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“Oh! È importante però, che non dici cazzate”

Glauco, Boris, seconda Stagione





Contents

1 Introduction 1

1.1 Spintronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Spin-orbit interaction 13

2.1 The origin of the spin-orbit interaction . . . . . . . . . . . . . 14

2.2 The k · p method and the Kane model . . . . . . . . . . . . . 15

2.3 Intrinsic spin-orbit coupling in 2-D systems . . . . . . . . . . . 21

3 The linear response theory and its application to Fermi sys-

tems 26

3.1 The Green function and the linear response theory . . . . . . . 27

3.2 Disorder, impurities and the self-consistent Born approximation 35

3.3 The spin Hall and Edelstein conductivities in the 2DEG Rashba

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 The spin-Hall conductivity and extrinsic SOC . . . . . . . . . 46

4 Spin Hall and Edelstein effects in metallic films: From two

v



CONTENTS vi

to three dimensions 57

4.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 The transport coefficients . . . . . . . . . . . . . . . . . . . . 65

4.3 Discussion of the results . . . . . . . . . . . . . . . . . . . . . 75

4.4 Inter-band contributions . . . . . . . . . . . . . . . . . . . . . 77

4.5 The connection between the spin Hall and Edelstein effects . . 80

5 Thermospin effects: the spin Nernst effect 84

5.1 The heat and spin dialogue . . . . . . . . . . . . . . . . . . . . 84

5.2 The spin equivalent of Mott’s formula . . . . . . . . . . . . . . 87

5.3 Spin Nernst effect and spin thermopower in electron and hole

gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6 Conclusions 101

Appendix 104

A Effective Hamiltonians 105

A.1 The k.p method . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 Symmetries and the Kane model . . . . . . . . . . . . . . . . 107

B Integral of the Green functions 110

B.1 The intra-band integrals . . . . . . . . . . . . . . . . . . . . . 110

B.2 The inter-band integrals . . . . . . . . . . . . . . . . . . . . . 112

C Kinetic equations: a quasiclassical approach 113

C.1 The SU(2) formalism . . . . . . . . . . . . . . . . . . . . . . . 113



Chapter 1

Introduction

1.1 Spintronics

The word “spintronics” refers to a multidisciplinary field of study centered on

the manipulation of spin degrees of freedom in solid state systems [1–4]. One

of the most important scopes is to understand what is the relation between

the charge and the spin of the electrons. A good knowledge of this relation

could allow us to realize devices capable of making use of both, the charge

and the spin of the electrons. In contrast to electronics which is based only on

semiconductors, in spintronics metals, both normal and ferromagnetic, are

important too. The field is considered “new” due to this new point of view,

but it is closely related to “old” subfields like magnetism, superconductivity,

the physics of semiconductors, information theory, optics, mesoscopic physics

or electrical engineering.

Typical spintronics issues are

• how to polarize a system, just a single electron or an ensemble (induce

1
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magnetization in a material);

• how to keep it in a desired spin configuration longer than the time

required by the device to make use of the information carried by this

configuration;

• how to transport the information carried by this spin configurations

across a device and, finally, accurately read it.

Generation of spin polarization usually means creating a nonequilibrium

spin population. This can be achieved in different ways, optically, through

electrical spin injection, through temperature gradients and through many

other ways. Historically the optical injection using circularly polarized light

which transfers its angular momentum to electrons has been the most used

and studied technique. This is the principle that is behind the so-called spin

light emitting diodes (spin LEDs). But for device applications electrical spin

injection is much more desirable.

The electrical control of spin population could be exploited by two dif-

ferent physical mechanisms, ferromagnetism interactions and spin-orbit cou-

pling (SOC). The idea of spintronics devices based on ferromagnetic prop-

erties is to inject spin currents in paramagnetic materials. One of the most

studied effect due to this type of injections is the famous giant magnetoresis-

tance effect also known as GMR effect [5,6]. The GMR effect occurs in hybrid

systems made of magnetic and nonmagnetic parts, exploiting the different

conductivity property of majority and minority spin populations. The effect

consists on the appearance of a significant change of the electrical resistivity

due to the change of the relative magnetization between the two different
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ferromagnets. We will find a different value for the resistivity if both are

magnetized parallel or antiparallel. The GMR effect led Albert Fert and Pe-

ter Grünberg to win the Nobel Prize in 2007. It is probably the most well

known spintronic effect due to its huge applications on hard disk storage that

were implemented by the first time by Stuart Parkin at the IBM [7].

This research field is extremely broad and we will focus ourselves on

spin-orbit based effects. We refer the interested reader to the vast literature,

especially to the reviews [2–4].

1.2 Spin-orbit coupling

Spin-orbit coupling appears in the non-relativistic limit of the Dirac equation

in the following form

Hso =
λ2

0

4
σσσ · ∇V (r)× p, (1.2.1)

where λ0 = ~
mc
' 3.9× 10−3 is the Compton wavelength divided by 2π, V (r)

the atomic potential, p the momentum, and σσσ the Pauli matrices. Effec-

tive Hamiltonian arising in solid-state theory have often a form similar to

Eq.(1.2.1) but with a λ2
eff , that in systems like GaAs, can be 6 orders of

magnitude bigger. This fact makes the spin-orbit interaction experimentally

relevant for possible technological applications, in contrast to the vacuum

value.

Spin-orbit coupling gives rise to several interesting transport phenomena

arising from the induced correlation between charge and spin degrees of free-

dom [8–21]. It has been proposed as an efficient way to achieve the control of

the electron spin through electrical and thermal external perturbations. One
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of the biggest advantages of the devices based on this type of interaction is

that we do not need external magnetic fields or ferromagnetic materials to

achieve electrical control of the spin population. Among the many interesting

effects that arise from spin-orbit coupling, two stand out for their potential

technological importance: the spin Hall effect and the Edelstein effect.

The spin Hall effect (SHE) consists in the appearance of a spin current

flowing perpendicular to an external electric field, spin polarized perpendic-

ular to both, the electric field and the spin current, Fig.(1.1)(left) [22–27].

This effect was predicted theoretically by Dyakonov and Perel in 1971 [28].

It was not much noticed until 1999 when first Hirch [8] and latter Zang [9]

rediscovered the effect and brought it to the center of the discussions of the

spintronics community. There are different types of spin-orbit mechanisms

responsible for the SHE. We classify them in two different categories depend-

ing on the origin of the potential that causes the spin-orbit interaction. If it

is due to scattering with impurities, magnetic or not, we talk about extrinsic

spin-orbit interaction. If its due to the bands potential of the solid or due to

an external potential, like the confining potential in a quantum well, we talk

about intrinsic one.

An example of extrinsic mechanism is the so-called skew scattering. The

idea goes back up to Mott [29], who pointed out that spin-orbit interaction

polarizes in spin the diffused particles, assumed to be initially non polarized,

due to a collision. We can see in Fig.(1.2)(left) a scheme of the skew scattering

mechanism.

Bychkov and Rashba devised an extremely simple and yet powerful model

[30] describing the intrinsic spin-orbit coupling of the electrons in a 2-dimensional
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electron gas (2DEG) in a quantum well in the presence of an electric field per-

pendicular to the plane in which the electrons move. In 2004 Sinova et al. [11]

calculated the spin Hall conductivity (SHC) of this model Fig.(1.2)(right).

They found an universal result of σSHE = e/8π. It triggered a great explosion

of activity in the study of the SHE. In contrast some numerical calculations

showed a 0 value of the SHC when simulating these systems. There were

several months of debate around this argument until the inclusion of vertex

corrections, which we will explain through this work, closed the discussion

and showed that the SHC vanishes in a 2DEG with Rashba coupling [31–33].

This vanishing SHC, which can be demonstrated rigorously using exact op-

eratorial relations, does not occur if we include extrinsic mechanism in the

model [19,24,34–42]. When both Rashba and extrinsic SOC are present the

things get much more complicated, but really interesting too [38,43,44].

There is a huge number of experiments which have measured the SHE in

electron/holes systems through different techniques. The first experimental

proof of the SHE in semiconductors was obtained by Kato et. al. in 2004 [22].

They produced an external electric field in an n-type GaAs semiconductor.

In this experiment the charge current generates a spin current due to spin-

orbit coupling, but the spin current cannot flow due to the boundaries in the

perpendicular direction. Then a spin accumulation appears at the edges (pos-

itive at one edge, negative at the other), so that this spin-gradient balances

the spin Hall current. The above mentioned experiment measured this spin

accumulation through Kerr rotation microscopy. It is important to notice

that spin relaxation mechanisms decrease the spin accumulation. But the

spin relaxation length in GaAs allows the spin accumulation to be visualized
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Figure 1.1: Left: Representation of the spin hall effect. The red line repre-

sents the direction of the spin polarization, the green one the external electric

field and the black one the direction of the spin current. Right: Representa-

tion of the Edelstein effect. The red line represents the direction of the spin

polarization, the green one the external electric field.
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clearly enough by measuring the Faraday rotation of the radiation.

We know that in systems with spin-orbit coupling a charge current pro-

duces a spin current perpendicular to the first one. So a spin current will

produce a charge current perpendicular to it because of Onsager relations.

This is known as the inverse spin Hall effect (iSHE). This effect is easier

to measure that the direct SHE because we know how to measure a charge

voltage but it is not easy to measure a spin voltage. The iSHE has been

measured in metals like Al [45] or Pt [36]. The geometry is the H-bar, one

creates a charge current in one of the bars, because of spin-orbit coupling a

spin current appears in the perpendicular bar and then we measure a voltage

in the other vertical bar due to the iSHE.

This is only a very brief review of the experiments on the SHE. We refer

the interested reader to literature [22–25,36,45–50].

The Edelstein effect, also known as current-induced spin polarization,

[51,52] consists in the appearance of a spin polarization perpendicular to an

applied electric field, Fig.(1.1)(right). It has been proposed as a promising

way of achieving all-electrical control of magnetic properties in electronic

circuits. The effect has been measured experimentally following similar tech-

niques as the ones used for measuring the SHE [22,23,53–58].

We can interpret the Edelstein effect as follows; the external electrical

field induces a Zeeman effective field through the spin-orbit coupling. This

effective magnetic field will be beff ∝ ∆pα, where α depends on the spin-

orbit interaction we are dealing with, for example in the 2DEG Rashba case

α = eEλeff/4~, and ∆p is the shift of the Fermi sphere due to the external

electric field [59]. By looking to Eq.(1.2.1) the spin polarization will be
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Figure 1.2: Left: Little representation of the extrinsic skew scattering mech-

anism predicted by Mott. Electrons with different spins get scattered in

different directions due to spin-orbit coupling. Right: Fermi momentum in

the case of 2DEG Rashba spin-orbit coupling.

perpendicular to the external electric field. In the concrete case of the Rashba

SOC in a 2DEG which we mentioned before the Edelstein conductivity is

sy = −eN0ταEx, (1.2.2)

where N0 = m/2π is the 2 dimensional density of states and τ the scattering

time.

Both the Edelstein and the spin Hall effects are deeply connected as we

will see through the following Chapters.

As we have seen these effects are at the center of spintronic research. As

we pointed before the research of materials with intrinsic spin-orbit coupling

and huge spin Hall conductivities is one of the biggest challenge for the

physicists working in the field. Through this work we will calculate the spin

Hall and the Edelstein conductivities following a new model proposed by
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Wang et al. [60]. The model consists on a thin metal sandwiched by two

different insulators. The inversion symmetry breaking and the interfaces

generates giant spin-orbit coupling which is responsible for both effects. We

will find really encouraging theoretical results which pushes ourselves to look

after experimental data which confirm this predictions.

There is a deep connection between electrical and thermal effects. Ther-

moelectric studies are crucial if we are interested in describing all the trans-

port properties of any physical system. In the case of metals most of the

thermal effects are strongly correlated to the electrical ones. One example of

this relation is the well known Wiedemann-Franz law, which states that, in

the case of metals, the thermal conductivity is proportional to the electrical

one.

The same thing happens in the field of spintronics. Knowing the coupling

between the energy and the spin will be crucial if we want to describe the

transport properties of any spintronic device. A new field has arisen, “spin

caloritronics” which studies these spin thermoelectric effects.

One of the most important thermoelectric effect is the Seebeck effect,

which consists in the generation of an electromotive force by applying an

external temperature gradient. Analogously the spin Seedbeck effect [61–67]

consists in the generation of a spin voltage due to the application of an

external temperature gradient. This spin voltage generates a spin current

that has been experimentally detected due to the inverse spin Hall effect,

in the same way that it was detected in the spin Hall experiments cited

before [62].

Spin-orbit coupling plays an important role in “spin caloritronics” too.
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H 6= 0 M = 0 | H = 0 M 6= 0 | H = 0 M = 0

~E Hall effect AHE SHE

∇T Nernst effect ANE SNE

Table 1.1: Family of Hall- and Nernst-type effects [68].

By analogy with the spin Hall effect the spin Nernst effect (SNE) consists in

the appearance of a pure spin current perpendicular to an applied tempera-

ture gradient [68–73]. This could be easily understood looking at Table 1.1

comparing both the electrical and thermal effects.

Through this work we will focus on the spin Nernst effect, and we will

establish a relation between this and the spin Hall effect. We will see that

metals are much more efficient devices as heat-to-spin than heat-to-charge

converters.

1.3 Outline

This work is organized as follows.

Chapter 2 introduces spin-orbit coupling. We will firstly recall a little

derivation of spin-orbit coupling in the non-relativistic limit of the Dirac

equation. We will later explain how effective spin-orbit Hamiltonians terms

arise in solid state systems. At the end of the Chapter we will pay some atten-

tion to two-dimensional systems which play an important role in spintronics.

Supplementary material is given in Appendix A.

Chapter 3 is dedicated to the mathematical tools which are needed to
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calculate all the transport properties on spin-orbit based systems. We will

introduce the Green and the Matsubara Green functions We will recall the

Kubo formula in the linear response regime. We will recall the impurity

technique within the so-called self-consistent Born approximation. At the

end of the Chapter we will use these techniques to calculate the spin Hall

conductivity when Rashba and extrinsic spin-orbit coupling are present. Sup-

plementary material is given in Appendix B.

In Chapter 4 we present originals results regarding a model consisting

on a thin metal sandwiched by two different insulators. After solving the

model, we will calculate both the spin Hall and the Edelstein conductivities,

taking into account the vertex corrections. We will discuss the relation that

exist between both conductivities in this not strictly two-dimensional model.

We will also present two interesting limit situations that can be described

within this model, the insulator-metal-vacuum junction, and the insulator-

metal-insulator junction with the same spin-orbit coupling constant at both

interfaces. This last limit will provide encouraging results as we will see later

on. At the end of the Chapter we will study the range of validity of the

presented calculations. Supplementary material is given in Appendices B-C.

In Chapter 5 we present an original and general derivation of the spin

Nernst effect. We will establish a total connection of the spin Nernst con-

ductivity and the spin Hall conductivity with the same range of validity of

the Wiedemann-Franz law. We will later calculate the spin Nernst conduc-

tivity in some specific cases showing that we are able to write a relation

between the spin and the electric thermopowers. They are proportional one

to the other by a factor which depends on the spin-orbit coupling. We will



1.3. Outline 12

show that in some cases metals present a better heat-to-spin efficiency than

a heat-to-charge one.

The closing Chapter 6 is a brief summary and an overview of the current

and future work.



Chapter 2

Spin-orbit interaction

Since spin-orbit interaction is crucial in spin-transport effects we will derive

briefly how it appears in solid state systems. First we will recall its atomic

derivation in the non-relativistic limit of the Dirac equation [74]. Then we

will derive how it appears in different semiconductors following the so-called

k · p method, within the Kane model [12,75–77]. At the end of the Chapter

we will apply these techniques to the special case of 2-D systems [78–80]

and we will derive both the Rashba [30] and the Dresselhaus [81] spin-orbit

coupling Hamiltonians.

This is only a brief recall of the effective spin-orbit coupling Hamiltonian

terms in solid state systems. For a more extended treatment we refer the

interested reader to the literature cited before.

13
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2.1 The origin of the spin-orbit interaction

Spin-orbit interaction (SOI) arises in the non-relativistic limit of the Dirac

equation. The Dirac equation reads

i~∂tψ = (α̂αα · P̂ + β̂mc2 + V̂ )ψ, (2.1.1)

with

α̂αα =

 0 σσσ

σσσ 0

 , β̂ =

 1 0

0 −1

 , V̂ = V Î, P̂ = pÎ , ψ =

 ψ1

ψ2

 ,

where ψ1, ψ2 are the upper and lower components of the bispinor ψ and

V = eφ. Taking the zero energy as mc2, the Dirac equation can be written

as

i~∂tψ1 = eφψ1 + cσσσ · pψ2 (2.1.2)

i~∂tψ2 = cσσσ · pψ1 − (2mc2 − eφ)ψ2. (2.1.3)

We want to know the form of ψ when eφ and cp are small compared to the so-

called Dirac gap 2mc2 (the non-relativistic limit). If we make an expansion in

the parameter 1/(2mc2), the second equation gives us the following relation

ψ2 '
1

2mc

(
1− i~∂t

2mc2
+

eφ

2mc2

)
σσσ · pψ1. (2.1.4)

The normalization condition for the original wave function 〈ψ|ψ〉=1 implies

〈ψ|ψ〉 = 〈ψ|ψ1〉+ 〈ψ2|ψ2〉, (2.1.5)

then, if we define

ψ̃ =

(
1 +

(σσσ · p)2

8m2c2

)
ψ1, (2.1.6)
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ψ̃ satisfies 〈ψ|ψ〉 = 1 at order 1/c2. The equation for ψ̃ reads

i~∂tψ̃ =

(
1− (σσσ · p)2

8m2c2

)[
eφ+

1

2m
σσσ · p

(
1 +

eφ

2mc2

)
σσσ · p

](
1 +

(σσσ · p)2

8m2c2

)
ψ̃.

(2.1.7)

By performing the products up to terms of order 1/c2, we get

Heff = eφ+
p2

2m
− p4

8m3c2
+
e~∆φ

8m2c2
+

e~
4m2c2

σσσ · ∇φ× p, (2.1.8)

where the first two terms represents the "classical" non-relativistic Hamilto-

nian, the third term is the first relativistic correction to the kinetic energy,

the fourth term is the so-called Darwin term, and finally the last one is the

spin-orbit interaction. Let us rewrite this term

Hso =
λ2

0

4
σσσ · ∇φ× p, (2.1.9)

where λ0 = ~/(mc) ' 10−10cm is the Compton wave length. In atoms, eφ is

the central field due to the nucleus and to the screening of the electrons and

the SOI term is the responsible of the fine structure of the atomic spectra. In

solids the derivation is a little different, but we will find effective Hamiltonians

that will include terms as the one of Eq.(2.1.9). In the next Section we will

calculate this effective terms in semiconductors following the k · p method

and the Kane model

2.2 The k · p method and the Kane model

We want to describe the motion of charge carriers in solid state systems.

The goal is to describe this motion in terms of effective Hamiltonians that

take into account external electric and magnetic, fields, impurities due to
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disorder, and more importantly, spin-orbit interaction. These Hamiltonians

will be derived through various approximations, but they will be able to

describe all the relevant physics we are interested in. This is achieved via the

Luttinger-Kohn method, also known as k · p method, and the so-called Kane

model.

First of all we will treat the problem in the absence of external fields, and

in the absence of impurities, and then we will see how to introduce them.

The single-particle Schrödinger equation for an electron in a lattice described

by the potential U(x) and in the presence of spin-orbit coupling reads

H0ψνk(x) =

[
(−i~∇)2

2m0

+ U(x) +
~

4m2
0c

2
∇U(x)× (−i~∇) · σσσ

]
ψνk(x)

= ενkψνk(x), (2.2.10)

where ν is the band index, m0 the bare electron mass. From now on we will

work in natural units, i.e. ~ = c = 1. According to Bloch’s theorem the

translational symmetry of the lattice requires the wave function to be of the

following form

ψνk(x) = eik·xuνk(x) (2.2.11)

with uνk(x) a function with the same periodicity of the lattice. In several

solid state systems, like in GaAs, the bottom of the conduction band - and

the maximum of the valence one - lies at the Γ point k = 0. Then the

eigenfunctions of Eq.(2.2.11) can be expanded in the following basis

uνk(x) =
∑
ν′

cνν′kuν′0(x). (2.2.12)
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In such a basis, using ket notation, one obtain the matrix elements

H0,νν′ = 〈uν0|H0|uν′0〉

=

(
εν0 +

k2

2m

)
δνν′ +

1

m0

k · πππνν′ , (2.2.13)

where εν0 is the energy offset of the band at k = 0[
(−i∇)2

2m0

+ U +
1

4m2
0

∇U × (−i∇) · σσσ
]
|uν0〉 = εν0|uν0〉 (2.2.14)

and

πππνν′ = 〈uν0|(−i∇) +
1

4m2
0

∇U × σσσ|uν′0〉

≈ 〈uν0|(−i∇)|uν′0〉. (2.2.15)

For more details about these approximations see Appendix A.

We can see from Eqs.(2.2.14,2.2.15) that the spin-orbit coupling enters

only in the calculation of the diagonal terms εν0. For a real treatment of

Eq.(2.2.12) we have to truncate the expansion of uν0(x), and only the band

closest to the gap will be considered (see Appendix A).

This leads to the so-called 8× 8 Kane model, when we consider two spin

degenerate s-wave conduction bands and six p-wave valence bands. The p-

like bands are partially split by spin-orbit coupling into two groups. The first

made of four degenerate levels, the light and heavy hole bands (J = 3/2),

and the other two, also called split-off levels (J = 1/2). This is shown

schematically in Fig.2.1. There are less-restrictive models, which take into

account the effect of more conduction bands as the so-called Kane extended

model, 14 × 14. Obviously the more bands we take into account the more

accurate the model is, but the normal Kane Hamiltonian explains quite well

how spin-orbit coupling appears in solid state systems.
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Figure 2.1: Schematic band structure at the Γ-point for 8 × 8 Kane model.

