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Introduction

The Brill-Noether theory for smooth curves is the study of special line bundles, i.e. of the
line bundles L on a curve C such that H!(C, L) # 0. By Riemann-Roch this means that
the H° cohomology or space of holomorphic sections is larger than expected, hence that
the divisor corresponding to the line bundle moves in a larger linear system. This theory
is a broad and classical area of algebraic geometry, which dates back to Riemann and his
work on Abelian functions [R876]. However, the study has been deeply and extensively
carried out by Brill and Noether in the XIX century ([BN873]). Through the years many
aspects of the theory of special linear series have been investigated, so that each of them
has inspired a separate research area. Among these areas, for instance, we recall the

classical study of the Brill-Noether varieties
W (C) = {L € Pic’C : h°(L) > r},

and their dimension. This study focused on the properties of linear series on a curve C,
hence suggesting the possible projective models of C. The original motivation to study
these varieties was to classify differences among curves. To this aim the structure of the
Brill-Noether varieties becomes interesting only when we look at special linear series.

In this setting there are other aspects coming up, such as the projective normality
of curves, which is the property for a canonically embedded curve of having a complete
linear series cut by the hypersurfaces of the ambient space in any degree. We notice that
the canonical bundle is special.

Moreover it is worth mentioning Abel maps (we will recall the definition later), which
take values in the Brill-Noether varieties W9 (X). If the degree is g — 1 we have that when
X is smooth the variety W ;(X) is a divisor inside Pic’ ~1X, the so called Theta divisor
of the Jacobian variety of X. From this point of view we can include the study of the
Theta divisor in the Brill-Noether theory, and this naturally leads to approach the Torelli
theorem (for details on all of these subjects see [ACGH]).

The Brill-Noether theory for smooth curves has been widely developed, but when we
think of families of curves we have to consider singular curves as well. However, for
singular curves not much is known yet. We point out some recent developments in the
case of binary curves in [C5].

In this thesis we present some generalizations of Brill-Noether problems for distin-



guished classes of curves: singular and tropical curves. The study of singular curves and
their properties is still very active and open: many of the classical theorems proved for
smooth curves hold no longer for singular ones. We will work on curves with at most
planar singularities. Of course the easiest to handle are nodal curves, and in particular
stable curves, that allow us to work with their moduli.

Tropical geometry is a recent branch of mathematics which relates algebro-geometric
objects to purely combinatorial ones in such a way that ideally one should be able to obtain
results in algebraic geometry after studying their combinatorial tropical counterpart. A
tropical curve C of genus ¢ in the sense of [BMV09] is a marked graph I' endowed with
some extra data (see Definitions 2.2.1 and 2.2.3). Given their graph nature, we can inter-
pret tropical curves as degenerations of smooth curves, but we can as well find a different
and deeper relation between stable curves and tropical ones given by duality. Indeed a
tropical curve is associated to a graph which can be thought of as the dual graph of a sta-
ble curve (see subsection 2.5.3). So we can actually view singular and tropical curves as
being part of the class of degenerate curves, i.e. curves arising as limits of smooth curves
through a degenerating process.

The motivations for my work are, on the one hand, my interest in the Brill-Noether
theory itself, since there is a lot of beautiful classical geometry involved. Moreover many
proofs of general facts concerning moduli of curves have been obtained in history by look-
ing at the properties of suitable degenerate curves, as singular and tropical curves are.
Hence in this perspective I hope that my results can help interpret in an easier way clas-

sical problems.

The problems

Chapter 1 is devoted to singular curves, and we tackle the following problems:
1. Given a smooth projective curve C of genus g and a natural number d > 1, we can

consider the product C? and define the Abel map of degree d

d
adc . 04— PiciC, (P1,.--ypd) — OC(ZP:‘);
i=1
it is a regular map, and in degree 1 it is injective when ¢ > 1. In the smooth case the
image Ima¢, of the Abel map coincides with the Brill-Noether variety W9(C). Of course it
is interesting to approach the problem of extending Abel maps to singular curves in such
a way that they have a geometric meaning.

If X is a singular curve we can still define Abel maps: we consider the decomposition
of X in irreducible components, X = C; U...UC,, and set X := X \ X*"¢ where X*" is
the set of singular points of X, and C; = C; N X. Then, let d = (di, ..., d,) be a multidegree
with d; > 0 for any 7, and set

Xim O x o x (i



X< is a smooth irreducible variety of dimension d = |d|, open and dense in X< := C{* x
d'Y
- x Cy". We set

d

a%(:Xi—dDiciX, (pl,...,pd)HOX(Zpi),
i=1
and we call it the Abel map of multidegree d; it is a regular map. Abel maps for integral
curves have been studied by Altman and Kleiman in [AK80], and later on in [EGKO0O0],
[EGKO02], [EKO05]. We notice that the completion of Abel maps for integral curves was
a major step to prove autoduality of the compactified Jacobian ([EGKO02]). This is an
important property connected with the study of the fibers of the Hitchin fibration for GL(n)
([AIK76], [N10]).

For reducible curves, the problem of completing the Abel maps is open with a few
exceptions as we shall explain. As it is well known, the non separatedness of the Picard
functor, together with combinatorial hurdles, make the case of reducible curves much
more complex. The first step in this direction was taken by Caporaso and Esteves in
[CEO06], where they construct Abel maps of degree 1 for stable curves. However, they do not
describe explicitly the closure of the image of the completion of the map. It is interesting
to notice that they consider stable curves as limits of smooth ones, approaching this way
the study of Abel maps for families of curves. In this setting, the completion of o}, can be
viewed as a specialization to the singular fiber of the Abel maps of the smooth fibers.

Further improvements have been achieved for Gorenstein curves by Caporaso, Coelho
and Esteves in [CCE08] using torsion free sheaves, and by Coelho and Pacini in [Co07]
and [CP09], where, respectively, they construct Abel maps of degree 2 for curves with two
components and two nodes, and in any degree for curves of compact type. So in all other
cases this problem remains open.

On the other hand the situation is better understood in case d = ¢ — 1in [C2]: if X is a

nodal connected curve of genus g, denote by A4(X) the closure of Ima%( inside Pic?X. Let
Wa(X) := {L € PictX : h°(L) > 0};

in Theorem 3.1.2. the author proves that if d is a stable multidegree such that |d| = g — 1,
then

and hence that the Brill-Noether variety W;(X) is irreducible. Let P% ' be the compact-
ified Jacobian in degree g — 1; it has a polarization given by the Theta divisor ©(X), and

the pair (P)g{l7 O(X)) is a semiabelic stable pair as in [A02]. It turns out that the varieties
Ay(Xs) = Wy(Xs), where X is a partial normalization of X at a set S of nodes, are the
sets which give a stratification of ©(X) (see Theorem 4.2.6. in [C2]).

In the first section of Chapter 1 we generalize this stratification in lower degree and
give a characterization of the closure of the image of the Abel map of multidegree d for

some classes of nodal curves, inside the compactified Picard variety PT'Q constructed in



[C1]. We recall that in this construction every point of Pig‘g corresponds to a pair ()/(\' S, M\S)
where X s is the blow up of X at a set S of nodes of X, and 1\75 is a balanced line bundle
(see below) of multidegree d on X up to equivalence. So our question can be posed in the
following way: which points of @ are limits of effective Weil divisors on X?

We will study the following cases: irreducible curves on the one hand, and two types
of reducible curves, namely curves of compact type and binary curves. Curves of compact
type have the advantage and the special property that the generalized Jacobian is com-
pact. Binary curves are nodal curves made of two smooth rational components meeting at
g+ 1 points. They form a remarkable class of reducible curves since they present the basic
problems as all reducible curves, yet simpler combinatorics. Indeed, they have been used
in the past as test cases for results later generalized to all stable curves, see for instance
[C5],[Br99l.

In order to answer our question, let Xs be a partial normalization of a nodal curve X
at a set S of nodes. We define the set

Wi (Xs)={Le Pic?s X : h°(Z, L|z) > 0 for all subcurves Z C Xg},

and consider the union of the WJS (Xs) when S varies among the subsets of X*"¢ and d
is the restriction to X of a balanced multidegree Es on the partial blow up Xs. Similarly
to [C2][Theorem 4.2.6], we define

Wa(X):= || Wi (Xs)
0CcScxsing

o 50 -
dgeB (Xs)

where B;O (Xg) is the set of strictly balanced multidegrees Es > 0 on Xg such that |d¢| = d,
and dg = ES|XS‘
In paragraph 1.2.1 we study directly the closure inside @ of A;(X) for irreducible

curves, and we prove that A,(X) = Wy (X) giving a description of it in terms of the Brill-
Noether varieties W;_;_(Xs) where X is the normalization of X at a set of nodes S, and
ds = 4S.

In paragraph 1.2.2 we turn our attention to reducible curves: we describe the struc-
ture of the varieties W;(X) for curves of compact type, which is quite natural, and in the
last part we develop the study of A4(X) and its closure inside Pig'é for binary curves. We
characterize it in terms of the varieties W;_(Xs). If X is a binary curve of genus g and
1 <d < g—1, we prove that the closure inside E of the union of the varieties A;(X) as d

varies among balanced multidegrees on X, is exactly Wd(X ). In other words, we define

LX) = J A cPf

deB7°(X)

then the main theorem states that

Wa(X) = A4(X) C PL. 1)



Finally we study the simpler case when d = 1 giving a characterization of the closure of
the image of the Abel map for all the stable curves such that the set BZ%(X) of strictly

balanced multidegrees d > 0 is nonempty, i.e. the so called d-general curves.

2. Let C be a smooth curve of genus g over an algebraically closed field k£. The canonical
bundle wc induces an embedding of C in P9~! if and only if C is not hyperelliptic; we
indicate the power w3" by wp, for any n € N. One says that C is projectively normal if the
maps

HO (B9, Ops 1 (k) — HO(C,el) )

are surjective for every k£ > 1. In other words, C' is projectively normal if and only if the
hypersurfaces of degree k in P9~! cut a complete linear series on C for any k. If k = 1 and
the map (2) is surjective, we say that C is linearly normal, which means that the curve
is embedded via a complete linear series. If we is ample, then an equivalent formulation
states that C is projectively normal if the maps

Sym"H(C,we) — HO(C,wk) 3)

are surjective for every k > 1, because the surjectivity of all these maps when w¢ is ample
implies the very ampleness of w¢.

If C is a smooth, non-hyperelliptic curve, Castelnuovo and Noether proved that its
canonical model is projectively normal (see [ACGH]). For curves, though, the problem
becomes harder: in the case of integral curves, in [KMO09] the authors generalize Castel-
nuovo’s approach proving that linear normality is equivalent to projective normality. For
reducible curves yet not much is known: properties of the canonical map for Goren-
stein curves, i.e. the map induced by the dualizing sheaf, are investigated in [CFHR99],
whereas in [F04] the author gives a sufficient condition for line bundles on non-reduced
curves to be normally generated (see 1.4.9). The projective normality of reducible curves
is studied in [S91]; more in general, since the problem of studying projective normality
reduces to the study of multiplication maps, we refer to [BO1] and [F04] for these items.

In the second section of chapter 1 we investigate the projective normality of reducible
curves restricting the problem to suitable subcurves. The first step is to study the quadratic
normality, i.e. the surjectivity of the maps in (2) for k£ = 2. Let X be a connected, reduced
and Gorenstein projective curve of genus g with wx very ample. Assume that X has pla-
nar singularities at the points lying on at least two irreducible components. Our main

result about quadratic normality is the following theorem.

Theorem 1. Let X be a curve as above, and set X = AU B with A, B connected subcurves
being smooth at D := AN B. If A # () and the map

Pogwxla - HO(A’ WA) ® HO(Aa oJX‘A) - HO(X7 wa ® wX'A)

is surjective, then X is quadratically normal.



We also study certain multiplication maps in order to establish sufficient conditions
that imply the surjectivity of the map in (3) for some k (k-normal generation) assuming to
know the surjectivity for (k—1) (see Proposition 1.4.23). Moreover at the end of the section
we carry out a proof of the projective normality for binary curves following the approach
suggested by Castelnuovo-Noether in [ACGH], and see some applications of our results.
This part is based on a joint work with Edoardo Ballico (see [BB10]).

3. In the third section of chapter 1 we study some properties of semistable curves that
are related to Brill-Noether theory: in subsection 1.3.1 we prove Martens’ theorem and
Mumford’s theorem for irreducible nodal curves generalizing the approach described in
[ACGH]. Then, in subsection 1.3.2 we turn our attention to the possible projective models
of semistable k—gonal curves. A nodal curve is said to be k—gonal if it admits a regular
smoothing such that the general fiber is a smooth curves having a g; (i.e. a pencil of degree
k).

We study nodal curves with two components (which are often called vine curves) in-
vestigating about sufficient and necessary conditions in order for them to be k—gonal. In
other words we list the properties that a vine curve must have in order to be k-gonal,
and vice-versa. This study is carried out more extensively for trigonal curves, and the
techniques we use refer to [Br99], [C2], [C6], [EMO02] and to [HM82] for the specific use
of admissible covers. We also introduce the concept of weakly k—gonal curves, defined as
the curves possessing a g}, and in the case of weakly trigonal curves we investigate, as
Caporaso does for hyperelliptic curves in [C6], if they are trigonal. As one can expect the

answer is negative.

Chapter 2 is devoted to tropical curves, and more in general to tropical moduli. The
classical Torelli map t, : M, — A, is the modular map from the moduli space M, of
smooth curves of genus g to the moduli space A, of principally polarized abelian varieties
of dimension g, sending a curve C into its Jacobian variety Jac(C'), naturally endowed
with the principal polarization given by the class of the theta divisor ©. The Torelli map
has been widely studied as it allows to relate the study of curves to the study of linear
(although higher-dimensional) objects, i.e. abelian varieties. Among the many known
results on the Torelli map t,, we mention: the injectivity of the map t, (proved by Torelli
in [T13]) and the many different solutions to the so-called Schottky problem, i.e. the
problem of characterizing the image of t; (see the nice survey of Arbarello in the appendix
of [M99]).

The aim of this chapter is to define and study a tropical analogous of the Torelli map
and is based on a joint work with Margarida Melo and Filippo Viviani (see [BMVO09]).
In the paper [MZ07], Mikhalkin and Zharkov study abstract tropical curves and tropical
abelian varieties. They construct the Jacobian Jac(C) and observe that the naive gen-
eralization of the Torelli theorem, namely that a curve C is determined by its Jacobian
Jac(C), is false in this tropical setting. However, they speculate that this naive general-



ization should be replaced by the statement that the tropical Torelli map " : M;" — Al
has tropical degree one, once it has been properly defined!

In [CV1], Caporaso and Viviani determine when two tropical curves have the same
Jacobians. They use this to prove that the tropical Torelli map is indeed of tropical degree
one, assuming the existence of the moduli spaces M;r and A;r as well as the existence of
the tropical Torelli map ¢ : M;l — Af]r, subject to some natural properties. Indeed, a
construction of the moduli spaces M* and A} for every g remained open so far, at least to
our knowledge. However, the moduli space of n-pointed rational tropical curves Mg, was
constructed by different authors (see [SS2], [Mi4], [GKMO09], [KMO09]). The aim of chapter
2 is to define the moduli spaces M{" and A!', the tropical Torelli map t, : M* — A" and
to investigate an analogue of the Torelli theorem and of the Schottky problem.

With that in mind, we introduce slight generalizations in the definition of tropical
curves and tropical principally polarized abelian varieties. A tropical curve C of genus
g in the sense of [BMVO09] is given by a marked graph (T',w,!) where (T',l) is a metric
graph and w : V(I') — Z>( is a weight function defined on the set V(I') of vertices of T,
such that g = b, (') + |w|, where |w| := }_ .y () w(v) is the total weight of the graph, and
the marked graph (T', w) satisfies a stability condition (see Definitions 2.2.1 and 2.2.3). A
(principally polarized) tropical abelian variety A of dimension g is a real torus RY9/A as
before, together with a flat semi-metric coming from a positive semi-definite quadratic
form @) with rational null-space (see Definition 2.3.1). To every tropical curve C = (T, w, )
of genus g, it is associated a tropical abelian variety of dimension g, called the Jacobian of
C and denoted by Jac(C), which is given by the real torus (H; (I, R)®R!*!) /(H\ (T, Z)DZ"),
together with the positive semi-definite quadratic form Q ;) which vanishes on R“l and
is given on Hy(I',R) by Q(r,)(Xcep(r) e - €) = Xcepm) n2 - I(e). The advantage of such a
generalization in the definition of tropical curves and tropical abelian varieties is that the
moduli spaces we will construct are closed under specializations (see subsection 2.2.1 for
more details).

The construction of the moduli spaces of tropical curves and tropical abelian varieties
is performed within the category of what we call stacky fans (see section 2.1.1). A stacky
fan is, roughly speaking, a topological space given by a collection of quotients of rational
polyhedral cones, called cells of the stacky fan, whose closures are glued together along
their boundaries via integral linear maps (see definition 2.1.1).

The moduli space M;r of tropical curves of genus g is a stacky fan with cells C(T",w) =
R'f:)(rl) / Aut(T, w), where (', w) varies among stable marked graphs of genus ¢, consisting
of all the tropical curves whose underlying marked graph is equal to (I',w) (see defini-
tion 2.2.5). The closures of two cells C(I',w) and C(I",w’) are glued together along the

faces that correspond to common specializations of (I', w) and (I, w’) (see Theorem 2.2.8).

Therefore, in M;r, the closure of a cell C(T",w) will be equal to a disjoint union of lower
dimensional cells C(T”, w’) corresponding to different specializations of (T, w).
We describe the maximal cells and the codimension one cells of M* and we prove that



M ;r is pure dimensional and connected through codimension one (see Proposition 2.2.9).
Moreover the topology with which A" is endowed is shown in [C8] to be Hausdorff.

The moduli space A} of tropical abelian varieties of dimension g is first constructed as
a topological space by forming the quotient Q;t / GL4(Z), where Qgt is the cone of positive
semi-definite quadratic forms in RY with rational null space and the action of GL4(Z) is via
the usual arithmetic equivalence (see definition 2.3.5). In order to put a structure of stacky
fan on A}, one has to specify a GL,(Z)-admissible decomposition X of Q' (see definition
2.3.6), i.e. a fan decomposition of Q;t into (infinitely many) rational polyhedral cones that
are stable under the action of GL,(Z) and such that there are finitely many equivalence
classes of cones modulo GL4(Z). Given such a GL,(Z)-admissible decomposition X of Qf,
we endow A} with the structure of a stacky fan, denoted by A_ff*z, in such a way that the
cells of A;“Z are exactly the GL,(Z)-equivalence classes of cones in ¥ quotiented out by
their stabilizer subgroups (see Theorem 2.3.7).

Among all the known GL,(Z)-admissible decompositions of Q;t, one will play a special
role in this paper, namely the (second) Voronoi decomposition which we denote by V. The
cones of V' are formed by those elements Q € Q;t that have the same Dirichlet-Voronoi
polytope Vor(Q) (see definition 2.3.9). We denote the corresponding stacky fan by A;’“V (see
definition 2.3.11). We describe the maximal cells and the codimension one cells of A;“V
and we prove that A"V is pure-dimensional and connected through codimension one (see
Proposition 2.3.12). AZY’V admits an important stacky subfan, denoted by A%°", formed by
all the cells of Ag’“v whose associated Dirichlet-Voronoi polytope is a zonotope. We show
that GL,(Z)-equivalence classes of zonotopal Dirichlet-Voronoi polytopes (and hence the
cells of A%°") are in bijection with simple matroids of rank at most g (see Theorem 2.3.16).

After having defined M, ;r and Azr,v’ we show that the tropical Torelli map

tr . tr tr,V
ty + M — Ag
C — Jac(C),

is a map of stacky fans (see Theorem 2.4.5).

We then prove a Schottky-type and a Torelli-type theorem for ;". The Schottky-type
theorem says that t;r is a full map whose image is equal to the stacky subfan Ag"<8" C
A%°", whose cells correspond to cographic simple matroids of rank at most g (see Theorem
2.4.10). The Torelli-type theorem says that t;f is of degree one onto its image (see Theorem
2.4.15). Moreover, extending the results of Caporaso and Viviani [CV1] to our generalized
tropical curves (i.e. admitting also weights), we determine when two tropical curves have
the same Jacobian (see Theorem 2.4.14).

Finally, we define the stacky subfan M;rvpl C M, ;r consisting of planar tropical curves
(see definition 2.5.7) and the stacky subfan A%" C A%°" whose cells correspond to graphic
simple matroids of rank at most g (see definition 2.5.1). We show that A%" is also equal
to the closure inside A"V of the so-called principal cone o7, (see Proposition 2.5.4). We

prove that ¢'"(C') € A2 if and only if C is a planar tropical curve and that ¢ (M) =



ABTeost 1= AZ08T N AS' (see Theorem 2.5.12).

As an application of our tropical results, we study a problem raised by Namikawa in
[N80] concerning the extension t, of the (classical) Torelli map from the Deligne-Mumford
compactification M, of M, to the (second) Voronoi toroidal compactification Aigv of A,
(see subsection 2.5.3 for more details). More precisely, in Corollary 2.5.13, we provide
a characterization of the stable curves whose dual graph is planar in terms of their im-
age via the compactified Torelli map t,, thus answering affirmatively to [N80, Problem
(9.31)(1)]. The relation between our tropical moduli spaces M ;r (resp. A;“V) and the com-
pactified moduli spaces M, (resp. Tgv) is that there is a natural bijective correspondence
between the cells of the former and the strata of the latter; moreover these bijections are
compatible with the Torelli maps t;r and t,. This allows us to apply our results about t';

to the study of t,, providing thus the necessary tools to solve Namikawa’s problem.



Chapter 1

Aspects of Brill-Noether theory

for singular curves

1.1 Notation

Let us recall some basic facts about the construction in [C1] that we will use in what
follows. We work over an algebraically closed field k. Throughout the paper a curve will
be a reduced projective variety of pure dimension 1 over k. Moreover, we will deal with
nodal curves, although some statements are more general. Let then X be a nodal curve,
and let X” —— X be its normalization; if X” = U]_,C? is the decomposition of X" into
smooth components of genus g; for every i = 1,...,~, then the arithmetic genus of X is
g=>119+6—y+1. If Z is a subcurve of X of genus g and Z¢ = X \ Z, we will denote by
dz =#ZNZ° and if wy is the dualizing sheaf of X, we set deg, wx = degwx|z = 29z —2+0z.

A curve X of genus g > 2 is said to be stable if it is connected and if every component
E = P! is such that §r > 3, which is equivalent to saying that the curve has finite auto-
morphism group. By a quasistable curve we mean a connected curve X such that every
subcurve E = P! has 6z > 2 and the ones with §z = 2, i.e. the exceptional components,
don’t intersect. If S is a set of nodes of a stable curve X, throughout the paper we will
denote by Xs the normalization of X at the nodes in S, and by X the quasistable curve
obtained by “blowing up” X at S. In what follows we will often call Xsa partial blow up
of X. Obviously X is the complement in Xg of all the exceptional components.

In [C1] Caporaso constructs a compactification P,, — M, of the universal Picard
variety, such that the fiber over a smooth curve X of genus g > 2 is its Picard variety
Pic?X, whereas if X is a stable curve in M, then the fiber over it is Pijj(', a connected and
projective scheme, which has a meaningful description in terms of line bundles on the
partial blowups of X.

Indeed, let X be a quasistable curve of genus ¢ and L € Pic?’X; we denote the multide-

10



gree of L by
d: (dlv"'ad"/)v

where, if X = (J]_, C; is the decomposition of X in irreducible components, we have d; =
deg L|c, and d = |d|. We say that d is balanced if for any connected subcurve Z of X we
have that

Wr 07 4 g Wz +5—Z, (1.1)
29—2 2

where wz = deg, wx, and for any exceptional component E of X we have L|g = Og(1).

We say d is strictly balanced if strict inequalities hold in (1.1) for every Z ¢ X such
that Z N Z¢ ¢ Xy, where X, is the subcurve of the exceptional components of X (see
[C7]). We will denote by By(X) the set of balanced multidegrees on X, and by B;(X) its
subset of strictly balanced ones.

We are going to introduce the scheme @ by looking at its stratification; so let X be a
stable curve of genus ¢ > 2, then, for any d, Pij‘g is a connected, reduced scheme of pure
dimension g, such that

Pi= I P& (1.2)

0CScxsing
deEBg(Xg)

where Pg >~ Picds X4, Xg C Xg as above, and dg = d|xs. In particular, the points in
@ are in one-to-one correspondence with equivalence classes of strictly balanced line
bundles. Any such class is determined by S and by M € PicXg. Hence a point of @ can
be denoted by [M, S|, where if JT/[\S is a class of line bundles in Bd()A(s), then M := M\s\xs,
and, by construction, when restricted to every exceptional component of X, Mj is equal
to O(1).

A node n of X is said to be separating if X \ {n} is not connected; we denote by X*"&
the set of nodes of X, and by X, the subset of separating nodes.

If X is a nodal connected curve of genus g, we will denote by A,4(X) the closure of Imoz%(
inside Pic2X. Moreover we define the Brill-Noether variety:

Wa(X) := {L € PictX : k(L) > 0}.

Let vs : Xg — X be the normalization of X at the nodes in S. It induces the pullback
map v§ : PictX — Pic?Xg;if M € PictXg, we denote by Fi, (X) the fiber of v§ over M, and
by Wi (X) the intersection F;(X) N Wa(X).

1.2 A compactification of the image of the Abel Map

Let a%( be the Abel map of multidegree d of a stable curve X of genus g > 2. We want to
describe the closure of Ima%( inside the compactified Jacobian PE constructed in [C1]. We
start by examining the case of irreducible curves.
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1.2.1 Irreducible curves

Let X be an irreducible nodal curve of genus g and, for d > 1, consider the Brill-Noether
variety W, (X). As a subvariety of Pic’ X, we are interested in studying its closure W,(X)

in the compactified Picard Variety ?%’ using the description given in [C1]. It will turn out

that W;(X) is strongly related to the image of the Abel map, that we are going to define.
Let X := X \ X*"¢ be the smooth locus of X; since X is irreducible, we have that Xdisa
smooth irreducible variety of dimension d, open and dense in X¢. Now, for d > 1, let

ag( : x4 — Pic?X
d
(p11'~'7pd) = OX(;p»J,
we call a% the Abel map of degree d. It is a regular map, and obviously a4 (X9¢) ¢ Wy(X).

We denote by A4(X) the closure of a% (X%) in Pic?X; of course Aq(X) € Wy(X). Let us
now introduce the following set

Wa(X) = {[M, S] € P s.t. h%(Xs, Ms) > 0},

where S C X®"¢ with §g := 15, )A(s = XgqU UfilEi is the blow up of X at the nodes of S,
and, as we introduced in the previous section, M\S is a class of line bundles in Bd()? s) such
that its resctrictions to the components of Xg are

Ms|x, =t M, Ms|p, =0O(1)foranyi=1,...6s.
Let us observe that since h%(Xs, Mg) = h°(Xg, M) (see [C2][Lemma 4.2.5]), we have:
Wa(X) = {[M,S] € PL s.t. h°(Xg, M) > 0},
which is in turn equivalent to:

Wa(X)= || Wass(Xs).
ScXsing
Theorem 1.2.1. Let X be an irreducible curve of genus g > 1 with 6 nodes. Then for any
d > 1 we have:

(1) Ag(X) =Wu(X), hence Wy(X) is irreducible and dim Wy(X) = min{d, g},

(i) Ag(X) = Wy(X) = Wa(X) C PL.

Proof. We start by assuming that X has only one node n, and its normalizationis v : X,, —
X, with v=1(n) = {p, ¢}. Let us consider the regular dominant map

pr Wa(X) — Wa(Xn)
L —  v*(L);

for any M € Imp we denote by Wy, (X) = p~ (M), the fiber of p. We recall that Wy, (X) C
Fy(X), where Fj (X) 2 k* is the fiber of the pullback map v* : Pic?X — Pic?X,,. The
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cardinality of the fibers W), (X) is at least 0, so, since dim Wy(X,,) = d, it follows that
dim W,4(X) < d; moreover A,(X) is irreducible of dimension d, hence we have that A4,(X)
is an irreducible component of W,;(X). We want to prove that for any M € Imp, Wy, (X) C

Aq(X), so that Aq(X) C Wu(X) C Ay(X) implies that Wy(X) = Ag(X) and Wy(X) =
A4(X). We are now going to analyze all the possible cases.

(1) M € Imp with h°(X,,, M) =1 and
BO(X o, M(=p)) = KXo, M(~q)) = KX, M) — 1.
Then by [C2, Lemma 2.2.3], Wy (X) = {Ly} with Ly, € Tma4.
(2) M € Imp with h°(X,,, M) > 2 and
BO(X o, M(=p)) = KO (X, M(~q)) = (X, M) — 1.

We are going to show that there exist two points in F;(X) C Pij‘é which are contained

in A4(X). Indeed,
Fyr(X)\ Far(X) = {[M(=p), n], [M(=q),n]}.

Let us take [M(—p),n]; by [C2, Lemmas 2.2.3, 2.2.4] there exists L € Pic? !X such
that v*(L) = M(—p) and L € Tma%!. Let now p; € X be a moving point specializing
to the node, i.e.such that p, =2 n. Of course L(p;) € Ima, and L(p;) — [M(—p),n]

ast — 0. Then [M(—p),n] € A4(X). The same holds for [M (—q), n], so we have that

Fy (X)\ Fu(X) € Ag(X).
(8) M € Imp with h°(X,,, M) =1 and

(X, M(=p)) = h*(Xp, M(=q)) = 1" (X, M).

Again we want to prove that F;(X) \ Fi(X) C Aq(X); so let M’ be a line bundle
on X, not supported on either p or ¢ such that M = M'(hp + kq); then M’ is as
in (1) and deg M’ = d’ with d’ = d — (h + k). Let us consider [M(—p),n] € Fy(X),
then M(—p) = M'(h'p + kq), where b’ = h — 1. We choose a moving point p; on X,
specializing to p as t goes to 0, and a moving point ¢; on X,, such that ¢; specializes
to ¢q. Now fix t, and take the line bundle M]' := M'(h'p; + kq:) on X,,; by case (1),
there exists L} € Ima% * such that v*(L}) = M/;’. We consider now one moving point
pu € X, such that v*(p, ) on X, specializes to p when u — 0. As well as we saw in case

(2), LY (p,) € Ima% specializes to [M;’,n] as u — 0. Hence [M,',n] € A4(X). Now let

t — 0: we see that, by construction, [M/',n] — [M(—p),n], hence [M(—p),n] € A4(X).

Using the same argument, we get that [M(—q),n] € Aq(X) as well.

(4) M € Imp with h°(X,, M) > 2 and either p or ¢ as base point. Choose, say, p as
base point, i.e. h°(X,,, M(—p)) = h°(X,,, M) = h°(X,,, M(—q)) + 1. Then there exists

13



M e Picd/Xn, with M = M’'(hp), d = d — h, and M’ not supported on either p or
q up to move the support away. We notice that M(—p) = M'(h'p) with b’ = h — 1,
so, as before, we perform a double specialization to show that [M(—p),n] € A4(X).
Concerning [M(—q),n|, we have that M (—q) = M'(hp — q) =: M"(hp) for a suitable
M" e Picd/_an. Moreover, since p is a base point of M" (hp), h°(X,, M") > 1. We
take again a moving point p; on X,, specializing to p, and a p, on X such that v*(p,)
specializes to p on X,,. We fix ¢ and denote M, := M’ (hp;), then by [C2, Lemmas
2.2.3,2.2.4] there exists L} contained in Ima%*1 such that v*(L}) = M]'. We take

LY (py); letting u — 0 we get that L) (p,) — [M/,n] € A4(X). Now we let t — 0, and

obtain [M]',n] — [M(—q),n|, whence [M(—q),n] € Ays(X).

(5) M € Imp with r°(X,,, M) > 2 and h°(X,,, M(—p)) = h%(X,, M(—q)) = h°(X,, M).
Then there exists M’ € Pic? X,,, with M = M'(hp + kq),d =d — (h+ k), and M’ not
supported on either p or ¢ up to move the support away. As well as above, we consider
[M(—p),n] and [M(—q),n] to show that they are contained in A4(X). We proceed as
in case (3) performing a double specialization, and recalling that h°(X,,, M’) > 2 by

assumption.

Let U € Wy(X,,) be the following set:
U:={M e Wy(X,,) s.t. hO(XmM) =1, hO(XmM(*p)) = hO(XmM(*Q)) =0}

this is of course an open set in W,;(X,,), and it contains all the line bundles M studied in

case (1). In particular for any M € U, we have that A;(X) intersects Fj;(X) in only one
point Ly, where Wy (X) = {Las}. In order to verify this assertion, by (1) we just have
to check that [M(—p),n] and [M(—q),n] are not contained in A4(X), but this is obvious,
since h(X,, M(—p)) = 0, hence on the blow up X,, of X at n, hO(Xn,Am)) = 0. From

the study of all the possibilities above, from (2) to (5), we get that for any M € Imp which

is not in U, A4(X) contains at least two points of F/(X), but since the generic M has

f(Fam(X)NAg(X)) = 1, we have that for M € Imp\ U, the whole Fj;(X) must be contained

in A4(X), hence for any M € Imp we have that Wy, (X) C Ag(X).
So we have shown that W;(X) = A,4(X), with subsequent equality of their closures.

In order to show that Wy(X) = Wd(X ), we argue like this: direction C is obvious, since
Wd(X ) is a closed set in ?i containing W;(X). On the other hand, the analysis made
above suggests that any [N,n] € Wy(X) is also an element of A4(X). Indeed if N has p
and/or ¢ as base points, we argue as in (3),(4),(5); if otherwise N does not contain p nor ¢
in its support, by (2) we get that there exists L(p;) € Ima%, such that L(p;) specializes to
[N,n] ast — 0.

If the number of nodes § is > 2, we proceed by induction on ¢. Indeed, let X be a nodal
irreducible curve having § nodes. We blow up X at one node n, so that X,, is the blown up
curve, and X, is the strict transform, and we have the normalization map v : X,, — X such

that v=1(n) = {p,¢}. So again we look at the dominant morphism p : Wy(X) — Wy(X,,),
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and we prove that the fibers W), (X) C A4(X) for any M € Imp. As inductive hypothesis
we assume that Wy(X,,) = A4(X,,) is irreducible of dimension d. This is the only point
where we used the smoothness of X, in the previous case when § = 1; hence reapplying
the argument above, which is based on [C2, Lemmas 2.2.3,2.2.4], we get the conclusions

for every ¢ and for every d > 1. O

Remark 1.2.2. We observe that when d > g, with g the genus of X, it doesn’t make sense
referring to W, (X), since it is equal to Pic’X. On the other hand, when d = 1 we have
that by [C2, Lemma 2.2.3], W1 (X) = Ima) = A;(X), and when d = g — 1 we get that the

Theta divisor is irreducible in Pic/ ™' X.

