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Summary

For a given finitely generated multiplicative subgroup of the rationals which possibly contain negative num-
bers, we derive, subject to GRH, formulas for the densities of primes for which the index of the reduction group
has a given value. likewise, We completely classify the cases of rank one, torsion groups for which the density
vanishes and the the set of primes for which the index of the reduction group has a given value, is finite. For
higher rank groups we propose some partial results. Additionally, we present some computations comparing

the approximated density computed with primes up to 10'° and those predicted by the Riemann Hypothesis.
Furthermore, We compute the density of the set of primes for which the order of the reduction group is

divisible by a given integer. Consequently, we consider the general case. Moreover,In the second Section of

the Chapter we test our formulas with several tables.
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Notations and Terminology

Symbol Description

IN 1,2, ...

Z Is the ring of integers.

D, q, L Denotes prime numbers.

Q* Is the set of non-zero rational numbers.

Fy Is the multiplicative group of the field of p elements.
L/K L Is a field extension of K.

Gal(L/K) Is the Galois group of the field extension L/ K.

Ok Is the ring of integers of the field K.

Li(z) = J3 o
GRH

f(@) ~g(z)
pu(n)

o(n)

gcd(a, b)

Is the prime counting function.

Is the logarithmic integral function.

Generalized Riemann Hypothesis.

~

(z)

x)

=1

limg 00

<
—~

Is Mobius function.

Is Euler totient function.

Greatest common divisor of the integers a,b € Z

Vi



Chapter 1

Introduction:

In this dissertation, we study the generalization of the Artin’s primitive root conjecture, one of the most
well-known unsolved problems in number theory. This Chapter motivates the problems we are investigating,
outlines our goals, and gives an account of the contribution of this dissertation. We start with some historical
background.

Artin’s primitive root conjecture was formulated by E. Artin in 1927 during a conversation with H. Hasse
(see[[7]). Indeed, the conjecture was initiated due to Gauss when he thought of the answer to a question Why
does the decimal expansions of the form 1/p, where p is prime and distinct from 2 and 5, are different? For

example:

1/3=10.3 1/11 =0.09 1/17 = 0.0588235294117647
1/7=0.142857 1/13 =0.076923 1/19 = 0.052631578947368421

So, in articles 315-317 of his Disquisitiones Arithmeticae (1801)[8], he showed that the period length match
with the order of 10 in the cyclic group IF*, that means the smallest positive integer & such that 10¥ = 1(mod p).
This integer & is the multiplicative order of 10 modulo p and is denoted by ord,(10). The integer k equals the
order of the subgroup generated by 10 in IF;, the multiplicative subgroup of residue classes modulo p. By
Lagrange’s theorem we conclude that ord, (10)|p — 1. If ord,(10) = p — 1, we say that 10 is a primitive root

modp.
Since primes p > 2 are all odd, the groups IF) all have even order, so that squares cannot be cyclic generators.

Clearly too, the number —1 has order dividing 2 in [F}, so that —1 cannot be a cyclic generator when p > 3.
Thus, a necessary condition on a for there to be infinitely many primes p with primitive root a is that a should
not be a square and that a should not be —1. Artin’s conjecture is that these trivially necessary conditions are
also sufficient:

Weak Artin’s conjecture: Ifthe integer a is not a square and not—1, then there are infinitely many primes with
the primitive root a.

Artin also formulated a strong form of this conjecture:

Strong Artin’s conjecture: If the integer a is not a square and not —1. Furthermore, number of primes p < z

with primitive root a assumed p, (), then there is a positive number §(a) such that

pa() ~ dm(z).

At the very beginning, his idea is a is a primitive root (mod p) if and only if a?~1) /¢ % (mod p) for
all prime divisors ¢ of (p — 1). However, according to a principle of Dedekind, p splits completely in F; =
Q(¢p, a’t), where ¢, = €2™/¢ if and only if aP~1) /¢ = (modp). As a result, Artin deduced that a is a
primitive root (mod p) if and only if p does not split completely in any F,. Then he knew that the prime ideal
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theorem gives the density of primes which split completely in F}, as

[Fr - QJ

Hence, the probability that p does not split completely is

[Fe: QJ

So, one would expect

10 =T(1- 7'q)

as the density of primes for which a is a primitive root. Until 1960, this expression was thought to be plausible,
Then Lehmers [|18] made some numerical calculations that did not seem always match with Artin’s expression.

Moreover, in 1968, Heilbronn Noticed that the events
”p does not split completely in F}”

are not necessarily independent as p and ¢ range through all primes and published a corrected quantitative
conjecture. However, Artin made this correction much earlier, namely in 1958 in a letter to the Lehmers in a
response to a letter of the Lehmers regarding his numerical work. Artin did not publish his corrected conjecture,
nor did the Lehmers refer to Artin in their paper [18], although they give the correction factor. As late as 1964
Hasse provided a correction factor in the 1964 edition of his book [[12] that is incorrect if a = 1(mod4) is not
a prime.

In 1937, Bilharz [3] proved the function field analogue of Artin’s conjecture assuming the Riemann hypoth-
esis for congruence zeta functions, which was subsequently proved by Weil. A natural question to raise is
whether Artin’s original conjecture could be proved assuming the generalized Riemann hypothesis (GRH) for

the number fields involved. This was answered in the affirmative by Hooley [[14] in 1967.

Theorem 1.1 (C. Hooley (1967)). Let 7, (z) measures the number of primes for which a rational number a
a primitive root (mod p) such that a € Q — {—1,0, 1}, and assume GRH for Q((pn, a'’/™) with m € IN, and

squarefree, then the strong Artin Conjecture holds:

B x xlog(z) log(x)
) (7) = 5a10g(x) +0 ( log? () ) '

In a remarkable work from 1977, Lenstra [21] adapted Hooley’s method and, assuming GRH, proved a
number field analogue of AC. His far reaching result again builds on an effective Cebotarev density theorem

under GRH and he produced the five condition.
The work of Hooley was generalized by several authors. In 1983, Rajiv Gupta and Ram Murty [9] proved
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with out any hypothesis, that three is a set of 13 numbers such that, for at least one of these 13 numbers, Artin
conjecture is true. Gupta, Kumar Murty, and Ram Murty []11]] subsequently reduced the size of this set to 7.
Theorem 1.2. Given q,r,s € Z multiplicatively independent, such that none of q,r, s, —3qr, —3qs, —3rs, qrs
is a square,then there exist a € {q,r, s} with

T

Ty () := PN [1,2] < (log(2))2

Moreover, there exist g € {2,3,5} such that

m(z)

<gz: = F*
#{p <z:p>5(9 modp) ]Fp><<1og(x)

In 1986, however, Heath-Brown []13] proved (improving on earlier fundamental work by Gupta, Ram Murty
and Srinivasan [|10, 27]) a result which implies that there are at most two primes ¢1 and ¢ for which p(¢;) and

p(¢1) are finite and at most three square free numbers a1, as and a3 for which p(ay), p(az2) and p(ag) are finite.
Here, we couldn’t list all the names and their works, but in order to get a full figure, we refer to Moree’s

Survey [25].
Given an integer m > 1, the prime counting function that counts the prime numbers p for which a is a

near-primitive root modulo p of index m is:

mr(w,m) = #{p < x:p & SuppT,[F;: Tp] = m}.

Many of anthers assuming the GRH, an asymptotic formula for 7, (z,m). In particular, Lenstra, Moree, and
Stevenhagen, in [19], propose a complete characterization, assuming the GRH, of the pairs (a, m) for which
there are no primes p|a with ind,(a) = m.

Theorem 1.3. Assume the GRH for Q(/a),n € IN. Then

where

5. = 2MM(TL) .
’ n%l:w [Q[emn, ™Y/a] : Q]

In another direction, L. Cangelmi and F. Pappalardi in [4, 29] determined, on GRH, an asymptotic formula
for 71 (z, 1), for which Iy contains a primitive root modulo p. Later for the higher rank Artin Quasi-primitive
root Conjecturein in 2013 F. Pappalardi and A.Susa consider 7r(x,m) in a general context.

Theorem 1.4. Let T C (12* has rank r > 2, let m € N and assume GRH holds for Q(C,, T'/*)(k € IN). Then,

Ve > 0and m < g r+0G@r+2) "¢

Pron(z) i= Pryn 0 [1,2] = <5r,m 10 (mg}(x))) (),

3
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where
i

igl [Q(Gk, TH ™) - Q]

Moreover, they were successfully For the case when I' contains only positive rational number, and will men-

tion later in the Chapter 3.
The goal of this dissertation is to obtain formulas for the densities of primes for which the index of the

51",m =

reduction group I';, has a given value. Moreover, find the density of the set of primes whose the reduction

group I';, order is divisible by a certain integer.
In chapter two, some essential notes on multiplicative groups that it will be the inception step to understanding

next chapters.
In chapter three, we derive formulas for the densities of primes for which the index of the reduction group

has a certain value for a given a finitely generated multiplicative subgroup of the rationals that may contain
negative integers, subject to GRH. We properly categorized the cases of rank one, torsion groups for which the
density vanish, and the set of primes for which the reduction group’s index has a given value. We provide some
partial results for higher rank groups. Furthermore, we show some comparisons between the estimated density

obtained with primes up to 10'° and those predicted by the Riemann Hypothesis.
In chapter four, We determine the density of the set of primes for which the order of the reduction group is

divisible by a specified integer given a finitely generated multiplicative group of rational numbers. Moreover,

we use many tables to test our formulas.
In Chapter 5, we will mention future work that will be about Densities related to average order of subgroups

of Q*.



Chapter 2

Notes on Multiplicative Groups:

Let K be a number field and let I' be a multiplicative subgroup of K*. As usual we say that I is finitely
generated if there exists oy, ..., a, € I' such that every other a € I can be written in the form

a=aft--am  with my,...,m, € Z.
In such a case we write I' = (a1,...,ay) and we refer to «, ..., «, as generators of I'. From the general

theory of finitely generated groups, we know that if I' is finitely generated, then
r=z"oT
where r := rank I is the rank and
T'=TorI'={rel:7" =1 forsomem € N}

is the torsion subgroup of T. A Z-basis (modulo torsion) if T is an ordered set of elements (v1,...,7,) of T,
such that for every a € T there exists unique myq,...,m, € Z and € € Tor T such that & = € -~ - - -4,
The elements of a Z-basis are multiplicatively independent (i.e. 4\ - -~y € TorT with mq,...,m, € Z,
implies (my,...,m;) = (0,...,0)). Viceversa, a set of multiplicatively independent generators forms a Z—

basis.
The torsion subgroup of I" is known to be cyclic and we denote by wr its order. We say that I is torsion free

if Tor I is trivial. In the event that K has at least one real embedding, we have that TorI" C {—1,1}. We also
say that I' is unit—free if it does not contain any infinite order unit of O% (i.e. if 'N O} = Tor D). If K = Q
or if K is an immaginary quadratic field, then necessarily every subgroup of K™ is unit—free. On the opposite

side, we say that I is unit-full if O3 C T.
We define support if T the following finite set of prime ideal of O

suppI" := {p prime ideal of O : vy(a) # 0 for some o € T'}.

Here vy («v) denotes that p—adic valuation of a (i.e. if (o)) = pi* - - p%* is the (unique) decomposition of the
principal fractional ideal of K, («) as the product of distinct prime powers, then vy (o) = e; if p = p; for some
j and vp(a) = 0 otherwise).

If T is finitely generated, the support of I is finite. In fact, if aq, ..., o, € I is a set of generators, then it is
clear that a prime p is in the support if and only if vy (cj) # 0 for some j = 1, ..., n. Furthermore we have the

following
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Proposition 2.1. Let K be a number field and let I C K™ be a unit—free finitely generated multiplicative
subgroup. Then
rank ' > #suppT.

Proof. Letr =rankI and s = #suppI’. Suppose thatv; ..., v, € I'is a Z-basis of I'. Also write suppI’ =
{p1,...,ps} so that for all j, (v;) = py’* - - - ps’*. If it was that s > r, then the matrix

€11 - €1s
E = Efyl,...'yr = (21)

€r1 " Ers

would have rank smaller or equal than r. This implies that there is a non trivial linear combination of the raws

of F that vanishes. Hence there are integers my, ..., m, not all zero. such that

(7)™ (yr)™ = (1).

Hence ¢ = {"! -+ -4 € OF. Since O3 NI = TorT, v, ...,~, are multiplicatively dependent. This is a
contraddiction to the fact that v; ..., 7, € I' is a Z—basis of I. [

The following definition will be crucial for the application in the sequel.

Definition 2.2. Suppose I’ = (a1, ..., ;) C K* is a finitely generated multiplicative subgroup, that supp I' =
{p1,...,ps} is the support and that the ordering of its elements is fixed. Let

E = Eoz17...ozt = <€ij) ;

be the matrix with integer entries defined (as in (2.1)) by (a;) = p7’" -- - ps’°.
Forany j = 1,...,min{s, t}, we define the j—th elementary discriminant divisor Aj = Aj(aq, ..., o4) as

the greatest common divisor of the determinants of all the j x j minors of £. We also define Aj(as, ..., oq) 1=
0 for j > min{s, t}.

