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Introduction

In this thesis we are going to analyse some motion by curvature flows
of smooth embedded hypersurfaces. Given a smooth n-dimensional oriented
manifold M and an embedding F0 : M Ñ Rn�1, a curvature flow of F0pMq
is a solution of a system of the kind# BtF px, tq � vpD2F, x, tqνpx, tq

F px, 0q � F0pxq,
(1)

where the function v is given and depends on second derivatives of the the
unknown of the problem in the sense that depends on the curvature. We
take ν as the unit normal vector pointing outward. The variable x is a local
coordinate on the hypersurface, while the parameter t is thought as time.
The study of curvatures flows in a smooth setting starts with G.Huisken in
[35], where the mean curvature flow of convex hypersurfaces was analysed.
Mean curvature flow corresponds to the case v � �H in (1), where H is
the mean curvature of the solution. It can be checked that �Hν � ∆gF ,
where ∆g is the Laplace-Beltrami operator associated to the induced metric
on the solution. Then, in this particular case, the evolution law resembles to
a heat equation where the “laplacian” also depends on time. This similarity
suggests the parabolicity of the problem and in particular the short time
existence and uniqueness of the solution. If the maximal time of existence of
the solution is finite, we say that the flow develops a singularity.
Huisken proved in his paper that any Euclidean, convex, compact hypersur-
face without boundary that evolves by mean curvature flow shrinks to a point
in finite time. Moreover, the asymptotic profile of the evolving hypersurface
becomes more and more spherical. This kind of singularity is called round
point.
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An interesting feature of mean curvature flow is that it is the gradient flow
of the area functional, i.e. the one such that the area of the hypersurface
decreases most rapidly among all velocities with fixed L2 norm. Then, mean
curvature flow naturally arises in many phenomena where a surface energy,
represented by the area, is involved. Its origin indeed can be retraced in
physics, in particular in the modelling of the evolution of interfaces, see the
paper of Mullins [50] about the motion of grain boundary in two dimensions.
Other interesting applications are developing, in which the regularizing ef-
fect of curvature flows is employed in the treatment of digital data (see for
instance [25], [30], [47]).
Curvature flows also have important applications in geometry. One of these
is the classification of submanifolds. A key point in this perspective is to find
geometric properties that are invariants of the flow, and which determine a
specific asymptotic behaviour. Huisken again, studying the mean curvature
flow on the sphere in [38], showed that any hypersurface of the sphere Sn
satisfying a certain condition on the curvatures is diffeomeorphic to a sphere
Sn�1. Another useful technique for the classification purpose is to define a
surgery procedure, that is, a controlled way to pass through singularities of
the flow. Roughly speaking, surgeries consist in a proper “cutting and glu-
ing” near singularities without losing information about topology, in order to
obtain something smooth and restart the flow till the next singular time, and
so on. Huisken and Sinestrari first introduced this surgery method in [41]
for mean curvature flow of two-convex Euclidean hypersurfaces. The central
point is that the procedure ends in finitely many steps and the initial man-
ifold is recognized to be diffeomorphic either to Sn or to a finite connected
sum of Sn�1 � S1. More recently, Huisken and Brendle developed in [39] a
surgery method for mean curvature flow of mean convex surfaces in R3.
Curvature flows have been also employed in obtaining alternative proofs of
known geometric inequalities, see for instance [49], [57].

After [35], the motion of convex hypersurfaces under various curvature flows
has been widely investigated. Looking at the result of Huisken, an aim is to
find under what conditions on the velocity and the initial datum the conver-
gence to a round point occurs.
In most cases in the literature the function v in (1) is a decreasing function
of the principal curvatures of the unknown of the problem. Monotonicity is
a fundamental ingredient for the local existence and uniqueness of the so-
lution, since ensures the parabolicity of the problem. Usually, the velocity
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is assumed to be a homogeneous functions of the principal curvatures. The
case of homogeneity degree equal to one is better known and investigated.
There are results of convergence to a round point for generic speed functions,
see for instance [5], [14]. When the homogeneity degree is grater than one,
similar results hold under some additional hypotheses. Typically, one have to
require a pinching condition on the initial submanifold i.e., roughly speaking,
a control between the principal curvatures of the kind

λ1

λn
¡ C, (2)

for a suitable constant C ¡ 0, where λ1 ¤ � � � ¤ λn are the principal curva-
tures. Since (2) is generally not preserved by the flow, one formulates this
condition in a different way, requiring for instance

K

Hn
¡ C 1 (3)

for some other constant C 1 ¡ 0, where K is the Gauss curvature. The
following inequalities hold in general:

λ1

λn
¤ 1, K

Hn
¤ 1
nn

and it can be checked that, if the ratio in (3) is approaching 1
nn
, which is the

value reached only by the round spheres, then λ1
λn

is approaching 1. The proof
of the convergence is then usually based on the preserving and improvement
of the pinching condition (3) during the flow. For some reference where this
technique is employed, see [2], [26] [56] and [13], where a large class of speeds
is considered. These results in higher homogeneity without requiring any
pinching are only known for low dimensions and some specific speed, see [7],
[53], [56] for results in low dimensions, or [12], [20], [27], [45] for powers of
the Gaussian curvature.

In this thesis we study a variation of the flow (1) where a constraint on
the hypersurfaces is given. This constraint produces an additional global
term in the evolution equation:# BtF px, tq � rvpD2F, x, tq � hptqs νpx, tq

F px, 0q � F0pxq
(4)

3



with hptq � hpMtq, where Mt � F pM, tq is the evolving hypersurface.
Flows of the kind (1) are usually said standard, while flows like (4) are called
constrained. During the thesis we will omit, for brevity, the dependence of
v on the derivatives of F . In our case, h comes out from the constraint on
the hypersurfaces to have constant area or to enclose a region of constant
volume. Many constrained flows were studied by various authors. In [36],
Huisken proved the counterpart result of [35] for volume preserving mean
curvature flow: the convergence to a round point in finite time is replaced by
the convergence to a round sphere in infinite time. Results of convergence to
a round sphere for generic velocities that are homogeneous of degree one in
the principal curvature are given in [49]. For higher homogeneity, analogous
results are known for general velocities under a pinching condition, see for
instance [24].
The main original results in this thesis concern curvature flows that are not
homogeneous of degree one in the principal curvatures. As in [8], [58] we do
not employ any pinching condition, but we use the monotonicity of a suit-
able isoperimetric ratio of the hypersurface under the flow, which is a peculiar
property of the volume/area preserving case. This property, in fact, does not
hold in general for standard flows, see for instance [10] on non-convergence
results for standard curvature flows of curves. Thanks to the control on the
isoperimetric ratio, we get a uniform bound on the inner and outer radii of
the evolving hypersurfaces. In this respect, constrained flows exhibit a better
behaviour than the standard ones.
A general difficulty in studying such flows is that the constrain produces some
non local extra terms in the evolution equations, making the applicability of
the maximum principle more difficult. As a consequence, properties that are
preserved by standard flows, does not hold any more in the constrained case.
For some examples in the volume/area preserving mean curvature flow, see
[23].

The thesis is articulated as follows. In the first chapter we recall some general
preliminaries that will apply to any flow that we will see in the following, as
theorems of existence and uniqueness of the solution for short times and the
maximum principle, and we compute the evolution equations for the main
geometric quantities associated to the hypersurface.

In Chapter 2 we analyse a generic volume preserving curvature flow, with
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velocity given by

BtF px, tq � r�σpx, tq � hptqsνpx, tq
where σpx, tq � Eα

k px, tq with α ¥ 1
k
and Ek the k-th symmetric polynomial

in the principal curvatures. These flows are related to the mixed volumes,
which are quantities that generalize the notion of area and volume of a convex
body, and that can be expressed as boundary integrals of the polynomials
Ek. Using the monotonicity of a suitable mixed volume under the flow, we
obtain a bound on the inner and outer radius of our hypersurface, which in
turn implies a uniform upper bound on the speed and the global existence
of the solution. By a further analysis, we can prove that Ek converges to its
mean value in an integral sense and that the solution converges to a round
sphere in the Hausdorff metric.
We can obtain a stronger result when we consider the volume preserving
scalar curvature flow, corresponding to k � 2 and α � 1. In this case we
get additional estimates which give a uniform bound on the curvature. This
allows us to show that the convergence to a round sphere is smooth and
exponentially fast.

Chapter 3 is dedicated to the study of a volume/area preserving curvature
flow driven by a generic function of the mean curvature:

BtF px, tq � r�φpHpx, tqq � hptqsνpx, tq
with φ positive and increasing in H, but not necessarily homogeneous. Veloc-
ities of this kind have been considered sometimes in the past literature. We
recall in particular the paper by Smoczyk [59] where the validity of differential
Harnack inequalities was studied, and the one by Alessandroni and Sinestrari
[3] where the singular profile of mean convex solutions was investigated for a
particular class of functions. In our case, the additional hypotheses we put
on the velocity are fairly general, being satisfied for a large class of functions
as positive powers, exponentials and logarithms. We prove that any strictly
convex compact hypersurface converges in infinite time to a round sphere
that has the same area/volume as the initial datum. The convergence is
smooth and exponentially fast. As for the previous flow, our proof does not
employ any pinching condition and exploits the monotonicity of the isoperi-
metric ratio of the hypersurface under the flow.
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In Chapter 4 we study the analogue of the flow in Chapter 3, but in the
hyperbolic setting. In [37] Huisken showed, for mean curvature flow in a
general ambient manifold N , how the curvature of N interferes with the mo-
tion of the hypersurface. In particular, the negative sectional curvature of
the ambient manifold contrasts the convergence to a round point. Inspired
by the work of Cabezas-Rivas and Miquel [22], in our analysis we restrict
our attention to the class of hypersurfaces which are convex by horospheres.
Convexity by horospheres is the natural analogue, in the hyperbolic setting,
of convexity and means that, at any point p of the hypersurfaces, there exists
a horosphere passing trough p that encloses the hypersurface. This property
translates in a condition on the curvature: denoting by �a2 the sectional
curvature of the hyperbolic space, any principal curvature of the hypersur-
face satisfies λi ¥ a. Convexity by horospheres turns out to be a good choice
when the ambient manifold is the hyperbolic space in the sense that, roughly
speaking, this property is strong enough to offset the negative curvature of
the ambient manifold and to be preserved along the flow. Also, since convex-
ity by horospheres is stronger than the strict convexity of each hypersurface,
we can relax some hypotheses of the speed function, getting some extra ex-
ample of velocities not admitted in the Euclidean case. We prove that any
compact hypersurface which is convex by horospheres converges smoothly
and exponentially fast in infinite time to a geodesic sphere with the same
area/volume as the initial datum. Also in this case, a key point is the mono-
tonicity of the isoperimetric ratio, that allows to bound uniformly the inner
and outer radii of the hypersurfaces.

We remark that for all the flows analysed in these three chapters, the ex-
ponential convergence is proved by an argument of the kind “improvement
of a pinching condition”, but we do not require any extra hypotheses on the
curvature. In fact, since we prove before that the hypersurfaces are smoothly
approaching a sphere, then the pinching comes out “spontaneously” for times
sufficiently large.

Finally, in Chapter 5 we present a partial result on entire Euclidean graphs
moving by non homogeneous curvature flows. We take the main inspiration
from [28, 29] where the authors study mean curvature flow of entire Eu-
clidean graphs, and from [4], in which a generalization to velocities which
are homogeneous of degree one in the principal curvatures is treated. The
main difference with the previous chapters is that in this case we deal with
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non compact hypersurfaces, for which even the short time existence of the
solution is not a priori guaranteed. By a technique taken from [4] and based
on an approximation via compact hypersurfaces, we prove the long time ex-
istence of the solution for strictly convex initial data that are entire graphs
of a Lipschitz function. But, instead of using some Harnack-type inequality
as in [4], we employ just the dependence of the speed on the mean curvature.
We show that the solution exists for any time, and is still an entire graph
with Lipschitz constant uniformly bounded.
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CHAPTER 1

Preliminaries and tools

1.1 Notation, basic definitions and formulas
In this section we recall some definitions and facts on Riemannian geom-

etry, in particular with regard to embedded hypersurfaces.
From now on we are going to consider F : M Ñ Rn�1 to be an embedded
orientable hypersurface of the Euclidean space without boundary, with local
coordinates px1, � � � , xnq. We endow M with the induced metric g � pgijq
given by

gijpxq �
�BF pxq

Bxi ,
BF pxq
Bxj



where p�, �q is the standard Euclidean inner product. The measure on M is
given in terms of g by dµ � a

det gij, dx. The inverse of gij will be written
as g�1 � pgijq.
We denote by ∇ the Levi-Civita connection uniquely associated to g via the
Christoffel symbols

Γkij �
1
2g

kl

�Bgil
Bxj �

Bglj
Bxi �

Bgij
Bxl



.

The second fundamental form of M is the p0, 2q symmetric tensor A � phijq
defined by

hijpxq � �
�B2F pxq
BxiBxj , νpxq



.

10



By definition of A, the following Gauss-Weingarten relations hold:
B2F

BxiBxj � Γkij
BF
Bxk � hijν,

Bν
Bxj � hjlg

lm BF
Bxm .

The eigenvalues of the second fundamental form are called principal cur-
vatures and denoted by λ1, . . . , λn. The trace of A is the mean curvature
H � λ1 � � � � � λn. We say that the hypersurface is strictly convex if all λi’s
are positive, while is mean convex if H ¡ 0.
Let a � taiju be a positive definite p2, 0q tensor. We can consider the asso-
ciated operator ∆a � aij∇i∇j, acting on functions or tensors on M. If f is
a smooth function on M, then ∆a is given in coordinates by

aij∇i∇jf � aij
� B2f

BxiBxj � Γkij
Bf
Bxk



.

When aij � gij, we recover the Laplace-Beltrami operator of M.
As usual, we always sum on repeated indices, and we lower or lift tensor
indices via g, e.g. theWeingarten operator is given by

hij � hkjg
ik.

Given tensors T � pT i1...isj1...jr q and S � pSi1...isj1...jrq on M, we use brackets to denote
their inner product

xT, Sy � T i1...isj1...jrS
j1...jr
i1...is .

In particular, the square of the norm is given by
|T |2 � T i1...isj1...jrT

j1...jr
i1...is .

There holds the following relation between the square norm of the second
fundamental form and the square of the mean curvature, due to arithmetic
reasons:

|A|2 ¥ H2

n
.

The equality is achieved if all the principal curvatures are equal to each other.
Also, if the hypersurface is convex, the norm of the second fundamental form
is bounded by the mean curvature:

|A| ¤ H.

Given a point q P Rn�1, the support function of M with respect to q is
uqpxq :� pF pxq � q, νpxqq.

The subscript q will be omitted whenever there will be no ambiguity.
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1.2 Curvature flows
A geometric flow is a motion of a Riemannian manifold given by some

partial differential equation that involves geometric quantities associated to
the manifold. If these quantities concern the curvature we say that the
manifold evolves by a curvature flow.

1.2.1 Short time existence
We focus our attention on curvature flows of this kind: given an embedded

hypersurface F0 : M Ñ Rn�1 as in the previous section, we look for a family
of maps F : M� r0, T q Ñ Rn�1, with Ft :� F p�, tq : M Ñ Rn�1, solution of# BtF px, tq � �Spλ1px, tq, . . . , λnpx, tqqνpx, tq

F px, 0q � F0pxq,
(1.1)

where F0 is a smooth embedding of a n-dimensional manifold taken as in the
previous section, and ν is chosen pointing outward. S is an homogeneous,
symmetric, increasing function of the principal curvatures, which is positive
on the positive cone Γ� :� tpλ1, . . . , λnq : λ1 ¡ 0, . . . λn ¡ 0u. We refer to
these flows as standard contracting flows.
Since S is symmetric in the principal curvatures, it can be also thought as
a GLpnq-invariant function of the second fundamental form and the metric.
Vice versa, any GLpnq-invariant function of the second fundamental form and
the metric can be written as a symmetric function of the principal curvatures
(see for instance [14, §2] for more details). Then we will use alternately the
same notation without ambiguity:

Spλ1, . . . , λnq � Sphijq � Sphij, gijq.
Short time existence for the system (1.1) can be deduced only if it is parabolic.
The linearization of the evolution equation in (1.1) is given by

BtG � BS
Bhij g

ikgjl
� B2G

BxkBxl , ν


ν � lower order terms. (1.2)

This equation is degenerate in tangential directions. It can be checked
that this is related to the invariance of the flow via tangential diffeomor-
fisms. Roughly speaking, this property is due to the very geometric nature
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of the flow, since the evolution law does not depend on the choice of the
parametrization of the hypersurface, but only on its “shape”.
We have the following theorem for the local existence of the solution. For
more details on this part, see for example [40].

Theorem 1.2.1. If F0 : M Ñ Rn is a smooth, compact hypersurface without
boundary such that

BS
Bλi ¡ 0 @i � 1, . . . , n

then (1.1) has a unique smooth solution at least on a short time interval
r0, T q, T ¡ 0.

Moreover, we have the following result, see [9], [14] and [40] for more
details.

Theorem 1.2.2. Assume Spλ1, . . . , λnq � fpspλ1, . . . , λnqq, where f is posi-
tive and increasing, and s is symmetric, homogeneous, concave and increas-
ing in each variable. Let r0, T q be the maximal time existence interval for the
solution of (1.1). If T   �8, then either lim inftÑT minMt

BS
Bλi

� 0 for some
i, or lim suptÑT maxMt |A|2 � �8.

This theorem says that the flow (1.1), with S satisfying certain properties,
can stop only if the curvature blows up, or if the parabolicity doesn’t hold
any more.

1.2.2 A priori estimates: maximum principle and its con-
sequences

A very powerful tool in the study the behaviour of the solutions of
parabolic equations is the maximum principle that, in particular, allows to
estimate a certain quantity evolving in time by some constant that only de-
pends on the initial datum. For more details, see for example [60]. There
the maximum principle is given for the Laplace-Beltrami operator, but the
same statements hold for any parabolic operator ∆a � aij∇i∇j.