Remark 1.2.3. From the equality 44(X) = Wy(X) for any d, we deduce an important fact;
we use the previous notation, where X has 0 nodes and X, is the normalization at a node
n. Let L € Wy(X) be such that M = v*L has Wy (X) = Fp(X). Then k* = Wy (X), and
we can denote its elements in the following way:

War(X) = {L°, c € k*}.

By 1.2.1 we have that for any ¢ € k* there exists a family L§ € Ima¢% such that L§ — L°.
In particular, we will have that L = L¢(hp§ + kqf) for suitable h, k, p¢,¢¢ € X such that
v*(p§) specializes to p on X,,, v*(¢f) specializes to ¢, and Eg specializes to some effective
line bundle on X not supported on n. Hence we can assume L = L° not depending on t; so,
for any c € k*, we have L¢(hp¢ 4 kqf) — L°. If L is such that no other effective line bundle
is in its fiber, we have that L¢ = L, and L(hp§ +kqf) — L€, so in this case the limit depends
only upon the choice of the moving points p{ and ¢f. Equivalently, if ¢ # ¢’ in k*, there
exist moving points p¢, ¢¢ and p¢’, ¢f such that L(hp¢ + kqf) — L° and L(hp¢ + kqf ) — L€

1.2.2 Reducible curves

Very little is known about Abel maps of reducible curves, even if recently a lot of effort
has been put into studying the class of stable curves, see for example [C2], [C5], [C6],
[Co07],[CP09]. We are going to study the relation among the varieties Wy(X), A4(X) and
their closures in @. Let X be a reducible curve with components C4,...,C,; for any
d = (d1,...,dy) € Z7 with |d| = d, we can consider the Brill-Noether variety W,(X) that
we defined in the introduction of the paper. Obviously if d; < 0 for every i = 1,...,~, we
get that W;(X) = 0. On the other hand, if we assume d > 0, i.e. d; > 0 for every i, we can
define the Abel map of multidegree d. Set X := X \ Xsi"¢ and C; = C; N X; we define

X¢.=cih ><...><C'if7 c xt.=ch x...xC‘WiW,

and .
o Xxd —  Pic%Xx

(p1,--- pa) OX(éPJ
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As in the irreducible case, we denote by A,4(X) the closure of the set Ima%( C PictX. We
are now going to introduce a set which will be crucial hereafter.

W} (X) = {L € Pic!X s.t. h°(Z, L|7) > 0 for any subcurve Z C X}. (1.3)
This definition suggests the following

Lemma 1.2.4. Let d > 0 be a multidegree on a reducible curve X. Then
Ag(X) C WS (X).

Proof. The proof'is straightforward: the line bundles in Ima%( are of the form O (Zf’zl Di),
hence their restriction to any subcurve of X has nonzero sections. Then by upper semi-

continuity of the dimension of the H° this is still true for their limits in 4,(X). O

We start by studying the simplest case, i.e. when X is a curve of compact type.

Curves of compact type

When X is a curve of compact type, for any multidegree d we have that Pic2X is complete,
hence so is W,(X). However we are interested in the relation between A,4(X) and Wy(X).
We start by assuming that X has two smooth components C;, C> meeting at one node n,

hence its normalization is the disconnected curve
CiUC, 5 X,
with v~ 1(n) = {p, ¢}. This induces the pullback map
Pic@d2) X 7, pich 0y x Pic2(Cy,

which is an isomorphism, and given L € Wy(X), we denote (Lq, Ly) := v*(L). We define

the sets:
Wi(X):

{L € Wy(X) s.t. h°(Cy, Ly) > 0,h°(Cy, Ly) > 0},
ng(X) = {L S WQ(X) s.t. hO(ChLl) > 0, h0(027L2) = 0}, (1.4)
Wy (X) = {LeWyX)st. h°(Cy,L1) = 0,h°(Cy, Ly) > 0};

of course we have that Wy(X) = W (X) U W/~ (X) UW; *(X) set-theoretically.

Proposition 1.2.5. Let X be a curve of compact type of genus g with two smooth com-
ponents Cy1,Cs of genus resp. g1,92. Let d > 0 be a multidegree with |d| = d such that
1<d<g—1. We have:

(1) if di < g1 —land dy < go — 1, then Wy(X) is connected and has 3 irreducible compo-
nents, of dimensions d,dy + go — 1,ds + g1 — 1,
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(i1) if d1 > g1 and d2 < g2 — 1 (up to swapping the indices), Wy(X) is connected and has 2

irreducible components.

Proof. In order to prove (i) we assume that d; < g; — 1 and dy < g» — 1. We consider the
pullback map
v*: PicdX = PichCy x Pic®2(,
L — (L1, Lo);
then by [C2, 2.1.1] using that § =1,
WI(X) = ") (Wa, (C1) x Wy, (Ca)). (1.5)

Now since C,Cs are smooth curves, we have that W, (C;) is irreducible of dimension d;
for i = 1,2. Then W (X) is a closed irreducible set containing 4,(X). Since the fibers of v*
have cardinality one, dim W (X) = d. By definition we know that Ima% = (v*)~! (Ima @ x
Imadc22), hence dim Ima%( = cE, then Ay4(X) = W, (X) and they both have dimension d.

The other two components of W,;(X) are the following ones: consider L € W~ (X); we
have that h°(Cs, L2) = 0, and since L has nonzero sections, we have h°(Cy, Lli—p)) > 0.
As in [C3] we define the set

A, = {L; € Pic™C; s.t. hO(Cy, Ly (—p)) > 0}, (1.6)
and consider the isomorphism

¢p: Pic"7'C, — PichCy

(1.7)
M — M(p).

It is easy to see that A, = ¢,(W,4,—-1(C1)), hence A, is closed and irreducible of dimension

d; — 1. Now consider the set
W, (X):= (v")"HA, x Pic®2Cy);

it contains
Wi (X) = (") 71 (A x (Pic®Cy \ Wy, Ch))

as an open set, and dimW;_(X) =di 4+ g2 — 1.

The last irreducible component of W;(X) is the one containing the L’s such that h°(Cy, Ly) =
0 and h%(Cy, Ls) # 0. Arguing as before, we define the set A, C Pic®(,, and the isomor-
phism ¢, : Pic®>7!Cy — Pic*2C; sending N € Pic™2™'Cy to N(q). Hence A, = ¢,(Wa,_1(Ca)),
and the set
"

W, (X) = (") H(Pich O x Ay)

is the closure of Wi*(X), with dim W;+(X) =dy + g1 — 1. Hence we have that

Wa(X) = Ag(X) U, (X)UW, " (X),

and their intersection is (v*)"!(A, x A,), having dimension d; — 1+ dy — 1 = d — 2. This

implies that W,(X) is connected.
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Part (ii) comes from part (i), once we have noticed that if d; > ¢; and dy < g — 1, then
h(Cy, Ly) > 0, 80 W T (X) = (). Hence

Wa(X) =W (X)UW, (X),

and their intersection is (v*)~!(A,), having dimension d; — 1. We notice that in this case
by (1.5), dim W (X) = g1 + da, which can be less than d. We prove that even in this
case it holds that W (X) = Aq(X). Indeed, inclusion (D) is obvious, and concerning (C),
let us take a line bundle L ¢ W (X). Then we look at its pullback M = v*(L). Let
M = (Oc¢, (D1+Ap), Oc, (D2 + uq))}or some suitable divisors D; and Dy; we choose moving
points p; on C; N X and ¢; on C> N X, specializing resp. to p and ¢q. We consider on C; LI Cy
the line bundle:
My == (Oc, (D1 + Apt), Oc, (D2 + pgy)),

and push it down to X, getting the (unique) line bundle L; € Ima%( such that v*(L;) = M,.
Then if we let ¢ tend to 0, we get that L, specializes to L, and hence that L € A4(X). So we
conclude that W (X) = A4(X). It follows that dim Wy(X) = max{g1 + d2,d1 + go — 1}. If
vice-versa ds > go and d; < g1 — 1, we have that W (X) =0, Wa(X) = Aa(X) UW;+(X),
Ag(X) NV, T (X) = () L(A,), and dim Wy(X) = max{d; + ga,ds + g1 — 1} O

Remark 1.2.6. We just observe that the case d = g—1 is carried out in [C2], but we obtain
it as a by-product in 1.2.5(ii); since there are no strictly balanced multidegrees summing

to g — 1 on a curve of compact type, we get that W;(X) is not irreducible.

In the sequel we will try to generalize our study to any curve of compact type, so take
X as the union of irreducible smooth curves Ci, ..., C,, with g; the genus of C; and g the
genus of X. Notice that since X is of compact type, we have that §(C; N C;) = 1 for ¢ # j,
and this implies that the total number of nodes § < v—1; we denote by n;; the intersection
point C; N C;. Let d > 0 be a multidegree on X, with |[d| =d,1 <d < g—1. Let

-
v: |_| C; — X
=1
be the total normalization map, v* the pullback as before, and denote by (L+,..., L) the
8l
pullback to | | C; of any L € Pic?X. If n;; is a node, its branches on C;, C; will be called
i=1

2

respectively p; , pf , distinguishing the curve they belong to by the position of indices.

Lemma 1.2.7. Let X be a connected curve of compact type as above and d > 0. Then
W;(X) = Aq(X), is a (closed) irreducible component of Wy(X).

Proof. The proof is straightforward: we see that, as we pointed out in the case v = 2,

Wi (X) = (") (Wa,Cy x -+ x W, Cs), (1.8)

indeed X has a number of nodes § = v — 1, so we apply [C2, 2.1.1] and obtain the equality.
Since C; is smooth for every i, by (1.8) WJ (X) turns out to be a closed irreducible set of
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dimension d; + --- + d, = d, and it contains A4(X). To see the inverse inclusion we argue
as in 1.2.5(ii), proving that for any L € Wg (X) there exists L; € Ima%( such that, if we let
t tend to 0, we get that L, specializes to L. So we have WJ (X) = A4(X) as we wanted. [

What we are going to do now is to study the remaining irreducible components of
W4(X). To do this we need to introduce some notation: let §; = §(C;NX \ C;) fori =1,...,~,
and let 7 be a 1 x v vector where the j-th component is /; = + or I; = —. Then we can
define the set:

Wé(X) = {L € Wy(X) st. h°(C;,L;) =0if I; = —, and h°(C;, L;) > 0if I; = +} .

Notice that if I; = + for every j,ie. I = (+,...,+), we get WJ(X). Let us fix some vector

I#(+, +); set

IT:={je{l,...;9} I =+},
and

“i={he{l,...;q}, I =-}.

We denote by p{z the branch on C; of the point of intersection C; N Cy, for j € I't, and
some h € [, if it exists. Moreover, we fix j € I™ and consider the disconnected curve
X\Cj=X]U---uX ,1] We observe that C; has only one point of intersection with each
X}, forl=1,...,k;. We denote the branches of this point on C; and X; resp. by p/ and pﬂ
If (L1,...,L,) are the restrictions of a line bundle L on X to each irreducible component
of X, we denote by L Xt the restriction of L to the connected component X Jl Set:

Ej = {l S {]—7'”7]6]'}7 hO(LXg) = 0}’
and let

Aji=A{L; € Wa,(Cy), h°(L; (= > p])) > 0}.
lez,

Now, still for j € I, consider the set:
-
5= [ Pic™Cu\ Wa, (Ch)) x Ay x  [] Wal(C) | c J]Pic*C.. (1.9)
hel~ leI+ i#j i=

and denote by 3; the set obtained from ¥ ; by reordering the factors in such a way that the
final order in X, corresponds to the order of the components of I, so for example, A; will
be the factor in the position of j in I. We will denote by

o= =5 (1.10)

We observe that A; is irreducible (see 1.2.5), and its dimension depends on the cardinality
Aj of £;. Indeed dim(A;) = d;j — A; and 0 < \; < k;. It follows that X; is irreducible for
everyj €I,
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Lemma 1.2.8. We have that (v*)~'(S;) = W (X).

Proof. Inclusion (C) is easy by definition of 3/, since an element of (v*)~!(X;) must have
at least a nonzero section. On the other hand, given a line bundle L € WdL(X ), we want
to prove that v*(L) = (L4, ..., L,) belongs to ¥;. If for every i € I, hO(LX;) # 0 for every
l=1,...,k;, then £; = and A; = Wy, (C;) for every i, hence in this case

2= [] Pic*Cu\ Wa, (Cn)) x [ Wa,(C)
hel- ler+
up to reordering the factors in the left hand side, and therefore v*(L) € ¥. Now, assume
that there exists ¢ € I such that £; # 0. Without loss of generality we can assume
that |£;| = 1. Then in order to glue the sections and get a line bundle on X, it must be
hO(L;(—p})) > 0, hence L; € A;, and therefore

(Lh...,Lry) EZJ‘ CEL.
O

Even if we can’t say precisely which is the dimension of the components of WdL(X ),
we can count how many they are. By (1.10) we see that for any fixed I, the number of
irreducible components of Wf(X )is |I"|. Hence we can say that the number of irreducible
components of W;(X) is B

Ne=|1+ > |I']. (1.11)
IA(F o)
Remark 1.2.9. We notice that depending on d, some I’s won’t appear in (1.11); indeed, if
there exists some k € {1,...,~} such that d; > gi, then the component I; of I must be +, so
we will have a small number of I’s, and hence a small number of irreducible components
in Wy(X). Moreover, if di, > g, for every k, we get that the only irreducible component of
Wa(X) is W (X).

Binary curves

A binary curve of genus g is a nodal curve made of two smooth rational components inter-
secting at g + 1 points. We are going to recall some properties that we will use throughout
this paragraph. If X is a binary curve of genus g > —1, a multidegree d = (d;, d2) such
that |d| = d, is balanced on X if

—g—1
d-g-1 <di < ———— =: M(d,9g) (1.12)

We say that d is strictly balanced if strict inequality holds. If X is a quasistable curve
obtained from a binary curve X by blowing up the nodes in S, then we call E1, ..., Eys the
exceptional components, so that if Xg is the partial normalization of X at the nodes in S,
we have that )A(S = XgU UgilEi.
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Definition 1.2.10. A multidegree @ = (d1,...,da145) On )?5 with @ = d, is balanced if the
following hold:

(1)d; =1foranyi=3,...,15,i.e. Q|E1 =1,Vi.

2) E|Xs is balanced on Xg.

@ is strictly balanced if its restriction to Xg is strictly balanced on Xg.

Remark 1.2.11. Let X be a binary curve of genus g, and let X,, be the normalization of
X at the node n, such that v : X,, — X is the associated map. Let d > 0 be a balanced
multidegree on X such that |d| = d < g — 1, then it is still balanced on X,,. Indeed, let us
suppose by contradiction that
dy <m(d,g—1);

then it should be
d-—g _9-1-9g

2 = 2 ’
but then we would have that d; < 0, which cannot happen.

di <

Lemma 1.2.12. Let X be a quasistable curve, and L € Pic’X a balanced line bundle such
that degL =: dwith d < g—1and h%(L) > 1. Then there exists a non exceptional irreducible
component C of X such that for general p € C

h*(L(p)) = h°(L).

Proof. We fix a smooth point p on X. We know that h°(L(p)) > h°(L). We suppose that
h(L(p)) = h°(L)+1; by Riemann-Roch this is equivalent to saying that h°(wx® L~ (—p)) =
h%(wx ® L~1). This holds if and only if p is a base point of wx L~!. But now we notice that,

again by Riemann-Roch theorem,
(wx @ L) =h"(L)+29—2—-d—g+1>h%L) > 1.

Therefore wx ® L~! has some non vanishing section on X. If E ¢ X is an exceptional
component, then deg, wx = 0 and degy L = 1, hence degpwx ® L~! = —1, hence every
section of wy ® L~! vanishes on E. This implies that there must be a non exceptional
component C' of X such that the restriction to C of H(wx ® L~!) is non zero. Hence the

general point p € C is not a base point of wx ® L~!. So we get our conclusions. O

Remark 1.2.13. We recall that if X is a nodal curve and d = g — 1 is stably balanced as
in section 1.3.1 in [C2], then Wy(X) = A4(X). It’s very easy to see that if X is a binary
curve and d = g — 1 > 0 is balanced, then d is strictly balanced and hence stably balanced.

This implies that if X is a binary curve of genus g and d = ¢ —1 > 0 balanced, then
Wa(X) = Aa(X).

Lemma 1.2.14. Let d € By(X) be such that W4(X) # () where X is binary of genus g and
d<g—1 Thend>0andd € By(X).
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Proof. By [C5][Proposition 12] if d; < 0 and d < g we have W,;(X) = 0, hence d > 0. Now
we have p . . )
—9— g—1=—g9g—-
= < =
m(d, g) 5 = 5

Therefore, if d > 0, d; # m(d, g) for i = 1,2. Hence d is strictly balanced on X. O

—1.

We notice that by lemma 1.2.14, for a binary curve we have Wg (X) = Wy(X).

Proposition 1.2.15. Let X = C; U C5 be a binary curve of genus g, L a line bundle on X
of degree d balanced, with 0 < |d| < g — 1, and h°(X, L) > 0. Then there exists a family
L; € Imoz%( such that L, — L when t — 0.

Proof. Let L be a line bundle as in the hypothesis; we will use induction on the degree.

If d = g — 1 by [C2] (see remark 1.2.13) we have that A;(X) = Wy(X).

Now let d < g — 1; by lemma 1.2.12 we have that there exists a component of X, say
C1, such that for the general p € C; we have that h°(L(p)) = h°(L). By lemma 1.2.14 L(p)
has balanced multidegree on X. Hence we can apply induction and get that there exists a
family L € Imozi;rf1 such that L}, — L(p). Like before we denote this family via

Ox(al +---+ad™) = L(p). (1.13)

We notice that p is a base point of L(p). Let v : X,, — X be the normalization of X at a
node n, as in remark 1.2.11. Then we can pullback (1.13) to X,, and get

Ox, (a; +---+af™) — L'(p), (1.14)

where with abuse of notation we call the points on X and X,, in the same way, and L' =
v*(L).
Now we divide the proof in two cases:

Case 1 : we assume that h°(L'(p)) = hO(L/).

We need to use a second induction on the number of nodes. The inductive statement
is: if L and L(p) are balanced line bundles on Y binary curve with § nodes, with
degL = d > 0 with h°(L) > 0, h%(L(p)) = h°(L) and there exists Oy (a} +---+af ™) —
L(p), then a! — p for some i.

The base of induction is obvious on a curve with no nodes, i.e. a smooth one. So
we suppose that the statement above is true for X,,: in particular we know that
h°(L'(p)) = h°(L'); then by induction it holds that in (1.14) there exists a! such that

ai — p for some 1. (1.15)

Up to reordering the points we can assume that i = d + 1. Now, by applying (1.15) to
(1.13) we get that
Ox(a; +---+af) = L,

and hence the conclusions in case 1.
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Case 2 : we assume that h°(L'(p)) = h°(L’) + 1. Then we have h°(L’) = h°(L). We have two
possibilities: by applying Lemma 2.2.3 (2) and Lemma 2.2.4 (2) in [C2], either n is
a base point of L, or W;,(X) = {L}. In the first case we have that it must be true
regardless of the choice of n, i.e. every node n of X must be a base point of L, which

is impossible since the nodes are g + 1 whereas the degree of Lisd < g — 1.

On the other hand, if W, (X) = {L} we need a new inductive argument on the
number of nodes. In this case the inductive statement is: let Y is a binary curve of
genus g, M € Pic?Y such that d is balanced and d < g — 1 with hO(Y, M) > 0. Then
there exists M, € Ima% such that M; — M when ¢ — 0.

The base of induction is given by a binary curve of genus 2, i.e. with 3 nodes, so that
d =1, and since d = g — 1, by [C2] we have W,(X) = A4(X), hence the conclusion
holds.

We assume the inductive statement for X,,, so we get that there exists L, Ima%(n
such that L}, — L’. Since L} € Ima%(n, for every ¢ there exists L, € Ima’% such that
v*(Ly) = L;. By the fact that W;.(X) = {L}, we conclude that L, — L.

O

Corollary 1.2.16. Let X be a binary curve of genus g, and let d > 0 be a balanced mul-
tidegree on X. Then Wy(X) = Aq4(X). In particular Wy(X) is irreducible of dimension
d.

Proof. The first assertion is implied by proposition 1.2.15. And of course this implies that
W4(X) is irreducible. By [C5][proposition 25] we have that the dimension of Wy(X) =
d. O

So far we have studied the closure of Ima% inside Pic2X when X is a binary curve. The
next step is to study its closure inside the compactified Picard variety Pij'g.

Let B4(X) be the set of strictly balanced line bundles of multidegree d on X, with
|d| = d, and denote by B;(X) the set of balanced multidegrees. The stratification of Pig‘é as
in [C7, Fact 2.2] is the following

0CScXxsing
deBg(Xg)

For any set S of nodes of X, if Cy,C5 are the smooth components of X, Xg = C; U Cs,
with 65 = #(C; N Cs) = § — 45, so that the total normalization is

CiLuUCy iXs,

and given L € Wy_(Xs), we denote (L1, L) := v5(L). The stratification in (1.16) motivates
the definition of
Wa(X)= || Wa(Xs) (1.17)

0CSCxsing
~ >0, =
dg€B; (Xg)
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where Bf O(JA( s) is the set of strictly balanced multidegrees ¢ > 0 on X s such that |e| = d,
X is the partial blow up of X at the nodes contained in S, Xg is the strict transform of
X, Es is a balanced multidegree on X s such that |ES| = d, whereas

dg :dS|Xs

and |dg| =d —£S.
We notice that, if d € B;U(X ), denoting by A4(X) the closure of A;(X) in Pigg, similarly
to lemma 1.2.4 we have the inclusion

A4(X) € Wa(X). (1.18)
Definition 1.2.17. We denote by
AdX) = | AuX)cPL
deB;(X)

Theorem 1.2.18. Let X = C; U Cy, be a binary curve of genus g > 2 with 6 > 2 nodes and
smooth components. Take 1 < d < g — 1. Then

Wd(X) = Ad(X) - @

Proof. Let us observe that, since ﬁB;D (X) < o0, we have that

U A= U 4.

deB3°(X) deB7°(X)

For any d € Bjo (X), by (1.18) we get that inclusion (D) holds. Let us now prove inclusion
(). By (1.17) it is sufficient to show that for any ) ¢ S c Xsire,

Wa (Xs) C Ag(X)
for a certain d € B;O (X).
First of all we notice that by (1.17), we can equivalently write

Wa(X) = {[M, S) € PL st. M € Wy_(Xs) with dg > Q} .

Let us assume that 45 = 1, with S = {n}; take M € Wy _(Xs) with dg = dg|xs and
dg € B" (Xs), and consider [M, S] = [M, n]. Thanks to the stratification of Pig'é there exists
d = (di,ds) € BfO(X) such that either dg¢ = (dy — 1,dz2) or dg = (d1,d2 — 1). We assume,
with no loss of generality, that d¢ = (d; — 1,d2). Now by proposition 1.2.15 we know that
M € Ay (Xs), i.e. there exists a family M; € Ima%fs such that M, specializes to M on Xg
as t — 0. By [C2, Lemmas 2.2.3,2.2.4] we have that for any ¢ there exists L; € Imais such
that the pullback of L, to Xg is M,. Let us fix t and take a moving point p, on C; N X
such that p, specializes to n as v — 0. We see that by construction degL;(p,) = d and
Li(py) € Ima%'(; moreover

u—0

Li(pu) — [My,n] € Ag(X).
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Now we let ¢ tend to 0, so we obtain that [M;,n] — [M,n], and [M,n] € A4(X).

We proceed by induction on £S; we have just proved that when #S = 1, then for any
dg € B;°(Xs) there exists d € B (X) such that Wa (Xs) C Aq(X). Let us suppose
that S C X®¢ is such that for any Es € BZU()?S) there exists d € B;O( X) such that
Wy, (Xs) C Ag(X A4(X), or equivalently, [M, S] € A4(X) for every M ¢ Wa, (Xs).

We want to prove that for T C X*"¢ with T' = S U n for any node n of Xg, then taking
dy € B2’ (Xr) there exists d € B; (X) such that [My, T] € A4(X) with My € Wy, (X1).

We take an element My € W,y (Xr), and consider [Mr,T]. By 1.2.15 we know that
Mrp € Ag (Xr), hence there exists a family M} € Ima%(TT such that M! specializes to
Mz on X7 ast — 0. Let dg = (d7,d5) be a multidegree on Xg such that |dy| = |dg| — 1
and dg € B;O()A(s); it exists because of the stratification of P{. Let us assume that,
say, dp = (df —1,d5). Again [C2, Lemmas 2.2.3,2.2.4] imply that for any ¢ there exists
M e Ima%{s such that the pullback of M to X7 is ML. We fix t and take p, € C; N X
specializing to n on Xg; then we have that degM%(p,) = dg, hence by inductive hypothesis
[ME(pu), S] € Ag(X) for a certain d € B ’(X). Then we have that

[ME(pa), S “=° [M4, T € A4(X),

and again letting ¢ tend to 0 we obtain that

(M4, T] =2 My, T) € Ag(X),

as we wanted.

It follows that
L] We(Xe)= |J AuX),
(Z)CSCXS‘“g QGBdZO(X)
dSEB— (Xg)
hence we get the conclusions. O

We are now going to investigate about the closure inside @ of the set A,(X) when
d is a strictly balanced multidegree on X binary curve. Before, we need to recall some

definitions introduced in [C1].

Definition 1.2.19. Let X and X be two Deligne-Mumford semistable curves; we say that
X dominates X if they have the same stable model and if there exists a surjective mor-
phism of X onto X such that every component of X is either contracted to a point or

mapped birationally onto its image.

Definition 1.2.20. Let d € B;(X) and de Ba(X). We say that d is a refinement of d, and
we denote it by
d=d,

if and only if X dominates X via a map ¢ and for every subcurve Y of X there exists a
subcurve Y of X such that ¢ maps Y to Y and |dy | = |E}A,|.
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We are now able to state:

Proposition 1.2.21. Let X be a binary curve of genus g > 2 and d > 0 a strictly balanced
maultidegree on X. Then

Ag(X) = |_| Wa, (Xs) C Wa(X).
AQCSC;(gSTg
geBZ%(Xg)
dg=d
Proof. Inclusion (C) is obvious by an argument analogous to lemma 1.2.4. The proof of
(D) is actually the same as in 1.2.18, i.e. we take an element [M,S] € Pij‘é such that
M € Wy (Xs) and Es =< d and we use the same argument as in 1.2.18, considering that

dg = d, hence W,_(Xs) C A4(X). O

Degree 1

We are now going to investigate what happens when the degree d = 1. Let X be a nodal
connected curve of genus g > 2, let (1, ..., C, be its irreducible components, and set g; =
9(Cy), and §; = §(C; N X \ C;).

Lemma 1.2.22. Let X be a semistable curve of genus g > 2 as above and d be a balanced
multidegree on X such that |d| = 1 and d # 0. Then Wy(X) = 0.

Proof. Let us suppose that C; is an irreducible component of X such that d; < 0. By the
balancing condition we know that:

<d; < M + ﬂ (1.19)

2gi =246 G
2 29 — 2 2

29—2
Assume that there exists L € Wy(X), and denote by ni,...,ns the nodes of C; N X \ C;.
Moreover, denote for simplicity Z; = X \ C; and let ¢1, . .., g5, be the branches of n1, ..., ngs,

on Z;. If Y C X is a subcurve of X, we denote by Ly := L|,. Since by assumption
hO(C;, Le,) = 0, we have that

(X, L) =h%(Z;,Lz,(—q1 — -+~ —gqs,)) > 0.

Hence we must have that deg Lz, > J§;, and recalling that deg Lo, = d; = 1 — deg Ly, it
follows that
d; <1-96;. (1.20)

Therefore we have to verify that

M_§<1_5..
29 —2 2~ v

this holds if and only if
29
0; <2 — —=.
g

So we have two possibilities:
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(i) either g; =0 and ; = 1 or §; = 2,
(i1) or g; # 0 and ¢§; = 1.

In case (i), C; = P!, so let us suppose that §; = 2; hence C; is an exceptional component of
X, and by the balancing condition it must be d; = 1. But by (1.20), we see that d; < —1,
and we get a contradiction.

Suppose now that g; > 0 and §; = 1. Then, by (1.33) we have that

=2 " 29-2
hence d; > 0, which is again a contradiction in both cases (i) and (ii). Therefore Wy(X) =
0. O

By lemma 1.2.22 we have that the only possibility that W;(X) # 0 is when d =
(1,0,...,0), up to swapping some indices. In particular, when d = (1,0,...,0) and L €
Wa(X) we have that by [C6, Lemma 4.2.3] either h°(L) < 1 or C; is a separating line,
hO(L) =2 and L

e = (’)m. We have the following

Theorem 1.2.23. Let X be a connected nodal curve; let d = (1,0,...,0) be a multidegree
on X. Then Ay(X) = W] (X).

Proof. By lemma 1.2.4 we only need to prove that A4(X) D W, (X). As usual we call
C4,...,C, the irreducible components of X, then up to reorderiné we have that d|¢, = 1.
By [C6][Lemma 4.2.3] if L € W (X) we must have h°(L) = 1 unless C; is a separating
line of X, we will discuss this cage later, so suppose C; is not a separating line of X.

Then L has one nonzero section s on X. If it vanishes on a smooth point r of X, we
have that L = Ox(r),so L € Ima%(. Otherwise, if there exists a node n € C; NCY such that
s(n) = 0, we normalize X at n; we denote X’ 2> X the normalization at n. Now we have
two possibilities:

(i) X’ is connected, i.e. n is nonseparating. Let L’ be the pullback of L to X’. Let
us denote by Cy the component of X such that {n} = C; N C3 and by p, ¢ the branches
of n on X’ with p € C;. With abuse of notation we call again s the pullback of s to L'.
Then s(p) = s(qg) = 0, but L’ has degree one, so s doesn’t vanish on other points of Cj,
and in particular if {ny,...,n;} are the other nodes of X'\ C; N C1, s(n;) # 0. Notice that
[ > 1. Since the pullback of L to the total normalization of X is (O¢,(p), Oc,,...,0Oc. ),
then s restricted to X’ \ C; must be a constant, hence by what we just said a nonzero
constant. In particular s(q) # 0, which is a contradiction. Therefore s cannot vanish on a
nonseparating node of X.

(i1) X’ is not connected. Then X’ = C; U Z; and Z; is connected. In particular n is a
separating node of X. The pullback of L to X’ is M = (O¢, (p), Oz,), where p is as in ().
Now let us consider a moving point p; € C4 \ p, such that p; — p. Let M; = (O¢, (pt), Oz,) €
PicX’. Then the line bundle Ox(p;) on X pulls back to M, (abusing notation). As p; — p,
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M, — M and L; — L such that h°(L) > 1. Since h°(X’, M) = 1 we have that L is the
unique line bundle on X pulling back to M and such that A°(L) > 1. Hence L = L. Hence

Le Ad(X)
If C, is a separating line, since L € W; (X) we have h°(L) = 2. Then we can choose
r e\ (CyNCE) such that L = Ox(r). So L € Ima. O

In what follows we are going to give a characterization of the closure of 4,4(X) in @
for stable curves in degree 1. Let then X be a stable curve. Let as usual X = C, U---UC,
be the decomposition of X into irreducible components. If Xg is a partial normalization of

X at a set S of nodes, we consider the decomposition of X in connected components:
Xg=X{U--uXZ.

We denote by
¥
DS : I_l CZS — Xs,

=1

the partial normalization of Xg at all the nodes in the set
vy
U @nxs\cf)).
=1

We recall that by [C1], for any stable curve of genus g > 2 and any d, we have a decompo-

sition
- I
@cscxii"g
deBy(Xg)
We define
WaX)= || Wi(Xs),

0Cscxsing
—~ >0 -~
dgeBy (Xg)

where again B; 0()/5 s) is the set of strictly balanced multidegrees Es > 0on X s such that
ldg| = d, and dg = dg|x, with |dg| = d — #5. We will also use the notation

dg = (d7,....d5)

for the components of the multidegree dq on Xs. Let

AX) = |J AuX)cPi.

deB7°(X)

Remark 1.2.24. When the degree d = 1, the elements of Bl2 ° (X) are of the form (d, ..., d,)
with d; = 1 for one suitable i € {1,...,v} and d; = 0 for j # i. Thus, when we look at the
set Bl20 (Xg), if it is nonempty it must be 5 = 1.

We have the following result:
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Theorem 1.2.25. Let X be a stable curve of genus g > 2 with Blzo(X) # (. Then

Wi (X) = 4, (X) C PL.

Proof. Inclusion (D) holds by lemma 1.2.4. Now we prove inclusion (C). By hypothesis
the set A;(X) is nonempty. We want to prove that for any ) ¢ S C X*"¢ such that
~ SN

dg € By (Xs),

Wi (Xs) C Ag(X)

for a certain d € Bl2 ’ (X). We can equivalently write
Wi(X) = {[M, S| € P{ st. M € W (Xs) with dg > Q}.

By remark 1.2.24 we can assume £S5 = 1, with S = {n}, so hereafter we will write n
instead of S. We take M € W;f (X,,) with En € Bfo()?n), and consider [M, n]. Then by the
stratification of@ and remz;k 1.2.24 there exists d = (d1,...,dy) € BfO(X) such that
d; —1 = d? = 0 for one i. We assume, with no loss of generality, that d; — 1 = d}" = 0;
now M € Picg X, is such that M = (O xpseo, O xn ), where r,, is the number of connected
components of X,, and it is 1 or 2 whether n is separating or not. Then, there exists
L e Ima%g” such that the pullback of L to X, is M, and of course L = Ox. Let us take
a moving point p, on C; N X such that p, specializes to n as u — 0. We see that by

construction degL(p,) = d and L(p,) € Ima%d moreover

L(p.) = [M,n] € A4(X).

O

Remark 1.2.26. In [CEO6][Proposition 3.15], the authors characterize the locus X} in M
of the curves such that B;(X) is empty, i.e. the so called 1-general curves. They prove that
if ¢ > 2 and g is odd, then the set Z; is empty. Hence when g¢ is odd, if Blzo(X ) C B1(X)
is nonempty we are always in the case of theorem 1.2.25. If, otherwise, BZ"(X) = (), then
both the sets W, (X) and A, (X) are empty.

