is not connected; we denote by Xsing

the set of nodes of X, and by Xsep the subset of separating nodes.
If X is a nodal connected curve of genus g, we will denote by Ad(X) the closure of Imα

d
X

inside PicdX. Moreover we define the Brill-Noether variety:

Wd(X) := {L ∈ PicdX : h0(L) > 0}.

Let νS : XS → X be the normalization of X at the nodes in S. It induces the pullback
map ν∗S : PicdX → PicdXS ; if M ∈ PicdXS , we denote by FM (X) the fiber of ν∗S over M , and
by WM (X) the intersection FM (X) ∩Wd(X).

1.2 A compactification of the image of the Abel Map

Let α
d
X be the Abel map of multidegree d of a stable curve X of genus g ≥ 2. We want to

describe the closure of Imα
d
X inside the compactified Jacobian P d

X constructed in [C1]. We
start by examining the case of irreducible curves.

11



1.2.1 Irreducible curves

Let X be an irreducible nodal curve of genus g and, for d ≥ 1, consider the Brill-Noether
variety Wd(X). As a subvariety of PicdX, we are interested in studying its closure Wd(X)

in the compactified Picard Variety P d
X , using the description given in [C1]. It will turn out

that Wd(X) is strongly related to the image of the Abel map, that we are going to define.
Let Ẋ := X \Xsing be the smooth locus of X; since X is irreducible, we have that Ẋd is a
smooth irreducible variety of dimension d, open and dense in Xd. Now, for d ≥ 1, let

αd
X : Ẋd −→ PicdX

(p1, . . . , pd) 7→ OX(
d∑

i=1

pi);

we call αd
X the Abel map of degree d. It is a regular map, and obviously αd

X(Ẋd) ⊂ Wd(X).
We denote by Ad(X) the closure of αd

X(Ẋd) in PicdX; of course Ad(X) ⊂ Wd(X). Let us
now introduce the following set

W̃d(X) := {[M, S] ∈ P d
X s.t. h0(X̂S , M̂S) > 0},

where S ⊂ Xsing with δS := ]S, X̂S = XS ∪ ∪δS
i=1Ei is the blow up of X at the nodes of S,

and, as we introduced in the previous section, M̂S is a class of line bundles in Bd(X̂S) such
that its resctrictions to the components of X̂S are

M̂S |XS =: M, M̂S |Ei = O(1) for any i = 1, . . . δS .

Let us observe that since h0(X̂S , M̂S) = h0(XS , M) (see [C2][Lemma 4.2.5]), we have:

W̃d(X) = {[M, S] ∈ P d
X s.t. h0(XS ,M) > 0},

which is in turn equivalent to:

W̃d(X) ∼=
⊔

S⊂Xsing

Wd−δS
(XS).

Theorem 1.2.1. Let X be an irreducible curve of genus g ≥ 1 with δ nodes. Then for any
d ≥ 1 we have:

(i) Ad(X) = Wd(X), hence Wd(X) is irreducible and dim Wd(X) = min{d, g},

(ii) Ad(X) = Wd(X) = W̃d(X) ⊂ P d
X .

Proof. We start by assuming that X has only one node n, and its normalization is ν : Xn →
X, with ν−1(n) = {p, q}. Let us consider the regular dominant map

ρ : Wd(X) → Wd(Xn)

L 7→ ν∗(L);

for any M ∈ Imρ we denote by WM (X) = ρ−1(M), the fiber of ρ. We recall that WM (X) ⊂
FM (X), where FM (X) ∼= k∗ is the fiber of the pullback map ν∗ : PicdX → PicdXn. The
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cardinality of the fibers WM (X) is at least 0, so, since dim Wd(Xn) = d, it follows that
dim Wd(X) ≤ d; moreover Ad(X) is irreducible of dimension d, hence we have that Ad(X)

is an irreducible component of Wd(X). We want to prove that for any M ∈ Imρ, WM (X) ⊂
Ad(X), so that Ad(X) ⊂ Wd(X) ⊂ Ad(X) implies that Wd(X) = Ad(X) and Wd(X) =

Ad(X). We are now going to analyze all the possible cases.

(1) M ∈ Imρ with h0(Xn,M) = 1 and

h0(Xn,M(−p)) = h0(Xn, M(−q)) = h0(Xn,M)− 1.

Then by [C2, Lemma 2.2.3], WM (X) = {LM} with LM ∈ Imαd
X .

(2) M ∈ Imρ with h0(Xn,M) ≥ 2 and

h0(Xn,M(−p)) = h0(Xn, M(−q)) = h0(Xn,M)− 1.

We are going to show that there exist two points in FM (X) ⊂ P d
X which are contained

in Ad(X). Indeed,

FM (X) \ FM (X) = {[M(−p), n], [M(−q), n]}.

Let us take [M(−p), n]; by [C2, Lemmas 2.2.3, 2.2.4] there exists L ∈ Picd−1X such
that ν∗(L) = M(−p) and L ∈ Imαd−1

X . Let now pt ∈ Ẋ be a moving point specializing
to the node, i.e.such that pt

t→0−→ n. Of course L(pt) ∈ Imαd
X , and L(pt) → [M(−p), n]

as t → 0. Then [M(−p), n] ∈ Ad(X). The same holds for [M(−q), n], so we have that

FM (X) \ FM (X) ⊂ Ad(X).

(3) M ∈ Imρ with h0(Xn,M) = 1 and

h0(Xn, M(−p)) = h0(Xn,M(−q)) = h0(Xn,M).

Again we want to prove that FM (X) \ FM (X) ⊂ Ad(X); so let M ′ be a line bundle
on Xn not supported on either p or q such that M = M ′(hp + kq); then M ′ is as
in (1) and deg M ′ = d′ with d′ = d − (h + k). Let us consider [M(−p), n] ∈ FM (X),
then M(−p) = M ′(h′p + kq), where h′ = h − 1. We choose a moving point pt on Xn

specializing to p as t goes to 0, and a moving point qt on Xn such that qt specializes
to q. Now fix t, and take the line bundle M ′′

t := M ′(h′pt + kqt) on Xn; by case (1),
there exists L′′t ∈ Imαd−1

X such that ν∗(L′′t ) = M ′′
t . We consider now one moving point

pu ∈ Ẋ, such that ν∗(pu) on Xn specializes to p when u → 0. As well as we saw in case
(2), L′′t (pu) ∈ Imαd

X specializes to [M ′′
t , n] as u → 0. Hence [M ′′

t , n] ∈ Ad(X). Now let
t → 0: we see that, by construction, [M ′′

t , n] → [M(−p), n], hence [M(−p), n] ∈ Ad(X).
Using the same argument, we get that [M(−q), n] ∈ Ad(X) as well.

(4) M ∈ Imρ with h0(Xn,M) ≥ 2 and either p or q as base point. Choose, say, p as
base point, i.e. h0(Xn,M(−p)) = h0(Xn,M) = h0(Xn,M(−q)) + 1. Then there exists
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M ′ ∈ Picd′Xn, with M = M ′(hp), d′ = d − h, and M ′ not supported on either p or
q up to move the support away. We notice that M(−p) = M ′(h′p) with h′ = h − 1,
so, as before, we perform a double specialization to show that [M(−p), n] ∈ Ad(X).
Concerning [M(−q), n], we have that M(−q) = M ′(hp − q) =: M ′′(hp) for a suitable
M ′′ ∈ Picd′−1Xn. Moreover, since p is a base point of M ′′(hp), h0(Xn,M ′′) ≥ 1. We
take again a moving point pt on Xn specializing to p, and a pu on X such that ν∗(pu)

specializes to p on Xn. We fix t and denote M ′′
t := M ′′(hpt), then by [C2, Lemmas

2.2.3,2.2.4] there exists L′′t contained in Imαd′−1
X such that ν∗(L′′t ) = M ′′

t . We take
L′′t (pu); letting u → 0 we get that L′′t (pu) → [M ′′

t , n] ∈ Ad(X). Now we let t → 0, and
obtain [M ′′

t , n] → [M(−q), n], whence [M(−q), n] ∈ Ad(X).

(5) M ∈ Imρ with h0(Xn,M) ≥ 2 and h0(Xn, M(−p)) = h0(Xn,M(−q)) = h0(Xn, M).
Then there exists M ′ ∈ Picd′Xn, with M = M ′(hp + kq), d′ = d− (h + k), and M ′ not
supported on either p or q up to move the support away. As well as above, we consider
[M(−p), n] and [M(−q), n] to show that they are contained in Ad(X). We proceed as
in case (3) performing a double specialization, and recalling that h0(Xn,M ′) ≥ 2 by
assumption.

Let U ⊂ Wd(Xn) be the following set:

U := {M ∈ Wd(Xn) s.t. h0(Xn,M) = 1, h0(Xn,M(−p)) = h0(Xn,M(−q)) = 0};

this is of course an open set in Wd(Xn), and it contains all the line bundles M studied in
case (1). In particular for any M ∈ U , we have that Ad(X) intersects FM (X) in only one
point LM , where WM (X) = {LM}. In order to verify this assertion, by (1) we just have
to check that [M(−p), n] and [M(−q), n] are not contained in Ad(X), but this is obvious,
since h0(Xn,M(−p)) = 0, hence on the blow up X̂n of X at n, h0(X̂n, M̂(−p)) = 0. From
the study of all the possibilities above, from (2) to (5), we get that for any M ∈ Imρ which
is not in U , Ad(X) contains at least two points of FM (X), but since the generic M has
](FM (X)∩Ad(X)) = 1, we have that for M ∈ Imρ \U , the whole FM (X) must be contained
in Ad(X), hence for any M ∈ Imρ we have that WM (X) ⊂ Ad(X).

So we have shown that Wd(X) = Ad(X), with subsequent equality of their closures.
In order to show that Wd(X) = W̃d(X), we argue like this: direction ⊂ is obvious, since
W̃d(X) is a closed set in P

d

X containing Wd(X). On the other hand, the analysis made
above suggests that any [N, n] ∈ W̃d(X) is also an element of Ad(X). Indeed if N has p

and/or q as base points, we argue as in (3),(4),(5); if otherwise N does not contain p nor q

in its support, by (2) we get that there exists L(pt) ∈ Imαd
X , such that L(pt) specializes to

[N, n] as t → 0.
If the number of nodes δ is ≥ 2, we proceed by induction on δ. Indeed, let X be a nodal

irreducible curve having δ nodes. We blow up X at one node n, so that X̂n is the blown up
curve, and Xn is the strict transform, and we have the normalization map ν : Xn → X such
that ν−1(n) = {p, q}. So again we look at the dominant morphism ρ : Wd(X) → Wd(Xn),
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and we prove that the fibers WM (X) ⊂ Ad(X) for any M ∈ Imρ. As inductive hypothesis
we assume that Wd(Xn) = Ad(Xn) is irreducible of dimension d. This is the only point
where we used the smoothness of Xn in the previous case when δ = 1; hence reapplying
the argument above, which is based on [C2, Lemmas 2.2.3,2.2.4], we get the conclusions
for every δ and for every d ≥ 1.

Remark 1.2.2. We observe that when d ≥ g, with g the genus of X, it doesn’t make sense
referring to Wd(X), since it is equal to PicdX. On the other hand, when d = 1 we have
that by [C2, Lemma 2.2.3], W1(X) = Imα1

X = A1(X), and when d = g − 1 we get that the
Theta divisor is irreducible in Picg−1X.

Remark 1.2.3. From the equality Ad(X) = Wd(X) for any d, we deduce an important fact;
we use the previous notation, where X has δ nodes and Xn is the normalization at a node
n. Let L ∈ Wd(X) be such that M = ν∗L has WM (X) = FM (X). Then k∗ = WM (X), and
we can denote its elements in the following way:

WM (X) = {Lc, c ∈ k∗}.

By 1.2.1 we have that for any c ∈ k∗ there exists a family Lc
t ∈ Imαd

X such that Lc
t → Lc.

In particular, we will have that Lc
t = L̃c

t(hpc
t + kqc

t ) for suitable h, k, pc
t , q

c
t ∈ Ẋ such that

ν∗(pc
t) specializes to p on Xn, ν∗(qc

t ) specializes to q, and L̃c
t specializes to some effective

line bundle on X not supported on n. Hence we can assume L̃c
t = L̃c not depending on t; so,

for any c ∈ k∗, we have L̃c(hpc
t + kqc

t ) → Lc. If L̃c is such that no other effective line bundle
is in its fiber, we have that L̃c = L̃, and L̃(hpc

t +kqc
t ) → Lc, so in this case the limit depends

only upon the choice of the moving points pc
t and qc

t . Equivalently, if c 6= c′ in k∗, there
exist moving points pc

t , q
c
t and pc′

t , qc′
t such that L̃(hpc

t + kqc
t ) → Lc and L̃(hpc′

t + kqc′
t ) → Lc′ .

1.2.2 Reducible curves

Very little is known about Abel maps of reducible curves, even if recently a lot of effort
has been put into studying the class of stable curves, see for example [C2], [C5], [C6],
[Co07],[CP09]. We are going to study the relation among the varieties Wd(X), Ad(X) and
their closures in P d

X . Let X be a reducible curve with components C1, . . . , Cγ ; for any
d = (d1, . . . , dγ) ∈ Zγ with |d| = d, we can consider the Brill-Noether variety Wd(X) that
we defined in the introduction of the paper. Obviously if di < 0 for every i = 1, . . . , γ, we
get that Wd(X) = ∅. On the other hand, if we assume d ≥ 0, i.e. di ≥ 0 for every i, we can
define the Abel map of multidegree d. Set Ẋ := X \Xsing, and Ċi = Ci ∩ Ẋ; we define

Ẋd := Ċd1
1 × . . .× Ċdγ

γ ⊂ Xd := Cd1
1 × . . .× Cdγ

γ ,

and
α

d
X : Ẋd −→ PicdX

(p1, . . . , pd) 7→ OX(
d∑

i=1

pi).
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As in the irreducible case, we denote by Ad(X) the closure of the set Imα
d
X ⊂ PicdX. We

are now going to introduce a set which will be crucial hereafter.

W+
d (X) := {L ∈ PicdX s.t. h0(Z, L|Z) > 0 for any subcurve Z ⊆ X}. (1.3)

This definition suggests the following

Lemma 1.2.4. Let d ≥ 0 be a multidegree on a reducible curve X. Then

Ad(X) ⊂ W+
d (X).

Proof. The proof is straightforward: the line bundles in Imα
d
X are of the formOX(

∑d
i=1 pi),

hence their restriction to any subcurve of X has nonzero sections. Then by upper semi-
continuity of the dimension of the H0 this is still true for their limits in Ad(X).

We start by studying the simplest case, i.e. when X is a curve of compact type.

Curves of compact type

When X is a curve of compact type, for any multidegree d we have that PicdX is complete,
hence so is Wd(X). However we are interested in the relation between Ad(X) and Wd(X).
We start by assuming that X has two smooth components C1, C2 meeting at one node n,
hence its normalization is the disconnected curve

C1 t C2
ν−→ X,

with ν−1(n) = {p, q}. This induces the pullback map

Pic(d1,d2)X
ν∗−→ Picd1C1 × Picd2C2,

which is an isomorphism, and given L ∈ Wd(X), we denote (L1, L2) := ν∗(L). We define
the sets:

W+
d (X) := {L ∈ Wd(X) s.t. h0(C1, L1) > 0, h0(C2, L2) > 0},

W+−
d (X) := {L ∈ Wd(X) s.t. h0(C1, L1) > 0, h0(C2, L2) = 0},

W−+
d (X) := {L ∈ Wd(X) s.t. h0(C1, L1) = 0, h0(C2, L2) > 0};

(1.4)

of course we have that Wd(X) = W+
d (X) tW+−

d (X) tW−+
d (X) set-theoretically.

Proposition 1.2.5. Let X be a curve of compact type of genus g with two smooth com-
ponents C1, C2 of genus resp. g1, g2. Let d ≥ 0 be a multidegree with |d| = d such that
1 ≤ d ≤ g − 1. We have:

(i) if d1 ≤ g1 − 1 and d2 ≤ g2 − 1, then Wd(X) is connected and has 3 irreducible compo-
nents, of dimensions d, d1 + g2 − 1, d2 + g1 − 1,
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(ii) if d1 ≥ g1 and d2 ≤ g2 − 1 (up to swapping the indices), Wd(X) is connected and has 2

irreducible components.

Proof. In order to prove (i) we assume that d1 ≤ g1 − 1 and d2 ≤ g2 − 1. We consider the
pullback map

ν∗ : PicdX
∼=−→ Picd1C1 × Picd2C2

L 7→ (L1, L2);

then by [C2, 2.1.1] using that δ = 1,

W+
d (X) = (ν∗)−1(Wd1(C1)×Wd2(C2)). (1.5)

Now since C1, C2 are smooth curves, we have that Wdi
(Ci) is irreducible of dimension di

for i = 1, 2. Then W+
d (X) is a closed irreducible set containing Ad(X). Since the fibers of ν∗

have cardinality one, dim W+
d (X) = d. By definition we know that Imα

d
X = (ν∗)−1(Imαd1

C1
×

Imαd2
C2

), hence dim Imα
d
X = d, then Ad(X) = W+

d (X) and they both have dimension d.
The other two components of Wd(X) are the following ones: consider L ∈ W+−

d (X); we
have that h0(C2, L2) = 0, and since L has nonzero sections, we have h0(C1, L1(−p)) > 0.
As in [C3] we define the set

Λp := {L1 ∈ Picd1C1 s.t. h0(C1, L1(−p)) > 0}, (1.6)

and consider the isomorphism

φp : Picd1−1C1 −→ Picd1C1

M 7→ M(p).
(1.7)

It is easy to see that Λp = φp(Wd1−1(C1)), hence Λp is closed and irreducible of dimension
d1 − 1. Now consider the set

W
+−
d (X) := (ν∗)−1(Λp × Picd2C2);

it contains
W+−

d (X) = (ν∗)−1(Λp × (Picd2C2 \Wd2C2))

as an open set, and dim W
+−
d (X) = d1 + g2 − 1.

The last irreducible component of Wd(X) is the one containing the L’s such that h0(C1, L1) =

0 and h0(C2, L2) 6= 0. Arguing as before, we define the set Λq ⊂ Picd2C2, and the isomor-
phism φq : Picd2−1C2 → Picd2C2 sending N ∈ Picd2−1C2 to N(q). Hence Λq = φq(Wd2−1(C2)),
and the set

W
−+

d (X) := (ν∗)−1(Picd1C1 × Λq)

is the closure of W−+
d (X), with dim W

−+

d (X) = d2 + g1 − 1. Hence we have that

Wd(X) = Ad(X) ∪W
+−
d (X) ∪W

−+

d (X),

and their intersection is (ν∗)−1(Λp × Λq), having dimension d1 − 1 + d2 − 1 = d − 2. This
implies that Wd(X) is connected.
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Part (ii) comes from part (i), once we have noticed that if d1 ≥ g1 and d2 ≤ g2 − 1, then
h0(C1, L1) > 0, so W−+

d (X) = ∅. Hence

Wd(X) = W+
d (X) ∪W

+−
d (X),

and their intersection is (ν∗)−1(Λp), having dimension d1 − 1. We notice that in this case
by (1.5), dim W+

d (X) = g1 + d2, which can be less than d. We prove that even in this
case it holds that W+

d (X) = Ad(X). Indeed, inclusion (⊃) is obvious, and concerning (⊂),
let us take a line bundle L ∈ W+

d (X). Then we look at its pullback M = ν∗(L). Let
M = (OC1(D1 +λp),OC2(D2 +µq)) for some suitable divisors D1 and D2; we choose moving
points pt on C1 ∩X and qt on C2 ∩X, specializing resp. to p and q. We consider on C1 tC2

the line bundle:
Mt := (OC1(D1 + λpt),OC2(D2 + µqt)),

and push it down to X, getting the (unique) line bundle Lt ∈ Imα
d
X such that ν∗(Lt) = Mt.

Then if we let t tend to 0, we get that Lt specializes to L, and hence that L ∈ Ad(X). So we
conclude that W+

d (X) = Ad(X). It follows that dim Wd(X) = max{g1 + d2, d1 + g2 − 1}. If
vice-versa d2 ≥ g2 and d1 ≤ g1 − 1, we have that W+−

d (X) = ∅, Wd(X) = Ad(X)∪W
−+

d (X),
Ad(X) ∩W

−+

d (X) = (ν∗)−1(Λq), and dim Wd(X) = max{d1 + g2, d2 + g1 − 1}.

Remark 1.2.6. We just observe that the case d = g−1 is carried out in [C2], but we obtain
it as a by-product in 1.2.5(ii); since there are no strictly balanced multidegrees summing
to g − 1 on a curve of compact type, we get that Wd(X) is not irreducible.

In the sequel we will try to generalize our study to any curve of compact type, so take
X as the union of irreducible smooth curves C1, . . . , Cγ , with gi the genus of Ci and g the
genus of X. Notice that since X is of compact type, we have that ](Ci ∩ Cj) = 1 for i 6= j,
and this implies that the total number of nodes δ ≤ γ−1; we denote by nij the intersection
point Ci ∩ Cj . Let d ≥ 0 be a multidegree on X, with |d| = d, 1 ≤ d ≤ g − 1. Let

ν :
γ⊔

i=1

Ci → X

be the total normalization map, ν∗ the pullback as before, and denote by (L1, . . . , Lγ) the

pullback to
γ⊔

i=1

Ci of any L ∈ PicdX. If nij is a node, its branches on Ci, Cj will be called

respectively pi
j , p

j
i , distinguishing the curve they belong to by the position of indices.

Lemma 1.2.7. Let X be a connected curve of compact type as above and d ≥ 0. Then
W+

d (X) = Ad(X), is a (closed) irreducible component of Wd(X).

Proof. The proof is straightforward: we see that, as we pointed out in the case γ = 2,

W+
d (X) = (ν∗)−1(Wd1C1 × · · · ×Wdγ Cγ), (1.8)

indeed X has a number of nodes δ = γ − 1, so we apply [C2, 2.1.1] and obtain the equality.
Since Ci is smooth for every i, by (1.8) W+

d (X) turns out to be a closed irreducible set of
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dimension d1 + · · ·+ dγ = d, and it contains Ad(X). To see the inverse inclusion we argue
as in 1.2.5(ii), proving that for any L ∈ W+

d (X) there exists Lt ∈ Imα
d
X such that, if we let

t tend to 0, we get that Lt specializes to L. So we have W+
d (X) = Ad(X) as we wanted.

What we are going to do now is to study the remaining irreducible components of
Wd(X). To do this we need to introduce some notation: let δi = ](Ci∩X \ Ci) for i = 1, . . . , γ,
and let I be a 1 × γ vector where the j-th component is Ij = + or Ij = −. Then we can
define the set:

W
I
d (X) :=

{
L ∈ Wd(X) s.t. h0(Cj , Lj) = 0 if Ij = −, and h0(Cj , Lj) > 0 if Ij = +

}
.

Notice that if Ij = + for every j, i.e. I = (+, . . . , +), we get W+
d (X). Let us fix some vector

I 6= (+, . . . , +); set
I+ := {j ∈ {1, . . . , γ}, Ij = +},

and
I− := {h ∈ {1, . . . , γ}, Ih = −}.

We denote by pj
h the branch on Cj of the point of intersection Cj ∩ Ch, for j ∈ I+, and

some h ∈ I−, if it exists. Moreover, we fix j ∈ I+ and consider the disconnected curve
X \ Cj = Xj

1 t · · · tXj
kj

. We observe that Cj has only one point of intersection with each
Xj

l , for l = 1, . . . , kj . We denote the branches of this point on Cj and X l
j resp. by pj

l and pl
j .

If (L1, . . . , Lγ) are the restrictions of a line bundle L on X to each irreducible component
of X, we denote by LXl

j
the restriction of L to the connected component X l

j . Set:

Lj :=
{

l ∈ {1, . . . , kj}, h0(LXl
j
) = 0

}
,

and let

Λj := {Lj ∈ Wdj (Cj), h0(Lj(−
∑

l∈Lj

pj
l )) > 0}.

Now, still for j ∈ I+, consider the set:

Σ̃j :=


 ∏

h∈I−
(PicdhCh \Wdh

(Ch))× Λj ×
∏

l∈I+,l 6=j

Wdl
(Cl)


 ⊂

γ∏

i=1

PicdiCi. (1.9)

and denote by Σj the set obtained from Σ̃j by reordering the factors in such a way that the
final order in Σj corresponds to the order of the components of I, so for example, Λj will
be the factor in the position of j in I. We will denote by

ΣI =
⋃

j∈I+

Σj . (1.10)

We observe that Λj is irreducible (see 1.2.5), and its dimension depends on the cardinality
λj of Lj . Indeed dim(Λj) = dj − λj and 0 ≤ λj ≤ kj . It follows that Σj is irreducible for
every j ∈ I+.
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Lemma 1.2.8. We have that (ν∗)−1(ΣI) = W
I
d (X).

Proof. Inclusion (⊂) is easy by definition of ΣI , since an element of (ν∗)−1(ΣI) must have
at least a nonzero section. On the other hand, given a line bundle L ∈ W

I
d (X), we want

to prove that ν∗(L) = (L1, . . . , Lγ) belongs to ΣI . If for every i ∈ I+, h0(LXl
i
) 6= 0 for every

l = 1, . . . , ki, then Li = ∅ and Λi = Wdi(Ci) for every i, hence in this case

Σ =
∏

h∈I−
(PicdhCh \Wdh

(Ch))×
∏

l∈I+

Wdl
(Cl)

up to reordering the factors in the left hand side, and therefore ν∗(L) ∈ Σ. Now, assume
that there exists i ∈ I+ such that Li 6= ∅. Without loss of generality we can assume
that |Li| = 1. Then in order to glue the sections and get a line bundle on X, it must be
h0(Li(−pi

l)) > 0, hence Li ∈ Λi, and therefore

(L1, . . . , Lγ) ∈ Σj ⊂ ΣI .

Even if we can’t say precisely which is the dimension of the components of W
I
d (X),

we can count how many they are. By (1.10) we see that for any fixed I, the number of
irreducible components of W

I
d (X) is |I+|. Hence we can say that the number of irreducible

components of Wd(X) is

N :=


1 +

∑

I 6=(+,...,+)

|I+|

 . (1.11)

Remark 1.2.9. We notice that depending on d, some I ’s won’t appear in (1.11); indeed, if
there exists some k ∈ {1, . . . , γ} such that dk ≥ gk, then the component Ik of I must be +, so
we will have a small number of I ’s, and hence a small number of irreducible components
in Wd(X). Moreover, if dk ≥ gk for every k, we get that the only irreducible component of
Wd(X) is W+

d (X).

Binary curves

A binary curve of genus g is a nodal curve made of two smooth rational components inter-
secting at g + 1 points. We are going to recall some properties that we will use throughout
this paragraph. If X is a binary curve of genus g ≥ −1, a multidegree d = (d1, d2) such
that |d| = d, is balanced on X if

m(d, g) :=
d− g − 1

2
≤ di ≤ d + g + 1

2
=: M(d, g) (1.12)

We say that d is strictly balanced if strict inequality holds. If X̂S is a quasistable curve
obtained from a binary curve X by blowing up the nodes in S, then we call E1, . . . , E]S the
exceptional components, so that if XS is the partial normalization of X at the nodes in S,
we have that X̂S = XS ∪ ∪]S

i=1Ei.
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Definition 1.2.10. A multidegree d̂ = (d1, . . . , d2+]S) on X̂S with |d̂| = d, is balanced if the
following hold:
(1) di = 1 for any i = 3, . . . , ]S, i.e. d̂|Ei = 1,∀i.
(2) d̂|XS is balanced on XS .
d̂ is strictly balanced if its restriction to XS is strictly balanced on XS .

Remark 1.2.11. Let X be a binary curve of genus g, and let Xn be the normalization of
X at the node n, such that ν : Xn → X is the associated map. Let d ≥ 0 be a balanced
multidegree on X such that |d| = d ≤ g − 1, then it is still balanced on Xn. Indeed, let us
suppose by contradiction that

d1 < m(d, g − 1);

then it should be
d1 <

d− g

2
≤ g − 1− g

2
,

but then we would have that d1 < 0, which cannot happen.

Lemma 1.2.12. Let X be a quasistable curve, and L ∈ PicdX a balanced line bundle such
that degL =: d with d ≤ g−1 and h0(L) ≥ 1. Then there exists a non exceptional irreducible
component C of X such that for general p ∈ C

h0(L(p)) = h0(L).

Proof. We fix a smooth point p on X. We know that h0(L(p)) ≥ h0(L). We suppose that
h0(L(p)) = h0(L)+1; by Riemann-Roch this is equivalent to saying that h0(ωX⊗L−1(−p)) =

h0(ωX ⊗L−1). This holds if and only if p is a base point of ωXL−1. But now we notice that,
again by Riemann-Roch theorem,

h0(ωX ⊗ L−1) = h0(L) + 2g − 2− d− g + 1 ≥ h0(L) ≥ 1.

Therefore ωX ⊗ L−1 has some non vanishing section on X. If E ⊂ X is an exceptional
component, then degE ωX = 0 and degE L = 1, hence degE ωX ⊗ L−1 = −1, hence every
section of ωX ⊗ L−1 vanishes on E. This implies that there must be a non exceptional
component C of X such that the restriction to C of H0(ωX ⊗ L−1) is non zero. Hence the
general point p ∈ C is not a base point of ωX ⊗ L−1. So we get our conclusions.

Remark 1.2.13. We recall that if X is a nodal curve and d = g − 1 is stably balanced as
in section 1.3.1 in [C2], then Wd(X) = Ad(X). It’s very easy to see that if X is a binary
curve and d = g − 1 ≥ 0 is balanced, then d is strictly balanced and hence stably balanced.
This implies that if X is a binary curve of genus g and d = g − 1 ≥ 0 balanced, then
Wd(X) = Ad(X).

Lemma 1.2.14. Let d ∈ Bd(X) be such that Wd(X) 6= ∅ where X is binary of genus g and
d ≤ g − 1. Then d ≥ 0 and d ∈ Bd(X).
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Proof. By [C5][Proposition 12] if di < 0 and d ≤ g we have Wd(X) = ∅, hence d ≥ 0. Now
we have

m(d, g) =
d− g − 1

2
≤ g − 1− g − 1

2
= −1.

Therefore, if d ≥ 0, di 6= m(d, g) for i = 1, 2. Hence d is strictly balanced on X.

We notice that by lemma 1.2.14, for a binary curve we have W+
d (X) = Wd(X).

Proposition 1.2.15. Let X = C1 ∪ C2 be a binary curve of genus g, L a line bundle on X

of degree d balanced, with 0 < |d| ≤ g − 1, and h0(X, L) > 0. Then there exists a family
Lt ∈ Imα

d
X such that Lt → L when t → 0.

Proof. Let L be a line bundle as in the hypothesis; we will use induction on the degree.
If d = g − 1 by [C2] (see remark 1.2.13) we have that Ad(X) = Wd(X).
Now let d < g − 1; by lemma 1.2.12 we have that there exists a component of X, say

C1, such that for the general p ∈ C1 we have that h0(L(p)) = h0(L). By lemma 1.2.14 L(p)

has balanced multidegree on X. Hence we can apply induction and get that there exists a
family L′t ∈ Imα

d+1

X such that L′t → L(p). Like before we denote this family via

OX(a1
t + · · ·+ ad+1

t ) → L(p). (1.13)

We notice that p is a base point of L(p). Let ν : Xn → X be the normalization of X at a
node n, as in remark 1.2.11. Then we can pullback (1.13) to Xn and get

OXn(a1
t + · · ·+ ad+1

t ) → L′(p), (1.14)

where with abuse of notation we call the points on X and Xn in the same way, and L′ =

ν∗(L).
Now we divide the proof in two cases:

Case 1 : we assume that h0(L′(p)) = h0(L′).

We need to use a second induction on the number of nodes. The inductive statement
is: if L̃ and L̃(p) are balanced line bundles on Y binary curve with δ nodes, with
degL̃ = d ≥ 0 with h0(L̃) > 0, h0(L̃(p)) = h0(L̃) and there exists OY (a1

t + · · ·+ ad+1
t ) →

L̃(p), then ai
t → p for some i.

The base of induction is obvious on a curve with no nodes, i.e. a smooth one. So
we suppose that the statement above is true for Xn: in particular we know that
h0(L′(p)) = h0(L′); then by induction it holds that in (1.14) there exists ai

t such that

ai
t → p for some i. (1.15)

Up to reordering the points we can assume that i = d + 1. Now, by applying (1.15) to
(1.13) we get that

OX(a1
t + · · ·+ ad

t ) → L,

and hence the conclusions in case 1.
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Case 2 : we assume that h0(L′(p)) = h0(L′) + 1. Then we have h0(L′) = h0(L). We have two
possibilities: by applying Lemma 2.2.3 (2) and Lemma 2.2.4 (2) in [C2], either n is
a base point of L, or WL′(X) = {L}. In the first case we have that it must be true
regardless of the choice of n, i.e. every node n of X must be a base point of L, which
is impossible since the nodes are g + 1 whereas the degree of L is d < g − 1.

On the other hand, if WL′(X) = {L} we need a new inductive argument on the
number of nodes. In this case the inductive statement is: let Y is a binary curve of
genus g, M ∈ PicdY such that d is balanced and d ≤ g − 1 with h0(Y, M) > 0. Then
there exists Mt ∈ Imα

d
Y such that Mt → M when t → 0.

The base of induction is given by a binary curve of genus 2, i.e. with 3 nodes, so that
d = 1, and since d = g − 1, by [C2] we have Wd(X) = Ad(X), hence the conclusion
holds.

We assume the inductive statement for Xn, so we get that there exists L′t ∈ Imα
d
Xn

such that L′t → L′. Since L′t ∈ Imα
d
Xn

, for every t there exists Lt ∈ Imα
d
X such that

ν∗(Lt) = L′t. By the fact that WL′(X) = {L}, we conclude that Lt → L.

Corollary 1.2.16. Let X be a binary curve of genus g, and let d ≥ 0 be a balanced mul-
tidegree on X. Then Wd(X) = Ad(X). In particular Wd(X) is irreducible of dimension
d.

Proof. The first assertion is implied by proposition 1.2.15. And of course this implies that
Wd(X) is irreducible. By [C5][proposition 25] we have that the dimension of Wd(X) =

d.

So far we have studied the closure of Imα
d
X inside PicdX when X is a binary curve. The

next step is to study its closure inside the compactified Picard variety P d
X .

