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Abstract

This dissertation studies the rate of convergence to equilibrium (mixing
time) of the Glauber dynamics for the Ising model, and its connection with
the geometrical properties of the underlying graph. The results fall into two
main groups.

In the first part we analyze the effect of boundary conditions on the
mixing time for the Glauber dynamics on hyperbolic graphs. Specifically,
we show that the spectral gap of this dynamics on an n-vertex ball in hy-
perbolic tiling with (+)-boundary is bounded by a constant independent on
n at all low temperatures. This implies that in this regime the mixing time
is O(n), in contrast to the free boundary case where it is not bounded by
any fixed polynomial at low temperatures. The influence of the boundary
condition on the mixing time has been long time conjectured, but first rigor-
ous results only appear few years ago in the framework of spin systems on
homogenous trees. The method introduced in the above mentioned work,
is here readapted to the hyperbolic graph setting where, due to presence
of cycles, a non-trivial analysis is required. The proof of our result is given
through the application of analytic methods, and is based on the existence
of a decay correlation between spins when the (+)-boundary condition is re-
garded. This kind of spatial mixing, which strictly depends on the geometric
properties of the graph, is proved by means of a kind of Peierls argument.

In the second part we develop new techniques to study the relaxation
time on random graphs. A first result concerns the Glauber dynamics for
the Ising model on the binomial random graph G(n, p), whit p = c/n and
c a positive constant. In particular, for all β > 0, we prove that asymptoti-
cally almost surely the mixing time of the dynamics on G(n, p) grows with
the size of the graph at least as exp (Ω( log n

log log n)). Here the main step is to
provide a suitable subgraph which slows down the dynamics in a significant
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ii Abstract

way, and then show that this subgraph is asymptotically almost surely con-
tained in G(n, p). When c > 1, we extend this result to the dynamics on the
giant component of G(n, p).
The second result concerns the Glauber dynamics for the Ising model on the
r-regular random graph G(n, r). For every r ≥ 3 and every β > β0 = β0(r)
(low temperatures), we prove that asymptotically almost surely the relax-
ation time of the dynamics on G(n, r) is exp(Ω(n)). The proof of this result
is based again on the asymptotically almost surely existence in G(n, r) of a
geometrical property, which combined with the analytic techniques provides
the result.
Though there is an increasing number of papers on the equilibrium behavior
of spin systems on random graph, there are very few papers regarding the
stochastic dynamics on them. The results presented here are a first attack to
this kind of hard problems. We hope that they could stimulate further ideas
and works on this direction.
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Introduction

Spin systems are a class of models that originated in Statistical Physics,
though interest in them has expanded to many other areas, including Prob-
ability Theory, Combinatorial Optimization, and Theoretical Computer Sci-
ence. A spin system can be described as follows: let G = (V,E) be a locally
finite graph and associate to every vertex v ∈ V a variable (spin) σv taking
value in a finite space S . A configuration of the spin system is an assign-
ment of a spin value to each vertex of G, denoted by σ ∈ ΩV = SV . Let
U = {U∆}∆⊂⊂V , where ∆ ⊂⊂ V means that ∆ is a finite subset of V , be a
collection of local functions on Ω determining the local interaction between
sites. We would like to define, at least formally, the Hamiltonian (or energy)
of a configuration σ ∈ ΩV by

HV (σ) =
∑

∆⊂⊂V

U∆(σ) (0.1)

and the Gibbs probability measure at inverse temperature β > 0 by

µV (σ) = ZV (β)−1 exp (−βHV (σ)) , (0.2)

where ZV (β) is a normalizing factor.
If G is a finite graph these two formulas are well defined and can be taken
as a definition. If G is an infinite graph we can instead consider, for any
Λ ⊂⊂ V and any configuration η ∈ Ω, the set of configurations σ ∈ Ω which
agree with η in Λc, denoted by Ωη

Λ. For any σ ∈ Ωη
Λ, the contribution to the

energy of σ coming from Λ is given by

Hη
Λ(σ) =

∑

∆∩Λ6=∅
U∆(σ) (0.3)

and the Gibbs probability measure on Ωη
Λ is defined as

µη
Λ(σ) = Zη

Λ(β)−1 exp (−βHη
Λ(σ)), (0.4)

1



2 Introduction

where Zη
Λ(β) is a normalizing factor. The measure µη

Λ is regarded as the
equilibrium state of the spin system in the finite region Λ with η boundary
condition. The term free boundary Gibbs measure is used to indicate that
no boundary condition is specified and is obtained from (0.3) and (0.4)
substituting the sum over ∆ ∩ Λ 6= ∅ with a sum over ∆ ⊆ Λ .

As an example we can consider the Ising model. In this model, a config-
uration σ = (σx)x∈V consists of an assignment of ±1 values to each vertex
of V and the potential U is such that, for every finite Λ ⊂⊂ V and η ∈ Ω,
the Hamiltonian is given by

Hη
Λ(σ) = −

∑

(x,y)∈E(Λ)

σxσy − h
∑

x∈Λ

σx ,

where E(Λ) ⊂ E denotes the edge with at least an end vertex in Λ and h is a
real constant. According to (0.4), the Gibbs measure on Λ with η boundary
condition is given by

µη
Λ(σ) = Z(β)−1 exp ( β

∑

(x,y)∈E(Λ)

σxσy + h
∑

x∈Λ

σx) .

In this case µΛ assigns higher probability to configurations in which neigh-
boring spins are aligned, as well as to configurations in which many spins
agree with the sign of h. This effect increases with β, so that at high tem-
peratures (low β) the spins behave almost independently, while at low tem-
perature (high β) a global order may occur.

We refer to the collection of all µη
Λ, as Λ and η vary, as the specification

for the system. It turns out that for any given specification one can define
the Gibbs measures on the infinite space Ω through the notion of DLR com-
patibility:

Definition 0.1. A probability measure µ on Ω is called a Gibbs measure for
the specification {µη

Λ}Λ,η if, for every finite region Λ and µ-almost every con-
figuration σ,

µ( · |σΛc) = µσ
Λ( · ) . (0.5)

Let G be the set of all (infinite volume) Gibbs measures relative to a given
specification derived as above. It is well known that G is a nonempty convex
compact set, with extremal points (measures) called pure phases [Ge, GHM,
EFS]. If G has more then one element we say that the spin system, described
by the specification giving rise to G, exhibits a phase coexistence.
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Consider for example the Ising model on the d-dimensional Cartesian
lattice Zd. If d > 1, then there exists a critical inverse temperature β =
βc (depending on the dimension) such that a phase transition occurs. For
β < βc there is a unique Gibbs measure independent from the boundary
condition and no long-range correlation between spins is present, while for
β > βc there are at least two distinct Gibbs measures (phase coexistence)
corresponding to the (+) or (−) boundary conditions, and correlations are
present at arbitrary distances. See, for instance, [Ge, Pre, Sim] for more
details.

Graph setting

Recently an increasing effort has been devoted to the study of spin systems
on graphs other than the regular lattices. In this area one is interested to
study the basic lattice models from statistical mechanics, but with the typi-
cal Euclidean lattice replaced by a fairly general graph. The current surge of
interest in this subject has various motivations. Firstly, many new phenom-
ena are not present when one only considers Euclidean lattice. This reveals
the presence of an interplay between the geometry of the graph and the be-
havior of statistical mechanics system, and suggests the possibility of setting
results in a more general theory. Secondly, non-Euclidean geometry is im-
portant, and sometimes more natural, in many applications where processes
are modeled on graphs that do not need to be regular in any sense. Thirdly,
problems which remain open on Euclidean lattices may be better under-
stood, and perhaps even eventually solved, by placing them in a broader
context.

One of the basic assumption in the deterministic setting, is the transitiv-
ity (or quasi-transitivity) of the graph, where we say that a graph G = (V, E)
is transitive if the automorphisms group of G acts transitively on the ver-
tices in V . The family of transitive graph is very large and includes, among
others, the Euclidean lattice Zd, the homogeneous trees and the hyperbolic
graphs (see the description below) . Several interesting results have been
derived for spin systems on infinite, connected, transitive graphs. See e.g.
[BRZ, Io1, SS, Wu2, JS, Ly1, Ly2, Sch, HSS] for the results concerning the
Ising and the Potts model, and [BS, BS2, BS3, GN, H, HJL, Jo, La, LS] for
percolation and random cluster model.

Notable are the results concerning the existence of a second kind of
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phase transition, proved for different statistical mechanics models on non
amenable graphs (see [Ly1, Ly2, Sch, Io1, Wu2]).

For example, it has been proved that the Ising model on trees has two
phase transitions at the critical temperatures β0 < β1. The first one, β0,
refers to the uniqueness/non uniqueness phase transition previously de-
scribed, whereas β1 refers to the property of extremality of the free bound-
ary Gibbs measure µf . If β ≤ β1 then µf is extremal in G, while for β > β1

it is a convex combination of other extremal measures [BRZ, Io1, Io2]. To
better appreciate this result, let us remark that this implies that the Gibbs
measures corresponding to the (+) and (−) boundary conditions are not the
only extremal measures (automorphism invariant), at the contrary to what
happens for Zd (see [Aiz, Hi] for the case d = 2, and [Bod] for d ≥ 3 ). The
landscape provided by this model is thus broader then the classical Ising
model on Zd, and offer the possibility of new modeling.

In the first part of this dissertation we will consider the Ising model
on a family of non-amenable graphs with a cycle periodic structure: the
hyperbolic graphs (see, e.g., [Mag]). They can be thought as the hyperbolic
plane counterpart of tiling in the Euclidean plane R2; but while in R2 there
are only three possible tiling (Z2, the triangular lattice and the hexagonal
lattice), their number is infinite in the hyperbolic plane. Hyperbolic graphs
can be characterized by two integers, both ≥ 3: v, the number of neighbors
of each vertex; and s, the number of sides of each face (tile), and thus
denoted by H(v, s). In order for the embedding in the hyperbolic plane to be
well defined, the integers v and s have to satisfy the relation (v−2)(s−2) >

4. The typical representation of hyperbolic tilings makes use of the Poincaré
disc that is in bi-univocal correspondence with the hyperbolic plane (see fig.
0.1).

In analogy with the behavior of the Ising model on trees, the study of
this model on hyperbolic graphs led to the characterization of two differ-
ent phase transitions appearing at inverse temperatures βc ≤ β′c, where the
strict inequality has been proved when v is large enough or H(v, s) is self-
dual [SS, Wu, Wu2]. The first one, βc, corresponds to the occurrence of
a uniqueness/nonuniqueness phase transition, while the critical tempera-
ture β′c refers to a change of the properties of the free boundary condition
measure µf . If βc < β ≤ β′c then µf is not a convex combination of µ+

and µ−, which implies the existence of an automorphism invariant extremal
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Figure 0.1: The hyperbolic graph H(4, 5) in the Poincaré disc representation.

measure different from µ+ and µ−, while if β > β′c then µf recovers the
property µf = (µ+ + µ−)/2. We remark that this behavior distinguishes
the hyperbolic graph from the regular tree, where µf 6= (µ+ + µ−)/2 for all
β > β0.

Glauber dynamics

While the classical theory focused on the equilibrium properties of the Gibbs
measures, in modern statistical physics the emphasis has shifted towards
dynamical question with a computational flavor. The key object here is the
Glauber dynamics, a (discrete or continuous time) Markov chain on the set
of spin configuration ΩV of a finite graph G = (V, E). For definiteness, we
describe the ”heat-bath” version of Glauber dynamics: to each vertex x ∈ V

we associate, independently, a Poisson process with intensity one. At each
arrival of the process at x, the associated spin is refreshed by a random
spin drawn from the distribution of σx conditional on all the neighboring
spins. It is easy to check that the Glauber dynamics is an ergodic, reversible
Markov process on ΩV , with stationary distribution µV . We denote by LV

the generator of the dynamics, which is a non positive self-adjoint operator
in `2(ΩV , µV ), and we define the spectral gap of the dynamics cgap(LV ) as
the first nonzero eigenvalue of −LV .

The Glauber dynamics is much studied for two reasons: firstly, it is the
basis of Markov chain Monte Carlo algorithms, widely used in computa-
tional physics for sampling from the Gibbs distribution; secondly, it is a
plausible model for the evolution of the underlying physical system toward
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the equilibrium. In both contexts, a central question is to determine the
mixing time, i.e. the number of steps until the dynamics is close to its sta-
tionary measure. Different techniques have been developed to get meaning-
ful bounds on this quantity [Sa, Mar2]. For example, by means of analytic
method, it has been proved that the mixing time T1 of the Glauber dynamics
satisfies the following bounds

1
cgap(LV )

≤ T1 ≤ 1
2cgap(LV )

(2 + log
1

µ∗V
), (0.6)

where µ∗V = minσ µV (σ). The inverse of the spectral gap is called relax-
ation time and is another a key quantity to understand the relaxation to the
equilibrium of the dynamics.

Advances in statistical physics over the past decade have led to the fol-
lowing remarkable characterization of the mixing time on finite n-vertex
cubes with free boundary in the 2-dimensional lattice Z2: when β < βc the
mixing time is O(log n), while for β > βc it is exp(Ω(

√
n)) ([SZ, MO1, MO2,

Mar]).

Remark 0.1. It has been recently proved that any dynamics which updates
only finite subsets (e.g. the Glauber dynamics) has mixing time at least Ω(log n),
where n is the size of the underlying graph [HS]. A mixing time satisfying this
lower bower is thus called optimal.

It turns out that the phase transition in Z2 has a dynamical manifesta-
tion in the form of an explosion from optimal to exponential in the mix-
ing time of the process. The relation between equilibrium and nonequilib-
rium properties has been investigated for systems on the integer lattice Zd

[SZ, MO1, MO2, Mar], and more recently some results have been obtained
also for non Euclidean graphs [BKMP, MSW]. However, the subject is con-
tinuously in progress since a complete understanding of this connection,
which would led to a great improvement of many results, is still missing.

Boundary condition and mixing time: first result

One of the most interesting questions left open by the dynamical analysis is
the influence of boundary conditions on the mixing time. To better appreciate
this point, let us go back to the Ising model on Z2. As remarked below, it is
proved that for β < βc the mixing time is O(log n) and correlations decay



Introduction 7

exponentially with the distance uniformly in the boundary condition. In the
low temperature regime (β > βc), instead, the mixing time for free bound-
ary condition is exp(Ω(

√
n)) and correlations persist over arbitrarily long

distances. In contrast to the free boundary case, it has been conjectured
that, in the presence of an all-(+) boundary, the mixing time should remain
polynomial in n at all temperatures [FH]. This captures the intuition that
the only obstacle to rapid mixing for β > βc is the long time required for
the dynamics to get through the ”bottleneck” between the (+)-phase and
the (−)-phase; the presence of the (+)-boundary eliminates in some sense
the (−)-phase and hence the bottleneck. Further support for this intuition
comes from the fact that a certain spatial mixing property holds under the
all-(+) boundary condition: specifically, it is known that in this case the cor-
relation between the spin of two sites is exponentially small in the distance
between them. Even though this conjecture have received a lot of attention
in the past decade, obtaining formal results has proved very elusive.

However, recently a new technique to approach this problem has been
introduced in [MSW] when the underlying graph is a regular tree. Whereas
in the free boundary condition case the mixing time, at low temperature, is
polynomial in n with exponent increasing with β [BKMP], in [MSW] it has
been proved the following:

Theorem 0.1. In both of the following situations, the spectral gap and the
logarithmic Sobolev constant of the Glauber dynamics on an n-vertex tree are
Ω(1):

(i) β < β1 or |h| > hc, with arbitrary boundary conditions;

(ii) (+)-boundary condition and arbitrary β, h.

Together with inequalities 0.6 (and with the analogous, and stronger, bounds
concerning the logarithmic Sobolev constant), this implies that the mixing
time is optimal also in the low temperature region, providing that the sys-
tem has (+)-boundary. The behavior conjectured for Zd, is thus proved for
this model.

The first part of this dissertation is aimed to analyze the influence of
the boundary condition on the dynamics in the hyperbolic graphs case. The
similarity between some properties of the trees and hyperbolic graphs, and
in particular the non amenability, would indeed suggest the possibility to
extend the result stated above. On the other hand the presence of cycles in
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H(v, s) (as in Zd, d ≥ 1) which are absent in the tree, makes the analysis
more difficult and requires the introduction of new techniques. Before state
our result, we recall that in the free boundary condition case the relaxation
time of the Glauber dynamics in a n-vertex ball in H(v, s) is polynomial in n

with exponent growing with β [BKMP].
The main result we will prove is the following:

Theorem 0.2. Let H(v, s) such that v >4 and s>3. Then, for all β À 1, the
Glauber dynamics on an n-vertex ball in H(v, s) with (+)-boundary condition
has cgap = Ω(1).

The presence of (+)-boundary condition is thus reflected in the behavior
of the relaxation time, which remains Θ(1) for all high β values instead of
growing with n as in the free boundary condition case.

The main ingredient of the proof is a kind of correlation decay between
spins which holds under the (+)-boundary condition. Indeed, essentially
due to the non amenability of the graph, the influence of the (+)-boundary
condition on a given spin weakens the influence from other regions at ar-
bitrary distance. The deduced notion of spatial mixing is then turned in a
temporal mixing condition using analytic and coupling techniques.

Glauber dynamics on Random Graphs: second result

In the second part of this dissertation, we will address statistical mechanics
models on random graphs. A random graph is a random variable defined on
a probability space (Ω,F,P), where Ω is a suitable family of graphs and P is
a probability distribution on Ω.

For example, given a real number p ∈ [0, 1], the binomial random graph,
denoted by G(n, p), is defined taking as Ω the set of all graphs on n vertices
and setting

P(G) = peG(1− p)(
n
2)−eG , (0.7)

where eG stands for the number of edges of G.
Spin models on random graphs have attracted much attention in recent

years and a sophisticated theory has been developed for computing the ther-
modynamic properties of such systems in great generality (see for instance
[MP] and references therein). The interest in this subject is at least twofold.
On one side one would like to extend to new structures the theory of sta-
tistical physics, in order to obtain new features and behaviors which could
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explain some real physical systems. On the other side, many combinato-
rial problems on random structures, in particular optimization and counting
problems, can be reformulated in the statistical mechanics setting and then
solved, or at least better understood, with the methods of statistical me-
chanics (see [MM]); we think, for example, to the random k-sat problem,
that recently has attracted a lot of attention both from computer scientists
and from mathematical physicists (see [AP, AR, MMZ]).

In contrast with the huge literature on probabilistic and combinatorial
analysis of random graphs, and with the increasing number of papers on
the equilibrium behavior of statistical models on random graphs, there are
very few papers analyzing the nonequilibrium properties of these models.
In particular it doesn’t exist, to the best of our knowledge, any rigorous
result concerning the relaxation time of the Glauber dynamics. To attack
this range of hard problem, new techniques and ideas are then required.

The work in the second part of this thesis is a first tentative of clarifying
the behavior of local dynamics for Ising model on some random graphs. To
this aim, we will combine the standard analytic and probabilistic methods,
used to study Glauber dynamics, with the probabilistic and combinatorial
techniques coming from the theory of random graph.

Firstly we will consider the Glauber dynamics for the Ising model on
the binomial random graph G(n, p), with p = c/n and c > 0 (see, e.g.,
[JLR, Bo, Sp2]). For this value of the parameter p, it is well known that
almost surely in the limit of n → ∞ (a.a.s.), the binomial random graph is
disconnected and has a largest component whose size depends on c: if c < 1
it has size O(log n); if c > 1 it has size Θ(n) (giant component). The Gibbs
measure on the graph is thus given by the product of Gibbs measures on any
component. We will prove the following results

Theorem 0.3. For every β > 0, there exists a positive constant cβ such that
a.a.s. the spectral gap of the Ising model Glauber dynamics on G(n, c/n) is less
then δn = exp (−cβ

log n
log log n), i.e.

lim
n→∞P(cgap(LG) ≤ δn) = 1 (0.8)

Theorem 0.4. For every β > 0 and c > 1 there exists a positive constant cβ

such that a.a.s. the spectral gap of the Ising model Glauber dynamics on the
giant component C of G(n, c/n) is less then δn = exp (−cβ

log n
log log n), i.e.

lim
n→∞P(cgap(LC) ≤ δn , C ⊆ G(n, c/n)) = 1 (0.9)
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From Theorem 0.3 it follows that for every β > 0 and c > 0, a.a.s.
the mixing time of the dynamics on G(n, c/n) grows with n at least as
exp(−cβ

log n
log log n). Moreover, as stated in Theorem 0.4, if c > 1 then a.a.s.

there exists a unique giant component C and the relaxation time of the dy-
namics on C grows with n at least as exp(−cβ

log n
log log n).

The proofs of these results are similar and are both given in two steps.
In the first step, for every integer k ≤ n, we define a suitable subgraph Sk

of size k and prove, providing a suitable test function, that the spectral gap
of the dynamics on Sk is exponentially small in k. In the second step, using
standard techniques like the first and the second moment methods, we prove
that the probability that Sk is contained in G(n, c/n) is asymptotically one
for any k ≤ α log n

log log n , with α < 1/2. With some extra work we are also able
to prove that a.a.s. the underlying subgraph belongs to the giant component
of the graph.

Secondly, we consider the r-regular random graph model on n vertex,
that is the set of all graphs with constant vertex degree equal to r, each
one taken with uniform probability [Wo, JLR, Bo]. Here we give a very
simple proof that for every β > β1 (low temperatures) and for almost surely
any realization of the random graph, the relaxation time of the dynamics is
Ω(exp(n)), as the size n of the graph tends to infinity. The proof consists
again in providing a suitable test function to get results from the variational
characterization of the spectral gap. Here will be determinant a geometrical
property of regular random graph, holding almost surely when n goes to
infinity.

Organization

In Chapter 1 we introduce some elements of graph theory and give precise
notions of transitive graph and hyperbolic graph. In Chapter 2 we define
spin systems, Gibbs measures and Glauber dynamics, and introduce the an-
alytic tools to study the relaxation to equilibrium. A briefly description of
results for the Ising model on transitive graph, both from equilibrium and
the dynamical point of view, is given in Chapter 4. In Chapter 5 we present
and prove our boundary-specific result for hyperbolic graphs. The definition
of random graphs and the relative results are all given in Chapter 6.



Chapter 1

Elements of Graph Theory

1.1 Basic definitions and notation

A graph is a pair G = (V, E), where V is an arbitrary set, called the set
of vertices, and E ⊆ V × V is called the set of edges (or bonds) of G. Given
an edge e = (x, y), the vertices x and y are called its end-points and e is said
to be incident to x and y. If x and y are the end-points of an edge, we call
them neighbors or adjacent and write x ∼ y. Edges are said to be neighbors
or adjacent if they share a common vertex.
The degree of x ∈ V , deg x, is the number of edges incident with x. A graph
is said locally finite if the degree of each vertex is finite. Let us define the
quantity

∆(G) = sup{deg x : x ∈ V } ;

if ∆(G) < ∞, the graph G is said to be of bounded degree, and ∆(G) is its
maximal degree. A graph of bounded degree is also locally finite whereas
one can provide examples of locally finite graphs with ∆(G) = ∞.

A path in G = (V,E) is a sequence (e1, e2, . . . , en) of distinct edges in E,
such that ej is neighbor to ej+1 for each j = 1, . . . n. It can be also identified
with the sequence x0, x1, . . . , xn of vertices in V such that ej = (xj−1, xj)
for every j = 1, . . . n, and in this case x0 and xn are called the end vertices
of the path. If x0 = xn and n ≥ 3, the path is closed and is called a cycle. In
both cases we call n the length of the path.
Given two nonempty subsets S, K ⊂ V such that S∩K = ∅, we say that γ is
a path from S to K, and write γ : S 7→ K, if for some n ∈ N, γ = (x0, . . . , xn)
is a path in G with x0 ∈ S and xn ∈ K.

11
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Two vertices are said to belong to the same connected component of the
graph, if there is a path which has them as end vertices. With this notion the
graph is partitioned into connected components, and it is said connected if
it has a single connected component.
The graph distance d(x, y) between two vertices x and y, is defined as the
minimal length of paths from x to y.

A graph S, with vertex set V (S) and edge set E(S), is said a subgraph
of G if V (S) ⊂ V and E(S) ⊂ E. Given V ′ ⊂ V , we denote by E(V ′) the
set of all edges in E which have both their end vertices in V ′ and we call
G(V ′) = (V ′, E(V ′)) the induced subgraph on V ′. Given a subset K ⊂ V , we
define the vertex boundary of K

∂V K = {x ∈ V \K : ∃y ∈ K s.t. x ∼ y}

and the edge boundary of K

∂EK = {e = (x, y) ∈ E s.t. x ∈ K , y ∈ V \K} .

For a subgraph S of G, we will abuse the notation and write ∂V (S) and
∂E(S) for the boundaries of V (S).
Its easy to see that for finite K ⊂ V ,

|∂EK|
∆(G)

≤ |∂V K| ≤ |∂EK| ≤ |∂V K|∆(G) , (1.1)

where the first and last inequalities become trivial when ∆(G) = ∞.
All the graphs considered in this dissertation will be infinite, connected

and of bounded degree.

1.2 Transitive graphs

1.2.1 Definitions and examples

Given a graph G = (V,E), an automorphism of G ia a bijection φ of
V which preserves the graph structure, i.e. such that E = {(φ(x), φ(y)) :
(x, y) ∈ E}. The set of automorphism of G forms a group denoted Aut(G).
We say that a group Γ ⊆ Aut(G) is transitive (or acts transitively) if for all
x, y ∈ V there is some γ ∈ Γ such that γx = y. We say that Γ is quasi-
transitive if Γ splits V into finitely many orbits, i.e. if there is a finite set
V0 ⊂ V with the property that each vertex of the graph can be mapped by
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Γ into one of the vertices of V0. We call the graph G transitive (or quasi-
transitive) if Aut(G) is transitive (or quasi-transitive). In the sequel we will
ignore quasi-transitive graphs, though the extension of results for transitive
graphs to quasi-transitive graphs is often reachable.

In the sequel we will present and discuss some subclasses of the huge
family of transitive graphs. But before, we want to explain some graph
properties in order to identify these subclasses with properties that they
may or may not satisfy. Let us give a briefly description of properties we will
be mainly concentrated on.

1.2.2 Main properties

Amenability and isoperimetric constants

Given an infinite, locally finite, connected graph G = (V,E), its vertex
and edge isoperimetric constants are defined respectively as

iv(G) := inf
{

∂V (K)
|K| ; K ⊂ V finite

}
(1.2)

ie(G) := inf
{

∂E(K)
|K| ; K ⊂ V finite

}
. (1.3)

From (1.1) we have

ie(G)
∆(G)

≤ iv(G) ≤ ie(G) ≤ ∆(G)iv(G)

so that for graphs of bounded degree iv(G) > 0 if and only if ie(G) > 0.

A graph G is amenable if its vertex isoperimetric constant (or Cheeger
constant) is 0, i.e. if for every ε > 0 there is a finite set of vertices K such
that |∂V K| < ε|K|. Otherwise G is non-amenable.

A typical examples of (transitive) non-amenable graph is the regular tree
Tb. If, for instance, we consider the balls B(l) of radius l around the root r

(namely the subtree with depth l), for every l we get that |∂vB(l)|/|B(l)| ≤
1/(b− 1); one can prove that this is indeed the correct value of the Cheeger
constant.
A typical examples of (transitive) amenable graph is the cubic lattice Zd.
Taking in this case the balls of radius l around the origin, we see that the
ratio |∂vB(l)|/|B(l)| = O(l−1) and then goes to 0 for l →∞.
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Number of Ends

Given a finite subset K of V , the graph G\K is the graph obtained from
the graph G by removing the vertices which belong to K and the edges
incident to these vertices. The number of ends of the graph G is defined as

E(G) = sup
K⊂V

Kfinite

{ number of infinite connected components of G \K } .

Any Cartesian product of infinite graphs can easily be seen to have a single
end.

