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Abstract

The exact sequence of events that led to the formation of the first living organisms from

non-living matter is still a debated question. Nevertheless, the acquired ability of the early

life forms to emerge and maintain themselves using simple molecules as resources, appears

as a fundamental step. In this scenario, the Autocatalytic sets (ASs) are of great interest.

Introduced by Kauffman (1971), an AS is a set of chemical species capable of sponta-

neously emerging and self-reproducing through catalytic reactions, starting from a finite

set of species assumed to be available from the environment. Several definitions of ASs

have been proposed over the years. Recently, Hordijk and Steel (2004) introduced the no-

tion of Reflexively Autocatalytic and Food-generated (RAF) set, a formal definition of ASs

in the field of graph theory. The RAF sets have been widely studied in a series of recent

works, which have provided important theoretical results (see Hordijk and Steel (2018) for

a brief resume), as well as the evidence of the presence of RAF structures in real biolog-

ical systems (Sousa et al., 2015; Xavier et al., 2020), suggesting that ASs actually played

an important role in the origin of life. However, several aspects of the ASs are still under

investigation. In particular, ASs have been criticised for not being able to experience bio-

logical evolution (Vasas et al., 2010), mainly because their dynamics do not seem to have

many different attractors. Efforts to clarify this point have been made, and recent numerical

results suggest that compartmentalisation of several interacting RAF sets would allow an

adaptive evolution (Hordijk et al., 2018a).

In Part I of this doctoral thesis work, we briefly introduce the problem of the origin of

life and the RAF theory.

In Part II, we focus on the dynamical emergence of RAF sets and the associated evo-

lutionary properties. In particular, we first address the problem of adaptive evolution by

studying how different interactions among RAF sets affect their dynamics. To this aim, we

develop a model in which interactions are presented through composition operations among

networks, and the dynamics of the networks is reproduced via stochastic simulations. We

find that the dynamical emergence of the RAF sets depends on the adopted composition

operations. In particular, operations involving chemical species that are sources for ASs

can promote the formation of different autocatalytic subsets, opening the door to various

dynamical behaviours necessary for biological evolution.
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Moreover, this approach allows us to observe that large RAF sets obtained by compo-

sition of smaller networks can reach different asymptotic states. This result suggests that

compartmentalisation is not a necessary requirement for the appearance of various dynam-

ical behaviours of these systems. More generally, actually, the connection between the

topology of a RAF set and its dynamics is not yet fully understood (Filisetti et al., 2011;

Serra and Villani, 2019; Hordijk et al., 2018b). In order to deeper study this aspect, we

represent RAF sets in terms of Chemical Reaction Networks, and we use the Chemical

Reaction Network theory (Feinberg, 2019) to connect the structure of RAF sets with their

dynamical properties. We find that the conditions a set of interacting chemical species must

satisfy in order to be a RAF set are not sufficient for the dynamical emergence of the set

itself. In particular, we identify additional topological conditions compared to the one in-

troduced by the RAF theory, which more strictly constrain the dynamics of the system and

allow the detection of networks with biologically interesting dynamical properties.

Finally, in Part III we study the thermodynamics of RAF sets. To our knowledge, this

aspect has not yet been addressed by the RAF theory. However, general results on the ther-

modynamics of open Chemical Reaction Networks have been recently obtained, and the

connections between the thermodynamic quantities and the network topology have been

highlighted (Schmiedl and Seifert, 2007; Polettini and Esposito, 2014; Polettini et al., 2015;

Rao and Esposito, 2016, 2018). We use these results to study the RAF sets as nonequilib-

rium thermodynamic systems. In particular, we investigate the role of catalysis in the ther-

modynamic efficiency of these particular networks. Our preliminary results suggest that

the effects of catalyses on the thermodynamic fluxes can result in an advantage for RAF

sets, compared to non autocatalytic networks, in energy storage.

To summarise, the thesis is structured as follows:

– In Part I, after a brief description of the historical background of the problem of the

origin of life, we introduce living systems and some of the scenarios proposed for

their appearance, Chapter 1. We conclude the introduction by defining the RAF sets

and presenting some of the major results of the RAF theory, Chapter 2.

– In Part II, we study the dynamics of RAF sets, focusing on its biological aspects. In

particular, in Chapter 3 we investigate the impact of composition on the dynamics

of RAF sets. The Chapter is based on the manuscript Ravoni (2020a). In Chapter 4

we present the connection between the dynamics of RAF sets and their topology, as

discussed in Ravoni (2020b).

– The thermodynamic aspects of RAF sets are exposed in Part III: after introducing

in Chapter 5 the thermodynamic properties of chemical networks, we present the

preliminary results obtained in the study of thermodynamic efficiency of RAF sets in

Chapter 6.
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– Finally, in Part IV we discuss the conclusions.
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Chapter 1

Abiogenesis: the problem of the
origin of life

In 1864, the chemist and microbiologist Louis Pasteur won the prize offered by the

“Acadèmie des sciences de l’Institut de France” to anyone who had clarified which, be-

tween spontaneous generation and biogenesis, was the correct theory to explain the origin

of life. At that time, indeed, there was a heated debate on which of the two theories was the

correct one: either the spontaneous generation, which hypothesised a spontaneous emer-

gence of organisms starting from inanimate matter, or the biogenesis, which considered that

complex living systems come only from other life forms. In order to resolve the issue, Pas-

teur devised a simple experiment: he put chicken broth in a container with a long S-shaped

neck, letting the broth come into contact with the air but not with dust or other substances

in which microorganisms could be present, and boiled the broth for a time sufficient to kill

the microorganisms present in it (and those contained in the experimental apparatus). Pas-

teur observed that, under these conditions, no microorganisms were born from the broth1.

Conversely, some life forms appeared in the broth if the neck was broken and the container

was completely exposed to air and dust. He deduced that organisms can be born only from

other organisms, and that spontaneous generation is therefore not possible, commenting his

results with the following words (Vallery-Radot, 1926):

“Never will the doctrine of spontaneous generation recover from the mor-

tal blow of this simple experiment.”

This is certainly true. However, at present, the most accredited theories to explain the life’s

origin share, with the spontaneous generation, the fundamental idea that life has arisen from

1It is interesting to note that the success of Pasteur’s experiment is due, in part, to a dose of luck: for
example, today we know the existence of spores that would have survived Pasteur’s sterilization process, and
which would therefore have led to conclusions different from those of the original experiment. For more details
on the acceptance of Pasteur’s results and for a general discussion of the role of experiments and socio-cultural
factors in the formulation and validation of scientific theories, see Latour (1993).
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Figure 1.1. Oparin’ scenario of transition to life. From Luisi (1998).

non-living matter. In fact, even if the appearance of organisms “out of the blue” is excluded,

the modern explanations of the origin of life assumes that, under suitable conditions, the

appearance of (bio)chemical elements and a progressive increase in molecular complex-

ity occurred, and eventually, at some point, the first living systems emerged (Luisi, 2006;

Szostak, 2017; Rasmussen et al., 2004; Benner et al., 2012b; Bernhardt, 2012). Hereafter,

we will refer to the emergence of life from non-living matter with the term abiogenesis.

The modern idea of abiogenesis rises from the works of the biologists Aleksandr

Ivanovic Oparin and John Burdon Sanderson Haldane (Oparin, 1924; Haldane, 1929). The

two scientists hypothesised, independently of each other, the existence of a primitive soup

of organic molecules from which, under the particular conditions of the primordial Earth,

the first forms of life would self-organise (Figure 1.1). The famous Miller-Urey exper-

iment (Miller, 1953), and various subsequent works (see Kitadai and Maruyama (2018)

for a review), have shown that, starting from a “simple” prebiotic environment, the organic

molecules at the base of living cells (amino acids, nucleotides, sugars, lipids) can be formed
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Table 1.1. Definitions of life

M. Perret (1952) and J. D. Bernal (1965)
(Perret, 1952; Waterman et al., 1965):

Life is a potentially self-perpetuating sys-
tem of linked organic reactions, catalyzed
stepwise and almost isothermally by com-
plex and specific organic catalysts which
are themselves produced by the system.

J. Joyce (Deamer and Fleischaker, 1994): Life is a self-sustained chemical system ca-
pable of undergoing Darwinian evolution.

P. L. Luisi (Luisi, 1998): Life is a system which is self-sustaining by
utilizing external energy/nutrients owing to
its internal process of component produc-
tion and coupled to the medium via adap-
tive changes which persist during the time
history of the system.

S. A. Kauffman (Kauffman, 2000): Life is a self-reproducing system that does
at least one thermodynamic work cycle.

E. N. Trifonov (Trifonov, 2011): Life is self-reproduction with variations.

(Figure 1.2). Moreover, another source of organic compounds has been identified in space

dust falling on Earth (see, for instance, Oro et al. (2006)). Therefore, it would be reasonable

to assume that the building blocks of life can be obtained starting from non-living matter.

Notably, catalytic activity of some of these molecules has been observed, suggesting that

catalytic processes would be present at the early stages of life (Plankensteiner et al., 2002;

Li et al., 2000; Luisi, 2006). However, it is not clear how, starting from these blocks, it is

possible to obtain the complex molecules present today in living organisms, nor it is known

how these molecules are organised in a system that we can consider as living.

The origin of life is, in fact, a very broad subject, ranging from biosynthesis experi-

ments to theoretical studies on, for example, homochirality, i.e., the geometric uniformity

exhibited by the molecules present in living organisms (see Luisi (2006) for a discussion

on these topics). In this work we focus on one of the aspects that characterise the prob-

lem of abiogenesis. In particular, assuming that the conditions for the formation and the

development of the organic compounds underlying life are met, we try to better understand

how, starting from these compounds, a first form of life self-organises and spontaneously

emerges. Before addressing this question, however, we must introduce some definitions of

living system, useful for our study.
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Figure 1.2. The Miller-Urey experiment: a strongly reducing atmosphere consisting of the four
gases, and electric discharges as energy source. From Luisi (2006).
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1.1 Defining life

Providing a definition of (minimal) life is a hard problem, and in fact a unique definition

does not exist2. Without any claim to completeness, we recall some definitions in Table 1.1.

Our intent is to highlight the properties commonly accepted as peculiar of living systems.

These properties are the baseline of the scenarios that try to describe the origin of life.

In particular, on the basis of definitions of Table 1.1 and according to Dyson (1985);

Luisi (2006); Penrose and Penrose (1957); Deamer and Fleischaker (1994) (just to name a

few works on this field), we can state that a fundamental property of life is the capability of

self-reproduction. With this term we refer to the ability of a living system to autonomously

produce all its components, starting from adequate resources. In this sense, the term self-

reproduction is closely related to the notion of self-maintenance. It is in fact evident that,

despite the thousands of transformations that take place inside an organism, the latter is

able to draw matter and energy from the environment in order to maintain its “structure”,

by regenerating all the components involved in the transformations.

Implicitly, we are assuming another evident property of living systems, that is, they are

thermodynamic systems open to the exchange of both matter and energy. As highlighted

in the seminal work of Schrödinger (Schrödinger, 1944), the request for an open system is

necessary to avoid the “paradox” of a local increase in order. In particular, after the work of

Prigogine and Nicolis (Prigogine and Nicolis, 1971), it was suggested that living organisms

could be related to dissipative structures, i.e., nonequilibrium structures able to maintain

themselves thanks to the continuous exchange of energy and matter with the environment

(we will discuss thermodynamics aspects of biological systems in Part III). For instance,

Kauffman (2020) proposed the idea of a living organism as a thermodynamic system in

which, consequently to a flow of energy and matter and depending on the boundary condi-

tions, a “macroscopic pattern” emerges. The further prerequisite introduced by Kauffman

is that life itself builds up its own constraints. This characteristic would be at the basis of

both the increase in complexity and the enormous diversification observed in living sys-

tems. Note that Kauffman’s idea is connected with the concept of autopoiesis introduced

by Maturana and Varela (Varela et al., 1974; Maturana and Varela, 1980), see Luisi (2003)

for a brief review.

Another crucial feature of living systems is the way in which they interact with the

surrounding world. It is evident, indeed, that a peculiarity of organisms is that of perform-

ing an adaptive interaction with the environment (Luisi, 2003). In this regard, consider,

for instance, the control on the flow of matter implemented by the cell membrane, and the

mechanisms of regulation of gene expression in living cells. It is reasonable to assume,

as a necessary condition for life, the ability to coordinate internal processes, reacting to

2An interesting approach for finding a definition of living systems is given in Trifonov (2011), where the
author performs a linguistic analysis of several published life’s definitions, to seek an unanimous one.



1.2 From non-living to living matter 7

external perturbations and selecting certain chemicals from the environment in order to en-

sure self-maintenance. Note that this feature is indicated in the autopoietic theory with the

suggestive term cognition (Maturana and Varela, 1980). Importantly, the autopoietic theory

identifies the metabolism as the mechanism used by cells to perform a dynamic interaction

with the environment (Luisi, 2003; Bitbol and Luisi, 2004).

Finally, there is self-replication, that is, the generation by a living system of a copy

similar to itself. This is, probably, the most debated feature in the definition of life. In

fact, approaches to life focused on the presence of genetic material consider replication

as a fundamental property (Adami and LaBar, 2015; Luisi, 2003), while theories such as

autopoiesis relegate self-replication to a consequence of self-reproduction (Varela, 1979;

Luisi, 2006). Here we embrace the autopoietic hypothesis, considering self-replication as

a not necessary condition for minimal life. However, it is a fundamental feature for the

diversification and biological evolution of living systems. For this reason, we believe that

self-replication should be included in a scenario that attempts to explain the origin and the

evolution of life. In conclusion, we can summarise the above considerations assuming that

a living system is:

i. an open thermodynamic system that exchanges energy and matter with the envi-

ronment;

ii. able to perform self-reproduction, i.e., it produces all its components, starting from

suitable resources;

iii. able to perform adaptive interaction with the environment, i.e., it reacts to external

stimuli and selects suitable resources, in order to ensure self-maintenance;

iv. (still debated) able to perform self-replication, i.e., it constructs copies of itself, in a

dynamical process that allows the biological evolution of a population of organisms.

Now that we have (ideally) clarified the fundamental aspects of living systems, we can

move on to the possible scenarios that explain their emergence.

1.2 From non-living to living matter

Living systems are a typical example of complex systems, and modern theories agree that

a certain “mechanism”, in addition to the abiotic synthesis of organic molecular compo-

nents, is necessary for the emergence of life (Luisi, 2006; Sharov, 2009). Different scenar-

ios have been proposed in order to explain the transition from non-living to living matter.

Generally, they are categorised into two different “schools”: the replication-first and the

metabolism-first hypotheses (Pross, 2004; Mulkidjanian and Galperin, 2007). Roughly

speaking, the replication-first hypothesis suggests that life started from the advent of an
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information-carrying polymer, usually identified with RNA, capable of replication (Sza-

thmáry and Smith, 1995; Dawkins, 1976; Chen et al., 2007; Mulkidjanian and Galperin,

2007). The metabolism-first approach, instead, derives life from autocatalytic chemical cy-

cles able to increase their complexity, and that would have preceded replicators (Kauffman,

1993; Russell and Hall, 1997; Mulkidjanian and Galperin, 2007). Notice that, even if these

two paradigms are usually considered as alternative, they are not actually mutually exclu-

sive (Mulkidjanian and Galperin, 2007; Hordijk et al., 2010; Vasas et al., 2012; Hordijk

et al., 2018b; Xavier et al., 2020). In the next section we introduce examples of the scenar-

ios proposed for the origin of life, trying to highlight the strengths and weaknesses of each

of them.

1.2.1 Replication-first: the RNA word

The RNA world (see Figure 1.3 for a simple sketch) is a popular hypothesis for the ori-

gin of life (Orgel, 2004; Robertson and Joyce, 2010). In this scenario, first living systems

are identified with genetic systems based solely on RNA (Gilbert, 1986). Regardless the

considerations of various authors on the definition of a living system (see Section 1.1),

the model of the RNA world implicitly assumes that life can be represented by genetic

information that can be inherited through replication, according to Darwinian evolution

(Walker, 2017). In a sense, therefore, the RNA world hypothesis is a process of extrapolat-

ing backward from biology, that instead of investigating fundamental properties, assumes

that primordial replication systems were identical to the present-day nucleic acids (Sharov,

2009; Walker, 2017). The key point of this scenario is the evidence of the ability of repli-

cators both to store a huge amount of information, and to transmit this information through

a mechanism that shows to undergo natural selection. The appeal of this scenario is mainly

due to its simplicity, and to the fact that it introduces a mechanism of heredity directly

connected with that of current living cells (Sharov, 2009; Walker, 2017). Moreover, RNA

systems are relatively easy to study as empirical models for exploring molecular evolution

(Higgs and Lehman, 2015; Mojzsis et al., 1999).

However, the RNA world has been challenged by the observation that RNA molecules

are too complex to have arisen abiotically, as well as they are unstable in water (Bernhardt,

2012). Furthermore, even if nucleotides can be synthesised starting from non-living sys-

tems (Benner et al., 2012a; Powner et al., 2009, 2010), they are unlikely to emerge under

prebiotically plausible conditions, and in quantities sufficient for RNA replication (Lazcano

and Miller, 1996; Shapiro, 1988; Sharov, 2016). Finally, a still debated question is the in-

crease in complexity of genetic replicators as a consequence of the Darwinian evolution

only (Walker, 2017). For instance, the authors in Spiegelman et al. (1965) have shown that

a 4500 nucleotides RNA virus can evolve, under competitive selection, in a shorter virus

of 218 bases. This experiment is an example of how the complexity of a replicator can
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Prebiotic soup

Stereoregular mononucleotides

RNA

Self-replicating RNA family

Ribozymes

Proteic enzymes

DNA

Spontaneous synthesis
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Selection

Evolution
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Catalysis

Figure 1.3. Origin of life, in the prebiotic RNA world scenario. Adapted from Luisi (2006).

decrease if, for instance, the environment becomes simpler (Ofria et al., 2003). Therefore,

a central question for the plausibility of the RNA world is the identification of complex

and information-rich environments that allow both the spontaneous emergence of replica-

tors and their evolvability (Walker, 2017). By contrast, alternative scenarios propose that

replicating polymers such as RNA could arise only after primordial living systems based

on metabolism (Kauffman, 1986; Sharov, 2009; Walker, 2017; Vasas et al., 2012; Hordijk

et al., 2010, 2018b; Xavier et al., 2020). In the next section we introduce these other hy-

potheses for the origin of life.

1.2.2 Metabolism-first: (auto)catalytic networks

The metabolism-first hypothesis proposes that the advent of a genetic apparatus has been

preceded by the emergence of a prebiotic metabolism, based either on organic or inorganic

molecules (Anet, 2004). Many of this scenarios usually assume that “life began with a

mutually sustaining set of catalytic reactions involving small molecules” (Shapiro, 2000).

Therefore, life is considered to emerge as a collective self-reproducing system of organic

reactions, in which inorganic molecules or ions (instead of the current efficient enzymes)

act as catalysts, and polypeptides and proteins are not necessarily determined by a genetic

apparatus (Kauffman, 1993; Anet, 2004). Hereafter, we refer to a set of chemical species

capable of mutually catalyse each other’s production through chemical reactions (generally
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assuming a basic set of resources provided by the external environment), with the term AS

(Kauffman, 1971, 1986, 1993). The notion of AS captures the idea of a system capable of

spontaneously emerging and self-reproducing, using the resources at its disposal. Here, the

role of the catalysts is to accelerate biochemical reactions by several orders of magnitude,

making dynamically feasible reactions whose proceeding would otherwise be impossible

in a biological context (Wolfenden and Snider, 2001). Therefore, ASs potentially meet

the requirements for minimal life introduced in Section 1.1 (for results and discussion re-

garding self-replication and biological evolution of ASs, see Part II). Several authors have

proposed the emergence of ASs as an alternative scenario to the replication-first approach

to the origin of life (Kauffman, 1971, 1986, 1993; Dyson, 1985; De Duve, 2003; Eigen

and Schuster, 1977; Gánti, 1997; Letelier et al., 2006; Rosen, 1991). However, notice that,

as mentioned in Section 1.2, an approach to metabolism based on catalytic networks is,

in principle, not in contrast with the presence of information-storage molecules (such as

RNA) in the first life forms (Mulkidjanian and Galperin, 2007; Hordijk et al., 2010; Vasas

et al., 2012; Hordijk et al., 2018b; Xavier et al., 2020). For instance, the concept of minority

control introduced in Kaneko and Yomo (2002); Kamimura and Kaneko (2010) attempts

to unify catalytic networks with the presence of a pseudo-genetic core, represented by few

molecules that control the reproduction rate of the entire system, actually storing the infor-

mation about its reproduction.

The lipid world

An example of metabolism-first model is represented by the Graded Autocatalysis Replica-

tion Domain (GARD) model (Segrè et al., 2000, 2001b,a). The GARD model numerically

simulates, via stochastic algorithms (Gillespie, 1976, 1977), the behaviours of noncova-

lent molecular assemblies, attempting to provide an inheritance mechanism not based on

information-carrying polymers. In particular, let NG denote the size of a molecular reper-

toire, n1, n2, · · · , nNG the (internal to the assembly) molecular counts and ρi the external

concentration of molecular species i. The GARD model assumes that each molecule joins

and leaves the assembly via uncatalysed forward and backward reactions of rate κ f and

κb, respectively. The rates κ f and κb are assumed to be equal for all the molecules. The

dynamics of the systems is governed by the the differential equations:

dni

dt
= (ρiκ f N − κbni)(1 +

1
N

j=NG∑
j=1

βi jn j), i = 1, 2, · · · ,NG (1.1)

where N =
∑NG

i=1 ni is the assembly size and βi j is the catalytic rate enhancement that

species j exerts on species i. The values βi j are drawn from a lognormal distribution, that

is an approximation of the receptor affinity distribution (Lancet et al., 1993; Rosenwald
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et al., 2002) The model simulates a growth-splitting process, in which a growing vesicle

splits into two daughter assemblies. In particular, when the size of the assembly N reaches

a threshold value, each molecule of the progenitor is assigned to each of the daughter with

a probability of 0.5. Under these conditions, it has been shown that the compositional

information of an assembly is transferred to its daughter (Segrè et al., 2000); notice that the

choice of a lognormal distribution from which to extract the values of βi, j plays a crucial

role to achieve this result (Segrè et al., 2001b).

