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Abstract

This doctoral Thesis investigates the modelling of the three-point correlation function of the
Large Scale Structure of the universe. This represents a pioneering examination of the three-
point correlation function in perturbative theory at the next-to-leading order. The objective
of this modelling is to examine the clustering properties of dark matter perturbations, halo
distributions, and galaxy distributions, with the goal of bridging the gap between configuration
space and its Fourier space counterpart. The methodology employed is based on the 2D-
FFTLog algorithm, which inputs the multipoles of a bispectrum model and converts them
into multiples of the three-point correlation function. The predictions of this novel modelling
approach have been compared to measurements derived from simulated data in real space,
covering typical redshift ranges of current and future large-scale surveys. In the first place,
the focus has been on the improvement of the modelling of the three-point statistics of only
matter perturbations. Secondly, in conjunction with two-point statistics, the predictions of
the next-to-leading order three-point correlation function model of the galaxy distribution
have been compared in the context of the determination of galaxy bias parameters. The
results demonstrate a marked improvement in the agreement with the new model in terms of
constraining second-order bias in the small-scale regime, with the agreement with established
bias relations measured from N-body simulations used as a mean of model selection.

Keywords: cosmology: large-scale structure of Universe – theory – methods: statistical
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“Facts are constituted by older ideologies, and a clash between facts
and theories may be proof of progress.”

Paul Feyerabend, Against Method





1 Introduction

1.1 The ΛCDM model

Over the centuries, cosmology has been a profound source of human speculation. Recent
experimental observations and theoretical hypotheses have culminated in the formulation
of a consolidated model for the universe, known as the ΛCDM model. This model has
its roots in the early 20th century, following the observations of Edwin Hubble (18), who
discovered that galaxies were moving away from each other, with their velocity increasing
over time. Assuming that human observation is not in a preferential point of the universe,
this led to the assumption that it is space-time itself that is expanding. Going back in time,
this consideration leads to the idea that all matter originated from a single primordial point,
referred to as the Big Bang singularity. In 1964, Arno Penzias and Robert Wilson (19)
discovered evidence of this singularity in the form of cosmic background radiation (CMB), a
primordial imprint of photons at decoupling with matter that represents a key milestone for
the Big Bang model.

In the wake of Edwin Hubble’s groundbreaking observations, Fritz Zwicky discovered
that the velocities of galaxies orbiting the center of the Coma cluster were significantly
higher than could be explained by the visible mass alone (20). This led to the conclusion
that there must be a large quantity of invisible mass, subsequently referred to as dark matter.
Subsequent experimental observations over the following years confirmed this hypothesis
(21; 22; 23; 24), and theoretical work has attributed the stability of galactic disks to the
presence of dark matter (22). Furthermore, observations of anisotropies in the temperature
field of the Cosmic Microwave Background (CMB) revealed that cold dark matter was
required to account for the fluctuations that led to the formation of large-scale structures. All
of this evidence led to the formulation of the idea that a quantity significantly greater than
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ordinary matter in the universe is composed of what is known as cold dark matter (CDM)
(25; 26).

In the years that followed, an even more revolutionary piece of observational evidence
transformed our understanding of the universe. The discovery of accelerated expansion
(27; 28) introduced a new form of energy content into the universe: the so-called dark energy.
This, which is necessary to explain the dynamics and kinematics of an accelerating expanding
universe, is estimated to be the dominant contribution to the universe, accounting for about
70%. The concept of accelerated expansion was incorporated into the standard cosmological
model as a cosmological constant. This was introduced by Albert Einstein to have static
solutions and was reintroduced to explain accelerated expansion. However, nowadays, the
cosmological constant is seen as a way to parameterize our lack of understanding about the
nature of accelerated expansion.

The so-called ΛCDM model has thus been confirmed over time by various experimental
evidence, such as the CMB (1; 2; 3) and large surveys of the spatial distribution of galaxies
in the Universe (4; 5). These observations have provided us with a precise description of
the physical content of the universe, albeit very different from the understanding we had
only a century ago. Despite the ΛCDM model proving to be a solid model in describing an
impressively wide range of observations, it raises some fundamental questions. The nature of
dark energy and dark matter still eludes the scientific community, particularly in reconciling
the standard cosmological model with the standard model of particle physics.

Figure 1.1 The content of the universe in various forms of energy in the LCDM model, as measured
by CMB observations and large-scale structure surveys (1; 2; 3; 4; 5). Source: Max-Planck-Institute
for Astrophysics Garching and Pixabay.
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1.2 The ΛCDM model and the current debate

The cosmological constant, whilst providing an excellent fit for cosmological observations,
is currently the subject of much debate regarding its theoretical interpretation. It can be
interpreted as a form of vacuum energy, as proposed by (29; 30). However, theoretical
predictions stemming from quantum field theory provide a value that is vastly different from
that inferred from cosmological observations, with a discrepancy of around 30-120 orders of
magnitude. Some theoretical developments have suggested alternative interpretations for the
cosmological constant, such as a dynamical source of energy (e.g. (31)) or a modification of
Einstein’s gravity on large scales (e.g. (32)). Both hypotheses have observable consequences
and lead to a modification of the equation of state of dark energy ωDE = pDE/ρDE (see Eq.
2.3) - equal to ωDE = −1 in the ΛCDM model - and of the rate at which fluctuations in the
mass density evolve with time.

The experimental observations in cosmology that were carried out over the century and
during the first decades of this one have not only exposed our ignorance about the nature
of the universe, or at least of its constituents but have also highlighted some tensions in
the observations made. The most significant of which has been recently highlighted for the
Hubble constant, H0, that sets the velocity of the expansion of the universe at the present
epoch: there are significant discrepancies between the H0 value inferred from the CMB
and the one obtained from more local measurements of extragalactic objects in the local
Universe. As an example, the Planck collaboration found H0 = 67.2±0.60;km/s/Mpc (3),
which is in tension with the value of H0 = 74.03 ± 0.60;km/s/Mpc (33) obtained through
the analysis of Hubble Space Telescope observations using 70 long-period Cepheids in the
Large Magellanic Cloud. A joint analysis of CMB and BAO (34) data has supported the
value inferred from CMB data alone, lending credibility to those values. These two estimates
- the first being direct and the second being indirect - were accompanied by a third estimate
recently obtained from the so-called standard sirens (6), which are distance indicators derived
from the measurement of gravitational waves. This third estimate, although compatible with
the previous two estimates given their wide uncertainty, has further brought attention to this
tension.

Another tension that has emerged in recent observational analyses of the Cosmic Mi-
crowave Background (CMB) and weak gravitational lensing, as well as galaxy clustering
through Large Scale Structure (LSS) surveys, concerns the parameters σ8 and Ωm. The dis-
crepancy shown between CMB data and observations from the Kilo Degree Survey (KiDS),
Baryon Oscillation Spectroscopic Survey (BOSS), Dark Energy Survey (DES), and 2dF
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Figure 1.2 The Hubble tension, including the first standard sirens measurement following GW170817
(6), Planck (3) and Hubble Space Telescope (HST) with GAIA DR2 (7)). Blue stars correspond to
measurements of H0 in the local universe with calibration based on Cepheids. Red dots refer to
derived values of H0 from the CMB, assuming ΛCDM. Green crosses are direct measurements of H0
with standard sirens. Forecasts are CMB Stage IV (8), standard sirens (9) and distance ladder with
full GAIA and HST (10). Figure from (11)

Galaxy Redshift Survey is a subject of investigation in the current research debate, despite
the tension in question being less pronounced than that of the Hubble constant.

Figure 1.3 Marginalised posterior distribution in the σ8 −Ωm plane, comparing the 3×2pt analyses
from KiDS-1000 with BOSS and 2dFLenS (12), with the 3 × 2pt analysis from DES Y1 (6), and the
CMB constraints from Planck Collaboration (3). Figure from (12)
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In Fig. 1.3, the aforementioned tension is shown; the constraints obtained from combined
weak lensing analyses of BOSS and KiDS (35) are shown in blue, yellow and red constraints
from so-called combined weak gravitational lensing, cosmic shear, galaxy clustering two-
point correlation functions (3x2) from DES (36) and KiDS, BOSS and 2dF (12), and in grey,
the CMB results from Planck (3). To resolve the tension in the coming years, it will be
necessary to reduce uncertainties on cosmological parameters.

The very existence of these tensions along with the uncertainties on the theoretical
foundations of the ΛCDM model illustrates the importance of improving observational
constraints which, in turns, is the main scientific drive behind the ongoing and soon-to-be
started observational campaigns aimed at probing increasingly larger fraction of the Universe.
Within this effort, two probes have proved more effective that the others, gravitational lensing
and the spatial clustering of extragalactic objects. This Thesis will focus on the latter.

1.3 Motivations for this Thesis

Large-scale galaxy catalogues provide a wealth of cosmological information. The first
analyses of the three-dimensional distribution of galaxies date back to the late seventies,
although their first use as a cosmological tool came with the CfA Redshift Survey (37). That
survey collected the redshifts of around 2,400 galaxies between 1977 and 1982. In the 1990s,
the Two-degree-Field Galaxy Redshift Survey (2dF) contained around 220,000 galaxies,
leading to the first precise power spectrum measurement (38). A further improvement
was achieved by the Sloan Digital Sky Survey (SDSS) (39) with more than one million
galaxies, which enabled the determination of Baryonic Acoustic Oscillations (BAO). 1.5
million galaxies around redshift z = 0.7 were collected by the BOSS survey, which provided
stringent constraints on the ΛCDM model. The next generation of redshift surveys such as
Euclid (40; 41), Dark Energy Spectroscopic Instrument (DESI) (42), Large Synoptic Survey
Telescope (LSST) (43), Nancy Grace Roman Space Telescope high latitude survey (WFIRST)
(44) and Spectro-Photometer for the History of the Universe, Epoch of Reionization, and
Ices Explorer (SPHEREx) (45) aim at significantly improving the state of the art precision in
the estimate of cosmological parameters and will allow us to shed light on the nature of the
dark components, possibly solving the "tensions" on the cosmological parameters mentioned
above.