Theorem 1.2.3. Let t ÞÑ pM, gijptqq a smooth flow of compact manifolds.
Let v, w : M � r0, T �s Ñ R be C2 functions such that vpx, 0q ¥ wpx, 0q for
all x P M. Given a parabolic operator ∆aptq, suppose

Btvpx, tq ¥ ∆aptqvpx, tq �∇Xptqvpx, tq � F pvpx, tq, tq
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Btwpx, tq ¤ ∆aptqwpx, tq �∇Xptqwpx, tq � F pwpx, tq, tq
for all px, tq P M� r0, T �s, where, for each time t, Xptq is a vector field and
F pt, �q : RÑ R is a Lipschitz function. Then

vpx, tq ¥ wpx, tq @t P r0, T �s.

Corollary 1.2.4. Let t ÞÑ pM, gijptqq a smooth flow of compact manifolds.
Let Xptq, ∆aptq as in the hypotheses of Theorem 1.2.3, and f : M�r0, T �s Ñ
R be C2 functions such that, on M� r0, T �s,

Btfpx, tq ¥ ∆aptqfpx, tq �∇Xptqfpx, tq

or, respectively,

Btfpx, tq ¤ ∆aptqfpx, tq �∇Xptqfpx, tq.

Then, for any t P r0, T �s,

fpx, tq ¥ min
yPM

fpy, 0q

or, respectively,
fpx, tq ¤ max

yPM
fpy, 0q.

We also give the maximum principle version for tensors, see [33, Theorem
9.1].

Theorem 1.2.5. Let t ÞÑ pM, gijptqq a smooth flow of compact manifolds,
∆aptq a parabolic operator. Let vk be a vector field and Mij a symmetric
tensor on the evolving manifolds, and Nij � ppMij, gijq a polynomial in Mij

formed by contracting products of Mij with itself using the metric. Suppose
that, on r0, T �s,

BtMij � ∆aMij � uk∇kMij �Nij.

Suppose also that Nij satisfies the null-eigenvector condition i.e., for all null-
eigenvector wk of Mij, Nijw

iwj ¥ 0. If Mij ¥ 0 at t � 0, then it remains so
on r0, T �s.

Two very important applications of the maximum principle are the fol-
lowing results.
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Proposition 1.2.6. Let F 1 : M1 � r0, T q Ñ Rn�1 and F 2 : M2 � r0, T q Ñ
Rn�1 be two hypersurfaces moving by (1.1), with M1 compact. Then the
distance between them is nondecreasing in time.

As a consequence, we obtain the following corollary, called avoidance
property.

Corollary 1.2.7. (Avoidance property) Let F 1, F 2 as in the hypotheses
of Proposition 1.2.6. If F 1pM1, 0q and F 2pM2, 0q are disjoint, then F 1pM1, tq
and F 2pM2, tq keep disjoint for all times t P r0, T q.
Proposition 1.2.8. If the initial hypersurface is compact and embedded, then
it remains embedded during the flow (1.1).

For the proofs of Propositions 1.2.6 and 1.2.8 see for example [48]. The
proofs there are given for the mean curvature flow, but they still hold for a
generic flow (1.1) with S as in our hypotheses.

1.3 Constrained flows
In Chapters 2, 3 and 4 we are going to consider flows of the kind# BtF px, tq � r�Spλ1px, tq, . . . , λnpx, tqq � hptqs νpx, tq

F px, 0q � F0pxq,
(1.3)

with S, ν and F0pMq as in (1.1). The function hptq only depends on time.
Such flows are called constrained flows, since typically the term h derives
from some constraint on the hypersurfaces, and contrasts the contractive
thrust produced by S. In our case, h will be chosen in order to force the area
or the volume enclosed by the hypersurface to be constant.
Since the term hptq only depend on time, its presence does not interfere with
the parabolicity of the flow. Then Theorems 1.2.1 and 1.2.2 are still valid
for (1.3), as well as for the maximum principle. Nevertheless, the avoidance
property does not hold any more, since in the evolution equations needed for
the proof an extra non local term appears, compromising the applicability of
the maximum principle.
Typically, the constrained flows that one analyses present a kind of balancing
between the two terms in the speed function. Then the results are about the
asymptotic behaviour and convergence to an equilibrium position. This will
be our case too.

15



1.4 Evolution equations
In [40], Huisken and Polden give the evolution equations for the main

geometric quantities associated to any flow of the kind

BtF px, tq � V px, tqνpx, tq, (1.4)

provided that is a nonlinear parabolic equation of the second order. They
consider hypersurfaces of any ambient manifolds, but here we restrict our
attention to the Euclidean ambient space. We have the following proposition,
coming from Lemma 7.4, Lemma 7.5 and Lemma 7.6 in [40].

Proposition 1.4.1. Under a flow of the kind (1.4), the following equations
hold:

Btgij � 2V hij
Btgij � �2V hij

Btdµ � V Hdµ

Btν � �∇V
Bthij � �∇i∇jV � V hikh

k
j

Bthij � �∇i∇jV � V hikh
kj

BtH � �∆V � |A|2

The following identity will be useful in the next chapters in order to
rewrite some of the evolution terms in a more convenient way. It can be
recovered by the proof of Corollary 3.3 in [40].

Proposition 1.4.2. If Λ is a smooth symmetric function of the principal
curvatures, its Hessian matrix satisfies

∇i∇jΛ � BΛ
Bhkl∇k∇lhij � B2Λ

BhklBhpq∇ihkl∇jhpq

� BΛ
Bhkl phklh

m
i hmj � hmk hilh

m
j � hkjh

m
i h

m
l � hmk hijhmlq.
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CHAPTER 2

Volume preserving flow by scalar
curvature in the Euclidean space

2.1 Presentation of the problem
Let M be an oriented, compact n-dimensional manifold without bound-

ary. Consider the problem (1.3) given by# BtF px, tq � r�σpx, tq � hptqsνpx, tq
F px, 0q � F0pxq,

(2.1)

where:

• ν denotes the outer unit normal vector of the evolving hypersurface
Mt :� FtpMq;

• σpx, tq � Eα
k px, tq with α ¥ 1

k
and Ek the k-th symmetric polynomial

in the principal curvatures, i.e.

Ekpx, tq �
¸

1¤i1 ��� ik¤n
λi1px, tq . . . λikpx, tq,

with λi, . . . λj the principal curvatures of Mt and k � 1, . . . , n;

• The function hptq is defined as

hptq :� 1
ApMtq

»
Mt

σdµ, (2.2)
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where ApMtq is the n-dimensional measure of Mt.

Such a definition of hptq ensures that the volume V olpΩtq is preserved by
the flow, where Ωt is the pn � 1q-region bounded by Mt. We will prove the
following result.

Theorem 2.1.1. Let F0 : M Ñ Rn�1, with n ¥ 1, be a smooth embedding
of an oriented, compact n-dimensional manifold without boundary, such that
F0pMq is strictly convex. Then the flow (2.1) has a unique smooth solution,
which exists for any time t P r0,8q. The solution is strictly convex and
converges in the Hausdorff distance, as t Ñ 8, to a round sphere with the
same volume as the initial datum. Furthermore, if α � 1 and k � 2, the
convergence is smooth and exponentially fast.

Notice that there is no requirement of any pinching condition of the cur-
vatures of the initial datum except for the strict convexity.

Short time existence and evolution equations. By Theorem 1.2.1 in
Chapter 1, a flow of the form (2.1) is parabolic at least on a short time
interval if Bσ

Bλi px, 0q ¡ 0 i � 1, . . . , n (2.3)

and then admits a unique smooth solution for short times. Condition (2.3)
is guaranteed, in our case, by the strict convexity of M0. Moreover, by
Theorem 1.2.2, we have the following result.

Theorem 2.1.2. Let F0 : M Ñ Rn�1 be a smooth embedding of an ori-
ented, compact n-dimensional manifold without boundary, such that F0pMq
is strictly convex. Then the flow (2.1) has a unique smooth solution Mt

defined on a maximal time interval r0, T q. If T   �8, then either

lim inf
tÑT

min
Mt

Bσ
Bλi � 0 Di, or lim sup

tÑT
max
Mt

|A|2 � �8.

We give now the evolution equations for the main geometric quantities
associated to the flow (2.1). They can be obtained from Proposition 1.4.1
taking V px, tq � �σpx, tq � hptq in (1.4).
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Proposition 2.1.3. We have the following evolution equations under the
flow (2.1):

Btgij � 2p�σ � hqhij,
Btgij � �2p�σ � hqhij,
Btν � ∇σ,
Btdµ � Hp�σ � hqdµ,
Bthij � ∇i∇jσ � ph� σqhilhlj

� ∆
9σh
i
j � :σp∇iA,∇jAq � tr

9σphlmhmn qhij � ph� pαk � 1qσqhinhnj ,
BtH � ∆

9σH � trg�1 r:σp∇iA,∇jAqs �Htr
9σphmlhlrq � ph� pαk � 1qσq|A|2,

Btσ � ∆
9σσ � pσ � hqtr

9σphmlhlrq,
Btu � ∆

9σu� tr
9σphlmhmn qu� pαk � 1qσ � h.

Proof. The first four evolution equations follow directly from Proposition
1.4.1 setting V � �σ � h. By Proposition 1.4.1 we also have

Bthij � ∇i∇jσ � pσ � hqhikhkj . (2.4)

By Proposition 1.4.2 with Λ � σ, we have
∇i∇jσ � ∆

9σhij � :σp∇iA,∇jAq
9σlmphlmhni hnj � hnl himh

n
j � hljh

n
i h

n
m � hnl hijhnmq

� ∆
9σhij � :σp∇iA,∇jAq � tr

9σphlnhnmqhij
� αkhinh

n
j � 9σklphnl himhnj � hljh

n
i h

n
mq

(2.5)

where in the last equality we used Lemma 2.1.4. Furthermore,

9σklphnl himhnj � hljh
n
i h

n
mq � 0

since all the other addenda in the right side of the last equality in (2.5) are
symmetric in i and j, as well as ∇i∇jσ.
From the evolution of hij and gij, the evolutions of hij and H can be easily
computed. Once we have the evolution of hij, we can compute

Btσ � Bσ
Bhij

Bthij �
Bσ
Bhij

∇i∇jσ � Bσ
Bhij

ph� σqhilhlj
� ∆

9σσ � pσ � hqtr
9σphilhljq.

Finally, for the evolution of the support function see [24, Lemma 3.5], formula
p3.4q.
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2.1.1 Symmetric polynomials and convex sets
It is convenient to define the symmetric polynomials also for k � 0, n� 1

setting E0 � 1 and En�1 � 0. To simplify some formulas, it is useful to
introduce the normalized symmetric polynomials

Ẽk :�
�
n

k


�1

Ek, k � 0, . . . , n, (2.6)

which satisfy Ẽkp1, . . . , 1q � 1. For the purposes of this thesis, these functions
will only be evaluated in the positive cone Γ�.

The polynomials Ek and Ẽk can be also regarded as a function of the
Weingarten operator of M. We will use the same symbol in the two cases,
since the meaning will be clear from the context. We also recall some well
known properties, see e.g. Theorem 2.3 in [42], Lemma 2.1 in [24] and the
references therein, and [51].
Lemma 2.1.4. The following relations hold, for any k � 1, . . . , n and pλ1, . . . , λnq P
Γ�.
piq BEk

Bλi
λ2
i � HEk � pk � 1qEk�1 ¥ k

n
HEk.

piiq Ẽ
1
k�1
k�1 ¤ Ẽ

1
k
k , with equality if and only if λ1 � � � � � λn and k   n.

piiiq As a function on Mt, ∇i BEk
Bhij

� 0 for any j � 1, . . . , n.

pivq If σ � Eα
k , then Bσ

Bλi
λi � αkσ.

During this chapter, we will see that flows of the kind (2.1) are related to
mixed volumes. Mixed volumes are a classical notion in convex analysis, see
e.g. [15, 21, 55]. We recall here the definitions and properties required for
our analysis.

Given a compact convex set Ω � Rn�1 and t ¡ 0, consider the set

Ω� tB :� tx� ty : x P Ω, |y| ¤ 1u.

It can be proved, see [21, §19.3.6] that the volume of this set is a polynomial
of degree n� 1 in t and can be therefore written as

VolpΩ� tBq �
n�1̧

i�0

�
n� 1
i



αit

i,
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for suitable coefficients αi depending on Ω. We then define the k-th mixed
volume of Ω as VipΩq � αn�1�i, for i � 0, . . . , n � 1. It can be proved that,
for any Ω,

Vn�1pΩq � Vol pΩq, VnpΩq � ApBΩq, V0 � αn,

where αn is the volume of the unit sphere in Rn�1. Thus, mixed volumes can
be regarded as a generalization of volume and area. They are known also as
cross sectional measures or quermassintegrals.

Mixed volumes depend continuously on the set: if tΩlu is a sequence of
convex sets converging to Ω in the Hausdorff topology, then

VipΩlq Ñ VipΩq, i � 1, . . . , n� 1.

If the convex set Ω has a smooth boundary, mixed volumes admit an
equivalent characterization as boundary integrals of the elementary symmet-
ric functions of the curvatures. In fact, it can be proved that

Vn�kpΩq �
#
V olpΩq if k � �1
pn� 1q�1 ³

Mt
Ẽkdµ if k � 0, 1, . . . , n� 1.

An important result related to the mixed volumes are the so-called Minkowski
identities, which say the following. On any closed convex hypersurface M
and for any l � 1, . . . , n, we have»

M
Ẽldµ �

»
M
u Ẽl�1 dµ, (2.7)

where u � up0 is the support function centred at any point and Ẽl, Ẽl�1 are
defined as in (2.6) in Chapter 2. These properties were originally proved by
Minkowski and Kubota. It was later proved by Hsiung [34] that they also
hold without the convexity assumption.

A remarkable property of mixed volumes is the Alexandrov-Fenchel in-
equality, see e.g. [21, §20]. Its statement is somehow technical and will not
be needed here in its general form. We recall instead some special inequali-
ties that can be recovered from Alexandrov-Fenchel’s one. For instance, for
any 0   m   l ¤ n� 1, there exists a constant Cpl,m, nq ¡ 0 such that, for
any compact convex set Ω � Rn�1 with non empty interior, we have

V m
l pΩq ¤ Cpl,m, nqV l

mpΩq, (2.8)
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and the equality occurs only for spheres. This result can be viewed as a
generalization of the isoperimetric inequality, taking l � n � 1 and m � n.
Then we can define the k � th generalized isoperimetric ratio as

IkpΩq � V n�1
k pΩq
V olkpΩq .

IkpΩq reaches its minimum only for spheres. The standard isoperimetric ra-
tio InpΩq will be denoted just by IpΩq.
The next result, called Favard inequalities, can also be deduced from Alexandrov-
Fenchel’s inequality, see [21, §20]. Given a compact convex set Ω � Rn�1

with nonempty interior and i � 1, . . . , n� 1, we have

V 2
i pΩq ¥ Vi�1pΩqVi�1pΩq, (2.9)

and the inequality is strict unless Ω is a sphere. This can be easily generalized
as follows: for any l � 1, . . . , n� 1, we have

V l�1
n�l pΩq ¥ V l

n�l�1pΩqVnpΩq. (2.10)

Again, the inequality is strict unless Ω is a sphere. To see why (2.10) holds,
observe that the case l � 1 is immediate from (2.9). The case of a general l
is obtained by induction. Suppose in fact that the assertion is true for l� 1,
that is,

V l
n�l�1pΩq ¥ V l�1

n�l pΩqVnpΩq.
On the other hand, a direct application of (2.9) gives

V 2l
n�lpΩq ¥ V l

n�l�1pΩqV l
n�l�1pΩq.

Multiplying the two inequalities, we obtain (2.10).

We recall that the inner [resp. outer ] radius of Ω is the radius of the
biggest pn�1q-dimensional sphere contained in Ω [resp. the smallest pn�1q-
dimensional sphere that contains Ω ]. We indicate inner and outer radii
respectively by R�pΩq and R�pΩq. We call inball [resp. extball ] a ball
contained in Ω of radius R�pΩq [resp. that contains Ω of radius R�pΩq ].
We will need the following property, that allows to control the “shape” of a
convex domain in function of its isoperimetric ratio. It can be found in [8,
Proposition 5.1] or [43, Lemma 4.4].
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Proposition 2.1.5. For any n ¥ 1 and c1 ¡ 0 there exist c2 � cpc1, nq with
the following property. Let Ω � Rn be a compact, convex set with non empty
interior such that IpΩq ¤ c1. Then Ω satisfies

R�pΩq
R�pΩq ¤ c2.

2.2 Long time existence

2.2.1 Preserving of convexity
We want to show the that strict convexity is a property preserved by the

flow. We will follow the strategy used in [14], where the authors consider flows
driven by general homogeneous speeds in the standard non volume-preserving
case. In our case we have some additional terms in the computations due to
the presence of hptq, but we will see easily that these terms do not interfere
with the success of the proof.
Let introduce some preliminaries and notations. Since M0 is a convex hy-
persurface, we can use the Gauss map parametrization given by

X : Sn ÝÑ M0 � Rn�1

z ÞÝÑ upzqz � ∇̄upzq
which takes z in the unique point in M0 with outward normal direction z.
Here u is the support function upzq � supqPΩ0pq, zq � pXpzq, zq, and ∇̄ is the
gradient on the sphere Sn with respect to the standard metric ḡij. If we set

τij � ∇i∇ju� ḡiju

then it can be checked that the eigenvalues of τij with respect to ḡ are the
principal radii of curvature r1, . . . , rn, with ri � λ�1

i . To describe the flow in
this setting, it is convenient to define

Φpr1, . . . , rnq �
�
σ

�
1
r1
, . . . ,

1
rn



�1{αk

.