However, the GARD model has been criticised for showing little capability to evolve in

a Darwinian sense (Szathmáry, 2000; Vasas et al., 2010). Moreover, it has been pointed out

that its mathematical apparatus has a poor connection with real chemical systems (Dyson,

1985; Anet, 2004). These are general critics moved to the concept of AS (Dyson, 1985;

Lifson, 1997; Szathmáry, 2000; Vasas et al., 2010). Nevertheless, recent experimental

results (Ashkenasy et al., 2004; Hayden et al., 2008; Sievers and Von Kiedrowski, 1994;

Taran et al., 2010) and theoretical advances (Hordijk and Steel, 2004; Hordijk et al., 2011)

make ASs convincing candidates as systems at the origin of life (Hordijk and Steel, 2017;

Vasas et al., 2012; Walker, 2017; Xavier et al., 2020).
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Figure 1.4. An example of a metabolism-first model: the GARD model. A vesicle contains
monomers and dimers connected by reactions Mi + M j −−−→←−−− Dij. The wall of the vesicle is
impermeable to the dimers, while monomers are supplied from outside the system. The vesicle
expansion arrows indicate the volume increment ∆V(t) in the time interval ∆t. When the size of
the assembly reaches a threshold value, the vesicle divides into two daughter cells, transferring
the compositional information (Segrè et al., 2000). From Segrè et al. (1998)
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Chapter 2

Reflexively Autocatalytic and
Food-generated sets

Recently, a formal definition of ASs has been proposed in the context of graph theory by

the RAF theory (Hordijk and Steel, 2004; Hordijk et al., 2011). This allowed to overcome

some limits associated with ASs, and to make evident their relevance in the context of the

origin of life. In particular, RAF theory has successfully proved that ASs (or RAF sets,

using the nomenclature of RAF theory) are highly likely to exist in a catalytic reaction

system (Hordijk and Steel, 2004; Mossel and Steel, 2005; Hordijk et al., 2011; Hordijk

and Steel, 2012a; Vasas et al., 2012), and RAF sets have been detected in the metabolic

networks of Escherichia Coli (Sousa et al., 2015) and ancient anaerobic autotrophs (Xavier

et al., 2020). Notice, moreover, that the notion or RAF sets is related to other network

models of biochemical systems (Steel et al., 2013; Hordijk and Steel, 2017; Steel et al.,

2019; Villani et al., 2014; Blokhuis et al., 2020), and it is easily connectable to autopoietic

systems (Hordijk and Steel, 2015). Finally, RAF theory shows that RAF sets are usually

composed by RAF subsets, (Hordijk et al., 2018b; Hordijk and Steel, 2012b, 2014), and

it has been argued that (some of) these subsets could be the elementary units on which

natural selection may act (Hordijk and Steel, 2014, 2012b; Vasas et al., 2012; Hordijk et al.,

2018b,a). In the next sections, we present the RAF theory and some of the relevant results

it has provided.

2.1 Basic theory: definition of RAF sets and the RAF algorithm

Within the framework of RAF theory (Hordijk and Steel, 2004; Hordijk et al., 2011), a

network of interacting species is represented by a Catalytic Reaction System (CRS) (Lohn

et al., 1998; Hordijk and Steel, 2004, 2017), that is a tuple (S ,R,C, F) such that:

• S is the set of chemical species;
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Figure 2.1. Example of RAF sets and similar structures introduced in Section 2.1. Species are
represented by letters (dark-green for food-species, black for non-food species). The food set
is surrounded by a dark-green dashed rectangle. Reactions are displayed by coloured squares.
A black arrow emerging from a letter towards a square (from a square pointing at a letter)
indicates the corresponding species is a source (a product) for that reaction. Red dashed arrows
indicate catalyses. First panel: a RAF set consisting of the single reaction r1 : A + B −−−→ C
and the catalysis (C, r1). Notice that the F-generated property (Def. 1) is not longer satisfied
if the food set is reduced, that is, if species A or species B (or both) are not considered as
food-species. On the other hand, the reflexively autocatalytic property (Def. 1) is not longer
satisfied if the catalysis set C is empty. Second panel: a CAF set consisting of the single
reaction r1 : A + B −−−→ C and the catalysis (B, r1). Notice that, contrary to what is shown
in the first panel, in this case both the reactants and the catalyst of r1 are available before the
reaction occurs. Third panel: a p-RAF set consisting of the reactions {r1 : A + D −−−→ C,
r2 : B + C −−−→ D} and the catalyses {(C, r1), (D, r2)}. Notice that this set of reactions does not
satisfies the F-generated property (Def. 1), that is, it is not a RAF set. Fourth panel: a co-RAF
set consisting of the reaction r2 : D + E −−−→ F and the catalysis (C, r2). This set is not a RAF
set, while the larger set of reactions {r1 : A + B −−−→ C, r2 : D + E −−−→ F}, with catalyses
{(C, r1), (C, r2)}, it is.
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• R is the set of reactions, ρ → π, where ρ, π ⊂ S are the reactants and products of a

reaction, respectively;

• C is the catalysis set, that is, a set of pairs {(s, r) : s ∈ S , r ∈ R} indicating the species

s as the catalyst of reaction r1;

• F ⊂ S is the food set, that is, a distinguished subset of S such that each species s ∈ F

is assumed to be available from the environment.

Let R′ be a subset of R. The closure clR′(F) is defined to be the (unique) minimal subset

of S that contains F, together with all the species that can be produced from F by repeated

applications of reactions in R′. Note that clR′(F) is well defined and finite (Hordijk and

Steel, 2004). In RAF theory, the notion of ASs is represented by the RAF sets.

Definition 1 (RAF set) Given a CRS (S ,R,C, F), a RAF set is a set of reactions R′ ⊆ R

(and associated chemical species) that satisfies the following properties (Hordijk and Steel,

2004; Hordijk et al., 2011):

i. Reflexively autocatalytic: for each reaction r ∈ R′ there exists at least one species

s ∈ clR′(F) such that (s, r) ∈ C;

ii. F-generated: for each reaction r : ρ → π, r ∈ R′ and for each species s ∈ S such

that s ∈ ρ, it is s ∈ clR′(F).

Thus, a RAF set is a set of reactions able to catalytically produce all its reactants starting

from a suitable food set. Figure 2.1 shows an example of a RAF set. Authors in Hordijk

and Steel (2004); Hordijk et al. (2011) show that, if a CRS has a RAF set, then it has

a unique maximal RAF set which contains all other RAF sets. The maximal RAF set is

denoted maxRAF set. Moreover, they introduce a polynomial time algorithm able to detect

(if present) the maxRAF set of a generic CRS (S ,R,C, F):

Algorithm 1 (RAF algorithm, Hordijk et al. (2011))

1. Start with the complete set of reactions R and the food set F;

2. Compute the closure of the food set clR(F) relative to the current set of reactions R;

3. For each reaction r ∈ R for which (1) all catalysts, or (2) one or more reactants, are

not in clR(F), remove r from R;

4. Repeat steps 2 and 3 until no more reactions can be removed.
1Notice that the catalyst s of a catalysis (s, r) ∈ C is not required to be a reactant species of r.
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If the resulting reaction set R′ is empty, there is no RAF set in (S ,R,C, F); otherwise, R′

is the maxRAF set. The overall running time of the algorithm is O(|R|2 log |R|) (worst-

case), and, in practice, it is sub-quadratic on average (Hordijk and Steel, 2004; Hordijk

et al., 2011). Note that the concept of a RAF set is related to other approaches to the for-

mal description of metabolic networks (Steel et al., 2013; Hordijk and Steel, 2017, 2018),

such as (M,R) systems (Rosen, 1991), Chemical Organization Theory (Dittrich and Speroni

Di Fenizio, 2007) and Hypercycles (Eigen and Schuster, 1979). In particular, the latter are

a special case of the more general notion of RAF set, with the additional constraint that all

molecule types in the set must catalyse their own formation in addition to the formation

of the other molecule types (Hordijk and Steel, 2017, 2018). Moreover, RAF sets are con-

nected with the formalisation of ASs introduced in Jain and Krishna (1998) (Villani et al.,

2014; Steel et al., 2019). Finally, other notions, similar to that of the RAF set, have been

introduced by the RAF theory: the Constructively Autocatalytic and F-generated (CAF)

sets (Mossel and Steel, 2005), the pseudo-RAF (or p-RAF) sets and the co-RAF sets (Steel

et al., 2013). In particular, given a CRS (S ,R,C, F), we call a subset R′ , ∅ of R:

• CAF: if R′ can be ordered, r1, r2, · · · , rk, so that, for each i ≥ 1, each reactant of ri

and at least one catalyst of ri is contained in the food set and/or is a product of an

earlier reaction in the sequence (Steel et al., 2020);

• p-RAF: if for each r ∈ R′, each of the reactants of r and at least one catalyst of r

are contained in F ∪ π(R′), where π(R′) denotes the products of reactions in R′ (Steel

et al., 2020);

• co-RAF: if R′ is a non-empty set for which there exists some RAF R′′ set for

(S ,R,C, F), which is disjoint from R′ and such that R′ ∪ R′′ forms a RAF set for

(S ,R,C, F) (Steel et al., 2013).

Examples of a CAF set, a p-RAF set and a co-RAF set are shown in Figure 2.1. Informally,

a CAF set is a (RAF) set of reactions that can take place on the condition that both their

reactants and at least one catalyst are already made available by the occurrence of other

catalysed reactions, starting from the food set F. Note that, due to these more restrictive

requirements, CAF sets are less likely to appear in a chemical reaction system than RAF

sets (Mossel and Steel, 2005). Furthermore, the structure of CAF sets is less “rich” than

that one of the RAF sets (Mossel and Steel, 2005). A p-RAF set, instead, is not necessarily

a RAF set. In fact, even if p-RAF sets satisfy some of the properties of RAF sets, they may

not be able to build themselves up from the food set only. This peculiarity makes p-RAF

sets not completely suitable as systems at the origin of life (Steel et al., 2020). Finally, co-

RAF sets may not have a structure able to form RAF sets by themselves, but their (disjoint)

union with other RAF sets can form a larger RAF set. In this case, a co-RAF set can be
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Figure 2.2. Closed RAF sets example. Left: an example of a RAF set. Black dots represent
the chemical species, white boxes represent reactions. Each dot is labeled with a bit string,
corresponding to a molecule type of the BPM (see Section 2.3). A black arrow emerging from
a dot towards a box (from a box pointing at a dot) indicates the corresponding molecule is a
reactant (a product) for that reaction. Dashed gray arrows indicate catalyses. Coloured polygons
indicate some of the RAF subsets (the closed RAF subsets, see Section 2.2). Right: the six
closed RAF sets within the RAF example and their mutual subset relationships. From Hordijk
et al. (2018a).

viewed as the “periphery” of its associated RAF set, i.e., the RAF set can form and sustain

both itself and the associated co-RAF set (Vasas et al., 2012; Steel et al., 2013).

It is important to underline that the definition of RAF (CAF, p-RAF, co-RAF) sets lies

in the context of graph theory, and does not consider the dynamics underlying the reaction

network. In particular, the set of catalyses C introduces a relationship between reactions

and catalyst species, but does not give information on the specific (dynamical) catalytic

process. Therefore, given a reaction r : ρ → π and a catalysis (s, r), the dynamics of

the catalysed reaction could be modeled, for instance, either through considering a single

reaction r′ : ρ + s → π + s whose rate is proportional to the product of the concentrations

of the reactants and the catalyst, or taking into account intermediate reactions involving

ad-hoc introduced enzymatic species. We will return to the dynamical aspects of RAF sets

in Part II, while in the next section we present some results regarding their structure.

2.2 The structure of RAF sets

RAF theory has shown that RAF sets usually have a complex structure, with the largest

maxRAF set containing several subRAF sets (Hordijk et al., 2012; Steel et al., 2013). In

particular, it is possible to identify two classes of subRAF sets that constitute a maxRAF

set: the irreducible RAF (irrRAF) sets and the closed RAF sets. An irrRAF set is a subRAF

set that cannot be reduced any further without losing the RAF property, i.e., removing any

single reaction from an irrRAF set generates a set of reactions that is not a RAF set (Hordijk
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and Steel, 2004). Given a CRS (S ,R,C, F), the following result holds:

Theorem 1 Hordijk et al. (2012)

i. There exist RAF sets R′ for which the number of irreducible RAF subsets is exponen-

tial in the number of molecules and reactions in R′.

ii. For any RAF set R′, the number of maximal proper subRAF sets of R′ can never

exceed |R′|.

iii. Given a catalytic reaction system (S ,R,C, F) and a RAF set R′ ⊆ R, there exist

polynomial time algorithms that solve the following problems:

(a) generate a list of all the maximal proper subRAF sets of R′;

(b) determine whether or not R′ is the union of two proper subRAF sets, and if so

find all such pairs of subRAF sets;

(c) for any given non-empty subset of R′, determine whether that subset is con-

tained in every subRAF set of R′.

Thus, constructing an irrRAF set for (S ,R,C, F) can be carried out in polynomial time;

however, finding the smallest irrRAF set is, in general, NP-hard (Steel et al., 2013). The

number of irrRAF sets, in fact, can grow exponentially with the size of (S ,R,C, F) (Hordijk

et al., 2012). This is, in principle, a significant result for the relevance of RAF sets in the

context of the origin of life, each subRAF set being potentially connected with a biological

unit capable of Darwinian evolution (Hordijk and Steel, 2014; Nghe et al., 2015). Never-

theless, it has been suggested that the actual elementary units on which natural selection

can act could be the closed RAF sets (Hordijk and Steel, 2014; Smith et al., 2014; Hordijk

et al., 2018b).

Definition 2 (Closed RAF set) Given a CRS (S ,R,C, F), a subset R′ of R is said to be a

closed RAF set if (Smith et al., 2014):

i. R′ is a RAF set;

ii. for each r such that all its reactants and at least one catalyst are either part of the

set F or are produced by a reaction from R′, it is r ∈ R′.

Figure 2.2 shows an example of a RAF set and the closed RAF sets contained in it. Note

that the maxRAF set is always a closed RAF set (Smith et al., 2014). The importance of

closed RAF sets is mainly due to their connection with the chemical organisation theory.

In particular, the authors in Hordijk et al. (2018b) have shown that closed RAF sets are

chemical organizations (the converse is not necessarily true)2. This suggests that closed
2Note that the connection between closed RAF sets and chemical organizations can be used to detect closed

RAF sets in a generic CRS (Hordijk et al., 2018b).
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RAF sets can be associated with the attractors of the dynamics of a CRS, thus being the

relevant biological units within that CRS. In fact, given a reaction networks (S ,R), where

S is a set of molecule types and R is a set of reactions, that is, pairs of multisets over S

indicating reactants and products, a chemical organisation O ⊆ S is a set of molecule types

that is (Dittrich and Speroni Di Fenizio, 2007):

• closed: none of the reactions that can be applied using only molecules from O gen-

erates any molecules that are not already in O;

• self-maintaining: let RO be the set of reactions that can be applied using only

molecules from O; then, all molecules in O that are consumed by reactions in RO

can be produced by reactions from RO at a non-negative rate while all reactions in

RO have a strictly positive flux.

In particular, let∇ be the stoichiometric matrix for the system, i.e., a matrix formed from the

stoichiometric coefficients of each reaction, with rows indexed by molecules and columns

by reactions (we will return on this definition in Section 5.3). The self-maintenance con-

dition requires the existence of a flux vector J with strictly positive entries for which it

is:

∇J ≥ 0. (2.1)

Therefore, if the dynamics of the system is governed by a differential equation of the form

ċ = ∇J(c(t)), where c(t) represents the state of the system at time t, then the molecular types

with positive concentrations form a chemical organization (Dittrich and Speroni Di Fenizio,

2007; Peter and Dittrich, 2011). It is important to note, however, that not all chemical

organisations are stable. In particular, taking dynamics into account, molecular species can

disappear even if belonging to a chemical organisation (Dittrich and Speroni Di Fenizio,

2007).

2.3 The occurrence of RAF sets

A fundamental property that an AS must satisfy is the ability to form spontaneously. RAF

theory has shown that RAF sets emerge in random chemical systems once a sufficiently

complex suite of molecules and reactions is achieved. In particular, it has been shown that a

(chemically plausible) linear growth rate in the level of catalysis, i.e., the expected number

of reactions that each molecule catalyses, is sufficient for RAF sets to occur with high

probability in a simple chemical reaction model based on polymer ligation and cleavage

(Hordijk and Steel, 2004; Mossel and Steel, 2005; Hordijk et al., 2011; Vasas et al., 2012).

To see this result, let S = S (n) be the set of sequences of length at most n over the alphabet

set {0, 1, · · · , k − 1}, and let F (the food set) be a distinguished subset of S consisting of all

species of length less than or equal to a fixed length l f , that is, F = S (l f ), l f < n. Let R(n) be
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Figure 2.3. Required levels of catalysis for the occurrence of RAF sets in the BPM. See Section 2.3
for further details. On the x-axis: length n of the largest molecules in the system. On the y-axis:
average level of catalysis f (n) for which RAF sets occurring with high probability in a number
of instances of the BPM, with the probability of catalysis not depending on chemical species.
A: computational case for any RAF sets. B: computational case for all-molecule RAF sets. C:
theoretical case for all-molecule RAF sets. From Hordijk et al. (2011).
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the reaction set consisting of concatenation of two sequences resulting in a longer sequence

(condensation), and cutting of a sequence into two smaller ones (cleavage). Finally, let each

molecule s ∈ S catalyse any given reaction r ∈ R with probability p(s). Notice that this

chemical reaction model, to which we refer with the symbol Q(n), is a generalisation of

the Binary Polymer Model (BPM) introduced by Kauffman (1986) (the BPM is obtained

from Q(n) by imposing k = 2, see Section 3.3 for further details). Due to the random

choice of the catalysis set, Q(n) is usually referred to as a random catalytic reaction system

(Hordijk and Steel, 2004). Let P(n) be the probability that there exists a RAF set in Q(n)

that involves all molecule types, and let f (n, s) denote the expected number of reactions

that each molecule catalyses:

f (n, s) = p(s)|R(n)|. (2.2)

The following result holds:

Theorem 2 (Mossel and Steel, 2005) Consider a random catalytic reaction system Q(n).

Let P(n) be the probability that there exists a RAF set in Q(n) that involves all molecule

types. Suppose that f (n, s) ≥ λn for all s ∈ S , where λ > ln(k). Then,

P(n) ≥ 1 −
k(ke−λ)l f

1 − ke−λ
(→ 1 as λ→ ∞). (2.3)

Similar results are obtained in numerical simulations (Hordijk and Steel, 2004; Hordijk

et al., 2011). In particular, setting k = l f = 2, the authors of Hordijk et al. (2011) compare

the required levels of catalysis for RAF sets to occur in Q(n) with high probability for three

cases:

A) Computational case for any RAF set;

B) Computational case for RAF sets that involve all molecule types in S ;

C) Theoretical case for RAF sets that involve all molecule types in S .

The obtained data are shown in Figure 2.3 (see Hordijk et al. (2011) for simulations details).

Table 2.1 presents the linear relations estimated from the simulation data or calculated from

the theoretical analysis (from Hordijk et al. (2011)). Notice the discrepancy between the

computational (cases A, B) and theoretical (case C) results: although the theoretically pre-

dicted level of catalysis grows fairly quickly, the actual value grows very slowly. Therefore,

even for large systems, a RAF set occurs with high probability if each molecule catalyses

(on average) between one and two reactions at least, which is a chemically highly plausi-

ble condition (Hordijk et al., 2011). Moreover, the conditions necessary for the emergence

of RAF sets are compatible with those of chemical systems, both as regards the required

molecular complexity, and in the case of more realistic models which introduce, for in-

stance, a template-based catalysis (Hordijk et al., 2011). In conclusion, it is reasonable to



2.4 Biological relevance of RAF sets 22

Table 2.1. The empirical (cases A and B) and theoretical (case C) linear relations.

A f (n) = 1.0970 +

0.0189n

B f (n) = 0.4736 +

0.7012n

C f (n) = 1.6339n

assume that RAF sets appear in (minimal) models of polymer chemistry (Hordijk et al.,

2011; Vasas et al., 2012).

2.4 Biological relevance of RAF sets

We conclude this chapter by showing interesting results that directly connect RAF sets with

real metabolic networks. Authors in Sousa et al. (2015) have shown that the best-studied

metabolic network of Escherichia coli contains a RAF set. By applying the RAF algorithm,

they have shown that the 98% of the full reaction network of the bacterium constitutes a

(max)RAF set, consisting of 1787 reactions (only 39 reactions of the full network are not

part of the maxRAF set) and about 1200 associated molecule types (Sousa et al., 2015).

Table 2.2 shows the reactions (grouped in functional categories) that form the maxRAF sets.

Remarkably, such an analysis pointed out the crucial role of metals and molecules such as

ATP as obligatory autocatalytic metabolites, constraining the requirements for spontaneous

chemical evolution (Sousa et al., 2015).

