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Introduction

In this thesis we are going to analyse some motion by curvature flows
of smooth embedded hypersurfaces. Given a smooth n-dimensional oriented
manifold M and an embedding Fy : M — R"*! a curvature flow of Fy(M)
is a solution of a system of the kind

{ 0.F (z,t) = v(D?*F, x, t)v(zx,t)

1
F(z,0) = Fo(x), 1)

where the function v is given and depends on second derivatives of the the
unknown of the problem in the sense that depends on the curvature. We
take v as the unit normal vector pointing outward. The variable z is a local
coordinate on the hypersurface, while the parameter ¢ is thought as time.
The study of curvatures flows in a smooth setting starts with G.Huisken in
[35], where the mean curvature flow of convex hypersurfaces was analysed.
Mean curvature flow corresponds to the case v = —H in 7 where H is
the mean curvature of the solution. It can be checked that —Hv = A F,
where A, is the Laplace-Beltrami operator associated to the induced metric
on the solution. Then, in this particular case, the evolution law resembles to
a heat equation where the “laplacian” also depends on time. This similarity
suggests the parabolicity of the problem and in particular the short time
existence and uniqueness of the solution. If the maximal time of existence of
the solution is finite, we say that the flow develops a singularity.

Huisken proved in his paper that any Euclidean, convex, compact hypersur-
face without boundary that evolves by mean curvature flow shrinks to a point
in finite time. Moreover, the asymptotic profile of the evolving hypersurface
becomes more and more spherical. This kind of singularity is called round
point.



An interesting feature of mean curvature flow is that it is the gradient flow
of the area functional, i.e. the one such that the area of the hypersurface
decreases most rapidly among all velocities with fixed L? norm. Then, mean
curvature flow naturally arises in many phenomena where a surface energy,
represented by the area, is involved. Its origin indeed can be retraced in
physics, in particular in the modelling of the evolution of interfaces, see the
paper of Mullins [50] about the motion of grain boundary in two dimensions.
Other interesting applications are developing, in which the regularizing ef-
fect of curvature flows is employed in the treatment of digital data (see for
instance [25], [30], [47]).

Curvature flows also have important applications in geometry. One of these
is the classification of submanifolds. A key point in this perspective is to find
geometric properties that are invariants of the flow, and which determine a
specific asymptotic behaviour. Huisken again, studying the mean curvature
flow on the sphere in [38], showed that any hypersurface of the sphere S"
satisfying a certain condition on the curvatures is diffeomeorphic to a sphere
Sn~1. Another useful technique for the classification purpose is to define a
surgery procedure, that is, a controlled way to pass through singularities of
the flow. Roughly speaking, surgeries consist in a proper “cutting and glu-
ing” near singularities without losing information about topology, in order to
obtain something smooth and restart the flow till the next singular time, and
so on. Huisken and Sinestrari first introduced this surgery method in [41]
for mean curvature flow of two-convex Euclidean hypersurfaces. The central
point is that the procedure ends in finitely many steps and the initial man-
ifold is recognized to be diffeomorphic either to S” or to a finite connected
sum of S"! x S'. More recently, Huisken and Brendle developed in [39] a
surgery method for mean curvature flow of mean convex surfaces in R?.
Curvature flows have been also employed in obtaining alternative proofs of
known geometric inequalities, see for instance [49], [57].

After [35], the motion of convex hypersurfaces under various curvature flows
has been widely investigated. Looking at the result of Huisken, an aim is to
find under what conditions on the velocity and the initial datum the conver-
gence to a round point occurs.

In most cases in the literature the function v in is a decreasing function
of the principal curvatures of the unknown of the problem. Monotonicity is
a fundamental ingredient for the local existence and uniqueness of the so-
lution, since ensures the parabolicity of the problem. Usually, the velocity



is assumed to be a homogeneous functions of the principal curvatures. The
case of homogeneity degree equal to one is better known and investigated.
There are results of convergence to a round point for generic speed functions,
see for instance [B], [I4]. When the homogeneity degree is grater than one,
similar results hold under some additional hypotheses. Typically, one have to
require a pinching condition on the initial submanifold i.e., roughly speaking,
a control between the principal curvatures of the kind

A

—>C 2

>\n ? ( )
for a suitable constant C' > 0, where \; < --- < A, are the principal curva-

tures. Since is generally not preserved by the flow, one formulates this
condition in a different way, requiring for instance

K /

Fike C (3)
for some other constant C’ > 0, where K is the Gauss curvature. The
following inequalities hold in general:

An ’ Hn ~ nn

and it can be checked that, if the ratio in is approaching ,%n, which is the
value reached only by the round spheres, then /’\\—i is approaching 1. The proof
of the convergence is then usually based on the preserving and improvement
of the pinching condition during the flow. For some reference where this
technique is employed, see [2], [26] [56] and [13], where a large class of speeds
is considered. These results in higher homogeneity without requiring any
pinching are only known for low dimensions and some specific speed, see [7],
[53], [B6] for results in low dimensions, or [12], [20], [27], [45] for powers of
the Gaussian curvature.

In this thesis we study a variation of the flow where a constraint on
the hypersurfaces is given. This constraint produces an additional global
term in the evolution equation:

(4)

{ O F (x,t) = [v(D*F,z,t) + h(t)] v(z,t)
F(z,0) = Fy(z)



with h(t) = h(M;), where M; = F(M,t) is the evolving hypersurface.
Flows of the kind are usually said standard, while flows like are called
constrained. During the thesis we will omit, for brevity, the dependence of
v on the derivatives of F'. In our case, h comes out from the constraint on
the hypersurfaces to have constant area or to enclose a region of constant
volume. Many constrained flows were studied by various authors. In [36],
Huisken proved the counterpart result of [35] for volume preserving mean
curvature flow: the convergence to a round point in finite time is replaced by
the convergence to a round sphere in infinite time. Results of convergence to
a round sphere for generic velocities that are homogeneous of degree one in
the principal curvature are given in [49]. For higher homogeneity, analogous
results are known for general velocities under a pinching condition, see for
instance [24].

The main original results in this thesis concern curvature flows that are not
homogeneous of degree one in the principal curvatures. As in [§], [58] we do
not employ any pinching condition, but we use the monotonicity of a suit-
able isoperimetric ratio of the hypersurface under the flow, which is a peculiar
property of the volume/area preserving case. This property, in fact, does not
hold in general for standard flows, see for instance [10] on non-convergence
results for standard curvature flows of curves. Thanks to the control on the
isoperimetric ratio, we get a uniform bound on the inner and outer radii of
the evolving hypersurfaces. In this respect, constrained flows exhibit a better
behaviour than the standard ones.

A general difficulty in studying such flows is that the constrain produces some
non local extra terms in the evolution equations, making the applicability of
the maximum principle more difficult. As a consequence, properties that are
preserved by standard flows, does not hold any more in the constrained case.

For some examples in the volume/area preserving mean curvature flow, see
[23].

The thesis is articulated as follows. In the first chapter we recall some general
preliminaries that will apply to any flow that we will see in the following, as
theorems of existence and uniqueness of the solution for short times and the
maximum principle, and we compute the evolution equations for the main
geometric quantities associated to the hypersurface.

In Chapter 2 we analyse a generic volume preserving curvature flow, with
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velocity given by
OF (x,t) = [—o(x,t) + h(t)|v(z, t)

where o(z,t) = Ef(x,t) with a > ¢ and Ej, the k-th symmetric polynomial
in the principal curvatures. These flows are related to the mixed volumes,
which are quantities that generalize the notion of area and volume of a convex
body, and that can be expressed as boundary integrals of the polynomials
Ej). Using the monotonicity of a suitable mixed volume under the flow, we
obtain a bound on the inner and outer radius of our hypersurface, which in
turn implies a uniform upper bound on the speed and the global existence
of the solution. By a further analysis, we can prove that Fj converges to its
mean value in an integral sense and that the solution converges to a round
sphere in the Hausdorff metric.

We can obtain a stronger result when we consider the volume preserving
scalar curvature flow, corresponding to £k = 2 and o = 1. In this case we
get additional estimates which give a uniform bound on the curvature. This
allows us to show that the convergence to a round sphere is smooth and
exponentially fast.

Chapter 3 is dedicated to the study of a volume/area preserving curvature
flow driven by a generic function of the mean curvature:

O F (z,t) = [—¢(H (x,t)) + h(t)|v(z,t)

with ¢ positive and increasing in H, but not necessarily homogeneous. Veloc-
ities of this kind have been considered sometimes in the past literature. We
recall in particular the paper by Smoczyk [59] where the validity of differential
Harnack inequalities was studied, and the one by Alessandroni and Sinestrari
[3] where the singular profile of mean convex solutions was investigated for a
particular class of functions. In our case, the additional hypotheses we put
on the velocity are fairly general, being satisfied for a large class of functions
as positive powers, exponentials and logarithms. We prove that any strictly
convex compact hypersurface converges in infinite time to a round sphere
that has the same area/volume as the initial datum. The convergence is
smooth and exponentially fast. As for the previous flow, our proof does not
employ any pinching condition and exploits the monotonicity of the isoperi-
metric ratio of the hypersurface under the flow.



In Chapter 4 we study the analogue of the flow in Chapter 3, but in the
hyperbolic setting. In [37] Huisken showed, for mean curvature flow in a
general ambient manifold N, how the curvature of N interferes with the mo-
tion of the hypersurface. In particular, the negative sectional curvature of
the ambient manifold contrasts the convergence to a round point. Inspired
by the work of Cabezas-Rivas and Miquel [22], in our analysis we restrict
our attention to the class of hypersurfaces which are convex by horospheres.
Convezxity by horospheres is the natural analogue, in the hyperbolic setting,
of convexity and means that, at any point p of the hypersurfaces, there exists
a horosphere passing trough p that encloses the hypersurface. This property
translates in a condition on the curvature: denoting by —a? the sectional
curvature of the hyperbolic space, any principal curvature of the hypersur-
face satisfies \; > a. Convexity by horospheres turns out to be a good choice
when the ambient manifold is the hyperbolic space in the sense that, roughly
speaking, this property is strong enough to offset the negative curvature of
the ambient manifold and to be preserved along the flow. Also, since convex-
ity by horospheres is stronger than the strict convexity of each hypersurface,
we can relax some hypotheses of the speed function, getting some extra ex-
ample of velocities not admitted in the Euclidean case. We prove that any
compact hypersurface which is convex by horospheres converges smoothly
and exponentially fast in infinite time to a geodesic sphere with the same
area/volume as the initial datum. Also in this case, a key point is the mono-
tonicity of the isoperimetric ratio, that allows to bound uniformly the inner
and outer radii of the hypersurfaces.

We remark that for all the flows analysed in these three chapters, the ex-
ponential convergence is proved by an argument of the kind “improvement
of a pinching condition”, but we do not require any extra hypotheses on the
curvature. In fact, since we prove before that the hypersurfaces are smoothly
approaching a sphere, then the pinching comes out “spontaneously” for times
sufficiently large.

Finally, in Chapter 5 we present a partial result on entire Euclidean graphs
moving by non homogeneous curvature flows. We take the main inspiration
from [28, 29] where the authors study mean curvature flow of entire Eu-
clidean graphs, and from [4], in which a generalization to velocities which
are homogeneous of degree one in the principal curvatures is treated. The
main difference with the previous chapters is that in this case we deal with
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non compact hypersurfaces, for which even the short time existence of the
solution is not a priori guaranteed. By a technique taken from [4] and based
on an approximation via compact hypersurfaces, we prove the long time ex-
istence of the solution for strictly convex initial data that are entire graphs
of a Lipschitz function. But, instead of using some Harnack-type inequality
as in [4], we employ just the dependence of the speed on the mean curvature.
We show that the solution exists for any time, and is still an entire graph
with Lipschitz constant uniformly bounded.
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CHAPTER 1

Preliminaries and tools

1.1 Notation, basic definitions and formulas

In this section we recall some definitions and facts on Riemannian geom-
etry, in particular with regard to embedded hypersurfaces.
From now on we are going to consider F' : M — R"*! to be an embedded
orientable hypersurface of the Euclidean space without boundary, with local
coordinates (x', -+ 2"). We endow M with the induced metric g = (g;;)

given by . (8F(z) 0F(x)
gij(x) = < )

ort  oxd
where (-, -) is the standard Euclidean inner product. The measure on M is
given in terms of g by du = 4/det g;;,dz. The inverse of g;; will be written
as g~' = (g).
We denote by V the Levi-Civita connection uniquely associated to g via the
Christoffel symbols

1 dga | Og9i;  09ij
Ik = —gh - J U
i = 99 (&L‘J "o T o

The second fundamental form of M is the (0,2) symmetric tensor A = (h;;)

fi
defined by 2P (a)




By definition of A, the following Gauss-Weingarten relations hold:
P*F p OF ov im OF

Grion ~ uggh b ozi I ggm
The eigenvalues of the second fundamental form are called principal cur-
vatures and denoted by Aq,...,\,. The trace of A is the mean curvature

H =X +---+ \,. We say that the hypersurface is strictly convez if all \;’s
are positive, while is mean convex if H > 0.

Let a = {a”} be a positive definite (2,0) tensor. We can consider the asso-
ciated operator A, = a"V,;V;, acting on functions or tensors on M. If f is
a smooth function on M, then A, is given in coordinates by

Pl af)

Oxidxi 9 ok
When a” = g%, we recover the Laplace-Beltrami operator of M.

As usual, we always sum on repeated indices, and we lower or lift tensor
indices via g, e.g. the Weingarten operator is given by

Given tensors T = (T7%7) and S = (5% ) on M, we use brackets to denote
their inner product

aijViij = aij (

(T, Sy =ThisGJ,

J1--Jr 7010

In particular, the square of the norm is given by
T = Tt it ir.

J1-Jr 1. s
There holds the following relation between the square norm of the second
fundamental form and the square of the mean curvature, due to arithmetic
reasons: =
AP = —.
The equality is achieved if all the principal curvatures are equal to each other.
Also, if the hypersurface is convex, the norm of the second fundamental form

is bounded by the mean curvature:
|A| < H.
Given a point ¢ € R"*!, the support function of M with respect to q is
ug(x) := (F(x) — q,v(x)).

The subscript ¢ will be omitted whenever there will be no ambiguity.
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1.2 Curvature flows

A geometric flow is a motion of a Riemannian manifold given by some
partial differential equation that involves geometric quantities associated to
the manifold. If these quantities concern the curvature we say that the
manifold evolves by a curvature flow.

1.2.1 Short time existence

We focus our attention on curvature flows of this kind: given an embedded
hypersurface Fy : M — R™"! as in the previous section, we look for a family
of maps F : M x [0,T) — R"*! with F} := F(-,t) : M — R""! solution of

(1.1)

{ OF (x,t) = =S\ (z, 1), ..., Az, t))v(x, t)
F(z,0) = Fy(x),

where Fj is a smooth embedding of a n-dimensional manifold taken as in the
previous section, and v is chosen pointing outward. S is an homogeneous,
symmetric, increasing function of the principal curvatures, which is positive
on the positive cone I'y, = {(A,...,\,) : Ay >0,...\, > 0}. We refer to
these flows as standard contracting flows.