So far, the two-point statistics have represented the preferred tool to analyse the clustering
properties of matter in the Universe and, from that, to constrain its physical properties. Indeed,
2-point statistics is all one needs if the cosmological fields obey Gaussian statistics. However,
unlike the CMB case, two-point statistics of large-scale structures are not a sufficient or
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complete description for extracting all available information on the gravitational evolution of
structures and inevitably lead us to consider higher-order statistics, such as the three-point
function. These statistics are particularly important for breaking the degeneracy among
cosmological parameters that inevitably affect analyses that consider 2-point statistics only.
They also provide a powerful framework for testing inflationary model predictions and
constraining the relation between the spatial distribution of the matter, which is mostly dark,
and its luminous tracers: the galaxies. For these reasons, three-point statistics have long been
considered an important tool in studying the Large Scale Structure of the universe (LSS)
(46; 47; 48; 49; 50; 51; 52; 53). To be effective, they require very large datasets, so it is not
surprising that the interest in these tools has increased in recent years with the availability of
galaxy catalogues with unprecedented size and will further increase in the near future when
the next-generation datasets will be available from upcoming spectroscopic galaxy surveys.

At its core, three-point statistics is about counting triplets of different sizes and shapes.
To efficiently extract cosmological information, it is mandatory to obtain reliable theoretical
predictions on the largest possible number of triangle configurations, which implies including
the numerous triangles of small size, i.e. to probe the nonlinear regime in the evolution of
the mass density fluctuations (54).

Standard Perturbation Theory (SPT, see (15) for a review) of clustering statistic has
proved, so far, an effective way of accessing nonlinear scales in Fourier space. Hence the
widespread use of perturbative expansion techniques to investigate the clustering properties
of the matter in the universe through the power spectrum and bispectrum statistics (55; 56;
57; 58; 59; 60). Concerning bispectrum, efforts have been made to develop alternative routes
by re-summing perturbative contributions in the Eulerian (61; 62; 63), Lagrangian (64) and
Effective Field Theory (EFT) approaches (65; 66; 67; 68). The state of 3-point correlation
modelling in configuration space is comparatively less advanced. So far, 3PCF models have
been developed at the tree level only (49; 53; 69). They have been successfully used to analyse
clustering on quasi-linear scales (70; 71; 72; 73; 74), hence limited to a relatively small
fraction of available triplets and missing information from the mildly nonlinear scales. As
yet, direct modelling in configuration space has not yet been explored due to the complexity
of fluid equations in configuration space. This is because modelling 3-point statistics in
configuration space is complicated due to the relation with the Fourier space counterpart
in which models are provided. The inverse-Fourier transform induces a scale mixing that
requires adopting a computationally demanding numerical approach, even in the mildly
nonlinear regime. On the other hand, the 3PCF approach offers a significant advantage when
dealing with real datasets consisting of galaxy surveys with complicated geometry. In Fourier
space, the survey footprint induces mode coupling in Fourier that requires computationally
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demanding numerical approaches (75; 76). For 3PCF, the impact of the survey footprint
can be efficiently corrected at the estimator level. A second element that has hampered the
development of the 3PCF tool has been, until not long ago, the computational cost of the
standard estimators counting all triplets in the sample. The situation has changed dramatically
since new types of 3PCF estimators capable of reducing computational cost from N3 to N2,
have been proposed (17; 77; 78). The aim of this Thesis is to bridge the gap with modelling
in Fourier space, achieving the same perturbative order reached in Fourier space. This Thesis
is divided as follows. In the first chapters, from Chapter 2 to Chapter 4, the introductory
framework is presented, focusing on the theoretical developments in perturbation theory.
In Chapter 5, the proposed strategy in this Thesis is presented. In Chapters 6, 7 and 8, the
applications of the aforementioned strategy and the results of this Thesis are described.





2 Background cosmology

In this chapter, I present a comprehensive overview of the key characteristics of a Friedmann-
Lemaître-Robertson-Walker (FLRW) universe, which is commonly accepted as the metric
describing the homogeneous Universe. Specifically, in Sec. 2.1 and Sec. 2.2, I provide a
summary of the fundamental principles behind the FLRW equations. Additionally, in Sec.
2.3, I demonstrate the limitations of the Hot Big Bang Theory and how the inflationary
paradigm resolves these issues. For further details, see references (79; 80).

2.1 Friedmann-Lemaître-Robertson-Walker universe

2.1.1 The Friedmann equations

The observations in modern cosmology can be largely condensed by invoking the Cosmolog-
ical Principle, which postulates the homogeneity and isotropy of the Universe at large scales.
This principle is encapsulated in the following line element ds2 ruling the geometry of the
so-called background cosmology:

ds2 = −c2dt2 +a2(t)
[

dr2

1−kr2 + r2dΩ
]

, (2.1)

where a(t) is the so-called scale factor, dΩ = dθ2 + sin2(θ)dϕ2 and c, θ, dΩ being, respec-
tively, the speed of light and the two angles in a spherical coordinate system.

The parameter k in this equation determines the topology of the FLRW Universe, with
k = 0,+1,−1 denoting a flat, positively curved, and negatively curved universe, respectively.
It is worth mentioning that the flat case corresponds to a conformal Minkowski metric. The
scale factor a(t) plays a crucial role in describing the evolution of the Universe, and it is
worth noting that the values of g00 = 1 and g0i = 0 allow for a global definition of a time
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coordinate. Einstein equations, presented below, play a key role in determining the scale
factor dynamics

Gµν = 8πG

c4 T p.f
µν , (2.2)

where T p.f
µν represents the stress-energy tensor of a cosmological perfect fluid, considered as

an appropriate physical description of universe’s expansion and structures’ formation

T p.f
µν = (ρ+p)uµuν −pgµν . (2.3)

where ρ and p represent, respectively, the energy density and pressure of the fluid. Choosing
a cosmic rest frame, i.e. the frame where the average velocity of energy forms in the Universe
is zero, uµ = (1,0,0,0) and T p.f

µν takes the form

T p.f
µν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (2.4)

Considering the 00 component and defining the Hubble parameter H = ȧ
a , the first Friedmann

equation can expressed as follows:

H2 =
(

ȧ

a

)2
= 8πGc2

3 ρ−k
c2

a2 . (2.5)

The latter can be expressed in the following form

H2 = H2
0

(
Ωr

a4 + Ωm

a3 + Ωk

a2 +ΩΛ

)
, (2.6)

where H0 indicates the measure Hubble parameter at the current time and the indexes
r,m,k,Λ refer to radiation, matter, curvature and cosmological constant density parameters,
defined as

Ωn = ρn

ρc
, (2.7)

ρc = 3H2

8πG
= 1.8788×10−26h2kg m−3, (2.8)



2.1 Friedmann-Lemaître-Robertson-Walker universe 13

where ρc is the so-called critical density and ρn being determined by the following expansion

ρ =
+∞∑

n=−∞
ρna−n. (2.9)

Usually, as it will be explained in Sec. 2.2, mainly the case n = 4,3,0 are considered.
Focusing on the spatial component of Einstein’s equation in an FLRW metric, it is possible
to derive the following expression

ä

a
+2

(
ȧ

a

)2
+2k

c2

a2 = −c2 4πG

c3 (ρ−p). (2.10)

Plugging Eq. 2.5 into Eq. 2.10, the latter - commonly dubbed as second Friedmann equation
- can be expressed as

ä

a
= −c2 4πG

3 (ρ+3p). (2.11)

The curvature term affects the scale factor dynamics, in fact:

• if k = 0, then ( ȧ
a)2 = 8πGc2

3 ρ ≥ 0 and ȧ = 0 asymptotically,

• if k = −1, then ( ȧ
a)2 = 8πGc2

3 ρ+ c2

a2 ≥ 0 and ȧ ̸= 0 during the evolution,

• if k = +1, then ( ȧ
a)2 = 8πGc2

3 ρ− c2

a2 ≥ 0 and this represents the turning point case.

Now from the first law of thermodynamics, it is possible to derive another essential equation

dU = δQ−PdV, (2.12)

where δQ = TdS. By definition, the universe is a closed system, so δQ = 0. Using U = ρV

and FLRW metric presented in Eq. 2.1 it is possible to derive the continuity equation

ρ̇ = −3H(ρ+p). (2.13)

2.1.2 Cosmological redshift

Let me redirect the attention to other pertinent aspects of the kinematics of the FLRW
Universe: the gravitational redshift represents a noteworthy phenomenon in FLRW cosmol-
ogy. To illustrate this point, let us consider the geodesic equation for a massless particle,
specifically, the photon in the FLRW metric:

d2xα

dτ2 +Γ α
µν

dxµ

dτ

dxν

dτ
= 0. (2.14)
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It’s easy to see that the 00 component of a geodesic equation can be rewritten in the form

dE

dτ
+ ȧ

a
E = 0. (2.15)

This equation gives us the energy-scale factor relation

E ∼ 1
a

. (2.16)

So, reminding E = hc
λ , the redshift relation due to geometry at large scale reads as

λ0
λ(t) = a0

a(t) = 1+ z, (2.17)

where z = λobs−λem
λem

is the redshift. By measuring photon redshift, it is possible to know the
scale factor evolution from t0 to t.

