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Introduction

In nature we observe a rich variety of phenomena, which we understand as inter-
actions among different parts of the universe. Over the millennia scientists and
philosophers have wondered on why these events happen, and how they can be
understood in terms of fewer and fewer fundamental laws.
At present our picture is the following. There exist some elementary (i.e. null
size) particles, which can join to form complicated structures: nuclei, atoms and
molecules, living things, planets and solar systems, galaxies and so on.

Above the Plank scale (`P =
√

~G
c3
≈ 1.6 · 10−35 m), we understand their dynamics in

terms of 4 fundamental interactions [1]. These are the gravitational, electromagnetic
(EM), weak and strong nuclear forces.
The theory of General Relativity predicts the behavior of macroscopic systems at
large distances, while the Standard Model (SM) is the best confirmed quantum field
theory (QFT) so far. In this theory each particle is associated to a field, whose
interaction with the others is responsible for particle creation and annihilation. The
fundamental forces comes from symmetry principles and the masses are generated
by the Higgs mechanism.
The SM has proven to be extremely effective, leading to unprecedented level of
precision in particle physics. Despite its unquestionable success in precision, hints
of its failure may come through the measure of the famous muon’s gµ− 2, on which
the debate is still open.
Moreover the SM can’t be the end of the story in any case, for more than one
reason. First of all it doesn’t include gravity, which must be treated separately. Its
interactions are not unified, we don’t know what happens at the Plack scale, and it
doesn’t contain a valid candidate for Dark Matter (which accounts for the majority
of the mass content of the Universe [2]). Moreover, it contains 18 free parameters
whose values are not explained. We don’t know the origin of mass hierarchies, and
the violation of the CP symmetry coming from them is not enough to account for
the matter-antimatter asymmetry observed in nature.
It is clear that some New Physics (NP) is to be discovered, and the way to takle
this problem is done from various sides. Theorists provide new models in which new
particles may occur, and experimentalists try to reveal them in detectors. Typically,
for heavy and short-lived particles we rely on high energy accelerators, while long-
lived elusive candidates are searched through their interaction with ordinary matter.
In order to disprove a model, also indirect proofs are important. Phenomenological
physicists work to improve the theoretical prediction of observables, jointly with the
experimental measure. The aim is to find significative discrepancies between theory
and experiment, in order to lead the model building to the right direction.
Flavour physics is a branch of phenomenology which studies the consequences of the
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flavour structure in the SM. Of particular interest is quark flavour physics, which
investigates the consequences of the quark parameters in the SM Lagrangian.
Quarks and gluons are the fundamental degrees of freedom of Quantum Chromo-
Dynamics (QCD), the QFT describing hadronic processes. The former are not
eigenstates of weak interactions too, but mix according to the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [3]:

VCKM =



Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


 . (0.1)

Since this matrix is the only responsible for CP violation in the SM (provided that
the strong CP parameter θ is exactly zero), the study of its properties is of interest
in solving the puzzle of matter-antimatter asymmetry. The independent measure
of its entries can be used to test the SM, searching for deviations from unitarity
(V −1 = V †). A possible way is to consider the leptonic and semi-leptonic decay
rates such as the neutron β decay: n→ peν̄e. In the latter the decay width contains
Vud [4]:

Γ =
G2
Fm

5
e

(2π3)
|Vud|2

[
1 + 3g2

A

]
fp.s.(1 + ∆R) , (0.2)

where GF is the Fermi constant, me the mass of the electron and gA the nucleon-axial
coupling. fp.s. is a phase space factor and ∆R accounts for radiative corrections.
Currently the best determination of Vud comes from 14 super-allowed nuclear beta
decays (0+ → 0+) (see [3, 5]), and radiative corrections come from model-dependent
assumptions (see e.g. [6]). If we had more precise information about the EM cor-
rections to the β decay, we could correct these nuclear decay widths and hopefully
improve the testing of the SM through Vud.
The problem is that hadronic scattering processes and decays are determined by the
structure of hadrons. These effects are hard or often impossible to find analytically,
given the intrinsic nature of strong interactions. QCD is non-perturbative at low
energies, and analytical first principle calculations are unfeasible .
A solution to the latter on a discretized space-time lattice is provided by Lattice
QCD (LQCD), a regularization of QCD which can be implemented numerically [7].
Moreover, at present, the latter is the only way to treat non-perturbative hadronic
effects from the first principles of the theory without adding additional parameters
besides those present in the QCD action.
The inclusion of EM effects in in leptonic and semi-leptonic decays from lattice
calculations has been done only recently ([8], [9], [10], [11] ). The case of the
neutron is of interest because from its β decay we can measure Vud. Apart from
decay processes, the inclusion of electromagnetism in lattice calculations has now
become mandatory in several of them. In fact, many lattice computations in pure
QCD in the Isospin symmetry limit have reached the O(1%) precision. The two main
Isospin Breaking (IB) effects are indeed O(1%) corrections, coming from m̂d − m̂u,
the mass difference between the u and d quarks, and α̂EM , the EM fine structure
constant. IB modifies the spectrum of hadrons, also removing the degeneracy in
hadronic multiplets.
In this thesis the effects of IB on the masses of mesons and baryons are investigated,
focusing on the N and ∆ multiplets. The calculation was done at Leading Order
(LO) in m̂d−m̂u

ΛQCD
and α̂EM using the well established RM123 method [12]. The latter
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consists in evaluating the observables in QCD+QED expanding at 1st order in these
parameters. The quantities in the full theory (QCD+QED) are given by the sum
of the isosymmetric part, i.e. evaluated in QCD with isospin symmetry, plus the
IB contribution, namely the one given by O(α) and O( m̂d−m̂u

ΛQCD
) (neglecting higher

orders). The slopes multiplying these factors can be evaluated in the isosymmetric
theory, so that the IB correction is given by the combination of isosymmetric slopes
with the appropriate charge factors and mass conterterms.
A purely hadronic renormalization scheme was adopted, using πs, Ks and Ω− masses
as normalization parameters to set the scale, tune the counterterms and reach the
physical point. We also define a scheme for the separation of the so called strong
IB and QED contributions. The first represents the modification due to the mass
difference between u and d, while the remaining part stems from interaction of
quarks with the photon field. The separation of these two effects is arbitrary but
mantains some rather useful physical intuition.
The first aim was to determine Mn−Mp. The latter is the available phase space for
the aforementioned β decay. The fact that it’s positive is the necessary condition
for the decay to happen (in inertial frames). In this sense, finding this quantity is
reasonably the first and preliminary step to face up to EM correction in neutron β
decay.
The other quantities of interest are the masses of the ∆ resonances and their split-
tings. ∆s are unstable and their spectrum is not completely determined yet exper-
imentally. Masses and decay widths of these resonances are used in effective πN
interaction models, both for accelerator experiments as well for astrophysical models
in the dynamics of compact objects.
The results found in this work are listed below. The uncertainties are statistical and
obtained using the jackknife resampling technique.

MN = 0.9549(97) GeV , (0.3)

σπN = 43.2(1.4) MeV , (0.4)

M∆ = 1.261(30) GeV , (0.5)

σπ∆ = 24.55(77) MeV , (0.6)

Mn −Mp = 1.73(69) MeV , (0.7)

(Mn −Mp)
(QED) = −1.16(25) MeV , (0.8)

(Mn −Mp)
(QCD) = 3.10(59) MeV , (0.9)

Mn = 0.961(20) GeV , (0.10)

Mp = 0.959(20) GeV . (0.11)

The masses of the ∆ are reported in the following table.
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M(GeV)
∆− 1.251(40)
∆0 1.247(39)
∆+ 1.245(39)

∆++ 1.244(39)

Table 1: Our results for the masses of the 4 lightest ∆ resonances.

In the following table are reported the mass splittings in the ∆(1232) quadruplet.
As we’ll see, at LO in IB the knowledge of only 2 of them is sufficient to determine
the others.

∆M(MeV)
∆++ −∆+ -0.48(26)
∆++ −∆0 -2.06(38)
∆++ −∆− -4.76(55)
∆+ −∆0 -1.59(18)
∆+ −∆− -4.41(50)
∆− −∆0 2.85(35)

(∆++ + ∆−)− (∆+ + ∆0) 2.41(51)

Table 2: Our results for the mass splittings among the 4 lightest ∆ resonances.

Using the values of the renormalization constants ZP in the MS scheme from [13]
we also find the following renomalized values:

m̂`(µ = 2 GeV) =
m̂u + m̂d

2
= 3.781(76) MeV (0.12)

m̂s(µ = 2 GeV) = 103.2(2.0) MeV (0.13)

∆m̂ud(µ = 2 GeV) =
m̂d − m̂u

2
= 1.208(43) MeV (0.14)

The thesis is structured as follows:

• In Chapter 1 the Lattice regularization of QCD is presented. We’ll see how
to quantize quarks and gluons on the lattice with the path integral formalism,
how to build hadronic euclidean correlators and extract their properties. We’ll
briefly review the numerical issues involved, the twisted mass regularization
used to simulate QCD in the present study, and renormalization.

On the lattice hadronic masses and matrix elements have a dependence on the
parameters in the Lagrangian, the lattice spacing and the volume size. We
discuss how to take into account these effects, set the scale of the system and
extrapolate observables to their physical values.

• Chapter 2 is devoted to the theoretical framework used to treat IB effects, i.e.
the RM123 method. We show how to expand the path integral in a theory
containing QCD and QED (QCD+QED) at LO in m̂d− m̂u and α̂EM . At LO,
all calculations can be done on a Isospin symmetric background, finding the
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slopes with respect to the perturbation parameters. The combination of these
slopes with the correct counterterms and charge factors give the value of the
observables in the full theory.

QED is a long-range interaction. This leads to Finite Volume Effects which are
suppressed as power-laws (not exponentially like in QCD), which we take into
account using the known theoretical results together with a fit over a number
of different volumes. We also discuss in some detail how one can define a
separation between strong IB and QED effects, and the intuition behind it.

• Chapter (3) describes the analysis of isosymmetric quantities. We give the
definition of the hadronic renormalization scheme, with the discussion of the
extrapolation technique. It is discussed how to treat finite size effects, dis-
cretization effects and dependence on the quark masses. We find the isoQCD
limits of MN and M∆, together with the sigma terms σπN . and σπ∆.

• In Chapter (4) are shown the details of the calculation of IB effects at LO.
We tune the critical mass counterterms from the PCAC Ward Identity (WI)
in order to preserve the maximal twist (and so the O(a) improvement on
observables). We use 3 ratios in QCD+QED in order to tune physical mass
countertems for each ensemble. We correct the masses from universal QED
finite volume effects and extrapolate the physical values of the observables
taking into account the residual rependence on L, a and Mπ.



Chapter 1

Introduction to Lattice QCD

A lattice field theory (LFT) is a Quantum Field Theory (QFT) in which space-time
is bounded and discretized. In such a theory the universe is typically chosen to be an
hyper-cubic lattice embedded in R4 of size TxLxLxL (where T is the time extension
and L the length of the 3D cube’s side), nearest neighbors are separated by a lattice
constant a, and some specific conditions are given at the boundaries.
This technique is useful to deal with non-perturbative theories such as Quantum
ChromoDynamics (QCD) for which the non-perturbative regime falls in the low-
energy range1. In fact it’s not possible to get a safe theoretical evaluation through
perturbation theory of hadronic low-energy contributions. LQCD allows to calculate
quantities of physical interest numerically without any expansion with respect to
coupling constants.
The main idea is to simulate a lattice universe and, by using path integral formalism,
evaluate some quantities which contain information about hadrons. Nevertheless,
due to simulation constraints, lattice QCD is not a faithful description of the actual
hadrons, for which one must recover the real-world values performing the continuum
limit (a→ 0), the infinite volume limit (L→∞), and the infinite temporal extension
limit (T → ∞), named also the 0 temperature limit 2. The first limit recovers the
continuity of spacetime, while the second and third ones remove the effects due to
the imposition of boundary constraints.
Often one has to extrapolate also to the physical point, since the cost of the simula-
tion may require to use quark masses different from the physical ones.
The structure of the chapter is the following.
In sec. (1.1) are discussed Euclidean Correlators. We derive the path integral repre-
sentation for the simple case of a scalar field theory and shown the general structure
of their spectral decomposition. In sec. (1.2) QCD on the lattice is presented. Some
numerical aspects involved are also examined. Finally it is shown how to treat the
extrapolation of hadronic observable and get physical predictions.
In sec. (1.3) we discuss how to build correlators and extract energies and matrix
elements from them. In sec. (1.4) we present the leading systematic effects in the
extracted quantities, and in sec. (1.5) some numerical aspects involved in lattice
calculations.

1Experimentally this is found to be between 0 and ΛQCD ≈ 200− 300[MeV ] [1].
2For more details about the thermodynamic terminology used here see sec. (1.1.1).
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1.1 Correlators and fields on the lattice

Before entering the discussion on correlators and path integrals, it’s useful to recap
some algebraic properties of physical states and operators acting on them.
In Quantum Mechanics physical states are rays in a Hilbert space, a complex vector
space (V ,+, ·) equipped with a sesquilinear scalar product 〈∗; ∗〉 which induces a
norm ‖∗‖ =

√
〈∗; ∗〉, and complete with respect to the latter. For V there exists a

basis B = {|e1〉 , |e2〉 , ...} such that every |ψ〉 can be expanded, with respect to the
above norm, as a linear combination of elements in B:

|ψ〉 =
∑

n

cn |en〉 . (1.1)

The above basis may be chosen to be orthonormal, i.e. such that 〈ei|ej〉 = δij (every
Hilbert space has an orthonormal basis). We’ll assume that in the following unless
explicitly stated.
The properties of such a Hilbert space are given by bounded linear operators 3. The
expectation value of an operator Â on a state |ψ〉 is given by 〈Â〉 := 〈ψ| Â |ψ〉.
The hermitian conjugate Â† of Â is defined via:

〈α| Â |β〉 := 〈β| Â† |α〉∗ ∀α, β ∈ V

An operator is hermitian when it coincides with its hermitian conjugate. In this
case, the eigenvalues are real.
The identity operator 1̂ is the one which maps every vector into itself and, for an
orthonormal basis, can be written as

1̂ =
∑

n

|en〉 〈en| .

The trace of an operator Â, always for an ortho-normal basis, is

tr[Â] =
∑

n

〈en| Â |en〉 .

Given the boundedness condition, operator functions are defined through their cor-
responding Taylor power series:

f(x) =
∑

n

anx
n → f(Â) =

∑

n

anÂ
n .

The last two definition can be intuitively generalized to uncountable bases, with
sums becoming integrals. To be precise however, the latter case requires some
subtleties on the use of distributions (see [15]).
The Hamiltonian Ĥ of the system, assumed to be the generator of time translations,
governs the evolution of the system. Its eigenvectors constitute a complete basis
{|n〉}n for V . In the following, we’ll consider these states listed in ascending order
according to the eigenvalues.
Each state can be described giving its quantum numbers: energy, spin, etc.

3In principle one has to consider also antilinear operators, but in the present work they won’t
be used. For a more in-depth analysis see [14].
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Coherently with the indistinguishability of identical particles, in particle physics the
state of the system is written in terms of the number of particles of each kind, with
the creation and annihilation operators defined in order to satisfy Bose-Einstein
or Fermi-Dirac statistics. Such a space is called the Fock space. The |ψ〉 is then
a tensor product of many vectors, each of which corresponds to a given particle
and characterized by the number of particles. Since elementary particles’ quantum
numbers are only 2, spin and momentum (or equivalently position), any state can
be written as:

|ψ〉 = |N1, p1, σ1〉particle1 × ...× |Nn, pn, σn〉particlen
The vacuum, |0〉, is the state containing no particles:

|0〉particle1 × |0〉particle2 × ...× |0〉particlen .

1.1.1 Path integral in QFT

Feynman’s formulation of quantum mechanics consists in the interpretation of prob-
ability amplitudes as weighted sums (or integrals) over all possible configurations
(paths). The dynamics of the system is governed by a Lagrangian L, and the ex-
pectation values can be rephrased as functional integrals over all configurations of
the lagrangian variables [1]:

∑

(paths)

eiS/~ or

∫
D{η}eiS[{η}]/~ , (1.2)

where the “paths” are the possible ways in which an event can occur and {η}
represents the degrees of freedom of the action. The classical limit is recovered
through the stationary phase method when ~ is small.
In order to show how quantization works, let’s now consider the simple case of the
Klein-Gordon Lagrangian of a real scalar field, by constructing from the beginning
the lattice version of the path integral.
In continuum space-time, the Lagrangian density L (L =

∫
R3 d

3xL) for a spinless
neutral field of mass m is:

L =
1

2

[
(∂µφ)(∂µφ)−m2φ2

]
− V (φ) . (1.3)

with equations of motion,

∂L
∂φ

= ∂µ

(
∂L

∂(∂µφ)

)
, (1.4)

The Hamiltonian density is given by the Legendre transform:

H =
∂L

∂(∂0φ)
(∂0φ)− L = πφ̇− L =

1

2

[
π2 + (∇φ)2

]
+ V (φ) , (1.5)

where π = ∂L
∂(∂0φ)

is the canonical momentum field.
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The second quantization procedure promotes φ and π to operators satisfying the
commutation relations 4:

[φ(~x), φ(~y)] = [π(~x), π(~y)] = 0 ; [φ(~x), π(~y)] = iδ(~x− ~y) . (1.6)

The Hamiltonian density (operator) is the operator-promoted version of eq. (1.5).
We now extend this to the lattice regularization. First, we replace the entire space
with a cubic lattice Λ3 with spacing a and size L = Na, N3 being the number of
points. Positions become lattice points:

~x → a~n, ~n ∈ N3 ∧ ni ≤ N ∀i . (1.7)

Spatial derivatives are replaced by finite differences:

∂kφ → ∆kφ(~n) =
φ(~n+ k̂)− φ(~n− k̂)

2a
, (1.8)

and the lattice Hamiltonian is:

H = a3
∑

~n∈Λ3

[
1

2

(
π(~n)2 +

∑

k

∆kφ(~n)2 +m2φ(~n)2

)
+ V (φ(~n))

]
. (1.9)

The canonical commutation relations are:

[φ(~n), φ(~m)] = [π(~n), π(~m)] = 0 ; [φ(~n), π(~m)] =
i

a3
δ~n.~m . (1.10)

Let’s now contruct the path integral. The states |φ〉 = |φ(~n1)〉 × |φ(~n2)〉 × ...× |φ(~nN3)〉
form a complete basis and are eigenvectors of the field, i.e.

φ(~n) |φ〉 = φ(~n) |φ〉 .

From eq. (1.10) we see that in the space of φ wave functions a representation of the
conjugate momentum π is the derivative operator

−i
a3
∂φ .

Hence:

〈φ|π〉 =
∏

~n∈λ

√
a3

2π
eiπ(~n)φ(~n) ; (1.11)

Normalizing appropriately the eigenstates |π〉, the unit operator can be written as:

1̂ =

∫
Dφ |φ〉 〈φ| =

∫
Dπ |π〉 〈π| , (1.12)

where
Dφ =

∏

~n∈Λ3

dφ(~n) and Dπ =
∏

~n∈Λ3

dπ(~n) ;

4To be fair one should use a distinctive symbol for operators, in order to not confuse them with
classical fields. In general however there’s no ambiguity in using the same symbol, since the two
are used in different context. Operators are found in commutation relations, near bras and kets,
etc. Fields appear inside the Lagrangian, path integrals, etc.
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The Hamiltonian is the sum of two pieces, one depending on π and the other on φ:

Ĥ = T̂ (π̂) + Û(φ̂) . (1.13)

The exponentials appearing in the definition of Euclidean Correlators can be treated
with the Trotter formula [16]:

eαÂ = lim
N→∞

(
e
α
N
Â
)N

. (1.14)

Moreover we can write (for ε→ 0):

e−εĤ = e−εÛe−εT̂ e−εÛ . (1.15)

At this point construction of the path integral is a matter of algebra. Fist of all we
take the trace of operators as an integral over the field states:

Tr(Q̂) =

∫
Dφ0 〈φ0| Q̂ |φ0〉 . (1.16)

After that, we write all the exponentials of the type eTĤ as a product of NT terms
eεĤ (with T = NT ε) and then insert (NT −1) identity operators 1̂ =

∫
Dφk |φk〉 〈φk|.

If we keep in mind the following formulas:

Û |φ〉 = U [φ] |φ〉 ,

〈φ1|φ2〉 = δ(φ1 − φ2) ,

〈φ1| e−εT̂ |φ2〉 =

∫
Dπ 〈φ1| e−εT̂ |π〉 〈π|φ2〉 =

∫
Dπe−εT

∏

~n∈λ

√
a3

2π
eiπ(~n)(φ1(~n)−φ2(~n)) ,

∫ +∞

−∞
dxe−ax

2±ibx =

√
π

a
e−

b2

4a ,

is easy to show that the limit a, ε→ 0 and N,NT →∞ of the correlator

CT (t) = 〈O2(t)O1(0)〉 =
Tr
(
e−THetHO2e

−tHO1

)

Tr (e−TH)
, (1.17)

with O1 and O2 build from the field φ, is equal to:

∫
Dφ e−SE [φ]O2(t)O1(0)∫

Dφ e−SE [φ]
. (1.18)

Here, with abuse of notation, we wrote Dφ =
∏

n∈Λ dφ(n) . The time dependence of
the fields is induced by the decomposition of the time intervals in many infinitesimal
pieces,

φ(~n)k = φ(~n, nk) ,

having in mind now an hyper-cubic lattice

Λ = {(~n, n4)|~n ∈ Λ3, n4 = 0, ..., (NT − 1)} ,
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with periodic conditions on the fields. Note that this is valid for boson fields, whilst
for fermions we must use anti-periodic conditions (see eg. Appendix A.2 of [17] for
details).
The euclidean action SE is given by:

SE = εa3
∑

(~n,n4)∈Λ

1

2



(
φ(~n, n4 + 1)− φ(~n, n4)

ε

)2

+
3∑

j=1

(
φ(~n+~j, n4)− φ(~n−~j, n4)

2a

)2



(1.19)

+
m2

2
φ(~n, n4)2 + V (φ(~n, n4)) . (1.20)

The first thing one notices is that the discretization of derivatives is different for time

and spatial arguments, with the ε → 0 and a → 0 limits recovering the continuum
correlator.
At this point we can decide to adopt a different quantization procedure. We directly
use the form obtained for the correlator with the above slicing of the time interval
T , set ε = a, and forget about second quantization. In other words, in virtue of
the equivalence of space and time, we say the action is simply given by the limit for
a→ 0 of:

SE[φ] = a4
∑

n∈Λ

[
1

2

4∑

µ=1

(
φ(n+ eµ)− φ(n− eµ)

2a

)2

+
m2

2
φ(n)2 + V (φ(n))

]
,

(1.21)
with eµ being the unit vector in the µth direction.
For more general actions, correlators are given by averages on the degrees of freedom
of the latter, weighted with the Boltzmann factor e−SE .
With an eye to the interacting case, a thing it’s worth noting. In the lattice formu-
lation of a QFT, there are no infinities in integrands coming from loop diagrams.
There are two natural regulators: the lattice spacing a in the Ultraviolet (UV), and
the volume in the Infrared (IR) range of energies. This means that, in contrast to
the usual continuum formulation of interacting QFT, we don’t have to manually reg-
ulate our theory (e.g with dimensional regularization, Pauli-Villars, etc.). We still
have to introduce counterterms, which could be divergent in powers of a−1 and/or
log a, but everything we get from the simulation is finite.

Connection with statistical mechanics

Thanks to the Feynman’s interpretation of quantum mechanics, there’s a close con-
nection between statistical mechanics and QFT. This is of course important both
from a philosophical and computational point of view. The former consist in a
different perspective about phenomena occurring near the critical point of a macro-
scopic system, while the latter is the feasibility of numerical calculations with tested
techniques such as Monte Carlo algorithms.
In order to see it explicitly, we can compare the expression of the partition functions
for a LFT and the one for thermodynamical system at equilibrium in the canonical
ensemble (CE):

ZLGT =

∫
Dφe−SE [φ] ↔ ZCE = Tr(e−βH) . (1.22)
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ZCE can be, with the same insertions of the identity operator presented before,
written as an integral over some variables Φ:

ZCE =

∫
DΦexp

[
−
∫ β̃

0

dτ

∫

R3

d~xLE(Φ, ∂µΦ)

]

where β̃ = 1
T̃

, with T̃ being the temperature of the system5. The variable β̃ plays
the role of the time extension T of the universe simulated in a LGT. Hence, in
analogy with the above case, we say that a simulation of a LGT is made at finite
temperature in the sense that the time T is finite, and with 0-temperature limit we
mean T →∞.

Euclidean and Minkowsky spacetimes

To conclude the above discussion, let’s see the connection between the Euclidean
and Minkowsky metrics.
Consider a 2-point Green’s function for a scalar field in Minkowsky spacetime [1]:

〈Ω| T (φ
H

(x)φ
H

(y)) |Ω〉 = lim
T→∞(1−iε)

〈0| T
(
φI(x)φI(y)e−i

∫ T
−T dt

∫
R3 d~xH(int)

I

)
|0〉

〈0| T
(
e−i

∫ T
−T dt

∫
R3 d~xH(int)

I

)
|0〉

,

(1.23)
where the subscripts H and I correspond respectively to the Heisenberg and the
interaction picture. T is the time-ordered product, |Ω〉 is the vacuum in the inter-
acting theory while |0〉 is the one for the free theory. H(int) is the interaction part
of the Hamiltonian.
With the same procedure used previously, the path integral form one obtains is:

〈Ω| T (φ
H

(x)φ
H

(y)) |Ω〉 = lim
T→∞(1−iε)

∫
Dφ eiST [φ] φ(x)φ(y)∫

DφeiST [φ]
, (1.24)

where is understood ST [φ] =
∫ T
−T dt

′ ∫
R3 d~x

′L. The above expression represents the
sum of all connected diagrams with two legs starting from the points x and y:

x y

Now we consider the special case x0 = t and y0 = 0, and apply an analytic continua-
tion to the time variable. In absence of poles and assuming the fields vanish quickly
enough at infinity, we can make a Wick rotation for the variable t′ (i.e t′ → it′), and
recover the Euclidean correlator defined above. The metric ηµν becomes Euclidean6,
that is:

ηµν=̇




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 → (−δµν)=̇−




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , (1.25)

5We are adopting here the convention kB = 1.
6From which the name Euclidean correlators.
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and the above Green’s function assumes the form found previously. This result is
easily generalized to a generic n-point Green function. The reason why we use a
Euclidean metric is numerical, because with that the integrand does not oscillate
strongly in sign.

1.1.2 Spectral decomposition of Euclidean Correlators

Correlation functions (or Correlators) are expectation values of products of opera-
tors. They have a spectral decomposition coming from the operators used to build
them, and admit a representation as averages over field configurations in the path
integral formalism. Combining the information allows to extract matrix elements
and masses of the asymptotic states of the theory.
The generalization of eq. (1.17) defines a generic euclidean correlator at finite T :

CT (t) = 〈O2(t)O1(0)〉 =
Tr
(
e−THetHO2e

−tHO1

)

Tr (e−TH)
, (1.26)

where O1 and O2 are functionals of the degrees of freedom of the theory. In the
literature the operator at t = 0, O1, is called source and the one at t, O2, is the sink.
CT can be expressed in terms of path integrals analogously to eq. (1.18) and we
now derive the form of the spectral decomposition. Using the eigenstates of H, by
definition of trace the numerator and the denominator of such expression are then
given by:

{
Tr
(
e−(T−t)HO2e

−tHO1

)
=
∑

n

∑
m e
−(T−t)Ẽn 〈n|O2 |m〉 〈m|O1 |n〉 e−tẼm

Tr
(
e−TH

)
=
∑

n e
−TẼn ,

(1.27)

Factoring out e−Ẽ0T (Ẽ0 is the energy of the ground state, i.e. the vacuum) we get

the energies En = (Ẽn − Ẽ0) in the exponentials:

CT (t) =

∑
m

(
e−Emt 〈0|O2 |m〉 〈m|O1|0〉+

∑
n≥1 e

−(T−t)En 〈n|O2|m〉 e−Emt 〈m|O1|n〉
)

1 +
∑

n≥1 e
−TEn .

(1.28)
Note that these are indeed the energies of states we find in experiments. We then
have:

lim
T→∞

CT (t) =
∑

n

[
e−Ent 〈0|O2|n〉 〈n|O1|0〉+ e−En(T−t) 〈0|O1|n〉 〈n|O2|0〉

]
, (1.29)

where the second terms comes from the region of t� 1 (and T � 1 from the limit),
but (T − t) finite.
The above statement has a central role in LFT data analysis. It basically says,
once CT (t) has been calculated in some way, that its time behavior is given by a
linear combination of exponentials. It follows that considering larger and larger
times restricts the attention on the first contributions, since the others are quickly
suppressed (and drowned in the noise). In other words, for small times all states
contribute significantly, but as t increases one can extract the contribution of the
lightest states.
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A noteworthy case of the latter decomposition is when whe consider an operator
O = O2 = O†1. In this case the above limit is given by:

CT (t) ∼
∑

n

〈0|O|n〉 〈n|O†|0〉 e−Ent +
∑

n̄

〈0|O†|n̄〉 〈n̄|O|0〉 e−En̄(T−t) , (1.30)

where in the second term the contributions comes from the anti-particles |n̄〉.
From CPT theorem [18] we have En = En̄, giving the following asymptotic expan-
sion:

CT (t) ∼
∑

n

〈0|O|n〉 〈n|O†|0〉 e−Ent + 〈0|O†|n̄〉 〈n̄|O|0〉 e−En(T−t) . (1.31)

The terms ∼ e−Ent and ∼ e−En(T−t) are called respectively forward and backward
signals.
As an example, consider an operator annihilating the quantum numbers of the π+:
d̄γ5u. E1 will be the mass of the pion itself. The other Ens are the energies of states
with the same quantum numbers of O (in common with the pion). They can be the
masses of heavier particles or the energies of bound states.
Because of the statistical noise in the correlator, in many applications one is limited
to considering the lightest state or the few lightest ones. For this reason, it’s cus-
tomary in literature to find correlators named according to the particle giving the
leading (forward) exponential signal. For instance, in the example above, the inter-
polator d̄γ5u is said to generate the π+ correlator, denoted as Cπ+π− (the subscript
is the particle-antiparticle pair).

1.2 QCD on the lattice

1.2.1 Continuum QCD

The euclidean action of QCD is given by the sum of a fermionic and a gauge part:

S = SF + SG , (1.32)

where

SF =
∑

f

∫
d4xψ

(f)
(x)
(
γµ (∂µ + iAµ(x)) +m(f)

)
ψ(f)(x) , (1.33)

and

SG =
1

2g2

∫
d4xTr

[
Fµν Fµν

]
. (1.34)

ψ(f) is a shorthand for the f -flavor multi-index spinor of components ψ
(f)

α c. α is
the Dirac index and c is the color index.
Euclidean γ matrices are twins of Dirac ones:

γi = −iγDi γ4 = γD0 (1.35)

where the subscript D stands for “Dirac”. The gluon field is Aµ = Aaµt̂
a, where

the t̂as are the generators of SU(3) in their fundamental representation. g is the
bare coupling constant, and the Field strength tensor is Fµν = −i [Dµ, Dν ], where
Dµ = (∂µ + iAµ) is the covariant derivative.
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The trace is taken in the space of color and, since we can choose the elements of the
algebra su(3) so that they satisfy Tr(t̂at̂b) = 1

2
δab, the gauge part of the actions is a

sum over all gluons:

SG =
1

4g2

8∑

a=1

F (a)
µν F

(a)
µν . (1.36)

Let’s show how we arrive at the above Lagrangian. given its immediate generaliza-
tion, we consider the case of a single flavor of mass m. The starting point is the free
fermionic Lagrangian:

Lψ,ψ = ψ (γµ∂µ +m)ψ . (1.37)

In the static quark model, we are motivated to introduce the color as an additional
quantum number [19]. Hadrons are colorless combinations of valence quarks, and
assuming the existence of 3 colors is sufficient to reproduce the symmetries of baryons
wavefunctions. For this reason we are induced to think to an SU(3) symmetry.
Inspired by QED, we build a Yang-Mills Lagrangian according to the principle of
gauge symmetry under SU(3) local trasformations Ω̂(x) = eiθ

a(x)t̂a :

ψ(x)→ ψ′(x) = Ω̂(x)ψ(x) and ψ(x)→ ψ
′
(x) = ψ(x)Ω̂†(x) , (1.38)

We turn the ordinary derivatives into covariant ones,

∂µ → Dµ = ∂µ + iAµ ,

with Aµ trasforming as:

Aµ(x)→ A
′
µ(x) = Ω̂(x)Aµ(x)Ω̂†(x) + i

(
∂µΩ̂(x)

)
Ω̂†(x) , (1.39)

where is understood

Ω̂ψ =
3∑

b=1

Ω̂abψb .