Let Bd(X) be the set of strictly balanced line bundles of multidegree d on X, with
|d| = d, and denote by Bd(X) the set of balanced multidegrees. The stratification of P d

X as
in [C7, Fact 2.2] is the following

P d
X =

∐

∅⊂S⊂Xsing

d∈Bd(bXS)

P
d
S . (1.16)

For any set S of nodes of X, if C1, C2 are the smooth components of X, XS = C1 ∪ C2,
with δS = ](C1 ∩ C2) = δ − ]S, so that the total normalization is

C1 t C2
νS−→ XS ,

and given L ∈ WdS
(XS), we denote (L1, L2) := ν∗S(L). The stratification in (1.16) motivates

the definition of
W̃d(X) :=

⊔

∅⊂S⊂XsingbdS∈B
≥0
d

(bXS)

WdS
(XS), (1.17)
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where B
≥0

d (X̂S) is the set of strictly balanced multidegrees e ≥ 0 on X̂S such that |e| = d,
X̂S is the partial blow up of X at the nodes contained in S, XS is the strict transform of
X, d̂S is a balanced multidegree on X̂S such that |d̂S | = d, whereas

dS = d̂S |XS

and |dS | = d− ]S.
We notice that, if d ∈ B

≥0

d (X), denoting by Ad(X) the closure of Ad(X) in P d
X , similarly

to lemma 1.2.4 we have the inclusion

Ad(X) ⊂ W̃d(X). (1.18)

Definition 1.2.17. We denote by

Ad(X) :=
⋃

d∈B
≥0
d (X)

Ad(X) ⊂ P d
X .

Theorem 1.2.18. Let X = C1 ∪ C2 be a binary curve of genus g ≥ 2 with δ ≥ 2 nodes and
smooth components. Take 1 ≤ d ≤ g − 1. Then

W̃d(X) = Ad(X) ⊂ P d
X .

Proof. Let us observe that, since ]B
≥0

d (X) < ∞, we have that
⋃

d∈B
≥0
d (X)

Ad(X) =
⋃

d∈B
≥0
d (X)

Ad(X).

For any d ∈ B
≥0

d (X), by (1.18) we get that inclusion (⊃) holds. Let us now prove inclusion
(⊂). By (1.17) it is sufficient to show that for any ∅ ⊂ S ⊂ Xsing,

WdS
(XS) ⊂ Ad(X)

for a certain d ∈ B
≥0

d (X).
First of all we notice that by (1.17), we can equivalently write

W̃d(X) =
{

[M,S] ∈ P d
X s.t. M ∈ WdS

(XS) with dS ≥ 0
}

.

Let us assume that ]S = 1, with S = {n}; take M ∈ WdS
(XS) with dS = d̂S |XS and

d̂S ∈ B
≥0

d (X̂S), and consider [M, S] = [M, n]. Thanks to the stratification of P d
X there exists

d = (d1, d2) ∈ B
≥0

d (X) such that either dS = (d1 − 1, d2) or dS = (d1, d2 − 1). We assume,
with no loss of generality, that dS = (d1 − 1, d2). Now by proposition 1.2.15 we know that
M ∈ AdS

(XS), i.e. there exists a family Mt ∈ Imα
dS

XS
such that Mt specializes to M on XS

as t 7→ 0. By [C2, Lemmas 2.2.3,2.2.4] we have that for any t there exists Lt ∈ Imα
dS

X such
that the pullback of Lt to XS is Mt. Let us fix t and take a moving point pu on C1 ∩ Ẋ

such that pu specializes to n as u 7→ 0. We see that by construction degLt(pu) = d and
Lt(pu) ∈ Imα

d
X ; moreover

Lt(pu) u→0−→ [Mt, n] ∈ Ad(X).
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Now we let t tend to 0, so we obtain that [Mt, n] 7→ [M, n], and [M, n] ∈ Ad(X).
We proceed by induction on ]S; we have just proved that when ]S = 1, then for any

d̂S ∈ B
≥0

d (X̂S) there exists d ∈ B
≥0

d (X) such that WdS
(XS) ⊂ Ad(X). Let us suppose

that S ⊂ Xsing is such that for any d̂S ∈ B
≥0

d (X̂S) there exists d ∈ B
≥0

d (X) such that
WdS

(XS) ⊂ Ad(X), or equivalently, [M,S] ∈ Ad(X) for every M ∈ WdS
(XS).

We want to prove that for T ⊂ Xsing, with T = S ∪ n for any node n of XS , then taking
d̂T ∈ B

≥0

d (X̂T ) there exists d ∈ B
≥0

d (X) such that [MT , T ] ∈ Ad(X) with MT ∈ WdT
(XT ).

We take an element MT ∈ WdT
(XT ), and consider [MT , T ]. By 1.2.15 we know that

MT ∈ AdT
(XT ), hence there exists a family M t

T ∈ Imα
dT

XT
such that M t

T specializes to
MT on XT as t 7→ 0. Let dS = (dS

1 , dS
2 ) be a multidegree on XS such that |dT | = |dS | − 1

and d̂S ∈ B
≥0

d (X̂S); it exists because of the stratification of P d
X . Let us assume that,

say, dT = (dS
1 − 1, dS

2 ). Again [C2, Lemmas 2.2.3,2.2.4] imply that for any t there exists
M t

S ∈ Imα
dT

XS
such that the pullback of M t

S to XT is M t
T . We fix t and take pu ∈ C1 ∩ Ẋ

specializing to n on XS ; then we have that degM t
S(pu) = dS , hence by inductive hypothesis

[M t
S(pu), S] ∈ Ad(X) for a certain d ∈ B

≥0

d (X). Then we have that

[M t
S(pu), S] u→0−→ [M t

T , T ] ∈ Ad(X),

and again letting t tend to 0 we obtain that

[M t
T , T ] t→0−→ [MT , T ] ∈ Ad(X),

as we wanted.
It follows that ⊔

∅⊂S⊂XsingbdS∈B
≥0
d

(bXS)

WdS
(XS) =

⋃

d∈B
≥0
d (X)

Ad(X),

hence we get the conclusions.

We are now going to investigate about the closure inside P d
X of the set Ad(X) when

d is a strictly balanced multidegree on X binary curve. Before, we need to recall some
definitions introduced in [C1].

Definition 1.2.19. Let X and X̂ be two Deligne-Mumford semistable curves; we say that
X̂ dominates X if they have the same stable model and if there exists a surjective mor-
phism of X̂ onto X such that every component of X̂ is either contracted to a point or
mapped birationally onto its image.

Definition 1.2.20. Let d ∈ Bd(X) and d̂ ∈ Bd(X̂). We say that d̂ is a refinement of d, and
we denote it by

d̂ ¹ d,

if and only if X̂ dominates X via a map ϕ and for every subcurve Y of X there exists a
subcurve Ŷ of X̂ such that ϕ maps Ŷ to Y and |dY | = |d̂bY |.
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We are now able to state:

Proposition 1.2.21. Let X be a binary curve of genus g ≥ 2 and d ≥ 0 a strictly balanced
multidegree on X. Then

Ad(X) =
⊔

∅⊂S⊂XsingbdS∈B
≥0
d

(bXS)bdS¹d

WdS
(XS) ⊂ W̃d(X).

Proof. Inclusion (⊂) is obvious by an argument analogous to lemma 1.2.4. The proof of
(⊃) is actually the same as in 1.2.18, i.e. we take an element [M, S] ∈ P d

X such that
M ∈ WdS

(XS) and d̂S ¹ d and we use the same argument as in 1.2.18, considering that
d̂S ¹ d, hence WdS

(XS) ⊂ Ad(X).

Degree 1

We are now going to investigate what happens when the degree d = 1. Let X be a nodal
connected curve of genus g ≥ 2, let C1, . . . , Cγ be its irreducible components, and set gi =

g(Ci), and δi = ](Ci ∩X \ Ci).

Lemma 1.2.22. Let X be a semistable curve of genus g ≥ 2 as above and d be a balanced
multidegree on X such that |d| = 1 and d � 0. Then Wd(X) = ∅.

Proof. Let us suppose that Ci is an irreducible component of X such that di < 0. By the
balancing condition we know that:

2gi − 2 + δi

2g − 2
− δi

2
≤ di ≤ 2gi − 2 + δi

2g − 2
+

δi

2
. (1.19)

Assume that there exists L ∈ Wd(X), and denote by n1, . . . , nδi the nodes of Ci ∩ X \ Ci.
Moreover, denote for simplicity Zi = X \ Ci and let q1, . . . , qδi be the branches of n1, . . . , nδi

on Zi. If Y ⊂ X is a subcurve of X, we denote by LY := L|Y . Since by assumption
h0(Ci, LCi) = 0, we have that

h0(X,L) = h0(Zi, LZi(−q1 − · · · − qδi)) > 0.

Hence we must have that deg LZi ≥ δi, and recalling that deg LCi = di = 1 − deg LZi , it
follows that

di ≤ 1− δi. (1.20)

Therefore we have to verify that

2gi − 2 + δi

2g − 2
− δi

2
≤ 1− δi;

this holds if and only if
δi ≤ 2− 2gi

g
.

So we have two possibilities:
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(i) either gi = 0 and δi = 1 or δi = 2,

(ii) or gi 6= 0 and δi = 1.

In case (i), Ci
∼= P1, so let us suppose that δi = 2; hence Ci is an exceptional component of

X, and by the balancing condition it must be di = 1. But by (1.20), we see that di ≤ −1,
and we get a contradiction.

Suppose now that gi ≥ 0 and δi = 1. Then, by (1.33) we have that

di ≥ −1
2

+
2gi − 1
2g − 2

,

hence di ≥ 0, which is again a contradiction in both cases (i) and (ii). Therefore Wd(X) =

∅.

By lemma 1.2.22 we have that the only possibility that Wd(X) 6= ∅ is when d =

(1, 0, . . . , 0), up to swapping some indices. In particular, when d = (1, 0, . . . , 0) and L ∈
Wd(X) we have that by [C6, Lemma 4.2.3] either h0(L) ≤ 1 or C1 is a separating line,
h0(L) = 2 and L

X\C1
= O

X\C1
. We have the following

Theorem 1.2.23. Let X be a connected nodal curve; let d = (1, 0, . . . , 0) be a multidegree
on X. Then Ad(X) = W+

d (X).

Proof. By lemma 1.2.4 we only need to prove that Ad(X) ⊃ W+
d (X). As usual we call

C1, . . . , Cγ the irreducible components of X, then up to reordering we have that d|C1 = 1.
By [C6][Lemma 4.2.3] if L ∈ W+

d (X) we must have h0(L) = 1 unless C1 is a separating
line of X, we will discuss this case later, so suppose C1 is not a separating line of X.

Then L has one nonzero section s on X. If it vanishes on a smooth point r of X, we
have that L = OX(r), so L ∈ Imα

d
X . Otherwise, if there exists a node n ∈ C1 ∩Cc

1 such that
s(n) = 0, we normalize X at n; we denote X ′ ν→ X the normalization at n. Now we have
two possibilities:

(i) X ′ is connected, i.e. n is nonseparating. Let L′ be the pullback of L to X ′. Let
us denote by C2 the component of X such that {n} = C1 ∩ C2 and by p, q the branches
of n on X ′ with p ∈ C1. With abuse of notation we call again s the pullback of s to L′.
Then s(p) = s(q) = 0, but L′ has degree one, so s doesn’t vanish on other points of C1,
and in particular if {n1, . . . , nl} are the other nodes of X ′ \ C1 ∩ C1, s(ni) 6= 0. Notice that
l ≥ 1. Since the pullback of L to the total normalization of X is (OC1(p),OC2 , . . . ,OCγ ),
then s restricted to X ′ \ C1 must be a constant, hence by what we just said a nonzero
constant. In particular s(q) 6= 0, which is a contradiction. Therefore s cannot vanish on a
nonseparating node of X.

(ii) X ′ is not connected. Then X ′ = C1 t Z1 and Z1 is connected. In particular n is a
separating node of X. The pullback of L to X ′ is M = (OC1(p),OZ1), where p is as in (i).
Now let us consider a moving point pt ∈ C1 \p, such that pt 7→ p. Let Mt = (OC1(pt),OZ1) ∈
PicX ′. Then the line bundle OX(pt) on X pulls back to Mt (abusing notation). As pt 7→ p,
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Mt 7→ M and Lt 7→ L̃ such that h0(L̃) ≥ 1. Since h0(X ′,M) = 1 we have that L is the
unique line bundle on X pulling back to M and such that h0(L) ≥ 1. Hence L = L̃. Hence
L ∈ Ad(X).

If C1 is a separating line, since L ∈ W+
d (X) we have h0(L) = 2. Then we can choose

r ∈ C1 \ (C1 ∩ Cc
1) such that L = OX(r). So L ∈ Imα

d
X .

In what follows we are going to give a characterization of the closure of Ad(X) in P d
X

for stable curves in degree 1. Let then X be a stable curve. Let as usual X = C1 ∪ · · · ∪Cγ

be the decomposition of X into irreducible components. If XS is a partial normalization of
X at a set S of nodes, we consider the decomposition of XS in connected components:

XS = XS
1 t · · · tXS

rS
.

We denote by

ν̃S :
γ⊔

i=1

CS
i −→ XS ,

the partial normalization of XS at all the nodes in the set

γ⋃

i=1

(
CS

i ∩ (XS \ CS
i )

)
.

We recall that by [C1], for any stable curve of genus g ≥ 2 and any d, we have a decompo-
sition

P d
X =

∐

∅⊂S⊂Xsing

d∈Bd(bXS)

P
d
S .

We define

W̃d(X) :=
⊔

∅⊂S⊂XsingbdS∈B
≥0
d

(bXS)

W+
dS

(XS),

where again B
≥0

d (X̂S) is the set of strictly balanced multidegrees d̂S ≥ 0 on X̂S such that
|d̂S | = d, and dS = d̂S |XS

with |dS | = d− ]S. We will also use the notation

dS = (dS
1 , . . . , dS

γ )

for the components of the multidegree dS on XS . Let

Ad(X) :=
⋃

d∈B
≥0
d (X)

Ad(X) ⊂ P d
X .

Remark 1.2.24. When the degree d = 1, the elements of B
≥0

1 (X) are of the form (d1, . . . , dγ)

with di = 1 for one suitable i ∈ {1, . . . , γ} and dj = 0 for j 6= i. Thus, when we look at the
set B

≥0

1 (X̂S), if it is nonempty it must be ]S = 1.

We have the following result:
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Theorem 1.2.25. Let X be a stable curve of genus g ≥ 2 with B≥0
1 (X) 6= ∅. Then

W̃1(X) = A1(X) ⊂ P 1
X .

Proof. Inclusion (⊃) holds by lemma 1.2.4. Now we prove inclusion (⊂). By hypothesis
the set A1(X) is nonempty. We want to prove that for any ∅ ⊂ S ⊂ Xsing such that
d̂S ∈ B

≥0

1 (X̂S),
W+

dS
(XS) ⊂ Ad(X)

for a certain d ∈ B
≥0

1 (X). We can equivalently write

W̃1(X) =
{

[M, S] ∈ P d
X s.t. M ∈ W+

dS
(XS) with dS ≥ 0

}
.

By remark 1.2.24 we can assume ]S = 1, with S = {n}, so hereafter we will write n

instead of S. We take M ∈ W+
dn

(Xn) with d̂n ∈ B
≥0

1 (X̂n), and consider [M, n]. Then by the
stratification of P 1

X and remark 1.2.24 there exists d = (d1, . . . , dγ) ∈ B
≥0

d (X) such that
di − 1 = dn

i = 0 for one i. We assume, with no loss of generality, that d1 − 1 = dn
1 = 0;

now M ∈ Picdn
Xn is such that M = (OXn

1
, . . . ,OXn

rn
), where rn is the number of connected

components of Xn and it is 1 or 2 whether n is separating or not. Then, there exists
L ∈ Imα

dn

X such that the pullback of L to Xn is M , and of course L = OX . Let us take
a moving point pu on C1 ∩ Ẋ such that pu specializes to n as u 7→ 0. We see that by
construction degL(pu) = d and L(pu) ∈ Imα

d
X ; moreover

L(pu) u→0−→ [M,n] ∈ Ad(X).

Remark 1.2.26. In [CE06][Proposition 3.15], the authors characterize the locus Σ1
g in Mg

of the curves such that B1(X) is empty, i.e. the so called 1-general curves. They prove that
if g ≥ 2 and g is odd, then the set Σ1

g is empty. Hence when g is odd, if B≥0
1 (X) ⊂ B1(X)

is nonempty we are always in the case of theorem 1.2.25. If, otherwise, B≥0
1 (X) = ∅, then

both the sets W̃1(X) and A1(X) are empty.

1.3 Notes on Brill-Noether theory of nodal curves

1.3.1 Martens’ theorem and Mumford’s theorem

In this subsection we are going to prove some classical theorems of the Brill-Noether
theory for irreducible curves; they will be probably well known to the experts, but we
couldn’t find an exhaustive reference. For example some already extended results in this
context are the very classical Riemann’s Theorem and Clifford’s Theorem. Some more
results are presented in [BF02]. Before starting we recall from [C2, Proposition 5.2.1.],
that if X is an irreducible nodal curve of genus g ≥ 3 with δ nodes, it is hyperelliptic, i.e.
X ∈ Hg if and only if it has a g1

2.
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Lemma 1.3.1. Let X be a not hyperelliptic irreducible curve of genus g ≥ 4, with δ ≥ 2

nodes. Then there exists n ∈ Xsing such that the normalization of X at n is not hyperelliptic.

Proof. Let {n1, . . . , nδ} be the set of nodes of X. Suppose by contradiction that for any
i = 1, . . . , δ the partial normalization Yi

νi−→ X of X at ni is a hyperelliptic curve of genus
gYi = g − 1. Let then Z be the normalization of X and of Yi for any i = 1, . . . , δ, such that,

if Z
ν−→ X and Z

ν′i−→ Yi are the normalizations, we have that νi ◦ ν′i = ν for any i. We

fix i = 1, . . . , δ and look at Z
ν′i−→ Yi; since Yi is hyperelliptic, then so is Z, and by [C2,

Proposition 5.2.1] we have that the hyperelliptic series HZ = OZ(pi + qi) for i = 1, . . . , δ,
where ν−1(ni) = {pi, qi}. But then if we look at Z

ν−→ X, again by [C2, Proposition 5.2.1]
we get that there exists a line bundle HX ∈ Pic2X such that h0(X,HX) = 2, i.e. X is
hyperelliptic, which is a contradiction.

Theorem 1.3.2 (Martens for irreducible curves). Let X be an irreducible nodal curve of
genus g ≥ 3 with δ nodes; let 2 ≤ d ≤ g − 1, d ≥ 2r, r > 0. If X is not hyperelliptic, then
dim W r

d (X) ≤ d− 2r − 1.

Proof. The proof is by induction on the number of nodes δ. So let δ = 1; let Z
ν−→ X be the

normalization of X at its node n, hence Z is a smooth curve of genus gZ = g − 1. Now we
have two alternatives: either Z is hyperelliptic, or it is not. We distinguish the two cases:

Case I. If Z is not hyperelliptic, when d ≤ g − 2 = gZ − 1 we can apply Martens’ Theorem
for smooth curves and we get that dim W r

d (Z) ≤ d − 2r − 1. Now let us consider the
morphism

ρ : W r
d (X) −→ W r

d (Z)

L 7→ ν∗(L);

by classical Martens’ theorem we also have that dim W r+1
d (Z) ≤ d − 2r − 2, so we

just have to look at the fibers of ρ. If W r
d (Z) doesn’t have the two points of ν−1(n) =

{q1, q2} as fixed base points, then the fibers of ρ over W r
d (Z)\W r+1

d (Z) have dimension
0 by [C5, Lemma 9], and over W r+1

d (Z) they have dimension at most 1. Hence

dim W r
d (X) ≤ d− 2r − 1.

If every line bundle in W r
d (Z) has {q1, q2} as base points, then we have an injection

W r
d (Z) ↪→ W r

d−2(Z)

L 7→ L(−q1 − q2).

Therefore we have that dim W r
d (Z) ≤ (d − 2) − 2r − 1 = d − 2r − 3, and hence

dim W r
d (Z) ≤ d− 2r − 2. When d = g − 1 = gZ , we use the Serre duality to get

dim W r
g−1(Z) = dim W r−1

g−3 (Z) ≤ (g − 1)− 2r − 1
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and
dim W r+1

g−1 (Z) = dim W r
g−3(Z) ≤ (g − 1)− 2r − 2,

therefore we conclude arguing as before.

Case II. If Z is a hyperelliptic curve, we again have to distinguish two cases. Let HZ the
hyperelliptic series on Z, and let {q1, q2} = ν−1(n).

(i) HZ = OZ(q1 + q2); in this case, by [C2, Proposition 5.2.1] we get that X must be
hyperelliptic, a contradiction.

(ii) Let HZ = OZ(a + b), where a, b are points on Z such that a + b � q1 + q2. We look
at the dimension of Im(ρ) ⊆ W r

d (Z): in particular we want to show that dim Im(ρ) ≤
d− 2r − 2. We describe Im(ρ) as follows:

Im(ρ) = {M ∈ W r
d (Z) s.t.W r

M (X) 6= ∅},

where W r
M (X) is the fiber of W r

d (X) over M via ρ. More precisely, we have that
Im(ρ) = V0 t V1, where

V0 = {M ∈ W r
d (Z) s.t. dim W r

M (X) = 0},

and
V1 = {M ∈ W r

d (Z) s.t. dim W r
M (X) = 1}.

Now we ask what is the dimension of V0 and V1. Let us consider V0; let M ∈ W r
d (Z).

By [C2, Lemma 5.1.3.] we have that dim W r
M (X) = 0 if and only if h0(Z,M) = r + 1

and h0(Z, M − q1 − q2) = h0(Z, M − q1) = h0(Z,M − q2) = r. Therefore M ∈ V0

iff |M | = gr
d, |M − q1 − q2| = gr−1

d−2, and |M − q1, M − q2| = gr−1
d−1. Now since Z is

hyperelliptic, |M − q1 − q2| = gr−1
d−2 iff there exist p1, . . . , pd−2r ∈ Z such that

OZ(M − q1 − q2) = Hr−1
Z (p1 + · · ·+ pd−2r),

with h0(pi + pj) = 1 for any i, j = 1, . . . , d− 2r. We have that

M = Hr−1
Z (p1 + · · ·+ pd−2r + q1 + q2),

then h0(Z, M − q1) = h0(Z, M − q2) = r iff h0(Z, pi + q2) = h0(Z, pi + q1) = 1 for any
i = 1, . . . , d − 2r. But on the other hand h0(Z, M) = r + 1 if and only if there exists
a pair of points in the set {p1, . . . , pd−2r, q1, q2} linearly equivalent to HZ . But from
what we have seen this is possible only if q1 + q2 ∼ a+ b, which we excluded from the
beginning. Hence V0 = ∅. So let us now look at V1. Again by [C2, Lemma 5.1.3.] we
get that M ∈ V1 if and only if either h0(Z,M) = h0(Z,M − qi) = r + 1 for i = 1, 2, or
h0(Z, M) ≥ r + 2. Let then V1 = V 1

1 t V 2
1 , where

V 1
1 = {M ∈ W r

d (Z) s.t. h0(Z, M) = h0(Z,M − qi) = r + 1}
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and
V 2

1 = W r+1
d (Z).

We easily see that

V 1
1 = {M = Hr

Z(q1 + q2 + a3 + · · ·+ ad−2r), s.t. a3, . . . , ad−2r ∈ Z},

hence by a parameter count we have that dim V 1
1 ≤ d − 2r − 2. Moreover, by [C2,

Lemma 5.2.3.] we get dim V 2
1 = d−2r−2, and hence dim V1 ≤ d−2r−2. Now, recalling

that the dimension of the fibers over V1 is 1, we conclude that dim W r
d (X) ≤ d−2r−1.

We are now able to assume δ ≥ 2. Let d ≤ g − 2 and g ≥ 4 (cases g = 3 and d = g − 1

will be shown further on). By Lemma 1.3.1 there exists a node n ∈ Xsing such that
the normalization Y

ν−→ X of X at n is not hyperelliptic. Then, since d ≤ gY − 1 and
gY ≥ 3, we can apply the inductive hypothesis and get that dim W r

d (Y ) ≤ d − 2r − 1

and, since dim W r+1
d (Y ) ≤ d− 2r− 2, repeating the argument about the dimension of

the fibers that we explained in Case I, we are done. Now we focus on the left cases:
if g = 3, then d = 2 and r = 1, therefore W 1

2 (X) = ∅ since X is not hyperelliptic. Now
let d = g− 1 = gY ; then we use again Serre duality to get W r

gY
(Y ) ∼= W r−1

gY −2(Y ). Now,
since d ≤ gY − 2, induction yields that dim W r−1

gY −2(Y ) ≤ (g − 1)− 2r − 1, so, applying
the argument seen in Case I, we get that dim W r

g−1(X) ≤ (g − 1)− 2r − 1.

An interesting refinement of Martens’ theorem is the classical Mumford’s theorem (see
[ACGH]), which characterizes the smooth not hyperelliptic curves such that the upper
bound in Martens’ theorem is attained. We present a proof of this theorem for irreducible
stable curves.

Theorem 1.3.3 (Mumford for irreducible curves). Let X be an irreducible nodal not hy-
perelliptic curve of genus g ≥ 4, and assume there exist r, d ∈ N such that 2 ≤ d ≤ g − 2,
d ≥ 2r > 0 and a component of W r

d (X) with dimension d − 2r − 1. Then X has one of the
following properties:

(i) X has a g1
3.

(ii) X is a two-sheeted covering of a plane cubic curve.

(iii) X is a plane quintic.

Proof. We follow the proofs of [ACGH, Theorem (5.2)] and [Be77, Lemma (4.9)]. Assume
that dim W r

d (X) = d− 2r− 1; if we impose r− 1 general base points to the series belonging
to W r

d (X), we obtain that dim W 1
d−r+1(X) ≥ d−2r−1+(r−1) = (d−r+1)−3. Now, applying

theorem 1.3.2 we get that dim W 1
d−r+1(X) = (d− r + 1)− 3. So we restrict ourselves to the

case r = 1. Let d be the minimum integer such that dim W 1
d (X) = d− 3. We argue exactly

as in Martens and Mumford theorems in [ACGH], pages 192-193 to conclude that

dim W d−1
2d (X) ≥ d− 3. (1.21)
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To this situation we want to apply Theorem 1.3.2, so we have three cases:

I) 2d ≤ g − 1. Then dim W d−1
2d ≤ 2d− 2(d− 1)− 1, so, by (1.21) we have that d ≤ 4.

II) g − 1 < 2d < 2g − 4. Then, since

dim W d−1
2d (X) = dim W g−d−2

2g−2d−2(X) ≥ d− 3,

hence again by Theorem 1.3.2 we get d ≤ 4.

III) 2d = 2g − 4. Again using residual series, we have that dim W g−d−2
2g−2d−2(X) = W 0

2 (X),
therefore, using Proposition 1.3.5 we have d ≤ 5.

Therefore in any case we have d ≤ 5, and if d = 5 then g = 7. If d = 3 we get that
dim W 1

3 (X) = 0, hence X has a g1
3, and we are in case (i). Now let us assume d ≥ 4 and

X without trigonal series. Since d ≤ g − 2 we have that g ≥ 6. Moreover the fact that
dim W 1

d (X) = d − 3 implies that if d = 4, then dim W 1
4 (X) = 1, hence there exists a line

bundle L′ 6= L ∈ W 1
4 (X). By the minimality of d we have that L has no base points; so

applying the base-point-free pencil trick and Clifford’s theorem as in [?, Theorem (5.2)],
we get that the map

v : H0(X, L)⊗H0(X, L′) → H0(X, L⊗ L′)

is injective. Then, since the kernel of v is H0(X, L−1 ⊗ L′), we have that using Riemann-
Roch’s theorem h0(X,ωXL−1L′−1) = g − 5. Let now p1, . . . , pg−6 be general points on X,
since dim |ωXL−1L′−1| = g − 6, we have that |ωXL−1L′−1(−p1 − · · · − pg−6)| 6= ∅, so |L′| ⊆
|ωXL−1(−p1 − · · · − pg−6)|. Now let us denote by |M | = |ωXL−1(−p1 − · · · − pg−6)|, then
dim |M | = 2, hence it defines a morphism φM : X → P2; now h0(X,L′) = 2, hence L′

induces a morphism φL′ : X → P1, so, since |L′| ⊆ |M | we can factorize φL′ via φM plus
a projection onto P1 with center a point of φM (X). Since W 1

4 (X) has positive dimension,
we can assume that the center of projection is a smooth point of φM (X). Hence we have
that deg L = deg φM (deg φM (X) − 1), and recalling that deg L = 4, we have the following
possibilities: deg φM = 1, therefore φM is birational and deg φM (X) = 5; so φM (X) is an
irreducible plane quintic. Otherwise deg φM = 2 and deg φM (X) = 3 and X is a 2−sheeted
cover of a plane cubic curve. Now the last case to consider is d = 5, which comes up in
case d = g − 2, hence g = 7. We want to exclude this case. To this end it is sufficient to
apply the argument in [Be77, (4.9.5)]: indeed if we take ωXL−2, for L general in W 1

d (X), by
Proposition 1.3.5, we have that ωXL−2 = OX(p + q) for general points p, q ∈ X. Following
[Be77, (4.9.5)] we obtain that X is hyperelliptic, hence a contradiction.

The image of the Abel map for irreducible nodal curves

In this paragraph we obtain some results which have been proved in section 1.2 by using
different tools in order to show applications of the previous section. Let X be an irreducible
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nodal curve of genus g, and let Ẋ := X \ Xsing its smooth locus. We can consider Ẋd,
which is a smooth irreducible variety of dimension d, open and dense in Xd. Now let

αd
X : Ẋd → PicdX such that (p1, . . . , pd) 7→ OX(

d∑
i=1

pi); αd
X is the Abel map of degree d.

We can consider its image, and in particular its closure in PicdX, Ad(X) := αd
X(Ẋd). We

have that Ad(X) is contained in Wd(X), and it is irreducible by definition. We have the
following:

Lemma 1.3.4. Let X be a nodal irreducible curve of genus g, then for any 0 ≤ d ≤ g− 1 we
have that dim Ad(X) = d and h0(X,L) = 1 for the general L ∈ Ad(X).

Proof. By induction on g− d. For d = g− 1 the thesis follows from [C2, Theorem 3.1.2]. So
we can assume g−d ≥ 2. Let us observe that of course dim Ad(X) ≤ min{d, g} and the fiber
of αd

X over a general L has dimension h0(X, L) − 1, therefore it is sufficient to prove that
there exists at least one L ∈ Ad(X) such that h0(X, L) = 1. We have that d ≤ g − 2, and
in particular, if Y

ν→ X is the normalization of X at one node n, we have that d ≤ gY − 1,
hence we can apply induction to Y . So dim Ad(Y ) = d and h0(Y,M) = 1 for the general
M ∈ Ad(Y ). This means that there exists an open set U ⊂ Ad(Y ) such that for any
M ∈ U ∩αd

Y (Ẏ d) we have M = OY (a1 + · · ·+ad) for suitable ai ∈ Ẏ and h0(Y, M) = 1. Since
Ad(Y ) is irreducible, dim U∩αd

Y (Ẏ d) = d, therefore the general line bundle M in U∩αd
Y (Ẏ d)

will be such that ai 6= q1, q2 for any i = 1, . . . , d, where ν−1(n) = {q1, q2}. This is equivalent
to saying that the general M ∈ U ∩ αd

Y (Ẏ d) satisfies h0(Y, M − q1) = h0(Y,M − q2) = 0,
so we can apply [C2, Lemma 2.2.3.] and get that WM (X) = {LM}, h0(X,LM ) = 1 and
LM ∈ αd

X(Ẋd), where the notation is the one of Theorem 1.3.2, i.e. WM (X) is the fiber
over M of ρ : Wd(X) → Wd(Y ). So we have that there exists at least one L ∈ Ad(X) with
h0(X,L) = 1, and we are done.

Proposition 1.3.5. Let X be an irreducible nodal curve of genus g. Then, for every 0 ≤
d ≤ g− 1 we have that Wd(X) = Ad(X). In particular Wd(X) is irreducible of dimension d,
and for general L ∈ Wd(X) we have h0(X,L) = 1.

Remark 1.3.6. The irreducibility of Wd(X) when X is an irreducible stable curve, is
proved in Theorem 1.2.1.

Proof of proposition 1.3.5. We rearrange the proof of [C5, Proposition 25] using induction
on g−d. If d = g−1 the thesis follows from [C2, Theorem 3.1.2]. Let us now assume g−d ≥ 2

and let Y
ν→ X be the normalization of X at a node n, such that ν−1(n) = {q1, q2}. Let

ρ : Wd(X) → Wd(Y ) be the map induced by the pullback. By inductive hypothesis we have
that Wd(Y ) has a unique component of dimension d, which is exactly Ad(Y ). Let us denote
by B ⊂ Ad(Y ) the locus of M such that h0(Y, M) = h0(Y, M − q1) = h0(Y,M − q2) = 1. Then
of course we have that h0(Y, M − q1− q2) = 1, then dim B ≤ d− 2, hence dim ρ−1(B) ≤ d− 1

since the dimension of the fibers is at most 1. By Lemma 1.3.4 there exists a dense open
set U ⊂ Ad(Y ) \ B such that for any M ∈ U we have h0(Y, M) = 1. By [C5, Lemma 9] the
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fiber of ρ over M is a unique point, hence ρ−1(U) is irreducible of dimension d. Now by
Theorem 1.3.2 we have that dim W 1

d (Y ) ≤ d− 2, therefore any other component of Wd(X),
if it exists, has dimension at most d−1. So this proves that Wd(X) has a unique component
of dimension d, which is exactly Ad(X) by Lemma 1.3.4.

1.3.2 k-gonal curves

In the present paragraph we want to describe some properties of curves lying in the bound-
ary of the k-gonal locus in Mg, the moduli space of smooth curves of genus g. We start by
studying k = 3. Given any curve X, we will denote by gr

d a linear series of degree d such
that every L ∈ gr

d has h0(X, L) ≥ r + 1. Let then

Mr
g,d := {[C] ∈Mg : C has a gr

d}.

If we consider M1
g,3, this turns out to be an irreducible variety of dimension 2g + 1, called

the Brill-Noether locus (see [HMo98]). We look at its closure M1
g,3 in Mg.

Definition 1.3.7. Let X be a stable curve of genus g; we say that X ∈ M1
g,3 is trigonal if

there exists a family f : X → B of smooth curves in M1
g,3 having X as central fiber.

We notice that in general, if a curve X has a g1
3, it does not mean that it is trigonal. In order

to study this concept, we recall some definitions from [EH86]. Let C be a smooth curve
with a gr

d, and let L ∈ gr
d. If p ∈ C and s is a section of L, then we denote by ordp(s) the order

of vanishing of s at p. There are exactly r + 1 distinct integers aL
0 (p) < aL

1 (p) < . . . < aL
r (p)

which are orders of vanishing of sections of L at p.

Definition 1.3.8. If X is a curve of compact type, then a limit gr
d L on X is, for each

irreducible component Y of X, a gr
d LY on Y , called the Y−aspect of L, satisfying the

compatibility condition: if Y1 and Y2 are components of X meeting at a point p, then for
i = 0, . . . , r we must have

a
LY1
i (p) + a

LY2
r−i (p) = d.

