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Introduction

Jupiter’s icy satellites, namely Europa, Ganymede and Callisto will be the main target of two space
missions in the near future, Juice and Europa Clipper, by the European Space Agency and NASA, re-
spectively. These bodies have several exceptional characteristics for our Solar System: first, they are
so-called “ocean worlds,” since they harbor oceans of liquid water beneath their icy crusts. Europa, of
the three the closest to Jupiter, has a geologically young and active surface that is constantly reshaping
itself; while Callisto, the farthest from the planet, has the most cratered surface in the solar system.
Ganymede is the largest satellite in our system, and the only one to have its own magnetic field with
associated magnetosphere. In addition to these unique features from a scientific point of view, these three
satellites are extraordinary objects of study for two main reasons: a) they are very promising in terms of
the search for extraterrestrial life; in particular, Europa, whose subsurface ocean interacts directly with
the seafloor, would have at its disposal the three ingredients that we believe are essential for life, namely
liquid water, a source of energy and access to nutrients and organic compounds; b) studying them will
prove essential for understanding the formation patterns of planets and satellites from the protoplane-
tary disk in this region of the Solar System, moreover the Jovian system being an archetype of gas giant
systems.

The two space missions will thus represent the necessary step for the exploration of the outer Solar
System, and will have the opportunity for the first time in history to study the internal structure of
the first kilometers of these objects. This will be possible through the Radio Echo Sounding technique,
which has already been successfully employed on Earth, Mars and Moon, and through the use of radar
will be able to detect layers of water and discontinuities within the crust, creating images of the subsur-
face. In fact, radio waves emitted by radar travel through the sub-surface of the investigated body and
attenuate and reflect according to the electromagnetic properties (electrical permittivity and magnetic
permeability) of the medium they penetrate. For proper interpretation and understanding of the images
produced by this technique, it is necessary to characterize materials and analogs that accurately simulate
the surface and subsurface of these bodies. The purpose of this dissertation is to characterize through
extensive experimental work the electrical permittivity and magnetic permeability of two types of ice
that have been observed on the surface of Jupiter’s icy moons: namely, so-called “dirty ice,” i.e., ice
contaminated with mineral grains mechanically trapped within its matrix, and NaCl doped ice, i.e., ice
formed from liquid solutions of sodium chloride.

Electrical permittivity and magnetic permeability are two parameters that depend first on the frequency
and temperature at which they are being studied, and then on the physical characteristics of the material
under investigation, such as porosity in the case of powders and salinity in the case of doped ices. In the
present work, these two physical quantities were characterized at 9 and 60 MHz, the working frequencies
of the two planetary radars that will investigate the moons (RIME and REASON, aboard the Juice and
Europa Clipper missions, respectively), and at the expected temperatures on the surface of the three
satellites. Contextually, indications were given of the performance of the two radars, estimating their
attenuation.

The first chapter of this manuscript detailed the main physical and geological features of Europa,
Ganymede and Callisto, focusing on the state of the art knowledge of the compounds observed on the
surfaces of the three moons. In the second chapter, electromagnetic theory useful in the course of this
work was addressed, starting with Maxwell’s equations and polarization phenomena within dielectrics,
and then describing the electromagnetic properties of several geomaterials used in this thesis. In the
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third chapter, the mixing formula theory was exposed, presenting a discussion of the main equations used
to reproduce the permittivity of multiphase compounds. The two measurement techniques employed in
this experimental work are the subject of the fourth and fifth chapters of this thesis: in particular, the
experimental setups and instrument calibration procedures were described. The main types of ice found
on Earth and observed and speculated to be present in the Solar System together with their electrical
properties were reviewed in the sixth chapter, and the theory behind the inversion processes used to fit
the experimental data was described in the seventh. In the eighth chapter, granular and iced samples were
characterized and the experimental procedure used for their preparation was also described. Finally, the
measurements and their analysis were presented in the last two chapters: in chapter nine measurements
of “dirty ice” were presented and discussed, modeling its electrical properties as a function of temperature
and dust inclusions; measurements and modeling of electrical properties of NaCl doped ice as a function
of temperature and sodium chloride concentration were presented in chapter ten.



Chapter 1

Jupiter Icy Moons

The four largest moons of Jupiter, Io, Europa, Ganymede and Callisto are also named Galilean moons
after Galileo Galilei, who discovered them in 1610. The observation of these satellites took place through
a telescope, the invention of which opened an era of discovery in astronomy and provided new evidence
to support the Copernican heliocentric theory, which stated that Earth and the other planets orbited
around the sun, positioned at center of the universe. Nowadays these moons are once again of great
interest to the scientific community, due to their physical-geological characteristics that could make them
capable of harboring extraterrestrial life.
Europa, Ganymede and Callisto are perfect case studies of so-called “ocean worlds", i.e. bodies that host
oceans of liquid water globally at the surface or at depth (as in this case), and for this reason they are
promising candidates for the search for extraterrestrial life. Europa, Ganymede and Callisto are found in
a 1:2:4 Laplace resonance, probably because of early formed satellite’s interaction within the primordial
circumjovian disk [1]. Moreover, they are in 1:1 spin-orbit resonance, such as many satellites in the Solar
System.
This chapter will report on the main features of the moons of interest to this work along with the most
up-to-date models of the surface and first kilometers of crust, focusing on the physical properties of their
ice.
In the end, the two spacecraft missions that will be responsible for in-depth study of Jupiter’s icy moons
in the future will be detailed: Jupiter Icy Moons Explorer (Juice), launched by the European Space
Agency in April 2023, and Europa Clipper, scheduled to launch in October 2024 by NASA.

1.1 Europa
Europa is the smallest of the four Galilean moons and it has the smoothest surface of any satellite in the
Solar System in contrast to the heavily cratered terrain of Callisto (see tab. 1.1 for the main physical
parameters of the moon). The extreme paucity of impact craters suggest that the moon is geologically
young and active. Moreover, beneath the icy crust the moon harbors a water ocean that probably lies
directly on the silicate mantle. Due to its chemical and physical features Europa represents one of the
most promising target in our Solar System for the search of extraterrestrial life.

R (km) 1560.8 ± 0.5
M (10 × 1022 kg) 1.593
V (10 × 1019 m3) 5.9
ρ (g/cm3) 3.013
C/MR2 0.346 ± 0.005
Albedo (visible) 0.7
Mean surface temperature (K) 90

Table 1.1: Europa’s main physical parameters [2],[3],[4].
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1.1.1 Surface
Europa’s surface characterized by several geological features (see Fig. 1.1): a) linae, i.e., long, curvilinear
narrow fractures in the ice crust that can span over a hemisphere and might provide a direct or indirect
connection with the water ocean below; b) chaos terrain, highly disrupted areas with jumbled, broken
ice blocks probably formed by the upwelling of warmer material from below the ice crust [5]; c) lentic-
ulae, i.e., round, reddish spots that are most often interpreted to be the product of upwelling of hot,
less dens material rising to the surface; d) double ridges, quasi-symmetric ridge pairs flanking a medial
trough which is hypothesized to be formed through a complex process consisting of successive refreezing,
pressurization and fracture of the water within the shallow crust [6]; e) pits, i.e. depressions in the surface
that are often associated with the collapse of the ice crust.

Figure 1.1: Typical lenticulae (left) and double ridges (right) on Europa’s surface (NASA/JPL-Caltech).

A combination of endogenic and exogenic processes affects the surface of the moon, influencing the
composition and the albedo (see Fig. 1.2). The exogenic processes include the impact cratering and
charged particle bombardment from the Jupiter’s rotating magnetosphere. The trailing hemisphere is
the more affected by the sulfur radiolysis since the sulfur plasma ions from the volcanos of Io corotate
with the Jupiter’s magnetosphere and then precipitate on Europa’s surface [7]. For this reason, the trail-
ing hemisphere appears significantly darker and redder than the leading hemisphere [8]. Furthermore,
far-UV oxygen and hydrogen emission have been observed in the tenuous atmosphere of the moon: they
were interpreted as dissociation products of water, as a result of plume activity triggered by an active
endogenous cryovolcanism, long hypothesized and still a matter of debate [9], [10],[11].
The magnesium sulfate detected on the trailing hemisphere is an example of combination of both endo-
genic and exogenic processes; in fact it is hypothesized to be formed by the magnesium, endogenous and
coming from the underlying ocean, and the sulfur, coming from Io. Several models try to explain the
origin and the spatial variability of the compounds detected on the surface: future space missions will be
able to shed light on the distinction between endogenous and exogenous compounds.
Table 1.2 reports the result of the main observations of the surface of the moon.

1.1.2 Interior
The measurements of Europa’s density, quadrupole gravitational coefficients and shape indicate that the
moon is fully differentiated into a metallic core, silicate mantle, a water ocean and an ice shell [12].
The thickness of Europa’s ice shell is estimated to vary widely, ranging from a few kilometers [13] to
several tens of kilometers [14]. It is not yet clear what the salinity values of the satellite’s crust ice are,
but recently several models have made comparisons between the Europa’s ice and the types of ice on
Earth described in 4.4. As a first approximation the ice crust formed and evolved under two different
thermal gradients, depending on the depth at which it grew [15]: i) Europa shallow ice shell (<1 km)
experiences an high thermal gradient due to the 100 K surface and it has high impurities uptake, even
possibly larger than that of terrestrial sea ice; ii) on the contrary, at greater depths Europa’s ice shell
presumably formed with a lower thermal gradient similar to that of terrestrial marine ice, where salt
entrainment has approached its lower limit and where the regions inside the ice begin to be no longer
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Figure 1.2: Artistic depiction of the combination of exogenic and endogenic processes on Europa’s surface (NASA/JPL-Caltech).

hydraulically connected in a pore network due to the lack of salts.

It was found that tidally induced stress field generates surface cracks that are may able to penetrate
to the whole brittle layer of Europa’s shell [16]. Both sea ice measurements on Earth and radar backscat-
tering data from Europa show that the ice is highly porous and the size of the pores inside of it is on
the order of the millimeter, but the porosity-induced scattering should not be significant [16]. Using the
methods developed in [17] it was observed that high porosity may exist in the brittle layer’s upper half
(up to 1500 meters deep) and decreases to zero in the lower half. From reflectance and polarization phase
curve measurements of highly reflective planetary regolith analogues it has been noted that a strong
resemblance of the polarization phase curves of Europa to those of highly porous samples, suggesting
that the surface of both hemispheres may have porosities exceeding 90% [18] and confirming the work
done in [19]. Moreover, at least low porosities of the ice on Europa’s surface are required to explain the
existence of icy plate tectonics [20], hypothesized to be present locally on the moon [21]. The extensional
tectonic patterns on Europa’s surface imply that the conductive part of its ice shell may have significant
porosity.

Ocean

The composition of the subsurface ocean can only be inferred from the study of the surface of the moon.
Currently there are several scenarios, depending on which compound is most present on the surface,
information still unknown. Nevertheless, there are two endmember compositions for Europa’s ocean in
current models: Cl-dominated and SO4-dominated.
One of the main non-ice components on the surface of Europa has likewise been identified as NaCl (see
Tab 1.2). It is possible to obtain such a surface composition in two ways, according to [22]: i) if the
ocean is mostly composed of sodium and chloride, with a low presence of magnesium sulphate or ii) if
the quantities of sodium, magnesium, sulfate, and chloride in the ocean are nearly equivalent, and the
freezing rate is fast enough to produce noticeable amounts of NaCl on the surface. Moreover, if epsomite
(MgSO4 · 7H2O) is eventually confirmed on Europa’s surface, it may indicate that the underlying ocean
is relatively sodium-poor or that MgCl2 is being radioactively converted to MgSO4, as proposed in [23].
In this scenario mirabilite and MgCl2 hydrates brines froze at the surface and with the implantation
of sulfur ions from Io, MgCl2 become epsomite. To understand the composition of the ocean it is
necessary to know which compounds detected on the surface may be of endogenous origin and which are
of exogenous origin. So, if the epsomite, of the other hand, is of endogenous origin, this would imply that
the underlying ocean is rich in magnesium and sulfate, and relatively poor in sodium [22].
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Detected compounds Region investigated Methods Reference
Sulfates (hexahydrite,

epsomite), arbonates (natron),
mixtures of carbonate and sulfate

minerals

Optically dark regions
in a near-hemispheric

area (leading hemisphere)
Galileo NIMS [24]

Complex mixtures of sulfate
hydrates (e.g. hexahydrite, espomite
bloedite, mirabilite, sodium sulfide
nonahydrate, magnesium solfate

dodecahydrate) and other materials,
mirabilite brines, mixtures of

carbonate and sulfate minerals

Icy terrain located at
approximately

(25°N, 205°
W) and non-icy terrains
located at approximately

(8°N, 235°
W), midlatitude northern
hemisphere on the trailing

side, equatorial plains
on the leading side

Galileo NIMS [25],
[26]

MgSO4 brine; lack of any
clear detection of sulfate salt;

predicted NaCl and KCl

Dark low latitude trailing
hemisphere; bright low

latitude leading hemisphere

Infrared spectrographs
coupled with

adpative optics system
on large ground-based

telescopes (W. M. Keck
Observatory)

[23]

H2SO4; anhydrous salts
(e.g. NaCl and KCl)

Trailing hemisphere;
leading hemisphere

(chaos units)

Infrared spectrographs
coupled with

adpative optics system
on large ground-based

telescopes Keck II
telescope

(Keck/NIRSPEC)

[27]

Mixture of magnesium chloride,
magnesium chlorate and magnesium

perchlorate; hydrate sulfuric acid

Chaos terrains and darker
areas; trailing hemisphere

VT/SINFONI [28]

Spectra consistent with NaCl Leading hemisphere
equatorial area

Keck II/NIRSPEC [29]

NaCl Leading hemisphere chaos
terrain and older terrains

HST/STIS [30]

H2O2
Leading hemisphere

Low latitude chaos therrains
Keck II/NIRSPEC [31]

Sulfur allotropes, endogenous
material altered by sulfur radiolysis

Trailing hemisphere HST/STIS [32]

NaCl Leading hemisphere chaos
terrain

HST/STIS [33]

Hexahydrite, sulfuric acid,
magnesium chloride, sodium

solfate decahydrate
Leading hemisphere Galileo NIMS [34]

UV-absorbing contaminants mixed
within the water ice; sulfur dioxide

Leading hemisphere;
trailing hemisphere

HST/STIS [35]

Table 1.2: Compounds detected on the Europa’s surface; the instrument that performed the observation is reported together with
the region investigated.
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1.2 Ganymede
Ganymede presents a compelling target for Solar System exploration due to its unique characteristics
and potential insights into planetary evolution. Having a radius of 2631 km, is the largest moon of
the Solar System and the only one with a permanent magnetic field. In fact, its mini-magnetosphere is
constantly interacting with the co-rotational plasma flow and electromagnetic fields of the fast-rotating
Jovian magnetosphere. Thus a dynamic interaction region, similar to the Earth’s magnetosphere, is
created.
Its main physical parameters are reported in table 1.3.

R (km) 2634.1 ± 0.3
M (10 × 1023 kg) 1.482
V (10 × 1019 m3) 7.6
ρ (g/cm3) 1.942
C/MR2 0.311 ± 0.003
Albedo (visible) 0.45
Mean surface temperature (K) 125 ± 25

Table 1.3: Ganymede’s main physical parameters [2],[3],[36].

1.2.1 Surface
Ganymede is characterized by a wide range of impact features, much more than most other planetary
surfaces: extensive multi-ring structures, ancient impact scars termed palimpsests in low relief, craters
with central pits and domes, pedestal craters, dark floor craters and craters with dark or bright rays [37].
The surface of the moon undergoes space weathering processes caused by the impact of solar flux (UV),
micro-meteoroids and energetic particles. For example, the opening of the satellite’s magnetic field’s
lines shapes and modifies the surface, and for this reason polar caps are brighter than the equatorial
region. Moreover, the leading hemisphere is brighter than the trailing hemisphere [38], due to a higher
abundance of non-ice materials of the latter. The magnetosphere plays a key role in shielding the regions
at latitudes below 40°from electrons with energies up to approximately 40 MeV [39]; moreover, the trailing
hemisphere is also shielded from heavy ions up to hundreds of keV [40], while at polar polar latitudes the
ion bombardment is much higher [41], [42].
Amorphous ice is present at the polar regions, as revealed by the Near Infrared Mapping Spectrometer
(NIMS) on board Galileo [43], probably due to more energetic bombardments [44]. In any case, spectral
modeling confirms that on Ganymede the H2O-ice, predominantly crystalline thanks to the intrinsic
magnetic field, is the major constituent of the satellite, especially at the equatorial regions. Water ice
is ubiquitous on its surface and several papers suggest that it represents 50-60 wt% up to 90 wt% of
the surface. The size of ice is small (≤50 µm) at the polar regions, while equatorial regions are mostly
composed of larger grains (≥200 µm up to 1 mm) [36].
Current knowledge about the composition of the surface is given by different observations performed
on board the NASA Galileo and Juno spacecrafts, and by ground-based and space-based telescopes. A
brief review of the main compounds detected on the moon’s surface is shown in Table 1.4. It has been
observed that the dark regions are characterized by dirty ice, which it is thought to be composed by an
intraparticle mixture (water ice grains containing dust inclusions [45]) of three components [46], [47], [48]:

• water ice;

• hydrated salt minerals;

• non-ice hydrated material (the darkening agent), with a composition compatible with a C-type
carbonaceous material, tholins, amorphous carbon, graphite and silicates.

Moreover, internal structure models of the rock/iron constituent of the the three icy satellites point to a
chemical composition similar to the material of L/LL ordinary chondrites [49]. From thermal continuum
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observations of Ganymede at millimeter wavelengths it was speculated that on the moon there is a
compaction gradient from a surface porosity of 85% to a deep porosity of 10%, in the scale of tens
centimeter range. In any case, porosity should rapidly drop to zero at a depth of few hundred meters
because of the expected pressure [50], based on model of Ganymede’s interior elaborated in [51].

Detected compounds Region investigated Methods Reference

SO2 frost Trailing hemisphere

Observations with the
space-based telescope

International Ultraviolet
Explorer (IUE)

[52]

Darkening agent (hydrated silicates),
Mg and Na sulfates,

chlorinated brines

Surface fully covered
by a mosaic of ten

overlapping
observations

Near-infrared
ground-based integral

ield spectrometer
SINFONI of the Very

Large Telescope (VLT)

[36]

Intraparticle mixtures of ice and
darkening agent (silicates,

Triton-type tholin, or H2O2

Leading and trailing
hemispheres

Reflectance spectra
obtained with Hubble

Space Telescope Cosmic
Origins Spectrograph

(HST/COS)

[45]

Dense-phase O2

From low to midlatitudes
on the trailing hemisphere
and at high latitudes on

the leading one

Infrared observations with
HST using the Space

Telescope Imaging
Spectrograph (STIS)

[53]

Darkening agent (Hydrated silicates,
carbonaceous compounds or

hydrated salts; magnesium chloride
and magnesium sulfate salts;

hydrated sulfuric acid

Galileo Regio, Osiris
Crater, Polar region

High spatial resolution
near-infrared observation
from the ground-based

VLT/SPHERE instrument

[54]

CO2, H2O2,
sulfuric acid hydrates

Leading and trailing
hemispheres

Near-infrared Spectrograph
and Mid-Infrared Instrument

of the James Webb
Space Telescope

(JWST/NIRSpec-MIRI)

[48]

Mixtures of NaCl · H2O,
NH4Cl, NaHCO3 or

(NH4)2 CO3 and
Na2Mg (SO4)2 · 4H2O

Trailing hemisphere:
latitudes 10°N to 30°N

longitudes -35°N to +40°E

High spatial resolution
infrared spectra observed with
the Jovian InfraRed Auroral
Mapper (JIRAM) on board

Juno spacecraft

[47]

Table 1.4: Compounds detected on the Ganymede’s surface; the instrument that performed the observation is reported together
with the region investigated.

From the geological point of view, Ganymede is divided in the first instance into dark and bright
terrains, two areas with different features.

Dark Terrain

This type of terrain is heavily cratered and estimated to be >4 Gyr old [55]; these areas represent
about 1/3 of Ganymede’s total surface. The dark material has a higher abundance of impurities and
is composed of a dark deposit overlying the icy material; it’s been modified over the years by several
surface endogenic processes (it is still under debate weather tectonism or icy volcanism) and exogenic
processes (sublimation and deposition of volatiles such as H2O, mass wasting and sputtering by particles
coming from Jupiter’s magnetosphere [56]). In these regions Galileo’s spacecraft images have shown the
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presence of old multi-ringed structures, named furrow systems, which indicate that tectonic activity has
been present at some point in the past. These regions are also supposed to have a thicker regolith layer.

Bright Terrain

The bright grooved terrain is tens to hundreds kilometers wide and it crosscuts the dark terrain, creating
a peculiar mixture. These closely spaced grooves are termed sulci. This type of soil is generally younger,
being approximately 2 Gyr old, and less dens (2 to 10 times) than the darker one, extending in long
swaths which alternate with ridges and troughs, even for hundred of kilometers.
Furthermore, high resolution Galileo images suggest an extensional tectonic model of grooved terrain
formation (see Fig. 1.3): the bright terrain have formed at the expense of dark soil, with the tectonic
resurfacing consisting of extensional rifting; in this way dark terrain transforms into bright.

Figure 1.3: Tectonic model for the evolution and formation of grooved terrain [56]: (a) furrows in dark terrain can be explained
with the presence of normal faults; (b) tectonic deformation may later create some grooved terrain by the disruption of the old
surface and it is believed that icy volcanism does not contribute; (c) the combined action of icy volcanism and tectonism brightens
and smooths the surface; (d) eventually bright swaths can overlap one another, originating the peculiar patchwork visible at the
surface (taken from [56]).

1.2.2 Interior
Galileo observations show that Ganymede has a core size which ranges between one-quarter and one-third
of the surface radius, depending on thickness of the ice shell and its sulfur content; on the other hand
the mantle mineralogy is dominated by olivine [57]. The presence of a intrinsic magnetic field indicates
that his iron core is currently partially melt and hot . This core is probably relatively small, as shown
by the small quadrupole coefficient measured by the Galileo magnetometer, and it has likely a Fe − FeS
eutectic composition [51].

Differentiation

Differentiation provides important quantities of energy in planetary bodies and can support a subsurface.
C/MR2 value (see Tab. 1.3) for a perfect spherical body with uniform density is equal to 0.4. Ganymede’s
value is lower and this implies that it has a concentration of denser material towards its own center. So
almost all rocky components has sunk in the mantle or the core during the differentiation process and
therefore the satellite can be considered fully differentiated.

Ocean

For a standard icy satellite, an H2O layer will sit directly on the silicate core, but for Ganymede, larger
than the average of the icy satellites, the structure is different. Going deep, because of the high pressure,
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ice will transform in an high-pressure phase ice, denser than the ice I. In this case it is realistic to
believe that there is a "water sandwich"[58]: the ocean will take place between the ice I shell and the
higher pressure phase, ice V and VI. Another model suggests that the moon might harbor ice and oceans
stacked up in several layer, such as a "club sandwich".
After differentiation, Ganymede’s pressure at the water-rock interfaces would tend to obstruct all the
micro-fractures and avoid in this way water-rock interactions.

The presence of the ocean is supported by several observations:

• anomalous transitions in morphology of the multi-ringed structures; this phenomenon can be ex-
plained by the effect of a subsurface fluid;

• Galileo magnetometer data suggest an induced magnetic field component, so the existence of electri-
cally conductive and saline oceans is possible [59], causing also the aurorae observed by the Hubble
Space Telescope [60];

• the internal dynamo and surface that is geologically younger than other satellites implies that
Ganymede is warm enough to support an ocean [51];

• tidal activity by Jupiter and the presence of salts or ammonia can help maintain a subsurface liquid
water layer.

Although Ganymede is not experiencing a strong tidal heating at the moment, an ancient orbital reso-
nance (which caused an heat spike), can explain the formation of a subsurface ocean [58]. Heat transfer
on the satellite is expected to happen via convection.
Lastly, it’s still unclear how much is thick Ganymede’s ocean, though some models suggest thickness in
the order of 100 km [61], at a nominal depth of about 170 km.

1.3 Callisto
Callisto is the outermost Galilean satellite with the oldest surface, being the most densely cratered body
of the Solar System. The lack of any geological activity on the surface such as resurfacing makes the
satellite a remnant of the early phases of the Jovian System. For this reason, the study of this moon will
offer a great opportunity to deepen the knowledge about the formation of planets and satellites in the
outer Solar System.
The main physical parameters of the moon are reported in Table 1.5.

R (km) 2408.4 ± 0.3
M (10 × 1023 kg) 1.076
V (10 × 1019 m3) 5.9
ρ (g/cm3) 1.839
C/MR2 0.359 ± 0.005
Albedo (visible) 0.2
Mean surface temperature (K) 134 ± 11

Table 1.5: Callisto’s main physical parameters [2],[3],[62].

1.3.1 Surface
The ancient surface of the moon is highly contaminated with a darkening agent (visually dark non ice-
materials), such as the Ganymede’s surface. Callisto is dominated by crystalline water ice and, as in
the case of Ganymede, the ice grain sizes are larger in the equatorial region, decreasing toward the poles
[63]. CO2 is found everywhere on the surface except at high latitudes, and it is probably formed through
trapping mechanisms such as ice clathrates. The abundance of this compound is higher in the trailing
hemisphere and in the floor, rim and impact craters [64]. The detected compounds are shown in Table
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1.6.
The surface diurnal temperature on Callisto varies between ≈ 80 K and ≈ 165 K [65].

Detected compounds Region investigated Methods Reference
SO2 − H2S mixtures,

SO2, CO2, tholins
Trailing and

leading hemisphere
Galileo NIMS [66], [67]

CO2, SO2
Trailing and

leading hemisphere
Galileo NIMS [68]

Weathered organic species
(e.g., CN compounds,

azoethane C2H5N = NC2H5

South polar regions Galileo Ultraviolet
Spectrometer (UVS)

[69]

S-bearing species: thermally altered sulfur,
disulfanide, HS2

Leading hemisphere

NIR SpeX
spectrograph/imager
on NASA’s Infrared
Telescope Facility

(IRTF)

[70]

Table 1.6: Compounds detected on the Callisto’s surface; the instrument that performed the observation is reported together with
the region investigated.

1.3.2 Interior
The Callisto’s C/MR2 value indicates that it is only partially differentiated and therefore the non-water
materials are probably more homogeneously distributed in the whole body, that is essentially a mixture
of rock and ice. The density and moment inertia values are compatible with the existence of a small
silicate core, incapable of generating an intrinsic magnetic field [71] and it is very likely that the region of
mixed ice and rock-metal extends to the center of the satellite [72]. The ice-rock differentiation is a slow
ongoing process and rock-metal should eventually sink through the ice shell to the center of the moon [72].

Magnetic field perturbations measured during Galileo flybys are consistent with the presence of a salty
ocean 150-200 km deep, at least a few kilometers thick [73].

1.4 Spacecraft Missions
The Jupiter system has been investigated by several spacecraft missions, starting from the 1970s. The first
ones were Pioneer 10 and 11, that provided the first close-up images of the gas giant and its moons, and
then Voyager 1 and 2 offered more detailed views, revealing complex geological features and suggesting
subsurface oceans on the moons. Galileo, the first spacecraft to orbit Jupiter, provided compelling
evidence for a subsurface ocean on Europa, Ganymede and Callisto. Finally Juno, currently in orbit
around Jupiter, is focused on studying the planet’s interior, but has also provided valuable data on the
surface of the moons.
In the future two spacecraft missions will focus mainly on the moons of Jupiter: Juice and Europa
Clipper. The mission will characterize the three moons both as planetary objects, since the systems such
as the Jupiter one are less understood than the terrestrial planets [58], and as habitats, since they harbor
liquid water which wold make potentially habitable for extraterrestrial life.

1.4.1 Juice
Juice will use a suite of ten scientific instruments, one experiment and one radiation monitor to make
detailed observations of Jupiter’s and icy moons’ environments, focusing on Ganymede.
Juice will conduct flybys of Venus, Earth, and the Earth-Moon system throughout the course of its eight-
year journey to Jupiter. Six months before entering the Jupiter’s orbit in July 2031, Juice will begin its
nominal science phase. The spacecraft will eventually mainly focus on Ganymede, effectively entering the
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satellite’s orbit. In Table 1.7 the timeline of the mission is detailed. Juice will be the first spacecraft in
the history of space exploration to: a) perform a lunar-Earth gravity assist, b) change orbit from another
planet to one of its moons (in this case from Jupiter to Ganymede), and c) orbit a satellite other than
Earth’s Moon.

Date Phase
14 April 2023 Launch from Kourou with Ariane 5
August 2024 First Earth flyby
August 2025 Venus flyby

September 2026 Second Earth flyby
January 2029 Third Earth flyby

July 2031 Jupiter orbit insertion
July 2031-June 2032 Energy reduction phase

July 2032 2 Europa flybys
August 2032-August 2033 Jupiter inclined phase - Callisto flybys

November 2033-November 2034 Transfer to Ganymede
December 2034 Ganymede orbit insertion
September 2035 End of nominal mission

Table 1.7: Timeline after launch of the Juice mission.

Payload

Juice will carry 10 instruments (see Fig. 1.4): a remote sensing package (JANUS, MAJIS, UVS, SWI)
that will perform spectral imaging from the ultraviolet to the sub-millimeter wavelengths; a geophysical
package that comprises a radar sounder (RIME), a laser altimeter (GALA) and a radio science experiment
(3GM) to probe the atmospheres and measure the gravity fields; and an in situ package with a suite of
instruments to study the particle environment (PEP), a radio and plasma wave instrument (RPWI) and
a magnetometer (J-MAG).
The science teams and the instruments are provided primarily by ESA member states, with the exception
of one instrument (UVS) provided by NASA and hardware for various instruments, developed by NASA,
JAXA (Japan Aerospace Exploration Agency) and ISA (Israel Space Agency).

