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Abstract

The study of the properties of the Higgs boson at the LHC is closely related to the study
of gluon-initiated processes, which in turn requires the calculation of precise theoretical pre-
dictions in the SM. In this thesis we compute the virtual NLO corrections in QCD to the
processes gg → ZH and gg → ZZ, with a focus on the contribution from loops of top quarks.
The two-loop box diagrams involving massive internal lines are approximated analytically us-
ing an expansion of the amplitude in terms of a small transverse momentum of the final-state
particles. This method allows to obtain a reliable approximation of the virtual corrections for
partonic center-of-mass energies lower than ∼ 700 GeV. Furthermore, in the case of gg → ZH
we show how this limit can be overcome by merging our results with those obtained from
a complementary approach used in the literature, which is based on the expansion of the
amplitude in the limit of high energies. When the results of both expansions are improved
using Padé approximants, their combination provides analytical results that are accurate over
the whole phase space.
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Chapter 1

Introduction

In the never-ending journey towards the comprehension of the fundamental laws of Nature,
the discovery of the Higgs boson at the Large Hadron Collider (LHC) has marked a turning
point. The observation by the ATLAS and CMS experiments of the scalar resonance with
a mass around 125 GeV [1, 2] has been a crucial confirmation of the Standard Model (SM)
[3–6] of particle physics. Notably, the observation established the mechanism of spontaneous
Electro-Weak Symmetry Breaking (EWSB) [7–12] as the theoretical tool for understanding
the origin of the masses of the SM particles. The Higgs sector of the SM consists of one
scalar field acquiring a nonzero vacuum expectation value (vev) which spontaneously breaks
the SU(2) × U(1) EW symmetry. The interactions of the Higgs field with the weak gauge
bosons and with the fermions can account for their masses in a way that is consistent with the
fundamental principle of gauge symmetry. Furthermore, the scalar potential for the Higgs
field includes trilinear and quadrilinear self-interactions. The measurement of the Higgs mass
from the LHC experiments, together with the knowledge of the vev from the muon decay,
allows to make unambiguous predictions in the SM.

The Higgs Boson at the LHC After the first observation of the Higgs boson in 2012,
the study of its properties has become one of the primary tasks of the LHC program. The
SM predicts that the cross sections for Higgs production processes and the Higgs decay rates
are sensitive to the couplings of the boson to the other known particles. Therefore, a precise
determination of these processes allows to characterize the Higgs and to assess whether it
really behaves as the SM dictates. Testing the properties of the Higgs boson to high precision
is important also to unveil potential signals of physics beyond the SM. Indeed, according to
the lack of direct evidence for new physics in collider experiments, deviations from the SM
predictions are expected to be observed as subtle effects. These signals could be precious
hints to interpret phenomena that currently are not understood within the SM, such as dark
matter, neutrino masses or the asymmetry between matter and antimatter in the Universe.

Currently, the Higgs sector of the SM has not been fully explored from an experimental
point of view. In fact, while it is not clear whether the trilinear Higgs self-coupling will
be measured at the LHC, the quadrilinear self-coupling is considered to be out of reach.
Furthermore, a precise determination of the Higgs couplings with the lightest fermions is a
very ambitious task. These challenges will be addressed by the future generation of particle
colliders (see e.g. [13]).

On the other hand, if we consider what we do know about the Higgs from experiments,
the improvement reached in the determination of many of its properties is remarkable. The
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Figure 1.1: ATLAS measurements of (a) the cross sections for the main Higgs production
channels and of (b) the branching ratios for the main Higgs decay modes, normalized to the
respective SM predictions. The black error bars, blue boxes and yellow boxes show the total,
systematic, and statistical uncertainties in the measurements, respectively. The gray bands
indicate the theory uncertainties in the predictions. The cross section measurements assume
SM branching ratios and vice versa. Taken from [17].

Higgs mass is now measured with a permille accuracy [14] and its spin and parity are well
understood [15]. The progress in the experimental efforts to determine the properties of the
Higgs boson within the last ten years can be also appreciated from fig. 1.1. Figures 1.1(a)
and 1.1(b) show respectively the measurements of the main production and decay modes of
the Higgs boson at the LHC, normalized to their SM predictions. In basically every channel
the deviations from theory expectations are at the level of 20% or below, and the total
uncertainties are in the range of 10 to 30%, demonstrating a full compatibility with the SM
predictions.

The situation in fig. 1.1 is expected to improve significantly with the forthcoming Run3
and especially with the High-Luminosity phase of the LHC. In particular, the most conser-
vative estimates for the High-Luminosity phase [16] indicate that a reduction of the total
uncertainties down to ∼ 5% for all the channels shown in fig. 1.1 will be achieved. This level
of precision will allow for a more stringent test of the SM.

In order to match the anticipated progress on experimental measurements, an adequate
improvement on the theory side is mandatory. All the sources of theoretical uncertainties
related to the predictions for Higgs processes at the LHC must be addressed to allow for a
meaningful comparison with the experimental results. The present thesis aims to provide a
contribution to this challenging task.

Theoretical Predictions for Collider Observables The possibility of calculating pre-
dictions for processes at hadron colliders must not be taken for granted, as it rests on
three fundamental principles: the validity of the parton model, the property of factorization
in hadronic cross sections [18] and the asymptotic freedom of Quantum Chromodynamics
(QCD) [19,20].

The parton model allows to interpret high-energy collisions between hadrons in terms of
the hard scattering of their fundamental constituents, namely quarks and gluons. The idea
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behind factorization in hadron collisions is that the long-distance effects due to low-energy
QCD and the short-distance effects related to the hard scattering of the partons can be
treated independently, to a very good degree of approximation. Considering a case relevant
for this thesis, if we denote the cross section for a given hadronic process in proton collisions
as σ, the latter can be written as (see e.g. [21])

σ =
∑

ij

∫
dx1dx2 fi(x1, µF )fj(x2, µF ) σ̂ij(x1, x2, Q, µF ) +O (ΛQCD/Q) (1.1)

where the cross section for a specific partonic process initiated by the partons i and j is
defined as σ̂ij and it is convoluted in eq.(1.1) with the parton density functions (PDF) fi, fj ,
associated to the probabilities that the partons i and j carry respectively a fraction x1 and
x2 of the momenta of the incoming protons. The energy scale Q in eq.(1.1) is related to
the characteristic energy of the partonic process, while ΛQCD � Q is the typical scale of
nonperturbative QCD, with ΛQCD ∼ 1 GeV. The arbitrary factorization scale µF separates
the long-distance and short-distance QCD effects. The former are encoded in the universal
PDFs, the latter in the partonic cross section σ̂ij . Since asymptotic freedom of QCD implies
that the strong coupling αS is smaller than 1 when Q � ΛQCD, we can obtain reliable
predictions for the partonic cross section using perturbative Quantum Field Theory. In
particular, we can express the partonic cross section as a perturbative series1

σ̂ij(µF , µR) = αkS(µR)
n∑

m=0

σ̂
(m)
ij (µF , µR)αmS (µR) (1.2)

where k is the leading power in αS , and the dependence of the strong coupling and of the

series coefficients σ̂
(m)
ij on the renormalization scale µR has been made explicit. The σ̂

(m)
ij are

computed with the technique of Feynman diagrams: usually (although not in the case of this

thesis) the leading-order (LO) coefficient σ̂
(0)
ij is associated to tree-level diagrams, whereas in

order to evaluate higher-order effects one must compute loop diagrams as well as diagrams
with additional particles in the final state.

When the perturbative series is computed up to a certain order, eqs.(1.1, 1.2) can be
combined to obtain a fixed-order prediction for the hadronic cross section. However, as one
is forced to truncate the series in eq.(1.2), the ignorance on the higher-order contributions
constitutes an important systematic uncertainty2. The theoretical uncertainties associated to
a fixed-order computation are conventionally estimated by studying how the result is affected
by the variation of µF and µR within a certain range, typically centered around the hard
scale Q. Nevertheless, this procedure is not guaranteed to be reliable, and the only way to
genuinely estimate the size of the missing higher-order coefficients in eq.(1.2) is to actually
compute them. The focus of this thesis will be on the calculation of higher-order terms
using multi-loop calculations, namely we will consider the perturbative corrections obtained
by increasing the number of loops in the Feynman diagrams, at the same time keeping the
number of particles in the final state fixed w.r.t. the LO contribution.

1For completeness, QCD corrections are not the only higher-order effects that need to be computed in
predictions for hadronic colliders, as also EW corrections are important [22]. However, the latter will not be
considered in this thesis.

2Other relevant sources of theoretical uncertainties, which won’t be discussed in this thesis, are: the
uncertainties on the input parameters in the predictions; the uncertainties on the determination of the PDFs
and on the modeling of the hadronization taking place after the partonic process; the effects of large logarithms
which may spoil the convergence of the series in eq.(1.2).

3



Chapter 1. Introduction

Multi-Loop Calculations The details of a given multi-loop calculation may vary signif-
icantly depending on the process, but the typical structure of the problem involves a few
common stages which we list below:

1. Identification of the Feynman diagrams relevant to the amplitude for a specific pertur-
bative order

2. General study of the Lorentz structure of the amplitude, with the aim of decomposing
the latter as a linear combination of projectors multiplying scalar form factors. The
form factors contain scalar loop integrals

3. Study of the scalar loop integrals in the form factor and decomposition of the latter as
a linear combination of a subset of simpler integrals, known as master integrals

4. Evaluation of the master integrals

The first of the above stages has been efficiently automated in computer programs, which
are an indispensable tool to deal with the complexity of modern problems. The second
stage can be addressed with some generality [23, 24]. The decomposition in terms of master
integrals can be carried out using several methods; the use of recurrence relations known as
integration-by-parts (IBP) relations [25,26] is one of the most common approaches (although
not always the most efficient) and in this thesis we will use the algorithmic implementation
of the IBP decomposition. Finally, the evaluation of the master integrals is a very nontrivial
problem. Notably, the number of energy scales occurring in the integrals, like the partonic
kinematical variables and the masses of the particles involved, is a major limiting factor in
their analytical evaluation.

In this thesis, we will discuss the case of two-loop diagrams for 2 → 2 processes with
massive internal lines. In particular, we will concentrate on loops of top quarks, which
play a special role in Higgs-related processes due to the fact that the strength of the Higgs
couplings to the fermions is proportional to their mass. Also, top-quark loops pose a technical
challenge: in the special case of two-loop box diagrams, the associated integrals cannot be
computed in exact top-mass dependence using the analytical methods currently available,
due to the high number of energy scales involved. An exact evaluation has been achieved
with the use of numerical methods, of which an important example is sector decomposition
[27]. However, this strategy has the drawback of being particularly demanding in terms of
computing resources and time, and not very flexible w.r.t. a change of the input parameters.

Analytical Approximations Although the availability of exact results is an important
accomplishment, the need to implement theoretical predictions in fast and flexible Monte
Carlo codes, used in the direct comparison with experimental measurements, has motivated
a parallel effort to study analytical approximations, based on the analysis of the kinemat-
ical limits of the loop integrals. In particular, one can assume certain hierarchies among
the various scales in the integrals and expand the latter according to those hierarchies. The
expanded integrals will depend on fewer scales than the original ones, and they can be calcu-
lated analytically. The drawback of this strategy is that the results are typically limited in
their validity to the kinematical range where the approximations are legitimate. Thus, one
trades the possibility of obtaining analytical results with the restriction to specific regions of
the phase space. Among the various approaches discussed in the literature, we list here the
ones that will be mentioned throughout the thesis:
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� Assuming the top mass mt to be the largest scale in the problem, one can expand the
integrals in the infinite top mass limit (mt → ∞) (see.g. [28, 29]) A refinement of this
approach is the large mass expansion (LME), in which mt is again associated to the
largest scale but it is considered to be finite. The integrals are then expanded in ratios
of all the other kinematical scales to mt (e.g. [30–32])

� In the high-energy (HE) expansion, the partonic kinematical variables (e.g. the Mandel-
stam variables ŝ and t̂) are associated to the largest scale, and the external and internal
masses are taken to be small in comparison. Additional hierarchies for the external and
internal masses are usually considered (e.g. [33–36])

� In the small-mass expansion the integrals are expanded in the limit of small external
masses compared to the other scales in the integrals (e.g. [37, 38])

The pT Expansion A different kind of analytical approximations has been proposed for
the first time in ref. [39], in the study of double-Higgs production in gluon fusion. This
approach is based on the asymptotic expansion of the loop integrals in terms of a forward
kinematics, corresponding to the limit in which the transverse momentum of the final state
particles, pT , is small compared to the ŝ variable and to the scale set by the mass of the top
quark.

The main goal of this thesis is to show that this novel approach, that will be denoted as
pT expansion in the following, can be used to compute the effects of top-quark loops to other
2→ 2 processes relevant for Higgs physics at the LHC. In particular, we study gluon-initiated
processes, for which higher-order QCD corrections are very important, as they are expected
to be comparable in magnitude w.r.t. the LO terms (see e.g. [40]).

In chap. 2 we apply the pT expansion to study the virtual QCD corrections to gluon-
initiated ZH production, gg → ZH, at next-to-leading order (NLO). Loops of top quarks
play a dominant role in this process, and they contribute substantially to the theoretical
uncertainties in the current prediction for associated ZH production at the LHC. In chap. 2
we provide an introduction to the pT expansion method, as well as to the technique of IBP
reduction, in the context of its application to gg → ZH, and we present the results published
in ref. [41].

In chap. 3 we consider gluon-initiated Z pair production, gg → ZZ, at NLO in QCD. This
process is important for Higgs physics due to the interplay of its two sub-amplitudes, one
related to resonant Higgs production via gg → H → ZZ and one related to the non-resonant
contribution gg → ZZ. Loops of light quarks as well as the top are relevant in this process.
However, at the two-loop level only the contribution from the former is known exactly in
analytical form, and we use the pT expansion to obtain an approximation of the two-loop
diagrams involving top quarks.

Like the other analytical approximations, the pT expansion cannot be trusted in all the
regions of the phase space. In particular, the method becomes unreliable in regions where pT
is comparable or larger w.r.t. the scale set by the top mass. However in chap. 4 we discuss
the possibility of merging the results of the pT expansion with those available from a different
approximation, namely the HE expansion. The latter can provide reliable predictions in a
region of the phase space that is complementary in relation to the pT expansion, and in
chap. 4 we show how the two approaches can be combined to obtain a prediction over the
full phase space. Finally, in chap. 5 we present our conclusions and we discuss the future
implications of our findings.
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Chapter 2

Virtual QCD Corrections to
gg → ZH

2.1 Introduction

Associated production pp → V H (also known as Higgs-Strahlung) is a process in which a
single Higgs boson is emitted together with a weak vector boson (V = Z,W ) in a proton-
proton collision. It is one of the main Higgs production processes investigated at the LHC.
For a SM Higgs with a mass around 125 GeV, the cross sections for the WH and ZH case
are O(pb) (see fig. 2.1(a)). Despite being not as frequent as other production mechanisms
like gluon fusion or vector boson fusion, associated production provides a unique way to
study the decay of the Higgs to a pair of bottom quarks, which is challenging to observe at
an hadronic collider due to the many sources of QCD background. In the Higgs-Strahlung
case, the leptonic decays of the weak bosons can be exploited to tag the associated Higgs,
thus enhancing the signal-to-background ratio in experimental searches. The latter strategy
and the employment of jet-substructure techniques [42] were crucial elements for the first
observation of the H → bb̄ decay, made by ATLAS and CMS [43, 44] in 2018, establishing
associated production as the most sensitive category to H → bb̄ [45].

The SM cross sections for both the WH and ZH channels receive the leading and next-to-
leading contributions from a partonic process where a pair of quarks first produces a virtual
weak boson V ∗ which then decays to the V H final state. The QCD corrections for this
quark-initiated process (a.k.a. the Drell-Yan-like contribution) are known through next-to-
next-to-next-to-leading order (N3LO) [46–49], while the EW corrections are known through
NLO [50,51]. However, in the specific case of associated ZH production one has to consider
an additional contribution coming from the partonic process gg → ZH, which arises for the
first time as a NNLO QCD correction to the total pp → ZH cross section. Despite being
an O(α2

S) correction, the contribution from this subprocess to the hadronic cross section is
non-negligible because of the large gluon luminosity at the LHC. It has been shown that the
relevance of gg → ZH is even more enhanced in the boosted kinematic regime, to the point
of being comparable to the quark-initiated contribution near the tt̄ threshold [52].

Since currently only the LO prediction for gg → ZH is included in the Monte Carlo
codes [53], the factorization- and renormalization-scale uncertainties related to the gluon-
induced process can be as large as 25%. They affect significantly the theoretical uncertainty
on the total pp→ ZH cross section, compared to pp→WH (see fig. 2.1(b)). The knowledge
of the NLO corrections to gg → ZH would reduce the scale uncertainties, facilitating precision

7
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Figure 2.1: (a) Theoretical SM predictions for the main Higgs production modes at the
LHC, as a function of the c.o.m. energy

√
s, for mH = 125 GeV. The bands around the

solid lines represent the theoretical uncertainties, while the label over each line refers to the
highest orders known in perturbative calculations (taken from [56]). (b) Cross section for
the combination of associated production pp → V H followed by H → bb̄ and V →leptons,
measured by ATLAS. The theoretical uncertainties (pink bands) for the ZH case are larger
than for WH due to the additional gg → ZH contribution (taken from [45]).

studies in the next runs of the LHC. The gg → ZH contribution is relevant also for New
Physics (NP) studies, since it is sensitive to both sign and magnitude of the top Yukawa
coupling, dipole operators [54] and can receive additional contributions from new particles
[55]. An improved knowledge of the SM prediction for the gluon-induced contribution is
therefore very important both for precision measurements1 of ZH production and for testing
NP in this channel. The present chapter is devoted to the study of this partonic process.

The LO contribution to the gg → ZH amplitude, given by one-loop diagrams, was com-
puted exactly in refs. [57,58]. The virtual NLO QCD corrections are not fully known analyt-
ically, as they include two-loop integrals which depend on up to five scales. Specifically, the
exact analytical results for the two-loop box diagrams are unavailable with the current multi-
loop computational techniques. A first calculation of the NLO terms was obtained in ref. [28]
using an asymptotic expansion in the limit mt → ∞ and mb = 0, and pointed to correc-
tions of about 100% with respect to the LO contribution. Soft gluon resummation has been
performed in ref. [59] including next-to-leading logarithmic terms, and the result has been
matched to the fixed NLO computation of ref. [28]. Finite top-quark-mass effects to gg → ZH
have been investigated in ref. [60] using a combination of the LME and Padé approximants.
In addition, a data-driven method to extract the non-Drell-Yan part of pp → ZH, which
is dominated by the gluon-induced contribution, has been proposed in ref. [61], exploiting
the known relation between WH and ZH associated production when only the Drell-Yan
component of the two processes is considered. A qualitative study focusing on patterns in the
differential distribution has been conducted in ref. [62], where 2 → 2 and 2 → 3 LO matrix
elements were merged and matched to improve the description of the kinematics. Recently,

1See also the Precision Wish List included in ref. [53].
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2.2. General Properties of the gg → ZH Amplitude

a new analytic computation of the NLO virtual contribution based on the HE expansion of
the amplitude, supported by Padé approximants, and on an improved LME, has been carried
out [35]. The results are in agreement with an exact numerical study [63], in the energy re-
gions where the expansions are legitimate. An improvement on the analytic calculation is still
desirable, since the LME and the HE expansion do not cover well the invariant-mass region
350 GeV . MZH . 750 GeV. It should be remarked that this region provides a significant
contribution to the hadronic cross section at the LHC, about 68%.

In this chapter, based on the findings of ref. [41], we present an analytic calculation of
the virtual NLO QCD corrections to the gg → ZH process. The two-loop box diagrams, and
the associated multi-scale integrals, are computed in terms of a forward kinematics via an
expansion in the Z (or Higgs) transverse momentum, pT , following the approach of ref. [39].
The other contributions to the virtual corrections are computed exactly. This approximation
allows to cover the region MZH . 750 GeV, which contributes about 98% to the hadronic
cross section at LHC energies. We point out here that after the publication of ref. [41] a new
study of the NLO corrections to gg → ZH was presented [38]. The latter is based on the
approximation of the two-loop box integrals using the small-mass expansion. In theory, this
approach allows to cover nearly the totality of the phase space, and we are going to comment
about this in chap. 5.

This chapter has the following structure: in the next section we introduce our notation
for the gg → ZH amplitude and for the kinematics. In sec. 2.3 we give the details of
our decomposition of the amplitude in terms of Lorentz projectors multiplying scalar form
factors. In sec. 2.4 we present the method for expanding the amplitude in terms of the Z
transverse momentum. Sec. 2.5 is an introduction to the method of integration-by-parts
reduction used to reduce the number of scalar integrals to be computed, and to simplify their
structure. In Sec. 2.6 we outline the steps in which our calculation has been organized at
a given perturbative order using a Mathematica code. Sec. 2.7 is devoted to a discussion
of the expected validity range of the approximation of the amplitude via the pT expansion,
by comparing the latter with the known exact result for the LO cross section. In sec. 2.8
we discuss the ingredients of the calculation of the NLO amplitude and present our results.
Although both triangle and box topologies contribute to the LO and NLO amplitudes, the
examples and figures presented in sec. 2.7 and 2.8 will be almost exclusively focused on the
box diagrams, as the main original contribution from this thesis is the approximation of the
related integrals using the pT expansion.