Spin-orbit interaction, 4, splits the six p-like valence levels into the light and

heavy hole bands, with total angular momentum J = 3/2, and the split-off

band, with J = 1/2.
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The fully 8× 8 Kane Hamiltonian can be written in the following way

H

 φc

φv

 =

 Hc,2×2 Hcv,2×6

H†cv,6×2 Hv,6×6

 φc

φv


= ε

 φc

φv

 , (2.2.16)

with φc and φv respectively a two-dimensional and six-dimensional spinor for

the conduction and the valence bands. We will assume that the energy gap,

Eg, is the biggest energy scale, in other words the two group of states are far

away from each other and thus weakly coupled, Hcv, H
†
cv << Eg ∼ Hv. This

pushes us to write a 2× 2 equation for the electrons of the conduction band

H(ε)φ̄ = εφ̄, (2.2.17)

with

H(ε) = Hc +Hcv(ε−Hv)
−1H†cv (2.2.18)

and φ̄ a renormalized conduction band spinor. When we expand Eq.(2.2.18)

for energies close to the band minimum, and we insert this expansion in

Eq.(2.2.17) the effective eigenvalue equation for φ̄ is obtained. The coupling

with the valence band is translated into a renormalization of the effective

mass, the g-factor, and the spin-orbit coupling constant. The eigenvalue

equation in the presence of an external electromagnetic field and any possible

potential V reads[
[(−i∇) + eA]2

2m∗
+ V − µBg

∗

2
σσσ ·B +

λ2

4
∇V × [(−i∇) + eA] · σσσ

]
φ̄ = εφ̄

(2.2.19)
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with µB the Bohr magneton, m∗ and g∗ the renormalized mass and g-factor,

B = ∇×A the external magnetic field and λ the new spin-orbit wavelength

(the renormalized Compton wavelength). All these quantities are written in

terms of parameters of the 8×8 Hamiltonian and their derivation is presented

in Appendix A. The most important quantity is the new parameter λ2/4

that, as we said before, has the same form as the spin-orbit term appearing

in the expansion of the Dirac equation (Eq.(2.1.9)). In solids this parameter

can be much bigger than the vacuum constant λ2
0/4, it can be six orders of

magnitude bigger. Here we present the value of these new parameters

1

2m∗
=

(
1

Eg +4 +
2

Eg

)
, (2.2.20)

g∗ =
2e

µB

P 2

3

(
1

Eg
− 1

Eg +4

)
, (2.2.21)

λ2

4
=

P 2

3

(
1

E2
g

− 1

(Eg +4)2

)
, (2.2.22)

where P takes into account the correlation between the s and the p bands, and

4 the spin-orbit splitting between the j = 1/2 and the j = 3/2 valence bands

(for details see Appendix A). Eq.(2.2.19) shows how the spin-orbit coupling

in the bands arises in the presence of a non-crystalline potential V . We will

distinguish between intrinsic and extrinsic effects depending on the origin

of the potential V . If it is due to impurities we will talk about extrinsic

mechanisms, whereas if it is due to confining potentials (or other type of

geometry or interfacial effects) we will talk about intrinsic mechanisms.

It is important to remark that the 8× 8 Kane model describes quite well

the conduction band electrons in zincblende crystals, e.g. III-V (GaAs-based)

and II-VI (CdTe based) semiconductors. If the symmetries of the crystal

change, we should change the size and the symmetries of the Hamiltonian we
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are treating. This derivation is not good if we want to describe, for example,

spin-orbit coupling in Platinum. The materials with the crystal structure as

the ones presented here (8×8 Kane Hamiltonian) have no inversion symmetry.

Let us see how inversion symmetry is related to spin-orbit phenomena. Lets

consider a state with vector k and spin↑. In the presence of time reversal

symmetry, by Kramers theorem

E(k, ↑) = E(−k, ↓). (2.2.23)

If the system has space inversion symmetry

E(k, ↓) = E(−k, ↓). (2.2.24)

So if the system has space inversion symmetry there is a degeneracy of the

spin states in the absence of external magnetic fields. But the materials with

no inversion symmetry, as the ones treated here, have spin-split energies as

we will see in the next Section.

2.3 Intrinsic spin-orbit coupling in 2-D systems

One of the most studied system in spin-orbit based transport phenomena, is

the so-called two-dimensional electron gas (2DEG). Here we will derive how

we model this type of devices and what are the spin-orbit coupling terms

associated with this type of systems. The main idea is to grow different

band structures, whose properties can be fine-tuned through strains, exter-

nal potential gates or doping, with the goal of creating a potential well for

the conduction electrons (holes). This is shown in Fig.2.2 for the typical

example of GaAs/GaAlAs modulation-doped heterostructures. As shown in
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Figure 2.2: Scheme of a modulation-doped heterostructure based on the

GaAs/n-AlGaAs, junction based on the experimental setup shown in [24].

Fig.2.3, electrons are trapped at the interface of this asymmetric quantum

well, but they feel this external electric field Ez = ∇V . This confining electric

field is the responsible of the so-called Bychkov-Rashba (mostly referred as

Rashba) spin-orbit interaction. In this case we can rewrite the Hamiltonian

of Eq.(2.2.19)in the following way

H =
k2

2m∗
+ V − b′(k) · σσσ, (2.3.25)

where k = −i∇+ eA and b′(k) contains two terms, one due to the external

magnetic field, and the other due to the k-dependent spin-orbit coupling,

b′(k) = bext + b(k) (2.3.26)

In the 2DEG Rashba case we have ∇V = eEẑ and

b(k) · σσσ → bR(k) · σσσ = α(kxσy − kyσx) = αẑ× k · σσσ (2.3.27)
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Figure 2.3: Schematic representation of the effect of modulating doping on

the conduction band at the GaAs/n-AlGaAs interface. Matching the two

sides means that the electrons released by the donor impurities move to the

GaAs layer until equilibrium is reached (Fermi levels aligned). In this way

electrons are trapped at the interface of an asymmetric quantum well
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with the parameter α = eEλ2/4 tunable via the gates (V = V (z)).

Now we are able to calculate the eigenvalues and eigenfunctions of the

Rashba 2DEGmodel. In the absence of disorder and external electromagnetic

fields the Hamiltonian reads

H =
k2

2m∗
+ α(kyσx − kxσy) (2.3.28)

The solution of the Schrödinger equation is

Eks =
k2

2m∗
− αks (2.3.29)

ψks(r) =
eik·r√
A

1√
2

 1

iseiθk

 , (2.3.30)

where θk is the angle between k and the x axis. As we can see momentum,

k, and the projection of the spin in the direction perpendicular to k, i.e. the

chirality, s, are good quantum numbers. We can also see, as predicted in

the previous Section, that there is a spin splitting in the energy of the form

∆Ek = 2αk, because this type of 2-D systems have no inversion symmetry.

It is important to remember that other mechanisms give rise to similar

spin-orbit interaction terms. For example considering the more elaborate

14× 14 Kane model for zincblende crystals, where we calculate the effective

spin-orbit interaction term for the electrons in the conduction band, the

following cubic-in-momentum term, called the cubic Dresselhaus term, is

obtained

bD(k) · σσσ = Ckx(k2
z − k2

y)σx + cyclic permutations, (2.3.31)

with C a crystal-dependent constant. If we are interested in the effects of

the Dresselhaus SOI in a 2DEG, we have to average 〈HD〉 along the growth
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direction ẑ, which we assume parallel to the [001] crystallographic direction.

In this case kz is quantized with 〈k2
z〉 ∼ (π/d)2, d being the width of the well.

The main bulk-inversion-asymmetry contribution is then

[bD(k)]2D · σσσ = β(kxσx − kyσy), (2.3.32)

with β ' C(π/d)2. There is an important difference between the Rashba

and the Dresselhaus terms. The first one has its origin in the non-crystalline

potential and the second one depends on the crystal one. Both terms can

be of comparable magnitudes, the predominance of one or the other depends

on the specific characteristic of the system. In any case the spin-splitting

caused by any of both SOI terms is usually much smaller than the Fermi

energy, |bR|, |bD| << εF .

In the following we will be more interested in the Rashba SOI, because

it is one of the most studied system in literature [11, 13, 14, 18, 25, 30–33, 39,

52, 54, 60, 82–84]. We have focused our attention to intrinsic mechanisms.

We will not show a complete description of extrinsic ones but as we will see

later on they are also very important [19, 24, 34–42] in spin-transport effects

in 2DEG systems.



Chapter 3

The linear response theory and its

application to Fermi systems

We are interested in calculating the response of a physical system to an

external perturbation. To this end we recall briefly some aspects of the

Green function technique. Then we derive the Kubo formula for various

spin transport coefficients. After that we recall the impurities technique for

disordered electron systems.

In the last Sections of this Chapter we evaluate both the spin Hall con-

ductivity in a 2DEG with Rashba and extrinsic SOC using the techniques

shown through this Chapter.

We only refer to fermions all through the Chapter. Obviously these tech-

niques are also extensible to bosons. We refer the interested reader to the

literature [85–96]. We will work in natural units ~ = c = 1.

26
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3.1 The Green function and the linear response

theory

The Green function is one of the most important tools in Quantum Field

Theory. It is especially useful in dealing with perturbation theory solutions.

It represents a great way to encode information and to calculate expectation

values of different physical observables. The one-particle Green function, also

known as propagator, is defined by

Gσσ′(x, t,x
′, t′) = −i〈TtΦσ(x, t)Φ†σ′(x

′, t′)〉, (3.1.1)

where Tt is the time-ordering operator, 〈...〉 indicates the average over the

ground state 〈Ψ0|...|Ψ0〉, and Φσ,Φ
†
σ′ are the field operators. If we derive

with respect to time Eq.(3.1.1) we obtain

i∂tGσσ′(x, t,x
′, t′) = δ(t− t′)δ(x− x′)δσσ′ − i〈Tti∂tΦσ(x, t)Φ†σ′(x

′, t′)〉.

(3.1.2)

Since we consider problems which can be described by single particle Hamil-

tonians, Eq.(3.1.2) can be written as

i∂tGσσ′(x, t,x
′, t′) = δ(t− t′)δ(x− x′)δσσ′ − i〈TtHΦσ(x, t)Φ†σ′(x

′, t′)〉,

(3.1.3)

so we are able to write the following equation

(i∂t −H)Gσσ′(x, t,x
′, t′) = δ(t− t′)δ(x− x′)δσσ′ . (3.1.4)

Let us see why the Green function is also called the propagator. Let us

imagine that we know the wave function at a time t′. In this case we are able
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to write the wave function at the time t as

ψ(x, t) =

∫
dx′GR(x, t,x′, t′)ψ(x′, t′), (3.1.5)

where GR is the retarded Green function, which as we will see later is closely

related with the Green function defined before. This equation is valid for

t > t′. As we can see the Green function “propagates” the wave function

from the position x′ at the time t′ to the position x at time t.

If the system is translational invariant we can define the Fourier transform

of the Green function to respect x− x′ and to t− t′ as

G(x, t,x′, t′) =
1

V

∑
k

eik·(x−x
′)

∫ +∞

−∞

dω

2π
eiω(t−t′)G(k, ω). (3.1.6)

In the limit of infinite volume, V →∞, the sum over momentum reduces to

an integral, 1/V
∑

k → (2π)−d
∫
ddk. From now on the sum over k,

∑
k, will

be intended as an integral,
∫
k
. When we calculate the Green function in the

non-interacting Fermi sea case we obtain

G0(k, ω) =
1

ω − ξ(k) + isgn(|k| − kF )0+
, (3.1.7)

where ξ(k) = k2/2m − µ, kF is the fermi momentum and µ is the chemical

potential. We have introduced an infinitesimal imaginary term in the denom-

inator, +isgn(|k|−kF )0+, to make the integrals of Eq.(3.1.6) convergent [89].

Now, before we move on, we recall Wick’s theorem in its zero-temperature

form for the case of the expectation value of four field operators.

〈TtΦ†σ(x, t)Φσ(x, t)Φ†σ′(x
′, t′)Φσ′(x

′, t′)〉 = −〈TtΦσ(x, t)Φ†σ′(x
′, t′)〉〈TtΦσ′(x

′, t′)Φ†σ(x, t)〉,
(3.1.8)

which as we will see below it is crucial if we want to write the Kubo formula

as a function of the Green functions.



3.1. The Green function and the linear response theory 29

In the zero-temperature limit, the Green function, which encodes infor-

mation about the wave function, is sufficient to our purposes. This limit is

allowed in all electrical-spin problems of our interest because we will describe

systems in which room temperature will be smaller than the Fermi temper-

ature. When we are dealing with spin thermoelectric situations, where tem-

perature and statistical effects are important, the Green functions are no

longer sufficient. We then define the Matsubara Green function as

Gσσ′(x, τ,x′, τ ′) = −〈TτΦσ(x, τ)Φσ′(x
′, τ ′)〉, (3.1.9)

where the fictitious imaginary time is iτ with τ that varies in the interval

(0, β) with β = 1/kBT (from now on kB = 1) and now 〈...〉 = Tr[e−βK+βΩ...],

where K = H − µN and Ω the grand canonical potential. These new Mat-

subara Green functions take into account the effects of finite temperature.

The time dependence of the field operators are

Φσ(x, τ) = eKτΦσ(x)e−Kτ , Φσ(x, τ) = eKτΦ†σ(x)e−Kτ . (3.1.10)

It is important to notice that Φσ(x, τ) is not the Hermitian conjugate of

Φσ(x, τ) as it was in the standard Green functions definition, Eq.(3.1.1).

The Matsubara Green function has an important property

G(x,−τ,x′, 0) = −G(x,−τ + β,x′, 0), 0 < τ < β. (3.1.11)

This is crucial for the definition of the Fourier series expansion of the Mat-

subara functions in the interval (−β, β)

G(τ) =
1

β

∞∑
n=−∞

e−iωnτG(ωn) (3.1.12)

G(ωn) =
1

2

∫ ∞
−∞

dτeiωnτG(τ), (3.1.13)
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with ωn = (2n+ 1)π/β and n running over the naturals.

All the techniques shown for the Green functions, including Wick’s theo-

rem, are analogous when we are dealing with the Matsubara Green functions,

by analytical continuation by sending iωn → ω. For an extended treatment

of this formalism we refer the interested reader to the literature cited at the

beginning of the Chapter.

The most important scope of this work is to calculate different transport

coefficients in the presence of external perturbations. We will calculate them

in the frame of the linear response theory. This theory is based on the

idea that the external perturbation, for example an external electric field, is

small enough so we can only take into account the linear perturbation term.

We want to calculate the average of any operator 〈OA〉. Let us divide the

Hamiltonian into two terms

H = H0 +Hext, (3.1.14)

where H0 is the Hamiltonian in the absence of the external perturbation, and

Hext represents the external perturbation. We will be interested in describing

the coupling of the electrons with an external field, so we will be able to write

Hext as

Hext(t) =

∫
dx′OB(x′)UB(x′, t), (3.1.15)

where UB(x′, t) specifies the external field coupling with the observableOB(x′).

We will use the interaction representation and we will introduce the inter-

action adiabatically, i.e. Hext → 0 when t → −∞, which is equivalent to

|Ψi(t0 → −∞)〉 = |Ψ0〉. This allows us to write

|Ψi(t)〉 = |Ψ0〉 − i
∫ t

−∞
dt′Hext(t

′)|Ψ0〉. (3.1.16)
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So 〈OA〉 becomes

〈Ψ(t)|OA|Ψ(t)〉 = 〈Ψi(t)|Oi,A(t)|Ψi(t)〉

= 〈Ψ0 |
(

1 + i

∫ t

−∞
dt′Hext(t

′)

)
Oi,A(t)

(
1− i

∫ t

−∞
dt′Hext(t

′)

)
|Ψ0〉

= 〈Ψ0 |OA(t)|Ψ0〉 − i
∫ t

−∞
dt′〈Ψ0| [OA(t), Hext(t

′)] |Ψ0〉. (3.1.17)

The first term is the average over the unperturbed system, which is not

the one we are interested in, but the second gives us the information of the

perturbation on the average of the operator.

δ〈OA(x, t)〉 ≡ 〈OA〉 − 〈OA〉0 =

∫ ∞
−∞

dt′
∫
dx′RAB(x,x′, t− t′)UB(x′, t′),

(3.1.18)

where

RAB(x,x′, t) = −iθ(t)〈[OA(x, t), OB(x′, 0)]〉0. (3.1.19)

This is the famous Kubo formula which expresses the linear response to

an external perturbation Hext in the zero-temperature limit. RAB depends

only on the properties of the unperturbed system. Since H0 will be time

independent, the response function depends on the time difference and not

on both times separately. Then we introduce the Fourier transform respect

time and space

RAB(x,x′, t− t′) =

∫ ∞
−∞

dω

2π

∑
q,q′

RAB
q,q′(ω)e−iω(t−t′)eiq·x+iq′·x′ . (3.1.20)

If the unperturbed system is also translational invariant then the response

function will only depend on the difference of the space arguments which

easily implies RAB
q,q′(ω) = RAB

q (ω)δq+q′,0 with

RAB
q (ω) = −

∫ ∞
−∞

dteiωtiθ(t)〈[OA(q, t), OB(−q, 0)]〉0. (3.1.21)
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By Fourier transforming Eq.(3.1.18) we obtain

δ〈OA(q, ω)〉 = RAB
q (ω)UB(q, ω). (3.1.22)

For uniform and static perturbations we will limit ourselves to calculate the

limits q→ 0 and ω → 0 of the response function.

Now we will define

PAB(x,x′, t) = −i〈TtOA(x, t), OB(x′, 0)〉0, (3.1.23)

where Tt is the time-ordering operator. It is easy to show that

ReRAB
q (ω) = RePAB

q (ω)

ImRAB
q (ω) = sgn(ω)ImPAB

q (ω). (3.1.24)

So RAB and PAB contain the same information.

We will be interested in calculating different spin transport coefficients in

the presence of different external perturbations. We will be specially inter-

ested in three different coefficients, the spin Hall (SHC), the Edelstein (EC)

and the spin Nernst (SNC) conductivities, defined by

jzy = σSHEEx (3.1.25)

sy = σEEEx (3.1.26)

jzy = NSHE∇xT. (3.1.27)

One of the most interesting features of the Kubo formula is that we are able

to associate each conductivity with a Feynmann diagram, Fig 3.1.

The spin Hall effect consists in the appearance of a spin current perpen-

dicular to an external electric field. The operator to consider is the spin
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jx jh
xjx jz

y sy jz
y

(a) (b) (c)

Figure 3.1: Feynman bubble diagrams for the SHC(a), EC (b) and SNC(c).

current OA → jak = jzy , and the external perturbation will be an electric field

OB → ji(r) = jx(r), and UB → Ai(x,t), where we have chosen the Gauge

with the external electric potential being zero, φext = 0. We know that

Ei = −∂tAi, which implies UB = 1/ω Ex. So the DC spin Hall conductivity

reads

σSHE = lim
ω→0

lim
q→0

1

ω
RAB

q (ω). (3.1.28)

Since we know that the charge and spin current operators can be expressed

as bilinear forms of the field operators

j(x, t) = −i e
2m

[
Φ†σ(x, t)∇Φσ(x, t)−

(
∇Φ†σ(x, t)

)
Φσ(x, t)

]
− e2

m
AΦ†σ(x, t)Φσ(x, t)

ja(x, t) = − 1

4e
{j, σa}, (3.1.29)

by using Wick’s theorem, Eq.(3.1.8), we can write

σSHE = lim
ω→0

Im
1

ω

∫ ∞
−∞

dε

2π
Tr
[
jxG(ε+,k)jzyG(ε−,k

′)
]
, (3.1.30)

with ε± = ε±ω/2. Now the spin current operator reads jzy = σzky/2m and the

charge current operator jx = −ev̂x. This formula, Eq.(3.1.30) corresponds to

calculate the diagram shown in Fig 3.1(a).

The Edelstein effect is the appearance of a spin polarization produced by

the action of a perpendicular external electric field. The quantity we want
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to average will obviously be the spin polarization OA → sa = sy, and the

external perturbation is the same described before. The Kubo formula for

the EC reads

σEE = lim
ω→0

Im
1

ω

∫ ∞
−∞

dε

2π
Tr [jxG(ε+,k)syG(ε−,k

′)] , (3.1.31)

which is represented by the diagram shown in Fig 3.1(b).

The spin Nernst effect is the spin current produced in a material with

SOC when we apply a temperature gradient. As in the case of the SHE

the quantity to consider is the spin current, OA → jak = jzy , but now the

external perturbation is the temperature gradient so OB → jhl (r) = jhx(r),

and UB → ∇T/T = ∇xT/T .

Now if we want to write the Kubo formula for the spin Nernst conductivity

in the same form of Eq.(3.1.30) we have to notice that the Green functions

are defined in the zero-temperature limit. But this limit is not valid when

we are dealing with heat problems, so we will use the so-called Matsubara

Green functions defined before, which allows us to write

NSH = lim
Ω→0

1

Ων

∑
εn

Tr
[
jzyGnjhxGn+ν

]
, (3.1.32)

which is represented by the diagram shown in Fig 3.1(c).
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3.2 Disorder, impurities and the self-consistent

Born approximation

It is well known that at low temperatures the resistivity of a metal is domi-

nated by the scattering of the electrons with impurities and defects. Impuri-

ties play a very important role in transport problems. In this Section we will

study the impurities technique assuming that the impurity concentration is

low.

We are not able to know the exact position of each impurity site. Since

impurity atoms are distributed randomly we will model the disorder potential

as a Gaussian distribution with only local correlations, also known as white

noise, with elastic s-wave scattering

U(x) = 0, U(x)U(x′) = u2δ(x− x′) ≡ niv
2
0δ(x− x′) =

1

2πN0τ
δ(x− x′),

(3.2.33)

where A means the average of all possible configurations, u2 is the strength of

the disorder potential due to the concentration of impurities, ni the impurity

concentration, v0 the scattering amplitude, N0 the density of states and τ

the scattering time.

