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Introduction

The purpose of this work is to develop the theory of moduli spaces of tropical curves with
generalized stability conditions, collecting original results from different works in the area,
in particular my works [KLSY22] (joint with Siddarth Kannan, Shiyue Li, and Claudia He
Yun), [KSY22] (joint with Siddarth Kannan, and Claudia He Yun) and [Ser22]. The purpose
of our work is not only to develop results concerning the moduli Theory of tropical curves
itself but also the connections between this setting and the original algebro-geometric setting
of Hassett moduli spaces. Througout this introduction, we will retrace the history of the
connections between the moduli problems of algebraic and tropical curves, starting from the
foundations of the algebraic setting and Hassett birational models of the moduli stacks of
curves Mg,A and Mg,A, and arriving to their tropical version and the interplay between the
two.

Moduli of algebraic curves. In algebraic geometry, classification problems are usually
called moduli problems, and consist in the research of a moduli space parametrizing the
objects of interest. As it is written in [Cha00], informally speaking a moduli space is a
parameter space for classes of geometric objects of interest, such that nearby points specify
“nearby” geometric objects, meaning that those geometric objects are close to be the same.
In its more recent formulations, a moduli problem in the algebro-geometric category consists
in considering a set of algebro-geometric objects, together with an equivalence relation, and
a notion of family for this objects. To state such a problem, one considers a so called moduli
functor

F : schemes→ Sets

from the category of schemes to the one of sets, which is a contravariant functor sending a
scheme S into the set of families of isomorphism classes of the algebro-geometric objects over
S. By the word family, we mean that we do not only parametrize the object themselves, but
we do it taking into account their deformations.

The problem of constructing a space to parametrize a certain class of algebro-geometric
objects, along with the introduction of the term “moduli” has its origins in the work “The
theory of Abelian functions” by Riemann in 1857, who originally dealt with the problem
of classifying isomorphisms classes of compact Riemann surfaces. The first invariant which
already Riemann considered back then was the topological genus of the surfaces, thanks to
which it is possible to bound the class of objects so they can be parametrized conveniently in
a finite dimensional “space.” These objects are identified with smooth projective algebraic
curves over C, as there is an equivalence of categories between the category of smooth
irreducible projective algebraic varieties of dimension one over C (which we will call just

iii



smooth curves from now on) with non-constant regular maps as morphisms, and the category
of compact Riemann surfaces with non-constant holomorphic maps as morphisms. With this
equivalence we can rephrase this problem as the classification problem of all the possible
smooth curves up to isomorphism of algebraic varieties. In order to state conveniently the
moduli problem of curves, let us recall the notion of family of smooth curves of fixed genus.

Definition. Let g ≥ 2, and let S be a scheme. A family of smooth curves of genus g over S is
a proper and flat family C → S whose geometric fibers are smooth, connected 1-dimensional
schemes of genus g.

A fine moduli space M for the moduli functor F is a scheme with a universal family
U → M such that, for every scheme S and for every family C → S over it, there is a unique
f : S → M making the following diagram Cartesian:

C U

S M.
f

Once we have M, its points are in bijection with the objects we want to classify. In the case
of smooth curves, it is impossible to find such a space in the category of schemes, so we have
to weaken the request on this space. What we obtain is called a coarse moduli space, i.e.,
a scheme Mg together with a natural transformation of functors ϕ : F → Hom(−,Mg) such
that

• For any algebraically closed field k, the map

F (Spec(k)) → Hom(Spec(k),Mg)

is a bijection.

• Given any scheme M ′ and a transformation ϕ′ : F → Hom(−,M ′) there is a unique
transformation

ψ : Hom(−,Mg) → Hom(−,M ′)

such that ϕ′ = ψ ◦ ϕ.

Theorem. ([MFK94]) Given an algebraically closed field k there is a coarse moduli scheme
Mg of dimension 3g− 3 for the moduli functor of smooth curves defined over Spec(k), which
is quasi-projective and irreducible.

The schemeMg was constructed using the geometric invariant theory developed by Mumford,
see [Edi00] for an account on the construction. Working with moduli spaces, a desiderable
property they should have is properness, which is the algebraic geometry analogue of com-
pactness. Unfortunately, the space Mg is not proper. To solve this problem, one looks
for a so called Compactification, i.e., a proper space which contains Mg as an open dense
subset. With the purpose of showing that Mg was irreducible, Deligne and Mumford in
[DM69] described the compactification of Mg adding to the moduli problem (families of)
stable curves.
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Definition. ([DM69], Definition 1.1) Let g ≥ 2 be an integer. A family of stable curves of
genus g over a scheme S is a proper flat family π : C → S whose geometric fibers Cs are
reduced, connected, 1-dimensional schemes (which we call curves) such that:

• Cs has only ordinary double points as singularities;

• If E is a non-singular rational component of Cs, then E meets the other components
of Cs in more than 2 points;

• The fiber Cs has genus g.

Analogously to Mg, by using G.I.T. we can show that there is a projective coarse moduli
spaceM g of dimension 3g−3 for the moduli problem of stable curves and such thatMg ⊂M g

as an open dense subset, as required. Furthermore, in the same work the authors introduced
the fundamental notion of Deligne-Mumford stack, which was later generalized to the notion
of algebraic stack (see Definition 1.1.8). A stack is a category fibered in groupoids such that
isomorphisms form a sheaf and such that every descent datum is effective, which informally
speaking means that it is a category with a functor on the category of schemes (in the case of
algebraic stacks) that “pulls back and glues like bundles”, see [Fan01] for a short introduction
to the theory. In particular, Deligne and Mumford in [DM69] defined two Deligne-Mumford
stacks Mg and Mg which turned out to be fine moduli spaces for the moduli problem of
smooth (respectively stable) curves of genus g. Moreover, the inclusion Mg ⊂ Mg can be
seen as an open dense inclusion and Mg works as a compactification, since it is proper.

Marked points on curves. A natural generalization of this problem is to consider the
moduli problem of curves with a distinguished set of marked points. The idea of considering
this moduli problem firstly appeared in the work of Knudsen [Knu83] in 1983, but curves with
marked points were already considered before, as for example elliptic curves. In [Knu83],
Knudsen generalized the notion of stable curve to curves with marked points as follows.

Definition. ([Knu83], Definition 1.1) Let S be a scheme, g ≥ 0, n ≥ 0 be two integers such
that 2g − 2 + n > 0. A n-pointed family of stable curves of genus g over S is a proper flat
family π : C → S together with n distinct sections si : S → C such that:

• the geometric fibers Cs are reduced, connected curves with at most ordinary double
points as singularities;

• Each Cs is smooth at Pi := si(s), for every i from 1 to n;

• We have Pi ̸= Pj whenever i ̸= j;

• The number of points where a nonsingular rational component E of Cs meets the rest
of Cs plus the number of marked points Pi on E is at least 3;

• Each fiber Cs has arithmetic genus g.
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Following the work of Deligne and Mumford, Knudsen constructed two fine moduli stacks
Mg,n ⊂ Mg,n for the moduli problems of smooth and respectively stable curves of genus g
with n marked points, provided that 2g − 2 + n > 0 (otherwise there is no stable curve),
where the inclusion is again a compactification since Mg,n is proper. Both these spaces come
with their corresponding coarse moduli schemesMg,n ⊂M g,n obtained later using analogous
techniques to the ones used for the unmarked case (seen also as the case where n = 0).
The universal family over these spaces coming from the fine moduli space Structure, called
universal curve, is one of the first motivations which led to consider this enhanced version
of the problem. In fact, Knudsen shown that there is an identification of the universal curve
Cg over Mg with the space Mg,1, and in general Cg,n with Mg,n+1 (and an analogous result
holds considering the compactifications, see again [Knu83]).

A further generalization of this moduli problem came in 2003, with the work of Hassett,
[Has03]. The starting idea of this generalization was to consider pointed curves as log
varieties, i.e., pairs (X,D) where X is a variety and D =

∑
aipi is an effective Q-divisor on

X. There is a notion of stability for log varieties, coming from the Minimal Model Program,
which allows for the construction of a moduli space provided these pairs are stable. Namely,
we ask that (X,D) has relatively mild singularities and that the divisor KX +D is ample.
Given A = (a1, . . . , an) ∈ ((0, 1] ∩Q)n and g ≥ 0 such that 2g − 2 + a1 + · · ·+ an > 0 (such
a pair of g and A is called input datum), we can construct a moduli stack Mg,A called the
moduli space of A-stable curves of genus g, which is the paremeter space for the following
families of objects

Definition. ([Has03]) Let π : C → S be a proper flat family together with n distinct sections
si : S → C. Let (g,A) be an input datum, A = (a1, . . . an). We say that π : C → S is stable
of type (g,A) (or (g,A)-stable) if

• geometric fibers are nodal connected curves of arithmetic genus g;

• the sections s1, . . . sn lie in the smooth locus of π, and for any subset {si1 , . . . , sir} with
nonempty intersection we have ai1 + · · ·+ air ≤ 1;

• the twisted canonical sheaf Kπ + p1s1+ · · ·+ anpn is relatively π-ample, where by pi we
denote the image of si.

Theorem. ([Has03], Theorem 2.1) Let (g,A) be an input datum. There exists a connected
Deligne–Mumford stack Mg,A smooth and proper over Z representing the moduli problem
of pointed stable curves of type (g,A). The corresponding coarse moduli scheme M g,A is
projective over Z.

It is easy to see that when D is reduced (i.e., when A = (1, . . . , 1)) the resulting moduli
space is the Deligne-Mumford-Knudsen moduli space of marked stable curves. It comes with
a locus of smooth curves Mg,A such that Mg,A ⊂ Mg,A is a compactification, and admits
coarse moduli schemes Mg,A and M g,A. Special cases of these spaces appeared before 2003
in the work of Kapranov, Keel, and Losev and Manin. It is possible to show that for every
A = (a1, . . . , an), the resulting Hassett moduli space M g,A is birational to M g,n, but in
general it is non-isomorphic, and an analogous result holds for the stacks Mg,A and Mg,A.
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It is also possible to construct tautological maps analogous to the ones constructed for M g,n

in [Knu83], see 1.1.10 and 1.1.17.
Among these spaces, a special class of them with

A = (1(m)|ε(n)) :=

1, . . . , 1︸ ︷︷ ︸
m

, ε, . . . , ε︸ ︷︷ ︸
n

 ,

are called the universal curve moduli spaces, and are denoted Mg,m|n (or Mg,m|n if we
consider the locus of smooth curves, and analogously M g,m|n and Mg,m|n for the coarse
moduli schemes). These spaces have been studied in several algebro-geometric contexts.
They can be viewed as a resolution of singularities of the n-fold product of the universal
curve over M g,m, and as g, m, and n vary, the spaces M g,m|n form the components of Losev–
Manin’s extended modular operad [LM04]. When g = 0 and m = 2, the space M0,2|n is a
toric variety, and it coincides with the Losev–Manin moduli space of stable chains of P1’s
[LM00].

Tropical curves and their moduli. Tropical geometry appeared as a branch of math-
ematics in its own right in the 90’s, through the reunification of many works and ideas of
people coming from various fields, and became famous in the last thirty years thanks to
its applications different areas. It has deep connections and allows to obtain a lot of new
results in other fields of mathematics, in particular in algebraic geometry, of which tropical
geometry is considered a sub-field sometimes. In our work we are interested in the study
of tropical curves and its connections and applications to the moduli problem of algebraic
curves introduced before.

In the text, by tropical curve we will always refer to abstract tropical curves, which
are, loosely speaking, weighted graphs with a metric. In particular we will be interested in
abstract tropical curve whose underlying graph is A-stable.

Definition. Let g, n ∈ Z≥0, and A = (a1, . . . , an) ∈ ((0, 1] ∩ Q)n be a weight datum such
that 2g − 2 + a1 + · · · + an > 0. An n-marked A-stable tropical curve of genus g is a pair
Γ := (G, l) where G is a weighted n-marked graph of genus g with n legs and l is a function

l : E(G) ∪ L(G) → R>0

such that, for each vertex v ∈ V (G) verifies

2w(v)− 2 + val(v) + |v|A > 0,

where w : V (G) → Z≥0 is the weight function, m : {1 . . . n} → V (G) is the marking function
on vertices and |v|A =

∑
i∈m−1(v) ai.

It makes sense to ask for a moduli space of A-stable tropical curves, which is much easier
to construct than the algebraic one. In this context, a moduli space can be constructed as
follows. First, for each A-stable graph G of genus g we pick a copy of R|E(G)|

≥0 . A point in such
a cone identifies a tropical curve, as it is the data of a graph and an edge length function on
it (with a small exception as we allow some lengths to be zero).
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For a A-stable graph G of genus g let Aut(G) be its automorphism group (preserving m

and w). It acts on the set of edges E(G), and hence on the orthant R|E(G)|
≥0 by permuting

coordinates. We define C(G) to be the quotient space of the orthant by this action. Next,
we define an equivalence relation on the points in the union

⊔
C(G), as G ranges over all

the considered graphs. The relation identifies two points x and x′ if one of them is obtained
from the other by contracting all edges of length zero (for more details about the rules of
weighted contractions, see Figure 1.6). Denote by ∼ this relation. The moduli space M trop

g,A
is the topological space

M trop
g,A :=

⊔
C(G)/ ∼ .

The resulting topological spaces are called Hassett moduli spaces of tropical curves, and they
were defined in [Uli15] following and generalizing the previous constructions of M trop

g (i.e.,
tropical curves without markings) made in [BMV11] and the one of M trop

g,n (obtained when
ai = 1 for every i = 1, . . . , n) from [Cap11], see 1.2.2 for more details about the construction.
An important subset of these spaces considered in many works and fundamental for the
connection with the algebraic setting is the link space ∆g,A, i.e., the locus of tropical curves
whose volume (i.e., the sum of its edge lengths) is 1.

Connections between algebraic and tropical curves. The deep connection between
the Hassett moduli space of algebraic curves and the Hassett moduli space of tropical curves
is the following, firstly shown in [ACP15] for Deligne-Mumford stability and and later gen-
eralized for Hassett stability.

Theorem. ([ACP15], Theorem 1.2.1; [Uli15], Theorem 1.2) Let g, n ∈ Z≥0, and consider
A = (a1, ..., an) ∈ ((0, 1] ∩ Q)n such that 2g − 2 + a1 + · · · + an > 0. Let S(Mg,A) be the
canonical Thuillier skeleton of the Hassett moduli space (see 1.3.2 for further details). There
is a natural isomorphism

Jg,A :M
trop

g,A → S(Mg,A)

of extended generalized cone complexes. Let S(X ) denote the interior of the generalized
cone complex S(X ). Such isomorphism restricts to an isomorphism of cone complexes (see
1.2.19):

Jg,A :M trop
g,A → S(Mg,A).

The link spaces ∆g,A play an important role in the understanding of the so called Top
Weight Cohomology of Mg,A. The compactification Mg,A is a toroidal compactification
of the moduli stack Mg,A, since the boundary divisor ∂Mg,A := Mg,A \Mg,A has normal
crossings. As a Deligne-Mumford stack, the rational cohomology of Mg,A carries a mixed
Hodge structure, and one can consider its graded pieces

GrWi H
j(Mg,A,Q) = Wi ∩Hj(Mg,A;Q)/Wi−1 ∩Hj(Mg,A;Q).

The top graded piece of this filtration of Mg,A, denoted by GrW6g−6+2nH
6g−6+2n−j(Mg,A;Q),

is called Top Weight Cohomology, and is the main object of study in [CGP21] and [CGP22].
Through a generalization of previous works by Danilov ([Dan75]) and Payne ([Pay13]), Chan,
Galatius and Payne were able to construct a combinatorial object, called dual boundary
complex and denoted by ∆(∂Mg,A), encoding the combinatorics of the boundary divisor.
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The dual boundary complex has the structure of a symmetric ∆-complex (see Section 1.2.3
for generalities about these objects) and is such that

H̃j−1(∆(∂Mg,A);Q) ∼= GrW6g−6+2nH
6g−6+2n−j(Mg,A;Q).

The beautiful idea of Chan, Galatius and Payne is that this dual boundary complex can
be identified with the link space, i.e., ∆(∂Mg,A) = ∆g,A, therefore we have the following
important equality:

H̃j−1(∆g,A;Q) ∼= GrW6g−6+2nH
6g−6+2n−j(Mg,A;Q).

We refer again to [CGP21] for the unmarked case, to [CGP22] for the case of curves with
markings and to [Uli15] for the case of Hassett stable curves. In [CGP21] and [CGP22], the

authors developed an automorphism between H̃j−1(∆g,n;Q) and the rational homology of a
special chain complex generated by isomorphism classes of n-marked genus g stable graphs,
called Graph Complex (see Section 4.3). In fact, they proved that there is a natural injection
of chain complexes

G(g,n) → C∗(∆g,n,Q)

decreasing degrees by 2g − 1, and inducing isomorphisms on homology

H̃k+2g−1(∆g,n;Q) → Hk(G
(g,n)

for all k’s. We work out a generalization for this isomorphism in Section 4.3, where we define
analogous complexes G(g,A) and show the following:

Theorem. 4.3.2 Let g ≥ 1 and A ∈ ((0, 1]∩Q)n such that 2g− 2+ a1 + · · ·+ an > 0. There
is a natural injection of chain complexes

G(g,A) → C∗(∆g,A,Q)

decreasing degrees by 2g − 1, inducing isomorphisms on homology

H̃k+2g−1(∆g,A;Q) → Hk(G
(g,A))

for all k’s.

Originals results of [CGP21] and [CGP22] were used to develop results on the dimension
of the cohomology of moduli spaces of curves, as for example we mention the following:

Theorem. ([CGP21], Theorem 1.1) The cohomology H4g−6(Mg;Q) is nonzero for g = 3,
g = 5, and g ≤ 7. Moreover, dimH4g−6(Mg;Q) grows at least exponentially. More precisely,

dimH4g−6(Mg;Q) > βg + constant,

for any β < β0, where β0 is the real root of t3 − t− 1 = 0.

Combinatorial properties of Hassett spaces of algebraic curves and their relation with
their tropical counterpart motivates the three papers which are the core of this work, each
of which is described in a different chapter. In the first chapter of this thesis, we will give a
more detailed account on the notions introduced so far and we also develop all the necessary
background on algebraic curves, tropical curves and Hassett generalized stability conditions.

ix



Topology of the link. In the second chapter we study the homotopy type of the spaces of
tropical curves of volume one, the link spaces ∆g,A. Previous to this work, a lot of different
works with the same purpose came out, and we will give an account on them in Section
2.1. We start the chapter with a mild generalization of results on the contractibility of some
subloci of the ∆g,n’s obtained in [CGP22], to the ∆g,A’s:

Theorem. 2.1.1 Let g ≥ 1, n ≥ 1 be integers, A ∈ ((0, 1] ∩ Q)n be a weight datum. Then
the following subcomplexes are either empty or contractible:

1. The subset ∆w
g,A of tropical curves with at least a strictly positive weighted vertex;

2. The subset ∆lw
g,A of tropical curves with at least a strictly positive weighted vertex and/or

loops;

3. The closure of the subset of tropical curves with bridges ∆br
g,A.

We prove this Theorem in Appendix A. Right after, we study the fundamental group of
∆g,A showing the following:

Theorem. 2.1.6 For any g, n ≥ 1 and A ∈ ((0, 1]∩Q)n such that 2g− 2+a1+ · · ·+an > 0,
the space ∆g,A is simply connected.

To show this Theorem, we generalize the argument of [ACP22]. In particular, we use the
properties of symmetric ∆-complexes which ensure that there is a surjection from a partic-
ular group (the group generated from the 1-skeleton, see [ACP22], Theorem 3.1) onto the
fundamental group, and we show that the former is trivial (this follows from the contractibil-
ity on a particular sublocus of ∆g,A, see Proposition 2.1.5). In Appendix A there is also an
alternative proof of this based on the combinatorics of ∆g,A. We show an analogous result
for moduli spaces of quasistable and simple tropical curves, i.e., curves where the standard
stability condition is relaxed (see Section 2.1 for more details).

Our second result of the chapter concerns the Euler Characteristic of ∆g,A in terms of
the Top Weight Euler Characteristics of the moduli spaces Mg,r. Set [n] := {1, . . . , n}, we
call a partition P1 ⊔ · · · ⊔ Pr ⊢ [n] A-admissible if

∑
i∈Pj

ai ≤ 1 for all 1 ≤ j ≤ r. Let Nr,A

denote the number of A-admissible partitions of [n] with r parts.

Theorem. 2.2.12 Denote by χW
6g−6+2r the Euler Characteristic of GrW6g−g+2rH

∗(Mg,r;Q).
Then

χ(∆g,A) = 1−
n∑

r=1

Nr,A · χW
6g−6+2r(Mg,r).

By previous computations for the numbers χW
6g−6+2r(Mg,r) this allows for the calculation

of χ(∆g,A) for arbitrary g and A, yielding the following closed forms, expressed as Corollaries
of this Theorem.

Corollary. 2.2.13 Given A, such that Nr,A = 0 for r ≤ g + 1, the Euler Characteristic of
∆g,A is

χ(∆g,A) = 1 +
n∑

r=1

Nr,A(−1)r
(g + r − 2)!

g!
Bg.
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Corollary. 2.2.14 Let S(n, r) denote the number the Stirling numbers of the second kind (see
the proof of Corollary 2.2.14 for their Definition). Given a universal curve weight vector A
of m heavy and n light components, where m ≥ g + 1, n > 0, and 0 < ε < 1/n, we have

χ(∆g,A) = 1 +
n∑

r=1

g∑
ℓ=0

(−1)m+r+ℓ (g +m+ r − 2)!ℓ!

g!(ℓ+ 1)
S(n, r)S(g, ℓ).

Using this Corollary above, we compute explicitly the Euler Characteristics of link spaces
with universal curve vectors in Table 2.1. To show the Theorem, we decompose isomorphism
classes of Hassett spaces in the Grothendieck Ring of varieties as the sum of isomorphims
classes of Deligne-Mumford spaces, and then show a relation between the Top Weight Euler
Characteristic of Mg,A and the Euler Characteristic of ∆g,A (further details in Section 2.2.2).

Equivariant Hodge Polynomials of universal curve moduli spaces. In chapter 3
we derive the formulas which encode the combinatorial relationships between the generating
functions for the equivariant Hodge polynomials of universal curve Hassett spaces. Here we
denote by Mg,m|n the universal curve space with m heavy and n light components.

Let X be a d-dimensional complex variety with an action of a group G, then its complex
cohomology groups are G-representations in the category of mixed Hodge structures. When
G = Sn is the group of permutations of n elements, the Sn-equivariant Hodge–Deligne
polynomial of X is given by the formula

hSn
X (u, v) :=

2d∑
i,p,q=0

(−1)ichn
(
GrFp GrWp+qH

i
c(X;C)

)
upvq ∈ Λ(2)[u, v],

where Λ is the ring of symmetric functions, and chn(V ) ∈ Λ is the Frobenius characteristic
of an Sn-representation V . Analogously for a variety X with action of Sm × Sn, we have set
hSm×Sn
X (u, v) for the Sm × Sn-equivariant Hodge–Deligne polynomial of X:

hSm×Sn
X (u, v) :=

2d∑
i,p,q=0

(−1)ichm,n

(
GrFp GrWp+qH

i
c(X;C)

)
upvq ∈ Λ(2)[u, v],

where Λ(2) = Λ ⊗ Λ, and the function chm,n(V ) ∈ Λ(2) is the Frobenius characteristic of
an (Sm × Sn)-representation V . If X is proper, and the mixed Hodge structure on each
cohomology group is pure, as is the case for the coarse moduli space M g,m|n associated to
Mg,m|n, the Hodge–Deligne polynomial specializes to the usual Hodge polynomial

2d∑
p,q=0

(−1)p+qchm,n (H
p,q(X;C))upvq.

In order to state the main Theorem, we need some generalities about Λ and Λ(2). First,
given f ∈ Λ, we set f (j) ∈ Λ(2) for the inclusion of f into the jth tensor factor, j ∈ {1, 2}.
These extend to maps Λ[[u, v]] → Λ(2)[[u, v]]. Let pi ∈ Λ be the ith power sum symmetric
function, i.e., pi =

∑
k>0 x

i
k, then Λ is generated by these elements:

Λ = Q[[p1, p2, . . .]].
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The coproduct Λ → Λ(2) defined by

pi 7→ p
(1)
i + p

(2)
i

also extends to a map
∆ : Λ[[u, v]] → Λ(2)[[u, v]].

There is an associative operation ◦, called plethysm on Λ, characterized by the following
properties:

(i) for any g ∈ Λ, the map f 7→ f ◦ g defines an algebra homomorphism Λ → Λ;

(ii) for all n, the map f 7→ pn ◦ f defines an algebra homomorphism Λ → Λ;

(iii) pn ◦ pm = pnm.

This induces two plethysm operations ◦1 and ◦2 on Λ(2), and these extend to Λ(2)[[u, v]] by

p(i)n ◦i q = qn,

p(i)n ◦j q = p(i)n ,

for {i, j} = {1, 2} and q ∈ {u, v}.
The main Theorem of this chapter is the following.

Theorem. 3.2.1 Let hn ∈ Λ denote the nth homogeneous symmetric function. For f ∈
Λ(2)[[u, v]] set

Exp(2)(f) =
∑
n>0

h(2)n ◦2 f.

Then we have
ag = ∆(bg) ◦2 Exp(2)

(
p
(2)
1

)
and

ag = ∆(bg) ◦2

(
p
(2)
1 − ∂b

(2)
0

∂p
(2)
1

)
◦2 Exp(2)

(
p
(2)
1

)
,

where
ag :=

∑
m,n

hSm×Sn
Mg,m|n

(u, v), ag :=
∑
m,n

hSm×Sn

Mg,m|n
(u, v) ∈ Λ(2)[[u, v]]

and
bg :=

∑
n

hSn
Mg,n

(u, v), bg :=
∑
n

hSn

Mg,n
(u, v) ∈ Λ[[u, v]].

We can show a numerical analogue of the Theorem above which deals with the non-
equivariant Hodge–Deligne polynomials, defined by the assignment

hX(u, v) :=
2d∑

i,p,q=0

(−1)i dim
(
GrFp GrWp+qH

i
c(X;C)

)
upvq ∈ Q[u, v].
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Set

ag :=
∑
m,n

hMg,m|n(u, v)
xmyn

m!n!
, ag :=

∑
m,n

hMg,m|n
(u, v)

xmyn

m!n!
∈ Q[[u, v, x, y]],

and similarly put

bg :=
∑
n

hMg,n(u, v)
xn

n!
, bg :=

∑
n

hMg,n
(u, v)

xn

n!
∈ Q[[u, v, x]].

Corollary. 3.2.2 We have

ag = bg|x→w

where w = x+ ey − 1, and

ag = bg|x→z,

where

z = x+ ey +
euvy − uv · ey + uv − 1

uv − u2v2
− 1.

These results allow for many explicit computations aided by previous work in the area,
see Tables 3.1, 3.2 and 3.3.

In genus zero, the problem of computing the equivariant Hodge polynomials ofM0,m|n has
been studied by Bergström–Minabe [BM13, BM14] and by Chaudhuri [Cha16]. Our formula
gives a third approach to this problem, which applies in arbitrary genus. Also in genus zero,
the Chow groups ofM0,m|n have been computed by Ceyhan [Cey09], while the Chow ring has
been computed by Petersen [Pet17] and by Kannan–Karp–Li [KKL21]. The techniques of this
paper are based on prior work on the operad structure of moduli of stable curves and maps,
by Getzler [Get95, Get98], Getzler–Kapranov [GK98], and Getzler–Pandharipande [GP06].
In particular, the main tool of the paper is a generalization of Getzler–Pandharipande’s
Grothendieck ring of S-spaces, which encodes sequences of varieties with Sn-actions, to the
setting of S2-spaces, which allows us to keep track of (Sm × Sn)-actions as m and n vary.

Wall Crossing and filtrations of tropical moduli spaces. In chapter 4 we study how
varying the vector A in ((0, 1] ∩Q)n i.e. varying the Hassett stability condition, affects the
topology of Hassett moduli spaces of tropical curves, and also we study some relations that
arise between different spaces. We consider the set of real hyperplanes called fine chamber
decomposition, defined in [Has03]:

Wf =

{∑
j∈S

aj = 1 : {S ⊂ {1, ..., n}}, 2 ≤ |S| ≤ n− 2δg,0

}
,

where δi,j is the Kronecker Delta. We denote by K the set of connected components of

((0, 1] ∩Q)n \
⊔

w∈Wf

w,

and we call these components chambers.
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Then we can see that different weight data in the same chamber give rise to the same
moduli space, and the fine chamber decomposition is the coarsest one with this property (see
Proposition 4.2.3 and 4.2.10). Let g ≥ 0, n ≥ 1 and A ∈ ((0, 1]∩Q)n, and let C ⊂M trop

g,A be

a closed subset. We say it is a sub-moduli space if it is homeomorphic to M trop
g,B for some B,

and points of C are in bijection with (g,B)-stable tropical curves. Given two weight data A
and B, we write A ≤ B if ai ≤ bi component-wise. It is easy to show that if A ≤ B there is
a closed inclusion

M trop
g,A ⊆M trop

g,B . (1)

preserving the moduli space structure.
For a given weight datum A, we denote by ChA its chamber. We define a partial or-

der relation in the set K which extends the previous one on weight data as follows. Let
Ch1, Ch2 ∈ K, we say that Ch1 ≤ Ch2 if they are equal or there are S1, ..., St ⊂ {1, ..., n}
such that for every A ∈ Ch1,

∑
i∈Sj

ai < 1 and for every B ∈ Ch2,
∑

i∈Sj
ai > 1, for every j

from 1 to t, while for any S ′ ̸= Sj for every j from 1 to t, the two chambers belong to the
same half-space of ((0, 1]∩Q)n induced by the wall

∑
i∈S′ ai = 1. It is easy to see that if we

pick A ∈ Ch1 and B ∈ Ch2 with Ch1 ≤ Ch2, the inclusion still holds.
Given a weight datum A = (a1, ..., an) and a permutation σ ∈ Sn, let σ(A) be the weight

datum obtained by permuting the weights of A according to σ, i.e., σ(A) = (aσ(1), ..., aσ(n)).
Then M trop

g,A is homeomorphic to M trop
g,σ(A): the homeomorphism, called relabeling homeomor-

phism, consists of sending a tropical curve into the curve with the same underlying graph
and the same length function, but with the legs marked according to the permutation.

We can consider the action of Sn induced on K given by σ(ChA) = Chσ(A) as well. We
call the orbits of this action chambers up to symmetry, and we denote the set of chambers
up to symmetry by [K]. Denote by [Ch] the orbit of Ch ∈ K. We say that [Ch1] ≤ [Ch2] if
there are two chambers ChA1 ∈ [Ch1] and ChA2 ∈ [Ch2] such that ChA1 ≤ ChA2 , for some
A1 and A2. In that case, each time we pick

A ∈ ChA1 ∈ [ChA1 ] ≤ [ChA2 ] ∋ ChA2 ∋ B,

there is a permutation σ ∈ Sn giving a topological embedding

M trop
g,A ↪→M trop

g,B

obtained by combining the relabeling homeomorphism M trop
g,A

∼= M trop
g,σ(A) with the inclusion

M trop
g,σ(A) ⊂M trop

g,B . In particular, there is only a moduli space of tropical curves up to homeo-

morphism for each chamber up to symmetry. All these properties work if we replace M trop
g,A

with ∆g,A.
We illustrate the situation with an example. Suppose we have g ≥ 1 and n = 3, and we

have the weight data A1 = (12
27
, 14
27
, 1 − ε) and A2 = (14

27
− ε, 12

27
, 14
27
), for some 0 < ε < 1

27
.

Clearly they are not comparable with respect to the partial order on weight data, and we
can verify that they belong to different chambers, i.e., ChA1 ̸= ChA2 . It is also possible
to verify that [ChA1 ] ̸= [ChA2 ]. This implies that their moduli spaces M trop

g,A1
and M trop

g,A2

are different, and none of them is the subspace of the other. But if we reorder the weights
of the second weight by the permutation σ = (1 3 2) ∈ S3 the datum we obtain is
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σ(A2) = (12
27
, 14
27
, 14
27

− ε), and by the relabeling homemorphism we know that

M trop
g,A2

≈M trop
g,σ(A2)

.

Moreover σ(A2) and A1 are comparable, in particular σ(A2) ≤ A1, so we have the
inclusion as a subspace

M trop
g,σ(A2)

⊂M trop
g,A1

.

Composing the relabeling homeomorphism with this inclusion gives an embedding as a sub-
space

M trop
g,A2

↪→M trop
g,A1

.

In the case g ≥ 1 and n = 3 there are five chambers up to symmetry, so choosing represen-
tative weight data up to relabeling homeomorphisms we get the filtration

M trop

g,( 1
3
, 1
3
, 1
3
−ε) ⊂M trop

g,( 4
9
−ε, 4

9
−ε, 4

9
−ε) ⊂M trop

g,( 12
27

, 14
27

, 14
27
−ε) ⊂M trop

g,( 12
27

, 14
27

,1−ε) ⊂M trop
g,3

where we take ε’s are taken in order to take weight data in the interior of the chamber
decomposition.

Following the previous discussion, we prove the following Theorem.

Theorem. 4.2.2 Let g ≥ 0, n ≥ 1 be two integers. Fix A = (a1, . . . , an) ∈ ((0, 1] ∩ Q)n

such that 2g − 2 + a1 + · · · + an > 0. There are filtrations of M trop
g,A given by embeddings

as sub-moduli spaces induced by the partial order on the set of chambers up to symmetry.
Namely, given a sequence

[ChA1 ] ≤ [ChA2 ] ≤ ... ≤ [ChAp ] ≤ ... ≤ [ChAN−1
] ≤ [ChA],

the filtration is

M trop
g,A1

↪→M trop
g,A2

↪→ ... ↪→M trop
g,Ap

↪→ ... ↪→M trop
g,AN−1

↪→M trop
g,A .

The same result holds if we replace M trop
g,A with the moduli space of (g,A)-stable tropical

curves of volume 1, ∆g,A.

We also define the graph complexes G(g,A), see Section 4.3. In order to study further
these graph complexes and their homology, we generalize Theorem 1.4 of [CGP22] showing
that there is a natural surjection of chain complexes C∗(∆g,A) → G(g,A) decreasing degrees
by 2g − 1 inducing isomorphisms on homology

H̃k+2g−1(∆g,A;Q) → Hk(G
(g,A))

for all k’s. As stated before, combining this with the isomoprhism of the Top Weight Co-
homology with the rational homology of the dual boundary complex we get also a natural
isomorphism

GrW6g−6+2nH
4g−6+2n−k(Mg,A;Q) → Hk(G

(g,A)),

between the rational Top Weight Cohomology of Mg,A and the rational homology of the
complex G(g,A). We also deduce a Filtration Theorem analogous to the one stated for the
moduli spaces.
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Theorem. 4.3.11 Let g ≥ 0, n ≥ 1 be two integers. Fix A = (a1, . . . , an) ∈ ((0, 1] ∩ Q)n

such that 2g − 2 + a1 + · · · + an > 0. There are filtrations of G(g,A) induced by the partial
order on the set of chambers up to symmetry given by inclusions of complexes. Namely a
ordered sequence

[ChA1 ] ≤ [ChA2 ] ≤ ... ≤ [ChAp ] ≤ ... ≤ [ChAN−1
] ≤ [ChA],

induces a filtration of chain complexes

G(g,A1) ↪→ G(g,A2) ↪→ ... ↪→ G(g,Ap) ↪→ ... ↪→ G(g,AN−1) ↪→ G(g,A),

with G(g,Ap−1) ↪→ G(g,Ap) being an injective map of chain complexes for every p = 2, ..., N .

This gives them the structure of Filtered Chain Complexes. There is a spectral sequence
associated to a Filtered Chain Complex which can be used to compute the homology of the
complex itself. In particular, the structure of bounded Filtered Chain Complex given to each
G(g,A), combined with the shifting degree isomorphism of the Top Weight Cohomology of
Mg,A with the homology of the complex gives us the following Theorem.

Theorem. 4.3.13 Fix g ≥ 1, n ≥ 2. Assume we have a sequence of chambers up to symmetry
[ChA1 ] ≤ ... ≤ [ChAp ] ≤ ... ≤ [ChAN

], and let G(g,A1) ↪→ ... ↪→ G(g,Ap) ↪→ ... ↪→ G(g,AN ) be
the induced filtration on graph complexes. Then

GrW6g−6+2nH
4g−6+2n−k(Mg,AN

;Q) ∼=
N⊕
p=1

E∞p,k−p,

where the terms E∞p,k−p are the ones to which the spectral sequence induced by the above
filtration converges.

At the end of chapter 3, we discuss the relative Homology of the inclusions of the link
spaces, and how it can be interpreted again as the homology of a Graph Complex.
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Chapter 1

Background

This chapter is devoted to introduce all the notation and the results we will use in the rest
of the document. It is divided in three sections: section 1.1 introduces the moduli problem
of algebraic curves and the Hassett’s generalization. Section 1.2 deals with the analogous
tropical problem. Section 1.3 exposes the connections between the two moduli problems.

1.1 Moduli spaces of algebraic curves

Here we talk about the moduli problem of algebraic curves, from its foundations in the
nineteenth century until its most modern generalization made by Hassett in 2003.

1.1.1 The Moduli Problem of Curves

From smooth to stable curves

The origin of moduli theory of curves is usually attributed to Riemann, who firstly studied
the classification of Riemann surfaces, i.e., dimension one varieties over the complex field,
and firstly introduced the genus as an invariant of the problem. Later in the twentieth
century, the problem evolved along with the development of algebraic geometry with the
introduction of the theory of schemes by Grothendieck. A complete solution to the problem
was obtained in the late 60’s by the work of Deligne and Mumford, who gave the construction
of a moduli space (which we are going to introduce) for curves in the category of algebraic
stacks. The original formulation of the algebro-geometric version of the problem dealt with
the classification of the following class of objects, which are families of smooth curves of
given genus.

Definition 1.1.1. Let g ≥ 2, and let S be a scheme. A family of smooth curves of genus
g over S is a proper, flat, family C → S whose geometric fibers are smooth, connected
1-dimensional schemes (which we call curves from now on) of genus g.

Informally, a family over S is a scheme morphism over S such that its fibers are smooth
curves of fixed given genus, and we obtain a single curve whenever the base scheme S is
Spec(k), where k is an algebraically closed field.

1
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In modern algebraic geometry, moduli problems are stated through moduli functors. A
moduli functor is a contravariant functor which sends a scheme S into the set of isomorphism
classes of families over S, and sends a morphism f : S → S ′ into the morphism of families
f ∗(C ′ → S ′) = (C ′ ×S′ S → S). The moduli functor of curves, defined for every g ≥ 2, is
then:

Fg : Schemes Sets

S


isomorphism classes

of families of curves

of genus g over S


Given a moduli functor F , a fine moduli space M for F is a scheme (later we will relax

this request allowing objects which are not schemes) with a universal family U → M such
that, for every scheme S and for every family C → S over it, there is a unique f : S → M
such that the following diagram holds and is Cartesian:

U ×M S ∼ C U

S M.
f

In other words, if it exists, a fine moduli space M for the moduli functor F is such that F is
isomorphic as a functor to Hom(−,M). In particular, F (S) is in bijection with Hom(S,M),
so in the case S = Spec(k) we see that points of M over k are in bijection with the objects
we want to classify. Moreover, it can be shown that the universal family U which comes with
it is unique up to isomorphism.