Since S is symmetric in the principal curvatures, it can be also thought as
a GL(n)-invariant function of the second fundamental form and the metric.
Vice versa, any G L(n)-invariant function of the second fundamental form and
the metric can be written as a symmetric function of the principal curvatures
(see for instance [I4) §2] for more details). Then we will use alternately the
same notation without ambiguity:

S(A1, ., An) = S(hY) = S(hij, gij)-

Short time existence for the system (|1.1]) can be deduced only if it is parabolic.
The linearization of the evolution equation in (1.1} is given by

2
0,G = ;}igikgjl <§jk§$l , I/> v + lower order terms. (1.2)

This equation is degenerate in tangential directions. It can be checked
that this is related to the invariance of the flow via tangential diffeomor-
fisms. Roughly speaking, this property is due to the very geometric nature
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of the flow, since the evolution law does not depend on the choice of the
parametrization of the hypersurface, but only on its “shape”.

We have the following theorem for the local existence of the solution. For
more details on this part, see for example [40)].

Theorem 1.2.1. If Fy : M — R" is a smooth, compact hypersurface without

boundary such that
oS

O\

then (1.1) has a unique smooth solution at least on a short time interval
[0,T), T > 0.

>0 Vi=1,...,n

Moreover, we have the following result, see [9], [I4] and [40] for more
details.

Theorem 1.2.2. Assume S(A1,..., ) = f(s(A1,...,\n)), where f is posi-
tive and increasing, and s is symmetric, homogeneous, concave and increas-
ing in each variable. Let [0,T) be the mazimal time existence interval for the
solution of . If T < 400, then either liminf; ,7 min, g—/i = 0 for some
i, or limsup, ,, maxy, |A|* = +o0.

This theorem says that the flow ((1.1)), with S satisfying certain properties,
can stop only if the curvature blows up, or if the parabolicity doesn’t hold
any more.

1.2.2 A priori estimates: maximum principle and its con-
sequences

A very powerful tool in the study the behaviour of the solutions of
parabolic equations is the mazimum principle that, in particular, allows to
estimate a certain quantity evolving in time by some constant that only de-
pends on the initial datum. For more details, see for example [60]. There
the maximum principle is given for the Laplace-Beltrami operator, but the
same statements hold for any parabolic operator A, = a”?V,V;.

Theorem 1.2.3. Let t — (M, g;;(t)) a smooth flow of compact manifolds.
Let v,w : M x [0,T*] — R be C? functions such that v(z,0) = w(x,0) for
all z € M. Given a parabolic operator Ay, suppose

ow(x,t) = Aguyv(z,t) + Vxu(z,t) + F(u(x,t),t)

13



atw(xa t) < Aa(t)w(xv t) + VX(t)u](xa t) + F(U)(l‘, t)7 t)
for all (z,t) € M x [0,T*], where, for each time t, X (t) is a vector field and
F(t,-) : R — R is a Lipschitz function. Then
v(x,t) = w(x,t) Yte|0,T*].

Corollary 1.2.4. Let t — (M, g;;(t)) a smooth flow of compact manifolds.
Let X (t), Aqy as in the hypotheses of Theorem[1.2.3, and f : M x[0,T*] —
R be C? functions such that, on M x [0,T*],

O f(x,t) = Aay f (2, ) + Vi f(z,1)

or, respectively,

Orf(z,t) < Aay f(2,1) + Vo f(z,1).

Then, for any t € [0, T*],
> mi
flz,t) = min f(y,0)

or, respectively,
f(z,t) < max f(y,0).

yeM

We also give the maximum principle version for tensors, see [33, Theorem
9.1].

Theorem 1.2.5. Let t — (M, g;;(t)) a smooth flow of compact manifolds,
Aywy a parabolic operator. Let vk be a wector field and M;; a symmetric
tensor on the evolving manifolds, and N;; = p(M,j, gi;) a polynomial in M;;
formed by contracting products of M,; with itself using the metric. Suppose
that, on [0,T*],

6tMij = AaMij + ukaMm + NZJ

Suppose also that N;; satisfies the null-eigenvector condition i.e., for all null-
eigenvector w* of M;;, Nyjjw'w? = 0. If M;; =0 at t = 0, then it remains so
on |0, T%*].

Two very important applications of the maximum principle are the fol-
lowing results.

14



Proposition 1.2.6. Let ' : M’ x [0,T) —» R""! and F" : M”" x [0,T) —
R be two hypersurfaces moving by (1.1)), with M’ compact. Then the
distance between them is nondecreasing in time.

As a consequence, we obtain the following corollary, called avoidance
property.

Corollary 1.2.7. (Avoidance property) Let F', F" as in the hypotheses
of Proposition[1.2.6 If F'(M',0) and F"(M",0) are disjoint, then F'(M',t)
and F"(M",t) keep disjoint for all times t € [0,T).

Proposition 1.2.8. If the initial hypersurface is compact and embedded, then
it remains embedded during the flow (1.1f).

For the proofs of Propositions and see for example [48]. The
proofs there are given for the mean curvature flow, but they still hold for a
generic flow ([L.1)) with S as in our hypotheses.

1.3 Constrained flows

In Chapters 2, 3 and 4 we are going to consider flows of the kind

{ O F (x,t) = [-S(Mi(z,t), ..., Az, ) + h(t)] v(z, 1)
F(x,0) = Fo(z),

with S, v and Fy(M) as in (L.I). The function h(t) only depends on time.
Such flows are called constrained flows, since typically the term h derives
from some constraint on the hypersurfaces, and contrasts the contractive
thrust produced by S. In our case, h will be chosen in order to force the area
or the volume enclosed by the hypersurface to be constant.

Since the term h(t) only depend on time, its presence does not interfere with
the parabolicity of the flow. Then Theorems [1.2.1] and [1.2.2] are still valid
for , as well as for the maximum principle. Nevertheless, the avoidance
property does not hold any more, since in the evolution equations needed for
the proof an extra non local term appears, compromising the applicability of
the maximum principle.

Typically, the constrained flows that one analyses present a kind of balancing
between the two terms in the speed function. Then the results are about the
asymptotic behaviour and convergence to an equilibrium position. This will
be our case too.

(1.3)
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1.4 Evolution equations

In [40], Huisken and Polden give the evolution equations for the main
geometric quantities associated to any flow of the kind

O F (z,t) = V(x,t)v(zx,t), (1.4)

provided that is a nonlinear parabolic equation of the second order. They
consider hypersurfaces of any ambient manifolds, but here we restrict our
attention to the Euclidean ambient space. We have the following proposition,
coming from Lemma 7.4, Lemma 7.5 and Lemma 7.6 in [40].

Proposition 1.4.1. Under a flow of the kind (L.4)), the following equations
hold:

01gi; = 2V hjj
01" = —2VhY
Ordp = VHdp
ov=-VV
Ohij = =ViV,;V + Vhih}
Oihly = =V'V;V + Vhih¥
O H = —-AV —|AP
The following identity will be useful in the next chapters in order to

rewrite some of the evolution terms in a more convenient way. It can be
recovered by the proof of Corollary 3.3 in [40].

Proposition 1.4.2. If A is a smooth symmetric function of the principal
curvatures, its Hessian matrix satisfies

oA ’A
V.V;A = —VVihi; + ———Vih 'V h
P T I
aA m m m mipm m
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CHAPTER 2

Volume preserving flow by scalar
curvature in the Euclidean space

2.1 Presentation of the problem

Let M be an oriented, compact n-dimensional manifold without bound-
ary. Consider the problem (1.3]) given by

{ O F (x,t) = [—o(x,t) + h(t)|v(z, t) 2.1)
F(z,0) = Fy(xz),
where:

o v denotes the outer unit normal vector of the evolving hypersurface

Mt = Ft(M),

« o(z,t) = E(z,t) with o = ; and Ej the k-th symmetric polynomial
in the principal curvatures, i.e.

Ey(z,t)= > Alat). N (x),

1< < <ip<n
with A;, ... \; the principal curvatures of M; and k =1,...,n;
o The function h(t) is defined as
1
h(t) := f odu, 2.2
(2) Ay J,, 7 (2.2)
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where A(M;) is the n-dimensional measure of M.

Such a definition of h(t) ensures that the volume Vol(§2;) is preserved by
the flow, where €, is the (n + 1)-region bounded by M,;. We will prove the
following result.

Theorem 2.1.1. Let Fy : M — R with n = 1, be a smooth embedding
of an oriented, compact n-dimensional manifold without boundary, such that
Fo(M) is strictly convex. Then the flow has a unique smooth solution,
which exists for any time t € [0,00). The solution is strictly convex and
converges in the Hausdorff distance, as t — oo, to a round sphere with the
same volume as the initial datum. Furthermore, if « = 1 and k = 2, the
convergence is smooth and exponentially fast.

Notice that there is no requirement of any pinching condition of the cur-
vatures of the initial datum except for the strict convexity.

Short time existence and evolution equations. By Theorem [1.2.1] in
Chapter 1, a flow of the form ({2.1)) is parabolic at least on a short time
interval if

g;(a;,o)>0 i=1,...,n (2.3)

and then admits a unique smooth solution for short times. Condition (2.3)
is guaranteed, in our case, by the strict convexity of M,. Moreover, by
Theorem [1.2.2] we have the following result.

Theorem 2.1.2. Let Fy : M — R""! be a smooth embedding of an ori-
ented, compact n-dimensional manifold without boundary, such that Fy(M)
is strictly convex. Then the flow has a unique smooth solution M,
defined on a mazximal time interval [0,T). If T < +oo, then either

oo

=0 3i, or limsupmax|A]*> = +co.
i t>T M

lim inf min
t—T My

We give now the evolution equations for the main geometric quantities
associated to the flow (2.1)). They can be obtained from Proposition m

taking V(z,t) = —o(z,t) + h(t) in (L.4).
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Proposition 2.1.3. We have the following evolution equations under the
flow :

0rgij = 2(—0 + h)hij,

019" = —2(—0 + h)h",

oww = Vo,

Odp = H(—o + h)dp,

Ol = V'Vjo — (h — o) hjh}

= Nhls + 5(V'A, V;A) + trg (himhy )b — (b + (ak — L)o)h), b,

OH = AsH + try—1 [6(V; A, V;A)] + Htrg(hphl) — (b + (ak — 1)0)|AJ?,

0,0 = Ngo + (0 — h)trs(hohl),

o = Agu + try(hymhy Ju — (ak + 1)o + h.

Proof. The first four evolution equations follow directly from Proposition
setting V' = —o 4+ h. By Proposition we also have

Othij = ViVjo — (0 — h)hyhY. (2.4)
By Proposition with A = o, we have
V.V,o = Ashij + (VA V;A)
" (himhif g — B R B+ Pygh Rty — B highu,)
= Ashij + 5(ViA, V;A) + tre(hi, b ) hij
— akhinhl} + 6 (B} hi B — hyshih,)

(2.5)

where in the last equality we used Lemma [2.1.4], Furthermore,
dkl(hl"himh? — hyihl'hy) =0

since all the other addenda in the right side of the last equality in (2.5]) are

symmetric in ¢ and j, as well as V;V 0.

From the evolution of h;; and g¥, the evolutions of h% and H can be easily

computed. Once we have the evolution of hé, we can compute

_ Jo oo oo
oh’; oh’; oh’;

= Aso + (0 — h)trs(haht).

6t0' @gh; = VZVJO' -

(h — o)hih!

Finally, for the evolution of the support function see |24, Lemma 3.5], formula

(3.4).
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2.1.1 Symmetric polynomials and convex sets

It is convenient to define the symmetric polynomials also for £k = 0,n + 1
setting £y = 1 and E,, ;1 = 0. To simplify some formulas, it is useful to
introduce the normalized symmetric polynomials

1
By = (Z) By, k=0,...n, (2.6)

which satisfy Ej(1,...,1) = 1. For the purposes of this thesis, these functions
will only be evaluated in the positive cone I',.

The polynomials Ej, and Ej can be also regarded as a function of the
Weingarten operator of M. We will use the same symbol in the two cases,
since the meaning will be clear from the context. We also recall some well
known properties, see e.g. Theorem 2.3 in [42], Lemma 2.1 in [24] and the
references therein, and [51].

Lemma 2.1.4. The following relations hold, for anyk =1,... . nand (A, ..., \,) €
r,.

(i) Be)2 = HE, — (k + 1) By = EHE,.

oNi
L1
(it) By < EF, with equality if and only if \y = --- = X\, and k < n.
(1ii) As a function on My, V“fo =0 foranyj=1,...,n.
J

(iv) If o = E, then 22\, = ako.

During this chapter, we will see that flows of the kind are related to
mixed volumes. Mixed volumes are a classical notion in convex analysis, see
e.g. [15, 21, B5]. We recall here the definitions and properties required for
our analysis.

Given a compact convex set 0 < R"*! and ¢ > 0, consider the set

Q+tB:={x+ty : zeQ, |y <1}

It can be proved, see |21} §19.3.6] that the volume of this set is a polynomial
of degree n 4+ 1 in ¢t and can be therefore written as

n+1
1 .
Vol(Q + tB) = Y (nf >ait’,

=0 v

20



for suitable coefficients a; depending on 2. We then define the k-th mixed
volume of 2 as V;(Q) = a1 4, for i = 0,...,n + 1. It can be proved that,
for any €2,

Voot () = VOl (Q), V() = A@Q),  Vy = au,

where o, is the volume of the unit sphere in R**!. Thus, mixed volumes can
be regarded as a generalization of volume and area. They are known also as
cross sectional measures or quermassintegrals.

Mixed volumes depend continuously on the set: if {{;} is a sequence of
convex sets converging to €2 in the Hausdorff topology, then

Vi) > Vi(Q),  i=1,...n+1.

If the convex set ) has a smooth boundary, mixed volumes admit an
equivalent characterization as boundary integrals of the elementary symmet-
ric functions of the curvatures. In fact, it can be proved that

Vol(Q) if k= —1

Voer(2) = .
() {(n+1)1thEkdu ifk=0,1,...,n—1.

An important result related to the mixed volumes are the so-called Minkowski
identities, which say the following. On any closed convex hypersurface M
and for any [ = 1,...,n, we have

f Edp = f w By dp, (2.7)
M M

where u = u,, is the support function centred at any point and E, E,.; are
defined as in in Chapter 2. These properties were originally proved by
Minkowski and Kubota. It was later proved by Hsiung [34] that they also
hold without the convexity assumption.

A remarkable property of mixed volumes is the Alexandrov-Fenchel in-
equality, see e.g. [21], §20]. Its statement is somehow technical and will not
be needed here in its general form. We recall instead some special inequali-
ties that can be recovered from Alexandrov-Fenchel’s one. For instance, for
any 0 <m <[ < n+ 1, there exists a constant C'(I, m,n) > 0 such that, for
any compact convex set ) < R™"*! with non empty interior, we have

Vm(Q) < C(1,m,n)V(Q), (2.8)

21



and the equality occurs only for spheres. This result can be viewed as a
generalization of the isoperimetric inequality, taking [ = n + 1 and m = n.
Then we can define the k — th generalized isoperimetric ratio as

n+1

P ()
Tu(Q) = Vo)

7(Q2) reaches its minimum only for spheres. The standard isoperimetric ra-
tio Z,,(2) will be denoted just by Z(£2).