We have now the following:

Lemma 1.3.9. Let X = C1 ∪ C2 be a stable curve of compact type with Ci smooth of genus
gi, C1 ∩C2 = {p} with branches pi ∈ Ci for i = 1, 2, such that X is trigonal. Then one of the
following holds:

(i) C1 and C2 are hyperelliptic and their hyperelliptic series are OC1(2p1) and OC2(2p2).

(ii) C1 and C2 are hyperelliptic, the C1−aspect of the g1
3 on X is OC1(2p1 + r) and the

C2−aspect is OC2(2p2 + s), where r ∈ C1, s ∈ C2, and p1, p2 are base points.

(iii) C1 and C2 are trigonal, the C1−aspect of the g1
3 on X is OC1(3p1) and the C2−aspect

is OC2(3p2), where p1 and p2 are not base points.
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(iv) C1 is trigonal and C2 is hyperelliptic (up to switching the curves), the C1−aspect of
the g1

3 on X is OC1(2p1 + r) and the C2−aspect is OC2(2p2) where p1 6= r ∈ C1 and p2

is not a base point for OC2(2p2).

Proof. Let X → B be a regular one parameter smoothing of X whose generic fiber Xb is
a smooth trigonal curve of genus g, and let T ∈ PicX be a line bundle of degree 3. Let
Tb = T ⊗OXb

be the trigonal series on Xb, then, denoting T := T ⊗OX , by semicontinuity
we get that h0(X, T ) ≥ 2. We can assume up to twisting that degT = (3, 0). Then we have
to distinguish two cases.

Case I. Let Ti = T|Ci
for i = 1, 2, and assume that T2 = OC2 . Then h0(C2, T2) = 1, and,

since OC2 is free from base points we have h0(C1, T1) = 2, hence T1 is a trigonal
series on C1, which we denote by TC1 . Let us assume that C1 is not hyperellip-
tic, with T = (TC1 ,OC2). If we twist T by OX (C1) we get T ′ = T ⊗ OX (C1) ⊗
OX = (TC1(−p1),OC2(p2)), where p1 and p2 are the preimages on C1 and C2 of the
node p via the normalization map. We have that h0(C1, TC1(−p1)) = 1 and that
h0(C2,OC2(p2)) = 1, then by 1.2.4 and 1.2.5 in [C6], p1 is base point of TC1(−p1)

and obviously p2 of OC2(p2), hence h0(C1, TC1(−2p1)) = 1. Now let us consider
T ′′ = T ⊗OX (2C1)⊗OX = (TC1(−2p1),OC2(2p2)), then we have h0(C2,OC2(2p2)) ≤ 2.
If h0(C2,OC2(2p2)) = 2, then C2 is hyperelliptic with hyperelliptic series HC2 =

OC2(2p2). Moreover, since h0(C1, TC1(−2p1)) = 1, we have that the C2−aspect of
T is OC2(3p2) with p2 a base point, and TC1 = OC1(2p1 + r) with r 6= p1, since if it
were r = p1 we would have that T ′′′ = T ⊗ OX (3C1) ⊗ OX = (OC1 ,OC2(3p2)), hence
OC1 should have a base point at p1, which is impossible. So we get conclusion (iv).
If, on the other hand, h0(C2,OC2(2p2)) = 1, we get (again by 1.2.4. and 1.2.5. in
[C6]) that p1 is a base point of TC1(−2p1), hence TC1 = OC1(3p1). We twist again
obtaining T ′′′ = T ⊗ OX (3C1) ⊗ OX = (OC1 ,OC2(3p2)); since OC1 is free from base
points, h0(C2,OC2(3p2)) = 2, hence C1 and C2 are trigonal and the trigonal series are
OC1(3p1) and OC2(3p2), according to conclusion (iii).
So far we have assumed that C1 is not hyperelliptic; if it is, then T1 has a base point,
hence T1 = HC1(q), where q ∈ C1 and q 6= p1 otherwise T2 = OC2 should have a base
point in p2. As before we consider T ′ = T ⊗ OX (C1) ⊗ OX = (HC1(q − p1),OC2(p2)),
and we have h0(HC1(q − p1)) = 1 since q 6= p1; then p1 is base point for HC1(q − p1).
Let T ′′ = (HC1(q − 2p1),OC2(2p2)); if C2 is hyperelliptic with h0(C2,OC2(2p2)) = 2,
noticing moreover that h0(HC1(q − 2p1)) = 1, we obtain conclusion (i). If otherwise
h0(C2,OC2(2p2)) = 1, then, since h0(C1,HC1(q − 2p1)) = 1, we have that p1 is a base
point for HC1(q − 2p1), hence h0(C1,HC1(q − 3p1)) = 1, therefore HC1(q) = OC1(3p1),
but then HC1 = OC1(2p1), and we would have that q = p1, a contradiction.

Case II. Let us now assume that T2 6= OC2 . We are still in the hypothesis that degT = (3, 0);
we have that h0(C2, T2) = 0, hence h0(C1, T1) = 2 and p1 is a base point for T1,
i.e. h0(C1, T1(−p1)) = 2, therefore C1 is hyperelliptic and T1 = HC1(p1). Let us
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consider as before the twist T ′ = T ⊗ OX (C1) ⊗ OX = (HC1 , T2(p2)), then it must
be h0(T2(p2)) = 1, indeed if it were h0(T2(p2)) = 0 then the hyperelliptic series
HC1 should have a base point at p1, which is impossible. Now we take T ′′ = T ⊗
OX (2C1) ⊗OX = (HC1(−p1), T2(2p2)); h0(C1,HC1(−p1)) = 1, and h0(C2, T2(2p2)) ≤ 2.
If h0(C2, T2(2p2)) = 1, then p1 is a base point for HC1(−p1), so HC1 = OC1(2p1),
whereas T2(p2) = OC2(q) for a q ∈ C2, q 6= p2. We look at T ′′′ = T ⊗ OX (3C1)⊗OX =

(OC1 , T2(3p2)), then h0(C2, T2(3p2)) = 2, meaning that C2 is trigonal and the trigonal
series is T2(3p2) = OC2(q + 2p2), so we agree with conclusion (iv). The last case to
consider is when h0(C2, T2(2p2)) = 2, i.e. C2 is hyperelliptic and we recall that C1 is
hyperelliptic with HC1 = OC1(r + p1), where r ∈ C1, and h0(C2, T2(p2)) = 1, therefore
T2(p2) = OC2(s) with s ∈ C2. So we have that T2(2p2) = OC2(s + p2) = HC2 , and we
get conclusion (ii).

Using the theory of limit linear series we are able to state a vice-versa of 1.3.9, as we will
see in the following. First of all we recall some fundamental facts from [EH86].

Definition 1.3.10. If X is a curve of compact type, then we say that a limit gr
d on X can

be smoothed if there exists a family of smooth curves f : X → B with central fiber X, and
a gr

d denoted by Lb on the general fiber Xb, whose limit is the given limit gr
d on X.

Proposition 1.3.11 (Eisenbud-Harris). On a curve of compact type every limit g1
d can

be smoothed, and the smoothing can be done so as to preserve all ramification points away
from the nodes.

Lemma 1.3.12. Let X = C1 ∪C2 be a stable curve of compact type with Ci smooth of genus
gi, C1 ∩ C2 = {p} with branches pi ∈ Ci for i = 1, 2, and assume one of the following:

(i) C1 and C2 are hyperelliptic and their hyperelliptic series are OC1(2p1) and OC2(2p2).

(ii) C1 and C2 are hyperelliptic, h0(C1,OC1(2p1 + r)) = 2 and h0(C2,OC2(2p2 + s)) = 2,
where r ∈ C1 and s ∈ C2, and p1, p2 are base points.

(iii) C1 and C2 are trigonal, h0(C1,OC1(3p1)) = 2 and h0(C2,OC2(3p2)) = 2, and p1 and p2

are not base points.

(iv) C1 is trigonal and C2 is hyperelliptic (up to switching the curves), h0(C1,OC1(2p1 +

r)) = 2 and h0(C2,OC2(3p2)) = 2, where p1 6= r ∈ C1 and p2 is not a base point for
OC2(3p2).

Then X has a limit g1
3 that can be smoothed.

Proof. In order to apply 1.3.11 we only have to prove that the g1
3’s on C1, C2 as in the

four cases above are the aspects of a limit series on X, as in 1.3.8. In the following we will
denote the aspects by T1 and T2. So let’s start by assuming (i): it is well known that a curve
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of compact type X = C1 ∪C2 is hyperelliptic if and only if both C1 and C2 are hyperelliptic
and p1 and p2 are Weierstrass points. Then in our case X is hyperelliptic, hence trivially
trigonal. Now let us assume (ii): the components of X are hyperelliptic curves, with
series HC1 = OC1(p1 + r) and HC2 = OC2(p2 + s) and the aspects are T1 := OC1(2p1 + r)

and T2 := OC2(2p2 + s). Let us consider T1’s global sections H0(C1, T1) = {σ0, σ1}; since
p1 is a base point of T1, we have that σ0(p1) = σ1(p1) = 0. Moreover we observe that
h0(OC1(r)) = h0(T1(−2p1)) = 1, hence there exists only one section of T1 vanishing on
p1 with multiplicity 2. The same reasoning works for T2 with H0(C2, T2) = {τ0, τ1}, so
according to definition 1.3.8 we have that the orders of vanishing of the sections are:

aT1
0 (p1) = 1, aT1

1 (p1) = 2, aT2
0 (p2) = 1, aT2

1 (p2) = 2.

Hence we have that
aT1
0 (p1) + aT2

1 (p2) = aT2
0 (p2) + aT1

1 (p1) = 3,

which tells us that T is a limit g1
3 on X. Let us now turn to case (iii): C1 and C2 are

trigonal curves with series T1 = OC1(3p1) and T2 = OC2(3p2); p1 and p2 are not base
points, so h0(C1,OC1(2p1)) = 1, but we also know that h0(C1,OC1(p1)) = 1. Therefore there
exist sections {σ0, σ1} for H0(C1, T1) such that σ0(p1) 6= 0 and σ1(p2) = 0, and moreover
h0(C1, T1(−3p1)) = 1, hence σ1 vanishes at p1 with multiplicity 3. So we get that, doing
the same for T2, aT1

0 (p1) = 0, aT1
1 (p1) = 3, aT2

0 (p2) = 0 and aT2
1 (p2) = 3, and arguing

as before we have that T is a limit g1
3 on X. The last case is when C1 is trigonal with

series T1 = OC1(2p1 + r), and C2 is hyperelliptic with series OC2(2p2) and C2−aspect
T2 = OC2(3p2), so p2 is a base point for T2. Then we have that h0(C2, T2(−p2)) = 2 and
h0(C2, T2(−3p2)) = 1, therefore, if H0(C2, T2) = {τ0, τ1}, we have that ordp2(τ0) = aT2

0 (p2) =

1 and ordp2(τ1) = aT2
1 (p2) = 3. Moreover, if we take H0(C1, T1) = {σ0, σ1}, we see that since

p1 is not a base point for T1, and since h0(C1, T1(−p1)) = 1, then ordp1(σ0) = aT1
0 (p1) = 0

and ordp1(σ1) = aT1
1 (p1) = 2. Therefore we have that

aT1
0 (p1) + aT2

1 (p2) = aT2
0 (p2) + aT1

1 (p1) = 3,

which means that as well as in the previous cases T1 and T2 define a limit g1
3 on X. Apply-

ing 1.3.11 we are done.

We are now going to introduce the notion of weakly k−gonal curves, using the terminology
encountered in [C5] and [C6]:

Definition 1.3.13. We say that a nodal curve X is weakly k−gonal if there exists a bal-
anced (see section 1.1) line bundle L ∈ PickX such that h0(X, L) ≥ 2.

Lemma 1.3.14. Let X = C1 ∪C2 be a stable curve of compact type with Ci smooth of genus
gi and 1 ≤ g1 ≤ g/2, be a not weakly hyperelliptic curve. If g1 ≤ (g + 2)/6, then X is weakly
trigonal if and only if C2 is trigonal, otherwise, for g1 > (g + 2)/6, X is not weakly trigonal.
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Proof. Let d = 3, then the only possibilities we have are d = (0, 3) or d = (1, 2). By
hypothesis we have that g1 ≤ g2, and we see that (1, 2) is balanced if and only if (g+2)/6 ≤
g1 ≤ g/2. We want to show that when g1 > (g + 2)/6, X is not weakly trigonal, i.e. there
doesn’t exist a balanced line bundle L ∈ Pic3X such that h0(X, L) ≥ 2. Indeed if such an
L existed, then degL = (1, 2), and, if we denote Li = L|Ci

for i = 1, 2, we would have that
h0(C1, L1) ≤ 1 hence L1 should have a base point, but then L would have a base point too,
which is not possible since we are assuming that X is not weakly hyperelliptic. Hence we
look at the case g1 ≤ (g+2)/6, when d = (0, 3) is balanced: let us suppose that C2 is trigonal
with g1

3 denoted by TC2 , then if we take L = (OC1 , TC2) we have that h0(C1, L1) = 1, and
h0(C2, L2) = 2. So h0(X, L) ≥ 2, by 2.1.1 in [C2], and X is weakly trigonal. On the other
hand, let L ∈ Pic3X with h0(X, L) = 2; then it must be degL = (0, 3), and since X has no
g1
2, L cannot have base points, so L1 = OC1 , and h0(C2, L2) ≤ 3. If C2 were elliptic, we

would have that h0(C2, L2) = 3, but in this case g1 = g2 = 1, hence g = g1 + g2 = 2, against
the fact that g1 ≤ (g + 2)/6. So via Clifford’s theorem we get that h0(C2, L2) = 2, hence C2

is trigonal.

From this lemma we see that a weakly trigonal curve need not be necessarily trigonal. In
the following we are going to study properties of weakly trigonal semistable curves. We
recall that a separating node of X is a node n such that there exist two subcurves of X, X1

and X2, with X = X1∪X2 and X1∩X2 = {n}; we denote again by Xsep the set of separating
nodes of X. A separating line of a curve X is a subcurve C ⊂ X such that C ∼= P1 and that
C meets its complementary curve Cc in separating nodes of X. Let Xsm be the open set of
smooth points of X.

Lemma 1.3.15. Let X be an irreducible nodal curve and L ∈ Pic1X such that h0(X, L) = 1.
Then there exists a point p ∈ Xsm such that L = OX(p).

Proof. Let X be a curve as in the statement of the Lemma, and let X̃
ν−→ X be its nor-

malization. Let us denote by n1, . . . , nδ the nodes of X, and ν−1(ni) = {pi, qi} for any i.
Take L any line bundle on X of degree 1 and with h0(X,L) = 1. Then ν∗(L) ∈ PicX̃ is
a line bundle of degree 1, and if X̃ � P1 we must have that h0(X̃, ν∗(L)) = 1. Moreover
compatibility conditions give that

h0(X̃, ν∗(L)(−pi)) = h0(X̃, ν∗(L)(−qi)) = h0(X̃, ν∗(L)(−pi − qi));

now if ν∗(L) = O eX(A) for a certain point A ∈ X̃, A 6= pi, qi for any i, then L = OX(A)

abusing the notation since ν is an isomorphism out of the branches of the nodes of X.
On the other hand, if, say, ν∗(L) = O eX(pi), then applying the compatibility conditions
we have that h0(X̃,O eX(pi − qi)) = 1, hence ν∗(L) = O eX(qi), but then O eX(pi) ∼= O eX(qi),
which is a contradiction since X̃ � P1. Now if X̃ = P1 we have that ν∗(L) = OP1(1), hence
h0(OP1(1)) = 2. It suffices to assume that X has just one node n, otherwise we repeat the
argument for every other node of X; let us denote by {p, q} the branches of the node. Let
s be a section which generates H0(X, L), then it comes from a section s̃ ∈ H0(P1,OP1(1))
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if s̃(p) = cs̃(q) for a c ∈ K∗. If s should vanish on the node n, then we should have that
s̃(p) = s̃(q) = 0, but the sections of OP1(1) are linear polynomials, so they cannot vanish in
two points. This shows that, as well as in the previous case, L has a base point which is
not a node.

Proposition 1.3.16. Let X be a semistable curve of genus g with irreducible components
C1, . . . , Cr, not weakly hyperelliptic and without separating nodes, and d balanced such
that |d| = 3. Suppose that there exists a line bundle L ∈ PicdX with h0(X,L) = 2. Then one
of the following holds:

(i) d = (1, 2, 0, . . . , 0), C1 is a separating line of X \ C2, and

either C2 has a hyperelliptic series HC2 , with

L|C1 = OC1(1), L|C2 = HC2 , L|X\{C1∪C2} = O
X\{C1∪C2},

or C2
∼= P1 with

L|C1 = OC1(1), L|C2 = OC2(2), L|
X\{C1∪C2} = O

X\{C1∪C2}.

(ii) d = (3, 0, . . . , 0) and

if C1 � P1, C1 has a trigonal series TC1 ,

L|C1 = TC1 , L|Z1 = OZ1 , . . . , L|Zm = OZm ,

where Z1, . . . , Zm are the connected components of X \ C1, and 2 ≤ ](C1 ∩Zi) ≤ 3

for every i = 1, . . . , m;

if C1
∼= P1, then

L|C1 = OC1(3), L|Z1 = OZ1 , . . . , L|Zm = OZm ,

and m = 1 if and only if ]{C1 ∩ C1
c} = 3.

(iii) d = (1, 1, 1, 0, . . . , 0), C1
∼= C2

∼= C3
∼= P1 and

L|C1 = OC1(1), L|C2 = OC2(1), L|C3 = OC3(1), L|C4 = OC4 , . . . , L|Cr = OCr .

Proof. Let d = (1, 2, 0, . . . , 0), and let C1, C2 be the two components of X such that dC1 = 1

and dC2 = 2. Since d is balanced on X semistable, if C2
∼= P1 it must be C2 · Cc

2 ≥ 3

and X stable, indeed the degree on an exceptional component must be 1. Let us assume
at first that C2 � P1, so we have that h0(C2, L|C2

) ≤ 2. If Y is a subcurve of X, we
denote by LY = L|Y , and lY = h0(Y, LY ); let us now assume that lC2 = 2. Then C2 is
hyperelliptic, LC2 = HC2 the hyperelliptic series, and if we call Z := X \ C2, we have that
h0(X,L) ≤ lC2 + lZ . We notice that dZ = (1, 0, . . . , 0), so we apply lemma 4.2.3 in [C6] and
get either lZ ≤ 1 or lZ = 2 and C1 is a separating line of Z, lZ = 2 and L

Z\C1
= O

Z\C1
. So
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let us first suppose that C1 � P1, then lZ ≤ 1; we cannot have lZ = 0, otherwise LC2 would
have base points, which we don’t allow being X not weakly hyperelliptic. So we have that
lC2 = 2 and lZ = 1. Let us denote by {n1, . . . , nh} for a suitable h the elements of C2 ∩ Z.
Since Xsep = ∅, we have that C2 ·Z = h ≥ 2. Being lX = lC2 +lZ−1, via 1.2.6. in [C6] we get
that, calling {pi, qi} the branches of ni on C2 and Z respectively, pi ∼LC2

pj and qi ∼LZ
qj

for i 6= j, therefore h0(C2, LC2(−pi)) = h0(C2, LC2(−pj)) = h0(C2, LC2(−pi − pj)) = 1 for
1 ≤ i 6= j ≤ h. This means that the hyperelliptic series HC2 = OC2(pi+pj) for 1 ≤ i 6= j ≤ h;
since C2 � P1 this is possible if and only if

C2 · Z = 2 and HC2 = OC2(p1 + p2).

Moreover recall that lZ = 1, then we can have lC1 = 1 or lC1 = 0. If lC1 = 1, since
dC1 = 1, by Lemma 1.3.15 we would have that LC1 , and then L, has a base point, which
is impossible. So it must be lC1 = 0; now let us denote by Y = Z \ C1, hence dY = 0,
moreover, by Lemma 1.3.17, since C2 · Z = 2, we have that C1 · Y ≥ 1, so, if q ∈ C1 ∩ Y , we
have that lZ = h0(Y, LY (−q)) = 1, but then we contradict Remark 4.1.2. in [C6]. Hence we
can exclude the case lC2 = 2 and lZ = 1, and look at the one with lC2 = 2 and lZ = 2. In this
case C1 is a separating line for Z, C2 is hyperelliptic, and L = (OC1(1),HC2 ,OZ\C1

). Let
us now suppose lC2 = 1; then there exist points r, s ∈ C2 such that LC2 = OC2(r + s), i.e.
LC2 has base points, which is a contradiction. We study now the case when C2

∼= P1. Since
dC2 = 2, then X is stable and ]{C2 ∩ Z} ≥ 3. Moreover lC2 = 3, hence applying 1.2.9. in
[C6] we get that h0(X,L) ≤ 3+lZ−3, hence it must be lZ ≥ 2. Notice that dZ = (1, 0, . . . , 0),
therefore applying 4.2.3. in [C6], the only possibility we have is that C1 is a separating
line of Z. So we get conclusion (i).

Let now d = (3, 0, . . . , 0); let us denote by C1 the component such that dC1 = 3. Let
X = C1 ∪ Z, and suppose the genus gC1 ≥ 2. Then by Clifford’s theorem and Remark
1.2.8. in [C6], we get that 2 = h0(X, L) ≤ h0(C1, LC1) ≤ 3/2 + 1, hence lC1 = 2. If C1 were
hyperelliptic with series HC1 , we would have that LC1 = HC1(p), with p ∈ C1, but then LC1

and hence L would have a base point, therefore C1 must be trigonal, with series TC1 . Let
now Z = Z1 t . . .tZm be the decomposition of Z into connected components, then dZi

= 0,
so either LZi = OZi for every i, or there exists at least one j such that lZj = 0, but in this
case L would have base points, which we exclude. Therefore L = (TC1 ,OZ1 , . . . ,OZm).
We have to consider now the cases when gC1 ≤ 1. If gC1 = 1, then by Riemann Roch lC1 = 3,
and, as before, LCi = OCi for every i = 2, . . . , r, so we have again L = (TC1 ,OC2 , . . . ,OCr )

if we denote by TC1 the trigonal series on C1.
Let us observe that, when gC1 ≥ 1 and Z is connected, then it must be 2 ≤ ]{C1 ∩ Z} ≤ 3.
Indeed dZ = 0 and lZ ≥ 1 (otherwise L would have base points), then LZ = OZ , LC1 = TC1

is the trigonal series, and lZ = 1 via Corollary 2.2.5 in [C2]. If we assume that ]{C1∩Z} >

3, then applying Lemma 1.2.6. in [C6], there would exist at least 4 points, branches of the
nodes on C1, say p1, . . . , p4 ∈ C1 such that h0(C1, TC1(−p1 − p2 − p3 − p4)) = 1, but this
is impossible since deg(TC1(−p1 − p2 − p3 − p4)) = −1. Then it must be ]{C1 ∩ Z} ≤ 3,
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and moreover, if ]{C1 ∩ Z} = 3, we would have that TC1 = OC1(p1 + p2 + p3). Of course,
when Z is not connected, we can repeat this argument for every connected component of
Z = Z1 t . . . t Zm, getting that 2 ≤ ]{C1 ∩ Zi} ≤ 3 for every i = 1, . . . , m. Let now gC1 = 0;
since dC1 = 3, X must be stable and δ := C1 · Z ≥ 3. We have lC1 = 4, so if δ = 3, 1.2.9.
yields h0(X, L) = 4 + lZ − 3, hence lZ = 1, moreover Z is connected by Lemma 1.3.17. This
implies, applying Corollary 2.2.5. in [C2] to Z, that LZ = OZ . When δ > 3, 1.2.9. yields
h0(X,L) ≤ lC1 + lZ − 4, then lZ ≥ 2 and Z is not connected; indeed if it were connected,
Corollary 2.2.5. would imply that LZ = OZ , but then lZ = 1, which contradicts the fact
that lZ ≥ 2. Hence Z is connected if and only if δ = 3. Now if Z were disconnected, then
we would have Z = Z1 t . . . t Zm for some m, and LZ = (OZ1 , . . . ,OZm).

It remains to study the last case, when d = (1, 1, 1, 0, . . . , 0); let us assume at first that
C1 � P1. As well as in the previous cases we denote by Z = X \ C1; via Clifford’s Theorem
we have that lC1 ≤ 1, but if lC1 = 1, as dC1 = 1, by 1.3.15 we get that L1 has a base
point, hence C1

∼= P1 and h0(C1, LC1) = 2. Applying Lemma 4.2.4. in [C6] we obtain that
either lZ ≤ 2 or lZ = 3 and C2 and C3 separating lines of Z (recall that in our notation
dC1 = dC2 = dC3 = 1). So let us now consider all our possibilities: if lZ = 1, via 1.2.9.
in [C6] we see that h0(X, L) = 1, a contradiction. If instead lZ = 2, let us assume that
C2 � P1; then lC2 = 1, but LC2 cannot have base points, therefore we must have C2

∼= P1.
Via 1.2.9. we have that lZ ≤ lC2 + h0(Z \ C2, LZ\C2

)−min{δ, 2}, where δ = ]{C2 ∩ Z \ C2}.
If δ ≥ 2, then lZ ≤ lC2+h0(Z \ C2, LZ\C2

)−2, hence h0(Z \ C2, LZ\C2
) ≥ 2, and since dZ\C2

=

(1, 0, . . . , 0), applying 4.2.3. in [C6] we get that C3 is a separating line of Z \ C2, hence
C1, C2, C3 are lines and L

Z\(C2∪C3)
= O

Z\(C2∪C3)
. Let us now suppose that δ = 1; we have

that lZ = lC2 +h0(Z \ C2, LZ\C2
)−1 again by 1.2.9. in [C6], but then h0(Z \ C2, LZ\C2

) = 1.
Now we recall that degL

Z\C2
= (1, 0, . . . , 0), with dC3 = 1, besides, let us denote by Y :=

Z \ C2. Again we observe that it must be C3
∼= P1 and lC3 = 2, otherwise L should have a

base point. Notice that in all the cases we have examined, we obtained that C1, C2, C3 are
lines, and if h0(Z, LZ) = 3, C2, C3 are separating lines of Z. Moreover, reasoning as before
we get that L = (OC1(1),OC2(1),OC3(1),OC4 , . . . ,OCr ).

Lemma 1.3.17. Let X be a connected nodal curve, with Xsep = ∅, and let C be an irre-
ducible component of X such that ]C ∩ Cc ∈ {2, 3}. Then X \ C is connected.

Proof. Assume first that ]C ∩ Cc = 2. By contradiction, let us suppose that C is a discon-
necting component of X; then X \ C = X1 tX2. Now, since X is connected we have that
C ·X1 = 1, and C ·X2 = 1; if we consider the node C ∩X1, it is a separating node for the
subcurves X1 and X2 ∪ C, hence X has a separating node, a contradiction. If ]C ∩ Cc = 3

we repeat the same argument noticing that if C is a disconnecting component of X we
have (up to reordering), C ·X1 = 1 and C ·X2 = 2, so again C∩X1 is a separating node.

We are now going to investigate about the properties of irreducible nodal curves lying
in M1

g,3. In order to do it, we need some techniques introduced by Beauville in [Be77]
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and then used in [HM82], i.e. the construction of admissible covers. We recall here the
definition:

Definition 1.3.18. An admissible cover is the datum of:

(i) a nodal curve C,

(ii) a stable curve B of genus 0,

(iii) a map π : C → B,

such that

(a) the images and preimages of nodes are nodes,

(b) for every node x of B and every node n of C lying over it, the two branches of C near
n map to the branches of B near x with the same ramification index.

This definition was introduced in order to compactify the Hurwitz schemes Hd,g, which
are parameter spaces for simply branched covers of P1. Roughly speaking the way Hd,g

is compactified is by adding limit covers such that the base curve degenerates with the
cover; when two branch points collide, one separates them adding a rational component
to the cover and one to the base. Let us observe that there is another way to do that, i.e.,
using stable maps (see [FP02]). We recall the fundamental:

Theorem 1.3.19 (Existence ofHd,g). There exists a coarse moduli spaceHd,g for admissible
covers.

A question arising in a very natural way is: given a stable curve, how can we say whether
or not it is trigonal, and, more generally, whether or not it lies in Mr

g,d? The theory of
admissible covers provides an answer at least in the case of pencils, i.e. when r = 1. We
recall that in our terminology a k-gonal curve is a curve lying in M1

g,k and admitting a
regular smoothing by k-gonal smooth curves, whereas a weakly k-gonal curve is a curve
having a g1

k.

Definition 1.3.20. Let C be a stable curve. We say that a nodal curve C ′ is stably equiva-
lent to C, if C is obtained from C ′ by contracting to a point all smooth rational components
of C ′ meeting the other components of C ′ in only one or two points.

We are now able to state the following:

Theorem 1.3.21 (Harris-Mumford). A stable curve C is k-gonal if and only if there exists
a k−sheeted admissible cover C ′ → B of a stable (pointed) curve of genus 0 whose domain
C ′ is stably equivalent to C.

Lemma 1.3.22. Let X be an irreducible nodal curve of genus g ≥ 3, not hyperelliptic,
with δ nodes and let X̃

ν−→ X be its normalization. For every node ni let us denote by
ν−1(ni) = {pi, qi}. If there exists a line bundle TX ∈ Pic3X such that h0(X, TX) = 2, then:
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(i) X is trigonal,

(ii) there exists a g1
3, T , on X̃ such that T contains the divisors pi + qi + ri for every

i = 1, . . . , δ, where ri ∈ X̃.

Proof. We start by proving (i); the conclusion follows from the fact that given any irre-
ducible nodal curve of genus g with δ nodes, we are able to construct a 3−sheeted ad-
missible cover X ′ → B which is stably equivalent to X, so applying 1.3.21 we get our
conclusions. Let us now build X ′ → B. If we take X̃ to be the normalization of X, it is
a smooth trigonal curve, so we call π : X̃ → P1 the map induced by the g1

3. We will build
π′ : X ′ → B starting from π. We denote by B1 the target of π; we observe that since π is
(3 : 1), we can have at most points of ramification index 3. So if x ∈ B1 is such a point, i.e.
π−1(x) = {3r}, with r ∈ X̃ and of course r 6= pi, qi for every i, in order to get the admissible
cover we add to X̃ a copy of P1 meeting it at r, and to B1 a tail meeting it at x. The copy
of P1 added to X̃ is chosen so that it maps to the tail at x by a generic map P1 → P1 of
degree 3, with 3−fold branching at r. Let now y ∈ B1 be such that for some i we have
pi, qi ∈ π−1(y) with ramification, i.e., as a divisor π∗(y) = 2pi + qi (or 2qi + pi). Then we
just add to X̃ a copy of P1 glued at pi, qi and mapping to the tail at y which we add to B1,
by a generic map of degree 3 and ramification index 2 at pi (or qi). For every other pair
{pj , qj} such that π is not ramified at either pj or qj , we proceed as follows: let z ∈ B1 be
such that π∗(z) = pj + qj + rj for some rj ∈ X̃. Then we glue to X̃ two copies of P1: one
meeting X̃ at pj and qj , and the other one meeting it at rj . Moreover we add to the base
B1 a tail at z, such that the two copies of P1 upstairs map to the tail with degrees 2 and
1 respectively, yielding a (3 : 1) map to the tail. We call X ′ the curve obtained from X̃ by
gluing copies of P1 as indicated, and B the curve of genus 0 obtained from B1 by adding
the tails. Gluing all the maps introduced above, we get a (3 : 1) map π′ : X ′ → B which
is precisely the admissible cover we were looking for (see Figure 1.1). Let us compute the
genus of X ′: in our construction every P1 intersects X̃ in one or two points, and it’s easy to
see that the number of P1’s intersecting in two points are as many as the number of nodes,
δ. The number of P1’s intersecting in only one point will be denoted by α. We have that

g(X ′) = g(X̃)− 1 + ]{(P1)′s}(g(P1)− 1) + ](nodes) + 1, (1.22)

hence
g(X ′) = g − δ − 1 + (α + δ)(−1) + (α + 2δ) + 1 = g. (1.23)

This concludes the proof of part (i). To show (ii) let us suppose at first that X̃ is not
hyperelliptic. Let X1

ν1−→ X be the normalization of X at one node n1 of X. Then X1

has a g1
3, TX1 := ν∗1 (TX), since we can apply Clifford’s theorem being gX1 ≥ 2. Now TX1

is globally generated, since if it had a base point, then X1 would be hyperelliptic, but
then so would be X̃, which contradicts our assumption. Then we can apply 5.1.3. in
[C2], and get that WTX1

(X) = {TX} and h0(X1, TX1(−p1 − q1)) = h0(X1, TX1(−p1)) = 1,
hence there exists r1 ∈ X1, which is not a node, such that TX1 = OX1(p1 + q1 + r1). If
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X1 is smooth we are done. Otherwise we proceed in the following way: let X2
ν2−→ X1

be the normalization at one node n2 of X1, and let ν1,2 : X2 −→ X1 be the composition
of ν1 and ν2. Now ν∗1,2(TX) = ν∗2 (TX1) = ν∗2 (OX1(p1 + q1 + r1)) = OX2(p1 + q1 + r1)). Let
TX2 = ν∗2 (TX1) = OX2(p1 + q1 + r1)); since by hypothesis X̃ � P1, we have that δ ≤ g − 1,
hence pa(X̃) ≥ 1 and pa(X2) ≥ 1, hence via Clifford’s theorem we get that h0(X2, TX2) = 2.
Now arguing as before we get that TX2 = OX2(p2+q2+r2)) for a suitable r2 ∈ X2. Repeating
this procedure we are done. Now it remains to examine the case when X̃ is hyperelliptic:
but this is impossible since T eX would have a base point, so TX should have a base point,
too, but in our hypothesis X is not hyperelliptic.

? ?

r
pi

qi pj qj
rj

x zy

W ²

X̃

B1

X ′

B

?

π′
(3 : 1) (3 : 1) (2 : 1) (1 : 1)

Figure 1.1: The admissible cover of X: as in the proof, x is a point with ramification index 3 at r, y

has ramification index 2 at pi and 1 at qi (or vice-versa), and z has simple points pj , qj , rj in its fiber.

Remark 1.3.23. We want to make some observations about the vice-versa of 1.3.22: of
course if X is trigonal, since it has a regular smoothing where the general fiber is a smooth
trigonal curve, it has a g1

3, hence we can conclude that X is trigonal if and only if it has
a g1

3. Hence an irreducible curve [X] in M1
g,3 not trigonal is not weakly trigonal. Using

the construction of the compactified Picard scheme Pd,g over Mg in [C1], we have that
[X] ∈M1

g,3 if and only if there exists a partial blow up X̂S of X at a set of nodes S ⊆ Xsing,
possibly empty, and a line bundle LS ∈ Pic3X̂S , balanced on X̂S such that h0(X̂S , LS) = 2.
So let us suppose that X does not have a trigonal series. Then we can have two possibilities
according to the balanced multidegrees that LS can have. Indeed, either degLS = (2, 1),
where X̂S is the blow up of X in one node and we have just one exceptional component E

where the degree of LS |E = 1; or degLS = (1, 1, 1), where X̂S is the blow up of X in two
points, so its components are the normalization of X in two points and the corresponding
two exceptional components. In the first case, when degLS = (2, 1), call X1 the partial
normalization of X at one node; then it must be hyperelliptic, and since X doesn’t have any
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trigonal series, the preimages of the node on X1 are not a neutral pair for the hyperelliptic
series. It follows that the total normalization X̃ of X1, hence of X, is a hyperelliptic curve.
In the second case, when degLS = (1, 1, 1), if we call X2 the partial normalization of X at
two nodes, then deg LS |X2

= 1, but since LS |X2
must have two sections, it follows that X2

is rational, but then X2 is smooth (X had just two nodes) and it’s the total normalization
of X.

