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Chapter 1

Introduction

One of the open questions in the Standard Model (SM) is what the origin for the mass

hierarchy and mixing of fermions is. This is the so called "flavor problem", it arises

because in the lagrangian of the Standard Model the masses and mixing angles of fermions

are completely arbitrary, their values are explained by ad hoc Yukawa couplings to fit the

experimental data without giving a theoretical motivation that makes us able to understand

such numbers.

A possible way to solve this problem is to use flavour symmetries and/or symmetries

like GUT and/or of partial unification, like Pati-Salam models [1, 2, 3, 4, 5, 6], in order to

decrease the number of free parameters in the models. For example, in the minimal SU(5)

the relation between the electron and the down quark masses Me = MT
d is valid, in this

way it is possible to determine completely a Yukawa matrix from the other; therefore the

number of independent parameters of the theory is reduced.

In the model proposed by J.C. Pati and A. Salam in 1974 [1], the authors assumed the

unification of quarks and leptons by means of the introduction of a fourth color carried by

quarks, in addition to the three of SU(3)C , and related to the leptonic number. In this way

the unification of quarks and leptons comes extending the group SU(3)C to SU(4). Because

in 1974 the third fermionic family of quarks and leptons had not yet been discovered, the

model describe only the first two fermionic families of quarks and leptons. The gauge

group proposed by the authors is SU(4)⊗ [SU(2)1+2
L ]⊗ [SU(2)1+2

R ], this just because, using

the quantum numbers related to the isospin (I3 = ±1/2), the strangeness (S = 0, 1) and

the charm (C = 0, 1), the quarks can be collected in quartets. Under this group the known
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matter fields can be embeded in the multiplets:

ΨL,R =




u1 u2 u3 u4 = νe

d1 d2 d3 d4 = e−

s1 s2 s3 s4 = µ−

c1 c2 c3 c4 = νµ



L,R

. (1.1)

In the so-called "basic model", the fermionic fields obtain mass through Yukawa interaction

with the scalar multiplet A = (1, 4, 4̄):

Lmass = λ[Ψ̄L〈A〉ΨR + h.c.] with 〈A〉 = diag[a1, a2, a3, a4] , (1.2)

which generates the tree level mass relations:

md = me , mu = mνe , ms = mµ and mc = mνµ . (1.3)

Although a distinction between quark and lepton masses can be reached introducing new

scalar multiplets, the different strong interactions of quarks and leptons will produce how-

ever radiative corrections of the order:

mphys
q −mphys

l

mtree
≈ 3g24

(4π)2
ln

(
M2

X

M2
V

)
, (1.4)

with g4 the coupling constant of SU(4), Vi the gauge mesons of SU(3) and X±
i the lep-

toquarks, new vector bosons which connect quark and leptons. For the neutrino sec-

tor instead, the authors suggest the introduction of singlet fermions, se0 = (1, 1, 1) and

sµ0 = (1, 1, 1), in order to obtain massless neutrinos.

Interesting scenarios related to Pati-Salam have been investigated, among others, in

[7, 8, 9] where family simmetries [10] have been employed to construct the lepton and

quark mass matrices. In particular, the authors of [7] investigated the possibility to com-

bine a Pati-Salam model with the discrete flavour symmetry based on the discrete group

S4 that gives rise to the quark-lepton complementarity relation θ12+ θC ∼ π/4 [11, 13] be-

tween the neutrino solar angle θ12 and the the Cabibbo angle θC and, in addition, provides

a good description of the fermion masses and mixings, both in the quark and in the lepton

sectors. In [8], instead, the flavor group is based on the A4 × Z5 family symmetry and

the construction makes use of the see-saw mechanism with very hierarchical right-handed
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neutrinos to predict the entire PMNS mixing matrix as well as a Cabibbo angle θC ∼ 1/4.

In the latter paper, a Pati-Salam extension of the standard model was proposed, incorpo-

rating a flavor symmetry based on the ∆(27) group. The theory realizes a Froggatt-Nielsen

picture of quark mixing [14] and a predictive pattern of neutrino oscillations in which the

CP symmetry is violated. Differently from our approach, none of the previous models

attempted a complete numerical fit of the model parameters to the fermion observables,

so that their agreement to the low energy observables is mainly based on a selection of

higher-dimensional operators contributing to the Yukawa sectors.

The thesis work will focus on models of partial unification, in particular two Pati-

Salam models [2, 3] based on the gauge group SU(4) ⊗ SU(2)L ⊗ SU(2)R, developed in

the 90’s and then abandoned too early in favor of the more exotic SUSY theories. These

two models differ from each other because of the choice of the scalar multiplets, therefore

also the scalar potentials and the Yukawa interactions in the Lagrangians will differ. As

first consequence of this we will have that: while in the first model the only existing tree

level fermion masses are those for some Beyond SM neutrinos, the second model provides,

a tree level mass for each fermion. Beside this difference, in order to compare in a fair

way these two models, we demand, for both, the existence of an explicit mass for the

singlet fermions and the equality, at the partial-unification scale, of the gauge couplings of

the groups SU(2)L and SU(2)R. However, the common features of the two models is the

presence of sterile neutrinos and the fact that the hierarchy between the fermion masses

will come from loop corrections [15, 16, 17]. Therefore we will study how these corrections

come out and in which form, trying to understand, by means of computer analysis, which

is the best model to describe the current experimental data [18].

In Chapter 2 we study the first model where the scalar content is composed by two

Higgs multiplets in the same representation as fermions, which under the Pati-Salam group

are (4, 1, 2) and (4, 2, 1), so we have a complete left-right symmetry. After discussing the

field content and the form of the Lagrangian, for the case without fermion inter-family

mixing, in Section 2.1 we continue the analysis of the model computing in particular the

tensorial structure of the scalar potential and the conditions for the minimum, obtaining in

this way the form of the vacuum expectation values (VEVs) of the Higgs fields responsible

for the symmetry breaking of the Pati-Salam and the Standard Model groups. The model

analysis goes on, in Section 2.2 and 2.3, evaluating the Higgs and gauge boson mass

spectra, two ingredients needed in the one-loop diagrams calculation for the fermion mass

radiative generations, since in this model no SM particles get a tree level mass. In Section
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2.4 we use the matching conditions between the running gauge coupling constants of the

Standard Model and the Pati-Salam model in order to estimate the order of magnitude

of the partial-unification scale. In Section 2.5 we focus on neutrinos, in particular on

their masses and mixings, because these will be other fundamental ingredients for loop

corrections to the fermion mass, being the neutrinos the only fermions propagating in that

type of diagrams. In Section 2.6, using the dimensional regularization, we compute the

one-loop corrections to the fermion masses coming from the diagrams involving scalars

and gauge bosons exchange, also demonstrating that the model can not generate at all

masses for the charged leptons. In Section 2.7 we show the first results obtained inserting

in a scan code built up in the Mathematica software the fermion mass formulas, found

in the previous sections, in order to search the model parameter set able to reproduce

the experimental mass values. We will see that the model can generate realistic masses

for all the quarks except for the top. In Section 2.8 we implement the model with the

fermion inter-family mixing, generalizing the Lagrangian and defining the CKM and the

PMNS matrices. We conclude the chapter with the Section 2.9, where we extend the model

including two more multiplets, again in the representations (4, 1, 2) and (4, 2, 1) but with

zero VEVs, in order to solve the problems of the unrealstic top mass and the no mass

generations for the charged leptons. What we find, after repeating numerical analysis with

the new two Higgs multiplets, is that the extended model is able to generate good values

for the quarks and charged leptons mass spectra, but not for the neutrinos and the CKM

and PMNS mixings.

We carry out an analogous study in Chapter 3 for the second model, where the scalar

content is given, in this case, by the multiplet in the representations (4, 1, 2), as in the

previous model, and a bi-doublet (1, 2, 2) under the group SU(4) ⊗ SU(2)L ⊗ SU(2)R.

With these scalar multiplets, unlike the previous model, all the SM fermions get a tree

level mass, while the correct mass hierarchy should be again generated by loop corrctions.

However we will see that this second model does not seem able to generate the correct

fermion mass spectra.

In this work we evaluate only the one-loop corrections to the fermion mass values and

mixings, at the partial-unification scale. Furthermore, in order to make our numerical

analysis more simple, we do not take into account any CP phase, cosidering, for both the

models, real parameters.



Chapter 2

Model 1

The first Pati-Salam model we analyze was developed by M. P. Worah [2]. How we will see

in the following, the peculiarity of this model is to provide masses to the Standard Model

fermions radiatively generated at one loop, but not for a set of Beyond SM neutrinos whose

masses are generated at tree level. Compared to the original paper, we will make some

changes in the scalar sector analysis that will be justified later. Let us start now describing

the fields content of this model. In the group SU(4) ⊗ SU(2)L ⊗ SU(2)R the fermions of

Standard Model are assigned to the representations (4, 2, 1) and (4, 1, 2) . In the matrix

form:

Ψ
αi(f)
L,R =




u1 d1

u2 d2

u3 d3

νe e−




(f)

L,R

(2.1)

where i = 1, 2 is the index for SU(2)L,R, α = 1, 2, 3, 4 for SU(4) and f = 1, 2, 3 corresponds

to the fermionic family. Moreover, the model contains also fermionic singlets of the group,

(1, 1, 1), an extra sterile neutrino s
(f)
0 for each family f of fermions. The gauge bosons of

the SU(2)L,R groups, instead, are defined as usual using the Gell-Mann matrices σaL,R:

W µ
L,R =

3∑

a=1

σaL,R
2
W µa
L,R =

1

2

(
W µ3 W µ1

L,R − iW µ2
L,R

W µ1
L,R + iW µ2

L,R −W µ3

)

L,R

; (2.2)

7
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for the gauge bosons related to the group SU(4), instead, we use the matrices λa (definited

in Appendix A):

Gµ =
15∑

a=1

λa

2
Gµa =

=
1

2




Bµ√
6
+ Gµ8√

3
+Gµ3 Gµ1 − iGµ2 Gµ4 − iGµ5 Gµ9 − iGµ10

Gµ1 + iGµ2 Bµ√
6
+ Gµ8√

3
−Gµ3 Gµ6 − iGµ7 Gµ11 − iGµ12

Gµ4 + iGµ5 Gµ6 + iGµ7 Bµ√
6
− 2Gµ8√

3
Gµ13 − iGµ14

Gµ9 + iGµ10 Gµ11 + iGµ12 Gµ13 + iGµ14 −
√

3
2
Bµ



,

(2.3)

where Bµ = Gµ15 is the gauge boson that couples to the hypercharge Y , while the bosons

Gµa with a = 1, . . . 8 represent the gluons of SU(3)C .

We can see that we have nine vector fields more than in the SM: three are the gauge

bosons for the right sector SU(2)R defined, similarly to the W µ
L bosons of the SM, as:

W µ±
R =

W µ1
R ∓ iW µ2

R√
2

and W µ0
R = W µ3

R ; (2.4)

then we have six new gauge bosons, the leptoquarks, that link quarks and leptons:

Xµ±
1 =

Gµ9 ∓ iGµ10

√
2

, Xµ±
2 =

Gµ11 ∓ iGµ12

√
2

and Xµ±
3 =

Gµ13 ∓ iGµ14

√
2

. (2.5)

All these gauge bosons interact with fermions and scalars as usual by means of the covariant

derivative:

Dµ ≡ ∂µ + igLW
µ
L + igRW

µ
R + ig4G

µ . (2.6)

Regarding the scalar part, Worah introduces two Higgs bosons: the right-handed ones, in

the representation (4, 1, 2):

Rαi =




Ru1 Rd1

Ru2 Rd2

Ru3 Rd3

Rν Re




with Rαi = (Rαi)∗ , (2.7)
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that will be used for the symmetry breaking of the Pati-Salam group to the SM:

SU(4)⊗ SU(2)L ⊗ SU(2)R → SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.8)

and the left-handed Higgs bosons Lαi ∼ (4, 2, 1), with Lαi = (Lαi)∗, that will be responsible

for the symmetry breaking of the electro-weak group to the electromagnetism:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y → SU(3)C ⊗ U(1)Q . (2.9)

From the fermions and Higgs representations discussed above, the resulting Yukawa in-

teraction for each fermion family f , i.e. considering for the moment the case without

inter-family mixing, takes the form:

L(f)
Y ukawa = −k(f)L

[
s̄
(f)
0 LαiΨ

αi(f)
L + h.c.

]
− k

(f)
R

[
s̄c0

(f)
RαiΨ

αi(f)
R + h.c.

]
, (2.10)

where k
(f)
L,R are real numbers. So the total Lagrangian of the model has the form:

L =
3∑

f=1

{
iΨ̄

(f)
L γµDµΨ

(f)
L + iΨ̄

(f)
R γµDµΨ

(f)
R + is̄0

(f)γµ∂µs
(f)
0 + is̄c0

(f)
γµ∂µs

c
0
(f)−

−
[
s̄c0

(f)
m

(f)
0 s

(f)
0 + h.c.

]
+ L(f)

Y ukawa

}
− V (L,R) + Lgauge fixing +

+DµLαiD
µLαi +DµRαiD

µRαi − 1

2
Tr
[
GµνG

µν +WLµνW
µν
L +WRµνW

µν
R

]
,

(2.11)

where

G
µν = ∂µGν − ∂νGµ + ig4[G

µ, Gν ] , (2.12a)

W
µν
L = ∂µW ν

L − ∂νW µ
L + igL[W

µ
L ,W

ν
L ] , (2.12b)

W
µν
R = ∂µW ν

R − ∂νW µ
R + igR[W

µ
R,W

ν
R] , (2.12c)

with g4, gL and gR the gauge coupling constants for the group SU(4), SU(2)L and SU(2)R,

respectively; while the gauge-fixing part is given by:

Lgauge fixing = − 1

2ξ4
(∂ ·G)2 − 1

2ξ2R
(∂ ·WR)

2 − 1

2ξ2L
(∂ ·WL)

2+

+ C̄a
4∂ ·DCa

4 + C̄a
2R∂ ·DCa

2R + C̄a
2L∂ ·DCa

2L ,

(2.13)
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where ξN , C̄a
N and Ca

N are the gauge parameters, the anti-ghosts and the ghosts of the

group SU(N) (with N = 4, 2R, 2L) respectively. As we can see in (2.11), there are no

explicit mass terms for the fermions of Standard Model, respectively.

Looking at the representations of the fermions we can define the charge as:

Q =
σ3L
2

+
Y

2
=
σ3L
2

+
(σ3R

2
+
B − L

2

)
=
σ3L
2

+
(σ3R

2
+

√
2

3

λ15
2

)
, (2.14)

where Y represents the hypercharge, B the barionic number and L the leptonic number,

while λ15 and σ3 are respectively the diagonal generators for SU(4) and SU(2).

2.1 Higgs potential V (L,R)

Let us have a look at how many singlets, under the Pati-Salam group, can be built with

at most four Higgs fields, respecting the power counting criterion which demands that the

theory, to be renormalizable, contains no parameters of negative dimension in units of

mass. We start with the pseudo-real representation 2 ∼ 2̄ of SU(2):

2⊗ 2 = 3⊕ 1

2⊗ 2⊗ 2 = 2⊕ 4⊕ 2

2⊗ 2⊗ 2⊗ 2 = 3⊕ 1⊕ 5⊕ 3⊕ 3⊕ 1

(2.15)

(for more details about the tensor products see in Appendix B). Since the Higgs bosons

are also in the representation 4 of SU(4), we have to consider the following products as

well:

4⊗ 4 = 10⊕ 6

4̄⊗ 4 = 1⊕ 5

4̄⊗ 4̄ = 10⊕ 6 ,

(2.16)

therefore the only gauge invariant quadratic terms we can write have the form:

(4̄, 2, 1)⊗ (4, 2, 1) → LiαL
iα and (4̄, 1, 2)⊗ (4, 1, 2) → RiαR

iα. (2.17)
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Using three fields we have no SU(4) singlets:

4⊗ 4⊗ 4 = 20⊕ 20⊕ 20⊕ 4̄

4̄⊗ 4⊗ 4 = 36⊕ 4⊕ 20⊕ 4

4̄⊗ 4̄⊗ 4 = 3̄6⊕ 4̄⊕ 20⊕ 4

(2.18)

thus no cubic terms are present in the model. Considering four Higgses, instead, we find:

4⊗ 4⊗ 4⊗ 4 = 35⊕ 45⊕ 45⊕ 20⊕ 15⊕ 45⊕ 20⊕ 15⊕ 15⊕ 1 (2.19)

but this unique singlet assumes a tensorial form of the type: ǫαβµνLαLβLµLν , which is

equal to zero because the Higgs are bosonic, commutative, fields. The other possibility:

4̄⊗ 4⊗ 4⊗ 4 = 70⊕ 64⊕ 10⊕ 10⊕ 6⊕ 64⊕ 1̄0⊕ 6⊕ 10⊕ 6 (2.20)

does not contain any singlets; while the product:

4̄⊗ 4̄⊗ 4⊗ 4 = 84⊕ 4̄5⊕ 15⊕ 1⊕ 15⊕ 45⊕ 20⊕ 15⊕ 1⊕ 15 (2.21)

has two singlets. Combining the third of (2.15) and (2.21) we obtain

(4, 2, 1)⊗ (4̄, 2, 1)⊗ (4, 2, 1)⊗ (4̄, 2, 1) = (15⊕ 1, 3⊕ 1, 1)⊗ (15⊕ 1, 3⊕ 1, 1) (2.22)

which contains the singlets

(1, 1, 1)⊗ (1, 1, 1) → LiαL
iαLjβL

jβ

(1, 3, 1)⊗ (1, 3, 1) → LiαL
jαLjβL

iβ

(15, 1, 1)⊗ (15, 1, 1) → LiαL
iβLjαLjβ

(15, 3, 1)⊗ (15, 3, 1) → LiαL
jβLiαLjβ .

(2.23)

Therefore the potential must contain two quartic terms for the scalar multiplet L. The

same reasoning followed till now for the multiplet L, can also be used for the Higgs multiplet

R.

The next step is to introduce the mixing between the two multiplets L and R, and to
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do that we have two possible tensorial products which mantain the gauge invariance:

(4, 2, 1)⊗ (4̄, 2, 1)⊗ (4, 1, 2)⊗ (4̄, 1, 2) = (15⊕ 1, 3⊕ 1, 1)⊗ (15⊕ 1, 1, 3⊕ 1) , (2.24)

which generates the singlets:

(1, 1, 1)⊗ (1, 1, 1) → LiαL
iαRjβR

jβ

(15, 1, 1)⊗ (15, 1, 1) → LiαL
iβRjαRjβ ,

(2.25)

and the product:

(4, 2, 1)⊗ (4̄, 1, 2)⊗ (4, 2, 1)⊗ (4̄, 1, 2) + h.c. = (15⊕ 1, 2, 2)⊗ (15⊕ 1, 2, 2)× 2 , (2.26)

from which can be obtained the singlets of the form:

(1, 2, 2)⊗ (1, 2, 2) → LiαR
jαLiβRjβ + (LiαR

α
jR

jβLiβ + h.c.)

(15, 2, 2)⊗ (15, 2, 2) → LiαR
jβLiαRjβ + (LiαR

α
jR

jβLiβ + h.c.) .
(2.27)

At the end, putting all togheter, we obtain the potential for the Higgs fields of the

form:

V (L,R) =− 2µ2
LLiαL

iα + λL1
(
LiαL

iα
)2

+ λL2LiαL
jαLiβLjβ−

− 2µ2
RRiαR

iα + λR1

(
RiαR

iα
)2

+ λR2RiαR
jαRiβRjβ+

+ λLR1LiαL
iαRjβR

jβ + λLR2LiαR
jαLiβRjβ+

+ λLR3(LiαR
jαLiβR

β
j + h.c.) ,

(2.28)

where µ2
i and λi are real parameters.1

1The potential (2.28) looks different from the one in [2], where an additional term:

λL3(LiαL
jαL

β
j L

i
β + h.c.) (2.29)

appears; however, using the identity ǫijǫkl = δikδ
j
l − δilδ

j
k this can be reparametrized in the following form:

(λL1 + λL3)LiαL
iαLjβL

jβ + (λL2 − λL3)LiαL
jαLjβL

iβ . (2.30)



2.1 Higgs potential V (L,R) 13

2.1.1 Minimum and stability of the Higgs potential

To study the symmetry breaking of the Pati-Salam model and of the Standard Model, we

follow Li’s method [19], that we rediscuss here in some details. Considering for the moment

the case without left-right mixing, the first derivatives of the Higgs potential with respect

to the scalar fields assume the following forms:

∂V (L)

∂Lkσ
= −2µ2

LL
kσ + 2λL1LiαL

iαLkσ + 2λL2LiαL
kαLiσ

∂V (R)

∂Rkσ

= −2µ2
RR

kσ + 2λR1RiαR
iαRkσ + 2λR2RiαR

kαLiσ .

(2.31)

Contracting separately the indices of SU(2)L and SU(2)R, the previous relations can be

expressed in terms of the hermitean matrices:

Xσ
α = LiαL

iσ and Y σ
α = RiαR

iσ , (2.32)

in this way (2.31) becomes:

∂V (L)

∂Lkσ
= −2µ2

LL
kσ + 2λL1

∑

α

Xα
αL

kσ + 2λL2X
σ
αL

kα

∂V (R)

∂Rkσ

= −2µ2
RR

kσ + 2λR1

∑

α

Y α
α R

kσ + 2λR2Y
σ
α R

kα .

(2.33)

Because Liα and Riα are independent fields, we can diagonalize them simultaneously in

the forms:

Xσ
α = δσαxσ and Y σ

α = δσαyσ . (2.34)

With this definitions, the minimizing equations are given by:

[
−µ2

L + λL1
∑

α

xα + λL2xβ

]
〈Lkβ〉 = 0

[
−µ2

R + λR1

∑

α

yα + λR2yβ

]
〈Rkβ〉 = 0 .

(2.35)
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Let us focus for the moment only on the left part, for the right one the reasoning will be

the same. Using the tensors Xβ
α the potential can be written as:

V (L) = −2µ2
LX

α
α + λL1(X

α
α )

2 + λ2X
β
αX

α
β =

= −2µ2
L

∑

α

xα + λL1

(∑

α

xα

)2
+ λL2

∑

α

x2α .
(2.36)

For the first equation in (2.35) we can have two possible solutions: the trivial case 〈L〉 = 0

or 〈L〉 6= 0. If we consider the general case with a non-zero vacuum expectation value

(VEV), the equation (2.35) is reduced to the form:

λL1
∑

α

xα + λL2xβ = µ2
L . (2.37)

At this point we can distinguish further cases. The first one is when xα 6= 0 for α = 1, 2, 3, 4.

This request gives us the system:





λL1(x1 + x2 + x3 + x4) + λL2x1 = µ2
L

λL1(x1 + x2 + x3 + x4) + λL2x2 = µ2
L

λL1(x1 + x2 + x3 + x4) + λL2x3 = µ2
L

λL1(x1 + x2 + x3 + x4) + λL2x4 = µ2
L

⇒





(4λL1 + λL2)
∑4

α=1 xα = 4µ2
L

x1 + x2 − x3 − x4 = 0

x1 − x2 + x3 − x4 = 0

x1 − x2 − x3 + x4 = 0

, (2.38)

from which we obtain:

x1 = x2 = x3 = x4 =
µ2
L

λL1 + λL2
, (2.39)

that is the solution for the case without symmetry breaking which, inserting (2.39) in

(2.36), leads to the minimum:

V NB = − 4µ4
L

4λL1 + λL2
. (2.40)

The reason why we consider this as a case without symmetry breaking can be understood

looking at the scalar kinetic term in (2.11) responsible, by means of the Higgs mechanism,

for the gauge boson masses generation, how we will see in details in the next section. In

fact, considering for simplicity only the term involving the gauge bosons Gµ of SU(4):

Tr
[
(DµL)

†(DµL)
]
= · · ·+ g24Tr

[
GµL

†LGµ
]
, (2.41)
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and using the notations in (2.32) and (2.34), we obtain, once the Higgs fields get VEV,

the mass term for the gauge bosons of the form:

g24Tr
[
GµA(A

†XA)A†Gµ
]
V EV

= g24

[
G̃α
µβ(xσδ

σ
α)G̃

µβ
σ

]
V EV

=M2
GG̃µG̃

µ , (2.42)

where A is the unitary matrix which diagonalizes the tensor product LiαL
iσ and, at the

same time, it transforms the interaction basis Gµ into the mass eigenstates G̃µ, with M2
G

their diagonal squared mass matrix. Therefore if the value xα is the same for α = 1, 2, 3, 4

thenM2
G will be proportional to the identity matrix; this is an analogous case, once rescaled

the VEV, to the trivial one 〈L〉 = 0 which mantains all the generators of the group SU(4)

exact (not broken), so with all the gauge bosons massless.

The second case, which we are interested to, is when symmetry breaking takes place.

However, we have to pay attention to the fact that SU(4) can be broken in two different

ways: SU(4) → SU(2) + SU(2) or SU(4) → SU(3) + U(1). The breaking pattern of our

interest here is the second one, so two possible choices are allowed:

x1 = x2 = x3 = 0 and x4 =
µ2
L

λL1 + λL2
→ V B

1 = − µ4
L

λL1 + λL2
;

x1 = 0 and x2 = x3 = x4 =
µ2
L

3λL1 + λL2
→ V B

2 = − 3µ4
L

3λL1 + λL2
.

(2.43)

Since we need to avoid SU(3) taking a non-vanishing VEV, the right minimum of the

potential is V B
1 . Trying to request that V B

1 is an absolute minimum, we can note that

exists a function of minima given by:

Vmin(k) = − kµ4
L

kλL1 + λL2
(2.44)

with k indicating how many non-zero eigenvalues xα 6= 0 we have for the tensor product

LiαL
iβ. Deriving Vmin(k) with respect to k we find:

∂Vmin(k)

∂k
= − λL2µ

4
L

(kλL1 + λL2)2
(2.45)

which for λL2 < 0 is positive, then Vmin(k) is an increasing function. This means that we

have the absolute minima for k = 1; in addition, asking that V B
1 is the absolute minimum,

we get the additional constraint λL1 + λL2 > 0.
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In principle we have the freedom to represent bothXσ
α and Y σ

α as diagonal 4×4 matrices

with only one non-vanishing entry. In view of the breaking of SU(4) → SU(3), let us fix

α = σ = 4. Then:

〈X〉 = µ2
L

λL1 + λL2




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




〈Y 〉 = µ2
R

λR1 + λR2




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1



, (2.46)

and accordingly:

〈L〉 = µL√
λL1 + λL2

(
0 0 0 a

0 0 0 b

)
〈R〉 = µR√

λR1 + λR2

(
0 0 0 a′

0 0 0 b′

)
, (2.47)

with | a |2 + | b |2= 1 and | a′ |2 + | b′ |2= 1. Since both L and R are vectors under SU(4),

the choice of giving VEV to the 4th component preserves SU(3); in fact, for every SU(4)

generators λa, the equalities λa〈X〉 = 0 and λa〈Y 〉 = 0 hold as soon as a run on the subset

of λa which generate the color group. It remains to specify which SU(2) component of L

and R must be vanishing. Given that we want U(1)Y subgroups to be preserved by 〈R〉:

Y 〈R〉 = σ3R〈R〉+ 〈R〉
√

2

3
λ15 =

=

(
1 0

0 −1

)(
0 0 0 a′

0 0 0 b′

)
+

(
0 0 0 a′

0 0 0 b′

)



1
3

0 0 0

0 1
3

0 0

0 0 1
3

0

0 0 0 −1




=

=

(
0 0 0 0

0 0 0 −2b′

)
= 0 ;

(2.48)

and U(1)Q subgroups to be preserved by 〈L〉:

Q〈L〉 = σ3L
2

〈L〉+ Y

2
〈L〉 = σ3L

2
〈L〉+ 〈L〉

√
2

3

λ15
2

=

(
0 0 0 0

0 0 0 −b

)
= 0 , (2.49)

the optimal choice is to set a = a′ = 1 and b = b′ = 0. Therefore, defining vL/
√
2 and

vR/
√
2 as the vacuum expectation values taken by the fields Lν and Rν respectively , we
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have:

〈L〉 =
(
0 0 0 vL√

2

0 0 0 0

)
with vL =

√
2µL√

λL1 + λL2
; (2.50)

〈R〉 =
(
0 0 0 vR√

2

0 0 0 0

)
with vR =

√
2µR√

λR1 + λR2

. (2.51)

It is possible to obtain the same results following an analogus procedure but using,

instead of (2.34), the tensors:

Xj
i = LiαL

jα → δjixj and Y j
i = RiαR

jα → δji yj , (2.52)

where we contracted the SU(4) indices. In this case, considering for simplicity again the

left part only, we can distinguish two cases when 〈L〉 6= 0:

x1 = x2 =
µ2
L

2λL1 + λL2
→ V NB = − 2µ4

L

2λL1 + λL2
;

x2 = 0 and x1 =
µ2
L

λL1 + λL2
→ V B = − µ4

L

2λL1 + λL2
;

(2.53)

and demandig that the minimum of symmetry breaking is an absolute minimum:

{
V B < 0

V B < V NB
(2.54)

we find again the same conditions for the parameters: λL1 + λL2 > 0 and λL2 < 0.

We have to note that the choice xα = x4 and xi = x1 as the components that take VEV,

in (2.43) and (2.53) respectively, is needed in order to reproduce the correct symmetry

breaking patterns: SU(4) → SU(3) and SU(2) → U(1). Furthermore, while vR will be

at an high scale, where a partial-unification of quarks and leptons is achieved, the energy

scale of vL will be of the order of the electro-weak scale, vL ≈ 246 GeV. As a note, we can

relate the complex scalar fields ϕ1 and ϕ2, which compose the SM Higgs doublet ϕ, with

the two fields of the multiplet L having the same quantum number in the following way:

|〈ϕ〉| =
(
|〈ϕ1〉|
|〈ϕ2〉|

)
=

1√
2

(
0

|vL|

)
∼
(
|〈L∗

e〉|
|〈L∗

ν〉|

)
(2.55)
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where the VEV is taken by ϕ2 ∼ (Lν)
∗ because we have to produce the electro-weak

symmetry breaking SU(2)L ⊗ U(1)Y → U(1)Q.

Let us now reintroduce the LR mixing. Eq.(2.31) are then modified as follows:

∂V (L,R)

∂Lkσ
= −2µ2

LL
kσ + 2λL1LiαL

iαLkσ + 2λL2LiαL
kαLiσ + λLR1L

kσRiαR
iα+

+ λLR2R
jσLkβRjβ + 2λLR3L

k
βR

σ
i R

iβ

∂V (L,R)

∂Rkσ

= −2µ2
RR

kσ + 2λR1RiαR
iαRkσ + 2λR2RiαR

kαLiσ + λLR1R
kσLiαL

iα+

+ λLR2LiαR
kαLiσ + 2λLR3L

iσLβi R
k
β .