The next result, called Favard inequalities, can also be deduced from Alexandrov-
Fenchel’s inequality, see [21, §20]. Given a compact convex set 2 < R""!

with nonempty interior and ¢ = 1,...,n — 1, we have
VA(Q) = Vi (Vi (), (2.9)
and the inequality is strict unless €2 is a sphere. This can be easily generalized
as follows: for any [ =1,...,n — 1, we have
VIEHQ) = Vi () V,L(). (2.10)

Again, the inequality is strict unless {2 is a sphere. To see why holds,
observe that the case [ = 1 is immediate from ([2.9). The case of a general [
is obtained by induction. Suppose in fact that the assertion is true for [ — 1,
that is,

V(@) = V().

On the other hand, a direct application of (2.9) gives
V(@) = Vo (Va1 ().
Multiplying the two inequalities, we obtain ([2.10)).

We recall that the inner [resp. outer | radius of € is the radius of the
biggest (n + 1)-dimensional sphere contained in € [resp. the smallest (n+1)-
dimensional sphere that contains {2 ]. We indicate inner and outer radii
respectively by R_(2) and R*(Q2). We call inball [resp. extball | a ball
contained in €2 of radius R_(2) [resp. that contains 2 of radius R (Q2) |.
We will need the following property, that allows to control the “shape” of a
convex domain in function of its isoperimetric ratio. It can be found in [
Proposition 5.1] or [43, Lemma 4.4].
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Proposition 2.1.5. For anyn > 1 and ¢; > 0 there exist ¢y = ¢(cq,n) with
the following property. Let Q2 < R™ be a compact, convex set with non empty
interior such that Z(Q)) < ¢y. Then Q) satisfies

2.2 Long time existence

2.2.1 Preserving of convexity

We want to show the that strict convexity is a property preserved by the
flow. We will follow the strategy used in [14], where the authors consider flows
driven by general homogeneous speeds in the standard non volume-preserving
case. In our case we have some additional terms in the computations due to
the presence of h(t), but we will see easily that these terms do not interfere
with the success of the proof.

Let introduce some preliminaries and notations. Since M, is a convex hy-
persurface, we can use the Gauss map parametrization given by

X :S" — Myc R

z > u(2)z + Vu(z)

which takes z in the unique point in Mj with outward normal direction z.
Here u is the support function u(z) = sup,q,(q, 2) = (X(2), z), and V is the
gradient on the sphere S™ with respect to the standard metric g;;. If we set

Tij = Vlvju + ﬁiju

then it can be checked that the eigenvalues of 7;; with respect to g are the
principal radii of curvature rq,...,7,, with r; = A\;*. To describe the flow in
this setting, it is convenient to define

1 1 —1/ak
(I)(Tl,...,Tn)=<U(,...,)) )
(&1 Tn

It is well known that & is a concave function (see for instance [46]). As ®

1/ak

. . Ve . .
is concave, the function o = Ek/ is said to be inverse concave. Inverse
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concavity plays an important role in the study of geometric flows, see for
instance [11].

We can also regard ® as functions of 7;; and we can write the flow equation
as

du(z,t) = — (B(7ij(2, 1)) + h(t).
Denote the derivatives of ® with respect to 7;; as

2

jim — 02 _re
OTim OTimOTpq

Then 7;; satisfies the following equation.

Lemma 2.2.1.
(9mj = ak@‘o‘k_l[(i)lmvlvmnj + ('I')lm,pqviquvalm — (Oék’ + 1)®_1v2®vj(b]
— Oqu)_ak_lci)lmglmﬂ'j + (Ctk‘ - 1)®—ak§ij + h(t)gw (211)

Proof. Follows from [I4, Lemma 10], also noticing that the additional term
involving h(t) comes out from

5,57’,‘3’ = 6 (@ ? + g,]u) = @i@jﬁtu + gijﬁtu
—~ViV;@ 1 =g, + h(t)gij.
m
Proposition 2.2.2. Let M, be a convex solution of (2.1) on a time interval

[0,T0) and suppose that h(t) < h* for every t € [0,Ty) for a suitable h* > 0.
If we set Apin(t) = mingepq, A1(z,t), then we have

1

)\mint = .
= 0

Proof. On [0,T;) we use the Gauss map parametrization and we have the
evolution equation of 7;; given by Lemma This is a parabolic equation
where the first order terms give a negative contribution, due to the concavity
of ®. Furthermore, by Lemma 4 in [I4],

l —1/ak
d'mg m )
g Z 67’1 ( )

24



Also, observe that

n —1/ak
b= (k)

Then, at a maximum eigenvalue of 7;;, the reaction terms in (2.11)) give
—Oékq)iakil(i)lmﬁlmﬂ;j + (Oék - 1)(1)7ak§ij + h(t)glj

n —1/ak
< - (k) Oy gy + b gy
< h*gij.
Then, by the maximum principle for tensors recalled in Theorem [1.2.5] the
radii can increase, but only by an amount which is bounded as long as h(t)
is bounded. More precisely, if r1(0) denotes the largest radius at time 0, the
maximum principle for tensors implies that the matrix 7;; — (r1(0) + h*t)g;;

remains negative definite for all times, that is, the principal radii on M; are
bounded from above by 71(0) + h*t. The assertion follows. O

Corollary 2.2.3. Let [0,T) be the mazimal interval of existence of the solu-
tion of (2.1)). Then M, is convex for all t € [0,T). In addition, if T < +o0,
then the curvature of M, becomes unbounded ast — T.

Proof. As h(t) is bounded on any compact subinterval of [0, T"), the convexity
of M, follows from the previous proposition. If 7" < 400 and the curvature is
bounded, then we also have a bound on h(t) for ¢t € [0,T"), and the previous
proposition shows that M, remains uniformly convex as ¢ — T'. This shows
that the flow is uniformly parabolic and has bounded curvature on [0, 7).
Well known regularity results, see e.g. [49, 24 [13], give uniform bounds
on all derivatives of the solution and imply that M, converges to a smooth
strictly convex limit as t — T'. Then we can restart the flow, in contradiction
with the maximality of T'. O]

2.2.2 A monotone quantity

An important feature of the flow is the monotonicity of a suitable
isoperimetric ratio. This property was observed by M. Gage [31] for the area
preserving mean curvature flow.

First of all notice, with the following Lemma, that the definition of h(t)
given by keeps the volume constant during the flow. Denote by €2, the
(n + 1)-dimensional region enclosed by M;.
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Lemma 2.2.4. The volume Vol(€);) is preserved by the flow (2.1)).
Proof.

AV ol(Q) = f (=0 + h)dp
Mz

1
=— odu + J aduf dp =0
fMt A(Mt) My My

]

We observe that there is a particular mixed volume, related to k, that
exhibits a property of monotonicity.

Lemma 2.2.5. Along the flow (2.1),with o = EY for a given k =1,2,...n,
we have

d
— By 1dp <0,
o “ k—1a

and the inequality is strict unless My is a round sphere.

Proof. By Proposition and Lemma [2.1.4] and integrating by parts, we

have

d OB 1 . |
| Byidu = f L (VIVEy + (0 — h)RE R dps
dt Jy, am, Oh

+ J Ek_lH(—O' + h)d,u
M

{(O’ — h) (HE]C,1 — kEk) + Ekle(—O' + h)} d/L
M

= —0 = — o — L, — hY)dp.
—k:fMtEk( T ) kat( 1) (Ex — hY*)dy

which is a negative quantity, since the function ¢ — ¢ is increasing. More-
over, this quantity is zero only if F}, is constant on the hypersurface, and this
can only happen for round spheres (see [51]). O]

Using ([2.8) and Lemma we obtain the following corollary.

Corollary 2.2.6. There exist constants V., V > 0 depending only on M,
and k,n such that, along the flow (2.1)),

K < Vn—k—i—l(Qt) < V
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Proof. From Lemma and (2.8) with [ =n+1 and m = n — 1 it follows

n—k+1 n—k+1

Vn_k+1(Qo) = Vn_k+1(Qt) = é VOl(Qt) nt+l = C’ VOZ(QO) ntl

for a suitable C' = C'(n, k) > 0. O

It is now natural consider the generalized isoperimetric ratio involving
the (n — k + 1)-th mixed volume:

Vnnjkl I(Qt)
Ln-r1(S%) = m~

By Lemma [2.2.5[ Z,, 4.1(€;) is decreasing along the flow and, in particular,
bounded from above.

Proposition 2.2.7. For any n > 1, 1 < k < n and ¢; > 0 there exist
ca = ¢(c1,n) with the following property. Let Q < R™ be a compact, convex
set with non empty interior such that T, ,1(Q) < ¢1. Then Q satisfies

RH(Q) _
R_(Q) ~ 02,

with RT(Q) and R_(QY) respectively the outer and inner radius associated to
Q.

Proof. We observe that a bound on Z,,_;.; implies a bound on the standard
isoperimetric ratio involving the area. In fact, we have

A@)D VIR [V (]

Vol ()" V7:‘+1(Q) h Vn+1(Q)n

n

= [T ()],

The assertion then follows from Proposition O

Let us set R_(t) = R_(4) and R"(t) = R*(Q;). By Proposition 2.2.2]
we know that the solution of ([2.1]) stays strictly convex along the flow. Then
we can use Proposition to get the following corollary.

Corollary 2.2.8. There exist constants R*, R_ > 0 such that along the flow

R_<R_(t) <R*(t) < R"
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Proof. By virtue of the boundedness of the isoperimetric ratio, we can use
Proposition [2.2.7] to say that ‘gtgg is uniformly bounded by a constant c,
depending only on n, A(My) and Vol(€). Then, comparing Vol(Q;) with

the volume of a ball and using Corollary we find

(R ()" <w (caR_(t))"!
n+1 " on41

‘/1 < VOZ(Qt) < Wn < Cg+1VOl(Qt) < C3+1‘/2’

where w,, = A(S"). Then we obtain bounds from both sides on R_(t) and
R*(t). O

2.2.3 Upper bound on the velocity

Thanks to Corollary and Proposition [2.2.3] we are now able to
control uniformly the velocity of the flow, and obtain curvature bounds which
imply the long time existence for the solution. To do this, we follow a method
first introduced by Tso [61] and adapted by Andrews and by McCoy [8, ?] to
the volume preserving setting.

Lemma 2.2.9. Given t € [0,T), let g € Q; be such that Br_;(q) < Q.
Then
Br_#2(7) < vt € [t, min{t +7,T})

for some constant T > 0 that only depends on n, A(My) and Vol(€y).

Proof. Define r(z,t) := |F(z,t) — g| and consider u(z,t) = ug(z,t) the sup-
port function with respect to the point g. Then

1. 5 U U
Oy = Zﬁtr = (h— O'); > == >0 (2.12)

Let r5(t) be the radius of the ball centred in ¢ such that

/ __(m© 1
TB(t) - (k) T%k(t) (2'13)
TB(E) = R_

Define f(xz,t) := r(z,t) — rp(t). Using (2.12)), we obtain

n\" 1
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At time ¢, f(-,t) > 0. Suppose that there exists a first time ¢* > ¢ such that
fz* t*) = 0 at some point z*. Then 0, f(z*,t*) < 0. In addition, the ball
with radius r(t*) touches M;x from the inside at the point F'(z*,t*), which
implies .
o(a* 1) < (”) L a0
Sk k() LT '
From this contradiction, it follows that for every time ¢ where the flow
is defined, we have r(x,t) = rg(t). By the explicit expression for the solution

of (2.13]) we have

6 ~ R_(t) _ 7 _
- 3 T (t— >\ < —
re(t) (R_(t) = 1) (t t)) > — = t—-t< 2n(n = 1)R_(t),
then we can choose
T a1
O]

Proposition 2.2.10. There exists a positive constant Cy, only depending on

My, such that
O'(x, t) < (4

for every (x,t) e M x [0,T).
Proof. By Lemma [2.2.9] for every t € [0,T), exists ¢ such that
Br_(q) < Vt € [t, min{T,t + 7}).

Let us set u(x,t) = ug(z,t). Choosing ¢ := % we obtain, by the convexity
of Mt,

c<u—c<d, Vte [t,min{T,t+7}), (2.14)
where d = supyy y(diamM,) is finite by Corollary m Then, the function

o(x,t)

W(z,t) = W
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is well defined on [¢, min{7',# + 7}). Standard computations show that

(u— )00 — odu

ﬁtW == (u _ 0)2
(u—c)Aso —oAs(u—c) 9
= (002 + (ak + )W
W + trs(hyh
_ trs(hahj) — h rolah)
u—c u—c
and
AW = (u=c)Aso=0hs{u=c) 2 (Vu, VW)
(u—c)? u—c
Now, define
W (t) := sup W (x,t) X(t) :={x e M|W(z,t) =W(t)}
Mq

where by “sup,,,” we mean the supremum taken on M x {t}.
Then, using Lemma we find that the upper Dini derivative D, W
satisfies

cW

D, W < sup {(ak + W2 —
X(t)

tre(hahl) }

u—=c

w H
< W sup {(ak + 1)o — ozk:ca}

U—CX(t) n

— H
=W’ sup {ozk‘ +1-— ozkc}

X(t) n

—1/k
<W28up{o¢k+1—akc(n) E,i/k}
X(1) k

=y
< W2 (ock + 1 — akcltl/ok (Z) Wl/ak>

where, for the last inequality, we used ([2.14]).
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Now, choose C' > 0 large enough such that

ok [k 2 RN
=c
ak k (2.15)

<T

(@F

Ql=

so that, if W > C, then
m— =52

Then, by a comparison argument,
W < max {nx/z(xx w, C’} on [0, min{7, T}) (2.16)
0

in the case t = 0, and
1 = T (7
W < max {tt’ C} on [t, min{t + 7,T})

for a general . Then we also have
~ -1 —_
W<C on [t + E,min{t + 7, T}> . (2.17)

Since ¢ is arbitrary, combining ([2.16)) and (2.17) and using the second condi-
tion of ([2.15]), we obtain

W<max{nﬁxVV,é} on [0,T),
0

which implies the assertion, since o < dW by (12.14)). O

If £ > 1, the bound on o provided by the above theorem does not im-
ply that the curvature is bounded. In fact, there remains the possibility
that some principal curvatures become unbounded while others tend to zero.
However, we can already exclude this behaviour on any finite time interval,
and obtain that the solution exists for all times. We begin by estimating the
mixed volumes together with the volume preserving term.

Corollary 2.2.11. All mized volumes V;(€) are bounded from above and
below by positive constants uniformly for t € [0,T). Similarly, there are two
constants 3,y > 0, only depending on Mg such that, on [0,T)

B < h(t) <.
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Proof. The bound from below follows from and the volume preserving
property _ _
Vi(€) = CVol() w71 = C Vol(Qg) 1.
Here we denote by C' all constants depending on 7, n but not on ¢. Inequalities
(2.8]) also give a bound from above for n —k + 1 < i < n, thanks to Corollary
In the case 1 < i < n — k, we can use Lemma and Proposition
2210 to obtain
k

Vi) =C | Eodu<C| E.F du<CAM,) =CV, () < C.
M M;

The boundedness from above of h(t) follows from Proposition [2.2.10} Since
the mixed volume are uniformly bounded from both sides, a bound from
below on hA(t) is equivalent to a bound on SMt odp. Let n > 0, and set

M, = {x e M| Ey(z,t) = n}. Then,
C <V k() = C’J

~ My ~ My

CA(M,) + CnA(M,) < CA(M,) + C,

Epdp + C’J Eydu
M~ My

then
AM,;) = C

and we can conclude

J ody = J odp = n“A(M,) = C.
My M

We can now prove that the solution to ([2.1)) exists for all times.
Theorem 2.2.12. The solution M, of the flow[2.]] exists for t € [0, +0).