2.1.3 Hubble’s law

Another cornerstone in modern cosmology is the role of the Hubble law and its relation with
FLRW cosmology. In 1929 Edwin Hubble observed a recessional motion of astronomical
objects explained by Hubble’s law:

v = H0d, (2.18)

where v is recession velocity, H0 is the Hubble constant (for the current debate around its
estimate, see a brief overview in Sec. 1) and d is the luminosity distance, defined by

F = Lm

4πd
, (2.19)

where F is the measured flux, and Lm is the measured luminosity. It is now possible to define
the comoving distance as the distance between two points measured along a path defined at
the present cosmological time:

χ =
∫ t

ti

c
dt′

a(t′) , (2.20)

where ti is the time of emission of a photon detected by an observer at the current time t.
Considering a source located at the proper comoving distance because of the expansion of
the universe, it is possible to define the proper distance in physical units:

D(z) = (1+ z)r(z). (2.21)
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Using Eqs. 2.6, 2.20, the relation between comoving distance and redshift reads as:

r(z) = c
∫ 1

a

da

a2H0[Ωm
a3 + Ωr

a4 +ΩΛ]

= c

H0

∫ z

0

dz′√
Ωm(1+ z′)3 +Ω(1+ z′)4 +ΩΛ

. (2.22)

where it has been used the convention a0 ≡ a(t0) = 1. From this expression and using 2.21,
the correct formulation of the Hubble law can be expressed as

D(z) = c

H0
(1+ z)

∫ z∗

0

dz√
Ωm(1+ z)3 +Ω(1+ z)4 +ΩΛ

. (2.23)

It is worth stressing that the latter Eq. is a generalisation of Eq. 2.18, which can be recovered
in the limit z ≪ 1. Considering the second-order approximation of Eq. 2.23 it is possible to
write the following relation

D(z) = c

H0
z
[
1+ 1

2(1− q0)z +o(z2)
]
, (2.24)

q0 ≡
[

−
( 1

H0

)2 ä

a

]
t=t0

. (2.25)

The parameter q0 takes the name deceleration parameter, and q0 ≥ 0 identifies a decelerating
universe; otherwise, q0 ≤ 0 identifies an accelerating universe.

2.2 Energy forms in a Friedmann-Lemaître-Robertson-
Walker Universe

Assuming a linear relationship between energy density and pressure, the equation of state is
usually expressed in the form

p = ωρ, (2.26)

where w is the parameter defining the form of energy. By recourse to the aforementioned
equation, it becomes feasible to re-cast the continuity Eq. (2.13) and the second Friedmann
Eq. (2.11) into alternative forms

ρ̇

ρ
= −3(1+ω) ȧ

a
, (2.27)

ä

a
= −c2 4πG

3 (1+3ω)ρ. (2.28)
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It is instructive to separate energy density into hypothesised energy forms expanding ρ as
follows

ρ =
n=+∞∑
n=−∞

ρna−n, (2.29)

where ρns remain fixed to their values at the scale factor a0 = 1 and n ∈ N . For a perfect
fluid, the Eq. 2.26 is related to the expansion in Eq. 2.29 as

ω = n

3 +1. (2.30)

Using the definition given in Eq. 2.7, it is possible to obtain an alternative expression for
Friedmann Eq. 2.5 (

H

H0

)2
=

n=+∞∑
n=−∞

Ωna−n +(1−Ωtot)a−2. (2.31)

where

Ωtot ≡
n=+∞∑
n=−∞

Ωn. (2.32)

Using 2.29, let me write Eq. 2.27 in terms of the present epoch where a = 1, H = H0,
n = 3ω +3 and Ωn are fixed at their a = 1 values

ä

a
= H2

0

n=+∞∑
n=−∞

(1− n

2 )Ωna−n. (2.33)

Furthermore, considering Eq. 2.5 and computing it at the current time, it becomes

H2
0 = H2

0
[
Ωr +Ωm +Ωk +ΩΛ

]
, (2.34)

from which the following constraint derives, playing an important relation between cosmo-
logical parameters

Ωr +Ωm +Ωk +ΩΛ = 1. (2.35)

Before focusing on the energy content in an FLRW universe, it is worth stressing two
main kinds of horizons commonly encountered:

• Hubble horizon: also known as the Hubble radius, is the distance beyond which objects
in the universe are moving away from each other faster than the speed of light due to
the expansion of the universe. It is defined as the distance that light can travel since the
beginning of the universe, as determined by the current expansion rate of the universe
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and the amount of matter and energy it contains, usually defined by

rH(t) = c

H(t) , (2.36)

• Particle horizon: the maximum distance from which information or particles can reach
an observer at a given time due to the finite speed of light. It is the distance that light
could have travelled since the beginning of the universe, considering the expansion of
the universe and the amount of matter and energy it contains, and it expressed as

rP (t) = c η(a) = c
∫ a

0

1
a′H(a′)

da′

a′ , (2.37)

where η(a) is the so-called conformal time.

The particle horizon is different from the Hubble horizon in that it is defined by the infor-
mation that can be transmitted to an observer rather than the distance beyond which objects
are moving away from each other faster than the speed of light. The particle horizon is,
therefore, a measure of the amount of the universe that is causally connected to an observer
at a given time. At the same time, the Hubble horizon is a measure of the distance beyond
which objects are receding from each other too quickly to be observed.

2.2.1 Radiation

Radiation is a form of energy that behaves as a fluid, and its equation of state is given by
ω = 1

3 (n = 4) in the context of the Friedmann equations. Were it possible to completely
confine all radiation within static, non-interacting boxes, the radiation would not exhibit the
equation of state ω = 1

3 . As the universe expands, each box would retain the same amount
of radiation energy as measured within, thereby precluding any loss of energy. The energy
density between the boxes would remain null, and the number density of the boxes would
decrease in accordance with the spatial dimensionality of the universe, n = 3. Consequently,
the boxes would evolve as ω = 0. This means that radiation is a form of energy that cannot
be confined to static, non-interacting boxes.

After the inflation era, radiation plays the main contributor to Friedmann Eq. 2.5. When
radiation dominates the Friedmann equations, then

H2 = H2
0Ωma−4, (2.38)

and the solution is
a ∼ t

1
2 . (2.39)
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2.2.2 Matter

Matter represents a form of energy that evolves as ω = 0 (n = 3). Particles that display
ω = 0 include baryonic matter, dark matter, and black holes that operate as ω = 0 entities in
a cosmological context. Should a particle move in a spatial direction, its ω value would rise
to 0 < ω < 1

3 . In the event that it moves relativistically, its ω value would approach ω ≈ 1
3 ,

rendering it a form of radiation.
When particles dominates the Friedmann equation 2.6, then

H2 = ΩmH2
0a−3, (2.40)

and the solution is
a ∼ t

2
3 . (2.41)

2.2.3 Cosmological constant

The form of energy that evolves according to the equation of state ω = −1(n = 0) in the
Friedmann Eq. 2.6 is known as the cosmological constant or Λ. This energy is uniformly
distributed in space, with no confinement in any spatial direction. As the universe expands,
the cosmological constant must remain isotropic to all rest frames in the universe. This
form of energy has been proposed as a crucial component of the universe since the time of
Einstein, who originally sought to create a repulsive gravitational component to prevent a
universe composed solely of ω = 0 matter particles from collapsing. Over the years, various
suggestions have been made to account for possible anomalies in cosmological data through
the introduction of a cosmological constant. While these proposals have often been met
with skepticism in early studies, supernova data indicate that standard candle supernovae
appear dimmer than expected in a universe dominated only by ω = 0 matter (28), (27). These
observations are well-explained by the presence of a high-density cosmological constant
with ω = −1. Furthermore, current analyses of cosmic microwave background data indicate
that a flat universe with Ωtotal = 1 is comprised of two ω = 0 components that account
for approximately 30% of the critical density, with the remaining 70% attributed to the
ω = −1 component. This model is consistent with galaxy clustering data and suggests that
the ω = −1 cosmological constant constitutes approximately 70% of the universe’s energy.
As the equation 2.27 shows, a dominating component with ω = −1 exerts gravitationally
repulsive pressure, leading to an acceleration of the expansion of the universe. For the flat
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case, Eq. 2.27 can be integrated yielding

ln(a) = H0t+ln(a0), (2.42)

where t can be considered the time since ω = −1 energy began to dominate the expansion,
when a = a0. The solution is

a = a0eH0t. (2.43)

The universe is said to be in a de-Sitter phase, and the Hubble parameter H is static at H0.
Such a phase is hypothesized to have dominated the early universe in a phase called inflation.