(2.56)

The presence of the terms proportional to λLR3 do not allow us to repeat the same procedure

done above. In fact, the tensor Xσβ = LiσLβi is not hermitean and, in addition, does not

commute with Xα
γ = LiγL

iα; thus it cannot be put in the diagonal form in the same

basis as, for example, Xσ
β . We can only say that Xα

γX
γ
β = XαγXγβ which means that the

eigenvalues of the two hermitean matrices are the same. If we consider the contraction of

the SU(4) indices we can rewrite the first equation in (2.56) as:

∂V (L,R)

∂Lkσ
=
[
− 2µ2

L + 2λL1X
i
i

]
Lkσ + 2λL2X

k
i L

iσ + λLR1Y
i
i L

kσ+

+ λLR2(Z
k
i )

∗Riσ + 2λLR3Z
k
i R

iσ

(2.57)

where Zi
j = LjαR

iα and (Zi
j)

∗ = LjαRiα. At this point, since the diagonalization of the

product LkαL
lα procedes as:

LkαL
lα → (U †

L)
k
iX

l
k(UL)

j
l = xjδ

j
i = (U †

L)
k
iLkβ(VL)

β
α(V

†
L)

α
ρL

lρ(UL)
j
l , (2.58)

and that for the right-handed fields as:

RkαR
lα → (U †

R)
k
i Y

l
k(UR)

j
l = yjδ

j
i = (U †

R)
k
iRkβ(VR)

β
α(V

†
R)

α
ρR

lρ(UR)
j
l , (2.59)

with UL,R matrices of SU(2)L,R and VL,R matrices of SU(4), we could diagonalize the

tensor Z l
k as:

LkαR
lα → (U †

L)
k
iLkβ(VL)

β
α(V

†
R)

α
βR

lβ(UR)
j
l , (2.60)

but only if we make the restrictive assumption V †
LVR = δij. Instead of that, we proceed

in the following way. Having already established that 〈Lν〉 = vL/
√
2 and 〈Rν〉 = vL/

√
2
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are the good VEVs for our scheme of symmetry breaking, we can enforce them to be

solution also for the case with LR mixing. In particular, assuming 〈L14〉 = vL/
√
2 and

〈R14〉 = vR/
√
2, the VEVs must satisfy the following relations:

−2µ2
L + (λL1 + λL2)v

2
L +

1

2
(λLR1 + λLR2)v

2
R = 0 ;

(2.61)

−2µ2
R + (λR1 + λR2)v

2
R +

1

2
(λLR1 + λLR2)v

2
L = 0 .

Then we can compute Vmin:

Vmin = − 1

4(λL1 + λL2)(λR1 + λR2)− (λLR1 + λLR2)2
×

×
[
4(λR1 + λR2)µ

4
L + 4(λL1 + λL2)µ

4
R − 4(λLR1 + λLR2)µ

2
Lµ

2
R

]
≡ (2.62)

≡ αµ4
L + β µ4

R + γ µ2
Lµ

2
R ,

and impose that the coefficients α, β and γ, of µ4
L, µ

4
R and µ2

Lµ
2
R respectively, are simultane-

ously negative. In this way we "minimize" the minimum. This gives the two possibilities:

(
C < 0&B > 0&A >

C2

4B

)
or

(
C > 0&B < 0&

C2

4B
< A < 0

)
, (2.63)

whereA = λL1+λL2, B = λR1+λR2 e C = λLR1+λLR2. Again, the conditions: λL1+λL2 > 0

and λR1 + λR2 > 0, are recovered in the limit of vanishing LR couplings.
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2.2 Higgs masses

Let us calculate now the second derivatives of the Higgs potential:

∂2V (L,R)

∂Lyν∂Lxµ
=

[
−2µ2

L + 2λL1L
2 + λLR1R

2
]
δxyδ

µ
ν + 2λL2

[
δxyL

iµLiν + δµνL
xαLyα

]
+

+ 2λL1LyνL
xµ + λLR2R

iµRiν ,

∂2V (L,R)

∂Ryν∂Lxµ
= λLR1RyνL

xµ + λLR2L
xαRyαδ

µ
ν + 2λLR3

[
LxαR

α
y δ

µ
ν −Rµ

yL
x
ν

]
,

(2.64)

∂2V (L,R)

∂Ryν∂Rxµ

=
[
−2µ2

R + 2λR1R
2 + λLR1L

2
]
δxyδ

µ
ν + 2λR2

[
δxyR

iµRiν + δµνR
xαRyα

]
+

+ 2λR1RyνR
xµ + λLR2L

iµLiν ,

∂2V (L,R)

∂Lyν∂Rxµ

= λLR1LyνR
xµ + λLR2R

xαLyαδ
µ
ν + 2λLR3

[
Rx
αL

α
y δ

µ
ν − LµyR

x
ν

]
.

Imposing VEV structures obtained above, we find the block diagonal 8× 8 mass squared

matrix:

M2
LR =




M2
LRu

0 0 0

0 M2
LRν

0 0

0 0 M2
LRd

0

0 0 0 0



, (2.65)

where we used the basis (Lu, Ru, Lν , Rν , Ld, Rd, Le, Re). Taking in account the conditions

(2.61) for µL and µR, we obtain:

M2
LRu =

v2R
2
λLR2

(
−1 vL

vR
vL
vR

− v2L
v2R

)
(2.66)

M2
LRν = v2R

(
(λL1 + λL2)

v2L
v2R

(λLR1+λLR2)
2

vL
vR

(λLR1+λLR2)
2

vL
vR

(λR1 + λR2)

)
(2.67)

M2
LRd

= v2R


−(λL2

v2L
v2R

+ λLR2

2
) λLR3

vL
vR

λLR3
vL
vR

−(λLR2

2

v2L
v2R

+ λR2)


 . (2.68)

It is important to observe that no mass terms are present in the sector related to the

charged leptons.

To find new conditions for the Higgs potential, we can ask that the matrix M2
LR is
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positive defined so that, around the VEVs, the second derivatives have the concavity

upwards. The matrix M2
LRu

don’t give any conditions because det(M2
LRu

) = 0; instead

from the Higgs sector related to the neutrinos, demanding det(M2
LRν

) > 0, we find a

condition on the λi parameters given by:

(λL1 + λL2)(λR1 + λR2) >
1

4
(λLR1 + λLR2)

2 . (2.69)

To this we must add the conditions coming from the down-type quarks sector of the Higgs:

det(M2
LRd

) =
v4R
4
λLR2

[
1

2
λL2

v4L
v4R

+
1

2
λR2 +

v2L
v2R

(
λL2λR2

λLR2

+
1

4
λLR2 −

λ2LR3

λLR2

)]
> 0. (2.70)

Considering that vL/vR ≪ 1, we expand (2.70):

det(M2
LRd

) ≈ v4R
8
λR2λLR2 > 0 , (2.71)

that gives the condition: λR2λLR2 > 0.

Another condition to take into account is that the mass term for a complex scalar field

has the form: −M2ΦΦ†, therefore if a mass eigenvalue of M2
LR is negative the minus sign

can not be reabsorbed as a phase factor in a field redefinition, as it happens for a fermionic

mass term mDiracψ̄LψR or mMajoranaψ
Tψ, so we have to demand that also the single mass

squared eigenvalues are positive. Thus, from the matrix M2
LRu

we calculate the eigenvalues:

M2
Hu = (M2

LRu)
diag = OT

HuM
2
LRuOHu = −λLR2

2

(
0 0

0 v2R + v2L

)
, (2.72)

where the orthogonal matrix OHu is given by:

OHu =

(
cos θu − sin θu

sin θu cos θu

)
=

1√
v2L + v2R

(
vL −vR
vR vL

)
⇒ tan(2θu) = − 2vLvR

v2R − v2L
. (2.73)

The squared mass eigenvalues for the Higgs related to neutrinos instead are:

M2
Hν = (M2

LRν )
diag = −C2

ν∆ν

(
2(λR1+λR2)Γν

(λLR1+λLR2)2v
2
L
+ 1 0

0 2(λL1+λL2)Γν
(λLR1+λLR2)2v

2
R
− 1

)
, (2.74)
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with

Cν =

√√√√ (λLR1 + λLR2)2v2Lv
2
R

2∆2
ν + 2∆ν

[
(λL1 + λL2)v2L − (λR1 + λR2)v2R

] ; (2.75)

Γν = (λR1 + λR2)v
2
R − (λL1 + λL2)v

2
L −∆ν ; (2.76)

∆ν =

√[
(λR1 + λR2)v2R − (λL1 + λL2)v2L

]2
+ (λLR1 + λLR2)2v2Lv

2
R . (2.77)

Using the expansion formula:
√
ax2 + bx+ c ≈ √

c + b
2
√
c
x for x → 0, and assuming

vL/vR ≪ 1 it is possible to rewrite (2.74) as:

M2
Hν ≈

(
(λR1 + λR2)v

2
R + (λLR1+λLR2)

2

4(λR1+λR2)
v2L 0

0 (λL1 + λL2)v
2
L − (λLR1+λLR2)

2

4(λR1+λR2)
v2L

)
, (2.78)

where the lightest eigenvalue (the second one) represents the physical Higgs of the SM.

While the orthogonal matrix that relate the interaction basis to the mass one is:

OHν = Cν

(
1

−(λR1+λR2)v
2
R+(λL1+λL2)v

2
L+∆ν

(λLR1+λLR2)vLvR
(λR1+λR2)v

2
R−(λL1+λL2)v

2
L−∆ν

(λLR1+λLR2)vLvR
1

)
=

=

(
cos θν − sin θν

sin θν cos θν

)
=⇒ tan(2θν) = − (λLR1 + λLR2)vLvR

(λR1 + λR2)v2R − (λL1 + λL2)v2L
,

(2.79)

where the mixing is given by:

cos θν sin θν =
(λLR1 + λLR2)vLvR

−2∆ν

≈
− (λLR1+λLR2)

2(λR1+λR2)
vL
vR

1+
[
(λL1+λL2)
(λR1+λR2)

− (λLR1+λLR2)2

(λR1+λR2)2

]
v2L
v2R

. (2.80)

The last Higgs squared mass eigenvalues matrix we have to evaluate is that Higgs part
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related to the down-type quarks, i.e. (M2
LRd

)diag =M2
Hd

:

M2
Hd

=
−4λ2LR3∆dv

2
Lv

2
R

2Γd




2λR2Γdv
2
R+λLR2Γdv

2
L

4λ2LR3∆dv
2
Lv

2
R

+ 1 0

0
2λL2Γdv

2
L+λLR2Γdv

2
R

4λ2LR3∆dv
2
Lv

2
R

− 1




≈ −



λR2v

2
R+
[
λLR2

2
+

λ2LR3

λR2−λLR2
2

]
v2L 0

0 λL2v
2
L+
[
λLR2

2
− λ2LR3

λR2−λLR2
2

]
v2R


 ,

(2.81)

with

Γd = ∆2
d +∆d

[
v2L

(λLR2

2
− λL2

)
−v2R

(λLR2

2
− λR2

)]
; (2.82)

∆d =

√
4λ2LR3v

2
Lv

2
R+
[
v2R

(λLR2

2
− λR2

)
−v2L

(λLR2

2
− λL2

)]2
. (2.83)

To complete the study, the orthogonal matrix of this sector has the form:

OHd = Cd


 1

−(
λLR2

2
−λR2)v

2
R+(

λLR2
2

−λL2)v
2
L+∆d

2λLR3vLvR
(
λLR2

2
−λR2)v

2
R−(

λLR2
2

−λL2)v
2
L−∆d

2λLR3vLvR
1


 =

=

(
cos θd − sin θd

sin θd cos θd

)
=⇒ tan(2θd) = − 2λLR3vLvR

(λR2 − λLR2

2
)v2R − (λL2 − λLR2

2
)v2L

,

(2.84)

with

Cd =

√
4λ2LR3v

2
Lv

2
R

2Γd
. (2.85)

At this point we can complete the condition over the λi parameters of the Higgs poten-

tial demanding that all the Higgs mass eigenvalues are positive. The only eigenvalue that

gives new conditions is the second in (2.81):

−λL2v2L−
[λLR2

2
− λ2LR3

λR2 − λLR2

2

]
v2R ≥ 0 , (2.86)

which gives the systems:

{
2λR2 − λLR2 > 0

λ2LR3 ≥ λLR2

4
(2λR2 − λLR2)

or

{
2λR2 − λLR2 < 0

λ2LR3 ≤ λLR2

4
(2λR2 − λLR2)

, (2.87)
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with the solutions:

2λR2 − λLR2 > 0 or 2λR2 − λLR2 ≤
4λ2LR3

λLR2

< 0 . (2.88)

Therefore, putting all together, the conditions that we were able to find to minimize the

Higgs potential are:





λR2 < 0

λLR2 < 0

λR1 + λR2 > 0

λLR1 + λLR2 < 0

λL1 + λL2 >
(λLR1+λLR2)

2

4(λR1+λR2)
> 0

2λR2 − λLR2 > 0 ∨ 2λR2 − λLR2 ≤ 4λ2LR3

λLR2
< 0

. (2.89)

2.2.1 Interlude on the Goldstone bosons

Because the symmetry breaking pattern is: SU(4)⊗SU(2)L⊗SU(2)R → SU(3)C⊗U(1)Q,

we need to give mass to (15 + 3 + 3) − (8 + 1) = 12 gauge bosons; so we have to look

for twelve Goldstone bosons. The most obvious place to start looking at is the Higgs part

related to the charged leptons for which it does not exist any mass term:

(
Le Re

)∗
(
0 0

0 0

)(
Le

Re

)
⇒




m2
Le

(
| ℜ(Le) |2 + | ℑ(Le) |2

)
= 0

m2
Re

(
| ℜ(Re) |2 + | ℑ(Re) |2

)
= 0

, (2.90)

so we have four Goldstone bosons that are absorbed to give mass to the W±
µR and W±

µL

vector bosons by means of the Higgs mechanism. We have seen above that other massless

scalar fields are in the Higgs-up sector:

(
Lau Ra

u

)∗
(
−A2 AB

AB −B2

)(
Lau

Ra
u

)
=
(
Ha

1u Ha
2u

)∗
(
0 0

0 C2

)(
Ha

1u

Ha
2u

)

⇒




m2
H1u

(
| ℜ(Ha

1u) |2 + | ℑ(Ha
1u) |2

)
= 0

m2
H2u

(
| ℜ(Ha

2u) |2 + | ℑ(Ha
2u) |2

)
= C2(Ha

2u)
∗Ha

2u

,

(2.91)

and, taking into account the colour number, this gives three copies, so we have 2× 3 = 6

Goldstone bosons that are eaten by the vector bosons Xa±
µ (with a = 1, 2, 3). The last two
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Goldstone bosons which remain to find, to give mass to the vector bosons Zµ and Z ′
µ, can

not be a combination of Higgs-down since the colour number would produce three copies

of these complex fields; therefore the last two Goldstone bosons must be a combination of

the complex fields Lν and Rν . This is similar to what happen in the Standard Model (see

Appendix C).

2.3 Gauge bosons masses

After studying the mass spectra of the scalar fields, the next step is to evaluate the mass

spectra for the gauge bosons of the Pati-Salam group. As usual the masses for the vector

bosons are obtained by means of the covariant derivatives in the kinetic term of the Higgs

fields. So for the left-handed multiplet we have:

DµLiαDµLiα =
(
δji δ

β
α∂µ + ig4δ

j
iG

β
µα + igLδ

β
αW

j
µLi

)
Ljβ ×

(
δikδ

α
γ ∂

µ − ig4δ
i
kG

µα
γ − igLδ

α
γW

µi
Lk

)
Lkγ (2.92)

= ∂µLiα∂
µLiα + 2gLg4G

β
µαLiβL

jαW µi
Lj + g24G

β
µαLiβL

iγGµα
γ

+g2LW
j
µLiLjαL

kαW µi
Lk ,

and then using 〈L14〉 = vL/
√
2 we obtain the mass terms:

gLg4v
2
LW

µ1
L1G

4
µ4 + g24

v2L
2
G4
µαG

µα
4 + g2L

v2L
2
W 1
µLiW

µi
L1 =

g2Lv
2
L

8

[
W 0
µLW

µ0
L + 2W+

µLW
µ−
L

]

+
g24v

2
L

4

[
X−

1µX
µ+
1 +X−

2µX
µ+
2 +X−

3µX
µ+
3 +

3

4
BµB

µ

]
− 3gLg4v

2
L

4
√
6

BµW 0
µL .

(2.93)

The same result in (2.93) is obtained from the kinetic term DµRiαDµRiα for the right-

handed Higgs multiplet, once the replacements gL → gR, vL → vR and W µ
L → W µ

R has

been made. First of all from (2.93), and its right-handed version (2.93)L→R, we can easily

obtain the values of the masses for the charged gauge bosons:

M2
WL

= g2L
v2L
4
, M2

WR
= g2R

v2R
4

and M2
X = g24

v2R + v2L
4

. (2.94)

Because the bosons W µ±
R and Xµ± were not observed to date experimentally, their masses

have to be much bigger than the electroweak scale, so we must have vR ≫ vL.

For the neutral gauge bosons, instead, we can extrapolate from (2.93) + (2.93)L→R the
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mass squared matrix:

M2
0 =

1

8




g2Lv
2
L 0 − 3√

6
g4gLv

2
L

0 g2Rv
2
R − 3√

6
g4gRv

2
R

− 3√
6
g4gLv

2
L − 3√

6
g4gRv

2
R

3
2
g24 (v

2
R + v2L)


 , (2.95)

where we considered the basis (W 0
µL,W

0
µR, Bµ). The matrix M2

0 has a zero eigenvalue,

related to the photon Aµ, and two non-zero eigenvalues:

m2
±
8

=
1

16

(
3

2
g24
(
v2R + v2L

)
+ g2Rv

2
R + g2Lv

2
L

)
±

± 1

16

√(
3

2
g24 (v

2
R − v2L) + g2Rv

2
R − g2Lv

2
L

)2

+ 9g44v
2
Rv

2
L ,

(2.96)

related to the bosons Zµ and Z ′
µ. Reminding that for the neutral vector bosons the mass

terms are of the form: M2

2
Z2, we obtain for Zµ and Z ′

µ the masses:

M2
Z =

m2
−
4

≈
[
g2L +

3g24g
2
R

3g24 + 2g2R

]
v2L
4

(2.97)

M2
Z′ =

m2
+

4
≈

[
g2R +

3

2
g24

]
v2R
4

+

[
9g44

3g24 + 2g2R

]
v2L
8

(2.98)

at first order in (vL/vR)
2. From the matrix M2

0 we get the mass eigenstate:



Aµ

Zµ

Z ′
µ


 =




√
3
2
g4
gL
C0

√
3
2
g4
gR
C0 C0

−2
√
6gLg4v

2
LC−

3g4(v2R+v
2
L)+2g2Rv

2
R−2g2Lv

2
L−2∆

−2
√
6gLg4v

2
LC−

3g4(v2R+v
2
L)−2g2Rv

2
R+2g2Lv

2
L−2∆

C−
−2

√
6gLg4v

2
LC+

3g4(v2R+v
2
L)+2g2Rv

2
R−2g2Lv

2
L+2∆

−2
√
6gLg4v

2
LC+

3g4(v2R+v
2
L)−2g2Rv

2
R+2g2Lv

2
L+2∆

C+






W 0
µL

W 0
µR

Bµ


 (2.99)

where we defined the normalization constants:

C0 =
√

2g2Rg
2
L

3g2Rg
2
4+2g2Rg

2
L+3g2Lg

2
4
; (2.100)

C± =

√
p2±q

2
±

24g24(g
2
Lv

4
Lq

2
±+g2Rv

4
Rp

2
±)+p2±q

2
±
; (2.101)
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with 



p± = 3g24(v
2
R + v2L) + 2g2Rv

2
R − 2g2Lv

2
L ± 2∆

q± = 3g24(v
2
R + v2L)− 2g2Rv

2
R + 2g2Lv

2
L ± 2∆

∆ = 9g44v
2
Rv

2
L +

[
3
2
g24(v

2
R − v2L) + g2Rv

2
R − g2Lv

2
L

]2
.

(2.102)

A general 3× 3 trigonometric orthogonal matrix has a form of the type:



cosα cos γ − sinα sin β sin γ − sinα cos β − cosα sin γ − sinα sin β cos γ

cosα sin β sin γ + sinα cos γ cosα cos β cosα sin β cos γ − sinα sin γ

cos β sin γ − sin β cos β cos γ


 , (2.103)

with α, β and γ the mixing angles. Assuming gL = gR = g2 and vL ≪ vR, the orthogonal

mixing matrix in (2.99) can be rewritten as:



Aµ

Zµ

Z ′
µ


 ≈




sin θ′W sin θ′W
√
cos 2θ′W

cos θ′W − tan θ′W sin θ′W − tan θ′W
√

cos 2θ′W

0 −
√

cos 2θ′W
cos θ′W

tan θ′W






W 0
µL

W 0
µR

Bµ


 , (2.104)

where we use the definition:

sin θ′W =

√
3

2

g4
g2
C0 =

√
3g24

6g24 + 2g22
. (2.105)

Therefore we can write the orthogonal matrix in (2.99) as a function of the angle θ′W only,

like in SM where the weak mixing:

(
Aµ

Zµ

)
=

(
sin θW cos θW

cos θW − sin θW

)(
W 0
µL

Bµ

)
(2.106)

is a function of the Weinberg angle θW only, with sin θW =
√

g2Y
g2L+g

2
Y
. If at this point we

compare the photon-fermions interaction coming from the covariant derivative iΨ̄γµD
µΨ

with the charge definition given in (2.14):

1

2

[
gLσ3L sin θW + gRσ3R sin θW + g4λ15

√
1− 2 sin2 θW

]
Aµ = eQAµ , (2.107)
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we obtain the following relations:





e = gL sin θW

e = gR sin θW

e
√

2
3
= g4

√
1− 2 sin2 θW

, (2.108)

that, besides being consistent with the assumption gL = gR = g2, it give us the new

definitions of the Weinberg angle and the electric charge:

sin θ′W =
e

g2
=

√
1

2
− e2

3g24
=⇒ e =

√
3g22g

2
4

6g24 + 2g22
. (2.109)

2.4 RGE for the gauge coupling constants

In this section we study the running of the gauge coupling costants evaluating the 1-loop

solution of the Callan-Symanzik equation:

α−1
i (M) = α−1

i (m)− ai
4π

log
M

m
, (2.110)

where αi =
g2i
4π

, with gi the coupling constant and ai some coefficients coming from group

calculations. Under a non-abelian group SU(Ni), in particular, these coefficients are given

by:

ai =
4

3
ng −

11

3
Ni +

1

3
η
T (Ni)

Ni

∏

k

Nk , (2.111)

where ng is the number of fermion generations, η is a real number equal to 1 for complex

scalar field or 1/2 for real scalar field and T (Ni) is the Dynkin index. So considering the

SM, for the group SU(3)C we have:

a3C =
4

3
· 3− 11

3
· 3 = −7 ; (2.112)

instead for SU(2)L, given that the SM Higgs multiplet is ϕ ≡ (1, 2) under the group

SU(3)C ⊗ SU(2)L, we find:

a2L =
4

3
· 3− 11

3
· 2 + 1

3
· 1 · 1/2

2
· (1 · 2) = −19

6
; (2.113)
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while for the abelian group U(1)Y , using the hypercharge redefinition (D.6) in Appendix

D, we have:

a1Y =
2

3

∑

fermions

Y ′
f
2

4
+

1

3

∑

scalars

Y ′
s
2

4
=

=
2

3
· 3
5
ng

[
Nc

(
2 · 1

36
+

4

9
+

1

9

)
+

(
2 · 1

4
+ 1

)]
+

1

3
· 3
5
· 2 · 1

4
=

41

10
.

(2.114)

In Fig. 2.1 we show the evolution of the gauge coupling constants of the Standard Model.
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Figure 2.1: Running of the coupling constants 1/αi of the SM as a function of the energy scale, where the green dotted,
orange solid and cyan dashed lines represent the evolutions of the coupling costants for the groups U(1)Y ,
SU(2)L and SU(3)C , respectively.

We can perform the same analysis for the model 1. In this case we have two Higgs

multiplets that, under the group SU(4) ⊗ SU(2)L ⊗ SU(2)R, are in the representations

L ≡ (4, 2, 1) and R ≡ (4, 1, 2), therefore the coefficients of the Callan-Symanzik equation

are: 



a2L = 4
3
· 3− 11

3
· 2 + 1

3
· 1 · 1/2

2
· (4 · 2 · 1) = −8

3

a2R = 4
3
· 3− 11

3
· 2 + 1

3
· 1 · 1/2

2
· (4 · 1 · 2) = −8

3

a4C = 4
3
· 3− 11

3
· 4 + 2 ·

[
1
3
· 1 · 1/2

4
· (4 · 2 · 1)

]
= −10

. (2.115)

At this point, in order to evaluate the partial-unification scale MU , to which there is the
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transition between the Standard Model to the Pati-Salam model, we ask that at this energy

scale the gauge coupling constants respect the matching conditions (E.15) in Appendix E,

coming from the hypercharge definition, and that the assumption gL = gR is verified:

{
α−1
1Y (MU) =

3
5
α−1
2R(MU) +

2
5
α−1
4C(MU)

α2R(MU) = α2L(MU)
. (2.116)

From the running of the coupling constants, we obtain the following system of equations:





α−1
3C(MU) = α−1

3C(MZ) +
7
2π

ln MU

MZ
= α−1

4C(MU)

α2L(MU) = α−1
2L (MZ) +

19
12π

ln MU

MZ
= α−1

2R(MU)

α−1
1Y (MU) = α−1

1Y (MZ)− 41
20π

ln MU

MZ
= 3

5
α−1
2R(MU) +

2
5
α−1
4C(MU)

, (2.117)

where we use the experimental values for the SM coupling costants at the electro-weak

scale MZ ≈ 91.1876 GeV: 



α1Y (MZ) ≈ 0.0169

α2L(MZ) ≈ 0.0338

α3C(MZ) ≈ 0.1176

. (2.118)

From (2.117) it is simple to estimate MU ≈ 5.6103 · 1013 GeV that represents, besides the

value of the Pati-Salam scale, the order of magnitude of the VEV 〈R〉 = vR too. In Fig. 2.2

it is exhibited the evolution of the gauge coupling constants through the partial-unification

scale MU and the fact that the evolution of gL is the same as that of gR, since the model

respects the left-right symmetry for energies above MU .
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Figure 2.2: Running of the coupling constants 1/αi of the SM and Pati-Salam model, as a function of the energy scale,
through the partial-unification, where the green dotted, orange solid and cyan dashed lines represent the evo-
lutions of the coupling costants for the groups U(1)Y , SU(2)L and SU(3)C respectively, while the red solid
and blue dotdashed lines represent the evolutions of the coupling costants for the groups SU(2)L/R and SU(4),
respectively.

2.5 Neutrinos masses

As we mentioned at the beginnig, in this model the only fermions that get a tree level

mass are the neutrinos. So let us analyze the terms in the Lagrangian (2.11) that produces

these contributions. When the Higgs fields get the VEV, from the Yukawa interaction we

obtain the tree level mass terms of the form:
ν̄cR

①❤❊
☎

s0

= −ikR
vR√
2

and

ν̄L

①❤❊
☎

s0

= −ikL
vL√
2
, (2.119)

while from the explicit mass term for the Majorana fermion S =

(
sc0

s0

)
:

m0S̄S = m0

[
(s0)

†sc0 + (sc0)
†s0
]
≡ m0 [s̄0s

c
0 + s̄c0s0] =

= m0

[
s̄0(iσ2)s̄

T
0 + sT0 (iσ2)

†s0
]
,

(2.120)
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we extrapolate the Majorana mass insertion vertex for the singlet s0, which is given by the

form:
s0❋①✝s0 = −im0(iσ2)

† or s0❋①❋s̄c0 = −im0 , (2.121)

where we consider m0 a real parameter. If for the neutrino fields we use the basis definition:

Ψν =



νL

νcR
sc0


 and Ψc

ν =



νcL
νR

s0


 , (2.122)

we can write the total mass lagrangian for the neutrinos as:

Lνmass = −Ψ̄νMνΨ
c
ν − Ψ̄c

νM
†
νΨν , (2.123)

where the neutrino mass matrix Mν is defined as:

Mν =




0 0 kLvL
2
√
2

0 0 kRvR
2
√
2

kLvL
2
√
2

kRvR
2
√
2

m0


 =M †

ν . (2.124)

We note that the factor 1/2 in Mν definition comes from the fact that we consider real

VEVs and Yukawa couplings, therefore we have for example:

kLvL

2
√
2
ν̄Ls0 =

kLvL

2
√
2
s̄c0ν

c
L . (2.125)

The eigenvalues λ of the neutrino mass matrix Mν in (2.124) are given by:

(Mν)
diag =



λ0 0 0

0 λ+ 0

0 0 λ−


 =



0 0 0

0 m0

2
+ ∆

2
√
2

0

0 0 m0

2
− ∆

2
√
2


 , (2.126)

with ∆ =
√
2m2

0 + k2Rv
2
R + k2Lv

2
L. The physical mass of the neutrinos are the absolute

values of (Mν)
diag, where some possible overall minus sign can be reabsorbed by means

of field redefinitions of the neutrino mass eigenstates νi. In this regard, we recall that it

is possible to pass from the interaction basis to the mass eigenstate basis thanks to the



2.5 Neutrinos masses 33

orthogonal matrix:

Oν =




kRvR√
∆2−2m2

0

kLvL√
(
√
2m0+∆)2+∆2−2m2

0

kLvL√
(
√
2m0−∆)2+∆2−2m2

0

− kLvL√
∆2−2m2

0

kRvR√
(
√
2m0+∆)2+∆2−2m2

0

kRvR√
(
√
2m0−∆)2+∆2−2m2

0

0
√
2m0+∆√

(
√
2m0+∆)2+∆2−2m2

0

√
2m0−∆√

(
√
2m0−∆)2+∆2−2m2

0


 , (2.127)

where the columns of Oν are the normalized eigenvectors of Mν . In this way it is possible

to write for the neutrino mass term the relation:

Ψ̄νMνΨ
c
ν = Ψ̄νOν

[
OT
νMνOν

]
OT
ν Ψ

c
ν =

(
ν̄1 ν̄2 ν̄3

)
(Mν)

diag



νc1

νc2

νc3


 ; (2.128)

in particular, the sterile neutrino mass insertion can be written in the mass eigenbasis:

s̄c0m0s0 = ν̄ci (O
T
ν )i3

[
(Oν)3k(Mν)

diag
kl (OT

ν )l3

]
(Oν)3jνj =

= ν̄ci (O
T
ν )i3

[
(Oν)3kmkδkl(O

T
ν )l3
]
(Oν)3jνj =

= ν̄ci (O
T
ν )i3

[
(Oν)

2
3kmk

]
(Oν)3jνj ,

(2.129)

or, to simplify the notation, we can rewrite the lagrangian related to the neutrinos as:

Lν = i(Ψ̄ν)aγµ∂
µ(Ψν)a + i(Ψ̄c

ν)aγµ∂
µ(Ψc

ν)a −
[
(Ψ̄ν)a(Mν)ab(Ψ

c
ν)b + h.c.