RAF structures are present, moreover, in the metabolism of ancient prokaryotic species

(Xavier et al., 2020). In particular, RAF sets have been detected both in the metabolism of

the acetogenic bacterium Moorella thermoacetica and the methanogenic archaeon

Methanococcus maripaludis. Figure 2.4 shows the reactions (grouped, again, in functional

categories) that constitute the RAF sets found. Notice that methanogens and acetogens are

supposed to reflect the ancestral state of microbial physiology in the bacteria and archaea

(see Xavier et al. (2020) for details and references). The intersection of the two RAF sets

allows to identify a primordial network preceding the methanogen and the acetogen, able to

produce fundamental organic molecules such as amino acids and nucleotides, starting from

a simple food set. Using the words of the authors, “as far back as we could look in metabolic

evolution, RAF sets were found”. Moreover, the analysis carried out on the detected RAF

sets indicates that the size and the complexity of such networks can be increased by the

incorporation of organic cofactors (Xavier et al., 2020). To summarise, the existence of

RAF sets within real metabolic networks, and in particular within the metabolism of ancient

anaerobic autotrophs, suggests that ASs are at the basis of the emergence of metabolism,

possibly preceding RNA in the chemical evolution at the origin of life (Hordijk et al., 2010;



2.4 Biological relevance of RAF sets 23

Table 2.2. The number of reactions per functional category in the maxRAF sets within the metabolic
network of Escherichia coli. From Sousa et al. (2015).

Functional category Reactions

Alanine and Aspartate Metabolism 11
Alternate Carbon Metabolism 217
Anaplerotic Reactions 11
Arginine and Proline Metabolism 45
Cell Envelope Biosynthesis 135
Citric Acid Cycle 23
Cofactor and Prosthetic Group Biosynthesis 235
Cysteine Metabolism 13
Folate Metabolism 11
Glutamate Metabolism 6
Glycerophospholipid Metabolism 150
Glycine and Serine Metabolism 17
Glycolysis/Gluconeogenesis 34
Glyoxylate Metabolism 4
Histidine Metabolism 12
Inorganic Ion Metabolism 32
Lipopolysaccharide Biosynthesis / Recycling 39
Membrane Lipid Metabolism 78
Methionine Metabolism 16
Methylglyoxal Metabolism 10
Murein Recycling 20
Nitrogen Metabolism 13
Nucleotide Salvage Pathway 173
Oxidative Phosphorylation 65
Pentose Phosphate Pathway 19
Purine and Pyrimidine Biosynthesis 35
Pyruvate Metabolism 23
Threonine and Lysine Metabolism 25
Tyrosine, Tryptophan, and Phenylalanine Metabolism 29
Unassigned 21
Valine, Leucine, and Isoleucine Metabolism 23
tRNA Charging 23
Catalysts Reaction 219

Total 1787
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Figure 2.4. The number of reactions per functional category for three maxRAF sets within the
global O2-independent prokaryotic network, acetogen (Ace) and methanogen (Met). From
Xavier et al. (2020).

Vasas et al., 2012; Hordijk et al., 2018b; Xavier et al., 2020).
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Part II

Dynamics of RAF sets:
self-reproduction and evolvability
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Summary

The RAF theory shows that RAF sets have a realistic probability to exist in a generic CRS,

and it has been shown that RAF sets are present in real chemical systems (see Section 2.3

and Section 2.4). In this part, we discuss their dynamical behaviour. In particular, we

address the issue of the emergence of a RAF set, that is, its dynamical appearance. This

aspect is closely related to self-reproduction. Indeed, the dynamical emergence of a RAF

set implies the production of the components of the network via the chemical reactions of

the network itself. The dynamical behaviour of RAF sets is connected also with their evolv-

ability, i.e., the capacity of experiencing adaptive evolution. Adaptive evolution pertains

to the collection of evolutionary changes that are beneficial for survival and reproduction

in a given environment. It has been argued that the autocatalytic subsets present within

the structure of a maxRAF set could be the elementary units on which natural selection

can act (Hordijk and Steel, 2014; Vasas et al., 2012; Hordijk et al., 2018a): the availability

of spontaneous reactions would allow the occurrence of mutations and, consequently, the

appearance of novel autocatalytic subsets with different dynamical behaviours; their simul-

taneous existence would then result in competition and selection. In particular, it has been

suggested that the closed RAF sets could be the relevant units for adaptive evolution (Smith

et al., 2014; Hordijk et al., 2018b,a).

However, the actual evolvability of ASs has been criticised (Vasas et al., 2010, 2012),

and first numerical results show that the asymptotic dynamics of simple RAF sets even-

tually reaches the state in which all the reactions of the maxRAF set occur catalytically

(Vasas et al., 2012; Hordijk et al., 2018a). In this state, all the elementary autocatalytic

units coexist without effectively competing with each other, thus leaving no room for adap-

tive evolution (Vasas et al., 2012, 2010; Hordijk et al., 2018a). The evolvability of RAF

sets can be restored by embedding them into compartments and allowing the sharing of re-

sources and the exchange of chemical molecules (Vasas et al., 2012; Hordijk et al., 2018a;

Kauffman, 2011; Serra and Villani, 2019). For instance, through numerical simulations, it

has been observed that RAF sets enclosed in semipermeable protocells can reach different

asymptotic states (Serra and Villani, 2019), and that spatially separated RAF sets consum-

ing the same food source can give rise to different combinations of competing autocatalytic

subsets (Hordijk et al., 2018a), suggesting that the evolvability of RAF sets is related to

the interactions among RAF sets themselves (see Figure 2.5). In Chapter 3 we investigate

this latter point, while in Chapter 4 we study more generally the connection between the

topology and the dynamics of RAF sets.
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Figure 2.5. Dynamics of simple RAF sets. Each color corresponds to an emerged closed RAF set.
Above: two simulation runs of a RAF set within a single compartment. The stochasticity of
the simulations results in different intermediate states, but eventually the maxRAF set always
emerges (white circle). Below: dynamics of a population of compartments embedding copies
of the same RAF set. Different states are reached by different compartments. The RAF set used
in the simulations is shown in Figure 2.2. Adapted from Hordijk et al. (2018a).
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Chapter 3

Impact of composition on the
dynamics of RAF sets

3.1 Introduction

In this chapter we study the role of various interactions among RAF sets, in order to un-

derstand how these interactions affect the emergent dynamics. To this aim, we use the

Stochastic Petri nets formalism (Molloy, 1982; Haas, 2006) to represent and evolve RAF

sets. Furthermore, we introduce some composition operations acting on nets, which cor-

respond to different interactions among RAF sets. In this framework, assuming that the

entire maxRAF set always emerges in an isolated RAF set, our goal is to find some compo-

sition operations under which the dynamical appearance of the maxRAF set is not invariant.

This means that the corresponding interaction causes only some of the maxRAF subsets to

emerge, allowing the existence of multiple long-term behaviours required for the evolvabil-

ity of RAF sets.

The chapter is organised as follows. In Section 3.2 we introduce the definitions of

Stochastic Petri nets. In Section 3.3 we describe the model we use to evolve nets and

we introduce the composition operations. In Section 3.4 we present and analyse the results

obtained by simulating the dynamics of various composed RAF sets. Finally, in Section 3.5

we discuss the conclusions.

3.2 Background: Stochastic Petri nets

A Petri net consists of (see Petri and Reisig (2008) for further details):

– a finite set of places P;

– a finite set of transitions W;
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– functions b, e : P ×W → N.

Here b(p,w) and e(p,w) are the number of edges from place p to transition w and from

transition w to place p, respectively. The sets b(w) ⊂ P and e(w) ⊂ P are the sets of

places connected to transition w by at least one edge. A marking X of a Petri net is a

map X : P → N that assigns to each place a discrete number of marks called tokens. In

fact, a marking X identifies a state of the system in the space of possible configurations

of tokens available in each place. With xp we indicate the number of tokens of place p

available in marking X. Firing a transition w consumes b(p,w) tokens from each of its

input places p ∈ b(w), and produces e(p′,w) tokens in each of its output places p′ ∈ e(w).

For each marking X, a transition w is enabled (it may fire) if there are enough tokens in

its input places making the consumption possible. This shall occur, if and only if X(p) ≥

b(p,w), ∀p ∈ P. A Stochastic Petri net (SPN) (Molloy, 1982; Haas, 2006) is a Petri

net for which each transition is equipped with a (possibly marking-dependent) rate for

the exponentially distributed transition firing times. λ denotes the set of firing rates of a

SPN. Note that the evolution of a SPN with exponentially distributed transition rates is

isomorphic to continuous-time Markov chain (Molloy, 1982; Grimmett, 2020).

Petri net formalism provides a suitable environment for studying the composition of

networks, with both a computational and theoretical approach; the latter, in particular, in

the context of category theory (Baez and Pollard, 2017). Moreover, this formalism can

describe nets with different dynamics (Vazquez and Silva, 2011). Finally, Petri nets can be

used to model cellular automata (Von Neumann, 1966; Schaller and Svozil, 2009), which

in turn are powerful tools for studying the phenomena of self-reproduction and cellular

self-assembly (Ishida, 2014). These characteristics make the model we introduce easily

generalisable, and suitable for future studies on the composition of AS in different contexts.

3.3 The model

3.3.1 Building the net

Given a CRS (S ,R,C, F) (or, in particular, a set of reactions and associated species that is

a RAF set), we build a SPN by adding a place p for each species s ∈ S and a transition

w for each reaction r ∈ R such that b(w) = ρ(r) and e(w) = π(r), where ρ(r) and π(r) are

the sets of reactants and products species of r, respectively. Moreover, for each catalysis

(s, r) ∈ C we add a transition w such that b(w) = ρ(r) ∪ s and e(w) = π(r) ∪ s. Finally, let

0 be a pseudo-species representing the environment. For each s ∈ F, we add a transition is

such that b(is) = 0 and e(is) = s, that is, is is an input transition producing a food species.

Furthermore, we introduce outflow transitions os such that b(os) = s and e(os) = 0. Thus,

the SPN is a flow reactor that allows inflow and outflow of species from and towards the
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environment. Hereafter, we use S and R to indicate both species and reactions of a CRS

and places and transitions of a SPN.

The rates λ(r) associated with each transition r are marking dependent rates:

λ(r) = hr(X)λr. (3.1)

Here, λr is a fixed constant depending on the type of its corresponding reaction in the

CRS (λr = {λs, λc, λi, λo} in which each λr specifies spontaneous, catalysed, inflowing

and outflowing reactions, respectively) and hr(M) is a value proportional to the number of

combinations of tokens available in the input places of transition r in the state X. Thus,

explicitly, we shall have:

hr(X) =

∏
j b( j, r)

V |b(r)|−1

∏
j

(
x j

b( j, r)

)
, (3.2)

where V is an arbitrary constant that takes into account the volume of the system and the

product is among all the input places of transition r. We set functions b and e such that

the inflowing transitions do not consume tokens of the pseudo-species 0 and produce a

fixed value of tokens of the food species, while the outflowing transitions consume a token

of the outflowing species and do not produce tokens of the pseudo-species 0. Thus, the

rate of outflowing transitions is proportional to the amount of tokens of the outflowing

species, while the rate of inflowing transitions is independent of the state of the system.

It is noteworthy that the inflowing of food elements still remains a stochastic event. We

add inflowing transitions for species not belonging to the originary food set F (setting the

rate of such a transition equal to zero), if required for the purpose of composition between

nets (see Section 3.3.2). The dynamics of the obtained SPN is described by the stochastic

mass action kinetics, that is the classical dynamics used to represent chemical reactions,

assuming a well-stirred system (Anderson and Kurtz, 2011).

The CRSs used in this work are generated according to the BPM (Kauffman, 1986).

The BPM produces a CRS where the species set S consists of all bit strings up to (and in-

cluding) a maximum length N, and the reaction set R consists of condensation and cleavage

reactions. Condensation reaction is a concatenation of two bit strings resulting in a longer

string, and cleavage reaction cuts a bit string into two smaller ones. The food set is repre-

sented by all species with a length less than or equal to a fixed length l f (we set l f = 2),

and each species can be a catalyst of each reaction with a certain probability fixed a priori.

We chose to only allow the condensation reactions to occur in the system. Therefore, we

focus on CRSs with irreversible reactions only. Notice, however, that the technique we use

is applicable in the case where also cleavage reactions are allowed1, that is, when all reac-

1Although the composition rules we have introduced can be applied with no differences to CRSs with
both irreversible and reversible reactions, including cleavage reactions would produce networks, in principle,
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Figure 3.1. RAF set example. Species are represented by letters (dark-green for food-species, black
for non-food species). The food set is surrounded by a dark-green dashed rectangle. Reactions
are displayed by coloured squares. A black arrow emerging from a letter towards a square
(from a square pointing at a letter) indicates the corresponding species is a source (a product)
for that reaction. Red dashed arrows indicate catalyses. The maxRAF set consists of three
closed RAF sets: R(1) = {r1, r3} (green squares), R(2) = {r1, r3, r5, r8} (magenta and green
squares), R(3) = {r1, r3, r2, r4, r6, r7} (blue and green squares).

tions are reversible. In fact, none of the operations we introduce in Section 3.3.2 is affected

by the reversibility of the network.

With this limitation, all the spontaneous reactions of our model are binary reactions

(i.e., reactions with two reactants, possibly of the same species type), while all the catalysed

reactions are ternary reactions. Even if ternary reactions are rare, they can represent a first

approximation of two or more elemental reactions, such as the sequence of reactions of an

enzyme catalysis (Gillespie, 2007).

Figure 3.1 shows an example of a RAF set and its constituent closed RAF sets, used in

our analysis. We exemplify our point by introducing a set of species

S = {A, B,C,D, E, F,G,H, I, L,M,N,O, P} and a food set F = {A, B,D, F, I,M}. In this

exhibiting different dynamics with respect to systems with condensation reactions only, since a network with
reversible reactions can have different topology with respect to the equivalent irreversible network (Feinberg,
1995). We will return on this aspect in Chapter 4.
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example, the RAF set is composed of the following reactions (a species above the arrow of

a reaction indicates the catalyst associated with that reaction):

r1 : A + B
M
−−−→ C

r2 : A + D
O
−−−→ E

r3 : C + F
A
−−−→ G

r4 : B + E
N
−−−→ H

r5 : C + I
P
−−−→ L

r6 : C + M
E
−−−→ N

r7 : D + M
H
−−−→ O

r8 : F + L
D
−−−→ P

The maxRAF set consists of three closed RAF sets: R(1) = {r1, r3}, R(2) = {r1, r3, r5, r8},

R(3) = {r1, r3, r2, r4, r6, r7}. Notice that the closed RAF set R(1) = {r1, r3} is also a CAF set

(Mossel and Steel, 2005). The full list of the simulated reactions is the following:

r1 : A + B −−−→ C r′1 : A + B + M −−−→ C + M iA : 0 −−−→ A oA : A −−−→ 0

r2 : A + D −−−→ E r′2 : A + D + O −−−→ E + O iB : 0 −−−→ B oB : B −−−→ 0

r3 : C + F −−−→ G r′3 : C + F + A −−−→ G + A iD : 0 −−−→ D oD : D −−−→ 0

r4 : B + E −−−→ H r′4 : B + E + N −−−→ H + N iF : 0 −−−→ F oF : F −−−→ 0

r5 : C + I −−−→ L r′5 : C + I + P −−−→ L + P iI : 0 −−−→ I oI : I −−−→ 0

r6 : C + M −−−→ N r′6 : C + M + E −−−→ N + E iM : 0 −−−→ M oM : M −−−→ 0

r7 : D + M −−−→ O r′7 : D + M + H −−−→ O + H

r8 : F + L −−−→ P r′8 : F + L + D −−−→ P + D

3.3.2 Composition

We model interactions between CRSs as composition operations2 between SPNs. First,

notice that RAF sets satisfy the following conditions (hereafter, we refer to these as the

inclusion conditions) (Hordijk and Steel, 2004):

2For an in-depth formal description of compositional rules among graphs representing chemical systems,
see Andersen et al. (2018).
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• if R′1 is RAF in (S 1,R1,C1, F1), it is RAF also in (S 2,R2,C2, F2), if conditions

S 1 ⊆ S 2, R1 ⊆ R2, C1 ⊆ C2, F1 ⊆ F2 are satisfied;

• if R′1 is RAF (S 1,R1,C1, F1) and R′2 is RAF in (S 2,R2,C2, F2), then R′1 ∪ R′2 is RAF

in (S 1 ∪ S 2,R1 ∪ R2,C1 ∪C2, F1 ∪ F2).

Thus, if composition does not remove species from the food set or reactions belonging

to a RAF set, it will not have any impact on its RAF property. However, the dynamical

behaviour of the composed system can be, generally, different from that of the starting one.

Let (S 1,R1, b1, e1, λ1) and (S 2,R2, b2, e2, λ2) be two SPNs and let I,O be subsets of

their inflowing and outflowing transitions sets. Let ∼ be the equivalence relation such that

s ∼ s′ if is ∈ I and os′ ∈ O for some choice of I,O. S ∼ denotes the set of places identified

by relation ∼. We define the following composition operations (a possible bio-inspired

interpretation will be provided below):

COI: (S 1, S 2)→ S ∗ = S 1 ∪ S 2;

(R1,R2)→ R∗ = (R1 ∪ R2 ∪ RI) \ (O1 ∪ I2);

(b1, b2)→ b∗ = b1 ∪ b2 ∪ bI;

(e1, e2)→ e∗ = e1 ∪ e2 ∪ eI;

(λ1, λ2)→ λ∗ = λ1 ∪ λ2 ∪ λI;

RI := {r | b(r) = s, e(r) = s′, ∀ s ∈ S 1, s′ ∈ S 2 such that s ∼ s′};

λI := {λ(r) | λ(r) = hr(X)λ f , ∀ r ∈ RI}.

COII: (S 1, S 2)→ S ∗ = S 1 ∪ S 2;

(R1,R2)→ R∗ = (R1 ∪ R2 ∪ RII) \ (O1 ∪ I2);

(b1, b2)→ b∗ = b1 ∪ b2 ∪ bII;

(e1, e2)→ e∗ = e1 ∪ e2 ∪ eII;

(λ1, λ2)→ λ∗ = λ1 ∪ λ2 ∪ λII;

RII := {r | b(r) = b(r′), e(r) = b(r′′), ∀ r′′ ∈ R2 such that b(r′′) ⊂ S ∼, b(r′) ∼

b(r′′)};

λII := {λ(r) | λ(r) = hr(X)λ f , ∀ r ∈ RII}.

COIII: (S 1, S 2)→ S ∗ = {S 1 t S 2}/ ∼;

(R1,R2)→ R∗ = R1 ∪ R2;

(b1, b2)→ b∗ = b1 ∪ b2;

(e1, e2)→ e∗ = e1 ∪ e2;

(λ1, λ2)→ λ∗ = λ1 ∪ λ2.
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Here λ f is a constant value and (S ∗,R∗, b∗, e∗, λ∗) is the composed SPN. To summarise, all

the composition operations we define relate a set of places S that are input for outflowing

transitions of a SPN, together with a set of places S ′ that are input for inflowing transitions

of another SPN. The formal addition of inflowing transitions for places not belonging to

the food set enlarges the possible composition operations between SPNs.

Given a set S ∼, operation COI adds a transition from S to S ′ for each pair of places

in S ∼, while operation COII adds a transition from S to S ′ for each combination of places

that appears as input of a transition in the inflowing net. Each combination corresponds

to the definition of complex 3 in the framework of chemical reaction networks (Feinberg,

1995). In fact, given a set of chemical species, a complex is defined as a member of the

vector space generated by the species that provide the inputs (or the outputs) of a reaction

(Feinberg, 1995; Anderson and Kurtz, 2011). We will return on this notion in Chapter 4.

Both operations COI and COII introduce a flux of species from one net to another. The

composite network can therefore be seen as the union of two separate networks that evolve

in parallel, communicating only via (asymmetrical) exchange of chemical species. This

could be, for instance, the case of two spatially separated protocells, one of which can re-

lease molecules towards the other. According to this interpretation, the flowing rate λ f is a

parameter that encompasses the characteristics of the flow process (for example, cell per-

meability). Operation COIII, instead, merges each pair of places in S ∼, allowing transitions

of the two original SPNs to operate on the glued set of places. Composing nets via opera-

tion COIII actually produces a new single network. In this case, one can think of composite

net as the result of mutations that enlarge a network (for instance, net 1), introducing new

possible reactions and, consequently, new chemical species (corresponding to net 2).

It is worth to underline that, if there exists a s ∈ S ∼ such that s ∈ F, operations

COI and COII can actually modify the RAF property of net 2. In particular, if transitions

r ∈ R(I,II) are assumed to be spontaneous transitions (λ f < λc), net 2 could not be catalyt-

ically produced starting from the food set F. In this case, the composed net contains a

RAF set R′ such that R1 ⊆ R′ ⊂ (R1 ∪ R2), with R1 = R′ if F ⊆ S ∼. Instead, if transitions

r ∈ R(I,II) are assumed to be (auto) catalysed transitions (λ f ≥ λc), the whole composed net

shall be a RAF set.

3.4 Results and Discussion

In this section, we present the results regarding the impact of composition on the dynamics

of RAF sets as follows: we first introduce the characteristics of simulations and the quan-

3Note that complexes play a major role in the framework of chemical reaction networks theory. For instance,
the deficiency theorems (Feinberg, 1995) are able to predict whether the dynamics of a large class of networks
will have a stationary distribution, starting from the topology of the reaction graph having complexes as nodes.
See Chapter 4 for further details
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tities taken into account, while in Section 3.4.1 we present results for the non-interacting

nets, in order to have a reference model for the interacting cases, presented in Section 3.4.2.