Concerning the problem of curves, a fine moduli Space for the moduli functor Fg of
smooth curves of give genus g does not exists (in the category of schemes). In fact, if we
take a curve X with non-trivial automorphisms (like for instance hyperelliptic curves), we
can describe non-trivial families C → S where each fiber has the same isomorphism class of
X, even if the family is not isomorphic to the trivial product family X × S → S. However,
if there was a moduli space Mg for Fg, such a family should be isomorphic to the trivial
product family since the image of S under the corresponding map to the moduli space is a
point. A way to solve this is to weaken the request on the moduli space. For instance, we can
look for a coarse moduli scheme, i.e., a scheme M together with a natural transformation of
functors ϕ : F → Hom(−,M) such that

• For any algebraically closed field k, the map

F (Spec(k)) → Hom(Spec(k),M)

is a bijection.

• Given any scheme M ′ and a natural transformation ϕ′ : F → Hom(−,M ′), there is a
unique natural transformation ψ : Hom(−,M) → Hom(−,M ′) such that ϕ′ = ψ ◦ ϕ.
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Theorem 1.1.2. ([DM69]) Given an algebraically closed field k there is a coarse moduli
schemeMg of dimension 3g−3 for the moduli functor of smooth curves defined over Spec(k),
which is quasi-projective and irreducible.

The proof of this theorem relies on tecnhiques coming from geometric invariant theory. The
irreducibility of the moduli space of smooth curves Mg was addressed by Deligne and Mum-
ford in [DM69]. To show this property, since Mg is not proper, they constructed a proper
space which contains Mg as an open dense subset: such a procedure is now called compacti-
fication of the moduli space. In order to do so, they allowed some singular degenerations of
the smooth curves to be allowed by the moduli functor, i.e., they changed the classification
problem from considering only smooth curves to consider what they called stable curves.

Definition 1.1.3. ([DM69], Definition 1.1) Let g ≥ 2 be an integer. A family of stable
curves of genus g over a scheme S is a proper flat family π : C → S whose geometric fibers
Cs are curves such that:

• Cs has only ordinary double points as singularities;

• If E is a non-singular rational component of Cs, then E meets the other components
of Cs in more than 2 points;

• The fiber Cs has genus g.

With the same techniques used to construct the coarse moduli scheme Mg, Deligne and
Mumford constructed a coarse moduli schemeM g of dimension 3g−3 for the moduli problem
of stable curves and such that Mg ⊂M g as an open subset, as required.

Deligne-Mumford Stacks

The introduction of the notion of stability was not the only big innovation that Deligne
and Mumford introduced in their breakthrough paper [DM69]. The main tool of [DM69]
was in fact the newly introduced notion of algebraic stack, which later was worked out and
generalized by Artin. Stacks today are widely used in different areas of geometry and the
basics of the subject grew enormously. Stacks are defined as category fibered in groupoids
over a fixed base category C, such that isomorphisms form a sheaf and every descent datum
is effective (see [Fan01] for a very short and friendly introduction). Their application to
different base categories other than the one of schemes lead for instance to the notions of
differential stack, topological stack or cone stacks, and nowadays algebraic stacks are only
one example of them. Anyways, we are going to describe Stacks following the original idea
of [DM69], i.e., thinking of them as a generalization of schemes.

Let S be a scheme, and let SchS be the category of schemes over S. We say that a
category T with a functor pT : T → SchS is a category over S. If B ∈ Obj(SchS) we say
X ∈ Obj(T ) lies over B if pT (X) = B.
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Definition 1.1.4. ([Edi00], Definition 2.2) If (T , pT ) is a category over S, then it is a
groupoid over S if the following conditions hold:

1) If f : B′ → B is a morphism in SchS, and X is an object of T lying over B, then there
is an object X ′ over B′ and a morphism ϕ : X ′ → X such that pT (ϕ) = f .

2) Let X, X ′, X ′′ be objects of T lying over B, B′, B′′, respectively. If ϕ : X ′ → X
and ψ : X ′′ → X are morphisms in T , and h : B′ → B′′ is a morphism such that
pT (ψ) ◦ h = pT (ϕ) then there is a unique morphism χ : X ′ → X ′′ such that the
composition ψ ◦ χ = ϕ and pT (χ) = h.

Define T (B) to be the subcategory consisting of all objects X such that pT (X) = B
and morphisms f such pT (f) = idB. Then T (B) is a groupoid, i.e., a category where all
morphisms are isomorphisms. This is the reason we say T is a groupoid over S or a category
fibered in groupoids over SchS. Note that condition 2 of Definition 1.1.4 implies that the
scheme X ′ over B′ is unique up to canonical isomorphism, and will be called the pull-back
of X via f and denoted f ∗X.

Let (T , pT ) be a groupoid over S. Let B be an S-scheme and let X and Y be any objects
in T (B). We define a functor IsoB(X, Y ) : SchB → Set by associating to any morphism
f : B′ → B, the set of isomorphisms in T (B′) between f ∗X and f ∗Y . If X = Y then
IsoB(X,X) is the functor whose sections over B′ mapping to B are the automorphisms of
the pull-back of X to B′.

Definition 1.1.5. ([Edi00], Definition 2.3) A groupoid (T , pT ) over S is a stack if

1. IsoB(X, Y ) is a sheaf in the étale topology for all B, X and Y .

2. If {Bi → B} is a covering of B in the étale topology, and Xi is a collection of objects
in T (Bi) with isomorphisms

ϕi,j : Xj|Bi×BBj
→ Xi|Bi×BBj

in T (Bi ×B Bj) satisfying the cocycle condition. Then there is an object X ∈ T (B)
with isomorphisms

X|Bi → Xi

inducing the isomorphisms ϕi,j above.

Stacks over S form a category. Let T and U be stacks over S. A morphism of stacks is
just a functor of groupoids which commutes with the projection functor to S. If f : T → U
and h : W → U are morphisms of stacks, then we can define the fiber product T ×U W as
the groupoid whose sections over a base B are pairs (x, y) ∈ T (B) ×W(B) such that f(x)
is isomorphic to h(y). It can be easily checked that this groupoid is a stack. As mentioned,
stacks were obtained as a generalization of schemes. In fact, given an S-scheme T , we can see
it as a stack through its functor of points p : SchT → SchS which sends a T -scheme U → T
into an S-scheme U → S by composition with the structure morphism T → S. This is easily
seen as a category over SchS, and one can check that this structure verifies Definition 1.1.5
(see also [DM69], section 4). From now we also view them as stacks, via their functor of
points.
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The stacks introduced by Deligne and Mumford in [DM69] where the moduli stacks of smooth
and respectively stable algebraic curves of genus g, and are denotedMg andMg, respectively.
They are constructed as follows: fix Sch := SchSpec(Z) as base category, and let Mg be the
category were objects are families C → S of smooth curves of genus g, and morphisms are
given by commutative diagrams

C ′ C

S ′ S

inducing isomorphisms C ′ ∼ C×SS
′. The projection functor from Mg to Sch sends a family

C → S into its base S, and a morphism into the lower part of the diagram. Analogously,
Mg is defined in the same way by picking families of stable curves instead of families of
smooth curves. The first proof that these are stacks appeared in [DM69], and follows as a
corollary of a more general fact. Indeed, it is possible to show that for a scheme X with
an action of a group scheme G, one can define a category fibered in groupoids denoted
[X/G] by picking G-torsors T → B as objects, and projecting them to B (see also [Vis89]
for further details). The Stack [X/G] is also called Quotient Stack. It can be shown that
such a category is always a Stack ([Vis89], Proposition 7.17). We can get Mg and Mg as
quotient stacks by considering the subscheme Hg,l (respectively Hg,l) of the Hilbert scheme
corresponding to l-canonically embedded smooth (respectively stable) curves with the action
of PGL((2l − 1)(g − 1)− 1), for some l ≥ 3 (see also [Edi00], Theorem 3.2).

Even though Mg and Mg were introduced by Deligne and Mumford as tools for the proof
of the irreducibility ofMg, later on people started to consider stacks fundamental objects not
only in the theory of curves, but in general for any moduli problem in algebraic geometry.
In particular, a special class of stacks started to be considered as they share many properties
with schemes: these stacks were later called Deligne-Mumford stacks (or DM stacks).

Definition 1.1.6. ([Edi00] Definition 2.4) A morphism f : T → U of stacks is said to be
representable if for any map of a scheme B → U the fiber product T ×U B is represented by
a scheme.

Definition 1.1.7. ([Edi00] Definition 2.5) A representable morphism of stacks f : T → U
has property P, if for all maps of scheme B → U the corresponding morphism of schemes
T ×U B → B has property P.

Definition 1.1.8. A stack X is said to be Deligne–Mumford if it satisfies the following two
properties:

(1) The diagonal X → X ×X is representable, quasi-compact and separated;

(2) There exists a scheme U and a morphism U → X which is étale and surjective.

All the schemes are Deligne-Mumford stacks. Two examples of Deligne-Mumford stacks
which are not schemes are Mg and Mg. A reason of this can be found in Corollary 2.2 of
[Edi00]: the Corollary says that whenever we have a Noetherian scheme of finite type X
and a smooth group scheme G acting on X with finite, reduced stabilizers, then [X/G] is
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a Deligne-Mumford stack, which can be shown to be our case. One important difference
between the moduli stacks and the coarse moduli spaces we described before is that, even if
these are not schemes, they are fine moduli Spaces for the moduli functors of curves. As for
the coarse moduli spaces, we can identify the locus of smooth curves sub-stack parametrizing
points representing smooth curves Mg ⊂ Mg. Both Mg and Mg have dimension 3g − 3.
The fact that they are fine moduli spaces implies that they both come with a universal
family, usually called universal curve, denoted Cg and Cg, respectively.

Marked points on curves

A natural enrichment of the previous problem is to consider curves of given genus with
pairwise distinct marked points, along with a concept of stability generalizing the one for
unmarked curves: this moduli problem was considered by Knudsen in [Knu83], and was
posed for the following families of curves.

Definition 1.1.9. ([Knu83], Definition 1.1) Let S be a scheme, g ≥ 0, n ≥ 0 be two integers
such that 2g− 2+ n > 0. An n-pointed family of stable curves of genus g over S is a proper
flat family π : C → S together with n distinct sections si : S → C such that:

• the geometric fibers Cs are reduced, connected curves with at most ordinary double
points as singularities;

• Each Cs is smooth at Pi := si(s), for every i from 1 to n;

• We have Pi ̸= Pj whenever i ̸= j;

• The number of points where a nonsingular rational component E of Cs meets the rest
of Cs plus the number of marked points Pi on E is at least 3;

• Each fiber Cs has arithmetic genus g.

Analogously to the case of unmarked curves, we can construct a Deligne-Mumford stack
Mg,n of dimension 3g − 3 + n parametrizing n-marked stable curves of genus g, with a
sub-locus Mg,n parametrizing smooth curves. The condition 2g − 2 + n > 0 is necessary
for the existence of at least one stable curve with the given parameters. When n = 0, we
have Mg,0 = Mg and Mg,0 = Mg. In either case, the embedding Mg,n ⊂ Mg,n is again a
compactification of the moduli space of smooth curves, since the bigger space is proper.

Both these spaces come with a universal curve Cg,n over Mg,n, and Cg,n over Mg,n,
respectively, as they are fine moduli spaces for the respective moduli problem. The universal
curve Cg,n is isomorphic to the category fibered in groupoids whose fibers over a scheme S
consist of isomorphism classes of tuples (π : C ′ → S; s′1, . . . s

′
n, q
′ : S → C ′) such that

• (π : C ′ → S; s′1, . . . s
′
n : S → C ′) is an n-pointed genus g family;

• q′ is any section of π.
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There is a natural stabilization functor s : Cg,n → Mg,n+1 which is actually an isomorphism
of algebraic stacks. The natural transformation Cg,n → Mg,n forgetting q′ is then equivalent
to the map

π : Mg,n+1 → Mg,n

which forgets the last section of the curve and contracts the components which become
unstable, as shown in [Knu83]. We will call π the forgetting morphism.

All the stacks Mg,n come with an associated projective coarse moduli scheme M g,n

parametrizing stable curves of genus g with n marked points, containing the moduli scheme
Mg,n parametrizing smooth curves of genus g with n marked points. These are not fine
moduli spaces, as they do not represent the associated moduli functor, but still their points
over algebraically closed fields are in bijection with isomorphism classes of curves. For more
details about their construction we refer to the books [ACGH13] and [HM06], or to the notes
[Edi00].

Moduli spaces of curves come usually with two particular morphisms called clutching and
gluing, which we define here below. Let C, C1 and C2 be three curves with genus respectively
g, g1 and g2 with n + 2, n1 + 1 and n2 + 1 marked points (for simplicity, to describe these
morphisms we can consider curves over an algebraically closed field k instead of families).
On C, we can take the two marked points pn+1 and pn+2 and identify them. The resulting
curve C ′ has n marked points, a new nodal point, genus g + 1 and n marked points, as seen
in Figure 1.1. This defines the gluing morphism

Φ : Mg,n+2 → Mg+1,n.

pn+1

pn+2

p1

C C ′p1

p2 p2
p3 p3

p4 p5 p4 p5

Figure 1.1: Example of gluing. The new node on C ′ is the result of the gluing between the
last two marked points on the left hand side.

Analogously, by taking the two curves C1 and C2 and identifying the two marked points
of index ni+1 into a non-marked node we get a curve C ′′ of genus g1+g2 and n1+n2 marked
points, as shown in Figure 1.2. This gives the clutching morphism

Ψ : Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2 .
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pn1+1

pn2+1

C1 C2

× p′1

p′2
p1

p2

p′1

p′2
p1

p2

C ′′

Figure 1.2: Example of clutching. The new node on C ′′ is the result of the identification
between the last marked point on each of the two curves on the left.

Remark 1.1.10. The gluing, clutching and forgetting morphisms are also called tautological
maps.

1.1.2 Hassett’s Moduli Spaces

As we saw in the previous section, in the context of algebraic curves, the notion of stable
curves was introduced by Deligne and Mumford in order to compactify the moduli space
of smooth curves. A natural question one may ask then is if besides the Deligne-Mumford
moduli spaces of stable curves, there are other modular compactifications of the moduli space
of smooth marked curves, i.e., if there are other interesting proper moduli stacks containing
Mg,n as a sub-stack. In fact, the answer is positive, and Hassett spaces, which we now
introduce, are as well remarkable alternatives as modular compactifications of Mg,n.

In [Has03], Hassett considered curves as log varieties, i.e., pairs (C,D) where C is a curve
and D is an effective Q-divisor on C. In the context of the Minimal Model Program, for such
pairs, there is a notion of stability for families which can be used to construct a moduli space
of such pairs provided they respect some conditions. It turns out that when varieties are
curves, these Hassett stability conditions are a mild generalization of the Deligne-Mumford-
Knudsen ones. In order to define Hassett stable curves and to see why they generalize
Deligne-Mumford-Knudsen stability, we need first to introduce some notation.

Definition 1.1.11. ([Has03]) An input datum (g,A) consists of a non-negative integer g
together with a collection A = (a1, ..., an) of weights ai ∈ (0, 1] ∩Q such that

2g − 2 + a1 + · · ·+ an > 0.

The collection A is also called weight datum. We say that n is the lenght of the weight
datum.

We denote the domain of all admissible weight data for genus g and length n with

Dg,n := {(a1, ..., an) ∈ ((0, 1] ∩Q)n such that a1 + ...+ an > 2− 2g}.

Note that for a fixed n this space is Dg,n = ((0, 1] ∩Q)n for every g ≥ 1 since the condition
a1 + ... + an > 2 − 2g becomes trivial. When g = 0, weight data have to respect also the
condition a1 + ...+ an > 2. We call Dg,n the space of Hassett stability conditions.
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Definition 1.1.12. Let π : C → S be a proper flat family together with n distinct sections
si : S → C. Let (g,A) be an input datum, A = (a1, . . . , an). We say that π : C → S is
stable of type (g,A) (or it is (g,A)-stable) if

• geometric fibers are nodal connected curves of arithmetic genus g;

• the sections s1, . . . , sn lie in the smooth locus of π, and for any subset {si1 , . . . , sir}
with non-empty intersection we have ai1 + · · ·+ air ≤ 1;

• the twisted canonical sheaf Kπ + p1s1 + · · · + anpn is relatively π-ample, where by pi
we denote the image of si.

Theorem 1.1.13. ([Has03], Theorem 2.1) Let (g,A) be an input datum. There exists a
connected Deligne–Mumford stack Mg,A smooth and proper over Z representing the moduli
problem of pointed stable curves of type (g,A). The corresponding coarse moduli scheme
M g,A is projective over Z.

We will refer to these as Hassett spaces.

Remark 1.1.14. When

A = 1(n) :=

1, . . . , 1︸ ︷︷ ︸
n


is a sequence of n ones, Hassett stability coincides with the Deligne-Mumford-Knudsen
stability (which from now on we will refer to as the standard stability condition), and
Mg,A = Mg,n. One has to to check that the condition on the twisted sheaf KC +p1+ ...+pn
to be ample for each fiber is equivalent to ask that the number of points where a non-singular
rational component meets the rest of the curve plus its marked points is at least three (see
[Liu02]).

In general, we will denote a weight datum with all entries being equal to a number a as
a(n).

Remark 1.1.15. Hassett spaces are modular compactifications of the moduli space Mg,n

of smooth curves with n marked points, i.e., Mg,n ⊂ Mg,A for every A ∈ Dg,n. However,
differently from the standard case, there may be some extra smooth curves were sections
are allowed to coincide depending on their weights. We set Mg,A ⊂ Mg,A for the locus
of smooth curves (and we always have Mg,n ⊂ Mg,A.) The same happens for the coarse
moduli schemeM g,A, which comes with a sub-scheme of smooth curvesMg,A. The locusMg,A
parameterizes smooth curves of genus g with n markings, such that whenever

∑
i∈S ai ≤ 1

for some S ⊆ [n], the markings indexed by S are allowed to coincide. Analogously, M g,A
parameterizes A-stable curves of genus g, i.e., curves such that whenever

∑
i∈S ai ≤ 1 for

some S ⊆ [n], the markings indexed by S are allowed to coincide.

These spaces come equipped with two kinds of morphisms called respectively reduction
and forgetting morphism.
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Theorem 1.1.16. ([Has03], Theorem 4.1) Fix g and n and let A = (a1, . . . , an) ∈ Dg,n

and B = (b1, . . . , bn) ∈ Dg,n be weight data so that bj ≤ aj for each j = 1, . . . n. Then
there exists a natural birational reduction morphism ρB,A : Mg,A → Mg,B. Given an element
(C, s1, . . . , sn) ∈ Mg,A, ρB,A(C, s1, . . . , sn) is obtained by successively collapsing components
of C along which KC + b1s1 + · · ·+ bnsn fails to be ample (see Figure 1.3).

p1 C C ′p1

p2 p2
p3 p3

p4 p5 p4 = p5

Figure 1.3: Suppose we have the weight data A = (1, 1, 1, 1, 1) and B = (1, 1, 1, ε, ε) ≤
(1, 1, 1, 1, 1) in Dg,5. This picture shows an example of reduction morphism on a curve over
Spec(k).

Being birational for this morphism implies in particular that for every fixed g and n, the
moduli space Mg,n is birational to each Mg,A, for any A ∈ Dg,n.

Theorem 1.1.17. ([Has03], Theorem 4.2) Fix g and n and let A = (a1, . . . , an) be a weight
datum, and A′ := (ai1 , . . . air) such that {ai1 , . . . air} ⊂ {a1, ..., an} a subset so that

2g − 2 + ai1 + · · ·+ air > 0.

Then there exists a natural forgetting morphism ϕA,A′ : Mg,A → Mg,A′ . Given an element
(C, s1, . . . , sn) ∈ Mg,A, ϕA,A′(C, s1, . . . , sn) is obtained by successively collapsing components
of C along which KC + ai1si1 + · · ·+ airsir fails to be ample (see Figure 1.4).

The forgetting morphism plays a similar role to the morphism π in the previous section,
and reduces to it when A = 1(n) and A′ = 1(n−1). From now on, when we talk about
tautological maps we consider also the reduction morphism and this generalized version of
the forgetting morphism.

Hassett spaces appear often in the literature when one studies the birational geometry
of Mg,n, but they have been studied also indipendently. In [LM00] and [LM04], Losev and
Manin study certain classes of Hassett Spaces of rational curves, called heavy/light spaces
in the recent literature, in the context of cyclic operads. In general, we call an Hassett space
heavy/light if

A = (1(m)|ε(n)) :=

1, . . . , 1︸ ︷︷ ︸
m

, ε, . . . , ε︸ ︷︷ ︸
n

 ,

where the components of weight 1 are called heavy and the ones of weight ε ≤ 1
n
are called

light.
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p1 C C ′p1

p2 p2
p3 p3

p4 p5

Figure 1.4: Suppose we have the weight data A = (1, 1, 1, 1, 1) and A′ = (1, 1, 1), so that
we are forgetting the last two marked points. This picture shows an example of forgetting
morphism on a curve over Spec(k). If the component containing p4 and p5 is rational, then
KC + p1 + p2 + p3 is not ample there anymore, so it gets contracted.

Hassett spaces already made their appearance in the work of Keel and Tevelev [Kee92],[KT04]
and Kapranov [Kap92]. In [CT20], the authors construct a collection Hassett spaces of
weighted stable rational curves identified with symmetric GIT quotients of (P1)n by the
diagonal action of Gm. Their automorphism group was studied in [MM17].
In [Fed11] it is proven that Mg,A is a log-canonical model of Mg,n whenever A ∈ Dg,n, and
in [Moo11] the author prove a formula of log canonical models for moduli space of pointed
stable curves which describes all Hassett’s moduli spaces of weighted pointed stable curves
in a single equation. In [Cey09] the author studies the Chow group of rational Hassett
spaces, and for heavy/light Hassett spaces with no restricition on the genus this was done
in [KKL21]. In [Swi08], the author constructs coarse moduli spaces Mg,A and M g,A using
GIT techniques, differently from what was done by Hassett who used Kollár semi-ampleness
criterion (see [Kol90], Theorem 2.2).

1.2 Moduli spaces of tropical curves

This section is devoted to develop the theory of tropical curves and their moduli spaces
necessary in the next chapters.

1.2.1 Graphs and tropical curves

We start this section with the following definition:

Definition 1.2.1. A weighted graph with n legs G is the data of:

1) A finite non-empty set V (G) called the set of vertices;

2) A finite set of half-edges H(G);

3) An involution ι : H(G) → H(G) with n fixed elements, called legs, whose set is denoted
by L(G);

4) An endpoint map ϵ : H(G) → V (G);

5) A weight function on the vertices w : V (G) → Z≥0.
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We also introduce some notation related to this Definition:

i) A non-ordered pair e = {h, h′} of distinct elements in H(G) interchanged by the
involution is called an edge of the weighted graph, and the set of edges is denoted by
E(G). An edge whose endpoints coincide is called a loop-edge. Two or more different
edges with the same endpoints are called parallel or multiple edges.

ii) If ϵ(h) = v we say that h is adjacent to v, and that v is the endpoint of h. The same
definition works for edges.

iii) The valence of a vertex v is the number of half-edges adjacent to v not fixed by the
involution, and it is denoted with val(v) i.e., it is the number of edges adjacent to it,
counting loops twice.

iv) Two legs are called disjoint if their endpoints are distinct. For a given vertex v, the
set of legs incident to it is denoted by L(v) ⊂ L(G).

Definition 1.2.2. The genus of a weighted graph is

g(G) = b1(G) +
∑

v∈V (G)

w(v)

with
b1(G) := |E(G)| − |V (G)|+ c,

where c is the number of connected components of the weighted graph.

Remark 1.2.3. Here we need to clarify a conflict of terminology concerning our definition of
“weight”. In this context, the weight function assigns a weight to each vertex of the graph.
Later on, we will assign weights to legs according to a weight datum as defined in 1.1.11. We
will always distinguish between the two when it is not clear by the context, but we prefer to
mantain these name to be consistent with the literature.

Example 1.2.4. Consider the weighted graph obtained by the following data. We take
V (G) = {v1, v2} and H(G) = {h1, h2, k1, k2, l1, l2, l3} with ι(hi) = hj, ι(ki) = kj, i ̸= j and
ι(li) = li for i = 1, 2, 3. The endpoint map is given by ϵ(k1) = ϵ(k2) = ϵ(l1) = ϵ(h1) = v1,
while ϵ(h2) = ϵ(l2) = ϵ(l3) = v2. The weight function is given by w(v1) = 0, w(v2) = 1. The
genus of the weighted graph is

|E(G)| − |V (G)|+ 1 +
∑

v∈V (G)

w(v) = 2− 2 + 1 + 1 = 2.

We depict its geometric realization in Figure 1.5.

We adopt the following conventions to depict the geometric realization of a weighted graph:
if the weight is zero we will depict the vertex as a dot, while if it is not zero we will depict
the vertex as a circle with its weight written inside. We depict non-loop edges as segments
between the vertices, loops as circles closing on their vertex and legs as half-segments. From
now on, we will work with all the graphs from their geometric realization. We will also omit
labels of the half-edges and vertices unless we need them. We will also consider only graphs
which are connected, i.e., c = 1.
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1
v1

v2

k1

k2

l1

h1 h2
l2

l3

G

Figure 1.5: A weighted graph of genus 2 with 3 legs.

We now define morphisms of weighted graphs.

Definition 1.2.5. A morphism between weighted graphs is a map

α : V (G) ∪H(G) → V (G′) ∪H(G′)

such that α(L(G)) ⊂ L(G′) and the following diagrams commute:

V (G) ∪H(G) V (G′) ∪H(G′) V (G) ∪H(G) V (G′) ∪H(G′)

V (G) ∪H(G) V (G′) ∪H(G′) V (G) ∪H(G) V (G′) ∪H(G′).

α

(idV ′ϵ) (idV ′′ϵ
′)

α

(idV ′ι) (idV ′′ι
′)

α α

In particular, we have that α(V (G)) ⊆ V (G′).

Definition 1.2.6. A morphism α : G → G′ is said to be an isomorphism if it induces by
restriction three bijections: αV : V (G) → V (G′), αE : E(G) → E(G′) and αL : L(G) →
L(G′). An automorphism of a weighted graph G is an isomorphism of G with itself: in this
case αL must preserve the adjacence of the legs, i.e., endpoints of the legs are preserved.

Remark 1.2.7. Loops and parallel edges play a role in the automorphisms of the weighted
graph G. For every loop l = {h, k}, an automophism can fix the loop or can send h in k and
vice versa. Similarly if we have two parallel edges e1 = {h1, k1} and e2 = {h2, k2}, where the
hi’s and the ki’s have respectively the same endpoints, then automorphisms can switch h1
with h2 and k1 with k2, i.e., can send the edge e1 in the edge e2.

If the image of an edge e is v′ ∈ V (G′), it follows from the definition that also its endpoints
are mapped into v′; in this case we say that e is contracted by α, and that α is a contraction.
Let G be a weighted graph, and let T ⊆ E(G): notation G/T denotes the weighted graph
obtained by contracting the edges e ∈ T . Vertices of a contracted edge are identified,
while the other vertices remain unaltered. So the contraction morphism α : G → G/T is
a surjection (i.e. edges and vertices of G/T are the images of some edge or vertex of G).
Moreover, we have a natural identification between E(G) \ T and E(G/T ), a surjection of
the vertices and a bijection between the sets of legs. One can prove that any morphism of
weighted graphs is given by compositions of contractions and isomorphisms.
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Given T ⊂ E(G), a weighted contraction is (G/T,w/T ) where G/T is a contraction and
w/T is the weight function defined by setting, for every v ∈ V (G/T )

w/T (v) = b1(σ
−1(v)) +

∑
u∈σ−1(v)

w(u) (1.1)

with σ being the contraction morphism.
It is clear from Equation 1.1 that the genus of a weighted graph remains constant after

contraction. Indeed, it is easy to see that if e is a non-loop edge, then the vertex obtained
by its contraction has weight equal to the sum of the weights of the endpoints of e. If it is
a loop, the weight of its endpoint vertex grows by one.

hk h+k

h h+1

Figure 1.6: Rules for the weight of a vertex after a contraction morphism

Let G be a weighted graph, and let L(G) be the set of its legs. The assignment of a
number from 1 to n to each leg is called marking, and a graph with a marking is called
marked graph. We write also L(G) = {x1, ..., xn} and we usually identify this set with
[n] := {1, . . . , n}. A morphism of marked graphs ϕ : G→ G′ is a morphism of graphs which
preserves the marking, i.e., ϕ(xi) = x′i for every i from 1 to n.

Remark 1.2.8. In some literature, instead of giving the definition of marked graph through
legs, one defines a graph as we did above but asking that the involution has no fixed points,
and then defines a marking function

m : [n] → V (G).

The two definitions are equivalent, so we will use both notations interchangeably.

From now on, we will refer to marked weighted graphs just calling them graphs when no
confusion arises, so for us a graph G will be (V (G), H(G), ι, ϵ, w,m), where by m we indicate
either the marking function or the label of the legs.

Example 1.2.9. We consider the same graph of Figure 1.5, but we add a marking on it. In
particular, we label the leg incident to v1 by 3, while the other two are labeled 1 and 2 (since
they are adjacent to the same vertex, the order is not important). On the picture, we put
the label near the leg. In this case, the marking function would have been m : [3] → V (G)
so that m(3) = v1 and m(1) = m(2) = v2.
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1
v1 v2

3
1

2

G

Figure 1.7: Example of the marking of legs on a graph.

We can now define tropical curves:

Definition 1.2.10. ([Cap11], Definition 2.28) An n-marked tropical curve of genus g is a
pair Γ := (G, l) where G is a weighted marked graph of genus g with n legs and l is a function

l : E(G) ∪ L(G) → R>0 ∪ {∞}

such that l(x) = ∞ if and only if x is a leg. or an edge adjacent to a vertex of valence 1 and
weight 0.

In the literature, these are also known as Abstract tropical curves, as people usually
use the name tropical curves for tropical varieties of dimension one. We will call them just
tropical curves avoiding to recall the number of legs and the genus when no confusion arises.
Note that later in this work edges of valence 1 and weight zero will disappear from our
graphs and tropical curves, due to the stability conditions we ask for them. Let Γ = (G, l)
be a tropical curve. We call G its underlying graph, and we denote it with G(Γ) when it is
necessary. Legs are called marked points of the tropical curve. We also write V (Γ), E(Γ)
and so on to indicate vertices, edges and other characteristics of the tropical curve, meaning
the ones of the underlying graph. Let Γ = (G, l) be a tropical curve. We have the following
notations:

i) Let w be the weight function of G; if w(v) = 0 for every v ∈ V (G), we write w = 0
and we say that the tropical curve is pure.

ii) A tropical curve is called regular if it is pure and if G is a 3-regular graph, i.e., all of
its vertices have valence 3.

iii) The volume of a tropical curve is defined as the sum of its edge lenghts.

Definition 1.2.11. Let g, n ≥ 0 be such that 2g − 2 + n > 0. We say that a graph G of
genus g is stable if for every vertex v ∈ V (G)

2w(v)− 2 + |ϵ−1(v)| > 0.

Notice that the number |ϵ−1(v)| for a vertex v equals the sum of its valence plus the number
of legs incident to it, i.e.,

|ϵ−1(v)| = val(v) + |L(v)|. (1.2)

Definition 1.2.12. A tropical curve is stable if its underlying graph is stable.
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We say that two tropical curves Γ and Γ′ with n marked points L(Γ) = {x1, ..., xn}
and L(Γ′) = {x′1, ..., x′n} are isomorphic if there exists an isomorphism of weighted marked
graphs α from G(Γ) to G(Γ′) such that l(e) = l′(α(e)). We denote by Aut(Γ) the group
of automorphisms of a tropical curve Γ. Note that Aut(Γ) ⊂ Aut(G(Γ)). We give also the
following definition of extended tropical curve:

Definition 1.2.13. ([Cap11], Definition 3.25) An n-marked extended tropical curve of genus
g is a pair Γ := (G, l) where G is a weighted marked graph of genus g and l is a function

l : E(G) ∪ L(G) → R>0 ∪ {∞}

such that l(x) = ∞ for every leg.

The only difference with Definition 1.2.10 is that we possibly have infinite length edges.
An edge with infinity length is seen as a copy of (R≥0 ⊔ {∞}) ⊔ ({−∞} ⊔ R≤0) where we
identify the two points ∞ and −∞. All the other notions we have defined are valid also for
extended tropical curves.

As in the case of algebraic curves, the notion of stability for tropical curves (and for
graphs) can be extended through Hassett stability conditions in the following way. Let G be
a weighted marked graph, and let L(G) = {x1, ..., xn} be the set of its legs (with a label).
For every v ∈ V (G), we set

|v|A =
∑

xi∈L(v)

ai.

Definition 1.2.14. ([Uli15], Definition 2.1) Let (g,A = (a1, ..., an)) be an input datum and
G a weighted marked graph with n legs. We say that G is stable of type (g,A) (or that it
is (g,A)-stable) if it is of genus g and if for every vertex v ∈ V (G)

2w(v)− 2 + val(v) + |v|A > 0.

A tropical curve is (g,A)-stable if its underlying graph is (g,A)-stable.

When the genus is clear from the context, we will also write only A-stable to mean
(g,A)-stable. Note that whenever A = 1(n), we recover Definition 1.2.11, as in the case of
algebraic curves. Indeed, observe that |v|1(n) = |L(v)|, and so it suffices to observe Equation
1.2.

Lemma 1.2.15. A weighted contraction of a stable graph of type (g,A) is still a (g,A)-stable
graph.

Proof. Consider first a contraction π : G → G′ of a single edge e. If e is not a loop, in G it
has two endpoints v1 and v2 identified in the vertex v′ ∈ V (G′). Denote by w′ the weight
function on G′. We have

2w′(v)− 2+ val(v′) + |v′|A = 2w(v1) + 2w(v2)− 2+ val(v1) + val(v2)− 2+ |v1|A+ |v2|A > 0

because G is (g,A)-stable, so 2w(vi) + val(vi) + |vi|A > 2.
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If e is a loop, it has a single endpoint v in G and

2w′(v′)− 2 + val(v′) + |v′|A = 2(w(v) + 1)− 2 + val(v)− 2 + |v|A =

= 2w(v) + 2− 2 + val(v)− 2 + |v|A = 2w(v)− 2 + val(v) + |v|A > 0

again by hypothesis.
For a generic contraction, we can always write it as a sequence of one-edge contraction,

so the result follows.

Remark 1.2.16. If we fix g, n and A ∈ Dg,n, the set of (g,A)-stable graphs form a category
Gg,A generated by isomorphisms and contractions. The number of objects in this category
is finite since the maximal number of edges for a (g,A)-stable graph is 3g − 3 + n, and this
category has a natural structure of poset induced by edge contraction. We set G′ ≤ G if G′

is obtained from G after a contraction. When A = 1(n), Gg,A := Gg,n.

Example 1.2.17. Let g = 1, n = 2. In G1,1(2) := G1,2 we the have five graphs in 1.8. If

instead we consider the weight datum ε(2), for ε < 1
2
, its poset is made by the graphs in blue,

again in Figure 1.8.. In general, is it possible to see that if a graph is A-stable for a certain
A, then it is also stable in the standard sense. So G1,ε(2) ⊂ G1,2. We will come back to this
particular property in Section 4.1.

1
1

2

1
1

2

1

2

1

2

21

Figure 1.8: The poset for G1,2. In blue, the poset of G1,ε(2) . Green arrows indicate the
direction of the order of the poset as we defined above.

1.2.2 Construction of the Tropical Moduli Spaces

As in the case of algebraic curves, for fixed g, n and A ∈ Dg,n one can construct a space
whose points are in bijection with isomorphism classes of (g,A)-stable tropical curves. Here
in this section we recall some tools and techniques and we briefly see how to construct such
Moduli Spaces of tropical curves. We start by introducing Rational Polyhedral Cones and
Rational Polyhedral Cone Complexes.
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Definition 1.2.18. A strictly convex rational polyhedral cone is a pair (σ,N) consisting of a
finitely generated free abelian group N and a σ ⊂ NR := N⊗R that is a finite intersection of
half spaces Hi = {u ∈ NR|⟨u, vi⟩ ≥ 0}, where ⟨−,−⟩ is the duality pairing, vi ∈ Hom(N,Z),
such that σ does not contain any nontrivial linear subspace.

A morphism f : (σ,N) → (σ′, N ′) of rational polyhedral cones is given by an element
f ∈ Hom(N,N ′) such that f(σ) ⊂ σ′. We restrict our attention to sharp rational polyhedral
cones, that is, those cones (σ,N) whose linear span in NR is equal to NR. We also drop the
adjectives “rational polyhedral” when it is clear by the context. We denote the category of
sharp cones by RPC and we refer to its objects, i.e., to cones, only with σ without explicit
reference to N . A face morphism τ → σ is a morphism of cones that induces an isomorphism
onto a not necessarily proper face of σ. If it is isomorphic to a proper face of σ, we say it is
as a proper face morphism. Denote by Int(T ) the interior of a topological space.

Definition 1.2.19. A rational polyhedral cone complex Σ is a topological space |Σ| with
a collection of rational polyhedral cones {σα}α∈Ω and continuous maps ϕα : σα → |Σ| such
that the following properties hold:

(i) The maps ϕα are injective and induce a bijection⊔
α

Int(σα) → |Σ|.

(ii) Given a proper face τ of a cone σα, then τ is also in the collection {σα}α∈Ω.

(iii) A subset A of |Σ| is closed if and only if its preimages ϕ−1α (A) are closed in σα for all
α.

A morphism f : Σ → Σ′ of rational polyhedral cone complexes is given by a continuous
map |f | : |Σ| → |Σ′|, a choice, for each σα in the collection of cones of |Σ|, of a σ′β(α) in the

collection of cones of |Σ|′, and a family of morphisms of cones σα → σ′β(α), such that the
diagrams

σα |Σ|

σ′β(α) |Σ′|

ϕα

|f |
ϕ′
β(α)

commute for all α, and is called Z-linear morphism. Denote the category of (Rational
Polyhedral) cone complexes with piece-wise and Z-linear morphisms by RPCC.

We consider also extended cones and extended cone complexes. An extended cone com-
plex is a topological space together with a finite collection of closed subspaces and an iden-
tification of each of these closed subspaces with an extended cone, which is σ ∼= Rr

≥0, where

R≥0 = R≥0∪{∞}, such that the intersection of any two of these extended cones is a union of
extended faces of each. A morphism of extended cone complexes is a defined as a morphism
of cone complexes.
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For every A ∈ Dg,n, there are Moduli Spaces of tropical curves M trop
g,A and extended tropical

curves M
trop

g,A which carry respectively the structure of a cone complex and extended cone
complex. Their construction is due to Ulirsch, [Uli15], and generalizes the previous construc-

tions made firstly in the case on unmarked tropical curves for M trop
g and M

trop

g in [BMV11]

and then for stable marked tropical curves for M trop
g,n and M

trop

g,n in [Cap11]. Moreover, it is
possible to define the locus ∆g,A of (g,A)-stable tropical curves of genus g and volume 1
inside of them in analogy with the ones considered in [CGP21] and [CGP22], respectively
∆g for the unmarked version and ∆g,n for the marked one. Consider the category Gg,A of
isomorphism classes of (g,A)-stable marked weighted graphs with morphisms generated by

isomorphisms and contractions. We will refer to M trop
g,A and M

trop

g,A and ∆g,A as Tropical Has-
sett Spaces, while when necessary we will call the unweighted versions of these Standard
Tropical Moduli Spaces.