1.3 Notes on Brill-Noether theory of nodal curves

1.3.1 Martens’ theorem and Mumford’s theorem

In this subsection we are going to prove some classical theorems of the Brill-Noether
theory for irreducible curves; they will be probably well known to the experts, but we
couldn’t find an exhaustive reference. For example some already extended results in this
context are the very classical Riemann’s Theorem and Clifford’s Theorem. Some more
results are presented in [BF02]. Before starting we recall from [C2, Proposition 5.2.1.],
that if X is an irreducible nodal curve of genus g > 3 with 0 nodes, it is hyperelliptic, i.e.
X € H, if and only if it has a g3.

29



Lemma 1.3.1. Let X be a not hyperelliptic irreducible curve of genus g > 4, with § > 2

nodes. Then there exists n € Xgnq such that the normalization of X at n is not hyperelliptic.

Proof. Let {ni,...,ns} be the set of nodes of X. Suppose by contradiction that for any
i=1,...,0 the partial normalization Y; =~ X of X at n; is a hyperelliptic curve of genus
gy, = g — 1. Let then Z be the normalization of X and of Y; for any i = 1,..., 4, such that,
if Z % X and Z L Y; are the normalizations, we have that v; o v, = v for any i. We
fix i =1,...,6 and look at Z l% Y;; since Y; is hyperelliptic, then so is Z, and by [C2,
Proposition 5.2.1] we have that the hyperelliptic series Hzy = Oz(p; + ¢;) fori =1,...,4,
where v~ !(n;) = {pi, ¢;}. But then if we look at Z 2> X, again by [C2, Proposition 5.2.1]
we get that there exists a line bundle Hx € Pic>X such that h°(X,Hyx) = 2, i.e. X is
hyperelliptic, which is a contradiction. O

Theorem 1.3.2 (Martens for irreducible curves). Let X be an irreducible nodal curve of
genus g > 3 with § nodes; let 2 < d < g—1,d > 2r, r > 0. If X is not hyperelliptic, then
Aim W5 (X) <d—2r— 1.

Proof. The proof is by induction on the number of nodes §. So let § = 1;let Z -~ X be the
normalization of X at its node n, hence Z is a smooth curve of genus g = g — 1. Now we
have two alternatives: either Z is hyperelliptic, or it is not. We distinguish the two cases:

Case I. If Z is not hyperelliptic, when d < g — 2 = gz — 1 we can apply Martens’ Theorem
for smooth curves and we get that dim W) (Z) < d — 2r — 1. Now let us consider the

morphism
piWH(X) — Wy(2)
L — v

by classical Martens’ theorem we also have that dim W), ™' (Z) < d — 2r — 2, so we
just have to look at the fibers of p. If W7 (Z) doesn’t have the two points of v~1(n) =
{1, ¢2} as fixed base points, then the fibers of p over W7 (Z)\W}**(Z) have dimension
0 by [C5, Lemma 9], and over W), ™! (Z) they have dimension at most 1. Hence

dmWi(X)<d-—2r—1.
If every line bundle in W} (Z) has {¢1,¢2} as base points, then we have an injection

Wi(Z) — Wi,(Z)
L L(—ql — QQ).
Therefore we have that dimWj(Z) < (d —2) —2r — 1 = d — 2r — 3, and hence
dimW7(Z) <d—2r —2. When d = g — 1 = gz, we use the Serre duality to get

dim Wy, (Z) =dim W, 3(Z) < (g—1)—2r—1

30



Case II.

@)

(i1)

and
dim W) (Z) = dim W, 4(Z) < (g—1) —2r -2,

therefore we conclude arguing as before.

If Z is a hyperelliptic curve, we again have to distinguish two cases. Let H; the

hyperelliptic series on Z, and let {q1,q2} = v~ }(n).

Hz = Oz(q1 + ¢2); in this case, by [C2, Proposition 5.2.1] we get that X must be
hyperelliptic, a contradiction.

Let Hz = Oz(a + b), where a,b are points on Z such that a + b » ¢; + ¢o. We look
at the dimension of Im(p) C WJ(Z): in particular we want to show that dim I'm(p) <
d — 2r — 2. We describe I'm(p) as follows:

Im(p) ={M € Wg(Z) s.t. Wy, (X) # 0},

where W;,(X) is the fiber of W} (X) over M via p. More precisely, we have that
Im(p) = Vo U V4, where

Vo = {M € Wj(Z) s.t. dim W}, (X) = 0},

and
Vi={M e W} (Z) s.t. dim W};(X) = 1}.

Now we ask what is the dimension of V;, and V5. Let us consider Vj; let M € Wj(Z).
By [C2, Lemma 5.1.3.] we have that dim W},(X) = 0 if and only if h°(Z, M) = r + 1
and h°(Z,M — q1 — q2) = h®(Z,M — q1) = h°(Z,M — ¢3) = r. Therefore M € V;
iff M| = g, IM —q1 — q2| = g5, and |[M — q;, M — qo| = g,,~}. Now since Z is
hyperelliptic, |M — q; — g2| = g/,_} iff there exist p1,...,ps_2, € Z such that

Oz(M —q1 —q2) = Hy '(p1 + -+ pa—2r),
with h%(p; + pj) = 1 for any i,j = 1,...,d — 2r. We have that
M=H; " (p1+ -+ pa—a2r + @1 + @),

then h%(Z,M — q1) = h°(Z, M — q2) = r iff h°(Z, p; + q2) = h°(Z,p; + q1) = 1 for any
i =1,...,d — 2r. But on the other hand h°(Z, M) = r + 1 if and only if there exists
a pair of points in the set {pi1,...,ps—2r,q1,¢2} linearly equivalent to Hz. But from
what we have seen this is possible only if ¢; + g ~ a + b, which we excluded from the
beginning. Hence V, = (. So let us now look at V;. Again by [C2, Lemma 5.1.3.] we
get that M € V; if and only if either h°(Z, M) = h%(Z,M — ¢;) = r + 1 for i = 1,2, or
hO(Z, M) > r + 2. Let then V; = Vj! U V2, where

Vi ={M e W5 (Z)st.h(Z, M) =1h"(Z,M — ¢;) = r + 1}
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and
Vi =WitH(Z).

We easily see that
Vi ={M =Hy(q1 + g2+ az + -+ ag—a,), s:t.as,...,aq—2 € Z},

hence by a parameter count we have that dim V! < d — 2r — 2. Moreover, by [C2,
Lemma 5.2.3.] we get dim V;? = d—2r—2, and hence dim V; < d—2r—2. Now, recalling
that the dimension of the fibers over V; is 1, we conclude that dim W} (X) < d—2r—1.
We are now able to assume § > 2. Letd < g—2andg >4 (casesg=3andd=g—1
will be shown further on). By Lemma 1.3.1 there exists a node n € Xj;,, such that
the normalization Y —— X of X at n is not hyperelliptic. Then, since d < gy — 1 and
gy > 3, we can apply the inductive hypothesis and get that dim Wj;(Y) < d —2r —1
and, since dim W), " (Y") < d — 2r — 2, repeating the argument about the dimension of
the fibers that we explained in Case I, we are done. Now we focus on the left cases:
if g = 3, then d = 2 and r = 1, therefore W3 (X) = () since X is not hyperelliptic. Now
let d = g — 1 = gy; then we use again Serre duality to get W, _(Y) = Wt (Y). Now,

gy —2
since d < gy — 2, induction yields that dim W, ~',(Y) < (g — 1) — 2r — 1, so, applying
the argument seen in Case I, we get that dim W, _;(X) <(g—1)—2r — L.
O

An interesting refinement of Martens’ theorem is the classical Mumford’s theorem (see
[ACGH]), which characterizes the smooth not hyperelliptic curves such that the upper
bound in Martens’ theorem is attained. We present a proof of this theorem for irreducible

stable curves.

Theorem 1.3.3 (Mumford for irreducible curves). Let X be an irreducible nodal not hy-
perelliptic curve of genus g > 4, and assume there exist r,d € N such that 2 < d < g — 2,
d > 2r > 0 and a component of W} (X) with dimension d — 2r — 1. Then X has one of the

following properties:
(i) X hasa gi.
(it) X is a two-sheeted covering of a plane cubic curve.
(ii) X is a plane quintic.

Proof. We follow the proofs of [ACGH, Theorem (5.2)] and [Be77, Lemma (4.9)]. Assume
that dim Wj(X) = d — 2r — 1; if we impose r — 1 general base points to the series belonging
to W;(X), we obtain that dim W;_ ., (X) > d—2r—1+(r—1) = (d—r+1)—3. Now, applying
theorem 1.3.2 we get that dim W;_,_ ,(X) = (d — r + 1) — 3. So we restrict ourselves to the
case r = 1. Let d be the minimum integer such that dim W} (X) = d — 3. We argue exactly
as in Martens and Mumford theorems in [ACGH], pages 192-193 to conclude that

dim W1 (X) > d - 3. (1.21)
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To this situation we want to apply Theorem 1.3.2, so we have three cases:
) 2d < g — 1. Then dim W, * < 2d — 2(d — 1) — 1, so, by (1.21) we have that d < 4.
II) g — 1 < 2d < 2g — 4. Then, since
dim Wa ' (X) = dim W, %% ,(X) > d - 3,
hence again by Theorem 1.3.2 we get d < 4.

III) 2d = 2g — 4. Again using residual series, we have that dim ngidQTlig(X ) = WI(X),

therefore, using Proposition 1.3.5 we have d < 5.

Therefore in any case we have d < 5, and if d = 5 then ¢ = 7. If d = 3 we get that
dim W4 (X) = 0, hence X has a g}, and we are in case (i). Now let us assume d > 4 and
X without trigonal series. Since d < g — 2 we have that ¢ > 6. Moreover the fact that
dim W} (X) = d — 3 implies that if d = 4, then dim W} (X) = 1, hence there exists a line
bundle L' # L € W{(X). By the minimality of d we have that L has no base points; so
applying the base-point-free pencil trick and Clifford’s theorem as in [?, Theorem (5.2)],
we get that the map

v:HY(X,L)® H'(X,L') — H (X, L® L)

is injective. Then, since the kernel of v is H°(X, L' ® L), we have that using Riemann-
Roch’s theorem h%(X,wx L~ 'L’"') = g — 5. Let now pi,...,py_¢ be general points on X,
since dim |wx L™'L'7!| = g — 6, we have that |wx L™ L7} (—p; — -+ — pg—¢)| # 0, so |L'| C
lwx L™ (—p1 — -+ — pyg—¢)|. Now let us denote by |M| = |wxL ' (—p1 — -+ — py—s)|, then
dim [M| = 2, hence it defines a morphism ¢,; : X — P?; now h°(X,L’) = 2, hence L’
induces a morphism ¢ : X — P!, so, since |L'| C |M| we can factorize ¢ via ¢; plus
a projection onto P! with center a point of ¢5/(X). Since W} (X) has positive dimension,
we can assume that the center of projection is a smooth point of ¢,;(X). Hence we have
that deg L = deg ¢ (deg dp(X) — 1), and recalling that deg L = 4, we have the following
possibilities: deg ¢y = 1, therefore ¢, is birational and deg ¢y (X) = 5; so ¢ (X) is an
irreducible plane quintic. Otherwise deg ¢ = 2 and deg ¢/ (X) = 3 and X is a 2—sheeted
cover of a plane cubic curve. Now the last case to consider is d = 5, which comes up in
case d = g — 2, hence ¢ = 7. We want to exclude this case. To this end it is sufficient to
apply the argument in [Be77, (4.9.5)]: indeed if we take wx L~2, for L general in W} (X), by
Proposition 1.3.5, we have that wx L=2 = Ox(p + q) for general points p,q € X. Following
[Be77, (4.9.5)] we obtain that X is hyperelliptic, hence a contradiction. O

The image of the Abel map for irreducible nodal curves

In this paragraph we obtain some results which have been proved in section 1.2 by using

different tools in order to show applications of the previous section. Let X be an irreducible
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nodal curve of genus g, and let X := X \ Xging its smooth locus. We can consider X,
which is a smooth irreducible variety of dimension d, open and dense in X?. Now let

. d
a% : X4 — Pic?X such that (p,...,pq) — OX(lei); a% is the Abel map of degree d.
1=

We can consider its image, and in particular its closure in Pic?X, A4(X) := a% (X4). We
have that A4(X) is contained in W;(X), and it is irreducible by definition. We have the

following:

Lemma 1.3.4. Let X be a nodal irreducible curve of genus g, then forany 0 < d < g —1 we
have that dim A4(X) = d and h°(X, L) = 1 for the general L € Ay(X).

Proof. By induction on g — d. For d = g — 1 the thesis follows from [C2, Theorem 3.1.2]. So
we can assume g —d > 2. Let us observe that of course dim 44(X) < min{d, g} and the fiber
of ad over a general L has dimension h°(X, L) — 1, therefore it is sufficient to prove that
there exists at least one L € A4(X) such that h°(X, L) = 1. We have that d < g — 2, and
in particular, if Y = X is the normalization of X at one node n, we have that d < gy — 1,
hence we can apply induction to Y. So dim A4(Y) = d and h°(Y, M) = 1 for the general
M € A;(Y). This means that there exists an open set U C A4(Y) such that for any
M e Unad- (V%) we have M = Oy (ay +- - - +ay) for suitable a; € Y and h°(Y, M) = 1. Since
Aq(Y) is irreducible, diim UNad (Y?) = d, therefore the general line bundle M in UNag. (Y'?)
will be such that a; # q1,¢» for any i = 1,...,d, where v~ !(n) = {q1, ¢2}. This is equivalent
to saying that the general M € U N ol (Y?) satisfies h°(Y, M — ¢1) = h°(Y,M — q3) = 0,
so we can apply [C2, Lemma 2.2.3.] and get that Wj;(X) = {La}, h°(X,Lys) = 1 and
Ly € a%(X?), where the notation is the one of Theorem 1.3.2, i.e. Wy, (X) is the fiber
over M of p : Wy (X) — Wy(Y). So we have that there exists at least one L € A,4(X) with
R%(X,L) = 1, and we are done. O

Proposition 1.3.5. Let X be an irreducible nodal curve of genus g. Then, for every 0 <
d < g — 1 we have that Wy(X) = Ay(X). In particular W4(X) is irreducible of dimension d,
and for general L € W4(X) we have h°(X, L) = 1.

Remark 1.3.6. The irreducibility of W;(X) when X is an irreducible stable curve, is
proved in Theorem 1.2.1.

Proof of proposition 1.3.5. We rearrange the proof of [C5, Proposition 25] using induction
on g—d. If d = g—1 the thesis follows from [C2, Theorem 3.1.2]. Let us now assume g—d > 2
and let Y % X be the normalization of X at a node n, such that v='(n) = {q,¢2}. Let
p: Wa(X) — Wy(Y) be the map induced by the pullback. By inductive hypothesis we have
that W;(Y') has a unique component of dimension d, which is exactly A;(Y). Let us denote
by B C A4(Y) the locus of M such that h°(Y, M) = h°(Y, M —q1) = h°(Y, M — q2) = 1. Then
of course we have that h°(Y, M — q; — ¢2) = 1, then dim B < d — 2, hence dimp~}(B) <d—1
since the dimension of the fibers is at most 1. By Lemma 1.3.4 there exists a dense open
set U C A4(Y) \ B such that for any M € U we have h°(Y, M) = 1. By [C5, Lemma 9] the
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fiber of p over M is a unique point, hence p~!(U) is irreducible of dimension d. Now by
Theorem 1.3.2 we have that dim W} (Y) < d — 2, therefore any other component of W,(X),
if it exists, has dimension at most d—1. So this proves that W;(X) has a unique component
of dimension d, which is exactly 4,(X) by Lemma 1.3.4. O

1.3.2 k-gonal curves

In the present paragraph we want to describe some properties of curves lying in the bound-
ary of the k-gonal locus in M, the moduli space of smooth curves of genus g. We start by
studying k£ = 3. Given any curve X, we will denote by g/, a linear series of degree d such
that every L € g/, has h°(X, L) > r + 1. Let then

Mg 4 ={[C] € My : Chasagy}.

If we consider Mé,;}, this turns out to be an irreducible variety of dimension 2g + 1, called

the Brill-Noether locus (see [HM098]). We look at its closure M. ; in M,.

Definition 1.3.7. Let X be a stable curve of genus g; we say that X € M, ; is trigonal if

there exists a family f : X — B of smooth curves in /\/1!1]73 having X as central fiber.

We notice that in general, if a curve X has a gl, it does not mean that it is trigonal. In order
to study this concept, we recall some definitions from [EH86]. Let C be a smooth curve
with a g7}, andlet L € g/;. If p € C and s is a section of L, then we denote by ord,(s) the order
of vanishing of s at p. There are exactly r + 1 distinct integers af (p) < af(p) < ... < aZ(p)

which are orders of vanishing of sections of L at p.

Definition 1.3.8. If X is a curve of compact type, then a limit g}, L on X is, for each
irreducible component Y of X, a g}, Ly on Y, called the Y —aspect of L, satisfying the
compatibility condition: if Y; and Y> are components of X meeting at a point p, then for
1 =0,...,r we must have

a;" (p) + a2 (p) = d.

We have now the following:

Lemma 1.3.9. Let X = C; U Cs be a stable curve of compact type with C; smooth of genus
gi» C1 N Cy = {p} with branches p; € C; for i = 1,2, such that X is trigonal. Then one of the
following holds:

(1) Cy and C are hyperelliptic and their hyperelliptic series are O¢, (2p1) and Oc, (2p2).

(ii) Cy and Cy are hyperelliptic, the C;—aspect of the g} on X is Oc, (2p1 + r) and the
Cy—aspect is Oc, (2p2 + s), where r € C4, s € Co, and p1, p2 are base points.

(iii) C1 and Cy are trigonal, the Cy—aspect of the g3 on X is O¢, (3p1) and the Cy—aspect

is Oc, (3p2), where py and py are not base points.
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(iv)

C1 is trigonal and Cy is hyperelliptic (up to switching the curves), the Ci—aspect of
the g} on X is O¢, (2p1 + ) and the Cy—aspect is Oc,(2p2) where p1 # r € C1 and po
is not a base point for O¢, (2p2).

Proof. Let X — B be a regular one parameter smoothing of X whose generic fiber X; is

a smooth trigonal curve of genus g, and let 7 € PicX be a line bundle of degree 3. Let

T, = T ® Ox, be the trigonal series on X,, then, denoting 7" := 7 ® Ox, by semicontinuity
we get that h°(X, T) > 2. We can assume up to twisting that deg7 = (3,0). Then we have

to distinguish two cases.

Case I.

Case II.

Let T, = T, for i = 1,2, and assume that 7, = Oc¢,. Then h°(Cy,T3) = 1, and,
since O, is free from base points we have h°(Cy,T;) = 2, hence T} is a trigonal
series on C7, which we denote by T,. Let us assume that C; is not hyperellip-
tic, with T = (T¢,,Oc,). If we twist T by Ox(Cy) we get T/ = T ® Ox(Cy) ®
Ox = (Te,(=p1), Oc, (p2)), where p; and p2 are the preimages on C; and C> of the
node p via the normalization map. We have that h°(Cy,Tc, (—p1)) = 1 and that
h9(Ca,Oc,(p2)) = 1, then by 1.2.4 and 1.2.5 in [C6], p; is base point of T¢, (—p1)
and obviously ps of Oc,(p2), hence h°(Cy,Tc, (—2p1)) = 1. Now let us consider
T"=T®0x2C)®0x = (Tc,(—2p1), Oc, (2p2)), then we have h°(Cy, Oc, (2p2)) < 2.
If h%(Cy, Oc,(2p2)) = 2, then C, is hyperelliptic with hyperelliptic series Hc, =
Oc,(2p2). Moreover, since h°(Cy, T, (—2p1)) = 1, we have that the Cy—aspect of
T is O¢,(3p2) with py a base point, and 7o, = O¢, (2p1 + r) with r # py, since if it
were r = p; we would have that 7"’ = 7 ® Ox(3C1) ® Ox = (O¢,, Oc,(3p2)), hence
O¢, should have a base point at p;, which is impossible. So we get conclusion (iv).
If, on the other hand, h°(Cs, Oc,(2p2)) = 1, we get (again by 1.2.4. and 1.2.5. in
[C6]) that p; is a base point of T, (—2p;), hence T, = O¢, (3p1). We twist again
obtaining 7"’ = T ® Ox(3C1) ® Ox = (O¢,, Oc,(3p2)); since O¢, is free from base
points, h°(Cs, Oc, (3p2)) = 2, hence C; and C; are trigonal and the trigonal series are
Oc¢, (3p1) and Oc¢, (3p2), according to conclusion (iii).

So far we have assumed that C is not hyperelliptic; if it is, then 77 has a base point,
hence 71 = Hc, (q), where ¢ € C; and g # p; otherwise T = O¢, should have a base
point in p;. As before we consider 77/ = 7 ® Oy (Cy) @ Ox = (He, (¢ — p1), Oc, (p2)),
and we have h(Hg, (¢ — p1)) = 1 since ¢ # p;; then p; is base point for Hg, (q — p1).
Let T" = (He, (q — 2p1), Oc, (2p2)); if Oy is hyperelliptic with h°(Cs, Oc, (2p2)) = 2,
noticing moreover that h°(Hc, (¢ — 2p1)) = 1, we obtain conclusion (i). If otherwise
h(Cy, Oc, (2p2)) = 1, then, since h°(Cy, He, (¢ — 2p1)) = 1, we have that p; is a base
point for He, (¢ — 2p1), hence h°(C1, He, (¢ — 3p1)) = 1, therefore He, (q) = Oc, (3p1),
but then He, = O¢, (2p1), and we would have that ¢ = p;, a contradiction.

Let us now assume that 75 # O¢,. We are still in the hypothesis that deg7 = (3,0);
we have that h°(Cy,T) = 0, hence h°(Cy,71) = 2 and p; is a base point for T},
ie. h9(Cy1,Ti(—p1)) = 2, therefore C; is hyperelliptic and Ty = H¢,(p1). Let us
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consider as before the twist 7/ = 7 ® Ox(C1) ® Ox = (He,,T2(p2)), then it must
be h%(Ty(p2)) = 1, indeed if it were h°(T»(p2)) = 0 then the hyperelliptic series
He, should have a base point at p;, which is impossible. Now we take 77" = 7 ®
Ox(2C1) ® Ox = (He, (—p1), To(2p2)); h°(C1, Ho, (—p1)) = 1, and h%(Co, T (2p2)) < 2.
If h°(Cy,T2(2p2)) = 1, then p; is a base point for He, (—p1), so Ho, = Oc, (2p1),
whereas T5(p2) = O¢,(q) fora g € Cs, ¢ # p2. Welook at 7" =T @ Ox(3C1) ® Ox =
(Oc¢,, T2(3p2)), then h°(Cy, T2(3p2)) = 2, meaning that C, is trigonal and the trigonal
series is T5(3p2) = Oc¢,(q + 2p2), so we agree with conclusion (iv). The last case to
consider is when h%(Cy, T (2p2)) = 2, i.e. Cy is hyperelliptic and we recall that C is
hyperelliptic with Ho, = O¢, (r + p1), where r € C1, and h°(Cy, To(p2)) = 1, therefore
Ty (p2) = Oc,(s) with s € Cy. So we have that T>(2p,) = O¢, (s + p2) = He,, and we

get conclusion (ii).
O

Using the theory of limit linear series we are able to state a vice-versa of 1.3.9, as we will
see in the following. First of all we recall some fundamental facts from [EH86].

Definition 1.3.10. If X is a curve of compact type, then we say that a limit g}; on X can
be smoothed if there exists a family of smooth curves f : X — B with central fiber X, and

a g}; denoted by L; on the general fiber X, whose limit is the given limit g}; on X.

Proposition 1.3.11 (Eisenbud-Harris). On a curve of compact type every limit gl can
be smoothed, and the smoothing can be done so as to preserve all ramification points away

from the nodes.

Lemma 1.3.12. Let X = C;UC, be a stable curve of compact type with C; smooth of genus
gi» C1 N Cy = {p} with branches p; € C; for i = 1,2, and assume one of the following:

(i) Ci and Cy are hyperelliptic and their hyperelliptic series are O¢, (2p1) and O¢, (2p2).

(it) Cy and Cy are hyperelliptic, h°(Cy,Oc, (2p1 + 1)) = 2 and h°(Ca, Oc,(2ps + s)) = 2,

where r € C1 and s € Cy, and py, p2 are base points.

(iii) Cy and Cy are trigonal, h°(Cy, O¢, (3p1)) = 2 and h°(Cy, Oc, (3p2)) = 2, and p; and p,

are not base points.

(iv) C, is trigonal and C, is hyperelliptic (up to switching the curves), h°(C1, Oc, (2p1 +
7)) = 2 and h°(Ca, Oc,(3p2)) = 2, where py # r € C; and ps is not a base point for
Oc, (3p2).

Then X has a limit g} that can be smoothed.

Proof. In order to apply 1.3.11 we only have to prove that the gi’s on C;,Cs as in the
four cases above are the aspects of a limit series on X, as in 1.3.8. In the following we will

denote the aspects by 77 and T5. So let’s start by assuming (i): it is well known that a curve
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of compact type X = C; U, is hyperelliptic if and only if both C; and C5 are hyperelliptic
and p; and p, are Weierstrass points. Then in our case X is hyperelliptic, hence trivially
trigonal. Now let us assume (ii): the components of X are hyperelliptic curves, with
series Ho, = Oc¢, (p1 + ) and He, = Oc,(p2 + s) and the aspects are T} := Oc¢, (2p1 + 1)
and Ty := Oc,(2p2 + s). Let us consider T}’s global sections H'(Cy,T1) = {00,01}; since
p1 is a base point of 77, we have that o¢(p;) = o1(p1) = 0. Moreover we observe that
hP(Oc, (r)) = h%(T1(—2p1)) = 1, hence there exists only one section of 7} vanishing on
p; with multiplicity 2. The same reasoning works for 7, with H°(Cy,Ty) = {79, 71}, so
according to definition 1.3.8 we have that the orders of vanishing of the sections are:

ad (p1) = 1,a{* (1) = 2,002 (p2) = 1,a1*(p2) = 2.

Hence we have that
agd* (p1) + ai*(p2) = af* (p2) + ai*(p1) = 3,

which tells us that T is a limit g} on X. Let us now turn to case (iii): C; and C, are
trigonal curves with series 71 = O¢,(3p1) and To = Oc¢,(3p2); p1 and p2 are not base
points, so h°(C1, O¢, (2p1)) = 1, but we also know that h°(Cy, O¢, (p1)) = 1. Therefore there
exist sections {og, 01} for H°(Cy,Ty) such that og(p1) # 0 and o1(p2) = 0, and moreover
h%(Cy,Ti(=3p1)) = 1, hence o, vanishes at p; with multiplicity 3. So we get that, doing
the same for T5, agl (p1) = 0, alT1 (1) = 3, a{z (p2) = 0 and a1T2 (p2) = 3, and arguing
as before we have that T is a limit g} on X. The last case is when C; is trigonal with
series 71 = O¢,(2p1 + r), and C> is hyperelliptic with series O¢,(2p2) and Cy—aspect
Ty = Oc,(3p2), so py is a base point for 7. Then we have that h°(Cy, To(—p2)) = 2 and
hO(Cy, To(—3p2)) = 1, therefore, if HO(Cy, Ty) = {79, 71}, we have that ord,, (1) = a3 (p2) =
1 and ord,,(11) = a]?(p2) = 3. Moreover, if we take H°(C1,T}) = {09, 01}, we see that since
p1 is not a base point for 71, and since h°(Cy, T (—p1)) = 1, then ord,, (00) = al'(p1) = 0

and ord,, (51) = al*(p;) = 2. Therefore we have that
ag' (p1) +ay* (p2) = ag® (p2) + a1 (1) = 3,

which means that as well as in the previous cases 77 and T define a limit g} on X. Apply-
ing 1.3.11 we are done. O

We are now going to introduce the notion of weakly k—gonal curves, using the terminology
encountered in [C5] and [C6]:

Definition 1.3.13. We say that a nodal curve X is weakly k—gonal if there exists a bal-
anced (see section 1.1) line bundle L € Pic" X such that h°(X, L) > 2.

Lemma 1.3.14. Let X = C1;UC, be a stable curve of compact type with C; smooth of genus
giand 1 < g1 < g/2, be a not weakly hyperelliptic curve. If g1 < (g + 2)/6, then X is weakly
trigonal if and only if Cs is trigonal, otherwise, for g1 > (g+2)/6, X is not weakly trigonal.
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Proof. Let d = 3, then the only possibilities we have are d = (0,3) or d = (1,2). By
hypothesis we have that g; < g2, and we see that (1, 2) is balanced if and only if (¢ +2)/6 <
91 < g/2. We want to show that when ¢g; > (g + 2)/6, X is not weakly trigonal, i.e. there
doesn’t exist a balanced line bundle L € Pic*X such that h°(X, L) > 2. Indeed if such an
L existed, then degl = (1,2), and, if we denote L; = L o, for i = 1,2, we would have that
h%(Cy, L) < 1 hence L, should have a base point, but then L would have a base point too,
which is not possible since we are assuming that X is not weakly hyperelliptic. Hence we
look at the case g1 < (¢g+2)/6, when d = (0, 3) is balanced: let us suppose that C; is trigonal
with gl denoted by 7T¢,, then if we take L = (O¢,,T¢,) we have that h°(C;,L;) = 1, and
h%(Cy, Ly) = 2. So h%(X, L) > 2, by 2.1.1 in [C2], and X is weakly trigonal. On the other
hand, let L € Pic>X with h°(X, L) = 2; then it must be degL = (0, 3), and since X has no
g3, L cannot have base points, so L; = Oc¢,, and h°(Cy, Ly) < 3. If Cy were elliptic, we
would have that h°(Cy, L) = 3, but in this case g; = go = 1, hence g = g; + g» = 2, against
the fact that g; < (g + 2)/6. So via Clifford’s theorem we get that h°(Cs, Ly) = 2, hence C»
is trigonal. O

From this lemma we see that a weakly trigonal curve need not be necessarily trigonal. In
the following we are going to study properties of weakly trigonal semistable curves. We
recall that a separating node of X is a node n such that there exist two subcurves of X, X;
and X5, with X = X;UX, and X;NX, = {n}; we denote again by X, the set of separating
nodes of X. A separating line of a curve X is a subcurve C' C X such that C = P! and that
C meets its complementary curve C° in separating nodes of X. Let X, be the open set of

smooth points of X.

Lemma 1.3.15. Let X be an irreducible nodal curve and L € Pic' X such that h°(X, L) = 1.
Then there exists a point p € Xqy, such that L = Ox(p).

Proof. Let X be a curve as in the statement of the Lemma, and let X - X be its nor-
malization. Let us denote by ny,...,ns; the nodes of X, and v~!(n;) = {p;,¢;} for any i.
Take L any line bundle on X of degree 1 and with 2°(X,L) = 1. Then v*(L) € PicX is
a line bundle of degree 1, and if X 2 P! we must have that 2°(X,v*(L)) = 1. Moreover
compatibility conditions give that

WX, v (L)(=pi) = KX, v* (L) (=a:) = hO(X, 0" (L)(=pi — 40));

now if v*(L) = Og(A) for a certain point A € X, A +# p;,q; for any i, then L = Ox(A)
abusing the notation since v is an isomorphism out of the branches of the nodes of X.
On the other hand, if, say, v*(L) = Og(p:), then applying the compatibility conditions
we have that ho(f(,(’))?(pi —¢i)) = 1, hence v*(L) = Oz(qi), but then O (p;) = O (),
which is a contradiction since X 2 P!. Now if X = P! we have that v*(L) = Op: (1), hence
hO(Op1 (1)) = 2. It suffices to assume that X has just one node n, otherwise we repeat the
argument for every other node of X; let us denote by {p, ¢} the branches of the node. Let
s be a section which generates H°(X, L), then it comes from a section 5§ € H°(P!, Op:(1))
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if 5(p) = ¢8(q) for a ¢ € K*. If s should vanish on the node n, then we should have that
5(p) = 8(q) = 0, but the sections of Op: (1) are linear polynomials, so they cannot vanish in
two points. This shows that, as well as in the previous case, L has a base point which is

not a node. O

Proposition 1.3.16. Let X be a semistable curve of genus g with irreducible components
Ci,...,C,, not weakly hyperelliptic and without separating nodes, and d balanced such
that |d| = 3. Suppose that there exists a line bundle L € PictX with h°(X, L) = 2. Then one
of the following holds:

(1) d=(1,2,0,...,0), Cy is a separating line of X \ Cs, and

either Cy has a hyperelliptic series H¢,, with

L|C1 = 001(1),L‘Cg = HszLIX\{CIU@} = OX\{Clucz}’

or Cy = P! with

L|Cl = OCl(l)’L|C2 = 002(2)7L‘X\{C1UC2} = OX\{CHUCz}'
(ii) d = (3,0,...,0) and
if C1 2 PL, C has a trigonal series Tc,,

L|Cl :TClaL|Zl = Ozl,...,L‘Z = OZm7

m

where Z1, ..., Z,, are the connected components of X \ C1, and 2 < #(C1NZ;) <3

foreveryi=1,...,m;

if C, =2 P, then

Lic, =0¢,3),Llz, =Ogz,,..., L

Zm =0z

m?

and m = lifand only if {{C1 N C1°} = 3.
(lll) d: (1,1,1,0,...,0), Cl %Cg gC’g g]P)l and

Lic, = Oc, (1), Llc, = Oc,(1), Llcy, = Ocy(1), Llc, = Ocy, - - -, Llc, = Oc,..