The resulting Lagrangian,

LF = ψ (γµDµ +m)ψ , (1.40)

is then invariant under any local SU(3) transformation of the fields, and we interpret
it as the fermionic part.
One can also show that

Dµ → D
′
µ = Ω̂(x)DµΩ̂†(x) . (1.41)

Then, the only non-trivial contribution we can add to the Lagrangian, SO(4) in-
variant7, renormalizable and that doesn’t require the introduction of other fields is
8 :

LG =
1

2g2
Tr (FµνFµν) . (1.42)

This is the so called “gauge part” of the Lagrangian, and describes the behavior of
free gluons and their self interactions (which are absent in the abelian case of QCD).
The tree-level diagram of these interactions are shown in fig. (1.1).

7Note that in the euclidean the Lorentz group is replaced by the rotation group in 4 dimensions.
8To be precise, in principle also a term θ g2

32π2 εµνρσTr (FµνFρσ) could be included in the La-
grangian. However, experimentally the parameter θ is extremely small [20, 21], therefore this term
can be ignored in our discussion.
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Figure 1.1: In QCD gauge bosons present tree-level self interactions because its
gauge group is non-abelian. They are given by a 3 and a 4 gluons legs vertex.

From renormalization we know that the QCD running coupling decreases with en-
ergy [22]. This property leads to the interesting property of color confinement,
namely no isolated quark can be observed in experiments. The coupling is so strong
that separating two quarks in an hadron requires an energy so high that the pro-
duction of qq̄ pairs from the vacuum becomes favored instead of quark isolation.
This is not a theoretically proven property of QCD. However it is consistent with
the running coupling dependence on the exchanged impulse in a given process.

1.2.2 Lattice QCD Lagrangian

Despite of its simplicity in the continuum, QCD on the lattice is more complicated,
since it requires a careful analysis for fermions. Let’s now present a summary of the
formulas and results, leaving a more detailed discussion to the following sections:
(1.2.3) for gluons and (1.2.4) for fermions.
As usual, one starts from the free case for a fermion of mass m, whose action is:

S
(0)
F = a4

∑

n∈Λ

ψ(n)

(∑

µ

γµ
ψ(n+ eµ)− ψ(n− eµ)

2a
+mψ(n)

)
. (1.43)

Now we want to introduce a symmetry with respect to the SU(3) group. However,
since we are dealing with derivatives on the lattice, that is

∂µψ(x)→ ψ(x+ eµ)− ψ(x− eµ)

2a
,

we can immediately see that if we want to introduce a field Uµ(x) to get invariance
under local transformations, a solution is

SF [ψ, ψ, U ] = a4
∑

n∈Λ

ψ(n)

(∑

µ

γµ
Uµ(n)ψ(n+ eµ)− U−µ(n)ψ(n− eµ)

2a
+mψ(n)

)
,

(1.44)
where the transformation under the group is defined by:

ψ(n)→ ψ′(n) = Ω̂(n)ψ(n) and ψ(n)→ ψ
′
(n) = ψ(n)Ω̂†(n) , (1.45)
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Uµ(n)→ U
′
µ(n) = Ω̂(n)Uµ(n)Ω̂†(n+ eµ) , (1.46)

U−µ(n) := Uµ(n− eµ)† . (1.47)

Uµ(x) = exp(iaAµ(x)) is called link variable. As discussed later, it can be interpreted
as a field “connecting” the point x to its nearest neighbour at x+ aµ̂. In this sense
it is said that, on the lattice, quark fields live on the lattice sites while gauge field
on the links between them.
The above rules give SF [ψ

′
, ψ
′
, U
′
] = SF [ψ, ψ, U ], but it is not sufficient. For the

reasons discussed in sec. (1.2.4), the fermionic part of the Lagrangian is instead
given by the above expression plus an additional term:

SF [ψ, ψ, U ] =a4
∑

n1,n2∈Λ

ψ(n1)

[
4∑

µ=1

1

2
γµ(∇µ +∇∗µ)− ar

2
∇µ∇∗µ +m

]
ψ(n2)

=a4
∑

n1,n2∈Λ

ψ(n1)

[
4∑

µ=1

(γµ − r1)
Uµ(n1)δn1+eµ,n2 − U−µ(n1)δn−eµ,n2

2a
+

+

(
m+

4

a
r

)]
ψ(n2) ,

(1.48)

which of course must be summed over all different flavors. The parameter r is called
the Wilson parameter, and:

a∇µψ(x) = U †µ(x)ψ(x+ aµ̂)− ψ(x) (1.49)

∇∗µψ(x) = aUµ(x− aµ̂)ψ(x− aµ̂)− ψ(x) . (1.50)

This is the Wilson action for fermions. The additional mass term gives rise to 15
doublers (to be precise, 15 doublers for each flavor) which, in the limit a→ 0 become
so heavy that they decouple from the theory.
The gauge part of the action is constructed from the so called plaquette. In virtue
of its position in the Lagrangian (between ψ(n) and ψ(n+ eµ), to the field U(n) can
be assigned a “direction”, pointing from n to n+ eµ, as if the field is defined on the
link between the two points. With this interpretation, the so called plaquette,

Uµν(n) = Uµ(n)Uν(n+ eµ)U−µ(n+ eµ + eν)U−ν(n+ eν) , (1.51)

can be imagined as a closed loop variable on the lattice. As shown in sec. (1.2.3)
its trace is gauge invariant and can be used to build the gauge part of the action.
As we’ll see, the latter is:

SG =
2

g2

∑

n∈Λ

∑

µ<ν

Re [Tr (1− Uµν(n))] . (1.52)

The partition function is then given by:

Z =

∫
D[ψ, ψ]D[U ]e−SF [ψ,ψ,U ]−SG[U ] , (1.53)

where the measures are:

D[ψ, ψ] =
∏

f

∏

n∈Λ

∏

α

∏

c

dψ (f)
α cdψ

(f)

α c , (1.54)
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integrated as Grassmann numbers (see section (1.2.4)), and

D[U ] =
∏

n∈Λ

4∏

µ=1

dUµ(n) , (1.55)

with dUµ being the Haar measure (see [7]).
In a lattice simulation, what we do is the following. Since the fermionic part of the
path integral can be solved exactly (see sec. (1.2.4)), we find a set of configurations
for the link variables at each point, called gauge configurations. These are finite in
number, and importance sampling techniques are used in order to select those that
contribute the most [7]. The final aim is to average over them, approximating the
path integral and hance the desired functional.

1.2.3 Gauge fields on the lattice

Gauge fields on the lattice are defined differently from the continuum. They are link
variables connecting two nearest neighbors points and lying in the gauge group itself,
not of the corresponding Lie algebra. In this section we’ll see how the continuum
limit is recovered and build the gauge part (eq. (1.52)). For further details on the
derivation see [7].
First we remark that the ordered product

P [U ]n1→n2 = Uµ1(n1)Uµ2(n1 + µ1) · ... · Uµk(n2 − µk) , (1.56)

“connecting” the point n1 to the point n2 in a path of k steps transforms as follows:

P [U ]n1→n2 → P [U
′
]n1→n2 = Ω(n1)P [U ]n1→n2Ω(n2)† . (1.57)

The gauge transporter connecting two points x1 and x2 in the continuum,

G(x, y) = P
(
ei

∫
γ Aµ(x′)dx′µ

)
, (1.58)

where γ is a curve connecting x1 to x2, transforms in the same way (see [1] for a
proof). We then use its O(a) approximation as an ansatz for Uµ(n):

Uµ(n) = eiaAµ(n) = 1+ iaAµ(n) +O(a2) . (1.59)

In the continuum limit we recover the interaction term:

S
(int)
F = ia4

∑

n∈Λ

4∑

µ=1

(
ψ(n)γµAµ(n)ψ(n) +O(a)

)
. (1.60)

If we now consider a closed path (from n to n), the corresponding P [U ] goes to

Ω(n)P [U ]Ω(n)† .

From the cyclicity of the trace and the unitarity of the gauge group, the following
term in invariant:

1 and Tr (UµνUµν) .
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At this point we observe that:

Aν(n+ eµ) = Aν(n) + a∂µAν +O(a2)

and through the Baker-Campbell-Hausdorff expansion (see [23]),

eÂeB̂ = eÂ+B̂+ 1
2

[Â,B̂]+... , (1.61)

we can write the plaquette as a single exponential, whose 0th term in its Taylor
expansion cancels the 1. The first term contains the square of the field strength,
and the gauge part of the action on the lattice is then recovered up to O(a2) terms:

SG =
1

2g2
a4
∑

n∈Λ

∑

µν

(
Tr (FµνFµν) +O(a2)

)
. (1.62)

1.2.4 Fermions on the lattice

Grassmann variables and integration

In second quantization, fermionic fields anti-commute. They create states of iden-
tical particles with odd parity under exchange symmetry, in agreement with Fermi
statistics.
In order to be consistent when we quantize with path integral, we can’t use standard
integration but need another tool called Grassman integration [7, 1]. Fermionic fields
are Grassman variables {ψi}, satisfying the Grassmann algebra. Any two elements
anti-commute:

ψiψj = −ψjψi , (1.63)

(from which ψiψi = 0). It follows that any Taylor expansion of a function of these
variables contains only a finite number of terms, each one containing not more than
one variable of the family. For instance, if we are dealing with two Grassmann
variables ψ and ψ̄ we would have:

f(ψ, ψ̄) = a0 + a1ψ + a2ψ̄ + a12ψψ̄ . (1.64)

The derivatives satisfy:

∂ψi1 = 0, ∂ψiψj = δij, ∂ψi∂ψj = −∂ψj∂ψi , ∂ψi ◦ ψj = −ψj ◦ ∂ψi + δij . (1.65)

The integration is linear and satisfies:
∫
dNψ ∂ψiA = 0 ∀i , (1.66)

from which follows that the only contribution comes from the term (in the Taylor
expansion of A) containing all the members of the family once.
The measure over N variables can be written as:

dNψ = dψNdψN−1...dψ1 , (1.67)

with ∫
dψi1 = 0,

∫
dψiψi = 1,

∫
dψidψj = −

∫
dψjdψi . (1.68)
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Finally a linear change of variables through a matrixM , ψ
′
i =

∑
jMijψj, the measure

transforms like this:
dNψ = (detM)dNψ

′
. (1.69)

It can be shown that the gaussian integrals satisfy the following properties [1]. The
first is ∫

dψNdψNdψN−1dψN−1...dψ1dψ1e
−∑

i,j ψiMijψj = detM , (1.70)

telling us that:

ZF =

∫
DψDψ̄e−SF = −det(D[U ]) , (1.71)

where D[U ] is the Dirac operator.
The second is Wick’s theorem:

〈ψ(x1)ψ(y1)...ψ(xn)ψ(yn)〉F = (−1)n
∑

σ(P )

(−1)sgn(σ(P ))Dψ
−1(x1|yP1)...Dψ

−1(xn|yPn) .

(1.72)
This means that the expectation values over fermionic and gluonic fields of a generic
observable can be rewritten as:

〈O〉 = 〈〈O〉F 〉G
=

1

Z[U ]

∫
DU e−SG[U ] ZF [U ] 〈O〉F ,

(1.73)

where

〈O〉F =
1

ZF [U ]

∫
DψDψ̄e−SF [ψ,ψ̄,U ]O[ψ, ψ̄, U ] . (1.74)

The usefulness of the above representation lies in the fact that, at fixed gauge
configuration, 〈O〉F is solved exactly by Wick’s theorem.
In summary, LQCD simulation finds a set of gauge configurations, for each of them
calculates the fermionic determinant, finds the fermionic propagator by numerical
inversion of the Dirac operator, and combines the results in order to get the expec-
tation value of the operator.

Doubling problem

The naive quantization of fermions on the lattice is wrong, because it leads to the
so called doubling problem. This consists in the emergence of more than one pole in
the Dirac propagator. These poles correspond to the presence of additional (non-
physical) fermions (the doublers). To solve this, one must introduce lattice artifacts
such as the Wilson term, which gives an additional mass to the (unwanted) doublers
so that in the limit a→ 0 they decouple from the theory.
This is easily seen in the massless case. Let’s consider the SF :

SF [ψ, ψ, U ] =
∑

n1,n2∈Λ

ψ(n1)D(n1|n2)ψ(n2) , (1.75)

where a sum over color and Dirac indices is understood. Pretending we don’t know
yet about the Wilson term, the Dirac operator would be given by:

D(n1|n2) =
4∑

µ=1

γµ
Uµ(n1)δn1+eµ,n2 − U−µ(n1)δn1−eµ,n2

2a
+m . (1.76)
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If we calculate the Fourier transform of the lattice for the free case (i.e. Uµ(n) = 1)
we get:

D̃(p|q) = δ(p− q)D̃(p) = δ(p− q)
(
m+

i

a

4∑

µ=1

γµ sin (pµa)

)
. (1.77)

The inverse is:

D̃(p)−1 =
m− i

a

∑4
µ=1 γµ sin (pµa)

m2 + 1
a2

∑4
µ=1 sin (pµa)2 . (1.78)

Now consider the massless limit. D̃(p)−1 becomes:

− i
a

∑4
µ=1 γµ sin (pµa)

1
a2

∑4
µ=1 sin (pµa)2 . (1.79)

which indeed recovers the continuum form in the limit a→ 0,

−i/p
p2

, (1.80)

with the proper pole at p=(0,0,0,0).
On the lattice however, (24 − 1) more unwanted poles emerge: they are the ps with
components equal to 0 or π/a.
Since these poles are unphysical, we want to get rid of them. The solution suggested
by Wilson [22] is to add an ad hoc piece to the Dirac operator in momentum space:

D̃(p) =

(
m+

i

a

4∑

µ=1

γµ sin (pµa) +
1

a

4∑

µ=1

(1− cos (pµa))

)
. (1.81)

With this artifact the 15 unwanted poles disappear. The doublers have a mass given
by:

m+
2`

a
, (1.82)

where ` depends on the chosen doubler. The mass is given by the value of pµ for
which the “γ term” in D̃(p) vanishes, so that ` is the number of components of pµ
that are equal to π/a.
In the end, taking the inverse Fourier transform of the above expression one gets
the Dirac operator (for a fermion flavor of mass m) in position space:

D(n1|n2) =

(
m+

4

a

)
− 1

2a

4∑

µ=−4

(1− γµ)Uµ(n1)δn1+eµ,n2 , (1.83)

where
γ−µ = −γµ ∀µ . (1.84)

In compact notation, the we recover the action in position space of eq. (1.48):

SF [ψ, ψ̄] = a4
∑

n∈Λ

ψ(n)

[
4∑

µ=1

1

2
γµ(∇µ +∇∗µ)− ar

2
∇µ∇∗µ +m

]
ψ(n) (1.85)

where in front of the Wilson terms (i.e. the ones proportional to the Laplacian
operator ∇µ∇∗µ) we’ve put the Wilson coefficient r. The a factor in front of the
Laplacian shows that this term vanishes in the naive continuum limit, making the
sign of r irrelevant.
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Fermionic expectation values

As discussed before, euclidean correlators on the lattice can be expressed in the
compact notation of the path integral. For an observable O:

〈O[ψ, ψ̄, U ]〉 =

∫
DψDψ̄DUe−S[ψ,ψ̄,U ]O[ψ, ψ̄, U ]∫

DψDψ̄DUe−S[ψ,ψ̄,U ]
. (1.86)

The above equation is understood as follows. The integration over the fermionic
degrees of freedom is not an integral in the common sense, but over Grassmann
variables, hence must be done explicitly. This means applying Wick’s theorem, so
that what we really find is an average over gauge fields configurations.
In a Yang-Mills theory (as QCD) the action is written as:

S = SF [ψ, ψ̄, U ] + SG[U ] = ψ̄D[U ]ψ + SG[U ] , (1.87)

where D is the Dirac operator at a given gauge configuration. The integration with
respect to ψ and ψ̄ leads to a product of Dirac propagators and to the determinant
of D. We can write:

〈O〉 = 〈〈O〉F 〉G (1.88)

where:

〈O〉F =
1

ZF

∫
DψDψ̄e−SF [ψ,ψ̄,U ] =

∫
DψDψ̄e−SF [ψ,ψ̄,U ]O[ψ, ψ̄, U ]∫

DψDψ̄e−SF [ψ,ψ̄,U ]
. (1.89)

The latter expectation value is done explicitly in terms of Wick contractions. What
is left is a functional depending only on U , computable with Monte Carlo techniques
as an average of a given number of configurations of the gluon fields.
The previous formulas correspond to the so called dynamical fermions. In gen-
eral however, for numerical reasons is frequent to rely on approximations such as
quenching and partial quenching.
The quenched approximation consists in fixing ZF = det(D[U ]) = 1. This means
that we have only quark propagators source-to-source, source-to-sink and sink-to-
sink, hence no quark loop is considered. In other words, sea quarks are quenched
with respect to the gluons fields.
Partial quenching consists in considering two separate types of quarks in the La-
grangian, valence and sea, with different expressions for the Dirac operator. The
fermionic determinant is the product of their determinants:

ZF =
∏

f1∈val.

Df1 [U ]
∏

f2∈sea

Df2 [U ] , (1.90)

and in this approximation we set
∏

f1∈val.Df1 [U ] = 1 . This theory is therefore not
unitary, but gives the advantage that fermionic determinants are evaluated once and
for all after the generation of gauge configurations, and the p.d.f. is:

e−SG[U ]
∏

f∈sea

Df [U ] . (1.91)

We also have more fine tuning on the physical point. We can find propagators for
arbitrary values of the valence masses at the only cost of the inversion of the Dirac
operator. We can simulate more than one value for them and interpolate such that
we reproduce the physical point of hadronic observables.
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1.2.5 Twisted mass QCD

The definition of the action on the lattice is not unique. Since a requirement is that
in the limit a→ 0 discretization effects vanish, one can use equivalent actions which
differ up to terms which disappear in the continuum limit. The latter property
can be used to get improvements that can simplify the numerical computation. An
example is the twisted mass formulation. Since the data used in the present work
come from a simulation in a twisted mass setup, let’s now briefly present how this
lattice artifact plays a role in LQCD.
Twisted mass QCD (tmQCD) is a theory in which there are two degenerate quark
forming a doublet of flavors χ under the SU(2) isospin symmetry group. Further-
more it presents an additional mass term, purely imaginary and non trivial in the
flavor indices. The twisted mass action is

S(tm)[χ, χ, U ] = SG[U ] + S
(tm)
F [χ, χ, U ] , (1.92)

where:

S
(tm)
F [χ, χ, U ] = a4

∑

n1,n2∈Λ

χ(n2)
[
D(n2|n1) + iµγ5σ

3δn2,n1

]
χ(n1) , (1.93)

with σi being the Pauli matrices and D(n2|n1) the Dirac operator from eq. (1.83)
in the massless case. Without getting lost in technicalities, we limit ourselves to
observe the following. We define a polar mass M and a twist angle θ,

M =
√

(m−mc)2 + µ2, θ = arctan

(
µ

m−mc

)
, (1.94)

where the parameter mc is just the value for which θ = π/2. Passing from the so
called twisted basis, {χ, χ}, to the physical basis {ψ, ψ} via the change of variables

ψ = eiθγ5
σ3

2 χ and ψ = χeiθγ5
σ3

2 , (1.95)

we get an action in the usual form:

S
(tm)
F [χ, χ, U ]→ S

(tm)
F [ψ, ψ, U ] = a4

∑

n1,n2∈Λ

ψ(n2)
[
Dtw(n2|n1) +Mδn2,n1

]
ψ(n1) ,

(1.96)
with:

Dtw(n2|n1) =
4

a
e−iθγ5σ3

δn2,n1 −
1

2a

4∑

µ=−4

(e−iθγ5σ3 − γµ)Uµ(n2)δn2+eµ,n1 . (1.97)

Note that the twist is totally parametrized by the angle θ. θ = 0 corresponds to
zero twist, while θ = π

2
is the maximal (or full) twist. It can be shown [7] that the

maximal twist leads to an O(a) improvement, which is why the present technique is
indeed useful.
The change of variables is non anomalous, i.e.

D[χ, χ] = D[ψ, ψ] , (1.98)

and we observe that only the Wilson part of the Dirac operator gets rotated by the
twist. Then, naively, one can immediately convince himself that the twisting effects
vanish in the continuum limit.
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1.2.6 Renormalization on the lattice

Renormalization in QFTs

The usual formulation of QFTs is done in the continuum limit and infinite space-
time extension (see e.g. [1]). The action is obtained as S =

∫
d4xL[φ, ∂µφ], where

L[φ, ∂µφ] is the Lagrangian density. In euclidean spacetime the partition function
is:

Z[φ] =

∫
Dφ e−S . (1.99)

The n-points Green functions contain all the information about the theory, and are
found by the means of functional derivatives of Z[φ]. This formulation leads to
compact formulas, allows to preserve Lorentz invariance, and the SM interactions
manifest easily from gauge invariance.
However this is not strictly correct. In the above formula we jumped to the limit
immediately, but according to the path integral formalism that is only the last step.
This leads to the problems of UltraViolet (UV) and InfraRed (IR) divergences. The
first typically arise when we compute probability amplitudes beyond the tree level
approximation. Loops show divergent integral which have no physical significance.
The second show up when we consider the region of vanishing momenta in the
virtuality of initial and final states.
The solution to the above problem is to regularize the theory, i.e. defining an UV
and IR cutoffs. Any prediction is done computing everything in presence of these
cutoffs, and in the end sending the UV to ∞ and the IR to 0. When this procedure
works, the theory is renormalizable.
Note that the formulation of a QFT on the lattice is itself a regularization, with the
inverse of the lattice spacing a−1 and the volume providing respectively an UV and
IR regulators. In this sense LQCD is just a regularization of QCD.
The solution to UV divergences is done assuming the parameters in the Lagrangian
to not coincide with the physical values. They are called bare parameters and de-
pend on the UV cutoff. The physical (or renormalized) parameters are obtained
by the means of Renormalization Constants (RCs) and their displacements from
the bare ones (counterterms) compensates the UV divergences [1]. This procedure
introduces a dependence on the scale (an unphysical parameter usually called µ)
in the renormalized parameters. The Renormalization Group (RG) equations guar-
antee that in the end physical observables don’t depend on µ. The solution to IR
divergences comes from the remark that no experiment will ever have infinite res-
olution in energy. The presence of very low-energy (soft) particles in the initial or
final state won’t be detected. The correct calculation of any amplitude must include
the presence of arbitrarily soft particles under the IR cutoff, which indeed cancel
the divergences. This mechanism was understood by Block and Nordsieck [24] and
further generalized by Kinoshita [25], Lee and Nauenberg [26] in what is called the
KLN theorem.
On the lattice it’s possible to use both perturbative and non-perturbative Renor-
malization Schemes (RSs). A popular perturbative choice is the Modified minimal
Subtraction (MS), often chosen at the scale µ = 2 GeV. The latter comes from con-
tinuum dimensional regularization, but in principle could be implemented also on
the lattice. However, this is harder for technical reasons, and lattice calculations
often rely on non-perturbative schemes.
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The RI’-MOM scheme

We now discuss the non-perturbative and mass-independent scheme called RI’-MOM
(Regularization Independent and subtracted MOMentum) [27]. The RC for an op-
erator O in the MS and RI’-MOM are connected by:

ZMS
O (µ) = RO(µ)ZRI’-MOM

O (µ) , (1.100)

where R is a matching factor that can be found in perturbation theory (see e.g.
[28, 29]). This scheme is realized as follows. One fixes a gauge for gluon fields (e.g.
the Landau gauge [7]) and impose renormalization conditions directly on amputated
Green functions in momentum space. The latter are calculated in the chiral limit,
ensuring the mass-independence of the RCs. The method is supposed to work in
the window:

ΛQCD � µ� a−1 , (1.101)

in order to match with other non-perturbative schemes (µ� ΛQCD) and keep under
control discretization effects (a−1 � µ).
We are interested in the renormalization of quark bilinears JΓ(x) = q̄1(x)Γq2(x),
where 1 and 2 denote two different flavors and Γ is a product of gamma matrices.
The expectation value of the bare operator is:

JΓ(x)(a, g(a)) = 〈JΓ(x)〉a = 〈q̄1(x)Γq2(x)〉a , (1.102)

where g is the strong coupling. The renormalized operator is defined as

JRΓ (µ, g(µ)) = ZΓ(aµ, g(a)) JΓ(a, g(a)) , (1.103)

where the RC ZΓ makes JRΓ finite in the continuum limit a→ 0.
In the RI’-MOM we first consider the 2-point Green function in momentum space
with off-shell quark states,

GΓ(ap) =
1

V

∑

x,y

e−ip(x−y) 〈q1(x) (q̄1(0)Γq2(0)) q̄2(y)〉a , (1.104)

and build the amputated one from the quark propagators:

Gamp.
Γ (ap) = D1(ap)GΓ(ap)D2(ap) (1.105)

where Df (ap) is the Dirac operator in momentum space for the flavor f . Finally we
define:

Γ̂Γ(ap) =
1

12
Tr [PΓG

amp.
Γ (ap)] . (1.106)

The factor 1/12 is just an indices normalization factor (color×spin= 3 × 4 = 12).
PΓ is a projector (e.g. PΓ = 1, γ5, γµ/4 for Γ = 1, γ5, γµ) such that at tree-level
Gamp. = 1.
The renormalization condition is given by:

1 = Γ̂RΓ (ap, µ, g(µ))

∣∣∣∣
p2=µ2

= ZΓ(aµ, g(a))Zq(aµ, g(a))−1 Γ̂Γ(ap, a, g(a))

∣∣∣∣
p2=µ2

,

(1.107)
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where 9:

Zq(µa, g(a)) = − i

12
Tr

[
/pDf (ap)

p2

]∣∣∣∣
p2=µ2

(1.108)

The implementation of mass-independent renormalization schemes such as the RI’-
MOM requires dedicated lattice simulations. These are done calculating massive
estimators for the RCs for progressively smaller and smaller values of quark masses,
in order to control the extrapolation to the desired chiral limit ([30, 31]).

Quark mass renormalization

In tmLQCD we have 2 kinds of masses, twisted and untwisted. The first renormalizes
multiplicatively while the second shows also an additive term because of the explicit
breaking of chiral symmetry by the Wilson term [7]. Their renormalized values for
a quark q are respectively given by:

µRq (µ) = Zµ(aµ, µ)µq (1.109)

mR
q (µ) = Zm(aµ, µ) (mq −mc) . (1.110)

mc is the value of the bare parameter mq for which the renormalized mass vanishes.
The calculation of these RCs is eased by the axial and vector Ward Identities (WIs)
[32] 10 (for standard QCD see [34, 35]). In fact, LQCD with Ginsparg-Wilson (GW)
fermions (which is chirally symmetric in the continuum limit) is renormalizable
[36] . Adding mass terms does not break renormalizability, since the Lagrangian
would differ only for super-renormalizable interactions. For the WIs in tmLQCD
with GW fermions we find that the RCs of quark bilinears and quark masses are
flavor-independent and satisfy:

ZµZP = 1 , (1.111)

where the subscript corresponds to the bilinear q̄Γq. The notation is consistent with
the one found in literature, where the RCs are denoted by the name the currents
would have in the twisted basis:

S → 1 scalar (1.112)

P → γ5 psudo-scalar (1.113)

V → γµ vector (1.114)

A → γµγ5 axial (1.115)

1.3 Hadron spectroscopy

In this section we give an overview of hadron spectroscopy from lattice data, namely
how to construct hadronic correlators and extract hadrons masses from their time-
behavior.

9We mention that in the RI-MOM scheme [7], the difference is that Z−1
q is found by a momentum

derivative:

Zq(µa, g(a)) = − i

12
Tr

[
∂Df (ap)

∂/p

]∣∣∣∣
p2=µ2

10For a proof of the non-renormalization theorem for conserved currents see [33].
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1.3.1 Hadrons from quark fields

As discussed before, the construction of correlators is done in function of the quan-
tum numbers we want to isolate. First of all color confinement restricts the eigen-
states of the Hamiltonian to color singlets, so all hadronic interpolators are gauge
invariant appropriate combination of fermionic and gauge fields.
Discrete symmetries as C, P and T are often used and even isospin when u and d
are degenerate. The interpolator O corresponding to 2nd quantization annihilation
operator O is obtained replacing the latter with the respective fields of the path
integral.
Finally, the creation interpolator is the hermitian conjugate O† for bosons and or
Ō = O†γ4 for fermions.
The strategy is to express the correlator in terms of Wick contractions, i.e. eval-
uationg explicitly the expectation value over the fermionic part of the action, and
averaging over all gauge configurations. Quark propagators are replaced by their
numerical solution found with the given lattice prescription (e.g. Wilson fermions),
which contain all non the non-perturbative effects dependent on the gluon fields
configuration.

Mesonic correlators

Let’s consider for example the following interpolator:

O(x) = d(x)γ5u(x) . (1.116)

This has the parity of a pion and under C goes to O†. We interpret it as the field
annihilating a π− and creating a π+, i.e the pion interpolator.
In general, a mesonic interpolator has the form:

ψ
(f1)

Γψ(f2) , (1.117)

where Γ is a product of the γµs.
Quantum numbers are a consequence of the transformation properties of Γ and the
statistical properties of fermions as Grassman variables.
Using Wick’s theorem [7], and the following identity

ψ(...)ψ = Tr(ψψ(...)) , (1.118)

where the trace is taken with respect to the spinor indices, we can write the correlator
of a meson in terms of quark propagators, finding:

〈ψ(f1)
Γψ(f2)(n)ψ

(f2)
Γψ(f1)(m)〉F = −Tr

[
D−1
ψ(f1)(n|m)ΓD−1

ψ(f2)(n|m)Γ
]

. (1.119)

The correlator built in this way does not distinguish between particle and anti-
particle. This means that in the temporal dependence we have a backward signal
with the same energy for each forward one. We’ll see that this is not the case for
baryons projected to a given spatial parity.
We conclude saying that if the flavors f1 and f2 above are equal, the coreraltors
shows the so called disconnected contributions. These are terms containing a quark
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propagator from one point to itself, S(n|n). It is the case for instance of the π0, for
which Oπ0 = (1/

√
2)(ūu− d̄d). The correlator is [7]:

〈Oπ0(n)O†π0(m)〉
F

= −1

2
tr [ΓSu(n|m)ΓSu(m|n)]

+
1

2
tr [ΓSu(n|n)] tr [ΓSu(m|m)]

− 1

2
tr [ΓSu(n|n)] tr

[
ΓS−1

d (m|m)
]

+ (u↔ d) .

(1.120)

These are not the usual disconnected diagrams that cancel from the numerator
and denominator in the expression of Green functions [1], and in general must be
included. Recall that these propagators contain all possible non-perturbative effects
coming from the interaction with gluons. These are computationally expensive, and
in many applications, as in this work, they are neglected. This is justified by the
OZI suppression rule [37], according to which diagrams that can be separated in two
independent pieces cutting only gluonic lines are suppressed.

Baryonic correlators

Baryons have the quantum numbers of color singlet bound states of 3 quarks. The
isolation of these states requires interpolating operators of the following form [7]:

Bα(x) = εabc
(
qT1

a
(x)CΓ q b2 (x)

)
qc3 α(x) , (1.121)

where α is the free Dirac index (the spin is half-integer) and Γ is a product of
gamma matrices determining the quantum numbers of the baryon. The dirac singlet
qT1

a
(x)CΓ q b2 (x) is called diquark.