If we want to take into account the effect of impurities it is enough to

average over all possible configurations of the disorder potential. We will

use the important fact that the average distance between impurity atoms is

much larger than the lattice spacing, because the impurity concentration is

low, which assures us that the averaging can be carried out in volumes with

dimensions much greater than the interatomic distances.
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Let us see how to treat the Green function in the presence of an interaction

term, Hi. The total Hamiltonian is now made of two parts, one H0, that

we know how to solve, and the interaction one, H = H0 + Hi. With this

Hamiltonian Eq.(3.1.4) reads

(i∂t−H0)Gσσ′(x, t,x
′, t′) = δ(t−t′)δ(x−x′)δσσ′+HiGσσ′(x, t,x

′, t′). (3.2.34)

We define G0 as the Green function which solves Eq.(3.1.4) in the absence

of the interaction term, i.e. Hi = 0. So Eq.(3.2.34) becomes

(G0)−1G = 1 +HiG, (3.2.35)

which explicitly is equal to

Gσσ′(x, t,x
′, t′) = G0

σσ′(x, t,x
′, t′) +

∫
dx′′dt′′G0

σσ′′(x, t,x
′′, t′′)Hi(x

′′)Gσσ′(x
′′, t′′,x′, t′).

(3.2.36)

This integral equation is the starting point for a perturbative expansion of

the Green function.

G0 = G0

G1 = G0HiG
0

G2 = G0HiG
0HiG

0. (3.2.37)

We are interested in calculate the Green function in the presence of im-

purities so Hi = U(x). We will not know the exact form of U(x) but it will

be enough to average over all possible configurations (Fig.3.2(II)). We will

use the so-called Born approximation which assumes that the Fermi energy
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I)

II)

ω

U(x) U(x′)
= u2δ(x − x′)

x x′ x x′
x x1 x2 x′

= +

III)

x1 x1 x3 x3 x1 x2 x1 x2 x1 x2 x2 x1 x1 x1 x1 x1

x x′ω

Figure 3.2: I: Fourth order diagrams for the Green function. II: Self-energy,

before and after averaging over the impurity distribution. III: Dyson equation

for the Green function in the Born approximation.
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is large compared to the broadening caused by disorder. Mathematically this

condition can be written as
1

τ
� εF . (3.2.38)

With this assumption it is easy to prove that the crossing diagrams, as in

Fig.3.2(I-2), are negligible. The diagrams with the same form as the ones of

Fig.3.2(I-4), which correspond to a scattering with only one site, are also neg-

ligible if we compare them with the one site second order ones (Fig.3.2(II)).

From now on we should only take into account the I-1 and I-3 types of dia-

gram. This allows us to write the following equation for Green function

G = G0 +G0Σ(G)G, (3.2.39)

defining the self energy as the diagram shown in Fig.3.2(II).

The Eq.(3.2.39) for the self-energy is self-consistent, G is determined by

Σ, and Σ is determined byG. Now in our case we can calculate the self-energy

in a perturbative way.

Σ1(ω,k) =
1

2πN0τ

∑
k′

G0(ω,k′) = − i

2τ
sgn(ω), (3.2.40)

where for solving the integral we have make the following substitution
∑

k(...)→
N0

∫ +∞
−∞ dξ(...). This approximation is allowed if the imaginary part of pole is

much smaller than the chemical potential µ, as it is in this case (the imaginary

part of the Green function is infinitesimal). It is important to notice that the

real part of the integral over k′ in Eq.(3.2.40) diverges for large values of k′.

This is a consequence of the simple model taken for the scattering potential.

A more realistic model, in which we introduce a cutoff for the scattering

processes, cures this problem, and gives rise to a finite contribution to the
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Γx= +

Γx kx/m

Figure 3.3: Feynman diagram for the vertex corrections.

real part which can be absorbed by a redefinition of the chemical potential.

From now on we will ignore the real part of the self-energy understanding

that it has been absorbed in a shift of the chemical potential.

Now we introduce Σ1 in Eq.(3.2.39) and calculate G1. Then we reintro-

duce this value of G1 in Eq.(3.2.40) to calculate Σ2. We have to pay attention

to the fact that the differences between the Eq.(3.2.39) integrals when we in-

tegrate G1 or G0 are only in the absolute value of the imaginary part of both

integrands. But as the integral only depends on the sign of the imaginary

part and not on its modulus we obtain the same value for Σ2 as the one we

obtained for Σ1. So we can conclude that in the Born approximation the

total self-energy and the total Green function can be written as follows

Σ = − i

2τ
sgn(ω)

G =
1

ω − ξ(k) + i
2τ

sgn(ω)
. (3.2.41)

Impurities affect the Green functions and they affect vertex through the

so-called vertex corrections, Fig.3.3. The techniques we have applied to the
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diagrams for the Green function can be extended also for those for the eval-

uations of the vertex. The equation for the corrected vertex Γx is

Γx =
kx
m

+
∑
k′

|u(k− k′)|2GR
k′ΓxG

A
k′ , (3.2.42)

where we have introduced the retarded and advanced zero-energy Green func-

tions at the Fermi level

GR,A
k =

1

−Ek + µ± i/2τ
. (3.2.43)

Eq.(3.2.42) like Eq.(3.2.36) can be solved in a perturbative way, Γx = kx/m+

Γ1
x + Γ2

x + ... with

Γ1
x =

∑
k′

|u(k− k′)|2GR
k′
k′x
m
GA

k′ . (3.2.44)

But if |u(k−k′)|2 does not depend on the direction of the momentum (s-wave

scattering), the integral over the solid angle makes Γ1
x = 0 and we are able to

write Γx = kx/m. It is important to notice that if |u(k−k′)|2GR
k′G

A
k′ depends

on the direction of the momentum the vertex corrections become important.

3.3 The spin Hall and Edelstein conductivities

in the 2DEG Rashba model

In this Section we calculate both the Edelstein and the spin-Hall conduc-

tivities in a 2DEG with Rashba SOC, in the presence of disorder due to

impurities, with the techniques shown in the previous Sections. The Hamil-

tonian of the model reads

H =
k2

2m
+ U(r) + α(σxky − σykx). (3.3.45)



3.3. The spin Hall and Edelstein conductivities in the 2DEG
Rashba model 41

Firstly we evaluate G0 in the presence of the Rashba SOC without including

disorder. From Eq.(3.1.4) we have

G−1(t,k) = i∂t −H = i∂t −
k2

2m
− α(kxσy − kyσx). (3.3.46)

G has a matrix structure G = G0σ0 +
∑

iGiσi. Its matrix elements in the

basis of the eigenstates with quantum numbers k and s are

G0
ks(ω) =

1

ω − Eks + µ+ isgn(|k| − kF )0+
. (3.3.47)

Following Eq.(3.2.40) one should expect that the self-energy has a ma-

trix structure in spin space too. But it can be proved that inside the self-

consistent Born approximation only Σ0 survives due to the symmetry prop-

erties kx → −kx and ky → −ky of the spin-components of the Green func-

tion [97]. These properties allow us to write the Green function matrix

element k, s in the presence of disorder as

Gks(ω) =
1

ω − Eks + µ+ i
2τ

sgn(ω)
. (3.3.48)

Now we calculate the spin Hall conductivity, Eq.(3.1.30). The number

current operator, jx, besides the standard velocity component, includes a

spin-orbit induced anomalous contribution v̂x = kx/m+ Γ̂x. Without vertex

corrections, the anomalous contribution, in this model, reads

Γ̂x = δv̂x = −ασy. (3.3.49)

it is important to notice that the trace of Eq.(3.1.30) implies not only the sum

over momentum but also the average over disorder. So taking into account

disorder, we project Eq.(3.1.30) over the eigenstates and we explicit its trace

σSHE = − lim
ω→0

Im
e

ω

∑
kk′ss′

〈k′s′|v̂x|ks〉〈ks|jzy |k′s′〉
∫ ∞
−∞

dε

2π
Gs(ε+,k)Gs′(ε−,k

′).

(3.3.50)
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After performing the integral over ε and the ω → 0 limit we obtain

σSHE = − e

2π

∑
kss′

〈ks′|v̂x|ks〉〈ks|jzy |ks′〉GR
ksG

A
ks′ , (3.3.51)

where we have exploited the fact that plane waves at different momentum k

are orthogonal.

To proceed further we need the expression for the vertices. It is easy

to recognize that the standard part of the velocity operator kx/m does not

contribute since it requires s = s′, whereas the matrix elements of jzy differ

from zero only for s 6= s′. Explicitly we have

〈ks′|kx|ks〉 = kxδs′s (3.3.52)

〈ks′|δv̂x|ks〉 = −α (cos θk σz,s′s + sin θk σy,s′s) (3.3.53)

〈ks|jzy |ks′〉 =
k

2m
sin θk σx,ss′ . (3.3.54)

Introducing these quantities in Eq.(3.3.51)

σSHE = +
eα

4πm

∑
kss′

k sin2 θk σy,s′sG
R
ksG

A
ks′ , (3.3.55)

which is equal to

σSHE = +
eα

8πm

∑
k

Im
[
k
(
GR
k+G

A
k− −GR

k−G
A
k+

)]
. (3.3.56)

To perform the k integral we make the following considerations. Those con-

siderations are based on the idea that the Fermi energy is the biggest energy

scale, i.e. εF � αkF , εF � 1/τ . Using the residue theorem, (see Appendix

B), we obtain

σSHEbare =
e

8π

4α2k2
F τ

2

1 + 4α2k2
F τ

2
=

e

8π

2τ

τDP
, (3.3.57)
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where we have introduced the Dyakonov-Perel time τDP , which is the spin

relaxation time due to the Rashba spin-orbit coupling. In the weak disorder

limit, i.e. τ →∞, the SHC, Eq.(3.3.57), takes the universal value of σSHE =

e/8π, like the one found by Sinova et al. in 2004. [11]

This result does not take into account vertex corrections. As we pointed

out in the previous Section if |u(k − k′)|2GR
k′G

A
k′ does not depend on the

momentum they are negligible. But the new k-dependence of the Green

functions when Rashba SOC is present changes drastically the situation as

we will see below.

The anomalous contribution to the velocity vertex, Γ̂x, can be computed

following the procedure described in [31] according to the equations

Γ̂x = γ̃x +
1

2πN0τ

∑
k′

GR
k′Γ̂xG

A
k′ ,

γ̃x = δ̂vx +
1

2πN0τ

∑
k′

GR
k′
k′x
m

GA
k′ ≡ γ̃(1) + γ̃(2). (3.3.58)

Then projecting over the states |ks〉, the matrix elements of the effective

vertex γ̃(2) are:

γ
(2)
ss′ (k) ≡ 〈ks|γ̃(2)|ks′〉 =

1

2πN0τ

∑
k′s1

〈ks|k′s1〉GR
k′s1

k′x
m

GA
k′s1〈k′s1|ks′〉,

(3.3.59)

and γ
(1)
ss′ (k) ≡ 〈ks|γ̃(1)|ks′〉 is given by Eq.(3.3.54). The matrix elements

〈ks|k′s1〉 and 〈k′s1|ks′〉 are those of the impurity potential:

〈ks|k′s1〉 =
1

2

[
1 + ss1e

i(θk′−θk)
]

(3.3.60)

〈k′λ1|ks′〉 =
1

2

[
1 + s′s1e

−i(θk′−θk)
]
. (3.3.61)

By observing that k′x = k′ cos θk′ , one can perform the integration over the
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direction of k′ in the expression of γ(2)
ss′ (k)

1

4

∫ 2π

0

dθk′

2π

[
1 + ss1e

i(θk′−θk)
]

cos θk′
[
1 + s′s1e

−i(θk′−θk)
]

=
s1

8

[
se−iθk + s′eiθk

]
,

(3.3.62)

to get

γ
(2)
ss′ (k) =

(cos θk σz,ss′ + sin θk σy,ss′)

16πN0τ

∑
k′s1

s1G
R
k′s1

k′

m
GA

k′s1 , (3.3.63)

that summing over s1, and integrating over k yields

γ
(2)
ss′ (k) = α(cos θk σz,ss′ + sin θk σy,ss′), (3.3.64)

which cancels exactly γ
(1)
ss′ (k). This is the cancellation of the dressed cur-

rent. As we can see vertex corrections play a very important role in the

calculation of the SHC. It is important to notice that this cancellation is a

particular characteristic of the Rashba 2DEG model. When we deal with

other spin-orbit interactions, like extrinsic SOC, this cancellation does not

happen anymore, [19, 24, 34–38, 40–42], but vertex corrections remain still

important.

There is a very interesting way to understand this vanishing SHC in the

Rashba model proposed by Dimitrova [98]. The commutation relation allows

us to write

−ids
y

dt
= [H, sy] = i2mα

py
m
sz = i2mαjzy . (3.3.65)

This relation implies that in static circumstances

〈ds
y

dt
〉 = 0→ 〈2mαjzy〉 = 0. (3.3.66)

If α is constant, Eq.(3.3.66) implies that jzy = 0.
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Now we calculate the Edelstein conductivity in the 2DEG Rashba model.

First of all we will project Eq.(3.1.31) over the eigenstates and calculate its

trace

σEE = − lim
ω→0

Im
e

ω

∑
kk′ss′

〈k′s′|v̂x|ks〉〈ks|sy|k′s′〉
∫ ∞
−∞

dε

2π
Gs(ε+,k)Gs′(ε−,k

′),

(3.3.67)

with sy = σy/2. After performing the integral over ε and taking the ω → 0

limit we obtain

σEE = − e

4π

∑
kss′

〈ks′|v̂x|ks〉〈ks|σy|ks′〉GR
ksG

A
ks′ . (3.3.68)

The matrix elements of the spin vertex are

〈ks|σy|ks′〉 = cos θk σz,ss′ − sin θk σy,ss′ . (3.3.69)

It is important to notice that now v̂x = kx so we should substitute Eqs.(3.3.52)

and (3.3.69) in Eq.(3.3.67) and calculate the integral that gives us the final

result

σEE = −eN0ατ. (3.3.70)

Both the Edelstein and the spin Hall conductivities are deeply connected

through the following equation

jzy =
D

Lso
sy + σSHEdriftEx , (3.3.71)

where Lso = (2mα)−1 plays the role of an “orientational spin diffusion length",

related to the different Fermi momenta in the two spin-orbit split bands. For

a detailed justification of Eq.(3.3.71) see Appendix C. The factor in front of

the spin density in the first term of Eq.(3.3.71) can also be written in terms
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of the Dyakonov-Perel spin relaxation time, i.e. the “orientational spin diffu-

sion time" given by τDP = L2
so/D. Now we know that in the 2DEG Rashba

model jzy = 0, so we may rewrite Eq.(3.3.71)

σEE = −τDP
Lso

σSHEdrift = −e m
2π
ατ = −eN0ατ, (3.3.72)

where σSHEdrift is the value of the SHC before vertex corrections, Eq.(3.3.57).

We have seen that this deep relation allows us to calculate the Edelstein

conductivity in an elegant way.

3.4 The spin-Hall conductivity and extrinsic SOC

In this Section we will calculate the spin Hall conductivity taking into account

the so-called extrinsic spin-orbit coupling in a 2DEG. We will calculate the

contribution of this interaction to the SHC, firstly, in the absence of Rashba

SOC [99], and then, when both types of interaction are present.

We have seen in Eq.(2.2.19) that the spin-orbit coupling appears as the

gradient of the potential. In the case of the Rashba model, this potential was

the confinement one ∇V (r) → eEz, in the extrinsic SOC case the potential

is due to the impurities, so ∇V (r)→ ∇U(r). The total Hamiltonian can be

written as

H =
k2

2m
+ U(r)− λ2

e

4
σσσ ×∇U(r) · k, (3.4.73)

where λe is the effective spin-orbit wavelength (the renormalized Compton

wavelength of Chapter 2). This new SOC term affects the SHC through two

different mechanisms, the side jump and the skew scattering.

The side jump mechanism [100] describes the lateral displacement of the

wave function during the scattering event. This effect is originated by the
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anomalous part of both, the charge and the spin currents. As in the Rashba

case the velocity operator has two terms

v̂ = i [H, r] =
k

m
− λ2

e

4
∇U(r)× σσσ. (3.4.74)

When an electron is scattered by an impurity potential U , the scattering

cross section depends on the spin state. This is the skew scattering mecha-

nism, predicted by Mott [29], which does not appear in the first order Born

approximation.

Both mechanisms depend on the impurity potential. We will have to

average over the different configurations as we did in Section 2, but now we

will need to go beyond the Born approximation. The impurity average in

momentum space reads

U(q1)U(q2) = niv
2
0δ(q1 + q2)

U(q1)U(q2)U(q3) = niv
3
0δ(q1 + q2 + q3), (3.4.75)

and the impurity potential in momentum space, which appears in the second

and third terms of Eq.(3.4.73), reads

U(k− k′)

[
1− iλ

2
e

4
k× k′ · σσσ

]
(3.4.76)

Firstly we will calculate the self-energy, and then the Green function. The

most important contributions to the self-energy are shown in Fig.(3.4). It is

easily shown that, as G0 does not depend on the direction of the momentum,

only diagrams I and IV are non-zero. Diagrams II, III, V, VI, VII depend

linearly on momentum, so when we integrate over the direction of it, both

vanish. Diagram IV, which depends quadratically on momentum, is of order
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I

II III IV

V
V I V II

Figure 3.4: Different Feynman diagrams of the self-energy to first order in

the spin-orbit interaction. The normal impurity site is denoted by a cross

and the spin-orbit one by a cross inside a circle.
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λ4
e, so we can neglect it. We will see later that when extrinsic and Rashba

SOC are present, this diagram becomes important. The self-energy at zero

order in the spin-orbit interaction, and the Green function have the same

form as the ones of Eq.(3.2.41) which we recall here

Σ = − i

2τ
sign(ω)

G =
1

ω − ξ(k) + i
2τ

sgn(ω)
. (3.4.77)

Now we are able to calculate the spin Hall conductivity, which will consist

of six terms, Fig.(3.5), diagrams I-IV correspond to the side jump contribu-

tion and the V, VI to the skew scattering one.

Before calculating the side jump diagrams we must write explicitly the

anomalous spin, and charge currents.

δjx = −e
[
iλ2
e

4
εxmn(km − k′m)σnU(km − k′m)

]
δjzy =

iλ2
e

8
εymz(km − k′m)U(km − k′m), (3.4.78)

where εijk is the Levi-Civita tensor. It can be easily proved that, in the

absence of Rashba SOC, vertex corrections are negligible. The side jump

contribution, Fig.(3.5(I-IV), reads

σSHCI+II = −i eλ
2
e

16πm
niv

2
0Tr

[∑
k1k2

k2
1x[G

A(k2)−GR(k1)]GR(k1)GA(k1)

]
=
eλ2

e

8m
N0k

2
F

σSHCIII+IV = −i eλ
2
e

16πm
niv

2
0Tr

[∑
k1k2

k2
1y[σzG

A(k2)−GR(k1)σz]G
R(k1)σzG

A(k1)

]
=
eλ2

e

8m
N0k

2
F

σSHCsj = σSHCI+II + σSHCIII+IV =
eλ2

e

4m
N0k

2
F . (3.4.79)
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δjx jz
y

k1

k1

k2 δjx

k2

k1

jz
y

k1

jx

k1

k2

k1

δjz
y jx

k1

k1

k2

δjz
y

jx
jz
y jx jz

y

k1

k3

k2
k2

k3

k1

I
II

III
IV

V
V I

Figure 3.5: Feynman diagrams for the side jump and skew scattering con-

tributions to the SHC to first order in the spin-orbit coupling. The normal

impurity site is denoted by a cross and the spin-orbit one by a cross inside a

circle.
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The skew scattering diagrams, Fig.(3.5)(V, VI), read

σSHCV+V I = −i eλ2
e

16πm2
niv

3
0Tr

[ ∑
k1k2k3

k2
1x[G

A(k3)−GR(k3)]GR(k1)GA(k1)k2
2yG

R(k2)GA(k2)

]

σSHCss =
eπλ2

e

8m2
v0N

2
0k

4
F τ, (3.4.80)

and the total SHC reads

σSHC = σSHCsj + σSHCss =
eλ2

e

4m
N0k

2
F

(
1 +

v0k
2
F τ

4

)
. (3.4.81)

We can see that the ratio between both contributions is σSHCss /σSHCsj ∼ εF τ ,

so the skew scattering mechanism will be dominant. We should remember

that the impurities technique shown in Section 2 is only valid if εF � 1/τ

Now we should calculate the SHC when both Rashba and extrinsic SOC

are present. It is important to notice that now G0 has a matrix structure in

spin space, because of Rashba SOC, so G will have it too. The self-energy

diagrams are the same of Fig.(3.4) but we will take them into account not in

the Green function but only in the two last diagrams of Fig.(3.6). The Green

function in spin space,G = G0 +
∑

iGiσi, taking into account diagrams I and

IV of Fig.(3.4), is

G0 =
1

2
(G+ +G−)

G1 = k̂y
1

2
(G+ −G−)

G2 = −k̂x
1

2
(G+ −G−), (3.4.82)

with

GR,A
± =

(
ω − ξk ∓ αk ±

i

2τt

)−1

, (3.4.83)
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and

1

τt
=

1

τ
+

1

2τso
,

1

τso
≡ 1

τEY
=

1

τ

(
λekF

2

)4

. (3.4.84)

When Rashba SOC was absent we were able to neglect terms of order λ4
e,

Fig.(3.4)(IV). This is no longer possible because, as we will see below, when

both types of SOC are present these terms become crucial. Ignoring these

terms gives rise to an analytic problem as we will see later on [38].