We define a natural contravariant functor:

Σ : Gg,A → RPCC

on the category RPCC of rational polyhedral cone complexes as follows: to each isomor-
phism class of (g,A)-stable marked weighted graph G we associate the rational polyhedral

cone σG = R|E(G)|
≥0 . A weighted edge contraction π : G → G′ induces the natural embedding

iπ : σG′ → σG of a face of σG. An automorphism of G induces an automorphism of σG.
Similarly there is also a natural functor Σ from Gg,A into the category of extended rational

polyhedral cone complexes that is given by sending G into σG = R|E(G)|
≥0 . The Moduli Space

M trop
g,A of (g,A)-stable tropical curves is defined to be the colimit

M trop
g,A := lim

→
σG

taken over (Gg,A)
op. The Moduli Space M

trop

g,A of (g,A)-stable extended tropical curves is
defined analogously using σG’s. The Moduli Space ∆g,A of volume 1 (g,A)-stable tropical
curves marked points is obviously a subspace of M trop

g,A . It can be defined in the same way
we did for the other spaces. Let

πG :=

ℓ : E(G) → R≥0 |
∑

e∈E(G)

ℓ(e) = 1

 ⊂ RE(G)
≥0 .

Then we have
∆g,A := lim

→
πG,

where the limit is taken again over (Gg,A)
op.

Remark 1.2.20. The Moduli Spaces of tropical curves can be embedded as subspaces one

into each other in the following way: fix g, n and A ∈ Dg,n, then ∆g,A ⊂ M trop
g,A ⊂ M

trop

g,A .

The space ∆g,A can be identified with the link of M trop
g,A , i.e. its intersection with a sphere

of radius one with center in its cone point, which is exactly the point representing the only
graph with a vertex, no edges and n legs attached to it.
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In the past years these Moduli Spaces where deeply studied. In [BMV11] authors construct
a tropical Torelli map tg : M trop

g → Atrop
g into the Moduli Space of tropical principally

polarized abelian varieties of dimension g constructed in the same work, sending a tropical
curve into its Jacobian as it was defined in [MZ08]. This map was further studied in [Cha12]
and [Viv13]. The spaceM trop

g can be also seen as a quotient of the tropical Teichmuller space
by the action of the Outer Automorphism group Out(Fg) as shown in [CMV13].

Here we collect some known facts about the topology of these Moduli Spaces. In [BMV11],
authors show that M trop

g is of pure (real) dimension 3g − 3. This was later generalized by
Caporaso in [Cap11] for M trop

g,n , which has pure dimension equal to 3g− 3 + n. For a generic

M trop
g,A , for A ∈ Dg,n, dimension is still 3g − 3 + n, but it may happen that it is not pure.

Example 1.2.21. Let g = 1, n = 3 and A = (1
3
, 1
3
, 1
3
− ε), for ε < 1

3
. The graph G in Figure

1.9 is (g,A)-stable, so there is a locus of dimension |E(G)| = 1 inside M trop
g,A parametrizing

tropical curves with G as underlying graph not embedded in the boundary of any locus of
greater dimension. But dimension of M trop

g,A is 3g − 3 + n = 3, as for example we have the
locus of curves with underlying graph being the one of Figure 1.10

1

3

2
G

Figure 1.9: The graph G is clearly (g,A)-stable, but none of the possible uncontractions of
G is (g,A)-stable.

1

2 3

Figure 1.10: This graph is stable for every A ∈ D1,3. This implies that for every A ∈ D1,3

the space M trop
1,A has dimension 3.

For any g and n, one can also show thatM trop
g,n is connected through codimension one (see

[BMV11] for n = 0, [Cap11] for the general standard case). Also we can show that M trop
g,A

is normal (hence Hausdorff ), locally compact, paracompact, locally contractible, metrizable
and second countable (see [CMV13] and [Viv13] for n = 0, [Cap11] for the general standard
case and [Uli15] for the general case). In [Cap11] there are also some considerations on
particular subsets of M trop

g,n :

1. Let M reg
g,n be the subset of M trop

g,n parametrizing 3-regular curves, i.e., curves such that
each vertex has valence 3. Then M reg

g,n is open and dense.

2. The subset Mpure
g,n parametrizing pure tropical curves is open and dense.
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Fact 1.2.22. We record some results about the spaces ∆g,A:

1) ([ACP22] Theorem 1.1.) If g ≥ 2, n = 0, the space ∆g is simply connected.

2) ([ACP22], Theorem 1.4.) The space ∆g,n is simply connected for every (g, n) different
from (0, 4), (0, 5) such that 2g − 2 + n > 0.

3) ([CGP22] Theorem 1.1.) Assume g > 0 and 2g − 2 + n > 0. Each of the following
subcomplexes of ∆g,n is either empty or contractible.

1. The subcomplex ∆w
g,n parametrizing tropical curves with at least one vertex of

positive weight.

2. The subcomplex ∆lw
g,n parametrizing tropical curves with loops or vertices of positive

weight.

3. The subcomplex ∆rep
g,n parametrizing tropical curves in which at least two marked

points coincide.

4. The closure ∆br
g,n of the locus of tropical curves with bridges.

4) ([CGP22]) For n ≥ 3, the space ∆1,n is homotopy equivalent to a wedge sum of (n−1)!
2

spheres of dimension n− 1.

5) ([Kan21] Theorem 1.1.) Fix integers g, n ≥ 0 such that 3g−3+n > 0. If 2g−2+n ≥ 3,
then

Aut(M trop
g,n ) ∼= Aut(M

trop

g,n ) ∼= Aut(∆g,n) ∼= Sn.

If 2g − 2 + n < 3, then (g, n) ∈ {(0, 4), (1, 1), (1, 2)}, and in these cases we have
Aut(∆0,4) ∼= S3 while Aut(∆1,1) and Aut(∆1,2) are both trivial.

We will generalize Fact 3 of 1.2.22 in Chapter 2, giving the proof in Appendix A.1.

Abstract simplicial complexes

A collection K of non-empty finite subsets of a set X is called a set-family. A set-family K
is called an abstract simplicial complex if, for every set S in K, and every non-empty subset
T ⊂ S, the set T also belongs to K. The finite sets that belong to K are called faces of
the complex, and a face T is said to belong to another face S if T ⊂ S, so the definition
of an abstract simplicial complex can be restated as saying that every face of a face of a
complex K is itself a face of K. The vertex set of K is defined as the union of all faces.
For every vertex v the set {v} is a face of the complex, and every face of the complex is a
finite subset of the vertex set. Given a weight datum A, we can form an abstract simplicial
complex KA with vertex set [n] by declaring that a subset S ⊂ [n] belongs to KA if and only
if
∑

i∈S ai ≤ 1. In [FHK21], the authors determine Aut(∆g,A) in terms of KA for g ≥ 1.

Theorem 1.2.23. ([FHK21], Theorem 1.1.) Let g ≥ 1 and suppose A ∈ Dg,n for some n
such that 2g − 2 + n ≥ 3. Then Aut(∆g,A) ∼= Aut(KA), where Aut(KA) acts by permuting
the markings.

Abstract simplicial complexes are examples of (geometric realization of) symmetric ∆-
complexes, a very important tool we are going to introduce in the next section.
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1.2.3 Symmetric ∆-complexes

We use this section to introduce one of the main tools we are going to use through the whole
work, which is the notion of symmetric ∆-complex. We describe symmetric ∆-complexes
following [CGP21] and [CGP22]. First let p ∈ Z be greater or equal than −1. Denote by σp

the standard p-simplex, i.e., the convex hull of the standard basis vectors e0, . . . ep in Rp+1.
Points of σp are t = (t0, . . . tp), where ti ≥ 0 and

∑p
i=0 ti = 1.

Given θ : {0, . . . q} → {0, . . . , p} an injection, there is an induced inclusion θ∗ of σ
q as a

face of σp given by
θ∗(t0, . . . , tq) = (t′0, ..., t

′
p) (1.3)

where

t′i :=

{
tj if θ(j) = i,

0 if θ−1(i) = ∅.

Let I be the category having one object for each finite set

[p] :=

{
{0, . . . , p} for p ≥ 0,

∅ p = −1.

and morphisms consisting of all injections.

Definition 1.2.24. A symmetric ∆-complex X is a functor X : Iop → Sets, and a morphism
of symmetric ∆-complexes is a natural transformation of functors.

For a given symmetric ∆-complex X, we will write Xp to denote X([p]) to lighten the

notation. Whenever we have a morphism θ : [q] → [p] in I (implying q ≤ p), we denote
by θ∗ := X(θ) : Xp → Xq the map obtained through the functor. Notice that there is an
induced action of Sp+1 on Xp, for each p, given as follows: given a permutation ϕ ∈ Sp+1, we

can see it as a bijection ϕ : [p] → [p], so in particular is an injection inducing ϕ∗ : Xp → Xp.
The action is then defined as ϕ · x = ϕ∗x for every x ∈ Xp.

Each symmetric ∆-complex X comes with a geometric realization functor associating to
it a topological space denoted by |X| that we will define now. For each p ≥ 0, let Xp × σp

be the coproduct ∐
x∈Xp

(σp)x,

i.e., we associate to each element of Xp a p-simplex, labeled according to it, and we denote
its elements by (x, t), for x ∈ Xp, t ∈ σp. The geometric realization of X is then defined as

|X| :=

(∐
p≥0

Xp × σp

)/
∼

where the equivalence relation ∼ is generated by relations of the form (θ∗x, t) ∼ (x, θ∗(t)),
where θ∗x = X(θ) as before and θ∗ is the map of simplices θ∗ : (σ

q)θ∗x → (σp)x associated
to the injection θ : [q] → [p] of Equation 1.2.3. We refer to the p-th piece of the union
X(p)× σp/ ∼ as the p-skeleton.
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Remark 1.2.25. When no confusion arises, we denote with X both the functor and its
geometric realization. When this happens, we will refer to the elements of Xp as the p-
simplices of the symmetric ∆-complex, as the elements of this set index the copies of σp

(before the quotient by ∼) in the geometric realization (also, we will think to the elements
of Xp as copies of σp).

Let X be (the geometric realization of) a symmetric ∆-complex, θ : [q] → [p] an injection,
θ∗ : Xp → Xq the induced map. Let σ ∈ Xp be a simplex (according to Remark 1.2.25), we
say that τ = θ∗σ ∈ Xq is a face of σ, and we write τ ≾ σ. This induces a partial order on
the set

⊔
p≥0Xp. The order ≾ descends to an order ⪯ on

⊔
p≥0Xp/Sp+1, since the actions of

Sp+1 on the Xp’s are compatible with injections.

Remark 1.2.26. Again, the term “face” is used to indicate the fact that when we identify a
symmetric ∆-complex with its geometric realization, we are thinking elements of Xp as the
simplices they index. In the same way, in what follows we will call elements of X0 vertices
of a symmetric ∆-complex.

Definition 1.2.27. ([CGP22], Definition 4.1) LetX be a symmetric ∆-complex. A Property
on X is a subset of the vertices P ⊂ X0.

Remark 1.2.28. By the word “Property” with a capital P, from now on, we refer to this
definition.

Let P be a Property, σ ∈ Xp. For i = 0, ..., p, the i-th vertex of σ is vi = i∗(σ) where

i : [0] → [p] sends 0 to i. We write

P (σ) = {i ∈ [p] : vi ∈ P}

for the set of P -vertices of σ. Similarly,we write P c(σ) for its complementary set, and we
call these the non-P -vertices of σ. Write Simp(X) for the set of simplices of X, i.e., it is the
set Simp(X) =

⊔
p≥0{(σp)x ∈ Xp}. We define also

P (X) = {σ ∈ Simp(X)|P (σ) ̸= ∅}.

Elements of P (X) are called P -simplices of X. If P c(σ) = ∅,then we say σ is a strictly
P -simplex. We write also

P ∗(X) := {τ ∈ Simp(X) : τ ≾ σ ∈ P (X)}.

Let σ ∈ Xp, θ : [q] → [p], we say that θ is a co-P face map if [p] \ im(θ) ⊂ P (σ). In
this case we say that τ = θ∗(σ) is a co-P face of σ, and then we write τ ≾P σ. Then it is
a reflexive, transitive relation, and it induces a partial order ⪯P on

⊔
p≥0Xp/Sp+1. A face

τ ≾ σ is canonical if, for any two injections θ1 and θ2 from [q] to [p] such that θ∗i (σ) = τ ,
there exists ψ ∈ Aut(σ) such that θ1 = ψθ2. We will say that [τ ] ⪯ [σ] is canonical if τ ≾ σ
is canonical.

Definition 1.2.29. ([CGP22], Definition 4.8) Let Z ⊂
⊔

p≥0Xp/Sp+1 and let P be any
Property. We say that Z admits canonical co-P maximal faces if, for every [τ ] ∈ Z, the
poset of those [σ] ∈ Z such that [τ ] ⪯P [σ] has a unique maximal element [σ̂], and moreover
[τ ] ⪯ [σ̂] is canonical.
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Definition 1.2.30. ([CGP22], Definition 4.1) Let Y ⊂ Simp(X) be any subset and let P
be any Property on X. We call Y co-P -saturated if τ ∈ Y and τ ≾P σ implies σ ∈ Y .

We cite also two important results of [CGP22] we need later. Denote by XP the subcom-
plex of X generated by P ∗(X), i.e., the subcomplex obtained by taking all the simplices n
P ∗(X) and then quotient by ∼, and by XP,i the image of the natural map⊔

p≥0

(XP ∩ VP,i)×∆p → |X|

where VP,i is the set of P -simplices with at most i non P -vertices.

Proposition 1.2.31. ([CGP22], Proposition 4.9) Let X be a symmetric ∆-complex. Suppose
P ,Q ⊂ X0 are properties satisfying the following conditions.

1. The set of simplices P ∗(X) is co-Q-saturated.

2. The set of symmetric orbits of X \ P ∗(X) admits canonical co-Q maximal faces.

Then there are strong deformation retracts

(XP ∪XQ,i) ↘ (XP ∪XQ,i−1)

for each i > 0.

If, in addition, every strictly Q-simplex is in P ∗(X), then there is a strong deformation
retract (XP ∪XQ) ↘ XP .

Corollary 1.2.32. ([CGP22], Corollary 4.16) Let X be a symmetric ∆-complex, and let
P1, ..., PN be a sequence of properties.

1. Suppose that for i = 2, ..., N , the two properties P = P1 ∪ ...∪ Pi−1 and Q = Pi satisfy
that

• P ∗(X) is co-Q-saturated,

• the symmetric orbits of X \ P ∗(X) admit canonical co-Q maximal faces,

• every strictly Q-simplex is in P ∗(X).

Then there exists a strong deformation retract

XP1∪...∪PN
↘ XP1 .

2. If in addition the symmetric orbits of X admit canonical co-P1 maximal faces,then
there exists a strong deformation retract

XP1∪...∪PN
↘ XP1,0 .
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To a symmetric ∆-complex X, we can associate its group of cellular p-chains

Cp(X) = (Qsign ⊗QXp)Sp+1

where QXp is the vector space with basis Xp on which Sp+1 acts by permuting the basis
vectors. By Proposition 3.8 of [CGP21], since we are over Q, the homology of C∗(X) is

identified with H̃∗(|X|;Q) for all the ∆-complexes we will consider.

Definition 1.2.33. ([CGP22],Definition 3.5) A subcomplex X ⊂ Y of a symmetric ∆-
complex is a subfunctor X of Y : Iop → Sets, in which for each p, Xp is a subset of Yp, with
the subfunctor being given by the canonical inclusions Xp ↪→ Yp. The inclusion ι : X → Y
then induces an injection |ι| : |X| → |Y | which we shall use to identify |X| with its image
|X| ⊂ |Y |.

Whenever X ⊂ Y is a subcomplex, for every p ≥ −1 one can consider the exact sequence

0 → Cp(X) → Cp(Y ) → Cp(Y,X) → 0.

Example 1.2.34. We can regard our ∆g,A as symmetric ∆-complexes in the sense of
[CGP21] and [CGP22] generalizing the construction of Example 3.2,[CGP22], as follows.
Let X = Xg,A : Iop → Sets be a functor, with

Xp = {equivalence classes of pairs (G, τ)},

with G ∈ Ob(Gg,A) and τ : E(G) → [p] a bijection, where we consider τ = τ ′ if they are in the
same orbit under the evident action of Aut(G). For every θ : [p′] → [p] we have θ∗ : Xp → Xp′

as follows: given an element of Xp represented by (G, τ : E(G) → [p]) we contract the edges
of G whose labels are not in θ([p′]) ⊂ [p], and then we relabel the remaining edges with
labels [p′] as prescribed by θ. The result is a [p′] edge labeled graph G′, and we set it to be
θ∗(G). So by what we saw above there is a chain complex C∗(∆g,A) whose homology can be

identified with H̃∗(∆g,A;Q).

Note that whenever A,A′ ∈ (Q∩ (0, 1])n satisfy ai ≤ a′i for all i, we can identify ∆g,A as
a subcomplex (subfunctor) of ∆g,A′ , since there is an equality

∆g,A(p) = {[G, τ ] ∈ ∆g,A′(p) | G is A-stable}.

We will return later on this property more deeply in Section 4.2.

Example 1.2.35. Let g = 1, n = 3 and A = ε(3) for 0 < ε < 1/3. We describe (the
geometric realization of) ∆1,A by its skeleta. The 0-skeleton of ∆1,A, i.e., ∆1,A(0) = {G ∈
∆1,A : |E(G)| = 1} has only one 0-simplex parametrizing the graph shown in Figure 1.11.

The elements in ∆1,A(1) = {G ∈ ∆1,A : |E(G)| = 2} have three combinatorial types
shown in Figure 1.12. Since contracting any edge in any graph in Figure 1.12 gives G0, the
endpoints of all 1-simplices indexed by combinatorial types of ∆1,A(1) are identified with
the point corresponding to G0. Moreover, each combinatorial type of an element in ∆1,A(1)
admits a Z/2Z automorphism induced by permuting the top and bottom edges. The 1-
skeleton of ∆1,A is thus three half-edges glued at the point G0; see Figure 1.13. Lastly, there
is only one combinatorial type in ∆1,A(2), yielding one 2-simplex T; see Figure 1.14.
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1

3

2

G0

Figure 1.11: The combinatorial type of the only curve in ∆1,A(0) for A = ε(3).
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H3

Figure 1.12: Combinatorial types in ∆1,A(1), for A = ε(3).

H1 H2

H3

G0

Figure 1.13: The geometric realization of the 1-skeleton of the symmetric ∆-complex ∆1,A
when A = ε(3). We use colors to distinguish the simplices, and we label them with the name
of the corresponding graph.

1

2 3T

Figure 1.14: The only ε(3)-stable graph with 3 edges.

The 2-simplex has no self-identification in its interior since Aut(T) is trivial. The only
gluings happen on the boundary of the 2-simplex: these are exactly the self-gluings of the
1-simplices seen before. It is glued to the 1-skeleton as shown in Figure 1.15. The resulting
space ∆1,A is homeomorphic to a 2-sphere and indeed simply connected.

Example 1.2.36. Let g = 1, A = ε(3), and A′ = (1, ε, ε). Since ai ≤ a′i fore every i,
∆1,A′ contains ∆1,A. The space ∆1,A′ contains new simplices in dimensions 0, 1 and 2,
corresponding to graphs shown in Figure 1.16, 1.17 and 1.18 respectively.

The 1-simplices have as endpoints the 0-simplices according to these graph contractions:
E1 contracts to G1 and G2, E2 contracts to G3 and G2, F1 contracts to G1 and G0, F2

contracts to G2 and G0, F3 contracts to G0. Modding out by appropriate automorphisms
and folding some 1-simplices into half-edges, the 1-skeleton of ∆1,A′ is shown in Figure 1.19.
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T

G0

G0 G0

T

G0

Figure 1.15: On the left, we have the 2-simplex before the gluings given by automorphisms
of the combinatorial types in ∆1,A(1). The three vertices of the simplex are glued together
since they correspond to the same combinatorial types in ∆1,A(0). The geometric realization
of ∆1,A is the (hollow) tetrahedron on the right.
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Figure 1.16: Combinatorial types in ∆1,A′(1) \∆1,A(1).
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Figure 1.17: Combinatorial types in ∆1,A′(1) \∆1,A(1) made by non-pure graphs.
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Figure 1.18: Combinatorial types in ∆1,A′(1) \∆1,A(1) made by pure graphs.

G0

G3 G1

G2

Figure 1.19: The geometric realization of the 1-skeleton of the symmetric ∆-complex ∆1,A′

when A′ = (1, ε, ε). The inclusion ∆1,A(1) ⊂ ∆1,A′(1) is clearly visible in the picture.

The 2-simplices corresponding to the graphs in ∆1,A′(2) have boundaries formed by 1-
simplices corresponding to 1-edge graphs: R1 contracts to F1, F2 and E1; R2 contracts to
F3, F2 and E2; P1 contracts to H1 and to F1 on its parallel edges, and P2 contracts to H2

and to F2 on its parallel edges. Their identifications are described in Figures 1.21 and 1.22.
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Figure 1.20: Combinatorial types in ∆g,A′(2) \∆g,A(2).

All the quotients of the two simplices are then glued together according to edge contrac-
tions. The resulting space ∆1,A′ is evidently simply connected and contains ∆1,A; see Figure
1.23.

R1

G2

G1 G0

R2

G2

G3 G0

Figure 1.21: Each of R1 and R2 has a nontrivial automorphism which “flips” the loop but
does not induce self-gluings. Moreover, there are no gluings of edges or vertices, so the 2-
simplices in ∆1,A′(2) remain solid triangles with edges being 1-simplices and with 3 distinct
vertices.

P1

G1

G0 G0

P1

G1

G0

P2

G3

G0 G0

P2

G3

G0

Figure 1.22: Each of P1 and P2 has a nontrivial automorphism which induces a self-gluing on
the corresponding simplex. The resulting 2-simplex has an edge corresponding to a simplex
with two distinct vertices, an edge corresponding to the self-gluing of a 1-simplex, and an
edge which is not a simplex.
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T

P2P1

R2R1

G0
G3G1

G2

Figure 1.23: The geometric realization of the space ∆1,A′ , for A′ = (1, ε, ε). Again we can
see ∆1,A ⊂ ∆1,A′ and that ∆1,A′ is simply connected.

1.3 Connections between Algebraic and Tropical Set-

ting

1.3.1 Normal Crossings Divisors and Dual Boundary Complexes

The theory of dual complexes for simple normal crossings divisors was introduced by Danilov
in [Dan75], and some developments of the theory appear in [Pay13]. The theory was later
enhanced in [CGP21] to make it work for Stacks rather than varieties, and to normal crossings
divisors which are not simple normal crossings. We will use the generalization of this latter
work to describe how to construct the dual boundary complex of a normal crossings in a
Deligne-Mumford Stack. These boundary divisors arise naturally as (geometric realizations
of) symmetric ∆-complexes.

First of all, the dual complex ∆(D) of a simple normal crossings divisor D in a d-
dimensional smooth variety X is naturally defined as a symmetric ∆-complex: for each
p ≥ −1, ∆(D)(p) is the set of equivalence classes of pairs (x, σ), where x is a point in a
stratum of codimension p in D and σ is an ordering of the p+1 analytic branches of D that
meet at x. The equivalence relation is generated by paths within strata: if there is a path
from x to x′ within the codimension p stratum and a continuous assignment of orderings of
branches along the path, starting at (x, σ) and ending at (x′, σ′), then we set (x, σ) ∼ (x′, σ′).

We now generalize this construction to normal crossings divisors D in a smooth Deligne-
Mumford Stack X . We refer to [CGP21] for a deeper study of the issues we have to solve in
this situation, and we limit our discussion on the construction of ∆(D). A divisor D ⊂ X has
normal crossings if and only if there is an étale cover by a smooth variety X0 → X in which
the preimage of D is a divisor with simple normal crossings (this étale local characterization
of normal crossings divisors works both for varieties and Deligne-Mumford Stacks). In this
situation the dual complex may be defined directly as a functor Iop → Sets as follows. Let
D̃ → X denote the normalization of D ⊂ X , and for [p] ∈ I write

D̃p = (D̃ ×X · · · ×X D̃) \ {(z0, . . . , zp)|zi = zj for some i ̸= j}.

We have D̃0 = D̃ and D̃−1 = X .
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Remark 1.3.1. In this situation, D̃p → X is a local complete intersection morphism whose
conormal sheaf is a vector bundle of rank (p+1) (see [Sta22, Tag 0CBR] ). In particular D̃p

is smooth over C of dimension d− p if X is smooth over C of dimension d+ 1.

Definition 1.3.2. ([CGP21], Definition 5.2) Let X be a Deligne-Mumford Stack, let D ⊂ X
be a normal crossings divisor. Consider, for all p ≥ −1, the construction D̃p → X . We define
the symmetric ∆-complex ∆(D) by letting ∆(D)[p] be the set of irreducible components
(which coincide with the connected components) of D̃p.

1.3.2 The skeleton of the analitification

A very nice relation between Moduli Spaces of tropical curves and Moduli Spaces of algebraic
curves was shown in [ACP15] for the standard case, and then was generalized for Hassett
Spaces in [Uli15]. In order to explain it, let us introduce some notation.

Let X be a separated algebraic space, and consider its analytification Xan (as defined
in [CT07]). As explained in [ACP15], given a proper toroidal Deligne–Mumford Stack X
with Coarse space X, one can construct its canonical skeleton S(X ), which is an extended
generalized cone complex (see [Thu07, ACP15]). The spaceS(X ) is both a topological closed
subspace of Xan and also the image of a canonical retraction pX : Xan → S(X ). Let now
M g,A be the Coarse Moduli Space of a given Hassett space, for parameters g, n and A ∈ Dg,n.

There is a tropicalization map tropg,A :M
an

g,A →M
trop

g,A defined as follows: a point x ∈M
an

g,A
can be viewed as a morphism Spec(K) → Mg,A for a non-Archimedean field extension K of
the base algebraically closed field k. By the valuative criterion for properness, since Mg,A is
proper, this morphism extends uniquely to a morphism Spec(R) → Mg,A where R denotes
the valuation ring of K. This datum is equivalent to a curve C → Spec(R) that is stable of
type (g,A). We define its image by tropg,A to be the tropical curve whose underlying graph
is the dual graph of the special fiber, endowed with the edge length given by l(e) = v(fe),
where v denotes the valuation on R and fe comes from the equation xy = fe defining the
node corresponding to the edge e. We are ready to state the main result. Originally this
was proven for A = 1(n) in [ACP15], Theorem 1.2.1, and then it was generalized for all the
Hassett Spaces, so we write down it in the more general version.

Theorem 1.3.3. ([Uli15], Theorem 1.2) There is a natural isomorphism

Jg,A :M
trop

g,A → S(Mg,A)

of extended generalized cone complexes such that the diagram

M
an

g,A

M
trop

g,A S(Mg,A)

pMg,Atropg,A

Jg,A

commutes.

Let S(X ) denote the interior of the generalized cone complex S(X ). A corollary of the
latter Theorem is the following.

https://Stacks.math.columbia.edu/tag/024J
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Corollary 1.3.4. ([Uli15], Corollary 1.4) The isomorphism Jg,A restrict to an isomorphism
of generalized cone complexes

Jg,A :M trop
g,A → S(Mg,A)

such that the diagram

Man
g,A

M trop
g,A S(Mg,A)

pMg,Atropg,A

Jg,A

commutes.

In words, this Theorem says that Tropical Hassett Moduli Spaces have a nice interpreta-
tion as Skeletons of the analytification of the corresponding Algebraic Hassett Spaces. We
do not develop anything new about this specific topic, this material is included for the reader
to appreciate the appearance of tropical Hassett spaces as skeletons of analytifications.

1.3.3 Stratification of the boundary

One of the most important properties of the Deligne-Mumford compactification of the Moduli
Space of smooth curves is the following:

Theorem 1.3.5. ([Knu83], Theorem 2.7) The boundary divisor ∂Mg,n := Mg,n \Mg,n has
(Stack-theoretically) normal crossings.

Hassett Spaces are alternative compactifications of the Stack of smooth curves Mg,n,
so one could ask if the same property holds. Unfortunately, the embedding Mg,n ⊂ Mg,A
does not verify the property of Theorem 1.3.5. Anyway, one can consider the locus Mg,A of
smooth A-stable curves and show the following, which generalizes Theorem 1.3.5:

Theorem 1.3.6. ([Uli15], Theorem 1.1) The boundary divisor ∂Mg,A := Mg,A \Mg,A has
(Stack-theoretically) normal crossings.

In the situation above, i.e., whenever we have a normal crossing divisor in a variety or
a Deligne-Mumford Stack, we aim to find a structure in the divisor called stratification.
The notion of stratification for Stacks comes from its counterpart in topology, which is the
following: for a topological space X, a stratification is a decomposition of X into pairwise
disjoint locally closed subsets such that if Xj meets the closure of Xi, then Xj is contained
in the closure of Xi. We define it for Stacks only in our context:

Definition 1.3.7. Let ∂X := X \ X be a normal crossings divisor of a Deligne-Mumford
Stack X of dimension d. The strata of ∂X may be defined inductively as follows. First, the
(d−1)-dimensional strata of ∂X are the irreducible components of ∂X . For each i < d−1, the
i-dimensional strata are the irreducible components of the regular locus of the complement
in ∂X of the union of all strata of D of dimension greater than i.
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The divisor ∂Mg,A has a natural stratification indexed by the so called dual graph or
combinatorial type of the curve, i.e., each stratum is exactly the locus of curves with a given
dual graph, in a sense that will be clear in a moment. We recall the construction of the dual
graph for a given nodal curve with n-marked points, m irreducible components and r nodes
(C, p1, . . . , pn). Given such a curve, we define the graph GC as follows:

• For every irreducible component Ei of C, we associate a vertex vi, for every i =
1, . . . ,m;

• Given a node of C, we have two possibilities:

1) If the node lies on two different components, we add an edge ej connecting the
vertices that correspond to the two components where the node lies;

2) If the node lies on a single component, we add a loop on the correspondent vertex;

• For every marked point pi lying on a component we add a leg xi to the correspondent
vertex;

• The weight of every vertex is the geometric genus of the corresponding component in
the curve.

Example 1.3.8. In Figure 1.24 we construct the dual graph of a curve over C, which is a
Riemann Surface. This makes it easier to understand the genus of the various components,
as it coincides with their topological genus as surfaces. The black dots are the nodes of the
curve: notice that there is a self-node on the component on the right, resulting in a loop on
the dual graph, while there are multiple nodes between the two components in the center
of the picture, resulting in multiple edges on the dual graph. In red we depict the marked
points: there are three of them, which give raise to three legs on the graph labeled according
to the label of the corresponding point.

p3

p2p1
1

1

2

3

Figure 1.24: Construction of the dual graph of a curve

It is easy to show that a curve C is stable if and only if its dual graph GC is stable (see
[Cap11] Remark 4.2.), and that the genus of the curve corresponds to the genus of its dual
graph. More generally, we have the following proposition.
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Proposition 1.3.9. ([Uli15], Proposition 3.3) Let (g,A) be an input datum. For curve
(C, p1, . . . , pn) of genus g with n marked points the following properties are equivalent:

i) The twisted canonical divisor KC + a1p1 + · · ·+ anpn on C is ample;

ii) The dual graph GC of C is stable of type A.

The stratification by dual graphs was originally introduced in [Arb74] for ∂Mg, its gen-
eralization for ∂Mg,n appears in [ACGH13], and lastly was done for ∂Mg,A in [Uli15].

Let G be a marked weighted graph. We can define MA
G ⊂ Mg,A to be the locus of curves

with G as dual graph. When A = 1(n), usually the superscript is avoided, i.e., M1(n)

G =: MG.
We have the following facts:

1) Let •g,n be the graph made by a single vertex of genus g with n legs attached to it and
no edges. Then Mg,A = MA

•g,n ;

2) The locus MA
G has codimension equal to the number of edges of G;

3) The closure MA
G of MA

G in Mg,A is given by

MA
G =

⊔
G≤G′

MA
G′ ,

where the graphs are taken in the poset Gg,A.

This indeed defines a stratification of ∂Mg,A, where the strata are exactly the MA
G’s. This

stratification can be used to do some cohomological computations, as we will mention in
Section 1.3.4.

1.3.4 Cohomology of Moduli Spaces of Curves

In the last few years, there has been a lot of effort in understanding the cohomology of Moduli
Spaces of Curves. First results about the cohomology of standard Moduli Spaces of curves can
be found in [AC98], where they show that H1(Mg,n,Q), H3(Mg,n,Q) and H5(Mg,n,Q) are
zero for all the meaningful values of g and n, while H2(Mg,n,Q) is generated by tautological
classes, recovering some results from [Har83] and [BP00]. We introduce briefly these results.

First, denote by δG the orbifold fundamental class of MG, that is, the fundamental class
of MG divided by the order of the automorphism group of a general element of this locus.

Degree two classes correspond to graphs with one edge, and there are two kinds: one is
the graph Girr, with one vertex of weight g − 1, a loop and all the legs attached to it, and
the other kind are the graphs Ga,A, which have two vertices, one of genus a, with attached
the legs indexed by A ⊂ [n], and one of genus g − a with attached the legs indexed by
[n]\A (see Figure 1.25). We write δirr and δa,A for the corresponding classes. It is clear that
δa,A = δg−a,Ac , and also that δa,A is defined only if 2a−2+ |A| ≥ 0 and 2(g−a)−2+ |Ac| ≥ 0.
The class δirr is set to zero when the genus is zero. Those classes are also called boundary
classes.
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All the legsg − 1

Girr

g − aa

Ga,A

Markings indexed
by A

Markings indexed
by [n] \ A

Figure 1.25: The two kind of graphs which induce Tautological Classes.

The other two kinds of tautological classes are the ψ-classes and the κ-classes. Let ωπ

be the relative dualizing sheaf of the Universal Curve π, then for each i from 1 to n we have
the section σi which attaches to any curve (C, p1, . . . , pn) the n + 1-pointed curve obtained
by attaching to C a copy of P1 by identifying pi and 0 ∈ P1, and labelling the points 1 and
∞ by i and n+ 1 Let also Di be the image of σi. Then ψi := σ∗i (c1(ωπ)) is a class of degree
2 and κi := π∗(c1(ωπ(

∑
Di))

i+1) has degree 2i.

Theorem 1.3.10. ([AC98], Theorem 2.2)

i) Let g ≥ 3, then the tautological classes form a basis for H2(Mg,n,Q).

ii) Let g = 2, the tautological classes satisfy the following relation:

5κ1 = 5
n∑

i=1

ψi + δirr − 5
∑
A

δ0,A + 7
∑
A

δ1,A.

iii) Let g = 1. There are relations

κ1 = 5
n∑

i=1

ψi −
∑
|A|≥2

δ0,A

and

12ψi = δirr + 12
∑
A∋i

δ0,A.

iv) Let g = 0. The relations are generated by

κ1 =
∑
A∋x,y

(|A| − 1)δ0,A, ψi =
∑
A∋x,y

δ0,A, δirr = 0,

where i,x and y run over elements of [n].
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Rational Hassett spaces, i.e., spaces where g = 0, have been used in [BM13] to develop
a recursive algorithm for computing the character of the cohomology of the Moduli Space
M0,n. The same authors determined the cohomology of Heavy/Light spaces M0,(1(2),ε(n)) in
[BM14]. Tautological classes on Hassett spaces have been defined and studied in analogous
ways, for example, in [Jan13]. A formula for the intersection of ψ-classes on M

0, 1
2

(n) is

given in [Sha18]. Lastly, [BC20] solves the combinatorics relating the intersection theory of
ψ-classes of Hassett spaces to that of Mg,n.

Top Weight Cohomology and Dual Boundary Complex

Let X be a Deligne-Mumford Stack (or a complex algebraic variety) of pure dimension d.
As such, by the work of Deligne [Del74] we know that the rational cohomology of X carries
a mixed Hodge structure, and in particular there is a weight filtration

W1 ⊂ · · · ⊂ W2d = H∗(X ;Q)

such that, for each j, the quotient

GrWi H
j(X ,Q) := Wi ∩Hj(X ;Q)/Wi−1 ∩Hj(X ;Q)

carries a pure Hodge structure of weight i. Assume now there is a Deligne-Mumford Stack X
such that X ⊂ X and ∂X := X \ X is normal crossings. We already saw that associated to
this structure there is a stratification. By [CGP21], we can associate to such a stratification
a (geometric realization of a) symmetric ∆-complex ∆(∂X ) (see Section 1.2.3 for the Defi-
nition) called Dual Boundary Complex, with the property that its reduced homology can be
identified with the top graded piece of the weight filtration (i = 2d), also called Top Weight
Cohomology, up to a degree shift, i.e.,

H̃j−1(∆(∂X );Q) ∼= GrW2dH
2d−j(X ;Q).

We already said that the above situation holds for the embedding Mg,A ⊂ Mg,A. The
fascinating property of the Dual Boundary Complex in this case, shown in [CGP21] and
[CGP22] when A = 1(n), and in [Uli15, CHMR14] for generic weight data is that ∆(∂Mg,A)
is identified with the Tropical Moduli Space ∆g,A, giving isomorphisms

H̃j−1(∆g,A;Q) ∼= GrW6g−6+2nH
6g−6+2n−j(Mg,A;Q).

Later in Section 4.3, we will come back on this topic by identifying the reduced rational
homology of ∆g,A with the homology of some Graph Complexes, generalizing Theorem 1.2
of [CGP21] and Theorem 1.4 of [CGP22], and allowing for some computations of the Top
Weight Cohomology of Hassett Spaces.
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Chapter 2

Topology of the link

In this Chapter we describe results about the topology of the spaces ∆g,A. Most of the
material of this Chapter is published in [KLSY22], which is a joint work with Siddarth
Kannan, Shiyue Li and Claudia He Yun.

2.1 Simply Connectedness of the link

The main goal of this section is to show the simply connectedness of ∆g,A, for every g ≥ 1,
n ≥ 2 and A ∈ Dg,n. All of our statements start from genus 1 on, as the situation for g = 0
is different and almost completely known. In fact, when g = 0, the complex ∆0,A may be
identified with various objects whose homotopy types are known. We will start by giving a
brief overview of these results.

When A = 1(n), Vogtmann, and independently Robinson and Whitehouse shown that
∆0,n is homotopic to a wedge of (n − 2)! spheres of dimension n − 4, see [CV86, Vog90].
When A = (1(m)|ε(n)) is Heavy/Light, Cavalieri, Hampe, Markwig, and Ranganathan in
[CHMR14] first, and Cerbu, Marcus, Peilen, Ranganathan, and Salmon in [CMP+20] shown
that ∆0,(1(m)|ε(n)) is homotopic to a wedge of (m−2)!(m−1)n spheres of dimension n+m−4.
When A has at least two weight-1 entries, Cerbu et al. in [CMP+20] shown also that ∆0,A is
homotopic to a wedge of spheres of possibly varying dimensions. The authors also provided
infinite families of A where ∆0,A is disconnected, and examples where π1(∆0,A) = Z/2Z.

For higher values of g, the following results are known. When A = 1(n), Chan, Galatius,
and Payne shown in [CGP22] that ∆1,n is homotopic to 1

2
(n − 1)! spheres of dimension

n − 1, and that ∆g,n is at least (n − 3)-connected. In [Cha21], Chan independently shown

that the reduced integral homology H̃∗(∆2,n;Z) is supported in the top two degrees and
that a subcomplex of ∆2,n has torsion in high degrees. Chan also computed the reduced

rational homology H̃∗(∆2,n;Q) for n ≤ 8. When A has at least two weight-1 entries, in
[CMP+20] the authors proved also that ∆1,A is homotopic to a wedge of spheres. Moreover,
when A = (1(m)|ε(n)) is Heavy/Light, the same authors shown that ∆1,A is homotopic to
1
2
(m− 1)!mn spheres of dimension n+m− 1.
We will now present technical results generalizing [CGP22, Theorem 1.1] of Chan, Galatius

and Payne about contractible subsets of ∆g,A.