Starting from different instances of the BPM with N < 8, we use the RAF algorithm

introduced in Hordijk et al. (2011) (see Section 2.1) in order to detect and select three dif-

ferent RAF sets, each of which contains more than one closed RAF set. Notice that, even

if different RAF sets have the same species set S , the set of reactions R will be differ-

ent; i.e., various RAF sets have different chemistry. The RAF sets identified through this

procedure constitute the collection on which we will carry out the study. Even if such a

small collection cannot be taken as a solid statistical basis, it is still sufficient for provid-

ing us with interesting information. We duplicate each RAF set and let it interact with its

copy by switching to representation of RAF set as an SPN and using one of the compo-

sition operations introduced above. We simulated the dynamics of the system using the

standard Gillespie algorithm (Gillespie, 1976, 1977), setting the volume of the system at

V = 1 (arbitrary units). For each simulation, we perform 100 independent runs of 106 time

steps. One of the necessary conditions for a RAF set is the ability to produce itself starting

from the elements of the food set. Indeed, the initial state of the SPN is set such that:xs(t = 0) = x0 if s ∈ F;

xs(t = 0) = 0 otherwise.
(3.3)

Here x0 is an arbitrary constant. The values of x0, λc, λi and λo are set such that the number

of tokens of food places at t → ∞ is equal to 105, for an SPN with inflow, outflow and all

(and only) binary transitions having, as input, food places only (and firing rate λc). The

value of λs is fixed at λs = λc/10, while λ f varies such that λ f ∈ [λc10−1, λc106]. It

is noteworthy that the values of these parameters are not taken from “in vivo” data, but

they have phenomenological motivations. Thus, although we can reasonably generalise the

characteristics of the dynamics, quantities such as the species’ production rate or the time

evolution of the concentrations may differ from those in other similar stochastic simulations

(Hordijk and Steel, 2012a; Hordijk et al., 2018a).

We focus our attention on the effective appearance of a maxRAF set during the evolu-

tion of the system. In particular, we introduce the following quantities:

1) Ms(t) =
∑

s
1

1+xs(t)
, ∀s < F;

2) τi = min{t | n(r) ≥ i, ∀r ∈ R}.

Here n(r) is the number of executions of transition r, and R is the maxRAF set. Notice

that the natural condition xs(t) ≥ 0 implies that each term contributing to the computation

of Ms(t) can assume, at most, the value one. Both Ms(t) and τi are calculated for each

single net that forms the composed net. Let mM = Ms(t) be the mean value of Ms(t)

with respect to time for large t, that is, mM = 1/t
∫ t

0 Ms(t′)dt′, t � 1. If all the non-food
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species of a maxRAF set are efficiently produced, then Ms(t) → 0 for large t and mM ≈ 0.

However, the definition of a RAF set does not ensure that all the species associated with

such a set are present in large amount during the evolution of the system. For instance,

a non-food species that is a source for a transition of a RAF set could be continuously

consumed by that transition as soon as it is produced, resulting in a fluctuating evolution of

its number of tokens. For this reason, we consider a less restrictive condition than mM ≈ 0

for the emergence of a maxRAF set. In particular, for large t, we require a strictly positive

concentration for all non-food species and a high concentration for most of them. This

implies that the relation 1
1+xs

< 1 holds for all the terms contributing to the calculation of

Ms, and that the relation 1
1+xs
≈ 0 holds for most of them. Thus, we introduce the following

condition:

mM < 1. (3.4)

We assume that, if condition (3.4) holds, the entire maxRAF set emerges.

Notice, moreover, that different growing rates among species of a RAF set correspond

to different effective firing rates of the transitions. Therefore, even if a maxRAF set R

appears, the time τ necessary to perform all the transition of R can exhibit different slopes

during the evolution of the net, based on the various effective rates of subsets of R. We

use the slope mτ of the straight line yτ(i) = mτi + qτ that approximates τi for i → ∞ in

order to compare the efficiency of the (total) self-reproduction of different RAF sets. We

summarise the results obtained from the simulated composition operations and the different

RAF sets of our collection through a scatter plot showing the values (mM,mτ) averaged over

independent runs (Figure 3.7).

3.4.1 Non interacting nets

We start investigating the non interacting nets by simulating the evolution of three isolated

RAF sets that constitute the collection, in order to obtain the dynamics that will be a basis

for comparison for the evolution of the composite nets. Figure 3.2 shows the time evolu-

tion of the number of tokens of non-food species for the isolated RAF set represented in

Figure 3.1. Hereafter, we refer to this simulation as “reference”, since it will be used as

a benchmark for the other simulations. It is evident that, after a transient time of approx-

imately 0.06 time units, all the species associated with the RAF set grow in number, with

the exception of species C: C is the only species in the set to be a source for more than

one transition (Figure 3.1). The green line in Figure 3.3 shows the corresponding trend of

Ms(t). As expected, after the same transient time of ≈ 0.06 time units, Ms(t) decreases

down to values close to zero, the entire maxRAF set appears and condition (3.4) is satisfied

(Figure 3.7).

We find that the asymptotic dynamics of simple isolated RAF sets is not affected by

changing the initial state (notice that this is not the case, for instance, in the simulations



3.4 Results and Discussion 38

101

102

103

104

105

 0  0.05
 0.1

 0.15
 0.2

x
s(

t)

t[arb. units]

 C
 E
 G
 H
 L
N

 O
 P

Figure 3.2. Isolated RAF set. Number of tokens over time of non-food species obtained in a
simulation run of the isolated RAF set shown in Figure 3.1. After a transient time of t ≈ 0.006
(arbitrary units) all the species are present in a large amount, with the exception of the species
C which is repeatedly consumed by more than one reaction of the RAF set.
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Figure 3.3. Total production of non-food species by isolated nets. Ms(t) obtained in a simulation
run of the isolated RAF set shown in Figure 3.1 for different initial conditions: solid green line
(reference simulation): xs(t = 0) = 100 if s ∈ F, xs(t = 0) = 0 otherwise; dotted magenta line:
xs(t = 0) = 100 if s ∈ F, xs(t = 0) = rand(0, 104) otherwise; dashed blue line: xs(t = 0) = 100
if s ∈ F, xs(t = 0) = 104 if s ∈ {E,H,N,O}, xs(t = 0) = 0 otherwise. After a transient time of
t ≈ 0.006 (arbitrary units) Ms(t) always takes values close to zero, indicating that the maxRAF
set has emerged for all the different tested configurations. Dash-dotted red line: net that failed to
be a RAF set, obtained by switching off the catalysis (D, 8) in the RAF set shown in Figure 3.1.
In this case, Ms(t) is always greater than 1, indicating that more than one non-food species is
not efficiently generated by transitions of the system, or that at least one of them is not produced
at all.
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Figure 3.4. Cycles of transitions completed by isolated nets. τi obtained for the isolated RAF set
shown in Figure 3.1 with different initial conditions: solid green line (reference simulation):
xs(t = 0) = 100 if s ∈ F, xs(t = 0) = 0 otherwise; dotted magenta line: xs(t = 0) = 100 if s ∈ F,
xs(t = 0) = rand(0, 104) otherwise; dashed blue line: xs(t = 0) = 100 if s ∈ F, xs(t = 0) = 104

if s ∈ {E,H,N,O}, xs(t = 0) = 0 otherwise. The similar slope of τi for t → ∞ associated with
different tested configurations indicates that, after a transient time, the efficiency of performing
all the transitions of the RAF set does not depend on the initial conditions. Red circle: the net
that failed to be a RAF set, obtained by switching off the catalysis (D, 8) in the RAF set shown
in Figure 3.1. In this case, the net is not able to perform all its transitions.
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Figure 3.5. Total production of non-food species by composite nets. Ms(t) is obtained for two
copies of the RAF set shown in Figure 3.1 with different composition operations. For each
composite net, two Ms(t) are calculated, each from the species associated with the original
copies. Dash-dotted magenta line: operation COI , net 1, λ f = 105λc. Dashed cyan line:
operation COII , net 1, λ f = 105λc. Solid yellow line: operation COIII , net 1. Dash-dotted violet
line: operation COI , net 2, λ f = 105λc. Solid blue line: operation COII , net 2, λ f = 105λc.
Dotted dark-yellow line: operation COIII , net 2, delayed. For all composite operations, Ms(t)
of net 2 does not satisfy the condition stated by Eq. (3.4) that results in the emergence of the
maxRAF set. For operation COII , both the maxRAF sets of net 1 and net 2 do not emerge.

performed in Serra and Villani (2019)). This is obvious from Figure 3.3 and Figure 3.4

by comparing the trends of Ms(t) and τi obtained for the same RAF set for various initial

conditions. In particular, we perform different simulations by setting xs(t = 0) equal to a

random number less than 104 for all non-food species of the maxRAF set, and by setting

xs(t = 0) = 104 for only those species associated with a particular closed RAF set. For

all the RAF sets in the collection, the resulting values of mM and mτ are in agreement with

those corresponding to the initial conditions described by Eq. (3.3) (Figure 3.7). Con-

versely, the dynamics emerging in a net that failed to be a RAF set is significantly different

(Figure 3.3 and Figure 3.4, red lines).

These results suggest once again that simple RAF sets have an effective advantage in

self-reproduction over non-RAF set. Also, the structure of RAF sets alone is not sufficient

to guarantee the presence and the dynamical selectability of different long-term behaviours.

Using the dynamics of isolated RAF sets as reference, we can now move on to the dynamics

of composed RAF sets.
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Figure 3.6. Cycles of transitions completed by composite nets. τi is obtained for two copies of the
RAF set shown in Figure 3.1 with different composition operations. For each composite net,
two τi are calculated, each from the transitions associated with the original copies. Dash-dotted
magenta line: operation COI , net 1, λ f = 105λc. Solid yellow line: operation COIII , net 1.
Large cyan circle: operation COII , net 1, λ f = 105λc. Intermediate violet circle: operation
COI , net 2, λ f = 105λc. Intermediate blue circle: operation COII , net 2, λ f = 105λc. Small
dark-yellow circle: operation COIII , net 2, delayed. For all composite operations, net 2 is not
able to execute all its transitions. For operation COII , both net 1 and net 2 do not perform a
complete cycle of transition of the RAF set.
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3.4.2 Composite nets

In order to compose nets, we choose five different sets S ∼: the set of places belonging to

the food set, the set of places non belonging to the food set, the set of places corresponding

to the molecules of length l = l f + 1 and l ≤ l f + 1 of the BPM and the set of places that are

not input places for spontaneous transitions (not selected for operation COII). We compose

copies of the RAF sets according to the composition operations COI , COII and COIII . The

initial states of the nets are set according to Eq. (3.3). Moreover, for operation COIII ,

simulations are performed in which the transitions belonging to net 2 cannot proceed for a

certain time interval of 104 time steps. Hereafter, we refer to this particular configuration

as the “delayed configuration”.

We find that composition operations do not have any impact on the emergence of the

maxRAF sets for any choice of S ∼ that does not include food species (Figure 3.7). How-

ever, a primordial form of biological interactions can be established; namely, facilitation

and cheating. In particular, in nets composed through operations COI and COII , inflowing

of external species can facilitate the appearance and the sustenance of a RAF set, improving

its production efficiency. At the same time, withdrawing species produced by a RAF set

can counteract its production. These aspects are well highlighted by various trends of the

generated mτ due to different conditions.

On the other hand, as expected, composition operations involving the food set have

a major role on the emergence of the maxRAF set. Figure 3.5 and Figure 3.6 show the

behaviour of Ms(t) and τi associated with two RAF sets that are composed by operations

COI , COII and COIII for S ∼ = F. Similar trends are obtained from the composition of the

other RAF sets in our collection. Results show that operations COI and COII prevent the

entire maxRAF set in at least one of the two copies from emerging. In particular, we find

that, if the rate λ f of transitions allowing the flux of food elements from net 1 to net 2 is

low enough (λ f < 106λc), operation COI prevents the emergence of the maxRAF set in net

2, while net 1 exhibits the same dynamics of the isolated net, as can be concluded from Fig-

ure 3.7. On the other hand, for the same composition operation, if the rate λ f is sufficiently

high (λ f ≥ 106λc), the flow of food elements is such that the maxRAF set of net 1 does not

contain available resources to perform all its transitions, while net 2 evolves as it is isolated

and able to draw food directly from the environment (Figure 3.7). For operation COII , we

have achieved significantly different results. In this case, we find different threshold values

λ f = (λ f 1, λ f 2) (depending on the specific RAF set of the collection) such that the emer-

gence of the maxRAF set in net 2 is prevented for λ f ≤ λ f 1, while the opposite situation

is obtained for λ f ≥ λ f 2. Moreover, for intermediate values λ f 1 < λ f < λ f 2, no maxRAF

set emerges but only some of the closed RAF sets (Figure 3.5 and Figure 3.6). Therefore,

for this range of values, the flux of species is such that both nets 1 and 2 have enough

food elements to fire transitions and perform (complementary) subsets of the maxRAF set,
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namely, the closed RAF sets. Furthermore, the stochastic nature of the flow process al-

lows the emergence of different closed RAF sets in each run, hence showing the possible

selectability of asymptotic dynamics for composite nets.

The observed dynamics lead to some important considerations: first, it is clear that

the actual availability of resources is a crucial element in the dynamical realisation of a

RAF set, and the rate at which food elements enter the net is as relevant as the definition

of the food set itself, as expected. Moreover, the differences emerging due to the impact

of the COI and COII operations suggest that the complexes play an important role in the

dynamics of the RAF sets, even if they are defined starting from the single species. We

will investigate these points in Chapter 4. Finally, as previously observed in (Hordijk et al.,

2018a), biological interactions different from competition among RAF sets are plausible.

It is also intriguing that an effective competition can emerge if two nets share the same

food, as in case of composition operation COIII and S ∼. In particular, we observed that in

the delayed configuration, the presence of the maxRAF of net 1 prevents the emergence of

the maxRAF of net 2. In fact, once the maxRAF of net 1 has had enough time to appear, the

number of tokens of its associated species increases. Since the effective rate of a transition

is proportional to the number of tokens of its sources, species of net 1 have an higher chance

of reacting with respect to their counterparts belonging to the delayed net 2. Most of the

food elements are therefore consumed by transitions of net 1. Once activated, only some

of the transitions of net 2 are able to be performed efficiently, leading to the emergence

of only some of the closed RAF sets which constitute the maxRAF set of net 2. Different

runs show that the emerging closed RAF sets can vary due to the stochastic nature of the

system evolution, thus guaranteeing the selectability of the different long-term behaviours

and meeting the basic requirements for evolutionary processes (Vasas et al., 2012; Hordijk

and Steel, 2014; Hordijk et al., 2018a).

This result is in contrast with the previous ones where it has been observed that isolated

RAF sets are not able to experiment different asymptotic dynamics. In fact, composing two

RAF sets using operation COIII produces a composite net in which all transitions form a

(larger) RAF set (see the inclusion conditions, Section 3.3.2), and the effect of the delay can

be seen as a selection of a particular initial state. However, the same composite net is not

able to produce competition if the delay is not introduced. Also, an effective competition

between closed RAF sets has not been observed in an isolated net with initial conditions

containing RAF sets already emerged at time t = 0 (Figure 3.7, Figure 3.3 and Figure 3.4).

We suggest that key elements for this form of competition are both the structure of the

composite RAF set and the particular choice of initial conditions. In fact, in nets composed

by operation COIII and S ∼ = F, each transition that consumes at least one food species

as a source or a catalyst, always has at least one competitor represented by its copy. By

contrast, the hierarchical structure of RAF sets does not guarantee such a level of compe-
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Figure 3.7. Impact of composition operations on the emergence of the maxRAF set. On the x-axis:
slope mτ of the straight line fitting τi for t → ∞. On the y-axis: mM = Ms(t), where · · · is the
average over time for t → ∞. Notice that both values shown for mτ and mM are obtained by
further averaging these quantities over 100 independent runs. For each run, both mτ and mM are
calculated for t ≥ 5

6 t f , where t f signifies the end of the simulation run. Green triangles: RAF
set 1 (Figure 3.1). Red circles: RAF set 2. Blue squares: RAF set 3. Empty points: net 1. Filled
points: net 2. Yellow shaded region indicates values corresponding to mτ → ∞, obtained for
composition operations COI ,COII ,COIII (delayed) and S ∼ = F.

tition between different close RAF sets. Moreover, the delay brings the system into a state

that promotes the formation of some subsets of the RAF set. The system can hardly reach

this state only through random fluctuations. The results presented in this section show that

these two conditions allow RAF sets to have different accessible asymptotic dynamics.

3.5 Discussion and conclusions

In this chapter we studied the impact of composition operations on the dynamics of sim-

ple RAF sets. This allowed us to test whether the interactions among RAF sets permit

different long-term dynamical behaviour of the RAF sets themselves, that is a necessary

condition for evolvability. To this aim, we generated various RAF sets starting from dif-

ferent instances of the BPM and represent RAF sets as SPNs. Moreover, we introduced

composition operations that, acting on SPNs, correspond to interactions among RAF sets.

We found that, if the composition operations do not involve the food species of a RAF set,

the dynamics of the system always reaches a state in which all the composed RAF sets
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appear. However, how fast the RAF sets emerge and their efficiency in self-reproduction

depend on the exchange of species, showing that the composition operations can give rise

to interactions with ecological features.

On the other hand, composition operations involving food species hinder the appear-

ance of, at least, one of the two original RAF sets, giving rise to possible different long-

term behaviours. In particular, if the food species can be exchanged between one RAF set

and another, as the case of composition operations COI and COII , the emergence of the

maxRAF set of the starting nets depends on the rate of the exchange transitions (the flow).

For sufficiently low rates, only the RAF set capable of acquiring food directly from the

environment is able to form. Conversely, for sufficiently high rates the elements of the food

are exchanged in such portions to allow only the receiving RAF set to appear. Furthermore,

if complexes of a reaction are involved in the exchange and not individual species (as in

the case of the composition operation COII), we found an intermediate interval of flow rate

values within which the exchange of food elements between the nets allows the emergence

of just some of the closed RAF sets that constitute the starting maxRAF sets. For these

intermediate flow rates, therefore, the necessary evolvability conditions are met. Finally,

we found that only some closed RAF sets within a maxRAF set can appear if the maxRAF

set shares the food species with its copy that has already fully emerged. The latter is a

relevant result, since sharing the same food set by two RAF sets produces a maxRAF set

that is the union of the two starting RAF sets. The dynamics observed in this case shows

that different long-term behaviours are possible for a single RAF set, at least as long as the

system is in a particular initial state and the subsets of the RAF set compete with each other

for each reaction that needs food elements.

In previous works it was theorised that separate RAF networks could compete for

shared resources (Hordijk and Steel, 2014; Vasas et al., 2012; Kauffman, 2011), and a

competitive dynamics was observed in spatially separate RAF sets (Hordijk et al., 2018a).

Results presented in this chapter confirm the possible evolvability of a system of RAF sets

separated into compartments. We also noticed that isolated (composite) RAF sets can expe-

rience different asymptotic dynamics. However, since all the simple (tested) isolated RAF

sets experience the emergence of the entire maxRAF set, the definition of the RAF sets

does not seem to be sufficient for implying dynamics with multiple selectable long-term

behaviours. We will return on this aspect in Chapter 4. Moreover, in the future it might be

interesting to extend our analysis to a larger ensemble of RAF sets, as well as to study the

composition of RAF sets enclosed in protocells, investigating how the coupling between

internal networks and boundaries affects the global dynamics of the system.
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Chapter 4

Long-term behaviours of RAF sets

4.1 Introduction

As observed in previous chapters and in early numerical results (Vasas et al., 2012; Hordijk

et al., 2018a; Serra and Villani, 2019; Ravoni, 2020a), the conditions a graph must satisfy

to be a RAF set (see Section 2.1) are not sufficient to strictly constrain its dynamics, and

the system may not exhibit the features necessary to self-reproduction and evolvability.

Actually, the connection between the topology of a RAF set and its dynamics is not yet

fully understood (Filisetti et al., 2011; Serra and Villani, 2019; Hordijk and Steel, 2018,

2012a). In this chapter we make a first attempt to solve this issue, by studying RAF sets

through the formalism of the Chemical Reaction Network (CRN) theory1 (Feinberg, 2019).

The CRN theory offers powerful tools that allow to connect the topology of a network

with its dynamical behaviour, for a large class of network dynamics (Feinberg, 2019, 1987,

1995; Ellison, 1998; Ellison et al., 2012). Note that the CRN theory usually deals with

the study of real-world chemical systems. Starting from the results of the CRN theory, we

identify which conditions on the structure of RAF sets are useful for predicting their long-

term behaviours. In particular, we investigate which conditions determine a dynamics with

desired properties for systems at the origin of life (e.g., self-maintenance, concentrations

growth, homeostasis), adding new elements in the scenario previously proposed for the

evolvability of RAF sets (Hordijk et al., 2018a; Vasas et al., 2012).

The chapter is organised as follows. In Section 4.2 we recall notions of the CRN the-

ory useful for our study. In Section 4.3 we show our representation of RAF sets in terms

of CNRs. In Section 4.4 we introduce motifs in the structure of RAF sets that are con-

nected with long-term behaviours of the networks, and we provide an illustrative example

of evolvability of RAF sets by numerically simulating the dynamics. Finally, in Section 4.5

1Recently Andersen et al. (2020) and Blokhuis et al. (2020) have defined and classified autocatalytic struc-
tures based on general stoichiometric conditions in CRNs. We are currently investigating the connection be-
tween these structures and the RAF sets, focusing mainly on the (RAF) motifs we introduce in Section 4.4.
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we discuss the conclusions.