2.3 The inflationary paradigm

The solution of the first Friedmann equation 2.5, using any discussed form of energy except a
deSitter universe - i.e. a universe whose physical dynamics is dominated only by cosmological
constant -, is a monotone function of cosmological time. This can be shown by extrapolating
back in time Eq. 2.41 and Eq. 2.39. In this sense, that extrapolation of the expansion of the
universe backward in time yields an infinite density and temperature at a finite time in the
past. This singularity indicates that general relativity is not an adequate description of the
laws of physics in this regime. The fact that the Universe expands implies that it was denser
and warmer in the past. More in general, the Hot Big Bang theory has its problems. A part
of this is because this theory needs particular initial conditions; otherwise, it would grossly
fail to describe the early and present Universe. let me distinguish the main three issue for
which the Hot Big Bang theory find a hard explanation:

• Flatness problem: considering the Einstein equations valid until the Planck era, Eq
2.5 can be recast as

Ω−1 = 8πGρ

3H2 = kc2

H2a2 . (2.44)

Both in radiation- and matter- dominated eras, it is possible to recognize that since
(Ω0 − 1) is measured to be of order unity at the present time, the curvature is con-
strained to be unitary at O(10−64) at Planck time and O(10−16) if we limit to the
nucleosynthesis time - i.e the process by which the universe’s light elements (primar-
ily hydrogen, helium, and lithium) were formed in the first three minutes after the
Big Bang (for details see (81)). The flatness problem is also known as a fine-tuning
problem.
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• Entropy problem: the entropy density is of the order of photon number density; in
the present Universe, we have

s ∼ 103cm−3. (2.45)

Thus, the estimate for the entropy in the observable part of the Universe, whose size is
R0 ∼ 104 Mpc ∼ 1028 cm, is

S ∼ sR3
0 ∼ 1088. (2.46)

This huge dimensionless number is one of the properties of our Universe. The Hot Big
Bang theory does not explain why the Universe has such a large entropy. This problem
is known as the entropy problem.

• Horizon problem: from the epoch of last-scattering, photons free-stream, and basically,
they travel undisturbed, providing us with a snapshot of the Universe at z ∼ 1000,
meaning their detection is almost a picture of the primordial universe. The angular
size of the Hubble radius at the last scattering is expected to be a few degrees, which
implies the existence of several casually disconnected patches on the last scattering
surface that we observe now. This means there were ∼ 106 disconnected regions with
the volume that now corresponds to our horizon. The horizon problem is also related to
the problem of temperature anisotropies, that can be in general expanded in spherical
harmonics as follows:

∆T

T
(x0, τ0,n) =

∑
ℓm

aℓm(x0)Yℓm(n) (2.47)

where x0 and τ0 are our position and the present time, while n is the direction of the
observation, ℓs are the different multipoles so that

⟨aℓma∗
ℓ′m′⟩ = δℓ′ℓδmm′Cℓ (2.48)

where Cℓ is the so-called CMB power spectrum. Due to homogeneity and isotropy, Cℓ

is neither a function of x0 nor m. The two-point correlation function (for details, see
chapter 5, can be expressed as

⟨δT (n)
T

δT (n′)
T

⟩ = 1
4π

∑
ℓ

(2ℓ+1)CℓPℓ(µ = n ·n′) (2.49)

where Pℓ is the Legendre polynomial of order ℓ. We report the CMB temperature
fluctuations, as presented in Eq. 2.49, as a function the angular scale or multipole
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moments in Fig. 2.1 Let me now consider the last-scattering surface, that is distant

Figure 2.1 The CMB anisotropy as a function of ℓ and the angular scale from Planck’s data (3).

from us by the quantity ∫ t0

tls

dt

a
=
∫ τ

τls
dτ = τ0 − τls. (2.50)

A given comoving scale, order of the comoving sound horizon at the last-scattering,
λ ∼ csτls - where cs ≃ 1√

3 - is therefore projected on the last-scattering surface sky on
an angular scale

θ ≃ cs
τls

τ0 − τls
≃ cs

τls
τ0

, (2.51)

assuming τ ≫ τls. Since from the last scattering, the Universe’s evolution is ruled by
the matter component, the angle θHOR subtended by the sound horizon is

θHOR ≃ cs

(T0
Tls

) 1
2 ∼ 1◦, (2.52)

having used Tls = 0.3 eV and T0 ∼ 10−13 GeV, corresponding to the multipole

ℓHOR = π

θHOR
≃ 200. (2.53)

So, two photons on the last scattering surface separated by an angle larger θHOR,
corresponding to multipoles smaller than ℓHOR are not in causal connection. But, from
Fig. 2.1, on that range, small anisotropies of the same order of magnitude are present
making the considered photon appear to be in causal contact.
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All of these issues have elegant solutions within the framework of the inflationary paradigm.
According to this theory, the early hot cosmological epoch was preceded by an exponential
expansion known as inflation. During the inflationary epoch, a small region of the Universe,
initially comparable in size to the Planck length, underwent a rapid and tremendous expansion,
increasing its size by many orders of magnitude beyond what is observable today.

Allow me to provide a brief explanation of the underlying physics of inflation. Consider
a Lagrangian density involving a scalar field:

Lφ = −1
2gµν∂µφ∂νφ−V (φ). (2.54)

The energy density and the pressure of this scalar field φ(t) can be expressed as a function of
their kinetic energy and the potential in the form

ρφ ≃ 1
2gµν∂µφ∂νφ+V (φ), (2.55)

pφ ≃ 1
2gµν∂µφ∂νφ−V (φ). (2.56)

If the potential energy dominates over its kinetic energy, I obtain pφ ≃ −ρφ providing an
exponential phase. The inflaton field, to provide an almost constant energy density, must
obey a slow evolution over time, i.e.

φ̈+3Hφ̇+V ′(φ) = 0, (2.57)

implies the condition
|φ̈| ≪ 3|Hφ̇|. (2.58)

This condition can be expressed in terms of the so-called slow-roll parameters that are so
required to be small

ϵ ≡ 1
16πG

V ′(φ)
V (φ)

2

≪ 1,η ≡ 1
8πG

V ′′(φ)
V (φ) ≪ 1. (2.59)

Inflation ends when the slow-roll conditions are violated, and the inflation field decays into
particles in the so-called reheating phase. Throughout the inflationary paradigm, it is possible
to model an epoch of exponential expansion for which Ω − 1 = k

a2H2 as the Hubble rate
is constant during inflation and the ratio between curvature values at different times tI , tf

becomes
|Ω−1|t=tf

|Ω−1|t=tI

= e−2N , (2.60)
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solving the flatness problem. The expansion epoch due to the inflaton field, in addition to the
fact that the entropy of S ≃ (aT )3, also solves the entropy problem. Let me just stress that a
large amount of entropy is not produced during inflation but during the non-adiabatic phase
transition, which usually takes place during the radiation era. Finally, during the inflationary
epoch, the Hubble radius H−1 is constant, and during this phase, all the physical scales that
have left the Hubble radius can re-enter the Hubble radius in the past. This fact solves the
horizon problem. The inflation paradigm also provides us with a mechanism for generating
primordial perturbations, as it will be explained in Chapter 3





3 Perturbation Theory

In this Chapter, I introduce the theory that describes the generation and subsequent evolution
of scalar density perturbations in a cosmological framework, a process that eventually leads
to the formation of the large-scale structure of the Universe (LSS) that we observe in the
low redshift Universe. The main elements of the theory that I will use in this Thesis are
summarised in the flow chart shown in Fig. 3.1. All these elements are described in the
sections below

Figure 3.1 Description of how non-linearities in the gravitation evolution, in the biasing, overlap to
the initial condition set by inflation.

I briefly review the status of their modelling in sec. 3.3. The final step in the investigation
of these processes is the anisotropic contribution from redshift space distortion (RSD), which
I do not consider in this Thesis, as I limit the status of modelling in the so-called real space.
i.e. not considering distortion effect due to peculiar velocities and (RSD) and incorrect
cosmological parameters used to inferred separation between observed objects, also known
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as the Alcock-Paczynski effect (AP). The next sections follow other treatments of the physics
of LSS such as (14; 82; 83; 84).

3.1 Primordial perturbations

Our understanding of structures is that they originated from small perturbations which grew
along the Universe’s evolution. Our best guess for the origin of these perturbations is quantum
fluctuations during the inflationary era. Then, let me consider how small departures from the
background inflaton field φ can give the source of primordial density fluctuations

φ(x, t) = φ̄(t)+ δφ(x, t). (3.1)

Applying Eq. 2.57 to Eq. 3.1 in Fourier space, I get

δφ̈(k)+3Hδφ̇(k)+ k2

a2 δφ(k) = 0. (3.2)

This equation of motion has the same structure as a harmonic oscillator with a friction term
due to Hubble expansion. This structure can be used as an analogy to give a quantum picture
of the perturbation of the inflaton field

δφ̂(k, t) = v(k, t)â(k)+v∗(−k, t)â†(-k), (3.3)

where v(k, t) is a complex function and â,â† are the creation and annihilation operators
satisfying the usual quantum commutation rules

[â(k), â†(k′)] = (2π)3δD(k − k′). (3.4)

This leads to finding a solution of Eq. 3.3, and it is possible to derive an expression for the
vacuum fluctuation on a super-horizon scale

⟨δφ̂(k, t)δφ̂(k′, t)⟩ = (2π)3 H2

2k3 δD(k + k′) ≡ (2π)3Pδφ(k)δD(k + k′) (3.5)

where I define here the power spectrum of inflaton perturbation

Pδφ(k) ≡ H2

2k3 . (3.6)
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let me also define the dimensionless power spectrum

∆2
δφ ≡ k3 Pδφ(k)

2π2 ∝ H2 (3.7)

that is scale-independent. Departures from scale invariance are usually parametrised by the
so-called spectral index ns, so that

ns −1 ≡
dln∆2

δφ

dlnk
≃ 2η −6ϵ (3.8)

where we have stressed the relation between deviation from scale invariance and the values of
slow-roll parameters. This is a testable prediction, confirmed recently by CMB experiments
(85). Finally, the linearity of Eq. 3.3 gives Gaussian perturbations. Once perturbation of
the inflaton field has been described, it is possible to wonder how large-scale structures are
related. To explain, let me refer to Fig. 3.2. The Hubble radius evolves as

rH = cH−1 =
[8πc2Gρ(a)

3

](1/2)
=

a2 radiation −dom,

a3/2 matter−dom
(3.9)

In radiation and matter eras, the Hubble radius, depicted by the solid green line, increases
faster than the scale factor, represented by the red line. Since gravity interacts with any
component of the universe, small fluctuations of the inflaton field are related to fluctuations
of the space-time metric, giving rise to fluctuations in the gravitational potential. So, the
wavelength λ of a perturbation leaves the Hubble radius soon. Rentering the horizon the
perturbation of the gravitational potential (properly speaking the curvature, for details, see
(80)) gives rise to matter perturbation via the Poisson equation ∇2Φ = 4πGρ. Summarising:

• Quantum fluctuations of the inflation field are excited during inflation. Being connected
to the fluctuations in the metrics, these latter are stretched to cosmological scales,

• Gravity interacting with baryons and photons gives rise to scalar and tensor perturba-
tions.