2.2 General Properties of the gg → ZH Amplitude

We begin the study of gluon-initiated ZH production by analyzing the general properties
of the process, at the same time introducing our notation. We will define the Feynman
amplitude for the process gµa (p1)gνb (p2)→ Zρ(p3)H(p4) as

A = i
√

2
mZGFαS(µR)

π
δabε

a
µ(p1)εbν(p2)ε∗ρ(p3)Âµνρ(p1, p2, p3), (2.1)

where GF is the Fermi constant, αS(µR) is the strong coupling constant defined at a renor-
malization scale µR, and εaµ(p1)εbν(p2) andερ(p3) are the polarization vectors of the gluons and

the Z boson, respectively. The tensor Âµνρ encodes all the information about the Lorentz
structure of the amplitude, and it will be discussed in detail in the next section.
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Chapter 2. Virtual QCD Corrections to gg → ZH

In our calculation we will consider on-shell external particles, therefore

p2
1 = p2

2 = 0 p2
3 = m2

Z p2
4 = m2

H , (2.2)

where mZ and mH are the masses of the Z and Higgs bosons, respectively. In the following
we will assume all external momenta to be incoming, so that four momentum conservation
is expressed as

p1 + p2 + p3 + p4 = 0. (2.3)

According to the latter convention, the partonic Mandelstam variables are defined as

ŝ = (p1 + p2)2 t̂ = (p1 + p3)2 û = (p2 + p3)2 (2.4)

and they satisfy
ŝ+ t̂+ û = m2

Z +m2
H . (2.5)

We furthermore assume that the external vector bosons are transversely polarized with re-
spect to their relative four-momentum

p1 · εa(p1) = 0 p2 · εb(p2) = 0 p3 · ε(p3) = 0 (2.6)

and that gauge symmetry is respected

p1µÂµνρ(p1, p2, p3) = 0 p2νÂµνρ(p1, p2, p3) = 0. (2.7)

The amplitude defined in eq.(2.1) must respect Bose symmetry for the interchange of the
initial gluons {µ ↔ ν, p1 ↔ p2, a ↔ b}. In particular, this implies the following symmetry
relation for the for the Lorentz tensor Âµνρ

Âµνρ(p1, p2, p3) = Âνµρ(p2, p1, p3). (2.8)

Another important feature of the gg → ZH amplitude concerns the nature of the couplings
of the external particles. While the gluons have only a vector coupling with the quarks running
in the loop, the Z boson has a vector and an axial coupling, which we denote as

− i g

cos θW
γµ(gV − gAγ5), (2.9)

where g is the weak coupling, θW is the Weinberg angle and

gV = Iq − 2Qq sin2 θW gA = Iq, (2.10)

with Qq the electric charge and Iq the third component of the weak isospin for a given quark
q. By considering the separate contribution from gV and from gA we can decompose the
amplitude into a vector and and axial part. However, the diagrams proportional to gV will
contain fermion loops with three vector couplings, and Furry’s theorem predicts that these
diagrams must vanish, as a consequence of charge-conjugation invariance. Then, only the
part of the amplitude proportional to gA will give a nonzero contribution. This observation
has three implications: first, only Lorentz structures involving a Levi-Civita tensor εµνρσ will
be relevant for the Lorentz tensor Âµνρ defined in eq.(2.1); secondly, the amplitude will be
proportional to the third component of the weak isospin Iq = ±1/2, leading the sum of the
contributions from up- and down-type quarks in a given family to vanish in the case of equal
masses. In this thesis we will assume all quarks but the top to be massless, so the only
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2.3. Construction of the Projectors

nonzero contribution to the amplitude will come from the third generation of quarks; finally,
as in this thesis we will use Dimensional Regularization to regularize the loop integrals, the
presence of the γ5 matrix in the axial coupling requires a delicate treatment, and this problem
will be discussed in sec. 2.8.4.

The kinematical quantity relevant for our expansion is the transverse momentum pT of
the Z boson. Assuming that the initial gluons travel along the z-axis, we define pT as

pT =
√
p2

3x + p2
3y. (2.11)

We can highlight this quantity by taking the four-momentum pµ3 and isolating the part rµ⊥
that is orthogonal to both pµ1 and pµ2

pµ3 = a pµ1 + b pµ2 + rµ⊥, (2.12)

where a and b are generic coefficients and r⊥ = (0, p3x, p3y, 0), in such a way that

r⊥ · p1 = 0 = r⊥ · p2. (2.13)

We have then that rµ⊥ is a space-like quantity, and we can obtain pT via the relation

r2
⊥ = −p2

T . (2.14)

By contracting eq.(2.12) with pµ1 and pµ2 it is easy to find the actual values of the a and b
coefficients, and we get

pµ3 =
t̂−m2

Z

ŝ
pµ1 +

û−m2
Z

ŝ
pµ2 + rµ⊥, (2.15)

from which pT can be expressed as

p2
T =

t̂û−m2
Zm

2
H

ŝ
. (2.16)

The relation between the t̂ variable and pT can be obtained by solving the system of eq.(2.5)
and eq.(2.16) with respect to t̂ and û. The two sets of solutions are related to the forward
and backward kinematical regimes. In particular, in the forward regime we have

t̂ = −1

2

(
ŝ−m2

Z −m2
H −

√
λ(ŝ,m2

Z ,m
2
H)− 4ŝp2

T

)

û = −1

2

(
ŝ−m2

Z −m2
H +

√
λ(ŝ,m2

Z ,m
2
H)− 4ŝp2

T

)
,

(2.17)

where λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc is the Källén function, while the backward
regime is defined by eq.(2.17) but with t̂ and û interchanged.

2.3 Construction of the Projectors

The Lorentz tensor Âµνρ introduced in eq.(2.1) can be decomposed along a basis of orthonor-
mal projectors Pµνρi which multiply scalar form factors Ai

Âµνρ(p1, p2, p3) =
∑

i

Pµνρi Ai(ŝ, t̂, û,mt,mZ ,mH) (2.18)
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Chapter 2. Virtual QCD Corrections to gg → ZH

The form factors depend only on scalar quantities, namely the mass mt of the top quark
(i.e. the only massive quark running in the loops), the masses of the external particles and
the partonic Mandelstam variables. In this section we are going to describe the method
employed to obtain the Lorentz projectors, while the rest of the chapter will be devoted to
the study of the form factors.

The projectors in eq.(2.18) are orthonormal in the sense that the squared modulus of
the amplitude, summed over the external polarizations, is simply given by the sum over the
squared moduli of the form factors

∑

pol

|A|2 ∝
∑

pol

εµ(p1)ε∗α(p1) εν(p2)ε∗β(p2) ε∗ρ(p3)εγ(p3) ÂµνρÂαβγ∗

∝ (−gµα) (−gνβ)

(
−gργ +

p3ρp3γ

m2
Z

)∑

i

Pµνρi Ai
∑

j

Pαβγ∗j A∗j

∝
∑

i

|Ai|2 .

(2.19)

and the above relation is obtained by requiring that

(−gµα) (−gνβ)

(
−gργ +

p3ρp3γ

m2
Z

)
Pµνρi Pαβγ∗j = δij . (2.20)

The form of the Lorentz projectors Pµνρi is dictated not only by gauge symmetry (eq.(2.7))
but also by the requirement for the form factors to be either symmetric or antisymmetric
with respect to the interchange {µ ↔ ν, p1 ↔ p2} . The reason behind this requirement is
related to the possibility of using only the forward component of the amplitude to compute
the complete result, as will be discussed in sec. 2.4. To fulfill this requirement, the method
for constructing the projectors is the following

1. Identify all the relevant Lorentz structures, i.e. those which give a nonzero contribution
to the amplitude

2. Assemble the single Lorentz structures into linear combinations that are separately
(anti)symmetric with respect to the interchange {µ↔ ν, p1 ↔ p2}

3. Orthogonalize the linear combinations as in eq.(2.20) using the standard Gram-Schmidt
procedure

The relevant Lorentz structures Sµνρi compatible with eqs.(2.6, 2.7) were identified in
ref. [57]:

Sµνρ1 = εµνρp1 Sµνρ2 = εµνρp2 Sµνρ3 = εµνρp3 Sµνρ4 = gµνερp1p2p3 (2.21)

Sµνρ5 = pν1ε
µρp1p2 Sµνρ6 = pµ2 ε

νρp1p2 Sµνρ7 = pν1ε
µρp2p3 Sµνρ8 = pµ2 ε

νρp1p3 (2.22)

Sµνρ9 = pν3ε
µρp1p2 Sµνρ10 = pµ3 ε

νρp1p2 Sµνρ11 = pν3ε
µρp1p3 Sµνρ12 = pµ3 ε

νρp2p3 (2.23)

Sµνρ13 = pµ2 ε
νρp2p3 Sµνρ14 = pν1ε

µρp1p3 , (2.24)

where the contraction of a Levi-Civita tensor with a generic four-momentum εµνραqα is writ-
ten as εµνρq. Apart from Sµνρ4 the above structures are not separately (anti)symmetric under
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2.4. Description of the pT Expansion

{µ↔ ν, p1 ↔ p2}, but can be used to form (anti)symmetric linear combinations. In particu-
lar, we employed the following combinations

T ±1 =
t′

s′
(
s′Sµνρ2 − Sµνρ6

)
± u′

s′
(
Sµνρ5 − s′Sµνρ1

)
,

T ±2 =

(
t′

s′
Sµνρ6 − Sµνρ10

)
±
(
Sµνρ9 − u′

s′
Sµνρ5

)
,

T ±3 =
s′

u′

(
Sµνρ12 −

t′

s′
Sµνρ13

)
± s′

t′

(
Sµνρ11 −

u′

s′
Sµνρ14

)
,

T4 = s′Sµνρ3 + Sµνρ4 + Sµνρ7 − Sµνρ8 ,

(2.25)

where the T +
i are symmetric while the T −i and T4 are antisymmetric under {µ↔ ν, p1 ↔ p2}.

In eq.(2.25) we used the reduced Mandelstam variables defined in eq.(2.26). The Gram-
Schmidt orthogonalization of the combinations in eq.(2.25) produces the projectors Pµνρi

which we present in app. A.1.

2.4 Description of the pT Expansion

In this section we are going to present in detail the procedure for the expansion of the
amplitude in terms of a small pT . First, we show how to implement the pT expansion as
an expansion of the amplitude in the limit of a forward (or backward) kinematics, and we
indicate the parameters that are relevant for such an expansion. Then we discuss how, with
a suitable choice of the projectors, the results obtained only in the forward limit allow to
have an approximation for the complete partonic cross section, so that an expansion in the
backward limit can be avoided, simplifying the calculation.

Expansion in the forward limit For the discussion of the pT expansion, it is convenient
to introduce the reduced Mandelstam variables

s′ = p1 · p2 =
ŝ

2
t′ = p1 · p3 =

t̂−m2
Z

2
u′ = p2 · p3 =

û−m2
Z

2
(2.26)

satisfying the analogous of eq.(2.5, 2.16)

s′ + t′ + u′ =
m2
H −m2

Z

2
= ∆m (2.27)

p2
T =

2t′u′

s′
−m2

Z . (2.28)

Using the new variables, the four-momentum pµ3 in eq.(2.15) is expressed as

pµ3 =
u′

s′
pµ1 +

t′

s′
pµ2 + rµ⊥

= −pµ1 −
t′

s′
(p1 − p2)µ +

∆m

s′
pµ1 + rµ⊥

(2.29)

and one can identify the forward limit with the relation pµ3 ' −pµ1 . By looking at eq.(2.29),
this limit can be associated to the following conditions:

∆m

s′
' 0 t′ ' 0 rµ⊥ ' 0µ. (2.30)
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Chapter 2. Virtual QCD Corrections to gg → ZH

Now we notice that in the forward regime t′ can be written as the analogous of eq.(2.17)

t′ = −s
′

2



1− ∆m

s′
−
√(

1− ∆m

s′

)2

− 2
p2
T +m2

Z

s′



 (2.31)

and the condition t′ ' 0 in (2.30) can be translated to the situation in which p2
T , m2

Z and
∆m are small compared to s′ (notice also that in this case one has u′ ' −s′). Then, the
conditions in (2.30) are equivalent to

p2
T

s′
' 0

m2
Z

s′
' 0

∆m

s′
' 0 rµ⊥ ' 0µ, (2.32)

which we identify as the small parameters to be considered for the implementation of the
pT expansion. Then, we define the hierarchy of energy scales on which our approximation is
based, and we will associate s′ to a large scale and p2

T ,m
2
Z , ∆m and rµ⊥ to a small scale. It

is easy to see that in the backward limit, pµ3 ' −pµ2 , the same considerations as above can be
made, but with the roles of t′ and u′ exchanged.

In a practical calculation, one must replace pµ3 everywhere in one of the form factors Ai
defined in eq.(2.18), using eq.(2.29); then one must use eq.(2.31) in order to express Ai only in
terms of the quantities in (2.32). At this point, the form factor can be Taylor-expanded in the
small parameters. To perform the expansion, one can rewrite the parameters as multiplying
a common scale x, then Taylor-expand the form factor near x = 0, and set x = 1 after the
expansion. It is important to note here that since the parameters in (2.32) have different
dimensionalities, they must scale with x in a consistent manner. In particular, the following
scaling relations must be respected

rµ⊥ → x rµ⊥ {p2
T ,m

2
Z ,∆m} → x2{p2

T ,m
2
Z ,∆m}. (2.33)

We remark that in our approach one must treat pT and rµ⊥ as independent quantities when
performing the Taylor expansion. Indeed, although by definition the scalar loop integrals in
the form factors will ultimately depend only on r2

⊥ = −p2
T , the Taylor expansion in our method

is performed before the loop integration, at the integrand-level. In this case, one cannot avoid
the presence of scalar products between rµ⊥ and the loop momenta in the integrands; using
the relations in eq.(2.33) allows to deal with this issue in a consistent manner.

The assumption of the hierarchy for the quantities in eq.(2.32) is justified in the forward
(or backward) regime. However, when the expansion method discussed above is used, one is
implicitly assuming an hierarchy also with respect to the mass of the particle(s) running in
the loops: in our case, the top mass mt. The latter must be associated to another large scale,
comparable to s′, within our approach.

In fact, the scale set by mt is the one which poses the strictest limitation in the validity
of the approximation. In sec. 2.7 we will show that the convergence of the pT expansion is
guaranteed only for values of the transverse momentum satisfying the condition

p2
T

4m2
t

. 1. (2.34)

We will discuss the origin of this limit in chap. 4, where we consider the complementarity
of the pT expansion in relation to the HE expansion. Here we make the general observation
that the scale set by the mass of the lightest particle running in the loop is the scale that
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2.4. Description of the pT Expansion

restricts the range of validity of the pT expansion. For this reason, the latter is particularly
useful in the approximation of diagrams where only heavy particles are involved.

To summarize our discussion, we have identified the large scales in our problem with s′

and mt, while the small scales are those in eq.(2.33).

A LO example As stated before in this thesis, the main point of performing the pT
expansion is to simplify the structure of the integrals in the amplitude by reducing the
number of their scales, and here we discuss this point explicitly with an example. Let us
consider the following class of scalar one-loop integrals associated to the box diagrams at LO

∫
dDq1

(q2
1)n1(q1 · p1)n2(q1 · p2)n3(q1 · p3)n4

(q2
1 −m2

t )[(q1 + p2)2 −m2
t ][(q1 − p1 − p3)2 −m2

t ][(q1 − p1)2 −m2
t ]

(2.35)

where q1 is the loop momentum, D is the number of space-time dimensions in Dimensional
Regularization and scalar products raised to integer ni ≥ 0 can appear in the integrand
numerator. The integral (2.35) will depend on five scales, given by all the scalar quan-
tities that can be formed with the external momenta and the masses in the propagators:
s′, t′,m2

H ,m
2
Z ,m

2
t (notice that we traded u′ with m2

H by means of eq.(2.27)). The part of the
integrand which is modified by the pT expansion is the one where p3 appears, namely

(q1 · p3)n4

[(q1 − p1 − p3)2 −m2
t ]
. (2.36)

After using eqs.(2.29) and (2.31), the Taylor expansion of (2.36) generates scalar products
like q1 · p1, q1 · p2 and q1 · r⊥. Furthermore, the expansion produces higher powers of the
denominator, which in turn assumes the form (q2

1 − m2
t ) in the forward limit p3 ' −p1.

Notably, the rµ⊥ vector does not appear in the denominator anymore. As a consequence, after
the pT expansion the class of integrals in (2.35) is replaced by integrals of the following form

∫
dDq1

(q2
1)n1(q1 · p1)n

′
2(q1 · p2)n

′
3(q1 · r⊥)n

′
4

(q2
1 −m2

t )
l1 [(q1 + p2)2 −m2

t ][(q1 − p1)2 −m2
t ]

(2.37)

where n′2, n
′
3, n
′
4 are new non-negative integers and l1 is a strictly positive integer. We observe

that the scales upon which these new loop integrals depend are now ŝ, p2
T ,m

2
t . We have thus

reduced the number of scales involved in the problem with respect to the original class of
integrals (2.35). We will see, however, that the dependence on p2

T can be ultimately dropped,
as integrals like the ones in (2.37) can be rewritten solely in terms of integrals where n′4 = 0
using the integration-by-parts relations that will be discussed in the next section. This
possibility is related to the fact that rµ⊥ appears only in the q1 · r⊥ scalar product, and only
in the numerator.

Using only the forward expansion So far we have discussed the implementation of the
expansion in the limit t′ ' 0, namely the forward expansion. In fact, the cross section for a
2→ 2 process can be written as a sum of a forward and backward contributions

σ ∝
∫ t′f

t′i

dt′|Ai(t′, u′)|2 =

∫ t′m

t′i

dt′|Ai(t′, u′)|2 +

∫ t′f

t′m

dt′|Ai(t′, u′)|2 (2.38)

where the extrema of integration are defined as

t′i =
t̂− −m2

Z

2
t′f =

t̂+ −m2
Z

2
, (2.39)

15



Chapter 2. Virtual QCD Corrections to gg → ZH

with

t̂± =
1

2

(
−ŝ+m2

H +m2
Z ±

√
λ(ŝ,m2

H ,m
2
Z)

)
, (2.40)

and t′m corresponds to to the value of maximum transverse momentum, such that t′ = u′ =
(−s′ + ∆m)/2. In principle an expansion in t′ ' 0 would give an approximation of the form
factor only in the region [t′i, t

′
m], whereas an expansion in the backward limit (u′ ' 0) is

needed in the complementary part of the integration domain, so that the approximation of
the exact cross section by the pT expansion is given by

∫ t′f

t′i

dt′|Ai(t′, u′)|2 '
∫ t′m

t′i

dt′|Ai(t′ ∼ 0, u′ ∼ −s′)|2 +

∫ t′f

t′m

dt′|Ai(t′ ∼ −s′, u′ ∼ 0)|2. (2.41)

However, as noticed in ref. [39], if the form factor in eq.(2.41) is symmetric under the exchange
t′ ↔ u′ (which is just a proxy for Bose symmetry) then one can write Ai(−s′, 0) = Ai(0,−s′)
and eq.(2.41) becomes

∫ t′f

t′i

dt′|Ai(t′, u′)|2 '
∫ t′m

t′i

dt′|Ai(0,−s′)|2 +

∫ t′f

t′m

dt′|Ai(0,−s′)|2 =

∫ t′f

t′i

dt′|Ai(0,−s′)|2,

(2.42)
meaning that the expansion in the forward limit is sufficient to obtain an approximation of
the complete partonic cross section. In the case of gg → ZH, using the projectors defined
in the previous section, the form factors can be either symmetric or antisymmetric2 under
t′ ↔ u′. For the symmetric form factors, one can then expand only in the forward limit and
use eq.(2.42). When dealing with the antisymmetric form factors, one can extract an overall
antisymmetric factor using

Aantisym
i (t′, u′) = (t′ − u′)A

antisym
i (t′, u′)

(t′ − u′) = (t′ − u′)Asym
i (t′, u′) (2.43)

and perform the forward expansion only on the symmetric part, Asym
i (t′, u′). We verified

that this procedure allows to obtain a correct result for the complete partonic cross section.
Therefore, if the amplitude is decomposed in terms of either symmetric or antisymmetric
Lorentz projectors, one can avoid to perform the pT expansion in the backward limit.

2.5 IBP Reduction and LiteRed

After the form factors are expanded as described in the previous section, we have shown that
the structure of the original loop integrals becomes simplified. Still, the number of integrals
to be computed is usually large. In fact, the Taylor expansion of the form factors causes
a proliferation of scalar integrals with respect to the original, non-expanded, ones, so there
is a trade-off between the simplification in the structure of the integrals and the number of
integrals to be dealt with in the calculation. However, the scalar integrals resulting from
the pT expansion are not all independent3, and one can use recurrence relations known as
integration-by-parts (IBP) relations [25, 26], to express each integral in terms of a small

2The (anti)symmetry of the form factors is clearly inherited from the one of the projectors, in accordance
to the overall Bose symmetry.

3For the sake of clarity, neither the original scalar integrals in the non-expanded form factors are all
independent, and they too admit a decomposition in terms of MIs via an IBP reduction.
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subset of so-called master integrals (MIs). The Laporta algorithm [64] is the first automatic
implementation of the IBP reduction and it has been employed in many codes. The reduction
of the scalar integrals in this thesis has been performed via the Mathematica package LiteRed
[65, 66], which performs the reduction heuristically by searching for replacement rules that
allow for a symbolic decomposition of all the scalar integrals in terms of MIs. In the following
we are going to give a brief general description of the procedure, and we refer the interested
reader to [65–67].

The fundamental objects that need to be considered for the IBP reduction areD-dimensional
L-loop integrals of the following form

J(n1, . . . , nN ) =

∫
dDq1 · · · dDqL j(n1, . . . , nN ) =

∫
dDq1 · · · dDqL
Dn1

1 · · ·DnN
N

(2.44)

where the quantities Di are allowed to be

� denominators from virtual particle propagators, which can be raised to any integer
ni ∈ Z

� scalar products between loop momenta and external momenta; in particular we require
that the scalar products in the definition (2.44) cannot be expressed as linear combi-
nations of denominators; in this case the exponents ni are assumed to be nonpositive
integers and the corresponding Di are called irreducible numerators

A set of linearly independent Di which fall into the two categories above is called a basis of de-
nominators. Once a basis is fixed, one can use the property of scalar integrals in Dimensional
Regularization ∫

dDq1 · · · dDqL
∂kµi
∂qµj

j(n1, . . . , nN ) = 0, (2.45)

where the kµi can be both loop or external momenta, to find relations connecting integrands
with different ni. Specifically, after differentiation the scalar products qi ·kj can be expressed
as linear combinations of the Di, so that the integrals resulting from eq.(2.45) can still be
written as in the form of (2.44), but with different ni. Then, the IBP relations assume the
following general structure

∑

i

αi J(n1 + ci,1, . . . , nN + ci,N ) = 0 (2.46)

where ci,k ∈ Z and αi are coefficients depending on the scalar products between external
momenta, on the masses in the propagators and on the number of space-time dimensions D.
The relations in (2.46) can be used to express recursively a generic integral J(n1, . . . , nN ) as
a linear combination of a minimal set of linearly independent integrals, which then constitute
a basis of MIs. As a consequence of the recursive decomposition, usually the MIs will depend
on ni that are small integers: 0, 1 or 2. We also point out that it is always possible to find a
basis with a finite number of MIs [68], although the basis is generally not unique.