Proof. Letd = (1,2,0,...,0), and let Cy, Cs be the two components of X such that do, =1
and dc, = 2. Since d is balanced on X semistable, if C; = P! it must be Cy - C§ > 3
and X stable, indeed the degree on an exceptional component must be 1. Let us assume
at first that C» 2 P', so we have that h°(C2, L, ) < 2. If Y is a subcurve of X, we
denote by Ly = L|,, and Iy = RO(Y, Ly); let us now assume that Ic, = 2. Then C; is
hyperelliptic, Lo, = H¢, the hyperelliptic series, and if we call Z := X \ C5, we have that
RO(X,L) <lc, + 7. We notice that d, = (1,0,...,0), so we apply lemma 4.2.3 in [C6] and
get either [z < 1orlz; =2 and C is a separating line of Z, [; = 2 and Lm = (’)m. So
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let us first suppose that C; 2 P!, then [z < 1; we cannot have [; = 0, otherwise L, would
have base points, which we don’t allow being X not weakly hyperelliptic. So we have that
lc, = 2 and iz = 1. Let us denote by {ni,...,n;} for a suitable i the elements of C; N Z.
Since X, = 0, we have that Cy-Z = h > 2. Being lx = l¢, +1z—1, via 1.2.6. in [C6] we get
that, calling {p;, ¢} the branches of n; on Cy and Z respectively, p; ~1., p; and ¢; ~1, q;
for i # j, therefore h°(Cs, Le,(—p;i)) = h°(C2, Lo, (—p;)) = h°(Cs, Loy (—pi — pj)) = 1 for
1 < i # j < h. This means that the hyperelliptic series Hc, = Oc, (pi+p;) for 1 < i # j < h;
since Cy 2 P! this is possible if and only if

Cy - Z =2 and HC2 = 002(]91 +p2).

Moreover recall that [; = 1, then we can have o, = 1 or I, = 0. If [, = 1, since
dc, = 1, by Lemma 1.3.15 we would have that Lo, and then L, has a base point, which
is impossible. So it must be I, = 0; now let us denote by ¥ = m, hence dy = 0,
moreover, by Lemma 1.3.17, since Cy - Z = 2, we have that C; - Y > 1, s0,if g€ C1 NY, we
have that I = h°(Y, Ly (—q)) = 1, but then we contradict Remark 4.1.2. in [C6]. Hence we
can exclude the case [c, = 2 and Iz = 1, and look at the one with [, = 2 and Iz = 2. In this
case ( is a separating line for Z, C, is hyperelliptic, and L = (O¢, (1), ch,(’)m). Let
us now suppose [, = 1; then there exist points r, s € Cy such that Le, = Oc, (r + s), i.e.
Lc, has base points, which is a contradiction. We study now the case when C, = P!, Since
dc, = 2, then X is stable and §{Cy N Z} > 3. Moreover lc, = 3, hence applying 1.2.9. in
[C6] we get that h°(X, L) < 3+17—3, hence it must be [; > 2. Notice that d, = (1,0,...,0),
therefore applying 4.2.3. in [C6], the only possibility we have is that C; is a separating
line of Z. So we get conclusion (i).

Let now d = (3,0,...,0); let us denote by C; the component such that do, = 3. Let
X = (€7 U Z, and suppose the genus g, > 2. Then by Clifford’s theorem and Remark
1.2.8. in [C6], we get that 2 = h°(X, L) < h°(Cy, L¢,) < 3/2 + 1, hence I¢, = 2. If C; were
hyperelliptic with series H¢,, we would have that Lo, = He, (p), with p € Cy, but then L,
and hence L would have a base point, therefore C; must be trigonal, with series T,. Let
now Z = Z; U...UZ,, be the decomposition of Z into connected components, then d, =0,
so either Lz, = Oy, for every i, or there exists at least one j such that [z, = 0, but in this
case L would have base points, which we exclude. Therefore L = (T¢,,O0z,,...,0z,).

We have to consider now the cases when g, < 1. If g, = 1, then by Riemann Roch i, = 3,
and, as before, Lo, = Oc, for every i = 2,...,r, so we have again L = (T¢,,Oc,,...,0¢,)
if we denote by T, the trigonal series on C}.

Let us observe that, when gc, > 1 and Z is connected, then it must be 2 < ${C; N Z} < 3.
Indeed d, = 0 and [z > 1 (otherwise L would have base points), then L; = Oz, L¢, =T,
is the trigonal series, and [z = 1 via Corollary 2.2.5 in [C2]. If we assume that §{C1 N Z} >
3, then applying Lemma 1.2.6. in [C6], there would exist at least 4 points, branches of the
nodes on Cy, say pi,...,ps € C; such that h°(Cy, T, (—p1 — p2 — p3 — ps)) = 1, but this
is impossible since deg(T¢, (—p1 — p2 — ps — p4)) = —1. Then it must be §{C; N Z} < 3,
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and moreover, if 1{C; N Z} = 3, we would have that T, = O¢, (p1 + p2 + p3). Of course,
when Z is not connected, we can repeat this argument for every connected component of
Z =27Z1U...UZ,, getting that 2 < §{C; N Z;} < 3 for every i =1,...,m. Let now go, = 0;
since do, = 3, X must be stable and 0 := C; - Z > 3. We have I, =4, s0if § = 3, 1.2.9.
yields h°(X, L) = 4+ 1z — 3, hence Iz = 1, moreover Z is connected by Lemma 1.3.17. This
implies, applying Corollary 2.2.5. in [C2] to Z, that L; = Oz. When § > 3, 1.2.9. yields
h°(X,L) <lc, +1z — 4, then Iz > 2 and Z is not connected; indeed if it were connected,
Corollary 2.2.5. would imply that L; = O, but then I; = 1, which contradicts the fact
that iz > 2. Hence Z is connected if and only if § = 3. Now if Z were disconnected, then
we would have Z = 7, U... U Z,, for some m,and Ly = (Ogz,,...,0z, ).

It remains to study the last case, when d = (1,1,1,0,...,0); let us assume at first that
C; 2 P'. As well as in the previous cases we denote by Z = X \ C;; via Clifford’s Theorem
we have that I, < 1, butif i, = 1, as d¢, = 1, by 1.3.15 we get that L, has a base
point, hence C; = P! and h°(Cy, L¢,) = 2. Applying Lemma 4.2.4. in [C6] we obtain that
either [y < 2 or Iz = 3 and C; and Cj3 separating lines of Z (recall that in our notation
do, = de, = do, = 1). So let us now consider all our possibilities: if [; = 1, via 1.2.9.
in [C6] we see that h°(X, L) = 1, a contradiction. If instead Iz = 2, let us assume that
Cy 2 P!; then o, = 1, but L¢, cannot have base points, therefore we must have Cy = P!,
Via 1.2.9. we have that I < l¢, + h°(Z\ Cq, L) —min{d, 2}, where § = §{C> N Z\ Ca}.
If§ > 2, thenlz < lc, +h°(Z\ Ca, L) —2, hence h?(Z )\ Cs, L)
(1,0,...,0), applying 4.2.3. in [C6] we get that C3 is a separating line of Z \ Cs, hence
C1,Cs, C3 are lines and LZ\(CzUCg) = OZ\(CQU@). Let us now suppose tlﬂ: 1; we have
that iz = lc, +h°(Z \ C2, Lz;) — 1 again by 1.2.9. in [C6], but then 1°(Z \ Cs, L) = 1.
Now we recall that degl-—~=- = (1,0,...,0), with do, = 1, besides, let us denote by ¥ :=

Z\C3
Z \ C,. Again we observe that it must be C3 = P! and I, = 2, otherwise L should have a

> 2, and since d\ ¢, =

base point. Notice that in all the cases we have examined, we obtained that C;, Cs, C3 are
lines, and if h°(Z, L) = 3, Oy, C3 are separating lines of Z. Moreover, reasoning as before
we get that L = (Ocl (1), 002(1), (903(1), OC47 ey OCT)- O

Lemma 1.3.17. Let X be a connected nodal curve, with X, = 0, and let C be an irre-
ducible component of X such that 1C N C° € {2,3}. Then X \ C is connected.

Proof. Assume first that §C N C¢ = 2. By contradiction, let us suppose that C is a discon-
necting component of X; then X7\0 = X; U X,. Now, since X is connected we have that
C-X; =1,and C - X, = 1; if we consider the node C' N X}, it is a separating node for the
subcurves X; and X, U C, hence X has a separating node, a contradiction. If {C N C°¢ =

we repeat the same argument noticing that if C is a disconnecting component of X we
have (up to reordering), C-X; = 1 and C- X, = 2, so again C'N X is a separating node. [

We are now going to investigate about the properties of irreducible nodal curves lying

in M;S In order to do it, we need some techniques introduced by Beauville in [Be77]
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and then used in [HM82], i.e. the construction of admissible covers. We recall here the

definition:
Definition 1.3.18. An admissible cover is the datum of:
(1) anodal curve C,
(ii) a stable curve B of genus 0,
(iii) amap7:C — B,
such that
(a) the images and preimages of nodes are nodes,

(b) for every node z of B and every node n of C' lying over it, the two branches of C near
n map to the branches of B near x with the same ramification index.

This definition was introduced in order to compactify the Hurwitz schemes Hy 4, which
are parameter spaces for simply branched covers of P'. Roughly speaking the way H,,,
is compactified is by adding limit covers such that the base curve degenerates with the
cover; when two branch points collide, one separates them adding a rational component
to the cover and one to the base. Let us observe that there is another way to do that, i.e.,
using stable maps (see [FP02]). We recall the fundamental:

Theorem 1.3.19 (Existence of ", ;). There exists a coarse moduli space H, 4 for admissible

covers.

A question arising in a very natural way is: given a stable curve, how can we say whether
or not it is trigonal, and, more generally, whether or not it lies in m? The theory of
admissible covers provides an answer at least in the case of pencils, i.e. when r = 1. We
recall that in our terminology a k-gonal curve is a curve lying in @ and admitting a
regular smoothing by k-gonal smooth curves, whereas a weakly k-gonal curve is a curve

having a g;.

Definition 1.3.20. Let C be a stable curve. We say that a nodal curve C’ is stably equiva-
lent to C, if C is obtained from C’ by contracting to a point all smooth rational components

of C’ meeting the other components of C’ in only one or two points.
We are now able to state the following:

Theorem 1.3.21 (Harris-Mumford). A stable curve C is k-gonal if and only if there exists
a k—sheeted admissible cover C' — B of a stable (pointed) curve of genus 0 whose domain

C" is stably equivalent to C.

Lemma 1.3.22. Let X be an irreducible nodal curve of genus g > 3, not hyperelliptic,
with § nodes and let X -2+ X be its normalization. For every node n; let us denote by
v=Y(n;) = {pi, q;}. If there exists a line bundle Tx € Pic®X such that h°(X, Tx) =2, then:
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(i) X istrigonal,

(ii) there exists a gi, T, on X such that T contains the divisors pi + q; + r; for every
i=1,...,0, wherer; € X.

Proof. We start by proving (i); the conclusion follows from the fact that given any irre-
ducible nodal curve of genus g with § nodes, we are able to construct a 3—sheeted ad-
missible cover X’ — B which is stably equivalent to X, so applying 1.3.21 we get our
conclusions. Let us now build X’ — B. If we take X to be the normalization of X, it is
a smooth trigonal curve, so we call 7 : X — P! the map induced by the g5. We will build
7w’ : X' — B starting from 7. We denote by B; the target of w; we observe that since = is
(3:1), we can have at most points of ramification index 3. So if z € B; is such a point, i.e.
7 Yz) = {3r}, withr € X and of course r # p;, q; for every 4, in order to get the admissible
cover we add to X a copy of P! meeting it at r, and to B, a tail meeting it at 2. The copy
of P! added to X is chosen so that it maps to the tail at = by a generic map P' — P! of
degree 3, with 3—fold branching at . Let now y € B; be such that for some i we have
pi,¢; € 7 *(y) with ramification, i.e., as a divisor 7*(y) = 2p; + ¢; (or 2¢; + p;). Then we
just add to X a copy of P! glued at p;, ¢; and mapping to the tail at ¥ which we add to By,
by a generic map of degree 3 and ramification index 2 at p; (or ¢;). For every other pair
{p;,q;} such that 7 is not ramified at either p; or ¢;, we proceed as follows: let z € B; be
such that 7*(z) = p; + ¢; + r; for some r; € X. Then we glue to X two copies of P': one
meeting X at p; and ¢;, and the other one meeting it at ;. Moreover we add to the base
B, a tail at z, such that the two copies of P! upstairs map to the tail with degrees 2 and
1 respectively, yielding a (3 : 1) map to the tail. We call X’ the curve obtained from X by
gluing copies of P! as indicated, and B the curve of genus 0 obtained from B; by adding
the tails. Gluing all the maps introduced above, we get a (3 : 1) map ' : X’ — B which
is precisely the admissible cover we were looking for (see Figure 1.1). Let us compute the
genus of X’: in our construction every P! intersects X in one or two points, and it’s easy to
see that the number of P'’s intersecting in two points are as many as the number of nodes,
. The number of P'’s intersecting in only one point will be denoted by a. We have that

9(X") = g(X) = L+ #{(P")'s}(g(P") — 1) + t(nodes) + 1, (1.22)

hence
g XNV=g—6—-14+(a+8)(-1)+(a+20)+1=g. (1.23)

This concludes the proof of part (i). To show (ii) let us suppose at first that X is not
hyperelliptic. Let X; =~ X be the normalization of X at one node n; of X. Then X;
has a gi, T, := vi(Tx), since we can apply Clifford’s theorem being gx, > 2. Now T,
is globally generated, since if it had a base point, then X; would be hyperelliptic, but
then so would be X, which contradicts our assumption. Then we can apply 5.1.3. in
[C2], and get that Wr, (X) = {Tx} and 2°(X1, Tx, (—p1 — ¢1)) = h°(X1, Tx, (=p1)) = 1,
hence there exists 7, € X;, which is not a node, such that Tx, = Ox,(p1 + @1 +r1). If
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X, is smooth we are done. Otherwise we proceed in the following way: let X, — X,
be the normalization at one node n, of X, and let v1 2 : X — X, be the composition
of v; and vo. Now 1] ,(Tx) = v3(Tx,) = v3(Ox,(p1 + @1 +71)) = Ox,(p1 + @1 +71)). Let
Tx, = v3(Tx,) = Ox,(p1 + ¢1 + r1)); since by hypothesis X 2 P!, we have that § < g — 1,
hence p,(X) > 1 and p,(X3) > 1, hence via Clifford’s theorem we get that h°(X,, Tx,) = 2.
Now arguing as before we get that Tx, = Ox, (p2+q¢2+7r2)) for a suitable 5 € X,. Repeating
this procedure we are done. Now it remains to examine the case when X is hyperelliptic:
but this is impossible since 7'y would have a base point, so T’y should have a base point,

too, but in our hypothesis X is not hyperelliptic. O

X/
~ 5
7T/
B B

Figure 1.1: The admissible cover of X: as in the proof, = is a point with ramification index 3 at r, y

has ramification index 2 at p; and 1 at ¢; (or vice-versa), and z has simple points p;, ¢;, ; in its fiber.

Remark 1.3.23. We want to make some observations about the vice-versa of 1.3.22: of
course if X is trigonal, since it has a regular smoothing where the general fiber is a smooth
trigonal curve, it has a g}, hence we can conclude that X is trigonal if and only if it has
a gi. Hence an irreducible curve [X] in /\/17;3 not trigonal is not weakly trigonal. Using
the construction of the compactified Picard scheme P;, over M, in [C1], we have that
[X] € @ if and only if there exists a partial blow up X 5 of X at a set of nodes S C Xy,
possibly empty, and a line bundle Lg € Pic’X 5, balanced on X < such that h° ()? s,Lg) =2.
So let us suppose that X does not have a trigonal series. Then we can have two possibilities
according to the balanced multidegrees that Lg can have. Indeed, either deglLs = (2, 1),
where X is the blow up of X in one node and we have just one exceptional component F
where the degree of Lg|,, = 1; or degLs = (1,1,1), where Xg is the blow up of X in two
points, so its components are the normalization of X in two points and the corresponding
two exceptional components. In the first case, when degLs = (2,1), call X; the partial

normalization of X at one node; then it must be hyperelliptic, and since X doesn’t have any
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trigonal series, the preimages of the node on X; are not a neutral pair for the hyperelliptic
series. It follows that the total normalization X of X;, hence of X, is a hyperelliptic curve.
In the second case, when degLg = (1,1,1), if we call X, the partial normalization of X at
two nodes, then deg L X = 1, but since L Xa must have two sections, it follows that X,
is rational, but then X5 is smooth (X had just two nodes) and it’s the total normalization
of X.

Before switching to other types of curves, we want to observe that the same techniques
yield the following:

Lemma 1.3.24. Let k > 3 and X be an irreducible nodal curve of genus g. If there exists a
line bundle L € Pic* X such that h°(X, L) = 2, then X is k-gonal.

Proof. The proof is analogous to the previous one, indeed we construct a k-sheeted admis-
sible cover for X. So we take the normalization X % X of X , and as before it will be
a smooth k-gonal curve, with induced (k : 1) map = : X — P.. Let us denote by n; for
i =1...,6 the nodes of X, with v=(n;) = {p;,q;}, and let B; be the target of 7. We will

glue copies of P! to X andtoB;.Ifz € B isa multiple smooth point, its fiber as a divisor

!
can be described as follows: 7*(z) = myxy + - - - + mya;, with > m; = k. Then we add to B,
=1

a tail at x, and for every i = 1,...,[, we glue to X a copy of P! at z;, mapping to the tail
by a generic map P! — P! of degree m,, with ramification index m; at x;. Let now y be a
point of By such that in its fiber is contained the pair {p;, ¢;} for some i =1,...,4, p; and
q; with multiplicities pf and pb respectively. As before, the fiber of y can be described as
7 (y) = wipi + pbq; + msys + ... + myy;, where the y;’s can possibly be preimages of other
nodes, and in this case we treat them like p;, ¢;. Hence we glue to X a copy of P! at p;, ¢;,
and one at y; for every j; the copy at p;,¢; will map to the tail at y with degree p} + pb,
with ramification index yu} at p; and ub at ¢;. The copies glued at the y;’s will be mapped
to the tail at y by maps of degrees m; for every j = 3,...,[. Iterating these steps for all the
branching points of 7 and the nodes of X, we get a k—sheeted admissible cover X’ — B
of X just taking X and B; and adding to them all the copies of P! as indicated. An easy
calculation as in (1.22) and (1.23) will yield that the genus of X’ is exactly g, so we are
done. O

Remark 1.3.25. We notice, as in 1.3.23, that an irreducible nodal curve X is k-gonal if and
only if it has a g;. Again, any curve X € @ which is not k-gonal, is not weakly k-gonal,
since the limit of line bundles needs not be a line bundle itself. So, as before, we know
from [C1] that if [X] € /\/li;k, this means that there exists a partial blow up Xg of X at a
set of nodes S C X4, possibly empty, and a line bundle Ls € Pic" X 5, balanced on X S,
such that ho()? s, Ls) = 2. So let us suppose that our X is not weakly k-gonal, hence we can
have the following possibilities: let S; = {ni,...,n;}, where nq,...,ns are the nodes of X,
then there exists i = 1,...,J such that ()A( s,, Lg,) are as above. Let us call Xg, the partial
normalization of X at the nodes in §;, and E;, for j = 1,...,4, the exceptional components
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of )A(Si. Since Lg, is balanced on )A(Si, we have that degLg, = (k —4,1,...,1), therefore Xg,
must have a g}._;, and its total normalization X must be weakly (k — i)-gonal as well. Let
us notice that when i = §, i.e. if the total blow up of X has a gj, then degLg, = (1,...,1),
so the total normalization X, of X must be a copy of P!, and the number of nodes of X is
6 =k.

Curves with two components

In what follows we will give a characterization of some curves with two components lying
in Mislhg, and we will see that some properties can be generalized to curves in M7;k for
any k. First of all we need some terminology, that we recall both from [Br99] and [EM02].
Let B be the spectrum of a discrete valuation ring R. Let s denote the special point of
B, and b its generic point. Let moreover f : X — B be a flat projective morphism such
that X, := X(b) is an irreducible reduced nodal curve and the special fiber X := X(s)
is a nodal reducible reduced curve. We assume that the scheme X is regular, i.e., it is a
regular smoothing of X. Let C1,C5 be the irreducible components of X (that are Cartier
divisors on X). Since X is regular, if L, is a line bundle on X, there exists a line bundle
L on X such that £(b) = L, and L := L(s) is a line bundle on X. The line bundle £ will
be called an extension of L;, to X. Let us notice that twisting £ by line bundles of the form
Ox(m1Cy + maCy) with my,my € Z, we get all the possible extensions of L; to X, since
L(b) = L @ Ox(m1Cy + m2Cs)(b). The linear system induced by H°(X,, L;) extends to X
as well, giving the vector space H°(X, L), which, restricted to the central fiber defines a
vector space H°(X, L) inducing a linear system on X. We call the pair (L(s), H’(X, L)) a
limit linear system, according to [EMO02]. Let us now recall:

Proposition 1.3.26 (Esteves). For every irreducible component C; of X there is a unique

(up to isomorphism) extension L; of L, to X with the following properties:

(a) the canonical homomorphism

H(X,L) — H°(Cy, Ly )

is injective;
(b) for every irreducible component C; with j # i the canonical homomorphism

HO(X7 L) - HO(Cj7£i|C.)

is not identically zero.

We are now going to use these concepts in a more specific situation. Let then f : X —
B be a regular smoothing of X such that the generic fiber X, is a trigonal irreducible
curve (i.e. it has a g} by 1.3.23) with trigonal series 7,, and the central fiber X is a
reducible reduced nodal curve with two components. When the curve is of compact type,

i.e., the two components meet in one point, we have already given an answer in 1.3.9 and
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1.3.12, following the theory of limit linear series developed by Eisenbud and Harris in
[EH86]. In what follows, by analyzing the possible extensions 7’s of T} to X', we are going
to characterize the central fiber X of the degeneration and its induced trigonal series. In

what follows, we will deal only with families of curves which are regular smoothings.

Lemma 1.3.27. Let f : X — B be a family of irreducible nodal trigonal curves, and let
the central fiber X be a reducible stable curve with 2 components Cy,Cs, and 6 = 2 nodes.
Then, C is trigonal and Cs is hyperelliptic.

Proof. Let T, be the trigonal series of the generic curve X, of the family. Then, since
the smoothing is regular, there exists an extension 7 to &, such that 7; x, = T,. Fol-
lowing 1.3.26, we know that there exists a unique extension 7; with respect to C; having
properties (a) and (b) in 1.3.26. Let us denote by 7; = 7;, for i = 1,2. Then the pos-
sible multidegrees of Ty are degTi € {(3,0),(2,1),(1,2)} since h°(X,T1) < hO(Cl,THCl)
and 77 doesn’t have negative degree on Cs because of property (b). We can assume that
g(C1),g(C3) # 0, since X is stable and § = 2. Let us suppose that degT; = (3,0). Twisting
by Ox(C;) we see that the only possibility for deg7» according to 1.3.26 (a) and (b), is (1, 2).
Then, since deg T, =3 and 2 = (X, Ty) < hO(Cl,T”Cl), we have that C; is trigonal;
for the same reason, since deg Tz, =2 and 2 = R0 (X, Ty) < h?(Cs, T2|02)’ we have that C;
is hyperelliptic. Moreover, we have that 77 Cs = O¢, because of 1.3.26 (b), hence

WX, Th) = h°(C1, Ty ) + h°(C2, Oc,) — 1.
Applying [C6, Lemma 1.2.6.], we get that
ho(Cr, Ty, (=p1 = p2)) = 1,
hence, by 1.3.15, T1|C1 = O¢, (p1 + p2 + a), where a € C;. On the other hand,
hO(X,Tp) = h(C1, Ty, ) + h°(Ca, T2y ) — 1,

so it follows that h(Cs, Ty, C (—g1 — g2)) = 1, therefore the hyperelliptic series on C; is the
line bundle O¢,(q1 + ¢2). Suppose now that degT; = (2,1); then, twisting by O+ (C3) we
get that the only possibility for degT) is (0, 3), i.e., we switch the curves and the argument
above applies. The last case to study is when degT; = (1,2); then, by 1.3.26 (a) it follows
that (3,0) can’t be the multidegree of 7> with respect to Cs, hence 77 = 75, 71 = T3 and
since h°(Cy, T Cl) = 2, then C is a smooth rational curve, but we excluded the possibility
g(Cy) =0. O

We are now going to give a sort of vice-versa of 1.3.27:

Lemma 1.3.28. Let X be a reducible reduced stable curve with two irreducible components
C1,Cy and two nodes ny,nq such that, if {p1,q1},{p2,q2} are the branches over the nodes,
C is trigonal with trigonal series Oc,(p1 + p2 + p), p € C4, and Cy is hyperelliptic with
series Oc,(q1 + q2). Then X is trigonal.
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Proof. Given X as in the hypothesis, we just have to construct a 3—sheeted admissible
cover of it, so applying 1.3.21 we get our conclusions. First of all we denote by 7T, =
Oc,(p1 + p2 + p), and by He, = Oc,(q1 + ¢2). Then we build the admissible cover 7 :
X' — B’ as follows. Let us take two copies of P!, denoted by B; and B,, such that the
map 7 : C; — By is the (3 : 1) map induced by T¢,, and the map 75 : Cy — By is (2: 1)
induced by Hc,. If we call y;, y» the points of By, B, resp. such that 7' (y1) = {p1,12,p},
and 7, '(y2) = {q1,¢2}, then we glue B; and B, along y; and y,. We call y the point of
B; U Bs coming from the identification of y; and y-, as in Figure 1.2. We want to complete
7o to a (3 : 1) map 75; let us glue a copy r of P! to C; at p, such that r is mapped to B, by a
generic (1 : 1) map P! — P!. Gluing the last map to m» we obtain 7} : Cy L7 — By, which
is now a (3 : 1) map. Moreover, if there are triple points, i.e., if there exists some x € B;
such that its ramification index is 3, we glue to B; a tail at x, and to C; a copy of P! at the
corresponding multiple point (point ¢ in Figure 1.2), mapping to the tail at « by a (3 : 1)
map. Then we get the cover in the following way: X' is the curve composed of Cy,Cs,r,
and the copies of P! glued at multiple ramification points of C;. On the other hand B’ is
the union of By, Bs, and all the tails added at multiple points of B;. The map = is given
by 71 on Ci, and by 75 on Cy Ui 7, and we see that 7= 1(y) = {n1,n2,p}, where by abuse of
notation we denote via p both the point on C; and the node obtained by gluing r to C;. So

we are done. O

Figure 1.2: The admissible cover of X: the notation is precisely the one used in the proof of 1.3.28,

in order to illustrate the construction.

Lemma 1.3.29. Let f : X — B be a family of irreducible nodal trigonal curves, and let the
central fiber X be a reducible reduced stable curve with 2 irreducible components C1, Co,
and 6 = 3 nodes. Then, either

(i) Cy is rational and C5 is hyperelliptic,
or

(it) Cy and Cs are both trigonal.
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Proof. We again adopt the notation introduced in paragraph 1.3.2, and denote by n; for
i = 1,2,3 the nodes of X and by {p;,q;} their branches on Cy,C5. If T} is the trigonal
series on X, let 77 be the extension with respect to C; as in 1.3.26, and 75 be the one
relatively to Cs, moreover again we denote by 7; = 7; . Then the multidegree degl’ €
{(3,0),(2,1),(1,2)}. If degTy = (3,0), then twisting by Ox(C;) we get that degT, = (0, 3)
is the only possibility according to 1.3.26 (a) and (b). So, in this case we have that both
C; and C, are trigonal, since 2 = h°(X,T;) < hO(CZ:,Tq:\Ci) for i = 1,2. Moreover, 1.3.26 (b)
implies that Tilcj = Og,, for i # j € {1,2}. This means that, if g(C1),g(C2) # 0,

ho(X, T;) = hO(OiaTi\Ci) + hO(Cj,OCj) -1,

with i # j € {1,2}, then applying [C6, Lemma 1.2.6.] we get that hO(Cl,T1|C1(—p1 —poy —
p3)) =1and ho(cmTz\Cz(—fh — 2 — g3)) = 1, hence that

Tllc1 = 0c, (p1 +p2 +p3),

and
Ty, = Ocy (@1 + g2 + a3)-

The second case we are going to develop, is when degT; = (1,2) or (2, 1), which is the same
up to switching the two components. As we can see, since X has 3 nodes, if we twist T} we
obtain negative degrees, against 1.3.26 (b). Hence we conclude that in this case 7; = 75,
therefore 77 = T5, C; is a rational curve, and C; a hyperelliptic curve, with hyperelliptic
series that we denote by H¢,, so that T} = T, = (Op:(1), Hc, ). Hence we are done. O

As well as in the case of two nodes, we are going to give a vice-versa to the previous

statement.

Lemma 1.3.30. Let X be a reducible reduced stable curve with two irreducible components
C4,C5 and 3 nodes ni,nz,ng such that {p;, q;} are the branches over the nodes for i = 1,2, 3,

and one of the following holds:
(1) Cy and Cs are trigonal with trigonal series Oc¢, (p1 + p2 + p3) and Oc,(q1 + g2 + g3),

(ii) Cy is rational and C, is hyperelliptic, with maps C1 —5 P! and Cy -2 P! induced
resp. by Op1(1) and by the hyperelliptic series, such that 71 (p;) = m2(q;) for any i.

Then X is trigonal.

Proof. Let us assume first that C; and C; are both trigonal, with series O¢, (p1 + p2 + p3)
and Oc,(q1 + g2 + ¢3); then we just have to build a 3—sheeted admissible cover of X. We
proceed as follows: let us denote by 7; : C; — B; the map induced by the trigonal series
of C;, where B; is a copy of P'; then the admissible cover 7 : X’ — B’ will be such that
X' is the curve with irreducible components C;, C; and all the copies of P! glued at 3-fold
branched points of C; and C> as in the proof of 1.3.28. To obtain the base B’ of the cover,
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Figure 1.3: The admissible cover of X is obtained by gluing the (3 : 1) maps induced by the trigonal

series on C7 and Cs.

we have to glue B; and B, as follows: let yy; € By, y2 € Bs, such that 7T1—1(y1) = {p1,p2,03},
and 5 ' (y2) = {q1, g2, 43}

Then we glue B, and B, identifying y; with y5; hence the base B’ is the curve of genus 0
composed of B, Bs, and the tails glued to them at the ramification points of the series.
The map 7 is the one given by 7; on C;, by 72 on Cs, and by generic (3 : 1) maps on the
copies of P! glued at multiple branch points, where the targets of these maps are precisely
the tails of B’. In particular, notice that if we denote by y € B’ the point coming from the
gluing of y; and yo, then 7=1(y) = {n1,n2,n3}, (see Figure 1.3).

Now let us focus on the second case, i.e. when (] is rational and Cs is hyperelliptic. Let
71 : C1 — P! be the map induced by Op: (1), and 72 : Co — P! the (2 : 1) map induced by
the hyperelliptic series Hc, on C5. These two maps will give us the admissible cover we
are looking for. Let z; € P! be the image via 75 of the branch ¢;; by hypothesis we know
that 71(p;) = x; for every i = 1,...,3. We denote by B the target of 7; and my; we can
have two situations: ¢; is either a Weierstrass point of C5 for some 7 = 1,2, 3, or it is not.
If it is, then we build the admissible cover 7 : X’ — B’ as follows: fix ¢ € {1,2,3} and
suppose x; € B is such that 5 1(@) = 2¢;, and therefore such that 7 1(a:i) = p;, since p;
and ¢; have the same image on B. We build X’ starting from C; and Cs, that we consider
as two disjoint curves; then we glue to C; and C; a copy of P! at p; and ¢;, mapping to the
tail that we glue to B at z; via a generic (3 : 1) map. Fix now j € {1,2,3}, and suppose
q; is not a Weierstrass point of Oy, i.e., there exists x; € B such that 7, '(z;) = {g;,7;},
with ¢; # r; € Cy. Notice that we have, like before, that ;' (x;) = p;; now we take two
copies of P!, then we glue one of them to C; and Cs at p; and g¢;, and the other one to C,
at r;. The first copy will map to the tail we add to B at z; via a generic (2 : 1) map, and
the second copy will map to the same tail at z; via a (1 : 1) map. Hence the admissible
cover is obtained by taking X’ as the union of C;, Cs, and all the copies of P! we add in
correspondence of the nodes; B’ is the curve having as irreducible components B and all
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the tails we add in correspondence of the images of the nodes. O

Figure 1.4: A sketch of the construction of an admissible cover of X: as in the proof of 1.3.30, we
denoted by ¢; a Weierstrass point of Hc,, and by ¢; a simple point of its. We showed how to glue
copies of P* to C; and C» in both the cases.

We are now going to ask ourselves what happens when we have a reducible reduced stable
curve X with two components C; and C5 and 0 = k£ nodes, and X is the central fiber of a

family of k-gonal irreducible curves. We assume that k > 4.

Lemma 1.3.31. Let f : X — B be a family of irreducible nodal k-gonal curves, and let the
central fiber X be a reducible reduced stable curve with 2 irreducible components C1, Cs,
and 6 = k nodes. Then, either

(i) Ci1 and Cy are both k-gonal,
or
(ii) Ciis ki-gonal and C5 is ko-gonal, with ki + ko = k.

Proof. We proceed as in the proof of 1.3.29. Let X, be the generic curve of X, and let L,
be the k-gonal series on X;. Then by 1.3.26 there exists a unique extension £; to X of

L, with respect to C; satisfying (a) and (b); we write L; = L Let us denote by n; for

ixe
i = 1,...,k the nodes of X, and by {p;,¢;} their preimages on C; and C,. Let us first
suppose that the multidegree degl; = (k,0); then we see that twisting by O~ (C;) we get
that the only possible multidegree for L. is (0,%). Hence by 1.3.26 we get that both C;

and C, are k-gonal curves, so if we denote by G¥ = L we get that L; = (G¥,Oc,), and

i‘Ci$
Ly = (O¢,,G%). Moreover, since

2 =h%X,L;) = h°(Cy,GY) + h°(Ca, Oc,) — 1

and
2= hO<X? LQ) = ho(cla OCI) + hO(CQ7G§) - 17

we get that applying [C6, Lemma 1.2.6.],

k k
GY=0c,() pi) and G5 =00, q)).
i=1 j=1
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Let us now assume that degl; = (k—1,1); we see that twisting we would contradict 1.3.26
(b), hence it follows that £; = £,, and therefore L; = L,. Then we have that Cy must be
rational, and C; must be (k — 1)-gonal, and we write L; = (G¥', Opi(1)). Let us verify
that properties (a) and (b) of 1.3.26 hold. Indeed, in all the cases before these properties
were obvious; now we have to check that the maps

HO(X,Ly) 25 HO(Cy, Gy 1)

and
HO(Xa Ll) 2, HO(Cz, OPl(l))

are injective. Let us introduce the following notation: let H°(Cy,G%™') = (o1, 0,) and
H%(Cy, Op1(1)) = (1, 72). Since h°(X,L;) > 0, there exist sections o; € H°(C;,G¥1)
and 7; € H°(Cs, Op1(1)) such that they match on the k nodes; we denote the section of
HY(X, L,) arising from o; and 7; by o;x7;; we want to show that H°(X, L;) = (01%71, 09%T2).