In this case vertex corrections become crucial again, as they were when

only Rashba SOC was present. The appearance of vertex corrections gives

raise to ten new diagrams shown in Figs.(3.6)(I-IV),(3.7). The charge and

spin currents reads

jx ≡ jx0 = −e
(
kx
m

+ Γx0

)
+ δjx (3.4.85)

jzy ≡ jyz =
ky
2m

σz + Γyz + δjzy , (3.4.86)

with Γαβ = Γαβ0 +
∑

i Γ
αβ
i σi.

The vertex correction equations reads

Γαβρ = γαβρ +
1

2

∑
µλν

IµνTr(σρσµσλσν)Γ
αβ
λ +

1

2

∑
µλν

JµνTr(σρσzσµσλσνσz)Γ
αβ
λ

γx0 = −ασy +
1

2πN0τ

∑
k

kx
m
GA
µG

R
ν +

1

2

1

2πN0τso

∑
k

kx
m
σzG

A
µG

R
ν σz

γyz =
1

2πN0τ

∑
k

ky
2m

GA
µσzG

R
ν +

1

2

1

2πN0τso

∑
k

ky
2m

σzG
A
µσzG

R
ν σz,

(3.4.87)
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where

Iµν =
1

2πN0τ

∑
k

GA
µG

R
ν

Jµν =
1

2

1

2πN0τso

∑
k

GA
µG

R
ν =

τ

2τso
Iµν . (3.4.88)

The only component of the corrected current we are interested in is Γ2. After

some calculations we obtain

Γx2 = −α 1
τso
τDP

+ 1

Γyz2 =
vF
4

a

1 + a2

(
1− τt

τso

)
1

τt
τDP

+ τt
τso

. (3.4.89)

When we calculate all diagrams Figs.(3.1)(a),(3.5),(3.6),(3.7), we obtain

the following value for the SHC

σSHC =
1

τso
τDP

+ 1

(
e

8π

2τ

τDP
+
eλ2

e

4m
N0k

2
F +

eπλ2
e

8m2
v0N

2
0k

4
F τ

)
, (3.4.90)

which can be written in a very elegant and condensate way

σSHC =
1

τso
τDP

+ 1

(
σSHCint + σSHCsj + σSHCss

)
, (3.4.91)

with σSHCint the intrinsic SHC before vertex corrections of Eq.(3.3.57).

It is important to notice that if we take the limit τso →∞, which means

not to take into account second order extrinsic terms, σSHC = 0 for any

α 6= 0. But if α = 0 we have σSHC = σSHCsj + σSHCss recovering the result

obtained when Rashba SOC was absent Eq.(3.4.81). As we pointed before if

we ignore terms of order λ4
e from the beginning we find σSHC = 0 for any α,

including α = 0, which is clearly different from the result that we obtain if

we take the limit α→ 0 in Eq.(3.4.91).
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Figure 3.6: The new Feynman diagrams for the side jump contributions in the

presence of Rashba SOC. The vertices jx, jzy have two parts jx = kx/m+ Γx,

jzy = kyσz/2m+ Γzy.
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Figure 3.7: The new Feynman diagrams for the skew scattering contributions

in the presence of Rashba SOC.
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We have pointed in Section 3 how the continuity equation shows us that

the SHC vanishes in the 2DEG Rashba case, Eq.(3.3.65). When extrinsic

SOC is present the continuity equation reads [43]

∂ts
y +

1

τso
sy = −2mαjzy . (3.4.92)

Which implies that if τso 6= 0, the SHC should not vanish anymore.



Chapter 4

Spin Hall and Edelstein effects in

metallic films: From two to three

dimensions

The research of materials which present a large spin Hall conductivity has

been one of the most important topics inside the field of spintronics. In

this Chapter we describe a model which consists on a thin metallic film

sandwiched by two different insulators. The inversion symmetry breaking

across the interfaces produces giant spin-orbit coupling. We will calculate

the spin Hall and Edelstein conductivities due to these interactions and show

that they provide high values for the SHC. We will also discuss the relation

which exists between these two effects. At the end of the Chapter, we will

describe some interesting physical limits and the regime of applications of the

theoretical model here proposed. We will work in natural units ~ = c = 1.

These results have been published in Phys. Rev. B 89, 245443, 2014

57
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[101].

4.1 The model

As we saw in Chapters 2 and 3, the Rashba 2DEG model is one of the most

studied systems inside the field of spintronics. One of the best-known results

concerning this system is the vanishing of the spin Hall conductivity [31–33].

By recalling the Dimitrova’s results [98] we have

〈ds
y

dt
〉 = 0→ 〈2mαjzy〉 = 0. (4.1.1)

If α is constant, i.e. spatially uniform, Eq.(4.1.1) implies that jzy = 0. But

if α is not uniform anymore, i.e. α = α(z), Eq.(4.1.1) only implies that

〈2mαjzy〉 = 0, but not jzy = 0. Moreover, it has been recently pointed out

that the vanishing of the SHC need not occur in systems which present

Rashba-like SOC but are not strictly two-dimensional, as explicitly shown in

a model schematically describing the interface of the two insulating oxides

LaAlO3 and SrTiO3 (LAO/STO) [39]. Even more recently [60], it has been

suggested that a large SHC could be realized in a thin metal (Cu) film that is

sandwiched between two different insulators, such as oxides or even the vac-

uum. A very large spin Hall angle of extrinsic origin has been observed [102]

in thin films of Cu doped with bismuth impurities. In [60], however, the Bi

impurities are absent. Such a system is shown schematically in Fig.4.2.

We will describe this insulator-metal-insulator model. Then we will cal-

culate both the Edelstein and spin Hall conductivities showing the deep con-

nection that exists between them.
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V−

V+

Interfacial spin-orbit
(Rashba)

z

xy

Figure 4.1: Schematic representation of a thin metal film sandwiched between

insulators with asymmetric interfacial spin-orbit couplings. V+ and V− are

the heights of the two interfacial potential barriers. These potentials gener-

ate interfacial spin-orbit interactions of the Rashba type, whose strength is

controlled by the effective Compton wavelengths λ+ and λ− respectively.
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Firstly we will calculate the eingenvalues and eigenfuncions or this junc-

tion. To this end, following Ref. [60], we model this metallic film via the

following Hamiltonian

H =
k2

2m
+

k2
z

2m
+ VC(z) +HR + U(r), (4.1.2)

where the first term represents the kinetic energy associated to the uncon-

strained motion in the xy plane and k = (kx, ky) is the two-dimensional

momentum operator. The second term is the kinetic energy of the motion in

the perpendicular direction, with kz the momentum operator in the z direc-

tion (we ignore the possibility of different effective masses in plane and out

of plane). The finite thickness d of the metallic film is taken into account by

a confining potential

VC = V+θ(z − z+) + V−θ(z− − z), (4.1.3)

where V± is the height of the potential barrier at z± = ±d/2 and θ(z) is the

Heaviside function. The third term in Eq.(4.1.2) describes the Rashba inter-

facial spin-orbit interaction in the xy plane located at z± = ±d/2. We saw

in Chapter 2 that the spin-orbit coupling terms arise as the gradient of the

confining potential in the Kane model. The confining potential, Eq.(4.1.3),

consists on two Heaviside functions so the spin-orbit interaction term consists

in two Dirac delta functions

HR =
[
λ2
−V−δ(z − z−)− λ2

+V+δ(z − z+)
]

(kyσx − kxσy), (4.1.4)

where λ± are the effective Compton wavelengths for the two interfaces,

σx, σy, σz are the Pauli matrices. The last term in Eq.(4.1.2) represents

the scattering from impurities affecting the motion in the x − y plane and



4.1. The model 61

r = (x, y) is the coordinate operator. The impurity potential is taken

in a standard way as a white-noise disorder with variance 〈U(r)U(r′)〉 =

(2πN0τ)−1δ(r − r′), as the one we defined in Chapter 3. As we did before

we will assume that the Fermi energy EnkFn in each subband is much larger

than the level broadening 1/τ and we will use the self-consistent Born ap-

proximation.

It is important to remember that in this thesis we are describing intrinsic

spin-orbit induced effects. This means that the impurities (while, of course,

needed to give the system a finite electrical conductivity) do not couple to

the electron spin.

The eigenfunctions of the Hamiltonian (4.1.2) have the form

ψnks(r, z) =
eik·r√
A

1√
2

 1

iseiθk

 fnks(z), (4.1.5)

where A is the area of the interface, k = (kx, ky) is the in-plane wave vector, r

is the position in the interfacial plane and z is the coordinate perpendicular

to the plane. θk is the angle between k and the x axis. These states are

classified by a subband index n = 1, 2.., which plays the role of a principal

quantum number, an in-plane wave vector k, and an helicity index, s = +1

or −1 which determines the form of the spin-dependent part of the wave

function.

By inserting the wave function (4.1.5) into the Schrödinger equation for

the Hamiltonian (4.1.2) we find the following equation for the functions

fnks(z) describing the motion along the z-axis

− 1

2m
f ′′nks(z)+

{
VC(z)− ks

[
λ2
−V−δ(z + d/2)− λ2

+V+δ(z − d/2)
]}
fnks(z) = εnksfnks(z),

(4.1.6)
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Figure 4.2: The confining potential Vc and the spin-orbit interaction along

the confinement direction (i.e., z axis).
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where the full energy eigenvalues are

Enks =
k2

2m
+ εnks. (4.1.7)

We then solve (4.1.7) and find the following solution for fnks(z)

fnks(z) =


BIe

ξIx if z < z−

BIIe
iξIIx +B′IIe

−iξIIx if z− < z < z+

BIIIe
−ξIIIx if z > z+

, (4.1.8)

where ξI =
√

2m(V− − εnks), ξII =
√

2mεnks and ξI =
√

2m(V+ − εnks) and

BI , BII , B′II and BIII normalization constants which eventually could depend

on n,k, s. By taking into account the continuity of the wave function fnks(z)

at z = ±d/2 and the discontinuities of its derivatives, produced by the Dirac

delta functions, we obtain for the eigenvalue εnks the following transcendental

equation

arctan

 √
ε√(

d2

d2−
− ε
)
− d

d−
α−sk

+arctan

 √
ε√(

d2

d2+
− ε
)

+ d
d+
α+sk

+
√
ε = nπ,

(4.1.9)

where the energy ε is measured in units of E0 = π2/(2md2) set by the thick-

ness of the film. In the absence of spin-orbit coupling (λ± = 0) and for infinite

heights of the potential (V± → ∞), the solution reduces to the well-known

energy levels εnks = E0n
2.

In the general case with both λ± and V± finite we use perturbation theory

by assuming d large. There are two natural length scales associated with the

confining potential d± = 1/
√

2mV± so that we expand in the small parame-

ters d±/d. Since all the energy scales are set by E0, we find useful to describe
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the spin-orbit coupling in terms of the parameters α± = λ2
±/d±, which have

the dimensions of a length. The product E0α± has the dimensions of a ve-

locity and plays the role of the Rashba coupling parameter. In the following

we make an expansion to first order in d±/d and up to third order in α±k.

For the eigenvalues of Eq.(4.1.6) we find

εnks = E0n
2

[
1− 2

d− + d+

d
+ se1k + e2k

2 + se3k
3

]
(4.1.10)

and the eigenfunctions

fnks(z) = cnks sin

[
nπ

d+ d−
1−α−ks + d+

1+α+ks

(
d

2
+ z +

d−
1− α−ks

)]
, (4.1.11)

with n = 1, 2..., where

cnks =

√
4

de [2− (se1k + e2k2 + se3k3)]
, de = d+ d+ + d−;

e1 = 2

(
d+

d
α+ −

d−
d
α−

)
, e2 = −2

(
d+

d
α2

+ +
d−
d
α2
−

)
, e3 = 2

(
d+

d
α3

+ −
d−
d
α3
−

)
.

(4.1.12)

Notice that the sign of the coefficients e1 and e3 depends on the relative

strength of the spin-orbit coupling λ± and barrier heights V±. To avoid

trouble with negative signs in the following calculations, we assume that

the couplings are labeled in such a way that λ+ > λ−, and V+ > V− so that

e1, e3 > 0. We will also assume that n = nc is the topmost occupied subband.

We define the spin splitting energy as

∆EnkFn = (2E0n
2/d)[kFn(λ2

+ − λ2
−) +

2mk3
Fn

~2
(λ6

+V+ − λ6
−V−)]

≡ ∆E
(1)
nkFn

+ ∆E
(3)
nkFn

(4.1.13)

In the next Section we will calculate the spin Hall and the Edelstein

conductivities including vertex corrections.
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4.2 The transport coefficients

In this Section we will calculate two important and deeply connected coef-

ficients, the spin Hall and the Edelstein conductivities. We will use all the

techniques explained in Chapter 3. It is important to keep in mind that these

formulas will be derived under the following assumptions:

1. The spin-orbit interaction produces only a small correction to the en-

ergy levels: in particular, the spin splittings, ∆Enk, in the various

subbands are small in comparison with the energy separation between

the subbands, which we denote by ∆EIB.

By considering the first term in Eq.(4.1.13) and assuming the inter-

band spacing scaling asE0, this assumption requires the effective Comp-

ton wavelength to be smaller than the geometrical average between the

film thickness and the Fermi wavelength, λ± <
√
dλFn with λFn =

2π/kFn . The second term in Eq.(4.1.13) is also assumed small with re-

spect to the first as required for the validity of the expansion, implying

the condition 2mk2
FnV±λ

4
±/~2 < 1. Hence, in summary, one requires

the conditions
λ2
±

dλFn
< 1,

V

E0

<
d2λ2

Fn

λ4
±

. (4.2.14)

As a rough estimate with d ∼ 10−9 m, λ± ∼ 10−10 m, λFn ∼ 10−9m,

we have λ2
±/(dλFn) ∼ 10−2, which makes the assumption (4.2.14) rea-

sonable.

2. In addition, the spacing between subbands must be large compared to

the broadening caused by disorder, meaning that inter-band transitions
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caused by impurity scattering are rare. Mathematically, this condition

is expressed by the inequality

1

τ
< ∆EIB , (4.2.15)

where τ is the typical electron-impurity scattering time. This condition

implies, in particular, that the metallic film cannot be too large, oth-

erwise the intersubband spacing, scaling as E0 ∼ 1/d2, would become

smaller than 1/τ . A corollary to this is that the number of occupied

subbands must remain small – for example one has nc = 4 in a typical

1-nm wide Al film [103]. Roughly one expects ∆EIBτ ∼ 10.

We have made explicit ~ to give clarity to the assumptions, from now on

we will turn to natural units ~ = 1. This assumptions and the fact that we

are truncating our expansion up to first order in d±/d, implies, as we will

see later on, that we will only take into account the intra-band contributions

(inside the same band), and we will neglect the inter-band ones among this

Section.

The SHC is the non-equilibrium spin response to an applied electric field.

As we defined in Eq.(3.1.30) the Kubo formula corresponds to the diagram

(c) of Fig.4.3, and it reads

σSHE = lim
ω→0

Im〈〈jzy ; jx〉〉
ω

, (4.2.16)

where the spin current operator reads jzy = σzky/2m and the charge

current operator jx = −ev̂x. The number current operator, as it happens in

the 2DEG Rashba case, besides the standard velocity component, includes a
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Figure 4.3: Feynman bubble diagram for the EC(a+b) or SHC(c). The empty

right dot indicates the spin density (EC) or the spin current density (SHC)

bare vertex, the left empty one indicates the normal velocity operator, and

the full dot is the dressed charge current density vertex.

Figure 4.4: Ladder resummation for the spin-dependent part of the dressed

charge current density vertex. The dashed line represents the correlation

between propagators scattering off the same impurity site.
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spin-orbit induced anomalous contribution v̂x = kx/m+ Γ̂x. Without vertex

corrections, the anomalous contribution reads

Γ̂x = δv̂x =
[
λ2

+V+δ(z − z+)− λ2
−V−δ(z − z−)

]
σy. (4.2.17)

This expression can be written in terms of the exact Green functions and

vertices as

σSHE = − lim
ω→0

Im
e

ω

∑
nn′kk′ss′

〈n′k′s′|v̂x|nks〉〈nks|jzy |n′k′s′〉
∫ ∞
−∞

dε

2π
Gns(ε+,k)Gn′s′(ε−,k

′).

(4.2.18)

where e > 0 is the unit charge, ε± = ε ± ω/2 and Gns(ε,k) = (ε − Enks +

isgnε/2τ)−1 is the Green function averaged over disorder in the self-consistent

Born approximation with self energy

Σns(r, r
′; ε) =

δ(r− r′)

2πN0τ
Gns(r, r; ε). (4.2.19)

After performing the integral over the frequency we obtain

σSHE = − e

2π

∑
nn′kss′

〈n′ks′|v̂x|nks〉〈nks|jzy |n′ks′〉GR
nksG

A
n′ks′ , (4.2.20)

where we have introduced the retarded and advanced zero-energy Green func-

tions at the Fermi level

GR,A
nks =

1

−Enks + µ± i/2τ
(4.2.21)

and exploited the fact that plane waves at different momentum k are orthog-

onal.

To proceed further we need the expression for the vertices. It is easy

to recognize that the standard part of the velocity operator kx/m does not
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contribute since it requires s = s′, whereas the matrix elements of jzy differ

from zero only for s 6= s′. Explicitly we have

〈n′ks′|kx|nks〉 = kx〈fn′ks′|fnks〉δs′s = 〈fn′ks′ |fnks〉k cos θk δs′s (4.2.22)

〈n′ks′|δv̂x|nks〉 = (cos θk σz,s′s + sin θk σy,s′s)
∆Enk
k
〈fn′ks′ |fnks〉

+2 cos θk σz,s′s
∆E

(3)
nk

k
〈fn′ks′|fnks〉 (4.2.23)

〈n′ks|jzy |n′ks′〉 = 〈fnks|fn′ks′〉
k

2m
sin θk σx,ss′ , (4.2.24)

where ∆Enk = (Enk+−Enk−)/2 = E0n
2(e1k+ e3k

3) is half the spin-splitting

energy in the n-th band. Equation (4.2.23) is straightforwardly obtained

from the eigenvalue equation (4.1.6) for the functions fnks(z) when s 6= s′.

When s = s′ we have to calculate the matrix element explicitly.

Let us now discuss the overlaps between the wave functions 〈fnks|fn′k′s′〉.
If n = n′ we have

〈fnks|fnk′s′〉 =
de
2
cnkscnk′s′

[
1− e1(ks+ k′s′) + e2(k2 + k′2) + e3(k3s+ k′3s′)

4

]
,

(4.2.25)

which is unity plus corrections of order (d±/d) when s, k 6= s′, k′. If n 6= n′

〈fnks|fn′k′s′〉 is at least of order (d±/d). Before continuing our calculation we

observe that it is important to distinguish between the intra-band (n = n′)

and the inter-band (n 6= n′) contributions. The inter-band contributions are

of second order in d±/d, because they are proportional to 〈fnks|fn′ks′〉2. Since
we limit our expansion to the first order in d±/d we will from now on neglect

these contributions. Notice, however, that this approximation is no longer

valid when the intra-band splitting controlled by e1 and e3 vanishes. In this

case one cannot avoid taking into account the inter-band contributions. In
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the same spirit, we also approximate the intra-band overlap 〈fnks|fnk′s′〉 ' 1,

because all of our results are at least linear in (d±/d) and we neglect higher

order terms.

The anomalous contribution to the velocity vertex, Γ̂x, can be computed

following the procedure described in Ref. [31] according to the equations (see

Fig.4.4)

Γ̂x = γ̃x +
1

2πN0τ

∑
k′

GR
k′Γ̂xG

A
k′ ,

γ̃x = δ̂vx +
1

2πN0τ

∑
k′

GR
k′
k′x
m

GA
k′ ≡ γ̃(1) + γ̃(2) (4.2.26)

To extend the treatment to the present case, the projection must be made

over the states |nks〉. Assuming that the impurity potential does not depend

on z, the matrix elements of the effective vertex γ̃(2) are:

γ
(2)nn
ss′ (k) ≡ 〈nks|γ̃(2)|nks′〉 =

1

2πN0τ

∑
n1k′s1

〈nks|n1k
′s1〉GR

n1k′s1

k′x
m
GA
n1k′s1〈n1k

′s1|nks′〉,

(4.2.27)

and γ(1)nn
ss′ (k) ≡ 〈nks|γ̃(1)|nks′〉 is given by Eq.(4.2.23). The matrix elements

〈nks|n1k
′s1〉 and 〈n1k

′s1|nks′〉 are those of the impurity potential:

〈nks|n1k
′s1〉 =

1

2
〈fnks|fn1k′s1〉

[
1 + ss1e

i(θk′−θk)
]

(4.2.28)

〈n1k
′λ1|nks′〉 =

1

2
〈fn1k′s1 |fnks′〉

[
1 + s′s1e

−i(θk′−θk)
]
. (4.2.29)

By observing that k′x = k′ cos θk′ , one can perform the integration over the

direction of k′ in the expression of γ(2)nn
ss′ (k)

1

4

∫ 2π

0

dθk′

2π

[
1 + ss1e

i(θk′−θk)
]

cos θk′
[
1 + s′s1e

−i(θk′−θk)
]

=
s1

8

[
se−iθk + s′eiθk

]
,

(4.2.30)
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to get

γ
(2)nn
ss′ (k) =

(cos θk σz,ss′ + sin θk σy,ss′)

16πN0τ

∑
n1k′s1

s1〈fnks|fn1k′s1〉〈fn1k′s1|fnks′〉GR
n1k′s1

k′

m
GA
n1k′s1 .