37
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Theorem 2.1.1. Let g ≥ 1, n ≥ 1 be integers, and let A ∈ Dg,n be a weight datum. Then
the following subcomplexes are either empty or contractible:

1. The subset ∆w
g,A of tropical curves with at least a strictly positive weighted vertex;

2. The subset ∆lw
g,A of tropical curves with at least a strictly positive weighted vertex and/or

loops;

3. The closure of the subset of tropical curves with bridges ∆br
g,A.

The proof of this result is quite technical and is a mild adaptation of the original proof
contained in [CGP22] in the case A = 1(n), we put it in Appedix A.

In order to prove the simply connectedness of the ∆g,A’s, we need the contractibility
of ∆lw

g,n, i.e. the second point of the Theorem 2.1.1, but we will include a proof of that
in Proposition 2.1.5. The original Theorem from [CGP22] addressed also the question of
contractibility for another sub-locus, namely the locus of curves with repeated markings,
i.e., the locus of tropical curves admitting at least a vertex v with |m−1(v)| ≥ 2. The
analogous locus for Tropical Hassett Spaces to this one is called locus of curves with heavy
markings, and it is defined as follows.

Definition 2.1.2. Let g ≥ 0, n ≥ 1 and A ∈ Dg,n. The heavy marking locus of ∆g,A,
denoted ∆r

g,A, is the subspace of A-stable tropical curves for which there is a vertex v such
that |v|A > 1.

Remark 2.1.3. Here we have to clarify a conflict of terminology. The term “heavy” here
is not referred to heavy weights in the sense of the Notation introduced by Equation 1.1.2,
even if both the words refer to the marking weights. Anyways, the notion used here will
not return later, so since no confusion arises we do not change it to be consistent with the
literature.

The contractibility of this locus was addressed in [CMP+20], and we refer to the original
work for the proof.

Lemma 2.1.4. ([CMP+20], Lemma 8.2.) Let g ≥ 0, n ≥ 1 and A ∈ Dg,n such that∑n
i=1 ai > 1, then ∆r

g,A is a contractible subset of ∆g,A, otherwise it is empty.

The following proposition shows that there is one more contractible sub-complex in ∆g,A,
and it is the main tool to show its simply connectedness. The proof is parallel to the one of
Theorem 6.1 of [ACP22].

Proposition 2.1.5. Let g, n ≥ 1 and A ∈ Dg,n. The subcomplex ∆mlw
g,A of ∆g,A parametrizing

tropical curves with loops, vertices of positive weight, or multiple edges is contractible.

Proof. First we consider the locus ∆lw
g,A of tropical curves with at least a strictly positive

weighted vertex and/or loops. This is a subcomplex, since it is closed under contractions
of edges. Observe that if g = 1 and

∑n
i=1 ai ≤ 1 the locus ∆lw

g,A is a point representing the
loop graph of length 1, which is trivially contractible, so we can assume g ≥ 2 or g = 1 and∑n

i=1 ai > 1. In such cases, let B(1,∅) be the graph made by a single edge with a vertex of
weight 1 and no legs, and the other vertex of weight g−1 and all the legs attached to it, and
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notice that there is a vertex in ∆lw
g,A with underlying graph B(1,∅). We show that ∆lw

g,A is
contractible using the fact that we can see the whole space ∆g,A as a symmetric ∆-complex,
see Example 1.2.34. Let P = ∅ and Q = {B(1,∅)} be two Properties in sense of Definition
1.2.27, i.e. they are sets of vertices of ∆g,A. Recall that given a Property P , and a symmetric
∆-complex X, we write P (X) for the set of P -simplices, i.e., simplices with vertices in P ,
and P ∗(X) for all the simplices which are faces of a P -simplex. Recall also that we denote
by XP the subcomplex of X generated by P ∗(X), and by XP,i the image of the natural map⊔

p≥0

(XP ∩ VP,i)×∆p → |X|

where VP,i is the set of P -simplices with at most i non P -vertices. We want to apply
Proposition 1.2.31 to these two Properties, and to do so we need to show that the set
P ∗(∆g,A) is co-Q-saturated, and the set of symmetric orbits of ∆g,A \ P ∗(∆g,A) admits
canonical co-Q maximal faces. Since P is empty, P ∗(∆g,A) is also empty so the first condition
is automatically satisfied, and the second amounts to show that every graph has a canonical
maximal uncontraction by 1-ends, i.e., by edges with an endpoint of valence 1, weight 1
and no legs, or an endpoint of valence three with a loop, weight zero and no legs. We
call them 1-end of type one and 1-end of type two, respectively. Let G ∈ Ob(Gg,A), the
uncontraction is defined as follows: if G has no loops or weights, the expansion is trivial.
Otherwise, let v be a vertex with val(v) + 2w(v) > 3, for any loop based at v, we remove it
and we add a 1-end of type two, and if its weight w(v) is strictly greater than zero, we add
w(v) 1-ends of type one, and then we set w(v) to 0. Then by Proposition 1.2.31 we have a
strong deformation retract (∆g,A)P ⊔ (∆g,A)Q,i ↘ (∆g,A)P ⊔ (∆g,A)Q,i−1 for every i > 0. Now
since P = ∅, the locus (∆g,A)P is empty. When i becomes greater than the number of 1-
edged (g,A)−stable graphs, (∆g,A)Q,i locus stabilizes to the locus generated by Q−simplices
(∆g,A)Q. So iterating for every i we get a strong deformation retract (∆g,A)Q ↘ (∆g,A)Q,0,
where (∆g,A)Q,0 is the simplex associated to the graph with one vertex of weight zero and
all the legs attached with g 1-ends of type one, quotient by the automorphism group of this
graph, which is contractible. To show the contractibility of ∆lw

g,A we are left to show that it
coincides with (∆g,A)Q. The inclusion (∆g,A)Q ⊂ ∆lw

g,A follows by observing that for a graph
G having B(1,∅) as contraction implies that there is at least a loop or a vertex of weight 1.
For the opposite inclusion, if G has a loop or a vertex of weight 1, it admits a (eventually
trivial) uncontraction by 1-ends, so curves with underlying graph G belongs to (∆g,A)Q. Now
consider the locus ∆mlw

g,A . Note that it is a subcomplex, since it is closed under contraction of
edges. The subcomplex ∆mlw

g,A is obtained from ∆lw
g,A as an iterated mapping cone, so ∆mlw

g,A
is homotopy equivalent to ∆lw

g,A, which is contractible by what we shown above.

The main Theorem of the section easily follows from the previous Proposition.

Theorem 2.1.6. Fix g ≥ 1,n ≥ 1 and A ∈ Dg,n. Then ∆g,A is simply connected.

Proof. Let g, n ≥ 1 and A ∈ (Q∩(0, 1])n. Let the 1-skeleton of a symmetric ∆-complex be its
locus of one dimensional simplices. Now observe that the 1-skeleton of ∆g,A is contained in
the contractible subcomplex ∆mlw

g,A , and since π1(∆g,A) is generated by cycles in the 1-skeleton
(as shown in Theorem 3.1 [ACP22]), we conclude that π1(∆g,A) is trivial.
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In Appendix A, we give an alternative proof of this Theorem based on the original result
of [ACP22], Theorem 1.4, which is entirely combinatorial.

Quasistable graphs

In some context, it is useful to relax the stability condition on the graphs: for example, when
one treats the tropical analogue of the Jacobian of Curves as in [AP20, AAPT22, MMUV21].

Definition 2.1.7. Let g, n ∈ Z≥0 such that 2g− 2+n > 0. Let G be an n-marked weighted
genus g graph. We say G is a quasistable graph if for every vertex v ∈ V (G), we have
2w(v) − 2 + val(v) + |m−1(v)| ≥ 0, and any two vertices u and v such that this condition
is an equality, i.e., val(u) = 2, w(u) = 0 and m−1(u) = ∅, and analogously val(v) = 2,
w(v) = 0 and m−1(v) = ∅, then u and v are not adjacent.

We call those vertices such that 2w(v)− 2 + val(v) + |m−1(v)| = 0 exceptional vertices,
and we denote their set with Vexc(G). Notice that all the stable graphs are also quasistable:
in particular, they do not have any exceptional vertex. A special class of quasistable graphs
come often in play in various contexts:

Definition 2.1.8. A quasistable graph is said to be simple if the graph G\Vexc(G) obtained
by removing all the exceptional vertices and their adjacent edges is connected.

Again, notice that all the stable graphs are also simple. We can define, for fixed g
and n such that 2g − 2 + n > 0, graph categories by considering isomorphism classes of
quasistable (and respectively simple) graphs as objects, with morphisms being contractions
and automorphisms, denoting them Gqs

g,n (and respectively, Gspl
g,n). The considerations made

so far then lead to the following inclusions of categories:

Gg,n ⊂ Gspl
g,n ⊂ Gqs

g,n.

Analogously to the category of stable graphs Gg,n, these categories can be endowed with the
structure of poset considering the order induced by edge contractions.

We can consider also quasistable and simple tropical curves by picking quasistable and
simple underlying graphs. So analogously to what was done in Section 1.2.2, we can construct
moduli spaces of quasistable and simple tropical curves (M trop

g,n )qs and (M trop
g,n )spl, moduli

spaces of extended quasistable and simple tropical curves(M
trop

g,n )qs and (M
trop

g,n )spl, and moduli
spaces of quasistable and simple tropical curves of volume one ∆qs

g,n and ∆spl
g,n. With the same

reasoning adopted for the inclusions as subcategories, we have the following inclusions as
subspaces:

M trop
g,n ⊂ (M trop

g,n )spl ⊂ (M trop
g,n )qs,

M
trop

g,n ⊂ (M
trop

g,n )spl ⊂ (M
trop

g,n )qs,

∆g,n ⊂ ∆spl
g,n ⊂ ∆qs

g,n.

These spaces share many properties with the ones of stable tropical curves. In particular,
we can show the following.
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Theorem 2.1.9. Let g, n ≥ 1 be integers such that 2g − 2 + n > 0. The spaces ∆spl
g,n and

∆g, nqs are simply connected.

Proof. The proof is analogous to the one of Theorem 2.1.6, just by observing that in both
cases ∆mlw

g,n is still a contractible subcomplex contsining the 1-skeleton which is the same as
the one of ∆g,n.

2.2 Euler characteristic of ∆g,A and Top Weight Euler

Characteristic of Mg,A

In this section we exhibit a formula for the Euler characteristic of ∆g,A in terms of the one
of the Top Weight Euler characteristic of spaces Mg,r’s, for r ≤ n, n being the length of
A, by its connection with the Top Weight Euler characteristic of Mg,A. We can attain this
formula using the fact that the Top Weight Euler characteristic of Mg,A is the same as the
one of its Coarse Moduli Space Mg,A for every A, and then showing a decomposition for
Mg,A in the Grothendieck group of varieties.

Definition 2.2.1. Let k be a field. We denote by K0(Var/k) the Grothendieck group of
varieties over k, i.e., the quotient of the free abelian group on k-varieties by relations of the
form

[X] = [X \ Y ] + [Y ],

whenever Y is a closed subvariety of X

Such relation are called the cut-and-paste relations, and the additive identity is the empty
variety [∅].

Definition 2.2.2. An Euler-Poincaré characteristic of K0(Var/k) is a group homomorphism
χ : K0(Var/k) → A to an abelian group A.

Notice that whenever we have an Euler-Poincaré characteristic, for any closed subvariety
Y of X,

χ([X]) = χ([Y ]) + χ([X \ Y ]),

see [Cra04, Loe09] for more details. For what follows, we need to introduce the notion of
cohomology with compact support (or compactly supported cohomology). This Definition
can be given in various ways and in different contexts. In [Ive86], Section 3, it is defined as
a left exact functor, and many properties about this notion are shown. Here we adopt the
following Definition.

Definition 2.2.3. Let X be a topological space, and let R be a ring. We define the coho-
mology with compact support (or compactly supported cohomology) as

H∗c (X;R) := lim
−→

K⊂X compact

H∗(X,X \K;R).
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Example 2.2.4. Set k = C. Let

χm
c (X) :=

2d∑
j=0

(−1)j dimGrWmH
j
c (X;Q).

The virtual Poincaré polynomial is the group homomorphism K0(Var/C) → Z[t] defined by
the formula PX(t) =

∑2d
m=0(−1)mχm

c (X)tm, where d = dimX and is an Euler-Poincaré
characteristic.

2.2.1 The stratification of Mg,A through coincident points

Let g ≥ 0, n ≥ 1 and A ∈ Dg,n, and consider the Coarse Moduli Space Mg,A of Mg,A. We
describe a stratification of Mg,A in terms of the loci were some marked points coincide, and
we will use it inside the group K0(V ar/k). Denote by P ⊢ S a partition P of a set S. We
say that a set partition of [n]

P = P1 ⊔ · · · ⊔ Pr ⊢ [n]

with r parts is A-admissible if
∑

i∈Pj
ai ≤ 1 for all 1 ≤ j ≤ r. Given such a partition, we

write P ⊢A [n]. We set Nr,A to be the number of A-admissible partitions of [n] with r parts.

Proposition 2.2.5. In K0(Var/k),

[Mg,A] =
n∑

r=1

Nr,A[Mg,r].

Proof. The locus Mg,A parameterizes smooth curves of genus g with n markings, such that
whenever

∑
i∈S ai ≤ 1 for some S ⊆ [n], the markings indexed by S are allowed to coincide.

Given a A-admissible partition P = P1 ⊔ · · · ⊔ Pr ⊢A [n], we define

ZP := {(C, p1, . . . , pn) ∈Mg,A | pi = pj if and only if i, j ∈ Ps for some s ∈ [r]}.

Then we see that ZP ∼= Mg,r, since it is exactly the space parametrizing curves with r distinct
marked points. As P ranges over all A-admissible partitions of [n], the loci ZP ’s are locally
closed subvarieties of Mg,A, so by Proposition 7.1 of [Mus], we have

[Mg,A] =
∑
P⊢A[n]

[ZP ] =
n∑

r=1

∑
P⊢A[n]
|P|=r

[ZP ] =
n∑

r=1

Nr,A[Mg,r],

as claimed.

Remark 2.2.6. The decomposition of Mg,A into the ZP ’s is indeed a stratification. In fact,
recall that for a topological space X, a stratification is a decomposition of X into pairwise
disjoint locally closed subsets such that if Xj meets the closure of Xi, then Xj is contained
in the closure of Xi. Now consider ZP : it is the locus of curves where some marked points
coincide according to P . In the the closure of ZP we can find curves where the marked points
which already coincide still agree, but eventually also some Pi’s of P come together. So in
we have ZP ′ intersecting the closure of ZP , it must be that P ′ is a partition which can be
refined to be P , hence ZP ′ ⊂ ZP .
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The numbers Nr,A in general are not known, but there are some favorable cases were they
can be computed in a combinatorial way. Let S(n, r) be the Stirling number of the second
kind, i.e., the number of r-partitions of a n-set.

Corollary 2.2.7. Let g ≥ 1, and A = (1(m)|ε(n)) be an admissible Heavy/Light weight
datum, then [Mg,A] =

∑n
r=1 S(n, r)[Mg,m+r].

Proof. From Proposition 2.2.5, we know that [Mg,A] =
∑m+n

r=1 Nr,A[Mg,r]. SinceA = (1(m)|ε(n)),
the number Nr,A is 0 for r ≤ m, because each part of the partition must contain a weight 1,
so the sum can start from m+1. For r ≥ m+1, the number Nr,A is equal to S(n, r). Indeed,
Nr,A is the number of partitions of [n +m] with r parts P1, . . . Pr such that

∑
i∈Pj

ai ≤ 1.
Since such partitions must have m parts with a single element corresponding to the heavy
weights, and the other parts are obtainable by taking all the possible r-partitions of the set
of light elements, which is an n-set, the result follows.

Let

{
n
r

}
≤m

be the m-restricted Stirling number of the second kind for n, r ≥ 1, i.e., the

number of partitions of an n-set into r non-empty subsets, each of which has at most m
elements.

Corollary 2.2.8. Let A = 1
m

(n)
for n > m > 1 such that 2g − 2 + n/m > 0. Then

[Mg,A] =
∑n

r=⌈ n
m⌉

{
n
r

}
≤m

[Mg,r].

Proof. For r <
⌈

n
m

⌉
, the number Nr,A is 0, since there are no admissible partitions with less

than
⌈

n
m

⌉
sets. For r ≥

⌈
n
m

⌉
, Nr,A equals to

{
n
r

}
≤m

, since we have n components in A but

we can not put more than m together due to the condition
∑

i∈Pj ai ≤ 1.

Corollary 2.2.9. Let A = 1
2

(n)
for n ≥ 1 such that 2g − 2 + n/2 > 0. Then

[Mg,A] =
n∑

r=⌈n
2 ⌉

n−r−1∏
i=0

(
n−2i
2

)
(n− r)!

[Mg,r].

Proof. A 1
2

(n)
-admissible partition having r parts must consist of exactly (n− r) subsets of

size two and singletons otherwise. Therefore, we have

{
n
r

}
≤2

=

n−r−1∏
i=0

(
n−2i
2

)
(n− r)!

.

It is sufficent then to put this into Corollary 2.2.8, and the result follows.
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2.2.2 The Top Weight Euler Characteristic of Mg,A

We can now exploit the additivity of Euler-Poincaré characteristics and the connection be-
tween Mg,A and ∆g,A. For a complex algebraic variety (or stack) X of dimension d, let χtw

be the top weight Euler characteristic, defined as

χtw(X) :=
2d∑
i=0

(−1)i dimGrW2dH
i(X;Q),

and for any space Y , let χ̃(Y ) be the reduced Euler characteristic.

Lemma 2.2.10. Let X be a smooth, separated DM stack over C of dimension d. Let X
be a smooth normal crossings compactification of X and ∆(X ⊂ X ) be the dual boundary
complex. Then χtw(X ) = −χ̃(∆(X ⊂ X )).

Proof. We have

χtw(X ) =
2d∑
i=0

(−1)i dimGrW2dH
i(X ;Q)

=
2d∑
i=0

(−1)i dim H̃2d−i−1(∆(X ⊂ X );Q)

=
2d∑
i=0

(−1)i+1 dim H̃i(∆(X ⊂ X );Q)

= −χ̃(∆(X ⊂ X )).

Recall the isomorphism GrW6g−6+2nH
6g−6+2n−k(Mg,n;Q) ∼= H̃k−1(∆g,n;Q) is a special case

of the isomorphism GrW2dH
2d−k(X ;Q) ∼= H̃k−1(∆(X ⊂ X );Q), as we saw in Section 1.3.4.

Let k be an algebraically closed field, and let Z be an isomorphism invariant of quasi-
projective k-varieties. We call Z motivic if whenever Y ⊂ X is a closed subvariety we have

Z([X]) = Z([X \ Y ]) + Z([Y ]),

and whenever X, Y are varieties we have Z([X × Y ]) = Z([X])Z([Y ]). Denote by χ0
c the

weight 0 compactly supported Euler characteristic. We observe that χ0
c is a motivic invariant.

The following lemma is proven upon realizing that for a complex algebraic variety X, we
have that χ0

c(X) = PX(0), where PX is the virtual Poincaré polynomial described in Example
2.2.4.

Lemma 2.2.11. The weight 0 compactly supported Euler characteristic

χ0
c : K0(V ar/C) → Z

is an Euler-Poincaré characteristic.
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Proof. It is enough to observe that PX is already an Euler-Poincaré characteristic, and the
evaluation of it in 0 is a group homomorphism.

Denote by χ(Y ) the Euler Characteristic of a topological space Y . Our main goal of this
section is the following Theorem.

Theorem 2.2.12. Let W = W1 ⊂ · · · ⊂ W6g−6+2r ⊆ H∗(Mg,r,Q) be the weight filtration of
the rational singular cohomology of the moduli stack Mg,r and denote by χW

6g−6+2r the Euler
characteristic of the top graded piece

GrW6g−g+2rH
∗(Mg,r;Q) = W6g−6+2r/W6g−7+2r

of the weight filtration. Then

χ(∆g,A) = 1−
n∑

r=1

Nr,A · χW
6g−6+2r(Mg,r).

Proof. By Proposition 2.2.5 and Lemma 2.2.11, we have χ0
c(Mg,A) =

∑n
r=1Nr,Aχ

0
c(Mg,r).

By Proposition 36 of [Beh04] and Theorem 4.40 of [Edi10], we can show that there is an
isomorphism of rational cohomologies H∗(X ;Q) ∼= H∗(X;Q) between the Coarse Moduli
Scheme X of a Deligne Mumford stack X and the Stack itself, which is also an isomorphism
of mixed Hodge structures. Therefore, χ0

c(X ) = χ0
c(X) and χtw(X ) = χtw(X). It follows

from Theorem 6.23 of [PS08] that for a smooth Deligne-Mumford stack X of dimension d,
the Poincaré duality pairing

Hj
c (X ;Q)×H2d−j(X ;Q) → Q

induces a perfect pairing of graded pieces

GrWmH
j
c (X ;Q)×GrW2d−mH

2d−j(X ;Q) → Q

for 0 ≤ m ≤ 2j. So we can write

χ0
c(X ) =

2d∑
j=0

(−1)j dimGrW2dH
2d−j(X ;Q)

=
2d∑
j=0

(−1)2d−j dimGrW2dH
2d−j(X ;Q).

In particular, it follows that

χ0
c(X ) = χtw(X ).

Since Mg,r and Mg,A are smooth Deligne-Mumford stacks and ∆g,A = ∆(Mg,A ⊂ Mg,A),
the result now follows from Lemma 2.2.10 and the fact that χ̃(∆g,A) = χ(∆g,A)− 1.
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Computations for χ(∆g,A)

In [CFGP19], authors give a generating function for the numbers χW
6g−6+2r(Mg,r). Together

with their result, Theorem 2.2.12 allows for the calculation of χ(∆g,A) for arbitrary g and
A.

Corollary 2.2.13. Given a weight vector A, such that Nr,A = 0 for r ≤ g + 1, the Euler
characteristic of ∆g,A is

χ(∆g,A) = 1 +
n∑

r=1

Nr,A(−1)r
(g + r − 2)!

g!
Bg

Proof. In Corollary 8.1 of [CFGP19], the authors show that for r > g + 1,

χW
6g−6+2r(Mg,r) = (−1)r+1 (g + r − 2)!

g!
Bg,

where Bg is the g-th Bernoulli number, characterized by

t

et − 1
=
∞∑
ℓ=0

Bℓ
tℓ

ℓ!
.

Substituting into Theorem 2.2.12 yields the formula.

We can obtain a closed form for the Euler characteristic of ∆g,A for Heavy/Light weights.
Using the following corollary, we compute explicitly the Euler characteristics of ∆g,(1(m)|ε(n))

in Table 2.1.

Corollary 2.2.14. Given a Heavy/Light weight vector A = (1(m)|ε(n)) where n ≥ g + 1,
n > 0, and 0 < ε < 1/n,

χ(∆g,A) = 1 +
m∑
r=1

g∑
ℓ=0

(−1)n+r+ℓ (g + n+ r − 2)!ℓ!

g!(ℓ+ 1)
S(m, r)S(g, ℓ).

Proof. It suffices to expand the Bernoulli number Bg as in [Apo98] in terms of Stirling
numbers

Bg =

g∑
ℓ=0

(−1)ℓ
ℓ!

ℓ+ 1
S(g, ℓ),
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g = 0 n = 1 n = 2 n = 3 n = 4 g = 1 n = 1 n = 2 n = 3 n = 4
m = 2 - 2 0 2 m = 2 2 −1 5 −7
m = 3 3 −3 9 −15 m = 3 −2 10 −26 82
m = 4 −5 19 −53 163 m = 4 13 −47 193 −767
m = 5 25 −95 385 −1535 m = 5 −59 301 −1499 7501

g = 2 n = 1 n = 2 n = 3 n = 4 g = 3 n = 1 n = 2 n = 3 n = 4
m = 3 3 −7 33 −127 m = 4 1 1 1 1
m = 4 −9 51 −249 1251 m = 5 1 1 1 1
m = 5 61 −359 2161 −12959 m = 6 1 1 1 1
m = 6 −419 2941 −20579 144061 m = 7 1 1 1 1

Table 2.1: Euler characteristics of ∆g,(1(m)|ε(n)) for g = 0, 1, 2, 3 and some (m,n) where
m ≥ g + 1 and n > 0. When g = 0, we start with m = 2 since the space ∆0,(1|ε(n)) is empty.
When g = 0,m = 2, n = 1, ∆0,(1,1,ε) is also empty.
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Chapter 3

Equivariant Hodge Polynomials of
Heavy/Light Moduli Spaces

This section describes the material published in the joint work with S. Kannan and C. Yun
[KSY22]. We study the (Sm × Sn)-equivariant Hodge–Deligne polynomials of Mg,(1(m)|ε(n))

and Mg,(1(m)|ε(n)). Throughout this Chapter we will work with the Coarse Moduli Spaces
of these Stacks, as the Mixed Hodge Structure on the rational cohomology of a Deligne-
Mumford Stack coincides with that of its Coarse Moduli Space. We start by introducing
some background about Symmetric Functions and Frobenius Characteristics.

3.1 Symmetric functions and the Frobenius character-

istic

3.1.1 Symmetric functions

Definition 3.1.1. The ring Λ of symmetric functions over Q is defined as

Λ := lim
←−
n

Q[[x1, . . . , xn]]
Sn .

Elements of Λ are power series which are invariant under any permutation of the variables.
A well known property about Λ is that it is generated by elements pi :=

∑
k>0 x

i
k,

Λ = Q[[p1, p2, . . .]]

where pi is called the ith power sum symmetric function. Observe also that the ring Λ is
graded by degree, and pi has degree i. We define also the complete homogeneous symmetric
functions hk for any non-negative integer k as the sum of all monomials of degree k:

hk =
∑

1≤i1≤i2≤···≤ik

xi1xi2 · · ·xik .

49
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There is an associative operation ◦, called plethysm on Λ, characterized by the following
properties:

(i) for any g ∈ Λ, the map f 7→ f ◦ g defines an algebra homomorphism Λ → Λ;

(ii) for all n, the map f 7→ pn ◦ f defines an algebra homomorphism Λ → Λ;

(iii) pn ◦ pm = pnm.

The proof of the fact that these properties define a unique operation, as well as more prop-
erties about the ring of symmetric functions can be found in [Mac95], [Sta99] and in Section
7 of [GK98]. Together with power sums and homogeneous symmetric functions, there is
another important class of functions called Schur functions. Here we define them as follows.

First, if λ = (λ1, . . . , λl) is an array of natural numbers, such that λ1 + · · · + λl = s
and λ1 ≥ · · · ≥ λl, we call λ a partition of [s] of lenght l, and denote it λ ⊢ s, for s ∈ N.
Let λ ⊢ s, we define the Schur Function associated to λ as the determinant of the following
matrix:

sλ := det(hλi+j−i)
l
i,j=1.

Example 3.1.2. Suppose we have s = 3, and λ = (2, 1). The resulting matrix is(
h2 h3
h0 h1

)
,

So s(2,1) = h1h2 − h3 (by noticing that h0 = 1.)

Whenever λi + j − i < 0, we set hλi+j−i = 0 by convention. Although this is not the
original Definition, this is enough for our purposes. We refer to [Mac95] for further details.

Remark 3.1.3. Note that hn = sn, were by sn we denote the Schur Function corresponding
to the trivial partition of [n] made by n sets of length 1.

Remark 3.1.4. The Schur functions sλ, where λ is a partition of [n], form a basis for the
homogeneous degree n part of Λ.

3.1.2 Sn-representations

A representation of a group G on a vector space V over a field k is a group homomorphism
from G to GL(V ), the general linear group on V . That is, a representation is a map

ρ : G→ GL (V )

such that ρ(g1g2) = ρ(g1)ρ(g2), for all g1, g2 ∈ G. For a representation ρ : G → GL (V ),
denote by TrV (g) the trace of an element g seen as a matrix in GL(V ). We will refer to
V itself as the representation from now on. Given an Sn-representation V , the Frobenius
characteristic chn(V ) is defined by

chn(V ) :=
1

n!

∑
σ∈Sn

TrV (σ)pλ(σ),

where λ(σ) is the cycle type of the permutation σ, and for a partition λ = (λ1, . . . , λs) ⊢ n
we set pλ :=

∏
i pλi

. The Frobenius characteristic chn(V ) determines the Sn-representation
V , and by Remark 3.1.4 we can describe the Frobenius Characteristic using Schur functions.
In order to do so we need to introduce Specht Modules.



3.1 SYMMETRIC FUNCTIONS AND THE FROBENIUS CHARACTERISTIC 51

Specht Modules and Young Tableaux

We will follow [Cha08] for this section. Fix a partition λ = (λ1, . . . , λl) ⊢ s. Then a Ferrer’s
diagram of shape λ is an array of s dots, with l left-justified rows, and the ith row has λi
dots.

Example 3.1.5. The Ferrer’s diagram of shape λ = (4, 2, 1) looks like:

• • • •
• •
•

A Young tableau of shape λ is obtained from the corresponding Ferrer’s diagram by
replacing the dots by numbers 1, ..., s bijectively. A tableau is called standard if its rows and
columns increase.

Example 3.1.6. An example of a (non-standard) Young tableau of shape λ = (4, 2, 1):

1 4 3 6
7 2
5

We say that two Young tableaux are row-equivalent if their corresponding rows contain
the same numbers. An equivalence class of this relation is called tabloid of shape λ. We
denote tabloids by {t}. The symmetric group on s points acts on the set of Young tableaux
of shape λ. Consequently, it acts on tabloids, and on the free k-moduleMλ with the tabloids
as basis. Given a Young tableau T of shape λ, let

ET =
∑
σ∈QT

sign(σ){σ(T )} ∈Mλ

where QT is the subgroup of permutations, preserving (as sets) all columns of T , sign(σ) is
the sign of the permutation σ and {σ(T )} is the tabloid class of the permuted tableau σ(T ).

Definition 3.1.7. The Specht module of the partition λ is the module Wλ generated by the
elements ET as T runs through all tableaux of shape λ.

Whenever we have a Sn-representation V , we can decompose it using Specht Modules as
V =

⊕
λ⊢nW

⊕aλ
λ , were aλ is the dimension of the Specht module associated to λ. Then one

can show that chn(V ) =
∑

λ⊢n aλsλ.

Remark 3.1.8. Observe that the homogeneous symmetric functions hn verify hn = chn(Trivn),
where Trivn is the trivial Sn-representation of dimension one.
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3.1.3 The ring of bisymmetric functions

All of what we made so far generalizes to (Sm × Sn)-representations. We set Λ(2) := Λ⊗ Λ,
and we call Λ(2) the ring of bisymmetric functions. Given f ∈ Λ, we write f (j) for the
inclusion of f into the jth tensor factor, j = 1, 2. Then we have

Λ(2) = Q[[p
(1)
1 , p

(2)
1 , p

(1)
2 , p

(2)
2 , . . .]].

Given an (Sm×Sn)-representation V , its Frobenius characteristic is the bisymmetric function

chm,n(V ) :=
1

m! · n!
∑

(σ,τ)∈Sm×Sn

TrV (σ, τ)p
(1)
λ(σ)p

(2)
λ(τ).

Just as in the single variable case, the bisymmetric function chm,n(V ) completely determines
the (Sm × Sn)-representation V : if V =

⊕
λ⊢m
µ⊢n

(Wλ ⊗Wµ)
⊕aλµ is its decomposition into

Specht modules, then chm,n(V ) =
∑

λ,µ aλµs
(1)
λ s

(2)
µ .

The ring Λ(2) has two plethysm operations ◦1 and ◦2, characterized by:

(i) for all g, the map f 7→ f ◦i g is an algebra homomorphism Λ(2) → Λ(2);

(ii) for all n, the map f 7→ p
(i)
n ◦i f is an algebra homomorphism Λ(2) → Λ(2);

(iii) p
(i)
n ◦i p(j)m = p

(j)
nm for any i, j ∈ {1, 2};

(iv) p
(i)
n ◦j f = p

(i)
n if i ̸= j;

see [Cha16]. Clearly those two operations generalize the plethysm defined for Λ. Since
the ring Λ is also a Hopf algebra, it comes with a coproduct ∆ : Λ → Λ(2) defined by
pi 7→ p

(1)
i + p

(2)
i . On the level of Frobenius characteristic, we have

∆(chn(V )) =
n∑

k=0

chk,n−k

(
ResSn

Sk×Sn−k
V
)
, (3.1)

where ResGK(V ) indicates the restriction of the representation of the group G on a subgroup
K. There is also a rank homomorphism defined on the ring of symmetric functions

rk : Λ → Q[[x]], (3.2)

determined by chn(V ) 7→ dim(V ) · xn

n!
, or equivalently, p1 7→ x and pn 7→ 0 for n > 1. This

takes plethysm into composition of power series. We use the same notation for the analogous
morphism defined on bisymmetric functions:

rk : Λ(2) → Q[[x, y]] (3.3)

determined by chm,n(V ) 7→ dim(V ) · xmyn

m!n!
, or p

(1)
1 7→ x, p

(2)
1 7→ y, and p

(j)
n 7→ 0 for n > 1.

In this case, the two plethysm operations ◦1 and ◦2 are carried into composition in x and y,
respectively, i.e., rk(s ◦1 t) = rk(s)(rk(t), y) and rk(s ◦2 t) = rk(s)(x, rk(t)) for s, t ∈ Λ(2).
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3.2 The generating functions

Let X be a variety, and consider the Deligne (increasing) weight filtration

W1 ⊂ · · · ⊂ W2d = H∗c (X;Q),

where H∗c (X;Q) is the compactly supported cohomology introduced in Definition 2.2.3, such
that for each j, the quotient

GrWi H
j
c (X;Q) := Wi ∩Hj

c (X;Q)/Wi−1 ∩Hj
c (X;Q)

Consider also the (decreasing) Hodge Filtration F on GrWi H
j
c (X,Q) induced by the one on

the whole cohomology. Denote its generic piece by GrFk Gr
W
i H

j
c (X,Q). If X comes with an

action of Sn, its complex cohomology groups are Sn-representations in the category of Mixed
Hodge Structures. We set

hSn
X (u, v) :=

2d∑
i,p,q=0

(−1)ichn
(
GrFp GrWp+qH

i
c(X;C)

)
upvq ∈ Λ[u, v] (3.4)

for the Sn-equivariant Hodge–Deligne polynomial of X. Analogously, if X has an action
of Sm × Sn, its complex cohomology groups are Sm × Sn-representations in the category
of Mixed Hodge Structures. The (Sm × Sn)-equivariant Hodge–Deligne polynomial of X is
given by the formula

hSm×Sn
X (u, v) :=

2d∑
i,p,q=0

(−1)ichm,n

(
GrFp GrWp+qH

i
c(X;C)

)
upvq ∈ Λ(2)[u, v]. (3.5)

If X is proper, and the Mixed Hodge Structure on each cohomology group is pure, the
Hodge–Deligne polynomial specializes to the usual Hodge polynomial

2d∑
p,q=0

(−1)p+qchn (H
p,q(X;C))upvq.

in the case of Sn-representations, or

2d∑
p,q=0

(−1)p+qchm,n (H
p,q(X;C))upvq.

in the case of Sm × Sn-representations (for more details on Mixed Hodge Structures, see
[PS08] or [CLNS18]).

We know that the Coarse Moduli Spaces M g,A are proper for any weight datum A , so
in particular they are for the weight data we take in account in this section, i.e., 1(n) and
(1(m)|ε(n)). We assemble all of the equivariant Hodge–Deligne polynomials for Heavy/Light
Hassett spaces with fixed genus into series with coefficients in Λ(2):

ag :=
∑
m,n

hSm×Sn
M

g,(1(m)|ε(n))
(u, v), ag :=

∑
m,n

hSm×Sn

M
g,(1(m)|ε(n))

(u, v) ∈ Λ(2)[[u, v]].
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We also define

bg :=
∑
n

hSn
Mg,n

(u, v), bg :=
∑
n

hSn

Mg,n
(u, v) ∈ Λ[[u, v]].

Notice again that we defined the polynomials in the series for the Stacks, intending that they
agree with the ones of the Coarse Moduli Spaces.

For f ∈ Λ, the inclusions of f into the jth tensor factor, j ∈ {1, 2}, extend to maps
Λ[[u, v]] → Λ(2)[[u, v]]. This is true also for the coproduct ∆ : Λ → Λ(2). For f ∈ Λ(2)[[u, v]]
set also

Exp(1)(f) =
∑
n>0

h(1)n ◦1 f.

and

Exp(2)(f) =
∑
n>0

h(2)n ◦2 f.

The main result we want to show in this Chapter is the following:

Theorem 3.2.1. In Λ(2)[[u, v]] we have

ag = ∆(bg) ◦2 Exp(2)
(
p
(2)
1

)
and

ag = ∆(bg) ◦2

(
p
(2)
1 − ∂b

(2)
0

∂p
(2)
1

)
◦2 Exp(2)

(
p
(2)
1

)
.

Informally, Theorem 3.2.1 determines ag and ag in terms of bg and bg. Moreover, this

transformation is invertible, as Exp(i) has a plethystic inverse Log(i) and p
(i)
1 − ∂b

(i)
0 /∂p

(i)
1 is

inverse to p
(i)
1 + ∂b

(i)

0 /∂p
(i)
1 , for i ∈ {1, 2}. There is a numerical analogue of Theorem 3.2.1

which deals with the non-equivariant Hodge–Deligne polynomials, defined by the assignment

hX(u, v) :=
2d∑

i,p,q=0

(−1)i dim
(
GrFp GrWp+qH

i
c(X;C)

)
upvq ∈ Q[u, v].

Set

ag :=
∑
m,n

hM
g,((1(m)|ε(n)))

(u, v)
xmyn

m!n!
, ag :=

∑
m,n

hM
g,((1(m)|ε(n)))

(u, v)
xmyn

m!n!
∈ Q[[u, v, x, y]],

and similarly put

bg :=
∑
n

hMg,n(u, v)
xn

n!
, bg :=

∑
n

hMg,n
(u, v)

xn

n!
∈ Q[[u, v, x]].
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Corollary 3.2.2. We have

ag = bg|x→w

where w = x+ ey − 1, and

ag = bg|x→z,

where

z = x+ ey +
euvy − uv · ey + uv − 1

uv − u2v2
− 1.

and by f |x→y we denote a change of variables.

In order to show Theorem 3.2.1, we need to introduce the main tool for its proof, which is
a generalization of Getzler–Pandharipande’s Grothendieck Ring of S-spaces. The techniques
of the proof are based on prior work on the operad structure of moduli of stable curves and
maps ([Get95], [Get98], [GK98] and [GP06]). Proofs of Theorem 3.2.1 and Corollary 3.2.2
are in Section 3.2.2.

3.2.1 The Grothendieck Ring of S2-spaces
We say that a G-variety is a variety with an action of a group G. Inside the Grothendieck
Group of varieties K0(Var/k) (see Definition 2.2.1) we can define the subgroup K0(Var/k,G)
of isomorphism classes of G-varieties, were we consider the cut and paste relations only for
G-subvarieties. We define an S-space as follows:

Definition 3.2.3. ([GP06]) An S-space W is a collection of Sn-varieties W (n) for n ≥ 0,
i.e., W = {W (n)|W (n) is a Sn-variety}n∈N

Example 3.2.4. We define the S-space ζr, which contains Spec(C) with trivial Sn-action in
arity r, and ∅ elsewhere:

ζr(n) :=

{
Spec(C) if n = r;

∅ else.