Here we are interested in the Ω(3/2+), the nucleons N(1/2+) and ∆(3/2+) reso-
nances, for which the interpolating operators are [38]:

Ω− εabcsa
[
sTb Cγµsc

]
(1.122)

p εabcua
[
uTb Cγ5dc

]
(1.123)

n εabcda
[
dTb Cγ5uc

]
(1.124)

∆++ εabcua
[
uTb Cγµuc

]
(1.125)

∆+ 1√
3
εabc

{
da
[
uTb Cγµuc

]
+ ua

[
dTb Cγµuc

]
+ ua

[
uTb Cγµdc

]}
(1.126)

∆0 1√
3
εabc

{
ua
[
dTb Cγµdc

]
+ da

[
uTb Cγµdc

]
+ da

[
dTb Cγµuc

]}
(1.127)

∆− εabcda
[
dTb Cγµdc

]
. (1.128)

where is understood the integration over spatial positions to set ~p = 0.
In order to enforce P = ±1, the field has to be multiplied by the corresponding
parity projector:

B(x)→ P±B(x) =
1

2
(1± γ4)B(x) . (1.129)

After some manipulation over the γ matrices, the correlator is given by:

CB(t) =
1

2
Tr
[
(1± γ4)

∑

~x

〈B(N)(x)B̄(N)(0)〉] . (1.130)
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For interpolators containing Cγµ in the diquark (e.g. Ω− and ∆s) we need to take
care of the spin projection. In fact, the interpolating operator Bα ∼ [qT1 Cγµq2]q3α

has both a Dirac index α and a Lorentz index µ. Under the Lorentz group it
transforms as ψµ α, i.e. (see page 232 of [14]):

(
1

2
,
1

2

)
⊗
[(

1

2
, 0

)
⊕
(

0,
1

2

)]
(1.131)

The
(

1
2
, 1

2

)
is the diquark (which is unitarily equivalent to a Lorentz vector), and(

1
2
, 0
)
⊕
(
0, 1

2

)
is the quark with a free Dirac index. Recalling that for SU(2)⊗SU(2)

(j1, j̄1)⊗ (j2, j̄2) ∼
⊕

|j1 − j2| ≤ j ≤ j1 + j2

|j̄1 − j̄2| ≤ j̄ ≤ j̄1 + j̄2

(j, j̄) , (1.132)

the above interpolator transforms as:
[(

1

2
,
1

2

)
⊗
(

1

2
, 0

)]
⊕
[(

1

2
,
1

2

)
⊗
(

0,
1

2

)]
=

(
1,

1

2

)
⊕
(

0,
1

2

)
⊕
(

1

2
, 1

)
⊕
(

1

2
, 0

)
.

(1.133)
The

(
1
2
, 1
)
⊕
(
1, 1

2

)
part is the Rarita-Schwinger field, which under the group of

spatial rotations transforms as the direct sum of a j = 3/2 and two j = 1/2. It
follows that a field with both one Dirac and one Lorentz free index leads to a total
of four j = 1/2 and one j = 3/2 excitation modes from the vacuum. In order to
isolate the j = 3/2 component in the correlator we make use of the spin projector

P
3/2
µν in momentum space [39]. In the rest frame and with euclidean metric the latter

has the following components:

P
3/2
00 = P

3/2
0i = P

3/2
i0 = 0

P
3/2
ij =

(
δij −

1

3
γiγj

)
.

(1.134)

As for the parity projector, P 3/2 can be brought to the left. If we define the following
notation

Cij = −
∑

~x

〈Tr
[
γiγj(1± γ4)Bi(x)B̄j(0)]〉 , (1.135)

the 2-point correlator of a spin 3/2± particle is given by:

C(t) =
1

2

∑

~x

〈Tr
[
P

3/2
ij (1± γ4)Bj(x)B̄i(0)]〉 =

1

3

∑

i

Cii +
1

6

∑

i 6=j
Cij (1.136)

In terms of quark fields, the correlator of eq. (1.130) is given by the difference of only
two connected contributions [7], the direct and exchange diagrams. If we denote with
P̂µν the product of needed projectors (parity and spin) and with (fgh) the flavors

in the interpolator B = εabcP̂ q
a
f [q

b
g
T
CΓµq

c
h] we get the following expressions.

For the a baryon with 3 quarks of the same flavor f we have:

C
(fff)

BB̄
= εa1b1c1εa2b2c2 {
− 2Tr[STf

a1 a2
(x|0)CΓµSf

b1 b2(x|0)CΓν ] Tr[P̂µνSf
c1 c2(x|0)]

+ 4Tr[Sf
a1 b2(x|0)P̂µνSf

b1 a2(x|0)CΓµS
T
f

c1 c2
(x|0)CΓν ] } .

(1.137)
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If 2 flavors are equal:

C
(ffg)

BB̄
= εa1b1c1εa2b2c2 {

Tr[STf
a1 a2

(x|0)CΓµSf
b1 b2(x|0)CΓν ] Tr[P̂µνSg

c1 c2(x|0)]

− Tr[Sf
a1 b2(x|0)P̂µνSf

b1 a2(x|0)CΓµS
T
g

c1 c2
(x|0)CΓν ] } .

(1.138)

Finally if all flavors are different:

C
(fgh)

BB̄
= εa1b1c1εa2b2c2 { Tr[STf

a1 a2
(x|0)CΓµSg

b1 b2(x|0)CΓν ] Tr[P̂µνSh
c1 c2(x|0)] } .

(1.139)

1.3.2 Spectral decomposition

As seen in section (1.1), we can built a euclidean correlator from two operators O1

and O2, such that its time dependence has the form:

C(t) =
∑

n

〈0|O2|n〉 〈n|O1|0〉 e−Ent + 〈0|O1|n̄〉 〈n̄|O2|0〉 e−En(T−t) . (1.140)

Here O2 is some operator with the same quantum numbers chosen for O†1. Let’s
now consider the case of bosonic interpolators 11. Quark bilinears are either real or
pure imaginary [40]. This applies to the correlator and, from linear independence,
to all forward and backward signals. Since, for bosonic fields, charge conjugation
coincides with hermitian conjugation up to a phase [41], we have:

C(t) =
∑

n

〈0|O2|n〉 〈n|O1|0〉
[
e−Ent + (−)pe−En(T−t)] . (1.141)

The factor (−)p accounts for the phases coming from charge conjugation of O1 and
O2, and the product of their signs under complex conjugation.
The same steps apply for operators projected to a definite spatial parity, where the
conjugation will be under CP (i.e. under time reversal T from CPT invariance [1]).
In QCD hadrons are eigenstates of the time reversal operator T , giving C(t) = (−)pC(−t)
for p = 0, 1. Moreover, from the fields boundary conditions, correlators are periodic
or anti-periodic: C(t) = ±C(t + nT ), with n ∈ Z. Therefore, in order to improve
the statistics in our simulations, for t ≤ T/2 we evaluated C(t), while for t > T/2
we calculated the correlator with the sink transformed under time reversal. Their
combination generates a correlator, defined for t ≤ T/2:

Clat.(t) =
1

2
[C(t) + (−)pC(−t)] =

1

2
[C(t)± (−)pC(T − t)]

=
∑

n

An
[
e−Ent ± (−)pe−En(T−t)] ,

(1.142)

where “lat.” means that this is the actual correlator considered in the analysis.
Later this subscript will be dropped, being implied if not explicitly said. The “+”
case is for mesonic sinks, while the “−” for baryons 12. The latter simply shifts

11Later we’ll discuss baryons and the issues connected to their backward signals.
12Recall that bosonic fields have periodic boundary conditions while for fermions they are anti-

periodic.
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p→ p+ 1, so that without loss of generality we can limit ourselves to study how to
analyze a correlator of the form:

C(t) =
∑

n

An
[
e−Ent + (−)pe−En(T−t)] . (1.143)

One has from one hand the numerical results of the simulation at each time, and
from the other a spectral decomposition. The equivalence of the two permits, at
least in principle, to extract all the eigenvalues of the Hamiltonian with the quantum
numbers of O.
This duality is traced back to the one between operators and functionals. In other
words, given the operators O† and O (expressed in terms of the second-quantization
fields), one must find the corresponding interpolators as functionals of the fields in
the Lagrangian and evaluate the path integral.
In order to extract the mass of a particular hadron we look for an interpolating field
with the quantum numbers of that particle. This operator will select only those
eigenstates, the lightest of which is that hadron (at rest) with a mass corresponding
to the E0 in the equation (1.141).
It’s worth mentioning this procedure works with certain restrictions. Given the im-
possibility of solving exactly the eigenvalue problem of the QCD Hamiltonian H, the
choice of the interpolators is made with the help of symmetries in the Hamiltonian
itself. In fact, these symmetry operators have a (not-complete) set of eigenstates in
common with H, and the wave function created by O† is indeed an approximation
of that hadronic state. This leads for example to the presence, in the expansion of
eq. (1.141), of excited and multi-particle states contribution.
The correlators considered in this thesis are, as they say, calculated at rest. This is
needed in order to reproduce the correct extrapolation of observables [42].
Hadronic states contained inside have then vanishing spatial momentum. This is
obtained evauating the correlator in momentum space by its Fourier transform and
setting ~p = ~0:

C(t) =
∑

~x

C(t, ~x) =
∑

~x

〈O(t, ~x)O†(0,~0)〉 . . (1.144)

In fact we recall that Pµ |0〉 = 0, and that for any field φ(x) the dependence on
position can be written as

φ(x) = eiP̂µx
µ

φ(0)e−iP̂µx
µ

, (1.145)

with P̂ µ being the momentum “four-operator”. Summing over ~x isolates the ~p = ~0
contribution.

Baryonic correlators

For mesonic correlators we saw that for each forward propagating signal there is
another with the same energy but propagating backwards.
The situation is different for baryons projected to a definite spatial parity because of
their spin structure. This fact leads to a substantial difference in the spectral decom-
position, which isn’t symmetric under the exchange of a forward with its backward
propagating signal. This means that given a state of energy Eλ propagating forward
in time, e−Eλt, the projection to a definite spatial parity kills the contribution coming
from the corresponding backward exponential e−Eλ(T−t), and viceversa. For instance
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in the correlator of the nucleon, 1
2

+
, the lightest state propagating backward is the

heavier parity partner N(1535), 1
2

−
.

The above property is seen noting that the replacement of the interpolating operator
B with γ5B doesn’t change the states in the correlator [43]:

〈B(t, ~x) B̄(0,~0)〉 → −γ5 〈B(t, ~x) B̄(0,~0)〉 γ5 . (1.146)

This means that in the spectral decomposition are present the states with both
parities [44]. According to the what found in sec. (1.1), for T → ∞ the Fourier
representations at spatial momentum ~p is:

CT (t, ~p) = 〈B(t, ~p) B̄(0,~0)〉T
=
∑

E±

1

2E±

[
|a±|2(/p±M±)e−E±t + |ā±|2(/p∓ M̄±)e−Ē±(T−t)

]
,

(1.147)

where we explicitly separated the positive and negative parity states. The “bars”
indicate that the quantity is relative to the anti-particle annihilated by B. The
matrix elements follow from Lorentz invariance and are defined as:

〈0|B|B+
r 〉 = a+ur(p) 〈B̄+

r |B|0〉 = ā+vr(p)

〈0|B|B−r 〉 = a−γ5ur(p) 〈B̄−r |B|0〉 = ā−γ5vr(p)
(1.148)

In the rest frame we get:

CT (t, ~p = ~0) =
∑

E±

1

2

[
|a±|2(γ4 ± 1)e−E±t + |ā±|2(γ4 ∓ 1)e−E±(T−t) ] . (1.149)

When P± selects spatial parity, some contribution are projected out. For instance
if P = P+ = (1 + γ4)/2 at finite T we get:

CT (t) =
∑

λ+

Aλ+e
−Eλ+

t +
∑

λ−

Aλ−e
−Eλ− (T−t) . (1.150)

The sums are respectively over all positive (λ+) and negative parity (λ−) eigenstates,
and shows the result claimed above. The derivation for P = P− = (1− γ4)/2 is
analogous. Note that we used the fact that E± = Ē± by the CPT theorem [18].
For the baryons studied in this work the lightest forward signal is much lighter
than the lightest state with opposite parity. For this reason when we extract the
mass of the lightest state from the correlator, we assume the asymptotic behavior
∼ A+exp(−E+t), with |E+〉 being the lightest positive parity state. We restrict
ourselves to large times, but far enough from T so that the leading backward signal
can be safely neglected.

1.3.3 Effective mass curve

In euclidean lattice correlators the effect of heavy states is important at small time,
where their contributions are massed in a small temporal window. For this reason,
in a many lattice analyses one is interested (and often restricted) in finding the
lightest (ground) state of correlators, being the most feasible to isolate. In fact, in
the time evolution the latter is the last signal that decays into the noise.
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There are various feasible techniques that find the ground state. Here we used the
fit to a constant of the effective mass curve, together with the leading exponential
approximation and the ODE method [45] as consistency checks.
The first consists in finding the asymptotic limit of the effective mass, a time-
dependent curve approaching a constant value equal to the mass of the lightest
state in the correlator. In absence of a definite backward signal for each forward
propagating state, the latter can be evaluated as:

Meff(t) = log
C(t)

C(t+ 1)
. (1.151)

Its asymptotic limit is found fitting to a constant in the plateau region, i.e. the
range in which the data points are constant compatibly with the uncertainty.
This definition is valid in absence of a backward signal. In the latter case (mesons),
if (−)p is the temporal parity of the correlator, the leading behavior of C(t) is:

C(t) = A0[e−E0t + (−)pe−E0t] , (1.152)

and we can find meff(t) by a numerically solution the implicit relation [7]:

C(t)

C(t+ a)
=





cosh (meff(t)·(t−T/2))
cosh (meff(t)·(t+1−T/2))

p = 0

sinh (meff(t)·(t−T/2))
sinh (meff(t)·(t+1−T/2))

p = 1

. (1.153)

The second method is similar. One assumes the following ansatz

C(t) =

{
A0 [e−E0t + (−)p e−E0(T−t)] mesons

A0 e
−E0t baryons

, (1.154)

and makes a leading exponential fit in the plateau range found from Meff(t).
Finally the third one is independent of the range, and can then be used also as a
consistency check for the previous choices of the plateau. It consists in finding the
roots of a polynomial whose coefficients are the ones of a differential equation for
the correlator and its lattice derivatives. In sec. (1.3.4) are discussed the details of
its implementation.

1.3.4 ODE method

In this section is briefly discussed a technique for the extracion of masses and am-
plitudes from generic lattice correlators developed in [45].
The method relies on a discrete Ordinary Differential Equation through the inver-
sion of appropriate mass and amplitude matrices. In the analysis it was used as a
consistency check for the choice of the plateau regions used in the single exponential
fits and constant fits of the effective mass curves.

The ODE method

Let’s start by considering a correlator C(t) composed by N (+) exponential signals
in the forward time direction and N (−) exponentials in the backward one:

C(t) =
N(+)∑

i=1

A
(+)
i e−M

(+)
i t +

N(−)∑

j=1

A
(−)
j e−M

(−)
j (T−t), (1.155)
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where T is the temporal extension of the lattice. In Eq. (1.155) the masses M
(+)
i

and M
(−)
j are nonnegative real numbers and the amplitudes A

(+)
i and A

(−)
j are real

numbers.
The correlator C(t) is supposed to be known at discretized values of the time distance
t, namely t ≡ na with n = 1, ... NT , where a is the lattice spacing and NT ≡
T/a is the number of lattice points in the temporal direction. In lattice QCD (or
QCD+QED) simulations a correlator of the form (1.155) may correspond, e.g., to
the case of a nucleonic correlator, where the backward signals correspond to negative
parity partners of the nucleon and its excitations.
For sake of simplicity we will refer to the quantities M

(+)
i and M

(−)
j as masses. It

is however clear that Eq. (1.155) may correspond also to the case of correlation
functions for moving hadrons by simply replacing hadron masses with energies.
The correlator (1.155) can be rewritten as

C(t = na) ≡ C(0)
n =

N∑

m=1

Ãme
−aM̃mn (1.156)

with N ≡ N (+) +N (−) and

M̃m = M
(+)
i , Ãm = A

(+)
i (1.157)

in the case of forward signals (m = i = 1, ... N (+)) and

M̃m = −M (−)
j , Ãm = A

(−)
j e−M

(−)
j T (1.158)

for backward signals (m = N (+) + j = N (+) + 1, ... N (+) +N (−)).
Let’s now consider the discretized (symmetric) time derivative

C(1)
n ≡

1

2

[
C

(0)
n+1 − C(0)

n−1

]
=

N∑

m=1

Ãm zm e
−aM̃mn , (1.159)

where
zm ≡ −sinh(aM̃m) . (1.160)

By repeating the application of the differential operation (1.159) one gets

C(k)
n =

1

2

[
C

(k−1)
n+1 − C(k−1)

n−1

]
=

N∑

m=1

Ãm(zm)ke−aM̃mn . (1.161)

We also assume that the correlator C
(0)
n is known, for each time distance, in terms of a

number of jackknife or bootstrap events. Its statistical error σ
(0)
n can be correspond-

ingly evaluated. Starting from the correlator C
(0)
n , the sequence of the correlators

C
(k)
n with k = 1, ... N can be evaluated for each jackknife or bootstrap event together

with their statistical errors σ
(k)
n . It is understood that what follows applies for each

single jackknife or bootstrap event.
The values of the correlator C

(0)
n are provided in the range n = [1, NT ], while the

derivatives C
(k)
n for k = 1, .. N can be evaluated only in the range n = [k+1, NT−k].

Outside this range we put C
(k)
n = 0.
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Note that, because of the presence of the factor (zm)k in Eq. (1.161), at a fixed
value of n the impact of the signals with higher masses increase as the order k of
the derivative C

(k)
n increases.

The central step in our procedure consists in introducing N + 1 real coefficients xk
(k = 0, 1, ... N) and considering the quantity

N∑

k=0

xkC
(k)
n =

N∑

m=1

Ãm

[
N∑

k=0

xkz
k
m

]
e−aM̃mn =

N∑

m=1

ÃmPN(zm)e−aM̃mn , (1.162)

where the polynomial PN(z) of degree N is given by

PN(z) ≡
N∑

k=0

xkz
k . (1.163)

The above polynomial has in general N roots depending on the coefficients xk. If
the latter ones (which, we stress, are independent on n) are chosen so that the
polynomial PN(z) has its roots at z = zm given by Eq. (1.160), then the condition

N∑

k=0

xkC
(k)
n = 0 (1.164)

holds for any value of n. Note that the roots zm of the polynomial PN(z) depend

only on the masses M̃m and are independent on the amplitudes Ãm. Moreover, from
Eq. (1.160) it follows that the roots zm are real numbers, positive for backward
signals and negative for forward ones.
Equation (1.164) is a typical ordinary (linear) differential equation (ODE). Usually
the coefficients xk are given and, therefore, the solution of Eq. (1.164) corresponds to

Eq. (1.156) with the masses M̃m given by the roots (1.160) of the polynomial PN(z)

and with the amplitudes Ãm depending on a suitable number of initial conditions.
Here we are interested in the inverse problem: starting from the known values of
the correlator C

(0)
n and its derivatives we want to determine the coefficients xk of the

polynomial (1.163) having its roots at z = zm. The procedure, which hereafter will
be referred to as the ODE algorithm, is as follows.
Without any loss of generality we can put xN = 1 so that

PN(z) ≡
N∑

k=0

xkz
k =

N−1∑

k=0

xkz
k + zN =

N∏

m=1

(z − zm) (1.165)

and Eq. (1.164) can be rewritten as

N−1∑

k=0

xkC
(k)
n = −C(N)

n . (1.166)

The problem is to solve Eq. (1.166) for the N unknowns xk (k = 0, 1, ..., N − 1).
Our aim is to extract the multiple exponential signals in the correlator (1.156) using
as input the knowledge of the correlator in a given range of values of n, which
eventually can span the full temporal extension [1, NT ]. Therefore, we multiply

Eq. (1.166) by a set of N functions R
(k′)
n with k′ = 0, 1, ... (N − 1) and sum over n
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in a given range from nmin to nmax. Since the largest range in which the derivatives
C

(k)
n can be calculated is n = [k + 1, NT − k], we put directly nmin = N + 1 and

nmax = NT − N , so that all the values of the correlator (1.156) in the full range
[1, NT ] are taken into account. We get the following system of inhomogeneous linear
equations

N−1∑

k=0

Mk′kxk = Vk′ , (1.167)

where the N ×N mass matrix M is given by

Mk′k ≡
NT−N∑

n=N+1

R(k′)
n C(k)

n , (1.168)

and the vector V with dimension N by

Vk′ ≡ −
NT−N∑

n=N+1

R(k′)
n C(N)

n . (1.169)

The choice of the functions R
(k′)
n is in principle arbitrary, provided it leads to a

non-singular mass matrix M . We have explored different choices for R
(k′)
n . Simple

and natural choices are either

R(k′)
n =

C
(k′)
n

[σ
(0)
n ]2

, (1.170)

where σ
(0)
n is the uncertainty of the correlator (1.156), or

R(k′)
n =

C
(k′)
n

[σ
(k′)
n ]2

, (1.171)

where σ
(k′)
n is the uncertainty of the derivative (1.161). A more sophisticated choice

is
R(k′)
n = D

(0)
nn′C

(k′)
n′ , (1.172)

where D
(0)
nn′ is the inverse of the covariance matrix of the correlator (1.156). We

have checked that the performance of the ODE algorithm is not changed by the
three choices (1.170-1.172). In what follows we will use the definition (1.170). We
point out that any autocorrelation between different values of n is taken into account
by the use of the jackknife (bootstrap) procedure.
Thus, we rewrite Eqs. (1.168) and (1.169) as

Mk′k ≡
NT−N∑

n=N+1

C
(k′)
n C

(k)
n

[σ
(0)
n ]2

, (1.173)

and

Vk′ ≡ −
NT−N∑

n=N+1

C
(k′)
n C

(N)
n

[σ
(0)
n ]2

. (1.174)
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Equations (1.173) and (1.174) are evaluated starting from the correlator (1.156)
and its derivatives (1.161) for each jackknife or bootstrap event. Note that using

the definition (1.170) for R
(k′)
n the system of linear equations (1.167) corresponds to

minimize the variable χ2
M defined as

χ2
M ≡

NT−N∑

n=N+1

1

[σ
(0)
n ]2

[
N∑

k′=0

xk′C
(k′)
n

]2

, (1.175)

i.e. to the constraints ∂χ2
M/∂xk = 0 for k = 0, 1, ...(N − 1) with xN = 1.

For a non-singular matrix M the coefficients xk can be determined by inverting the
matrix M :

xk =
N−1∑

k′=0

M−1
kk′ Vk′ . (1.176)

Once the coefficients xk are known, the roots of the polynomial PN(z) can be cal-
culated, and thus the masses of the forward and backward exponential signals in
lattice units, aM

(+)
i and aM

(−)
j , can be determined from Eq. (1.160).

The last step is the determination of the amplitudes Ãm. To this end we introduce
a χ2-variable defined as

χ2 ≡
N∑

k=0

χ2
k , (1.177)

χ2
k ≡

NT−k∑

n=k+1

(
C

(k)
n −

∑N
m=1 Ãmz

k
me
−aM̃mn

σ
(k)
n

)2

, (1.178)

where σ
(k)
n is the statistical error of the derivative C

(k)
n . Then, we impose the min-

imization condition ∂χ2/∂Ãm = 0, which leads to the following linear system of
equations

N∑

m′=1

Amm′Ãm′ = Wm , (1.179)

where

Amm′ ≡
N∑

k=0

NT−k∑

n=k+1

(zmzm′)
k e
−a(M̃m+M̃m′ )n

[σ
(k)
n ]2

, (1.180)

Wm ≡
N∑

k=0

NT−k∑

n=k+1

(zm)k
e−aM̃mnC

(k)
n

[σ
(k)
n ]2

. (1.181)

The solution of the linear equation (1.179) is given by

Ãm =
N∑

m′=1

A−1
mm′Wm′ , (1.182)

which allows to extract the forward and backward amplitudes, A
(+)
i and A

(−)
j using

Eqs. (1.157-1.158).
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We stress that the choice of the χ2-variable given by Eqs. (1.177-1.178) is not unique
and, consequently, also the definitions of the amplitude matrix (1.180) and vec-
tor (1.181). For instance, one can limit the sum in Eq. (1.177) to the first term

k = 0 without involving the derivatives C
(k)
n with k > 0. Correspondingly also in

Eqs. (1.180-1.181) the sum over k should be limited to the first term k = 0 only.
The key feature of the ODE method is the inversion of the mass and amplitude
matrices, given respectively by Eqs. (1.173) and (1.180). In the following subsections
we want to illustrate how the ODE method can be applied to specific forms of the
correlation functions typically encountered in QCD (or QCD+QED) simulations on
the lattice.

1.4 Systematic effects

We have seen that lattice correlation functions are calculated as:

〈O(t)O(0)〉 =
1

ZT

∫
D[ψ, ψ]D[U ]e−SEO(t)O(0) . (1.183)

In the actual calculation, the only parameters “seen” by the numerical simulation
are β = 6

g2 (for the gauge part), the bare masses of particles multiplied by the lattice
constant a and of course the number of points of the lattice. In the simulation the set
of configurations together with the set of parameters is called ensemble. However,
any information about the “standard” bare parameters (in physical units) is hidden
behind the lattice constant itself, which is not directly accessible.
In general, all the observables we get from lattice correlators are in lattice units, i.e.
multiplied by some power of a such that they are dimensionless. For instance, the
energies found from the large time behavior of correlators only leads to the product
aEn

13. These observables can be thought to be given in units of an intrinsic scale
of the system, independent of the other parameters in the Lagrangian but the bare
strong coupling g. This quantity is not a parameter in the Lagrangian so that an
observable must be “sacrified” to set the scale (loosing predictivity on it). The
natural choice is to identify this scale indeed with a, the lattice spacing of our grid.
Once we have fixed the scale, these quantities suffer from the following systematic
effects:

• Finite Size Effects (FSEs), due to the finite temporal extent T and volume
V . In most cases one works with hypercubic lattices, V = L× L× L, so this
means finite L. These vanish in the limit T, L → ∞, and are corrected with
asymptotic formulas found in effective models. In the analysis one often re-
lies on ensembles which differ only for their size, as the case of our A40.XX
ensembles. In our ensembles, T = 2L, so that we neglect FSEs coming from
T . The condition T � L is common to many lattice calculations, easing the
convergence to the asymptotic spectral decomposition.

13To be precise, the number one finds is of course dimensionless and, since the convention is

1 = ~ = c ,

what we really handle with are the products aEn

~c .
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• Discretization effects, coming from the finiteness of a and vanishing in the limit
a→ 0. The latter come both from the observable in question and the one used
to set the scale of the system. The limit removes the doublers and recovers
the continuity of spacetime (e.g., for periodic boudary conditions, the lattice
Λ becomes a dense torus T4). A typical simulation has a ∼ (10−1 − 10−2) fm.

It’s frequent to them into account with a polynomial dependence. In the case
of tmQCD, one first reaches the condition of maximal twist. This guarantees
the O(a) improvement, allowing to start from O(a2).

• Distance from the physical values, because quarks masses are often not tuned
to their physical values in order to reduce the cost of the simulation [46].
This means that the values of our observables are unphysical and must be
extrapolated to the physical point (p.p.), namely the point in parameter space
corresponding to the experimental values. In order to find it, we choose a set
of observables which we compare with the experiment. The extrapolation of
all the others to this point gives a prediction for their experimental values.

In the literature this procedure is typically expressed in terms of mass eigen-
states. For instance, the p.p.s of the light quark mass and the one of M2

π are
used as synonyms, given the weak dependence of the latter from the other
quark flavors. In many appolications the functional forms chosen to fit the
data are inspired to the results of Chiral Perturbation Theory (ChPT), valid
in the limit of small quark masses.

• It happens that, for some calculations, there exist contributions which are
suppressed at the p.p. . These remain systematic effects, and are the hardest
to correct since often based on estimates of negligibility. It is the case of
“disconnected” diagrams suppressed according to the OZI rule [37].

Examples in LQCD are the quenching and partial quenching approximations
(see sec. (1.2.4)). They provide numerical advantage at the price of breaking
the unitarity of the theory.

The first neglects sea quark loops, and is justified or heavy quark masses. At
the path integral level it is implemented neglecting the fermionic determinant.

The second imposes different masses for the valence and sea quarks. The
motivation behind it is that the p.p. of bare quark masses is determined
necessarily with some uncertainty. In order propagate it correctly, it’s useful
to evaluate the fermionic determinant once and for all with some given masses,
and over the resulting gauge configurations evaluate fermionic propagators for
valence quark masses near those values. The interpolation among those points
allows for a control of this systematic effect and reach the p.p. .

1.4.1 Physical point and ChPT

Many lattice calculations are done not at the physical point, that is to say with
bare quark masses not coinciding with the values that reproduce the experimental
measures. This choice is led by the cost of the simulation, which decreases with the
pion mass. The latter is typically parametrized as [47] :

cost ∝M−zπ
π

(
L

a

)zL 1

aza
, (1.184)
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where zπ, zL, za and the overall constant are determined empirically. Typical values
are 3 < zπ < 4, zL = 4, za = 2. Increasing the pion mass, i.e. the light quark
masses, reduces the cost of the simulation.
In this case a proper lattice prediction needs more ensembles with different values
of the pion mass, among which extrapolate to the physical point.
The extrapolation can be done using phenomenological models, which take into
account the dependence on the light quark masses. The most popular choice is Chiral
perturbation theory (ChPT), an effective field theory based on the approximate
chiral symmetry of QCD. In the limit mu = md = m` = 0, the Lagrangian exhibits
an SU(2)L×SU(2)R symmetry under left (L) and right (R) chiral rotations [48]. This
symmetry is spontaneously broken to SU(2)I , meaning that there exist 3 Nambu-
Goldstone bosons 14 . Their fields have a non vanishing vacuum expectation value
(VEV), so must have spin 0 in order to not break Lorentz invariance 15 Since the 3
pions are the lightest hadrons we interpret them as these bosons, which acquire a
mass from mu and md.
This property of QCD can be used to build an effective field theory (EFT), simmetric
under SU(2), in which we expand over the chiral background with respect to the pion
mass and powers of the momenta. This EFT is called Chiral Perturbation Theory
(ChPT or χPT), and is expected to give an reasonably approximate description of
hadron dynamics at low energies. In this regime quarks and gluons are confined
inside hadrons, and pions behave as pseudo-Nambu-Goldstone bosons as indicated
by their experimental masses which are much smaller than the other hadrons.
ChPT is non-renormalizable, and contains a set of low energy constants multiplying
the operators in the Lagrangian. The latter are fixed from the experiment or even
lattice calculations, in order to get predictions on other hadronic observables. In
lattice extrapolations this may be used as follows (as done in the present work).
One considers the ChPT prediction for the dependence on the pion mass, stopping
at a given order accordingly to the precision and position of data points. Since the
ChPT predistion is expected to be near the physical dependence, the low energy
constants can be left free to vary as parameters of the fit, starting from values near
the ChPT prediction.
In the analysis of this work we adopted the above technique, combining the formulas
of ChPT with the dependence on the volume, discussed in the following section.

1.4.2 Finite Volume effects on hadronic observables

Here we discuss the rationale and basic results on Finite Size Effects in QCD. As
we’ll see, this is applied in our analysis in the extrapolation of physical observables.
When we do a Lattice simulation of a system we build a grid of points in our space
and fix their relative distancing. With a Lattice gauge theory these are the spacetime
points in a 4-dimensional space.
These numbers have to be finite for a numerical simulation and the universe is
limited in size. Boundary conditions must be imposed, causing the presence of the
so called Finite Size Effects (FSE) in the observables.

14They are pseudo-Nambu-Goldstone bosons, since chiral symmetry is weakly broken by quark
masses.