(4.2.31)

Approximating 〈fnks|fn1k′s1〉 ∼ δnn1 , summing over s1, and integrating over

k with the technique shown in Appendix B yields

γ
(2)nn
ss′ (k) = −(cos θk σz,ss′ + sin θk σy,ss′)E0n

2(e1 + 2e3k
2
Fn) , (4.2.32)

where we have introduced the spin-averaged Fermi momentum in the n-th

subband

k2
Fn

2m
= µ− E0n

2. (4.2.33)

On the other hand γ(1)nn
ss′ (k) is given by

γ
(1)nn
ss′ (k) = (cos θk σz,ss′ + sin θk σy,ss′)E0n

2(e1 + e3k
2
Fn)

+2 cos θk σz,ss′E0n
2e3k

2
Fn (4.2.34)

where k has been replaced by kFn at the required level of accuracy. Combin-

ing γ(1)nn
ss′ (k) and γ(2)nn

ss′ (k) as mandated by Eq.(4.2.26) we finally obtain

γnnx,ss′(k) = (cos θk σz,ss′ − sin θk σy,ss′)E0n
2e3k

2
Fn . (4.2.35)

Next we project the equation for the vertex corrections in the basis of the

eigenstates and get the following integral equation:

Γnnx,ss′(k) = γnnx,ss′(k)+
1

2πN0τ

∑
n1n2k′s1s2

〈nks|n1k
′s1〉GR

n1k′s1Γ
n1n2
x,s1s2

(k′)GA
n2k′s2〈n2k

′s2|nks′〉,

(4.2.36)
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which, by confining to intra-band processes only, can be solved with the

ansatz Γnnx,ss′(k) = Γn(kFn)(cos(θk)(σz)ss′ + sin(θk)(σy)ss′) yielding

Γnnx,ss′(k) = γnnx,ss′(k)
τ

(n)
DP

τ
, (4.2.37)

with the Dyakonov-Perel spin relaxation time for each subband defined as

τ
(n)
DP

τ
= 2

[
1 + (2τ∆EnkFn)2

(2τ∆EnkFn)2

]
. (4.2.38)

By performing the integral over momentum and summing over the spin

indices in Eq.(4.2.16), one obtains the SHC as

σSHE =
nc∑
n=1

e

8π

2τ

τ
(n)
DP

Γn(kFn)

∆EnkFn/kFn
, (4.2.39)

where nc is the number of occupied bands.

If vertex corrections are ignored, i.e. if we approximate Γn(kFn) =

∆EnkFn/kFn (cf. Eq.(4.2.30)), Eq.(4.2.18) gives us

σSHEdrift =
nc∑
n=1

e

8π

2τ

τ
(n)
DP

, (4.2.40)

which, in the weak disorder limit (τ →∞), reproduces the result of Ref. [60],

i.e. σSHEdrift = (e/8π)nc.

If instead the renormalized vertex (4.2.37) is properly taken into account,

we obtain

σSHE = −
nc∑
n

e

4π

e3k
2
Fn

e1 + e3k2
Fn

. (4.2.41)

Notice that, being proportional to λ4
± (e1 ∝ λ2

±, e3 ∝ λ6
±), this result is con-

sistent with the result obtained in Ref. [39], where the SHC is calculated in an

asymmetric triangular potential well, which represents the mobile electrons

at the interface between two insulating oxides, such as LaAlO3 and SrT iO3.
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Now we will calculate the Edelstein conductivity (EC). The Kubo formula

for the DC EC is

σEE = lim
ω→0

Im〈〈sy; jx〉〉
ω

, (4.2.42)

which corresponds with diagrams a) and b) of Fig.(4.3). It can be written as

σEE = − lim
ω→0

Im
e

ω

∑
nn′kk′ss′

〈n′k′s′|v̂x|nks〉〈nks|sy|n′k′s′〉
∫ ∞
−∞

dε

2π
Gns(ε+,k)Gn′s′(ε−,k

′),

(4.2.43)

After performing the integral over frequency we get

σEE = − e

2π

∑
nn′kss′

〈n′ks′|v̂x|nks〉〈nks|sy|n′ks′〉GR
nksG

A
n′ks′ , (4.2.44)

where we have used again the orthogonality of the eigenvectors with different

momentum. As shown in Fig.4.3, we consider the bare vertex for the spin

density sy = σy/2 and the two vertices for the number current density v̂x =

Γ̂x + kx/m. In clear contrast with the 2DEG Rashba case, the two parts of

the number current vertex yield two separate contributions to the EC and

we are now going to evaluate them separately. We then evaluate Fig.(4.3)(a)

as:

σEE,(a) = − e

4πm

∑
nn′kss′

〈n′ks′|kx|nks〉〈nks|σy|n′ks′〉GR
nksG

A
n′ks′ , (4.2.45)

where the matrix elements of the spin vertex are

〈nks|σy|n′ks′〉 = 〈fnks|fn′ks′〉(cos θk σz,ss′ + sin θk σy,ss′). (4.2.46)

Setting n′ = n and using Eq.(4.1.10) for the energy eigenvalues, we can

perform the integration over the momentum in Eq.(4.2.45) obtaining for

σEE,(a) the expression

σEE,(a) =
nc∑
n=1

eN0τE0n
2
(
e1 + 2e3k

2
Fn

)
, (4.2.47)
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Next, we evaluate Fig.(4.3)(b) as:

σEE,(b) = − e

4π

∑
nn′kss′

〈n′ks′|Γ̂x|nks〉〈nks|σy|n′ks′〉GR
nksG

A
n′ks′ (4.2.48)

We set n = n′ and insert the result obtained in Eq.(4.2.37) for 〈nks′|Γ̂x|nks〉.
Since both the matrix elements of Γ̂x and σy contain terms proportional

to cos(θk) and sin(θk), we must distinguish between s = s′ (first term in

Eq.(4.2.35)) and s 6= s′ (second term in Eq.(4.2.35)). If s = s′ we have

σ
EE,(b)
1 = − e

4π

∑
nks

〈nks|Γ̂x|nks〉〈nks|σy|nks〉GR
nksG

A
nks (4.2.49)

The integral over the momentum can be done with the technique shown in

Chapter 3

σ
EE,(b)
1 = −

nc∑
n

eN0τE0n
2e3k

2
Fn

τ
(n)
DP

2τ
. (4.2.50)

If s 6= s′ we have instead

σ
EE,(b)
2 = − e

4π

∑
nks

〈nks̄|Γ̂x|nks〉〈nks|σy|nk′s̄〉GR
nksG

A
nks̄. (4.2.51)

So we can conclude that

σ
EE,(b)
2 =

nc∑
n=1

eN0τE0n
2 e3k

2
Fn

(2τ∆EnkFn)2
(4.2.52)

with ∆EnkFn = E0n
2(e1kFn + e3k

3
Fn) as the one defined before. Combining

the (a) and (b) contributions, the final result for the Edelstein conductivity

is found to be:

σEE =
nc∑
n=1

eN0τE0n
2
(
e1 + e3k

2
Fn

)
. (4.2.53)
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4.3 Discussion of the results

In this Section we will make ~ explicit to give clarity to the results.

We now examine two physically interesting limiting cases of the general

solution:

1. the insulator-metal-vacuum junction,

2. films with the same spin orbit constant coupling at the two interfaces

The insulator-metal-vacuum junction corresponds in our model to λ− �
λ+ ≡ λ, V− � V+ ≡ V . We will neglect the so-called Vasko effect [104],

which consists in the appearance of an induced spin-orbit coupling due to

the inversion symmetry breaking across the metal-vacuum interface, because

the induced SOC due to this effect is much smaller than the one induced by

the insulator. This fact justifies the limits referred before. In this case we

obtain the following values for the SHC and EC

σEE =
nc∑
n

2eN0τE0n
2λ2

d~
, (4.3.54)

σSHE = −
nc∑
n

e

4π~3
2mk2

FnV λ
4. (4.3.55)

There are some experimental studies of metal-metal-vacuum junctions that

shows giant spin-orbit coupling [103,105], and where one could test the pre-

diction of Eqs.(4.3.54), (4.3.55). Following Ref. [103], where the dispersion

of electrons in a Al/W junction is studied through the ARPES techniques

resolved in spin, the metallic film is made of ten monatomic layers of Al,

(d ≈ 1 nm), it shows a large spin splitting energy of ∆EnkFn = 240 meV

in the second band (n = 2). Introducing these values in our model, with a
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barrier of V ≈ 4 eV, one can find a value for λ ≈ 4.9× 10−9 cm. We should

remember that in this experiment there is only one interfacial barrier (the

other barrier is the vacuum) so we assume that only λ+ survives.

Though Eq.(4.3.55) is obtained for small values of the parameter 2mk2
FnV λ

4/~2 �
1, the structure of the result is quite interesting: it suggests that this kind of

device, the insulator-metal-vacuum junction, could be an efficient spintronic

device, its transport properties being proportional to the barrier height V .

With these values one obtains the following value for the SHC, σSHE ≈
−0.29 × e/(8π) which, as we said before, is smaller than one, but seems an

encouraging result. In Fig.?? we report the EC in values of the "normal"

value as a function of 2∆EnkFnτ .

These experimental data, Ref. [103], refer to the specific device metal-

metal-vacuum junction, but it provides good experimental data to expect

giant spin orbit coupling on insulator-metal-insulator junctions.

Lets discuss the “quasi-symmetric” configuration, i.e. though λ+ = λ− ≡
λ and different barrier heights, V+ 6= V−. We then obtain that the spin

splitting of the bands vanishes to linear order in k (e1 = 0), due to Ehren-

fest’s theorem1. When we substitute this result in Eq.(4.2.41) we obtain the

following result

σSHE = −
nc∑
n=1

e

4π~
. (4.3.56)

1This is because the splitting of the energy levels to first order in k is shown by per-

turbation theory to be proportional to the expectation value of V ′(z), i.e. the force,

in the ground-state in the absence of spin-orbit coupling. By Ehrenfest’s theorem, i.e.
d
dt 〈k〉 = −

〈
∂V
∂r

〉
, this is the expectation value of the time derivative of the z-component

of the momentum, and therefore must vanish [76].
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The SHC in this limit is independent of λ. This very striking result is remi-

niscent of the universal result e
8π~ obtained for a single Bychkov-Rashba band

when vertex corrections are ignored [11]. However vertex corrections are now

fully included, yet the SHC is not only finite, but independent of λ and equal

to the single band universal result multiplied by a factor −2! We emphasize

that this result has nothing to do with the non-vanishing intrinsic SHC that

arises in certain generalized models of spin-orbit coupling with winding num-

ber higher than 1 [106]. Rather, it has to do with the k-dependence of the

transverse subbands describing the electron wave function in the z- direction.

4.4 Inter-band contributions

Let us finally discuss the fully inversion-symmetric limit of the model, λ+ =

λ− and V+ = V−. We notice that in this case the limit of Eq.(4.2.41) does

not exist, because both e1 and e3 vanish (the spin splitting is identically

zero!) while the value of Eq.(4.2.41) depends on the order in which e1 and e3

tend to zero, in particular on whether they tend to zero simultaneously, or

e1 tend to zero before e3, as in the “quasi-symmetric” case above. The ori-

gin of this apparently unphysical non-analytic behavior can be traced back

to the singular character of the vertex Eq.(4.2.37) for vanishing spin split-

ting. Under these circumstances, the Dyakonov-Perel spin relaxation time

Eq.(4.2.38) diverges, apparently implying spin conservation. However, even

in the inversion-symmetric limit, inter-band effects provide spin relaxation

processes which regularize the vertex. Such effects are typically negligible

away from the inversion-symmetric limit, since they are proportional to the
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square of the wave-function overlap between different bands and therefore

scale as (d±/d)2. However, in the inversion-symmetric limit they cannot be

neglected.

A full analysis of inter-band effects is still under investigation at the

moment of writing this thesis. Let us consider a simplified case to explain

how the inter-band contributions regularize Eq.(4.2.37). We will consider the

case of only one band occupied (n = 1) and we will only take into account

the contribution of the nearest band (n = 2). The vertex equation for Γ11
ss′(k)

is

Γ11
ss′(k) = γ11

ss′(k) +
1

2πN0τ

∑
k′s1s2

〈1ks|1k′s1〉Γ11
s1s2

(k′)〈1k′s2|1ks′〉GR
1k′s1G

A
1k′s2

+
1

2πN0τ

∑
k′s1s2

〈1ks|1k′s1〉Γ12
s1s2

(k′)〈2k′s2|1ks′〉GR
1k′s1G

A
2k′s2

+
1

2πN0τ

∑
k′s1s2

〈1ks|2k′s1〉Γ21
s1s2

(k′)〈2k′s1|1ks′〉GR
2k′s1G

A
1k′s2 . (4.4.57)

The vertex equation for Γ12
ss′(k) is

Γ12
ss′(k) = γ12

ss′(k) +
1

2πN0τ

∑
k′s1s2

〈1ks|1k′s1〉Γ11
s1s2

(k′)〈1k′s2|2ks′〉GR
1k′s1G

A
1k′s2

+
1

2πN0τ

∑
k′s1s2

〈1ks|1k′s1〉Γ12
s1s2

(k′)〈2k′s2|2ks′〉GR
1k′s1G

A
2k′s2 . (4.4.58)

In contrast to the equation for Γ11 there is no Γ21 does not appear because

it implies a GR
2 G

A
2 term whose integral will be almost zero. The integral is

negligible because the most important contribution to the integrals of the

Green functions comes from its poles. In the integrals concerning GR
2 G

A
2

terms there is no pole so we are allowed to neglect them. As we can see in

Appendix B, the third term of Eq.(4.4.58) will be of order |〈f1ks|f2ks′〉|21/(1+
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τ 2E2
G)Γ12 so we can neglect it and Eq.(4.4.58) becomes

Γ12
ss′(k) = γ12

ss′(k) +
1

2πN0τ

∑
k′s1s2

〈1ks|1k′s1〉Γ11
s1s2

(k′)〈1k′s2|2ks′〉GR
1k′s1G

A
1k′s2 .

We can then define ρIB = τ/τIB, that plays the role of the inter-band relax-

ation rate, as

ρIB =
1

2πN0τ

∑
k′s1s2

〈1ks|1k′s1〉〈1k′s2|2ks′〉GR
1k′s1G

A
1k′s2 ∼ |〈f1ks|f2ks′〉|2

1

1 + τ 2E2
G

,

(4.4.59)

with EG = (4 − 1)E0. If we don’t take into account the contribution of

γ12 (we should remember that we want to see how inter-band contributions

renormalize the vertex equation, but at this moment we do not have a full

analysis of the the inter-band contributions to the SHC), the equation for

Γ11 becomes

Γ11 = γ11 + (1− ρDP − ρIB)Γ11, (4.4.60)

with ρDP = τ/τDP . Hence

Γ11 ∼ γ11

ρDP + ρIB
(4.4.61)

Now if we are in the fully inversion-symmetric limit of the model, λ+ = λ−,

V+ = V− the vertex Γ11 does not diverge anymore. Its contribution to the

SHC tends to zero when we substitute e3 = ρDP = 0. This is not the exact

result of the “ultra-symmetric” model. The value of both contributions, intra

and inter-band, in this configuration, is one of the extensions to be developed

in the near future. This preliminary calculation only shows how inter-band

contributions cannot be neglected anymore if we are treating with a fully

inversion-symmetric model. In this cases the inter-band mechanisms are the
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responsible of the non-conservation of the spin and τIB represents the spin

relaxation time. The contribution of inter-band effects to the SHC, which

is crucial in the inversion-symmetric case, is still under investigation at this

moment.

4.5 The connection between the spin Hall and

Edelstein effects

In Chapter 3 we showed that the Edelstein and the spin Hall conductivities

are deeply connected in the 2DEG Rashba model. In this Section we will

firstly derive this connection in the 2DEG Rashba model. To this end we will

use the so-called SU(2) quasiclassical approach to prove it. For more details

we refer the interested reader to the Appendix C. Then we will ask ourselves

if there is such a relation inside each subband of the insulator-metal-insulator

model described in this Chapter.

It is convenient to describe spin-orbit coupling in terms of a non-Abelian

gauge field A = Aaσa/2, with Axy = 2mα and Ayx = −2mα. [83, 107, 108]

If not otherwise specified, superscripts indicate spin components, while sub-

scripts stand for spatial components. The first consequence of resorting to

this language is the appearance of an SU(2) magnetic field Bzz = −(2mα)2,

which arises from the non-commuting components of the Bychkov-Rashba

vector potential. Such a spin-magnetic field couples the charge current driven

by an electric field, say along x, to the z-polarized spin current flowing along

y. This is very much similar to the standard Hall effect, where two charge

currents flowing perpendicular to each other are coupled by a magnetic field.
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The drift component of the spin current can thus be described by a Hall-like

term

[Jzy ]drift = σSHEdriftEx. (4.5.62)

It is however important to appreciate that this is not yet the full spin Hall

current, i.e. σSHEdrift is not the full SHC. In the diffusive regime σSHEdrift is given

by the classic formula σSHEdrift = (ωcτ)σD/e, where ωc = B/m is the “cyclotron

frequency” associated with the SU(2) magnetic field, τ is the elastic momen-

tum scattering time, and σD is the Drude conductivity. For a more general

formula see Eq. (4.5.66) below.

In addition to the drift current, there is also a “diffusion current” due to

spin precession around the Bychkov-Rashba effective spin-orbit field. Within

the SU(2) formalism this current arises from the replacement of the ordinary

derivative with the SU(2) covariant derivative in the expression for the dif-

fusion current. The SU(2) covariant derivative, due to the gauge field, is

∇jO = ∂jO + i [Aj,O] , (4.5.63)

with O a given quantity being acted upon. The normal derivative, ∂j, along

a given axis j is shifted by the commutator with the gauge field component

along that same axis. As a result of the replacement ∂ → ∇ diffusion-like

terms, normally proportional to spin density gradients, arise even in uniform

conditions and the diffusion contribution to the spin current turns out to be

[Jzy ]diff = 2mαDsy, (4.5.64)

where D = v2
F τ/2 is the diffusion coefficient, vF being the Fermi velocity.

In the diffusive regime the full spin current Jzy can thus be expressed in the
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suggestive form

Jzy =
D

Lso
sy + σSHEdriftEx , (4.5.65)

where Lso = (2mα)−1 plays the role of an “orientational spin diffusion length",

related to the different Fermi momenta in the two spin-orbit split bands. For

a detailed justification of Eq.(4.5.65) we refer the reader to Refs. [43, 107]

and to Appendix C. The factor in front of the spin density in the first term

of Eq.(4.5.65) can also be written in terms of the Dyakonov-Perel spin relax-

ation time, i.e. the “orientational spin diffusion time" given by τs = L2
so/D.

In terms of τ and τs one has

σSHEdrift =
e

8π

2τ

τs
, (4.5.66)

which is indeed equivalent to the classical surmise given after Eq.(4.5.62). If

we introduce the total SHC and the Edelstein Conductivity (EC) defined by

Jzy = σSHEEx, s
y = σEEEx (4.5.67)

we may rewrite Eq.(4.5.65) as

σEE =
τs
Lso

(
σSHE − σSHEdrift

)
. (4.5.68)

In the standard Bychkov-Rashba model a general constraint from the equa-

tion of motion dictates that under steady and uniform conditions Jzy = 0.

Therefore the EC reads

σEE = − τs
Lso

σSHEdrift = −e m
2π
ατ = −eN0ατ, (4.5.69)

which is easily obtained by using the expressions given above and the single

particle density of states in two dimensions, N0 = m/2π and equivalent to

the value obtained in Chapter 3 through the Kubo formula.
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We would like to know if there is a relation between both conductivities

is present in each subband in the insulator-metal-insulator model. Unfortu-

nately an equation as (4.5.68) is not valid in this model. The z-dependence

of the non-Abelian spin-orbit coupling gauge field terms, A→ A(z), implies

more complicated kinetic effective equations.

The complete derivation of this kinetic, Boltzmann or Eilenberger, equa-

tions in the presence of non constant non-Abelian spin-orbit coupling gauge

field terms, is one of the future perspectives that will be developed in the

future.



Chapter 5

Thermospin effects: the spin

Nernst effect

In this Chapter we will describe the connection between the spin-heat and

spin-charge response in an electron/hole disordered Fermi gas with different

types of spin-orbit coupling. We will calculate the so-called spin Nernst

conductivity, and we will show that there is a relation between this value and

the spin Hall conductivity value. This calculations will allow us to conclude

that a metallic system could prove much more efficient as a heat-to-spin than

as a heat-to-charge converter. We will work in natural units ~ = c = kB = 1

These results have been published in Phys. Rev. B 87, 085309, 2013 [109].

5.1 The heat and spin dialogue

The moving carriers in a metallic system, electrons or holes, transport both

electric charge and heat. This gives rise to a number of thermoelectric effects

84
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as well as a deep connection between thermal and electrical conductivities.

A well known example is the Wiedemann-Franz law, which states that the

ratio of the thermal to the electrical conductivity is the temperature times a

universal number, the Lorenz number L
κ

σ
=
π2

3

(
1

e

)2

T = LT (5.1.1)

where e is the unit charge. Additionally, a magnetic field affects both thermal

and electrical transport yielding both galvanomagnetic and thermomagnetic

effects [110]. The above situation gets even more complicated when a third

quantity transported by the carriers – the spin – is connected to the previous

two by spin-orbit coupling. On the bright side, such a connection also opens

up a plethora of new possibilities related to the manipulation of the additional

spin degrees of freedom. This is testified by the recent rapid development of

spintronics [2, 3] and spin caloritronics [70].

An important goal of spin caloritronics is the manipulation of the spin

degrees of freedom via thermal gradients [67,69,71,72,111], particularly rel-

evant when energy efficiency issues are considered [70].