It is known that for transitive graphs the number of ends can only be: 1
(e.g., Zd, d ≥ 2), 2 (e.g., Z), or ∞ (e.g., Tb, b ≥ 2). Moreover, when the
number of ends is 2, the graph is amenable and when the number of ends is
infinity the graph is non-amenable. Graphs with a number of ends equal to
1, can be amenable (as Zd with d ≥ 2) or not (as the hyperbolic graphs, see
below).

Planarity

Let Π be the Euclidean or the hyperbolic plane. A graph G = (V,E) is
planar if can be embedded in Π satisfying the following restrictions.

(i) Each vertex x ∈ V is mapped into a point vx ∈ Π.

(ii) Each edge e = (x, y) ∈ E is mapped into the image Γe = γe([0, 1]) of a
curve γe : [0, 1] 7→ Π, with γe(0) = vx and γe(1) = vy. If e1 6= e2, then
γe1((0, 1)) ∩ γe2((0, 1)) = ∅.

The connected components of Π \ (∪e∈E)Γe are called the faces of the em-
bedding. When G is planar, transitive and one end, it is not hard to show
that each face is bounded.

Given a planar graph, one can construct the dual multigraph (mean-
ing that more then one edge can connect two vertices and edges may have
two identical endpoints) G∗ = (V ∗, E∗) as follows: to every faces in G is
bi-univocally associated a vertex v ∈ V ∗; to every e ∈ E is bi-univocally
associated the dual edge e∗ connecting the two faces which have Γe in their
boundary.
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1.3 Cayley Graphs

1.3.1 Construction and main subclasses

An important class of transitive graphs is that of the Cayley graphs of
finitely generated group, defined as follows. Let Γ a finitely generated group
and S a finite symmetric generating set for Γ, where, we recall, S is sym-
metric if s ∈ S ⇒ s−1 ∈ S. The (right) Cayley graph C(Γ, S) of Γ is the
graph with vertex set V := Γ and edge set E := {(v, vs); v ∈ Γ, s ∈ S}.
From the symmetry of generators, E is well defined and the obtained graph
non-oriented. If the generators’set S is finite, then the corresponding Cay-
ley graph is of bounded degree, with constant vertex degree equal to the
number of generators |S|.

Cayley graphs of finitely generated groups includes a large number of
examples of transitive graphs and most of those which are of great interest.

(i) The basic examples of graph of interest in statistical mechanics and re-
lated areas are the cubic lattices Zd, with d ≥ 1. The cubic lattice Zd

is indeed a Cayley graph of the free Abelian group of rank d.

(ii) Another important class of examples is that of the homogeneous or
regular trees, i.e. trees which are transitive and in particular have
constant vertex degree ∆. We will denote by Tb the homogeneous
tree of degree ∆ = b + 1 (the index b stays for the branching number
of the tree). If ∆ is even, then Tb is a Cayley graph of the free group
with ∆/2 free generators. When ∆ is odd, Tb is a Cayley graph of the
group with b/2 free generators and one generator which is identical to
its inverse.

(iii) The third class we want to recall is that of Cayley graphs of discrete
groups of isometries of the hyperbolic spaces Hd, with d ≥ 2 (Fuchsian
groups in the d = 2 case). The vertices of such graphs can be thought
as the center of a tile in a tesselation of Hd, with edges connecting
vertices corresponding to tiles whose boundary intersect in a d − 1-
dimensional surface. Such examples may be seen as ”crystals in a
non-Euclidean space”; their Euclidean counterparts are Cayley graphs
of discrete groups of isometries of Euclidean space, including Zd and
the triangular and hexagonal lattices. We will deepen the case d = 2,
which includes the main objects we will work on: hyperbolic graphs.
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1.3.2 Hyperbolic Graphs

Let H2 be the hyperbolic plane and denote by I(H2) the group of isome-
tries of H2. Consider a finitely generated co-compact subgroup G of I(H2),
namely such that there is a compact subset K of I(H2) with GK = I(H2).
If S is a finite set of generators for G, then the Cayley graph C(G,S) is an
hyperbolic graph. See, e.g., [Mag] for a more detailed introduction to the
subject.
We can embed C(G,S) inH2 as follows. Choose a convex finite-sided geodesic
polygon A ∈ H2 which is a fundamental domain for G acting on H2. Accord-
ing to the Poincaré’s theorem on fundamental polygons, the set of isometries
S which identify the sides of A is a set of generator for G. Thus fix a point
0 ∈ IntA. The vertices of C(G, S) are the points of g0, with g ∈ G, and an
edge between g0 and g′0 is drawn whenever exists s ∈ S such that g′ = gs.

The embedding of an hyperbolic graph in H2, gives out a tessellation of
the hyperbolic plane with regular tiles, and indeed the hyperbolic graphs
are also known as hyperbolic tiling. In particular, they can be characterized
by the (constant) vertex degree v and the (constant) number of sides s in
each face (tile), and thus denoted by H(v, s). In order for the embedding
in H2 to be well defined, the integers v and s have to satisfy the relation
(v− 2)(s− 2) > 4. The typical representation of hyperbolic tilings make use
of the Poincaré disc D2 that is in bi-univocal correspondence with H2. See
figure 3.1.

It turns out that the hyperbolic graphs are planar. In particular, the dual
graph of a given hyperbolic tiling H(v, s) is an hyperbolic tiling too, and it
is easy to check that [H(v, s)]∗ = H(s, v).
Moreover, the hyperbolic graphs belong to the class of non-amenable one
ended transitive graphs; as we will see in chapter 3, this class is related
with two interesting conjectures concerning the behavior of some statistical
mechanics models.
As shown in [HJL], the edge isoperimetric constant of H(v, s) is explicitly
given by

ie(H(v, s)) = (v − 2)

√
1− 4

(v − 2)(s− 2)
.

For a detailed analysis of the hyperbolic graph we refer, e.g., to [Mag, RNO].
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Figure 1.1: Two examples of hyperbolic tiling in the Poincaré disc represen-
tation : H(7, 3) on the top and H(4, 5) on the bottom.
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Chapter 2

Spin Systems

2.1 Preliminaries

A spin system is a collection of particles, each one associated to a spin
variable taking value in a finite space S, referred to as the spin space. Here
we will consider systems whose particles are sited on the vertex set of a
locally finite graph G = (V, E), with V a countable set.

We use the following terminology and notation. To every vertex x ∈ V

is associated a spin variable σx ∈ S and the state of the total system is
specified by a configuration σ ∈ Ω = SV , that is an assignment of spins on
V . We endow Ω with the σ-algebra F generated by the set of projections
{πx}x∈Vm from Ω to S, where πx : σ 7→ σx. For Λ ⊂ V , we also use
the notation σΛ for the configuration in ΩΛ := S |Λ| and denote by FΛ the σ-
algebra generated by πx , x ∈ Λ. We say that σ agrees with η on Λ if σΛ = ηΛ

and let Ωη
Λ = {σ ∈ Ω|σΛc = ηΛc} denote the set of configurations that agree

with η outside Λ. We write f ∈ FΛ to indicate that f is FΛ-measurable.

The global behavior of the system depends from the interaction between
particles. If there aren’t interactions, then every particle behaves indepen-
dently and the analysis of the system is elementary, since the measure de-
scribing the system is just a product measure. While, if a simple interac-
tion is introduced in the system, the global behavior of the system changes
deeply and non trivial phenomena (like phase transitions) appear.
Let F be the set of all nonempty finite subsets on V ; the general assumptions
on the interactions are the following.

Definition 2.2. A finite range, automorphism-invariant potential (or interac-

19
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tion) J = {JΛ}Λ∈F is a real function of non empty finite subsets of V with the
following properties

1. JA = Jφ(A) for all A finite subset of V and all φ ∈ Aut(G)

2. There exists r > 0 such that JA = 0 if diam(A) > r. r is called the range
of the interaction.

3.
∑

A30 |JA| < ∞

Given an interaction J with these properties and for every finite subset Λ ∈
V , we define the Hamiltonian HΛ : Ω 7→ R by

HΛ(σ) = −
∑

A∩Λ6=∅
JA

∏

x∈A

σx, (2.1)

that can be considered as the contribution to the energy of σ coming from
Λ. Though we dropped any subscript, HΛ clearly depends from the choice
of the potential J . Let η ∈ Ω specify a boundary condition. The finite region
Gibbs measure on Λ conditioned on η is defined as:

µη
Λ(σ) :=

{
(Zη

Λ)−1 exp[−βHη
Λ(σ)] if σ ∈ Ωη

Λ;
0 otherwise,

(2.2)

where Zη
Λ is the appropriate normalizing factor and β is a non-negative con-

stant often interpreted as the inverse temperature (and sometimes included
in the interaction J). We will also refer to the Gibbs measure on Λ with free
boundary conditions, denoted by µf

Λ, meaning the measure resulting from
the above definition but considering Λ as disconnected from the rest of the
graph, i.e. taking the sum in (2.1) only over subsets A ⊆ Λ.
Given a measurable bounded function f on Ω, µη

Λ(f) is the average of f

w.r.t. µη
Λ and µΛ(f) denotes the function σ 7→ µσ

Λ(f). Clearly µΛ(f) ∈ FΛ.
Spin systems with nearest neighbor interactions are probably the most

studied models. Their are defined by associating to every edge e = (x, y) ∈
E a symmetric pair potential J(x,y) : S × S 7→ R ∪ {∞}, and to every
x ∈ V a self potential Jx : S 7→ R ∪ {∞}. Notice that for these models,
the distribution (2.2), of the particle configurations on Λ, depends from the
boundary conditions only through ∂V Λ.

The most famous example of spin system with nearest neighbor interac-
tions is certainly the Ising model. For this model the spin space is S = {±1},
the pair potential is constant equal to 1 for every edge and the self potential
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is constant equal to h ∈ R for every vertex, where h represents the external
magnetic field. For every η ∈ Ω b.c. and σ ∈ Ωη

Λ, he Hamiltonian of the
Ising model is

HΛ(σ) = −
∑

(xy)∩Λ6=∅
σxσy + h

∑

x∈Λ

σx . (2.3)

The relative Gibbs measure distribution µη
Λ thus assigns higher weight to

configurations in which many neighboring spins are aligned with one an-
other, as well as to configurations in which many spins agree with the sign
of h. This two effects increase with β and |h| respectively. In particular,
at high temperatures (low β) the spins behave almost independently, while
at low temperature large connected regions of equal spins tend to form.
The Ising model will be discussed in details in the following chapter, where
different graph structure will be considered.

2.2 Gibbs measures

2.2.1 Construction by DLR equations

It is immediate from the definition, that any finite region Gibbs measure
satisfies the so called DLR compatibility conditions. Namely, for every η ∈ Ω
and every σ ∈ Ωη

Λ, it holds

µη
Λ( · |σAc) = µσ

A( · ) ∀A ⊆ Λ ∈ F . (2.4)

Equivalently, given an event X ∈ F and with the notation µΛ(X) ≡ µΛ(1IX),
where 1IX is the characteristic function on X, it holds

µη
Λ(µA(X)) = µη

Λ(X) ∀X ∈ F ∀A ⊆ Λ ∈ F .

We say that µη
Λ is stationary under µA.

Let us refer to the collection of all finite region Gibbs measures µη
Λ as Λ

and η vary, as the specification µ. Given a specification µ, namely after
specified the configuration space and the potential J that give rise to µ, one
can extend the notion of DLR compatibility to measures on the infinite space
that are compatible with all finite distributions.

Definition 2.3. A probability measure ν on (Ω,F) is called a Gibbs measure
for the specification µ if, for every finite region Λ and ν-almost every configu-
ration σ,

ν( · |σΛc) = µσ
Λ( · ) , (2.5)
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or equivalently if ν(µΛ(X)) = ν(X) for every X ∈ F and Λ ∈ F.

The physical intuition for a Gibbs measure is that it describes a ”macro-
scopic equilibrium” in which all parts of the system are in equilibrium with
their boundaries.

2.2.2 Uniqueness and mixing in space

It is well known that, for any specification µ derived as above, at least
one Gibbs measure exists. However, several Gibbs measures for a given
specification may coexist (see, e.g., [Ge, GHM, EFS] for details and more on
Gibbs measures).

The question of whether the Gibbs measure is unique or not is central
in statistical physics, because it corresponds to whether one or more macro-
scopic equilibria are possible for the given system. Denoting by G the set of
all Gibbs measures relative to a given specification µ, we say that the spin
system described by µ exhibits a phase coexistence if G contains more then
one element.
Since G is proved to be a convex compact set, the convex combination of lim-
its of finite volume Gibbs measures along sequences of regions and boundary
conditions is a Gibbs measure. Thus, the question of whether the Gibbs mea-
sure is unique, can be translated to that of whether there is an asymptotic
independence between the configuration on a finite region and a distant
boundary condition. To formalize this concept, let us introduce the follow-
ing notation.
Given two probability measures µ1, µ2 on a finite set Y , their total variation
distance is defined as:

‖µ1 − µ2‖ :=
1
2

∑

y∈Y

|µ1(y)− µ2(y)| = sup
X⊂Y

|µ1(X)− µ2(X)| . (2.6)

Given ∆ ⊂ Λ ∈ F and the Gibbs measure µΛ on ΩΛ, let µΛ,∆ denotes the
projection of the measure µΛ on Ω∆, i.e.

µΛ,∆(σ) =
∑

η: η∆=σ∆

µΛ(η) .

The sufficient and necessary condition for the Gibbs measure relative to a
specification µ to be unique is the following.
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Proposition 2.1. A specification µ admits a unique Gibbs measure if and only
if, for every finite region ∆, there exists an infinite sequence of regions Λ1 ⊂
Λ2 ⊂ . . . ⊂ Λl ⊂ . . . such that

⋃
l>0 Λl = V , and for any two configurations η

and σ,
‖µη

Λl,∆
− µσ

Λl,∆
‖ −→

l→∞
0

From Proposition 2.1 one can observe that the uniqueness of the Gibbs
measure corresponds to a particular form of asymptotic independence in
the equilibrium state between configurations on two distant regions. We
call this behavior mixing in space. Following this idea, we can now define
two different notions of spatial mixing.

Definition 2.4. We say that the Gibbs measure µΛ has weak spatial mixing in
Λ if there exist constants C and m such that, for every subset ∆ ⊂ Λ and every
pair of boundary conditions η and σ,

‖µη
Λ, ∆ − µσ

Λ, ∆‖ ≤ C|Λ|e−md(∆, ∂V Λ) . (2.7)

Definition 2.5. We say that the Gibbs measure µΛ has strong spatial mixing
in Λ if there exist constants C and m such that, for every subset ∆ ⊂ Λ, every
S ⊆ ∂V Λ and every pair of boundary conditions η and σ that differ only on S,

‖µη
Λ, ∆ − µσ

Λ, ∆‖ ≤ C|∆|e−md(∆, S) . (2.8)

From definitions above, one can verify that the conditions of weak and
strong mixing both imply the existence of a unique infinite volume Gibbs
measure with exponentially decaying truncated correlations functions. The
exponential decay inside Λ grows with the distance from the boundary ∂V Λ,
in the weak mixing case, or with the distance from the support of the pertur-
bation, in the strong mixing case. Both notions are very useful tools when
analyzing the mixing properties of the Glauber dynamics on graph spin sys-
tem.

2.3 Glauber dynamics on a bounded degree graph

In the previous section we described the equilibrium state of a spin sys-
tem on an infinite, locally finite graph G = (V, E), and defined some prop-
erties which the state may or may not satisfy. In this section, given a finite
graph G = (V,E) and a spin system with configuration space Ω = SV and
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equilibrium measure µ, we will define a special class of stochastic process
on Ω known as Glauber dynamics. This is a Markov process with a unique in-
variant reversible measure corresponding to the Gibbs measure µ, which is
often used in algorithmic simulation for sampling from the Gibbs measure.
Beyond its relevance in computational problem, Glauber dynamics suggests
a model for how the system converges to the equilibrium state, and thus
enables to analyze nonequilibrium phenomena. As we will point out at the
end of this section, the interest in this subject come also from its connection
with the equilibrium properties of the system; the first of this dissertation is
indeed devoted to these kind problem.
Here we define the dynamics together with its main mixing properties. Then
we introduce some analytic tools to analyze the mixing time of the process.

2.3.1 Construction and existence

Before defining the Glauber dynamics on finite graph, let us recall some
basic facts about reversible Markov process on finite spaces (see [Lig, Sa]).

Given a finite set X, an irreducible continuous-time Markov chain (Xt)t≥0

on X, reversible with respect to the positive probability measure π, is con-
structed as follows. One first defines the generator L of the process, namely
a self-adjoint operator on `2(X, π) with kernel L(x, y) whose matrix ele-
ments satisfy:

(i)
∑

y∈X L(x, y) = 0 for any x ∈ X;

(ii) L(x, y) ≥ 0 for any x 6= y ∈ X;

(iii) π(x)L(x, y) = π(y)L(y, x) for any x, y ∈ X (detailed balanced condi-
tion);

(iv) for any pair of x 6= y ∈ X there exists n ∈ N such that (Ln)(x, y) > 0.

The Markov semigroup associated to L is given by Pt = etL and has kernel
Pt(x, y) = etL(x,y). For every x ∈ X, Pt(x, · ) represents the distribution at
time t of the Markov process (Xt)t≥0 starting at x. Notice that

L(x, y) =
d

dt
Pt(x, y)|t=0 ,

which justifies the name of jump rate from x to y for the matrix element
L(x, y), with x 6= y.
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From the detailed balanced condition (iii) we get that π must be the unique
invariant measure for the process, i.e. π(Ptf) = π(f) for any f . From the
Perron-Forensics Theorem (see, for instance [Sa]) then it holds that the dis-
tribution of the Markov process converges to its reversible measure, namely
lim
t→∞ ‖Ptf − π(f)‖∞ = 0 .

Now, let G = (V,E) be an infinite locally finite graph, S be a finite space
and J be a finite-range, automorphism invariant potential on Ω = SV . This
defines a spin system on G with finite volume Gibbs measure µτ

Λ as in (2.2).
The Glauber dynamics on finite subset Λ ⊂ V with boundary condition τ ,
is a continuous time Markov chain (σt)t≥0 on Ωτ

Λ, with Markov generator L
given by

(Lf)(σ) =
∑
x∈Λ
a∈S

cx(σ, a)[f(σx,a)− f(σ)] (2.9)

where σx,a is the configuration obtained by setting the spin at x equal to the
value a and the quantities cx(σ, a) are the jump (or transition) rates.
The general assumption on the transition rates, beyond hypothesis (i)-(iv)
above, are

(1) Finite range interactions. If σy = ηy for all y such that d(x, y) ≤ r, then
cx(σ, a) = cx(η, a) for all a ∈ S.

(2) Positivity and boundedness. There exist positive real numbers cm and cM

such that

0 < cm ≤ inf
x,a,σ

cx(σ, a) sup
x,a,σ

cx(σ, a) ≤ cM

(3) Automorphism invariance. If, for some φ ∈ Aut(G), σy = ηφ(y) for all
y ∈ V , then cx(σ, a) = cφ(x)(η, a) for all x ∈ Λ and a ∈ S.

In the sequel we will focus for simplicity on a specific choice of the jump
rates known as the heat-bath dynamics:

cx(σ, a) = µσ
x(a) . (2.10)

It is easy to check that the heat bath Glauber dynamics is ergodic and satis-
fies the detailed balance condition w.r.t. the Gibbs measure µτ

Λ, i.e. it holds

exp[−Hx(σ)]cx(σ, a) = exp[−Hx(σx,a)]cx(σx,a, σx) .
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Thus, from the Perron-Forensics Theorem, the distribution of the Markov
process (σt)t≥0 converges to the stationary distribution µτ

Λ.
When S = {±1} (Ising spin space), for all a ∈ S the difference f(σv,a)−

f(σ) is non zero only when a = −σx, namely when the new configuration
σx,a is obtained from σ by flipping the spin at the site x. We denote such a
configuration by σx and we abbreviate the flip rates cx(σ,−σx) = cx(σ); the
generator formula then reduces to the following

(Lf)(σ) =
∑

x∈Vm

cx(σ)∇xf(σ) , (2.11)

where we also introduced the symbol ∇xf(σ) = [f(σx)− f(σ)].

2.3.2 Relaxation to equilibrium: coercive bounds

The crucial problem in several applications, like combinatorial compu-
tation and statistical mechanics, concerns the time needed, for a reversible
Markov process (L, π), to be arbitrary close to its stationary measure. The
standard proofs of the Perron-Forensics theorem, do not provide any infor-
mation (or very lousy one) concerning this problem. Thus new technique
are required.

Here we will present the main analytic tools to get bounds on the rate
of convergence to equilibrium of Markov process as defined in the previous
paragraph. We will serve of these methods to prove the main results of this
dissertation.

Let us first consider the general Markov process (L, π) on the finite space
X, satisfying the conditions (i)-(iv) settled at the beginning of the previous
paragraph. Given a real function f on X, we introduce the variance of f

with respect to π

Varπ(f) = π(f2)− π(f)2

and the Dirichlet form of f associated with the process (L, π), that thanks to
the reversibility condition can be written as

D(f) =
1
2

∑
x,y

π(x)L(x, y)[f(x)− f(y)]2 .

Then one can easily prove the equality

d

dt
Varπ(Ptf) = −2D(Ptf) , (2.12)
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that suggests the use of functional coercive inequalities, like the Poincaré
inequality or the logarithmic Sobolev inequalities, to obtain bounds on the
long time behavior of the semigroup Pt. Let as formalize this idea.

The first quantity of interest is the spectral gap, defined as follows. Recall
that, since the generator L is a nonpositive self-adjoint operator on `2(X,π),
its spectrum consists of discrete eigenvalues of finite multiplicity that can be
arranged as 0 > −λ1 ≥ −λ2 ≥ . . . ,≥ λn−1, |X| = n, with λi > 0 for all
i > 0.

Definition 2.6. The spectral gap of the Markov process (L, π), denoted cgap,
is the absolute value of the first nonzero eigenvalue of L, namely cgap = λ1. It
satisfies

cgap = inf
{ D(f)

Varπ(f)
; Varπ(f) 6= 0

}
. (2.13)

Equivalently c−1
gap is the best constant c in the Poincaré inequality

Varπ(f) ≤ cD(f) ∀f ∈ l2(X, π),

that together (2.12) and the fact P0(f) = f , implies

Varπ(Ptf) ≤ e−2cgap tVarπ(f) . (2.14)

From last inequality, we notice that the spectral gap ”gives a measure” of
the exponential decay of the variance, and indeed the relaxation time, T0, is
defined as the inverse of the spectral gap.
Moreover, let hx

t denote the density of the distribution at time t of the pro-
cess starting at x w.r.t. π, i.e. hx

t (y) = Pt(x, y)
π(y) . For 1 ≤ p ≤ ∞ and a

function f ∈ `p(X, π), let ‖f‖p denote the `p norm of f and define the time
of convergence

Tp = min
{

t > 0 : sup
x
‖hx

t − 1‖p ≤ e−1

}
, (2.15)

that for p = 1 is called mixing time. Then it holds the following result (see
[Sa]):

Theorem 2.5. Let (L, π) be a continuous-time, reversible Markov chain on a
finite set X with spectral gap cgap > 0. Denoting π∗ = minx π(x), it holds that

c−1
gap ≤ Tp ≤ c−1

gap

(
2 + log

1
π∗

)
, ∀ 1 ≤ p ≤ 2

c−1
gap ≤ Tp ≤ c−1

gap

(
1 + log

1
π∗

)
, ∀ 2 < p ≤ ∞
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The bounds provided by this theorem can be proved to be optimal in
some cases; but in other cases, the presence of the term log 1

π∗ , which can
be very large, worsen the tightness of the bounds. In these cases, can be
useful to introduce another quantity, related to a new coercive inequality
for the process (L, π), which improves the result of theorem 2.5.
Given a function f ≥ 0, let us recall that the entropy of f w.r.t. π is given by

Ent(f) = µ(f log f)− µ(f) log µ(f) ,

and observe that Ent(f) ≥ 0 from the Jensen inequality.

Definition 2.7. The logarithmic Sobolev constant of the Markov process (L, π),
denoted by csob, is defined by

csob = inf
f≥0

D(
√

f)
Ent(f)

(2.16)

In particular csob is the best constant c in the logarithmic Sobolev inequality

Ent(f) ≤ cD(
√

f) , ∀ f ≥ 0 .

The main interest for the logarithmic Sobolev constant csob comes from its
relation with hypercontractivity properties of the Markov semigroup Pt, that
we briefly recall (see [Gro]).

Definition 2.8. Given a strictly increasing function q : R+ 7→ [q(0), ∞], we
say that the Markov semigroup Pt is hypercontractive with contraction function
q if for any function f and any t ≥ 0

‖Ptf‖q(t) ≤ ‖f‖q(0)

We now list a set of results (see [Sa])

Theorem 2.6. Let csob the logarithmic Sobolev constant of the Markov process
(L, π). Then:

(i) Pt is hypercontractive with contraction function q(t) = 1 + e
4 t

csob .

(ii) Entπ(Ptf) ≤ e
4 t

csob Entπ(f) for any f ≥ 0.

(iii) The relaxation time is bounded as follows:

c−1
gap ≤ Tp ≤

c−1
sob

4

(
4 + log+ log

1
π∗

)
, ∀ 1 ≤ p ≤ 2

c−1
sob

2
≤ Tp ≤

c−1
sob

2

(
3 + log+ log

1
π∗

)
, ∀ 2 < p ≤ ∞

where log+ t = max{0, log t}.
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Statement (ii) is the entropy counterpart of inequality (2.12), from which
we can interpret the logarithmic Sobolev constant as a measure of the de-
cay of the entropy. Statement (iv) provides the announced bounds on the
relaxation time.

The results stated above, clearly apply to Glauber dynamics (L, µτ
Λ),

which is a reversible and ergodic Markov process on the finite space Ωτ
Λ.

When the spin system under consideration is the Ising model, defined by
means of the Hamiltonian in (2.3) (see also chapter 3), and the dynamics is
specified by the generator L in (2.11) with heat-bath jump rates (given in
(2.10)), then the Dirichlet form of f takes the following equivalent expres-
sion

D(f) =
1
2

∑

x∈Λ

µτ
Λ

(
cx[∇xf ]2

)
=

∑

x∈Λ

µτ
Λ(Varx(f)) . (2.17)

In the case of heat-bath dynamics on a graph G with n vertices and
maximum vertex degree ∆ < ∞, the main bounds on the mixing time,
obtained through cgap and csob, are the following:

c−1
gap ≤ T1 ≤ c−1

gap × C1n

c−1
gap ≤ T1 ≤ c−1

sob × C2 log n
(2.18)

where C1 and C2 are constants depending on β and ∆. We refer to [Mar,
Mar2, Sa] for a wider discussion on the relation between cgap, csob and the
relaxation time for Markov chains, and to [GZ, St, var] for analysis and
results regarding the logarithmic Sobolev inequalities.

2.3.3 Mixing time and phase transitions

Advances in statistical physics over the last past decade have led to the
following remarkable characterization of the mixing time on finite n-vertex
cubes with free boundary in the 2-dimensional lattice Z2. Let βc denote the
critical value marking the separation between the uniqueness phase (|G| =
1) and the coexistence phase (|G| > 1). It is proved (see, for instance [Mar])
that for all β < βc the mixing time T1 is O(log n), while for all β > βc,
T1 = exp(Ω(

√
n)). Thus the phase transition at βc, that is a static and spatial

phenomenon, has a dramatic manifestation in the form of an explosion from
optimal to exponential in the mixing time for the dynamical process. This
result is perhaps the most convincing example of an intimate connection
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between phase transitions and mixing time. In particular, it manifests the
correspondence between the mixing in space, related to the uniqueness of
the Gibbs measure as remarked after proposition 2.1, and the mixing in
time. This relation is still under investigation, though notable results for
spin system on the integer lattice Zd has been derived [SZ, MO1, MO2,
Mar1, Wei]. We recall, without proving, some of these results.