It is well known that Φ is a concave function (see for instance [46]). As Φ
is concave, the function σ1{αk � E

1{k
k is said to be inverse concave. Inverse
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concavity plays an important role in the study of geometric flows, see for
instance [11].
We can also regard Φ as functions of τij and we can write the flow equation
as

Btupz, tq � � pΦpτijpz, tqq�1 � hptq.
Denote the derivatives of Φ with respect to τij as

9Φlm � BΦ
Bτlm

:Φlm,pq � B2Φ
BτlmBτpq .

Then τij satisfies the following equation.

Lemma 2.2.1.

Btτij � αkΦ�αk�1r 9Φlm∇l∇mτij � :Φlm,pq∇iτpq∇jτlm � pαk � 1qΦ�1∇iΦ∇jΦs
� αkΦ�αk�1

9Φlmḡlmτij � pαk � 1qΦ�αkḡij � hptqḡij. (2.11)

Proof. Follows from [14, Lemma 10], also noticing that the additional term
involving hptq comes out from

Btτij � Btp∇̄i∇̄ju� ḡijuq � ∇̄i∇̄jBtu� ḡijBtu
� �∇̄i∇̄jΦ�1 � ḡijΦ�1 � hptqḡij.

Proposition 2.2.2. Let Mt be a convex solution of (2.1) on a time interval
r0, T0q and suppose that hptq ¤ h� for every t P r0, T0q for a suitable h� ¡ 0.
If we set λminptq � minxPMt λ1px, tq, then we have

λminptq ¥ 1
λminp0q�1 � h�t

.

Proof. On r0, T0q we use the Gauss map parametrization and we have the
evolution equation of τij given by Lemma 2.2.1. This is a parabolic equation
where the first order terms give a negative contribution, due to the concavity
of Φ. Furthermore, by Lemma 4 in [14],

9Φlmḡlm �
ņ

i�1

BΦ
Bri ¥

�
n

k


�1{αk

.
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Also, observe that

Φ ¤
�
n

k


�1{αk

r1.

Then, at a maximum eigenvalue of τij, the reaction terms in (2.11) give

�αkΦ�αk�1
9Φlmḡlmτij � pαk � 1qΦ�αkḡij � hptqḡij

¤ �
�
n

k


�1{αk

Φ�αk�1r1ḡij � h�ḡij

¤ h�ḡij.

Then, by the maximum principle for tensors recalled in Theorem 1.2.5, the
radii can increase, but only by an amount which is bounded as long as hptq
is bounded. More precisely, if r1p0q denotes the largest radius at time 0, the
maximum principle for tensors implies that the matrix τij � pr1p0q � h�tqḡij
remains negative definite for all times, that is, the principal radii on Mt are
bounded from above by r1p0q � h�t. The assertion follows.
Corollary 2.2.3. Let r0, T q be the maximal interval of existence of the solu-
tion of (2.1). Then Mt is convex for all t P r0, T q. In addition, if T   �8,
then the curvature of Mt becomes unbounded as tÑ T .
Proof. As hptq is bounded on any compact subinterval of r0, T q, the convexity
of Mt follows from the previous proposition. If T   �8 and the curvature is
bounded, then we also have a bound on hptq for t P r0, T q, and the previous
proposition shows that Mt remains uniformly convex as tÑ T . This shows
that the flow is uniformly parabolic and has bounded curvature on r0, T q.
Well known regularity results, see e.g. [49, 24, 13], give uniform bounds
on all derivatives of the solution and imply that Mt converges to a smooth
strictly convex limit as tÑ T . Then we can restart the flow, in contradiction
with the maximality of T .

2.2.2 A monotone quantity
An important feature of the flow (2.1) is the monotonicity of a suitable

isoperimetric ratio. This property was observed by M. Gage [31] for the area
preserving mean curvature flow.
First of all notice, with the following Lemma, that the definition of hptq
given by (2.2) keeps the volume constant during the flow. Denote by Ωt the
pn� 1q-dimensional region enclosed by Mt.
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Lemma 2.2.4. The volume V olpΩtq is preserved by the flow (2.1).

Proof.

BtV olpΩtq �
»

Mt

p�σ � hqdµ

� �
»

Mt

σdµ� 1
ApMtq

»
Mt

σdµ

»
Mt

dµ � 0

We observe that there is a particular mixed volume, related to k, that
exhibits a property of monotonicity.

Lemma 2.2.5. Along the flow (2.1),with σ � Eα
k for a given k � 1, 2, . . . n,

we have
d

dt

»
Mt

Ek�1dµ ¤ 0,

and the inequality is strict unless Mt is a round sphere.

Proof. By Proposition 2.1.3 and Lemma 2.1.4 and integrating by parts, we
have

d

dt

»
Mt

Ek�1dµ �
»

Mt

BEk�1

Bhij
�
∇i∇jEk � pσ � hqhimhmj

�
dµ

�
»

Mt

Ek�1Hp�σ � hqdµ

�
»

Mt

tpσ � hq pHEk�1 � kEkq � Ek�1Hp�σ � hqu dµ

� k

»
Mt

Ekp�σ � hqdµ � �k
»

Mt

pσ � hqpEk � h1{αqdµ.

which is a negative quantity, since the function q ÞÑ qα is increasing. More-
over, this quantity is zero only if Ek is constant on the hypersurface, and this
can only happen for round spheres (see [51]).

Using (2.8) and Lemma 2.2.5 we obtain the following corollary.

Corollary 2.2.6. There exist constants V , V ¡ 0 depending only on M0
and k, n such that, along the flow (2.1),

V ¤ Vn�k�1pΩtq ¤ V .
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Proof. From Lemma 2.2.5 and (2.8) with l � n� 1 and m � n� 1 it follows

Vn�k�1pΩ0q ¥ Vn�k�1pΩtq ¥ C̃ V olpΩtq
n�k�1
n�1 � C̃ V olpΩ0q

n�k�1
n�1 ,

for a suitable C̃ � C̃pn, kq ¡ 0.

It is now natural consider the generalized isoperimetric ratio involving
the pn� k � 1q-th mixed volume:

In�k�1pΩtq � V n�1
n�k�1pΩtq

V oln�k�1pΩtq .

By Lemma 2.2.5, In�k�1pΩtq is decreasing along the flow and, in particular,
bounded from above.

Proposition 2.2.7. For any n ¥ 1, 1 ¤ k ¤ n and c1 ¡ 0 there exist
c2 � cpc1, nq with the following property. Let Ω � Rn be a compact, convex
set with non empty interior such that In�k�1pΩq ¤ c1. Then Ω satisfies

R�pΩq
R�pΩq ¤ c2,

with R�pΩq and R�pΩq respectively the outer and inner radius associated to
Ω.

Proof. We observe that a bound on In�k�1 implies a bound on the standard
isoperimetric ratio involving the area. In fact, we have

ApBΩqpn�1q

V olpΩqn � V pn�1q
n pΩq
V n
n�1pΩq

¤ rVn�k�1pΩqs
npn�1q
n�k�1

V n
n�1pΩqn

� rIn�k�1pΩqs n
n�k�1 .

The assertion then follows from Proposition 2.1.5.

Let us set R�ptq � R�pΩtq and R�ptq � R�pΩtq. By Proposition 2.2.2
we know that the solution of (2.1) stays strictly convex along the flow. Then
we can use Proposition 2.2.7 to get the following corollary.

Corollary 2.2.8. There exist constants R�, R� ¡ 0 such that along the flow

R�   R�ptq ¤ R�ptq   R�
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Proof. By virtue of the boundedness of the isoperimetric ratio, we can use
Proposition 2.2.7 to say that R�ptq

R�ptq
is uniformly bounded by a constant c2

depending only on n, ApM0q and V olpΩ0q. Then, comparing V olpΩtq with
the volume of a ball and using Corollary 2.2.6, we find

V1 ¤ V olpΩtq ¤ ωn
pR�ptqqn�1

n� 1 ¤ ωn
pc2R�ptqqn�1

n� 1 ¤ cn�1
2 V olpΩtq ¤ cn�1

2 V2,

where ωn � ApSnq. Then we obtain bounds from both sides on R�ptq and
R�ptq.

2.2.3 Upper bound on the velocity
Thanks to Corollary 2.2.8 and Proposition 2.2.3, we are now able to

control uniformly the velocity of the flow, and obtain curvature bounds which
imply the long time existence for the solution. To do this, we follow a method
first introduced by Tso [61] and adapted by Andrews and by McCoy [8, ?] to
the volume preserving setting.

Lemma 2.2.9. Given t̄ P r0, T q, let q̄ P Ωt̄ be such that BR�pt̄qpq̄q � Ωt̄.
Then

BR�pt̄q{2pq̄q � Ωt @t P rt̄,mintt̄� τ, T uq
for some constant τ ¡ 0 that only depends on n,ApM0q and V olpΩ0q.
Proof. Define rpx, tq :� |F px, tq � q̄| and consider upx, tq � uq̄px, tq the sup-
port function with respect to the point q̄. Then

Btr � 1
2rBtr

2 � ph� σqu
r
¡ �σu

r
¡ �σ. (2.12)

Let rBptq be the radius of the ball centred in q̄ such that$&
%r

1
Bptq � ��n

k

�α 1
rαkB ptq

rBpt̄q � R�

(2.13)

Define fpx, tq :� rpx, tq � rBptq. Using (2.12), we obtain

Btf ¡ �σ �
�
n

k


α 1
rαkB

.
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At time t̄, fp�, t̄q ¡ 0. Suppose that there exists a first time t� ¡ t̄ such that
fpx�, t�q � 0 at some point x�. Then Btfpx�, t�q ¤ 0. In addition, the ball
with radius rBpt�q touches Mt� from the inside at the point F px�, t�q, which
implies

σpx�, t�q ¤
�
n

k


α 1
rαkB pt�q ùñ Btfpx�, t�q ¡ 0.

From this contradiction, it follows that for every time t where the flow (2.13)
is defined, we have rpx, tq ¥ rBptq. By the explicit expression for the solution
of (2.13) we have

rBptq �
�
R�pt̄q3 � 6

npn� 1qpt� t̄q


¥ R�pt̄q

2 ðñ t� t̄ ¤ 7
12npn� 1qR�pt̄q,

then we can choose
τ � 7

12npn� 1qR�.

Proposition 2.2.10. There exists a positive constant C1, only depending on
M0, such that

σpx, tq   C1

for every px, tq P M� r0, T q.
Proof. By Lemma 2.2.9, for every t̄ P r0, T q, exists q̄ such that

BR�{2pq̄q � Ωt @t P rt̄,mintT, t̄� τuq.

Let us set upx, tq � uq̄px, tq. Choosing c :� R�

4 we obtain, by the convexity
of Mt,

c ¤ u� c ¤ d, @ t P rt̄,mintT, t̄� τuq, (2.14)

where d � supr0,T qpdiamMtq is finite by Corollary 2.2.8. Then, the function

W px, tq :� σpx, tq
upx, tq � c
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is well defined on rt̄,mintT, t̄� τuq. Standard computations show that

BtW � pu� cqBtσ � σBtu
pu� cq2

� pu� cq∆
9σσ � σ∆

9σpu� cq
pu� cq2 � pαk � 1qW 2

� cW

u� c
tr

9σphilhljq � h
W � tr

9σphilhljq
u� c

and

∆
9σW � pu� cq∆

9σσ � σ∆
9σpu� cq

pu� cq2 � 2
u� c

x∇u,∇W y
9σ

Now, define

W ptq :� sup
Mt

W px, tq Xptq :� tx P M|W px, tq � W ptqu

where by “supMt
” we mean the supremum taken on M� ttu.

Then, using Lemma 2.1.4, we find that the upper Dini derivative D�W
satisfies

D�W ¤ sup
Xptq

"
pαk � 1qW 2 � cW

u� c
tr

9σphilhljq
*

¤ W

u� c
sup
Xptq

"
pαk � 1qσ � αkc

H

n
σ

*

� W
2 sup
Xptq

"
αk � 1� αkc

H

n

*

¤ W
2 sup
Xptq

#
αk � 1� αkc

�
n

k


�1{k

E
1{k
k

+

¤ W
2
�
αk � 1� αkc1�1{αk

�
n

k


�1{k

W
1{αk

�

where, for the last inequality, we used (2.14).
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Now, choose C̃ ¡ 0 large enough such that$'&
'%
C̃ ¥ c�αk�1

�
αk � 2
αk


αk �
n

k


α

1
C̃
  τ

(2.15)

so that, if W ¡ C̃, then
D�W ¤ �W 2

.

Then, by a comparison argument,

W ¤ max
"

max
M0

W, C̃

*
on r0,mintτ, T uq (2.16)

in the case t̄ � 0, and

W ¤ max
"

1
t� t̄

, C̃

*
on rt̄,mintt̄� τ, T uq

for a general t̄. Then we also have

W ¤ C̃ on
�
t̄� 1

C̃
,mintt̄� τ, T u



. (2.17)

Since t̄ is arbitrary, combining (2.16) and (2.17) and using the second condi-
tion of (2.15), we obtain

W ¤ max
"

max
M0

W, C̃

*
on r0, T q,

which implies the assertion, since σ ¤ dW by (2.14).

If k ¡ 1, the bound on σ provided by the above theorem does not im-
ply that the curvature is bounded. In fact, there remains the possibility
that some principal curvatures become unbounded while others tend to zero.
However, we can already exclude this behaviour on any finite time interval,
and obtain that the solution exists for all times. We begin by estimating the
mixed volumes together with the volume preserving term.
Corollary 2.2.11. All mixed volumes VipΩtq are bounded from above and
below by positive constants uniformly for t P r0, T q. Similarly, there are two
constants β, γ ¡ 0, only depending on M0 such that, on r0, T q

β ¤ hptq ¤ γ.
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Proof. The bound from below follows from (2.8) and the volume preserving
property

VipΩtq ¥ C VolpΩtq
n�i
n�1 � C VolpΩ0q

n�i
n�1 .

Here we denote by C all constants depending on i, n but not on t. Inequalities
(2.8) also give a bound from above for n�k�1 ¤ i ¤ n, thanks to Corollary
2.2.6. In the case 1 ¤ i ¤ n � k, we can use Lemma 2.1.4 and Proposition
2.2.10 to obtain

VipΩtq � C

»
Mt

En�idµ ¤ C

»
Mt

E
n�i
k

k dµ ¤ CApMtq � CVnpΩtq ¤ C.

The boundedness from above of hptq follows from Proposition 2.2.10. Since
the mixed volume are uniformly bounded from both sides, a bound from
below on hptq is equivalent to a bound on

³
Mt

σdµ. Let η ¡ 0, and set
M̃t � tx P M | Ekpx, tq ¥ ηu. Then,

C ¤ Vn�kpΩtq � C

»
Mt

Ekdµ � C

»
M̃t

Ekdµ� C

»
MtrM̃t

Ekdµ

CApM̃tq � CηApMtq ¤ CApM̃tq � C,

then
ApM̃tq ¥ C

and we can conclude»
Mt

σdµ ¥
»

M̃t

σdµ ¥ ηαApM̃tq ¥ C.

We can now prove that the solution to (2.1) exists for all times.
Theorem 2.2.12. The solution Mt of the flow 2.1 exists for t P r0,�8q.
Proof. Suppose that the maximal time T is finite. By Proposition 2.2.2 and
Corollary 2.2.11, we obtain that the principal curvatures are bounded from
below for all t P r0, T q by some constant λ0. It follows, using Proposition
2.2.10,

λn � λn�k�1 � � �λn
λn�k�1 � � �λn�1

¤ Ek

λk�1
0

¤ C
1
α
1

λk�1
0

,

which shows that the curvatures are also bounded from above on r0, T q. This
contradicts Corollary 2.2.3 and shows that T is infinite.
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2.3 Convergence to a sphere

2.3.1 Hausdorff convergence
A crucial property of the flow (2.1) is that, as t goes to infinity, Ek tends

to its mean in an integral sense.

Theorem 2.3.1. As tÑ �8 we have
³

Mt
|σ � hptq|2 dµÑ 0

Proof. Let us estimate the derivative of our integral, which can be rewritten
as »

Mt

|σ � hptq|2dµ �
»

Mt

σ2dµ� 1
|Mt|

�»
Mt

σdµ


2

.

We find, using Proposition 2.1.3 and 2.1.4,

d

dt

»
Mt

σdµ �
»

Mt

pσ � hqptr
9σphikhkj q �Hσqdµ

�
»

Mt

pσ � hqppα � 1qHσ � αpk � 1qEα�1
k Ek�1qdµ

Since h,Ek, Ek�1 are all uniformly bounded, as well as the area of Mt, then���� ddt
»

Mt

σdµ

���� ¤ C

»
Mt

Hdµ� C

which is also uniformly bounded, since the integral of H is equal to Vn�1pΩtq
up to a constant factor. In addition, we have

d

dt
|Mt| � �

»
Mt

Hpσ � hqdµ.

Therefore ���� ddt |Mt|
���� ¤ C

»
Mt

Hdµ,

which is uniformly bounded. Finally we compute

d

dt

»
Mt

σ2dµ �
»

Mt

��2|∇σ|2
9σ � σpσ � hqtr

9σphikhkj q � σHpσ � hq� dµ
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where |∇Ek|2
9σ � 9σij∇iEk∇jEk. The gradient term gives a negative contri-

bution, while all the remaining terms have a bounded integral by similar
arguments as before. It follows that we can find an upper bound

d

dt

»
Mt

|σ � h|2dµ ¤ C, (2.18)

where C does not depend on t. On the other hand, since from Lemma 2.2.5
Vn�k is decreasing, then» 8

0

�»
Mt

|σ � h||Ek � h1{α|dµ


dt   �8.

