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Chapter 1
Introduction

One of the open questions in the Standard Model (SM) is what the origin for the mass
hierarchy and mixing of fermions is. This is the so called "flavor problem", it arises
because in the lagrangian of the Standard Model the masses and mixing angles of fermions
are completely arbitrary, their values are explained by ad hoc Yukawa couplings to fit the
experimental data without giving a theoretical motivation that makes us able to understand
such numbers.

A possible way to solve this problem is to use flavour symmetries and/or symmetries
like GUT and/or of partial unification, like Pati-Salam models [1, 2, 3, 4, 5, 6], in order to
decrease the number of free parameters in the models. For example, in the minimal SU(5)
the relation between the electron and the down quark masses M, = M] is valid, in this
way it is possible to determine completely a Yukawa matrix from the other; therefore the
number of independent parameters of the theory is reduced.

In the model proposed by J.C. Pati and A. Salam in 1974 [1], the authors assumed the
unification of quarks and leptons by means of the introduction of a fourth color carried by
quarks, in addition to the three of SU(3)¢, and related to the leptonic number. In this way
the unification of quarks and leptons comes extending the group SU(3)¢ to SU(4). Because
in 1974 the third fermionic family of quarks and leptons had not yet been discovered, the
model describe only the first two fermionic families of quarks and leptons. The gauge
group proposed by the authors is SU(4) @ [SU(2)} ] @ [SU(2) )], this just because, using
the quantum numbers related to the isospin (/3 = +1/2), the strangeness (S = 0,1) and
the charm (C' = 0, 1), the quarks can be collected in quartets. Under this group the known



matter fields can be embeded in the multiplets:

Uy Uz U3 Ug = Ve

di dy dy di=e
L . (1.1)

S1 S22 S3 S4= U

Ci Cy C3 C4 =1V LR

In the so-called "basic model", the fermionic fields obtain mass through Yukawa interaction
with the scalar multiplet A = (1,4, 4):

Lonass = AV (AU + h.c] with (A) = diag[ay, as, as, a4, (1.2)
which generates the tree level mass relations:
Mg =Me, My =My, , Mmg=m, and m,=m,, . (1.3)

Although a distinction between quark and lepton masses can be reached introducing new
scalar multiplets, the different strong interactions of quarks and leptons will produce how-

ever radiative corrections of the order:

S hys
myt = mit 36k (Mi> (1.4)
mitree (471-)2 M‘% ’

with g4 the coupling constant of SU(4), V; the gauge mesons of SU(3) and X;* the lep-
toquarks, new vector bosons which connect quark and leptons. For the neutrino sec-
tor instead, the authors suggest the introduction of singlet fermions, s§ = (1,1,1) and
sh = (1,1,1), in order to obtain massless neutrinos.

Interesting scenarios related to Pati-Salam have been investigated, among others, in
[7, 8, 9] where family simmetries [10] have been employed to construct the lepton and
quark mass matrices. In particular, the authors of |7] investigated the possibility to com-
bine a Pati-Salam model with the discrete flavour symmetry based on the discrete group
Sy that gives rise to the quark-lepton complementarity relation 615 + 6 ~ /4 [11, 13| be-
tween the neutrino solar angle 615 and the the Cabibbo angle 6+ and, in addition, provides
a good description of the fermion masses and mixings, both in the quark and in the lepton
sectors. In [8], instead, the flavor group is based on the Ay x Z5 family symmetry and

the construction makes use of the see-saw mechanism with very hierarchical right-handed



neutrinos to predict the entire PMNS mixing matrix as well as a Cabibbo angle 6 ~ 1/4.
In the latter paper, a Pati-Salam extension of the standard model was proposed, incorpo-
rating a flavor symmetry based on the A(27) group. The theory realizes a Froggatt-Nielsen
picture of quark mixing [14] and a predictive pattern of neutrino oscillations in which the
CP symmetry is violated. Differently from our approach, none of the previous models
attempted a complete numerical fit of the model parameters to the fermion observables,
so that their agreement to the low energy observables is mainly based on a selection of
higher-dimensional operators contributing to the Yukawa sectors.

The thesis work will focus on models of partial unification, in particular two Pati-
Salam models |2, 3] based on the gauge group SU(4) ® SU(2), ® SU(2)y, developed in
the 90’s and then abandoned too early in favor of the more exotic SUSY theories. These
two models differ from each other because of the choice of the scalar multiplets, therefore
also the scalar potentials and the Yukawa interactions in the Lagrangians will differ. As
first consequence of this we will have that: while in the first model the only existing tree
level fermion masses are those for some Beyond SM neutrinos, the second model provides,
a tree level mass for each fermion. Beside this difference, in order to compare in a fair
way these two models, we demand, for both, the existence of an explicit mass for the
singlet fermions and the equality, at the partial-unification scale, of the gauge couplings of
the groups SU(2), and SU(2)g. However, the common features of the two models is the
presence of sterile neutrinos and the fact that the hierarchy between the fermion masses
will come from loop corrections [15, 16, 17]. Therefore we will study how these corrections
come out and in which form, trying to understand, by means of computer analysis, which
is the best model to describe the current experimental data [18].

In Chapter 2 we study the first model where the scalar content is composed by two
Higgs multiplets in the same representation as fermions, which under the Pati-Salam group
are (4,1,2) and (4,2,1), so we have a complete left-right symmetry. After discussing the
field content and the form of the Lagrangian, for the case without fermion inter-family
mixing, in Section 2.1 we continue the analysis of the model computing in particular the
tensorial structure of the scalar potential and the conditions for the minimum, obtaining in
this way the form of the vacuum expectation values (VEVs) of the Higgs fields responsible
for the symmetry breaking of the Pati-Salam and the Standard Model groups. The model
analysis goes on, in Section 2.2 and 2.3, evaluating the Higgs and gauge boson mass
spectra, two ingredients needed in the one-loop diagrams calculation for the fermion mass

radiative generations, since in this model no SM particles get a tree level mass. In Section



2.4 we use the matching conditions between the running gauge coupling constants of the
Standard Model and the Pati-Salam model in order to estimate the order of magnitude
of the partial-unification scale. In Section 2.5 we focus on neutrinos, in particular on
their masses and mixings, because these will be other fundamental ingredients for loop
corrections to the fermion mass, being the neutrinos the only fermions propagating in that
type of diagrams. In Section 2.6, using the dimensional regularization, we compute the
one-loop corrections to the fermion masses coming from the diagrams involving scalars
and gauge bosons exchange, also demonstrating that the model can not generate at all
masses for the charged leptons. In Section 2.7 we show the first results obtained inserting
in a scan code built up in the Mathematica software the fermion mass formulas, found
in the previous sections, in order to search the model parameter set able to reproduce
the experimental mass values. We will see that the model can generate realistic masses
for all the quarks except for the top. In Section 2.8 we implement the model with the
fermion inter-family mixing, generalizing the Lagrangian and defining the CKM and the
PMNS matrices. We conclude the chapter with the Section 2.9, where we extend the model
including two more multiplets, again in the representations (4, 1,2) and (4,2, 1) but with
zero VEVs, in order to solve the problems of the unrealstic top mass and the no mass
generations for the charged leptons. What we find, after repeating numerical analysis with
the new two Higgs multiplets, is that the extended model is able to generate good values
for the quarks and charged leptons mass spectra, but not for the neutrinos and the CKM
and PMNS mixings.

We carry out an analogous study in Chapter 3 for the second model, where the scalar
content is given, in this case, by the multiplet in the representations (4,1,2), as in the
previous model, and a bi-doublet (1,2,2) under the group SU(4) ® SU(2), ® SU(2).
With these scalar multiplets, unlike the previous model, all the SM fermions get a tree
level mass, while the correct mass hierarchy should be again generated by loop corrctions.
However we will see that this second model does not seem able to generate the correct
fermion mass spectra.

In this work we evaluate only the one-loop corrections to the fermion mass values and
mixings, at the partial-unification scale. Furthermore, in order to make our numerical
analysis more simple, we do not take into account any CP phase, cosidering, for both the

models, real parameters.



Chapter 2

Model 1

The first Pati-Salam model we analyze was developed by M. P. Worah [2]. How we will see
in the following, the peculiarity of this model is to provide masses to the Standard Model
fermions radiatively generated at one loop, but not for a set of Beyond SM neutrinos whose
masses are generated at tree level. Compared to the original paper, we will make some
changes in the scalar sector analysis that will be justified later. Let us start now describing
the fields content of this model. In the group SU(4) ® SU(2), ® SU(2)y the fermions of
Standard Model are assigned to the representations (4,2,1) and (4, 1,2) . In the matrix

form:
()
(51 dl
ai(f Uy d
vy = (2.1)
uz ds
Ve €
L,R

where ¢ = 1,2 is the index for SU(2)L r, @ = 1,2,3,4 for SU(4) and f = 1,2, 3 corresponds
to the fermionic family. Moreover, the model contains also fermionic singlets of the group,
(1,1,1), an extra sterile neutrino s(()f) for each family f of fermions. The gauge bosons of

the SU(2),r groups, instead, are defined as usual using the Gell-Mann matrices of p:

3 a 1 . 2
W,U« — Z O-L,R Wua _ 1 WM?’ WE,R - ZWE,R . (22)
L,R 5 LRT G WL +iWEs, s . ’

a=1



for the gauge bosons related to the group SU(4), instead, we use the matrices A* (definited
in Appendix A):

15

)\a
DL
a=1
Do+ e tam g —igr Gi—iGrs Gr — i )3
1| Gy Do Ge e e —igrt Gt — G (23)
= 5 GH i GH5 GH6 L iGHT B* 2GH8 G _ jGmia | o

i T VB
9 ; 10 11 ; 12 13 : 14 3
GHO+iGMO GEI G2 G - B

where B* = G*'5 is the gauge boson that couples to the hypercharge Y, while the bosons
G"* with a = 1,...8 represent the gluons of SU(3)¢.

We can see that we have nine vector fields more than in the SM: three are the gauge
bosons for the right sector SU(2)g defined, similarly to the W} bosons of the SM, as:

Wl 5 iWh?
V2

then we have six new gauge bosons, the leptoquarks, that link quarks and leptons:

WhE = and WH = Wh . (2.4)

G;LQ ¥ Z'Gul() n G,ull = iGulQ G,u13 ¥ Z'G,u14

v2 oo V2 V2

All these gauge bosons interact with fermions and scalars as usual by means of the covariant

Xi=E = X4 and XIF = (2.5)

derivative:
DF = 0" +ig Wi +igpWg + ig.G* . (2.6)

Regarding the scalar part, Worah introduces two Higgs bosons: the right-handed ones, in
the representation (4, 1,2):

Rul Rdl
. Re R A
R¥ = | T with  Ra = (R*)*, (2.7)
Ru3 Rd3

R, R,



that will be used for the symmetry breaking of the Pati-Salam group to the SM:
SU4) @ SU(2), @ SU22)p = SU@B)c @ SU(2), @ U(1)y, (2.8)

and the left-handed Higgs bosons LY ~ (4,2, 1), with L,; = (L*)*, that will be responsible

for the symmetry breaking of the electro-weak group to the electromagnetism:
SUB)e®SU2), @ U(1)y = SUB)c @ U(1),- (2.9)

From the fermions and Higgs representations discussed above, the resulting Yukawa in-
teraction for each fermion family f, i.e. considering for the moment the case without
inter-family mixing, takes the form:

s

Yukawa

= k[ Loy 4 e | = kD [ ORED 1 he], (210
where k(Lf)R are real numbers. So the total Lagrangian of the model has the form:
3

Z{N’L D, U0 0O, D 45 Onrg s O 4 ise @y, se® -
f=1

B [8_8( )méf)so : + h.c i| + 'Cyukawa} - V(L7 R) + »Cgaugefixing + (211)
. 1
+ DyLas DL 4 Dy Ros DR — ST (GG + W1 W+ W, W |
where
GM = o'G” — 0"GH +igs|G*, G"], (2.12a)
— WY — Wt ig W WY, (2.12b)
Wh = "Wy — 0"Wh +igr[Wh, WE], (2.12¢)

with g4, g1 and gg the gauge coupling constants for the group SU(4), SU(2);, and SU(2)pg,
respectively; while the gauge-fixing part is given by:

1 2
Egauge fixzing — _2_54(8 ’ G) 2£2R

(8- Wg)? —257(3 W)+ (2.13)

+C%9 - DO + Cr0 - DO + C2,0 - DCY,
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where £y, C% and C% are the gauge parameters, the anti-ghosts and the ghosts of the
group SU(N) (with N = 4,2R 2L) respectively. As we can see in (2.11), there are no
explicit mass terms for the fermions of Standard Model, respectively.

Looking at the representations of the fermions we can define the charge as:

o3, Y o031 <U3R B—L) o3, (03R \/5/\15>
_ose Y o3 (0sg  B—L\_ o3 (osr 215 2.14
@ 2 + 2 2 + 2 + 2 2 + 2 + 32/ ( )

where Y represents the hypercharge, B the barionic number and L the leptonic number,

while A5 and o3 are respectively the diagonal generators for SU(4) and SU(2).

2.1 Higgs potential V (L, R)

Let us have a look at how many singlets, under the Pati-Salam group, can be built with
at most four Higgs fields, respecting the power counting criterion which demands that the
theory, to be renormalizable, contains no parameters of negative dimension in units of

mass. We start with the pseudo-real representation 2 ~ 2 of SU(2):

2®2=3a1
202R02=20402 (2.15)
202R022=3914503H3d1

(for more details about the tensor products see in Appendix B). Since the Higgs bosons

are also in the representation 4 of SU(4), we have to consider the following products as

well:
194=1056
id4=1@®5 (2.16)
124=10®6,

therefore the only gauge invariant quadratic terms we can write have the form:

(4,2,1) ® (4,2,1) = Liu L' and  (4,1,2) ® (4,1,2) — R R™. (2.17)
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Using three fields we have no SU(4) singlets:

4R44=200200204 4
14R4=360402004 (2.18)
1R44=360402054

thus no cubic terms are present in the model. Considering four Higgses, instead, we find:
414R404=35645045020015045020p 15015641 (2.19)

but this unique singlet assumes a tensorial form of the type: ¢*?*”L,LgL,L,, which is

equal to zero because the Higgs are bosonic, commutative, fields. The other possibility:
140404=T0064010010060640 100601006 (2.20)
does not contain any singlets; while the product:
140404=810450150101564502006 15014 15 (2.21)
has two singlets. Combining the third of (2.15) and (2.21) we obtain
(4,2,1)® (4,2,1) ® (4,2,1) ® (4,2,1) = (15@ 1,30 1,1)® (15 1,3a1,1) (2.22)
which contains the singlets

1L,1)®(1,1,1) = Lig L' L;s 17"
3,1)® (1,3,1) = Lin [’*L;s "

5,1,1) ® (15,1,1) — Lin L L?* L
15,3,1) ® (15,3,1) — Lin L’° L™ L

(1,

(1,
(2.23)

(1

(

Therefore the potential must contain two quartic terms for the scalar multiplet L. The
same reasoning followed till now for the multiplet L, can also be used for the Higgs multiplet
R.

The next step is to introduce the mixing between the two multiplets L and R, and to
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do that we have two possible tensorial products which mantain the gauge invariance:
(4,2,1)® (4,2,1)®(4,1,2)® (4,1,2) = (150 1,30 1,1) @ (150 1,1,3® 1), (2.24)
which generates the singlets:

(1,1,1) ® (1,1,1) = Lin L R;s 7P

o (2.25)
(15,1,1) ® (15,1,1) = Liu L’ R R,

and the product:
(4,2,1)® (4,1,2) ® (4,2,1) ® (4,1,2) + hee. = (1580 1,2,2) ® (156 1,2,2) x 2, (2.26)
from which can be obtained the singlets of the form:

(1,2,2) ® (1,2,2) = Lio R LY Rjs + (Lio RS R° LYy + h.c.)

o o (2.27)
(15,2,2) ® (15,2,2) = Lio RPL*Rjg + (Li RS R’ L + h.c.) .

At the end, putting all togheter, we obtain the potential for the Higgs fields of the
form:
V(L,R) = = 202 Lig L' + Ay (Lia ') + ApaLia L L L;5—
— 24} Ria R + A1 (RiaR)” + ApaRia R Ryt

. . o (2.28)
+ Arr1Lio L' Rjg R + Appo Lia R'“ L' Rj g+
+ Ags(Lia RP° LR} + h.c.),
where p? and ); are real parameters.!
!The potential (2.28) looks different from the one in [2], where an additional term:
Aa(Lia L LI LY + hec.) (2.29)

appears; however, using the identity € ey, = 656 — 6;d] this can be reparametrized in the following form:

(A1 +A23)Lia L Lig L% + (A\p2 — Ap3) Lia L/ Lg L . (2.30)
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2.1.1 Minimum and stability of the Higgs potential

To study the symmetry breaking of the Pati-Salam model and of the Standard Model, we
follow Li’s method [19], that we rediscuss here in some details. Considering for the moment
the case without left-right mixing, the first derivatives of the Higgs potential with respect

to the scalar fields assume the following forms:

L . .
%VT() = 203 L% 4+ 2N\p Lig L' L™ + 2\ oLy L L
g (k]fz) (2.31)
aRk = —2M%Rka + ZARlRiaRiQRkU + QARQRiaRkaLw .

Contracting separately the indices of SU(2), and SU(2)g, the previous relations can be

expressed in terms of the hermitean matrices:

X7 =Lyl and Y7 = Ri,R"”, (2.32)

«

in this way (2.31) becomes:

av L g (e loa g (6%
5 L(ka) = =2u7 L* 42X Y XGLM 4 20, XL
° (2.33)
V(R
OPEk ) _ 23R+ 2\p1 Y YR + 2\, YR

Because L;, and R;, are independent fields, we can diagonalize them simultaneously in
the forms:
X =00z, and Y7 =0%Yy,. (2.34)

o

With this definitions, the minimizing equations are given by:

[—,u% + A1 Z To + )\Lﬂﬁ] <Lkﬁ> =0
¢ (2.35)
[—/ﬁz + Ar1 Z Yo + )\RQ/yﬁ} (RF) = 0.
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Let us focus for the moment only on the left part, for the right one the reasoning will be

the same. Using the tensors X” the potential can be written as:
V(L) = =2p7 X5 + At (X5)? + M X X5 =

= —Q,U%ZJJQ—F/\[J (ZZL’Q>2+/\LQZZ‘3. (236)

For the first equation in (2.35) we can have two possible solutions: the trivial case (L) =0
or (L) # 0. If we consider the general case with a non-zero vacuum expectation value
(VEV), the equation (2.35) is reduced to the form:

)\Ll Zl‘a -+ )\ng,g = ,u% . (237)

At this point we can distinguish further cases. The first one is when x,, # 0 fora = 1,2, 3, 4.

This request gives us the system:

A1 (@1 + @2 + @3 + T4) + Apozy = pf (4Ap1 + Ar2) Zizl To =A4p7

A1 (21 + @9 + T3 4+ 1) + Apoxs = 2 N T+ 2y — 13— 124 =0 (2.38)
A1 (1 + T + T3 + 14) + Apoxs = i Ty — T+ a3 — 14 =0 B
A1 (21 + @2 + @3 + 14) + Aoy = pif r1—xa—r3+x4=0

from which we obtain: )
Uy,

=L 2.39
A+ Ao ( )

T1 = Ty = T3 — T4

that is the solution for the case without symmetry breaking which, inserting (2.39) in

(2.36), leads to the minimum:

Ay,

VNB - L
AN+ L2

(2.40)
The reason why we consider this as a case without symmetry breaking can be understood
looking at the scalar kinetic term in (2.11) responsible, by means of the Higgs mechanism,
for the gauge boson masses generation, how we will see in details in the next section. In

fact, considering for simplicity only the term involving the gauge bosons G, of SU(4):

Tr [(DML)T(D“L)] = T7 [GMLTLG“] , (2.41)
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and using the notations in (2.32) and (2.34), we obtain, once the Higgs fields get VEV,

the mass term for the gauge bosons of the form:

= g3 |Gos(e00)G| = MEGLGE, (242)

2 T Tom
¢Tr [GMA(A XA)ATG ] .

VEV
where A is the unitary matrix which diagonalizes the tensor product L;,L* and, at the
same time, it transforms the interaction basis G, into the mass eigenstates GM, with MZ
their diagonal squared mass matrix. Therefore if the value z,, is the same for a = 1,2, 3,4
then M2 will be proportional to the identity matrix; this is an analogous case, once rescaled
the VEV, to the trivial one (L) = 0 which mantains all the generators of the group SU(4)
exact (not broken), so with all the gauge bosons massless.

The second case, which we are interested to, is when symmetry breaking takes place.
However, we have to pay attention to the fact that SU(4) can be broken in two different
ways: SU(4) — SU(2) + SU(2) or SU(4) — SU(3) + U(1). The breaking pattern of our

interest here is the second one, so two possible choices are allowed:

1 B 1y
rn=x9=23=0 and 1y=—"-— —» V’'=———=—»
! ? ° ! At + A2 ! A+ Ao (2.43)
2 4 :
KT, B 3pr,
z1=0 and zo=23=0y=—"-—>+— = V= - —"%2_
! ? ’ T3+ AL 2 31+ Ao

Since we need to avoid SU(3) taking a non-vanishing VEV, the right minimum of the
potential is V;®. Trying to request that V;? is an absolute minimum, we can note that

exists a function of minima given by:

ki

(k) = —— L
me( ) kXp1 + A2

(2.44)
with k& indicating how many non-zero eigenvalues z, # 0 we have for the tensor product
Lio L®. Deriving Vi, (k) with respect to k we find:

S 2.4
Ok (s + Mia)? (2.45)

which for Ay < 0 is positive, then V,,,;,(k) is an increasing function. This means that we
have the absolute minima for k = 1; in addition, asking that V/? is the absolute minimum,

we get the additional constraint A, + Aps > 0.
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In principle we have the freedom to represent both X7 and Y7 as diagonal 4 x4 matrices
with only one non-vanishing entry. In view of the breaking of SU(4) — SU(3), let us fix
a =0 =4. Then:

00 00 00 00
9 2
153 00 00 5 00 00
Xy=_—H yy— —Hr , 2.46
< Api+A2 [0 0 0 O < Ari+Ar2 |0 0 0 O (2.46)
00 01 00 01

and accordingly:

o O

M, 0 0 a MR 000 d
Y= —""= RN= —— , 2.47
< > VAL + Ao (0 0 b) < > VARL + AR2 <0 00 v ( )

with |a [+ |b[*>=1and |d |* + |V |*= 1. Since both L and R are vectors under SU(4),
the choice of giving VEV to the 4" component preserves SU(3); in fact, for every SU(4)
generators \*, the equalities A*(X) = 0 and A*(Y) = 0 hold as soon as a run on the subset
of A* which generate the color group. It remains to specify which SU(2) component of L
and R must be vanishing. Given that we want U(1)y subgroups to be preserved by (R):

2
Y(R) = o3r(R) + <R>\/;)\15 =
(10 OOOa’+OOOa’
0 -1 000V 000 ¥
000 O
<O 00 —2b’)

and U(1)q subgroups to be preserved by (L):

@<L>—@<L>+K<L>—@<L>+<L>\/§E—(O - O)—o, (2.49)

O wr O O

o O O wir
o O wie O

2 2 2 2 000 —b

the optimal choice is to set @ = @/ = 1 and b = ¥ = 0. Therefore, defining v;,/v/2 and

vR/ V2 as the vacuum expectation values taken by the fields L, and R, respectively , we
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have:
000 % V2ur,
L) = V2 with v = —————; 2.50
() (0 00 0) SERRVIVETS Vs (2:50)
000 V24ug
R) = V2 with  vp = ——m——— . 2.51
<><0000> v TED T =

It is possible to obtain the same results following an analogus procedure but using,
instead of (2.34), the tensors:

X! = L, [’ = 6lx; and Y/ = R, RI™ — §ly;, (2.52)

1

where we contracted the SU(4) indices. In this case, considering for simplicity again the

left part only, we can distinguish two cases when (L) # 0:

2 4
M, NB 2u7,
T =T = — Vi=————
! 2 2)\L1 + )\LQ 2)\Ll + )\LQ
2 y (2.53)
=0 and 7, =-—"— — VP=_-__"L .
? PN+ A 21 + Aro
and demandig that the minimum of symmetry breaking is an absolute minimum:
VE <0
(2.54)
VB < yNB

we find again the same conditions for the parameters: Ap; + Ao > 0 and Apo < 0.

We have to note that the choice x, = x4 and x; = x; as the components that take VEV,
in (2.43) and (2.53) respectively, is needed in order to reproduce the correct symmetry
breaking patterns: SU(4) — SU(3) and SU(2) — U(1). Furthermore, while v will be
at an high scale, where a partial-unification of quarks and leptons is achieved, the energy
scale of vy, will be of the order of the electro-weak scale, vy, ~ 246 GeV. As a note, we can
relate the complex scalar fields ¢, and 9, which compose the SM Higgs doublet ¢, with

the two fields of the multiplet L having the same quantum number in the following way:

NN
KM_(WM)'ﬂ<mJ Q@M) (2.55)
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where the VEV is taken by ¢y ~ (L,)* because we have to produce the electro-weak
symmetry breaking SU(2), @ U(1)y — U(1)g.