We first introduce a notion of temporal mixing for Glauber dynamics
(L, µτ

Λ), with Λ a finite region of V . Assume that |Λ| = n.

Definition 2.9. We say that the continuous time dynamics (L, µτ
Λ) has optimal

temporal mixing if there exist constants C and α > 0 such that, for any t > 0
and all σ ∈ Ωτ

Λ,

‖Pt(σ, · )− µτ
Λ‖ ≤ Cn exp(−αt) , (2.19)

where Pt is the Markov semigroup at time t associated with the dynamics for
µτ

Λ.

Notice that a simple inversion reveals that optimal temporal mixing is
equivalent to a mixing time T1 = O(log n). Indeed it has been recently
proved (see [HS]) that the mixing time of a dynamics which updates only
finite size regions (e.g., the Glauber dynamics) is at least Ω(log n), where n

is the size of the underlying graph.
The main connections between spatial and temporal mixing for spin systems
on the lattice Zd are captured in the following results (see [SZ, Ces, MO1,
MO2, Wei] and also [Mar] for a nice review on the subject):

Theorem 2.7. If the Glauber dynamics (L, µΛ), with Λ ∈ Zd, has optimal
temporal mixing for some boundary condition τ then the system has weak
spatial mixing. If in addiction the optimal temporal mixing holds uniformly in
the boundary condition, then the system has strong spatial mixing.

Theorem 2.8. If a system (ΩΛ, µΛ) has strong spatial mixing then the Glauber
dynamics has optimal temporal mixing uniformly in the boundary condition.

As a consequence of Theorems 2.7 and 2.8, we get that if the mixing
time of the Glauber dynamics on the lattices is optimal, i.e. T1 = Ω(log n),
then the system is in the uniqueness phase region; viceversa, if the system
is in the uniqueness phase region then the mixing time of the Glauber dy-
namics is T1 = Ω(log n). In particular, for these systems, the occurrence of
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a ”uniqueness/non-uniqueness” phase transition has a dynamical manifes-
tation as an increment of the mixing time from optimal (order log n) to non
optimal.

Remark 2.2. The statement of Theorems 2.7 and 2.8 can be extended to any
graph of subexponential growth rather than just Zd, as remarked in [Wei].
However, subexponential growth of the underlying graph is required for the
theorem to hold. Explicit counterexamples are provided by regular trees, for
which it has been proved the there exists a region of the phase space where
optimal temporal mixing holds but the Gibbs measure is not unique, and in
particular weak spatial mixing does not hold [MSW].

In the following section we will discuss the Ising model on transitive
graphs, and for some particular system we will give precise statements on
the behavior of the mixing time. We will also provide other examples of the
connection between mixing time and phase transition phenomena.
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Chapter 3

Ising Model on Transitive
Graphs

3.1 Introduction

The Ising model is an extremely simplified description of ferromagnetism.
This is a phenomena that happens, for example, in some metal, when a fi-
nite fraction of the spins of the atoms become spontaneously polarized in
some direction, giving rise to a macroscopic field. This happens, however,
only when the temperature is lower then a characteristic temperature (Curie
Temperature Tc), whereas above Tc, the spins are oriented at random pro-
ducing no magnetic field. As Tc is approached from both sides, the specific
heat of the metal approaches infinity and there is phase transition.

The Ising model was introduced by Ising in 1925 following a suggestion
of his thesis adviser Lenz. Ising solved the problem in Z, where non phase
transitions occurs, and conjectured the same behavior to hold in any dimen-
sions. Contrasting the Ising conjecture, in 1936 Peierls stated the existence
of a phase transition for both Z2 and Z3, though the Peierls’ method was
made rigorous only twenty years later by Griffiths and Dobrushin. In 1944
Onsager solved analytically the model in two dimension (Z2), in the ab-
sence of an external magnetic field, and confirmed the existence of a phase
transition. The three dimensional model is still not solved exactly.

A lot of works followed this result and the existence of a phase transi-
tion for the Ising model on Zd, for all d > 1, was established. At the same
time the study of the Ising model on graphs other than the Euclidean lat-

33
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tices started to be analyzed (see, e.g., [Ge, Pre]). Particularly important in
this context is the existence of new phenomena which are not present when
only consider Euclidean lattice. This reveals the presence of an interplay be-
tween the geometry of the graph and the behavior of statistical mechanics
system, and suggests the possibility of setting results in a more general the-
ory. The connection between the geometric properties of the graph with the
behavior of the model, has motivated many recent works, both concerning
the equilibrium properties (see e.g. [BRZ, Io1, Io2, SS, Wu, Wu2, JS, Ly1,
Ly2, Sch, HSS]) and the dynamical properties (see, e.g, [BKMP, MSW]).

In this chapter we will present the main results concerning both the
equilibrium and dynamical behavior of the Ising model on the three main
classes of transitive graphs: the integer lattices Zd, the regular trees Tb and
the hyperbolic graphs H(v, s).

3.2 Ising model and phase transition

The Ising model on given infinite, locally finite graph G = (V, E), is
defined as follows. To every vertex x ∈ V is assigned a spin variable σx ∈
S = {±1} so that the global system is described by configurations σ ∈
Ω = {±1}|V |. The potential is given by nearest neighbor interactions with
constant strength J (positive in the ferromagnetic case) and by a constant
self potential equal to a parameter h ∈ R, which represents the external
magnetic field. In the following we will assume J to be equal 1.
For every finite subset Λ ⊂ V and σ ∈ ΩΛ, the Hamiltonian of the Ising
model (with free boundary condition) is

HΛ(σ) =
∑

(xy)∈E(Λ)

σxσy + h
∑

x∈Λ

σx (3.1)

and the correspondent finite volume Gibbs measure at inverse temperature
β, is given by (see 2.2)

µΛ(σ) = (ZΛ)−1 exp[−βHΛ(σ)] ∀σ ∈ ΩΛ. (3.2)

Notice that the measure µΛ, which describes the equilibrium state of the
system, assigns higher weight to configurations in which many neighboring
spins are aligned with one another, as well as to configurations in which
many spins agree with the sign of h. This two effects increase with β and
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|h| respectively. In particular, at high temperatures (low β) the spins behave
almost independently, while at low temperature large connected regions of
equal spins tend to form.

The normalization constant ZΛ = ZΛ(β, h), called partition function,
is of importance because of its connections with the basic thermodynamic
quantities. Indeed it is quite natural to define the internal energy per particle
as the expected value of HΛ divided by the volume, i.e

eΛ(β, h) :=
1
|Λ|µΛ(H) = − d

dβ
(ZΛ(β, h))

and thus the free energy per particle

fΛ(β, h) := − 1
β|Λ| log ZΛ(β, h)

and the magnetization

mΛ(β, h) :=
1
|Λ|

∑
x

µ(σx) = − ∂

∂h
fΛ(β, h) .

Since the finite volume Gibbs measure is continuous in β and h, and it is
invariant under a global spin flip on Λ, the limit for h ↓ 0 of mΛ(β, h) is
trivially 0. Instead, if we consider a increasing sequence of subsets (Λ`)`≥0

such that
⋃

`≥0 Λ` = V and we perform the limit

m0(β) = lim
h↓0

lim
`→∞

mΛ`
(β, h) = − lim

h↓0
∂

∂h
( lim
`→∞

fΛ`
(β, h)) (3.3)

a different result can occur.
First of all, for the Ising potential it has been proved that there exists a
function f(β, h), concave in h, such that

f(β, h) = lim
`→∞

fΛ`
(β, h) .

Let us define D±f(β) := limh↓0
f(β,±h)−f(β,0)

±h ; from the concavity of f we
deduce that the derivatives D±f(β) exist and moreover, due to the symme-
try h → −h, it holds that D+f(β) = −D−f(β) .

If f ∈ C1 then D+f(β) = D−f(β) = 0, m0(β) = 0 and nothing happens;
but if there exists a range of β such that f is discontinuous in h = 0, then
m0(β) 6= 0 for all these values of β and we say that a first order phase tran-
sition occurs.
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It is proved that a first order phase transition corresponds to have more
than one (automorphism invariant) infinite volume Gibbs measure. In par-
ticular, if there exists a unique infinite volume Gibbs measure µ, then from
the definition of m0 we get m0(β) = µ(σ0) = 0, otherwise, as µ varies
among different (automorphism invariant) infinite volume limit,

m0(β) = µ(σ0) ∈ [−D+f(β),−D−f(β)] . (3.4)

More precisely, let G be the set of infinite volume Gibbs measures relative to
the Ising potential on G at fixed temperature β. We denote by µ+

Λ`
and µ−Λ`

the Gibbs measures over ΩΛ`
with (+)-b.c (all (+)-spins on Λc

` ) and (−)-b.c.
(all (−)-spins on Λc

` ) respectively. The measures µ± := limΛ`↑V µ±Λ`
satisfy

the following properties:
1) µ± are automorphism invariant measures in G.
2) µ− ≤ µ ≤ µ+ for any µ ∈ G.
3) µ± are extremal point of G.
4) |G| > 1 if and only µ+ 6= µ−.
5) |G| > 1 if and only µ+(σ0) 6= µ−(σ0).
6) µ+(σ0) + µ−(σ0) = 0.
From this properties and (3.4), it holds that µ+(σ0) = −D−f(β) and µ−(σ0) =
−D+f(β). Thus, a first order phase transition occurs if and only if there ex-
ist more then one Gibbs measure.

As we will show in the next section, providing explicit examples, the
structure of the Gibbs measure set G is related to other kind of phase transi-
tion phenomena.

3.3 Ising model on lattices: equilibrium and dynam-

ical properties

As remarked in the introduction, the Ising model on the lattice Zd was
the first non trivial example of a phase transition, that can be solved exactly
in Z and Z2.
Here we want to give a brief overview of the main equilibrium and dynami-
cal properties of the model, making distinction between the one dimensional
case, the two dimensional case and the d-dimensional case, with d ≥ 3.
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3.3.1 One dimensional case

The one-dimensional can be easily solved with the method of transfer
matrix (see, e.g, [Sim] ). In particular, given a subset Λ ∈ Z with labeled
vertices from 1 to n, the partition function ZΛ can be expressed as

ZΛ =
∑

σ∈ΩΛ

n−1∏

i=1

V (σi, σi+1)V (σn, σ1)

where V (σi, σj) = exp (β(σiσj) + β
2 h(σiσj)). Then, given the real matrix V

with entrances V (σi, σj) defined as

V =

(
V (++) V (+,−)
V (−, +) V (−,−)

)
=

(
eβ(1+h) e−β

e−β eβ(1−h)

)
,

we get that ZΛ = TrV n. The matrix V is symmetric and with strictly positive
elements; thus, by the Perron-Forensics theorem, there exist two eigenvalues
λ1 and λ2 such that λ1 > 0 and λ1 > λ2. Then the partition function is given
by ZΛ = λn

1 + λn
2 = λn

1 (1 + ( λ2
λ1

)n), with λ1
λ2

< 1, and it holds

f(β, h) = − 1
β

lim
n→∞

log ZΛ

n
= − 1

β
log λ1 . (3.5)

Computing λ1 one thus obtain the explicit expression for the free energy per
particle and all the thermodynamic quantities which can be derived from
the partition function. The main consequences we want to stress are the
following

1. the free energy is a real analytic function of β and h, and thus the
system doesn’t show phase transition.

2. the correlation between two spin σi and σj decays exponentially in the
distance |i − j| uniformly in the boundary condition, i.e. µτ

Λ(σiσj) ≤
ce−m|i−j| with c,m > 0 and ∀ τ ∈ Ω.

For all temperature, the one dimensional Ising model is thus described by a
unique Gibbs measure µ. Moreover, any finite Gibbs measure µΛ has expo-
nential decay of correlations and verifies the strong mixing condition (2.8)
uniformly in the boundary condition. From Theorem 2.8 we conclude that,
for all temperature β > 0, the Glauber dynamics on a n-vertex subset of Z
has optimal temporal mixing T1 = Ω(log n).
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3.3.2 Two dimensional case

The exact solution of two dimensional model given by Onsager, for h =
0, relays again on the method of transfer matrix, but in this case the proof is
rather difficult, essentially due the complexity in diagonalizing the transfer
matrix. We refer the reader to the books [Sim, ?], where the proof is dis-
cussed in details.
The important consequence of this result, is the existence of a first order
phase transition which occurs at h = 0 and inverse temperature βc > 0.
We stress that a proof of this fact can be obtained, independently from the
analytic solution, with the Peierls-method, introduced by Peierls and later
made rigorous by Griffiths and Dobrushin. The Peirels method also applies
to the case Zd with d ≥ 3.
For high temperature β < βc or h 6= 0, the system is thus in the uniqueness
phase region, whereas for β > βc and h = 0 the system is in the multiple
phase region. In particular, as described in the previous section, the set of
Gibbs measures G at least contains the two extremal measures µ+ and µ− .

Afterwards the problem of the existence of Gibbs states, different from
µ+, µ− and their convex combinations, has been considered and solved in-
dependently in [Aiz, Hi] . The result is that in Z2 there is no non-translation-
invariant Gibbs state, and µ+ and µ− are the only extremal measures.

Let us now consider the Glauber dynamics for the Ising model on an
n-vertex squares Λ ∈ Z2. We recall the following results:

1. For all β < βc or h 6= 0 (uniqueness phase region) the measure µΛ

satisfies the strong mixing condition (2.8) uniformly in the boundary
condition [MOS]. From Theorem 2.8 then it holds that the mixing
time of the Glauber dynamics on Λ, with Λ finite square of Z2, is
T1 = log n.

Remark 3.3. If β < βc and for any finite subset V ∈ Z2, it holds that the
measure µV satisfies the weak mixing condition (2.7) (see [Hi, MO1]). The
authors of [MOS] then show that weak mixing for all finite V ∈ Z2 implies the
strong mixing for all finite squares Λ ∈ Z2, and the result follows.

2. For all β ≥ βc and h = 0 ( phase coexistence region), the spectral gap of
the Glauber dynamics on Λ decays exponentially with

√
n, i.e. there

exists c > 0 such that cgap = Θ(exp−(c
√

n)) [CGMS, Mar1]. From
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Theorem 2.5 then it holds that the mixing time of the Glauber dynam-
ics on Λ, with Λ finite square of Z2, is T1 = Θ(exp(c′

√
n)).

The occurrence of a phase transition in Z2 is thus associated with a dra-
matic increase of the mixing time, from logarithmic to exponential, of the
associated dynamics. The intrinsic motivation for this behavior is the pres-
ence of a ”bottleneck” in the phase space, given by the set of configurations
of zero magnetization. Indeed, let us consider the dynamics started from
all minuses. Since the measure µΛ with free boundary condition has two
maxima, corresponding to the two configurations identically equal to (+) or
(−), the dynamics, in order to relax to equilibrium, necessarily crosses the
bottleneck. Thus, since the Gibbs measures gives to the latter a weight of
the order of a negative exponential of the surface of Λ, i.e.

√
n, the result

follows.

The same motivations also suggests that if the bottleneck is removed, for
example taking all (+) spin on the boundary of Λ, then the relaxation time
must be much shorter. In particular it has been conjectured the following
[FH, BM]:

Conjecture 3.1. In the phase coexistence region, the Glauber dynamics for
the Ising model on an n-vertex square of Z2 with (+)-boundary condition has
mixing time T1 = n log n

Though this conjecture seems very natural, proving results in this di-
rection has proved very elusive and, until now, the only available bounds
are upper bounds on the spectral gap and the logarithmic Sobolev constant.
More precisely, has been proved (see [BM]) that in the same situation of
Conjecture 3.1 it holds: cgap ≤ 1/

√
n and csob ≤ 1/n.

This result essentially improves over all the previous existing bounds.

3.3.3 High dimension lattice case

The Ising model on Zd, with d ≥ 3, is similar in many aspects with the
two-dimensional case, and many results described in the previous paragraph
also apply to this setting. Let us first discuss the equilibrium properties.
As just remarked, with the Peierls’ method one can prove the existence of a
first order phase transition which occur at h = 0 and βc = βc(d) > 0. Thus
the system is in the uniqueness phase for all β < βc or h 6= 0, and is in the
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coexistence pase for all β > βc and h = 0.
Whereas in the two dimensional case there are only two extremal measures,
µ+ and µ−, in higher dimensions Dobrushin [Do] proved that for low tem-
perature there exist non-translation invariant measures, which of course are
not combinations of µ+ and µ−. These state arise from some suitable mixed
boundary conditions which create a rigid interface separating the system
into two regions (see also [DS]).
The problem of whether there exist translation invariant extremal measures,
other then µ+ and µ−, has been completely solved only recently [Bod] and
it has been proved, as was widely expected, that µ+ and µ− are the only
translation invariant extremal measures.

Consider now the Glauber dynamics on an n-cubes Λ ∈ Zd, with d ≥ 3.
We recall the following results.

1. For all β < βc or for β À 1 and h 6= 0 the measure µΛ satisfies the strong
mixing condition (2.8) uniformly in the boundary condition [MOS].
From Theorem 2.8 then it holds that the mixing time of the Glauber
dynamics on Λ, with Λ finite square of Z2, is T1 = log n.

Remark 3.4. Notice that whereas in the two dimensional case it is proved that
optimal mixing time holds inside all the uniqueness region, in higher dimen-
sions this statement excludes the region of h 6= 0 and β near βc. The reason of
this difference is that, in high dimension, the weak mixing condition has been
proved only for β < βc or for β À 1 and h 6= 0 (see [Hi, MO1]). Thus the
result, which is obtained by proving that the weak mixing for all finite V ∈ Zd

implies strong mixing for all finite cubes Λ ∈ Zd [MOS], only apply in this re-
gion. However there is no result concerning weak spatial mixing in the region
of h 6= 0 and β near βc.

2. For all β ≥ βc and h = 0, the spectral gap of the Glauber dynamics
on Λ decays exponentially with n

d−1
d , i.e. there exists c > 0 such

that cgap = exp (−O(n
d−1

d )) [CGMS, Mar1]. From Theorem 2.5 then
it holds that the mixing time of the Glauber dynamics on Λ, with Λ
finite cubes of Zd, is T1 = exp(Ω(n

d−1
d )).

The behavior of the dynamics on Zd with d ≥ 3 is thus qualitatively the
same as for Z2. In particular, also in this general case, it is expected the
existence of a the dependence of the dynamics from the boundary condition
[FH, BM]:
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Conjecture 3.2. In the phase coexistence region, the Glauber dynamics for the
Ising model on an n-vertex cube of Zd with (+)-boundary condition has mixing
time T1 = n

d−1
d log n

In [BM], in the same situation of Conjecture 3.1, it is proved that for all
d ≥ 2 it holds the following bound: csob ≤ n−

2
d .

3.4 Ising model on regular trees

Regular tree graphs were the first non Euclidean graphs to be consid-
ered as support for statistical mechanics models. (In this context, the tree is
sometimes referred to as the ”Bethe approximation” of the lattice). Firstly
because they include, as a particular case, the one-dimensional integer lat-
tice. Secondly because they are simpler in many respect then Zd, due to the
lack of cycles.
In spite of their simplicity, they exhibits two phase transitions: a first or-
der phase transition with a non trivial dependence from the magnetic field;
a new phase transition, related to the structure of the Gibbs measure set,
which does not appear on the lattice[Ge, Pre, BRZ, Io1, Io2, Ly2]. More-
over, as we will show in section 3.4.2, the dynamical behavior of model,
and its relation with the equilibrium properties, need a completely different
description respect to the lattice case [BKMP, MSW].

3.4.1 Equilibrium properties

We recall that, for every b ≥ 2, Tb denotes the infinite regular tree with
vertex degree equal to b+1. Let us first consider the case with zero magnetic
field.
This model is known to have two critical temperatures β0 and β1. The first
one, β0 = 1

2 log b+1
b−1 , marks the line between uniqueness and non-uniqueness

of the Gibbs measure and thus corresponds to a first order phase transition.
In particular, if β ≤ β0 then the system is in the uniqueness region, whereas
for β > β0 is in the coexistence region [Ge, Pre].
However, in contrast to the model on Zd, there is now a second critical
point β1 = 1

2 log
√

b+1√
b−1

[BRZ, Io1, MSW], which delimits the region where
the free boundary condition measure µf is extremal. More precisely, for all
β such that β0 < β ≤ β1 then µf is an extremal Gibbs measure, whereas
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if β > β1 then µf is a convex combination of other extremal measures.
In other word, in the intermediate region β0 < β ≤ β1 the (+) and (−)
boundary conditions exert long-range influence but ”typical” boundaries do
not, while in the low temperature region β > β1 long-range influence occurs
even for typical boundaries. We refer this phenomenon as an extremality
phase transition.

Let us now examine what happens when an external magnetic fields h

is added to the system. It turns out that for all β > β0, there is a critical
value hc = hc(β) > 0 such that the Gibbs measure is not unique if |h| ≤ hc,
and is unique when |h| > hc. The landscape of the phase diagram can be
summarized as follows (see fig):

• For β ≤ β0 or for all |h| > hc there is a unique Gibbs measure.

• For β0 < β ≤ β1 and |h| ≤ hc there are infinite Gibbs measures and µf

is an extremal state.

• For β > β1 and |h| ≤ hc there are infinite Gibbs measure and µf is not
an extremal state.

Figure 3.1: Phase diagram of Tb. The Gibbs measure is unique above the curve

3.4.2 Dynamical properties

Recently, the analysis of the Glauber dynamics on regular trees yields
interesting results, which clarify the dynamical behavior of such a model.
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The first remarkable result, obtained in [BKMP], shows that the relax-
ation time of the dynamics on finite trees, with zero external field, is Ω(1)
for all β < β1. Moreover, at the critical point β = β1 the same relaxation
time is bounded above by c log n, and as soon as β > β1 it becomes smaller
than an nα(β), with α(β) ↑ ∞ as β →∞.

Part of this result, is obtained generalizing an argument for Zd (see
[Mar, JeS]) to graphs with finite vertex degree. This argument provides
a general bound on the relaxation time depending from some graph param-
eters. Afterwards, the graph structure is analyzed in order to find suitable
bounds on these parameters. More precisely, the authors of [BKMP] prove
the following Proposition.

Definition 3.10. The cut-width ξ(G) of a finite graph G is the smallest integer
such that there exist a labeling {v1, v2, . . . , vn} of the vertices such that for all
1 ≤ k ≤ n, the number of edges from {v1, v2, . . . , vk} to {vk+1, . . . , vn} is at
most ξ(G).

Proposition 3.2. Let G a finite graph with n vertices and maximal vertex
degree ∆. The relaxation time of the Glauber dynamics for the Ising model on
G is at most ne(4ξ(G)+2∆)β.

The polynomial bound on the relaxation time then follows by proving, with
a rather simple argument, that the cut-width of the finite tree is bounded by
a quantity proportional to the logarithm of its size.

From this result one can deduce the main differences between the dy-
namical behavior on regular trees and on lattices. Firstly, whereas in the
lattice case, at low temperature, the relaxation time for a box of size n de-
cays exponentially in n

d−1
d , in the tree case the relaxation time never grows

more than polynomially in the size. Secondly, whereas in the lattice case the
jump in the behavior of the relaxation time, as a function of the size, reflects
the first order phase transition, in the tree case the same behavior appears
at the critical point β1, and thus reflect the extremality phase transition.

The second important result, obtained in [MSW], concerns the Glauber
dynamics on trees with (+)-boundary condition. It is proved the following:

Theorem 3.9. In both of the following situations, the spectral gap and the
logarithmic Sobolev constant of the Glauber dynamics on an n-vertex tree are
Ω(1):
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(i) β < β1 or |h| > hc, with arbitrary boundary conditions;

(ii) (+)-boundary condition and arbitrary β, h.

Notice first that together Theorems 2.5 and 2.6, this result implies that
the mixing time is T1 = Ω(log n) in all the situations described by Theo-
rem 3.9. Of particular interest is the result when β > β1, h = 0 and the
boundary condition is (+). In this case, changing the (+)-boundary condi-
tion with a free boundary condition, the relaxation time jumps from Θ(1) to
O(nα(β)), with α(β) increasing in β. This behavior shows with evidence that
on the regular tree there is a strong dependence of the mixing time from the
boundary conditions. Notice again, that on Zd not much is known about the
spectral gap when β > βc, h = 0 and the boundary condition is (+), and the
only available bounds are upper bounds.

3.5 Ising model on hyperbolic graphs

3.5.1 Equilibrium properties

The study on the Ising model on hyperbolic graphs, when the magnetic
field is zero, led to the characterization of two different phase transitions
appearing at inverse temperatures βc ≤ β′c [SS, Wu, Wu2]. The first one,
βc, corresponds to the occurrence of a first order phase transition; thus if
β ≤ βc there is a unique Gibbs measure, whereas if β > βc there are infinite
Gibbs measures (at least all the convex combinations between µ+ and µ−).
The critical temperature β′c is defined as follows:

β′c = inf{β ≥ βc : µf = (µ+ + µ−)/2} .

Thus, the phase transition at β′c refers to a change of the properties of the
free boundary condition measure µf : for βc < β ≤ β′c then µf is not a
convex combination of µ+ and µ−, but if β > β′c then µf recover the property
µf = (µ+ + µ−)/2.
The most interesting scenario clearly appears when the strict inequality βc <

β′c holds, namely when there exists a nonempty interval between βc and β′c.
In this case, for all β ∈ (βc, β

′
c], it holds that µf 6= (µ+ +µ−)/2 which implies

the existence of a translation invariant Gibbs measure different from µ+ and
µ−.
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Remark 3.5. Notice that this behavior does not appear in the Ising model on
lattices and on regular trees. On Zd the only translation invariant Gibbs states
are µ+ and µ−. On Tb, for all β > βc, the measure µf never satisfies the
property to be a convex combination of µ+ and µ−.

Although it is believed that the strict inequality βc < β′c holds for any
hyperbolic graph, at the moment it has only been proved for a subclass
satisfying some conditions on v and s (see [Wu2] for details).
For that concerns the dependence of the first order phase transition from the
magnetic fields, we can recall the following result which holds for all non
amenable graphs [JS].

Theorem 3.10. Consider the Ising model on G, with G an infinite non amenable
graph with finite degree. Then there exists h > 0 and β ∈ [0,∞) such that G

exhibits a phase transition.

This result clearly applies to the hyperbolic graphs and thus show, as in
the tree case, the existence of a first order phase transition for h 6= 0.

Other open questions about the Gibbs measures for the hyperbolic graphs
are the following: is µf extremal when βc < β < β′c? are µ+ and µ− the
only extremal measures for β > β′c?
We remark that Series and Sinai in [SS] gave a possible answer to this last
question, proving that for low temperatures there exists uncountably many
mutually singular Gibbs states which they conjectured to be extremal. The
measures they constructed are similar to the non-translational invariant ex-
tremal measures for the Ising model on Zd, d ≥ 3, constructed by Dobrushin
([Do, Do2]). But in contrast of what happens on Zd, they are an uncount-
able set.

Summarizing, the known landscape of the phase diagram for the Ising
model on H(v, s) is the following [Wu, Wu2, SS, JS]:

• For β ≤ βc or for all |h| > hc there is a unique Gibbs measure;

• For βc < β < β′c and |h| ≤ hc there are infinite Gibbs states and
µf 6= (µ+ +µ−)/2, i.e. µ+ and µ− are not the only extremal measures;

• For β > β′c and |h| ≤ hc there are infinite Gibbs states and µf =
(µ+ + µ−)/2;

• For β À β′c there exist uncountably many mutually singular, and pre-
sumably extremal, Gibbs states.
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Connection with the bond percolation

Unfortunately sharp estimates of the two critical temperature for the
Ising model on hyperbolic graphs still do not exist. Nevertheless, some
bounds on βc and β′c are available thanks to the connection, through the
random cluster model (or FK model), between Ising model and percolation.
Independent bond (and site) percolation on hyperbolic graphs have been
indeed widely studied and many useful results have been proved, see for
examples [BS2, BS3, GN, Jo, La, LS].