4.2 Background: Chemical Reaction Networks (CRNs) and the
Deficiency Zero Theorem

In this section we recall some useful definitions and we introduce the Deficiency Zero

Theorem (DZT) (Feinberg, 1987, 1995). An interested reader can find a detailed discus-

sion of the CRN theory in (Feinberg, 2019). Let S denote the set of chemical species,

N = {νi, ν
′
i : i = 1, · · · , r, ν j , ν

′
i} the set of complexes, that is, the members of the vector

space RS
>0 generated by the species that provide the inputs and the outputs of a reaction. We

denote with ν(s) the s-th component of the vector ν, that is, the stoichiometric coefficient

of species s in the complex ν. Let R = {νi → ν′i : i = 1, · · · , r} be the set of reactions, that

is, the set of relations among complexes. For each reaction νi → ν′i ∈ R, the component

νi(s) indicates the number of molecules of the s-th chemical species consumed by the i-th

reaction, while the component ν′i(s) indicates the number of molecules of the s-th species

produced by the i-th reaction. A CRN is a triple (S,N ,R). Note that it is possible to con-

sider open CRNs introducing pseudo reactions such as 0→ ν and ν→ 0, where 0 is called

the zero complex and it is the zero vector of RS.

We denote with G the directed graph with complexes as nodes and reactions νi → ν′i as

directed edges. The connected components of G are called the linkage classes of the CRN.

A strong-linkage class is a strongly connected linkage class. A terminal strong-linkage

class is a strong-linkage class containing no complex that is a source for an edge pointing

to a different strong-linkage class. Note that a complex not involved in any reaction is a

terminal strong-linkage class. A CRN is said to be weakly reversible if each linkage class in

G is a strong-linkage class, or, equivalently, if each linkage class is a terminal strong-linkage

class. The reaction vectors for a CRN are the members of the set {ν′i−νi ∈ R
S|νi → ν′i ∈ R}.

The span generated by the reaction vectors is called the stoichiometric subspace of the

network, and its dimension is denoted by d. The deficiency of a CRN is:

δ = n − l − d, (4.1)

where n and l are the number of complexes and linkage classes, respectively. Note that the

dimension d of the span of two networks with the same complexes and the same linkage

classes is the same. This implies that the two networks have the same deficiency δ, and that

it results δ ≥ 0 (Feinberg, 1995).

In the following, we refer to mass-action systems, that are CRNs taken together with

an element κ ∈ RR
>0. The number κν→ν′ is the rate constant for the reaction νi → ν′i ∈ R.

Hereafter, we use G to indicate both a CRN, its associated directed graph and the resulting
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mass-action system. The species-formation rate function for a mass-action system is the

function f (·, κ) : RS
≥0 → R

S defined by:

f (c, κ) =
∑
ν→ν′

κν→ν′cν(ν′ − ν), (4.2)

where c is the (time-dependent) vector of species concentration and cν is defined as:

cν :=
∏
s∈S

c(s)ν(s). (4.3)

Here c(s) is the concentration of species s. The dynamics of G is described by the equation:

ċ = f (c, κ), (4.4)

where the point indicates the time derivative. Eq. 4.4 corresponds to a set of ordinary

differential equations (ODEs) that describe the time evolution of concentration of each

species in S . Indeed, it is natural to define a positive equilibrium as an element c ∈ RS
>0

such that f (c, κ) = 0. A positive equilibrium is then a steady state of the mass-action

system characterized by a positive concentration and a zero net production rate for every

species of the CRN. Note that the term "equilibrium" used in this context does not refer

to thermodynamic equilibrium, but rather to a general steady state. A necessary condition

for the existence of a positive equilibrium for a mass-action system is the existence of a

positive vector α ∈ RR
>0 such that (Feinberg, 1995):∑

ν→ν′

αν→ν′(ν′ − ν) = 0. (4.5)

If exists α such that Eq. 4.5 is satisfied, we say that the network’s reaction vectors are pos-

itively dependent. Note that weak reversibility is a sufficient (but not necessary) condition

for the existence of a positive equilibrium (Boros, 2019; Feinberg, 1995).

The DZT provided a connection between the topology of a network, expressed in terms

of its deficiency, and the existence and the uniqueness of steady states for the associated

mass-action system (Feinberg, 1987, 1995). In fact, the DZT does much more, and its

results can be applied to a broad class of kinetics systems. However, in this work we

limit our attention on a specific result (again, see (Feinberg, 2019) for a comprehensive

illustration of the theorem and its application). In particular, we will use the following

statement:

Theorem 3 (The deficiency zero theorem) Let (S,N ,R) be a reaction network of defi-

ciency zero.

1. If the network is weakly reversible, the resulting mass-action system admits precisely
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Figure 4.1. Example of a RAF set as a CRN. Complexes are represented by black letters (the letter
f indicates food species), reactions by arrows. Blue letters in brackets indicate catalysts. The
entire reaction network is a RAF set. Two closed RAF sets are present within the RAF set,

namely: R(1) = {f1+f2
(x2)
−−−→ x1, x1

(x4)
−−−→ x2+x3, x2+x3

(x1)
−−−⇀↽−−− x4, x4

(x3)
−−−→ x1, x4

(x4)
−−−⇀↽−−− xy} and

R(2) = {f1+f2
(y3)
−−−→ y1, f1+f2

(y1)
−−−→ y2, y2+y3

(y2)
−−−⇀↽−−− y3}.

one positive equilibrium for each initial condition, no matter what (positive) rate

constants are assigned to the reactions .

2. If the network is not weakly reversible, there can be no assignment of (positive) rate

constants such that the resulting mass-action system admits the existence of a positive

equilibrium (the network’s reaction vectors are not positively dependent).

4.3 Reflexively Autocatalytic and Food-generated CRNs

In this section we study RAF sets in the context of CRN theory. Figure 4.1 shows an

example of a RAF set in this framework. Our first step is to represent F-generated sets

in terms of CRNs (Section 4.3.1). In particular, we focus our attention on zero deficiency

CRNs (this restriction is dropped when we introduce catalysis, see Section 4.3.2). We open

the system to the inflow of matter by introducing pseudo reactions that produce species

of the food set. We consider both reversible and irreversible reactions and allow only

elementary reactions (i.e., reactions involving one or two chemical species as reactants) to

occur. Finally, in Section 4.3.2 we introduce the notion of catalysis within the framework

of the CRN theory.

In RAF theory, a catalyst is a species able, with its presence, to facilitate (i.e. accel-

erate) the proceeding of a reaction (Hordijk and Steel, 2004). However, in real systems,

catalysed reactions usually involve one or more intermediate complexes and can exhibit

various dynamical behaviours (Michaelis and Menten, 1913; Ricard and Cornish-Bowden,

1987). We define catalysis within CRNs by introducing an enzymatic mechanism such

that a catalysed reactions consumes a catalyst x and a substrate s to form an intermediate
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complex e, which in turn releases product species and the original catalyst x:

s + x
κ1
−−−⇀↽−−−
κ−1

e
κ2
−−−⇀↽−−−
κ−2

p + x (4.6)

where κ−2 = 0 for irreversible reactions. Note that this modeling is the common Michaelis-

Menten scheme (Michaelis and Menten, 1913), extensively used to describe enzymatic pro-

cesses, and that this modelisation has already been used to simulate RAF sets dynamics

(Serra and Villani, 2019). Furthermore, we assume that, due to its highly reactivity, the

intermediate complex e reaches a quasi-equilibrium state very quickly, compared to the

characteristic evolutionary time scale of other species. Therefore, the derivative in Eq. 4.4

relating to the intermediate complex can be set quasi equal to zero:

ċ(e) ≈ 0. (4.7)

We refer to Eq. 4.7 as the quasi steady-state (QSS) assumption. It is important to underline

that the QSS assumption is at the basis of the quasi steady-state approximations (QSSAs)

(Briggs and Haldane, 1925; Borghans et al., 1996; Tzafriri, 2003; Tzafriri and Edelman,

2004), that are theoretical tools widely used to study enzymatic reactions. In particular,

the QSSAs start from the QSS assumption in order to derive algebraic relations among

intermediate complexes and the other reactants, reducing the number of ODEs that describe

the evolution of the system. Interested readers can consult, for example, Bersani et al.

(2015) to learn more about these approaches.

The applicability of the QSSAs depends on the the initial conditions and the parame-

ters describing the system. If their conditions of validity are not satisfied, the use of these

approximations leads to a wrong description of the dynamics of interest (see, for instance,

Flach and Schnell (2006); Pedersen et al. (2007)). However, as shown in Borghans et al.

(1996); Bersani et al. (2015); Tzafriri (2003); Tzafriri and Edelman (2004), the so-called

total quasi steady-state approximation (tQSSA) is able to accurately reproduce the dynam-

ics of enzymatic reactions for a wide range of parameters. In particular, it holds whenever

it is (Tzafriri, 2003; Tzafriri and Edelman, 2004):

κ−1 + κ2

κ1
>> 1, (4.8)

κ−1 + κ2

κ1
>>

κ2

κ1
, (4.9)

κ−2

κ1
<< 1. (4.10)

Therefore, for these values of the rate constants we can be reasonably confident that the

QSS assumption (Eq. 4.7) is valid. This assumption allows us to provide a relation between

the topology of the CRN without catalysis and the corresponding dynamics including en-
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zymatic processes (Appendix A).

4.3.1 Food-generated CRNs

Let F be a set of chemostatted chemical species, that is, a set of species whose concentration

is controlled by the environment. Given a CRN G = (S,N ,R), we consider F ⊂ S to

be the food set of G. As in RAF theory, we say that G = (S,N ,R) is an F-generated

CRN if, for a certain set F ⊂ S and for each s ∈ S, there exists a sequence of reactions

(ν′0 − ν0), (ν′1 − ν1), . . . , (ν′i − νi) such that:

i. ν′i(s) , 0;

ii. ν0(s′) = 0⇔ s′ ∈ F;

iii. ∀s′ ∈ S \ F such that ν j(s′) , 0, j = 1, . . . , i, exists k < j such that ν′k(s′) , 0.

Let G = (S,N ,R) be an F-generated CRN. We say that G is minimal if the following

condition holds:

∀(ν, µ) ∈ N ∃s ∈ S | µ , ν⇒ ν(s) , 0, µ(s) = 0, (4.11)

that is, a F-generated CRN G is minimal if all its complexes contain at least one species

that does not appear in any other complex of the network. It can be shown that a minimal

F-generated CRN is a zero deficiency network. In fact, let G′ be a minimal F-generated

CRN having just one linkage class that connects all its n complexes through exactly n − 1

reactions. From Eq. 4.11 it follows that the reaction vectors (ν′−ν) are linearly independent.

It follows that dG′ = n−1, and it is δG′ = 0. Let G be a CRN obtained from G′ by removing

exactly m reactions. Note that G is again minimal. It results that lG = 1+m, dG = n−1−m,

and δG = 0. From the arbitrary choice of m and the equivalence of the deficiency for CRNs

having the same complexes and the same linkage classes (Feinberg, 1995), it follows that

each CRN satisfying Eq. 4.11 is a deficiency zero network.

In order to model the chemostatting of species in F, we introduce pseudo reactions for

each species f ∈ F such that:

0
ι f
−−−⇀↽−−−

o f
f (4.12)

where ι f and o f are the rate constants for reactions 0 → f and f → 0, respectively. We

denote with GF = (SF ,NF ,RF) the CRN such that SF = F, NF = F ∪ 0 (where 0 is the

zero complex) and RF is the set of the pseudo reactions. Note that for each pair of reaction

vectors (ν′i − 0), (ν′j − 0) ∈ RF , for i , j, it is (ν′i − 0) · (ν′j − 0) = 0, where · is the scalar

product. Thus, it results dGF = |F| and δGF = 0, that is, GF is a (weakly) reversible zero

deficiency CRN. The DZT states that GF admits exactly one steady state. In particular,
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for each f ∈ F, the positive equilibrium is given by c( f ) = ι f /o f . Therefore, c( f ) is the

concentration that the species f would reach if only pseudo reactions are included.

Given a CRN G′ = (S′,N ′,R′) and a food set F ⊂ S′, the equivalent open CRN

G of G′ is obtained from G′ by adding GF , such that it is G = (S,N ,R), where S =

S′, N = N ′ ∪ NF and R = R′ ∪ RF . Note that, in general, the addition of GF to G′

changes the topology of G′; for instance, GF can connect separated linkage classes of G′.

Moreover, the introduction of various chemostatted chemical species affects the dynamical

behaviour of the network and its thermodynamic properties (Polettini and Esposito, 2014;

Rao and Esposito, 2016, 2018). In this chapter, we focus our attention on CRNs having no

complexes including both food and non-food species, and we do not allow food species to

be catalysts. Therefore, for each complexes ν ∈ N and species s ∈ S it is:

ν( f ) , 0, ν(s) , 0⇒ s ∈ F (4.13)

(s, ν→ ν′) ∈ C ⇒ s < F, (4.14)

where f denotes a food species. We will investigate the impact of chemostatting on network

dynamics if Eq. 4.13 and Eq. 4.14 are not satisfied in a future work.

4.3.2 Addition of catalysis

In this section we introduce a procedure to include catalysis within a CRN. In RAF the-

ory, a catalysis is a pair (x, r) indicating that species x catalyses reaction r. As previously

indicated, in our model we add a catalysis as a substrate-catalyst interaction that produces

a substrate-catalyst complex. In particular, for a monomolecular reaction s1 → p catal-

ysed by a molecule x, we assume that the species s1 reacts with the catalyst x to form the

substrate-catalyst complex e, which can perform the inverse reaction or release the product

p and the catalyst x. Similarly, for a bimolecular reaction s1 + s2 → p catalysed by x, we

assume that one reactant, says s2, is the substrate that reacts with x to produce e∗, while

the other reactant, s2, reacts with e∗ producing e, that eventually releases x and products p.

Figure 4.2 sketched the procedure.

Note that the substrate-catalyst complexes e, e∗, e∗∗ (Figure 4.2) are considered as dif-

ferent complexes, that is:

(ei · e j), (e∗i · e
∗
j), (e

∗∗
i · e

∗∗
j ) , 0⇔ i = j (4.15)

ei · e∗j = ei · e∗∗k = e∗j · e
∗∗
k = 0 ∀i, j, k. (4.16)

Moreover, it is important to underline that original spontaneous reactions are still present

in the network with addition of catalysis. Given a CRN G and a set of catalyses C, we call

GC the CRN obtained from G by adding reactions for each catalysis in C according to the
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Figure 4.2. Catalysis scheme. The dashed gray arrows associate spontaneous reactions (terms on
the left) with the corresponding catalysed reactions (terms on the right). Catalyses associated
with irreversible reactions can be obtained from the first two catalyses of the scheme by setting
κ−0 and κ−2 equal to zero. Note that for irreversible reactions, p is in turn a complex, i.e.,
it can be constituted by one or more chemical species. The associated ODEs are shown in
Appendix A.

scheme of Figure 4.2. Therefore, GC represents the “real” mass-action system underlying

a CRN to which a set of catalyses is associated.

As in RAF theory, given a F-generated CRN G = (S,N ,R) and a set of catalyses

C = {(s, ν → ν′) : s ∈ S, ν → ν′ ∈ R}, we say that G is a RAF CRN if, for each reaction

ν → ν′ ∈ R, there exists at least one species s ∈ S such that (s, ν → ν′) ∈ C; we say that a

RAF CRN is a closed RAF CRN if, for each reaction ν → ν′ such that all its reactants and

at least one catalyst are either part of the set F or are produced by a reaction from R, it is

ν→ ν′ ∈ R; finally, we say that a closed RAF CRN is a minimal closed RAF CRN if it does

not contain any other closed RAF CRNs.

4.4 Long-term behaviour

In this section, we identify motifs in the topology of a minimal closed RAF CRN G that

allow to predict the dynamics of its associated network GC (note that, although not speci-

fied, we are considering open CRNs). Usually, adding catalysis increases the deficiency of

a CRN, and higher deficiency theories are necessary in order to study the steady states of

the network (Feinberg, 1995; Ellison, 1998).

However, the topology of the zero deficiency CRN G provides some information on the

dynamics of GC , at least if Eq. 4.7 holds (see Appendix A for more details). In fact, the

relation among complexes provided by G does not change in GC: the terms αν→ν′(ν− ν′) in

the sum of Eq. 4.4 for the two networks, differ only in the values of αν→ν′ , with αGC > αG

(Appendix A). This implies, for instance, that if G is not weakly reversible, thanks to the

DZT we can say that the reaction vectors of GC are not positively dependent; on the other
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hand, if G is weakly reversible, GC admits the existence of a positive equilibrium. Never-

theless, it is worth to underline that G and GC are not equivalent. In particular, if the QSS

assumption does not hold, they can exhibit very different dynamics. For example, consider

the CRN shown in Figure 4.3a. The network without catalysis G is a weakly reversible

zero deficiency network, and it admits exactly one positive equilibrium for each choice of

initial condition. Conversely, by analysing the associated CRN GC through the CRN Tool-

box (Ellison et al., 2012) without explicitly assume Eq. 4.7 as valid, we find that GC admits

the existence of multiple stationary solutions starting from the same initial conditions, for

an appropriate choice of the rate constants κ. Moreover, weak reversibility is not a precon-

dition for the existence of positive equilibria in CRNs having nonzero deficiency (Boros,

2019; Feinberg, 1995). For instance, let us consider the following one deficiency CRN:

2 x1
κ+
−−−⇀↽−−−
κ−

x1 + x2
κ+
−−−→ 2 x2. (4.17)

The network is not weakly reversible. However, it admits positive equilibria whenever it is

κ+ = 1 and κ− > 1 (Feinberg, 1995). By focusing on minimal CRNs and making the QSS

assumption, we ensure the validity of the connection shown above between the dynamics of

a CRN with spontaneous reactions only and that of its counterpart which includes catalyses.

We use these results in order to predict the dynamics of the mass-action system GC

associated with a RAF CRN G. In particular, let G be a minimal closed RAF CRN, and let

G− be the CRN obtained from G by removing all the reactions ν0 → ν′, where the complex

ν0 contains (only) food species. We define:

i. Fully connected (FC) motif: G is a FC motif if it is a weakly reversible CRN;

ii. Non connected (NC) motif: G is a NC motif if both G and G− are not weakly re-

versible CRNs;

iii. Core connected (CC) motif: G is a CC motif if it is not a weakly reversible CRN and

G− is a weakly reversible CRN.

Figure 4.3 shows examples of the three motifs. They exhibit dynamics with different char-

acteristics (Figure 4.4a). In particular, we focus our attention on three dynamical properties

of the concentrations of species that constitute a motif:

i. homeostasis: the ratio among concentrations of all the species is constant over time ;

ii. continuous growth: the concentrations of all the species increase in time;

iii. self-conservation: if the inflow of matter towards the CRN is interrupted, the con-

centrations of all the species do not decrease in time .
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Note that these are desired features for a system at the basis of the origin of life. For

instance, homeostasis is considered to be a fundamental property connected with self-

maintenance of an organism; a growth of species concentration is necessary for

self-replication, and self-conservation prevents the decay of the system in case of insuf-

ficient resources (Luisi, 2006; Varela, 2000).

We argue that FC motif exhibits homeostasis, NC motif exhibits none of the properties

and CC motif exhibits continuous growth and self-conservation. It is important to under-

line that we are referring to long-term dynamics of the networks and not to their transient

behaviour.

In fact, FC motif admits the existence of a positive equilibrium for the concentration

of all its chemical species, meaning that, for t → ∞, the ratio c(s)/c(s′) is constant for

each pair s, s′ ∈ S (Figure 4.4a). However, if the inflow rate ι f is set equal to zero for

each f ∈ F, the resulting network is no more weakly-reversible. In particular, there is a

terminal strong-linkage class (i.e., the zero complex) that is an absorbing linkage class,

meaning that, once the flow of matter falls in it, it can no longer leave it. Therefore, the

matter consumed by reactions involving the species of the CRN is not replaced, the species

concentrations decrease and the network is not self-conservative (Figure 4.4a).

On the other hand, NC motif contains an absorbing linkage class involving a strict

subset S′ of S, both in case of ι f > 0 and ι f = 0. As a result, species in S′ increase their

concentrations at the expense of other species s < S′. Thus, even if a subset of S can

experience continuous growth, the whole NC motif does not satisfy any of the properties

listed above (Figure 4.4a).

By definition, instead, all the non-food species of a CC motif belong to a weakly re-

versible (sub)network that is absorbing for the inflowing matter coming from the environ-

ment. This implies that, if ι f > 0, each non-food species is reached by a positive flow of

matter (continuous growth); on the other hand, if ι f = 0, the matter is redistributed among

non-food species and does not escape from the CRN (self-conservation). Note that a CC

motif could exhibit homeostasis, depending on the fine details of its topology.

4.4.1 An illustrative example of evolvability of RAF sets

In this section we present illustrative examples on how the detected motifs (Section 4.4)

impact the long-term dynamics of a (larger) RAF CRN. We start our study by simulating

the dynamics of a RAF CRN constituted by three different closed RAF CRNs that share

the same food set F. The closed RAF CRNs correspond to the different motifs we have

introduced in Figure 4.3.

Figure 4.4b shows the dynamics of this particular network: as expected, the result-

ing dynamics is substantially equivalent to that shown by the non composed motifs (Fig-

ure 4.4a, ι f > 0). In fact, letting the motifs share the food set does not affect their structures,
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Figure 4.3. Examples of motifs. Complexes are represented by black letters (the letter f indicates
food species), reactions by arrows. Blue letters in brackets indicate catalysts. (a) FC motif: the
CRN is weakly reversible. (b,e) NC motif: the CRN is not weakly reversible, and there is not
a weakly reversible (sub)network that includes all the non-food species. (c,d,f) CC motif: the
CRN is not weakly reversible, and there is a weakly reversible (sub)network that includes all
the non-food species. Note that all the motifs are closed RAF CRNs.