Proof. Suppose that the maximal time T is finite. By Proposition and
Corollary [2.2.11] we obtain that the principal curvatures are bounded from
below for all ¢t € [0,7) by some constant Ag. It follows, using Proposition

ma

1
)\nkarl e )\n < Ek Cla
~ —1 ~ —1>
)\nkarl e )\nfl /\]8 )\IS

which shows that the curvatures are also bounded from above on [0, 7). This
contradicts Corollary and shows that 7' is infinite. O

An =
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2.3 Convergence to a sphere

2.3.1 Hausdorff convergence

A crucial property of the flow ([2.1)) is that, as t goes to infinity, Ej tends
to its mean in an integral sense.

Theorem 2.3.1. Ast — +o0 we have §,, |0 —h(t)[*dp — 0

Proof. Let us estimate the derivative of our integral, which can be rewritten

as
1 2
lo — h(t)Pdu = J ody — <J Ud,u> :
JMt My |Mt| My
We find, using Proposition 2.1.3] and 2.1.4]

d
— ody = f (o0 — h)(trs(hih®) — Ho)dp
dt M, M, J

= J (0 —h)((a—1)Ho — a(k + 1)EX ' By dp
My
Since h, K}, E,1 are all uniformly bounded, as well as the area of M,;, then

dj adu‘<0 Hdu+C
dt M M

which is also uniformly bounded, since the integral of H is equal to V,, ()
up to a constant factor. In addition, we have

d
M| =—| H(o-h)du.
vl == | Ho b

Therefore

<C Hdyp,

d
— | M|
dt ' My

which is uniformly bounded. Finally we compute

d

pr oldy = f (=2|Vol; + o(o - h)trd(hikhf) —oH (o —h)) du
My My
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where |VEk|c2, = g ViEpV;Ey. The gradient term gives a negative contri-
bution, while all the remaining terms have a bounded integral by similar
arguments as before. It follows that we can find an upper bound

d

— | Joe—hPdu<C, (2.18)
dt I,

where C' does not depend on t. On the other hand, since from Lemma
Vi is decreasing, then

o0
f (J lo — h||E; — hl/o‘|du) dt < +o0.
0 My

If 0 < a < 1, it can be easily checked that

|E), — b

|U - h| < h(l—a)/a

< 6(&—1)/a|Ek . hl/a|7

where the last inequality comes from Corollary [2.2.11]
If a > 1, then from Proposition [2.2.10] and Corollary [2.2.11] it follows that

o — h| < a(max{Ey, h/*})* Y E), — hYe| < C|E, — hY9|

for some constant C' > 0. Then, in any case, there exists a constant C’ > 0
such that

o] 0
J U o — h|2du) it < c’f U o — h|[Ey — hl/”‘|du) dt < +oo,
0 M 0 M

(2.19)
Let us set [ := limsup,_, o §,,, [0 — h*dp. Tf I > 0, then implies
that §,, o — h|dp oscillates infinitely many times between 0 and ! with
an arbitrarily large speed as ¢ — oo. However, the one-sided bound
is enough to exclude that §,, |0 — h[?du has arbitrarily fast oscillations.

Therefore the integral must tend to zero.
O

Lemma 2.3.2. For any p > 0, we have

t—00

lim [ o7dj— MRt = lim J 0" — h(t)?] dys = 0.
Mz 7R IM;,
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Proof. Thanks to our bounds on ¢ and h, we easily check as for the proof of
the previous Theorem that, if 0 < p < 1, then

o — Al

0¥ = 1P| < hl-p

< Clo — b
while, if p > 1,
|oP — h?| < p(max{o, h})?~ o — h| < C|o — h|.

Thus, for any p > 0, we find

U oPdp — | My|h(t)”
My

< J |o? — h(t)P|du < C lo — h(t)|du
M; My

1/2
< cwtw?(f Ia—h(t)|2du) |
M

which tends to zero as t — +00, by the previous theorem. O

The next lemma is inspired by the proof in [34] that a convex hypersurface
with constant £} is a sphere.

Lemma 2.3.3. We have

k-1

lim (E,H - E,?) dp = 0.
My

t—00

Proof. By Lemma [2.1.4] the integral at the right-hand side is nonnegative.
Therefore, we only need to show that its lim sup is nonnpositive. Let us set

J Epadp = J Ex(F,v) dpu
My My

k-1 ~ 1 ~ k=1 ~ k=1 ~ 1
= B ,;“(F,y)dquf (Ekk —hak) (F,v) dy
Mz Mz
~ k=1 ~ ~ k-1 ~k=1\ ~1
< B El(F,y)dquJ (Ek’“ —hm) 5 (F,v) du
Mz M



Up to a translation, we can assume that max |(F,v)| < Ry(t) < C. There-
fore, taking into account the boundedness of E, and Lemma [2.3.2] with
k

p= ;kl, we have

U E’“ —E%) ~,§“(F,1/)dﬂ‘<0j
M M

We then deduce, using Lemma [2.3.2

k=1 ~ k=1

dpu — 0 as t — 0.

. k=1 - b b
lim Supf (Ek,l — E.F ) dp = limsup (h%A(t) — h%A(t)) = 0.
t—o0 M t—00
which concludes our proof.
O
Lemma 2.3.4. Set E(t) = ﬁ Sar, Exdps. Then
hm |h(t )a — Ex(t)] = 0.
Proof. Follows from Lemma m taking p = i O]

Theorem 2.3.5. As t — +o0, the hypersurfaces M, up to translations,
converge in the Hausdorff metric to a round sphere with the same volume as

M.

Proof. By Blaschke’s theorem, see e.g. [52], the convex sets {2;’s, possibly
up to translations, are compact with respect to the Hausdorff metric. As
recalled in the preliminaries, the mixed volumes are continuous with respect
to the Hausdorff convergence. In particular, any limit has the same ordinary
volume as M. If the conclusion of our theorem does not hold, there exists
a sequence (), converging to a limit {25, which is not a round sphere. We
observe that Ey(t) = V() /V, (%), and we deduce

Ey(t:) — v‘n/k(QOO)-
n(€e0)
By Lemma [2.3.3] Lemma and Lemma [2.3.4], we deduce that
Vik1(Qw) = - i 1 lim " By dp = —— lim » EI:TI dp
= b MRS = 2 tim MBS
n + i n+lioo

= VnE(QOO)VTk(QOO).

n
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It follows that
Vnk—k—i-l(QOO) = ijkl (Qw)vn(QOO)-

Therefore, the set €, satisfies the equality case in (2.10) and hence is a
sphere, in contradiction with our assumption. O

2.3.2 Smooth convergence for scalar curvature flow

In the case k = 2 and a = 1, where the speed is given by the scalar cur-
vature, we are able to show that all principal curvatures of our hypersurfcae
remain bounded as time goes to infinity.

Proposition 2.3.6. There exist a constant Cy > 0 such that on [0, o)
AN<Cy Vi=1,....,n
Proof. We can rewrite the evolution of H as in Corollary 4.2 of [2] :
OH = AgH + |VH]? — VAP — Ey|A]* + (H|A]?> — C)H — h|A]*  (2.20)

where C' = >7" | A?. At a local maximum point for H, the terms containing
derivatives are non positive. Let us analyze the reaction terms. Since Fy <
C1, we can write

H|A]? = C = |A] ZA +Z < |AP Z/\ + A Z)\2

n—1
< |A]? Z A (= DAA2 L < AP DY A+ (n = 1)CiA,

i=1
Then we can estimate
n—1 n—1
—Eo| AP + (H|AP = C)H < =M |AP Y )N + HIAP Y A+ (n— DnCidn_1An
i—1 i=1

n—1

<|AP(H = X) DS A+ (n = DnCir, 1A,

(n—Dn{(n—1D)A\rn-1)* + CilnAn1}
(n — 1)n?C?,

NN
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We conclude from equation (2.20) that, at any local maximum of H,
s

n

with a as in Corollary [2.2.11] The maximum principle implies

OH < (n—1)n*C; — =H?

-1
H(z,t) < max{rr/%/elmch,nCl (nﬁ)n}

at any time ¢ € [0,00). Since M, is convex, the same bound holds for any
principal curvature. O

Once we have the boundedness of all principal curvatures, the last step is
to show that the flow is uniformly parabolic as t — c0. To do this, we obtain
a bound from below on the speed.

Proposition 2.3.7. There exists a positive constant Csz, only depending on
n and My, such that
Es (l‘, t) > 03

for every (x,t) € M x [0,0).

Proof. We already know that M, converge to a round sphere in the Hausdorff
metric, up to a translation. Therefore, for any ¢ > 0, there exists 7. such
that, for any ¢y > T., there exists a point ¢ = ¢(to) such that

Br_.(q) © Qy = Brac(q).

Since the speed is bounded, there exists 7 = 7(¢) such that

BR—Q&(Q) (e Qt C BR+25(Q)7 te [to,to + 6]

If we now consider the support function u = (F'—q, v) and we set ¢ = R— 3¢,
we have
e<u—c<bde

on M,, for every t € [tg,to + 7]. On this time interval, we consider the

function
E2 ($, t)

W(x,t) = e
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Some computations show that

2
(0 — AW = —2—(Vu, VIV — 3072 — Y (i E, - 3E,)
C—Uu C—Uu
h
P w3k
cC—Uu cC—Uu

p 1
> 2 (Vu, VIV — W3 + cH) + Wh < - H)
C—Uu cC—Uu

Let H denote the supremum of H along the flow, and let us choose ¢ =

(10H)~", so that

1 1 _ _
—H>——H=H.
c—u 5e

Then, at any point where the minimum of W on M, is attained, we have

oW = —-W?(3 +cH)+WhH > W (aH — W(3 + RH)).
This shows that W cannot attain a new minimum smaller than 3$REH at
a time ¢t > T, and implies that E5 is bounded from below by a positive
constant for all times. O]

From Proposition it follows that at least two principal curvatures
are uniformly bounded from below, i.e. there exists A > 0 such that

Ano1(z, ), Ap(z,t) > A for all (x,t) € M x [0, 00).

Then the operator ¢% is uniformly parabolic on [0,00) since, taken w =
(Wi ...,wp) ER™,

8E2w2 B
)V

dlwiw; = (H — X\)w? = (H = \p)|w]? = Msi|wf* > A|wl]?
Arguing as in the proof of Theorem 6.4 in [24], we find that all the derivatives
of the curvatures are bounded on [0,0). Therefore, the Hausdorff conver-
gence of the M,’s to a sphere is also a convergence in the C* norm.
Finally, in order to obtain the exponential rate of the convergence we can
observe that, after a certain time ¢*, the pinching condition (1.6) appearing
n [24] holds. Then we can apply Theorem 7.7 of that paper to conclude
that the hypersurfaces M; converges exponentially to a round sphere, with
no need to add space isometries. The proof of Theorem [2.1.1]is complete.
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CHAPTER 3

Volume/Area preserving non
homogeneous flows: Euclidean case

In this chapter and in the next one we will present curvature flows with
velocities that are not homogeneous functions of the principal curvatures.
The study of these flows is not in complete generality, but the key ingredient
is the fact that the velocity is an increasing function of the mean curvature
(which is homogeneous of degree one in the principal curvatures). In addition
to monotonicity, we have to require some other hypotheses which are just
technical and satisfied by a large class of functions.

3.1 Presentation of the problem

Let M be an oriented, compact n-dimensional manifold without bound-
ary. Consider the problem (1.3]) given by

{ O F(x,t) = [~o(H(x,t)) + h(t)]v(z,1) (3.1)
F(z,0) = Fy(x),

where:

e ¢:]0,+00) — R is a continuous function, C? differentiable in (0, +o0)
with the following properties:

) 6(0) =0, lim ¢(a) = o

a—0
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i1) ¢'(a) >0 Va > 0;

iv) lim ¢ () = 0;

v) ¢"(a)a +2¢'(a) =0 VYa>0.

o The function h(t) is either defined as
1

h(t) := A ¢(H)dp (32)
o  § Ho(H)dp
h(t) ':MSMIMM (3.3)

The choice of the constraining term h is made in order to keep the volume
enclosed by M; constant in case , and in order to keep the area of M;
constant in case (3.3]).

We will prove the following result.

Theorem 3.1.1. Let Fy : M — R with n > 1, be a smooth embedding
of an oriented, compact n-dimensional manifold without boundary, such that
Fo(M) is strictly convex. Then the flow with h(t) given by (resp.
) has a unique smooth solution, which exists for any time t € [0, 0).
The solution s still strictly convexr and converges smoothly, ast — oo, to a
round sphere that encloses the same volume (resp. has the same area) as the
initial datum M.

This theorem can be regarded as a generalization of the result in [58],
where the case ¢(a) = o with k > 0 was considered. Here we are able
to treat a more general class of speeds depending on the mean curvature,
where no assumption of homogeneity or convexity/concavity is made. As
we said before, the main assumption is the positivity of ¢’. The additional
requirements we put on ¢ are satisfied in most of the natural examples. For
example, linear combinations of powers

!
o(a) = Z ok ¢ ki >0
=1
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satisfy assumptions i)-v). There are also easy examples with non polynomial
growth: for example

o(a) =log(l +a) or ¢la)=e*—1
satisfy our hypotheses.

Short time existence and evolution equations. Even if ¢ is not homo-
geneous, the dependence on H and the positivity of ¢’ ensure the parabolicity
of the problem. In fact, as we have seen in Chapter 1, the linearization of
the evolution equation in is an equation of the form

*G
oxkoxl’

0,G = ¢' gt ( 1/) v+lo.t.

Since H > 0 on the initial datum, then ¢’ > 0 at time zero, and then by
Theorem the flow has a unique smooth solution M, defined on a
maximal time interval [0, T). Moreover, by Theorem , T is finite only if
the curvature blows up, or if the flow loses parabolicity.

The evolution equations for can be recovered by Proposition set-

ting V(z,t) = —¢(H(z,t)) + h(t) in (L.4).
Proposition 3.1.2. We have the following evolution equations for the flow
B):
Orgij = 2(—=¢ + h)hij,
297 = —2(~¢ + W)Y,
oww = Vo,
Oedp = H(—=¢ + h)dp,
Oihl = ¢'Ahl + "' HV;H + ¢'|APh + (¢ — h — H')hjhY,
0, = ¢'AH + ¢"|VH + (¢ — h)|AP%,
00 = ¢'Ad+ ¢'(¢ — h)|AF,
ou = ¢'Au+ ¢|APu— ¢ — ¢'H + h.

Proof. The first four evolution equations follow directly from Proposition
[L41l For the second fundamental form we have

Oihij = ViV — (¢ — h)hyhl. (3.4)
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By Proposition with A = ¢,

ViV;6 = ¢ Ahy + ¢"V,HV ,;H
— 9" (hith By — i R R+ By h R — By i hony)
= ¢'Ahyj + ¢"VHV; H — ¢ HR by
+ MR (it — hushin) + &' | A hyj.