In the case of the form factors for gg → ZH, the scalar integrals obtained after the
pT expansion are not already in the form of eq.(2.44), as reducible scalar products usually
appear in the numerators. Also, the denominators in some classes of integrals constitute
an overdetermined basis and they have to be manipulated further (we will show an explicit
example in eq.(2.52)). After the study of the relevant topologies of the Feynman diagrams, a
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Chapter 2. Virtual QCD Corrections to gg → ZH

certain number of denominator bases has to be identified, so that the reducible scalar products
can be expressed as linear combinations of denominators, while the irreducible numerators
are left unchanged. Once every integral in a form factor is expressed as in eq.(2.44), the
chosen bases are analyzed with LiteRed, leading to the identification of the MIs and to the
generation of the symbolic rules that will be used for the IBP reduction. Furthermore, the
LiteRed command AnalyzeSectors allows to restrict the search for the MIs to integrals
where the irreducible numerators are raised to 0. This allows for an additional simplification
of the integrals obtained after the pT expansion: with reference to the class of integrals in the
example (2.37), integrals having n4 = 0 will depend only on the ratio of the two remaining
scales, namely on s′/m2

t .
As a result of the pT expansion followed by the IBP reduction, the scalar form factors

will be expressed as a power series in terms of p2
T ,m

2
Z and ∆m, potentially multiplied by an

overall rational function N of the latter quantities,

Ai = N (p2
T ,m

2
Z ,∆m)

∞∑

N=0

∑

i+j+k=N

ci,j,k (p2
T )i(m2

Z)j(∆m)k, (2.47)

where the ci,j,k are linear combinations of the MIs, whose coefficients are rational functions
of ŝ and m2

t only . For convenience, throughout this thesis we will refer to a given order in
the Taylor expansion as the O(p2n

T ) term, when we actually include all the terms that scale
as (x/y)n, with x = p2

T ,m
2
Z ,∆m and y = s′,m2

t .
We point out that, conceptually, the pT expansion and the IBP reduction are independent

operations, and one could think of inverting the order of the two in the calculation. However,
performing the pT expansion at the level of Feynman diagrams, as described in the previous
section, not only brings an important simplification in the structure of the MIs, but allows
also to deal with fewer MIs, and generally the intermediate expressions related to the IBP
reduction are less complicated with respect to the case in which the reduction is performed
on the original diagrams.

2.6 The Code

The computation of the gg → ZH amplitude with the method described above has been
semi-automatized within a Mathematica notebook, which was used to produce all the results
presented in this chapter employing both public packages and private routines written from
scratch. The most important steps of the calculation at LO and at NLO are listed in the
following

1. The diagrams are generated using FeynArts [69]

2. The handling of the fermion traces and the color-algebra is performed using FeynCalc

[70, 71]

3. The amplitude is contracted with the Lorentz projectors of app. A.1 using FeynCalc in
order to isolate a single form factor

4. The form factor is Taylor expanded with private routines as described in sec. 2.4 and
each order of the expansion is treated separately from this point on

5. The minimal number of integral families is identified manually, and these are converted
in a set of denominator bases for LiteRed
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2.7. The LO Contribution to gg → ZH

6. The overdetermined bases of denominators are automatically found and decomposed in
terms of the independent ones

7. Every integral is rewritten in LiteRed notation (eq.(2.44)) by replacing every reducible
scalar product with a linear combination of denominators

8. The lists of symbolic rules for the IBP reduction are produced using LiteRed

9. The above rules are applied to the scalar integrals appearing in the form factor, so that
the result is a linear combination of the MIs found by LiteRed

2.7 The LO Contribution to gg → ZH

In this and in the following sections we are going to present the results of the application of
the method described in sec. 2.4 and in sec. 2.5 and implemented in the code of sec. 2.6. We
are interested in computing the virtual QCD corrections to the process at NLO, therefore we
will express the form factors Ai introduced in eq.(2.18) as a perturbative series in the strong
coupling, defined as

Ai = A(0)
i +

αS
π
A(1)
i +O

(
α2
S

)
, (2.48)

where A(0)
i and A(1)

i are the LO and NLO contributions.

In this section we give the main details of the calculation at LO. We used FeynCalc to
reproduce the exact analytical results first obtained in ref. [57] and compared them to the
results of the pT expansion in order to assess the reliability of the latter. After the generation
using FeynArts we find 6 one-loop diagrams4 belonging to triangle and box topologies (see
fig.2.2). It is then convenient to split the LO form factors in terms of the contributions of
triangles and boxes

A(0)
i = A(0,4)

i +A(0,�)
i . (2.49)

Among the triangle diagrams there are loops of top and bottom quarks that connect to the
final-state particles via an ŝ-channel virtual Z boson (fig.2.2 (b)) and loops of top quarks
producing an intermediate neutral Goldstone boson G0 (fig.2.2 (a)). The box topologies are
represented by loops of top quarks, an example of which is given in fig.2.2 (c). As the box
diagrams feature a Yukawa coupling, the contribution from the bottom quarks is zero in the
massless approximation.

As observed in ref. [28], the calculation of the triangle diagrams can be simplified by
setting it in the Landau gauge. In this gauge, the diagrams with a virtual Z boson propagator
vanish because they can be related to the production of a massive particle via two massless
particles, which is forbidden by the Landau-Yang theorem [72, 73]. Considering that the
triangle diagrams form a gauge-invariant set, it is then sufficient to compute the diagrams

with a Goldstone in Landau gauge. We checked this explicitly by calculating A(0,4)
i both in

Feynman and Landau gauge, finding indeed the same result. We notice that the observation
in ref. [28] holds at every order in the perturbative series, and we will use it to simplify the
calculation of the triangle diagrams also at NLO. Concerning the box topologies, we computed
the diagrams in Feynman gauge. The exact analytical results at LO have been obtained using

4To be precise, the diagrams produced by FeynArts are 17: five of these are diagrams with a virtual ŝ-
channel gluon and they vanish due to color-charge conservation; the remaining 12 diagrams can be grouped
in couples of diagrams that differ only by the direction of the fermions running in the loops.
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Figure 2.2: Representative Feynman diagrams contributing to the gg → ZH amplitude at
LO. Triangle topologies with (a) a neutral Goldstone boson G0 and (b) a Z boson in an
ŝ-channel propagator are present together with (c) box diagrams.

the FeynCalc implementation of the Passarino-Veltman reduction algorithm [74], so that the
final results can be expressed in terms of the known scalar functions, B0, C0 and D0, which
we evaluated numerically using LoopTools [75].

The loop integrals for both triangle and box diagrams at LO are generally UV-divergent,
with the divergences showing up as 1/ε poles for ε → 0 in Dimensional Regularization,
assuming D = 4−2ε. However, due to the fact that there is no tree-level ggZH vertex in the
SM, the renormalizability of the theory implies that the LO result must be finite, so the UV
divergences from the one-loop integrals cancel when considering the sum of all diagrams.5.

2.7.1 pT Expansion and IBP Reduction of the Box Integrals

In this subsection we are going to present the details of the calculation of the box form

factors at LO using the pT expansion. As stated in the introduction, we focus on the A(0,�)
i

because the key purpose of the pT expansion is to provide an approximation of the two-loop
box integrals6 at NLO, and the main steps of the method can be illustrated at LO in a
more concise way. After the amplitude generation with FeynArts and contraction with the
projectors, we find that each form factor is written in terms of three classes of one-loop scalar

integrals, each one associated to one of the three diagrams contributing to A(0,�)
i

I1 =

∫
dDq1

(q2
1)n1(q1 · p1)n2(q1 · p2)n3(q1 · p3)n4

(q2
1 −m2

t )[(q1 + p2)2 −m2
t ][(q1 − p1 − p3)2 −m2

t ][(q1 − p1)2 −m2
t ]

I2 =

∫
dDq1

(q2
1)n1(q1 · p1)n2(q1 · p2)n3(q1 · p3)n4

(q2
1 −m2

t )[(q1 + p3)2 −m2
t ][(q1 + p2 + p3)2 −m2

t ][(q1 − p1)2 −m2
t ]

I3 =

∫
dDq1

(q2
1)n1(q1 · p1)n2(q1 · p2)n3(q1 · p3)n4

(q2
1 −m2

t )[(q1 + p2)2 −m2
t ][(q1 + p2 + p3)2 −m2

t ][(q1 − p1)2 −m2
t ]
,

(2.50)

where the scalar products in the numerator can be raised to any integer ni ≥ 0. After
substituting p3 using the second line of eq.(2.29), the diagrams are expanded as discussed in
sec. 2.4. The structure of the integrands in (2.50) is modified by the pT expansion, and we

5In particular, the triangle and box contributions are separately UV and IR finite
6Exact analytical results will be obtained for the other classes of diagrams at NLO.
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obtain the following new integrands

i1(n1, . . . , n7) =
(q1 · r⊥)n4(q2

1)n5(q1 · p1)n6(q1 · p2)n7

(q2
1 −m2

t )
n1 [(q1 + p2)2 −m2

t ]
n2 [(q1 − p1)2 −m2

t ]
n3

i2(n1, . . . , n7) =
(q1 · r⊥)n4(q2

1)n5(q1 · p1)n6(q1 · p2)n7

(q2
1 −m2

t )
n1 [(q1 − p1)2 −m2

t ]
n2 [(q1 + p2 − p1)2 −m2

t ]
n3

i3(n1, . . . , n8) =
(q1 · r⊥)n5(q2

1)n6(q1 · p1)n7(q1 · p2)n8

(q2
1 −m2

t )
n1 [(q1 + p2)2 −m2

t ]
n2 [(q1 + p2 − p1)2 −m2

t ]
n3 [(q1 − p1)2 −m2

t ]
n4
.

(2.51)

We now notice that, apart from the irreducible numerator (q1 · r⊥), all the other scalar
products in the numerator of i1(n1, . . . , n7) and i2(n1, . . . , n7) can be expressed unambiguously
as linear combinations of the denominators. This is not the case for i3(n1, . . . , n8). For
example, (q1 · p1) can be expressed in two ways:

q1 · p1 = −1

2
{[(q1 − p1)2 −m2

t ]− (q2
1 −m2

t )}

q1 · p1 = −1

2
{[(q1 + p2 − p1)2 −m2

t ]− [(q1 + p2)2 −m2
t ] + 2s′}

We conclude that the denominators in i3 form an overdetermined basis. Notably, the inte-
grands associated to i3 can be written as a linear combination of those of i1 and i2. This can
be understood by considering the special case i3(1, 1, 1, 1, 0, 0, 0, 0) and noting that

1

(q2
1 −m2

t )[(q1 + p2)2 −m2
t ][(q1 + p2 − p1)2 −m2

t ][(q1 − p1)2 −m2
t ]

=

− 1

2s′
1

(q2
1 −m2

t )[(q1 + p2)2 −m2
t ][(q1 − p1)2 −m2

t ]

+
1

2s′
1

(q2
1 −m2

t )[(q1 − p1)2 −m2
t ][(q1 + p2 − p1)2 −m2

t ]

+
1

2s′
1

(q2
1 −m2

t )[(q1 + p2)2 −m2
t ][(q1 + p2 − p1)2 −m2

t ]

− 1

2s′
1

[(q1 − p1)2 −m2
t ][(q1 + p2)2 −m2

t ][(q1 + p2 − p1)2 −m2
t ]

(2.52)

where the first two terms on the r.h.s. correspond (apart from a 1/(2s′) factor) to i1(1, 1, 1, 0, 0, 0, 0)
and i2(1, 1, 1, 0, 0, 0, 0), and the second two can be mapped onto i2(1, 1, 1, 0, 0, 0, 0) and
i1(1, 1, 1, 0, 0, 0, 0) with the rerouting q1 → q1 + p1 − p2 followed by q1 → −q1. In the
more general case in which any of the powers of the denominators of i3(n1, . . . , n8) is greater
than 1, eq.(2.52) can be used iteratively to obtain a decomposition in terms of the same
products of denominators appearing in the r.h.s. of eq.(2.52), with some denominators raised
to powers greater than 1.

We have thus proved that, at LO, all the integrals appearing in each order of the pT
expansion can be associated to one of two families of integrals. We also showed that each
family can be written as in eq.(2.44), and according to that definition we can then fix the
following bases of denominators

21



Chapter 2. Virtual QCD Corrections to gg → ZH

J1(n1, . . . , n4) J2(n1, . . . , n4)

D1 q2
1 −m2

t q2
1 −m2

t

D2 (q1 + p2)2 −m2
t (q1 − p1)2 −m2

t

D3 (q1 − p1)2 −m2
t (q1 + p2 − p1)2 −m2

t

D4 q1 · r⊥ q1 · r⊥

where we notice that the scalar product q1 · r⊥ is an irreducible numerator. At this point,
LiteRed can perform the search of the MIs, finding the following set of 5 MIs:

{J1(0, 1, 0, 0); J1(0, 1, 1, 0); J1(1, 1, 1, 0); J2(1, 0, 1, 0); J2(1, 1, 1, 0)} . (2.53)

Note that all the MIs have n4 = 0, meaning that they do not involve the irreducible numerator,
and therefore do not depend on pT . Also, the MIs have at most three denominators, and this is
another simplification compared to the original structure of the box integrals (cfr. eq.(2.50)).
Finally, the scalar integrals can be translated into the well-known Passarino-Veltman [74]
scalar functions7. We find, modulo a rerouting and a normalization factor,

J1(0, 1, 0, 0)→ A0(m2
t )

J1(1, 0, 1, 0)→ B0(ŝ,m2
t ,m

2
t )

J1(1, 1, 1, 0)→ C0(0, 0, ŝ,m2
t ,m

2
t ,m

2
t )

J2(0, 1, 1, 0)→ B0(−ŝ,m2
t ,m

2
t )

J2(1, 1, 1, 0)→ C0(0, 0,−ŝ,m2
t ,m

2
t ,m

2
t )

(2.54)

and the scalar functions are defined as

A0(m2) =
1

iπ2

∫
dDq

µD−4

1

q2 −m2
(2.55)

B0(p2,m2
1,m

2
2) =

1

iπ2

∫
dDq

µD−4

1

(q2 −m2
1)((q + p)2 −m2

2)
(2.56)

C0(p2
a, p

2
b , (pa + pb)

2,m2
1,m

2
2,m

2
3) =

1

iπ2

∫
dDq

µD−4

1

[q2 −m2
1][(q + pa)2 −m2

2][(q − pb)2 −m2
3]

(2.57)
with µ the ’t Hooft mass.

2.7.2 LO Form Factors

In this subsection we present some of the results obtained with the method described in the
previous sections. While still looking only at the contribution from box diagrams, we focus

our discussion on the form factor A(0,�)
1 , which is associated to largest contribution to the

partonic cross section, as can be seen from fig. A.1 in app. A.4. An explicit analytical result

for A(0,�)
1 up to and including O(p4

T ) terms is given as an example in app. A.2 , while here

we discuss how accurately the exact result for A(0,�)
1 can be reproduced by the analytical

7In fact, the Passarino-Veltman reduction method can be considered as a special form of IBP reduction, in
which the scalar functions constitute a universal basis of MIs that can be used for any one-loop problem.
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approximation provided by the pT expansion. The numerical results presented here were
produced using the following input parameters

mZ = 91.1876 GeV, mH = 125.1 GeV, mt = 173.21 GeV,

mb = 0, GF = 1.6637 GeV−2, αS(µR) = αS(mZ) = 0.118.

In fig. 2.3 and 2.4 we show the comparison of the first three orders of the pT expansion to

the exact results for A(0,�)
1 . The results are plotted for a fixed value of

√
ŝ, and the x-axis

shows the range of pT values allowed by the kinematics, specifically by the relation

pT ≤
√
λ(ŝ,m2

Z ,m
2
H)

4ŝ
. (2.58)

First, fig. 2.3(a,b) and fig. 2.4(a) show the situation for
√
ŝ = 400 GeV, a value of the

c.o.m. energy that is slightly above the threshold for the production of a pair of top quarks
2mt ' 350 GeV. One can see that the convergence of the pT expansion is fast for both the real
and the imaginary8 part of the form factor, and three orders are enough to reach a remarkable
agreement with the exact result for every value of pT , as can be noticed from the bottom
part of fig. 2.4(a), showing the ratio of the various orders of the expansion to the exact result.
For higher values of

√
ŝ, the pT expansion still approximates the exact prediction very well,

but only for a restricted range of pT values, corresponding to pT . 300 GeV. This range
is the same independently from the value of

√
ŝ (compare fig. 2.3 (c,d) - 2.4(b) and fig. 2.3

(e,f) - 2.4(c) ); instead, for higher values of the transverse momentum, the accuracy of the
pT expansion decreases rapidly. The same behavior can be observed for all the other form
factors in the plots shown in app. A.4, see fig. A.2. The limit of validity of the pT expansion
noticed above can be related to the hierarchy assumed in eq.(2.34) between the transverse
momentum and the top quark mass, and a possible way to circumvent this limitation will be
discussed in chap. 4.

2.7.3 LO Cross Section

We now discuss to what extent the approximation that we obtained for the pT -expanded form
factors affects the prediction for the partonic cross section at LO. Recalling the definition in
eq.(2.1) and the property of the projectors in eq.(2.19), the squared modulus of the amplitude,
summed over the external polarizations and averaged over the initial ones and over color, is
given by

<
∑

pol

|A|2 >=
1

2

1

2

1

8

1

8
8

2m2
ZG

2
Fα

2
S(µR)

π2

∑

i

|Ai|2 . (2.59)

The differential cross section dσ̂/dt̂ for a 2→ 2 process is

dσ̂

dt̂
=

1

16πŝ2
<
∑

pol

|A|2 >, (2.60)

from which we obtain the LO partonic cross section σ̂(0)

σ̂(0)(ŝ) =
m2
ZG

2
Fα

2
S(µR)

256 ŝ2π3

∫ t̂+

t̂−
dt̂
∑

i

∣∣∣A(0)
i

∣∣∣
2

(2.61)

8For values of
√
ŝ below the top-pair production threshold the imaginary part is zero.
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Figure 2.3: Results for theA(0,�)
1 form factor. The first row shows the real (left) and imaginary

(right) parts plotted against pT for a c.o.m. energy of
√
ŝ = 400 GeV. The first three orders in

the pT expansion (green lines - left; red lines - right) are shown together with the exact result
(brown line - left; purple line - right). The second and third rows show the same quantities
as the first row, for higher values of

√
ŝ.
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Figure 2.4: Absolute value of the A(0,�)
1 form factor, for the same values of

√
ŝ as in fig. 2.3:

the blue lines represent the first three orders of the expansion, while the brown line stands
for the exact result. The bottom part of each graph shows the ratio of the various orders of
the pT expansion to the exact result.
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Figure 2.5: Partonic cross section at LO, as a function of the invariant mass MZH . The exact
result is shown as a dark solid line, while different orders of the pT expansion are shown as
dashed lines. In the bottom part, the ratio of each order over the exact result is shown.

where t̂± are the same quantities defined in eq.(2.40).

In fig. 2.5 we show σ̂(0) as a function of the invariant mass of the ZH system, and we
compare the results of the first four orders of the pT expansion (dashed lines) against the
exact result (dark solid line). While the first order in the expansion allows only to reproduce
the qualitative behavior of the exact prediction, already the second order provides a good
approximation of the cross section, as can be observed from the bottom part of fig. 2.5,
showing the ratio of each order to the exact result. If two more orders are included, the
accuracy of the pT expansion is improved and the convergence is extended up to a value of
MZH ' 700 GeV. Specifically, from the numerical results presented in tab. 2.1 one can see
that the O(p4

T ) results can reproduce the exact prediction at the permille level for MZH . 600
GeV, while the same level of agreement is extended to MZH . 700 GeV when also O(p6

T )
terms are included. This limit can be related to the limit in pT discussed in sec. 2.4. Indeed,
eq.(2.58) implies that the condition pT . 2mt required for the convergence of the expansion
is always fulfilled for

√
ŝ . 700 GeV.

2.8 NLO Results of the pT Expansion

Main features of the NLO amplitude In the previous section we showed that the pT
expansion can provide, in its range of validity, an accurate approximation of the LO cross
section for gg → ZH. In the study of the NLO contribution, the two-loop integrals involved
can be treated conceptually on the same way from the point of view of the pT expansion.
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2.8. NLO Results of the pT Expansion

Table 2.1: Numerical results for the partonic cross section using the first four orders in the
pT expansion and the exact prediction.

MZH [GeV] O(p0
T ) O(p2

T ) O(p4
T ) O(p6

T ) Exact

250 0.1256 0.0994 0.0991 0.0990 0.0990
300 0.5790 0.4717 0.4689 0.4686 0.4686
350 3.1596 2.6609 2.6434 2.6415 2.6413
400 2.8220 2.2921 2.2644 2.2617 2.2614
500 2.0490 1.5036 1.4871 1.4876 1.4879
600 1.4735 0.9300 0.9549 0.9528 0.9532
700 1.0851 0.5588 0.6403 0.6143 0.6203
800 0.8223 0.3300 0.4737 0.3903 0.4151
900 0.6400 0.1984 0.4128 0.2399 0.2865

Then, it is reasonable to assume that the pT expansion can achieve a level of accuracy
comparable to the one at LO. There are, however, several sources of complication that will
be addressed in this subsection and in the following ones. First, the number of diagrams
involved at NLO is clearly larger than at LO. Also, the number of scalar integrals appearing
in the NLO form factors is drastically increased, so that the intermediate expressions arising
in the IBP reduction can become quite large. Furthermore, the master integrals after the IBP
reduction are two-loop integrals, and even with the simplified structure discussed in sec. 2.5
the task of evaluating these integrals is challenging. Finally, while we observed that the LO
results are finite in D = 4 dimensions, the integrals appearing in the NLO results are both
UV and IR divergent.

The relevant NLO diagrams generated with FeynArts are 86. Of these, 35 are two-loop
triangles like in figs. 2.6(a,b) and 47 are two-loop boxes as figs. 2.6(d-h); these NLO diagrams
are obtained by attaching extra gluons to the LO ones in all possible ways. Also, a new
topology represented by a set of 4 double-triangle diagrams (fig. 2.6(c)) appears for the first
time at NLO. We then separate the NLO form factors as a sum of the diagrams with different
topologies. So, recalling eq.(2.48),

A(1)
i = A(1,4)

i +A(1,�)
i +A(1,./)

i . (2.62)

Following the same strategy discussed in sec. 2.7, we evaluated the two-loop triangles in

the A(1,4)
i in Landau gauge, where only the diagrams with an ŝ-channel G0 propagator

are expected to give a nonzero contribution. The hardest part of these diagrams is clearly
represented by the 1PI two-loop triangles, which can be associated to the production of a
pseudoscalar boson via gluon fusion. In fact, the SM prediction for this process is known
through NLO [76, 77] and we adapted the findings of ref. [77] to obtain exact analytical

results for the A(1,4)
i , which we present in app. A.2. Also the double-triangle diagrams in the

A(1,./)
i form factors can be computed exactly, as they are simply the product of two one-loop

diagrams connected via a t̂- or û-channel gluon propagator. We present the results obtained
using FeynCalc in terms of Passarino-Veltman scalar functions in app. A.2.