Figure 1.4: List of the Juice experiment, their primary science contribution and key characteristics (taken from [74]).
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RIME

The Radar for Icy Moons Exploration (RIME) is a radar sounder optimized for the penetration of
Ganymede, Europa and Callisto up to a depth of 9 km [75]. Its primary goal will be to locate the ice-
ocean interface and present or past reservoirs of liquid water inside the ice shell of these moons, such
as unconnected water pockets. Moreover, the radar will be employed to map the existence of thermal
structures in the icy crusts and to identify the brittle-ductile transition of the ice, also measuring its
thickness. The data sheet of the radar RIME is shown in table 1.8

Main Instrument parameters Parameter
values

Operating height (km) <1000
Transmitted central frequency (MHz) 9

Antenna type Dipole
Optimal antenna length (m) 16

Peak radiated power (W) 10

Chirp length (µs) 50-250
(programmable)

Pulse repetition frequency (Hz) 10-1000
(programmable)

Vertical resolution in ice (m) 50-140
Cross-track resolution (km) 2-10
Along-track resolution (km) 0.3-1.0

Table 1.8: Data sheet of the radar RIME (taken from [76]).

1.4.2 Europa Clipper
Europa Clipper is a spacecraft developed by NASA planned for launch on October 2024. Its main goal
is to study the moon Europa with multiple flybys, assessing the composition and geology of the ice crust
and the ocean beneath it and evaluating the its habitability. The spacecraft will gather data after the
insertion in Jupiter’s orbit with 49 close flybys of Europa at distances ranging from 25 to 100 kilometers.
In Table 1.9 the timeline of the phases of the mission is detailed.

Date Phase

10 October 2024 Launch from Cape Canaveral
with SpaceX Heavy Falcon

28 February 2025 Mars gravity assist
2 December 2026 Earth gravity assist

11 April 2030 Jupiter orbit insertion
April 2030-Mars 2031 Ganymede gravity assists

Mars 2031 Beginning of Europa flybys

Table 1.9: Timeline after launch of the Europa Clipper mission [77].

Payload

The Europa Clipper mission is equipped with a comprehensive suite of nine scientific instruments, con-
sisting in remote sensing and in situ instruments. The imagers of the payload are EIS (Europa Imaging
System) that will produce high-resolution color and stereoscopic images of the moon and the Europa
Thermal Emission Imaging System (E-THEMIS), a thermal imager; the spectrometry will be covered by
Europa-UVS, an ultraviolet spectrograph and the Mapping Imaging Spectrometer for Europa (MISE),
an infrared spectrometer. The in situ instruments consist of the Europa Clipper Magnetometer (ECM)
for measuring magnetic fields, the Plasma Instrument for Magnetic Sounding (PIMS) for analyzing the
plasma environment, the Mass Spectrometer for Planetary Exploration/Europa (MASPEX) for studying
atmospheric composition, and the SUrface Dust Analyzer (SUDA) for analyzing dust particles.
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REASON

The Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) is a dual-frequency
ice-penetrating radar on board the Europa Clipper mission. This instrument will search for the ice-ocean
interface, characterizing the ice shell’s global structure and investigating the processes governing the
material exchange between the ocean and the surface [78].
The data sheet of REASON is shown in table 1.10

Main Instrument parameters Parameter
values

Operating height (km) <1000
Transmitted central frequency (MHz) 9 (HF) and 60 (VHF)

Antenna type Dipole
Optimal antenna length (m) 16

Peak radiated power (W) 12 to 30

Chirp length (µs) 30-100
(programmable)

Pulse repetition frequency (Hz) 50-3000
(programmable)

Vertical resolution in ice (m) <300 (HF), <30 (VHF)
Along-track resolution (km) <5.5 (HF), <2 (VHF)

Table 1.10: Data sheet of the radar REASON [78].



Chapter 2

Electromagnetic Theory

Electromagnetic (EM) methods play an important role in geophysics, offering useful tools and techniques
to investigate the subsurface’s EM properties. By inducing EM energy into the subsurface and analyzing
the subsequent responses of the materials composing it, these methods can provide critical insights into
subsurface structures and compositions. Subsurface EM energy is propagated depending on three physical
quantities: electrical conductivity, dielectric permittivity, and magnetic permeability, which, in turn, are
a function of different physical quantities, such as the frequency of the external EM field, the temperature,
the mineralogy of the materials in the case of rocks and the presence of water.
Starting from Maxwell’s equations and focusing on the materials electromagnetic properties, this chapter
will outline the fundemental concepts of the electromagnetic wave theory which will be used throughout
this dissertation.

2.1 Maxwell’s Equations and Constitutive Relations
Electric and magnetic phenomena were firstly unified and summarized by Maxwell in a famous paper [79],
which led to the discovery by Hertz and Marconi of EM wave propagation. The electromagnetic theory
developed by Maxwell can be condensed and described by a set of partial differential equations which
relates the variations of electric and magnetic fields to charges and currents associated to the propagation
of the electromagnetic waves. The general form of time-varying Maxwell’s equations can be written in
differential form as [80]

∇ × e(r, t) = −∂b(r, t)
∂t

(2.1)

∇ × h(r, t) = ji(r, t) + jc(r, t) + ∂d
∂t

= ji(r, t) + jc(r, t) + jd(r, t) (2.2)

∇ · d(r, t) = ρq(r, t) (2.3)
∇ · b(r, t) = 0 (2.4)

where:

e is the the electric field intensity in V/m

b is the magnetic flux density in Wb/m2

h is the magnetic field density in A/m

d is the electric flux density in C/m2

ji is the impressed (source) electric current density in A/m2

jc is the conduction electric current density in A/m2

jd is the displacement electric current density in A/m2

ρq is the electric charge density in C/m3

15
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ji and ρq are the sources of the EM field and all the field quantities (e,b,h,d,j) are function of the space
coordinate r and the time coordinate t. Eqs. 2.1 and 2.2 embodie respectively the Faraday’s law of
induction and the Ampere’s law, while eqs. 2.3 and 2.4 are based on the Gauss’ laws of electric and
magnetic field.
From eqs. 2.1-2.4 it is possible to define the constitutive relations that describe the macroscopic interac-
tion between matter and EM field in the time domain:

d(r, t) = ε ∗ e(r, t) (2.5)

b(r, t) = µ ∗ h(r, t) (2.6)
jc(r, t) = σ ∗ e(r, t) (2.7)

where ε is the dielectric permittivity of the medium in F/m, µ is the magnetic permeability of the
medium in H/m, σ is the conductivity of the medium in S/m and ∗ indicates a convolution product. In
this case these three generally complex quantities are assumed to be linear, i.e. they are not functions
of the applied field, homogeneous, i.e. they are not functions of the position, and isotropic, i.e. they do
not depend on the direction of the applied field. In the simplest case of free space these three quantities
have the following values:

ε = ε0 = 8.854 × 10−12(F/m) (2.8)
µ = µ0 = 4π × 10−7(H/m) (2.9)

σ = 0 (2.10)
In the case of non-linear materials eqs. 2.5-2.7 have the form:

d(r, t) = ε(e) ∗ e(r, t) (2.11)

b(r, t) = µ(h) ∗ h(r, t) (2.12)
jc(r, t) = σ(e) ∗ e(r, t) (2.13)

When inhomogeneous materials are treated eqs. 2.5-2.7 show their dependence on the position

d(r, t) = ε(r) ∗ e(r, t) (2.14)

b(r, t) = µ(r) ∗ h(r, t) (2.15)
jc(r, t) = σ(r) ∗ e(r, t) (2.16)

and, lastly, with anisotropic materials the most general relation between these quantities takes the form
of a tensor of rank two, a dyad, and as example eq. 2.5 can be written asDx

Dy

Dz

 =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz


Ex

Ey

Ez

 =
[
ε
]Ex

Ey

Ez

 (2.17)

and a similar treatment applies to the other equations.

Dispersive Materials

In the majority of practical applications the materials have a response to an external time-varying EM field
which is not instantaneous, but depends on time. Dielectric materials, for example, exhibit a dispersive
behavior and their permittivity and conductivity are a function of time; on the other hand ferromagnetic
materials and ferrites have a dispersive magnetic behavior with magnetic permeability varying with time.
With the so-called dispersive materials eqs. 2.5-2.7 have the form:

d(r, t) = ε(t) ∗ e(r, t) (2.18)

b(r, t) = µ(t) ∗ h(r, t) (2.19)
jc(r, t) = σ(t) ∗ e(r, t) (2.20)

As example, in integral form eq. 2.18 becomes

d(r, t) =
∫ t

−∞
ε(t − t′)e(r, t′)dt′ (2.21)
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2.1.1 Frequency Domain
It is usually convenient to switch from the time domain to the frequency domain, via Fourier transform
pair:

F(r, ω) =
∫ ∞

∞
f(r, t)e−iωtdt; f(r, t) = 1

2π

∫ ∞

∞
F(r, ω)eiωtdω (2.22)

assuming an eiωt time dependence and where ω is the angular frequency and i the imaginary unit defined
as i =

√
−1. The angular frequency is defined as ω = 2πν, where ν is the frequency. Furthermore, the

convolution theorem states that the Fourier transform of the convolution product is equal to the product
of the individual Fourier transforms:

F {x(t) ∗ y(t)} = X(ω)Y (ω) (2.23)

Maxwell’s equations in the frequency domain are obtained exploiting the Fourier transform properties by
replacing ∂/∂t = iω

∇ × E(r, ω) = −iωB(r, ω) = −iωµH(r, ω) (2.24)
∇ × H(r, ω) = Ji(r, ω) + Jc(r, ω) + iωD(r, ω) = Ji(r, ω) + σE(r, ω) + iωεE(r, ω) (2.25)

∇ · D(r, ω) = Pq(r, ω) (2.26)
∇ · B(r, ω) = 0 (2.27)

Moreover, in frequency domain eqs. 2.18-2.20 reduce to a simple product thanks to the Fourier transform
property (see eq. 2.23):

D(r, ω) = ε(ω)E(r, ω) (2.28)
B(r, ω) = µ(ω)H(r, ω) (2.29)
Jc(r, ω) = σ(ω)E(r, ω) (2.30)

Throughout this thesis, linear, homogeneous, isotropic and dispersive materials will be analyzed in the
frequency domain.

2.2 Wave equation
Combining the Maxwell’s equation in time domain with the constitutive relations, we have

∇ × e = −µ
∂h
∂t

(2.31)

∇ × h = ji + σe + ε
∂e
∂t

(2.32)

∇ · e = ρq

ε
(2.33)

∇ · h = 0 (2.34)
considering a region of space with no sources (and therefore ji = 0, ρq = 0) and taking the curl of eqs.
2.31 and 2.32 we obtain:

∇(∇ · e) − ∇2e = −µ∇ × ∂h
∂t

(2.35)

∇(∇ · h) − ∇2h = ∇ ×
(

σe + ε
∂e
∂t

)
(2.36)

where the propriety of the curl ∇ × ∇ × X = ∇(∇ · X) − ∇2X was applied. Since in the region of space
under consideration no sources are present (∇ · e = 0 and ∇ · h = 0), the equations of wave propagation
through a material are obtained:

∇2e = µε
∂2e
∂t2 + µσ

∂e
∂t

(2.37)

∇2h = µε
∂2h
∂t2 + µσ

∂h
∂t

(2.38)
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Moving to the frequency domain the wave equations are

∇2E = (µεω2 − iµσω)E (2.39)

∇2H = (µεω2 − iµσω)H (2.40)

obtained by replacing ∂/∂t = iω and ∂2/∂2t = −ω2 by means of Fourier transform properties. It is useful
to define the propagation constant as:

k =
√

µεω2 − iµσω (2.41)

It is possible to approximate these equations in two different cases:

• if µεω2 ≪ µσω, the displacement currents are much smaller than the conduction currents and wave
equation 2.39 and 2.40 are called diffusion equations

∇2E = iµσωE (2.42)

∇2H = iµσωH (2.43)

and the propagation constant become k ≈
√

−iµσω.

• if µεω2 ≫ µσω, the displacement currents are much larger than the conduction currents; these
generally happens to frequencies > 106 Hz and wave equations are

∇2E = −µεω2E (2.44)

∇2H = −µεω2H (2.45)

the propagation constant is then defined as k ≈
√

µεω2.

2.2.1 Wave attenuation and phase
The propagation constant is a complex quantity and it can be also defined as:

k = β − iα (2.46)

where α is the attenuation constant expressed in Np/m which describes the attenuation of the EM wave
during the propagation, and β is the phase constant expressed in rad/m and it defines the phase velocity
at which the EM wave propagates. Comparing eqs. 2.41 and 2.46, we obtain

α = ω

c
ℑ {√

εµ} (2.47)

β = ω

c
ℜ {√

εµ} (2.48)

where c = 1√
ε0µ0

is the velocity of light in vacuum, ε = ε′ −iε′′ the dielectric permittivity and µ = µ′ −iµ′′

the magnetic permeability. The attenuation can be also expressed in unit of decibels as:

α(dB) = 20 log10

(
eα(Np/m)

)
= 8.686 α (Np/m) (2.49)

Finally the attenuation and the phase propagation constants can be enunciated also as a function of the
material parameters as:

α = ω√
2

[√
µ′2 + µ′′2

√
ε′2 + ε′′2 − ε′µ′ + ε′′µ′′

]1/2
(2.50)

β = ω√
2

[√
µ′2 + µ′′2

√
ε′2 + ε′′2 + ε′µ′ − ε′′µ′′

]1/2
(2.51)
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2.3 Dielectrics and Polarization Mechanisms
An ideal dielectric (also called insulator) is a material composed by atoms and molecules where dominant
charges are bound and held in place by atomic and molecular forces, and thus they are not free to
travel, such as in conductor materials. In fact, these materials exhibit a very different behavior from the
conductors where the electric field is shielded due to the displacement of charges inside it. This feature
gives the dielectrics the property of being electrically neutral at a macroscopic level; but, although neutral,
if they are exposed to an external EM field their charges can slightly shift in relative positions, creating
electric dipoles and leading to a separation of positive and negative charge centers at the microscopic
level (see fig 2.1).

Figure 2.1: Atom without external EM field (left) and under the influence of the EM field (right), (taken from [80]).

The interaction with the EM field provides to the dielectrics the property of store energy (similarly to
what happens with springs when they are stretched accumulating potential energy). This behavior can
be described using a macroscopic model and the electrical polarization vector P:

P = lim
∆V →0

1
∆V

Ne∆V∑
i=1

dpi

(
C/m2) (2.52)

where ∆V is the unit volume under consideration, Ne the number of dipoles per unit volume and dpi

are the induced moment .
Applying the EM field to a generic dielectric the molecules acquire a non zero mean electric dipole < p >
and orient themselves along the field

P = Ne < p > (2.53)

During the application of an alternating electric field to a dielectric material there is a delay in reaching
the state of equilibrium, the so-called relaxation; the polarization process, in fact, takes place in two
moments: the first one is instantaneous at radar frequencies, given by the distortion of the molecules or
atoms, and during the other one the system reaches the equilibrium configuration asymptotically with
time. The time needed to reach the state of equilibrium is called relaxation time, τrel. The relaxation
frequency is defined as νrel = (2πτrel)−1. A parameter that describes the dielectrics is the dielectric
permittivity, indicated with ε, that describes their behavior when subjected to an external EM field.

Applying an alternating electric field E to a capacitor in vacuum, the following relationship is obtained

D = ε0E (2.54)

where D is the electric displacement vector, defined in eq. 2.28.
Once filled the capacitor with an homogeneous dielectric material (see Fig. 2.2) the electric displacement
vector becomes

D = ε0E + P (2.55)
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Figure 2.2: Flat capacitor filled by an homogeneous dielectric material. The polarization P inside the material is directly propor-
tional to the EM field.

The polarization vector P is related to the field by the equation

P = ε0χeE (2.56)

where χe is the electrical susceptibility, a generally dimensionless-complex quantity that characterizes the
dielectric and can be a function of the time, position, temperature, etc. Combining eqs. 2.55 and 2.56 it
yields to:

D = ε0E + ε0χeE = ε0(1 + χe)E = εE (2.57)

ε = ε0 (1 + χe) (2.58)

The relative permittivity of a dielectric material is defined by the ratio of its permittivity and the free
space permittivity

εr = ε

ε0
= (1 + χe) (2.59)

The relative permittivity of a dielectric material is a complex quantity where its real part describes
the accumulation of energy when exposed to an external EM field, and its imaginary part takes into
account the dissipation processes, relaxation losses and static conductivity of the material. The relative
permittivity depends in the first place on frequency and then on the physical-chemical properties of the
material investigated: temperature, bulk density, mineralogical composition, salinity etc. Evaluating the
permittivity represents a key piece for estimating the attenuation and speed of the EM wave propagating
in a medium.

2.3.1 Types of Polarization
On the basis of the order of magnitude of the relaxation time it is possible to characterize the material
and its relative polarization. Five different types of polarization are described below, providing their
relaxation frequencies at room temperature (see Fig. 2.3):

• Electronic polarization; it happens when the electric field delocalizes the center of gravity of the
electron cloud with respect to the nucleus of the atom and it is evident in many materials (it is more
frequent in solids but is also present in liquids). With a polarization time of about 10−15 s (period
of visible/ultraviolet light) it is the fastest polarization. Electronic polarization establishes a clear
relationship between the density of the material and the real part of the relative permittivity. The
greater the density of the material, the greater the number of dipoles induced per unit volume, thus
increasing the macroscopic response of the material to the electric field.;

• Ionic or molecular polarization; the electrical field produces a slight separation of positive and
negative charges that generate dipoles, resulting in a distortion of molecules. Materials with positive
and negative ions that repel each other when an external
field is applied are significantly more likely to exhibit this process. It is characterized by a relaxation
time of 10−13 − 10−12 s, in far-infrared spectrum; at radar frequencies it is more important than
the electronic polarization;
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• Orientational polarization or Dipolar polarization; it is proper to substances (such as water) that
have a permanent dipole moment with a random orientation, which makes them macroscopically
neutral. Applying the EM field, they tend to line up parallel to the field itself. They have a strong
temperature dependence since thermal agitation opposes the polarization given by the field. Due to
the frictional force that is generated, this process has a τ of 10−11 − 10−10 s (microwave spectrum,
up to a few GHz) for low viscous liquids with small molecules, and τ = 10−6 s for viscous liquids.
In the case of pure water at room temperature we find the relaxation frequency at ∼ 18.7 GHz;

• Hopping polarization; it is the result of localized charges (either electrons and holes or ions and
vacancies) moving from one site to the next. In fact, these charges have the ability to move freely
between sites for brief periods of time before becoming stuck in certain states and spending the
most of their time there, but occasionally they can make a "jump" over the potential barrier to
the other sites giving rise to this type of polarization. This is what happens for example with the
movement of electrons and holes in glasses and amorphous semiconductors;

• Space charge polarization or Maxwell-Wagner polarization; it is typical of heterogeneous materials
(such as rocks saturated with water), it is due to local displacements of charges towards the interface
of the two materials of which the medium is composed of, and it is therefore dependent on its
structure and mineralogy. It happens at frequencies lower than 1 MHz, with times ranging from
seconds to minutes and it returns a high value of the dielectric constant. A noteworthy case of
charges migration polarization is the polarization of the electrodes which occurs in capacitors with
flat and parallel faces.

Figure 2.3: Diagram of the most relevant polarization mechanisms in dielectrics (modified after [81]).

2.3.2 Complex Dielectric Permittivity - Circuital Approach
The complex dielectric permittivity can be defined also by means of a different procedure, the circuital
approach [82].
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Considering a parallel-plate condenser connected to a circuit supplied by a voltage generator V = V0eiωt,
the amount of charge stored inside the capacitor will be

Q = C0V (2.60)

where C0 is the no-load capacitance of the capacitor (the geometric capacitance).
The charging current flowing through the circuit is out of phase by 90° with respect to the voltage and
it is equal to the time derivative of the charge Q

Ic = dQ

dt
= iωC0V (2.61)

In the case where a dielectric is inserted between the plates of the capacitor, its capacitance becomes

C = C0
ε′

ε0
= C0εr (2.62)

In addition to the charging current Ic, a loss current Il will appear

Il = GV (2.63)

in phase with the voltage V and where G = 1
R represents the conductance of the dielectric material.

The total current flowing through the capacitor is therefore

I = Ic + Il = (iωC + G) V (2.64)

This current is inclined by a power factor angle θ < 90° with respect to the voltage. Hence, it is possible
to define the loss angle δ, complementary to θ, which is the angle between I and the component of the
current in quadrature with the voltage (see Fig. 2.4). There is a similarity between the behavior of a
dielectric and a RC circuit, as the equation points out

tgδ = Il

Ic
= 1

ωRC
(2.65)

It is more practical to introduce the complex dielectric permittivity to outline the capacitance and
conductance because the dissipation process can be caused by a variety of factors, including the dielectric
properties of the material inserted into the capacitor:

I = (iωε′ + ωε′′)C0
ε0

V = iωC0εrV (2.66)

where the conductance is defined as G = ωε′′ C0
ε0

.
The loss tangent then becomes the ratio between the imaginary and real part of permittivity

tgδ = Il

Ic
= ε′′

ε′ (2.67)

Figure 2.4: Vectorial currents diagram in the capacitor filled with a dielectric material. The total current I is given by the charge
current Ic and the loss current Il; δ is the loss angle. (modified after [83]).
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2.3.3 Complex Effective Permittivity and Conductivity
Taking the Maxwell equation in frequency domain 2.25 and considering the complex permittivity ε =
ε′ − iε′′:

∇ × H = Ji + Jc + Jd = Ji + σsE + iωεE
= Ji + σsE + iω(ε′ − iε′′)E

= Ji + iω
(

ε′ − iε′′ − i
σs

ω

)
E = Ji + iωεeE

(2.68)

where σs is the static conductivity and the complex effective permittivity εe was defined as

εe = ε′ − i
(

ε′′ + σs

ω

)
= ε′

e − iε′′
e (2.69)

and the complex relative permittivity is then expressed as

εer = εe

ε0
= ε′

ε0
− i

(
ε′′

ε0
+ σs

ωε0

)
= ε′

er − iε′′
er (2.70)

where the effective conductivity is defined as

σe = σs + ωεiε
′′ (2.71)

The first term in eq. 2.71 describes the inelastic scattering of free charge carriers during their migration
in the dielectric and is present at all frequencies (also at ω=0). On the other hand, the second term
is generated by the friction during the polarization process and it increases linearly with the angular
frequency ω [84]. The effective conductivity can be expressed as function of εs, ε∞:

σ = σs + (σ∞ − σs) ω2

ω2 + ω2
rel

(2.72)

where σ∞ = σs + ε0(εs − ε∞)ωrel is the high-frequency conductivity and σs is the static conductivity, i.e.
the limit at lower frequencies. For brevity of notation, in the following we refer to the relative complex
permittivity εer as ε and to the effective conductivity σe as σ, unless otherwise stated.

2.4 Magnetic properties
When an external EM field is applied, materials that display magnetic polarization are said to be mag-
netic. The magnetic polarization M consists of the alignment of the magnetic dipoles in the material
when the external magnetic field is applied, in a similar way to what happens with electric dipoles and
the electric polarization vector:

M = lim
∆V →0

1
∆V

Nm∆V∑
i=1

dmi (A/m) (2.73)

where Nm is the number of magnetic dipoles per unit volume, dmi are the induced magnetic moment.
The induce magnetization vector is proportional to the field H:

M = χmH (2.74)

where χm is a dimensionless quantity called the magnetic susceptibility.
The magnetization flux density can be defined starting from the magnetization vector and the magnetic
field vector:

B = µ0 (M + H) = µ0 (1 + χm) H = µH (2.75)
where the complex magnetic permeability is then

µ = µ0 (1 + χm) (2.76)

µr = µ

µ0
= (1 + χm) (2.77)

Similarly to the case of complex permittivity, µr is the complex relative magnetic permeability that
describes the magnetization of the material exposed to the external EM field.
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2.5 Frequency Dependence of the Permittivity

Figure 2.5: Frequency dependence of the real part of relative permittivity ε′
r(ω) (solid line) and the the imaginary part of relative

permittivity ε′′
r (ω) (dashed line). Some of the main polarization mechanisms have been reported. The relation between real and

imaginary part of relative permittivity is well described by the Kramers-Kronig equations. (taken from [85]).

As already discussed in section 2.3.1, the polarization processes are strongly related to the oscillation
of the EM field: in fact, each type of polarization mechanism has a peculiar relaxation time (or relaxation
frequency, in the frequency domain). The complex permittivity is dependent on the frequency in the first
place; approaching the relaxation frequency the real part generally decrease presenting an inflection point,
while the imaginary part increases, having a maximum point (see Fig. 2.5).
The coupling of real and imaginary part is described by the Kramers-Kronig relations [86]:

ε′(ω) = 1 + 2
π

PV

∫ ∞

0

xε′′(x)
x2 − ω2 dx (2.78)

ε′′(ω) = 2ω

π
PV

∫ ∞

0

1 − ε′(x)
x2 − ω2 dx (2.79)

where PV stands for the principal value part (i.e., the singular point x = ω is simmetrically excluded).

2.5.1 Debye Model
A well-known model that describes the dependence of complex permittivity of a broad range of geo-
materials on frequency is the Debye model. The model describes a single relaxation process and it is valid
up to the GHz frequencies [87]:

ε(ω) = ε∞ + εs − ε∞

1 + iωτ
− i

σs

ωε0
(2.80)
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Separating the real and the imaginary part

ε′(ω) = ε∞ + εs − ε∞

1 + (ω/ωrel)2

ε′′(ω) = (εs − ε∞)ω
ωrel (1 + (ω/ωrel)2) + σs

ωε0

(2.81)

where the quantity ωrel = 1/τ is the relaxation angular frequency, εs is the static permittity (i.e. the
low-frequency limit of permittivity) and ε∞ is the high frequency limit permittivity.
The effective conductivity can be expressed in terms of the relaxation angular frequency:

σ = σ∞ − σs
ω2

ω2 + ω2
rel

(2.82)

where the high frequency conductivity σ∞ can be also defined in terms of the static conductivity σs and
the relaxation angular frequency:

σ∞ = σs + ε0(εs − ε∞)ωrel (2.83)

When the static conductivity is negligible, the relaxation frequency is found at the imaginary part’s
maximum, while the real part of permittivity exhibits the inflection point (see Fig. 2.5):

dε′′(ω)
dω

= 0 → ω/ωrel = 1 (2.84)

ε′′
max = εs − ε∞

2 (2.85)

ε′ = εs + ε∞

2 (2.86)

These equations are generally visualized in the so-called Cole-Cole diagram, where ε′′ is plotted against
ε′, generating a circle where only the positive region has actually a physical meaning (see Fig. 2.6).

Figure 2.6: The Cole-Cole diagram in the case of a single-relaxation Debye model with the static conductivity negligible.

2.5.2 Cole-Cole and Havriliak–Negami Models
Debye’s model has limitations and to describe a broader spectrum of materials another model consisting
in a distribution of relaxation time is needed. Cole and Cole proposed an empirical equation where the
complex permittivity is defined as [88]:

ε(ω) = ε∞ + εs − ε∞

(1 + (iω/ωrel)α (2.87)

where α is a factor that lies in the range 0 < α < 1. When α = 1, the model coincides with that of
Debye.
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The Havriliak–Negami is a more general model that explains the dielectric dispersion curve’s asymmetry
and broadness of a wider range of materials (e.g., polymers), in contrast to the Debye model, adding two
exponential to the model [89]:

ε(ω) = ε∞ + εs − ε∞

((1 + (iω/ωrel)α)β
(2.88)

for β = 1 the model reduces to the Cole-Cole model.

2.6 Temperature Dependence of the Permittivity
The dielectric parameters ε and σ are also temperature dependent [82] (see Fig. 2.7); in particular the
relaxation angular frequency follows the Arrhenius equation:

ωrel = ω0e
− Ea

kB T (2.89)

where ω0 is a proportional constant, Ea is the activation energy, kB is the Boltzmann constant and
T is the temperature expressed in kelvin. Also the difference between the static permittivity and the
high-frequency permittivity has a dependence on temperature:

εs − ε∞ = a

T
(2.90)

where a is a constant.
Inserting the two relations 2.90 and 2.90 into the Debye model (eq. 2.81), it is possible to express the

Figure 2.7: Effect of the temperature on the dielectric permittivity and conductivity (taken from [84]).

permittivity as a function of the temperature:

ε′(ω) = ε∞ + a/T

1 + (ω/ω0)2e2Ea/kBT

ε′′(ω) = a/T e2Ea/kBT

ω0
[
1 + (ω/ω0)2e2Ea/kBT

] (2.91)

For decreasing temperatures the real part of permittivity increases and the peak of the imaginary part of
permittivity shifts to lower frequencies. The static conductivity has a temperature dependence as well:

σs = σs0e−Ea/kBT + a

T
ω0e−Ea/kBT ω2 e2Ea/kBT

ω2
0 + ω2 e2Ea/kBT

(2.92)

where σs0 is a proportional constant.
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2.7 Moisture Dependence of Permittivity
The low frequency behavior of complex permittivity and conductivity is strongly related to the presence
of residual amount of water [90] and many experiments observed the influence of moisture on the electrical
properties of materials, since it brings an additional space charge polarization [91]. It is well known that
the presence of a ionic conductive path inside a material generally can yield to an additional polarization
and electrode effects [92]. Furthermore, it was observed that the complex bulk permittivity of the material
under investigation is not altered when a single layer of water is adsorbed onto its dry surface; only with
multiple adsorbed layers there’s an increase of both the real and imaginary part of permittivity at low
frequencies (this effect is particularly evident below 1 MHz). Above about seven layers, the electrical
properties of water dominate over the overall behavior of the material [90]. In Figure 2.8 it is shown the
effect of a small amount of moisture (0.1 % weight percent of water): the main outcome is to increase
the overall real part of permittivity and loss tangent, especially below 10 kHz; this effect progressively
disappears lowering the temperature and eliminating the residual water.

Figure 2.8: Real part of permittivity and loss tangent of a basalt at different temperatures (27°C, -15°C, -45°C, -51°C) in a dry
form and with 0.1 weight percent water in the frequency range 100 Hz-1 MHz (modified after [91]).