]
=

= iν̄iγµ∂
µνi + iν̄ci γµ∂

µνci −
[
miν̄iν

c
i + h.c.

]
,

(2.130)

so that we can use the propagators relative to the massive Majorana fermion νi:

νi
❦❋❦̄

νi
=

−ipµγµ
p2 −m2

i + iǫ
and

νci

❦❋❦̄
νci

=
ipµγµ

p2 −m2
i + iǫ

, (2.131)

where the sign difference is due to the different chirality between the fields νi and νci . While

concerning the propagators with chirality flip, i.e. the mass terms, they are given by:

νi
❢①❢

ν̄ci

=
imi

p2 −m2
i + iǫ

and
νci

❢①❢
ν̄i

=
imi

p2 −m2
i + iǫ

. (2.132)

See Appendix F and Appendix G for more details about the study of the fermion mass

terms and the fermionic propagators.
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Considering that we have three fermionic families (f = 3), then there are three matrices

Mν with the same structure but different values for kL, kR and m0. Therefore we will have

a zero tree-level mass for each of the three SM neutrinos, that should get the correct

small radiative corrections at one-loop; while we expect the others six mass eigenstates

to be of order vR, so that the mixing with the SM ones will be very small. In the limit

m0 ≫ vR, the eigenvalues would be: λ0 = 0, λ+ ≈ m0 and λ− ≈ 0; therefore there would

be three massless neutrinos. While if m0 ∼ vR or m0 ≪ vR we get: λ0 = 0, λ+ ∼ vR

and λ− ∼ −vR, where the minus sign can be reabsorbed into a phase factor in a field

redefinitions. However, in the rest of the thesis, we assume m0 ∼ vR because this is the

natural scale of the sterile neutrino mass in the theory; in this way we have also a second

parameter, together with vR, in the seesaw mechanism to mantain the SM neutrinos light.

I conclude this section anticipating the form that the neutrino mass matrix Mν will

have at one-loop, once the corrections are taken in account:

M1−loop
ν =




(
mM
νL

)∗ (
mDν
2

)∗
kLvL
2
√
2(

mDν
2

)†
mM
νR

kRvR
2
√
2

kLvL
2
√
2

kRvR
2
√
2

m0


 . (2.133)

The neutrino masses radiatively generated in (2.133) are defined by the one-loop diagram:

νL❋♣❋ν̄R = −imDirac
ν and νL,R❋♣✝νL,R = −imMajorana

νL,R
, (2.134)

which, as we shall see, will contain loops with scalar and gauge bosons exchanges.

2.6 Loops

Beside what we have just seen for the neutrinos, in this model no tree level mass term for

quarks and charged leptons exists. The neutrino mass corrections in (2.134) and all the

other fermion mass contributions will be therefore radiatively generated at one-loop. In

particular, we have scalar and gauge loops responsible for the generation of Dirac masses

for quarks and leptons, and also masses of Majorana type for the neutrinos νL and νR.

Since the loops we are going to analyze will generate terms that are not present in the

bare Lagrangian (2.11), that is terms which have not to be renormalized at one-loop, we

expect these contributions to be finite.
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2.6.1 Scalar loop

The first contributions we take into account are those given by loops containing an Higgs

boson exchange. In order to generate a mass term for the fermions of the form −mψ̄RψL
we need, from the scalar potential (2.28), the four-point Higgs interaction vertices:

〈L∗〉 〈R〉

❥✐
L
✐❥

R∗

∼ (λLR1 + λLR2) and

〈L〉 〈R∗〉

❥✐
L
✐❥

R∗

∼ λLR3 ; (2.135)

in fact, if we want to attach fermionic fields to the free Higgs legs in the vertices above we

can do it by means of the Yukawa interactions −kRΨiα
RRiαs

c
0−kLs̄0L

iαΨLiα and the sterile

neutrino mass term. In this way, once the remaining Higgs fields get VEV:

❥✐
ψL
❋✐❥❋̄

ψR❞①❡
m0

−→

V EV V EV

❥✐
ψL
❋✐❥❋̄

ψR❞①❡
m0

=
ψL
❋♣❋̄

ψR

, (2.136)

we get the one-loop generated fermion mass term. The only non-zero contribution for

(2.136) that we can obtain from the VEVs vR = 〈R14〉 and vL = 〈L14〉 in the four-point

scalar interaction proportional to the parameter λLR1 in (2.28) is given by:

Ψkµ
R Rkµ

[
RiαRiαL

jβLjβ
]
LlνΨLlν → Ψ14

R 〈R14R
14〉〈R14〉〈L14〉〈L14L

14〉ΨL14 , (2.137)

where 〈LiαLiα〉 and 〈RiαRiα〉 represent the scalar propagators; this means that the λLR1

interaction contributes only to the neutrino masses. From the interaction proportional to

λLR2, instead, we have:

Ψkµ
R Rkµ

[
RiαLjβRiβLjα

]
LlνΨLlν → Ψ1α

R 〈R1αR
1α〉〈L14〉〈R14〉〈L1αL

1α〉ΨL1α , (2.138)

therefore this gives a contribution to the neutrino and up-type quark masses. On the

other hand from the interaction proportional to λLR3 we obtain a contribution only for the



2.6 Loops 36

down-type quark masses:

Ψkµ
R Rkµ [R

mµRnνǫmnǫ
pqLpµLqν ]L

lνΨLlν =

=
1

4
Ψkµ
R Rkµ

[
Riα(δmi δ

µ
αR

nν +Rmµδni δ
ν
α)ǫmnǫ

pq(δjpδ
β
µLqν + Lpµδ

j
qδ
β
ν )Ljβ

]
LlνΨLlν =

=
1

2
Ψkµ
R RkµR

iαǫikǫ
jl
[
δβαR

kηLlη −RkβLlα
]
LjβL

lνΨLlν −→

−→ 〈R14〉〈L14〉
2

[
Ψ2α
R 〈R2αR

2α〉〈L2αL
2α〉ΨL2α −Ψ24

R 〈R24R
24〉〈L24L

24〉ΨL24

]
=

=
3∑

α=1

Ψ2α
R 〈R2αR

2α〉〈R
14〉〈L14〉
2

〈L2αL
2α〉ΨL2α .

(2.139)

In particular we can note that we do not have any scalar loop contribution of this type for

the masses of the charged leptons e, µ and τ . The results of this analysis are consistent

with what we calculated in Sec. 2.2, where all the interactions that we have just written

can be also found in the non-diagonal elements of the Higgs squared mass matrices (2.66),

(2.67) and (2.68). To be complete we consider also the possible contribution to a Majorana

mass term that should be given by a vertex of the type:

〈R〉 〈R〉

❥✐
L∗
✐❥

L∗

∼ λLR3 , (2.140)

but this is zero because of the product between an anti-symmetric tensor with a symmetric

one:

λLR3Ψ
kµ
L Lkµ

[
LiαRpνRnµǫ

npǫmk
(
δki δ

ν
αδ

m
j δ

µ
β + δmi δ

µ
αδ

k
j δ

ν
β

)
Ljβ
]
LlνΨ

lν
L = 0 . (2.141)

Putting together the Higgs self interactions with the sterile neutrino mass insertion we

can generate the diagram depicted in Fig. 2.3, that represents the radiative generation of

the Dirac mass term: −m(ψ)
H ψ̄RψL, with ψ = u, d, ν.
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Figure 2.3: Scalar loop for the radiative generation of the fermion mass term −m(ψ)
H ψ̄RψL, with Higgs VEV (represented

by a circled cross) and sterile neutrino mass insertions (represented by a cross).

We observe that the diagram in Fig. 2.3 contains: two fermionic and two scalar propagators,

two VEVs and a mass insertions, from a dimensional point of view the count is O(m3/p6),

so this diagram has to come out finite. Let us see in details its evaluation. For simplicity

we pass from the interaction basis to the mass basis for the Higgs and the sterile neutrino

fields, therefore we rewrite the Yukawa interaction terms as:

LY ukawa = −kLψ̄LLψs0 − kRψ̄RRψs
c
0 + h.c. =

= −kLψ̄L [Hψ1 cos θψ −Hψ2 sin θψ] [(Oν)3iνi]−
− kRψ̄R [Hψ2 cos θψ +Hψ1 sin θψ] [(Oν)3iν

c
i ] + h.c. ,

(2.142)

from which we extrapolate the following Feynman rules:

ψ̄L

Hψ1

❤❊
☎

νi

= −ikL cos θψ(Oν)3i ,

ψ̄R

Hψ1

❤❊
☎

νci

= −ikR sin θψ(Oν)3i , (2.143)

ψ̄R

Hψ2

❤❊
☎

νci

= −ikR cos θψ(Oν)3i ,

ψ̄L

Hψ2

❤❊
☎

νi

= +ikL sin θψ(Oν)3i . (2.144)

The mass m
(ψ)
H generated by the diagram in Fig. 2.4 can thus be written as:

m
(ψ)
H = i

[❦❝❦](ψ)
H

= kLkR sin θψ cos θψ

3∑

i=1

(Oν)
2
3iI

(ψ) i
H (p) , (2.145)

where I
(ψ) i
H (p) is the loop integral. Because we treat the radiatively generated mass m

(ψ)
H

as a coupling between states with different chirality (see Appendix G), its value has to be
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identified, from the normalization conditions, with the value of the loop diagram in the

limit of zero external momentum p, thus:

I
(ψ) i
H (p = 0) = −i

∫
d4q

(2π)4
imi

q2 −m2
i + iǫ

[
i

q2 −M2
Hψ1

+ iǫ
− i

q2 −M2
Hψ2

+ iǫ

]
, (2.146)

where as propagators we used for the neutrinos the first in (2.132), while the scalar prop-

agator has the form:

Hψk
❤❤

H∗
ψk

=
i

q2 −M2
Hψk

+ iǫ
; (2.147)

if the propagating Higgs field Hψk in the loops is a Goldstone boson (so MHψk = 0) then

its propagator is of the form:

Hk
❤❤

H∗
k

=
i

q2 − ξM2
Gk

+ iǫ
(2.148)

where ξ is the gauge parameter and MGk is the mass of the gauge boson Gµk that acquires

mass by means of the Higgs mechanism "eating" the Goldstone boson Hk.

Because the loop integral is in d4q = π2q2d(q2) and the integration extremes are ±∞,

we can neglect any odd functions in the integrated momentum q. Then, considering that

the neutrinos mass eigenstates are m1 = 0 and m2,3 ∼ vR, we have that the contribution

coming from the mass eigenstates ν1 is zero because its propagator 〈ν1ν̄1〉 = iqµγ
µ/q2 is

an odd function, or null if of the type as in (2.132). Thus we can reduce the sum over the

indices of the neutrino mass eigenstates in the mass formula:

m
(ψ)
H = kLkR sin θψ cos θψ

3∑

i=2

(Oν)
2
3iI

(ψ) i
H (0) . (2.149)

To simplify the calculation we go to the Euclidean space, so we redefine the time-component

of the four-momentum qµ as q0 = iq4, obtaining the identity q2 = −q2E and d4q = id4qE.

The loop integral written in the Euclidean space then take the form:

I
(ψ) i
H (0) =

∫
d4qE
(2π)4

mi

q2E +m2
i

[
1

q2E +M2
Hψ2

− 1

q2E −M2
Hψ1

]
=

= I
(ψ) i
H 2 − I

(ψ) i
H 1 .

(2.150)

Using the dimensional regularization in dimension D = 4− ǫ, the integral can be evaluated
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by means of the formulas:

∫
dDp

(2π)D
(p2)β

(p2 +m2)α
=

Γ(β + D
2
)Γ(α− β − D

2
)

(4π)
D
2 Γ(α)Γ(D

2
)

(m2)
D
2
−α+β (2.151)

and
1

AαBβ
=

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1− x)β−1

[Ax+B(1− x)]2
, (2.152)

where Γ(x) is the Eulero gamma function, which has the properties:

Γ(n+ 1) = nΓ(n) = n! for n ∈ N ;

Γ(z) =
1

z
− γE +O(z) for z → 0 ;

(2.153)

with γE ≈ 0.5772 the Eulero-Mascheroni constant. We obtain the result:

I
(ψ) i
H k = µǫ

∫
dDq

(2π)4
mi

(q2 +m2
i )

1

(q2 +M2
Hψk

)
=

= µǫ
∫ 1

0

dx

∫
dDq

(2π)4
mi[

q2 +m2
ix+M2

Hψk
(1− x)

]2 =

= miµ
ǫ

∫ 1

0

dx
Γ(D

2
)Γ(2− D

2
)

(4π)
D
2 Γ(2)Γ(D

2
)

[
m2
ix+M2

Hψk
(1− x)

]D
2
−2

=

= mi

∫ 1

0

dx
Γ( ǫ

2
)

(4π)2−
ǫ
2

[
m2
ix+M2

Hψk
(1− x)

µ2

]− ǫ
2

≈

≈ mi

(4π)2

(
2

ǫ
− γE +O(ǫ)

)∫ 1

0

dx

(
1− ǫ

2
ln

[
m2
ix+M2

Hψk
(1− x)

µ2

])
=

=
2mi

(4π)2ǫ
+O(1) ,

(2.154)

where the energy scale µ was introduced in order to mantain each term of the Lagrangian at

dimension D in unit of mass. In fact, as we can see analyzing the Yukawa interaction term,

in dimension D = 4− ǫ the Yukawa couplings, kL and kR, get a non-zero dimensionality:

D = [ψ̄] + [ψ] + [H] + [k] = 2

(
D − 1

2

)
+
D − 2

2
+ [k] =⇒ [k] =

4−D

2
=
ǫ

2
, (2.155)

where the dimensionality of the fermionic and Higgs fields are obtained from their kinetic
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terms:

D = [ψ̄] + [∂µ] + [ψ] = 2[ψ] + 1 and D = [H] + 2[∂µ] + [H∗] = 2[H] + 2 . (2.156)

It is possible to mantain kL and kR dimensionless, as in the case D = 4, redefining the

couplings in the Yukawa interaction as:

L(D=4)
Y ukawa = −kψ̄ψH → L(D=4−ǫ)

Y ukawa = −kµ ǫ
2 ψ̄ψH . (2.157)

In the limit in which we remove the regularization parameter, that is ǫ → 0, the

divergent part of the integral (2.150) is zero:

[
I
(ψ) i
H (0)

]
div

=
[
I
(ψ) i
H 2 − I

(ψ) i
H 1

]
div

=
2mi

(4π)2ǫ
− 2mi

(4π)2ǫ
= 0 , (2.158)

this means that the diagram in Fig. 2.4 results to be finite and the non-zero contribution

of its loop integral is given by:

I
(ψ) i
H (0) =

mi

(4π)2

(
2

ǫ

)∫ 1

0

dx
ǫ

2
ln

[
m2
ix+M2

Hψ1
(1− x)

m2
ix+M2

Hψ2
(1− x)

]
=

=
mi

(4π)2

[
M2

Hψ1

m2
i −M2

Hψ1

ln

(
m2
i

M2
Hψ1

)
−

M2
Hψ2

m2
i −M2

Hψ2

ln

(
m2
i

M2
Hψ2

)]
,

(2.159)

where we used the identity:

∫ 1

0

dx ln
[
(m2 −M2)x+M2

]
=

1

m2 −M2

∫ m2

M2

dy ln(y) =

=

[
m2 ln(m2)−m2 −M2 ln(M2) +M2

m2 −M2

]
.

(2.160)

2.6.2 Gauge loop

The second contribution to the radiative generation of the fermion masses that we are

going to study, comes from loop diagrams containing a gauge boson exchange. We start this

analysis considering the fact that the neutrinos are the only fermions that can propagate in

a loop connecting two different chiralities of a fermion for which we want to generate a Dirac

mass term; this is possible thanks to the sterile neutrino mass insertion which allows the
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spin flip. Consequently we need of a vector bosons which can propagate between a Left and

a Right fermionic state and that is connected to the neutrino fields. These requests restrict

the possibilities to loops with the exchange of the bosons Zµ, Z
′
µ, for a neutrino Dirac mass

generation, and the leptoquarks X±
µ , for the up-type quarks. Moreover we can note that

the sterile neutrino mass insertion (2.121) together with the neutral gauge bosons Zµ and

Z ′
µ exchanges make it also possible to generate radiatively masses of Majorana type, but

only for the neutrino fields νL and νR. Therefore the masses that will receive a contribution

from the gauge loop are only those related to the up-type quarks and the neutrinos. All

these types of radiative mass generation are depicted in Fig. 2.4.

Figure 2.4: Gauge loop for the radiative generation of the fermion mass term −m(ψ)
H ψ̄RψL, with Higgs VEV (represented

by a circled cross) and sterile neutrino mass insertions (represented by a cross).

This particular diagram is again finite because we have: four fermionic and one vector boson

propagators, one sterile neutrino mass and two Higgs VEVs insertions, so the diagram is

O(m3/p6) as the previous one in Fig. 2.3. As we will see the diagram in Fig. 2.4 is able to

generates fermion masses of Dirac and Majorana type. Let us concentrate our attention,

for the moment, to the contribution given by this diagram to the mass of the fermionic

field χ = u, ν of the Dirac type only, which will be given by the formula:

m
(χ)D
G = i

[❦❝❦](χ)D
G

=
3∑

i=1

gB

(
kLvL

2
√
2

)
(Oν)3i(O

T
ν )i3

(
kRvR

2
√
2

)
gA I

(χ) i
G (p) , (2.161)

where gA and gB are the coupling constants of the gauge boson Gµ = X±
µ , Z

′
µ, Zµ with

the fermion fields χR and χL. Using the definitions in Sec. 2.5, the mass expression in

(2.161) can be rearranged rewriting the orthogonal matrix elements (Oν)3i, used to convert

the sterile neutrino field s0 in the basis of mass eigenstates νi, and the VEV insertions,

correspondig to the non-diagonal elements of the neutrino mass matrix (2.124), in the
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following form:

m
(χ)D
G =

3∑

i=1

gAgB(Mν)23(Oν)
2
3i(Mν)31 I

(χ) i
G (p) =

=
3∑

i=1

gAgB
[
OνM

diag
ν OT

ν

]
2k
(Oν)

2
ki

[
OνM

diag
ν OT

ν

]
k1
I
(χ) i
G (p) =

=
3∑

i=1

gAgB(Oν)2j(M
diag
ν )jj(O

T
ν Oν)ij(O

T
ν Oν)il(M

diag
ν )ll(O

T
ν )l1 I

(χ) i
G (p) =

(2.162)

=
3∑

i=2

gAgB(Oν)2im
2
i (Oν)i1 I

(χ) i
G (p) ,

with mi the neutrino mass eigenvalues. Instead, for the loop integral, that we take again

with a zero external momentum, we have:

I
(χ) i
G (p = 0) = i

∫
d4q

(2π)4
γµ

−iqαγα
q2 + iǫ

imi

q2 −m2
i + iǫ

iqργ
ρ

q2 + iǫ
γν〈G+

µG
−
ν 〉 , (2.163)

where the propagator for the generic massive vector boson Gµ is, as usual, of the form:

〈GµGν〉 =
Gµ
❣❣

Gν
=

−i
q2 −M2

G

[
gµν + (ξ − 1)

qµqν
q2 − ξM2

G

]
, (2.164)

with ξ the gauge parameter and MG the mass of the boson Gµ; instead for the two most

external massless fermion propagators 〈νRν̄R〉 and 〈νLν̄L〉 we used respectively the first

and the second expression in (2.131), while for the middle one we used the first in (2.132).

As seen for the scalar loop, we can neglect the odd functions of integrated momentum and

pass for simplicity from Minkowskian to Euclidean space:

I
(χ) i
G =

∫
d4q

(2π)4
−miγµq

2γν
(q2 + iǫ)2(q2 −m2

i + iǫ)

−i
q2 −M2

G

[
gµν + (ξ − 1)

qµqν
q2 − ξM2

G

]
=

=

∫
d4q

(2π)4
imi

(q2 + iǫ)2(q2 −m2
i + iǫ)(q2 −M2

G)

[
γµq

2γµ +
(ξ − 1)q4

q2 − ξM2
G

]
=

=

∫
d4qE
(2π)4

−mi

(−q2E)(−q2E −m2
i )(−q2E −M2

G)

[
γµγµ +

(ξ − 1)q2E
q2E + ξM2

G

]
=

=

∫
d4qE
(2π)4

miq
2
Eγµγν

q4E(q
2
E +m2

i )
〈GµGν〉Eucl ,

(2.165)
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where the Euclidean propagator for a gauge boson Gµ is given by:

〈GµGν〉Eucl =
1

q2 +M2
G

[
δµν + (ξ − 1)

qµqν
q2 + ξM2

G

]
. (2.166)

In order to simplify the calculations let us use again the dimensional regularization, so

that from the identities:

1

ABC
= 2

∫ 1

0

dx

∫ 1−x

0

dy
1

[Ax+By + C(1− x− y)]3
(2.167)

and γµγµ = D = 4− ε, for the loop integral (2.165) we obtain the form:

I
(χ) i
G = µǫ

∫
dDq

(2π)D
miγµγν

q2(q2 +m2
i )

1

q2 +M2
G

[
δµν + (ξ − 1)

qµqν
q2 + ξM2

G

]
=

= µǫ
∫

dDq

(2π)D
mi

q2 +m2
i

[
D

q2(q2 +M2
G)

+
(ξ − 1)

(q2 +M2
G)(q

2 + ξM2
G)

]
=

=
miΓ(3− D

2
)

(4π)
D
2

µǫ
∫ 1

0

dx

∫ 1−x

0

dy
{
D [Q(x, y)]

D
2
−3 +

[
Q(x, y) + ξM2

Gx
]D

2
−3
}

(2.168)

with Q(x, y) = (m2
i −M2

G)y +M2
G(1− x). At the end we obtain the result:

I
(χ) i
G =

1

(4π)2
mi

m2
i −M2

G

[
(3 + ξ)m2

i − 4ξM2
G

m2
i − ξM2

G

ln

(
m2
i

M2
G

)
− m2

i −M2
G

m2
i − ξM2

G

ξ ln (ξ)

]
. (2.169)

The last element is to define the couplings gA and gB. Looking at the fermion kinetic

terms, containing the covariant derivative:

iΨiα
K
(Dµ)

jβ
iαγ

µΨKjβ = iΨiα
K

[
δji δ

β
α∂µ + ig4δ

j
iG

β
µα + g2δ

β
αW

j
Kµi

]
γµΨKjβ (2.170)

(with K = L,R), we can determine the gauge interaction vertices needed in the diagram

in Fig. 2.4. To be precise, the contribution to the up-type quark Dirac masses is generated

by means of the vertices containing the leptoquarks:

X+
µ

⑥
νL,R
❊❉̄

uL,R

= − i√
2
g2γµ and

X−
µ

⑥
uL,R
❊❉̄

νL,R

= − i√
2
g2γµ , (2.171)

therefore in this case we have gA = gB = g2/
√
2. While for the neutrinos we can have
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three different contributions:
Zµ

⑥
νL
❊❉̄

νL

= − i

2

(
g4

√
3

2
cos 2θW tan θW + g2 cos θW

)
γµ , (2.172)

Z′
µ

⑥
νR
❊❉̄

νR

=
i

2

(
g4

√
3

2
tan θW +

√
cos 2θW
cos θW

)
γµ (2.173)

and

Z′
µ

⑥
νL
❊❉̄

νL

=
i

2

(
g4

√
3

2
tan θW

)
γµ . (2.174)

In fact, the propagation of the Z ′
µ contributes to the neutrino mass generation of Dirac,

Majorana-Left and Majorana-Right types, while the propagation of the Zµ boson is related

only to the Majorana-Left mass generation. So at the end, generalizing the loop calculation

done for the Dirac case also to the Majorana masses, we can write the general formula for

the mass contributions radiatively generated by the gauge-loop for the fields χ = u, ν as:

m
(χ)
G = gAgB

3∑

i=2

(Oν)xi(Oν)yim
2
i I

(χ) i
G , (2.175)

where x = 1 and y = 2 (or x = 2 and y = 1) stands for the Dirac mass, x = 1 and y = 1

stands for the Majorana-Left mass and x = 2 and y = 2 for the Majorana-Right mass.

2.6.3 Summary of the one-loop formulas for radiative fermion

masses

Let us recap all the formulae found above and explicit the contributions to the radiative

mass generation for each fermion. To semplify the notation we write the masses only for

one fermion family, those related to the other two families can be obtained with different

Yukawa couplings and sterile neutrino mass.
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Down-type quark sector

As we saw, for the down-type quark there are no gauge vertices with neutrinos (which

are the only fermions that can propagate between states left and right thanks to a non-

zero tree-level mass term) so a radiative mass generation by means of a gauge loop is not

allowed. The down-type quark mass is therefore generated only by means of scalar loops:

md = m
(d)
H =

−λLR3kLvLkRvR
(4π)2∆d

3∑

i=2

(Oν)
2
3imi

[
M2

Hd1

m2
i −M2

Hd1

ln

(
m2
i

M2
Hd1

)
−

−
M2

Hd2

m2
i −M2

Hd2

ln

(
m2
i

M2
Hd2

)]
,

(2.176)

where ∆d is definited in (2.83).

Up-type quark sector

Concerning the hierarchy of mass between the up-type and the down-type quarks we note

that for the up-type quark we have scalar loop contributions as for the down-type quark

and, even if we have a different set of Higgs bosons, the masses of the Higgs related to the

up and down sector are all of the same order O(vR), so the radiative contributions are quite

similar. Although the shift of the masses in the first family (up/down) is small enough

to be corrected at higher order in the loops, for the other two families (charm/strange

and top/bottom) we look for a sensitive mass difference at one-loop. The model helps us

because for the up-type quark sector we have also a contribution from gauge loops with

leptoquarks exchanges:

mu = m
(u)
G +m

(u)
H =

=
g24

2(4π)2

3∑

i=2

(Oν)1i(Oν)2im
3
i

m2
i − ξM2

X

[
(3 + ξ)m2

i − 4ξM2
X

m2
i −M2

X

ln

(
m2
i

M2
X

)
− ξ ln(ξ)

]
+

+
kLvLkRvR

(4π)2(v2R + v2L)

3∑

i=2

(Oν)
2
3imi

[
ξM2

X

m2
i − ξM2

X

ln

(
m2
i

ξM2
X

)
−

− M2
Hu2

m2
i −M2

Hu2

ln

(
m2
i

M2
Hu2

)]
.

(2.177)
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This difference in the loop contribution between up and down sector should explain their

mass difference.

Charged lepton sector

Considering one-loop corrections, as evidenced in Sec. 2.6.1 for the charged lepton massess

we can not have any loop corrections of the type in Fig. 2.3. Furthermore, although the

charged leptons have gauge interactions together with neutrinos, unlike the down-type

quarks, these vertices are related to the gauge bosons W µ
L and W µ

R that do not mix with

each other; therefore we can not connect the left part of any charged lepton with the right

ones in a gauge loop of the type in Fig. 2.4. So at one-loop the charged lepton masses stay

at zero (me = mµ = mτ = 0) in this model.

Neutrino sector

The last step left is to give the explicit expressions for the neutrino mass matrix elements

of (2.133). We start with the Dirac mass generated by the contributions of a gauge and a

scalar loops:

mD
ν =

g4A
√
3 tan θW

2
√
2(4π)2

3∑

i=2

(Oν)1i(Oν)2im
3
i

m2
i − ξM2

Z′

[
(3 + ξ)m2

i − 4ξM2
Z′

m2
i −M2

Z′
ln

(
m2
i

M2
Z′

)
−

− ξ ln(ξ)

]
+
kLkR
(4π)2

cos θν sin θν

3∑

i=2

(Oν)
2
3imi

[
M2

Hν1

m2
i −M2

Hν1

ln

(
m2
i

M2
Hν1

)
−

− M2
Hν2

m2
i −M2

Hν2

ln

(
m2
i

M2
Hν2

)]
.

(2.178)

Then we have the Majorana mass for the left neutrino, obtained by the gauge loops with

the propagation of the Z ′
µ and Z bosons:

mM
νL =

A2

(4π)2

3∑

i=2

(Oν)
2
1im

3
i

m2
i − ξM2

Z

[
(3 + ξ)m2

i − 4ξM2
Z

m2
i −M2

Z

ln

(
m2
i

M2
Z

)
− ξ ln(ξ)

]
+

+

(
g4
√
3 tan θW

2
√
2(4π)2

)2 3∑

i=2

(Oν)
2
1im

3
i

m2
i − ξM2

Z′

[
(3 + ξ)m2

i − 4ξM2
Z′

m2
i −M2

Z′
ln

(
m2
i

M2
Z′

)
−

− ξ ln(ξ)

]
,

(2.179)
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with

A = g4

√
3

2

tan θW
2

+
g2
2

√
cos 2θW
cos θW

. (2.180)

While the gauge loops with the exchange of the boson Z ′
µ and Z give us the Majorana

mass for the right neutrino:

mM
νR =

A2

(4π)2

3∑

i=2

(Oν)
2
2im

3
i

m2
i − ξM2

Z′

[
(3 + ξ)m2

i − 4ξM2
Z′

m2
i −M2

Z′
ln

(
m2
i

M2
Z′

)
− ξ ln(ξ)

]
. (2.181)

2.7 Numerical results

Although we know that the model, exposed till now, does not admit any mass for the

charged leptons, it is time to test the results this model can produce. Obviously we are

interested to see if the formulas above are able to generate as faithfully as possible the other

fermion masses of the Standard Model. In particular we try to reproduce the fermion mass

values at the Pati-Salam scale MU ∼ 1014 GeV. The experimental values that we use as

reference are listed in [18], but because these values are fermion masses runned from the

electroweak scale up to the scales µ = 1012 GeV and µ = 1016 GeV, we will consider the

mean values of the masses between these two scales:

mu = 0.53+0.16
−0.13 MeV

md = 1.24+0.39
−0.37 MeV

ms = 24.00+5.32
−4.61 MeV

mc = 258+27.34
−26.63 MeV

mb = 1.105± 0.032GeV

mt = 80.35+28.28
−26.52 GeV

me = 0.480254± 0.048025MeV

mµ = 101.385± 10.138MeV

mτ = 1.723± 0.17GeV

(2.182)

for the sake of completenees, we also list the masses of the charged leptons that will be

used in Sec. 2.9. For the standard deviation related to the lepton sector we took the 10%

of the mass value, while for those related to the quark sector we used the propagation error
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formula:

σ(µ ≈ 1014GeV) =
1

2

√
σ2(µ = 1012GeV) + σ2(µ = 1016GeV) . (2.183)

For the neutrino sector, instead, we consider the squared mass ratio in normal hierarchy

defined as:

r =
∆m2

21

∆m2
32

=
m2

2 −m2
1

m2
3 −m2

2

, (2.184)

where these neutrino masses (m1 < m2 < m3) are the lightest among the nine mass

eigenstates generated by the model, three for each of the three fermion family. In inverted

hierarchy, instead, the ratio is defined as:

rinv =
∆m2

21

∆m2
13

=
m2

2 −m2
1

m2
1 −m2

3

. (2.185)

As reference we use the value at µ = 1016 GeV [22]:

r ≃ 0.031± 0.001 ; (2.186)

since its experimental value, in normal hierarchy, varies little during the running, as we

can evaluate taking in account the values of r at different energy scales [18]:

r ≃





0.0320 at µ =MZ

0.0314 at µ = 1 TeV

0.0309 at µ = 109 GeV

0.0330 at µ = 1012 GeV

. (2.187)

In order to find, if it exists, a parameter set which is able to generate a correct mass

spectrum for the fermions, as a first approach we built a code with the Mathematica

software to scan the parameter space, just to test the model which we already know to

be not complete yet (no mass for the charged leptons). The parameters taken in account

are the λi of the scalar potential, the Yukawa couplings λi, kLa and kRa, kL and kR, and a

parameter ma related to the sterile neutrino mass through the identity m0a = mavR, with

a = 1, 2, 3 the fermion family index. We have to specify that the parameter scan code

is a random scan code, in the sense that, at each cycle, the parameters λi, kLa, kRa and

ma take randomly a real value (because we do not consider CP violation) in the interval
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[−3.5, 3.5]; for the parameter ma, instead, we consider the same interval but the values are

extracted to a Gaussian distribution with mean µ = 1 and σ = 0.5. The interval [−3.5, 3.5]

is chosen imposing, for the Yukawa and Higgs couplings, the following constraints for the

reliability of perturbative calculations (as in Ref. [2]):

k2

4π
< 1 and

λ

2
v2R ∼M2

H < 2v2R . (2.188)

The only parameters retained at the end of the simulations are those that respect both

conditions below:

1. the parameters λi have to respect the system (2.89);

2. the resulting masses have to be in the ranges:





|mup| ≤ 1 MeV

|mdown| ≤ 1.6 MeV

|mstrange| ≤ 30 MeV

125 MeV ≤ |mcharm| ≤ 350 MeV

750 MeV ≤ |mbottom| ≤ 1.5 GeV

. (2.189)

Using a random scan code, the probability to find the exact parameters which generate

the experimental values in (2.182) is very small, so we take in account the mass intervals

(2.189) containing the experimental masses in (2.182) within the 2σ÷ 5σ range, a part for

the bottom quark for which we left a larger interval since it belongs to the same family of

the top quark, for which we have not been able, at this stage, to generate a realistic mass.