Box diagrams at NLO Concerning the box diagrams in the A(1,�)
i , the evaluation of the

related two-loop integrals has proven to be the most difficult task in the whole computation,
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Figure 2.6: Representative Feynman diagrams contributing to the gg → ZH amplitude at
NLO. The two-loop triangle (a, b) and box (d - h) topologies are supplemented with double-
triangle diagrams as in (c).

and we are going to discuss some technical details before presenting the results. The con-
traction of the amplitude with the projectors produces expressions for the form factors that
are already involved. Because of this, we could perform the pT expansion only up to and
including O(p4

T ) terms. However, from the comparison with the LO result in the previous
section, we have seen that three orders in the pT expansion could already approximate the
exact result very well.

We find that the dimension of the files for the O(p4
T ) term reaches the order of 100 MB.

When dealing with these kind of files within Mathematica, key factors are the choice of the
functions for the symbolic manipulations (e.g. Simplify, Collect , Factor, Together) and
the order in which these manipulations are performed in the code. After the pT expansion,
we find that all the scalar integrals in the box form factors can be assigned to one of nine
families of two-loop integrals which, following the definition in eq.(2.44), depend on nine ni
indices

Ji(n1, . . . , n9) =

∫
dDq1d

Dq2
(q1 · r⊥)n8(q2 · r⊥)n9

Dn1
1 · · ·Dn7

7

i ∈ {1, 2, . . . , 9} (2.63)

where q1 and q2 are the loop-momenta, seven indices are related to the powers of the propaga-
tor denominators and two irreducible scalar products appear in the numerator. The families
used for the IBP reduction are listed in tab. 2.2. The analysis of the nine families using
LiteRed found 52 MIs. It is interesting to note that when these families are collectively ana-
lyzed with LiteRed it turns out that all the integrals belonging to the J9(n1, . . . , n9) family
can be decomposed in terms of integrals belonging to the other eight families (this is achieved
using the command FindSymmetries in the analysis of the families in LiteRed).

The IBP reduction at NLO has been the most challenging step from a computational point
of view. After every integral has been rewritten in the usual notation of eq.(2.63), the form
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2.8. NLO Results of the pT Expansion

Table 2.2: Denominator bases for the two-loop scalar integrals associated to pT -expanded
box form factors.

J1(n1, . . . , n9) J2(n1, . . . , n9) J3(n1, . . . , n9)

D1 (q1 + q2 − p1)2 (q1 + q2 − p1)2 (q1 + q2 − p1)2

D2 (q1 − p1)2 −m2
t (q1 − p1)2 −m2

t (q1 − p1)2 −m2
t

D3 (q1 − p2)2 −m2
t q2

1 −m2
t q2

1 −m2
t

D4 q2
1 −m2

t (q1 + p2)2 −m2
t (q1 + p2)2 −m2

t

D5 (q2 − p1)2 −m2
t (q2 − p2)2 −m2

t (q2 − p1)2 −m2
t

D6 (q2 − p1 + p2)2 −m2
t (q2 − p1 − p2)2 −m2

t (q2 − p1 − p2)2 −m2
t

D7 q2
2 −m2

t q2
2 −m2

t q2
2 −m2

t

D8 q1 · r⊥ q1 · r⊥ q1 · r⊥
D9 q2 · r⊥ q2 · r⊥ q2 · r⊥

J4(n1, . . . , n9) J5(n1, . . . , n9) J6(n1, . . . , n9)

D1 q2
2 (q1 − p1)2 (q1 + q2 − p1)2

D2 (q2 + p2)2 q2
1 (q1 − p1)2 −m2

t

D3 (q1 − p1)2 −m2
t (q1 + p2)2 (q1 − p2)2 −m2

t

D4 (q1 − p2)2 −m2
t (q2 − p1)2 −m2

t q2
1 −m2

t

D5 q2
1 −m2

t (q1 + q2 − p1)2 −m2
t (q2 − p1 + p2)2 −m2

t

D6 (q1 + q2 − p1)2 −m2
t (q1 + q2 − p1 + p2)2 −m2

t q2
2 −m2

t

D7 (q1 + q2)2 −m2
t q2

2 −m2
t (q2 + p2)2 −m2

t

D8 q1 · r⊥ q1 · r⊥ q1 · r⊥
D9 q2 · r⊥ q2 · r⊥ q2 · r⊥

J7(n1, . . . , n9) J8(n1, . . . , n9) J9(n1, . . . , n9)

D1 (q1 − p1)2 q2
1 (q1 − p1)2

D2 q2
1 (q1 + p1)2 q2

1

D3 (q1 + p2)2 q2
2 −m2

t (q1 + p2)2 −m2
t

D4 (q2 − p2)2 −m2
t (q2 + p2)2 −m2

t (q2 − p1)2 −m2
t

D5 (q2 − p1 − p2)2 −m2
t (q1 + q2)2 −m2

t (q2 − p1 − p2)2 −m2
t

D6 (q1 + q2 − p1)2 −m2
t (q1 + q2 + p2)−m2

t (q1 + q2 − p1)2 −m2
t

D7 q2
2 −m2

t (q1 + q2 + p1 + p2)2 −m2
t q2

2 −m2
t

D8 q1 · r⊥ q1 · r⊥ q1 · r⊥
D9 q2 · r⊥ q2 · r⊥ q2 · r⊥
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factors consist on average of O(200 000) scalar integrals, and the symbolic rules for a single
integral can be already very lengthy . In total, the files containing the symbolic rules for a
single form factor9 are around 500 MB in size. Once the rules are applied, a form factor is now
written as a linear combination of MIs, but the coefficients of the latter are huge and must
be simplified and expanded in the ε parameter of Dimensional Regularization. For the O(p4

T )
contribution to the form factors, this step could require several days to be completed. At the
end of the calculation, each order of the pT expansion for a given form factor occupies a few
hundreds of kB10. The analytical expressions however are still too involved to be included
in the thesis, and we present our results graphically in the following sections. The IBP
reduction implemented in the procedure described above took about two weeks of computing

time for the whole set of A(1,�)
i . We remark, however, that all the operations described above

have been performed on a simple desktop machine. The results have been obtained using a
common processor, although at least 64GB of RAM would be recommended to safely handle
the intermediate expressions in the IBP reduction.

2.8.1 Master Integrals

The MIs that form the basis found by LiteRed are the ultimate building blocks of the
NLO form factors in the pT expansion, and the last step before obtaining a complete result
consists in the evaluation of these MIs. All of the 52 MIs (which are listed in app. A.3) have
been already computed in the literature [77–82]. We remark that the same set of MIs was
found in the analysis of the gg → HH process in ref. [39]. A large group made of 50 MIs
can be expressed analytically in terms of a class of special functions known as Goncharov
Polylogarithms (GPL) [83], which are defined recursively as [84]

G(a1; z) =

∫ z

0

dt

t− a1
, G(z) = 1, (a1 6= 0)

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t).

(2.64)

In our computation, we evaluated these functions numerically using the code handyG [85].

The remaining two MIs are elliptic integrals evaluated in ref. [82]; in order to have a fast
numerical evaluation we used the Fortran routine of ref. [86] which relies on a semi-analytical
evaluation of the two integrals. The routine of [86] has been interfaced with Mathematica

using the MathLink protocol.

2.8.2 Renormalization

The MIs obtained after the IBP reduction are UV and IR divergent. Specifically, when the
MIs are expressed as an expansion in ε and combined with the respective coefficients, the
NLO form factors exhibit poles up to 1/ε4. These poles are to be cancelled partly at the
amplitude-level due to renormalization, and partly at the cross-section level with the inclusion

9We notice here that most of (though not all) the scalar integrals appearing in one form factor do appear
also in the other ones. For the calculation described in this thesis, the IBP reduction has been performed
separately by using a single processor core for each form factor. One could make this step more efficient by
collecting the integrals in all the form factors and performing the IBP reduction only once. Still, the major
bottleneck in computing time is the simplification of the form factors after the IBP reduction. Unfortunately,
this step is form-factor-dependent.

10The inevitability of large intermediate expressions is a well-known problem in the IBP reduction business.
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of the contribution from real radiation. Here we discuss the treatment of the first kind of
divergences, while the problem of IR divergences is addressed in the following subsection.

The parameters in the SM Lagrangian that need to be renormalized in the calculation
of the NLO diagrams are the external gluons wave-functions, the strong coupling constant
αS and the mass of the top quark mt. We note here that the relevant Feynman diagrams at
NLO were generated within the Background-Field formalism [87], using a custom FeynArts

model file that has been used also in refs. [31,39]. In this approach, the poles in ε associated
to the renormalization of the strong coupling and of the gluon wave-function, which are
proportional to the one-loop β−function of the strong coupling, β0, cancel exactly with part
of the IR-divergent terms that must be subtracted in order to make the virtual result finite
(see discussion in the following subsection). Therefore we omit these terms in our results.

The renormalization of the top mass has been performed in the on-shell (OS) scheme.
Specifically, the UV divergent integrals that one needs to consider for the top mass renormal-
ization come exclusively from diagrams in which a virtual gluon is emitted and reabsorbed
in a single internal fermionic leg (an example for the box topologies is depicted in fig.2.6(h)).

If we define the NLO form factors before the top-mass renormalization as A(1,UV)
i then we

have that the renormalized NLO result is given by

A(1)
i = A(1,UV)

i + δOS, (2.65)

where

δOS = 2m2
t

(
∂

∂m2
t

A(0)
i

)[
−CF

4

(
3

ε
+ 4− 3 log

(
m2
t

µ2
R

))]
(2.66)

with CF = 4/3 the Casimir of the fundamental representation of SU(3). The term in square
brackets is connected to the mass counterterm derived from the calculation of the top quark
self-energy at one-loop. We point out that in the calculation of the latter no O(ε) terms need

to be taken into account, since the LO result A(0)
i is UV finite.

2.8.3 Subtraction of Infra-Red Divergences

It is known that the cancellation of the UV poles due to the renormalization procedure
does not eliminate all the sources of divergence in the Feynman integrals. There are also
IR divergences related to the presence of massless particles in the relevant diagrams, i.e.
gluons in our case. These divergences are of a different nature than the UV ones, and
are connected to the degree of exclusiveness of the process considered here. Indeed, the
Kinoshita-Lee-Nauenberg theorem [88,89] states that for sufficiently inclusive observables all
the IR divergences have to be cancelled. In the specific case of gg → ZH, the IR divergences
are to be cancelled by the real corrections associated to diagrams where additional partons are
emitted from the external particles. It has been shown [90] that IR divergences are universal
at NLO, in the sense that the IR singular terms depend only on the kind and on the number
of external partons involved in a given process. It is then possible to define a universal term
that can be subtracted to obtain a result for the virtual contribution that is both UV and
IR finite. If we define the UV-renormalized but still IR-divergent form factors as A(1,IR)

i , we
obtain a UV- and IR-finite result via

A(1)
i = A(1,IR)

i + δgg,CA
(2.67)

where

δgg,CA
=
CA
2ε2
A(0)
i

(
− ŝ

µ2
R

)−ε
, (2.68)
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CA = 3 is the Casimir of the adjoint representation of SU(3), and terms up to O(ε2) are

understood to be included in the result for A(0)
i .

2.8.4 The Problem with γ5

As stated in the previous sections, we used DR to regularize both UV and IR divergences
associated to the loop integrals. Since the amplitude receives a contribution from the axial
coupling of the Z boson to top quarks and from the pseudoscalar coupling of the neutral
Goldstone boson to top quarks, using DR brings the issue of the treatment of the Dirac γ5

matrix in D-dimensions. Indeed, the assumption that γ5 anticommutes with all the other
Dirac matrices is in conflict with the ciclicity property of the trace for D 6= 4 and this fact
implies that the usual relation involving the traces of γ5

Tr
(
γµγνγργσγ5

)
= 4iεµνρσ

cannot be recovered in 4 dimensions from the result in D 6= 4. Among the various schemes
proposed in the literature [6,91,92] to circumvent this issue, we used the Larin prescription [93]
which is implemented in FeynCalc as follows

1. Whenever a trace of Dirac matrices involves an odd number of γ5, these are all anti-
commuted to the right of the trace.

2. The combination γµγ5 inside the trace is replaced with the quantity−i/(3!) εµαβδ γαγβγδ.

3. The contractions with the Levi-Civita tensor are performed as if the latter was a D-
dimensional object11. Specifically, the full contraction of two Levi-Civita tensors is
written as a linear combination of D-dimensional metric tensors.

The use of the Larin prescription allows to deal efficiently with the issue of γ5 in practical
calculations. However, a finite renormalization of the results is still needed in order to restore
the Ward Identities for the axial current [93]. The required finite counterterm differs according
to the coupling of the fermions being of pseudoscalar (as in the diagrams of fig. 2.6(a)) or

axial (as in the box diagrams) type. In particular, if we define A(1,�,NDR)
i and A(1,4,NDR)

i

to be the form factors obtained with the Larin prescription implemented as above, then the
correct renormalized form factors are computed as

A(1,�)
i = A(1,�,NDR)

i − αS
π
CFA(0,�)

i

A(1,4)
i = A(1,4,NDR)

i − 2
αS
π
CFA(0,4)

i .
(2.69)

We point out that the finite renormalization of the A(1,./)
i form factors is needed only from

NNLO.

As a check of consistency, the results of the pT expansion for A(1,�)
i and A(1,4)

i were
compared to an independent calculation in the LME, using a different regularization proce-
dure, namely Pauli-Villars regularization, in which all the steps are always performed in 4
dimensions, where the γ5 matrix is defined consistently.

11This approach corresponds to the so-called Naive Dimensional Regularization (NDR)
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2.8.5 Finite NLO Form Factors

We have shown how to remove all the sources of divergence from the A(1)
i and now we are

left with a result for the NLO form factors that is finite in D = 4 dimensions. In fig. 2.7

we show the results for the A(1,�)
1 form factor, following the same style of fig. 2.3. An exact

result at NLO is not available, so only the first three orders of the pT expansion are showed

in each plot of fig. 2.7. For these, we observe a similar behavior as for A(0,�)
1 . When the

maximum pT value allowed by a fixed
√
ŝ is smaller than about 300 GeV (as in fig.2.7 (a, b))

the pT expansion shows a good convergence for the whole pT range. When higher energies
are considered (fig. 2.7(c-f)), the phase space allows values of pT violating the condition
(2.34); for these values, the pT expansion shows a divergent behavior and cannot be trusted
to reproduce the exact result. Additional plots for the NLO box form factors can be found
in app. A.4, see fig. A.3.

2.8.6 Finite Part of the Virtual Corrections

We are now in the position to present the contribution to the NLO partonic cross section for
gg → ZH that is associated only to the virtual QCD corrections, identified as ∆σ̂virt. We
find

∆σ̂virt =

∫ t̂+

t̂−
dt̂

1

16πŝ2

αS
π
Vfin (2.70)

where Vfin refers to the finite part of the virtual corrections and it is defined as in ref. [35]

Vfin =
G2
Fm

2
Z

16

(αS
π

)2
{∑

i

∣∣∣A(0)
i

∣∣∣
2 CA

2

(
π2 − log2

(
µ2
R

ŝ

))

+ 2
∑

i

Re
[
A(0)
i A

(1)∗
i

]}
.

(2.71)

The first term in curly brackets is associated to the finite contribution of the IR countert-
erms12, namely to the real corrections, while the second term is related to the interference
of the LO and NLO amplitudes for the 2 → 2 process. We compared our findings for Vfin

with the numerical results presented in ref. [63]. We were able to compare a few points and
we found an agreement at the permille level. This provides another important check of our
computation. In fig. 2.8 we present the results for ∆σ̂virt for the first three orders of the pT
expansion, shown as dashed lines. We note that these are in very good agreement with each
other for MZH . 500 GeV. For comparison, we include the prediction of the same quantity
obtained with other analytical approximations. The red solid line shows the result of ref. [28],
which is based on an expansion of the NLO amplitude in the infinite-top-mass limit. We see
that this approach can reproduce the qualitative behavior of the pT -expanded prediction, al-
though there are important quantitative differences for invariant masses above the threshold
for top-pair production. The results of the LME including O(1/m6

t ) terms are also shown
in fig. 2.8 as a black solid line. While the agreement with the pT expansion is good slightly
above the ZH production threshold, the prediction from the two approximations are visibly
different from MZH & 300 GeV. We see then that the pT expansion provides an important

12The presence of the π2 − log2
(
µ2
R/ŝ

)
terms is related to the normalization used for the MIs, which is

consistent with the one of ref. [39].

33



Chapter 2. Virtual QCD Corrections to gg → ZH

O(pT
0)

O(pT
2)

O(pT
4)

0 50 100 150
0

200

400

600

800

1000

1200

1400

pT [GeV]

R
e
(A

1
(1

,
) )
[G

e
V
]

s

= 400 GeV

(a)

O(pT
0)

O(pT
2)

O(pT
4)

0 50 100 150
0

500

1000

1500

2000

pT [GeV]

Im
(A

1
(1

,
) )
[G

e
V
]

s

= 400 GeV

(b)

O(pT
0)

O(pT
2)

O(pT
4)

0 100 200 300

-5000

-4000

-3000

-2000

-1000

0

pT [GeV]

R
e
(A

1
(1

,
) )
[G

e
V
]

s

= 800 GeV

(c)

O(pT
0)

O(pT
2)

O(pT
4)

0 100 200 300
0

1000

2000

3000

4000

pT [GeV]

Im
(A

1
(1

,
) )
[G

e
V
]

s

= 800 GeV

(d)

O(pT
0)

O(pT
2)

O(pT
4)

0 200 400 600 800

-10 000

-8000

-6000

-4000

-2000

0

pT [GeV]

R
e
(A

1
(1

,
) )
[G

e
V
]

s

= 1600 GeV

(e)

O(pT
0)

O(pT
2)

O(pT
4)

0 200 400 600 800

0

500

1000

1500

2000

pT [GeV]

Im
(A

1
(1

,
) )
[G

e
V
]

s

= 1600 GeV

(f)

Figure 2.7: Results for the A(1,�)
1 form factor. The first row shows the first three orders in the

pT expansion for the real (green lines - left) and imaginary (red lines - right) parts, plotted
against pT for a c.o.m. energy of

√
ŝ = 400 GeV. The second and third rows show the same

quantities as the first row, for higher values of
√
ŝ.
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Figure 2.8: Prediction for ∆σ̂virt as defined in eq.(2.70), as a function of the invariant mass
MZH . The dashed lines show the results obtained with the first three orders of the pT
expansion. The prediction from an independent LME calculation and from the reweighted
mt →∞ limit considered in ref. [28] are also shown as black and red solid lines, respectively.
Taken from [41].

.

improvement in the approximation of the exact result, up to its range of validity MZH . 700
GeV.

We finally remark that the present calculation is complementary to the results of ref. [35],
which cover the region of large transverse momentum of the Z. In chap. 4 we will consider a
strategy for merging the two analyses, allowing for an analytic evaluation of the NLO virtual
corrections in gg → ZH in the entire phase space.
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Chapter 3

Top-Quark Effects in gg → ZZ

3.1 Introduction

The production of a pair of Z bosons in proton collisions, pp → ZZ, played a crucial role
in the discovery of the Higgs boson, as the decay H → ZZ(∗) → 4` was one of the golden
channels allowing for the first observation of the Higgs at the LHC. Indeed, the leptonic
decays of the Z bosons can provide a clean signal in experimental searches. The total cross
section for ZZ production is O(10 pb) for a c.o.m. energy of 13 TeV [94–96]. The importance
of this process is still significant in the current investigation of the Higgs properties.

In the theoretical SM prediction of pp→ ZZ production two partonic sub-processes have
to be considered. The first is quark-antiquark annihilation, qq̄ → ZZ, which gives the largest
contribution to the hadronic cross section. The LO for this channel is related to purely EW
tree-level diagrams [97], and corrections through NNLO in QCD [98–103] and through NLO
in the EW theory [104–106] are available. The second contribution comes from the gluon-
initiated channel, gg → ZZ. The LO diagrams for this process are one-loop diagrams, which
contribute as a sizable O(α2

S) correction to the hadronic cross section, about 10% for
√
s = 13

TeV [107]. The LO diagrams have been computed for the first time in refs. [108, 109]. The
gg → ZZ contribution is particularly relevant for Higgs physics, as it includes the sub-process
gg → H → ZZ. In this thesis we will focus on the gluon-initiated contribution.

The one-loop diagrams for gg → ZZ at LO feature two topologies: the triangles (see
fig. 3.2(a)) are associated to Higgs production, while the box diagrams (fig. 3.2(b)) are re-
lated to the process of non-resonant (a.k.a. continuum) ZZ production, which constitutes
an irreducible background in experimental Higgs searches. Continuum production plays also
a relevant role in the indirect determination of the Higgs total decay width, ΓH [110, 111].
Indeed, in refs. [112, 113] it has been suggested that upper limits on ΓH can be obtained
from the investigation of the invariant-mass distribution away from the resonant peak; if we
consider searches in the four-lepton final state, this region corresponds to m4` > 2mZ . Addi-
tionally, even if ΓH is about four orders of magnitude smaller compared to the Higgs mass, the
invariant-mass distribution off-peak does not decrease very steeply [114]. As a consequence,
in the region m4` > 2mZ the interference of the signal and background amplitudes gives a
relevant contribution. For the reasons mentioned above, the knowledge of the gluon-initiated
channel beyond the LO contribution is highly desirable.

The NLO corrections to the Higgs-mediated diagrams are known exactly [77, 79, 115].
Concerning the continuum term, exact analytical results for the related two-loop box integrals
have been obtained only in the case of loops of massless quarks [116, 117], which clearly is
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Chapter 3. Top-Quark Effects in gg → ZZ

Figure 3.1: Interference of the Higgs-mediated and continuum amplitudes in gg → ZZ at
LO, as a function of the invariant mass of the four-lepton final state. The contribution from
massive quarks (orange lines) becomes more and more relevant compared to the one from
massless quarks (solid blue line) starting from m4` > 2mZ . The dashed lines correspond to
the approximation of the massive-quark terms in the LME. The vertical grey line represents
the threshold for top-pair production. Taken from [118].

an excellent approximation for the first five quarks. It must be noted that, at variance with
what observed in gluon-initiated ZH production, the contribution from light quarks to the
gg → ZZ amplitude is the dominant one, and in fact it constitutes more than 50% of the
O(α2

S) corrections to ZZ production [100,107].