2.8 Dielectric Properties of Geomaterials
The goal of this section is to detail the dielectric properties and behavior of geomaterials of interest for
the space exploration, such as water, rocks and soils; the electrical properties of water ice will instead be
discussed separately in chapter 4.

2.8.1 Pure Water Dielectric Properties
For pure water, i.e. distilled water with no dissolved salts, the dielectric properties below 50 GHz are
described by a simple single-relaxation Debye model [93]:

ε′
w(ω) = εw,∞ + εw,s − εw,∞

1 + (ω/ωw,rel)2

ε′′
w(ω) = (εw,s − εw,∞)ω

ωw,rel (1 + (ω/ωw,rel)2)

(2.93)

where εw,∞ is the water high frequency complex permittivity, εs,∞ is the water static permittivity and
ωw,rel is the water relaxation frequency. εw,∞ is weakly dependent on the temperature and can be
considered constant and equal to 4.9 [94]. The pure water relaxation time τw,rel, on the other hand, has
a temperature dependence that can be expressed by the empirical law:

2πτw,rel(T ) = 1.1109 × 10−10 − 3.824 × 10−12T + 6.938 × 10−14T 2 − 5.096 × 10−16T 3 (2.94)
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where the temperature T is expressed in celsius degrees. The relative relaxation frequency νw,rel lies in
the microwave region:

νw,rel(0°C) ≈ 8.9 GHz

νw,rel(20°C) ≈ 16.7 GHz
(2.95)

The pure water static permittivity also has a temperature dependence and it is expressed by the following
relationship [95]

εs,w = 88.045 − 0.4147T + 6.925 × 10−4T 2 + 1.075 × 10−5T 3 (2.96)

Figure 2.9: Microwave spectra of the complex permittivity of pure water at two different temperatures (modified after [96]).

2.8.2 Saline Water Dielectric Properties
A different model was developed to describe the complex permittivity of saline water. It is based on a
double-relaxation Debye dielectric model and it reduces to a model for pure water when the salinity is
equal to zero [97]:

ε′
w(ω) = εw,∞ + εw,s − εw,1

1 + (ω/ωrel,1)2 + εw,s − εw,∞

1 + (ω/ωrel,2)2

ε′′
w(ω) = (εw,s − εw,1)ω

ωrel,1 (1 + (ω/ωrel,1)2) + (εw,s − εw,∞)ω
ωrel,2 (1 + (ω/ωrel,2)2) + σ

ωε0

(2.97)

where there are two angular relaxation frequency terms (νrel,1 = ωrel,1
2π = 8.9 GHz and νrel,2 = ωrel,2

2π =
201.8 GHz) and σ is the ionic conductivity of the saline water (for pure water σ = 0).

Figure 2.10: Comparison between the microwave spectra of the complex permittivity of pure water and sea water at T = 20°C
(modified after [96]).

2.8.3 Rocks
Rocks, in geology, are naturally occurring and coherent aggregate of one or more minerals. Their electrical
properties are not the simple sum of the electrical properties of the minerals that constitute them: in fact,
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they show wide variations in permittivity. A pattern of permittivity as their chemical and mineralogical
characteristics varies has not yet been clearly identified, although a trend has been recognized as a
function of the silica content. Within the same mineral class or group, variations in electrical properties
can be attributed to impurities and distinct crystalline structures, which can play a role in electrical
anisotropy. However, the real part of permittivity of the most abundant rock-forming minerals generally
lies in the range 4-10, with some minerals that exhibits larger values. A comprehensive investigation
of dielectric properties of solid rocks was carried out in the literature [98]. In Figure 2.11 the real part
of permittivity of 36 solid rocks is shown at 450 MHz and 35 GHz. There is no significant variation in
the values at these two frequencies, pointing out a very slight frequency dependent behavior for most
common rocks. Moreover, a small dependence on temperature variation was also observed, particularly
at high temperatures (see [99] and references therein).

Figure 2.11: Comparison of the real part of permittivity of solid rocks at two different frequencies, 450 MHz and 35 GHz (modified
after [96]).

2.8.4 Soils
Soil, or dry powder, is a porous media composed of grains derived from rocks or minerals and voids of air.
It is an heterogeneous material, whose permittivity depends mainly on the bulk density of the powder
ρb. This quantity varies between 1 g/cm3 for very porous powder to about 3.4 g/cm3 for powders formed
from high density rocks like peridotites. The electrical properties of soils can be described be means of
the EM mixing models in a quite predictable way as a function of their porosity (detailed in chapter 3).
For example, a simple empirical formula was retrieved to describe the real part of permittivity of soils a
as a function of their bulk density [100]:

ε′
soil = (1.01 + 0.44ρb)2 − 0.062 (2.98)

In any case, in the absence of residual moisture it has been indicated in the literature that for most soils
the real part of permittivity ranges from 2 to 4 and the imaginary part is lower than 0.05.

2.8.5 Meteorites
Meteorites are solid bodies coming from space and found on a planet’s surface. They are different from
meteoroids, which are small rocky or metallic bodies in outer space: in fact meteorites are the result of
the ablation process experienced by the meteoroids entering the atmosphere.
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The meteorites dielectric properties are directly correlated to their metal content, which could locally
vary inside them, explaining the strong fluctuations observed in many samples [101]. The imaginary
part of permittivity increases in a significant way with metal proportion in the sample, as expected. In
Table 2.1 the dielectric properties of different types of meteorites, both granular and solid, are shown as
example.

Classification Name Real part of permittivity Imaginary part of permittivity Porosity Metal (vol. %) Frequency (MHz) Reference
CR2 NWA 801 2.6 - 0.3 5-8 20-1000 [102]
CM NWA 5797 2.9 - 0.3 0.1 20-1000 [102]
LL5 MAC 88122 4.7 0.019 0.3 2.0 20-1000 [103]
L5 NWA 12857 4.7 0.057 0.3 4.1 10-100 [104]
L6 Holbrook 7.8 0.12 Solid 4.1 450 [98]
H5 LEW 85320 5.7 0.29 0.3 8.4 20-1000 [103]
H5 Plainview (sample 1) 25.4-30.4 2.5-6.1 Solid 8.4 420-1800 [105]

EH4 Indarch 130-150 8.5-18.0 Solid 10 450 [98]

Table 2.1: Examples of dielectric properties of various meteorites samples. CR2 and CM are two types of carbonaceous chondrites;
LL5, L5, L6 are ordinary chondrites with low metal content, and H5 and EH5 are chondrites with high iron content. (modified
after [106]). Metal content is

2.9 Radar Sounder
The radar sounder technique is a non-invasive high-resolution geophysical technique that uses radio waves
to probe the subsurface. Since it allows the identification of deep buried targets, it has numerous fields
of application: geology, glaciology, archaeology, engineering, ground water, among the others.
A typical radar sounder configuration consists of a transmitter and receiver antennas arranged in a fixed
geometric pattern; this method is based on the transmission of EM energy pulses that propagate through
the medium, and then are reflected at EM interfaces, finally going back at the receiver.

Reflected signals obtained from radar sounders can be represented in a two-dimensional diagram
known as radargram. In this representation, the vertical axis displays the two-way travel time of the
electromagnetic pulses, whereas the horizontal axis indicates the position of the radar system (see Fig.
2.12).

A radar sounder is characterized by a bandwidth B, which give the EM pulse width at half amplitude
generated by the instrument:

W = 1
B

(2.99)

Scattering of the radar signal occurs due to the variations in material properties at the boundary
between two different media on the spatial scale of the wavelength of the emitted EM wave. It can
consist of reflection, refraction and diffraction. The reflection is defined as the the abrupt change in
the direction of portion of the EM wave when it encounters the boundary between adjacent media with
different EM properties (i.e. dielectric permittivity and magnetic permeability). The greater the EM
contrast, the greater the amount of energy reflected. This phenomenon is described by the Fresnel
coefficient:

R =
(√

ε1/µ1 −
√

ε2/µ2√
ε1/µ1 +

√
ε2/µ2

)2

(2.100)

where ε1,µ1 are the EM properties of the first medium and ε2,µ2 are those of the second medium. This
coefficient is not effective in describing transitional boundaries and thin layers [108].
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Figure 2.12: Example of radargram: cross section of the north polar layered deposits (NPLD, top) and south polar layered deposits
(SPLD, bottom) on Mars (taken from [107]).

2.9.1 Radar Range Equation
The radar range equation (RRE) is a simple model that has been in use within the context of radar
sounding applications for a significant time. The main goal of employing the radar range equation is
to evaluate how effectively radar can penetrate materials and detect objects embedded within them.
By utilizing simplified parameterization, the RRE condenses the three-dimensional response into a more
manageable form. The principal conclusion drawn from the RRE analysis is the identification of the
considerable role that attenuation plays in affecting the radar performance [109]. Such equation related
the received-signal power Pr to the transmitted signal power Pt

Pr = ξtξrGtGrgCs
V 2

4πν2
e−4αL

16π2L4 Ps (2.101)

where:

ξt: Transmitter antenna efficiency

ξr: Receiver antenna efficiency

Gt: Transmitter antenna gain

Gr: Receiver antenna gain

g: Back-scatter gain of target
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Cs: Target scattering cross section area

α: Attenuation coefficient

V : Propagation velocity in the medium

L: Target distance

The equation takes different forms or is simplified according to the characteristics of the target and source
geometry; for example, in the case of a smooth and plane reflector, eq. 2.101 becomes:

Pr = ξtξrGtGrΓ V 2

64π2ν2
e−4αL

16π2L4 Ps (2.102)

where Γ is the power reflection coefficient of the interface radiating upwards and it is related to the
product of the back-scatter gain and scattering cross-section:

gCs = πL2Γ (2.103)



Chapter 3

Electromagnetic Mixing Formulas

The powdered and regolith samples studied in this thesis can be treated as heterogeneous mixtures, since
they are composed by multiple phases. In this work two-phases mixtures were studied: dry powdered
samples made up of solid mineral grains and voids of air, and samples made up of solid grains and water
pure ice. The bulk (or effective) permittivity εb is defined as the permittivity of the whole mixture, with
the contributions from the single phases, and it is the quantity effectively measured in laboratory by the
experiments. The two phases of the mixture are labeled as guest or inclusion phase with permittivity εi

and as background or environment, with permittivity εe. Following the nomenclature of [85], the volume
fraction of the inclusion will be labeled as fv and the volume fraction of the environment as 1−fv; if fv is
the air volume fraction for mixtures containing a phase made of air voids, then it is equal to the porosity ϕ.

The mixing formulas (MF) are theoretical equations that describe the behavior of εb of the heteroge-
neous material [85]. Through these equations it is possible to extract the value of the solid sample
permittivity:

εb = MF (εe, εi, fv) (3.1)
The mixing formulas are strongly dependent on the micro-structure of the mixture, the shape of

the inclusions and the contrast between constituent permittivities [110]. At the frequencies used in this
work, the mixtures can be assumed as quasi-static because the wavelength of the incoming electric field
is significantly larger than the size of the inclusions within the mixture (as determined by the average
grain size of the measured granular samples).
This chapter provides a review of the main mixing formulas employed in the literature.

3.1 Non Symmetric Mixing Formulas
In this section the non-symmetric mixing formulas will be outlined: with this type of equations the result
given by the model depends on the the choice on the phase treated as inclusion and on the phase treated
as environment.

3.1.1 Maxwell Garnett Formula
The Maxwell Garnett formula was derived in 1904 by James Clerk Maxwell Garnett to describe the
electrical properties of metal spheres embedded in a liquid [111]; it assumes the presence of spherical
inclusions randomly incorporated in an environment material (see Fig. 3.1).

εb = εe + 3fvεe
εi − εe

εi + 2εe − fv(εi − εe) (3.2)

This equation has two limits, the first one when the inclusion phase disappears

fv −→ 0 =⇒ εb −→ εe

and the other one if host medium vanishes

fv −→ 1 =⇒ εb −→ εi

33
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Figure 3.1: Dielectric spheres with dielectric permittivity εi with random positions in the environment material with dielectric
permittivity εe (taken from [85]).

A perturbation expansion for the Maxwell Garnett rule gives an expression valid for dilute mixtures when
fv ≪ 1

εb ≈ εe + 3fvεe
εi − εe

εi + 2εe
(3.3)

Maxwell Garnett: Particle Shape

The inclusion for the classical Maxwell Garnett formula are assumed to be spherical but the expression
can be generalized to ellipsoids by using the depolarization factors Nx, Ny and Nz of an ellipsoid in a
3D Cartesian space (see Fig. 3.2). The depolarization factor Nx in the x̂ direction for an ellipse with
semi-axes ax, ay and az is given by [85]

Nx = axayaz

2

∫ ∞

0

ds

(s + a2
x)
√

(s + a2
x)(s + a2

y)(s + a2
z)

(3.4)

For the other depolarization factor Ny and Nz the ax is replaced by ay and az. The three depolarization
factors satisfy the equality

Nx + Ny + Nz = 1 (3.5)
A sphere inclusion has a depolarization factor (1/3, 1/3, 1/3), whereas discs and needles respectively
(1, 0, 0) and (0, 1/2, 1/2).
The polarizability component of the ellipsoid in the x̂ direction is defined as

ax = 4πaxayaz

3 (εi − εe) εe

εe + Nx(εi − εe) (3.6)

In the case of ellipsoidal inclusions, the polarizability is anisotropic and is represented by a 3 × 3 sensor;
the bulk permittivity is also anisotropic, except for the case of randomly oriented ellipsoidal inclusions.
The Maxwell Garnett equation for randomly oriented ellipsoids inclusion, when there is no external force
orienting the inclusions is given by

εb = εe + εe

f
3
∑

j=x,y,z
εi−εe

εe+Nj(εi−εe)

1 − f
3
∑

j=x,y,z
εi−εe

εe+Nj(εi−εe)
(3.7)

And for example, the case of randomly oriented discs gives

εb = εe + fv(εi − εe) 2εi + εe

(3 − fv)εi + fvεe
(3.8)

and for randomly oriented discs

εb = εe + fv(εi − εe) εi + 5εe

(3 − 2fv)εi + (3 + 2fv)εe
(3.9)

The Maxwell Garnett equations are widely employed in the literature [98] due to its legacy, but
generally the accuracy of the this theory is lower than other mixing models because of its dilute mixture
limit.
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Figure 3.2: Examples of randomly distributed ellipsoidal configurations (modified after [96]).

3.2 Symmetric Mixing Formulas
Unlike the non-symmetric case, this type of mixing formulas are defined by the symmetry with respect to
the mixture phases [110]. The combination of topology and micro-geometry of the mixture is taken into
account as statistical averages and generally the mixture can be approximated as homogeneous. These
equations generally are independent of particle shapes of the inclusions.

3.2.1 Bruggeman Formula
Bruggeman formula was derived in 1935 [112] and it had an extensive use in the field of mixing theories
since it does not have the limits of the Maxwell Garnett equations due to dilute mixtures.

(1 − f) εe − εb

εe + 2εb
+ fv

εi − εb

εi + 2εb
= 0 (3.10)

In [113] permittivity measurements of several powders samples were performed at 20 MHz and at 9.375
GHz finding out that the Bruggeman mixing formula returned solid permittivity values in agreement with
the literature. Nevertheless they noticed that the equation was less accurate for powders with particle
sizes less than 30 µm and for predicting the imaginary part.
In [114] the bulk permittivity of powder mixtures of the polar compound 1-cyanoadamantane was mea-
sured in the frequency range 1 kHz - 1 GHz and pointed out that the Bruggeman model fits the experi-
mental data more accurately for volume fractions of the inclusion fv < 0.25.
In another paper [115] the Bruggeman equation was found out to predict well the permittivity of a pow-
dered granite and two basalt samples in the frequency range 4-19 GHz.
It was also observed that Bruggeman and LLL equations return values that are very similar to each other,
and exactly equal for a volume fraction of the inclusion fv = 0.57.
Finally, it was observed that the Bruggeman equation is more accurate in describing the bulk permittivity
of low dielectric contrast mixtures with volumetric fractions of the phases as similar as possible [110].

3.2.2 Looyenga-Landau-Lifshitz Formula
The Looyenga-Landau-Lifschitz (LLL) equation was independently derived in [116] and [117], assuming
a small dielectric contrast between the phases of the mixture. It was considered a system composed of
two materials with εb +δεb and εb −δεb; the bulk permittivity is then the volume average of the electrical
properties of these two components. LLL equation is independent of the particle shape and structure.

ε
1/3
b = fvε

1/3
i + (1 − fv)ε1/3

e (3.11)

In [116] the LLL equation was found out to fit experimental data more accurately for powders with high
volume fractions of the inclusions, especially for mineral with real part of permittivity values of 9 and
above. Also in [114] the authors pointed out that the LLL formula worked better for fv > 0.65. Moreover
in [118] it was noted that the LLL formula is valid only for mixtures with low permittivity contrast
between the phases.
In summary, it has been shown that the formula fits well the data coming from mixture with low dielec-
tric contrast and high volume fractions of inclusions, returning in each case values very similar to the
Bruggeman equation.
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3.2.3 Complex Refractive Index Model CRIM
The complex refractive index model (CRIM) equation was developed to describe the refractive index of
nonmagnetic mixtures, considering a simple volume average of mixture’s components refractive indices
[85] √

εb = fv
√

εi + (1 − fv)√εe (3.12)
This equation is successful in describing the dielectric behavior of liquid mixtures: in particular for
bentonite clays mixed with water at 4 GHz [119], soils with increasing water content [120], saturated
sedimentary rocks starting from 800 MHz [121] and dry sand/clay mixtures as well [122].
For water with high salinity values the CRIM model does not return accurate values, probably due to
chemical interactions between the phases of the mixture.

3.2.4 Lichtenecker Formula
The Lichtenecker formula was originally derived as semi-empirical [123], without a strong theoretical
framework. Only later in [124] an analysis of the equation was carried out, showing that the Lichtenecker
equation describes a specific topology, i.e. a randomly oriented spheroids with uniform shape distribution.
Moreover, [125] proved that the equation is physically founded and that it is a reasonable mixing formula
for soils and rocks since they have oblate spheroidal grains.

εb = εfv

i ε1−fv
e (3.13)

In [126] it was showed that the Lichtenecker equation predicted the measured permittivities for a wide
range of basalt samples better than the other equations.
92 measurements of the complex permittivity of lunar regolith samples retrieved during the NASA’s
Apollo missions were reviewed in [127] and it was discovered that the real part pf permittivity was well
fitted by the function

εb = aρb (3.14)
with a = 1.93 ± 0.17 and where ρb is the bulk density of the samples.
It was shown that eq. 3.14 is equivalent to the Lichtenecker formula assuming a real part of the solid
permittivity ε′ = 7.7 and a grain density of lunar regolith of 3.1 g/cm3. The imaginary part of the bulk
permittivity on the other hand did not follow a trend as a function of the density, but it depends on the
TiO2 and FeO weight percent oxide; the loss tangent in fact was modeled by the equation [128]

tanδ = 10[0.038(%T iO2+%F eO)+0.312ρb−3.260] (3.15)

The a value in eq. 3.14 is found empirically and it varies from paper to paper (see Tab. 3.1).

!

Reference a

[127] 1.93
[129] 2.10
[130] 1.87
[131] 1.92
[132] 1.96
[133] 2.15
[96] 1.96

Table 3.1: Values of a found in the literature (adapted from [134]).

3.3 Mixing Bounds
For a two-phase mixtures it is possible to express the bulk permittivity with two bounds that cannot be
exceeded under any circumstances, i.e. the bulk permittivity falls between two values:

min{εe, εi} ≤ εb ≤ max{εe, εi} (3.16)
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The mixing bound are used in the literature for constraining the possible bulk permittivity with a con-
servative approach, useful when only little information is known about the dielectric properties of the
mixture.
In the literature there are two sets of bounds, the Wiener bounds and Hashin-Shtrickman bounds.
The Wiener bounds represent the maximum and minimum values for an anisotropic mixture, correspond-
ing to a capacitor that are connected in parallel or series in a circuit [85]

εb,min = εiεe

fvεe + (1 − fv)εi

εb,max = fvεi + (1 − fv)εe

(3.17)

The Hashin-Shtrickman bounds [135], on the other hand, were developed for isotropic mixtures and
coincide to the Maxwell Garnett equation swapping the role of the inclusions and environment. In figure
3.3 an example of these two types of mixing bounds is reported.

Figure 3.3: Example of Hashin-Shtrickman and Wiener bounds for a material composed of two phases: one phase is the air and
the other one, treated as the environment, has permittivity ε = 10 − i0.01. The complex permittivity is reported as a function of
the environment volume fraction.

3.4 Archie Law
The Archie law [136] is an empirical formula that relates the conductivity of a granular medium saturated
with a conducting fluid by means of the equation

σ = σwϕm (3.18)

where σ is the conductivity of the porous media, σw is the conductivity of the fluid, ϕ is the porosity
of granular medium and m is the so-called cementation exponent, playing the role of a curve-fitting
parameter. It is an empirical factor with value determined experimentally, generally lying between
1.3 and 2; it is dependent on the consolidation of the material. Archie’s law implicitly assumes that
all electrical conductivity in water-saturated soils or rocks is due to the migration of ions in solutions
through the entire porous matrix. It was originally derived as a trend analysis on bilogarithmic graph
paper and, although it works well in many real cases, it has never been fully understood. Also Archie
himself warned the readers in his original paper:
“ It should be remembered that the equations given are not precise and represent only approximate
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relationships. It is believed, however, that under favorable conditions, their application falls within
useful limits of accuracy.”
Nevertheless recent discussions [137] and a brilliant paper [138] have returned a more solid theoretical
framework to the theory of Archie. In [138] it was concluded that given also the irreducible scatter in
brine volume-conductivity data, Archie law predicts water saturation accurately enough. Moreover, since
σw and ϕ do not contain information about the geometry of the brine, m must contain some information
about it, although not in an interpretable form.
Other papers have tried to give an interpretation to the geometric factor m : in particular, [139] showed
that for m = 1.5 inclusions were spherical, for m > 1.5 inclusions were plate-like or cylinders whose major
axis was perpendicular to the external electric field, and that for values of m < 1.5 plate-like inclusions
had their major axis parallel to the electric field.



Chapter 4

Physics of Ice

Measurements of the electrical properties of ice represent the core of this thesis, and for this reason this
chapter reviews some useful physical characteristics and electrical properties of the main types of ice
found on earth and observed and speculated to be present in the Solar System.

4.1 Ice in the Solar System
The cryosphere, i.e. the portions of the Earth’s surface where water is in solid form (such as glaciers,
snow deposits, sea ice, etc.), is an exceptional investigative tool for geophysics, capable of reconstructing
the climate of our planet over hundreds of thousands of years, acting as a true paleoclimatic thermome-
ter. Approximately 10% of the surface of the land mass is covered in ice to a depth of a few kilometers,
and, depending on the time of year, there can be around 5% ice coverage of the surface of the oceans in
polar areas. The presence of ice on Earth is a crucial element in the global climate system, significantly
influencing the planet’s energy balance and hydrological cycles. In fact, since ice is very reflective, it
reflects more Sun radiation than the land mass, and a change in the area of ice caps, glaciers and sea
ice would impact remarkably in the global climate change, regulating global temperatures. Moreover,
the glacial deposits serve as rich source of freshwater reserves for numerous ecosystem: environment on
Earth is thus critically dependent on the physical properties of ice [140].

Water ice is present throughout the entire Solar System, both in terrestrial planet regions and in outer
regions beyond the snow line, which mark the distance from the sun where the temperature allows icy
masses to originate and persist [141]. On Mercury and the moon, water ice has been identified in per-
manently shadowed craters in polar regions where it may have remained in a stable form for billions of
years [142],[143]; furthermore on Mars the water ice is present at the polar caps and in craters [144],
[145]. Although its abundance is still not fully known, water both in liquid and solid form has been
observed in the lower cloud layers on Saturn and Jupiter and in the rings of the giant planets, at various
fractions [146],[147],[148]. Ice is ubiquitous also in small Solar System Bodies: solid ice features have been
detected on comets via ground-based telescopes [149] and in situ measurements [150]; dwarf planet Ceres,
the largest object in the main asteroid belt, has substantial subsurface ice [151], and Kuiper Belt objects
(KBOs), objects that populate the region of the solar system beyond the planets, are largely composed
of frozen volatiles such as water [152],[153].

4.2 Structure and Properties of ice
Water is the most common chemical compound on Earth but also one of the most peculiar, with the
largest number of anomalies in its properties. The thee nuclei of this molecule form an isosceles triangle
with the oxygen at the apex and the two hydrogens at the base line (see Fig. 4.1); the protons are
attached to the oxygen atom at an angle of 104.45°.
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Figure 4.1: Electromagnetic model of the H2O molecule.

4.2.1 Ice Crystal Structure
Ice possesses twelve crystal structures and two amorphous forms. Under low-pressure conditions, the
stable phase is known as ice I. This type of ice has two different variants: ice Ih, also termed ordinary
ice, which is hexagonal and results from water freezing at standard pressure, and ice Ic, which is cubic
and develops via vapor deposition at low temperatures (≈ −130°C) [154].
In the Ih ice crystal structure the oxygen atoms lie in hexagonal layers, raised and lowered alternatively
[155] (see Fig. 4.2). Each H2O molecule is surrounded by four closest neighbors located near the vertices
of a regular tetrahedron centered on the molecule at a distance of 2.76 Å. The oxygen atom in each
molecule forms strong covalent bonds with two hydrogen atoms, and the molecules are weakly linked to
each other by hydrogen bonds [156].

Figure 4.2: Model of an Ih pure water ice crystal (taken from [155]).

Ice rules or Bernal-Fowler rules, are a set of rules that describes the arrangement of hydrogen atoms
in an ice crystal considered "ideal" [157]:

1. Each water molecule is surrounded by other four molecules such that his two hydrogen atoms are
approximately directed toward two of the four surrounding oxygen atoms;

2. In every O-O linkage only one hydrogen atom is involved;

3. Each oxygen atom has two nearest neighboring hydrogen atoms so that the structure of the water
molecule is preserved.

Local violations of these three rules produce structural defects in ice and control the behavior of the
electrical conductivity and the relaxation time.



4.3. WATER ICE DIELECTRIC PROPERTIES 41

4.3 Water Ice Dielectric Properties
In this section the basic principles and the most important result of the theories for water pure ice Ih are
outlined.
It is important to point out that the water ice does not posses magnetic properties.

4.3.1 Jaccard Theory
Although Debye model (detailed in the previous chapter) is able to describe the behavior of dielectric
permittivity of pure water ice up to hundreds of MHz [158], it was observed that the Cole Cole model
is more effective up to 250 K. The Jaccard Theory, on the other hand, is a widely accepted model for
the polarization mechanisms of ice [159], [160]; it is based on the presence of protonic point defects
(also called intrinsic defects), that are places in the ice lattice where the Bernal-Fowler rules are locally
violated, and on their motion (protonic motion path) in the crystalline lattice of the ice which has the
effect of reorienting the molecules encountered along its path. In Jaccard work two types of protonic
defects are addressed and described:

• the first one is linked to the rotation of the H2O molecules inside the lattice that generate the
so-called L and D Bjerrum defect pair. The L Bjerrum defect is a proton-deficient site (of the type
O · · · O), while the D Bjerrum defect is a site where two adjacent protons face each others (of the
type O − H · · · H − O).

• the second one is due to proton motion along the bond of two molecules. This phenomenon transfers
the ionization state generating a pair of ionic defects H3O+ and OH−.

Unlike other geomaterials, the polarization and conduction phenomena are strongly interconnected in the
ice [140], due to the protonic hopping.
For each type of defect the conductivity is defined as:

σi = niµi|ei| (4.1)

where the subscript i indicates the type of defect, ni is the defect volume concentration, µi the mobility
and ei the effective charge. These values were tabulated in [140] and are shown in table 4.1. The
volumetric concentration of the intrinsic defects is given by

ni = Nie
−

EF
i

2kB T (4.2)

where EF
i are the energies of formation of defect pairs and Ni = 2

3 N for ionic defects and Ni = N for
Bjerrum defects, with N the number of molecules per unit volume [84]. The mobility is defined by an
Arrhenius-like equation

µi = Mi
1
T

e
−

EM
i

kB T (4.3)

where Mi is a normalization coefficient and EM
i is the motion activation energy.

It is possible to define the ionic conductivity and the Bjerrum conductivity, given respectively by:

σ± = σH3O+ + σOH−

σDL = σL + σD

(4.4)

Defect Type ei /1.61 × 10−19C Intrinsic concentration ni/N µi (10−8m2V −1s−1) Activation energy for formation and motion
1
2 EF

i + 1
2 EM

i (eV )

H3O+ 0.62 ≤ 10−13 10 > 0.7

OH− −0.62 ≤ 10−13 3 ?

L 0.38 10−7 2 0.58

Table 4.1: Parameters for water ice protonic point defects at 253 K. It is important to note that these values are affected by larger
uncertainties and should be taken cautiously (taken from [140])
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For pure water ice, at frequencies much higher than relaxation frequencies, ν ≫ νrel each type of
defect activates and moves independently of the others, and the high-frequency conductivity is given by

σ∞ = σ± + σDL (4.5)

The low-frequency or static conductivity σs, on the other hand, can be evaluated from the equation

e2

σs
=

e2
±

σ±
+ e2

DL

σDL
(4.6)

where the static conductivity is different from zero only if both types of defects are present in the ice
lattice.
In general the high-frequency conductivity is controlled by the majority carriers, that are the defects with
a higher product ni × µi; the static conductivity, conversely, is mainly controlled by the minority carriers
[140].
Above 230 K, as example, the majority carriers in pure ice are the Bjerrum defects and the minority
carries the ionic defects, σDL ≫ σ±; for this reason σ∞ ≃ σDL and σs ≃ σ±

(
e2/e2

±
)
.

Eventually it is possible to express the relaxation angular frequency and static permittivity as a function
of the parameters defined by Jaccard’s theory

ωrel = Φ
(

σDL

e2
DL

+ σ±

e2
±

)
(4.7)

εs = ε∞ + (σ±/e± − σDL/eDL)2

ε0Φ
(
σ±/e2

± + σDL/e2
DL

)2 (4.8)

where Φ is the polarizability constant that depend on temperature and the distance between the two
oxygen atoms.
The trend of relaxation frequency of pure ice versus temperature has been studied for decades by various
research groups: in every set of data there’s a change in slope at about 230 K except for [161], probably
due to differences in the formation of the ice sample (see Fig. 4.3).