This would imply that the maps

HO(XaLl) & HO(CMG’{:_l)

O; xT; — ag;

and
H(X,Li) = H(C3 Opi(1))

O; % T; — Ti

are both isomorphisms of vector spaces. So, if by contradiction we had H°(X, L;) = (0; %
T1,0; * T2) for some ¢ € {1,2}, then it would mean that o;(p;) = T (g;) = m(g;) for j =
1,...,k, hence that the point [r1(q;) : T2(¢;)] = [1 : 1] € P! has k distinct preimages, which
is impossible since Op: (1) induces a map of degree 1. If on the other hand we had, say,
HY(X,Ly) = (01 % 7j,09 x ;) for some i € {1,2}, then it would imply that o1 (p;) = o2(p;) =
7;(g;) for every j = 1,..., k. Then again the point [0 (p;) : o2(p;)] = [1 : 1] € P! would have
k distinct preimages, against the fact that the map induced by G’f‘l has degree k — 1. This
proves (a), and (b) is obvious. To conclude the proof, let us just observe that if we assume
degly = (k1,ke) with ky + ko = k and k1 > ko (when k; < ko we just switch the curves),
with an argument analogous to the previous one we get that properties (a) and (b) hold for
L= (G’l€l , G’;Q), hence C is ki-gonal and C5 is ky-gonal. O

As well as for § = 2 and 6 = 3, we have a vice-versa to the previous statement, so that
we can completely characterize the curves with two components and k nodes lying in the

closure of M;ﬂk as limits of regular smoothings.

Lemma 1.3.32. Let X be a reducible reduced stable curve with two irreducible components
C1,Cs and k nodes ny,...,ny such that, if {p;,q;} are the branches over the nodes for i =
1,...,k, either

(i) C1and Cs are k-gonal with g,lc’s, respectively, Oc, (p1 + -+ pr) and Oc,(q¢1 + - - - + qx),
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or

(it) C1 has a g}, denoted by G™, and Cs has a O, G2, with ky + ko = k, ki,ka > 0
inducing maps C; —- P' and Cy =% P! such that 71(p;) = mo(q;) forany i =1,... k.

Then X is k-gonal.

Proof. We follow the lines of the proof of 1.3.30. So let us suppose at first that C; and
C are both k-gonal with series Oc, (p1 + --- + px) and Oc,(q1 + -+ + qx); then we just
apply the construction in the first part of 1.3.30 in order to build an admissible cover for
X. Indeed, by generalizing that construction we get as k-sheeted admissible cover, a map
7 : X' — B’, which we describe hereafter: let us denote by =; : C; — B; the map induced
by the k-gonal series of C;, where B; is a copy of P'. Then let y; € By, y» € B> be such that
7 (1) = {p1,.. .}, and 75 ' (y2) = {q1,...,qx}. Then we glue B; and B, identifying v,
with 7-; hence we define the base B’ to be the curve of genus 0 composed of B;, Bs, plus
the tails that we will glue to By and B; at the multiple points of 7; and 75. On the other
hand X’ is the curve having as irreducible components C;,C>, and all the copies of P!
glued to C1, Cy at multiple points, and each of these copies will map to the corresponding

tail of B’ via a generic (k : 1) map. We depicted the construction in Figure 1.5. Let us

ng

Figure 1.5: The admissible cover of X is obtained by gluing the (k : 1) maps induced by the k-gonal

series on C1 and Cs.

now assume (ii). Then we construct a k-sheeted admissible cover of X as we did in the
second part of 1.3.30, in order to show that X € M7(11k Let us recall that by hypothesis,
G]fl and G§2 induce maps 7; : C; — P! and 75 : Cy — P! such that 7 (p;) = m2(g;) for every
i =1,...,k. We denote by B the target of 7, m, as in 1.3.30. We are going to build the
admissible cover 7 : X’ — B’ from Cy and C5. So, let z; € B be such that p; € 7] 1(xi)
and ¢; € 75 (x;); moreover, let I} be the ramification index of p; relatively to 71, and [?
5 with

79

the one of ¢; relatively to 2. More specifically, let 7} (v;) = I}p; + pir} + - + psr
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T,

copy of P! to C; and C, at p; and ¢; (in such a way that it links the curves), mapping to the

ré € Ch, and 73 (z;) = 2q; + vip} + --- + vipt, with pl, ..., pt € Cy. Then we glue a

tail we glue to B at z; via a degree I} +[? map; moreover we glue a copy of P! to C; at every
r{ for j = 1,...,s, which is mapped to the tail at x; by a degree /Jg map. Again, for each
j=1,...,t, we glue to C; at pZ a copy of P!, mapping to the tail at x; via a degree ug map.
If there is a multiple point on B such that in its fiber there are multiple branched points
of 71 or my, then we proceed as follows: let y € B be such that 7 (y) = miy1 + -+ + meye
and 73 (y) = Meq1Yetr1 + - - +mpys, with y1, ..., ye € C1, Yet1,...,yr € C2, and at least one
m; > 2 for some i = 1,...,f. Then we glue to B a tail at y, and we glue to C; a copy of
P! at each y; for i = 1,...,e and to Cs one copy at each y;, for j = e+ 1,..., f, every copy
mapping to the tail at y via a degree m; map. Repeating this process for every node and
every multiple point, we get that X’ will be the curve having as irreducible components
C1,Cy and all the copies of P! we glue to them; B’ will the curve obtained from B by gluing
the tails as above; the map = is given by m; and 7w, when restricted to C; and C5, and
by the maps described above when restricted to the rational components of X’, and by
construction it is (k : 1) (see Figure 1.6).

(ky : 1) (kg : 1)

(kyp = 1)1

’< Pi I (ko i 1)

Gy +-mmmmmmmemee O
-~
:
®
~M
=

,'y X

Figure 1.6: The admissible cover of X is obtained by gluing the maps w1 and 7> induced by the k;
and kz-gonal series on C; and C>. Notice that z; has the branches of a node in its fiber, while y and

z in B are examples of smooth ramification points of 7; and 7a.

O

We are now going to discuss the case when the central fiber of our degeneration is a k-
gonal curve with two irreducible components meeting at 6 > k nodes.

Lemma 1.3.33. Let f : X — B be a family of irreducible nodal k-gonal curves, and let the
central fiber X be a reducible reduced stable curve with 2 irreducible components C1, Co,
and § > k nodes. Then, C1 is ki-gonal and Cs is ko-gonal, with ki + ko = k and kq, ko > 0.
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Proof. We use the notation of 1.3.31, so let X; be the generic curve of X, and let L; be
the k-gonal series on X;. Then by 1.3.26 there exists a unique extension £; to X of L,
with respect to C; satisfying (a) and (b); we write L; = L; X Let us denote by n; for
i = 1,...,0 the nodes of X, and by {p;,q;} their preimages on C; and C,. Let us first
suppose that the multidegree degL; = (k,0); if we twist £; with some line bundle of the
form Ox(n1Cy + n2Cy), we see that since § > k, its restriction to either C; or Cy would
have negative degree, against property (b). But if it were L; = L, then we would have
a contradiction since L o = O¢, and it doesn’t agree with property (a). So we exclude
the case degL; = (k,0), and assume that degl, = (k1, ko) with k; + k2 = k and k4, ks > 0.
Again we see that twisting is impossible, so we get £; = £, and then L := Ly = L,. Then,
we repeat the argument in 1.3.31 to show that properties (a) and (b) hold for L, recalling
that the number of nodes of X is 4. So we have that C, has a g; and C; has a g;_, which
together induce L. O

Lemma 1.3.34. Let X be a reducible reduced stable curve with two irreducible components
C1,C5 and 6 > k nodes such that C1 has a g,lﬂ, denoted by G’fl, and Cy has a g}w, G§2, with
ki + ko =k, ki - ko > 0, inducing maps Cy — P and Cy ~2 P! such that 7 (p;) = ma(q;)
foranyi=1,...,6. Then X is k-gonal.

Proof. The proof is the same as in 1.3.32, i.e., we construct a k-sheeted admissible cover
of X as it is shown in Figure 1.6, starting from C; and C5 and their k;-gonal and ko-
gonal series, and gluing to them copies of P! at the preimages of nodes and at ramification

points. O

The last case we want to study is when the number of nodes § is such that § < k. This

case requires a special attention to the twistings that will occur.

Lemma 1.3.35. Let f : X — B be a family of irreducible nodal k-gonal curves, and let the
central fiber X be a reducible reduced stable curve with 2 irreducible components C1, Co,
and 6 < k nodes. Then,

if 6 < k < 26: either Cy has a g, and Cs has a gj, or Cy has a g}, and C; has a g},
with ky + ky = k and ki, ky > 0, or Cy has a g, and Cs has a g%kz_é), with k1 +ky =k
and ki, ks > 0;

if k = 20: either both C, and Cy have a gj, or both have a g}s, or Cy has a g}, and C,
has a g%kr&), with k1 + ke =25 and 0 < k1 < ko;

if k > 26, k = md + «a: either C4 is k-gonal and Cs has a g}é for some j € {1,...,m}; or
Ci hasa g}ﬂfj(;, and Cy has a 9]1_5 forsome j € {1,...,m};orifky <8 < ko, k1 +ko =k,
then writing ko = nd + 3, Cy has a g;,, and Ca has a g;, 4, for some j € {1,...,n};
if 6 < ki < ko, writing ki = 6 + v and ky = v6 + )\, Cy has a either a g, ora g,lﬁ_j(;,
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and Cs has a g,l62 ora g}gﬁjé, for some j € {1,...,u}; and the last possibility is that
C1 has a g, and C5 has a g;,,_5 for some l € {1,...,v}.

Proof. We use the same notation and techniques of the previous proofs, i.e., X; will be
the generic curve of X, and L; will be the k-gonal series on X;. Then by 1.3.26 there
exists a unique extension £; to X of L; with respect to C; satisfying (a) and (b); we write
L; = Ly for i = 1,2. Let us denote by n; for i = 1,...,4 the nodes of X, and by {p;, ¢;}

their preimages on C; and Cs.

Case I: let § < k < 2§, and suppose that the multidegree degl.; = (k,0); then we can only
twist by O~ (C1), and we get degLs = (k — 4, d); now we have two possibilities: either
ho(Cy, L2|Cl) =1, or h°(Cy, LQ‘Cl) > 2. In the first case, applying [C6, Lemma 1.2.6.]
to both L; and L, we obtain that C; has a g, and C; has a g} such that Ly, =
Oc,(p1 + -+ +ps +ass1 + -+ ax) and Loy, = Oc,(¢1 + -+ + g5), with a; € Ci.
In the second case, when h°(C, LQ‘CI) > 2, we have that (a) and (b) in 1.3.26 hold
for both L, and L,; indeed for L; it’s obvious, whereas for L, we make a count of
sections. We show that if H(C', Ly ) = (11, 72) and H(Cy, Ly, ) = (01,02), then
it’s not possible that H(X, Ly) = (1, * 04,75 x ;) with o, 3,7 € {1,2}; indeed if it
were, for an argument analogous to the one in 1.3.31 we would get that the point
[1:1] € P! would have § preimages via Ly, o which is impossible since k — § < 0
by hypothesis. So even in this second case when h°(C}, Ly Cl) > 2, we have that C;
has a g, and C; has a gj, but their structure is not specified. Now let us take into
consideration the case when degl; = (ki, k2) with ky < ko, and k1 + k3 = k. Then
either k1 < ks < dor k1 < 6 < ko. In the first case we can’t twist, so we have that
Li=ILrand C; hasa g}gl and C; has a g}ez. In the second one, twisting by O~ (Cs) we
obtain degly = (k1 + 4, k2 — §), so, when properties (a) and (b) hold we have that C;
has a g; and C; has a g;__;.

Case II: &k = 20; let degL; = (26,0), then by twisting we can have either deglL, = (4,4), or
degLs = (0,26). In the second case, both C; and C; have a g;, such that h°(C1, Ly o, (—p1—

<++—ps)) =1and hO(C’Q,LQ‘Q(—ql — .-+ —gqs)) = 1, by applying [C6, Lemma 1.2.6.].
If degL, = (8,0), we can have that hO(Cl,L2|Cl) =1lor=2 If hO(ChLz\Cl) =2,
since Lg‘cl = L1|Cl(—p1 — .- —ps) and hO(ChLllcl) = 2, it means that Ll\cl has

p1,...,ps as base points, hence C; and Cy have both a g}. If, on the other hand,
hO(Cy, L2|Cl) = 1, we have that C; has a g}; such that h°(Cy, Lije, (—=p1—--—ps)) =1,
and C; has a g} such that (again by [C6, Lemma 1.2.6.]) LQ‘CZ =0c,(q1 + -+ q5).
Now let us study the other possibilities: if degl, = (k1, k2) with ky + ko =k, k; # 0,0
for i = 1,2, then, supposing without loss of generality that k; < ko, we get that twist-
ing by Ox (C2), the only possibility is degLy = (k1 +9, k2 — ). According to 1.3.26 (a) it
must be h%(Cs, Ly 02) > 2, hence, since the maps in (a) are injective by an argument
based on sections as the one in Case I, we can get that C; has a g}gl and C; has a

1
gk’Q—(;'
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Case III: k& > 24. In this case let as usual degl; = (k,0), then we can have more possibilities
for deglo, indeed if k = md + «, then degLs € {(k —6,0), (k — 26,20), ..., (a,md)}. Let
then degly = (k — j4, jd), fixing j € {1,...,m}; we have that either hO(C’l,L2|Cl) =1
or h°(Cy, Lg‘cl) = 2. Ifit is h°(Cy, L2|01) = 1, it follows, as before, that C; is k-gonal
with hO(ChLl\Cl(_pl — .- —ps)) =1 and C, has a g;é such that hO(Cg,L2|C2(—q1 -
-+ —qs)) = 1. If otherwise hO(Cl,L2|Cl) = 2, then C; has a g,lcfj(;, whereas C5 has
a g;g. If degLo = (ky, ko) with 0 < ky < ko, ky + ko = k and either k; < § < ky or
0 < ky < ko. If ky <6 < ko, then let ks = nd + 3, hence reasoning as before, we get
that C) has a g; , and Cy has a g, j;, for j € {1,...,n}. If otherwise § < k; < ky, let
us write k1 = pud + v and ke = vd + A: then we can twist both by O (C;) and O (C»),
getting deglo = (k1 — j0, ko + 78) or degLs = (k1 + 18, ke — 1§), for some 5 € {1,..., u}
and | € {1,...,v}. So, repeating the previous reasoning, we get the combinations
between: C) has a either a g; or a g; 5, and Cy has a g}, or a g}, ;;, for some
j €{1,...,u}; finally the last possibility is that C; has a g;, and C; has a g}, _,; for
somel € {1,...,v}.

O

We turn our attention to another class of curves: graph curves. By definition, a graph
curve is a connected, projective algebraic curve which is a union of copies of P!, each
meeting exactly three others, transversely at distinct points; it follows that a graph curve
of genus g has 2g — 2 components and 3g — 3 nodes. They are obviously named after
their dual representation as graphs, which are in particular trivalent ones. We want to

investigate when a graph curve belongs to M; - We consider &k = 3.

Lemma 1.3.36. Let X be a graph curve of genus g > 4. Then, there exists no regular

smoothing of X such that the generic fiber is a trigonal irreducible nodal curve.

Proof. Let X be a graph curve of genus g > 4. Let us suppose by contradiction that
there exists a regular smoothing of X, denoted by f : X — B, such that the generic
fiber X, is a trigonal irreducible nodal curve of genus g. Then, according to 1.3.26, for
every irreducible component C; of X there exists a unique line bundle £; on X satisfying
properties (a) and (b). Hence suppose that degl, |, = (3,0,...,0); we denote by L; = L)y
We look for the other extensions £; with respect to C; for i # 1, by twisting. We observe
that by 1.3.26 (b), we can’t allow negative degrees, i.e. if we regard degl;, « as a vector
in Z2972  then its components must be all non-negative. So, fixed i = 2,...,29 — 2, by
twisting we must try to construct vectors D' = degL; € Z?9~2 such that the j-th component
(D"); >0forany j =1,...,2g — 2, and (D'); > 1. We want to prove that this is impossible.
Indeed, let us take our vector D' = (3,0,...,0); up to reordering we can assume that
Cy - C; = 1fori = 2,3,4; in this case, if we twist £, by Ox(C;) we get the multidegree
v = (0,1,1,1,0,...,0), which yields D? D3 D* = v. Now we perform other twistings to
get more multidegrees; but if we twist by any C;, for j = 1,...,2g — 2, we have to add
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—3 to (v);, and a +1 to the components of v corresponding to the C;’s intersecting C;.

So, iterating the twisting by distinct C;’s, we see that the only way to get a non-negative
2g—2

components multidegree is twisting by Ox( Cr) = Ox(X). Hence we can’t have an
k=1

extension for every irreducible component of X, which gives us a contradiction. Let us

notice that starting by a multidegree v whose components belong to {0, 1}, we obtain the
same conclusion. On the other hand, if (degl,); € {1,2,0}, then we would have on X a
trigonal series of degree of type (1,2,0,...,0) up to reordering. By 1.3.16 (i), we get that C;
would be a separating line of X \ Cs, which is impossible, since by [C6, Proposition 5.2.7.],
given a graph curve, for each irreducible component C, C¢ has no separating nodes. O

Remark 1.3.37. Let us notice that when ¢ = 3 and ¢ = 4 every smooth curve has a
g3, so in both cases M, = Mi_}m. If ¢ = 3 in particular we get the only graph curve
that can be embedded in the plane (see Figure 1.7). We want to observe that in this
case X has 4 components and 6 nodes, and if we use the notation of 1.3.36 we get that
the only possibility to have a regular smoothing of X with generic trigonal fiber is that
degli = (3,0,0,0) and degL; = (0,1,1,1) for i = 2,3, 4.

Figure 1.7: A graph curve of genus 3.

1.4 Notes on Projective Normality of reducible curves
(with E. Ballico)

In this section we give some results on quadratic normality of reducible curves canonically

embedded and partially extend this study to their projective normality.

1.4.1 Quadratic normality

For any reduced projective curve X and any line bundles M, N on X let

parn t HY(X, M) ® H*(X,N) — H°(X,M ® N); (1.24)

59



denote the multiplication map. Set jn; = par,n. Given the dualizing sheaf wx on X,
we are interested in studying the surjectivity of the map u.,. In particular, when we
assume that X is canonically embedded this is equivalent to saying that X is quadratically

normal. We have

Proposition 1.4.1. Let X be a connected reduced curve of genus g with planar singular-
ities and wx very ample. Assume that X = AU B, with A, B connected and smooth at
D:=ANnB. If

(D) oy wx|a IS SUTTective,
(i) p |, 1S sSurjective,
then ., is surjective.

In order to prove the proposition, we need some background material. We are going
to keep the notation used in the statement of Proposition 1.4.1. Let D := AN B be the
scheme-theoretic intersection. We will view D also as a subscheme of A and B. Since both
A and B are smooth at each point of the support of D, that we denote by supp(D), the
scheme D is a Cartier divisor of both A and B; more in general, this is true if X has only
planar singularities at each point of supp(D), because in this case a local equation of B in

an ambient germ of a smooth surface gives a local equation of D as a subscheme of A.
Remark 1.4.2. According to the notation above, we have that
(i) It is well known that a curve with planar singularities is Gorenstein.

(ii) Since X is Gorenstein and locally planar at the points of supp(D), then A and B are
Gorenstein as well, so that w4 and wg are both line bundles on A and B.

(ii1) Since X is locally planar at the points of supp(D), the adjunction formula gives
wx|a = wa(D) and wx|p = wp(D). Thus deg(wx|a) = 294 — 2 + J and deg(wx|p) =
29 — 2 + 0, where of course ga,gp are the arithmetic genera of A and B, and
0 = deg(D).

Lemma 1.4.3. Let Z be a reduced, Gorenstein and connected projective curve. Let E be an
effective Cartier divisor on Z such that E # 0. Then h°(Zg) = 0 and h'(wz(E)) = 0.

Proof. Since Z is connected, h°(Oz) = 1. Since E is effective and non-empty, we get
h°(Zg) = 0. We apply the duality for locally Cohen-Macaulay schemes, i.e. we apply to the
scheme X := Z and the sheaf F' := w;(F) the case r = p = 1 of the theorem at page 1 of
[AK70]. We get hl(wz(E)) = dim(Ext®(wz(E),wz)), i.e. ht(wz(E)) = h°(Hom(wz(E),wz)).
Since wy is assumed to be locally free, we get h'(wz(E)) = h°(Hom(Oz(E),0z)) =0. O
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Lemma 1.4.4. Let X be a connected reduced curve of genus g with planar singularities and
wx very ample. Assume that X = AU B, with A, B connected and smooth at D := AN B.
For any subcurve Z of X we consider the map

pZ N HO(X,OJ)() — HO(Z,(U)(|Z).
Then pa and pp are surjective.

Proof. To fix ideas we work on Z = A; let us consider the exact sequence:
0—-Z4Quwx - wxy — wxl|a— 0.

We claim that 74 ® wx = wp. To prove this, we notice that since X has only planar
singularities, it can be embedded in a smooth surface S, where X, A and B are Cartier
divisors. Thus D is a Cartier divisor of A and of B (but seldom of X). By the adjunction
formula we have that

wx = ws(A+ B)|x,

then
wp =ws(B)|p =ws(A+ B - A)|p = (ws(A+ B - A)|x)|B

= (ws(A+ B)|x ®Za)|p = (wx ®Za)|B-
So the claim is proved and the previous sequence becomes
0 —wp —wx —wwxl|a—0.
The corresponding long exact sequence in cohomology is
0— H%wp) — H%(wx) — H(wx|a) = H'(wp) — H'(wx) — H' (wx|a) — -+

Since wx|a = wa(D), by lemma 1.4.3 we have that dim H!(wx|4) = 0. Moreover, being
both B and X connected, we have that dim H'(wg) = 1 and dim H'(wx) = 1, so the map
Hwx) — H%(wx]4) is surjective. O

We are now able to prove proposition 1.4.1:

Proof of proposition 1.4.1. Let us consider the composition
2
H(wy) ® H(wy) 25 HO(w%) 22 HO(wx?|p); (1.25)

In order to show that ., is surjective, it suffices, by a basic argument of linear algebra,

to prove that
(@) p% o 11,y 1s surjective,

(b) Kerp% C Impy -
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So let us show (a): we have a commutative diagram

PBORwx

HO(wX)®HO(wX)4>HO(wX2|B) (126)

&

H'(wx|p) ® H(wx|p)

where the map pp®pp is surjective by lemma 1.4.4 and p,,,,(p) is surjective by assumption
(ii). So, by the commutativity of the diagram we get (a).
In order to prove (b), we notice that

Kerpd = HY(X,Ip ® w%),

and take
= oy | HO (X, T ®wx )@ HO (wx ) -

So we have the following commutative diagram:

HY(Tp @ wx) ® HO(wyx ) ——> HY(Tp ® wx?) (1.27)

\Lid@pA \LN

I’LLU yw
H%wa) @ H(wx|a) Larxla H(wa ®wx]|a)

The map id ® p4 is surjective by lemma 1.4.4, while p,,, .|, 1S surjective by assumption

|a

(). Hence p is surjective. Since 1 is a restriction of y,,, , we get Kerp% C Imy,, . O

Definition 1.4.5. Fix an integer m > 0; let X be a reduced and Gorenstein projective
curve. We say that X is m-connected (resp. numerically m-connected) if for any decompo-
sition X = UUV with U, V subcurves without common irreducible components, the scheme

U NV has degree at least m (resp. degwx |y — degwy > m and degwx |y — degwy > m).

Remark 1.4.6. If every point of X lying on at least two irreducible components of X is a
planar singularity of X, then X is m-connected if and only if it is numerically m-connected
(see [CFHR99], Remark 3.2).

Notation 1.4.7. Given a reduced curve X, we will denote by X,,,it C X the set of points
of X lying on at least two irreducible components of X and by X, the open set of smooth

points of X.

Lemma 1.4.8. Let X be a connected, reduced and Gorenstein curve of genus g with wx
very ample. Assume that X has planar singularities at the points of Xy Then X is

3-connected.

Proof. Let us fix any decomposition X = U UV of X, with U,V subcurves and dim(U N
V) = 0. Set D := UNYV. Since X has planar singularities at the points of supp(D),
D is a Cartier divisor of U. To prove the lemma it is sufficient to show the inequality
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deg(D) > 3. Assume deg(D) < 2. Since wx is globally generated, X is 2-connected (see
[Cat81], Theorem D). Assume, then, deg D = 2. Remark 1.4.2 gives wx |y = wy (D). Since
X is 2-connected and deg D = 2, we easily see that U is connected. By lemma 1.4.3 we get
that dim H'(wy (D)) = 0. Thus Riemann-Roch gives

dim H%(wy (D)) = dim HO (wy) + 1.
Since D is a Cartier divisor of U, we get Zp ® wy (D) = wy. Thus
dlmHO(ID ®wxlU) = dimHO(wX|U) - 1,

hence the restriction to D of the morphism induced by |wx| is not very ample, contradic-
tion. O

Definition 1.4.9. One says that a line bundle L on a curve X is normally generated if the
maps
H°(X,L)* — H°(X, L*)

are surjective for any k£ > 1.
Now we need to recall Theorem B in [F04].

Theorem 1.4.10 (Franciosi). Let C be a connected reduced curve and let H be an invertible
sheaf on C such that

deg H|z > 2pa(Z) + 1 for all subcurves Z C C.
Then H is normally generated on C.

We are now able to prove the following lemma.

Lemma 1.4.11. Let X = AU B, with A,B # 0 and assume that X is Gorenstein, with
planar singularities at the points of X .. Let wx be very ample. Then wx |4 and wx|p are

normally generated.

Proof. Let us prove the conclusions for B. By Theorem 1.4.10 it is sufficient to prove that
degwx|z > 2pa(Z) + 1 for every subcurve Z C B. Since A # (), we have that Z C X.
But since wyx is very ample, by lemma 1.4.8 we have that X is 3-connected, hence the

conclusions. 0

We are now ready to prove what in the introduction we called Theorem 1. For the

reader’s sake we recall its terms hereafter.

Theorem 1.4.12 (Theorem 1). Let X be a connected, reduced and Gorenstein projective
curve of genus g with wx very ample. Assume that X has planar singularities at the points
lying on at least two irreducible components, and set X = A U B with A, B connected
subcurves being smooth at D := AN B. If A # () and the map

Hwawx)a s HO(AawA) & HO(Aan‘A) - HO(X; wa ® WX|A)

is surjective, then X is quadratically normal.
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Proof. We recall that X is a connected, reduced and Gorenstein projective curve of genus
g with wy very ample. By hypothesis we assume that X has planar singularities at the
points of X,,.1;, and that X = A U B with A, B connected subcurves being smooth at
D := AN B. Since p,,, .|, is surjective, by proposition 1.4.1 it suffices to show that (ii)
holds. But this is true by lemma 1.4.11. O

In what follows we will investigate when condition (i) of proposition 1.4.1 holds. If X is
any curve, we denote by X,,, its smooth locus. We recall a result from [B01]; before doing
this, let us introduce some notation: if L is a line bundle on a curve C globally generated

and such that dim H°(C, L) = r, it induces a morphism
hy:C — P,

Lemma 1.4.13 (Ballico). Let C be an integral projective curve with C # P! and R € PicC,
R globally generated and such that hg is birational onto its image. Then the multiplication
map

Hwe,R - HO(Ca wC) ® HO(Ca R) - HO(Ca we & R)
is surjective.

More in general we have the following result.

Theorem 1.4.14. Let A be a reduced, connected and Gorenstein projective curve such that
w4 1s very ample and the map p,,, is surjective. Let E C Ay, be an effective divisor on A

such that deg E > 2. Then pi,, ., (E) 1S surjective.

Proof. Since A is connected, lemma 1.4.3 gives H'(wa(D)) = 0 for every effective and

nonzero Cartier divisor D on A. Thus
dim H%(w4 (D)) = ga +deg D — 1
for every such D. We use induction on e := deg E.

(a) Let us first assume ¢ = 2. We check that w4 (F) is globally generated. Set E =
p1 + p2, where py, po are smooth points for A. Since w4 is globally generated, then w4 (FE)
is globally generated outside {p1, p>}. We just proved that

dim H%(w4(p;)) = dim H(wa(p1 + p2)) — 1.

Thus there is at least one section of w4 (E) that doesn’t vanish at p;, with ¢ = 1,2. Hence
wa(F) is globally generated. The divisor E induces two inclusions j : wa — wa(F) and
j'  wa? — wa?(E), which in turn induce the linear maps j. : H(wa) — H%(wa(FE))
and j. : H%(wa?) — H°wa?(E)) which have respectively corank 1 and 2. Consider the
following diagram:

HO(wa) @ H(wa) 225 HO(w,) @ HO(wa(E)) (1.28)

i“wA,wA l/l’wA,uA(E)
.7

HO(wa?) T H(wa2(E))
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Since by hypothesis ., , ., is surjective and
dim H(wA2(E)) = dim H(wa?) 4 2,

then j, (Im (e, w,)) is the codimension 2 linear subspace I' := H*(Zp®@w(E)) of H*(w4?(E)).
Since the subspace j. (Im(pw ,.w,)) is contained in I'm(p,, o, (E)), in order to get the con-
clusions for e = 2 it suffices to prove the existence of two elements of I/, , ., ,(z)) Which
together with a basis of j, (Im(uy, w,)), i.-e. of T, are linearly independent. Since w4 (F)
is globally generated, there exists o € H°(w4(E)) not vanishing at p; and p,. Since w, is
globally generated, there is 3 € H"(w,4) not vanishing at p; and p, as well. Since w, is
very ample, there is v € H%(w4) vanishing at p; but not at ps, or, in the case when p; = po,
vanishing at p; with order exactly 1. Now the section o := y,,, ., (5)(7 ® ) doesn’t belong
to I'; indeed, if p; # po, o doesn’t vanish at p,, and if p; = p,, it vanishes at p; with order
exactly 1. Since the section y,, ., (r)(8 ® a) does not vanish at py, it is not contained in

the linear span of I and o. Thus
dim I'm(pe 4w, (B)) = dimD + 2.

Thus s, ., (E) is surjective in the case e = 2.

(b) Let now ¢ > 3. We use induction on e. We fix a point p contained in the support
of the divisor F, and set F' := F — p. We check that w4(FE) is globally generated, By
inductive hypothesis the line bundle w4 (F') is globally generated, hence so is w4 (F) outside
p. Since dim H'(w4(F)) = 0, Riemann-Roch gives dim H°(w4(FE)) > dim H(wa(F)). Thus
w4 (F) has a section not vanishing at p. Hence w4 (F) is globally generated. We define two
inclusions: ¢ : wa(F) — wa(F) and ' : wa?(F) — wa?(E), which induce the linear maps
te t H(wa(F)) — H%wa(E))and t, : HO(wa?(F)) — H°(wa?(E)), both having corank 1.

We consider the diagram

HO(wa) © HY(wA(F)) 2% HO(w4) ® HO(wa(E)) (1.29)
i”wAva(F) \LMMAMA(E)
HO(w(F)) ——= HO(w,?(E))

By the inductive hypothesis the map p,,, ., ,(r) is surjective. Thus the linear subspace
w,(Im(ftes, o, (r))) has codimension 1 in H%(wa?(E)). Fix n € H°(w4) not vanishing at p
and 7 € H°(wa(E)) not vanishing at p. Since i, o, (g) (7 ® 7) does not vanish at p, it
doesn’t belong to u! (Im(p , w,(r)))- Thus p,, o, (E) is surjective. O

1.4.2 k-normality in higher degree

We are now interested in studying the surjectivity of higher order maps, i.e. of

Sym* (H"(wx)) — H"(wk)

65



when k > 3, but since Sym*(H®(wx)) is a quotient of H°(wx)®*, we can equivalently study
the surjectivity of

H®(wx)®* — HO(W).
We observe that by applying part (b) in the proof of theorem 1.4.14 we get the following:

Proposition 1.4.15. Let A be a reduced, connected and Gorenstein curve such that w4 is
globally generated. Fix a globally generated R € PicA such that H'(R) = 0 and p,, r is

surjective. Let D C Aqy, be any effective divisor. Then p,, r(p) is surjective.
As a corollary of theorem 1.4.14, we get the following result.

Corollary 1.4.16. Let A be a reduced, connected and Gorenstein projective curve such
that wy is very ample and p,,, is surjective. Let E C Ay, be an effective divisor such that

deg I > 2. Then the maps Iy o ok (k) OT€ surjective for all k > 2.
We are now going to give some definitions in order to state a result;

Definition 1.4.17. A simple (r—1)-secant is a configuration of r—1 smooth points p;,...,p.—1
on a curve X C PV, spanning a P"~2 and such that X N"P"~2 = {p;,...,p,_1} as schemes.

Definition 1.4.18. Let R be a globally generated line bundle on a curve X, inducing a
map hg : X — P7, r := dim H(R) — 1, which is birational onto the image. A good (r — 1)-
secant of R is a set S := {p1,...,p,_1} such that dim HO(R(— Y/_! p;)) = 2, R(— 31—} ps)
is still globally generated, and hg is an embedding at each p;.

We recall the following result from [B01]

Lemma 1.4.19 (Ballico). Let X be a one-dimensional projective locally Cohen-Macaulay
scheme with dim H°(Ox) = 1 and R € PicX globally generated and such that dim H°(R) =
2. Then the multiplication map

Hor : Hwx) ® HO(R) — H(wx ® R)
is surjective.

Lemma 1.4.20. Let A be a connected, projective curve, L, M € PicA, M globally generated,
and such that dim H°(M) = 2 and dim H*(L ® M) = 0. Then py, yr is surjective.

Proof. Obvious by the base point free pencil trick. O

Proposition 1.4.21. Let A be a connected, Gorenstein curve with w, globally generated,
R € PicA with R globally generated, with hg birational onto its image and with a good

(r — 1)-secant, where r := h°(R) — 1. Then the maps p,, g are surjective for all k > 1.