The independent bond percolation on a graph G = (V,E) is the ran-
dom subgraph with vertices V , and where each edge is in the percolation
subgraph with probability p, independently. The main focus in this setting
concerns the existence of one or more infinite clusters depending from the
probability p ∈ [0, 1] to keep each edge in the percolation subgraph. For any
p, the number of infinite cluster is almost surely constant taking values 0,
1, or ∞ [BS, NS]. A basic result about percolation on transitive graph G is
that there are two critical points, 0 < pc(G) ≤ pu(G) ≤ 1, which define the
boundaries of three distinct phases described as follows.

1. if p < pc(G) then almost surely there is no infinite cluster;

2. if pc(G) < p < pu(G) then almost surely there are infinitely many
infinite clusters ;

3. if p > pu(G) then almost surely there is exactly one infinite cluster.

In analogy with the results listed above for the Ising model, the existence of
two distinct phase transitions for percolation strictly depends from the graph
structure. For example, it has been proved (see [BK] ) that on amenable
transitive graphs pc(G) = pu(G); moreover on all infinite transitive graphs
with two ends, which are amenable (see section 1.2.2), pc(G) = pu(G) = 1.
On the other hand, there are many examples of non amenable graphs for
which pc(G) < pu(G), such as non amenable transitive graphs with infinity
ends. For this class of graphs, including Tb, it has been proved that pc(G) <

pu(G) = 1, meaning that the uniqueness of the infinite cluster only occurs
at the trivial value p = 1.
The landscape for transitive graphs with one end is not really understood
and there are two important conjectures concerning them.



3.5 Ising model on hyperbolic graphs 47

Conjecture 3.3. Suppose that G is an infinite, locally finite, connected, tran-
sitive graph. Then pc(G) < pu(G) if and only if G is non-amenable.

Conjecture 3.4. Suppose that G is an infinite, locally finite, connected transi-
tive graph. Then pu(G) < 1 if and only if G has one end.

As remarked, the first conjecture, due to Benjamini and Schramm [BS],
has been proved for many non-amenable graphs. Benjamini and Schramm
themselves, proved in [BS2] that 0 < pc(G) < pu(G) < 1 for any planar
transitive graph with one end, including hyperbolic graphs.

The proof of the existence of the second phase transition for the Ising
model on hyperbolic graphs ([Wu2]) exploits this last relation and the con-
nection between Ising model and percolation, to obtain the bounds

ln(
1

1− pc
) ≤ βc ≤ ln(

1 + pc

1− pc
) ; ln(

1
1− pu

) ≤ β′c ≤ ln(
1 + pu

1− pu
)

(βc and pc are the critical points referred to hyperbolic graphs). Using some
estimates of pc and pu, involving some graph properties like isoperimetric
constants and spectral radius, one then get the following bounds

ln(
ie

ie + 1
) ≤ βc ≤ ln

(
ie + 2

ie

)
; β′c ≥ ln

( √
v − i2e√

v − i2e − 1

)
,

where ie denotes the isoperimetric edge constant (see definition (1.2).

3.5.2 Dynamical properties

From the dynamical point of view, the Ising model on hyperbolic graphs
has been recently investigated in the work of Peres [BKMP]. In analogy with
the results for regular trees, it is proved that, for every temperature, the re-
laxation time of the Glauber dynamics on an n-vertex ball in the hyperbolic
graph is polynomial in n.

The proof is based again on Proposition 3.2. But in order to apply this
result, a bound on the cut-width of the graph is required. The following
result, proved in [BKMP], provide such a bound for a family of graphs which
includes hyperbolic tiling.
Given an infinite graph G, let Gr denote the ball of radius r around a fixed
vertex o, and let |Gr| = nr.

Proposition 3.3. For every c > 0 and ∆ < ∞, there exists a constant C =
C(c,∆) such that if G is an infinite planar graph with
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• vertex isoperimetric constant at least c

• maximum degree bounded by ∆ and

• for every r no cycle from Gr separates two vertices of G \Gr,

then ξ(Gr) ≤ C log nr for all r.

Combining Propositions 3.2 and 3.3, we get that for all β > 0 the
Glauber dynamics for the Ising models on balls in the hyperbolic tiling has
relaxation time bounded as T0 ≤ cnα(β), with α(β) ↑ ∞ as β →∞.
The differences of the low temperature behavior of the dynamics between
hyperbolic graphs and integer lattices, shows once again the tight connec-
tion between the graph properties and dynamics.

The dependence of the dynamics from the boundary condition in the
hyperbolic case will be investigated in the next chapter, where we will state
and prove our main result.



Chapter 4

Fast mixing inside the pure
phase: hyperbolic graph case

The goal of this work will be to prove, through spectral properties, fast
relaxation time for the Glauber dynamics of the Ising model on hyperbolic
graphs with (+)-boundary conditions at low temperatures.
This approach first appeared in [MSW], where different spin systems de-
fined on a finite regular tree are considered and the mixing time for the
Glauber dynamics with fixed b.c. on them is analyzed. Whereas standard
techniques do not distinguish between b.c., then giving uniform bounds on
the mixing time, this new approach allows to perform analysis sensitive to
b.c.. This technique is particularly important when the temperature slows
down the critical one (β > βc) and the system reaches the multiple phase
region. In this case we say that a bottleneck in the phase space appears so
that any uniform estimates of the mixing time give ”drastic” bounds. Fixing
for example (+)-b.c., one would like to select the µ+ state between the pure
phases in order to avoid such a bottleneck. This could change deeply the be-
havior of the mixing time and it is indeed the case for the Glauber dynamics
on a regular tree of size n, with (+)-b.c., for which the mixing time in the
phase coexistence region remains of order log n, as proved in [MSW].
We point out that the influence of the boundary conditions on the mixing
time for systems in the multiple phase region, is one of the most interesting
and difficult question left open by the dynamical analysis of systems lying on
Zd. Though uniform in the b.c. bounds on the mixing time are of exponen-
tial order in n1−1/d (see [Th, Mar]), it has been long time conjectured that,

49
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in the presence of (+)-b.c., the relaxation process is driven by the mean-
curvature motion of interfaces separating droplets of the (−)-phase inside
the (+)-phase. This would suggest that the mixing time should be polyno-
mial in n, most likely n2/d log n [BM, FH]. In particular it has been argued
that the spectral gap for the Glauber dynamics of the Ising model in the
pure phases at high enough dimension should be Ω(1). These conjectures
are supported by the recently proved results obtained on Z2 showing that,
with (+)-b.c., the spectral gap in a square with n sites shrinks to zero at
least as fast as 1/

√
n [BM]. Unfortunately not much is known about Zd for

d > 2 in the multiple phase region.
The strong dependence from boundary conditions, proved for regular

trees, does not seem to be a peculiar behavior of these graphs but rather to
be related to some graph properties that trees satisfy.
Among them we point attention on non-amenability.

4.1 Notation and statement of results

Let us consider the infinite hyperbolic graph H(v, s), with V denoting
the vertex set and E the edge set. The set V admits a natural notion of
distance as the length of the shortest path between two vertices. For every
x, y ∈ V we denote their distance by d (x, y).
We fix a vertex o ∈ V (origin or root) and for any integer k we denote by
Bk = (Vk, Ek) ∈ H(v, s) the ball centered in o and with radius k, namely
the finite subgraph induced on Vk = {x ∈ V : d (o, x) ≤ k}. We will fix an
integer m and let B ≡ Bm denote the corresponding ball. Let us give a few
useful definitions:

(i) For each i = 0, . . . , m we define the i-th level Li as

Li = {x ∈ V : d(x, o) = i} = {x ∈ Vi : ∃y ∈ V c
i s.t. x ∼ y} ,

so that Bm =
∑m

i=0 Li and for all i > 0 Li = ∂V Bi−1;

(ii) For each i = 0, . . . , m + 1 we define the subset Fi ⊂ B

Fi := {v ∈
m⋃

k=i

Lk} = {v ∈ Bc
i−1} ,

so that {Fi}m+1
i=0 is a decreasing sequence of subsets such that

Vm = F0 ⊃ F1 ⊃ . . . ⊃ Fm+1 = ∅ ;
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(iii) For each i = 0, . . . ,m + 1 we define the σ-algebra Fi generated by the
functions πx for x ∈ F c

i = Bi−1.

We now consider the Ising model on B at inverse temperature β, zero
external field and with (+)-boundary condition on ∂V B.
The system is specified by configuration σ ∈ Ω+ := {±1}B∪∂V B which agree
with the (+)-configuration on ∂V B. We endow Ω+ with the σ-algebra F
generated by the set of projections {πx}x∈Vm+1 from Ω+ to {±1}, where
πx : σ 7→ σx. For any A ⊂ Vm we also consider the set of configurations in
ΩA := {±1}A with σ-algebra FA generated by πx , x ∈ A; we write f ∈ FA

to indicate that f is FA-measurable.
For every η ∈ Ω+ and any subset A ⊂ Vm , we denote by Ωη

A the set of
configurations σ ∈ Ω that agree with η on ∂V A and by µη

A the Gibbs distri-
bution over Ω+ conditioned on the configuration outside A being η. Namely
to every σ ∈ Ωη

A is assigned probability

µη
A(σ) =

1
Z(β)

exp(β
∑

(xy)∈E(A)

σxσy) ,

where Z(β) is a normalizing constant and the sum runs over every couples
of nearest neighbors in the induced subgraph of A = A ∪ ∂V A, otherwise
µη

A(σ) = 0. When A = Vm, µη
Vm

is simply the Gibbs distribution on B with
boundary condition (+), and we shall use the shorthand µ for µ+

Vm
.

Moreover, we will use the short notation µη
i := µη

Fi
= µ(· |η ∈ Fi) for

the Gibbs distribution on Fi and boundary condition η ∈ Ω+, and analo-
gously we denote by Varη

i the variance w.r.t. µη
i .

We recall that if f : Ω+ → R is a measurable function, the expectation of
f w.r.t. the measure µη

i is given by

µη
i (f) =

∑

σ∈Ω

µη
i (σ)f(σ) .

We usually think of it as a function of η, that is µi(f)(η) = µη
i (f); in partic-

ular µi(f) ∈ Fi.
Throughout the discussion c will denote a constant which is independent
from |B| = n but may depend on the parameters (v, s) of the hyperbolic
graph and on β. The particular value of c may change from line to line as
the discussion progresses.

Given f ∈ L2(Ω+,F , µ) and an inverse temperature β À 1 (multiple
phases region), we will look for a Poincaré inequality for the Gibbs measure
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µ of the kind

Var(f) ≤ cD(f) ,

with D(f) the Dirichlet function defined through rates (2.10) (heat-bath
dynamics) and c = c(β,B) a constant. From definition (2.13) of spectral
gap and inequalities (2.18), we thus get bounds on the mixing time of the
dynamics; the smaller constant c is the better the bound.

The aim of our analysis is to prove that inside the (+)-pure phase, the
measure µ satisfies a Poincaré inequality with constant c independent from
the size of the system. In this case the spectral gap remains bounded from 0
uniformly in the system size, implying the an upper bound on the mixing of
the dynamics of order n. We state the following:

Theorem 4.11. Let H(v, s) such that v > 4 and s > 3. Then, for all β À 1,
the Glauber dynamics on an n-vertex ball B ∈ H(v, s) with (+)-boundary
condition has cgap = Ω(1) and then it holds:

T0 = Θ(1) and T1 ≤ cn (4.1)

Remark 4.6. To better appreciate the result, let us remark that for typical
boundary conditions the only known bound on the relaxation time for balls
in an hyperbolic graph is polynomial in n, and more precisely it holds that
T0 ≤ cnα(β), with exponent α(β) ↑ ∞ as β → ∞ (see proposition (3.2)
and (3.3)). Thus, the presence of the (+)-boundary conditions gives rise to an
abrupt jump of the relaxation time from polynomial in n to non increasing with
n. This behavior provides a convincing example of the influence of boundary
conditions on the spectral gap.

4.2 Sketch of the Proof

Let us first recall the following decomposition property of the variance

Varη
C(f) = µη

C [VarD(f)] + Varη
C [µD(f)] , for D ⊆ C ⊆ Vm . (4.2)
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Applying recursively (4.2) to subsets F0 ⊃ F1 ⊃ . . . ⊃ Fm+1, and with
equalities µi(µi+1(f)) = µi(f) and µm+1(f) = f , we obtain

Var(f) = µ[Varm(f)] + Var[µm(f)]

= µ[Varm(µm+1(f))] + µ[Varm−1(µm(f))] + Var[µm−1(µm(f))]

=
...

=
m∑

i=0

µ[Vari(µi+1(f))] . (4.3)

To simplify notation we define gi := µi(f), for all i = 0, . . . ,m + 1; clearly
gi ∈ Fi. Inserting gi in (4.3) we then have

Var(f) =
m∑

i=0

µ[Vari(gi+1)] . (4.4)

There are two key steps that we will perform in order to obtain a Poincaré
inequality for µ, with constant independent of the size of the system:

1. proving that ∀ τ ∈ Ω+, it holds the following Poincaré inequality with
constant uniformly bounded in the size of Li:

Varτ
i (gi+1) ≤ c

∑

x∈Li

µτ
i (Varx(gi+1)) (4.5)

2. relating the local variance of gi = µi(f) to the local variance of f in
order to get an inequality of the kind

m∑

i=0

∑

x∈Li

µ(Varx(gi+1)) ≤ cD(f) + ε
m∑

i=0

∑

x∈Li

µ(Varx(gi+1)) (4.6)

with ε a small quantity for β À 1.

The main ingredient that enables us to prove these two steps, is a kind
of correlation decay between spins on a fixed level Li under the measure
µτ

i with τ ∈ Ω+. The proof of this property is based on the fact that the
influence of the (+)-b.c. on a given spin is stronger then the influence of a
nearest spin, also in the worst case (all (-) neighboring spins). In particular,
we will reformulate the problem as the existence of suitable negative con-
nected components. By means of a kind of Peierls argument, together with
some geometrical properties of the graph, we will obtain a precise bound
on the probability of this event and thus the decay correlation property will
follows. The first part on the proof of Theorem 4.11 is aimed to explain this
argument, whereas in the second part we will come back to prove the two
steps listed above.
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4.3 Main tool: correlation decay inside the pure phase

In this section we will analyze the existence of a decay of correlation be-
tween spins sited on a level Li, under the measure µτ

i , with τ some boundary
condition in Ω+.
Essentially due to the non-amenability of hyperbolic graphs, we will prove
that the influence of the positive boundary on a fixed vertex is ”with high
probability” stronger then the influence of vertices lying on the same and
previous level. We will give a precise mathematical definition of this event
and introduce new objects in order to estimate its probability. We will prove
that correlation between spins on a level decay with their ”distance on the
level” and that this phenomenon increases with β.

4.3.1 Notation and statement of the result

Let us define a linear order on the levels Li as follows: let TB be a
shortest path spanning tree of B, namely such that for every x ∈ Vm the
path from o to x in TB is a shortest path in B. Clearly the i-th level of TB

is equal to the level Li of B; we thus choose, for any i = 0, . . . , m, a vertex
xi

0 ∈ Li and order in counterclockwise sense all the vertices in Li along TB.
This order clearly depends on the choice of the xi

0, but it does not affect the
next computations.
Notice that taking xi

m+1 = xi
0, then for all i = 0, . . . ,m the vertices xi and

xi+1 belongs to the same tile of B. We will call a pair of vertices in the same
level and with this property level-neighboring vertices.

Let us introduce tho following notion of distance on Li:

Definition 4.11 (Li-distance). Given n,m ∈ {1, · · · , h} such that n ≥ m

and h = |Li|, the Li-distance between xi
n and xi

m in Li is defined as

di(xi
n, xi

m) = min{|{k : n < k ≤ m}| , |{k : k < n or k ≥ m}|} .

Remark 4.7. Let us remark that di(xi
n, xi

m) is just the minimal number of
jumps between Li-neighboring vertices from xi

n to xi
m. Notice also that the

definition of Li-distance doesn’t depend from the choice of the ordering on Li.
In general, for x, y ∈ Li, we have di(x, y) 6= d(x, y), where d(·, ·) is the usual
graph distance.



4.3 Main tool: correlation decay inside the pure phase 55

Let us fix a vertex x ⊂ Li and introduce the set Kx := {x} ∪ Fi+1; as
usually we denote by µσ

Kx
the Gibbs measure on Kx with σ ∈ Ω+ boundary

conditions. With this notation we can state the following:

Proposition 4.4. Let B ∈ H(v, s) such that v > 4. Then there exist two
positive constants c1 and c2 dependent from the parameters of the hyperbolic
graph such that, for every β > β0 = c2

c1
, every configuration σ ∈ Ω+ and every

couples of distinct vertices x, y ∈ Li, with i ∈ {1 . . . m}, it holds

|µσ
Kx

(σx = +)− µσy

Kx
(σx = +)| ≤ ce−β′di(x,y) , (4.7)

with β′ := c1β − c2 > 0.

The proof of proposition 4.4 is organized as follows.
Through a geometric argument, we first express the probability of discrep-
ancy in a site, appearing in (4.7), as the probability to have suitable negative
subsets. This last event will be then analyzed by mean of a kind of Peierls
argument.

4.3.2 Negative spin components inside the (+) pure phase

Let us recall the setting of proposition 4.4 just to fix some notation.
We consider two vertices x, y ∈ Li such that di(x, y) = ` with ` ≥ 1, and
a configuration σ ∈ Ω+. The quantity under analysis is the correlation be-
tween site x and y w.r.t the Gibbs measure conditioned on the configuration
outside Kx = Fi+1 ∪ {x} being σ ∈ Ω+, i.e.

|µσ
Kx

(σx = +)− µσy

Kx
(σx = +)|

Now let σy,+ be the configuration that agree with σ in all sites but y and has
a (+)-spin on y, define analogously σy,− and denote by µy,+

Kx
and µy,−

Kx
the

measures conditioned respectively to σy,+ and σy,−.
With this notation and from the obvious fact that the {σx = +} is an in-
creasing event, we thus focus our analysis to correlation

µy,+
Kx

(σx = +)− µy,−
Kx

(σx = +) . (4.8)

Before defining new objects, we want to clarify the main idea that is
beyond this proof. Since the measure µσ

Kx
fixes the configuration on all the

sites in Kc
x (i.e. on Bi \ {x} 3 y), the vertex y can communicate with x only
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through paths going from x to y and crossing vertices in Kx. However, the
effect of this communication can be very small respect to the information
coming to x from the (+)-boundary. In particular if every path starting from
y crosses a (+)-spins before arriving to x, then the communication between
them is interrupted. Let us formalize this assertion.

Negative components and correlation decay

For every vertex z ∈ Li, with i = 0 . . . , m, let Nz denote the set of nearest
neighbors of z belonging to the level Li+1.
Then, let us denote by C the set of subsets C ⊂ Kx such that C ∪ {y} is a
connected subset in Kx ∪ {y}. We call an element C ∈ C a component of y

and notice that ∅ ∈ C.
Again, for any configuration σ ∈ Ω+, let C(σ) denotes the maximal negative
component of y admitted by σ, i.e.

C(σ) ∈ C s.t.

{
σz = − ∀ z ∈ C(σ)

σz = + ∀ z ∈ (∂V (C(σ)) ∩Kx)
,

where the case C(σ) = ∅ corresponds to have σz = + for all z ∈ Ny with
∂V (∅) := Ny. We define the event A := {σ ∈ Ω+ : C(σ) ∩ Nx = ∅} and
write it as

A =
⊔

C∈C∅
{σ ∈ Ω+ : C(σ) = C} ,

where we used the notation C∅ := {C ∈ C s.t. C ∩Nx = ∅}.
It holds the following computation

µy,−
Kx

(σx = + |A) =
∑

C∈C∅
µy,−

Kx
(σx = +, C(σ) = C |A)

=

∑
C∈C∅ µy,−

Kx
(σx = +, C(σ) = C )

∑
C∈C∅ µy,−

Kx
( C(σ) = C )

=

∑
C∈C∅ µy,−

Kx
(σx = + |C(σ) = C )µy,−

Kx
( C(σ) = C )

∑
C∈C∅ µy,−

Kx
( C(σ) = C )

≥ min
C∈C∅

µy,−
Kx

(σx = + |C(σ) = C) . (4.9)

By definition of C(σ), we can observe that µy,−
Kx

( · |C(σ) = C), with C ∈
C∅, is a measure over the set Kx \ (C ∪ ∂V C) ⊆ Kx \Ny conditioned to have
σy,− b.c. over Kc

x, (+)-b.c. over ∂V C∩Kx and (−)-b.c. over C. The presence
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of (+)-b.c. over ∂V C ∩ Kx makes the events in FKx\(C∪∂V C) independent
from the (−)-b.c. over C, and then it holds the stochastic domination

µy,−
Kx

( · |C(σ) = C) = µy,−
Kx

( · |σz = + , z ∈ C ∪ ∂V C)

≥ µy,+
Kx

( · |σz = + , z ∈ C ∪ ∂V C)

≥ µy,+
Kx

( · ) .

Being {σx = +} an increasing event, from (4.9) we get

µy,−
Kx

(σx = + |A) ≥ µy,+
Kx

(σx = +) ,

which with the obvious fact that µy,−
Kx

(σx = +) ≥ µy,−
Kx

(σx = + |A) µy,−
Kx

(A) ,
implies

µy,+
Kx

(σx = +)− µy,−
Kx

(σx = +) ≤ µy,−
Kx

(Ac) . (4.10)

This means that the correlation between x and y in the r.h.s of (4.10), can
be estimated by the probability that exists a maximal negative component
of y intersecting Nx. We will argue that this event is very unlikely due to
the presence of (+)-b.c. on the boundary of B. At this point of the proof the
geometrical properties of the hyperbolic graph, and in particular the non-
amenability, become crucial. In the next section we will clarify this point,
and prove, by means of a kind of Peierls argument, the exponential decay in
the distance di(x, y) of (4.10).

4.3.3 Influence of the boundary on the correlation decay

We first observe that Ac, the existence of a negative component of y

intersecting Nx, is a decreasing event. Then, denoting by µ−Kx
the measure

with σ-b.c., where σ ∈ Ω+ is such that σz = − for all z ∈ Kc
x = Bi \ {x}, by

monotonicity we get
µy,−

Kx
(Ac) ≤ µ−Kx

(Ac) .

Since the decay of the probability µ−Kx
(Ac) implies the decay in the general

case with σy,−-b.c., we will just focus on this quantity.

Let us denote by C6=∅ the set of components of y with nonempty intersec-
tion with Nx, and for every m ∈ N, let Cm be the set of components in C6=∅
with m vertices, i.e

Cm := {C ∈ C 6=∅ s.t. |C| = m} C6=∅ :=
⋃

m>0

Cm.
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Notice that a component of y containing a vertex in Nx has at least cardi-
nality `, since di(x, y) = `. Thus Ac can be expressed by mean of disjoint
events as

Ac =
⋃

m≥`

⋃

C∈Cm

{σ ∈ Ω+ : C(σ) = C} ,

and we get
µ−Kx

(Ac) ≤
∑

m≥`

∑

C∈Cm

µ−Kx
({σ ∼ C}) (4.11)

where {σ ∼ C} denotes the set of configurations σ ∈ Ω−Kx
s.t. C(σ) = C.

Let us recall the following Lemma due to Kesten (see [Kes]).

Lemma 4.1. Let G an infinite graph with maximum degree ∆ and let Km

be the set of connected sets with m vertices containing a fixed vertex v. Then
|Km| ≤ (e(∆ + 1))m.

Since to every component C ∈ Cm is uniquely associated the connected
component C ∪ {y} with m + 1 vertices, it holds

|Cm| ≤ |{C is a connected component : y ∈ C, |C| = m + 1}| ≤ ec2(m+1) ,

(4.12)
where in the last inequality we just applied Lemma 4.1.
If we show that for each C ∈ C 6=∅

µ−Kx
({σ ∼ C}) ≤ e−c1 β|C| , c1 > 0 (4.13)

then by inserting this bound into (4.11) and using inequality 4.12, we get

µ−Kx
(Ac) ≤ |Nx|ec2

∑

m≥`

ec2me−c1βm ≤ ce−β′`

where the second inequality holds for β′ = c1β − c2 > 0, i.e. β > c2/c1.
To prove (4.13), we first apply a like Peierls argument that runs as fol-

lows (see also [JS]) .
First, for a given C ∈ C6=∅, we consider the edge boundary ∂EC and define

∂+C := {e = (z, w) ∈ ∂EC : z, w ∈ Kx}

∂−C := {e = (z, w) ∈ ∂EC : z or w ∈ Kc
x}

with ∂EC = ∂+C + ∂−C.
The meaning of this notation can be understood if we consider a configura-
tion σ ∈ Ω−Kx

such that C(σ) = C. In this case σ has (−)-spins on both the
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end-vertices of every edge in ∂−C and a (+)-spin in one end-vertex of every
edge in ∂+C.

Then, for every σ ∈ Ω−Kx
such that C(σ) = C, let σ∗ ∈ Ω−Kx

denote the
configuration obtained by a global spin flip of σ on the subset C, and observe
that the map σ → σ∗ is injective. This flipping changes the Hamiltonian
contribute of the interactions just along the edges in ∂EC and in particular
σ∗ loses the positive contribute of the edges in ∂+C and gains the contribute
of the edges in ∂−C. We get

H−
Kx

(σ∗) = H−
Kx

(σ)− 2(|∂+C| − |∂−C|) . (4.14)

and hence

µ−Kx
({σ ∼ C}) =

∑

{σ∼C}

e−βH−
Kx

(σ)

Z−Kx

≤
∑
{σ∼C} e−βH−

Kx
(σ)

∑
{σ∼C} e−βH−

Kx
(σ∗)

≤ e−2β(|∂+C|−|∂−C|) , (4.15)

where in the first inequality we reduced the partition function to a summa-
tion on {σ ∼ C} and in the second inequality we applied (4.14).

The quantity under analysis is now the difference |∂+C| − |∂−C|, that
we would like to relate to the size of C over which the sum in (4.11) runs.
This key step is essentially based on the geometrical properties of the graph
that we will stress in that follows.

Geometrical properties

Before proceeding our analysis, we state the following Lemma concern-
ing the growth properties of the nearest neighborhood of a vertex in B ⊂
H(v, s). This result does not apply to the case s = 3 (triangular tilings)
which is indeed excluded from the result stated in Theorem 4.11 . From
now on we restrict attention to the case s > 3.

Lemma 4.2 ( link-property). For any hyperbolic graph H(v, s), with s > 3,
and any vertex x ∈ H(v, s) at distance i ≥ 0 from a reference point o ∈ H(v, s),
the number of neighbors of x at distance i + 1 from o is at least v − 2.
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Remark 4.8. We recall that the hyperbolic relation (v− 2)(s− 2) > 4 imposes
that v > 2 for all s , and then the number of neighbors of x in the next level is
always positive.

Proof. Being v the vertex degree of the graph, Lemma 4.2 can be equiva-
lently stated, by saying that each vertex x ∈ Li, with respect a given root
o, is linked to the vertices in the same or previous level by at most 2 edges.
Indeed, as can be directly verified from a figure (see 3.1, case s > 3), only
three situations can appear regarding these edges (see fig. 4.1):

1. x is linked with two ancestors and none vertex on the same level;

2. x is linked with one ancestor and one vertex on the same level;

3. x is linked with one ancestor.

The exclusion of the other possibilities comes from the planarity of the graph
together with the requirement s > 3.

Figure 4.1: The three possible connections between a site on a level and the neigh-

bors

Now let us come back to the analysis of the edge boundaries of a compo-
nent C ∈ C6=∅; the main step to complete the proof is to show the following
claim

Claim 4.1. Assume that the vertex degree of the hyperbolic graph is v > 4.
Then, for every C ∈ C 6=∅ as defined above, it holds

|∂+C| ≥ (1 + δ)|∂−C| , (4.16)

where δ = δ(v) is a positive constant equal to v−4
2 for all s > 3.