We can define the Grothendieck Group of S-spaces as the product

K0(Var/k, S) :=
∏
n≥0

K0(Var/k, Sn).

We can make K0(Var/k, S) into a ring using the following ⊠-product, which we can define
it for each n as

(X ⊠ Y)(n) =
n∐

i=0

IndSn
Si×Sn−i

X (i)× Y(n− i),

where IndGK(V ) denotes the induced representation of the subgroup K of G (see [Die11],
Chapter 4). The fact that this makesK0(Var/k, S) a ring is shown in [GP06]. This notion can
be generalized to the case of (Sm×Sn)-varieties, using Grothendieck Groups K0(Var/k, Sm×
Sn) of (Sm × Sn)-varieties.
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Definition 3.2.5. We define an S2-space X to be a collection of varieties X (m,n) together
with an action of Sm × Sn for each pair (m,n) with m,n ≥ 0, i.e.,

X = {X(m,n)|X(m,n) is a Sm × Sn-variety}m,n∈N.

We refer to X (m,n) as the arity (m,n) component of X . We define the Grothendieck
Group of S2-spaces as the product K0(Var/k,S2) :=

∏
m,n≥0K0(Var/k, Sm×Sn). It is clearly

a commutative group with the sum, since the operation works independently on each compo-
nent of the disjoint union, and there the sum is the one of K0(Var/k, Sm×Sn) as a subgroup
of K0(Var/k). Analogously to what we did before, we can make K0(Var,S2) into a ring using
the following ⊠-product on S2-spaces:

(X ⊠ Y)(m,n) =
m∐
i=0

n∐
j=0

IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)× Y(m− i, n− j).

We use the same notation as it will be clear by the context which of the two products we
are using.

Proposition 3.2.6. The group K0(Var/k, S2) is a ring with the ⊠-product.

Proof. We have to show that K0(Var/k, S2) is a monoid with respect to ⊠, so we have to
show that there is a unit and that associativity holds. The unit of the box product is easily
shown to be the S2-space id defined by

id(m,n) =

{
Spec(C) if (m,n) = (0, 0);

∅ otherwise.

We check each property in a fixed arity (m,n). For the associativity, we have

X ⊠ (Y ⊠ Z)(m,n) =

=
m∐
i=0

n∐
j=0

IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)× (Y ⊠ Z)(m− i, n− j) =

=
m∐
i=0

n∐
j=0

IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)×(
m−i∐
k=0

n−j∐
l=0

Ind
Sm−i×Sn−j

Sk×Sm−i−k×Sl×Sn−j−l
Y(k, l)×Z(m−i−k, n−j−l)) =

=
m∐
i=0

n∐
j=0

IndSm×Sn
Si×Sm−i×Sj×Sn−j

(
m−i∐
k=0

n−j∐
l=0

Ind
Sm−i×Sn−j

Sk×Sm−i−k×Sl×Sn−j−l
X (i, j)×Y(k, l)×Z(m−i−k, n−j−l)).

Analogously (X ⊠ Y)⊠ Z(m,n) =

=
m∐
i=0

n∐
j=0

IndSm×Sn
Si×Sm−i×Sj×Sn−j

(
i∐

k=0

j∐
l=0

Ind
Si×Sj

Sk×Si−k×Sl×Sj−l
X (k, l)×Y(i−k, j−l)×Z(m−i, n−j)),
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so we just have to observe that up to shifting the indices, these two disjoint unions are the
same.

Lastly, we have to show the distributive property, i.e., that X ⊠(Y+Z) = X ⊠Y+X ⊠Z
and it is enough since the product is commutative. We have

X ⊠ (Y + Z)(m,n) =
m∐
i=0

n∐
j=0

IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)× (Y + Z)(m− i, n− j)

where
(Y + Z)(m− i, n− j) = W(m− i, n− j) ∈ K0(Var, Sm−i × Sn−j).

Now the sum X ⊠ Y + X ⊠ Z gives:

X ⊠ Y + X ⊠ Z =

=
m∐
i=0

n∐
j=0

IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)×Y(m−i, n−j)+
m∐
i=0

n∐
j=0

IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)×Z(m−i, n−j),

which for each i and j is

IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)×Y(m− i, n− j)+ IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)×Z(m− i, n− j) =

= IndSm×Sn
Si×Sm−i×Sj×Sn−j

X (i, j)×W(m− i, n− j),

which gives back the i, j piece of X ⊠ (Y + Z)(m,n).

The ring K0(Var/k, S2) is an algebra over the subring K0(Var/k). Given an S-space W ,
we define its Hodge–Deligne series as

e(W) :=
∑
n≥0

hSn

W(n)(u, v) ∈ Λ[[u, v]].

Analogously, given an S2-space X , we define its Hodge–Deligne series by

e(X ) :=
∑

m,n≥0

hSm×Sn

X (m,n)(u, v) ∈ Λ(2)[[u, v]].

For X ,Y ∈ K0(Var/k,S2) with Y(0, 0) = ∅, we can define two composition operations ◦1
and ◦2, which we call 1-plethysm and 2-plethysm, as follows:

(X ◦1 Y)(m,n) =
∞∐
i=0

m∐
j=0

IndSm×Sn
Sm×Sj×Sn−j

(X (i, j)× Y⊠i(m,n− j))/Si, (3.6)

and

(X ◦2 Y)(m,n) =
∞∐
j=0

m∐
i=0

IndSm×Sn
Si×Sm−i×Sn

(X (i, j)× Y⊠j(m− i, n))/Sj. (3.7)
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We called the operations (3.6) and (3.7) plethysms in analogy with the plethysms of Λ(2)

because of the following property: if X ,Y are S2-spaces, then

e(X ◦i Y) = e(X ) ◦i e(Y) (3.8)

for i = 1, 2. This holds because the Hodge–Deligne polynomial is a motivic invariant (See
Getzler–Pandharipande [GP06] for details, we already described motivic invariants in Section
2.2.2).

Example 3.2.7. We will put ζ
(1)
r for the S2-space given by the class of Spec(C) with trivial

action of Sr × S0 in arity (r, 0) and ∅ for every other pair, i.e.:

ζ
(1)
r (m,n) :=

{
Spec(C) if (m,n) = (r, 0);

∅ else.

Analogously ζ
(2)
r is defined as

ζ
(2)
r (m,n) :=

{
Spec(C) if (m,n) = (0, r);

∅ else.

Note that e
(
ζ
(j)
r

)
= h

(j)
r .

We have two analogues of the exponential function, given by

Exp(i)(X ) =
∑
n>0

ζ(i)n ◦i X

for i = 1, 2 and X (0, 0) = ∅. Note that this exponential map commutes with e, i.e.,

e(Exp(i)(X )) = Exp(i)(e(X )), (3.9)

where on the right hand side we have the exponential defined in Λ(2)[[u, v]].
Finally, given an S-space W , there are at least three natural ways to view W as an

S2-space. First, we define

∆W(m,n) := Res
Sm+n

Sm×Sn
W(m+ n).

By Equation 3.1, we have
e(∆W) = ∆(e(W)). (3.10)

This is the analogous of the coproduct map coming from the Hopf Algebra structure in Λ.
Next, we put

I1W(m,n) :=

{
W(m) if n = 0,

∅ else
and I2W(m,n) :=

{
W(n) if m = 0,

∅ else.
,

so e(IjW) = e(W)(j) for j = 1, 2. These are the analogous of the inclusions in the first,
respectively second component of the tensor product from Λ in Λ(2).

Remark 3.2.8. The S-space ζr satisfies Ij(ζr) = ζ
(j)
r .

For an S-space W , we define also another S-space given by

δW(n) := Res
Sn+1

Sn
W(n+ 1).

Note that e(δW) = ∂e(W)
∂p1

.
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3.2.2 Operations with S2-spaces
Our main theorem is proven doing computation in the Grothendieck Ring of S2-spaces and
consequently applying the map e. First, for each g ≥ 0, we define two S2-spaces as follows:

Mhl
g (m,n) =

{
Mg,(1(m)|ε(n)) if 2g − 2 +m+min(n, 1) > 0,

∅ else,

and

Mhl

g (m,n) =

{
M g,(1(m)|ε(n)) if 2g − 2 +m+min(n, 1) > 0,

∅ else.

We will also make use of the S-spaces MDM
g and MDM

g given by

Mg(n)
DM =

{
Mg,n if 2g − 2 + n > 0,

∅ else,

and

MDM

g (n) =

{
M g,n if 2g − 2 + n > 0,

∅ else.

Remark 3.2.9. Observe that e(Mhl

g ) = hSm×Sn

M
g,(1(m)|ε(n))

(u, v) = ag is the generating function of

the Heavy/Light Hodge–Deligne polynomials, as by definition e applied to an S2-space gives
the series of the Hodge-Deligne polynomials of varieties in each arity (m,n). Analogously,

e(Mhl
g ) = ag, and for the S-spaces we have e(MDM

g ) = bg and e(MDM

g ) = bg.

Proposition 3.2.10. We have Mhl
g = ∆MDM

g ◦2 Exp(2)
(
ζ
(2)
1

)
Proof. We set Y = Exp(2)

(
ζ
(2)
1

)
. Note that ζ

(2)
n ◦2 ζ(2)1 = ζ

(2)
n , so Y is nonempty in arity

(m,n) if and only if m = 0 and n ≥ 1, in which case it is equal to ζ
(2)
n . We have that

Y⊠j(m− i, n) = ∅ unless i = m so for any S2-space X we have

(X ◦2 Y)(m,n) =
m∐
i=0

∞∐
j=0

IndSm×Sn
Si×Sm−i×Sn

(X (i, j)× Y⊠j(m− i, n))/Sj

=
∞∐
j=0

(
X (m, j)× Y⊠j(0, n)

)
/Sj

=
∞∐
j=0

X (m, j)×
∐

k1+···+kj=n
kr>0 ∀ r

IndSn
Sk1
×···×Skj

Spec(C)

 /Sj.
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Now consider the Sm × Sn-variety Mg,(1(m)|ε(n)), and its stratification deduced in the proof of
Proposition 2.2.1. For 1 ≤ j ≤ n, let Zm,j ⊂ Mg,(1(m)|ε(n)) denote the locally closed stratum
in which there are precisely j distinct marked points among the last n. Then we can write

Zm,j
∼=

 ∐
k1+···+kj=n

kr>0 ∀ r

Res
Sm+j

Sm×Sj
Mg,m+j × IndSn

Sk1
×···×Skj

Spec(C)

 /Sj. (3.11)

Since Mhl
g (m,n) =

∑n
j=1Zm,j, we see that Mhl

g = ∆MDM
g ◦2 Exp(2)

(
s
(2)
1

)
upon summing

over j, m, and n on both sides of (3.11).

In order to prove our main theorem for the series of Mhl

g , it is useful to introduce an
auxiliary space. First, we define what we intend by rational tails on a curve.

Definition 3.2.11. For (C, p1, . . . , pm+n) ∈ Mg,m+n (or M g,m+n), let T ⊂ C be a union
of irreducible components of C. We say T is a rational tail if T is a connected curve of
arithmetic genus zero, and T meets C \ T in a single point.

Definition 3.2.12. Let S ⊆ {1, . . . ,m+n}. Given (C, p1, . . . , pm+n) ∈ Mg,m+n (orM g,m+n),
we say a rational tail T ⊂ C supports S if for each i ∈ S, we have pi ∈ T .

Definition 3.2.13. We set M
(k)

g,n ⊂ M g,n to be the locus of curves which have no rational
tails whose support consists of any subset of the last k markings, k ≤ n. We define an

S2-space M⋆

g by setting M⋆

g(m,n) :=M
(n)

g,m+n.

The following proposition expresses the S2-space ∆MDM

g in terms of M⋆

g and the compo-
sition operation. The basic idea has appeared in the literature before, in the main theorem
of [Get98]; see also [Pet12].

Proposition 3.2.14. We have ∆MDM

g = M⋆

g ◦2
(
ζ
(2)
1 + I2δM

DM

0

)
.

Proof. Let X denote the S2-space on the right-hand side of the claimed equality, and set

Y = ζ
(2)
1 + I2δM

DM

0 = I2

(
ζ1 + δMDM

0

)
. Consider first the S-space ζ1 + δMDM

0 : this is

Spec(C) in arity 1, ∅ in arity 2, and M0,n in arity n ≥ 3. Then by definition Y(m,n) = ∅
unless m = 0, and Y(0, 1) = Spec(C), Y(0, 2) = ∅, and Y(0, n) = M0,n for every n ≥ 3.
Hence, for any j > 0, we have that Y⊠j(m,n) = ∅ unless m = 0. Moreover, a point of the
Sn-space Y⊠j(0, n) corresponds to an ordered tuple of varieties (X1, . . . , Xj) such that:

1. for all i, Xi is either Spec(C) or a pointed stable curve of arithmetic genus zero whose
marked points are labelled by {0, . . . , ri} for some ri ≥ 2;

2. there is a chosen bijection:

{Xi | Xi = Spec(C)}∪{p | p is a nonzero marked point of Xj for some j} → {1, . . . , n}.
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The group Sn acts on the chosen bijection, and Sj acts by reordering the tuple. Our goal is
to show that

X (m,n) =
∞∐
j=0

(
M⋆

g(m, j)× Y⊠j(0, n)
)
/Sj,

where on the right we put the component in arity (m,n) of the 2-plethysm of S2-spaces.

By definition of the map ∆, X (m,n) is Res
Sm+n

Sm×Sn
M g,m+n. Now take an ordered tuple

(X1, . . . , Xj) represented by a point of Y⊠j(0, n), and a pointed curve in M⋆

g(m, j). We
glue each element of the tuple Xi to the i-th distinguished marked point among the j’s on
the chosen curve in M⋆

g(m, j). If Xi is a point, this remains a marked point with a label,
while if Xi is a rational curve, this has the effect of adding a rational tail which support is
a subsets of the final n markings. The quotient by the diagonal action of Sj makes this a

point in Res
Sm+n

Sm×Sn
M g,m+n, thus giving the isomorphism.

Before proceeding, we now characterize (1(m)|ε(n))-stability in combinatorial terms. Given
a rational tail T , we say that an irreducible component E of T is a middle component if
|E∩C \ E| = 2, and we say it is terminal if |E∩C \ E| = 1. The following lemma determines
(1(m)|ε(n))-stability in terms of rational tails.

Lemma 3.2.15. Let (C, p1, . . . , pm+n) ∈ Mg,m+n (or M g,m+n). Then C is (1(m)|ε(n))-stable
if and only if C does not have any rational tails which support only markings with indices in
{m+ 1, . . . ,m+ n}.

Proof. First assume (C, p1, . . . , pm+n) is (1
(m)|ε(n))-stable. Then each of its irreducible com-

ponents E satisfies

2g(E)− 2 + |(E ∩ C \ E) ∪ Sing(E)|+
∑
i|pi∈E

ai > 0.

If T is a rational tail, it must have at least one terminal component. The above inequality
reduces to

∑
i|pi∈E ai > 1 for such a component, so the marked points on T cannot be only

subset of the last n, since the sum of their weights would be at most 1.
Now assume (C, p1, . . . , pm+n) is not (1

(m)|ε(n))-stable. Let E be a component of C. The
inequality

2g(E)− 2 + |(E ∩ C \ E) ∪ Sing(E)|+
∑
i|pi∈E

ai > 0,

is satisfied if g(E) ≥ 1 or g(E) = 0 with |(E ∩ C \ E)| ≥ 2. Therefore, there must be a
rational tail T consisting of a single component such that∑

i|pi∈T

ai ≤ 1,

and this can happen only if T supports S with S ⊆ {m+ 1, . . .m+ n}.

The final ingredient of the proof of Theorem 3.2.1 is the following formula, analogous to
Proposition 3.2.10.
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Proposition 3.2.16. We have M⋆

g ◦2 Exp(2)
(
ζ
(2)
1

)
= Mhl

g

Proof. The proof follows the same argument as that of Proposition 3.2.10. We stratify
M g,(1(m)|ε(n)) by Wm,j = {(C, p1, . . . , pn+m) | there are j distinct points among the last m},
and observe that Wm,j

∼=
∐

k1+···+kj=n
kr>0 ∀ r

(
M

(j)

g,m+j × IndSn
Sk1
×···×Skj

Spec(C)
)
/Sj, by Lemma

3.2.15. The proof is complete upon summing over m and j.

We can now prove the main Theorem.

Proof of Theorem 3.2.1. Recall that we want to prove the following two formulas in Λ2[[u, v]]:

ag = ∆(bg) ◦2 Exp(2)
(
p
(2)
1

)
and

ag = ∆(bg) ◦2

(
p
(2)
1 − ∂b

(2)
0

∂p
(2)
1

)
◦2 Exp(2)

(
p
(2)
1

)
.

For the first part, consider Proposition 3.2.10: we have Mhl
g = ∆Mg ◦2 Exp(2)

(
ζ
(2)
1

)
.

We apply e(·) on both sides: on the right hand side, by Remark 3.2.9 we get ag. On

the left-hand side, we get e(∆Mg ◦2 Exp(2)
(
ζ
(2)
1

)
), which by Equations (3.8) and (3.10)

becomes ∆e(Mg)◦2 e(Exp(2)
(
ζ
(2)
1

)
). Again by Remark 3.2.9 and by Equation 3.9 we obtain

∆(bg) ◦2 Exp(2)
(
p
(2)
1

)
, which is exactly what we want.

For the second formula, we can apply e(·) on both sides of Proposition 3.2.14 and apply
the same reasoning plus (3.10) to see that

∆(bg) = e(M⋆

g) ◦2

(
p
(2)
1 +

∂b
(2)

0

∂p
(2)
1

)
, (3.12)

as e(ζ1) = p1 and e(δM0) = ∂b0/∂p1. Now as shown in [Get95] the symmetric functions

p1 +
∂b0
∂p1

and p1 − ∂b0
∂p1

are plethystic inverses, i.e.,

s ◦ (p1 +
∂b0
∂p1

) ◦ (p1 −
∂b0
∂p1

) = s

for every s ∈ Λ. So this continues to be true for the j-th inclusions in their tensor product

Λ(2) with respect tothe j-plethysm, j = 1, 2. We thus perform the operation ◦2
(
p
(2)
1 − ∂b

(2)
0

∂p
(2)
1

)
on both sides of (3.12) to get

∆(bg) ◦2

(
p
(2)
1 − ∂b

(2)
0

∂p
(2)
1

)
= e(M⋆

g).
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Now consider Proposition 3.2.16: we have Mhl

g = M⋆

g ◦2 Exp(2)
(
ζ
(2)
1

)
, so applying e(·) we

have e(Mhl

g ) = ag on the right by Remark 3.2.9, and on the left we have

e(M⋆

g ◦2 Exp(2)
(
ζ
(2)
1

)
) =

= e(M⋆

g) ◦2 Exp(2)(e
(
ζ
(2)
1

)
) =

= ∆(bg) ◦2

(
p
(2)
1 − ∂b

(2)
0

∂p
(2)
1

)
◦2 Exp(2)

(
p
(2)
1

)
,

as we wanted to show.

Proof of Corollary 3.2.2. To prove the Corollary, one uses the rank morphisms (3.2) and
(3.3). We apply rk to both sides of Theorem 3.2.1, and use that

rk
(
Exp(2)

(
p
(2)
1

))
= ey − 1.

The corollary follows from the formula

rk

(
p
(2)
1 − ∂b0

∂p
(2)
1

)
= y −

∑
n≥2

hM0,n+1(u, v) ·
yn

n!

= y +
(y + 1)uv − uvy − 1

uv − u2v2
,

due to Getzler ([Get95]).

Remark 3.2.17. The first part of Corollary 3.2.2 follows from Corollary 2.2.7, where we
show the following decomposition in the Grothendieck Group of varieties:

[Mg,((1(m)|ε(n)))] =
n∑

k=1

S(n, k)[Mg,m+k],

where S(n, k) is the Stirling number of the second kind. It follows that the generating
function ag can be obtained from bg(x+ w) by the substitution w = ey − 1.

The Euler characteristic of M1,ε(n)

In this section we include two byproduct results about the topological Euler characteristic
χ(M1,ε(n)), where M1,ε(n) is defined as the space where m = 0, i.e were all the points are
light. These results can be viewed as corollaries of Theorem 3.2.1 and Getzler’s semi-classical
approximation, see [Get98]. We compare the space M1,ε(n) with M1,n, as it parameterizes
curves that have no rational tails. The first result determines the generating function for the
numbers χ(M1,ε(n)).
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Proposition 3.2.18. Define

f(y) :=
∑
n≥1

χ(M1,ε(n))
yn

n!
.

Then

f(y) = − y

12
− 1

2
log(1− y) + ε ◦ (ey − 1),

where

ε(y) :=
1

12
(19y + 23y2/2 + 10y3/3 + y4/2).

Proof. Apply rk to both sides of Theorem 3.2.1 and consider the x-degree 0 part. We obtain
an equality

∑
n

hM
g,ε(n)

(u, v)
yn

n!
=

(∑
n

hMg,n
(u, v)

yn

n!

)
◦

(
y −

∑
n≥2

hM0,n+1(u, v)
yn

n!

)
◦ (ey − 1).

We substitute u = v = 1 and g = 1:

∑
n

χ(M1,ε(n))
yn

n!
=

(∑
n

χ(M1,n)
yn

n!

)
◦

(
y −

∑
n≥2

χ(M0,n+1)
yn

n!

)
◦ (ey − 1).

Let

g(y) := y +
∑
n≥2

χ(M0,n+1)
yn

n!
,

so by [Get95],

g ◦

(
y −

∑
n≥2

χ(M0,n+1)
yn

n!

)
=

(
y −

∑
n≥2

χ(M0,n+1)
yn

n!

)
◦ g = y

By [Get98, Theorem 4.1] we have∑
n

χ(M1,n)
yn

n!
= − 1

12
log(1 + g(y))− 1

2
log(1− log(1 + g(y))) + ε(g(y)),

so we derive∑
n

χ(M1,ε(n))
yn

n!
=

(∑
n

χ(M1,n)
yn

n!

)
◦

(
y −

∑
n≥2

χ(M0,n+1)
yn

n!

)
◦ (ey − 1)

=

(
− 1

12
log(1 + y)− 1

2
log(1− log(1 + y)) + ε(y)

)
◦ (ey − 1)

= − y

12
− 1

2
log(1− y) + ε ◦ (ey − 1),

as claimed.
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The following corollary says informally that eliminating rational tails greatly reduces the
topological complexity of the Moduli Space.

Corollary 3.2.19. We have the asymptotic formula

χ(M1,ε(n)) ∼
(n− 1)!

2
,

and

lim
n→∞

χ(M1,ε(n))

χ(M1,n)
= 0.

Proof. Consider y as a complex variable, then the function f(y) − (−log(1 − y)/2) is an
entire function. By [Wil94, Theorem 2.4.3], the values χ(M1,ε(n))/n! are approximated by
the power series coefficients of the function −1

2
log(1 − y) about the origin. Therefore, we

have

χ(M1,ε(n)) ∼
(n− 1)!

2
.

By [Get98, Corollary 4.2],

χ(M1,n) ∼
(n− 1)!

4(e− 2)n
(1 + Cn−1/2 +O(n−3/2)) ∼ (n− 1)!

4(e− 2)n
,

where C is a constant. By comparing χ(M1,ε(n)) and χ(M1,n) we have:

lim
n→∞

χ(M1,ε(n))

χ(M1,n)
= lim

n→∞

(n− 1)!

2

4(e− 2)n

(n− 1)!
= 0,

as we wanted to show.

The above proof indicates that the Euler characteristic of M1,n is much bigger than that
of M1,ε(n) . Indeed, the proof shows that we have

χ(M1,n) ∼
1

2

(
1

e− 2

)n

· χ(M1,ε(n)) ≈
(1.3922)n

2
· χ(M1,ε(n)). (3.13)

3.2.3 Computations

We conclude the chapter with sample calculations, done with SageMath, obtained using
3.2.1.1 Table 3.1 contains the (Sm × Sn)-equivariant Hodge polynomials of M1,(1(m)|ε(n)) for

m+n ≤ 5. These rely on the calculation of the series b1 by Getzler [Get98]. For n ≤ 10, the
Mixed Hodge Structures on the cohomology groups of the Moduli SpaceM1,n are polynomials
in L := H2

c (A1;C), the Mixed Hodge Structure of the affine line. A consequence is that M1,n

has only even dimensional cohomology for n ≤ 10, and only the diagonal Hodge numbers
dimHp,p are nonzero. By Theorem 3.2.1, the same is true for M1,(1(m)|ε(n)) for m + n ≤ 10.

1Sage code for these computations is available at https://drive.google.com/file/d/

1ejCm2uu5KzqEfOKsud7pXkc0OYdd5P5g/view

https://drive.google.com/file/d/1ejCm2uu5KzqEfOKsud7pXkc0OYdd5P5g/view
https://drive.google.com/file/d/1ejCm2uu5KzqEfOKsud7pXkc0OYdd5P5g/view
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Therefore, Table 3.1 displays the equivariant Poincaré polynomial hSm×Sn

M
g,(1(m)|ε(n))

(t, t), and the

Hodge polynomial can be recovered by setting t2 = uv.
Table 3.2 contains the non-equivariant Hodge polynomials ofM1,ε(n) for n ≤ 11, computed

with Corollary 3.2.2 and Getzler’s calculation of b1. By Corollary 3.2.19 and Equation (3.13),
one might expectM1,ε(n) to have less cohomology thanM1,n (this is not a direct consequence;
both spaces may have odd cohomology). Indeed, comparing with the Table [Get98, p.491],
we observe that dimH∗(M1,ε(10)) = 232, 076 while dimH∗(M1,10) = 16, 275, 872. One also

notes that just as in the case of M1,11, the space M1,ε(11) has odd-dimensional cohomology;

this is true of M1,1(m)|ε(n) whenever m+ n = 11.
Table 3.3 contains the (Sm × Sn)-equivariant compactly supported weight zero Euler

characteristic of M2,1(m)|ε(n) for m + n ≤ 6, which is equal to hSm×Sn
M

2,(1(m)|ε(n))
(0, 0), the con-

stant term of the Hodge–Deligne polynomial. We also include the numerical weight zero
Euler characteristic. This table was computed using the first part of Theorem 3.2.1, to-
gether with the formula of Chan, Faber, Galatius and Payne for hSn

Mg,n
(0, 0) [CFGP19]. We

also note that this table and our techniques apply to compute the equivariant Euler char-
acteristic χSm×Sn(∆g,(1(m)|ε(n))) :=

∑
i(−1)ichm,n(H

i(∆g,(1(m)|ε(n));Q)) ∈ Λ(2). Indeed, one

has χSm×Sn(∆g,(1(m)|ε(n))) = s
(1)
m s

(2)
n −hSm×Sn

M
g,(1(m)|ε(n))

(0, 0) when ∆g,(1(m)|ε(n)) is connected, which

holds when g ≥ 1, and when g = 0 and m+ n > 4.
We exclude the case n = 1 from Tables 3.1 and 3.3, as

hSm×S1

M
g,1(m)|ε(1)

(u, v) =

∂hSm+1

Mg,m+1
(u, v)

∂p1

(1)

· s(2)1 ,

and the analogous formula holds for the open Moduli Spaces.
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Chapter 4

Wall Crossing and filtrations of
Tropical Moduli Spaces

Here we describe the results of [Ser22] concerning the wall-crossing study of stability con-
ditions defining Tropical Moduli Spaces, their Graph Complexes and how this phenomenon
affects the Top Weight Cohomology of Mg,A.

4.1 Wall crossing for weight data

4.1.1 Chambers decompositions

In this section we study the chamber decompositions of the space of weight data Dg,n (defined
on page 8) and how it influences the behaviour of the Moduli Spaces of Tropical curves,
taking inspiration on the analogous study pursued by Hassett in [Has03] for Moduli Spaces
of Algebraic Curves.

A chamber decomposition of Dg,n consists of a finite set W of hyperplanes of Rn, called
walls of the decomposition. The chambers of the decomposition are the connected compo-
nents of

Dg,n \
⋃

w∈W

w.

Two chamber decomposition give the same chambers if we can obtain one from the other
by excluding the hyperplanes which are tangent or does not intersect Dg,n. Indeed, we will
work only with chamber decomposition where each wall intersects properly Dg,n.

There are two meaningful chamber decompositions for our problems defined in [Has03].
The first is the fine chamber decomposition:

Wf =

{∑
j∈S

aj = 1 : S ⊂ {1, ..., n}, 2 ≤ |S| ≤ n− 2δg,0

}

where δi,j is the the Kronecker delta, and we will denote the set of chambers of this decom-
position with Kf , referring to them as fine chambers (note that Wf and Kf both depend on
g and n, but we avoid to recall this to lighten the notation).
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The second is the coarse chamber decomposition, defined as

Wc =

{∑
j∈S

aj = 1 : S ⊂ {1, ..., n}, 2 < |S| ≤ n− 2δg,0

}
.

We will denote the set of the chambers of this decomposition with Kc, referring to them as
coarse chambers. Notice that Wc ⊂ Wf .

Consider {a1, ..., an} as variables. A wall in Wf or Wc with equation ai1 + ... + aim = 1
divides Dg,n in two connected components defined by inequalities

ai1 + ...+ aim > 1 and ai1 + ...+ aim < 1.

Given a chamber Ch in one of the two chamber decompositions we are considering, we can
observe that it is defined by a set of inequalities: each inequality is associated to a wall, and
indicates in which of the two components determined by that wall the elements of Ch lie.

Example 4.1.1. Let g ≥ 1 and n = 2. We have

Dg,2 = {(a1, a2) ∈ ((0, 1] ∪Q)2 : 0 < ai ≤ 1} ⊂ (0, 1]2.

Since n = 2, we have only a possible w ∈ Wf , i.e., only a wall given by a1 + a2 = 1, and we
get only two chambers as shown in Figure 4.1. In this case Wc is empty.

1

1

w = {a1 + a2 = 1}

a1 + a2 < 1

a1 + a2 > 1

Figure 4.1: The space Dg,2 for g ≥ 1 is contained in (0, 1]2, and has two fine chambers, while
since Wc is empty, it as a unique coarse chamber made by itself.

When g = 0, we have the condition a1 + a2 > 2, which is impossible since the ai are
smaller or equal than 1, so there are no admissible input data. This reflects the fact that
there are no stable rational curves (either tropical or algebraic) with only two marked points.
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Example 4.1.2. Let g ≥ 1 and n = 3. Here Dg,3 ⊂ (0, 1]3. We have

Wf = {{a1 + a2 = 1}, {a1 + a3 = 1}, {a2 + a3 = 1}, {a1 + a2 + a3 = 1}},

which are all planes in R3. The chambers of the fine decomposition are defined by the
following sets of inequalities:

Ch1 :=


a1 + a2 > 1

a1 + a3 > 1

a2 + a3 > 1

a1 + a2 + a3 > 1(which is implied by the three above)

Ch2 :=


a1 + a2 < 1

a1 + a3 > 1

a2 + a3 > 1

a1 + a2 + a3 > 1

;Ch3 :=


a1 + a2 > 1

a1 + a3 < 1

a2 + a3 > 1

a1 + a2 + a3 > 1

Ch4 :=


a1 + a2 > 1

a1 + a3 > 1

a2 + a3 < 1

a1 + a2 + a3 > 1

;Ch5 :=


a1 + a2 < 1

a1 + a3 < 1

a2 + a3 > 1

a1 + a2 + a3 > 1

Ch6 :=


a1 + a2 < 1

a1 + a3 > 1

a2 + a3 < 1

a1 + a2 + a3 > 1

;Ch7 :=


a1 + a2 > 1

a1 + a3 < 1

a2 + a3 < 1

a1 + a2 + a3 > 1

Ch8 :=


a1 + a2 < 1

a1 + a3 < 1

a2 + a3 < 1

a1 + a2 + a3 > 1

;Ch9 :=


a1 + a2 + a3 < 1(which implies the three below)

a1 + a2 < 1

a1 + a3 < 1

a2 + a3 < 1

.

When g = 0, we have

D0,3 = {(a1, a2, a3) ∈ R3 : 0 < ai ≤ 1, a1 + a2 + a3 > 2},

and Wf becomes the empty set, since the condition 2 ≤ |S| ≤ 1 is impossible. So there is
only a non-empty chamber without walls. Observe that with this parameters

Wc = {{a1 + a2 + a3 = 1}},

so there are only two chambers in Dg,3 for g ≥ 1 similarly to what happened in the previous
example for the fine decomposition.
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From Example 4.1.2, we can notice that there are inequalities which are not independent.
Namely if

∑
j∈S aj < 1 then it has to be that

∑
j∈S′ aj < 1 for every S ′ ⊂ S. At the same time

if there is S ′ ⊂ S such that
∑

j∈S′ aj > 1, then
∑

j∈S aj > 1. Moreover, whenever we have
two sets S and T such that S ∩ T = ∅ and both

∑
j∈S aj > 1 and

∑
j∈T aj > 1, then clearly∑

j∈S∪T aj > 2, so if there is a T ′ ⊂ S ∪ T such that
∑

j∈T ′ aj < 1, then
∑

j∈(S∪T )−T ′ aj > 1.

Example 4.1.3. Suppose we have n = 4 and the defining inequalities a1+a3 > 1, a2+a4 > 1,
and a1 + a2 < 1. Then a1 + a2 + a3 + a4 > 2, and so it must be that a3 + a4 > 1, i.e., this
inequality is forced by the others, otherwise we obtain an empty chamber.

By the work of Hassett [Has03] we already know some wall-crossing properties for his
moduli spaces, summarized in the following Theorem.

Proposition 4.1.4. ([Has03], Proposition 5.1) The coarse chamber decomposition is the
coarsest decomposition of Dg,n such that Mg,A is constant on each chamber. The fine chamber
decomposition is the coarsest decomposition of Dg,n such that the universal curve Cg,A is
constant on each chamber.

Chambers up to symmetry

Let us now consider the natural action of Sn on Dg,n given by permuting the entries of a
weight datum A ∈ Dg,n:

Sn ×Dg,n Dg,n

(σ, (a1, ..., an)) (aσ(1), ..., aσ(n)).

Let us take σ ∈ Sn, and denote by σ(A) the weight datum obtained applying the permutation
σ to the entries of A. The action of Sn on Dg,n induces an action on Kf and Kc, since
a chamber is sent into another chamber by permutation of the coordinates. Under this
action, two chambers are in the same orbit if there is a permutation in Sn which sends
all the inequalities defining the first chamber in the inequalities defining the second one by
permuting the indices of the variables. In particular, note that for a given Ch in one of the
two chamber sets Kf and Kc, we have σ(ChA) = Chσ(A). We call the orbits of this action
chambers up to symmetry, we denote by [Ch] the chamber up to symmetry of the chamber
Ch, and we denote the set of all the chambers up to symmetry by [Kf ] (respectively [Kc]).

Example 4.1.5. Let g ≥ 1, n = 3. There are five orbits in the fine chamber decomposition,
namely

[Kf ] = {{Ch1}, {Ch2, Ch3, Ch4}, {Ch5, Ch6, Ch7}, {Ch8}, {Ch9}}.

To see how to get an orbit, let us compute for example {Ch2, Ch3, Ch4}. By the inequalities
of Example 4.1.2, we can see that σ(Ch2) = Ch3 for σ = (2 3), (1 3 2) and τ(Ch2) =
Ch4 for τ = (1 3), (1 2 3), while id and (1 2) fix it. Analogously, we can see that
θ(Ch3) = Ch4 for θ = (1 2), (1 3 2). To find a permutation σ′ such that σ′(Ch3) = Ch2
one can just pick the inverse of a permutation of one of the σ’s, and analogously for τ ′ and
θ′.
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Definition 4.1.6. Let A = (a1, ..., an) and B = (b1, ..., bn) ∈ Dg,n be two weight data such
that ai ≤ bi for every i from 1 to n. Then we write A ≤ B.

We now focus on some technical results concerning weight data and chambers. We say
that two chambers are adjacent if there is only a wall dividing them: in terms of inequalities,
this means that there is only a subset S ⊂ {1, ..., n} such that weight data in the first chamber
satisfy

∑
i∈S ai < 1, and weight data in the second chamber satisfy the opposite inequality∑

i∈S ai > 1, while for every other S ′ ̸= S the induced defining inequality has the same
direction for the two chambers or, in other words, they lie in the same half space induced
by S ′ on Dg,n. We denote by Ch1|Ch2 the portion of the wall wS := {

∑
i∈S ai = 1} ⊂ Dg,n

dividing these two chambers, i.e., the subset of wS which verifies all the common defining
inequalities of the two chambers. Here with Dg,n we denote its closure with respect to the
real topology as subspace of Rn, i.e., Dg,n = (0, 1]n when g ̸= 0, or

D0,n = {(a1, . . . , an) ∈ (0, 1]n|a1 + · · ·+ an > 2}.

Lemma 4.1.7. Let Ch1 and Ch2 be two adjacent chambers in either Kf or Kc. The set
Ch1|Ch2 is not empty.

Proof. Let S be the subset of {1, ..., n} indexing the variables appearing in the defining
inequality which differ between Ch1 and Ch2. Suppose that weight data in Ch1 verify∑

i∈S ai < 1 and weight data in Ch2 verify
∑

i∈S ai > 1. Let X = (x1, ..., xn) in Ch1 and
Y = (y1, ..., yn) in Ch2. Consider the segment between X and Y in Dg,n: each point of the
segment can be described by Pt = (1− t)X + tY for t ∈ [0, 1].

Now consider the function f : [0, 1] → R sending t into (1 − t)
∑

i∈S xi + t
∑

i∈S yi − 1:
we have

f(0) =
∑
i∈S

xi − 1 < 0

since X is in Ch1, while

f(1) =
∑
i∈S

yi − 1 > 0

since Y = (y1, ..., yn) is in Ch2. Then there must be a t0 ∈ [0, 1] such that f(t0) = 0, and
this implies that Pt0 belongs to the wall wS.

Now let T ̸= S be a subset of {1, ..., n}, and suppose
∑

i∈T ai > 1 for each point in Ch1
and Ch2. Then

(1− t)
∑
i∈T

xi + t
∑
i∈T

yi > (1− t) + t = 1,

for every t from 0 to 1.
Analogously if we pick T ′ ̸= S such that

∑
i∈T ′ ai < 1 for each point in Ch1 and Ch2,

then
(1− t)

∑
i∈T

xi + t
∑
i∈T

yi < (1− t) + t = 1,

again for every t from 0 to 1.
So in particular Pt0 verifies all the common defining inequalities of the two chambers and

belongs to the wall wS, hence it lies in Ch1|Ch2.
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Proposition 4.1.8. Let Ch1 and Ch2 be two adjacent chambers in either Kf or Kc, with
S ⊂ {1, ..., n} such that data in Ch1 satisfy

∑
i∈S ai < 1, while data in Ch2 satisfy

∑
i∈S ai >

1, and for every other T ̸= S the corresponding inequalities agree for both chambers. Then
there are A ∈ Ch1 and B ∈ Ch2 such that A ≤ B.

Proof. By Lemma 4.1.1 the set Ch1|Ch2 is non empty, so we can choose

X := (x1, ..., xn) ∈ Ch1|Ch2.

Let ε ∈ Q be such that

ε < min
T ̸=S,T⊂[n]

|
∑
i∈T

xi − 1|.