Then, from (|3.4) we have

Oihiy = ¢' Ahij + ¢"NHV  H — ¢ HhMhyi + ¢ | AP By
— (¢ — h+ ¢'H)hyhs + g™ ¢ (hahum; — highim).-

The last term is zero because of the symmetry of h;;.
From the evolution of h;; and g%, the evolutions of h% and H can be easily
computed. For the function ¢,

o6 = GO H = ¢(§AH + ¢'|VHP + (6 — h)|AP2),
and the conclusion follows noticing that
Ap=¢'AH + ¢"|VH?.
Finally, the evolution of the support function follows from
ou = (F,V¢)— ¢+ h,
using also the equality
¢ Au = (F, Vo) —¢'|APu—¢'H (3.5)

that can be calculated as in [?, Lemma 4.2]. O

3.2 Long time existence

3.2.1 Preserving of convexity

We show that, if the initial datum M, is strictly convex, then the strict
convexity is preserved for all time such that the flow is defined.
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Proposition 3.2.1. If M is strictly convex, then M, is strictly convez for
all t € [0,7).

Proof. 1t is sufficient to show that, if M, is strictly convex on [0,7*), for an
arbitrary T* < T, then Mrx is strictly convex. On the interval [0,7%), let
b’ := (h%)~" the inverse of the Weingarten operator. By standard computa-
tions, we get the evolution equation of bj}:

bl = ¢ A — 2¢' RN I, — ¢ (b, H) (02, H)
— ¢'|APY, + (¢'H — ¢ + h)d!.

In order to prove that gradient terms give a negative contribution, we rewrite
the gradients of b’ in terms of gradients of hj:
hNbENY, = b6l NV RN hE.

Then we use the following inequality proved by Schulze (see the second-last
formula in the proof of Lemma 2.5 of [55] with k£ = 1)

—Hb, V,h*V'h? < —VPHV H,
which gives

—¢'2h) N 00N, — ¢ (b, V" H ) (B YV, H)

< —E(qu' +¢"H)(b,,V"H)(0;V,H) <0,
where for the last inequality we used property v) of ¢. Furthermore, since
[0, 7*) is strictly contained in the existence time interval of the solution,
there exists H* > 0 such that 0 < H < H* on [0,7*). Such a bound on H
also implies a bound from above on ¢'H + h, thanks also to property iv) of

¢. Then, using (3.6) we obtain
bl < ¢ Abs — | APPB, + ¢,

where ¢ is a constant only depending on n, My and H*.

So, using the maximum principle, b; is bounded on the finite interval
[0, 7], and then on such interval all principal curvatures stay bounded from
below by a positive constant. Then, M= is strictly convex and the conclu-
sion follows. 0
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3.2.2 A monotone quantity

As for the flow seen in Chapter 2, an important feature of the volume/area-
preserving flows we are considering here is that the isoperimetric ratio of the
hypersurface is non increasing in time. Now we are considering the standard
isoperimetric ratio, i.e. Z(€2;) = Z,,(€;). By the isoperimetric inequality,

Z(Q) = (n+ 1)"wy, (3.7)
where w, = A(S"). As before, denote by 2, the region enclosed by M.

Lemma 3.2.2. The flows (3.1) with h(t) given by (3.2) and (3.3) preserve
the volume Vol(§);) and the area A(M,;) respectively.

Proof. The proof is analogue to Lemma [2.2.4] O
Lemma 3.2.3. For the flow (3.1)) we have
d

%A(Mt) <0 in case of h given by (3.2)),
d . .
gVol(Qt) >0 in case of h given by (3.3)).

Proof. We start from the volume preserving case. For any ¢, let us denote by
H = H(t) the value such that ¢(H) = m § a1, @ Which is uniquely defined

by the monotonicity of ¢. Then §,, [¢(H) — ¢(H)] = 0, and so

th(Mt) [ motm) + hydu - f [Ho(H) = Ho(H)] dp
JM; My
_ (M [H — H][¢(H) — $(H)] dp
- | -t = ot dy

Since both terms on the right side are nonpositive, the assertion follows.
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Analogously, for the area preserving flow, let H = H. We have

A(/{/lt) SMt

Ly i) = fM [ G(H) + 1] dp

dt
_ AWM
- SMt Hdp
AM)

= ) o)~ o~ A

which is nonnegative by an argument similar to the previous case. O

(— o+ cb(H)Hdu)

M

From Lemma and the isoperimetric inequality (3.7]), we deduce the
following.

Corollary 3.2.4. For the flow (3.1) with h given either by (3.2) or (3.3
there exist constants My, My, Vi, Vo > 0 depending only on Mg,y and n

such that
Ml < A(Mt) < MQ, ‘/1 < VOl(Qt) < ‘/2

Since the convexity of the initial datum is preserved along the flow by
Proposition [3.2.1], we can use Proposition... to bound uniformly the inner

and outer radii. As before, we set R_(t) = R_(£2;) and R (t) = R* ().

Corollary 3.2.5. For a convex M, evolving by (3.1), there are positive con-
stants R_ and R* such that

R_<R_(t) < R*(t) < R™,
where R_ and R depend only on n, A(Mgy) and Vol().

Proof. By virtue of the boundedness of the isoperimetric ratio, we can use
Proposition [2.1.5| to say that gtgg is uniformly bounded by a constant c,
depending only on n, A(My) and Vol(€2). Then, comparing Vol(Q;) with

the volume of a ball and using Corollary [3.2.4] we find

(BE@) _ (R ()"
n+1 " n+l

‘/1 < VOl(Qt)

N

< M Vol(Sy) < V.

n

Then we obtain bounds from both sides on R (t) and R*(t). O

46



3.2.3 Upper bound on the curvatures

Thanks to the uniform bounds on the inner and outer radii and the pre-
serving of the convexity, we can prove that all the principal curvatures are
bounded from above. The technique employed is analogue to the one in
Chapter 2 to bound the velocity.

Lemma 3.2.6. Given t € [0,T), let q € Q; be such that Br_(q) < Qf, where
R_ is taken as in Corollary[3.2.5 Then

BR_/2(q) = 4 Vt € [t, min{t + 7, T})
for some constant T > 0 that only depends on n,|Mg| and |Qp|.

Proof. Define r(x,t) := |F(z,t) — q| and set u(z,t) := (F(x,t) — q,v(z,t)).
Then

dr = 50 = (h— ()™ = ~o(H)" > —(H). (3.8)

Let r5(t) be the radius of the ball centered in ¢ and contracting by

) = =0 (55) 59
with initial datum rp(¢f) = R_. Define f(x,t) := r(z,t) —rp(t). Using (3.§),

we obtain

n
Of >—¢(H) + ¢ () .
B
At time ¢, f(-,t) > 0. Suppose that there exists a first time ¢t* > ¢ such that
f(z* t*) = 0 at some point z*. Then 0, f(z*,t*) < 0. In addition, the ball
with radius rp(t*) touches M; from the inside at the point F'(z*,¢*), which
implies

H(z*t*) <

The contradiction shows that,for every time ¢ where the flow (3.9) is defined,

we have r(x,t) = rg(t). It now suffices to choose 7 > 0 such that rg(t) > RT
for every t € [t,min{T,t + 7}). Notice that 7 depends neither on the initial

time ¢ nor on §. O
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Proposition 3.2.7. At any time t € [0,T), we have
o(H) <G
where C is a positive constant only depending on n and M.
Proof. By Lemma [3.2.6 for every t € [0, T), exists g such that
Br_p(q) < Vt € [t,min{T,t + 7}).

Let us set
u(z,t) := (F(x,t) — q,v(x,t)).

Choosing ¢ := % we obtain, by the convexity of M,,
c<u—c<d, Vte [t,min{T,t+7}), (3.10)
where d = supyy y(diamM,) is finite by Corollary [3.2.5. Then, the function

Wi t) = igf (tf)“_t)i

is well defined on [t, min{T, ¢ + 7}). Standard computations show that

(u — ¢)0p — POpu

6tW -
(u—c)?
_ (u— ¢AG — p¢ A — o)
(u—c)?
L hAP - L (H + ) + AP
u—c (u—c)?

and . . ,

oy _ B FR—0FA =) 2 o

(u—c)? u—c
Now, define
W(t) := sup W (x, t) X(t) :={x e M|W(x,t) = W(t)}.

My
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Then, discarding the negative h terms, we find that the upper Dini derivative

D W satisfies

D, W < sup oW < sup(dy — ¢'A)W

X(t) X(t)

<W* + W sup ¢'(H — C|A|2)

X \u—c u-—c
—9 'H ’H
<W2+Wsup¢ (1—07)

X)) U—c nd

where for the last inequality we used convexity of M, and (3.10)).
Let us choose C' large enough to satisfy

C =
{ ¢* (3.11)
(C)

so that H > C implies that 1 — cigl < —%H. Now, suppose that W (t*) >
#»(C)/c for some time t*. Then, using the bound v — ¢ = ¢ and the mono-
tonicity of ¢ we have that H(z*,t*) > C for any z* € X(¢*). Then, we get

at time t = ¢*

L . 27 1172 L 2 /H2
DWW < — 2597 qup 1 w2 qup 11 269H7L
3ndo

Also, by property #ii) of ¢, we can choose C sufficiently big such that H > C
implies
) 202 ¢IH2
3ndg

Then
— —9

D+W< _W,

and so a standard comparison argument implies

C

W < max {%OXM/’ (b(C)} on [0, min{7, T}) (3.12)

in the case t = 0, and

W < max {tit’ ¢(f)} on [t,min{t + 7,T})
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for a general . Then we also have
c
o(C)
Since t is arbitrary, combining and and using the second condi-
tion of , we obtain
9(C)

Wémax{maXVV,} onte[0,7),
Mo c

W < #(C) on [t—i— ,min{t + 7, T}) : (3.13)

which implies the assertion, since ¢ < dW by (3.10). m

Corollary 3.2.8. H and h are uniformly bounded on [0,T). In particular,
all the principal curvatures are uniformly bounded.

Proof. The boundedness of H follows from Proposition [3.2.7] and property
i) of ¢, while the boundedness of h follows from the boundedness of ¢. The
last assertion follows from the convexity. O]

Theorem 3.2.9. The solution M, of (3.1)) exists for any time.

Proof. Since H and h are bounded, we can retrace the proof of Proposition
taking H* and h* independent of 7. Then, if T' < oo, all the principal
curvatures are bounded from below by a constant depending on 7', hence the
flow is uniformly parabolic. By Theorem in Chapter 1, since T is the
maximal time, the curvature blows up as ¢ — co. This leads a contradiction
with Corollary [3.2.8 Then T' = 0. O]

3.3 Convergence to a sphere

3.3.1 Lower bound on the mean curvature

In order to prove the convergence of the solution to a sphere, we need
to prove the uniform parabolicity on [0, +00). To do this, it is essential to
have a positive lower bound on H, since Proposition |3.2.1] implies uniform
convexity only on finite time intervals. Let us first give a preliminary result.

Lemma 3.3.1. Given t € [0,0), let G € Qi be such that Q; € Br+(q), where
R* is taken as in Corollary[3.2.5. Then

QtCBgR+(q_) Vte [E,t_‘i‘ U]

where o > 0 is a constant that only depends on n,| Mo, || and sup, h(t).
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Proof. Let us compare M; with the sphere centered in ¢ whose radius R(t)
increases linearly according to

R(t) = h(t —1) + RT

where h = sup, h(t). R(t) grows to 2R* at time t = + R;:.
Similarly as in Lemma |3.2.6| set
T’(ZL’,t) = |F(C(},t) o Cﬂv u(x,t) = (F(ZL‘,t) —q, l/(l’,t))
Then, the function f(x,t) := R(t) —r(z,t) satisfies
Of =h—— Loty
r r r
So f(z,t) = 0 for every time, and r(z,t) < R(t + o) = 2R" for t € [{,t +
al. O

Lemma 3.3.2. There exists b > 0 such that
h(t) =b Vte[0,00).

Proof. Let us first prove a bound from below on M A § M, ¢(H)dp. By
the Alexandrov-Fenchel inequalities is that there ex1sts a constant C,, only
depending by n, such that

Hdp = C,Vol(Q)n =
My
so, by Corollary [3.2.4] we get
Hdp = Co,
M

where Cy > 0 is a constant depending by n and the initial datum. By
Corollary-, 3.2.8 there exists some value H* such that H < H* on M, for all

t. Let k = (7 and M, = {x € M|H(z,t) > k}. Then we have
Co < Hdp= | de—i—J- ~ Hdp < H*AM,) + kEAM,)
My My MMy
Co

< H*A(M,) +
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where for the last inequality we used the fact that A(M;) < A(M,) for all
t. Thus

5 Cy
A > —. 14
(M) > - (314
Let us set m = ming<y<py* ‘b(lf). Using Corollary , we conclude
o | etmans S [ etz o[ et
AM:) I, HE M "EM :
m m ~ mCok
= — Hdp> —A k> ;
1 )y, T = ap AMIR = S > 0

which gives a uniform bound from below on h(t) in the volume-preserving
case. In the area preserving case, the above computations also imply an
estimate on h(t) using the inequality

1
HHdy>—— | Hd H)dyu,
Mtszﬁ( ) “>A(Mt) " L Mtczﬁ( ) dp

which was proved in the second part of the proof of Lemma [£.2.2] O

To obtain a lower bound on H, we now use a technique analogous to
Proposition [2.2.10] but we reverse the sign of the test function by considering
a ball which encloses M, instead of an enclosed one. A similar argument
was used in [54] for an expanding flow. In contrast to the upper bound
in Proposition [2.2.10 the proof of the next result depends crucially on the
presence of the nonlocal term h(t).

Proposition 3.3.3. The mean curvature H is uniformly bounded from below
by a positive constant.

Proof. Given any t = 0, let ¢ be chosen so that the conclusion of Lemma
[3.3.11 holds. We define

¢(H)

W{(z,t) := m

c:=4R",
which is well defined on [¢,f + o], because on such interval we have

L<Kc—u<c
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where u(x,t) := (F(z,t) — q,v(x,t)) as usual. Standard computations show
that

oW — GAW + fflu(vw, V(e —u))
¢’ ¢ / /
- c—uh|A|2 - (C_u)2{—h+¢H+¢—C|A|2¢}.
Now, define
Wi(t) = ij\r/llfW(x,t) Y(t) :={x e M|W(x,t) =W (t)}.

Then, after disregarding the last positive term, we obtain

/ 2 /
DWW > inf{—(bhH + h W — (bHW—WQ}
Y (t) c—u c—u c—u
'hH?> h 20'H 2
> Winf{—¢ +—¢—¢}. (3.15)
Y (t) 10} c c c

Using properties 1), 4i7) and iv) of ¢, we can fix § > 0 such that, if
H € (0, 5), we have
/72
S 1
[0} 2c
where b > 0 is the lower bound on A(t) given by Lemma Suppose now
that W (t) < ¢(8)/c at some time t. Then ¢(H) < S on Y(t) and therefore

p+¢g'H < 2 (3.16)

pwsw{Et Pty

This shows that W cannot attain a new minimum smaller than ¢(f3)/c, thus

W(z,t) > min {W(O), ‘W)} on [0, a0).

Cc

From this we deduce that ¢, and so H, is bounded from below for all times
by a positive constant. O
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3.3.2 Smooth convergence to a sphere

Proposition [3.3.3 together with Corollary [3.2.8 implies that H takes
values in a fixed compact subset of (0, 400) for all times. Therefore ¢'(H) is
bounded from above and below by positive constants for all ¢ € [0, +o0) and
the flow is uniformly parabolic. By classical results, see for instance Theorem
6 in [9], we obtain that all derivatives of the curvatures are bounded for
t € [0,00). So, by compactness, the hypersurfaces M; converge, up to time
subsequences, to a smooth limit M. To prove that this limit has to be a
sphere, we show that ¢ tends to its mean value. Define ¢(t) = m § M, Pdp.