If 0 ¤ α ¤ 1, it can be easily checked that

|σ � h| ¤ |Ek � h1{α|
hp1�αq{α

¤ βpα�1q{α|Ek � h1{α|,

where the last inequality comes from Corollary 2.2.11.
If α ¥ 1, then from Proposition 2.2.10 and Corollary 2.2.11 it follows that

|σ � h| ¤ αpmaxtEk, h1{αuqα�1|Ek � h1{α| ¤ C|Ek � h1{α|

for some constant C ¡ 0. Then, in any case, there exists a constant C 1 ¡ 0
such that» 8

0

�»
Mt

|σ � h|2dµ


dt ¤ C 1

» 8

0

�»
Mt

|σ � h||Ek � h1{α|dµ


dt   �8.

(2.19)
Let us set l :� lim suptÑ�8

³
Mt

|σ � h|2dµ. If l ¡ 0, then (2.19) implies
that

³
Mt

|σ � h|2dµ oscillates infinitely many times between 0 and l with
an arbitrarily large speed as t Ñ 8. However, the one-sided bound (2.18)
is enough to exclude that

³
Mt

|σ � h|2dµ has arbitrarily fast oscillations.
Therefore the integral must tend to zero.

Lemma 2.3.2. For any p ¡ 0, we have

lim
tÑ8

»
Mt

σpdµ� |Mt|hptqp � lim
tÑ8

»
Mt

|σp � hptqp| dµ � 0.
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Proof. Thanks to our bounds on σ and h, we easily check as for the proof of
the previous Theorem that, if 0   p   1, then

|σp � hp| ¤ |σ � h|
h1�p ¤ C|σ � h|

while, if p ¥ 1,

|σp � hp| ¤ ppmaxtσ, huqp�1|σ � h| ¤ C|σ � h|.
Thus, for any p ¡ 0, we find����

»
Mt

σpdµ� |Mt|hptqp
���� ¤

»
Mt

|σp � hptqp|dµ ¤ C

»
Mt

|σ � hptq|dµ

¤ C|Mt|1{2
�»

Mt

|σ � hptq|2dµ

1{2

,

which tends to zero as tÑ �8, by the previous theorem.

The next lemma is inspired by the proof in [34] that a convex hypersurface
with constant Ek is a sphere.

Lemma 2.3.3. We have

lim
tÑ8

»
Mt

�
Ẽk�1 � Ẽ

k�1
k

k

	
dµ � 0.

Proof. By Lemma 2.1.4, the integral at the right-hand side is nonnegative.
Therefore, we only need to show that its lim sup is nonnpositive. Let us set

h̃ptq �
�
n

k


�α

hptq.

We have, using (2.7) and Lemma 2.1.4,»
Mt

Ẽk�1 dµ �
»

Mt

ẼkpF, νq dµ

� h̃
k�1
αk

»
Mt

Ẽ
1
k
k pF, νq dµ�

»
Mt

�
Ẽ

k�1
k

k � h̃
k�1
αk

	
Ẽ

1
k
k pF, νq dµ

¤ h̃
k�1
αk

»
Mt

Ẽ1pF, νq dµ�
»

Mt

�
Ẽ

k�1
k

k � h̃
k�1
αk

	
Ẽ

1
k
k pF, νq dµ

� h̃
k�1
αk Aptq �

»
Mt

�
Ẽ

k�1
k

k � h̃
k�1
αk

	
Ẽ

1
k
k pF, νq dµ.
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Up to a translation, we can assume that max |pF, νq| ¤ R�ptq ¤ C. There-
fore, taking into account the boundedness of Ek and Lemma 2.3.2 with
p � k�1

αk
, we have����

»
Mt

�
Ẽ

k�1
k

k � h̃
k�1
αk

	
Ẽ

1
k
k pF, νq dµ

���� ¤ C

»
Mt

���Ẽ k�1
k

k � h̃
k�1
αk

��� dµÑ 0 as tÑ 8.

We then deduce, using Lemma 2.3.2,

lim sup
tÑ8

»
Mt

�
Ẽk�1 � Ẽ

k�1
k

k

	
dµ � lim sup

tÑ8

�
h̃
k�1
αk Aptq � h̃

k�1
αk Aptq

	
� 0.

which concludes our proof.

Lemma 2.3.4. Set Ēkptq � 1
Aptq

³
Mt

Ekdµ. Then

lim
tÑ8

|hptq 1
α � Ēkptq| � 0.

Proof. Follows from Lemma 2.3.2 taking p � 1
α
.

Theorem 2.3.5. As t Ñ �8, the hypersurfaces Mt, up to translations,
converge in the Hausdorff metric to a round sphere with the same volume as
M0.

Proof. By Blaschke’s theorem, see e.g. [52], the convex sets Ωt’s, possibly
up to translations, are compact with respect to the Hausdorff metric. As
recalled in the preliminaries, the mixed volumes are continuous with respect
to the Hausdorff convergence. In particular, any limit has the same ordinary
volume as M0. If the conclusion of our theorem does not hold, there exists
a sequence Ωti converging to a limit Ω8 which is not a round sphere. We
observe that Ēkptq � Vn�kpΩtq{VnpΩtq, and we deduce

Ēkptiq Ñ Vn�kpΩ8q
VnpΩ8q .

By Lemma 2.3.3, Lemma 2.3.2 and Lemma 2.3.4, we deduce that

Vn�k�1pΩ8q � 1
n� 1 lim

iÑ8

»
Mti

Ẽk�1 dµ � 1
n� 1 lim

iÑ8

»
Mti

Ẽ
k�1
k

k dµ

� 1
n� 1 lim

iÑ8
|Mti |h̃ptiq

k�1
αk � 1

n� 1 lim
iÑ8

|Mti |Ē
k�1
k

k

� V
1
k
n pΩ8qV

k�1
k

n�k pΩ8q.
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It follows that
V k
n�k�1pΩ8q � V k�1

n�k pΩ8qVnpΩ8q.
Therefore, the set Ω8 satisfies the equality case in (2.10) and hence is a
sphere, in contradiction with our assumption.

2.3.2 Smooth convergence for scalar curvature flow
In the case k � 2 and α � 1, where the speed is given by the scalar cur-

vature, we are able to show that all principal curvatures of our hypersurfcae
remain bounded as time goes to infinity.

Proposition 2.3.6. There exist a constant C2 ¡ 0 such that on r0,8q

λi ¤ C2 @i � 1, . . . , n.

Proof. We can rewrite the evolution of H as in Corollary 4.2 of [2] :

BtH � ∆
9σH � |∇H|2 � |∇A|2 � E2|A|2 � pH|A|2 � CqH � h|A|2 (2.20)

where C � °n
i�1 λ

3
i . At a local maximum point for H, the terms containing

derivatives are non positive. Let us analyze the reaction terms. Since E2 ¤
C1, we can write

H|A|2 � C � |A|2
n�1̧

i�1
λi �

n�1̧

i�1
pλn � λiqλ2

i ¤ |A|2
n�1̧

i�1
λi � λn

n�1̧

i�1
λ2
i

¤ |A|2
n�1̧

i�1
λi � pn� 1qλnλ2

n�1 ¤ |A|2
n�1̧

i�1
λi � pn� 1qC1λn�1.

Then we can estimate

�E2|A|2 � pH|A|2 � CqH ¤ �λn|A|2
n�1̧

i�1
λi �H|A|2

n�1̧

i�1
λi � pn� 1qnC1λn�1λn

¤ |A|2pH � λnq
n�1̧

i�1
λi � pn� 1qnC1λn�1λn

¤ pn� 1qn  pn� 1qpλnλn�1q2 � C1λnλn�1
(

¤ pn� 1qn2C2
1 ,
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We conclude from equation (2.20) that, at any local maximum of H,

BtH ¤ pn� 1qn2C2
1 �

β

n
H2

with α as in Corollary 2.2.11. The maximum principle implies

Hpx, tq ¤ max
#

max
M0

H,nC1

d
pn� 1qn

β

+
.

at any time t P r0,8q. Since Mt is convex, the same bound holds for any
principal curvature.

Once we have the boundedness of all principal curvatures, the last step is
to show that the flow is uniformly parabolic as tÑ 8. To do this, we obtain
a bound from below on the speed.

Proposition 2.3.7. There exists a positive constant C3, only depending on
n and M0, such that

E2px, tq ¡ C3

for every px, tq P M� r0,8q.
Proof. We already know that Mt converge to a round sphere in the Hausdorff
metric, up to a translation. Therefore, for any ε ¡ 0, there exists Tε such
that, for any t0 ¥ Tε, there exists a point q � qpt0q such that

BR�εpqq � Ωt0 � BR�εpqq.

Since the speed is bounded, there exists τ � τpεq such that

BR�2εpqq � Ωt � BR�2εpqq, t P rt0, t0 � δs.

If we now consider the support function u � pF �q, νq and we set c � R�3ε,
we have

ε ¤ u� c ¤ 5ε
on Mt, for every t P rt0, t0 � τ s. On this time interval, we consider the
function

W px, tq � E2px, tq
c� upx, tq .
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Some computations show that

pBt �∆
9σqW � 2

c� u
x∇u,∇W y

9σ � 3W 2 � cW

c� u
pHE2 � 3E3q

� h

c� u
W � h

c� u
pHE2 � 3E3q

¥ 2
c� u

x∇u,∇W y
9σ �W 2p3� cHq �Wh

�
1

c� u
�H




Let H̄ denote the supremum of H along the flow, and let us choose ε �
p10H̄q�1, so that

1
c� u

�H ¥ 1
5ε � H̄ � H̄.

Then, at any point where the minimum of W on Mt is attained, we have

BtW ¥ �W 2p3� cH̄q �WhH̄ ¥ W pαH̄ �W p3�RH̄qq.

This shows that W cannot attain a new minimum smaller than αH̄
3�RH̄ at

a time t ¥ Tε, and implies that E2 is bounded from below by a positive
constant for all times.

From Proposition 2.3.7, it follows that at least two principal curvatures
are uniformly bounded from below, i.e. there exists λ ¡ 0 such that

λn�1px, tq, λnpx, tq ¡ λ for all px, tq P M� r0,8q.
Then the operator 9σij is uniformly parabolic on r0,8q since, taken ω �
pω1 . . . , ωnq P Rn,

9σijωiωj � BE2

Bλi ω
2
i � pH � λiqω2

i ¥ pH � λnq|ω|2 ¥ λn�1|ω|2 ¡ λ|ω|2.

Arguing as in the proof of Theorem 6.4 in [24], we find that all the derivatives
of the curvatures are bounded on r0,8q. Therefore, the Hausdorff conver-
gence of the Mt’s to a sphere is also a convergence in the C8 norm.

Finally, in order to obtain the exponential rate of the convergence we can
observe that, after a certain time t�, the pinching condition p1.6q appearing
in [24] holds. Then we can apply Theorem 7.7 of that paper to conclude
that the hypersurfaces Mt converges exponentially to a round sphere, with
no need to add space isometries. The proof of Theorem 2.1.1 is complete.
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CHAPTER 3

Volume/Area preserving non
homogeneous flows: Euclidean case

In this chapter and in the next one we will present curvature flows with
velocities that are not homogeneous functions of the principal curvatures.
The study of these flows is not in complete generality, but the key ingredient
is the fact that the velocity is an increasing function of the mean curvature
(which is homogeneous of degree one in the principal curvatures). In addition
to monotonicity, we have to require some other hypotheses which are just
technical and satisfied by a large class of functions.

3.1 Presentation of the problem
Let M be an oriented, compact n-dimensional manifold without bound-

ary. Consider the problem (1.3) given by# BtF px, tq � r�φpHpx, tqq � hptqsνpx, tq
F px, 0q � F0pxq,

(3.1)

where:
• φ : r0,�8q Ñ R is a continuous function, C2 differentiable in p0,�8q

with the following properties:

iq φp0q � 0, lim
αÑ8

φpαq � 8;
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iiq φ1pαq ¡ 0 @α ¡ 0;

iiiq lim
αÑ0

φ1pαqα2

φpαq � 0, lim
αÑ8

φ1pαqα2

φpαq � 8;

ivq lim
αÑ0

φ1pαqα � 0;

vq φ2pαqα � 2φ1pαq ¥ 0 @α ¡ 0.

• The function hptq is either defined as

hptq :� 1
|Mt|

»
Mt

φpHqdµ (3.2)

or as
hptq :�

³
Mt

HφpHqdµ³
Mt

Hdµ
. (3.3)

The choice of the constraining term h is made in order to keep the volume
enclosed by Mt constant in case (3.2), and in order to keep the area of Mt

constant in case (3.3).
We will prove the following result.

Theorem 3.1.1. Let F0 : M Ñ Rn�1, with n ¥ 1, be a smooth embedding
of an oriented, compact n-dimensional manifold without boundary, such that
F0pMq is strictly convex. Then the flow (3.1) with hptq given by (3.2) (resp.
(3.3)) has a unique smooth solution, which exists for any time t P r0,8q.
The solution is still strictly convex and converges smoothly, as t Ñ 8, to a
round sphere that encloses the same volume (resp. has the same area) as the
initial datum M0.

This theorem can be regarded as a generalization of the result in [58],
where the case φpαq � αk with k ¡ 0 was considered. Here we are able
to treat a more general class of speeds depending on the mean curvature,
where no assumption of homogeneity or convexity/concavity is made. As
we said before, the main assumption is the positivity of φ1. The additional
requirements we put on φ are satisfied in most of the natural examples. For
example, linear combinations of powers

φpαq �
ļ

i�1
ciα

ki ci, ki ¡ 0
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satisfy assumptions iq-vq. There are also easy examples with non polynomial
growth: for example

φpαq � logp1� αq or φpαq � eα � 1

satisfy our hypotheses.

Short time existence and evolution equations. Even if φ is not homo-
geneous, the dependence on H and the positivity of φ1 ensure the parabolicity
of the problem. In fact, as we have seen in Chapter 1, the linearization of
the evolution equation in (3.1) is an equation of the form

BtG � φ1gkl
� B2G

BxkBxl , ν


ν � l.o.t.

Since H ¡ 0 on the initial datum, then φ1 ¡ 0 at time zero, and then by
Theorem 1.2.1 the flow (3.1) has a unique smooth solution Mt defined on a
maximal time interval r0, T q. Moreover, by Theorem 1.2.2, T is finite only if
the curvature blows up, or if the flow loses parabolicity.
The evolution equations for (3.1) can be recovered by Proposition 1.4.1 set-
ting V px, tq � �φpHpx, tqq � hptq in (1.4).

Proposition 3.1.2. We have the following evolution equations for the flow
(3.1):

Btgij � 2p�φ� hqhij,
Btgij � �2p�φ� hqhij,
Btν � ∇φ,
Btdµ � Hp�φ� hqdµ,
Bthij � φ1∆hij � φ2∇iH∇jH � φ1|A|2hij � pφ� h�Hφ1qhikhkj ,
BtH � φ1∆H � φ2|∇H|2 � pφ� hq|A|2,
Btφ � φ1∆φ� φ1pφ� hq|A|2,
Btu � φ1∆u� φ1|A|2u� φ� φ1H � h.

Proof. The first four evolution equations follow directly from Proposition
1.4.1. For the second fundamental form we have

Bthij � ∇i∇jφ� pφ� hqhikhkj . (3.4)
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By Proposition 1.4.2 with Λ � φ,

∇i∇jφ � φ1∆hij � φ2∇iH∇jH

� gklφ1phklhmi hmj � hmk hilh
m
j � hkjh

m
i h

m
l � hmk hijhmlq

� φ1∆hij � φ2∇iH∇jH � φ1Hhmi hmj

� gklhmk φ
1philhmj � hljhimq � φ1|A|2hij.

Then, from (3.4) we have

Bthij � φ1∆hij � φ2∇iH∇jH � φ1Hhmi hmj � φ1|A|2hij
� pφ� h� φ1Hqhikhkj � gklhmk φ

1philhmj � hljhimq.

The last term is zero because of the symmetry of hij.
From the evolution of hij and gij, the evolutions of hij and H can be easily
computed. For the function φ,

Btφ � φ1BtH � φ1pφ1∆H � φ2|∇H|2 � pφ� hq|A|2q,

and the conclusion follows noticing that

∆φ � φ1∆H � φ2|∇H|2.

Finally, the evolution of the support function follows from

Btu � pF,∇φq � φ� h,

using also the equality

φ1∆u � pF,∇φq � φ1|A|2u� φ1H (3.5)

that can be calculated as in [?, Lemma 4.2].

3.2 Long time existence

3.2.1 Preserving of convexity
We show that, if the initial datum M0 is strictly convex, then the strict

convexity is preserved for all time such that the flow is defined.
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Proposition 3.2.1. If M0 is strictly convex, then Mt is strictly convex for
all t P r0, T q.
Proof. It is sufficient to show that, if Mt is strictly convex on r0, T �q, for an
arbitrary T �   T , then MT� is strictly convex. On the interval r0, T �q, let
bij :� phijq�1 the inverse of the Weingarten operator. By standard computa-
tions, we get the evolution equation of bij:

Btbij � φ1∆bij � 2φ1hmn ∇lb
n
j∇lbim � φ2pbim∇mHqpbnj∇nHq

� φ1|A|2bij � pφ1H � φ� hqδij.

In order to prove that gradient terms give a negative contribution, we rewrite
the gradients of bij in terms of gradients of hij:

hmn ∇lb
n
j∇lbim � bqjb

i
pb
r
m∇lh

m
q ∇lhpr.

Then we use the following inequality proved by Schulze (see the second-last
formula in the proof of Lemma 2.5 of [55] with k � 1)

�Hbrm∇lh
m
q ∇lhpr ¤ �∇pH∇qH,

which gives

�φ12hmn ∇lb
n
j∇lbim � φ2pbim∇mHqpbnj∇nHq

¤ � 1
H
p2φ1 � φ2Hqpbim∇mHqpbnj∇nHq ¤ 0,

(3.6)

where for the last inequality we used property vq of φ. Furthermore, since
r0, T �q is strictly contained in the existence time interval of the solution,
there exists H� ¡ 0 such that 0   H   H� on r0, T �q. Such a bound on H
also implies a bound from above on φ1H � h, thanks also to property iv) of
φ. Then, using (3.6) we obtain

Btbij ¤ φ1∆bij � φ1|A|2bij � c0,

where c0 is a constant only depending on n,M0 and H�.
So, using the maximum principle, bij is bounded on the finite interval

r0, T �s, and then on such interval all principal curvatures stay bounded from
below by a positive constant. Then, MT� is strictly convex and the conclu-
sion follows.
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3.2.2 A monotone quantity
As for the flow seen in Chapter 2, an important feature of the volume/area-

preserving flows we are considering here is that the isoperimetric ratio of the
hypersurface is non increasing in time. Now we are considering the standard
isoperimetric ratio, i.e. IpΩtq � InpΩtq. By the isoperimetric inequality,

IpΩq ¥ pn� 1qnωn, (3.7)

where ωn � ApSnq. As before, denote by Ωt the region enclosed by Mt.