The Smith Normal Form provides an efficient way to compute the elementary discriminant divisor. Given
E, nonzero m x n matrix with integer entries. There exist invertible m x m and n X n matrices with integer

entries (i.e. =1 determinant) S, T" so that the product

e7 O 0

0 . 0
SET =] : ey

0 0 0

0 0
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and the diagonal elements e; are unique up to sign and satisfy e; | ¢;41 V 1 < i < r. Finally
AZ' = €1-°-€4.

From the Smith Normal Form decomposition, the basic properties of the elementary discriminant divisor are
easily derived:
1. if j > rankT, then Aj(a,...,a¢) = 0. In fact r = rank I is the largest index r such that A, # 0.
2. IfT' = (B4,. .., By), then for all j

Aj(oq,...,ozt) = Aj(617‘~'7ﬁu)

Hence the elementary discriminant divisor do not depend on the set of generators for I" nor on the ordering
of supp I' chosen to define them. For this reason we shall denote the j—th elementary discriminant divisor
by A -

308G Ajy | Ajijo

IfI' C K* is not finitely generated, the elementary discriminant divisor (A;);en could be defined is the

natural way and they would costitute an infinite sequence of non negative integers.

Proposition 2.3. Given I' C Q™ finitely generated subgroup of rank r and m € IN, we set

Then

r = . 2.2
#I(m) ged(m™,mm 1Ay, ..., mA_1, A) (2:2)

Proof. Since
T(m) = [T T(£*™),
Lm

and since the right hand side of the formula in (2.2) is multiplicative, it is enough to prove (2.2) in the case
when m is the power of a prime ¢. Let {p1,...,ps} be the support of I'. Then

F(Ea) _ <a17"'>a7“7p€,7"'7p£'>
<p€a’.“7p£a>
~ P -ps) / (p1,-- - ps)
<p€a7"'7p£a> <a17"'7a7'7p€a7"'7p£a>
It is clear that (py,...,ps)/(p% ..., pt ) has (% elements. We need to determine the size of the quotient

(p1,...,ps)/{ai,... ,ar,pl{a, . ,pﬁ”‘). We consider the relations matrix N = FE o and M =

le
al:"'7a7‘7p1 yee9Ps
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Eq,...ar» then N = (MmlIy). By the argument above, it follows that

< <p17 .. 'g;p8> £a> _ ga(sfr) gcd(gar’ga(rfl)Ah o ,WAPLAT)-
a1,...,0r,P1 5+, Pg

Hence the claim.



Chapter 3
Densities of the ”quasi r—rank Artin problem’:

3.1 Introduction
The results of the present Chapter appeared in an article by Herish O. Abdullah, Andam Ali Mustafa and

Francesco Pappalardi that was published in Funct. Approximation, Comment. Math. 65 No.1 73-93 (2021).
LetI' C Q* be a finitely generated multiplicative subgroup. We denote by Supp I', the support of T, i.e. the

finite set of those primes ¢ such that the /—adic valuation of some elements of I" is nonzero.
For any prime p ¢ Supp I, we can define the reduction group:

[p={ymodp:veT} CF,
and the prime counting function:

nr(x,m) = #{p < x:p¢SuppT, []F;; :Tp] = m}.
We also define the density (if it exists) as

m) = lim 77rr(x,m)
p(r, ) xl—>oo 71-(1-)

which exists under the Generalized Riemann Hypothesis and it can be expressed by the following formula (see
[B1], [4], [32], [24]):

_ p(k)
p(I',m) = %:1 [Q(Cope, T/ mEY - Q] (3.1

Here (; = ¢*™/4 and /4 denotes the set of real numbers « such that o € T

IfT" = (a) witha € Q\ {—1,0, 1}, the density in question is the density of primes p for which the index
of a modulo p equals m. In the case m = 1, the statement that for a not a perfect square, p({a), 1) exists and
it is not zero, is known as the classical Artin Conjecture for primitive roots which, in 1965, was shown, by C.
Hooley [[14], to be a consequence of the GRH. Hooley gave a formula for p(({a), 1) in terms of an euler product

which is consistent with (§.1]).
If we write a = +b" with b > 0 not an exact power of a rational number, d = disc(Q(+/0)) and [, =

Q(¢y, a'’*) so that

[Fy:Q] =

0(0—1)/ged(h,0) if¢>2o0ra>0
if¢ =2anda <0,



CHAPTER 3 Introduction

then:
1— (—1)hd

-1 1

In the above and in the sequel, ¢ will always denote prime numbers. The case when m > 1 has been considered
by various authors [26],[[15], [23]. In particular (Moree [23, Corollary 2.2]), if m is odd, then

|, 1=(=DM —1 (m, h) y AW 1
pl{a),m) = |1 2 E 7 QI —1| m? 61;7[1 (1+€> };}E(l [FE:Q]) 2
@[QTTL hg‘mg

In the above and in the sequel, m, will always denote the (—part of m (i.e. my = ¢ve(m) where vy is the (—adic

valuation). A formula for the remaining case, m even, can be found in [23, Theorem 2.2].
The case when the rank of T’ is greater than 1 was considered in [4, 24, 32, 29]. ForI' C Q* finitely generated

subgroup and m € IN, we set I'(m) :=T - Q*™/Q*"™ and

_ ATl IS S
A m) = T )] g(l f|T(5m4)|> %}(1 <e—1>|r<£>|>‘ G-

For v € T'(m), v € Z denotes the unique, up to sign, m—power free representative of y (y = 4" - Q*"). The
sign of v/ is chosen to be positive if m is odd or if v = v' - Q*™ C QT := {¢ € Q : ¢ > 0} and is negative
otherwise. If « > 0 and v € T'(2%)[2] (the 2-torsion subgroup of I'(2%)) with v # Q**, then ' = = +3" '
with 9 € IN, y9 > 1 square free. We shall denote by §(7y) = disc Q(,/70) which is easily seen to depend only

on 1.
ForI' C QT, we define:

T(m) := {y € T(m2)[2] : v2(d(7)) < va(m)}. (34)

It is easy to check that I'(m) is a 2-group and if T C Q, then

{1} if2¢m

F(m) = {v€T(2):9 =1mod 4} %f2||m (3.5)
{yeT(@)[2]: 21} if 4|m
I'(m2)[2] if 8||m.

The group I'(m) will be defined also in the case when T’ ¢ Q7 in (B.8).

10
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Finally, we set:
-1

Bre=>_ [l - (3.6)
wf@way(f_lﬂr“”‘l

For the special case when I' contains only positive rational numbers, in [32], it was proved the following:

Theorem 3.1. Let T C Q" be multiplicative subgroup of rank r and let m € IN. Then

() = AT ) (B = 2 o)

where A(T,m) is defined as in (B.3) and Br . is defined as in (3.4).

Note that, for m odd, Br ,, = 1 and the formula above specializes to

_ _ Gme)l R S
o) = o 1L (1 = ar(ee) 1L (- =)

Lm Um
<l1v YTl ! (3.7)
WGF(2)\{Q*2} g|§5 ) (6 - 1)|F(€)| —1

3(v)=1 mod 4

which, for m = 1, should be compared with [24, 4.6. Theorem]. Furthermore, one can check that the formula
in the above result from [32] coincides with that of Moree’s [23, Theorem 2.2] in the case when I' = (a) with
a€Qt,a#1.

The goal of this Chapter is to extend the above Theorem by removing the constraint that ' ¢ Q. We prove
the following:

Theorem 3.2. Let I' C Q* be multiplicative subgroup of rank r > 1 and let m € IN. Let

Twwz{veﬂmﬁm

iy C QT then vy (6(7)) < va(m); }, (3.8)

ify € QF then va(5(7)) = va(m) + 1

Then, with A(T,m) defined as in (3.3) and Br . defined as in (3.6),

) = AT ) (B~ i, ).

Clearly, the definition of T' (1) in Theorem B.J reduces to the one in (8.4) when I' € Q™. Furthermore, it is

11
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not hard to verify that:

{1} if 24 m;

- €l(2):4=1mod4 if 2||m;

F(m) = {vel(2):y } | (3.9)
{y €T(4) :eithery = 13,21y ory = —4§,2 | 70}  if4[m;
T(ms)[2] NQ* if8 | m.

Hence I'(m) is also a 2-group. The above identity should be compared with (B.3). If m is odd, then the formula

for p(T', m) in the statement of Theorem .2 simplifies to the same as in (8.7).
In Section B.4 we specialize to the case when I’ = (—1, a) where a € Q* \ {0, 1, —1} can be assumed to be

positive. We deduce from Theorem B.2 an explicit formulas for p_q 4y ,,, which is used in Section B.3 to prove

the following:

Theorem 3.3. Let a € Q' a # 1, write a = af}, where ag € Q7 not the exact power of any rational number
and write ag = a1a3 where ay > 1 is uniquely defined by the property to be a positive square free integer. The
density p({(—1,a), m) = 0 if and only if one of the following two (mutually exclusive) cases is verified:

1. 3|1 h,31tm,3 ] a1,a1 |3m, 21h,2||m,21ay;

2. 3| h,31m,3|ar,a1 |3m, wva(h) <wva(m) # 1.
Furthermore, on GRH, the set {p : [IF; s (-1, a>p} = m} is finite if and only if one of the above two conditions
is satisfied.

Examples of pairs (a, m) satisfying 1. of Theorem B.3 are (a,m) = (33,2),(153,10),--- and examples
of pairs satisfying 2. are (a,m) = (3%,4), (15'2,40), - - -. A list of more values of (a,m) is presented in the

second table of Section 3.7,
Next, in Section B.6, we investigate the identity

p(T;m) =0
and the problem of determining whether
/\fr,m = {p &€ Suppl,ind,I' = m}

is finite.
IfT = (g) with g € Q\ {0, 1, —1}, this problem has been solved (on GRH) by Lenstra [20, (8.9)—(8.13)]

(see also [23]). In fact,

Theorem 3.4. Lenstra [23, Theorem 4] Let g € Q\ {—1,0,1} and write g = ig(}}, where gy € Q7 is not
the power of any rational number. The density p((g), m) = 0 if and only if we are in one of the following six

(mutually exclusive) cases:

1. 2¢m, disc(Q(\/9)) | m:

12



CHAPTER 3 Introduction

g >0, va(m) > wva(h), 3| h, 3fm, disc(Q(v/~390)) | m;
9 <0,24h, 2|m, 3tm, 3| h, disc(Q(y/3g0)) | m;

9 <0, 2[|h, 2|lm, disc(Q(v/290)) | 2m;

g <0,2[|h, 4jm, 3| h, 31m, disc(Q(y/=6go)) | ms

6. g<0,v2(m)>1+wvz2(h), 3| h 31m, disc(Q(v/=3g0)) | m.
Furthermore, on GRH, /\/'<g>’m is finite if and only if one of the above two conditions is satisfied.

RN W

In the higher rank case, we partially generalize the above in the following way:

Theorem 3.5. Let T C Q* be a non—trivial, finitely generated subgroup and let m € N. Then p(T,m) = 0
when one of the following three conditions is satisfied.:

A. 24 mand forall g € T,disc(Q(\/9)) | m:

B. 2| m, 3tm, [(3) is trivial and there exists v1 € T'(m) such that 3 | (1) | 6m.

C. 2|m, [T(2)| = 2,T(2m) =T(4) and for all v € T(2m), 6(7) | 4m.

REMARK. Regarding the last property of Theorem (3.5, note that I' and m satisfy 2||m, then
T(2))]=2 and T(2m)=T(4)

if and only if
L T(2) = {Q” -Q"}
2. the elements of T'(4) are of the form 42Q** or —4~12Q** with v9 € IN odd and square free;

3. T'(4) contains at least one element on the second form.
In fact, if gQ*? € T'(2) with g € T and |g| not a perfect square, then gQ** € T'(4) is an element of order 4

so that I'(2m) is proper subgroup of I'(4). The form of I'(m) is described in (B.9). Finally, at least one of the

elements has to be of the form —472Q**, otherwise I'(2) = {Q*%}.
The result in Theorem B.9 is compatible with the result of Lenstra. In fact

Proposition 3.6. Suppose I’ = (g) and m € IN. Then condition A. of Theorem B.3 reduces to condition 1. of
Lenstra’s Theorem, condition C. reduces to condition 4 and condition B. reduced to one of conditions 2, 3, 5 or

6 according to the following:

ifg>0
if g <0, v2(m) =1andva(h) =0
if g <0, ve(m) =2and vy(h) =1
if g < 0andva(m) > va(h) +

ARSI

—_

where g = gl with gy # 1 not the power of a rational number.

When rank T’ > 2, we do not know in general if p(T',m) = 0 implies that at least one of the conditions of
Theorem .5 is satisfied. Possibly the approach due to Lenstra, Moree and Stevenhagen [[19] could provide a
complete characterization of the pairs I', m with p(I',m) = 0 also in the case when I' contains some negative

rational numbers. The techniques of [19] have been adapted to the context of higher rank groups by Moree and

13



CHAPTER 3 The degree of Kummer extensions

Stevenhagen in [24] where the case m = 1 is considered. On the other hand, a least in the case when m is odd,

condition 1. of Theorem B.5 is also necessary. In fact we have the following:
Proposition 3.7. Assume that 24 m and p(T,m) = 0. Then condition 1. of Theorem [3.3 is satisfied.
We conclude with the following:

Proposition 3.8. Assume that T C Q* and m satisfy one of the three conditions of Theorem [3.5, then Nt is
finite. In particular, on GRH, if 2 J( m,

Nr o finite < VyQ** € T(2), disc(Q(,/7)) | m.