15If a field of spin s > 0 had a VEV v 6= 0, the latter would be a fixed value and trivially
transform under the Lorentz group, while the field would not.
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In most lattice simulations it is chosen an hyper-rectangular grid with fixed lattice
spacing: the points are distributed along orthogonal directions with the same dis-
tance a between any two nearest neighbors. In this case the extension is given by
T × Lx × Ly × Lz, where each dimension is given by the product of a times the
number of points in that direction.
In most cases a spatial hyper-cubic configuration is adopted, namely L = Lx = Ly =
Lz, so that spatial isotropy is restored in the continuum limit. The total size is then
T × V = T × L3.
FSEs are then usually divided in two contributions, coming from the finiteness
of T and V . The first are often called finite temperature effects, in analogy with
the statistical mechanics partition function. The T → ∞ limit is called the zero
temperature limit, since T is inversely proportional to the temperature. The effects
of a finite V are called finite volume effects (FVE).
The total number of points of the lattice are often distributed so that T is larger than
L. This is done in order to improve the convergence of the spectral decomposition
in the time variable.
In sec. (1.3.2) is shown how a finite T leads to the presence of backward signals
and to the modification of amplitudes. The latter differ from the T → ∞ limit by
corrections ∼ e−MT , where M is the mass of the hadron.
In the present work we deal with ensembles for which T = 2L, so we neglect the
latter effects with respect to the FVEs.
The treatment of FVEs is widely discussed in literature (see e.g. [49], [50], [51],
[52], [53]), for mainly 2 reasons. The volume dependence of observables is useful not
only to correct these systematic effects, but also to extract physical information. In
short, in those formulas appear infinite-volume limits of other observables such as
form factors, scattering amplitudes, etc. The analysis of volume dependence can
then lead to the prediction of these quantities.
These concepts are more easily understood in the framework of finite volume ChPT,
whose leading contributions will be briefly discussed in a moment. For the purpose
of the present work, we are interested in understanding how the volume dependence
arises in hadron masses in the so called p-regime, i.e. ML� 1 for all the eigenstates
M of the Hamiltonian.
In a finite volume with periodic boundary conditions, the pion propagator in the
p-regime is given in terms of is infinite volume version [54, 55]:

∆L(x) =
∑

nµ

∫
d4k

(2π)4
G(k)eikµ(xµ+nµLµ) =

∑

nµ

∆(x+ nµLµ) , (1.185)

where G is the pion propagator: G(k)−1 = k2 +m2. The derivation is analogous to
the one of [56] for the thermal propagator already mentioned in sec. (1.3.2).
From the saddle point approximation of the so called heat-kernel form,

∆(x) =

∫
d4k

(2π)4

eikx

k2 +m2
=

m2

16π2

∫
dα exp

(
− 1

α
− αm2x2

4

)
, (1.186)

we get [54]:

∆(x) ≈ m2

(4π)2

√
8π

(mx)3/2
e−mx . (1.187)
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In ChPT quantum fluctuations are dominated by pion loops. The behavior of a
typical observable (such as a mass) O is [54]:

O(L) = O0

(
1 +

C0

f 2
I1(L,m)

)
. (1.188)

O0 and C0 are constants and

I1(L,m) =
∑

nµ

∆L(nµLµ) . (1.189)

At Leading Order we get:

O(L) = O0


1 +

C0

f 2

∑

nµ 6=0

∆(nµLµ)


 . (1.190)

From eq. (1.187) we see that these FVEs are exponentially. It must be said that the
above discussion applies to the eigenstates of the Hamiltonian. When when we deal
with unstable particles (able to decay into n-particle states) also power-law FVEs
enter in the energy shift. For more details see for instance [51, 57].
The above derivation shows how a particle loop induces FVEs. In general, all
the particles in the theory take part. In practice however, given the exponential
suppression, it is often sufficient to consider only the lightest states that contribute.
For this reason, in QCD the main effect comes from π, K and D masses. When
pion loops are allowed at LO, the latter two are subdominant.
Among the ensembles considered in this work, there are 5 which are equal in all
respects but for the volume size. Later in the analysis we’ll use them in order to
check and control systematic FVEs according to the asymptotic expansion of ChPT
results.

1.5 Numerical issues on the lattice

1.5.1 Signal-to-noise ratio in lattice correlators

In a lattice field theory with degrees of freedom Φ, the vacuum expectation value of
an operator is given by:

〈O[Φ]〉 =

∫
DΦO[Φ] e−S[Φ]

∫
DΦ e−S[Φ]

.

In QCD we integrate over the gauge link variables Uµ.
The numerical evaluation of the correlator could be done, in principle, with multi-
dimensional integration algorithms. However, for a tipical lattice simulation this
is extremely costly, and the problem is better takled using Monte Carlo estimators
[46]. This consists in generating a number Ncfg of configurations for Φ, which are
randomly distributed according to the probability distribution e−S[Φ]. The correlator
is then approximated by an average of the corresponding values of O[Φ]:

〈O[Φ]〉 ≈ Ō[Φ] =
1

Ncfg

Ncfg∑

i=1

O[Φi] (1.191)
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The estimate would be exact in the limit Ncfg →∞. However, since we must work
at finite values of it, it’s important to know the behavior of the Signal-to-Noise (StN)
ratio at fixed Ncfg.
From statistics we know that for large Ncfg the Central Limit Theorem holds. The
probability distribution of data tends to a Gaussian, and the standard deviation
from the mean σG can be estimated as:

σ2
G ≈

1

Ncfg

(
〈O2〉 − 〈O〉2

)
≈ 1

Ncfg

(
1

Ncfg

∑

i

O[Φi]
2 − Ō[Φ]2

)
. (1.192)

Now let’s apply the above formula to mesons and baryons at rest for further reference
see e.g. [58] and [59].
The pion correlator is

〈Gπ〉 = 〈Jπ(t)J†π(0)〉 t�1∼ e−Mπt ,

where Jπ can be for instance ψ̄γ5ψ. The operator J2
π is a 4-quark operator exciting

the state with 2-pions at rest (Eππ = 2Mπ):

〈J2
π(t)J2

π
†
(0)〉 t�1∼ e−2Mπt .

This means that for large t:

σ(t) ∼ 1√
Ncfg

〈Gπ(t)〉 ,

and the StN ratio tends to a constant:

Gπ(t)

σ(t)
∼
√
Ncfg × const. (1.193)

For other mesons P such as Kaons the situation is similar, with the square of the
current exciting PP states as the lightest states.
For baryons the situations is different. Let’s consider the proton correlator for
instance. The interpolator is Jp = (uCγ5d)u. Its square contains 6 quarks, so that
the lightest state excited is πππ rather than pp̄. The noise then goes like,

σp(t)
t�1∼ e−(3Mπ/2)t , (1.194)

and the StN as:
Gp(t)

σ(t)

t�1∼
√
Ncfge

−(Mp−3Mπ/2)t . (1.195)

Since Mπ is much smaller than Mp, it follows that the mass of the proton is harder
to measure with respect to the pion. In fact as soon as the ground state starts to
dominate, one has to cope with the degradation of the signal.
The above argument is easily generalized to other baryons, for which the plateau
region is then shorter than the mesonic case.
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1.5.2 Gaussian smearing

When we build a correlator C(t), we use a given interpolating operator O in order
to study the hadronic state we are interested in. QCD is not solved analytically,
so no hadronic state |n0〉 (i.e. QCD Hamiltonian’s eigenstate) is known explicitly
in terms of the degrees of freedom of the theory. For this reason, the interpolator
doesn’t select only the state |n0〉, namely

〈0|O|n〉 6= const.× δn,n0 , (1.196)

but the correlator will always contain a set of signals. Each of them corresponds to
an eigenstate with quantum numbers in common with O (e.g. spin, parity). These
can be different particles, bound states, excited states, etc.
Since one is often interested in the lightest of such states, the extraction of the
corresponding signal is conditioned by its quality in the plateau region. As discussed
in sec. (1.5.1), it’s tipically better to have a plateau for early times. For this reason
we are interested in improving the expression of the interpolator O, so that the
overlap with the desired state is higher and its signal starts to dominate soon in
time t.
The improvement can be implemented using smearing techniques, which “de-localize”
the operator O. These are often inspired by Quantum Mechanics intuitions, accord-
ing to which the smearing of an operator leads to a more realistic form of the hadron’s
wave function [7]. An example is given by the so called Gaussian smearing [60], in
which a quark field q is smeared as follows:

q(smeared) = (1 + αgH)ng q(local) , (1.197)

where H is the Hopping matrix :

H(~x, ~y) =
3∑

i=1

[
Ui(~x, t)δ~x,~y−âi + U †i (~x− âi, t)δ~x,~y+âi

]
. (1.198)

The parameter αg represents the nearest neighbors “coupling strenght” in the spa-
tial directions, while ng is the number of Gaussian steps. They are usually tuned
manually over the specific gauge configurations and correlators (see sec. (A) for the
details on this work).
Its must be pointed out that even if smearing provides a faster emergence of the
plateau, on the other side it distorts the matrix elements and increases the noise in
the correlator. Because of this, the optimal choice is empirical and depends on the
given analysis. For instance, in addition to the tuning of αg and ng, one can decide
to smear the the source, the sink, or both in the correlator.

1.5.3 Stochastic sources

The calculation of an hadronic correlator in QCD passes through the (numerical)
inversion of the Dirac operator. The latter is a sparse matrix [61] (in position-spin-
color space), whose size makes unfeasible the calculation of the analytic solution for
the propagator S:

D · S = 1 .
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The inversion is then done numerically, usually with stochastic techniques [62]. In-
stead of solving the above equation, one considers:

D ·Ψ = η , (1.199)

where η is a random vector with average ~0.
This can be solved for the components of the vector Ψ (e.g. with algorithms such
as the BiCGstab [63]), giving:

Ψ = D−1 · η . (1.200)

For example, if we are calculating the correlation function:

〈O(x)Ō(0)〉 = Tr[S(x|0) γ5 S(0|x)γ5] = x 0 ,

we can choose η to vanish outside the origin with 〈η(0)η†(0)〉 = +1. The correlator
is approximated by:

Ψ(x)Ψ†(x) = Tr[D−1(x|z1)η(z1)η(z2)†D−1†(z2|x)] .

In fact, from γ5-hermiticity [7] and averaging we get:

〈Ψ(x)Ψ†(x)〉 = Tr[D−1(x|0)γ5D
−1(0|x)γ5] ,

as desired.
The above expectation value is better reproduced if we average the Ψ obtained
through many separate inversions. The number of those is called hits or stochastic
sources. The increase of that number, Ns, leads an higher cost of the simulation
and to a better statistics, with a reduction in noise of a factor ∼ 1/

√
Ns in case

of a Gaussian η. Henceforth, the number of hits is constrained by the available
computational resources. See sec. (A) for details on stochastic sources used in this
work).

1.5.4 Jackknife resampling

Expectation values of operators on the lattice are found numerically with Monte
Carlo techniques. These use Markov chains to generate a set of fields configurations,
which are made fall in the region where the p.d.f. in the functional integral is higher
[7] (hence giving the leading contribution).
In LQCD the dependence on the fermionic fields is calculated explicitly in terms
of Wick contractions, so the problem is reduced to the integration over the gauge
links. For a functional O[U ] one approximates its value as:

〈O[U ]〉 ≈ 1

Ncfg

Ncfg∑

i=1

Oi =
1

Ncfg

Ncfg∑

i=1

O[Ui] , (1.201)

where Ncfg is the number of generated gauge configurations. This method is called
importance sampling and is used in order to find the correlators from a finite number
of field configurations.
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The problem with the above definition is twofold. First, it makes hard or even
impossible to estimate the statistical uncertainty on O. Second, the simulations
are carried out using molecular dynamic algorithms, with each configuration keep-
ing partly the memory of the previous one. Consequently these have progressively
decreasing correlation, but are not completely independent of each other.
Moreover, the calculation of functions of these values requires some care. Eq. (1.201)
provides an unbiased estimator, i.e. such that 〈O[U ]〉 is restored for Ncfg → ∞).
However this is not the case for the naive choice for a function f(O):

f(〈O〉) /≈ 1

Ncfg

Ncfg∑

i=1

f(Oi) . (1.202)

The latter is a biased estimator, namely its separation from f(〈O〉) doesn’t vanish
with increasing Ncfg. For further details see [64].
In order to take these issues it into account, we used the Jackknife re-sampling
technique [65], which is able to provide an unbiased estimator for any function of
the random variable and its uncertainty. The latter works as follows. Let’s consider
a set of N variables xi, associated to the “real” variable x. They are divided into
Njkf groups Gj = {x̄1, ..., x̄N−n} (of size N − n, where n = N/Njkf). Each of the Gj

consists of all the xi but the values {x(j−1)n+1, ..., xjn}. The jackknife values Xj are
obtained averaging the elements of each Gj:

Xj =
1

N − n
N−n∑

k=1

x̄k , j = 1, ..., Njkf . (1.203)

At this point any function f(x) is evaluated as the mean over the Xj:

f̄ =
1

Njkf

Njkf∑

j=1

f(Xj) , (1.204)

and the estimator for its uncertainty is:

σf =

√√√√Njkf − 1

Njkf

Njkf∑

i=1

[f(Xi)− 〈f〉]2 . (1.205)

Other than providing a safe definition of the estimators for the reasons discussed
above, jackknife re-sampling smooths the effect of self-correlation among gauge con-
figurations. Each jackknife is obtained dividing the set in 2 blocks of weakly corre-
lated of configurations, and averaging over the corresponding values. In this work,
data were always grouped in blocks of 15 jackknifes.
The method can be used in the other direction too, generating random jackknife
variables from the average and uncertainty of a given quantity.
In the following analysis this has been the case of renormalization constants, which
were taken from previous ETMC works. The uncertainty σ0 on a given quantity was
propagated generating Njkf = 15 values, distributed according to a Gaussian with

σ =

√
Njkf

Njkf − 1
σ0 . (1.206)
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In fact, if one repeated the same analysis with Njkf, the estimate for σ0 would be
given by eq. (1.205). This matches the LHS of eq. (1.206) since the estimator of σ
for a Gaussian variable f is:

√√√√ 1

Njkf − 1

Njkf∑

i=1

(fi − f̄)2 . (1.207)



Chapter 2

Isospin Breaking Effects on the
Lattice

Many lattice QCD calculation are done in the limit of isospin symmetry without
including QED. In this theory the u and d quarks fields are degenerate degrees of
freedom and some hadrons form degenerate isospin multiplets differing only for the
3rd component of isospin. This symmetry is broken in nature by the mass difference
m̂d−m̂u ( 6= 0), causing the splitting of these states. In many lattice applications the
level of precision of O(1%) has been reached, and these effects cannot be neglected
anymore [66]. They can be taken into account simulating quarks with different
masses, tuning their bare values to match some hadronic quantities and predict the
others. This approach however has computational disadvantages, requiring to gen-
erate new gauge configurations. Another way to tackle the problem is to expand the
action, and consequently the path integral, with respect to the breaking parameter.
Any observable in the full theory will be the sum of its isosymmetric part and the
Isospin Breaking (IB) effect. The perturbative expansion is justified by the fact that
m̂d−m̂u
ΛQCD

∼ O(1%). This philosophy is the heart of the RM123 method ([67, 68, 12])

which is briefly outlined here. We now discuss the inclusion of the so called strong
IB due to m̂d−m̂u at leading order (LO), to show the main idea behind the method
and set the notation. Aftwerwards we’ll present how to include electromagnetism
(QED), responsible effects of the same order of magnitude (αEM ∼ O(1%)).

2.1 Inclusion of up-down mass difference at LO

The QCD Lagrangian L can be written as a kinetic term (K) plus a mass term:

L = LK + Lmass. = LK −muūu−mdd̄d

= LK −mud(ūu+ d̄d)−∆mud(ūu− d̄d)

= L0 −∆mud q̄τ3q = L0 −∆mudL̂ .

(2.1)

We write mu = mud −∆mud, md = mud + ∆mud. and denote the up-down doublet
with q = (u, d)T . τ3 is the third Pauli matrix.
From the expansion of the corresponding action S =

∫
d4xL = S0−∆mud

∫
d4xL̂ =

S0 − ∆mudŜ in the path integral we get the expression of an observable O at LO

49
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[67]:

〈O〉 =

∫
DΦO[Φ] e−S∫
DΦ e−S

≈
∫
DΦO[Φ] e−S0 [1 + ∆mudŜ]∫

DΦ e−S0
, (2.2)

where Φ is a shorthand notation for the degrees of freedom of the theory. Dividing
numerator and denominator for the isoQCD partition function we get:

〈O〉 = 〈O〉0 + ∆mud 〈OŜ〉0 . (2.3)

The notation 〈·〉0 denotes the fully connected expectation value over the isoQCD
background. In this theory the u and d quarks propagators are given by:

Su(x|0) = 〈T [u(x)ū(0)]〉 = S`(x|0) + ∆mud

∫
d4yS`(x|y)S`(y|0) + ... , (2.4)

Sd(x|0) = 〈T
[
d(x)d̄(0)

]
〉 = S`(x|0)−∆mud

∫
d4yS`(x|y)S`(y|0) + ... . (2.5)

All correlation functions are expanded accordingly, neglecting higher orders than
∆mud.

2.2 Inclusion of QED

In the continuum the introduction of QED is done including the U(1) gauge part,
S[A], and modifying covariant derivatives including the photon field Aµ. As a result,
at 1st order any Green function is modified by the insertion of the photon propagator
as:

∆[T 〈O(xi)〉] =

∫
d4x1d

4x2Dµν(x1 − x2)T 〈O(xi)Jµ(x1)Jν(x2)〉 . (2.6)

The resulting diagrams present both infrared (IR) and ultraviolet (UV) divergences
[1]. The first can be coped with regulators such as a photon mass or the removal
of divergent modes in the photon propagator (see sec, (2.5)). For the second, we
must regularize our theory and introduce counterterms which compensate the UV
divergences. Qualitatively, the difference in the electric charges of u and d gives
them different electromagnetic self energies. QED makes the renormalized masses
different even if their bare ones were equal, and its contribution is expected to be of
the same order of magnitude of strong IB. As a consequence the separation between
the effect of mu 6= md only (i.e. strong IB) and qu 6= qd (QED) is unphysical 1 . In
the following it is understood that, when talking about IB or the presence of QED,
we are considering the two above effects simultaneously. Since we are at LO, we’ll
refer to them as LIBEs (Leading Isospin Breaking Effects). Our expansion will stop

at O(α̂EM) ∼ O( (md−mu)
ΛQCD

), neglecting mixed and higher order terms. We remark

that the fine structure constant α̂EM renormalizes at higher orders with respect to
our expansion, so that we can safely use the value αEM = e2/(4π) ≈ 1/137... from
[3] in the expansion.

1Nevertheless the latter contains some physical intuition and in sec. (2.6) we give our prescrip-
tion.
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2.2.1 Non compact QED on the lattice

We now discuss how to include QED on the lattice. This is done adding the gauge
action for the electromagnetic field and modifying covariant derivatives in order to
preserve gauge invariance. This is done promoting for each flavor the gluonic links
through the substitution:

Uµ(x) → E(f)
µ (x)Uµ(x) , (2.7)

where E
(f)
µ (x) = eiqfAµ(x) is the bosonic link variable associated to the photon field,

and qf = efe is the electric charge of the particle. We’ll refer to the action obtained
with this procedure as full theory or QCD+QED. This formulation is called compact
since the degrees of freedom E

(f)
µ live in a compact space, and is implemented on

the lattice considering the QCD+QED action and integrating also over the elec-
tromagnetic gauge configurations. Here we formulate QED in a non-compact way,
namely generating the photon field and not directly the gauge configurations for
the electromagnetic link E

(f)
µ (x). This requires an infrared safe definition of the

propagator since the k = 0 mode makes it diverge. The details about the numerical
implementation are discussed in sec. (B).
With the notation of the previous section, the action is expanded with respect to
e = 0, giving:

∆SF =
∑

f

∑

x

ψ̄f (x) {Df [U,A;~g]−Df [U, 0, ~g0]}ψf (x)

=
∑

f

∑

x,µ

ψ̄f (x)

{
(efe)Aµ(x)ΓVµ (x) +

1

2
(efe)

2A2
µ(x)ΓTµ (x)

}
ψf (x) + ... .

(2.8)
At the diagram level this theory is different from the continuum. The expansion
of the lattice Dirac operator at O(e2) contains not only the

∑
µAµ(x)V

(f)
µ (x) term

from the vector currents (which produces photon insertions at two different points)

but also a tadpole interaction
∑

µAµ(x)Aµ(x)T
(f)
µ (x) (which is not present in the

continuum [69]). The latter is necessary to preserve gauge invariance on the lattice.
The form of these two operators depend on the specific regularization chosen for
fermions and are reported in sec. (C). Our choice corresponds to a mixed action
theory, where the sea quarks action would be:

Ssea =
∑

x

ū(x)D+
u [U ]u(x) + d̄(x)D+

d [U ]d(x) , (2.9)

with:

D±f [U,A]ψf (x) =mfψf (x)± iγ5(mcr
f + 4)

− 1

2

∑

µ

(±iγ5 − γµ)Uµ(x)E(f)
µ (x)ψ(x+ µ̂)

+
1

2

∑

µ

(±iγ5 + γµ)U−µ(x)E
(f)
−µ(x)ψ(x− µ̂) ,

(2.10)

and the ± corresponding to the sign of the Wilson term.
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The action for valence quarks is:

=
∑

x,f

ψ̄f (x)Df [U,A]ψf (x) + φ̄(x)Df [U,A]φ(x) , (2.11)

where for each flavor f we considered a doublet ψf = (ψ+
f , ψ

−
f )T and:

Df [U,A] =
1 + τ3

2
D+
f [U,A] +

1− τ3

2
D−f [U,A] . (2.12)

The projectors (1± τ3)/2 have been isolated to show the two contributions coming
from ψ+

f and ψ−f separately. The doublet φf = (φ+
f , φ

−
f )T are additional bosonic

degrees of freedom. The integration over them produces a fermionic determinant in
the denominator of integrand of the path integral, which cancel out with the one of
the valence quarks. This leads to an expression than reproduces our approximation
in which the fermionic determinant are evaluated with the action of sea quarks, and
quark propagators with the valence ones.
We conclude the discussion saying that for mesons we use interpolators of the form:

JΓ = ψ̄+
f1

Γψ−f2
, (2.13)

where Γ is an appropriate combination of γ matrices. This is done in order to
reduce the statistical error and the cutoff effects [70, 71]. Moreover, for f1 = f2

it results implemented our approximation in which we neglect those (numerically
noisy) diagrams with valence quark lines looping over the source or the sink.

2.3 Expansion of the path integral

We now discuss how to implement the LIBEs at the path integral level. This can be
done including QED in the Lagrangian (see e.g. [72]), or expanding at the desired
order in the breaking parameters. If we call ~g the set of bare parameters in the full
theory, with our regularization for fermions the expectation value of an observable
is:

O(~g) = 〈O〉(~g) =

∫
DUDAe−Se[A]−βSg [U ]

∏
f det

(
D±f [U,A;~g]

)
O′[U,A;~g]∫

DUDAe−Se[A]−βSg [U ]
∏

f det
(
D±f [U,A;~g]

) , (2.14)

where O′ is the result of the Wick contractions resulting from the operator O. The
action Se[A] is:

Se[A] =
1

2

∑

x

∑

µ,ν

Aµ(x)
[
−∇−ν∇+

ν

]
Aµ(x) =

1

2

∑

k

∑

µ,ν

Ã?µ(k) [2 sin (kν/2)]2 Ãµ(k) ,

(2.15)
and βSg[U ] is the gluonic action (β = 6/g2

s). In our twisted mass regularization we
have:

~g = (e2, g2
s ,mu,md,ms,m

cr
u ,m

cr
d ,m

cr
s ) , (2.16)

and at LO the observable is:

O(~g) = O (~g0) +

{
e2 ∂

∂e2
+
[
g2
s −

(
g0
s

)2
] ∂

∂g2
s

+
[
mcr
f −mcr

f
0
] ∂

∂mcr
f

+
[
mf −m0

f

] ∂

∂mf

}
O(~g)

∣∣∣∣∣
~g=~g0

= 〈O〉~g0 + ∆O(EMC) +
∑

f

[
mf −m0

f

]
∆̄O(f)(MASS)

= 〈O〉~g0 + ∆O ,

(2.17)
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where we have already introduced a notation that will bel used later: ∆(EMC) stands
for the combination of the corrections coming from the coupling with the electro-
magnetic field and the variation in the critical mass counterterms, and ∆̄MASS is
the slope induced by the physical mass counterterm.
With the following notation,

R[U,A;~g] = e−(β−β0)Sg [U ]r[U,A;~g] (2.18)

r[U,A;~g] =
∏

f

rf [U,A;~g] =
∏

f

det
[
D±f [U,A;~g]

]

det
[
D±f [U,A,~g0]

] , (2.19)

〈O〉A =

∫
DAe−Se[A]O[A]∫
De−Se[A]

(2.20)

we can write the above expectation value as [68]:

O(~g) = 〈O〉~g =

〈
〈R[U,A;~g]O′[U,A;~g]〉A

〉~g0

〈
〈R[U,A;~g]〉A

〉~g0
, (2.21)

where ~g0 is the set of coupling in isoQCD:

~g0 = (e2, (g(0)
s )2,m

(0)
ud ,m

(0)
ud ,m

(0)
s ,m0

cr,m0
cr,m0

cr) . (2.22)

In this work we used the values of mcr
0 found from the PCAC Ward Identity in

absence of IB [73]. Eq. (2.21) encodes the integration over the photon field and the
link with the expectation value with respect to the isosymmetric background. The
variation ∆O induced in a generic observable at LO is then given by:

∆O = O(~g)−O(~g0) = 〈∆(RO)〉A,~g0 − 〈∆R〉A,~g0 〈O〉~g0

=
〈

∆O[U,A;~g]|~g=~g0

〉A,~g0

+

{〈
∆(RO −O)[U,A;~g]|~g=~g0

〉A,~g0

−
〈

∆R[U,A;~g]|~g=~g0

〉A,~g0 〈O [U,~g0]〉~g0

}
.

(2.23)

The terms containing R[U,A,~g,~g0] encode the modification in the quark determi-
nants. As we’ll see in a moment, this represents how sea quarks interact with Aµ,
giving rise to Feynman diagrams in which photons are exchanged with loop quark
lines.

2.3.1 Diagrammatic notation for LIBEs

Here we set the notation for the diagrammatic expression of the contributions ap-
pearing in eq. (2.23). First, we note that

∂ 〈O〉A (e2)

∂ (e2)

∣∣∣∣∣
e2=0

=

〈
1

2

∂2O[A, e]

∂e2

∣∣∣∣
e=0

〉A
, (2.24)

which comes trivially from the formula for a Taylor expansion. Moreover we recall
that from DfSf = 1 it follows:

∂Df

∂λ
Sf +Df

∂Sf
∂λ

= 0 , (2.25)
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for any parameter λ. Therefore the quark propagator is modified as follows:

∂Sf
∂mf

= −Sf
∂Df

∂mf

Sf = − , (2.26)

∂S±f
∂mcr

f

= −S±f
∂D±f
∂mcr

f

S±f = ∓ , (2.27)

and
∂Sf
∂(e2)

=
1

2

∂2Sf
∂e2

= Sf
∂Df

∂e
Sf
∂Df

∂e
Sf −

1

2
Sf
∂2Df

∂e2
Sf

= e2
f + e2

f

(2.28)

The variations induced in the R factor are:

∂R

∂g2
s

=
β2

6
Sg[U ] = GµνG

µν , (2.29)

and 2

∂r

∂(e2)
=

1

2

∂2rf
∂e2

= +
1

2
Tr

(
Sf
∂Df

∂e

)
Tr

(
Sf
∂Df

∂e

)
− 1

2
Tr

(
Sf
∂Df

∂e
Sf
∂Df

∂e

)
+

1

2
Tr

(
Sf
∂2Df

∂e2

)

= −
∑

f1 ∈{sea}
ef1





∑

f2 ∈{sea}
ef2 − ef1 − ef1



 .

(2.32)

∂r

∂mf

= Tr

[
Sf
∂Df

∂mf

]
= (2.33)

∂r

∂m
(cr)
f

= Tr

[
Sf

∂Df

∂m
(cr)
f

]
= . (2.34)

We are now able to find the final expression for the quark propagator. We remark
that we also need the following expressions (obtained at fixed QED background):

∂Sf
∂e

= −Sf
∂Df

∂e
Sf = ef (2.35)

∂rf
∂e

= ef Tr

(
Sf
∂Df

∂e

)
= (2.36)

2These identities are easily derived recalling the Jacobi’s formula [74] for the derivative of a
matrix A with respect to a parameter λ:

∂detA

∂λ
= (detA) Tr

[
A−1 ∂A

∂λ

]
(2.30)

∂2detA

∂λ2
= (detA) Tr

[
A−1 ∂A

∂λ

]
Tr

[
A−1 ∂A

∂λ

]
− (detA) Tr

[
A−1 ∂A

∂λ
A−1 ∂A

∂λ

]
+ (detA) Tr

[
A−1 ∂

2A

∂λ2

]

(2.31)
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The variation ∆S±f is:

∆
±

= −(mf −m(0)
f ) ∓ (mf −m(0)

f )(cr)

+ (efe)
2 + (efe)

2 − efe2
∑

f1

ef1

− e2
∑

f1

e2
f1

− e2
∑

f1

e2
f1

+ e2
∑

f1,f2

ef1ef2

+
∑

f1

(mf1 −m(0)
f1

) ± (mf1 −m(0)
f1

)(cr)

+ (g2
s − g(0)

s

2
)

GµνG
µν

.

(2.37)
In order to find the LIBEs in a generic correlator, is then sufficient to write it in the
full theory, consider all the possible variations of its quark propagators one by one,
and summing all the resulting diagrams obtained using the above formula. We’ll se
the examples of IB slopes i sec. (C.1) and (C.2).
For the studies presented in this thesis we use the so called electroquenched approx-
imation, in which sea quarks are neutral with respect to the electromagnetic field.
Our theory is then equivalent to setting e = 0 in Ssea. Even if this theory is non
unitary, with this approximation we gain the numerical advantage of not having to
consider the variation in the sea quark determinants. At the path integral level, this
consists in setting rf = 1 for each flavor f , and the quark propagator reads:

∆
±

= −(mf −m(0)
f ) ∓ (mf −m(0)

f )(cr)

+ (efe)
2 + (efe)

2 .

(2.38)

2.4 LIBEs from correlation functions

The IB slopes in the mass of an hadron H can be found from the correspond-
ing corrections in those correlators CH(t) whose isoQCD ground state has mass

M
(0)
H . In fact, for large times CH(t) ≈ Ae−Mt, and expanding at 1st order, i.e.

A = A0(1 + ∆A) and M →M + ∆M , shows that:

∆CH(t)

C
(0)
H (t)

= ∆A−∆M t , (2.39)
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where C
(0)
H is the correlator in absence of the perturbation. The effective curves ∆M

and ∆A are:

∆M eff(t) =− ∂t
∆C(t)

C0(t)

∆Aeff(t) =
∆C(t)

C0(t)
+ ∆Meff(t) · t ,

(2.40)

where ∂t is the lattice forward derivative. Equivalently, in the same range, one can
do a linear fit of eq. (2.39) and find ∆M from the slope of the line. Note that for
mesons, as before, the version of the above formula including the backward signal
is more involved (see [12] for instance):

∆M eff(t) =
[coth (E0 (T/2− t))](−)p

(T/2− t)

(
∆C(t)

C0(t)
− ∆C(T/2)

C0(T/2)

)
, (2.41)

where p is the temporal parity of the correlator as in eq. (1.152) and E0 has been ob-
tained from the free correlator C0(t) 3 . The effective curve of the relative correction
∆A is given by:

∆Aeff =
∆C(T/2)

C0(T/2)
+ ∆Eeff(t)T/2 . (2.42)

However we point out that the correction induced in the amplitude (i.e. in the matrix
element) is unphysical, and depends on the chosen gauge [75]. In the following we’ll
always use the notation of (2.40), i.e. −∂t, as a shorthand to denote the mass slope
of the lightest state of a correlator. In the present work, for consistency, we found
the isoQCD masses and their slopes using in both cases the same technique, i.e.
fitting to a constant the corresponding effective curves (eq. (1.151)) and eq. (2.40))
respectively) in their plateau intervals.

2.5 FVEs in presence of IB

The IB corrections suffer from FVE of 2 different origins. The first are the QCD
effects, shown by the physical mass slopes. These are caused by the variation of the
physical bare quark mass, and show the typical exponential suppression behavior
[50]. This is seen applying the IB correction at 1st order to the asymptotic formulas
M(L) = M(∞)(1 + fL) of sec. (1.4.2) (here fL is the term exponentially suppressed
in L). we see that the resulting mass correction ∆M goes approximately as ∼
e−MPL/(MPL)α (for some α), where P is the pseudo-scalar meson appearing in
the LO loop in ChPT. As discussed in a moment, QED FVEs are only power law
suppressed, making the above QCD FVEs subleading with respect to the latter.
The second FVEs come from QED, due to the exchange of photons on the finite size
lattice. QED is a long range interaction (mγ = 0) [1], but when confined to a finite
box with periodic boundary conditions it becomes rather different. For instance,
Gauss’s and Ampere’s laws are not satisfied anymore [76, 77]. In fact, let’s consider
Gauss’s law,

∇iE
i(~x) = ρ(~x) , (2.43)

3Note that E0 is supplied as a prior, and using the value of the effective mass a time t for E0

is not correct. In fact, the effective mass curve of C0(t) and the one of the corrections may have
different plateau regions.
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in the case of a point charge at the center of the lattice, ρ(~x) = qδ(~x). Integrating
the above equation and using the divergence theorem gives 0 on the LHS, while the
RHS gives q(6= 0). This means that no single charge can live on the torus. The
inconsistency of Ampere’s law is proven similarly by explicit integration, finding
that no electric current ~J can live on the torus.
The consequence of these properties is that the electromagnetic field cannot be
taken as it is, simply imposing boundary conditions. Moreover, at the quantum
level the photon propagator contains a divergence, caused by the zero-momentum
mode. The regularization of the latter introduces prescription-dependent FVEs,
which are polynomially suppressed in 1/L [77], where L is the linear spatial extent
of the lattice. In this work we adopted the QEDL regularization, consisting in the
removal of the ~k = 0 momentum mode. This is equivalent to the introduction of
a uniform background charge density which also restores Gauss’s law [78, 77]. The
asymptotic behavior of these FVE is widely discussed in literature (see e.g. [76, 77,
79, 72]), where it is found that the asymptotic volume dependence of an hadronic
mass is:

M(T, L)
T,L→∞−−−−→ M(∞)

{
1−Q2αEM

[
κ

2ML

(
1 +

2

ML

)]}
+O(

αEM
L3

) , (2.44)

where κ ≈ 2.837297 and Q is the charge of the hadron in units of e. In the above
expression we neglect terms which are exponentially suppressed or that fall faster
than any power of (MT )−1, and the M in the denominators can be set equal to
M(L =∞) at 1st order in αEM . The ∼ L−1 and ∼ L−2 terms are universal, in the
sense that they don’t depend on the spin or structure of the hadron, which appear
only at higher orders.