Proposition 3.3.4.
lim max [¢(H (-, t)) — h(t)| = Jim max |p(H (-, 1)) — p(t)| =0

t—0 M, -0 My

Proof. We start with the volume preserving flow. Of course in this case
¢(t) = h(t). For any t, let H(t) such that ¢(H(t)) = h(t). Then we compute
d
—AMy) = | Hhdp— | Ho(H)du
dt Mt Mt

_ f (H — H)(¢(H) — ¢(H)) du
My

- f H — A||6(H) — o(I)| dp
My

Now, using the bound on ¢’ we obtain

d 1 -
FAM < = | o) — oD .
1
— - — hPdp.
el R

Suppose that |¢(H)—h| = a for some a > 0 at some point (z,t). The deriva-
tive bounds on the curvature imply that H is uniformly Lipschitz continuous,

and then there exists a radius r(a), not depending by (Z,t), such that

a _
6(H) —h|> 2 on Biy((2.D)
where B,(4)((z,1)) is the parabolic neighbourhood centered at (z,t) of radius
r(a). Then
d _

S AM) < —n(a) Ve [t—r(a),T+r(a)] (3.18)
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for some 1 > 0 only depending on a.

By Lemma A(M,) is positive and decreasing in time, and so prop-
erty can occur only on a finite number of time intervals, for any given
a > 0. This shows that |¢(H) — h| tends to zero uniformly.

For the area preserving flow, define H = m § am, Hdp. Similarly as before,
we compute

> Cinfe¢' | |H— H*dpu.
My

With the same argument as before, we can say that H tends to H uniformly
as t tends to infinity. Then

iy s [6(H) — h| = lim max [o(H) = () + 6(H) — h

t—o00 M
= lim max[¢(H) — ¢(H)| + lim max [¢() — h|
_ Ho(H)d
= lim max |¢(H) — M
t5500 M; SMt Hdu
= Jim max [6(F) — 6(F)| = 0,
which concludes the proof. n

Proposition 4.3.1] implies that any possible limit of subsequences of M,
has constant mean curvature, and so is a sphere. Then, we can conclude that
the whole family M, converges smoothly to a sphere.

3.3.3 Exponential rate

In order to prove the exponential rate, we will follow a similar method to
[56], but the procedure will be simpler because we already have the smooth
convergence to a sphere. We define

K

Q:ﬁa
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where K is the Gaussian curvature K = FE,,. The first author who used this
ratio in order to give a pinching condition was Chow in [26].

M, is strictly convex, then () is well defined and strictly positive. Notice
also that ) < n%, and the equality holds if and only if the hypersurface is
totally umbilic. Then we know that ) converges smoothly to the constant
value . Our goal is to show that this convergence is exponential.

Proposﬂzlon 3.3.5. The quantities K, ) evolve according to

, 1) | VK .
oK - ¢ak - =Y |K | ¢umm WVH?,
H2n li K ? /A% ] !
— |V + K§WVHVH + KH(6 — ¢'H — h)
+nK¢'|Al?;
aq = ong+ " Vywo vy - U Vywo v
1
- ¢>|vcz|2 2¢'|HVh;i—h;VH|§,b+@¢"|VH|z_%g
+§,<¢'H ~ 6+ Bl — B2).

where
|HVh§ — h;VH| b= b (HVh! — h"VH)(HV'R, — hiV'H)
Wm@ﬁz(W—%yﬂmH%
Proof. By Proposition [3.1.2] we get
OH" = ¢AH" +nH"*(¢"H — (n—1)¢")|[VH> + nH" ™' (¢ — h) |A|*.
Using twice the derivative law for the determinant,
AK = V,(KbV"h)

K?
|V | + KV, blvrhj

= KbiAR +
We can use this equation to compute the evolution of K:
oK = Kb.0h]

= JAK — |VKP — K¢V, bV h + KbV, HVI H
= ¢ ¢’ PV, bV By + K¢'biV;

+HK (¢ —h — ¢’H) +nK¢'|A
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As in the proof of Lemma 2.1 of [56], we have

i i 1¢|[VK]*? K D o H™ K
and then
AVEP I p— (n—1)¢|VK]®
Ll NN e IV = —
o @'V, bV h] - T
K S, H™ K

From the last equality, we get the evolution of K.
By definition of @), we get:

AK KAH"™ 2
AQ =

H2n
Then we have

<VK VH"™) + 2o |VH“|2

1 K
61}@ - ﬁﬁtK - 7615Hn
Q

= PAQ+ o 0(VK VH") - 2H2n¢ VH"]?
@ oppe_n—1 IVEP
+n(n 1) 50 |VH| Hn

SO GNQE + LA - BHE, + Qi |V HE,,

Q
* H
The conclusion follows observing that

(0'H—¢+ h)(n|A|2 — 7).

VQ,VH" = —(VK,VH")—-*|VH"
< Q’ > Hn <v ? > Hn | | )

_ L 2 Q n
(VQ.VK) = - |VK[ — Z(VH"VK).

2

2

]

1
Similarly as in [56] we consider the function f = — —@Q. By the results of
nn

the previous section, we already know that M; converges to a sphere and so
f converges smoothly to zero. Now we want to prove that this convergence
is exponentially fast. The following Lemma collect two known results, the

first one by Huisken in [35], and the second one by Schulze in [56]
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Lemma 3.3.6. If there exists ¢ € (0,2] such that \; = eH for all i =
1,...,n, then

(i) |[HVRh; — hiVH|* = 1e2H*|VH [,

n|A|? — H?
By e

Proposition 3.3.7. There are a time t > 0 and two constants ¢, § > 0 such
that for every time t >t we have :

(i1) There exists § > 0 such that

f<ce ™.

Proof. By Proposition |3.3.5| we can compute the evolution equation for f:

U gap-irD )¢<VfVH">+( Vyvr v

Q 1

_ Q

H

First, we prove that the gradient terms give a negative contribution for large

times. Since M; converges smoothly to a round sphere, then for all ¢ > 0
there exists t; > 0 such that, for all ¢ > ¢,

<b|Vf|2 ¢|HW WNH, - Q¢ |VH[_ ., (3.19)

(¢'H—q§+h) (n|A]2 — H?) .

1
N> ——H Vi=1,...,n (3.20)
n(l+¢)
which implies
btl<
7'
Moreover, by Lemma [3.3.6} part (4), (3.20) also implies
H2

|HVK, — K.V H|* > IVH|.

2n2(1 + €)?

Now, we have

7 7 1 7 A
|HVA, — BV H|?, = ™y (HV. b, — 1V, H)?
1 % %
H — (HV by — N, H)?

i 7 2
= ﬁu{wj — hiVHP.
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Collecting all these estimates, we find

Q

L S\~ K], ~ Q4 VHEy,

Q@ i i n |2
<—ETMHV%—@NWP+ﬁ—;4cMHVHP

Q ¢ N
<=5 (s sgm =) 1A

Since ¢ is arbitrary, we can found ¢; such that the last quantity is non positive.
Now we want to show that for large enough times, the reaction terms (the
last line terms in the evolution of f) leads to a negative multiple of f. In
fact, by Proposition [£.3.1], for every positive 7, there exists a time ¢ty > 0
such that for every t = t5 the following holds:

o —h| <.

Then, if we choose 1 small enough, we can find a positive constant d, such
that

QS/H - ¢ +h = 627
when ¢ > #. Also, by (3.20) and Lemma [3.3.6] part (ii), there exists a
positive constant d3 such that

n|Al*> — H?

2

Finally, since all the curvatures are uniformly bounded from above and below,
there exists d, > 0 such that

> 03 f.

QH = 4,.
Let t = max {t;,t2} and & = 50304, then for ¢t > ¢ we have
5f ! (n+1) / n (n_l) / Qil / 2
= < T 1. ) ) - - )
< OAf = LRV VHY + SV V) + =gV [ - of
and the thesis follow by the maximum principle. O]

Arguing as in Theorem 3.5 of [56] we obtain:

Corollary 3.3.8. The second fundamental form A converges exponentially in
C® to the one of a round sphere. In particular, there exist positive constants
c, 0" such that

[G(H) —h| < e
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From the previous corollary it follows that the limit hypersurface exists
with no need to add isometries. In fact, for any 0 <t <ty

to
_ <
ma |F(e, 1) — F(x, )] < mﬂxj 0,F (. ) dt

t1

t2 C/ / /
_ mﬁxL 6 Bldt < (e ¥ — e 7

then the whole family F(-,t) tends to a limit hypersurface for ¢ that goes
to infinity. Finally, the smooth convergence of the second fundamental form
implies the smooth convergence of the metric and of the embeddings, by
standard arguments used for example in [56]. This complete the proof of

Theorem B.1.1]
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CHAPTER 4

Volume/Area preserving non
homogeneous flows: hyperbolic case

In this chapter we study the hyperbolic version of the flow analysed in
the previous chapter. In addition to the monotonicity of the speed function,
the other hypotheses are slightly weaker since, as we will see, we don’t need
to require a specific behaviour in zero.

4.1 Presentation of the problem

Let H™™! be the hyperbolic space of constant sectional curvature —a? < 0
and let us take a smooth oriented, compact and without boundary hypersur-
face Fy : M — H?*. We consider a family of maps F: M x [0,T) — H**!,
evolving according the law:

{ O F (2,1) = [=¢(H (2,1)) + h(t)]v(z,1) (4.1)
F(z,0) = Fy(z),
where:

e ¢:]0,+00) — R is a continuous function, C? differentiable in (0, +0)
such that



i1) lim ¢(a) = oo;

iii) lim (é;i‘()‘i;‘z — o0;

iv) ¢"(@)a = —2¢'(a) Ya > 0.

o The function h(t) is either defined as (3.2]) (volume preserving) or (3.3))
(area preserving)

Remark 4.1.1. If ¢ is a convex function, properties ii), i) and iv) on ¢
just follows from the convexity: i) and iv) are trivial, and for éii) we can
write % = 2(e)-¢(0) 4 @. By the convexity of ¢, the first addendum of

07

/
the right side is an increasing function, then <¢(:‘>> > —%, which implies
¢/(a)a = ¢(a) — ¢(0). Finally,

i P2 o(a) — 0(0)
o) T e o)

Using also property i) on ¢.

We will consider initial data which are convex by horospheres. We say that
a hypersurface is convex by horospheres (h-convex for short) if it bounds a
domain ) such that at every point p € M = 02 there exists a horosphere
of H™™! passing through p such that € is contained in the region bounded
by the horosphere. Such a definition is the natural analogue of convexity
in Euclidean space, since the horospheres touching the boundary from inside
take the place of tangent hyperplanes. In [I7] was proved that M is A-convex
if and only if at any point \; > a for all . Then we see that this condition
is stronger than convexity.

The result we are going to prove is the following.

Theorem 4.1.1. Let Fy : M — H'™' with n = 1, be a smooth embedding
of an oriented, compact n-dimensional manifold without boundary, such that
Fo(M) is h-convex. Then the flow with h(t) given by (resp. (3.3))
has a unique smooth solution, which exists for any time t € [0,00). The
solution is h-convex for any time and converges smoothly and exponentially,
ast — oo, to a geodesic sphere that encloses the same volume (resp. has the
same area) as the initial datum M.
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Short time existence and evolution equations. The short time exis-
tence and the uniqueness of the solution follow in the same way as for the
flow , since the linearization of is analogue to (3.1)). Then there
exists a unique solution to on a maximal time interval [0, 7).

In Chapter 1, Proposition [1.4.1]| we recalled the evolution equations for cur-
vature flows of Euclidean hypersurfaces. Indeed, Huisken and Polden in [40]
gave very general evolution equations for hypersurfaces of any Riemannian
manifolds. In general, these equations are slightly complicated because of
the presence of additional terms depending on the geometry of the ambient
manifold. However, in the case of hyperbolic space, the Riemann tensor has
a simple form, depending only on the sectional curvature and the metric. We
recall it in the following proposition.

Proposition 4.1.2. If N is a space form of constant sectional curvature
K, then the Riemann tensor is written as
Raped = K(gacGod — JadJne)-
In particular, VN8 Ropeq = 0, where VNK 4s the Levi-Civita connection of
Nk.
Using this fact, the evolution equations for can be easily computed
from [40].
Proposition 4.1.3. We have the following evolution equations for the flow
E):
01gij = 2(—¢ + h)hij,
0197 = ~2(~¢ + ),
o = Vo,
Oedp = H(—=¢ + h)dp,
Ohij = &' Ahy; — (¢'H + ¢ — h)hahl + ¢'|Ahyy + ¢"V,HV ; H
—d*(¢'H + ¢ — h)gij + na’¢'hi,
OH = ¢'AH + ¢"|VHP + (¢ — h)|A] —na*(¢ — h),
09 = ¢'Ap + ¢ (¢ — h)|AP —na’¢'(¢ — h),

In the next section we are going to give some notation and results that
are specific of the hyperbolic geometry. For this reason, we have decided non
to include them in Chapter 1, dedicated to general preliminaries.
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4.1.1 Some notation and properties of /-convex sets

For every constant a > 0, we denote with H”"! the hyperbolic space
of dimension n + 1 and constant sectional curvature —a?, and let (-,-) be
its standard Riemannian metric. We use for the hyperbolic metric the same
notation used for the Euclidean one in the previous chapters, as well as for the
other geometric objects (second fundamental form, mean curvature, normal
vector, measure, etc). We denote by dy the hyperbolic distance between
points induced by (-, ), and by (-, -) the induced metric on the hypersurface.
Moreover, we put a bar over any geometrical quantity whenever it is referred
to the ambient space H"™! e.g. for the Levi-Civita connection V.

We will use the following notations for the hyperbolic functions: for any
a>0
8q(t) = Shat) © ¢ (1) = cosh(at),

a

taq(t) = 2ol coq(t) = 538

Given a point ¢ € H*"! we set, Vp € H' ™!,
ro(p) = dul(p. q)

Oy, = @rp.

P

The following theorem is due to [16], [I'7, [I8), 19].

Theorem 4.1.4. Let Q) be a compact h-convex domain of H' ™! and let g € Q
the center of a inball of Q). If R_ is the inradius of §2, then

1. the mazximal distance max dy(q, 0S2) between q and the point in  sat-

isfies the inequality
[ R_
(1 + taaT)Q

1 —|—taaRz—‘

max dg (g, 0Q) < R_ +aln <R +aln2

2. For any interior point p of Q and any boundary point q € 052,

(v(q), 0,,) = atag(du(p, 0)),

where v(q) is the outer normal vector to 0S) at q.
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4.2 Long time existence

4.2.1 Preserving of f-convexity and its consequences

Lemma 4.2.1. The flows (3.1)) with h(t) given by (3.2) and (3.3) preserve
the volume Vol(€;) and the area A(M,) respectively.

Proof. The proof is analogue to Lemma [2.2.4] O
Lemma 4.2.2. Along the flow (4.1]) we have

1) LAM,) <0, LV ol(Q) = 0.
2) a1 < AM;) <az, v < Vol() < v,

for some positive constants ay, as, vy and vs.