In fact, we let note that in (2.189) we did not consider the top quark because, also after

many trials, the simulations containing also the condition over the top mass did not able

to produce any result. This is, however, in agreement with what is stated in Ref. [2].

Before displaying some examples of the obtained results, let us quote some numbers

that we used as constants in the code. The first are the VEVs related the left-handed

Higgs multiplet Liα that we let it to coincide with the one in the Standard Model, and

that related to the right-handed Higgs multiplet Riα, that we assume of the order of the

Pati-Salam scale MU found in Sec. 2.4:

vL = 246GeV and vR = 1014 GeV . (2.190)
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From the formulas in Sec. 2.4 we can also extrapolate the values of the gauge couplings

for the groups SU(2)L,R and SU(4) at the scale MU , which are respectively:

g2 = 0.5388 and g4 = 0.5694 . (2.191)

With the quantities vL, vR, g4 and g2 we can evaluate the gauge bosons masses, defined in

Sec. 2.3, finding for the new gauge bosons:

MZ′(MU) =4.4 · 1013 GeV , MWR
(MU) = 2.6 · 1013 GeV

and MX = 2.8 · 1013 GeV ,
(2.192)

while for those present also in the SM we find:

MZ(MU) = 84.5GeV and MWL
(MU) = 66.2GeV . (2.193)

Furthermore we have for the "pseudo-Weinberg" angle defined in (2.105):

sin θ′W = 0.62 . (2.194)

All the calculation are made in Feynamn gauge (ξ = 1).

The scan code we used is built up in the following way: it performs a total of 10000

cycles over the scalar parameters in order to find the parameters λi which verify the

conditions (2.89); when the program finds a good set of λis it starts to span the parameter

space for kL, kR and ma, at most for 1000 times for each fermion family before to exit

from the cycle, in order to find the set of Yukawa couplings and the sterile neutrino masses

which are able to generate some quark masses inside (2.189). With the values of the VEVs,

the gauge couplings and the gauge boson masses discussed above we obtained a total of

20 results depicted in Fig. 2.5 and Fig. 2.6, where we do not see any evident correlation

among the quark masses. Among these we take only two cases as examples, choosing the

results with the lowest χ2 value:

χ2 =
∑

q

(
m

(res)
q −m

(exp)
q

)2

m
(exp)
q

, (2.195)

with m
(exp)
q the experimental quark masses in (2.182) and m

(res)
q the related values obtained
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from the simulations. For the first example we consider only the first family, therefore in

(2.195) we have q = u, d; while in the second example we consider also the second family,

so q = u, d, s, c. In the following we list the masses, obtained from the simulations, for the

first two quark families with the related χ2 values (in bold the lowest).

m
(res)
u (MeV) m

(res)
d (MeV) m

(res)
s (MeV) m

(res)
c (MeV) χ2 (q = u, d) χ2 (q = u, d, s, c)

0.18 0.04 28.94 132.32 1.39 63.62

0.1 0.01 24.36 228.19 1.57 5.02

0.21 0.04 22.52 140.79 1.36 54.70

0.32 1.13 28.92 141.14 0.09 54.03

0.12 1.32 28.18 133.87 0.32 60.77

0.77 1.08 17.33 176.04 0.13 28.02

0.46 0.06 17.93 126.30 1.12 69.88

0.79 1.45 29.48 128.19 0.17 66.73

0.90 0.12 29.47 206.83 1.27 12.66

0.25 0.04 25.91 217.55 1.31 7.80

0.54 0.05 16.82 189.92 1.14 21.26

0.40 0.10 28.39 141.51 1.08 54.48

0.79 0.18 24.59 158.22 1.03 39.64

0.75 0.10 25.88 218.70 1.14 7.28

0.36 0.08 27.86 136.84 1.14 58.66

0.87 0.14 21.56 128.58 1.19 66.36

0.01 0.002 24.42 140.95 1.75 54.86

0.19 0.01 9.20 155.06 1.43 51.63

0.81 0.12 23.56 154.40 1.15 42.76

0.30 0.06 27.94 128.33 1.22 67.04
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Figure 2.5: Correlation among the up (vertical axis) and down (horizontal axis) quark masses.
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Figure 2.6: Correlation among the charm (vertical axis) and strange (horizontal axis) quark masses.
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Example 1

In this first example, for the parameters of the scalar potential, we have the values:





λLR1 = 2.79

λLR2 = −2.89

λLR3 = −0.33

λL1 = 1.32

λL2 = 0.72

λR1 = 1.99

λR2 = −0.35

, (2.196)

For the charged Higgs related to the down-type quark sector we find:

MHd1 = 0.42 · 1014 GeV and MHd2 = 0.85 · 1014 GeV , (2.197)

with the mixing:

cos θd sin θd = 0.74 · 10−12 , (2.198)

as expected from the theory of the order O(vL/vR) (see Sec. 2.2). For the Higgs related

the up-type quark sector, instead, we have:

MHu2 = 1.2 · 1014 GeV , (2.199)

while the Goldstone boson Hu1 has been replaced in the loops by the leptoquark mass.

The mixing between Hu1 and Hu2 is:

cos θu sin θu =
vLvR√
v2L + v2R

= 2.46 · 10−12 . (2.200)

To complete the spectrum we have the Higgs linked to the neutrinos that get the masses:

MHν1 = 1.28 · 1014 GeV and MHν2 = 350.92GeV , (2.201)

with the mixing:

cos θν sin θν = 0.76 · 10−13 . (2.202)
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We have to note that, while MHν1 is of the order of the Pati-Salam scale, MHν2 is pro-

portional to vL as expected, even if the value is bigger than the experimental mass of the

Standard Model Higgs. To conclude this example, it remains to see which masses can be

generated for quarks and neutrinos given the above spectra of bosons. With the following

extracted values for the Yukawa couplings:

kL = 0.09 and kR = 0.23 , (2.203)

and for the sterile neutrino mass:

m0 = 4.11 · 1012 GeV , (2.204)

the model generates the masses for the first fermion family:

mup = 0.32MeV and mdown = 1.13MeV . (2.205)

Instead for the second family from our numerical procedure we get the following values of

the Yukawa parameters:

kL = −0.12 and kR = 1.24 , (2.206)

and for the second sterile neutrino mass:

m0 = 0.68 · 1014 GeV ; (2.207)

this choice produces the masses:

mcharm = 141.14MeV and mstrange = 28.92MeV . (2.208)

We can see that for the first two families the values of the masses generated by the model

are within the 2σ range compared to the experimental values (2.182). So it seems that the

model works fairly well, even though at this stage we know that the charged lepton masses

cannot be generated at all. However, for the third family the model has a big problem. In

fact, with the choice for the Yukawa couplings:

kL = 2.62 and kR = 1.79 , (2.209)
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and for the last sterile neutrino mass:

m0 = 0.91 · 1014 GeV , (2.210)

we find the masses:

mtop = 5127.19MeV and mbottom = 983.60MeV . (2.211)

We can note that, although the result for the bottom mass is not as good as the results

for the first and second families (it is within the 4σ range from the experimental values),

the top mass is completely unrealistic. We will see later that there is the possibility to

alleviate this problem, together with the mass generation for the charged leptons, extending

the model with new Higgs bosons. The remaining observables that we have to consider

is the result related to the neutrinos. For each family (α = e, µ, τ) we have three mass

eigenstates for the neutrino mass matrix (2.133): mα1 and mα2 are of the order of vR, while

mα3 is much lighter. Taking the lightest mass for each family, and defining in this case:

m1 = mµ3 , m2 = me3 and m3 = mτ3 , (2.212)

we obtain the ratio:

r = 0.8 · 10−4 . (2.213)

We can note that the result for r is not good compared to the experimental value (2.186).

However we want to emphasize that such a small number is the consequence of the Math-

ematica machine precision which is not always able to handle with the huge difference

between the heavy and light neutrino eigenstates (≥ 1014), sometimes treating as zero

very small numbers.
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Example 2

In this second example the new set of scalar parameters is:





λLR1 = −3.13

λLR2 = −2.40

λLR3 = −0.18

λL1 = 3.34

λL2 = 2.32

λR1 = 2.50

λR2 = −0.80

. (2.214)

These values produce the following down-type Higgs masses:

MHd1 = 0.63 · 1014 GeV and MHd2 = 0.77 · 1014 GeV (2.215)

with the mixing:

cos θd sin θd = 1.11 · 10−12 ; (2.216)

while the massive up-type Higgs receives the mass:

MHu2 = 1.09 · 1014 GeV . (2.217)

To complete the scalar spectrum there are the Higgs related to the neutrinos, that take

the masses:

MHν1 = 1.30 · 1014 GeV and MHν2 = 267.16GeV , (2.218)

where we see again that the mass for the Higgs corresponding to the SM one is a bit too

large compared to the experimental values; their mixing is given by the value:

cos θν sin θν = 3.99 · 10−12 . (2.219)

Regarding the fermion masses we have that with the Yukawa couplings:

kL = 0.01 , kR = 0.01 , (2.220)
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and a sterile neutrino mass:

m0 = 1.49 · 1014 GeV , (2.221)

as inputs, we generate for the first family:

mup = 0.1MeV and mdown = 0.01MeV ; (2.222)

they are small with respect to the experimental values, however inside 3.5σ. Much better

is the situation for the second family, for which taking:

kL = 0.12 , kR = −1.87 , (2.223)

and

m0 = 1.17 · 1014 GeV , (2.224)

we obtain the results:

mcharm = 228.19MeV and mstrange = 24.36MeV , (2.225)

within the 1.5σ range from the experimental values. For the third family, instead, we can

find again the same problem discussed above; in fact using the Yukawa couplings:

kL = 3.18 , kR = 3.37 , (2.226)

and the sterile neutrino mass:

m0 = 1.69 · 1014 GeV , (2.227)

we get the quark masses:

mtop = 11069.76MeV and mbottom = 1132.90MeV , (2.228)

where the bottom mass is within the 1σ range from the experimental value, while the top

mass is again completely unrealistic, although a little better than before. We complete this

second example with the results for neutrinos for which we encountered the same problems
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as the previous example. Assuming:

m1 = me3 , m2 = mµ3 and m3 = mτ3 , (2.229)

we find the result:

r = 1.43 · 10−5 , (2.230)

again a too small value.

2.8 Mixing

Before discussing the modifications of the minimal model needed to solve the problems

related to the charged leptons mass generations and the too low top quark mass, in this

section we want to introduce the inter-family mixing. In order to do that we have to

promote the Yukawa couplings to 3× 3 matrices in the Lagrangian (2.11), so the Yukawa

interaction terms become of the form:

LY ukawa = −kabL
[
Ψ̄iα
LaLiαs0b + h.c.

]
− kabR

[
Ψ̄iα
RaRiαs

c
0b + h.c.

]
(2.231)

where a and b are the fermion family indices. We again disregard for the moment any

source of CP violation, therefore the Yukawa matrices will be taken real, as well as for

the VEVs. For the sterile neutrinos, instead, we continue to demand that there is no

explicit lepton flavour violation, therefore the sterile neutrino masses will be represented

by a diagonal matrix:

s̄0aM
ab
0 s

c
0b =

(
s̄0e s̄0µ s̄0τ

)


m0e 0 0

0 m0µ 0

0 0 m0τ






sc0e

sc0µ

sc0τ


 . (2.232)

Once we introduced the inter-family mixing, the tree-level neutrino mass matrix Mν , as

well as the orthogonal matrix Oν , will be 9 × 9 matrices; in the rest of this thesis we use

the following neutrino basis:

Ψν =
(
νLe νLµ νLτ νcRe νcRµ νcRτ sc0e sc0µ sc0τ

)T
. (2.233)
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Consequently the elements of the one-loop neutrino Dirac mass matrix (2.133) get the

forms:

mD
ν =



(mD

ν )ee (mD
ν )eµ (mD

ν )eτ

(mD
ν )µe (mD

ν )µµ (mD
ν )µτ

(mD
ν )τe (mD

ν )τµ (mD
ν )ττ


 , (2.234)

while the Majorana Left and Right masses are given by:

mM
νL,R =




(mM
νL,R)ee

(mMνL,R)eµ

2
(mM

νL,R)eτ
(mMνL,R)eµ

2
(mM

νL,R)µµ
(mMνL,R)µτ

2
(mMνL,R)eτ

2

(mMνL,R)µτ

2
(mM

νL,R)ττ


 . (2.235)

For the fermion mass term mψ̄RψL, the parameter m is promoted to a 3× 3 matrix:

ψ̄aRm
ab
ψ ψ

b
L = ψ̄aR[m

(ψ)ab
H +m

(ψ)ab
G ]ψbL , (2.236)

where the radiatively generated masses m
(ψ)ab
H and m

(ψ)ab
G are obtained generalizing the

formulas in Sec. 2.6.1 and 2.6.2 to the case of inter-family mixing. In particular from the

scalar loop we obtain:

m
(ψ)ab
H =

3∑

m,n=1

kamR kbnL sin θψ cos θψ

9∑

i=1

(Oν)m+6,i(Oν)n+6,iI
(ψ) i
H , (2.237)

where I
(ψ) i
H is given by (2.159); while from the gauge loop we have:

m
(ψ)ab
G = gAgB

9∑

i=1

(Oν)xi(Oν)yim
2
i I

(ψ) i
G , (2.238)

where I
(ψ) i
G is given by (2.169). Again, for the gauge loop we can distinguish three different

cases: with x = a and y = b+ 3 we generate a Dirac mass; with x = a and y = b we get a

Majorana Left mass; while for a Majorana Right mass we take x = a + 3 and y = b + 3.

We note that the particular form of the indices of Oν is due to the order of the neutrinos

in the basis (2.233). We remember that in (2.237) and (2.238) in the cases with mi = 0

the contributions are zero because, as we saw before, the loop-integral calculation gives us

a null result.
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2.8.1 CKM and PMNS matrices

We now remind how the CKM matrix is defined, remembering that, since we consider real

Yukawa couplings, the entries of the mixing matrices are real numbers. Let us start from

the quark fields qui of the up-type sector, with i = 1, 2, 3 the family index. The mass term

(2.236) can be written in the mass eigenstates basis performing the following rotations:

(
q̄u1 q̄u2 q̄u3

)α
R
Mu



qu1

qu2

qu3




α

L

=

[(
q̄u1 q̄u2 q̄u3

)α
R
C

]
C†MuA

[
A†



qu1

qu2

qu3




α

L

]
=

=
(
ū c̄ t̄

)α
R

[
C†MuA

]


u

c

t




α

L

,

(2.239)

where α is the colour index of SU(3), while A and C are unitary matrices (UU † = U †U = I)

defined in such a way that:

A†M †
uMuA = |Mdiag

u |2 = C†MuM
†
uC , (2.240)

with the diagonal mass matrix:

Mdiag
u =



mu 0 0

0 mc 0

0 0 mt


 , (2.241)

containing the mass eigenvalues for the up, charm and top quarks. The same rotation,

from the interaction basis to the mass eigenbasis, can be applied also to the quark fields

qdi for the down-type sector:

(
q̄d1 q̄d2 q̄d3

)α
R
Md



qd1

qd2

qd3




α

L

=

[(
q̄d1 q̄d2 q̄d3

)α
R
D

]
D†MdB

[
B†



qd1

qd2

qd3




α

L

]
=

=
(
d̄ s̄ b̄

)α
R

[
D†MdB

]


d

s

b




α

L

,

(2.242)



2.8 Mixing 61

where in this case the unitary matrices B and D are defined demanding:

B†M †
dMdB = |Mdiag

d |2 = D†MdM
†
dD , (2.243)

with the diagonal mass matrix given by:

Mdiag
d =



md 0 0

0 ms 0

0 0 mb


 , (2.244)

containig the mass eigenvalues for the down, strange and bottom quarks. So at the end

we define the CKM matrix as:

VCKM = A†B =



Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb


 (2.245)

where the absolute value |Vij|2 gives the transition probability from a quark of type i to

a quark of type j. For the experimental values we consider the running in [18, 22] of the

following CKM elements from the electro-weak scale µ =MZ :

|Vus| = 0.2257± 0.0021 ;

|Vcb| = 0.0416± 0.006 ;

|Vub| = 0.00431± 0.0003 ;

(2.246)

to the GUT scale µ = 2 · 1016 GeV:

|Vus| = 0.2254± 0.0006 ;

|Vcb| = 0.04194± 0.0006 ;

|Vub| = 0.00369± 0.00013 ;

(2.247)

which we use as a reference in our numerical simulations.

In a similar way one can define the PMNS matrix for the leptonic sector. As for the CKM

matrix, we need two unitary matrix Ul and Uν that transform the interaction basis in the
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mass eigenstates basis, respectively for the charged leptons and the neutrinos:



e

µ

τ




L

= Ul



l1

l2

l3




L

and



νe

νµ

ντ




L

= Uν



ν1

ν2

ν3




L

. (2.248)

As for the quarks case in (2.240) and (2.243), from a general 3 × 3 mass matrix Ml for

the charged leptons we can obtain the mass eigenvalues using the unitary matrix Ul in the

following way:

U †
lM

†
lMlUl =



|me|2 0 0

0 |mµ|2 0

0 0 |mτ |2


 . (2.249)

We point out that, although in the Standard Model the rotation matrix Ul coincides with

the identiy because there is no lepton-flavour violation, in a general model it is not so

trivial, in fact the general PMNS matrix is defined as:

UPMNS = U †
l Uν =



Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


 . (2.250)

However, because at this stage our model does not generate mass for the charged leptons,

we do not have any problem to define the matrix Ul which coincides with the identity

matrix, and so the PMNS matrix will be given only by the matrix Uν that we must define

carefully. Concerning the neutrino sector, we have to take in account that in our model

the SM neutrinos (νLe, νLµ and νLτ ) are collected in the basis Ψν and the transformation

from this to the mass eigenstates basis is generated by:

Ψν = Oν

(
ν9 ν8 ν7 ν6 ν5 ν4 ν3 ν2 ν1

)T
, (2.251)

where the mass eigenstates νi (with i = 1, . . . 9) are taken in increasing order of absolute

value of mass: |mν9| > |mν8| > · · · > |mν1|. To define the PMNS matrix we have to

consider only the elements of Oν that link the three SM neutrino fields νLa, with a = e, µ, τ ,

to the three lightest mass eigenstates νiL, with i = 1, 2, 3. Therefore in the normal hierarchy
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the PMNS matrix will be given by:

[
UPMNS

]
i,j

=
[
Uν
]
i,j

=
[
Oν

]
i,10−j with i, j = 1, 2, 3 ; (2.252)

while if we consider the inverted hierarchy the PMNS matrix gets the form:

UPMNS =



(Oν)18 (Oν)17 (Oν)19

(Oν)28 (Oν)27 (Oν)29

(Oν)38 (Oν)37 (Oν)39


 . (2.253)

The indices of Oν selected in (2.252) and (2.253) are due to the fact that the light mass

eigenstates, which appear in the basis (ν1, ν2, ν3) for the normal hierarchy (or in the basis

(ν2, ν3, ν1) for the inverted hierarchy), occupy respectively the position 9, 8 and 7 (or 8, 7

and 9) in the mass eigenstates vector OT
ν Ψν .

A typical parametrization for the PMNS matrix is of the form:

UPMNS =



1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13

0 1 0

−s13 0 c13







c12 s12 0

−s12 c12 0

0 0 1


 , (2.254)

whose mixing angles can be written as:

θ12 = arctan

(
|Ue2|
|Ue1|

)
, θ23 = arctan

(
|Uµ3|
|Uτ3|

)
and θ13 = arcsin

(
|Ue3|

)
. (2.255)

To match the results given by our numerical simulations with the experimental values, we

will use as again the values in [22] at the scale µ = 2 · 1016 GeV:

sin2 θ12 = 0.308± 0.017 ;

sin2 θ23 = 0.3875± 0.0225 ;

sin2 θ13 = 0.0241± 0.0025 .

(2.256)

2.8.2 Numerical results

Let us test the present model to generate, in addition to the fermion masses, also the CKM

and the PMNS matrices, just as a first try before to improve the model. To do that we

extend the parameters scan to include the inter-family mixing. Since the model becomes
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more complex with the mixing, the tests take much more time, therefore we have only one

example to show. With the set of scalar parameters λi given by:





λLR1 = 0.64

λLR2 = −1.32

λLR3 = −0.92

λL1 = 1.83

λL2 = 3.19

λR1 = 0.83

λR3 = −0.23

, (2.257)

we obtain for the down-type Higgs the masses:

MHd1 = 0.34 · 1014 GeV and MHd2 = 0.57 · 1014 GeV , (2.258)

with the mixing:

cos θd sin θd = 0.53 · 10−11 ; (2.259)

for the up-type Higgs, instead, we have:

MHu2 = 0.81 · 1014 GeV ; (2.260)

and for the neutrino-type Higgs:

MHν1 = 0.78 · 1014 GeV and MHν2 = 540.549GeV (2.261)

with the mixing:

cos θν sin θν = 1.37 · 10−12 . (2.262)

For the sterile neutrino masses and the 3× 3 Yukawa matrices (Left and Right), instead,

the program found the values:

M0 =



1.26 0 0

0 0.66 0

0 0 1.41


 · 1014 GeV ; (2.263)
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kL =



−0.90 −0.93 −0.92

−0.21 −0.55 −0.32

−0.19 0.72 0.09


 ; (2.264)

kR =




0.14 −0.72 0.16

0.81 −0.72 −0.65

−0.38 −0.56 0.69


 . (2.265)

With this set of parameters we get the following quark masses:

mup = 0.46MeV ;

mdown = 0.24MeV ;

mcharm = 166.47MeV ;

mstrange = 13.1MeV ;

mtop = 2959.73MeV ;

mbottom = 948.96MeV .

(2.266)

All these values are within the range of 5σ from the experimental values (2.182), except

for the top mass that is again completely unrealistic; for this reason we can not expect to

have a good result for the CKM matrix and in fact we found:

VCKM =



−0.723 0.676 −0.143

0.501 0.656 0.564

0.475 0.337 −0.813


 , (2.267)

where we enlighted in bold the CKM elements corresponding to the experimental values

(2.247). As we can see, not only the bold elements (especially |Vub|) but also the diagonal

elements, that we would expect to be of the order O(1), are far from the experimental

values. The last results we show are related to the neutrino sector, in which we have

again the same precision problems in the Mathematica calculations. For the mass squared

difference ratio we obtain again a too small result:

r = 2.34 · 10−5 ; (2.268)

while for the PMNS matrix, which is obtained only from a submatrix of the orthogonal

matrix Oν (since the present model does not generate masses for the charged leptons), we
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get the following result in the normal hierarchy, then using the basis (ν1, ν2, ν3):

UPMNS =




0.323 −0.048 0.945

−0.943 −0.106 0.316

0.085 −0.993 −0.080


 . (2.269)

From these PMNS elements we obtain the following values for the mixing angles:

sin2 θ13 = 0.894 , sin2 θ12 = 0.022 and sin2 θ23 = 0.940 , (2.270)

which are values far (much more than 15σ) from the experimental values in (2.256), es-

pecially for the mixing angle θ13 which is bigger by almost two orders of magnitude than

expected. While if we take in account the inverted hierarchy, so we use the basis (ν2, ν3, ν1),

we obtain:

UPMNS =



−0.0481 0.945 0.323

−0.106 0.316 −0.943

−0.993 −0.080 0.08


 , (2.271)

which give us the following mixing angles:

sin2 θ13 = 0.104 , sin2 θ12 = 0.997 and sin2 θ23 = 0.992 , (2.272)

which, although we got a better result for the mixing angle θ13, are values within the

range of more than 25σ from the experimental values. Therefore we can argue that, at

the present status, the model is not able to reproduce realistic mixings for quarks and

neutrinos, as well as the masses for the top and the light neutrinos.

2.8.3 Other one-loop corrections

Before improving the model to solve its theoretical problems (charged leptons massless

and unrealistic masses for the top quark and the light neutrinos), in this section we briefly

show some other diagrams that contribute to the masses corrections at one-loop. The first

one is shown in Fig. 2.7 and it represents the one-loop correction to the sterile neutrino

mass term s̄0m0s
c
0. The evaluation of this diagram is similar to the gauge loop seen above,
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and it gives the result:

δm0 =
kLkR sin θν cos θν

(4π)2

3∑

i=2

(Oν)1i(Oν)2i

[
m3
i

m2
i −M2

Hν2

ln

(
m2
i

M2
Hν2

)
−

− m3
i

m2
i −M2

Hν1

ln

(
m2
i

M2
Hν1

)]
∼ v2L
vR

ln

(
v2R
v2L

)
.

(2.273)

We neglect it because this correction is small compared to the tree level value of the sterile

neutrino mass of the order of the Pati-Salam scale (∼ 1014 GeV).

Figure 2.7: Diagram for the one-loop correction of the sterile neutrino mass m0.

The second type of diagram is related to the correction to the elements of the neutrino

mass matrix of the type kL,RvL,R, as we can see in Fig. 2.8. However, because of the

particular structure of the Higgs insertions in this loop (the same, represented in (2.141),

needed for a general Majorana mass term mMΨL,RΨL,R generation) we know that this

contribution is zero.

Figure 2.8: Diagram for the one-loop correction of the neutrino mass terms: − kLvL√
2
ν̄Ls0 and − kRvR√

2
ν̄Rs

c
0.

Other one-loop diagrams can be built inserting in the loops, of all the diagrams seen
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till now, more and more VEVs and sterile neutrino masses, but these contributions will be

more and more suppressed and so we neglect them in the rest of the thesis.

2.9 Extended model 1

As we have repeatedly emphasized, at the present status the model 1 has two big problems:

the first one is the impossibility to generate a mass for the charged leptons, because with

the particular scalar structure of the model we cannot connect the left charged lepton with

its right part in a scalar loop of type in Fig. 2.3, and the same happens in a gauge loop of

type in Fig. 2.4 where the bosons WL and WR do not mix; the second problem is the too

light mass obtained for the top quark. In order to solve both these issues we extend the

model introducing two more Higgs multiplets:

Λ = (4, 2, 1) and T = (4, 1, 2) , (2.274)

analogs to the multiplets L and R, but with the difference that these new scalars do not

get any VEV:

〈Λ〉 = 0 and 〈T 〉 = 0 . (2.275)

2.9.1 New RGE

In this section we spend few words to note that, with the introduction of new scalar fields,

the running of the coupling constants, related to the groups SU(2)L,R and SU(4), will

change compared to that shown in Sec. 2.4. In particular in the Callan-Symanzik equation

(2.110) we have to replace the coefficients (2.111) with:

a2L = a2R = −2 and a4C = −28

3
, (2.276)

obtaining the new running depicted in Fig. 2.9, where we compare the evolutions of the

gauge coupling constants of the groups SU(4) and SU(2)L,R in the model 1 (where we

have only the two Higgs multiplets L and R) with their evolutions in the extended model

1 (where we have two more Higgs multiplets Λ and T ). We can see that, although the

introduction of two more Higgs multiplets changes the inclinations of the lines representing

the evolutions of g4(µ) and g2(µ), the energy scale at which the intersection occurs between

the two gauge coupling constants is mantained at µ = 2.7 · 1015 GeV.
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1×1014 5×1014 1×1015 5×1015 1×1016
GeV

40
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α4C-1α2 L,R-1
α'4C-1α'2 L,R-1

Figure 2.9: Comparison between the running of the coupling constants 1/αi of the Pati-Salam Model for the groups
SU(2)L,R and SU(4). The red solid and blue dot-dashed lines refer, respectively, to the case with only the
Higgs multiplets L and R; while the brown dashed and violet dotted lines refer, respectively, to the case with
also the multiplets Λ and T.

2.9.2 New Higgs potential and mass spectrum

As we can imagine, with two other multiplets, the scalar potential becomes more complex

than the case with only two multiplets. For simplicity we do not write the complete scalar

potential V (L,R,Λ, T ), but only the terms which contribute to the Higgs masses and then

to the scalar loops of the type in Fig. 2.3, in which we need four-point scalar interactions

with two VEV insertions in order to connect a left-handed fermion with the right-handed

one and obtain a fermion mass term. So having (2.275), the terms of the scalar potential

which we consider are only those with less than three multiplets Λ and/or T , since they

are those can contribute to the Higgs masses:

M2
H ∝

[
∂2V (L,R,Λ, T )

∂Hiα∂Hjβ

]

V EV

with H = L,R,Λ, T . (2.277)

Again, for the Higgs fields, we use the following notations: greek letters for the SU(4)

indices and latin letters for the SU(2)L,R indices, paying attention not to mix the Right

and Left indices. Before writing the potential let us make some considerations about

the independent terms we would have. We limit ourselves to the case of (4, 2, 1), all the
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reasonings can be repeated also for (4, 1, 2). Possible contractions between three fields Liα

and one field Λiα are given below:

LiαLiαLjβΛ
jβ ; (2.278a)

LiαLiβLjαΛ
jβ ; (2.278b)

LiαLjαL
j
βΛ

β
i ; (2.278c)

notice that the last term can be rewritten as (2.278c)=(2.278a)−(2.278b) 2. Now we pass

to consider the terms with two fields Liα and two fields Λiα, whose singlets are:

LiαLiαΛ
jβΛjβ ; (2.279a)

LiαLjαΛ
jβΛiβ ; (2.279b)

LiαLjαΛ
j
βΛ

β
i ; (2.279c)

LiαΛiαL
jβΛjβ ; (2.279d)

LiαΛjαL
jβΛiβ ; (2.279e)

LiαΛjαL
β
i Λ

j
β ; (2.279f)

LiαΛiαLjβΛ
jβ ; (2.279g)

LiαΛjαLiβΛ
jβ ; (2.279h)

LiαΛjαL
j
βΛ

β
i . (2.279i)

Again some of the terms in (2.279) are not independent, as they can be written as

a linear combination of others; in particular we have that (2.279c)=(2.279a)−(2.279b),

(2.279f)=(2.279d)−(2.279e) and (2.279i)=(2.279g)−(2.279h).