To verify Claim 4.1 let us consider the subset S := C∩∂V Kc
x correspond-

ing to the set of end-vertices (in C) of the edges in ∂−C.



4.3 Main tool: correlation decay inside the pure phase 61

For every vertex z ∈ Li, with i = 0 . . . ,m, we also introduce the notation Pz

for the set of nearest neighbors of z belonging to Li−1 ∪Li (i.e. to the same
or previous level of z).
Due to the shape of Kx, S is a subset of {x} ∪ Li+1 ⊂ Li ∪ Li+1 whereas
Kc

x ⊂ Bi; every edge in ∂−C can then be written as e = (z, w) with z ∈ S

and w ∈ Pz.
From this observation and using the link property, we get

|∂−C| =
∑

z∈S

|{w ∈ Pz , w 6∈ C}|

=
∑

z∈S

|{w ∈ Pz}| −
∑

z∈S

|{w ∈ Pz , w ∈ C}|

≤ 2|S| −
∑

z∈S

|{w ∈ Pz , w ∈ S}| ,

which corresponds to inequality

|S| ≥ 1
2

(
|∂−C|+

∑

z∈S

|{w ∈ Pz , w ∈ S}|
)

. (4.17)

To prove Claim 4.1, we want to find a suitable relation between ∂+C and S.
To this aim, let us consider the increasing sequence of subsets of C defined
as follows

C0 = S and Cj = Cj−1 ∪ {z ∈ C ∩ Li+j} ∀j ≥ 1 ,

and notice that for some finite integer k, depending on C, Ck ≡ C.
For all j ≥ 0, let |∂+Cj | := {e = (z, w) ∈ ∂E(Cj) : z, w ∈ Kx}. Then it
holds:

1. |∂+C0| = |∂+S| ≥ ∑
z∈S |{w ∈ Nz , w 6∈ S}| ,

due to the trivial fact that {w ∼ z , w 6∈ S ∪Kc
x} ⊃ {w ∈ Nz , w 6∈ S};

2. |∂+Cj | ≥ |∂+Cj−1|+ (v − 4) |{z ∈ C ∩ Li+j}| ∀j ≥ 1,
that comes from the definition of {Cj}j≥0 together with the link prop-
erty of Lemma 4.2. Indeed, by construction, Cj ⊆ Bi+j for all j ≥ 1
and C0 ⊂ Bi+1. Then, for every z ∈ C ∩ Li+j and j ≥ 1, there are at
most |Pz| edges between z and Cj−1, i.e. edges in ∂+Cj−1 \ ∂+Cj , and
at least |Nz| edges between z and Kx\Cj , i.e. edges in ∂+Cj \∂+Cj−1.
Thanks to the link property, it holds |Pz| ≤ 2 and |Nz| ≥ v− 2, and the
inequality follows.



62 4. Fast mixing inside the pure phase: hyperbolic graph case

From these last inequalities and being v > 4 by hypothesis, we get

∂+C ≥ ∂+C0 ≥
∑

z∈S

|{w ∈ Nz , w 6∈ S}| . (4.18)

Remark 4.9. Since S ⊂ {x} ∪ Li+1, x is the only vertex in Kx which can
satisfies both the conditions x ∈ S and Nx∩S 6= ∅ and then it holds that |{w ∈
Nz , w ∈ S}| = 0 for all z ∈ S different from x. However, we prefer to use this
more general notation in order to better understand the possible extension of
this computation to components which satisfy different conditions from those
ones we required. In particular, it easy to verify that all the above construction
continues to holds if we consider, instead of Kx, a subset U = Bi−1 ∪ V with
V ∈ Li+1, y ∈ U and x ∈ U c. This can be useful, for example, to compute the
correlation µy,+

U (σx = +) − µy,−
U (σx = +) or simply the probability µ−U (σx =

−). In this last case, since the event {σx = −} corresponds to the existence of
a negative connected component passing through x, we can write (as in 4.11
and 4.15)

µ−U (σx = −) ≤
∑

m≥1

∑

C∈Cm

µ−U ({σ ∼ C}) ≤
∑

m≥1

∑

C∈Cm

e−2β(|∂+C|−|∂−C|) ,

where Cm will denote the set of m-vertex connected component in U c passing
through x. Thus again the computation reduces to analyze |∂+C| − |∂−C|.

From (4.17)-(4.18) and again by the link property, it holds

∂+C ≥
∑

z∈S

|{w ∈ Nz , w 6∈ S}|

=
∑

z∈S

(v − |{w ∈ Pz }|)−
∑

z∈S

|{w ∈ Nz , w ∈ S}|

≥ (v − 2)|S| −
∑

z∈S

|{w ∈ Nz , w ∈ S}|

= (v − 2)|S| −
∑

z∈S

|{w ∈ Pz , w ∈ S}|

≥ (v − 2)
2

|∂−C|+ (v − 4)
2

∑

z∈S

|{w ∈ Pz , w ∈ S}|

≥ (1 +
(v − 4)

2
)|∂−C| , (4.19)

which corresponds to the statement of Claim 4.1.
From Claim 4.1 and trivial computations, we obtain
{
|∂+C| − |∂−C| ≥ δ

1+δ |∂+C|
|∂+C|+ |∂−C| ≤ 2+δ

1+δ |∂+C| =⇒ |∂+C| − |∂−C| ≥ δ

2 + δ
|∂EC| .
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Due to the non-amenability of the hyperbolic graphs, we can now use the
isoperimetric inequality ∂EC ≥ ie |C| , to obtain

|∂+C| − |∂−C| ≥ δ

1 + δ
ie |C| ,

that inserted in (4.15) give us the required inequality (4.13), namely

µ−Kx
({σ ∼ C}) ≤ e−2ie

δ
2+δ

β|C| = e−cβ|C| .

We want to stress that the existence of a positive isoperimetric constant
(i.e.the non-amenability of the graph) is really fundamental for this kind of
argument. Indeed, as shown in (4.13), it allowed to contrast the entropic
term counting the number of components of fixed size and growing expo-
nentially with that size. This conclude the proof of Proposition (4.4). ¤

4.4 First step: Poincaré inequality for a marginal Gibbs

measure

In this section we will prove that at low temperatures and for any n-
vertex ball in the hyperbolic graphH(s, v), with v > 4, the marginal measure
on a level satisfies a Poincaré inequality with constant independent from the
level size. We first state the result in its main generality and then, by means
of the coupling technique together Proposition 4.4, we prove the statement.

4.4.1 Main result

Definition 4.12 (Interval). A subset S ⊆ Li is an interval if its vertices can
be ordered as xi1 , xi2 , · · · , xik , with di(xij , xij+1) = 1 for all j = 1, · · · , k − 1.

Let us fix an interval S and introduce the notation ντ
S for the marginal

measure on S of the Gibbs measure conditioned to the configuration in Bi\S
is τ , i.e.

ντ
S(σ) =

∑
η:ηS=σS

µ(η | τ ∈ FBi\S) .

We denote by Varντ
S

the variance w.r.t. ντ
S and then state the following:

Theorem 4.12. For all β À 1 and for every interval S ⊆ Li, τ ∈ Ω+ and
f ∈ L2(Ω,FS , ντ

S), the measure ντ
S satisfies the Poincaré inequality

Var ντ
S
(f) ≤ c

∑

x∈S

ντ
S(Varx(f)) . (4.20)
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with c = c(β) = 1 + O(e−cβ) uniformly in the size of S.

Before proceeding with the proof, we want to point out that this result
includes, as a particular case, inequality (4.5) which is the key object of the
first step of the proof of theorem 4.11. Indeed, taking S = Li and f = gi+1

and observing that µ( · |FBi\S) ≡ µi and µτ
i (gi+1) ≡ ντ

Li
(gi+1), we can apply

theorem 4.12, to obtain exactly the Poincaré inequality

Varτ
i (gi+1) ≤ c

∑

x∈Li

µτ
i (Varx(gi+1)) .

4.4.2 Proof of the Poincaré inequality for marginal measures

The proof of theorem 4.12 is based on a well known and useful tech-
nique to bound from above the mixing time of Markov processes known as
”coupling”, introduced for the first time in this setting by Aldous [Al] and
subsequently refined to the ”path coupling” [BD, LRS]. See also [Lin] for
a wider discussion on the coupling method, and [Je] for its applications in
combinatorial problems.
We first define the Glauber dynamics on S with reversible measure νS . Then
we construct a coupled process between two dynamics on S with different
initial configurations. Using Proposition 4.4 together with some properties
of the coupling, we will obtain a bound on the spectral gap of the dynamics
on S, and then a Poincaré inequality for νS .

Glauber dynamics on levels: the coupled process

First of all let us fix some ideas about Glauber dynamics on an interval
S ∈ Li with reversible measure ντ

S and in particular let us explicit the jump
rates corresponding to heath bath dynamics. Given a configuration σ ∈ Ωτ

S ,
a vertex x ∈ S and a spin value a ∈ S = {±1}, from the definition (2.10) of
jump rates we get

cx(σ, a) = ντ
S(σx = a |σ ∈ FS\x)

= µ(σx = a |σ ∈ FS\x, τ ∈ FBi\S)

= µσ
Kx

(σx = a) , (4.21)

where in the second line we used the fact that {σx = a} ∈ FS and in the
third line we introduced the notation Kx = {x} ∪ Fi+1 as in the previous
section. The generator of this dynamics will be denoted by LS .
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Let us remark that the flip rate cx(σ, a) = µσ
Kx

(a) depends from whole
spin configuration on S, rather then only from nearest neighbors of x, due
to the presence of paths in S ∪ Fi+1 connecting x to S\{x}. To analyze the
dynamics we will indeed exploit the correlations decay between vertices on
Li stated in Proposition 4.4.

Let (σt, ηt)t≥0 be the coupled process on ΩS × ΩS with initial configura-
tions (σ, η) defined as follows.
Using the graphical construction of the Glauber dynamics [Sch, Mar], we
can assume that a Poisson clock with rate cM = sup

x,σ,a
cx(σ, a) is associated to

every site x ∈ S. We assume independence as x varies in S and we denote
by {tx,n}n∈N the successive arrivals after time t = 0 of the Poisson clock in x.
Both Markov processes evolve at the same time t ∈ {tx,n}n∈N

x∈S
and what re-

mains to specify are the coupling jump rates c̃x((σ, a), (η, b)), with a, b ∈ S,
to go from (σ, η) to (σx,a, ηx,b) .
Since the jump rate cx(σ, · ) just corresponds to the measure µσ

Kx
( · ) on the

spin configuration in x , we can define the coupling jump rate c̃x((σ, ·), (η, · )
as the optimal coupling (see [Lin]) between the measures µσ

Kx
( · ) and µη

Kx
( · ).

Explicitly the coupling process will run as follows. Suppose that t = tx,n for
some x ∈ S and n ∈ N, and that the process immediately before t was in
the state (σ, η); then the coupled jumps are defined as follows

• c̃x((σ,+), (η, +)) = min{µσ
Kx

(σx = +) ; µη
Kx

(σx = +)};

• c̃x((σ,−), (η,−)) = 1−max{µσ
Kx

(σx = +) ; µη
Kx

(σx = +)};

• c̃x((σ,+), (η,−)) = max{0 ; µσ
Kx

(σx = +)− µη
Kx

(σx = +)}:

• c̃x((σ,−), (η, +)) = max{0 ; µη
Kx

(σx = +)− µσ
Kx

(σx = +)}.

We denote by L̃ the generator specified by the above jump rates, and by P̃t

the correspondent Markov semigroup (see Section 2.3.1). Notice that this
coupling is monotone and then, taking two initial configurations (σ, η) such
that σ ≥ η , we get σt ≥ ηt for all future time t.

Now, let us consider the subset H ⊂ ΩS × ΩS given by all couples of
configurations which differ by a single spin flip in some vertex of S. One
can easily verify that the graph (ΩS × ΩS , H) is connected and that the
induced graph distance D(σ, τ) between configurations (σ, τ) ∈ ΩS × ΩS
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just corresponds to their Hamming distance.
Let also denote by Eσ,η[D(σt, ηt)] ≡ E[D(σt, ηt)|(σ, η)] the average distance
at time t between two coupled configurations of a process starting at (σ, η).
Taking β À 1, we claim the following

Claim 4.2. For all β À 1 there exists a positive constant α ≡ α(β) such that,
for every (σ, η) ∈ H initial configurations, the coupling process (σt, ηt)t≥0

verifies the inequality

d

dt
Eσ,η[D(σt, ηt)] |t=0 ≤ −α . (4.22)

Proof of Claim 4.2. Let us first explicit the derivative of the average distance
as follows

d

dt
Eσ,η[D(σt, ηt)] |t=0 =

d

dt

(
P̃tD

)
(σ, η) |t=0 = (L̃D)(σ, η)

=
∑

x∈S

∑

a,b∈{±1}
c̃x((σ, a)(η, b))[D(σx,a, ηx,b)−D(σ, η)] , (4.23)

where the sum over a, b ∈ {±1} can be restricted by monotonicity to the set
a ≤ b or a ≥ b depending if σ ≤ η or σ ≥ η, respectively.

From the definition of the coupling jump rates, the probability of dis-
agreement in x after one update in x of (σ, η), is given by

P
x

dis(σ, η) = |µσ
Kx

(σx = +)− µη
Kx

(σx = +)| .

In particular, since by hypothesis there exists a vertex y ∈ S such that η =
σy, from Proposition 4.4 it holds that for all β′ = c1β − c2 > 0

P
x

dis(σ, σy) = |µσ
Kx

(σx = +)− µσy

Kx
(σx = +)| ≤ ce−β′di(x,y) .

The distance between coupled configurations after one updates can then be
computed as follows.

(i) If x = y then P
x

dis(σ, σx) = 0, which means the disagreement at the
site x is removed after the update in x with certainty so that the new
configurations coincide;

(ii) If x 6= y then

(a) with probability 1 − P
x

dis(σ, σy) the updated configurations have
the same spin at x, and thus their distance is equal to D(σ, η);
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(b) with probability P
x

dis(σ, σy)(x) the updated configurations have
different spin at x, and thus their distance is equal to D(σ, η)+1.

From these observations and continuing from (4.23), we get

d

dt
Eσ,η[D(σt, ηt)] |t=0 = −1 +

∑
x∈S
x6=y

P
x

dis(σ, η)

≤ −1 + c
∑

`≥1

e−β′`

≤ −(1− ce−β′) ; (4.24)

taking α = (1− ce−β′) and for β À 1, Claim 4.2 follows.

The result of Claim 4.2 can be easily extended to arbitrary initial con-
figurations (σ, η) ∈ ΩS × ΩS , using the path coupling technique introduced
in [BD]). More explicitly, one can consider a path γ in (Ωs × Ωs,H) from
σ to η, namely γ = {σ = σ0, σ1, · · · , σk = η} with (σi, σi+1) ∈ H for all
i = 0, · · · , k, and then interpolate the coupling between neighboring con-
figurations. Essentially due to the triangular inequality on the metric in
(Ωs × Ωs,H), one get

Eσ,η[d(σt, ηt)] ≤
S∑

j=1

Eσj−1σj [d(σj−1
t , σj

t )]. (4.25)

Since by construction (σj−1
t , σj

t ) ∈ H for all j ≥ 1 and all t > 0, we can
apply Claim 4.2 to every terms in the r.h.s. of 4.25 and then obtain

d

dt
E[D(σt, ηt) | (σ, η)] |t=0 ≤ −αD(σ, η) . (4.26)

By means of the Markov property, for every time t ≥ 0 and any coupled
configurations (σt, ηt) ∈ H we get

d

dt
Eσ,η[D(σt, ηt)] =

d

ds
Eσ,η[D(σt+s, ηt+s)] |s=0

=
d

ds
Eσ,η[E[D(σt+s, ηt+s)|σt, ηt]] |s=0

= Eσ,η

[
d

ds
E[D(σt+s, ηt+s) | (σt, ηt)] |s=0

]

≤ Eσ,η[−αD(σt, ηt)]

= −αEσ,η(D(σt, ηt)) . (4.27)
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It follows that Eσ,η[D(σt, ηt)] ≤ e−α tD(σ, η) for every (σ, η) ∈ ΩS × ΩS and
then we get

P(σt 6= ηt) = Eσ,η(1I(σt 6= ηt)) ≤ Eσ,η(D(σt, ηt)) ≤ e−α tD(σ, η) . (4.28)

To bound the spectral gap cgap of the dynamics on S, we then consider an
eigenfunction f of LS with eigenvalue −cgap, so that

Eσf(σt) = etLSf(σ) = e−cgap tf(σ) .

Since the identity function has eigenvalue 0 and is therefore orthogonal to f ,
we have ντ

S(f) = 0 and ντ
S(Eηf(ηt)) = 0, where ντ

S is the invariant measure
for LS . From these considerations and inequality (4.28), it holds

etLSf(σ) = Eσf(σt)− ντ
S(Eηf(ηt))

=
∑

η

ντ
S(η)[Eσf(σt)−Eηf(ηt) ]

≤ 2‖f‖∞ sup
σ,η
P(σt 6= ηt)

≤ 2‖f‖∞|S|e−α t . (4.29)

Since the above inequality holds for all t, we finally obtain that cgap ≥ α

independently from the size of S, which implies the Poincaré inequality 4.20
with constant c = α−1 = 1 + O(e−cβ) and concludes the proof of Theorem
4.12. ¤

As previously remarked, applying Theorem 4.12 for S = Li and f = gi+1,
we obtain the desired Poincaré inequality for the marginal Gibbs measure
on the level Li, i.e.

Varτ
i (gi+1) ≤ c

∑

x∈Li

µτ
i (Varx(gi+1)) .

This conclude the first step toward the proof of Theorem 4.11.

4.5 Second step: Poincaré inequality for the Gibbs

measure

With the previous analysis we obtained a Poincaré inequality for the
marginal measures on levels. By means of this result, the formula (4.3)
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becomes

Var(f) ≤ c
m∑

i=0

∑

x∈Li

µ [µi(Varx(gi+1))] . (4.30)

Using the same notation as in [MSW], let us denote the sum in the r.h.s. of
(4.30) by Pvar(f).
The aim of the following analysis is to analyze Pvar in order to find an
inequality of the kind Pvar(f) ≤ D(f) + εPvar(f), with ε = ε(β) < 1 inde-
pendent from the size of the system. This would imply that

Var(f) ≤ c · Pvar(f) ≤ c

1− ε
D(f)

and the proof of Theorem (4.11) would follow.
As a first step, we want to extract the local variance of f from the local

variance of gi+1, in order to reconstruct from (4.30) the Dirichlet form of f .
For x ∈ Li and τ ∈ Ω+, let p(τ) = µτ

x(σx = +) and q(τ) = µτ
x(σx = −), and

then consider the quantity

µη
i (Varx(gi+1)) =

∑
τ

µη
i (τ)p(τ)q(τ) (∇x gi+1(τ))2 x ∈ Li , η ∈ Ω+

Using the martingale property gi+1 = µi+1(gi+2), the local variance Varx(gi+1)
can be split in two terms stressing the dependence from x of gi+2 and of the
conditioned measure µi+1. Let us formalize this idea.
For a given configuration τ ∈ Ω+ we introduce the symbols

τ+ :=

{
τ+
y = τy if y 6= x

τ+
y = + if y = x

τ− :=

{
τ−y = τy if y 6= x

τ−y = − if y = x

and then define the density

hx(σ) :=
µτ+

i+1(σ)

µτ−
i+1(σ)

, with µτ−
i+1(hx) = 1

Whit this notation, it holds the following computation

µη
i (Varx(gi+1)) =

∑
τ

µη
i (τ)p(τ)q(τ) [∇x µi+1(gi+2)(τ)]2

=
∑

τ

µη
i (τ)p(τ)q(τ)

[
µτ−

i+1(gi+2)− µτ+

i+1(gi+2)
]2

=
∑

τ

µη
i (τ)p(τ)q(τ)

[
µτ+

i+1(∇xgi+2)− µτ−
i+1(hx, gi+2)

]2

≤ 2
∑

τ

µη
i (τ)p(τ)q(τ)

[(
µτ+

i+1(∇xgi+2)
)2

+
(
µτ−

i+1(hx, gi+2)
)2

]
.(4.31)
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Now it is simple to verify that µτ+

i+1(∇xgi+2) = µτ+

i+1(∇xf).
To understand this fact it is enough to observe that the dependence from
x of gi+2 = µi+2(f) come only from f , since the b.c. on Bi+1 are fixed
equal τ+. Substituting µτ+

i+1(∇xf) and applying the Jensen inequality, the
first term of (4.31) can be bounded as
∑

τ

µη
i (τ)p(τ)q(τ)

(
µτ+

i+1(∇xgi+2)
)2
≤ µη

i

(
q(τ)(∇xf )2

) ≤ µη
i Varx(f) . (4.32)

Substituting this term in the r.h.s. of (4.31) and then summing both sides
over x ∈ Li and i ∈ {0, . . . ,m}, we obtain

Pvar(f) ≤ 2D(f) + 2
m−1∑

i=0

∑

x∈Li

µ

[∑
τ

µi(τ)p(τ)q(τ)
(
µτ−

i+1(hx, gi+2)
)2

]
,

(4.33)
where we excluded the value m in the summation over i, since in that case
gm+2 = f is constant w.r.t. µτ−

m+1 and thus µτ−
m+1(hx, gm+2) ≡ 0.

The more involved analysis of µτ−
i+1(hx, gi+2) will be discuss in the next sec-

tion.

4.5.1 Recursive Argument

Notation: Recall that for every x ∈ Li, Nx denotes the set of nearest
neighbors of x in the level Li+1. Given x ∈ Li and ` ∈ N, let us define the
following objects:

(i) The `-neighborhood of Nx in Li+1

Nx,` := {y ∈ Li+1 : di+1(y, Nz) ≤ `} ;

(ii) The σ-algebra generated by the spin configuration in the vertices of
Bi+1 \Nx,`

Fx,` := σ (σy : y ∈ Bi+1 \Nx,`) ;

(iii) The measure conditioned on the configuration in Bi+1 \Nx,`

µx,`( · ) := µ (· |Fx,`) .

We remark that Nx,0 = Nx and that there exists some `0 ≤ |Li+1| such that,
for all integers ` ≥ `0, it holds Nx,` = Li+1 and then µx,` = µi.
We also remark that Fx,0 ⊃ Fx,1 ⊃ . . . ⊃ Fx,`0 ≡ Fi+1, namely the family
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of σ-algebra {Fx,`}`=0,1,...,`0 is a filtration. In particular for any function
f ∈ L1(Ω,Fi+1, µ), the set of variables {µx,`(f)}`∈N is a Martingale.

Let us come back to our proof and recall the following property of the co-
variance (analogous to property (4.2) for the variance)

µη
C(f, g) = µη

C(µD(f, g)) + µη
C(µD(f), µD(f)) , for D ⊆ C ⊆ B . (4.34)

Since the support of µi+1 strictly contains the support of µx,0, the property
(4.34) can be applied to the square covariance (µτ−

i+1(hx, gi+2))2 appearing
in (4.33) in order to get

(µτ−
i+1(hx, gi+2))2 ≤ 2(µτ−

i+1(µx,0(hx, gi+2)))2+2(µτ−
i+1(µx,0(hx), µx,0(gi+2)))2 .

(4.35)
Through the Schwartz inequality, the first term in (4.35) can be bound as

(µτ−
i+1(µx,0(hx, gi+2)))2 ≤ µτ−

i+1(Varx,0(hx)) · µτ−
i+1(Varx,0(gi+2)) . (4.36)

Applying standard argument of probability, the second term can be rear-
ranged and bounded as follows:

[µτ−
i+1(µx,0(hx), µx,0(gi+2))]2 = [µτ−

i+1(µx,0(hx)− µi+1(hx), gi+2)]2

=

[
µτ−

i+1

(
`0∑

`=1

µx,`−1(hx)− µx,`(hx), gi+2

)]2

≤
`0∑

`=1

`2
[
µτ−

i+1(µx,`−1(hx)− µx,`(hx), gi+2)
]2

=
`0∑

`=1

`2
[
µτ−

i+1 (µx,`(µx,`−1(hx), gi+2))
]2

, (4.37)

where in the second line, due to the fact that µx,`0 = µi for some `0, we
substituted µx,0(hx) − µi+1(hx) by the telescopic sum

∑`0
`=1(µx,`−1(hx) −

µx,`(hx)) . Applying the Cauchy-Schwartz inequality to the last term in 4.37,
we get

[µτ−
i+1(µx,0(hx), µx,0(gi+2))]2 ≤

≤
`0∑

`=1

`2 µτ−
i+1 (Varx,`(µx,`−1(hx))) · µτ−

i+1 (Varx,`(gi+2)) (4.38)

From inequalities (4.36) and (4.38), there are basically three quantity to
analyze
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(i) µτ−
i+1 (Varx,`(gi+2)), for all ` = 0, 1, . . . , `0;

(ii) µτ−
i+1(Varx,0(hx));

(iii) µτ−
i+1 (Varx,`(µx,`−1(hx))), for all ` = 1, . . . , `0 ,

We now proceed to estimate separately these three terms; at the end we will
come back to Eqs. (4.36,4.38) and finally to (4.33).

First term: Poincaré inequality for the marginal measure on Nx,`

Let us consider the variance Varx,`(gi+2) appearing in (i).
From definition the function gi+2 depends from the spin configuration on
Bi+1, but under the measure µη

x,` it only depends from Nx,` and then it
holds

µη
x,`(gi+2) = µη

x,`|Nx,`
(gi+2) .

Since τ− ∈ Ω+, for every configuration η ∈ Ωτ−
i+1 we can apply the Poincaré

inequality stated in Theorem (4.12) to Varη
x,`(gi+2) and then obtain

µτ−
i+1 (Varx,`(gi+2)) ≤ c

∑

y∈Nx,`

µτ−
i+1(Vary(gi+2)), (4.39)

with c = 1 + O(ecβ) independent from the size of system.

Second term: computation of the variance of hx

We first recall the definition hx(σ) :=
µτ+

i+1(σ)

µτ−
i+1(σ)

, from which we can deduce

that hx is a variable with mean one w.r.t. µτ−
i+1 and only dependent from the

vertices y ∈ Nx. In particular it can be expressed as

hx(σ) =
exp(2β

∑
y∈Nx

σy)

µτ−
i+1( exp(2β

∑
y∈Nx

σy) )
=

exp(2β
∑

y∈Nx
(σy − 1))

µτ−
i+1( exp(2β

∑
y∈Nx

(σy − 1)) )
,

where in the second equality we introduced a constant in the exponent in
order to get the next computations easier.

Let us consider the (mean) variance µτ−
i+1(Varx,`(hx)) with ` ≥ 0; through

the DLR equations and the Jensen inequality we get

µτ−
i+1(Varx,`(hx)) ≤ µτ−

i+1(h
2
x)− (µτ−

i+1(hx))2 = µτ−
i+1(h

2
x)− 1 .
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Using the above expression of hx, µτ−
i+1(h

2
x) can be bounded as follows

µτ−
i+1(h

2
x) =

µτ−
i+1(exp(4β

∑
y∈Nx

(σy − 1)))

[µτ−
i+1(exp(2β

∑
y∈Nx

(σy − 1)))]2

≤ 1/ exp(4β
∑

y∈Nx

µτ−
i+1(σy − 1))

≤ exp(8β v µτ−
i+1(σy = −)) , (4.40)

where in the second line we use that σy − 1 ≤ 0 and the Jensen inequality
to bound the numerator and the denominator respectively, and in the third
line we bound the cardinality of Nx by v, the vertex degree of B.

All the computation then reduce to the probability µτ−
i+1(σy = −). Denoting

by µ−i+1 the measure conditioned to have all minus spins in Bi and plus spins
in ∂V B, by monotonicity it holds

µτ−
i+1(σy = −) ≤ µ−i+1(σy = −) .