Then we can pick A = (x1, ..., xi − ε, ..., xn) and B = (x1, ..., xi + ε, ..., xn) for some i ∈ S.
Assume both have all rational components, then these two weight data verify all the

common defining inequalities of Ch1 and Ch2. Indeed, if we choose a subset T ̸= S of
{1, ..., n} such that

∑
i∈T xi < 1, then∑

i∈T

ai =
∑
i∈S

xi − ε < 1 and
∑
i∈T

bi =
∑
i∈T

xi + ε < 1

since
∑

i∈T xi < 1− ε by how we pick ε.
Analogously if we choose T ̸= S such that

∑
i∈T xi > 1, then∑

i∈T

bi =
∑
i∈T

xi + ε > 1 and t
∑
i∈S

ai =
∑
i∈T

xi − ε > 1

since
∑

i∈T xi > 1 + ε, so A and B verify all the common defining inequalities of Ch1 and
Ch2. Moreover

∑
i∈S ai < 1 and

∑
i∈S bi > 1, so it follows that A ∈ Ch1, B ∈ Ch2, and

A ≤ B by construction.
If A = (x1, ..., xi − ε, ..., xn) has irrational components, we can find a weight datum A′

in Ch1 round down each the irrational components xi with a rational number x′i such that
xi − x′i < ε. The same can be done with B rounding up, so that we have B′ ∈ Ch2 and by
construction A′ ≤ B′, hence the assumption we made before can always be performed, so
the proof follows.

Definition 4.1.9. Let Ch1, Ch2 ∈ Kf . We say that Ch1 ≤ Ch2 if they are equal or there
are S1, ..., St ⊂ {1, ..., n} such that for every A ∈ Ch1 we have

∑
i∈Sj

ai < 1 and for every

B ∈ Ch2 we have
∑

i∈Sj
bi > 1 for every j from 1 to t, and given any S ′ ̸= Sj for every j

from 1 to t, the two chambers are in the same half-space induced by the wall

{
∑
i∈S′

ai = 1}

on Dg,n, i.e., all the other defining inequalities agree.

Informally we are asking that to move from Ch1 to Ch2 we need to cross t walls changing
the direction of t inequalities from left (< 1) to right (> 1), without changing others.
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Proposition 4.1.10. The relation defined in Definition 4.1.9 is a partial order on Kf (re-
spectively Kc).

Proof. The relation is reflexive by definition. It is also clearly transitive: let Ch1 ≤ Ch2 and
Ch2 ≤ Ch3, and let S1, ..., St be the subsets of {1, ..., n} on which the defining inequalities
of Ch1 and Ch3 disagree. Fix a j from 1 to t. If the inequalities corresponding to Sj agree
for Ch1 and Ch2, then it has to be that

∑
i∈Sj

ai < 1 for both, since it has to disagree with
the inequality corresponding to Sj of Ch3 and Ch2 ≤ Ch3 by hypothesis. If the inequalities
corresponding to Sj disagree for Ch1 and Ch2, then it has to be that

∑
i∈Sj

ai < 1 for Ch1
and

∑
i∈Sj

ai > 1 for Ch2, since we have Ch1 ≤ Ch2. But then it has to be that
∑

i∈Sj
ai > 1

also for Ch3, otherwise it can not be that Ch2 ≤ Ch3, and so we have Ch1 ≤ Ch3.
For antisymmetry, let Ch1 ≤ Ch2 and Ch2 ≤ Ch1, and suppose they are different. By

the first relation we get that there are S1, ..., Sq such that their inequalities agree for S ′ ̸= Sj,
for j = 1, ..., q and for them

∑
i∈Sj

ai < 1 in Ch1 and
∑

i∈Sj
ai > 1 in Ch2. On the other

hand, the second equation gives that there are T1, ..., Tr such that their inequalities agree for
S ′ ̸= Tj, and for them

∑
i∈Tj

ai < 1 in Ch2 and
∑

i∈Tj
ai > 1 in Ch1. But this is impossible,

since such Tj’s can not exist by the first relation, so they must be the same chamber.

The partial order we just defined on Kf and Kc naturally induces a partial order on [Kf ]
and [Kc].

Definition 4.1.11. Let [Ch1], [Ch2] ∈ [Kf ] (respectively [Kc]), we say [Ch1] ≤ [Ch2] if
there are two chambers Ch1 ∈ [Ch1] and Ch2 ∈ [Ch2] such that Ch1 ≤ Ch2.

Then by Proposition 4.1.10 we have the following.

Corollary 4.1.12. The relation defined in Definition 4.1.11 is a partial order on the set
[Kf ] (respectively [Kc]).

Both the number of chambers and the number of chambers up to symmetry are finite,
as shown in [ADGH20]. For every g, there is a unique maximal chamber, namely the one
given by the weight datum 1(n). It is easy to see that it is the only element in the orbit of
the action of Sn, and consequently [Ch1(n) ] is also the maximum with respect to the partial
order on chambers up to symmetry. When g ≥ 1, there is also a minimal chamber (up to

symmetry) which contains all the admissible weight data A ≤ 1
n

(n)
. Also in this case, the

orbit of the minimal chamber is made only by itself. From now on when g ≥ 1, we denote
by E a generic weight datum in the minimal chamber, which is denoted by ChE .

4.1.2 An algorithm to compare weight data

Given two arbitrary weight data A = (a1, ..., an) and B = (b1, ..., bn) in Dg,n, it is possible to
describe an algorithm which compares their chambers up to symmetry with respect to the
order we put on them, and also says whenever they are not comparable. We describe the
algorithm over the set Kf : of course, the same algorithm works for Kc by considering the
condition 2 < |S| ≤ n − 2δg,0 instead of 2 ≤ |S| ≤ n − 2δg,0 each time we do an iteration
over the set.
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The procedure is the following:

1) For a given input n, consider the group of permutations

Sn = {σ1 = id, ..., σk, ..., σn!}.

Consider also the inputs A and B, and denote by Ak = (a1,k, ..., an,k) the datum σk(A).

2) For each set S ⊂ {1, ..., n} such that 2 ≤ |S| ≤ n−2δg,0, we compute the sums
∑

i∈S bi.

The index k will count the iterations of the algorithm. So to start the iteration here we set
k = 1 and A1 = A.

3) For each set S ⊂ {1, ..., n} such that 2 ≤ |S| ≤ n − 2δg,0, we compute the sums∑
i∈S ai,k.

Then we can have the following outputs:

3.1) If the condition
∑

i∈S ai,k ≤ 1 holds if and only if the condition
∑

i∈S bi ≤ 1 holds (and
of course

∑
i∈S ai,k > 1 if and only if

∑
i∈S bi > 1), then [ChA] = [ChB];

3.2) If there are S1, ..., Sd such that
∑

i∈Sj
ai,k ≤ 1 and

∑
i∈Sj

bi > 1, while for every other

S ̸= Sj for every j = 1, ..., d we have
∑

i∈S ai,k ≤ 1 if and only if
∑

i∈S bi ≤ 1, then
[ChA] ≤ [ChB]. If the same happens but with the roles of Ak and B are reversed then
[ChB] ≤ [ChA]

3.3) If there are S, T such that
∑

i∈S ai,k ≤ 1 and
∑

i∈T bi > 1 while
∑

i∈T ai,k > 1 and∑
i∈T bi ≤ 1, we let the index k grow by one.

If k ≤ n! we restart from the point (3) of the algorithm.

When k = n! + 1, we can conclude that [ChA] and [ChB] are not comparable in the
partial order.

When n grows, this algorithm is not really efficient as it needs an extremely large number of
operations: in the worst case, if g ≥ 1 we have to compute (2n − n)(n! + 1) sums and make
(2n−n)n! comparisons of results, while if g = 0 the number of sums is (2n− 2n− 1)(n! + 1),
with (2n − 2n− 1)n! comparisons.

Remark 4.1.13. Notice that in the case of comparable chambers up to symmetry a smarter
choice of the permutation can reduce the number of the operations, but they will never fall
below the number of operations of the best case, which is when we need a single iteration.
In this case the number of sums is 2(2n − n) if g ≥ 1 and 2(2n − 2n− 1) if g = 0, while the
number of comparisons is (2n − n) if g ≥ 1 and (2n − 2n− 1) if g = 0.
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4.2 Filtration Theorem

First of all we remark the following property:

Remark 4.2.1. Let (g,A = (a1, ...an)) and (g,B = (b1, ...bn)) be two input data such that
A ≤ B. Then a (g,A)-stable graph is always (g,B)-stable, because for every vertex v ∈ V (G)
we have

0 < 2w(v)− 2 + |v|E + |v|A ≤ 2w(v)− 2 + |v|E + |v|B.
In particular, for any weight data A, a graph that is (g,A)-stable is always stable in the
standard sense, since A ≤ 1(n) for every weight datum A.

Here in this Section we prove the following Theorem

Theorem 4.2.2. Let g ≥ 0, n ≥ 1 be two integers, and A ∈ Dg,n a weight datum. There are
filtrations of M trop

g,A given by embeddings induced by the partial order on the set of chambers
up to symmetry [Kf ] (respectively Kc). Namely, a ordered sequence

[ChA1 ] ≤ [ChA2 ] ≤ ... ≤ [ChAp ] ≤ ... ≤ [ChAN−1
] ≤ [ChA]

induces a filtration

M trop
g,A1

↪→M trop
g,A2

↪→ ... ↪→M trop
g,Ap

↪→ ... ↪→M trop
g,AN−1

↪→M trop
g,A .

The same result holds if we replace M trop
g,A with the moduli space of extended weighted tropical

(g,A)-stable curves M
trop

g,A or the moduli space of (g,A)-stable tropical curves with volume 1,
∆g,A.

The strategy of the proof is to show that there are filtrations of the graph categories
Gg,A induced by the partial order on the chambers up to symmetry. Then the direct limit
description of the moduli spaces of tropical curves will give us the result.

Notice that we have an ordered sequence of chambers up to symmetry [ChA1 ] ≤ · · · ≤
[ChAN

] induced by any analogous sequence of chambers ChA1 ≤ · · · ≤ ChAN
, and also if

we have a sequence of weight data A1 ≤ · · · ≤ AN . We exploit these properties in the next
sub-section.

4.2.1 Wall-Crossing properties for graphs

Consider the graph categories Gg,A defined in Remark 1.2.16. We start with the following
property.

Proposition 4.2.3. Consider the map

Ψ : Dg,n \
⋃

w∈Wf

w → { Graph Categories Gg,A}

sending a weight datum A in the graph category Gg,A. Then
1)The map Ψ is constant on each chamber of the fine chamber decomposition.
2)The fine chamber decomposition is the coarsest one with the above property, i.e., if A

and B are in two different chambers of the fine chamber decomposition, their image under
the above map is different.
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Proof. We follow the lines of Proposition 6.2 of [Uli15], since the proof relies only on graphs.
The map is clearly constant on the fine chambers of Dg,n: in fact, pick A and A′ in the same
chamber. Then a n-marked weighted graph G of genus g is A-stable if and only if for every
vertex v the condition 2w(v) − 2 + val(v) + |v|A > 0 is satisfied. Now if w(v) ≥ 1 and/or
val(v) ≥ 3 this condition does not depend on A, so assume w(v) = 0 and 1 ≤ val(v) ≤ 2.
Then 2w(v) − 2 + val(v) + |v|A > 0 becomes |v|A > 2 − val(v). If val(v) = 2, then we are
asking that |v|A > 0, but this is true for every weight datum in Dg,n. If val(v) = 1, then
saying that the graph is A-stable implies that |v|A =

∑
xi∈L(v)

ai > 1. But now since A and A′

are in the same chamber,
∑

xi∈L(v)
a′i > 1 too, so the graph is also A′-stable. By interchanging

the role of A and A′ we show also that a graph which is A′-stable is also A-stable.

We are left to show that Gg,A changes whenever we cross a wall. Let S ⊂ {1, ..., n} with
2 ≤ |S| ≤ n be the subset indexing the equation of the wall w = {

∑
i∈S ai = 1}. Suppose

first that g ≥ 1. Let S ⊂ {1, ..., n} with 2 ≤ |S| ≤ n be the subset indexing the equation
of the wall w = {

∑
i∈S ai = 1}, and consider the graph containing one edge between two

vertices, one with g loops on it and one with all the legs with index in S (see Figure 4.2).
Then the graph is stable of type (g,A) if

∑
i∈S ai is greater than 1, otherwise it is not, i.e.,

changing the half-space of Dg,n we are also changing the category Gg,A, since the graphs are
not the same.

u v legs indexed by S

g loops
other legs

Figure 4.2: This graph is stable unless
∑

i∈S ai ≤ 1.

In the case g = 0, let S ⊂ {1, ..., n} with 2 ≤ |S| ≤ n − 2 be the subset indexing the
equation of the wall w = {

∑
i∈S ai = 1}, and consider the graph with two vertices of weight

0 connected by an edge and legs incident to the first vertex having indices in S, while the
others are incident to the second vertex (Figure 4.3).

u v legs indexed by S

other legs

Figure 4.3: This rational graph becomes stable only whenever
∑

i∈S ai ≥ 1; this is enough
since the stability condition on the vertex adjacent to legs indexed by Sc is automatically
verified due to the conditions imposed in the start.

Suppose that
∑

i∈S ai ≤ 1, then the condition
∑n

i=1 ai > 2 implies
∑

i/∈S ai > 1. So when
crossing the wall

∑
i∈S ai = 1 without changing the ai such that i /∈ S we obtain that the

described graph is stable of type (0,A) if
∑

i∈S ai > 1, and it is not otherwise, and again we
conclude that changing the half-space of Dg,n the category Gg,A is also different.
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Remark 4.2.4. There is an analogous result by Hassett, namely Proposition 5.1 of [Has03],
on Hassett Moduli Spaces of curves. Here Hassett shows that the spaces Mg,A are invariant
in the same chamber whenever we pick it from the coarse chamber decomposition , while the
same property holds for Universal curves Cg,A if we consider the fine chamber decomposition.

In the following lemma we will consider the case of weight data lying on walls.

Lemma 4.2.5. Let d ≥ 1 be an integer and S1, ..., Sd ⊂ {1, ..., n}. Let Ch be a chamber
(either of Kf or Kc) such that

∑
i∈Sj

ai < 1 for every j from 1 to d. Let R be a weight

datum such that
∑

i∈Sj
ri = 1, for every j from 1 to d, while for every S ̸= Sj the weight

datum R belongs to the half-space induced by S containing Ch. Then Gg,A is equal to Gg,R,
for every A ∈ Ch.

Proof. By definition, for all S and for every A ∈ Ch we have
∑

i∈S ai < 1 if and only if∑
i∈S ri ≤ 1. Indeed since A belongs to a chamber

∑
i∈S ai ̸= 1 for any S ⊂ {1, ..., n}.

Moreover, we can find A ∈ Ch with the property that A ≤ R. Indeed, let S =
⋃d

j=1 Si and
let ε := (min

S′ ̸=S
|
∑

i∈S′ xi − 1|)/2|S|. We can consider A = (r1, ..., rn) where:

ri :=

{
ri if i /∈ S
ri − ε if i ∈ S

By construction if
∑

i∈Sj
ri = 1 then

∑
i∈Sj

ri < 1 for every j = 1, ..., d. Moreover if∑
i∈S ri < 1 then

∑
i∈S ri < 1 and if

∑
i∈S ri > 1 then

∑
i∈S ri > 1. Moreover, A ≤ R,

so the category Gg,A is a full subcategory of Gg,R by Remark 4.2.1. As in the proof of
Proposition 4.1.8 we can assume A to have all rational components, so that A ∈ Ch. Now
by contradiction suppose there is G ∈ Ob(Gg,R)\Ob(Gg,A). If this happens, there is v ∈ V (G)
such that

2w(v)− 2 + |v|E + |v|A < 0 < 2w(v)− 2 + |v|E + |v|R.

This implies that there is an S such that |v|A =
∑

i∈S ai < 1 while |v|R =
∑

i∈S ri > 1,
indeed 2w(v) − 2 + |v|E + |v|A < 0 implies 2w(v) − 2 + |v|E < −|v|A, so w(v) = 0 and
|v|E ≤ 1, since they are all integers. But this is a contradiction by our hypothesis on Ch
and R, so the result follows.

Proposition 4.2.6. Let Ch1, Ch2 ∈ Kf (respectively Kc) be two chambers, A ∈ Ch1,
B ∈ Ch2 two weight data. Then, if Ch1 ≤ Ch2, the category Gg,A is a full subcategory of
Gg,B.

Proof. Suppose Ch1 and Ch2 are different, otherwise the result is trivial by Lemma 4.2.3.
Since Ch1 ≤ Ch2, there are S1, ..., Sd ⊆ {1, ..., n} such that

∑
i∈S ai < 1 for (a1, ..., an) ∈ Ch1

and
∑

i∈S bi > 1 for (b1, ..., bn) ∈ Ch2, for j = 1, ..., d, while for S ̸= Sj the defining
inequalities of Ch1 and Ch2 have the same direction.

Suppose first d = 1. Since Gg,A’s are constant on each chamber, by Proposition 4.1.8 we
can find A′ ∈ Ch1, B′ ∈ Ch2 such that A′ ≤ B′ and we have Gg,A = Gg,A′ and Gg,B = Gg,B′ .
The inclusion follows from Remark 4.2.1.

Let d ≥ 2, and suppose by induction that for every d′ < d, given two chambers Ch′1 and
Ch′2 whose inequalities agree for all but d′ sets of indices S ′1, ..., S

′
d′ , and for every A ∈ Ch1
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we have
∑

i∈S′
j
ai < 1 while for every B ∈ Ch2 we have

∑
i∈S′

j
ai > 1, then we can find a

weight datum in A′ ∈ Ch′1 and B′ ∈ Ch′2 such that A′ ≤ B′.
First, suppose there is a chamber Ch3 whose defining inequalities agree with the one

of Ch1 except for S1, ..., Sc, for a number c < d. Then by induction there is A ∈ Ch1,
P ,Q ∈ Ch3 and B ∈ Ch2 such that A ≤ P and Q ≤ B. Then we can induce inclusions

Gg,A ↪→ Gg,P = Gg,Q ↪→ Gg,B,

so by composition we get the desired inclusion.
Suppose now there is no chamber Ch3, i.e., for every weight datum Q not belonging to

walls such that
∑

i∈Sj
qi > 1 for some i = 1, ..., d, then

∑
i∈Sk

qi > 1 for every k = 1, ..., d
and the same holds picking the symbol < instead of the symbol >.

Let X ∈ Ch1, Y ∈ Ch2 and consider the segment which goes from X and Y : then
every point on the segment Pt = (1 − t)X + tY for t ∈ [0, 1] verifies all the common
inequalities, and there is at least a t′ ∈ [0, 1] such that Pt′ = (p1, ..., pn) belongs to a wall
wSk

, for some k = 1, ..., d. Let ε = min{T |∑i∈T pi ̸=1} |1 −
∑

i∈T pi| and let δ < ε. Define

B = (b1, ..., bn) = (p1 +
δ
n
, ..., pn + δ

n
). It follows by construction that B verifies all the

inequalities verified by Pt, and since
∑

i∈Sk
bi > 1 and it can not be on a wall it belongs to

Ch2. Analogously we can define A = (a1..., an) = (p1 − δ
n
, ..., pn − δ

n
). Since

∑
i∈Sk

ai < 1
while all other equalities agree with the one of Pt′ then it belongs to Ch1, and A ≤ B by
construction, so we conclude by observing that we can suppose them to have all rational
components as in the proof of 4.1.8.

Remark 4.2.7. We shown also that for any two chambers Ch1 ≤ Ch2 we can find a weight
datum in A ∈ Ch1 and B ∈ Ch2 such that A ≤ B.

Now consider the action of Sn on the sets of chambers. This action induces an analogous
action on the set of categories Gg,A which permutes the label of the marked points on graphs,
as shown in the following Example.

Example 4.2.8. Consider g = 1, n = 3, let A = (ε, 2
3
, 2
3
) ∈ D1,3, for some ε > 0. Then the

graph G in Figure 4.4 is (1,A)-stable:

1

3

2
G

Figure 4.4: A (1, (ε, 2
3
, 2
3
))-stable graph.

Let now σ = (1 2 3) ∈ S3, then σ(A) = (2
3
, ε, 2

3
), and one can observe that G is not

anymore stable with respect to the new weight datum. But changing the label of the legs
of G according to the same permutation σ gives the new graph G′ in Figure 4.5, which is
(1, σ(A))-stable.

By Example 4.2.8 we can easily deduce that each time we have a weight datum A and a
permutation σ ∈ Sn, the two categories Gg,A and Gg,σ(A) are isomorphic, since it is enough
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2

1

3
G′

Figure 4.5: A (1, (2
3
, ε, 2

3
))-stable graph.

to send each graph to the one obtained relabeling its legs according to σ, without changing
morphisms. This isomorphism becomes an equality if the chosen permutation acts trivially
on the chamber. So, up to isomorphism, there is only a category Gg,A for each chamber up
to symmetry, which is the one containing the chamber to which A belongs. Therefore, the
latter Proposition can be rephrased including this symmetry property, giving the following:

Proposition 4.2.9. Let [Ch1] and [Ch2] be two chambers up to symmetry, A ∈ Ch1 ∈ [Ch1],
B ∈ Ch2 ∈ [Ch2]. There is an inclusion as a full subcategory Gg,A ↪→ Gg,B each time
[Ch1] ≤ [Ch2]. It is an isomorphism if the two chambers up to symmetry are the same.

Since the stability conditions on tropical curves are defined on their underlying graphs,

everything we shown so far can be easily generalized for M trop
g,A , M

trop

g,A and ∆g,A. We can
resume everything in the following Proposition.

Proposition 4.2.10. Let g, n ≥ 1 be two integers and A and B two weight data in Dg,n.

1) If A ≤ B, then M trop
g,A ⊂M trop

g,B ;

2) If A and B are in the same chamber, then M trop
g,A =M trop

g,B ;

3) If A and B are obtained one from the other through a permutation of coordinates, then
M trop

g,A is homeomorphic to M trop
g,B through a relabeling homeomorphism;

4) If A and B are in chambers which belong to the same orbit, thenM trop
g,A is homeomorphic

to M trop
g,B through a relabeling homeomorphism.

The same results hold if we replace the M trop
g,A ’s with the M

trop

g,A ’s or the ∆g,A’s.

Proof. It is enough to observe that a point in M trop
g,A is identified by a graph G ∈ Gg,A and a

edge length function. Then 1) follows by 4.2.1, 2) follows from 4.2.6, 3) and 4) follows from

4.2.9. The result forM
trop

g,A and ∆g,A holds in the same way by considering the extended edge
lengths and edge lengths making the volume being one, respectively.

Remark 4.2.11. A priori, given A and B in different chambers, we can not say if two
moduli spaces M trop

g,A and M trop
g,B are not homeomorphic as topological space. The point on

using morphisms of Proposition 4.2.10 is that they preserve the moduli space structure.

We can now conclude the proof of the main Theorem of this section.
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Proof of Theorem 4.2.2. Consider an ordered sequence of chambers up to symmetry

[ChA1 ] ≤ [ChA2 ] ≤ ... ≤ [ChAp ] ≤ ... ≤ [ChAN−1
] ≤ [ChA].

At each step of the filtration [ChAp ] ≤ [ChAp+1 ] we can find two weight data A ≤ B and
two chambers Ch1 ≤ Ch2 such that A ∈ Ch1 ∈ [ChAp ] and B ∈ Ch2 ∈ [ChAp+1 ]. Then

M trop
g,Ap

≈ M trop
g,A ⊂ M trop

g,B ≈ M trop
g,Ap+1

, where by ≈ we indicate homeomorphisms, and the
homeomorphism and inclusion are the one of 4.2.10. This induces the desired inclusion map
M trop

g,Ap
↪→M trop

g,Ap+1
. The result of the Theorem then follows repeating this reasoning for each

step of the sequence.

Example 4.2.12. Consider the case g ≥ 1, n = 3. We saw the chamber decomposition in
Example 4.1.2, and the chamber decomposition up to symmetry in Example 4.1.5. We choose
a weight datum for each chamber, and for symmetric chambers we choose data obtained after
a permutation:

• (1, 1, 1) ∈ Ch1;

• (12
27
, 14
27
, 1− ε) ∈ Ch2;

• (14
27
, 1− ε, 12

27
) ∈ Ch3;

• (1− ε, 12
27
, 14
27
) ∈ Ch4;

• (12
27
, 14
27
, 14
27

− ε) ∈ Ch5,

• (14
27

− ε, 12
27
, 14
27
) ∈ Ch6;

• (14
27
, 14
27

− ε, 12
27
) ∈ Ch7;

• (4
9
− ε, 4

9
− ε, 4

9
− ε) ∈ Ch8;

• (1
3
, 1
3
, 1
3
− ε) ∈ Ch9,

for 0 < ε < 1
27

rational. We pick these ε perturbations in order to have our weight data
in the interior of chambers. Since moduli spaces are constant on each chamber, for every
weight datum A ∈ Dg,3, the moduli space M trop

g,A is the same as the space obtained picking
one of the nine data above (the one which lies in the same chamber of A). So by the partial
order on the set of the chambers, we get the following diagram:

M trop
g,3 =M trop

g,(1,1,1)

M trop

g,( 12
27

, 14
27

,1−ε) M trop

g,( 14
27

,1−ε, 12
27

)
M trop

g,(1−ε, 12
27

, 14
27

)

M trop

g,( 12
27

, 14
27

, 14
27
−ε) M trop

g,( 14
27

, 14
27
−ε, 12

27
)

M trop

g,( 14
27
−ε, 12

27
, 14
27

)

M trop

g,( 4
9
−ε, 4

9
−ε, 4

9
−ε)

M trop

g,( 1
3
, 1
3
, 1
3
−ε)

≈ ≈

≈ ≈
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In the diagram, we indicated the relabeling homeomorphism of Proposition 4.2.10 with ≈.
For example, the following filtration

M trop

g,( 1
3
, 1
3
, 1
3
−ε) ⊂M trop

g,( 4
9
−ε, 4

9
−ε, 4

9
−ε) ⊂M trop

g,( 14
27
−ε, 12

27
, 14
27

)
⊂M trop

g,(1−ε, 12
27

, 14
27

)
⊂M trop

g,3 ,

of the space M trop
g,3 can be obtained by picking the right column of the diagram.

Clearly, the same diagram and the same filtrations also work for M
trop

g,A and ∆g,A. Notice
that in this case the partial order induced on the chambers up to symmetry becomes total,
since we can say for each couple of chambers up to symmetry which of them is greater or
equal than the other. This is not true in general, as shown in the following example.

Example 4.2.13. Let g = 0, n = 8. Consider the chamber Ch1 defined by the following set
of inequalities: 

a1 + a2 > 1

a1 + a3 > 1

a1 + a4 > 1

a1 + a5 > 1

a1 + a6 > 1

a1 + a7 > 1

ai + aj < 1 for any other couple of indices∑
i∈S ai > 1 for any S such that |S| ≥ 3

This is not empty, for example the datum

A1 = (
1

2
+ 2ε,

1

2
− ε,

1

2
− ε,

1

2
− ε,

1

2
− ε,

1

2
− ε,

1

2
− ε, 2ε)

belongs to Ch1 for a sufficiently small ε. Consider now the chamber Ch2 defined by

a1 + a2 > 1

a1 + a3 > 1

a1 + a4 > 1

a2 + a3 > 1

a2 + a4 > 1

a3 + a4 > 1

ai + aj < 1 for any other couple of indices∑
i∈S ai > 1 only if |S| ≥ 3 and |S ∩ {1, 2, 3, 4}| ≥ 2.

This also is not empty since

A2 = (
1

2
+ ε,

1

2
+ ε,

1

2
+ ε,

1

2
+ ε, ε, ε, ε, ε)

belongs to Ch2 for a sufficiently small ε. We can see that Ch1 and Ch2 are not comparable
with respect to the partial order on Kf by looking at their defining inequalities. Indeed, by
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definition, given Cha and Chb in K we say that Cha ≤ Chb if they are equal or, informally,
all of their defining inequalities which have different direction are such that

∑
i∈S ai < 1

for every A ∈ Cha and
∑

i∈S bi > 1 for every B ∈ Chb. But here we have that in Ch1,
a1 + a5 > 1 while a1 + a5 < 1 in Ch2. Meanwhile, a2 + a4 < 1 in Ch1, but a2 + a4 > 1 in
Ch2 so the above condition is not satisfied.

Moreover these two chambers are in different orbits of the action of S8 on K since the
inequalities with two variables and right direction defining Ch1 all contains the variable a1,
while in Ch2 there is no variable repeated in all the inequalities with two variables and right
direction. So there is no permutation σ in S8 such that σ(Ch1) = Ch2, and this implies
that [Ch1] and [Ch2] are not in [Kf ]. At the level of moduli spaces of tropical curves, it
means that we can find points inM trop

0,A1
with combinatorial types which are not inM trop

0,A2
and

viceversa, asshown in the Figure 4.2.13.

1 2

3

4 5

6

78

1

2

3

4

5 6 7 8

Figure 4.6: The graph on the left is a combinatorial type of points inM trop
0,A1

but not inM trop
0,A2

,

while the graph on the right is a combinatorial type of points in M trop
0,A2

but not in M trop
0,A1

.

4.2.2 Examples of filtrations

In this section we construct some sequences of weight data, chambers and chambers up to
symmetry which define interesting filtrations of moduli spaces.

Example 4.2.14. Recall that for any g, n ≥ 1 there are two special chambers up to symme-
try: the maximal chamber [Ch1(n) ], which is greater than any other chamber up to symmetry,
and the minimal chamber [Chε(n) ] := [ChE ], for ε <

1
n
, which is smaller than any other cham-

ber up to symmetry. Moreover, both these orbits are made by a single chamber.
Let F = ( 1

n
+ ε, 1

n
, ..., 1

n
). This datum belongs to the chamber ChF described by the

inequalities
∑

i∈S ai < 1 for every S ̸= {1, ..., n} and
∑n

i=1 ai > 1 . It is clearly invariant by
the action of Sn and so its orbit [ChF ] is made only by itself. In particular, σ(F) ∈ ChF for
every σ ∈ Sn. Moreover, by the inequalities defining ChF it is clear that Chε(n) ≤ ChF ≤ Ch
for any chamber Ch ̸= Chε(n) .

Suppose we have two chambers up to symmetry [Ch1] and [Ch2] such that [Ch1] ≤ [Ch2]:
then it is always possible to construct a five term sequence

[ChE ] ≤ [ChF ] ≤ [Ch1] ≤ [Ch2] ≤ [Ch1(n) ]

inducing a filtration of moduli spaces

M trop
g,E ↪→M trop

g,F ↪→M trop
g,A ↪→M trop

g,B ↪→M trop
g,n ,

where A ∈ Ch1 and B ∈ Ch2 .
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Remark 4.2.15. In general, given a sequence [ChA1 ] ≤ ... ≤ [ChAp ] which does not contain
already [ChE ], [ChF ] and [Ch1(n)] , it is always possible to extend it by two terms [ChE ] ≤
[ChF ] on the left and by [Ch1(n) ] on the right.

Example 4.2.16. Let g ≥ 1, n ≥ 2, and ε < 1
n
, and consider the Heavy/Light space

(1(m)|ε(n−m)) with n entries, m ≤ n. Notice that if m = 0 we get the weight datum ε(n),
while if m = n we get the weight datum 1(n).

By construction, we have

(1(m), ε(n−m)) ≤ (1(m+1), ε(n−m−1))

for any m = 0, ..., n− 1, and passing to their chambers it is easy to see that we have

ChE ≤ Ch(1(1),ε(n−1)) ≤ ... ≤ Ch(1(m),ε(n−m)) ≤ ... ≤ Ch(1(n−1),ε(1)) ≤ Ch1(n) .

It is easy to check that all of these inequalities are strict except the last one, since

Ch(1(n−1),ε(1)) = Ch1(n) .

So there is an induced filtration of spaces M trop
g,E ↪→M trop

g,(1(1),ε(n−1))
↪→ ... ↪→M trop

g,(1(m),ε(n−m))
↪→

... ↪→M trop
g,n . Of course the same holds also if we consider the chambers up to symmetry.

Remark 4.2.17. The Heavy/Light filtration exists also for g = 0, but in this case we have
to start by the case m = 2.

Example 4.2.18. Fix g ≥ 0 and l ∈ {2, ..., n}. Suppose we have a chamber defined by the
following set of inequalities:

∑
i∈S ai > 1 if and only if |S| ≥ l. The weight datum

Hl := (
1

l
+ εl, ...,

1

l
+ εl)

belongs to that chamber for εl sufficiently small, and its chamber ChHl
is invariant with

respect to the action of Sn. We call [ChHl
] the l-th floor of the chamber decomposition.

Notice that if l = 2, ChH2 = Ch1(n) , while if l = n, ChHn = ChF . Moreover by
construction ChHl

≤ ChHl−1
(and clearly the same holds if we pick them up to symmetry)

so there is an induced filtration M trop
g,F ↪→ ... ↪→ M trop

g,Hl
↪→ M trop

g,Hl−1
... ↪→ M trop

g,n , eventually

extendable on the left with M trop
g,E . Notice that being stable for a curve in the l−th floor

means that each valence one vertex is adjacent to at least l markings.

4.3 Graph Complexes

4.3.1 Definition of Graph Complexes

Let (g,A) be an input datum. The chain complex G(g,A) is a complex of rational vector
spaces generated by elements [G,ω] where G is an n-marked (g,A)-stable pure graph and ω
is a total order on the set of the edges of G. Generators are subject to the relation

[G,ω] = sgn(σ)[G′, ω′]
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if there is an isomorphism of n-marked graphs G ∼= G′ under which the orders ω and ω′ are
related by the permutation σ ∈ S|E(G)|.
This forces [G,ω] = 0 when G admits an automorphism that induces an odd permutation

on the edges. The homological degree of G is |E(G)| − 2g. So G(g,A) =
⊕

G
(g,A)
j , where

G
(g,A)
j is the Rational vector space spanned by elements [G, ω] where G has j + 2g edges.

The differential on [G,ω] ̸= 0 is defined as

∂[G,ω] =

|E(G)|∑
i=0

(−1)i[G/ei, ω|E(G)\{ei}],

where G/ei indicates the contraction and ω|E(G)\{ei} is the induced order. If ei is a loop, we
interpret the corresponding term in the formula of the differential as zero.

Remark 4.3.1. This generalizes the notions and the theory developed in [CGP21] and
[CGP22]. In fact, when A = 1(n), we recover the definition of the Graph Complex G(g,n) we
have in [CGP22].

Once we have Graph Complexes,we can prove the following Theorem we already an-
nounced in Section 1.3.4.

Theorem 4.3.2. Let g ≥ 1 and A ∈ Dg,n a weight datum. There is a natural injection of
chain complexes

G(g,A) → C∗(∆g,A,Q)

decreasing degrees by 2g − 1, inducing isomorphisms on homology

H̃k+2g−1(∆g,A;Q) → Hk(G
(g,A))

for all k’s.

Proof. We prove this theorem following the lines of Theorem 1.4 of [CGP22]. Consider the
cellular chain complex C∗(∆g,A,Q). It is generated in degree p by [G,ω] where G ∈ Gg,A is
a graph and ω : E(G) → [p] is a bijection, with the relations [G,ω] = sgn(σ)[G′, ω′] if there
is an isomorphism G → G′ of graphs inducing the permutation σ of the set [p]. We claim
that the complex C∗(∆g,A,Q) splits into the direct sum of two subcomplexes A(g,A)⊕B(g,A),
A(g,A) being spanned by the generators where G has no loops and whose vertices have weight
zero, and B(g,A) is spanned by the generators such that G has at least one loop or one nonzero
vertex weight. These are in fact subcomplexes: for B(g,A) it is clear, while for A(g,A), we need
just to observe that if G has no loops and all vertices have weight zero, and [G,ω] ̸= 0, then
G has no parallel edges. Therefore, every contraction G/e also has no loops and also has all
vertices of weight zero.

Now we note that A(g,A) is isomorphic to G(g,A) up to shifting degrees by 2g − 1, and
B(g,A) is the cellular chain complex associated to the subcomplex of tropical curves with
underlying graphs having at least a loop and/or a vertex with positive weight ∆lw

g,A, which

is contractible whenever it is nonempty by Theorem 2.1.1. Therefore B(g,A) is an acyclic
complex, so the result follows.
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So the Graph Complexes G(g,A) compute the reduced rational homology of the ∆g,A. This
Theorem generalizes Theorem 1.4 of [CGP22], and gives the following Corollary.

Corollary 4.3.3. There is a natural isomorphism

GrW6g−6+2nH
4g−6+2n−k(Mg,A;Q) → Hk(G

(g,A)).

Proof. Using the language of [CGP21] and [CGP22], the proof follows by Theorem 4.3.2 and
Theorem 5.8 of [CGP21] just observing that ∆(Mg,A ⊂ Mg,A) = ∆g,A. Indeed, we already
observed that by Theorem 1.1 of [Uli15], we have D := Mg,A \ Mg,A to be a divisor with
normal crossing (stack theoretically), so by Corollary 5.6 of [CGP21] ∆(D) is the symmetric
∆-complex associated to the smooth generalized cone complex S(Mg,A). The rest of the
proof is analogous to the one of Corollary 5.6 of [CGP21] and Theorem 6.1 of [CGP22].

Example 4.3.4. Suppose we have g = 1, n = 3. We want to compute H̃i(∆g,A,Q), for
different A ∈ D1,3. We have 5 different chambers up to symmetry as seen in Example 4.1.5.
To represent them we can pick the weight data at the end of the example 4.2.12:

(
1

3
,
1

3
,
1

3
− ε

)
≤
(
4

9
− ε,

4

9
− ε,

4

9
− ε

)
≤
(
14

27
− ε,

12

27
,
14

27

)
≤
(
1− ε,

12

27
,
14

27

)
≤ (1, 1, 1) .

We want to compute the homology of all of the five possible chain complexes by Theorem
4.3.2. For simplicity, let us call the weight data above respectively E , A2, A3, A4 and 1(3).
We compute the vector spaces G

(1,A)
i for all these A’s in all degrees. The space G

(1,A)
i is

generated by pairs [G,ω], where

i = |E(G)| − 2g = |E(G)| − 2

and G is a pure (1,A)-stable graph, modulo the relation [G,ω] = sgn(σ)[G′, ω′], which we
refer to as the sign relation. For our situation, the number of edges goes from 1 to 3, so we
have three vector spaces for each A. We draw all the stable graphs of genus 1 with three
legs in Figures from 4.7 to 4.15.

1

2 3G1

Figure 4.7: The graphG1 has no automorphisms, and there are six different possible orderings
of its edges. This leads to six different generators [G1, ω1,i] in degree 1, for i = 1, ..., 6, which
are all the same after the sign relation.



90 CHAPTER 4. WALL CROSSING AND FILTRATIONS OF TROPICAL...

1

2

3

G2

2

1

3

G3

3

1

2

G4

Figure 4.8: These graphs with this only an automorphism which flips the loop. This does
not produce any odd permutation on the set of edges, so these classes are non-zero.

1

2

3

G5

2

1

3

G6

3

1

2

G7

Figure 4.9: All the graphs with this combinatorial type admits the automorphism switching
the two parallel edges, which induces odd permutations on the set of edges. So each class
coming from these three graphs is zero.

3

2

1

G8

1

3

2

G9

1

2

3

G10

Figure 4.10: These combinatorial types give zero classes, since they have the automorphism
which switches the parallel edges.

1

3

2
G11

Figure 4.11: The graph G11 has no automorphisms, and since it has only two edges there
are only two possible orderings. It gives two generators [G11, ωi] in degree 0, for i = 1, 2,
becoming one the opposite of the other after the sign relation.