What we have shown can be easily repeated for the Right multiplets (4, 1, 2), and sim-

ilarly to the case with mixing between the Left and the Right multiplets, paying attention

to the fact that the SU(2)L indices of Liα and Λiα can not be contracted with the SU(2)R

indices of Riα and Tiα. At this point, putting all together, the part of the scalar potential

Ṽ with less than three fields Λiα and Tiα takes the form written in (H.1) in Appendix H.

The minimum of the potential can be evaluated, as usual, solving the equations for the

2This is possible considering the identity ǫijǫkl = δikδ
j
l − δilδ

j
k, as seen in Sec. 2.1 for the terms related

to the parameter λL3 and λR3.
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first derivatives in the Higgs fields:

[
∂V (L,R,Λ, T )

∂Hiα

]

V EV

= 0 with H = L,R,Λ, T , (2.280)

but since any term with more than one field Λ or T gives a zero contribution in (2.280), we

can use instead of V (L,R,Λ, T ) the potential Ṽ. From (2.280) we obtain the conditions:





2µ2
L = (λL1 + λL2)v

2
L + (λLR1 + λLR2)

v2R
2

µ2
Z = (λXZ1 + λXZ2)v

2
L + (λHK1 + λHK2)v

2
R

2µ2
R = (λR1 + λR2)v

2
L + (λLR1 + λLR2)

v2R
2

µ2
C = (λHI1 + λHI2)v

2
L + (λAC1 + λAC2)v

2
R

, (2.281)

that give the same form for the minimum found in Sec. 2.1.1:

Ṽmin = −(λL1 + λL2)
v4L
4

− (λR1 + λR2)
v4R
4

− (λLR1 + λLR2)
v2Lv

2
R

4
. (2.282)

Even if the presence of the two new Higgs multiplets does not change the form of the

minimum, certainly it modifies the mass spectrum of the Higgs fields. In fact, although

every mass matrix for a particular type of Higgs fields continues to be decoupled from each

others as before:

M2
LRΛT =




M2
LRΛTu

0 0 0

0 M2
LRΛTd

0 0

0 0 M2
LRΛTν

0

0 0 0 M2
LRΛTe



, (2.283)

we find that, using the basis (Lu, Ru,Λu, Tu), the single squared mass matrix for the up-type

Higgs fields is now of the form:

M2
LRΛTu =

v2R
2




−λLR2 λLR2
vL
vR

−λHK2 λHI2
vL
vR

λLR2
vL
vR

−λLR2
v2L
v2R

−λHK2
vL
vR

−λHI2 v
2
L

v2R

−λHK2 −λHK2
vL
vR

pu λHJ2
vL
vR

λHI2
vL
vR

−λHI2 v
2
L

v2R
λHJ2

vL
vR

qu



, (2.284)
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with 


pu = −4

µ2Y
v2R

+ (λXY 1 + λXY 2)
v2L
v2R

+ λKK1

qu = −4
µ2B
v2R

+ (λAB1 + λAB2) + λII1
v2L
v2R

. (2.285)

In the top left 2× 2 submatrix we can recognize the previous squared mass matrix M2
LRu

evaluated in (2.66) for the simple model with only two Higgs multiplets. The same happens

for the down-type Higgs where, using the basis (Ld, Rd,Λd, Td), we obtain the squared mass

matrix:

M2
LRΛTd

=
v2R
2
×




−2λL2
v2L
v2R

− λLR2 2λLR3
vL
vR

−λXZ2 v
2
L

v2R
− λHK2 λHI3

vL
vR

2λLR3
vL
vR

−2λR2 − λLR2
v2L
v2R

λHK3
vL
vR

−λAC2 − λHI2
v2L
v2R

−λXZ2 v
2
L

v2R
− λHK2 λHK3

vL
vR

pd λHJ3
vL
vR

λHI3
vL
vR

−λAC2 − λHI2
v2L
v2R

λHJ3
vL
vR

qd



,

(2.286)

with 


pd = −4

µ2Y
v2R

+ λXY 1
v2L
v2R

+ λKK1

qd = −4
µ2B
v2R

+ λAB1 + λII1
v2L
v2R

. (2.287)

Eventually the Higgs fields related to the neutrino sector, with the basis (Lν , Rν ,Λν , Tν),

has the following squared mass matrix:

M2
LRΛTν =

v2R
2
×




2(λL1 + λL2)
v2L
v2R

(λLR1 + λLR2)
vL
vR

(λXZ1 + λXZ2)
v2L
v2R

(λHI1 + λHI2)
vL
vR

(λLR1 + λLR2)
vL
vR

2(λR1 + λR2) (λHK1 + λHK2)
vL
vR

λAC1 + λAC2

(λXZ1 + λXZ2)
v2L
v2R

(λHK1 + λHK2)
vL
vR

pν (λIK1 + λHJ2)
vL
vR

(λHI1 + λHI2)
vL
vR

λAC1 + λAC2 (λIK1 + λHJ2)
vL
vR

qν



,

(2.288)

with




pν = −4

µ2Y
v2R

+ (λXY 1 + λXY 2 + λZZ + 2λZZ3)
v2L
v2R

+ (λKK1 + λKK2)

qν = −4
µ2B
v2R

+ (λAB1 + λAB2 + λCC + 2λCC3) + (λII1 + λII2)
v2L
v2R

. (2.289)

As we will see later, the new Higgs multiplets, in addition to produce the modifications
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of the squared mass matrices, they will also cause an addition of new diagrams involving

scalar loops, which will correct the radiatively generated masses of quarks and leptons.

The biggest change is in the sector related to the charged leptons. In fact, using the basis

(Le, Re,Λe, Te), we have that the squared mass matrix is non-zero and it has the form:

M2
LRΛTe =

v2R
2




0 0 0 0

0 0 0 0

0 0 pe (λHJ3 − λHI3)
vL
vR

0 0 (λHJ3 − λHI3)
vL
vR

qe



, (2.290)

with 


pe = −4

µ2Y
v2R

+ (λXY 1 + 2λZZ3)
v2L
v2R

+ (λKK1 + λKK2)

qe = −4
µ2B
v2R

+ (λAB1 + 2λCC3) + (λII1 + λII2)
v2L
v2R

. (2.291)

This means that, while in the simple model the mass eigenstates of the e-type Higgs squared

mass matrix were pure Goldstone bosons which gave mass to the vector bosons W µ
L and

W µ
R, in this extended model we obtain in general two massive eigenstates for the e-type

Higgs, which mix the Left and the Right multiplet (Λ and T respectively) making possible

to build up diagrams for the radiative mass generations for the charged leptons, totally

absent till now.

2.9.3 New scalar loops

As anticipated above, we have a new set of diagrams for the radiative fermion mass genera-

tions. In fact, while the diagrams with loops involving gauge bosons remain the same seen

for the simple model in Fig. 2.4, we have now to consider three more diagrams containing

scalar loops, shown in Fig. 2.10. These new diagrams are given by all possible combinations

between an Higgs multiplet (4, 2, 1), L or Λ, and a multiplet (4, 1, 2), R or T .

Figure 2.10: Sum of all the possible scalar loops contributing to the radiative fermion mass generations.

The scalar-loop contributions to the fermion masses, in analogy with that seen in
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Sec. 2.6.1, will be given by the general formula:

m
(ψ)
H =

9∑

i=1

m2
i (Oν)

2
3i

(4π)2

4∑

j=1

[
kR(OHψ)2j + kT (OHψ)4j

][
kL(OHψ)1j + kΛ(OHψ)3j

]
×

×
[

M2
Hψj

M2
Hψj

−m2
i

ln

(
m̃2
i

M2
Hψj

)]
,

(2.292)

where for the neutrino mass eigenstates in the logarithms we use the definition:

m̃i =

{
mi if mi 6= 0

const. 6= 0 if mi = 0
, (2.293)

while M2
Hψj

represent the eigenvalues of the squared mass matrix M2
LRΛTψ

, with ψ = u, d, ν,

and OHψ are the 4×4 orthogonal matrices built up with their normalized eigenvectors, for

which the following identity is valid:

4∑

k=1

(OHψ)ik(OHψ)jk = δij . (2.294)

We note, instead, that for the charged leptons (ψ = e) the formula (2.292) has to be

restricted to the 2 × 2 non-zero submatrix of M2
LRΛTe

related to the mixing of only the

Higgs Λe and Te:

m
(e)
H =

9∑

i=1

m2
i (Oν)

2
3i

(4π)2

4∑

j=3

kT (OHe)4jkΛ(OHe)3j

[
M2

Hej

M2
Hej

−m2
i

ln

(
m̃2
i

M2
Hej

)]
, (2.295)

with

OHe =




1 0 0 0

0 1 0 0

0 0 cos θe34 − sin θe34

0 0 sin θe34 cos θe34



. (2.296)

2.9.4 Numerical results without mixing

Due to the larger parameter space, we need to rely on a different software to test numer-

ically the extended model. So, instead of Mathematica, we implement a new scan code

using MultiNest [24, 25, 26]. It is a Bayesian inference tool which explores the param-
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eter space trying to maximize their likelihood given the experimental values (2.182) and

(2.186). For the sake of simplicity, we perform two approximations in order to reduce the

number of free parameters in the scan. First of all we neglect the mixing between the pairs

(L,R) and (Λ, T ). In this case we have two contributions coming from the scalar loops, in

the same form as (2.145), one for the mass eigenstates Hψ1 and Hψ2, linear combinations

of the fields Lψ and Rψ:

m
(ψ)
H12 = kLkR sin θψ12 cos θψ12

9∑

i=1

(Oν)
2
3i

mi

(4π)2

[
M2

Hψ1

m2
i −M2

Hψ1

ln

(
m̃2
i

M2
Hψ1

)
−

−
M2

Hψ2

m2
i −M2

Hψ2

ln

(
m̃2
i

M2
Hψ2

)]
,

(2.297)

and the other for the mass eigenstates Hψ3 and Hψ4, linear combinations of the new fields

Λψ and Tψ only:

m
(ψ)
H34 = kΛkT sin θψ34 cos θψ34

9∑

i=1

(Oν)
2
3i

mi

(4π)2

[
M2

Hψ3

m2
i −M2

Hψ3

ln

(
m̃2
i

M2
Hψ3

)
−

−
M2

Hψ4

m2
i −M2

Hψ4

ln

(
m̃2
i

M2
Hψ4

)]
.

(2.298)

The total scalar loop contribution, for each family, is then given by: m
(ψ)
H = m

(ψ)
H12 +m

(ψ)
H34,

with ψ = u, d, e, ν. In this way we have to take in account only two mixing angles. More

to that, assuming to have in Ṽ enough parameters to generate any particular Higgs mass

spectrum (a fine-tuning hypotesis [27, 28]), we consider as parameters to scan, instead of the

λis, directly the Higgs squared mass and their mixings. Here below we show two examples

of results, in the case without inter-family mixing, obtained with MultiNest. We let span

the values for the Yukawa couplings (kaL, kaR, kaΛ and kaT with a = 1, 2, 3 the family index),

and a parameter ma, related to the sterile neutrino masses, by the identity: m0a = mavR,

in the interval [−10, 10], while we use the interval (0, 10] for the parameters ξψi and ηψxy

related to the Higgs squared masses and mixings, respectively, by the identities:

M2
Hψi

= ξψiv
2
R,L and cos θψxy = ηψxy

vL
vR

, (2.299)
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with i = 1, 2, 3, 4 and xy = 12, 34. Remembering, from the non-extended model, that:

M2
Hu1

is substitute in the loops with M2
X ; the mixing cos θu12 sin θu12 =

vLvR√
v2Lv

2
R

is a constant;

while M2
He1

= M2
He1

= 0, then cos θe12 sin θe12 = 0. Furthermore we note that it is possible

to consider a positive interval where to search for the values of the parameters, not only

those related to the Higgs squared masses, but also those related to the Higgs mixings.3

The two examples we present have a Log-likelihood ∼ −35, but they differ in the interval

we use for the parameters ξν2, in order to have MHν2 of the order of the SM Higgs mass. So,

in the first example we use the interval (0, 10] common to all the other scalar parameters,

while in the second example we use the smaller interval [0.2, 0.3].

Example 1

In the first example, we get the following Higgs masses:

MHd1 = 2.13 · 1014 GeV and MHd2 = 2.17 · 1014 GeV (2.300)

for the down-type Higgs, linear combinations of Ld and Rd with the mixing:

cos θd12 sin θd12 = 0.96 · 10−12 ; (2.301)

while for the others two down-type Higgs, linear combinations of Λd and Td, we have:

MHd3 = 2.70 · 1014 GeV and MHd4 = 2.66 · 1014 GeV , (2.302)

and the mixing:

cos θd34 sin θd34 = 2.93 · 10−12 . (2.303)

For the up-type Higgs, combinations of Lu and Ru, we have:

MHu2 = 1.67 · 1014 GeV (2.304)

where we remember that, being the same situation seen in the simple model, the other

eigenstate Hu1 is a Goldstone boson (so we use MHu1 =MX in the scalar propagator) and

3This because, if we need a mixing cos θψxy sin θψxy < 0 the program has only to interchange the
parameters related to M2

Hψ1,3
with those related to M2

Hψ2,4
, which are all of order O(v2R) except for

the case M2

Hν2
= ξν2v

2

L. However we know from (2.80) that for the corresponding mixing we have:
cos θν12 sin θν12 ∼ O( vL

vR
) > 0.
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the mixing is given by the constant value (2.200). While for the other two up-type Higgses

we get the values:

MHu3 = 1.48 · 1014 GeV and MHu4 = 1.72 · 1014 GeV (2.305)

with the mixing:

cos θu34 sin θu34 = 1.47 · 10−12 . (2.306)

We go on with the ν-type Higgs, combination of Lν and Rν , for which the program select

the values for the mixing:

cos θν12 sin θν12 = 1.17 · 10−11 (2.307)

and the masses:

MHν1 = 2.31 · 1014 GeV and MHν2 = 611.88GeV , (2.308)

where again, like in the previous results for the simple model, we can see that MHν2 is

too big to represent the Standard Model Higgs. For the mass eigenstates coming from the

combination of Λν and Tν , which have to be of the order of the Pati-Salam scale we get:

MHν3 = 2.12 · 1014 GeV and MHν4 = 2.01 · 1014 GeV , (2.309)

with the mixing given by:

cos θν34 sin θν34 = 2.09 · 10−11 . (2.310)

To complete the Higgs mass spectrum there remain the massive Higgs related to the charged

leptons sector:

MHe3 = 2.04 · 1014 GeV and MHe4 = 2.31 · 1014 GeV (2.311)

that are combintation of Λe and Te with the mixing:

cos θe34 sin θe34 = 1.93 · 10−12 . (2.312)



2.9 Extended model 1 78

The remaining parameters are the four Yukawa couplings for the three families, that we

collect in the following diagonal matrices:

kL =



−0.07 0 0

0 0.95 0

0 0 6.97


 ; (2.313)

kR =



−0.05 0 0

0 −0.16 0

0 0 −5.41


 ; (2.314)

kΛ =



0.41 0 0

0 −1.03 0

0 0 2.56


 ; (2.315)

kT =



−0.14 0 0

0 −0.30 0

0 0 2.01


 ; (2.316)

and the three sterile neutrino masses, one for each fermion family:

M0 =



−2.22 · 10−2 0 0

0 2.08 0

0 0 0.20


 · 1014 GeV . (2.317)

With this particular selection of parameters, as results for the quark masses, we obtain the

values:

mup = 0.60MeV , mdown = 0.09MeV ,

mcharm = 253.75MeV , mstrange = 23.97MeV ,

mtop = 77.46GeV , mbottom = 1.13GeV ,

(2.318)
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so that all masses are within the 1σ experimental ranges apart from mdown, which is

reproduced within 3σ. A good result is also obtained for the charged lepton masses:

me = 0.48MeV ,

mµ = 103.63MeV ,

mτ = 1663.42MeV ,

(2.319)

where all the three masses are within the 1σ range from the experimental values. On the

other hand, in the neutrino sector we still have a very small r ratio:

r = 3.94 · 10−22 . (2.320)

Example 2

The second example we show is defined with the following parameters selection:

MHd1 = 2.12 · 1014 GeV and MHd2 = 2.04 · 1014 GeV ; (2.321)

MHd3 = 2.14 · 1014 GeV and MHd4 = 2.09 · 1014 GeV ; (2.322)

for the down-type Higgs, with the mixings respectively:

cos θd12 sin θd12 = 1.10 · 10−12 and cos θd34 sin θd34 = 1.96 · 10−12 . (2.323)

While for the up-type Higgs we have:

MHu2 = 2.18 · 1014 GeV ; (2.324)

MHu3 = 2.31 · 1014 GeV and MHu4 = 2.68 · 1014 GeV , (2.325)

with the mixing:

cos θu34 sin θu34 = 1.42 · 10−12 . (2.326)

To the Higgs related to the charged leptons, instead, the program assigns the masses:

MHe3 = 2.41 · 1014 GeV and MHe4 = 2.21 · 1014 GeV , (2.327)
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and the related mixing:

cos θe34 sin θe34 = 1.86 · 10−12 . (2.328)

Next we get the mass values for the ν-type Higgs:

MHν1 = 2.08 · 1014 GeV and MHν2 = 122.50GeV ; (2.329)

MHν3 = 2.40 · 1014 GeV and MHν4 = 2.36 · 1014 GeV ; (2.330)

with the mixings:

cos θν12 sin θν12 = 1.20 · 10−11 and cos θν34 sin θν34 = 9.05 · 10−12 . (2.331)

We can recognize in MHν2 a more realistic SM Higgs mass, because in this second run we

used for MHν2 a smaller interval, in which to span the parameter scan code, than in the

previous example, where was selected a MHν2 too big.

Eventually we have the parameter selection for the Yukawa couplings:

kL =



−0.22 0 0

0 0.47 0

0 0 6.88


 ; (2.332)

kR =



0.08 0 0

0 0.48 0

0 0 4.20


 ; (2.333)

kΛ =



0.21 0 0

0 −0.86 0

0 0 −1.90


 ; (2.334)

kT =



−0.38 0 0

0 −1.68 0

0 0 4.37


 ; (2.335)
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and the sterile neutrino masses:

M0 =



−2.17 · 10−3 0 0

0 0.35 0

0 0 1.10


 · 1014 GeV . (2.336)

With this particular set of parameters we get the results:

mup = 0.56MeV , mdown = 0.15MeV ,

mcharm = 251.64MeV mstrange = 30.47MeV ,

mtop = 79.99GeV mbottom = 1.14GeV .

(2.337)

While for the charged lepton masses we have the values:

me = 0.48MeV ,

mµ = 102.07MeV ,

mτ = 1750.62MeV .

(2.338)

All these masses are within the 3σ range from the experimental values (2.182). For the

light neutrinos, instead, we obtain the ratio:

r = 1.5 · 10−5 , (2.339)

that is still too small.

2.9.5 Numerical results with mixing

To generalize this extended model to the case with fermion inter-family mixing we can

follow exactly what discussed in Sec. 2.8; the only difference is that now we have two more

Yukawa couplings, kΛ and kT , to promote to general 3 × 3 matrices. In order to keep at

a handleable level for MultiNest the number of parameters in the mixing-case we let the

program scan only the values for the Yukawa matrices and the sterile neutrino masses.

For the parameters related to the Higgs masses and mixings, instead, we use the values

found in the previous examples, without inter-family mixing. In this case, the program

has to maximize the likelihood of the parameters (which for the following examples results

Log-likelihood ∼ −100), not only with respect to the experimental values of the quark
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masses (2.182) and the mass ratio (2.186) for the light neutrinos, but also with respect to

the CKM elements in (2.247). We tried to insert also the PMNS mixings in the fit but

the program remained stalled. We remember that, since we use real Yukawa couplings, we

will obtain real mixings for the CKM and PMNS matrices.

Example 1

The first results we show are obtained with the Higgs sector given by the values from

(2.300) to (2.312); while for the Yukawa couplings MultiNest selects the following values

collected in the matricial forms:

kL =



−3.47 4.47 3.55

0.98 1.62 −1.18

−0.02 0.89 −0.30


 ; (2.340)

kR =



−0.56 2.04 2.62

−0.01 −0.98 −1.69

0.62 −2.76 −3.38


 ; (2.341)

kΛ =



0.68 −1.72 −0.98

0.74 0.02 1.33

0.76 −0.10 0.64


 ; (2.342)

kT =



−0.82 1.25 1.17

−0.38 0.90 −0.95

1.04 −1.24 −1.39


 ; (2.343)

and then, to complete the parameter set, we have the sterile neutrino masses:

M0 =



−0.54 0 0

0 1.20 0

0 0 −2.10 · 10−2


 · 1013 GeV . (2.344)
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With this choice for the parameter set we obtain as eigenvalues from the 3×3 mass matrices

for the up-type and down-type quarks the following results:

mup = 0.87MeV , mdown = 1.38MeV ,

mcharm = 225.36MeV , mstrange = 18.67MeV ,

mtop = 1.11GeV , mbottom = 72.33GeV ,

(2.345)

values that are all inside 2.2σ from the experimental values. Beyond that, for the quark

sector, we can also evaluate the CKM matrix:

VCKM =



−0.943 −0.331 0.008

0.330 −0.938 0.102

−0.026 0.099 0.995


 , (2.346)

where we can see that, although the diagonal elements are of the order O(1) as we expect,

the non-diagonal elements in bold are distant from the experimental (2.247). From the

charged lepton mass matrix, instead, we get the eigenvalues:

me = 0.46MeV ;

mµ = 99.27MeV ;

mτ = 1927.06MeV ;

(2.347)

all masses are within the 2σ range from the experimental values. While for the light

neutrino masses we reach the ratio:

r = 0.026 , (2.348)

a value that is inside the 5σ from the refence one (2.186).

Before showing also the resulting PMNS matrix, we have to mentioned another dif-

ference with the simple model. In fact, because in this extended model we have also a

generally non-diagonal charged lepton mass matrix, the PMNS matrix is effectively given

by the (2.250), where Ul is different from the identity matrix. So in the normal hierarchy

we have:

UPMNS =



−0.648 0.760 0.042

0.323 0.224 0.920

−0.690 −0.610 0.390


 , (2.349)
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from which we obtain the mixings angles:

sin2 θ13 = 0.002 , sin2 θ12 = 0.579 and sin2 θ23 = 0.847 , (2.350)

where the best result is given by the mixing sin2 θ13 which is inside the 9σ range from

the experimental value (2.256), while the other two mixing are inside more than the 15σ

ranges. In the inverted hierarchy, instead, the PMNS matrix is given by:

UPMNS =




0.760 0.042 −0.648

0.224 0.920 0.323

−0.610 0.390 −0.690


 , (2.351)

with

sin2 θ13 = 0.420 , sin2 θ12 = 0.003 and sin2 θ23 = 0.180 , (2.352)

where, this time, we have the best result with the mixing sin2 θ23 which is inside the 10σ

range from the experimental value, while sin2 θ12 is inside the 18σ range and sin2 θ13 is

even more distant.

Example 2

The second set of results that we show is obtained using the values from (2.321) to (2.331)

for the scalar sector, while for the four Yukawa couplings and the sterile neutrino masses

the code found respectively the values:

kL =



−0.43 −0.85 0.68

−4.60 0.84 0.48

−0.26 −0.57 0.72


 ; (2.353)

kR =



3.59 −1.94 −0.86

3.41 −1.89 −0.64

0.28 −0.40 0.19


 ; (2.354)

kΛ =



−0.45 −0.20 1.43

−0.02 3.35 −0.42

−0.39 0.07 0.93


 ; (2.355)
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kT =



−2.42 1.17 1.49

−2.26 2.10 0.89

0.11 1.57 0.26


 ; (2.356)

M0 =



3.56 0 0

0 −2.31 0

0 0 −0.23


 · 1013 GeV . (2.357)

This second set of parameters leads to the quark masses:

mup = 0.43MeV , mdown = 1.14MeV ,

mcharm = 246.73MeV , mstrange = 23.48MeV ,

mtop = 74.67GeV , mbottom = 1.16GeV ,

(2.358)

all values within the 1σ range from the experimental values in (2.182), apart from the

bottom which is inside the 2σ. While for the CKM matrix we obtain:

VCKM =




0.973 0.229 0.015

−0.228 0.961 0.156

0.022 −0.156 0.988


 , (2.359)

where we note that, although the diagonal elements are again of order O(1), the absolute

value of the element |Vus| is within the 6σ range from the reference value in (2.247), while

|Vcb| and |Vub| are even more distant.

Also for the charged lepton masses we obtain results within the 1σ range from the expected

values in (2.182):

me = 0.50MeV ,

mµ = 101.88MeV ,

mτ = 1726.27MeV .

(2.360)

While for the light neutrinos we get the ratio:

r = 0.006 , (2.361)

that if far at least 25σ from the reference result in (2.186). We conclude this second
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example with the results for the PMNS matrix in the normal hierarchy:

UPMNS =



−0.411 0.891 0.195

0.906 0.376 0.192

0.098 0.256 −0.962


 , (2.362)

which leads to the mixing angles:

sin2 θ13 = 0.038 , sin2 θ12 = 0.825 and sin2 θ23 = 0.038 , (2.363)

where the best result is for the mixing sin2 θ13 which is within the 6σ range from the ex-

perimental value, while sin2 θ12 and sin2 θ23 are inside the 31σ and 16σ ranges, respectively.

In the inverted hierarchy, instead, we have:

UPMNS =



0.891 0.195 −0.411

0.376 0.192 0.906

0.256 −0.962 0.098


 , (2.364)

from which we obtain:

sin2 θ13 = 0.169 , sin2 θ12 = 0.046 and sin2 θ23 = 0.988 , (2.365)

which are all inside ranges bigger than 16σ.

Although with the extended model we are now able to generate the correct mass spec-

trum of all the quarks and the charged leptons, within the range of 2σ from the experi-

mental values, the model seems to fail in reproducing the mixings, of the CKM and PMNS

matrices, and the light neutrino masses, which give a ratio r still too small.



Chapter 3

Model 2

The second model that we study was developed by R. R. Volkas [3] and it differs from the

previous one only in the scalar fields content. In fact, under the gauge group SU(4) ⊗
SU(2)L ⊗ SU(2)R, the scalar content of the model 2 is given by the Higgs fields in the

representations:

Riα ∼ (4, 1, 2) and ΦI
i ∼ (1, 2, 2) (3.1)

where α = 1, 2, 3, 4 is the index of SU(4), while i = 1, 2 and I = 1, 2 are the SU(2)R

and SU(2)L indices, respectively. So we do not have any left-handed Higgs multiplets, as

L and Λ in the model 1, but only a right-handed Higgs multiplets R, responsible for the

SU(4) symmetry-breaking, and a bi-doublet Φ [29, 30, 31], responsible for the electroweak

symmetry-breaking. Under gauge symmetry these two multiplets transform as:

R → URRV
T and Φ → ULΦU

†
R (3.2)

with UL,R ∈ SU(2)L,R and V ∈ SU(4). Let us recall that for the complex conjugate fields

the notation is given by: (Riα)∗ = Riα and (Φi
I)

∗ = ΦI
i . Furthermore we can note that it

is possible to build up another bi-doublet Φ̃, using Φ and the Pauli’s matrix σ2:

ΦI
i =

(
φ1
1 φ1

2

φ2
1 φ2

2

)
=⇒ Φ̃I

i =
(
σ2LΦ

∗σ2R
)I
i
=

(
(φ2

2)
∗ −(φ2

1)
∗

−(φ1
2)

∗ (φ1
1)

∗

)
, (3.3)

which transforms as Φ under gauge symmetry:

Φ̃ → ULΦ̃U
†
R . (3.4)

87
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3.1 Scalar potential

Since the only difference with the model 1 is the scalar content, the Lagrangian of the

model 2 is practically similar to (2.11):

L =
3∑

f=1

{
iΨ̄

(f)
L γµDµΨ

(f)
L + iΨ̄

(f)
R γµDµΨ

(f)
R + is̄0

(f)γµ∂µs
(f)
0 + is̄c0

(f)
γµ∂µs

c
0
(f)−

−
[
s̄c0

(f)
m

(f)
0 s

(f)
0 + h.c.

]
+ L(f)

Y ukawa

}
−V(R,Φ) + Lgauge fixing +

+DµΦ
I
iD

µΦi
I +DµRαiD

µRαi − 1

2
Tr
[
GµνG

µν +WLµνW
µν
L +WRµνW

µν
R

]
,

(3.5)

apart for the terms including the Higgs fields, that are the scalar potential, the scalar

kinetic terms and the Yukawa interactions, from which we get a completely different phe-

nomenology compared to the model 1.

Let us analyze the Higgs potential for the scalar multiplets R and Φ. We start looking

for all possible singlets that can be generated with the representations (4, 1, 2) and (1, 2, 2).

For what concerns the multiplet R we skip the analysis which has already been done in

Sec. 2.1, where we obtained the structure of the terms containing only R (see (2.28)) and

we know that its VEV is given by 〈R14〉 = v 6= 0. For the gauge invariant terms involving

the bi-doublet, instead, we start from the quadratic terms given by the following tensor

products:

(1, 2, 2)⊗ (1, 2̄, 2̄) = (1, 3⊕ 1, 3⊕ 1) ∋ (1, 1, 1) ∼ ΦI
iΦ

i
I , (3.6)

where we have shown only the structure of the resulting singlet, and

(1, 2, 2)⊗ (1, 2, 2) = (1, 3⊕ 1, 3⊕ 1) ∋ (1, 1, 1) ∼ ΦI
i ǫ
ijǫIJΦ

J
j = −ΦI

i ǫ
ijΦJ

j ǫJI =

= −ΦI
i (iσ2R)

ijΦJ
j (iσ2L)JI = ΦI

i (σ2R)
ij(Φj

J)
∗(σ2L)JI = ΦI

i Φ̃
i
I ,

(3.7)

with the related hermitian conjugate:

(1, 2̄, 2̄)⊗ (1, 2̄, 2̄) ∋ (1, 1, 1) ∼ Φ̃I
iΦ

i
I (3.8)

(for more details about the tensor products in SU(2) see Appendix B).