Let us now reintroduce the LR mixing. Eq.(2.31) are then modified as follows:

OV (L, R . . .
% = 23 LF 4 201 Lio L' L% 4+ 2\ 1o Lio L* L' 4 A\ g1 L Rio R™+
ko
+ ALre R LM Rjg + 2\ g3 L RY R
V(L. R) (2.56)
T = 2% R* 4+ 2\g I Rio R“R* + 2)\py Rio R™ L' + App1 R Li L™+
ko

+ ALreLia R¥ L' + 2X\1ps L' L) R}

The presence of the terms proportional to Az z3 do not allow us to repeat the same procedure
done above. In fact, the tensor X7 = Li“Lf is not hermitean and, in addition, does not
commute with X7 = L, L'™; thus it cannot be put in the diagonal form in the same
basis as, for example, X§. We can only say that X7Xg J = XX, 5 which means that the
eigenvalues of the two hermitean matrices are the same. If we consider the contraction of

the SU(4) indices we can rewrite the first equation in (2.56) as:

OV(L, R
# QML + 2)\[/1)(Z Lka + 2/\L2XkLZU + )\LRIYZLkU+
0L}y (2.57)
+ Aoro(ZF)Y R 4+ 2\ ps ZF R™

where Z; = LjoR™ and (Z;)* = L’*Ry,. At this point, since the diagonalization of the

product Ly, L' procedes as:

Lya L' = (UDEXL(UL)] = ;6] = (UDLig(Ve)a (VG L (UL)] (2.58)
and that for the right-handed fields as:

Ria R = (URY{(UR)] = y;0] = (UR)! Bis(VR)A (Vs RP(Un)l . (2.59)

with Up g matrices of SU(2), g and Vi g matrices of SU(4), we could diagonalize the
tensor Z}, as:
Lo R = (UDFLig(V) 2 (VSR (UR)] (2.60)

but only if we make the restrictive assumption VTVR = 5" Instead of that, we proceed
in the following way. Having already established that (L,) = v;/v/2 and (R,) = v./v/2
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are the good VEVs for our scheme of symmetry breaking, we can enforce them to be
solution also for the case with LR mixing. In particular, assuming (L14) = vz/v/2 and
(Ry) = vr/V/2, the VEVs must satisfy the following relations:

1
_QIU’ZL + (>‘L1 + )\LQ)U% + 5()\LR1 + ALRQ)U?{ = 0;
(2.61)

1
—2u% + (Ar1 + Ar2)vp + 5()\LR1 +Ar)v; = 0.

Then we can compute V-

1
Vmin = - X
4(Ap1 + Ar2)(Ar1 + Ara) — (ALr1 + ALg2)?

X [4(Ar1 + Ar2)pg, + 4(A1 4+ A2) g — 4(ALr1 + ALre)uTpg] = (2.62)

= aup+ B up+yHiuR

and impose that the coefficients o, 8 and v, of u}, u% and u? u% respectively, are simultane-

ously negative. In this way we "minimize" the minimum. This gives the two possibilities:

C? C?
<C<O&B>0&A>E) or (O>O&B<O&E<A<O), (2.63)

where A = A\1+Ar2, B = Agi+Ar2e C = Apr1+Arge. Again, the conditions: Ap;+Aro > 0

and Ag; + Ar2 > 0, are recovered in the limit of vanishing LR couplings.
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2.2 Higgs masses

Let us calculate now the second derivatives of the Higgs potential:

*V(L,R) 2 ) e . N
ALY O Ly, = [—2ML + 2201 L+ Apm R }53’,(55 + 2o [5yL RLi, + 0k L Lya] +

+ 2)\L1LnymM + )\LRQRiMRiy,
9*V (L, R) - o y R e
Trer., = el l™ Al Rl + 2 |Largoy - RuL:),

(2.64)

82‘/([17 R) 2 2 2| s sp T Pig 1 pra
ORWOR,, [—QMR + 2 R+ AemL ]5y5l, + 2Apo [%R R;, + 0*R Rya] +

+ 22p Ry R™ + Appo L' Ly,
—GQV(L’ R) T To 1% T TS T
aLyl/aqu = /\LRlLyuR + ALRQR Lya(sl, + 2/\LR3 |:RaLy 51, — Ly Ryi| .

Imposing VEV structures obtained above, we find the block diagonal 8 x 8 mass squared

matrix:
]\/[z R, 0 0 0
0 M? 0 0
M2y = LR, , (2.65)
0 0 Mf Ry 0

0 0 0 0

where we used the basis (L, Ry, L., R,, Lg, Rq, L, R.). Taking in account the conditions
(2.61) for py and pg, we obtain:

v%z -1
Mip, = TALRZ w % 200
R R
v?2 v
M2 B U2 ()\Ll + )\LZ)é Mi (2 67)
LR, = "R\ (ALri+Arge) vy A A .
TE ( R1 + R2)
v7 ALR2 YL
) 9 —(/\ng + T) ALR3E
MLRd = Up UL ALR2 U% (268)
ALR3 ;= _(TE + )

It is important to observe that no mass terms are present in the sector related to the
charged leptons.

To find new conditions for the Higgs potential, we can ask that the matrix M?p is
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positive defined so that, around the VEVs, the second derivatives have the concavity
upwards. The matrix M7, don’t give any conditions because det(M7, ) = 0; instead
from the Higgs sector related to the neutrinos, demanding det(M7, ) > 0, we find a

condition on the \; parameters given by:

1
(Az1+ Ar2)( A1 + Agr2) > Z(ALRl + >\LR2>2 . (2.69)

To this we must add the conditions coming from the down-type quarks sector of the Higgs:

4

v 1. o 1 V2 (Ao 1 A2
det(M2, ) = B rpo [ =Ao—L 4+ =Apo + & | 222282 4 “ N\ g — 2LE3 ) | > 0. (2.70
et(Mig,) 4 VLR |G L2U4R + 5 Rr2 T e + 1R N1 (2.70)

Considering that v, /vg < 1, we expand (2.70):

4

v
det(Msz) ~ ?R)\RZALRQ > O, (271)

that gives the condition: AgaApge > 0.

Another condition to take into account is that the mass term for a complex scalar field
has the form: —M?®®T, therefore if a mass eigenvalue of M7 is negative the minus sign
can not be reabsorbed as a phase factor in a field redefinition, as it happens for a fermionic
mass term m Dimcl/_) LWRr Or M Majomm1/JT1/1, so we have to demand that also the single mass

squared eigenvalues are positive. Thus, from the matrix M? r, We calculate the eigenvalues:

: A 0 0
ME = (M2, )% = Of, M?, Op, = — L2R2 (0 o U2> : (2.72)
R L

where the orthogonal matrix Oy, is given by:

0, —sind, 1 - 2
OHu _ (COS Sin > R (UL UR) = tan(ZGu) _ 2fU[/Uf22 ) (273)

sinf, cosf, VUi +vh \vp v vp — UL
The squared mass eigenvalues for the Higgs related to neutrinos instead are:
2(Ar1+AR2)TY +1 0

ia A A 292
MI?IV = (MzRy)d 9= _C%A, (( Lr1+ L182) 1 T 1) , (2.74)
2
R

(ALR1+ALR2)%v
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with

CV _ (>\LR1 + >\LR2>2U%U12'% ; (275)

2A3 —+ QAV [()\Ll + )\LQ)U% — ()\31 + )\RQ)’U%%:|

FV = ()\Rl + )\RQ)UIQ% — ()\Ll + /\LQ)UI% — AV ; (276)

2
A, = \/[()\31 + Ar2)vd — (A1 + )\LQ)'U%J + (ALt + ALre) 20202 (2.77)

Using the expansion formula: vax?+bx+c¢ =~ /c + ﬁax for + — 0, and assuming
v /vr < 1 it is possible to rewrite (2.74) as:

2 (ALrR1FALR2)?, 2
Mj, = (QRl T AR)UR + S0 VL ! ) , (2.78)

2
0 (Az1 + Ar2)vi — %U%

where the lightest eigenvalue (the second one) represents the physical Higgs of the SM.

While the orthogonal matrix that relate the interaction basis to the mass one is:

1 —(Ar1HAR2)vR+(AL1+AL2)vi+A,
_ (A +A Jupw _
OHV =0, ((/\R1+>\R2)U?3_(>\L1+)\L2)'U%_Au o 1LR2 m ) o
(ALr1+ALR2)VLVR (2.79)
_ cosf, —sinb, . tan(20,) = — (ALRr1 + A\LR2)VLUR
sinf, cosb, Y (Ar1+ >\R2>7)12Q — (Ap1 + Ap2)v?’
where the mixing is given by:
(ALR1+ALR2) vp
. ALR1 + A VLU T T Ame) vm
cos b, sinf, = A + Avpz)vnon R~ Zom+ins) v - (2.80)
—2A, +[(AL1+>\L2) _ (ALr1t+ALR2) ]”_L
(AR1+AR2) (Ar1+AR2)? | 0%

The last Higgs squared mass eigenvalues matrix we have to evaluate is that Higgs part



2.2 Higgs masses 23

related to the down-type quarks, i.e. (M7g )" = M :

2AR2Fd'U2 +)\LR2Fd’U2
M2 = “MimBeivh (TR e T o
Ha 2T 2Ap2Tgvi +Arr2lavyy
d O 2 2 2 1
4’\LR3AdevR (2 81)
A? pa .
)\RQU%_'_ % + A 2_L>\L2R2 U% 0
T A A2 )
! /\LQU%—F [% B >\R2—L§22R2}U12%
with
D= A2+ Ao (22 ) (22200 2.82
A A 2
Aq= \/ AN sV vR+ [?ﬁz( 5 Am)—vi( e Am)] . (2.83)

To complete the study, the orthogonal matrix of this sector has the form:

A A
1 —(FHE2 g2 )vp+(FH2 —Ap2)vf +Aq
O =0C 2ALR3VLVR —
Ha d (ALE2 X\ po)vd,—(PLE2 —A )0} — Ay 1

2ALR3VLVR (284)
0s —sinf 2\
_ (COS d Sin d> — tan(29d) _ LR3VLUR

(Ar2 — 252)0%, — (A2 — 252 )07 |

4N2 L0202
Cy= ,/%;R : (2.85)

At this point we can complete the condition over the \; parameters of the Higgs poten-

sinfl; cosfy

with

tial demanding that all the Higgs mass eigenvalues are positive. The only eigenvalue that

gives new conditions is the second in (2.81):

_)\ ,02 . |:>\LR2 . )\%R3 :|,02 > () (2 86)
L2vL 2 )\RQ g | R= ’
2

which gives the systems:

2Aps — A 0 2Aps — A 0
{ R2 LR2 > or { R2 LR2 < ’ (2.87)

Aigs = /\L4RQ (2AR2 — ALg2) Aigs < /\L4R2 (2ARr2 — ALg2)
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with the solutions:

2Apo — ALr2 >0 or 2Agy — Appa <

4\2
LES ), (2.88)
ALR2
Therefore, putting all together, the conditions that we were able to find to minimize the

Higgs potential are:

')\Rg <0

Arre <0

ARl +Ar2 >0

ALrt + Arge <0

PYTIEED PES (ALr1+ALR2)? =~ 0

4()‘R1+)\R2) )
Dpe —Apre >0V 2\py — gy < SLE < ()

ALR2

(2.89)

\

2.2.1 Interlude on the Goldstone bosons

Because the symmetry breaking pattern is: SU(4)®@SU(2),®@SU(2)r = SU(3)c®@U(1)g,
we need to give mass to (15 + 3+ 3) — (8 + 1) = 12 gauge bosons; so we have to look
for twelve Goldstone bosons. The most obvious place to start looking at is the Higgs part

related to the charged leptons for which it does not exist any mass term:
«(0 0\ (L mi (| R(Le) [+ S(Le) |2) =0

(Le Re) St , (2.90)
0 0/ \R, m2_ (| R(R) 2 + | S(R.) |2> —0

so we have four Goldstone bosons that are absorbed to give mass to the WjR and WfL

vector bosons by means of the Higgs mechanism. We have seen above that other massless

scalar fields are in the Higgs-up sector:

() (E)- 1 2) ()

mir,, (| ROUAL,) P+ | S(HY,) ) =0
mip, (| R(HS,) [* + | S(H,) [7) = C*(H3,)"Hs,

(2.91)

and, taking into account the colour number, this gives three copies, so we have 2 x 3 = 6
Goldstone bosons that are eaten by the vector bosons Xﬁi (with @ = 1,2,3). The last two
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Goldstone bosons which remain to find, to give mass to the vector bosons Z,, and Z;L, can
not be a combination of Higgs-down since the colour number would produce three copies
of these complex fields; therefore the last two Goldstone bosons must be a combination of
the complex fields L, and R,. This is similar to what happen in the Standard Model (see
Appendix C).

2.3 Gauge bosons masses

After studying the mass spectra of the scalar fields, the next step is to evaluate the mass
spectra for the gauge bosons of the Pati-Salam group. As usual the masses for the vector
bosons are obtained by means of the covariant derivatives in the kinetic term of the Higgs
fields. So for the left-handed multiplet we have:

DML*DyLiq = (61600, + igu6]Gl, +igLdiWi,) Lys X
(01,090" — igs6,G1™ — igrooWhy) L¥ (2.92)
= 0uLia0" L™ + 29191Gho Lig LW + 93G5 Lig LY G2

+gLWjL2L A U

and then using (L14) = v;,/v/2 we obtain the mass terms:

2,2
a ) grv —
9L94ULWL1 G44 +9 G4 Gu +9g WuLszl = L8 L [WSwao + ZW:ng }

9307 [ o vt — ut +, 3 3919407 0
+ B X X +X2MX§” R N

The same result in (2.93) is obtained from the kinetic term D¥RD,R;, for the right-
handed Higgs multiplet, once the replacements g, — gr, v, — vg and W} — W has

(2.93)

been made. First of all from (2.93), and its right-handed version (2.93);_,r, we can easily

obtain the values of the masses for the charged gauge bosons:

2 2
My, =gt Mg, =i wmd A= R (29

Because the bosons Wﬁi and X** were not observed to date experimentally, their masses
have to be much bigger than the electroweak scale, so we must have vg > vy,.

For the neutral gauge bosons, instead, we can extrapolate from (2.93) + (2.93);_, the
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mass squared matrix:

2 911 0 — 591907
My = ) 0 912#’%2 _%949RU12Q , (2.95)

_%949LU% —%9491%11123 %gi (vh +v7)

where we considered the basis (W/,, W}, B,). The matrix Mg has a zero eigenvalue,

related to the photon A, and two non-zero eigenvalues:

m?3 1 /3
= 1 (59 (B o) + ok oot ) ¢

(2.96)

1 (/3 ?
£t G 0h -+ g — i) +9ubet,

related to the bosons Z, and ZL. Reminding that for the neutral vector bosons the mass

terms are of the form: MTQZz, we obtain for Z,, and Z}IL the masses:

m2 39292 U2
M2 — — ~ 2 + 49R _L 297
S {gL 393 + 29% | 4 (297)
m? 3 ,] v? 993 v?
M2 =—"F ~ |2+ L4+ |—H | L 2.98
4 {9R+294 2 32203 8 (2.98)

at first order in (vz/vg)?. From the matrix Mg we get the mass eigenstate:

394 394 0
Ay \/ggL Co \/ggR Co Co Wi
—2v691,94v2 C— —2v691,94v2 C— 0
VA L L W 2.99
K 394(1)%—1—11%)—&-29%1}%—29%1}%—2A 3g4(v%—i—v%)—?g%v%—i&g%v%—?A C_ uR ( )
Z/ —2\/€ng4v%C+ —2\/€ng411%0+ C BN
K 3g4(v12%+v%)+29?{v12%—29%v%+2A 3g4(v%—l—v%)—Zg?{v%-l—Qg%v%-‘rQA +
where we defined the normalization constants:
295,97
Co=1/ T 2.100
0 395,93 +29%91 +393,95 ° ( )

2 2

pPiay
Ci = ; 2.101
t =\ U A A A (2.101)
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with
p+ = 3¢5 (Vg + 07 ) + 2930 — 29707 £ 24
g+ = 393 (vy, +vi) — 29%v% + 29707 £ 24 (2.102)
2
A = 9gbvied + |03k — v}) + gk — ghud |

A general 3 x 3 trigonometric orthogonal matrix has a form of the type:
cosacosy —sinasin fsiny —sinacosS — cosasin~y — sinasin S cosy

cos asin Bsiny + sinacosy  cosacosf3 cosasinScosy —sinasiny |, (2.103)

cos (3siny —sinf cos 3 cosy

with «, # and « the mixing angles. Assuming ¢g; = gg = g2 and v, < vg, the orthogonal

mixing matrix in (2.99) can be rewritten as:

A, sin 0y, sin 6, \/cos 26, we,

Z, | ~ | cosby, —tanfy sinfy, —tanby, \/cos 20y, W | (2.104)
A/ cos 26}

Z/; 0 —TO,WW tan 9{/[/ Bu

where we use the definition:

sin 0, = \/7940 _ 3% (2.105)

694 + 292

Therefore we can write the orthogonal matrix in (2.99) as a function of the angle 6, only,

like in SM where the weak mixing:

Ay\  [sinfw  cosby Wi (2.106)
Z, B cosBy —sin By, B, '

2
is a function of the Weinberg angle 6y, only, with sinfy = 929:92 . If at this point we
L Y

compare the photon-fermions interaction coming from the covariant derivative z'\IWMD“\IJ

with the charge definition given in (2.14):

1

5 grosr sin HW + JRO3R sin HW + g4)\15 \V 1-2 SiIl2 QW:| AN = GQAM s (2107)
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we obtain the following relations:

e = gr, sin Oy,

e = grsin Oy

e\/g = gu\/1 — 2sin® Oy

that, besides being consistent with the assumption g;, = ggr = ¢o, it give us the new

, (2.108)

definitions of the Weinberg angle and the electric charge:

e? 39393
D o e= 22T 92.109
393 693 + 295 ( )

| —

, e
sinfy, = — =
92

2.4 RGE for the gauge coupling constants

In this section we study the running of the gauge coupling costants evaluating the 1-loop

solution of the Callan-Symanzik equation:
o Y(M) = a; Y (m) — —log — | (2.110)

where «o; = i—f with g; the coupling constant and a; some coefficients coming from group
calculations. Under a non-abelian group SU(N;), in particular, these coefficients are given
by:
4 11 1
i N4 Ny, 2.111
G =3l = 5 Nt 3l H k (2.111)
where n, is the number of fermion generations, 1 is a real number equal to 1 for complex
scalar field or 1/2 for real scalar field and T'(NN;) is the Dynkin index. So considering the
SM, for the group SU(3)c we have:
4 11
:_.3_—-3:—7; 2.].12
asc 3 3 ( )
instead for SU(2)r, given that the SM Higgs multiplet is ¢ = (1,2) under the group

SU3)c @ SU(2)y, we find:

1
:_,3__,2 _.1.—-1.2 = —— 2113
aar = 3 32+ 3 (1-2) (2.113)
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while for the abelian group U(1)y, using the hypercharge redefinition (D.6) in Appendix
D, we have:

2 Y2 o Y/
my=3 > pt3 ) s

fermions scalars (2 1 14)
23 1 4 1 1 1 3 1 41

Nc 2. 2. — 1 - =2 - = —
~3 5”9{ ( 36+9+9)+< il )}+3 5 774710

In Fig. 2.1 we show the evolution of the gauge coupling constants of the Standard Model.

1
a
o
azc™!
oy
T T ’ Y_1
10
1 . 1 . 1 . 1 * J ‘ J oo

1000 105 107 10° 10" 1018

Figure 2.1: Running of the coupling constants 1/o; of the SM as a function of the energy scale, where the green dotted,
orange solid and cyan dashed lines represent the evolutions of the coupling costants for the groups U(1l)y,
SU(2)r, and SU(3)¢, respectively.

We can perform the same analysis for the model 1. In this case we have two Higgs
multiplets that, under the group SU(4) ® SU(2), ® SU(2)g, are in the representations

L=(4,2,1) and R = (4,1,2), therefore the coefficients of the Callan-Symanzik equation
are:

alzL:%. _13_1.24_%.1.%( 2 ): %
(p =t —%-2+l-1 2.4-1.2)=-3 (2.115)
ae=3-3-U.442.]1.1.2.(4.2.1)| =10

At this point, in order to evaluate the partial-unification scale M, to which there is the
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transition between the Standard Model to the Pati-Salam model, we ask that at this energy
scale the gauge coupling constants respect the matching conditions (E.15) in Appendix E,

coming from the hypercharge definition, and that the assumption g; = gg is verified:

-t oo

asr(My) = aor(My)

From the running of the coupling constants, we obtain the following system of equations:

a3cl(MU) = 0‘??01<MZ) ln MU = O‘4C(MU)

azr(My) = ag, (Myz) + 11;; In MU = agp(Muy) 7 (2.117)
O‘n}(MU) = O‘n}(MZ) goﬂl %Z = ‘O‘2R(MU) + O‘4C(MU)

where we use the experimental values for the SM coupling costants at the electro-weak

scale My ~ 91.1876 GeV:
Oély(Mz) ~ 0.0169

Oégc(Mz) ~ 0.1176

From (2.117) it is simple to estimate My ~ 5.6103 - 10'® GeV that represents, besides the
value of the Pati-Salam scale, the order of magnitude of the VEV (R) = vg too. In Fig. 2.2
it is exhibited the evolution of the gauge coupling constants through the partial-unification
scale My and the fact that the evolution of gy, is the same as that of gg, since the model

respects the left-right symmetry for energies above M.
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r
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Figure 2.2: Running of the coupling constants 1/c; of the SM and Pati-Salam model, as a function of the energy scale,
through the partial-unification, where the green dotted, orange solid and cyan dashed lines represent the evo-
lutions of the coupling costants for the groups U(1)y, SU(2)r and SU(3)c respectively, while the red solid
and blue dotdashed lines represent the evolutions of the coupling costants for the groups SU(?)L/R and SU(4),
respectively.

2.5 Neutrinos masses

As we mentioned at the beginnig, in this model the only fermions that get a tree level
mass are the neutrinos. So let us analyze the terms in the Lagrangian (2.11) that produces
these contributions. When the Higgs fields get the VEV, from the Yukawa interaction we

obtain the tree level mass terms of the form:

,C _

Vp VL
., UR ., UL
K== = —thkr— and  X--—- = —thk,—, 2.119
< R\/§ < L\/i ( )
S0 S0
while from the explicit mass term for the Majorana fermion S = %
S0

meSS = my [(SO)TS(C) + (SS)TSO] = 1o [S0s5 + s%0s0] = (2.120)

= My [50(202)55 + Sg(iO'Q)TS()] s
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we extrapolate the Majorana mass insertion vertex for the singlet sy, which is given by the
form:

S0 S0 S0 S0

0 < = —img(ion)T  or  Lese»0 = —imy, (2.121)

where we consider mg a real parameter. If for the neutrino fields we use the basis definition:

vy, vy
v, =|v§ and V) =|vg|, (2.122)
S5 So

we can write the total mass lagrangian for the neutrinos as:

LY==V, MU — Ve M, (2.123)

mass

where the neutrino mass matrix M, is defined as:

kpv
N

M,=1| 0 0 el =M. (2.124)
kzL\})iL k;ig Mo

We note that the factor 1/2 in M, definition comes from the fact that we consider real

VEVs and Yukawa couplings, therefore we have for example:

krop krvp -
——=VrSg = ——=S5UT . 2.125
2\/5 L0 2\/5 oYL ( )
The eigenvalues A of the neutrino mass matrix M, in (2.124) are given by:
X 0 0 0 0 0
dia, m
(M)™ =10 A 0| =10 5+ 0 , (2.126)
m A
0 0 A 0 0 5= 5

with A = \/2m2 + k%v% + k2v?. The physical mass of the neutrinos are the absolute
values of (M, )% where some possible overall minus sign can be reabsorbed by means
of field redefinitions of the neutrino mass eigenstates v;. In this regard, we recall that it

is possible to pass from the interaction basis to the mass eigenstate basis thanks to the
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orthogonal matrix:

krvRr krpvp krvr
VAZ=2m2  \/(V2mo+A)2HAZ-2m2  \/(V2mo—A)2+A2—2m2
— — krvp krvR kRVR
Ov= VA2-2mZ \[(VEmo+ A2+ A2 2m?  \/(V2mo—A)2+AZ-2m2 | (2.127)
O \/§m0+A ﬁmO—A

\/(\/§m0+A)2+A2—2m% \/(ﬁmo—A)2+A2—2m%

where the columns of O, are the normalized eigenvectors of M,,. In this way it is possible

to write for the neutrino mass term the relation:
U, M, 0% = 0,0, [0TM,0,] 07w = (V—1 v 173) (M) % | e | (2.128)

in particular, the sterile neutrino mass insertion can be written in the mass eigenbasis:

Somoso = VE(OF )i [ (0 (OF s | (O =
= v2(0))i3 [(0,)3xmibia(O))i3] (O,)35v; = (2.129)

v

= Uf(Og)ig [(Ou)gkmk} (OV)3jVj )

or, to simplify the notation, we can rewrite the lagrangian related to the neutrinos as:

£ = (W, )0 (o + (05D (V5)a — [(0,)a(M, ) (W5 + D] =

- (2.130)
= 10;7,0"v; + vy, 0 vy — [miﬁiuf + h.c.] ,
so that we can use the propagators relative to the massive Majorana fermion v;:
—i ?
> PuTu and — = Pl (2.131)

vi v p?—m?+ie ve e p?—mi+ie’

where the sign difference is due to the different chirality between the fields v; and v{. While

concerning the propagators with chirality flip, i.e. the mass terms, they are given by:

— K= 5 v and — XK= o 2 .-
vi e P —m; + 1€ Ve 7 P°—m; + 1€

(2.132)

See Appendix F and Appendix G for more details about the study of the fermion mass

terms and the fermionic propagators.
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Considering that we have three fermionic families (f = 3), then there are three matrices
M, with the same structure but different values for k., kr and mg. Therefore we will have
a zero tree-level mass for each of the three SM neutrinos, that should get the correct
small radiative corrections at one-loop; while we expect the others six mass eigenstates
to be of order vg, so that the mixing with the SM ones will be very small. In the limit
mg > vg, the eigenvalues would be: \g = 0, A\, = my and A_ = 0; therefore there would
be three massless neutrinos. While if mg ~ vg or mg < vg we get: \g = 0, Ay ~ vp
and A\_ ~ —uovg, where the minus sign can be reabsorbed into a phase factor in a field
redefinitions. However, in the rest of the thesis, we assume my ~ vr because this is the
natural scale of the sterile neutrino mass in the theory; in this way we have also a second
parameter, together with vy, in the seesaw mechanism to mantain the SM neutrinos light.