3.2 The degree of Kummer extensions
In this section we determine an explicit formula for the order of the Galois group

# Gal(Q(Gm, TV /Q) = [Q(¢m, TH) : Q]

where d | m, (= ¥/ ™ and TV4 = {Ja c R:a €T}.
By the standard properties of Kummer extensions (see for example [17, Theorem 8.1]), if we denote by

Ky = Q(¢) the cyclotomic field, we have that
Gal( Ky (T / Kpy) 2 T(d)/Thna (3.10)

where I'(d) := T - Q*?/Q*? and Cpa = (F Q*n K;‘nd) /Q*?. Note that if d > 1 is odd, then K;;d N
Q= Q*d, and

1—‘m,d = Hrm,dg = 1—‘m,dg-
L)d

We recall that for v € T'(d), v/ € Z denotes the unique, up to sign, d—power free representative of ~
(v=+°"- Q*d). The sign of 7/ is chosen to be positive if d is odd or if v = 7/ - Q*! c Qt and is negative
otherwise. Therefore

Lo ={yeT(2*): v €T Q*Qa ﬂK;%Qa}. (3.11)

It was observed in [3 1], Corollary 1] that, for 2% | m,
ifT cQt  then  Tj00 = {ye€T(2%)[2]:0(y) | m}. (3.12)
In fact, if [ € QT and 7/ € T'(2%)[2], then v/ = 73" and 6(7) = discQ(\/70) divides m if and only if

v e K;fa (see for example Weiss [36, page 264]).
Furthermore, if @ = 0, then fml is the trivial group and in [4, page 124, (24)] is was proven that if « = 1

14



CHAPTER 3 The degree of Kummer extensions

then,

if m is squarefree then [0 = {y€T(2): dich(W) | m and dich(W) = 1(mod 4)}. (3.13)

Note that for 4 1 m, the condition discQ(y/’) = 1(mod 4) above is irrelevant as it is implied by the

condition that disc Q(v/7/) | m. Hence, for m square free, the formula in (3.13)) and that in (B.12) coincide.
Our first task is to extend the above formula for fmg in the case when m is not necessarily squarefree.

Proposition 3.1. Let I' C Q™ be a finitely generated subgroup, let m € IN be even. Then

T = {7y €T(2) : discQ(y/7) | m}

Although the proof of the Proposition is the same as the proof of Corollary 1 in [31], we add it here for

completeness.

Proof of the Proposition. Let us start from the definition in (B.11]):
Tpo:={yeT(2):+y er- Q2N K:;%z},

where K, = Q((n). If 7/ € T'- Q*?% is a squarefree integer, then 4/ € K* ? if and only if v/7 € K,,,* and this
happens if and only if disc Q(v/7) | m (see for example Weiss [36, page 264]). This completes the proof. [

We have the general

Lemma 3.2. Let T C Q* be a finitely generated group. Let m € N and let o € IN, av # 0 be such that 2% | m.
Finally set

[foa={yel(2"[2]:vCcQ",d0(7) | m}

and
e _Jrer@):y ZQ",0(y) | m} if 20t |'m
{yeT(2Y)[2] : v £ Q*,6(7) | 2m but 6(v) f m}  if 2%||m

m,2

2a71

where, if Y = £v5 , 6(7) := disc(Q(\/0). Then
fﬂ%?“ == f;%Qa LJF;%QQ.

The proof is, in spirit, the same as the proof of [34, Lemma 4].

Proof. We start from the definition:

Tnge ={7€T(2%): v eT- Q¥ nK:¥}.

15
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Suppose first v = 7'Q*%"  Q* with v/ € N, 2% power free and that 2/~ € Q(¢m). Then Q( 2/7) isa
Galois, real, extension of Q and this can only happen if its degree over Q is at most 2. Hence 7/ = 7(%%1 for

some square free 79 € IN so that 6(7) = disc Q(,/ 0) | mand v € T(2%)[2]. Hence 7 el 2
Next suppose that v = +/ Q*2 ¢ QF,y € Zand~ < 0. The condition 7/ € K} * implies that
a+1
€ K}, 2" s positive. Therefore, by the argument above, 72 = 70 for some square free 79 € IN. Finally
2ol x 2%
’V == S Km :
From this property we deduce that

Vo =evio e K,

for some primitive 2 !-root of unity . We need to distinguish two cases: 2" | m or 2%||m.
If 27 | m, e € Ky, So /30 € Ky, which is equivalent to §() | m.
If2%||m, € € Kom \ K. /70 € Kom \ Ky, which is equivalent to 6(-y) | 2m but §(7) t m
This discussion proves that

f‘m’Qa g f‘j;L,QO‘ U T;%QQ'

Viceversa, suppose that v € lN“Jr 90 U ffn oo and that v # Q*2 Then v = i% Q*2 and the condition
6(7y) = discQ(y/70) | m is equlvalent to /70 € K

o— 2 a (0% o ~ ~
Finally, ify € Fm 00,V = V2 ' (w/”yo) € K;“l and hence v € Q*% N K;"nZ so that F;LLQQ C I'y 20,
a— 2¢
while if y € T mes Y = =3 = (8,/ ) , for some primitive 2%+ !—root of unity ¢.

If 29+! | m, then ¢ € K, and hence ' € T - Q:‘Q NK}, 2 so that Fm g9a C F{n’ 90
Suppose 2¢||m. Ify € Fm72a,thenfy —2" andy?2 = 43" = (\/—’y )2@+ K2 " since the condition

() | 2m but §(~) + m implies that /=7 € K7,. Therefore either v/ € K72 or — € K32 . If it was
that —' = 73%1 e K** we would deduce that V70 € K, and this would contradic §(v) { m. Finally
Y eT- Q% NKLY sothat T, yo  Tpoo. 0

REMARK. Let 79 € IN be square free and suppose that 2||m. Then the condition disc(Q(\/—70)) | m is
equivalent to disc(Q(y/70)) | 2m and disc(Q(y/70)) { m. In fact with the given assumption on 7y and m,

disc(Q(v/=70)) | m if and only if 79 = 3 mod 4 and 7o | m/2 so that disc(Q(,/70)) = 470 | 2m and
disc(Q(y/70)) = 470 1 m. This explains why the formula in Lemma #.1| reduces to the one in Proposition

in the case when o« = 1.
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Proof of Theorem .2

3.3 Proof of Theorem 3.2

Let us start by writing m = 2v2(m) y with 2 { n and note that

k) ’ka,mgkg ‘

p(T,m) =

k>1 k>1

(k) _
2 QG T/ 1]~ 2= p(mk) [T (k)|

_ io: ,LL(206) Z ,u(k) ‘f2‘1+7’2(7")nk,20‘+"2(m>‘
aZo p(tem) [P(eteatm) |51 p(nk) [T(nk)]
ofk
_ i p(207r2tm) Zu(k)’f;—“nk2" +Z ’r2“nk20’
PR TTRN] | & (k) ITR) & p(nk) [T (k)
2tk otk
= p(20mtm) (k) (k)
_|_
2 O |t o PERTGR] T2 2 o) ()
ycQ*t  6(7)[2%n VZQT §(7)|2  kn
S(v)f2%n

Lemma 3.1. Suppose that ¢ is a squarefree odd integer, that n is an odd integer and set:

_ y ~T(ne)|
At = oG] @HQ €|T(€W)|>

Then the following identity holds

p(k)

— o = Ar
dkn Un

I gra)

Un

—1

(L=DIr@) -1

Proof. Observe that 0 | kn if and only if d := §/ ged(d,n) | k. If we write & = dt, then ged(d,n) =
ged(d, t) = 1, so that p(ndt)|T'(ndt)| = ¢(d)|T(d)| x ¢(nt)|T'(nt)| and

:u(k) _ Z ,U(dk)
k>1,24k (nk) [T (nk)| 5 e(ndt)[I(ndt)]
3|kn ged(t,2d)=1
_ L uld)
e(n)|T(n)|  »(d)|T(d)]

) w0 (b, )T ()
2 aed(n, ()]

ged(t,2d)=1

[C(n)]

where we used the identity ¢(tn) = ¢(t)p(n) ged(t,n) /e (ged(t,n)). Since IF(nf)] 1S @ multiplicative func-
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tion of ¢, the above equals:

1 -1
OIS (- o)
—1
= Ar, X :
SR VIO
“2n

From Lemma B.1|, we deduce that

M(Qa—vg(m))
I''m) = Ar, N Sl
p(I',m) T, U2(m)§£2(m)+l £(20) [T(29)]

-1 _1
| X H + > H
ser@2) oty C ™ DITOI=1 | 5 sy - DITEO-1
yCQ”* mn ~ZQ* z{zn
v2(d(7))<a v2(8(v))=a+1

T (1m2)]
= A n B m B m
" ( Lm ™ (2, m) | (2ma)| 2

where
1

= Y H — (3.14)
et )1(s y (L= -1

2m

and

F(m) = {7 € T(ma)[2) : 17 C Q" thenv2(0(y)) < wo(m); } | (3.15)

if v € Q7 then v2((7)) = va(m) +1

Note that in the product in (B.14), the position £ | 2m is equivalent to £ ¥ m. In fact, when m is odd, then
necessarily, for v € T'(m), 6(7) is also odd.

18
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3.4 Thecasel = (—1,a) witha € QT \ {0,1}
In this section we consider the special case when I' = (—1,a) witha € QT \ {0,1, —1}. The rank of T is

1 and we write a = ag with ayp € Q™ not an exact power of a rational number. Further we write ag = a1 a%

where a1, as € QT are uniquely defined by the property that a; € IN and a; > 1 is square free. We have the

following:
Theorem 3.1. With the above notation, let A =TI, (1 — ;) = 0.373955813619202288054 ... be the Artin
Canstant,
(m, h) 02— 2 —20 (+1 — (4, h)
p((=1,a),m) = 11 11 I —— [t t7em ] =57 |4
om? L B =1 =1 i == ((h)
“#2m ve(m/h)>0 H2m
where
0 ifva(h) > va(m), or
ifva(h) = vo(m) = 0and 2 | hay;
—%1 ifva(h) = vo(m) = 0and 2 hay, or
Ta,m = ifva(h) = va(m) >0, or
ifva(h) <wve(m) =1and?2 | hay;
1 ifve(h) <wve(m) =1and21 hay, or
ifva(h) < wa(m) # 1.
Proof. For m € IN (see [32, equation (5) page 6]) we have that,
(~La)(m)| = |(~1,ay@™ Q™) = ) (3.16)
) s Y0 (m7 h) . .
Hence A(_y 4) m» as in Theorem B.2, equals
(m, h) ( 1 ) 1 1 1
e L (e T (20T ().
(m,2)p(m?) #2hm (C—1)¢ dom -1 (>2 ¢ >2 (2
ok Lm £m
vg(h/m)>1 vg(h/m)<0
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We recall that

{1} if2¢m;
—— {v€T(2):49 =1mod 4} if 2||m;
{y € T(4) :eithery' = 13,21y ory/ = —75,2 | 0} if 4)|m;
[(m2)[2]NQT if 8 | m.

Furthermore, if o € IN, then

(e e} a—1 [ a—1 (e .
(7, —Q" 2 Q" —a2 Q) ifwe(h) < a

—1,a)(2%)[2] = a a
< >( )[ ] {{Q*2 ,—Q*Q } 1fU2(h) > Q.

Therefore, if vo(m) = 1,
o *2 : .
i) (m) = {Q 2} 2 if 2 | hay;
Q7 (1) mQ*?} 21 hay,
ifva(m) = 2,
{Q") if 4| h;
(—=1,a)(m) = ¢ {Q** a2Q*'}  if2fayand4 1 h;
{Q*, —a2Q**} if2|ajand41h

and if « = va(m) > 3,

2 2 ifv vo(m
Clam =19, el
(@, a3 Q") ifva(h) < va(m).

From this, we deduce that

-1 —(t,h)

B = 11 —— =l+ema [ 5——F—
(—=1,a),m L , Py &h
ve(“Ta)(m) %(;) (—=1)=1,a)(0)] -1 eﬁ% (£, h)

where
0 ifve(m) < wva(h);

Em,a =10 if2||mand 2 | hay;

1 otherwise.
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Therefore
B . <_17 a> (m2) _
(—=1,a),m (27m2)<_1’a>(2m2) (—1,a),2m
d(h,2my)
1— ng(h, 2m2) 1+ H —(67 h) « €m,a — f;ed(h,ﬁi)ng’a
4 gcd(h, m2) h 02 —10—(L,h) 1 — sed(h,2ms)
EJ(|2a7iL 4 ged(h,m2)
Finally
ged(h,2ms) 0 ifv?(m) < UQ(h);
. Em,a — 4gcd(h,m2)82mva ) —coma .
Tma = acd(h2my) = - if va(m) = va(h)
1= 4gcd(7h mg) dem,a—¢
112 m,a3 2m,a lfUQ(m) > ’Ug(h),
0 ifUQ(h) > Uz(m), or
ifvg(h) = va(m) = 0and 2 | hay;
—1 ifva(h) =va(m) = 0and 2{ hay, or
= ifva(h) = va(m) > 0, or
ifva(h) <wv2(m)=1and 2| hay;
1 ifwy(h) <wy(m)=1and 21 hay, or
ifva(h) < wv2(m) # 1,
and this concludes the proof. O

3.5 The vanishing of p((—1,a),m) and the proof of Theorem 3.3

In this section we consider the equation:

p((—l,a>,m) = 0.