Before switching to other types of curves, we want to observe that the same techniques
yield the following:

Lemma 1.3.24. Let k ≥ 3 and X be an irreducible nodal curve of genus g. If there exists a
line bundle L ∈ PickX such that h0(X, L) = 2, then X is k-gonal.

Proof. The proof is analogous to the previous one, indeed we construct a k-sheeted admis-
sible cover for X. So we take the normalization X̃

ν→ X of X, and as before it will be
a smooth k-gonal curve, with induced (k : 1) map π : X̃ → P1. Let us denote by ni for
i = 1 . . . , δ the nodes of X, with ν−1(ni) = {pi, qi}, and let B1 be the target of π. We will
glue copies of P1 to X̃ and to B1. If x ∈ B1 is a multiple smooth point, its fiber as a divisor

can be described as follows: π∗(x) = m1x1 + · · ·+ mlxl, with
l∑

i=1

mi = k. Then we add to B1

a tail at x, and for every i = 1, . . . , l, we glue to X̃ a copy of P1 at xi, mapping to the tail
by a generic map P1 → P1 of degree mi, with ramification index mi at xi. Let now y be a
point of B1 such that in its fiber is contained the pair {pi, qi} for some i = 1, . . . , δ, pi and
qi with multiplicities µi

1 and µi
2 respectively. As before, the fiber of y can be described as

π∗(y) = µi
1pi + µi

2qi + m3y3 + . . . + mlyl, where the yj ’s can possibly be preimages of other
nodes, and in this case we treat them like pi, qi. Hence we glue to X̃ a copy of P1 at pi, qi,
and one at yj for every j; the copy at pi, qi will map to the tail at y with degree µi

1 + µi
2,

with ramification index µi
1 at pi and µi

2 at qi. The copies glued at the yj ’s will be mapped
to the tail at y by maps of degrees mj for every j = 3, . . . , l. Iterating these steps for all the
branching points of π and the nodes of X, we get a k−sheeted admissible cover X ′ → B

of X just taking X̃ and B1 and adding to them all the copies of P1 as indicated. An easy
calculation as in (1.22) and (1.23) will yield that the genus of X ′ is exactly g, so we are
done.

Remark 1.3.25. We notice, as in 1.3.23, that an irreducible nodal curve X is k-gonal if and
only if it has a g1

k. Again, any curve X ∈M1
g,k which is not k-gonal, is not weakly k-gonal,

since the limit of line bundles needs not be a line bundle itself. So, as before, we know
from [C1] that if [X] ∈ M1

g,k, this means that there exists a partial blow up X̂S of X at a
set of nodes S ⊆ Xsing, possibly empty, and a line bundle LS ∈ PickX̂S , balanced on X̂S ,
such that h0(X̂S , LS) = 2. So let us suppose that our X is not weakly k-gonal, hence we can
have the following possibilities: let Si = {n1, . . . , ni}, where n1, . . . , nδ are the nodes of X,
then there exists i = 1, . . . , δ such that (X̂Si , LSi) are as above. Let us call XSi the partial
normalization of X at the nodes in Si, and Ej , for j = 1, . . . , i, the exceptional components
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of X̂Si . Since LSi is balanced on X̂Si , we have that degLSi = (k − i, 1, . . . , 1), therefore XSi

must have a g1
k−i, and its total normalization X̃ must be weakly (k − i)-gonal as well. Let

us notice that when i = δ, i.e. if the total blow up of X has a g1
k, then degLSδ

= (1, . . . , 1),
so the total normalization XSδ

of X must be a copy of P1, and the number of nodes of X is
δ = k.

Curves with two components

In what follows we will give a characterization of some curves with two components lying
in M1

g,3, and we will see that some properties can be generalized to curves in M1
g,k for

any k. First of all we need some terminology, that we recall both from [Br99] and [EM02].
Let B be the spectrum of a discrete valuation ring R. Let s denote the special point of
B, and b its generic point. Let moreover f : X → B be a flat projective morphism such
that Xb := X (b) is an irreducible reduced nodal curve and the special fiber X := X (s)

is a nodal reducible reduced curve. We assume that the scheme X is regular, i.e., it is a
regular smoothing of X. Let C1, C2 be the irreducible components of X (that are Cartier
divisors on X ). Since X is regular, if Lb is a line bundle on Xb, there exists a line bundle
L on X such that L(b) = Lb and L := L(s) is a line bundle on X. The line bundle L will
be called an extension of Lb to X . Let us notice that twisting L by line bundles of the form
OX (m1C1 + m2C2) with m1, m2 ∈ Z, we get all the possible extensions of Lb to X , since
L(b) = L ⊗ OX (m1C1 + m2C2)(b). The linear system induced by H0(Xb, Lb) extends to X
as well, giving the vector space H0(X ,L), which, restricted to the central fiber defines a
vector space H0(X,L) inducing a linear system on X. We call the pair (L(s),H0(X, L)) a
limit linear system, according to [EM02]. Let us now recall:

Proposition 1.3.26 (Esteves). For every irreducible component Ci of X there is a unique
(up to isomorphism) extension Li of Lb to X with the following properties:

(a) the canonical homomorphism

H0(X, L) → H0(Ci,Li|Ci
)

is injective;

(b) for every irreducible component Cj with j 6= i the canonical homomorphism

H0(X,L) → H0(Cj ,Li|Cj
)

is not identically zero.

We are now going to use these concepts in a more specific situation. Let then f : X →
B be a regular smoothing of X such that the generic fiber Xb is a trigonal irreducible
curve (i.e. it has a g1

3 by 1.3.23) with trigonal series Tb, and the central fiber X is a
reducible reduced nodal curve with two components. When the curve is of compact type,
i.e., the two components meet in one point, we have already given an answer in 1.3.9 and
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1.3.12, following the theory of limit linear series developed by Eisenbud and Harris in
[EH86]. In what follows, by analyzing the possible extensions T ’s of Tb to X , we are going
to characterize the central fiber X of the degeneration and its induced trigonal series. In
what follows, we will deal only with families of curves which are regular smoothings.

Lemma 1.3.27. Let f : X → B be a family of irreducible nodal trigonal curves, and let
the central fiber X be a reducible stable curve with 2 components C1, C2, and δ = 2 nodes.
Then, C1 is trigonal and C2 is hyperelliptic.

Proof. Let Tb be the trigonal series of the generic curve Xb of the family. Then, since
the smoothing is regular, there exists an extension T to X , such that T|Xb

= Tb. Fol-
lowing 1.3.26, we know that there exists a unique extension Ti with respect to Ci having
properties (a) and (b) in 1.3.26. Let us denote by Ti = Ti|X for i = 1, 2. Then the pos-
sible multidegrees of T1 are degT1 ∈ {(3, 0), (2, 1), (1, 2)} since h0(X,T1) ≤ h0(C1, T1|C1

)

and T1 doesn’t have negative degree on C2 because of property (b). We can assume that
g(C1), g(C2) 6= 0, since X is stable and δ = 2. Let us suppose that degT1 = (3, 0). Twisting
by OX (C1) we see that the only possibility for degT2 according to 1.3.26 (a) and (b), is (1, 2).
Then, since deg T1|C1

= 3 and 2 = h0(X, T1) ≤ h0(C1, T1|C1
), we have that C1 is trigonal;

for the same reason, since deg T2|C2
= 2 and 2 = h0(X,T2) ≤ h0(C2, T2|C2

), we have that C2

is hyperelliptic. Moreover, we have that T1|C2
= OC2 because of 1.3.26 (b), hence

h0(X,T1) = h0(C1, T1|C1
) + h0(C2,OC2)− 1.

Applying [C6, Lemma 1.2.6.], we get that

h0(C1, T1|C1
(−p1 − p2)) = 1,

hence, by 1.3.15, T1|C1
= OC1(p1 + p2 + a), where a ∈ C1. On the other hand,

h0(X, T2) = h0(C1, T2|C1
) + h0(C2, T2|C2

)− 1,

so it follows that h0(C2, T2|C2
(−q1 − q2)) = 1, therefore the hyperelliptic series on C2 is the

line bundle OC2(q1 + q2). Suppose now that degT1 = (2, 1); then, twisting by OX (C2) we
get that the only possibility for degT1 is (0, 3), i.e., we switch the curves and the argument
above applies. The last case to study is when degT1 = (1, 2); then, by 1.3.26 (a) it follows
that (3, 0) can’t be the multidegree of T2 with respect to C2, hence T1 = T2, T1 = T2 and
since h0(C1, T1|C1

) = 2, then C1 is a smooth rational curve, but we excluded the possibility
g(C1) = 0.

We are now going to give a sort of vice-versa of 1.3.27:

Lemma 1.3.28. Let X be a reducible reduced stable curve with two irreducible components
C1, C2 and two nodes n1, n2 such that, if {p1, q1}, {p2, q2} are the branches over the nodes,
C1 is trigonal with trigonal series OC1(p1 + p2 + p), p ∈ C1, and C2 is hyperelliptic with
series OC2(q1 + q2). Then X is trigonal.
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Proof. Given X as in the hypothesis, we just have to construct a 3−sheeted admissible
cover of it, so applying 1.3.21 we get our conclusions. First of all we denote by TC1 =

OC1(p1 + p2 + p), and by HC2 = OC2(q1 + q2). Then we build the admissible cover π :

X ′ → B′ as follows. Let us take two copies of P1, denoted by B1 and B2, such that the
map π1 : C1 → B1 is the (3 : 1) map induced by TC1 , and the map π2 : C2 → B2 is (2 : 1)

induced by HC2 . If we call y1, y2 the points of B1, B2 resp. such that π−1
1 (y1) = {p1, p2, p},

and π−1
2 (y2) = {q1, q2}, then we glue B1 and B2 along y1 and y2. We call y the point of

B1 ∪B2 coming from the identification of y1 and y2, as in Figure 1.2. We want to complete
π2 to a (3 : 1) map π′2; let us glue a copy r of P1 to C1 at p, such that r is mapped to B2 by a
generic (1 : 1) map P1 → P1. Gluing the last map to π2 we obtain π′2 : C2 t r → B2, which
is now a (3 : 1) map. Moreover, if there are triple points, i.e., if there exists some x ∈ B1

such that its ramification index is 3, we glue to B1 a tail at x, and to C1 a copy of P1 at the
corresponding multiple point (point a in Figure 1.2), mapping to the tail at x by a (3 : 1)

map. Then we get the cover in the following way: X ′ is the curve composed of C1, C2, r,
and the copies of P1 glued at multiple ramification points of C1. On the other hand B′ is
the union of B1, B2, and all the tails added at multiple points of B1. The map π is given
by π1 on C1, and by π′2 on C2 t r, and we see that π−1(y) = {n1, n2, p}, where by abuse of
notation we denote via p both the point on C1 and the node obtained by gluing r to C1. So
we are done.

@@

C1
C2

pr

x

a

y

B1 B2

n1

n2
@@

?

Figure 1.2: The admissible cover of X: the notation is precisely the one used in the proof of 1.3.28,
in order to illustrate the construction.

Lemma 1.3.29. Let f : X → B be a family of irreducible nodal trigonal curves, and let the
central fiber X be a reducible reduced stable curve with 2 irreducible components C1, C2,
and δ = 3 nodes. Then, either

(i) C1 is rational and C2 is hyperelliptic,

or

(ii) C1 and C2 are both trigonal.
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Proof. We again adopt the notation introduced in paragraph 1.3.2, and denote by ni for
i = 1, 2, 3 the nodes of X and by {pi, qi} their branches on C1, C2. If Tb is the trigonal
series on Xb, let T1 be the extension with respect to C1 as in 1.3.26, and T2 be the one
relatively to C2, moreover again we denote by Ti = Ti|X . Then the multidegree degT1 ∈
{(3, 0), (2, 1), (1, 2)}. If degT1 = (3, 0), then twisting by OX (C1) we get that degT2 = (0, 3)

is the only possibility according to 1.3.26 (a) and (b). So, in this case we have that both
C1 and C2 are trigonal, since 2 = h0(X,Ti) ≤ h0(Ci, Ti|Ci

) for i = 1, 2. Moreover, 1.3.26 (b)
implies that Ti|Cj

= OCj
, for i 6= j ∈ {1, 2}. This means that, if g(C1), g(C2) 6= 0,

h0(X, Ti) = h0(Ci, Ti|Ci
) + h0(Cj ,OCj

)− 1,

with i 6= j ∈ {1, 2}, then applying [C6, Lemma 1.2.6.] we get that h0(C1, T1|C1
(−p1 − p2 −

p3)) = 1 and h0(C2, T2|C2
(−q1 − q2 − q3)) = 1, hence that

T1|C1
= OC1(p1 + p2 + p3),

and
T2|C2

= OC2(q1 + q2 + q3).

The second case we are going to develop, is when degT1 = (1, 2) or (2, 1), which is the same
up to switching the two components. As we can see, since X has 3 nodes, if we twist T1 we
obtain negative degrees, against 1.3.26 (b). Hence we conclude that in this case T1 = T2,
therefore T1 = T2, C1 is a rational curve, and C2 a hyperelliptic curve, with hyperelliptic
series that we denote by HC2 , so that T1 = T2 = (OP1(1),HC2). Hence we are done.

As well as in the case of two nodes, we are going to give a vice-versa to the previous
statement.

Lemma 1.3.30. Let X be a reducible reduced stable curve with two irreducible components
C1, C2 and 3 nodes n1, n2, n3 such that {pi, qi} are the branches over the nodes for i = 1, 2, 3,
and one of the following holds:

(i) C1 and C2 are trigonal with trigonal series OC1(p1 + p2 + p3) and OC2(q1 + q2 + q3),

(ii) C1 is rational and C2 is hyperelliptic, with maps C1
π1−→ P1 and C2

π2−→ P1 induced
resp. by OP1(1) and by the hyperelliptic series, such that π1(pi) = π2(qi) for any i.

Then X is trigonal.

Proof. Let us assume first that C1 and C2 are both trigonal, with series OC1(p1 + p2 + p3)

and OC2(q1 + q2 + q3); then we just have to build a 3−sheeted admissible cover of X. We
proceed as follows: let us denote by πi : Ci → Bi the map induced by the trigonal series
of Ci, where Bi is a copy of P1; then the admissible cover π : X ′ → B′ will be such that
X ′ is the curve with irreducible components C1, C2 and all the copies of P1 glued at 3-fold
branched points of C1 and C2 as in the proof of 1.3.28. To obtain the base B′ of the cover,
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n1

n2

n3
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B1 B2

Figure 1.3: The admissible cover of X is obtained by gluing the (3 : 1) maps induced by the trigonal
series on C1 and C2.

we have to glue B1 and B2 as follows: let y1 ∈ B1, y2 ∈ B2, such that π−1
1 (y1) = {p1, p2, p3},

and π−1
2 (y2) = {q1, q2, q3}.

Then we glue B1 and B2 identifying y1 with y2; hence the base B′ is the curve of genus 0

composed of B1, B2, and the tails glued to them at the ramification points of the series.
The map π is the one given by π1 on C1, by π2 on C2, and by generic (3 : 1) maps on the
copies of P1 glued at multiple branch points, where the targets of these maps are precisely
the tails of B′. In particular, notice that if we denote by y ∈ B′ the point coming from the
gluing of y1 and y2, then π−1(y) = {n1, n2, n3}, (see Figure 1.3).
Now let us focus on the second case, i.e. when C1 is rational and C2 is hyperelliptic. Let
π1 : C1 → P1 be the map induced by OP1(1), and π2 : C2 → P1 the (2 : 1) map induced by
the hyperelliptic series HC2 on C2. These two maps will give us the admissible cover we
are looking for. Let xi ∈ P1 be the image via π2 of the branch qi; by hypothesis we know
that π1(pi) = xi for every i = 1, . . . , 3. We denote by B the target of π1 and π2; we can
have two situations: qi is either a Weierstrass point of C2 for some i = 1, 2, 3, or it is not.
If it is, then we build the admissible cover π : X ′ → B′ as follows: fix i ∈ {1, 2, 3} and
suppose xi ∈ B is such that π−1

2 (xi) = 2qi, and therefore such that π−1
1 (xi) = pi, since pi

and qi have the same image on B. We build X ′ starting from C1 and C2, that we consider
as two disjoint curves; then we glue to C1 and C2 a copy of P1 at pi and qi, mapping to the
tail that we glue to B at xi via a generic (3 : 1) map. Fix now j ∈ {1, 2, 3}, and suppose
qj is not a Weierstrass point of C2, i.e., there exists xj ∈ B such that π−1

2 (xj) = {qj , rj},
with qj 6= rj ∈ C2. Notice that we have, like before, that π−1

1 (xj) = pj ; now we take two
copies of P1, then we glue one of them to C1 and C2 at pj and qj , and the other one to C2

at rj . The first copy will map to the tail we add to B at xj via a generic (2 : 1) map, and
the second copy will map to the same tail at xj via a (1 : 1) map. Hence the admissible
cover is obtained by taking X ′ as the union of C1, C2, and all the copies of P1 we add in
correspondence of the nodes; B′ is the curve having as irreducible components B and all
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the tails we add in correspondence of the images of the nodes.

pi

qi

rj

pj

qj

C1

C2

?² ²

xj xi

B

(2 : 1)

(1 : 1)

(3 : 1)

Figure 1.4: A sketch of the construction of an admissible cover of X: as in the proof of 1.3.30, we
denoted by qi a Weierstrass point of HC2 , and by qj a simple point of its. We showed how to glue
copies of P1 to C1 and C2 in both the cases.

We are now going to ask ourselves what happens when we have a reducible reduced stable
curve X with two components C1 and C2 and δ = k nodes, and X is the central fiber of a
family of k-gonal irreducible curves. We assume that k ≥ 4.

Lemma 1.3.31. Let f : X → B be a family of irreducible nodal k-gonal curves, and let the
central fiber X be a reducible reduced stable curve with 2 irreducible components C1, C2,
and δ = k nodes. Then, either

(i) C1 and C2 are both k-gonal,

or

(ii) C1 is k1-gonal and C2 is k2-gonal, with k1 + k2 = k.

Proof. We proceed as in the proof of 1.3.29. Let Xb be the generic curve of X , and let Lb

be the k-gonal series on Xb. Then by 1.3.26 there exists a unique extension Li to X of
Lb with respect to Ci satisfying (a) and (b); we write Li = Li|X . Let us denote by ni for
i = 1, . . . , k the nodes of X, and by {pi, qi} their preimages on C1 and C2. Let us first
suppose that the multidegree degL1 = (k, 0); then we see that twisting by OX (C1) we get
that the only possible multidegree for L2 is (0, k). Hence by 1.3.26 we get that both C1

and C2 are k-gonal curves, so if we denote by Gk
i = Li|Ci

, we get that L1 = (Gk
1 ,OC2), and

L2 = (OC1 , G
k
2). Moreover, since

2 = h0(X, L1) = h0(C1, G
k
1) + h0(C2,OC2)− 1

and
2 = h0(X,L2) = h0(C1,OC1) + h0(C2, G

k
2)− 1,

we get that applying [C6, Lemma 1.2.6.],

Gk
1 = OC1(

k∑

i=1

pi) and Gk
2 = OC2(

k∑

j=1

qj).
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Let us now assume that degL1 = (k−1, 1); we see that twisting we would contradict 1.3.26
(b), hence it follows that L1 = L2, and therefore L1 = L2. Then we have that C2 must be
rational, and C1 must be (k − 1)-gonal, and we write L1 = (Gk−1

1 ,OP1(1)). Let us verify
that properties (a) and (b) of 1.3.26 hold. Indeed, in all the cases before these properties
were obvious; now we have to check that the maps

H0(X, L1)
ϕ1−→ H0(C1, G

k−1
1 )

and
H0(X, L1)

ϕ2−→ H0(C2,OP1(1))

are injective. Let us introduce the following notation: let H0(C1, G
k−1
1 ) = 〈σ1, σ2〉 and

H0(C2,OP1(1)) = 〈τ1, τ2〉. Since h0(X, L1) > 0, there exist sections σi ∈ H0(C1, G
k−1
1 )

and τj ∈ H0(C2,OP1(1)) such that they match on the k nodes; we denote the section of
H0(X,L1) arising from σi and τj by σi?τj ; we want to show that H0(X, L1) = 〈σ1?τ1, σ2?τ2〉.
This would imply that the maps

H0(X, L1)
ϕ1−→ H0(C1, G

k−1
1 )

σi ? τi 7→ σi

and
H0(X, L1)

ϕ2−→ H0(C2,OP1(1))

σi ? τi 7→ τi

are both isomorphisms of vector spaces. So, if by contradiction we had H0(X, L1) = 〈σi ?

τ1, σi ? τ2〉 for some i ∈ {1, 2}, then it would mean that σi(pj) = τ1(qj) = τ2(qj) for j =

1, . . . , k, hence that the point [τ1(qj) : τ2(qj)] = [1 : 1] ∈ P1 has k distinct preimages, which
is impossible since OP1(1) induces a map of degree 1. If on the other hand we had, say,
H0(X,L1) = 〈σ1 ? τi, σ2 ? τi〉 for some i ∈ {1, 2}, then it would imply that σ1(pj) = σ2(pj) =

τi(qj) for every j = 1, . . . , k. Then again the point [σ1(pj) : σ2(pj)] = [1 : 1] ∈ P1 would have
k distinct preimages, against the fact that the map induced by Gk−1

1 has degree k−1. This
proves (a), and (b) is obvious. To conclude the proof, let us just observe that if we assume
degL1 = (k1, k2) with k1 + k2 = k and k1 ≥ k2 (when k1 ≤ k2 we just switch the curves),
with an argument analogous to the previous one we get that properties (a) and (b) hold for
L1 = (Gk1

1 , Gk2
2 ), hence C1 is k1-gonal and C2 is k2-gonal.

As well as for δ = 2 and δ = 3, we have a vice-versa to the previous statement, so that
we can completely characterize the curves with two components and k nodes lying in the
closure of M1

g,k as limits of regular smoothings.

Lemma 1.3.32. Let X be a reducible reduced stable curve with two irreducible components
C1, C2 and k nodes n1, . . . , nk such that, if {pi, qi} are the branches over the nodes for i =

1, . . . , k, either

(i) C1 and C2 are k-gonal with g1
k ’s, respectively, OC1(p1 + · · ·+ pk) and OC2(q1 + · · ·+ qk),
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or

(ii) C1 has a g1
k1

, denoted by Gk1
1 , and C2 has a g1

k2
, Gk2

2 , with k1 + k2 = k, k1, k2 > 0

inducing maps C1
π1−→ P1 and C2

π2−→ P1 such that π1(pi) = π2(qi) for any i = 1, . . . , k.

Then X is k-gonal.

Proof. We follow the lines of the proof of 1.3.30. So let us suppose at first that C1 and
C2 are both k-gonal with series OC1(p1 + · · · + pk) and OC2(q1 + · · · + qk); then we just
apply the construction in the first part of 1.3.30 in order to build an admissible cover for
X. Indeed, by generalizing that construction we get as k-sheeted admissible cover, a map
π : X ′ → B′, which we describe hereafter: let us denote by πi : Ci → Bi the map induced
by the k-gonal series of Ci, where Bi is a copy of P1. Then let y1 ∈ B1, y2 ∈ B2 be such that
π−1

1 (y1) = {p1, . . . , pk}, and π−1
2 (y2) = {q1, . . . , qk}. Then we glue B1 and B2 identifying y1

with y2; hence we define the base B′ to be the curve of genus 0 composed of B1, B2, plus
the tails that we will glue to B1 and B2 at the multiple points of π1 and π2. On the other
hand X ′ is the curve having as irreducible components C1, C2, and all the copies of P1

glued to C1, C2 at multiple points, and each of these copies will map to the corresponding
tail of B′ via a generic (k : 1) map. We depicted the construction in Figure 1.5. Let us

y

n1

n2

C1 C2

B1 B2

?
?

(k : 1)

nk−1

nk

Figure 1.5: The admissible cover of X is obtained by gluing the (k : 1) maps induced by the k-gonal
series on C1 and C2.

now assume (ii). Then we construct a k-sheeted admissible cover of X as we did in the
second part of 1.3.30, in order to show that X ∈ M1

g,k. Let us recall that by hypothesis,
Gk1

1 and Gk2
2 induce maps π1 : C1 → P1 and π2 : C2 → P1 such that π1(pi) = π2(qi) for every

i = 1, . . . , k. We denote by B the target of π1, π2, as in 1.3.30. We are going to build the
admissible cover π : X ′ → B′ from C1 and C2. So, let xi ∈ B be such that pi ∈ π−1

1 (xi)

and qi ∈ π−1
2 (xi); moreover, let l1i be the ramification index of pi relatively to π1, and l2i

the one of qi relatively to π2. More specifically, let π∗1(xi) = l1i pi + µ1
i r

1
i + · · · + µs

i r
s
i , with
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r1
i , . . . , rs

i ∈ C1, and π∗2(xi) = l2i qi + ν1
i ρ1

i + · · · + νt
iρ

t
i, with ρ1

i , . . . , ρ
t
i ∈ C2. Then we glue a

copy of P1 to C1 and C2 at pi and qi (in such a way that it links the curves), mapping to the
tail we glue to B at xi via a degree l1i + l2i map; moreover we glue a copy of P1 to C1 at every
rj
i for j = 1, . . . , s, which is mapped to the tail at xi by a degree µj

i map. Again, for each
j = 1, . . . , t, we glue to C2 at ρj

i a copy of P1, mapping to the tail at xi via a degree νj
i map.

If there is a multiple point on B such that in its fiber there are multiple branched points
of π1 or π2, then we proceed as follows: let y ∈ B be such that π∗1(y) = m1y1 + · · · + meye

and π∗2(y) = me+1ye+1 + · · ·+ mfyf , with y1, . . . , ye ∈ C1, ye+1, . . . , yf ∈ C2, and at least one
mi > 2 for some i = 1, . . . , f . Then we glue to B a tail at y, and we glue to C1 a copy of
P1 at each yi for i = 1, . . . , e and to C2 one copy at each yj , for j = e + 1, . . . , f , every copy
mapping to the tail at y via a degree mi map. Repeating this process for every node and
every multiple point, we get that X ′ will be the curve having as irreducible components
C1, C2 and all the copies of P1 we glue to them; B′ will the curve obtained from B by gluing
the tails as above; the map π is given by π1 and π2 when restricted to C1 and C2, and
by the maps described above when restricted to the rational components of X ′, and by
construction it is (k : 1) (see Figure 1.6).

?N ² /

pi
qi

r1
i

ρ1
i

ρ2
i

(l1
i

+ l2
i

: 1)

(µ1
i

: 1)

(ν1
i

: 1)

(ν2
i

: 1)

xi

C1

? ?
B B

C2

(k1 : 1) (k2 : 1)

?

y

?

z

(k1 : 1) (k2 : 1)

Figure 1.6: The admissible cover of X is obtained by gluing the maps π1 and π2 induced by the k1

and k2-gonal series on C1 and C2. Notice that xi has the branches of a node in its fiber, while y and
z in B are examples of smooth ramification points of π1 and π2.

We are now going to discuss the case when the central fiber of our degeneration is a k-
gonal curve with two irreducible components meeting at δ > k nodes.

Lemma 1.3.33. Let f : X → B be a family of irreducible nodal k-gonal curves, and let the
central fiber X be a reducible reduced stable curve with 2 irreducible components C1, C2,
and δ > k nodes. Then, C1 is k1-gonal and C2 is k2-gonal, with k1 + k2 = k and k1, k2 > 0.
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Proof. We use the notation of 1.3.31, so let Xb be the generic curve of X , and let Lb be
the k-gonal series on Xb. Then by 1.3.26 there exists a unique extension Li to X of Lb

with respect to Ci satisfying (a) and (b); we write Li = Li|X . Let us denote by ni for
i = 1, . . . , δ the nodes of X, and by {pi, qi} their preimages on C1 and C2. Let us first
suppose that the multidegree degL1 = (k, 0); if we twist L1 with some line bundle of the
form OX (n1C1 + n2C2), we see that since δ > k, its restriction to either C1 or C2 would
have negative degree, against property (b). But if it were L1 = L2 then we would have
a contradiction since L1|C2

= OC2 and it doesn’t agree with property (a). So we exclude
the case degL1 = (k, 0), and assume that degL1 = (k1, k2) with k1 + k2 = k and k1, k2 > 0.
Again we see that twisting is impossible, so we get L1 = L2, and then L := L1 = L2. Then,
we repeat the argument in 1.3.31 to show that properties (a) and (b) hold for L, recalling
that the number of nodes of X is δ. So we have that C1 has a g1

k1
and C2 has a g1

k2
, which

together induce L.

Lemma 1.3.34. Let X be a reducible reduced stable curve with two irreducible components
C1, C2 and δ > k nodes such that C1 has a g1

k1
, denoted by Gk1

1 , and C2 has a g1
k2

, Gk2
2 , with

k1 + k2 = k, k1 · k2 > 0, inducing maps C1
π1−→ P1 and C2

π2−→ P1 such that π1(pi) = π2(qi)

for any i = 1, . . . , δ. Then X is k-gonal.

Proof. The proof is the same as in 1.3.32, i.e., we construct a k-sheeted admissible cover
of X as it is shown in Figure 1.6, starting from C1 and C2 and their k1-gonal and k2-
gonal series, and gluing to them copies of P1 at the preimages of nodes and at ramification
points.

The last case we want to study is when the number of nodes δ is such that δ < k. This
case requires a special attention to the twistings that will occur.

Lemma 1.3.35. Let f : X → B be a family of irreducible nodal k-gonal curves, and let the
central fiber X be a reducible reduced stable curve with 2 irreducible components C1, C2,
and δ < k nodes. Then,

if δ < k < 2δ: either C1 has a g1
k and C2 has a g1

δ , or C1 has a g1
k1

and C2 has a g1
k2

,
with k1 + k2 = k and k1, k2 > 0, or C1 has a g1

k1
and C2 has a g1

(k2−δ), with k1 + k2 = k

and k1, k2 > 0;

if k = 2δ: either both C1 and C2 have a g1
δ , or both have a g1

2δ, or C1 has a g1
k1

and C2

has a g1
(k2−δ), with k1 + k2 = 2δ and 0 < k1 ≤ k2;

if k > 2δ, k = mδ + α: either C1 is k-gonal and C2 has a g1
jδ for some j ∈ {1, . . . ,m}; or

C1 has a g1
k−jδ, and C2 has a g1

jδ for some j ∈ {1, . . . ,m}; or if k1 ≤ δ ≤ k2, k1 + k2 = k,
then writing k2 = nδ + β, C1 has a g1

k1
, and C2 has a g1

k2−jδ, for some j ∈ {1, . . . , n};
if δ ≤ k1 ≤ k2, writing k1 = µδ + γ and k2 = νδ + λ, C1 has a either a g1

k1
or a g1

k1−jδ,
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and C2 has a g1
k2

or a g1
k2+jδ, for some j ∈ {1, . . . , µ}; and the last possibility is that

C1 has a g1
k1

and C2 has a g1
k2−lδ for some l ∈ {1, . . . , ν}.

Proof. We use the same notation and techniques of the previous proofs, i.e., Xb will be
the generic curve of X , and Lb will be the k-gonal series on Xb. Then by 1.3.26 there
exists a unique extension Li to X of Lb with respect to Ci satisfying (a) and (b); we write
Li = Li|X for i = 1, 2. Let us denote by ni for i = 1, . . . , δ the nodes of X, and by {pi, qi}
their preimages on C1 and C2.

Case I: let δ < k < 2δ, and suppose that the multidegree degL1 = (k, 0); then we can only
twist by OX (C1), and we get degL2 = (k − δ, δ); now we have two possibilities: either
h0(C1, L2|C1

) = 1, or h0(C1, L2|C1
) ≥ 2. In the first case, applying [C6, Lemma 1.2.6.]

to both L1 and L2 we obtain that C1 has a g1
k and C2 has a g1

δ such that L1|C1
=

OC1(p1 + · · · + pδ + aδ+1 + · · · + ak) and L2|C2
= OC2(q1 + · · · + qδ), with ai ∈ C1.

In the second case, when h0(C1, L2|C1
) ≥ 2, we have that (a) and (b) in 1.3.26 hold

for both L1 and L2; indeed for L1 it’s obvious, whereas for L2 we make a count of
sections. We show that if H0(C1, L2|C1

) = 〈τ1, τ2〉 and H0(C2, L2|C2
) = 〈σ1, σ2〉, then

it’s not possible that H0(X, L2) = 〈τα ? σi, τβ ? σi〉 with α, β, i ∈ {1, 2}; indeed if it
were, for an argument analogous to the one in 1.3.31 we would get that the point
[1 : 1] ∈ P1 would have δ preimages via L2|C1

, which is impossible since k − δ < δ

by hypothesis. So even in this second case when h0(C1, L2|C1
) ≥ 2, we have that C1

has a g1
k and C2 has a g1

δ , but their structure is not specified. Now let us take into
consideration the case when degL1 = (k1, k2) with k1 ≤ k2, and k1 + k2 = k. Then
either k1 ≤ k2 < δ or k1 ≤ δ ≤ k2. In the first case we can’t twist, so we have that
L1 = L2 and C1 has a g1

k1
and C2 has a g1

k2
. In the second one, twisting by OX (C2) we

obtain degL2 = (k1 + δ, k2 − δ), so, when properties (a) and (b) hold we have that C1

has a g1
k1

and C2 has a g1
k2−δ.

Case II: k = 2δ; let degL1 = (2δ, 0), then by twisting we can have either degL2 = (δ, δ), or
degL2 = (0, 2δ). In the second case, both C1 and C2 have a g1

2δ, such that h0(C1, L1|C1
(−p1−

· · · − pδ)) = 1 and h0(C2, L2|C2
(−q1 − · · · − qδ)) = 1, by applying [C6, Lemma 1.2.6.].