I conclude this section anticipating the form that the neutrino mass matrix M, will

have at one-loop, once the corrections are taken in account:

o) (%)
vy, 2 2v2

MJ_lOOp _ <mQ{,3>T m% sz\/vg . (2.133)
krvp krvr

2V2 2v2 Mo
The neutrino masses radiatively generated in (2.133) are defined by the one-loop diagram:

v, @ 17— _Z'mll?zrac and VLR @ VL,R _ _im%a}iorana7 <2134)

which, as we shall see, will contain loops with scalar and gauge bosons exchanges.

2.6 Loops

Beside what we have just seen for the neutrinos, in this model no tree level mass term for
quarks and charged leptons exists. The neutrino mass corrections in (2.134) and all the
other fermion mass contributions will be therefore radiatively generated at one-loop. In
particular, we have scalar and gauge loops responsible for the generation of Dirac masses
for quarks and leptons, and also masses of Majorana type for the neutrinos vy and vg.
Since the loops we are going to analyze will generate terms that are not present in the
bare Lagrangian (2.11), that is terms which have not to be renormalized at one-loop, we

expect these contributions to be finite.



2.6 Loops 35

2.6.1 Scalar loop

The first contributions we take into account are those given by loops containing an Higgs
boson exchange. In order to generate a mass term for the fermions of the form —mari;,

we need, from the scalar potential (2.28), the four-point Higgs interaction vertices:

L)y (R (L) (R
\\\ /// \\\ ///
//X\\ ~ ()\LRl + )\LRQ) and ,/X\\ ~ )\LR3 X (2135)
/ AN L N
L R* L R*

in fact, if we want to attach fermionic fields to the free Higgs legs in the vertices above we
can do it by means of the Yukawa interactions —kR\IJiﬁ‘Rmsg — k150L"*V ;. and the sterile

neutrino mass term. In this way, once the remaining Higgs fields get VEV:

VEV VEV
\\ /’ \\ /’
N N,/
N N
a AN
2N —_— 7N = _)_@_»__ , (2136)
YL YR YL VR VL YR
mo mo

we get the one-loop generated fermion mass term. The only non-zero contribution for
(2.136) that we can obtain from the VEVs vp = (Ry4) and vy = (L14) in the four-point

scalar interaction proportional to the parameter Ay g in (2.28) is given by:
UM Ry, [R“Ria L7’ Ljg] LYWy, — WE (RiaR™)(Ryg) (L") (L1 L") W14, (2.137)

where (L**L,,) and (R R;,) represent the scalar propagators; this means that the Apx;
interaction contributes only to the neutrino masses. From the interaction proportional to

ALR2, instead, we have:
U Ry, [R®LPRigLja] LV r, — UE (R R (LY (Ri) (Lia L' ) W1, (2.138)

therefore this gives a contribution to the neutrino and up-type quark masses. On the

other hand from the interaction proportional to Ay g3 we obtain a contribution only for the
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down-type quark masses:

U Ry [R™R™ € Ly L)) LV 1y, =

1 , . .
= Z‘I/];“Rk# [R™(0]" 0L R™ + Rm“éfég)emnepq(éfoéﬁqu + Lpuégéf)l}jg} LWy, =

1 o
= U Ry, Repe? [68 R Ly, — R Ly LigL" Wy, —

2
RMW(L
— # U2 Ryq B2V (Lo L**YW 190 — W2 Roy R?*) Loy L*) W 04 | =

(2.139)

(R'™)(L14)
2

3
= Z \I’%a <RQQR2Q> <L2aL2a>\I/L2a .

a=1
In particular we can note that we do not have any scalar loop contribution of this type for
the masses of the charged leptons e, i and 7. The results of this analysis are consistent
with what we calculated in Sec. 2.2, where all the interactions that we have just written
can be also found in the non-diagonal elements of the Higgs squared mass matrices (2.66),
(2.67) and (2.68). To be complete we consider also the possible contribution to a Majorana

mass term that should be given by a vertex of the type:

(R) (R)
\\ //
//X\\ ~ /\LR3 s (2140)
l/ \\
L* L*

but this is zero because of the product between an anti-symmetric tensor with a symmetric

one:

i Yavj

ALrsUT Liy | L' Ry Riyu€ ™ i (67645070 + 07 61656%) Ljﬂ L,V =0. (2.141)

Putting together the Higgs self interactions with the sterile neutrino mass insertion we
can generate the diagram depicted in Fig. 2.3, that represents the radiative generation of

the Dirac mass term: —m%)zﬁRl/JL, with ¢ = u, d, v.
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Figure 2.3: Scalar loop for the radiative generation of the fermion mass term 7’!’)7,&111!})'(/_)]{1[1[1, with Higgs VEV (represented
by a circled cross) and sterile neutrino mass insertions (represented by a cross).

We observe that the diagram in Fig. 2.3 contains: two fermionic and two scalar propagators,
two VEVs and a mass insertions, from a dimensional point of view the count is O(m?/p%),
so this diagram has to come out finite. Let us see in details its evaluation. For simplicity
we pass from the interaction basis to the mass basis for the Higgs and the sterile neutrino

fields, therefore we rewrite the Yukawa interaction terms as:

EYukawa - _kL&Lqu;SO — kR@Z_)RRd,SS + h.c =
= —]CL@ZL [H¢1 COS Hw - ng sin ew] [(Oy)gil/i] - (2142)
— kg [Hya cos O + Hyi sin 0y [(0,)ziv5] + hec.

from which we extrapolate the following Feynman rules:

or VR
----< = —iky cos 0,(0,)s: ----< = —ikpsin6,(0,)s, (2.143)
Hyn Hyy
VR YL
-———< = —ikp cos0y,(0,)s -———< = +ikr sin0y(0,)s; . (2.144)
Hys Hyso
The mass m;}” generated by the diagram in Fig. 2.4 can thus be written as:
W) _ ¥) - o
my = 2[_0_}11 = kpkgsin 6y cos 0, ;(OV)SZ'IH (p), (2.145)

where [ﬁ’)i(p) is the loop integral. Because we treat the radiatively generated mass mﬁ}")

as a coupling between states with different chirality (see Appendix G), its value has to be
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identified, from the normalization conditions, with the value of the loop diagram in the

limit of zero external momentum p, thus:

4 .
Wi _ oy _ [ 24 i
I (p_o)—_z/(27r)4q2—m?+ie

7 7
q® — M?{w +ie ¢ — Ml%fwz + i€

. (2.146)

where as propagators we used for the neutrinos the first in (2.132), while the scalar prop-

agator has the form: ‘
1

———— g - ; 2.].47

Hyp Hy, P — MI2{¢;€ + 1€ ( )

if the propagating Higgs field Hy; in the loops is a Goldstone boson (so My, = 0) then
its propagator is of the form:
1

_________ _ , 2.148
H,, H q* — EME, +ie ( )

where  is the gauge parameter and Mg, is the mass of the gauge boson G, that acquires
mass by means of the Higgs mechanism "eating" the Goldstone boson Hj,.

Because the loop integral is in d*q = 72¢*d(¢*) and the integration extremes are oo,
we can neglect any odd functions in the integrated momentum ¢. Then, considering that
the neutrinos mass eigenstates are m; = 0 and mg3 ~ vg, we have that the contribution
coming from the mass eigenstates v; is zero because its propagator (v111) = ig,y"/q* is
an odd function, or null if of the type as in (2.132). Thus we can reduce the sum over the

indices of the neutrino mass eigenstates in the mass formula:

3
myy) = kpkgsinfy cos 0y, > (0,311 (0). (2.149)

i=2
To simplify the calculation we go to the Euclidean space, so we redefine the time-component
of the four-momentum ¢, as gy = iqs, obtaining the identity ¢*> = —¢% and d*q = id*qg.

The loop integral written in the Euclidean space then take the form:

[(w)i(o) - / d4qE m; 1 1 -
) Cntap+m? lap+ Mg, ap - ME | (2.150)
e

Using the dimensional regularization in dimension D = 4 — ¢, the integral can be evaluated
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by means of the formulas:

D 28 r D\P(q—pB =2
/ d L 2(p) — = B+ 22 (a5 2)(m2)%*0‘+5 (2.151)
(2m)P (p* + m?)~ (47)2 T (a)T(2)
and . ) 51
1 r 1 — -
_ (‘”5)/ P )y (2.152)
AeBS  T(a)T(B) Jo [Az + B(1 — x)]
where I'(z) is the Eulero gamma function, which has the properties:
F'(n+1) =nl'(n) =n! for neN;
1 (2.153)
F(z):;—vg—i-O(z) for z—0;
with v =~ 0.5772 the Eulero-Mascheroni constant. We obtain the result:
wi_ o [ 4% mi 1
Iyp =n 0 )4 (g2 N2+ M2 )
(2m)* (¢ +m7) (¢® + Mz, )
. ! dPq m;
0 @ mde M, (1 - )|
1 INEA N D_g
:ml/f/ du <2£2 ( 2D) [mfx—i—MIZ{wk(l x)] —
o (4m)zLQ)I(3F 6 (2.154)
c 2 2 _ —3
:m,/ld:p F(E)E mix + My, (1—z)| * N
0 (4m)>~> p?

where the energy scale p was introduced in order to mantain each term of the Lagrangian at
dimension D in unit of mass. In fact, as we can see analyzing the Yukawa interaction term,

in dimension D = 4 — ¢ the Yukawa couplings, k;, and kg, get a non-zero dimensionality:

DZWHMHH]HI{?]=2(D_1>+D_2+[k;] — [k]:ﬂ:

2.1
5 5 5 , (2.155)

DO ™

where the dimensionality of the fermionic and Higgs fields are obtained from their kinetic
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D=W]+[0)+ W =2]+1 and D =[H|+20,]+[H]=2[H]+2. (2.156)

It is possible to mantain k; and kr dimensionless, as in the case D = 4, redefining the

couplings in the Yukawa interaction as:

Yukawa Yukawa

In the limit in which we remove the regularization parameter, that is ¢ — 0, the

divergent part of the integral (2.150) is zero:

i i 2m; 2m;
:[I}j’;—fﬁ;ﬂ S — (2.158)

[IEZ)N(O)] div  (4m)%  (47)%

div

this means that the diagram in Fig. 2.4 results to be finite and the non-zero contribution

of its loop integral is given by:

1
()i B m; 2 €

miz + Mg, (1 =)
miz+ Mp (1) B

(2

, ) (2.159)
_ m’i Mle ln Tnl2 _ MH¢’2 ln m?
(m)? | mi = Mg, \ Mg, | mi—=Mg,, \ Mg, )|
where we used the identity:
' 2 2 2 1 "
/deln[(m —M)JH—M]:m/MZ dyln(y) = -
m?In(m?) — m? — M?In(M?) + M? (2.160)
- m2 — M2 :

2.6.2 Gauge loop

The second contribution to the radiative generation of the fermion masses that we are
going to study, comes from loop diagrams containing a gauge boson exchange. We start this
analysis considering the fact that the neutrinos are the only fermions that can propagate in
a loop connecting two different chiralities of a fermion for which we want to generate a Dirac

mass term; this is possible thanks to the sterile neutrino mass insertion which allows the
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spin flip. Consequently we need of a vector bosons which can propagate between a Left and
a Right fermionic state and that is connected to the neutrino fields. These requests restrict
the possibilities to loops with the exchange of the bosons Z,,, Z;L, for a neutrino Dirac mass
generation, and the leptoquarks X Mi, for the up-type quarks. Moreover we can note that
the sterile neutrino mass insertion (2.121) together with the neutral gauge bosons Z,, and
ZL exchanges make it also possible to generate radiatively masses of Majorana type, but
only for the neutrino fields vy, and vgr. Therefore the masses that will receive a contribution
from the gauge loop are only those related to the up-type quarks and the neutrinos. All

these types of radiative mass generation are depicted in Fig. 2.4.

T X e
Figure 2.4: Gauge loop for the radiative generation of the fermion mass term —m(}}p)@szL, with Higgs VEV (represented
by a circled cross) and sterile neutrino mass insertions (represented by a cross).

This particular diagram is again finite because we have: four fermionic and one vector boson
propagators, one sterile neutrino mass and two Higgs VEVs insertions, so the diagram is
O(m3/p°®) as the previous one in Fig. 2.3. As we will see the diagram in Fig. 2.4 is able to
generates fermion masses of Dirac and Majorana type. Let us concentrate our attention,
for the moment, to the contribution given by this diagram to the mass of the fermionic

field x = u, v of the Dirac type only, which will be given by the formula:

m(GX)D = Z[—O—} S)D = igB (Zﬁ;g) (0,)3:(00):3 (l;]?;}g) ga I(G’X)i(p)a (2.161)

where g4 and gp are the coupling constants of the gauge boson G, = Xff, 7, Z, with
the fermion fields xg and xr. Using the definitions in Sec. 2.5, the mass expression in
(2.161) can be rearranged rewriting the orthogonal matrix elements (O,)s;, used to convert
the sterile neutrino field sqg in the basis of mass eigenstates v;, and the VEV insertions,

correspondig to the non-diagonal elements of the neutrino mass matrix (2.124), in the
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following form:
3 .
=" 0495(M)23(0,)% (M) 18 (p) =
3 .
= Z gags [0,ME90T], (0,)%; [0,MF0T] | 12 (p) = (2.162)
= Z 9495(0,)2;(M199);,(010,),5 (0L 0, )a(ME9)y (OF ) 187 (p) =

3
= Z gAgB(Ou)Zim?(Ou)il I(GX)l(p) )
i=2

with m; the neutrino mass eigenvalues. Instead, for the loop integral, that we take again

with a zero external momentum, we have:

- d'q ,—iga”  imi gy’
19 =0) = / p_da : Pl GG 2.163
¢ (p=0)=i (27?)‘[y q2+ieq2—mf+z’eq2+z’e’y< WGl ( )

where the propagator for the generic massive vector boson G, is, as usual, of the form:

—i Ay
G.G) = ~nonov = y 1), 2.164

< © > G, G, M2 u +(£ )qQ_fM% ( )
with ¢ the gauge parameter and Mg the mass of the boson G,; instead for the two most
external massless fermion propagators (vrigr) and (vpvr) we used respectively the first
and the second expression in (2.131), while for the middle one we used the first in (2.132).
As seen for the scalar loop, we can neglect the odd functions of integrated momentum and

pass for simplicity from Minkowskian to Euclidean space:

: d*q —miYuq*, —i 4uq
I(x)z _ / 1 v . o 1 pev _
¢ =] eri@rione-mrioe g [T VEsan

_/ dq my [ 2u+(€_1)q}_
) et @ vk @ —mE i@ —ME) [T T e Mz T

:/ d*qg —m; { n (€ — 1)¢1E] _
m) (—q3)(—q% —m2) (g, — MZ) | """ v eME

d4QE miqum%
- <GMGV>Eucl )
/ (2m)* qp (g +m7)

(2.165)
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where the Euclidean propagator for a gauge boson G, is given by:

Sy + (6 — 1)1 (2.166)

<GMGV>EUCZ - q2 T ﬁMé

|
q* + M¢

In order to simplify the calculations let us use again the dimensional regularization, so
that from the identities:

1 1 11—z 1
— = 2/ dx/ dy 2.167
ABC 0 0 [A:zc—i—By—{—C’(l—x—y)]g ( )
and 7,7, = D =4 — ¢, for the loop integral (2.165) we obtain the form:
~ d”q  miy, 1 quq
1 = / I {6y+ 1)t =
@ PP s g CVevan
! <2w> G i [ +M2> (7 + M3) (@ + ET3) ] (2-165)

- D [ [ {piGt 0  + Qn) +evga) )

with Q(z,y) = (m? — M&)y + M&(1 — z). At the end we obtain the result:

jooi _ 1 m; (3+£)m —45MGl m?\  m?— M2
¢ (4m)2mi — MZ mi — EME ME m? — EME

)

¢ln (g)} . (2.169)

The last element is to define the couplings g4 and gg. Looking at the fermion kinetic

terms, containing the covariant derivative:
W (D) s = 103 [61650, + iga6! Gl + 920iWi ] V' Vs (2.170)

(with K = L, R), we can determine the gauge interaction vertices needed in the diagram
in Fig. 2.4. To be precise, the contribution to the up-type quark Dirac masses is generated

by means of the vertices containing the leptoquarks:

X,
! d i (2.171)
= —— an = —— s .
\/5927# \/592’7#

VL,R I UL,R UL.R

X

therefore in this case we have g4 = gp = g2/v/2. While for the neutrinos we can have
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three different contributions:

Zy
1 3
=3 (94\ / 5 cos 20w tan Oy, + g cos HW) Yo s (2.172)
vy vr,

Vcos 20
( \/7tan Oy + o8 W) Yu (2.173)

cos Oy

and . o
Z
i 3
=3 Ga §tan6W Yo - (2.174)
vy vy,

In fact, the propagation of the ZL contributes to the neutrino mass generation of Dirac,
Majorana-Left and Majorana-Right types, while the propagation of the Z, boson is related
only to the Majorana-Left mass generation. So at the end, generalizing the loop calculation
done for the Dirac case also to the Majorana masses, we can write the general formula for

the mass contributions radiatively generated by the gauge-loop for the fields x = u, v as:
3 .
m = gagp > _(0,)ai(0,)yim? I, (2.175)
=2

where x = 1 and y = 2 (or x = 2 and y = 1) stands for the Dirac mass, t =1 and y = 1

stands for the Majorana-Left mass and z = 2 and y = 2 for the Majorana-Right mass.

2.6.3 Summary of the one-loop formulas for radiative fermion

masses

Let us recap all the formulae found above and explicit the contributions to the radiative
mass generation for each fermion. To semplify the notation we write the masses only for
one fermion family, those related to the other two families can be obtained with different

Yukawa couplings and sterile neutrino mass.
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Down-type quark sector

As we saw, for the down-type quark there are no gauge vertices with neutrinos (which
are the only fermions that can propagate between states left and right thanks to a non-
zero tree-level mass term) so a radiative mass generation by means of a gauge loop is not

allowed. The down-type quark mass is therefore generated only by means of scalar loops:

3 2 2
(@ _ —Aumrskrvrkrur 9 My, m;
mg =my = (In)2A, ; (0,)3:m; [m2 d In _

(2.176)

where Ay is definited in (2.83).

Up-type quark sector

Concerning the hierarchy of mass between the up-type and the down-type quarks we note
that for the up-type quark we have scalar loop contributions as for the down-type quark
and, even if we have a different set of Higgs bosons, the masses of the Higgs related to the
up and down sector are all of the same order O(vg), so the radiative contributions are quite
similar. Although the shift of the masses in the first family (up/down) is small enough
to be corrected at higher order in the loops, for the other two families (charm/strange
and top/bottom) we look for a sensitive mass difference at one-loop. The model helps us
because for the up-type quark sector we have also a contribution from gauge loops with

leptoquarks exchanges:

My, = m(Gu) + mg;) =

_ 93 (0)1:(0Oy) 2
2(4m)? m? — EM%

=2 g

kpvLk > M2 2 (2.177)
+ LULQRUR2 z :(Oy>§zmz 2§ X - hl m22 o
(477)2(7’1% + UL) . m; — EMy My

3
+

3+ &)m? — 4EM3 2

(2

=2

M, I m?
m'LZ - Ml2tlu2 Mim .
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This difference in the loop contribution between up and down sector should explain their

mass difference.

Charged lepton sector

Considering one-loop corrections, as evidenced in Sec. 2.6.1 for the charged lepton massess
we can not have any loop corrections of the type in Fig. 2.3. Furthermore, although the
charged leptons have gauge interactions together with neutrinos, unlike the down-type
quarks, these vertices are related to the gauge bosons W} and W} that do not mix with
each other; therefore we can not connect the left part of any charged lepton with the right
ones in a gauge loop of the type in Fig. 2.4. So at one-loop the charged lepton masses stay

at zero (me = m, = m,; = 0) in this model.

Neutrino sector

The last step left is to give the explicit expressions for the neutrino mass matrix elements
of (2.133). We start with the Dirac mass generated by the contributions of a gauge and a

scalar loops:

D g4A\/§ tan 9W i (O,,)li(O,,)gim
m, = E
2V2(4r)? = mi—EM3,

3
M? 2
+kLkR cos B, sinf, (Oy)gimi[ 5 Lz ln( ke >— (2.178)
my

2 2
i=2 - MHl,l MHV1
M? m?
— LLEZ I J
2 2 2 :
m; — MHVZ MH,,2

Then we have the Majorana mass for the left neutrino, obtained by the gauge loops with

(3 +&)m? — 4EME, | m?
n —_—
mZ — ME, M2,

)

the propagation of the ZL and Z bosons:

(3-+ Gm? —aeM3 (m2> en(e) |+

mM )1im?
ML = 47rgzm 2—¢MZ

m? — M2 Ve

2 3 3 2 2 2
N 94\/_’6811 Ow Z 20u mzz (3+ 5)27”2 ;lfM an m; —  (2.179)
2\/_ 2(4m)? — m; — My, m; — Mz, Mz

- fln(f)] 7
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with
tan @ 20
A= gy Stanbw g2 veos2w (2.180)
2 2 2 cos by

While the gauge loops with the exchange of the boson Z/ and Z give us the Majorana

mass for the right neutrino:

m _=
v m? — M3, M2,

(3

(3+&)m? — 4EME, m( m? ) _ fln(f)] ) (2.181)

2.7 Numerical results

Although we know that the model, exposed till now, does not admit any mass for the
charged leptons, it is time to test the results this model can produce. Obviously we are
interested to see if the formulas above are able to generate as faithfully as possible the other
fermion masses of the Standard Model. In particular we try to reproduce the fermion mass
values at the Pati-Salam scale My ~ 10'* GeV. The experimental values that we use as
reference are listed in [18], but because these values are fermion masses runned from the
electroweak scale up to the scales p = 102 GeV and p = 10 GeV, we will consider the

mean values of the masses between these two scales:

m, = 0.537015 MeV

mg = 1.2475:32 MeV

m, = 24.00753 MeV

m, = 25875583 MeV

mp = 1.105 £ 0.032 GeV (2.182)
my = 80.3572528 Gev

me = 0.480254 =+ 0.048025 MeV

m, = 101.385 & 10.138 MeV

m, = 1.723 £0.17 GeV

for the sake of completenees, we also list the masses of the charged leptons that will be
used in Sec. 2.9. For the standard deviation related to the lepton sector we took the 10%

of the mass value, while for those related to the quark sector we used the propagation error
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formula:

1
o(p ~ 10"GeV) = 5\/02@ = 102GeV) + o2(p = 106GeV) . (2.183)

For the neutrino sector, instead, we consider the squared mass ratio in normal hierarchy

defined as:
B Am3, _

- 2 2 2

2 2
my — MMy

r : (2.184)

where these neutrino masses (m; < ms < mg) are the lightest among the nine mass
eigenstates generated by the model, three for each of the three fermion family. In inverted

hierarchy, instead, the ratio is defined as:

2 2 2

Tiny = == 2.185
Am2,  m? —m} ( )

As reference we use the value at p = 100 GeV [22]:
r =~ 0.031 £ 0.001; (2.186)

since its experimental value, in normal hierarchy, varies little during the running, as we

can evaluate taking in account the values of r at different energy scales [18]:

0.0320  at = M,
0.0314 tu=1TeV
r e abp=t e (2.187)
0.0309  at u = 107 GeV
0.0330  at u = 10'2 GeV

In order to find, if it exists, a parameter set which is able to generate a correct mass
spectrum for the fermions, as a first approach we built a code with the Mathematica
software to scan the parameter space, just to test the model which we already know to
be not complete yet (no mass for the charged leptons). The parameters taken in account
are the \; of the scalar potential, the Yukawa couplings \;, k1, and kg, k;, and kg, and a
parameter m, related to the sterile neutrino mass through the identity mg, = myvg, with
a = 1,2,3 the fermion family index. We have to specify that the parameter scan code
is a random scan code, in the sense that, at each cycle, the parameters \;, kr,, kr, and

m, take randomly a real value (because we do not consider CP violation) in the interval
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[—3.5, 3.5]; for the parameter m,, instead, we consider the same interval but the values are
extracted to a Gaussian distribution with mean p = 1 and ¢ = 0.5. The interval [—3.5, 3.5]
is chosen imposing, for the Yukawa and Higgs couplings, the following constraints for the
reliability of perturbative calculations (as in Ref. [2]):

k? Ay 2 2
The only parameters retained at the end of the simulations are those that respect both

conditions below:
1. the parameters \; have to respect the system (2.89);

2. the resulting masses have to be in the ranges:

(M| <1 MeV
|Mdown| < 1.6 MeV
|Mstrange] < 30 MeV ) (2.189)
125 MeV < |Meharm| < 350 MeV

[ 750 MeV < |mportom| < 1.5 GeV

Using a random scan code, the probability to find the exact parameters which generate
the experimental values in (2.182) is very small, so we take in account the mass intervals
(2.189) containing the experimental masses in (2.182) within the 20 + 50 range, a part for
the bottom quark for which we left a larger interval since it belongs to the same family of
the top quark, for which we have not been able, at this stage, to generate a realistic mass.
In fact, we let note that in (2.189) we did not consider the top quark because, also after
many trials, the simulations containing also the condition over the top mass did not able
to produce any result. This is, however, in agreement with what is stated in Ref. [2].