3

2

1

G12

1

3

2

G13

1

2

3

G14

Figure 4.12: Automorphisms of graphs with this combinatorial type just flip the loop, so
they do not induce odd permutations. Each of these graphs then gives generators [Gj, ωj,i]
in degree 0, with j = 12, 13, 14 and i = 1, 2, with [Gj, ωj,1] = −[Gj, ωj,2].
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2

3

1

1
G15

1

2

3

1
G17

1

3

2

1
G16

Figure 4.13: These graphs are not pure, so they do not contribute with generators, and we
can think to them as 0 classes when they come after a contraction.

1

3

2

G18

Figure 4.14: This graph as only the loop-flipping automorphism, and only a possible order
on its set of edges. The resulting generator [G18, ω] has degree -1.

1

3

21
G19

1

3

2 1
G21

2

3

1 1
G22

1

2

3 1
G20

Figure 4.15: All the other graph with a single edge are non-pure, so they do not give
generators and are zero if obtained after a contraction.
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Now we compute the boundary map on each meaningful generator.

∂[G1, ωi] = −[G10, ωi|G10 ] + [G8, ωi|G8 ]− [G9, ωi|G9 ] = 0

∂[G2, ωi] = 0 + [G12, ωi|G12 ]− [G11, ωi|G11 ] = [G12, ωi|G12 ]− [G11, ωi|G11 ]

∂[G3, ωi] = 0 + [G13, ωi|G13 ]− [G11, ωi|G11 ] = [G13, ωi|G13 ]− [G11, ωi|G11 ]

∂[G4, ωi] = 0 + [G14, ωi|G14 ]− [G11, ωi|G11 ] = [G14, ωi|G14 ]− [G11, ωi|G11 ]

∂[G11, ωi] = 0 + [G18, ωi|G18 ] = [G18, ωi|G18 ]

∂[G12, ωi] = 0 + [G18, ωi|G18 ] = [G18, ωi|G18 ]

∂[G13, ωi] = 0 + [G18, ωi|G18 ] = [G18, ωi|G18 ]

∂[G14, ωi] = 0 + [G18, ωi|G18 ] = [G18, ωi|G18 ]

Of course, ∂[G18, ω] = 0 by definition. By this, we can compute the chain complexes and
the maps between them. For each graph, we say for which weight data it is stable:

• The only two (1, E)-stable graphs which give nonzero generators are G1 and G18.

• The only a (1,A2)-stable graph which is not (1, E)-stable and gives nonzero generators
is G11.

• The (1,A3)-stable graph which are not (1,A2)-stable and give nonzero generators are
G2, G5 and G12.

• The (1,A4)-stable graph which are not (1,A3)-stable and give nonzero generators are
G3, G6, G9 and G13.

• Lastly, stable graphs of genus g with three legs which are not stable for any other
weight datum we choose are G4, G7 and G14.

By this description, it is easy to compute the vector spaces of the chain complexes, keeping
in mind the sign relation. In degree -1, since the only 1-edge significant graph is G18, which
is stable for each weight datum, we have

G
(1,3)
−1 = G

(1,A4)
−1 = G

(1,A3)
−1 = G

(1,A2)
−1 = G

(1,E)
−1 ,

and it is isomorphic to Q.
In degree 0, we have G

(1,E)
0 = 0 since there are no (1, E)-stable significant graphs with

two edges. Then G
(1,A2)
0 is generated by G11 and its two orientations which are related by

the permutation (1 2) ([G11, ω1] = −[G11, ω2]) , so it is isomorphic to Q. In G
(1,A3)
0 we add
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generators given by G12 and its orientations modulo the sign relation to the generators of
the previous one, so it is isomorphic to Q2. Analogously for G

(1,A4)
0 we add generators given

by G13 and its orientations modulo the sign relation to the generators of the previous two,
so it is isomorphic to Q3. Lastly in G

(1,3)
0 we add generators given by G14 modulo the sign

relation, and it is isomorphic to Q4.
Something similar happens in degree 1: we have G

(1,E)
1 = G

(1,A2)
1 since both are spanned

by G1 and its six orientations, giving an isomorphism with Q since we divide by the sign
relation given by S3. Then each step of the filtration adds six generators modulo the sign
relation: in particular G

(1,A3)
1 adds G2, G

(1,A4)
1 adds G3 and G

(1,3)
1 adds G4, giving respectively

isomorphisms with Q2, Q3 and Q4.
Through this description and the boundary maps computed before we can compute the

homology groups in each degree at each step of the filtration. Recall that the shifting degree
isomorphism from Theorem 4.3.2 gives H̃k+1(∆1,A;Q) ∼= Hk(G

(g,A)). The first complex is
the following:

G(1,E) : G
(1,E)
1 G

(1,E)
0 G

(1,E)
−1 0,

∂E
1 ∂E

0
∂E
−1

The map ∂E1 is the zero map since G
(1,E)
0 = {0}. This together with the fact that G

(1,E)
1 is

the first vector space of the sequence gives

H1(G
(1,E)) =

Ker(∂E1 )

Im(∂E2 )
=
G

(1,E)
1

{0}
= G

(1,E)
1

∼= Q.

Combining with the shifting degree isomorphism, we get

H̃2(∆1,E ;Q) ∼= Q.

In the same way we can compute

H̃1(∆1,E ;Q) ∼= H0(G
(1,E)) =

Ker(∂E0 )

Im(∂E1 )
= {0}

and

H̃0(∆1,E ;Q) ∼= H−1(G
(1,E)) =

Ker(∂E−1)

Im(∂E0 )
=
G

(1,E)
−1

{0}
= G

(1,E)
−1

∼= Q,

since both ∂E−1 and ∂E0 are the zero map, G
(1,E)
0 = {0} and G

(1,E)
−1

∼= Q.
Next, we have the following complex:

G(1,A2) : G
(1,A2)
1 G

(1,A2)
0 G

(1,A2)
−1 0

∂
A2
1 ∂

A2
0

∂
A2
−1

First we observe that all the three spaces of the sequence are isomorphic to Q. We observe
also that the map ∂A2

1 sends the generators [G1, ω1,j] into 0, so it is the zero map, giving

Ker(∂A2
1 ) = G

(1,A2)
1 and Im(∂A2

1 ) = {0} . So we have

H̃2(∆1,A2 ;Q) ∼= H1(G
(1,A2)) =

Ker(∂A2
1 )

Im(∂A2
2 )

= G
(1,A2)
1

∼= Q.
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The map ∂A2
0 sends generators of type [G11, ω11,j] (which modulo the sign relation are the

same up to the sign) into [G18, ω], so it is an isomorphism. We can conclude that

H̃1(∆1,A2 ;Q) ∼= H0(G
(1,A2)) =

Ker(∂A2
0 )

Im(∂A2
1 )

= {0}

since Ker(∂A2
0 ) = {0} and

H̃0(∆1,A2 ;Q) ∼= H−1(G
(1,A2)) =

Ker(∂A2
−1)

Im(∂A2
0 )

=
G

(1,A2)
−1

G
(1,A2)
0

= {0}.

The third complex is G(1,A3)

G(1,A3) : G
(1,A3)
1 G

(1,A3)
0 G

(1,A3)
−1 0

∂
A3
1 ∂

A3
0

∂
A3
−1

Here G
(1,A3)
1 and G

(1,A3)
0 are isomorphic to Q2. The Kernel of the map ∂A3

1 is generated by
the generators [G1, ω1,j], which are all equivalent, so it has dimension 1, and it is isomorphic
to Q, giving

H̃2(∆1,A3 ;Q) ∼= H1(G
(1,A3)) =

Ker(∂A3
1 )

Im(∂A3
2 )

=
Ker(∂A3

−1)

{0}
∼= Q.

Since ∂A3
0 sends both the types of generator [G11, ω11,j] and [G12, ω12,j] into [G18, ω] the map

is surjective with Kernel spanned by [G11, ω11,j] − [G12, ω12,j], and in particular it coincides
with the image of ∂A3

1 , giving the following result:

H̃1(∆1,A3 ;Q) ∼= H0(G
(1,A3)) =

Ker(∂A3
0 )

Im(∂A3
1 )

= {0}.

Since ∂A3
−1 is the last map we can conclude also for H̃0(∆1,A3 ;Q):

H̃0(∆1,A3 ;Q) ∼= H−1(G
(1,A3)) =

Ker(∂A3
−1)

Im(∂A3
0 )

=
G

(1,A3)
−1

G
(1,A3)
−1

= {0}.

At the fourth step of the filtration we have the complex

G(1,A4) : G
(1,A4)
1 G

(1,A4)
0 G

(1,A4)
−1 0

∂
A4
1 ∂

A4
0

∂
A4
−1

The space G
(1,A4)
1 has generators coming from graphs G1, G2 and G3, and by the computa-

tions of ∂ we made above we have that Ker(∂A4
1 ) is spanned by [G1, ω1,j] and has dimension

1. So we can compute

H̃2(∆1,A4 ;Q) ∼= H1(G
(1,A4)) =

Ker(∂A4
1 )

Im(∂A4
2 )

=
Ker(∂A4

1 )

{0}
) ∼= Q.
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We observe that dim(Im(∂A4
1 )) = 2 and by construction Im(∂A4

1 ) ⊆ Ker(∂A4
0 ) as a vector

subspace. By the fact that ∂A4
0 is surjective, which is evident by the computations above,

we conclude again that dim(Ker(∂A4
0 )) = 2, so Im(∂A4

1 ) = Ker(∂A4
0 ) and

H̃1(∆1,A4 ;Q) ∼= H0(G
(1,A4)) =

Ker(∂A4
0 )

Im(∂A4
1 )

= {0}.

At the same time, since ∂A4
0 is surjective, we conclude also that

H̃0(∆1,A4 ;Q) ∼= H−1(G
(1,A4)) =

Ker(∂A4
−1)

Im(∂A4
0 )

=
G

(1,A4)
−1

G
(1,A4)
−1

= {0}.

The last complex of the filtration coincides with the standard one:

G(1,3) : G
(1,3)
1 G

(1,3)
0 G

(1,3)
−1 0

∂1 ∂0 ∂−1

Here the situation is completely analogous to the one of the previous case, except with the
fact that the first two spaces G(1,3), G

(1,3)
1 and G

(1,3)
0 have dimension 4 instead of 3. By

similar computation we get

H̃2(∆1,3;Q) ∼= H1(G
(1,3)) ∼= Q,

H̃1(∆1,3;Q) ∼= H0(G
(1,3)) = {0},

H̃0(∆1,3;Q) ∼= H−1(G
(1,3)) = {0}.

We give a first general result we can obtain about the homology of ∆g,A using Graph
Complexes.

Proposition 4.3.5. Let (g,A) be an input datum, g ≥ 1. Then we have the following:

1) The homology H̃k(∆g,A;Q) = 0 for any k ≤ g − 1 and k > 3g + n− 4;

2) Fix g = 1. If [ChA] = [ChE ] then H̃0(∆1,A;Q) ∼= Q, otherwise it is zero.

Proof. We consider the Graph Complex G(g,A). Since in each degree its generators come
from pure graphs, and we have pure graphs only when g ≤ |E(G)| ≤ 3g− 3+n, (1) trivially
follows.

Now for any input datum (g,A) the only pure (g,A)-stable graph is the graph Rg,n made
by a single vertex, g loops and all the legs attached to it. If we have more than one loop
Rg,n admits multiple edges so its class is zero, otherwise if g = 1, G

(1,A)
−1 =< [R1,n, ω] >∼= Q.

Assume A = E , then [R1,n, ω] ∈ Ker(∂E−1)− Im(∂E0 ), so it generates H−1(G
(1,E)) ∼= Q ∼=

H̃0(∆1,E ;Q) (and this is true for any A such that [ChA] = [ChE ]).
If [ChA] ̸= [ChE ], then for every g we have [Rg,n, ω] ∈ Ker(∂A−g) ∩ Im(∂A−g+1), so

H−g(G
(g,A)) ∼= 0 ∼= H̃g−1(∆g,A;Q).
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4.3.2 Filtered Chain Complexes

We introduce here Filtered Chain Complexes and some properties of these objects, as we want
to see Graph Complexes as Filtered Chain Complexes using an analogous of the Filtration
Theorem 4.2.2. Our references for this section are [McC01] and [Hut11].

Definition 4.3.6. A filtered module is an R-module A with an increasing sequence of sub-
modules FpA ⊂ Fp+1A indexed by p ∈ Z such that

⋃
p∈Z FpA = A and

⋂
p∈Z FpA = {0}. We

call {FpA}p∈Z a filtration of A.

We say that the filtration {FpA}p∈Z is bounded if FpA = {0} for sufficiently small p and
FpA = A for sufficiently large p.

Definition 4.3.7. Let A be a filtered module. The associated graded module is defined, in
degree p, as GpA = FpA/Fp−1A.

Notice that there is a short exact sequence

0 → Fp−1A→ FpA→ GpA→ 0.

Definition 4.3.8. A Filtered Chain Complex is a chain complex (C∗, ∂) together with
a filtration {FpCi}p∈Z on each Ci such that the differential preserves the filtration, i.e.
∂(FpCi) ⊂ FpCi−1.

We have a well defined induced differential ∂ : GpCi → GpCi−1, and so we can define
an associated graded chain complex GpC∗. Moreover, there is an induced filtration on the
homology of C∗ given by

FpHi(C∗) = {α ∈ Hi(C∗)|α = [x], ∃x ∈ FpCi}.

Again, this has associated graded pieces GpHi(C∗) defined as before.

Definition 4.3.9. A spectral sequence consists of the following:

• An R-module Er
p,q defined for each p, q ∈ Z and each integer r ≥ r0, where r0 is some

nonnegative integer;

• Differentials ∂r : Er
p,q → Er

p−r,q+r−1 such that ∂2r = 0 and Er+1 is the homology of
(Er, ∂r), i.e.,

Er+1
p,q =

Ker(∂r : E
r
p,q → Er

p−r,q+r−1)

Im(∂r : Er
p+r,q−r+1 → Er

p,q)

A spectral sequence converges if for every p, q, if r is sufficiently large then ∂r vanishes on
Er

p,q. In this case, for each p, q, the module Er
p,q is independent of r for r sufficiently large,

and we denote this by E∞p,q. For a given r, the collection of R-modules {Er
p,q}, together with

the differentials ∂r between them, is called the r-th page of the spectral sequence. Each page
is the homology of the previous page.
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Given a Filtered Chain Complex, we have an associated spectral sequence obtained from
the short exact sequences extracted from the filtrations. Namely, let E0

p,q := GpCp+q. Then
there is a well defined ∂ : E0

p,q → E0
p,q−1. We denote E1

p,q = Hp+q(GpC∗), and we define
∂1 : E1

p,q → E1
p−1,q as follows. A homology class α ∈ E1

p,q can be represented by a chain
x ∈ FpCp+q such that ∂x ∈ Fp−1Cp+q−1. We set ∂1(α) = [∂x]. It follows easily from ∂21 = 0
that ∂1 is well defined and ∂21 = 0. We now consider the homology

E2
p,q =

Ker(∂1 : E
1
p,q → E1

p−1,q)

Im(∂1 : E1
p+1,q → E1

p,q)
.

We can iterate this process for every nonnegative integer r, so we can define an r-th order
approximation to GpHp+q(C∗) by

Er
p,q =

{x ∈ FpCp+q|∂x ∈ Fp−rCp+q−1}
Fp−1Cp+q + ∂(Fp+r−1Cp+q+1)

.

Here the notation indicates the quotient of the numerator by its intersection with the
denominator.

4.3.3 Wall-crossing on Graph Complexes

As already mentioned, the Graph Complexes G(g,A)’s are defined upon the same stability
conditions that we have been considering so far on graphs, so we can establish a theorem
analogous to Theorem 4.2.2 which holds for them. First, we show the analogous version of
Proposition 4.2.10.

Proposition 4.3.10. Let g, n ≥ 1 be two integers, and A and B two weight data in Dg,n.

1) If A ≤ B, then G(g,A) ⊂ G(g,B);

2) If A and B are in the same chamber, then G(g,A) = G(g,B);

3) If A and B are obtained one from the other through a permutation of coordinates, then
G(g,A) is isomorphic to G(g,B);

4) If A and B are in chambers Ch1 and Ch2 such that [Ch1] = [Ch2] ∈ [Kf ], then G
(g,A)

is isomorphic to G(g,B).

Proof. A generator of G(g,A) is a (g,A)-stable graph with an edge ordering under the relation
[G, ω] = sgn(σ)[G′, ω′] if there is an isomorphism of n-marked graphs G ∼= G′ under which
the orders ω and ω′ are related by the permutation σ ∈ S|E(G)|. If A ≤ B , every (g,A)-stable
graph is also (g,B)-stable, so to show 1) we just send a generator into itself. For 2), if A and
B are in the same chamber then Gg,A = Gg,B, so the result follows. Proof of 3) follows by the
same reasoning of 1 by sending a generator of G(g,A) into the generator of G(g,B) obtained
relabeling the legs according to the permutation which sends A to B. This also shows 4) as
by hypothesis we can assume A and B are obtained one from the other after a permutation
of coordinates.
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Theorem 4.3.11. Let g ≥ 0, n ≥ 1 be two integers. Fix a weight datum A ∈ Dg,n. There
are filtrations of G(g,A) induced by the partial order on the set of chambers up to symmetry
given by inclusions of complexes. Namely an ordered sequence

[ChA1 ] ≤ [ChA2 ] ≤ ... ≤ [ChAp ] ≤ ... ≤ [ChAN−1
] ≤ [ChA],

induces a filtration of chain complexes

G(g,A1) ↪→ G(g,A2) ↪→ ... ↪→ G(g,Ap) ↪→ ... ↪→ G(g,AN−1) ↪→ G(g,A),

with G(g,Ap−1) ↪→ G(g,Ap) being an injective map of chain complexes for every p = 2, ..., N .

Proof. At each step of the filtration [ChAp ] ≤ [ChAp+1 ] we can find two weight data A ≤ B
and two chambers Ch1 ≤ Ch2 such that A ∈ Ch1 ∈ [ChAp ] and B ∈ Ch2 ∈ [ChAp+1 ]. Then
by Proposition 4.3.10, G(g,Ap) ∼= G(g,A) ⊂ G(g,B) ∼= G(g,Ap+1) analogously to what we did to
prove Theorem 4.2.2.

Example 4.3.12. Consider again the situation of Example 4.3.1. We can consider an
induced filtration of chain complexes

G(1,( 1
3
, 1
3
, 1
3
−ε)) ⊂ G(1,( 4

9
−ε, 4

9
−ε, 4

9
−ε)) ⊂ G(1,( 14

27
−ε, 12

27
, 14
27

)) ⊂ G(1,(1−ε, 12
27

, 14
27

)) ⊂ G(1,3),

which gives G(1,3) (and in general to all the chain complexes but the first) the structure of
Filtered Chain Complex. The computation made in 4.3.1 shows also that the filtration does
not descend to the homology, since for instance the well defined map

H̃0(∆1,E ;Q) → H̃0(∆1,A2 ;Q)

induced by the map on the chain complexes is not injective.

4.3.4 Decomposition of the Top Weight Cohomology

Fix g ≥ 1, n ≥ 2 and a sequence [ChA1 ] ≤ ... ≤ [ChAN
], Ai ∈ Dg,n for every i from 1 to N .

By Theorem 4.3.11 it gives a filtration of chain complexes

G(g,A1) ↪→ ... ↪→ G(g,Ap) ↪→ ... ↪→ G(g,AN );

If we set by convention G(g,Ap) = {0} for every p ≤ 0 and we let it stabilize at the last
term for every p ≥ N , we can extend the above filtration for every p ∈ Z, with the trivial
differential outside the bounds 0 and N . Then the induced filtration on each G

(g,AN )
j makes

G(g,AN ) a Filtered Chain Complex.
This structure on G(g,AN ) induces a spectral sequence as already seen, and we have

E0
p,q = GpG

(g,AN )
p+q = FpG

(g,AN )
p+q /Fp−1G

(g,AN )
p+q = G

(g,Ap)
p+q /G

(g,Ap−1)
p+q := G

(g,Ap,Ap−1)
p+q ,

with G(g,Ap,Ap−1) being the complex of Ap but not Ap−1 stable graphs, and

E1
p,q = Hp+q(GpG

(g,AN )) = Hp+q(G
(g,Ap)
p+q /G

(g,Ap−1)
p+q ) = Hp+q(G

(g,Ap,Ap−1)
p+q ).

So we are ready to state the following Theorem.
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Theorem 4.3.13. Fix g ≥ 1, n ≥ 2. Assume we have a sequence of chambers up to
symmetry

[ChA1 ] ≤ ... ≤ [ChAp ] ≤ ... ≤ [ChAN
],

and let
G(g,A1) ↪→ ... ↪→ G(g,Ap) ↪→ ... ↪→ G(g,AN )

be the induced filtration on Graph Complexes. Then

GrW6g−6+2nH
4g−6+2n−k(Mg,AN

;Q) ∼=
N⊕
p=1

E∞p,k−p,

where the terms E∞p,k−p are the ones to which the spectral sequence induced by the above
filtration converges.

Proof. We consider the homology ring H∗(G
(g,AN )) =

⊕
k∈ZHk(G

(g,AN )). By construction
of the Graph Complexes H∗(G

(g,AN )) is supported only in degrees 1 − 2g ≤ k ≤ g + n − 3
so the sum is finite, and since any of the Hk(G

(g,AN ))’s is finite dimensional this is true also
for H∗(G

(g,AN )). Moreover, each Hk(G
(g,AN )) comes with a filtration induced by the one on

G(g,AN ):
FpHk(G

(g,AN )) = {α ∈ Hk(G
(g,AN ))|α = [x], x ∈ G

(g,Ap)
k },

so also H∗(G
(g,AN )) is filtered by FpH∗(G

(g,AN )) =
⊕g+n−3

k=1−2g FpHk(G
(g,AN )). This gives to

H∗(G
(g,AN )) the structure of a finite dimensional filtered graded vector space.

By [McC01], Section 1 such an object can be decomposed, in each degree, as the direct
sum

Hk(G
(g,AN )) =

⊕
p+q=k

FpHp+q(G
(g,AN ))

Fp−1Hp+q(G(g,AN ))
=
⊕

p+q=k

GpHp+q(G
(g,AN )).

Moreover, since the filtration is bounded, we can rewrite this sum taking only the significant
indices:

Hk(G
(g,AN )) =

N⊕
p=1

FpHp+q(G
(g,AN ))

Fp−1Hp+q(G(g,AN ))
=

N⊕
p=1

GpHp+q(G
(g,AN )).

where q = k − p.
Consider now the associated spectral sequence: by construction we have

GpHp+q(G
(g,AN )) = E∞p,q

since the spectral sequence converges to it, so

Hk(G
(g,AN )) =

N⊕
p=1

E∞p,k−p.

To conclude it is enough to apply Corollary 4.3.3, so that

GrW6g−6+2nH
4g−6+2n−k(Mg,AN

;Q) ∼= Hk(G
(g,AN )) =

N⊕
p=1

E∞p,k−p.
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We add some remarks about the proof:

Remark 4.3.14. The proof additionally shows that the same decomposition holds for
H̃k−1(∆g,AN

;Q), just by applying Theorem 4.3.2 instead of the Corollary 4.3.3.

Remark 4.3.15. Since the filtration is bounded, by Lemma 3.1.d of [Hut11] the approxi-
mations of the spectral sequence stabilize after a certain r, i.e E∞p,q = Er

p,q for r sufficiently
large. By the description

Er
p,q =

{x ∈ FpCp+q|∂x ∈ Fp−rCp+q−1}
Fp−1Cp+q + ∂(Fp+r−1Cp+q+1)

we can see that for our filtrations these terms stabilize when r ≥ max{p,N − p + 1} since

for these r’s Fp−rCp+q−1 = {0} and Fp+r−1Cp+q+1 = G
(g,AN )
p+q . So E∞p,q = E

max{p,N−p+1}
p,q .

Remark 4.3.16. The top weight cohomology GrW6g−6+2nH
4g−6+2n−k(Mg,AN

) does not de-
pend on the chosen filtration: a priori different filtrations give different spectral sequences
and different convergence terms E∞p,k−p, Nevertheless, the two direct sums will be isomorphic.

In general, some of the terms E∞p,k−p in the direct sum may be zero.

Example 4.3.17. We put ourselves in the case g = 1, n = 3. We fix the sequence of weight
data of Example 4.2.12:

(
1

3
,
1

3
,
1

3
− ε) ≤ (

4

9
− ε,

4

9
− ε,

4

9
− ε) ≤ (

14

27
− ε,

12

27
,
14

27
) ≤ (1− ε,

12

27
,
14

27
) ≤ 1(n).

We set alsoA1 = (1
3
, 1
3
, 1
3
−ε),A2 = (4

9
−ε, 4

9
−ε, 4

9
−ε), A3 = (14

27
−ε, 12

27
, 14
27
), A4 = (1−ε, 12

27
, 14
27
)

and A5 = 1(n) for simplicity. The corresponding sequence of chambers up to symmetry is
then

[Ch( 1
3
, 1
3
, 1
3
−ε)] ≤ [Ch( 4

9
−ε, 4

9
−ε, 4

9
−ε)] ≤ [Ch( 14

27
−ε, 12

27
, 14
27

)] ≤ [Ch(1−ε, 12
27

, 14
27

)] ≤ [Ch1(n) ].

By Theorem 4.3.13, we can compute the homology of ∆1,1(n) = ∆1,3, which corresponds
to the top weight cohomology of M1,3, computing first the terms of the spectral sequence
of G(1,3) and then using the shifting degree isomorphism. Since we know that G(1,3) has
homology only in degrees -1, 0, and 1, we have to compute only three direct sums, each with
five terms. All the terms Er

p,k−p stabilize for r ≥ 5.

• Case k = −1. Here we have to compute
⊕5

p=1E
5
p,−1−p. For each p from 1 to 5, the

term E5
p,−1−p is equal to the quotient G

(1,Ap)
−1 /(G

(1,Ap−1)
−1 + ∂G

(1,Ap−1)
0 ). Now for every

p = 1, ...5, G
(1,Ap)
−1 is generated by the loop graph with a single vertex and its only

orientation depicted in Figure 4.14, so the quotient is zero whenever p ≥ 2

When p = 1, ∂G
(1,Ap−5+1)
0 = G

(1,A5)
−1 = G

(1,A1)
−1 by what we saw, so the quotient is again

zero. Hence

GrW6 H
5(M1,3;Q) ∼=

5⊕
p=1

E5
p,−1−p = {0}.
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• Case k = 0: In this case, the terms are E5
p,−p, for p = 1, ..., 5. On the numerator of

the quotient which defines E5
p,−1−p we have Ker(∂ : G

(1,Ap)
0 → G

(1,Ap)
−1 ) for each p by

construction. For p = 1 this is zero since G
(1,A1)
0 is already zero. When p = 2, G

(1,A2)
0

is generated by [G,ωi], where G is the graph of Figure 4.11.

All the ωi are related by permutations of the indices, so there is only a generator
class. The map ∂ sends the generators [G,ωi] into [L, ω], so it is an isomorphism

and Ker(∂ : G
(1,A2)
0 → G

(1,A2)
−1 ) is trivial. When p = 3, 4, 5, we can observe that the

kernel Ker(∂ : G
(1,Ap)
0 → G

(1,Ap)
−1 ) coincides with Im(∂ : G

(1,Ap)
0 → G

(1,Ap)
−1 ), due to the

generators coming from the graphs of figure 4.12. But Im(∂ : G
(1,Ap)
0 → G

(1,Ap)
−1 ) is

exactly what we have in the denominator of the quotient defining E5
p,−p, so it is zero.

Hence all the terms of the direct sum are zero, so

GrW6 H
4(M1,3;Q) = {0}.

• Case k = 1: Here we have to compute
⊕5

p=1E
5
p,1−p. By construction, we see that

E5
p,1−p = Ker(∂ : G

(1,Ap)
1 → G

(1,Ap)
0 )/G

(1,Ap−1)
1 .

Now for every Ap the Kernel at the numerator has a single generator coming from the
graph in Figure 4.7, but since it is (1,Ap)-stable for any p the generators coming from

it belong to G
(1,Ap−1)
1 for any p = 2, ..., 5, giving E5

p,1−p = 0. When p = 1, G
(1,A0)
1 = {0}

by the convention we adopted at the beginning, so

GrW6 H
3(M1,3;Q) =

5⊕
p=1

E5
p,1−p = E5

1,0 = Ker(∂ : G
(1,A1)
1 → G

(1,A1)
0 ) ∼= Q.

The computations made in this example give what was expected from Corollary 1.3 of
[CGP22], which says that the top weight cohomology of M1,n is supported in degree n with
rank (n− 1)!/2 for n ≥ 3, which equals 1 when n = 3, and agree with the computations of
Example 4.3.1.

Remark 4.3.18. We can use the Theorem to estimate the dimension of the cohomology of
Mg,n. Suppose we have g, n ≥ 1, and a fixed sequence [ChA1 ] ≤ ... ≤ [ChAp ] ≤ ... ≤ [ChAN

].
Let E∞p,k−p be one of the pieces of the direct sum coming from the filtration, then

dimH4g−6+2n−k(Mg,n;Q) ≥ dimGrW6g−6+2nH
4g−6+2n−k(Mg,n;Q) ≥ dimE∞p,k−p,

so if we are able to estimate the dimension of one of the pieces we can give nonvanishing
results for the cohomology of Mg,n.

Example 4.3.19. Let g = 2, n = 3 and consider the sequence coming from the floor
filtration of example 4.2.18, extended on the left by the minimal chamber:

Chε(3) ≤ ChH3 ≤ Ch1(3) .
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By the Theorem 4.3.13 we know that GrW12H
8−k(M2,3;Q) ∼=

⊕N
p=1E

∞
p,k−p. For k = 2 the last

term of the sum is E3
3,−1, which has dimension at least 1. To see this, consider the graphs

in Figure 4.16, then H1 − H2 + H3 − G1 + G2 − G3 belongs to G
(2,3)
2 and one can see its

differential is zero. However, its quotient by G
(2,H3)
2 is nonzero, namely it is −G1 +G2 −G3,

so it defines a nontrivial element of E3
3,−5.

e1

2 3

e3e2
e4e5 e6

1
G1

e1

1 3

e3e2
e4e5 e6

2
G2

e1

1 2

e3e2
e4e5 e6

3
G3

e1

e4
e2 e3

e5 e6

1

2 3

H1

e1

e4
e2 e3

e5 e6

2

1 3

H2

e1

e4
e2 e3

e5 e6

3

1 2

H3

Figure 4.16: These are generators of G
(2,3)
2 . The letters ei represent the chosen order on the

set of edges.

Then we conclude that

dimH6(M2,3;Q) ≥ dimGrW12H
6(M2,3;Q) ≥ dimE3

3,−1 ≥ 1,

i.e., H6(M2,3;Q) does not vanish.

4.4 Relative Homology and Staircaise Diagrams

4.4.1 Relative Homology

For every weight data A ∈ Ch1 and B ∈ Ch2 such that [Ch1] ≤ [Ch2], we already know that
there is an inclusion as a sub-symmetric ∆-complex ∆g,A ⊂ ∆g,B. There is a relation between
the spectral sequence associated to a filtration and the relative homology with respect to the
inclusion of ∆g,A ⊂ ∆g,B. Indeed, whenever X ⊂ Y is a subcomplex, for every p ≥ −1 one
can consider the exact sequence

0 → Cp(X) → Cp(Y ) → Cp(Y,X) → 0,

with C∗(Y,X) computing the relative homology.
In particular, whenever we have an inclusion ∆g,A ↪→ ∆g,B, the relative chain complex

C∗(∆g,B,∆g,A) has its homology coinciding with relative rational homology

Hi(C∗(∆g,B,∆g,A)) ∼= Hi(∆g,B,∆g,A;Q),

as it has a natural isomorphism with C∗(∆g,B)/C∗(∆g,A).
Now as in the proof of Theorem 4.3.2 we have a decomposition C∗(∆g,A) = A(g,A)⊕B(g,A),

so we can decompose also C∗(∆g,B)/C∗(∆g,A) into

A(g,B)/C∗(∆g,A)
⊕

B(g,B)/C∗(∆g,A).
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The term B(g,B)/C∗(∆g,A) is acyclic, since also B
(g,B) is. Now consider the shifting degree

injection j : G(g,A) → C∗(∆g,A,Q) of Theorem 4.3.2: it is clear by the definition of A(g,B)

that A(g,B)/C∗(∆g,A) is isomorphic to A(g,B)/j(G(g,A)) and this is isomorphic to

G(g,B)/G(g,A) := G(g,B,A),

with the isomorphism shifting degrees by 2g − 1. The complex G(g,B,A) can be seen as the
one generated by (g,B)-stable but not (g,A)-stable graphs, with the same conventions on
the degree and the same boundary map.

Through the latter isomoprhism, we can conclude that there is an isomorphism

Hk−2g+1(G
(g,B,A)) ∼= Hk(∆g,B,∆g,A;Q).

Example 4.4.1. Consider the floor filtration of Example 4.2.18. A graph is (g,Hl)-stable if
and only if its leaves have at least l markings, and its vertices of valence 2 have at least one.
In particular, when l = 2 we get the usual notion of stability. Then the complex G(g,Hl,Hl+i)

is generated by stable graphs (in the standard sense) with a number of markings on each
leaf between l and l − i− 1., and by the previous computations we have

Hk−2g+1(G
(g,Hl,Hl+i)) ∼= Hk(∆g,Hl

,∆g,Hl+i
;Q).

In particular, if i = 1, G(g,Hl,Hl+1) is generated by stable graphs with exactly l markings
on each leaf.

When l = 2, we have H2 ∈ Ch1(n) so

Hk−2g+1(G
(g,H2,H3)) ∼= Hk(∆g,n,∆g,H3 ;Q).

As an example of computation, if g = 1 and for every n we have H0(∆1,n,∆1,H3 ;Q) = 0,
H1(∆1,n,∆1,H3 ;Q) = 0.

4.4.2 Staircase Diagrams of Graph Complexes

We fix g, n ≥ 1, and a sequence of chambers up to symmetry [Ch1] ≤ ... ≤ [ChN ], and
for each chamber up to symmetry [Chp] choose a weight datum Ap belonging to a chamber
Chp ∈ [Chp], for every p from 1 to N .

Consider again the filtrations of chain complexes:

G(g,A1) ↪→ ... ↪→ G(g,Ap) ↪→ ... ↪→ G(g,AN );

C∗(∆g,A1) ↪→ ... ↪→ C∗(∆g,Ap) ↪→ ... ↪→ C∗(∆g,AN
).

We can consider the short exact sequences defined for each step of the filtrations above,

0 → G(g,Ap) → G(g,Ap+1) → G(g,Ap+1,Ap) → 0;

0 → C∗(∆g,Ap) → C∗(∆g,Ap+1) → C∗(∆g,Ap+1 ,∆g,Ap) → 0,

leading to long exact sequences in homology:
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... Hj(G
(g,Ap−1)) Hj(G

(g,Ap)) Hj−1(G
(g,Ap,Ap−1)) Hj−1(G

(g,Ap−1)) ...

... H̃l(∆g,Ap−1 ;Q) H̃l(∆g,Ap ;Q) Hl−1(∆g,Ap ,∆g,Ap−1 ;Q) H̃l−1(∆g,Ap−1 ;Q) ...

∼= ∼= ∼=

where l = j+2g− 1 and the vertical isomorphisms are the ones described in Theorem 4.3.2.

Since all the homology groups appear in different long exact sequences, we can rearrange
them together in order to get a so called staircase diagram as follows:

...
...

... H̃l+1(∆g,Ap ;Q) Hl+1(∆g,Ap ,∆g,Ap−1 ;Q) H̃l(∆g,Ap−1 ;Q) Hl(∆g,Ap−1 ,∆g,Ap−2 ;Q) ...

... H̃l+1(∆g,Ap+1 ;Q) Hl+1(∆g,Ap+1 ,∆g,Ap ;Q) H̃l(∆g,Ap ;Q) Hl(∆g,Ap ,∆g,Ap−1 ;Q) ...

... H̃l+1(∆g,Ap+2 ;Q) Hl+1(∆g,Ap+2 ,∆g,Ap+1 ;Q) H̃l(∆g,Ap+1 ;Q) Hl(∆g,Ap+1 ,∆g,Ap ;Q) ...

...
...

where in red we highlighted a single long exact sequence, and such that for each piece of the
diagram, we have described a Graph Complex whose cohomology is isomorphic to it.

Example 4.4.2. Let g = 1, n = 3 and consider again the sequence of weight data

(
1

3
,
1

3
,
1

3
− ε

)
≤
(
4

9
− ε,

4

9
− ε,

4

9
− ε

)
≤
(
14

27
− ε,

12

27
,
14

27

)
≤
(
1− ε,

12

27
,
14

27

)
≤ (1, 1, 1) ,

for semplicity, we refer to them again as E , A2, A3, A4 and 1(3). For every A ∈ D1,3, we
know that the H̃j(∆1,A;Q) can be nonzero only for j ∈ {0, 1, 2}.

So we get the following diagram
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0

0 H̃1(∆1,E ;Q) 0

0 H̃2(∆1,A2 ;Q) H2(∆1,A2 ,∆1,E ;Q) H̃1(∆1,E ;Q) 0

0 H̃2(∆1,A3 ;Q) H2(∆1,A3 ,∆1,A2 ;Q) H̃1(∆1,A2 ;Q) H1(∆1,A2 ,∆1,E ;Q) H̃0(∆1,E ;Q) 0

0 H̃2(∆1,A4 ;Q) H2(∆1,A4 ,∆1,A3 ;Q) H̃1(∆1,A3 ;Q) H1(∆1,A3 ,∆1,A2 ;Q) H̃0(∆1,A2 ;Q) H0(∆1,A2 ,∆1,E ;Q) 0

0 H̃2(∆1,3;Q) H2(∆1,3,∆1,A4 ;Q) H̃1(∆1,A4 ;Q) H1(∆1,A4 ,∆1,A3 ;Q) H̃0(∆1,A3 ;Q) H0(∆1,A3 ,∆1,A2 ;Q) 0

0 H̃1(∆1,3;Q) H1(∆1,3,∆1,A4 ;Q) H̃0(∆1,A4 ;Q) H0(∆1,A4 ,∆1,A3 ;Q) 0

0 H̃0(∆1,3;Q) H0(∆1,3,∆1,A4 ;Q) 0

0

From Example 4.3.4, we already know the H̃j(∆1,A;Q) that appear in the diagram, so we
get the following:

0

0 Q 0

0 Q H2(∆1,A2 ,∆1,E ;Q) 0 0

0 Q H2(∆1,A3 ,∆1,A2 ;Q) 0 H1(∆1,A2 ,∆1,E ;Q) Q 0

0 Q H2(∆1,A4 ,∆1,A3 ;Q) 0 H1(∆1,A3 ,∆1,A2 ;Q) 0 H0(∆1,A2 ,∆1,E ;Q) 0

0 Q H2(∆1,3,∆1,A4 ;Q) 0 H1(∆1,A4 ,∆1,A3 ;Q) 0 H0(∆1,A3 ,∆1,A2 ;Q) 0

0 0 H1(∆1,3,∆1,A4 ;Q) 0 H0(∆1,A4 ,∆1,A3 ;Q) 0

0 0 H0(∆1,3,∆1,A4 ;Q) 0.

0
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Appendix A

Extra proofs

In this Appendix we present some extra proofs of results in the work, which are more technical
or are alternative formulations which are interesting on their own.

A.1 Contractibility results on some sub-loci of the link

In this section we prove Theorem 2.1.1, restated below. The proof uses techniques coming
from [CGP22], and mildly generalizes some definitions used there.