4.4 Long-term behaviour 57

0 5000 10000 15000 20000 25000 30000

0.1

1

10

100

1000

10
4

10
5



{FCC ≠ FNC ≠ FFC}

inflow → 0

CC

NC

FC

(a)
5000 10000 15000 20000 25000 30000

0.01

1

100

10
4



{FCC = FNC = FFC}

CC

NC

FC

(b)

5000 10000 15000 20000 25000 30000

0.01

1

100

10
4



{FCC = FNC = FFC}

CC

NC

FC

(c)

Figure 4.4. Dynamics of motifs. On the x-axis: time steps t. On the y-axis: species concentration c.
(a) Dynamics of the three isolated motifs introduced in Figure 4.3a, Figure 4.3b and Figure 4.3c.

For t > 24000 the inflow rate ι f is set equal to 0 for each pseudo reaction 0
ι f
−−−→ f. (b) Dynamics

of the three motifs introduced in Figure 4.3a, Figure 4.3b and Figure 4.3c, that draw from the
same food set F = { f 1, f 2}. (c) Resulting dynamics after mutations that change the FC motif of
Figure 4.3a in a NC motif, and the NC motif of Figure 4.3b in a CC motif. The plotted curves
are obtained by numerically solving the ODEs associated with the CRNs (Eq. 4.4), setting
ι f = 10, o f = 10−2, κ0 = κ−0 = 10−3, κ1 = 10, κ−1 = 107, κ2 = 104, κ−2 = 10−1, and an initial
concentration of c0 = 10−2 for all the species.
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nor does significantly change the ODEs describing the dynamics (apart from a change in

the equilibrium constants of FC motif). Therefore, the overall dynamics of the network is

given by the union of the dynamics of the single motifs.

However, introducing new reactions among species can have a major role in the re-

sulting dynamics of the network. For instance, adding the reaction x4
(x1)
−−−→ x5 to the FC

motif of Figure 4.3a changes it into a NC motif. At the same time, adding the reaction

x4
(x4)
−−−→ x1 to the NC motif of Figure 4.3b changes it into a CC motif. The dynamics of

the overall network, in fact, is the result of the evolution of a FC motif and two CC motifs

(Figure 4.4c). This is an example of a general case: it is always possible to pass from one

motif to another by adding (or removing) one or more reactions.

This last point has important consequences for the evolvability of RAF sets. In fact,

we can interpret the characteristic dynamical behaviour of a motif as its phenotype, and

the (random) addition of a new reaction as a mutation. In this framework, the examples of

Figure 4.4b and Figure 4.4c show that closed RAF CRNs can acquire (or lose) dynamical

properties that can be, potentially, picked by natural selection. As further evidence to sup-

port this observation, in Figure 4.5 we show different frames of an hypothetical evolution

of a RAF CRN in which mutations occur. In particular, the starting network is formed by

two closed RAF CRNs that share the same food set F = { f 1, f 2}. The closed RAF CRNs

are indicated with letters X (CC motif shown in Figure 4.3c) and Y (CC motif shown in Fig-

ure 4.3d), respectively. Initially, both the closed RAF CRNs show a continuous growth of

species concentrations, with similar growing rates (Figure 4.5a). However, the addition of a

new reaction in the network allows Y to draw resources from a supplementary source com-

pared to X, represented by the food elements f 3 and f 4 (Figure 4.3f). Consequently, this

favorable mutation provides an advantage for Y , which is able to grow faster than X (Fig-

ure 4.5b). At the same time, as previously observed, an unfavorable mutation (Figure 4.3e)

can decrease the efficiency of a network’s self-reproduction (Figure 4.5c). Finally, note

that a mutation introducing a connection between X and Y can have major effects on their

dynamics. In particular, consider the RAF CRN shown in Figure 4.1: it can be built starting

from the networks of Figure 4.3c and Figure 4.3d, by adding the production of the species

xy. This latter expansion of the network can be interpreted, for instance, as the result of a

mutation that allows species x4 to produce species xy in a reversible way, and species x1

to catalyse the irreversible production of species xy starting from species y3. Therefore,

thanks to a favorable mutation, one motif can steal resources from the other. The dynamics

of the resulting RAF CRN is shown in Figure 4.5d: due to the mutation, the closed RAF

CRN X′ (the symbol X′ indicates the network X to which the reaction x4
(x4)
−−−→ xy is added)

is an absorbing linkage class in which the flow of matter of the net Y falls; consequently,

network X′ still shows a continuous growth in species concentrations, while Y dynamically

disappears.



4.5 Discussion and conclusions 59

In this section, we have shown how the presence of motifs FC, NC and CC within the

structure of a RAF CRN affects the dynamics of the system. Moreover, the examples we

have introduced suggest that closed RAF CRNs could be the elementary units that experi-

ence adaptive evolution. Regarding this issue, it is important to underline two points. First,

note that we are dealing with a deterministic model. This approximation does not allow

to directly simulate neither the spontaneous appearance of novelty, nor the probabilistic

effects, that are characteristics of systems with few elements. However, recent numerical

simulations have shown how these stochastic processes can determine both a dependence

on different initial conditions (for instance, deriving from an inhomogeneous distribution of

resources, or from random events, such as the division of a protocell), and an actual com-

petition among closed RAF CRNs (Hordijk et al., 2018a; Serra and Villani, 2019; Ravoni,

2020a). Therefore, the addition of stochastic elements to the RAF CRN model introduced

in this chapter should reproduce the scenario proposed in (Vasas et al., 2012; Hordijk et al.,

2018a; Ravoni, 2020a) for the evolvability of a population of compartmentalised RAF sets.

Moreover, it is very important to note that our results show that a RAF CRN does not al-

ways fully emerge in the long-term dynamics, and that an actual competition can therefore

occur also among subsets of the same RAF network.

In the future, it would be interesting to study the stochastic dynamics of the identified

motifs, as well as the role of the QSS assumption and other hypotheses made in this chapter

on the dynamics of the networks.

4.5 Discussion and conclusions

In this chapter we studied the long-term behaviours of RAF sets, particularly focusing

on those systems that are considered to be the building blocks from which life emerged.

For this purpose, we represented RAF sets in terms of CRNs, and we used CRN theory

to predict the dynamics of the networks starting from their topology. Our main result is

the identification of additional topological conditions compared to the one introduced by

the RAF theory, which allowed us to predict the dynamics of the system and to identify

networks with interesting dynamical properties. To our knowledge, this is the first time that

the actual dynamics of RAF sets have been successfully connected with their topology.

Furthermore, starting from their structure, we displayed that not all the subsets of a RAF

network eventually dynamically emerge, contrary to what has been observed in previous

works, where too simple CRNs were considered (Hordijk et al., 2018a; Ravoni, 2020a).

These results show that the increase of complexity of a RAF set significantly affects the

emergent dynamics, supporting the potential evolvability of RAF sets and their importance

in the transition from inanimate to living matter.
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Figure 4.5. Evolution of a RAF CRN induced by mutations. On the x-axis: time steps t. On the
y-axis: species concentration c. (a) Dynamics of a RAF CRN constituted by the CC motif
of Figure 4.3c (X) and the CC motif of Figure 4.3d (Y), that draw from the same food set
F = { f 1, f 2}. (b) A favorable mutation allows Y to draws resources from the expanded set
{ f 1, f 2, f 3, f 4} (Figure 4.3f), resulting in a higher self-reproduction rate. (c) A unfavorable
mutation changes Y in a NC motif (Figure 4.3e), preventing from its continuous growth. (d)
A mutation allows X to steal matter from Y , causing the dynamical disappearance of Y (the
CRN associated with this dynamics is shown in Figure 4.1). The plotted curves are obtained by
numerically solving the ODEs associated with the CRNs (Eq. 4.4), setting ι f = 10, o f = 10−2,
κ0 = κ−0 = 10−3, κ1 = 10, κ−1 = 107, κ2 = 104, κ−2 = 10−1, and an initial concentration of
c0 = 10−2 for all the species.
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Part III

Thermodynamics of RAF sets
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Summary

To our knowledge, the thermodynamic properties of RAF sets have not yet been investi-

gated. In this part, we try to address this topic. Starting from the work of Prigogine and

Nicolis (see, for example, Prigogine and Nicolis (1971)), it has been suggested that the pe-

culiarities of living systems derive from the nonequilibrium thermodynamic state in which

they are (Walker, 2017). However, classical thermodynamics does not provide a coherent

treatment of systems far from equilibrium, such as living organisms (England, 2015; Mars-

land and England, 2017). Furthermore, the idea that thermodynamics alone can explain

life is criticised by many authors (see, for instance, Luisi (2006); Walker (2017)). Never-

theless, recent works on nonequilibrium thermodynamics applied to biological and living

systems, have shown that a thermodynamic approach can actually lead to relevant results in

the study of life (Gnesotto et al., 2018; England, 2013; Perunov et al., 2016; Marsland and

England, 2017; Sarkar and England, 2019; Penocchio et al., 2019). For instance, a com-

prehensive thermodynamic description of chemical networks has been provided in several

works (Schmiedl and Seifert, 2007; Polettini and Esposito, 2014; Polettini et al., 2015; Rao

and Esposito, 2016, 2018), and it has been shown that stochastic thermodynamics can be

used to represent self-replication processes (England, 2013). By using the recent results on

nonequilibrium thermodynamics of CRNs, in Chapter 6 we address the issue of thermody-

namics of RAF sets. In particular, we focus on the relation between the RAF sets topology

and thermodynamic properties, such as dissipation and energy storage. First, however,

in Chapter 5 we introduce some general thermodynamic notions, and results obtained for

replicating systems (Section 5.2) and generic chemical networks (Section 5.3).
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Chapter 5

Brief introduction to nonequilibrium
thermodynamics

5.1 Traditional thermodynamics

As previously stressed, living systems are open systems that exchange energy and mat-

ter with the environment, operating far from the thermodynamic equilibrium. Therefore,

nonequilibrium thermodynamics is an essential tool in order to provide a suitable descrip-

tion of such systems. From the 1950’s, Onsager, Prigogine and others started to build a

mathematical apparatus in order to find general principles able to represent the nonequi-

librium processes near the equilibrium, as classical thermodynamics did for equilibrium

situation (Prigogine, 1947; Onsager, 1931; De Groot, 1962). In recent years, general prop-

erties of processes arbitrarily far from equilibrium have been detected, especially thanks to

the emergent field of so-called stochastic thermodynamics (see, for instance, Seifert (2012)

for a review). Here, we introduce a very brief description of some results suitable for the

study of RAF sets, that we accomplish in Chapter 6.

The thermodynamic state of a system is characterised by thermodynamic variables,

such as energy, number of particles, volume. A thermodynamic system is said to be iso-

lated if it cannot exchange matter and energy, closed if it can exchange only energy with the

environment and open if it can exchange both energy and matter. A closed system eventu-

ally evolves towards the so-called equilibrium state, that is a stationary state in which there

are not fluxes of matter and energy within the system.

Classical thermodynamics deals with transformations that change the state of a ther-

modynamic system. A transformation that goes from a state i to a state j is said to be

reversible if it is possible to reverse it and bring the system back from state j to state i,

without causing any change in the surrounding environment. Reversible transformations

are ideal processes that take place over an infinitely long time, during which the system is



5.1 Traditional thermodynamics 64

always in a state of thermodynamic equilibrium. Real thermodynamic transformations are

irreversible processes.

The first law of thermodynamics states that the change of the energy dU during a ther-

modynamic transformation in time dt does not depend on the particular transformation, but

only on the initial and the final state that the transformation connects. In particular, for a

cyclic thermodynamic transformation it is:∮
dU = 0. (5.1)

For a closed system, the change of the energy dU is related with the amount of work δW

and heat δQ exchanged with the environment, according to the relation:

dU = δW + δQ. (5.2)

Notably, on the contrary of the internal energy, the changes δW and δQ depend on the

particular transformation.

For a cyclic reversible transformation, it results that also the quantity δQ/T does not

change: ∮
δQ
T

= 0, (5.3)

where T is the Kelvin temperature of the system. Therefore, it is possible to introduce

another state variable S , called entropy, such that for a reversible transformation it is:

dS =
δQ
T
. (5.4)

The second law of thermodynamics states that the total (system and environment) entropy

difference between equilibrium states can never be negative:

∆S tot ≥ 0. (5.5)

It is useful to assume that the environment surrounding the system is represented by a

thermal bath or reservoir, that is, a thermodynamic system that maintains itself in an equi-

librium state at temperature T , regardless the amount of heat exchanging with the system.

Therefore, Eq. 5.5 can be written as:

dS tot = dS + dS r = dS +
δQr

T
, (5.6)

where S r is the entropy of the reservoir and δQr = −δQ.

Prigogine has introduced the hypothesis of local equilibrium (Kondepudi and Prigogine,

2014), according to which a system out of equilibrium can be viewed as constituted by sub-
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systems that can be considered in thermodynamic equilibrium. The local equilibrium hy-

pothesis finds its justification in the different time scales between microscopic and macro-

scopic processes. This assumption makes the entropy a well-defined quantity even for

irreversible transformations. In particular, it is possible to decompose the change of the

entropy dS of a system into two contributions, namely the entropy production dS i and the

entropy flow dS e (Kondepudi and Prigogine, 2014), such that it is:

dS = dS i + dS e. (5.7)

The term dS e takes into account the exchange with the environment, while the term dS i

is associated with the irreversible processes inside the system. Consider again an ideal

thermal reservoir, in which no irreversible processes are assumed to take place. The entropy

flow of the system dS e is opposite to the the entropy change of the reservoir. It results

dS i = dS tot. Therefore, the second law for a non-isolated system exchanging a reversible

entropy flow with its environment can be written as (Kondepudi and Prigogine, 2014):

dS = dS i + dS e, dS i ≥ 0, (5.8)

or, equivalently:
dS
dt

= Σ +
dS e

dt
, Σ ≥ 0, (5.9)

where Σ is the entropy production rate (EPR). At the steady state it is dS/dt = 0. If the

steady state is a thermodynamic equilibrium state, the terms Σ and dS e/dt vanish individ-

ually, while a nonequilibrium steady state is characterised by a non-vanishing EPR Σ, that

is exactly canceled by the term dS e/dt (Kondepudi and Prigogine, 2014).

For systems sufficiently close to equilibrium, where thermodynamic forces (i.e., gradi-

ents of thermodynamic parameters) and associated fluxes exhibit a linear relationships, it

has been shown that the principle of minimum entropy production (Prigogine, 1947) holds.

In particular, let us express the EPR in terms of thermodynamic forces Fi and fluxes Ji

(Kondepudi and Prigogine, 2014):

Σ =
∑

i

FiJi. (5.10)

At equilibrium, it is Fi = 0 and Ji = 0. Linear irreversible thermodynamics assumes that

(Kondepudi and Prigogine, 2014):

Ji =
∑

j

Li jF j, (5.11)
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where the matrix elements Li j satisfy the Onsager reciprocity relations (Onsager, 1931):

Li j = L ji, (5.12)

and the diagonal elements Lii are positive according to the second law of thermodynamics.

The principle of minimum entropy production states that, in the linear regime where the

relations in Eq. 5.11 hold, the EPR Σ assumes a minimum value in correspondence with

the nonequilibrium steady state (Prigogine, 1947; Kondepudi and Prigogine, 2014).

For thermodynamic systems arbitrarily far from equilibrium, the results of linear ir-

reversible thermodynamics are no longer valid. However, in recent years stochastic ther-

modynamics has proved to be a powerful tool for the study of nonequilibrium processes

(Seifert, 2012; Van den Broeck, 2013). The theory of stochastic thermodynamics is built

on top of stochastic dynamics. This formalism allows, for example, to derive fluctuation

theorems that constrain the probability distributions for work, to generalise a fluctuation-

dissipation theorem involving entropy production for nonequilibrium steady states, and

to introduce thermodynamic quantities and formulate thermodynamic laws at the level of

stochastic trajectory.

In this thesis we will not deal in detail with stochastic thermodynamics. However, in

Section 5.2 we show a possible application of it to biological systems, in particular to self-

replicating systems, as provided in England (2013). In Section 5.3, instead, we introduce

a description of the nonequilibrium thermodynamics of CRNs, as provided in Polettini and

Esposito (2014); Rao and Esposito (2016, 2018). Next, in Chapter 6, we use these results

to study the thermodynamics of RAF sets.

5.2 Stochastic thermodynamics and self-replication

In this section, we report the results obtained in England (2013) as an example of a stochas-

tic thermodynamics approach to the description of biological processes. Let us consider a

driven system in equilibrium with a heat bath of inverse temperature β = 1/(κBT ) (where

κB is the Boltzmann constant expressed in natural units), whose dynamics is stochastic and

Markovian (Grimmett, 2020). Let i, j denote two microstates of the system. It is possible to

show that the following fluctuation theorem holds (see Crooks (1999); Sevick et al. (2008);

Seifert (2012) for more details):

π(i→ j)
π( j→ i)

= eβ∆Q(i→ j), (5.13)

where π(i → j) and π( j → i) are the probabilities of the transition from i to j in a forward

direction, and of the reverse path from j to i, respectively, and ∆Q(i → j) is the heat

released into the bath over the trajectory from the microstate i to microstate j. Eq. 5.13
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expresses a relationship between heat and irreversibility: the more a process is irreversible

(i.e., the larger the probability of a forward trajectory is than its time-reverse), the more

heat is dissipated into the surrounding bath.

In England (2013) the author uses Eq. 5.13 in order to study the irreversible process

of cellular replication. To this aim, coarse-grained variables are introduced, allowing the

study of the macroscopic irreversibility of the system starting from the microscopic rule

of Eq. 5.13. In particular, two (arbitrary) macrostates are considered: the macrostate I,

in which a single living cell is present, and the macrostate II, consisting of two living

cells. A conditional probability p(i|I) can be associated to macrostate I, where p(i|I) is

the probability that the system is in a microstate i, if it is observed in the macrostate I.

Analogously, if the system is observed in the macrostate II, a conditional probability p( j|II)

is assumed to describe the probability of the system to be in microstate j (England, 2013).

By integrating over the ensembles, the probabilities of transitions between macrostates are

obtained. In particular, let π(I → II) denote the probability that a system prepared in the

macrostate I is observed in macrostate II after time τ, and π(II → I) denote the probability

that the system returns in the macrostate I after another time interval τ. It results (England,

2013):

π(I → II) =

∫
II

d j
∫

I
di p(i|I)π(i→ j), (5.14)

and

π(II → I) =

∫
I
di

∫
II

d j p( j|II)π( j→ i). (5.15)

Therefore, the macroscopic description of the irreversibility of spontaneous propagation

from I to II is given by:

π(I → II)
π(II → I)

=
〈 〈e−β∆Qi j〉i→ j

eln[ p(i|I)
p( j|II) ]

〉
I→II

, (5.16)

where
〈
· · ·

〉
I→II

denotes an average over all paths from some microstate i in the macrostate

I to some microstate j in the macrostate II.

Let S ≡ −
∑

i pi ln pi be the (Shannon) entropy for each ensemble associated with a

macrostate, and ∆S int ≡ S II − S I be the internal entropy change for the forward transition

I → II. Eq. 5.16 can be rearranged in order to obtain a generalisation of the second law of

thermodynamics, constraining the irreversibility of macroscopic processes (England, 2013)

β〈∆Q〉I→II + ln
[π(II → I)
π(I → II)

]
+ ∆S int ≥ 0. (5.17)

Note that, if I and II are the same macrostate containing all the micro states i, Eq. 5.17

reduces to the constrain of the second law of thermodynamics. On the other hand, for

an irreversible transition I → II, Eq. 5.17 sets a stricter bound: the more irreversible the
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macroscopic process, the larger the minimum entropy production (England, 2013).

In order to apply Eq. 5.17 to self-replication, consider a population of replicators living

at inverse temperature β. Let g and δ be the replication and decay rates, respectively, such

that the probability in an infinitesimal period of time dt that a replicator gives birth is

π(I → II) = gdt, while the probability of a replicator decaying is π(II → I) = δdt. By

replacing these probabilities in Eq. 5.17 and assuming g > δ, the following expression is

obtained for the maximum net growth rate of a self-replicator (England, 2013):

gmax − δ = δ(eβ∆q+∆sint − 1). (5.18)

Here, ∆sint and ∆q are the change of the internal entropy of the system and the average

amount of heat released into the surrounding by the formation of a new replicator, respec-

tively. Eq. 5.18 carries relevant biological information, such as the connection between the

reproductive fitness of a replicator and its ability to exploit sources of energy, or the ther-

modynamic benefit of the simplest replicators (England, 2013). However, it is important to

note that the framework introduced in England (2013) is not specific to living systems, and

it was suggested that approaches based solely on dissipative processes and entropy produc-

tion may not be sufficient to adequately understand the peculiarities underlying life (Walker,

2017). Nevertheless, thanks to the results shown above and obtained in other recent works,

the general theory of nonequilibrium physics is proposed as a suitable framework for the

study of life and its origin (Gnesotto et al., 2018).

5.3 Nonequilibrium thermodynamics of CRNs

5.3.1 Further notions on CRNs

In this section, we introduce the nonequilibrium thermodynamics of CRNs, based on the

description established in Polettini and Esposito (2014); Rao and Esposito (2016, 2018).

We focus our attention on specific quantities and results. For a more detailed discussion,

please refer to the original works. Further notions on CRNs are needed in addition to those

already provided in Section 4.2. We define a CRN as a triple G = (S,N ,R), where S

is the set of chemical species, N = {ν} is the set of complexes and R = {ν → ν′} is the

set of reactions. The information about interactions among species can be enclosed in the

stoichiometric matrix ∇, i.e., a |N|× |R|matrix where the element ∇(s, r), denoted by ∇r(s),

is the integer stoichiometric coefficient (positive for products and negative for reactants) of

species s in reaction r. Note that the stoichiometric matrix ∇ can be written as (Horn and

Jackson, 1972; Horn, 1972; Van der Schaft et al., 2015):

∇ = ZM, (5.19)
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where Z is the complex composition matrix, i.e., a |S| × |N| matrix such that the element

Z(s, ν) is the stoichiometric number of species s in the complex ν, and M is the |N| × |R|

incidence matrix of the graph having complexes as nodes and reactions as edges.