Figure 4.3: Trend of relaxation frequency of pure ice versus temperature according to literature [162], [161], [163], [164] (taken
from [84]).

The static permittivity can also be expressed as [165]

εs = A

T
exp

[
Ea

kB(T − T0)

]
(4.9)

where A = σs/(ε0ω0), Ea is the difference between the activation energy from relaxation time and the
activation energy from the high frequency conductivity Ea = Eτ

a − Eσ
a . Eq. 4.9 is a single relation both



4.3. WATER ICE DIELECTRIC PROPERTIES 43

Figure 4.4: Temperature dependence of the static dielectric permittivity of ice and water. The black solid line is the fit of
experimental data according to eq. 4.9. The box inside the figure shows the real and imaginary part of permittivity of ice and
water at 273 K (taken from [165]).

for ice and water and it fits accurately the experimental static permittivity of both ice and water (see
Fig. 4.4).

The high-frequency permittivity for pure ice slightly depends on temperature (see Fig. 4.5) and it
was evaluated in [166] with the equation:

ε∞ = 3.093 ± 0.003 + (0.72 ± 0.60)10−4T + (0.11 ± 0.02)10−5T 2 (4.10)

Figure 4.5: Pure ice high-frequency permittivity in the the temperature interval 2 K-253 K [166].

High frequency conductivity and static conductivity can also be expressed as a function of the pa-
rameters of Jaccard theory; for example, above 230 K with only one dominant defect type (L defects),
the conductivity is given by

σ∞ − σs ∝ 1
T

e
− Eσ∞

kB T (4.11)
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4.3.2 Wait-and-Switch Model
The other model employed to describe the dielectric behavior of pure water ice in addition to the phe-
nomenological Jaccard theory is the wait-and-switch model [140], [167]. According to this commonly
accepted model, the water dipoles switch between different dipole directions following the Bernal-Fowler
rules. The water molecule only experiences these reorientations when it encounters an ice lattice defect
(both L-D Bjerrum defects and H3O+- OH− ionic defects); otherwise, it stays in a waiting mode. The
activation energy of the Bjerrum defects diffusion ELD is higher than the one associated to the migration
of the ionic defects: despite this, in the pure ice at high temperatures (above 235 K) the overall polar-
ization is more likely to be influenced by Bjerrum defects than by ionic ones, given the larger quantity of
the former. At low temperatures, however, it becomes more and more difficult to overcome the potential
barrier linked to Bjerrum defects and therefore the overall polarization is more likely to be affected by
ionic defects, which have an activation energy that is about one third of that of the L-D defects. In this
case, it is crucial to note that the two types of migration are closely related: in fact, the orientation
left by the migration of L-D defects could prevent the diffusion of the ionic ones and, in general, the
hopping proton can be released only by a rotation by the whole water molecule [168], [169]. At higher
temperatures the diffusion is fast and the defects are stuck in these lattice "traps" for a relatively short
time: the two kind of migrations ca be considered uncorrelated and the system is schematized by an
equivalent circuit with two resistances RLD and R±in parallel. Thus, the ice complex permittivity can
be expressed as:

ε(ω) = ε∞ + εs − ε∞

1 +
[
(iωτLD)−1 + (iωτ±)−α±

]−1 (4.12)

where τLD and τ
α±
± are respectively the relaxation times of orientation defects L-D and ion defects. At

high temperatures (above 240 K), the relaxation time τLD is much smaller than the ionic one τ± due to a
large difference in their activation energy (ELD > E±) and thus the overall relaxation time is controlled
manly by L-D defects, τ ≈ τLD.
Below 240 K, the transition from the dominating motion of orientation defects at high temperatures to
the dominant motion of ionic defects at low temperatures causes an adjustment in the activation energy,
and the ion defects play the dominant role, thus τ ≈ τ±.
Dropping further in temperature, below 170 K, the motion of orientation defects appreciably slows down
creating traps for ionic defects. Consequently, the protons diffusion motion is correlated with the move-
ments of the L-D defects and the complex permittivity can be determined as:

ε(ω) = ε∞ + εs − ε∞

1 +
[
(iωτLD)−1 + ((iωτ±)α± + (iωτt)αt)−1

]−1 (4.13)

where the relaxation time ταt
t is related to the newly created traps for ionic defects. In case α± and αt

are close to one, eq. 4.13 reduces to the Cole-Cole model.

4.3.3 Influence of Dopants
Impurities are able to introduce protonic extrinsic defects in the ice lattice; for examples the acids HF and
HCl are sources of H3O+, with the halides that generate numerous Bjerrum defects. Such phenomenon
changes drastically the electrical properties, that turn out to be different from the case of pure ice. In
fact, saline ice exhibits a different behavior compared to that of pure ice and, in particular:

• below the eutectic concentration of the salt, ice is formed first and the excluded salts are concen-
trated in the brines, that subsequently freeze at the eutectic temperature;

• above the eutectic concentration of the salt, hydrates freeze first and then, at the eutectic temper-
ature, the ice-hydrate mixture forms.

As soon as the concentration of impurities is increased to a few µM and decreasing the temperature,
the ionic defects become the majority charge carrier (the Bjerrum ones on the other hand become the
minority) [170]. Only certain chemical compounds at low concentrations in the mother solution (in the
range 10−3 − 10−2 M) can be incorporated in the ice lattice, forming a solid solution. At higher concen-
trations, on the other hand, impurities can induce imperfections in the ice structure such as air bubbles:
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the impurities are located in these sites as inclusions in the grains or at the grain boundaries. Some salt
are more effective in changing the dielectric properties of ice, for example this is the case of HCl and
HF ; other species as H2SO4 are less efficient in creating protonic defects.

The high-frequency conductivity for ices doped with low salt concentrations and at high temperatures
is controlled by the L-D defects that are the majority carriers; since these defects have high activation
energy (Ea = 0.6 eV ), σ∞ rapidly decreases as a function of temperature. Moreover, such parameter
is weakly dependent on the impurity concentration: the dopants, in fact, introduce a small number of
extrinsic L-D defects. The static conductivity instead is strongly dependent on the ionic defects H3O+

and it increases with the impurity concentration, being practically independent of temperature. Above
the so called crossover temperature Tc the H3O+ are the minority carriers and control σs, whereas the L
defects are the majority carriers and influence σ∞. For temperatures below Tc, the opposite occurs: the
L defects become the minority carriers and control σs, while H3O+, now the majority carriers, dominate
σ∞. As a result, the slope of the two conductivities interchange. Finally increasing the impurities con-
centration the magnitude of σ∞ and σs become comparable. Figure 4.6 summarizes the behavior of the
conductivity as a function of the impurities concentrations and temperature.

Figure 4.6: Summary of the behavior of the high-frequency and low-frequency conductivity as a function of the impurity concen-
tration and temperature. From left to right, as the concentration increases and the temperature decreases, the trends of these two
parameters are described (taken from [84]).

4.3.4 Influence of Anisotropy and Density
In this case the term "anisotropy" refers to the variation in permittivity that results from an ice crystal’s
orientation with regard to the wave propagation path. The ice Ih crystal has the optical axis that coincides
with crystallographic c axis and then the complex permittivity is described by a tensor

ε =

ε⊥c 0 0
0 ε⊥c 0
0 0 ε∥c

 (4.14)

where ε⊥c and ε∥c are respectively the components when the electrical field is perpendicular and parallel
to the c axis [171], [162]. The effect of anisotropy on the dielectric permittivity is higher at low frequencies,
where there is a variation of about 15% between ε⊥c and ε∥c; above 1 MHz the variation reduces to 1%.
An example of the effect of anisotropy on the static permittivity of pure ice is shown in Fig. 4.7.

For the isotropic polycristalline ice, the complex permittivity is given by a combination of parallel
and perpendicular permittivities

ε = (2ε⊥c + ε∥c)/3 (4.15)
Density has a non-negligible influence on both the real and the imaginary part of permittivity. This

is mainly due to the air content (or bubbles) inside the ice structure and it is indipendent of the presence
of chemical impurities.

4.3.5 Preparation of Ice Sample
The way ice forms and grows strongly influences its electrical properties [172]. Due to the lack of a
reproducible standard procedure it is very difficult to compare the complex permittivities obtained from
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Figure 4.7: Effect of anistropy on the static permittivity of pure ice. Open and closed circles represent ε∥
s and ε⊥

s respectively
(taken from [162]).

different experiments, since microscopic and macroscopic differences can appear in the ice sample such
as: 1) cracks and fractures, 2) air bubbles, 3) chemical impurities and 5) lattice imperfections.
In [172] it was shown that the relaxation time of pure ice samples formed with a rapid crystallization are
the same to those obtained in [173], while pure ice samples obtained with a slow crystallization process
exhibit a relaxation time different, equal to that retrieved in [161]. Finally the study concludes that the
growth rate of the ice crystal can affect the relaxation time (and thus the whole behavior of the complex
permittivity) since a slow growth speed of ice crystal generates a smaller impurity content of ice.

4.4 Terrestrial Water Ice
As far as is currently known, all terrestrial ices are formed by polycristalline hexagonal ice, and, in general,
it is possible to divide terrestrial ice into three different typologies, based on its formation: meteoric ice,
sea ice and marine ice.

4.4.1 Meteoric Ice
The meteoric ice is formed by the transformation of snow into solid ice by densification, and it is found
on the ice caps. The snow, after becoming firn, further compacts to a density (around 830 kg m−3), at
which polycrystalline ice contains only individual air bubbles, and not the paths between air or water and
the ice grains, which have been closed. In the ice sheets these bubbles are usually present up to 500-1000
m depth. Beyond this point high pressure forces the bubbles to disappear, and the gas to diffuse into the
ice lattice, forming the clathrate hydrates.
Snow can be thought of as a porous element consisting of air, ice crystals, and small amounts of chemical
impurities. These, after traveling through the atmosphere, are deposited in the ice attached to the
snowflakes, or as independent aerosols. They fluctuate over time, being the product of different chemical
and climatic conditions at a certain time in the Earth’s atmosphere. Either way, aerosols are mainly
continental dust (such as silicates, CaCO3, CaSO4) or marine sprays (e.g. Na+, K+, Cl−, SO2−

4 ), or
(see the H2SO4) are formed directly from gases in the atmosphere.

Electrical Properties

The ion concentration in meteoric ice tends to be low, by 1−10 µM , with exceptions in some basal layers
of glaciers. Dielectric profiling (DEP) measurements showed that at high frequencies the conductivity is
linearly dependent on the ionic impurity concentrations in the de-icing water, according to the relationship

σ∞ = σ∞pure
+
∑

i

σ̂i[xi] (4.16)
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where σ∞pure
is the high-frequency conductivity of pure ice, [xi] are the concentrations of specific ions,

and σ̂i are the molar conductivities.
Another widely used relationship for meteoric ice is the following, where σ∞ is expressed in µS/m and
ion concentrations in µM

σ∞ = 9 + 4[H+] + 1[NH+
4 ] + 0.55[Cl−] (4.17)

(conductivity is normalized to the temperature of -15°C).
Lattice impurities and sea salt contribute to reducing the relaxation time τrel; when impurities begin
to become very present in the ice, then Maxwell-Wagner polarization can occur, which, due to the high
conductivity of the grains, tends to increase polarization at the interface.

4.4.2 Sea Ice
Sea ice is formed by freezing ocean water: it starts by forming frazil ice characterized by a multi phase
structure, which in addition to the classical hexagonal structure, includes gas, salt water, solid salt and
other impurities. It is a type of ice with high salinity, due to the contribution of saltwater inclusions. The
high salinity values of sea ices are due to the presence of brine inclusion with mirabilite (Na2SO4 ·10H2O)
and hydrohalite (NaCl · 2H2O), the most common solid salts present in sea ice. Even at -40°C a non
negligible fraction of brines persist in this type of ice.
Sea ice is commonly classified into three distinct categories based on its age: (a) young ice, which generally
has a thickness of less than 30 centimeters, (b) first-year ice, characterized by a thickness ranging from 30
centimeters to 2 meters, and (c) multiyear ice, which typically exceeds a thickness of 2 meters [174]. The
initial two categories of ice exhibit structural similarities and are often regarded as a unified category.
A significant distinction between multiyear ice and the other categories lies in their respective brine
concentrations.

Brine Volume Fraction

The volume fraction of brine inside sea ice is defined as

fb = Si

Sb

ρi

ρb
(4.18)

where Si is the salinity of the ice, Sb is the salinity of the brines, ρi is the density of pure ice and ρb is the
density of the brine [96]. Sb and ρb are two quantities temperature-dependent. Furthermore, based on
experimental data reported in [175], the sea ice brine volume fraction can also be expressed as a function
of temperature T [176]

fsea ice
b = 10−3Si

(
−49.185

T
+ 0.532

)
(4.19)

where the equation is valid in the temperature range −0.5°C ≥ T ≥ −22.9°C.

Electrical Properties

Given the multiphase composition of sea ice and the presence of brine pockets, it is very difficult to assign
fixed complex permittivity values to this type of ice, which is very site-dependent. In general, the complex
dielectric permittivity of sea ice depends on several parameters, such as: the complex permittivity of pure
ice, the complex permittivity of brine pockets, the shape and orientation of these latter and the brine
volume fraction fsea ice

b .
In the literature, there are in the first instance two types of experiments conducted on sea ice: the first is
a granular ice grown in the laboratory and obtained by pouring synthetic brines into a sample of porous
snow, the second, the so-called natural mosaic sea ice, by taking samples in situ [177], [178],[179]. Both
samples have similar dielectric behavior with two abrupt changes in permittivity and conductivity at
the NaCl eutectic temperature of 251 K, when the salt begins to precipitate into brines and produce a
mixture of ice and brine, and the second below 218 K, when the brines freeze completely. Three relaxation
phenomena are present in these sea ice samples (see Fig. 4.8):

• at low frequencies the migrations of ions within the brine channels produce an additional static
permittivity and a ion-space charge polarization;
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• at higher frequencies a Debye-like relaxation of protons in the ice was observed;

• in the MHz region a Maxwell-Wagner relaxation occurs between the ice matrix and the brine
channels.

Figure 4.8: Real and imaginary part of dielectric permittivity of artificial sea ice as a function of frequency from 260 K to 240 K
[84]. (modified after [178]).

Other papers studied the behavior of in situ complex permittivity of sea ice, pointing out that [180], [181]:
1) the brine conductivity increases as the temperature decreases down to -8°C, then it starts to decrease,
2) the real part of permittivity is highly dependent on the brine volume fraction but less dependent on
the orientation of their orientations, and on the contrary 3) the imaginary part of permittivity is strongly
dependent on the brine inclusion orientation and less dependent on the brine volume fraction.
In [181] the complex permittivity of natural sea ice as a function of the depth were modeled (see Fig.
4.9).

Figure 4.9: Real and imaginary part of dielectric permittivity of model sea ice as a function of depth (modified after [181]).

The temperature dependence of the three types of sea ice is shown in Fig. 4.10.
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Figure 4.10: Real and imaginary part of dielectric permittivity versus temperature of three types of sea ice at 10 GHz (modified
after [96]).

4.4.3 Marine Ice
Marine ice originates from thermohaline circulation that fills the cavities below an ice shelf with water.
Melting ice near the base contributes to lowering the salinity and density of seawater, which subsequently
flows outward along the bottom of the shelf. Thus the water re-gels, first forming frazil ice, and later
compacts generating marine ice. Because of its composition, it is opaque to radio waves, unlike meteoric
ice. The upper part of the marine ice layer is characterized by an air bubble free structure with brine
pockets, while the lower part is hydraulically connected with the ocean water through a system of brine
drainage channels [182], [183].

Electrical Properties

The electrical properties of marine ice are poorly studied and there’s only one paper that effectively
analyzed the conductivity of marine ice samples at different depths [184]. It was highlighted that only
the conductivities of few samples follow the linear trend of the low-salinity data of meteoric ice, wheres
others significantly differ from such trend (see Fig. 4.11). It was explained that the lower-salinity samples
are well described by the Jaccard theory, with L defects created in proportion to the salinity. Higher
salinity samples have the Cl− concentration above the solubility limit of about 300 µM , causing the ions
to concentrate at the grain boundaries. Finally, the liquid brines are present at temperatures between
-10°C and -30 °C.
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Figure 4.11: Conductivity versus Cl concentration for marine ice samples. The meteoric ice samples and sea ice samples belong to
two distinct populations with different electrical behaviors; the marine ice samples have conductivities that lie in an intermediate
region between these two populations. (modified after [184]).

4.5 NaCl Doped Ice
NaCl solutions take into the ice lattice H3O+ and Cl−, with the chloride substitution that depends on
the pH of the sample. The impurity saturation (for both H3O+ and Cl−) of the ice lattice lies in the
range 0.1 − 0.3 mM ; so the above this limit the impurites that cannot be incorporated in the lattice are
precipitated as hydrates [185]. Moreover, in literature it has been calculated that the relaxation time of
ice saturates for initial NaCl concentration of ∼ 0.3 M [185].
Below eutectic composition (i.e., 23.3 wt %) ice is the initial phase to form; the salt that is not incorpo-
rated into the ice becomes concentrated in the brines, which then freeze into a mixture of ice and hydrate
at the eutectic temperature (i.e., ≈ 252 K, see Fig. 4.12). On the other hand, above the eutectic compo-
sition, hydrates are formed first, with the ice-hydrate mixture freezing subsequently, again at the eutectic
temperature [185]. The Cl− partition coefficient, i.e. the ratio of the concentration of a substance in
one medium to the concentration in a second phase when the two concentrations are at equilibrium, is
approximately equal to k ≈ 4 × 10−4 for NaCl solutions [185].

Figure 4.12: Phase diagram of NaCl solutions.
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The static conductivity versus temperature of NaCl doped ice was studied at different salt concen-
trations [185]. In Figure 4.13 it can be noticed that the static conductivity is dependent on the NaCl
concentration and the temperature and that it shows an abrupt increase at the eutectic temperature (i.e.,
≈ 252 K) regardless of the concentration, due to the appearance of the brines in the ice.

Figure 4.13: Conductivity versus temperature of NaCl doped ice at different concentrations (data taken from [185]).

4.5.1 Dielectric Permittivity of NaCl Brine
The complex permittivity of brines composed by mainly NaCl solutions is given by [186]

ε′
brine = εw∞ + ε0,brine − εw∞

1 + (2πντbrine)2 (4.20)

ε′′
brine = (2πντbrine) ε0,brine − εw∞

1 + (2πντbrine)2 + σbrine

2πνε0
(4.21)

where εw,∞ = 4.9 and τbrine, ε0,brine are tabulated in the literature [96].

4.6 Dirty Ice
The dirty ice is the type of ice where mineral grains are mechanically trapped in the polycristalline
structure of the ice. It is quite uncommon on Earth; the meteoric ice, as example, has a negligible
amount of grain inclusions (less than 1 %). Nevertheless, in the Solar System dirty ice is found quite
often. For example, it has been observed on the surface of three of the Jovian icy moons, Callisto,
Ganymede and Europa [56] and on the Martian polar caps [187].
Despite this, only few measurements of the electrical properties of dirty ice have been carried out in the
literature. In [188] the low-frequency electrical properties of ice-silicate mixtures were measured, finding
out that the ice relaxation frequencies are higher than those measured in defect-saturated saline ice: this
has been interpreted as indicating the formation of additional defects near the silicate surfaces. Moreover
from the complex spectra five different relaxations related to H2O were identified.
The electrical properties of ice/chondrites mixtures were studied in [103] as a function of the inclusion
volume fraction and temperature (113-298 K) in the frequency range 1 MHz -1 GHz. It was found out
that the real part of permittivity increases as the temperature rises (see Fig. 4.14); nevertheless it was not



4.6. DIRTY ICE 52

possible to measure the imaginary part of permittivity since it was too low and below the instrumental
limit. In the framework of the Rosetta mission, the dielectric properties of analog materials for the
refractory component of comets mixed with ice were studied at low frequencies (kHz range) as a function
of temperature (see Fig. 4.15). The authors of the paper concluded that the complex permittivity of
dirty ice is characterized by two components: the first one acts as "background" permittivity with little
dispersion and it depends firstly on the density of the granular material and its chemical composition; the
second one that has a strongly dispersive permittivity which depends on the properties of water ice. It
was pointed out that the background-mineral permittivity dominates at low temperatures, whereas the
ice permittivity has more influence at higher temperature, around 200 K. In the Mars framework [189]
studied the influence of basalt dust in ice, measuring the complex permittivity for temperatures ranging
from 150 K up to 250 K in the frequency range 20 Hz -1 MHz. In this case a particular behavior was
observed: the imaginary part of permittivity is approximately a linear combination between the electrical
properties of ice and those of basalt grains, whereas the real part at high frequencies is very similar to
the one of pure ice.

Figure 4.14: Real part of permittivity versus dust mass-fraction of a LL5 chondrite/ice mixture at different temperatures (taken
from [103]).
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Figure 4.15: Complex permittivity versus temperature of dunite/ice mixtures at different frequencies in the kHz range (taken from
[190]).



Chapter 5

Transmission Line Theory and
Vector Network Analyzer Setup

A transmission line is a physical structure designed to guide an electromagnetic wave from point to
point in a confined manner. A transmission line have conductors long enough to take wave propagation
into account. Generally, transmission lines are made from metallic materials (generally filled with low-
loss dielectrics) used to transmit high-frequency signals over both short and long distances with minimal
energy loss. In this work a coaxial transmission line has been used in order to estimate the EM parameters
of several materials in the frequency range 1 MHz-1 GHz.
The theory behind the wave propagation in a transmission line can be approached with two different
viewpoints: starting from the classical Maxwell’s equations or from an extension of circuit theory. In the
following, both approcheas will be described and compared.

5.1 From Maxwell Equations: EM Approach
Maxwell’s equations in the frequency domain are

∇ × E(r, ω) = −iωµ(ω)H(r, ω)
∇ × H(r, ω) = −iωε(ω)E(r, ω)

(5.1)

The simplest scenario is the one where the electric and magnetic polarization lie in the plane {x, y} and
the wave propagates along the z axis, with Ez and Hz related by (TEM wave propagation)

∂zEy = iωµHx ∂zHy = −iωεEx

∂zEx = −iωµHy ∂zHy = iωεEy

∂xEy − ∂yEx = 0 ∂xHy − ∂yHx = 0
(5.2)

Using equations (5.2) and factorizing both fields with vector and scalar functions (respectively f(x, y),
g(x, y), v(z, ω)) and i(z, ω)), the dependence in the {x, y} plane can be expressed as the gradient of a
scalar function, which is the solution of the Laplace’s equation

∇2ϕ(x, y) = 0 (5.3)

So electric and magnetic field can be written as

E(r, ω) = −∇x,yϕ(x, y)v(z, ω)
H(r, ω) = ∇x,yϕ(x, y)i(z, ω)

(5.4)

Replacing (5.4) in (5.2) and deriving with respect to z, two one-dimensional wave equations are

54
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obtained

∂2i(z, ω)
∂z2 + k2i(z, ω) = 0

∂2v(z, ω)
∂z2 + k2v(z, ω) = 0

(5.5)

where k = 2π
λ = ω

c

√
ε(ω)µ(ω) is the magnitude of the wave vector, with λ the wavelenght of the EM

wave.
These equations have as their solution the sum of two plane waves, a progressive one and a regressive one

v(z) = v+e−ikz + v−eikz

i(z) = [v+e−ikz − v−eikz]/η
(5.6)

where η = η0
√

µ(ω)/ε(ω) is the wave impedance.
By imposing initial, boundary and on section conditions the final solution for E(r, ω) and H(r, ω) is
obtained.

5.1.1 Coaxial Transmission Line and Characteristic Impedance
Taking as example the case of a coaxial transmission line, the characteristic impedance Z0, a fundamental
parameter of these structurescan be defined [191]. The geometry of a coaxial line is cylindrical and it is
defined by two conductors (an inner one and an outer one) that delimit the space of propagation of the
wave r ∈ [a, b]. It is possible to determine the scalar potential ϕ(x, y) with the Laplace equation in polar
coordinates {r, θ}:

1
r

∂

∂r

(
r

∂ϕ

∂r

)
+ 1

r2
∂2ϕ

∂θ2 = 0

Considering the boundary conditions, i.e. ϕ(a, θ) = Va and ϕ(b, θ) = Vb (ϕ has to be constant on the
conductors), the potential is defined as:

ϕ(r) = Vb + Va − Vb

ln(a/b) ln(r/b) = V0
ln(a/b) ln(r/b) (5.7)

assuming for the sake of simplicity Vb = 0 and V0 = Va − Vb.

It follows that the electric field is directed in the radial direction r̂, and the magnetic field in the
azimuthal one θ̂:

E(r, ω) = r̂ V0
ln(b/a)

1
r

[
v+e−ikz + v−eikz

]
H(r, ω) = θ̂ V0

ηln(b/a)
1
r

[
v+e−ikz − v−eikz

] (5.8)

For the coaxial lines it is convenient to use a circuital approach (detailed in the next section), because
these structure are powered by a voltage generator vg(t). For this reason the voltage V (z, ω) and the
current I(z, ω) can be defined: the first one can be calculated with a line integer (as the potential
difference between the two conductors) and the second one with the Ampère theorem (as the circulation
around one conductor):

V (z, ω) =
∫ b

a
E(r, ω) · r̂dr

I(z, ω) =
∫ 2π

0 H(r, ω)r=c∈(a,b) · θ̂cdθ
(5.9)

From these equations a relation valid also for other transmission lines is obtained

V (z, ω) = V0 [v+(z) + v−(z)]
I(z, ω) = V0

Z0
[v+(z) − v−(z)]

(5.10)

where Z0 is the characteristic impedance and it is defined as the product between a geometrical factor
fg (determined by the transverse dimension of the line) and the wave impedance η:
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Z0 = fgη = fgη0

√
µ

ε
(5.11)

where, in the case of a coaxial transmission line, fg = ln(a/b)/2π.

5.2 Circuital Approach
A transmission line is considered a distributed-parameter network, because its physical dimensions are
not much smaller than the electrical wavelength, unlike the case of ordinary circuits (that have lumped
elements and it is assumed ∆z ≪ λ). In fact, the voltages and currents of a transmission line network
can vary in magnitude and phase over its length, and only a piece of line of infinitesimal length ∆z can
be modeled as a lumped-element circuit (see Fig. 5.1). The transmission line is generally schematized as
a two-wire line since it has always at least two conductors in order to permit transverse electromagnetic
wave propagation, connecting a voltage generator to a load. It is then possible to define the following
quantities [191]:

R = series resistance per unit length Ω/m

L = series inductance per unit length H/m

G = shunt capacitance per unit length S/m

C = shunt conductance per unit length F/m

where R represents the resistance caused by the finite conductivity of the single conductor, L describes
the total self-inductance of the two conductors, C is the capacitance caused by the proximity of the two
conductors and G is due to the dielectric loss between the two conductors.
These parameters are distributed continuously throughout the circuit material and each infinitesimal
length dz is a circuit element.

Figure 5.1: (a) voltage and currents of the tranmission line; (b) lumped-element equivalent circuit [191]

Applying the Kirchhoff’s voltage and current laws to the circuit 5.1.b and manipulating the equations,
the time domain form of the transmission line equations, also known as the telegrapher equations, are
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obtained

∂V (z, ω)
∂z

= −(R + iωL)I(z, ω)

∂I(z, ω)
∂z

= −(G + iωC)V (z, ω)
(5.12)

These two equations can be solved, giving wave equations for I(z) and V (z):

d2V (z)
dz2 − k2V (z) = 0 (5.13)

d2I(z)
dz2 − k2I(z) = 0 (5.14)

where k = β − iα =
√

(R + iωL)(G + iωC) is the complex propagation constant. Travelling wave
solutions are then:

V (z) = V +
0 e−kz + V −

0 ekz (5.15)

I(z) = I+
0 e−kz + I−

0 ekz = V +
0 e−kz + V −

0 ekz

η
(5.16)

where the ekz term describes the wave propagation in −z direction, e−kzdescribes the wave propa-
gation in the +z direction, and η = η0

√
µ(ω)/ε(ω) is the wave impedance. The current on the line is

obtained applying 5.13 to the voltage in 5.15:

I(z) = k

R + iωL
(V +

0 e−kz − V −
0 ekz) (5.17)

Then the characteristic impedance Z0 can be found as

Z0 = R + iωL

k
=
√

R + iωL

G + iωC
(5.18)

These results shown in eq. (5.2) can be compared to those obtained from Maxwell’s equations (5.5),
highlighting the similarities between circuit parameters and electrical properties

k = ω

c

√
εµ k = −i

√
(R + iωL)(G + iωC)

Z0 = fgη0

√
µ

ε
Z0 =

√
R + iωL

G + iωC

(5.19)

with fg geometric factor that depends on the geometric characteristic of the line.
Eventually the characteristic impedance and the wave vector can be derived

C = C0ε′ = 1/fgε0ε′

L = L0µ′ = fgµ0µ′

G = ωC0ε′′ = 1/fgε0ε′′

R = ωC0µ′′ = fgµ0µ′′

(5.20)

5.2.1 Input impedance and Scattering function
It is possible to estimate the input impedance Zin(ω) of the equivalent circuit of the transmission line
and the scattering function S(ω), that describes waves reflections in the line, through two different ap-
proaches, a circuital one and another one based on a multi-layer wave propagation analogy [192]. In this
section the problem will be analyzed with the first approach, i.e. the circuital one.
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It is assumed that the line has length L and it is homogeneous in the electromagnetic parameters,
and that at z = 0 the line is powered by a voltage generator vg(t) and at z = L it is connected to a load
of impedance ZL.
It is then possible to define the reflection coefficient Γ(z) as the ratio between the reflection wave and
the transmitted one:

Γ(z) = v−(z)
v+(z) = v−

v+ eik2z = Γ(0)eik2z (5.21)

For a coaxial line it stands

V (z, ω) = V0v+(z)[1 + Γ(z)]

I(z, ω) = V0v+(z)
Zc

[1 − Γ(z)]
(5.22)

then, reversing and imposing the boundary condition

ΓL = ZL − Zc

ZL + Zc
(5.23)

The input impedance is obtained for z = 0

Zin = Zc
1 + Γ(0)
1 − Γ(0) = Zc

ZL + iZctan(kL)
Zc + iZLtan(kL) (5.24)

The scattering function S(ω) is useful to understand the multiple reflection phenomena in the trans-
mission line: these happen because of two impedance mismatches, at z = 0 and z = L respectively. Then
S(ω) represents the energy that flows back to the generator

S(ω) = Zin − Zg

Zin + Zg
= Γg + ΓLe−ik2L

1 + ΓgΓLe−ik2L
(5.25)

where Γg = Zc−Zg

Zc+Zg
is the mismatch at the beginning of the line.