In virtue of Theorem B.1], we deduce that for every a € Q* \ {0,1} and m € IN, p((—1,a), m) = 0 is satisfied
if and only if:

_(E’h)
amzl a,m = V.
Co, + Ta, }';[1 EZ1=(0h) 0
“H2m
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Furthermore, for ¢ odd,
(¢, h)

B oy
0= (0h) =

and the equality holds if and only if ¢ = 3 | h. Hence the equation C, ,, = 0 is equivalent to: 74, = 1,3 | h
and 3 is the only odd prime that divides a; but it does not divide m. This happens exactly in one the following
cases:

31 h,31m,3 ]| a1,a1|3m, 21h,2||m,21a,

or
3| h,3tm,3 | ar,a1 | 3m, wva(h) <wve(m) # 1.

Proof of Theorem 3.3, From the above discussion, it is clear that P(~1,a),m = 0 1s satisfied if and only if one
the the above properties are satisfied. In all other cases p(_1 4y, 7 0. So, on GRH by [32, Theorem 1], there
are infinitely primes p such that {]F;; t (-1, a)p} =m.

Suppose next that a, m are such

3| h,31m,3]|ar,a1 |3mand2|m

and let p be a prime such that {IF; s (—1, a>p} = m. From the fact that 2 | {IF; s (—1, a)p] we deduce that —1
and a are squares in IF,* and that p = 1 mod 2m. Furthermore, if ¢ > 3 is any other prime that divides a;.

Then ¢ | m | p — 1. So, by quadratic reciprocity,

l
O (@)= (-
P 14 l
If the first of the properties in the statement of Theorem 3.3 is satisfied, then, since 2 1 h, also a; is a square
in IF;. The property that 2 { ay implies that every ¢ | a; is such that (g) = 1. Thus
)= GG =6) G- (5) -
p p)\p P) oy tp3 \P p

This implies that p = 1 mod 3. Hence both —1 and a are cubes in ]Fg which implies that 3 | m and this is a

contradiction.
In the case when a, m are such that the second properties in the statement of Theorem [3.3 is satisfied we let

p be a prime such that [IF; (-1, a>p} = m. Then, since va(h) < va(m)andm | p —1,

h/hg p—1 1 h2+1
al ago == p— p—1m/2
() B <> = ag/’” P =gl =g m = 1 mod p.
p
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So that again a; is a square modulo p. Furthermore, since va(m) > 2 and p = 1 mod 2m, then 8 | p — 1. Thus

(3

Finally, a similar argument as above shows that (_73) = land 3 | p— 1. Again both —1 and a are cubes in IFg
which implies that 3 | m and this is a contradiction. O

3.6 The vanishing of p(T", m)
Proof of Theorem 3.3, We start from the identity

) = AT ) (B~ i, ).

It is easy to check, by the definition in (B.3), that A(T',m) # 0 for all m and all . So, the equation p(T',m) = 0

is equivalent to

[T (m2)]
B = B . 3.17
F,m (27 m)|1—|(2m2)| 1",2m ( )
1. If 2 m, then Br,, = 1 and [[(m2)| = 1. So the identity in (8.17) specializes to
r(2)| =B > 11 ! (3.18)
= Drom = — — .
retm) dioiy) (¢~ DITOI=1
“H2m

Note that the hypothesis that disc(Q(4/g)) | m forall g € T, we deduce that disc(Q(,/g)) = 5(gQ*%) =
1 mod 4. Hence each of the products in (B.18) is empty. Finally I'(2) = T'(2m) so that the identity in
(B.18) is satisfied.

2. Next assume that the condition in 2. is satisfied. We claim that Br,, = Br s, = 0 which implies that
(B.17) is an identity. Observe that, if y; € I'(m) is as in the statement, then

= =—1.
zggl) (=T -1  2T@) -1
2m

Therefore, since I'(m) is a group, 3 4 m and 3 | §(~17) if and only of 3 1 6(7),

—1
Brm=- > 1l = —Brm
~el(m) fl%vw) (- DIl -1
12m

which immediately implies that Br ,,, = 0. We observe that, if y; = i76n2/ 2Q*™2, then yp = v4'2Q**™ ¢
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['(2my) since it satisfies 6(71) = 6(72) and va(y2) < v2(2m). So, by the same argument, we deduce
that BF,Zm = 0.

3. By the remark after the statement Theorem .3, the third condition implies that Br,, = land [I'(mg)| =
2. So, identity (B.17) reduces to Bra,, = |[(2ms)|. The hypothesis that '(4) = ['(2m) and that, for
every v € ['(2m), §(7y) | 4m, implies that

-1
=1
A oo
H2m

so that Br o, = |T'(2m)| and identity (B.17) is satisfied.
[]

Proof of Proposition 3.6. IfT = (g), then 3 | h if and only if I'(3) is trivial and that v (k) is the largest o such
that T'(2%) is trivial.

To analyze precisely the special case when I' = (g), g = j:gg with gg # 1 not the power of a rational
number, we observe that #I'(m) = m/ ged(m, h) and

{Q*mg’ggu/QQ*m?} if g > 0 and vo(m) > vo(h), or
if g < 0and va(m) > va(h) + 1;
] = QR it < Oand a(m) = ) +1
(Q*™2, _Q*m2) if g < 0 and vo(m) = va(h);
Q") if g > 0 and va(m) = va(h), or

ifva(m) < va(h).

A. If 2 { m and for all v € T, disc(Q(y/7)) | m, then, in particular disc(Q(,/g) | m which is the first
property in Lenstra’s Theorem.
B. If3 | d(g) | 6m, v2(d(g)) < va(m) + 1. Thus

{Q"2,g52/°Q "™} ifg > 0,03(3(g)) < va(m)

" if g < 0,v2(6(g)) < wva(m) and va(m) > va(h) + 1;
{Q*™2, — m2/2Q*m2} ifg <0Oandv2(0(g)) —1 = va(m) = va(h) + 1;
{Q*™"2} otherwise.

Note that, in order for v2(d(g)) — 1 = va(m), necessarely va(m) = 1 of vo(m) = 2 and in the latter
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case 2 | go. The condition 3 | §(g) | 6m which implies:

disc(Q(v/=3g0)) | m  in the first case of (B.19);
disc(Q(v/3go)) | m  in the second case of (B.19), with vo(m) = 1;
disc(Q(+v/—6g0)) | m  in the second case of (B.19), with vy (m) = 2.

We conclude that the second case of Theorem B.§ specializes, in the case I' = (g), to following cases of

the Theorem of Lenstra.

ifg>0

if g < 0,v2(m) = 1and va(h) =0
ifg <0,va(m) =2and va(h) =1
if g < 0and ve(m) > va(h) +

AN e N

—_

C. The third property in the above statement means that. every element v € I'(4) is either of the form
78@*4 or —473@*4 with 79 | m odd and square free and at least one of them is of the second form.
Hence, necessarily, g = — g2 with gy even, not a fourth power and v2(go) odd. This implies that 2|/ and

that disc(Q(1/2g0)) | 2m.
[

Proof of Proposition B.7. Assume that 2 { m and p(T,m) = 0, then by (B.17), |T'(2)| = Br 2,,. Furthermore

|Bram| < [T(2m)] < [T(2)].

This implies that ['(2m) = I'(2) and that for every v € T', 4/ = 1 mod 4 and

—1

11 =1
206(v) (ﬁ - 1)’F(€)’ -1
H2m
Thus 6(~y) | m for all v € T'(2). Hence the property in 1. holds for ' and m. H

Proof of Proposition 3.8, Suppose that " and m satisfy the first condition in the statement of Theorem B.3. Let
p ¢ SuppT be such that [I)| = (p —1)/m, then p = 1 mod m and by, quadratic reciprocity, for all g € T,
since 6(gQ*?) | m, (%) = 1. Hence I', C T, is contained in the subgroup of squares which implies that 2 | m,

a contradiction.
Next suppose that I' and m satisfy the second condition in the statement of Theorem B.3. First note that, if

p & SuppT is a prime such that [I'y| = (p — 1)/m, then p = 2 mod 3 since 3 { m and since all elements of

I' are perfect cubes. Furthermore the hypothesis m even implies that all elements of I';, are squares modulo p.
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Lety; € T'(m) be such that 3 | (1) | 6m. Then

(3)-(5)- )02

which is a contradiction to the property that all the elements of I" are squares modulo p.
Finally suppose that I' and m satisfy the third condition in the statement of Theorem B.3. Let —473@*4 €

T'(4) with 79 odd and square free as in the Remark after the statement of Theorem B.3. Since 2||m, —41Z is a

square modulo p. Hence p = 1 mod 2m. We have also that p # 1 mod 4m, otherwise the quartic symbol

B -

since yo | m. Furthermore vy | m also implies, by quadratic reciprocity that (%) = 1, hence the Legendre

3)-)-

if and only if p = 1 mod 8 (since p Z —1 mod 4). So a contradiction. ]

symbol:

3.7 Numerical Examples
In this section we compare numerical data. The density pr ,,, can be explicitly computed once a set of gener-

ators of I' is given. The tables in this section have been computed using Pari-GP [35].
The first table compares the values of p_1 4y ,,, as in Theorem B.1 (second row) and

(1.0 (10899719603, 1)
7(10899719603)

(first row)