Lemma 3.2.2. The flows (3.1) with hptq given by (3.2) and (3.3) preserve
the volume V olpΩtq and the area ApMtq respectively.
Proof. The proof is analogue to Lemma 2.2.4.

Lemma 3.2.3. For the flow (3.1) we have

d

dt
ApMtq ¤ 0 in case of h given by (3.2),

d

dt
V olpΩtq ¥ 0 in case of h given by (3.3).

Proof. We start from the volume preserving case. For any t, let us denote by
H̄ � H̄ptq the value such that φpH̄q � 1

ApMtq

³
Mt

φ, which is uniquely defined
by the monotonicity of φ. Then

³
Mt
rφpH̄q � φpHqs � 0, and so

d

dt
ApMtq �

»
Mt

Hp�φpHq � hq dµ �
»

Mt

rHφpH̄q �HφpHqs dµ

�
»

Mt

rH � H̄srφpH̄q � φpHqs dµ

�
»
H¥H̄

rH � H̄srφpH̄q � φpHqs dµ

�
»
H¤H̄

rH � H̄srφpH̄q � φpHqs dµ.

Since both terms on the right side are nonpositive, the assertion follows.
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Analogously, for the area preserving flow, let H̄ � 1
ApMtq

³
Mt

H. We have

d

dt
V olpΩtq �

»
Mt

r�φpHq � hs dµ

� ApMtq³
Mt

H dµ

�
�
»

Mt

φpHqH̄ dµ�
»

Mt

φpHqH dµ




� ApMtq³
Mt

H dµ

»
Mt

rφpHq � φpH̄qsrH � H̄s dµ,

which is nonnegative by an argument similar to the previous case.

From Lemma 4.2.2 and the isoperimetric inequality (3.7), we deduce the
following.

Corollary 3.2.4. For the flow (3.1) with h given either by (3.2) or (3.3)
there exist constants M1,M2, V1, V2 ¡ 0 depending only on M0,Ω0 and n
such that

M1 ¤ ApMtq ¤M2, V1 ¤ V olpΩtq ¤ V2.

Since the convexity of the initial datum is preserved along the flow by
Proposition 3.2.1, we can use Proposition... to bound uniformly the inner
and outer radii. As before, we set R�ptq � R�pΩtq and R�ptq � R�pΩtq.
Corollary 3.2.5. For a convex Mt evolving by (3.1), there are positive con-
stants R� and R� such that

R�   R�ptq ¤ R�ptq   R�,

where R� and R� depend only on n, ApM0q and V olpΩ0q.
Proof. By virtue of the boundedness of the isoperimetric ratio, we can use
Proposition 2.1.5 to say that R�ptq

R�ptq
is uniformly bounded by a constant c2

depending only on n, ApM0q and V olpΩ0q. Then, comparing V olpΩtq with
the volume of a ball and using Corollary 3.2.4, we find

V1 ¤ V olpΩtq ¤ ωn
pR�ptqqn�1

n� 1 ¤ ωn
pc2R�ptqqn�1

n� 1 ¤ cn�1
2 V olpΩtq ¤ cn�1

2 V2.

Then we obtain bounds from both sides on R�ptq and R�ptq.
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3.2.3 Upper bound on the curvatures
Thanks to the uniform bounds on the inner and outer radii and the pre-

serving of the convexity, we can prove that all the principal curvatures are
bounded from above. The technique employed is analogue to the one in
Chapter 2 to bound the velocity.

Lemma 3.2.6. Given t̄ P r0, T q, let q̄ P Ωt̄ be such that BR�pq̄q � Ωt̄, where
R� is taken as in Corollary 3.2.5. Then

BR�{2pq̄q � Ωt @t P rt̄,mintt̄� τ, T uq

for some constant τ ¡ 0 that only depends on n, |M0| and |Ω0|.
Proof. Define rpx, tq :� |F px, tq � q̄| and set upx, tq :� pF px, tq � q̄, νpx, tqq.
Then

Btr � 1
2rBtr

2 � ph� φpHqqu
r
¡ �φpHqu

r
¡ �φpHq. (3.8)

Let rBptq be the radius of the ball centered in q̄ and contracting by

r1Bptq � �φ
�

n

rBptq



(3.9)

with initial datum rBpt̄q � R�. Define fpx, tq :� rpx, tq � rBptq. Using (3.8),
we obtain

Btf ¡ �φpHq � φ

�
n

rB



.

At time t̄, fp�, t̄q ¡ 0. Suppose that there exists a first time t� ¡ t̄ such that
fpx�, t�q � 0 at some point x�. Then Btfpx�, t�q ¤ 0. In addition, the ball
with radius rBpt�q touches Mt from the inside at the point F px�, t�q, which
implies

Hpx�, t�q ¤ n

rBpt�q ùñ φpHpx�, t�qq ¤ φ

�
n

rBpt�q


.

The contradiction shows that,for every time t where the flow (3.9) is defined,
we have rpx, tq ¥ rBptq. It now suffices to choose τ ¡ 0 such that rBptq ¥ R�

2
for every t P rt̄,mintT, t̄ � τuq. Notice that τ depends neither on the initial
time t̄ nor on q̄.

47



Proposition 3.2.7. At any time t P r0, T q, we have

φpHq ¤ C1

where C1 is a positive constant only depending on n and M0.

Proof. By Lemma 3.2.6, for every t̄ P r0, T q, exists q̄ such that

BR�{2pq̄q � Ωt @t P rt̄,mintT, t̄� τuq.

Let us set
upx, tq :� pF px, tq � q̄, νpx, tqq.

Choosing c :� R�

4 we obtain, by the convexity of Mt,

c ¤ u� c ¤ d, @ t P rt̄,mintT, t̄� τuq, (3.10)

where d � supr0,T qpdiamMtq is finite by Corollary 3.2.5. Then, the function

W px, tq :� φpHpx, tqq
upx, tq � c

is well defined on rt̄,mintT, t̄� τuq. Standard computations show that

BtW � pu� cqBtφ� φBtu
pu� cq2

� pu� cqφ1∆φ� φφ1∆pu� cq
pu� cq2

� φ1

u� c
h|A|2 � φ

pu� cq2 th� pφ1H � φq � c|A|2φ1u

and
φ1∆W � pu� cqφ1∆φ� φφ1∆pu� cq

pu� cq2 � 2φ1
u� c

x∇W,∇uy.

Now, define

W ptq :� sup
Mt

W px, tq Xptq :� tx P M|W px, tq � W ptqu.
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Then, discarding the negative h terms, we find that the upper Dini derivative
D�W satisfies

D�W ¤ sup
Xptq

BtW ¤ sup
Xptq

pBt � φ1∆qW

¤ W
2 �W sup

Xptq
φ1
� H

u� c
� c|A|2
u� c

	

¤ W
2 �W sup

Xptq

φ1H

u� c

�
1� c2H

nd

	

where for the last inequality we used convexity of Mt and (3.10).
Let us choose C large enough to satisfy#

C ¥ 3nd
c2

c
φpCq

  τ
(3.11)

so that H ¥ C implies that 1 � c2H
nd

¤ � 2c2

3ndH. Now, suppose that W pt�q ¥
φpCq{c for some time t�. Then, using the bound u � c ¥ c and the mono-
tonicity of φ we have that Hpx�, t�q ¥ C for any x� P Xpt�q. Then, we get
at time t � t�

D�W ¤ W
2 � 2c2

3ndW sup
Xpt�q

φ1H2

u� c
� W

2 sup
Xpt�q

"
1� 2c2φ1H2

3ndφ

*
.

Also, by property iiiq of φ, we can choose C sufficiently big such that H ¥ C
implies

1� 2c2φ1H2

3ndφ   �1.

Then
D�W ¤ �W 2

,

and so a standard comparison argument implies

W ¤ max
"

max
M0

W,
φpCq
c

*
on r0,mintτ, T uq (3.12)

in the case t̄ � 0, and

W ¤ max
"

1
t� t̄

,
φpCq
c

*
on rt̄,mintt̄� τ, T uq
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for a general t̄. Then we also have

W ¤ φpCq
c

on
�
t̄� c

φpCq ,mintt̄� τ, T u


. (3.13)

Since t̄ is arbitrary, combining (3.12) and (3.13) and using the second condi-
tion of (3.11), we obtain

W ¤ max
"

max
M0

W,
φpCq
c

*
on t P r0, T q,

which implies the assertion, since φ ¤ dW by (3.10).
Corollary 3.2.8. H and h are uniformly bounded on r0, T q. In particular,
all the principal curvatures are uniformly bounded.
Proof. The boundedness of H follows from Proposition 3.2.7 and property
iq of φ, while the boundedness of h follows from the boundedness of φ. The
last assertion follows from the convexity.
Theorem 3.2.9. The solution Mt of (3.1) exists for any time.
Proof. Since H and h are bounded, we can retrace the proof of Proposition
3.2.1 taking H� and h� independent of T �. Then, if T   8, all the principal
curvatures are bounded from below by a constant depending on T , hence the
flow is uniformly parabolic. By Theorem 1.2.2 in Chapter 1, since T is the
maximal time, the curvature blows up as tÑ 8. This leads a contradiction
with Corollary 3.2.8. Then T � 8.

3.3 Convergence to a sphere

3.3.1 Lower bound on the mean curvature
In order to prove the convergence of the solution to a sphere, we need

to prove the uniform parabolicity on r0,�8q. To do this, it is essential to
have a positive lower bound on H, since Proposition 3.2.1 implies uniform
convexity only on finite time intervals. Let us first give a preliminary result.
Lemma 3.3.1. Given t̄ P r0,8q, let q̄ P Ωt̄ be such that Ωt̄ � BR�pq̄q, where
R� is taken as in Corollary 3.2.5. Then

Ωt � B2R�pq̄q @t P rt̄, t̄� σs
where σ ¡ 0 is a constant that only depends on n, |M0|, |Ω0| and supt hptq.
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Proof. Let us compare Mt with the sphere centered in q̄ whose radius Rptq
increases linearly according to

Rptq � h̃pt� t̄q �R�

where h̃ � supt hptq. Rptq grows to 2R� at time t � t̄� R�

h̃
. Denote σ :� R�

h̃
.

Similarly as in Lemma 3.2.6, set

rpx, tq :� |F px, tq � q̄|, upx, tq :� pF px, tq � q̄, νpx, tqq.
Then, the function fpx, tq :� Rptq � rpx, tq satisfies

Btf � h̃� hu

r
� φu

r
¥ φu

r
¥ 0.

So fpx, tq ¥ 0 for every time, and rpx, tq ¤ Rpt̄ � σq � 2R� for t P rt̄, t̄ �
σs.
Lemma 3.3.2. There exists b ¡ 0 such that

hptq ¥ b @t P r0,8q.
Proof. Let us first prove a bound from below on 1

ApMtq

³
Mt

φpHq dµ. By
the Alexandrov-Fenchel inequalities is that there exists a constant Cn only
depending by n, such that»

Mt

H dµ ¥ CnV olpΩtq
n�1
n�1

so, by Corollary 3.2.4 we get »
Mt

H dµ ¥ C0,

where C0 ¡ 0 is a constant depending by n and the initial datum. By
Corollary 3.2.8, there exists some value H� such that H ¤ H� on Mt, for all
t. Let k � C0

2ApM0q
and M̃t � tx P M|Hpx, tq ¥ ku. Then we have

C0 ¤
»

Mt

H dµ �
»

M̃t

H dµ�
»

MtrM̃t

H dµ ¤ H�ApM̃tq � kApMtq

¤ H�ApM̃tq � C0

2
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where for the last inequality we used the fact that ApMtq ¤ ApM0q for all
t. Thus

ApM̃tq ¥ C0

2H�
. (3.14)

Let us set m � mink¤H¤H�
φpHq
H

. Using Corollary 3.2.4, we conclude

1
ApMtq

»
Mt

φpHq dµ ¥ 1
M2

»
Mt

φpHq dµ ¥ 1
M2

»
M̃t

φpHq dµ

¥ m

M2

»
M̃t

H dµ ¥ m

M2
ApM̃tqk ¥ mC0k

2H�M2
¡ 0,

which gives a uniform bound from below on hptq in the volume-preserving
case. In the area preserving case, the above computations also imply an
estimate on hptq using the inequality»

Mt

φpHqH dµ ¥ 1
ApMtq

»
Mt

H dµ

»
Mt

φpHq dµ,

which was proved in the second part of the proof of Lemma 4.2.2.

To obtain a lower bound on H, we now use a technique analogous to
Proposition 2.2.10, but we reverse the sign of the test function by considering
a ball which encloses Mt instead of an enclosed one. A similar argument
was used in [54] for an expanding flow. In contrast to the upper bound
in Proposition 2.2.10, the proof of the next result depends crucially on the
presence of the nonlocal term hptq.
Proposition 3.3.3. The mean curvature H is uniformly bounded from below
by a positive constant.

Proof. Given any t̄ ¥ 0, let q̄ be chosen so that the conclusion of Lemma
3.3.1 holds. We define

W px, tq :� φpHq
c� upx, tq c :� 4R�,

which is well defined on rt̄, t̄� σs, because on such interval we have

c

2 ¤ c� u ¤ c
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where upx, tq :� pF px, tq � q̄, νpx, tqq as usual. Standard computations show
that

BtW � φ1∆W � 2φ1
c� u

p∇W,∇pc� uqq

� φ1

c� u
h|A|2 � φ

pc� uq2 t�h� φ1H � φ� c|A|2φ1u.

Now, define

W ptq :� inf
Mt

W px, tq Y ptq :� tx P M|W px, tq � W ptqu.

Then, after disregarding the last positive term, we obtain

D�W ¥ inf
Y ptq

"
�φ

1hH2

c� u
� h

c� u
W � φ1H

c� u
W �W 2

*

¥ W inf
Y ptq

"
�φ

1hH2

φ
� h

c
� 2φ1H

c
� 2φ

c

*
. (3.15)

Using properties iq, iiiq and ivq of φ, we can fix β ¡ 0 such that, if
H P p0, βq, we have

φ1H2

φ
  1

2c, φ� φ1H   b

8 (3.16)

where b ¡ 0 is the lower bound on hptq given by Lemma 3.3.2. Suppose now
that W ptq   φpβq{c at some time t. Then φpHq ¤ β on Y ptq and therefore

D�W ¥ W

"
� h

2c �
h

c
� b

4c

*
¥ b

4cW ¡ 0. (3.17)

This shows that W cannot attain a new minimum smaller than φpβq{c, thus

W px, tq ¥ min
"
W p0q, φpβq

c

*
on r0,8q.

From this we deduce that φ, and so H, is bounded from below for all times
by a positive constant.
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3.3.2 Smooth convergence to a sphere
Proposition 3.3.3, together with Corollary 3.2.8, implies that H takes

values in a fixed compact subset of p0,�8q for all times. Therefore φ1pHq is
bounded from above and below by positive constants for all t P r0,�8q and
the flow is uniformly parabolic. By classical results, see for instance Theorem
6 in [9], we obtain that all derivatives of the curvatures are bounded for
t P r0,8q. So, by compactness, the hypersurfaces Mt converge, up to time
subsequences, to a smooth limit M8. To prove that this limit has to be a
sphere, we show that φ tends to its mean value. Define φ̄ptq � 1

ApMtq

³
Mt

φdµ.
Proposition 3.3.4.

lim
tÑ8

max
Mt

|φpHp�, tqq � hptq| � lim
tÑ8

max
Mt

|φpHp�, tqq � φ̄ptq| � 0

Proof. We start with the volume preserving flow. Of course in this case
φ̄ptq � hptq. For any t, let H̃ptq such that φpH̃ptqq � hptq. Then we compute

d

dt
ApMtq �

»
Mt

Hhdµ�
»

Mt

HφpHq dµ

�
»

Mt

pH � H̃qpφpH̃q � φpHqq dµ

� �
»

Mt

|H � H̃||φpHq � φpH̃q| dµ.

Now, using the bound on φ1 we obtain
d

dt
ApMtq ¤ � 1

supφ1
»

Mt

|φpHq � φpH̃q|2 dµ.

� � 1
supφ1

»
Mt

|φpHq � h|2 dµ.

Suppose that |φpHq�h| � a for some a ¡ 0 at some point px̄, t̄q. The deriva-
tive bounds on the curvature imply that H is uniformly Lipschitz continuous,
and then there exists a radius rpaq, not depending by px̄, t̄q, such that

|φpHq � h| ¡ a

2 on Brpaqppx̄, t̄qq
where Brpaqppx̄, t̄qq is the parabolic neighbourhood centered at px̄, t̄q of radius
rpaq. Then

d

dt
ApMtq   �ηpaq @t P rt̄� rpaq, t̄� rpaqs (3.18)
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for some η ¡ 0 only depending on a.
By Lemma 3.2.3, ApMtq is positive and decreasing in time, and so prop-

erty (3.18) can occur only on a finite number of time intervals, for any given
a ¡ 0. This shows that |φpHq � h| tends to zero uniformly.
For the area preserving flow, define H̄ � 1

ApMtq

³
Mt

Hdµ. Similarly as before,
we compute

BtV olpΩtq � 1
H̄

»
Mt

pφpHq � φpH̄qqpH � H̄qdµ

¥ C

»
Mt

pφpHq � φpH̄qqpH � H̄qdµ

¥ C inf φ1
»

Mt

|H � H̄|2dµ.