Proof. Fix a good (r—1)-secant set S = {q1,...,¢-—1}. Thus thelinear span (hr(q1),...,hr(¢r-1))
has dimension r—2, hg(A)N(hr(q1), .-, hr(¢r—1)) = {hr(q1),...,hr(g-—1)} as schemes and

he' ({he(@r), .- he(e—1)}) ={a. -, ar—1}-
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Set M := R(—S). We start by examining the case £k = 1. Since w4 is globally generated,
we have A # P'. Since the map hy induced by R is birational onto its image, we have
r > 2. The first condition on the good (r — 1)-secant points gives h°(M) = 2. The last two
conditions give that M is globally generated. Since h°(R) = h°(M) + r — 1, we also get
hO(M(q1)) = h°(M)+1. Thus there is n € H°(M(q;)) such that n(q;) # 0. The factorization
shown in the following diagram

H(wa) ® H(M) H%(wa ® M)

| :

H(wa) ® HO(M(q1)) —= H(wa @ M(q1))

shows that the image of ¢ contains a copy of H°(ws4 ® M) as a hyperplane. Since ¢;
is not a base point for M and w, is globally generated, there is 0 € H(w4) ® HY(M(q1))
that doesn’t vanish on ¢;. Hence the image of ¢ via ¢ doesn’t vanish on ¢;, and we get the
surjectivity of . Repeating this argument for all the points ¢1, ..., ¢-_1 adding them one
by one we get that p.,, r is surjective.

Now we assume k > 2 and use induction on k. The inductive assumption gives the
surjectivity of the map H®(w,) ® HO(R¥1) — H%w4 ® RF~1). We use the following

commutative diagram:

HO(wa) @ HO(RE-1) ® HO(RF) —2 HO(w4 ® RF-1) ® HO(R)

l |

H%wa) ® HO(R) H%wa ® RF)

It suffices to prove that ¢ is surjective, indeed, if it is, then ¢ o 4 is surjective, hence
must be surjective. We proved that M is globally generated and dim H°(M) = 2. Moreover
we notice that

wa®@RFY @ MY =wy ® RF2(S).

Since k > 2 and S # (), we have that dim H' (w4 ® RF=2(S) = 0. The base point free pencil
trick applied to wa ® R*~! and M gives the surjectivity of y1,, & rr—1,0- By Riemann-Roch
theorem we get that

dim H%(w, ® R*) = dim H(ws @ R*' @ M) + 4S.
Arguing as in case k = 1 we get that the map ., g is surjective. O

Definition 1.4.22. We say that a line bundle L on a curve X is k-normally generated if
the map
Ho(wx)®k . H()(wl)c()

is surjective.
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For instance “quadratically normal” means “linearly normal” plus “2-normally gener-
ated”.

Proposition 1.4.23. Let X be a connected, reduced, Gorenstein projective curve with pla-
nar singularities and wx very ample. Assume that X = AU B, with A, B connected and
smooth at D := AN B. Fix k > 3;if

(1) wx is (k — 1)-normally generated,

(it) Hog s |4 is surjective for 1 < j <k,
(iii) wx|p is j-normally generated for 1 < j <k,
then wx is k-normally generated.

Proof. The proofis similar to the one of proposition 1.4.1; we just change notation slightly,
denoting the multiplication maps in an easier way. We notice that in order to prove that
the map

HO(wx)®* 5 HO ()
is surjective, by factorizing we get
HO(wx) ® HO (wx) #4128 B (wx) @ HO(Wi ) & HO(wh),

so it suffices to see that the map yi is surjective. We consider the diagram

HO(wy) ® HO (WS 1) — = HO(Wk) (1.30)

K |
HOwx|p) @ HOWh | 5) ——> HO(w | )

where the map 1 = Kot We know that ¢ is surjective by (iii), and if

wx ,w

(a) 1 o pis surjective,
(b) Kery) C Impi,

then by linear algebra we get that i is surjective. In order to prove (a), by (1.30) we
equivalently show that the map ¢ o 7 is surjective. We claim that 7 is surjective. Indeed,

since wx is locally free we have the exact sequence
0—-IpR®wx — wx —>UJX‘B—>O.

If we tensor by w2, we get

k—1

k—1 k—2
0-IpRuwy —wy —wx|p@uwy

— 0,
which is equivalent to

k—2 k—1 k—1
0> wa®uwy “ 2wy —wy |p—0,
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The corresponding long exact sequence in cohomology is
0= Howa @l ) — HOWK ) = HOWY M p) = 'l (wa @k ) —
— H' (W) = H' (W ) — -

Now we consider H' (w4 ® w’}{z); we have that wy ®w’§{2 =wy ®w’§{2|A =wy ®w’j{2((kz —
2)D), hence by lemma 1.4.3 we obtain that H'(ws ® w*™2((k — 2)D)) = 0, therefore the
map

HOWY ) — HOWY )
is surjective, and we get (a).

Now we want to prove (b). We notice that

Kery) = H(Ip ® wh)

and set
M= mHO(X,IBQan)@HO(w’;;I)'

We have the following commutative diagram:

H(Ip ® wx) ® HOWS ) —— H(Tp ® wxk) (1.31)

AP

wp,w
HOwa) @ HO(wh 1 4) ——" HO(wq @ Wkt 4)
Now we have that Z7g ® wx = w4 and applying the previous argument to A rather than
to B, we obtain that

HO(wy) — HO (WY |a)

is surjective, hence so is v in (1.31). Applying hypothesis (ii) we have that p is surjective,

hence as in the proof of 1.4.1, we get that Kery) = Imy C Imp. O

We notice that when k& grows, the hypothesis in proposition 1.4.23 can be simplified:

Proposition 1.4.24. Let X be a connected, reduced, Gorenstein projective curve of genus
g, With wx globally generated. Fix k > 4 and assume that wx is (k—1)-normally generated.

Then wx is k-normally generated.

Proof. As in the proof of 1.4.23, looking at the factorization

wy k1
X Wy

HO(wx) @ H(wx)®F 1 L2220 10wy ) @ HO(w ) HO (W),

by hypothesis it suffices to prove that Foye oo is surjective. We use Proposition 8 in [F07]
in the following way: we take F := wy and H := w% ', so we have that H°(F) is globally

generated. Moreover we have that

HHeF ') =HWy?) =0

if k > 4, so we get that the Hg b= is surjective. O
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1.4.3 Applications
In the sequel we are going to study some cases where we can apply our results.

Lemma 1.4.25. Let Z be a connected and Gorenstein curve such that wz is globally gen-
erated. Let D C Zy, be an effective Cartier divisor such that deg(D) > 2. Then wz(D) is
globally generated.

Proof. Since wz(D) is a line bundle, it is globally generated if and only if for every ¢ € Z
there is s € H(wz(D)) such that s(q) # 0. Since wy is assumed to be globally generated
and D is effective, the sheaf w (D) is globally generated outside the finitely many points
appearing in supp(D). Fix p € supp(D) and set D' :=7,® D. Since p € X,,,,, D' is a Cartier
divisor of degree deg(D) — 1. Moreover, since p € supp(D), D’ is effective. Thus Lemma
1.4.3 gives h'(wz(D’)) = 0. Riemann-Roch gives h°(wz(D)) = h(wz(D’)) + 1. Thus there
is s € H(wz(D)) such that s(p) # 0. O

Corollary 1.4.26. Let X be a connected reduced curve with two irreducible non-rational
components Cy,Cy meeting at planar singularities for X and both smooth at Cy N Cs; as-

sume that wx is very ample. Then X is canonically embedded is projectively normal.

Proof. First of all we have to prove that X is quadratically normal, so let us use the set-
up of proposition 1.4.1, and set A = C;, B = C;. We look at hypothesis (i) and (ii) of
the theorem; hypothesis (i) is verified by applying 1.4.13 to C;. Indeed in our situation
R = wx]|c,,1.e. R =wc, (D) where D is the divisor on Cy and C; corresponding to C; N Cs.
Hence by lemma 1.4.25 we have that R is globally generated and birational onto the image,
and we get (i). Concerning (ii), it suffices to apply 1.4.11, and then by 1.4.1 we obtain that
X 1is quadratically generated. Now we want to study the 3-normal generation of X. So
we look at the hypothesis of 1.4.23: we know that wx is quadratically normal, and of
course (iii) holds by lemma 1.4.11. So it remains to prove (ii): but this is a consequence
of corollary 1.4.16, indeed we have that p,,, is surjective since A is irreducible and hence
projectively normal, moreover, being wyx very ample, A- B > 3. Now when k > 4 we just
apply 1.4.24 and get the conclusions. O

Remark 1.4.27. We observe that in the case of nodal connected curves with two non-
rational irreducible components, the corollary above says that if the two components C;
and C; meet at least at 3 points, then X = C; U C> canonically embedded is projectively
normal. The corollary leaves out the curves having at least one P! as a component, and
in particular binary curves (i.e. a curve X is binary if it is composed of two P'’s meeting
at g + 1 points where g is the genus of X), but for the latter special class of curves we can
use [S91] (see 1.4.30) and easily get projective normality. Concerning the class of curves
X = C, UCy with C; # P! and Cy = P!, we get the projective normality by applying
the same proof as in corollary 1.4.26, once we denote by A the component C,. Indeed the
hypothesis C; # P! is used only when we apply 1.4.13 to A.

70



We can generalize the previous result:

Corollary 1.4.28. Let X be a connected reduced Gorenstein curve with wx very ample and
with planar singularities. Assume that X = AU B with A # P! irreducible and let B be a
connected curve. Let A and B be smooth at AN B. Then wx is k-normally generated for any
k> 2.

Proof. The proof is straightforward once we notice that we can apply 1.4.13 to A and by
Theorem 1 we get quadratic normality of X; for £ = 3 we apply 1.4.23 since both 1.4.11 for
B and 1.4.13 for A hold, and when k > 4 we apply 1.4.24. O

Corollary 1.4.29. Let X be a connected reduced Gorenstein curve with wx very ample and
with planar singularities. Assume that X = A U B with A as in theorem 1.4.14 and let B
be a connected curve. Let A and B be smooth at AN B. Then X canonically embedded is

projectively normal.
Proof. The proof is as in corollary 1.4.28, we just apply theorem 1.4.14 to A. O
We give now an example; before doing this, we recall an important result from [S91]:

Theorem 1.4.30 (Schreyer). Let X C P9~! be a canonical curve of genus g. If X has a

simple (g — 2)-secant, then X is projectively normal.

Schreyer’s theorem can be used in the most general setting once one is able to verify
the existence of a simple (g — 2)-secant. In [S91]pp.86 gave an example of a reducible
canonically embedded curve admitting no simple (g — 2)-secant. In the following example

we show that our theorem applies to that case.

Example 1.4.31. Let X = X; UX,UX3U Xy, with X; smooth of genus g; and such that the
components intersect in 6 distinct points p;; = X; N X that are ordinary nodes for X. Then
X has genus g = g1 + g2+ g3 + g4 + 3. We have that wx is a very ample line bundle; if g; = 0
for every i we have a graph curve, and it is projectively normal, as we see in [BE91]. Hence
we can assume g; # 0 for some 7, say g; > 0. Set A := X;, B := X, U X3 U X,. Since A # P!
we can apply 1.4.13 and get that the multiplication map p,,, .|, is surjective. Sincethe
conditions on the degree of wx|p in 1.4.10 are satisfied, the map |, is surjective and

we can apply proposition 1.4.1 and get that X is quadratically normal.

1.5 Projective normality of binary curves

Definition 1.5.1. A reduced nodal curve X is called a binary curve if X = C; U Cy where
C; = P! and the number of nodes of X is § = g + 1, where g is the arithmetic genus of X.

Hereafter we recall some properties of binary curves that we will use several times; for

the details we refer the interested reader to [C5].
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Definition 1.5.2. Let X be a binary curve of genus g > —1. A multidegree d = (d;,d>)
with d = |d| = d; + d> is said to be balanced on X if fori = 1,2,

d=g=1_, d+g+1

5 5 (1.32)

We say that L € Picd(X ) is balanced if degL is balanced on X, and we say that a balanced
degree d € BY(X), where B?(X) denotes the set of the balanced degrees on X. Let us
introduce the dualizing sheaf wy on X; it is a line bundle on X, such that its restriction
we, to C; has degwe, = g — 1 and its total degree has the following important property,

recovered from the basic inequality in [C1]:
d is balanced < d + ndegwy is balanced. (1.33)

In the sequel we are going to recall briefly some classical results which still hold for binary
curves, namely [C5, Proposition 11], and [C5, Proposition 19]:

Theorem 1.5.3 (Riemann’s theorem). Let X be a binary curve of genus g, and let d > 2g—1.
(i) For every balanced L € Pic®(X) we have h°(L) = d — g + 1.
(ii) For every [L] € P% we have h°(L) = d — g + 1.

Theorem 1.5.4. Let X be a binary curve; its dualizing sheaf, wy, is very ample if and only

if X is non-hyperelliptic.

In order to prove an analogous version of Max Noether’s theorem for binary curves, we
follow the proof leading to Castelnuovo’s bound, (see [ACGH]), which is basically a conse-
quence of the General Position Theorem. This theorem in general fails when the curve X is
reducible, but in our setting it still holds: indeed when X is binary and embedded in P!
via the dualizing sheaf wx, the two components C;,C5 are such that we, = Opi(g — 1),
hence both C; and C, are embedded in P9~! as non-degenerate rational normal curves
meeting each other at § = g + 1 points. This implies that the general hyperplane of P9~!

will cut on C; an effective divisor of degree g — 1, whose points are linearly independent.

Proposition 1.5.5 (General Position Theorem for Canonical Binary Curves). Let X C
P91 be a binary curve of genus g embedded via wx; then a general hyperplane meets X in

2g — 2 points, any g — 1 of which are linearly independent.

Proof. Let us consider the canonical embedding of X via wy, X — P97!, so that both C;
and C span the ambient space. Let us take g — 4 general points p1,...,ps—4 on (say) Ci,
and consider the projection from their span A = (p1,...,py—4), which is a linear subspace
of P9~! of dimension g — 5 since C; is a rational normal curve of degree g — 1. Let us
denote the projection by 74 : P9~! —-» P3, then the images in P? of (1, C; are the curves

Ci' = 75 (C1), which is a twisted cubic, and Cy’' = 7, (C5), which is a curve of degree g — 1.

Let us notice that both of them are non-degenerate curves in P3. Now we want to show
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that if the statement of the theorem fails in P9~!, then it also fails in P3. Indeed, if it fails
in P9~1, this means that for every hyperplane section of X there exist g — 1 points which
are linearly dependent, hence they span a P9~3; now we consider again the projection of
X from g — 4 general points on C}, and we obtain that the projection of the P9~2 from A is
a line in P3, hence the images of the g — 1 points are collinear, so, in the hypothesis that
g > 4 we get that there exists a triplet of dependent points out of a hyperplane section
in P3. Now we claim that the statement of the theorem in P? is equivalent to saying that
there are at most oo! trichords to X, and this is in turn equivalent to the statement: not
every pair of points of X \ X;,, lie on a trichord. We prove the equivalence of the last
two statements as in [ACGH, Lemma, p.110]. Let U be the open set in (P9~1)* of the
hyperplanes transverse to X, and let us denote by {a;,b;} = v~(n;) for any node n; of X,
where v is the normalization map, and let C;, = C; \{ai1,...,as} and Cy = Cy \{b1,...,bs5}.
Consider the set

J:={(p1,p2, H) : p1,p2 € H and p; + py is a trichord} C X x X x U,

where now U C (P3)*, and abusing notation X denotes its projection. Since C;" and C,’ are
non-degenerate irreducible curves in P? and the General Position Theorem (see [ACGH])
holds for both of them, we can consider the open subset of J, Jy = {(p1,p2, H) : p1,p2 €
H and p1 + ps is a trichord} C €} x C} x U. Now C} x C} is irreducible and the fiber di-
mension of J, — C; x Cy is always (g — 1) — 2, then, as in [ACGH, Lemma, p.110], we have
that the surjectivity of Jy, — U is equivalent to dim Jy > g — 1, which is in turn equivalent
to the surjectivity of J, — C; x C,. This shows the equivalence of the two statements.
In particular, saying that not every pair of points of X \ X,;,, lie on a trichord, implies
that not every pair of points of X lie on a trichord. Then let us suppose by contradiction
that every secant of X is trichord: arguing as in [ACGH, Lemma, p.110] we see that if the
statement is false, then every two tangent lines meet in a point. But this is clearly false,
indeed if we take two tangent lines to C, since it is a rational normal curve spanning the

whole P3, they can be skew lines and not meet. O
In what follows we are going to state Max Noether’s theorem for binary curves:

Definition 1.5.6. Let X C P" be any embedded curve; we say that X is linearly normal if
the linear series of hyperplane sections is complete, i.e. if h°(X, Ox (1)) = r + 1. Moreover
we say that X is projectively normal if the linear series cut out on X by hypersurfaces of
degree [ is complete for every [ > 1, i.e. if the natural map H°(P", Op- (1)) — H°(X,Ox(1))

is surjective.

Proposition 1.5.7. If X is a non-hyperelliptic binary curve, its canonical model is projec-

tively normal.

Proof. If X is a non-hyperelliptic binary curve, by 1.5.4 we know that the dualizing sheaf

wx gives an embedding ¢ of X in P9~!. Let us denote by X. C P9~ the canonical model
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of X, such that X - X,. From definition 1.5.6 we immediately see that X_ is linearly
normal since it’s embedded via a complete linear series. We want to show that X, is
projectively normal. Let H be a general hyperplane in P9~! so that I'. = X.NH is a general
hyperplane section on X... For [ > 1 consider the linear series |w| = |¢*Ox, (I)| on X and
its subseries 2, cut out on X by hypersurfaces of degree I. We denote by oy = dim |w|
and by 5, = dim 2. Of course we have that, if I" is the pullback to X of the hyperplane
section I'c, 2,1 + T C 2;; hence 2;(-T') C %,_; and [3; — {conditions imposed by I'. on
hypersurfaces of degree [ in P!} > 3,_;. Notice that the number of conditions imposed
by I'. on hypersurfaces of degree [ in P! is equal to the number of conditions imposed
by I'. on hypersurfaces of degree | contained in the hyperplane H that cuts I', on X.. Let
us call n; this number, then applying proposition 1.5.5 and [ACGH, Lemma p.115], we get
that
n; > min{2g — 2,1(g — 2) + 1}.

So 0 — B1—1 > ny > min{2g — 2,1(g — 2) + 1}; following the proof leading to [ACGH, Castel-
nuovo’s bound p.115], if we set
293 _ 9
m = 2| %

g = 50 = 0)
ap = B = g-—1, (1.34)
ag > By > (g—-1)+2(¢9g—-2)+1=3g—4.

we get that

Now if we take |w%|, then degw} = 2degwx, hence by (1.33) we can apply theorem 1.5.3,
and we get that

g =degw}k —h'(X,w%) +1=2degwx —as <4g—4—3g+4=g.

Therefore oy, = 3g — 4, and o, = [ for any 1 < k£ < 2; we are now going to prove that
a; —ay—1 = min{2g — 2,1(g — 2) + 1} for any | > 1. It clearly holds for | < 2; let now [ > 3:
continuing (1.34) we have that a3 > 83 > 59 — 6, but we also have by theorem 1.5.3 that
a3z < 5g — 6, whence a3 = (35. Iterating we get that oy — a;_1 = 5, — 5;_1 = 29 — 2 for any
[ > 3, so in particular this implies that «; = g; for any [ > 1. This in turn is equivalent to

saying that |w% | = 2, i.e., the map
HO (P97, Ops-1 (1)) — H(Xe, Ox. (1))

is surjective for any I, so X, is projectively normal. O
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Chapter 2

On the tropical Torelli map
(with M. Melo and F. Viviani)

2.1 Preliminaries

2.1.1 Stacky fans

In order to fix notations, recall some concepts from convex geometry. A polyhedral cone
= is the intersection of finitely many closed linear half-spaces in R™. The dimension of =
is the dimension of the smallest linear subspace containing =. Its relative interior Int Z is
the interior inside this linear subspace, and the complement = \ Int E is called the relative
boundary 0Z. If dimE = k then 0= is itself a union of polyhedral cones of dimension
at most k£ — 1, called faces, obtained by intersection of = with linear hyperplanes disjoint
from Int =. Faces of dimensions k£ — 1 and 0 are called facets and vertices, respectively. A
polyhedral cone is rational if the linear functions defining the half-spaces can be taken
with rational coefficients.

An open polyhedral cone of R" is the relative interior of a polyhedral cone. Note that
the closure of an open polyhedral cone with respect to the Euclidean topology of R" is a
polyhedral cone. An open polyhedral cone is rational if its closure is rational.

We say that a map R" — R"™ is integral linear if it is linear and sends Z" into Z™, or
equivalently if it is linear and can be represented by an integral matrix with respect to

the canonical bases of R” and R™.

Definition 2.1.1. Let {X; C R™*},cx be a finite collection of rational open polyhedral
cones such that dim X; = m;. Moreover, for each such cone X, C R™*, let G\ be a group
and py : Gy, — GL,,, (Z) a homomorphism such that p,(G},) stabilizes the cone X} under
its natural action on R™*, Therefore G}, acts on X, (resp. X}), via the homomorphism py,
and we denote the quotient by X} /G}. (resp. X;/G1), endowed with the quotient topology.
A topological space X is said to be a stacky (abstract) fan with cells { X\ /Gy }rex if there
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exist continuous maps oy, : X /G, — X satisfying the following properties:
(i) The restriction of oy to X /Gy is an homeomorphism onto its image;
(i) X =[], ar(Xk/Gr) (set-theoretically);

(iii) For any j, k € K, the natural inclusion map ay (X /Gr) N (X;/G;) — a;(X;/G;) is
induced by an integral linear map L : R™* — R™J, i.e. there exists a commutative

diagram

(X /Ch) N 0y (X /Gy) > (K /Gy) ~— T—=R™  (2.1)

0,(X/G) =— K —=R™.

By abuse of notation, we usually identify X, /G with its image inside X so that we usually
write X = [[ X /Gy to denote the decomposition of X with respect to its cells X /Gy.

A stacky subfan of X is a closed subspace X’ C X that is a disjoint union of cells of X.
Note that X’ inherits a natural structure of stacky fan with respect to the sub-collection
{Xk/Gk}rex of cells that are contained in X'.

The dimension of X, denoted by dim X, is the greatest dimension of its cells. We say
that a cell is maximal if it is not contained in the closure of any other cell. X is said to be
of pure dimension if all its maximal cells have dimension equal to dim X. A generic point
of X is a point contained in a cell of maximal dimension.

Assume now that X is a stacky fan of pure dimension n. The cells of dimension n — 1
are called codimension one cells. X is said to be connected through codimension one if
for any two maximal cells X /Gy and X/ /Gy one can find a sequence of maximal cells
Xio/Gro = Xk/Gry Xiy/Grys -+ Xk, /Gr, = Xk /Gy such that for any 0 < i < r — 1 the
two consecutive maximal cells X, /Gy, and X, , /Gy, , have a common codimension one

cell in their closure.

Definition 2.1.2. Let X and Y be two stacky fans with cells { X} /G }rex and {Y;/H,} cs
where {X;, C R™* },cx and {Y; C R }jet, respectively. A continuous map 7 : X — Y is
said to be a map of stacky fans if for every cell X;,/G}, of X there exists a cell Y;/H; of Y
such that

1. W(Xk/Gk) C YJ‘/HJ‘;

2. 7 : X/Gy — Y;/H; is induced by an integral linear function Ly ; : R™ — R™, i.e.

there exists a commutative diagram

Xk /G <— X),——R"™* (2.2)

Y;/Hj <~— Y;"——Rmj
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We say that 7 : X — Y is full if it sends every cell X; /G, of X surjectively into some cell
Y;/H; of Y. We say that 7 : X — Y is of degree one if for every generic point Q € Y;/H; CY
the inverse image 7! (Q) consists of a single point P € X, /G, C X and the integral linear
function Ly, ; inducing 7 : X} /G — Y;/H; is primitive (i.e. L,;;(Zm.;) C Z™*).

Remark 2.1.3. The above definition of stacky fan is inspired by some definitions of poly-
hedral complexes present in the literature, most notably in [KKMS73, Def. 5, 6], [GMO0S8,
Def. 2.12], [AR10, Def. 5.1] and [GS07, Pag. 9].

The notions of pure-dimension and connectedness through codimension one are well-

known in tropical geometry (see the Structure Theorem in [McLS]).

2.1.2 Graphs

Here we recall the basic notions of graph theory that we will need in the sequel. We follow
mostly the terminology and notations of [Di97].

Throughout this paper, I" will be a finite connected graph. By finite we mean that I" has
a finite number of vertices and edges; moreover loops or multiple edges are allowed. We
denote by V(I') the set of vertices of I and by E(I") the set of edges of I". The valence of a
vertex v, val(v), is defined as the number of edges incident to v, with the usual convention
that a loop around a vertex v is counted twice in the valence of v. A graph I is k-regular if
val(v) = k for every v € V(T).

Definition 2.1.4. A cycle of I" is a subset S C E(I") such that the graph I'/ (E(T") \ 5),
obtained from I" by contracting all the edges not in S, is (connected and) 2-regular.

If {V1,V5} is a partition of V(T'), the set E(V;,V3) of all the edges of T" with one end in
V1 and the other end in V5 is called a cut; a bond is a minimal cut, or equivalently, a cut
E(I'1,T2) such that the graphs I'; and I'; induced by V; and V4, respectively, are connected.

In the Example 2.1.18, the subsets {f1, f2, fs} and {f4, f5} are bonds of I's while the

subset {f1, f2, f3, f1, f5} is a non-minimal cut of Ts.

2.1.5. Homology theory
Consider the space of 1-chains and 0-chains of I with values in a finite abelian group
A (we will use the groups A = Z,R):

Cl (F, A) = @EEE(F)A - € Co(F, A) = @’UEV(F)A - U.

We endow the above spaces with the A-bilinear, symmetric, non-degenerate forms uniquely
determined by:

(e,€') := b er (0,0") == 0y,

where §_ _ is the usual Kronecker symbol and e, ¢’ € E(I'); v,v’ € V(I'). Given a subspace
V C C4(T, A), we denote by V- the orthogonal subspace with respect to the form (,).
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Fix now an orientation of I and let s,¢t : E(I') — V(T') be the two maps sending an

oriented edge to its source and target vertex, respectively. Define two boundaries maps

a: Cl(F,A) — Co(P,A) O C()(F,A) — Cl(F,A)
e t(e) — s(e) v Z e— Z e.
e:t(e)=v e:s(e)=v

It is easy to check that the above two maps are adjoint with respects to the two symmetric
A-bilinear forms (,) and (, ), i.e. (0(e),v) = (e,d(v)) for any e € E(T") and v € V(I').

The kernel of 0 is called the first homology group of I" with coefficients in A and is
denoted by H;(I', A). Since 9 and § are adjoint, it follows that H;(T', A)* = (5). It is
a well-known result in graph theory that H, (T, A) and H,(T, A)' are free A-modules of
ranks:

rankaHq (I, A) =1 — #V(I) + #E(),
rank A H; (T, A)* = #V(T) — 1.

The A-rank of H,(T', A) is called also the genus of " and it is denoted by ¢(T"); the A-rank
of H,(T', A)~ is called the co-genus of ' and it is denoted by ¢*(T').

2.1.6. Connectivity and Girth

There are two ways to measure the connectivity of a graph: the vertex-connectivity (or
connectivity) and the edge-connectivity. Recall their definitions (following [Di97, Chap.
3D.

Definition 2.1.7. Let & > 1 be an integer.

1. A graph T is said to be k-vertex-connected (or simply k-connected) if the graph ob-
tained from I' by removing any set of s < k — 1 vertices and the edges adjacent to

them is connected.

2. The connectivity of T', denoted by k(T'), is the maximum integer k such that T is
k-connected. We set k£(I') = +o0 if T" has only one vertex.

3. A graph I is said to be k-edge-connected if the graph obtained from I"' by removing
any set of s < k — 1 edges is connected.

4. The edge-connectivity of T', denoted by A(I"), is the maximum integer k such that I is
k-edge-connected. We set A\(I') = +o0 if I' has only one vertex.

Note that A\(I") > 2 if and only if I has no separating edges; while A\(I") > 3 if and only
if I' does not have pairs of separating edges.

In [CV1], a characterization of 3-edge-connected graphs is given in terms of the so-
called C1-sets. Recall (see [CV1, Def. 2.3.1, Lemma 2.3.2]) that a C'l-set of I is a subset
of E(T') formed by edges that are non-separating and belong to the same cycles of I'. The
C1-sets form a partition of the set of non-separating edges ([(CV1, Lemma 2.3.4]). In [CV1,
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Cor. 2.3.4], it is proved that I' is 3-edge-connected if and only if I" does not have separating
edges and all the C1-sets have cardinality one.
The two notions of connectivity are related by the following relation:

E(T) < AT) < 4(T),

where §(I') := min,cy (r){val(v)} is the valence of I".
Finally recall the definition of the girth of a graph.

Definition 2.1.8. The girth of a graph T', denoted by girth(T'), is the minimum integer &
such that I" contains a cycle of length k. We set girth(I') = 400 if I has no cycles, i.e. if it

is a tree.

Note that girth(I') > 2 if and only if I has no loops; while girth(I') > 3 if and only if T
has no loops and no multiples edges. Graphs with girth greater or equal than 3 are called

simple.

Example 2.1.9. For the graph I'; in the Example 2.1.18, we have that k(T";) = 1 because v
is a separating vertex. The Cl-sets of I'; are {e1, 2,3} and {e4, e5}. We have that A\(T";) =
2 because I'; has a C'1-set of cardinality greater than 1 and does not have separating edges.
Moreover, girth(I'y) = 2 since {e4, e5} is the smallest cycle of T';.

The Peterson graph I' depicted in Figure 2.6 is 3-regular and has k(") = \(T") = 3.
Moreover, it is easy to check that girth(I") = 5.

2.1.10. 2-isomorphism
We introduce here an equivalence relation on the set of all graphs, that will be very

useful in the sequel.

Definition 2.1.11 ([W33]). Two graphs I} and I's are said to be 2-isomorphic, and we
write 'y =, I's, if there exists a bijection ¢ : F(I';) — E(T'2) inducing a bijection between
cycles of I'y and cycles of I's, or equivalently, between bonds of I'y and bonds of I'>. We
denote by [I']2 the 2-isomorphism class of a graph T'.

This equivalence relation is called cyclic equivalence in [CV1] and denoted by =.y..

Remark 2.1.12. The girth, the connectivity, the edge-connectivity, the genus and the co-
genus are defined up to 2-isomorphism; we denote them by girth([[']2), k([T']2), A([I']2),

9([T'l2) and g* ([I']2).

As a consequence of a very well known theorem of Whitney (see [W33] or [092, Sec.
5.3]), we have the following

Fact 2.1.13. If I is 3-connected, the 2-isomorphism class [I'] contains only I'.
In the sequel, graphs with girth or edge-connectivity at least 3 will play an important

role. We describe here a way to obtain such a graph starting with an arbitrary graph T'.
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Definition 2.1.14. Given a graph T, the simplification of I is the simple graph I'Si™ ob-
tained from I" by deleting all the loops and all but one among each collection of multiple
edges.

Note that the graph I''™ does not depend on the choices made in the operation of
deletion. A similar operation can be performed with respect to the edge-connectivity, but

the result is only a 2-isomorphism class of graphs.

Definition 2.1.15. [CV1, Def. 2.3.6] Given a graph I', a 3-edge-connectivization of I is a
graph, denoted by I'?, obtained from I" by contracting all the separating edges and all but
one among the edges of each C1-set of T'.

The 2-isomorphism class of '3, which is independent of all the choices made in the
construction of I'® (see [CV1, Lemma 2.3.8(iii)]), is called the 3-edge-connectivization class
of ' and is denoted by [I'3],.

2.1.16. Duality
Recall the following definition (see [Di97, Sec. 4.6]).

Definition 2.1.17. Two graphs I'; and I'; are said to be in abstract duality if there exists
a bijection ¢ : E(T'y) — FE(T'2) inducing a bijection between cycles (resp. bonds) of I'; and
bonds (resp. cycles) of I's. Given a graph I', a graph IV such that I and I are in abstract
duality is called an abstract dual of I and is denoted by I'*.

Example 2.1.18. Let us consider the graphs

\,/ = .@7.\,/
/ Is fs
The cycles of 'y are C; := {e1,e2,e3} and Cy := {ey4, €5}, while the bonds of 'y are B; :=
{f1, f2, f3} and By := {fu, fs}. The bijection ¢ : E(I';) — E(T'2) sending e; to f; for i =
., b5 sends the cycles of I'; into the bonds of I'y; therefore I'y and I'; are in abstract

\ f1 fa
/\ F2 /‘\w/‘”\

duality.

Not every graph admits an abstract dual. Indeed we have the following theorem of
Whitney (see [Di97, Theo. 4.6.3]).

Theorem 2.1.19. A graph I has an abstract dual if and only if T is planar, i.e. if it can be
embedded into the plane.

It is easy to give examples of planar graphs I admitting non-isomorphic abstract duals
(see [092, Example 2.3.6]). However it follows easily from the definition that two abstract
duals of the same graph are 2-isomorphic. Therefore, using the above Theorem 2.1.19, it
follows that abstract duality induces a bijection

{Planar graphs} _, «— {Planar graphs},_,

(2.3)
[Tz — [I5 == [,
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Moreover, it is easy to check that the duality satisfies:

girth([T]2) = A([[3) g*(I)2) = 9(([T3) k() = k(TT5).  @4)

2.1.3 Matroids

Here we recall the basic notions of (unoriented) matroid theory that we will need in the

sequel. We follow mostly the terminology and notations of [092].

2.1.20. Basic definitions
There are several ways of defining a matroid (see [092, Chap. 1]). We will use the
definition in terms of bases (see [092, Sect. 1.2]).

Definition 2.1.21. A matroid M is a pair (E(M),B(M)) where E(M) is a finite set, called
the ground set, and B(M) is a collection of subsets of E (M), called bases of M, satisfying
the following two conditions:

() B(M) # 0;

(ii) If By, By € B(M) and = € B \ Bs, then there exists an element y € By \ B; such that
(Bi\ {z}) U{y} € B(M).

Given a matroid M = (E(M),B(M)), we define:

(a) The set of independent elements

I(M):={I C E(M) : I C B for some B € B(M)};

(b) The set of dependent elements

D(M) :={D c E(M) : E(M)\ D € I(M)};

(¢) The set of circuits

C(M):={C € D(M) : C is minimal among the elements of D(M)}.

It can be derived from the above axioms, that all the bases of M have the same cardi-
nality, which is called the rank of M and is denoted by r(1).

Observe that each of the above sets B(M), Z(M), D(M), C(M) determines all the others.
Indeed, it is possible to define a matroid M in terms of the ground set F(M) and each of
the above sets, subject to suitable axioms (see [092, Sec. 1.1, 1.2]).