We refer to mass-action systems (see Section 4.2 for details). Moreover, we focus on

reversible CRNs, that is, CRNs in which each reaction r+ : ν → ν′ has a corresponding

reverse reaction r− : ν′ → ν. We use r as the index of pairs of forward-backward reactions.

It is possible to define net concentration currents Jr along a pair of reversible reactions r,

such that:

Jr = κr+
cν − κr−c

ν′ , (5.20)

where κr+
> 0 (κr− > 0) is the positive rate constant for the reaction r+ (r−), c is the vector

of molar concentrations of chemical species, and cν is defined as:

cν :=
∏
s∈S

c(s)ν(s). (5.21)

With this notation, the set of ODEs describing the time evolution of concentrations of

species in S, Eq. 4.4, can be written as a continuity equation for the concentration (Polettini

and Esposito, 2014; Rao and Esposito, 2016):

ċ = ∇J, (5.22)

and steady states c∗ are characterised by:

∇J∗ = 0. (5.23)

A mass-action system is called complex balanced if it admits a steady state c∗ for which

it is (Horn and Jackson, 1972; Horn, 1972; Feinberg, 1972):

MJ∗ = 0. (5.24)

Therefore, a mass-action is complex balanced if, at each complex, the current inflow is

exactly balanced by the current outflow. If a mass-action system admits a complex balanced

steady state, then every other steady state is complex balanced (Horn and Jackson, 1972).

Note that a mass-action system in which the underlying CRN is a reversible deficiency zero

CRN, is always complex balanced (Horn and Jackson, 1972; Horn, 1972; Feinberg, 1972).

Furthermore, a mass-action system is called detailed balanced if it admits a (equilib-

rium) steady state c∗ that satisfies the detailed-balance property (Lewis, 1925; Aris, 1965,

1968; Kondepudi and Prigogine, 2014; Rao and Esposito, 2016):

Jeq = 0, (5.25)
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that is, if all the current vanishes. For a mass-action system, Eq. 5.25 can be expressed as

(Rao and Esposito, 2016):
κr+

κr−
=

(ceq)ν
′

(ceq)ν
,∀r : ν
 ν′. (5.26)

To be thermodynamically consistent, a closed CRN must be detailed balanced. Therefore,

Eq. 5.26 is a constraint that the rate constants must satisfy. It represent a property that

holds regardless the network state, and is called local detailed balanced (Rao and Esposito,

2016).

Detailed balanced mass-action systems are a subclass of complex balanced mass-action

systems (Feinberg, 1989; Dickenstein and Millán, 2011; Müller and Joshi, 2020). In par-

ticular, a reversible deficiency zero CRN governed by mass-action kinetics is detailed bal-

anced if it satisfies (|R|/2−|N|+l) circuit conditions (see Feinberg (1989) for details), where

l is the number of linkage classes introduced in Section 4.2. Note that (|R|/2 − |N| + l) is

the cycle rank (Berge, 1962), that is, the minimum number of edges that must be removed

from the undirect graph associated with the CRN to break all its cycles. It follows that, if G

is a mass-action system in which the underlying CRN is a reversible deficiency zero CRN,

and such that |R|/2 − |N| + l = 0, then G is detailed balanced for all the values of the rate

constants (Feinberg, 1989).

5.3.2 Chemostatting, (broken) conservation laws and (emergent) cycles

We refer to a reservoir controlling the concentration of chemical species as the chemostat,

and the controlled species are said to be chemostatted. We denote with F = { f } ⊂ S

the set of chemostatted chemical species, and with cF := {c( f ), f ∈ F} the corresponding

concentrations. Note that concentrations cF are not dynamical variables. Indeed, it is

ċF = 0 in case of a nondriven open CRN, and cF ≡ cF[g(t)] in case of a driven open CRN,

where g(t) is a time-dependent protocol governing the change over time of the chemostatted

concentrations. The set of internal (non-chemostatted) species is denoted by X, such that

it is S = X ∪ F. We say that G is a closed CRN if F ≡ ∅, and that it is an open CRN

otherwise.

Let G be a closed CRN. A conservation law λ is a vector in coker(∇) (Alberty, 2003;

Polettini and Esposito, 2014; Rao and Esposito, 2016, 2018):

λ∇ = 0. (5.27)

From Eq. 5.22 and Eq. 5.27, it follows that vectors in coker(∇) identify conserved quantities

called components,H =
∑

s∈S λ(s)c(s) (Alberty, 2003). Indeed it is:

Ḣ = λċ = λ∇J = 0. (5.28)
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Furthermore, a vector γ in ker(∇) is called a cycle (Polettini and Esposito, 2014; Rao and

Esposito, 2016, 2018):

∇γ = 0. (5.29)

A cycle γ represents a transformation that brings the system back to the same state (in

the space of concentrations) to which the transformation is applied, the entries of γ being

the number of times each reaction must occur during the cycle. From Eq. 5.23, it follows

that steady state currents J∗ belong to ker(∇). Therefore, they can be expressed as linear

combinations of sets of cycles that are basis vectors for ker(∇) (Polettini and Esposito,

2014).

Consider now an open CRN G. Its stoichiometric matrix ∇ can be parted such that

(Polettini and Esposito, 2014):

∇ =
( s ∈ X

s ∈ F

)
. (5.30)

The stoichiometric matrices related to internal and chemostatted species are indicated with

∇X and ∇F , respectively. The concentrations of internal species change according to:

ċX = ∇X J, (5.31)

while for the chemostatted species it is:

d̄cF

d̄t
= ∇F J + I, (5.32)

where I is the vector of the external currents for the inflow and the outflow of chemostatted

species, and the symbol d̄
d̄t indicates a non-exact time derivative. Therefore, a steady state

of an open mass-action system is characterised by (Polettini and Esposito, 2014; Rao and

Esposito, 2016):

∇X J∗ = 0

∇F J∗ + I∗ = 0, (5.33)

where I∗ , 0 for nonequilibrium steady states.

Passing from a closed CRN to an open CRN by chemostatting chemical species can

either break conservation laws or generate emergent cycles, i.e., transfers of chemicals

among chemostats that do not change the internal state of the CRN (Polettini and Esposito,

2014). A broken conservation law λb is characterised by (Polettini and Esposito, 2014; Rao
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and Esposito, 2016):

λb∇ = 0,∑
s∈X

λb(s)∇X
r (s) , 0, for some r ∈ R. (5.34)

Note that the component related to a broken conservation law is no longer a conserved

quantity. An emergent cycle γe is characterised by (Polettini and Esposito, 2014; Rao and

Esposito, 2016):

∇Xγe = 0,

∇Fγe , 0. (5.35)

Notably, assuming that for each reaction r ∈ R the chemostatting procedure does not in-

volve all the species taking part in r, from the rank-nullity theorem for the stoichiometric

matrices ∇ and ∇X it follows (Polettini and Esposito, 2014):

|F| = |{λb}| + |{γe}| (5.36)

where |F| is the number of chemostatted species, |{λb}| is the number of broken conservation

laws, and |{γe}| is the number of emergent cycles.

5.3.3 Entropy production rate, nonequilibrium Gibbs free energy and chem-
ical work

Here we introduce thermodynamic quantities associated with CRNs, as done in Polettini

and Esposito (2014); Rao and Esposito (2016, 2018). Again, we encourage an interested

reader to see the original works for an exhaustive discussion. Hereafter, we make the

assumption of the local equilibrium (Kondepudi and Prigogine, 2014), meaning that the

thermalisation is much faster than the reactions’ time scales. Therefore, it is possible to

define intensive thermodynamic variables and densities of extensive thermodynamic quan-

tities. Let us consider a homogeneous reaction mixture at temperature T and pressure p,

where T is the temperature of the thermal bath consisting of the solvent, and p is pressure

of the environment. We assume that the solvent does not react with the solutes, and that

its concentration c0 is constant and almost equal to that of the entire solution. Then, the

chemical potential of a species s ∈ S is (Alberty, 2003; Rao and Esposito, 2016):

µ(s) = µ◦(s) + RT ln c(s), (5.37)

where R is the gas constant, and µ◦(s) takes into account both the standard-state chemical

potential of species s at temperature T , and the term deriving from the solvent −RT ln c0.
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We denote with µF the chemical potentials of chemostatted species.

The Gibbs free energies of reaction is defined as (Kondepudi and Prigogine, 2014;

Alberty, 2003):

∆Gr = ∇T
r µ = −RT ln

Jr+

Jr−
, (5.38)

where ∇T is the transpose of ∇ and the last equality is obtained by using the local detailed

balance, Eq. 5.26. The term

Ar = RT ln
Jr+

Jr−
(5.39)

is the reaction affinity, that expresses the fundamental force that acts on reaction r. The

change of Gibbs free energy along emergent cycles can be expressed in terms of cycle

affinities (Polettini and Esposito, 2014; Rao and Esposito, 2016):

Aγe = −
∑

r

γe(r)∆Gr = −γe(∇F)TµF , (5.40)

Note that if the cycle affinities do not vanish, the system has not reached an equilibrium

steady state.

The rate of the Gibbs free energy decrease gives the EPR of the CRN (Kondepudi and

Prigogine, 2014; Polettini and Esposito, 2014; Rao and Esposito, 2016):

TΣ = −
∑

r

Jr∆Gr = RT
∑

r

(J+r − J−r) ln
J+r

J−r
≥ 0. (5.41)

Note that the EPR is non-negative and vanishes at equilibrium steady states. Moreover, it

can be decomposed in two contributions, obtaining (Polettini and Esposito, 2014; Rao and

Esposito, 2016):

TΣ = TΣX + TΣF = −
∑
s∈X

µ(s)ċ(s) −
∑
f∈F

µ( f )[ċ( f ) − I( f )], (5.42)

that is, the EPR is the sum of a term (TΣX) that takes into account the changes of the

internal species, and of another term (TΣF) emerging from the chemostatting and that takes

into account both the time-dependent driving of the chemostatted species, and the external

currents I. Note that the first term vanishes at nonequilibrium steady states, while the latter

does not. In particular, at nonequilibrium steady states one has (Polettini and Esposito,

2014; Rao and Esposito, 2016):

TΣ∗ = I∗µF =
∑
{γe}

γeJ∗Aγe . (5.43)

Eq. 5.43 shows that, at a steady state, the dissipation of an open CRN is related to chemostat-

ting, in particular being due to the emergent cycles.
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The nonequilibrium Gibbs free energy of a CRN can be expressed as (Rao and Esposito,

2016):

G̃ =
∑
s∈S

[c(s)µ(s) − RTc(s)] + G̃0, (5.44)

where the terms −RT
∑

s c(s) and G̃0 take into account the contribution of the solvent. The

chemical work rate performed by a chemostat on the CRN can be expressed as (Rao and

Esposito, 2016):

Ẇc = IµF . (5.45)

The rate of change of nonequilibrium Gibbs free energy dG̃/dt, the chemical work rate and

the EPR are related according to the following (Rao and Esposito, 2016):

TΣ = Ẇc −
dG̃
dt
≥ 0. (5.46)

Let us consider a transformation that drives the CRN from an initial state i to a final state

j. By integrating Eq. 5.46, it results:

T∆Σ = Wc − ∆G̃ ≥ 0. (5.47)

The difference of nonequilibrium Gibbs free energy ∆G̃ = G̃ f − G̃i between the states f

and i can be related to the difference of the Gibbs free energy between the two equilibrium

states jeq and ieq obtained from j and i by closing the CRN. It results (Rao and Esposito,

2016):

∆G̃ = ∆G̃eq + ∆D, (5.48)

where D is the relative entropy defined as:

D( j, i) =
∑
s∈S

[c j(s) ln
c j(s)
ci(s)

− c j(s) + ci(s)] ≥ 0, (5.49)

and

∆D = D( f , feq) − D(i, ieq). (5.50)

The quantity

Wc − ∆G̃eq = RT∆D + ∆Σ (5.51)

represents the chemical work dissipated during a nonequilibrium transformation. Thanks

to the non-negativity of the entropy production, it results (see the original work Rao and

Esposito (2016) for details and discussion on such relation):

Wc − ∆G̃eq ≥ RT∆D. (5.52)
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The nonequilibrium Gibbs free energy is minimised by the dynamics in closed CRNs

(Rao and Esposito, 2016). However, for an open detailed balanced CRNs with chemostat-

ted species, the proper thermodynamic potential that is minimised by the dynamics is the

semigrand Gibbs free energy G, obtained from G̃ by subtracting the energetic contribution

of the broken conservation laws (Rao and Esposito, 2016, 2018). First of all, note that the

set of chemostatted species F can be decomposed into two groups, Fβ = { fβ} and Fα = { fα},

such that the former is a minimal set of chemostatted species that break all the broken con-

servation laws, while the latter is constituted by the remaining chemostatted species. It is

possible to build a nonsingular matrix whose entries are {λ fβ
b } (Rao and Esposito, 2016;

Falasco et al., 2018; Rao and Esposito, 2018). The column vectors of this latter matrix are

denoted by {λ̄ fβ
b }. The semigrand Gibbs free energy G can be expressed as:

G = G̃ −
∑
λb

fλbHλb , (5.53)

where

fλb = µFβ λ̄
fβ
b . (5.54)

Moreover, it is possible to define the fundamental nonconservative chemical forces FFα

(Falasco et al., 2018; Rao and Esposito, 2018):

F fα = µ fα −
∑

fβ

µ fβ

∑
{λb}

λ̄
fβ
b λ

fα
b . (5.55)

The forces FFα identify chemical potential gradients imposed by the chemostats. A CRN

is detailed balanced if and only if FFα = 0 (Falasco et al., 2018; Rao and Esposito, 2018).

For open nondriven CRNs, Eq. 5.46 can be rearranged as (Falasco et al., 2018; Rao and

Esposito, 2018):

TΣ = Ẇnc −
dG
dt
≥ 0, (5.56)

where

Ẇnc =
∑

fα

I fαF fα (5.57)

is the nonconservative chemical work rate. By integrating Eq. 5.56 it results (Rao and

Esposito, 2018):

T∆Σ = Wnc − ∆G. (5.58)

In the following chapter we use these results in order to study the thermodynamic effi-

ciency of RAF sets.
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Chapter 6

Thermodynamic efficiency of RAF
sets

6.1 Introduction

The RAF theory rises in the framework of graph theory, and the first works on RAF sets fo-

cus mainly on the “static” properties of such systems, looking only partially at the dynamic

aspects and leaving out the thermodynamic ones. In previous chapters, we investigate the

dynamics of RAF sets, observing a rich variety of dynamical behaviours. In particular, we

show that in some cases the dynamical properties of RAF sets are predictable from the net-

works topology. In this chapter, we focus on the thermodynamic features of RAF sets. To

our knowledge, these have not yet been examined. Our goal is to find a connection between

the thermodynamic efficiency of the system and the constraints that a network must satisfy

to be a RAF sets. In particular, we use the formalism introduced in Polettini and Esposito

(2014); Rao and Esposito (2016, 2018); Wachtel et al. (2018); Penocchio et al. (2019) (see

Section 5.3) in order to investigate the role of the reflexively autocatalytic property (Def. 1)

on the ability of the network to store the chemical work performed by the surrounding en-

vironment. We carried out a preliminary study of this issue through the introduction of

a simple toy model, observing that the catalysis plays a major role in the thermodynamic

efficiency of the networks. We are currently investigating also the relation between the

F-generated property (Def. 1) and the efficiency of the system.

The chapter is organised as follows. In Section 6.2 we uniform the food set notion

introduced in previous chapters with the one provided in (Polettini and Esposito, 2014;

Rao and Esposito, 2016), and we establish a general set-up for our study. In Section 6.3 we

introduce a toy model to investigate the thermodynamic properties of simple RAF sets, and

numerically calculate their efficiency. Finally, in Section 6.4 we discuss some preliminary

results and future developments.
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6.2 General set-up

6.2.1 Chemostatting of RAF sets

Let S be a set of interacting chemical species. In RAF theory, the food set F ⊂ S is a distin-

guibile subset of species that collects the resources provided by the environment (Hordijk

and Steel, 2004). In previous chapters, given a CRN (S,N ,R) and a food set F, we intro-

duced pseudo reactions among the zero complex 0 and each species f ∈ F, in order to rep-

resent a flow of matter that controls the concentration of food species. Following Horn and

Jackson (1972); Polettini and Esposito (2014); Rao and Esposito (2016), here we consider

a species s′, whose concentration is maintained costant by the action of the environment,

as an external species. The external species do not appear in the CRN representation of

interacting species: consider, for instance, the reactions s′ → s1 and s′ + s1 → s2; if s′ is

an external species, then the actual reactions of the CRN are 0 → s1 and s1 → s2. The

species s′ is said to be chemostatted, that is, each molecule of s′ consumed or produced by

a reaction is introduced or withdrawn by the environment. Hereafter, we identify the food

set F introduced in RAF theory as the set of external species of a CRN.

Let G̃ = (S̃, Ñ , R̃) be a closed CRN. It is F = ∅. Suppose now that the system is

opened by chemostatting some (external) species f ∈ S̃, and denote with G the CRN

obtained from G̃ after the chemostatting. The set { f } ⊂ S̃ is the food set F of G. We denote

with S = S̃ \ F the set of internal species of G, withN = {ν} the set of complexes obtained

from Ñ by removing the food species in each complex ν̃ ∈ Ñ , that is, ν(s) = ν̃(s) if s ∈ S

and ν( f ) = 0 for each f ∈ F, and with R the set of reactions among complexes ν ∈ N .

Note that, if F , ∅, then N includes the zero complex 0. We say that G is F-generated

(Hordijk and Steel, 2004) if, given the set S = S̃ \ F, there exists a sequence of reactions

(0→ ν′0), (ν1 → ν′1), . . . , (νi → ν′i) ∈ R for each species s ∈ S such that:

ν′i(s) , 0;

∀s′ ∈ S such that ν j(s′) , 0, j = 1, . . . , i, there exists k < j such that ν′k(s′) , 0.

The chemostatting procedure can modify the topology of a CRN, by making the com-

plexes with external species "collapse" in others already present, and making new pathways

emerge within the network (see Figure 6.1 for an example). Therefore, the dynamics of an

open CRN is, generally, different from that of the correspondent closed CRN. In particu-

lar, let G̃ be a closed CRN taken with mass-action kinetics, and let κ̃ be the vector of rate

constants for the reactions of the network. The changes of the internal species of the open

CRN G are described by the equation (Polettini and Esposito, 2014):

ċ =
∑
ν→ν′

κν→ν′cν(ν′ − ν), κν→ν′ = κ̃ν̃→ν̃′
∏
f∈F

c( f )ν̃( f ). (6.1)
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s1 s2 + s3

s3 s4 s2

F = {s1,s2}

0

s3 s4

Figure 6.1. Chemostatting example. Above: the closed CRN G̃ is constituted by the complexes
{s1, s2 + s3, s3, s4, s2}. Below: the open CRN G is obtained from G̃ by chemostatting species s1
and s2. In the open CRN, complexes s1 and s2 collapse in the zero complex 0, and the complex
s2 + s3 becomes undistinguishable from complex s3.

Moreover, as previously mentioned (see Section 5.3.2), the chemostatting of a chemical

species can break a conservation law or lead to the emergence of a cycle that bears a cycle

affinity, Eq. 5.40, generally nonvanishing at steady states (Polettini and Esposito, 2014).

It follows that an open mass-action system G can reach nonequilibrium steady states with

a non-zero EPR. Notice that, once a conservation law is established (such as the mass

conservation for a closed CRN), at least two chemostatted species are necessary in order to

drive the system out of equilibrium (Polettini and Esposito, 2014).

6.2.2 Thermodynamic efficiency

Let us consider an homogeneous reaction mixture at temperature T and pressure p, con-

taining species undergoing elementary reactions. The reaction systems is represented by an

open CRN G = (S,N ,R), where the subset of species F ⊂ S is assumed to be chemostat-

ted. The dynamics of the system is governed by the equations:

ċX = ∇X J,
d̄cF

d̄t
= ∇F J + I = 0, (6.2)

where c(s) is the vector of species concentrations, J is the vector of the reaction fluxes,

Eq. 5.20, I is the vector of the external currents for the inflow and the outflow of chemostat-

ted species, and ∇X and ∇F indicate the stoichiometric matrices related to internal and

chemostatted species, respectively (see Section 5.3 for details). The chemical potential of

each species s ∈ S is given by (Alberty, 2003):

µ(s) = µ◦(s) + RT ln c(s), (6.3)



6.2 General set-up 79

where µ◦(s) takes into account both the standard-state chemical potential of species s, and

the term deriving from the solvent. The rate constants of the CRN satisfy the local detailed

balance, Eq. 5.26. The EPR is given by (Kondepudi and Prigogine, 2014; Polettini and

Esposito, 2014; Rao and Esposito, 2016):

TΣ = −
∑

r

RT (J+r − J−r) ln
J+r

J−r
≥ 0. (6.4)

If F = ∅, the (closed) CRN eventually reaches the equilibrium state, for which it is

TΣ = 0. However, the chemostatting of species of the food set (F , ∅) can drive the

system out of equilibrium. In particular, the chemical potential gradients imposed by the

chemostats are associated with nonconservative chemical forces FFα , Eq. 5.55, and the

fueling power performed on the system by the chemostats can be expressed as: (Rao and

Esposito, 2018; Falasco et al., 2018; Penocchio et al., 2019):

Ẇnc =
∑

fα

I fαF fα , (6.5)

where I fα is the external current of the chemostatted species fα (see Section 5.3.3 for de-

tails). It results (Falasco et al., 2018; Rao and Esposito, 2018):

TΣ = Ẇnc −
dG
dt
. (6.6)

Here, G is the semigrand Gibbs free energy, Eq. 5.53. For some values of the concentrations

of food species, the forces FFα can vanish, and the open CRN reaches an equilibrium

state, even in the presence of chemostatting. On the other hand, if FFα , 0, the system is

driven towards a nonequilibrium steady state (Rao and Esposito, 2018; Falasco et al., 2018;

Penocchio et al., 2019).