With the same argument as before, we can say that H tends to H̄ uniformly
as t tends to infinity. Then

lim
tÑ8

max
Mt

|φpHq � h| � lim
tÑ8

max
Mt

|φpHq � φpH̄q � φpH̄q � h|
� lim

tÑ8
max
Mt

|φpHq � φpH̄q| � lim
tÑ8

max
Mt

|φpH̄q � h|

� lim
tÑ8

max
Mt

�����φpH̄q �
³

Mt
HφpHqdµ³

Mt
Hdµ

�����
� lim

tÑ8
max
Mt

|φpH̄q � φpH̄q| � 0,

which concludes the proof.

Proposition 4.3.1 implies that any possible limit of subsequences of Mt

has constant mean curvature, and so is a sphere. Then, we can conclude that
the whole family Mt converges smoothly to a sphere.

3.3.3 Exponential rate
In order to prove the exponential rate, we will follow a similar method to

[56], but the procedure will be simpler because we already have the smooth
convergence to a sphere. We define

Q � K

Hn
,
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where K is the Gaussian curvature K � En. The first author who used this
ratio in order to give a pinching condition was Chow in [26].
Mt is strictly convex, then Q is well defined and strictly positive. Notice
also that Q ¤ 1

nn
, and the equality holds if and only if the hypersurface is

totally umbilic. Then we know that Q converges smoothly to the constant
value 1

nn
. Our goal is to show that this convergence is exponential.

Proposition 3.3.5. The quantities K, Q evolve according to

BtK � φ1∆K � pn� 1q
n

φ1|∇K|2
K

� K

H2φ
1|H∇hij � hij∇H|2g,b

�H
2n

nK
φ1
����∇ K

Hn

����
2

�Kφ2bij∇iH∇jH �KHpφ� φ1H � hq
�nKφ1|A|2;

BtQ � φ1∆Q� pn� 1q
nHn

φ1x∇Q,∇Hny � pn� 1q
nK

φ1x∇Q,∇Ky

�Q
�1

n
φ1|∇Q|2 � Q

H2φ
1|H∇hij � hij∇H|2g,b �Qφ2|∇H|2b� n

H
g

�Q
H
pφ1H � φ� hqpn|A|2 �H2q.

where
|H∇hij � hij∇H|2g,b � bnmb

s
rpH∇ih

m
n � hmn ∇iHqpH∇ihrs � hrs∇iHq

|∇H|2b� n
H
g �

�
bij � n

H
gij

	
∇iH∇j

Proof. By Proposition 3.1.2, we get
BtHn � φ1∆Hn � nHn�2pφ2H � pn� 1qφ1q|∇H|2 � nHn�1 pφ� hq |A|2.

Using twice the derivative law for the determinant,
∆K � ∇r

�
Kbij∇rhji

�
� Kbij∆h

j
i �

|∇K|2
K

�K∇rb
i
j∇rhji .

We can use this equation to compute the evolution of K:
BtK � KbijBthji

� φ1∆K � φ1
|∇K|2
K

�Kφ1∇rb
i
j∇rhji �Kφ2bij∇iH∇jH

�HK pφ� h� φ1Hq � nKφ1|A|2
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As in the proof of Lemma 2.1 of [56], we have

Kφ1∇rb
i
j∇rhji � � 1

n

φ1|∇K|2
K

� K

H2φ
1|H∇hij � hij∇H|2g,b �

H2n

nK
φ1
����∇ K

Hn

����
2

and then

�φ1 |∇K|
2

K
�Kφ1∇rb

i
j∇rhji � �pn� 1q

n

φ1|∇K|2
K

� K

H2φ
1|H∇hij � hij∇H|2g,b �

H2n

nK
φ1
����∇ K

Hn

����
2

.

From the last equality, we get the evolution of K.
By definition of Q, we get:

∆Q � ∆K
Hn

� K∆Hn

H2n � 2
H2n x∇K,∇Hny � 2 Q

H2n |∇Hn|2.
Then we have

BtQ � 1
Hn

BtK � K

H2nBtHn

� φ1∆Q� 2
H2nφ

1x∇K,∇Hny � 2 Q

H2nφ
1|∇Hn|2

�npn� 1q Q
H2φ

1|∇H|2 � n� 1
n

φ1
|∇K|2
KHn

�Q
�1

n
φ1|∇Q|2 � Q

H2φ
1|H∇hij � hij∇H|2g,b �Qφ2|∇H|2b� n

H
g

�Q
H
pφ1H � φ� hqpn|A|2 �H2q.

The conclusion follows observing that

x∇Q,∇Hny � 1
Hn

x∇K,∇Hny � Q

Hn
|∇Hn|2,

x∇Q,∇Ky � 1
Hn

|∇K|2 � Q

Hn
x∇Hn,∇Ky.

Similarly as in [56] we consider the function f � 1
nn
�Q. By the results of

the previous section, we already know that Mt converges to a sphere and so
f converges smoothly to zero. Now we want to prove that this convergence
is exponentially fast. The following Lemma collect two known results, the
first one by Huisken in [35], and the second one by Schulze in [56]
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Lemma 3.3.6. If there exists ε P p0, 1
n
s such that λi ¥ εH for all i �

1, . . . , n, then
piq |H∇hij � hij∇H|2 ¥ 1

2ε
2H2|∇H|2.

piiq There exists δ ¡ 0 such that n|A|2 �H2

H2 ¥ δf

Proposition 3.3.7. There are a time t̄ ¡ 0 and two constants c, δ ¡ 0 such
that for every time t ¥ t̄ we have :

f ¤ ce�δt.

Proof. By Proposition 3.3.5 we can compute the evolution equation for f :
Bf
Bt � φ1∆f � pn� 1q

nHn
φ1x∇f,∇Hny � pn� 1q

nK
φ1x∇f,∇Ky

� Q�1

n
φ1|∇f |2 � Q

H2φ
1|H∇hij � hij∇H|2g,b �Qφ2|∇H|2b� n

H
g

� Q

H
pφ1H � φ� hq �n|A|2 �H2� .

(3.19)

First, we prove that the gradient terms give a negative contribution for large
times. Since Mt converges smoothly to a round sphere, then for all ε ¡ 0
there exists t̄1 ¡ 0 such that, for all t ¥ t̄1,

λi ¥ 1
np1� εqH @i � 1, . . . , n (3.20)

which implies ���b� n

H
g
���   ε

H
.

Moreover, by Lemma 3.3.6, part piq, (3.20) also implies

|H∇hij � hij∇H|2 ¥
H2

2n2p1� εq2 |∇H|
2.

Now, we have

|H∇hij � hij∇H|2g,b �
1

λiλj
pH∇mh

i
j � hij∇mHq2

¥ 1
H2 pH∇mh

i
j � hij∇mHq2

� 1
H2 |H∇hij � hij∇H|2.
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Collecting all these estimates, we find

� Q

H2φ
1|H∇hij � hij∇H|2g,b �Qφ2|∇H|2b� n

H
g

¤ � Q

H4φ
1|H∇hij � hij∇H|2 �

���b� n

n
g
���2Qφ2|∇H|2

¤ �Q
H

�
φ1

2n2p1� εqH � εφ2

2

|∇H|2.

Since ε is arbitrary, we can found t̄1 such that the last quantity is non positive.
Now we want to show that for large enough times, the reaction terms (the
last line terms in the evolution of f) leads to a negative multiple of f . In
fact, by Proposition 4.3.1, for every positive η, there exists a time t2 ¡ 0
such that for every t ¥ t2 the following holds:

|φ� h| ¤ η.

Then, if we choose η small enough, we can find a positive constant δ2 such
that

φ1H � φ� h ¥ δ2,

when t ¥ t2. Also, by (3.20) and Lemma 3.3.6, part piiq, there exists a
positive constant δ3 such that

n|A|2 �H2

H2 ¥ δ3f.

Finally, since all the curvatures are uniformly bounded from above and below,
there exists δ4 ¡ 0 such that

QH ¥ δ4.

Let t̄ � max tt1, t2u and δ � δ2δ3δ4, then for t ¥ t̄ we have

Bf
Bt ¤ φ1∆f � pn� 1q

nHn
φ1x∇f,∇Hny � pn� 1q

nK
φ1x∇f,∇Ky � Q�1

n
φ1|∇f |2 � δf,

and the thesis follow by the maximum principle.

Arguing as in Theorem 3.5 of [56] we obtain:

Corollary 3.3.8. The second fundamental form A converges exponentially in
C8 to the one of a round sphere. In particular, there exist positive constants
c1, δ1 such that

|φpHq � h| ¤ c1e�δ
1t
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From the previous corollary it follows that the limit hypersurface exists
with no need to add isometries. In fact, for any 0 ¤ t1   t2

max
M

|F px, t1q � F px, t2q| ¤ max
M

» t2

t1

|BtF px, tq|dt

� max
M

» t2

t1

|φ� h|dt ¤ c1

δ1
pe�δ1t1 � e�δ

1t2q

then the whole family F p�, tq tends to a limit hypersurface for t that goes
to infinity. Finally, the smooth convergence of the second fundamental form
implies the smooth convergence of the metric and of the embeddings, by
standard arguments used for example in [56]. This complete the proof of
Theorem 3.1.1.
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CHAPTER 4

Volume/Area preserving non
homogeneous flows: hyperbolic case

In this chapter we study the hyperbolic version of the flow analysed in
the previous chapter. In addition to the monotonicity of the speed function,
the other hypotheses are slightly weaker since, as we will see, we don’t need
to require a specific behaviour in zero.

4.1 Presentation of the problem
Let Hn�1

a be the hyperbolic space of constant sectional curvature �a2   0
and let us take a smooth oriented, compact and without boundary hypersur-
face F0 : M Ñ Hn�1

a . We consider a family of maps F : M� r0, T q Ñ Hn�1
a ,

evolving according the law:# BtF px, tq � r�φpHpx, tqq � hptqsνpx, tq
F px, 0q � F0pxq,

(4.1)

where:

• φ : r0,�8q Ñ R is a continuous function, C2 differentiable in p0,�8q
such that

iq φpαq ¡ 0, φ1pαq ¡ 0 @α ¡ 0;
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iiq lim
αÑ8

φpαq � 8;

iiiq lim
αÑ8

φ1pαqα2

φpαq � 8;

ivq φ2pαqα ¥ �2φ1pαq @α ¡ 0.

• The function hptq is either defined as (3.2) (volume preserving) or (3.3)
(area preserving)

Remark 4.1.1. If φ is a convex function, properties iiq, iiiq and ivq on φ
just follows from the convexity: iiq and ivq are trivial, and for iiiq we can
write φpαq

α
� φpαq�φp0q

α
� φp0q

α
. By the convexity of φ, the first addendum of

the right side is an increasing function, then
�
φpαq
α

	1
¥ �φp0q

α2 , which implies
φ1pαqα ¥ φpαq � φp0q. Finally,

lim
αÑ8

φ1pαqα2

φpαq ¥ lim
αÑ8

φpαq � φp0q
φpαq α � 8

Using also property iiq on φ.
We will consider initial data which are convex by horospheres. We say that
a hypersurface is convex by horospheres (h-convex for short) if it bounds a
domain Ω such that at every point p P M � BΩ there exists a horosphere
of Hn�1

a passing through p such that Ω is contained in the region bounded
by the horosphere. Such a definition is the natural analogue of convexity
in Euclidean space, since the horospheres touching the boundary from inside
take the place of tangent hyperplanes. In [17] was proved that M is h-convex
if and only if at any point λi ¥ a for all i. Then we see that this condition
is stronger than convexity.
The result we are going to prove is the following.

Theorem 4.1.1. Let F0 : M Ñ Hn�1
a , with n ¥ 1, be a smooth embedding

of an oriented, compact n-dimensional manifold without boundary, such that
F0pMq is h-convex. Then the flow (4.1) with hptq given by (3.2) (resp. (3.3))
has a unique smooth solution, which exists for any time t P r0,8q. The
solution is h-convex for any time and converges smoothly and exponentially,
as tÑ 8, to a geodesic sphere that encloses the same volume (resp. has the
same area) as the initial datum M0.
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Short time existence and evolution equations. The short time exis-
tence and the uniqueness of the solution follow in the same way as for the
flow (3.1), since the linearization of (4.1) is analogue to (3.1). Then there
exists a unique solution to (4.1) on a maximal time interval r0, T q.
In Chapter 1, Proposition 1.4.1 we recalled the evolution equations for cur-
vature flows of Euclidean hypersurfaces. Indeed, Huisken and Polden in [40]
gave very general evolution equations for hypersurfaces of any Riemannian
manifolds. In general, these equations are slightly complicated because of
the presence of additional terms depending on the geometry of the ambient
manifold. However, in the case of hyperbolic space, the Riemann tensor has
a simple form, depending only on the sectional curvature and the metric. We
recall it in the following proposition.
Proposition 4.1.2. If NK is a space form of constant sectional curvature
K, then the Riemann tensor is written as

Rabcd � Kpgacgbd � gadgbcq.
In particular, ∇NKRabcd � 0, where ∇NK is the Levi-Civita connection of
NK.

Using this fact, the evolution equations for (4.1) can be easily computed
from [40].
Proposition 4.1.3. We have the following evolution equations for the flow
(4.1):

Btgij � 2p�φ� hqhij,
Btgij � �2p�φ� hqhij,
Btν � ∇φ,
Btdµ � Hp�φ� hqdµ,
Bthij � φ1∆hij � pφ1H � φ� hqhilhlj � φ1|A|2hij � φ2∇iH∇jH

� a2pφ1H � φ� hqgij � na2φ1hij,

BtH � φ1∆H � φ2|∇H|2 � pφ� hq|A|2 � na2pφ� hq,
Btφ � φ1∆φ� φ1pφ� hq|A|2 � na2φ1pφ� hq,

In the next section we are going to give some notation and results that
are specific of the hyperbolic geometry. For this reason, we have decided non
to include them in Chapter 1, dedicated to general preliminaries.
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4.1.1 Some notation and properties of h-convex sets
For every constant a ¡ 0, we denote with Hn�1

a the hyperbolic space
of dimension n � 1 and constant sectional curvature �a2, and let p�, �q be
its standard Riemannian metric. We use for the hyperbolic metric the same
notation used for the Euclidean one in the previous chapters, as well as for the
other geometric objects (second fundamental form, mean curvature, normal
vector, measure, etc). We denote by dH the hyperbolic distance between
points induced by p�, �q, and by x�, �y the induced metric on the hypersurface.
Moreover, we put a bar over any geometrical quantity whenever it is referred
to the ambient space Hn�1

a , e.g. for the Levi-Civita connection ∇̄.
We will use the following notations for the hyperbolic functions: for any
a ¡ 0

saptq � sinhpatq
a

, captq � coshpatq,

taaptq � saptq
captq coaptq � captq

saptq

Given a point q P Hn�1
a we set, @p P Hn�1

a ,

rqppq � dHpp, qq

Brp � ∇̄rp.

The following theorem is due to [16, 17, 18, 19].

Theorem 4.1.4. Let Ω be a compact h-convex domain of Hn�1
a , and let q P Ω

the center of a inball of Ω. If R� is the inradius of Ω, then

1. the maximal distance max dHpq, BΩq between q and the point in Ω sat-
isfies the inequality

max dHpq, BΩq ¤ R� � a ln
p1�

b
taa R�

2 q2
1� taa R�

2
  R� � a ln 2

2. For any interior point p of Ω and any boundary point q P BΩ,

pνpqq, Brpq ¥ ataapdHpp, BΩqq,

where νpqq is the outer normal vector to BΩ at q.
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4.2 Long time existence

4.2.1 Preserving of h-convexity and its consequences
Lemma 4.2.1. The flows (3.1) with hptq given by (3.2) and (3.3) preserve
the volume V olpΩtq and the area ApMtq respectively.
Proof. The proof is analogue to Lemma 2.2.4.

Lemma 4.2.2. Along the flow (4.1) we have

1q d
dt
ApMtq ¤ 0, d

dt
V olpΩtq ¥ 0.

2q a1 ¤ ApMtq ¤ a2, v1 ¤ V olpΩtq ¤ v2,

for some positive constants a1, a2, v1 and v2.

Proof. 1) The proof is the same of Lemma 3.2.3.
2) It follows from part 1) and the isoperimetric inequality in Hn�1

a (see [62]).

Proposition 4.2.3. Let M0 be an h-convex hypersurface of Hn�1
a , then Mt

is h-convex for any time the flow (4.1) is defined.

Proof. Since M0 is h-convex, we can consider a time interval r0, T �q, with
T �   T , such that Mt is strictly convex for any time t P r0, T �q. Then we can
define bji , be the inverse matrix of hji . Let us define the tensor Sij � bij� 1

a
gij.

We have that h-convexity is equivalent to the fact that Sij ¤ 0. The first
step is to compute the evolution equation of Sij. By Proposition 4.1.3 we
get:

Bthsr � φ1∆hsr � φ2∇rH∇sH � pφ1H � φ� hqhlrhsl
�a2 pφ1H � φ� hq δsr � na2φ1hsr.

Since bki h
j
k � δji we can compute:

∆bji � �bjsbri∆hsr � 2bjs∇lb
r
i∇lhsr.

Therefore

Btbji � �bjsbriBthsr
� φ1∆bji � 2φ1bjs∇lb

r
i∇lhsr � bjsb

r
iφ

2∇rH∇sH

�pφ1H � φ� hq δji � φ1|A|2bji � a2 pφ1H � φ� hq bri bjr � na2φ1bji
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Finally, by Proposition 4.1.3, we have:

BtSij � φ1∆Sij � 2φ1bsj∇lb
r
i∇lhsr � φ2bri bsj∇rH∇sH

�pφ1H � φ� hq gij � φ1|A|2bij � a2 pφ1H � φ� hq bri brj (4.2)

�na2φ1bij � 2 pφ� hq gij � 2
a
pφ� hqhij.