There are three notable cases: short load, open load and adapted load.

Short load

In this case ZL = 0 and there is total reflection and no transmission (ΓL = ZL−Zg

ZL+Zg
= 1). Then, the

parameters are

Zin = iZctan(kL)

S(ω) = Γg + e−i2kL

1 + Γge−i2kL

(5.26)

Open load

In this case ZL = ∞ and there is once again total reflection at the end of the line (but with ΓL = −1).
The parameters become

Zin = −i
Zc

tan(kL)

S(ω) = Γg − e−i2kL

1 − Γge−i2kL

(5.27)

Adapted load

In this case the load has the same impedance as the characteristic impedance, ZL = Zc, and there is no
reflection (ΓL = 0), so the scattering function is

S(ω) = Γg (5.28)
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5.3 Impedance and Admittance Matrices
The impedance and admittance matrices are employed in circuit theory to relate the different port of
a microwave network, leading to an overall description of the network in terms of equivalent circuits.
Considering an arbitrary N-port microwave network (see Fig. 5.2), each nth port at its tn terminal plane
is characterized by equivalent voltages and currents for the incident (V +

n , I+
n ) and reflected (V −

n ,I−
n )

waves. At the nth terminal plane the total voltage and current is given by

Vn = V +
n + V −

n (5.29)

In = I+
n + I−

n (5.30)

Figure 5.2: N-port microwave network [191].

The total impedance matrix connect the total port currents with total port voltages of the microwave
network and can be expressed as

V1

V2
...

VN

 =


Z11 Z12 · · · Z1N

Z21
. . . ...

... . . . ...
ZN1 · · · · · · ZNN




I1

I2
...

IN

 (5.31)

or, in matrix form, as: [
V
]

=
[
Z
] [

I
]

(5.32)

Similarly, the admittance matrix is defined in compact form as[
I
]

=
[
Y
] [

V
]

(5.33)

of course, the impedance matrix is the inverse of the admittance matrix:[
Y
]

=
[
Z
]−1

(5.34)

The Zij element of the matrix can be found in the following way:

Zij = Vi

Ij

∣∣∣∣∣
Ik=0, k ̸=j

(5.35)
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where Ik = 0, k ̸= j means that all the ports except the jth have been open-circuited.
In general, Zij and Yij may be complex values. If the N-port network is reciprocal (i.e. not containing

any nonreciprocal media or active devices), the impedance and admittance matrices are symmetric (Zij =
Zji, Yij = Yji). Moreover, in case the network is lossless, Zij and Yij are solely imaginary (this property
can be demonstrated considering that the net real power delivered to a lossless network must be zero,
Re{Pav} = 0).

5.4 Scattering Matrix
For high-frequency networks, however, a mathematical discussion that includes the concepts of incident,
reflected and transmitted waves is simpler than the previous case with equivalent voltages, currents and
the impedance matrix. This representation is well described by the scattering matrix and it is more
in agreement with the direct measurements such as those that can be performed by means of a Vector
Network Analyzer (VNA) (see Fig. 5.3 for a simplified block diagram of a two-port VNA).

Figure 5.3: Simplified block diagram of a two-port Vector Network Analyzer

The scattering matrix relates the voltage waves incident on the port to those reflected from the ports.
Considering the N-port network in figure 5.2, where V +

n and V −
n are respectively the amplitude of the

incident or reflected voltage wave, the scattering matrix is defined as
V −

1
V −

2
...

V −
N

 =


S11 S12 · · · S1N

S21
. . . ...

... . . . ...
SN1 · · · · · · SNN




V +
1

V +
2
...

V +
N

 (5.36)

or, in matrix form, as: [
V −
]

=
[
S
] [

V +
]

(5.37)

The element Sij of the matrix can be found as

Sij = V −
i

V +
j

∣∣∣∣∣
V +

k
=0, k ̸=j

(5.38)

where Vk+ = 0, k ̸= j means that all ports should be terminated in matched loads except the jth one.
So Sii elements are the reflection coefficients, and Sij are the transmission ones.

[
S
]
matrix is symmetric
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Figure 5.4: Two-port network in terms of the transmission matrix.

for reciprocal networks and unitary for lossless networks.

In a two-port Vector Network Analyzer as the one employed or this work, by measuring the reflection
parameters S11, S22 and the transmission parameters S12, S21 it is possible to estimate the complex
permittivity and permeability.

5.5 The Transmission Matrix
It is often more convenient to use a 2 × 2 transmission (or ABCD) matrix to describe a two-port network
(see Fig. 5.4), instead to use Z, Y and S matrices.

The ABCD matrix is defined in terms of the total voltages and currents of the two-port network:

V1 = AV2 + BI2 I1 = CV2 + DI2 (5.39)

or, in matrix form, as [
V1

I1

]
=
[

A B

C D

][
V2

I2

]
(5.40)

The parameters of both S and Z matrices can be converted in ABCD matrix, and vice versa, by
employing the formulas tabulated in literature [191].

5.6 Coaxial Tranmission Line Method

Figure 5.5: Electromagnetic waves reflected from and transmitted through the DUT (modified after [193]).

The measurement configuration looks like the one illustrated in Figure 5.5: a TEM transmission line
(region II) filled with the material under-test is connected to a two-port vector network analyzer through
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two connecting lines (region I and III). The electric fields at the three sections of the setup EI , EII and
EIII , in the case of a normalized incident wave will be [194]:

EI = e−k0x + C1ek0x (5.41)

EII = C2e−kx + C3ekx (5.42)

EIII = C4e−k0x (5.43)

where k and k0 are the propagation constants with the sample and in free space respectively.
The constants C1, C2, C3 and C4 can be determined from imposing boundary conditions on the electric
and magnetic field.
The scattering parameters measured by the two-port network can be retrieved solving eqs. 5.41-5.43,
considering that the scattering matrix is symmetric (i.e., S12 = S21):

S11 = R2
1 · Γ(1 − T 2)

1 − Γ2T 2 (5.44)

S22 = R2
2 · Γ(1 − T 2)

1 − Γ2T 2 (5.45)

S12 = R1R2 · Γ(1 − T 2)
1 − Γ2T 2 (5.46)

with R1 and R2 the reference plane transformations at the two ports given by

Ri = e−k0li i = 1, 2 (5.47)

the transmission coefficient T is defined as
T = e−kl (5.48)

and the reflection coefficient Γ as
Γ =

√
µ/ε − 1√
µ/ε + 1

(5.49)

As a result, the system of equations is overdetermined and it can be solved in a variety of ways.

5.6.1 Nicholson-Ross-Weir and Boughriet Algorithms
The electromagnetic properties can be estimated by using the Nicholson-Ross-Weir (NRW) algorithm
[195], [196] and, for non-magnetic materials, by employing the Boughriet equation [197]. For this work
the algorithm was slightly modified as the transmission line has a larger cross-section than that of the
lines connecting the probe to the VNA, causing a mismatch at the probe/connecting line interface (see
Fig. 5.6)[198].

In the NRW algorithm, the reflection coefficient Γ and the transmission coefficient T are expressed in
terms of the scattering parameters:

Γ = K ±
√

K2 − 1 (5.50)

with
K = S2

11 − S2
21 + 1

2S11
(5.51)

T = S11 + S21 − Γ
1 − (S11 + S21)Γ (5.52)√
ε

µ
Fg = 1 − Γ

1 + Γ (5.53)

√
εµl = ic(2πν)−1ln(T ) (5.54)

with the probe geometrical factor Fg = Zc/Zp , where Zc and Zp are the impedances of the connecting
lines and the probe in air respectively. When Fg = 1 the equations coincide to the original NRW



5.7. EXPERIMENTAL SETUP 63

Figure 5.6: Depiction of the transmission line (light blue) connected to the 2-port VNA by means of two connecting lines (white).
(a) Classic uniform-air transmission line with no mismatch. (b) Probe used in this work with a different impedance from the
connecting lines. (taken from [198]).

algorithm. The choice of positive or negative sign in eq. 5.50 is due to the condition |Γ| ≤ 1. The
complex permittivity and complex permeability can be then evaluated combining eqs. 5.53 and 5.54:

ε = ic
ln(T )

2πν l Fg

1 − Γ
1 + Γ (5.55)

µ = ic
Fgln(T )

2πν l

1 + Γ
1 − Γ (5.56)

The main issue and limit of the such algorithm is that, for low-loss materials, the solutions tend to
diverge when S11 = 0 and S21 = 1 (eq. 5.51 → 0/0). It happens at ν = 0 and at frequencies νm multiples
of the probe line half wavelength [199]:

νm ≃ mc

2l Re{√
εµ}

m = 1, 2, 3... (5.57)

This problem can be avoided in the simpler cases of non magnetic materials (µ = 1), applying the
Boughriet method to estimate the complex permittivity [197]:

ε =
[

ic ln(T )
(2πν l)

]2
(5.58)

5.7 Experimental Setup
5.7.1 Vector Network Analyzer
A 2-port Keysight (formerly known as Agilent) E5071C ENA Vector Network Analyzer (VNA) was used
(see Fig. 5.7) for measurements in the frequency range 1 MHz-100 MHz. The VNA is connected to the
measuring probe through two 50 Ω coaxial cables terminated with N-type connectors. Through measure-
ments of material with well-known electrical properties, the instrumental limit of VNA for conductivity
and imaginary permittivity measurements was identified. The instrumental limit is equal to

σV NA
limit = 1.3 × 10−5 S/m (5.59)
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which, in terms of permittivity can be expressed as

ε′′
limit = σV NA

limit

2πε0ν
(5.60)

Figure 5.7: Vector Network Analyzer used in this research (Keysight E5071C ENA).

5.7.2 Coaxial Probe Lines
Three coaxial probe lines were employed in this work; they have a multiwire cage shield (see Fig. 5.8):
the coaxial-cage transmission line is composed by a cylindrical structure made of eight constantly spaced
rods and a central rod all with diameter d = (3.00±0.03) mm. All these conductors are made of stainless
steel, in order to avoid chemical contamination with water samples. The conductors are surrounded by
a Teflon cage, open at the top. This opening has different dimensions based on the probe used (see tab.
5.1).

Height (mm) Width (mm) Length (mm)
1st probe 60 50 50
2nd probe 60 50 100
3th probe 60 50 150

Table 5.1: Dimensions of the three coaxial probe lines. They substantially differ in length, ranging from 50 mm to 150 mm.

The structure just described easily allows a complete filling of the cell with both granular samples,
ensuring an uniform compactness of them, and salty solutions [198]. Figure 5.9 is a photo of the VNA
experimental setup at room temperature, with the 10 cm coaxial probe connected to the instrument
through two coaxial cables.
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(a) The three coaxial probe lines with different
length employed in this work.

(b) Depiction of the
cage-coaxial line
cross-section [198].

Figure 5.8: Photo and depiction of the cage conductors of the probes used throughout this work.

Figure 5.9: VNA experimental setup at room temperature.

5.7.3 Instrumental Limit
From measurements of the proble lines empty (see Fig. 5.10) and of materials of well-known dielectric
properties (e.g. low losses materials such as glass beads) it was possible to identify the VNA instrumental
limit at two different frequencies, 9 and 60 MHz. The two limits are expressed in terms of minimum
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conductivity measurable at that fixed frequency:

σV NA
9 MHz = 1.3 × 10−5 (S/m) (5.61)

σV NA
60 MHz = 4.2 × 10−5 (S/m) (5.62)

Above these values the measurements at 9 and 60 MHz are considered accurate.

Figure 5.10: Measurement of the dielectric properties of the empty probe line used for the study of the VNA instrumental limit.

5.8 Calibration
VNA Calibration

The VNA can be the source of two types of measurement errors: systematic error and random error. The
random error, also called instrumental noise of the VNA, cannot be removed from the measurement and
represents the limit below which it is no longer possible to provide an accurate measurement with this
type of instrument. Systematic error on the other hand can be corrected via a two-port full calibration
using the same coaxial cables employed for the set of measurements. It is very important to note that
this type of calibration must take place at the same temperature at which the measurement will then
take place: even a small temperature difference between the calibration and the actual measurement can
be a source of further errors. A SOLT calibration (or Short, Open, Through and Load method) has been
performed prior every set of measurements. It consists of different corrections:

• a measurement of a Short and an Open standard for each port, representing the ideal total reflection
of the generated signal;

• a measurement of a Load standard (50 Ω, matching the coaxial cables’ impedance), representing
the ideal absence of reflection of the generated signal;

• finally a measurement of the Through standard, which connects the port 1 with port 2, representing
the ideal transmission.

These measurements are saved by the instrument that automatically corrects every measurement after
this calibration.
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In addition to the instrument calibration detailed, it was necessary to carry out a calibration that
removed the influence of the probes’ connectors from the measurements and another calibration that
estimated the electrical parameters of the probes (electrical length l and characteristic impedance Zc) as
a function of the frequency and temperature.

5.8.1 Connectors Calibration
Once the effects of coaxial cables have been removed with the SOLT calibration, the probe can be
schematized considering that real structure measured by the VNA is composed by three transmission
lines: first connector, probe and second connector. In this scenario, it is useful to exploit the transmission
matrix approach described in 5.5. In fact, using this approach, the transmission matrix Tmeas estimated
by the VNA of the whole probe is given by:

Tmeas = TconTDUT Tcon (5.63)

where Tcon is the transmission matrix associated with the two connectors and TDUT is the transmission
matrix related to the material under-test inside the probe.

In this case a connector calibrator identical to that present on coaxial cells was employed to simulate
the action of the two connectors on the probe (see Fig. 5.11) and therefore to quantify Tcon.

Figure 5.11: Example of the connector calibrator employed to simulate and subtract the effect of the N-type connectors from the
measured values Tmeas

TDUT is then extracted in the following way:

TDUT = T −1
conTmeasT −1

con (5.64)

By converting TDUT in the scattering matrix S, then it is possible to estimate the complex permittivity
and permeability of the material investigated.

5.8.2 Electrical Length and Characteristic Impedance Calibration
Calibration of the electrical parameters of the probe (electrical length le and characteristic impedance
Zc) is crucial to the success of the measurement: for this reason, a preliminary study was conducted for
calibration of these parameters. A test was thus carried out: two estimates of electrical parameters were
performed, one with the probe line empty and another one with the probe line filled with glass beads, a
soil simulant with real part of permittivity ε′ = 3.2 and no electrical losses (see Fig. 5.12). In the case of
the empty cell (called here "air calibration"), at low frequencies, i.e. those of interest to planetary radar,
the parameters tend to be more scattered than in the case of the probe filled with the glass beads. This
occurs because in the presence of glass beads the field is well confined, while on the contrary in air the
electromagnetic field is not well confined and it tends to open up to the environment.

For this reason, the calibration of glass beads was chosen and a set of measurements as a function of
temperature (200-290 K) of the electrical parameters of the probe line was performed. Both the electrical
length and the characteristic impedance have a slight dependence on temperature, as can be seen in Fig.
5.13 .
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Figure 5.12: Comparison between air and glass beads calibration of the 10 cm probe line, at room temperature, for the estimation
of the electrical parameters of the probe line (electrical length le and characteristic impedance Zc).

Figure 5.13: Electrical parameters of the 10 cm probe line as a function of temperature at 10 and 100 MHz, obtained with a glass
beads calibration.

5.8.3 Validation of the Calibration Procedure
In order to test the experimental setup measurements on well-known dielectric properties material were
carried out as a function of temperature. Therefore, the electrical properties of pure ethanol and 96%
pure ethanol were measured in the temperature range 200 K - 290 K; thus the relaxation frequencies
νrel observed in the frequency spectra and extracted by means of a fit with a Metropolis algorithm (see
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section 7.4) were compared with the relaxation frequencies of two ethanol measurements present in the
literature, one ranging from 283 K to 323 K [200] and the other one at low temperatures, from 110 K to
159 K [201]. The results are in good agreement with both, as can be seen in Figure 5.14, confirming the
goodness of the calibration procedure.

Figure 5.14: Comparison between relaxation frequencies obtained from measurements of various ethanol samples. The results of
this work are in good agreement with those found in literature, both at room temperature and lower temperatures.
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5.9 Uncertainty Estimation
The uncertainties on the scattering parameters (S-parameters) and, consequently, on the complex di-
electric permittivity and magnetic permeability were computed in agreement with ISO Guide to the
Expression of Uncertainty in Measurement [202].
The type-A uncertainty was estimated using 500 measurements of the S-parameters of different reference
materials (probe line empty, glass beads, double distilled water and 99% ethanol) at a fixed temperature
and applying the statistical propagation formula [203]

utype−A =

√√√√∑
i

(
∂y

∂xi
uxi

)2
(5.65)

under the assumption that the uncertainties are independent and uncorrelated and where uxi are the
uncertainties on the S-parameters computed from the standard deviation of all reference materials.
The type-B uncertainty in this case was generated by the presence of an asymmetry in the S-parameters
[204] due to: a) a not perfect calibration of the cables; b) the intrinsic asymmetry of the experimental
setup. Due to this asymmetry, the estimation of ε and µ differs when S11 and S12 or S22 and S21 scattering
parameters are used [205]. The type-B uncertainty is therefore computed as the standard deviation of the
uniform probability distribution of ε (and µ) values whose boundaries are the ε (and µ) values estimated
with S11, S12 and S22, S21 parameters [104]. For the permittivity, for example, it stands

utype−B = εS11,S12 − εS22,S21√
12

(5.66)

The overall uncertainty uy on electromagnetic parameters is then

uy =
√

u2
type−A + u2

type−B (5.67)



Chapter 6

Capacitor Theory and LCR Meter
Setup

A parallel plate capacitor is often employed to estimate the dielectric permittivity of materials at low
frequencies. A typical measurement using a parallel plate capacitor consists of a LCR meter connected to
the measuring cell filled with the material investigated. In this chapter the aforementioned methodology
and the experimental setup will be detailed.

6.1 LCR Meter
The LCR meter is able to measure the inductance, capacitance and resistance of the device under test.
The instrument works best for accurate measurements in the low frequency range 10 Hz - 10 MHz.
The LCR meter can be schematized into an equivalent circuit with an operational amplifier set on the
inverted configuration (see Fig. 6.1). An oscillator (see Fig. 6.1) sends sinusoidal voltage inputs; changing
the measurement range of the current flowing through the DUT is made possible by the feedback resistor
Rfeedback.

Figure 6.1: The LCR meter equivalent circuit can be summarized in an operational amplifier in inverted configuration.

The instrument measures the output voltage Vout in both amplitude and phase, while the voltmeter
accurately measures the amplitude and phase of the selected input voltage Vin generated by the oscil-
lator. The material is inserted inside a capacitive cell which is connected to the circuit and to the four
instrument’s BNC by four coaxial cables: Hcur, Hpot, Lcur and Lpot, that are respectively the high/low
current and the high/low potential.
The DUT has an unknown impedance Zx that can be estimated by applying the Kirchhoff’s junction rule

71
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over the A node [206]:
I1 + I2 + I3 = 0 (6.1)

The current I1 that flow through the DUT is given by the ratio between the input voltage and the DUT
impedance, as a function of the frequency ν

I1 = Vin(ν)
Zx(ν) (6.2)

The current I2 is given by the ratio between the output voltage and the feedback resistance

I2 = Vout

Rfeedback
(6.3)

On the other hand, the current I3 is equal to zero, assuming infinite input impedance of the operational
amplifier

I3 = 0 (6.4)
Substituting the three currents values in 6.1 it is possible to retrieve the impedance of the DUT

Zx = −Vin(ν)
Vout

Rfeedback (6.5)

6.2 Capacitor Theory
The material under investigation is inserted insider a flat parallel plate capacitor and its complex dielectric
permittivity is estimated by studying the equivalent circuit of the system in a parallel configuration, as
described in subsection 2.3.2.
The total current that flows through the equivalent circuit is the sum of the charge and loss current, Ic

and Il

I = Ic + Il = V (iωC + G) = V

(
iωC0ε′ + ωC0ε′′ + σ

ε0

)
(6.6)

where ε is the relative permittivity. Considering that εe = ε′′ + σ/ωε0, it is possible to simplify the
equation

I = V (iωC0ε′ + ωC0ε′′
e ) (6.7)

The LCR meter performs measurements of the capacitance Cp(ν) and the loss tangent tanδ(ν), that
allow estimating the electrical permittivity as a function of frequency

ε′(ν) = Cp(ν)
C0

(6.8)

where C0 is the air capacitance which can be estimated also from the geometric parameters of the
capacitive cell

C0 = εε0
πr2

d
(6.9)

where r and d are the radius of the plates of the cell and the distance between the plates respectively.
The uncertainty of the air capacitance is computed from the error propagation law

uC0 = ±

√(
∂C0
∂r

)2
u2

r +
(

∂C0
∂d

)2
u2

d (6.10)

As regards the imaginary part of permittivity, it can be obtained from the loss tangent measurement

tanδ(ν) = 1
ωCp(ν)Rp(ν) (6.11)

that can be expressed as the ratio between the loss current and the charge current

tanδ(ν) = Il

Ic
= ωC0ε′′

e

ωC0ε′ (6.12)
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The effective imaginary part of permittivity is then given by

ε′′(ν) = tanδ(ν)ε′ (6.13)

The related type B uncertainties are computed using the error propagation law, assuming a uniform
distribution for these quantities

uε′ = ± 1√
3

√(
∂ε′

∂Cp

)2
u2

Cp
+
(

∂ε′

∂C0

)2
u2

C0
=

= ± 1√
3

(
uCp

C0
+ CpuC0

C2
0

) (6.14)

uε′′
e

= ± 1√
3

√(
∂ε′′

e

∂D

)2
u2

D +
(

∂ε′′
e

∂ε′

)2
u2

ε′ =

= ± 1√
3

(ε′uD + Duε′)
(6.15)

6.3 Experimental Setup
In this experimental work measurements were carried out by means of an Agilent HP4284A in the
frequency range 20 Hz - 1 MHz. The capacitive cell (DUT, see 6.2) is connected to the instrument through
four RG213 coaxial transmission lines (Teflon dielectric) equipped with four coaxial feedthroughs at the
vacuum/air flange transition (see Fig.8.10). These cables maintain their properties at low temperatures,
down to 100 K.

(a) (b)

Figure 6.2: Capacitive cell used in this work in the LCR meter setup.
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(a) (b)

Figure 6.3: LCR meter experimental setup used in this research. On the left, the Agilent HP4284A LCR meter; on the right the
LCR meter experimental setup at room temperature, with the capacitive cell connected to the instrument.

6.4 Calibration
A zeroing calibration consisting in an open and short circuit correction is performed before each set
of measurements. The purpose of this calibration is to correct the data, measuring stray parameters;
the open circuit calibration determines the stray admittance Yopen = 1/Zopen which compensates high
impedance measurements; the short calibration measures the residual impedance Zshort and it is employed
during the estimation of low impedance measurements. The impedance Zmeas measured by the instrument
is then corrected via means of the equation

Zx = Zmeas − Zshort

1 − (Yopen Zmeas) (6.16)

The calibration is stored into the LCR internal memory.

6.5 Pure Ice Measurements
The dielectric properties of pure ice have been studied extensively in the literature [164], [162], [161]. In
this work, pure ice measurements were carried out by means of the LCR meter, forming the pure ice by
fast temperature cycles (one with a gradient of 2 K/min and the other abruptly using liquid nitrogen).
The conductivities at 200 kHz obtained in these two experiments were compared with those present in
literature in Figure 6.4. The results of this work are in agreement with those obtained in [164]; this
is probably due to the rapid growth of the ice samples in this work, compatible with the experimental
procedure carried out in [164], as also pointed out in [172] in the description of the influence of ice sample
preparation on their electrical properties.
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Figure 6.4: Conductivity of pure ice obtained in this work at 200 kHz compared with those found in the literature [164], [162],
[161].



Chapter 7

Probabilistic Approach to Discrete
Inverse Problems

In geophysics the so-called inverse problems are very frequent: it is often necessary to extract an unknown
number of parameters of the physical system from a set of indirect measurements. Unlike so-called forward
problems, where the results of an experiment are predicted from a physical theory and they are unique,
inverse problems are often undetermined. Despite this, starting from the uncertainty on the data, a
priori information on the physical system and on the parameter model, it is possible to obtain analytical
solutions of this type of problem ([207], [208]).
In this chapter some useful elements of probability are initially defined and then the framework applied
to the inversion of the data from the measurements of this thesis is outlined, following the approach
delineated in [208].

7.1 Probability
Considering an abstract space S where a point x is individuated by a set of coordinates {x1, x2, ...} and
A is a subspace of S, the volume V (A) to any region of A will be defined as

V (A) =
∫

A

dxv(x) (7.1)

where v(x) is the function volume density. The volume element is thus

dV (x) = v(x)dx (7.2)

and it stands V (A) =
∫

A
dV (x). The probability of the subset is defined in such a way as to satisfy the

Kolmogorov axioms [209]
P (A) =

∫
A

dxf(x) (7.3)

where f(x) is the probability density.
It is also useful to define the concept of homogeneous probability distribution, i.e. the probability distribu-
tion that assigns to each region of the space a probability proportional to the volume of the region. Set-
ting an arbitrary system of coordinates {m, n, s} where the volume element of the space is dV (m, n, s) =
v(m, n, s)dm dn ds then the homogeneous probability density is equal to h(m, n, s) = k v(m, n, s), with
k a constant that may have a physical dimension.

7.1.1 Conjunction of Probabilities
Given two probabilities distribution P and Q represented respectively by two probability densities p(x
and q(x); let µ(x) the homogeneous probability density, then R = (P ∧ Q), which is the product of
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the two initial probabilities, is represented by a probability density, also called joint probability density,
expressed as

(p ∧ q)(x) = k
p(x)q(x)

µ(x) (7.4)

where k is a normalization constant.

7.1.2 Marginal Probability Density
In the special circumstance of a Cartesian product of two spaces, X = U × V with a joint probability
density f(u, v), it is possible to define the marginal probability densities as follows

fu(u) =
∫

V

dvf(uv) fv(v) =
∫

U

duf(uv) (7.5)

that are the projection of the joint probability density over U and V , respectively.
The variables u and v are independent if the joint probability density is equal to the product of the two
marginal probability densities

f(u, v) = fu(u)fv(v) (7.6)

7.1.3 Conditional Probability Density and Bayes Theorem
In the conditions defined above, the conditional probability density function of u given the occurrence of
the value v = v0 of v is given as follows

fu|v(u|v = v0) = f(u, v0)∫
U

duf(u, v0) (7.7)

Using this last concept together with the marginal probability density definition it is possible to obtain
the Bayes theorem, that is the often very useful to solve inverse problems

fu|v(u|v) =
fv|u(v|u)fu(u)

fv(v) (7.8)

7.2 Probabilistic Formulation of Inverse Problem
Inverse modeling consists of using the results of complex measurements to infer the parameters of the
physical theory that best describes the observed physical phenomenon. In this widely used approach, the
a priori information on model parameters (represented by a probability distribution) is transformed into
the a posteriori probability distribution, embodying the physical theory and the results of measurements
together with their uncertainties.
In the general case of a space not necessarily cartesian and given a set of N parameters m = {m1, m2, ..., mN },
the forward problem that allows to make prediction about the w observable parameters d = {d1, d2, ..., dW }
is defined as

di = f i(m1, m2, ..., mN ) i = 1, 2, ..., W (7.9)

or shortly
d = f(m) (7.10)

Since actual theories have uncertainties the relation between the model parameters m and the data d
are better represented by a probability density

θ(d, m) (7.11)

describing the theoretical information. Moreover, the data associated with the uncertainties are described
by a probability distribution over the data space D

ρD(d) (7.12)
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and similarly the a priori information about the model parameters, not given by the measurements data,
is represented over the space of the parameters M by the probability distribution

ρM (m) (7.13)

Combining the information about the model parameters and data, it is possible to obtain the experimental
information, defined as the joint probability density function over the space D × M :

ρ(d, m) = ρD(d)ρM (m) (7.14)

The a posteriori state of information is constructed by the combination of the experimental information
7.14 and the theoretical information 7.11 and it gives information about the data-model space:

σ(d, m) = k
ρ(d, m)θ(d, m)

µ(m, d) (7.15)

where k is a normalization constant and µ(m, d) is the homogeneous probability distribution, assuming
that the corresponding probability density is proportional to the volume element of the space.
The a posteriori information in the model space and data space are determined applying the marginal
probability density equation 7.5:

σm(m) =
∫

D

σ(d, m)dd σd(d) =
∫

M

σ(d, m)dm (7.16)

Assuming that the physical correlation between m and d is of the form

θ(m, d) = θD|M (d|m)θM (m) (7.17)

and if the partition 7.14 holds, then typically

µ(m, d) = µm(m)µd(d) (7.18)

then equations 7.15 and 7.16 give

σm(m) = kρm(m) θm(m)
µm(m)

∫
D

ddρd(d)θ(m, d)
µd(d) (7.19)

Finally, with the simplification θM (m) = µm(m), that holds in the presence of weak non-linearities

σm(m) = kρm(m)
∫

D

ddρd(d)θ(m, d)
µd(d) (7.20)

Assuming that the uncertainties on the data and model parameters are Gaussian, the probability densities
take the form:

ρd(d) = 1√
(2π)W det (CD)

exp

(
−1

2(d − dobs)tC−1
D (d − dobs)

)
(7.21)

and
ρm(m) = 1√

(2π)W det (CM )
exp

(
−1

2(m − mprior)tC−1
M (m − mprior)

)
(7.22)

where CD and CM are respectively the data covariance matrix and the model covariance matrix, dobs

are the observed data, and mprior are the a priori model parameters.
It is also interesting to deal with the case in which physical theory is treated as "exact", for example in
the case of a linear data space. In this case

θ(d|m) = δ (d − f(m)) (7.23)

and subsequently, as a result of a change of variables in a nonlinear space, the marginal probability in
the parameters space becomes

σm(m) =
√

det (gm + F tgdF )√
det (gm)

ρm(m)ρd(d) |d=f(m) (7.24)
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where F = F(m) is the matrix of partial derivatives with components Fiα = ∂fi

∂mα
, gm and gd are

respectively the metrics of the model parameters space M and the data space D.
Now, in the simplest case where Gaussian data and model parameters are treated together with an "exact"
physical theory, the a posteriori probability density is

σm(m) =
√

det
(
C−1

M + F tC−1
D F

)
e− 1

2 (d−f(m))tC−1
D

(d−f(m))e− 1
2 (m−f(mprior))tC−1

M
(m−f(mprior)) (7.25)

where, since often the covariance operators CM and CD are used to define the metrics over the spaces M
and D, then it was assumed that gd = C−1

D and gm = C−1
M .