witha = 2,...,21,m = 1,...,20. All values have been truncated to the first decimal digits.
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a\m 1 2 3 4 5 6 7 8 9 10
2 0.5609316 0.09349469 0.09972896 0.07011468 0.02834563 0.01661614 0.01340015 0.01753052 0.01108010 0.00472355
0.5609337 0.09348895 0.09972155 0.07011672 0.02834191 0.01662026 0.01340210 0.01752918 0.01108017 0.00472365
3 0.5983436 0.1121961 0.06648385 0.02804691 0.03023376 0.04986213 0.01429211 0.007009285 0.007383818 0.00566415
0.5983293 0.1121867 0.06648103 0.02804669 0.03023138 0.04986078 0.01429557 0.007011672 0.007386782 0.00566838
4 0.3739585 0.1869731 0.06648425 0.1402365 0.01889511 0.03324471 0.008932948 0.03505868 0.007385783 0.00945051
0.3739558 0.1869779 0.06648103 0.1402334 0.01889461 0.03324052 0.008934733 0.03505836 0.007386782 0.00944730
5 0.5707797 0.1328580 0.1014608 0.03321178 0.01889962 0.02361663 0.01363818 0.008306253 0.01127759 0.0141702
0.5707747 0.1328527 0.1014711 0.03321318 0.01889461 0.02361826 0.01363722 0.008303295 0.01127456 0.0141709
6 0.5609309 0.1495846 0.09972773 0.02804226 0.02834054 0.01662218 0.01340140 0.007010532 0.01108035 0.00756130
0.5609337 0.1495823 0.09972155 0.02804669 0.02834191 0.01662026 0.01340210 0.007011672 0.01108017 0.00755784
7 0.5655185 0.1368145 0.1005323 0.03419843 0.02856917 0.02432134 0.008929491 0.008552522 0.01116960 0.00691573
0.5654942 0.1368131 0.1005323 0.03420328 0.02857234 0.02432233 0.008934733 0.008550819 0.01117025 0.00691266
8 0.3365588 0.05609852 0.2991703 0.04207116 0.01700431 0.04985612 0.008041882 0.01051791 0.03324158 0.00283249
0.3365602 0.05609337 0.2991647 0.04207003 0.01700515 0.04986078 0.008041260 0.01051751 0.03324052 0.00283419
9 0.3739683 0.2991733 0.06648385 0.05609534 0.01889393 0.03323814 0.008931910 0.01402027 0.007383818 0.0151180
0.3739558 0.2991647 0.06648103 0.05609337 0.01889461 0.03324052 0.008934733 0.01402334 0.007386782 0.0151156
10 0.5609298 0.1427061 0.09972107 0.03321470 0.02834725 0.02536964 0.01340418 0.008301758 0.01108199 0.00471766
0.5609337 0.1426937 0.09972155 0.03321318 0.02834191 0.02536776 0.01340210 0.008303295 0.01108017 0.00472365
11 0.5626496 0.1389491 0.1000259 0.03473188 0.02843085 0.02469908 0.01344676 0.008686747 0.01111246 0.00701644
0.5626491 0.1389469 0.1000265 0.03473672 0.02842859 0.02470167 0.01344308 0.008684180 0.01111406 0.00702047
12 0.5983387 0.1121865 0.06648742 0.02804858 0.03023264 0.04986241 0.01429060 0.007011669 0.007378899 0.00566779
0.5983293 0.1121867 0.06648103 0.02804669 0.03023138 0.04986078 0.01429557 0.007011672 0.007386782 0.00566838
13 0.5621469 0.1393328 0.09993109 0.03483086 0.02840633 0.02476879 0.01343573 0.008701322 0.01110203 0.00704395
0.5621400 0.1393287 0.09993601 0.03483217 0.02840286 0.02476955 0.01343092 0.008708044 0.01110400 0.00703976
14 0.5609384 0.1413718 0.09973011 0.03419959 0.02833696 0.02513520 0.01340095 0.008548704 0.01107725 0.00714109
0.5609337 0.1413735 0.09972155 0.03420328 0.02834191 0.02513307 0.01340210 0.008550819 0.01108017 0.00714308
15 0.5589555 0.1417091 0.1014805 0.03543326 0.03024462 0.02362492 0.01335049 0.008858559 0.01127789 0.00566780
0.5589655 0.1417096 0.1014711 0.03542739 0.03023138 0.02361826 0.01335507 0.008856848 0.01127456 0.00566838
16 0.3739585 0.1869731 0.06648425 0.09348516 0.01889511 0.03324471 0.008932948 0.07012322 0.007385783 0.00945051
0.3739558 0.1869779 0.06648103 0.09348895 0.01889461 0.03324052 0.008934733 0.07011672 0.007386782 0.00944730
17 0.5616273 0.1397238 0.09985219 0.03493080 0.02838022 0.02484125 0.01341405 0.008729947 0.01109205 0.00705916
0.5616237 0.1397160 0.09984421 0.03492899 0.02837678 0.02483839 0.01341858 0.008732248 0.01109380 0.00705933
18 0.5609340 0.09348952 0.09972808 0.07011901 0.02834935 0.01661992 0.01340618 0.01753497 0.01108209 0.00472335
0.5609337 0.09348895 0.09972155 0.07011672 0.02834191 0.01662026 0.01340210 0.01752918 0.01108017 0.00472365
19 0.5614939 0.1398239 0.09982117 0.03495974 0.02836823 0.02486121 0.01341314 0.008741045 0.01108672 0.00706348
0.5614820 0.1398222 0.09981903 0.03495555 0.02836962 0.02485728 0.01341520 0.008738887 0.01109100 0.00706470
20 0.5707806 0.1328471 0.1014829 0.03322058 0.01889355 0.02362051 0.01363731 0.008299904 0.01127612 0.0141725
0.5707747 0.1328527 0.1014711 0.03321318 0.01889461 0.02361826 0.01363722 0.008303295 0.01127456 0.0141709
21 0.5600268 0.1409286 0.1005350 0.03522960 0.02829520 0.02431948 0.01429444 0.008803046 0.01116625 0.00711351
0.5600216 0.1409175 0.1005323 0.03522937 0.02829583 0.02432233 0.01429557 0.008807343 0.01117025 0.00712004
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a\m 11 12 13 14 15 16 17 18 19 20
2 0.00510744 0.0124679 0.00359997 0.00222978 0.00503516 0.00438153 0.00206209 0.00184754 0.00164031 0.00354257
0.00510365 0.0124652 0.00359751 0.00223368 0.00503856 0.00438229 0.00206270 0.00184670 0.00164041 0.00354274
3 0.00544021 0.0124616 0.00383648 0.00268420 0.00336011 0.00175025 0.00220027 0.00553765 0.00174867 0.00141870
0.00544389 0.0124652 0.00383735 0.00268042 0.00335904 0.00175292 0.00220022 0.00554009 0.00174977 0.00141710
4 0.00340434 0.0249248 0.00239988 0.00446720 0.00335940 0.00876508 0.00137414 0.00369432 0.00109360 0.00708846
0.00340243 0.0249304 0.00239834 0.00446737 0.00335904 0.00876459 0.00137514 0.00369339 0.00109361 0.00708548
5 0.00519359 0.00590447 0.00366198 0.00317556 0.00336173 0.00207477 0.00210207 0.00262178 0.00166963 0.00354352
0.00519319 0.00590457 0.00366063 0.00317418 0.00335904 0.00207582 0.00209889 0.00262425 0.00166919 0.00354274
6 0.00510627 0.0124629 0.00359992 0.00357324 0.00504114 0.00175411 0.00206171 0.00184493 0.00163881 0.00141912
0.00510365 0.0124652 0.00359751 0.00357389 0.00503856 0.00175292 0.00206270 0.00184670 0.00164041 0.00141710
7 0.00513631 0.00607994 0.00362347 0.00669896 0.00507949 0.00213845 0.00207716 0.00269970 0.00165395 0.00172480
0.00514514 0.00608058 0.00362676 0.00670105 0.00507953 0.00213770 0.00207947 0.00270248 0.00165375 0.00172817
8 0.00306486 0.0373951 0.00216091 0.00133867 0.0151169 0.00262701 0.00123701 0.00554338 0.000983628 0.00212638
0.00306219 0.0373956 0.00215851 0.00134021 0.0151157 0.00262938 0.00123762 0.00554009 0.000984246 0.00212564
9 0.00340005 0.0249340 0.00239661 0.00715018 0.00336011 0.00350570 0.00137538 0.00369255 0.00109416 0.00283125

0.00340243 0.0249304 0.00239834 0.00714779 0.00335904 0.00350584 0.00137514 0.00369339 0.00109361 0.00283419
10 0.00510461 0.00590093 0.00360070 0.00340683 0.00503538 0.00207639 0.00206380 0.00281799 0.00164099 0.00354335
0.00510365 0.00590457 0.00359751 0.00340931 0.00503856 0.00207582 0.00206270 0.00281864 0.00164041 0.00354274

11 0.00340353 0.00617265 0.00361100 0.00331679 0.00505721 0.00216874 0.00206702 0.00274380 0.00164561 0.00175059
0.00340243 0.00617542 0.00360852 0.00331979 0.00505397 0.00217105 0.00206901 0.00274463 0.00164543 0.00175512

12 0.00544441 0.0124649 0.00383767 0.00268083 0.00336152 0.00175182 0.00219725 0.00554242 0.00175120 0.00141594
0.00544389 0.0124652 0.00383735 0.00268042 0.00335904 0.00175292 0.00220022 0.00554009 0.00174977 0.00141710

13 0.00511588 0.00619055 0.00239962 0.00332478 0.00504846 0.00217509 0.00206879 0.00274989 0.00164528 0.00175839
0.00511463 0.00619239 0.00239834 0.00332891 0.00504940 0.00217701 0.00206714 0.00275217 0.00164394 0.00175994
14 0.00510613 0.00608177 0.00359234 0.00223823 0.00503918 0.00213949 0.00206543 0.00279089 0.00163908 0.00172924
0.00510365 0.00608058 0.00359751 0.00223368 0.00503856 0.00213770 0.00206270 0.00279256 0.00164041 0.00172817
15 0.00508856 0.00590030 0.00358190 0.00338418 0.00335933 0.00221683 0.00205424 0.00262339 0.00162967 0.00141946

0.00508574 0.00590457 0.00358489 0.00338579 0.00335904 0.00221421 0.00205547 0.00262425 0.00163465 0.00141710
16 0.00340434 0.0166159 0.00239988 0.00446720 0.00335940 0.0175294 0.00137414 0.00369432 0.00109360 0.00472694
0.00340243 0.0166203 0.00239834 0.00446737 0.00335904 0.0175292 0.00137514 0.00369339 0.00109361 0.00472365

17 0.00510339 0.00620499 0.00359956 0.00333673 0.00504253 0.00218122 0.00137517 0.00275780 0.00164143 0.00176759
0.00510993 0.00620960 0.00360194 0.00333816 0.00504476 0.00218306 0.00137514 0.00275982 0.00164243 0.00176483

18 0.00510607 0.0124616 0.00359556 0.00223293 0.00504174 0.00438445 0.00206104 0.00184680 0.00163940 0.00353899
0.00510365 0.0124652 0.00359751 0.00223368 0.00503856 0.00438229 0.00206270 0.00184670 0.00164041 0.00354274

19 0.00510559 0.00621063 0.00360779 0.00333827 0.00504638 0.00218332 0.00206461 0.00276301 0.00109126 0.00176729
0.00510864 0.00621432 0.00360103 0.00334070 0.00504349 0.00218472 0.00206472 0.00276192 0.00109361 0.00176618
20 0.00519737 0.00589984 0.00366014 0.00317452 0.00336146 0.00207540 0.00209665 0.00262335 0.00166906 0.00353976
0.00519319 0.00590457 0.00366063 0.00317418 0.00335904 0.00207582 0.00209889 0.00262425 0.00166919 0.00354274
21 0.00509391 0.00607751 0.00358806 0.00268179 0.00508293 0.00220359 0.00206029 0.00270407 0.00163689 0.00178045
0.00509535 0.00608058 0.00359166 0.00268042 0.00507953 0.00220184 0.00205935 0.00270248 0.00163774 0.00178001

Next table lists the first few values of a (first raw), its factorization (second raw) and m (third raw) such that
p({(—1,a), m) = 0.

a | 27 | 216 | 729 | 1728 | 3375 | 9261 | 13824 | 19683 | 27000 | 35937 | 46656 | 59319 | 74088 | 110592 | 132651 | 185193 | 216000
33 | 63 | 36 123 152 213 | 243 39 308 333 66 393 428 483 513 573 602
m | 2 4 4 2 10 14 4 2 20 2 4 26 28 2 34 38 10

Next table compares the values of pr ,,, as in Theorem B.2 (second row) and

Wr(loloa m)

(1010 (first row)

for some groups I' of rank 2 and m = 1, ..., 20. All values have been truncated to the first decimal digits.
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T\ m 1 2 3 4 5 6 7 8 9 10
(—1,2,3) 0.820596 0.082060 0.0395175 0.0239324 0.00822387 0.0098772 0.00279091 0.0029907 0.0014603 0.0008217
0.820590 0.082059 0.0395099 0.0239339 0.00822248 0.0098774 0.00279248 0.0029917 0.0014633 0.0008222
(2,3) 0.697505 0.205153 0.0395175 0.0205123 0.00698931 0.0098772 0.00237151 0.0059838 0.0014603 0.0020563
0.697501 0.205147 0.0395099 0.0205147 0.00698910 0.0098774 0.00237361 0.0059834 0.0014633 0.0020556
(2,-3) 0.711182 0.191476 0.0263467 0.0205125 0.00712861 0.0230480 0.00241891 0.0059831 0.0009733 0.0019170
0.711178 0.191471 0.0263399 0.0205147 0.00712615 0.0230474 0.00242015 0.0059834 0.0009755 0.0019185
(—2,3) 0.697509 0.205148 0.0395175 0.0205138 0.00699074 0.0098772 0.00237228 0.0059827 0.0014603 0.0020548
0.697501 0.205147 0.0395099 0.0205147 0.00698910 0.0098774 0.00237361 0.0059834 0.0014633 0.0020556
(—2,-3) 0.711187 0.191471 0.0263420 0.0205148 0.00712694 0.0230528 0.00241881 0.0059807 0.0009757 0.0019186
0.711178 0.191471 0.0263399 0.0205147 0.00712615 0.0230474 0.00242015 0.0059834 0.0009755 0.0019185
T\m 11 12 13 14 15 16 17 18 19 20
(—1,2,3) 0.000679 0.002879 0.0004043 0.0002789 0.000396198 0.000373124 0.000176883 0.000364441 0.000126355 0.000239328
0.000678 0.002880 0.0004046 0.0002792 0.000395897 0.000373967 0.000177465 0.000365832 0.000126284 0.000239822
(2,3) 0.000577 0.002468 0.0003435 0.0006983 0.000396198 0.000747096 0.000150315 0.000364441 0.000107638 0.000205653
0.000576 0.002469 0.0003439 0.0006981 0.000395897 0.000747933 0.000150846 0.000365832 0.000107342 0.000205562
(2, —3) 0.000588 0.002469 0.0003505 0.0006509 0.000263545 0.000747221 0.000153294 0.000851385 0.000109579 0.000205082
0.000587 0.002469 0.0003506 0.0006515 0.000263931 0.000747933 0.000153803 0.000853609 0.000109447 0.000205562
(—2,3) 0.000576 0.002469 0.0003436 0.0006975 0.000396198 0.000746852 0.000150279 0.000364441 0.000107482 0.000205266
0.000576 0.002469 0.0003439 0.0006981 0.000395897 0.000747933 0.000150846 0.000365832 0.000107342 0.000205562
(—2,-3) 0.000588 0.002467 0.0003507 0.0006510 0.000263912 0.000747661 0.000153299 0.000848999 0.000109390 0.000204851
0.000587 0.002469 0.0003506 0.0006515 0.000263931 0.000747933 0.000153803 0.000853609 0.000109447 0.000205562
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Chapter 4
Divisibility of reduction in groups of rational numbers

4.1 Introduction
The results of the present Chapter have been collected in an article by Herish O. Abdullah, Andam Ali Mustafa

and Francesco Pappalardi that has been submitted for publication.
Let I' C Q* be a finitely generated multiplicative group of rank . We denote by SuppI', the support of T,

i.e. the finite set of those primes ¢ such that the /—adic valuation of some elements of I is nonzero. For any
prime p ¢ Supp I', we consider the reduction group:

[, ={ymodp:veT} CF,
and, for m € IN, the prime counting function:

m(x,T,m) :=#{p<az:p&Suppl,m | #Ip}.