The event {σ ∈ Ω−Fi+1
: σy = −} corresponds to the set of configurations

σ ∈ Ω−Fi+1
such that there exists a negative connected component C(σ) ∈

Fi+1 with y ∈ C(σ). Then, by the same argument developed in the previous
section (see also Remark 4.9), it holds

µ−i+1(σy = −) ≤
∑

m≥1

∑
C∈Cm
y∈C

µ−i+1({σ ∼ C}) ≤ ce−β′ ,

with β′ = c1β − c2 as in Proposition 4.4.
Inserting this result in (4.40) and with the previous computation, we get
that for β À 1 and ` ≥ 0

µτ−
i+1(Varx,`(hx)) ≤ exp(c β e−β′)− 1 ∼ c βe−β′ =: cβ . (4.41)

We then keep in mind this result and proceed analyzing the last term.

Third term: the variance of µx,`−1(hx)
We now consider the variance Varη

x,`(µx,`−1(hx)) with η ∈ Ω+ and ` ≥ 1.
Applying the Poincaré inequality stated in Theorem 4.12, we obtain

Varη
x,`(µx,`−1(hx)) ≤

∑

z∈Nx,`

µη
x,`(Varz(µx,`−1(hx)))

=
∑

z∈Nx,`\Nx,`−1

µη
x,`(Varz(µx,`−1(hx))) , (4.42)
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where the last inequality is due to the fact that the function µx,`−1(hx)
doesn’t depend from the spin configuration on Nx,`−1.
Notice that the set Nx,` \ Nx,`−1 only contains the two vertices (eventually
coincident) at distance ` from Nx.
For any configuration ζ ∈ Ωη

x,`, let us denote by ζ+ and ζ− the configura-
tions that agree with ζ in all sites but z and have respectively a (+)-spin and
a (−)-spin on z; the summand in 4.42 can then be trivially bounded as

µη
x,`(Varz(µx,`−1(hx))) ≤ 1

2
sup
ζ∈Ωη

x,̀

((µζ+

x,`−1(hx)− µζ−
x,`−1(hx))2.

Due to the stochastic domination µζ+

x,`−1 ≥ µζ−
x,`−1, and to the fact that hx is

an increasing function it holds

µζ+

x,`−1(hx) ≥ µζ−
x,`−1(hx) .

Moreover, there exists a coupling ν(σ, σ′), with marginal measure µζ+

x,`−1 and

µζ−
x,`−1, assigning probability one to the set {(σ, σ′) ∈ ΩNx,`−1

×ΩNx,`−1
: σ ≥

σ′}. Then it holds

µζ+

x,`−1(hx)− µζ−
x,`−1(hx) =

∑

σ,σ′
ν(σ, σ′)

(
hx(σ)− hx(σ′)

)

≤ 2‖hx‖∞ ν(σy 6= σ′y , y ∈ Nx)

≤ 2 v‖hx‖∞
(
ν(σz = +)− ν(σ′z = +)

)

= 2 v‖hx‖∞ (µζ+

x,`−1(σy = +)− µζ−
x,`−1(σz = +)), (4.43)

where we used the fact that the function hx only depends from y ∈ Nx.
The quantity ‖hx‖∞ can be easily bounded using the same procedure as

in (4.41). Indeed, for all σ ∈ Ω+, it holds

hx(σ) =
exp(2β

∑
y∈Nx

(σy − 1))

µτ−
i+1(exp(2β

∑
y∈Nx

(σy − 1)))

≤ 1/ exp(2β
∑

y∈Nx

µτ−
i+1(σy − 1))

≤ exp(4β v µτ−
i+1(σy = −))

≤ exp(cβe−β′) =: kβ , (4.44)

which implies that ‖hx‖∞ ≤ kβ. To bound the probability of disagreement
appearing in (4.43), we again refer to Proposition 4.4 and to its proof (see
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also Remark 4.9). Denoting by B the event that there exists a negative com-
ponent of z with nonempty intersection with Ny, it easy to verify, with the
same computations as in (4.9) and (4.10), that µζ+

x,`−1(σy = +)−µζ−
x,`−1(σz =

+) ≤ µζ−
x,`−1(B). Since di(z, y) ≥ di(z,Nx) = `, all these components have at

least cardinality ` and thus, performing the same computation as in Section
4.3.3, we get

µζ+

x,`−1(σy = +)− µζ−
x,`−1(σy = +) ≤ c e−β′` . (4.45)

Putting together formulas (4.42)-(4.45), we finally obtain

Varx,`(µx,`−1(hx)) ≤ k′βe−2β′ ` (4.46)

with k′β = c k2
β = c(1 + O(e−cβ) .

Conclusion
Let us come back to inequalities (4.36) and (4.38). Applying the bounds
(4.39),(4.41) and (4.46), we get respectively

• (µτ−
i+1(µx,0(hx, gi+2)))2 ≤ cβ

∑

y∈Nx

µτ−
i+1(Vary(gi+2));

• [µτ−
i+1(µx,0(hx), µx,0(gi+2))]2 ≤ k′β

`0∑

`=1

`2e−2β′ `
∑

y∈Nx,`+1

µτ−
i+1(Vary(gi+2)),

where we included in cβ and k′β all constants non depending from β.
For all β À 1, there exists a constant εβ = O(e−cβ) such that cβ ≤ εβ

and k′β`2e−β′` ≤ εβ; summing the two terms above and rearranging the
summation we thus obtain

(
µτ−

i+1(hx, gi+2)
)2
≤ εβ

`0∑

`=0

e−β′`
∑

y∈Nx,`

µτ−
i+1(Vary(gi+2)) .

Inserting this result in the second term of formula (4.33) and rearranging
the summation, we get

m−1∑

i=0

∑

x∈Li

µ

[∑
τ

µi(τ)p(τ)q(τ)
(
µτ−

i+1(hx, gi+2)
)2

]
≤

≤ εβ

m−1∑

i=0

∑

x∈Li

`0∑

`=0

∑

y∈Nx,`

e−β′`µ(Vary(gi+2))

≤ εβ

m−1∑

i=0

∑

y∈Li+1

µ(Vary(gi+2))
`0∑

`=0

e−β′`n(`) , (4.47)
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where in the last line we introduced the functor n(`) which bounds the
number of vertices x such that a fixed vertex y belongs to Nx. Since n(`)
growth linearly with `, the product e−β`n(`) decays exponentially with `

for all β À 1. Thus the sum over ` ∈ {0, . . . , `0} can be bounded by a finite
constant c which will be included in the factor εβ in front of the summations.
Continuing from (4.47), we get

m−1∑

i=0

∑

x∈Li

µ

[∑
τ

µi(τ)p(τ)q(τ)
(
µτ−

i+1(hx, gi+2)
)2

]
≤ εβ

m∑

i=1

∑

y∈Li

µ(Vary(gi+1))

≤ εβ Pvar(f) . (4.48)

Inserting this result in (4.33), and noticing that εβ < 1 for β large enough,
we obtain

Pvar(f) ≤ D(f) + εβPvar(f) =⇒ Pvar(f) ≤ 1
1− εβ

D(f) ,

and from inequality (4.30) we finally get

Var(f) ≤ cPvar(f) ≤ c′D(f) ,

that is the desired Poincaré inequality with c′ = c /(1−εβ) = 1+O(e−cβ), in-
dependent from the size of the system. This conclude the proof of Theorem
(4.11). ¤



Chapter 5

Stochastic Ising Model on
Random Graphs

5.1 Introduction

Random graph is an active area of research which combines probability
theory and graph theory. The subject was started in 1959-1961 by Erdös and
Rényi, see [ER1, ER2, ER3, ER4]. At first, the study of random graphs was
used to prove deterministic properties of the graphs. For example, if we can
show that a random graph has with positive probability a certain property,
then a graph with this property must exist. The method of proving deter-
ministic statements used probabilistic arguments is called the probabilistic
method and Erdös was one of the first to use it in the paper [Er], where it
was shown the existence of a graph with a specific Ramsey property. One
can find a good explanation of this method in the work devoted to it The
Probabilistic Method [AS], whereas standard references on random graphs
are [Bo, JLR].

The initial work of Erdös and Rényi has incited a great amount of work
on the field. Over the forty years that have passed since then, the theory has
developed into an independent and fast-growing branch of discrete math-
ematics with applications to theoretical computer science, communications
networks, natural and social science and to discrete mathematics itself.

Spin models on random graphs have attracted much attention in recent
years and a sophisticated theory has been developed for computing the ther-
modynamic properties of such systems in great generality (see for instance

77
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[MP] and references therein). The interest in this subject is at least twofold.
From a side one would like to extend to new structures the theory of sta-
tistical physics, in order to obtain new features and behaviors which could
explain some real physical systems.

On the other side, many combinatorial problems on random (and non
random) structures, in particular optimization and counting problems, can
be reformulated in the statistical mechanics setting and then solved, or
at least better understood, with the methods of statistical mechanics (see
[MM] ). Between the most interesting combinatorial problems with random
structure, it is the case to mention the ”number partitioning problem” (see
[BCMN] for recent result, and reference therein) , and the ”random k-sat
problem ”, that recently has attracted a lot of attention both from computer
scientists and from mathematical physicists (see [AP, AR, MMZ]).

We also point out that random graphs give rise to a large number of
threshold phenomena which are evocative of phase transition in statistical
physics, and that one would like to reexamine in a new perspective provided
by statistical models [Mo].

In contrast with the huge literature on probabilistic and combinatorial
analysis of random graphs, and with the increasing number of papers on the
equilibrium behavior of statistical models on random graph, there are very
few papers analyzing the dynamical evolution of these models. In particular
it doesn’t exist, to the best of our knowledge, any result concerning the
mixing time of dynamics but only general, not proved beliefs. Our work
is devoted to obtain some simple results on the behavior of local dynamics
for the Ising model on random graphs. We will consider Erdös-Rényi (or
binomial) random graphs and random r-regular graphs, and we will prove
some lower bounds on the relaxation time for Glauber dynamics.

5.2 Preliminaries

Generally speaking, a random graph is a random variable defined on a
probability space (Ω, F,P), where Ω is a suitable family of graphs and P is
a probability distribution on Ω. Usually there is also a parameter involved
which measures the size of the graph which typically tends to infinity.

The model introduced by Erdös can be described as choosing a graph
at random, with uniform probabilities, from the set of all 2(n

2) graphs on n
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vertices. The probability space (Ω, F,P) is then defined taking Ω equal to
the set of all graphs on n vertices, and assigning to every G ∈ Ω probability
P(G) = 2−(n

2).
It can also be viewed as the product of

(
n
2

)
binary spaces, each one associated

to an edge of the complete graph on n vertices (denoted by Kn).
This simple model gave rise to two basic models of random graphs, namely
the binomial random graph, or Erdös-Rényi random graph, and the uniform
random graph.

Given a real number p ∈ [0, 1], the binomial random graph, denoted by
G(n, p), is defined letting Ω be the set of all graphs on n vertices and setting

P(G) = peG(1− p)(
n
2)−eG ,

where eG stands for the number of edges of G. For p = 1/2 this corresponds
to the model introduced by Erdös [Er]. The binomial model is a special case
of a reliability network. In this general model, Ω is the family of all spanning
subgraphs of a given graph F , and P(G) = peG(1 − p)eF−eG . Taking F

equal to Kn (the complete graph on n vertices) we thus reobtain the model
G(n, p).

Uniform random graphs are defined by taking the uniform distribution
over a family of graph Ω. Clearly there are many kinds of uniform random
graphs, depending from the choice of Ω. The model introduced by Erdös
[Er] belongs here too, with Ω being the family of all graphs on n vertices.
Between the most popular uniform model we recall the following.

• G(n,M), with M an integer in [0,
(
n
2

)
], is the uniform random graph

with Ω being the family of all graphs on n vertices and with M edges.

For every G ∈ Ω, we thus have P(G) =
((

n
2

)

M

)−1

. G(n,M) is closely

related to the Erdös-Rényi model. Indeed, providing p
(
n
2

)
is close to

M in a suitable way, one can prove the asymptotically equivalence
between the two models.

• G(n, r), with an r integer such that nr is an even number, is the uni-
form random r-regular graph, where Ω is the family of all graphs on n

vertices of equal degree r.

• random trees are uniform random graph with Ω being the family of all
nn−2 trees on n labeled vertices.
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The most interesting discovery made by Erdös and Rényi when investi-
gating random graphs, is the phenomenon of thresholds.
Consider for example a random graph on n vertices identified with (Ω, F,P),
and let Γ denote the family of all 2-element subsets of {1, . . . , n} (or equiv-
alently the set of edges in the complete graph Kn). For any given graph
theoretic property A, let identify A with the family Q of subsets of 2Γ, cor-
respondent to a family of graphs on n vertices, satisfying A.

Definition 5.13. A property A of a random graph (Ω,F,P), is called increas-
ing monotone if S ∈ Q and S ⊆ P imply that P ∈ Q. A is called decreasing
monotone if its complement in 2Γ is increasing.

Examples of increasing properties are ”containing a triangle” and ”be
connected”, whereas examples of decreasing properties are ”having at least
one isolated vertex” and ”having at most k-edges”. The property ”having
exactly k isolated vertices” is not monotone.
The probability that a random graph, say G(n, p), has a property A, de-
pends from the graph parameters (n and p in this case) and it is denoted by
P(A ∈ G(n, p)). Taking p as a function n, one can thus consider the limiting
probability of A. Let us first introduce the following notation: given two
sequences of numbers an and bn depending on a parameter n →∞, we will
write

• an = O(bn) if ∃C such that |an| ≤ C bn

• an = o(bn) if lim
n→∞ an/bn = 0

• an = Ω(bn) if ∃C such that |an| ≥ C bn

• an = Θ(bn) if ∃C1, C2 such that C1 bn ≤ |an| ≤ C2 bn

• an ¿ bn if an ≥ 0 and an = o(bn)

Definition 5.14. If A is an increasing monotone property and if there exists a
sequence p̂ = p̂(n) such that

P(G(n, p) ∈ A) →
{

0 if p ¿ p̂

1 if p À p̂
,

then p̂ is called a threshold.
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The threshold for a decreasing monotone property is defined as the
threshold of their complements. Notice that the threshold is not uniquely
determined, but only within constant factors; nevertheless, it is customary
to talk about the threshold.
It is proved that every monotone property has a threshold (see for example
[JLR]), whereas non-monotone properties, for which one can give a ”local
definition” of threshold as above, may have no threshold or countably many
thresholds (see [Sp1]). Classic examples of thresholds refer to the prop-
erty of containing a given graph as subgraph (e.g. isolated vertices, trees,
cycles).

The presence of thresholds allows one to get an asymptotic characteri-
zation of the random graph, as p (or other involved parameters) varies as a
function of n. In the next sections we will consider binomial and r-regular
random graphs and discuss the probability of existence of some properties.
Aside from having a better understanding of the shape of these random
graphs, this will enables to recall the main techniques to analyze random
graphs.

5.3 Binomial Random Graphs

Let us consider the binomial (or Erdös-Rényi) random graphG(n, p). We
recall that it is the probability space of graphs on n vertices such that, for
each G ∈ Ω,

P(G) = peG(1− p)(
n
2)−eG ,

where eG = |E(G)| stands for the number of edges of G. It can also be
viewed as a result of

(
n
2

)
independent coin flippings, one for each pair of

vertices, with probability of success (i.e. drawing an edge) equal to p.

Definition 5.15. Given an event An, describing a property of a random struc-
ture depending on a parameter n, we say that An holds asymptotically almost
surely if

lim
n→∞P(An) = 1 ( write An holds a.a.s) .

Remark 5.10. In many publications on random graph the phrase ”almost
surely” or a.s. is used, thought its normally meaning in probability is different.
To not create confusion, we prefer to adopt this notation, which was introduced
for the first time in [SU].
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As just remarked, for any monotone property P of G(n, p) there exists
a threshold p̃ = p̃(n) such that, for any p À p̃ , P holds a.a.s.. Depending
on the p value, taken as a function of n, G(n, p) can then be characterized
by properties holding with hight probability, and usually analyzed in the
asymptotic limit n →∞. Here we briefly discuss the asymptotic behavior of
certain properties of G(n, p) as p varies in (0, 1) as a function of n. See for
details [Bo], [JLR] and [Sp2].

5.3.1 Thresholds for small subgraph containment

One of the first problems studied in the theory of random graphs was
that of the existence in G(n,M) of at least a copy of a given graph H

([ER2]). Since the graph H is fixed and the random graph grows with
n → ∞, copies of H are called small subgraphs, as opposed to subgraphs
which grow with n, like a Hamiltonian cycle. The problem was solved in
full generality in [Bo], though a simpler proof was given later in [RV]. Here
we present the result and just explain the idea beyond the proof. We refer
to [Bo, RV, JLR] for a discussion on the problem and for the details of the
proofs.

Consider a graph H ⊆ Kn, where Kn is the complete graph on n vertices,
and denote by vH the number of vertices of H and by eH the number of
edges. We search for the asymptotic probability that G(n, p) contains a copy
of the subgraph H, when vH and eH are finite integers.

Let XH be the (random) number of copies of H that can be found in the
binomial random graph G(n, p). For each copy H ′ of H in Kn, define the
indicator 1IH′ = 1I[H ′ ⊆ G(n, p)] so that XH =

∑
H′∼H 1IH′ .

The number of copies of H in Kn is given by the function

f(n,H) =
(

n

vH

)
(vH)!/aut(H) = Θ(nvH ) , (5.1)

where aut(H) denotes the number of automorphisms of H. For every copy
H ′, the probability that H ′ is a subgraph in G(n, p) is equal to peH . Then

E(XH) = f(n, p)peH = Θ(nvH peH ) →
{

0 if p ¿ n−vH/eH

∞ if p À n−vH/eH
.

By the first moment method ( an instance of the Markov inequality for inte-
ger valued random variables) we get

P(XH > 0) ≤ E(XH) = o(1) if p ¿ n−vH/eH .
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To prove that p = n−vH/eH is a threshold for the property that H is a
subgraph in G(n, p), it remains to verify that P(XH > 0) = 1 − o(1) for
p À n−vH/eH . But this turns out to be false as can be shown by explicit
examples. The correct threshold for this property is indeed the following.
Let us define

m(H) := max
{

eK

vK
: K ⊆ H, vK > 0

}
;

it holds the following

Theorem 5.13. For any subgraph H ∈ Kn with at least one edge,

lim
n→∞P(H ⊆ G(n, p)) =

{
0 if p ¿ n−1/m(H)

1 if p À n−1/m(H)
. (5.2)

The proof of Theorem 5.13 relays on the so called second moment
method. This is an instance of the Chebyshev’inequality holding for ran-
dom variables with positive average. Through this inequality, one obtains

P(H * G(n, p)) = P(XH = 0) ≤ Var(XH)
(E(XH))2

,

and thus the probability under investigation con be computed comparing
the variance Var(XH) with (E(XH))2.

From theorem 5.13 one can deduce some first useful consequences. First
of all we observe that any cycle C of whatever length, has a threshold in
p = n−1, since m(C) = 1. Thus, for any sequence p = p(n) such that
p(n) ¿ n−1, any cycle or subgraph containing a cycle has probability o(1)
to be contained in G(n, p). In particular, for such values of p, only trees are
admissible subgraphs and, more strictly, for any p such that n−

k
k−1 ¿ p ¿

n−
k+1

k , the random graph G(n, p) is a forest of trees with at most k vertices.
For many subgraphs, this result can be refined, by considering the be-

havior at the threshold.
Let H be a graph with vH vertices and eH edges and denote by ρ(H) =
vH/eH its density. H is called strictly balanced if every proper subgraph H ′

has ρ(H ′) < ρ(H) (then ρ(H) = m(H)). It holds the following

Theorem 5.14. Let H a strictly balanced graph with vH vertices and eH edges
and denote by XH the number of copies of H in G(n, p). For c > 0 and
p = cn−vH/eH it holds

XH
d−→ Poiss(λ) , λ =

cvH

aut(H)
(5.3)
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Cycles are examples of strictly balanced graphs. If Cl denotes a cycle of
finite length l and p = c/n, from Theorem 5.14 it follows

P(Cl ⊆ G(n, p)) = P(XCl
> 0) −→ 1− e−λ .

Any cycle of arbitrary finite length has thus asymptotic positive probability
to be contained in G(n, p).
Of course, the problem of subgraph containment is much more developed
and here we only gave some basic results that will be helpful in that follows.

5.3.2 Giant component and connectivity

As we argue by the former analysis, for any p = o(n−1), G(n, p) is asymp-
totically a forest of trees with finite cardinality.
When p = c/n, with c > 0, the landscape changes and a largest compo-
nent, with size increasing with n, appears. Moreover, depending on the
value of the constant c, the random graph could contain a giant component,
namely a subgraph with size comparable to n. Again, the existence of a
phase transition which appears as a ”sudden” jump of the size of the largest
component, has been studied for the first time in the fundamental paper
of Erdös and Rényi [ER2]. A great improvement of these results has been
obtained twenty years later by Bollobás in [Bo2].
Here we present, without prove, the main result due to Erdös and Rényi.

Theorem 5.15. Let p = c
n , where c > 0 is a constant.

(i) If c < 1, then a.a.s. the largest component ofG(n, p) has at most 3
(1−c)2

log n

vertices.

(ii) Let c > 1 and let ρ = ρ(c) ∈ (0, 1) such that ρ + ecρ = 1, or in other
terms let 1 − ρ be the extinction probability of a branching process with
offsprings distribution Poiss(c). Then a.a.s. G(n, p) contains a giant
component of (1 + o(1))ρn vertices whereas the size of the other compo-
nents is at most 16c

(c−1)2
log n.

The proof of this theorem (see for instance [LRS]) is made analyzing the
size of a connected component through a fixed vertex v. The construction of
this component, usually denoted by C(v), can be realized defining a suitable
branching process. This explains why in the second part of the theorem
appears the constant ρ.
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The value p = n−1 is thus a threshold for the existence of the giant
component; nevertheless, for this p, the random graph G(n, p) is a.a.s. not
connected. Indeed, it is proved that the existence of isolated graphs with
finite cardinality (that is a monotone decreasing property), has a threshold
for p À n−1.

More precisely, one can prove that the existence of an isolated vertex
in G(n, p) has a threshold for p = log n+c+o(1)

n . At the threshold, the vari-
able counting the number of isolated vertices in G(n, p) is asymptotically
distributed as Poiss(e−c).
On the other hand, for this value of p, the probability that exists an isolated
graph with finite size k > 1 is a.a.s. 0. Thus the threshold for the existence
of isolated vertices and the connectivity is the same. For more details on the
problem of connectivity see [Bo, Sp2].

5.4 Random Regular Graphs

An r-regular graph is a graph with degree equal to r at each vertex. If
the number of vertices are n, then the number of edges is rn/2, so that rn

has to be even.

The random r-regular graph G(n, r) is defined as the probability space of
all r-regular graphs on n vertices, taken with uniform probability. The case
r = 0 and r = 1 are trivial; the first corresponds to en empty graph whereas
the second is the set of perfect matchings, each one taken with probability
1/(n−1)!!. Indeed (n−1)!! is the number of perfect matchings on n vertices,
provided that n be even.

Though the definition of random regular graphs is conceptually simple,
it is not so easy to use it; indeed there is no simple formula for the total num-
ber of r-regular graphs on n vertices, and thus also the uniform probability
is unknown. Most work on random regular graphs, both theoretical and
practical, is based on a parallel model, whose construction has two different
versions due to Bender and Canfield [BC] and Bollobàs [Bo1].

In the Bollobàs version, it is called the configurational model and is de-
fined as follows. Let W the product space between a set V with n el-
ements and a set R with r elements. Then W has rn elements, called
half-edges, that will denoted as the couple (v, x), v ∈ V = {1, . . . , n} and
r ∈ R = {1, . . . , r}.
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A configuration is a perfect matching of W , i.e. a partition of W into rn/2
pairs. These pair are called edges. The key point is that the natural projec-
tion π of W onto V , ignoring the second coordinate, maps each configura-
tion F to a multigraph π(F ) on V with constant degree r. We recall that a
multigraph is a graph in which loops or multiple edges are admitted, unlike
of the so called simple graphs; of course the set of r-regular multigraphs
contains the smaller set of r-regular (simple) graphs.

Taking a random configuration F with uniform probability, namely P(F ) =
1/(rn − 1)!!, and projecting on V , we thus obtained an r-regular multi-
graph G∗(n, r). Unfortunately the distribution of G∗(n, r) is not uniform,
because multigraphs with a different number of loops and multiple edges
arise from a different number of configurations. Instead, if we take the pro-
jection π(F ) of a random configuration and condition on it being a simple
graph, we obtain a random r-regular graph on V with uniform probability,
namely G(n, r). This is because every r-regular graph on V is the projection
of exactly r!n configurations.

Many properties of G∗(n, r) can be analyzed through combinatorics on
the configuration model and then it is somehow simpler working with it then
with G(n, r). On the other hand it is proved that any property that holds
a.a.s. for G∗(n, r), holds a.a.s. for G(n, r) too (see Theorem 5.17 below).
This provides an easy technique of investigation, and indeed many results
concerning G(n, r) were obtained in this way. We give a briefly description
of the main properties of G(n, r), in order to get a better understanding
of its shape. A wider discussion on the subject can be found in the survey
article [Wo] and in [JLR].

5.4.1 Small Cycles: Poisson paradigm

The term ”Poisson paradigm” was introduced for the first time in [AS] to
describe the fact that the sum of many nearly independent rare events has
Poisson distribution. In [Bo1, Wo1] it has been proved that the number of
short cycles in random regular graph with small degree has asymptotically
Poisson distribution, and thus a kind of Poisson paradigm has been shown.
The method for proving this result is an asymptotic version of the fact that a
Poisson random variable is determined by its moments. The main argument
of the proof is developed on the random r-regular multigraph G∗(n, r) and
exploits the properties of the correspondent configuration model. The result
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for G(n, r) is then obtained as a consequence of the result for G∗(n, r).
Given an r-regular (multi)graph G, we let Zk = Zk(G) denote the num-

ber of cycle of length k in G; for multigraphs we let k ≥ 1, but for simple
graphs we let k ≥ 3. Taking G to be the random regular graph G(n, r) or
G∗(n, r), clearly Zk becomes a random variable. Then it holds the follow-
ing (see [Bo1, Wo1, Wo2]). By joint convergence of an infinite number of
variables we mean joint convergence of every finite subset.

Theorem 5.16. Let λk = 1
2k (r − 1)k and let Zk,∞

d∼ Po(λk) be independent
Poisson distributed random variables for all k ≥ 1. Then the random variables
Zk(G∗(n, r)) converge in distribution to Zk∞, Zk(G∗(n, r)) d→ Zk∞ as n →∞,
jointly for all k.

Notice now that a realization G ofG∗(n, r) is simple if and only if Z1(G) =
Z2(G) = 0, since in this way we exclude possible loops or multiple edges,
and thatG∗(n, r) conditioned on Z1 = Z2 = 0 yieldsG(n, r). The next result
follows.

Corollary 5.1. Let λk and Zk be as in Theorem 5.16. Then the random vari-
ables Zk(G(n, r)) converge in distribution to Zk∞ as n → ∞, jointly for all
k ≥ 3.

Using this result, much of the local properties of the r-regular graph
can be computed. For example, it is not difficult to prove that, for a given
vertex v ∈ V and k < cr log n, with cr a positive constant depending on the
degree r, the probability that there exists a cycle of length at most k passing
through v is asymptotically 0. In particular, the structure of G(n, r) inside a
ball centered at a given vertex of radius less then cr log n, is a.a.s a tree.

Another consequence of Theorem 5.16, is that one can compute the
asymptotic probability that G∗(n, r) is simple. This result, together the fact
that the number of r-regular graph is equal to the number of r-regular multi-
graph times the probability P(G∗(n, r) is simple), enables us to obtain an
asymptotic formula for the number of labeled regular graph.

Corollary 5.2. If n →∞, then

P(G∗(n, r) is simple) → e−(r2−1)/4 > 0 .