Proof. 1) The proof is the same of Lemma
2) It follows from part 1) and the isoperimetric inequality in H?™! (see [62]).
O

Proposition 4.2.3. Let My be an h-convex hypersurface of H*L, then M,
is h-convex for any time the flow (4.1)) is defined.

Proof. Since M, is h-convex, we can consider a time interval [0, 7*), with
T* < T, such that M, is strictly convex for any time ¢ € [0, 7%*). Then we can
define b{ , be the inverse matrix of hg . Let us define the tensor S;; = b;; — i Gij-
We have that f-convexity is equivalent to the fact that S;; < 0. The first
step is to compute the evolution equation of S;;. By Proposition we
get:

ohs = ¢'ARS+ 'V HVH — (¢'H — ¢ + h) hLh}
—a* (¢'H + ¢ — h) 6 + na®¢'he.

Since b¥h), = 67 we can compute:
Ab, = —UBARS — 200V bV R
Therefore

o] = —blboh;
G A + 20 VIV bV hE — Vb "V HV H
—(¢'H — ¢+ h) 6! — ¢/ |APb] — a® (¢'H + ¢ — h) bl — na¢'b!
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Finally, by Proposition we have:
0iSy = ¢AS; +2¢'b VbV hE — ¢"b bV, HV H
L (SH — 6+ h) gy — & A]Pb; +a® ('H + ¢ — h) Uiby; (4.2)
2
—na’¢'b; — 2 (¢ — h) gi; + . (¢ — h) hij.

Analogously to the proof of Lemma 2.5 in [55], we can use Codazzi equa-
tion and the fact that M, is strictly convex in order to estimate the gradient

terms in :
2¢'bs; VbV hE — ¢"biby; V. HV*H
= =29/ L3 beV DEV By — "B bV HVH
<~ (200 4 0"H) (Y H) (b, V°H)
Let V be a null eigenvector of S with unit norm. We apply the reaction

terms in the equation (4.2)) to V. What we get can be estimate as follows on
[0, 7%):

1 / " i\2 / |A|2
¢

na

< (H —na)* <0.

In the last line, we used the hypothesis iv) on the function ¢ and the fact
that |A|*> > %2 for any n-dimensional submanifold. Then S;; < 0 by the
maximum principle for symmetric tensors that can be found in Theorem 9.1
of [33]. Thus we have that, until M, is strictly convex, the solution is A-
convex. If, by contradiction, it exists a first time T where the solution is not
strictly convex, we can apply the previous argument on the interval [0, T)

to conclude that the solution is A-convex on [0,7]. In particular, in t = T
hi; = ag;; holds. Then we find a contradiction. O

Remark 4.2.1. An immediate consequence of Proposition is that,
along the flow, H = na > 0 at any space-time point. Then the mean
curvature stays away from zero for all times. This is the reason why we don’t
need to require any particular behaviour at zero for the function ¢(H).

By Proposition we are able to deduce some geometrical properties.
We begin proving that the inradius is uniformly bounded along the flow.
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Lemma 4.2.4. Let R_(t) be the inradius of the evolving domain ; at time
t. Then there are two positive constants ¢, and co such that

C1 < R_(t) < Co.

Proof. The proof is the same of Lemma 4.1 of [22] with minor modifications
in case of the area preserving flow. Let 1 be the inverse function of s —

vol(S™) §; s4(1)dl and let € be the inverse function of s +— s+ aln %

Note that they are positive increasing functions. Proceeding like in Lemma
4.1 of [22] we get

(V) < R(t) < ().
By Lemma [1.2.2] the thesis follows with ¢; = £ (¢(v1)) and ¢2 = ¢(v2). O
As immediate corollary we obtain the following.
Corollary 4.2.5. For any t € [0,T), and p,q € €, we have
du(p,q) < 2(c2 + aln2).
Proof. By Theorem [£.1.4], using also the triangular inequality,
max du(p,q) <2(R_(t) + aln2),

which is also bounded by the previous lemma. O]

4.2.2 Upper bound on the curvatures

From Lemma [4.2.4] we have a positive lower bound on the inner radii
R_(t), so we can take R_ = ¢;, with ¢; given in Lemma [4.2.4]

Lemma 4.2.6. There exists T = 7(a,n, M) > 0 with the following property:

for all (q,t) € Q x [0, T) such that Br_(q) < Qy, then
Br_p2(q) < Q Vt € [t,min{t + 7,T})

Proof. Let t,q be like in the hypotheses. We consider the geodesic sphere
centered at ¢ that evolves by the standard flow with initial datum R_, i.e
the radius rp(t) satisfies

{rg@ — —$(nco,(rp))
TB(t) = R_
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We define 7 as the time taken by the geodesic sphere of initial radius R_ to
contract its radius to R_/2, i.e.

=

Notice that 7 does not depend neither on ¢ nor from ¢, but only on R_. Let

r(z,t) = rz(Fi(z)). Then
atr = (h - ¢(H))(V7 67’)

Then we define the function g(z,t) = r(z,t) — rp(t) for t € [t,¢ + 7], and
compute the evolution

Org(x,t) = (h— ¢(H)) (v, 0,) + p(nco(rs)), (4.3)

where ¢(H) = ¢(H(z,t)). Suppose that there exists a first time t* such
that for some z* € M the ball touches the hypersurface M, at the point
F(z*,t*). Then we have

ncog(re(t*)) = H(x™,t%) Org(xz*,t*) <0

Thus, by the monotonicity of ¢ and the fact that (v, d,) < 1, we obtain from

(1.3)
org(z*,t*) = h(v,0,) > 0

From this contradiction we get the result. O

Define the following function, in analogy with [22]:

ug(x,t) = sq(rq) (v, 0r,)

with ¢ a given point in €2;. We use the same notation used for the support
function in the previous chapter just because here wu, will play the same
role in the proof of the boundedness of the velocity. Following analogous
calculations as in [22], we get the evolution of w:

du = ¢'Au+ ¢'ulA]* + (h — ¢ — ¢'H)ca(ry)

Lemma 4.2.7. Given any t € [0,T) we have that, in [t, min{t + 7,T}):
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1. there exist constants C, D > 0 such that
C g ’I"q < D,
2. taken c:= M ,
Ug —C = C.

where q is taken as as in Lemma |/. 2.6

Proof.

1.

As a consequence of Lemmad.2.4land Lemma [4.2.6| on the time interval

[£, min{t + 7,7}) we have & < 8 < ;. On the other side, by

Corollary 4.2.5, 77 < 2(c2 + aln2).

It follows by Theorem 2.2 part 2) and some trivial computations.

O

Proposition 4.2.8. There exists a positive constant cs = c3(Mo,n,a) such

that

O(H) < c3 on [0,7).

Proof. On any time interval [¢, min{t + 7, T}), we consider

¢(H (z,1))

Wiz, t) := ez ) —

with ¢ as in Lemma [£.2.6) and ¢ as in Lemma [£.2.7] Standard computations

show that
, _ 2 ¢’ 2 2 h
(G — AW = U_C<VW,VU>—hu_C(|A| — na”) —Wu_cca(rﬁ)
'"H
+ <1 + Z) W2c,(rp) — ﬁgﬂAFW — na’¢g'W
By virtue of the f-convexity we have |A]*> — na® > 0, then
, 2¢/ ¢,H ) C¢IH2
—¢'A < ) 1 D) — ———
(0, — ' AYW u_C<VWVu>+< + ¢>Wc( ) n(u—c)W
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where we also used the fact that 7; < D and |A]* > %2 We define

W(t) := SJBII?W(x,t) X(t) = {x e M|W(z,t) =W(t)}
then

/

o H
DLW < co( D)W + W sup 2 {CG(D) - C}
X(t)U—C n

Let C' > 0 big enough such that

{C > 3¢, (D) (4.4)

C

B(C)

< T.

Suppose that there exists a time t* such that W (t*) = ¢(C)/c. Then,
using the bound u—c > ¢ and the monotonicity of ¢ we have that H(z*,t*) >
C for any z* € X (t*). Notice that the first condition of implies that if
H > C, then co(D) — & < —2H  Then, we get at time t = t*

n 3n

L . 2 IH2
DLW < cu( DY — 25T sup @
N xpxyu—c
2c¢’ H?
3ng

ST sup {ca<D> -

X(t*)

By condition #ii) on ¢ , we can suppose C sufficiently large such that H = C
implies

2c¢' H?
(D) — < -1
ca(D) = — - 5
Thus at ¢t = t* we have
D, W < -W’
Standard comparison argument then implies that
C
W < max {I%LXW i )} on [0, min{7, T}) (4.5)
0 C

in the case t = 0, and

W < max {tit’ ¢(f)} on [t,min{t + 7,T})
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for a general . Then we also have

w < 20

C

c
¢(C)’
Since t is arbitrary, combining (4.5]) and (4.6 and using the second condition
of (4.4]) that allows to cover the entire time interval, we obtain

Wémax{nﬁxﬂf,gb(c)} onte[0,7T),
0 C

on [E+ minf + 7, T}) | (4.6)

which implies the assertion, since ¢ < (s,(D) — c)W. O

Corollary 4.2.9. The quantities H, h and |A| are uniformly bounded along
the flow.

Proof. By property ii) on ¢ , an upper bound on ¢ implies a bound on H.
Then, by Proposition [£.2.8] H is uniformly bounded. The boundedness of
h also follows from the boundedness of ¢. Thanks to A-convexity, |A| < H,
and so |A] is bounded too. O

From the bounds on H it follows that also ¢’ is uniformly bounded from
both sides, and then the flow is uniformly parabolic. Then, by Theorem [1.2.2
we obtain the long time existence of the flow together with the existence of
a limit.

Theorem 4.2.10. The solution M, of the flow[{.]] exists for any time. More-

over, up to time subsequences and space isometries, M, converges to a smooth

limit M.

4.3 Convergence to a geodesic sphere

4.3.1 Smooth convergence to a geodesic sphere

As for the Euclidean version, we will prove that the limit hypersurface
M has to be a geodesic sphere by showing that the mean curvature tends
to a constant value. Then, we will show that the rate of the convergence is
exponential. From this, we will deduce in particular that the hypersurfaces
converge to a geodesic sphere with no need to add isometries. The proof of
the firs part follows identically as for the flow 3.1 then we just write the
conclusion.
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Proposition 4.3.1. The velocity ¢(H) tends uniformly to h, i.e.

Lim max [¢(H (z,1)) — h(t)] = 0
Proposition implies that any possible limit of subsequences of M,
has constant mean curvature, and so, by a classical result of Alexandrov [1],
it is a geodesic sphere. Then standard techniques, see e.g. [B, 22], allow
now to conclude that the whole family M; converges smoothly to a geodesic
sphere up to isometries.

4.3.2 Exponential rate

We will use the same method seen in the previous chapter, adapted for an

hyperbolic setting. We follow the paper of Guo, Li and Wu [32]. As for the
Euclidian case, our situation is simplified by that fact that we already have
the convergence to a sphere. Furthermore, the function ¢ is H-dependent,
while in [32] were considered homogeneous one degree functions of the prin-
cipal curvatures.
In analogy with [32], define the perturbed Weingarten operator ﬁz = hé» — a5§».
Its trace, norm and determinant will be denoted as H = Trhi, |A]> = hlh:
and K = det iL; respectively. We also indicate by lN)z the inverse matrix of fzé,
and by B its trace. Then, we define

Since the hypersurfaces M, approach uniformly to a geodesic sphere as ¢ goes
to infinity, then M, is strictly A-convex for ¢ sufficiently large. Then @ is well
defined and strictly positive for ¢ sufficiently large. This fact makes things

work even if we choose an initial datum not necessarly strictly A-convex, but
just A-convex. Again, Q < n%, and the equality holds if and only if the
hypersurface is totally umbilic. Then we know that Q converges smoothly
to the constant value % As for the Euclidean flow, our goal is to show that

this convergence is exponential.
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Proposition 4.3.2. The quantities K, Q evolve according to

. g (=D IVEP R o
oK = &AK - ("n ) |K| d <;§|HVh VA,
H2n K ’ SR [7~77 1] T /
— ot V| 4 KRGV HVIH + KH (6 —¢'H —h)
+2ankK (¢ — h) + nK¢'|A)? + aK§'| Al B;
) 1
0@ = o920+ "y iy - " Dywo vi
Q 1

2 [ 71 71 72 A 72
“§IVQI + 7¢'|Hth - hjvmg,;, + Qo'

+9<¢’H 6+ WYlAP — %) + a0JAP (BQ . ”f) |
H H

where
|HV R, = WV H|? 5 o= bbs (HVhyy — kN H)(HV' B, — BV H)
~ 19 L Tid _ ﬁ ii A ~ ‘ ~
VAR ,, = (bf Hg]) VAV H
Proof. The proof is almost the same as for Lemma [3.3.5 but we write it

for completeness Some easy computations show that H = H — na and
|A|? = |AP? + na® — 2aH. Hence, by Proposition [4.1.3] we get

ol = @A+ ¢"V;HVIH + (p— h — ¢'H) (hgh{ + 2ah] + a*5])
+¢' (JAP? + 2aH + 2na®) (h] + adl) — a® (¢'H + ¢ — h) &,

OH" = ¢AH" +nd"*(¢"H— (n—1)¢")|[VH]? + n" " (¢ — h) (JA]” + 2aH) .
Then we can compute the evolution of K:

- _, O]
oK = Kbj—

= §JAK—¢'— — K¢'V,b)V'h] + K¢"b.V,HV'H
+K(p—h— ¢>’H) (H + 2an + a’B) — KB (¢'H + ¢ — h)
+K¢' (|A]? + 2aH + 2na®) (n + aB)
VK]
K

,IVKI2

= ¢AK — ¢ —— — K¢V, b:V"h] + K¢"b:V,HV' H
+KH(¢p—¢'H—h) +2anK (¢ — h) + nK¢'|A]> + aK¢'|A|*B.
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As for the proof of Proposition [3.3.5

e N 02 - S QY K
quﬁ'Vrij hl = TR ~2gb’|Hth — thH|g’5 + e ¢ Vﬁ
and then
K 2 _ . . -1 / K 2
n K
S H2n 2
[ 2
From the last equality, we get the evolution of K. From
- AK  KAH" 2 Q
AQ = V, KV H" + 2 - |VH"|2.
H? EES
we have
6tQ == H” ]:[n
= ¢AQ+ = ¢<v KVH") -2 Q ¢ |[VH"|”
Q / 72 — I|VK|2
+ —1)=—¢'|VH|" — ——¢' ==
nln — 1) VAP ="

Qil ’ A Q NI L 71 [ A M [
——¢ VO + ﬁ¢ |HV R, — BV H|? 5 + Qo |VH|§7%Q

QG H = b+ WWIAP — ) + a0l AP (32 _ ”f) |
H H

and the conclusion follows as in the proof of Proposition [3.3.5 noticing

(VQ.VH") =

~|2

(VQ.VE) - -2

, VK.
O

1 .
Define f = — — ). We already know that f smoothly converges to zero.
n'ﬂ
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Proposition 4.3.3. There are a time t > 0 and two constants ¢, § > 0 such
that for every time t >t we have :

f<ce ™.

Proof. By Proposition 4.3.2] we can compute the evolution equation for f:

% () ()

¢V VE)

Q i 11 ] S ]
= |Vf|2 — —qﬁ |HV I — thH|;5 — Q¢ |VH|§7%Q (4.7)

2 2 Q l 2
— ot QIA] (B—H>—H<¢H 64 ) (AP — ).