We also define the density as

which in [31, Theorem 1] was proven to exists and to be expressed by the following formula:

p(d)p(f) 11
"= % 200, TAUE) G &1

fln

where S;;, = {n € N: Rad(n) | mand m | n} and for n € IN, Rad(n) denotes the radical of n, the largest
squarefree integer dividing n and y(f, k) = [Ty € (k)+1 Here Cq = €2™/d and T1/4 denotes the set of real

numbers « such that a? € T,
IfT = (a) witha € Q\ {—1,0, 1}, then the density in question is the density of primes p for which ord,(a),

the order of a modulo p, is divisible by m. Expessions for o((a), m) have been proposed by several authors
([5, 6, 28, 22, 30, 37]). The most general formula is due to Moree in [22, Theorem 2]. He has shown the

following:

Theorem 4.1. Leta € Q\ {—1,0, 1}, write a = +al} with ag > 0 not the exact power of a rational number.
Set 6(a) = disc(Q(y/ao)), denote by vy(h) the (—adic valuation of h and (h,m>) = [y, (veth) where ¢

always denotes a prime number. Finally set v.= v2(d(a)/mh). Then

ollehm) =y 11 (zzgi 1)

Lm
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—3 ifa>0,v<0, or 1 if2 1 m;
ifa <0,v=1; L4+3(1— ) (22 —1)/4 if 2||m, 8(a) t 4m;
Eam =143 ifa<0,v<0,o0r Vam={143(1- ﬁ)(ZW(h) —1)/4+cam if2||m,d(a) | 4m;
ifa>0,v=1; 1 if4 | m,d(a)t4m;
L ifv>1, L+ €jam if4|m,d(a) | 4m.

In particular, if a > 0, then

14 (=1/2)2" 19 | 'm, 6(a) | 4m:;
Vam =
1 otherwise.

Regarding the higher rank case, for £ € IN, we set

(k) =T-(Q)"/(Q)"

which is a finite group with order dividing 2 - &".
In [31]] it was proved the following:

Theorem 4.2. Assume that T is a finitely generated subgroup of Q" and that m € IN. For any squarefree
t+1
integer 1), let t,, = oo if either m is odd or for all t > 0, nth*2H Z T2 and
- 2t 2! t+1 : d(n) -
ty = minqte€N:n°Q e T'(2"Y) ¢ otherwise. Furthermore let s, = vy (W) where 0(n) is the
discriminant of Q(/n) and let or = [1yesuppr {- Then

A H(l—zwfr‘(;.),) T ST

Jj=1 n|ged(m,or)

where
0 ift, = oo;

>

by =15, 20|

1
1 :
5 s T E ———  ifsy > 1y
2l k>sy 2k ’1"(2/{7)’

if sy <ty < 00;

It is not difficult to check that:
e since 3> m is rational for any prime ¢, or ,, is also rational;
« in the special case when I' = (a) with a > 0, the formulas of the above Theorems coincide. See for
example [30, page 333—Remark 4].
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The goal of this Chapter is to extend the above Theorem by removing the constraint that ' C Q. We prove
the following:

Theorem 4.3. Let I be a finitely generated subgroup of Q* and that m € IN. We assume the following notations:
o for > 1, To(2%) is the 2—torsion subgroup of T(2%) =T - (Q*)zﬁ/(Q*)zﬁ;
s fory = i(70)2ﬂ71 (Q*)Qﬁ € T9(29), with vg € N square free , 5(vy) denotes the field discriminant of
Q(v0);
* To(27,m) = {y € T2(2%) : 6(v) | 4m};
1 ifycQ7;

—1 otherwise.

« fory € T(27), sgn(v) =

Then
1 /-1
Ql"’ = — 1 — — X 1 — )(1"7
mwmﬁx Emwﬁ (1= Xrim)
£>2
where,

« if24m, or, if2|lm and —1 € T, Xt ,,, = 0;
. - 1
o if 2l|m, Xrpm = /;25|F(25)! > e(Bv)sen(y).
Z ’76F2(2f6,m)
withe(1,9) = (32),  e(2,9):= (1), &(8,9):=1for B >3;
T (27, :
i e, = 5 (2] € Ta@.m) 850,
pz1 28 ‘T(Qﬂ)’ T(2)]

< 8| m, X —Zmﬂ%ﬂ
» AT m — = 2/3 ’1—'(2/3)‘ .

4.2 The degree of Kummer extensions
In order to prove the Theorem, we need an explicit formula for the degree [Q(C,,, T/ %) : Q] where d | m.

A result with the correct level of generality can be found in [2]:

Lemma 4.1. Let T’ C Q* be a finitely generated group. Let m,d € IN with d | m. Then

[Q(Gn, TH%) : Q] = |T(d)] % |F gl (4.2)

where T(d) := T -Q*/Q*? and
Tpa=T, 40T, 4

Here, if we let To(d) = T(2%2(D)[2], the 2—torsion group and, for v = ivgvz(dFlQ*QW(d)

Y0 > 0 not the exact power of any rational number, we let § () := disc(Q(y/70), then

€ Ta(d), with

[ a={yeTa(d):v Q¥ 5(7) [ m}
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CHAPTER 4 Proof of Theorem .3

and
. {{vefz(d):vSEQ+,5(v)m} ifv2(d) < va(m)
"\ {y € To(d) s v € QF,5(7) | 2m but 6(y) fm}  ifva(d) = va(m).

4.3 Proof of Theorem 4.3

Proof. We use the formulas for the degrees of Lemma {. 1) which lead to the following identity:

[Q(Cnda rl/PY(f’%)) : Q] dgpi() H ’1—' gve n/m)+1)’
’Fnd,fy ‘ é‘f

where y(f, %) = Iy ¢ve(i) 1 Note that T ; A(f,z) is trivial if f is odd while if 2 | f, then v (y(f, ;7)) =
va(£) + 1,50 that (if 2 | ) Ty(p 2y = Fndgn/m. Also note that, if 2 | n, 2n/m is a divisor of nd. Thus,
the sum defining or ,, in (#.1)), equals

1
In

din fln of F(W(”))‘

+ Z Z ﬂ(f) H Ul n ( Z M d #fnd,2n/m)

(‘On din

say. To compute S7, we use the identity

p(d) _ 1
d\n d n
So that
1 ve(n/m)—+1 -1
Si= % I (1 [reermen ™)
’ILESnLnam
>3
1 1 1
. 1 L . ve(m)+1
<>Z 2@)XH.Z 5 (1= [r@ T (43)
a>va(m) EQJEW( )
1 1
2 r (it 1>: 1= (0=1)> |
HEO 5 (1= ref o) LY 2 )
>3 €23



CHAPTER 4 Proof of Theorem .3

We also deduce that for m odd, Sy = 0, since the sum over f is empty, and

When m is even, in order to compute

! -1 1 p(d) -
S - f o rn n/m
2 ng;m fz:ln u( )E‘F(EUZ(%))’ ‘1"(21}2(271/771))‘ (Qp(n)% d #L nd,2n/ )
fodd
: -1 1 pld) e
N 1 Bl r’l’L n/m ) 4.4
ngs:m 51;[1 ]F(W(%))‘ [T (2v22n/m))| <¢(n) i #1Lna,2n, ) (4.4)
>3

we observe that if, for £ € IN we write k£ = ov2(k) g/ , then

#rnd,Qn/m - #r2v2(dn)m/72v2(2n/m)-

Hence
1 -pld) 5 1 p(d) 1 _ 1.
w d‘n T#rnd,2n/m = So(n/) d|Z/ d X 21)2(”)_1 <#r2v2(n)m/’2v2(2n/m) - 2#r2v2(2n)m/’2v2(2n/m)>
n
2 ~ 1 -
- ﬁ (#r2112(n)m/72112(2n/m) - 2#F2v2(2n)m/72v2(27L/7rl)) .
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CHAPTER 4 Proof of Theorem .3

By replacing the above in (#.4)), we obtain, for m even:

1 -1
’ ([ue(mn ’ ‘I“(Qvg(Qn/m))

So= > |II1-

neSm | £{m
>3

2 - 1 =
‘ g <#r2v2(n)m/72v2(2n/m) - 2#r2v2(2n)m/72v2(2n/m)>

1 —1
7’ X Z 20571‘1"(20—?12(7774/2))

a>va(m)

’ <#r2am’,20‘*v2(m/2)

- ¥ L
n GSm/ 43 §‘>3 ’ (EW m

S

1 =
2#r2a+1m/’2a—v2(m/2))

= Sl X 5221 25‘1_"(125)‘ (2#1:2,8717,1,2[3 - #fgﬂmygﬁ)

—1
= Sl x Z Z 7-'y,m,25

=12 ‘1“(25) Vel (29)

where,
2 ify e 11‘25—1m,Zﬁ \TQBm,QB

Tym,28 = . - -
0 ify & 1"2571,,1723 U F25m725

—1 ifye f25m725 \ f25—1m72,@.

Clearly 7., 55 ,,, = 0if 5(7)" { m'. Therefore we can write:

-1
So=xY Ly
551 2 L) etyir) ™
8(y)'Im’

First assume that ()" | m and that 4 | m. Then

1 if 3> 2, or
Ty m,28 = if 8 = 1and v2(8()) < va(m);
—1 iff=1and v2(6(7)) = va(m) + 1.

Note that it is impossible that v2(5(y)) > v2(m) + 1 since 4 | m.
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CHAPTER 4 How to explicitely compute o(T', m)

Second assume that §(y)" | m’ and that 2||m.

1 ifw(d(y)) < B —1 ifu(8(7)) < B;
Tom2s =4 =1 ifve(6(y)) =B+1; if7yCQ7, 7,08 =11 ifw(i(y)=8+1 ifyZQ".
0 ifwe(d(y))>p+1 0 ifue(d(y)) >p+1

In the case when —1 € T', v € I'y(2%) if and only if —y € T'y(2%). Hence, if 2|m and —1 € T,

Z T’Y,m,26 = 0
vels(27)

() |m’

We are left to consider the case 2||m and —1 ¢ T..
It is not easy to check that if sgny = 1 if v C Q~ and —1 otherwise, then

sgn 7y if 90 = 1 mod 4
_ sgn 7y if vo = £1 mod 4
Tym2 = —sen(y) ifyp=3modd Tyma= ‘
—sgnvy ify9 = 2 mod 4.
0 if 70 = 2 mod 4,
and
Tym28 = sgunyif f > 3.
Therefore
2 |r(2)| ~ET(2,m) 70 4 |r(4)| ~eTo(4,m)
FY e %
_ sgn 7y
p>3 28 ’r(QB)‘ v€T2(28,m)
and this completes the proof. [

4.4 How to explicitely compute o(T', m)

The crucial step to compute the density o(T, m) is the calculation of the sizes of the groups:

a a

r(¢*):=T-(Q)" /(Q")
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CHAPTER 4 How to explicitely compute o(T', m)

for various primes ¢. This is done to some extent in [? ]. Let ||T|| = {|g| : ¢ € T} € Q~. If £ is odd, then we
have that

#I (%) = #[|T[|(£%).
If ¢ =2, then
a 2x #[T)|(2%) if - (Q")* eT(2)
#I(2) = ,
#||T| otherwise.
Suppose that ' € Q~ and n € IN. Then

n’/‘

ged(n™,n™ 1Ay, ... ,nA—1,A)

#I' (n) =

where the elementary divisors Ay, . .., A, are defined as follows: Let Supp I’ = {p1,...,p,} be the support of

I', suppose that r is its rank and that aq, .. ., a, is a free set of generators of I'. Write

€il €i2

a; = py't Py pr

Then Ay, is the ged of all the & x k minors of the matrix (e;;).
« If ged(A,, m) = 1, then T(£7) = ¢ and

1 (-1 0 2(0m—1)
gp(m)H(l Zeﬂ#r(aﬂ) H( —1 - > H(£—1 )(r L —1)

£m B>1
* Suppose r = 2 and set 1 = v2(A1) and x2 = v2(A2).

/¢ gmax{BQ,xlﬂ,mQ} /¢ 1 /71 (2
6—1_{521 g }—H‘E{Zecﬁ 2 T X es}

1<a<zy r1<alzro—x1 a>ro—1r]

14 1% —1 1
- —— _ylZ= — + ! Z + £2$2 3r1 Z -
-1 {£ ¢ b 1 O<a<zo—2x7 a>0 63
14 1—(¢ 1 — ¢~ 2r2tin 1
= —_— -x- - —2x94+3x1 _ ~
(-1 g{ -1 CESEE 63—1}
1 2 1 -3

(e 2 =1 (23 (2 1) (B - 1)

Hence

1 (-1 1 1 /2 1 /A _ 3 >
@ m) €|m ( ﬁz;l fﬁ#r(ﬂﬂ)) £1|_T‘[n (f:ﬂ 62 -1 €2$2—3$1 (EZ . 1)(€3 _ 1)
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CHAPTER 4 How to explicitely compute o(T', m)

More complicated formulas can be derived also for the case when r > 3.