Although the inflationary model has been explored as a solid paradigm, departures from
Gaussianity coming from the single-field or multi-field inflation models have been studied in
the last years, and they are an object of a rich debate (86; 87).
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Figure 3.2 Schematisation of how the scale factor re-enters in the Hubble radius after the inflationary
epoch. The red line refers to the scale factor and the green line to the Hubble radius in different
epochs. Picture from (13).

3.2 Gravitational instability

3.2.1 Fluid equations

Considering the equation of motion for a particle at physical position r in the Newtonian
regime, i.e. for small distances x ≪ H−1 and v ≪ 1, I have

r̈ = −∇rΦ, (3.10)

where Φ is the gravitational potential, in the Newtonian description, is the potential induced
by the local mass density ρ(r)

Φ(r) = G
∫

d3r′ ρ(r′)
|r′ − r|

(3.11)

with G the Newtonian constant and the comoving coordinates are defined as r = ax, and so
on ∇x = a∇r. Taking the derivative of the physical coordinate with respect to physical time,
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I get
ṙ = Hx +x′ (3.12)

and for the second derivative

r̈ = 1
a

(H′x +Hx′ + x′′) = 1
a

∇Φ (3.13)

where the term proportional to the position is peculiar and arises from the comoving coordi-
nates. Hence, I can define the peculiar potential ϕ

Φ = 1
2H′x2 +ϕ. (3.14)

The peculiar potential ϕ is sourced only by density fluctuations that, under the assumption
that dark energy is homogeneous, are dominated by matter fluctuations. The Poisson equation
becomes

∇2
xϕ = 3

2Ωm,0H2
0

δ

a
. (3.15)

It is possible to split the equation of motion in terms of physical and conformal time - defined
in 2.37 -

ẍ +2H ẋ = −∇ϕ

a2 , x′′ +Hx′ = −∇ϕ. (3.16)

Defining the canonical momentum
p = amx′, (3.17)

I get the equation of motion
p′ = −am∇xϕ. (3.18)

Using the definition in Eq. 3.17, I can express the conservation of phase-space density,
yielding the collisionless Boltzmann equation, known as the Vlasov equation

df

dτ
= ∂f

∂τ
+ dx

dτ
· ∂f

∂x
+ dp

dτ
· ∂f

∂p

= ∂f

∂τ
+ p

ma
· ∂f

∂x
+−am∇ϕ · ∂f

∂p
= 0.

(3.19)

Taking the zeroth and the first moment of the Vlasov equation, I get the continuity and Euler
equations

δ′ +∇· [v(1+ δ] = 0, (3.20)
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v′
i +Hvi + v ·∇vi = −∇iϕ− 1

ρ
∇i(ρσij) (3.21)

where I have defined the density, the mean streaming velocity and the velocity dispersion as

ρ(x, τ) = m

a3

∫
d3pf(x,p, τ), (3.22)

vi(x, τ) =
∫

d3p
pi

am
f(x,p, τ)/

∫
d3pf(x,p, τ), (3.23)

σij(x, τ) =
∫

d3p
pi

am

pj

am
f(x,p, τ)/

∫
d3pf(x,p, τ)−vi(x)vj(x). (3.24)

so that δ(x, τ) = 1−ρ(x, τ)/ρ̄ where ρ̄ represents the spatial average of the field ρ(x, τ). The
velocity dispersion is also referred to as anisotropic stress and describes the deviation from a
single coherent flow.

3.2.2 Linear growth

Defining ω = ∇× v as the vorticity and θ = ∇· v as the divergence of the velocity field, if I
neglect the quadratic terms, the continuity and Euler equations become

θ′ +Hθ = −∇2ϕ, (3.25)

ω′ +Hω = 0. (3.26)

The solution of the vorticity equation gives ω ≃ a−1, meaning any initial vorticity decays at
the linear stage. Combining the two equations, it is possible to get a single equation for the
density field

δ′′(x, τ)+H(τ)δ′(x, τ)− 3
2Ωm(τ)H2(τ)δ(x, τ) = 0 (3.27)

This equation reveals that different perturbations at different scales evolve independently,
at least in the linear regime, because, Fourier transforming it, all modes would grow at the
same rate. This means it can split into a spatial and a time-dependent part, and because the
time derivatives appear up to the second order, I expect two independent solutions:

δ(x, τ) = D+(τ)∆+(x)+D−(τ)∆−(x). (3.28)

For the Einstein-de-Sitter (EdS) matter-only and radiation-only Universe case, analytical
solutions exist. In the first case giving the following linear growth factor

D+(τ) = a(τ), D−(τ) = a(τ)−3/2. (3.29)
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The second solution decays very quickly in time, while the first one is the growing one. By
applying the linearised continuity equation, it is possible to get a corresponding expression
for θ

−θ(x, τ)
H

= f+D+(τ)∆+(x)+f−D−(τ)∆−(x), (3.30)

where the logarithmic growth rate

f± = lnD±
lna

(3.31)

has been introduced.

3.2.3 Standard perturbation theory

After treating the fluid equations in the linear regime, I can now return to the full equation
without neglecting the quadratic terms. In order to develop an easier approach to modelling
the non-linear regime, it is usual to work in Fourier space, where the Euler and continuity
equations become

δ(k′)+ θ(k) = −
∫ d3q

2π3
d3q′

2π3 (2π)3δD(k − q − q′)α(q,q′)θ(q)δ(q′),

(3.32)

θ′(k′)+Hθ(k)+ 3
2Ωm(a)H2δ(k) = −

∫ d3q

2π3
d3q′

2π3 (2π)3δD(k − q − q′)β(q,q′)δ(q)δ(q′).

(3.33)

where the coupling kernels are defined as

α(k1,k2) ≡ k1 · (k1 + k2)
k2

1
(3.34)

β(k1,k2) ≡ 1
2

k1 · k2
k1k2

(k2
k1

+ k1
k2

)+ (k1 · k2)2

k2
1k2

2
. (3.35)

The fluid Eqs 3.32 and 3.33 are non-linear coupled differential equations for the density and
velocity divergence. In general, an exact solution does not exist, but it is possible to try to
solve with a perturbative approach, where δ ≪ 1 and θ ≪ 1. Standard Perturbation Theory
(see (15) for an extensive review) aims to solve the fluid equations using the following power
law ansatz

δ(k, τ) =
+∞∑

i

ai(τ)δi(k), θ(k, τ) = −H(τ)
+∞∑

i

ai(τ)θ̃i(k). (3.36)
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The expansion is in powers of the linear density field, and it is possible to write the n-th order
solutions in the form

δ(n)(k) =
n∏

m=1

{∫ d3qm

(2π)3 δ(1)(qm)
}

Fn(q1, ...,qn)(2π)3δ(D)(k − q|n1 ), (3.37)

θ̃(n)(k) =
n∏

m=1

{∫ d3qm

(2π)3 δ(1)(qm)
}

Gn(q1, ...,qn)(2π)3δ(D)(k − q|n1 ), (3.38)

where the kernels can be obtained by means of the recursive relations

Fn(q1, ...,qn) =
n−1∑
m=1

Gm(q1, ...,qn)
(2n+3)(n−1)

[
(2n+1)α(q|m1 ,q|nm+1)Fn−m(qm+1, ...,qn)

β(q|m1 ,q|nm+1)Gn−m(qm+1, ...,qn)
]
, (3.39)

Gn(q1, ...,qn) =
n−1∑
m=1

Gm(q1, ...,qn)
(2n+3)(n−1)

[
3α(q|m1 ,q|nm+1)Fn−m(qm+1, ...,qn)

+2nβ(q|m1 ,q|nm+1)Gn−m(qm+1, ...,qn)
]
. (3.40)

If we explicit the second-order density kernels, we found

F2(k1,k2) = 17
21 + 1

2
k1 · k2
k1k2

(k2
k1

+ k1
k2

)+ 2
7

[
(k1 · k2)2

k2
1k2

2
− 1

3

]
, (3.41)

G2(k1,k2) = 3
21 + 1

2
k1 · k2
k1k2

(k2
k1

+ k1
k2

)+ 4
7

[
(k1 · k2)2

k2
1k2

2

]
. (3.42)

Although second-order kernels are symmetric, generalised Eq. 3.39 and Eq. 3.40 are not
symmetrised over the arguments yet.