2.6 Separation of strong IB and QED

Isospin Breaking is the effect coming from both the mass difference between u and d,
and the interaction with the photon field. In general this applies to any observable,
meaning that the correction induced by IB is a combination of the modified quark
masses and electromagnetic (self) energy. In the literature these two effects are re-
spectively called strong IB (or QCD) and QED IB, and their separation is arbitrary.
In fact, the distribution of finite terms in RCs is scheme dependent, hence unphys-
ical. Anyhow, in some cases this separation is useful, since the two contributions
have an intuitive interpretation. An example is indeed the mass difference between
charged and neutral hadrons. Let’s consider the nucleons. The neutron tends to be
heavier because md > mu. The u however has a bigger electric charge, and hence
the electromagnetic self energy of the proton is higher than the neutron. In nature
it happens that these contributions are of the same order of magnitude, so that they
cancel almost exactly leaving a small mass difference, O(1 MeV), compared to their
masses, O(1 GeV).
We now discuss our prescription for the separation of these two effects and the
renormalization of the mass difference md − mu. In the analysis we find the bare
counterterms a∆mf that reproduce the experimental values of given hadronic ratios.
∆mu and ∆md contain a contribution from strong IB and one from QED, and we
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write the difference ∆mud = (md −mu)/2 = (∆md −∆mu)/2 as follows [12]:

∆mud = ∆m
(QCD)
ud + ∆m

(QED)
ud = Z

(0)
P ∆m̂ud +

(q2
d − q2

u)

32π2
[6 log (aµ)− 22.595]m

(0)
` .

(2.45)
This equation defines our separation and how to find the renormalized mass differ-
ence ∆m̂ud. At LO, the QED contribution to an observable is obtained combining
the corrections from diagrams involving photons, critical mass counterterms, and
∆m

(QED)
f in place of the full physical mass counterterms. The strong IB effect is

obtained considering only the latter diagrams, replacing the full ∆mf with ∆m
(QCD)
f .

The values of Z
(0)
P of the present work were taken from [13]. The expression for

∆m
(QED)
ud is obtained in the so called factorization approximation, which neglects the

mixing ofQCD andQED in renormalization, namely Z
(QCD+QED)
P ≈ Z

(QCD)
P Z

(QED)
P .

At 1st order Lattice QCD and QED are distinguished only by color factors, so we
found Z

(QED)
P (for each flavor) from the 1 loop calculation of [80] in the MS scheme.

2.7 IB corrections from Isospin structure

The IB corrections to a correlator are a direct consequence of Wick contractions,
which contain all the information needed. These originate from the isospin structure
of the interpolator, leading to defined patterns which may not be evident until one
actually computes all the contractions. For this reason we now discuss how the infer
a priori the form of LIBEs in the hadronic spectrum. This doesn’t add information
with respect to explicit Wick contractions, nevertheless serves a check for the results.
We focus on the particular case of π, N and ∆, for which we find:

Mπ+ = Mπ + e2

(
B

(π)
0 −

√
3

10
B

(π)
2

)
(2.46)

Mπ0 = Mπ + e2

(
B

(π)
0 −

√
2

5
B

(π)
2

)
(2.47)

Mπ− = Mπ + e2

(
B

(π)
0 −

√
3

10
B

(π)
2

)
, (2.48)

and

Mp = MN −∆mud

√
1

3
A(N) + e2

(
B

(N)
0 −

√
1

3
B

(N)
1

)
(2.49)

Mn = MN + ∆mud

√
1

3
A(N) + e2

(
B

(N)
0 +

√
1

3
B

(N)
1

)
, (2.50)
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and

M∆++ = M∆ + ∆mud

√
3

5
A

(∆)
1 + e2

(
B

(∆)
0 +

√
3

5
B

(∆)
1 +

√
1

5
B

(∆)
2

)
(2.51)

M∆+ = M∆ + ∆mud

√
1

15
A

(∆)
1 + e2

(
B

(∆)
0 +

√
1

15
B

(∆)
1 −

√
1

5
B

(∆)
2

)
(2.52)

M∆0 = M∆ −∆mud

√
1

5
A

(∆)
1 + e2

(
B

(∆)
0 −

√
1

15
B

(∆)
1 −

√
1

5
B

(∆)
2

)
(2.53)

M∆− = M∆ −∆mud

√
3

5
A

(∆)
1 + e2

(
B

(∆)
0 −

√
3

5
B

(∆)
1 +

√
1

5
B

(∆)
2

)
. (2.54)

We denote with H = π ,N ,∆ the isoQCD limits of the members of each multiplet,
with common coefficients A

(H)
0 , A

(H)
1 and B

(H)
0 , B

(H)
1 , B

(H)
2 .

The above relations imply the following properties.

Mπ+ −Mπ0 = e2

(√
2

5
−
√

3

10

)
B

(π)
2 , (2.55)

from which we see that this is a purely electromagnetic effect.
For ∆s we have:

M∆++ −M∆− = 3(M∆+ −M∆0) , (2.56)

(M∆++ +M∆−)− (M∆+ +M∆0) = 4e2

√
1

5
B

(∆)
2 . (2.57)

Consequently there are only 2 independent mass splittings in the ∆-multiplet. Eq.
(2.57) expresses a pure QED effect.
We now prove eqs. (2.46), (2.49), (2.51), starting from the Lagrangian in QCD+QED:

L = LK −muūu−mdd̄d− eAµ
(
euūγµu+ edd̄γµd

)
(2.58)

= LK −mud q̄q −∆mud q̄τ3q + eAµq̄γµ

(
τ3

2
+

1

6

)
q (2.59)

= L0 −∆mud q̄τ3q + eAµq̄γµQq (2.60)

= L0 −∆mud q̄τ3q + eAµJ
Q
µ . (2.61)

The first term, L0, is symmetric under SU(2)I and chargeless (isoQCD theory) and
the rest are isospin breaking terms. At LO in IB we expand in ∆mud and e2, so for
a (bare) correlator at LO we have:

C(t) = 〈T
[
O(t)O†(0)

]
〉 =

∫
DAµDΦ e−S O(t)O†(0)

DAµDΦ e−S

=

∫
DΦ e−S0

(
1 + ∆mudŜ1 + e2Ŝ2

)
O(t)O†(0)

∫
DΦ e−S0

(
1 + ∆mudŜ1 + e2Ŝ2

) .

(2.62)

T is the time-ordering operator, Aµ is the photon field and Φ is a shorthand for
all the degrees of freedom of the isosymmetric theory. In the second step we have
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stopped at LO, integrating over the spacetime points of application of the photon
propagator. This means that Ŝ2 is:

Ŝ2 =
1

2

∫
d4xd4y Dµν(x, y) JQµ (x) JQν (y) (2.63)

Note that we don’t have O(e) terms because of Furry’s theorem [1]: vacuum ex-
pectation values with an odd number of photon fields vanish. The correlator is
then:

C(t) = C0(t) + ∆mud 〈T
[
Ŝ1O(t)O†(0)

]
〉
0

+ e2 〈T
[
Ŝ2O(t)O†(0)

]
〉
0

, (2.64)

where the subscript 0 corresponds to the isoQCD limit of the connected diagrams
(the disconnected contributions are canceled by the denominator [1]).
We now make a couple of remarks. The operator Ŝ2 has three contributions coming
from the product of 2 currents, which determine its isospin quantum numbers. These
behave as:

Ŝ20 ∼ q̄(x)γµq(x) q̄(y)γνq(y) , (2.65)

Ŝ21 ∼ q̄(x)γµτ3q(x) q̄(y)γνq(y) , (2.66)

Ŝ22 ∼ q̄(x)γµτ3q(x) q̄(y)γντ3q(y) . (2.67)

We observe that under SU(2)I the operator Ŝ2k transform like the 0-th component

of a k-rank spherical harmonic tensor T
(k)
0 . Ŝ1 transforms like T

(1)
0 .

The final result for C(t) is the same as if we consider an effective Hamiltonian
containing two 1st order perturbations:

Heff. = H0 + ∆mudŜ1 + e2Ŝ2 . (2.68)

The mass corrections at LO are then given by the Hellmann-Feynman theorem [81]:

∆MH = ∆mud 〈H|Ŝ1|H〉+ e2 〈H|Ŝ2|H〉 . (2.69)

The degeneracy of the multiplets is not an issue because they happen to be eigen-
states of Ŝ1 and Ŝ2.
From the above considerations, we can apply the Wigner-Eckart theorem:

〈j1,m1|T (k)
q |j2,m2〉 = 〈j2,m2 ; k, q|j1,m1〉 〈j1||T (k)||j2〉 , (2.70)

and find the slope structure from Clebsh-Gordan coefficients. Recall that the re-
duced matrix element 〈j1||T (k)||j2〉 is the same for a given multiplet.

These coefficients multiply the matrix elements in mass splittings. For A
(H)
0 and

B
(H)
0 they’re all 1 (the rank of the tensor is 0). On the other hand A

(H)
1 and B

(H)
1

multiply:

N 〈1/2, Iz; 1, 0|1/2, Iz〉 Iz = 1/2,−1/2 (2.71)

∆ 〈3/2, Iz; 1, 0|3/2, Iz〉 Iz = 3/2, 1/2,−1/2,−3/2 . (2.72)

Note that for π, the reduced matrix element 〈π||(1, 0)||π〉 = 0. In fact |I = 1〉 states
(pions) are symmetric under the exchange u ↔ d, while any current JΓ = q̄Γτ3q is
anti-symmetric. Hence, its expectation value between them vanishes.
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This can be understood also in terms of G-parity [67]. The latter is a combination
of C and I2. Since both charge conjugation and Isospin are exact symmetries of the
strong interaction (in the limit mu = md), then G is also conserved. Since JΓ is an
eigenstate of G with eigenvalue −1, it can have non-vanishing matrix elements only
between eigenstates with eigenvalues opposite between each other. It follows that
the reduced matrix element of JΓ between 2 pions is zero.
Finally B

(H)
2 multiplies:

π 〈1, Iz; 2, 0|1, Iz〉 Iz = 1, 0,−1 (2.73)

N 〈1/2, Iz; 2, 0|1/2, Iz〉 Iz = 1/2,−1/2 (2.74)

∆ 〈3/2, Iz; 2, 0|3/2, Iz〉 Iz = 3/2, 1/2,−1/2,−3/2 . (2.75)

2.8 Mesons in QCD+QED

In this work the mesons we deal with are pions (π+, π0) and kaons (K+, K0). In
the full theory their correlators are:

Cπ+π−(x) = −〈[ūγ5d](x) [d̄γ5u](0)〉 (2.76)

Cπ0π0(x) = −1

2
〈[ūγ5u− d̄γ5d](x)[ūγ5u− d̄γ5d](0)〉 (2.77)

CK+K−(x) = −〈[s̄γ5u](x) [ūγ5s](0)〉 (2.78)

CK0K̄0(x) = −〈[s̄γ5d](x) [d̄γ5s](0)〉 (2.79)

The corrections to their masses at LO are obtained from the considerations of the
previous sections. We apply the variation ∆ to the quark propagators in the corre-
lators, divide by the free one and derive with respect to time. We now provide their
diagrammatic expressions.

2.8.1 Pions

For pions we have:

∆Mπ+ = + 2(mud −m(0)
ud )∂t − 2(mud −m(0)

ud )(crit)∂t

− euede2∂t − (e2
u + e2

d)e
2∂t − (e2

u + e2
d)e

2∂t

− (eu + ed)e
2
∑

f∈{sea}
ef∂t + [isosymm. vac. pol. diag.] , (2.80)
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∆Mπ0 = + 2(mud −m(0)
ud )∂t − (mu +md −m(0)

ud )(crit)∂t

− (e2
u + e2

d)

2
e2∂t − (e2

u + e2
d)e

2∂t − (e2
u + e2

d)e
2∂t

− (eu + ed)e
2
∑

f∈{sea}
ef∂t +

(eu − ed)2

2
e2∂t

+ [isosymm. vac. pol. diag.] , (2.81)

and their mass difference is a purely electromagnetic effect:

Mπ+ −Mπ0 =
(eu − ed)2

2
e2


∂t − ∂t


 . (2.82)

In our study we neglect the disconnected term (usually called handcuffs diagram)
which, being disconnected, represents a highly non-trivial numerical problem and
demands a significative computational cost [82]. We approximate Mπ+ −Mπ0 as:

Mπ+ −Mπ0 ≈ (eu − ed)2

2
e2∂t . (2.83)

This introduces a small systematic effect of O(α̂EMm̂`) [12], here neglected in virtue
of the vicinity of the chiral point to the physical world. Our approximation then
consists in putting O(e2m̂`) on the same level of O(e2[m̂d− m̂u]), which is neglected
at LO in IB. In fact, from Dashen’s theorem in SU(3) chiral symmetry ([83, 84]),
we know that Mπ0 = 0 (and thus ∆Mπ0 = 0) for arbitrary values of the electric
charges eu, ed, ef and heavier quark masses m̂f . This applies directly to SU(2).
In particular, we can isolate the contributions to ∆Mπ0 which respectively multiply
(e2
u + e2

d), the ef from the sea and (eu − ed)2. By linear independence, these have
to vanish individually in that limit. Since the handcuffs diagram is the only one
multiplying (eu − ed)2, it is of O(e2m̂`).

2.8.2 Kaons

Kaons follow an analogous pattern:
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∆MK+ = + (mu −m(0)
ud )∂t + (ms −m(0)

s )∂t

− (mu −m(0)
ud )(crit)∂t + (ms −m(0)

s )(crit)∂t

− (ese)
2∂t − (eue)

2∂t − (ese)
2∂t − (eue)

2∂t

− euese2∂t − ese2
∑

f∈{sea}
ef∂t − eue2

∑

f∈{sea}
ef∂t

+ [isosymm. vac. pol. diag.] (2.84)

∆MK0 = + (md −m(0)
ud )∂t + (ms −m(0)

s )∂t

− (md −m(0)
ud )(crit)∂t + (ms −m(0)

s )(crit)∂t

− (ese)
2∂t − (ede)

2∂t − (ese)
2∂t − (ede)

2∂t

− edese2∂t − ese2
∑

f∈{sea}
ef∂t − ede2

∑

f∈{sea}
ef∂t

+ [isosymm. vac. pol. diag.] (2.85)
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2.9 Baryons in QCD+QED

The IB corrections to the masses of baryons are built as for meson. We apply the
variation to each quark propagator and consider the exchange of photons among all
fermionic legs.

2.9.1 IB correction to MΩ−

For the Ω− we have:

∆MΩ− = ∆ms



∂t

− 2

− 2

+ ∂t

− 2

− 2

+∂t

− 2

− 2




−∆m(crit)
s



∂t

− 2

− 2

+ ∂t

− 2

− 2

+∂t

− 2

− 2




− q2
s



∂t

− 2

− 2

+ ∂t

− 2

− 2
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+∂t

− 2

− 2




− q2
s



∂t

− 2

− 2

+ ∂t

− 2

− 2

+∂t

− 2

− 2




− q2
s



∂t

− 2

− 2

+ ∂t

− 2

− 2

+∂t

− 2

− 2




− qs
∑

f∈(sea)

qf




∂t

− 2

− 2

+ ∂t

− 2

− 2
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+∂t

− 2

− 2




+ [isosymm. vac. pol. diag.] . (2.86)

2.9.2 IB correction to MN

The nucleon eigenstate of QCD is split in |p〉 and |n〉 by IB, with mass corrections
given by:

∆Mn =




∆mu ∂t

−

−
+ ∆md ∂t

−

−

+∆md ∂t

−

−




−




∆m(crit)
u ∂t

−

−
+ ∆m

(crit)
d ∂t

−

−

+∆m
(crit)
d ∂t

−

−




−



q2
u ∂t

−

−
+ q2

d ∂t

−

−
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+q2
d ∂t

−

−




−



q2
u ∂t

−

−
+ q2

d ∂t

−

−

+q2
d ∂t

−

−




−



quqd ∂t

−

−
+ q2

d ∂t

−

−

+quqd ∂t

−

−




−
∑

f∈(sea)

qf




qu ∂t

−

−
+ qd ∂t

−

−
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+qd ∂t

−

−




+ [isosymm. vac. pol. diag.] . (2.87)

and

∆Mp =




∆md ∂t

−

−
+ ∆mu ∂t

−

−

+∆mu ∂t

−

−




−




∆m
(crit)
d ∂t

−

−
+ ∆m(crit)

u ∂t

−

−

+∆m(crit)
u ∂t

−

−




−



q2
d ∂t

−

−
+ q2

u ∂t

−

−

+q2
u ∂t

−

−



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−



q2
d ∂t

−

−
+ q2

u ∂t

−

−

+q2
u ∂t

−

−




−



qdqu ∂t

−

−
+ q2

u ∂t

−

−

+qdqu ∂t

−

−




−
∑

f∈(sea)

qf




qd ∂t

−

−
+ qu ∂t

−

−

+qu ∂t

−

−




+ [isosymm. vac. pol. diag.] . (2.88)

2.9.3 Mn −Mp

The mass difference Mn−Mp is readily obtained. Neutron and proton differ for the
exchange u↔ d, therefore:
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Mn −Mp = (md −mu)



− ∂t

−

−
+ ∂t

−

−

+ ∂t

−

−




− (md −mu)
(crit)



− ∂t

−

−
+ ∂t

−

−

∂t

−

−




− (q2
d − q2

u)



∂t

−

−
+ ∂t

−

−

+ ∂t

−

−




− (q2
d − q2

u)



∂t

−

−
+ ∂t

−

−
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+ ∂t

−

−




− (q2
d − q2

u) ∂t

−

−

− (qd − qu)
∑

f∈(sea)

qf




∂t

−

−
− ∂t

−

−

− ∂t

−

−




. (2.89)

The strong IB contribution to this quantity is expected to be positive, as a result of
md > mu, while the electromagnetic one is negative due to higher electromagnetic
self energy of the proton (|Qp| > |Qn|). According to the separation described in
sec. (2.6), in terms of Feynman diagrams we have:

(Mn −Mp)
(QCD) =

(md −mu)
(QCD)



− ∂t

−

−
+ ∂t

−

−

+ ∂t

−

−




. (2.90)

and



2.9. Baryons in QCD+QED 72

(Mn −Mp)
(QED) =

(md −mu)
(QED)
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. (2.91)

2.9.4 IB in ∆ masses

In the SU(3) decuplet of baryons we find a quadruplet of particles with I(JPC) =
3/2(3/2+) and valence quarks in the light sector. Experimentally this corresponds
to the isoQCD state ∆(1232), split into 4 resonances by IB: ∆++, ∆+, ∆0, ∆−.
Their quark content is:

∆− = |ddd〉 ,∆0 = |udd〉 ,∆+ = |duu〉 ,∆++ = |uuu〉 . (2.92)

These have masses between 1230 MeV and 1234 MeV and in experiments are found
as the lowest lying resonant states in artificial processes of Nγ photoproduction and
πN electroproduction [3].
The ∆ is the most important baryon resonance [85]. It has a mass close to MN

and is strongly coupled to nucleons, pions and photons. Studying the properties
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of the ∆ has a role in the construction of effective models for πN interactions (see
e.g. [86, 87]). The latter are often applied in astrophysics, in the description of
processes such as active galactic nuclei, Gamma Ray Bursts and Neutron Stars (see
eg. [88, 89]). The masses of the ∆0, ∆+ and ∆++ have been measured explicitly, as
it’s relatively easy to generate pγ or π+/−p scattering events. On the other hand,
the artificial production of a ∆− would require a π−n scattering, which is not easily
achievable with the present technology.
In this work we focused on the calculation of the masses and mass splittings among
these particles at LO in Isospin Breaking. The method applied with nucleons can be
immediately extended here, so that the mass differences are found from mass slopes
calculated in isoQCD and appropriately tuned counterterms.
In terms of Feynman diagrams we have:

∆M∆++ = ∆mu


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+ ∂t

− 2
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+ [isosymm. vac. pol. diag.] .

(2.93)

and

3∆M∆+ =
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+qu ∂t

− 2

− 2


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+ [isosymm. vac. pol. diag.]

+




d → u
u → d
u → u



 +




d → u
u → u
u → d



 , (2.94)

where the last two terms correspond to the explicit expression, with the 3 legs
permuted as specified by the arrows.
The other mass corrections are obtained by trivial tranformations. In fact, if we
consider them as functions of 3 flavor indices, namely

∆M∆++ = F1(u, u, u) (2.95)

∆M∆+ = F2(d, u, u) , (2.96)

we have:

∆M∆− = F1(d, d, d) (2.97)

∆M∆0 = F2(u, d, d) . (2.98)

From eqs. (2.93) - (2.98) we can verify that:

M∆++ −M∆− = 3(M∆+ −M∆0) , (2.99)

so that there are only 2 independent mass splittings. In this work we concentrate
on the following IB effects:

3(M∆++ −M∆0) =

(mu −md)
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− (qu − qd)
∑

f∈(sea)

qf




∂t

− 2

− 2

+ ∂t

− 2

− 2

+ ∂t

− 2

− 2




. (2.100)

and

(M∆++ +M∆−)− (M∆+ +M∆0) =

− 2

3
(qu − qd)2


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− 2

+ ∂t

− 2

− 2

+ ∂t
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− 2


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. (2.101)

The latter quantity can be considered a particulary clean theoretical prediction,
being a purely electromagnetic effect independent of the tuning scheme.



Chapter 3

Analysis of the isoQCD
background

The correlation functions analyzed in this work were computed using the ETMC
Nf = 2 + 1 + 1 gauge configurations, generated with the action ([13, 73]):

S[U, ψ, ψ̄] = Sg[U ] + S`tm[U, ψ] + Shtm[U, ψ] . (3.1)

Sg is the IM11 version of the Iwasaky action ([90, 91]), S`tm and Shtm are twisted mass
mixed fermionic actions (at maximal twist) respectively for light and heavy quarks.
The choice of this formulation has the intent of minimizing the cutoff effects. In the
following we’ll refer to this theory as isosymmetric background or simply isoQCD,
in the sense that it’s an action which contains only QCD in the limit of isospin
symmetry (i.e. mu = md = m`).
The evaluation of IBEs is done with the RM123 method described in sec. (2),
so that all the euclidean correlators are found in the isosymmetric theory. Before
considering the inclusion these corrections, we carried on an analysis of the isoQCD
background. This served both as a test bench for our choice of the renormalization
scheme and also to find the isosymmetric contributions to the quantities evaluated
in the full theory.
In this theory the simulated, for each ensemble, 3 values of the bare valence strange
quark mass. This partially quenched setup was chosen in order to control the un-
certainty in the physical point of ams. For this reason, in our extrapolations we
consider the dependence on the strange quark mass together with the dependence
on the lattice spacing a, am` and the volume size L 1 . As discussed in sec. (3.2), the
extrapolation to the physical ams can be done in separate steps, i.e. interpolating
the observables depending on it at fixed ensemble to its physical point (dependent
on the given ensemble). This (local) point has a dependence on the given ensemble
which is removed in the final extrapolation.
We adopt a purely hadronic scheme, in which the physical point is expressed in

1In our ensembles the time extent T is always the double of L. This justifies our approximation
in which we neglect finite temperature effect, namely the dependence on T .

81
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terms of (dimensionless) hadronic ratios, compared with their experimental values:

rs =
2M2

K −M2
π

M2
Ω

, (3.2)

r` =
M2

π

M2
Ω

. (3.3)

In other words, we evaluate these ratios from the masses found from the hadronic
correlators and extrapolate the other observables to the experimental value of rs
and r`

2 . This is equivalent to the extrapolation in terms of renormalized quark
masses m̂s and m̂`, however in this way we don’t suffer from the uncertainty in the
quark mass renormalization constants.
The choice of these ratios is led by ChPT, which at LO predicts for the mass of a
pseudo-scalar meson with valence quarks of flavors f1 and f2:

MP (f1, f1) ∝ (m̂f1 + m̂f2) . (3.4)

For the Ω we expect a small dependence from the quark mass, since in nature its
mass is much larger than its valence constituents. This means that rs is a good
choice to play the role of m̂s and r` it is for m̂`.
The rest of the chapter is organized as follows. In sec. (3.3) we discuss the treatment
of FVEs, which are checked against the A40.XX ensembles. In sec. (3.4) we show
how we set the scale, and finally in sec. (3.5) are discussed the extrapolations over
all the ensembles of MN and M∆.

3.1 Identification of ground states

The hadronic masses involved in the present analysis are extracted as ground states
from the large time behavior of appropriate euclidean correlators at rest (i.e. pro-
jected at ~p = ~0):

C(t) =
∑

~x

〈Osink(t, ~x)Osource(0,~0)〉 . (3.5)

For pseudoscalar mesons (P), at the sink we place a quark bilinear of the form:

OP (x) = ψ̄+
f1

(x)Γψ−f2
(x) , (3.6)

where f1 and f2 are the valence quarks flavors of |P 〉 and the + and − are the signs
of the Wilson parameter r. We choose opposite values for it in order to make the
discretization effects on M2

P start at O(a2m) [70, 92]. At the source we place the
hermitian conjugate O†P (0).
For baryons we use the correlators of the form

CB(t) = Tr
[
P
∑

~x

〈B(t, ~x)B̄(0)〉] (3.7)

2Note that isoQCD is not a real theory comparable with the experiment, thus we have some
freedom in the definition of the physical point. Here the experimental values for pions and kaons
masses can be any combination from π+, π0, π−, K+, K0, K− sharing the same isoQCD limit.
The difference arises at O(α), which is an IB effect. We’ll come back to this point in sec. (4.4),
discussing the tuning of mass counterterms.
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were P projects to definite parity, and spin 3/2 for the Ω and ∆ resonance. In sec.
(1.3.1) the explicit expression for baryonic interpolators is given. The extraction
of the masses Mπ, MK MΩ, MN and M∆ was done using the leading exponential
approximation for large times. As previously anticipated in sec. (1.3.3) , we found
the masses in lattice units using a fit to a constant of the effective mass curve
aMeff(t). The mesons are built from positive time parity correlators, so that the
effective mass is defined implicitly from the following expression:

C(t)

C(t+ a)
=

cosh (Meff(t) · (t− T/2))

cosh (Meff(t) · (t+ 1− T/2))
. (3.8)

For baryons the backward signal is absent, and the curve is found simply as:

Meff(t) = log
C(t)

C(t+ 1)
. (3.9)

The choice of the plateau region [tmin, tmax] is done upon requiring the compatibility
with a constant curve and an approximate scaling behavior with the lattice spacing.
We require that the starting point of the plateau (in physical units) depends mainly
on β, with a smaller dependence on the volume and pion mass. In tab. (3.1) we
list the intervals for t/a chosen to fit the effective masse curves to a constant. The
bounds are not strict, in the sense that we allow for fluctuations of 1 or 2 lattice
spacings in t due to the effects given by the pion mass and volume.

β Mπ MN M∆ MK MΩ

1.90 [10, 23] [10, 15] [10, 14] [13, 20] [12, 20]
1.95 [11, 23] [11, 17] [11, 15] [14, 21] [13, 21]
2.10 [14, 30] [14, 18] [14, 22] [18, 24] [17, 24]

Table 3.1: Approximate plateau intervals for [tmin/a, tmax/a], chosen to fit the ef-
fective mass curves to a constant and extract the mass of the ground states. For
MK and MΩ we use the same plateau for each value of the simulated strange quark
mass.

In fig. (3.1) are shown some plots of some effective mass curves, which give an idea
of the quality of the plateaus. In order to give an order of magnitude for the masses
involved in the analysis, these are summarized in tab. (3.2).



3.1. Identification of ground states 84

0 5 10 15 20

t/a

0.144

0.146

0.148

0.150

0.152

0.154

0.156

a
M
π
(t

)

A40.20 : aMπ

χ2
d.o.f =0.052(84)

2 4 6 8 10 12 14

t/a

0.4

0.5

0.6

0.7

0.8

0.9

a
M
N

(t
)

A40.20 : aMN

χ2
d.o.f =0.46(45)

4 6 8 10 12 14 16

t/a

0.4

0.5

0.6

0.7

0.8

a
M

∆
(t

)

A40.20 : aM∆

χ2
d.o.f =0.57(74)

7.5 10.0 12.5 15.0 17.5 20.0 22.5

t/a

0.255

0.256

0.257

0.258

0.259

0.260

a
M
K

1
(t

)

A40.20 : aMK1

χ2
d.o.f =0.08(18)

6 8 10 12 14 16 18 20

t/a

0.80

0.85

0.90

0.95

1.00

1.05

1.10

a
M

Ω
1
(t

)

A40.20 : aMΩ1

χ2
d.o.f =0.13(25)

Figure 3.1: Fit to a constant of the effective mass curves for the ensemble A40.20.
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Ensemble Mπ (MeV) MN (GeV) M∆ (GeV) MK1 (MeV) MΩ1 (GeV)

A100.24 434.2(4.3) 1.304(13) 1.482(12) 547.3(5.5) 1.673(15)
A30.32 242.5(2.6) 1.114(19) 1.309(21) 484.4(5.2) 1.623(15)
A40.20 288.1(3.8) 1.220(21) 1.402(25) 500.7(5.7) 1.663(25)
A40.24 283.4(3.7) 1.170(23) 1.319(32) 496.9(5.4) 1.647(21)
A40.32 277.0(3.0) 1.147(12) 1.333(17) 491.5(5.0) 1.628(17)
A40.40 278.1(3.0) 1.122(13) 1.333(18) 490.4(5.1) 1.635(16)
A40.48 276.7(3.0) 1.150(12) 1.313(16) 491.2(5.2) 1.638(19)
A50.32 307.7(2.9) 1.166(17) 1.353(14) 500.3(5.0) 1.635(17)
A60.24 339.7(3.7) 1.201(20) 1.396(29) 512.3(5.5) 1.639(24)
A80.24 388.8(4.2) 1.255(17) 1.429(20) 528.1(5.6) 1.647(19)

B25.32 235.0(2.5) 1.117(20) 1.330(24) 473.9(4.8) 1.616(15)
B35.32 273.5(2.9) 1.131(16) 1.358(22) 483.0(4.9) 1.624(18)
B55.32 339.0(3.5) 1.200(14) 1.409(17) 502.3(5.0) 1.637(17)
B75.32 394.7(3.8) 1.239(15) 1.440(15) 523.1(5.1) 1.642(17)
B85.24 423.2(4.5) 1.274(13) 1.456(20) 535.9(5.6) 1.651(14)

D15.48 204.4(2.0) 1.048(16) 1.312(31) 442.9(4.6) 1.580(16)
D20.48 231.8(2.3) 1.092(15) 1.346(32) 449.8(4.9) 1.588(13)
D30.48 282.5(3.1) 1.094(14) 1.316(24) 464.0(5.0) 1.582(17)

Table 3.2: For each ensemble, the masses of Mπ, MN , M∆, MK , MΩ, found from
the fit to a constant of the effective mass curves. Their values are in physical units,
obtained using the values of the lattice spacings found later in the analysis (see sec.
(3.4)). For K and Ω we report the masses for the 1st value of ams.

3.2 Physical point of ms

For each β we have 3 values of the valence quark mass ams (see tab. (3.3)).

β ams1 ams2 ams3

1.90 0.0220 0.0260 0.0300
1.95 0.0190 0.0220 0.0250
2.10 0.0136 0.0161 0.0186

Table 3.3: Values of ams for each β of the first run within the isoQCD theory.