The marginal probability on the single parameters σm(m1), ..., σm(mN ) is computed by using eq. 7.5
adapted for a N-dimensional case.
The procedure followed to obtain the marginal probability density in the parameters space is summarized
graphically in the figure 7.1.

Figure 7.1: (left) the model and data probability densities ρM and ρD represent the information known a priori on the model
and data space. The joint probability density ρ(d, m) gives the experimental information in the space D × M . (middle) The
theoretical information described by the probability density Θ(d, m) that takes into account the uncertainties on the physical
theory. (right) The combination of the various information that yield to the a posteriori probability density, with the two related
marginal probability densities (taken from [208]).

7.3 Grid Mode
Throughout this thesis, for the estimation of the marginal probability density σm(m) in the case of
physical theories with few parameters (e.g., for parameters spaces with a maximum of three dimensions), a
random uniform sampling strategy was employed. This essentially consisted of creating an N-dimensional
grid in the N-parameter space, going to sample uniformly the probability density (or, in other words,
applying a rectangular probability distribution to the space M); the sampling is generally linear.
In figure 7.2 is shown an example of the results in terms of the σm as function of two parameters m1 and
m2 retrieved by means of this Grid Mode procedure.

Figure 7.2: Example of contour plot of σm as a function of two parameters m1 and m2 of the model parameter space M .
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7.4 Monte Carlo Method
In the case of physical theories that contain many parameters (e.g., for parameters space with more than
three dimensions) a Monte Carlo algorithm has been used in order to effectively explore the parameters
space M , In this case, a certain class of Monte Carlo algorithms, the importance sampling algorithms,
permits to sample the space with a sampling density proportional to the given probability density, avoiding
the sampling of low-probability areas. These methods are based on random walk, i.e. the condition for
which in the generation of consecutive points, the point xi+1 sampled in the iteration i + 1 is close to the
point xi sampled in iteration i. In the so-called Markov Chain Monte Carlo (MCMC) methods, the xi+1
point depend only on the previous point xi and not on other points.

Figure 7.3: A graphical representation of the sampling of the probability distribution that occurs with Monte Carlo-like methods:
at the top left a 2D probability distribution is shown and in the middle and the bottom panel is illustrated the generation of
arbitrary points where the new point is created in proximity of the previous point (taken from [207]).

7.4.1 Metropolis Algorithm
In this dissertation a particular type of Markov Chain Monte Carlo method was applied: the Metropolis
sampler, based on the original Metropolis algorithm [210]. In the employed algorithm a rule define the
random walk that samples the probability density as follows:

• Starting from a point mk in the space of the parameters M established by the values given in input
initially, the algorithm makes a jump to a point mk+1 such that mk+1 = mk + zk, where zk is a
random variable with a standard normal distribution (having a mean value µ equal to zero and a
variance σ2 equal to one)

• Given the variable γ(m) = σm(m)
µm(m) , if the condition γ(mk+1) ≥ γ(mk) is met, then the algorithm

makes a transition to the point mk+1 in the parameter space, mk −→ mk+1.

• If γ(mk+1) < γ(mk) and γ(mk+1)
γ(mk) > rand(1), where rand is a random number with a uniform

distribution in the interval (0, 1) then the algorithm makes the transition mk −→ mk+1

• In all other cases the algorithm does not make the transition in the parameters space.

The fit parameters are finally estimated as the median of the distribution of the parameters explored by
the algorithm, as the distribution of the parameters may not be necessarily a Gaussian (it is however
possible to display it by graphingmk vs σ(m)).



Chapter 8

Sample Characterization and
Preparation

In this work several powdered materials were used in the creation of the dirty ice samples and NaCl
doped ice samples were created in order to reproduce the characteristics of the icy crusts of the Jovian
moons.
In this chapter all the useful physical properties of these materials are gathered, by also giving information
on the procedures carried out for the preparation of both dry powdered and ice samples.

8.1 Characterization
This section will present some physical characteristics of the granular and ice samples of interest for this
work, going on to detail for each material the chemical-mineralogical composition.

8.1.1 Powdered Samples
The following granular materials were used for the creation of dirty ice samples: glass beads, Etna basalt,
L5 ordinary chondrite and a CI carbonaceous chondrite simulant. Their grain density and grain size
are reported in Table 8.1. The grain densities were measured by means of an helium gas pycnometer
(Micromeritics Accupyc 1349) since the helium easily diffuses into the pore spaces of the sample material,
without contaminating it.
The grain size was retrieved when possible from material datasheets; in other cases, sieves with different
mesh sizes were used to estimate an interval of grain-sizes.

Granular material Grain density (g/cm3) Grain size
Glass beads 2.50 ± 0.01 400 µm − 800 µm

Etna basalt 2.961 ± 0.001 300 µm − 2 mm

L5 ordinary chondrite 3.331 ± 0.001 > 125 µm

CI simulant 2.905 ± 0.001 ≈ 10 µm

Table 8.1: Grain density and grain size of the four powdered materials employed in the creation of the dirty ice samples.

Etna Basalt

This sample (see Fig. 8.1) comes from Piana del Trifoglietto lava field at SE of Etna summit craters,
generated by an eruption started on December 4, 1991 and stopped on March 31, 1993 [211]. The sample
has been classified as a trachybasalt and it is characterized by a potassic geochemical signature (see tab.
8.2).
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SiO2 TiO2 Al2O3 FeO Fe2O3 MnO MgO CaO Na2O K2O P2O5 TOT
48.2 1.7 17.1 2.5 8.6 0.2 5.4 10.4 3.7 1.9 0.4 100.0

Table 8.2: Whole-rock composition of the Etna basalt sample [212].

Figure 8.1: Etna basalt sample used in this work.

L5 Ordinary Chondrite

The NWA 12857 chondrite used in this work was collected in Nort West Africa and it belongs to the
class of L5 ordinary chondrite, with a shock grade S2 and weathering W2. The ordinary chondrites are
mainly composed of silicate minerals [213], and W2 indicates a moderate oxidation of the metal inside
the sample, whereas S2 implies that the meteorite was slightly shocked with an undulatory extinction of
olivine [101]. Optical analyses on the solid meteorite sample were conducted at the Museum of Planetary
Science in Prato (Italy) using a Zeiss Axioplan II optical microscope equipped with a Zeiss Axiocam cam-
era. Additionally, Energy Dispersive X-ray Spectrometry (EDS) microanalysis and elemental mapping
were performed at the MEMA laboratories of the University of Florence, utilizing a Zeiss EVO MA15
microscope fitted with a 10 mm2 Silicon Drift Detector (SDD) and OXFORD INCA 250 microanaly-
sis software. These analyses employed accelerating voltages of 15 keV and beam currents of 5–10 nA
to acquire back-scattered electron (BSE) images, energy-dispersive spectroscopy (EDS) maps, and point
analyses. Quantitative mineral analyses of primary phases, specifically olivine and pyroxene, were carried
out at the IGG-CNR microanalysis laboratory using a JEOL JXA-8600 Electron Microprobe equipped
with four wavelength-dispersive spectrometers (WDS). The analyses were performed under operating
conditions of 15 keV accelerating voltage, 20 nA beam current, a beam diameter of 1 µm, and data
acquisition in wavelength-dispersive spectrometry mode.

These analysis pointed out that the most abundant silicate phase in the sample is the olivine, followed
by low-Ca pyroxene, plagioclase and high-Ca pyroxen; Fe-Ni metal, apatite, chromite and troilite are then
present with lower abundances. The chemical composition of olivine (Fa 25.1) and low-Ca pyroxene (Fs
21.1) aligns entirely with the characteristics of the L chondrite group as established in prior classification
frameworks.
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Figure 8.2: Scanning electron microscope image of a slice of the solid L5 ordinary chondrite. In the upper panels it is possible to
note the border between the low permittivity areas and high permittivity areas. The lower panels show the x-ray map of sulfur (c)
and iron (d): the HP area is characterized by a higher abundance of troilite and iron (taken from [101]).

The solid sample of the L5 ordinary chondrite exhibits two areas with different dielectric characteristics
(see Fig. 8.3: one with low dielectric losses (Low-permittivity area, LP) and one characterized by higher
values of complex permittivity (high permittivity area, HP). The HP area is characterized by the presence
of metallic phases, such as troilite, kamacite and chromite, widely distributed and the grain sizes of these
minerals are < 10µm up to submicrometric sizes; the LP area, on the other hand, although it has
the texture of the silicate phases similar to the HP area, it exhibits the metallic phases more sparsely
distributed (see Fig. 8.2 [101]). The variations in complex permittivity are therefore related to the
spatial variability of petrographic and mineralogical phases inside the sample. In general, the solid
sample exhibits a dispersive behavior, very different from the one that the terrestrial rocks have.
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Figure 8.3: Complex permittivity map of a slice of the L5 ordinary chondrite solid sample: a) real and b) imaginary parts. Black
dash line indicates the slice outline (taken from [101]).

The granular sample was obtained from the aforementioned solid meteorite by a crushing process. The
whole sample has fractions of materials with different grain sizes; the mass percentage of each fraction is:
33 % (< 125 µm), 15 % (250 − 125 µm), 25 % (500 − 250 µm), 21 % (800 − 500 µm) and 6 % (> 800 µm)
[104]. The sample shows irregular grains, the shape of which varies from flat discs to spheroidal (see Fig.
8.4). It is important to note that after crushing the solid sample, the coupling between the polar and
non-polar mineralogic phases inside the sample has been destroyed together with the conducting paths
in the metallic grain, leading to a decrease of the imaginary part of permittivity (for more details see
[104])

Figure 8.4: Closeup of the powdered L5 ordinary chondrite sample (taken from [104]).

A dielectric study was conducted on the granular sample showing that [104]: a) the real part of the
permittivity exhibits a variation of approximately 6% across the entire frequency range, with a similar
trend observed also for the imaginary part of the permittivity, whose values, considering the associated
uncertainties, are reliably determined only within the frequency range of 10–400 MHz; b) the sample has
not negligible magnetic properties with a real part of the magnetic permeability larger than one in the
entire frequency range and the imaginary part not negligible (> 102, [104]); and c) the main parameter
controlling the electromagnetic properties is the bulk density. Moreover, due to the scarcity of material,
the influence of powder size distribution on the choice of mixing formulas was not investigated in this
work.

CI Carbonaceous Chondrite Simulant

The CI carbonaceous chondrite simulant studied in this thesis was produced by the Class Exolith Lab,
based on the CI Orgueil mineralogy outlined in [214] (see Fig. 8.5). In terms of quantitative metrics
in [215], a NASA-developed figure-of-merit (FoM) evaluation system was employed to assess the fidelity
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of the simulant. In this system, numerical scores are assigned from 0 (low simulant fidelity) to 1 (high
simulant fidelity) based on comparisons with the reference material (in this case the Orgueil CI sample
and asteroid models). It can be seen from table 8.3 that the CI simulant received high scores, even better
than several widely used lunar simulants that have scores ranging from 0.25 to 0.35.

Properties FoM Scores
Magnetic susceptibility 0.96
Elemental chemistry 0.94

Mineralogy 0.83
Mineral grain density 0.75
Cobble bulk density 0.72

Particle sizing 0.55-0.89

Table 8.3: Main properties of the Exolith CI simulant with relative scores according to the NASA-developed rating system.

Figure 8.5: CI carbonaceous chondrite sample used in this work.

It is important to note that this kind of simulant has a remarkable amount of smectite in the sample
[216].
Although minor errors were made during the preparation of this class of Exolith simulants (for details
see [216]), the simulant is an accurate reproduction of a carbonaceous CI chondrite, and it has already
been used in other broadband measurements of the electromagnetic properties [205]. In this study mea-
surements on analog regolith materials representative of asteroid (101955) Bennu, the target of NASA’s
OSIRIS-REx mission, were performed. These measurements included both individual and mixed com-
ponents of the CI simulant. The effect of carbonaceous material on the complex relative permittivity
of asteroid regolith analogs was assessed by measuring the powdered serpentine component of the simu-
lant mixed with varying concentrations of carbonaceous material under vacuum conditions at 25řC and
40řC. Such paper indicate that, at a bulk density of 1.60g/cm3 and a wavelength of 12.6 cm, serpentine
containing 5 wt% carbonaceous material exhibits a real permittivity of 3.30 ± 0.01 and a loss tangent
of 0.016 ± 0.003. It was noted that the presence of carbonaceous material increases the attenuation of
electromagnetic energy within the samples. Finally, it is interesting to note that this simulant has high
values of complex magnetic permeability: for a a sample with porosity ϕ = 0.51 the real and imaginary
part of magnetic permeability are respectively µ′ = 1.1 and µ′′ = 0.01 [205].

8.1.2 Ice samples
The ice samples analyzed in this work are sodium chloride doped ices. Samples were created in the
laboratory at different initial concentrations of NaCl: Table 8.4 shows all the concentrations studied in
this work, along with the weight percentage of the salt inserted in the solution and the conductivity of
the initial liquid NaCl solution.
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NaCl concentration (mM) Number of
measurements

NaCl wt % Conductivity of the liquid solution (mS/cm)

10 2 0.06 1.06 ± 0.01, 0.97 ± 0.01

20 4 0.12 1.79 ± 0.01, 1.81 ± 0.01,
1.91 ± 0.01, 1.98 ± 0.01

30 1 0.17 3.01 ± 0.02
40 1 0.23 3.07 ± 0.02
50 1 0.29 5.14 ± 0.02
70 1 0.41 6.79 ± 0.02
80 2 0.47 8.95 ± 0.05
100 1 0.59 9.81 ± 0.05
171 2 1 16.37 ± 0.05, 21.44 ± 0.05
200 2 1.17 18.05 ± 0.05, 18.91 ± 0.05
300 1 1.8 27.30 ± 0.06
500 1 2.9 43.9 ± 0.1
700 1 4.1 64.1 ± 0.1
1000 2 5.8 83.7 ± 0.1, 82.1 ± 0.1
4000 1 23.3 216.9 ± 0.5

Table 8.4: List of NaCl concentrations used in this work to create the doped ice samples together with the number of measurements
performed. The salt weight percent and the conductivity of the initial liquid salty solution are reported. The conductivity was
measured by a Conductivity meter GLP-31.

8.2 Preparation
8.2.1 Oven Drying Samples
As already discussed in section 2.7, the residual water inside a powdered sample strongly affect its
dielectric properties, and in particular it increases the imaginary part of the permittivity considerably.
For this reason, the powdered samples were heated at 105°C for at least 12 hours at about 40 mbar in
a vacuum oven (SalvisLab Vacucenter VC20, see Fig. 8.6) prior to the the measurements, following the
indications given by previous tests with the same materials. This procedure was chosen so as not to alter
the samples with, for example, heat-induced oxidation. In fact, in [110] it was observed that heating the
samples at 250 degrees for 24 hours altered the granular material, observing a change in the degree of
crystallinity and bulk density.

After the heating procedure, the samples were kept in sealed containers before being placed in the
measuring cells, in order to keep moisture levels low.
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Figure 8.6: Vacuum oven used to heat samples before measurements.

8.2.2 NaCl Solution
The NaCl solutions were prepared employing bidistilled water obtained with a water purification system
(Simplicity UV) and the sodium chloride provided by the SIGMA-ALDRICH (see Fig. 8.7).

Figure 8.7: Water purification system and sodium chloride (white box on the left) used in this work.
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The sodium chloride was firstly weighed on semi-micro scale (Gibertini E 50 S/3) and then inserted
into the bidistilled water. The mixing was fulfilled by means of an hotplate stirrer (Bibby B212, see Fig.
8.8); once the dissolution process was finished, the salt solution was placed inside the measuring cell.

Figure 8.8: Semi-micro scale (right) and hotplate stirrer (left) used in this work for the preparation of the NaCl solutions.

8.2.3 Freezing Procedure
The ice samples were formed directly inside the measuring cell (the capacitive cell for measurements in
the range 20 Hz-1 MHz and the coaxial transmission line for measurements in the range 1 MHz-100 MHz).
In this work two different instruments were used to create the frozen sample from the saline solutions:
a climatic chamber (ACS Angelantoni) capable of control the temperature, setting custom cooling and
heating cycles, and an ultra freezer with a working temperature of -80°C (NEXUS H Angelatoni Life
Science, see Fig. 8.9). In both cases a pt100 sensor inserted inside the solution constantly monitored the
effective temperature of the sample.

Figure 8.9: Ultrafreezer used in this work.
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(a) (b)

Figure 8.10: Climatic chamber used in this work.

8.2.4 Annealing Effect
As widely demonstrated and described in the literature [168],[172], the formation of a sample of ice, both
pure and doped, is extremely delicate and strongly linked to the way in which it is frozen. Therefore,
much attention has to be paid to the temperature protocols used to freeze the sample. For this reason,
the electrical properties of the same 10 mM NaCl doped ice were measured by means of the LCR meter,
using three different temperature protocols (a,b and c), as can be seen in Fig. 8.11.

The protocols differ in the following way:

• a. A a fast annealing was set at 243 K and then the sample was frozen with liquid nitrogen,
reaching 90 K.

• b. A slower annealing was set, in order to verify the differences in the dielectric behavior compared
to the previous case.

• c. This cycle is characterized by tho different phases: in the first one the solution was "quenched"
from room temperature to 197 K at a rate of 2 K/min; then, a slow annealing cycle was set, trying
to establish if the ice structure would adjust, modifying the permittivity trend.

Fig. 8.12 shows the influence of the temperatures cycles on dielectric properties. The annealing
protocol helps to rearrange the structure of the crystal, eliminating the spurious relaxation at lower
frequencies probably due to the presence of cracks in the sample and approaching the form expressed by
the Debye model: it is particularly evident in the phase spectrum defined as phase = arctan

(
ε′′

ε′

)
, with

the low-frequency maximum flattening out. The annealing process is particularly useful for ices doped
with low concentrations of sodium chloride; in fact, it has been found that for higher concentrations of
sodium chloride annealing does not induce evident changes in the spectra at lower frequencies. From
Fig. 8.12 it can be seen that at 1 MHz the permittivity and conductivity of the various temperature
cycles have fairly the same values; therefore the annealing procedure does not play a significant role on
the dielectric properties of NaCl doped ices at the frequencies of interest for planetary radars.
In any case, all ice samples measured in this work were formed through fast temperature cycles, avoiding
the annealing effect.
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Figure 8.11: Comparison of different temperature protocols for the formation of the 10 mM NaCl doped ice sample. The colored
boxes indicate the measurements shown below, i.e. the measurements performed during the warming cycles.

Figure 8.12: Influence of annealing temperature cycles on the dielectric properties of the ice sample. The real and imaginary part
of permittivity, the phase and the conductivity are reported for the temperature of 230 K. The cycles are the ones shown in figure
8.11.



Chapter 9

Electromagnetic Characterization of
Dirty Ice for the Icy Crust of The
Jovian Moons

The radar sounding technique has been widely employed in space missions investigating several Solar
System objects, such as Earth [217], planets [218], satellites [219] and comets [102]. The propagation and
interaction of the radar signal through the subsurface of these bodies return information on their geo-
physical properties, on the condition that the electromagnetic properties of the materials encountered are
known. Dielectric permittivity and magnetic permeability are primarily functions of frequency, but they
are also influenced by several physical properties of the medium under investigation, including tempera-
ture, bulk density, salinity, and other factors. For this reason, a deep knowledge of the electromagnetic
properties of the planetary materials being investigated is necessary for the interpretation of the radar
sounder data. Nevertheless, the EM characterization of dirty ice for Jovian moons and asteroids in the
planetary radar frequency range is poorly discussed in the literature: measurements of the dielectric
permittivity of dirty ice were performed at lower (from Hz to tens of kHz) [190] [188] or at higher (from
hundreds of MHz to GHz) [205] frequencies than those of planetary radars, and they are often at fixed
temperatures [103].

In this chapter the EM characterization of dirty pure ice for the Jovian icy moons is reported. The
measurements of both dry and frozen saturated samples were performed via mean of a a Vector Network
Analyzer (see chapter 5 for more details) in the frequency range 1 MHz - 100 MHz and as a function
of temperature. Moreover, in a second phase a study on the main mixing laws was conducted in order
to model the EM properties of dry asteroid analogs and pure water ice/rock mixtures as a function of a
wide range of dust inclusions in the temperature range 120-270 K.

9.1 Experimental Setup and Procedure
The samples and the freezing procedure used for these measurements are the ones described in subsections
8.1.1 and 8.2.3. The EM properties were studied for both dry and ice saturated samples. To create the
latter, granular samples were placed inside the coaxial probe (the 5 and 10 cm ones, depending on the
abundance of material) already filled with the right amount of bidistilled water, in such a way as to
create a complete saturation. For both dry and ice saturated samples, after about 24 hours in the ultra-
freezer, the coaxial probe was taken out, put inside a thermally insulated box and eventually connected
to the VNA. For each sample (dry or ice saturated), data were collected every 30 seconds during samples
warming, from 200 K to 270 K, and temperature was continuously monitored inside the sample using a
pt100 sensor.
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9.1.1 Inclusions Volume Fraction Estimation
Inclusions volume fraction and bulk densities of the granular samples were estimated by measuring their
mass m and volume V . The mass was measured by means of a scale (Gibertini Europe 4000AR). Since
the samples do not completely fill the Teflon box of the coaxial probe (see fig. 9.1a), the volume is
calculated through the following equation:

V = Vcell
(hcell − dh − hlid)

hcell
(9.1)

where Vcell is the coaxial probe volume, hcell is the height of the coaxial probe, hlid = 0.20 ± 0.01 is the
thickness of the metal lid used as the reference plane of the surface of the sample and dh is the height
from the metal lid to the top of the Teflon box (see fig. 9.1b). In particular, dh is the average of the
heights measured at eight different points by a digital caliper (the height points in figure 9.1a).

Figure 9.1: Coaxial probe sketch: a) top view; b) section view (taken from [104]).

The bulk density ρb and the inclusions volume fraction fv of the samples were then computed

ρb = m

V
(9.2)

fv = 1 − ρb

ρg
(9.3)

where ρg is the grain density. The uncertainties on inclusions volume fraction and bulk density were cal-
culated propagating the uncertainties on the volume and the grain density, using the error propagation
formula. If fv is the air volume fraction, then it is equal to the porosity ϕ.

For measurement of the EM properties of dry granular samples as a function of the porosity, the sample
bulk density was changed before each set of measurements using a vibrating plate (SADEL Medica Mod
Duster, see Fig. 9.2). The coaxial probe filled with the granular sample was placed directly on the
plate, and then the instrument was set to a different intensity of vibration before each measurement to
progressively compact the material, varying its volume. After compaction and volume estimation (by
means of eq. 9.1), the coaxial cage was directly connected to the VNA and the measurement performed.
Bulk density was then eventually converted into sample porosity using eq. 9.3.



9.1. EXPERIMENTAL SETUP AND PROCEDURE 93

Figure 9.2: Vibrating plate used in this work for the compaction of the powdered samples.

9.1.2 Jupiter Icy Moons’ Analogs
Knowledge of Ganymede’s surface composition is based on infrared spectroscopy observations of a very
thin superficial layer (few µm) ([48], [46], [47]). These measurements suggest that such surface is es-
sentially made by a three-components dirty ice mixture: water ice, hydrated salts and non-ice hydrated
material compatible with the composition of carbonaceous chondrites ([46], [54]). Moreover, internal
structure models of the rock/iron constituent of the three Jovian satellites suggest a chemical composition
similar to the material of L/LL ordinary chondrites ([49], [? ]). Asteroids, on the other hand, are gener-
ally composed of rubble pile/monolithic blocks and at their surface they exhibit layers of regolith, even
tens of meters thick ([220], [221]), whose composition is compatible with chondritic materials. Therefore,
as a first approximation, the rocky component of both surfaces will be simulated using the same material.

9.1.3 Fitting Procedure
The mixing formulas, as detailed in chapter 3, depend on the geometry of the inclusions inside the
mixture, the permittivity contrast between mixture’s phases and mixture’s porosity. For this reason, a
strategy was developed to identify the right mixing formula, able to describe the EM properties for each
sample.

In this work, in the case of dry sample measurements, the bulk permittivity and bulk permeability
can be defined by a mixing formula MF as follows

εdry
b = MF (εair, εg, fv) (9.4)

µdry
b = MF (µair, µg, fv) (9.5)

where εair = 1, µair = 1 are the permittivity and permeability of air, εg, µg are the permittivity and
permeability of the rocky material composing the sample and fv is the inclusions volume fraction. For
saturated measurements similar equations stand

εsat
b = MF (εpure ice, εg, fv) (9.6)

µsat
b = MF (µpure ice, µg, fv) (9.7)

where εpure ice is the permittivity of pure ice and µpure ice = 1 is the magnetic permeability of pure ice.
Four different mixing formulas were employed, choosing from those most commonly used in the literature:
Maxwell Garnett - Random Discs (i.e., inclusions modeled as randomly oriented discs), Maxwell Garnett
- Random Needles (i.e., inclusions modeled as randomly oriented needles), Bruggeman and Lichtenecker.
Considering the low value of the measured magnetic permeability and the scarce presence of metallic
grains in the granular samples, in this work no magnetic interaction was assumed between particles and
the same formulas already described for the dielectric permittivity were used [222].

Firstly, the EM properties of each dry sample were measured, obtaining the complex bulk quantities
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εdry
b and µdry

b as a function of the frequency and temperature. These data were fitted with the four
different mixing formulas applying a probabilistic inversion approach with a grid mode, as described in
chapter 7, considering also that the inclusions volume fraction has a priori gaussian probability distri-
bution with mean and standard deviation equal to the value measured during the experiment and the
related uncertainty, respectively. A grid mode procedure was employed, as it was successful to explore the
parameters space. Therefore, four different complex dielectric permittivity and magnetic permeability of
the solid grains, εdry

g and µdry
g were retrieved as a function of the experimental temperature and at three

different frequencies of interest for planetary radar sounders (9, 20, 60 MHz). The grain permittivity and
permeability values obtained with this procedure were compared, whenever possible, with the permittiv-
ity of the related solid sample found in the literature (this was the case for the Etna basalt and the L5
ordinary chondrite sample [99], [101]; the CI carbonaceous chondrite simulant evidently does not have
reference values for the solid part).

Then the same fitting procedure was applied to the ice saturated sample measurements εsat
b and µsat

b in
the same way as the dry case, with the only difference that in this case the EM properties of the inclusions
were equal to the pure ice EM properties: εpure ice and µpure ice = 1. The pure ice complex permittivity
values tabulated in [166] and [162] were used throughout the fitting procedure. Therefore also in this
case, four different complex dielectric permittivity and magnetic permeability of the solid grains, εsat

g and
µsat

g were retrieved as a function of the experimental temperature and at the three different frequencies
(9, 20, 60 MHz).

Finally, the permittivity and permeability of the grain in dry condition (εdry
g and µdry

g ) were compared to
those evaluated in saturated condition εsat

g and µsat
g as a function of temperature, looking for the mixing

formula for which the pairs of values were as similar as possible in the entire temperature range. We
assume that the mixing law for which εdry

g ≃ εsat
g and µdry

g ≃ µsat
g is the correct one that describes the

actual geometry of the inclusions inside the sample.

9.2 Measurements of Powdered Dry Samples
The electromagnetic properties of granular materials used to create dirty ice samples (i.e., etna basalt,
L5 ordinary chondrite and CI simulant, see details in subsection 8.1.1) were firstly studied as a function
of the volume fraction of air voids within them (i.e., their porosity) at room temperature. Then, the
aforementioned experimental procedure was performed to obtain the EM properties versus temperature
in subsection 9.2.3.

9.2.1 ε, µ vs ν at Room Temperature
The frequency spectra of the complex permittivity and permeability of the three dry granular materials
are shown in Figs. 9.3-9.4 in the frequency range 1 MHz-100 MHz and at two fixed air volume fraction.
The Etna basalt is not a magnetic material and for this reason its magnetic permeability is not reported.
The imaginary part of both dielectric permittivity and magnetic permeability of all three materials are
scattered below 6 MHz: in fact, shadow areas in the plots indicate unreliable values because of the VNA
instrumental limit in measuring low-losses materials.
The EM properties of the three dry samples exhibit a dependence on the air volume fraction in the
whole frequency spectrum, except the magnetic permeability of the L5 ordinary chondrite, which is quite
independent of the air volume fraction (see Fig. 9.4).
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Figure 9.3: Frequency spectra of the complex dielectric permittivity of the three dry granular materials at room temperature,
reported at two different inclusions volume fraction.

Figure 9.4: Frequency spectra of the complex magnetic permeability of the three dry granular materials at room temperature,
reported at two different inclusions volume fraction. The Etna basalt is not a magnetic material and for this reason it ha a magnetic
permeability constant at µ′ = 1.