3.2.4 Lagrangian perturbation theory

An alternative way to deal with nonlinear modelling has been proposed in (88), known as
Lagrangian Perturbation Thoery (LPT). The idea is to trace the motion of individual fluid
elements x(q, τ) with initial spatial condition q throughout the so-called displacement field
Ψ(q, τ )

x(q, τ) = q +Ψ(q, τ). (3.43)
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By using the conservation of mass, it is possible to write a relation between the Jacobian of
the transformation and the density perturbation

J(q, τ) ≡ det [δij +∇q,jΨi] = 1
1+ δ(x, τ) . (3.44)

Taking the divergence of Eq. 3.43, it is possible to obtain the following equation for the
displacement field Ψ

J(q, τ)∇·
[

d2Ψ
dτ2 +H(τ)dΨ

dτ

]
= 3

2ΩmH2(J −1). (3.45)

By Fourier transformation, it turns out that

δ(k, τ) =
∫

d3q e−ik·q
∞∑

m=1

[−ik ·Ψ]m
m! , (3.46)

that shows how even a linear displacement Ψ(1) contributes to all orders. Particularly at the
linear order

∇q ·Ψ(1) = −D(τ)δ0(q), (3.47)

which is known as the Zel’dovich approximation. Going to higher-order corrections, it reads
as

Ψ(q, τ) = Ψ(1)(q, τ)+Ψ(2)(q, τ)+Ψ(3)(q, τ)+Ψ(4)(q, τ)+ ..., (3.48)

where, assuming no velocity curl modes, they determined as follows (89; 90)

Ψ(n)(q, τ) = Dn(τ)∇qϕn(q) (3.49)

where Dn are the n− th growth factors. Up to the second order, the growth factors read as
(15; 91)

D1(τ) = D(τ), (3.50)

D2(τ) = − 3
14D(τ)Ω− 1

143
m . (3.51)

The solution for the potential read as

∇2
qϕ1(q) = −δ0(q), (3.52)

∇2
qϕ2(q) = −G2[ϕ1(q),ϕ1(q)] (3.53)



34 Perturbation Theory

where I have defined the second order Galileian operator.

G2(A,B) = ∇ijA∇ijB −∇2A∇2B. (3.54)

Up to the second order, Lagrangian evolution rules as

x(q, τ) = q +D1(τ)∇qϕ1(q)+D2(τ)∇qϕ2(q) (3.55)

which is the initial condition for the position, particularly important for an N-body simulation
environment.

3.3 From matter to galaxies

For the purpose of finding a clear picture of the physical dynamics of structure formation in
the non-linear regime, I mainly distinguish two approaches:

1. Typically, small-scales are described with N-body simulations, which prove to be a
powerful means of solving the dynamics of particles under the influence of gravitational
evolution. However, these simulations are subject to limitations in terms of both
spatial and temporal resolution, as well as the number of points used to trace the
matter distribution. Additionally, while simulations that do not take collisions into
account offer an accurate representation of dark matter evolution, the modelling of
baryonic matter is often achieved through the use of hydrodynamic simulations, which
incorporate semi-analytic models and phenomenology for star formation and energy
feedback,

2. In general, it is possible to define an approach that describes the mapping between
the distribution of dark matter and that of galaxies. Perturbation theory represents an
effective means of achieving this, requiring introducing a range of bias parameters to
describe the mapping in the small-scale regime. The halo model (92) and the halo
abundance matching (93) are some of the notable alternatives within this category.

3.3.1 Halo model

Spherical collapse

The spherical collapse model (94) represents a well-established method for understanding
the non-linear evolution of an isolated, spherical overdensity within the context of large-scale
structure cosmology. The model represents an example of a non-linear gravitational system
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that can be solved exactly, and it is often used to parametrize the growth of a single, spherical
overdensity ∆ detached from the background density at a given time t

∆(t) = 1+ 9
2

(θ − sin(θ))2

(1− cos(θ))3 (3.56)

with θ spanning in the range [0,2π] while shell crossing is not considered. From Eq. 3.56, I
can distinguish three main phases:

• Expanding phase: The overdensity first begins to expand following the background
dynamics, but it stops growing at θ = π due to the decelerating gravitational field. This
moment is also known as the turn-around time ta,

• Collapsing phase: The overdensity evolves independently with respect to the back-
ground and starts collapsing toward a singularity of vanishing size. The spherical
collapse model remains predictive during this phase, as long as the shells do not cross
each other,

• Virialization: After reaching the turn-around time ta, the density perturbation has
reached values above unity, and the system enters a phase of violent relaxation, also
known as the Lynden-Bell mechanism (95). This is where the interaction of a single
particle with the rapidly changing gravitational potential of the system leads to an
efficient equipartition of energy among the particles, causing them to deviate from
purely radial trajectories and leading to complete virialization of the system. This
typically occurs at θ = 3π.

In the linear regime, we know that all perturbations are growing proportionally to the
growth factor of the background, which considering the Einstein de-Sitter case scales as

D(t) = a(t) ∝
(

t
tta

) 2
3 . For θ ≪ 1, the linear over-density must match with, which fixes the

proportionality constant, so that

∆0(t) = 3
20

6π

(t/tta)
2
3

(6θ −6sinθ)
2
3 . (3.57)

When the virial theorem is applied, the process is considered complete when the average
potential energy is equal to twice the average kinetic energy. This happens when Rvir =
Rta/2, and assuming that this occurs at θ = 2π, it is possible to see that ∆vir ≈ 178. In
comparison, the linearly extrapolated density perturbation in Eq. 3.57 is δcr ≡ ∆0(tvir) ≈
1.686, which is defined as the critical collapse density.
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Halo mass function

From the spherical collapse model, I outlined the idea that a halo forms whenever the
overdensity exceeds a critical value. To predict the abundance of dark matter halos during
the cosmic expansion, we can start identifying a halo mass M and filtering it on a scale R

that is related to the halo mass through the background density (4π/3)ρ̄R3. Integrating the
probability density functions over densities larger than the critical one, we get the fractional
volume relative to halos corresponding to size R or bigger

FV (δ0,R > δcr) = 1√
2πσ2(R)

∫ ∞

δcr
dδe

− δ2
2σ2(R) , (3.58)

where σ2(R) completely characterise the overdensity δ2
0,R because of Gaussianity assumed

from the inflationary paradigm. From the assumption of Press and Schechter (96), the
associated mass fraction FM (> M) is the same as fractional volume. Defining the comoving
number density of halos per logarithmic mass bin as the halo mass function n̄h(M) so that

FM (> M) = 1
ρ̄

∫ ∞

M
dlnM′M ′n̄h(M ′) = FV (δ0,R > δcr). (3.59)

Hence, by differentiating, I can obtain the so-called Press-Schechter mass function (96)

n̄h(M) = f(σ(M)) ρ̄

M

dlnσ(M)−1

dM
(3.60)

where f(σ(M)) is the amount of mass encapsulated in perturbation of typical scale R, that
can be expressed as

f(σ(M)) =
√

2
π

δcr
σ(M)e

− δ2
2σ2(M) . (3.61)

This result is known as the so-called Press-Schechter theory (PS) (96), and other works
extended the theory taking into account the cloud-in-cloud problem, that is the possibility
that over-densities smaller than the critical one can be part of halo with size bigger than R

(97). For instance, the well-known Sheth and Tormen (98) model proposed an extension of
the mass function based on elliptical collapse, modifying Eq.3.61, and provided a better fit
compared to N-body simulations (98; 99).

However, while the halo mass function provides insight into the average number density
of halos, one may also investigate its variations with respect to changes in the background
matter density. In the case of a spherical perturbation, denoted by ∆, which modifies the
local matter density relative to the background density as ρ = (1+∆)ρ̄, the response to this
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Figure 3.3 Illustration of a two-dimensional Gaussian density field δ(R) smoothed on different scales
R : [0.4,1,2]h−1Mpc, respectively top-left, top-right, bottom-left. The bottom right panel refers to
R = 2h−1Mpc along with the spherical collapse threshold. Picture from (14).

perturbation can be quantified through the peak-background bias parameter (100)

b ≡ 1
n̄h|∆=0

∂n̄h|∆
∂∆ |∆=0 (3.62)

Considering ∆ as a spatial perturbation of the background matter density, I can identify the
local abundance of halos nh(x) = n̄h|∆ through which it is possible to predict the relation
between matter and halos perturbations

δh(x) = nh(x)
n̄h

−1 = b∆, (3.63)
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that explain how halos are biased tracers of the underlying dark matter perturbations. When
applying Eq. 3.61 to Eq. 3.62, I find,

b(M) = σ(M)2

δcr

dlnf(σ(M))
dσ(M) , (3.64)

which has been tested with many mass functions against N-body simulations (101).