Analogously to the proof of Lemma 2.5 in [55], we can use Codazzi equa-
tion and the fact that Mt is strictly convex in order to estimate the gradient
terms in (4.2):

2φ1bsj∇lb
r
i∇lhsr � φ2bri bsj∇rH∇sH

� �2φ1bsjbrkbci∇lb
k
c∇lhrs � φ2bri bsj∇rH∇sH

¤ � 1
H
p2φ1 � φ2Hq pbri∇rHq pbsj∇sHq .

Let V be a null eigenvector of S with unit norm. We apply the reaction
terms in the equation (4.2) to V . What we get can be estimate as follows on
r0, T �q:

� 1
a2H

p2φ1 � φ2Hq p∇iHV
iq2 � φ1

�
2H � |A|2

a2 � na




¤ � φ1

na
pH � naq2 ¤ 0.

In the last line, we used the hypothesis ivq on the function φ and the fact
that |A|2 ¥ H2

n
for any n-dimensional submanifold. Then Sij ¤ 0 by the

maximum principle for symmetric tensors that can be found in Theorem 9.1
of [33]. Thus we have that, until Mt is strictly convex, the solution is h-
convex. If, by contradiction, it exists a first time T̄ where the solution is not
strictly convex, we can apply the previous argument on the interval r0, T̄ q
to conclude that the solution is h-convex on r0, T̄ s. In particular, in t � T̄
hij ¥ agij holds. Then we find a contradiction.

Remark 4.2.1. An immediate consequence of Proposition 4.2.3 is that,
along the flow, H ¥ na ¡ 0 at any space-time point. Then the mean
curvature stays away from zero for all times. This is the reason why we don’t
need to require any particular behaviour at zero for the function φpHq.

By Proposition 4.2.3, we are able to deduce some geometrical properties.
We begin proving that the inradius is uniformly bounded along the flow.
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Lemma 4.2.4. Let R�ptq be the inradius of the evolving domain Ωt at time
t. Then there are two positive constants c1 and c2 such that

c1 ¤ R�ptq ¤ c2.

Proof. The proof is the same of Lemma 4.1 of [22] with minor modifications
in case of the area preserving flow. Let ψ be the inverse function of s ÞÑ
volpSnq ³s0 saplqdl and let ξ be the inverse function of s ÞÑ s� a ln p1�taaps{2qq2

1�taaps{2q .
Note that they are positive increasing functions. Proceeding like in Lemma
4.1 of [22] we get

ξpψpVtqq ¤ R�ptq ¤ ψpVtq.
By Lemma 4.2.2, the thesis follows with c1 � ξ pψpv1qq and c2 � ψpv2q.

As immediate corollary we obtain the following.

Corollary 4.2.5. For any t P r0, T q, and p, q P Ωt, we have

dHpp, qq   2pc2 � a ln 2q.
Proof. By Theorem 4.1.4, using also the triangular inequality,

max
Ωt

dHpp, qq ¤ 2pR�ptq � a ln 2q,

which is also bounded by the previous lemma.

4.2.2 Upper bound on the curvatures
From Lemma 4.2.4 we have a positive lower bound on the inner radii

R�ptq, so we can take R� � c1, with c1 given in Lemma 4.2.4.

Lemma 4.2.6. There exists τ � τpa, n,M0q ¡ 0 with the following property:
for all pq̄, t̄q P Ωt̄ � r0, T q such that BR�pq̄q � Ωt̄, then

BR�{2pq̄q � Ωt @t P rt̄,mintt̄� τ, T uq
Proof. Let t̄, q̄ be like in the hypotheses. We consider the geodesic sphere
centered at q̄ that evolves by the standard flow with initial datum R�, i.e
the radius rBptq satisfies #

r1Bptq � �φpncoaprBqq
rBpt̄q � R�
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We define τ as the time taken by the geodesic sphere of initial radius R� to
contract its radius to R�{2, i.e.

τ �
» R�

R�{2

ds

φpncoapsqq

Notice that τ does not depend neither on q̄ nor from t̄, but only on R�. Let
rpx, tq � rq̄pFtpxqq. Then

Btr � ph� φpHqqpν, Brq.

Then we define the function gpx, tq � rpx, tq � rBptq for t P rt̄, t̄ � τ s, and
compute the evolution

Btgpx, tq � ph� φpHqqpν, Brq � φpncoaprBqq, (4.3)

where φpHq � φpHpx, tqq. Suppose that there exists a first time t� such
that for some x� P M the ball touches the hypersurface Mt� at the point
F px�, t�q. Then we have

ncoaprBpt�qq ¥ Hpx�, t�q Btgpx�, t�q ¤ 0

Thus, by the monotonicity of φ and the fact that pν, Brq ¤ 1, we obtain from
(4.3)

Btgpx�, t�q ¥ hpν, Brq ¡ 0
From this contradiction we get the result.

Define the following function, in analogy with [22]:

uqpx, tq � saprqqpν, Brqq

with q a given point in Ωt. We use the same notation used for the support
function in the previous chapter just because here uq will play the same
role in the proof of the boundedness of the velocity. Following analogous
calculations as in [22], we get the evolution of u:

Btu � φ1∆u� φ1u|A|2 � ph� φ� φ1Hqcaprqq

Lemma 4.2.7. Given any t̄ P r0, T q we have that, in rt̄,mintt̄� τ, T uq:
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1. there exist constants C,D ¡ 0 such that

C ¤ rq̄ ¤ D;

2. taken c :� asapCqtaapCq
2 ,

uq̄ � c ¥ c.

where q̄ is taken as as in Lemma 4.2.6

Proof.

1. As a consequence of Lemma 4.2.4 and Lemma 4.2.6, on the time interval
rt̄,mintt̄ � τ, T uq we have c1

2 ¤ R�ptq
2 ¤ rq̄. On the other side, by

Corollary 4.2.5, rq̄ ¤ 2pc2 � a ln 2q.
2. It follows by Theorem 2.2 part 2q and some trivial computations.

Proposition 4.2.8. There exists a positive constant c3 � c3pM0, n, aq such
that

φpHq ¤ c3 on r0, T q.
Proof. On any time interval rt̄,mintt̄� τ, T uq, we consider

W px, tq :� φpHpx, tqq
uq̄px, tq � c

with q̄ as in Lemma 4.2.6 and c as in Lemma 4.2.7. Standard computations
show that

pBt � φ1∆qW � 2φ1
u� c

x∇W,∇uy � h
φ1

u� c
p|A|2 � na2q �W

h

u� c
caprp̄q

�
�

1� φ1H

φ



W 2caprp̄q � c

u� c
φ1|A|2W � na2φ1W

By virtue of the h-convexity we have |A|2 � na2 ¥ 0, then

pBt � φ1∆qW ¤ 2φ1
u� c

x∇W,∇uy �
�

1� φ1H

φ



W 2capDq � cφ1H2

npu� cqW
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where we also used the fact that rp̄ ¤ D and |A|2 ¥ H2

n
. We define

W ptq :� sup
Mt

W px, tq Xptq :� tx P M|W px, tq � W ptqu

then
D�W ¤ capDqW 2 �W sup

Xptq

φ1H

u� c

"
capDq � cH

n

*

Let C̃ ¡ 0 big enough such that#
C̃ ¥ 3n

c
capDq

c
φpC̃q

¤ τ.
(4.4)

Suppose that there exists a time t� such that W pt�q ¥ φpC̃q{c. Then,
using the bound u�c ¥ c and the monotonicity of φ we have that Hpx�, t�q ¥
C̃ for any x� P Xpt�q. Notice that the first condition of (4.4) implies that if
H ¥ C̃, then capDq � cH

n
¤ �2cH

3n . Then, we get at time t � t�

D�W ¤ capDqW 2 � 2c
3nW sup

Xpt�q

φ1H2

u� c

� W
2 sup
Xpt�q

"
capDq � 2cφ1H2

3nφ

*

By condition iiiq on φ , we can suppose C̃ sufficiently large such that H ¥ C̃
implies

capDq � 2cφ1H2

3nφ ¤ �1

Thus at t � t� we have
D�W ¤ �W 2

Standard comparison argument then implies that

W ¤ max
"

max
M0

W,
φpC̃q
c

*
on r0,mintτ, T uq (4.5)

in the case t̄ � 0, and

W ¤ max
"

1
t� t̄

,
φpC̃q
c

*
on rt̄,mintt̄� τ, T uq
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for a general t̄. Then we also have

W ¤ φpC̃q
c

on
�
t̄� c

φpC̃q ,mintt̄� τ, T u


. (4.6)

Since t̄ is arbitrary, combining (4.5) and (4.6) and using the second condition
of (4.4) that allows to cover the entire time interval, we obtain

W ¤ max
"

max
M0

W,
φpC̃q
c

*
on t P r0, T q,

which implies the assertion, since φ ¤ psapDq � cqW .

Corollary 4.2.9. The quantities H, h and |A| are uniformly bounded along
the flow.

Proof. By property iiq on φ , an upper bound on φ implies a bound on H.
Then, by Proposition 4.2.8, H is uniformly bounded. The boundedness of
h also follows from the boundedness of φ. Thanks to h-convexity, |A| ¤ H,
and so |A| is bounded too.

From the bounds on H it follows that also φ1 is uniformly bounded from
both sides, and then the flow is uniformly parabolic. Then, by Theorem 1.2.2
we obtain the long time existence of the flow together with the existence of
a limit.

Theorem 4.2.10. The solution Mt of the flow 4.1 exists for any time. More-
over, up to time subsequences and space isometries, Mt converges to a smooth
limit M8.

4.3 Convergence to a geodesic sphere

4.3.1 Smooth convergence to a geodesic sphere
As for the Euclidean version, we will prove that the limit hypersurface

M8 has to be a geodesic sphere by showing that the mean curvature tends
to a constant value. Then, we will show that the rate of the convergence is
exponential. From this, we will deduce in particular that the hypersurfaces
converge to a geodesic sphere with no need to add isometries. The proof of
the firs part follows identically as for the flow 3.1, then we just write the
conclusion.
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Proposition 4.3.1. The velocity φpHq tends uniformly to h, i.e.

lim
tÑ8

max
Mt

|φpHpx, tqq � hptq| � 0

Proposition 4.3.1 implies that any possible limit of subsequences of Mt

has constant mean curvature, and so, by a classical result of Alexandrov [1],
it is a geodesic sphere. Then standard techniques, see e.g. [5, 22], allow
now to conclude that the whole family Mt converges smoothly to a geodesic
sphere up to isometries.

4.3.2 Exponential rate
We will use the same method seen in the previous chapter, adapted for an

hyperbolic setting. We follow the paper of Guo, Li and Wu [32]. As for the
Euclidian case, our situation is simplified by that fact that we already have
the convergence to a sphere. Furthermore, the function φ is H-dependent,
while in [32] were considered homogeneous one degree functions of the prin-
cipal curvatures.
In analogy with [32], define the perturbed Weingarten operator h̃ij � hij�aδij.
Its trace, norm and determinant will be denoted as H̃ � Trh̃ij, |Ã|2 � h̃ji h̃

i
j

and K̃ � det h̃ij respectively. We also indicate by b̃ij the inverse matrix of h̃ij,
and by B̃ its trace. Then, we define

Q̃ � K̃

H̃n
.

Since the hypersurfaces Mt approach uniformly to a geodesic sphere as t goes
to infinity, then Mt is strictly h-convex for t sufficiently large. Then Q̃ is well
defined and strictly positive for t sufficiently large. This fact makes things
work even if we choose an initial datum not necessarly strictly h-convex, but
just h-convex. Again, Q̃ ¤ 1

nn
, and the equality holds if and only if the

hypersurface is totally umbilic. Then we know that Q̃ converges smoothly
to the constant value 1

nn
. As for the Euclidean flow, our goal is to show that

this convergence is exponential.
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Proposition 4.3.2. The quantities K̃, Q̃ evolve according to

BtK̃ � φ1∆K̃ � pn� 1q
n

φ1|∇K̃|2
K̃

� K̃

H̃2
φ1|H̃∇h̃ij � h̃ij∇H̃|2g,b̃

�H̃
2n

nK̃
φ1
����∇ K̃

H̃n

����
2

� K̃φ2b̃ij∇iH̃∇jH̃ � K̃H̃pφ� φ1H � hq

�2anK̃pφ� hq � nK̃φ1|Ã|2 � aK̃φ1|Ã|2B̃;

BtQ̃ � φ1∆Q̃� pn� 1q
nH̃n

φ1x∇Q̃,∇H̃ny � pn� 1q
nK̃

φ1x∇Q̃,∇K̃y

�Q̃
�1

n
φ1|∇Q̃|2 � Q̃

H̃2
φ1|H̃∇h̃ij � h̃ij∇H̃|2g,b̃ � Q̃φ2|∇H̃|2b̃� n

H̃
g

� Q̃
H̃
pφ1H � φ� hqpn|Ã|2 � H̃2q � aQ̃|Ã|2

�
B̃2 � n2

H̃



.

where

|H̃∇h̃ij � h̃ij∇H̃|2g,b̃ :� bnmb
s
rpH̃∇ih̃

m
n � h̃mn ∇iH̃qpH̃∇ih̃rs � h̃rs∇iH̃q

|∇H̃|2b̃� n
H̃
g :�

�
b̃ij � n

H̃
gij

	
∇iH̃∇jH̃

Proof. The proof is almost the same as for Lemma 3.3.5, but we write it
for completeness. Some easy computations show that H̃ � H � na and
|Ã|2 � |A|2 � na2 � 2aH. Hence, by Proposition 4.1.3, we get

Bth̃ji � φ1∆h̃ji � φ2∇iH∇jH � pφ� h� φ1Hq �h̃lih̃jl � 2ah̃ji � a2δji
�

�φ1 �|Ã|2 � 2aH̃ � 2na2� �h̃ji � aδji
�� a2 pφ1H � φ� hq δji ,

BtH̃n � φ1∆H̃n � nH̃n�2pφ2H̃ � pn� 1qφ1q|∇H̃|2 � nH̃n�1 pφ� hq �|Ã|2 � 2aH̃
�
.

Then we can compute the evolution of K̃:

BtK̃ � K̃b̃ij
Bh̃ji
Bt

� φ1∆K̃ � φ1
|∇K̃|2
K̃

� K̃φ1∇rb̃
i
j∇rh̃ji � K̃φ2b̃ij∇iH∇jH

�K̃ pφ� h� φ1Hq �H̃ � 2an� a2B̃
�� a2K̃B̃ pφ1H � φ� hq

�K̃φ1 �|Ã|2 � 2aH̃ � 2na2� �n� aB̃
�

� φ1∆K̃ � φ1
|∇K̃|2
K̃

� K̃φ1∇rb̃
i
j∇rh̃ji � K̃φ2b̃ij∇iH∇jH

�K̃H̃pφ� φ1H � hq � 2anK̃pφ� hq � nK̃φ1|Ã|2 � aK̃φ1|Ã|2B̃.
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As for the proof of Proposition 3.3.5,

K̃φ1∇rb̃
i
j∇rh̃ji � � 1

n

φ1|∇K̃|2
K̃

� K̃

H̃2
φ1|H̃∇h̃ij � h̃ij∇H̃|2g,b̃ �

H̃2n

nK̃
φ1
����∇ K̃

H̃n

����
2

and then

�φ1 |∇K̃|
2

K̃
� K̃φ1∇rb̃

i
j∇rh̃ji � �pn� 1q

n

φ1|∇K̃|2
K̃

� K̃

H̃2
φ1|H̃∇h̃ij � h̃ij∇H̃|2g,b̃ �

H̃2n

nK̃
φ1
����∇ K̃

H̃n

����
2

.

From the last equality, we get the evolution of K̃. From

∆Q̃ � ∆K̃
H̃n

� K̃∆H̃n

H̃2n
� 2
H̃2n

∇rK̃∇rH̃n � 2 Q̃

H̃2n
|∇H̃n|2.

we have

BtQ̃ � 1
H̃n

BtK̃ � K̃

H̃2n
BtH̃n

� φ1∆Q̃� 2
H̃2n

φ1x∇, K̃∇H̃ny � 2 Q̃

H̃2n
φ1|∇H̃n|2

�npn� 1q Q̃
H̃2

φ1|∇H̃|2 � n� 1
n

φ1
|∇K̃|2
K̃H̃n

�Q̃
�1

n
φ1|∇Q̃|2 � Q̃

H̃2
φ1|H̃∇h̃ij � h̃ij∇H̃|2g,b̃ � Q̃φ2|∇H̃|2b̃� n

H̃
g

� Q̃
H̃
pφ1H � φ� hqpn|Ã|2 � H̃2q � aQ̃|Ã|2

�
B̃2 � n2

H̃



.

and the conclusion follows as in the proof of Proposition 3.3.5 noticing

x∇Q̃,∇H̃ny � 1
H̃n

x∇K̃,∇H̃ny � Q̃

H̃n
|∇H̃n|2,

x∇Q̃,∇K̃y � 1
H̃n

|∇K̃|2 � Q̃

H̃n
x∇H̃n,∇K̃y.

Define f̃ � 1
nn

� Q̃. We already know that f smoothly converges to zero.
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Proposition 4.3.3. There are a time t̄ ¡ 0 and two constants c, δ ¡ 0 such
that for every time t ¥ t̄ we have :

f̃ ¤ ce�δt.

Proof. By Proposition 4.3.2 we can compute the evolution equation for f :

Bf
Bt � φ1∆f � pn� 1q

nH̃n
φ1x∇f,∇H̃ny � pn� 1q

nK̃
φ1x∇f,∇K̃y

� Q̃�1

n
φ1|∇f |2 � Q̃

H̃2
φ1|H̃∇h̃ij � h̃ij∇H̃|2g,b̃ � Q̃φ2|∇H̃|2b̃� n

H̃
g

� aφ1Q̃|Ã|2
�
B̃ � n2

H̃



� Q̃

H̃
pφ1H � φ� hq �n|Ã|2 � H̃2� .