The top-quark contribution is not negligible, but it starts to become relevant for invariant
masses in the range m4` > 2mZ (see fig. 3.1) and it is expected to be substantial in the region
m4` > 2mt [119]. However, the contribution from top quarks is not known exactly, as the
scale associated to the mass of the heavy quark complicates the calculation of the two-loop
box integrals. Several analytical approximations have been discussed in the literature. The
LME has been used in refs. [29, 32, 118] to obtain reliable predictions in the region 2mZ <
m4` . 2mt. In ref. [32] an improvement of the LME results by means of conformal mapping
and Padé approximants has also been studied. A further improvement of the LME via an
expansion around the top threshold has been presented in ref. [119]. Recently, analytical
predictions that are reliable for large invariant masses have been obtained using the High-
Energy expansion [36]. Still, the latter approach is expected to fail in the region m4` . 750
GeV, and also in ref. [36] Padé approximants were used in order to improve the expansion.
Finally, results based on numerical approaches have been obtained in refs. [120,121], showing
good agreement with the HE expansion of ref. [36].

In the present chapter, we discuss the computation of the contribution from top-quark
loops to gg → ZZ at NLO, using the pT expansion presented for gluon-initiated ZH pro-
duction in chap. 2. Our goal is to provide an accurate approximation of the virtual QCD
corrections which can be valid in the invariant-mass region that so far has not been covered
by any of the (analytical) approaches discussed above, namely the region 350 . m4` . 750
GeV.

In the following section we present the main features of the gg → ZZ amplitude and
we set our notation. In sec. 3.3 we examine the Lorentz structure of the amplitude and its
decomposition in terms of Lorentz projectors. In sec. 3.4 we discuss the application of the
pT expansion to gg → ZZ production, considering the similarities and differences w.r.t. the
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approach used in chap. 2. In sec. 3.5 we show how well the known LO amplitude can be
reproduced by our approximation. We then consider the application of the pT expansion at
NLO and we present our original results in sec. 3.6.

3.2 General Properties of the gg → ZZ Amplitude

Let us consider the process gµa (p1)gνb (p2) → Zρ(p3)Zσ(p4). The related Feynman amplitude
can be written as

A =
√

2m2
ZGF

αS(µR)

π
δab ε

a
µ(p1)εbν(p2)ε∗ρ(p3)ε∗σ(p4) Âµνρσ(p1, p2, p3) (3.1)

where the polarization vectors of the gluons and the Z bosons are εaµ(p1), εbν(p2) and ερ(p3), εσ(p4),

respectively. Since all the external particles are gauge bosons the tensor Âµνρσ(p1, p2, p3),
which is analyzed in the next section, will depend on four Lorentz indices.

In this chapter we will consider on-shell external particles

p2
1 = p2

2 = 0 p2
3 = p2

4 = m2
Z . (3.2)

Assuming all momenta to be incoming, the partonic Mandelstam variables are defined as

ŝ = (p1 + p2)2, t̂ = (p1 + p3)2, û = (p2 + p3)2 (3.3)

and the relation
ŝ+ t̂+ û = 2m2

Z (3.4)

is satisfied.
By analogy with eqs.(2.16,2.17), it is easy to see that the transverse momentum of each

one of the Z bosons is written as

p2
T =

t̂û−m4
Z

ŝ
, (3.5)

whereas in the forward kinematic region one has

t̂ = −1

2

(
ŝ− 2m2

Z −
√
ŝ2 − 4ŝm2

Z − 4ŝp2
T

)

û = −1

2

(
ŝ− 2m2

Z +
√
ŝ2 − 4ŝm2

Z − 4ŝp2
T

)
.

(3.6)

We further assume the transversality of all the external polarization vectors w.r.t the respec-
tive four-momentum

ε(pi) · pi = 0 i = 1, . . . , 4, (3.7)

and Bose symmetry under the exchange of the initial gluons and of the final Z bosons implies
the following relations

Âµνρσ(p1, p2, p3, p4) = Âνµρσ(p2, p1, p3, p4)

Âµνρσ(p1, p2, p3, p4) = Âµνσρ(p1, p2, p4, p3).
(3.8)

If we study the amplitude by looking at the couplings of the external particles to the
internal lines in the Feynman diagrams, we notice some useful properties. The Higgs-mediated
diagrams will necessarily depend on the metric tensor gρσ due to the HZZ coupling in
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the final state, whereas gluon-initiated Higgs production is proportional to the combination
(gµνp1 · p2 − pµ1pν2) due to gauge invariance.

In the box diagrams related to continuum production, the presence of two Z bosons that
couple to the internal fermion line requires a careful analysis. If we recall that the Z-top
coupling in the SM is given by

− i g

cos θW
γµ(gV − gAγ5), (3.9)

with

gV =
1

2
− 4

3
sin θW gA =

1

2
, (3.10)

we see that three separate contributions to the box amplitude can be identified: a vector-
vector part, which will be proportional to g2

V , an axial-axial part proportional to g2
A and a

mixed part proportional to gV gA. However, the latter component must vanish because of
Furry’s theorem, as the external gluons provide two more vector couplings. Furthermore,
when considering the contribution proportional to g2

A, the two γ5 matrices occurring in the
Dirac traces can be safely anticommuted close to each other in D = 4 dimensions, where
one can use the relation

(
γ5
)2

= 1. As a consequence, Lorentz structures involving Levi-
Civita tensors are not expected to contribute to the final result for the box amplitudes,
allowing to use Naive Dimensional Regularization unambiguously in their calculation. The
same reasoning does not apply to the double triangles in the NLO corrections (see fig. 3.5(c)),
as in that case the two Z bosons couple to independent fermion lines. However, the double
triangles contribute for the first time at NLO and, at the order we are considering, no finite
renormalization is needed. We conclude that in the calculation of the amplitude at NLO the
issue of the treatment of γ5 in Dimensional Regularization can be circumvented.

3.3 Projectors

The structure of the Lorentz tensor Âµνρσ is definitely more complicated compared to the
case of ZH production, discussed in sec. 2.3. Due to the extra Lorentz index, the most
general Lorentz decomposition involves 138 tensors. The number of independent tensors
can be reduced by exploiting the transversality condition (3.7) and the properties of gauge
invariance and Bose symmetry which the amplitude must respect. However, the choice of a
specific polarization of the initial gluons, namely

ε(p1) · p2 = 0 ε(p2) · p1 = 0 (3.11)

can drastically simplify the structure of Âµνρσ. This choice has been used in refs. [36,116,122]
and we adopt it in our work in order to facilitate the comparison with previous results. In
particular, we assume the following relations for the polarization sums of the external particles

∑

λ

ελ,µ(p1)ε∗λ,α(p1) = −gµα +
p1µp2α + p2µp1α

p1 · p2

∑

λ

ελ,ν(p2)ε∗λ,β(p2) = −gνβ +
p2νp1β + p1νp2β

p1 · p2

∑

λ

ελ,ρ(p3)ε∗λ,γ(p3) = −gργ +
p3ρp3γ

m2
Z

∑

λ

ελ,σ(p4)ε∗λ,δ(p4) = −gσδ +
p4σp4δ

m2
Z

,

(3.12)
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where we notice that the first two lines of eq.(3.12) correspond to fixing a gauge for the
propagator of the initial gluons.

If we write the amplitude as a linear combination of the single Lorentz tensors Sµνρσi

which give a nonzero contribution when eqs.(3.12) are assumed, then the most general form
for the amplitude is given by the linear combination of 20 tensors which multiply scalar form
factors fi

Âµνρσ(p1, p2, p3) =
20∑

i=1

Sµνρσi fi(ŝ, t̂, û,mt,mZ) (3.13)

where

Sµνρσ1 = gµνgρσ Sµνρσ2 = gµρgνσ Sµνρσ3 = gµσgνρ Sµνρσ4 = pρ1p
ν
3g
µσ

Sµνρσ5 = pρ2p
ν
3g
µσ Sµνρσ6 = pρ1p

µ
3g

νσ Sµνρσ7 = pρ2p
µ
3g

νσ Sµνρσ8 = pµ3p
ν
3g
ρσ

Sµνρσ9 = pρ1p
σ
1g

µν Sµνρσ10 = pρ1p
σ
2g

µν Sµνρσ11 = pσ1p
ρ
2g
µν Sµνρσ12 = pρ2p

σ
2g

µν (3.14)

Sµνρσ13 = pσ1p
ν
3g
µρ Sµνρσ14 = pσ2p

ν
3g
µρ Sµνρσ15 = pσ1p

µ
3g

νρ Sµνρσ16 = pσ2p
µ
3g

νρ

Sµνρσ17 = pρ1p
σ
1p

µ
3p

ν
3 Sµνρσ18 = pρ1p

σ
2p

µ
3p

ν
3 Sµνρσ19 = pσ1p

ρ
2p
µ
3p

ν
3 Sµνρσ20 = pρ2p

σ
2p

µ
3p

ν
3

We take eqs.(3.13,3.14) as the starting point for the construction of the orthogonal projectors.
We also notice that because of Bose symmetry not all the fi are independent. Furthermore,
to the purpose of the pT expansion, we require the projectors to be linear combinations of
the Sµνρσi which must be either symmetric or antisymmetric under the exchange {µ ↔ ν ,
p1 ↔ p2}. As discussed in sec. 2.4, the latter request allows to recover the correct complete
result when the form factors are pT -expanded only in the forward kinematical region.

The procedure for constructing the projectors follows the same steps discussed in sec. 2.3.
We find that the amplitude can be expressed in terms of a set of 20 orthonormal projectors
Pµνρσi as

Âµνρσ(p1, p2, p3) =
20∑

i=1

Pµνρσi Ai(ŝ, t̂,mZ ,mt) (3.15)

where the scalar form factors Ai depend on the top and Z boson masses and on the in-
dependent partonic Mandelstam variables ŝ and t̂. The projectors respect the analogous
orthonormality property of eq.(2.20)

(
−gµα +

p1µp2α + p2µp1α

p1 · p2

)(
−gνβ +

p2νp1β + p1νp2β

p1 · p2

)
× (3.16)

×
(
−gργ +

p3ρp3γ

m2
Z

)(
−gσδ +

p4σp4δ

m2
Z

)
Pµνρσi Pαβγδ∗j = δij . (3.17)

Among the projectors in eq.(3.15), the Pµνρσi with i = 1, . . . , 8 and 20 are antisymmetric
under {µ ↔ ν , p1 ↔ p2}, while those with i = 9, . . . , 19 are symmetric. The analytical
expressions for the projectors are presented in app. B.1. We notice here that the norm of the
projectors Pµνρσ19 and Pµνρσ20 vanishes in D = 4 dimensions. Additionally, we find that the
contraction of Âµνρσ as written in eq.(3.15) with Pµνρσ1 and Pµνρσ4 vanishes identically when
one uses the relations among the fi in eq.(3.13) connected to Bose symmetry. To summarize,
with our choice of projectors only 16 form factors are truly relevant for the calculation of the
amplitude. Nonetheless, as a check of consistency we included the form factors A1, A4, A19

and A20 in our calculation and we verified that the final result for each of them is zero in
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D = 4 dimensions. As in ch. 2, we will consider a perturbative expansion of the form factors
in the strong coupling

Ai = A(0)
i +

αS
π
A(1)
i +O(α2

S) (3.18)

where one- and two-loop diagrams contribute respectively at LO (A(0)
i ) and NLO (A(1)

i ). The
form factor defined as in eq.(3.15) are dimensionless.

3.4 pT Expansion and IBP Reduction for gg → ZZ

The main features and steps of the pT expansion have already been discussed in the case of
ZH production in sec. 2.4. In this section we briefly adapt that same method to the gg → ZZ
process. We therefore introduce the primed Mandelstam variables

s′ = p1 · p2 =
ŝ

2
, t′ = p1 · p3 =

t̂−m2
Z

2
, u′ = p2 · p3 =

û−m2
Z

2
(3.19)

such that
s′ + t′ + u′ = 0, (3.20)

and the transverse momentum can be expressed as

p2
T =

2t′u′

s′
−m2

Z . (3.21)

By analogy with sec. 2.4, pµ3 can be expressed as

pµ3 = −pµ1 −
t′

s′
(p1 − p2)µ + rµ⊥ (3.22)

so that in the forward limit pµ3 ' −pµ1 one must have

t′ ' 0 rµ⊥ ' 0. (3.23)

If we rewrite t′ in terms of p2
T , in the forward region we have

t′ = −s
′

2

{
1−

√
1− 2

p2
T +m2

Z

s′

}
, (3.24)

from which we understand that the expansion parameters to be considered in the gg → ZZ
case are the ratios

p2
T

s′
' 0

m2
Z

s′
' 0 rµ⊥ ' 0. (3.25)

We notice that, compared to ZH production (cfr. eq.(2.32)), the number of small parameters
is reduced by one: this is clearly related to the fact that we are considering external particles
with equal masses in the final state of gg → ZZ.

While the different kinematics requires an adaptation of the pT expansion from the case
discussed in sec. 2.4 to ZZ production, the IBP reduction in our calculation is implemented
along the same lines of sec. 2.5. In particular, after the scalar form factors Ai are pT -expanded
in the small parameters of eq.(3.25) and IBP-reduced using LiteRed, they can be written as
the following series

Ai = N (p2
T ,m

2
Z)

∞∑

N=0

∑

i+j=N

cij(p
2
T )i(m2

Z)j , (3.26)
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Figure 3.2: Representative Feynman diagrams contributing to the gg → ZZ amplitude at
LO. Triangle topologies with a Higgs boson H (a) are present together with (b) box diagrams.
Only the contribution from the top quark loops is shown.

where the cij coefficients are linear combinations of the MIs resulting from the IBP reduction,
which in turn depend only on ŝ and m2

t , and N (p2
T ,m

2
Z) is an overall normalization factor

which may depend on p2
T and m2

Z .

3.5 LO Contribution

In this section we evaluate the LO contribution to the cross section for gg → ZZ using the
pT expansion, and we compare the results with the known exact expressions. Specifically, we

are interested in the calculation of the A(0)
i form factors. For the practical implementation of

the calculation we used the same code presented in sec. 2.6. We note, however, that already
at LO some modifications in the routines were required in order to handle the intermediate
expressions, which turned out to be significantly more involved than for ZH production.

The diagrams generated using FeynArts are four: the diagram shown in fig. 3.2(a) corre-
sponds to the Higgs-mediated contribution and features a triangle topology. The remaining
three diagrams are associated to the box topology of fig. 3.2(b) and its crossings. We then
split the LO form factors into a triangle and a box contribution

A(0)
i = A(0,4)

i +A(0,�)
i . (3.27)

In our calculation we performed the pT expansion on both contributions, but as in ch. 2
we are going to focus our discussion on the box form factors. We also evaluated the exact

results for the A(0)
i using FeynCalc and we checked our expressions with those of ref. [36]. In

the comparison with the latter reference we used the relations between our Ai and the form
factors of [36] included in app. B.1.

LO Form Factors After the scalar integrals in the form factors are pT -expanded, we can
identify the same integral families as in ZH production, and the IBP reduction yields a result
in terms of the known Passarino-Veltman scalar functions. We now discuss in the detail the
results for the A

(0,�)
9 form factor1. We notice that A

(0,�)
9 as well as some other box form

factors feature O(pT
−2) terms, although each form factor is regular in the limit pT → 0. In

the following discussion, we conventionally include these terms in the O(p0
T ) results. The

input parameters used for the numerical evaluation of the form factors are the same as in the
previous chapter (see sec. 2.7.2).

In fig. 3.3 we present our results for the absolute value of A
(0,�)
9 as a function of pT , for

increasing values of the partonic c.o.m. energy. We see that for values of
√
ŝ that are not

1This form factor gives the dominant contribution to the cross section, see app. B.3.
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too large (see fig. 3.3(a)) the first three orders of the pT -expansion (blue lines) are capable of
reproducing the exact result (brown line) for every value of pT . One can notice some spikes
in the bottom part of fig. 3.3(a), in correspondence of pT ' 90 GeV: these are related to the
fact that the form factor is zero2 for that specific pT , leading to numerical issues when the
ratio pT -expanded/exact is considered. Nonetheless, when the O(p4

T ) terms are included in
the expanded result, the situation is under control and the deviation from the exact result
is always below 1%. When

√
ŝ = 800 GeV (fig. 3.3(b)) we see that some deviations from

the exact result arise in the region of high pT . For the O(p4
T ) result the deviations are

always below 5%. Going to higher c.o.m. energies (fig. 3.3(c)) the pT -expanded results show
a divergent behavior for pT & 300 GeV: as larger values of pT are kinematically allowed, the
exact form factor cannot be reproduced accurately by the pT expansion anymore, although
the low-pT region is always well covered. This behavior can be observed for all the other form
factors, shown in app. B.3. We recall that the same behavior was also observed in the case
of ZH production.

LO Cross Section We now present our results for the partonic cross section at LO. Using
the projectors defined in sec. 3.3, the squared modulus of the amplitude, summed over the
external polarizations and averaged over the initial ones and over color, is given by

<
∑

pol

|A|2 >=
1

2

1

2

1

8

1

8
8

2m4
ZG

2
Fα

2
S(µR)

π2

18∑

i=1

|Ai|2 . (3.28)

Then, recalling eq.(2.60), the partonic cross section at LO is expressed as

σ̂(0)(ŝ) =
1

2

m4
ZG

2
F

256πŝ2

(
αS(µR)

π

)2 ∫ t̂+

t̂−
dt̂
∑

i

∣∣∣A(0)
i

∣∣∣
2

(3.29)

where t̂± = 1/2
[
−ŝ+ 2m2

Z ±
√
ŝ2 − ŝ 4m2

Z

]
and we included a 1/2 factor to account for the

two identical particles in the final state. In fig. 3.4 we compare the exact result (solid line)
with the pT -expanded ones (dashed lines). We notice that already the O(p0

T ) result has a
very good agreement with the exact result for low invariant masses, with deviations below
1% in the region MZZ . 500 GeV (see the bottom part of fig. 3.4). By including more
orders in the expansion, the accuracy of the approximation is improved and the agreement
is extended to higher invariant masses. However, one can see that even the most accurate
approximation starts to deviate from the exact prediction near MZZ = 700 GeV, although a
reasonable agreement can be kept through higher invariant masses. In particular, the O(p6

T )
result shows deviations below 1% w.r.t. the exact result for MZZ . 900 GeV. More generally,
if we look at the expected invariant-mass range where the pT expansion can be trusted, we
observe a very similar situation to the case of ZH production (compare figs. 3.4 and 2.5).

3.6 NLO Contribution

Having shown that the pT expansion can provide reliable results at LO, we proceeded to
compute the NLO form factors. The relevant Feynman diagrams generated by FeynArts

amount to 75. Among these, 12 diagrams feature two-loop irreducible triangles connecting to

2We observed the same feature in the A
(0,�)
11 form factor.
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Figure 3.3: Absolute value of the A(0,�)
9 form factor, for fixed values of

√
ŝ. The blue lines

represent the first three orders of the expansion, while the brown line stands for the exact
result. The bottom part of each graph shows the ratio of the various orders of the pT
expansion to the exact result.
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Figure 3.4: Partonic cross section at LO, as a function of the invariant mass MZZ . The exact
result is shown as a dark solid line, while different orders of the pT expansion are shown as
dashed lines. In the bottom part, the ratio of each order over the exact result is shown.

the virtual Higgs boson (fig. 3.5(a,b)), 16 diagrams are double triangles involving independent
loops of top and bottom quarks (fig. 3.5(c)) and 47 diagrams are two-loop boxes (fig. 3.5(d-
h)). We are going to consider the separate contributions of each topology to the NLO form
factors, therefore we express the latter as

A(1)
i = A(1,4)

i +A(1,�)
i +A(1,./)

i . (3.30)

Triangles and Double Triangles We obtained exact analytical expressions for the A(1,4)
i

form factors by adapting the results of ref. [77], and we present them in app. B.2. The calcu-

lation of the A(1,./)
i was performed with FeynCalc, in our results we include the contributions

from loops of bottom quarks.

Box diagrams at NLO The calculation of the A(1,�)
i form factors was performed along

the same lines of the one for ZH production, discussed in sec. 2.8. In particular, we computed
the first three terms in the pT expansion of the form factors. The topologies analyzed were
exactly the same as those related to ZH production, the only difference being the replacement
of the external Higgs with a second Z boson. Therefore, we were able to rewrite all the scalar
integrals in terms of the same families presented in tab. 2.2. However, we note that the
technical difficulties encountered in the ZH case were aggravated by the average length of
the intermediate expressions. Indeed, the increased number of Lorentz structures involved in
the gg → ZZ amplitude, as well as the complexity of the projectors that can be appreciated
from app. B.1, posed a serious challenge to the application of the pT expansion approach.
In general, most of the routines originally written for ZH production had to be improved to
allow for the required manipulations in Mathematica within adequate times. To give an idea
of the complexity, even with the improvements mentioned above, the very contraction of the
amplitude with all 20 projectors took about one week on a desktop computer; the automatic
rewriting of the scalar integrals in a form suitable for the IBP reduction within LiteRed
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Figure 3.5: Representative Feynman diagrams contributing to the gg → ZZ amplitude at
NLO. The two-loop triangle (a, b) and box (d - h) topologies are supplemented with double-
triangle diagrams as in (c).

took about two weeks for all the form factors. After this step, the number of scalar integrals
involved in a single form factor ranged from 250 000 to 750 000. The IBP reduction for the
most complicated form factors could require more than a week to complete. Nonetheless,
the size of the files for the final results turned out to be O(100kB), which is comparable to
the case of ZH production. Additionally, each form factor could ultimately be written as a
linear combination of the same 52 MIs discussed in chap. 2 and presented in app. A.3.

Renormalization and IR subtraction The renormalization of the UV-divergent form
factors follows the same lines of the method discussed in chap. 2. In particular, the renormal-
ization of the top mass was performed in the OS-scheme. At the same time, the IR-divergent
terms were subtracted as discussed in sec. 2.8. This procedure allows to have UV and IR
finite expressions for the NLO form factors, which we discuss in the following.