We will focus in thermo-spin transport due to the charge carriers’ dynam-

ics [67, 71], considering disordered Fermi gases with spin-orbit coupling. We

will discuss the particular case of the thermo-spin Hall effect – the generation

of a spin current transverse to a thermal gradient, also called the spin Nernst

effect. In so doing we will show that a simple relation connects the spin

thermopower – the ratio between the spin response to a thermal gradient

and that to an electric field – to the standard electric thermopower, and that

the former can be strongly enhanced by the interplay between different SOC

mechanisms.
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Let us start with some basic phenomenological considerations along the

lines of Refs. [112,113], and consider the bare-bones situation of an inversion

symmetric, homogeneous and non-ferromagnetic material in the absence of

magnetic fields. A particle current jx can be driven either by an electric field

or by a temperature gradient, and within the standard semiclassical approach

one writes [59]

jx = L11Ex + L12(−∇xT ) = σEx − eLTσ′(−∇xT ). (5.1.2)

Here σ = −2eN0D is the Drude conductivity up to a charge −e, with N0

the density of states at the Fermi energy and D the diffusion constant, and

σ′ = ∂µσ, µ being the chemical potential. Then the electric thermopower

reads

S ≡ L12

L11

= −eLT σ
′

σ
. (5.1.3)

This is the Mott’s formula, which, as the Wiedemann-Franz law, is valid

when we are dealing with transport phenomena in metals [114].

In the present simple case the connection between spin and particle cur-

rents due to spin-orbit coupling reads [112]

jzy = −γjx = Ls11Ex + Ls12(−∇xT ). (5.1.4)

Here jzy is the z-polarized spin current flowing in the y direction arising in

response to the particle current jx, and γ � 1 is a dimensionless spin-orbit

coupling constant. As an immediate consequence of Eqs.(5.1.2) and (5.1.4),

the spin thermopower Ss ≡ Ls12/L
s
11 is equal to S, since the SOC constant γ

does not depend on the sources of a given particle current. Eq.(5.1.4) breaks

down in the absence of inversion symmetry, and in order to see how the above
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simple result is modified in a general situation, and to study its dependence

on competing SOC mechanisms, we will move on to a microscopic treatment.

5.2 The spin equivalent of Mott’s formula

Although our treatment is independent of dimensions (2D or 3D), in order to

fix things we consider a disordered 2D Fermi gas in the x-y plane described

by the Hamiltonian

H =
k2

2m
+ U(x) +Hso, (5.2.5)

with k the 2D momentum and U(x) the impurity potential. For the latter we

assume the standard white noise disorder model and evaluate the impurity

average in the Born approximation, 〈U(x)U(x′)〉 = (2πN0τ)−1δ(x−x′), with

N0 = m/(2π) and τ the elastic scattering time, as we did in Chapter 3. The

SOC term Hso will have different forms in the various cases considered below.

Out of ease we recall the Rashba case

Hso = ασ · k× êz. (5.2.6)

We assume the metallic regime and weak SO coupling conditions, εF �
1/τ,∆so. Here εF is the Fermi energy in the absence of disorder and spin-orbit

interaction and ∆so is the spin splitting energy due to Hso. The a-polarized

spin current flowing in the k-direction due to a generic thermal gradient is

jai =
∑
l

[Nsh]ail (−∂lT ) , (5.2.7)

where Nsh is the spin-heat response tensor. Following Ref. [115] the latter is

given in terms of the imaginary spin current-heat current kernel

[Nsh]ail T = lim
Ω→0

{
[Qsh(iΩν)]

a
il

Ων

}
iΩν→ΩR, ΩR=Ω+i0+

. (5.2.8)



5.2. The spin equivalent of Mott’s formula 88

The spin current operator is given by the standard definition jai = (1/2){vi, sa},
vi and sa being the velocity and spin operators. Notice that the particle

(charge) current operator is (−e)ji = (−e)vi. The heat current in the Mat-

subara representation reads [115]

jhi (k, εn, εn + Ων) = iεn+ν/2ji, (5.2.9)

with εn = πT (2n + 1),Ων = 2πTν, and εn+ν/2 = εn + Ων/2. The specific

form of vi depends on the choice of the SOC Hamiltonian. For instance in

the Rashba case, Eq.(5.2.6), we have vx,y = kx,y/m ∓ ασy,x. By using the

Kubo formula the response kernel is given by

[Qsh]ail (iΩν) = T
∑
εn,k

iεn+ν/2Tr [jai GnjlGn+ν ] , (5.2.10)

where in this case the trace means the trace over the 2 × 2 matrices. The

Matsubara Green functions Gn = G(k, εn), Gn+ν = G(k, εn + Ων) are matrices

in spin space Gn = G0
n +

∑
a Ganσa. Analogously, the spin-charge response

kernel can be written as

[Qsc]
a
il (iΩν) = −eT

∑
εn,k

Tr [jai GnjlGn+ν ] , (5.2.11)

leading to the spin-charge (particle) conductivity

[σsc]
a
il = lim

Ω→0

{
[Qsc(iΩν)]

a
il

Ων

}
iΩν→ΩR, ΩR=Ω+i0+

. (5.2.12)

Although our treatment is general, to illustrate the procedure we take the

Rashba case as an example. The average over disorder is evaluated in the

Born approximation and leads to a self-energy

Σ(εn) =
1

2πN0τ

∑
k

Gn = − i

2τ
sgn(εn), (5.2.13)
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which is diagonal in spin space. As we showed in Chapter 3, the off-diagonal

terms in spin space of the Green function are odd in the momentum de-

pendence and vanish upon integration. This remains valid also for other

spin-orbit interaction terms as long as the Hamiltonian is time-reversal in-

variant.

To compute the thermo-spin Hall effect. i.e. the z-polarized spin current

flowing along y generated by a thermal gradient along x, we need the response

kernel [Qsh]zyx ≡ QSHE, which reads

QSHE(iΩν) = T
∑
εn

∑
k

iεn+ν/2Tr
[
jzyGnjxGn+ν

]
, (5.2.14)

with

G0
n =

1

2
(Gn,+ + Gn,−) (5.2.15)

Gan =
1

2
(k̂× êz)

a (Gn,+ − Gn,−) (5.2.16)

Gn,± =

[
iεn + µ− k2

2m
∓ αk +

i

2τ
sgn(εn)

]−1

, (5.2.17)

µ being the chemical potential.

Notice that the analytic properties of the Green functions are determined

by the sign of the imaginary frequency, therefore when performing the mo-

mentum integral in Eq.(5.2.14) one obtains a non-zero result only if the fre-

quencies εn+Ων and εn have opposite signs, which means that εn is restricted

to the range −Ων < εn < 0. Exploiting that the external frequency is going

to zero (cf. Eq.(5.2.12)) one thus has∑
k

Tr [jai GnjlGn+ν ] = −2π

e
[σsc]

a
il (µ+ iεn). (5.2.18)
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Eq.(5.2.14) only takes into account the so-called bare bubble. Vertex

corrections [97, 116] will be considered later. According to Eq.(5.2.18) we

now have ∑
k

Tr
[
jzyGnjxGn+ν

]
= −2π

e
σSHE(µ+ iεn), (5.2.19)

with σSHE(µ) the static spin-Hall conductivity calculated in Chapter 3. The

thermo-spin Hall conductivity therefore reads

NSHET = − lim
Ω→0

[
2πT

eΩν

−1∑
n=−ν

iεn+ν/2 σ
SHE(µ+ iεn)

]
iΩν→ΩR

. (5.2.20)

Before we continue we will show some technical details that will be important

to solve 5.2.20.

Firstly we define

F (iεn, iΩν) =
∑
k

Tr [jai GnjlGn+ν ] , (5.2.21)

which allows us write the spin-heat and spin-charge responses as

σsc = lim
Ω→0

{
(−e)T

Ων

∑
εn

F (iεn, iΩν)

}
iΩν→ΩR

, (5.2.22)

Nsh = lim
Ω→0

{
1

Ων

∑
εn

iεn+ν/2F (iεn, iΩν)

}
iΩν→ΩR

. (5.2.23)

As mentioned before, the momentum integral yields a non-zero result only if

the frequencies εn + Ων and εn have opposite signs, which means that εn is

restricted to the range −Ων < εn < 0. Since the external frequency is going

to zero, so will iεn, enabling one to expand F in powers of iεn

F (iεn, iΩν) = F (0, iΩν) + iεn
∂F

∂iεn
(0, iΩν) + . . . . (5.2.24)
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Replacing this expansion in Eq.(5.2.22) we have:

σsc = lim
Ω→0

{
eT

Ων

−1∑
n=−ν

F (0, iΩν) + iεn
∂F

∂iεn
(0, iΩν) + ....

}
iΩν→ΩR

(5.2.25)

The first term of the sum is linear in Ων , so when divided by Ων in the zero-

frequency limit it yields a non-zero contribution. The other terms of the sum,

being at least quadratic in Ων , clearly do not contribute. There follows

σsc = − e

2π
F (0, 0). (5.2.26)

This is enough to prove Eq.(5.2.18). To solve Eq.(5.2.20), we expand Eq.(5.2.23)

in iεn and note that the zero order term of the sum vanishes since∑
−Ων<εn<0

(
iεn +

iΩν

2

)
= 0. (5.2.27)

By noticing that ∑
−Ων<εn<0

(
iεn +

iΩν

2

)
iεn =

π2T 2

3
ν(1− ν2), (5.2.28)

the only term contributing linearly in Ων is the first order one. This leads to

Nsh = −eLTF ′(0, 0), (5.2.29)

with L the Lorenz number and F ′ = ∂F
∂iεn

. The last step to solve Eq.(5.2.20)

is the observation that the function F of Eq.(5.2.21) depends on εn through

the combination iεn + µ, as it is evident from the expression of the Green

functions in the restricted frequency range −Ων < εn < 0

Gn =

[
iεn + µ− k2

2m
− i

2τ
−HSO

]−1

(5.2.30)

Gn+ν =

[
i(εn + Ων) + µ− k2

2m
+

i

2τ
−HSO

]−1

, (5.2.31)
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where we have left unspecified the spin-orbit Hamiltonian for the sake of

generality.

So we have obtained one of the most important results

NSHE = −eLT ∂(σSHE)

∂µ
, (5.2.32)

with

σSHE =
e

8π

2τ

τDP
=

e

8π
2τD4α2m2 =

e

8π
8τ 2α2µm, (5.2.33)

which gives us the following result

NSHE|bare = −π
2T

3

mα2τ 2

π
. (5.2.34)

To connect this result with that of Ref. [71], in which NSHET is computed

in the clean limit, τ →∞ we have to pay attention where τ appears. As we

can see, τ only appears in the Matsubara matrix green functions. Taking the

clean limit the original Gn,± becomes

Gn,± =

(
µ− k2

2m
∓ αk − isgn(εn) (πT + |ε′n|)

)−1

, (5.2.35)

with ε′n = εn − 1. The differences between this new Matsubara matrix green

function with the previous one are that we have sent 1/2τ → πT and εn → ε′n.

But as |ε′n| << πT we can proceed as we did in the dirty case making the

correspondent substitutions. Let us see that in our concrete example sending

εn → ε′n doesn’t affect the Matsubara sum. The first Matsubara sum was∑
−Ων<εn<0

(
iεn +

iΩν

2

)
= 0. (5.2.36)

That is equal to
ν∑

n=1

(iπT )2 (−2n+ 1 + ν) (−2n+ 1), (5.2.37)
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But as
ν∑

n=1

(iπT )2 (−2n+ 1 + ν) = 0, (5.2.38)

we can easily deduce that when we make the substitution εn → ε′n in σSHE(µ+

iεn) both sums remains exactly the same. With this result we can also affirm

that
0∑

εn=−Ων

i2
(
εn +

Ων

2

)
εn =

0∑
εn=−Ων

i2
(
εn +

Ων

2

)
(εn + Ων). (5.2.39)

This is a necessary result because all our work was made making the iεn

Taylor’s expansion of σSHE(µ+iεn) around µ, but it can also be made making

the iεn + iΩν Taylor’s expansion of σSHE(µ + iεn + iΩν) around µ, what we

have just proved that produces the same result.

Thus the effective replacement 1/2τ → πT in Eq.(5.2.34) yields the clean

limit result

NSHE|clean = − mα2

12πT
, (5.2.40)

in agreement with Ref. [71].

Let us now discuss the vertex corrections. Taking them into account

corresponds to sending jzy → Jzy , jx → Jx and jhx → Jhx . At the level of the

Born approximation either vertex could be renormalized: the bubble with

Jzy and jhx or that with jzy and Jhx are equivalent. Moreover, since we neglect

inelastic processes, Jhx = iεn+ν/2Jx. For the Rashba case it is known that

Jx = 0, i.e. σSHE = 0, and thus we immediately obtain

NSHE|dressed = 0. (5.2.41)

However, notice that Eq.(5.2.20) holds for any form of the spin-orbit inter-

action term Hso, no matter whether of intrinsic or extrinsic nature. There-

fore, once the spin-Hall conductivity σSHE of a given system is known, its
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thermo-spin Hall conductivity NSHE will follow at once. Even more gener-

ally, from the Matsubara formulation, Eqs. (5.2.8)-(5.2.18), we conclude that

the spin-heat response of a disordered, spin-orbit coupled Fermi gas in the

metallic regime is completely determined by its spin-charge response. This

result holds in 2D and 3D, in the presence of arbitrary elastic scattering pro-

cesses, possibly spin-dependent, and beyond the Born approximation, i.e. it

has the same range of applicability of the Wiedemann-Franz law discussed

in Ref. [115]. This is the first main result of this Chapter, which, after a

Sommerfeld expansion, can be written in the very simple form

Nsh = −eLTσ′sc(µ). (5.2.42)

In other words Mott’s formula for the electric thermopower S = −eLTσ′/σ
has its symmetric spin equivalent

Ss = −eLTσ′sc/σsc. (5.2.43)

Whether a direct relation between Ss and S exists is however not obvious

and will be one of our next concerns.

5.3 Spin Nernst effect and spin thermopower

in electron and hole gases

Specializing our treatment to some specific systems, we now have a two-fold

aim: (i) to look for the possibility of efficient heat-to-spin conversion, Ss � 1;

(ii) to establish a relation, if any, between Ss and S.

With this in mind, let us now take Hso due to extrinsic and Rashba SOC

This allows one to easily draw a set of more specific conclusions concerning
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the thermo-spin response of the 2D Fermi gas, in particular regarding the

interplay between different SOC and scattering mechanisms. To be explicit

we take once more the disordered Rashba model as the initial example, and

consider the presence of extrinsic SOC mechanisms, as we did in Chapter

3, and include (white noise) magnetic impurities. That is, we add to the

Hamiltonian, Eq.(5.2.5), the terms

Hextr = −λ
2
e

4
σ ×∇V (x) · k, (5.3.44)

with λe an effective Compton wavelength, and

Vm(x) =
∑
i

B · σδ(x−Ri), (5.3.45)

where B is a random (white noise) magnetic field. The latter is handled in

the Born approximation, 〈Vm(x)Vm(x′)〉 = [3(2πN0τsf)]
−1δ(x − x′), with τsf

the spin-flip time [37,43]. Magnetic impurities change the extrinsic spin time

1/τso → 1/τs ≡ 4/3τsf + 1/τEY , with 1/τEY = (1/τ) (λekF/2)4 defined in

Eq.(3.4.84). In a homogeneous bulk in steady state, following Eq.(3.4.91),

the spin-Hall conductivity is easily computed following

σSHE =

(
1

1 + ζ

)
γσ, (5.3.46)

where

ζ =
τs

τDP
(5.3.47)

γ = γintr + γsj + γss, (5.3.48)

with

γintr = −mα2τ γsj =
λ2
em

4τ
γss =

λ2
ek

2
F

16
2πN0v0, (5.3.49)
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and τ−1
DP = (2mα)2D, the Dyakonov-Perel spin-relaxation rate. Via Eq.(5.2.42)

one concludes

σ′SHE =

[
σ′

σ
+
γ′

γ
− ζ ′

1 + ζ

]
σSHE, (5.3.50)

Ss = −eLT
[
σ′

σ
+
γ′

γ
− ζ ′

1 + ζ

]
, (5.3.51)

with the spin Hall thermopower Ss = NSHE/σSHE. In the above, primed

quantities are derivatives with respect to the chemical potential µ. Notice

that the simple phenomenological argument of the introduction overlooks

the µ-dependency of γ: the conclusion Ss = S holds only for an energy-

independent γ, and also an energy-independent ζ. Both σSHE and NSHE

depend on the ratio between τDP and τs and are in principle tunable, either

by varying the doping, which affects τs, or by modulating α by varying the

gate potential.

Let us consider some interesting cases using Eq.(5.3.50) and Eq.(5.3.51).

When only Rashba SOC and magnetic impurities are present, we have τs =

3τsf/4 and γ = γint. By evaluating the various derivatives we obtain γ′ =

0, ζ ′ = ζ/µ, σ′ = σ/µ, which gives us the spin thermopower

Ss = −eLT σ
′

σ

1

1 + ζ
. (5.3.52)

When SOC from impurities is present, too, the terms γ′/γ, ζ ′/ζ in Eq.(5.3.50)

are modified, leading to

Ss = −eLT σ
′

σ

[
1 +

γss

γ
− ζ

1 + ζ

(
1− 2τs

τEY

)]
. (5.3.53)

The results so far obtained can be generalized to include the effects of the

linear-in-momentum Dresselhaus SOC term described by the Hamiltonian

Hso = β (kxσ
x − kyσy) . (5.3.54)
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It suffices to replace in the above γintr = −mτ(α2−β2), 1/τDP = (2m)2 (α2 + β2)D ≡
1/τRDP + 1/τDDP and

ζ =
τs

τDP
− 4

τ 2
s /(τ

R
DP τ

D
DP )

τs/τDP + 1
. (5.3.55)

Derivatives are trivial, but yield expressions too cumbersome to be conve-

niently written down. The results are thus plotted in Fig.5.1, and show the

sensitivity of the spin thermopower to the various physical parameters in

play. A modest modulation of the Rashba coupling constant could substan-

tially modify Ss, either enhancing or decreasing it depending on the systems

characteristics – we considered ratios α/β well within current experimental

capabilities [117]. We will come back to this point in a moment.

Let us now consider our final example, a 2D hole gas as analyzed in

Ref. [118]. The SOC interaction is cubic in momentum

Hso = αHσx
[
ky
(
3k2

x − k2
y

)]
+ αHσy

[
kx
(
3k2

y − k2
x

)]
, (5.3.56)

and the spin Hall conductivity reads [118]

σSHEH = −3η2 (4η2 − 1)

(4η2 + 1)2

1

µτ
σ, (5.3.57)

with η = αHk
3
F τ

1. Proceeding as before one gets

Ss = −eLT σ
′

σ

[
3 (12η2 − 1)

(4η2 + 1) (4η2 − 1)

]
. (5.3.58)

All previous result can be cast in the simple form

Ss = SRs, (5.3.59)

1The parameter η corresponds to what the authors of Ref. [118] call ζ.
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Figure 5.1: The spin thermopower Ss of a disordered 2D-electron gas with nu-

merous competing SO mechanisms. Typical values for GaAs quantum wells

are: mobility µ = 104cm2/Vs, density n = 1012cm−2, effective extrinsic wave-

length λe = 4.7 × 10−8cm, Dresselhaus coupling constant ~β = 10−12eVm.

There follows γss � γintr, γsj, τEY � τDDP . The Rashba coupling constant

can be modulated by the gate potential [117]. Each panel shows the ra-

tio Ss/S as a function of the ratio α/β for a given Elliot-Yafet scattering

strength, strong to weak from top left to bottom right – panel 3 corre-

sponds to standard GaAs. Magnetic scattering is strongest for the dot-

ted curve, τsf/τDDP = 1, and strong (weak) for the dashed (solid) curves,

τsf/τ
D
DP = 2, 3 (10, 20, 30).
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with Rs a number which depends on the various competing SOC mecha-

nisms. Eq.(5.3.59) looks physically quite reasonable: in a metallic system

in which electrons (or holes) are the sole carriers of charge, spin and heat,

the heat-to-spin and heat-to-charge (particle) conversions are expected to be

closely related. The examples considered show however that Rs > 1 could

be easily achieved: in standard GaAs samples with Rashba and extrinsic

SOC mechanisms one may estimate Rso ∼ 3 [44], and the same value is ob-

tained in a two-dimensional hole gas with purely cubic Rashba SOC in the

diffusive regime (η � 1). If Dresselhaus SOC is also taken into account,

similar values could be achieved, as shown in Fig.5.1. This suggests that

metallic systems, typically characterized by low thermoelectric efficiencies,

could be much more efficient in heat-to-spin conversion and therefore play a

front role in spin caloritronics. Of course, whether substantially higher Rs

values can be reached in different systems, e.g. in transition metals which

already show a giant spin Hall response [119], or more exotic ones such as

p-doped graphene [120] or topological insulators like HgTe [121], is an open

and relevant question. Indeed, it would be interesting to establish whether it

is always possible, within the regime in which the general expression (5.2.42)

holds, to find such a simple connection between Ss and S. We therefore

believe it desirable to experimentally test Eq.(5.3.59). This could be done

rather straightforwardly in a setup like the one employed to first observe the

spin Hall effect [122]: at low temperatures, the spin accumulation at the side

edges of a two-dimensional Fermi gas could be optically measured first in

response to a longitudinally applied bias, and then to a small temperature

gradient along the same direction. All-electrical measurement schemes based
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on H-bar geometries, exchanging again the applied bias with a temperature

difference, would also be interesting though probably more delicate: in this

case a temperature gradient along the side leg of the H-bar should be avoided

or its effects compensated. Finally, it is well known that Mott’s formula can

be heavily affected by inelastic processes. Though the latter are beyond the

scope of the present work, it would be interesting to study their effects on

Ss and see whether any similarities between electric and spin thermopower

exist also in their presence or not.



Chapter 6

Conclusions

Understanding spin-charge coupled dynamics in metal and semiconductor

systems is of paramount importance to one of the main goals of spintronics:

the manipulation of the spin degrees of freedom of carriers by purely electrical

means. Within this context spin-orbit coupling gives rise to several interest-

ing transport phenomena standing out for their technological importance,

the spin Hall and the Edelstein effects.