These values are near the physical point. This justifies an interpolation at fixed
ensemble, done for each observable dependent of the strange quark mass in the
valence. The physical point found in such a way contains an induced dependence
on the light quark mass and volume (and lattice spacing), removed in the final
extrapolation.
In this analysis we interpolate using the ratio:

rs =
2M2

K −M2
π

M2
Ω

. (3.10)
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We express these oservables in terms of it, and find their values corresponding to
the experimental value of rs. Since the extrapolation with respect to m̂` is done
with the ratio r` of eq. (3.3), this means that the physical point for each ensemble
will have a dependence on r`, volume and lattice spacing. Given the vicinity to the
physical point a polynomial ansatz is used, namely we fit these observables as:

O = O0[1 + c1rs + c2r
2
s ] , (3.11)

where O0, c1 and c2 are free parameters of the fit. In fig. (3.2) are shown the
extrapolations of MK and MΩ for 3 ensembles (one for each β), and in fig. (3.3) the
ones for ams.
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Figure 3.2: Extrapolations of MK and MΩ for the ensembles A100.24, B25.32,
D20.48.
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Figure 3.3: Extrapolations of ams with respect to rs for the ensembles A100.24,
B25.32, D20.48.

3.3 FVE from the A40.XX ensembles

The FVEs shown by our data are found to be moderate. However these are visible
looking at the A40.XX, which differer from each other only for the volume. In
order to correct them, we use the asymptotic ChPT results found in the p-regime
and restricted to the leading contributions coming from the lightest state. This is
implemented leaving the L→∞ limit of the mass and the coefficient in front of
the L-dependent factor as a free parameters of the fit. In other words we use the
following ansätze. From [55] and [93] we have for π and K:

Mπ(L) = Mπ(∞)

[
1 + CπM

2
π

e−MπL

(MπL)3/2

]
, (3.12)

MK(L) = MK(∞)

[
1 + CKM

2
π

e−MπL

(MπL)3/2

]
. (3.13)

The plots of Mπ(L) and MK(L) from the A40.XX ensembles are reported in fig.
(3.4).
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Figure 3.4: Volume dependence of Mπ and MK (1st simulated value of ms). The
data were fitted according to the equations (3.12). Blue and red points respectively
are evaluated at finite and infinite volume, with bands representing the fit curve and
infinite volume mass.

From the resummed formula for N we have [94]:

MN(L) = MN(∞)

[
1 + CNM

3
π

e−MπL

(MπL)

]
. (3.14)

The plot of MN(L) is given in fig. (3.5).
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Figure 3.5: Volume dependence of MN fitted according to eq. (3.14). Blue and red
points respectively are evaluated at finite and infinite volume, with bands represent-
ing the fit curve and infinite volume mass.

In our ensembles Ω and ∆ are stable, with FVEs found to be small and consistent
with the asymptotic formulas for stable particles. Numerically, this is also reassured
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by the fact that the ODE method doesn’t find more than 1 state in their correlators.
For the ∆ we checked the stability explicitly looking at the masses of π and N for
each ensemble, recalling that the decay at threshold is forbidden in a finite volume
[95]. The volume dependence of their masses is then written as ([96, 97] and [98]):

MΩ(L) = MΩ(∞)

[
1 + CΩM

2
K

e−MKL

(MKL)3/2

]
, (3.15)

M∆(L) = M∆(∞)

[
1 + C∆M

2
π

e−MπL

(MπL)3/2

]
. (3.16)

Note that for the Ω we don’t have an exponential in Mπ, which is further suppressed
by M2

π in the chiral expansion and hence neglected in our approximation. In fact,
in ChPT, FVEs are due to chiral loops (see sec. (1.4.2)) and the kaon is the lightest
particle that can produce a loop in the Ω propagator, obtained taking only one light
quark from the sea. Moreover, the presence of MK instead of Mπ is implied by
isospin. Since IΩ = 0 while Iπ = 1, in order to have the total isospin conserved the
Ω should do a transition to a I = 1 state made of 3 s quarks, which doesn’t exist.
The plots of the volume dependence for MΩ and M∆ is shown in fig. (3.6).
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Figure 3.6: Volume dependence of M∆ and MΩ (1st simulated value of ms) fitted
according to the equations (3.15). Blue and red points respectively are evaluated at
finite and infinite volume, with bands representing the fit curve and infinite volume
mass.

3.4 Scale setting

In this work the lattice spacings are found from the mass of the Ω baryon, through
its experimental value [3]:

M
(exp)
Ω = 1672.45(29) MeV . (3.17)

This is done extrapolating the values of aMΩ to the infinite volume limit and physical
point of the quark masses, and then setting:

a =
(aMΩ)|phys
M

(exp)
Ω

. (3.18)
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As explained in [99], the quality of the values in physical units depend on the
precision of the observable used to set the scale. In our analysis we don’t have to
worry about this because the experimental uncertainty on M

(exp)
Ω is negligible with

respect to our lattice results.
It must be said that one can choose a parameter different from a, such as the Sommer
parameter r0 or w0. The advantage may be to compare different works, assuming a
common physical value of that parameter as found from one of them [99]. However,
in a self contained analysis (as this one) we can’t add information simply using a
different parameter. This makes no difference, and in general only increases the
noise.
The extrapolation to the physical point of m` and ms was done for each β, reaching
the L → ∞ limit and the physical point of the aforementioned ratios rs and r` of
eq. (3.2) and (3.2).
As discussed before, from ChPT results we know that the continuum and physical
point limits are not interchangeable. For this reason the extrapolation of aMΩ was
done simultaneously over the 3 βs. In the following are reported the discussions on
the following simultaneous extrapolations:

(L, s, `) → aMΩ = aMΩ(L, rs, r`) ,

(s, `) → aMΩ = aMΩ(rs, r`) ,

(`) → aMΩ = aMΩ(r`) .

The letters in the parentheses are a shorthand for the parameter dependence of
aMΩ. The extrapolation (L, s, `) takes simply the values obtained from the analysis
of the correlators. In (s, `) the values of aMΩ are the ones corrected from FVEs
using the information on the A40.XX ensembles (see sec. (3.3)). In (`) the values
are the ones corrected from FVEs and, for each ensemble, interpolated among the
values of rs (see sec. (3.2)).
In tab. (3.4) are summarized the lattice spacings found with the above procedures.
The compatibility of the results is reassuring about the validity of the procedure in
separate steps.

β 1.90 1.95 2.10
(L, s, `) 0.1008(10) 0.09017(92) 0.06840(73)

(s, `) 0.1008(10) 0.09017(92) 0.06840(73)
(`) 0.1008(10) 0.09017(92) 0.06840(73)

Table 3.4: Lattice spacings a(fm) obtained from aMΩ with the extrapolations
(L, s, `), (s, `), (`).

3.4.1 Extrapolation (L, s, `)

Here the values of aMΩ are the ones found from the leading exponential behavior of
the correlator CΩ(t) in the plateau region. In isoQCD the latter suffer from FVEs
and depend on the strange and light quark mass. According to the asymptotic
expansion of FVEs discussed in sec. (1.4.2), the Ω at finite volume contains a
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leading contribution that goes like

M2
K

e−MKL

(MKL)3/2
,

while from Mπ and MK in rs and r` we get also the term

M2
π

e−MπL

(MπL)3/2
.

The former is subleading with respect to the latter, given that MK is higher that
Mπ.
By the above considerations, the following phenomenological ansatz is adopted:

(aMΩ)i = aβ(i) M
(exp)
Ω

[
1 + cL

(
Mπ

ΛQCD

)2
e−MπL

(MπL)3/2
+ cs ∆rs + c` ∆r` +

cs` ∆rs∆r` + c(2)
s ∆r2

s + c
(2)
` ∆r2

`

]
.

(3.19)

The index i corresponds to a generic ensemble, and β(i) is one of the 3 βs to which
that ensemble corresponds to. ∆rs and ∆r` are the displacements of rs and r` from
the isoQCD value. For the latter we use the quadratic average of the charged and
neutral mesons, viz:

∆rs =
2M2

K −M2
π

M2
Ω

−
(

2(M2
K+ +M2

K0)− (M2
π+ +M2

π0)

2M2
Ω−

)(exp.)

, (3.20)

∆r` =
M2

π

M2
Ω−
−
(
M2

π+ +M2
π0

2M2
Ω−

)(exp.)

. (3.21)

The lattice spacings are free parameters of the fit, as cL, cs, c`, cs`, c
(2)
s , c

(2)
` . The

latter are all dimensionless and ΛQCD = 300 MeV is a reference scale used to make
cL so.
In table (3.5) are reported the values of the lattice spacings obtained in isoQCD
with the above fit. In fig. (3.7) are given the plots of the simultaneous extrapolation
among the 3 βs.

β a(fm) a(GeV−1)
1.90 0.1008(10) 0.5110(53)
1.95 0.09017(92) 0.4570(46)
2.10 0.06840(73) 0.3466(37)

Table 3.5: Lattice spacings obtained from aMΩ with the simultaneous fit over L, rs,
r`.
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Figure 3.7: Extrapolation of aMΩ in isoQCD over all the ensembles according to
the ansatz given in eq. (3.19). For each ensemble we have a triplet of points
corresponding to the 3 values of ams used in the isoQCD simulation. The colored
dashed lines (with error bands) are the curves extrapolated to L→∞ and r

(phys)
s .

Note that if we knew the lattice spacings, the correct functional form would include
an a2 term, in order to account for discretization effects. This is equivalent to
considering the ansatz:

(aMΩ)i = aβ(i) M
(exp)
Ω

[
1 + cL

(
Mπ

ΛQCD

)2
e−MπL

(MπL)3/2
+ cs ∆rs + c` ∆r` +

cs` ∆rs∆r` + c(2)
s ∆r2

s + c
(2)
` ∆r2

` + ca(ΛQCD aβ(i))
2
]

.

(3.22)

Note that ca is dimensionless too.
At this stage however we haven’t set the scale yet, and the result for ca would be
ambiguous. This is easily seen in the approximation in which mixed terms in a2 and
higher are neglected. In this case the parameter ca could be “reabsorbed” in the
definition of the parameters ai:

aβ(i) (1 + ca(ΛQCD aβ(i))
2) → a′β(i)

The equation (3.22) would then lead to the removal of some discretization effects
under some arbitrary prescription.
Moreover the minimization of the χ2 function would not have in principle a well
definite minimum, but an hyper-surface of “minima” in the parameter space.
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In practice however, some testing over the data has shown that there are indeed some
local minima, to which the minimization falls naturally starting from a meaningful
(but still boundless) guess for ca. As is it manifest from the data shown in fig. (3.7),
ca > 0 as ∂MΩ

∂a
> 0.

It’s interesting to focus on one of those minima, found at ca ≈ 0.7. The correspond-
ing lattice spacings are reported in tab. (3.6) .

β a(fm) a(GeV−1)
1.90 0.08795(50) 0.4457(25)
1.95 0.08034(49) 0.4071(25)
2.10 0.06356(50) 0.3221(25)

Table 3.6: Lattice spacings obtained from aMΩ with the simultaneous fit over L, rs,
r`. The ansatz is given in eq. (3.22) with ca ≈ 0.7.

If we compare the results of tab. (3.5) with a previous determination of the lattice
spacings over the same gauge configurations (see [13]), we see that our lattice spac-
ings are ∼ 10% bigger. This means that the discretization effects on MΩ are or
this order of magnitude. The discrepancy is solved if we include a caa

2 term in the
ansatz, with ca ≈ 0.7. In this case, we find 1σ-compatible values with [13], which
found a = 0.0885(36), 0.0815(30), 0.0619(18) fm at β = 1.90, 1.95, 2.10.
The above finding reassures us about the fact that, even if bigger, the lattice spac-
ings of tab. (3.5) have the correct a2 scaling behavior. Even if they contain the
discretizaton effects of MΩ, the latter are expected to vanish in the continuum limit.
This is also found to be so in practice from the extrapolated values of hadronic
quantities in the analysis.

3.4.2 Extrapolation (s, `)

Finite volume effects can be corrected from the A40.XX ensembles, which are equal
in all respects but for the volume size. The present approximation consist in using
the information on this ensembles to correct the FVEs on all the others. According
to what said in sec. (3.3), the free parameter extracted from the fit is assumed to be
the same for all the ensembles, neglecting a mixed dependence on both the volume
and the other parameters in the Lagrangian. This allows to correct the FVEs for
all the ensembles, obtaining values at L→∞ of rs, r` and aMΩ.
The functional form for aMΩ is then the following:

(aMΩ)i = aβ(i) M
(exp)
Ω [1 + cs ∆rs + c` ∆r` +

cs` ∆rs∆r` + c(2)
s ∆r2

s + c
(2)
` ∆r2

`

]
.

(3.23)

The labelling is analogous to the one in eq. (3.19), but now the aMΩ are calculated
at L→∞. In table (3.7) are reported the values of the lattice spacings, and in fig.
(3.8) is given the plot of the extrapolation.
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β a(fm) a(GeV−1) a(MeV−1)
1.90 0.10059(98) 0.5098(49) 0.0005098(49)
1.95 0.09005(76) 0.4563(38) 0.0004563(38)
2.10 0.06825(59) 0.3459(30) 0.0003459(30)

Table 3.7: Lattice spacings obtained from aMΩ with the simultaneous fit over rs, r`.
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Figure 3.8: Extrapolation of aMΩ in isoQCD over all the ensembles according to the
ansatz given in eq. (3.23). Note that the removal of FVEs leads to the clustering of
the points corresponding to the A40.XX ensembles. The colored dashed lines (with

error bands) are the curves extrapolated to r
(phys)
s .

3.4.3 Extrapolation (`)

The dependence on the strange quark mass on a given observable can be removed,
for each ensemble, interpolating among the 3 values of ams. As discussed in sec.
(3.2), this is obtained interpolating with respect to the corresponding 3 values of rs.
After this further step, we are left with the values of aMΩ and r` at L → ∞ and
rs = r

(phys)
s .

The dependence of aMΩ on r` is then written as follows:

(aMΩ)i = aβ(i) M
(exp)
Ω

[
1 + c` ∆r` + c

(2)
` ∆r2

`

]
, (3.24)

with the obvious labelling.
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In table (3.8) are reported the values of the lattice spacings. and in fig (3.9) the
plot of the extrapolation.

β a(fm) a(GeV−1) a(MeV−1)
1.90 0.1012(10) 0.5126(52) 0.0005126(52)
1.95 0.09030(76) 0.4576(39) 0.0004576(39)
2.10 0.06834(62) 0.3463(31) 0.0003463(31)

Table 3.8: Lattice spacings obtained from aMΩ with the simultaneous fit over rs, r`.
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Figure 3.9: Extrapolation of aMΩ in isoQCD over all the ensembles according to
the ansatz given in eq. (3.24). Note that now the triplets of each ensemble are
reduced to a single point, representing the physical point of rs for that ensemble.
The colored dashed lines (with error bands) are the fitting curves.

3.5 Extrapolation of hadronic masses

3.5.1 Nucleon mass

In the full theory the interpolating operators for p and n are [100]:
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p εabc(u
T
a (Cγ5)db)uc

n εabc(d
T
a (Cγ5)ub) dc

Their isosymmetric limit is the nucleon N , interpolated by:

N εabc(`
T
a (Cγ5)`b) `c , (3.25)

where ` is the isoQCD limit of u and d quarks. In terms of fermionic propagators
we have:

CN = − , (3.26)

with the notation discussed in sec. (C).
The mass was extracted fitting the effective mass curve to a constant at large times.
These values have a dependence on the volume, lattice spacing and light quark mass.
The leading FVEs is proportional to [94]:

M3
π

e−MπL

(MπL)

We approximate the dependence on m` with by the ChPT result ([101, 102]), whose
leading contributions go as:

∼M2
π , ∼M3

π .

Discretization effects are included with an a2 term since we are at maximal twist.
For the above reasons we use the following ansatz to extrapolate the data:

MN = M0

[
1 + cL

(
Mπ

ΛQCD

)3
e−MπL

(MπL)
+ c2 r` + c3 r

3/2
` + ca (ΛQCDa)2

]
, (3.27)

where the arbitrary scale ΛQCD = 300 MeV is needed only to make the coefficients
dimensionless. The values of r` are the ones extrapolated at fixed ensemble to the
physical point of rs (see sec. (3.2)).
The value obtained from the extrapolation is:

MN = 0.9549(97) GeV (3.28)

Moreover, assuming the ChPT expression, we also get a prediction for the πN sigma
term consistent with other findings in the literature (e.g. [103, 104]):

σπN = m`
∂MN

m`

≈M2
π

∂MN

M2
π

= 43.2(1.4) . (3.29)
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Figure 3.10: Extrapolation in isoQCD of MN according to the eq. (3.27). The faint
grey points are the values at finite L. The colored points and dashed lines (with

error bands) are the curves extrapolated to L→∞, r
(phys)
s and fixed lattice spacing.

The “experimental” value is a (narrow) band ranging from Mp to Mn.

3.5.2 Delta resonance

In the full theory the interpolating operators for the ∆ resonances are [100]:

∆++ εabc(u
T
a (Cγµ)ub)uc

∆+ 1√
3
εabc

(
2(uTa (Cγµ)db)uc + (uTa (Cγµ)ub) dc

)

∆0 1√
3
εabc

(
2(dTa (Cγµ)ub) dc + (dTa (Cγµ)db)uc

)

∆− εabc(d
T
a (Cγµ)db) dc

These generate correlators with the correct quantum numbers (JPC , I) after the
projection to positive parity and spin-3/2.
In the isosymmetric limit the ∆ is a degenerate state, which is splitted into 4 levels
by IB. This is reflected in the fact that the correlators are all equivalent in this limit
(i.e. they show the same Wick contractions). For this reason, in isoQCD is sufficient
to study the ~p = ~0 correlator:

C3`(t) =
∑

~x

〈P+
µνO(`)

µ (x)Ō(`)
µ (0)〉 , (3.30)
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where:
Oµ(`) = εabc (`TaCγµ`b) `c (3.31)

` is the light quark field, namely the limit of u and d, and:

P+
µν = P 3/2

µν

1 + γ4

2
. (3.32)

The explicit expression in terms of fermionic propagators has the same form for the
Ω:

C∆ = − 2 , (3.33)

where is understood the projection to positive parity and spin-3/2.
The mass was extracted from the large time behavior of the correlator, fitting the
effective mass curve to a constant. The extracted values suffer from FVEs, depen-
dence on the light quark mass and lattice spacing.
As seen in sec. (1.4.2), we know the leading contribution is proportional to the
factor:

M2
π

e−MπL

(MπL)3/2

The dependence on m` is approximated by the ChPT result [102] predicting two
leading contributions:

∼M2
π , ∼M3

π .

Discretization effects are taken into account with an a2 term since we are at maximal
twist.
As a result, we use the following ansatz to extrapolate the data:

M∆ = M0

[
1 + cL

(
Mπ

ΛQCD

)2
e−MπL

(MπL)3/2
+ c2 r` + c3 r

3/2
` + ca (ΛQCDa)2

]
, (3.34)

where ΛQCD = 300 MeV is an arbitrary scale chosen to make the coefficients dimen-
sionless.
Here the values of r` are the ones extrapolated at fixed ensemble to the physical
point of rs (see sec. (3.2)).
The value obtained from the extrapolation is:

M∆ = 1.261(30) GeV , (3.35)

consistently with the experimental range 1.230 − 1.234 GeV from the peak of the
∆(1232) resonance [3]. We also find the π∆ sigma term consistent with the findings
of [105].

σπ∆ = m`
∂M∆

m`

≈M2
π

∂M∆

M2
π

= 24.55(77) . (3.36)
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Figure 3.11: Extrapolation in isoQCD of M∆ according to the eq. (3.34). colored

dashed lines (with error bands) are the curves extrapolated to L → ∞, r
(phys)
s and

fixed lattice spacing.

3.6 Renormalized quark masses

As discussed in sec. (1.2.6), renormalized quark masses can be found from the
renormalization constants ZP . Their calculation is not object of this work but they
are taken from [13], which found them on dedicated ensembles with Nf = 4. In tab.
(3.9) are reported their values in the MS scheme at the scale of 2 GeV, for the two
methods M1 and M2 developed in [13].

method M1 method M2
β = 1.90 0.529(7) 0.574(4)
β = 1.95 0.509(4) 0.546(2)
β = 2.10 0.516(2) 0.545(2)

Table 3.9: Values of the RC ZP in the MS scheme from [13] at the scale µ = 2 GeV.

The renormalized quark masses m̂` and m̂s are then found as:

m̂` = Z−1
P m` (3.37)

m̂s = Z−1
P ms . (3.38)
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We compute their values for each ensemble, which can be extrapolated to the phys-
ical point as discussed in the following sections.

3.6.1 Extrapolation of m̂`

The extrapolation of m̂` was done using the pion mass. In our setup the latter
depends only on the light quark mass, the lattice spacing and volume of our grid.
We followed an approach analogous to the analysis B of [13], fitting the values of
M2

π with a polynomial ansatz:

M2
π = P0ΛQCDm̂`

[
1 + cL

(
Mπ

ΛQCD

)2
e−MπL

(MπL)3/2
+ ca(aΛQCD)2

+c
′
`

(
m̂`

ΛQCD

)
+ c

′′
`

(
m̂`

ΛQCD

)2
]

,

(3.39)

where FVEs are implicitly defined. ΛQCD is an arbitrary scale to make coefficients
dimensionless and fixed to 300 MeV. P0, cL, ..., are free parameters in the fit over
the ensembles. In fig. (3.12) is shown the extrapolation of M2

π over the ensembles as
a function of m̂`. Our prediction is obtained setting L → ∞, a = 0 and Mπ at the
physical point in the above expression and inverting numerically for m̂`. Using eq.
(28) of [13], we combine the results obtained with the ZP found with the methods
M1 and M2. We find:

m̂`(µ = 2 GeV) = 3.781(76) MeV , (3.40)

compatibly within 1σ with [13], which found m̂` = 3.70(17) MeV.
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Figure 3.12: Extrapolation of M2
π according to the eq. (3.39) as a funcion of

m̂`(µ = 2 GeV) found using the ZP of the methods M1 and M2. The faint grey
points are the values at finite L. The colored points and dashed lines (with er-
ror bands) are the curves extrapolated to L→∞ and fixed lattice spacing. The
“experimental” value is a (narrow) band ranging from Mπ0 to Mπ+ .
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3.6.2 Extrapolation of m̂s

The extrapolation of m̂s was done using the Kaon mass. The latter has a dependence
on both the light and strange quark masses, the lattice spacing and the volume. As
for the light quark mass, we followed an approach analogous to the analysis B of
[13] The values of M2

K were fitted according to the following polynomial ansatz:

M2
K = P0ΛQCD(m̂` + m̂s)

[
1 + cL

(
Mπ

ΛQCD

)2
e−MπL

(MπL)3/2
+ ca(aΛQCD)2

+c1

(
m̂`

ΛQCD

)
+ c2

(
m̂`

ΛQCD

)2
]

.

(3.41)

ΛQCD is an arbitrary scale to make coefficients dimensionless and fixed to 300 MeV.
P0, cL, ... , are free parameters of the fit over all the ensembles. In fig. (3.13) is
shown the extrapolation of M2

K over the ensembles and 3 values of m̂s as a function
of m̂`. Our prediction is obtained setting L→∞, a = 0, MK at the physical point
and m̂` at the physical value found in (3.6.1) in the above expression, and inverting
numerically for m̂s. Using eq. (28) of [13], we combine the results obtained with the
ZP found with the methods M1 and M2. We find:

m̂s(µ = 2 GeV) = 103.2(2.0) MeV . (3.42)

compatibly within 1σ with [13], which found m̂s = 99.6(4.3) MeV.
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Figure 3.13: Extrapolation of M2
K according to the eq. (3.41) as a funcion of

m̂`(µ = 2 GeV) found using the ZP of the methods M1 and M2. The faint grey
points are the values at finite L. The vertical triplets of points correspond to the
3 values of ms simulated for each ensemble. The colored points and dashed lines
(with error bands) are the curves extrapolated to L→∞ and fixed lattice spacing.
The “experimental” value is a (narrow) band ranging from MK+ to MK0 .



Chapter 4

Analysis in QCD+QED

In this section are discussed the details of the analysis in presence of IB effects. At
LO the latter are evaluated from the combination of slopes found in the isosymmetric
theory, multiplied by the appropriate counterterms and charge factors. This requires
the tuning of counterterms, in our case the critical and physical mass ones.
The first (∆m

(crit)
f , f = u, d, s) are found for each ensemble from the PCAC Ward

Identity, requiring to preserve the maximal twist condition at O(αEM) and hence the
O(a) improvement on discretization effects (see sec. (4.1)). The second are found
in an hadronic scheme, in which we find the 3 bare mass counterterms in lattice
units (a∆mu, a∆md, a∆ms) such that they match the experimental values of the
3 hadronic ratios rs r` and rp (see sec. (4.4)). The latter depend on (M2

π+ + M2
π0),

M2
K+ , M2

K0 , M2
Ω− , which we use as inputs to tune mu, md, ms and the lattice spacing

a. We are then able to predict the spectrum of nucleons (sec. (4.7)) and ∆(1232)
resonances (sec. (4.8)).
The modification in the lattice spacing induced by IB is fixed by MΩ− , whose value
(in the full theory) determines the scale of the system analogously as we did in
isoQCD (see sec. (4.5)).
In QCD +QED we simulated 2 values of the valence strange quark mass, between
which we interpolate at fixed ensembles the observables depending on it (see sec.
(4.3)). Here these are the masses and mass slopes of kaons and Ω.
After that, we combine the electromagnetic (EM) slopes with the ones coming
multiplying the critical mass counterterms (C). The first originate from diagrams
involving photons and the second from the ones with the insertion of the pseudo-
scalar current. The combination of the two is denoted with EMC (= EM + C).
We then correct the universal QEDL FVEs on these slopes, in order to avoid their
presence in the physical mass counterterms.
At this point we tune the a∆mf for each ensemble, and get the observables in phys-
ical units. These are extrapolated among all the ensembles, taking simultaneously
into account FVEs, discretization effects and dependence on r`.

4.1 Critical mass counterterms

The bare critical mass (and its counter-term in the presence of QED) is tuned using
the PCAC Ward-Takahashi identity (WTi) [106]. The latter reads:

∂µ 〈Aaµ(t, ~x)P a(0,~0)〉 = 2mPCAC
f 〈P a(t, ~x)P a(0,~0)〉 a = 1, 2 , (4.1)

104
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where mPCAC is the renormalized twisted mass (see [7] for the notation), and P a =
χ̄fγ

5 τa

2
χf and Aaµ = χ̄fγµγ

5 τa

2
χf in the twisted basis {χ̄f , χf}. The τa

2
are the Pauli

matrices.
When we integrate over the spatial positions the ∂i term gives a surface contribution,
which vanishes in the limit L→∞. The above equation then becomes

∂t

∫
d~x 〈Aa4(t, ~x)P a(0,~0)〉 = 2mPCAC

∫
d~x 〈P a(t, ~x)P a(0,~0)〉 . (4.2)

The maximal twist condition, mPCAC = 0, can be set from here, requiring the LHS
of (4.2) to vanish. This was done in advance before the isoQCD simulations, which
then already started at maximal twist. When adding the QED interaction to the
Lagrangian, we are interested in preserving the maximal twist so as to get the O(a)
improvement [107]. In other words we require:

0 = ∆mPCAC = ∆

(
∂t 〈Aa4(t)P a(0)〉
〈P a(t)P a(0)〉

)
, (4.3)

where ∆ represents the variation caused by the counter-term ∆mcrit and the dia-
grams with photons. The condition mPCAC = 0 does not depend on the twisted
mass mf , and hence on the counter-term ∆mf when IB is introduced. The above
equation fixes ∆m(cr) and is equivalent to:

∂t ∆ 〈Aa4(t)P a(0)〉 − 2mPCAC
0 ∆ 〈P a(t)P a(0)〉 = 0 . (4.4)

Note that we kept the dependence on the isoQCD value mPCAC
0 with the purpose

of correcting any inaccuracy in the isosymmetric maximal twist. Fig. (4.1) contains

the fits to a constant of the effective mass curves for a∆m
(cr)
f . We show the case of

one ensemble for each β for a∆m
(cr)
u

1 and a∆m
(cr)
s .

4.2 QED finite size effects

As discussed in sec. (2.5), QED on a torus induces FVEs in the hadronic spectrum
suppressed by powers of 1/L. The ∼ 1/L and ∼ 1/L2 terms are universal, i.e. don’t
depend on the spin or structure of the hadron which enter at O(αEM

L3 ) in the volume
dependence. The asymptotic behavior in a mass correction ∆M induced by QED
is then:

∆M(L)→ ∆M(∞)−Q2αEM

[
κ

2L

(
1 +

2

ML

)]
+O

(αEM
L3

)
. (4.5)

Using the above formula we remove these universal FVEs from the mass corrections
generated by diagrams with photons. In the analysis this is done at fixed ensemble
and fixed value of strange quark mass. As discussed later, we use these mass correc-
tions to tune physical mass counterterms. Having corrected them from these 1/L
and 1/L2 effects means that the a∆mf we’ll find will contain only residual structure
dependent FVEs of O(1/L3). These are taken into account afterwards in the global
extrapolations among all the ensembles at the end of the tuning.

1Note that a∆m
(cr)
d = (ed/eu)2 · a∆m

(cr)
u
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Figure 4.1: Effective curves of ∆m
(cr)
u and ∆m

(cr)
s (1st value of ms) as a functions

of time, for the ensembles A40.24, B35.32, D20.48 (one for each β). The starting
point t0 of the plateau is chosen such that approximately t0/a is constant over the
3 values of β.
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We remark that, in principle, if we had enough A40.XX ensembles we could have
fit the finite volume effects on them, finding (and subtracting) the higher order
terms. In practice however, we found that this often results in a less stable fit and
final extrapolation result, due to the uncertainties and small number of points. The
following plots show the QED FVEs for the A40.XX ensembles for some of the
EM mass corrections involved in the analysis. As expected, the displacement from
the “universal” curve, namely the structure-dependence, is more severe for small
volumes.
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Figure 4.2: The blue points are the EMC corrections in lattice units at finite volume.

The green points are the values after the correction of the universal QED FVEs. The

green band is a fit of the latter with an ansatz of the form A+B
(
a
L

)3
, with A and B free

parameters of the fit.
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Figure 4.3: Same as fig. (4.2) but for the mass difference (Mp −Mn)(EMC).
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Figure 4.4: Same as fig. (4.2) but for the Ω− corresponding to the 1st value of the
strange quark mass.

0.00000 0.00002 0.00004 0.00006 0.00008 0.00010 0.00012

(a/L)3

0.0011

0.0012

0.0013

0.0014

0.0015

0.0016

0.0017

0.0018

a
∆
M

(E
M
C

)

K
+ 1

(L
)

FVEs on QED mass correction

Fit of residual ∼ (1/L3) dependence

Points at finite L

Universal QED FVEs removed

Figure 4.5: Same as fig. (4.4) but for the K+.
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Figure 4.6: Same as fig. (4.2) but for the ∆++ resonance.
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Figure 4.7: Same as fig. (4.6) but for the ∆+.

4.3 Interpolation to the physical point of ms

In the extrapolation of the observables, together with L→∞ and a→ 0, we reach
the physical point of quark masses. Here we do this in separate steps, interpolating
the slopes to the physical point of ams at fixed ensemble, using these slopes to find
counterterms for each am` (see sec. (4.4)), and leaving the extrapolation in this
parameter as the last step.
In QCD + QED we simulated 2 values of am

(0)
s in the Lagrangian, near to the

physical point found in isoQCD (see tab. (4.1)).
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β am
(0)
s1 am

(0)
s2

1.90 0.0242 0.0261
1.95 0.0216 0.0230
2.10 0.0176 0.0186

Table 4.1: Values of am
(0)
s for each β of the 2nd run for QCD+QED.

As in the analysis in the isoQCD background we interpolate in terms of an hadronic
ratio, which here is:

rs =
2(M2

K+ +M2
K0)− (M2

π+ +M2
π0)

2M2
Ω−

. (4.6)

The interpolation is done using a straight line:

O(ams) = O0

[
1 + Cs(rs − r(phys)

s )
]

, (4.7)

where O is a generic observable and O0, Cs are free parameters of the fit. This is
justified by the closeness to the physical point. Examples of the extrapolations for
MK and MΩ slopes are reported below in the following figures. We show the case of
the ensembles A100.24, B25.32, D15.48 (one for each β).
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Figure 4.8: Extrapolations to the physical point of rs of the electromagnetic correc-
tion ∆M

(EMC)

K+ for the ensemble A100.24. The blue points (with errorbars) are the
points for the 2 values of the strange quark mass, with the green band being the
fitting curve (with error). In red, the extrapolation to the physical point of rs.
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Figure 4.9: Same as fig. (4.8) but for the mass slopes ∆M
(MASS)
Ω (s1) coming from

the insertion of the scalar current on the 1st leg.
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Figure 4.10: Same as fig. (4.8) but for the ensemble B25.32.
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Figure 4.11: Same as fig. (4.9) but for the ensemble B25.32.
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Figure 4.12: Same as fig. (4.8) but for the ensemble D15.48.
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Figure 4.13: Same as fig. (4.9) but for the ensemble D15.48.