(4.7)

The gradient terms can be estimated exactly in the same way as in the proof
of Proposition 3.3.7 just substituting hij, bij, H,K,Q and f with h̃ij, b̃ijH̃, K̃, Q̃
and f̃ respectively: all the passages still hold. Then there exists a time t̄1
such that for all t ¥ t̄1, the gradient terms are nonpositive.
The reaction term Q̃

H̃
pφ1H � φ� hq �n|Ã|2 � H̃2� is analogue to the one ap-

pearing in the proof of Proposition 3.3.7 and can be estimated in the same
way. Then, there exists a time t̄2 such that

Q̃

H̃
pφ1H � φ� hq �n|Ã|2 � H̃2� ¥ δf̃ ,

for some constant δ ¡ 0. Moreover, by the relation between the harmonic
and the arithmetic means of n positive numbers, we have

B̃ � n2

H̃
¥ 0.

Thus, setting t̄ � maxtt̄1, t̄2u, we have

Bf
Bt ¤ φ1∆f � pn� 1q

nH̃n
φ1x∇f,∇H̃ny � pn� 1q

nK̃
φ1x∇f,∇K̃y � Q̃�1

n
φ1|∇f |2 � δf

for all times t ¥ t̄. Then the thesis follows from the maximum principle.

Arguing as for Corollary 3.3.8, we obtain:
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Corollary 4.3.4. The second fundamental form A converges exponentially
in C8 to the one of a geodesic sphere. In particular, there exist positive
constants c1, δ1 such that

|φpHq � h| ¤ c1e�δ
1t

Then also in this case, the whole family F p�, tq tends to a unique limit
hypersurface for t that goes to infinity. Analogously, the metric and the
embedding converge smoothly. This complete the proof of Theorem 4.1.1.
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CHAPTER 5

Some results on entire graphs

5.1 Presentation of the problem
Let F0 : M Ñ Rn�1 be an embedding of a smooth manifold M in the

Eucledean space Rn�1. As usual, denote its image by M0 � F0pMq. We
assume that M0 can be written as an entire graph over Rn, i.e. there exists
u0 : Rn Ñ R such that any point p P F0pMq can be written as

p � py, u0pyqq, y P Rn.

Furthermore we assume that u0 is a strictly convex function, with ||Du0||8�
||D2u0||8   8.
Then we consider a family of maps F : M � r0, T q Ñ Rn�1, with Ft :�
F p�, tq : M Ñ Rn�1 satisfying# BtF px, tq � �φpHpx, tqqνpx, tq

F px, 0q � F0pxq,
(5.1)

where νp�, tq denotes the downward unit normal vector of the evolving hy-
persurface Mt :� FtpMq. The signs of the curvatures are chosen such that
M0 is convex if and only if the function u0 is convex.
We choose φ : r0,�8q Ñ R as a continuous function, C2 differentiable in
p0,�8q with the following properties:

iq φpαq ¡ 0 @α ¡ 0, φp0q � 0;
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iiq φ1pαq ¡ 0 @α ¡ 0;

iiiq φpαq � φ1pαqα ¤ 0 @α ¡ 0;

ivq φ2pαqα � 2φ1pαq ¥ 0 @α ¡ 0;

vq limαÑ8 φpαq � 8.

Notice that any convex function φ satisfies property ivq. Furthermore, if
φ also satisfies φp0q � 0, and φ1�p0q ¥ 0 (where φ1� means the right side
derivative), than automatically iq � vq hold.
We recall that, if a hypersurface is given as a graph of a function upyq,
the following expressions holds for the downward unit normal vector, metric
tensor and second fundamental form:

νpyq � pDupyq,�1qa
1� |Dupyq|2

gijpyq � δij �DiupyqDjupyq

hijpyq � D2
ijupyqa

1� |Dupyq|2 ,

where Di denote the differentiation with respect the coordinate i. Using
these expressions, the flow equation (5.1) is equivalent, up to tangential dif-
feomorphisms, to$'&

'%
Btu �

a
1� |Du|2φ

�
1?

1�|Du|2

�
δij � DiDj

1�|Du|2

	
D2
iju



upy, 0q � u0pyq

(5.2)

We will prove the following result.

Theorem 5.1.1. Let F0 : M Ñ Rn�1, with n ¥ 1, be a smooth embedding
of a n-dimensional manifold, such that F0 is an entire graph over Rn of a
strictly convex function u0 : Rn Ñ R satisfying ||Du0||8 � ||D2u0||8   8.
Then for any time t P r0,8q there exists a smooth solution up�, tq of the
problem (5.2). The solution is convex and ||Du0||8�||D2u0||8 is bounded by
a constant only depending on the initial datum u0.
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5.2 Compact case
In contrast with the flows studied in the previous chapters, this time we

deal with non compact objects. Since our strategy for the proof of the main
theorem is based on an approximating procedure by compact hypersurfaces,
it is useful in this step to recall some simple facts about the flow (5.1) in
the compact case. The evolution equations are given by Proposition 3.1.2 in
Chapter 3, setting hptq � 0.
Proposition 5.2.1. Let consider the flow (5.1) with M0 a strictly convex,
compact hypersurface without boundary. Then the solution Mt exists unique
on a maximal time interval r0, T q. Furthermore,

min
Mt

H ¥ min
M0

H @t P r0, T q.

Proof. Since H ¡ 0 on the initial datum, then φ1 ¡ 0 on a first time interval.
By Theorem 1.2.1, this ensures the existence of a unique solution of (5.1) on
a maximal time interval r0, T q. Furthermore, by the evolution equation of
H, we have

BtH ¥ φ1∆H � φ2|∇H|2.
Then, by the maximum principle, minMt H ¥ minM0 H on r0, T q.
Proposition 5.2.2. Let consider the flow (5.1) with M0 a strictly convex,
compact hypersurface without boundary. Then the solution Mt is strictly
convex for any time such that is defined.
Proof. The proof is the same as for the volume preserving case, given by
Proposition 3.2.1.
Proposition 5.2.3. Let consider the flow (5.1) with M0 a strictly convex,
compact hypersurface without boundary. The maximal time of the solution is
greater than the maximal time of any round sphere contracting by (5.1) with
initial datum enclosed by M0.
Proof. Similarly as for the proof of Proposition 3.2.7, it can be shown that
the curvatures stay bounded as long as the hypersurface encloses a ball of
positive radius. On the other hand, the uniform parabolicity of the flow is
guaranteed by Proposition 5.2.1. Then, by Theorem 1.2.2 that also holds
for velocities of the kind φpHq, the flow can be continued as long as a ball
is contained inside the hypersurface. The thesis follows from the avoidance
property 1.2.7.
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5.3 Long time existence

5.3.1 A localized estimate
Since the hypersurface M0 is unbounded, even if all curvatures are posi-

tive at any point, their infimum over M0 is zero. Then the flow could present
some degeneracy when the curvatures approach to zero, and we can’t apply
the standard parabolic theory to deduce the short time existence of the solu-
tion. With this in mind, is fundamental to “localize” the maximum principle
on a suitable compact region of the hypersurface that can be enlarged as we
like. The following result is analogous to Theorem 2.1 in [29].

Proposition 5.3.1. Let F : M� r0, τ s Ñ Rn�1, τ ¡ 0, a solution of (5.1),
with Mt � F pM, tq. Suppose that there exist R ¡ 0 and rz0, z1s � R such
that:

a) Mt X pBRp0q � rz0, z1sq is the graph of a convex function up�, tq, with
u : BRp0q � r0, τ s Ñ R;

b) φ1 ¤ C̃ on BRp0q � r0, τ s, for some constant C̃ ¡ 0.

Let p̄ � p0, ȳn�1q, where 0 P Rn, ȳn�1 P R, such that up0, tq ¤ ȳn�1 for all
t P r0, τ s.
Given any 0   R̃ ¤ R, let fpx, tq � R̃2 � |F px, tq � p̄|2 � 2ntC̃.
Then, denoting by f� the positive part of f , we have the estimate

φ�1f�px, tq ¤ sup
M0

φ�1f�p�, 0q @px, tq P suppf�.

Proof. The proof follows the one in [29].
We can assume u0 ¥ 0. Then, by the choice of the unit normal in (5.1),
u ¥ 0 for all times. Given R̃ as in the hypotheses, define ηprq � pR̃2 � rq2.
Notice that, by this choice of R̃, the support of f is strictly contained in
BRp0q � r0, τ s. Choosing rpx, tq � |F px, tq � p̄|2 � 2ntC̃ we have, at any
px, tq P BRp0q � r0, τ s,
pBt�φ1∆qη � 4?ηpφ�φ1HqpF�p̄, νq�2φ1|∇|F�p̄|2|2�4n?ηpφ1�C̃q, (5.3)

while the evolution of φ�2 is given by

pBt � φ1∆qφ�2 � �6φ1|∇φ�1|2 � 2φ1φ�2|A|2. (5.4)
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(5.3) together with (5.4) gives

pBt � φ1∆qφ�2η � 4φ�1?ηpφ� φ1HqpF � p̄, νq � 2φ�2φ1|∇|F � p̄|2|2
� 6φ1η|∇φ�1|2 � 2φ1ηφ�2|A|2 � 2φ1x∇η,∇φ�2y
� 4nφ�2?ηpφ1 � C̃q (5.5)

¤ �2φ�2φ1|∇|F � p̄|2|2 � 6φ1η|∇φ�1|2
� 2φ1ηφ�2|A|2 � 2φ1x∇η,∇φ�2y

where for the inequality we used property iiiq of φ, the hypothesis φ1 ¤ C̃
and the fact that pF � p̄, νq ¥ 0 by convexity and the choice of p̄. We have
the equalities

�2φ1x∇η,∇φ�2y � φ1x∇φ�2,∇ηy � 3φ1x∇φ�2,∇ηy
� φ1η�1ηx∇φ�2,∇ηy � 6φ1φ�1x∇φ�1,∇ηy
� φ1η�1x∇pφ�2ηq,∇ηy � η�1φ1φ�2|∇η|2 � 6φ1φ�1x∇φ�1,∇ηy

and
η�1|∇η|2φ�2 � η�1|2?η∇|F � p̄|2|2φ�2 � 4|∇|F � p̄|2|2φ�2,

then (5.5) becomes

pBt � φ1∆qφ�2η ¤ �6φ1φ�2|∇|F |2|2 � φ1η�1x∇pφ�2ηq,∇ηy
� 6φ1φ�1x∇φ�1,∇ηy � 6φ1η|∇φ�1|2 � 2φ1ηφ�2|A|2.

Using the Cauchy-Schwarz and the Young inequalities, we can estimate

�6φ1φ�1x∇φ�1,∇ηy ¤ 6φ1φ�1|x∇φ�1,∇ηy| ¤ 6φ1φ�1|∇φ�1||∇η|
¤ 6φ1|∇φ�1|2η � 3

2 |∇η|
2η�1φ�2

� 6φ1|∇φ�1|2η � 6φ1|∇|F � p̄|2|2φ�2

so, finally,
pBt � φ1∆qφ�2η ¤ φ1η�1x∇pφ�2ηq,∇ηy.

Replacing η with f 2
� the same computations hold, then we get the result by

the maximum principle.
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5.3.2 Costruction of the solution
In order to prove the existence of the solution for short times, we follow

an approximating procedure by replacing the initial datum with a compact
convex approximating hypersurface, and we use the parabolic theory for com-
pact manifolds to deduce the existence of the solution. Then we enlarge more
and more the initial compact datum and we take the limit solution of the
approximating flows. We will show that this limit is solution of (5.1). With
this technique, the existence for all times, the preserving of convexity to-
gether with the property to be an entire graph will follow automatically. We
take this procedure from [4], with some modifications due to the fact that
in our case we don’t have the homogeneity of the velocity. Furthermore,
unlike the authors in [4], we don’t employ the Harnack-type inequality due
to B.Andrews in Theorem 5.21 part p2q of [6].

Let u0 be as in the hypotheses of Theorem 5.1.1 Without loss of generality,
we can assume u0p0q � Du0p0q � 0.
By Lemma 6 of [4], for any R ¡ 1 we can construct a compact convex
hypersurface NR satisfying the following properties:

1. NR X pBRp0q � r0, c0Rsq � M0 X pBRp0q � r0, c0Rsq for some c0 ¡ 1
independent of R;

2. NR encloses the ball of center p0, c0Rq and radius R;

3. NR has diameter less than c1R, for some c1 ¡ 1 independent of R;

4. maxNR
H ¤ c2 supM0 H for some c2 ¥ 1 independent of R.

Notice that H is bounded on M0 by the hypotheses on u0.
Let consider the evolution of NR by (5.1). By Propositions 5.2.1 and 5.2.2,
there exists a unique maximal solution NRptq � FRp�, tq which is convex,
where FR : NR � r0, T q Ñ Rn�1. Furthermore, by construction and by
Proposition 5.2.3, we know that T ¥ τR, where τR is the time taken by a
sphere of centre q0 � p0, c0Rq and initial radius R to contract by (5.1) to a
sphere of radius R

2 . Notice that τR is increasing in R, and τR Ñ 8 as RÑ 8.
Denoting dR � diamNR we can consider, on r0, τRs, the ratio

W px, tq � φpHpx, tqq
pFRpx, tq � q0, νq �R{4
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which is well defined since, by convexity of NRptq and the Property p3q of
NR,

R

4 ¤ pFRpx, tq � q0, νq � R

4 ¤ pc1 � 1
4qR.

Following the same procedure of the proof of Proposition 3.2.7 in Chapter 3,
we can estimate

φpHq ¤ max
"

max
NR

φpHq, 4φpCRq
R

dR

*
on r0, τRs (5.6)

where CR ¡ 0 is a constant chosen as in the proof of Proposition 3.2.7 in
Chapter 3, and then decreasing with R. Then, by Properties p3q, p4q of NR

and since the diameter of NRptq is decreasing in time and R ¡ 1, (5.6)
becomes

φpHq ¤ max
"

sup
M0

φpc2Hq, 4c1φpCRq
*
¤ C�

1 on r0, τRs (5.7)

where C�
1 ¡ 0 does not depend on R. Then, we find

|A|2 ¤ H2 ¤ C�
2 on r0, τRs (5.8)

for some constant C�
2 ¡ 0 not depending on R.

Let p � py1, y1n�1q, p2 � py2, y2n�1q be points in NRptq X
�
BR{4p0q � r0, c0Rs

�
for some t P r0, τRs. We have

0 ¤ y1n�1, y
2
n�1   c0R,

|y2n�1 � y1n�1|
|y2 � y1| ¤ 4c0, (5.9)

then NRptq X
�
BR{4p0q � r0, c0Rs

�
is the graph of a convex function with

Lipschitz constant smaller or equal to 4c0. We denote such a function by
uRpy, tq, where py, tq P BR{4p0q � r0, τRs.

Let choose a compact set K̃ � Rn and a time t̃ P r0, τRq. If R is sufficiently
large, we can assume K̃ � BR{4p0q. We want to bound φ1 from below on
K̃ � r0, t̃s uniformly in R. By (5.8), there exists C̃ ¡ 0 such that φ1 ¤ C̃ on
K̃ � r0, t̃s. Define

z̄ � max
yPK̃

uRpy, 0q � u0pȳq

for some ȳ P K̃. On NRptq X
�
BR{4p0q � r0, c0Rs

�
with t P r0, t̃s we consider,

as in Theorem 5.3.1,

fpx, tq � R̃2 � |FRpx, tq � p̄|2 � 2ntC̃,
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where p̄ � p0, ȳ � C�
1 t̃q, 0 P Rn and R̃ ¡ 0 to decide later. The choice of

p̄ guarantees that, on r0, t̃s, the graph py, uRpy, tqq does not intersect p̄ at
any time. We define continuously f also on Rn � 0 simply setting fpx, 0q �
R̃2 � |F px, 0q � p̄|2. Then, using (5.2), (5.7) and (5.9) and writing f as a
function of (y,t), with py, tq P K̃ � r0, t̃s,

fpy, tq � R̃2 � |y|2 � |uRpy, tq � u0pȳq � C�
1 t̃|2 � 2ntC̃

¥ R̃2 � |y|2 � |uRpy, tq � u0pỹq|2 � pC�
1 t̃q2 � 2nt̃C̃

¥ R̃2 � |y|2 � |uRpy, tq � uRpȳ, tq|2 � |uRpȳ, tq � u0pȳq|2 � pC�
1 t̃q2 � 2nt̃C̃

¥ R̃2 � |y|2 � 16c2
0|y � x̄|2 � p2� 16c2

0qpC�
1 t̃q2 � 2nt̃C̃.

Then we can choose R̃ � R̃pK̃, t̃q such that fpy, tq ¡ 1 on K̃ � r0, t̃s.
Hence, by Theorem 5.3.1, on K̃ � r0, t̃s we have, considering also φ as a
function of py, tq on K̃ � r0, t̃s,

φpy, tq�1   f�py, tqφpy, tq�1 ¤ max
NR

f�p�, 0qφp�, 0q�1

� max
suppf�p�,0q

pR̃2 � |F p�, 0q � p̄|2qφp�, 0q�1.

In the right side the dependency on R has disappeared, then there exists a
constant C � CpR̃q ¡ 0 such that φpy, tq�1   C. Hence, by property iq on
φ, there exists a constant C̃1 ¡ 0, independent of R, such that

H ¥ C̃1 on K̃ � r0, t̃s.

Furthermore, by (5.8), there exists C̃2 also independent of R, such that

H ¤ C̃2 on K̃ � r0, t̃s.

In conclusion, on K̃ � r0, t̃s, φ1 is bounded both from above and below by
two positive constants that do not depend on R. Then, since K̃ and t̃ can be
enlarged as we like, we have shown that on any compact set of Rn�r0,8q, the
graphs of uR are such that φ1 remains bounded both from above and below
by two positive constants independent of R. Then the conclusion follows as
in the end of the proof of Theorem 7 in [4].
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