3.6.1 NLO Results

In fig. 3.6 we show the results for A(1,�)
9 as a function of pT , for the same c.o.m. energies as

in fig. 3.3. We plot the separate contributions from the real (green lines) and imaginary (red
lines) part. Although the exact result is not known, we can compare the relative behavior
of the first three orders of the pT expansion to assess its reliability at NLO. For

√
ŝ = 400

GeV (fig. 3.6(a,b)), the first three orders for both the real and imaginary parts are in very
good agreement with each other for all the kinematically allowed values of pT , and the
corresponding lines are indistinguishable from each other. When higher c.o.m. energies are
considered, the three lines in each plot are generally in agreement in the region pT . 300
GeV, but one can see large deviations when higher values of the transverse momentum are
allowed, see figs. 3.6(c-d). Therefore, the phase-space region that can be accurately covered
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Chapter 3. Top-Quark Effects in gg → ZZ

by the pT expansion becomes less and less important as the partonic c.o.m. energy increases.
We observed this behavior for all the other pT -expanded form factors. We note that this
behavior corresponds to the one observed at LO, as well as in the case of ZH production.
We are led to conclude that our expansion can accurately approximate the exact results for

the A(1,�)
i when pT . 300 GeV. Consequently, we expect that the approximation of the

virtual NLO corrections will be reliable for invariant masses in the range MZZ . 700 GeV.
Finally, we recall that the top-quark loops discussed in this chapter are not the only

contribution to gg → ZZ, as also light quarks play an important role in the continuum
amplitude. For this reason, in this thesis we do not to show the NLO virtual corrections
to the partonic cross section from the top-quark loops, as done in chap. 2, and we defer a
comprehensive study of the interplay of light and heavy quarks to future work.
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Figure 3.6: Results for the A(1,�)
9 form factor. The first row shows the first three orders in the

pT expansion for the real (green lines - left) and imaginary (red lines - right) parts, plotted
against pT for a c.o.m. energy of

√
ŝ = 400 GeV. The second and third rows show the same

quantities as the first row, for higher values of
√
ŝ.
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Chapter 4

Merging the pT and High-Energy
Expansions

4.1 Introduction

In the previous chapters we presented the application of the pT expansion to the study of
gluon-initiated ZH and ZZ production. We saw that this method can provide very accurate
results only in a limited region of the phase space. For gg → ZH at LHC energies, this
constitutes a minor problem, since almost the totality of the hadronic cross sections comes
from a region where the expansion works well. However, at future hadronic colliders the
contribution to the hadronic cross section from higher invariant masses is expected to be
substantial. Then, in the view of future phenomenological studies, it would be useful to
investigate a way to extend the coverage of the phase space provided by the pT expansion to
regions which cannot be described by the latter. More generally, from the current development
of multi-loop computational techniques, one could argue that analytical approximations like
the pT expansion may still be important in the calculation of higher-order corrections for
scattering processes, and it may be convenient to use the information provided by this method
in the best possible way.

An interesting possibility to improve the predictions of the pT expansion would be to
combine the latter with a different approximation, which is valid in a somewhat comple-
mentary region of the phase space. A good candidate is represented by the HE expansion.
This method has been introduced for the first time in refs. [34, 123], in the calculation of
top-quark effects in the two-loop corrections for double-Higgs production via gluon-fusion.
Subsequently, the same approach has been used to study gg → ZZ [36] and gg → ZH [35].
In the HE expansion, the scalar integrals which constitute the form factors are expanded in
the limit in which the kinematical variables ŝ and t̂ are large (in magnitude) compared to the
masses of the particles involved.

The complementarity of the two analytical approximations will be discussed in sec. 4.4.
Here, we simply illustrate the starting point of our discussion by considering the prediction of
the LO partonic cross section for gg → ZH, shown in fig. 4.1. The two shaded invariant-mass
regions correspond to the regions where the pT expansion (blue region) and the HE expansion
(orange region) agree rather well with the exact prediction. The blue region spans the values
from the kinematic ZH threshold to MZH . 700 GeV, while the orange region covers the
range MZH & 800 GeV. We also notice a relatively small blank region around MZH = 750
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Figure 4.1: Partonic cross section for gg → ZH at LO, as a function of the invariant mass.
The blue (orange) region represents the approximate range of validity of the pT (HE) expan-
sion. Both expansions become unreliable in the region left blank around MZH = 750 GeV
(dashed line).

GeV (dashed line): in this region the results from both expansions are expected to diverge1.
In the present chapter we analyze the complementarity illustrated in fig. 4.1 in greater detail,
and we consider the combination of the pT and HE expansions, with the aim of merging the
two approximations into a single prediction that is accurate over the complete phase space.
We will also show that the two expansions can be independently improved using the technique
of Padé approximation2: this will be of help in finding an optimal merging procedure.

For the sake of brevity, we will give a detailed discussion only for the gg → ZH case, for
which we have to study fewer form factors than for gg → ZZ. Finally, we have seen that
the form factors in gg → ZH depend on one additional scale w.r.t. gg → ZZ, due to the
different masses in the final states, so we will be able to present our merging procedure in a
more general way.

In the next section we present the features of the HE expansion which are relevant for our
study. In sec. 4.3 we introduce the method of Padé approximation and we discuss how it can
be used to improve the convergence of both the pT and HE expansions. Having introduced
the main ingredients of our study, in sec. 4.4 we present the details of our merging procedure
and we assess its reliability in reproducing the LO results. Then, in sec. 4.5 we proceed to
apply the method to the approximation of the NLO virtual corrections for gg → ZH.

4.2 The HE Expansion

In this section we provide the main details of the HE expansion that has been used for the
study of gg → ZH in ref. [35], with the aim of making it understandable to the reader. We
make clear that we did not produce the results of the HE expansion ourselves, but we used
the expressions available in [124] for our study. We also get the chance to comment on the

1The reader can also compare fig. 2.5 in this thesis and fig. 2(a) in ref. [35].
2We clarify that the use of Padé approximants to improve the HE expansion has been already discussed in

ref. [35].
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4.2. The HE Expansion

similarities and differences between this expansion method and the pT expansion.
With reference to the notation used in sec. 2.2, let us consider the form factor Ai obtained

after the contraction of the full amplitude with the projector Pµνρi . We recall that the scalar
integrals which constitute this form factor depend on five scales: ŝ, t̂,mZ ,mH ,mt. In the HE
expansion, the structure of the scalar integrals is simplified in a different way compared to
the pT expansion:

1. As a first step of the method, the scalar integrals and their coefficients are Taylor-
expanded in the limit of small external masses mZ → 0, mH → 0 . As a consequence,
mZ and mH don’t appear in the new scalar integrals anymore, and this procedure
reduces the scales upon which the integrals depend from five to three: ŝ, t̂ and mt.

2. After the Taylor expansion, the resulting integrals are decomposed along a basis of MIs
by performing an IBP reduction using FIRE [125] and LiteRed. This step reduces the
number of scalar integrals to be computed, but the latter still depend on ŝ, t̂ and mt.

3. Following the IBP reduction the authors of ref. [35] perform an additional step to
simplify the MIs: the integrals are further expanded in the limit of a small top mass
compared to the kinematical variables

4m2
t

ŝ
� 1

4m2
t

t̂
� 1. (4.1)

This is achieved by assuming the following ansatz for the structure of the MIs in the
high-energy limit

M(ŝ, t̂,mt, ε) =
∑

ijk

Bijk(ŝ, t̂)ε
i(mt)

j logk(m2
t ), (4.2)

where ε is the usual parameter of DR. The coefficients Bijk(ŝ, t̂) are reconstructed using
the differential equations w.r.t. the kinematical quantities that the MIs must satisfy.
The integrals resulting after this latter expansion depend only on ŝ and t̂, and they can
be expressed in terms of Harmonic Polylogarithms (HPL)3.

The final result of the HE expansion is then a form factor which can be written as a power
series in mt

Ai =
∞∑

n=0

mn
t F

(n)(ŝ, t̂,mZ ,mH). (4.3)

The F (n)(ŝ, t̂,mZ ,mH) coefficients in eq.(4.3) are themselves series in mZ and mH , as a
consequence of the expansion in the limit of small external masses (step 1.)

F (n) =

∞∑

i=0

∞∑

j=0

m2i
Zm

2j
H Dij(ŝ, t̂), (4.4)

and the coefficients Dij are linear combinations of HPLs, which may include log(m2
t ) terms.

In the study of gg → ZH, the authors of ref. [35] were able to obtain a result for eq.(4.3) up
to and including O(m32

t ) terms. They also showed that the HE expansion could reproduce
the exact results both for the LO partonic cross section and for the virtual NLO corrections

3These special functions can be considered as a particular class of GPLs.
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with good agreement for
√
ŝ & 750 GeV, when the scattering angle is fixed to θc.o.m. = π/2.

We remark that this choice corresponds to the highest value allowed for pT , for a given
√
ŝ.

We stress the fact that, as stated in step 2. of the method for the HE expansion, the MIs
resulting from the IBP reduction depend on ŝ, t̂ and mt. This is at variance with what we
observed for the pT expansion in secs. 2.4 and 2.5; in the final result of the latter method,
the MIs eventually depended only on ŝ and mt. The reason of the residual dependence on t̂
(or equivalently on pT ) in the case of the HE expansion has to do with the structure of the
integrals obtained after the Taylor expansion in the external masses: after the expansion, the
external momentum pµ3 appears in the denominators of the integral families found in ref. [35],
therefore the MIs obtained in the IBP reduction will still depend on pµ3 , and in particular on
the scalar product p1 ·p3 = t′. These integrals are still hard to compute, and this complication
requires the additional step of the expansion of the MIs in the high-energy limit.

We conclude this section with a comment on the validity range of the HE expansion
method. Considering the assumptions in (4.1), we see that there are two conditions under
which the HE expansion fails: when ŝ . 4m2

t and when |t̂| . 4m2
t . However, if we start from

very high c.o.m energies and go down to the ZH production threshold, we can see that the
limit in t̂ is the first one to bring convergence issues. Indeed, if it is true that at high ŝ the
largest part of the phase space is associated to large |t̂|, there is a value of ŝ under which
this is not the case anymore, and an important contribution comes from the region with |t̂|
lower than or comparable to the scale set by the top mass. As shown in ref. [35], this value
corresponds to

√
ŝ ' 750 GeV, which is higher than the limit

√
ŝ ' 350 GeV for an expansion

in 4m2
t /ŝ. Therefore, we argue that the primary limitation of the HE expansion comes from

the expansion in 4m2
t /|t̂|, rather than in 4m2

t /ŝ. We also notice that the limit
√
ŝ ' 750 GeV

is a lower limit for the HE expansion, while it is an upper limit for the pT expansion (see
fig. 2.5 and the related discussion).

4.3 Padè Approximants

In this section we give an introduction (see also ref. [126]) to the method of Padé approxi-
mation. This technique allows to improve the convergence of a Taylor expansion for a given
function, by rearranging the expansion coefficients into a ratio of two polynomials.

Let us consider a function f(x) which is expressed as a Taylor expansion in the vicinity
of the regular point x = 0, such that only the first r terms are known

f(x) =

r−1∑

k=0

ckx
k +O(xr) (4.5)

and we are then neglecting O(xr) terms. Then a Padé approximant of f(x) is defined as the
rational fraction

[m,n] =
p0 + p1x+ · · ·+ pmx

m

q0 + q1x+ · · ·+ qnxn
(4.6)

which has a Taylor expansion that reproduces exactly the first r terms in the r.h.s. of eq.(4.5),

p0 + p1x+ · · ·+ pmx
m

q0 + q1x+ · · ·+ qnxn
=

r−1∑

k=0

ckx
k +O(xm+n+1). (4.7)

It is customary to fix the arbitrary normalization in (4.6) by choosing q0 = 1. To compute the
set of unknown pi, qj necessary to construct an approximant, one can Taylor expand eq.(4.6)
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and equate the result to the sum of the first r terms in the r.h.s. of eq.(4.5). This provides a
system of m + n + 1 linear equations in the pi, qj , which can be solved under the condition
m+ n+ 1 ≤ r.

Typically, the approximation of the exact function f(x) provided by the Padé is quite
better than the one provided by the Taylor expansion, suggesting that the information on
f(x) associated to the Taylor expansion can be used in a more efficient way. In particular,
approximants (4.6) such that m = n (denoted as diagonal Padé approximants) are known to
bring the best improvement in convergence. We can then try to improve the convergence of
the pT -expanded form factors obtained in the previous chapters by constructing the associated
Padé approximants. We will see that this does not guarantee an optimal result, and in the
next section we will show that the complementarity in phase space of the HE expansion
will be important. Therefore, in the following subsection we discuss the procedure for the
construction of the Padé approximants starting both from the results of the pT expansion
(which will be denoted as pT -Padé) and from those of the HE expansion (HE-Padé). For
simplicity, in this thesis we will study only diagonal [n, n] approximants.

Padé Approximants from the pT expansion We recall here for convenience that the
final expression of a form factor obtained using the pT expansion is (see eq.(2.47))

Ai = N
2∑

N=0

∑

i+j+k=N

cijk(p
2
T )i(m2

Z)j(∆m)k. (4.8)

In order to define a procedure for the construction of the pT -Padé, we recall that the results
above could be obtained by assuming the same scaling x for the small parameters p2

T ,m
2
Z

and ∆m. If we make x explicit again in eq.(4.8) we get

Ai = N
2∑

N=0

xN
∑

i+j+k=N

cijk(p
2
T )i(m2

Z)j(∆m)k

= N
2∑

N=0

xNcN

(4.9)

and we are able to see a given form factor as a power series near x = 0, where the cN
coefficients include the small parameters, in addition to the linear combinations of MIs .
Now we can use the cN coefficients to construct Padé approximants [n, n](x), in which we
will set x = 1. Since not more than the first three cN are known at NLO from the results in
chap. 2, the only diagonal Padé that we can construct is a [1,1] approximant given by

[1, 1](x) = N p0 + p1x

1 + q1x
(4.10)

with

p0 = c0 p1 = c1 −
c0c2

c1
q1 = −c2

c1
. (4.11)

We notice that even if N in eq.(4.8) may depend on the expansion parameters (and therefore
on x), the method for the construction of the Padé approximant is not affected by an overall
normalization.
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Padé Approximants from the HE expansion The starting point for the construction
of the HE-Padé are the form factors as expressed in eq.(4.3). We know that the scale set
by the top mass is the one that truly limits the validity of the HE expansion. Therefore, in
analogy to the pT -Padé, we will associate the scaling parameter x to m2

t . There is, however,
a subtlety related to the presence in (4.3) of some terms involving odd powers of mt. In order
to address this issue, we follow the procedure discussed in ref. [35] and before constructing
the Padé approximants we arrange the terms in eq.(4.3) as

Ai = F (0) +

L∑

l=1

(F (2l−1)m2l−1
t + F (2l)m2l

t )xl

=
L∑

l=0

dlx
l,

(4.12)

where we note that terms associated to odd powers of mt are grouped with those with the
next even power of mt. Starting from eq.(4.12), and knowing that L can be as large as 16 in
ref. [35], we can then build [n, n] Padé approximants with n ≤ 8.

We want to comment here on the practical way in which the Padé used in this thesis
are constructed compared to ref. [35] (see also ref. [36]). The approximants in that reference
were obtained point-by-point in phase space, by first obtaining a numerical result for the
dl coefficients in eq.(4.12), then building the HE-Padé using x as variable and solving the
linear equations for the coefficients numerically, eventually setting x = 1. We used a simpler
approach: first, we constructed the general expressions of a given [n, n](x) Padé by solving
the systems of linear equations symbolically in Mathematica; when a numerical evaluation of
the Padé is needed, we evaluate the cN (for the pT -Padé) and dl (for the HE-Padé) coefficients
separately for a specific value of the phase space point; finally, we replace these numerical
values in the implicit expressions for the Padé approximants, setting x = 1 at the end of
the evaluation. This method allows us to solve the required linear systems just once for a
given [n, n] Padé, and we also manage to have flexible analytical expressions. However, in
the case of the HE-Padé, we must point out that solving the linear equations for the [n, n]
approximants with n ≥ 7 becomes computationally demanding. In fact, we will show that the
improvement in the convergence provided by the [7, 7] and [8, 8] Padé is not really necessary
for our purposes.

4.4 Merging Method

In the previous section we have discussed the method of Padé approximation as a way to
improve the convergence of the analytical approximations represented by the pT and HE
expansions. Now we are going to devise a strategy for obtaining an accurate prediction of
the exact results over the complete phase space, using Padé approximants constructed from
both expansions. In order to do so, we must first discuss in more detail the complementarity
of the pT and HE expansions mentioned in the introduction. In the following considerations
on the kinematical limits of the expansions, we will use the same definitions introduced in
chap. 2. Also, as discussed previously, for our purposes it is sufficient to discuss only the
forward contribution to the cross section. Then, in the following we will always assume that
|t̂| < |û| and that

t̂ = −1

2

(
ŝ−m2

Z −m2
H −

√
λ(ŝ,m2

Z ,m
2
H)− 4ŝ p2

T

)
. (4.13)
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In chap. 2 we noticed that, for any fixed value of ŝ, the pT expansion provides an accurate
approximation of the exact results when p2

T . 4m2
t , while in sec. 4.2 we saw that the HE

expansion is accurate for |t̂| & 4m2
t . These two limits are however interrelated, as we can

always trade pT with t̂ via the relation

p2
T = −t̂+

t̂(m2
H +m2

Z − t̂)−m2
Hm

2
Z

ŝ
(4.14)

and notice that for sufficiently high ŝ the quantities p2
T and |t̂| are basically interchangeable.

Thus, we can state that the validity of both the pT and HE expansions is limited to values
of |t̂| which are not too close to the scale set by the top mass, in particular

|t̂| . 4m2
t (pT expansion)

|t̂| & 4m2
t (HE expansion).

(4.15)

The origin of the limits in (4.15) can be better understood by inspecting the so-called natural
variable xt, upon which the GPLs used to express the scalar integrals typically depend,

xt =
1−

√
1− 4m2

t

t̂

1 +
√

1− 4m2
t

t̂

. (4.16)

One can see that xt admits a Taylor expansion both for |t̂| � 4m2
t , which we can relate to

the pT expansion, and for |t̂| � 4m2
t , corresponding to the HE expansion.

Having clarified in (4.15) what we mean by complementarity of the two expansions, we
can now discuss a way to combine the results of the the pT and HE expansion. We begin
by noting that, for a fixed value of ŝ, there exists a maximum value of |t̂| allowed by the
(forward) kinematics. This value, which we denote as |t̂|max, is related to the maximum value

allowed4 for pT , namely pT = 1/2
√
λ(ŝ,m2

Z ,m
2
H)/ŝ, and corresponds to

|t̂|max =
1

2
(ŝ−m2

Z −m2
H). (4.17)

If we now consider the whole set of partonic c.o.m. energies, we note that there is a range
of ŝ-values such that |t̂|max is always lower than 4m2

t : in this range, the pT expansion alone
provides an accurate approximation of the exact result for any phase-space point (ŝ, t̂), while
the accuracy of the HE expansion is always poor and therefore the approximation provided
by the latter cannot be trusted. On the other hand, we can define a critical value ŝc given by

ŝc = 8m2
t +m2

Z +m2
H , (4.18)

such that when ŝ ≥ ŝc one has |t̂|max ≥ 4m2
t . Then, when ŝ ≥ ŝc, we understand that, in

order to cover all the relevant phase-space points (i.e. |t̂| ≶ 4m2
t ) the HE expansion must

be considered in conjunction with the pT expansion. For gg → ZH we find that
√
ŝc ' 510

GeV.
At this point, we could naively try to combine the results of the pT and HE expansions

into a single prediction, which uses the former expansion to describe the region |t̂| < 4m2
t

and the latter for |t̂| > 4m2
t . Unfortunately, both expansions diverge rather quickly near

4Assuming a real-valued t̂.
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|t̂| = 4m2
t (see e.g. fig. 4.2(a)). In particular, a straightforward combination of the pT -

expanded results and the HE-expanded ones does not guarantee an accurate description of
the t̂-region corresponding roughly to |t̂|/(4m2

t ) ∈ [0.5, 1.5]. We point out that this behavior is
not expected to change substantially when higher orders in both the expansions are computed.

In order to address the loss in accuracy for |t̂|/(4m2
t ) ∈ [0.5, 1.5], we can use the pT and

HE Padé approximants introduced in the previous section. In the following we are going to
define a simple procedure for the merging of the two expansions, and we are going to assess
its reliability using the exact LO results as a benchmark.

Choice of HE-Padé and matching point As observed before, we can only use a [1,1] pT -
Padé to improve the convergence of the simple pT expansion. Concerning the HE expansion,
we would like to use a unique [n, n] HE-Padé among the several ones that can be built from
the results of ref. [35]: we consider an optimal choice to be a HE-Padé which is accurate
enough to reproduce the exact results in the region |t̂|/(4m2

t ) ∈ [0.5, 1.5] for every ŝ ≥ ŝc,
and which is not too demanding from a computational point of view. To investigate this
possibilities, we constructed several HE-Padé and studied how well they could reproduce the
exact results for the LO box form factors. As in chap. 2, we are going to focus our discussion

on A(0,�)
1 . In order to express the results of ref. [35] in terms of our form factors we use the

conversion formulae in app. A.1. Fig. 4.2(a) shows the absolute value of the form factor as a
function of the ratio |t̂|/(4m2

t ), for fixed
√
ŝ = 2 TeV. For such a high c.o.m. energy, the HE

energy expansion is expected to be very accurate in reproducing the exact result. Indeed, we
see that the simple HE expansion (orange solid line) and the [2,2], [4,4] and [6,6] HE-Padé5

(green, purple and yellow dashed lines, respectively) agree very well with each other and with
the exact result from |t̂|max/(4m

2
t ) ' 17 (not shown in the figure) down to |t̂|/(4m2

t ) ' 1.2.
In the vicinity of the latter point, the simple HE expansion begins to diverge, while the HE-
Padé are still in excellent agreement with the exact result. In particular, the [4,4] and [6,6]
HE-Padé provide accurate results also in a region where the simple pT expansion, included
as a reference, works well.