4.4.1 Comparison with Moree’s formulas
Suppose 7 = 1 and T = (a) witha € Q\ {—1,0, 1}, we write a = +al} with ag > 0 not the exact power of

a rational number. Then h = A; and #(a)(m) = m/ ged(m, h). A quick calculation shows that

1 /—1 9v2(h)+1 /2
1= 2 5@y ) = mgeatnmy L o1
p(m) om B>1 #I'(£9) mged(h, m™) flm
>3 >3

In fact, if 21 = va(h), then

/¢ gmax{,@,a:l} 1 /2
= 1_€(Zg26 ):gmﬁ 1
n B>1 N

Hence, for m odd, the formulas of Theorem .3 and of Theorem |.1] coincides. We also deduce that for 2 | m

1 23
I,m) = 2 %22 (1 - Xr o).
o(T',m) m ged(h, m™>) £1|;[m 2 -1 % 2 % ( rm)
If2 | m, then
{Q*zﬂ; —Q*Zﬂ} ifa < 0andve(h) > G;
r2’) = {Q*Qﬁ} ifa > 0and vo(h) > B;
(@Q? 1 j=0,....20720) 1} if5 > u(h).

Assume that 6(a) 1 4m. Then

Ty(2°,m) = {{Q*2ﬁ7 ~Q") ifa<Oandua(h) 2 5

{Q*Qﬁ} otherwise.
Hence
_y IT2(2°%,m)| _ 2
= 28|T(28)] 3 x 2v2(h)
Finally
§><2”2(h)(1—X ) = 1 ifa > 0 orif4|m;
2 Lm 3 ou(h) (1 1 :
5 X2 (1 3X2v2(h)) if a < 0 and 2||m.

Hence, for m odd or for 6(a) { 4m, the formulas of Theorem .3 and of Theorem |.1] coincides.
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Next assume that 2 | m, a > 0 and that §(a) | 4m. Then

Iy(2%,m) = @) fualh) 2 5
| Q% a7'Q”} ifu(h) <8

Hence
Ty(28,m)| 1

el
gl 2PT(29)] 3 x 20

Finall

’ 17/16 if2|jm,va(h) = 0and 8 | §(a);

5/4  if4|/m,8 | d(a) and vy(h) = 0;
if 2||m,va(h) = 1and 8 | §(a);
if 2||m, v2(h) = 0 and 4||0(a);

; x 22 (1 - Xp ) =41/2  if8|m, or

if4||m, 81 d(a) or vz( ) > 0;

if 2||m, va(h) >

if 2||m,va(h) =1 8’[(5(@)

if 2||m,v2(h) = 0,21 d(a).

) =
(
) =
)

Hence, for m odd or for §(a) t 4m or for a > 0, the formulas of Theorem .3 and of Theorem [4.1 coincides.
Last assume that 2 | m, a < 0 and that §(a) | 4m. Then

¥, -} ifva(h) > 8
To(2%,m) = { {0, —a2 ' QY ifwa(h) = 51

8 6 .
{Q” ,a%ﬁ QY ififea(n) < B-1.
Hence | )|
FQ 2 ,m 1
52 PP~ 3x 20l

Finally, if 4 | m, then

5/4 if4||m,8]|d(a) and va2(h) = 0;
3
5 %220 (1= Xrm) = {172 if8 |m
if 4||m, 81 d(a) orva(h) > 0,
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and, if 2||m ,then

3 gua(h)

(1_er) =

)

17/16
1/2
5/4
2
11/4

% x 2v2(h)

—1/4

Il
PR 2 2

Hence, in all cases when I’ = (a), the formulas of Theorem [§.3 and of Theorem [.1] coincides.

4.5 Numerical Data
In this section we compare numerical data. The density o(T',m) can be explicitely computed once a set of

generators of T is given. The first table compares the values of o({—1, a),m) as in Theorem §.3 (second row)

and %&;)ﬂ)ﬂn) (firstrow) with2 < a < 10and m = 2, ..., 10. All values have been truncated to 7 decimal
digits.
m\a 2 3 4 5 6 7 8 9 10
0.9999999 | 0.9999999 | 0.9999999 | 0.9999999 | 0.9999999 | 0.9999999 | 0.9999999 | 0.9999999 | 0.9999999
2 [1.0000000 | 1.0000000 | 10000000 | 10000000 | 10000000 | 10000000 | 10000000 | 10000000 | 10000000
03750162 | 0.3749919 | 03750162 | 0.3749945 | 0.3750245 | 0.3749809 | 0.1249966 | 0.3749919 | 0.3749708
> [03750000 | 03750000 | 03750000 | 03750000 | 03750000 | 03750000 | 0.1250000 | 03750000 | 03750000
0.4166745 | 0.3333555 | 0.0833265 | 0.3333396 | 0.3333192 | 0.3333367 | 0.4166745 | 0.1666562 | 0.3333669
04166666 | 03333333 | 00833333 | 03333333 | 03333333 | 03333333 | 04166666 | 0.1666666 | 03333333
0.2083311 | 0.2083280 | 0.2083311 | 0.2083616 | 0.2083418 | 0.2083259 | 0.2083311 | 0.2083280 | 0.2083098
> [02083333 | 02083333 | 02083333 | 02083333 | 02083333 | 02083333 | 02083333 | 02083333 | 02083333
03750162 | 0.3749919 | 03750162 | 0.3749945 | 0.3750245 | 0.3749809 | 0.1249966 | 0.3749919 | 0.3749708
®  [03750000 | 03750000 | 03750000 | 03750000 | 03750000 | 03750000 | 0.1250000 | 03750000 | 03750000
0.1458489 | 0.1458220 | 0.1458489 | 0.1458239 | 0.1458389 | 0.1458159 | 0.1458489 | 0.1458220 | 0.1458463
T 01458333 | 01458333 | 01458333 | 0.1458333 | 01458333 | 0.1458333 | 0.1458333 | 01458333 | 01458333
0.0833265 | 0.1666562 | 0.0416661 | 0.1666921 | 0.1666536 | 0.1666561 | 0.0833265 | 0.0833204 | 0.1666902
S [ 00833333 | 0.1666666 | 0.0833333 | 0.1666666 | 01666666 | 0.1666666 | 0.0833333 | 0.0833333 | 0.1666666
o | 01249966 | 0.1250027 | 0.1249966 | 0.1249958 | 0.1250068 | 0.1250054 | 0.0416750 | 0.1250027 | 01249969
0.1250000 | 0.1250000 | 0.1250000 | 0.1250000 | 0.1250000 | 0.1250000 | 0.0416666 | 0.1250000 | 0.1250000
0.2083311 | 0.2083280 | 0.2083616 | 0.2083616 | 0.2083418 | 0.2083259 | 0.2083311 | 0.2083280 | 0.2083098
10 02083333 | 02083333 | 02083333 | 02083333 | 02083333 | 02083333 | 02083333 | 02083333 | 02083333

9
The next table compares the values of o((—a, b), m) as in Theorem 4.3 (second row) and W(mﬂ#‘l)@m) (first

(10°

row) with 2 < a,b < 5 and (—a, b) of rank 2. All values have been truncated to 7 decimal digits.
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m\(—a,b) (-2.3) (-2.5) (-3.2) (-3.4) (-3,5) (-4.3) (-4.5) (-5.2) (-5.3) (-34)
0.8705485 | 0.8705288 | 0.8705338 | 0.7410800 | 0.8571489 | 0.9285638 | 0.9285677 | 0.8705286 | 0.8571464 | 0.7410777
2 0.8705457 | 0.8705457 | 0.8705457 | 0.7410714 | 0,8571428 | 0.9285714 | 0.9285714 | 0.8705457 | 0,8571428 | 0.7410714
0.4615489 | 0.4615368 | 0.4615489 | 0.4615489 | 0.4615306 | 0.4615489 | 0.4615368 | 0.4615368 | 0.4615306 | 0.4615368
: 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384
0.4821469 | 0.4821530 | 0.4821469 | 0.3392994 | 0.4285866 | 0.3392994 | 0.3392914 | 0.4821530 | 0.4285866 | 0.3392914
! 0.4821428 | 0.4821428 | 0.4821428 | 0.3392857 | 0.4285714 | 0.3392857 | 0.3392857 | 0.4821428 | 0.4285714 | 0.3392857
0.2419332 | 0.2419311 | 0.2419332 | 0.2419332 | 0.2419252 | 0.2419332 | 0.2419311 | 0.2419311 | 0.2419252 | 0.2419311
: 0.2419354 | 0.2419354 | 0.2419354 | 0.2419354 | 0.2419354 | 0.2419354 | 0.2419354 | 0.2419354 | 0.2419354 | 0.2419354
0.4574275 | 0.4017685 | 0.3420480 | 0.2225239 | 0.3296714 | 0.3956073 | 0.4285727 | 0.4017794 | 0.4450531 | 0.3420354
6 0.4574175 | 0.4017857 | 0.3420329 | 0.2225274 | 0.3296703 | 0.3956043 | 0.4285714 | 0.4017857 | 0.4450549 | 0,3420329
0.1637375 | 0.1637373 | 0.1637375 | 0.1637375 | 0.1637352 | 0.1637375 | 0.1637373 | 0.1637373 | 0.1637352 | 0.1637373
’ 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426
0.1785587 | 0.1785900 | 0.1785587 | 0.1696331 | 0.2142934 | 0.1696331 | 0.1696659 | 0.1785900 | 0.2142934 | 0.1696659
’ 0.1785714 | 0.1785714 | 0.1785714 | 0.1696428 | 0.2142857 | 0.1696428 | 0.1696428 | 0.1785714 | 0.2142857 | 0.1696428
0.1538451 | 0.1538464 | 0.1538451 | 0.1538451 | 0.1538590 | 0.1538451 | 0.1538464 | 0.1538464 | 0.1538590 | 0.1538464
’ 0.1538461 | 0.1538461 | 0.1538461 | 0.1538461 | 0.1538461 | 0.1538461 | 0.1538461 | 0.1538461 | 0.1538461 | 0.1538461
0.2106084 | 0.1792937 | 0.2106117 | 0.1792846 | 0.1728040 | 0.2246538 | 0.2073685 | 0.2397705 | 0.2332921 | 0.2376132
10 0.2106134 | 0.1792914 | 0.2106134 | 0.1792914 | 0.1728110 | 0.2246543 | 0.2073732 | 0.2397753 | 0.2332949 | 0.2376152

(10°,(—a,—b),m)
m(109)
(first row) with 2 < a < b < 5 and (—a, —b) of rank 2 which do not appear in the table above. All values have

The next table compares the values of o({—a, —b), m) as in Theorem %.3 (second row) and *

been truncated to 7 decimal digits.

m\(—a,b) (-2,-3) (-2,-5) (-3,-4) (-3,-5) (-4,-5)
0.8705314 | 0.8705488 | 0.9285885 | 0.8571462 | 0.9285705
2 0.8705357 | 0.8705357 | 0.9285714 | 0.8571428 | 0.8705357
0.4615489 | 0.4615368 | 0.4615489 | 0.4615306 | 0.4615368
: 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384 | 0.4615384
0.4821469 | 0.4821530 | 0.3392994 | 0.4285866 | 0.3392914
! 0.4821428 0.4821428 | 0.3392857 | 0.4285714 | 0.3392857
0.2419332 0.2419311 | 0.2419332 | 0.2419252 | 0.2419311
: 0.2419332 0.2419311 | 0.2419332 | 0.2419332 | 0.2419252
0.3420248 0.4017928 | 0.3956284 | 0.3296539 | 0.4285691
¢ 0.34203296 | 0.4017857 | 0.3956043 | 0.3296703 | 0.4285714
0.1637375 0.1637373 | 0.1637375 | 0.1637352 | 0.1637373
7 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426 | 0.1637426
0.1785587 | 0.1785900 | 0.1696331 | 0.2142934 | 0.1696659
s 0.1785714 | 0.1785714 | 0.1696428 | 0.2142857 | 0.1696428
0.1538451 0.1538464 | 0.1538451 | 0.1538590 | 0.1538464
? 0.1538461 0.1538461 | 0.1538461 | 0.1538461 | 0.1538461
0.2106062 | 0.2397738 | 0.2246562 | 0.2332870 | 0.2073765
10 0.2106134 | 0.2397753 | 0.2246543 | 0.2332949 | 0.2073732

(10°,(£2,4£3,45),m)

The next table compares the values of o((+2, £3, +-5), m ) as in Theorem K.3 (secondrow)and ™ =(109)

(first row) and m = 2,...,10. All values have been truncated to 7 decimal digits.
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m\(+£a, £b, +c) (-2,3,5) (2,-3,5) (2,3,-5) (-2,-3,5) (-2,3,-5) (2,-3,-5) (-2,-3,-5)
09369727 | 0.9369867 | 0.9369780 | 0.9369753 | 0.9369809 | 0.9369824 | 0.9369852

2 0.9369791 | 0.9369791 | 0.9369791 | 0.9369791 | 0.9369791 | 0.9369791 | 0.9369791
0.4874978 | 0.4874978 | 0.4874978 | 0.4874978 | 0.4874978 | 0.4874978 | 0.4874978

. 0.4875000 | 0.4875000 | 0.4875000 | 0.4875000 | 0.4875000 | 0.4875000 | 0.4875000
0.4958488 | 0.4958488 | 0.4958488 | 0.4958488 | 0.4958488 | 0.4958488 | 0.4958488