Since we cannot generate singlets with three representations (1, 2, 2), we pass to the quartic
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terms in Φ and we find four possible singlets:

(1, 2, 2)⊗ (1, 2, 2)⊗ (1, 2, 2)⊗ (1, 2, 2) = (1, 3⊕ 1, 3⊕ 1)⊗ (1, 3⊕ 1, 3⊕ 1) ∋

∋





(1, 1, 1)⊗ (1, 1, 1) ∼ ΦI
i Φ̃

i
IΦ

J
j Φ̃

j
J

(1, 3, 1)⊗ (1, 3, 1) ∋ (1, 1, 1) ∼ HIJHMN(ǫIMǫJN + ǫINǫJM)

(1, 1, 3)⊗ (1, 1, 3) ∋ (1, 1, 1) ∼ HijHmn(ǫ
imǫjn + ǫinǫjm)

(1, 3, 3)⊗ (1, 3, 3) ∋ (1, 1, 1) ∼ HIJ
ij H

MN
mn (ǫimǫjn + ǫinǫjm)(ǫIMǫJN + ǫINǫJM)

(3.9)

where we used for the symmetric tensors the notation:





(1, 3, 3) ∼ HIJ
ij = 1

2

(
ΦI
iΦ

J
j + ΦJ

i Φ
I
j

)

(1, 1, 3) ∼ Hij = HIJ
ij ǫIJ

(1, 3, 1) ∼ HIJ = HIJ
ij ǫ

ij

. (3.10)

All possible combinations of bi-doublets, giving rise to singlets, are listed in the following

gauge-invariant trace relations:

ΦI
iΦ

i
I = Tr[ΦΦ†] = Tr[Φ†Φ] ; (3.11a)

Tr[ΦΦ†] = Tr[Φ̃Φ̃†] ; (3.11b)

Tr[Φ†Φ̃] · Tr[Φ̃†Φ] = 2 · Tr[Φ†Φ̃Φ̃†Φ] = 2 · Tr[ΦΦ̃†Φ̃Φ†] ; (3.11c)

Tr[Φ†Φ] · Tr[Φ̃†Φ] = 2 · Tr[Φ̃†ΦΦ†Φ] ; (3.11d)

Tr[Φ†ΦΦ†Φ] =
(
Tr[Φ†Φ]

)2
− Tr[Φ̃†Φ̃Φ†Φ] ; (3.11e)

Tr[Φ̃†Φ̃Φ̃†Φ] = Tr[Φ̃†ΦΦ†Φ] . (3.11f)

It remains to consider the mixing between R and Φ. It is easy to understand that this kind

of terms have to be quartic in the fields in order to produce a singlet; in particular, in order

to have the contraction of all the indices we need two multiplets R, the only multiplet with

the index of SU(4), and two bi-doublets Φ, the only multiplet with the SU(2)L index. An

example of this type of quartic term is:

(4, 1, 2)⊗ (4̄, 1, 2)⊗ (1, 2, 2)⊗ (1, 2, 2) = (1, 1, 3⊕ 1)⊗ (1, 1, 3⊕ 1, 3⊕ 1) ∋

∋
{
(1, 1, 1)⊗ (1, 1, 1) ∼ RiαǫikR

k
αΦ

j
JΦ̃

J
j

(1, 1, 3)⊗ (1, 1, 3) ∋ (1, 1, 1) ∼ KijHmn(ǫimǫjn + ǫinǫjm)

(3.12)
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where Ri
α = ǫijRjα and Kij = 1

2

(
RiαǫjkRkα + RjαǫikRkα

)
is a symmetric tensor. The

complete list of gauge-invariant traces with R-Φ mixing is given by:

Tr[RR†] · Tr[ΦΦ†] ; (3.13a)

Tr[RR†Φ†Φ] ; (3.13b)

Tr[RR†]
(
Tr[Φ†Φ̃] + h.c.

)
; (3.13c)

Tr[RR†Φ†Φ̃] + h.c. ; (3.13d)

Tr[RR†Φ̃†Φ̃] . (3.13e)

In this way we arrive to the final result for the most general gauge-invariant scalar potential

that has the form:

V(R,Φ) =− µ2
1RαiR

αi + η1RαiR
αiRβjR

βj + η2RαiR
βiRβjR

αj

− µ2
2Φ

i
IΦ

I
i + η3Φ

i
IΦ

I
iΦ

j
JΦ

J
j + η4Φ

i
IΦ

I
jΦ

j
JΦ

J
i

− µ2
3

(
Φi
Iǫ
IJǫijΦ

j
J + h.c.

)
+ η5

(
Φi
Iǫ
IJǫijΦ

j
JΦ

l
Lǫ
LRǫlrΦ

r
R + h.c.

)

+ η6

(
ΦI
iΦ

j
IΦ

K
j ǫKLǫ

ilΦL
l + h.c.

)

+ ξ1RαiR
αiΦj

JΦ
J
j + ξ2RαiR

αjΦi
IΦ

I
j + ξ3RαiR

αi
(
Φi
Iǫ
IJǫijΦ

j
J + h.c.

)

+ ξ4

(
RαiR

αjΦI
jǫIJǫ

ikΦJ
k + h.c.

)
+ ξ5RαiR

αjǫILǫjlΦ
l
LǫIRǫ

irΦR
r .

(3.14)

What remains to understand is how the symmetry breaking to SM realizes, therefore which

is the vacuum expectation value for the bi-doublet Φ.

3.1.1 VEV of the bi-doublet

In order to evaluate the structure of the VEV of Φ, we start to consider the part of the

potential (3.14) involving Φ only:

V(Φ) =− µ2
2 Tr[Φ

†Φ] + η3

(
Tr[Φ†Φ]

)2
+ η4 Tr[Φ

†ΦΦ†Φ]

− µ2
3

[
Tr[Φ†Φ̃] + h.c.

]
+ η5

[(
Tr[Φ†Φ̃]

)
+ h.c.

]

+ η6

[
Tr[Φ†ΦΦ†Φ̃] + h.c.

]
,

(3.15)
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and we look for the minimum of this potential calculating its first derivative:

∂V(Φ)

∂ΦIi
=
[
−µ2

2 + 2
(
η3 + η4

)
|Φ|2 + η6

(
det[Φ] + det[Φ†]

)]
ΦIi

+
[
−2µ2

3 + η6|Φ|2 + 2
(
4η5 det[Φ]− η4 det[Φ

†]
)]
ǫIJǫijΦ

Jj .
(3.16)

Asking that (3.16) is equal to zero when Φ gets VEV, we find that the most general cases

with 〈Φ〉 6= 0 are given by the following two possibilities:

〈ΦIi〉 =





(
〈Φ11〉 0

0 〈Φ22〉

)
with 〈Φ11〉 , 〈Φ22〉 6= 0

(
0 〈Φ12〉

〈Φ21〉 0

)
with 〈Φ12〉 , 〈Φ21〉 6= 0

. (3.17)

In order to discriminate between these two cases we use another request, that is we ask

〈Φ〉 to preserve the electric charge; so using the definition in (2.14) we find:

Q〈ΦIi〉 =
(
〈Φ11〉 0

0 −〈Φ22〉

)
= 0 =⇒ 〈ΦIi〉 =

(
0 u1

−u2 0

)
, (3.18)

which is consistent with the second of (3.17). We assume real VEV, so u1, u2 ∈ R, as in

the previous model 1. At this point, inserting this VEV in (3.16) we find the relations:

[∂V(Φ)

∂ΦIi

]
V EV

= 0 =⇒
{
|Φ|2 = u21 + u22 =

(4η5−η4)µ22−2η6µ23
2(η3+η4)(4η5−η4)−η26

det[Φ] = u1u2 =
4(η3+η4)µ23−η6µ22

4(η3+η4)(4η5−η4)−2η26

. (3.19)

Moving the indices of the bi-doublet, we define the VEV as:

〈ΦI
i 〉 = ǫij〈ΦIj〉 =

(
u1 0

0 u2

)
, (3.20)

with √
|u1|2 + |u2|2 =

vL√
2
= 174GeV . (3.21)
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To complete the analysis of the bi-doublet, we show its composition in terms of complex

fields:

ΦIi =

(
(Φ11)+ (Φ12)0

(Φ21)0 (Φ22)−

)
=⇒ ΦI

i =

(
φ0
1 φ+

2

φ−
1 φ0

2

)
and Φ̃I

i =

(
φ0∗
2 −φ+

1

−φ−
2 φ0∗

1

)
. (3.22)

Here we have to pay attention to the way we move the indices, in particular we have that:

ǫIJǫijΦ
Jj = Φ̂Ii 6= ΦIj = (ΦIi)∗ and ΦI

i = ǫijΦ
Ij 6= ǫIJΦJi = (Φ∗)Ii . (3.23)

3.1.2 Minimum of the potential and Higgs masses

To get the minimum of the complete potential (3.14) we evaluate, as usual, the zeros of

its first derivatives when the Higgs fields get VEVs; so from the equations:

[∂V(R,Φ)

∂Φ1
1

]
V EV

= 0 ,
[∂V(R,Φ)

∂Φ2
2

]
V EV

= 0 and
[∂V(R,Φ)

∂R14

]
V EV

= 0 (3.24)

we obtain the conditions:

=⇒





µ2
1 = 2(η1 + η2)v

2 + (ξ1 + ξ2)u
2
1 + (ξ1 + ξ5)u

2
2 + 2(2ξ3 + ξ4)u1u2

µ2
2 = 2(η3 + η4)(u

2
1 + u22) + 2η6u1u2 + (ξ1 + ξ2)

v2u21
u21−u22

− (ξ1 + ξ5)
v2u22
u21−u22

µ2
3 = (2η5 − η4)u1u2 + η6

u21+u
2
2

2
+ (2ξ3 + ξ4)

v2

2
− (ξ2 − ξ5)

u1u2
u21−u22

v2

2

(3.25)

where we assumed u1 6= u2. Inserting the constraints (3.25) in the potential (3.14) we

obtain the minimum:

Vmin =− (η1 + η2)v
4 − (η3 + η4)(u

4
1 + u42)− 2η3u

2
1u

2
2 − 2η6u1u2(u

2
1 + u22)

− (ξ1 + ξ2)v
2u21 − (ξ1 + ξ5)v

2u22 − 2(2ξ3 + ξ4)v
2u1u2 .

(3.26)

Concerning the Higgs masses instead, since we need to evaluate the terms proportional

to H†M2
HH, we have to consider the second derivatives of the potential (3.14):

[∂2V(R,Φ)

∂ΦI
i ∂Φ

j
J

]
V EV

,
[∂2V(R,Φ)

∂Riα∂Rjβ

]
V EV

and
[∂2V(R,Φ)

∂ΦI
i ∂Rjβ

]
V EV

. (3.27)

For the Higgs Ra
u (with a = 1, 2, 3 the colour index of SU(3)C), related to the up-type

quark sector, we find M2
Ru

= 0; so, since we have three copies of Ra
u and these are complex
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fields, they can be interpreted as the six Goldstone bosons which give mass to the three

leptoquarks X±
iµ, as we will see in Sec. 3.3. For the Higgs fields Ra

d (with a = 1, 2, 3),

related to the down-type quark sector, instead we find the squared mass:

M2
Rd

= (ξ5 − ξ2)(u
2
1 − u22)− 2η2v

2 . (3.28)

Another scalar field decoupled from the others is the charged Higgs field Φ+
2 , for which we

find the mass:

M2
φ±2

= (ξ5 − ξ2)
v2u21
u21 − u22

. (3.29)

At this point, since the partial-unification scale has to be higer than the electroweak scale

we assume v ≫ u1 > u2 and asking to have positive squared Higgs masses, we find the

constraints: {
ξ5 − ξ2 > 0

η2 < 0
. (3.30)

The last two charged Higgs fields, Φ−
1 and Re, mix each other in the squared mass matrix:

M2
H±e = (ξ5 − ξ2)

(
v2u22
u21−u22

−vu2
−vu2 u21 − u22

)
, (3.31)

in the basis (φ−
1 , Re). The matrix M2

H±e can be diagonalized using the orthogonal matrix:

OH± =
1√

|v2u22 − (u21 − u22)
2|

(
vu2 −(u22 − u21)

u22 − u21 vu2

)
=

(
cos θH± − sin θH±

sin θH± cos θH±

)
, (3.32)

obtaining:

(M2
H±e)

diag = OT
H±M

2
H±eOH± =


M

2
H±

1

0

0 M2
H±

2


 = (ξ5− ξ2)

(
u21 − u22 +

v2u22
u21−u22

0

0 0

)
(3.33)

where the zero eigenvalues are related to the Goldstone bosons that give mass to the

gauge bosons W±
µR. Instead, for the Goldstone bosons needed to give mass to the vector

bosons W±
µL we can use a combination of the imaginary parts of the fields: Im[φ−

2 ] and

Im[φ−
1 cos θH±−Re sin θH±], which can be considered massless, while their real parts remain

massive.

Last we have the squared mass matrix for the neutral Higgs, in the basis (φ0
1, φ

0
2, Rν),
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which is given by:

M2
H0ν

=




A 2η3u1u2 + η6(u
2
1 + u22) D

2η3u1u2 + η6(u
2
1 + u22) B C

D C 2(η1 + η2)v
2


 (3.34)

with 



A = 2(η3 + η4)u
2
1 − 2η4u

2
2 + 2η6u1u2 + (ξ5 − ξ2)

v2u22
u21−u22

B = 2(η3 + η4)u
2
2 − 2η4u

2
1 + 2η6u1u2 + (ξ5 − ξ2)

v2u21
u21−u22

C = (ξ1 + ξ5)vu2 + (2ξ3 + ξ4)vu1

D = (ξ1 + ξ2)vu1 + (2ξ3 + ξ4)vu2

. (3.35)

In order to simplify the analytical computation of the eigenvalues of M2
H0ν

, we limit our

attention to the following particular case:

η3 = η4 = η6 = 2ξ3 + ξ4 = ξ1 + ξ2 = 0 ; (3.36)

as we can see this choice does not involve the masses for the charged Higgs found above.

With these constraints we obtain, for the neutral Higgs, the following squared mass matrix:

M2
H0ν

→ (ξ5 − ξ2)v
2




u22
u21−u22

0 0

0
u21

u21−u22
u2
v

0 u2
v

2η1+η2
ξ5−ξ2


 , (3.37)

which gives the eigenvalue:

M2
H0 = (ξ5 − ξ2)

v2u22
u21 − u22

, (3.38)

and, from the 2× 2 submatrix of (3.37), the other two eigenvalues:

M2
H± =

v2

2(u21 − u22)

[
2(η1 + η2)(u

2
1 − u22) + (ξ5 − ξ2)u

2
1 ±

∆

v2

]
(3.39)

with

∆2 = v4
[
2(η1 + η2)(u

2
1 − u22)− (ξ5 − ξ2)u

2
1

]2
+ v2

[
2(ξ5 − ξ2)(u

2
1 − u22)u2

]2
. (3.40)
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Assuming again v ≫ u1 > u2, we find for the eigenvalues in (3.39):

M2
H+ ≈ 2(η1 + η2)v

2 +
(ξ5 − ξ2)

2(u21 − u22)u
2
2

2(η1 + η2)(u21 − u22)− (ξ5 − ξ2)u21

M2
H− ≈ (ξ5 − ξ2)v

2u21
u21 − u22

− (ξ5 − ξ2)
2(u21 − u22)u

2
2

2(η1 + η2)(u21 − u22)− (ξ5 − ξ2)u21

, (3.41)

while the orthogonal matrix is given by:

OH0 =
E ′

(ξ5 − ξ2)u2v

(
(ξ5 − ξ2)u2v m2

+ − 2(η1 + η2)v
2

m2
− − (ξ5−ξ2)u21v2

u21−u22
(ξ5 − ξ2)u2v

)

≈ E

(ξ5 − ξ2)u2v

(
(ξ5 − ξ2)u2v − (ξ5−ξ2)(u21−u22)u22

(ξ5−ξ2)u21−2(η1+η2)(u21−u22)
(ξ5−ξ2)(u21−u22)u22

(ξ5−ξ2)u21−2(η1+η2)(u21−u22)
(ξ5 − ξ2)u2v

) (3.42)

with

E =
(ξ5 − ξ2)u

2
1v − 2(η1 + η2)(u

2
1 − u22)v√

v2
[
(ξ5 − ξ2)u21 − 2(η1 + η2)(u21 − u22)

]2
+ (ξ5 − ξ2)2(u21 − u22)u

2
1u

2
2

. (3.43)

We note that using the assumption v ≫ u1 > u2 directly on (3.34) we would have found:

M2
H0ν

≈ (ξ5 − ξ2)v
2




u22
u21−u22

0 0

0
u21

u21−u22
0

0 0 2η1+η2
ξ5−ξ2


 (3.44)

which are quite the same values of the eigenvalues obtained from (3.37), with the fields

φ0
1, φ

0
2 and Rν all decoupled. As a last consideration we note that, under the assumption

v ≫ u1 > u2, we have to interpret M2
H0 as the squared mass of the Standard Model Higgs,

while the other two masses, M2
H+ and M2

H−, have to be at an higher energy scale.
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Interlude on the case: u1 = u2 = u

In the particular case where the two VEVs of the bi-doublet are equal, 〈φ0
1〉 = 〈φ0

2〉, from

the derivatives in (3.24) we obtain a different set of constraints given by:





ξ2 = ξ5

µ2
1 = 2v2(η1 + η2) + 2u2(ξ1 + 2ξ3 + ξ4 + ξ5)

µ2
2 = −2µ2

3 + 2u2(2η3 + η4 + 2η5 + 2η6) + v2(ξ1 + 2ξ3 + ξ4 + ξ5)

, (3.45)

while µ3 remains a free parameter whose natural scale will be the Pati-Salam scale, so

µ3 ∼ v. Consequently they produce a new minimum of the potential (3.14):

V′
min = −(η1 + η2)v

4 − 2(2η3 + η4 + 2η6)u
4 − 2(ξ1 + 2ξ3 + ξ4 + ξ5)u

2v2 . (3.46)

The same happens for the Higgs masses. In fact, even if for the Higgs Ra
u we continue to

have M2
Ru

= 0, the masses of the Higgs Ra
d are now given by:

M2
Rd

= −2η2v
2 . (3.47)

The rest of the charged Higgs are, in this case, totally decoupled from each other; in

particular we have that, since M2
Re

= 0, the complex Higgs field Re, related to the charged

lepton sector, can be divided in two Goldtone bosons: Re[Re] and Im[Re]. While the

other two charged Higgs, φ±
1 and φ±

2 , get the same squared mass value:

M2
φ±1

=M2
φ±2

= 2(η4 − 2η5 − η6)u
2 + 2µ2

3 − (2ξ3 + ξ4)v
2 . (3.48)

Finally, for the neutral Higgs we get, always in the basis (φ0
1, φ

0
2, Rν), the squared mass

matrix:

M2
H0ν

=




F 2u2(η3 + η6) uv(ξ1 + 2ξ3 + ξ4 + ξ5)

2u2(η3 + η6) F uv(ξ1 + 2ξ3 + ξ4 + ξ5)

uv(ξ1 + 2ξ3 + ξ4 + ξ5) uv(ξ1 + 2ξ3 + ξ4 + ξ5) 2v2(η1 + η2)


 ,

(3.49)

with

F = 2u2(η3 + η4 − 2η5) + 2µ2
3 − v2(2ξ3 + ξ4) , (3.50)
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from which we obtain the following eigenvalues:





M2
H1 = 2µ2

3 + 2(η4 − 2η5 − 2η6)u
2 − (2ξ3 + ξ4)v

2

M2
H2 = 2µ2

3 − (2ξ3 + ξ4)v
2 + o(u2)

M2
H3 = 2(η1 + η2)v

2 + o(u2)

. (3.51)

We note that, while the eigenvalue M2
H3 is of order O(v2), in order to generate a squared

mass for the Standard Model Higgs of order O(u2) we have to demand:

µ2
3 = (2ξ3 + ξ4)

v2

2
. (3.52)

However in this case we obtain two eigenvalues proportional to the electro-weak scale:

M2
H1,M

2
H2 ∼ u2. So we have to make a further choice on the scalar parameters (in this case

on ηi and ξi), in order to send to zero one of the two eigenvalues, M2
H1 or M2

H2, producing

two Goldstone bosons (because the eigenvalues are related to complex scalar fields) which

will be eaten to give mass to the vector bosons Zµ and Z ′
µ, while the remaining non-zero

eigenvalue will give the SM Higgs squared mass.

3.2 RGE for the gauge coupling constants

In order to compare the model 2 with the model 1, we assume again that the coupling

constants of the SU(2)L and SU(2)R groups are the same at the partial unification scale

MU , so gL(MU) = gR(MU) = g2(MU). Through the symmetry breaking from the Pati-

Salam group to the SM one the bi-doublet switches in two doublets in the following way:

SU(4)⊗ SU(2)L ⊗ SU(2)R
〈Rν〉−−→ SU(3)C ⊗ SU(2)L ⊗ U(1)Y

(2, 2, 1) ∼ Φ, Φ̃
〈Rν〉−−→

(
φ0
1

φ−
1

)
,

(
φ0∗
2

−φ−
2

)
∼ (1, 2,−1) .

(3.53)



3.2 RGE for the gauge coupling constants 98

This is a situation similar to a Two Higgs Doublet Model (2HDM) [32], in which the scalar

potential has the form:

V2HDM = ζ21Φ
†
1Φ1 + ζ21Φ

†
1Φ1 − ζ23

(
Φ†

1Φ2 + h.c.
)
+
λ1
2

(
Φ†

1Φ1

)2
+
λ2
2

(
Φ†

2Φ2

)2

+ λ3Φ
†
1Φ1Φ

†
2Φ2 + λ4Φ

†
1Φ2Φ

†
2Φ1 +

λ5
2

[(
Φ†

1Φ2

)2
+ h.c.

]
(3.54)

where the VEVs are given by:

〈Φ1〉 =
1√
2

(
0

v1

)
and 〈Φ2〉 =

1√
2

(
0

v2

)
(3.55)

with √
v21 + v22 = 246GeV . (3.56)

We suppose therefore that the evolution of the coupling constants of the Standard Model

from the electro-weak energy scale, µ = MZ , to the Pati-Salam scale MU is given in a

2HDM, without intermediate scales; just a note, we can see in Fig. 3.1 that the difference

between the running of the gauge coupling constants in the Standard Model or in the Two

Higgs Doublet Model is very small.
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Figure 3.1: Running of the gauge coupling constants for the SU(3)C , SU(2)L and U(1)Y groups in the Standard Model,
in yellow dot-dashed, orange solid and red dashed lines, respectively, and the 2 Higgs Doublet Model, in cyan
dotted, grey dot-dashed and blue solid lines, respectively.

In this case we have that the coefficients (2.111) of the running coupling constants (2.110)

take the values:

a3C = −7 , a2L = −3 and a1Y =
21

5
; (3.57)

while the matching conditions with the Pati-Salam gauge coupling constants are given by:





α−1
3C(MU) = α−1

3C(MZ) +
7
2π

ln MU

MZ
= α−1

4C(MU)

α2L(MU) = α−1
2L (MZ) +

3
2π

ln MU

MZ
= α−1

2R(MU)

α−1
1Y (MU) = α−1

1Y (MZ)− 21
10π

ln MU

MZ
= 3

5
α−1
2R(MU) +

2
5
α−1
4C(MU)

(3.58)

where the value of the αi at the electro-weak scale are listed in (2.118). From the system

(3.58) we can evaluate the value of the partial unification scale MU ≈ 5.61 · 1013 GeV,

practically the same order as for the model 1. Therefore we assign to the Higgs multiplet

Riα the same VEV used in the model 1, that is:

〈Rν〉 = v =
vR√
2
=

1014√
2

GeV . (3.59)
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At the partial-unification scale the values of the gauge couplings are:

g4(MU) =
√
4πα4C(MU) ≈ 0.5695 and g2(MU) =

√
4πα2L(R)(MU) ≈ 0.5435 . (3.60)

For the running above the Pati-Salam scale, shown in Fig. 3.2, we have the coefficients:

a4C = −31

3
, a2R = −7

3
and a2L = −3 . (3.61)
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Figure 3.2: Running of the gauge coupling constants in 2HDM and Pati-Salam model through the partial-unification scale.
The cyan dotted, grey dot-dashed and blue solid lines represent the evolutions of the coupling constants for the
groups SU(3)C , SU(2)L and U(1)Y , respectively; the purple dotted, red dashed and grey solid lines represent
the evolutions of the coupling constants for the groups SU(4), SU(2)R and SU(2)L, respectively

3.2.1 Evaluation of tan β

It remains to find the value of the ratio between the two VEVs of the bi-doublet:

0 ≤ tan β = |u2
u1

| < 1 . (3.62)

In order to evaluate it we have two constraints: the first one is given by the experimental

SM Higgs mass (mexp
h ≈ 125 GeV). In fact, since we want to associate the mass MH0 in

(3.38) to the SM Higgs mass, if we make a simple calculation on orders of magnitude,
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assuming ξ5 − ξ2 ∼ O(10), we can extrapolate for tan β the value:

MH0 =

√
(ξ5 − ξ2)v2 tan

2 β

1− tan2 β
∼ O(mexp

h ) =⇒ tan β ∼ O(10−12) . (3.63)

The second costraint to take into account, instead, is given by the experimental limit for

a charged Higgs [33]. The non-zero eigenvalue of the charged Higgs squared mass matrix

(3.33) has to verify the relation:

MH±
1
=

√
(ξ5 − ξ2)v2

[u21
v2

(1− tan2 β) +
tan2 β

1− tan2 β

]
> 650GeV , (3.64)

from which, assuming a very small tan β, we get the condition:

tan β → 0 =⇒ u2 → 0 and u1 →
246√
2

GeV =⇒ ξ5 − ξ2 > 14 (3.65)

that is consistent with the order of magnitude used above for the scalar parameters.

3.3 Gauge boson masses

From the kinetic terms of the Higgs sector in (3.5), written using the covariant derivative:

DµΦ
I
iD

µΦi
I =

(
δji δ

I
J∂µ − igRδ

I
JW

j
µRi + igLδ

j
iW

I
µLJ

)
ΦJ
j ×(

δikδ
K
k ∂

µ − igLδ
i
kW

K
µLI + igRδ

K
I W

µi
Rk

)
Φk
K (3.66)

DµRiαD
µRiα =

(
δji δ

β
α∂µ + ig4δ

j
iG

β
µα + igRδ

β
αW

j
µRi

)
Rjβ ×

(
δikδ

α
γ ∂

µ − ig4δ
i
kG

µα
γ − igRδ

α
γW

µi
Rk

)
Rkγ (3.67)

we obtain, as usual, the masses for the gauge bosons. In particular, for the leptoquarks

X±
µa (with a = 1, 2, 3) we find, at the scale MU , the mass value:

M2
X = g24

v2R
4

≈ 8.1 · 1026 GeV2 ; (3.68)
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while the rest of the charged vector bosons mix with a squared mass matrix given by:

(
W+
µL W+

µR

)
M2

W

(
W µ−
L

W µ−
R

)
=

(
W+
µL

W+
µR

)T (
g2L

v2L
4

−gLgRu1u2
−gLgRu1u2 g2R

v2R+v
2
L

4

)(
W µ−
L

W µ−
R

)
. (3.69)

From M2
W we calculate the two eigenvalues:

p± =
1

2

[
(g2R + g2L)

v2L
4

+ g2R
v2R
4

]
± ∆

2
(3.70)

with

∆2 =

[
(g2R − g2L)

v2L
4

+ g2R
v2R
4

]2
+ 4g2Lg

2
Ru

2
1u

2
2 , (3.71)

and the orthogonal matrix:

O± =
C

2gLgRu1u2


 2gLgRu1u2 2

[
g2R

v2R+v
2
L

4
− p+

]

2
[
g2L

v2L
4
− p−

]
2gLgRu1u2


 =

=
C

2gLgRu1u2


 2gLgRu1u2 −

[
(g2L − g2R)

v2L
4
− g2R

v2R
4
+∆

]

(g2L − g2R)
v2L
4
− g2R

v2R
4
+∆ 2gLgRu1u2




(3.72)

with

C2 =
2g2Lg

2
Ru

2
1u

2
2

∆
[
∆−

√
∆2 − 4g2Lg

2
Ru

2
1u

2
2

] . (3.73)

Since we have that vR ≫ vL, we can expand the eigenvalues and the related eigenvectors

finding the values at the partial-unification scale MU :

{
M2

W2
= p+ ≈ g2R

v2R+v
2
L

4
≈ 7.40 · 1026 GeV2

M2
W1

= p− ≈ g2L
v2L
4
≈ 4.47 · 103 GeV2

and O± ≈
(
1 0

0 1

)
; (3.74)

this means that, in first approximation, the gauge bosons W±
µL and W±

µR do not mix with

each other:

OT
±M

2
WO± =

(
p− 0

0 p+

)
≈
(
M2

WL
0

0 M2
WR

)
, (3.75)

so their contribution to the radiative fermion mass generation will be negligible.

For the neutral vector bosons, instead, using the basis A0
µ = (W 0

µL,W
0
µR, Bµ), we find
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the squared mass matrix:

A0
µM

2
0 A

0T
µ =

1

2
A0
µ




g2L
v2L
4

−gLgR v
2
L

4
0

−gLgR v
2
L

4
g2R

v2R+v
2
L

4
−
√

3
2
gLgR

v2R
4

0 −
√

3
2
gLgR

v2R
4

3
4
g24

v2R
2


A0T

µ , (3.76)

from which we obtain the three eigenvalues: q0 = 0, related to the photon, and

q± =
1

16

[(3
2
g24 + g2R

)
v2R + 2(g2L + g2R)v

2
L

]
±

± 1

16

√[(3
2
g24 + g2R

)
v2R − 2(g2L + g2R)v

2
L

]2
+ 8g4Rv

2
Rv

2
L ,

(3.77)

related to the vector bosons Zµ and Z ′
µ. The orthogonal matrix, which diagonalizes this

squared mass matrix:

OT
0M

2
0O0 =



0 0 0

0 M2
Z 0

0 0 M2
Z′


 , (3.78)

is builded up, as usual, with the normalized eigenvectors of M2
0 :

O0 =
(
|q0〉T , |q−〉T , |q+〉T

)
, (3.79)

where the eigenstates of Zµ and Z ′
µ are given by:

|q±〉 = C±

( gLgRv
2
L

g2Lv
2
L − 4q±

, 1,

√
3

2

g4gRv
2
R

(3/2)g24v
2
R − 4q±

)
, (3.80)

with C± the normalization constants, while for the photon eigenstate we have:

|q0〉 =
√

3g24g
2
L

3g24(g
2
R + g2L) + 2g2Rg

2
L

(gR
gL
, 1,

√
2

3

gR
g4

)
. (3.81)

From |q0〉, similarly to what seen in Sec. 2.3, using the charge definition (2.14) we find the

relation:

e =

√
3g24g

2
Lg

2
R

3g24(g
2
R + g2L) + 2g2Rg

2
L

. (3.82)

Again, using the fact that vR ≫ vL, we can expand the eigenvalues and the related eigen-
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vectors finding in first approximation, at the scale MU , the values:




M2

Z′ = q+ ≈
(

3
2
g24 + g2R

)
v2R
4
+

2g4R
3g24+2g2R

v2L
4
≈ 1.9547 · 1027 GeV2

M2
Z = q− ≈

(
g2L +

3g24g
2
R

3g24+2g2R

)
v2L
4
≈ 7.2496 · 103 GeV2

and O0 ≈



0.6193 −0.7851 3.4379 · 10−17

0.6193 0.4885 0.6146

0.4826 0.3807 −0.7888


 .