When values of ŝ closer to ŝc are considered, the level of accuracy shown for
√
ŝ = 2 TeV

is partially lost. In fig. 4.2(b) we show the same predictions as in fig. 4.2(a) but for
√
ŝ = 600

GeV. First, we point out that in this case the simple HE expansion gives very inaccurate
results, and the corresponding line is not shown in the plot. This is understandable, as for√
ŝ = 600 GeV one has |t̂|max/(4m

2
t ) = 1.4 , and basically there are no t̂ values allowed for

which the HE expansion is sensible. Also the [2,2] HE-Padé is definitely off w.r.t. the exact
prediction, suggesting that using only the first five orders of the HE expansion to build an
approximant does not improve the convergence enough. However, the [4,4] and [6,6] HE-Padé
are still in good agreement with each other and with the full result, down to |t̂|/(4m2

t ) = 0.6.
Then, it is clear that a [n, n] HE-Padé with n ≥ 4 can be used for our purposes. We also point
out that using a [6,6] instead of a [7,7] HE-Padé requires substantially less evaluating time,
while the difference in evaluating time between a [4,4] and a [6,6] is not dramatic. If we take
into account that at NLO the ignorance on the exact prediction will introduce an additional
source of uncertainty, we conclude that using a [6,6] HE-Padé is a good conservative choice
to improve the convergence of the HE expansion in the vicinity of |t̂| = 4m2

t . Finally, we need
to make a convenient choice for the value of |t̂| where we switch from using the results of the
pT expansion to the ones of the HE expansion in our prediction: a natural choice is precisely

5In the plots in fig. 4.2 we show only these HE-Padé for clarity. However, we studied the behavior of all
the [n, n] Padé with n ≤ 7.
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Figure 4.2: Absolute value of the A(0,�)
1 form factor as defined in eq.(2.49), as a function

of the ratio |t̂|/(4m2
t ) for

√
ŝ = 2 TeV (a) and for

√
ŝ = 600 GeV (b). The black solid line

shows the exact result, the blue and orange solid lines show the simple pT -expanded and
HE-expanded results, respectively; the dashed lines represent the [2, 2] (green), [4,4] (purple)
and [6,6] (yellow) HE-Padé. The bottom part of each plot shows the ratios of the various
approximations to the exact result.

59



Chapter 4. Merging the pT and High-Energy Expansions

the value |t̂| = 4m2
t .

Merging Method We can now present our method for obtaining a prediction of the exact
result for a form factor in the whole phase space, which will be used both at LO and NLO.
When evaluating a form factor in a given region of the phase space

1. if ŝ < ŝc the [1,1] pT -Padé is used for every allowed value of t̂,

2. if ŝ ≥ ŝc the [1,1] pT -Padé is used for 0 < |t̂| < 4m2
t while the [6,6] HE-Padé is used for

4m2
t ≤ |t̂| ≤ |t̂|max.

We remark that in our method we also use the [1,1] pT -Padé as an additional improvement
in the convergence of the pT expansion. In fact, the [1,1] pT -Padé is expected to cover the
region |t̂|/(4m2

t ) ∈ [0.5, 1] more accurately than the [6,6] HE-Padé. Furthermore, using the
two kinds of Padé allows us to cross check their reliability.

We recall that also in ref. [35] Padé approximants were used as way to improve the
accuracy of the HE expansion. In that reference, the authors used a procedure (described in
ref. [36]) to estimate the uncertainty associated to the Padé-improved results. This procedure
is motivated by the need of extending the accuracy of the HE expansion to the region ŝ ≤ ŝc.
We have seen, however, that this very region of the phase space is covered by the predictions
of the pT expansion and its improvement using the [1,1] Padé. Therefore, we believe that a
refined characterization of the uncertainty of our merging method is not necessary.

Merging at LO After we have specified which results we are going to use and the method to
combine them, we can discuss how well the exact LO results are reproduced by our approach.

In fig. 4.3 we show the results obtained for A(0,�)
1 for two points in the ŝ-region where the

simple pT expansion does not provide accurate results, namely
√
ŝ = 800 GeV and

√
ŝ = 1600

GeV (see also fig. 2.4). As already observed in fig. 4.2, the simple pT (solid blue line) and HE
(solid orange line) expansions begin to lose accuracy in the region of |t̂|/(4m2

t ) ∈ [0.5, 1.5],
leaving a gap in the coverage of the exact prediction (solid black line). The situation described
above changes if we include the Padé approximants. In fig. 4.3(a) we see that for

√
ŝ = 800

GeV the [1,1] pT -Padé (dashed light-blue line) can reproduce the exact result remarkably
well for all the values of |t̂| allowed by the kinematics, and the ratio to the full result, shown
in the bottom part of fig. 4.3(a), remains within the range [0.99, 1].

In fig. 4.3(b) we consider the case
√
ŝ = 1600 GeV and we find the same behavior as for

lower energies. In particular, we see that the [6,6] HE-Padé agrees very well with the exact
result down to |t̂|/(4m2

t ) = 0.5, a value which is well covered by the simple pT expansion and
by the [1,1] pT -Padé. We point out that the importance of the region |t̂| > (4m2

t ) over the
phase space grows with the value of ŝ.

In fig. 4.4 we summarize our findings for all the form factors by showing the prediction
for the partonic cross section at LO. We see that for the region MZH & 700 GeV, in which
the simple pT expansion (dashed blue line) diverges, the prediction from the merging of the
pT - and HE-Padé approximants (dashed green line) is in excellent agreement with the full
result (solid line) even for very high invariant masses. In particular, from the bottom part we
can see that the deviation of the merged prediction from the exact one is always comparable
to or below 1%.
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Figure 4.3: Absolute value of the A(0,�)
1 form factor as defined in eq.(2.49), for

√
ŝ = 800

GeV (a) and for
√
ŝ = 1600 GeV (b): the black solid line shows the exact result, the blue

and orange solid lines show the simple pT -expanded and HE-expanded results, respectively;
the light-blue and yellow dashed lines represent the [1, 1]pT -Padé and the [6, 6] HE-Padé,
respectively. The bottom part of each plot shows the ratios of the various approximations to
the exact result.
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Figure 4.4: Predictions for the LO partonic cross section of gg → ZH, as a function of the
invariant mass: the solid line represents the exact result; the blue dashed line represents the
simple pT expansion up to O(p4

T ) terms,corresponding to the approach of chap. 2; the green
dashed line represents the merging of the results of the pT and HE expansions. The bottom
part shows the ratios of the different results to the exact one.

4.5 Merging at NLO

The level of accuracy of the merged prediction that we observed at LO leads us to study the
applicability of the merging method previously defined to the NLO virtual corrections for
gg → ZH. We recall that exact analytical results are available for the two-loop triangle and

double triangle form factors, A(1,4)
i and A(1,./)

i . In the following we will then consider only
the two-loop box form factors, and we will discuss the degree to which the Padé approximants
can improve the convergence of the pT and HE expansions at NLO. Since we don’t have an
exact NLO result to compare with, we first checked that the choice of a [6,6] HE-Padé, that
was motivated in the previous section, is reliable also at NLO. For every form factor, we
computed [n, n] HE-Padé approximants with n ≤ 7 and verified that, for a fixed ŝ ≥ ŝc the
[6,6] Padé agreed with the [7,7] Padé from |t̂|max down to |t̂|/(4m2

t ) ' 0.5.

Then, we compared the predictions from the [1,1] pT -Padé and from the [6,6] HE-Padé
to the ones of the corresponding Taylor expansions. In fig. 4.5 we show the results obtained

for A(1,�)
1 for the same ŝ-values that we showed at LO in fig. 4.3. In both plots we see that

the [1,1] pT -Padé agrees well with the simple pT expansion up to |t̂|/(4m2
t ) ' 0.5, but with

increasing |t̂| the simple expansion diverges, as expected. On the other hand, one can see that
for high energies (fig. 4.5(b)) the [6,6] HE-Padé agrees well with the simple HE expansion
from |t̂|max/(4m

2
t ) down to about 1, where the simple HE-expansion diverges. We notice

however that for moderate energies like
√
ŝ = 800 GeV (fig. 4.5(a)) the simple HE-expansion

is slightly off w.r.t. the [6,6] HE-Padé, even in the region |t̂| & 4m2
t . From the comparison

with the LO result discussed in the previous section, we understand that, between the [6,6]
HE-Padé and the simple HE expansion, the [6,6] HE-Padé is the most accurate quantity, and
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the one to be trusted in our prediction.
Finally, we point out that in the region where the two simple expansions diverge, the

pT -Padé and the HE-Padé are always in good agreement. This can be observed from the
bottom parts of fig. 4.5, where we show the relative difference between the two Padé. The
relative difference is defined as

∆Padé =
|[1, 1]pT − [6, 6]HE|
|[1, 1]pT + [6, 6]HE| /2

(4.19)

and we remark that ∆Padé never exceeds a few percents. To summarize, for both the pT and
HE Padé-improved predictions we observed the same behavior as for the LO case. We then
expect that the results of the merging method can provide a comparable level of accuracy in
the approximation of the unknown exact results. A promising feature, which can be appre-
ciated from fig. 4.6(discussed in the next subsection), is that the merged result is convergent
for any value of the invariant-mass.

4.5.1 Change of Renormalization Scheme

To demonstrate the flexibility of the results obtained with the merging procedure, we eval-
uated the finite virtual corrections to the cross section, ∆σvirt, defined in eq.(2.70), using a
different renormalization scheme for the top mass, namely the modified minimal subtraction
scheme (MS). We recall that the NLO form factors were obtained in chap. 2 using the on-
shell (OS) scheme for the top mass renormalization. In the MS scheme, the renormalization
counterterms are defined by including only the UV-divergent parts. In order to express a

given NLO form factor in the MS scheme, starting from the OS result A(1,OS)
i obtained in

eq.(2.65), one must remove the finite parts associated to the counterterm δOS. This can be
achieved as follows

A(1,MS)
i = A(1,OS)

i −∆MS, (4.20)

with

∆MS = 2m2
t

(
∂

∂m2
t

A(0)
i

)[
−CF

4

(
4− 3 log

(
m2
t

µ2
R

))]
, (4.21)

and where A(0)
i is the LO form factor. In our merging method, we use the pT -expanded

(HE-expanded) result for A(0)
i to obtain ∆MS, we subtract the latter from the pT -expanded

(HE-expanded) A(1,OS)
i and we construct a pT -Padé (HE-Padé) from the new result. From

this point on, the merging procedure is the same as in the OS case.
In evaluating the MS results, the dependence of the top mass on the renormalization

scale must be consistently taken into account. The results of ref. [127] are used to obtain
the µR-dependent MS mass from the µR-independent OS mass. In fig. 4.6 we compare the
OS result with several choices for µR in the MS results: MZH/2, 2MZH and the on-shell
mass mt = 173.21 GeV. From fig. 4.6 there are visible differences in the results w.r.t. the
choice of renormalization scheme, and the height and the position of the peak in ∆σvirt are
clearly modified by the choice of the renormalization scale within the MS scheme. This
variability may represent an additional source of systematic uncertainty to be considered in
theory predictions. However, these effects may be partly compensated when ∆σvirt is added
to the LO partonic cross section evaluated using the MS top mass. More generally, a sensible
assessment of this uncertainty may be achieved only with the inclusion of the real emission
contribution, the calculation of which is beyond the scope of this thesis.
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Figure 4.5: Absolute value of the A(1,�)
1 form factor as a function of the ratio |t̂|/(4m2

t ), for√
ŝ = 800 GeV (a) and for

√
ŝ = 1600 GeV (b): the blue and orange solid lines show the

simple pT -expanded and HE-expanded results, respectively; the light-blue and yellow dashed
lines represent the [1,1] pT -Padé and the [6, 6] HE-Padé, respectively. The bottom part of
each plot shows the relative difference between the [1, 1]pT -Padé and the [6, 6] HE-Padé, as
defined in eq.(4.19).
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Figure 4.6: ∆σvirt as a function of the invariant mass, obtained from the merging of the
NLO predictions in the pT and HE expansions. The solid line shows the results by using
the on-shell renormalization for the top mass. The dashed lines show the results in the MS
renormalization scheme, assuming different values for the renormalization scale µR. Courtesy
of Ramona Gröber.
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Chapter 5

Conclusions

The calculation of higher-order corrections in Higgs-related processes at hadron colliders is a
challenging task which must be accomplished in order to provide accurate predictions to be
compared with the experimental measurements. The QCD corrections associated to 2 → 2
gluon-initiated processes are known to be substantial, but the presence of two-loop multi-scale
box integrals currently prevents an exact evaluation of the virtual corrections with analytical
methods. The ignorance on these higher-order effects represents one of the limiting factors
to the reduction of theoretical uncertainties in SM predictions.

In this thesis we applied the method of the pT expansion proposed in ref. [39] to obtain
an analytical approximation of the virtual QCD corrections due to top-quark loops in gluon-
initiated ZH and ZZ production.

In chap. 2 we showed that it is possible to obtain an analytical approximation of the
virtual QCD corrections to gg → ZH at NLO using an expansion of the amplitude in terms
of a forward kinematics. The combination of the pT expansion and of the IBP reduction
technique that we have discussed allowed to approximate the two-loop box integrals using
integrals which have a much simpler structure and which are already known in the literature.
Loops of top quarks give the dominant contribution to the virtual corrections of gg → ZH,
therefore the calculation of these effects is very important. Our results can provide a reliable
prediction for almost the totality of the hadronic cross section at LHC energies.

The expressions that we obtained for the NLO results are relatively simple, and the time
of evaluation of the virtual corrections for a single point in phase space is only limited by the
time of evaluation of the 52 MIs which constitute the final result. With the routines used in
our work we were able to evaluate a single point of Vfin in less than one second.

In chap. 3 we presented the application of the pT expansion to the calculation of top-
quark loops in gg → ZZ. Although in this process top effects are not the most relevant
ones, they are important for an accurate description of Higgs production via gluon fusion
and to constrain the total decay width of the Higgs. We have tested the reliability of the
pT expansion by comparing its results with the exact prediction at LO. Then we considered
the NLO corrections in QCD: the contribution from two-loop irreducible triangle diagrams
and from double triangles has been evaluated exactly, whereas the pT expansion was used to
approximate the two-loop box integrals. For the latter, we obtained analytical expressions for
the first three orders in the expansion, that are expected to provide an accurate approximation
of the box form factors in the range pT . 300 GeV.
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Based on the study of the above processes, we can identify two main limitations to the
applicability of the pT expansion, one technical and one more theoretical.

The technical limitation is connected to the length of the intermediate expressions involved
in the IBP reduction. When higher orders in the pT expansion are considered, the number of
terms in the intermediate expressions increases roughly by a factor of 100, and this has forced
us to stop our approximations at O(p4

T ) in the computation for gg → ZH and especially for
gg → ZZ. However, from the comparison with the full prediction at LO and with the exact
numerical results at NLO in the case of gg → ZH, we showed that three orders in the pT
expansion are enough to reach an accuracy, w.r.t. the exact result, of the permille level in a
region of the phase space which is relevant for LHC studies. We also remark that, thanks
to the lightness of the symbolic rules produced with LiteRed and to an optimized usage
of the Mathematica computing resources, our method could be implemented on a desktop
computer.

The theoretical limitation is related to the hierarchy that is established in the pT expansion
among the various energy scales in the calculation. One consequence of this hierarchy is that
processes involving light virtual particles in the loops, like gluon-initiated W+W− production
or gg → ZZ mediated by loops of light quarks, cannot be studied with the pT expansion.
Another consequence is that when only heavy particles are involved in the problem, the
hierarchy prevents the approximation to converge in every region of the phase space.

Motivated by this latter issue, in chap. 4 we investigated the possibility of an analytical
approximation of the virtual NLO corrections for gg → ZH which could be valid in any
point of the phase space (ŝ, t̂). We suggest that such an approximation can be obtained
by combining the results of the pT and the HE expansions. Indeed, we showed that the
validity regions of the latter are complementary, and by selecting the results of either the
pT or the HE expansion according to the relevant phase-space region we could provide a
merged prediction which agrees very well with the exact LO results. In order to achieve
a sufficient level of accuracy for every phase-space point, we showed that not only the pT
and HE expansions must be combined, but they also need to be improved by constructing
the respective Padé approximants. Additionally, we used the approximants to cross-check
the compatibility of the HE-expanded results with the pT -expanded ones. Given that the
accuracy of the approximations provided by the pT and HE expansions is not related to the
perturbative order considered, we expect that our merging method can accurately reproduce
also the virtual NLO corrections.

The computing time for the numerical evaluation of our merged prediction is not affected
by the combination of the two analytical approximations, and the inclusion of the HE results
still allows to evaluate one point of Vfin in less than one second. This figure is competitive
with the results of the small-mass expansion of ref. [38], which quotes an average time of 2
seconds. In particular, once the real-emission contributions are included in our results, an
implementation in a Monte Carlo code is viable. Therefore, our merged prediction could be
used for phenomenological studies both at the LHC and at future hadronic colliders.

We finally note that the merging method studied in chap. 4 could be straightforwardly
applied also to other processes for which the results of both the pT and HE expansions are
available, namely for gg → HH [39, 123] and for gg → ZZ [36]. In the future, the method
can be also applied to other 2→2 processes involving top loops, like gg → γγ and gg → γZ.
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Appendix A

Results for gg → ZH

A.1 Projectors

We present the explicit expressions of the orthonormal projectors Pµνρi appearing in eq.(2.18).
Following the notation of sec. 2.3, we obtain

Pµνρ1 =
mZ√
2s′p2

T

[
Sµνρ2 t′ − Sµνρ1 u′ +

s′Sµνρ11

t′
+
s′Sµνρ12

u′
+
Sµνρ5 u′

s′
− Sµνρ6 t′

s′
− Sµνρ13 t′

u′
− Sµνρ14 u′

t′

]
,

(A.1)

Pµνρ2 =
1√

2s′pT

[
s′Sµνρ11

t′
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We also present the relations that allow to express the Ai computed in this thesis in terms
of the form factors presented in ref. [35]. We make use of these relations in chap. 4, as they
are needed to adapt the results of the HE expansion for the merging with those obtained in
chap. 2.

A1 =
p2
T

2
√

2mZ(p2
T +m2
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[
(t′ + u′)F+

12 − (t′ − u′)F−12

]
, (A.7)

A2 = − pT
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A6 =
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F4. (A.12)
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A.2 Analytical Results

LO Box Form Factor With reference to eq.(2.49) we report here the analytical expression

for the form factor A(0,�)
1 as a result of the pT expansion, up to O(p4

T ) terms. We expressed
the result in terms of the frequent combination wt = 4m2

t + ŝ.
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8ŝ3
+

47wt
8ŝ2
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16ŝ3
− 49wt

16ŝ2
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)
p4
T +

(
3w2

t

4ŝ3
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ŝ3
− 4wt

ŝ2
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ŝ(wt − ŝ)
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Results for Double-Triangle Diagrams With reference to eq.(2.62), we present here
the exact results for the double-triangle contributions to all the NLO form factors. We find
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]
, (A.16)

A(1,./)
4 = − m2

t

4
√

2 mZ ŝ2
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The Passarino-Veltman scalar functions B0 and C0 are defined as in eqs.(2.56, 2.57).
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Results for Triangle Diagrams at NLO With reference to eq.(2.62), we present here
the exact results for the two-loop one-particle-irreducible triangle contributions to all the
NLO form factors. We obtain
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A(1,4)
6 = 0, (A.27)

where the K(2l)
t function is defined in eq.(4.11) of ref. [77].
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A.3 Master Integrals

The following list includes the 52 MIs that resulted from the IBP reduction of the A(1,�)
i form

factors discussed in sec. 2.8. The integral families to which these MIs belong are defined in

tab. 2.2. The same list of MIs has been used in the calculation of the A(1,�)
i form factors for

gg → ZZ, presented in chap. 3.

{J1(0, 0, 1, 0, 0, 0, 1, 0, 0), J1(0, 0, 1, 0, 1, 0, 1, 0, 0), J1(0, 0, 1, 0, 1, 1, 1, 0, 0),

J1(0, 0, 1, 1, 1, 0, 0, 0, 0), J1(0, 0, 1, 1, 1, 1, 0, 0, 0), J1(0, 0, 2, 1, 1, 0, 0, 0, 0),

J1(0, 1, 0, 1, 1, 0, 1, 0, 0), J1(0, 1, 0, 2, 1, 0, 1, 0, 0), J1(0, 1, 1, 1, 1, 0, 1, 0, 0),

J1(0, 1, 1, 1, 1, 1, 0, 0, 0), J1(0, 2, 0, 1, 1, 0, 1, 0, 0), J1(0, 2, 1, 1, 1, 0, 1, 0, 0),

J1(1, 0, 1, 0, 1, 0, 1, 0, 0), J1(1, 0, 1, 0, 1, 1, 1, 0, 0), J1(1, 1, 1, 0, 1, 1, 1, 0, 0),

J2(0, 0, 1, 0, 0, 1, 1, 0, 0), J2(0, 0, 1, 0, 1, 1, 1, 0, 0), J2(0, 0, 1, 1, 0, 1, 1, 0, 0),

J2(0, 0, 1, 1, 1, 1, 1, 0, 0), J2(0, 0, 1, 2, 0, 1, 1, 0, 0), J2(0, 0, 2, 1, 0, 1, 1, 0, 0),

J2(0, 1, 0, 1, 0, 1, 0, 0, 0), J2(0, 1, 0, 1, 1, 1, 0, 0, 0), J2(0, 1, 1, 1, 0, 1, 1, 0, 0),

J2(0, 1, 1, 1, 1, 1, 1, 0, 0), J2(0, 2, 0, 1, 0, 1, 0, 0, 0), J2(0, 2, 1, 1, 0, 1, 1, 0, 0),

J2(1, 1, 0, 0, 0, 1, 1, 0, 0), J2(1, 1, 0, 0, 1, 1, 1, 0, 0), J2(1, 1, 0, 1, 1, 0, 1, 0, 0),

J2(1, 1, 1, 0, 1, 1, 1, 0, 0), J2(1, 1, 1, 1, 1, 1, 1, 0, 0), J2(2, 1, 0, 1, 1, 0, 1, 0, 0),

J3(1, 0, 1, 1, 1, 1, 0, 0, 0), J3(1, 1, 1, 0, 1, 1, 1, 0, 0), J4(1, 0, 1, 1, 1, 1, 1, 0, 0),

J4(1, 1, 1, 1, 0, 0, 1, 0, 0), J4(1, 1, 1, 1, 0, 1, 1, 0, 0), J5(0, 0, 1, 0, 1, 0, 1, 0, 0),

J5(0, 1, 1, 0, 1, 1, 0, 0, 0), J5(0, 1, 1, 0, 1, 1, 1, 0, 0), J5(0, 2, 1, 0, 1, 1, 0, 0, 0),

J5(1, 1, 1, 0, 1, 1, 1, 0, 0), J5(2, 1, 1, 0, 1, 1, 1, 0, 0), J6(1, 1, 1, 0, 1, 1, 1, 0, 0),

J6(1, 1, 1, 1, 1, 1, 1, 0, 0), J7(0, 1, 1, 0, 0, 1, 1, 0, 0), J7(0, 1, 1, 0, 1, 1, 1, 0, 0),

J7(1, 1, 1, 0, 0, 1, 1, 0, 0), J7(1, 1, 1, 0, 1, 1, 1, 0, 0), J7(1, 1, 1, 1, 1, 1, 1, 0, 0),

J8(0, 1, 1, 1, 1, 1, 1, 0, 0)}
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A.4 Additional Plots

In chap. 2 we presented the results of the pT expansion by discussing the form factor A1 in
detail. In this section we summarize the results for all the other form factors contributing to
the gg → ZH amplitude. In fig. A.1 we show that A1 is indeed the form factor which gives
the dominant contribution to the LO partonic cross section, especially for values of invariant
masses greater than 400 GeV.