Before displaying some examples of the obtained results, let us quote some numbers
that we used as constants in the code. The first are the VEVs related the left-handed
Higgs multiplet L;, that we let it to coincide with the one in the Standard Model, and
that related to the right-handed Higgs multiplet R;,, that we assume of the order of the
Pati-Salam scale M;; found in Sec. 2.4:

vy, = 246 GeV and vp = 10" GeV . (2.190)
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From the formulas in Sec. 2.4 we can also extrapolate the values of the gauge couplings

for the groups SU(2)r r and SU(4) at the scale My, which are respectively:
g2 = 0.5388 and g4 = 0.5694 . (2.191)

With the quantities vy, vg, g4 and g, we can evaluate the gauge bosons masses, defined in

Sec. 2.3, finding for the new gauge bosons:

My (My) =4.4-10" GeV, My, (My) = 2.6-10" GeV

(2.192)
and My =2.8-10" GeV,
while for those present also in the SM we find:
Mz (My) = 84.5 GeV and My, (My) = 66.2 GeV . (2.193)
Furthermore we have for the "pseudo-Weinberg" angle defined in (2.105):
sin 6}, = 0.62. (2.194)

All the calculation are made in Feynamn gauge (£ = 1).

The scan code we used is built up in the following way: it performs a total of 10000
cycles over the scalar parameters in order to find the parameters \; which verify the
conditions (2.89); when the program finds a good set of A;s it starts to span the parameter
space for kp, kr and m,, at most for 1000 times for each fermion family before to exit
from the cycle, in order to find the set of Yukawa couplings and the sterile neutrino masses
which are able to generate some quark masses inside (2.189). With the values of the VEVs,
the gauge couplings and the gauge boson masses discussed above we obtained a total of
20 results depicted in Fig. 2.5 and Fig. 2.6, where we do not see any evident correlation
among the quark masses. Among these we take only two cases as examples, choosing the

results with the lowest y? value:

m m
x2=§:< ’ ! (2.195)
e ! '

q q

(res) B (e:pp)) 2

with m{“ the experimental quark masses in (2.182) and m{*” the related values obtained
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from the simulations. For the first example we consider only the first family, therefore in
(2.195) we have ¢ = u, d; while in the second example we consider also the second family,
S0 ¢ = u,d, s,c. In the following we list the masses, obtained from the simulations, for the

first two quark families with the related x? values (in bold the lowest).

m&res) (MGV) mg”es) (Mev) mgres) (Mev) mgres) (Me\/) X2 (q =u, d) X2 (q = u, d; S, C)

0.18 0.04 28.94 132.32 1.39 63.62
0.1 0.01 24.36 228.19 1.57 5.02
0.21 0.04 22.52 140.79 1.36 54.70
0.32 1.13 28.92 141.14 0.09 54.03
0.12 1.32 28.18 133.87 0.32 60.77
0.77 1.08 17.33 176.04 0.13 28.02
0.46 0.06 17.93 126.30 1.12 69.88
0.79 1.45 29.48 128.19 0.17 66.73
0.90 0.12 29.47 206.83 1.27 12.66
0.25 0.04 25.91 217.55 1.31 7.80
0.54 0.05 16.82 189.92 1.14 21.26
0.40 0.10 28.39 141.51 1.08 54.48
0.79 0.18 24.59 158.22 1.03 39.64
0.75 0.10 25.88 218.70 1.14 7.28
0.36 0.08 27.86 136.84 1.14 58.66
0.87 0.14 21.56 128.58 1.19 66.36
0.01 0.002 24.42 140.95 1.75 54.86
0.19 0.01 9.20 155.06 1.43 51.63
0.81 0.12 23.56 154.40 1.15 42.76

0.30 0.06 27.94 128.33 1.22 67.04
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Example 1

In this first example, for the parameters of the scalar potential, we have the values:

(ALg1 = 2.79
ALro = —2.89
Ay = —0.33
Ao = 1.32 : (2.196)
Ao = 0.72
g1 = 1.99
(A2 = —0.35

For the charged Higgs related to the down-type quark sector we find:
My, =042-10"GeV  and My, = 0.85-10"GeV, (2.197)
with the mixing:
cosfysinfy = 0.74 - 10712 (2.198)

as expected from the theory of the order O(vy/vg) (see Sec. 2.2). For the Higgs related

the up-type quark sector, instead, we have:
My, =1.2-10" GeV, (2.199)
while the Goldstone boson H,; has been replaced in the loops by the leptoquark mass.

The mixing between H,; and H, is:

VL UR

2 2
vy +vg

cos @, sin @, = =2.46-10712. (2.200)

To complete the spectrum we have the Higgs linked to the neutrinos that get the masses:

My, =128-10“GeV  and My, = 350.92GeV, (2.201)

with the mixing:

cosf,sinf, =0.76 - 10~ 7. .
0,sinf, =0.76 - 10~ (2.202)
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We have to note that, while My, is of the order of the Pati-Salam scale, My, , is pro-
portional to vy, as expected, even if the value is bigger than the experimental mass of the
Standard Model Higgs. To conclude this example, it remains to see which masses can be
generated for quarks and neutrinos given the above spectra of bosons. With the following

extracted values for the Yukawa couplings:
kg, = 0.09 and kr =0.23, (2.203)
and for the sterile neutrino mass:
mo =4.11- 102 GeV, (2.204)
the model generates the masses for the first fermion family:
My = 0.32 MeV and Maown = 1.13MeV . (2.205)

Instead for the second family from our numerical procedure we get the following values of

the Yukawa parameters:
kp = —0.12 and kr=1.24, (2.206)
and for the second sterile neutrino mass:
mo = 0.68 - 10" GeV ; (2.207)
this choice produces the masses:
Meharm = 141.14MeV  and  mgpange = 28.92 MeV . (2.208)

We can see that for the first two families the values of the masses generated by the model
are within the 20 range compared to the experimental values (2.182). So it seems that the
model works fairly well, even though at this stage we know that the charged lepton masses
cannot be generated at all. However, for the third family the model has a big problem. In

fact, with the choice for the Yukawa couplings:

kp =262 and  kp=1.79, (2.209)
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and for the last sterile neutrino mass:
mo = 0.91-10" GeV (2.210)
we find the masses:
Miop = 5127.19 MeV and Mpottom = 983.60 MeV . (2.211)

We can note that, although the result for the bottom mass is not as good as the results
for the first and second families (it is within the 40 range from the experimental values),
the top mass is completely unrealistic. We will see later that there is the possibility to
alleviate this problem, together with the mass generation for the charged leptons, extending
the model with new Higgs bosons. The remaining observables that we have to consider
is the result related to the neutrinos. For each family (o« = e, pu,7) we have three mass
eigenstates for the neutrino mass matrix (2.133): m,; and mgs are of the order of vg, while

Mmes is much lighter. Taking the lightest mass for each family, and defining in this case:
my=my3, Mg =me and mg=m.3, (2.212)

we obtain the ratio:

r=08-10"". (2.213)

We can note that the result for r is not good compared to the experimental value (2.186).
However we want to emphasize that such a small number is the consequence of the Math-
ematica machine precision which is not always able to handle with the huge difference
between the heavy and light neutrino eigenstates (> 10'%), sometimes treating as zero

very small numbers.
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Example 2

In this second example the new set of scalar parameters is:

(ALg1 = —3.13
ALro = —2.40
Arrs = —0.18
A1 = 3.34 . (2.214)
Ao = 2.32
g1 = 2.50
(A2 = —0.80

These values produce the following down-type Higgs masses:
My, =0.63-10"GeV  and My, =0.77- 10" GeV (2.215)

with the mixing:
cosfysinfy = 1.11-10712; (2.216)

while the massive up-type Higgs receives the mass:
My, = 1.09- 10" GeV . (2.217)

To complete the scalar spectrum there are the Higgs related to the neutrinos, that take
the masses:
My, =130-10"GeV ~ and My, = 267.16GeV , (2.218)

where we see again that the mass for the Higgs corresponding to the SM one is a bit too

large compared to the experimental values; their mixing is given by the value:
cosf, sinf, = 3.99-1071%. (2.219)
Regarding the fermion masses we have that with the Yukawa couplings:

k=001, kp=0.01, (2.220)
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and a sterile neutrino mass:

mo = 1.49 - 10" GeV (2.221)

as inputs, we generate for the first family:
Myp = 0.1MeV  and  mgewn = 0.01 MeV; (2.222)

they are small with respect to the experimental values, however inside 3.50. Much better

is the situation for the second family, for which taking:

kp,=0.12, kr=—1.87, (2.223)
and
mo = 1.17- 10" GeV, (2.224)
we obtain the results:
Meharm = 228.19MeV  and  mygprange = 24.36 MeV (2.225)

within the 1.50 range from the experimental values. For the third family, instead, we can

find again the same problem discussed above; in fact using the Yukawa couplings:

kr =318, kgr=3.37, (2.226)
and the sterile neutrino mass:
mo = 1.69 - 10" GeV, (2.227)
we get the quark masses:
Miop = 11069.76 MeV  and  mportom = 1132.90 MeV (2.228)

where the bottom mass is within the 1o range from the experimental value, while the top
mass is again completely unrealistic, although a little better than before. We complete this

second example with the results for neutrinos for which we encountered the same problems
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as the previous example. Assuming:
My =Mez, Mg =my,3 and mg=m.3, (2.229)

we find the result:

r=143-107°, (2.230)

again a too small value.

2.8 Mixing

Before discussing the modifications of the minimal model needed to solve the problems
related to the charged leptons mass generations and the too low top quark mass, in this
section we want to introduce the inter-family mixing. In order to do that we have to
promote the Yukawa couplings to 3 x 3 matrices in the Lagrangian (2.11), so the Yukawa

interaction terms become of the form:
JoR—— [\I/iL‘ZLmsOb + h.c.] — gab [\Iﬂ',gaRmsgb + hee. (2.231)

where a and b are the fermion family indices. We again disregard for the moment any
source of CP violation, therefore the Yukawa matrices will be taken real, as well as for
the VEVs. For the sterile neutrinos, instead, we continue to demand that there is no
explicit lepton flavour violation, therefore the sterile neutrino masses will be represented

by a diagonal matrix:

m()e 0 0 S(c)e
§0aMgb3(c)b:<50e Sop 507> 0 mg, O Sou | - (2.232)
0 0 mor 56,

Once we introduced the inter-family mixing, the tree-level neutrino mass matrix M, as
well as the orthogonal matrix O,, will be 9 x 9 matrices; in the rest of this thesis we use

the following neutrino basis:

T
— c c c c c c
v, = <VL5 Vip Vir Vgre VRy VRe Soe Sou 807) : (2233)
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Consequently the elements of the one-loop neutrino Dirac mass matrix (2.133) get the

forms:
(mll/))ee (mzl/))eu (mVD)eT
mf) = (mzj?)#e (mzj?);m (mVD)M 1 (2.234)
(mz?)fe (muD)w (mf))m—
while the Majorana Left and Right masses are given by:
M (myL,R)eu M
(mK/ILJ%)ee 2 (mxIL,R)ET
m%ﬂ _ (muLQ,R)EH (m%,R)W (muLQ,R)M ) (2.235)
(myL,R)ET (mz]/v[L,R)W ( M
2 2 muL,R)TT

For the fermion mass term mx1;, the parameter m is promoted to a 3 x 3 matrix:

Ta ., a Ta ab ab
PmPl = Galmy™ +me "0, (2.236)
where the radiatively generated masses m(g)ab and mgb )3 are obtained generalizing the

formulas in Sec. 2.6.1 and 2.6.2 to the case of inter-family mixing. In particular from the

scalar loop we obtain:

3 9
mig ™ =Y kR sin by cos 0y Y (O)mrsa(O)usoaliy  (2:237)
=1

m,n=1

where Igb)i is given by (2.159); while from the gauge loop we have:
9 .
md = gagn Y (00)ai(0,)ym? 1", (2.238)
i=1

where [, (Gwi is given by (2.169). Again, for the gauge loop we can distinguish three different
cases: with x = a and y = b+ 3 we generate a Dirac mass; with z = a and y = b we get a
Majorana Left mass; while for a Majorana Right mass we take x = a + 3 and y = b + 3.
We note that the particular form of the indices of O, is due to the order of the neutrinos
in the basis (2.233). We remember that in (2.237) and (2.238) in the cases with m; = 0
the contributions are zero because, as we saw before, the loop-integral calculation gives us

a null result.
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2.8.1 CKM and PMNS matrices

We now remind how the CKM matrix is defined, remembering that, since we consider real
Yukawa couplings, the entries of the mixing matrices are real numbers. Let us start from
the quark fields q,; of the up-type sector, with i = 1,2, 3 the family index. The mass term

(2.236) can be written in the mass eigenstates basis performing the following rotations:

« «

qul T qul
(q_ul Cqu CYu?y)RMu qu2 = [(Cjul q_u2 @LS)RO CTMUA AT qu2 ] =
qu3 - qu3
L o L (2.239)
) u
= (a ¢ E)R [CTMuA cl|
¢
L

where « is the colour index of SU(3), while A and C' are unitary matrices (UUT = UTU = 1)

defined in such a way that:
ATMIM A = |M% 9> = CT M, M C, (2.240)

with the diagonal mass matrix:

m, 0 O
M= 0 m. 0|, (2.241)
0 0 my

containing the mass eigenvalues for the up, charm and top quarks. The same rotation,
from the interaction basis to the mass eigenbasis, can be applied also to the quark fields

qa; for the down-type sector:

N qd1 N qd1
(%1 qa2 gd?;)RMd qa2 = [(%1 Qa2 ng)RD]DTMdB BT qa2 ]:
dd qd
Vo . Vo (2.242)
d
- (J 5 B)R[DTMdB] s|
b

L
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where in this case the unitary matrices B and D are defined demanding:
B'M!M,;B = |M{“9? = D' MyMID, (2.243)

with the diagonal mass matrix given by:

mq 0 0
M =10 my 0], (2.244)
0 0 my

containig the mass eigenvalues for the down, strange and bottom quarks. So at the end
we define the CKM matrix as:

Vud Vus Vub
Vekm =ATB= |V Vi Vy (2.245)
Vie Vis Vi

where the absolute value |V;;|? gives the transition probability from a quark of type i to

a quark of type j. For the experimental values we consider the running in [18, 22| of the

following CKM elements from the electro-weak scale p = My:

V| = 0.2257 4 0.0021 ;
Vip| = 0.0416 4 0.006 ; (2.246)
|Vis| = 0.00431 # 0.0003 ;

to the GUT scale = 2 - 10'¢ GeV:

|Vius| = 0.2254 % 0.0006 ;
|Vis| = 0.04194 + 0.0006 ; (2.247)
|Vis| = 0.00369 + 0.00013 ;

which we use as a reference in our numerical simulations.
In a similar way one can define the PMNS matrix for the leptonic sector. As for the CKM

matrix, we need two unitary matrix U; and U, that transform the interaction basis in the
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mass eigenstates basis, respectively for the charged leptons and the neutrinos:

e I Ve 2
wl =U|l and vl =0, |ra]| . (2.248)
), I3 . v=) | vs) |

As for the quarks case in (2.240) and (2.243), from a general 3 x 3 mass matrix M, for
the charged leptons we can obtain the mass eigenvalues using the unitary matrix U; in the

following way:

Ime|> 0 0
ulMMmu = 0o m,> o |. (2.249)
0 0 |m.|?

We point out that, although in the Standard Model the rotation matrix U; coincides with
the identiy because there is no lepton-flavour violation, in a general model it is not so

trivial, in fact the general PMNS matrix is defined as:

Uel UeQ UeS
Upnns =UU, = | Uy Uy Uy | - (2.250)
U’T 1 U7'2 UT3

However, because at this stage our model does not generate mass for the charged leptons,
we do not have any problem to define the matrix U; which coincides with the identity
matrix, and so the PMNS matrix will be given only by the matrix U, that we must define
carefully. Concerning the neutrino sector, we have to take in account that in our model
the SM neutrinos (vp., vz, and vy,) are collected in the basis ¥, and the transformation

from this to the mass eigenstates basis is generated by:
T
v, =0, (1/9 Vs Us Ug Vs Uy Us Lo 1/1) , (2.251)

where the mass eigenstates v; (with ¢ = 1,...9) are taken in increasing order of absolute
value of mass: |myg| > |myg| > -+ > |my1]. To define the PMNS matrix we have to
consider only the elements of O, that link the three SM neutrino fields vy, with a = e, u, 7,

to the three lightest mass eigenstates v;7,, with ¢ = 1,2, 3. Therefore in the normal hierarchy
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the PMNS matrix will be given by:
[Upnns],; = (U], = (O], With 4,5 =1,2,3; (2.252)

while if we consider the inverted hierarchy the PMNS matrix gets the form:

UPMNS: (Ol/)28 (OV)27 (OI/>29 : (2253)
(OV)38 (Ou)37 (Oll)39

The indices of O, selected in (2.252) and (2.253) are due to the fact that the light mass
eigenstates, which appear in the basis (11, 19, 3) for the normal hierarchy (or in the basis
(12, v3,11) for the inverted hierarchy), occupy respectively the position 9, 8 and 7 (or 8, 7
and 9) in the mass eigenstates vector 0T,

A typical parametrization for the PMNS matrix is of the form:

1 0 0 C13 0 513 C12 S12 O
UPMNS = 0 Ca3 S93 0 1 0 —S12 C12 0 5 (2254)
0 —S893 (a3 —S13 0 C13 0 0 1

whose mixing angles can be written as:

015 = arctan<|U€2|> , Oy = arctan<||g“3||> and 03 = arcsin(|Ueg|) ) (2.255)
73

To match the results given by our numerical simulations with the experimental values, we

will use as again the values in [22] at the scale p = 2 - 10'% GeV:

sin® @15 = 0.308 £ 0.017 ;
sin? fo3 = 0.3875 + 0.0225 ; (2.256)
sin? 63 = 0.0241 + 0.0025.

2.8.2 Numerical results

Let us test the present model to generate, in addition to the fermion masses, also the CKM
and the PMNS matrices, just as a first try before to improve the model. To do that we

extend the parameters scan to include the inter-family mixing. Since the model becomes
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more complex with the mixing, the tests take much more time, therefore we have only one

example to show. With the set of scalar parameters \; given by:

(A\Lr1 = 0.64
Aro = —1.32
Ars = —0.92
A = 1.83 : (2.257)
Ao = 3.19
Ar1 = 0.83
(Arz = —0.23

we obtain for the down-type Higgs the masses:
My, =0.34-10"GeV  and My, = 0.57-10" GeV, (2.258)

with the mixing:
cosfgsinfy = 0.53 - 107 ; (2.259)

for the up-type Higgs, instead, we have:

My, = 0.81-10" GeV; (2.260)
and for the neutrino-type Higgs:
My, =0.78-10"GeV  and My, = 540.549 GeV (2.261)
with the mixing:
cosf,sinf, = 1.37-107"2. (2.262)

For the sterile neutrino masses and the 3 x 3 Yukawa matrices (Left and Right), instead,

the program found the values:

126 0 0
Mo=| 0 066 0 |- -10"GeV; (2.263)
0 0 141
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~0.90 —0.93 —0.92
kr=1-021 —055 —0.32] : (2.264)
—0.19 0.72  0.09

0.14 —0.72 0.16
kr=| 081 —0.72 —0.65| . (2.265)
—0.38 —0.56 0.69

With this set of parameters we get the following quark masses:

My = 0.46 MV ;
Maown = 0.24 MeV ;
Meharm = 166.47 MoV ;
Mstrange = 13.1 MeV,
Moy = 2959.73 MeV ;
mbottom - 94896 Mev .

(2.266)

All these values are within the range of 50 from the experimental values (2.182), except
for the top mass that is again completely unrealistic; for this reason we can not expect to

have a good result for the CKM matrix and in fact we found:

~0.723 0.676 —0.143
Vexar = | 0501 0.656 0.564 | | (2.267)
0475 0.337 —0.813

where we enlighted in bold the CKM elements corresponding to the experimental values
(2.247). As we can see, not only the bold elements (especially |V,;|) but also the diagonal
elements, that we would expect to be of the order O(1), are far from the experimental
values. The last results we show are related to the neutrino sector, in which we have
again the same precision problems in the Mathematica calculations. For the mass squared

difference ratio we obtain again a too small result:
r=234-10""; (2.268)

while for the PMNS matrix, which is obtained only from a submatrix of the orthogonal

matrix O, (since the present model does not generate masses for the charged leptons), we



2.8 Mixing 66

get the following result in the normal hierarchy, then using the basis (v, v, v3):

0.323 —0.048 0.945
Upuns = | —0.943 —0.106 0.316 | . (2.269)
0.085 —0.993 —0.080

From these PMNS elements we obtain the following values for the mixing angles:
sin®fy3 = 0.894, sin?6, = 0.022 and sin? 6y = 0.940, (2.270)

which are values far (much more than 150) from the experimental values in (2.256), es-
pecially for the mixing angle #,3 which is bigger by almost two orders of magnitude than
expected. While if we take in account the inverted hierarchy, so we use the basis (v, 13, 11),

we obtain:
—0.0481 0.945 0.323

Upuns = | —0.106  0.316 —0.943 | , (2.271)
—0.993 —0.080  0.08

which give us the following mixing angles:
sin @13 = 0.104, sin®fyp = 0.997 and sin®fy3 = 0.992, (2.272)

which, although we got a better result for the mixing angle 6,3, are values within the
range of more than 250 from the experimental values. Therefore we can argue that, at
the present status, the model is not able to reproduce realistic mixings for quarks and

neutrinos, as well as the masses for the top and the light neutrinos.

2.8.3 Other one-loop corrections

Before improving the model to solve its theoretical problems (charged leptons massless
and unrealistic masses for the top quark and the light neutrinos), in this section we briefly
show some other diagrams that contribute to the masses corrections at one-loop. The first
one is shown in Fig. 2.7 and it represents the one-loop correction to the sterile neutrino

mass term symgsj. The evaluation of this diagram is similar to the gauge loop seen above,
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and it gives the result:

3
5me _kLkRsm0 cosf, Z

lz

=

1/ 21 P)
i v
m; m; Vi [ VR

- — 5— In 5 ~—=In| =5 |.
TTLZ - MHVI .]\4[{1/1 UR UL

We neglect it because this correction is small compared to the tree level value of the sterile

(2.273)

neutrino mass of the order of the Pati-Salam scale (~ 10* GeV).

Figure 2.7: Diagram for the one-loop correction of the sterile neutrino mass mg.

The second type of diagram is related to the correction to the elements of the neutrino
mass matrix of the type ki rvr g, as we can see in Fig. 2.8. However, because of the
particular structure of the Higgs insertions in this loop (the same, represented in (2.141),
needed for a general Majorana mass term mpy WV gV g generation) we know that this

contribution is zero.

Figure 2.8: Diagram for the one-loop correction of the neutrino mass terms: — kf/%L v so and — klf/%R VRS-

Other one-loop diagrams can be built inserting in the loops, of all the diagrams seen
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till now, more and more VEVs and sterile neutrino masses, but these contributions will be

more and more suppressed and so we neglect them in the rest of the thesis.

2.9 Extended model 1

As we have repeatedly emphasized, at the present status the model 1 has two big problems:
the first one is the impossibility to generate a mass for the charged leptons, because with
the particular scalar structure of the model we cannot connect the left charged lepton with
its right part in a scalar loop of type in Fig. 2.3, and the same happens in a gauge loop of
type in Fig. 2.4 where the bosons W, and Wx do not mix; the second problem is the too
light mass obtained for the top quark. In order to solve both these issues we extend the

model introducing two more Higgs multiplets:
A=(4,2,1) and T=(4,1,2), (2.274)

analogs to the multiplets L and R, but with the difference that these new scalars do not
get any VEV:
(Ay=0 and (T)=0. (2.275)

2.9.1 New RGE

In this section we spend few words to note that, with the introduction of new scalar fields,
the running of the coupling constants, related to the groups SU(2) g and SU(4), will
change compared to that shown in Sec. 2.4. In particular in the Callan-Symanzik equation
(2.110) we have to replace the coefficients (2.111) with:

28

Aoy, — AR — —2 and Q40 = —g, (2276)

obtaining the new running depicted in Fig. 2.9, where we compare the evolutions of the
gauge coupling constants of the groups SU(4) and SU(2)r g in the model 1 (where we
have only the two Higgs multiplets L and R) with their evolutions in the extended model
1 (where we have two more Higgs multiplets A and T'). We can see that, although the
introduction of two more Higgs multiplets changes the inclinations of the lines representing
the evolutions of g4(1) and go(p), the energy scale at which the intersection occurs between

the two gauge coupling constants is mantained at p = 2.7 - 10! GeV.