9.2.2 ε, µ vs fv at Room Temperature
The data of the dry samples at room temperature extracted at three frequencies of interest for planetary
radar (9, 20 and 60 MHz) were then fitted with the four mixing laws mentioned in 9.1.3 and the results
are shown in Figs. 9.5-9.10, where the Hashin-Shtrikman bounds for the three materials are presented
too. Such bounds were estimated considering the air as the inclusion phase. It is interesting to note that
room temperature εg values obtained from the fit with the various mixing formula have great variability,
both in the real and imaginary parts. Nevertheless, in the range of experimentally obtained porosities,
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the mixing laws have very similar values, and differ only at lower porosities. With the experimental set
up employed in this work, it is not possible to have more compacted, lower porosity granular samples,
and for this reason further measurements at lower porosities will be required in the future.

9 MHz

Figure 9.5: Complex permittivity fit as a function of the porosity, at room temperature and 9 MHz.

Figure 9.6: Hashin-Shtrikman bounds at 9 MHz and room temperature of the three granular samples.
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20 MHz

The magnetic permeability at 20 and 60 MHz is not reported for the sake of brevity, since it is fairly
constant in the entire frequency range 1 MHz-100 MHz.

Figure 9.7: Complex permittivity fit as a function of the porosity, at room temperature and 20 MHz.

Figure 9.8: Hashin-Shtrikman bounds at 20 MHz and room temperature of the three granular samples.
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60 MHz

Figure 9.9: Complex permittivity fit as a function of the porosity, at room temperature and 60 MHz.

Figure 9.10: Hashin-Shtrikman bounds at 60 MHz and room temperature of the three granular samples.
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9.2.3 ε, µ vs T
The EM properties of the samples were measured as a function of temperature at a fixed air volume
fraction using an ultrafreezer and the freezing procedure described earlier.
In Figs. 9.11-9.12 the dielectric permittivity and magnetic permeability of the three dry granular materials
are reported in the frequency range 1 MHz-100 MHz, for three different temperatures (210 K, 240 K,
270 K). The plots also show the data acquired with the probe line empty which, for the imaginary part,
represents the minimum losses measurable in the entire frequency range with this experimental setup.
Figures 9.11-9.12 also indicate that measurements below 6 MHz are scattered (gray box), especially in
the imaginary part, due to the inability of the instrument to accurately measure low-loss materials in the
low frequency range.

Above 6 MHz, the real part of permittivity of the three samples is fairly constant in the entire
frequency range, and it has a small variability with temperature. Note that, the L5 sample shows the
highest value of the real part of permittivity (≃ 4), the Etna basalt is intermediate (≃ 3) and the CI is the
lowest (≃ 2.8). This difference, as expected, reflects the different mineral composition of the samples and
their grain density (see subsection 8.1.1). Conversely, the imaginary part of the three samples exhibits
a relative constant behavior only up to 60 MHz; beyond such frequency value, this quantity tends to
increase.

Figure 9.11: Dielectric permittivity of the dry samples at three different temperatures (210, 240, 270 K) in the frequency range
1 MHz-100 MHz. The shadow box indicates values that are not reliable because of the VNA instrumental limits. The air volume
fractions of the Etna basalt, L5 ordinary chondrite and CI simulant are fEtna

v = 0.49±0.01, fL5
v = 0.37±0.01, and fCI

v = 0.60±0.01
respectively.

The behavior already described on the dielectric permittivity below 6 MHz, is also recognizable on the
magnetic data (see Fig. 9.12). The real part of magnetic permeability of L5 ordinary chondrite sample
decreases with frequency, and the imaginary part is always above the line of the data collected with the
probe empty. This trend, which is independent of temperature, highlights the magnetic characteristics
of the sample. The CI simulant exhibits a constant real part of magnetic permeability of ≃ 1.1, which
is unaffected by temperature and frequency. Moreover, at lower frequencies its imaginary part is quite
overlapped to the air measurements up to 60 MHz; beyond such value, this quantity tends to increase
as the measure is approaching the resonance frequency of the probe line. For this reason, these values
below 60 MHz are not considered reliable.
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Figure 9.12: Magnetic permeability of the dry samples at three different temperatures (210, 240, 270 K) in the frequency range
1 MHz-100 MHz. Etna magnetic permeability is not shown since the powder does not have magnetic properties. The shadow box
indicates values that are not reliable because of the VNA instrumental limits. The air volume fractions of the Etna basalt, L5
ordinary chondrite and CI simulant are fEtna

v = 0.49 ± 0.01, fL5
v = 0.37 ± 0.01, and fCI

v = 0.60 ± 0.01 respectively.

The dielectric permittivity temperature dependence in the range ≈200 K - 270 K, at three fixed
frequencies (9, 20 and 60 MHz) is shown in Fig. 9.13; the magnetic permeability is not shown, since
it does not exhibit a strong trend in temperature. While the real part of permittivity of Etna basalt
is constant in this temperature range, both the L5 ordinary chondrite and CI simulant exhibit a linear
trend, although not very pronounced. Furthermore, the imaginary part of the basalt is rather flat whereas
the values of the L5 and CI show a trend with temperature, with a slight change in slope above 240K,
more pronounced in the CI sample.
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Figure 9.13: Dielectric permittivity of the dry samples as a function of temperature at three fixed frequencies (9, 20 and 60 MHz).
The air volume fractions of the Etna basalt, L5 ordinary chondrite and CI simulant are fEtna

v = 0.49 ± 0.01, fL5
v = 0.37 ± 0.01,

and fCI
v = 0.60 ± 0.01 respectively.

9.3 Measurements of Powdered Ice Saturated Samples
The EM properties of ice saturated samples were measured at temperatures ranging from 200 to 270 K.

9.3.1 ε, µ vs T
The frequency spectra of dielectric permittivity exhibit a very different behavior compared to the dry
measurements (see Fig. 9.14). For comparison, the Figure 9.14 also shows the complex permittivity of
the related dry samples at 210 K (black line); in this case the gray box are not reported in the plots since
the ice saturated samples have dielectric losses higher than the instrumental limit in the entire frequency
range. The real part of the permittivity is fairly flat at 210 K for all samples; at 240 K the dispersive-
frequency dependent behavior starts to become appreciable only in the L5 ordinary chondrite and the CI
simulant; finally at 270 K the dispersive behavior becomes predominant in all materials, probably due
to the presence of pockets of liquid water inside the samples. The imaginary part, on the other hand,
has the typical behavior of rocky grains/water ice mixtures [189] with the predominance of a pronounced
conductive trend at low frequency and high temperature.
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Figure 9.14: Dielectric permittivity of the frozen saturated samples at three different temperatures (210, 240, 270 K) in the
frequency range 1 MHz-100 MHz. The ice volume fractions of the Etna basalt, L5 ordinary chondrite and CI simulant are fEtna

v =
0.46 ± 0.01, fL5

v = 0.33 ± 0.01, and fCI
v = 0.60 ± 0.01 respectively.

It is interesting to note that the values of magnetic permeability of the ice saturated samples in Fig.
9.15 are very similar to those observed in the dry measurements (see Fig. 9.12), as the magnetic behavior
is independent of the material filling the pores if this is non-magnetic, but only depends on the amount
of magnetic materials.

Figure 9.15: Magnetic permeability of the frozen saturated samples at three different temperatures (210, 240, 270 K) in the
frequency range 1 MHz-100 MHz. The ice volume fractions of the Etna basalt, L5 ordinary chondrite and CI simulant are fEtna

v =
0.46 ± 0.01, fL5

v = 0.33 ± 0.01, and fCI
v = 0.60 ± 0.01 respectively.

The complex permittivity values obtained from ice saturated measurements exhibit a more significant
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temperature dependence compared to those measured in dry conditions (see Fig. 9.16), which can be
attributed to the presence of ice within the pores. The basalt from Etna exhibits minimal dependence
on temperature variations, as evidenced by the nearly constant values of both the real and imaginary
components, which only begin to rise beyond 250 K. Two fundamental properties should be considered
to explain the differences between the electromagnetic properties of the three materials: a) the amount
of ice in the pores, and b) the mineralogical properties exhibited by the grains. The ice volume fraction
is controlled by the porosity of the samples, therefore the amount of ice is the largest in CI (60%) and
the lowest in L5 (33%), being the Etna basalt intermediate (46%). The mineralogical composition of the
samples contributes to a partial counteraction of the ice’s effects, as can be seen in the L5 sample, which
has the lowest ice content but the highest metallic phase concentration among the three samples. Con-
versely, the CI simulant exhibits the lowest real part of permittivity at 200 K, alongside the highest ice
content. Nevertheless, the complex permittivity of this sample demonstrates significant temperature vari-
ability especially at higher temperatures, a characteristic commonly associated with clay materials, likely
attributable to the substantial presence of smectite within the sample (≃ 50%) [216]. The orientational
polarization is the mechanism that causes the enhancement of the complex permittivity.

Figure 9.16: Dielectric permittivity of the frozen saturated samples as a function of temperature at three fixed frequencies (9,
20 and 60 MHz). The ice volume fractions of the Etna basalt, L5 ordinary chondrite and CI simulant are fEtna

v = 0.46 ± 0.01,
fL5

v = 0.33 ± 0.01, and fCI
v = 0.60 ± 0.01 respectively.
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9.4 Extrapolation of Permittivity of Dry Samples to Lower Tem-
peratures

The surface temperatures estimated on the icy moons are lower than the ones measured via this ex-
perimental setup that allow to measure down to 200 K [28], [223], [224]. On one hand, the magnetic
permeability of dry samples exhibits minimal dependence on temperature, which facilitates the extrapo-
lation of this parameter to lower temperatures without significant complications or the need for additional
measurements. Nevertheless, their dielectric permittivity has a more complex behavior in temperature,
similar for the three samples: in particular, the real part exhibits a linear dependence on temperature,
while the imaginary part remains constant until a certain temperature threshold is attained, beyond
which it follows an exponential trend at higher temperatures. As a result, further measurements were
carried out to determine if the trend of the the electrical properties remained unchanged at lower tem-
peratures for all three dry samples.

The additional dielectric permittivity measurement at temperatures lower than 200 K were performed
in the frequency range 20 Hz-1 MHz by means of the LCR meter setup (see chapter 6 for more details),
which is compatible with use of liquid nitrogen. Therefore, by combining the measurements performed
with the LCR meter at the frequency of 1 MHz with those performed with the VNA at 9 MHz at the
same fixed air volume fraction, it was possible the electrical properties down to 120 K, a temperature
compatible to those measured on the surface of the satellites. The comparison between measurements
extracted at different frequencies is possible since the EM properties in the range 1 MHz-10 MHz are
fairly constant. As example, the result for the CI simulant are shown in Fig. 9.17.
These extrapolations are critical for modeling the EM properties of dirty ice at low temperatures, as will
be emphasized in the next section.

Figure 9.17: Complex permittivity of the CI simulant as a function of temperature estimated by the LCR meter (orange dots) at
1 MHz and the VNA at 9 MHz (blue dots).
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9.5 Estimation of εg and µg

The fitting procedure detailed in subsection 9.1.3 was applied to dry and ice saturated measurements,
obtaining the complex values εdry

g ,εsat
g and µdry

g ,µsat
g versus temperature. Figure 9.18, Figure 9.19 and

Figure 9.20 report the grain permittivity of Etna basalt, L5 ordinary chondrite and CI simulant, respec-
tively estimated from dry (yellow dots) and ice saturated (blue dots) samples as a function of temperature
and at 9 MHz. For comparison, in all plots the pink dot represents the permittivity of the grain retrieved
applying the same fitting procedure to data acquired at room temperature and at the same frequency
as shown in subsection 9.2.2. For Etna basalt and L5 ordinary chondrite, Figure 9.19 and Figure 9.20
report also a green dot (and also a light blue dot in the case of the meteorite) that indicates the value
of the permittivity measured on the related solid samples in the frequency range 1 MHz - 100 MHz [99],
[101]. In case of Etna basalt the Lichtenecker equation seems to be the one that correctly describes the
mixture and therefore the geometry of the inclusions (spheroidal), as both the fits on the dry (εdry

g ) and
ice saturated measurements (εsat

g ) return values in agreement with each other and with the data obtained
at room temperature in subsection 9.2.2 and in [99].

Figure 9.18: The real and imaginary part of εg of Etna basalt retrieved from dry and saturated measurements (yellow and blue
dots, respectively) by measn of four different mixing formulas; fit result obtained at 9 MHz varying the inclusions volume fraction
of the granular sample, at room temperature (pink dot); measurement performed on the solid sample (green dot, [99]).

Figures 9.19 and 9.20 show that L5 ordinary chondrite and CI simulant seem better described by
Maxwell Garnett Random Discs equation and Lichtenecker equation respectively. εsat

g values of the CI
simulant are reported below 210 K, since above this value the dispersive behavior becomes predominant,
due to the presence of smectite as discussed in section 9.3 (the blue dashed line in the plots represents
the results above this temperature).
Moreover, L5 ordinary chondrite fit values were compared with the ones obtained on previous measure-
ments of a solid sample of the same meteorite reported in [101] (light blue and green dots in Fig. 9.19):
Lichtenecker fit results are more in agreement with the results obtained on the low permittivity areas of
the meteorite solid sample, characterized by a lower iron content; this is probably due to the destruction
of the conductive paths in metallic grains inside the solid sample during the solid sample pulverization
process [98], [104].
It is interesting to note that both L5 ordinary chondrite and CI simulant display εsat

g values that deviate
from those expected above a certain temperature (at approximately 240 K and 210 K, respectively): this
anomalous behavior may be due to the reasons addressed in subsection 9.3.1 and to the partial melting
of the ice doped by the granular material, below the freezing temperature.
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Figure 9.19: The real and imaginary part of εg of L5 ordinary chondrite retrieved from dry and saturated measurements (yellow and
blue dots, respectively); fit result obtained at 9 MHz varying the air volume fraction of the granular sample, at room temperature
(pink dot, [104]); measurements performed on the solid sample low permittivity and high permittivity areas (light blue and green
dots respectively, [101]).

Figure 9.20: The real and imaginary part of εg of CI simulant retrieved from dry and saturated measurements (yellow and blue
dots, respectively); fit result obtained at 9 MHz varying the air volume fraction of the granular sample, at room temperature (pink
dot). The blue dashed line are the fit values from the frozen saturated measurement at the temperatures at which the sample has
very dispersive behavior due to its composing clay material.

The grain magnetic permeability has a regular behavior as a function of temperature: in fact its real
part is constant in the entire temperature range for both materials (in Fig. 9.21 the grain magnetic
permeability of the L5 ordinary chondrite is shown as example). The fitting procedure performed on all
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measurements indicated that the grain magnetic permeability µg values obtained with the four different
mixing formulas are the same, due to the very small contrast in magnetic properties between air/ice and
the granular materials (see Fig. 9.21).

Figure 9.21: The real and imaginary part of µg of L5 ordinary chondrite retrieved from dry and saturated measurements (yellow
and blue dots, respectively); fit result obtained at 9 MHz varying the inclusions volume fraction of the granular sample, at room
temperature (pink dot, [104]).

The theoretical values of the bulk permittivity of the ice saturated samples obtained using eq. 9.6 and
the εdry

g values retrieved by the fit were compared with the experimental values of the bulk permittivity
of the ice saturated samples, in order to test the goodness of the fit procedure. As can be noticed, the
theoretical values for the L5 ordinary chondrite are compatible with the experimental values considering
the uncertainties, while the bulk permittivity theoretical values of the CI simulant are compatible with
the measurements up to 210 K; from this temperature the measurement is dominated by a dispersive
behavior and for this reason the fit for the CI simulant is considered reliable up to 210 K. Such behavior
is probably due to the appearance of unfrozen water inside the sample.
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Figure 9.22: Comparison between theoretical values (red line) and experimental values (cyan dots) of complex bulk permittivity
at 9 MHz of the fully saturated L5 ordinary chondrite and CI simulant.

The LCR meter measurements at temperatures lower than 200 K were then fitted with the mixing
laws using the same procedure implemented for the VNA ones, obtaining a comprehensive trend in
temperature for the complex quantity εdry

g (see Figs. 9.23 and 9.24). In this way it was possible to obtain
the grain permittivities of the three samples at 9, 20 and 60 MHz down to temperatures expected on the
surface of the moons. In Table 9.1 the result of this fit extrapolation in temperature are summarized, also
reporting the mixing law that best describes the experimental data according to the fitting procedure
proposed in this work. When it was not possible to accurately estimate the imaginary part of permittivity
and permeability due to the constraints imposed by the instruments, only the estimated upper limit of
these values are reported.

Sample 9 MHz 20 MHz 60 MHz Mixing formula

Etna basalt
ε′

g(T ) = 7.4 + 0.004T

ε′′
g = 0.14

ε′
g(T ) = 7.4 + 0.004T

ε′′
g = 0.14

ε′
g(T ) = 7.3 + 0.004T

ε′′
g = 0.17

Lichtenecker

L5 Chondrite

ε′
g(T ) = 9.5 + 0.01T

ε′′
g(T ) = 0.01 + 0.02e0.01T

µ′
g = 1.1

µ′′
g(T ) = 0.05 + 0.0001T

ε′
g(T ) = 9.6 + 0.01T

ε′′
g(T ) = 0.002 + 0.04e0.01T

µ′
g = 1.1

µ′′
g(T ) = 0.05 + 4 × 10−5T

ε′
g(T ) = 11.2 + 0.004T

ε′′
g(T ) = 0.0003 + 0.08e0.01T

µ′
g = 1.1

µ′′
g(T ) = 0.04 + 4 × 10−5T

Maxwell Garnett Random Discs

CI carbonaceous chondrite simulant

ε′
g(T ) = 5.9 + 0.02T

ε′′
g(T ) = 0.3 + 4 × 10−6e0.04T

µ′
g = 1.3

µ′′
g(T ) < 0.07

ε′
g(T ) = 6.2 + 0.02T

ε′′
g(T ) = 0.4 + 4 × 10−6e0.04T

µ′
g = 1.3

µ′′
g(T ) < 0.05

ε′
g(T ) = 4.4 + 0.03T

ε′′
g(T ) = 0.5 + 1 × 10−5e0.05T

µ′
g = 1.3

µ′′
g(T ) = 0.02 + 5 × 10−5T

Lichtenecker

Table 9.1: Temperature fitting function and mixing formula chosen for each material studied in this work at three different
frequencies (9 MHz, 20 MHz, 60 MHz). The imaginary part of the magnetic permeability of the CI simulant was not
measurable below 30 MHz due to instrumental limits: for this reason, only the possible upper limit of these values are
reported. For the CI simulant the temperature fitting function is valid only up to 210 K.
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Figure 9.23: Solid grain complex permittivity εg of L5 ordinary chondrite (dots) and its extrapolation at lower temperatures (solid
line). The extrapolation has been performed at three frequencies: 9, 20 and 60 MHz.

Figure 9.24: Solid grain complex permittivity εg of CI simulant (dots) and its extrapolation at lower temperatures (solid line).
The extrapolation has been performed at three frequencies: 9, 20 and 60 MHz.

9.6 Discussion and Conclusions
The results obtained from determining the appropriate mixing formula are in agreement with previous
measurements of the solid samples: the grain complex permittivity retrieved at 9 MHz for the L5 or-
dinary chondrite, εg = 13 − i0.6 is compatible with the values estimated in [101], where three slices of
the chondrite were analyzed. In particular, the low permittivity area of the slices shows permittivities
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compatible with those obtained through the fitting procedure in this work at room temperature. The
Etna basalt study confirms the results obtained with different experimental setups [99]. On the other
hand, the comparison of the solid grain permittivity and permeability of the CI carbonaceous chondrite
simulant was not possible because there were no measurements available from the actual solid meteorite.
Starting from the values retrieved with the fitting procedure and shown in Table 9.1, it is possible to
construct a parametric electromagnetic model for these two materials of interest for future spacecraft
missions: in fact, by varying the ice volume fraction and the temperature it is possible to create specific
models of dirty ice for the icy moons in a wide range of temperatures, from 120 K to 210 K for the CI
simulant and from 120 K to 240 K for the L5 ordinary chondrite. Figs. 9.25 and 9.26 show the filled
contour plot of the EM properties of mixtures with pure ice as a function of the ice volume fraction and
temperature.

Figure 9.25: Filled contour plot of the EM properties of the mixture of L5 ordinary chondrite and pure ice at 9 MHz, in the
temperature range 120-240 K and as a function of ice volume fraction.
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Figure 9.26: Filled contour plot of the EM properties of the mixture of CI simulant and pure ice at 60 MHz, in the temperature
range 120-210 K and as a function of ice volume fraction.

One of the goal of this work is to evaluate the performance of the planetary radar sounder that in the
future will investigate the Jovian icy moons, i.e. RIME and REASON, and the asteroids, i.e. JuRa on
board the HERA mission. The two-way radar signal attenuation can be expressed as:

A = e
2πν

c ℑ{√
εµ}2z (9.8)

where z is the penetration depth. The velocity of the radar signal can be stated as:

v = c

ℜ{√
εµ}

(9.9)

where c is the speed of light in the vacuum.

Given that the magnetic permeability of the meteoritic samples is significant, it is essential to consider
magnetic permeability when evaluating the performance of the radar signal [104].
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The velocity of radar signal v for L5 chondrite and CI simulant mixtures are shown in Figs. 9.27 and
9.28.

Figure 9.27: Radar signal velocity for mixtures of L5 ordinary chondrite and pure ice as a function of temperature and ice volume
fraction and at 60 MHz.
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Figure 9.28: Radar signal velocity for mixtures of CI simulant and pure ice as a function of temperature and ice volume fraction
and at 60 MHz.

Finally, the attenuations were computed for the meteorite-pure ice mixtures at 9 MHz (see Fig. 9.29)
and for meteorite-air mixtures at 60 MHz (see Fig. 9.30) as a function of the dust volume fraction in-
side the pure dirty ice. It is important to note that it has not been possible to measure the imaginary
part of permability of the CI simulant below 60 MHz, and for this reason the relative attenuation below
this frequency threshold was not computed taking into account the magnetic permeability. However, as
expected, the higher the temperature and the larger the dust inclusions inside the rock-ice and rock-air
mixtures, the higher the attenuation. These maps could give useful indications for the performance of the
radar sounders that will work in the framework of the oncoming space missions for the study of asteroids
and icy moons.

Additionally, a dispersive and attenuating behavior very different from ice dielectric features was noted
for the ice saturated CI sample at temperatures exceeding 210 K due to presence of smectite in large
quantities inside the sample; therefore, it is not possible to accurately model the CI dielectric permittivity
as a function of the ice volume fraction above 210 K, since the common mixing laws used in this work do
not work accurately with clay materials [85].
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In conclusion, while laboratory data remain essential for understanding the electromagnetic behavior
of planetary materials, mixing formulas play a significant role in predicting the behavior of composite
materials. Although these equations are widely applied in Earth sciences, a systematic validation of their
applicability to planetary materials is still lacking. In this study, the results obtained from dielectric and
magnetic measurements performed on planetary simulants at low temperatures were compared with those
derived from commonly used mixing formulas. It was found out that only specific models—varying for
each simulant—accurately reproduce the electromagnetic behavior of dry granular materials and grain-
ice mixtures. Caution is warranted when applying these models to planetary materials with high clay
content, as the results of this work demonstrate that their low-temperature electromagnetic behavior,
within the frequency range of radar sounders onboard space missions, may significantly deviate from
model predictions.

Future work will implement new measurements and parametric EM models for dirty-saline ice doped
with different chemical species in order to reproduce the complex behavior observed with near-infrared
observation of the surface of the icy moons.

Figure 9.29: Attenuation map at 9 MHz, estimated starting from synthetic permittivity and permeability data of the CI simulant-
pure ice mixture and L5 ordinary chondrite-pure ice mixture. The attenuation is expressed in decibel unit per kilometer.
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Figure 9.30: Attenuation map at 60 MHz, estimated starting from synthetic permittivity and permeability data of the two meteorite
samples as a function of their air volume fraction. The attenuation is expressed in decibel unit per 100 meters.



Chapter 10

Electromagnetic Characterization of
NaCl Doped Ice for the Europa Icy
Crust

Europa is the most compelling target of the Juice and Europa Clipper missions in terms of the search for
extra-terrestrial life: in fact, its vast subsurface ocean resting directly on the rocky mantle that diffuses
heat through radiogenic heating could be the source of energy for possible simple cell life forms, and,
last but not least, the subsurface ocean is the closest to the surface than the other two icy satellites,
which makes it easier to detect by the radar sounders RIME and REASON. The two radars have been
designed for the detection of the ocean beneath the ice crust and the possible upwelling of liquid material
at shallow depths. Therefore, a comprehensive laboratory investigation is necessary to conduct dielectric
characterization of ices similar to those hypothesized to exist within Europa’s crust. This is essential for
assessing radar signal attenuation, penetration depth, and the potentially detectable dielectric contrasts
between ice and brine pockets and channels.
As detailed in subsection 1.1.1 and Tab. 1.2, impurities in the ice present over Europa can be generated by
exogenous or endogenous phenomena; recent ground-based and space-based infrared observations pointed
out that more pristine endogenous material may reflect a chloride-dominated composition [27]. Moreover,
sodium chloride has been observed on the surface of the moon in chaos terrain regions, suggesting an
interior source [30], [33].
For this reason, in this chapter the electrical properties of ice doped with NaCl have been studied as a
function of the temperature and the salt concentration by means the VNA experimental setup. Additional
measurements using liquid nitrogen and the experimental setup of the LCR meter were performed, so as
to extend the temperature range at which to estimate the electrical proprieties of doped ice. Finally, a
modeling of the real part of permittivity and conductivity of ice and brines at 9 MHz and 60 MHz has
been carried out as a function of temperature and sodium chloride concentration.

10.1 Experimental Setup and Procedure
The NaCl solutions were prepared as described in subsection 8.2.2 and then poured directly in the
measuring cell. At this point the conductivity of the NaCl liquid solution was measured by a conductivity
meter GLP-31 (see Tab. 8.4). A first check on the goodness of the solution was performed by applying
the Debye-Huckel-Onsager equation that allow to compute the theoretical conductivity for electrolite
solutions up to 100 mM of salt concentration [225]:

Λ = Λ° − (A + BΛ°) c1/2 (10.1)

where c is the salt concentration, A = 60.20, B = 0.229 and for sodium chloride Λ° = 126.39 at 25°C.
The equation is valid for very dilute solutions. The theoretical values of conductivity obtained by solving
eq. 10.1 were compared with the experimental values measured by the conductivity meter before each
measurement for NaCl concentration up to 100 mM: in case the theoretical and experimental values did
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not agree, the solution was prepared again.
The NaCl doped ice samples were then formed directly inside the cell using the freezing procedure
discussed in 8.2.3: the ultrafreezer was employed for the measurements performed with the coaxial probe
and the VNA setup, similarly to the measurements of dirty ice; while the climatic chamber was employed
to freeze the solution inside the capacitive cell of the LCR setup, by means of a fast rate freezing cycle
(2 K/min down to 200 K). Therefore, all ice samples measured in this chapter were formed with fast
temperature cycles (see section 6.5).
It has been indicated that the moons’ ice shells might display a chemically stratified structure, influenced
by the thermal gradient during their formation. This stratification is marked by higher salt concentrations
at the surface, corresponding to a steeper temperature gradient, and a gradual decline in impurity levels
as one approaches the ice/ocean interface, where the temperature gradient becomes less intense [15].
Therefore, the type of ice studied in this dissertation is intended to be similar to that speculated to be
at the surface and in the first kilometers of the crust of the icy satellites.
The list of all measurements carried out is given in Table 8.4.

10.1.1 Brine Volume Fraction Estimation
Above the eutectic temperature Te = 252 K, the NaCl doped ice is characterized by the appearance of
brines pockets and channels within the ice matrix; these features increase until the total melting of the
ice at about 273 K.
The brine volume fraction fb has been estimated in this work generalizing the formula described in [185];
in particular, it was obtained by fixing the masses inside the measuring cell in different temperature
intervals

T > 273.15 K → m0 = ml (10.2)

Te < T < 273.15 K → ml = m0 − mi (10.3)

i.e., above the freezing temperature the initial mass m0 inside the measuring cell is equal to the mass
of liquid solution ml; otherwise, for temperatures between the freezing and eutectic points the mass of
liquid solution is equal to the initial mass minus the mass of the ice mi forming inside the cell. The brine
volume Vb in the range of temperatures between the eutectic one and the freezing one is given by the
sum of the volume of the salt Vs and that of the liquid Vl:

Vb = Vs + Vl = ms

ρs
+ ml

ρl
= ms + ml

ρb
(10.4)

where ρs, ρl and ρb are respectively the density of salt, liquid and brines, ms is the mass of the salt of
the solution and ml is the liquid mass defined in Eq. 10.3. The total volume Vtot of the samples is then
given by:

Vtot = Vs + Vl + Vi = Vb + Vi = ms + ml

ρb
+ mi

ρi
= ms + ml

ρb
+ m0 − ml

ρi
(10.5)

The the equilibrium NaCl concentration Ceq and the initial NaCl concentration dissolved in the solution
C0 can defined respectively as:

Ceq = ms

ms + ml
(10.6)

Cin = ms + m0
ml

(10.7)

Manipulating the expression of the brine volume fraction, the following formula is obtained:

fb(Te < T < 273.15) = Vb

Vtot
= (Ceqρb)−1

(Ceqρb)−1 − (Ceqρi)−1 + (Cinρi)−1 (10.8)

where Ceq, the equilibrium NaCl concentration as a function of temperature, can be inferred by the
sodium chloride phase diagram (see Fig. 4.12). Ceq as function of temperature has been retrieved inter-
polating the phase diagram.
The formula in [185] is a limit of the equation 10.8, assuming that ρi ≃ 1 and ρb = 1, and thus obtaining
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fb ≃ Cin

Ceq
. In this work, on the other hand, it was assumed that ρi = 0.92 and ρb = 1.0008 ∗ Sb, where Sb

is the brines salinity, as explained in [226].
Eq. 10.8 returns values slightly different from those predicted by the eq. 4.19 derived in [176] from
experimental data of sea ice, due to the difference in electrical behavior between laboratory NaCl doped
ice and natural sea ice.