If degL2 = (δ, δ), we can have that h0(C1, L2|C1
) = 1 or = 2. If h0(C1, L2|C1

) = 2,
since L2|C1

= L1|C1
(−p1 − · · · − pδ) and h0(C1, L1|C1

) = 2, it means that L1|C1
has

p1, . . . , pδ as base points, hence C1 and C2 have both a g1
δ . If, on the other hand,

h0(C1, L2|C1
) = 1, we have that C1 has a g1

2δ such that h0(C1, L1|C1
(−p1−· · ·−pδ)) = 1,

and C2 has a g1
δ such that (again by [C6, Lemma 1.2.6.]) L2|C2

= OC2(q1 + · · · + qδ).
Now let us study the other possibilities: if degL1 = (k1, k2) with k1 + k2 = k, ki 6= 0, δ

for i = 1, 2, then, supposing without loss of generality that k1 < k2, we get that twist-
ing by OX (C2), the only possibility is degL2 = (k1+δ, k2−δ). According to 1.3.26 (a) it
must be h0(C2, L2|C2

) ≥ 2, hence, since the maps in (a) are injective by an argument
based on sections as the one in Case I, we can get that C1 has a g1

k1
and C2 has a

g1
k2−δ.
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Case III: k > 2δ. In this case let as usual degL1 = (k, 0), then we can have more possibilities
for degL2, indeed if k = mδ + α, then degL2 ∈ {(k − δ, δ), (k − 2δ, 2δ), . . . , (α, mδ)}. Let
then degL2 = (k − jδ, jδ), fixing j ∈ {1, . . . ,m}; we have that either h0(C1, L2|C1

) = 1

or h0(C1, L2|C1
) = 2. If it is h0(C1, L2|C1

) = 1, it follows, as before, that C1 is k-gonal
with h0(C1, L1|C1

(−p1 − · · · − pδ)) = 1 and C2 has a g1
jδ such that h0(C2, L2|C2

(−q1 −
· · · − qδ)) = 1. If otherwise h0(C1, L2|C1

) = 2, then C1 has a g1
k−jδ, whereas C2 has

a g1
jδ. If degL2 = (k1, k2) with 0 < k1 ≤ k2, k1 + k2 = k and either k1 ≤ δ ≤ k2 or

δ ≤ k1 ≤ k2. If k1 ≤ δ ≤ k2, then let k2 = nδ + β, hence reasoning as before, we get
that C1 has a g1

k1
, and C2 has a g1

k2−jδ, for j ∈ {1, . . . , n}. If otherwise δ ≤ k1 ≤ k2, let
us write k1 = µδ + γ and k2 = νδ + λ: then we can twist both by OX (C1) and OX (C2),
getting degL2 = (k1 − jδ, k2 + jδ) or degL2 = (k1 + lδ, k2 − lδ), for some j ∈ {1, . . . , µ}
and l ∈ {1, . . . , ν}. So, repeating the previous reasoning, we get the combinations
between: C1 has a either a g1

k1
or a g1

k1−jδ, and C2 has a g1
k2

or a g1
k2+jδ, for some

j ∈ {1, . . . , µ}; finally the last possibility is that C1 has a g1
k1

and C2 has a g1
k2−lδ for

some l ∈ {1, . . . , ν}.

We turn our attention to another class of curves: graph curves. By definition, a graph
curve is a connected, projective algebraic curve which is a union of copies of P1, each
meeting exactly three others, transversely at distinct points; it follows that a graph curve
of genus g has 2g − 2 components and 3g − 3 nodes. They are obviously named after
their dual representation as graphs, which are in particular trivalent ones. We want to
investigate when a graph curve belongs to M1

g,k. We consider k = 3.

Lemma 1.3.36. Let X be a graph curve of genus g ≥ 4. Then, there exists no regular
smoothing of X such that the generic fiber is a trigonal irreducible nodal curve.

Proof. Let X be a graph curve of genus g ≥ 4. Let us suppose by contradiction that
there exists a regular smoothing of X, denoted by f : X → B, such that the generic
fiber Xb is a trigonal irreducible nodal curve of genus g. Then, according to 1.3.26, for
every irreducible component Ci of X there exists a unique line bundle Li on X satisfying
properties (a) and (b). Hence suppose that degL1|X = (3, 0, . . . , 0); we denote by L1 = L1|X .
We look for the other extensions Li with respect to Ci for i 6= 1, by twisting. We observe
that by 1.3.26 (b), we can’t allow negative degrees, i.e. if we regard degLi|X as a vector
in Z2g−2, then its components must be all non-negative. So, fixed i = 2, . . . , 2g − 2, by
twisting we must try to construct vectors Di = degLi ∈ Z2g−2 such that the j-th component
(Di)j ≥ 0 for any j = 1, . . . , 2g− 2, and (Di)i ≥ 1. We want to prove that this is impossible.
Indeed, let us take our vector D1 = (3, 0, . . . , 0); up to reordering we can assume that
C1 · Ci = 1 for i = 2, 3, 4; in this case, if we twist L1 by OX (C1) we get the multidegree
v = (0, 1, 1, 1, 0, . . . , 0), which yields D2, D3, D4 = v. Now we perform other twistings to
get more multidegrees; but if we twist by any Cj , for j = 1, . . . , 2g − 2, we have to add
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−3 to (v)j , and a +1 to the components of v corresponding to the Ci’s intersecting Cj .
So, iterating the twisting by distinct Cj ’s, we see that the only way to get a non-negative

components multidegree is twisting by OX (
2g−2∑
k=1

Ck) = OX (X). Hence we can’t have an

extension for every irreducible component of X, which gives us a contradiction. Let us
notice that starting by a multidegree v whose components belong to {0, 1}, we obtain the
same conclusion. On the other hand, if (degL1)i ∈ {1, 2, 0}, then we would have on X a
trigonal series of degree of type (1, 2, 0, . . . , 0) up to reordering. By 1.3.16 (i), we get that C1

would be a separating line of X \C2, which is impossible, since by [C6, Proposition 5.2.7.],
given a graph curve, for each irreducible component C, Cc has no separating nodes.

Remark 1.3.37. Let us notice that when g = 3 and g = 4 every smooth curve has a
g1
3, so in both cases Mg = M1

g,3. If g = 3 in particular we get the only graph curve
that can be embedded in the plane (see Figure 1.7). We want to observe that in this
case X has 4 components and 6 nodes, and if we use the notation of 1.3.36 we get that
the only possibility to have a regular smoothing of X with generic trigonal fiber is that
degL1 = (3, 0, 0, 0) and degLi = (0, 1, 1, 1) for i = 2, 3, 4.

Figure 1.7: A graph curve of genus 3.

1.4 Notes on Projective Normality of reducible curves
(with E. Ballico)

In this section we give some results on quadratic normality of reducible curves canonically
embedded and partially extend this study to their projective normality.

1.4.1 Quadratic normality

For any reduced projective curve X and any line bundles M, N on X let

µM,N : H0(X, M)⊗H0(X, N) −→ H0(X, M ⊗N); (1.24)
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denote the multiplication map. Set µM = µM,M . Given the dualizing sheaf ωX on X,
we are interested in studying the surjectivity of the map µωX

. In particular, when we
assume that X is canonically embedded this is equivalent to saying that X is quadratically
normal. We have

Proposition 1.4.1. Let X be a connected reduced curve of genus g with planar singular-
ities and ωX very ample. Assume that X = A ∪ B, with A,B connected and smooth at
D := A ∩B. If

(i) µωA,ωX |A is surjective,

(ii) µωX |B is surjective,

then µωX
is surjective.

In order to prove the proposition, we need some background material. We are going
to keep the notation used in the statement of Proposition 1.4.1. Let D := A ∩ B be the
scheme-theoretic intersection. We will view D also as a subscheme of A and B. Since both
A and B are smooth at each point of the support of D, that we denote by supp(D), the
scheme D is a Cartier divisor of both A and B; more in general, this is true if X has only
planar singularities at each point of supp(D), because in this case a local equation of B in
an ambient germ of a smooth surface gives a local equation of D as a subscheme of A.

Remark 1.4.2. According to the notation above, we have that

(i) It is well known that a curve with planar singularities is Gorenstein.

(ii) Since X is Gorenstein and locally planar at the points of supp(D), then A and B are
Gorenstein as well, so that ωA and ωB are both line bundles on A and B.

(iii) Since X is locally planar at the points of supp(D), the adjunction formula gives
ωX |A = ωA(D) and ωX |B = ωB(D). Thus deg(ωX |A) = 2gA − 2 + δ and deg(ωX |B) =

2gB − 2 + δ, where of course gA, gB are the arithmetic genera of A and B, and
δ = deg(D).

Lemma 1.4.3. Let Z be a reduced, Gorenstein and connected projective curve. Let E be an
effective Cartier divisor on Z such that E 6= 0. Then h0(IE) = 0 and h1(ωZ(E)) = 0.

Proof. Since Z is connected, h0(OZ) = 1. Since E is effective and non-empty, we get
h0(IE) = 0. We apply the duality for locally Cohen-Macaulay schemes, i.e. we apply to the
scheme X := Z and the sheaf F := ωZ(E) the case r = p = 1 of the theorem at page 1 of
[AK70]. We get h1(ωZ(E)) = dim(Ext0(ωZ(E), ωZ)), i.e. h1(ωZ(E)) = h0(Hom(ωZ(E), ωZ)).
Since ωZ is assumed to be locally free, we get h1(ωZ(E)) = h0(Hom(OZ(E),OZ)) = 0.
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Lemma 1.4.4. Let X be a connected reduced curve of genus g with planar singularities and
ωX very ample. Assume that X = A ∪ B, with A,B connected and smooth at D := A ∩ B.
For any subcurve Z of X we consider the map

ρZ : H0(X, ωX) −→ H0(Z, ωX |Z).

Then ρA and ρB are surjective.

Proof. To fix ideas we work on Z = A; let us consider the exact sequence:

0 → IA ⊗ ωX → ωX → ωX |A → 0.

We claim that IA ⊗ ωX = ωB . To prove this, we notice that since X has only planar
singularities, it can be embedded in a smooth surface S, where X, A and B are Cartier
divisors. Thus D is a Cartier divisor of A and of B (but seldom of X). By the adjunction
formula we have that

ωX = ωS(A + B)|X ,

then
ωB = ωS(B)|B = ωS(A + B −A)|B = (ωS(A + B −A)|X)|B

= (ωS(A + B)|X ⊗ IA)|B = (ωX ⊗ IA)|B .

So the claim is proved and the previous sequence becomes

0 → ωB → ωX → ωX |A → 0.

The corresponding long exact sequence in cohomology is

0 → H0(ωB) → H0(ωX) → H0(ωX |A) → H1(ωB) → H1(ωX) → H1(ωX |A) → · · ·

Since ωX |A = ωA(D), by lemma 1.4.3 we have that dim H1(ωX |A) = 0. Moreover, being
both B and X connected, we have that dim H1(ωB) = 1 and dim H1(ωX) = 1, so the map
H0(ωX) → H0(ωX |A) is surjective.

We are now able to prove proposition 1.4.1:

Proof of proposition 1.4.1. Let us consider the composition

H0(ωX)⊗H0(ωX)
µωX−→ H0(ω2

X)
ρ2

B−→ H0(ωX
2|B); (1.25)

In order to show that µωX is surjective, it suffices, by a basic argument of linear algebra,
to prove that

(a) ρ2
B ◦ µωX

is surjective,

(b) Kerρ2
B ⊆ ImµωX .
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So let us show (a): we have a commutative diagram

H0(ωX)⊗H0(ωX)
ρ2

B◦µωX //

ρB⊗ρB

²²

H0(ωX
2|B)

H0(ωX |B)⊗H0(ωX |B)

µωB(D)

55kkkkkkkkkkkkkk

(1.26)

where the map ρB⊗ρB is surjective by lemma 1.4.4 and µωB(D) is surjective by assumption
(ii). So, by the commutativity of the diagram we get (a).

In order to prove (b), we notice that

Kerρ2
B = H0(X, IB ⊗ ω2

X),

and take
µ := µωX

|H0(X,IB⊗ωX)⊗H0(ωX).

So we have the following commutative diagram:

H0(IB ⊗ ωX)⊗H0(ωX)
µ //

id⊗ρA

²²

H0(IB ⊗ ωX
2)

∼=
²²

H0(ωA)⊗H0(ωX |A)
µωA,ωX |A// H0(ωA ⊗ ωX |A)

(1.27)

The map id ⊗ ρA is surjective by lemma 1.4.4, while µωA,ωX |A is surjective by assumption
(i). Hence µ is surjective. Since µ is a restriction of µωX , we get Kerρ2

B ⊆ ImµωX .

Definition 1.4.5. Fix an integer m > 0; let X be a reduced and Gorenstein projective
curve. We say that X is m-connected (resp. numerically m-connected) if for any decompo-
sition X = U∪V with U, V subcurves without common irreducible components, the scheme
U ∩ V has degree at least m (resp. deg ωX |U − deg ωU ≥ m and deg ωX |V − deg ωV ≥ m).

Remark 1.4.6. If every point of X lying on at least two irreducible components of X is a
planar singularity of X, then X is m-connected if and only if it is numerically m-connected
(see [CFHR99], Remark 3.2).

Notation 1.4.7. Given a reduced curve X, we will denote by Xmult ⊂ X the set of points
of X lying on at least two irreducible components of X and by Xsm the open set of smooth
points of X.

Lemma 1.4.8. Let X be a connected, reduced and Gorenstein curve of genus g with ωX

very ample. Assume that X has planar singularities at the points of Xmult. Then X is
3-connected.

Proof. Let us fix any decomposition X = U ∪ V of X, with U, V subcurves and dim(U ∩
V ) = 0. Set D := U ∩ V . Since X has planar singularities at the points of supp(D),
D is a Cartier divisor of U . To prove the lemma it is sufficient to show the inequality
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deg(D) ≥ 3. Assume deg(D) ≤ 2. Since ωX is globally generated, X is 2-connected (see
[Cat81], Theorem D). Assume, then, deg D = 2. Remark 1.4.2 gives ωX |U ∼= ωU (D). Since
X is 2-connected and deg D = 2, we easily see that U is connected. By lemma 1.4.3 we get
that dim H1(ωU (D)) = 0. Thus Riemann-Roch gives

dim H0(ωU (D)) = dimH0(ωU ) + 1.

Since D is a Cartier divisor of U , we get ID ⊗ ωU (D) ∼= ωU . Thus

dim H0(ID ⊗ ωX |U ) = dim H0(ωX |U )− 1,

hence the restriction to D of the morphism induced by |ωX | is not very ample, contradic-
tion.

Definition 1.4.9. One says that a line bundle L on a curve X is normally generated if the
maps

H0(X,L)k → H0(X,Lk)

are surjective for any k ≥ 1.

Now we need to recall Theorem B in [F04].

Theorem 1.4.10 (Franciosi). Let C be a connected reduced curve and letH be an invertible
sheaf on C such that

degH|Z ≥ 2pa(Z) + 1 for all subcurves Z ⊆ C.

Then H is normally generated on C.

We are now able to prove the following lemma.

Lemma 1.4.11. Let X = A ∪ B, with A, B 6= ∅ and assume that X is Gorenstein, with
planar singularities at the points of Xmult. Let ωX be very ample. Then ωX |A and ωX |B are
normally generated.

Proof. Let us prove the conclusions for B. By Theorem 1.4.10 it is sufficient to prove that
deg ωX |Z ≥ 2pa(Z) + 1 for every subcurve Z ⊆ B. Since A 6= ∅, we have that Z ( X.
But since ωX is very ample, by lemma 1.4.8 we have that X is 3-connected, hence the
conclusions.

We are now ready to prove what in the introduction we called Theorem 1. For the
reader’s sake we recall its terms hereafter.

Theorem 1.4.12 (Theorem 1). Let X be a connected, reduced and Gorenstein projective
curve of genus g with ωX very ample. Assume that X has planar singularities at the points
lying on at least two irreducible components, and set X = A ∪ B with A, B connected
subcurves being smooth at D := A ∩B. If A 6= ∅ and the map

µωA,ωX |A : H0(A,ωA)⊗H0(A,ωX |A) → H0(X, ωA ⊗ ωX |A)

is surjective, then X is quadratically normal.
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Proof. We recall that X is a connected, reduced and Gorenstein projective curve of genus
g with ωX very ample. By hypothesis we assume that X has planar singularities at the
points of Xmult, and that X = A ∪ B with A,B connected subcurves being smooth at
D := A ∩ B. Since µωA,ωX |A is surjective, by proposition 1.4.1 it suffices to show that (ii)
holds. But this is true by lemma 1.4.11.

In what follows we will investigate when condition (i) of proposition 1.4.1 holds. If X is
any curve, we denote by Xsm its smooth locus. We recall a result from [B01]; before doing
this, let us introduce some notation: if L is a line bundle on a curve C globally generated
and such that dim H0(C, L) = r, it induces a morphism

hL : C → Pr−1.

Lemma 1.4.13 (Ballico). Let C be an integral projective curve with C 6= P1 and R ∈ PicC,
R globally generated and such that hR is birational onto its image. Then the multiplication
map

µωC ,R : H0(C, ωC)⊗H0(C, R) → H0(C, ωC ⊗R)

is surjective.

More in general we have the following result.

Theorem 1.4.14. Let A be a reduced, connected and Gorenstein projective curve such that
ωA is very ample and the map µωA

is surjective. Let E ⊂ Asm be an effective divisor on A

such that deg E ≥ 2. Then µωA,ωA(E) is surjective.

Proof. Since A is connected, lemma 1.4.3 gives H1(ωA(D)) = 0 for every effective and
nonzero Cartier divisor D on A. Thus

dimH0(ωA(D)) = gA + deg D − 1

for every such D. We use induction on e := deg E.

(a) Let us first assume e = 2. We check that ωA(E) is globally generated. Set E =

p1 + p2, where p1, p2 are smooth points for A. Since ωA is globally generated, then ωA(E)

is globally generated outside {p1, p2}. We just proved that

dim H0(ωA(pi)) = dimH0(ωA(p1 + p2))− 1.

Thus there is at least one section of ωA(E) that doesn’t vanish at pi, with i = 1, 2. Hence
ωA(E) is globally generated. The divisor E induces two inclusions j : ωA ↪→ ωA(E) and
j′ : ωA

2 ↪→ ωA
2(E), which in turn induce the linear maps j∗ : H0(ωA) −→ H0(ωA(E))

and j′∗ : H0(ωA
2) −→ H0(ωA

2(E)) which have respectively corank 1 and 2. Consider the
following diagram:

H0(ωA)⊗H0(ωA)
id⊗j∗ //

µωA,ωA

²²

H0(ωA)⊗H0(ωA(E))

µωA,ωA(E)

²²
H0(ωA

2)
j′∗ // H0(ωA

2(E))

(1.28)
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Since by hypothesis µωA,ωA
is surjective and

dim H0(ωA
2(E)) = dimH0(ωA

2) + 2,

then j′∗(Im(µωA,ωA)) is the codimension 2 linear subspace Γ := H0(IE⊗ωA(E)) of H0(ωA
2(E)).

Since the subspace j′∗(Im(µωA,ωA
)) is contained in Im(µωA,ωA(E)), in order to get the con-

clusions for e = 2 it suffices to prove the existence of two elements of Im(µωA,ωA(E)) which
together with a basis of j′∗(Im(µωA,ωA

)), i.e. of Γ, are linearly independent. Since ωA(E)

is globally generated, there exists α ∈ H0(ωA(E)) not vanishing at p1 and p2. Since ωA is
globally generated, there is β ∈ H0(ωA) not vanishing at p1 and p2 as well. Since ωA is
very ample, there is γ ∈ H0(ωA) vanishing at p1 but not at p2, or, in the case when p1 = p2,
vanishing at p1 with order exactly 1. Now the section σ := µωA,ωA(E)(γ ⊗ α) doesn’t belong
to Γ; indeed, if p1 6= p2, σ doesn’t vanish at p2, and if p1 = p2, it vanishes at p1 with order
exactly 1. Since the section µωA,ωA(E)(β ⊗ α) does not vanish at p1, it is not contained in
the linear span of Γ and σ. Thus

dim Im(µωA,ωA(E)) ≥ dimΓ + 2.

Thus µωA,ωA(E) is surjective in the case e = 2.

(b) Let now e ≥ 3. We use induction on e. We fix a point p contained in the support
of the divisor E, and set F := E − p. We check that ωA(E) is globally generated, By
inductive hypothesis the line bundle ωA(F ) is globally generated, hence so is ωA(E) outside
p. Since dim H1(ωA(F )) = 0, Riemann-Roch gives dim H0(ωA(E)) > dim H0(ωA(F )). Thus
ωA(F ) has a section not vanishing at p. Hence ωA(E) is globally generated. We define two
inclusions: ι : ωA(F ) ↪→ ωA(E) and ι′ : ωA

2(F ) ↪→ ωA
2(E), which induce the linear maps

ι∗ : H0(ωA(F )) −→ H0(ωA(E)) and ι′∗ : H0(ωA
2(F )) −→ H0(ωA

2(E)), both having corank 1.
We consider the diagram

H0(ωA)⊗H0(ωA(F ))
id⊗u∗ //

µωA,ωA(F )

²²

H0(ωA)⊗H0(ωA(E))

µωA,ωA(E)

²²
H0(ωA

2(F ))
u′∗ // H0(ωA

2(E))

(1.29)

By the inductive hypothesis the map µωA,ωA(F ) is surjective. Thus the linear subspace
u′∗(Im(µωA,ωA(F ))) has codimension 1 in H0(ωA

2(E)). Fix η ∈ H0(ωA) not vanishing at p

and τ ∈ H0(ωA(E)) not vanishing at p. Since µωA,ωA(E)(η ⊗ τ) does not vanish at p, it
doesn’t belong to u′∗(Im(µωA,ωA(F ))). Thus µωA,ωA(E) is surjective.

1.4.2 k-normality in higher degree

We are now interested in studying the surjectivity of higher order maps, i.e. of

Symk(H0(ωX)) −→ H0(ωk
X)
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when k ≥ 3, but since Symk(H0(ωX)) is a quotient of H0(ωX)⊗k, we can equivalently study
the surjectivity of

H0(ωX)⊗k −→ H0(ωk
X).

We observe that by applying part (b) in the proof of theorem 1.4.14 we get the following:

Proposition 1.4.15. Let A be a reduced, connected and Gorenstein curve such that ωA is
globally generated. Fix a globally generated R ∈ PicA such that H1(R) = 0 and µωA,R is
surjective. Let D ⊂ Asm be any effective divisor. Then µωA,R(D) is surjective.

As a corollary of theorem 1.4.14, we get the following result.

Corollary 1.4.16. Let A be a reduced, connected and Gorenstein projective curve such
that ωA is very ample and µωA

is surjective. Let E ⊂ Asm be an effective divisor such that
deg E ≥ 2. Then the maps µωA,ωk

A(kE) are surjective for all k ≥ 2.

We are now going to give some definitions in order to state a result;

Definition 1.4.17. A simple (r−1)-secant is a configuration of r−1 smooth points p1, . . . , pr−1

on a curve X ⊂ PN , spanning a Pr−2 and such that X ∩ Pr−2 = {p1, . . . , pr−1} as schemes.

Definition 1.4.18. Let R be a globally generated line bundle on a curve X, inducing a
map hR : X −→ Pr, r := dim H0(R)− 1, which is birational onto the image. A good (r − 1)-
secant of R is a set S := {p1, . . . , pr−1} such that dim H0(R(−∑r−1

i=1 pi)) = 2, R(−∑r−1
i=1 pi)

is still globally generated, and hR is an embedding at each pi.

We recall the following result from [B01]

Lemma 1.4.19 (Ballico). Let X be a one-dimensional projective locally Cohen-Macaulay
scheme with dim H0(OX) = 1 and R ∈ PicX globally generated and such that dimH0(R) =

2. Then the multiplication map

µωX ,R : H0(ωX)⊗H0(R) −→ H0(ωX ⊗R)

is surjective.

Lemma 1.4.20. Let A be a connected, projective curve, L,M ∈ PicA, M globally generated,
and such that dim H0(M) = 2 and dim H1(L⊗M∨) = 0. Then µL,M is surjective.

Proof. Obvious by the base point free pencil trick.

Proposition 1.4.21. Let A be a connected, Gorenstein curve with ωA globally generated,
R ∈ PicA with R globally generated, with hR birational onto its image and with a good
(r − 1)-secant, where r := h0(R)− 1. Then the maps µωA,Rk are surjective for all k ≥ 1.

Proof. Fix a good (r−1)-secant set S = {q1, . . . , qr−1}. Thus the linear span 〈hR(q1), . . . , hR(qr−1)〉
has dimension r−2, hR(A)∩〈hR(q1), . . . , hR(qr−1)〉 = {hR(q1), . . . , hR(qr−1)} as schemes and

h−1
R ({hR(q1), . . . , hR(qr−1)}) = {q1, . . . , qr−1}.
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Set M := R(−S). We start by examining the case k = 1. Since ωA is globally generated,
we have A 6= P1. Since the map hR induced by R is birational onto its image, we have
r ≥ 2. The first condition on the good (r − 1)-secant points gives h0(M) = 2. The last two
conditions give that M is globally generated. Since h0(R) = h0(M) + r − 1, we also get
h0(M(q1)) = h0(M)+1. Thus there is η ∈ H0(M(q1)) such that η(q1) 6= 0. The factorization
shown in the following diagram

H0(ωA)⊗H0(M) // //

²²

H0(ωA ⊗M)

j

² ²
H0(ωA)⊗H0(M(q1))

ϕ // H0(ωA ⊗M(q1))

shows that the image of ϕ contains a copy of H0(ωA ⊗ M) as a hyperplane. Since q1

is not a base point for M and ωA is globally generated, there is σ ∈ H0(ωA) ⊗H0(M(q1))

that doesn’t vanish on q1. Hence the image of σ via ϕ doesn’t vanish on q1, and we get the
surjectivity of ϕ. Repeating this argument for all the points q1, . . . , qr−1 adding them one
by one we get that µωA,R is surjective.

Now we assume k ≥ 2 and use induction on k. The inductive assumption gives the
surjectivity of the map H0(ωA) ⊗ H0(Rk−1) −→ H0(ωA ⊗ Rk−1). We use the following
commutative diagram:

H0(ωA)⊗H0(Rk−1)⊗H0(Rk)
ψ // //

²²

H0(ωA ⊗Rk−1)⊗H0(R)

φ

²²
H0(ωA)⊗H0(Rk)

µ // H0(ωA ⊗Rk)

It suffices to prove that φ is surjective, indeed, if it is, then φ ◦ ψ is surjective, hence µ

must be surjective. We proved that M is globally generated and dim H0(M) = 2. Moreover
we notice that

ωA ⊗Rk−1 ⊗M∨ = ωA ⊗Rk−2(S).

Since k ≥ 2 and S 6= ∅, we have that dim H1(ωA ⊗ Rk−2(S) = 0. The base point free pencil
trick applied to ωA ⊗Rk−1 and M gives the surjectivity of µωA⊗Rk−1,M . By Riemann-Roch
theorem we get that

dim H0(ωA ⊗Rk) = dim H0(ωA ⊗Rk−1 ⊗M) + ]S.

Arguing as in case k = 1 we get that the map µωA,Rk is surjective.

Definition 1.4.22. We say that a line bundle L on a curve X is k-normally generated if
the map

H0(ωX)⊗k −→ H0(ωk
X)

is surjective.
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For instance “quadratically normal” means “linearly normal” plus “2-normally gener-
ated”.

Proposition 1.4.23. Let X be a connected, reduced, Gorenstein projective curve with pla-
nar singularities and ωX very ample. Assume that X = A ∪ B, with A, B connected and
smooth at D := A ∩B. Fix k ≥ 3; if

(i) ωX is (k − 1)-normally generated,

(ii) µωA,ωj
X |A is surjective for 1 ≤ j ≤ k,

(iii) ωX |B is j-normally generated for 1 ≤ j ≤ k,

then ωX is k-normally generated.

Proof. The proof is similar to the one of proposition 1.4.1; we just change notation slightly,
denoting the multiplication maps in an easier way. We notice that in order to prove that
the map

H0(ωX)⊗k µk−−→ H0(ωk
X)

is surjective, by factorizing we get

H0(ωX)⊗H0(ωX)⊗k−1 µ⊗µk−1−−−−−→ H0(ωX)⊗H0(ωk−1
X )

eµ−→ H0(ωk
X),

so it suffices to see that the map µ̃ is surjective. We consider the diagram

H0(ωX)⊗H0(ωk−1
X )

eµ //

η

²²

H0(ωk
X)

ψ

²²
H0(ωX |B)⊗H0(ωk−1

X |B)
φ // H0(ωk

X |B)

(1.30)

where the map µ̃ = µωX ,ωk−1
X

. We know that φ is surjective by (iii), and if

(a) ψ ◦ µ̃ is surjective,

(b) Kerψ ⊆ Imµ̃,

then by linear algebra we get that µ̃ is surjective. In order to prove (a), by (1.30) we
equivalently show that the map φ ◦ η is surjective. We claim that η is surjective. Indeed,
since ωX is locally free we have the exact sequence

0 → IB ⊗ ωX → ωX → ωX |B → 0.

If we tensor by ωk−2
X , we get

0 → IB ⊗ ωk−1
X → ωk−1

X → ωX |B ⊗ ωk−2
X → 0,

which is equivalent to

0 → ωA ⊗ ωk−2
X → ωk−1

X → ωk−1
X |B → 0,
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The corresponding long exact sequence in cohomology is

0 → H0(ωA ⊗ ωk−2
X ) → H0(ωk−1

X ) → H0(ωk−1
X |B) → H1(ωA ⊗ ωk−2

X ) →

→ H1(ωk−1
X ) → H1(ωk−1

X |B) → · · ·
Now we consider H1(ωA ⊗ωk−2

X ); we have that ωA ⊗ωk−2
X = ωA ⊗ωk−2

X |A = ωA ⊗ωk−2
A ((k−

2)D), hence by lemma 1.4.3 we obtain that H1(ωA ⊗ ωk−2
A ((k − 2)D)) = 0, therefore the

map
H0(ωk−1

X ) → H0(ωk−1
X |B)

is surjective, and we get (a).
Now we want to prove (b). We notice that

Kerψ = H0(IB ⊗ ωk
X)

and set
µ := µ̃|H0(X,IB⊗ωX)⊗H0(ωk−1

X ).

We have the following commutative diagram:

H0(IB ⊗ ωX)⊗H0(ωk−1
X )

µ //

γ

²²

H0(IB ⊗ ωX
k)

∼=
²²

H0(ωA)⊗H0(ωk−1
X |A)

µ
ωA,ω

k−1
X

|A// H0(ωA ⊗ ωk−1
X |A)

(1.31)

Now we have that IB ⊗ωX
∼= ωA and applying the previous argument to A rather than

to B, we obtain that
H0(ωk−1

X ) → H0(ωk−1
X |A)

is surjective, hence so is γ in (1.31). Applying hypothesis (ii) we have that µ is surjective,
hence as in the proof of 1.4.1, we get that Kerψ = Imµ ⊆ Imµ̃.

We notice that when k grows, the hypothesis in proposition 1.4.23 can be simplified:

Proposition 1.4.24. Let X be a connected, reduced, Gorenstein projective curve of genus
g, with ωX globally generated. Fix k ≥ 4 and assume that ωX is (k−1)-normally generated.
Then ωX is k-normally generated.

Proof. As in the proof of 1.4.23, looking at the factorization

H0(ωX)⊗H0(ωX)⊗k−1 µ⊗µk−1−−−−−→ H0(ωX)⊗H0(ωk−1
X )

µ
ωX ,ω

k−1
X−−−−−−→ H0(ωk

X),

by hypothesis it suffices to prove that µωX ,ωk−1
X

is surjective. We use Proposition 8 in [F07]
in the following way: we take F := ωX and H := ωk−1

X , so we have that H0(F) is globally
generated. Moreover we have that

H1(H⊗F−1) = H1(ωk−2
X ) = 0

if k ≥ 4, so we get that the µωX ,ωk−1
X

is surjective.
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1.4.3 Applications

In the sequel we are going to study some cases where we can apply our results.

Lemma 1.4.25. Let Z be a connected and Gorenstein curve such that ωZ is globally gen-
erated. Let D ⊂ Zsm be an effective Cartier divisor such that deg(D) ≥ 2. Then ωZ(D) is
globally generated.

Proof. Since ωZ(D) is a line bundle, it is globally generated if and only if for every q ∈ Z

there is s ∈ H0(ωZ(D)) such that s(q) 6= 0. Since ωZ is assumed to be globally generated
and D is effective, the sheaf ωZ(D) is globally generated outside the finitely many points
appearing in supp(D). Fix p ∈ supp(D) and set D′ := Ip⊗D. Since p ∈ Xsm, D′ is a Cartier
divisor of degree deg(D) − 1. Moreover, since p ∈ supp(D), D′ is effective. Thus Lemma
1.4.3 gives h1(ωZ(D′)) = 0. Riemann-Roch gives h0(ωZ(D)) = h0(ωZ(D′)) + 1. Thus there
is s ∈ H0(ωZ(D)) such that s(p) 6= 0.

Corollary 1.4.26. Let X be a connected reduced curve with two irreducible non-rational
components C1, C2 meeting at planar singularities for X and both smooth at C1 ∩ C2; as-
sume that ωX is very ample. Then X is canonically embedded is projectively normal.

Proof. First of all we have to prove that X is quadratically normal, so let us use the set-
up of proposition 1.4.1, and set A = C1, B = C2. We look at hypothesis (i) and (ii) of
the theorem; hypothesis (i) is verified by applying 1.4.13 to C1. Indeed in our situation
R = ωX |C1 , i.e. R = ωC1(D) where D is the divisor on C1 and C2 corresponding to C1 ∩ C2.
Hence by lemma 1.4.25 we have that R is globally generated and birational onto the image,
and we get (i). Concerning (ii), it suffices to apply 1.4.11, and then by 1.4.1 we obtain that
X is quadratically generated. Now we want to study the 3-normal generation of X. So
we look at the hypothesis of 1.4.23: we know that ωX is quadratically normal, and of
course (iii) holds by lemma 1.4.11. So it remains to prove (ii): but this is a consequence
of corollary 1.4.16, indeed we have that µωA is surjective since A is irreducible and hence
projectively normal, moreover, being ωX very ample, A · B ≥ 3. Now when k ≥ 4 we just
apply 1.4.24 and get the conclusions.

Remark 1.4.27. We observe that in the case of nodal connected curves with two non-
rational irreducible components, the corollary above says that if the two components C1

and C2 meet at least at 3 points, then X = C1 ∪ C2 canonically embedded is projectively
normal. The corollary leaves out the curves having at least one P1 as a component, and
in particular binary curves (i.e. a curve X is binary if it is composed of two P1’s meeting
at g + 1 points where g is the genus of X), but for the latter special class of curves we can
use [S91] (see 1.4.30) and easily get projective normality. Concerning the class of curves
X = C1 ∪ C2 with C1 6= P1 and C2 = P1, we get the projective normality by applying
the same proof as in corollary 1.4.26, once we denote by A the component C1. Indeed the
hypothesis C1 6= P1 is used only when we apply 1.4.13 to A.
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We can generalize the previous result:

Corollary 1.4.28. Let X be a connected reduced Gorenstein curve with ωX very ample and
with planar singularities. Assume that X = A ∪ B with A 6= P1 irreducible and let B be a
connected curve. Let A and B be smooth at A∩B. Then ωX is k-normally generated for any
k ≥ 2.

Proof. The proof is straightforward once we notice that we can apply 1.4.13 to A and by
Theorem 1 we get quadratic normality of X; for k = 3 we apply 1.4.23 since both 1.4.11 for
B and 1.4.13 for A hold, and when k ≥ 4 we apply 1.4.24.