2.9 Extended model 1 69

1
a

/ | | | | | Gev
1x10™ 5x10' 1x10'® 5x10'® 1x10'6

Figure 2.9: Comparison between the running of the coupling constants 1/a; of the Pati-Salam Model for the groups
SU(2)r,r and SU(4). The red solid and blue dot-dashed lines refer, respectively, to the case with only the
Higgs multiplets L and R; while the brown dashed and violet dotted lines refer, respectively, to the case with
also the multiplets A and T.

2.9.2 New Higgs potential and mass spectrum

As we can imagine, with two other multiplets, the scalar potential becomes more complex
than the case with only two multiplets. For simplicity we do not write the complete scalar
potential V' (L, R, A, T), but only the terms which contribute to the Higgs masses and then
to the scalar loops of the type in Fig. 2.3, in which we need four-point scalar interactions
with two VEV insertions in order to connect a left-handed fermion with the right-handed
one and obtain a fermion mass term. So having (2.275), the terms of the scalar potential
which we consider are only those with less than three multiplets A and/or T', since they

are those can contribute to the Higgs masses:

02V (L, R, A, T)
OH, O HIP

M3, o with  H =L R,AT. (2.277)

VEV

Again, for the Higgs fields, we use the following notations: greek letters for the SU(4)
indices and latin letters for the SU(2). r indices, paying attention not to mix the Right
and Left indices. Before writing the potential let us make some considerations about

the independent terms we would have. We limit ourselves to the case of (4,2,1), all the
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reasonings can be repeated also for (4, 1,2). Possible contractions between three fields L,

and one field A;, are given below:

L Lo LjpN? ; (2.278a)
L LigLin N ; (2.278b)
L' L LAY (2.278¢)

notice that the last term can be rewritten as (2.278¢)=(2.278a)—(2.278b) 2. Now we pass

to consider the terms with two fields L;, and two fields A;,, whose singlets are:

L Lin NP Ajg ; (2.279a)
LLu AP N ; (2.279D)
L LjaNAT (2.279¢)
LN L7P A ; (2.279d)
LNjo L7P Mg ; (2.279)
LA LINL; (2.279f)
LN LigN? ; (2.279g)
Lo Lighi” ; (2.279h)
L*Ajo LA (2.279i)

Again some of the terms in (2.279) are not independent, as they can be written as
a linear combination of others; in particular we have that (2.279c)=(2.279a)—(2.279b),
(2.279f)=(2.279d)—(2.279¢) and (2.2791)=(2.279g)—(2.279h).

What we have shown can be easily repeated for the Right multiplets (4,1, 2), and sim-
ilarly to the case with mixing between the Left and the Right multiplets, paying attention
to the fact that the SU(2) indices of L;, and A;, can not be contracted with the SU(2)g
indices of R;, and Tj,. At this point, putting all together, the part of the scalar potential
V with less than three fields A;, and T}, takes the form written in (H.1) in Appendix H.

The minimum of the potential can be evaluated, as usual, solving the equations for the

2This is possible considering the identity ¢ ey = 656) — 601, as seen in Sec. 2.1 for the terms related
to the parameter Aps and Ags.
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first derivatives in the Higgs fields:

OV (L, R, A, T)
OH,

=0 with H=LRAT, (2.280)
VEV

but since any term with more than one field A or T gives a zero contribution in (2.280), we
can use instead of V(L, R, A, T) the potential V. From (2.280) we obtain the conditions:

U2
207, = (A1 + Ar2)v + (ALr1 + Apra) 2
1y = (Axz1 + Axz2)v? + Akt + )\HKQ)U%Z

) g < , (2.281)
21 = (Ar1t + Ar2)vE + (ALr1 + ALg2) £
pd = (Mg + Aur)vi + (Aact + Aaca)vk
that give the same form for the minimum found in Sec. 2.1.1:
: v Vi ViR
Vinin = —(Ar1 + /\L2)Z — (Ar1 + )\R2)Z — (ALr1 + ALR2) 1 (2.282)

Even if the presence of the two new Higgs multiplets does not change the form of the
minimum, certainly it modifies the mass spectrum of the Higgs fields. In fact, although
every mass matrix for a particular type of Higgs fields continues to be decoupled from each

others as before:

M2 par 0 0 0
M par = ! Minar, ’ ! (2.283)
0 0 M2 s, 0 ’
0 0 0 M?par,

we find that, using the basis (L,, Ry, Ay, T},), the single squared mass matrix for the up-type
Higgs fields is now of the form:

v v
—ALrz  ALR2yE —AHK2 AHI25E
2
2 v _ v _ v _ L
112 VR ALR2 - ALR2 ) AHK2, . AHT2 ) (2.284)
LRAT, 2 Y —\ vp b\ vL ) .
HK?2 HK2, Pu HJ2y,

v v v
AHI23E —Aleé AHJ25E Qu
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with

2
Du = —4/: + (Axy1 + >\XY2) + )\KKl

¥ . (2.285)
q. = —458 ) + (Aap1 + Aapa) + )\111

In the top left 2 x 2 submatrix we can recognize the previous squared mass matrix M? R
evaluated in (2.66) for the simple model with only two Higgs multiplets. The same happens

for the down-type Higgs where, using the basis (L4, R4, Ag, T;), we obtain the squared mass
matrix:

2

YR
MiRATd =5 X
—2A12.5 — ALR2 2ALR3 = _)\XZQ% — AHK2 AHI3E
v? v 02 ‘
2ALR3 = —2ARo — )\LRQé AHK3 . —Aac2 — )\HIQé (2.286)
_)\XZQZTL — AHK2 )\HK:%Z—; Pa )\JLIJ:aZ—}fz 7
R )2 §
AHI3RE —Aac2 — Aundk VO E o qa
with
Pd 4MY + >\XY1 b+ AKK1
: Pl (2.287)
qa = 411}1: + Aap1 + Arn ok

Eventually the Higgs fields related to the neutrino sector, with the basis (L,, R,,A,,T),)
has the following squared mass matrix:

2
MgRATl, = 7R><
2 2
201+ A2)F (Arm + Arr2)yE (Axz+ Axz2)%  (Agn+ Anrz)k
o o (2.288)
(ALr1 + )\LRQ)_I% 2(Ar1 + Ar2) (k1 + /\HKZ)_L Aact + Aace
(Axz1 + szz)é (Agk1 + )\HK2)5_; j2% (Ark1+ )\HJZ):j_II; 7
(Amn + )\HIQ)U_L Aact + Aace (Ark1 + )\HJ2)5_; "y
with
Dy = — + (Axv1 + Axve + Azz + 2)\223) + (Akr1 + )\KK2)
Qv

. (2.289)
+ (Aap1 + Aap2 + Aoc + 2Aces) + (>\U1 + )\112)

As we will see later, the new Higgs multiplets, in addition to produce the modifications
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of the squared mass matrices, they will also cause an addition of new diagrams involving
scalar loops, which will correct the radiatively generated masses of quarks and leptons.
The biggest change is in the sector related to the charged leptons. In fact, using the basis

(Le, Re, Ao, T,), we have that the squared mass matrix is non-zero and it has the form:

00 0
w210 0 0 0
MgRATe = 7R op |0 (2:290)
0 0 Pe ()xHJg - >\HI3)E
0 0 (Agys— /\HIS):j_}]jc e
with ) 2
pe = =47 + (Axv1 + 2Xzz3) 3k + (Akk1 + Axrca) (2.291)

i -
Qe = —45—5 + (Aap1 +2Xces) + (A + )\112)é

This means that, while in the simple model the mass eigenstates of the e-type Higgs squared
mass matrix were pure Goldstone bosons which gave mass to the vector bosons W} and
WE, in this extended model we obtain in general two massive eigenstates for the e-type
Higgs, which mix the Left and the Right multiplet (A and T respectively) making possible
to build up diagrams for the radiative mass generations for the charged leptons, totally

absent till now.

2.9.3 New scalar loops

As anticipated above, we have a new set of diagrams for the radiative fermion mass genera-
tions. In fact, while the diagrams with loops involving gauge bosons remain the same seen
for the simple model in Fig. 2.4, we have now to consider three more diagrams containing
scalar loops, shown in Fig. 2.10. These new diagrams are given by all possible combinations
between an Higgs multiplet (4,2,1), L or A, and a multiplet (4,1,2), R or T.

V\ I’ \‘ ,4 \‘ ,4 \‘ ,4
Sal Sael Sael Sael
L,’— ~~R + L,’— S + Al’— \\R + Al" ~ T
’ 7l ’ 5 H = 7 v
i/ N A I N A I N [ I N A

Figure 2.10: Sum of all the possible scalar loops contributing to the radiative fermion mass generations.

The scalar-loop contributions to the fermion masses, in analogy with that seen in



2.9 Extended model 1 74

Sec. 2.6.1, will be given by the general formula:

9 2 4
Z 3z Z[k‘R OHw)Z] + kT(OHw)4]:| [kL(OHw)].] + kA(OHU)?)]]
= =t (2.292)
Mflw, M2
X s 0 5 ,
MHW- -my MHW-
where for the neutrino mass eigenstates in the logarithms we use the definition:
i if m; #0
™A omi# , (2.293)
const. # 0 if m;=20

while M12{W represent the eigenvalues of the squared mass matrix M7, AT, With ¢ =w,d, v,
and Oy, are the 4 x 4 orthogonal matrices built up with their normalized eigenvectors, for

which the following identity is valid:
4
Z(OHw)ik(OHw)jk =045 - (2.294)
k=1

We note, instead, that for the charged leptons (¢p = e) the formula (2.292) has to be
restricted to the 2 x 2 non-zero submatrix of M7y, related to the mixing of only the
Higgs A. and T:

(e) . i mZ(O 32 /{} O ]C O M%Iej 1 m?
TTLH — Z (4:— Z T He 45 A( He) MI?I - m? n MIQ_I ' ) (2'295)
=1 Jj=3 I “
with
10 0 0
0 1 0 0
On, = _ (2.296)
0 0 cosb.3qs —sinb.sy
0 0 sinfey cos0O.34

2.9.4 Numerical results without mixing

Due to the larger parameter space, we need to rely on a different software to test numer-
ically the extended model. So, instead of Mathematica, we implement a new scan code

using MultiNest [24, 25, 26]. It is a Bayesian inference tool which explores the param-



2.9 Extended model 1 75

eter space trying to maximize their likelihood given the experimental values (2.182) and
(2.186). For the sake of simplicity, we perform two approximations in order to reduce the
number of free parameters in the scan. First of all we neglect the mixing between the pairs
(L, R) and (A, T). In this case we have two contributions coming from the scalar loops, in
the same form as (2.145), one for the mass eigenstates Hy; and Hys, linear combinations
of the fields L, and Ry:

1=1

2 -
2 2 2 )
my — MHW MHW

and the other for the mass eigenstates Hys and Hya, linear combinations of the new fields

9 , M? n?
' m; H m;
m%)g = kij‘R Sin 9¢12 COSs 9¢12 (Ou>§z (477')2 [mg — ﬁ% In (MIZ_I ) _
) Pl Pl
2 (2.297)

Ay and Ty only:

9 M? 72
@) ' 9 My Hys my
My = kakrsin@ysg cosOyss Y (0,)3; In B
H34 ; ¥ (4)2 | m? — MIQ-IM MEIM)

2 -
2 2 2 :
my — MHM MHM
(¥) (¥) D)

The total scalar loop contribution, for each family, is then given by: my’ = myi, + My,

(2.298)

with ¢ = u,d, e,v. In this way we have to take in account only two mixing angles. More
to that, assuming to have in V enough parameters to generate any particular Higgs mass
spectrum (a fine-tuning hypotesis [27, 28|), we consider as parameters to scan, instead of the
A8, directly the Higgs squared mass and their mixings. Here below we show two examples
of results, in the case without inter-family mixing, obtained with MultiNest. We let span
the values for the Yukawa couplings (k¢, k%, k% and k% with a = 1,2, 3 the family index),
and a parameter m,, related to the sterile neutrino masses, by the identity: mo, = m,vg,
in the interval [—10, 10], while we use the interval (0, 10] for the parameters &y; and 7y,

related to the Higgs squared masses and mixings, respectively, by the identities:

% 5 UR
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with ¢ = 1,2,3,4 and 2y = 12,34. Remembering, from the non-extended model, that:

ME, s substitute in the loops with M%; the mixing cos 6,12 sin 0,12 = L is a constant;

VLVR
while M7 = M} =0, then cos 012 sin 012 = 0. Furthermore we note that it is possible

to consider a positive interval where to search for the values of the parameters, not only
those related to the Higgs squared masses, but also those related to the Higgs mixings.?
The two examples we present have a Log-likelihood ~ —35, but they differ in the interval
we use for the parameters £,9, in order to have My , of the order of the SM Higgs mass. So,
in the first example we use the interval (0, 10] common to all the other scalar parameters,

while in the second example we use the smaller interval [0.2,0.3].

Example 1

In the first example, we get the following Higgs masses:
My, =2.13-10"GeV ~ and My, =2.17- 10" GeV (2.300)
for the down-type Higgs, linear combinations of L; and R; with the mixing:
08 0412 8in Og19 = 0.96 - 10712 ; (2.301)
while for the others two down-type Higgs, linear combinations of Ay and T, we have:
My,, =270-10"GeV  and My, = 2.66-10"GeV, (2.302)

and the mixing:
oS Og34 8in O34 = 2.93 - 10712 (2.303)

For the up-type Higgs, combinations of L, and R,,, we have:
My, = 1.67- 10" GeV (2.304)

where we remember that, being the same situation seen in the simple model, the other

eigenstate H,; is a Goldstone boson (so we use Mp,, = Mx in the scalar propagator) and

3This because, if we need a mixing cos Oy sin by, < 0 the program has only to interchange the
parameters related to A4§¢L3 with those related to AJ%@?A’ which are all of order O(v%) except for
the case MIZ_IV2 = &,2v%. However we know from (2.80) that for the corresponding mixing we have:
cos60,155n 60,19 ~ O(%) > 0.
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the mixing is given by the constant value (2.200). While for the other two up-type Higgses

we get the values:
My, =148-10"GeV  and My, = 1.72- 10" GeV (2.305)

with the mixing:
C0S O34 80 O34 = 1.47 - 10712 (2.306)

We go on with the v-type Higgs, combination of L, and R,, for which the program select
the values for the mixing:
cos 0,12 806,19 = 1.17 - 10711 (2.307)

and the masses:
My, =231-10"GeV ~ and My, = 611.88GeV, (2.308)

where again, like in the previous results for the simple model, we can see that My , is
too big to represent the Standard Model Higgs. For the mass eigenstates coming from the

combination of A, and T,,, which have to be of the order of the Pati-Salam scale we get:
My, =212-10"GeV ~ and My, =2.01-10"GeV, (2.309)
with the mixing given by:
oS 0,34 5in 0,34 = 2.09 - 107 . (2.310)

To complete the Higgs mass spectrum there remain the massive Higgs related to the charged

leptons sector:
My, =2.04-10"GeV  and My, =2.31-10" GeV (2.311)
that are combintation of A, and 7, with the mixing:

€08 Bp34 80 O34 = 1.93 - 10712 (2.312)
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The remaining parameters are the four Yukawa couplings for the three families, that we

collect in the following diagonal matrices:

007 0 0
kb= 0 095 0 |;: (2.313)
0 0 6.97
—0.05 0 0
kr=| o —016 0o |; (2.314)
0 0 —541

041 0 0
ka=| 0 =103 0 |; (2.315)
0 0 256

014 0 0
kr=| 0 030 0 |; (2.316)
0 0 201

and the three sterile neutrino masses, one for each fermion family:

—2.22-1072 0 0
My = 0 208 0 |-10"GeVv. (2.317)
0 0 0.20

With this particular selection of parameters, as results for the quark masses, we obtain the

values:

Myp = 0.60 MeV ,  mgopn = 0.09 MeV |
Meharm = 293.75MeV |, Mgrange = 23.97 MeV (2.318)
Miop = 17.46 GEV ;| Mpottom = 1.13 GeV,
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so that all masses are within the 1o experimental ranges apart from mgy,,, Which is

reproduced within 30. A good result is also obtained for the charged lepton masses:

m, = 0.48 MeV ,
m,, = 103.63 MeV , (2.319)
m, = 1663.42 MeV ,

where all the three masses are within the 1o range from the experimental values. On the

other hand, in the neutrino sector we still have a very small r ratio:
r=394-10"%. (2.320)

Example 2

The second example we show is defined with the following parameters selection:
My, =2.12-10"GeV ~ and My, = 2.04- 10" GeV; (2.321)

Mpg,, =2.14-10"GeV ~ and My, =2.09- 10" GeV; (2.322)

for the down-type Higgs, with the mixings respectively:
co80g1n8infgo = 1.10- 107" and  cosfysssin s34 = 1.96 - 10712, (2.323)

While for the up-type Higgs we have:

My, = 2.18 - 10" GeV; (2.324)
My, =231-10"GeV  and My, = 2.68-10" GeV, (2.325)

with the mixing:
0S O34 5in O34 = 1.42 - 10712 (2.326)

To the Higgs related to the charged leptons, instead, the program assigns the masses:

My, =241-10"GeV  and My, =2.21-10"GeV, (2.327)
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and the related mixing:

0S O34 8in O34 = 1.86 - 10712 (2.328)

Next we get the mass values for the v-type Higgs:

My . =2.08-10" GeV and My, = 122.50 GeV ; (2.329)
My, =2.40-10"GeV ~ and My, =2.36- 10" GeV ; (2.330)

with the mixings:
cos6,15sin 60,15 = 1.20 - 1071 and c0s 0,34 8in 0,3, = 9.05 - 10712, (2.331)

We can recognize in My, , a more realistic SM Higgs mass, because in this second run we
used for My, , a smaller interval, in which to span the parameter scan code, than in the
previous example, where was selected a My, , too big.

Eventually we have the parameter selection for the Yukawa couplings:

022 0 0
k; = 0 047 0 (2.332)
0 0 6.88
008 0 0
kr=1 0 048 0 (2.333)
0 0 420
021 0 0
kx=1 0 —-0.86 0 (2.334)
0 0 —1.90
038 0 0
kp = 0 —168 0 (2.335)

0

0

4.37
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and the sterile neutrino masses:

—217-107° 0 0
My = 0 035 0 | -10"GeV. (2.336)
0 0 1.10

With this particular set of parameters we get the results:

Myp = 0.56 MeV ,  Mmgoyn = 0.15 MeV |
Meharm = 251.64MeV  Myprange = 30.47 MeV | (2.337)
Myop = 79.99 GeV Mpottom — 1.14 GeV .

While for the charged lepton masses we have the values:

me = 0.48 MeV ,
m,, = 102.07 MeV (2.338)
m, = 1750.62 MeV .

All these masses are within the 30 range from the experimental values (2.182). For the

light neutrinos, instead, we obtain the ratio:
r=15-1077, (2.339)

that is still too small.

2.9.5 Numerical results with mixing

To generalize this extended model to the case with fermion inter-family mixing we can
follow exactly what discussed in Sec. 2.8; the only difference is that now we have two more
Yukawa couplings, ky and kr, to promote to general 3 x 3 matrices. In order to keep at
a handleable level for MultiNest the number of parameters in the mixing-case we let the
program scan only the values for the Yukawa matrices and the sterile neutrino masses.
For the parameters related to the Higgs masses and mixings, instead, we use the values
found in the previous examples, without inter-family mixing. In this case, the program
has to maximize the likelihood of the parameters (which for the following examples results

Log-likelihood ~ —100), not only with respect to the experimental values of the quark
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masses (2.182) and the mass ratio (2.186) for the light neutrinos, but also with respect to
the CKM elements in (2.247). We tried to insert also the PMNS mixings in the fit but
the program remained stalled. We remember that, since we use real Yukawa couplings, we
will obtain real mixings for the CKM and PMNS matrices.

Example 1

The first results we show are obtained with the Higgs sector given by the values from
(2.300) to (2.312); while for the Yukawa couplings MultiNest selects the following values

collected in the matricial forms:

~3.47 447 3.55
kp = 098 162 —1.18]; (2.340)
—0.02 0.89 —0.30

~0.56 2.04 262
kr=|—001 —0.98 —1.69 | ; (2.341)
0.62 —2.76 —3.38

0.68 —1.72 —0.98
ka=1074 002 133 |: (2.342)
0.76 —0.10 0.64

—-0.82 1.25 1.17
kr=1-038 090 —0.95] ; (2.343)
1.04 —-124 —-1.39

and then, to complete the parameter set, we have the sterile neutrino masses:
—-054 0 0

My = 0 1.20 0 10" GeV . (2.344)
0 0 —210-1072
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With this choice for the parameter set we obtain as eigenvalues from the 3 x 3 mass matrices

for the up-type and down-type quarks the following results:

Myp = 0.87MeV,  Mmgopn = 1.38 MeV
Meharm = 225.36 MeV',  Mytrange = 18.67MeV | (2.345)
Myop = 1.11 GeV s Mpottom = 72.33 GeV s

values that are all inside 2.20 from the experimental values. Beyond that, for the quark

sector, we can also evaluate the CKM matrix:

—0.943 —0.331 0.008
Verkw = | 0330 —0.938 0.102 | , (2.346)
—0.026  0.099  0.995

where we can see that, although the diagonal elements are of the order O(1) as we expect,
the non-diagonal elements in bold are distant from the experimental (2.247). From the

charged lepton mass matrix, instead, we get the eigenvalues:

me = 0.46 MeV ;
m,, = 99.27MeV ; (2.347)
m, = 1927.06 MeV ;

all masses are within the 20 range from the experimental values. While for the light

neutrino masses we reach the ratio:
r=0.026, (2.348)

a value that is inside the 50 from the refence one (2.186).

Before showing also the resulting PMNS matrix, we have to mentioned another dif-
ference with the simple model. In fact, because in this extended model we have also a
generally non-diagonal charged lepton mass matrix, the PMNS matrix is effectively given
by the (2.250), where U is different from the identity matrix. So in the normal hierarchy

we have:
—0.648 0.760 0.042

Upuns = | 0323 0.224  0.920 | , (2.349)
—0.690 —0.610 0.390
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from which we obtain the mixings angles:
sin?6;5 = 0.002, sin®fyp = 0.579 and sin® 6,3 = 0.847, (2.350)

where the best result is given by the mixing sin® ;5 which is inside the 90 range from
the experimental value (2.256), while the other two mixing are inside more than the 150

ranges. In the inverted hierarchy, instead, the PMNS matrix is given by:

0.760 0.042 —0.648
Upuns = | 0224 0920 0.323 |, (2.351)
—0.610 0.390 —0.690

with
sin? 013 = 0.420, sin®f1, = 0.003 and sin® 63 = 0.180, (2.352)

where, this time, we have the best result with the mixing sin? o3 which is inside the 100
range from the experimental value, while sin® 6, is inside the 18¢ range and sin® 63 is

even more distant.

Example 2

The second set of results that we show is obtained using the values from (2.321) to (2.331)
for the scalar sector, while for the four Yukawa couplings and the sterile neutrino masses

the code found respectively the values:

—0.43 —0.85 0.68
kr=1|—-460 0.84 048] : (2.353)
—0.26 —0.57 0.72

350 —1.94 —0.86
kp=|341 —1.89 —0.64] ; (2.354)
0.28 —0.40 0.19

—0.45 —0.20 1.43
ka=|-0.02 335 —042] (2.355)
~0.39 0.07 0.93



2.9 Extended model 1 85

—92.42 1.17 1.49
kr=1-226 210 0.89 | : (2.356)
0.11 1.57 0.26

356 0 0
My=]1 0 -231 0 10" GeV . (2.357)
0 0 —0.23

This second set of parameters leads to the quark masses:

Myp = 0.43MeV |, Mmgoun = 1.14 MeV |
Meharm = 246.73MeV | Mgtrange = 23.48 MeV | (2.358)
Myop = 74.67 GeV, Mpottom — 1.16 GeV s

all values within the lo range from the experimental values in (2.182), apart from the
bottom which is inside the 20. While for the CKM matrix we obtain:

0.973 0.229 0.015
Vexkm = | —0.228  0.961 0.156 | , (2.359)
0.022 —0.156 0.988

where we note that, although the diagonal elements are again of order O(1), the absolute
value of the element |V,;| is within the 60 range from the reference value in (2.247), while
|Vep| and |V,p| are even more distant.

Also for the charged lepton masses we obtain results within the 1o range from the expected
values in (2.182):

m, = 0.50 MeV ,
m,, = 101.88 MeV (2.360)
m, = 1726.27 MeV .

While for the light neutrinos we get the ratio:
r = 0.006, (2.361)

that if far at least 250 from the reference result in (2.186). We conclude this second
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example with the results for the PMNS matrix in the normal hierarchy:

—-0.411 0.891 0.195
Upuns = | 0906 0.376 0.192 |, (2.362)
0.098 0.256 —0.962

which leads to the mixing angles:
sin? 65 = 0.038, sin®fyp = 0.825 and sin® 6,3 = 0.038, (2.363)

where the best result is for the mixing sin®#;3 which is within the 60 range from the ex-
perimental value, while sin? 6,5 and sin? 6,5 are inside the 310 and 160 ranges, respectively.

In the inverted hierarchy, instead, we have:

0.891 0.195 —0.411
Upuns = | 0.376  0.192  0.906 | , (2.364)
0.256 —0.962  0.098

from which we obtain:
sin?fy3 = 0.169, sin®f;, = 0.046 and sin®fy3 = 0.988, (2.365)

which are all inside ranges bigger than 160.

Although with the extended model we are now able to generate the correct mass spec-
trum of all the quarks and the charged leptons, within the range of 20 from the experi-
mental values, the model seems to fail in reproducing the mixings, of the CKM and PMNS

matrices, and the light neutrino masses, which give a ratio r still too small.