! 0.4958333 | 0.4958333 | 0.4958333 | 0.4958333 | 0.4958333 | 0.4958333 | 0.4958333
0.2483914 | 0.2483914 | 0.2483914 | 0.2483914 | 0.2483914 | 0.2483914 | 0.2483914

i 0.2483974 | 0.2483974 | 0.2483974 | 0.2483974 | 0.2483974 | 0.2483974 | 0.2483974
0.4869885 | 0.4260683 | 0.4869926 | 0.4260422 | 0.4869911 | 0.4260532 | 0.4260539

6 0.4869921 | 0.4260546 | 0.4869921 | 0.4260546 | 0.4869921 | 0.4260546 | 0.4260546
0.1662449 | 0.1662449 | 0.1662449 | 0.1662449 | 0.1662449 | 0.1662449 | 0.1662449

! 0.1662500 | 0.1662500 | 0.1662500 | 0.1662500 | 0.1662500 | 0.1662500 | 0.1662500
0.2166697 | 0.2166697 | 0.2166697 | 0.2166697 | 0.2166697 | 0.2166697 | 0.2166697

’ 0.2166666 | 0.2166666 | 0.2166666 | 0.2166666 | 0.2166666 | 0.2166666 | 0.2166666
0.1625054 | 0.1625054 | 0.1625054 | 0.1625054 | 0.1625054 | 0.1625054 | 0.1625054

’ 0.1625000 | 0.1625000 | 0.1625000 | 0.1625000 | 0.1625000 | 0.1625000 | 0.1625000
0.2170817 | 0.2170833 | 0.2481338 | 0.2170819 | 0.2481318 | 0.2481331 | 0.2481336

10 0.2170890 | 0.2170890 | 0.2481386 | 0.2170890 | 0.2481386 | 0.2481386 | 0.2481386
0.0999258 | 0.0999258 | 0.0999258 | 0.0999258 | 0.0999258 | 0.0999258 | 0.0999258

! 0.0999316 | 0.0999316 | 0.0999316 | 0.0999316 | 0.0999316 | 0.0999316 | 0.0999316
0.2396969 | 0.2396969 | 0.2396969 | 0.2396969 | 0.2396969 | 0.2396969 | 0.2396969

2 0.2396875 | 0.2396875 | 0.2396875 | 0.2396875 | 0.2396875 | 0.2396875 | 0.2396875
0.0832971 | 0.0832971 | 0.0832971 | 0.0832971 | 0.0832971 | 0.0832971 | 0.0832971

B 0.0832983 | 0.0832983 | 0.0832983 | 0.0832983 | 0.0832983 | 0.0832983 | 0.0832983
0.1557722 | 0.1557708 | 0.1557699 | 0.1557610 | 0.1557671 | 0.1557703 | 0.1557664

1 0.1557727 | 0.1557727 | 0.1557727 | 0.1557727 | 0.1557727 | 0.1557727 | 0.1557727
0.1210907 | 0.1210907 | 0.1210907 | 0.1210907 | 0.1210907 | 0.1210907 | 0.1210907

" 0.1210937 | 0.1210937 | 0.1210937 | 0.1210937 | 0.1210937 | 0.1210937 | 0.1210937
0.1083288 | 0.1083288 | 0.1083288 | 0.1083288 | 0.1083288 | 0.1083288 | 0.1083288

o 0.1083333 | 0.1083333 | 0.1083333 | 0.1083333 | 0.1083333 | 0.1083333 | 0.1083333
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Chapter 5
Future work-Densities related to average order of subgroups of Q*

5.1 Introduction
Let g € Q\ {0, %1} and consider a prime p not dividing the numerator or denominator of g, let £,(p) denote
the multiplicative order of g modulo p. For simplicity, when p does divide the numerator or denominator of g,
we let £,(p) = 1. Define
X, (k) Rad(k)(~1)“*)
= K2[Q(g1/k, 2mi/E) Q]

Assuming GRH, Kurlberg and Pomerance [16, Theorem 2] proved that the series for ¢, converges absolutely,

& =

and,
1 T

1
— N (p) = ¢y x4+ O :
W(x)ng;r g(p) 209 T+ ((logx)l/Q—l/logloglog:r>

Further, with ¢ = a/bwhere a, b € Z, the error estimate holds uniformly for |al, || < z. Here Rad(k) denotes

the largest squarefree divisor of k£ and w(k) the number of primes dividing Rad (k).
The authors of [16] gave a more explicit formula for c;. Write g = ig{} where h is a positive integer and

go >0 is not an exact power of a rational number. Let 6(g) be the field discriminant of Q(,/g0).

lem[202(M+L §5(g)] if g > 0;
5(g)/2 if g < 0,v2(h) = 0and 4(d(g);
n =
5(g)/4 ifg < 0,v9(h) =1and 8 | 6(g);
lem[292()+2 5(g)]  otherwise.
Then
G
o= T FlOx|H- T] —F%
£ prime 2)26(g)
where
Py =1- -t 4 (3 a0 = (1 _UQ%_1£13j+min(j,vg(h))
T2 1 " ey (B -1) B =
and

21.4v2(h) 18

. {29 if va(h) > 0 and g < 0;

1 otherwise.

43



CHAPTER 5 Introduction

which is easily seen to be a rational multiple of

14
c:= 1;[ (1 — 63—1> = 0.5759599689....

Let I' C Q* be a finitely generated multiplicative group of rank . We denote by Supp I', the support of T',
i.e. the finite set of those primes ¢ such that the /—adic valuation of some elements of I' is nonzero. For any

prime p ¢ Supp I', we consider the reduction group:
[, ={ymodp:yeTl} CF,

C. Pelhivan in [33] proved he following result:
Theorem 5.1. Let ' C Q™ be a finitely generated multiplicative subgroup with rank r > 2 and assume that the
Generalized Riemann Hypothesis holds for Q((y, Fl/k) (k € IN). Let

L (k) Rad(k)(—l)W(k)
Cr:= ]; k,Q[Q(Ck’rl/k) ) )

Then the series Ct converges absolutely and as © — oo,

1 T
S| = QCF‘SC+OF<(

b
W(x) p<zx
where the constant implied by the Or—symbol may depend on T'.

In the same paper derived the following identity:

Theorem 5.2. Assume that T is a finitely generated subgroup of Q. Then

1

cr=1I (1 ! 1+ O‘;”Mma)l 1 . :
=1 X ) [ H S ' R P Y]

P az1 P mlor > o pl2y az1 P
N 2 ()|

-1

where v, = max{1 +t,,v2(0(n))}. and

D b ifforallt >0, P Q%" ¢T(2H) 5.1)
! min{t € N : n2tQ*2tH e (2™}  otherwise. .
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CHAPTER 5 Introduction

From the above result it is not difficult to deduce that CT is a rational multiple of

_ p
CT_IpT(l_pr“—l)
So, in the particular case when I' = (g) ha rank 1 and we write g = g(’} where gg > 0 is not the power of any
rational number and gy = g193 where g; is square free, then it is not difficult to check that ¢, = vo(h) and
ty = oc0ifn # g1.
It is our plan to extend the Theorem above to the case when I’ is not necessarily contained in Q*. The tool

of the previous chapters will be used in this future project.

45



References

[1] H. Abdullah, A. A. Mustafa, and F. Pappalardi. Divisibility of reduction in groups of rational numbers.
Manuscript submitted for publication.

[2] H. Abdullah, A. A. Mustafa, and F. Pappalardi. Density of the ”quasi r-rank artin problem”. Functiones
et Approximatio, Commentarii Mathematici, 65(1):73-93, 2021.

[3] Herbert Bilharz. Primdivisoren mit vorgegebener primitivwurzel. Mathematische Annalen, 114(1):476—
492, 1937.

[4] Leonardo Cangelmi and Francesco Pappalardi. On ther-rank artin conjecture, ii. Journal of Number
Theory, 75(1):120-132, 1999.

[5] K. Chinen and L. Murata. On a distribution property of the residual order of a( mod p). Journal of Number
Theory, 105:60-81, 2004.

[6] K. Chinen and L. Murata. On a distribution property of the residual order of a(mod p) ii. Journal of
Number Theory, 105:82—-100, 2004.

[7] Gilinther Frei, P Roquette, and F Lemmermeyer. Emil artin and helmut hasse. Their correspondence,
1934:294, 1923.

[8] Carl Friedrich Gauss. Disquisitiones arithmeticae. Yale University Press, 1966.

[9] Rajiv Gupta and M Ram Murty. A remark on artin’s conjecture. Inventiones mathematicae, 78(1):127—
130, 1984.

[10] Rajiv Gupta and M Ram Murty. Primitive points on elliptic curves. Compositio mathematica, 58(1):
13-44, 1986.

[11] Rajiv Gupta, V Kumar Murty, and M Ram Murty. The euclidian algorithm for s integers. In CMS Con-
ference Proceedings, pages 189-202, 1985.

[12] Helmut Hasse. Vorlesungen iiber Zahlentheorie, volume 59. Springer-Verlag, 2013.

[13] DR Heath-Brown. Artin’s conjecture for primitive roots. The Quarterly Journal of Mathematics, 37(1):
27-38, 1986.

[14] C. Hooley. On artin’s conjecture. Journal fiir die reine und angewandte Mathematik, 225:209-220, 1967.

[15] Samuel S. Wagstaff Jr. Pseudoprimes and a generalization of artin’sconjecture. Acta Arithmetica, 2(41):
141-150, 1982.

[16] Par Kurlberg and Carl Pomerance. On a problem of arnold: the average multiplicative order of a given
integer. Algebra & Number Theory, 7(4):981-999, 2013.

R1



[17] S. Lang. Algebra. 2nd edition, Addison-Wesley, U.S.A., 1984.

[18] Derrick H Lehmer and Emma Lehmer. Heuristics, anyone. Studies in mathematical analysis and related
topics, pages 202-210, 1962.

[19] H. Lenstra, P. Moree, and P. Stevenhagen. Character sums for primitive root densities. Mathematical
Proceedings of the Cambridge Philosophical Society, 157(3):489-511, 2014.

[20] H. W. Lenstra and Jr. On artin’s conjecture and euclid’s algorithm in global fields. Inventiones Mathe-
maticae, 42:201-224, 1977.

[21] Hendrik W Lenstra. On artin’s conjecture and euclid’s algorithm in global fields. 1977.

[22] P. Moree. On primes p for which d divides ord,(g). Functiones et Approximatio, Commentarii Mathe-
matici, 33:85-95, 2005.

[23] P. Moree. Near-primitive roots. Functiones et Approximatio, Commentarii Mathematici, 48(1):133-145,
2013.

[24] P. Moree and P. Stevenhagen. Computing higher rank primitive root densities. Acta Arithmetica, 163(1):
15-32,2014.

[25] Pieter Moree. Artin’s primitive root conjecture—a survey. Integers, 12(6):1305-1416, 2012.

[26] L. Murata. A problem analogous to artin’s conjecture for primitive roots and its applications. Archiv der
Mathematik, 57:555-565, 1991.

[27] M Ram Murty and Seshadri Srinivasan. Some remarks on artin’s conjecture. Canadian Mathematical
Bulletin, 30(1):80-85, 1987.

[28] R. W. K. Odoni. A conjecture of krishnamurthy on decimal periods and some allied problems. Journal of
Number Theory, 13:303-319, 1981.

[29] F. Pappalardi. The r-rank artin conjecture. Mathematics of Computation, 66(218):853-868, 1997.

[30] F. Pappalardi. Squarefree values of the order function. New York Journal of Mathematics, 9:331-344,
2003.

[31] F. Pappalardi. Divisibility of reduction in groups of rational numbers. Mathematics of Computation, 84
(291):385-407, 2015.

[32] F. Pappalardi and A. Susa. An analogue of artin’s conjecture for multiplicative subgroups. Archiv der
Mathematik, 101(4):319-330, 2013.



[33] Cihan Pehlivan. The average multiplicative order of a finitely generated subgroup of the rationals modulo
primes. International Journal of Number Theory, 12(08):2147-2158, 2016.

[34] A. Schinzel. A refiniment of a theorem of gerst on power residues. Acta Arithmetica, 17(2):161-168,
1970.

[35] PARI/GP version 2.11.2. The PARI Group, Univ. Bordeaux, 2019. available from http://pari.math.

u-bordeaux.fr/.
[36] E. Weiss. Algebraic Number Theory. McGraw-Hill, New York, 1963.

[37] K. Wiertelak. On the density of some sets of primes, iv. Acta Arithmetica, 43(2):177—190, 1984.

R3


http://pari.math.u-bordeaux.fr/
http://pari.math.u-bordeaux.fr/

	Dedication
	Acknowledgments
	Summary
	Notations and Terminology10pt
	Introduction:
	Notes on Multiplicative Groups:
	Densities of the ''quasi r–rank Artin problem'':
	Introduction
	The degree of Kummer extensions
	Proof of Theorem 3.2
	The case =-1,a with aQ+{0,1}
	The vanishing of (-1,a,m) and the proof of Theorem 3.3
	The vanishing of (,m)
	Numerical Examples

	Divisibility of reduction in groups of rational numbers
	Introduction
	The degree of Kummer extensions
	Proof of Theorem 4.3
	How to explicitely compute (,m)
	Comparison with Moree's formulas

	Numerical Data

	Future work-Densities related to average order of subgroups of Q*
	Introduction

	References