(3.83)

3.4 Fermion masses

In the case without inter-family mixing, we have for each fermion family (f = 1, 2, 3) the

Yukawa interactions that, with the particular scalar content of the model 2, takes the form:

L(f)
Y ukawa = −

[
k
(f)
R s̄c0

(f)
Rαi + λ

(f)
1 Ψ

(f)
LαI Φ

I
i + λ

(f)
2 Ψ

(f)
LαI Φ̃

I
i

]
Ψ
αi(f)
R + h.c. (3.84)

where the Yukawa couplings k
(f)
R , λ

(f)
1 and λ

(f)
2 are real number, s

(f)
0 is the sterile neutrino

field, while Ψ
αI(f)
L and Ψ

αi(f)
R represent the fermion multiplets (4, 2, 1) and (4, 1, 2) under

the Pati-Salam group, respectively. In this model, unlike the model 1, the Yukawa terms

are responsible for tree level mass generations for all the fermions; in fact, once the Higgs

fields get VEVs:

〈R〉 = 1√
2




0 0

0 0

0 0

vR 0



, 〈Φ〉 =

(
u1 0

0 u2

)
and 〈Φ̃〉 =

(
u2 0

0 u1

)
, (3.85)

from the interaction vertices:
uR

❉❤φ01

ūL
✆

= −iλ1 and

uL

❉❤φ02

ūR
✆

= −iλ2 , (3.86)

we obtain for the up-type quarks a mass of the form:

mu = λ1u1 + λ2u2 = λ1u1

(
1 +

λ2
λ1

tan β
)
; (3.87)
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while from the Yukawa vertices:
dR, eR

❉❤φ02

d̄L, ēL

✆
= −iλ1 and

dL, eL

❉❤φ01

d̄R, ēR

✆
= −iλ2 , (3.88)

we obtain for the down-type quarks and the charged leptons, of the same fermion family,

the same mass of the form:

md = me = λ2u1 + λ1u2 = λ2u1

(
1 +

λ1
λ2

tan β
)
. (3.89)

3.4.1 Neutrino masses

Also the neutrinos get a tree level mass, but there are more contributions to take into

account. In addition to the Yukawa vertices:
νR

❉❤φ01

ν̄L
✆

= −iλ1 and

νL

❉❤φ02

ν̄R
✆

= −iλ2 , (3.90)

analogous to those for the up-type quarks sector in (3.86), we have also the interaction

vertex: sc0

❉❤Rν

ν̄R
✆

= −ikR , (3.91)

and the sterile neutrino mass term of the form as in (2.121). Using the same notation of

Sec. 2.5, we can collect all these mass contributions to the neutrinos in the Majorana mass

matrix:

M ′
ν =




0 mu
2

0
mu
2

0 kRvR
2
√
2

0 kRvR
2
√
2

m0


 . (3.92)

Calculating the eigenvalues of M ′
ν we get the cubic equation:

ρ3 − ρ2m0 − ρ
(k2Rv2R

8
+
m2
u

4

)
+
m2
u

4
m0 = 0 , (3.93)
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which can be solved making the following three sobstitutions:

ρ = x+
m0

3
=⇒ x3 + ax+ b = 0 with




a = −m0

3
− k2Rv

2
R

8
− m2

u

4

b = −2m3
0

27
− m0

3

(
k2Rv

2
R

8
− m2

u

2

) ; (3.94)

x = y − a

3y
=⇒ y6 + by3 − a3

27
= 0 ; (3.95)

z = y3 =⇒ z = − b
2
±
√
b2

4
+
a3

27
with

b2

4
+
a3

27
< 0 . (3.96)

At this point we can come back to the explicit solution for the neutrino mass eigenvalues:

z = |z| exp
[
±i(ϑ+ 2κπ)

]
with

{
|z| = (−a

3
)
3
2

cosϑ = − b
2
(−a

3
)−

3
2

(3.97a)

=⇒ y = |z| 13 exp
[
±iϑ+ 2κπ

3

]
(3.97b)

=⇒ x = |z| 13 exp
[
±iϑ+ 2κπ

3

]
−
a exp

[
∓iϑ+2κπ

3

]

3|z| 13
(3.97c)

=⇒ ρκ =
m0

3
+ 2 cos

(ϑ+ 2κπ

3

)√k2Rv
2
R

24
+
m2

0

9
+
m2
u

12
with κ = 0, 1, 2 , (3.97d)

and write the physical neutrino masses: mκ = |ρκ|. While the orthogonal matrix is given

by:

O′
ν =




A0
mu
2ρ0

A1
mu
2ρ1

A2
mu
2ρ2

A0 A1 A2

A0
kRvR

2
√
2(ρ0−m0)

A1
kRvR

2
√
2(ρ1−m0)

A2
kRvR

2
√
2(ρ2−m0)


 (3.98)

where Aκ are the normalization constants.

Interlude on a particular case: m0 = 0

As we discussed in Sec. 2.5, we consider for the sterile neutrino mass the natural scale

m0 ∼ vR; however if we introduce a global symmetry s0 → eiϕs0, demanding for an

invariance under this symmetry we have to neglect the sterile neutrino mass and in this
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case the neutrino mass matrix takes the form:

M ′
ν =




0 mu
2

0
mu
2

0 kRvR
2
√
2

0 kRvR
2
√
2

0


 (3.99)

which leads to the eigenvalues:

ρ0 = 0 and ρ± = ±
√
k2Rv

2
R

8
+
m2
u

4
= ±mS . (3.100)

If we consider the eigenvalues of M ′
ν as Majorana masses then the orthogonal matrix is

given by:

O′
νM =

1√
2mS




mu
2

−mu
2

kRvR
2

mS mS 0
kRvR
2
√
2

−kRvR
2
√
2

− mu
2
√
2


 ⇒ O′T

νMM
′
νO

′
νM =



mS 0 0

0 −mS 0

0 0 0


 (3.101)

with the mass eigenstates defined as:

O′T
νM



νcL
νR

s0


 =



ν+

ν−

ν0




R

; (3.102)

otherwise, if we consider the eigenvalues as Dirac masses then the orthogonal matrix has

the form:

O′
νD = cos θν



tan θν 0 1

0 1
cos θν

0

1 0 − tan θν


 , with tan θν =

√
2mu

kRvR
, (3.103)
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which produces a non-diagonal mass matrix:

O′T
νDM

′
νO

′
νD =




0 sν
mu
2

+ cν
kRvR
2
√
2

0

sν
mu
2

+ cν
kRvR
2
√
2

0 cν
mu
2

− sν
kRvR
2
√
2

0 cν
mu
2

− sν
kRvR
2
√
2

0


 =

=




0 mS 0

mS 0 0

0 0 0


 ,

(3.104)

with the mass eigenstates defined as:

O′T
νD



νcL
νR

s0


 =



ScL
SR

ν0R


 . (3.105)

Interlude on a particular case: |m0| ≪ vR

As we said the natural scale of the sterile neutrino mass is of the order of the Pati-Salam

scale; as an exercise however let us consider a small m0, for example of the order of the

tree level mass mu. In this case we have from (3.97a) that:

ϑ = arccos

[√
2m0

3vR

(
k2R
8

+
2m2

0

9v2R
− m2

u

2v2R

)(
k2R
12

+
2m2

0

9v2R
− m2

u

6v2R

)− 3
2
]
→ π

2
, (3.106)

which leads to the eigenvalues:

λκ ≈
m0

3
+
kRvR√

6
cos

(
4κ+ 1

6
π

)
⇒





λ0 ≈ m0

3
+ kRvR

2
√
2

λ1 ≈ m0

3
− kRvR

2
√
2

λ2 ≈ m0

3

. (3.107)

3.5 Loops

The one-loop corrections, to the tree level fermion mass terms, that we are going to ana-

lyze in this section are responsible for the distinction between the masses for the charged

leptons and the down-type quarks. Furthermore we will have one-loop contributions to

the radiative generation of Majorana masses for the neutrinos. Again, as in the model 1,
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the loop diagrams which contribute to the radiative mass corrections are the scalar loops,

where we have Higgs boson mass eigenstates exchange, and the gauge loop, where we have

a gauge boson exchange. All the following calculations are done in Feynman gauge (ξ = 1).

We work in the Minimal Subtraction (MS) scheme, so we remove only the pole 1/ǫ, by

means of field and parameter redefinitions, maintaining all the finite parts.

3.5.1 Scalar loop

From the Yukawa interactions, in addition to (3.86), (3.88), (3.90) and (3.91), we find also

the Higgs-fermions vertices:

sc0

❉❤Ru

ūR
✆

= −ikR ,

sc0

❉❤Rd

d̄R

✆
= −ikR and

sc0

❉❤Re

ēR
✆

= −ikR , (3.108)

coming from the interactions between fermions and the Higgs multiplet R; while from the

Yukawa interactions with the bi-doublet we obtain the vertices:
uR, νR

❉❤φ−1

d̄L, ēL

✆
=

dR, eR

❉❤φ+2

ūL, ν̄L
✆

= −iλ1 and

uL, νL

❉❤φ−1

d̄R, ēR

✆
=

dL, eL

❉❤φ+2

ūR, ν̄R
✆

= iλ2 . (3.109)

With these interactions we can build up one-loop diagrams of the type in Fig. 3.3, which

contribute to the corrections of the tree level masses in (3.87), (3.89) and (3.97d).

Figure 3.3: One-loop diagram for the correction to the fermion mass term mψ̄RψL with an Higgs boson exchange; each
circled cross represents a VEV insertion.
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In dimensional regularization (D = 4−ǫ) and using the Weyl propagators (Appendix G)

with zero external momentum, the resulting correction to the tree level mass mψ (with

ψ = u, d) coming from this type of diagrams is given by:

m
(ψ)
H = i

[❦❝❦](ψ)
H

= −iλAλB
∫

d4q

(2π)4
imχ

q2 −m2
χ

i

q2 −M2
H

=

= −mχλAλBµ
ǫ

∫
dDq

(2π)D
1

(q2 +m2
χ)(q

2 +M2
H)

=

= −mχλAλBµ
ǫ

∫ 1

0

dx
Γ(D

2
)Γ(2− D

2
)

(4π)
D
2 Γ(2)Γ(D

2
)

[
m2
χx+M2

H(1− x)
]D

2
−2

=

= −mχλAλB

(4π)2−
ǫ
2

(
µ2

m2
χ −M2

H

)
Γ(ǫ/2)

(
2

2− ǫ

)[(
m2
χ

µ2

)1− ǫ
2

−
(
M2

H

µ2

)1− ǫ
2

]
=

= −mχλAλB
(4π)2

[
2

ǫ
+ ln(4π)− γE − ln

(
m2
χ

µ2

)
− M2

H

m2
χ −M2

H

ln

(
m2
χ

M2
H

)]
+

+O(ǫ)

(3.110)

where µ is the energy scale. In particular, looking at the vertices we can note that the only

Higgs bosons able to link in a loop a left handed fermions with a right handed one are: the

charged Higgs φ±
1 and φ±

2 ; and the mixing between the neutral Higgs φ0
1 and φ0

2. However,

using the mass matrix (3.37), we can neglect the mixing between φ0
1 and φ0

2. This means

that the only scalar contribution comes from the loops with the charged Higgs exchanges.

For the up-type quarks (ψ = u) we have that:

m
(u)
H =

mdλ1λ2
(4π)2

[
ln(4π)− γE − ln

(
m2
d

µ2

)
−

M2
φ±2

m2
d −M2

φ±2

ln

(
m2
d

M2
φ±2

)]
+

+
mdλ1λ2
(4π)2

(OH±)
2
11

[
ln(4π)− γE − ln

(
m2
d

µ2

)
−

M2
H±

1

m2
d −M2

H±
1

ln

(
m2
d

M2
H±

1

)]
+

+
mdλ1λ2
(4π)2

(OH±)
2
12

[
ln(4π)− γE − ln

(
m2
d

µ2

)
−

M2
WR

m2
d −M2

WR

ln

(
m2
d

M2
WR

)]
,

(3.111)

where we used the mass
√
ξMWR

for the propagating Goldstone boson H±
2 , and we have the

tree level mass md because is a down-type quark which propagates in the loop. Similarly
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for the down-type quarks we have:

m
(d)
H =

muλ1λ2
(4π)2

[
ln(4π)− γE − ln

(
m2
u

µ2

)
−

M2
φ±2

m2
u −M2

φ±2

ln

(
m2
u

M2
φ±2

)]
+

+
muλ1λ2
(4π)2

(OH±)
2
11

[
ln(4π)− γE − ln

(
m2
u

µ2

)
−

M2
H±

1

m2
u −M2

H±
1

ln

(
m2
u

M2
H±

1

)]
+

+
muλ1λ2
(4π)2

(OH±)
2
12

[
ln(4π)− γE − ln

(
m2
u

µ2

)
−

M2
WR

m2
u −M2

WR

ln

(
m2
u

M2
WR

)]
,

(3.112)

where the only difference with m
(u)
H is that now it is an up-type quark which propagates in

the loop. For the charged leptons, instead, the fermions which propagates in the loop are

the physical neutrinos, with the masses mκ = |ρκ| given in (3.97d), so we have that the

scalar loop correction to the tree level mass me = md is given by:

m
(e)
H =

2∑

κ=0

mκλ1λ2
(4π)2

(O′
ν)1, κ+1(O

′
ν)2, κ+1×

×
{[

ln(4π)− γE − ln

(
m2
κ

µ2

)
−

M2
φ±2

m2
κ −M2

φ±2

ln

(
m2
κ

M2
φ±2

)]
+

+ (OH±)
2
11

[
ln(4π)− γE − ln

(
m2
κ

µ2

)
−

M2
H±

1

m2
κ −M2

H±
1

ln

(
m2
κ

M2
H±

1

)]
+

+ (OH±)
2
12

[
ln(4π)− γE − ln

(
m2
κ

µ2

)
−

M2
WR

m2
κ −M2

WR

ln

(
m2
κ

M2
WR

)]}
.

(3.113)

We conclude with the contribution m
(ν)
H to the neutrinos, which is identical to m

(u)
H , in fact

it is of the form:

m
(ν)
H =

mdλ1λ2
(4π)2

[
ln(4π)− γE − ln

(
m2
d

µ2

)
−

M2
φ±2

m2
d −M2

φ±2

ln

(
m2
d

M2
φ±2

)]
+

+
mdλ1λ2
(4π)2

(OH±)
2
11

[
ln(4π)− γE − ln

(
m2
d

µ2

)
−

M2
H±

1

m2
d −M2

H±
1

ln

(
m2
d

M2
H±

1

)]
+

+
mdλ1λ2
(4π)2

(OH±)
2
12

[
ln(4π)− γE − ln

(
m2
d

µ2

)
−

M2
WR

m2
d −M2

WR

ln

(
m2
d

M2
WR

)]
.

(3.114)
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We have to take in account that this correction, due to the scalar loop, is only for the

elements of the neutrino mass matrix M ′
ν , related to the Dirac mass; to be more precise,

considering only this type of corrections, the neutrino mass matrix at one-loop becomes of

the form:

M ′
ν
† →




0
(mu+m

(ν)
H )T

2
0

mu+m
(ν)
H

2
0 kRvR

2
√
2

0 kRvR
2
√
2

m0


 . (3.115)

3.5.2 Gauge loops

We pass now to analyze the mass corrections generated by the loops with a gauge boson

exchange. First of all, let us have a look at the vertices coming from the kinetic term

iΨ̄L,Rγ
µDµΨL,R. Since we are investigating the fermion masses at the partial-unification

scale, for simplicity we define g2(MU) = gL(MU) = gR in the following formulae. So the

fermion vertices with the neutral gauge bosons are:

Aµ, Zµ, Z′
µ

⑥
uL,R
❊❉̄

uL,R

= − i

2

[
g4√
6
(O0)3k + g2(O0)pk

]
γµ ; (3.116)

Aµ, Zµ, Z′
µ

⑥
dL,R
❊❉̄

dL,R

= − i

2

[
g4√
6
(O0)3k − g2(O0)pk

]
γµ ; (3.117)

Aµ, Zµ, Z′
µ

⑥
eL,R
❊❉̄

eL,R

=
i

2

[
g4

√
3

2
(O0)3k + g2(O0)pk

]
γµ ; (3.118)

Zµ, Z′
µ

⑥
νL,R
❊❉̄

νL,R

=
i

2

[
g4

√
3

2
(O0)3k − g2(O0)pk

]
γµ ; (3.119)
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where, for the indices of the mixing matrices O0 defined in Sec. 3.3, we used the notation:

k =





1 for Aµ

2 for Zµ

3 for Z ′
µ

and p =

{
1 for Left part

2 for Right part
. (3.120)

Just as a simple proof of consistency of this model we can see that no interactions between

neutrinos and photon exist, in fact we have that:





g4

√
3
2
(O0)31 − gL(O0)11 =

√
3g24g

2
L

3g24(g
2
R+g

2
L)+2g2Rg

2
L

[
g4

√
3
2

(√
2
3
g2
g4

)
− gL

(
gR
gL

)]
= 0

g4

√
3
2
(O0)31 − gR(O0)21 =

√
3g24g

2
L

3g24(g
2
R+g

2
L)+2g2Rg

2
L

[
g4

√
3
2

(√
2
3
g2
g4

)
− gR

]
= 0

. (3.121)

The quark interactions with the gluons are instead given by:

Gaµ

⑥
uβL,R
❊❉̄

uαL,R

=

Gaµ

⑥
dβL,R
❊❉̄

dαL,R

= − ig4
2
γµ(T a)αβ , (3.122)

where T a = λa
2

(with a = 1 . . . 8) are the Gell-Mann matrices of SU(3)C , which verify the

relation:
8∑

a=1

(T a)2 =
N2 − 1

2N
I , (3.123)

with N the degree of the group SU(N) and I the N×N identity matrix, in this case N = 3

is the number of colours.

We continue the list considering the fermion vertices containing the charged gauge

bosons, starting from the interaction vertices with the leptoquarks:

X+
µ

⑥
eL,R
❊❉̄

dL,R

=

X+
µ

⑥
νL,R
❊❉̄

uL,R

= − ig4√
2
γµ . (3.124)

Then we have the interaction vertices with the vector bosons W±
µL and W±

µR, which can be
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turned in their mass eigenstates W±
µ1 and W±

µ2:

W+
µL ,R

⑥
eL,R
❊❉̄

νL,R

=

W+
µL ,R

⑥
dL,R
❊❉̄

uL,R

= − ig2√
2
γµ →

W+
µn

⑥
eL,R
❊❉̄

νL,R

=

W+
µn

⑥
dL,R
❊❉̄

uL,R

= − ig2√
2
(O±)pnγ

µ ; (3.125)

however these last vertices can be neglected because, as we have seen previously, considering

that vR ≫ vL we can use the approximation in (3.75), which gives us no-mixing between

W±
µL and WµR±, so we cannot connect in a loop an incoming left-handed fermion to an

outcoming right-handed fermion.

Using these vertices, the gauge loop for the correction to the fermion masses are given

by the diagram shown in Fig. 3.4.

Figure 3.4: One-loop diagram for the correction to the fermion mass term mψ̄RψL with a gauge boson exchange, where
the circled cross represents a VEV insertion.

The case with a propagating massless gauge boson (photon and gluon) leads to a

different correction to the fermion masses, which is given by:

m
(ψ)
G,MG=0 = i

[❦❝❦](ψ)
G,MG=0

= −igAgB
∫

d4q

(2π)4
γµ

imχ

q2 −m2
χ

γν
−igµν
q2

=

= mχgAgBµ
ǫ

∫ 1

0

dx

∫
dDq

(2π)D
D

(q2 +m2
χx)

2
=

=
4mχgAgB
(4π)2

[
2

ǫ
− 1

2
+ ln(4π)− γE − ln

(
m2
χ

µ2

)]
+O(ǫ) ;

(3.126)
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while for a propagating massive gauge boson we obtain the result:

m
(ψ)
G,MG 6=0 = i

[❦❝❦](ψ)
G,MG 6=0

= −igAgB
∫

d4q

(2π)4
γµ

imχ

q2 −m2
χ

γν
−igµν
q2 −M2

G

=

= mχgAgBµ
ǫ

∫
dDq

(2π)D
D

(q2 +m2
χ)(q

2 +M2
G)

=

= mχgAgBDµ
ǫ

∫ 1

0

dx
Γ(D

2
)Γ(2− D

2
)

(4π)
D
2 Γ(2)Γ(D

2
)

[
m2
χx+M2

G(1− x)
]D

2
−2

=

=
mχgAgB

(4π)2−
ǫ
2

(
(4− ǫ)µ2

m2
χ −M2

G

)
Γ(ǫ/2)

(
2

2− ǫ

)[(
m2
χ

µ2

)1− ǫ
2

−
(
M2

G

µ2

)1− ǫ
2

]
=

=
4mχgAgB
(4π)2

[
2

ǫ
− 1

2
+ ln(4π)− γE − ln

(
m2
χ

µ2

)
−

− M2
G

m2
χ −M2

G

ln

(
m2
χ

M2
G

)]
+O(ǫ) .

(3.127)

Let us point out again that, using the MS scheme, in the formulae for the corrections of

the tree level fermion masses all the finite parts, in the limit ǫ→ 0, of (3.126) and (3.127)

are present. In particular, the corrections to the down-type quark masses, coming from

the gauge loop, are of the form:

m
(d)
G =

md

(4π)2

(
g4√
6
(O0)32 − g2(O0)12

)(
g4√
6
(O0)32 − g2(O0)22
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×

×
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2
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d −M2
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+

+
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)(
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6
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d
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+

+
2mdg

2
4

(4π)2

[
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2
+ ln(4π)− γE − ln

(
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d
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− M2

X

m2
d −M2

X

ln

(
m2
d

M2
X
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+

+
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(4π)2

[
g24

4

3
+

(
g4√
6
(O0)31 − g2(O0)11

)(
g4√
6
(O0)31 − g2(O0)21

)]
×

×
[
−1

2
+ ln(4π)− γE − ln

(
m2
d

µ2

)]
,

(3.128)
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where we can see that the first two contributions come from the Zµ and Z ′
µ boson ex-

change, then we have the part due to the leptoquark exchange, with the charged leptons

that propagate in the loop, and finally the contribution from gluon and photon exhange,

respectively. The correction for the up-type quarks is similar, apart from the signs in front

of the gauge coupling g2 and the neutrino mass eigenstates which in this case substitute

the charged leptons in the loop containing the leptoquark:

m
(u)
G =

mu

(4π)2

(
g4√
6
(O0)32 + g2(O0)12

)(
g4√
6
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(
m2
u

µ2

)
− M2

Z

m2
u −M2

Z

ln

(
m2
u

M2
Z

)]
+
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g4√
6
(O0)33 + g2(O0)13

)(
g4√
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)
×

×
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(
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)
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+

+
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2
4
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+

+
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g4√
6
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.

(3.129)

Compared to m
(d)
G in (3.128) instead, for the charged leptons we have to change, in

addition to the signs in front of the gauge coupling g2, the coefficient related to the gauge

coupling g4 and obviously we have to eliminate the part related to the gluon exchange.

Then, using for the mass of the propagating fermion the down quark tree level mass (since
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md = me), we obtain the formula:

m
(e)
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md
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+
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(O0)33 + g2(O0)13
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+
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+
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(3.130)

To conclude we have to evaluate the gauge loop corrections for the neutrino masses.

The first we show is the one related to the neutrino Dirac mass, which is only due to the

neutral gauge bosons and leptoquarks exchanges:

m
(ν)
G =
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κ=0

mκ
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(3.131)

Besides this we have also the radiative generation of two Majorana masses: one for the
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right-handed νR and one for the left-handed νL neutrinos, whose relevant diagrams are

shown in Fig. 3.5 and Fig. 3.6, respectively, both related to a neutral gauge bosons, Zµ

and Z ′
µ, exchange.

Figure 3.5: Gauge loop for the Majorana Right mass generation, with insertions of VEV and the sterile neutrino mass
represented by circled cross and cross, respectively.

Figure 3.6: Gauge loop for the Majorana Left mass generation, with insertions of VEV and the sterile neutrino mass
represented by circled cross and cross, respectively.

In particular, for the Majorana Right mass we have the form:

m
(ν)
MR = −i(M ′
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ν)23
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q2 −m2
κ

−iqβγβ
q2

γν×

×
[
g2C

−igµν
q2 −M2

Z

+ g2D
−igµν

q2 −M2
Z′

]
=

=
2∑

κ=0

mκ

(4π)2
(M ′

ν)32(M
′
ν)23(O

′
ν)

2
3,κ+1

[
4g2C

m2
κ −M2

Z

ln

(
m2
κ

M2
Z

)
+

+
4g2D

m2
κ −M2

Z′
ln

(
m2
κ

M2
Z′

)]
+O(ǫ) ,

(3.132)

where we used the coupling definitions:




gC = g4

√
3
8
(O0)32 − g2(O0)22

gD = g4

√
3
8
(O0)33 − g2(O0)23

. (3.133)
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While for the Majorana Left mass, using the notation i, j, k = κ + 1 (with κ = 0, 1, 2) for

the neutrino mass eigenvalues, we get the expression:
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(3.134)

with

Cijk =
1

(4π)2
(O′

ν)1i(O
′
ν)2i(M

′
ν)23(O

′
ν)

2
3j(M

′
ν)32(O

′
ν)2k(O

′
ν)1k (3.135)
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and 


gE = g4

√
3
8
(O0)32 − g2(O0)12

gF = g4

√
3
8
(O0)33 − g2(O0)13

. (3.136)

So, considering the Dirac and Majorana mass corrections, we obtain the one-loop neutrino

mass matrix of the form:

(M ′
ν
†
)(1−loop) =




m
(ν)
ML

1
2
(mu +m

(ν)
H +m

(ν)
G )T 0

1
2
(mu +m

(ν)
H +m

(ν)
G ) (m

(ν)
MR)

∗ kRvR
2
√
2

0 kRvR
2
√
2

m0


 . (3.137)

3.6 Numerical results without inter-family mixing

For the numerical simulations, we use again MultiNest and the experimental values (2.182)

and (2.186), to test the likelihood of the parameters scanned by the code. For the Yukawa

couplings kRa, λ1a and λ2a (with a = e, µ, τ the family index) and the parameterma, related

to sterile neutrino masses by the identity: m0a = ma
vR√
2
, we use the interval [−10, 10].

For the scalar parameters, considering the case (3.36), we need only the combination

ξ5 − ξ2 = ξ > 0 and a parameter t related to tan β by the identity: tan β = t · 10−12; for

both the parameters ξ and t we use the interval (0, 20], in agree with what we evaluated

in Sec. 3.2.1. In the first example we obtain a Log-likelihood ∼ −77.7; while in the second

one, instead to use again all the fermion masses as references in the code, we concentrate on

the third family using only the bottom quark and tau lepton masses to test the likelihood

of the parameters (t, ξ, mτ , kRτ , λ1τ , λ2τ ), and we obtain a Log-likelihood ∼ −25.

3.6.1 Example 1

In this first example we get the following selection for the sterile neutrino masses:





m0e = −3.74 · 1014 GeV

m0µ = −1.72 · 1014 GeV

m0τ = −6.75 · 1014 GeV

; (3.138)
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the Yukawa couplings:





kRe = −1.72

kRµ = 0.13

kRτ = −7.11

,





λ1e = −0.26 · 10−5

λ1µ = −2 · 10−3

λ1τ = −0.39

and





λ2e = −0.35 · 10−5

λ2µ = −4 · 10−4

λ2τ = 6.7 · 10−3

; (3.139)

the scalar parameters:

ξ5 − ξ2 = 19.996 and tan β = 4.124 · 10−13 , (3.140)

from which we obtain the Higgs masses:

MH0 = 130.41GeV and MH±
1
= 788.69GeV , (3.141)

where MH0 is very close to the SM Higgs mass, while MH±
1

can be associated to a BSM

charged Higgs respecting the experimental limit.

With this set of parameters, we achieve the following results for the up-type quark masses:





mup = 0.33MeV

mcharm = 272.61MeV

mtop = 81.24GeV

, (3.142)

all values within the 2σ range from the experimental values in (2.182). We obtain, instead,

a bad result also for the down-type quarks and the charged leptons:





mdown = 0.4MeV

mstrange = 54.06MeV

mbottom = 1.37GeV

and





melectron = 0.48MeV

mmuon = 54.80MeV

mtau = 1.36GeV

, (3.143)

in fact we can see that there is a virtually zero split between the two sectors, in this way

the tree level relation md = me seems still approximately valid also at one-loop. Finally

for the neutrinos, we obtain the ratio:

r = 0.0086 , (3.144)

which is far away from the values in (2.186).
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3.6.2 Example 2

In this second example we focus our attention only on the masses of the third fermion

family. In particular we test the likelihood of the parameters for the bottom and tau

masses only, for which we would expect a mass difference of the order of 500 MeV. So we

get the parameters selection:

ξ5 − ξ2 = 19.999 and tan β = 4.116 · 10−13 , (3.145)

from which we get the Higgs masses:

MH0 = 130.14GeV and MH±
1
= 788.72GeV ; (3.146)

we for the tauonic sterile neutrino mass and Yukawa couplings we get:

m0τ = 5.02 · 1014 GeV , λ1τ = −1.28 , λ2τ = −0.01 , kRτ = 2.06 . (3.147)

With this selection of parametrs we obtain, this time, a mass splitting of ∼ 100 MeV for

the bottom and the tau:

mbottom = 1.65GeV and mtau = 1.74GeV , (3.148)

better than in the first example. However, now we have the problem of an unrealistic

quark top mass:

mtop = 181.90GeV . (3.149)

The model 2, therefore, seems not able to generate the correct mass splitting between

the charged leptons and their family-related down-type quarks. Let us look at their one-

loop mass difference formula:

m1−loop
e −m1−loop

d = me +m
(e)
G +m

(e)
H −md −m

(d)
G −m

(d)
H with md = me , (3.150)
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where for the difference in the gauge corrections we have:
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(3.151)

while the difference in the scalar loop corrections is given by:
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(3.152)

We can see that the larger contribution in the mass splitting comes from the scalar cor-

rections, because we have in the numerators the heavy neutrino and the up-type quark

masses. So, in order to generate at one-loop a realistic mass difference between tauon and

bottom, we have to increase the tree level top mass mt = λ1τu1 + λ2τu2, but obtaining at

the end a too large mtop.