4.4 Tuning of mass counterterms

The physical point of a theory is defined by the values of its n renormalized couplings
at some scale. On the lattice we can equivalently provide their bare values in lattice
units, requiring to match the experimental values of n physical observables. Here
we define the physical point of isoQCD and QCD+QED from the following ratios:

rs =
2(M2

K+ +M2
K0)− (M2

π+ +M2
π0)

2M2
Ω−

, (4.8)

r` =
M2

π+ +M2
π0

2M2
Ω−

, (4.9)

rp =
M2

K+

M2
Ω−

, (4.10)

imposing rs = r
(exp)
s , r` = r

(exp)
` and rp = r

(exp)
p . This also implies, by definition,

that their total IB corrections vanishes.
At LO we have:

rs = r(0)
s +

∑

f∈(u,d,s)

a∆mf∆̄rs
(f)

+ ∆r(EMC)
s (4.11)

r` = r
(0)
` +

∑

f∈(u,d,s)

a∆mf∆̄r`
(f)

+ ∆r
(EMC)
` (4.12)

rp = r(0)
p +

∑

f∈(u,d,s)

a∆mf∆̄rp
(f)

+ ∆r(EMC)
p , (4.13)

where ∆̄r
(f)
i (i = s, `, p) is the slope caused by the insertion of the scalar current

multiplied by the counterterm a∆mf , and (EMC) denotes the combination of QED
and critical mass counterterms corrections. Note that the latter are already known
for each ensemble because their tuning was done using the PCAC Ward Identity.
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The solution to the above system gives us the tuning condition for physical mass
counterterms:



a∆mu

a∆md

a∆ms


 = −




∆̄r
(u)
s ∆̄r

(d)
s ∆̄r

(s)
s

∆̄r
(u)
` ∆̄r

(d)
` ∆̄r

(s)
`

∆̄r
(u)
p ∆̄r

(d)
p ∆̄r

(s)
p




−1 


∆r
(EMC)
s

∆r`
(EMC)

∆r
(EMC)
p


 . (4.14)

These equations give the counterterms at the isoQCD physical point of ams and
am`. In the analysis the a∆mf are found at fixed ensemble, after the interpolation
of the slopes among the 2 values of ams to the physical point of rs . These a∆mf

are used to evaluate the other observables , which are then extrapolated to L→∞,
a → 0 and r` = r

(exp)
` over all the ensembles. For each observable O this is just an

extrapolation in separate steps, done on the slice rs = r
(exp)
s of the hyper-surface

O(rs, r`, L, a).

4.5 Scale setting in QCD+QED

The scale of the system is modified by the inclusion of IB effects. This is caused by
the modification of the observable(s) used to set the scale. In our case this is aMΩ− .
In isoQCD we evaluated an approximation of the mass (MΩ) neglecting IBEs, but
in the full theory these values are subject to corrections. The lattice spacings in the
full theory are defined as:

aβ(i) =
aMΩ−

M exp.
Ω−

=
a0MΩ + ∆(aMΩ−)

M exp.
Ω−

= a
(0)
β(i)(1 + δaβ(i)) , (4.15)

where a
(0)
β(i) are the values found from the isosymmetric limit MΩ. The values of

aMΩ− are found after the tuning of physical mass counterterms:

aMΩ− = a
[
MΩ + ∆ms∆̄MΩ + (∆MΩ−)(EMC)

]
, (4.16)

and fitted with the same technique used in isoQCD among all the ensembles, keeping
into account a dependence on the parameters (L, r`):

(aMΩ)i(L, r`) = aβ(i) M
(exp)
Ω

[
1 + cL

αEM
L3

+ c` ∆r` + c
(2)
` ∆r2

`

]
. (4.17)

cL, c`, c
(2)
` and aβ(i) (i = 1, 2, 3) are free parameters of the fit. The difference

with isoQCD is that here the leading FVE comes from QED, and is taken into
account with the ∼ 1/L3 term. This comes from the residual volume dependence in
a∆ms and ∆MEMC

Ω− , to which universal 1/L and ∼ 1/L2 terms have already been
subtracted (see sec. (4.2)). The aβ(i) are the 3 lattice spacing in the full theory,
whose values are reported in tab. (4.2). In fig. (4.14) is shown the plot of the
simultaneous extrapolation.

β a(fm) a(GeV−1)
A 0.1011(10) 0.5126(52)
B 0.09029(77) 0.4576(39)
D 0.06834(63) 0.3463(32)

Table 4.2: Lattice spacings obtained from aMΩ− with the simultaneous fit over L
and r`.
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Figure 4.14: Extrapolation of aMΩ− in QCD+QED over all the ensembles according
to the ansatz given in eq. (4.17). In faint grey are shown the points at finite
volume, and the colored dashed lines (with error bands) are the curves extrapolated
to L→∞.

4.6 Pions mass difference

The pion mass difference Mπ+ − Mπ0 is a purely electromagnetic effect indepen-
dent of counterterms. In our calculation we neglected the computation of the so

called handcuffs diagram ∂t , extrapolating among the ensembles the

quantity:

M2
π+ −M2

π0 = 2Mπ(Mπ+ −Mπ0) = 2Mπ
(eu − ed)2

2
e2∂t . (4.18)

The latter is fitted according to the following simple polynomial ansatz:

M2
π+ −M2

π0 = A0Λ2
QCD

{
1 + αEM

(
Mπ

ΛQCD

)
c

(3)
L

(ΛQCDL)3

+c`r` + c
(2)
` r2

` + ca(aΛQCD)2
} (4.19)

where ΛQCD = 300 MeV is just an arbitrary scale, and the coefficients A0, ... , are
free parameters of the fit. The ∼ 1/L3 term is the leading volume effect [77], with
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∼ 1/L4 (from QED) and exponential (from QCD) effects found to be numerically
negligible in this fit. In fig. (4.15) is reported the plot of the extrapolation.
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Figure 4.15: Extrapolation of M2
π+−M2

π0 over the ensembles. In grey are plotted the
points at finite volume (already corrected from universal QED FVEs). The colored
points and the corresponding theoretical curves are evaluated at L → ∞. The red
curve is the L → ∞ and a → 0 limit, with the final prediction at r` = r

(phys)
` . The

horizontal black line is the experimental value.

Our prediction is:

M2
π+ −M2

π0 = 1185(33) MeV2 [1261.2(1) MeV2]exp , (4.20)

where the discrepancy with the experiments is also due to the missing handcuffs
diagram.

4.7 Nucleons spectrum

4.7.1 Mn and Mp

At this point we are able to find the neutron and proton masses in the full theory.
The masses Mn and Mp are found adding respectively ∆Mn and ∆Mp of sec. (2.9)
to the isosymmetric value MN for the nucleon mass. As for MN in isoQCD, we
inspire our ansatz on ChPT, including structure dependent term ∼ 1

L3 from QED
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FVEs. The latter are a result of both the nucleons themselves as well the mass
counterterms, which contain residual structure dependent FVEs from the tuning
(see sec. (4.4)). We verified that at out level of precision we’re not sensitive to
∼ 1/L4 terms or to the exponentially suppressed FVEs from QCD.

Mn(L, r`, a) = An

[
1 + αEM

c
(n)
3

(ΛQCDL)3 + c(n)
a (aΛQCD)2 + c

(n)
` r` + c

(n)
3/2r

3/2
`

]

(4.21)

Mp(L, r`, a) = Ap

[
1 + αEM

c
(p)
3

(ΛQCDL)3 + c(p)
a (aΛQCD)2 + c

(p)
` r` + c

(p)
3/2r

3/2
`

]
,

(4.22)
where the coefficients An/p, ..., are free parameters of the fit and ΛQCD is just an
arbitrary scale fixed to 300 MeV. In fig. (4.16) and (4.17) we show the plots of the
extrapolation for Mn and Mp respectively.

0.00 0.01 0.02 0.03 0.04 0.05

r` − r(phys)
`

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

M
n

(G
eV

)

(L, r`, a) extrapolation for Mn (GeV)

β = 1.90 , L =∞
β = 1.95 , L =∞
β = 2.10 , L =∞
χ2
d.o.f. = 0.87(37)

experiment

L <∞

Figure 4.16: Extrapolation of Mn in QCD+QED at LO. Grey points are the values
at finite volume. The colored points and lines correspond to the limit L → ∞.
The red curve is the continuum and infinite volume limit. The final prediction at
r` = r

(phys)
` is marked on the left. The horizontal black line is the experimental

value.
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Figure 4.17: The same as fig. (4.16) but for Mp.

Our prediction are then:

Mn = 0.961(20) GeV (4.23)

Mp = 0.959(20) GeV (4.24)

which are compatible within 1.5σ with the experimental values:

Mn = 0.939565413(6) GeV (4.25)

Mp = 0.9382720813(58) GeV (4.26)

4.7.2 Mn −Mp

The neutron-proton mass difference is fitted according to a polynomial ansatz. The
same functional form, with different coefficients, is used for the full quantity as well
as its 2 contributions from strong IB and QED:

(Mn −Mp)(L, r`, a) = Anp

[
1 + αEM

c3

(ΛQCDL)3 + ca(aΛQCD)2 + c`r`

]
, (4.27)

where the coefficients Anp, ..., are free parameters of the fit and ΛQCD = 300 MeV is
just an arbitrary scale. QCD FVEs and 1/L4 from QED are found to be negligible
with respect to the term ∼ 1/L3. In fig. (4.18), (4.19) and (4.20) we show the plots
of the extrapolation for Mn−Mp and its 2 contributions coming from strong IB and
QED.
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Figure 4.18: Extrapolation of Mn−Mp. Grey points are the values at finite volume.
The colored points and lines correspond to the limit L → ∞. The red curve is the
continuum and infinite volume limit. The final prediction at r` = r

(phys)
` is marked

on the left. The horizontal black line is the experimental value.

Our prediction is:
Mn −Mp = 1.73(69) MeV (4.28)

which is compatible within 1σ with the experiment:

Mn −Mp = 1.29333205(51)MeV (4.29)
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Figure 4.19: The same as fig. (4.18) but for (Mn −Mp)
(QCD).
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Figure 4.20: The same as fig. (4.19) but for (Mn −Mp)
(QED).

The final extrapolation gives:

(Mn −Mp)
(QCD) = 3.10(59) MeV (4.30)

(Mn −Mp)
(QED) = −1.16(25) MeV (4.31)

The separation of these two effects is scheme dependent, and no experiment can
discern between the two. Nevertheless we obtain what we expect, i.e. a positive
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QCD contribution partially compensated by QED, consistently with our physical
intuition. We also note that our prediction is 1σ compatible with the separation of
[72].

4.8 Spectrum of the ∆ resonances

4.8.1 IB effects on M∆

The masses of the ∆ resonances don’t coincide because of Leading IBEs. As for
the (n, p) doublet, the (∆++, ∆−) and (∆+, ∆0) have masses differing in virtue of
a combination strong IB and QED effects. The ∆++ tends to be lighter than ∆−

because md > mu, but its electric charge is higher in modulus, leading to a bigger
electromagnetic self-energy. With the (∆+, ∆0) is the same, with a stronger analogy
with the (n, p) doublet since they differ only for spin (and isospin). For this reason,
the mass splitting among these particles can be studied with the same technique
used for nucleons.
After the tuning of ∆mu and ∆md (see sec. (4.4)), from the lattice spacings in
QCD+QED (see sec. (4.5)) we can find, at fixed ensemble, the masses in the full
theory: M∆++ , M∆+ , M∆0 , M∆− obtained from the variations of sec. (2.9). The
latter have been extrapolated according to the equation:

M∆i
= M

(i)
0

[
1 + +αEM

λ
(i)
3

(ΛQCDL)3
+ c

(i)
2 r` + c

(i)
3 r

3/2
` + c(i)

a (ΛQCDa)2

]

i = ++,+, 0,− . (4.32)

The inclusion of a ∼ αEM/L
3 term take into account the residual QEDL effects, de-

pendent on the internal structure of the hadrons and coming from the counterterms
(see sec. (4.4)). In principle also higher orders of 1/L are present, together with
the exponentially suppressed terms from QCD FVEs, h however we found them to
be negligible with respect to O(1/L3) in the fit. The terms M0, c

(i)
L , λ

(i)
3 , c

(i)
2 , c

(i)
3

and c
(i)
a are free parameters of the fit and ΛQCD = 300 MeV is just an arbitrary

scale to make the coefficients dimensionless. In fig. (4.21), (4.22), (4.23), (4.24) are
shown the extrapolations of the 4 masses among the ensembles, and in tab. (4.3)
the extrapolated values.

M(GeV)
∆− 1.251(40)
∆0 1.247(39)
∆+ 1.245(39)

∆++ 1.244(39)

Table 4.3: Values of the ∆(1232) masses obtained after the extrapolation over all
the ensembles.
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Figure 4.21: Extrapolation in QCD+QED of M∆++ according to eq. (4.32). Grey
points are the data at finite volume, while colored dashed lines (with error bands) are
the curves extrapolated to L→∞ and fixed lattice spacing. The red line is evaluated
at infinite volume and continuum limit. The final extrapolation is marked on the
left, and the horizontal black lines are the experimental values (when available) from
[108] and [109].
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Figure 4.22: Same as fig. (4.21) but for the ∆+.
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Figure 4.23: Same as fig. (4.21) but for the ∆0.
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Figure 4.24: Same as fig. (4.21) but for the ∆−.

4.8.2 Combinations of ∆ masses

The mass splittings are then easily obtained 2. The extrapolation is done according
to a simple polynomial ansatz:

2We’ve used the lattice spacings found in QCD+QED, but the isoQCD values are valid as well
because we’re at LO.
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∆M = D0

[
1 + +αEM

λ3

(ΛQCDL)3
+ c2 r` + ca (ΛQCDa)2

]
. (4.33)

The coefficients D0, λ3, c2, c3 and ca are free parameters of the fit, and ΛQCD = 300
MeV is just an arbitrary scale. As for the masses, the QED structure-dependent
effects are taken into account by the ∼ 1/L3 term. This is the FVE numerically
leading with respect to the higher orders if 1/L and the exponentially suppressed
terms from QCD.
Our predictions for the splittings are reported in the following table:

∆M(MeV)
∆++ −∆+ -0.48(26)
∆++ −∆0 -2.06(38)
∆++ −∆− -4.76(55)
∆+ −∆0 -1.59(18)
∆+ −∆− -4.41(50)
∆− −∆0 2.85(35)

(∆++ + ∆−)− (∆+ + ∆0) 2.41(51)

Table 4.4: Our results for the mass splittings among the 4 lightest ∆ resonances.
The splitting (M++ + M−) − (M+ + M0) is the only combination that is purely
electromagnetic, i.e. doesn’t depend of physical mass counterterms at LO (see sec.
(2.9)).

As we saw in sec. (4.8), at LO there are only 2 independent mass splittings. In fig.
(4.25) and (4.26) are shown the plots for the extrapolations over all the ensembles
of [M++−M0] and the purely electromagnetic splitting [(M++ +M−)− (M+ +M0)]
(see sec. (2.9)).
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Figure 4.25: Extrapolation in QCD+QED of the mass splitting [(M++ + M−) −
(M+ + M0)] according to eq. (4.33). Colored dashed lines (with error bands) are
the curves extrapolated to L→∞ and fixed lattice spacing.
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Figure 4.26: Same as fig. (4.25) but for M++ −M0.

4.9 m̂d − m̂u

After the tuning of counterterms (see sec. (4.4)), we have the bare counterterms
a∆mu and a∆md for each ensemble. Using the RCs of [13] and adopting the pre-
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scription described in sec. (2.6), from their difference we get the renormalized value
∆m̂ud = (m̂d − m̂u)/2, which is fitted among the ensembles with a simple polyno-
mial ansatz:

∆m̂ud =
m̂d − m̂u

2
= D0

[
1 + αEM

λ3

(ΛQCDL)3
+ c2 r` + ca (ΛQCDa)2

]
. (4.34)

The coefficients D0, λ3, c2 and ca are free parameters of the fit. The ∼ 1/L3

term accounts for the residual QED FVEs in the slopes used to tune the bare
counterterms. This effect is dominant with respect to both the higher order terms
of O(1/L4) and the exponentially suppressed terms from QCD, which are found to
be numerically negligible. Our prediction for this quantity is:

∆m̂ud(µ = 2 GeV) = 1.208(43) MeV , (4.35)

where we have combined the results found with the ZP from methods M1 and M2
using eq. (28) of [13]. We note that the result is in agreement with [12]. The
following figures show the extrapolation over the ensembles.

0.00 0.01 0.02 0.03 0.04 0.05

r` − r(phys)
`

1.2

1.4

1.6

1.8

2.0

2.2

m̂
d
−
m̂
u

2
(µ

=
2

G
eV

)

(L, r`, a) extrapolation for m̂d−m̂u
2

, method M1

β = 1.90 , L =∞
β = 1.95 , L =∞
β = 2.10 , L =∞
χ2
d.o.f. = 1.38(36)

L <∞

Figure 4.27: Extrapolation in QCD+QED of (m̂d − m̂u)/2 according to eq. (4.34)
with ZP found with the method M1. Colored dashed lines (with error bands) are
the curves extrapolated to L→∞ and fixed lattice spacing.
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Figure 4.28: The same as fig. (4.27) but with the ZP found with the method M2.



Conclusions

In this thesis I discussed the evaluation of Isospin Breaking effects in the hadronic
spectrum. The calculation was carried out using the RM123 method [12] in the
framework of Lattice QCD+QED, up to the Leading Order in the electromagnetic
fine structure constant α̂EM and the mass difference between u and d quarks m̂d−m̂u

ΛQCD
.

The quantities in the full theory are evaluated as the sum of their isosymmetric part
(i.e. coming from QCD with isospin symmetry) plus the IB correction at 1st order.
The main prediction of this thesis is the neutron-proton mass difference,

Mn −Mp = 1.73(69) MeV , (4.36)

together with the mass splittings of the ∆(1232) resonance quadrupet:

∆M(MeV)
∆++ −∆+ -0.48(26)
∆++ −∆0 -2.06(38)
∆++ −∆− -4.76(55)
∆+ −∆0 -1.59(18)
∆+ −∆− -4.41(50)
∆− −∆0 2.85(35)

(∆++ + ∆−)− (∆+ + ∆0) 2.41(51)

We also find the masses of nucleons and ∆,

MN = 0.9549(97) GeV , (4.37)

M∆ = 1.261(30) GeV , (4.38)

the sigma terms σπN and σπ∆,

σπN = 43.2(1.4) MeV , (4.39)

σπ∆ = 24.55(77) MeV . (4.40)

The simulation was performed using the tmLQCD regularization, adopting a mixed
action approach and evaluating correlators over the Nf = 2 + 1 + 1 ETMC gauge
configurations [13]. We extrapolate among 3 values of the lattice spacing and pion
masses in the range Mπ ' 200− 450 MeV We implemented an hadronic renormal-
ization scheme, setting the scale using the mass of the Ω baryon and reach the
physical point in phase space using dimensionless hadronic ratios. The inclusion
of IB was implemented considering the interactions with photons and including
counterterms in the critical and physical masses. The former were tuned from the

128
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PCAC Ward Identity in order to preserve the maximal twist at O(αEM), and the
latter requiring to match the experimental values of 3 hadronic ratios.
We took the values of the quark masses renormalization constants in the MS scheme
from [13], finding:

m̂`(µ = 2 GeV) =
m̂u + m̂d

2
= 3.781(76) MeV (4.41)

m̂s(µ = 2 GeV) = 103.2(2.0) MeV . (4.42)

We also considered a separation between electromagnetic (QED) and strong IB
(QCD) effects in order to provide physical intuition about the two contributions.
We find:

(Mn −Mp)
(QCD) = 3.10(59) MeV , (4.43)

(Mn −Mp)
(QED) = −1.16(25) MeV . (4.44)

Moreover we evaluate the mass difference between the up and down quarks, finding:

∆m̂ud(µ = 2 GeV) =
m̂d − m̂u

2
= 1.208(43) MeV (4.45)

Our predictions for the hadronic spectrum are find to be compatible within 1−1.5σ
with the experiments. Nevertheless, we introduced some approximations in our
analysis which leave space for improvements in the future:

• We neglected the interaction of sea quarks with the photon field, working in the
electroquenched approximation. Here the quark loops never exchange a photon
with other quarks and only a direct computation can estimate correctly the
systematic error induced by neglecting the resulting diagrams. The extension
of tmQCD+QED beyond this approximation has been formulated [110], with
numerical simulations in progress.

• The same can be said for QCD disconnected diagrams, namely those in which
source-to-source and sink-to-sink propagators appear. An example is the
handcuffs diagram appearing in the mass difference Mπ+ −Mπ0 , recently in-
cluded in [111]. Without the the handcuffs diagram we get M2

π+ −M2
π0 =

1185(33) MeV2 [1261.2(1) MeV2]exp .

• Together with that, we also suffer from the uncertainty induced by the ex-
trapolations to the physical point, needed because we simulated pion masses
significantly larger than 140 MeV. Lattice calculations with quark masses at
their physical point have already been done by our group [112] using the new
ETMC gauge ensembles, and this is likely to be a source of improvement.

Apart from approximations, an increase in statistics and signal quality is desirable
for sure. For instance, the quantum numbers of nucleonic interpolators require to
have an earlier dominance of the ground state in the correlator, and the uncertainty
in the quark propagator decreases with the number of stochastic sources used for
the inversion of the Dirac Operator. The latter represent the two main factors which
can be improved immediately dedicating an higher number of core hours to apply
more smearing steps and use an higher number of stochastical sources.
In conclusion, this work has shown that we are able to include the LIBEs in the
spectrum of baryons using the ETMC gauge configurations. Within the present level
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of precision, this can be done in the approximations listed above, giving compatible
results with the experiments. At this point, for the future we can consider working
on the radiative corrections in neutron beta decay, as well as further investigate the
spectrum of the whole baryonic octet and decupet.



Appendix A

Details of the simulation

The correlators generated by our simulation are calculated in the partial-quenching
approximation. We use different masses for the sea and valence strange quark, while
for the light they are kept equal.
The statistical uncertainty was propagated using the jackknife re-sampling technique
with 15 jackknifes for each ensemble. In tab. (A.1) are reported the informations
about the ensembles used in the the simulation.

Ensemble β V/a4 amsea = am` amσ amδ κ Ncfg

A30.32 1.90 323 × 64 0.0030 0.15 0.19 0.163272 150

A40.32 0.0040 0.163270 150

A50.32 0.0050 0.163267 150

A40.20 1.90 203 × 48 0.0040 0.15 0.19 0.163270 150

A40.24 1.90 243 × 48 0.0040 0.15 0.19 0.163270 150

A60.24 0.0060 0.163265 150

A80.24 0.0080 0.163255 150

A100.24 0.0100 0.163260 150

A40.48 1.90 483 × 96 0.0040 0.15 0.19 0.163270 90

A40.40 1.90 403 × 80 0.0040 0.15 0.19 0.163270 150

B25.32 1.95 323 × 64 0.0025 0.135 0.170 0.1612420 150

B35.32 0.0035 0.1612400 150

B55.32 0.0055 0.1612360 150

B75.32 0.0075 0.1612320 75

B85.24 1.95 243 × 48 0.0085 0.135 0.170 0.1612312 150

D15.48 2.10 483 × 96 0.0015 0.12 0.1385 0.156361 90

D20.48 0.0020 0.156357 90

D30.48 0.0030 0.156355 90

Table A.1: Parameters of the ensembles used in this work. The space-time volume
is reported in the format L3 × T . The bare values for β, sea and valence quark
masses and hopping parameter κ are reported. amσ and amδ are the parameters
which determine the renormalized strange and charm sea quark masses according
to eq. (9) of [13]. In the rightmost column there are the number of analyzed gauge
configurations.

Gaussian smearing was applied to our quark fields according to [67], with the pa-

131



132

rameter αg optimized as in [101]. Some testing over the ensembles lead us to the
choice of ng = 50 steps on the source of our correlators, as an appropriate middle
ground for a soon plateau and moderate noise in the signal.
In order to reduce the noise in our correlator, we used 16 stochastic sources [62]
for the numerical inversion of the Dirac operator. This was compatible with our
computational resources and gave us fine results, given which is also desirable in the
future to try improving the analysis with and higher number of stochastic sources.



Appendix B

Sequential propagators

We now discuss the numerical issues involved in the calculation of correlator slopes
in QCD+QED.
The interaction with photons leads to the insertion of EM currents on fermionic
legs, accompained by the photon propagator Dµν(y|z) summed over all the points
of application. In a numerical computation on the lattice this produces terms in the
correlator of the form: ∑

y,z

Dµν(y|z)× (. . . ) , (B.1)

where (. . . ) represent a generic product of Wick contractions with EM currents
inserted at y and z somewhere.
The latter is numerically expensive, scaling as N2 (total number of lattice points).
In order to reduce the computational cost, we used sequential propagators as in [113].
These are modified versions of the quark propagators containing randomly gener-
ated fields. As discussed later in this section, the expectation value of appropriate
products of them gives back the correlators with photon insertions.
The sequential propagators needed in the analysis are defined as:

SΓV A = S(x|y)
[
ΓVµAµ(y)

]
S(y|0) (B.2)

SΓV AΓV A = S(x|y)
[
ΓVµAµ(y)

]
SΓV A(y|0) (B.3)

SΓT = S(x|y)
[
ΓTµAµ(y)Aµ(y)

]
S(y|0) (B.4)

SP = S(x|y)(iγ5)S(y|0) (B.5)

SS = S(x|y)S(y|0) , (B.6)

with the repeated Lorentz (µ) and spacetime (y, z) indices being summed over. The
photon field Aµ is be generated with probability:

P (A)dA ∝ exp
[
−Aµ(y1)G−1

µν (y1, y2)Aν(y2)
]

, (B.7)

where Gµν is the photon propagator:

Gµν(y1, y2) = 〈Aµ(y1)Aν(y2)〉 = lim
n→∞

n∑

i=1

Aiµ(y1)Aiν(y2) . (B.8)

Numerically, this is implemented in the following way. First we note that the p.d.f.
of Aµ is local in momentum space [8]:

P (Ã)dÃ ∝ exp
[
−Ãµ(k)G̃−1

µν (k)Ãν(k)
]

, (B.9)
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and through the change of variable Ãµ(k) =

√
G̃µν(k)B̃ν(k) we see that B̃ is dis-

tributed according to:

P (B̃)dB̃ ∝ exp
[
−B̃2

µ(k)
]

. (B.10)

For the Wilson action in the Feynman gauge, the matrix
√
G̃ is:

√
G̃µν(k) = δµν

√
1

k̂2
(B.11)

Therefore we generate B̃µ according to the latter p.d.f., apply the change of variable

with Ãµ, and recover it in position space by the Fast Fourier Transform.
In mesonic and baryonic correlators they appear expressions of the type:
∑

y,z

Dµν(y|z)S1(x|y)ΓVµ S1(y|0)ΓS2(x|y)ΓVν S2(y|0) (photon exchange)

(B.12)
∑

y,z

Dµν(y|z)S1(x|y)ΓVµ S1(y|0)ΓS2(x|y)ΓVν S2(y|0) (self energy)

(B.13)
∑

y

Dµµ(y|y)S1(x|y)ΓT µ(y)S1(y|0)ΓS2(x|0) (tadpole insertion)

(B.14)
∑

y,z

S1(x|y)(iγ5)S1(y|0)ΓS2(x|0) (critical mass counterterm)

(B.15)
∑

y

S1(x|y)S1(y|0)ΓS2(x|0) (physical mass counterterm)

(B.16)

. . . (B.17)

where 1 and 2 are two generic flavors and Γ is a product of γ matrices. The expres-
sions for ΓVµ and ΓTµ for our regularization can be found in sec. (C).
From the definition of the photon field given above as random variable, these ex-
pressions are approximated by the means of the following replacements:

S(x|y)ΓVµ S(y|0) → SΓV Ai (B.18)

S(x|y)ΓVµ S(y|0)ΓS2(x|y)ΓVν S2(y|0) → SΓV AiΓV Ai (B.19)

S(x|y)ΓTµS(y|0) → SΓTAiAi (B.20)

S(x|y)(iγ5)S(y|0) → SP (B.21)

S(x|y)S(y|0) → SS (B.22)

and averaging over i = 1, ..., n sources. In the treatment of LIBES this leads to
the need for 6 inversions per gauge configuration. In this analysis we generated a
different Ai for each stochastic source of the quark propagator.
We remark that in the resulting products there are terms going as (µ and ν are not
summed over here):

〈S(x|y)ΓVµ S(y|0)ΓS(x|z)ΓVν S(z|0)Aµ(y)Aν(z)〉 µ 6= ν (B.23)
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which however vanish in the Feynman gauge.
Note also that in isoQCD we don’t need 2 separate inversions for the choice of the
Wilson parameter r = ±1. In fact in the twisted-mass regularization, the d-quark
propagator (r = −1) is found from the u (r = +1) by employing the r-γ5 hermiticity:

Sr = γ5S
†
−rγ5 . (B.24)

The numerical inversions are done as in [12]. Let’s consider e.g. the case of the
product SΓV A ΓSΓV A. We solve numerically (for each i), the following equation for
the components of the complex vector Ψ:

D(x|y)Ψ(y) = Aµ(y)ΓVµ S(y|0) , (B.25)

so that the estimator of the aforementioned product is:

Tr
[
ΨT (x)ΓΨ(x)

]
. (B.26)



Appendix C

Feynman diagrams of Wick
contractions

Here are given the representations of Wick contractions in terms of Feynman dia-
grams. These serve as a reference for the explicit expressions found in the rest of
the thesis. We use the notation of [12] and [113].
The fermionic propagator for a given flavor f is:

〈0|T
{
ψf (x) ψ̄f (0)

}
|0〉 = . (C.1)

The corrections induced by scalar and pseudo-scalar currents are:

∫
d4y 〈0|T

{
ψf (x)

[
ψ̄f (y)ψf (y)

]
ψ̄f (0)

}
|0〉

conn.
= (C.2)

∫
d4y 〈0|T

{
ψf (x)

[
ψ̄f (y)ψf (y)

]
ψ̄f (0)

}
|0〉

disc.
= (C.3)

∫
d4y 〈0|T

{
ψf (x)

[
iψ̄f (y)γ5ψf (y)

]
ψ̄f (0)

}
|0〉

conn.
= (C.4)

∫
d4y 〈0|T

{
ψf (x)

[
iψ̄f (y)γ5ψf (y)

]
ψ̄f (0)

}
|0〉

disc.
= , (C.5)

where the subscripts “conn.” and “disc.” denote if all the pieces of the diagram are
connected to valence fermionic legs by other fermionic legs or photons.
With the same notation, the insertion of photon leads to the following diagrams:

∫
d4y d4z 〈0|T

{
ψf (x) Jµ(y)Jν(z) ψ̄f (0)Dµν(y, z)

}
|0〉

conn.
=

q2
f + q2

f ,

(C.6)

∫
d4y d4z 〈0|T

{
ψf (x) Jµ(y)Jν(z) ψ̄f (0)Dµν(y, z)

}
|0〉

disc.
=

qf
∑

f1={u,d,s,c}
qf1 +

∑

f1={u,d,s,c}
q2
f1

+

∑

(f1,f2)={u,d,s,c}
qf1qf2 ,

(C.7)
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where Jµ is the conserved EM current on the lattice:

Jµ(y) =
∑

f

qf ψ̄f (y)ΓVµψf (y)

=
1

2

∑

f

qf
[
ψ̄f (y)

(
γµ − iτ 3γ5

)
Uµ(y)ψf (y + aµ̂) + ψ̄f (y + aµ̂)

(
γµ + iτ 3γ5

)
U †µ(y)ψf (y)

]
.

(C.8)
We also have the diagrams:

∫
d4y 〈0|T

{
ψf (x)Tµ(y) ψ̄f (0)Dµµ(y, y)

}
|0〉

conn.
= (C.9)

∫
d4y 〈0|T

{
ψf (x)Tµ(y) ψ̄f (0)Dµµ(y, y)

}
|0〉

disc.
= , (C.10)

coming from the insertion of the tadpole operator Tµ:

Tµ(y) =
∑

f

q2
f ψ̄f (y)ΓTµψf (y)

=
1

2

∑

f

q2
f

[
ψ̄f (y)

(
γµ − iτ 3γ5

)
Uµ(y)ψf (y + aµ̂)− ψ̄f (y + aµ̂)

(
γµ + iτ 3γ5

)
U †µ(y)ψf (y)

]
.