Chapter 3

Model 2

The second model that we study was developed by R. R. Volkas [3]| and it differs from the
previous one only in the scalar fields content. In fact, under the gauge group SU(4) ®
SU(2);, ® SU(2)y, the scalar content of the model 2 is given by the Higgs fields in the

representations:
R~ (4,1,2) and &/ ~(1,2,2) (3.1)

where o = 1,2,3,4 is the index of SU(4), while i = 1,2 and [ = 1,2 are the SU(2)g
and SU(2), indices, respectively. So we do not have any left-handed Higgs multiplets, as
L and A in the model 1, but only a right-handed Higgs multiplets R, responsible for the
SU(4) symmetry-breaking, and a bi-doublet ® |29, 30, 31], responsible for the electroweak

symmetry-breaking. Under gauge symmetry these two multiplets transform as:
R— UgRVT  and & — UL®U} (3.2)

with Uy p € SU(2),r and V € SU(4). Let us recall that for the complex conjugate fields
the notation is given by: (R*®)* = R,, and (®})* = ®!. Furthermore we can note that it

is possible to build up another bi-doublet @, using ® and the Pauli’s matrix o5:

o1 O < 1 (83)°  —(¢7)"
ol = |71 72 — ¢l = o* L= ’ 3.3
Z (cb% d%) = (oo, (—(a%)* (cb%)*) 33

which transforms as ® under gauge symmetry:

d — U,dU}, . (3.4)

87
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3.1 Scalar potential

Since the only difference with the model 1 is the scalar content, the Lagrangian of the

model 2 is practically similar to (2.11):
3 —_— —
L= Z{N(L”WD#\IJ(;) 0D D, U + iy Dy, s 4 st Prra), 500 -
F=1

Yukawa

— [sfg(f)m(()f)séf) + h.c.} + P } — V(R, D) + Lyauge fizing +

+ D, &/ D"®} + D, Ry D" R — %’I‘r (GG + Wi WY+ Wiy Wi |
apart for the terms including the Higgs fields, that are the scalar potential, the scalar
kinetic terms and the Yukawa interactions, from which we get a completely different phe-
nomenology compared to the model 1.

Let us analyze the Higgs potential for the scalar multiplets R and ®. We start looking
for all possible singlets that can be generated with the representations (4, 1,2) and (1, 2, 2).
For what concerns the multiplet R we skip the analysis which has already been done in
Sec. 2.1, where we obtained the structure of the terms containing only R (see (2.28)) and
we know that its VEV is given by (R'") = v # 0. For the gauge invariant terms involving
the bi-doublet, instead, we start from the quadratic terms given by the following tensor

products:
(1,2,2) ® (1,2,2) = (1,3® 1,30 1) > (1,1,1) ~ &/ ", (3.6)

where we have shown only the structure of the resulting singlet, and

(1,2,2) ®(1,2,2) = (1,3® 1,3® 1) 3 (1,1,1) ~ O/ eVes ;@) = — Pl Ple;; =

g o - (3.7)
= —(pg(iUgR)Uq)j(iO'gL>JI = (I),L-I(O'QR)ZJ((I)?]>*(O'2L)JI = (I)llq)zl,
with the related hermitian conjugate:
(1,2,2)®(1,2,2) 3 (1,1,1) ~ &/} (3.8)

(for more details about the tensor products in SU(2) see Appendix B).

Since we cannot generate singlets with three representations (1, 2, 2), we pass to the quartic
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terms in ® and we find four possible singlets:

(1,2,2) ® (1,2,2) ® (1,2,2) ® (1,2,2) = (1,39 1,30 1) ® (1,36 1,36 1) >
(LL1)®(1,1,1) ~ O/ di 0/ P

(1,3, 1) ®(1,3,1) 3 (1,1,1) ~ HYHMY (efpre x5 + ernesn) (3.9)

(1,1,3) ®(1,1,3) 2 (1,1,1) ~ H;j Hypp (™™ + €me™)

(1,3,3)®(1,3,3) 3

1,3,3 1,3,3) 3> (1,1,1) ~ HH)N(eMe™ + €me™) (ernregn + €1n€snr)
where we used for the symmetric tensors the notation:

(1,3,3) ~ HY = %((I){CDJJ + <1>;?<1>§.)
(1, 1, 3) ~ Hij = HinJEIJ . (310)
(1,3,1) ~ HY = Hl/ €

All possible combinations of bi-doublets, giving rise to singlets, are listed in the following

gauge-invariant trace relations:

/Pt = Tr[dd!] = Tr[d'd]; (3.11a)
Tr[®®'] = Tr[ddf); (3.11b)
Tr[®®] - Tr(®'d] =2 Tr[®d'ddid] = 2. Tr[ddIodf]; (3.11c)
Tr([®®] - Tr(dfd) =2 Tr[d'dd! ] ; (3.11d)
Tr([®oaip] = (Tr[(I)T@])Q — Tr[' 0D ) ; (3.11e)
Tr[®1odTd) = Tr[dT oo P . (3.11f)

It remains to consider the mixing between R and ®. It is easy to understand that this kind
of terms have to be quartic in the fields in order to produce a singlet; in particular, in order
to have the contraction of all the indices we need two multiplets R, the only multiplet with
the index of SU(4), and two bi-doublets ®, the only multiplet with the SU(2), index. An

example of this type of quartic term is:

(4,1,2) @ (4,1,2) ® (1,2,2) ® (1,2,2) = (1,1,30 1) ® (1,1,3® 1,3® 1) 3
(1,1,1) ® (1,1,1) ~ R, RED), &7 (3.12)
(1,1,3)® (1,1,3) 3 (1,1, 1) ~ KTH™ (&€in + €inEim)



3.1 Scalar potential 90

where R!, = einja and K%Y = %(Rmeijka + Rjo‘eikRka) is a symmetric tensor. The

complete list of gauge-invariant traces with R-® mixing is given by:
Tr[RR'] - Tr[®d']; (
Tr[RRI®T®]; (3.13b
Tr[RR] <T7’[<I>T<f>] + h.c.) : (
Tr[RR'®1®] + h.c.; (3.13d
Tr[RR'®!9]. (3.13e

In this way we arrive to the final result for the most general gauge-invariant scalar potential
that has the form:

V(R,®) = — 3 R0i R + m Ry R* R R% + ny Ry RP R RY
— 3P0 + s D] D] + 1y @ D]/
— u% (@361‘162‘]‘@?} + h.c.) + 75 (@’}elJeij@‘gq)lj:eLRelT@% + h.c.)
+ 15 (@O excp B + e (3.14)
+ 6 R RS + Rai R OI0] + &R R (el ey + e
+ & (RmRaj@]Ierik@i + h.c.) + §5RmRo‘j61L6jl<I>lL€1R6"CI>f )
What remains to understand is how the symmetry breaking to SM realizes, therefore which

is the vacuum expectation value for the bi-doublet ®.

3.1.1 VEV of the bi-doublet
In order to evaluate the structure of the VEV of ®, we start to consider the part of the
potential (3.14) involving ® only:
2
V(®) = — 12 Tr[®td] + 15 (Tr[chcb]) o Tr[®t doT ]
— [TT[Q)T&)] + h.c.] + 15 [(T?‘[(I)T(f]) + h.c.} (3.15)

+ 76 [TT[CDTCI)CI)@} + h.c.] ,
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and we look for the minimum of this potential calculating its first derivative:

IV ()
aq)li

[_F‘g +2(115 + ma) |2 + 76 (det[®] + det[(I)T])} O -
+ [—2u§ + 16| D[* + 2 (475 det[P] — 1 det[cpT])] €17€P7 .

Asking that (3.16) is equal to zero when ® gets VEV, we find that the most general cases
with (@) # 0 are given by the following two possibilities:

'<<@H> 0) with (@11), (@22) £ 0

0 <(I)22>
(@) = : (3.17)
0 <(I)12> : 12 21
\ <<¢21> 0 ) with (&%), (®2!) £ 0

In order to discriminate between these two cases we use another request, that is we ask

(®) to preserve the electric charge; so using the definition in (2.14) we find:

(@) 0 _ m_ [ 0 w
Q(® )-( 0 _@22)) =0 = (") = (—u2 O) : (3.18)

which is consistent with the second of (3.17). We assume real VEV, so u,us € R, as in
the previous model 1. At this point, inserting this VEV in (3.16) we find the relations:

2 __ 2 2 (4ns—ma)p3—2nep3
[GV(@)] _0 {|CI)| =uj +u; = 2(17?527;4)4(477231746)5;73 (3.19)
T = . _ A(mtma)p3—mep ' '
odlt lyvey det[®] = uyuy = T m0) (A5 —0)— 272

Moving the indices of the bi-doublet, we define the VEV as:

0 (75

(1) = e;;(D1) = (“1 0) , (3.20)

with

VI [ual? = % = 174GeV . (3.21)



3.1 Scalar potential 92

To complete the analysis of the bi-doublet, we show its composition in terms of complex

fields:

; ((Dll)Jr (@12)0 ¢0 ¢+ 5 ¢0* _¢+
oli — ((@21)0 (@22>_) — P = <¢11 (;g> and & = (_;2 ¢?*1> . (3.22)

Here we have to pay attention to the way we move the indices, in particular we have that:

EIJEijCI)Jj = (i)[i 7é q)]j = ((I)h)* and CI)zI = Gijq)lj 7é CIJCI)Ji = (‘I)*)I . (323)

7

3.1.2 Minimum of the potential and Higgs masses

To get the minimum of the complete potential (3.14) we evaluate, as usual, the zeros of

its first derivatives when the Higgs fields get VEVs; so from the equations:

OV (R, ®)

[M ORM }VEVZO (3:24)

OV (R, D)
0d] }VEV - [—

0P3 ]VEV =0 and [

we obtain the conditions:

i = 2(m 4+ n2)v® + (& + E)ui + (& + & )ui + 2(253 + 54)U1U2
= {5 = 2(n3 + ) (uf + u3) + 2nsurus + (&1 + &) o, — (& + 55) -y (3.25)

u—u
2

13 = (215 — ma)uruz + 7 ﬁu? + (2 +84)% — (G- 55)%1_“53”3

where we assumed u; # up. Inserting the constraints (3.25) in the potential (3.14) we

obtain the minimum:

Voin = — (1 + ma)v* — (03 + ma) (uf + u5) — 2nzuiuy — 2neusug(uf + u3)

(3.26)
— (&1 + &)%u] — (& + &)vPus — 2(28s + Ea)v uyuy .

Concerning the Higgs masses instead, since we need to evaluate the terms proportional
to H'M%H, we have to consider the second derivatives of the potential (3.14):

9’V (R, D)

02V (R, D)
[— OPIOR4 ] VEV

D?’V(R, D)
5)(1)1,13(1){'] }VEV’ [—

OR"“0R;s ] VEV and [

(3.27)

For the Higgs R? (with a = 1,2,3 the colour index of SU(3)¢), related to the up-type

quark sector, we find M 2u = 0; so, since we have three copies of R and these are complex
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fields, they can be interpreted as the six Goldstone bosons which give mass to the three
leptoquarks Xi, as we will see in Sec. 3.3. For the Higgs fields R} (with a = 1,2,3),
related to the down-type quark sector, instead we find the squared mass:

Mg, = (& — &) (uf — uj) — 2mp0*. (3.28)

Another scalar field decoupled from the others is the charged Higgs field @5, for which we

find the mass:
v2u%

My = (6 — &)~ (3.20)

—u3’
At this point, since the partial-unification scale has to be higer than the electroweak scale
we assume v > u; > up and asking to have positive squared Higgs masses, we find the

constraints:

{55 —e>0 (3.30)

n2 <0

The last two charged Higgs fields, ®; and R., mix each other in the squared mass matrix:

2,2
2 —Uly
Ml%fie = (55 - §2) ( o 9 2) ) (3'31)

in the basis (¢, R.). The matrix M .. can be diagonalized using the orthogonal matrix:

O 1 vuy  —(uz—ui))  [cosOysr —sinfys (3.32)
e VIv2ug — (u? —u2)?] \uj — uf Vs © \sinfye  cosOps |
obtaining:
. M2 + 0 2 _ u + ’U ’LL2 0
M2 diag __ OT M2 O — Hj — _ 2 —u3 3.33
( Hie) H+"g  YH+ 0 M?Ii (55 62) 0 0 ( )
2

where the zero eigenvalues are related to the Goldstone bosons that give mass to the
gauge bosons WjR. Instead, for the Goldstone bosons needed to give mass to the vector
bosons W:EL we can use a combination of the imaginary parts of the fields: Im[¢;] and
Im[¢] cos Oy — R, sin Oy |, which can be considered massless, while their real parts remain
massive.

Last we have the squared mass matrix for the neutral Higgs, in the basis (¢}, #9, R,),
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which is given by:

A 2773U1U2 + Mg (U% + u%) D
Miy,, = | 2nuruz + n(uf + u3) B C (3.34)
D C 2(m + m2)v*

with

A = 2(n3 + na)ui — 2n4u3 + 2nsurug + (& — 52)1;}12%35
B = 2(15 + 1) — s + 2nguatiz + (& — &)y
C = (& + &)vug + (283 + &4)vuy

(&1 + &2)vuy + (283 + E4)vuy

(3.35)

D=

In order to simplify the analytical computation of the eigenvalues of M?{OV, we limit our

attention to the following particular case:

m=m=1n=2+8=8+&=0; (3.36)

as we can see this choice does not involve the masses for the charged Higgs found above.

With these constraints we obtain, for the neutral Higgs, the following squared mass matrix:

Uzu—%uz 0 0
1 2
My, = (&G—&0*| 0 i, w | (3.37)
ug ni+n2
0 02 255—52
which gives the eigenvalue:
2 UZU%
Miro = (&~ &) s (3.38)
—uj’
and, from the 2 x 2 submatrix of (3.37), the other two eigenvalues:
2 v? 2 2 2, A
My = 20 — ) [2(771 +m2)(uy — u3) + (& — &)uy + ﬁ] (3.39)

with

A= 201 + ) d) — (6~ ©)ed] +02[2(6 — @) — D] - (3.40)
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Assuming again v >> uy > ug, we find for the eigenvalues in (3.39):

(& — &) (uf — u3)uj

2(m 4 ma) (Ui — u3) — (& — &2)ud

M7, =~ 2(n +n)v” +

, (3.41)
M2~ (& — &)v*ui (& — &) (ui — u3)u3
= uf — uj 2(m + n2) (uf — u3) — (& — &)ui
while the orthogonal matrix is given by:
O E (& — &Jugv  mT —2(m + m)v”
o (€5 — &2)ugv \m?2 — % (& — &2)ugv
P 3.42)
(&5—€2) (uf —ud)uj (
~ E ( (& — 522)“22”2 - <55—52>u%—2<nf+n§)(u2%—u%>)
(& = Go)uzv (55—5(25)2735—22)((511;:;))&2%—u5) (& — EoJuzv
with

Ve [6 — &t — 200+ )~ )]+ (6 — €020 — s

We note that using the assumption v > u; > uy directly on (3.34) we would have found:

2

=2 0 0
1 2
u2
Mg, =~ (& =& | 0 e AL (3.44)
ni+n
0 0 2&5—522

which are quite the same values of the eigenvalues obtained from (3.37), with the fields
0 ¢9 and R, all decoupled. As a last consideration we note that, under the assumption
v > uy > ug, we have to interpret M3, as the squared mass of the Standard Model Higgs,

while the other two masses, M% + and M?%_, have to be at an higher energy scale.
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Interlude on the case: u; = us = u

In the particular case where the two VEVs of the bi-doublet are equal, (¢?9) = (¢9), from

the derivatives in (3.24) we obtain a different set of constraints given by:

=&
i =20%(n + me) + 2u* (& + 26 + &4+ &5) ; (3.45)
pa = =23 + 2u(2n3 + 4 + 205 + 2n6) + 03 (E1 + 26 + €4+ &5)

while p3 remains a free parameter whose natural scale will be the Pati-Salam scale, so

ps ~ v. Consequently they produce a new minimum of the potential (3.14):
Viin = =1+ m2)v* — 2(2n3 + na + 2n6)u’ — 2(61 + 285 + & + &)uv”. (3.46)

The same happens for the Higgs masses. In fact, even if for the Higgs R{ we continue to

have Mz%?,u = 0, the masses of the Higgs Rj are now given by:
Mp, = —2m0°. (3.47)

The rest of the charged Higgs are, in this case, totally decoupled from each other; in
particular we have that, since M}%E = 0, the complex Higgs field R., related to the charged
lepton sector, can be divided in two Goldtone bosons: Re[R.| and Im[R.]. While the

other two charged Higgs, ¢ and ¢, get the same squared mass value:
Mif - szi = 2(ny — 25 — ne)u” + 245 — (265 + Ea)v° . (3.48)

Finally, for the neutral Higgs we get, always in the basis (¢?,¢9, R,), the squared mass

matrix:
F 2u*(n3 + 16) uv(§y 4283 4+ &4+ &5)
Mg, = 2u? (13 + 76) F uv(€r + 28+ 86+ &) |
uv(§y 4283 + &+ &) uv(€n + 263+ 6+ &) 20% (1 + 7o)
(3.49)
with

F= 2U2<773 +ny — 2m5) + 2/@ - U2(253 + &), (3.50)
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from which we obtain the following eigenvalues:

M = 2p3 + 2(ng — 25 — 2n6)u® — (283 + &4)0?
M, = 2u3 — (285 + £4)v* + o(u?) ) (3.51)
M = 2(m + m2)v* + o(u?)

We note that, while the eigenvalue M7, is of order O(v?), in order to generate a squared

mass for the Standard Model Higgs of order O(u?) we have to demand:

2 v’
s = (26 + &) (3.52)

However in this case we obtain two eigenvalues proportional to the electro-weak scale:
M}, M%, ~ u?. So we have to make a further choice on the scalar parameters (in this case
on 7; and &;), in order to send to zero one of the two eigenvalues, M%, or M3, producing
two Goldstone bosons (because the eigenvalues are related to complex scalar fields) which
will be eaten to give mass to the vector bosons Z, and 7, while the remaining non-zero

eigenvalue will give the SM Higgs squared mass.

3.2 RGE for the gauge coupling constants

In order to compare the model 2 with the model 1, we assume again that the coupling
constants of the SU(2), and SU(2)g groups are the same at the partial unification scale
My, so gr.(My) = gr(My) = g2(My). Through the symmetry breaking from the Pati-
Salam group to the SM one the bi-doublet switches in two doublets in the following way:

SU(4) ® SU(2)1 ® SU2)x 2 SU3)e © SU©2), @ U(1)y

* 3.93
(2,2,1) ~ @, & RN (;b(l)) : (jﬁ) ~(1,2,-1). (3.53)
1 2
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This is a situation similar to a Two Higgs Doublet Model (2HDM) [32], in which the scalar

potential has the form:

A 2 A 2
Varou = i1 01 + (2010 — (0] @y + e ) + 5 (0ln) + 2 (2le,)
\ (3.54)
+ A3®] B, DI Dy + N DDy DD, + 22

(<I>T<I>)2+hc
5 19P2 .C.

where the VEVs are given by:

1 ({0 1 [0
(®) = 7 <v1> and (D) = 7 <U2> (3.55)

/12 4 v2 = 246 GeV . (3.56)

We suppose therefore that the evolution of the coupling constants of the Standard Model

with

from the electro-weak energy scale, u = My, to the Pati-Salam scale M is given in a
2HDM, without intermediate scales; just a note, we can see in Fig. 3.1 that the difference
between the running of the gauge coupling constants in the Standard Model or in the Two

Higgs Doublet Model is very small.
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Q|-

________ = s -1
------------------ a2L
- e = a1y
20 L T asc
'," ''''' = Q21
»"‘ _1
A1y
10} -
hd | . | . | . | . | . | GeV
1000 10° 107 10° 10" 1013

Figure 3.1: Running of the gauge coupling constants for the SU(3)c, SU(2)r and U(1)y groups in the Standard Model,
in yellow dot-dashed, orange solid and red dashed lines, respectively, and the 2 Higgs Doublet Model, in cyan
dotted, grey dot-dashed and blue solid lines, respectively.

In this case we have that the coefficients (2.111) of the running coupling constants (2.110)
take the values: o1
asc = —7, Aoy, = -3 and ary = E; (357)

while the matching conditions with the Pati-Salam gauge coupling constants are given by:

azt(My) = azd(Mz) + = In 32 = ol (My)

271' MZ
or(My) = agp (Mz) + 3 In 3 = agp(My) (3.58)
ary (My) = aqy(Mg) — 2 In £ = 2app(My) + 2a,4(My)

where the value of the a; at the electro-weak scale are listed in (2.118). From the system
(3.58) we can evaluate the value of the partial unification scale My =~ 5.61 - 10! GeV,
practically the same order as for the model 1. Therefore we assign to the Higgs multiplet
R the same VEV used in the model 1, that is:

1 14
or _ 107 v (3.59)

<Ru>:7}:ﬁ \/§
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At the partial-unification scale the values of the gauge couplings are:

g4<MU> =/ 47TC‘64C'(MU) ~ 0.5695 and gg(MU) = \/47TCY2L(R) (MU) ~ 0.5435. (360)

For the running above the Pati-Salam scale, shown in Fig. 3.2, we have the coefficients:

31
g = ——, aop=—— and ay, = —3.
3 3

1

a
50 F ___.-'
20 e

’ﬁ
O"
'f
"
*
*
*
L4
L4
L4

10F

4

¢ ! . . ! . . ! . . ! !

104 107 1010 10" 106

GeV

(3.61)

Figure 3.2: Running of the gauge coupling constants in 2HDM and Pati-Salam model through the partial-unification scale.
The cyan dotted, grey dot-dashed and blue solid lines represent the evolutions of the coupling constants for the
groups SU(3)c, SU(2)r, and U(1)y, respectively; the purple dotted, red dashed and grey solid lines represent
the evolutions of the coupling constants for the groups SU(4), SU(2)r and SU(2)1,, respectively

3.2.1 Evaluation of tan

It remains to find the value of the ratio between the two VEVs of the bi-doublet:

0<tanf =|2| <1.
Uy

(3.62)

In order to evaluate it we have two constraints: the first one is given by the experimental

SM Higgs mass (m; " ~ 125 GeV). In fact, since we want to associate the mass My in

(3.38) to the SM Higgs mass, if we make a simple calculation on orders of magnitude,
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assuming & — & ~ O(10), we can extrapolate for tan 5 the value:

(65 - 62)1}2 tan” 5 ex —12
Mo = \/ -y ~0(m;?) = tanf ~ O(1077). (3.63)
The second costraint to take into account, instead, is given by the experimental limit for
a charged Higgs [33]. The non-zero eigenvalue of the charged Higgs squared mass matrix
(3.33) has to verify the relation:

u? tan? 3
MHit = \/(55 — 52)1)2 [v—;(l - tan2 6) + m > 650 GeV, (364)
from which, assuming a very small tan 3, we get the condition:
246
tanf —-0 = wuy, —0 and u; - —GeV = & —&>14 (3.65)

V2

that is consistent with the order of magnitude used above for the scalar parameters.

3.3 Gauge boson masses

From the kinetic terms of the Higgs sector in (3.5), written using the covariant derivative:

D,®ID"®) = (81650, — igrdi Wik, +igLsl Wi, ) @ x

(010K 0" — igro Wi | + igro] Wiy ) ®h (3.66)

D, Rio DR = (61650, +ig40] G, + igroiWig,) Ris x
(61000" — igab,G1™ — igréSWhy) R™ (3.67)

we obtain, as usual, the masses for the gauge bosons. In particular, for the leptoquarks
Xffa (with @ = 1,2,3) we find, at the scale My, the mass value:

2

M2 = gz% ~ 8.1-10% GeV?; (3.68)
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while the rest of the charged vector bosons mix with a squared mass matrix given by:

T 2
wH= wh grL —grgru s \ [ WH™
(W:L W:R> M‘%V fi— - iL b 2 ”R'H’L i_ ’ <369)
WR WuR —JdrLgrui1Usg gR 1 WR

From M3, we calculate the two eigenvalues:

1 2 2 U% 2 1’12% A
= - — | 4+ — 3.70
P+ =35 (9R+9L)4 +9R4 5 (3.70)
with
2 2 2 U% 2 7112% i 2 9 2 9
A% = (QR - L)Z + QRZ +4g7gpuiuy (3.71)
and the orthogonal matrix:
0 C 29rLgrutuy 2 [Q%URI% - p+}
+ = " =
291.9ruruz \ 2 [Q%I% - p_} 2gLgrurug
2 2 (3.72)
. C 29LgRULU2 —M?w@f—%f+ﬁ
- ’02 2
29LgRt1 U2 (97 — 9R)F — 912%71% +A 291.gRru1U2
with

[ \/AQ 49L9R“1U2]

Since we have that vg > vy, we can expand the eigenvalues and the related eigenvectors

finding the values at the partial-unification scale My:

M&=m~%%ﬁ~rm¢W&M Lot a74)
an A : )
M2, =p_~ g3l & 4.47 - 10° GeV? o1

this means that, in first approximation, the gauge bosons W;EL and WfR do not mix with

_ 0 MZ 0
0T M2,0, = (7 IR (3.75)
0 py 0 My,

so their contribution to the radiative fermion mass generation will be negligible.

each other:

For the neutral vector bosons, instead, using the basis AO = (Wu i Wl?R, B,), we find
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the squared mass matrix:

2 vi v?
. 9% —9LIR} 0
v? v24v? v2
AL MG AT = SAL | Lot gRUth =y [3grgrtE | AT (3.76)
U2 U2
0 —\/SgLgrE 393k

from which we obtain the three eigenvalues: gy = 0, related to the photon, and

1r/3
T [(592 + 9%) v+ 2(g7 + 912—2)71%] +

1 3 2 (3.77)
16 [(593 + 9?%) vk — 2(g + g?a)v%} + 8ghviv? |
related to the vector bosons Z, and Z],. The orthogonal matrix, which diagonalizes this

squared mass matrix:

0 0 0
OS MOy =10 MZ 0 |, (3.78)
0 0 M2

is builded up, as usual, with the normalized eigenvectors of Mg:

00 = (l0)"1g-)" 1a:)") (3.79)

where the eigenstates of Z, and Z, are given by:

2 2

JLYRVL 3 919RVR
|gs) = Cx (—1\/j ) (3.80)

970} — 4dqx 2(3/2)giv — 4qx
with C4 the normalization constants, while for the photon eigenstate we have:
39391 9r 2 gr
90) = (221,521, (3.81)
393 (9% + 91) + 29%9% \ 9L 3 g4

From |qo), similarly to what seen in Sec. 2.3, using the charge definition (2.14) we find the

relation:

30202 a2
Ry — ] (3.82)
393 (9R + gL) + 293797

Again, using the fact that vg > vy, we can expand the eigenvalues and the related eigen-
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vectors finding in first approximation, at the scale My, the values:

Mz =qy ~ (592 + 912%) Yk 29k UL 19547 - 1027 GeV?