Halo occupation distribution

Once we have found that dark matter halos are tracers of the underlying dark matter fluctua-
tions, we can expect this can be applied to galaxies. Actually, the spherical collapse model
and its assumptions do not hold in galaxy formation physics. However, an attempt to give a
picture of how galaxies trace dark matter perturbation in a similar scenario has been given in
the so-called halo occupation distribution (HOD) framework (102). In most implementations
of the HOD approach, I distinguish between “central” and “satellite” galaxies. Every halo
hosts one or zero central galaxies close to the centre of mass of the halo, and all other galaxies
are satellite ones. Let me call Nc and Ns the number of central and satellite galaxies in
a given halo so that Nc ∈ [0,1] and Ns ∈ [0,1,2, ...]. In the model of (103) the number of
central and satellite galaxies is given by

⟨Nc(M)⟩ = 1
2

[
1+erf( lnM − lnMmin

σlnM
)
]

, (3.65)

⟨Ns(M)⟩ = ⟨Nc(M)⟩×

(M−M0
M1

)α, M > M0

0, M ≤ M0
(3.66)

where M0 is the minimum mass for a halo to host a satellite galaxy and M1 + M0 is the
typical mass of a satellite galaxy, while σlnM is the logarithmic scatter between galaxy
luminosity and halo mass and Mmin represents a cut-off for the probability for hosting a
galaxy. In general, since the existence of satellite galaxies is conditioned by the presence of a
central galaxy, it is a usual practice to define the parameter Ns so that Ns = NcNs. Assuming
this condition, it is possible to express the average number of galaxies as

n̄g =
∫

dlnMn̄h(M)⟨Nc(M)
[
1+ ⟨N (M)s

]
, (3.67)

where ⟨Nc|M ⟩, ⟨Ns⟩ are respectively the values of central and satellite galaxy numbers in
a halo of mass M and the parameter Mmin can be adjusted to match the number density of
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some observed population of galaxies. Therefore, I can express the linear bias parameter as

bg = 1
n̄g

∫
dlnMn̄h(M)⟨Nc(M)

[
1+ ⟨N (M)s

]
b(M). (3.68)

This equation represents, according to the peak-background argument, the linear response of
the mean galaxy density to a change in the background density. The galaxy bias depends on
the same properties of the galaxy sample, such as their luminosities.

3.3.2 Perturbative bias

So far, the HOD model has provided us with a picture of galaxy fluctuations in the nonlinear
regime, making the assumption that occupation numbers only depend on the mass of the
hosting halo. On the other hand, perturbative approaches to galaxy bias address the problem,
at least on a large scale, by adopting an alternative point of view. Coming back to the peak
background split argument, the linear relation between galaxies and dark matter perturbations
δg(x) = bδ(x) holds only at large scales and where the evolution is far from being in the
nonlinear regime due to the assumption that δ(x) ≪ 1. An alternative to the HOD model and
a general extension to nonlinear small scale has been provided in (104). The main idea is
expanding the galaxy density contrast in a perturbative series, a power-law function of matter
fluctuations

δg(x) =
∑
n=1

bn

n! δ(x)n (3.69)

where I recognize the linear bias b = b1. The perturbative approach encapsulates the spherical
collapse and also takes into account other additional effects emerging at higher order. One of
them is the impact of the tidal field (105; 106). At the second order, the perturbative galaxy
bias expansion reads

δg(x) = b1δ(x)+ b2
2 δ(x)2 +γ2G2(Φ|x), (3.70)

where, following (105), G2(Φ|x) is the so-called second-order Galileon operator, a Galileian
invariant term given by

G2(Φ|x) = (∇ijΦv)2 − (∇2Φ)2
v, (3.71)

and generalised in Eq. 3.54, where Φv is the velocity potential, defined as ∇2Φv(x, τ) ≡ θ ≡
∇·v. Concerning the expansion in Eq. 3.70:

• The linear bias term, b1, quantifies the relationship between the galaxy density and
the dark matter density on large scales. It is defined as the ratio of the galaxy density
fluctuation to the dark matter density fluctuation. In the simplest models, it is assumed
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that b1 is a constant, independent from scale and time, and that the galaxy density
is proportional to the dark matter density. However, studies have shown that the
value of b1 can vary with scale, redshift, and galaxy properties. The b1 parameter
has been extensively studied in the literature, with a focus on understanding the
underlying physical mechanisms that determine the galaxy-dark matter connection.
Several works have investigated this relationship using different observational and
theoretical approaches, such as halo models, perturbation theory, and large-scale
structure simulations (107; 108; 109),

• The b2 parameter quantifies the non-linearity in the relationship between the distribution
of galaxies and the distribution of dark matter. This non-linearity arises from the
complex physics of galaxy formation and bias, which deviates from a simple linear
relation between the galaxy and dark matter density fields. The b2 parameter has been
studied in a number of theoretical and observational works, see (14) for a review. These
works have examined the relationship between the distribution of galaxies and the
distribution of dark matter on various scales and in different cosmological models,
providing insights into the underlying physical mechanisms and the dependence on
cosmological parameters,

• The term γ2 is a parameter used in the study of the large-scale structure of the universe
that describes the relationship between the density of galaxies and the gravitational
potential field. Without considering any source of primordial non-gaussianity, this
relationship is commonly assumed to be linear, with the density of galaxies being
proportional to the gravitational potential field. However, the γ2 parameter accounts
for any nonlinear dependencies of the galaxy distribution on the gravitational potential
field. This is particularly relevant in the presence of dark matter, which is known to
significantly impact the gravitational potential field. The γ2 term has been studied in
several works; see (14) for an extensive review.

The relationships between these three bias parameters have been extensively analyzed in
the literature.

• The relationship b2(b1,γ2) reported in (100), expressed as:

b2 = 0.412−2.143b1 +0.929b2
1 +0.008b3

1 + 4
3γ2 (3.72)

is a fitting formula that has been derived from separate universe simulations. It is
important to mention that the 4

3γ2 term is not given in (100) due to the difference in
the bias expansion used in that study,
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• Several studies have focused on the relationship γ2(b1). Specifically, as will be pre-
sented later, the local Lagrangian relationships (see Eq 4.68) have been studied, and
some works (100; 110) have slightly invalidated the γ2,LL(b1) where LL refers to local
Lagrangian. An alternative estimation of the tidal bias parameter in the context of the
excursion set approach was discussed in (111). They make a prediction for γ2, which
can be represented by the following quadratic fit:

γ2(b1) = 0.524−0.547b1 +0.046b2
1. (3.73)

This fit provides a slightly better description of the measurements compared to the
assumption of local Lagrangian.

Nonlinear quantities like δn receive contributions from all scales, even large. A common
practice is usually to impose a cutoff smoothing δ in order to remove contributions below
a certain scale Λ, an arbitrary quantity we fix to parametrise our ignorance of small-scale
physics. An approach to remove these sources of issues has been developed in the so-
called renormalized halo bias (83), for which large-scale contributions can be systematically
removed by adding local counterterms. Each of the bias parameters that appear in the bias
perturbative expansion is free, and it should be marginalised in a cosmological analysis of
a survey. Their value parametrises the small-scale physics of galaxy formation imprinted
into the large-scale signal. The perturbative bias approach, which I will follow in this Thesis,
substantially differs from the HOD framework for which there is a model to treat small-scale
processes. Contrary, the perturbative bias approach is an agnostic strategy to model small-
scale physics, and for the general approach to the problem, it can be used and extended to
different tracers of the matter fluctuations, such as, for example, the 21 cm emission line.
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So far, we have briefly presented the theory of gravitational instability to describe the genera-
tion and subsequent amplification of small departures from homogeneity and their evolution
into observable extragalactic objects. Their spatial distribution encodes precious information
on the geometry of the Universe and on the properties of the main components (dark matter,
dark energy, baryons, photons, neutrinos) that contribute to the mass-energy budget of the
system. Efficient extraction of this precious information can be obtained by measuring the
statistical properties of this distribution and their comparison with theoretical predictions that,
as we shall see, can be obtained using either a standard or effective perturbative theory ap-
proach. In their early stage of evolution, cosmological fields are well described by Gaussian
statistics which, in turn, only require considering two-point statistics for a complete statistical
characterization. Deviations from Gaussianity not present in the initial conditions are induced
by non-linear dynamical processes as well as from the matter-to-galaxy mapping known as
galaxy bias. In this case, higher-order statistics are required to collect all available informa-
tion. The modelling and the measurement of the first and most rewarding of these statistics,
the 3-point correlation function, constitutes the focus of this and the following chapters. This
has provided valuable cosmological information during the years (112; 113; 114).

4.1 Correlation functions of density fluctuations

Correlation functions are central to Galaxy Clustering, which involves studying the distribu-
tion and clustering of galaxies. As discussed in the previous chapter, correlation functions
can be represented in either configuration space or Fourier space. These functions are closely
related to the statistical properties of inhomogeneities and how they evolve over time. Un-
derstanding correlation functions can provide insight into the underlying physical processes
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driving the distribution and clustering of galaxies, as well as the overall structure of the
universe.

4.1.1 Statistical description

Let us consider one perturbation g(x) associated with a random field. This term denotes
a set of functions gn(x), each coming with a probability Pn. The set is referred to as the
ensemble, and the individual function is the so-called realization. Let us define the two-point
correlator

⟨g(x)g(x′)⟩ ≡
∑
n

Pngn(x)gn(x′). (4.1)

The random field is typically assumed to be statistically homogeneous and isotropic.
This means that the probabilities assigned to its possible realizations are unchanged under
translations, rotations, and a transformation that reverses the orientation of the coordinate
system. Homogeneity, or translation invariance, means that the probability assigned to a
realization gn(x) is the same as that assigned to gn(x + X) for any fixed X. One realization
can be used to generate the entire random field by letting X take on all possible values. This
is known as the ergodic property of the field. According to the ergodic theorem, the ensemble
average ⟨g(x)g(x′)⟩ can be considered as a spatial average at a fixed x′ − x for a single
realization of the ensemble, as in the realistic case in which we have a single cosmological
realisation - our universe -, and the same holds for higher-order correlators.