The gradient terms can be estimated exactly in the same way as in the proof
of Pl"OpOSlthIlJust substituting h;, bz, H, K,(Q and f with h;, b;H K,Q
and f respectively: all the passages still hold. Then there exists a time #;
such that for all ¢ > t_l, the gradient terms are nonpositive.

The reaction term £ (¢'H — ¢ + h) (n|A|* — H?) is analogue to the one ap-
pearing in the proof of Proposition and can be estimated in the same

way. Then, there exists a time ¢, such that

L (G H 6+ 1) (AP - ) > 6,

for some constant 6 > 0. Moreover, by the relation between the harmonic
and the arithmetic means of n positive numbers, we have

B

m\%
Y
=

Thus, setting ¢ = max{t,t,}, we have

of , ()
5 < A

-1
S s

VH">+( )¢<Vf,VK>+

for all times ¢t > t. Then the thesis follows from the maximum principle. [

Arguing as for Corollary 3.3.8 we obtain:
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Corollary 4.3.4. The second fundamental form A converges exponentially
in C® to the one of a geodesic sphere. In particular, there exist positive
constants ', 0" such that

[G(H) — h| < e

Then also in this case, the whole family F(-,¢) tends to a unique limit
hypersurface for ¢ that goes to infinity. Analogously, the metric and the
embedding converge smoothly. This complete the proof of Theorem
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CHAPTER 5

Some results on entire graphs

5.1 Presentation of the problem

Let Fy : M — R™"! be an embedding of a smooth manifold M in the
Eucledean space R"™!. As usual, denote its image by My = Fy(M). We
assume that Mg can be written as an entire graph over R", i.e. there exists
up : R™ — R such that any point p € Fy(M) can be written as

p = (y,u(y)), y e R".

Furthermore we assume that ug is a strictly convex function, with || Dug||e +
|| D?ugl | < 0.

Then we consider a family of maps F : M x [0,T) — R"" with F} :=
F(-,t) : M — R"™ satisfying

{ O F (x,t) = —¢(H(x,t))v(x,t)

5.1
F(z,0) = Fo(x), (5:1)

where v(-,t) denotes the downward unit normal vector of the evolving hy-
persurface M; := F;(M). The signs of the curvatures are chosen such that
M, is convex if and only if the function ug is convex.

We choose ¢ : [0,+o0) — R as a continuous function, C? differentiable in
(0, +00) with the following properties:

i) o(a) >0 Ya >0, ¢(0)=0;
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i1) ¢'(a) >0 VYa >0
i11) () — ¢ (a)a <0 Ya > 0;
iv) ¢"()a+2¢'(a) =20 Ya > 0;

v) limg e @) = 00,

Notice that any convex function ¢ satisfies property iv). Furthermore, if
¢ also satisfies ¢(0) = 0, and ¢, (0) = 0 (where ¢/, means the right side
derivative), than automatically i) — v) hold.

We recall that, if a hypersurface is given as a graph of a function u(y),
the following expressions holds for the downward unit normal vector, metric
tensor and second fundamental form:

(Du(y), —1)

1+ [Du(y)[?
9i;(y) = by + Diu(y) Dju(y)
Diu(y)

V1 +[Du(y)l

where D); denote the differentiation with respect the coordinate ¢. Using
these expressions, the flow equation ([5.1]) is equivalent, up to tangential dif-
feomorphisms, to

b = /T7 |Dufé ( s (7 - 58 Dm)

(5.2)
u(y,0) = uo(y)

We will prove the following result.

Theorem 5.1.1. Let Fy : M — R with n = 1, be a smooth embedding
of a n-dimensional manifold, such that Fy is an entire graph over R™ of a
strictly convex function ug : R — R satisfying ||Dug||w + ||D*uol|e < 0.
Then for any time t € [0,00) there exists a smooth solution u(-,t) of the
problem (5.2)). The solution is convexr and || Dug||w + || D*uol|w is bounded by
a constant only depending on the initial datum ug.
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5.2 Compact case

In contrast with the flows studied in the previous chapters, this time we
deal with non compact objects. Since our strategy for the proof of the main
theorem is based on an approximating procedure by compact hypersurfaces,
it is useful in this step to recall some simple facts about the flow in
the compact case. The evolution equations are given by Proposition [3.1.2]in
Chapter 3, setting h(t) = 0.

Proposition 5.2.1. Let consider the flow (5.1]) with My a strictly convex,
compact hypersurface without boundary. Then the solution M, exists unique
on a mazimal time interval [0,T). Furthermore,

min A > min H Vte [0,T).

M Mo
Proof. Since H > 0 on the initial datum, then ¢’ > 0 on a first time interval.
By Theorem this ensures the existence of a unique solution of ([5.1)) on
a maximal time interval [0,7"). Furthermore, by the evolution equation of

H, we have
OH = ¢'AH + ¢"|VH|?.

Then, by the maximum principle, minyg, H > miny, H on [0, 7). ]

Proposition 5.2.2. Let consider the flow (5.1]) with My a strictly convez,
compact hypersurface without boundary. Then the solution M, is strictly
convex for any time such that is defined.

Proof. The proof is the same as for the volume preserving case, given by
Proposition [3.2.1] O

Proposition 5.2.3. Let consider the flow with My a strictly convexz,
compact hypersurface without boundary. The maximal time of the solution is
greater than the mazimal time of any round sphere contracting by with
initial datum enclosed by M.

Proof. Similarly as for the proof of Proposition [3.2.7] it can be shown that
the curvatures stay bounded as long as the hypersurface encloses a ball of
positive radius. On the other hand, the uniform parabolicity of the flow is
guaranteed by Proposition [5.2.1} Then, by Theorem that also holds
for velocities of the kind ¢(H), the flow can be continued as long as a ball
is contained inside the hypersurface. The thesis follows from the avoidance

property [[.2.7] O
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5.3 Long time existence

5.3.1 A localized estimate

Since the hypersurface My is unbounded, even if all curvatures are posi-
tive at any point, their infimum over My is zero. Then the flow could present
some degeneracy when the curvatures approach to zero, and we can’t apply
the standard parabolic theory to deduce the short time existence of the solu-
tion. With this in mind, is fundamental to “localize” the maximum principle
on a suitable compact region of the hypersurface that can be enlarged as we
like. The following result is analogous to Theorem 2.1 in [29].

Proposition 5.3.1. Let F : M x [0,7] » R"" 7> 0, a solution of (5.1]),
with My = F(M.,t). Suppose that there exist R > 0 and |z, z1] < R such
that:

a) My n (Bg(0) x [20,21]) is the graph of a convex function u(-,t), with
u: Br(0) x [0,7] — R;

b) ¢ < C on Br(0) x [0,7], for some constant C > 0.

Let p = (0,Yn11), where 0 € R™, §,41 € R, such that w(0,t) < ypy1 for all
te0,7].

Given any 0 < R < R, let f(x,t) = R* — |F(x,t) — p|> — 2ntC.

Then, denoting by fi the positive part of f, we have the estimate

Qb_lf-i-(xvt) < S/\l/llp Qb_lf-i-('vo) V({E,t) € Suppf-l—-

Proof. The proof follows the one in [29].

We can assume uy = 0. Then, by the choice of the unit normal in ([5.1)),
u = 0 for all times. Given R as in the hypotheses, define n(r) = (R? —r)2.
Notice that, by this choice of R, the support of f is strictly contained in
Bg(0) x [0,7]. Choosing 7(z,t) = |F(z,t) — p|*> + 2ntC we have, at any
(x,t) € Br(0) x [0, 7],

(Oi—¢'D)n = 4/n(¢—¢' H)(F —p, v) =28/ |V|F=p* P +4n/n(¢' = C), (5.3)
while the evolution of ¢ 2 is given by

(0 — ¢'N)p™? = —6¢'| Vo> — 20/ ¢ 2|A|? (5.4)
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together with gives
(0 — ¢'D)¢™n = 49~ /(¢ — ' H)(F — p,v) = 267°¢|V|F — p*|”
— 6¢'n|Vo~* — 2¢'ne 2| A]? — 2¢'(V, Vo)
+4ng 2 — C) (55)
< —2072¢/|V|F — p*|* — 6¢'n| Vo~
= 2¢'n¢ AP = 2¢/(V, Vo ?)
where for the inequality we used property iii) of ¢, the hypothesis ¢ < C

and the fact that (F'— p,v) = 0 by convexity and the choice of p. We have
the equalities

—2¢/(Vn, V¢?) = ¢'(V¢2, V) — 3¢(V¢~%, V)
= ¢'n '(Ve 2, V) —6¢'¢ (Vo !, V)
=¢'n V(¢ ), V) —n o 2 VnlP — 646 (Ve !, V)

and
n Ve =g 2ynVIF — pI*Pe % = A|V|F — pl* o,

then ([5.5) becomes

(0 — ' D) *n < —6¢'¢ *|V|F*)> + ¢'n (VY (o ?n), Vi)
— 64’0 (Vo V) — 68|V P —2¢'ne 2 AP

Using the Cauchy-Schwarz and the Young inequalities, we can estimate
—60'¢" (Vo™ Vi) < 60" (Vo1 Vip| < 6001 [V (| V]
< 6/|Vo Py + SVl
= 60|V~ [’ + 64'|V|F — p|* o~
so, finally,

(0, — ¢'N)o*n < ¢'n{(V(¢7%n), V).

Replacing n with f2 the same computations hold, then we get the result by
the maximum principle. O
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5.3.2 Costruction of the solution

In order to prove the existence of the solution for short times, we follow
an approximating procedure by replacing the initial datum with a compact
convex approximating hypersurface, and we use the parabolic theory for com-
pact manifolds to deduce the existence of the solution. Then we enlarge more
and more the initial compact datum and we take the limit solution of the
approximating flows. We will show that this limit is solution of . With
this technique, the existence for all times, the preserving of convexity to-
gether with the property to be an entire graph will follow automatically. We
take this procedure from [4], with some modifications due to the fact that
in our case we don’t have the homogeneity of the velocity. Furthermore,
unlike the authors in [4], we don’t employ the Harnack-type inequality due
to B.Andrews in Theorem 5.21 part (2) of [6].

Let ug be as in the hypotheses of Theorem [5.1.1]Without loss of generality,
we can assume uo(0) = Dug(0) = 0.

By Lemma 6 of [4], for any R > 1 we can construct a compact convex
hypersurface Ny satisfying the following properties:

1. Ng n (Bg(0) x [0,c0R]) = Mo n (Bgr(0) x [0, coR]) for some ¢y > 1
independent of R;

2. Ny encloses the ball of center (0, coR) and radius R;
3. Ng has diameter less than c¢; R, for some ¢; > 1 independent of R;
4. maxy, H < cosup,y,, H for some ¢, > 1 independent of R.

Notice that H is bounded on M by the hypotheses on .

Let consider the evolution of Ny by (5.1). By Propositions [5.2.1] and [5.2.2]
there exists a unique maximal solution Nz(t) = Fg(-,t) which is convex,
where Fr : Ng x [0,T) — R""'. Furthermore, by construction and by
Proposition [5.2.3] we know that T > 7x, where 7x is the time taken by a
sphere of centre gy = (0, coR) and initial radius R to contract by (5.1)) to a
sphere of radius g. Notice that 75 is increasing in R, and 75 — o0 as R — oo0.
Denoting dp = diamNg we can consider, on [0, 7g], the ratio

¢(H (1))
(Fr(z,t) — qo,v) — R/4

W(z,t) =
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which is well defined since, by convexity of Ng(t) and the Property (3) of

NR)
R R 1

7 < (Fr(z,t) — qo,v) — 7 < (¢ — Z)R

Following the same procedure of the proof of Proposition [3.2.7]in Chapter 3,
we can estimate

d(H) < max {%ix¢(H), 4¢(ZR) dR} on [0, 7z] (5.6)

where C'r > 0 is a constant chosen as in the proof of Proposition in
Chapter 3, and then decreasing with R. Then, by Properties (3), (4) of Ny
and since the diameter of Ny(t) is decreasing in time and R > 1,
becomes

¢(H) < max {sup ¢(c2H),4cl¢(C’R)} < CY  on [0,7g] (5.7)
Mo

where C} > 0 does not depend on R. Then, we find
|A* < H*< C5  on [0,7R] (5.8)

for some constant C5 > 0 not depending on R.

Let p = (¥, 4ne1), 0" = (¥, yn41) be points in Nr(t) v (Bra(0) x [0,coR])
for some t € [0, 7g]. We have

|y”+1 B y, +1|

=R SRS < 4o, 5.9
|y// - y/| ( )

then Nz(t) N (Bgu(0) x [0,coR]) is the graph of a convex function with

Lipschitz constant smaller or equal to 4¢o. We denote such a function by

uR(yvt)v where (y7 t) € BR/4(O) X [OvTR]'

’ "
0< Yn+1> Yns1 < COR’

Let choose a compact set K < R™ and a time £ € [0, 7). If R is sufficiently
large, we can assume K < Bg(0). We want to bound ¢ from below on
K x [0,7] uniformly in R. By (5.8), there exists C' > 0 such that ¢' < C' on
K x [0,%]. Define

zZ = maxug(y,0) = uo(y)
yeK

for some 5 € K. On Ng(t) n (Bgru(0) x [0, coR]) with ¢ € [0, 7] we consider,
as in Theorem [5.3.1

f(z,t) = R* — |Fg(x,t) — p|* — 2ntC,
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where p = (0,7 + C#f), 0 € R” and R > 0 to decide later. The choice of
p guarantees that, on [0,#], the graph (y,ur(y,t)) does not intersect p at
any time. We define continuously f also on R™ x 0 simply setting f(z,0) =

R? — |F(z,0) — p|*>. Then, using (.2, and (5.9) and writing f as a

function of (y,t), with (y,t) € K x [0,1],

Fyt) = R? = y|* = |ur(y,t) — uo(y) — Cft* — 2ntC
> R — y|* — |ur(y. t) — uo(§)]> — (CF1)* — 2niC
> R? = |y* — |ur(y,t) — ur(G, )* = lur(y,t) — w(y)]* - (CF1)? — 2niC
> R2— |y|® — 162y — 2|2 — (2 + 16¢2)(C;4)? — 2niC.

Then we can choose R = R(f(,fN) such that f(y,t) > 1 on K x [0,1].
Hence, by Theorem on K x [0,#] we have, considering also ¢ as a
function of (y,t) on K x [0,7],

Py, t)" < frly, D)oy, 1)~ < max f (- 0)¢(-,0)~"
= max (R*—|F(-0)—p*)¢(-,0)".

suppf+(+,0)

In the right side the dependency on R has disappeared, then there exists a

constant C' = C'(R) > 0 such that ¢(y,t)~" < C. Hence, by property i) on
¢, there exists a constant C; > 0, independent of R, such that

H>C, onK x[0,f].
Furthermore, by ([5.8)), there exists C, also independent of R, such that
H<C, onK x]J0,].

In conclusion, on K x [0,7], ¢’ is bounded both from above and below by
two positive constants that do not depend on R. Then, since K and 7 can be
enlarged as we like, we have shown that on any compact set of R x [0, o0), the
graphs of up are such that ¢’ remains bounded both from above and below
by two positive constants independent of R. Then the conclusion follows as
in the end of the proof of Theorem 7 in [4].
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