397 +2g2 4
ME =g~ (g + it ) 1 ~ 7.2496 - 10° GeV?
0.6193 —0.7851 3.4379 - 10-17 (3.83)
and Oy~ | 0.6193 0.4885 0.6146
0.4826 03807  —0.7888

3.4 Fermion masses

In the case without inter-family mixing, we have for each fermion family (f = 1,2, 3) the

Yukawa interactions that, with the particular scalar content of the model 2, takes the form:

£ s = = | 12 55 Rai 4 200 0 4 AW, 0 |05 4 e, (3.84)
where the Yukawa couplings kg), )\gf) and )\gf)are real number, s(()f) is the sterile neutrino
field, while \I/%I(f) and \Il%i(f) represent the fermion multiplets (4,2,1) and (4, 1,2) under
the Pati-Salam group, respectively. In this model, unlike the model 1, the Yukawa terms

are responsible for tree level mass generations for all the fermions; in fact, once the Higgs
fields get VEVs:

0 0
1 {o o w0 (w0
UR 0

from the interaction vertices:

UR ur,
7 ¢
_—— = _Z')\l and _—— = —i)\g , (386)
ur, UR

we obtain for the up-type quarks a mass of the form:

A
m,, = /\1U1 + /\QUQ = /\1U1<1 + /\—2 tan B) ) (387)
1
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while from the Yukawa vertices:

dRr,€eRr dp,er,
450 . ¢O .
>———-2 = —i\; and >———-1 = —i)y, (3.88)
dr,er, dRr,er

we obtain for the down-type quarks and the charged leptons, of the same fermion family,

the same mass of the form:
A
Mg = Me = AUy + AUy = Aoy (1 + ~ tan 5) ) (3.89)
2

3.4.1 Neutrino masses

Also the neutrinos get a tree level mass, but there are more contributions to take into

account. In addition to the Yukawa vertices:

VR vy

0 0
>---‘?1 — —i\, and >---‘¢32 — i)y, (3.90)
vr, UR

analogous to those for the up-type quarks sector in (3.86), we have also the interaction

vertex: 5§

>-—-’?” = —ikp, (3.91)

UR
and the sterile neutrino mass term of the form as in (2.121). Using the same notation of

Sec. 2.5, we can collect all these mass contributions to the neutrinos in the Majorana mass

matrix:
0o = 0
My=|"m 0 fml (3.92)
0 k;}%% mo

Calculating the eigenvalues of M/ we get the cubic equation:

2

+ %mo —0, (3.93)

E2v?  m?
RUR | _u>

32,
P — P Mo P( 3 1
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which can be solved making the following three sobstitutions:

k202 m2
a:_m_RR_ u
p:;ﬁr% — 2’ +ar+b=0 with ) i e (R 2 (3.94)
__2_7_T<T_T>
a 6 3 ’
b b2 a3 ¥ ad
3 )
==Y S g Ty VR Tty (3.96)

At this point we can come back to the explicit solution for the neutrino mass eigenvalues:

a3
z:|z|exp[j:i(19—l—2mr) with |Z|_(__§>b2 3 (3.97a)
E COS’[?——E(—g) 2
0+ 2K7 7
= y:|z\éexp[ii¥ (3.97b)
s 942K
R, y— aexp[$z—]
= x:|z|%exp[:l:i +3 LN 13 (3.97¢)
: 322
mo O+ 2k [kER0E omE o om2
p= —2 42 ( )\/RR Mo M with k=0,1,2,  (3.97d
R T 20 "9 T WA (3.97d)

and write the physical neutrino masses: m, = |p.|. While the orthogonal matrix is given
by:
o A Ao
O, = Ay Ay A, (3.98)

kRVR A krvg A krvR
02v2(po—mo) 12v3(p1—mo) 22v2(pa—mo)

where A, are the normalization constants.

Interlude on a particular case: my =0

As we discussed in Sec. 2.5, we consider for the sterile neutrino mass the natural scale
mo ~ vg; however if we introduce a global symmetry s, — €*?sy, demanding for an

invariance under this symmetry we have to neglect the sterile neutrino mass and in this
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case the neutrino mass matrix takes the form:
0o = 0
Moy krv
M = e 0 2"\5/; (3.99)
krv

0 S5 0

which leads to the eigenvalues:

k2 2
po=0 and pp ==+ £% |

SN

— =+mg. 3.100
3 + 1 mg ( )
If we consider the eigenvalues of M/ as Majorana masses then the orthogonal matrix is
given by:
1 RS kRQUR ms 0 0
MS \ kg _kpor _ m, 0 0 0
2V2 2v2 2v/2
with the mass eigenstates defined as:
vy 7
Ofilvel =1

(3.102)
S0 W/ g
otherwise, if we consider the eigenvalues as Dirac masses then the orthogonal matrix has
the form:

tanf, 0 1 3
O, = cosb, 0 L 0 , with tang, = L
1 0 —tané,

3.103
e (1)
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which produces a non-diagonal mass matrix:

Moy, krv
0 Sut T O 0
T may v ma v .
O,pMyO,p = | 55 + C”sz\/g 0 Cyg* — sykfﬁ =
0 c, M — g, krvg 0
i e (3.104)
0 mg 0
=|lmsg 0 0],
0 0 0
with the mass eigenstates defined as:
13 S¢
Ol |ve|=1|5r|- (3.105)
S0 VoR

Interlude on a particular case: |mg| < vg

As we said the natural scale of the sterile neutrino mass is of the order of the Pati-Salam
scale; as an exercise however let us consider a small mg, for example of the order of the

tree level mass m,. In this case we have from (3.97a) that:

_3
2 k.2 22 2 k’2 22 2 2
¥ = arccos @ —R—i—ﬂf—mg —R—I—ﬂ;—m; —>z, (3.106)
3UgR 8 vy 2vg 12 9vy  6og 2
which leads to the eigenvalues:
2 A + 1 do 5 S
my RUR K m v
A R 3 + NG cos ( 5 7r> = AL A — ’;R\/; . (3.107)
)\2 ~ %

3.5 Loops

The one-loop corrections, to the tree level fermion mass terms, that we are going to ana-
lyze in this section are responsible for the distinction between the masses for the charged
leptons and the down-type quarks. Furthermore we will have one-loop contributions to

the radiative generation of Majorana masses for the neutrinos. Again, as in the model 1,
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the loop diagrams which contribute to the radiative mass corrections are the scalar loops,
where we have Higgs boson mass eigenstates exchange, and the gauge loop, where we have
a gauge boson exchange. All the following calculations are done in Feynman gauge (£ = 1).
We work in the Minimal Subtraction (MS) scheme, so we remove only the pole 1/e, by

means of field and parameter redefinitions, maintaining all the finite parts.

3.5.1 Scalar loop

From the Yukawa interactions, in addition to (3.86), (3.88), (3.90) and (3.91), we find also

the Higgs-fermions vertices:

c

50 S0 50
>---’?” — ik | >--f3d — —ikr and >---’?e = —ikp,  (3.108)
UR JR eR

coming from the interactions between fermions and the Higgs multiplet R; while from the

Yukawa interactions with the bi-doublet we obtain the vertices:

UR,VR dRr,er UL,V dr,er
o7 of : 4] R
>———-1 = ——22 = —Z/\l and - = -—=2 = Z)\Q . (3109)
dr,er UL,V dr,ér UR,VR

With these interactions we can build up one-loop diagrams of the type in Fig. 3.3, which
contribute to the corrections of the tree level masses in (3.87), (3.89) and (3.97d).

R ®

Figure 3.3: One-loop diagram for the correction to the fermion mass term mipipr with an Higgs boson exchange; each
circled cross represents a VEV insertion.
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In dimensional regularization (D = 4—e¢) and using the Weyl propagators (Appendix G)
with zero external momentum, the resulting correction to the tree level mass my (with

¥ = u,d) coming from this type of diagrams is given by:

W d* im i
W) _ q _
i _l[ O } Z/\AAB/(%)A‘(I?—;”FQQ—M?;_
X
1
~ TMadsk / @ 5 -
2) 2) Lo
= —Mmy A s pp° / 22 2 [ 2o+ M (1 —x)} =
4m) 2L R)T(3) (3.110)

R Mz) 2 (57

X

2
In(4 S Y e g X
¢ T inldm) = <u> mZ—M%;“(MIz)

mX/\A/\B
(47)?

+ O(e)

where p is the energy scale. In particular, looking at the vertices we can note that the only
Higgs bosons able to link in a loop a left handed fermions with a right handed one are: the
charged Higgs ¢ and ¢3; and the mixing between the neutral Higgs ¢9 and ¢3. However,
using the mass matrix (3.37), we can neglect the mixing between ¢{ and ¢9. This means
that the only scalar contribution comes from the loops with the charged Higgs exchanges.

For the up-type quarks (¢) = u) we have that:

M? 2

() MaA1A2 mg o my

my = (4m)? [ln(477) vg — In (Mz — m?l — ;wii In MZ
2

_|_

_ ) -
MgA1 A2 m?2 MHi m?2
In(dm) —vg—In| — | — : | 3.111
e Onele o) s = () = =i (57 ) [+ 000
md)\l)\Q [ m?l M‘%V m?i -
+ Op+)is|In(47) —vg —In <— — Z o In ,
] R V) B B

where we used the mass v/ My, for the propagating Goldstone boson H. 5, and we have the

tree level mass my because is a down-type quark which propagates in the loop. Similarly
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for the down-type quarks we have:

my =————|In(dn) —vpg—In| =) — —2—1In
H (47)2 e 2 m2 — M;g: M%

+ a1y (Ops): _ln(47r) —vg —1In m_i - M?{li In m,
(amp 1 ) g
My Ao N m2 M, m2
O In(4r) —vg—In | — | — 2] -
Ol T = (%) - e ()|

where the only difference with mg}‘) is that now it is an up-type quark which propagates in

+

1 (3.112)

the loop. For the charged leptons, instead, the fermions which propagates in the loop are
the physical neutrinos, with the masses m, = |p,| given in (3.97d), so we have that the

scalar loop correction to the tree level mass m, = my is given by:
2

. M A A
mi) =3 (001,410 )2, n1 X

xk=0 ( 7T)2

m2 Miﬁ m2
x < |In(4n) —vp —1In (—2”) ————In 5
{ [ . mie = Mo \ Mg

+

_ 3.113
) m2 M? . m2 ( )
K 1 K
+ (Op+)f; |In(47) — v —In (_M2 ) — mz = M?{i In Méi +
L 1 1
[ m?2 M3 m?
Oms)s | In(4m) —yp —In | =25 ) — e u .
Onea o) == () = =t <MW)”

We conclude with the contribution mg) to the neutrinos, which is identical to mgf;), in fact

it is of the form:

W) MaAig In(47) | m3 M¢2>2i | m3 N
my, = n(dnr) —yg —In{ —2) - n
o= 4y e w) w2\ M2
[ M? 2
MgA1 A2 9 m3 Hff my
O In(4r) —vg—In|( — | — ! 1 3.114
g Onsh al4m) 5~ (7 TET O | A

MgA1 A2 mz MI%V mg
+ (4m)? (Op+)iy | In(47) — 5 — In (F — 2= ]\22 In 2 .
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We have to take in account that this correction, due to the scalar loop, is only for the
elements of the neutrino mass matrix M), related to the Dirac mass; to be more precise,

considering only this type of corrections, the neutrino mass matrix at one-loop becomes of

the form: o
(mutmy )"
0 5k
M s | ety knon | (3.115)
2 2v/2
O —k;%% mo

3.5.2 Gauge loops

We pass now to analyze the mass corrections generated by the loops with a gauge boson
exchange. First of all, let us have a look at the vertices coming from the kinetic term
i L.rY" D,V k. Since we are investigating the fermion masses at the partial-unification
scale, for simplicity we define go(My) = gr(My) = ggr in the following formulae. So the

fermion vertices with the neutral gauge bosons are:

i | g4 ©.
/;\\ =5 l_6<00)3k + g2<00)pk:| DA (3.116)
/ﬁ\ — 3 | 200 - (00| 3.117)
2 1v6 P ’

Ay 2y 7,
1 3 i
=5 |94 5(00)31@ + 92(O0)pr | ¥ (3.118)
€L, R €L, R
2, 2,
1 3
/;\\ 3 [94\/;(00)% — 92(O00)pr | V"5 (3.119)
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where, for the indices of the mixing matrices Oy defined in Sec. 3.3, we used the notation:

(3.120)

In

1 for A,
{1 for Left part
and p=
3 for Z

k=42 for Z . :
2 for Right part

Just as a simple proof of consistency of this model we can see that no interactions between

neutrinos and photon exist, in fact we have that:

3

957/ 3(00)s1 = 9000 = \/ gy 90y/3(y/32) — o (22) | =0
3

g4\/§(00)31 ~ 9r(Oo)r = \/3QZ(QR+Z4LQ)L+29%9% g4\/§<\/gg—j> N gR] -

The quark interactions with the gluons are instead given by:

//‘3\\ /}\\ _%7 (T")as, (3.122)

UBL,R UqL,R d,gLyR chL R

where 7% = 22 (with a = 1...8) are the Gell-Mann matrices of SU(3)¢, which verify the

(3.121)

relation:
8

wo N2—1
(1) = R (3.123)

a=1
with N the degree of the group SU(N) and I the N x N identity matrix, in this case N = 3
is the number of colours.
We continue the list considering the fermion vertices containing the charged gauge

bosons, starting from the interaction vertices with the leptoquarks:
X, X,

_ _ —%7“ (3.124)

V2

€L, R VL,R UL, R

dr, R

Then we have the interaction vertices with the vector bosons WfL and WjR, which can be
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turned in their mass eigenstates Wfl and W;g
Wi, Wik,

192 N - — 1200, (3.125)

-5

€L,R  VL,R dr,, R UL,R

however these last vertices can be neglected because, as we have seen previously, considering
that vg > v, we can use the approximation in (3.75), which gives us no-mixing between
WfL and W,r=£, so we cannot connect in a loop an incoming left-handed fermion to an
outcoming right-handed fermion.

Using these vertices, the gauge loop for the correction to the fermion masses are given

by the diagram shown in Fig. 3.4.

l
I

&

Figure 8.4: One-loop diagram for the correction to the fermion mass term myryr with a gauge boson exchange, where
the circled cross represents a VEV insertion.

The case with a propagating massless gauge boson (photon and gluon) leads to a

different correction to the fermion masses, which is given by:
(®) dq im —1
("p) |: :| _ . / X v g/tll _
m =i|— }— =—i —
G,Ma=0 a Mgfo gagB (2 )4,}/ q2 _ mify q2

4 2 1 m?
:M[___Hn(m 7E_ln( )
1

(4m) | 2 2 )| OO
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while for a propagating massive gauge boson we obtain the result:

() d* m —1
(d}) - _ q I X v g},Ll/ o

o E/ dPq D B '

= MxgagBHl (27r)D (qQ +m3<)<q2 + Mé) -

. ! xr(g)r(z—g) 21 . 772
=masssDi [ e gy e M0 =] S

- () e () [ () -6 -

~dmygagp |2 1 In(4 | i
= Tlmp | thUm sty ) -

M?2 m
3 > 2 ln( 2)

Let us point out again that, using the MS scheme, in the formulae for the corrections of
the tree level fermion masses all the finite parts, in the limit ¢ — 0, of (3.126) and (3.127)

are present. In particular, the corrections to the down-type quark masses, coming from

+ O(e) .

the gauge loop, are of the form:

mgy —(Z:;g (%(00)32 - 92(00)12) (%(00)32 - 92(00)22) X

1 m? M3 m?
_§+ln(47r)—7E—ln< )—mz_ In

X —_
p? Mg\ M3

+

_Md_ (94 _
+ (an)? (\/6(00)33 92(00)13

. m? M, mg

—5 T In{47) =9 —In (ﬁ) -~ m2— Mg, o M2,

2magi | 1 r M3 g
—> +In(dm) —p —In (2 ~ :

(mpe |2 TR0 — e - mi— Mg \M§

m

[
1 2
_§—|—ln(47r) ve —In (TZ;)] ,

(00)33 = 92(00)2 )

aE

X

(3.128)

_|_

I

_|_
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where we can see that the first two contributions come from the Z, and ZL boson ex-
change, then we have the part due to the leptoquark exchange, with the charged leptons
that propagate in the loop, and finally the contribution from gluon and photon exhange,
respectively. The correction for the up-type quarks is similar, apart from the signs in front
of the gauge coupling g, and the neutrino mass eigenstates which in this case substitute

the charged leptons in the loop containing the leptoquark:

myy) :(ZSQ (%(00)32 + 92(00)12) (74—(00)32 + 92(00)2 )

1 2 M2 m2
——+In(4m) —yg —In <—) - Z__1In ( “)
2 2 - M} M2

My,

+ an)? (\/—(Oo 33 + 92(Oo) > <—\;— (O0)33 + 92(00)2 >
1 m?2 M3, m?2

—— 4+ In(47 —1n<—“)— Z ln( “)
g T inldm) = e w2 ) m2— Mz \ME,

2 3.129)
Zmn (
§ g4 1 H+1(O,V)2»H+2 X

k=0
1 m? M3 m?
3o s () - e ()

4
N

(47)? 2§ T (%(00)31 + 92(00)11) (%(00)31 + 92(00)21)] X

1 m?
-5t In(4n) —vp —1In (M_;)] :

Compared to mgj) in (3.128) instead, for the charged leptons we have to change, in

_|_

+

_|_

addition to the signs in front of the gauge coupling g., the coefficient related to the gauge
coupling g4 and obviously we have to eliminate the part related to the gluon exchange.

Then, using for the mass of the propagating fermion the down quark tree level mass (since
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mq = me), we obtain the formula:
(o) 50 0 1% 0
mg _(47r)2 94 5( 0)32 + 92(Oo)12 9a 5( 0)32 + 92(00)22 | X
1 2 m2
_§+ln(47r)—ny—ln( ) M2 (Mé) -+
v (o200 + 0100 \/§<0> +2(O0)an |
(42 94\ 5(Po)ss + 92(C0)13 | | 914/ 5(Co)ss + G2(00)23
1 m?2 M2, m?2
—5 In(47) —vg —In (F) ) In i, + (3.130)

2mgqgs | 1
—— +In(47) —yp —1
e |2 +In(47) —yg —In

(
+ (Zlan)Q (94\/%(00)31 + 92(00)11)

1 m
-3 +In(4r) —yg —In (M;)

To conclude we have to evaluate the gauge loop corrections for the neutrino masses.

The first we show is the one related to the neutrino Dirac mass, which is only due to the
neutral gauge bosons and leptoquarks exchanges:

2

mg) = Hz% (2;32 (94\/%(00)32 - 92(00)12> (94\/%(00)32 - 92<OO)22> X

(00)1.641(0)) 2,541 [1H(47T) —-—7e—In ( ) M2 In (]\72)
+io (ZTZSQ (94\/2(00)33 92(Oo)1 ) (94 5(00)33 — 92(O0)2 ) (3.131)

K

(O))1,641(0},)2541 lln(47r) ———yg—In (m—2> M%’ In ( my, )

2my, g3 1 m M% m?2
In(4m) — = — v —1 = | — 1 =11 -
+<4w>2[“”) 2~ " <M> mZ - M% "\

Besides this we have also the radiative generation of two Majorana masses: one for the

+
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right-handed vz and one for the left-handed v; neutrinos, whose relevant diagrams are
shown in Fig. 3.5 and Fig. 3.6, respectively, both related to a neutral gauge bosons, Z,

and 7, exchange.

Figure 3.5: Gauge loop for the Majorana Right mass generation, with insertions of VEV and the sterile neutrino mass
represented by circled cross and cross, respectively.

N
T T 7N\ T T
Figure 3.6: Gauge loop for the Majorana Left mass generation, with insertions of VEV and the sterile neutrino mass

represented by circled cross and cross, respectively.

In particular, for the Majorana Right mass we have the form:

2 ) ) )
y dq g7 im,  —iq ')/'B .
mg\/[)R: i(M,)32(M], 232 (0,) 3/@—&-1/( ol “ AR
k=0

20t ¢ @ -mi ¢
gw/ 2 _iguu o
[gc 2 M2 +qu2 _ M%/ -
9 " , ) (3.132)
_ My 2 4gC My,
= 3 MO | 5 () +
442, m?2
+m2—M§, ln (M%, +0(),
where we used the coupling definitions:
gc = 94\/%(00)32 — 92(0p) 22 (3.133)

gp = 94\/%(00)33 — 92(0p)23
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While for the Majorana Left mass, using the notation i, j, k = k + 1 (with k = 0,1, 2) for

the neutrino mass eigenvalues, we get the expression:

3

3
miy = =i(M)sa(M)os DD~ > (0,100, 5 (0L)14(0) s

i=1 j=1 k=1

" / dq o im; my; 1my, o
(2m)+ " ¢* —miq* —m3q® —m}

2 _igMV 2 _iguu
+ —

gEq2 . M% qu2 _M%/]
, 3m§1 — ]\44 + mz]W2 In (?ﬁ)

i=j=k
gElemjmk In ( mz )
+ 4Cy; Z o) ok
;k TN (m2 — M2)(m? —m?)(m? —mj) ( )+ ( )

+ Z 4C’ijkg%m?mk
i=jtk

3

m? — M2 — M%ln(
(m3f — MZ)*(mi

- . (3.134)
(mf — MZ)(mi —m3)*  (mi — M3)

[ ~MZ— Ml %)
(

Z
mi — MZ)*(mi —mg)

in() | oin()
(mj, —

i1#j=k

T e M) (mE R | (= ME)(mE — )2

K3 (2

2 9 m2
mkln(MQ) m; In M%>

[m? ~MZ - MZln (
ii=k

2
(mi — M3)*(m3 —m?)
m%ln (M’Q) m?ln —é)
(m3 — Mz)(m3 —m7)* ~ (m} — Mz)(m3 —m7)?

+ {(QE,MZ) < (gr, MZ')} + O(e)

with
1

k= Ty

(O 1i(0,)2i(M;)23(0,,)3; (M) 32(O; )21 (O )1 (3.135)
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and

9gE = 94\/2(00)32 — 92(00)12
gr = 94\/%(00)33 — 92(00)13

So, considering the Dirac and Majorana mass corrections, we obtain the one-loop neutrino

(3.136)

mass matrix of the form:

miyy Lomy +m +m)T 0
(M;T)(lfloop) — %(mu + m(HV) + m(G’/)) (mE\Z)R)* % . (3137)
0 e mo

3.6 Numerical results without inter-family mixing

For the numerical simulations, we use again MultiNest and the experimental values (2.182)
and (2.186), to test the likelihood of the parameters scanned by the code. For the Yukawa
couplings kgq, A1, and Ao, (with a = e, u, 7 the family index) and the parameter m,, related
to sterile neutrino masses by the identity: mg, = ma%, we use the interval [—10, 10].
For the scalar parameters, considering the case (3.36), we need only the combination
& — & = € > 0 and a parameter ¢ related to tan 3 by the identity: tan = t - 10712; for
both the parameters £ and ¢ we use the interval (0,20], in agree with what we evaluated
in Sec. 3.2.1. In the first example we obtain a Log-likelihood ~ —77.7; while in the second
one, instead to use again all the fermion masses as references in the code, we concentrate on
the third family using only the bottom quark and tau lepton masses to test the likelihood
of the parameters (¢, £, m,, kg, Air, A2-), and we obtain a Log-likelihood ~ —25.

3.6.1 Example 1

In this first example we get the following selection for the sterile neutrino masses:

Moe = —3.74 - 1014 GeV
mo, = —1.72- 104 GeV (3.138)
Moy = —6.75 - 1014 GeV
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the Yukawa couplings:

kpe = —1.72 Are = —0.26 - 1075 Age = —0.35- 1075
kry =013 , A, =-2-10%  and { Ay, =—4-107* . (3.139)
kpy = —7.11 Ay = —0.39 Aoy = 6.7-1073

the scalar parameters:

& — & =19.996 and tanp =4.124-10"", (3.140)
from which we obtain the Higgs masses:

Mpo =130.41GeV  and MHfE = 788.69 GeV , (3.141)

where My is very close to the SM Higgs mass, while MHf': can be associated to a BSM
charged Higgs respecting the experimental limit.