To this end, in Chapter 4, we have developed a simple model for de-

scribing spin transport effects and spin-charge conversion in heterostructures

consisting of a metallic film sandwiched between two different insulators. All

the effects we have considered depend crucially on the three-dimensional na-

ture of the system – in particular, the fact that the transverse wave functions

depend on the in-plane momentum – and on the lack of inversion symmetry

caused by the different properties of the top and bottom metal-insulator in-

terfaces, each characterized by a different barrier height (gap) and spin-orbit

coupling strength. After a careful consideration of vertex corrections we find

101



Chapter 6. Conclusions 102

that the model supports a non-zero intrinsic SHC, in sharp contrast to the

2DEG Rashba case. Strikingly, in a “quasi-symmetric” junction the SHC

reaches a maximal and universal value. We have also calculated the Edel-

stein effect for the same model and found that the induced spin polarization

is the sum of two different contributions. The first one is analogous to the

term found in the 2DEG Rashba case, whereas the second “anomalous” one

has a completely different nature. Namely, it is inversely proportional to

the scattering time, indicating that it is caused by the combined action of

multiple electron-impurity scattering and spin-orbit coupling. We have also

discussed the general connection between the non-vanishing SHC and the

anomalous term in the EC. Furthermore, by Onsager’s reciprocity relations,

our results are immediately relevant to the inverse Edelstein effect [123–125],

in which a non-equilibrium spin density induces a charge current. Technical

applications of this idea could lead to a new class of spin-orbit-coupling-based

devices.

Thermoelectric studies are crucial if we are interested in describing all

the transport properties of any physical system. In the same way, knowing

the coupling between the energy and the spin will be crucial if we want to

describe the transport properties of any spintronic device.

In Chapter 5 we have studied coupled spin and thermal transport in a

disordered and spin-orbit coupled Fermi gas, calculating a general derivation

of the spin Nernst effect. We have shown the existence of a general expression

for the spin thermopower Ss with the same structure and an identical range

of validity of Mott’s formula for the electric thermopower S. Finally, we

have derived a simple and physically transparent relation connecting the two
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quantities which suggests that metallic systems could be much more efficient

in heat-to-spin than in heat-to-charge conversion.

There are a lot of open questions in the field of spintronics. Here we

propose several topics that we would like to develop in the near future, some

of which were mentioned at various points through the previous Chapters.

1. In Chapter 4 we have demonstrated the relation between the spin Hall

and Edelstein conductivities in the insulator-metal-insulator junction. A

general derivation of this relation in not-strictly two-dimensional Rashba

coupled systems has not been done yet.

2. Inter-band effects are crucial when inversion symmetry is present. A

complete description of inter-band effects in the insulator-metal-insulator

junction will help us to understand how spin Hall effect arises in inversion

symmetry materials. A lot of work has been done in centro-symmetric

materials, mostly on Platinum [47], but some questions are still open

3. The results presented in Chapter 4 do not include the effects of extrin-

sic SOC. Which role do extrinsic SOC plays in this not-strictly two-

dimensional Rashba coupled systems is still an open question.

4. The results presented in Chapters 4 and 5 correspond to theoretical mod-

els. Experiments which test these models are of central importance.

5. We have presented the spin Nernst effect in a two-dimensional Fermi

gas with different spin-orbit coupling. The extension of this calculation

to other systems with spin-orbit coupling, such as the insulator-metal-

insulator junction presented in Chapter 4 or centro-symmetric materials
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as Platinum, could present higher values of Rs.

6. A complete description of the effects of interactions, phonons and magnons

in electrical and thermal spin transport effects has not been done at the

moment.

The first two points have been the subject of recent work, which is, how-

ever, still in progress.



Appendix A

Effective Hamiltonians

Some details about the derivation of the effective Hamiltoninas in Section 2.2

of Chapter 2 are discussed here. For an exhaustive and complete description

of the problem we refer to the literature references given in the text.

A.1 The k.p method

First of all we will describe the eigenfunctions of Eq.(2.2.11) ket notation

〈x|ψνk〉 = ψνk(x)

|ψνk〉 =
∑
ν′

eik·xcνν′k|uν′0〉 (A.1.1)
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Substituting this in the Schrödinger equation and projecting over the states

〈uν0| we obtain

〈uν0|
[(

p2

2m
+ U +

1

4m2
0

σσσ ×∇U · p
)

+
k

m0

·
(
p +

1

4m0

σσσ ×∇V
)

−
(
ενk −

k2

2m0

)]
|ψνk(r)〉 =

eik·x
∑
ν′

〈uν0|
[
εν0 +

k

m0

·
(
p +

1

4m0

σσσ ×∇U
)

+

−
(
ενk −

k2

2m0

)]
|uν′0〉cνν′k =

eik·x
∑
ν′

[(
εν0 − ενk +

k2

2m0

)
δνν′ +

1

m0

k · πππνν′
]
cνν′k = 0,

as we know[
(−i∇)2

2m0

+ U +
1

4m2
0

∇U × (−i∇) · σσσ
]
|uν0〉 = εν0|uν0〉, (A.1.2)

that is [
p2

2m0

+ U +
1

4m2
0

∇U × p · σσσ
]
|uν0〉 = εν0|uν0〉, (A.1.3)

and

πππνν′ = 〈uν0|p +
1

4m2
0

∇U × σσσ|uν′0〉. (A.1.4)

We intend each matrix element as an integral over the unit cell

〈uν0|Ô|uν′0〉 =

∫
cell

dxu∗ν0(x)Ouν′0(x), (A.1.5)

with Ô a given hermitian operator and εν0 is the energy offset ot the ν-th

band at k = 0 . It is important to notice that Eq.(A.1.5) is valid when Ô

depends on position or momentum only and things get simplified.

We can easily see that p represents the atomic momentum associated

with the rapid oscillations of the lattice function uν0, whereas k represents
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the slow crystal momentum of the electrons at the bottom of the band. These

allow us to approximate

πππνν′ ≈ 〈uν0|p|uν′0〉 (A.1.6)

For this reason we will neglect terms like

1

4m2
0

k · ∇U × σσσ ∼ kp (A.1.7)

as compared to the diagonal one

1

4m2
0

p · ∇U × σσσ ∼ p2 (A.1.8)

For the same reason in the presence of a non-crystalline potential V (x) only

the diagonal terms as the one of Eq.(A.1.8) will be taken into account.

A.2 Symmetries and the Kane model

The form of the Kane Hamiltonians are determined by the symmetries of

the system . We will find some linear combinations ũi of the different uν0 as

a basis so that these new basis share some particular symmetries with the

Hamiltonian H , for example the total angular momentum J = L + S This ũi

transforms according to a irreducible representation of the symmetry group

of H, Γi.

If we chose as a basis |J,mj〉 as our basis (see table A.1) the 8× 8 Kane

Hamiltonian reads

H8×8 =

 Hc,2×2 Hcv,2×6

H†cv,6×2 Hv,6×6

 (A.2.9)

with
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ũi Γ |J,mJ〉 uJ ,mJ

ũ1 Γ6 |1
2
,+1

2
〉 i|S〉|+ 1

2
〉

ũ2 Γ6 |1
2
,−1

2
〉 i|S〉| − 1

2
〉

ũ3 Γ8 |3
2
,+3

2
〉 − 1√

2
(|X〉+ i|Y 〉)|+ 1

2
〉

ũ4 Γ8 |3
2
,+1

2
〉 − 1√

6
(|X〉+ i|Y 〉)| − 1

2
〉+

√
2
3
|Z〉|+ 1

2

ũ5 Γ8 |3
2
,−1

2
〉 + 1√

6
(|X〉 − i|Y 〉)|+ 1

2
〉+

√
2
3
|Z〉| − 1

2

ũ6 Γ8 |3
2
,−3

2
〉 + 1√

2
(|X〉 − i|Y 〉)| − 1

2
〉

ũ7 Γ7 |1
2
,+1

2
〉 − 1√

3
(|X〉+ i|Y 〉)| − 1

2
〉 − 1√

3
|Z〉|+ 1

2

ũ8 Γ7 |1
2
,−1

2
〉 − 1√

3
(|X〉 − i|Y 〉)|+ 1

2
〉+ 1√

3
|Z〉| − 1

2

Table A.1: Basis of the 8× 8 Kane model.|S〉 denotes the s-like orbital and

|X〉, |Y 〉, |Z〉 the three p-like ones. |± 1
2
〉 is the spinor corresponding the spin

up/down along the axis of quantization. Γ is the irreducible representation of

the symmetry group of the zincblende crystal according to which each basis

function transforms.

Hc,2×2 =

 V 0

0 V

 ,

Hcv,2×6 =

 −1√
2
Pk+

√
2
3
Pkz

1√
6
Pk− 0 −1√

3
Pkz

−1√
2
Pk−

0 −1√
6
Pk+

√
2
3
Pkz

1√
2
Pk−

−1√
3
Pk+

1√
3
Pkz

 ,

Hv,6×6 =

 [V − Eg]Î4×4 0̂4×2

0̂2×4 [V − Eg −4]Î2×2

 ,
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where

P = −i 1

m0

〈S|px|X〉 = i
1

m0

〈S|py|Y 〉 = i
1

m0

〈S|pz|Z〉, (A.2.10)

4 =
3

4m2
0

〈X|∂yU∂x − ∂xU∂y|Y 〉

=
3

4m2
0

× 〈any ciclic permutations〉 (A.2.11)

with k± = kx ± iky, and taking the zero energy at the conduction band

minimun, εc0 = 0. We should remember that U is the crystal potential and

V the external one. With these matrixes we obtain the parameters shown in

Chapter 2.



Appendix B

Integral of the Green functions

Some details about the integrals of the Green functions which appear in

Chapters 3 and 4 will be explained here.

B.1 The intra-band integrals

Here we will explain how to calculate the different integrals concerning the

Green functions within the same n-band

∑
k

GR
nksG

A
nksf(k) = N0

∫
dξ

−ξ − εnks + i
2τ

f(k)

−ξ − εnks − i
2τ

= N0

∫
dρ

−ρ+ i
2τ

1

−ρ− i
2τ

f(k)

1 +∇ξεnks
= 2πNnsτf(kFns),

(B.1.1)

where f(k) is assumed to be regular, Nns is the density of states in the n-

subband, kFns is the corresponding momentum, ρ = ξ + εnks, and we have

made the substitution
∑

k(...)→ N0

∫ +∞
−∞ dξ(...), with ξ = k2/2m− µ as we
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did in Chapter 3. The densities of states at the Fermi level in each subband

Nns are evaluated from the formula

Nns

N0

=
kns

|∇kEnks|kns
, (B.1.2)

where kns is the solution of the equation Enks = EF .

The following integral also appears in Chapters 3 and 4∑
k

GR
nk−G

A
nk+f(k) = N0

∫
dξ

−ξ − εnk− + i
2τ

f(k)

−ξ − εnk+ − i
2τ

' N0
2πN0τ

1− i2τ∆EnkFn
f(kFn), (B.1.3)

where ∆EnkFn = (εnk+− εnk−)/2 = E0n
2(e1kFn + e3k

3
Fn), defined in Chapter

4.

The wave vectors kFn+ and kFn− are determined by the equations

k2
Fn+ + k2

Fn− = 2k2
F

EnkFn++ = EnkFn−− (B.1.4)

with Enks defined in Eqs.(4.1.7) and (4.1.10). Solving Eqs.(B.1.2), (B.1.2),

(B.1.2), Nns and kFns read

kFns = kFn + E0n
2

(
s
e1

2
− e2

1

8kFn
− s

(
e1e2

2
− e3k

2
Fn

2

))
Nns = N0

(
1 + E0n

2

(
s
e1

2kFn
− e2 + s

(
e1e2

kFn
− 3e3kFn

2
− e3

1

16k3
Fn

)))
.

(B.1.5)

Hence, for instance,∑
ks

sGR
nksG

A
nksk = 2πτ

∑
s

skFnsNns = 4πN0τE0n
2(e1 + 2e3k

2
Fn). (B.1.6)
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If we are dealing with the simple Rashba case the procedure is totally

equivalent but we will not have the n-dependence in our integrals, and

E0e1 → −α and e3 → 0.

B.2 The inter-band integrals

In the case of dealing with inter-band problems (n = n′), the new integrals

have the following form∑
k

GR
nksG

A
n′ks′f(k) = N0

∫
dξ

−ξ − εnks + i
2τ

f(k)

−ξ − εn′ks′ − i
2τ

' N0
2πN0τ

1− i2τEG
f(kFn), (B.2.7)

(B.2.8)

which has the same form as Eq.(B.2.8), sending ∆EnkFn → EG, with EG =

En′ks′ − Enks ' (n′2 − n2)E0. As we can see the spin-dependence in this

integrals is negligible.



Appendix C

Kinetic equations: a quasiclassical

approach

Transport problems are treated classically via the Boltzmann equation. The

Keldysh formalism [126], allows us to treat this problems at a quantum level

[127]. When we are dealing with spin-based systems, SU(2) becomes the

symmetry group [13,27,43,83,107]. Here we will recall the kinetic equations

for spin transport phenomena.

C.1 The SU(2) formalism

The relation between the Edelstein and the spin Hall conductivities was cited

in Chapters 3 and 4, specially in Eqs.(3.3.71),(4.5.65). Here we will briefly

recall the quasiclassical approach in the SU(2) formalism and derive this

relation.

113



C.1. The SU(2) formalism 114

Let us start with the Hamiltonian,

H =
k2

2m
+ b·σσσ, (C.1.1)

where b is the internal magnetic field due to spin-orbit coupling, in the case

of the 2DEG Rashba SOC model b = αk× ez. The Dyson equation reads

−i
[
G−1

0 (1, 1′)⊗ Ǧ(1′, 2)
]

= −i
[
Σ̌(1, 1′)⊗ Ǧ(1′, 2)

]
, (C.1.2)

where the symbol ⊗ indicates convolution/matrix multiplication over the

internal variables, and Ǧ, Σ̌ are Keldysh 2× 2 matrices

Ǧ =

 GR GK

0 GA

 Σ̌ =

 ΣR ΣK

0 ΣA

 , (C.1.3)

with Σ̌ is the self-energy matrix in the Born approximation and

G−1
0 (1, 1′) = (i∂t −H) δ(1− 1′). (C.1.4)

Now we perform a gradient expansion to the Dyson equation, Eq(C.1.2), so

the equation of motion for the Green’s function Ǧ reads

∂tǦ+
1

2

{
k

m
+

∂

∂k
(b·σσσ),

∂

∂x
Ǧ

}
+ i
[
b · σσσ, Ǧ

]
= −i

[
Σ̌, Ǧ

]
. (C.1.5)

Now we will define the Eilenberger Green function as

ǧ =
i

π

∫
dξǦ, ξ = k2/2m− µ (C.1.6)

If we integrate Eq.(C.1.5) respect to ξ, retaining terms to first order in |b|/εF ,
where εF is the well know Fermi energy, we obtain∑

s=±

(
∂tǧs +

1

2

{
ks
m

+
∂

∂k
(bs.σ),

∂

∂x
ǧs + i[bs.σ, ǧs]

})
= −i[Σ̌, ǧ]. (C.1.7)
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The retarded component gR (and similarly the advanced one gA) is written

as a sum of the contributions associated to the two spin-split Fermi sur-

faces gR± = (1∓ ∂ξb)
(

1
2
± 1

2
b̂.σ
)
. The electrical field is normally included in

the quasiclassical equations of motion by substituting ∂x → ∂x − |e|E∂ε.
In the absence of the field the equilibrium Keldysh component is gK =

2 tanh
(
ξ

2T

)
gR. By representing the matrices in the eigenstates basis [37],

the Keldysh component of Eq.(C.1.7) reads

k̂xE

(
vF + σz

k+N+ − k−N−
2N0m

)
+ (σzk̂x − σyk̂y)αE

+iαk[σz, g̃] = −1

τ
(g̃ − 〈g̃〉), (C.1.8)

where g̃ has still a structure in spin space g̃ = g̃0σ0 +
∑

i g̃iσi and the original

and physical Keldysh g-components can be written as a function of the new

ones

g0 = g̃0

gx = k̂yg̃z + k̂xg̃y

gy = −k̂xg̃z + k̂yg̃y

gz = −g̃x. (C.1.9)

In this basis the spin current, jzy , and the spin polarization, sy, are expressed

as

jzy = −N0

4

∫
dε〈vygz〉 =

N0

4

∫
dε〈vyg̃x〉 (C.1.10)

sy = −N0

4

∫
dε〈gy〉 = −N0

4

∫
dε(〈k̂yg̃y〉 − 〈k̂xg̃z〉). (C.1.11)

After projecting Eq.(C.1.8) on the Pauli matrix components and solving the
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equations one finds

〈k̂yg̃x〉 = − E

4b0

(
2α +

k+N+ − k−N−
2N0m

)
(C.1.12)

〈k̂yg̃y〉 =
1

2b0τ
〈k̂yg̃x〉 (C.1.13)

〈k̂xg̃z〉 = −Eτ
(
α +

k+N+ − k−N−
2N0m

)
− 1

2b0τ
〈k̂yg̃x〉. (C.1.14)

At this point it is easy to see how Eqs.(3.3.71),(4.5.65) appear, just substi-

tuting the results of Eqs.(C.1.12-C.1.14) in Eq.(C.1.11)



Bibliography

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton,

S. Von Molnár, M. L. Roukers, A. Y. Chtchelkanova, and D. M. Treger,

“Spintronics: A spin-based electronics vision for the future,” Science,

vol. 294, p. 1488, 2001.

[2] I. Žutić, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and

applications,” Rev. Mod. Phys., vol. 76, p. 323, 2004.

[3] D. D. Awschalom and M. E. Flatté, “Challenges for semiconductor

spintronics,” Nature Physics, vol. 3, p. 153, 2007.

[4] G. A. Prinz, “Magnetoelectronics,” Science, vol. 282, p. 1660, 1998.

[5] M. N. Baibich, J. M. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Eti-

enne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetore-

sistance of (001)fe/(001)cr magnetic superlattices,” Phys. Rev. Lett.,

vol. 61, p. 2472, 1988.

[6] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced

magnetoresistance in layered magnetic structures with antiferromag-

netic interlayer exchange,” Phys. Rev. B, vol. 39, p. 4828, 1989.

117



BIBLIOGRAPHY 118

[7] S. S. P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes,

M. Samant, and S. H. Yang, “Giant tunnelling magnetoresistance at

room temperature with mgo (100) tunnel barriers,” Nat. Mat., vol. 3,

p. 862, 2004.

[8] J. E. Hirsch, “Spin hall effect,” Phys. Rev. Lett., vol. 83, p. 1834, 1999.

[9] S. Zhang, “Spin hall effect in the presence of spin diffusion,” Phys. Rev.

Lett., vol. 85, p. 393, 2000.

[10] S. Murakami, N. Nagaosa, and S.-C. Zhang, “Dissipationless quantum

spin current at room temperature,” Science, vol. 301, p. 1348, 2003.

[11] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A. H.

MacDonald, “Universal intrinsic spin hall effect,” Phys. Rev. Lett.,

vol. 92, p. 126603, 2004.

[12] H.-A. Engel, E. I. Rashba, and B. I. Halperin in Handbook of Magnetism

and Advanced Magnetic Materials (H. Kronmüller and S. Parkin, eds.),

vol. V, pp. 2858–2877, Chichester, UK: Wiley, 2007.

[13] R. Raimondi, C. Gorini, P. Schwab, and M. Dzierzawa, “Quasiclassical

approach to the spin hall effect in the two-dimensional electron gas,”

Phys. Rev. B, vol. 74, p. 035340, 2006.

[14] D. Culcer and R. Winkler, “Steady states of spin distributions in the

presence of spin-orbit interactions,” Phys. Rev. B, vol. 76, p. 245322,

2007.



BIBLIOGRAPHY 119

[15] D. Culcer and R. Winkler, “Generation of spin currents and spin den-

sities in systems with reduced symmetry,” Phys. Rev. Lett, vol. 99,

p. 226601, 2007.

[16] D. Culcer, E. M. Hankiewicz, G. Vignale, and R. Winkler, “Side jumps

in the spin hall effect: Construction of the boltzmann collision integral,”

Phys. Rev. B, vol. 81, p. 125332, 2010.

[17] W.-K. Tse, J. Fabian, I. Žutić, and S. Das Sarma, “Spin accumulation

in the extrinsic spin hall effect,” Phys. Rev. B, vol. 72, p. 241303, 2005.

[18] V. M. Galitski, A. A. Burkov, and S. Das Sarma, “Boundary condi-

tions for spin diffusion in disordered systems,” Phys. Rev. B, vol. 74,

p. 115331, 2006.

[19] T. Tanaka and H. Kontani, “Giant extrinsic spin hall effect due to rare-

earth impurities,” New Journal of Physics, vol. 11, p. 013023, 2009.

[20] E. M. Hankiewicz and G. Vignale, “Spin-hall effect and spin-coulomb

drag in doped semiconductors,” J. Phys. Cond. Matt., vol. 21,

p. 235202, 2009.

[21] G. Vignale, “Ten years of spin hall effect,” J. Supercond. Nov. Magn.,

vol. 23, p. 3, 2010.

[22] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom, “Ob-

servation of the spin hall effect in semiconductors,” Science, vol. 306,

p. 1910, 2004.



BIBLIOGRAPHY 120

[23] V. Sih, R. C. Myers, Y. K. Kato, W. H. Lau, A. C. Gossard, and D. D.

Awschalom, “Spatial imaging of the spin hall effect and current-induced

polarization in two-dimensional electron gases,” Nature Physics, vol. 1,

p. 31, 2005.

[24] J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimen-

tal observation of the spin-hall effect in a two-dimensional spin-orbit

coupled semiconductor system,” Phys. Rev. Lett., vol. 94, p. 047204,

2005.

[25] N. P. Stern, S. Ghosh, G. Xiang, M. Zhu, N. Samarth, and D. D.