The above terminology comes from the following basic example of matroids.

Example 2.1.22. Let F be a field and A an r x n matrix of rank r over F. Consider the
columns of A as elements of the vector space F", and call them {vy,...,v,}. The vector
matroid of A, denoted by M[A], is the matroid whose ground set is E(M|[A]) := {v1,...,vn}
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and whose bases are the subsets of E(M[A]) consisting of vectors that form a base of F".
It follows easily that Z(M[A]) is formed by the subsets of independent vectors of E(M[A]);
D(M|[A]) is formed by the subsets of dependent vectors and C(M[A]) is formed by the

minimal subsets of dependent vectors.
We now introduce a very important class of matroids.

Definition 2.1.23. A matroid M is said to be representable over a field F, or simply F-
representable, if it is isomorphic to the vector matroid of a matrix A with coefficients in F'.
A matroid M is said to be regular if it is representable over any field F'.

Regular matroids are closely related to totally unimodular matrices, i.e. to real matri-
ces for which every square submatrix has determinant equal to —1, 0 or 1. We say that two
totally unimodular matrices A, B € M, ,(R) are equivalent if A = X BY where X € GL4(Z)
and Y € GL,(Z) is a permutation matrix.

Theorem 2.1.24. (i) A matroid M of rank r is regular if and only if M = M|A] for a
totally unimodular matrix A € M, ,(R) of rank r, where n = #E(M) and g is a
natural number such that g > r.

(it) Given two totally unimodular matrices A, B € M, ,(R) of rank r, we have that M[A] =
M|B] if and only if A and B are equivalent.

Proof. Part (i) is proved in [092, Thm. 6.3.3]. Part (ii) follows easily from [092, Prop.
6.3.13, Cor. 10.1.4], taking into account that R does not have non-trivial automorphisms.
O

In matroid theory, there is a natural duality theory (see [092, Chap. 2]).

Definition 2.1.25. Given a matroid M = (E (M), B(M)), the dual matroid M* = (E(M*), B(M*))
is defined by putting F(M*) = E(M) and

B(M*) = {B* ¢ B(M*) = E(M) : E(M)\ B* € B(M)}.

It turns out that the dual of an F-representable matroid is again F-representable (see
[092, Cor. 2.2.9]) and therefore that the dual of a regular matroid is again regular (see
[092, Prop. 2.2.22]).

Finally, we need to recall the concept of simple matroid (see [092, Pag. 13, Pag. 52]).

Definition 2.1.26. Let M be a matroid. An element e € E(M) is called a loop if {e} €
C(M). Two distinct elements fi, fo € E(M) are called parallel if { f1, fo} € C(M); a parallel
class of M is a maximal subset X C E(M) with the property that all the elements of X
are not loops and they are pairwise parallel.

M is called simple if it has no loops and all the parallel classes have cardinality one.

Given a matroid, there is a standard way to associate to it a simple matroid.
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Definition 2.1.27. Let M be a matroid. The simple matroid associated to M, denoted by
M , is the matroid whose ground set is obtained by deleting all the loops of M and, for each
parallel class X of M, deleting all but one distinguished element of X and whose set of

bases is the natural one induced by M.

2.1.28. Graphic and Cographic matroids
Given a graph I, there are two natural ways of associating a matroid to it.

Definition 2.1.29. The graphic matroid (or cycle matroid) of T is the matroid M (T") whose
ground set is F(I") and whose circuits are the cycles of I". The cographic matroid (or bond
matroid) of T" is the matroid M*(I"') whose ground set is F(I") and whose circuits are the
bonds of T".

The rank of M (T") is equal to g*(T") (see [092, Pag. 26]), and the rank of M*(T') is equal
to g(T'), as it follows easily from [092, Formula 2.1.8].

It turns out that M (T") and M*(T") are regular matroids (see [092, Prop. 5.1.3, Prop.
2.2.22]) and that they are dual to each other (see [092, Sec. 2.3]). Moreover we have the

following obvious

Remark 2.1.30. Two graphs I'; and I'; are 2-isomorphic if and only if M (I';) = M (T'3)
or, equivalently, if and only if M*(T"y) = M*(I'3). Therefore, we can write M ([[']z) and
M*([T']2) for a 2-isomorphism class [I'],.

We have the following characterization of abstract dual graphs in terms of matroid
duality (see [092, Sec. 5.2]).

Proposition 2.1.31. Let I" and T'* be two graphs. The following conditions are equivalent:
(i) T and T'* are in abstract duality;
(ii) M(T) = M*(T*);
(iii) M*(T') = M(T™).
By combining Proposition 2.1.31 with Remark 2.1.30, we get the following
Remark 2.1.32. There is a bijection between the following sets
{Graphic and cographic matroids} «— {Planar graphs} —,.

Moreover this bijection is compatible with the respective duality theories, namely the
duality theory for matroids (definition 2.1.25) and the abstract duality theory for graphs
(definition 2.1.17).

Finally, we want to describe the simple matroid associated to a graphic or to a cographic

matroid, in terms of the simplification 2.1.14 and of the 3-edge-connectivization 2.1.15.

Proposition 2.1.33. Let I" be a graph. We have that
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(i) M(T) = M (™).

—_~—

(it) M*(T') = M*(I'3), for any 3-edge-connectivization I'® of T.

Proof. The first assertion is well-known (see [092, Pag. 52]).

The second assertion follows from the fact that an edge e € E(T") is a loop of M*(T") if
and only if ¢ is a bond of T, i.e. if e is a separating edge of I'; and that a pair f;, f> of edges
is parallel in M*(T") if and only {f1, f2} is a bond of T, i.e. if it is a pair of separating edges
of . O

2.2 The moduli space )/’

2.2.1 Tropical curves
In order to define tropical curves, we start with the following

Definition 2.2.1. A marked graph is a couple (T', w) consisting of a finite connected graph
I' and a function w : V(I') — N3¢, called the weight function. A marked graph is called
stable if any vertex v of weight zero (i.e. such that w(v) = 0) has valence val(v) > 3. The

total weight of a marked graph (I', w) is

wl ==Y w(v),

veV(T)
and the genus of (', w) is equal to
9T w) = g(I') + |wl.
We will denote by 0 the identically zero weight function.

Remark 2.2.2. 1t is easy to see that there is a finite number of stable marked graphs of a

given genus g.

Definition 2.2.3. A tropical curve C' is the datum of a triple (I', w, ) consisting of a stable
marked graph (T, w), called the combinatorial type of C, and a function ! : E(T") — R,
called the length function. The genus of C is the genus of its combinatorial type.

See 2.4.4 for an example of a tropical curve.

Remark 2.2.4. The above definition generalizes the definition of (equivalence class of)
tropical curves given by Mikhalkin-Zharkov in [MZ07, Prop. 3.6]. More precisely, tropical
curves with total weight zero in our sense are the same as compact tropical curves up to

tropical modifications in the sense of Mikhalkin-Zharkov.

A specialization of a tropical curve is obtained by letting some of its edge lengths go to
0, i.e. by contracting some of its edges (see [Mi6, Sec.3.1.D]). The weight function of the
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specialized curve changes according to the following rule: if we contract a loop e around
a vertex v then we increase the weight of v by one; if we contract an edge ¢ between
two distinct vertices v; and v, then we obtain a new vertex with weight equal to w(v;) +
w(ve). We write C' ~» C’ to denote that C specializes to C’; if (I',w) (resp. (I',w’)) are
the combinatorial types of C (resp. C’), we write as well (I',w) ~» (I'',w’). Note that a
specialization preserves the genus of the tropical curves.

2.2.2 Construction of M ;r

Given a marked graph (I, w), its automorphism group Aut(I", w) is the subgroup of S|y x
Sjv(ry| consisting of all pairs of permutations (¢, ) such that w(i(v)) = w(v) for any v €
V(T') and, for a fixed orientation of T, we have that {s(¢(e)), t(p(e))} = {¢(s(e)), v (t(e))} for
any e € E(T'), where s,t : E(I") — V(I') are the source and target maps corresponding to
the chosen orientation. Note that this definition is independent of the orientation. There

is a natural homomorphism
Pw)  Aut(T,w) — S\gry C GLigr)(Z)

induced by the projection of Aut(I', w) C S|gr)| x S|y ()| onto the second factor followed by
the inclusion of S| g 1) into GL gy (Z) as the subgroup of the permutation matrices.
The group Aut(I',w) acts on RIF(M! via the homomorphism p(r,w) Preserving the open

|E@)]|
>0

rational polyhedral cone R and its closure RleO(F)‘. We denote the respective quotients

by
O, w) = RED /AT, w)  and O, w) == R/ Aut(T, w)

endowed with the quotient topology. When T is such that E(I') = () and V(T") is just one
vertex of weight g, we set C(T',w) := {0}. Note that C(T', w) parametrizes tropical curves
of combinatorial type equal to (T, w).

Observe that, for any specialization ¢ : (I',w) ~ (IV,w’), we get a natural continuous
map

P REC) C RIEC L, G w),

where C(T,w) is endowed with the quotient topology. Note that, if 7 is a nontrivial spe-
cialization, the image of the map i is contained in C(T', w) \ C(T', w), so it does not meet the
locus of C(T, w) parametrizing tropical curves of combinatorial type (I, w).

We are now ready to define the moduli space of tropical curves of fixed genus.

Definition 2.2.5. We define M;r as the topological space (with respect to the quotient

topology)
My = (JT e, w))/

where the disjoint union (endowed with the disjoint union topology) runs through all sta-

~

ble marked graphs (I', w) of genus g and ~ is the equivalence relation generated by the

following binary relation ~: given two points p; € C(I';,w;) and py € C(T'2, w2), p1 = po iff
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there exists a stable marked graph (T, w) of genus g, a point ¢ € RIZEO(F” and two special-

izations iy : (I'1,w;) ~ (I, w) and iy : (T'y, we) ~ (I',w) such that i;(q) = p; and i2(q) = po.
From the definition of the above equivalence relation ~, we get the following

Remark 2.2.6.

(i) Let p1,p2 € [JC(T,w) such that p; ~ po. If there exist two stable marked graphs
(T'1,w1) and (g, ws) such that p; € C(I'1,w;) and ps € C(I'g,ws), then (I'1,wq) =
(P2, w2) and p; = po.

(i1)) Letp € [[C(T', w). Then there exists a stable marked graph (I, w’) and p’ € C(I",w’)
such thatp ~ p’.

Example 2.2.7. In the following figure we represent all stable marked graphs correspond-

ing to tropical curves of genus 2. The arrows represent all possible specializations.

0 N /™0 OQ
*————©O { ® L J
N 7
\ -7
o 7 |
11 —
| Ty |
v oo v
(e (N
N NI
\ -7
I 7 |
\ P I
v o - e
P 1 1
{ el ° 'Y
N~
N 7/
AN Ve
AN 7
N Ve
N2
o2

Figure 2.1: Specializations of tropical curves of genus 2.

The cells corresponding to the two graphs on the top of Figure 2.1 are Rgzo /S3 and
RSZO /Ss, respectively. According to Definition 2.2.5, ML' corresponds to the topological
space obtained by gluing R%,/S3 and R%,, /S, along the points of (RZ,/S3) \ (R%,/S3) and
of (R%,/52)\(R2,,/S3) that correspond to common specializations of those graphs according

to the above diagram. For instance, the specializations ¢; and is> induce the maps
51 : R%O — R%O/Sg and EQ : RQZO — RSZO/SQ’
(a1,a2) —  [(a1,az,0)] (a1,a2) —  [(a1,0,az)]
where in R%O /S> the second coordinate corresponds to the edge of the graph connecting the
two vertices. So, a point [(x1, x2, x3)] € RZ/Ss will be identified with a point [(y1,y2,¥3)] €
R%O/SQ via the maps i; and iy if yo = 0 and if there exists ¢ € S3 such that (y;,y3) =

(xg(l),l’g(g)) and To(3) = 0.
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Theorem 2.2.8. The topological space M;" is a stacky fan with cells C(I',w), as (I',w)
varies through all stable marked graphs of genus g. In particular, its points are in bijection

with tropical curves of genus g.

Proof. Let us prove the first statement, by checking the conditions of Definition 2.1.1. Con-
sider the maps «r ., : C(T',w) — M;" naturally induced by C(T',w) — [[C(I",w’") — M,".
The maps «o(r ., are continuous by definition of the quotient topology and the restriction

of a(r ) to C(I',w) is a bijection onto its image by Remark 2.2.6(i). Moreover, given an
open subset U C C(I',w), a(r,.(U) is an open subset of M_* since its inverse image on
[1C(T7,w') is equal to U. This proves that the maps a () When restricted to C'(I', w) are
homeomorphisms onto their images, and condition 2.1.1(i) is satisfied.

From Remark 2.2.6(ii), we get that

M= ] aruw(CT,w) (2.5)
(T'w)
and the union is disjoint by Remark 2.2.6(i); thus condition 2.1.1(ii) is satisfied.
Let us check the condition 2.1.1(iii). Let (T, w) and (I, w’) be two stable marked graphs
of genus g and set o := o(p ) and o := a( ). By definition of M;*, the intersection of
the images of C(T',w) and C(I",w’) in M," is equal to

O‘(C(F’w)) Na Haz F,,w,

where (I';, w;) runs over all common specializations of (I, w) and (I, w’). We have to find

an integral linear map L : RIFDI — RIEC) making the following diagram commutative

[T, @i(C(Ti, w;))—— o(C(T, w)) RIETIC RIZD) (2.6)

A

o (O, w)) ~— RETNC i)

To this aim, observe that, since (T';, w;) are specializations of both (I, w) and (I, w’), there
are orthogonal projections f; : RIFMI — RIZT)| and inclusions g; : RIET) — RIET)] We

define L as the composition

L RIEOI &4 o RIET)] 89, RIET)
It is easy to see that L is an integral linear map making the above diagram (2.6) commu-
tative, and this concludes the proof of the first statement.

The second statement follows from (2.5) and the fact, already observed before, that

C(T',w) parametrizes tropical curves of combinatorial type (I', w). O

We now prove that M, ;r is of pure dimension and connected through codimension one.

To that aim, we describe the maximal cells and the codimension one cells of 1/, e
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Proposition 2.2.9.

(i) The maximal cells of M;r are exactly those of the form C(I',0) where I is 3-regular. In

particular, M}" is of pure dimension 3g — 3.
(ii) M;r is connected through codimension one.
(i1i) The codimension one cells of M ;r are of the following two types:

(a) C(T',0) whereT has exactly one vertex of valence 4 and all other vertices of valence
3;

(b) C(T',w) where T has exactly one vertex v of valence 1 and weight 1, and all the
other vertices of valence 3 and weight 0.

Each codimension one cell of type (b) lies in the closure of exactly one maximal cell,
while each codimension one cell of type (a) lies in the closure of one, two or three

maximal cells.

Proof. First of all, observe that given a stable marked graph (T', w) of genus g we have

V)| < Y [val(v) + 2w(v)] = 2| E(T)| + 2w, 2.7
veV(T)
and the equality holds if and only if every v € V(') is such that either w(v) = 0 and
val(v) = 3 or w(v) = val(v) = 1. By substituting the formula for the genus g = ¢(T',w) =
g(T) + |w| =1+ |E(T)| — |V(I')| + |w| in inequality (2.7), we obtain

|E(T)| < 3¢ — 3 — |wl. (2.8)

Let us now prove part (i). If I' is 3-regular and w = 0, then ¢(I") = ¢(I',w) = ¢ and
an easy calculation gives that |E(T)| = 3g — 3. Therefore dim(C(T,0)) = 3g — 3, which is
the maximal possible dimension of the cells of A" according to the above inequality (2.8).
Hence C(I',0) is maximal. On the other hand, every stable marked graph (I'',w’) can be
obtained by specializing a stable marked graph (I',0) with I" a 3-regular graph (see for
example [CV1, Appendix A.2]), which concludes the proof of part (i).

Let us prove part (ii). It is well-known (see the appendix of [HT80] for a topological
proof, [Ts96, Thm. II] for a combinatorial proof in the case of simple graphs and [C8, Thm
3.3] for a combinatorial proof in the general case) that any two 3-regular graphs I'; and
T's of genus g can be obtained one from the other via a sequence of twisting operations as
the one shown in the top line of Figure 2.2 below. In each of these twisting operations,
the two graphs I'y and I'; specialize to a common graph I" (see Figure 2.2) that has one
vertex of valence 4 and all the others of valence 3. By what will be proved below, C(T', 0) is
a codimension one cell. Therefore the two maximal dimensional cells C(T'1,0) and C(T'2, 0)
contain a common codimension one cell C (T, 0) in their closures, which concludes the proof

of part (ii).
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F = [ 1
Figure 2.2: The 3-regular graphs I'; and I'; are twisted. They both specialize to I". C(T'y,0)
and C(T'2,0) are maximal dimensional cells containing the codimension one cell C(T",0) in

their closures.

Let us prove part (iii). Let C(I',w) be a codimension one cell of ) gtr, i.e. such that
|E(T")| = 3g — 4. According to the inequality (2.8), there are two possibilities: either |w| =0
or |lw| = 1. In the first case, i.e. |w| = 0, using the inequality in (2.7), it is easy to check
that there should exist exactly one vertex v such that val(v) = 4 and all the other vertices
should have valence equal to 3, i.e. we are in case (a). In the second case, i.e. |w| = 1, all
the inequalities in (2.7) should be equalities and this implies that there should be exactly
one vertex v such that val(v) = w(v) = 1 and all the other vertices have weight equal to
zero and valence equal to 3, i.e. we are in case (b).

For a codimension one cell of type (a), C(I',0), there can be at most three maximal
cells C(T';,0) (i = 1,2, 3) containing it in their closures, as we can see in Figure 2.3. Note,
however, that it can happen that some of the I';’s are isomorphic, and in that case the

number of maximal cells containing C(T',0) in their closure is strictly smaller than 3.

ol 3e ol 20 ol 20
Iy = \o—o/ I'y = \o—o/ I's = \o—o/
® - R o3 1@ LV 30

/. N

™y 1 .

1.\ /.3

I'= 2./ \.4

Figure 2.3: The codimension one cell C(T',0) is contained in the closure of the three maxi-
mal cells C(T';,0),i=1,2,3.

For a codimension one cell C(T', w) of type (b), there is only one maximal cell C(I"”,0)
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containing it in its closure, as we can see in Figure 2.4 below. O

(F/7 Q) =

N
.Q [~ ./ = (T, w)

N
/

Figure 2.4: The codimension one cell C(T", w) is contained in the closure of the maximal
dimensional cell C(I”,0).

2.3 The moduli space A

2.3.1 Tropical abelian varieties

Definition 2.3.1. A principally polarized tropical abelian variety A of dimension ¢ is a
g-dimensional real torus R?/A, where A is a lattice of rank g in RY endowed with a flat
semi-metric induced by a positive semi-definite quadratic form @ on RY such that the null
space Null(Q) of @ is defined over A ® Q, i.e. it admits a basis with elements in A ® Q.
Two tropical abelian varieties (R9/A, Q) and (R9/A’,Q’) are isomorphic if there exists
h € GL(g,R) such that h(A) = A’ and hQh! = Q.

From now on, we will drop the attribute principally polarized as all the tropical abelian

varieties that we will consider are of this kind.

Remark 2.3.2. The above definition generalizes the definition of tropical abelian variety
given by Mikhalkin-Zharkov in [MZ07, Sec. 5]. More precisely, tropical abelian varieties
endowed with positive definite quadratic forms in our sense are the same as (principally
polarized) tropical abelian varieties in the sense of Mikhalkin-Zharkov.

Remark 2.3.3. Every tropical abelian variety (R?/A, Q) can be written in the form (R9/Z9,Q’).
In fact, it is enough to consider Q' = hQh!, where h € GL(g,R) is such that h(A) = Z9.
Moreover, (R9/Z9,Q) = (R9/Z9,Q’) if and only if there exists h € GL,4(Z) such that
Q' = hQh!, i.e., if and only if Q and Q' are arithmetically equivalent. Therefore, from now
on we will always consider our tropical abelian varieties in the form (R?/Z9, Q), where Q

is uniquely defined up to arithmetic equivalence.

2.3.2 Definition of A} and A;“Z

Let us denote by R("z") the vector space of quadratic forms in RY (identified with g x ¢
symmetric matrices with coefficients in R), by €, the cone in R(*Z") of positive definite
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quadratic forms and by Qgt the cone of positive semi-definite quadratic forms with rational
null space (the so-called rational closure of €2 , see [N80, Sec. 8]).

The group GL,(Z) acts on R(":") via the usual law h - Q = hQh', where h € GL,(Z) and
@ is a quadratic form on RY. This action naturally defines a homomorphism p : GLy(Z) —
GL(ggl) (Z). Note that the cones Q, or Q:' are preserved by the action of GL4(Z).

Remark 2.3.4. It is well-known (see [N80, Sec. 8]) that a positive semi-definite quadratic
form @ in RY belongs to 2 if and only if there exists h € GL,(Z) such that

Q 0
hQR! =
( 0 0
for some positive definite quadratic form Q' in RY', with 0 < ¢’ < g.

Definition 2.3.5. We define Agr as the topological space (with respect to the quotient
topology)
Agr = Q;t/GLg(Z).

The space Atgr parametrizes tropical abelian varieties as it follows from Remark 2.3.3.
However, in order to endow A} with the structure of stacky fan, we need to specify some
extra-data, encoded in the following definition (see [N80, Lemma 8.3] or [FC90, Chap.
Iv.2)).

Definition 2.3.6. A GL,(Z)-admissible decomposition of 0} is a collection ¥ = {5, } of
rational polyhedral cones of Qgt such that:

1. If o is a face of 0, € ¥ then o € %5

2. The intersection of two cones ¢, and o, of ¥ is a face of both cones;
3. Ifo, e Xand h € GL,(Z) then h -0, - h' € X.

4. #{o, € ¥ mod GL4(Z)} is finite;

5. Ug,exo, = Qgt.

Each GL,(Z)-admissible decomposition of Q;t gives rise to a structure of stacky fan on
AY. In order to prove that, we need first to set some notations.
Let ¥ = {0,} be a GLy(Z)-admissible decomposition of Q2}'. For each 0, € ¥ we set
0 9t

o, := Int(c,); we denote by (s,) the smallest linear subspace of R("2") containing o, and

we set m,, := dimg(0,). Consider the stabilizer of o) inside GL,(Z)

Stab(o})) := {h € GLy(Z) : p(h) -0y =h-op-h' = o)}

0
“w
The restriction of the homomorphism p to Stab(c?,) defines a homomorphism

Pu Stab(ag) — GL(<UH>;Z) = GLm“ (Z)
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By definition, the image p,, (Stab(c))) acts on (g,) = R™+ and stabilizes the cone 7, defin-
ing an action of Stab(c)}) on o). Note that GL,(Z) naturally acts on the set of quotients
{0}/ Stab(a))}; we will denote by {[o},/ Stab(c})]} the (finite) orbits of this action.

Theorem 2.3.7. Let ¥ be a GL,(Z)-admissible decomposition of Qgt. The topological space
Al can be endowed with the structure of a stacky fan with cells [0}/ Stab(a}))], which we
denote by Al

Proof. Fix a set S = {0}/ Stab(c})} of representatives for the orbits [0}/ Stab(c})]. For
each element o)/ Stab(o))) € S, consider the continuous map

Ou tr

e — A

Y Stab(el) e

induced by the inclusion o, — Q. By the definition of A!" it is clear that o/, sends
o))/ Stab(c},) homeomorphically onto its image and also that

op ‘
e Stab(0) 9
where the union runs through all the elements of S. Therefore the first two conditions
of definition 2.1.1 are satisfied. Let us check the condition 2.1.1(iii). Consider two ele-

ments {0}, /Stab(o},)} and {c},/Stab(c,)} of S. Clearly, the intersection of the images
of 7, / Stab(o), ) and o,/ Stab(c},) in A}" can be written in the form

o (sg) o () L ()
1\ Stab(c9,) #2 \ Stab(c9,) - "\ Stab(c9 )/’
where o) / Stab(c0. ) are the elements of S such that there exist elements h;1, hjo € GLy(Z)
such that h;10,,h; is a face of the cone 0,,, and h;20,,hl, is a face of the cone o,,,. Note that
the above elements h;; and h;; are not unique, but we will fix a choice for them in what
follows. We have to find an integral linear map L : (o,,) = R™1 — (0,,) = R™#2 making

the following diagram commutative

ad o
2 C 250 C — ™
Hi Qu; (Stab(agi) Qg (Stab(agl)) T <Ul»‘«1> = R™m (2.9)
\ L L
Opg C _ Tm,
Fpp <Stab(022)) Thz <UH2> = R™Mwuz.

Consider the integral linear maps

m,. T (hix))
7 {0, ) = R™ = (p(hir)(04,)) o

i

my. (hi ) Vi m
i H{ow) = R™ 722 (p(hin)(0,,)) & (0,,) = R™2,

(0,,) :=R™,

where 7; is the orthogonal projection of (c,,) onto its subspace (p(h;1)(0.,)) and 7; is the
natural inclusion of (p(h;2)(0,,)) onto (c,,). We define the following integral linear map

I R ©iT @Rmui Di%i prmuy
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It is easy to see that L is an integral linear map making the above diagram (2.9) commu-
tative, and this concludes the proof. O

2.3.3 Voronoi decomposition: A;r’v

Some GL,(Z)-admissible decompositions of 2} have been studied in detail in the reduction
theory of positive definite quadratic forms (see [N80, Chap. 8] and the references there),
most notably:

(i) The perfect cone decomposition (also known as the first Voronoi decomposition);
(i1)) The central cone decomposition;

(iii)) The Voronoi decomposition (also known as the second Voronoi decomposition or the
L-type decomposition).

Each of them plays a significant (and different) role in the theory of the toroidal compact-
ifications of the moduli space of principally polarized abelian varieties (see [167], [A02],
[SBO06]).

Example 2.3.8. In Figure 2.5 we illustrate a section of the 3-dimensional cone Q%', where
we represent just some of the infinite Voronoi cones (which for ¢ = 2 coincide with the

perfect cones and with the central cones). For g = 2, there is only one GL,(Z)-equivalence

0
prin

class of maximal dimensional cones, namely the principal cone o (see section 2.5.1).

Therefore, all the maximal cones in the picture will be identified in the quotient Aff’v.

(39 (39

Rl
Figure 2.5: A section of Qf and its Voronoi decomposition.

Let us focus our attention on the Voronoi decomposition, since it is the one that better

fits in our setting. It is based on the so-called Dirichlet-Voronoi polytope Vor(Q) C RY
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associated to a positive semi-definite quadratic form @ < Qgt. Recall (see for example
[N80, Chap. 9] or [V03, Chap. 3]) that if @ € Q,, then Vor(Q) is defined as

Vor(Q) :={x € RY : Q(z) < Q(v—2z)forallveZ9}. (2.10)

"0
More generally, if Q = h ( QO 0 ) h' for some h € GL4(Z) and some positive definite

quadratic form Q' in RY', 0 < ¢’ < g (see Remark 2.3.4), then Vor(Q) := h~'Vor(Q')(h~") C
h~1RY (h~1)t. In particular, the smallest linear subspace containing Vor(Q) has dimension

equal to the rank of Q.

Definition 2.3.9. The Voronoi decomposition V = {op} is the GL,(Z)-admissible decom-
position of Q' whose open cones o, := Int(op) are parametrized by Dirichlet-Voronoi
polytopes P C RY in the following way

0% :={Q ¢ Q' : Vor(Q) = P}.

Remark 2.3.10. The polytopes P C RY that appear as Dirichlet-Voronoi polytopes of
quadratic forms in Q, are of a very special type: they are parallelohedra, i.e. the set
of translates of the form v 4+ P for v € Z9 form a face-to-face tiling of RY (see for example
[McM80] or [V03, Chap. 3]). Indeed, it has been conjectured by Voronoi ([Vor08]) that all
the parallelohedra are affinely isomorphic to Dirichlet-Voronoi polytopes (see [DG1] for an

account on the state of the conjecture).

The natural action of GL,(Z) on the cones % corresponds to the natural action of

GL4(Z) on the set of all Dirichlet-Voronoi polytopes P C RY. We denote by [P] (resp.
[0%]) the equivalence class of P (resp. o¢%) under this action. We set also C([P]) :=
[0/ Stab(%)].

Definition 2.3.11. Ag“v is the stacky fan associated to the Voronoi decomposition V =
{op}. Its cells are the C([P])’s as [P] varies among the GL/(Z)-equivalence classes of
Dirichlet-Voronoi polytopes in RY.

In order to describe the maximal cells and codimension one cells of A;“V (in analogy
with Proposition 2.2.9), we need to introduce some definitions. A Dirichlet-Voronoi poly-
tope P C RY is said to be primitive if it is of dimension g and the associated face-to-face
tiling of RY (see Remark 2.3.10) is such that at each vertex of the tiling, the minimum
number, namely g + 1, of translates of P meet (see [V03, Sec. 2.2]). A Dirichlet-Voronoi
polytope P C RY is said to be almost primitive if it is of dimension g and the associated
face-to-face tiling of RY (see Remark 2.3.10) is such that there is exactly one vertex, mod-
ulo translations by Z9, where g + 2 translates of P meet and at all the other vertices of the
tiling only g + 1 translates of P meet.

The properties of the following Proposition are the translation in our language of well-

known properties of the Voronoi decomposition (see the original [Vor08] or [VO3] and the
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references there). Unfortunately, the results we need are often stated in terms of the
Delaunay decomposition, which is the dual of the tiling of RY by translates of the Dirichlet-
Voronoi polytope (see for example [N80, Chap. 9] or [V03, Sec. 2.1]). So, in our proof
we will assume that the reader is familiar with the Delaunay decomposition, limiting
ourselves to translate the above properties in terms of the Delaunay decomposition and to
explain how they follow from known results about the Voronoi decomposition.

Proposition 2.3.12.

(i) The maximal cells of AV are exactly those C([P]) such that P is primitive. A"V is

of pure dimension (?").

(ii) The codimension one cells of A;‘V are exactly those of the form C([P]) such that P is

almost-primitive. A;r’v is connected through codimension one.
(iti) Every codimension one cell of A;’“V lies in the closure of one or two maximal cells.

Proof. The Dirichlet-Voronoi polytopes P C RY that are primitive correspond to Delau-
nay decompositions that are triangulations, i. e. such that every Delaunay polytope is a
simplex (see [V03, Sec. 3.2]). The Dirichlet-Voronoi polytopes P C RY that are almost-
primitive correspond to the Delaunay decompositions that have exactly one Delaunay
repartitioning polytope, in the sense of [V03, Sec. 2.4], and all the other Delaunay poly-
topes are simplices. Two maximal cells that have a common codimension one cell in their
closure are usually called bistellar neighbors (see [V03, Sec. 2.4]). With this in mind,
all the above properties follow from the (so-called) Main Theorem of Voronoi’s reduction
theory (see [Vor08] or [V03, Thm. 2.5.1]).

O

2.3.4 Zonotopal Dirichlet-Voronoi polytopes: A"

Among all the Dirichlet-Voronoi polytopes, a remarkable subclass is represented by the
zonotopal ones. Recall (see [Z95, Chap. 7]) that a zonotope is a polytope that can be
realized as a Minkowski sum of segments, or equivalently, that can be obtained as an

affine projection of an hypercube.

Remark 2.3.13. Voronoi’s conjecture has been proved for zonotopal parallelohedra (see
[McM75], [E99], [DG2], [V04]): every zonotopal parallelohedron is affinely equivalent to a
zonotopal Dirichlet-Voronoi polytope. Therefore, there is a bijection

Zonotopal parallelohedra Zonotopal Dirichlet-Voronoi

1 g 1 g
in R Jatt polytopes in R JeL,@)

There is a close (and well-known) relation between zonotopal Dirichlet-Voronoi poly-
topes P C RY9 up to GL4(Z)-action and regular matroids M of rank at most g. We need to
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review this correspondence in detail because it is crucial for the sequel of the paper and
also because we need to fix the notations we are going to use. Consider first the following

Construction 2.3.14. Let A € M, ,(R) be a totally unimodular matrix of rank r < g.
Consider the linear map f4: : RY — R"®, 2 — A’ .z, where A? is the transpose of A. For
any n-tuple [ = (4, ...,l,,) € RZ, consider the positive definite quadratic form || - ||; on R"

givenony = (y1,...,y,) € R" by

ylle = Lgf + - + lays,

and its pull-back Q4 ; on RY via f4¢, i.e.
Qau(z) = ||A" - x|y, (2.11)

for + € RY. Clearly Q4,; has rank equal to r and belongs to Q;t. As [ varies in RZ, the
semi-positive definite quadratic forms ()4 ; form an open cone in Q;t which we denote by
o%(A). Its closure in Qgt, denoted by o(A), consists of the quadratic forms Q4,; € Qgt,
where [ varies in R ;. The faces of o(A) are easily seen to be of the form o(A \ I) for some
I c{l,...,n}, where A\ I is the totally unimodular matrix obtained from A by deleting
the column vectors v; with ¢ € 1.

Considering the column vectors {vy,...,v,} of A as elements of (R9)*, we define the
following zonotope of RY:

Zy={xeRI: -1/2<wv(xr)<1/2fori=1,--- ,n} C RY. (2.12)
Its polar polytope (see [Z95, Sec. 2.3]) Z% C (R9)* is given as a Minkowski sum:
7y = [f

Clearly the linear span of Z 4 has dimension r.

U1 U1

22+ [ 2] ey (2.13)

27 2

Finally, if M is a regular matroid of rank r(M) < g, write M = MJ[A], where A €
M, (R) is a totally unimodular matrix of rank r (see Theorem 2.1.24(i)). Note that if
A = XBY for a matrix X € GL,(Z) and a permutation matrix Y € GL,(Z), then ¢°(A) =
Xo%(B)X" and Z4 = X - Zp. Therefore, according to Theorem 2.1.24(ii), the GL,(Z)-

equivalence class of 7°(4), o(A) and of Z 4 depends only on the matroid M and therefore we

will set [0°(M)] := [0°(4)], [o(M )} [0(A)] and [Zy] := [Z4]. The matroid M\ I = M[A\ ]
for a subset I C E(M) = {v1, -+ ,v,} is called the deletion of I from M (see [092, Pag.
22]).

Lemma 2.3.15. Let A be as in 2.3.14. Then Z 4 is a Dirichlet-Voronoi polytope whose

associated cone is given by 0°(A), i.e. 0% = 0°(A).