With this set of parameters, we achieve the following results for the up-type quark masses:

Myp = 0.33 MeV
Meharm = 272.61 MeV (3.142)
Miop = 81.24 GeV

all values within the 20 range from the experimental values in (2.182). We obtain, instead,

a bad result also for the down-type quarks and the charged leptons:

Maown = 0.4 MeV Mejectron = 0.48 MeV
Mstrange = 54.06 MeV — and Mamuon = 54.80 MeV (3.143)
Mpottom = 1.37 GeV Mg = 1.36 GeV

in fact we can see that there is a virtually zero split between the two sectors, in this way
the tree level relation my = m,. seems still approximately valid also at one-loop. Finally

for the neutrinos, we obtain the ratio:
r = 0.0086, (3.144)

which is far away from the values in (2.186).
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3.6.2 Example 2

In this second example we focus our attention only on the masses of the third fermion
family. In particular we test the likelihood of the parameters for the bottom and tau
masses only, for which we would expect a mass difference of the order of 500 MeV. So we

get the parameters selection:
£ — & =19.999 and tanp =4.116-10"12, (3.145)
from which we get the Higgs masses:
Mpyo =130.14GeV  and MHfE = 788.72GeV ; (3.146)
we for the tauonic sterile neutrino mass and Yukawa couplings we get:
mor = 5.02- 104 GeV, A, =—-128, Xy =—0.01, kg, =2.06. (3.147)

With this selection of parametrs we obtain, this time, a mass splitting of ~ 100 MeV for
the bottom and the tau:

Mpottom = 1.6 GeV and  myy, = 1.74GeV , (3.148)

better than in the first example. However, now we have the problem of an unrealistic
quark top mass:
Moy = 181.90 GeV . (3.149)

The model 2, therefore, seems not able to generate the correct mass splitting between
the charged leptons and their family-related down-type quarks. Let us look at their one-

loop mass difference formula:

1—loop __ mil—loop _ (e) (e) (d) (d)

m =me+mg +my —mg—mg —my with ~ mg =m,., (3.150)
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where for the difference in the gauge corrections we have:

. mqg 4 2
me —mi =— @dT)A; 945(00)32 + 92\/%((00)12 + (00)22> (Oo)a2

M2 2
X — z 21n(m62l)_
ms — M7 M

- % [g4§(00)§3 + 92\/g<(Oo>13 + (Oo)z3> (00)33] X

M?/ 2
X - In ( mg ) ;
md - Mz/ Mz/
while the difference in the scalar loop corrections is given by:
(e) (d) _mu)\l)\g O 2 ‘]\412{?E ] mi
My —Myg = (47)? ( H:I:)llm% _ Méi n Méi +
1 1

M3 2
+ (Ow+)1 Ya 1n< = ) +

U
2 _ 2 2
m2 — Mg, \ M,

m2 Mji m2
2vg — 21In(4 2In [ 2= 2 | C —
e 2 n(m)*ma—Mi;“ M2,

~ m A

KALA2 / /

_Z (471')2 (OV)LH-H(OV)Q,I‘HJX (3152)
=0

M?, 2
X (OHi)%#ln(m >+

K
2 2 2
mZ = MZ, o\ M.

X

(3.151)

+

M3 2
+ (Opg+)i, L 1n< “ )+

K
2 _ 72 2
m; — My, M,

m2 M;i m2
2vg — 21n(4 2In | —= 2 | o .

We can see that the larger contribution in the mass splitting comes from the scalar cor-

_|_

rections, because we have in the numerators the heavy neutrino and the up-type quark
masses. So, in order to generate at one-loop a realistic mass difference between tauon and
bottom, we have to increase the tree level top mass m; = Ai;uy; + Ag;us, but obtaining at

the end a too large myp.



Chapter 4
Conclusions

In this thesis we have described two Pati-Salam models, which differ for the scalar content,
and their capability to reproduce the experimental values for the fermion masses and
mixings, by means of one-loop corrections. Both models contain sterile neutrinos, and
furthermore, imposing on the gauge coupling constants the condition gr(My) = gr.(My),
they share almost the same partial-unification scale of the order of My ~ 104 GeV.

For model 1, which does not contain any tree-level mass term for the SM fermions, we
have demonstrated that we need two Higgs multiplets in the representation (4,2,1) and
two (4, 1,2), under the group SU(4) ® SU(2), ® SU(2)g, in order to generate the correct
mass spectra for the quarks and the charged leptons. However, we have also seen, by
means of numerical simulations, that it seems not enough to obtain the neutrino squared
masses ratio r value close to the experimental one; the same happens for the mixings of
the CKM and PMNS matrices.

For model 2, instead, the scalar content given by a bi-doublet (1,2,2) and a multiplet
(4,1,2) generates tree-level mass terms for all fermions; in particular, for each fermion
family, the identity m., = my is valid a at tree-level, but it is still approximately valid
at one-loop. Therefore the model 2 is not able to generate the correct mass hierarchy by
means of the one-loop corrections. In fact, we have shown that it is necessary a too heavy
top quark in order to generate a not negligible mass difference between the quark bottom
and the tau lepton.

Possible approaches to follow in order to try to save the two models could be:
e to evaluate the two-loops corrections;

e to remove all the approximations applied in both the scalar potentials, in order to
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simplify the analitycal calculations of Higgs masses and mixings;

e to relax the request gr(My) = gr(My) in order to have the freedom to move, in
agree with the experimental limits, the partial-unification scale My ; a lower scale for
My could increase for example the Higgs mixings, generally of the order of O(vy,/vg)
and the contributions coming from the logarithm of the type ln(mfb /M%), obatainig

larger corrections.



Appendix A

Generators of SU(4) and SU(2)

Generators ¢ for the SU(4) gorup:
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Generators 4 for the SU(2) group:

0'1:<0 1), 0'2:<q _2)7 0'3:<1 O) (AQ)
o0 t 0 0 —1



Appendix B

Tensor products in SU(4) and SU(2)

In SU(4) the product between two fundamental representations is given by:

1 1
4 ® 4 - AaBg - 5(14&35 -+ AﬂBa) -+ §<AQBB - AﬁBa> -
1 1
= Sas + 5AuBL (0455 = 5508) = Sap+ 3AuBLE €y = (B.1)
1
= Sap + €apy " = 1096,

where the representation 10 is a complex symmetric tensor, while the representation 6 is a
real antisymmetric tensor. The product between fundamental (A,) and anti-fundamental

(A* = A?) representations, instead, is:
i 8 g_ 1 AN 8
49i=A,B" = (AQB - 5AMB%Q) + S4B = 1581, (B.2)
Here we list some products of irreducible representations:

10®10=84315®1;

1006 =45@15;

10®6=45@15; (B.3)
606=20015d1;

15015=84@450 450200150 15D 1.
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The group SU(2) brings more difficulties to use the tensorial approach because its funda-

mental representation is pseudo-real (2 ~ 2); in fact we can write:

1 1
1 1
= Sij + §AkBl(5§5§. — 6108) = Sy + §Ak316kleij = (B.4)
1
= Sij + §€Z‘jAkBk =3 D 1 s

where the representation 3 is represented by a symmetric tensor S;;, but we have also:

292 = A5 = <AiBJ - §AkB’“5§> +SABY =361 (B.5)

where the representation 3 is now represented by a traceless tensor. Unlike what happens in
a group like SU(4), where we have A, B # A*B,, since for the fundamental representation
we have 4 ~ A, # A% = A® ~ 4, in the group SU(2) we can transorm a covariant
vector (A; ~ 2) in a controvariant one (A’ ~ 2) using the Levi-Civita tensor ¢; (the
completely antisymmetric tensor). However we have to pay attention to the fact that for
the fundamental representation the relation 2 ~ ¢9A; = A" £ A' = A* ~ 2 is valid, as we

can see looking at the components:

A — (al) . A= (A)* = (a’{ a;‘)) 7 (B.6)

i =4, = (a

from which it is simple to verify the identities:

AA; = A4 = |ar]? + |asf? (B.7)
A AT = A€ A; = arag — azay =0 .
Using the inverse relation A; = —e¢;; A7, instead, we can rewrite the product 2 ® 2 as:
g [CEAN B =GR - AR~ A
! —EijAj)Bl' = AjEjiBZ' = Ale

To conclude this chapter we show the product 3 ® 3, which can be written as a product
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of two symmetric tensor H;; = Hj; of SU(2):

1 1
3®3= Hinkl = g(Hinkl + Hik:Hjl + Hilij) + g [(HZJHM — HikHjl)‘i‘

B.9)
1 (
+ (HijHy, — Hilij)] = Sijrl + 6(€il€jk + €n€in) €™ Hpypp Hyy =50 3D 1,
or as a product of two traceless tensor in the form:
A 1
303 = (AZAJ o A4A 55) (Asz - —AZAZch> -
2 2 (B.10)

1 1 - - -
=TI+ SAAN(SAAGISY — AT - SIAN) =5@36 1,



Appendix C

SM Higgs potential and Goldstone

bosons

In the Standard Model, the Higgs field ¢ is composed by two complex scalar fields electri-
cally charged, ¢; = ¢ and ¢y = ¢, that form two doublets of SU(2)y:

Y= 71 and O =1i09p™ = 902* , (C.1)
P2 —¥1

T
where the VEV (p) = \% (O UL) gives mass to the charged leptons and the down-type
quarks, while (@) generates mass for the up-type quarks. Because both these doublets

transform, under gauge transformation, as:
o= Upyp and o= Urp (C.2)

with Uy, € SU(2)r, we have that the most general gauge invariant scalar potential can be

written as:
V(p) = —p2oto + A(ple)?, (C.3)

where the doublet ¢ does not appeare explicitly because, by means of the following rela-

tions:

5t = of

Q"o =l

i (C.4)
'o=0
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all the gauge invariant terms containing ¢ can be absorbed in the terms in (C.3). Further-

more, if we collect the two doublets ¢ and ¢ in a bi-doublet H, in the following way:

w6 )= (7 7). e

we can rewrite the scalar potential (C.3) as:
2 \ 2
Vie) = =5 et )+ 5 (Tr{HtH]) (C.6)

where we can see that there exists an extra SU(2)x symmetry for the Higgs potential (the

custodial symmetry), due to the gauge transformation of the bi-doublet:
H — U, HUL (C.7)

with Uy € SU(2);, and Ux € SU(2)x.

Writing the potential of the Higgs doublet ¢ = (gpl

) in components, we obtain the
P2

form:

Vip) = =120t + MpTp)? = —p2(05e1 + piapa) + A(pier + hp2)? (C.8)

from which we compute the minimum calculating the first derivative:

ov .
VO e e Do =0, (©9)
Pi
(#) (%)
where the solutions are given by:

(p1) = (p2) = 0; (C.10)

2

L
| {o1) 1P + 1 {2) "= 55 =% (C.11)
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which bring to two possibilities:

no symmetry-breaking: (p1) = (p2); (C.12)
0
symmetry-breaking: () = A > : (C.13)
v eZa

If now we calculate the second derivatives:

82\/(90) 2 2 2 2
Err [—u +2MJ @1 |7+ | 2 | )] +2X [ |7,
(C.14)
>V (p) V()
= 2 pop; and = 2 0195 ,
D301 e D30 oI
we find the mass term:
m2 (| R(e1) |2+ S(e1) |?) =0
M§¢T¢=¢T<O 02>¢ ; R 1)|2 IR 1)|2 2 (1)
0 2w my (| R(p2) |2+ | S(p2) |7 ) = 220 05,

from which we find two Goldstone bosons; while the last ones, which must give mass to
the third vector boson of SU(2),, must be a combination of the real scalar fields & and 7,

that compose g = & + in9; in fact we have:

§ 20?2 ?\ (&
#3(2X0%) 02 = (52 772) ( 2202 2)\v2> (772)7 10
- 2

from which we obtain the mass eigenvalues:

2 0% — 2 \v?
(Lot rs,) PO =+ w0 (ca7

Therefore the last Goldstone boson will be a linear combination of the real fields & and

Iy
51 ”71), Wlth 5172 and 7]172

§a 4 i
(€1) + 2'<771>)
§2) +i(1n2)

12. It can also be visualized writing the Higgs field as ¢ = (

real scalar fields, and repeating the procedure above. Using the VEV:
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0
( m) , and the basis of real fields h! = (€1,m1,&2,m2), we arrive at the mass term:
ve

0 0 0 0 &
1 1 0 0 0 0 U
SRTM2 R, = - < )4)\02 C.18
2 v g Som & 0 0 cos’2a cosasina & ( )
0 0 cosasina sin? o 7o

where the first two Goldstone bosons are those related to the complex field ¢; (the same
found before), while the third, and last, Goldstone boson is given, similarly to (C.17), by
a linear combination of the real fields & and 7. Instead, in the case we choose a real VEV

(aw = 0) we would obtain:

0 0 0 0 &

1 1 0 0 0 0 m

o't Vhiglt 9 (51 m & 772> 00 4\2 0 & ( )
0 0 0 0 Uy

where the real field 7y represents directly the last Goldstone boson.



Appendix D

Normalization of the Hypercharge

In order to normalize the hypercharge generator of U(1)y in a way consistent to the other

diagonal generators of the Standard Model group [20], we start considering the matter

fields of the SM:
U v _
( ) s ( > ,  UR, dR, and €R (Dl)
d e
L L

(all these taken in n, = 3 different generations). The doublets, under SU(2), are related
to the eigenvalues of the diagonal generator % in this way: vy and u} (with a = 1,2, 3 the
colour index) are linked to the eigenvalue %; er, and df linked to the eigenvalues —%; while

the singlets ég, g and dp correspond to the eigenvalues 0. Therefore we have the trace:

O3 2 1 2 1 2 2 2
Tr <Q2LE> =ng(3+1) ) + ) Yar = 2Ng951, - (D.2)
The extension of o3 in the group SU(3)¢ is given by:
1 0 0
A3=10 -1 0], (D-3)
0 0

and, as above, we can relate the fermionic fields to the eigenvalues of the generators ’\f
in this way: (u,d)%, ubr and d’ are linked to the eigenvalue 5 if the colour numbers are

a =1 and b = 2; to the eigenvalue —% if @ = 2 and b = 1; while all the others fermions are
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related to the eigenvalue 0. Then the trace of the squared generator is given by:

A3\ 2 1\? 1\?
(9307) (5) + <—§> ] Goc = 2ngg§C, (D.4)

where we can note that (D.2) and (D.4) have the same constant in front of the squared

Tr =ny,(2+1+1)

gauge couplings. What we want is to mantain this constant also for the group U(1)y, whose
generator is given by % = — % Again we can relate the eigenvalues of this generator to
the matter fields as follows: the eigenvalue —% to the fields (v, €)r; the eigenvalue 1 to the
field eg; the eigenvalue % to the fields (u,d)9; the eigenvalues —% and % to the fields u%g

and dog (with a = 1,2, 3), respectively. So we have that:

()] 8 o) () 5] =

= ?ngle .

Tr

Thus, using the redefinitions:

3 5
giy = \/ggy and Y = \/;YI, (D.6)

we find the correct value for the trace:
Y\ 2
(QY 7)

V' 2
(915/5)

Tr =1Tr = 2n,05 . (D.7)




Appendix E

Matching conditions for coupling

constants

Let us consider the breaking of the type SU(4) ® SU(2)gr — SU(3)c @ U(1)y. What are
the matching conditions between the couplings of the conserved U(1)y and those of the
broken groups? We find the answer following the procedure in [21]. We know from (2.14),
and using the normalization redefinition in (D.6), that the hypercharge generator Y/2 can

\/7E --» Normalization: \/7 \/703R >\15 . (E.1)
5 2 5

Therefore, in general, we write the generator Y/2 (from here we sobstitute Y’ — Y in the

be written as:

notation) as a combination of generators T of the higher groups:

Y

5 =paT" with > i=1; (E.2)

moreover, since the symmetry under U(1)y is conserved, we must have that:
Y- (R)=0, (E.3)

where (R) is the VEV of the Higgs boson multiplet responsible for the symmetry-breaking
from the Pati-Salam group to the SM. Furthermore, the Higgs mechanism, using the
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covariant derivative:
DyR = 0,R+i (G + g2Wyur) R = 0, R +ig, T"A%R, (E.4)
generates for the vector bosons the squared mass:
M3, = (R)'gugsT*T"(R) , (E.5)
so that we have the mass term:
ARMaA™ = A50, [0T MPO], (OT) A" = B (M5B, (E.6)

where the orthogonal matrix O (with 0;;,0;; = O;Oy; = d;;) transforms the gauge eigen-
vectors A}, to the mass eigenstates Bf, At this point, let us call BZ the massless vector

bosons related to the U(1)y symmetry:

= (0")yoAlL = g, A% with  dyy = (Opy)? qu =1. (E.7)

To look for the form of the vectors ¢;, let us start writing:

0= ij(Mz);”ﬁgBY“ = A%0,4, [0"M?0] _, O A" = 0iM;0;y =0 (E.8)
= ka [Omejij} = (SkszjOJy = M,quj = 0; (Eg)

from this, with (E.3) and (E.2), we obtain:

M2 = [(R)'9.T°] [T (R)as] = 0 = [(R)'g.T°] [Y - (R)]
Pa (E.10)
- QG - Ng_ )

where N is the normalization factor:

an Z(pa) —1 — N= Z(@)Q. (E.11)

Ya & 9k
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To conclude we have to find the form of the gauge coupling costant gy related to the group

U(1)y, so we look at the interaction term between the gauge bosons and the fermions:

9aALT YY" p = ga [¢aB), + Oax BS7" | T 4ry"e) (E.12)
Y a
- gaQaTa = gYE = gYpaTa =  (y = gyz_ ) (E13)

so gy = N. Finally, for the matching conditions we have:

4 W\
Y a a a

and therefore for the breaking from the Pati-Salam model to SM the matching conditions
are given by:
ay . (E.15)



Appendix F

Dirac and Majorana mass

The fermionic field can be written in components as:

n
. :ﬁg _ (L) and =W = (v7 vs v )= (vh v]).
i

where we have used the chiral representations:

(1 0
1= (2 145 0
p— p— d p— p—
TPL 9 0 an l/JR 9 wg )
0 Py

and the the y-matrix definitions:

—I 0 0 I 0 o L
= , = and v = with?:=1,2,3 |,

so that the Dirac mass term takes the form:

mpUV = mp(Whtr + U] r) = mp(Withy + Yits + ivs + Vi) .
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Defining, instead, the operation of charge conjugation as:

Vi
C
T I e Y A T N A PN A (T
e =ivYV = i = <¢R> = ((\IJC)R) = ((wL)C> ) (F.5)
(1

where
4

(Yr)C = io9fy = ( %ZJZI*) = SE0C = (V)
—3

(01)° = =ion = (‘f) - Byl — (50,
1

\

if a fermion realizes the identity:

U=0"= {:/;1 if‘:ﬁ E <($L)C> = (%’3)0) : (F.7)

it is called a Majorana fermion, whose mass term, the Majorana mass term, takes the form:

PGy = T () Ty + 0L (00)] =

2 (F.8)
= [ wo) (—iow) o + ¥ L (—ioa)(W])T] = mar(avs + 5u5)



Appendix G

Mass shift and Weyl propagators

Let us consider the Lagrangian:

- ID(W”au - m0)¢ - 1(F;w)2 - gl/_J’y‘uG‘ﬂ,D ) (Gl)

4

the two-points function, for the fermions, can be written as:

E@! :—)— ,(), ,()(), =+ .

]

- » )—
p—mg+ie+p—mo+ze< () p m0+ze+ (G.2)
1

ﬁ—mo—z(@’

where p = p,7* and _O_ —i33(p) is the sum of one-particle irreducible diagrams.

In general, if we consider also chiral interactions, the function X(p) is of the form:

Y(p) = Ap+ Bmg + Cysp + Dpys + Emgys =
= A(ﬁ— mo> + (A+ B)mg + C%(ff— mo) + D(ﬁ— mo)%-

_(E+C+D)m (P — mo)vs +v5(p — mo) _
0 2m0

> A+B)mo+C_E—_D75<]7—mo>+

2
%C(p o) =

"(p— mo) + B'mg + C'vs (]3— mo) + D (ﬁ— mo)%

(G.3)

||
_|_/—\

I
S
S
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where A, B, C, D, E are functions of the coupling constant g and the cut-off A.
The physical mass is defined as the pole of the full propagator (G.2):

[ﬁ— Mo — 2(@} —0 = X(p=mym)=0om, (G.4)

ﬁ:mph

where dm = my;, — myg is called the mass shift. At the three-level, 0(¢°), we obtain:

b=mpp

[ﬁ— mo} =0 = mo=mu(l+0(g?); (G.5)
therefore at 1-loop, o(g?), we have:
S(B) ~ A% A) (F—mo) + Blg%, Amo = (g%, A) (5= myn) +0m +o(g")  (G.6)

where, because the ¥(p) starts from o(g?), we replaced the mg with his order-zero value to
highlight the one-loop contribution to the mass shift.
In case we have a theory with a massless fermion, we can write the tree-level relation

mg = 0 + 0(g?), that we put in the definition (G.6) obtaining:
S(P) ~ Alg*, )P+ dm + o(g"), (G.7)

therefore ¥(p = 0) gives the one-loop contribution to the mass shift, and it will correspond

to the generation of a mass my, = ém.

An alternative for defining the fermion mass is to use the Weyl representation [23]. Let

us start with a free fermionic Lagrangian of the type:

L= iUy, ¥ —mb¥ =

(G.8)
= W} a0ty + o Otbr — ML R — kL,

where we have used the notation:

4 0 o . _
=1 with  o* =(1,0;) and d&" = (1,—0;). (G.9)
ot 0
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From (G.8) we can obtain the propagators:

T T
(vl = <<¢L> (v wh)r= <<WR WL>> -

T T
v )
VR VrYR  YrYL (G.10)
_i(ypu+m) ) m a'pu
= pQ - m2 - p2 _ m2 5_”pu m )
where we can see: o
Do
> = QE 5 (G.11)
YL v, P m;
ot
— = QE 5 (G.12)
YR Yvr P m;
m
> = > = ) G.13
oL n Un b PPy (G13)
In the same way we can define the propagators for the charge conjugated fields:
g 0 doy\ (vrvh  dovp),. (ios 0
(Uewre) = ( + o P =
—102 0 waR Q/JR@DL 0 —109
_ <<<w>c<w>cT <wL>c<wR>C*>> _
c ct c ct
Wr)* W) (Vr)(¥r) @14

o 0 109 m o pu\ (103 0 B
p?P=m? \—iocy 0 ) \o"p, m 0  —io}

_ (aﬂpu —m>:<<<wc>3<wc>k <wc>R<wc>}>>
Pem?\—m arp) T \@@0h @rwa))

Or equivalently, we can consider, as a first approximation, massless propagators for
left- and right-handed fermions, and the mass term as couplings between a left and a right
state: —

— = j;Zp“UQ and  —s¢—=—im. (G.15)
YR,L Yrp P M YR,L YL.R

However it is possible to recover the propagators seen above making infinite sums of the

>

type:

puot
p2

n
— i im]
L PR p

Y

+ ... (odd number of mass insertions) (G.16)
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Y

YR

" " w o
— P BT i) (=) P (i) i
YR p p p p

+ ... (even number of mass insertions) .

(G.17)

At this point to find the value of the mass, instead of using the normalization condition

(G.4), we use the one related to the coupling constants, in particular for the mass insertion
in (G.15); so this tells us that the value of the mass can be identified with the value

of the two-point function (between a left and a right state) in the limit of zero external

momentum:

(G.18)

m=limi=O-
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Appendix H
Extended model 1 - Higgs potential

Using Vg = V(L, R) given by (2.28), for what seen in Sec. 2.9.2 the part of the scalar
potential with less than three fields A;, and T;, takes the form:

V =Vig — 203 NN — 2u3T T}, — %,ﬂz(m/\m + h.c)— %MC(RWTM + h.c.)
+ Axv1 L Lio NP N j5 + Axyo L' Lo NP Nig + Az 7 L Nig NP Ljg
+ Azz1 (LNio L7P Njg + h.c.) + Agza(L**Njo L7P Nig + h.c.)
+ Azz3(LNjo NP Lig + h.c.)
+ A1 R Rio T Tjg + Aapa R R;ja T Tig + Ao R T TP R
+ Aeer(ROTio RPPTi5 + h.c.) + Aoca( ROTjo R Tig + h.c.)
+ Aees(ROT; TP Rig + h.c.)
+ Ax 21 (L Lig LigN? + h.c.) + Axz2(L** LigLjo N + h.c.)
+ Aac1 (R Rio Rig T 4 h.c.) + Aaco( R RigR;o T 4 h.c.)
+ M Lia LOTiaT + A1aLia T LPTys + Apps(Lia T LETY + hoc.) (H.1)
+ Ak Ria RN NP + Moo Ria MR N j5 + Aieics(Ria NV“REAS + h.c.)
+ A (L Lia R7PTi5 + hc.) + Ag1a(L*Rja LisT?® + h.c.)
+ Ars (L LY Rjo TS + hec.)
+ Ak (R Rin P Njs + h.c.) + Agga(RLja RigA?® + h.c.)
+ Airxes(RR] Lio AL + h.c.)
F A (LN RPP T + hec.) + M2 (L Rjo TP Nig + h.c.)
+ Ass(L Rjo AT + h.c.)
+ A1 (ROTia LP Njs + hec.) + Argo (R Lo NP Tig + h.c.)
+ Aixs (RO Lo TP A + hec.) .
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