Awschalom, “Current-induced polarization and the spin hall effect at

room temperature,” Phys. Rev. Lett., vol. 97, p. 126603, 2006.

[26] N. P. Stern, D. W. Steuerman, S. Mack, A. C. Gossard, and D. D.

Awschalom, “Time-resolved dynamics of the spin hall effect,” Nature

Physics, vol. 4, p. 843, 2008.

[27] C. Gorini, Quasiclassical methods for spin-charge coupled dynamics in

low-dimensional systems. PhD thesis, Augsburg University,Ausburg,

2009.

[28] M. I. Dyakonov and V. I. Perel, “Current-induced spin orientation of

electrons in semiconductors,” Phys. Lett. A, vol. 35, p. 459, 1971.

[29] N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions.

Oxford University Press, 1964.



BIBLIOGRAPHY 121

[30] Y. A. Bychkov and E. I. Rashba, “Side jump contribution to spin-orbit

mediated hall effects and berry curvature,” J. Phys. C, vol. 17, p. 6039,

1984.

[31] R. Raimondi and P. Schwab, “Spin-hall effect in a disordered two-

dimensional electron system,” Phys. Rev. B, vol. 71, p. 033311, 2005.

[32] E. G. Mishchenko, A. V. Shytov, and B. I. Halperin, “Spin current

and polarization in impure two-dimensional electron systems with spin-

orbit coupling,” Phys. Rev. Lett., vol. 93, p. 226602, 2004.

[33] A. Khaetskii, “Nonexistence of intrinsic spin currents,” Phys. Rev. Lett.,

vol. 96, p. 056602, 2006.

[34] E. M. Hankiewicz and G. Vignale, “Coulomb corrections to the extrinsic

spin-hall effect of a two-dimensional electron gas,” Phys. Rev. B, vol. 73,

p. 115339, 2006.

[35] E. M. Hankiewicz, G. Vignale, and M. E. Flatté, “Spin-hall effect in a

[110] gaas quantum well,” Phys. Rev. Lett., vol. 97, p. 266601, 2006.

[36] T. Kimura, Y. Otani, T. Sato, S. Takahashi, and S. Maekawa, “Room-

temperature reversible spin hall effect,” Phys. Rev. Lett., vol. 98,

p. 156601, 2007.

[37] C. Gorini, P. Schwab, M. Dzierzawa, and R. Raimondi, “Spin polar-

izations and spin hall currents in a two-dimensional electron gas with

magnetic impurities,” Phys. Rev. B, vol. 78, p. 125327, 2008.



BIBLIOGRAPHY 122

[38] W.-K. Tse and S. Das Sarma, “Intrinsic spin hall effect in the presence

of extrinsic spin-orbit scattering,” Phys. Rev. B, vol. 74, p. 245309,

2006.

[39] L. X. Hayden, R. Raimondi, M. E. Flatté, and G. Vignale, “Intrinsic

spin hall effect at asymmetric oxide interfaces: Role of transverse wave

functions,” Phys. Rev. B, vol. 88, p. 075405, 2013.

[40] Y. Niimi, M. Morota, D. H. Wei, C. Deranlot, M. Basletic, A. Hamzic,

A. Fert, and Y. Otani, “Extrinsic spin hall effect induced by iridium

impurities in copper,” Phys. Rev. Lett., vol. 106, p. 126601, 2011.

[41] M. Gradhand, D. V. Fedorov, P. Zahn, and I. Mertig, “Extrinsic spin

hall effect from first principles,” Phys. Rev. Lett., vol. 104, p. 186403,

2010.

[42] J. L. Cheng and M. W. Wu, “Kinetic investigation of the extrinsic spin

hall effect induced by skew scattering,” Journal of Physics: Condensed

Matter, vol. 20, p. 085209, 2008.

[43] R. Raimondi, P. Schwab, C. Gorini, and G. Vignale, “Spin-orbit inter-

action in a two-dimensional electron gas: a su(2) formulation,” Ann.

Phys. (Berlin), vol. 524, p. 153, 2012.

[44] R. Raimondi and P. Schwab, “Tuning the spin hall effect in a two-

dimensional electron gas,” Europhys. Lett., vol. 87, p. 37008, 2009.

[45] S. Valenzuela and M. Tinkham, “Direct electronic measurement of the

spin hall effect,” Nature, vol. 442, p. 176, 2006.



BIBLIOGRAPHY 123

[46] S. O. Valenzuela and M. Tinkham, “Electrical detection of spin cur-

rents: The spin-current induced hall effect (invited),” Journal of Ap-

plied Physics, vol. 101, no. 9, 2007.

[47] L. Vila, T. Kimura, and Y. Otani, “Evolution of the spin hall effect in

pt nanowires: Size and temperature effects,” Phys. Rev. Lett., vol. 99,

p. 226604, 2007.

[48] T. Seki, Y. Hasegawa, S. Mitani, S. Takahashi, H. Imamura,

S. Maekawa, J. Nitta, and K. Takanashi, “Giant spin hall effect in per-

pendicularly spin-polarized fept/au devices,” Nat Mater, vol. 7, p. 125,

2008.

[49] T. Tanaka, H. Kontani, M. Naito, T. Naito, D. S. Hirashima, K. Ya-

mada, and J. Inoue, “Intrinsic spin hall effect and orbital hall effect in

4d and 5d transition metals,” Phys. Rev. B, vol. 77, p. 165117, 2008.

[50] K. Nomura, J. Wunderlich, J. Sinova, B. Kaestner, A. H. MacDon-

ald, and T. Jungwirth, “Edge-spin accumulation in semiconductor two-

dimensional hole gases,” Phys. Rev. B, vol. 72, p. 245330, 2005.

[51] Y. Lyanda-Geller and A. Aronov, “Nuclear electric resonance and orien-

tation of carrier spins by an electric field,” JETP Lett., vol. 50, p. 431,

1989.

[52] V. Edelstein, “Spin polarization of conduction electrons induced by

electric current in two-dimensional asymmetric electron systems,” Solid

State Communications, vol. 73, no. 3, p. 233, 1990.



BIBLIOGRAPHY 124

[53] I. Mihai Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl,

S. Pizzini, J. Vogel, and P. Gambardella, “Current-driven spin torque

induced by the rashba effect in a ferromagnetic metal layer,” Nature

Materials, vol. 9, no. 3, p. 230, 2010.

[54] J.-i. Inoue, G. E. W. Bauer, and L. W. Molenkamp, “Diffuse transport

and spin accumulation in a rashba two-dimensional electron gas,” Phys.

Rev. B, vol. 67, p. 033104, 2003.

[55] C. L. Yang, H. T. He, L. Ding, L. J. Cui, Y. P. Zeng, J. N. Wang,

and W. K. Ge, “Spectral dependence of spin photocurrent and current-

induced spin polarization in an InGaAs/InAlAs two-dimensional elec-

tron gas,” Phys. Rev. Lett., vol. 96, p. 186605, 2006.

[56] H. J. Chang, T. W. Chen, J. W. Chen, W. C. Hong, W. C. Tsai, Y. F.

Chen, and G. Y. Guo, “Current and strain-induced spin polarization in

InGaN/GaN superlattices,” Phys. Rev. Lett., vol. 98, p. 136403, 2007.

[57] W. F. Koehl, M. H. Wong, C. Poblenz, B. Swenson, U. K. Mishra,

J. S. Speck, and D. D. Awschalom, “Current-induced spin polarization

in gallium nitride,” Appl. Phys. Lett., vol. 95, p. 072110, 2009.

[58] S. Kuhlen, K. Schmalbuch, M. Hagedorn, P. Schlammes, M. Patt,

M. Lepsa, G. Güntherodt, and B. Beschoten, “Electric field-driven co-

herent spin reorientation of optically generated electron spin packets

in ingaas,” Phys. Rev. Lett., vol. 109, p. 146603, 2012.

[59] N. Ashcroft and N. Mermin, Solid State Physics. Philadelphia: Saun-

ders College, 1976.



BIBLIOGRAPHY 125

[60] X. Wang, J. Xiao, A. Manchon, and S. Maekawa, “Spin-hall conduc-

tivity and electric polarization in metallic thin films,” Phys. Rev. B,

vol. 87, p. 081407, 2013.

[61] H. Adachi, K. ichi Uchida, E. Saitoh, and S. Maekawa, “Theory of the

spin seebeck effect,” Reports on Progress in Physics, vol. 76, no. 3,

p. 036501, 2013.

[62] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando,

S. Maekawa, and E. Saitoh, “Observation of the spin seebeck effect,”

Nat. lett., vol. 455, p. 778, 2008.

[63] K. Uchida, J. Xiao, H. Adachi, J. Ohe, S. Takahashi, J. Ieda, T. Ota,

Y. Kajiwara, H. Umezawa, H. Kawai, G. E. W. Bauer, S. Maekawa,

and E. Saitoh, “Spin seebeck insulator,” Nat. Mat., vol. 9, p. 894, 2010.

[64] K. Uchida, T. Ota, H. Adachi, J. Xiao, T. Nonaka, Y. Kajiwara,

G. E. W. Bauer, S. Maekawa, and E. Saitoh, “Spin seebeck insulator,”

J. Appl. Phys., vol. 111, p. 103903, 2012.

[65] C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, R. C. Myers, and

J. P. Heremans, “Observation of the spin-seebeck effect in a ferromag-

netic semiconductor,” Nat. Mat., vol. 9, p. 898, 2010.

[66] C. M. Jaworski, J. Yang, S. Mack, D. D. Awschalom, R. C. Myers, and

J. P. Heremans, “Spin-seebeck effect: A phonon driven spin distribu-

tion,” Phys. Rev. Lett., vol. 106, p. 186601, 2011.

[67] T. S. Nunner and F. von Oppen, “Quasilinear spin-voltage profiles in

spin thermoelectrics,” Phys. Rev. B, vol. 84, p. 020405(R), 2011.



BIBLIOGRAPHY 126

[68] K. Tauber, M. Gradhand, D. V. Fedorov, and I. Mertig, “Extrinsic spin

nernst effect from first principles,” Phys. Rev. Lett., vol. 109, p. 026601,

Jul 2012.

[69] C. M. Wang and M. Q. Pang, “Thermally induced spin polarization and

thermal conductivities in a spin-orbit coupled two-dimensional electron

gas,” Solid State Communications, vol. 150, p. 1509, 2010.

[70] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, “Spin caloritronics,”

Nat. Mat., vol. 11, p. 391, 2012.

[71] Z. Ma, “Spin hall effect generated by a temperature gradient and heat

current in a two-dimensional electron gas,” Solid State Communica-

tions, vol. 150, pp. 510 – 513, 2010. Spin Caloritronics.

[72] A. Slachter, F. L. Bakker, and B. J. van Wees, “Modeling of ther-

mal spin transport and spin-orbit effects in ferromagnetic/nonmagnetic

mesoscopic devices,” Phys. Rev. B, vol. 84, p. 174408, 2011.

[73] S. Tölle, C. Gorini, and U. Eckern, “Room-temperature spin thermo-

electrics in metallic films,” Phys. Rev. B, vol. 90, p. 235117, 2014.

[74] M. I. Dyakonov, Spin Physics in Semiconductors. Springer, 2008.

[75] J. M. Luttinger and W. Kohn, “Motion of electrons and holes in per-

turbed periodic fields,” Phys. Rev., vol. 97, pp. 869–883, 1955.

[76] R. Winkler, Spin-orbit Coupling Effects in Two-dimensional Electron

and Hole Systems. Springer, Berlin, 2003.



BIBLIOGRAPHY 127

[77] R. Lassnig, “k · p theory, effective-mass approach, and spin splitting

for two-dimensional electrons in gaas-gaalas heterostructures,” Phys.

Rev. B, vol. 31, p. 8076, 1985.

[78] R. S. Calsaverini, E. Bernardes, J. C. Egues, and D. Loss,

“Intersubband-induced spin-orbit interaction in quantum wells,” Phys.

Rev. B, vol. 78, p. 155313, 2008.

[79] S. Datta, Electronic transport in mesoscopic systems. Cambridge Uni-

versity Press, 1995.

[80] J. H. Davies., The Physics of Low-dimensional Semiconductors. Cam-

bridge University Press, 2006.

[81] G. Dresselhaus, “Spin-orbit coupling effects in zinc blende structures,”

Phys. Rev., vol. 100, pp. 580–586, 1955.

[82] E. I. Rashba, “Spin currents in thermodynamic equilibrium: The

challenge of discerning transport currents,” Phys. Rev. B, vol. 68,

p. 241315(R), 2003.

[83] I. V. Tokatly, “Equilibrium spin currents: Non-abelian gauge invariance

and color diamagnetism in condensed matter,” Phys. Rev. Lett, vol. 101,

p. 106601, 2008.

[84] V. K. Dugaev, M. Inglot, E. Y. Sherman, and J. Barnaś, “Robust

impurity-scattering spin hall effect in a two-dimensional electron gas,”

Phys. Rev. B, vol. 82, p. 121310, 2010.

[85] J. Rammer, Quantum Transport Theory. Reading: Westview, 2004.



BIBLIOGRAPHY 128

[86] J. Rammer, Quantum field theory of Non-equilibrium States. Cam-

bridge: Cambridge University Press, 2007.

[87] L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol.

III. Oxford: Butterworth-Heinemann, 1964.

[88] G. D. Mahan, Many Particle Physics, Third Edition. New York:

Plenum, 2000.

[89] A. Abrikosov, L. Gorkov, and I. Dzyaloshinski, Methods of quantum

field theory in statistical physics. New York, N.Y.: Dover, 1963.

[90] H. B. Callen, Thermodynamics. New York, N.Y.: John Wiley & Sons,

Inc., 1960.

[91] A. L. Fetter and J. D. Walecka, Quantum theory of many-particle sys-

tems. International series in pure and applied physics, New York, NY:

McGraw-Hill, 1971.

[92] H. Bruus and K. Flensberg, Many-body quantum theory in condensed

matter physics - an introduction. Oxford University Press, 2004.

[93] R. Kubo, “Statistical-mechanical theory of irreversible processes. i. gen-

eral theory and simple applications to magnetic and conduction prob-

lems,” Journal of the Physical Society of Japan, vol. 12, no. 6, pp. 570–

586, 1957.

[94] R. Kubo, M. Yokota, and S. Nakajima, “Statistical-mechanical theory

of irreversible processes. ii. response to thermal disturbance,” Journal

of the Physical Society of Japan, vol. 12, no. 11, pp. 1203–1211, 1957.



BIBLIOGRAPHY 129

[95] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics. Berlin,

Germany: Springer, 1985.

[96] S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State

Physicists. Imperial College Press, 1998.

[97] P. Schwab and R. Raimondi, “Magnetoconductance of a two-

dimensional metal in the presence of spin-orbit coupling,” Eur. Phys.

J. B, vol. 25, p. 483, 2002.

[98] O. V. Dimitrova, “Spin-hall conductivity in a two-dimensional rashba

electron gas,” Phys. Rev. B, vol. 71, p. 245327, 2005.

[99] W.-K. Tse and S. Das Sarma, “Spin hall effect in doped semiconductor

structures,” Phys. Rev. Lett., vol. 96, p. 056601, 2006.

[100] L. Berger, “Side-jump mechanism for the hall effect of ferromagnets,”

Phys. Rev. B, vol. 2, p. 4559, 1970.

[101] J. Borge, C. Gorini, G. Vignale, and R. Raimondi, “Spin hall and edel-

stein effects in metallic films: From two to three dimensions,” Phys.

Rev. B, vol. 89, p. 245443, 2014.

[102] Y. Niimi, Y. Kawanishi, D. H. Wei, C. Deranlot, H. X. Yang,

M. Chshiev, T. Valet, A. Fert, and Y. Otani, “Giant spin hall effect

induced by skew scattering from bismuth impurities inside thin film

cubi alloys,” Phys. Rev. Lett., vol. 109, p. 156602, 2012.

[103] A. G. Rybkin, A. M. Shikin, V. K. Adamchuk, D. Marchenko,

C. Biswas, A. Varykhalov, and O. Rader, “Large spin-orbit splitting



BIBLIOGRAPHY 130

in light quantum films: Al/w(110),” Phys. Rev. B, vol. 82, p. 233403,

2010.

[104] F. T. Vas’ko, “Spin splitting in the spectrum of two-dimensional elec-

trons due to the surface potential,” Pis’ma Zh. Eksp. Teor. Fiz., vol. 30,

no. 9, pp. 574–577, 1979.

[105] S. Mathias, A. Ruffing, F. Deicke, M. Wiesenmayer, I. Sakar,

G. Bihlmayer, E. V. Chulkov, Y. M. Koroteev, P. M. Echenique,

M. Bauer, and M. Aeschlimann, “Quantum-well-induced giant spin-

orbit splitting,” Phys. Rev. Lett., vol. 104, p. 066802, Feb 2010.

[106] H. A. Engel, B. I. Halperin, and E. Rashba, “Theory of spin hall con-

ductivity in n-doped gaas,” Phys. Rev. Lett., vol. 95, p. 166605, 2005.

[107] C. Gorini, P. Schwab, R. Raimondi, and A. L. Shelankov, “Non-abelian

gauge fields in the gradient expansion: Generalized boltzmann and

eilenberger equations,” Phys. Rev. B, vol. 82, p. 195316, 2010.

[108] A. Takeuchi and N. Nagaosa, “Theory of electrical spin manipulation

in spin-orbit coupling systems,” arXiv:1309.4205, 2013.

[109] J. Borge, C. Gorini, and R. Raimondi, “Spin thermoelectrics in a dis-

ordered fermi gas,” Phys. Rev. B, vol. 87, p. 085309, 2013.

[110] E. H. Sondheimer, “The theory of the galvanomagnetic and thermo-

magnetic effects in metals,” Proc. R. Soc. Lond. A, vol. 193, p. 484,

1948.



BIBLIOGRAPHY 131

[111] B. Scharf, A. Matos-Abiague, I. Žutić, and J. Fabian, “Theory of ther-

mal spin-charge coupling in electronic systems,” Phys. Rev. B, vol. 85,

p. 085208, 2012.

[112] M. I. Dyakonov, “Magnetoresistance due to edge spin accumulation,”

Phys. Rev. Lett., vol. 99, p. 126601, 2007.

[113] P. Schwab, R. Raimondi, and C. Gorini, “Inverse spin hall effect and

anomalous hall effect in a two-dimensional electron gas,” EPL (Euro-

physics Letters), vol. 90, p. 67004, 2010.

[114] M. Jonson and G. D. Mahan, “Mott’s formula for the thermopower and

the wiedemann-franz law,” Phys. Rev. B, vol. 21, p. 4223, 1980.

[115] D. R. Niven and R. A. Smith, “Electron-electron interaction corrections

to the thermal conductivity in disordered conductors,” Phys. Rev. B,

vol. 71, p. 035106, 2005.

[116] R. Raimondi, M. Leadbeater, P. Schwab, E. Caroti, and C. Castel-

lani, “Spin-orbit induced anisotropy in the magnetoconductance of two-

dimensional metals,” Phys. Rev. B, vol. 64, p. 235110, 2001.

[117] S. Giglberger, L. E. Golub, V. V. Bel’kov, S. N. Danilov, D. Schuh,

C. Gerl, F. Rohlfing, J. Stahl, W. Wegscheider, D. Weiss, W. Prettl,

and S. D. Ganichev, “Rashba and dresselhaus spin splittings in semi-

conductor quantum wells measured by spin photocurrents,” Phys. Rev.

B, vol. 75, p. 035327, 2007.



BIBLIOGRAPHY 132

[118] T. L. Hughes, Y. B. Bazaliy, and B. A. Bernevig, “Transport equa-

tions and spin-charge propagating mode in a strongly confined two-

dimensional hole gas,” Phys. Rev. B, vol. 74, p. 193316, 2006.

[119] H. Kontani, T. Tanaka, D. S. Hirashima, K. Yamada, and J. Inoue,

“Giant orbital hall effect in transition metals: Origin of large spin and

anomalous hall effects,” Phys. Rev. Lett., vol. 102, p. 016601, 2009.

[120] I. V. Tokatly, “Orbital momentum hall effect in p-doped graphane,”

Phys. Rev. B, vol. 82, p. 161404, 2010.

[121] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W.

Molenkamp, X. L. Qi, and S.-C. Zhang, “Quantum spin hall insulator

state in hgte quantum wells,” Science, vol. 318, p. 766, 2007.

[122] Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,

“Current-induced spin polarization in strained semiconductors,” Phys.

Rev. Lett., vol. 93, p. 176601, 2004.

[123] K. Shen, G. Vignale, and R. Raimondi, “Inverse edelstein effect,” Phys.

Rev. Lett, vol. 112, p. 096601, 2014.

[124] S. D. Ganichev, E. L. Ivchenko, V. V. Bel’kov, S. A. Tarasenko,

M. Sollinger, D. W. an W. Wegscheider, and W. Prettl, “Spin-galvanic

effect,” Nature, vol. 417, p. 153, 2002.

[125] J. C. R. Sánchez, L. Vila, G. Desfonds, S. Gambarelli, J. P. Attané,

J. M. D. Teresa, C. Magén, and A. Fert, “Spin-to-charge conversion us-

ing rashba coupling at the interface between non-magnetic materials,”

Nature Commun., vol. 4, p. 2944, 2013.



BIBLIOGRAPHY 133

[126] L. V. Keldysh, “Diagram technique for nonequilibrium processes,”

JETP, vol. 20, p. 1018, 1965.

[127] J. Rammer and H. Smith, “Quantum field-theoretical methods in trans-

port theory of metals,” Rev. Mod. Phys., vol. 58, p. 323, 1986.



Acknowledgements

I would really like to thank the city of Rome for this fantastic three years. I

am very grateful to Prof. Roberto Raimondi for his continuous and enthusi-

astic support during this time. I am in debt with him for his help, suggestions

and guidance. I would also like to mention Prof. Vignale and Dr. Gorini for

stimulating and instructive discussions.

134