Chapter 4

Conclusions

In this thesis we have described two Pati-Salam models, which differ for the scalar content,

and their capability to reproduce the experimental values for the fermion masses and

mixings, by means of one-loop corrections. Both models contain sterile neutrinos, and

furthermore, imposing on the gauge coupling constants the condition gR(MU) = gL(MU),

they share almost the same partial-unification scale of the order of MU ∼ 1014 GeV.

For model 1, which does not contain any tree-level mass term for the SM fermions, we

have demonstrated that we need two Higgs multiplets in the representation (4, 2, 1) and

two (4, 1, 2), under the group SU(4)⊗ SU(2)L ⊗ SU(2)R, in order to generate the correct

mass spectra for the quarks and the charged leptons. However, we have also seen, by

means of numerical simulations, that it seems not enough to obtain the neutrino squared

masses ratio r value close to the experimental one; the same happens for the mixings of

the CKM and PMNS matrices.

For model 2, instead, the scalar content given by a bi-doublet (1, 2, 2) and a multiplet

(4, 1, 2) generates tree-level mass terms for all fermions; in particular, for each fermion

family, the identity me = md is valid a at tree-level, but it is still approximately valid

at one-loop. Therefore the model 2 is not able to generate the correct mass hierarchy by

means of the one-loop corrections. In fact, we have shown that it is necessary a too heavy

top quark in order to generate a not negligible mass difference between the quark bottom

and the tau lepton.

Possible approaches to follow in order to try to save the two models could be:

• to evaluate the two-loops corrections;

• to remove all the approximations applied in both the scalar potentials, in order to

124



125

simplify the analitycal calculations of Higgs masses and mixings;

• to relax the request gR(MU) = gL(MU) in order to have the freedom to move, in

agree with the experimental limits, the partial-unification scale MU ; a lower scale for

MU could increase for example the Higgs mixings, generally of the order of O(vL/vR)

and the contributions coming from the logarithm of the type ln(m2
ψ/M

2
H), obatainig

larger corrections.



Appendix A

Generators of SU(4) and SU(2)

Generators λa
2

for the SU(4) gorup:

λ1 =




0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0



, λ2 =




0 −i 0 0

i 0 0 0

0 0 0 0

0 0 0 0



, λ3 =




1 0 0 0

0 −1 0 0
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0 0 0 0



,

λ4 =




0 0 1 0
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

, λ5 =



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

, λ6 =



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0 0 1 0

0 1 0 0

0 0 0 0



,

λ7 =




0 0 0 0

0 0 −i 0

0 i 0 0

0 0 0 0



, λ8 =

1√
3




1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 0



, λ9 =




0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0



,

λ10 =




0 0 0 −i
0 0 0 0

0 0 0 0

i 0 0 0



, λ11 =




0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0



, λ12 =




0 0 0 0

0 0 0 −i
0 0 0 0

0 i 0 0



,

λ13 =




0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0



, λ14 =




0 0 0 0

0 0 0 0

0 0 0 −i
0 0 i 0



, λ15 =

1√
6




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3



.

(A.1)
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Generators σi
2

for the SU(2) group:

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.2)



Appendix B

Tensor products in SU(4) and SU(2)

In SU(4) the product between two fundamental representations is given by:

4⊗ 4 = AαBβ =
1

2
(AαBβ + AβBα) +

1

2
(AαBβ − AβBα) =

= Sαβ +
1

2
AµBν(δ

µ
αδ

ν
β − δναδ

µ
β) = Sαβ +

1

2
AµBνǫ

γρµνǫγραβ =

= Sαβ +
1

2
ǫαβγρT

γρ = 10⊕ 6 ,

(B.1)

where the representation 10 is a complex symmetric tensor, while the representation 6 is a

real antisymmetric tensor. The product between fundamental (Aα) and anti-fundamental

(Aα = A∗
α) representations, instead, is:

4⊗ 4̄ = AαB
β =

(
AαB

β − 1

2
AµB

µδβα

)
+

1

2
AµB

µδβα = 15⊕ 1 . (B.2)

Here we list some products of irreducible representations:

1̄0⊗ 10 = 84⊕ 15⊕ 1 ;

10⊗ 6 = 45⊕ 15 ;

1̄0⊗ 6 = 4̄5⊕ 15 ;

6⊗ 6 = 20⊕ 15⊕ 1 ;

15⊗ 15 = 84⊕ 45⊕ 4̄5⊕ 20⊕ 15⊕ 15⊕ 1 .

(B.3)
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The group SU(2) brings more difficulties to use the tensorial approach because its funda-

mental representation is pseudo-real (2 ∼ 2̄), in fact we can write:

2⊗ 2 = AiBj =
1

2
(AiBj + AjBi) +

1

2
(AiBj − AjBi) =

= Sij +
1

2
AkBl(δ

k
i δ

l
j − δliδ

k
j ) = Sij +

1

2
AkBlǫ

klǫij =

= Sij +
1

2
ǫijAkB

k = 3⊕ 1 ,

(B.4)

where the representation 3 is represented by a symmetric tensor Sij, but we have also:

2⊗ 2̄ = AiB
j =

(
AiB

j − 1

2
AkB

kδji

)
+

1

2
AkB

kδji = 3⊕ 1 (B.5)

where the representation 3 is now represented by a traceless tensor. Unlike what happens in

a group like SU(4), where we have AαB
α 6= AαBα, since for the fundamental representation

we have 4 ∼ Aα 6= A∗
α = Aα ∼ 4̄, in the group SU(2) we can transorm a covariant

vector (Ai ∼ 2) in a controvariant one (Ai ∼ 2̄) using the Levi-Civita tensor ǫij (the

completely antisymmetric tensor). However we have to pay attention to the fact that for

the fundamental representation the relation 2̄ ∼ ǫijAj = Âi 6= Ai = A∗
i ∼ 2̄ is valid, as we

can see looking at the components:

Ai =

(
a1

a2

)
=⇒




Ai = (Ai)

∗ =
(
a∗1 a∗2

)

Âi = ǫijAj =
(
a2 −a1

) , (B.6)

from which it is simple to verify the identities:

{
AiAi = ÂiÂi = |a1|2 + |a2|2
AiÂ

i = Aiǫ
ijAj = a1a2 − a2a1 = 0

. (B.7)

Using the inverse relation Ai = −ǫijÂj, instead, we can rewrite the product 2̄⊗ 2 as:

AiBi =

{
(−ǫijÂj)(−ǫikB̂k) = (δiiδ

j
k − δikδ

j
i )ÂjB̂

k = δjkÂjB̂
k

(−ǫijÂj)Bi = Âjǫ
jiBi = ÂiB̂

i
. (B.8)

To conclude this chapter we show the product 3⊗3, which can be written as a product
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of two symmetric tensor Hij = Hji of SU(2):

3⊗ 3 = HijHkl =
1

3
(HijHkl +HikHjl +HilHjk) +

1

3

[
(HijHkl −HikHjl)+

+ (HijHlk −HilHjk)
]
= Sijkl +

1

6
(ǫilǫjk + ǫikǫjl)ǫ

mqǫnpHmnHpq = 5⊕ 3⊕ 1 ,
(B.9)

or as a product of two traceless tensor in the form:

3⊗ 3 =
(
AiA

j − 1

2
AkA

kδji

)(
AxA

y − 1

2
AzA

zδyx

)
=

= T jyix +
1

2
AkA

k
(1
2
AzA

zδji δ
y
x − δjiAxA

y − δyxAiA
j
)
= 5⊕ 3⊕ 1 .

(B.10)



Appendix C

SM Higgs potential and Goldstone

bosons

In the Standard Model, the Higgs field ϕ is composed by two complex scalar fields electri-

cally charged, ϕ1 = ϕ+ and ϕ2 = ϕ0, that form two doublets of SU(2)L:

ϕ =

(
ϕ1

ϕ2

)
and ϕ̃ = iσ2ϕ

∗ =

(
ϕ∗
2

−ϕ∗
1

)
, (C.1)

where the VEV 〈ϕ〉 = 1√
2

(
0 vL

)T
gives mass to the charged leptons and the down-type

quarks, while 〈ϕ̃〉 generates mass for the up-type quarks. Because both these doublets

transform, under gauge transformation, as:

ϕ→ ULϕ and ϕ̃→ ULϕ̃ (C.2)

with UL ∈ SU(2)L, we have that the most general gauge invariant scalar potential can be

written as:

V (ϕ) = −µ2ϕ†ϕ+ λ
(
ϕ†ϕ

)2
, (C.3)

where the doublet ϕ̃ does not appeare explicitly because, by means of the following rela-

tions: {
ϕ̃†ϕ̃ = ϕ†ϕ

ϕ†ϕ̃ = 0
, (C.4)
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all the gauge invariant terms containing ϕ̃ can be absorbed in the terms in (C.3). Further-

more, if we collect the two doublets ϕ and ϕ̃ in a bi-doublet H, in the following way:

H =
(
ϕ̃ ϕ

)
=

(
ϕ∗
2 ϕ1

−ϕ∗
1 ϕ2

)
, (C.5)

we can rewrite the scalar potential (C.3) as:

V (ϕ) = −µ
2

2
Tr[H†H] +

λ

4

(
Tr[H†H]

)2
, (C.6)

where we can see that there exists an extra SU(2)X symmetry for the Higgs potential (the

custodial symmetry), due to the gauge transformation of the bi-doublet:

H → ULHU
†
X (C.7)

with UL ∈ SU(2)L and UX ∈ SU(2)X .

Writing the potential of the Higgs doublet ϕ =

(
ϕ1

ϕ2

)
in components, we obtain the

form:

V (ϕ) = −µ2ϕ†ϕ+ λ(ϕ†ϕ)2 = −µ2(ϕ∗
1ϕ1 + ϕ∗

2ϕ2) + λ(ϕ∗
1ϕ1 + ϕ∗

2ϕ2)
2 , (C.8)

from which we compute the minimum calculating the first derivative:

∂V (ϕ)

∂ϕi

∣∣∣∣∣
〈ϕ〉

=
[
−µ2 + 2λ(| ϕ1 |2 + | ϕ2 |2)

]
ϕ∗
i

∣∣∣∣∣
〈ϕ〉

= 0 , (C.9)

where the solutions are given by:

〈ϕ1〉 = 〈ϕ2〉 = 0 ; (C.10)

| 〈ϕ1〉 |2 + | 〈ϕ2〉 |2=
µ2

2λ
= v2 ; (C.11)
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which bring to two possibilities:

no symmetry-breaking: 〈ϕ1〉 = 〈ϕ2〉 ; (C.12)

symmetry-breaking: 〈ϕ〉 =
(

0

v eiα

)
. (C.13)

If now we calculate the second derivatives:

∂2V (ϕ)

∂ϕ∗
i ∂ϕi

=
[
−µ2 + 2λ(| ϕ1 |2 + | ϕ2 |2)

]
+ 2λ | ϕi |2 ,

(C.14)

∂2V (ϕ)

∂ϕ∗
2∂ϕ1

= 2λϕ2ϕ
∗
1 and

∂2V (ϕ)

∂ϕ∗
1∂ϕ2

= 2λϕ1ϕ
∗
2 ,

we find the mass term:

M2
ϕϕ

†ϕ = ϕ†

(
0 0

0 2λv2

)
ϕ ⇒




m2

1

(
| ℜ(ϕ1) |2 + | ℑ(ϕ1) |2

)
= 0

m2
2

(
| ℜ(ϕ2) |2 + | ℑ(ϕ2) |2

)
= 2λv2ϕ∗

2ϕ2

, (C.15)

from which we find two Goldstone bosons; while the last ones, which must give mass to

the third vector boson of SU(2)L, must be a combination of the real scalar fields ξ2 and η2

that compose ϕ2 = ξ2 + iη2; in fact we have:

ϕ∗
2(2λv

2)ϕ2 =
(
ξ2 η2

)( 2λv2 i2λv2

−i2λv2 2λv2

)(
ξ2

η2

)
, (C.16)

from which we obtain the mass eigenvalues:

det

(
2λv2 − p i2λv2

−i2λv2 2λv2 − p

)
= p(p− 4λv2) = 0 ⇒ m2

3 = 4λv2 and m2
4 = 0 . (C.17)

Therefore the last Goldstone boson will be a linear combination of the real fields ξ2 and

η2. It can also be visualized writing the Higgs field as ϕ =

(
ξ1 + iη1

ξ2 + iη2

)
, with ξ1,2 and η1,2

real scalar fields, and repeating the procedure above. Using the VEV:

(
〈ξ1〉+ i〈η1〉
〈ξ2〉+ i〈η2〉

)
=
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(
0

v eiα

)
, and the basis of real fields hT = (ξ1, η1, ξ2, η2), we arrive at the mass term:

1

2
hTi M

2
ijhj =

1

2

(
ξ1 η1 ξ2 η2

)
4λv2




0 0 0 0

0 0 0 0

0 0 cos2 α cosα sinα

0 0 cosα sinα sin2 α







ξ1

η1

ξ2

η2




(C.18)

where the first two Goldstone bosons are those related to the complex field ϕ1 (the same

found before), while the third, and last, Goldstone boson is given, similarly to (C.17), by

a linear combination of the real fields ξ2 and η2. Instead, in the case we choose a real VEV

(α = 0) we would obtain:

1

2
hTi M

2
ijhj =

1

2

(
ξ1 η1 ξ2 η2

)




0 0 0 0

0 0 0 0

0 0 4λv2 0

0 0 0 0







ξ1

η1

ξ2

η2



, (C.19)

where the real field η2 represents directly the last Goldstone boson.



Appendix D

Normalization of the Hypercharge

In order to normalize the hypercharge generator of U(1)Y in a way consistent to the other

diagonal generators of the Standard Model group [20], we start considering the matter

fields of the SM: (
u

d

)

L

,

(
ν

e

)

L

, ūR , d̄R , and ēR (D.1)

(all these taken in ng = 3 different generations). The doublets, under SU(2)L, are related

to the eigenvalues of the diagonal generator σ3
2

in this way: νL and uaL (with a = 1, 2, 3 the

colour index) are linked to the eigenvalue 1
2
; eL and daL linked to the eigenvalues −1

2
; while

the singlets ēR, ūR and d̄R correspond to the eigenvalues 0. Therefore we have the trace:

Tr

[(
g2L

σ3
2

)2]
= ng (3 + 1)

[(
1

2

)2

+

(
−1

2

)2
]
g22L = 2ngg

2
2L . (D.2)

The extension of σ3 in the group SU(3)C is given by:

λ3 =



1 0 0

0 −1 0

0 0 0


 , (D.3)

and, as above, we can relate the fermionic fields to the eigenvalues of the generators λ3
2

in this way: (u, d)aL, ūbR and d̄bR are linked to the eigenvalue 1
2

if the colour numbers are

a = 1 and b = 2; to the eigenvalue −1
2

if a = 2 and b = 1; while all the others fermions are
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related to the eigenvalue 0. Then the trace of the squared generator is given by:

Tr

[(
g3C

λ3
2

)2
]
= ng (2 + 1 + 1)

[(
1

2

)2

+

(
−1

2

)2
]
g23C = 2ngg

2
3C , (D.4)

where we can note that (D.2) and (D.4) have the same constant in front of the squared

gauge couplings. What we want is to mantain this constant also for the group U(1)Y , whose

generator is given by Y
2
= Q− σ3

2
. Again we can relate the eigenvalues of this generator to

the matter fields as follows: the eigenvalue −1
2

to the fields (ν, e)L; the eigenvalue 1 to the

field ēR; the eigenvalue 1
6

to the fields (u, d)aL; the eigenvalues −2
3

and 1
3

to the fields ūaR

and d̄aR (with a = 1, 2, 3), respectively. So we have that:

Tr

[(
g1Y

Y

2

)2
]
= ng

[
2

(
−1

2

)2

+ 1 + 3 · 2
(
1

6

)2

+ 3

(
−2

3

)2

+ 3

(
1

3

)2
]
g21Y =

=
10

3
ngg

2
1Y .

(D.5)

Thus, using the redefinitions:

g1Y =

√
3

5
gY and Y =

√
5

3
Y ′ , (D.6)

we find the correct value for the trace:

Tr

[(
g1Y

Y

2

)2
]
= Tr

[(
gY
Y ′

2

)2
]
= 2ngg

2
Y . (D.7)



Appendix E

Matching conditions for coupling

constants

Let us consider the breaking of the type SU(4)⊗ SU(2)R → SU(3)C ⊗ U(1)Y . What are

the matching conditions between the couplings of the conserved U(1)Y and those of the

broken groups? We find the answer following the procedure in [21]. We know from (2.14),

and using the normalization redefinition in (D.6), that the hypercharge generator Y/2 can

be written as:

Y

2
=
σ3R
2

+

√
2

3

λ15
2

99K Normalization:
Y ′

2
=

√
3

5

Y

2
=

√
3

5

σ3R
2

+

√
2

5

λ15
2
. (E.1)

Therefore, in general, we write the generator Y/2 (from here we sobstitute Y ′ → Y in the

notation) as a combination of generators T a of the higher groups:

Y

2
= paT

a with
∑

a

p2a = 1 ; (E.2)

moreover, since the symmetry under U(1)Y is conserved, we must have that:

Y · 〈R〉 = 0 , (E.3)

where 〈R〉 is the VEV of the Higgs boson multiplet responsible for the symmetry-breaking

from the Pati-Salam group to the SM. Furthermore, the Higgs mechanism, using the
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covariant derivative:

DµR = ∂µR + i (g4Gµ + g2WµR)R = ∂µR + igaT
aAaµR , (E.4)

generates for the vector bosons the squared mass:

M2
ab = 〈R〉†gagbT aT b〈R〉 , (E.5)

so that we have the mass term:

AaµM
2
abA

bµ = AaµOai

[
OTM2O

]
ij
(OT )jbA

bµ = Bi
µ(M

2)diagij Bjµ , (E.6)

where the orthogonal matrix O (with OikOjk = OkiOkj = δij) transforms the gauge eigen-

vectors Aaµ to the mass eigenstates Bi
µ. At this point, let us call BY

µ the massless vector

bosons related to the U(1)Y symmetry:

BY
µ = (OT )Y aA

a
µ = qaA

a
µ with δY Y = (OkY )

2 =
∑

k

q2k = 1 . (E.7)

To look for the form of the vectors qi, let us start writing:

0 = Bx
µ(M

2)diagxY BY µ = AaµOax

[
OTM2O

]
xY
ObYA

bµ ⇒ OixM
2
ijOjY = 0 (E.8)

⇒ Okx

[
OixM

2
ijOjY

]
= δkiM

2
ijOjY =M2

kjqj = 0 ; (E.9)

from this, with (E.3) and (E.2), we obtain:

M2
abqb =

[
〈R〉†gaT a

] [
gbT

b〈R〉qb
]
= 0 =

[
〈R〉†gaT a

]
[Y · 〈R〉]

=⇒ qa = N
pa
ga
,

(E.10)

where N is the normalization factor:

∑

a

q2a = N2
∑

a

(
pa
ga

)2

= 1 =⇒ N =

√√√√∑

k

(
pk
gk

)2

. (E.11)
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To conclude we have to find the form of the gauge coupling costant gY related to the group

U(1)Y , so we look at the interaction term between the gauge bosons and the fermions:

gaA
a
µT

aψ̄γµψ = ga
[
qaB

Y
µ +OakB

k 6=Y
µ

]
T aψ̄γµψ (E.12)

=⇒ gaqaT
a = gY

Y

2
= gY paT

a =⇒ qa = gY
pa
ga
, (E.13)

so gY = N . Finally, for the matching conditions we have:

α−1
Y =

4π

g2Y
= 4π

∑

a

(
pa
ga

)2

=
∑

a

p2aα
−1
a , (E.14)

and therefore for the breaking from the Pati-Salam model to SM the matching conditions

are given by:

α−1
Y =

3

5
α−1
2R +

2

5
α−1
4 . (E.15)



Appendix F

Dirac and Majorana mass

The fermionic field can be written in components as:

Ψ =




ψ1

ψ2

ψ3

ψ4




=

(
ψL

ψR

)
and Ψ̄ = Ψ†γ0 =

(
ψ∗
1 ψ∗

2 ψ∗
3 ψ4

)
=
(
ψ†
R ψ†

L

)
, (F.1)

where we have used the chiral representations:

ψL =
1− γ5

2
=




ψ1

ψ2

0

0




and ψR =
1 + γ5

2
=




0

0

ψ3

ψ4



, (F.2)

and the the γ-matrix definitions:

γ5 =

(
−I 0

0 I

)
, γ0 =

(
0 I

I 0

)
and γi =

(
0 σi

−σi 0

)
with i = 1, 2, 3 , (F.3)

so that the Dirac mass term takes the form:

mDΨ̄Ψ = mD(ψ
†
RψL + ψ†

LψR) = mD(ψ
∗
3ψ1 + ψ∗

4ψ2 + ψ∗
1ψ3 + ψ∗

2ψ4) . (F.4)
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Defining, instead, the operation of charge conjugation as:

ΨC = iγ2γ0Ψ̄
T =




ψ∗
4

−ψ∗
3

−ψ∗
2

ψ∗
1




=

(
ψL

ψR

)C

=

(
(ΨC)L

(ΨC)R

)
=

(
(ψR)

C

(ψL)
C

)
, (F.5)

where 



(ψR)
C = iσ2ψ

∗
R =

(
ψ∗
4

−ψ∗
3

)
= 1−γ5

2
ΨC = (ΨC)L

(ψL)
C = −iσ2ψ∗

L =

(
−ψ∗

2

ψ∗
1

)
= 1+γ5

2
ΨC = (ΨC)R

, (F.6)

if a fermion realizes the identity:

Ψ = ΨC ⇒
{
ψ1 = ψ∗

4

ψ2 = −ψ∗
3

⇒ Ψ =

(
ψL

(ψL)
C

)
=

(
(ψR)

C

ψR

)
, (F.7)

it is called a Majorana fermion, whose mass term, the Majorana mass term, takes the form:

mM

2
Ψ̄Ψ =

mM

2

[
(ψL)

C†ψL + ψ†
L(ψL)

C
]
=

=
mM

2

[
(ψL)

T (−iσ2)†ψL + ψ†
L(−iσ2)(ψ†

L)
T
]
= mM(ψ1ψ2 + ψ∗

1ψ
∗
2) .

(F.8)



Appendix G

Mass shift and Weyl propagators

Let us consider the Lagrangian:

L = ψ̄(iγµ∂µ −m0)ψ − 1

4
(Fµν)

2 − gψ̄γµGµψ , (G.1)

the two-points function, for the fermions, can be written as:

❋♣❋ = ❢❛❢ + ❋❝❋ + ❋❝❦❝❋ + . . .

=
i

p̂−m0 + iǫ
+

i

p̂−m0 + iǫ

(
−iΣ(p̂)

) i

p̂−m0 + iǫ
+ . . .

=
i

p̂−m0 − Σ(p̂)
,

(G.2)

where p̂ = pµγ
µ and ❦❝❦ = −iΣ(p̂) is the sum of one-particle irreducible diagrams.

In general, if we consider also chiral interactions, the function Σ(p̂) is of the form:

Σ(p̂) = Ap̂+Bm0 + Cγ5p̂+Dp̂γ5 + Em0γ5 =

= A
(
p̂−m0

)
+ (A+B)m0 + Cγ5

(
p̂−m0

)
+D

(
p̂−m0

)
γ5−

− (E + C +D)m0
(p̂−m0)γ5 + γ5(p̂−m0)

2m0

=

= A
(
p̂−m0

)
+ (A+B)m0 +

C − E −D

2
γ5

(
p̂−m0

)
+

+
D − E − C

2

(
p̂−m0

)
γ5 =

= A′
(
p̂−m0

)
+B′m0 + C ′γ5

(
p̂−m0

)
+D′

(
p̂−m0

)
γ5

(G.3)
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where A,B,C,D,E are functions of the coupling constant g and the cut-off Λ.

The physical mass is defined as the pole of the full propagator (G.2):

[
p̂−m0 − Σ(p̂)

]
p̂=mph

= 0 =⇒ Σ(p̂ = mph) = δm , (G.4)

where δm = mph −m0 is called the mass shift. At the three-level, o(g0), we obtain:

[
p̂−m0

]
p̂=mph

= 0 =⇒ m0 = mph

(
1 + o(g2)

)
; (G.5)

therefore at 1-loop, o(g2), we have:

Σ(p̂) ∼ A(g2,Λ)
(
p̂−m0

)
+B(g2,Λ)m0 = A(g2,Λ)

(
p̂−mph

)
+ δm+ o(g4) (G.6)

where, because the Σ(p̂) starts from o(g2), we replaced the m0 with his order-zero value to

highlight the one-loop contribution to the mass shift.

In case we have a theory with a massless fermion, we can write the tree-level relation

m0 = 0 + o(g2), that we put in the definition (G.6) obtaining:

Σ(p̂) ∼ A(g2,Λ)p̂+ δm+ o(g4) , (G.7)

therefore Σ(p̂ = 0) gives the one-loop contribution to the mass shift, and it will correspond

to the generation of a mass mph = δm.

An alternative for defining the fermion mass is to use the Weyl representation [23]. Let

us start with a free fermionic Lagrangian of the type:

L = iΨ̄γµ∂µΨ−mΨ̄Ψ =

= iψ†
Lσ̄

µ∂µψL + iψ†
Rσ

µ∂µψR −mψ†
LψR −mψ†

RψL ,
(G.8)

where we have used the notation:

γµ =

(
0 σµ

σ̄µ 0

)
with σµ = (1, σi) and σ̄µ = (1,−σi) . (G.9)
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From (G.8) we can obtain the propagators:

Ψ
❦❋❦̄

Ψ
= 〈ΨΨ̄〉 = 〈

(
ψL

ψR

)(
ψ†
L ψ†

R

)
〉 = 〈

(
ψLψ

†
R ψLψ

†
L

ψRψ
†
R ψRψ

†
L

)
〉 =

=
i(γµpµ +m)

p2 −m2
=

i

p2 −m2

(
m σµpµ

σ̄µpµ m

)
,

(G.10)

where we can see:

ψL
❦❋❦̄

ψL

=
ipµσ

µ

p2 −m2
i

(G.11)

ψR
❦❋❦̄

ψR

=
ipµσ̄

µ

p2 −m2
i

(G.12)

ψL
❦❋❦̄

ψR

=
ψR
❦❋❦̄

ψL

=
im

p2 −m2
i

. (G.13)

In the same way we can define the propagators for the charge conjugated fields:

〈ΨcΨ̄c〉 =
(

0 iσ2

−iσ2 0

)
〈
(
ψLψ

†
R ψLψ

†
L

ψRψ
†
R ψRψ

†
L

)
〉∗
(
iσ∗

2 0

0 −iσ∗
2

)
=

= 〈
(
(ψL)

c(ψL)
c† (ψL)

c(ψR)
c†

(ψR)
c(ψL)

c† (ψR)
c(ψR)

c†

)
〉 =

=
−i

p2 −m2

(
0 iσ2

−iσ2 0

)(
m σµ∗pµ

σ̄µ∗pµ m

)(
iσ∗

2 0

0 −iσ∗
2

)
=

=
−i

p2 −m2

(
σµpµ −m
−m σ̄µpµ

)
= 〈
(
(ψc)R(ψ

c)†R (ψc)R(ψ
c)†L

(ψc)L(ψ
c)†R (ψc)L(ψ

c)†L

)
〉 ,

(G.14)

Or equivalently, we can consider, as a first approximation, massless propagators for

left- and right-handed fermions, and the mass term as couplings between a left and a right

state:

ψR,L
❦❋❦̄

ψR,L

=
±ipµσµ
p2 −m2

and
ψR,L
❢①❢̄

ψL,R

= −im . (G.15)

However it is possible to recover the propagators seen above making infinite sums of the

type:

ψL
❦❋❦̄

ψR

= −ipµσ
µ

p2
[−im] i

pµσ
µ

p2
+ . . . (odd number of mass insertions) (G.16)
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ψR
❦❋❦̄

ψR

= i
pµσ

µ

p2
+ i

pµσ
µ

p2
[−im] (−i)pµσ

µ

p2
[−im] i

pµσ
µ

p2
+

+ . . . (even number of mass insertions) .

(G.17)

At this point to find the value of the mass, instead of using the normalization condition

(G.4), we use the one related to the coupling constants, in particular for the mass insertion

in (G.15); so this tells us that the value of the mass can be identified with the value

of the two-point function (between a left and a right state) in the limit of zero external

momentum:

m = lim
k→0

i
[❦❝❦] . (G.18)
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Appendix H

Extended model 1 - Higgs potential

Using VLR = V (L,R) given by (2.28), for what seen in Sec. 2.9.2 the part of the scalar

potential with less than three fields Λiα and Tiα takes the form:

Ṽ =VLR − 2µ2
YΛ

iαΛiα − 2µ2
BT

iαTiα −
1

2
µ2
Z(L

iαΛiα + h.c.)− 1

2
µ2
C(R

iαTiα + h.c.)

+ λXY 1L
iαLiαΛ

jβΛjβ + λXY 2L
iαLjαΛ

jβΛiβ + λZZL
iαΛiαΛ

jβLjβ

+ λZZ1(L
iαΛiαL

jβΛjβ + h.c.) + λZZ2(L
iαΛjαL

jβΛiβ + h.c.)

+ λZZ3(L
iαΛjαΛ

jβLiβ + h.c.)

+ λAB1R
iαRiαT

jβTjβ + λAB2R
iαRjαT

jβTiβ + λCCR
iαTiαT

jβRjβ

+ λCC1(R
iαTiαR

jβTjβ + h.c.) + λCC2(R
iαTjαR

jβTiβ + h.c.)

+ λCC3(R
iαTjαT

jβRiβ + h.c.)

+ λXZ1(L
iαLiαLjβΛ

jβ + h.c.) + λXZ2(L
iαLiβLjαΛ

jβ + h.c.)

+ λAC1(R
iαRiαRjβT

jβ + h.c.) + λAC2(R
iαRiβRjαT

jβ + h.c.)

+ λII1LiαL
iαTjβT

jβ + λII2LiαT
jαLiβTjβ + λII3(LiαT

jαLiβT
β
j + h.c.)

+ λKK1RiαR
iαΛjβΛ

jβ + λKK2RiαΛ
jαRiβΛjβ + λKK3(RiαΛ

jαRi
βΛ

β
j + h.c.)

+ λHI1(L
iαLiαR

jβTjβ + h.c.) + λHI2(L
iαRjαLiβT

jβ + h.c.)

+ λHI3(L
iαLβi RjαT

j
β + h.c.)

+ λHK1(R
iαRiαL

jβΛjβ + h.c.) + λHK2(R
iαLjαRiβΛ

jβ + h.c.)

+ λHK3(R
iαRβ

i LjαΛ
j
β + h.c.)

+ λHJ1(L
iαΛiαR

jβTjβ + h.c.) + λHJ2(L
iαRjαT

jβΛiβ + h.c.)

+ λHJ3(L
iαRjαΛ

β
i T

j
β + h.c.)

+ λIK1(R
iαTiαL

jβΛjβ + h.c.) + λIK2(R
iαLjαΛ

jβTiβ + h.c.)

+ λIK3(R
iαLjαT

β
i Λ

j
β + h.c.) .

(H.1)
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