Theorem A.1.1. Let g ≥ 1, n ≥ 1 be integers, and let A ∈ Dg,n be a weight datum. Then
the following subcomplexes are either empty or contractible:

1. The subset ∆w
g,A of tropical curves with at least a strictly positive weighted vertex;

2. The subset ∆lw
g,A of tropical curves with at least a strictly positive weighted vertex and/or

loops;

3. The closure of the subset of tropical curves with bridges ∆br
g,A.

Fix g, n and a weight datum A = (a1, ..., an) ∈ Dg,n as in the Theorem. Recall that
p-simplicies in ∆g,A are indexed by pairs (G, τ) where G ∈ Ob(Gg,A) and τ : E(G) → [p] is
a bijection. Vertices of ∆g,A are (indexed by) 1-edge (g,A)-stable graphs. One of them is
the graph with one vertex and a loop, the other vertices of the simplices are bridge graphs
constructed as follows: let (g′, S) be a pair where 0 ≤ g′ ≤ g is an integer and S ⊂ [n] such
that

2g′ − 1 +
∑

i∈S ai > 0 and 2(g − g′)− 1 +
∑

i/∈S ai > 0.

Then, for any such pair (g′, S) there is only a bridge graph with a g′-weighted vertex v with
L(v) = S (Figure A.1), we will call this point B(g′, S).

Now, for each pair of integers (g′, n′) such that g ≤ g and n′ ≤ n, we define the Property

PAg′,n′ = {B(g′, S) : |S| = n′} ⊂ ∆g,A(0).

in the sense of Definition 1.2.27. We introduce some tools we need for the proof of Theorem
2.1.1.

107
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All the legsg − 1 g − g′g′

Markings indexed
by S

Markings indexed
by [n] \ S

Figure A.1: The 1-edge (g,A)-stable graphs.

Definition A.1.2. Let G be a (g,A)-stable graph and let v ∈ V (G). We say that v is an
A-articulation point if at least one of the following conditions is true:

1. v is a cut vertex of G;

2. w(v) > 0;

3. |v|A ≥ 2.

Notice when A = 1(n), this agrees with the definition of articulation point of [CGP22].
Let VA be the set of A-articulation points of G, and let B be the set of blocks of G, i.e.,
the set of maximal connected subgraphs with at least one edge and no cut vertices of G. If
B ∈ B is a block, denote by V (B) the set of vertices v ∈ V (G) which are contained in B.

Definition A.1.3. Let G ∈ Ob(Gg,A). The A-block graph BlA(G) of G is the bipartite graph
defined as follows. The vertices of BlA(G) are the VA ∪B, and there is an edge e = (v,B)
from v ∈ VA to B ∈ B if and only if v ∈ V (B) as subgraph of G (and we denote the edge e
by the notation (v,B)).

The A-block graph is a weighted marked graph with decorations as follows: if v ∈ VA,
then we decorate the corresponding vertex in the A-block graph with the weight and the
markings it had as a vertex on G. If B ∈ B is a block in G, we depict it as the block itself, but
keep track of the decorations only of vertices which are not in VA. Again, Bl1(n)(G) =Bl(G)
as defined in [CGP22]. Note that BlA(G) does not verify necessarily any stability condition.

Example A.1.4. Fix n = 5 and A = (1, 1, ε, ε, ε) for ε < 1
5
. consider the graph in Figure

A.2, which belongs to Ob(G5,A). This graph has three A-articulation points, which are u, v
and z. Indeed, u is a cut vertex, v has positive weight and z is such that |z|A ≥ 2. The
A-block graph of G depicted according to the conventions above is the one in Figure A.3.
Notice that vertices a, b and c preserve their decorations in the block, as they are not A-
articulation points. In this way we can see each vertex of the block graph as a (eventually
weighted and/or marked) graph on its own.
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1
v ua

b

3 4

5

c

z

1 2

Figure A.2: A graph with five markings. We use letters to indicated the name of vertices.
Here VA = {u, v, z}, while a, b and c are not A-articulation points.

v
1
v

B1

(v,B1) (v,B2)

ua

b

3 4

5

v

B2
(u,B2)

u

(u,B3)

cu

z
B3

(z,B3)
z

1 2

Figure A.3: The block graph of the graph in Figure A.2. We depict vertices in B as graphs,
labeling them with Bi’s. We depict edges between elements in VA and elements in B with
thick blue lines, labeling them according to the conventions above.

Remark A.1.5. Observe that BlA(G) is a tree. Suppose it is not, and let VA ∪ B be the
set of vertices. Since BlA(G) in not a tree, it contains a cycle or it is disconnected. If there
is a cycle C in the A-block graph, then there must be a cycle D in G, and all the vertices
in D belong to the same block B. This implies that the cycle C in the A-block graph can
only pass through one vertex B ∈ B. Since the block graph is bipartite, every cycle needs
at least two vertices from each of the two sets of the partition, but this is a contradiction
with what we already saw. Thus our block graph is acyclic. Now we need to show that it is
connected, but this is a consequence of the fact that the original graph is connected.

Since BlA(G) is a tree, in particular given an edge (v,B) the graph BlA(G) \ {(v,B)}
obtained deleting (v,B) has two connected components. In such situation, let T be the set
of vertices of the component containing B ∈ V (BlA(G)); then we label the edge (v,B) with

(g(v,B), L(v,B)) :=

(∑
H∈T

g(H),
⊔
H∈T

L(H)

)
,

where g(H) is the genus of the sub-graph H of G. The set⊔
H∈T

L(H)

is the union of sets containing legs (seen as [n]).
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Example A.1.6. Consider theA-block graph of Example A.1.4, and choose the edge (u,B3).
Then the part of the A-block graph containing B3 is the one in Figure A.4, T is given by
{B3, z} and the label becomes (2, {1, 2}).

cu

z
B3

(z,B3)
z

1 2

Figure A.4: The part of the block graph of the graph in Figure A.3 containing B3.

Now we can generalize Lemma 4.21 of [CGP22]. Suppose P ⊂ ∆g,A([0]) is a Property in
the sense of Definition 1.2.27, G a (g,A)- stable graph. Recall that given a Property P and
a symmetric ∆-complex X, we write P (X) for the set of P -simplices, i.e., simplices in the
symmetric ∆-complex X with vertices in P , and P ∗(X) for all the simplices being faces of
a P -simplex. Recall that ∆g,A seen as a symmetric ∆-complex is a functor

∆g,A : Iop → Sets,

with
Xp = {equivalence classes of pairs (G, τ)},

with G ∈ Ob(Gg,A) and τ : E(G) → [p] a bijection, where we consider τ = τ ′ if they are in
the same orbit under the evident action of Aut(G). We adopt the following notation for the
rest of the section:

• We say that G ∈ P if (G, τ) ∈ P (∆g,A) for every τ . Similarly we write G ∈ P ∗ if
(G, τ) ∈ P ∗(∆g,A) for every τ .

• We say that an edge e ∈ E(G) is a (g′, L′)-bridge if G/(E(G) \ {e}) is isomorphic to
B(g′, L′).

Here by G/(E(G)) \ {e} we intend the graph obtained contracting all the edges except e.
We also recall the equations 4.2.1 of [CGP22]:∑

B∋v

g(v,B) + w(v) = g (A.1)

∑
B∋v

n(v,B) + |v|1(n) = n (A.2)

where n(v,B) := |L(v,B)| and the sums are taken over all the possible blocks containing a
fixed v ∈ VA.
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Lemma A.1.7. Let g ≥ 1, n ≥ 1 be integers, and let A ∈ Dg,n be a weight datum. Let
G ∈ Ob(Gg,A).

1. If e ∈ E(G) is a bridge then its image vertex in the graph obtained contracting e,
v ∈ V (G/e) is an A-articulation point.

2. Let v be an A-articulation point of G, w(v) = u ≥ 0, L(v) =M , with edges of BlA(G)
at v labeled (g1, L1), ..., (gs, Ls). Then v may be expanded into a bridge, with the result a
(g,A)-stable marked, weighted graph, in any of the following ways. Choose a partition
of M into two subsets M1 and M2, two integers w1, w2 such that w1 + w2 = u for
j = 1, 2, and a partition of E(BlA(G)) into P1 and P2 such that∑

(v,B)∈Pj

|v|E,B +
∑

xk∈Mj

ak + 2wj ≥ 2,

where with |v|E,B we denote the number of half-edges which are not legs incident to v
lying in B. Then v may be expanded into a bridge of type ∑

(v,B)∈P1

g((v,B)) + w1,
⊔

(v,B)∈P1

L((v,B)) ⊔M1


such that the result is (g,A)-stable, and no other (g,A)-stable expansions of v into
bridges are possible.

3. If BlA(G) has an edge labelled (g′, L), |L| = n′, then G ∈ (PAg′,n′)∗.

4. Suppose g′ ≥ 1 and w(v) = 0 for all v ∈ V (G), and suppose every label (g′′, L) on
E(BlA(G)) satisfies either g

′′ > g′, or g′′ = g′ and |L| > n′. Then G /∈ (PAg′,n′)∗.

Proof. The proof of (1) is an easy check since every vertex obtained contracting a bridge is a
cut vertex, so an A−articulation point. As for (2), it is enough to observe that the described
expansion keeps the A-stability, since the stability condition on the two new vertices is
satisfied by construction, while on the other vertices nothing changes. To show statement 4,
suppose by contradiction G ∈ (PAg′,n′)∗, so it admits an uncontraction G′ which contracts to
a bridge B(g′, L′), g′ < g and |S| = n′. So by 2, on G there must be an A-articulation point
v which can be expanded into a bridge of type (g′, L′), with |L′| = n′ and

(g′, L′) =

 ∑
(v,B)∈P1

g((v,B)) + w1,
⊔

(v,B)∈P1

L((v,B)) ⊔M1

 ,

for some choice of partition P1 ⊔P2 of the blocks at v, which is impossible since this label is
not allowed by hypothesis. For (3), suppose ϵ = (v,B) is labeled as (g′, L′). If B is already
a block made by a bridge there is nothing to show,since we can contract everything but the
bridge to obtain B(g′, L′), ans so G ∈ (PAg′,n′)∗. Suppose |v|E,B ≥ 2, and let B1, ..., Bs be the
remaining blocks on v.
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If we have
s∑

j=1

|v|E,Bj
+ |v|A + 2w(v) ≥ 2

then v can be expanded into a (g′, L′) bridge as in (2), with the partition given by leaving the
blok B on a side of the bridge and the rest of the blocks B1, . . . , Bs with all the decorations
on the other side. Assume

s∑
j=1

|v|E,Bj
+
∑

i∈L(v)

ai + 2w(v) ≤ 1,

so w(v) = 0, and |v|E,B1 = 1 since it can not be zero, implying also |v|A = 0. So B1

is a bridge, and by the identities A.1 and A.2 we can give it the label (g − g′, [n] \ L′),
which is equivalent to have the label (g′, L′) since the contraction to the bridge graph gives
B(g − g′, [n] \ L′) = B(g′, L′).

Proof of Theorem 2.1.1. The rest of this section is devoted to show Theorem 2.1.1. Recall
that we have g ≥ 1, n ≥ 1 integers and A ∈ Dg,n an input datum. We divide the proof in
three cases, and show each of them separately.
Case 1: Assume n = 1. When n = 1, we have A = a ∈ (0, 1] ∩Q and ∆g,a is equal to ∆g,1,
so the proof is the same as Theorem 1.1 of [CGP22] for (g, n) = (g, 1). In this case, ∆w

1,1 and
∆br

1,1 are empty, and ∆lw
1,1 = ∆1,1 is a point corresponding to the loop graph with a single leg

attached to the base-point, so it is trivially contractible.
Case 2: Assume g = 1, n ≥ 2 and A = (a1, . . . , an) is such that

∑n
i=0 ai ≤ 1. We have the

maximum number of edges in our graphs to be n, i.e., it is equal to the number of legs. The
only combinatorial type with 1 edge is is the loop graph with a single vertex of weight zero
and all the legs attached to it, and so so ∆lw

1,A is a point, which is trivially contractible. Since
the weight of a vertex never grows through uncontractions, every (1,A)-stable graph G will
be pure, so ∆w

1,A = ∅. Moreover, by the fact that the genus is one and that the graphs are
pure we can deduce that the number of edges equals the number of vertices, and this shows
that all of our graphs are cycles, so the subcomplex ∆br

1,A is empty since cyclic graphs have
no bridges.
Case 3. Here we take all the remaining cases: the first case is when g = 1, n ≥ 2 and
A = (a1, ..., an), is such that

∑n
i=0 ai > 1. The last case is when g ≥ 2, n ≥ 2 and A is

any weight datum. We start observing that PA1,0 is always non-empty with this assumptions.
Moreover, whenever

∑n
i=0 ai > 1 the Properties PA0,i are non-empty for every i = 1, ..., n. Let

us consider the following sequence of Properties:

PA0,n, ..., P
A
0,2, P

A
1,0, ..., P

A
1,n, P

A
2,0, ..., P

A
2,n...

If g is even, the last term of the sequence is chosen to be PAg/2,⌊n/2⌋, while if g is odd the

last term is PA(g−1)/2,n. With this choice each possible bridge graph appears in exactly one

Property. We denote by SA the sequence above. When
∑n

i=0 ai ≤ 1, the terms PA0,i of the
sequence are empty.

The next Theorem will serve us as a tool to complete the proof of the Case 3. It is a
generalized version of Theorem 4.9 of [CGP22].
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Theorem A.1.8. Let X = ∆g,A, and let g ≥ 1 and n ≥ 2. Let A ∈ Dg,n be a weight
datum verifying the hypothesis of Case 3. Then the sequence of properties SA satisfies both
conditions of Corollary 1.2.32.

Proof. Let us write the sequence above as P1, ..., PN . Then we have to check the following
two conditions:

1. for every i = 2, ..., N − 1 the properties P = P1 ∪ ...∪ Pi−1 and Q = Pi verify both the
conditions of Proposition 1.2.31, and every strictly Q-simplex is in P ∗.

2. The symmetric orbits of X admit canonical co-P1 maximal faces: to verify this, it is
enough to check that the properties P = ∅ and Q = P1 satisfy the second condition
of Proposition 1.2.31.

Condition 1 of Proposition 1.2.31: Let P = P1∪...∪Pi, Q = Pi = PAg′,n′ , i = 2, ..., N−1.
We have to show that the set of simplices P ∗(X) is co-Q saturated, i.e., we want to show
that given G ∈ Ob(Gg,A) which is not in P ∗, and G′ is obtained contracting (g′, L′)-bridges,
|L′| = n′, then G′ /∈ P ∗. We distinguish three cases:

• Q = PAg′,n′ , (g′, n′) ̸= (1, 0), g′ ≥ 1;

• Q = PA1,0;

• Q = PA0,n′ , for n′ = 2, ..., n (this case occurs only when
∑n

i=0 ai > 1).

In the first case Q = PAg′,n′ , (g′, n′) ̸= (1, 0), g ≥ 1. Let e ∈ E(G) be a (g′, L′)-bridge with

|L′| = n′, our goal is to show that G/e /∈ P ∗. To do this, we want to show that G/e /∈ (PA0,n′′)∗

for every n′′, i.e., G has no repeated markings. It suffice to show that not both ends v1 and
v2 of e are marked. Assume the edge (v1, e) ∈ E(BlA(G)) is labeled (g − g′, [n] \ L′) for
some L′ with n′ elements. We show v1 is unmarked. Since G /∈ (PA0,n′′)∗ for any n′′ and

G /∈ (PA1,0)
∗, we have w(v1) = 0 and |L(v1)| ≤ 1. So there must be another block B ̸= e at v1

and (v1, B) ∈ E(BlA(G)) is labeled (g′′, L) for g′′ > g′ or g′ = g and |L| ≥ n′. By equations
A.1 and by the fact that the other label is (g− g′, [n] \L′), (v1, B) has to be labeled (g′, L′),
and v1 is unmarked. Next, by Lemma A.1.7 point 3, every label (g′′, L′′) with |L′′| = n′′

on E(BlA(G)) satisfies either g′′ > g′, or g′′ = g′ and n′′ ≥ n′. Furthermore, the labels
on E(BlA(G/e)) are a subset of those on E(BlA(G)). Therefore by Lemma A.1.7 point 4,
G/e /∈ (PAg′′,n′′)∗ for any g′′ < g′ or g′′ = g′ and n′′ < n′, as long as g′′ ≥ 1.

In the second case, assume Q = PA1,0. If
∑n

i=0 ai ≤ 1 then P = ∅ and we are done.
Otherwise, P = PA0,n ∪ ... ∪ PA0,2, and a graph G is in P ∗ if and only if G has repeated
markings. The Property P is evidently preserved by uncontracting (1,∅)-bridges, so we are
done.

Third, assume g′ = 0, that is Q = PA0,n′ , so
∑n

i=0 ai > 1. The assumption G /∈ P ∗ means

that G /∈ (PA0,n′′)∗ for any n′′ > n′. Let C denote the core of G, i.e., the smallest connected
subgraph of G containing all of its cycles and vertices of positive weight. Then G \ E(C) is
a disjoint union of trees Yv, for v ∈ V (C). We say that a core vertex v ∈ V (C) supports a
leg x ∈ [n] if it belongs to Yv. Then observe that for any G ∈ Ob(Gg,A), the following are
two conditions are equivalent:
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1. G /∈ (PA0,n′′)∗ for any n′′ > n′;

2. every core vertex of G supports at most n′ markings.

Now, since we are assuming that G satisfies (1), it does with (2), which is evidently preserved
by contracting (0, L′)-bridges, |L′| = n′, since those operations never increase the number
of legs supported by a core vertex. So (1) is also preserved by contracting (0, L′)-bridges,
which is what we wanted to show.
Condition 2: Let P = P1 ∪ ... ∪ Pi−1, Q = Pi = PAg′,n′ , i = 2, ..., N − 1. We have to show
that the set of symmetric orbits of X \ P ∗(X) admits canonical co-Q maximal faces, i.e.,
given a graph G ∈ Ob(Gg,A) that is not in P ∗, we need to show that there is a maximal

uncontraction α : G̃ → G by (g′, L′)-bridges, |L′| = n′ such that for every α′ : G̃ → G there
is θ ∈ Aut(G̃) such that α′θ = α. Again we distinguish the three possible cases for Q as
before.

Let Q = PAg′,n′ , (g′, n′) ̸= (1, 0), g ≥ 1;. Let v be an A-articulation point of G. Again G

is not a (0, L)-contraction, since PA0,n′ ⊂ P when
∑n

i=0 ai > 1, or it is not in the sequence
when

∑n
i=0 ai ≤ 1, for any n′ = 2, ..., n. Then it has not vertices with |L(v)| ≥ 2, i.e., it has

no repeated markings. Moreover, since PA1,0 ⊂ P and G /∈ P ∗, every vertex of G has weight
0. Let B ∈ BlA(v), (g

′′, L′′) be the label of ϵ = (v,B) ∈ E(BlA(G)). By Lemma A.1.7, point
3 G ∈ PAg′′,n′′ , with n′′ = |L′′|. It follows that g′′ ≥ g′ and if g′′ = g′, then n′′ > n′. Lemma
A.1.7, point 2 implies that there is a unique maximal uncontraction which is canonical in
the sense we required above.

Assume now Q = PA1,0. Then by Lemma A.1.7, point 2, the maximal (1,∅)-bridge
expansion of G is obtained by replacing for any vertex v with |v|E + 2w(v) > 3, every loop
based at v with a bridge from v to a loop; adding w(v) bridges to vertices of weight 1, and
setting w(v) = 0, leaving the legs on v. Moreover this expansion is canonical.

Lastly, suppose Q = PA0,n′ , for n′ = 2, ..., n and
∑n

i=0 ai > 1. Let v be an A-articulation
point, B1,...,Bk the blocks at v labelled (0, L1),...,(0, Lk) for some Li ⊂ [n]. By how we
ordered the properties in SA we have that PA0,n′′ ⊂ P for every n′′ ≥ n′. By the Lemma A.1.7

point 2, since we are assuming G /∈ P ∗ we have |(
⊔k

i=1 Lk) ⊔ L(v)| ≤ n′, and if the equality
holds, v can be expanded into a (0, L′)-bridge with |L′| = n′. So this concludes the proof of
Condition 2 Observe that this shows also that the symmetric orbits of ∆g,A admit canonical
co-P1 maximal faces, as our proves work in the cases P = ∅ and Q = P1, where P1 can be
both PA0,n or PA1,0 depending on

∑n
i=0 ai.

strictly co-Q faces being in P ∗: We can assume all edges of G ∈ Ob(Gg,A) are (g
′, L′)-

bridges, |L′| = n′, eventually after contracting blocks ofG to some vertices. ThenGmust be a
tree with a single non-leaf vertex v, while every other vertex v′ has w(v′) = g′ and |L(v′)| = n′.
We treat the following cases. Suppose Q = PAg′,n′ with g′ ≥ 1 and (g′, n′) ̸= (1, 0). If G has

only (g′, L′)-edges, |L′| = n′ then G ∈ (PA1,0)
∗, since G has positive weights. Therefore

G ∈ P ∗. Next, suppose Q = PA1,0. If G has only (1,∅)-edges, then either
∑n

i=0 ai ≤ 1
and there is nothing to check, or

∑n
i=0 ai > 1 and so v supports n ≥ 2 markings. Then

G ∈ (PA0,2)
∗, so G ∈ P ∗. Finally, suppose

∑n
i=0 ai > 1 and Q = PA0,n′ for n′ < n. If G has only

(0, L′)-edges, |L′| = n′ for some n′ < n, note that w(v) = g and so v may be expanded into
a (g,∅)-bridge, which is equivalent to a (0, [n])-bridge. So G ∈ (PA0,n)

∗, and hence G ∈ P ∗,
as required.
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With this we can conclude the proof of Theorem 2.1.1, Case 3. To show 3, note that for
every (g,A) we have in Case 3, ∪Pi is the Property of being a (g,A)-stable bridge graph, so
(∆g,A)∪Pi

= ∆br
g,A. If

∑n
i=0 ai > 1, P1 = PA0,n is the Property of being a (0, [n])-bridge graph

and (∆g,A)PA
0,n,0

is a point. If
∑n

i=0 ai ≤ 1 and g ≥ 2, P = PA1,0 is the Property of being

a (1,∅)-bridge graph, with (∆g,A)PA
1,0,0

being a (g − 1)-simplex parametrizing non-negative

edge lengths on a tree with g leaves of weight 1, and a central vertex supporting all the
markings: here the Property of being a bridge is given by the union of Properties of the
sequence SA starting from PA1,0. In either cases, by Theorem A.1.8, we can apply Corollary
1.2.32 to produce a deformation retract of (∆g,A)∪Pi

= ∆br
g,A to a contractible space.

For 2, we have to verify that the properties P = ∅ and Q = P1,0 satisfy the conditions
(1) and (2) of Proposition 1.2.31. If G has no loops or weights the expansion is trivial.
Otherwise, we can expand it without changing stability type as follows: for any v ∈ V (G)
such that |v|E+2w(v) > 3 replace loops on v with bridges from v to a loop, add w(v) bridges
to vertices of weight 1 and set w(v) = 0. Then the contractibility of ∆lw

g,A = (∆g,A)1,0 follows
by Proposition 1.2.31.

For 1, consider the same properties and the expansion already described but on ∆w
g,A.

Then ∆w
g,A = (∆g,A)P1,0 deformation retracts to the subcomplex of graphs with only (1,∅)-

edges, which is contractible. This concludes the proof of the Theorem 2.1.1.
□

A.2 Alternative proof of Theorem 2.1.6

Here we present an alternative proof of Theorem 2.1.6. It relies on the fact that π1(∆g,A)
is trivial when A = 1(n), shown by Allcock, Corey, and Payne in [ACP22], Theorem 1.4,
were they also show that ∆g,n are simply connected for (g, n) ̸= (0, 4), (0, 5). The purposes
to present this proof are two: to start, this is the very first proof which we found about the
simply connectedness of ∆g,A while working on [KLSY22], and the second reason is that this
proof involves different ideas which really show how deeply the combinatorics of this space
influence its topology.

Let g ≥ 1, n ≥ 1, and fix a weight datum A ∈ Dg,n. For each subset S ⊆ [n], we define a
subcomplex ∆g,A(S) ⊆ ∆g,A as follows. Given a (g,A)-stable graph G and a subset S ⊆ [n],
we call v ∈ V (G) an S-vertex if S ⊆ m−1(v). Given a S ⊆ [n], we define Gg,A(S) to be the
set of objects

{G ∈ Gg,A : G has an S-vertex} .
In the same way, we define a subcomplex ∆g,A(S) of ∆g,A by defining ∆g,A(S)(p) as

{[G, τ ] ∈ ∆g,A(p) : G has an S-vertex} ,
for each p ≥ −1. As defined, ∆g,A(S) is a subcomplex of ∆g,A because the property of
having an S-vertex is closed under edge contractions. The following lemma follows from the
definition of an S-vertex.

Lemma A.2.1. If a collection of subsets {Sα}α∈A of [n] satisfies
⋂

α∈A Sα ̸= ∅, then⋂
α∈A

∆g,A(Sα) = ∆g,A

(⋃
α∈A

Sα

)
.
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Define a weight vector AS ∈ ((0, 1]∩Q)n−|S|+1 by removing from A in order those entries
indexed by S, and then appending an entry of weight min

(∑
i∈S ai, 1

)
.

Example A.2.2. As an example, if we take A = (1/4, 2/3, 1/2, 1), S = {1, 3}, and T =
{2, 3}, then AS = (2/3, 1, 3/4), while AT = (1/4, 1, 1).

For a topological space T , denote by Cone(T ) the space T × [0, 1]/(T × {1}).

Proposition A.2.3. Let S ⊆ [n]. If
∑

i∈S ai ≤ 1, then we have an isomorphism of sym-
metric ∆-complexes ∆g,A(S) ∼= ∆g,AS . Otherwise, there is a homeomorphism of topological
spaces |∆g,A(S)| ∼= Cone(|∆g,AS |).

Proof. For the first part, suppose
∑

i∈S ai ≤ 1. We define a natural transformation of

functors η : ∆g,AS −→ ∆g,A, by defining its component at [p] ∈ Iop, ηp : ∆g,AS(p) → ∆g,A(p),
as follows. For every [G, τ ] ∈ ∆g,AS(p), the image ηp([G, τ ]) is the graph obtained replacing
the last marking by the set of markings indexed by S (nothing changes on τ). This is a
natural transformation since for every i : [p] → [q], the following diagram is commutative:

∆g,AS(q) ∆g,A(p)

∆g,AS(p) ∆g,A(p).

ηq

∆
g,AS (i) ∆g,A(i)

ηp

Indeed, the relative positions of the markings with respect to the last marking (or on the
right hand side of the diagram, the S-indexed markings) in each graph involved undergo
the same changes during edge contractions and relabellings of edges involved in ∆g,A(i) and
∆g,AS(i). Moreover, the stability at each vertex persists in all the involved graphs under ηp
and ηq by the construction of AS. Therefore, ηp◦∆g,AS(i) = ∆g,A(i)◦ηq. Furthermore, η is an
isomorphism of sub-complexes between ∆g,AS and ∆g,A(S). This amounts to checking that
all the components ηp : ∆g,AS(p) → ∆g,A(S)(p) for all p ≥ −1 are isomorphisms. Indeed,
given [H, π] ∈ ∆g,A(S)(p), the morphism that replaces the set of markings indexed by S by
a marking of weight

∑
i∈S ai is the inverse of ηp (again, nothing changes in the edge label

function).
For the second part, we construct a homeomorphism of topological spaces from the cone

over ∆g,AS to ∆g,A(S) f :
(
∆g,AS × [0, 1]

)
/
(
∆g,AS × {1}

) ∼= ∆g,A(S), where both ∆g,AS and
∆g,A(S) are equipped with the final topology. Recall that each point in ∆g,AS is represented
by a pair (G, ℓ) where G ∈ Gg,AS and ℓ : E(G) → R≥0. Similarly for each point in ∆g,A(S).
We let AS be indexed by ([n] \ S) ∪ {n + 1}. Now to construct the homeomorphism f , for
each G = (G,m, h) ∈ Gg,AS , we set f(G) to be the graph G′ = (G′,m′, h′) ∈ Gg,A(S) that is
the new graph obtained by adding a new vertex with zero weight, connecting it to the vertex
that houses the marking n + 1, and replacing the marking n + 1 with S-indexed markings;
see Figure A.5. Formally, G′ is defined as follows. Let v be the vertex where the marking
n+ 1 is attached; that is, v = m(n+ 1) ∈ V (G). Let v0 be a new vertex and set

V (G′) = V (G) ∪ {v0},
E(G′) = E(G) ∪ {v, v0}.
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Set the new marking function m′ : [n] → V (G′) to be m′(i) =

{
m(i) i ∈ [n] \ S,
v0 i ∈ S,

and

finally, set the new weight function h′ : V (G′) → Z≥0 to be h′(u) =

{
h(u) u ∈ V (G),

0 u = v0.

v n+ 1

G

v v0 Markings indexed
by S

G′

Figure A.5: A graph G ∈ Gg,AS and f(G) = G′ ∈ Gg,A(S). The cloud shapes represent the
parts of the graphs that are unchanged under f .

It remains to check that G′ is an object in Gg,A(S). First, notice that v0 is an S-vertex
and that g(G′) = g(G) = g. It now suffices to check that v and v0 satisfy the stability
condition. For v we have

2h′(v)− 2 + valG′(v) +
∑

i∈(m′)−1(v)

ai = 2h(v)− 2 + valG(v) + 1 +

 ∑
i∈m−1(v)

ai

− 1

= 2h(v)− 2 + valG(v) +
∑

i∈m−1(v)

ai

> 0,

by stability of v in G.
For v0, we use the assumption that

∑
i∈S ai > 1 to obtain

2h′(v0)− 2 + valG′(v0) +
∑
i∈

m′−1(v0) = 0− 2 + 1 +
∑
i∈S

ai > 0.

Now we define the morphism f :
(
∆g,AS × [0, 1]

)
/
(
∆g,AS × {1}

)
→ ∆g,A(S) by sending

((G, ℓ), t) 7→ (G′, ℓ′), where

ℓ′(e) =

{
t e = {v, v0},
(1− t)ℓ(e) e ∈ E(G).

When t = 0, f(−, 0) coincides with the map ηp for all p ≥ −1. When t = 1, ((G, ℓ), 1) is
sent to the cone point in ∆g,A(S) represented by the graph consisting of a weight-g vertex
marked by [n] \S and a weight-0 vertex v0 marked by S (Figure A.6). Since both ∆g,AS and
∆g,A(S) can be given the structure of finite CW-complexes, they are compact and Hausdorff.
Since the map f is a continuous bijection, it is a homeomorphism.

Before we prove that ∆g,A is simply connected, i.e., it is nonempty, path connected and
has trivial fundamental group, we need some auxiliary definitions.
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g
vv0

Markings indexed
by S

Markings indexed
by [n] \ S

Figure A.6: The graph representing the cone point in ∆g,A(S).

Recall that a collection K of non-empty finite subsets of a set X is called a set-family.
A set-family K is called an abstract simplicial complex if, for every set S in K, and every
non-empty subset T ⊂ S, the set T also belongs to K. The finite sets that belong to K are
called faces of the complex, and a face T is said to belong to another face S if T ⊂ S, so
the definition of an abstract simplicial complex can be restated as saying that every face of
a face of a complex K is itself a face of K. The vertex set of K is defined as the union of all
faces. For every vertex v the set {v} is a face of the complex, and every face of the complex
is a finite subset of the vertex set.

Definition A.2.4. Given an integer n ≥ 1, and A ∈ Dg,n, we associate an abstract simplicial
complex K(A) with vertex set equal to [n] by declaring that S ⊆ [n] belongs to K(A) if and
only if

∑
i∈S ai ≤ 1.

Observe that the association of K(A) to the vector A is order-reversing: if A,A′ ∈ Dg,n

with A ≤ A′, then K(A′) is a subcomplex of K(A).

Definition A.2.5. Let S ⊆ [n] and let G ∈ Gg,A. We call a vertex v ∈ V (G) an S-antenna
if w(v) = 0, val(v) = 1, and m−1(v) = S.

By the definition of A-stability, there exist graphs with S-antennas in Gg,A if and only
if S /∈ K(A). We will also require the following basic topological lemma obtained via the
Seifert-van Kampen theorem (see [Hat02]) and induction.

Lemma A.2.6. Let X be a path-connected CW-complex, and suppose that X = ∪N
i=1Ui where

each Ui is a simply connected CW-subcomplex. Suppose further that for any 1 ≤ i1, . . . , ik ≤ N ,
the intersection ∩k

j=1Uij is simply connected. Then X is simply connected.

Lemma A.2.7. Let g, n ≥ 1 and A ∈ (Q ∩ (0, 1])n. Then ∆g,A is path-connected.

Proof. It is enough to show that points corresponding to ∆g,A(0) are path-connected to
each other, because each point (G, ℓ) ∈ ∆g,A is path-connected to (G/T, ℓ′) for any edge set
T ⊂ E(G) and length function ℓ′, and every graph can be contracted to a graph with only
one edge. If a A-stable graph G with genus g has only one edge, then G is either a loop at a
vertex with weight (g − 1) supporting all the markings, or a bridge connecting two vertices
with weights summing up to g.

Suppose G is the former and G′ is the latter. Further suppose that G′ has one vertex
of weight k ≥ 1 and supports markings indexed by some subset S ⊆ [n]. Note that such
vertex always exists because G′ has genus greater than 0. Since G′ is stable, we have
2(g−k)+

∑
i/∈S wi > 1. Then G and G′ are vertices of the 1-simplex corresponding to the w-

stable genus g graph H consisting of two vertices, with weights k− 1 and g−k, respectively,
an edge that joins them and a loop at the vertex with weight k− 1. Therefore G and G′ are
path-connected to each other.
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We now have the necessary framework to prove that π1(∆g,A) is trivial. Let us denote
by ℓ(A) the length of A, and by j(A) the number of entries of A which are strictly less than
1, i.e., j(A) := |{i ∈ [n] | ai < 1}|.

Theorem A.2.8. Let g, n ≥ 1 and A ∈ Dg,n. Then ∆g,A is simply connected.

Proof. Fix g ≥ 1. We will proceed by induction on the pair (ℓ(A), j(A)), where Z2 is given
the lexicographic order. In the base case when (ℓ(A), j(A)) = (1, 0) and (ℓ(A), j(A)) = (1, 1),
we have ∆g,A ∼= ∆g,1, and π1(∆g,1) is trivial by [ACP22]. Suppose ℓ(A) ≥ 2, and the
statement is true for all A′ such that (ℓ(A′), j(A′)) is strictly less than (ℓ(A), j(A)) with
respect to the lexicographic order. Since ∆g,n is simply connected for all n as g ≥ 1 again
by [ACP22], reordering the entries of A if necessary, we can assume that a1 < 1 (we can
reorder without changing the homotopy type by 4.2.10, number (3)). Now denote by A
the weight vector obtained from A by changing a1 to 1. So in the lexicographic order,
(ℓ(A), j(A)) < (ℓ(A), j(A)). We also have an embedding ∆g,A ↪→ ∆g,A of topological spaces,

as ai ≤ ai for all i. Now we analyze the locus Σg,A := ∆g,A \∆g,A ⊆ ∆g,A. We suppose that
Σg,A is nonempty; otherwise ∆g,A ∼= ∆g,A, and we have that π1(∆g,A) is trivial by assumption.

Now consider the decomposition ∆g,A = ∆g,A∪Σg,A. Recall that the Seifert-van Kampen
theorem for CW-complexes expresses π1(X) for a path-connected CW-complex X as the
amalgamated free product π1(X) = π1(U)∗π1(U∩V )π1(V ), where U and V are path-connected
CW-subcomplexes that cover X, such that U ∩V is path-connected. We will show that Σg,A
is a subcomplex of ∆g,A and that both Σg,A and ∆g,A ∩ Σg,A are simply connected, so that
Seifert-van Kampen applies and we have the following pushout diagram of groups:

π1(∆g,A ∩ Σg,A) π1(Σg,A)

π1(∆g,A) π1(∆g,A)

, (A.3)

where all arrows are induced by inclusions. In particular, the two groups in the top row
in Diagram A.3 will be trivial. Since π1(∆g,A) is trivial by induction, it will follow that
π1(∆g,A) must be trivial.

To show that Σg,A is a simply connected subcomplex of ∆g,A, we first establish the
equality

Σg,A =
⋃

S∈K(A)\K(A)

∆g,A(S). (A.4)

Indeed, the graphs parameterized by the subspace ∆g,A\∆g,A are precisely those that are A-

stable but not A-stable. Any such graph must have an S-antenna for some S ∈ K(A)\K(A);
since S-antennas are also S-vertices, we have the containment

∆g,A \∆g,A ⊆
⋃

S∈K(A)\K(A)

∆g,A(S).

The object on the right is a closed subcomplex of ∆g,A, so we must have

∆g,A \∆g,A = Σg,A ⊆
⋃

S∈K(A)\K(A)

∆g,A(S).
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For the reverse containment, note that any metric graph in ∆g,A(S) for S ∈ K(A) \K(A)

either contains an S-antenna, or has a A-stable uncontraction with an S-antenna. As
such, ∆g,A(S) ⊆ Σg,A and the equality is proven; in particular, Σg,A is a subcomplex of
∆g,A. We now argue that Σg,A is simply connected using the criterion of Lemma A.2.6

and Equation A.4. Indeed, for all S ∈ K(A) \ K(A), we have
∑

i∈S Ai > 1 by the def-

inition of K(A). Therefore for each such S, we have ∆g,A(S)
∼= Cone(∆

g,AS) by Lemma

A.2.3, so each ∆g,A(S) appearing in the union of Equation A.4 is contractible. Moreover,

given any S1, . . . , SN ∈ K(A) \ K(A), we have 1 ∈ ∩N
i=1Si, so Lemma A.2.1 implies that⋂N

i=1∆g,A(Si) = ∆g,A

(⋃N
i=1 Si

)
, which is again contractible by Lemma A.2.3 and hence is

simply connected. Thus Lemma A.2.6 gives that the subcomplex Σg,A is simply connected.
We will now prove that ∆g,A ∩ Σg,A is simply connected, again using the criterion of

Lemma A.2.6. Identifying ∆g,A(S) with its image under the embedding ∆g,A ↪→ ∆g,A, we

have ∆g,A∩Σg,A =
⋃

S∈K(A)\K(A) ∆g,A(S). For each S ∈ K(A)\K(A), we have
∑

i∈S wi ≤ 1,

so ∆g,A(S) ∼= ∆g,AS by Lemma A.2.3. Since |S| ≥ 2 for any such S, we have ℓ(AS) =
ℓ(A)−|S|+1 < ℓ(A), so by induction, each ∆g,A(S) appearing in the union above is simply

connected. Given S1, . . . , SN ∈ K(A) \ K(A), we have
⋂N

i=1∆g,A(Si) = ∆g,A

(⋃N
i=1 Si

)
,

again by Lemma A.2.1. Setting S = ∪N
i=1Si, Lemma A.2.3 gives that ∆g,w(S) is either

isomorphic to ∆g,AS , or the cone over it. In the first case ∆g,A(S) is simply connected by
induction, and in the second it is simply connected because it is contractible. Hence Lemma
A.2.6 gives that ∆g,A ∩ Σg,A is simply connected. As already discussed, that π1(∆g,A) is
trivial now follows from the fact that Diagram A.3 is a pushout square and the inductive
assumption that π1(∆g,A) is trivial.
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