Corollary 5.3. The number Ln of labeled r-regular graph on n vertices satis-
fies, as n →∞ for fixed r,

Ln =
√

2e−(r2−1)/4(rr/2e−r/2/r!)nnrn/2(1 + o(1))



88 5. Stochastic Ising Model on Random Graphs

From Corollary 5.2, it holds that the asymptotic probability P(G∗(n, r) is simple)
is positive. With this information, it easy to prove the following result.

Theorem 5.17. Any property that holds a.a.s for G∗(n, r) holds a.a.s for
G(n, r) too.

The converse clearly doesn’t hold, as the trivial example of containing a
loop shows. Theorem 5.17 thus provides a tight connection between the
properties in G∗(n, r) and in G(n, r).

5.4.2 Isoperimetric constant

Another important property that we want to point out, concern the edge
isoperimetric constant of G(n, r). For any finite graph G = (V,E), we recall
(see (1.2)) that

ie(G) = min
K

|∂EK|
|K| ,

where the minimum is taken over all subsets K ∈ V with |K| ≤ |V |/2.
Many regular graphs tend to have small isoperimetric constant. For exam-
ple, by folding an n vertex line on a circle, we get a 2-regular graph with
isoperimetric constant about 2/n.
Also the existence, for every n and r, of a regular graph with positive isoperi-
metric constant is a non trivial problem. A useful approach in this context,
comes from the probabilistic method ([AS]).
The existence of regular graph with positive isoperimetric constant, for large
n and r ≥ 3, is consequence of the following theorem due to Bollobás [Bo3].

Theorem 5.18. Let r ≥ 3 and η ∈ (0, 1) be such that

24/r < (1− η)(1−η)(1 + η)(1+η) .

Then a.a.s. G(n, r) has isoperimetric constant at least (1− η)r/2, i.e.

P(ie(G) ≥ (1− η)r/2) −→
n→∞ 1 (5.4)

We refer to [Bo3] for the proof of the theorem. We only mention that
the proof is based on the correspondence between G(n, r) and the configu-
rational model, and on combinatorics.
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5.5 Analysis of Glauber dynamics

In this section we will consider the Glauber dynamics for the Ising model
on a random graphs with n vertices; we will concentrate on the two random
graph models previously defined. The aim of our analysis is to shed some
light on the behavior of the relaxation time for the dynamics on random
graphs.

5.5.1 Notation

Let G be a general random graph on n vertices and with finite mean ver-
tex degree, correspondent to the probability space (Ω, F,P).
For any graph realization G of G, the Ising model is defined as for determin-
istic graphs. Let us just fix some notation.
Let V denote the n-vertex set of G. To every vertex x ∈ V we associate a
spin variable σx ∈ {±1}, and denote by Ωσ := {±1}n the space of spin con-
figurations and by F the σ-algebra generated by the projections of Ωσ onto
the single spin space.
Given G ∈ Ω, we consider the Ising model on G specified by the Gibbs
measure µG, which assign probability

µG(σ) =
1

ZG(β)
exp ( β

∑

(x,y)∈EG

σxσy)

to every σ ∈ Ωσ. Clearly, the measure µG, and all the quantities derived
from that measure, are random variables depending on the realization G

of G. To denote this dependence from the random graph, we will add the
subscript G to these quantities.
In the following section, we will analyze the heat-bath Glauber dynamics
on G, with Markov generator denoted by LG (see section 3.5.2), when G

is a realization of G(n, p) and of G(n, r). In particular we will consider the
problem of determining, with high probability, the behavior of the relaxation
time of the dynamics.

5.5.2 Slow mixing on binomial random graphs at all tempera-
tures: first result

Let us consider G(n, p) with p = c
n and c a finite positive constant, in

order to get a finite mean vertex degree. For this value of p, we recall that
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G(n, c/n) can be (asymptotically) described as follows (see section 5.3).

• a.a.s G(n, c/n) is not connected;

• if c < 1, a.a.s. the largest component of G(n, c/n) has at most
3

(1−c)2
log n vertices;

if c > 1, a.a.s. G(n, c/n) contains a giant component of (1 + o(1))ρn

vertices;

• a.a.s the only finite subgraphs in G(n, c/n) are trees and cycles. More-
over the number of cycles of given length, say k, is a.a.s a Poisson
variable with mean ck/2k.

Consider now the Glauber dynamics for the Ising model on G(n, c/n).
From the analysis of the subgraph containment (see Section 5.3.1), one
can easily deduce that, given a fixed vertex x ∈ V , the log n-neighborhood
of x is a.a.s. a tree. As just recalled in the previous chapters, the Ising
model Glauber dynamics on trees has spectral gap uniformly bounded by
a constant for all temperature bigger then the critical one, which depends
on the maximal degree of the tree. Roughly, this would led to deduce that
there is a finite a range of temperatures such that the dynamics onG(n, c/n)
shows a similar behavior. However, the random graph could contain trees
with maximal degree increasing with n, and so having a critical temperature
that goes to infinity with n, where the dynamics slows down in a significant
way for all finite temperature. Since the spectral gap takes in account of
the worst case that can appears in the graph, this would imply that the
relaxation time is increasing with n for all realizations G of the random
graph containing these subgraphs.
To analyze the dynamics on G(n, c/n), we will follow this approach: first we
will identify a subgraph on which the dynamics slows down for all β > 0,
and then we will prove that, with positive probability, G(n, c/n) contains
such a subgraph.

Remark 5.11. Notice that this kind of approach is conceptually similar to
the one used to analyze the Glauber dynamics for the random Ising model
on a finite volume Λ ∈ Zd in the so-called Griffhits phase (see, e.g. [CMM,
Fr, Mar]). The presence of peculiar subgraphs in G(n, c/n), on which the
dynamics slows down for all β > 0, plays the same role of the presence of ”rare
bad cluster” for the random Ising model in Λ, on which the dynamics slows
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down due to the presence of strong interactions between particles.
There is also a kind of similarity with argument used in [H2], where the author
consider the zero-temperature Glauber dynamics on G(n, p) and G(n,M) and
analyze the problem of whether the dynamics reaches the global minimum
energy for some value of p = Θ(n−1). Also in this case, the proof is based
on the observation that there is a subgraph which imposes a certain global
property to the dynamics. Then the proof is reduced to the analysis of the
probability that such a subgraph is contained in the random graph.

Let us formalize these ideas. With the notation introduced above, we state
the following:

Theorem 5.19. For every β > 0, there exists a positive constant cβ such that
a.a.s. the spectral gap of the Ising model Glauber dynamics on G(n, c/n) is less
then δn = exp (−cβ

log n
log log n), i.e.

lim
n→∞P(cgap(µG) ≤ δn) = 1 (5.5)

Proof. We will proceed in the following two steps.

(i) for every integer k ≤ n, we define a suitable graph Sk and prove that if
G is a graph realization of G(n, p) containing Sk, then the spectral gap
of the dynamics on G is exponentially small in k.

(ii) if k ≤ α log n
log log n , with α < 1, we prove that the probability that Sk is

contained in G(n, c/n) is asymptotically one.

The statement will easily follow.

Proof of (i). Let us consider the graph Sk given by k + 1 vertices with a dis-
tinguished root-vertex linked to all the other k vertices and no more edges;
we refer to it as k-star. Suppose that Sk belongs to a realization G of the
random graph G(n, p) as an isolated subgraph, and let’s analyze the Glauber
dynamics on Sk.

The way to bound from above the spectral gap, generally consists in
providing a test function f on the spin configuration space having a very
slow decaying. More precisely, from the definition of spectral gap (see 2.13),
for any nonconstant function f ∈ L2(Ω,F , µG)

cgap(µG) ≤ DG(f)
VarG(f)

. (5.6)
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Thus, for any configuration σ ∈ Ωσ, let mk(σ) denote the magnetization
of Sk, i.e. mk(σ) =

∑
x∈V (Sk) σx, and take as a test function the following

indicator function

1Ik(σ) := 1I{mk>0}(σ) =

{
1 if mk(σ) > 0
0 if mk(σ) ≤ 0

. (5.7)

Without loss of generality, we can restrict the analysis to even k values.
Since in this case mk(σ) 6= 0 for all σ, by symmetry it holds that VarG(1Ik) =
1/4 so that the spectral gap is bounded as cgap(LG) ≤ 4DG(1Ik). We thus
concentrate on the Dirichlet form

DG(1Ik) :=
1
2

∑

x∈V (Sk)

µG

(
cx [∇x1Ik]2

)
.

We first observe that ∇x1Ik(σ) 6= 0 only if σ is such that |mk(σ)| = 1,
namely for configurations σ having (k + 2)/2 spins with the same value on
the vertices of the subgraph Sk. Thus, for every configuration σ of this kind,
[∇x1Ik(σ)]2 = 1 only if x is one of the (k + 2)/2 vertices in Sk with spin of
the same sign of mk(σ); then we get

DG(1Ik) ≤ k + 2
4

µG(|mk| = 1) . (5.8)

Let us state the following:

Lemma 5.3. For every β > 0 and k high enough, there exists a positive con-
stant αβ such that

µG(|mk| = 1) ≤ e−αβk (5.9)

Proof. Let us denote by r the only vertex in Sk with degree equal to k,
namely the center of the k-star, and label from 1 to k all the other vertices.
Using the notation µr,+

G ( · ) = µG( · |σr = +) (and analogously for σr = −)
and observing that µr,+

G (|mk| = 1) = µr,−
G (|mk| = 1) by symmetry, we get

µG(|mk| = 1) =
1
2

µr,+
G (|mk| = 1) +

1
2

µr,−
G (|mk| = 1)

= µr,+
G (|mk| = 1)

≤ µr,+
G (

k∑

i=1

σi ≤ 0 ) . (5.10)
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Since Sk is an isolated subgraph, all variables σi, with i ∈ {1, . . . , k}, are
independent w.r.t µr,+

G , with probabilities
{

µr,+
G (σi = +) = eβ

eβ+e−β = pβ

µr,+
G (σi = −) = e−β

eβ+e−β = 1− pβ

and with mean and variance

µr,+
G (σi) = 2pβ − 1 ; Varr,+

G (σi) = 4pβ(1− pβ) .

In particular, if (Xi)k
i=1 are independent Bernoulli random variables with

P-mean pβ, then σi
d∼ 2Xi − 1 for all i ∈ {1, . . . , k} and the sum

∑k
i=1 σi

is distributed as 2Z − k, with Z =
∑k

i=1 Xi a random binomial variable
Bi(k, pβ). Using the Chernoff’s inequality for binomial variables, we get

µr,+
G (

k∑

i=1

σi ≤ 0 ) = P( Z ≤ k

2
) ≤ exp

(
−(pβ − 1/2)2

2pβ
k

)

and then inequality (5.9) follows taking α(β) := (pβ−1/2)2

2pβ
and noticing that

α(β) is positive and increasing in β for all β > 0.

From inequality (5.8)and Lemma 5.3, we get D(1Ik) ≤ (k+2)
4 e−αβ k .

Thus, for all β > 0 there exists an integer k0 and a positive constant cβ

such that, for all k ≥ k0, it holds

cgap(µG) ≤ (k + 2) e−αβk ≤ e−cβk . (5.11)

This concludes the proof of step (i), in which we proved that for every β > 0
there exists an integer k0 and a positive constant cβ such that, for all k ≥ k0,
if G contains an isolated Sk, then cgap(µG) ≤ e−cβk. Notice that this implies

P(cgap(µG) ≤ e−cβk) ≥ P( isolated Sk ⊆ G) .

Proof of (ii). Here we want to compute the asymptotic probability that
G(n, c/n) contains an isolated Sk. We thus consider the random variable Xk

counting the number of copies of Sk inG(n, c/n); clearly it holds P( isolated Sk ⊆
G(n, c/n)) = P(Xk > 0) .

As a first step we can use the first moment method (see subsection 5.3.1)
to rule out the range of k such that P(Xk > 0) ≤ E(Xk) −→

n→∞ 0. To compute
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E(Xk), we first express Xk as sum of the following indicator functions. For
every v ∈ V , define the event ξv that a k-star rooted in v is contained in
G(n, c/n), i.e.

ξv := {G(n, c/n) ⊇ Sk with root in v} .

Denoting by 1I(ξv) the indicator function of ξv, we thus get that Xk =∑
v∈V 1I(ξv) and then, by linearity of expectation, E(Xk) =

∑
v∈V P(ξv).

By simple combinatorics, one obtains the formula

P(ξv) =
(

n− 1
k

)
pk(1− p)(k+1)(n−k−1)+(k+1

2 )−k , ∀v ∈ V .

Substituting the value p = c/n and applying the Stirling formula for large n

and k ≡ k(n) = o(n) but such that k(n) ↑ ∞ as n →∞, we get

P(ξv) = e−k log k(1 + o(1)) . (5.12)

The asymptotic behavior of E(Xk) clearly depends from the choice of
k(n); taking k = α log n

log log n , with α a real positive number, we get

E(Xk) = n exp (−k log k)(1 + o(1)) = Ω(n1−α) .

If k = α log n
log log n with α ≥ 1, and in general for all k À log n

log log n , E(Xk)
tends asymptotically to 0. By the first moment method this implies that
a.a.s. Xk = 0, namely the existence of an isolated k- star has a vanishing
asymptotic probability.

If k = α log n
log log n with α < 1, and in general for all k increasing with n but

such that k ¿ log n
log log n , the expectation of Xk becomes large with n. Clearly

this is not enough to assure that P(Xk > 0) → 1. We will thus exploit
the second moment method and search for k values such that Var(Xk) =
o(E(Xk)2), in order to get

P(Xk = 0) ≤ Var(Xk)
E(Xk)2

= o(1) ,

which implies that a.a.s G(n, c/n) contains an isolated Sk.

In order to bound the variance we first recall the following decomposi-
tion property of the variance (see for instance [Sa]).
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Let (Ωi,Fi, µi), i = 1, . . . , n be n probability spaces and let (Ω,F , µ) be the
associated product space, with µ = ⊗i µi. Then

Varµ(f) ≤
n∑

i=1

µ(Varµi(f)) . (5.13)

Notice that the measure P, defined on the probability space G(n, p), is
the product measure of independent Bernoulli variables with mean p asso-
ciated to the n(n− 1)/2 edges of Kn, namely

P = ⊗e∈Kn Be(p) .

Let us introduce the following notation: given a function f on (Ω,F ,P), let
Vare(f) denote the variance of f with respect to the Bernoulli(p) measure
associated to e, and define the gradient ∇e as

∇ef (G) := f(Ge)− f(ξv)(G) ,

where Ge denotes the graph obtained from G by switching the value of the
Bernoulli variable ηe ∈ {0, 1} associated to e, or, in other word, by removing
or adding the edge e, depending respectively if e ∈ E(G) or e /∈ E(G).

Applying the decomposition property (5.13) to Var(Xk), we obtain

Var(Xk) ≤
∑

e∈E(Kn)

E (Vare(Xk))

= p(1− p)
∑

e∈E(Kn)

E(∇eXk )2

= p(1− p)
∑

e=(x,y):
x<y∈V

E(
∑

v∈V

∇e1I(ξv) )2 . (5.14)

Let us analyze the quantity in the r.h.s. of (5.14).
For any given edge e = (x, y), the vertex v (the root of a k-star) could
correspond to an end-vertex of e, namely v = x or v = y, or it could be
v 6∈ {x, y}. We thus introduce the characteristic functions χv=x, χv=y and
χv 6∈{x,y} in the sum over v ∈ V in (5.14), and obtain

E (
∑

v∈V

∇e1I(ξv) )2 = E (
∑

v∈V

∇e1I(ξv)(χv=x + χv=y + χv 6∈{x,y}) )2

≤ 2E (∇e1I(ξx))2 + E (
∑

v 6∈{x,y}
∇e1I(ξv) )2 , (5.15)



96 5. Stochastic Ising Model on Random Graphs

where in the last line, due to the fact that e is an unoriented edge, we
identified the quantities ∇e1I(ξx) and ∇e1I(ξy). We analyze separately the
two terms appearing in (5.15).

First term: Notice that ∇e1I(ξx)(G) = 1I(ξx)(Ge)− 1I(ξx)(G) 6= 0 if and only
if 1I(ξx)(Ge) = 1 or 1I(ξx)(G) = 1. Since each one of these occurrences
excludes the other and in both cases |∇e1I(ξx)(G)| = 1, it holds

E (∇e1I(ξx))2 =
∑

G∈Ω

P(G)(1I(ξx)(G) + 1I(ξx)(Ge))

= P(ξx) +
∑

G∈Ω

P(G)(1I(ξx)(Ge))

≤ e−k log k(1 + o(1)) +
∑

G∈Ω

P(G)(1I(ξx)(Ge)) . (5.16)

We now observe that if 1I(ξx)(Ge) = 1, namely if Ge contains an isolated
k-star with root in x, one of the following two properties must be satisfied
in G

P1 =
{
∃ a subgraph Tk such that Tk \ {e} is an isolated k-star rooted at x

}

P2 =
{
∃ an isolated (k − 1)-star rooted at x and y is an isolated vertex

}

and thus we can write
∑

G∈Ω

P(G)(1I(ξx)(Ge)) ≤
∑

G∈Ω

P(G)(1I(P1)(G) + 1I(P2)(G)) = P(P1) + P(P2) .

(5.17)
Since the subgraph Tk is constructed from an isolated k-star rooted at x

adding the edge e, we get

P(P1) =
p

1− p
P(ξx) ≤ 1

n
e−k log k(1 + o(1)) .

To compute the probability of P2 we use simple combinatorics and apply
the Stirling formula for large n and k ≡ k(n) = o(n), such that k(n) ↑ ∞ as
n →∞, as for the computation of P(ξv) in (5.29); we get

P(P2) =
(

n− 2
k − 1

)
pk−1(1− p)(k+1)(n−k−1)+(k+1

2 )−k+1

= e−k log k(1 + o(1))

Inserting these result in (5.16), we finally obtain

E (∇e1I(ξx))2 ≤ e−k log k(1 + o(1)) . (5.18)
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Second term: We first observe that for a given edge e = (x, y) and for any
vertex v 6∈ {x, y}, ∇e1I(ξv)(G) 6= 0 only if at least one of the two end-vertices
of e is connected to v in G, namely if η(x,v) = 1 or η(y,v) = 1. Otherwise the
structure of the 2-neighborhood of v remains unchanged by switching the
value of ηe.

Denoting by 1Ix 7→v and by 1Iy 7→v the indicator functions respectively of
the events {η(x,v) = 1} and {η(y,v) = 1}, it holds

E [
∑

v 6∈{x,y}
∇e1I(ξv) ]2 ≤ E [

∑

v 6∈{x,y}
(1Ix 7→v + 1Iy 7→v)∇e1I(ξv) ]2

≤
∑

G

P(G)[
∑

v 6∈{x,y}
(1Ix 7→v(G) + 1Iy 7→v(G))(1I(ξv)(G) + 1I(ξv)(Ge)) ]2

=
∑

G

P(G)[
∑

v 6∈{x,y}
(1I(ξx

v )(G) + 1I(ξy
v )(G) + 1I(ξx

v )(Ge) + 1I(ξy
v )(Ge)) ]2 (5.19)

where in the second line we used the bound ∇e1I(ξv)(G) ≤ 1I(ξv)(G) +
1I(ξv)(Ge), and in the last line we introduced the symbol ξx

v for the event
”exists an isolated k-star rooted at v and with a leaf in x”, in order to have
1I(ξx

v )(G) = 1Ix 7→v(G)1I(ξv)(G).
Computing the square of the sum in (5.19) and observing that, from the
definition of isolated k-star, it holds





1I(ξx
v )(G)1I(ξx

w)(G) = 1I(ξy
v )(G)1I(ξy

w)(G) ≡ 0 , ∀ v 6= w

1I(ξx
v )(Ge)1I(ξx

w)(Ge) = 1I(ξy
v )(Ge)1I(ξy

w)(Ge) ≡ 0 , ∀ v 6= w

1I(ξx
v )(G)1I(ξx

w)(Ge) = 1I(ξy
v )(G)1I(ξy

w)(Ge) ≡ 0 , ∀ v, w

1I(ξx
v )(G)1I(ξy

w)(Ge) ≡ 0 , ∀ v, w

we can continue from (5.19) and obtain

≤ 2
∑

v 6∈{x,y}

∑

G

P(G)[(1I(ξx
v )(G) + 1I(ξx

v )(Ge))] + (5.20)

+ 2
∑

v,w 6∈{x,y}

∑

G

P(G)[1I(ξx
v )1I(ξy

w)(G) + 1I(ξx
v )1I(ξy

w)(Ge))] .

Proceeding as for the computation of P(ξv) in (5.29), for large n and k =
k(n) = o(n) such that k(n) ↑ ∞ as n →∞, we get

P(ξx
v ) =

∑

G

P(G)1I(ξx
v )(G) =

1
n

e−k log k(1 + o(1))

P(ξx
v , ξy

w) =
∑

G

P(G)1I(ξx
v )1I(ξy

w)(G) =
1
n2

e−2k log k(1 + o(1))
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Then, noticing that 1I(ξx
v )(Ge) = 1 if and only if there is a subgraph Tk in G

such that Tk \ {e} is an isolated k-star rooted at v and with a leaf in x, and
that 1I(ξx

v )(ξy
w)(Ge) = 1 if and only if there is a subgraph T̃k in G such that

T̃k \ {e} is given by two isolated k-stars rooted at v and w, and with a leaf
in x and y, respectively, it holds

∑

G

P(G)1I(ξx
v )(Ge) =

p

1− p
P(ξx

v ) ≤ 1
n2

e−k log k(1 + o(1))

∑

G

P(G)1I(ξx
v )1I(ξy

w)(Ge) =
p

1− p
P(ξx

v , ξy
w) ≤ 1

n3
e−2k log k(1 + o(1)) .

Inserting the above expressions in (5.20) and summing over the vertex set,
we finally obtain the bound

E [
∑

v 6∈{x,y}
∇e1I(ξv) ]2 ≤ e−k log k(1 + o(1)) . (5.21)

Substituting the expressions (5.18) and (5.21) in (5.15), and then inserting
the result in (5.14), we obtain

Var(Xk) ≤ p (1− p) n2 e−k log k(1 + o(1)) = n e−k log k(1 + o(1)) .

If k = α log n
log log n with α < 1, or in general for all k increasing with n but such

that k ¿ log n
log log n , and from the second moment method, it holds

P(Xk = 0) ≤ Var(Xk)/E(Xk)2 ≤ (n e−k log k)−1(1 + o(1)) −→
n→∞ 0 ,

completing the proof of step (ii).

The statement of Theorem 5.19 will now easily follows.
Indeed, in step (i) we proved that for all β > 0 there exists an integer k0

and a positive constant cβ such that, for all k ≥ k0,

P(cgap(µG) ≤ e−cβk) ≥ P( isolated Sk ⊆ G(n, c/n)) ,

whereas in step (ii) we proved that for all integers k increasing with n and
such that k < log n

log log n , it holds

P( isolated Sk ⊆ G(n, c/n)) −→
n→∞ 1 .

Taking k = α log n
log log n and δn = exp (−αcβ

log n
log log n), with α ∈ (0, 1), we obtain

P(cgap(µG) < δn) ≥ P(Sk ⊆ G(n, p)) −→
n→∞ 1,

which completes the proof of Theorem 5.19.
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5.5.3 Slow mixing on binomial random graphs at all tempera-
tures: second result

In the previous section we proved that the random graph G(n, c/n) con-
tains a.a.s. an isolated subgraph, with size increasing with n, where the dy-
namics slows down in a significant way. Let us now recall that if c > 1, then
a.a.s. G(n, c/n) has a giant component of size (1 + o(1))ρn, with ρ ∈ (0, 1)
uniquely determined by the equation ρ + e−c ρ = 1. At this point one can
ask what happens if one restricts the dynamics to the giant component of
G(n, c/n): will the relaxation time grow with n for any β > 0?
This section is aimed to answer this question.

From now on, we will suppose that c > 1 and denote by {C ⊆ G(n, c/n)}
the a.a.s. event that there exists a unique giant component C in G(n, c/n).
We thus state the following:

Theorem 5.20. For every β > 0 there exists a positive constant cβ such that
a.a.s. the spectral gap of the Glauber dynamics on the giant component C of
G(n, c/n) is less then δn = exp (−cβ

log n
log log n), i.e.

lim
n→∞P(cgap(µC) ≤ δn ; C ⊆ G(n, c/n)) = 1 (5.22)

Proof. We will proceed in the following two steps.

(i) for every k ≤ n, we define a suitable graph S̃k and prove that if G is a
graph realization of G(n, c/n) containing S̃k, then the spectral gap of
the dynamics on G is exponentially small in k for all β.

(ii) if k ≤ α log n
log log n , with 0 < α < 1

2 , we prove that the probability that S̃k

is contained in the giant component C of G(n, c/n) is asymptotically 1.

The statement will easily follow.

Proof of (i). Let us fix a finite integer ` and consider the graph S̃k ≡ S̃k(`)
defined as follows:
a root-vertex r is linked to k vertices indexed by i ∈ {1, . . . , k}, and each
of them is the end vertex of a segment of line with ` vertices, denoted by
Zi

`. In other words, S̃k is a non-regular tree with ` levels such that the root
has k children whereas all the other vertices have one child. Notice that
|S̃k| = ` k + 1, and that the graph Sk defined in the previous section is a
subgraph of S̃k.
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Suppose that S̃k belongs to a realization G of the random graph G(n, p)
as an induced subgraph, but in such a way that only the vertices on the leafs
of S̃k, namely the vertices in the `-th level denoted by L`, can be linked to
vertices outside S̃k. In this case we will say that S̃k is an almost isolated (a.i)
subgraph of G. Let’s analyze the Glauber dynamics on S̃k.

To bound from above the spectral gap, we use the same test function as
in the proof of Theorem 5.19. Thus, let

mk(σ) =
∑

x∈V (Sk)

σx = σr +
k∑

i=1

σi

be the magnetization of the subgraph Sk in S̃k, and consider the indica-
tor function 1Ik = 1I{mk>0}. Without loss of generality, we can restrict the
analysis to even k values. Since in this case mk(σ) 6= 0 for all σ, by sym-
metry it holds that VarG(1Ik) = 1/4 so that the spectral gap is bounded as
cgap(µG) ≤ 4DG(1Ik). We thus concentrate on the Dirichlet form

DG(1Ik) :=
1
2

∑

x∈V

µG

(
cx [∇x1Ik]2

)
.

We first observe that ∇x1Ik(σ) 6= 0 only for configurations σ such that
|mk(σ)| = 1, i.e. for configurations σ having (k + 2)/2 spins with the same
value on the vertices of the subgraph Sk. In particular, for every configura-
tion σ of this kind, [∇x1Ik(σ)]2 = 1 only if x is one of the (k + 2)/2 vertices
in Sk with spin of the same sign of mk(σ); then we get

DG(1Ik) ≤ k + 2
4

µG(|mk| = 1) . (5.23)

Let us state the following

Lemma 5.4. For every β > 0, there exists a finite integer `0 = `0(β) and a
positive constant αβ, such that for every ` ≥ `0

µG(|mk| = 1) ≤ e−αβk (5.24)

Proof. Let us first consider the measure µG conditioned to the spin at the
root r. Using the notation µr,+

G ( · ) = µG( · |σr = +) (and analogously for
σr = −), we observe that µr,+

G (|mk| = 1) = µr,−
G (|mk| = 1) by symmetry,
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and then we get

µG(|mk| = 1) =
1
2

µr,+
G (|mk| = 1) +

1
2

µr,−
G (|mk| = 1)

= µr,+
G (|mk| = 1)

≤ µr,+
G (

k∑

i=1

σk ≤ 0). (5.25)

In this case, at the contrary of what happens when we consider the isolated
subgraph Sk, the spins on the first level vertices remain correlated under
the measure µr,+

G , due to the possible presence of paths in V \ {r} between
them. We thus introduce a second conditioning on the spin configuration
outside S̃k \ L`. Given a configuration τ ∈ Ωσ, we use the notation

µτ ; r,+
k ( · ) := µr,+

G ( · | τ ∈ F
(S̃k\L`) c)

and then write

µr,+
G (

k∑

i=1

σi ≤ 0 ) =
∑

τ

µr,+
G (τ)(µτ ; r,+

k (
k∑

1

σi ≤ 0)) (5.26)

Since, by hypothesis, all paths from S̃k to S̃c
k intersect L`, all variables σi

become independent w.r.t µτ ; r,+
k , with probabilities

{
µτ ; r,+

k (σi = +) =: pi

µτ ; r,+
k (σi = −) =: 1− pi

and mean µτ ; r,+
k (σi) = 2pi − 1, where pi also depends from β and τ .