Corollary 1.4.29. Let X be a connected reduced Gorenstein curve with ωX very ample and
with planar singularities. Assume that X = A ∪ B with A as in theorem 1.4.14 and let B

be a connected curve. Let A and B be smooth at A ∩ B. Then X canonically embedded is
projectively normal.

Proof. The proof is as in corollary 1.4.28, we just apply theorem 1.4.14 to A.

We give now an example; before doing this, we recall an important result from [S91]:

Theorem 1.4.30 (Schreyer). Let X ⊂ Pg−1 be a canonical curve of genus g. If X has a
simple (g − 2)-secant, then X is projectively normal.

Schreyer’s theorem can be used in the most general setting once one is able to verify
the existence of a simple (g − 2)-secant. In [S91]pp.86 gave an example of a reducible
canonically embedded curve admitting no simple (g − 2)-secant. In the following example
we show that our theorem applies to that case.

Example 1.4.31. Let X = X1∪X2∪X3∪X4, with Xi smooth of genus gi and such that the
components intersect in 6 distinct points pij = Xi∩Xj that are ordinary nodes for X. Then
X has genus g = g1 +g2 +g3 +g4 +3. We have that ωX is a very ample line bundle; if gi = 0

for every i we have a graph curve, and it is projectively normal, as we see in [BE91]. Hence
we can assume gi 6= 0 for some i, say g1 > 0. Set A := X1, B := X2 ∪X3 ∪X4. Since A 6= P1

we can apply 1.4.13 and get that the multiplication map µωA,ωX |A is surjective. Sincethe
conditions on the degree of ωX |B in 1.4.10 are satisfied, the map µωX |B is surjective and
we can apply proposition 1.4.1 and get that X is quadratically normal.

1.5 Projective normality of binary curves

Definition 1.5.1. A reduced nodal curve X is called a binary curve if X = C1 ∪ C2 where
Ci
∼= P1 and the number of nodes of X is δ = g + 1, where g is the arithmetic genus of X.

Hereafter we recall some properties of binary curves that we will use several times; for
the details we refer the interested reader to [C5].
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Definition 1.5.2. Let X be a binary curve of genus g ≥ −1. A multidegree d = (d1, d2)

with d = |d| = d1 + d2 is said to be balanced on X if for i = 1, 2,

d− g − 1
2

≤ di ≤ d + g + 1
2

. (1.32)

We say that L ∈ Picd(X) is balanced if degL is balanced on X, and we say that a balanced
degree d ∈ Bd(X), where Bd(X) denotes the set of the balanced degrees on X. Let us
introduce the dualizing sheaf ωX on X; it is a line bundle on X, such that its restriction
ωCi to Ci has deg ωCi = g − 1 and its total degree has the following important property,
recovered from the basic inequality in [C1]:

d is balanced ⇔ d + ndegωX is balanced. (1.33)

In the sequel we are going to recall briefly some classical results which still hold for binary
curves, namely [C5, Proposition 11], and [C5, Proposition 19]:

Theorem 1.5.3 (Riemann’s theorem). Let X be a binary curve of genus g, and let d ≥ 2g−1.

(i) For every balanced L ∈ Picd(X) we have h0(L) = d− g + 1.

(ii) For every [L̂] ∈ P d
X we have h0(L̂) = d− g + 1.

Theorem 1.5.4. Let X be a binary curve; its dualizing sheaf, ωX , is very ample if and only
if X is non-hyperelliptic.

In order to prove an analogous version of Max Noether’s theorem for binary curves, we
follow the proof leading to Castelnuovo’s bound, (see [ACGH]), which is basically a conse-
quence of the General Position Theorem. This theorem in general fails when the curve X is
reducible, but in our setting it still holds: indeed when X is binary and embedded in Pg−1

via the dualizing sheaf ωX , the two components C1, C2 are such that ωCi = OP1(g − 1),
hence both C1 and C2 are embedded in Pg−1 as non-degenerate rational normal curves
meeting each other at δ = g + 1 points. This implies that the general hyperplane of Pg−1

will cut on Ci an effective divisor of degree g − 1, whose points are linearly independent.

Proposition 1.5.5 (General Position Theorem for Canonical Binary Curves). Let X ⊂
Pg−1 be a binary curve of genus g embedded via ωX ; then a general hyperplane meets X in
2g − 2 points, any g − 1 of which are linearly independent.

Proof. Let us consider the canonical embedding of X via ωX , X ↪→ Pg−1, so that both C1

and C2 span the ambient space. Let us take g − 4 general points p1, . . . , pg−4 on (say) C1,
and consider the projection from their span Λ = 〈p1, . . . , pg−4〉, which is a linear subspace
of Pg−1 of dimension g − 5 since C1 is a rational normal curve of degree g − 1. Let us
denote the projection by πΛ : Pg−1 99K P3, then the images in P3 of C1, C2 are the curves
C1

′ = πΛ(C1), which is a twisted cubic, and C2
′ = πΛ(C2), which is a curve of degree g − 1.

Let us notice that both of them are non-degenerate curves in P3. Now we want to show
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that if the statement of the theorem fails in Pg−1, then it also fails in P3. Indeed, if it fails
in Pg−1, this means that for every hyperplane section of X there exist g − 1 points which
are linearly dependent, hence they span a Pg−3; now we consider again the projection of
X from g − 4 general points on C1, and we obtain that the projection of the Pg−3 from Λ is
a line in P3, hence the images of the g − 1 points are collinear, so, in the hypothesis that
g ≥ 4 we get that there exists a triplet of dependent points out of a hyperplane section
in P3. Now we claim that the statement of the theorem in P3 is equivalent to saying that
there are at most ∞1 trichords to X, and this is in turn equivalent to the statement: not
every pair of points of X \ Xsing lie on a trichord. We prove the equivalence of the last
two statements as in [ACGH, Lemma, p.110]. Let U be the open set in (Pg−1)∗ of the
hyperplanes transverse to X, and let us denote by {ai, bi} = ν−1(ni) for any node ni of X,
where ν is the normalization map, and let Ċ1 = C1 \ {a1, . . . , aδ} and Ċ2 = C2 \ {b1, . . . , bδ}.
Consider the set

J := {(p1, p2,H) : p1, p2 ∈ H and p1 + p2 is a trichord} ⊂ X ×X × U,

where now U ⊂ (P3)∗, and abusing notation X denotes its projection. Since C1
′ and C2

′ are
non-degenerate irreducible curves in P3 and the General Position Theorem (see [ACGH])
holds for both of them, we can consider the open subset of J , J0 = {(p1, p2,H) : p1, p2 ∈
H and p1 + p2 is a trichord} ⊂ Ċ ′1 × Ċ ′2 × U. Now Ċ ′1 × Ċ ′2 is irreducible and the fiber di-
mension of J0 → Ċ1× Ċ2 is always (g− 1)− 2, then, as in [ACGH, Lemma, p.110], we have
that the surjectivity of J0 → U is equivalent to dim J0 ≥ g − 1, which is in turn equivalent
to the surjectivity of J0 → Ċ1 × Ċ2. This shows the equivalence of the two statements.
In particular, saying that not every pair of points of X \ Xsing lie on a trichord, implies
that not every pair of points of X lie on a trichord. Then let us suppose by contradiction
that every secant of X is trichord: arguing as in [ACGH, Lemma, p.110] we see that if the
statement is false, then every two tangent lines meet in a point. But this is clearly false,
indeed if we take two tangent lines to C1, since it is a rational normal curve spanning the
whole P3, they can be skew lines and not meet.

In what follows we are going to state Max Noether’s theorem for binary curves:

Definition 1.5.6. Let X ⊂ Pr be any embedded curve; we say that X is linearly normal if
the linear series of hyperplane sections is complete, i.e. if h0(X,OX(1)) = r + 1. Moreover
we say that X is projectively normal if the linear series cut out on X by hypersurfaces of
degree l is complete for every l ≥ 1, i.e. if the natural map H0(Pr,OPr (l)) → H0(X,OX(l))

is surjective.

Proposition 1.5.7. If X is a non-hyperelliptic binary curve, its canonical model is projec-
tively normal.

Proof. If X is a non-hyperelliptic binary curve, by 1.5.4 we know that the dualizing sheaf
ωX gives an embedding ϕ of X in Pg−1. Let us denote by Xc ⊂ Pg−1 the canonical model
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of X, such that X
ϕ−→ Xc. From definition 1.5.6 we immediately see that Xc is linearly

normal since it’s embedded via a complete linear series. We want to show that Xc is
projectively normal. Let H be a general hyperplane in Pg−1 so that Γc = Xc∩H is a general
hyperplane section on Xc. For l ≥ 1 consider the linear series |ωl

X | = |ϕ∗OXc(l)| on X and
its subseries Dl cut out on X by hypersurfaces of degree l. We denote by αl = dim |ωl

X |
and by βl = dim Dl. Of course we have that, if Γ is the pullback to X of the hyperplane
section Γc, Dl−1 + Γ ⊆ Dl; hence Dl(−Γ) ⊆ Dl−1 and βl − ]{conditions imposed by Γc on
hypersurfaces of degree l in Pg−1} ≥ βl−1. Notice that the number of conditions imposed
by Γc on hypersurfaces of degree l in Pg−1 is equal to the number of conditions imposed
by Γc on hypersurfaces of degree l contained in the hyperplane H that cuts Γc on Xc. Let
us call nl this number, then applying proposition 1.5.5 and [ACGH, Lemma p.115], we get
that

nl ≥ min{2g − 2, l(g − 2) + 1}.

So βl − βl−1 ≥ nl ≥ min{2g − 2, l(g − 2) + 1}; following the proof leading to [ACGH, Castel-
nuovo’s bound p.115], if we set

m :=
⌊

2g − 3
g − 2

⌋
= 2,

we get that
α0 = β0 = 0,

α1 = β1 = g − 1,

α2 ≥ β2 ≥ (g − 1) + 2(g − 2) + 1 = 3g − 4.

(1.34)

Now if we take |ω2
X |, then degω2

X = 2degωX , hence by (1.33) we can apply theorem 1.5.3,
and we get that

g = deg ω2
X − h0(X, ω2

X) + 1 = 2deg ωX − α2 ≤ 4g − 4− 3g + 4 = g.

Therefore α2 = 3g − 4, and αk = βk for any 1 ≤ k ≤ 2; we are now going to prove that
αl − αl−1 = min{2g − 2, l(g − 2) + 1} for any l ≥ 1. It clearly holds for l ≤ 2; let now l ≥ 3:
continuing (1.34) we have that α3 ≥ β3 ≥ 5g − 6, but we also have by theorem 1.5.3 that
α3 ≤ 5g − 6, whence α3 = β3. Iterating we get that αl − αl−1 = βl − βl−1 = 2g − 2 for any
l ≥ 3, so in particular this implies that αl = βl for any l ≥ 1. This in turn is equivalent to
saying that |ωl

X | = Dl, i.e., the map

H0(Pg−1,OPg−1(l)) → H0(Xc,OXc(l))

is surjective for any l, so Xc is projectively normal.
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Chapter 2

On the tropical Torelli map
(with M. Melo and F. Viviani)

2.1 Preliminaries

2.1.1 Stacky fans

In order to fix notations, recall some concepts from convex geometry. A polyhedral cone
Ξ is the intersection of finitely many closed linear half-spaces in Rn. The dimension of Ξ

is the dimension of the smallest linear subspace containing Ξ. Its relative interior Int Ξ is
the interior inside this linear subspace, and the complement Ξ \ Int Ξ is called the relative
boundary ∂ Ξ. If dimΞ = k then ∂ Ξ is itself a union of polyhedral cones of dimension
at most k − 1, called faces, obtained by intersection of Ξ with linear hyperplanes disjoint
from Int Ξ. Faces of dimensions k − 1 and 0 are called facets and vertices, respectively. A
polyhedral cone is rational if the linear functions defining the half-spaces can be taken
with rational coefficients.

An open polyhedral cone of Rn is the relative interior of a polyhedral cone. Note that
the closure of an open polyhedral cone with respect to the Euclidean topology of Rn is a
polyhedral cone. An open polyhedral cone is rational if its closure is rational.

We say that a map Rn → Rm is integral linear if it is linear and sends Zn into Zm, or
equivalently if it is linear and can be represented by an integral matrix with respect to
the canonical bases of Rn and Rm.

Definition 2.1.1. Let {Xk ⊂ Rmk}k∈K be a finite collection of rational open polyhedral
cones such that dim Xk = mk. Moreover, for each such cone Xk ⊂ Rmk , let Gk be a group
and ρk : Gk → GLmk

(Z) a homomorphism such that ρk(Gk) stabilizes the cone Xk under
its natural action on Rmk . Therefore Gk acts on Xk (resp. Xk), via the homomorphism ρk,
and we denote the quotient by Xk/Gk (resp. Xk/Gk), endowed with the quotient topology.
A topological space X is said to be a stacky (abstract) fan with cells {Xk/Gk}k∈K if there
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exist continuous maps αk : Xk/Gk → X satisfying the following properties:

(i) The restriction of αk to Xk/Gk is an homeomorphism onto its image;

(ii) X =
∐

k αk(Xk/Gk) (set-theoretically);

(iii) For any j, k ∈ K, the natural inclusion map αk(Xk/Gk) ∩ αj(Xj/Gj) ↪→ αj(Xj/Gj) is
induced by an integral linear map L : Rmk → Rmj , i.e. there exists a commutative
diagram

αk(Xk/Gk) ∩ αj(Xj/Gj)
v¹

))SSSSSSSSSSSSSS
Â Ä // αk(Xk/Gk) Xk

Â Ä //oooo

L

²²

Rmk

L

²²
αj(Xj/Gj) Xj

Â Ä //oooo Rmj .

(2.1)

By abuse of notation, we usually identify Xk/Gk with its image inside X so that we usually
write X =

∐
Xk/Gk to denote the decomposition of X with respect to its cells Xk/Gk.

A stacky subfan of X is a closed subspace X ′ ⊆ X that is a disjoint union of cells of X.
Note that X ′ inherits a natural structure of stacky fan with respect to the sub-collection
{Xk/Gk}k∈K′ of cells that are contained in X ′.

The dimension of X, denoted by dim X, is the greatest dimension of its cells. We say
that a cell is maximal if it is not contained in the closure of any other cell. X is said to be
of pure dimension if all its maximal cells have dimension equal to dim X. A generic point
of X is a point contained in a cell of maximal dimension.

Assume now that X is a stacky fan of pure dimension n. The cells of dimension n − 1

are called codimension one cells. X is said to be connected through codimension one if
for any two maximal cells Xk/Gk and Xk′/Gk′ one can find a sequence of maximal cells
Xk0/Gk0 = Xk/Gk, Xk1/Gk1 , · · · , Xkr/Gkr = Xk′/Gk′ such that for any 0 ≤ i ≤ r − 1 the
two consecutive maximal cells Xki/Gki and Xki+1/Gki+1 have a common codimension one
cell in their closure.

Definition 2.1.2. Let X and Y be two stacky fans with cells {Xk/Gk}k∈K and {Yj/Hj}j∈J

where {Xk ⊂ Rmk}k∈K and {Yj ⊂ Rm′
j}j∈J , respectively. A continuous map π : X → Y is

said to be a map of stacky fans if for every cell Xk/Gk of X there exists a cell Yj/Hj of Y

such that

1. π(Xk/Gk) ⊂ Yj/Hj ;

2. π : Xk/Gk → Yj/Hj is induced by an integral linear function Lk,j : Rmk → Rm′
j , i.e.

there exists a commutative diagram

Xk/Gk

π

²²

Xk
Â Ä //oooo

Lk,j

²²

Rmk

Lk,j

²²
Yj/Hj Yj

Â Ä //oooo Rm′
j .

(2.2)
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We say that π : X → Y is full if it sends every cell Xk/Gk of X surjectively into some cell
Yj/Hj of Y . We say that π : X → Y is of degree one if for every generic point Q ∈ Yj/Hj ⊂ Y

the inverse image π−1(Q) consists of a single point P ∈ Xk/Gk ⊂ X and the integral linear
function Lk,j inducing π : Xk/Gk → Yj/Hj is primitive (i.e. L−1

k,j(Z
m′

j ) ⊂ Zmk ).

Remark 2.1.3. The above definition of stacky fan is inspired by some definitions of poly-
hedral complexes present in the literature, most notably in [KKMS73, Def. 5, 6], [GM08,
Def. 2.12], [AR10, Def. 5.1] and [GS07, Pag. 9].

The notions of pure-dimension and connectedness through codimension one are well-
known in tropical geometry (see the Structure Theorem in [McLS]).

2.1.2 Graphs

Here we recall the basic notions of graph theory that we will need in the sequel. We follow
mostly the terminology and notations of [Di97].

Throughout this paper, Γ will be a finite connected graph. By finite we mean that Γ has
a finite number of vertices and edges; moreover loops or multiple edges are allowed. We
denote by V (Γ) the set of vertices of Γ and by E(Γ) the set of edges of Γ. The valence of a
vertex v, val(v), is defined as the number of edges incident to v, with the usual convention
that a loop around a vertex v is counted twice in the valence of v. A graph Γ is k-regular if
val(v) = k for every v ∈ V (Γ).

Definition 2.1.4. A cycle of Γ is a subset S ⊆ E(Γ) such that the graph Γ/ (E(Γ) \ S),
obtained from Γ by contracting all the edges not in S, is (connected and) 2-regular.
If {V1, V2} is a partition of V (Γ), the set E(V1, V2) of all the edges of Γ with one end in
V1 and the other end in V2 is called a cut; a bond is a minimal cut, or equivalently, a cut
E(Γ1,Γ2) such that the graphs Γ1 and Γ2 induced by V1 and V2, respectively, are connected.

In the Example 2.1.18, the subsets {f1, f2, f3} and {f4, f5} are bonds of Γ2 while the
subset {f1, f2, f3, f4, f5} is a non-minimal cut of Γ2.

2.1.5. Homology theory
Consider the space of 1-chains and 0-chains of Γ with values in a finite abelian group

A (we will use the groups A = Z,R):

C1(Γ, A) := ⊕e∈E(Γ)A · e C0(Γ, A) := ⊕v∈V (Γ)A · v.

We endow the above spaces with the A-bilinear, symmetric, non-degenerate forms uniquely
determined by:

(e, e′) := δe,e′ 〈v, v′〉 := δv,v′ ,

where δ−,− is the usual Kronecker symbol and e, e′ ∈ E(Γ); v, v′ ∈ V (Γ). Given a subspace
V ⊂ C1(Γ, A), we denote by V ⊥ the orthogonal subspace with respect to the form (, ).
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Fix now an orientation of Γ and let s, t : E(Γ) → V (Γ) be the two maps sending an
oriented edge to its source and target vertex, respectively. Define two boundaries maps

∂ : C1(Γ, A) −→ C0(Γ, A) δ : C0(Γ, A) −→ C1(Γ, A)

e 7→ t(e)− s(e) v 7→
∑

e : t(e)=v

e−
∑

e : s(e)=v

e.

It is easy to check that the above two maps are adjoint with respects to the two symmetric
A-bilinear forms (, ) and 〈, 〉, i.e. 〈∂(e), v〉 = (e, δ(v)) for any e ∈ E(Γ) and v ∈ V (Γ).

The kernel of ∂ is called the first homology group of Γ with coefficients in A and is
denoted by H1(Γ, A). Since ∂ and δ are adjoint, it follows that H1(Γ, A)⊥ = =(δ). It is
a well-known result in graph theory that H1(Γ, A) and H1(Γ, A)⊥ are free A-modules of
ranks: 




rankAH1(Γ, A) = 1−#V(Γ) + #E(Γ),

rankAH1(Γ, A)⊥ = #V(Γ)− 1.

The A-rank of H1(Γ, A) is called also the genus of Γ and it is denoted by g(Γ); the A-rank
of H1(Γ, A)⊥ is called the co-genus of Γ and it is denoted by g∗(Γ).

2.1.6. Connectivity and Girth
There are two ways to measure the connectivity of a graph: the vertex-connectivity (or

connectivity) and the edge-connectivity. Recall their definitions (following [Di97, Chap.
3]).

Definition 2.1.7. Let k ≥ 1 be an integer.

1. A graph Γ is said to be k-vertex-connected (or simply k-connected) if the graph ob-
tained from Γ by removing any set of s ≤ k − 1 vertices and the edges adjacent to
them is connected.

2. The connectivity of Γ, denoted by k(Γ), is the maximum integer k such that Γ is
k-connected. We set k(Γ) = +∞ if Γ has only one vertex.

3. A graph Γ is said to be k-edge-connected if the graph obtained from Γ by removing
any set of s ≤ k − 1 edges is connected.

4. The edge-connectivity of Γ, denoted by λ(Γ), is the maximum integer k such that Γ is
k-edge-connected. We set λ(Γ) = +∞ if Γ has only one vertex.

Note that λ(Γ) ≥ 2 if and only if Γ has no separating edges; while λ(Γ) ≥ 3 if and only
if Γ does not have pairs of separating edges.

In [CV1], a characterization of 3-edge-connected graphs is given in terms of the so-
called C1-sets. Recall (see [CV1, Def. 2.3.1, Lemma 2.3.2]) that a C1-set of Γ is a subset
of E(Γ) formed by edges that are non-separating and belong to the same cycles of Γ. The
C1-sets form a partition of the set of non-separating edges ([CV1, Lemma 2.3.4]). In [CV1,
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Cor. 2.3.4], it is proved that Γ is 3-edge-connected if and only if Γ does not have separating
edges and all the C1-sets have cardinality one.

The two notions of connectivity are related by the following relation:

k(Γ) ≤ λ(Γ) ≤ δ(Γ),

where δ(Γ) := minv∈V (Γ){val(v)} is the valence of Γ.
Finally recall the definition of the girth of a graph.

Definition 2.1.8. The girth of a graph Γ, denoted by girth(Γ), is the minimum integer k

such that Γ contains a cycle of length k. We set girth(Γ) = +∞ if Γ has no cycles, i.e. if it
is a tree.

Note that girth(Γ) ≥ 2 if and only if Γ has no loops; while girth(Γ) ≥ 3 if and only if Γ

has no loops and no multiples edges. Graphs with girth greater or equal than 3 are called
simple.

Example 2.1.9. For the graph Γ1 in the Example 2.1.18, we have that k(Γ1) = 1 because v

is a separating vertex. The C1-sets of Γ1 are {e1, e2, e3} and {e4, e5}. We have that λ(Γ1) =

2 because Γ1 has a C1-set of cardinality greater than 1 and does not have separating edges.
Moreover, girth(Γ1) = 2 since {e4, e5} is the smallest cycle of Γ1.

The Peterson graph Γ depicted in Figure 2.6 is 3-regular and has k(Γ) = λ(Γ) = 3.
Moreover, it is easy to check that girth(Γ) = 5.

2.1.10. 2-isomorphism
We introduce here an equivalence relation on the set of all graphs, that will be very

useful in the sequel.

Definition 2.1.11 ([W33]). Two graphs Γ1 and Γ2 are said to be 2-isomorphic, and we
write Γ1 ≡2 Γ2, if there exists a bijection φ : E(Γ1) → E(Γ2) inducing a bijection between
cycles of Γ1 and cycles of Γ2, or equivalently, between bonds of Γ1 and bonds of Γ2. We
denote by [Γ]2 the 2-isomorphism class of a graph Γ.

This equivalence relation is called cyclic equivalence in [CV1] and denoted by ≡cyc.

Remark 2.1.12. The girth, the connectivity, the edge-connectivity, the genus and the co-
genus are defined up to 2-isomorphism; we denote them by girth([Γ]2), k([Γ]2), λ([Γ]2),
g([Γ]2) and g∗([Γ]2).

As a consequence of a very well known theorem of Whitney (see [W33] or [O92, Sec.
5.3]), we have the following

Fact 2.1.13. If Γ is 3-connected, the 2-isomorphism class [Γ]2 contains only Γ.

In the sequel, graphs with girth or edge-connectivity at least 3 will play an important
role. We describe here a way to obtain such a graph starting with an arbitrary graph Γ.
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Definition 2.1.14. Given a graph Γ, the simplification of Γ is the simple graph Γsim ob-
tained from Γ by deleting all the loops and all but one among each collection of multiple
edges.

Note that the graph Γsim does not depend on the choices made in the operation of
deletion. A similar operation can be performed with respect to the edge-connectivity, but
the result is only a 2-isomorphism class of graphs.

Definition 2.1.15. [CV1, Def. 2.3.6] Given a graph Γ, a 3-edge-connectivization of Γ is a
graph, denoted by Γ3, obtained from Γ by contracting all the separating edges and all but
one among the edges of each C1-set of Γ.

The 2-isomorphism class of Γ3, which is independent of all the choices made in the
construction of Γ3 (see [CV1, Lemma 2.3.8(iii)]), is called the 3-edge-connectivization class
of Γ and is denoted by [Γ3]2.

2.1.16. Duality
Recall the following definition (see [Di97, Sec. 4.6]).

Definition 2.1.17. Two graphs Γ1 and Γ2 are said to be in abstract duality if there exists
a bijection φ : E(Γ1) → E(Γ2) inducing a bijection between cycles (resp. bonds) of Γ1 and
bonds (resp. cycles) of Γ2. Given a graph Γ, a graph Γ′ such that Γ and Γ′ are in abstract
duality is called an abstract dual of Γ and is denoted by Γ∗.

Example 2.1.18. Let us consider the graphs

•
e2

e1

MMMMMMMM

Γ1 = •
e4

v

e5

•
• e3

qqqqqqqq

Γ2 = •
f1

f2

f3

•
f4

w

f5

•

The cycles of Γ1 are C1 := {e1, e2, e3} and C2 := {e4, e5}, while the bonds of Γ2 are B1 :=

{f1, f2, f3} and B2 := {f4, f5}. The bijection φ : E(Γ1) → E(Γ2) sending ei to fi for i =

1, . . . , 5 sends the cycles of Γ1 into the bonds of Γ2; therefore Γ1 and Γ2 are in abstract
duality.

Not every graph admits an abstract dual. Indeed we have the following theorem of
Whitney (see [Di97, Theo. 4.6.3]).

Theorem 2.1.19. A graph Γ has an abstract dual if and only if Γ is planar, i.e. if it can be
embedded into the plane.

It is easy to give examples of planar graphs Γ admitting non-isomorphic abstract duals
(see [O92, Example 2.3.6]). However it follows easily from the definition that two abstract
duals of the same graph are 2-isomorphic. Therefore, using the above Theorem 2.1.19, it
follows that abstract duality induces a bijection

{Planar graphs}/≡2
←→ {Planar graphs}/≡2

[Γ]2 7−→ [Γ]∗2 := [Γ∗]2.
(2.3)
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Moreover, it is easy to check that the duality satisfies:

girth([Γ]2) = λ([Γ]∗2) g∗([Γ]2) = g([Γ]∗2) k([Γ]2) = k([Γ]∗2). (2.4)

2.1.3 Matroids

Here we recall the basic notions of (unoriented) matroid theory that we will need in the
sequel. We follow mostly the terminology and notations of [O92].

2.1.20. Basic definitions
There are several ways of defining a matroid (see [O92, Chap. 1]). We will use the

definition in terms of bases (see [O92, Sect. 1.2]).

Definition 2.1.21. A matroid M is a pair (E(M),B(M)) where E(M) is a finite set, called
the ground set, and B(M) is a collection of subsets of E(M), called bases of M , satisfying
the following two conditions:

(i) B(M) 6= ∅;

(ii) If B1, B2 ∈ B(M) and x ∈ B1 \B2, then there exists an element y ∈ B2 \B1 such that
(B1 \ {x}) ∪ {y} ∈ B(M).

Given a matroid M = (E(M),B(M)), we define:

(a) The set of independent elements

I(M) := {I ⊂ E(M) : I ⊂ B for some B ∈ B(M)};

(b) The set of dependent elements

D(M) := {D ⊂ E(M) : E(M) \D ∈ I(M)};

(c) The set of circuits

C(M) := {C ∈ D(M) : C is minimal among the elements of D(M)}.

It can be derived from the above axioms, that all the bases of M have the same cardi-
nality, which is called the rank of M and is denoted by r(M).

Observe that each of the above sets B(M), I(M),D(M), C(M) determines all the others.
Indeed, it is possible to define a matroid M in terms of the ground set E(M) and each of
the above sets, subject to suitable axioms (see [O92, Sec. 1.1, 1.2]).

The above terminology comes from the following basic example of matroids.

Example 2.1.22. Let F be a field and A an r × n matrix of rank r over F . Consider the
columns of A as elements of the vector space F r, and call them {v1, . . . , vn}. The vector
matroid of A, denoted by M [A], is the matroid whose ground set is E(M [A]) := {v1, . . . , vn}
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and whose bases are the subsets of E(M [A]) consisting of vectors that form a base of F r.
It follows easily that I(M [A]) is formed by the subsets of independent vectors of E(M [A]);
D(M [A]) is formed by the subsets of dependent vectors and C(M [A]) is formed by the
minimal subsets of dependent vectors.

We now introduce a very important class of matroids.

Definition 2.1.23. A matroid M is said to be representable over a field F , or simply F -
representable, if it is isomorphic to the vector matroid of a matrix A with coefficients in F .
A matroid M is said to be regular if it is representable over any field F .

Regular matroids are closely related to totally unimodular matrices, i.e. to real matri-
ces for which every square submatrix has determinant equal to −1, 0 or 1. We say that two
totally unimodular matrices A, B ∈ Mg,n(R) are equivalent if A = XBY where X ∈ GLg(Z)

and Y ∈ GLn(Z) is a permutation matrix.

Theorem 2.1.24. (i) A matroid M of rank r is regular if and only if M = M [A] for a
totally unimodular matrix A ∈ Mg,n(R) of rank r, where n = #E(M) and g is a
natural number such that g ≥ r.

(ii) Given two totally unimodular matrices A,B ∈ Mg,n(R) of rank r, we have that M [A] =

M [B] if and only if A and B are equivalent.

Proof. Part (i) is proved in [O92, Thm. 6.3.3]. Part (ii) follows easily from [O92, Prop.
6.3.13, Cor. 10.1.4], taking into account that R does not have non-trivial automorphisms.

In matroid theory, there is a natural duality theory (see [O92, Chap. 2]).

Definition 2.1.25. Given a matroid M = (E(M),B(M)), the dual matroid M∗ = (E(M∗),B(M∗))

is defined by putting E(M∗) = E(M) and

B(M∗) = {B∗ ⊂ E(M∗) = E(M) : E(M) \B∗ ∈ B(M)}.

It turns out that the dual of an F -representable matroid is again F -representable (see
[O92, Cor. 2.2.9]) and therefore that the dual of a regular matroid is again regular (see
[O92, Prop. 2.2.22]).

Finally, we need to recall the concept of simple matroid (see [O92, Pag. 13, Pag. 52]).

Definition 2.1.26. Let M be a matroid. An element e ∈ E(M) is called a loop if {e} ∈
C(M). Two distinct elements f1, f2 ∈ E(M) are called parallel if {f1, f2} ∈ C(M); a parallel
class of M is a maximal subset X ⊂ E(M) with the property that all the elements of X

are not loops and they are pairwise parallel.
M is called simple if it has no loops and all the parallel classes have cardinality one.

Given a matroid, there is a standard way to associate to it a simple matroid.
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Definition 2.1.27. Let M be a matroid. The simple matroid associated to M , denoted by
M̃ , is the matroid whose ground set is obtained by deleting all the loops of M and, for each
parallel class X of M , deleting all but one distinguished element of X and whose set of
bases is the natural one induced by M .

2.1.28. Graphic and Cographic matroids
Given a graph Γ, there are two natural ways of associating a matroid to it.

Definition 2.1.29. The graphic matroid (or cycle matroid) of Γ is the matroid M(Γ) whose
ground set is E(Γ) and whose circuits are the cycles of Γ. The cographic matroid (or bond
matroid) of Γ is the matroid M∗(Γ) whose ground set is E(Γ) and whose circuits are the
bonds of Γ.

The rank of M(Γ) is equal to g∗(Γ) (see [O92, Pag. 26]), and the rank of M∗(Γ) is equal
to g(Γ), as it follows easily from [O92, Formula 2.1.8].

It turns out that M(Γ) and M∗(Γ) are regular matroids (see [O92, Prop. 5.1.3, Prop.
2.2.22]) and that they are dual to each other (see [O92, Sec. 2.3]). Moreover we have the
following obvious

Remark 2.1.30. Two graphs Γ1 and Γ2 are 2-isomorphic if and only if M(Γ1) = M(Γ2)

or, equivalently, if and only if M∗(Γ1) = M∗(Γ2). Therefore, we can write M([Γ]2) and
M∗([Γ]2) for a 2-isomorphism class [Γ]2.

We have the following characterization of abstract dual graphs in terms of matroid
duality (see [O92, Sec. 5.2]).

Proposition 2.1.31. Let Γ and Γ∗ be two graphs. The following conditions are equivalent:

(i) Γ and Γ∗ are in abstract duality;

(ii) M(Γ) = M∗(Γ∗);

(iii) M∗(Γ) = M(Γ∗).

By combining Proposition 2.1.31 with Remark 2.1.30, we get the following

Remark 2.1.32. There is a bijection between the following sets

{Graphic and cographic matroids} ←→ {Planar graphs}/≡2 .

Moreover this bijection is compatible with the respective duality theories, namely the
duality theory for matroids (definition 2.1.25) and the abstract duality theory for graphs
(definition 2.1.17).

Finally, we want to describe the simple matroid associated to a graphic or to a cographic
matroid, in terms of the simplification 2.1.14 and of the 3-edge-connectivization 2.1.15.

Proposition 2.1.33. Let Γ be a graph. We have that
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(i) M̃(Γ) = M(Γsim).

(ii) M̃∗(Γ) = M∗(Γ3), for any 3-edge-connectivization Γ3 of Γ.

Proof. The first assertion is well-known (see [O92, Pag. 52]).
The second assertion follows from the fact that an edge e ∈ E(Γ) is a loop of M∗(Γ) if

and only if e is a bond of Γ, i.e. if e is a separating edge of Γ; and that a pair f1, f2 of edges
is parallel in M∗(Γ) if and only {f1, f2} is a bond of Γ, i.e. if it is a pair of separating edges
of Γ.

2.2 The moduli space M tr
g

2.2.1 Tropical curves

In order to define tropical curves, we start with the following

Definition 2.2.1. A marked graph is a couple (Γ, w) consisting of a finite connected graph
Γ and a function w : V (Γ) → N≥0, called the weight function. A marked graph is called
stable if any vertex v of weight zero (i.e. such that w(v) = 0) has valence val(v) ≥ 3. The
total weight of a marked graph (Γ, w) is

|w| :=
∑

v∈V (Γ)

w(v),

and the genus of (Γ, w) is equal to

g(Γ, w) := g(Γ) + |w|.

We will denote by 0 the identically zero weight function.

Remark 2.2.2. It is easy to see that there is a finite number of stable marked graphs of a
given genus g.