The brine volume fraction depends on the temperature of the sample and its sodium chloride concentra-
tion. In Fig. 10.1 the brine volume fraction retrieved with Eq. 10.8 is shown as a function of temperature,
and, as expected, the lower the initial concentration of sodium chloride the less will be the brines content
within the frozen sample as a function of temperature (e.g., the 10 mM doped ice sample has a brine
volume fraction consistently below 1% throughout the temperature range).

Figure 10.1: Brine volume fraction obtained through Eq. 10.8versus temperature for five doped ice samples, with sodium chloride
concentration ranging from 10 mM to 1000 mM.
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10.2 Measurements of NaCl Doped Ice Samples
During the measurement the ice sample experiences two phase transitions: one at 252 K, when pockets
of liquid brine begin to appear within it, and at 273 K, when the sample totally melts.
Measurement of the real part of the permittivity was then used to verify the state of the sample; in
Figure 10.2 three stages of measurement are shown: a) ice region, where the sample is completely frozen;
b) brines region, where brines appear in the sample at different brine volume fractions fb(T ); c) liquid
region, where the sample is completely melt; d) transition region (TR) where the sample experiences
the phase transition. The transition region data were not considered in the analysis of this work. In
all measurements no brines were observed below 249 K, unlike the sea ice samples studied in [178], this
difference is probably due to the way sea ice is formed in nature.

Figure 10.2: 200 mM NaCl doped ice transition phases identified in the measurement of the real part of the permittivity: 200
K-249 K, ice region; 249 K-255 K, first transition region; 255 K-268 K, brines region; 268 K-274 K, second transition region; 274
K-290 K, liquid region.

This work focused on the analysis of doped ice measurements made by VNA; measurements were then
made with the LCR meter and liquid nitrogen to extend the temperature range at which to estimate the
electrical properties of ice.

10.2.1 Ice Region
In this subsection the electrical properties of the samples in the ice region are reported as a function of
the frequency and temperature.

ε vs ν

Figures 10.3-10.4 show the frequency spectra of electrical properties (ε′, ε′′ and σ) at a fixed temperature
and different NaCl concentrations, obtained by means of the VNA and LCR meter setup, (20, 50, 200,
500 and 1000 mM for VNA, 20 and 200 mM for LCR meter, respectively). Gray areas in Fig. 10.3 at
lower frequencies indicate unreliable values because of the VNA instrumental limit, since ices have very
low dielectric losses not always measurable by the instrument. An air measurement was also reported as
a reference measurement to identify the instrumental and NRW algorithm limit even at high frequencies.
The real part of permittivity measured by the VNA in the frequency range 1 MHz-100 MHz is practically
constant in the entire interval, and it is scattered below 6 MHz. The imaginary part of permittivity, on the
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other hand, constantly decreases up to 100 MHz; moreover it is important to note that the conductivity
is fairly constant between 1 MHz and 10 MHz, and then increases at higher frequencies. The behavior
of conductivity at higher frequencies is similar to those measured for sea ice in [178]. In any case, the
real part of permittivity values rise as the sodium chloride concentration increases, whereas ice samples
doped with 200, 500 and 1000 mM exhibit similar values of ε′′ and σ. This is due to the presence of
hydrate salts in the ice matrix and to the chloride substitution caused by the NaCl doping. Going to
lower temperatures, it was observed that the 60 MHz data, of interest to the REASON radar, is not
reliable at 220 K, using the VNA instrumental limits identified in subsection 5.7.3 (see Fig. 10.3).
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(a) T = 220 K

(b) T = 230 K

Figure 10.3: Frequency spectra of NaCl doped ice samples at two fixed temperatures in the ice region. The measurements were
carried out by a VNA. The black line represents the air measurement, employed as a reference value for the instrumental limit. In
contrast to the measurement at 230 K, at 60 MHz the measurement at 220 K is overlapped with the air values.

Frequency spectra measured by the LCR meter, on the other hand, exhibit clearly the ice relaxation,
with the inflection point of the real part and the maximum of imaginary part that shift at higher fre-
quencies as the sodium chloride concentration increases. Moreover, it is interesting to note that at lower
frequencies, the highest values of complex permittivity are those of the lower concentration samples,
probably due to the appearance of an additional relaxation at hundreds of Hz in these samples caused
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by the preparation of the sample with a high thermal gradient. The 200 mM measurement approaching
1 MHz exhibits higher values of conductivity than the 20 mM, as expected.

Figure 10.4: Frequency spectra of NaCl doped ice samples at a fixed temperature in the ice region. The measurements were carried
out by a LCR meter.

The frequency spectra in the frequency range 20 Hz-100 MHz, obtained by combining the measure-
ments made by the LCR meter and VNA, are illustrated in Fig. 10.5. The two measurements are in good
agreement at 1 MHz: this implies that the formation of ice samples in the two cases, although occurring
in different cells and by means of different instruments, is comparable. Furthermore, the conductivity is
found to be constant from 100 kHz to 10 MHz.
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(a) 20 mM

(b) 200 mM

Figure 10.5: Electrical properties in the frequency range 20 Hz-100 MHz, obtained by combining measurements performed with
the LCR meter and the VNA of samples doped at the same sodium chloride concentration.
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ε vs T

The electrical properties at 9 MHz of five different NaCl doped ice samples as a function of temperature
are reported in Fig. 10.6. The real part of permittivity has a linear dependence on temperature and
its values increase as the concentration of sodium chloride in the sample; the imaginary part and the
conductivity also have a dependence on temperature and sodium chloride concentration. It is important
to note that below 210 K the imaginary part of permittivity and conductivity are not reliable because of 9
MHz VNA instrumental limit identified at the conductivity value of σV NA

9 MHz = 1.3×10−5 S/m (see section
5.7). Figure 10.7 shows the dependence on temperature of the data at 60 MHz: the electrical properties
at 60 MHz behave in temperature in a similar way to those at 9 MHz. As discussed in subsection 10.2.1,
in this case below 225 K the imaginary part and conductivity are below the 60 MHz VNA instrumental
limit identified at the conductivity value of σV NA

60 MHz = 4.2 × 10−5 S/m (see section 5.7). For this reason
in the following, the VNA data at 9 MHz and 60 MHz will be studied respectively in the temperature
range 210 K - 249 K and 225 K - 249 K.

Figure 10.6: Electrical properties at 9 MHz of three different NaCl doped ice samples as a function of temperature in the ice
region. The gray dashed line represents the VNA instrumental limit for the imaginary part of permittivity and conductivity.



10.2. MEASUREMENTS OF NACL DOPED ICE SAMPLES 125

Figure 10.7: Electrical properties at 60 MHz of three different NaCl doped ice samples as a function of temperature in the ice
region.

10.2.2 Brines Region
In this subsection the electrical properties of the samples in the brines region are reported as a function
of the frequency and temperature. Only the dataset from VNA measurements was used to study the
electrical properties of ice in the brines region. Measurements of ice samples doped at concentrations above
500 mM were not reported, because VNA was unable to estimate accurately the real part of permittivity
in the entire range of frequencies, due to the appearance of additional polarization phenomena caused by
the geometry of the brines pockets within the samples.

ε vs ν

Figure 10.8 shows the electrical properties as a function of frequency of several doped ice samples in the
brines region. The values of complex permittivity and conductivity are appreciably higher than the ice
region measurements, since the frequency spectra are dominated by conductive saline water behavior,
especially at high NaCl concentrations. On the other hand, for low NaCl concentrations (e.g., 20 mM and
50 mM) the dielectric behavior has features of both ice and saline water: for example, the conductivity
at high frequencies increases as in the ice region.
However, as expected, the higher the sodium chloride concentration, the higher the ε and σ values, since
the brine volume fraction is also dependent on salt concentration.
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Figure 10.8: Frequency spectra of NaCl doped ice samples at a fixed temperature in the brines region. The measurements were
carried out by a VNA.

ε vs T

The electrical properties versus temperature in the brines region are shown in Figures 10.9-10.10. Both
complex permittivity and conductivity increase with temperature, as the brine volume fraction itself also
increases within the samples. In particular the real part of permittivity values slowly grow as a function
of temperature. This trend is particularly appreciable for samples doped with the highest concentrations
of sodium chloride.
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Figure 10.9: Electrical properties at 9 MHz of four different NaCl doped ice samples as a function of temperature in the brines
region.
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Figure 10.10: Electrical properties at 60 MHz of four different NaCl doped ice samples as a function of temperature in the brines
region.
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10.3 Extrapolation of Ice Electrical Properties to Lower Tem-
peratures

The VNA experimental setup allowed measurements at 9 MHz only down to 210 K: for this reason, as
in the case of dirty ice detailed in the previous chapter, measurements with LCR meter setup and liquid
nitrogen were carried out in order to extrapolate the electrical properties at 9 MHz down in temperature.
Figure 10.11 reports the electrical properties of two 200 mM doped ice samples measured with the LCR
meter and the VNA. The conductivity measured by the LCR meter is reported at 200 kHz, since the
conductivity measured by the LCR meter at 1 MHz is affected by excessive noise and, as shown in
subsection 10.2.1, this parameter is constant in the frequency range 100 kHz-10 MHz. The LCR meter
measurement was reported only down to 160 K, because below that temperature the instrument cannot
measure accurately. Nevertheless, the two measurements are in good agreement.

Figure 10.11: Extrapolation of electrical properties of 200 mM doped ice sample down to 160 K.

10.4 Discussion and Conclusion
All fits carried out in this section were performed following the grid mode procedure outlined in section
7.3.

10.4.1 Ice Region
The electrical properties in the ice region were modeled as a function of the sodium chloride concentration
and temperature, using the set of measurements carried out with the VNA. The LCR measurements were
employed to extrapolate the electrical properties down in temperature.

ε′, σ vs NaCl concentration

The VNA measurements were used to model the trend of the electrical properties as a function of the
NaCl concentration at a fixed temperature.
Fig. 10.12 shows the dependence of the real part of permittivity and conductivity on the sodium chloride
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concentration at 9 MHz and 60 MHz. It can be noticed that both parameters depend on both concentra-
tion and temperature. Specifically, at a given temperature, conductivity values remain constant above
the concentration value of ≃ 200 mM .

Figure 10.12: Real part of permittivity and conductivity measured by the VNA at 9 MHz and 60 MHz as a function of sodium
chloride concentration, at different temperatures, taking into account the VNA instrumental limit at 9 and 60 MHz.

The real part of permittivity as a function of the sodium chloride concentration has been modeled
with a power law

ε′
0(conc) = A concB (10.9)

where A and B are parameters estimated through a non-linear fit and conc the sodium chloride concen-
tration expressed in mM unit. For both 9 and 60 MHz, the fit parameters estimated at the temperature
of 240 K are

A = 3.1 ± 0.1 (10.10)
B = 0.009 ± 0.002 (10.11)

For the fit of the real part of permittivity versus concentration 30 mM and 80 mM data were considered
outliers. The result of the fit of the real part of permittivity at 240 K as a function of NaCl concentration
is reported in Figure 10.13 for the two frequencies 9 and 60 MHz. Also the measurement at 4000 mM
was not considered for the fit as it behaves as an outlier: for this reason, equation 10.9 can be considered
valid in the range 0-1000 mM.
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Figure 10.13: Fit of the real part of permittivity as a function of NaCl concentration at 240 K.

The real part of permittivity was fitted as a function of temperature with a Gough-like equation (see
eq. 4.10)

ε′(conc, T ) = ε′
0(conc) − C T + D T 2 (10.12)

where ε′
0(conc) is the value computed with equation 10.9 for a fixed NaCl concentration and C, D are

the parameters retrieved through the fit. Equation 10.12 is valid only down to 160 K.
Since the real part has a constant behavior in the range 1 MHz -10 MHz, by combining the measurements
performed by the VNA and the LCR meter at 1 MHz at lower temperatures it was possible to estimate
the behavior of the real part of permittivity at 9 MHz over a wide range of temperatures: the results of
the fit at 9 MHz applied to 200 mM NaCl doped ice measurements are shown in Figure 10.14.
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Figure 10.14: Fit of the real part of permittivity as a function of temperature at 9 MHz. The data reported in the figure are the
ones of the 200 mM NaCl doped ice samples measured by the VNA and the LCR meter; the solid black line is the fit through eq.
10.12.

For the real part of permittivity at 60 MHz data of the LCR meter at 1 MHz could not be used,
and therefore only VNA permittivity data from 225 K to 249 K were employed. The results of both fit
procedures at 9 and 60 MHz are reported in Table 10.1.

9 MHz (160 K- 249 K) 60 MHz (225 K - 249 K)
C (2.2 ± 0.5) × 10−3 (1.9 ± 0.2) × 10−3

D (7.5 ± 0.3) × 10−6 (7.0 ± 0.5) × 10−6

Table 10.1: Fit parameters at 9 MHz and 60 MHz for real part of permittivity versus temperature in the ice region.

The conductivity versus concentration, on the other hand, has been modeled with the equation

σ0(conc < 200 mM) = a concb (10.13)

where a, b are the parameters retrieved by the non-linear fit and conc is the sodium chloride concentration
expressed in mM unit. Above the concentration value of 200 mM the conductivity values saturate,
remaining constant up to higher concentrations. The results of the fit of the conductivity at 240 K as a
function of NaCl concentration are reported in Figure 10.15 and Table 10.2 for two frequencies, 9 and 60
MHz.

σ0(conc < 200 mM) a b
9 MHz (2.0 ± 0.8) × 10−5 0.31 ± 0.06

60 MHz (4 ± 1) × 10−5 0.24 ± 0.08

Table 10.2: Fit parameters at 9 MHz and 60 MHz for the conductivity versus concentration retrieved at 240 K.
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Figure 10.15: Fit of conductivity as a function of NaCl concentration at 240 K.

The trend of conductivity as a function of temperature was estimated by an Arrhenius-like equation
(see eq. 2.89)

σ(conc, T ) = σ0(conc) e
− Eσ

a
kb

(
1
T − 1

T0

)
(10.14)

where σ0(conc) is the value computed with equation 10.13, Eσ
a is the conductivity activation energy, kb

is the Boltzmann constant and T0 is the reference temperature at which σ0(conc) was computed (in this
case T0 = 240 K).
The conductivity activation energy was estimated by fitting the conductivity values of the VNA mea-
surements in the temperature range 230 K- 245 K; Fig. 10.16 shows the activation energy as a function
of sodium chloride concentration at 9 and 60 MHz. Data at 60 MHz have a similar trend to those at 9
MHz and at high concentrations have similar values.
Although the data are rather scattered, the activation energy for both frequencies has clearly two pop-
ulations of data: for example in the case of 9 MHz data, there is one group of data, below 200 mM,
with Eσ

a ≃ 0.25 and another one, above the threshold of 200 mM, with Eσ
a ≃ 0.30. This behavior of

NaCl doped ices was already observed in literature [185], where it has been calculated by means of an
interpolation that the relaxation time of ice saturates for initial NaCl concentration of ≃ 300 mM , having
an activation energy that slightly increases up to ≃ 0.29 eV .
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Figure 10.16: Conductivity activation energy as a function of NaCl concentration.

Also in the case of electrical conductivity, data from the LCR meter were used to extend the tempera-
ture range in which to fit the data selected at 9 MHz. Nevertheless, it was noted that the comprehensive
trend of this parameter is not reproducible with equation 10.14, that is valid only in a limited range
of temperatures. In fact, the conductivity versus temperature changes behavior, depending on the con-
centration of sodium chloride at which the ice was doped. In particular, two changes in conductivity
slope were observed in the measurements, due to changes in activation energy. Several equations (such as

σ(conc, T ) = σ0(conc) e
− Eσ

a
kb

(
1
T − 1

T0

)
+ σ1e

−
Eσ

1 a
kb

(
1
T − 1

T1

)
+ σ2e

−
Eσ

2 a
kb

(
1
T − 1

T2

)
, where Eσ

1 a, Eσ
2 a are two other

activation energies) were tested to fit conductivity as a function of temperature, but they failed.
For this reason, three separate fits with eq. 10.14 were made in three separate temperature ranges: the
results of these procedures are shown in the Fig 10.17. Tables 10.3-10.4 report the parameters retrieved
by the fitting procedure at 9 MHz for the 20 mM and 200 mM doped ices, respectively. The parameters
in the lowest temperature range are associated with relatively large uncertainties, since the measurements
at those temperatures are quite affected by noise.

Temperature range Eσ
a σ0 T0

170 K < T < 186 K 0.21 ± 0.08 (4.6 ± 0.9) × 10−7 175
186 K < T < 218 K 0.30 ± 0.01 (1.6 ± 0.1) × 10−6 190
218 K < T < 249 K 0.223 ± 0.002 σ0(conc) 240

Table 10.3: Fit parameters of the conductivity at 9 MHz versus temperature for the 20 mM doped ice.

Temperature range Eσ
a σ0 T0

160 K < T < 174 K 0.17 ± 0.05 (4.6 ± 0.8) × 10−7 165
174 K < T < 186 K 0.15 ± 0.02 (1.2 ± 0.1) × 10−6 180
186 K < T < 249 K 0.302 ± 0.001 σ0(conc) 240

Table 10.4: Fit parameters of the conductivity at 9 MHz versus temperature for the 200 mM doped ice.
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(a) 20 mM

(b) 200 mM

Figure 10.17: Fit of the conductivity of the 20 mM and 200 mM doped ices at 9 MHz versus temperature. The 20 mM doped ice
conductivity was reported only down to 170 K since below this temperature the LCR meter is no longer able to measure accurately
this parameter.

The 9 MHz conductivity as a function of temperature has two changes in slope at two different
temperatures: one at higher temperatures (218 K and 186 K, respectively for the 20 mM and 200 mM
samples) and the other one at lower temperature (186 K and 174 K, respectively for the 20 mM and
200 mM samples). The conductivity at 9 MHz can be treated as the high-frequency conductivity σ∞. A
crossover can explained by the increasing relative abundance of ionic defects, when L defects become the
minority carrier carrier and H3O+ become the majority charge carrier, since NaCl solutions are suggested
to contribute H3O+ and Cl− to the ice [185]. Moreover, it was demonstrated that the high temperature
crossover depends on the ice sample preparation: for example, pure ice samples prepared with stirring
at water freezing, avoiding rapid ice crystallization, did not exhibit the high temperature crossover [172],
[227].
The two temperatures differ between the 200 mM sample and the 20 mM sample, probably due to the
influence of an additional relaxation in the 20 mM measurement at low frequencies (hundreds of Hz),
already observed in Figure 10.4.
Further measurements at lower temperatures are needed to explain the conductivity trend in terms of
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defects and activation energies and the influence of the preparation of the doped ice sample on its dielec-
tric properties.

Conductivity at 60 MHz was fitted with eq. 10.14 only in the temperature range 225 K - 249 K, due to
VNA instrumental limit previously discussed and since LCR meter measurements cannot be used to ex-
tend electrical properties at frequencies higher than 10 MHz. In this case, no crossover temperatures are
present; σ0(conc) is the one evaluated with eq. 10.13, and the activation energies for the 20 mM and 200
mM doped ices are respectively Eσ

a (20 mM) = 0.19±0.01 and Eσ
a (200 mM) = 0.33±0.01 (see Fig. 10.18).

(a) 20 mM

(b) 200 mM

Figure 10.18: Fit of the conductivity of the 20 mM and 200 mM doped ices at 60 MHz versus temperature. The measurements
are reported at only in temperature range 200 K - 249 K, since LCR meter measurements cannot be used to extract electrical
properties at frequencies higher than 10 MHz.

In conclusion, it is important to emphasize that in any case below the conductivity value of σ =
1 × 10−6 S/m (i.e., generally below 180 K), the two-way attenuation at 9 MHz and 60 MHz generated
by NaCl doped ices is very low, as:

A(σ ≤ ×10−6 S/m) < 2 dB/km (10.15)
Therefore, for the investigation of the shallow ice crust of Europa the attenuation generated by NaCl doped
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ice should not play a significant role, only in case the temperatures are low, below 180 K. Nevertheless,
the attenuation of the radar signal becomes relevant when investigating several kilometers of crust or
when approaching higher temperatures.
As a reference, the attenuation (db/km) at 9 MHz as a function of temperature was estimated for the
200 mM sample (see Fig. 10.19).

Figure 10.19: Attenuation (db/km) estimated for the 200 mM sample.

10.4.2 Brines Region
Only the measurements made with the VNA were used for the analysis of electrical properties in the
brines region.
The conductivity of the doped ice samples in the brines region has been modeled with an Archie-like
equation (see eq. 3.18)

σbr = σice + (σwat − σice)fm
b (10.16)

where σice is the conductivity of the doped ice sample in the ice region, σwat is the conductivity of the
water in the liquid region, fb is the brine volume fraction retrieved through eq. 10.8 and m is the geo-
metric factor, that contains the information about the geometry of the brines pockets and channels (see
section 3.4 for more details) .
The fit of the conductivity through the eq. 10.16 has been carried out by fixing the ice conductivity
σice and the water conductivity σwat for each sample, using the actual values obtained from the mea-
surements. The results of the fitting procedure are in good agreement with the experimental data, both
for samples doped with low and high sodium chloride concentrations. Figures 10.20-10.21 report the fit
of the conductivity at 9 MHz and 60 MHz of four doped ice samples as a function of the brine volume
fraction fb.
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Figure 10.20: Fit of the conductivity of four doped ice samples as a function of the brine volume fraction at a fixed frequency (9
MHz).

Figure 10.21: Fit of the conductivity of four doped ice samples as a function of the brine volume fraction at a fixed frequency (60
MHz).

The geometric factor m lies in the interval m ∈ [1.1, 2.2] (see Fig. 10.22): especially at 60 MHz an
increase in this parameter is recognizable as the salt concentration in the sample increases, although at
low NaCl concentrations m exhibits a great variability, showing that the phenomenon of appearances of
brines inside the ice matrix is stochastic and that cylindrical and plate-like inclusions can be randomly
formed with their major axis perpendicular (m > 1.5) or parallel (m < 1.4) to the external electric field.
Nevertheless, the m values are in general agreement with those found with a similar model for sea ice in
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[181], where were found to be in the range m ∈ [1.5, 1.8].

Figure 10.22: Geometric factor m obtained through the fit of conductivities versus NaCl concentration.

The conductivity of the entire data set at a fixed temperature in the brines region was plotted versus
the corresponding brine volume fraction. The Archie-like model is able to reproduce the conductivity in
the entire range of brines volume fraction: Fig. 10.23 reports both the fit and conductivity data for T =
262 K. In this case the m parameters are equal to m = 2.65 ± 0.05 and m = 2.54 ± 0.05 for 9 MHz and 60
MHz data respectively, but they do not have a geometrical meaning, since in this case the conductivity
values of the entire dataset at a certain temperature are taken into account and no real brine geometry
can be associated.
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Figure 10.23: Real part of permittivity of the whole VNA dataset as a function of the brine volume fraction, at a fixed temperature
and at 9 MHz.

Polynomial fits were performed on the real part of permittivity of the the doped ice samples in the
brines region, without success, since they were not able to reproduce the real part of permittivity trend
as a function of the brine volume fraction.
Therefore, in analogy with the case of conductivity, the real part of permittivity of the the doped ice
samples in the brines region has been modeled using an Archie-like equation as well

ε′
br = ε′

ice + (ε′
wat − ε′

ice)fm
b (10.17)

where ε′
ice is the real part of permittivity of the doped ice sample in the ice region and ε′

wat is the real
part of permittivity of water in the liquid region.
Nevertheless, at higher temperatures and higher brine volume fractions this parameter was difficult
to estimate and consequently to model, probably because of the appearance of stochastic geometric
configurations of pockets and channels of brines within the ice matrix capable of generating additional
polarization that cannot be measured accurately by the VNA.
Figures 10.24-10.25 report the fit of the conductivity of four doped ice samples as a function of the brine
volume fraction fb; measurements of ices doped with concentrations 200 mM were not shown for the
reasons outlined above.
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Figure 10.24: Fit of the real part of permittivity of four doped ice samples as a function of the brine volume fraction at a fixed
frequency (9 MHz).

Figure 10.25: Fit of the real part of permittivity of four doped ice samples as a function of the brine volume fraction at a fixed
frequency (60 MHz).

Fitting the real part of permittivity, the geometric factor m does not have a geometrical meaning,
unlike the case of conductivity, since ε′ is less dependent on the geometry of the brines inside the sample
(see Fig. 10.26). However, the trend as a function of concentration is similar to the conductivity’s
analysis.

In Fig. 10.27 the real part of permittivity of the whole dataset at a fixed temperatures was plotted
versus the corresponding brine volume fraction. Above ≃ 13% volumetric fraction of brines in the samples



10.4. DISCUSSION AND CONCLUSION 142

Figure 10.26: Geometric factor m obtained through the fit of the real part of permittivity versus NaCl concentration.

the real part of the permittivity is difficult to estimate by the VNA (gray areas in the plot): for this
reason at higher temperatures the fit is not reliable, as already discussed.

Figure 10.27: Real part of permittivity of the whole VNA dataset as a function of the brine volume fraction, at a fixed temperature
and at 9 MHz.

To conclude, NaCl doped ice samples have very different electrical behavior depending on the region
studied. The study and modeling of the complex permittivity and electrical conductivity in the ice region
has proved particularly challenging, especially with regard to the characterization of electrical conduc-
tivity at temperatures below 200 K. Nevertheless, models were derived to characterize both conductivity
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and real part of permittivity as the initial concentration of sodium chloride in the samples and temper-
ature changed. The conductivity values versus NaCl concentration are noteworthy, since they are fairly
constant above a threshold limit of concentration, identified in this work at 200 mM. Further measure-
ments are required to fully understand the influence of ice sample preparation on the conductivity and
the crossovers observed, both at high and low temperature. Moreover, it is worth noting that at low
temperatures (below 180 K), the attenuation of the radar signal is low, below 2 dB/km, even for ices
with relatively high concentrations of sodium chloride. Therefore, it will be possible with radar sounders
to penetrate deep into the ice and reach the ice-ocean interface, as long as temperatures remain low,
below 180 K. As temperatures rise, the radar signal is quickly attenuated, but it will still be possible to
detect upwelling of water or pockets of brines inside the icy crust.
Permittivity and conductivity of samples in the brines region are characterized by the gradual appearance
of pockets and channels of salt water within the samples as the temperature changes. Because of instru-
mental limits, it was difficult to model the real part of the permittivity at brines volume fractions greater
than 13%. The conductivity, on the other hand, was modeled with an Archie-like equation, obtaining
good agreement with experimental data. The geometric factor m suggests that the brines are organized
in channels with a moderately tortuous geometry.



Conclusion

The main goal of this thesis is the electromagnetic characterization of ice analogs of Jupiter’s icy moon
at the frequencies at which RIME and REASON will work. The intensive laboratory work involved a
comprehensive study of the dielectric permittivity and magnetic permeability of ice samples as a function
of the temperature, dust inclusions, salinity and water content, aiming to assess the performance of these
radars in terms of attenuation and detection capability of interfaces in icy crusts. The results of this
dissertation highlight the importance of laboratory work for the characterization of the influence of impu-
rities and rocky inclusion on the ice electromagnetic behavior, given also the lack of such measurements
in the literature.

In chapter 9 the electromagnetic properties of dirty ices were studied down to 120 K by means of two
different instruments, a Vector Network analyzer and an LCR meter. Dirty ices were created using pure
water ice and two meteoritic samples, an L5 ordinary chondrite granular sample and a carbonaceous chon-
drite simulant, following the indications of recent work regarding the composition of the ices of Ganymede
and Callisto. The analysis of the measurements focus on the modeling of both the dielectric permittivity
and magnetic permeability as a function of temperature and the meteorite inclusions by means of different
mixing equations, creating a parametric electromagnetic model for these two dirty ice samples of interest
for future spacecraft missions. The modeling is valid down to 120 K, a temperature expected on the
surface of the moons. The magnetic properties of the dirty ice samples were also taken into account in
estimating the attenuation of the radar signal, highlighting the importance of the magnetic phase in the
evaluation of this parameter. As expected, the higher the temperature and the larger the dust inclusions,
the higher will be the attenuation. Moreover, it was observed a dispersive behavior of the carbonaceous
chondrite material saturated with ice at temperatures above 210 K, due to its composition similar to
clay materials: since the mixing formulas do not work for clays, the dielectric properties of this sample
saturated with ice were modeled only up to 210 K.
The experimental work will also be useful in the framework of space missions that will investigate aster-
oids by means of a radar sounder, such as the case of JuRa on board the Hera mission.

Chapter 10 addresses the dielectric properties of NaCl doped ices for the upcoming radar investiga-
tions of Europa’s ice shell. The electrical properties of this type of ice were studied as a function of the
sodium chloride concentration in the initial solution and temperature; measurements were divided into
two regions, characterized by very different dielectric behavior: the ice region and the brines region. In
the ice region the real part of permittivity and conductivity were modeled as a function of NaCl concen-
tration and for temperatures down to 160 K both at 9 and 60 MHz. The conductivity versus temperature
exhibits an interesting behavior, with two changes in slope at two different crossover temperatures, prob-
ably due to the preparation of the sample and to a change in the charge carriers induced by ice doping.
Further measurements are necessary to address more consistently this conductivity behavior.
In any case, the two-way attenuation at 9 MHz and 60 MHz and below 180 K generated by NaCl doped
ices is low, since it assumes values lower than 2 dB/km. The brines region is characterized by a more
dispersive behavior and an Archie-like equation was able to reproduce the trend of both real permittiv-
ity and conductivity as a function of the brines volume fraction. The results were compatible with the
presence of brines organized in channels with a moderately tortuous geometry. If large pockets of brines
are present in Europa’s shallow crust, they will be detectable by radar sounders, due to high permittivity
contrast between brines and ice, as expected.

This work presents results and analyses that are intended to be the first step toward characterizing

144
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the electromagnetic properties of Jupiter’s icy moons analogs: for this reason, further measurements of
ice doped with other salts observed on the surfaces of Jupiter’s moons will be needed in the future. In
particular, once fully understood how the various salts observed on the surface of these moons affect the
complex permittivity of ice, it will be crucial to study the electromagnetic properties of saline dirty ice,
the presence of which has been observed on both Ganymede and Callisto.
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