Notice that for all i ∈ {1, . . . , k}, pi corresponds to the probability to have
a (+)-spin on the end vertex xi of Zi

`, given a (+)-spin on its neighbor and τ -
b.c. on the other end vertex. Since the Zi

` are one dimensional systems, for
any τ -b.c. this probability can be explicitly computed using the method of
transfer matrix (see, e.g., [Sim]). In particular one can verify that for every
β > 0, the influence of the τ -b.c. on the spin in xi has a fast decay in the
distance between them, which is equal to `− 1. If we take ` big enough, σi

becomes independent from the τ -b.c., and thus the (+)-spin at its neighbor
makes the probability of {σi = +} bigger then the probability of {σi = −}.
Moreover this effect increases with β. It follows that for all β > 0, there
exists a finite integer `0 = `0(β) and a number ξ(β) > 0 such that for all
` ≥ `0

µτ ; r,+
k (σi = +) = pi ≥ 1

2
+ ξ(β) , ∀i ∈ {1, . . . , k} and ∀τ ∈ Ω .
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If (Xi)k
i=1 are independent Bernoulli random variables with P-mean pi,

then σi
d∼ 2Xi − 1 for all i ∈ {1, . . . , k} and the sum

∑k
i=1 σi is distributed

as 2Z − k, with Z =
∑k

i=1 Xi. Using the Chernoff’s inequality for the sum
of independent Bernoulli variables Be(pi), we get

µτ ; 0,+
k (

k∑

1

σi ≤ 0) = P( Z ≤ k

2
)

≤ exp

(
−(

∑k
i=1 pi − k/2)2

2
∑k

i=1 pi

)

≤ exp

(
−ξ2

β

2
k

)
. (5.27)

Inequality (5.24) follows taking αβ :=
ξ2
β

2 , which is positive for all β > 0.

From inequality (5.23)and Lemma 5.4, we get D(Ik) ≤ (k + 2) e−αβ k.
Thus, for all β > 0 there exists an integer k0 and a positive constant cβ such
that, for all k ≥ k0, it holds

cgap(µG) ≤ (k + 2) e−αβk ≤ e−cβk . (5.28)

This concludes the proof of step (i), in which we proved that for every
β > 0 there exist two finite integers k0 and `0 and a positive constant
cβ such that, for all k ≥ k0 and ` ≥ `0, if G contains an a.i. S̃k then
cgap(µG) ≤ e−cβk. Moreover, since µG is the product measure over the com-
ponents of G, denoting by C(S̃k) a connected component containing S̃k it
holds cgap(µC(S̃k)

) ≤ e−cβk. Notice that this implies

P(cgap(µC) ≤ e−cβk ; C ⊆ G(n, c/n)) ≥ P( a.i S̃k ⊆ C ⊆ G(n, c/n)) ,

where the event in the r.h.s. of the above inequality corresponds to the
existence of an a.i. S̃k in the unique giant component C of G(n, c/n).

Proof of (ii). Let us first consider the property that an a.i. S̃k is contained
in G(n, c/n). Proceeding as in the proof of Theorem 5.19, we introduce the
random variable X̃k counting the number of copies of S̃k in G(n, c/n) and
such that

P( a.i. S̃k ⊆ G(n, c/n)) = P(X̃k > 0) .

To find the values of k such that P(X̃k > 0) −→
n→∞ 1, we use again the first

and second moment methods and then proceed by computing the mean and
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the variance of X̃k .
For every v ∈ V , let us first define the event ξ̃v that an a.i. S̃k rooted at v is
contained in G(n, c/n), i.e.

ξ̃v := { a.i. S̃k ⊆ G(n, c/n), S̃k rooted at v} .

Denoting by 1I(ξ̃v) the indicator function of ξ̃v, we thus get that X̃k =∑
v∈V 1I(ξ̃v) and then, by linearity of expectation, E(X̃k) =

∑
v∈V P(ξ̃v).

The probability P(ξ̃v) can be expressed with some combinatorics as

P(ξ̃v) =
(

n− 1
`k

)
(`k)!
k!

p`k(1− p)[((`−1)k+1)(n−(`−1)k−1)+(`k+1
2 )−`k] , ∀v ∈ V .

Remark 5.12. Notice that in this case the number of automorphisms of S̃k

is k!, which corresponds to the number of possible orderings of the k lines Zi
`

connected to the root.

For finite ` and k ≡ k(n) = o(n) such that k(n) ↑ ∞ as n → ∞, substi-
tuting the value p = c/n and applying the Stirling formula for large n , we
obtain

P(ξ̃v) = e−k log k(1 + o(1)) . (5.29)

Taking k = α log n
log log n , with α a real positive number, we get

E(X̃k) = n exp (−k log k)(1 + o(1)) = Ω(n1−α) . (5.30)

Thus if k < log n
log log n , and in general for all k ¿ log n

log log n , the expectation of
X̃k tends asymptotically to infinite. Anyway this is not enough to assure
that P(X̃k > 0) → 1, but we need to compute Var(X̃k) in order to apply the
second moment method.

Using the same notation introduced in the proof of Theorem 5.20 and
applying the decomposition property (5.13) to Var(X̃k), we obtain the anal-
ogous of formula (5.14), i.e.

Var(X̃k) ≤ p(1− p)
∑

e=(x,y):
x<y∈V

E (
∑

v∈V

∇e1I(ξ̃v) )2 . (5.31)

For any given edge e = (x, y) we introduce the characteristic functions
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χv=x, χv=y and χv 6∈{x,y} in the sum over v ∈ V in (5.31), and obtain

E (
∑

v∈V

∇e1I(ξ̃v) )2 = E (
∑

v∈V

∇e1I(ξ̃v)(χv=x + χv=y + χv 6∈{x,y}) )2

≤ 2E (∇e1I(ξ̃x))2 + E (
∑

v 6∈{x,y}
∇e1I(ξ̃v) )2

≤ 2 + E (
∑

v 6∈{x,y}
∇e1I(ξ̃v) )2 , (5.32)

where in the second line, due to the fact that e is an unoriented edge, we
identified the quantities ∇e1I(ξ̃x) and ∇e1I(ξ̃y), and in the last line we use
the bound (∇e1I(ξ̃x))2 ≤ 1.

Remark 5.13. Due to the more difficult structure of S̃k with respect to Sk,
at this point we cannot perform the same computations as in the proof of
Theorem 5.19 (see Eqs.(5.19)-(5.21)). In that follows, we thus simplify the
analysis bounding in a suitable way the quantities that are more difficult to
analyze, as just made in (5.32). With this approximation, we probably lose a
factor of order e−k log k in front of every terms. Nevertheless, the effect of this
loss is a worsening (increase) of the value of the constant δn in the statement
of Theorem 5.20 that doesn’t modify the validity of the theorem.

From (5.32), it remains to analyze the quantity E (
∑

v 6∈{x,y}∇e1I(ξ̃v) )2.
We first observe that for a given edge e = (x, y) and for any vertex v 6∈ {x, y},
∇e1I(ξv)(G) 6= 0 only if there exists a path γ in G from at least one of the
two end-vertices of e and v, whose length is at most ` − 1. Otherwise the
structure of the `-neighborhood of v remains unchanged by switching the
value of ηe. Notice also that since v 6∈ {x, y}, the length of this path is at
least 1.
Denoting by 1Iγ: x 7→v and by 1Iγ: y 7→v the indicator functions of the events
{∃γ ∈ G : γ : x 7→ v , |γ| ≤ ` − 1} and {∃γ ∈ G : γ : x 7→ v , |γ| ≤ ` − 1},
respectively, it holds

E [
∑

v 6∈{x,y}
∇e1I(ξ̃v) ]2 ≤ E [

∑

v 6∈{x,y}
(1Iγ: x 7→v + 1Iγ: y 7→v)∇e1I(ξ̃v) ]2

≤ E [
∑

v 6∈{x,y}
(1Iγ: x 7→v + 1Iγ: y 7→v) ]2

= 2
∑

v 6∈{x,y}
E(1Iγ: x 7→v) +

∑
v,w 6∈{x,y}

v 6=w

E(1Iγ: x 7→v1Iγ: y 7→v)(5.33)
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where in the second line we used the obvious bound ∇e1I(ξ̃v)(G) ≤ 1.

The quantity E(1Iγ: x 7→v) corresponds to the probability that there exists
a path in G, between x and v, with length at most `− 1. With some combi-
natorics and applying the Stirling formula for large n, we get

E(1Iγ: x 7→v) =
`−1∑

j=1

(
n− 2
j − 1

)
pj = n−1[

`−1∑

j=1

cj

(j − 1)!
(1 + o(1)) ] =

1
n

(c0 + o(1)) ,

(5.34)
where c0 is a finite constant. We assume from now that the particular value
of c0 may change from line to line as the discussion progresses.

The event 1Iγ: x 7→v1Iγ: y 7→v can be view as the disjoint union of the follow-
ing two events:

1. there exists a path γ : x 7→ v of length at most ` − 1 and at least 2,
such that y ∈ γ;

2. there exists a path γ : x 7→ v of length at most ` − 1 such that y 6∈ γ,
and for some z ∈ γ, a path γ′ : z 7→ y such that the length of γ′ is at
most `− 1− dγ(z, x) ≤ `− 1.

Then it holds the following computation

E(1Iγ: x 7→v1Iγ: y 7→v) ≤
`−1∑

j=2

(
n− 3
j − 2

)
pj +

`−1∑

j=1

(
n− 3
j − 1

)
pj(`− 1)

`−1∑

i=1

(
n− j − 2

i− 1

)
pi

= n−2(1 + o(1))[
`−1∑

j=2

cj

(j − 2)!
+ (`− 1)

`−1∑

j,i=1

cj+i

(j − 1)!(i− 1)!
]

=
1
n2

(c0 + o(1)) , (5.35)

where we first expressed by combinatorics the probability of the two disjoint
events described above, and then we applied the Stirling formula for large
n and finite `. Inserting the result of these computations in (5.33) and
summing over the vertex sets, we get

E [
∑

v 6∈{x,y}
∇e1I(ξ̃v) ]2 ≤ c0 + o(1) (5.36)

that together (5.31) and (5.32) yields

Var(X̃k) ≤ p(1− p)n2 (c0 + o(1)) = n (c0 + o(1)) . (5.37)
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Taking k = α log n
log log n with α < 1

2 , or in general for all k increasing with n

but such that k ¿ 1
2

log n
log log n , and applying the second moment method, from

(5.30) and (5.37) we get

P(X̃k = 0) ≤ Var(X̃k)/E(X̃k)2 ≤ (n e−2k log k)−1(c0 + o(1)) −→
n→∞ 0 ,

which prove that P( a.i. S̃k ⊆ G(n, c/n)) −→
n→∞ 1.

To complete the proof of step (ii), we now have to strengthen the state-
ment above, and compute the asymptotic probability of the event

{ a.i. S̃k ⊆ C ⊆ G(n, c/n)} .

For A ∈ N, let us introduce the symbol A ∝ n if there exists a positive real
number ε such that A = εn, and notice that the event ”there exists an a.i.
S̃k contained in the unique giant component C” is asymptotically equivalent
to the event { a.i. S̃k ⊆ G(n, c/n) , |C(S̃k)| ∝ n}. Then we define

ζv := { a.i. S̃k ⊆ G(n, c/n), S̃k rooted at v , |C(S̃k)| ∝ n}

and let Yk denote the random variable counting the number of a.i. S̃k such
that C(S̃k) ∝ n, i.e. Yk :=

∑
v∈V 1I(ζv) . Since, by definition,

P( a.i. S̃k ⊆ C ⊆ G(n, c/n)) = P(Yk > 0) = 1− P(Yk = 0) ,

if we prove that P(Yk = 0) −→
n→∞ 0, the proof of step (ii) will follows.

We first consider the event ζv and notice that by definition it holds that
1I(ζv) = 1I(ξ̃v)1I(|C(v)| ∝ n) where C(v) denotes the connected component
of v. Moreover, since for any given vertex v ∈ V there exists at most one
almost isolated S̃k rooted at v, we can express the event ξ̃k as the union of
disjoint events as follows.
We label the vertices of S̃k from the first to the `-th level, in such a way
that the vertices in the first level are labeled from 1 to k, the vertices in
the second level are labeled from k + 1 to 2k, and so on until the vertices
in the `-th level, which are labeled from (` − 1)k + 1 to `k. For any x̄ =
(x1, . . . , x`k) ∈ V ` k, we denote by {S̃k = (v, x̄)} the event that G(n, c/n)
contains an almost isolated S̃k with vertex set specified by (v, x1, . . . , x`k).
We can write ξ̃v =

⊔
x̄∈V `k{S̃k = (v, x̄)} and then
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1I(ζv) = 1I(ξ̃v)1I(|C(v)| ∝ n) =
∑

x̄∈V ` k

1I(S̃k = (v, x̄))1I(|C(v)| ∝ n) .

With this notation, the probability of ζv can be express in the more conve-
nient form

P(ζv) =
∑

x̄

P(S̃k = (v, x̄) , |C(v)| ∝ n)

=
∑

x̄

P(S̃k = (v, x̄) , |C(x`k)| ∝ n)

=
∑

x̄

P(|C(x`k)| ∝ n| S̃k = (v, x̄))P(S̃k = (v, x̄)) (5.38)

Since x`k is vertex on the `-th level, the conditioning on the existence of
S̃k = (v, x̄) does not affect the Bernoulli random variables associated to
edges from x`k to V \ S̃k. Thus, for any given S̃k = (v, x̄), we consider the
random graphG(n−`k, c/n) obtained fromG(n, c/n) cutting all the vertices
in S̃k but x`k, and denoting by P− its probability measure, we get

P(|C(x`k)| ∝ n| S̃k = (v, x̄)) ≥ P−(|C(x`k)| ∝ n− `k) .

For all k ¿ n, the probability in the r.h.s. of the last inequality corresponds
asymptotically to the probability that a given vertex belongs to the giant
component of G(n− `k, c/n).
We now observe that for any c0 > 1 the probability that a given vertex in
G(n− `k, c0/n− `k) belongs to the giant component is equal to ρ(1 + o(1)).
Taking c0 = c − (c − 1)/2, where c > 1 by hypothesis, then c0 > 1 and
for large n it holds that c0

n−`k = c
n−`k (1 − c−1

2c ) ≤ c
n−`k (1 − `k

n ) = c
n . In

particular, the probability that a vertex belong to the giant component in
G(n− `k, c/n) is bigger then the same probability in G(n− `k, c0/(n− `k)),
and thus it holds

P(|C(x`k)| ∝ n | S̃k = (v, x̄)) ≥ ρ(1 + o(1)) .

Inserting this bound in (5.38) we can conclude the computation and obtain

P(ζv) ≥ ρ(1 + o(1))P(ξ̃v) (5.39)

The first immediate consequence of(5.39) is that E(Yk) ≥ ρ(1 + o(1))E(X̃k)
and in particular, if k = α log n

log log n with α < 1, it holds

E(Yk) = Ω(n1−α) −→
n→∞∞ . (5.40)
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To apply the second moment method we now have to compute Var(Yk).
With the same notation introduced in the proof of Theorem 5.20 and apply-
ing the decomposition property (5.13) to Var(Yk), we obtain the formula

Var(Yk) ≤ p(1− p)
∑

e=(x,y):
x<y∈V

E (
∑

v∈V

∇e1I(ζv) )2 . (5.41)

For any given edge e = (x, y) we introduce the characteristic functions
χv=x, χv=y and χv 6∈{x,y} in the sum over v ∈ V in (5.41), and obtain

E (
∑

v∈V

∇e1I(ζv) )2 = E (
∑

v∈V

∇e1I(ζv)(χv=x + χv=y + χv 6∈{x,y}) )2

≤ 2E (∇e1I(ζx))2 + E (
∑

v 6∈{x,y}
∇e1I(ζv) )2

≤ 2 + E (
∑

v 6∈{x,y}
∇e1I(ζv) )2 , (5.42)

where in the second line, due to the fact that e is an unoriented edge, we
identified the quantities ∇e1I(ζx) and ∇e1I(ζy), and in the last line we use
the bound (∇e1I(ζx))2 ≤ 1. Writing the gradient ∇e1I(ζv)(G) as

∇e1I(ζv)(G) = [∇e1I(ξ̃v)(G)]1I(|C(v)| ∝ n)(Ge) + [∇e1I(|C(v)| ∝ n)(G)]1I(ξ̃v)(G)

≤ ∇e1I(ξ̃v)(G) +∇e1I(|C(v)| ∝ n)(G)

and inserting the result in the last line of 5.42, we get

E (
∑

v∈V

∇e1I(ζv) )2 ≤ 2 + E (
∑

v 6∈{x,y}
∇e1I(ξ̃v) +∇e1I(|C(v)| ∝ n) )2

≤ 2 + 2E (
∑

v 6∈{x,y}
∇e1I(ξ̃v))2 + 2E (

∑

v 6∈{x,y}
∇e1I(|C(v)| ∝ n) )2

≤ c0 + o(1) + 2E (
∑

v 6∈{x,y}
∇e1I(|C(v)| ∝ n) )2 , (5.43)

where in the last line we use the bound (5.36).
Now we observe that the gradient ∇e1I(|C(v)| ∝ n)(G) 6= 0 only if the

connected component C(v) has size proportional to n in G or in Ge, but
it has size o(n) in the graph G \ {e}. In other words, cutting e then v is
disconnected from the component of size proportional to n both in G and
Ge. Since e = (x, y), this event can be described as the existence in G \ {y}
of a component |C(v)| = o(n) such that C(v) 3 x or as the existence in
G \ {x} of a component |C(v)| = o(n) such that C(v) 3 y. By the symmetry
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between x and y we can just consider the first case and then, denoting by
P− and E− respectively the probability and the mean on the random graph
G(n− 1, c/n), obtained from G(n, c/n) cutting y, we get

E (
∑

v 6∈{x,y}
∇e1I(|C(v)| ∝ n) )2 = E−(

∑

v 6=x

1I(x ∈ C(v) ; |C(v)| = o(n)))2 .

Moreover, since a.a.s G(n − 1, c/n) has a giant component of size propor-
tional to n whereas the size of the other components is at most of order
log n, we can write 1I(x ∈ C(v) ; |C(v)| = o(n)) as the indicator function
1I(γn : v 7→ x) of the event that there exists a path γ from v to x of length at
least 1 and at most log n. Then we get

E (
∑

v 6∈{x,y}
∇e1I(|C(v)| ∝ n) )2 ≤ E−(

∑

v 6=x

1I(γn : v 7→ x))2

≤
∑

v 6=x

P−(γn : v 7→ x) +
∑

v,w 6=x
v 6=w

P−(γn : v 7→ x ; γn : w 7→ x) . (5.44)

To compute these two probabilities, we perform essentially the same com-
putations as in (5.34) and (5.35). In particular we get

P−(γn : v 7→ x) =
log n∑

j=1

(
n− 3
j − 1

)
pj = n−1[

log n∑

j=1

cj

(j − 1)!
(1+o(1)) ] =

1
n

(c0+o(1)) ,

(5.45)
P−(γn : v 7→ x , γn : w 7→ x) ≤

≤
log n∑

j=2

(
n− 4
j − 2

)
pj +

log n∑

j=1

(
n− 4
j − 1

)
pj log n

log n∑

i=1

(
n− j − 3

i− 1

)
pi

= n−2[
log n∑

j=2

cj

(j − 2)!
(1 + o(1)) + log n

log n∑

j,i=1

cj+i

(j − 1)!(i− 1)!
(1 + o(1) ]

=
log n

n2
(c0 + o(1)) . (5.46)

Collecting formulas from (5.43) to (5.46) we get that E (
∑

v∈V ∇e1I(ζv) )2 ≤
log n (c0 + o(1)), which inserted in (5.41) yields

Var(Yk) ≤ n log n (c0 + o(1)) .

Together with the bound in (5.40) we finally obtain that for all k = α log n
log log n

and α < 1/2 it holds
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P(Yk = 0) ≤ n log n (c0 + o(1))
ρ2n2e−2k log k

= O(n2α−1) log n −→
n→∞ 0

which implies that P( a.i. S̃k ⊆ C ⊆ G(n, c/n)) = P(Yk > 0) −→
n→∞ 1 , and

then concludes the proof of step (ii).

The statement of Theorem 5.20 will now easily follows.
Indeed, in step (i) we proved that for all β > 0 there exist two finite integers
k0 and `0 and a positive constant cβ such that, for all k ≥ k0 and ` ≥ `0,

P(cgap(µC(S̃k)
) ≤ e−cβk) ≥ P( a.i S̃k ⊆ G(n, c/n)) ,

while in step (ii) we proved that for all finite integer ` and all integers k

increasing in n and such that k < 1
2

log n
log log n , it holds

P( a.i. S̃k ⊆ C ⊆ G(n, c/n)) −→
n→∞ 1 .

Taking k = α log n
log log n and δn = exp (−αcβ

log n
log log n), with α ∈ (0, 1

2), we get

P(cgap(µC) < δn ; C ⊆ G(n, c/n)) ≥ P( a.i. Sk ⊆ C ⊆ G(n, c/n)) −→
n→∞ 1,

which completes the proof of Theorem 5.20.

From Theorem 5.20 we can conclude that a.a.s the relaxation time of the
Ising Glauber dynamics on the giant component of G(n, c/n) is increasing
in n for all β > 0.

5.5.4 Slow mixing on regular random graphs at low tempera-
tures

Here we consider the Glauber dynamics for the Ising model on the ran-
dom r-regular graph G(n, r), with r ≥ 3 and rn an even number.
Let η ∈ (0, 1) such that 24/r < (1−η)(1−η)(1+η)(1+η) and recall (see section
5.4.2) that a.a.s. G(n, r) has isoperimetric constant ie ≥ (1− η)r/2.
Introducing the symbol α = (1− η)r/2, we state the following:

Theorem 5.21. For every β > log 2/α, there exists a constant cβ such that
a.a.s. the spectral gap of the Ising model Glauber dynamics on G(n, r) is less
then δn = exp (−cβn), i.e.

lim
n→∞P(cgap(µG) < δn) = 1 (5.47)
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Remark 5.14. To better appreciate this result, one should keep in mind that
the relaxation time of the Glauber dynamics on deterministic almost regular
graphs, like the lattice Zd and the regular tree Tb, grows less then exponentially
in the size of the graph. Indeed, as described in Chapter 3, the relaxation time
on n-vertex squares of Zd is at most exponential in n

d−1
d , and even, on n-vertex

balls in the regular trees Tb or in the hyperbolic graphs H(v, s), it grows at
most polynomially in n. Thus, the dynamics on random regular graphs shows
a different behavior with respect to the correspondent deterministic case.

Proof. To prove the statement, we want to exploit the variational definition
of spectral gap, and then provide a suitable test function with a very slow
relaxation. Let us consider the magnetization of a configuration σ ∈ Ωσ,
defined by m(σ) =

∑
x∈V σx, and then introduce the following characteristic

function

1I{m>0}(σ) =

{
1 if m(σ) > 0
0 if m(σ) ≤ 0

.

Without loss of generality, we can restrict the analysis to odd n values. Since
in this case mk(σ) 6= 0 for all σ, by symmetry it holds that VarG(1Ik) =
1/4 so that the spectral gap is bounded as cgap(µG) ≤ 4DG(1Ik). We thus
concentrate on the Dirichlet form

DG(1I{m>0}) :=
1
2

∑

x∈V

µG

(
cx [∇x1I{m>0}]2

)
.

We first observe that ∇x1I{m>0}(σ) 6= 0 only if σ is such that |m(σ)| = 1,
namely for configurations σ having (n + 2)/2 spins with the same value.
Moreover, for every configuration σ of this kind, [∇x1I{m>0}(σ)]2 = 1 only if
x is one of the (n + 2)/2 vertices with spin of the same sign of m(σ); then
we get

DG(1I{m>0}) ≤
n + 2

4
µG(|m| = 1) ≤ n + 2

2
µG(m = 1) . (5.48)

Let us analyze the probability µG(m = 1).
For every configuration σ such that m(σ) = 1, we define the subsets

V +(σ) := {x ∈ V s.t. σx = +} and V −(σ) = {x ∈ V s.t. σx = −} ,

and we observe that, from the condition m(σ) = 1, it holds that |V +(σ)| =
(n + 1)/2 and |V −(σ)| = (n − 1)/2. Thus, any configuration with magne-
tization equal to 1, is univocally correspondent to a partition of the vertex
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set V in two subsets A and B of size (n + 1)/2 and (n − 1)/2, respectively.
Moreover, if σ is a configuration such that V +(σ) = A and V −(σ) = B, and
we denote by E(A) and E(B) the edge sets in the induced subgraphs of A

and B respectively, and by E(A,B) the set of edges between A and B, we
can write the Hamiltonian of σ as

HG(σ) = −( |E(A)|+ |E(B)| ) + |E(A,B)| .

Denoting by P the set of partitions of V in two subsets (A,B) such that
|A| = n+1

2 and |B| = n−1
2 , it holds the following computation

µG(m = 0) =
∑

σ :m(σ)=0

exp[−βHG(σ)]
ZG(β)

=
∑

(A,B)∈P

exp(β(|E(A)|+ |E(B)| − |E(A,B)|) )
ZG(β)

≤
∑

(A,B)∈P

exp(β(|E(A)|+ |E(B)| − |E(A,B)|) )
exp(β(|E(A)|+ |E(B)|+ |E(A,B)|) )

=
∑

(A,B)∈P
exp(−2β|E(A,B)|) . (5.49)

We now observe that |E(A,B)| = |∂EA|, the edge boundary of A. Thus, if G

has isoperimetric constant ie(G) ≥ δ, with δ a positive real number, it holds
the bounds

|E(A, B)| ≥ δ|A| = δ
n + 1

2
and then, continuing from (5.49), we get

µG(m = 0) ≤
∑

(A,B)∈P
e−β δ(n+1)

=
(

n
n+1

2

)
e−β δ(n+1)

≤ 2ne−β δ(n+1)

= e−(β δ−log 2)n , (5.50)

where in the third line we approximated the binomial factor using the Stir-
ling formula for large n.
Inserting this bound in 5.48, we get that for all G such that ie(G) ≥ δ and
for all β > log 2

δ , there exists a positive constant cβ such that

DG(1I{m>0}) ≤
n + 2

2
e−(βδ−log 2)n(1 + o(1)) ≤ e−cβn,
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which implies that cgap(µG) ≤ e−cβn, or in other words that

P(cgap(µG) ≤ e−cβn) ≥ P(ie(G) ≥ δ) .

Taking δ = α and recalling that a.a.s. ie(G) ≥ α (see Theorem 5.18), it
follows that for all β > log 2

α , there exists a positive constant cβ such that

P(cgap(µG) ≤ e−cβn) ≥ P(ie(G) ≥ α) −→
n→∞ 1 ,

and thus Theorem 5.21 follows taking δn = e−cβn.
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[ER2] P. Erdös, A. Rényi, On the evolution of random graphs, Magyar. Tud.
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[ER4] P. Erdös, A. Rényi, On the strength of connectedness of random graphs,
Acta Math. Acad. Sci. Hungar., 12 (1961), 261-267.
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