Definition 2.2.3. A tropical curve C is the datum of a triple (Γ, w, l) consisting of a stable
marked graph (Γ, w), called the combinatorial type of C, and a function l : E(Γ) → R>0,
called the length function. The genus of C is the genus of its combinatorial type.

See 2.4.4 for an example of a tropical curve.

Remark 2.2.4. The above definition generalizes the definition of (equivalence class of)
tropical curves given by Mikhalkin-Zharkov in [MZ07, Prop. 3.6]. More precisely, tropical
curves with total weight zero in our sense are the same as compact tropical curves up to
tropical modifications in the sense of Mikhalkin-Zharkov.

A specialization of a tropical curve is obtained by letting some of its edge lengths go to
0, i.e. by contracting some of its edges (see [Mi6, Sec.3.1.D]). The weight function of the
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specialized curve changes according to the following rule: if we contract a loop e around
a vertex v then we increase the weight of v by one; if we contract an edge e between
two distinct vertices v1 and v2 then we obtain a new vertex with weight equal to w(v1) +

w(v2). We write C Ã C ′ to denote that C specializes to C ′; if (Γ, w) (resp. (Γ′, w′)) are
the combinatorial types of C (resp. C ′), we write as well (Γ, w) Ã (Γ′, w′). Note that a
specialization preserves the genus of the tropical curves.

2.2.2 Construction of M tr
g

Given a marked graph (Γ, w), its automorphism group Aut(Γ, w) is the subgroup of S|E(Γ)|×
S|V (Γ)| consisting of all pairs of permutations (φ, ψ) such that w(ψ(v)) = w(v) for any v ∈
V (Γ) and, for a fixed orientation of Γ, we have that {s(φ(e)), t(φ(e))} = {ψ(s(e)), ψ(t(e))} for
any e ∈ E(Γ), where s, t : E(Γ) → V (Γ) are the source and target maps corresponding to
the chosen orientation. Note that this definition is independent of the orientation. There
is a natural homomorphism

ρ(Γ,w) : Aut(Γ, w) → S|E(Γ)| ⊂ GL|E(Γ)|(Z)

induced by the projection of Aut(Γ, w) ⊂ S|E(Γ)|×S|V (Γ)| onto the second factor followed by
the inclusion of S|E(Γ)| into GL|E(Γ)|(Z) as the subgroup of the permutation matrices.

The group Aut(Γ, w) acts on R|E(Γ)| via the homomorphism ρ(Γ,w) preserving the open
rational polyhedral cone R|E(Γ)|

>0 and its closure R|E(Γ)|
≥0 . We denote the respective quotients

by
C(Γ, w) := R|E(Γ)|

>0 / Aut(Γ, w) and C(Γ, w) := R|E(Γ)|
≥0 / Aut(Γ, w)

endowed with the quotient topology. When Γ is such that E(Γ) = ∅ and V (Γ) is just one
vertex of weight g, we set C(Γ, w) := {0}. Note that C(Γ, w) parametrizes tropical curves
of combinatorial type equal to (Γ, w).

Observe that, for any specialization i : (Γ, w) Ã (Γ′, w′), we get a natural continuous
map

i : R|E(Γ′)|
≥0 ↪→ R|E(Γ)|

≥0 ³ C(Γ, w),

where C(Γ, w) is endowed with the quotient topology. Note that, if i is a nontrivial spe-
cialization, the image of the map i is contained in C(Γ, w) \C(Γ, w), so it does not meet the
locus of C(Γ, w) parametrizing tropical curves of combinatorial type (Γ, w).

We are now ready to define the moduli space of tropical curves of fixed genus.

Definition 2.2.5. We define M tr
g as the topological space (with respect to the quotient

topology)
M tr

g :=
(∐

C(Γ, w)
)

/∼

where the disjoint union (endowed with the disjoint union topology) runs through all sta-
ble marked graphs (Γ, w) of genus g and ∼ is the equivalence relation generated by the
following binary relation ≈: given two points p1 ∈ C(Γ1, w1) and p2 ∈ C(Γ2, w2), p1 ≈ p2 iff

85



there exists a stable marked graph (Γ, w) of genus g, a point q ∈ R|E(Γ)|
≥0 and two special-

izations i1 : (Γ1, w1) Ã (Γ, w) and i2 : (Γ2, w2) Ã (Γ, w) such that i1(q) = p1 and i2(q) = p2.

From the definition of the above equivalence relation ∼, we get the following

Remark 2.2.6.

(i) Let p1, p2 ∈
∐

C(Γ, w) such that p1 ∼ p2. If there exist two stable marked graphs
(Γ1, w1) and (Γ2, w2) such that p1 ∈ C(Γ1, w1) and p2 ∈ C(Γ2, w2), then (Γ1, w1) =

(Γ2, w2) and p1 = p2.

(ii) Let p ∈ ∐
C(Γ, w). Then there exists a stable marked graph (Γ′, w′) and p′ ∈ C(Γ′, w′)

such that p ∼ p′.

Example 2.2.7. In the following figure we represent all stable marked graphs correspond-
ing to tropical curves of genus 2. The arrows represent all possible specializations.
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Figure 2.1: Specializations of tropical curves of genus 2.

The cells corresponding to the two graphs on the top of Figure 2.1 are R3
≥0/S3 and

R3
≥0/S2, respectively. According to Definition 2.2.5, M tr

2 corresponds to the topological
space obtained by gluing R3

≥0/S3 and R3
≥0/S2 along the points of (R3

≥0/S3) \ (R3
>0/S3) and

of (R3
≥0/S2)\(R3

>0/S3) that correspond to common specializations of those graphs according
to the above diagram. For instance, the specializations i1 and i2 induce the maps

i1 : R2
≥0 → R3

≥0/S3 and i2 : R2
≥0 → R3

≥0/S2,
(a1, a2) 7→ [(a1, a2, 0)] (a1, a2) 7→ [(a1, 0, a2)]

where in R3
≥0/S2 the second coordinate corresponds to the edge of the graph connecting the

two vertices. So, a point [(x1, x2, x3)] ∈ R3
≥0/S3 will be identified with a point [(y1, y2, y3)] ∈

R3
≥0/S2 via the maps i1 and i2 if y2 = 0 and if there exists σ ∈ S3 such that (y1, y3) =

(xσ(1), xσ(2)) and xσ(3) = 0.
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Theorem 2.2.8. The topological space M tr
g is a stacky fan with cells C(Γ, w), as (Γ, w)

varies through all stable marked graphs of genus g. In particular, its points are in bijection
with tropical curves of genus g.

Proof. Let us prove the first statement, by checking the conditions of Definition 2.1.1. Con-
sider the maps α(Γ,w) : C(Γ, w) → M tr

g naturally induced by C(Γ, w) ↪→ ∐
C(Γ′, w′) ³ M tr

g .
The maps α(Γ,w) are continuous by definition of the quotient topology and the restriction
of α(Γ,w) to C(Γ, w) is a bijection onto its image by Remark 2.2.6(i). Moreover, given an
open subset U ⊆ C(Γ, w), α(Γ,w)(U) is an open subset of M tr

g since its inverse image on∐
C(Γ′, w′) is equal to U . This proves that the maps α(Γ,w) when restricted to C(Γ, w) are

homeomorphisms onto their images, and condition 2.1.1(i) is satisfied.
From Remark 2.2.6(ii), we get that

M tr
g =

⋃

(Γ,w)

α(Γ,w)(C(Γ, w)) (2.5)

and the union is disjoint by Remark 2.2.6(i); thus condition 2.1.1(ii) is satisfied.
Let us check the condition 2.1.1(iii). Let (Γ, w) and (Γ′, w′) be two stable marked graphs

of genus g and set α := α(Γ,w) and α′ := α(Γ′,w′). By definition of M tr
g , the intersection of

the images of C(Γ, w) and C(Γ′, w′) in M tr
g is equal to

α(C(Γ, w)) ∩ α′(C(Γ′, w′)) =
∐

i

αi(C(Γi, wi)),

where (Γi, wi) runs over all common specializations of (Γ, w) and (Γ′, w′). We have to find
an integral linear map L : R|E(Γ)| → R|E(Γ′)| making the following diagram commutative

∐
i αi(C(Γi, wi))¸ u

''PPPPPPPPPPPPP
Â Ä // α(C(Γ, w)) R|E(Γ|

≥0
Â Ä //oooo

L

²²

R|E(Γ)|

L

²²
α′(C(Γ′, w′)) R|E(Γ′)|

≥0

Â Ä //oooo R|E(Γ′)|.

(2.6)

To this aim, observe that, since (Γi, wi) are specializations of both (Γ, w) and (Γ′, w′), there
are orthogonal projections fi : R|E(Γ)| ³ R|E(Γi)| and inclusions gi : R|E(Γi)| ↪→ R|E(Γ′)|. We
define L as the composition

L : R|E(Γ)| ⊕fi−→ ⊕iR|(E(Γi)| ⊕gi−→ R|E(Γ)|.

It is easy to see that L is an integral linear map making the above diagram (2.6) commu-
tative, and this concludes the proof of the first statement.

The second statement follows from (2.5) and the fact, already observed before, that
C(Γ, w) parametrizes tropical curves of combinatorial type (Γ, w).

We now prove that M tr
g is of pure dimension and connected through codimension one.

To that aim, we describe the maximal cells and the codimension one cells of M tr
g .
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Proposition 2.2.9.

(i) The maximal cells of M tr
g are exactly those of the form C(Γ, 0) where Γ is 3-regular. In

particular, M tr
g is of pure dimension 3g − 3.

(ii) M tr
g is connected through codimension one.

(iii) The codimension one cells of M tr
g are of the following two types:

(a) C(Γ, 0) where Γ has exactly one vertex of valence 4 and all other vertices of valence
3;

(b) C(Γ, w) where Γ has exactly one vertex v of valence 1 and weight 1, and all the
other vertices of valence 3 and weight 0.

Each codimension one cell of type (b) lies in the closure of exactly one maximal cell,
while each codimension one cell of type (a) lies in the closure of one, two or three
maximal cells.

Proof. First of all, observe that given a stable marked graph (Γ, w) of genus g we have

3|V (Γ)| ≤
∑

v∈V (Γ)

[val(v) + 2w(v)] = 2|E(Γ)|+ 2|w|, (2.7)

and the equality holds if and only if every v ∈ V (Γ) is such that either w(v) = 0 and
val(v) = 3 or w(v) = val(v) = 1. By substituting the formula for the genus g = g(Γ, w) =

g(Γ) + |w| = 1 + |E(Γ)| − |V (Γ)|+ |w| in inequality (2.7), we obtain

|E(Γ)| ≤ 3g − 3− |w|. (2.8)

Let us now prove part (i). If Γ is 3-regular and w ≡ 0, then g(Γ) = g(Γ, w) = g and
an easy calculation gives that |E(Γ)| = 3g − 3. Therefore dim(C(Γ, 0)) = 3g − 3, which is
the maximal possible dimension of the cells of M tr

g according to the above inequality (2.8).
Hence C(Γ, 0) is maximal. On the other hand, every stable marked graph (Γ′, w′) can be
obtained by specializing a stable marked graph (Γ, 0) with Γ a 3-regular graph (see for
example [CV1, Appendix A.2]), which concludes the proof of part (i).

Let us prove part (ii). It is well-known (see the appendix of [HT80] for a topological
proof, [Ts96, Thm. II] for a combinatorial proof in the case of simple graphs and [C8, Thm
3.3] for a combinatorial proof in the general case) that any two 3-regular graphs Γ1 and
Γ2 of genus g can be obtained one from the other via a sequence of twisting operations as
the one shown in the top line of Figure 2.2 below. In each of these twisting operations,
the two graphs Γ1 and Γ2 specialize to a common graph Γ (see Figure 2.2) that has one
vertex of valence 4 and all the others of valence 3. By what will be proved below, C(Γ, 0) is
a codimension one cell. Therefore the two maximal dimensional cells C(Γ1, 0) and C(Γ2, 0)

contain a common codimension one cell C(Γ, 0) in their closures, which concludes the proof
of part (ii).
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Figure 2.2: The 3-regular graphs Γ1 and Γ2 are twisted. They both specialize to Γ. C(Γ1, 0)

and C(Γ2, 0) are maximal dimensional cells containing the codimension one cell C(Γ, 0) in
their closures.

Let us prove part (iii). Let C(Γ, w) be a codimension one cell of M tr
g , i.e. such that

|E(Γ)| = 3g−4. According to the inequality (2.8), there are two possibilities: either |w| = 0

or |w| = 1. In the first case, i.e. |w| = 0, using the inequality in (2.7), it is easy to check
that there should exist exactly one vertex v such that val(v) = 4 and all the other vertices
should have valence equal to 3, i.e. we are in case (a). In the second case, i.e. |w| = 1, all
the inequalities in (2.7) should be equalities and this implies that there should be exactly
one vertex v such that val(v) = w(v) = 1 and all the other vertices have weight equal to
zero and valence equal to 3, i.e. we are in case (b).

For a codimension one cell of type (a), C(Γ, 0), there can be at most three maximal
cells C(Γi, 0) (i = 1, 2, 3) containing it in their closures, as we can see in Figure 2.3. Note,
however, that it can happen that some of the Γi’s are isomorphic, and in that case the
number of maximal cells containing C(Γ, 0) in their closure is strictly smaller than 3.
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Figure 2.3: The codimension one cell C(Γ, 0) is contained in the closure of the three maxi-
mal cells C(Γi, 0), i = 1, 2, 3.

For a codimension one cell C(Γ, w) of type (b), there is only one maximal cell C(Γ′, 0)
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containing it in its closure, as we can see in Figure 2.4 below.
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Figure 2.4: The codimension one cell C(Γ, w) is contained in the closure of the maximal
dimensional cell C(Γ′, 0).

2.3 The moduli space Atr
g

2.3.1 Tropical abelian varieties

Definition 2.3.1. A principally polarized tropical abelian variety A of dimension g is a
g-dimensional real torus Rg/Λ, where Λ is a lattice of rank g in Rg endowed with a flat
semi-metric induced by a positive semi-definite quadratic form Q on Rg such that the null
space Null(Q) of Q is defined over Λ ⊗ Q, i.e. it admits a basis with elements in Λ ⊗ Q.
Two tropical abelian varieties (Rg/Λ, Q) and (Rg/Λ′, Q′) are isomorphic if there exists
h ∈ GL(g,R) such that h(Λ) = Λ′ and hQht = Q′.

From now on, we will drop the attribute principally polarized as all the tropical abelian
varieties that we will consider are of this kind.

Remark 2.3.2. The above definition generalizes the definition of tropical abelian variety
given by Mikhalkin-Zharkov in [MZ07, Sec. 5]. More precisely, tropical abelian varieties
endowed with positive definite quadratic forms in our sense are the same as (principally
polarized) tropical abelian varieties in the sense of Mikhalkin-Zharkov.

Remark 2.3.3. Every tropical abelian variety (Rg/Λ, Q) can be written in the form (Rg/Zg, Q′).
In fact, it is enough to consider Q′ = hQht, where h ∈ GL(g,R) is such that h(Λ) = Zg.
Moreover, (Rg/Zg, Q) ∼= (Rg/Zg, Q′) if and only if there exists h ∈ GLg(Z) such that
Q′ = hQht, i.e., if and only if Q and Q′ are arithmetically equivalent. Therefore, from now
on we will always consider our tropical abelian varieties in the form (Rg/Zg, Q), where Q

is uniquely defined up to arithmetic equivalence.

2.3.2 Definition of Atr
g and Atr,Σ

g

Let us denote by R(g+1
2 ) the vector space of quadratic forms in Rg (identified with g × g

symmetric matrices with coefficients in R), by Ωg the cone in R(g+1
2 ) of positive definite
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quadratic forms and by Ωrt
g the cone of positive semi-definite quadratic forms with rational

null space (the so-called rational closure of Ωg, see [N80, Sec. 8]).
The group GLg(Z) acts on R(g+1

2 ) via the usual law h ·Q := hQht, where h ∈ GLg(Z) and
Q is a quadratic form on Rg. This action naturally defines a homomorphism ρ : GLg(Z) →
GL(g+1

2 )(Z). Note that the cones Ωg or Ωrt
g are preserved by the action of GLg(Z).

Remark 2.3.4. It is well-known (see [N80, Sec. 8]) that a positive semi-definite quadratic
form Q in Rg belongs to Ωrt

g if and only if there exists h ∈ GLg(Z) such that

hQht =

(
Q′ 0

0 0

)

for some positive definite quadratic form Q′ in Rg′ , with 0 ≤ g′ ≤ g.

Definition 2.3.5. We define Atr
g as the topological space (with respect to the quotient

topology)
Atr

g := Ωrt
g / GLg(Z).

The space Atr
g parametrizes tropical abelian varieties as it follows from Remark 2.3.3.

However, in order to endow Atr
g with the structure of stacky fan, we need to specify some

extra-data, encoded in the following definition (see [N80, Lemma 8.3] or [FC90, Chap.
IV.2]).

Definition 2.3.6. A GLg(Z)-admissible decomposition of Ωrt
g is a collection Σ = {σµ} of

rational polyhedral cones of Ωrt
g such that:

1. If σ is a face of σµ ∈ Σ then σ ∈ Σ;

2. The intersection of two cones σµ and σν of Σ is a face of both cones;

3. If σµ ∈ Σ and h ∈ GLg(Z) then h · σµ · ht ∈ Σ.

4. #{σµ ∈ Σ mod GLg(Z)} is finite;

5. ∪σµ∈Σσµ = Ωrt
g .

Each GLg(Z)-admissible decomposition of Ωrt
g gives rise to a structure of stacky fan on

Atr
g . In order to prove that, we need first to set some notations.

Let Σ = {σµ} be a GLg(Z)-admissible decomposition of Ωrt
g . For each σµ ∈ Σ we set

σ0
µ := Int(σµ); we denote by 〈σµ〉 the smallest linear subspace of R(g+1

2 ) containing σµ and
we set mµ := dimR〈σµ〉. Consider the stabilizer of σ0

µ inside GLg(Z)

Stab(σ0
µ) := {h ∈ GLg(Z) : ρ(h) · σ0

µ = h · σ0
µ · ht = σ0

µ}.

The restriction of the homomorphism ρ to Stab(σ0
µ) defines a homomorphism

ρµ : Stab(σ0
µ) → GL(〈σµ〉,Z) = GLmµ(Z).
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By definition, the image ρµ(Stab(σ0
µ)) acts on 〈σµ〉 = Rmµ and stabilizes the cone σ0

µ, defin-
ing an action of Stab(σ0

µ) on σ0
µ. Note that GLg(Z) naturally acts on the set of quotients

{σ0
µ/ Stab(σ0

µ)}; we will denote by {[σ0
µ/ Stab(σ0

µ)]} the (finite) orbits of this action.

Theorem 2.3.7. Let Σ be a GLg(Z)-admissible decomposition of Ωrt
g . The topological space

Atr
g can be endowed with the structure of a stacky fan with cells [σ0

µ/ Stab(σ0
µ)], which we

denote by Atr,Σ
g .

Proof. Fix a set S = {σ0
µ/ Stab(σ0

µ)} of representatives for the orbits [σ0
µ/ Stab(σ0

µ)]. For
each element σ0

µ/ Stab(σ0
µ) ∈ S, consider the continuous map

αµ :
σµ

Stab(σ0
µ)
→ Atr

g ,

induced by the inclusion σµ ↪→ Ωrt
g . By the definition of Atr

g it is clear that αµ sends
σ0

µ/ Stab(σ0
µ) homeomorphically onto its image and also that

⋃
αµ

(
σ0

µ

Stab(σ0
µ)

)
= Atr

g ,

where the union runs through all the elements of S. Therefore the first two conditions
of definition 2.1.1 are satisfied. Let us check the condition 2.1.1(iii). Consider two ele-
ments {σ0

µ1
/ Stab(σ0

µ1
)} and {σ0

µ2
/ Stab(σ0

µ2
)} of S. Clearly, the intersection of the images

of σµ1/ Stab(σ0
µ1

) and σµ2/ Stab(σ0
µ2

) in Atr
g can be written in the form

αµ1

(
σµ1

Stab(σ0
µ1

)

)
∩ αµ2

(
σµ2

Stab(σ0
µ2

)

)
=

∐

i

ανi

(
σ0

νi

Stab(σ0
νi

)

)
,

where σ0
νi

/ Stab(σ0
νi

) are the elements of S such that there exist elements hi1, hi2 ∈ GLg(Z)

such that hi1σνih
t
i1 is a face of the cone σµ1 and hi2σνih

t
i2 is a face of the cone σµ2 . Note that

the above elements hi1 and hi2 are not unique, but we will fix a choice for them in what
follows. We have to find an integral linear map L : 〈σµ1〉 = Rmµ1 → 〈σµ2〉 = Rmµ2 making
the following diagram commutative

∐
i ανi

(
σ0

νi

Stab(σ0
νi

)

)

· t

''OOOOOOOOOOO

Â Ä // αµ1

(
σµ1

Stab(σ0
µ1

)

)
σµ1

Â Ä //oooo

L

²²

〈σµ1〉 = Rmµ1

L

²²
αµ2

(
σµ2

Stab(σ0
µ2

)

)
σµ2

Â Ä //oooo 〈σµ2〉 = Rmµ2 .

(2.9)

Consider the integral linear maps




πi :〈σµ1〉 = Rmµ1
eπi³ 〈ρ(hi1)(σνi)〉

ρ(h−1
i1 )−→ 〈σνi〉 := Rmνi ,

γi :〈σνi〉 = Rmνi
ρ(hi2)−→ 〈ρ(hi2)(σνi)〉

eγi
↪→ 〈σµ2〉 = Rmµ2 ,

where π̃i is the orthogonal projection of 〈σµ1〉 onto its subspace 〈ρ(hi1)(σνi)〉 and γ̃i is the
natural inclusion of 〈ρ(hi2)(σνi)〉 onto 〈σµ2〉. We define the following integral linear map

L : Rmµ1
⊕iπi−→

⊕
Rmνi

⊕iγi−→ Rmµ2 .
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It is easy to see that L is an integral linear map making the above diagram (2.9) commu-
tative, and this concludes the proof.

2.3.3 Voronoi decomposition: Atr,V
g

Some GLg(Z)-admissible decompositions of Ωrt
g have been studied in detail in the reduction

theory of positive definite quadratic forms (see [N80, Chap. 8] and the references there),
most notably:

(i) The perfect cone decomposition (also known as the first Voronoi decomposition);

(ii) The central cone decomposition;

(iii) The Voronoi decomposition (also known as the second Voronoi decomposition or the
L-type decomposition).

Each of them plays a significant (and different) role in the theory of the toroidal compact-
ifications of the moduli space of principally polarized abelian varieties (see [I67], [A02],
[SB06]).

Example 2.3.8. In Figure 2.5 we illustrate a section of the 3-dimensional cone Ωrt
2 , where

we represent just some of the infinite Voronoi cones (which for g = 2 coincide with the
perfect cones and with the central cones). For g = 2, there is only one GLg(Z)-equivalence
class of maximal dimensional cones, namely the principal cone σ0

prin (see section 2.5.1).
Therefore, all the maximal cones in the picture will be identified in the quotient Atr,V

g .

0 0
0 1

R

 R

R

1−1

10
00

R

σ
prin

−1 1

1 1
1 1

0

Figure 2.5: A section of Ωrt
2 and its Voronoi decomposition.

Let us focus our attention on the Voronoi decomposition, since it is the one that better
fits in our setting. It is based on the so-called Dirichlet-Voronoi polytope Vor(Q) ⊂ Rg
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associated to a positive semi-definite quadratic form Q ∈ Ωrt
g . Recall (see for example

[N80, Chap. 9] or [V03, Chap. 3]) that if Q ∈ Ωg, then Vor(Q) is defined as

Vor(Q) := {x ∈ Rg : Q(x) ≤ Q(v − x) for all v ∈ Zg}. (2.10)

More generally, if Q = h

(
Q′ 0

0 0

)
ht for some h ∈ GLg(Z) and some positive definite

quadratic form Q′ in Rg′ , 0 ≤ g′ ≤ g (see Remark 2.3.4), then Vor(Q) := h−1Vor(Q′)(h−1)t ⊂
h−1Rg′(h−1)t. In particular, the smallest linear subspace containing Vor(Q) has dimension
equal to the rank of Q.

Definition 2.3.9. The Voronoi decomposition V = {σP } is the GLg(Z)-admissible decom-
position of Ωrt

g whose open cones σ0
P := Int(σP ) are parametrized by Dirichlet-Voronoi

polytopes P ⊂ Rg in the following way

σ0
P := {Q ∈ Ωrt

g : Vor(Q) = P}.

Remark 2.3.10. The polytopes P ⊂ Rg that appear as Dirichlet-Voronoi polytopes of
quadratic forms in Ωg are of a very special type: they are parallelohedra, i.e. the set
of translates of the form v + P for v ∈ Zg form a face-to-face tiling of Rg (see for example
[McM80] or [V03, Chap. 3]). Indeed, it has been conjectured by Voronoi ([Vor08]) that all
the parallelohedra are affinely isomorphic to Dirichlet-Voronoi polytopes (see [DG1] for an
account on the state of the conjecture).

The natural action of GLg(Z) on the cones σ0
P corresponds to the natural action of

GLg(Z) on the set of all Dirichlet-Voronoi polytopes P ⊂ Rg. We denote by [P ] (resp.
[σ0

P ]) the equivalence class of P (resp. σ0
P ) under this action. We set also C([P ]) :=

[σ0
P / Stab(σ0

P )].

Definition 2.3.11. Atr,V
g is the stacky fan associated to the Voronoi decomposition V =

{σP }. Its cells are the C([P ])’s as [P ] varies among the GLg(Z)-equivalence classes of
Dirichlet-Voronoi polytopes in Rg.

In order to describe the maximal cells and codimension one cells of Atr,V
g (in analogy

with Proposition 2.2.9), we need to introduce some definitions. A Dirichlet-Voronoi poly-
tope P ⊂ Rg is said to be primitive if it is of dimension g and the associated face-to-face
tiling of Rg (see Remark 2.3.10) is such that at each vertex of the tiling, the minimum
number, namely g + 1, of translates of P meet (see [V03, Sec. 2.2]). A Dirichlet-Voronoi
polytope P ⊂ Rg is said to be almost primitive if it is of dimension g and the associated
face-to-face tiling of Rg (see Remark 2.3.10) is such that there is exactly one vertex, mod-
ulo translations by Zg, where g +2 translates of P meet and at all the other vertices of the
tiling only g + 1 translates of P meet.

The properties of the following Proposition are the translation in our language of well-
known properties of the Voronoi decomposition (see the original [Vor08] or [V03] and the
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references there). Unfortunately, the results we need are often stated in terms of the
Delaunay decomposition, which is the dual of the tiling of Rg by translates of the Dirichlet-
Voronoi polytope (see for example [N80, Chap. 9] or [V03, Sec. 2.1]). So, in our proof
we will assume that the reader is familiar with the Delaunay decomposition, limiting
ourselves to translate the above properties in terms of the Delaunay decomposition and to
explain how they follow from known results about the Voronoi decomposition.

Proposition 2.3.12.

(i) The maximal cells of Atr,V
g are exactly those C([P ]) such that P is primitive. Atr,V

g is
of pure dimension

(
g+1
2

)
.

(ii) The codimension one cells of Atr,V
g are exactly those of the form C([P ]) such that P is

almost-primitive. Atr,V
g is connected through codimension one.

(iii) Every codimension one cell of Atr,V
g lies in the closure of one or two maximal cells.

Proof. The Dirichlet-Voronoi polytopes P ⊂ Rg that are primitive correspond to Delau-
nay decompositions that are triangulations, i. e. such that every Delaunay polytope is a
simplex (see [V03, Sec. 3.2]). The Dirichlet-Voronoi polytopes P ⊂ Rg that are almost-
primitive correspond to the Delaunay decompositions that have exactly one Delaunay
repartitioning polytope, in the sense of [V03, Sec. 2.4], and all the other Delaunay poly-
topes are simplices. Two maximal cells that have a common codimension one cell in their
closure are usually called bistellar neighbors (see [V03, Sec. 2.4]). With this in mind,
all the above properties follow from the (so-called) Main Theorem of Voronoi’s reduction
theory (see [Vor08] or [V03, Thm. 2.5.1]).

2.3.4 Zonotopal Dirichlet-Voronoi polytopes: Azon
g

Among all the Dirichlet-Voronoi polytopes, a remarkable subclass is represented by the
zonotopal ones. Recall (see [Z95, Chap. 7]) that a zonotope is a polytope that can be
realized as a Minkowski sum of segments, or equivalently, that can be obtained as an
affine projection of an hypercube.

Remark 2.3.13. Voronoi’s conjecture has been proved for zonotopal parallelohedra (see
[McM75], [E99], [DG2], [V04]): every zonotopal parallelohedron is affinely equivalent to a
zonotopal Dirichlet-Voronoi polytope. Therefore, there is a bijection





Zonotopal parallelohedra

in Rg





/aff

←→




Zonotopal Dirichlet-Voronoi

polytopes in Rg





/ GLg(Z)

There is a close (and well-known) relation between zonotopal Dirichlet-Voronoi poly-
topes P ⊂ Rg up to GLg(Z)-action and regular matroids M of rank at most g. We need to
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review this correspondence in detail because it is crucial for the sequel of the paper and
also because we need to fix the notations we are going to use. Consider first the following

Construction 2.3.14. Let A ∈ Mg,n(R) be a totally unimodular matrix of rank r ≤ g.
Consider the linear map fAt : Rg → Rn, x 7→ At · x, where At is the transpose of A. For
any n-tuple l = (l1, . . . , ln) ∈ Rn

>0, consider the positive definite quadratic form || · ||l on Rn

given on y = (y1, . . . , yn) ∈ Rn by

||y||l := l1y
2
1 + . . . + lny2

n,

and its pull-back QA,l on Rg via fAt , i.e.

QA,l(x) := ||At · x||l, (2.11)

for x ∈ Rg. Clearly QA,l has rank equal to r and belongs to Ωrt
g . As l varies in Rn

>0, the
semi-positive definite quadratic forms QA,l form an open cone in Ωrt

g which we denote by
σ0(A). Its closure in Ωrt

g , denoted by σ(A), consists of the quadratic forms QA,l ∈ Ωrt
g ,

where l varies in Rn
≥0. The faces of σ(A) are easily seen to be of the form σ(A \ I) for some

I ⊂ {1, . . . , n}, where A \ I is the totally unimodular matrix obtained from A by deleting
the column vectors vi with i ∈ I.

Considering the column vectors {v1, . . . , vn} of A as elements of (Rg)∗, we define the
following zonotope of Rg:

ZA := {x ∈ Rg : −1/2 ≤ vi(x) ≤ 1/2 for i = 1, · · · , n} ⊂ Rg. (2.12)

Its polar polytope (see [Z95, Sec. 2.3]) Z∗A ⊂ (Rg)∗ is given as a Minkowski sum:

Z∗A :=
[
−v1

2
,+

v1

2

]
+ . . . +

[
−vn

2
, +

vn

2

]
⊂ (Rg)∗. (2.13)

Clearly the linear span of ZA has dimension r.
Finally, if M is a regular matroid of rank r(M) ≤ g, write M = M [A], where A ∈

Mg,n(R) is a totally unimodular matrix of rank r (see Theorem 2.1.24(i)). Note that if
A = XBY for a matrix X ∈ GLg(Z) and a permutation matrix Y ∈ GLn(Z), then σ0(A) =

Xσ0(B)Xt and ZA = X · ZB . Therefore, according to Theorem 2.1.24(ii), the GLg(Z)-
equivalence class of σ0(A), σ(A) and of ZA depends only on the matroid M and therefore we
will set [σ0(M)] := [σ0(A)], [σ(M)] = [σ(A)] and [ZM ] := [ZA]. The matroid M \ I = M [A\ I]

for a subset I ⊂ E(M) = {v1, · · · , vn} is called the deletion of I from M (see [O92, Pag.
22]).

Lemma 2.3.15. Let A be as in 2.3.14. Then ZA is a Dirichlet-Voronoi polytope whose
associated cone is given by σ0(A), i.e. σ0

ZA
= σ0(A).

Proof. Let us first show that Vor(QA,l) = ZA for any l ∈ Rn
>0, i.e. that ZA is a Dirichlet-

Voronoi polytope and that σ0(A) ⊂ σ0
ZA

. Assume first that A has maximal rank r = g or,
equivalently, that fAt : Rg → Rn is injective. By definitions (2.10) and (2.11), we get that

Vor(QA,l) = {x ∈ Rg : ||fAt(x)||l ≤ ||fAt(λ− x)||l for all λ ∈ Zg}. (*)
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The total unimodularity of A and the injectivity of fAt imply that the map fAt : Rg → Rn

is integral and primitive, i.e. fAt(x) ∈ Zn if and only if x ∈ Zg. Therefore, from (*) we
deduce that

Vor(QA,l) = f−1
At (Vor(|| · ||l). (**)

Since || · ||l is a diagonal quadratic form on Rn, it is easily checked that

Vor(|| · ||l) =
[
−e1

2
,
e1

2

]
+ · · ·+

[
−en

2
,
en

2

]
, (***)

where {e1, · · · , en} is the standard basis of Rn. Combining (**) and (***), and using the
fact that fAt(x) = (v1(x), · · · , vn(x)), we conclude. The general case r ≤ g follows in a
similar way after replacing Rg with Rg/ Ker(fAt). We leave the details to the reader.

In order to conclude that σ0(A) = σ0
ZA

, it is enough to show that the rays of σZA
are

contained in σ(A). By translating the results of [ER94, Sec. 3] into our notations, we
deduce that the rays of σZA are all of the form σZ(A)i

for the indices i such that vi 6= 0,
where

Z(A)i := Z(A)
⋂

j 6=i

{v∗j = 0}.

By what we already proved, we have the inclusion σ(vi) := σ(A \ {i}c) ⊂ σZ(A)i
, where

{i}c := {1, · · · , n} \ {i}. Since both the cones are one dimensional, we deduce that σ(A \
{i}c) = σZ(A)i

, which shows that all the rays of σZA are also rays of σ(A).

Theorem 2.3.16.

(i) Given a regular matroid M of rank r(M) ≤ g, [ZM ] is the GLg(Z)-equivalence class of
a zonotopal Dirichlet-Voronoi polytope and every such class arises in this way.

(ii) If M1 and M2 are two regular matroids, then [ZM1 ] = [ZM2 ] if and only if [σ(M1)] =

[σ(M2)] if and only if M̃1 = M̃2.

(iii) If M is simple, then any representative σ(M) in [σ(M)] is a simplicial cone of dimen-
sion #E(M) whose faces are of the form σ(M \ I) ∈ [σ(M \ I)] for some uniquely
determined I ⊂ E(M).

Proof. The first assertion of (i) follows from the previous Lemma 2.3.15 together with the
fact that each representative ZA ∈ [ZM ] is zonotopal by definition (see 2.3.14). The second
assertion is a well-known result of Shephard and McMullen ([S74], [McM75] or also [DG2,
Thm. 1]).