In fig. A.2 we show the absolute value of the box form factors at LO for a partonic
c.o.m. energy of 1600 GeV. This value is chosen as a representative value of the high-energy
kinematical regime, where the pT expansion can provide accurate results only for pT . 300
GeV. We notice that the behavior of the form factors shown in fig. A.2 is very similar to the

one of A(0,�)
1 , discussed in sec. 2.7.2. Finally, in fig. A.3 we show the absolute value of all

the A(1,�)
i : as a general feature, one can see that the O(p2

T ) and the O(p4
T ) results are always

in agreement for pT . 200 GeV, but begin to diverge for larger pT . However, by comparing
with the behavior at LO (fig. A.2), for which the exact result is known, it is reasonable to
expect that the O(p4

T ) result can still be accurate for pT . 300 GeV.

Total
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Figure A.1: Contributions to the LO partonic cross section from the various form factors

A(0)
i , shown as dashed lines: the contributions from A(0)

1 (yellow) and A(0)
2 (green) are shown

separately, while the sum of the contributions from the remaining form factors is shown as a
red line. The solid line represents the sum of all contributions.
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Figure A.2: Absolute value of the A(0,�)
i form factors for i = 2, . . . , 6, for fixed

√
ŝ = 1600

GeV: the blue lines represent the first three orders of the pT expansion, while the brown line
stands for the exact result. The bottom part of each graph shows the ratio of the various
orders of the pT expansion to the exact result.
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i form factors for i = 1, . . . , 6, for fixed

√
ŝ = 1600

GeV, shown as a function of pT : the blue lines represent the first three orders of the pT
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Appendix B

Results for gg → ZZ

B.1 Projectors

We present the explicit expressions of the orthonormal projectors Pµνρσi appearing in eq.(3.15).
Following the notation of sec. 3.3. The antisymmetric projectors under the exchange {µ↔ ν
, p1 ↔ p2} are

Pµνρσ1 =
mZ√
2pT

[
1

p2
T s
′ (S

µνρσ
17 − Sµνρσ20 )

]
(B.1)

Pµνρσ2 =
mZ√
2pT

[
1

p2
T s
′

(
t′

u′
Sµνρσ19 − u′

t′
Sµνρσ18

)]
(B.2)

Pµνρσ3 =
mZ√
2pT

[
Sµνρσ5

u′
− Sµνρσ6

t′
− 1

p2
T s
′

(
Sµνρσ17 − Sµνρσ20 +

u′

t′
Sµνρσ18 − t′

u′
Sµνρσ19

)]
(B.3)

Pµνρσ4 =
mZ√
2pT

[
1

s′
(Sµνρσ9 − Sµνρσ12 ) +

1

p2
T s
′ (S

µνρσ
17 − Sµνρσ20 )

]
(B.4)

Pµνρσ5 =
mZ√
2pT

[
1

s′

(
t′

u′
Sµνρσ11 − u′

t′
Sµνρσ10

)
+

1

p2
T s
′

(
t′

u′
Sµνρσ19 − u′

t′
Sµνρσ18

)]
(B.5)

Pµνρσ6 =
mZ√
2pT

[
Sµνρσ13

u′
− Sµνρσ16

t′
− 1

p2
T s
′

(
Sµνρσ17 − Sµνρσ20 +

t′

u′
Sµνρσ19 − u′

t′
Sµνρσ18

)]
(B.6)

Pµνρσ7 =
m2
Z√

2p2
T

[(
m2
Z − p2

T

)

2m2
Z

(
Sµνρσ13

u′
− Sµνρσ16

t′

)
+

1

m2
Zs
′
(
u′Sµνρσ14 − t′Sµνρσ15

)
(B.7)

+
1

m2
Zs
′

(
Sµνρσ17 − Sµνρσ20 +

t′

u′
Sµνρσ19 − u′

t′
Sµνρσ18

)]

Pµνρσ8 =
m2
Z√

2p2
T

[
1

m2
Zs
′
(
u′Sµνρσ4 − t′Sµνρσ7

)
+

(
m2
Z − p2

T

)

2m2
Z

(
Sµνρσ5

u′
− Sµνρσ6

t′

)
(B.8)

+
1

m2
Zs
′

(
Sµνρσ17 − Sµνρσ20 +

u′

t′
Sµνρσ18 − t′

u′
Sµνρσ19

)]
.

79



Appendix B. Results for gg → ZZ

The symmetric projectors are

Pµνρσ9 =
m2
Z√

p4
T +m4

Z

[
1

p2
T s
′ (S

µνρσ
17 + Sµνρσ20 )

]
(B.9)

Pµνρσ10 =

√
p4
T +m4

Z

2p2
T

[ (
m4
Z − p4

T

)
(
m4
Z + p4

T

)
p2
T s
′ (S

µνρσ
17 + Sµνρσ20 ) +

1

p2
T s
′

(
u′

t′
Sµνρσ18 +

t′

u′
Sµνρσ19

)]

(B.10)

Pµνρσ11 =
m2
Z√

p4
T +m4

Z

[
1

s′
(Sµνρσ9 + Sµνρσ12 ) +

1

p2
T s
′ (S

µνρσ
17 + Sµνρσ20 )

]
(B.11)

Pµνρσ12 =

√
p4
T +m4

Z

2p2
T

[ (
m4
Z − p4

T

)
(
m4
Z + p4

T

)
s′

(Sµνρσ9 + Sµνρσ12 ) +
1

s′

(
u′

t′
Sµνρσ10 +

t′

u′
Sµνρσ11

)
(B.12)

+

(
m4
Z − p4

T

)
(
m4
Z + p4

T

)
p2
T s
′ (S

µνρσ
17 + Sµνρσ20 ) +

1

p2
T s
′

(
u′

t′
Sµνρσ18 +

t′

u′
Sµνρσ19

)]

Pµνρσ13 =
mZ√
2pT

[
Sµνρσ13

u′
+
Sµνρσ16

t′
− 1

p2
T s
′ (S

µνρσ
17 + Sµνρσ20 )− 1

p2
T s
′

(
u′

t′
Sµνρσ18 +

t′

u′
Sµνρσ19

)]

(B.13)

Pµνρσ14 =
m2
Z√

2p2
T

[(
m2
Z − p2

T

)

2m2
Z

(
Sµνρσ13

u′
+
Sµνρσ16

t′

)
+

1

m2
Zs
′
(
u′Sµνρσ14 + t′Sµνρσ15

)
(B.14)

− 1

p2
T s
′

(
Sµνρσ17 + Sµνρσ20 +

u′

t′
Sµνρσ18 +

t′

u′
Sµνρσ19

)]

Pµνρσ15 =

√
2m3

Z

pT (p2
T +m2

Z)

[
1

m2
Zs
′
(
u′Sµνρσ4 + t′Sµνρσ7

)
(B.15)

+

(
m2
Z + p2

T

)

2m2
Zp

2
T s
′

(
Sµνρσ17 + Sµνρσ20 +

u′

t′
Sµνρσ18 +

t′

u′
Sµνρσ19

)]

Pµνρσ16 =
p2
T +m2

Z

2
√

2p2
T

[
2m2

Z

s′p2
T (p2

T +m2
Z)

(
Sµνρσ17 + Sµνρσ20 +

u′

t′
Sµνρσ18 +

t′

u′
Sµνρσ19

)
(B.16)

− 2
(
p2
T −m2

Z

)
(
m2
Z + p2

T

)2
s′

(
u′Sµνρσ4 + t′Sµνρσ7

)
+
Sµνρσ5

u′
+
Sµνρσ6

t′

]

Pµνρσ17 =
p2
T + 2m2

Z

2m2
Z

{
m2
Z

2m2
Z + p2

T

(Sµνρσ2 + Sµνρσ3 )− m2
Z

(p2
T + 2m2

Z)s′p2
T

(
u′Sµνρσ4 + t′Sµνρσ7

)

(B.17)

−
(
m2
Z + p2

T

)
m2
Z

p2
T

(
2m2

Z + p2
T

)
[
Sµνρσ5

2u′
+
Sµνρσ6

2t′
− Sµνρσ13

2u′
− Sµνρσ16

2t′
+

1

p2
T s
′

(
Sµνρσ17 + Sµνρσ20

+
u′

t′
Sµνρσ18 +

t′

u′
Sµνρσ19

)]
+

m2
Z

p2
T s
′
(
2m2

Z + p2
T

) (u′Sµνρσ14 + t′Sµνρσ15

)
}
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Pµνρσ18 =
Sµνρσ8

p2
T

−
(
m2
Z + p2

T

)

2p4
T s
′ (Sµνρσ17 + Sµνρσ20 ) +

u′
(
−m4

Z + p4
T − 2p2

T (s′ − t′ + u′)
)
Sµνρσ18

2p4
T

(
m2
Z + p2

T

)
s′t′

(B.18)

− t′
(
m4
Z − p4

T + 2p2
T (s′ + t′ − u′)

)
Sµνρσ19

2p4
T

(
m2
Z + p2

T

)
s′ u′

.

Finally, we include the last two projectors, which have a zero norm in D = 4 dimensions.

Pµνρσ19 = Sµνρσ1 − Sµνρσ2

2
− Sµνρσ3

2
+

1

2 p2
T s
′
(
u′Sµνρσ4 + t′Sµνρσ7

)
+

(
m2
Z + p2

T

)

4 p2
T

(
Sµνρσ5

u′
+
Sµνρσ6

t′

)

(B.19)

+
Sµνρσ8

p2
T

−
(
m2
Z + p2

T

)

2p2
T s
′ (Sµνρσ9 + Sµνρσ12 ) +

u′
(
−m4

Z + p4
T − 2p2

T (s′ − t′ + u′)
)
Sµνρσ10

2p2
T

(
m2
Z + p2

T

)
s′t′

− t′
(
m4
Z − p4

T + 2p2
T (s′ + t′ − u′)

)
Sµνρσ11

2p2
T

(
m2
Z + p2

T

)
s′ u′

−
(
m2
Z + p2

T

)

4p2
T

(
Sµνρσ13

u′
+
Sµνρσ16

t′

)

− 1

2p2
T s
′
(
u′Sµνρσ14 + t′ Sµνρσ15

)
+

(
m2
Z + p2

T − s′ + t′ − u′
)
u′Sµνρσ18

p2
T

(
m2
Z + p2

T

)
s′t′

+
t′
(
m2
Z + p2

T − s′ − t′ + u′
)
Sµνρσ19

p2
T

(
m2
Z + p2

T

)
s′ u′

Pµνρσ20 =
1

2m2
Z + p2

T

[
Sµνρσ3 − Sµνρσ2 − 1

p2
T s
′
(
u′Sµνρσ4 − t′Sµνρσ7 + u′Sµνρσ14 − t′Sµνρσ15

)
(B.20)

−
(
m2
Z + p2

T

)

2p2
T

(
Sµνρσ5

u′
− Sµνρσ6

t′
+
Sµνρσ13

u′
− Sµνρσ16

t′

)]
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The form factors Ai associated to the above projectors can be expressed in terms of the
form factors fi defined in eq.(2.8) of ref. [36] via the following relations

A1 = 0 (B.21)

A2 =
p2
T

m2
Z

[
2(t′ − u′)(
m2
Z + p2

T

) (p2
T f8 − f1

)
+ s′p2

T

(
u′

t′
f19 −

t′

u′
f18

)
(B.22)

+ 2t′f4 − 2u′f5 + 2t′f6 − 2u′f7 +
s′t′

u′
f10 −

s′u′

t′
f11

]

A3 =
p2
T

m2
Z

[
f3 − f2 +

(
m2
Z − p2

T

)
s′

2

(
f7

t′
− f4

u′

)
+ u′f5 − t′f6

]
(B.23)

A4 = 0 (B.24)

A5 =
p2
T

m2
Z

[
2(t′ − u′)(
m2
Z + p2

T

)f1 +
s′u′

t′
f11 −

s′t′

u′
f10

]
(B.25)

A6 =
p2
T

m2
Z

[
f3 − f2 + t′f4 − u′f7 +

(
m2
Z − p2

T

)
s′

2

(
f6

u′
− f5

u′

)]
(B.26)

A7 =
p2
T

m2
Z

[
f3 − f2 +

(
3s′m2

Z + p2
T s
′ − 2

(
u′m2

Z + t′
(
m2
Z + u′

)))
p2
T

4m2
Z

(
f5

t′
− f6

u′

)]
(B.27)

A8 =
p2
T

m2
Z

[
f3 − f2

(
3s′m2

Z + p2
T s
′ − 2

(
u′m2

Z + t′
(
m2
Z + u′

)))
p2
T

4m2
Z

(
f4

u′
− f7

t′

)]
(B.28)

A9 =
1

m4
Z

[
−2p4

T

(
t′f4 + u′f5 + t′f6 + u′f7

)
−
(
m2
Z + p2

T

)
p2
T (f2 + f3) (B.29)

−
(
s′(m2

Z + p2
T )(m2

Z − s′) + 2m2
Z(t′2 + u′2)

)

s′
(
p2
T f8 − f1

)
− s′

(
m4
Z + p4

T

) (
f9 − p2

T f20

)

+
2
(
u′m2

Z + t′
(
m2
Z + u′

))

s′
(
p2
T

(
t′2f18 + u′2f19

)
−
(
t′2f10 + u′2f11

))
]

A10 =
2p2
T

(m4
Z + p4

T )

[
s′p2

T

(
p2
T

(
t′

u′
f18 +

u′

t′
f19

)
−
(
t′

u′
f10 +

u′

t′
f11

))
− 2p2

T

(
t′f4 + u′f5 + t′f6 + u′f7

)

(B.30)

+

((
s′2 − t′2 − u′2

)
m2
Z + p2

T

(
s′2 + t′2 + u′2

))
(
m2
Z + p2

T

)
s′

(
f8p

2
T − f1

)
−
(
m2
Z + p2

T

)
(f2 + f3)

]

A11 =
1

m4
Z

[
s′
(
m4
Z + p4

T

)
f9 +

2
(
u′m2

Z + t′
(
m2
Z + u′

))

s′
(
t′2f10 + u′2f11

)
(B.31)

−
(
2u′2m2

Z + s′
(
m2
Z + u′

) (
s′m2

Z + 2t′2 + p2
T s
′))

s′
f1

]
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A12 =
2p2
T(

m4
Z + p4

T

)
[((

s′2 − t′2 − u′2
)
m2
Z + p2

T

(
s′2 + t′2 + u′2

))
(
m2
Z + p2

T

)
s′

f1 + p2
T s
′
(
t′

u′
f10 +

u′

t′
f11

)]

(B.32)

A13 =
p2
T

m2
Z

[(
m2
Z − p2

T

)
s′

2

(
f5

t′
+
f6

u′

)
−
(
f2 + f3 + t′f4 + u′f7

)
]

(B.33)

A14 = − p2
T

m2
Z

[
f2 + f3 + p2

T s
′
(
f5

t′
+
f6

u′

)]
(B.34)

A15 =
p2
T

2m4
Z

[
(
m2
Z + p2

T

) (
f2 + f3 + t′f4 + u′f7

)
−
(
m2
Z − p2

T

) (
u′f5 + t′f6

)
]

(B.35)

A16 =
2p2
T

m2
Z + p2

T

[
f2 + f3 +

2p2
T

m2
Z + p2

T

(
u′f5 + t′f6

)
]

(B.36)

A17 =
2m2

Z

2m2
Z + p2

T

[(
s′2
(
t′2 + u′2

)
−
(
t′2 − u′2

)2)

s′3
(
m2
Z + p2

T

) f1 + f2 + f3

]
(B.37)

A18 =

(
m2
Z

(
2s′2 − t′2 − u′2

)
+ s′(s′(p2

T − s′) + t′2 + u′2)
)

m2
Zs
′
(
m2
Z + p2

T

) (
p2
T f8 − f1

)
(B.38)
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B.2 Analytical Results

Results for Double-Triangle Diagrams With reference to eq.(3.30), we present here

the exact results for the double-triangle contributions to the A(1,./)
i with i = 1, . . . , 18. We

keep the dependence of the final result on the mass of the bottom quark, mb. We find

A(1,./)
1 = 0 (B.39)

A(1,./)
2 =

pT
((
m2
Z + 2t′

)
∆(t′)2 − (t′ ↔ u′)

)

32
√

2mZ

(
m2
Z + p2

T

) (B.40)

A(1,./)
3 = −p

3
T

(
u′∆(t′)2 − (t′ ↔ u′)

)

16
√

2mZ

(
m2
Z + p2

T

)2 (B.41)

A(1,./)
4 = 0 (B.42)

A(1,./)
5 = −pT

(
t′ ∆(t′)2 − (t′ ↔ u′)

)

16
√

2mZ

(
m2
Z + p2

T

) (B.43)

A(1,./)
6 = −pT

((
m2
Z + 2t′

)
u′2 ∆(t′)2 − (t′ ↔ u′)

)

16
√

2mZ

(
m2
Z + p2

T

)2
s′

(B.44)

A(1,./)
7 =

(
s′ p2

T + t′2
)
u′2 ∆(t′)2 − (t′ ↔ u′)

16
√

2
(
m2
Z + p2

T

)2
s′2

(B.45)

A(1,./)
8 =

u′
(
t′(m2

Z + p2
T )− 2s′p2

T

)
∆(t′)2 − (t′ ↔ u′)

32
√

2
(
m2
Z + p2

T

)2
s′

(B.46)

A(1,./)
9 =

(
m2
Z − p2

T

) ((
m2
Z + 2t′

)
∆(t′)2 + (t′ ↔ u′)

)

64m2
Z

√
m4
Z + p4

T

(B.47)

A(1,./)
10 = −p

2
T

((
m2
Z + 2t′

)
∆(t′)2 + (t′ ↔ u′)

)

32
(
m2
Z + p2

T

) √
m4
Z + p4

T

(B.48)

A(1,./)
11 =

u′
(
m2
Z + 2 t′

) (
2s′ m2

Z +
(
m2
Z + p2

T

)
(t′ + 2 u′)

)
∆(t′)2 + (t′ ↔ u′)

32m2
Z

(
m2
Z + p2

T

)√
m4
Z + p4

T s
′

(B.49)

A(1,./)
12 = −

(
s′m4

Z + 4p2
T s
′ m2

Z + 3p4
T s
′ + 4p2

T

(
t′2 + u′2

)) (
∆(t′)2 + ∆(u′)2

)

64
(
m2
Z + p2

T

)√
m4
Z + p4

T s
′

(B.50)

A(1,./)
13 =

pT
((
m2
Z + 2t′

)
u′2∆(t′)2 + (t′ ↔ u′)

)

16
√

2mZ

(
m2
Z + p2

T

)2
s′

(B.51)
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A(1,./)
14 = −

(
s′ p2

T + t′2
)
u′2 ∆(t′)2 + (t′ ↔ u′)

16
√

2
(
m2
Z + p2

T

)2
s′2

(B.52)
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where
∆(x) = F (x,mt)− F (x,mb) (B.57)

and

F (x,M) =
m2
Z

x

[
B0(2x+m2

Z ,M
2,M2)−B0(m2

Z ,M
2,M2)

]
(B.58)

+ 4M2C0(0,m2
Z , 2x+m2

Z ,M
2,M2,M2) + 2
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Results for Triangle Diagrams at NLO With reference to eq.(3.30), we present here
the exact results for the two-loop one-particle-irreducible triangle contributions to the NLO
form factors. We obtain
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ŝ−m2
H

(
CFF (2l)

1/2 + CAG(2l,CA)
1/2

)
(B.60)

A(1,4)
3 = 0 (B.61)

A(1,4)
4 = 0 (B.62)

A(1,4)
5 = − p2

T (t̂− û)
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where the functions F (2l)
1/2 and G(2l,CA)

1/2 are defined in eqs. (2.11) and (3.8) in ref. [77].
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B.3 Additional Plots

In chap. 3 we presented the results of the pT expansion by discussing the form factor A9 in
detail. In this section we summarize the results for all the other form factors contributing to
the gg → ZZ amplitude. In fig. B.1 we show that A9 is indeed the form factor which gives
the dominant contribution to the LO partonic cross section. While the contribution from A9

is significantly larger than the sum of the antisymmetric form factors for any value of MZZ ,
the other symmetric form factors are important in the region MZZ < 400 GeV.

In figs. B.2, B.3 and B.4 we show the absolute value of the relevant box form factors at
LO for a partonic c.o.m. energy of 1600 GeV. We notice that the behavior of the form factors

is very similar to the one of A(0,�)
9 , discussed in Sec. 3.5, and to the behavior of the form

factor contributing to gg → ZH (see app. A.4).

Finally, in figs. B.5, B.6 and B.7 we show the absolute value of all the relevant A(1,�)
i :

as in the case of gg → ZH, the O(p2
T ) and the O(p4

T ) results are always in agreement for
pT . 200 GeV, but begin to diverge for larger pT . However, we expect that the O(p4

T ) result
can still be accurate for pT . 300 GeV.
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Figure B.1: Contributions to the LO partonic cross section from the various form factors

A(0)
i , shown as dashed lines: the contributions from A(0)

9 (yellow) is shown separately, while

the sum of the contributions from the antisymmetric form factors, A(0)
i with i = 1, . . . , 8 and

from the remaining symmetric form factors A(0)
i with i = 10, . . . , 18 are shown as a green and

red line, respectively. The solid line represents the sum of all contributions.
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Figure B.2: Absolute value of the A(0,�)
i form factors for i = 2, . . . , 8, for fixed

√
ŝ = 1600

GeV: the blue lines represent the first three orders of the expansion, while the brown line
stands for the exact result. The bottom part of each graph shows the ratio of the various
orders of the pT expansion to the exact result.88
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Figure B.3: Absolute value of the A(0,�)
i form factors for i = 9, . . . , 14, for fixed

√
ŝ = 1600

GeV: the blue lines represent the first three orders of the expansion, while the brown line
stands for the exact result. The bottom part of each graph shows the ratio of the various
orders of the pT expansion to the exact result.89
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GeV: the blue lines represent the first three orders of the expansion, while the brown line
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Figure B.6: Absolute value of the A(1,�)
i form factors with i = 9, . . . , 14 for fixed

√
ŝ = 1600

GeV, shown as a function of pT : the blue lines represent the first three orders of the pT
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Figure B.7: Absolute value of the A(1,�)
i form factors with i = 15, . . . , 18 for fixed

√
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