(C.11)
The corrections to a correlator are given by:

∆CJ(t) =

∫
d3x d4y d4z

〈
0
∣∣T
{
O†(t, ~x)Jµ (y) Jν (z)O(0)Dµν(y, z)

}∣∣ 0
〉

,

∆CT (t) =

∫
d3x d4y

〈
0
∣∣T
{
O†(t, ~x)Tµ(y)O(0)Dµµ(y, y)

}∣∣ 0
〉

,

∆CPf (t) =

∫
d3x d4y

〈
0
∣∣T
{
O†(t, ~x)

[
iψ̄f (y)γ5ψf (y)

]
O(0)

}∣∣ 0
〉

,

∆CSf (t) = −
∫
d3x d4y

〈
0
∣∣T
{
O†(t, ~x)

[
ψ̄f (y)ψf (y)

]
O(0)

}∣∣ 0
〉

,

(C.12)

where J and T correspond to the insertion of the electromagnetic currents and
tadpole operator respectively. Sf and Pf correspond to the insertion of a pseudo-
scalar or scalar current of flavor f .

C.1 Mesons from quark fields

We now write the explicit expression of mesonic correlators in terms of Wick contrac-
tions, finding their isoQCD limits and the slopes with respect to the IB parameters.
The combination of the latter with the appropriate charge factors and counterterms
gives the correlation functions at LO in QCD+QED.
In order to do that we compute the form of the correlator in QCD+QED without
and with the insertions of the operators appearing in the LO expansion, setting
u = d in the end. For the details on the notation see sec. (C).
In the following it is understood that correlators will be put at rest projecting to
~p = ~0 by a Fourier transform with respect to ~x.
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Correlators in QCD+QED

For pions we have [7]:

Cπ+π−(x) = −〈[ūγ5d](x) [d̄γ5u](0)〉

= Tr [γ5Su(x|0)γ5Sd(0|x)] = ,
(C.13)

and

Cπ0π0(x) = −1

2
〈[ūγ5u− d̄γ5d](x)[ūγ5u− d̄γ5d](0)〉

=
1

2
{Tr [γ5Su(x|0)γ5Su(0|x)]− Tr [γ5Su(x|x)] Tr [γ5Su(0|0)]

+Tr [γ5Su(x|x)] Tr [γ5Sd(0|0)]}+ (u↔ d) .

(C.14)

In our approximation we neglect the “disconnected” contributions, i.e. those dia-
grams whose pieces are not connected by fermionic valence legs. Hence we have:

Cπ0π0(x) =
1

2
Tr [γ5Su(x|0)γ5Su(0|x)] +

1

2
Tr [γ5Sd(x|0)γ5Sd(0|x)]

=
1

2

[
+

]
(C.15)

For the kaons we have:

CK+K−(x) = −〈[s̄γ5u](x) [ūγ5s](0)〉

= Tr [γ5Ss(x|0)γ5Su(0|x)] = ,
(C.16)

and
CK0K̄0(x) = −〈[s̄γ5d](x) [d̄γ5s](0)〉

= Tr [γ5Ss(x|0)γ5Sd(0|x)] = .
(C.17)

The isoQCD limits are obtained setting u = d = `:

Cπ+π−(x) = Cπ0π0(x) = (C.18)

CK+K−(x) = CK0K̄0(x) = (C.19)

Slopes from IB

The connected corrections induced by IB are found inserting the corresponding
currents on the fermionic legs. For convenience we jump directly to the form of the
isosymmetric slopes, so the equations below are understood in that limit.
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∆C
J

(u)
µ J

(u)
ν

π+π− (x) =
∑

y,z

Dµν(y, z)Tr
[
γ5S`(x|y)ΓVµ S`(y|z)ΓVν S`(z|0)γ5S`(0|x)

]
=

(C.20)

∆C
J

(d)
µ J

(d)
ν

π+π− (x) =
∑

y,z

Dµν(y, z)Tr
[
γ5S`(x|0)γ5S`(0|y)ΓVµ S`(y|z)ΓVν S`(z|x)

]
=

(C.21)

∆C
J

(u)
µ J

(d)
ν

π+π− (x) =
∑

y,z

Dµν(y, z)Tr
[
γ5S`(x|y)ΓVµ S`(y|0)γ5S`(0|y)ΓVν S`(y|x)

]
=

(C.22)

∆CT (u)

π+π−(x) =
∑

y

Dµµ(y|y)Tr
[
γ5S`(x|y)T (`)

µ (y)S`(y|0)γ5S`(0|x)
]

=

(C.23)

∆CT (d)

π+π−(x) =
∑

y

Dµµ(y|y)Tr
[
γ5S`(x|y)γ5S`(0|y)T (`)

µ (y)S`(y|x)
]

=

(C.24)

∆C
J

(u)
P

π+π−(x) =
∑

y

Tr [γ5S`(x|y)(iγ5)S`(y|0)γ5S`(0|x)] = (C.25)

∆C
J

(d)
P

π+π−(x) =
∑

y

Tr [γ5S`(x|0)γ5S`(0|y)(iγ5)S`(y|x)] = (C.26)

∆C
J

(u)
S

π+π−(x) =
∑

y

Tr [γ5S`(x|y)S`(y|0)γ5S`(0|x)] = (C.27)

∆C
J

(d)
S

π+π−(x) =
∑

y

Tr [γ5S`(x|0)γ5S`(0|y)S`(y|x)] = (C.28)

For the π0 these slopes are the same, divided by a factor 2.
Kaons follow the same pattern:

∆C
J

(s)
µ J

(s)
ν

K+K− (x) =
∑

y,z

Dµν(y, z)Tr
[
γ5Ss(x|y)ΓVµ Ss(y|z)ΓVν Ss(z|0)γ5S`(0|x)

]
=

(C.29)

∆C
J

(s)
µ J

(u)
ν

K+K− (x) =
∑

y,z

Dµν(y, z)Tr
[
γ5Ss(x|0)γ5S`(0|y)ΓVµ S`(y|z)ΓVν S`(z|x)

]
=

(C.30)
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∆C
J

(s)
µ J

(u)
ν

K+K− (x) =
∑

y,z

Dµν(y, z)Tr
[
γ5Ss(x|y)ΓVµ Ss(y|0)γ5S`(0|y)ΓVν S`(y|x)

]
=

(C.31)

∆CT (s)

K+K−(x) =
∑

y

Dµµ(y|y)Tr
[
γ5Ss(x|y)T (s)

µ (y)Ss(y|0)γ5S`(0|x)
]

=

(C.32)

∆CT (u)

K+K−(x) =
∑

y

Dµµ(y|y)Tr
[
γ5Ss(x|y)γ5S`(0|y)T (`)

µ (y)S`(y|x)
]

=

(C.33)

∆C
J

(s)
P

K+K−(x) =
∑

y

Tr [γ5Ss(x|y)(iγ5)Ss(y|0)γ5S`(0|x)] = (C.34)

∆C
J

(u)
P

K+K−(x) =
∑

y

Tr [γ5Ss(x|0)γ5S`(0|y)(iγ5)S`(y|x)] = (C.35)

∆C
J

(s)
S

K+K−(x) =
∑

y

Tr [γ5Ss(x|y)Ss(y|0)γ5S`(0|x)] = (C.36)

∆C
J

(u)
S

K+K−(x) =
∑

y

Tr [γ5Ss(x|0)γ5S`(0|y)S`(y|x)] = (C.37)

For the K0 they are the same (obtained replacing u with d).
The above relations can be found from explicit Wick contractions. However their
structure arise as a consequence of the properties of the quark propagator, which in
the full theory satisfies:

∂S(x|y)

∂λ
= −

∑

z1,z2

S(x|z1)
∂D(z1|z2)

∂λ
S(z2|y) , (C.38)

for any parameter λ. This means that for a term λψ̄Γψ in the Lagrangian we have:

∂S(x|y)

∂λ
= −

∑

z

S(x|z)ΓS(z|y) , (C.39)

with Γ being an arbitrary product of γ matrices.
In sec. (2) we saw that in the electroquenched approximation, the variation of an
observable is encoded in its derivative with respect to counterterms and e2. Any
hadronic correlator is a product quark propagators S, so by derivation we find that
the insertion of a current leads to a sum of diagrams with the insertion in all possible
legs with that flavor. In the case of photon insertions, this is easily seen deriving
twice with respect to e according to eq. (2.24).
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C.2 Baryons from quark fields

The baryons involved in the analysis are the Ω−, the nucleons p and n, and the
∆(1232) resonances ∆++, ∆+, ∆0, ∆−. We recall here the interpolating fields used
for them:

O(Ω−)
µ = εabc

[
sTaCγνsb

]
P 3/2
µν P+ sc , (C.40)

O(p) = εabc
[
uTaCγ5db

]
P+uc , (C.41)

O(n) = εabc
[
dTaCγ5ub

]
P+dc , (C.42)

(C.43)

O(∆++)
µ = εabc

[
uTaCγµub

]
P 3/2
µν P+ uc , (C.44)

O(∆+)
µ = εabc

1√
3
{
[
dTaCγµub

]
P 3/2
µν P+ uc

+
[
uTaCγµdb

]
P 3/2
µν P+ uc

+
[
uTaCγµub

]
P 3/2
µν P+ dc } ,

(C.45)

O(∆0)
µ = εabc

1√
3
{
[
uTaCγµdb

]
P 3/2
µν P+ dc

+
[
dTaCγµub

]
P 3/2
µν P+ dc

+
[
dTaCγµdb

]
P 3/2
µν P+ uc } ,

(C.46)

O(∆−)
µ = εabc

[
dTaCγµdb

]
P 3/2
µν P+ dc , (C.47)

where P+ = 1+γ4

2
and P

3/2
µν in the spin projector (see sec. (1.3.1)).

Their correlators in terms of Wick contractions are given below. In the analysis the
type of baryon considered is always specified and we never mix different baryonic
correlators. Therefore there’s no ambiguity in using the same diagrammatic expres-
sion for spin 1/2 and 3/2 (which is implied from the context) and distinguishing
them only by flavor.

CΩ−Ω̄− =− 2εa1b1c1εa2b2c2Tr[STs
a1 a2

(x|0)CγiSs
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Ss

c1 c2(x|0)]

+ 4εa1b1c1εa2b2c2Tr[Ss
a1 b2(x|0)P+P

3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c2
(x|0)Cγj]

= −2

[
− 2

]
,

(C.48)
with the isoQCD limit having the same form, but with s not corrected by QED
effects.

Cpp̄ = + εa1b1c1εa2b2c2Tr[STu
a1 a2

(x|0)Cγ5Su
b1 b2(x|0)Cγ5] Tr[P+Sd

c1 c2(x|0)]

− εa1b1c1εa2b2c2Tr[Su
a1 b2(x|0)P+Su

b1 a2(x|0)Cγ5S
T
d

c1 c2
(x|0)Cγ5]

[
−

]
,

(C.49)
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and

Cnn̄ = + εa1b1c1εa2b2c2Tr[STd
a1 a2

(x|0)Cγ5Sd
b1 b2(x|0)Cγ5] Tr[P+Su

c1 c2(x|0)]

− εa1b1c1εa2b2c2Tr[Sd
a1 b2(x|0)P+Sd

b1 a2(x|0)Cγ5S
T
u

c1 c2
(x|0)Cγ5]

[
−

]
,

(C.50)

which coincide when u = d:

CNN̄ = + εa1b1c1εa2b2c2Tr[ST`
a1 a2

(x|0)Cγ5S`
b1 b2(x|0)Cγ5] Tr[P+S`

c1 c2(x|0)]

− εa1b1c1εa2b2c2Tr[S`
a1 b2(x|0)P+S`

b1 a2(x|0)Cγ5S
T
`

c1 c2
(x|0)Cγ5]

[
−

] .

(C.51)
The ∆ correlators are:

C∆++∆̄++ =− 2εa1b1c1εa2b2c2Tr[STu
a1 a2

(x|0)CγiSu
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Su

c1 c2(x|0)]

+ 4εa1b1c1εa2b2c2Tr[Su
a1 b2(x|0)P+P

3/2
ij Su

b1 a2(x|0)CγiS
T
u

c1 c2
(x|0)Cγj]

= −2

[
− 2

]
,

(C.52)

C∆+∆̄+ =− 2

3
εa1b1c1εa2b2c2 {

+ Tr[STd
a1 a2

(x|0)Cγ5Sd
b1 b2(x|0)Cγ5] Tr[P+P

3/2
ij Su

c1 c2(x|0)]

+ Tr[STd
a1 a2

(x|0)Cγ5Su
b1 b2(x|0)Cγ5] Tr[P+P

3/2
ij Sd

c1 c2(x|0)]

+ Tr[STu
a1 a2

(x|0)Cγ5Sd
b1 b2(x|0)Cγ5] Tr[P+P

3/2
ij Sd

c1 c2(x|0)]

− 2 Tr[Sd
a1 b2(x|0)P+P

3/2
ij Sd

b1 a2(x|0)Cγ5S
T
u

c1 c2
(x|0)Cγ5]

− 2 Tr[Sd
a1 b2(x|0)P+P

3/2
ij Su

b1 a2(x|0)Cγ5S
T
d

c1 c2
(x|0)Cγ5]

− 2 Tr[Sd
a1 b2(x|0)P+P

3/2
ij Su

b1 a2(x|0)Cγ5S
T
d

c1 c2
(x|0)Cγ5] }

= −2

3

[
+ + +

− 2 − 2 − 2

]
,

(C.53)
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C∆0∆̄0 =− 2

3
εa1b1c1εa2b2c2 {

+ Tr[STu
a1 a2

(x|0)Cγ5Su
b1 b2(x|0)Cγ5] Tr[P+P

3/2
ij Sd

c1 c2(x|0)]

+ Tr[STu
a1 a2

(x|0)Cγ5Sd
b1 b2(x|0)Cγ5] Tr[P+P

3/2
ij Su

c1 c2(x|0)]

+ Tr[STd
a1 a2

(x|0)Cγ5Su
b1 b2(x|0)Cγ5] Tr[P+P

3/2
ij Su

c1 c2(x|0)]

− 2 Tr[Su
a1 b2(x|0)P+P

3/2
ij Su

b1 a2(x|0)Cγ5S
T
d

c1 c2
(x|0)Cγ5]

− 2 Tr[Su
a1 b2(x|0)P+P

3/2
ij Sd

b1 a2(x|0)Cγ5S
T
u

c1 c2
(x|0)Cγ5]

− 2 Tr[Su
a1 b2(x|0)P+P

3/2
ij Sd

b1 a2(x|0)Cγ5S
T
u

c1 c2
(x|0)Cγ5] }

= −2

3

[
+ + +

− 2 − 2 − 2

]
,

(C.54)

and

C∆−∆̄− =− 2εa1b1c1εa2b2c2Tr[STd
a1 a2

(x|0)CγiSd
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Sd

c1 c2(x|0)]

+ 4εa1b1c1εa2b2c2Tr[Sd
a1 b2(x|0)P+P

3/2
ij Sd

b1 a2(x|0)CγiS
T
d

c1 c2
(x|0)Cγj]

= −2

[
− 2

]
,

(C.55)
which share the same isoQCD limit:

C∆∆̄ =− 2εa1b1c1εa2b2c2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij S`

c1 c2(x|0)]

+ 4εa1b1c1εa2b2c2Tr[S`
a1 b2(x|0)P+P

3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c2
(x|0)Cγj]

= −2

[
− 2

] .

(C.56)
The slopes are build via explicit Wick contractions or as for the meson case, inserting
the currents consistently with eq. (C.39). Baryonic correlation functions of flavors
f1, f2, f3 have the form:

CBB̄ ∼ Sf1 Sf2 Sf3 , (C.57)

and the slope with respect to a parameter λ goes as:

∂CBB̄
∂λ

∼ ∂

∂λ
(Sf1 Sf2 Sf3) =

∂Sf1

∂λ
Sf2 Sf3 + Sf1

∂Sf2

∂λ
Sf3 + Sf1 Sf2

∂Sf3

∂λ
. (C.58)

For the Ω− we have:
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∆C
J

(s)
P

Ω−Ω̄−(x) = εa1b1c1εa2b2c2

∑

y

{

− 2Tr[STs
a1 a2

(x|0)CγiSs
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Ss

c1 c′(x|y)(iγ5)Ss
c′ c2(y|0)]

− 2Tr[STs
a1 a2

(x|0)CγiSs
b1 b′(x|y)(iγ5)Ss

b′ b2(y|0)Cγj] Tr[P+P
3/2
ij Ss

c1 c2(x|0)]

− 2Tr[STs
a1 a′

(x|y)(iγ5)TSTs
a′ a2

(y|0)CγiSs
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Ss

c1 c2(x|0)]

+ 4Tr[Ss
a1 b′(x|0)P+P

3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c′
(x|y)(iγ5)TSTs

c′ c2
(y|0)Cγj]

+ 4Tr[Ss
a1 b2(x|0)P+P

3/2
ij Ss

b1 a′(x|y)(iγ5)Ss
a′ a2(y|0)CγiS

T
s

c1 c2
(x|0)Cγj]

+ 4Tr[Ss
a1 b′(x|y)(iγ5)Ss

b′ b2(y|0)P+P
3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c2
(x|0)Cγj] } .

= −2

[
+ +

−2 − 2 − 2

]
,

(C.59)

∆C
J

(s)
S

Ω−Ω̄−(x) = εa1b1c1εa2b2c2

∑

y

{

− 2Tr[STs
a1 a2

(x|0)CγiSs
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Ss

c1 c′(x|y)Ss
c′ c2(y|0)]

− 2Tr[STs
a1 a2

(x|0)CγiSs
b1 b′(x|y)Ss

b′ b2(y|0)Cγj] Tr[P+P
3/2
ij Ss

c1 c2(x|0)]

− 2Tr[STs
a1 a′

(x|y)STs
a′ a2

(y|0)CγiSs
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Ss

c1 c2(x|0)]

+ 4Tr[Ss
a1 b′(x|0)P+P

3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c′
(x|y)STs

c′ c2
(y|0)Cγj]

+ 4Tr[Ss
a1 b2(x|0)P+P

3/2
ij Ss

b1 a′(x|y)Ss
a′ a2(y|0)CγiS

T
s

c1 c2
(x|0)Cγj]

+ 4Tr[Ss
a1 b′(x|y)Ss

b′ b2(y|0)P+P
3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c2
(x|0)Cγj] } .

= −2

[
+ +

−2 − 2 − 2

]
,

(C.60)

and
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∆C
T

(s)
µ

Ω−Ω̄−(x) = εa1b1c1εa2b2c2

∑

y

{

− 2Tr[STs
a1 a2

(x|0)CγiSs
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Ss

c1 c′(x|y)(ΓTµ )TSs
c′ c2(y|0)]

− 2Tr[STs
a1 a2

(x|0)CγiSs
b1 b′(x|y)ΓTµSs

b′ b2(y|0)Cγj] Tr[P+P
3/2
ij Ss

c1 c2(x|0)]

− 2Tr[STs
a1 a′

(x|y)ΓTµS
T
s

a′ a2
(y|0)CγiSs

b1 b2(x|0)Cγj] Tr[P+P
3/2
ij Ss

c1 c2(x|0)]

+ 4Tr[Ss
a1 b′(x|0)P+P

3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c′
(x|y)ΓTµS

T
s

c′ c2
(y|0)Cγj]

+ 4Tr[Ss
a1 b2(x|0)P+P

3/2
ij Ss

b1 a′(x|y)ΓTµSs
a′ a2(y|0)CγiS

T
s

c1 c2
(x|0)Cγj]

+ 4Tr[Ss
a1 b′(x|y)(ΓTµ )TSs

b′ b2(y|0)P+P
3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c2
(x|0)Cγj] } .

= −2


 + +

−2 − 2 − 2


 ,

(C.61)

∆C
J

(s)
µ J

(s)
ν

Ω−Ω̄− (x) = εa1b1c1εa2b2c2

∑

y,z

Dµν(y|z) {

− 2Tr[STs
a1 a2

(x|0)CγiSs
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij Ss

c1 c′(x|y)ΓVµ S
c′,c′′
s (y|z)ΓVν Ss

c′′ c2(z|0)]

− 2Tr[STs
a1 a2

(x|0)CγiSs
b1 b′(x|y)ΓVµ S

b′,b′′
s (y|z)ΓVν Ss

b′′ b2(z|0)Cγj] Tr[P+P
3/2
ij Ss

c1 c2(x|0)]

− 2Tr[STs
a1 a′

(x|y)(ΓVµ )TSa
′,a′′
s (y|z)(ΓVν )TSTs

a′′ a2
(z|0)CγiSs

b1 b2(x|0)Cγj] Tr[P+P
3/2
ij Ss

c1 c2(x|0)]

+ 4Tr[Ss
a1 b′(x|0)P+P

3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c′
(x|y)(ΓVµ )TSTs

c′,c′′
(y|z)(ΓVν )TSTs

c′′ c2
(z|0)Cγj]

+ 4Tr[Ss
a1 b2(x|0)P+P

3/2
ij Ss

b1 a′(x|y)ΓVµ S
a′,a′′
s (y|z)ΓVν Ss

a′′ a2(z|0)CγiS
T
s

c1 c2
(x|0)Cγj]

+ 4Tr[Ss
a1 b′(x|y)ΓVµ Ss

b′,b′′(y|z)ΓVν Ss
b′′ b2(z|0)P+P

3/2
ij Ss

b1 a2(x|0)CγiS
T
s

c1 c2
(x|0)Cγj] } .

= −2


 + + + + +

− 2 − 2 − 2 − 2 −2 − 2

]

(C.62)
For the proton:
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∆C
J

(u)
P
pp̄ (x) = εa1b1c1εa2b2c2

∑

y

{

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b′(x|y)(iγ5)S`

b′ b2(y|0)Cγj] Tr[P+S`
c1 c2(x|0)]

− 2Tr[ST`
a1 a′

(x|y)(iγ5)ST`
a′ a2

(y|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+S`

c1 c2(x|0)]

+ 4Tr[S`
a1 b2(x|0)P+S`

b1 a′(x|y)(iγ5)S`
a′ a2(y|0)CγiS

T
`

c1 c2
(x|0)Cγj]

+ 4Tr[S`
a1 b′(x|y)(iγ5)S`

b′ b2(y|0)P+S`
b1 a2(x|0)CγiS

T
`

c1 c2
(x|0)Cγj] } .

= −2

[
+ − −

]
,

(C.63)

∆C
J

(d)
P
pp̄ (x) = εa1b1c1εa2b2c2

∑

y

{

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+S`

c1 c′(x|y)(iγ5)S`
c′ c2(y|0)]

+ 4Tr[S`
a1 b′(x|0)P+S`

b1 a2(x|0)CγiS
T
`

c1 c′
(x|y)(iγ5)ST`

c′ c2
(y|0)Cγj] } .

= −2

[
−

]
,

(C.64)

and for the neutron they are the same but for the replacement u↔ d.
For the ∆++:

∆C
J

(u)
P

∆++∆̄++(x) = εa1b1c1εa2b2c2

∑

y

{

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij S`

c1 c′(x|y)(iγ5)S`
c′ c2(y|0)]

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b′(x|y)(iγ5)S`

b′ b2(y|0)Cγj] Tr[P+P
3/2
ij S`

c1 c2(x|0)]

− 2Tr[ST`
a1 a′

(x|y)(iγ5)TST`
a′ a2

(y|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij S`

c1 c2(x|0)]

+ 4Tr[S`
a1 b′(x|0)P+P

3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c′
(x|y)(iγ5)TST`

c′ c2
(y|0)Cγj]

+ 4Tr[S`
a1 b2(x|0)P+P

3/2
ij S`

b1 a′(x|y)(iγ5)S`
a′ a2(y|0)CγiS

T
`

c1 c2
(x|0)Cγj]

+ 4Tr[S`
a1 b′(x|y)(iγ5)S`

b′ b2(y|0)P+P
3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c2
(x|0)Cγj] } .

= −2

[
+ +

−2 − 2 − 2

]
,

(C.65)
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∆C
J

(u)
S

∆++∆̄++(x) = εa1b1c1εa2b2c2

∑

y

{

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij S`

c1 c′(x|y)S`
c′ c2(y|0)]

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b′(x|y)S`

b′ b2(y|0)Cγj] Tr[P+P
3/2
ij S`

c1 c2(x|0)]

− 2Tr[ST`
a1 a′

(x|y)ST`
a′ a2

(y|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij S`

c1 c2(x|0)]

+ 4Tr[S`
a1 b′(x|0)P+P

3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c′
(x|y)ST`

c′ c2
(y|0)Cγj]

+ 4Tr[S`
a1 b2(x|0)P+P

3/2
ij S`

b1 a′(x|y)S`
a′ a2(y|0)CγiS

T
`

c1 c2
(x|0)Cγj]

+ 4Tr[S`
a1 b′(x|y)S`

b′ b2(y|0)P+P
3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c2
(x|0)Cγj] } .

= −2

[
+ +

−2 − 2 − 2

]
,

(C.66)

and

∆C
T

(u)
µ

∆++∆̄++(x) = εa1b1c1εa2b2c2

∑

y

{

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij S`

c1 c′(x|y)(ΓTµ )TS`
c′ c2(y|0)]

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b′(x|y)ΓTµS`

b′ b2(y|0)Cγj] Tr[P+P
3/2
ij S`

c1 c2(x|0)]

− 2Tr[ST`
a1 a′

(x|y)ΓTµS
T
`

a′ a2
(y|0)CγiS`

b1 b2(x|0)Cγj] Tr[P+P
3/2
ij S`

c1 c2(x|0)]

+ 4Tr[S`
a1 b′(x|0)P+P

3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c′
(x|y)ΓTµS

T
`

c′ c2
(y|0)Cγj]

+ 4Tr[S`
a1 b2(x|0)P+P

3/2
ij S`

b1 a′(x|y)ΓTµS`
a′ a2(y|0)CγiS

T
`

c1 c2
(x|0)Cγj]

+ 4Tr[S`
a1 b′(x|y)(ΓTµ )TS`

b′ b2(y|0)P+P
3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c2
(x|0)Cγj] } .

= −2


 + +

−2 − 2 − 2


 ,

(C.67)



C.2. Baryons from quark fields 148

∆C
J

(s)
µ J

(s)
ν

∆++∆̄++(x) = εa1b1c1εa2b2c2

∑

y,z

Dµν(y|z) {

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij S`

c1 c′(x|y)ΓVµ S
c′,c′′

` (y|z)ΓVν S`
c′′ c2(z|0)]

− 2Tr[ST`
a1 a2

(x|0)CγiS`
b1 b′(x|y)ΓVµ S

b′,b′′

` (y|z)ΓVν S`
b′′ b2(z|0)Cγj] Tr[P+P

3/2
ij S`

c1 c2(x|0)]

− 2Tr[ST`
a1 a′

(x|y)(ΓVµ )TSa
′,a′′

` (y|z)(ΓVν )TST`
a′′ a2

(z|0)CγiS`
b1 b2(x|0)Cγj] Tr[P+P

3/2
ij S`

c1 c2(x|0)]

+ 4Tr[S`
a1 b′(x|0)P+P

3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c′
(x|y)(ΓVµ )TST`

c′,c′′
(y|z)(ΓVν )TST`

c′′ c2
(z|0)Cγj]

+ 4Tr[S`
a1 b2(x|0)P+P

3/2
ij S`

b1 a′(x|y)ΓVµ S
a′,a′′

` (y|z)ΓVν S`
a′′ a2(z|0)CγiS

T
`

c1 c2
(x|0)Cγj]

+ 4Tr[S`
a1 b′(x|y)ΓVµ S`

b′,b′′(y|z)ΓVν S`
b′′ b2(z|0)P+P

3/2
ij S`

b1 a2(x|0)CγiS
T
`

c1 c2
(x|0)Cγj] } .

= −2


 + + + + +

− 2 − 2 − 2 − 2 −2 − 2

]
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Moreover by symmetry we have:
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Appendix D

Pseudo-Bayesian fit

In this section is described how the least-squares fit were implemented in the analysis.
We use Bayes theorem [3] in order to find which quantity must be minimized to
estimate the free parameters of the fit. The idea is to consider the measured values
of the observables and the parameters as independent random variables. As such,
we think to the fit as a way of maximizing the posterior function, i.e. the probability
density function (p.d.f) of getting such parameters given the measured data. In our
case the latter are the values extracted from the lattice simulation.
Let’s consider a set of observables yi (with i = 1, ..., N) which are function of one or
more variables ~xi (with ~xi = (x1

i , ...., x
v
i )). The former can be different observables,

more points corresponding to the same one, or both. We write the functional relation
as

yi = g(~xi, ~p) , (D.1)

where ~p is the vector of parameters. Note that there’s no formal distintion between
the yi and the ~xi, so that we could also write:

G(yi, ~xi, ~p) = 0 (D.2)

Let’s now suppose we have a set of measured (or simulated) points ŷi, ~̂xi, with
uncertainties σŷi , ~σ~̂xi = (σx̂1

i
, ..., σx̂vi ).

Bayes’ theorem states that if f(A|B) denotes the p.d.f. of obtaining the result A
given B, then we have

f(~p, yi, ~xi|ŷi, ~̂xi) ∝ f(ŷi, ~̂xi | ~p, yi, ~xi) × f(~p, yi, ~xi)

= f(ŷi|yi) f(~̂xi|~xi) × f(yi|~xi, ~p)f1(~xi)f2(~p) .
(D.3)

f(~p, yi, ~xi|ŷi, ~̂xi) is the p.d.f. that the theoretical values of the independent vari-
ables are the ~xi, the ones of the dependent observable are the yi and that they are
reproduced with the ansatz of eq. (D.1) by the parameters ~p.
In the second step we used the following observations. For the first term, we note
that the yi and ~xi are statistically independent variables. Moreover, they are the
true values of the measured variables ŷi and ~̂xi. The latter depend only on the true
values, so that the dependence on ~p is removed. In the second term we used Bayes’
theorem again, together with the independence between ~̂xi and ~p. The densities f1

and f2 are the “a priori” probability distributions respectively for the ~̂xi and ~p.
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We assume the number of points is large enough to approximate the distribution
of the measured values with a Gaussian, and impose the functional relation on the
true values. In the end we obtain:

f(~p, yi, ~xi|ŷi, ~̂xi) ∝ exp

(
−
∑

i

(yi − ŷi)2

σ2
ŷi

)
exp

(
−
∑

i,j

(xji − x̂ji )2

σ2
x̂ji

)
×

δ (yi − g(~xi, ~p)) f1(~xi)f2(~p) .

(D.4)

Integrating over all possible values of yi and ~xi we obtain the posterior:

f(~p | ŷi, ~̂xi) =

∫
dyid~xif(~p, yi, ~xi|ŷi, ~̂xi)

∝
∫
d~xi exp

(
−
∑

i

(g(~xi, ~p)− ŷi)2

σ2
ŷi

)
exp

(
−
∑

i,j

(xji − x̂ji )2

σ2
x̂ji

)
f1(~xi)f2(~p) .

(D.5)

At this point we should find the ~p that maximizes the above integral. However,
instead of solving explicitly this problem, we choose to do the following assumptions.
The “a priori” distributions f1 and f2 are supposed to be sufficiently flat in the
interval inside which we look for the parameters, so we replace them with constant
values. The integrand is replaced everywhere by its maximum value. In practice,
what we want to find are the ~p and ~xi such that the integrand is maximized. This
is the same as finding the minimum of:

χ2 =
∑

i

(g(~xi, ~p)− ŷi)2

σ2
ŷi

+
∑

i,j

(xji − x̂ji )2

σ2
x̂ji

. (D.6)

Note that now ~p and ~xi are on the same footage, being free parameters of the
minimization.
The second term in the above equation can be omitted only in the limit σx̂ji

→
0 , ∀ i, j. In this case the second Gaussian in eq. (D.4) is proportional to a delta
function, and the quantity to be minimized is:

χ2 =
∑

i

(g(~̂xi, ~p)− ŷi)2

σ2
ŷi

. (D.7)

Furthermore in the particular case of a linear ansatz,

yi = a+
∑

j

bj x
j
i , (D.8)

the integration in (D.5) can be done explicitly, and the function to be minimized is:

χ2 =
∑

i

(a+
∑

j bj x̂
j
i − ŷi)2

σ2
ŷi

+
∑

j b
2
j σ

2
x̂ji

. (D.9)

The above χ2 values are given by the sum of squares of Ntot random variables
following a normal distribution with expectation values 0 and variance 1. Among
them, ν = Ntot − Npars are independent, where Npars is the number of parameters
in the ansatz. Therefore these are distributed according to a χ2-distribution with ν
degrees of freedom [114, 115]. In the analysis we write χ2

d.o.f. = χ2/ν to denote the
reduced chi-squared.
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