Consider part (ii). By definition 2.3.9 and what remarked shortly after, [σ(M1)]=

[σ(M2)] if and only if [ZM1 ] = [ZM2 ]. Let us prove that [ZM ] = [ZfM ]. Write M = M [A] as
in 2.3.14. From Definitions 2.1.22 and 2.1.27, it is straightforward to see that M̃ = M [Ã],
where Ã is the totally unimodular matrix obtained from A by deleting the zero columns
and, for each set S of proportional columns, deleting all but one distinguished column of S.
From the definition (2.12), it follows easily that ZA = Z eA, which proves that [ZM ] = [ZfM ].
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To conclude part (ii), it remains to prove that if M1 and M2 are simple regular matroids
such that [ZM1 ] = [ZM2 ], then M1 = M2. We are going to use the poset of flats L(M) of a
matroid M (see [O92, Sec. 1.7]). In the special case (which will be our case) where M =

M [A] for some matrix A ∈ Mg,n(F ) over some field F , whose column vectors are denoted
as usual by {v1, · · · , vn}, a flat (see [O92, Sec. 1.4]) is a subset S ⊂ E(M) = {1, · · · , n} such
that

span(vi : i ∈ S) ( span(vk, vi : i ∈ S),

for any k 6∈ S. L(M) is the poset of flats endowed with the natural inclusion. It turns out
that (see [O92, Pag. 58]) for two matroids M1 and M2, we have

L(M1) ∼= L(M2) ⇔ M̃1 = M̃2. (*)

Moreover, in the case where M is a regular and simple matroid, L(M) is determined
by the GLg(Z)-equivalence class [ZM ]. Indeed, writing M = M [A] as in 2.3.14, ZM de-
termines, up to the natural action of GLg(Z), a central arrangement AM of non-trivial
and pairwise distinct hyperplanes in (Rg)∗, namely those given by Hi := {vi = 0} for
i = 1, · · · , n. Denote by L(AM ) the intersection poset of AM , i.e. the poset of linear sub-
spaces of (Rg)∗ that are intersections of some of the hyperplanes Hi, ordered by inclusion.
Clearly L(AM ) depends only on the GLg(Z)-equivalence class [ZM ]. It is easy to check that
the map

L(M) −→ L(AM )opp

S 7→
⋂

i∈S

Hi,
(**)

is an isomorphism of posets, where L(AM )opp denotes the opposite poset of L(AM ). Now
we can conclude the proof of part (ii). Indeed, if M1 and M2 are regular and simple ma-
troids such that [ZM1 ] = [ZM2 ] then L(AM1) ∼= L(AM2) which implies that L(M1) ∼= L(M2)

by (**) and hence M1 = M2 by (*).
Finally consider part (iii). Write M = M [A] as in 2.3.14 and consider the representative

σ(A) ∈ [σ(M)]. From [ER94, Thm. 4.1], we known that σ(A) is simplicial. We have
already observed in 2.3.14 that all the faces of σ(A) are of the form σ(A \ I) for I ⊂
E(M) = {v1, · · · , vn} and that σ(A \ I) ∈ [σ(M \ I)] by definition of deletion of I from M .
In particular, the rays of σ(A) are all of the form σ(vi) := σ(A \ {vi}c) for some vi ∈ E(M),
where {vi}c := E(M) \ {vi}. The hypothesis that M is simple (see 2.1.26) is equivalent to
the fact that the matrix A has no zero columns and no parallel columns. This implies that
all the faces σ(vi) are 1-dimensional and pairwise distinct. Since σ(A) is a simplicial cone,
its dimension is equal to the number of rays, i.e. to n = #E(M). The fact that each face of
σ(A) is of the form σ(A\ I) for a unique I ⊂ E(M) follows from the fact that in a simplicial
cone each face is uniquely determined by the rays contained in it.

From Theorem 2.3.16, it follows that the class of all open Voronoi cones σ0
Z such that

Z ⊂ Rg is a zonotopal Dirichlet-Voronoi polytope is stable under the action of GLg(Z) and
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under the operation of taking faces of the closures σZ = σ0
Z . Therefore the collection of

zonotopal Voronoi cones, i.e.

Zon := {σZ ⊂ Ωrt
g : Z ⊂ Rg is zonotope},

is a GLg(Z)-admissible decomposition of a closed subcone of Ωrt
g , i.e. Zon satisfies all the

properties of Definition 2.3.6 except the last one. Therefore we can give the following

Definition 2.3.17. Azon
g is the stacky subfan of Atr,V

g whose cells are of the form C([Z]),
where [Z] varies among the GLg(Z)-equivalence classes of zonotopal Dirichlet-Voronoi
polytopes in Rg.

Azon
g has dimension

(
g+1
2

)
but it is not pure-dimensional if g ≥ 4 (see Example 2.5.11

or [DV99] for the list of maximal zonotopal cells for small values of g). There is indeed
only one zonotopal cell of maximal dimension

(
g+1
2

)
, namely the one corresponding to the

principal cone (see section 2.5.1 below). Using the notations of 2.3.14, given a regular
matroid M of rank at most g, we set C(M) := C([ZM ]). From Theorem 2.3.16, we deduce
the following useful

Corollary 2.3.18. The cells of Azon
g are of the form C(M), where M is a simple regular

matroid of rank at most g.

We want to conclude this section on zonotopal Dirichlet-Voronoi polytopes (and hence
on zonotopal parallelohedra by remark 2.3.13) by mentioning the following

Remark 2.3.19. Zonotopal parallelohedra Z ⊂ Rg are also closely related to other geometric-
combinatorial objects:

(i) Lattice dicings of Rg (see [ER94]);

(ii) Venkov arrangements of hyperplanes of Rg (see [E99]);

(iii) Regular oriented matroids of rank at most g, up to reorientation (see
[BVSWZ99, Sec. 2.2, 6.9]).

2.4 The tropical Torelli map

2.4.1 Construction of the tropical Torelli map ttrg

We begin by defining the Jacobian of a tropical curve.

Definition 2.4.1. Let C = (Γ, w, l) be a tropical curve of genus g and total weight |w|.
The Jacobian Jac(C) of C is the tropical abelian variety of dimension g given by the real
torus (H1(Γ,R) ⊕ R|w|)/(H1(Γ,Z) ⊕ Z|w|) together with the semi-positive quadratic form
QC = Q(Γ,w,l) which vanishes identically on R|w| and is given on H1(Γ,R) as

QC


 ∑

e∈E(Γ)

αe · e

 =

∑

e∈E(Γ)

α2
e · l(e). (2.14)
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Remark 2.4.2. Note that the above definition is independent of the orientation chosen
to define H1(Γ,Z). Moreover, after identifying the lattice H1(Γ,Z) ⊕ Z|w| with Zg (which
amount to chose a basis of H1(Γ,Z)), we can (and will) regard the arithmetic equivalence
class of QC as an element of Ωrt

g .

Remark 2.4.3. The above definition of Jacobian is a generalization of the definition of
Mikhalkin-Zharkov (see [MZ07, Sec. 6]). More precisely, the Jacobian of a tropical curve
of total weight zero in our sense is the same as the Jacobian of Mikhalkin-Zharkov.

Example 2.4.4. In Figure 2.6 below, the so-called Peterson graph is regarded as a tropical
curve C of genus 6 with identically zero weight function and with length function l(ei) :=

li ∈ R>0, i = 1, . . . , 15.
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Figure 2.6: The Peterson graph Γ endowed with an orientation.

Fix an orientation of the edges as shown in the figure and consider the basis B for the
space H1(Γ,R) = R6 formed by the cycles C1, . . . , C6, where C1 = {~e1, ~e2, ~e3, ~e4, ~e5, ~e6}, C2 =

{~e1, ~e2, ~e3, ~e11, ~e7}, C3 = {~e1, ~e8, ~e12, ~e5, ~e6}, C4 = {~e3, ~e11, ~e15, ~e13, ~e10}, C5 = {~e5, ~e9,−~e13,−~e14, ~e12}
and C6 = {~e1, ~e8, ~e14, −~e15, ~e7}. Then the tropical Jacobian J(C) of C is the real torus
H1(Γ,R)/H1(Γ,Z) = R6/Z6 endowed with the positive definite quadratic form QC which is
represented in the basis B by the following matrix:

0BBBBBBBBBB@

P6
i=1 li

l1+l2+l3
2

l1+l5+l6
2

l3
2

l5
2

l1
2

l1+l2+l3
2 l1+l2+l3+l11+l7

l1
2

l3+l11
2 0

l1+l7
2

l1+l5+l6
2

l1
2 l1+l5+l6+l8+l12 0

l5+l12
2

l1+l8
2

l3
2

l3+l11
2 0 l3+l10+l11+l13+l15

−l13
2

−l15
2

l5
2 0

l5+l12
2

−l13
2 l5+l9+l12+l13+l14

−l14
2

l1
2

l1+l7
2

l1+l8
2

−l15
2

−l14
2 l1+l7+l8+l14+l15

1CCCCCCCCCCA

Consider now the map (called tropical Torelli)

ttrg : M tr
g → Atr,V

g

C 7→ Jac(C).

Theorem 2.4.5. The above map ttrg : M tr
g → Atr,V

g is a map of stacky fans.
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Proof. Let us first prove that ttrg is a continuous map. The map ttrg restricted to the closure
of one cell C(Γ, w) of M tr

g is clearly continuous since the quadratic form QC on H1(Γ,R)

depends continuously on the lengths l ∈ R|E(Γ)|
≥0 . The continuity of ttrg follows then from the

fact that M tr
g is a quotient of

∐
C(Γ, w) with the induced quotient topology.

Lemma 2.4.6 below implies that ttrg (C(Γ, w)) ⊂ C
(
M̃∗(Γ)

)
. It remains to see that this

map ttrg : C(Γ, w) → C
(
M̃∗(Γ)

)
is induced by an integral linear function L(Γ,w) between

R|E(Γ)| and the space R(g(Γ)+1
2 ) of symmetric matrices on H1(Γ,R). We define

L(Γ,w) : R|E(Γ)| −→ R(g(Γ)+1
2 ),

l 7→ Q(Γ,w,l),
(2.15)

where Q(Γ,w,l) is defined by (2.14) above . Clearly L(C,Γ) is an integral linear map that
induces the map ttrg : C(Γ,Z) → C

(
M̃∗(Γ)

)
. This concludes the proof.

Lemma 2.4.6. The map ttrg sends the cell C(Γ, w) of M tr
g surjectively onto the cell C

(
M̃∗(Γ)

)

of Atr,V
g .

Proof. We use the construction in 2.3.14. Fixing an orientation of Γ, a basis of H1(Γ,Z)

and an order of the edges of Γ, we get a natural inclusion

H1(Γ,Z) ∼= Zg(Γ) ↪→ Zn ∼= C1(Γ,Z).

The transpose of the integral matrix representing this inclusion, call it A∗(Γ) ∈ Mg(Γ),n(Z),
is well-known to be totally unimodular and such that M∗(Γ) = M [A∗(Γ)] (see for example
[Z95, Ex. 6.4]).

Now given a length function l : E(Γ) → R>0, consider the n-tuple l ∈ Rn
>0 whose

entries are the real positive numbers {l(e)}e∈E(Γ) with respect to the order chosen on
E(Γ). Comparing definitions (2.11) and (2.14), we deduce that QA∗(Γ),l = Q(Γ,w,l). The
conclusion now follows from Lemma 2.3.15 and Theorem 2.3.16.

2.4.2 Tropical Schottky

In this subsection, we want to prove a Schottky-type theorem, i.e. we describe the image
of the map ttrg .

We need to recall the following result (see [O92, 3.1.1, 3.1.2, 3.2.1] for a proof).

Lemma 2.4.7. Let Γ be a graph. For any subset I ⊂ E(Γ) = E(M∗(Γ)), we have that

M(Γ) \ I = M(Γ \ I) (2.16)

M∗(Γ) \ I = M∗(Γ/I) (2.17)

where Γ\I (resp. Γ/I) is the graph obtained from Γ by deleting (resp. contracting) the edges
in I and, for a matroid M and I ⊂ E(M), we denote by M \ I the matroid obtained from M

by deleting I.
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From formula (2.17) and Theorem 2.3.16(iii), we deduce that the collection of cographic
cones

Cogr := {σZ ⊂ Ωrt
g : [σZ ] = [σ(M)] for a cographic matroid M}

is closed under taking faces of the cones, and therefore it defines a GLg(Z)-admissible
decomposition of a closed subcone of Ωrt

g , i.e. Cogr satisfies all the properties of Definition
2.3.6 except the last one. Therefore we can give the following

Definition 2.4.8. Acogr
g is the stacky subfan of Azon

g ⊂ Atr,V
g whose cells are of the form

C(M), where M is a simple cographic matroid of rank at most g.

The following Proposition summarizes some important properties of Acogr
g (compare

with Propositions 2.2.9 and 2.3.12).

Proposition 2.4.9.

(i) The cells of Acogr
g are of the form C (M∗([Γ]2)), where [Γ]2 varies among the 2-isomorphism

classes of 3-edge-connected graphs of genus at most g.

(ii) Acogr
g has pure dimension 3g−3 and its maximal cells are of the form C (M∗(Γ)), where

Γ is 3-regular and 3-(edge)-connected.

(iii) Acogr
g is connected through codimension one.

(iv) All the codimension one cells of Acogr
g lie in the closure of one, two or three maximal

cells of Acogr
g .

Proof. Part (i) follows by combining Definition 2.4.8, Remark 2.1.30 and Proposition 2.1.33.
According to Theorem 2.3.16(iii), a cell C(M∗([Γ]2)) of Acogr

g is of maximal dimension
if and only if Γ has the maximum number of edges, and this happens precisely when Γ is
3-regular in which case #E(Γ) = dim C(M∗([Γ]2)) = 3g − 3. On the other hand, using the
fact that every 3-edge-connected graph of genus g is the specialization of a 3-regular and
3-edge-connected graph (see [CV1, Prop. A.2.4]), formula (2.17) and Theorem 2.3.16(iii)
give that every cell of Acogr

g is the face of some maximal dimensional cell, i.e. Acogr
g is of

pure dimension 3g − 3. To conclude the proof of part (ii), it is enough to recall that a 3-
edge-connected and 3-regular graph Γ is also 3-connected (see for example [CV1, Lemma
A.1.2]) and that [Γ]2 = {Γ} according to Fact 2.1.13.

Using the same argument as in the beginning of the proof of Proposition 2.2.9, it is
easy to see that the codimension one cells of Acogr

g are of the form C(M∗([Γ]2)), where [Γ]2
varies among the 2-equivalence classes of genus g graphs having one vertex of valence
4 and all the others of valence 3 (it is easy to see that this property is preserved under
2-isomorphism). The same proof as in Proposition 2.2.9 gives now part (iv) while part
(iii) follows from [C8, Thm. 3.3]: any two 3-regular and 3-(edge)-connected graphs of the
same genus are 3-linked, i.e. they can be obtained one from the other via a sequence of
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twisting operations as in Figure 2.2 in such a way that each intermediate graph is also
3-edge-connected.

From the above Proposition 2.4.9 and Lemma 2.4.6, we deduce the following tropical
Schottky theorem.

Theorem 2.4.10. The tropical Torelli map ttrg is full and its image is equal to the stacky
subfan Acogr

g ⊂ Atr,V
g .

Remark 2.4.11. It is known (see Example 2.5.11 or [V03, Chap. 4]) that Acogr
g = Atr,V

g if
and only if g ≤ 3. Therefore ttrg : M tr

g → Atr,V
g is surjective if and only if g ≤ 3. This has to

be compared with the fact that the classical Torelli map tg : Mg → Ag is dominant if and
only if g ≤ 3.

2.4.3 Tropical Torelli

In [CV1, Thm. 4.1.9], the authors determine when two tropical curves C and C ′ of total
weight zero (i.e. tropical curves up to tropical modifications in the sense of Mikhalkin-
Zharkov) are such that Jac(C) ∼= Jac(C ′). Indeed, we show here that the same result
extends easily to the more general case of tropical curves (with possible non-zero weight).
We first need the following definitions.

Definition 2.4.12. Two tropical curves C = (Γ, w, l) and C ′ = (Γ′, w′, l′) are 2-isomorphic,
and we write C ≡2 C ′, if there exists a bijection φ : E(Γ) → E(Γ′), commuting with the
length functions l and l′, that induces a 2-isomorphism between Γ and Γ′. We denote by
[C]2 the 2-isomorphism equivalence class of a tropical curve C.

Similarly to definition 2.1.15, we have the following

Lemma - Definition 2.4.13. Let C = (Γ, l, w) a tropical curve. A 3-edge-connectivization
of C is a tropical curve C3 = (Γ3, l3, w3) obtained in the following manner:

(i) Γ3 is a 3-edge-connectivization of Γ in the sense of definition 2.1.15, i.e. Γ3 is obtained
from Γ by contracting all the separating edges of Γ and, for each C1-set S of Γ, all but
one the edges of S, which we denote by eS ;

(ii) w3 is the weight function on Γ3 induced by the weight function w on Γ in the way
explained in 2.2.1 viewing Γ3 as a specialization of Γ;

(iii) l3 is the length function on Γ3 given by

l3(eS) =
∑

e∈S

l(e),

for each C1-set S of Γ.
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The 2-isomorphism class of C3 is well-defined; it will be called the 3-edge-connectivization
class of C and denoted by [C3]2.

It is now easy to extend [CV1, Thm. 4.1.9] to the case of tropical curves.

Theorem 2.4.14. Let C and C ′ be two tropical curves of genus g. Then ttrg (C) = ttrg (C ′) if
and only if [C3]2 = [C ′3]2. In particular ttrg is injective on the locus of 3-connected tropical
curves.

Proof. Note that [C3]2 = [C ′3]2 if and only if the 3-edge-connectivizations (in the sense of
definition [CV1, Def. 4.1.7]) of the underlying metric graphs (Γ, l) and (Γ′, l′) are cyclically
equivalent (in the sense of [CV1, Def. 4.1.6]), or in symbols [(Γ3, l3)]cyc = [(Γ′3, l′3)]cyc.

On the other hand, from the definition 2.4.1, it follows that Jac(C) ∼= Jac(C ′) if and
only if the Albanese tori (in the sense of definition [CV1, 4.1.4]) of the underlying metric
graphs (Γ, l) and (Γ′, l′) are isomorphic, or in symbols Alb(Γ, l) ∼= Alb(Γ′, l′).

With these two re-interpretations, the first assertion of the Theorem follows from [CV1,
Thm 4.1.10]. The second assertion follows from the first and Fact 2.1.13.

Finally we can prove a tropical analogous of the classical Torelli theorem which was
conjectured by Mikhalkin-Zharkov in [MZ07, Sec. 6.4] and proved in [CV1, Thm. A.2.1]
assuming the existence of the relevant moduli spaces (see [CV1, Assumptions 1, 2, 3]).
However, since the conjectural properties that these moduli spaces were assumed to have
in [CV1] are slightly different from the properties of the moduli spaces M tr

g and Atr,V
g that

we have constructed here, we give a new proof of this result.

Theorem 2.4.15. The tropical Torelli map ttrg : M tr
g → Atr,V

g is of degree one onto its image.

Proof. The image of ttrg is equal to Acogr
g according to Theorem 2.4.10. Therefore, we have

to prove that ttrg : M tr
g → Acogr

g satisfies the two conditions of Definition 2.1.2.
Proposition 2.4.9 and Theorem 2.4.14 give that a generic point of Acogr

g is of the form
Jac(C) for a unique tropical curve C = (Γ, w, l), whose underlying graph Γ is 3-regular and
3-connected. This proves that the first condition of Definition 2.1.2 is satisfied.

It remains to prove that the integral linear function L(Γ,w), defined in (2.15), is prim-
itive for a tropical curve C = (Γ, w, l) whose underlying graph Γ is 3-regular and 3-
connected. So suppose that the quadratic form Q(Γ,w,l) on H1(Γ,R) is integral, i.e. that the
associated symmetric bilinear form (which, by abuse of notation, we denote by Q(Γ,w,l)(−,−))
takes integral values on H1(Γ,Z); we have to show that the length function l takes inte-
gral values. Since Γ is 3-edge-connected by hypothesis, every edge of Γ is contained in a
C1-set and all the C1-sets of Γ have cardinality one (see 2.1.6). Therefore, using [CV1,
Lemma 3.3.1], we get that for every edge e ∈ E(Γ) there exist two cycles ∆1 and ∆2 of Γ

such that the intersection of their supports is equal to {e}. By definition 2.14, these two
cycles define two elements C1 and C2 of H1(Γ,Z) (with respect to any chosen orientation of
Γ) such that Q(Γ,w,l)(C1, C2) = l(e). Since Q(Γ,w,l)(−,−) takes integral values on H1(Γ,Z)

by hypothesis, we get that l(e) ∈ Z, q.e.d.
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2.5 Planar tropical curves and the principal cone

2.5.1 Agr
g and the principal cone

Another important stacky subfan of Azon
g (other than Acogr

g ) is formed by the zonotopal cells
that correspond to graphic matroids. Indeed, from formula (2.16) and Theorem 2.3.16(iii),
it follows that the collection of graphic cones

Gr := {σZ ⊂ Ωrt
g : [σZ ] = [σ(M)] for a graphic matroid M}

is closed under taking faces of the cones, and therefore it defines a GLg(Z)-admissible
decomposition of a closed subcone of Ωrt

g , i.e. Gr satisfies all the properties of Definition
2.3.6 except the last one. Therefore we can give the following

Definition 2.5.1. Agr
g is the stacky subfan of Azon

g ⊂ Atr,V
g whose cells are of the form

C(M), where M is a simple graphic matroid of rank at most g.

By combining Corollary 2.3.18, Remark 2.1.30 and Proposition 2.1.33, we get the fol-
lowing

Remark 2.5.2. The cells of Agr
g are of the form C(M([Γ]2)), where [Γ]2 varies among the

2-isomorphism classes of simple graphs of cogenus at most g.

Agr
g is closely related to the so-called principal cone (Voronoi’s principal domain of the

first kind), see [N80, Chap. 8.10] and [V03, Chap. 2.3]. It is defined as

σ0
prin := {Q = (qij) ∈ Ωg : qij < 0 for i 6= j,

∑

j

qij > 0 for all i.}

It is well-known that Stab(σ0
prin) = Sg+1 (see [V03, Sec. 2.3]) and we will denote by Cprin :=

[σ0
prin/ Stab(σ0

prin)] the cell of Atr,V
g corresponding to the principal cone σ0

prin, and call it the
principal cell.

The following result is certainly well-known (see for example [V03, Sec. 3.5.2]), but we
include a proof here by lack of a proper reference.

Lemma 2.5.3. The GLg(Z)-equivalence class [σ0
prin] of the principal cone is equal to [σ0(M(Kg+1))],

where Kg+1 is the complete simple graph on (g +1)-vertices. Therefore Cprin = C(M(Kg+1))

in Atr,V
g .

Proof. Call {v1, · · · , vg+1} the vertices of Kg+1 and eij (for i < j) the unique edge of Kg+1

joining vi and vj . Choose the orientation of Kg+1 such that if i < j then s(eij) = ei and
t(eij) = ej . It can be easily checked that the elements {δ(v1), · · · , δ(vg)} form a basis for
=(δ) = H1(Kg+1,Z)⊥. Consider the transpose of the integral matrix, call it A(Kg+1), that
gives the inclusion H1(Kg+1,Z)⊥ ↪→ C1(Kg+1,Z) with respect to the basis {δ(v1), · · · , δ(vg)}
and {eij}i<j . In other words

A(Kg+1)t · δ(vk) =
∑

i<k

eik −
∑

k<j

ekj . (*)
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Observe that A(Kg+1) ∈ Mg,n(Z) where n =
(
g+1
2

)
= #E(Kg+1). It is well-known (see [O92,

Prop. 5.1.2, 5.1.3]) that A(Kg+1) is totally unimodular and that M(Kg+1) = M [A(Kg+1)].
We now apply the construction in 2.3.14 to this matrix A(Kg+1). For a n-tuple l =

(lij)i<j ∈ Rn
>0 (setting lj,i = li,j if i < j), consider the quadratic form QA(Kg+1),l of formula

(2.11). For the associated bilinear symmetric form, which we denote QA(Kg+1),l(−,−) (by
an abuse of notation), we can compute, using (*) above, that (for i 6= j)





QA(Kg+1),l(δ(vi), δ(vi)) =
∑

1≤k 6=i≤g

lk,i + li,g+1,

QA(Kg+1),l(δ(vi), δ(vj)) = −li,j .

This easily implies that σ0(A(Kg+1)) = σ0
prin, which concludes the proof since, as observed

before, [σ0(A(Kg+1))] = [σ0(M(Kg+1))].

From the previous Lemma, we deduce the following

Proposition 2.5.4. The stacky subfan Agr
g of Azon

g ⊂ Atr,V
g coincides with the closure inside

Azon
g (or Atr,V

g ) of the principal cell Cprin. In particular it has pure dimension equal to
(
g+1
2

)

and Cprin is the unique maximal cell.

Proof. Consider the closure, call it Cprin, of Cprin inside Atr,V
g . Note that Cprin ⊂ Agr

g ,
because of the above Lemma 2.5.3, and therefore we get that Cprin ⊂ Agr

g . In order to
prove equality, consider a cell of Agr

g , which, according to Remark 2.5.2, is of the form
C(M([Γ]2)), for a simple graph Γ of cogenus at most g. Such a graph can be obtained by
Kg+1 by deleting some edges and therefore, using Theorem 2.3.16(iii) and formula (2.16),
we get that C(M([Γ]2)) is a face of the closure of C(M(Kg+1)) = Cprin, and hence it belongs
to Cprin, q.e.d.

Remark 2.5.5. The principal cone σ0
prin has many important properties, among which we

want to mention the following

(i) Cprin is the unique zonotopal cell of maximal dimension
(
g+1
2

)
(see [V03, Sec. 3.5.3]

and the references there);

(ii) The Dirichlet-Voronoi polytope associated to [σ0
prin] is the permutahedron of dimen-

sion g (see [Z95, Ex. 0.10]), which is an extremal Dirichlet-Voronoi polytope in the
sense that it has the maximum possible number of d-dimensional faces among all
Dirichlet-Voronoi polytopes of dimension g (see [V03, Sec. 3.3.2] and the references
there);

(iii) σ0
prin is the unique Voronoi cone that is also a perfect cone (see [D72]).

2.5.2 Tropical Torelli map for planar tropical curves

We begin with the following

106



Definition 2.5.6. We say that a tropical curve C = (Γ, w, l) (resp. a stable marked graph
(Γ, w)) is planar if the underlying graph Γ is planar.

Note that the specialization of a planar tropical curve is again planar. Therefore it
makes sense to give the following

Definition 2.5.7. M tr,pl
g is the stacky subfan of M tr

g consisting of planar tropical curves.

It is straightforward to check that any planar tropical curve can be obtained as a spe-
cialization of a 3-regular planar tropical curve. Therefore we get the following

Remark 2.5.8. M tr,pl
g is of pure dimension 3g − 3 with cells C(Γ, w) ⊂ R|w|, for planar

stable marked graphs (Γ, w) of genus g. A cell C(Γ, w) of M tr,pl
g is maximal if and only if Γ

is 3-regular.

We want now to describe the image of M tr,pl
g under the map ttrg . With that in mind,

we consider the locus inside Azon
g formed by the zonotopal cells corresponding to matroids

that are at the same time graphic and cographic. Indeed, from formulas (2.16), (2.17) and
Theorem 2.3.16(iii), it follows that the collection of cones

Gr-cogr := {σZ : [σZ ] = [σ(M)] for a graphic and cographic matroid M}

is a GLg(Z)-admissible decomposition of a closed subcone of Ωrt
g , i.e. Gr-cogr satisfies all

the properties of Definition 2.3.6 except the last one. Therefore we can give the following

Definition 2.5.9. Agr,cogr
g is the stacky subfan of Azon

g ⊂ Atr,V
g whose cells are of the form

C(M), where M is a simple graphic and cographic matroid of rank at most g.

Equivalently, Agr,cogr
g is the intersection of Acogr

g and Agr
g inside Azon

g . Using Corollary
2.3.18, Proposition 2.1.31, Remark 2.1.32 and Proposition 2.1.33, we get the following

Remark 2.5.10. The cells of Agr,cogr
g are of the form

C(M([Γ]2)) = C(M∗([Γ]∗2)),

for [Γ]2 planar and simple and [Γ]∗2 the dual 2-isomorphism class as in (2.3) (which is
therefore planar and 3-edge-connected by (2.4)).

Example 2.5.11. We have defined several stacky subfans of Atr,V
g , namely:

Agr,cogr
g ⊂ Acogr

g , Agr
g ⊂ Azon

g ⊂ Atr,V
g .

For g = 2, 3, they are all equal and they have a unique maximal cell, namely the principal
cell Cprin associated to the principal cone σ0

prin (see [V03, Chap. 4.2, 4.3]). However, for
g ≥ 4, all the above subfans are different. For example, for g = 4, we have that (see [V03,
Chap. 4.4]):

(i) Atr,V
4 has 3 maximal cells (of dimension 10), one of which is Cprin;

107



(ii) Azon
4 has two maximal cells: Cprin of dimension 10 and C(M∗([K3,3]2)) of dimension 9,

where K3,3 is the complete bipartite graph on (3, 3)-vertices;

(iii) Acogr
4 has two maximal cells (of dimension 9): C(M∗([K3,3]2)) and

C(M∗([K5−1]∗2)), where K5−1 is the (planar) graph obtained by the complete simple
graph K5 on 5 vertices by deleting one of its edges;

(iv) Agr
4 has a unique maximal cell (of dimension 10), namely Cprin;

(v) Agr,cogr
4 has a unique maximal cell (of dimension 9): C(M∗([K5 − 1]∗2)) = C(M([K5 −

1]2)).

Finally, we point out that Azon
g becomes quickly much smaller than Atr,V

g as g grows: Atr,V
5

has 222 maximal cells while Azon
5 only 4; Atr,V

6 has more than 250, 000 maximal cells (al-
though the exact number is still not known) while Azon

6 only 11 (see [V03, Chap. 4.5, 4.6]
and [DV99, Sec. 9]).

Now, we can prove the main result of this section.

Theorem 2.5.12. The following diagram

M tr,pl
g

Â Ä //

ttrg

²²

M tr
g

ttrg

²²
Agr,cogr

g
Â Ä // Acogr

g .

is cartesian. In particular, the map ttrg : M tr,pl
g → Agr,cogr

g is full and of degree one.

Proof. The fact that the diagram is cartesian follows from Lemma 2.4.6 together with the
fact that M∗(Γ) is graphic if and only if Γ is planar (see 2.1.32). The last assertion follows
from the first and the Theorems 2.4.10, 2.4.15.

2.5.3 Relation with the compactified Torelli map: Namikawa’s con-
jecture

In this last subsection, we use the previous results to give a positive answer to a prob-
lem posed by Namikawa ([N80, Problem (9.31)(i)]) concerning the compactified (classical)
Torelli map.

We need to recall first some facts about the classical Torelli map and its compactifica-
tion. Denote by Mg the coarse moduli space of smooth and projective curves of genus g, by
Ag the coarse moduli space of principally polarized abelian varieties of dimension g. The
classical Torelli map

tg : Mg → Ag,

sends a curve X into its polarized Jacobian (Jac(X), ΘX).
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It was known to Mumford and Namikawa (see [N76, Sec. 18], or also [A04, Thm. 4.1])
that the Torelli map extends to a regular map (called the compactified Torelli map)

tg : Mg → Ag
V (2.18)

from the Deligne-Mumford moduli space Mg of stable curves of genus g (see [DM69]) to
the toroidal compactification Ag

V of Ag associated to the (second) Voronoi decomposition
(see [AMRT75], [N80] or [FC90, Chap. IV]). The above map tg admits also a modular
interpretation (see [A04]), which was used in [CV2] to give a description of its fibers.

The moduli space Mg admits a stratification into locally closed subsets parametrized
by stable weighted graphs (Γ, w) of genus g (see definition 2.2.1). Namely, for each stable
weighted graph (Γ, w) we can consider the locally closed subset S(Γ,w) ⊂ Mg formed by
stable curves of genus g whose weighted dual graph is isomorphic to (Γ, w). Observe that,
given a stable curve X with weighted dual graph (Γ, w), any smoothing of X at a subset
S of nodes of X has weighted dual graph equal to the specialization of (Γ, w) obtained by
contracting the edges corresponding to the nodes of S (see 2.2.1). From this remark, we
deduce that:

C(Γ, w) ⊂ C(Γ′, w′) ⇔ S(Γ,w) ⊃ S(Γ′,w′). (2.19)

Similarly, from the general theory of toroidal compactifications of bounded symmetric
domains (see [AMRT75] or [N80]), it follows that Ag

V admits a stratification into locally
closed subsets SC([P ]), parametrized by the cells C([P ]) of Atr,V

g . We have also that

C([P ]) ⊂ C([P ′]) ⇔ SC([P ]) ⊃ SC([P ′]). (2.20)

The compactified Torelli map respects the toroidal structures ofMg andAg
V (see [A04,

Thm. 4.1]); more precisely, we have that (compare with Lemma 2.4.6):

tg(S(Γ,w)) ⊂ S
C(M̃∗(Γ))

. (2.21)

Given a stacky subfan N of M tr
g (in the sense of definition 2.1.1), consider the union

of all the strata S(Γ,w) of Mg such that C(Γ, w) ∈ N , and call it UN . Similarly for any
stacky subfan of Atr,V

g . It is easily checked, using formulas (2.19) and (2.20), that such a
UN is an open subset of Mg (resp. Ag

V ) containing Mg (resp. Ag), and thus it is a partial
compactification of Mg (resp. Ag).

In particular we define Mpl
g ⊂ Mg as the open subset corresponding to the stacky

subfan M tr,pl
g ⊂ M tr

g and Agr,cogr
g ⊂ Acogr

g ⊂ Ag
V as the two open subsets corresponding to

the two stacky subfans Agr,cogr
g ⊂ Acogr

g ⊂ Atr,V
g .

Observe that from formula (2.21) it follows that the compactified Torelli map tg takes
values in Acogr

g . Finally we can state the main result of this subsection.

Corollary 2.5.13. Given a stable curve X, we have that tg(X) ∈ Agr,cogr
g if and only if the

dual graph ΓX of X is planar.
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Proof. From formula (2.21), it follows that ttrg (X) ∈ S
C(M̃∗(ΓX))

. Therefore ttrg (X) ∈ Agr,cogr
g

if and only if M̃∗(ΓX) is a graphic matroid. By the definition 2.1.27 of the simplification
of a matroid, it follows easily that M̃∗(ΓX) is a graphic matroid if and only if M∗(ΓX) is a
graphic matroid. By combining Proposition 2.1.31 and Theorem 2.1.19, we finally get that
M∗(ΓX) is a graphic matroid if and only if ΓX is planar.

The part if of the above Corollary was proved (using analytic techniques) by Namikawa
in [N73, Thm. 5]. The converse was posed as a problem in [N80, Problem (9.31)(i)].
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