Proof. Let us first show that Vor(Qa,;) = Z4 for any [ € RZ, i.e. that Z, is a Dirichlet-
Voronoi polytope and that ¢°(A4) C o - Assume first that A has maximal rank r = g or,
equivalently, that f4: : R9 — R" is injective. By definitions (2.10) and (2.11), we get that

VOI‘(QA,L) = {33 cRI : HfAt(x)HL < ||fAt()\ — .’L‘)HL for all \ € Zg}. *)
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The total unimodularity of A and the injectivity of f,: imply that the map f4: : R — R"
is integral and primitive, i.e. f4:(x) € Z™ if and only if € Z9. Therefore, from (*) we
deduce that

Vor(Qa) = fui (Vor( - |lo)- **)

Since || - ||; is a diagonal quadratic form on R", it is easily checked that
Vor(l- ) = -5 5]+ + -5 5 (%)
where {ej, - ,e,} is the standard basis of R”. Combining (**) and (***), and using the
fact that fa:(xz) = (vi(x), - ,v,(z)), we conclude. The general case r < g follows in a

similar way after replacing RY with RY9/Ker(f:). We leave the details to the reader.
In order to conclude that 6°(A) = o , it is enough to show that the rays of o, are
contained in o(A). By translating the results of [ER94, Sec. 3] into our notations, we

deduce that the rays of o7, are all of the form o4, for the indices 7 such that v; # 0,

where
Z(A)i = Z(A) [ {v; = 0}.
J#i
By what we already proved, we have the inclusion o(v;) := o(A\ {i}°) C 0za),, Where

{i}¢ .= {1,--- ,n} \ {i}. Since both the cones are one dimensional, we deduce that (A \
{i}¢) = 0z(a),, which shows that all the rays of o, are also rays of o(A).
O

Theorem 2.3.16.

(i) Given a regular matroid M of rank r(M) < g, [Zn] is the GL4(Z)-equivalence class of

a zonotopal Dirichlet-Voronoi polytope and every such class arises in this way.

(i1) If My and M, are two regular matroids, then [Zy,| = [Zu,] if and only if [o(M7)] =
[0(My)] if and only if My = M.

(i) If M is simple, then any representative o(M) in [o(M)] is a simplicial cone of dimen-
sion #E(M) whose faces are of the form o(M \ I) € [oc(M \ I)] for some uniquely
determined I C E(M).

Proof. The first assertion of (i) follows from the previous Lemma 2.3.15 together with the
fact that each representative Z4 € [Z)] is zonotopal by definition (see 2.3.14). The second
assertion is a well-known result of Shephard and McMullen ([S74], [McM75] or also [DG2,
Thm. 1]).

Consider part (ii). By definition 2.3.9 and what remarked shortly after, [o(M;)]=
[0(Mz)] if and only if [Z)s,] = [Z1,]. Let us prove that [Z)] = [Z7;]. Write M = M[A] as
in 2.3.14. From Definitions 2.1.22 and 2.1.27, it is straightforward to see that M = M[A],
where 4 is the totally unimodular matrix obtained from A by deleting the zero columns
and, for each set S of proportional columns, deleting all but one distinguished column of S.
From the definition (2.12), it follows easily that Z, = Z 3, which proves that [Zy/] = [Z3;].
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To conclude part (ii), it remains to prove that if M; and M are simple regular matroids
such that [Zyr,] = [Zas], then M; = Ms. We are going to use the poset of flats £(M) of a
matroid M (see [092, Sec. 1.7]). In the special case (which will be our case) where M =
MIA] for some matrix A € M, ,(F) over some field F', whose column vectors are denoted
as usual by {vq,---,v,}, aflat (see [092, Sec. 1.4]) is a subset S C E(M) = {1,--- ,n} such
that

span(v; : ¢ € S) C span(vg,v; @ i € 5),

for any k ¢ S. L(M) is the poset of flats endowed with the natural inclusion. It turns out
that (see [092, Pag. 58]) for two matroids M; and M>, we have

L(M,) = L(M,) & My, = Ms. *)

Moreover, in the case where M is a regular and simple matroid, £(M) is determined
by the GL,(Z)-equivalence class [Z)/]. Indeed, writing M = M[A] as in 2.3.14, Z); de-
termines, up to the natural action of GL,(Z), a central arrangement Ay, of non-trivial
and pairwise distinct hyperplanes in (RY9)*, namely those given by H; := {v; = 0} for
i =1,---,n. Denote by L£(A,,) the intersection poset of Ay, i.e. the poset of linear sub-
spaces of (RY)* that are intersections of some of the hyperplanes H;, ordered by inclusion.
Clearly £(Ayr) depends only on the GL,(Z)-equivalence class [Z)]. It is easy to check that
the map

L(M) — L(Ap)°PP
ieS
is an isomorphism of posets, where £(A,;)°PP denotes the opposite poset of £(Ay;). Now
we can conclude the proof of part (ii). Indeed, if M; and M, are regular and simple ma-
troids such that [Zy,] = [Z1,] then L(Aps, ) =2 L(Aps,) which implies that £(M;) = L(Ms)
by (**) and hence M; = Ms by (*).

Finally consider part (iii). Write M = M[A] as in 2.3.14 and consider the representative
o(A) € [o(M)]. From [ER94, Thm. 4.1], we known that o(A) is simplicial. We have
already observed in 2.3.14 that all the faces of o(A) are of the form o(A\ I) for I C
E(M) = {vy,--- ,v,} and that (A \ I) € [0(M \ I)] by definition of deletion of I from M.
In particular, the rays of c(A) are all of the form o(v;) := o (A \ {v;}¢) for some v; € E(M),
where {v;}° := E(M) \ {v;}. The hypothesis that 1 is simple (see 2.1.26) is equivalent to
the fact that the matrix A has no zero columns and no parallel columns. This implies that
all the faces o(v;) are 1-dimensional and pairwise distinct. Since o(A) is a simplicial cone,
its dimension is equal to the number of rays, i.e. to n = #E(M). The fact that each face of
o(A) is of the form o(A\ I) for a unique I C E(M) follows from the fact that in a simplicial
cone each face is uniquely determined by the rays contained in it.

O

From Theorem 2.3.16, it follows that the class of all open Voronoi cones ¢% such that

Z C RY is a zonotopal Dirichlet-Voronoi polytope is stable under the action of GL,(Z) and
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under the operation of taking faces of the closures o7 = g. Therefore the collection of

zonotopal Voronoi cones, i.e.
Zon := {0z C Qf : Z C RY is zonotope},

is a GL,4(Z)-admissible decomposition of a closed subcone of i, i.e. Zon satisfies all the

properties of Definition 2.3.6 except the last one. Therefore we can give the following

Definition 2.3.17. A%" is the stacky subfan of A"V whose cells are of the form C([Z]),
where [Z] varies among the GL,(Z)-equivalence classes of zonotopal Dirichlet-Voronoi
polytopes in RY.

Azem has dimension (7}') but it is not pure-dimensional if g > 4 (see Example 2.5.11

or [DV99] for the list of maximal zonotopal cells for small values of g). There is indeed

g+1
2

principal cone (see section 2.5.1 below). Using the notations of 2.3.14, given a regular
matroid M of rank at most g, we set C(M) := C([Zp]). From Theorem 2.3.16, we deduce
the following useful

only one zonotopal cell of maximal dimension ( ), namely the one corresponding to the

Corollary 2.3.18. The cells of A7 are of the form C(M), where M is a simple regular

matroid of rank at most g.

We want to conclude this section on zonotopal Dirichlet-Voronoi polytopes (and hence
on zonotopal parallelohedra by remark 2.3.13) by mentioning the following

Remark 2.3.19. Zonotopal parallelohedra Z C RY are also closely related to other geometric-
combinatorial objects:

(i) Lattice dicings of R? (see [ER94]);
(i1) Venkov arrangements of hyperplanes of R? (see [E99]);

(iii) Regular oriented matroids of rank at most g, up to reorientation (see
[BVSWZ99, Sec. 2.2, 6.9]).

2.4 'The tropical Torelli map

2.4.1 Construction of the tropical Torelli map ¢;'

We begin by defining the Jacobian of a tropical curve.

Definition 2.4.1. Let C = (I',w,l) be a tropical curve of genus ¢g and total weight |w|.
The Jacobian Jac(C) of C is the tropical abelian variety of dimension g given by the real
torus (H,(I',R) @ RI*l)/(H(T',Z) @ ZI"!) together with the semi-positive quadratic form
Qc = Q(r 1) which vanishes identically on RI*l and is given on H,(I',R) as

Qc( Z ae'e) = Z aZ - 1(e). (2.14)
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Remark 2.4.2. Note that the above definition is independent of the orientation chosen
to define H,(I',Z). Moreover, after identifying the lattice H,(I',Z) ® Z!"*! with Z9 (which
amount to chose a basis of H;(I',Z)), we can (and will) regard the arithmetic equivalence

class of Q¢ as an element of Q;t.

Remark 2.4.3. The above definition of Jacobian is a generalization of the definition of
Mikhalkin-Zharkov (see [MZ07, Sec. 6]). More precisely, the Jacobian of a tropical curve
of total weight zero in our sense is the same as the Jacobian of Mikhalkin-Zharkov.

Example 2.4.4. In Figure 2.6 below, the so-called Peterson graph is regarded as a tropical
curve C of genus 6 with identically zero weight function and with length function [(e;) :=
l; €Rsg,i=1,...,15.

Figure 2.6: The Peterson graph I' endowed with an orientation.

Fix an orientation of the edges as shown in the figure and consider the basis B for the
space H;(I',R) = R® formed by the cycles C1, ..., Cs, where C; = {¢&}, €, €3, €4, 65,86}, Ca2 =
{€1,€,€3,¢11,éer}, O3 = {€1, €3, €12, €5, €6}, Cy = {€3, €11, €15, €13, €10}, C5 = {€5, €9, —€13, —€14, €12}
and Cs = {¢é1,¢s,¢14, —€15,¢7}. Then the tropical Jacobian J(C) of C is the real torus
Hi(T,R)/H,(T,Z) = R®/Z% endowed with the positive definite quadratic form Q¢ which is
represented in the basis B by the following matrix:

6 Litlotls Litls+le I3 ls Ly

i=1'i 2 2 p pi 2

1 Flg+l ! i3+l 1+l

% L4l tig+iqq +l7 a % 0 1§ 7

1 Flg+l ! 5+l 1+l

Ltlstls 3+ li+is+le+ig+li2 0 e Lfls
L lg+l1 —1 —1
4 Sl 0 I3+lio+tlhi1+liz+lis 53 e
l 5+l -1 -1l
5 0 2oz —3 lstlgtlia+liz+liig —4
l 141 141 -1 -1
b 17 1tls L5 =ha 1 +lp+ig+lia+lts

Consider now the map (called tropical Torelli)
r. r r,V

C — Jac(C).

Theorem 2.4.5. The above map t{ : MJ* — Ag’“v is @ map of stacky fans.
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Proof. Let us first prove that ¢ is a continuous map. The map t;' restricted to the closure
of one cell C(T',w) of M, ;' is clearly continuous since the quadratic form Q¢ on H,(T',R)
depends continuously on the lengths [ € RLEO(F)‘. The continuity of ¢ follows then from the
fact that M ;r is a quotient of [[ C(T", w) Wi‘Eh the induced quotient topology.

Lemma 2.4.6 below implies that ¢ (C(I",w)) C C (]\/4_*\(?)) It remains to see that this

—_—~

map ty' : C(T,w) — C (M *(F)) is induced by an integral linear function L r ., between

RIEMI and the space RS of symmetric matrices on H;(I', R). We define

Lir ) : RIEON L RCGT),
7 (2.15)
l— Q(F,w,l)v
where Q) is defined by (2.14) above . Clearly Lo ) is an integral linear map that
induces the map ¢ : C(T',Z) — C (M *(F)). This concludes the proof. O

Lemma 2.4.6. The map tfqr sends the cell C(T',w) of M, ;r surjectively onto the cell C (];[_*\(?))
of Atgr’v.

Proof. We use the construction in 2.3.14. Fixing an orientation of I, a basis of H,(T',Z)

and an order of the edges of I', we get a natural inclusion
H\(T,2) =725 — 72" =~ (T, Z).

The transpose of the integral matrix representing this inclusion, call it A*(I") € M) ,,(Z),
is well-known to be totally unimodular and such that M*(T") = M[A*(T')] (see for example
[Z95, Ex. 6.4]).

Now given a length function [ : E(I') — R, consider the n-tuple [ € RZ, whose
entries are the real positive numbers {l/(e)}.cpr) With respect to the order chosen on
E(T"). Comparing definitions (2.11) and (2.14), we deduce that Q4-r); = Q(r,w,). The

conclusion now follows from Lemma 2.3.15 and Theorem 2.3.16. O

2.4.2 Tropical Schottky

In this subsection, we want to prove a Schottky-type theorem, i.e. we describe the image
of the map ¢}
We need to recall the following result (see [092, 3.1.1, 3.1.2, 3.2.1] for a proof).

Lemma 2.4.7. Let T’ be a graph. For any subset I C E(I') = E(M*(T')), we have that
MIM\NIT=M({T\I) (2.16)
M*(TY\I=M*(T/I) (2.17)

where T'\ I (resp. T'/I) is the graph obtained from T by deleting (resp. contracting) the edges
in I and, for a matroid M and I C E(M), we denote by M \ I the matroid obtained from M
by deleting 1.
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From formula (2.17) and Theorem 2.3.16(iii), we deduce that the collection of cographic
cones

Cogr := {0z C Q) : [0z] = [o(M)] for a cographic matroid M}

is closed under taking faces of the cones, and therefore it defines a GL,(Z)-admissible
decomposition of a closed subcone of Q?, i.e. Cogr satisfies all the properties of Definition
2.3.6 except the last one. Therefore we can give the following

Definition 2.4.8. A" is the stacky subfan of A%°" C AZ’“V whose cells are of the form

C (M), where M is a simple cographic matroid of rank at most g.

The following Proposition summarizes some important properties of Ag°®" (compare
with Propositions 2.2.9 and 2.3.12).

Proposition 2.4.9.

(i) The cells of A" are of the form C (M*([I']2)), where [I']; varies among the 2-isomorphism

classes of 3-edge-connected graphs of genus at most g.

(i) A% has pure dimension 3g—3 and its maximal cells are of the form C (M*(I")), where

I' is 3-regular and 3-(edge)-connected.
(iii)) Ag°8" is connected through codimension one.

(iv) All the codimension one cells of A°®" lie in the closure of one, two or three maximal
cells of AgPS".

Proof. Part (i) follows by combining Definition 2.4.8, Remark 2.1.30 and Proposition 2.1.33.

According to Theorem 2.3.16(iii), a cell C(M*([I']2)) of AZ°®" is of maximal dimension
if and only if I" has the maximum number of edges, and this happens precisely when I is
3-regular in which case #F(I") = dim C(M*([T']2)) = 3g — 3. On the other hand, using the
fact that every 3-edge-connected graph of genus g is the specialization of a 3-regular and
3-edge-connected graph (see [CV1, Prop. A.2.4]), formula (2.17) and Theorem 2.3.16(iii)
give that every cell of Af®" is the face of some maximal dimensional cell, i.e. Ag®" is of
pure dimension 3g — 3. To conclude the proof of part (ii), it is enough to recall that a 3-
edge-connected and 3-regular graph I' is also 3-connected (see for example [CV1, Lemma
A.1.2]) and that [[']; = {I'} according to Fact 2.1.13.

Using the same argument as in the beginning of the proof of Proposition 2.2.9, it is
easy to see that the codimension one cells of A3°*" are of the form C'(M*([I']2)), where [I']
varies among the 2-equivalence classes of genus ¢ graphs having one vertex of valence
4 and all the others of valence 3 (it is easy to see that this property is preserved under
2-isomorphism). The same proof as in Proposition 2.2.9 gives now part (iv) while part
(iii) follows from [C8, Thm. 3.3]: any two 3-regular and 3-(edge)-connected graphs of the

same genus are 3-linked, i.e. they can be obtained one from the other via a sequence of
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twisting operations as in Figure 2.2 in such a way that each intermediate graph is also
3-edge-connected.
O

From the above Proposition 2.4.9 and Lemma 2.4.6, we deduce the following tropical
Schottky theorem.

Theorem 2.4.10. The tropical Torelli map tgr is full and its image is equal to the stacky
subfan ASEr C AV,

Remark 2.4.11. It is known (see Example 2.5.11 or [V03, Chap. 4]) that A{*s" = A*g'l”v if
and only if g < 3. Therefore ¢!" : M!* — A"V is surjective if and only if g < 3. This has to
be compared with the fact that the classical Torelli map ¢, : M, — A, is dominant if and
only if g < 3.

2.4.3 Tropical Torelli

In [CV1, Thm. 4.1.9], the authors determine when two tropical curves C and C’ of total
weight zero (i.e. tropical curves up to tropical modifications in the sense of Mikhalkin-
Zharkov) are such that Jac(C) = Jac(C’). Indeed, we show here that the same result
extends easily to the more general case of tropical curves (with possible non-zero weight).

We first need the following definitions.

Definition 2.4.12. Two tropical curves C = (T, w,l) and C’ = (I, w’,l’) are 2-isomorphic,
and we write C' =5 (', if there exists a bijection ¢ : E(I") — E(I"), commuting with the
length functions / and !/, that induces a 2-isomorphism between I" and I''. We denote by

[C]2 the 2-isomorphism equivalence class of a tropical curve C.
Similarly to definition 2.1.15, we have the following

Lemma - Definition 2.4.13. Let C = (T',/,w) a tropical curve. A 3-edge-connectivization
of C is a tropical curve C? = (I, [?,w?) obtained in the following manner:

(i) I'3is a 3-edge-connectivization of I' in the sense of definition 2.1.15, i.e. I'® is obtained
from T by contracting all the separating edges of I and, for each C'1-set S of T, all but
one the edges of S, which we denote by eg;

(ii) w? is the weight function on I'* induced by the weight function w on I' in the way

explained in 2.2.1 viewing I'? as a specialization of T’;

(iii) {3 is the length function on I given by

13(63) - Zl(e)a

ecS

for each Cl-set S of T".

103



The 2-isomorphism class of C? is well-defined; it will be called the 3-edge-connectivization
class of C' and denoted by [C?],.

It is now easy to extend [CV1, Thm. 4.1.9] to the case of tropical curves.

Theorem 2.4.14. Let C and C’ be two tropical curves of genus g. Then t;'(C) =t/ (C") if
and only if [C3]; = [C")2. In particular ti is injective on the locus of 3-connected tropical

curves.

Proof. Note that [C3]; = [C"3] if and only if the 3-edge-connectivizations (in the sense of
definition [CV1, Def. 4.1.7]) of the underlying metric graphs (T',!) and (I, !’) are cyclically
equivalent (in the sense of [CV1, Def. 4.1.6]), or in symbols [(I'3,1?)]cyc = [(T"3,13)]cye-

On the other hand, from the definition 2.4.1, it follows that Jac(C) = Jac(C’) if and
only if the Albanese tori (in the sense of definition [CV1, 4.1.4]) of the underlying metric
graphs (T',1) and (I, !’) are isomorphic, or in symbols Alb(T', ) = Alb(T", ).

With these two re-interpretations, the first assertion of the Theorem follows from [CV1,
Thm 4.1.10]. The second assertion follows from the first and Fact 2.1.13. O

Finally we can prove a tropical analogous of the classical Torelli theorem which was
conjectured by Mikhalkin-Zharkov in [MZ07, Sec. 6.4] and proved in [CV1, Thm. A.2.1]
assuming the existence of the relevant moduli spaces (see [CV1, Assumptions 1, 2, 3]).
However, since the conjectural properties that these moduli spaces were assumed to have
in [CV1] are slightly different from the properties of the moduli spaces M ;r and Agr’v that

we have constructed here, we give a new proof of this result.
Theorem 2.4.15. The tropical Torelli map t' : M* — AV is of degree one onto its image.

Proof. The image of t;r is equal to A{°*" according to Theorem 2.4.10. Therefore, we have
to prove that tgr : M, ;r — Ag°®" satisfies the two conditions of Definition 2.1.2.

Proposition 2.4.9 and Theorem 2.4.14 give that a generic point of A¢°®" is of the form
Jac(C) for a unique tropical curve C' = (', w, 1), whose underlying graph T is 3-regular and
3-connected. This proves that the first condition of Definition 2.1.2 is satisfied.

It remains to prove that the integral linear function Lr ), defined in (2.15), is prim-
itive for a tropical curve C = (T',w,l) whose underlying graph T is 3-regular and 3-
connected. So suppose that the quadratic form Qr ., ;) on H;(I',R) is integral, i.e. that the
associated symmetric bilinear form (which, by abuse of notation, we denote by Q r,.,;)(—, —))
takes integral values on H;(I',Z); we have to show that the length function [ takes inte-
gral values. Since I' is 3-edge-connected by hypothesis, every edge of I" is contained in a
C1-set and all the C1-sets of " have cardinality one (see 2.1.6). Therefore, using [CV1,
Lemma 3.3.1], we get that for every edge e € E(T') there exist two cycles A; and Ay of T’
such that the intersection of their supports is equal to {e}. By definition 2.14, these two
cycles define two elements C; and C; of H;(I', Z) (with respect to any chosen orientation of
I') such that Q.1 (C1,Co) = Il(e). Since Qr 1) (—, —) takes integral values on H,(T',Z)
by hypothesis, we get that I(e) € Z, q.e.d. O
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2.5 Planar tropical curves and the principal cone

2.5.1 A% and the principal cone

Another important stacky subfan of A7°" (other than A°¢") is formed by the zonotopal cells
that correspond to graphic matroids. Indeed, from formula (2.16) and Theorem 2.3.16(iii),
it follows that the collection of graphic cones

Gr:={oz C Q) : [0z] = [o(M)] for a graphic matroid M}

is closed under taking faces of the cones, and therefore it defines a GL,(Z)-admissible
decomposition of a closed subcone of Q_f]t, i.e. Gr satisfies all the properties of Definition
2.3.6 except the last one. Therefore we can give the following

Definition 2.5.1. A% is the stacky subfan of A7" C AZLV whose cells are of the form
C (M), where M is a simple graphic matroid of rank at most g.

By combining Corollary 2.3.18, Remark 2.1.30 and Proposition 2.1.33, we get the fol-

lowing

Remark 2.5.2. The cells of A%" are of the form C(M([I']z)), where [[']; varies among the
2-isomorphism classes of simple graphs of cogenus at most g.

Ag is closely related to the so-called principal cone (Voronoi’s principal domain of the
first kind), see [N80, Chap. 8.10] and [V03, Chap. 2.3]. It is defined as

Jgrin = {Q = (Qij) € Qg D qi; <0 for i # j, Zqij > 0 for all Z}

J

t is well-known that Stab(o} . ) = 5,41 (see , Oec. 2.3]) and we will denote by C,iy, :=
It is well-k hat Stab(09,;,) = Sy+1 (see [VO3, Sec. 2.3]) and we will d by C,

0

[09,5n/ Stab(a),;,,)] the cell of A%V corresponding to the principal cone o), and call it the

prin»
principal cell.
The following result is certainly well-known (see for example [V03, Sec. 3.5.2]), but we

include a proof here by lack of a proper reference.

Lemma 2.5.3. The GL(Z)-equivalence class [0),;,] of the principal cone is equal to [0° (M (K44 1))],
where K41 is the complete simple graph on (g + 1)-vertices. Therefore Cpyin = C(M (K441))

in Agr’v.

Proof. Call {vy,--- ,v411} the vertices of K, ; and e;; (for i < j) the unique edge of K,
joining v; and v;. Choose the orientation of K, such that if i < j then s(e;;) = ¢; and
t(e;;) = e;. It can be easily checked that the elements {§(v1),--- ,d(vy)} form a basis for
$(8) = Hy(Ky41,Z)*. Consider the transpose of the integral matrix, call it A(K 1), that
gives the inclusion Hy (K 41,Z)*" — C1(K,11,7Z) with respect to the basis {5(v1), -, d(vg)}
and {e;; }i<;. In other words

A(Kg1)"-6(vr) =D e — D e *)

i<k k<j
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Observe that A(K,41) € My ,(Z) where n = (95') = #E(K,11). It is well-known (see [092,
Prop. 5.1.2, 5.1.3]) that A(K,41) is totally unimodular and that M (K 1) = M[A(Kg41)]-

We now apply the construction in 2.3.14 to this matrix A(K,11). For a n-tuple [ =
(lij)i<j € RY, (setting I ; = I; j if i < j), consider the quadratic form Q 4k, ,), of formula
(2.11). For the associated bilinear symmetric form, which we denote Q4 (x,,,)(—, —) (by
an abuse of notation), we can compute, using (*) above, that (for i # j)

Qa(ry ) a(6(vi), 6()) = > i+ ligra,

1<k#i<g
QA(Kg+1)i(6(Ui)a (5(1}]‘)) = _liaj'

This easily implies that 0°(A(Ky;1)) = 0),;,, which concludes the proof since, as observed
before, [0°(A(Ky11))] = [0°(M(Kg1))]- N

From the previous Lemma, we deduce the following

Proposition 2.5.4. The stacky subfan A%" of A7 C AZ’“V coincides with the closure inside
Azen (or AirV) of the principal cell Cyyin. In particular it has pure dimension equal to (1

and Cpyin s the unique maximal cell.

Proof. Consider the closure, call it Cpyin, of Cprin inside Ag“v. Note that Cpyin C A%,
because of the above Lemma 2.5.3, and therefore we get that Cy,, C A% In order to

prove equality, consider a cell of A%", which, according to Remark 2.5.2, is of the form

g b
C(M([T']2)), for a simple graph I" of cogenus at most g. Such a graph can be obtained by
K41 by deleting some edges and therefore, using Theorem 2.3.16(iii) and formula (2.16),
we get that C(M([T']2)) is a face of the closure of C(M (K 41)) = Chrin, and hence it belongs

to Cprin, q.€.d. O

0
prin

Remark 2.5.5. The principal cone ¢” . has many important properties, among which we

want to mention the following

(1) Cprin is the unique zonotopal cell of maximal dimension (ggl) (see [V03, Sec. 3.5.3]

and the references there);

(i) The Dirichlet-Voronoi polytope associated to [Ugrin] is the permutahedron of dimen-
sion g (see [295, Ex. 0.10]), which is an extremal Dirichlet-Voronoi polytope in the
sense that it has the maximum possible number of d-dimensional faces among all
Dirichlet-Voronoi polytopes of dimension g (see [V03, Sec. 3.3.2] and the references
there);

0

(iii) o, is the unique Voronoi cone that is also a perfect cone (see [D72]).

2.5.2 Tropical Torelli map for planar tropical curves

We begin with the following
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Definition 2.5.6. We say that a tropical curve C = (T, w, ) (resp. a stable marked graph
(T, w)) is planar if the underlying graph T is planar.

Note that the specialization of a planar tropical curve is again planar. Therefore it
makes sense to give the following

Definition 2.5.7. M ;’Vpl is the stacky subfan of M;r consisting of planar tropical curves.

It is straightforward to check that any planar tropical curve can be obtained as a spe-
cialization of a 3-regular planar tropical curve. Therefore we get the following

Remark 2.5.8. M!"P! is of pure dimension 3g — 3 with cells C(I',w) C R, for planar
stable marked graphs (I', w) of genus g. A cell C(I',w) of M}"P! is maximal if and only if I

is 3-regular.

We want now to describe the image of M ;“Pl under the map tzr. With that in mind,
we consider the locus inside A" formed by the zonotopal cells corresponding to matroids
that are at the same time graphic and cographic. Indeed, from formulas (2.16), (2.17) and
Theorem 2.3.16(iii), it follows that the collection of cones

Gr-cogr := {0z : [0z] = [0(M)] for a graphic and cographic matroid M}

is a GL4(Z)-admissible decomposition of a closed subcone of Q;t, i.e. Gr-cogr satisfies all
the properties of Definition 2.3.6 except the last one. Therefore we can give the following

Definition 2.5.9. A%"°%" is the stacky subfan of A7°" C A;r,\/ whose cells are of the form

C(M), where M is a simple graphic and cographic matroid of rank at most g.

Equivalently, A2"<°#" is the intersection of A{°*" and A%" inside A7°". Using Corollary
2.3.18, Proposition 2.1.31, Remark 2.1.32 and Proposition 2.1.33, we get the following

Remark 2.5.10. The cells of ABTCO8T are of the form
C(M([I2)) = C(M*([T']3)),

for [I']y planar and simple and [I']5 the dual 2-isomorphism class as in (2.3) (which is
therefore planar and 3-edge-connected by (2.4)).

Example 2.5.11. We have defined several stacky subfans of A;r*v, namely:
r,cogr cogr T zon tr,V
ASDCORT C ATORN AR C AN C AN

For g = 2, 3, they are all equal and they have a unique maximal cell, namely the principal
cell Cyiy associated to the principal cone o0, (see [V03, Chap. 4.2, 4.3]). However, for

g > 4, all the above subfans are different. For example, for ¢ = 4, we have that (see [V03,
Chap. 4.4)):

@) Aff’v has 3 maximal cells (of dimension 10), one of which is Ciyin;
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(i1) A%°" has two maximal cells: C,i, of dimension 10 and C(M*([K3 3]2)) of dimension 9,

where K3 5 is the complete bipartite graph on (3, 3)-vertices;

(iii) A5°®" has two maximal cells (of dimension 9): C(M*([K3 3]2)) and
C(M*([K5—1]3)), where K5 — 1 is the (planar) graph obtained by the complete simple
graph K5 on 5 vertices by deleting one of its edges;

(iv) Af" has a unique maximal cell (of dimension 10), namely Cpyin;

(v) A5"°°®" has a unique maximal cell (of dimension 9): C(M*([K; — 1]5)) = C(M([K5 —
1]2)).

Finally, we point out that A7°" becomes quickly much smaller than A‘;’V as g grows: Ag"v
has 222 maximal cells while A% only 4; Agr,v has more than 250,000 maximal cells (al-
though the exact number is still not known) while AZ°" only 11 (see [V03, Chap. 4.5, 4.6]
and [DV99, Sec. 9]).

Now, we can prove the main result of this section.

Theorem 2.5.12. The following diagram

M;r.,pl( M;r

tr tr
J/tg J/tg

Agr,cogrc A;ogr'
is cartesian. In particular, the map tgr : M;r’pl — ABH°°8 is full and of degree one.

Proof. The fact that the diagram is cartesian follows from Lemma 2.4.6 together with the
fact that M*(T") is graphic if and only if T" is planar (see 2.1.32). The last assertion follows
from the first and the Theorems 2.4.10, 2.4.15. O

2.5.3 Relation with the compactified Torelli map: Namikawa’s con-
jecture

In this last subsection, we use the previous results to give a positive answer to a prob-
lem posed by Namikawa ([N80, Problem (9.31)(i)]) concerning the compactified (classical)
Torelli map.

We need to recall first some facts about the classical Torelli map and its compactifica-
tion. Denote by M, the coarse moduli space of smooth and projective curves of genus g, by
A, the coarse moduli space of principally polarized abelian varieties of dimension g. The
classical Torelli map

tg: Mg — Ay,

sends a curve X into its polarized Jacobian (Jac(X),Ox).
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It was known to Mumford and Namikawa (see [N76, Sec. 18], or also [A04, Thm. 4.1])
that the Torelli map extends to a regular map (called the compactified Torelli map)

M, — A" (2.18)
from the Deligne-Mumford moduli space M, of stable curves of genus g (see [DM69]) to
the toroidal compactification /TQV of A, associated to the (second) Voronoi decomposition
(see [AMRT75], [N80] or [FC90, Chap. IV]). The above map t, admits also a modular
interpretation (see [A04]), which was used in [CV2] to give a description of its fibers.

The moduli space M, admits a stratification into locally closed subsets parametrized
by stable weighted graphs (T, w) of genus g (see definition 2.2.1). Namely, for each stable
weighted graph (I',w) we can consider the locally closed subset S ., C M, formed by
stable curves of genus g whose weighted dual graph is isomorphic to (I', w). Observe that,
given a stable curve X with weighted dual graph (T, w), any smoothing of X at a subset
S of nodes of X has weighted dual graph equal to the specialization of (I', w) obtained by
contracting the edges corresponding to the nodes of S (see 2.2.1). From this remark, we
deduce that:

C(F,'LU) - C(F/,wl) = S([‘,w) D S(F',w’)' (219)

Similarly, from the general theory of toroidal compactifications of bounded symmetric
domains (see [AMRT75] or [N80]), it follows that Tgv admits a stratification into locally
closed subsets Sc((p)), parametrized by the cells C([P]) of A”"V. We have also that

C([PD C C([Pl]) = SC([p]) D) SC([P/]). (2.20)

The compactified Torelli map respects the toroidal structures of M, and Tgv (see [A04,
Thm. 4.1]); more precisely, we have that (compare with Lemma 2.4.6):

Eg(S(F,w)) C SC(]\FEE))' (221)

Given a stacky subfan N of M ;r (in the sense of definition 2.1.1), consider the union
of all the strata S, of M, such that C(T',w) € N, and call it Uy. Similarly for any
stacky subfan of A;“V. It is easily checked, using formulas (2.19) and (2.20), that such a
Uy is an open subset of M, (resp. ngV) containing M, (resp. A,), and thus it is a partial
compactification of M, (resp. Ay).

In particular we define Mgl C M, as the open subset corresponding to the stacky
subfan M{"P! C M{* and AS"8" C A8 C AT,V as the two open subsets corresponding to
the two stacky subfans Ag"<°e" C AZ8" C A_ff’v.

Observe that from formula (2.21) it follows that the compactified Torelli map t, takes

values in A{°¢". Finally we can state the main result of this subsection.

Corollary 2.5.13. Given a stable curve X, we have that t,(X) € A%"°®" if and only if the
dual graph I'x of X is planar.
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Proof. From formula (2.21), it follows that t{"(X) € 5, AT Therefore ' (X) € Ag"co8"

if and only if M*(T'x) is a graphic matroid. By the definition 2.1.27 of the simplification
of a matroid, it follows easily that M*(I'x) is a graphic matroid if and only if M*(T'x) is a
graphic matroid. By combining Proposition 2.1.31 and Theorem 2.1.19, we finally get that
M*(T'x) is a graphic matroid if and only if I'x is planar. O

—_~—

The part if of the above Corollary was proved (using analytic techniques) by Namikawa
in [N73, Thm. 5]. The converse was posed as a problem in [N80, Problem (9.31)(i)].
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