Following Penocchio et al. (2019), we assume an open CRN initially at equilibrium,

that is brought out of equilibrium by increasing the concentration of a food species fα
(the fuel), with respect to a chemostatted species fβ (the waste), such that it is F fα =

µ( fα) − µ( fβ) > 0. While reaching the nonequilibrium steady state, the system stores

energy, quantified by the nonequilibrium free energy G. By integrating Eq. 6.6, it results

(Penocchio et al., 2019):

Wnc = T∆Σ + ∆G, (6.7)

which links the work performed by the chemostats with the dissipated and the stored energy.

The latter stabilises on a constant value once the nonequilibrium steady state is reached, and

all the chemical work is then used by the system to preserve the accumulated energy. The
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efficiency of the process can be defined as (Penocchio et al., 2019):

η =
∆G
Wnc

= 1 −
TΣ

Wnc
, (6.8)

that reaches a maximum during the charging phase, and drops towards zero during the

maintenance phase (Penocchio et al., 2019).

We are interested in how the catalysis of a RAF set affects the process of energy storage,

quantified by the efficiency η. Let us consider a closed CRN G̃ = (S̃, Ñ , R̃), and let C =

{(s, r), s ∈ S̃, r ∈ R̃} be a set of catalyses, meaning that species s catalyses reaction r.

We denote with G̃C the full network obtained from G̃ by adding reactions according to

the scheme showed in Figure 4.2, for each catalysis in C. Note that, for each catalysis

(s, r) ∈ C, r : ν 
 ν′, the stoichiometric matrix ∇C of G̃C contains m columns and m − 1

rows more than the stoichiometric matrix ∇ of the “spontaneous” CRN G̃, where

m =
∑
s∈S̃

[ν(s) + ν′(s)]. (6.9)

We denote with R̃(s,ri) the set of reactions introduced to represent the catalysis (s, r) ∈ C. It

is:

ri ⊥ r j, r j ⊥ rk,∀r j, rk ∈ R̃(s,r), r j , rk; (6.10)∑
r j∈R̃(s,r)

r j = ri, (6.11)

where ri is the i-th columns of the stoichiometric matrix ∇. These relations are obtained

by using Eq. 4.15 and Eq. 4.16, that is, they are due to the assumption that each enzimatyc

complex is different from the others. From Eq. 6.10 and Eq. 6.11 it follows that, for each

catalysis (s, r) ∈ C, it is:

rk(∇C) = rk(∇) + m − 1. (6.12)

By using the rank-nullity theorem, it results:

|λC | = |λ|,

|γC | = |γ| + |C|, (6.13)

where λC , γC , λ, γ are the conservation laws and the cycles associated with ∇C and ∇,

respectively, and |C| is the number of catalyses. Note that each of the |C| cycles of the CRN

G̃C that is not present for G̃, corresponds to a realisation of a spontaneous reaction in one

direction and the associated catalysis, in the opposite direction. When species in the food

set F of G̃ are chemostatted, either conservation laws are broken, or new cycles emerge

(Polettini and Esposito, 2014). However, the relations of Eq. 6.13 still hold: it follows that



6.3 Toy model 81

the open CRN with catalyses has the same broken conservation laws (and emergent cycles)

of the analogous CRN without catalysis. In particular, the elements λ fβ
b of the broken

conservation laws associated with the two CRNs are the same. Therefore, the expression of

Ẇnc is the same for the CRNs with or without the catalysis. However, the external currents

I fα of the two networks are, in general, different, due to the different dynamics underlying

the systems. On the other hand, the EPR of GC contains additional terms, relating to the

added reactions representing the catalyses. However, the difference in dissipation between

the two CRNs is also hard to predict, as it depends itself on the dynamics. For this purpose,

in the next section we introduce a simple model, that allows us to easily calculate how

catalysis affects the efficiency of the energy storage process.

6.3 Toy model

We consider a RAF CRN GC = (S ∪ {e},N ,R), with a set of reversible monomolecu-

lar spontaneous reactions r : s 
 s′, and associated catalyses (s′′, r) represented by the

Michaelis–Menten equation (Michaelis and Menten, 1913):

s + s”
κ1
−−−⇀↽−−−
κ−1

e
κ2
−−−⇀↽−−−
κ−2

s’ + s”, (6.14)

where {e} is the set of the intermediate complexes associated with spontaneous reactions,

such that, for each pair of reaction r, r′, it is (er · er′) , 0 ⇔ r = r′. We chose rate con-

stants such that κ1 = κ−2 and κ2 = κ−1, with κ2 >> κ1. We denote with R′ ⊂ R the set

of spontaneous reactions. The food set F ⊂ S is constituted by two chemostatted species,

F = ( fα, fβ), that are connected by the spontaneous reactions: when not considering the

catalyses, the “spontaneous“ CRN (denoted with G′) contains a single linkage class, rep-

resented by a chain that starts from fα and ends on fβ. We assume that the chemostatted

species do not act as catalysts, neither that a species can catalyse its own production. The

stoichiometric matrix ∇′ of G′ is represented by a |S | × |R′| matrix of elements:

∇′i, j =


−1, if i = j,

1, if i = j + 1,

0 otherwise.

It follows that there is only one conservation law λb =
(
1, · · · , 1

)T
that represents

the conservation of the total mass. We assume that each spontaneous reaction has the same

rate constant κs, regardless of its direction, with κs << κ1. Therefore, the local detailed

balance condition, Eq. 5.26, reads:

µ◦(s) = µ◦(s′),∀s, s′ ∈ S. (6.15)
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The chemostatting of species in the food set breaks the conservation law λb, whose

elements λ fβ
b , λ

fα
b are equal to 1. Therefore, the fueling power acting on the CRN G′ is (Rao

and Esposito, 2018; Falasco et al., 2018):

Ẇ′nc = I′fα[µ( fα) − µ( fβ)] = Jα[µ( fα) − µ( fβ)], (6.16)

where Jα denotes the flux associated with the reaction fα 
 s1. It follows that the open

CRN G′ is detailed balanced if c( fα) = c( fβ); otherwise, the chemostats drive the system

out of equilibrium. For the RAF CRN GC it results:

Ẇnc = (Jα + ∆Iα)[µ( fα) − µ( fβ)], (6.17)

where ∆Iα takes into account the fluxes deriving from the catalysis associated with reaction

fα 
 s1. Note, moreover, that the EPR of GC can be expressed as:

TΣ = RT
∑

r

Jr ln
J+r

J−r
= RT

∑
r:s
s′

κs[c(s) − c(s′)] ln
s
s′

+ RT
∑

(s′′,r)∈C

{[κ1c(s)c(s′′) − κ2c(er)] ln
κ1c(s)c(s′′)
κ2c(er)

+ [κ2c(er) − κ1c(s′)c(s′′)] ln
κ2c(er)

κ1c(s′)c(s′′)
}, (6.18)

where C is the set of catalyses. We are currently investigating the possibility of using the

coarse graining method introduced in Wachtel et al. (2018) to find an analytical expres-

sion that allows us to estimate the efficiency of the introduced model, as a function of the

possible catalysis.

6.3.1 Numerical results

In this section we numerically solve the equations describing the dynamics of a RAF

CRN, Eq. 6.2, in order to study how catalyses affect its the thermodynamic efficiency,

Eq. 6.8. In particular, the investigated CRNs G are examples of the model introduced in

Section 6.3, with species S = ( fα, fβ, s1, s2, s3) and spontaneous reactions R′ = (r1 : fα 


s1, r2 : s1 
 s2, r3 : s2 
 s3, r4 : s3 
 fβ). We choose a set of possible cataly-

ses, C = {(s2, r1), (s3, r2), (s1, r3), (s2, r4)}, and we perform various simulations, spanning

all the possible combinations of active catalyses in C. Note that G is a RAF set only

if the following combinations of catalyses are present: C1 = {(s2, r1), (s3, r2), (s1, r3)},

C2 = {(s3, r2), (s1, r3), (s2, r4)} and C3 = {(s2, r1), (s3, r2), (s1, r3), (s2, r4)}.

The results obtained for all the simulated CRNs are shown in the scatter plot of Fig-

ure 6.2, where each CRN i is associated with the maximum value reached by ηi (y-axis),

and the time necessary to reach it (x-axis). We observe that the catalysis actually modifies
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Figure 6.2. Scatter plot of the thermodynamic efficiency. On the x-axis: time tMax (arbitrary units)
necessary to reach the maximum value of η. On the y-axis: maximum value reached by η. Black
circle: spontaneous CRN. Red circle: catalysis of the inflowing reaction not active. Green
circle: catalysis of the inflowing reaction active. Blue, magenta and cyan circles: RAF sets. In
all the simulations, we set κ2 = 103κ1 = 105κs, κs = 1[arb.unit]. At time t = 0 the system is at
equilibrium.

the energy storage efficiency of the CRNs. In particular, the catalysis of the inflowing reac-

tion fα 
 s1 plays a major role both in increasing the maximum value of the efficiency, and

in decreasing the time needed to reach it. Note that the catalysis of the inflowing reaction

is the only one that directly modifies the fueling power, Eq. 6.17. Similarly, the catalysis

of the outflowing reaction s3 
 fβ determines, in general, the decrease of the maximum

efficiency. Moreover, our results show that the reflexively autocatalytic property does not

constrain the efficiency of the network: in fact, we note that the three RAF sets present

among the simulated CRNs show different efficiencies. In particular, for C = C2 the food

set coincides with the waste chemostatted species, and the corresponding RAF set exhibits

the lowest value of the maximum efficiency within the simulated sets of CRNs. In fact, the

F-generated property does not consider the thermodynamic forces of the system. On the

other hand, the RAF set corresponding to the set C = C1 is associated with the maximum

value reached by η, while for C = C3 the maximum of the efficiency assumes an average

value. We are investigating the biological implications of this result.

6.4 Discussion and conclusions

In this chapter, we established a general set-up for the study of thermodynamic properties

of the RAF sets, following the framework introduced in (Polettini and Esposito, 2014; Rao

and Esposito, 2016). We performed a preliminary study aimed at connecting the properties

of RAF sets with their energy storage efficiency. We introduced a simple model of RAF

CRN in order to follow the efficiency as a function of the active catalyses. The model lends
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itself to an analytical study of its thermodynamic properties, which we are currently car-

rying out. By using numerical simulations, we observe that catalysis plays a major role in

changing the thermodynamic efficiency of the network. On the other hand, the reflexively

autocatalytic property is not sufficient to constrain the resulting efficiency. This preliminary

result supports the previous observation (Chapter 4), according to which the CRNs satisfy-

ing the RAF properties can actually exhibit very different behaviours. Regarding this point,

in the future we will investigate the impact of the F-generated constrain.

Another interesting aspect concerns the possibility of extending this study to stochastic

models. In fact, it has been observed that the deterministic EPR is equal to that one of

the stochastic dynamics only for a particular class of CRNs, i.e., the zero deficiency CRNs

(Polettini et al., 2015). The study of thermodynamic properties of RAF sets taken with

stochastic chemical dynamics will be examined in a forthcoming work.
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Part IV

Conclusions
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Understanding how life could have arisen from inanimate matter is a hard problem.

From an experimental point of view, “building” a living system in the laboratory seems

yet out of reach, despite the enormous advances in molecular biology. Indeed, a complete

knowledge of the conditions and mechanisms that made it possible for first life forms to

emerge from chemical molecules has not yet been achieved. Progress can come from the

realisation of theoretical models that are able both to capture the peculiar properties of

living systems, and to reproduce their emergence within the context in which life is believed

to have developed. In this scenario, ASs, and in particular their formalization represented

by the RAF sets, are of great interest. The idea behind a RAF set, indeed, is that of a

set of chemical reactions that facilitate each other’s occurrence, so that the entire system is

able to self-organise and collectively emerge, by exploiting the resources available from the

environment. These systems are therefore potentially able to self-reproduce and increase

their complexity, starting from simple building blocks. Several works have investigated

RAF sets in the context of graph theory, and important results have been obtained regarding

the probability of observing these networks in generic chemical reaction systems, as well

as their presence in real metabolic networks. Furthermore, numerical simulations were

carried out to study the dynamical emergence of such sets.

However, the dynamical behaviour of RAF sets has not yet been fully clarified, nor

have their thermodynamic properties been investigated. Such arguments represent the main

research topics of my Ph.D work. In particular, the question we try to answer are the

following:

Are the necessary conditions a set of chemical reactions must satisfy to be a
RAF set, sufficient to constrain its dynamical behaviour?

By representing the RAF sets in terms of CRNs, we use the CRN theory to show that the

topology associated to a RAF set is not sufficiently constrained to determine the dynamics

of the CRN. In particular, we identify further conditions compared to the RAF definition,

that are connected with different dynamical behaviours and that allow to define minimal

RAF sets (or motifs) with predictable dynamics. The different observed long-term be-

haviours exhibit peculiar characteristics that can be linked to biological properties, thus

being possible targets for natural selection.

Does the RAF set definition imply dynamical self-reproduction?

A RAF set is, in general, a complex network constituted by several subsets, which can

in turn meet the RAF definition. We observe that a RAF set in which different motifs

are present may not achieve self-reproduction, i.e., there are subsets of chemical species,

among those in the RAF set, that disappear during the dynamics, as they are not reproduced



87

at sufficiently high rates. Importantly, the motifs we introduce satisfy the additional con-

dition of closure imposed by the RAF theory, i.e., they are closed RAF sets. As a result,

even if we observe that the reaction rates of a closed RAF set are actually increased by the

presence of catalyst species, we show that a closed RAF set may fail to self-reproducing in

the long-term dynamics. Note that we achieve this result both in the deterministic model

and in the stochastic simulations. However, the topological constraints we introduce allow

to detect motifs able to efficiently produce all their components, thus capable of emerging

and self-maintaining. Moreover, the ability of self-reproduction can be acquired or lost by

a motif consequently to “mutations”, i.e., the occurrence of spontaneous reactions. This

latter result supports the evolvability of RAF sets.

Do the interactions among RAF sets play a role in the potential biological evo-
lution of such systems?

We investigate interactions among both RAF subsets within the same newtork (intra-network

interactions), and RAF sets constituting separate networks (inter-networks interactions). In

particular, intra-network interactions are constituted by reactions that connect RAF subsets,

and can be responsible of competitive mechanisms that allow the emergence and the self-

reproduction of only some of them. We observe such mechanisms both in the stochastic

simulations and in the deterministic model. In this latter case, the topological investigation

we perform allows us to predict which of the RAF subsets (motifs) dynamically survive

the interactions, and which do not. A competition for resources can arise also among RAF

subsets belonging to different networks. By introducing composition operations, we model

an exchange of chemical species among separated RAF sets, the flow of species being gov-

erned by a flowing rate. The stochastic simulations we perform highlight that the flowing

rate controls the emergence of RAF subsets belonging to different networks, if the flow af-

fects the basic resources of the subsets themselves. Moreover, the exchange of species can

produce other forms of biological interactions, such as facilitation and cheating. Therefore,

our study suggests that intra- and inter-network interactions play an important role in the

dynamical behaviour of RAF sets, and underlie the variation and evolution of a population

of such networks.

Do RAF sets exhibit peculiar thermodynamic properties?

RAF sets are, by definition, systems out of equilibrium , and the thermodynamic observ-

ables associated with them can show, in principle, various features. Using recent tools that

allow to effectively investigate the thermodynamic properties of nonequilibrium CRNs, we

have set up a general framework for the study of the thermodynamics of RAF systems,

and we have performed a preliminary numerical study of their thermodynamic efficiency.

Our first results suggest that the topology of a RAF set does not strongly constrain the
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thermodynamic properties of the system, allowing different networks to exhibit various

thermodynamic behaviours. Furthermore, we observe that catalysis plays a major role in

the thermodynamic efficiency of CRNs. Regarding this latter point, we are currently inves-

tigating the impact of the F-generated property.

Future prospects

The first natural development of this work is a more in-depth study of the thermodynamic

properties of RAF sets that takes into account the link between the thermodynamics of

CRNs and the dynamics dictated by their topology.

Another possible follow up may be the study of the dynamical evolution in stochastic

regime of the motifs we have introduced. A stochastic approach is in fact suitable for the

study of chemical networks at low concentrations, and could help to better understand the

role of enzymatic complexes on global dynamics, as well as being a proper tool for directly

simulating the occurrence of mutations.

Moreover, an important improvement of the previous conclusions will be achieved once

we consider larger systems containing various networks, in order to carry out population

dynamics study and simulate the biological evolution of a population of RAF sets.
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Appendix A

A

Let G = (S,N ,R) be a CRN, R+ and R− be the sets of reversible and irreversible reactions

(such that R = R+ ∪ R−), and i, j denote reactions ν → ν′ ∈ R. The function f (c, κ) for G

can be written as:

fG(c, κ) =
∑
i∈R+

κicνi(ν′i − νi) +
∑
j∈R−

κ jcν j(ν′j − ν j). (A.1)

Similarly, for Gc it is:

fGC (c, κ) =
∑
i∈R+

[κicνi(ν′i − νi) + Pi]+ (A.2)

+
∑
j∈R−

[κ jcν j(ν′j − ν j) + I j],

where Pi and I j denote the additional terms introduced by adding catalysis according to

the scheme of Fig. 4.2 for reversible and irreversible reactions, respectively. For each pair

(i, i′) of reversible reactions such that i : ν → ν′ and i′ : ν′ → ν, the term P(i,i′) can be

written as:

P(i,i′) =|s2|[κ1c(s2)c(x) − κ−1c(e∗)] (A.3)

×(e∗ − s2 − x) + {κ1c(ν−s2)[|s2|c(e∗)

+(1 − |s2|)c(x)] − κ−1c(e)}[e − ν

+s2 − |s2|e∗ − (1 − |s2|)x]

+{κ2c(e) − κ−2c(ν′−p2)[|p2|c(e∗∗)

+(1 − |p2|)c(x)]}[ν′ − p2 + |p2|e∗∗

+(1 − |p2|)x − e] + |p2|[κ1c(p2)c(x)

−κ−1c(e∗∗)](e∗∗ − p2 − x).
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Here, s2 and p2 are the vectors having all components equal to zero, except one (corre-

sponding to species s2 and p2, respectively). Note that due to the above definition, P(i,i′)

describes the terms to be added for all the catalyses shown in Figure. 4.2, depending on

whether the relations s2 = 0 and p2 = 0 are valid or not, where 0 is the zero complex.

Similarly, for each irreversible reaction j : ν→ ν′ the term I j can be written as:

I( j) =|s2|[κ1c(s2)c(x) − κ−1c(e∗)] (A.4)

×(e∗ − s2 − x) + {κ1c(ν−s2)[|s2|c(e∗)

+(1 − |s2|)c(x)] − κ−1c(e)}[e − ν

+s2 − |s2|e∗ − (1 − |s2|)x]

+[κ2c(e)](ν′ + x − e).

Note that I j can be obtained from P( j, j′) assuming κ−2 = 0 and p2 = 0. From Eq. A.3 it

results:

ċ(e) ={κ1c(ν−s2)[|s2|c(e∗) + (1 − |s2|)c(x)] (A.5)

−κ−1c(e) + κ2c(e) − κ−2c(ν′−p2)[|p2|c(e∗∗)

+(1 − |p2|)c(x)]},

ċ(e∗) =|s2|[κ1c(s2)c(x) − κ−1c(e∗) (A.6)

−κ1c(ν−s2)c(e∗) + κ−1c(e)],

ċ(e∗∗) =|p2|[κ1c(p2)c(x) − κ−1c(e∗∗) (A.7)

−κ−2c(ν′−p2)c(e∗∗) + κ2c(e)].

By imposing ė = 0, ė∗ = 0 and ė∗∗ = 0 (QSS assumption), it follows:

κ2c(e) − κ−2c(ν′−p2)c(e∗∗) =κ1c(ν−s2)c(e∗) (A.8)

−κ−1c(e).

Again, equivalent expressions for irreversible reactions are obtained assuming κ−2 = 0,

p2 = 0 and (or) s2 = 0. Note that the equivalences of Eq. A.8 imply that, if for fG it is:

fG =
∑
ν→ν′

αν→ν′(ν′ − ν), (A.9)

then fGC can be written as:

fGC =
∑
ν→ν′

α′ν→ν′(ν
′ − ν), (A.10)

where:

α′ν→ν′ = αν→ν′ + ∆ν→ν′ , (A.11)
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with ∆ν→ν′ ≥ 0. For instance, if κ−2 , 0, p2 , 0 and s2 , 0 it is:

∆ν→ν′ = κ2c(e) (A.12)

for a forward reaction (that is, a reaction with a “spontaneous” rate constant κ0) and:

∆ν→ν′ = κ−2c(ν′−p2)c(e∗∗) (A.13)

for a reverse reaction (that is, a reaction with a “spontaneous” rate constant κ−0). This

implies, in particular, that GC admits a positive equilibrium only if G is weakly reversible.

An equivalent result holds if κ−2 = 0, p2 = 0 and (or) s2 = 0.
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