It is possible to Fourier expand the perturbation; working in a box of comoving size L,
we have

g(x) = 1
L3
∑
n

gne−ikn·x, (4.2)

gn =
∫

d3 x g(x)e−ikn·x. (4.3)

where kn = 2nπ/L. In the limit L → +∞ we have

g(x) = 1
L3

∫
d3 k gne−ikn·x, (4.4)

gn =
∫

d3 x g(x)e−ikn·x. (4.5)

The simplest type of random field is the Gaussian random field, defined as one whose Fourier
coefficients have no correlation except for the reality condition

g(−k) = g∗(k) (4.6)
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Going into configuration space, let me remind that the quantity g(x) is a superposition of
Fourier modes. Because of the central limit theorem, the sum of uncorrelated quantities has a
Gaussian probability distribution. We can conclude that the probability distribution g(x) at a
given point is Gaussian with mean-square being

σ2
g(x) ≡ ⟨g2(x)⟩ = 1

(2π)3

∫ +∞

0
Pg(k)d3k =

∫ +∞

0
Pg(k)dk

k
. (4.7)

We can note that Pg(k) represents the contribution to σ2 per unit logarithmic interval of k.

4.1.2 Two-point statistics

Let us apply the correlation formalism to the cosmological density field traced by either mass
particles or discrete objects. Considering the perturbed density field, which departure from
homogeneity is characterised by the quantity δ(x) that is so spatial-dependent, it is possible
to define the so-called two-point correlation function as follows

ξ(x1,x2) ≡ ⟨δ(x1)δ(x2)⟩ =
∫

dδ(x1)dδ(x2)P[δ(x1)δ(x2)]δ(x1)δ(x2). (4.8)

where the quantity P[δ(x1)δ(x2)] represents the probability density function (PDF) associ-
ated to the pair δ(x1)δ(x2) and expresses the probability

P[δ(x1)δ(x2)]δ(x1)δ(x2) (4.9)

for a field δ to have values between δ(xi) and δ(xi) + dδ(xi) with i = 1,2. Because of
statistical homogeneity and isotropy, Eq. 4.8 is a function of the modulus of the separation
r = |x1 −x2|. To give a physical picture, let us consider a discrete sampling of the continuous
field δ(x). This is known to be a Poisson process, where the probability of finding an
object within an element of volume V is proportional to the density, following a Poissonian
distribution with intensity ρ(x)δV/m where m is the mass of the discrete tracer. Taking the
ensemble average over the Poisson distribution, denoted as ⟨⟩×, we get

⟨n(x)⟩× = n̄[1+ δ(x)] = n̄+ δn(x), (4.10)

where n̄ refers to the ensemble-averaged number density. Taking the average number of
objects given two coordinates x1, x2 we obtain

⟨n(x1)n(x2)⟩× = n̄2[1+ δ(x1)][1+ δ(x2)]+ n̄[1+ δ(x1)]δD(x1 − x2). (4.11)
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Taking the average over the ensemble, we get

⟨⟨n(x1)n(x2)⟩×⟩ = n̄2[1+ ξ(r)]+ n̄ δD(x1 − x2). (4.12)

The physical meaning is that if ξ > 0, the objects indicate an excess probability over the
Poisson expectation, and ξ < 0 indicates the opposite case.

If the density perturbations are Gaussian, it means the probability density functions
involved in the computation of higher-order statistics is given through the following PDF

P[δ(x1), ..., δ(xn)] = 1√
(2π)n

exp
−1

2

n∑
i,j=1

δ(xi)Θ−1
ij δ(xj)

 , (4.13)

where the matrix Θ encodes the correlation between fields at various positions, i.e.
Θij = ξ(|xi − xj |). This stresses the importance of the two-point correlation function, as it
completely characterises an N-point PDF under the Gaussian assumption.

So far, we have presented the two-point correlation function in the so-called configuration
space. Actually, even more used, the Fourier space is an optimal space to deal with clustering
statistics because the Fourier coefficients δ(k) evolve independently in the linear regime,
and it facilitates the description in the nonlinear regime. For this purpose, let us define the
two-point statistics in Fourier space as the inverse Fourier transform of the correlator shown
in Eq. 4.8 as

⟨δ(k1)δ(k2)⟩ =
∫

d3x1d3x2 e−i(k1·x1+k2·x2)⟨δ(x1)δ(x2)⟩

= (2π)3δD(k1 − k2)
∫

d3re−ik1·rξ(r)

= (2π)3P (k1)δD(k1 − k2),

(4.14)

where δD is the Dirac delta, r = x1 − x2 and it turns out the definition of the power spectrum
P (k) as the Fourier transform of the two-point correlation function, results known as the
Wiener-Kinchin theorem

P (k) = (2π)3
∫

d3 r e−ik·rξ(r), (4.15)

ξ(r) = (2π)3
∫

d3 k eik·rP (k). (4.16)

Adopting the same procedure applied before, we can treat the case in which the power
spectrum is computed for discrete tracers. It turns out that the discrete power spectrum is
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modulated by a constant term, the shot noise, that contributes on all scales

⟨⟨δn(k1)δn(k2)⟩×⟩ = (2π)3
[
P (k)+ 1

n̄

]
, (4.17)

where we have focused on the perturbations to the number density δn(k1).

4.1.3 Higher-order statistics

The power spectrum is a well-defined quantity for almost all homogenous fields, and it is
particularly useful when we deal with Gaussian fields. This means that any odd expectation
value of a Gaussian field vanishes, while even expectations can be expressed as a sum of all
possible two-point contractions. This is known as the Wick theorem, for which

⟨δ(k1)...δ(k2p+1)⟩ = 0 (4.18)

⟨δ(k1)...δ(k2p)⟩ =
∑

all pair associated

∏
p pairs (i, k)

⟨δ(ki)δ(kj)⟩. (4.19)

The physical meaning is that all the statistical properties of the random field δ(k) are entirely
determined by the shape and normalisation of P (k).

In general, it is possible to define the so-called higher-order correlation functions as
the connected part of the joint ensemble average of the density in an arbitrary number of
locations. They can be expressed as

ξN (x1, ...,xN ) = ⟨δ(x1, ...,xN )⟩c

= ⟨δ(x1, ...,xN )⟩−
∑

S∈P({x1,...,xN })

∏
si∈S

δ(xs1 , ...,xsn)⟩c
(4.20)

where N ≥ 3 and the sum and the products are made over the proper partition {x1, ...,xN },
the subscript ⟨⟩c indicates the connected part and s is a subset of the partition S. The
decomposition between the connected part and the non-connected one can be explained
throughout Fig. 4.1, for which any ensemble average can be decomposed into a product of
connected parts. In the case of Gaussianity, all the connected correlation functions are zero
except for the two-point correlation function as a consequence of the Wick theorem.

For non-Gaussian overdensity fields, in general, the two-point correlation function is
not enough to give a complete description, and we need to rely on higher-order correlation
statistics. A visual impression of how non-Gaussianity affects the clustering properties can
be obtained from Fig 4.2. The two plots, taken from (16) represent a mock, though realistic,
Gaussian distribution of SDSS galaxies in a slice 50Mpc/h thick (left) and a non-Gaussian
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Figure 4.1 Figurative description of the three-point moment in terms of the unconnected (first four
diagrams, from left to right) and connected (last diagram) parts. Picture from (15)

realisation of a Rayleigh-Lèvy flight (i.e. a collection of random walks). Both samples have
the same two-point correlation functions but remarkably different visual appearances and
higher-order correlation properties. In general, even if non-Gaussianity is not imprinted into
the primordial density fluctuations as in the case of the so-called primordial non-Gaussianity,
it can arise from the nonlinear gravitational evolution of perturbations or the nonlinear nature
of biasing between dark matter fluctuations and their tracers.

Figure 4.2 Slices of thickness 50h−1Mpc of a mock galaxy distribution for SDSS (left) and a
realisation of a Rayleigh-Lèvy flight (right). They have the same two-point correlation function, and
they exhibit visible differences. Figure from (16)

Particularly interesting is the three-point correlation function, or its Fourier space counter-
part, the bispectrum, because it is the higher-order statistics with the highest signal-to-noise
ratio in the nonlinear regime. It turns out that it is crucial to disentangle cosmological
information hidden in nonlinear evolution. It defines the probability of finding a triplet of
objects in excess over a random distribution of points. As for the two-point case, we can
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define the three-point correlation function for a set of discrete tracers. We get

⟨n(x1)n(x2)n(x3)⟩× = n̄3[1+ ξ(r12)+ ξ(r23)+ ξ(r31)+
3PCF︷ ︸︸ ︷

ζ(r12, r23, r31)]
+ n̄2[1+ ξ(r12)] δD(x1 − x2)+cyc
+ n̄δD(x1 − x2)δD(x2 − x3)

(4.21)

where we used rij = x1 −x2. Let us note that by the assumption of homogeneity and isotropy,
the three-point correlator is here a function of three sides only. As for the two-point case, the
discrete case brings shot noise contributions. Following the same path as in the two-point
case, we can apply the Wiener-Kinchin theorem. It turns out that the bispectrum B(k1,k2,k3),
defined as

⟨δ(k1,k2,k3)⟩ ≡ B(k1,k2,k3)δD(k1 + k2 + k3). (4.22)

is linked to the three-point correlation function ζ(r12, r13, r23) by a Fourier transform

B(k1,k2,k3) = (2π)9
∫

d3r1d3r2d3r3 ζ(r12, r12, r31)e−i(k1·r1+k2·r2+k3·r3),

(4.23)

ζ(r12, r23, r31) =
∫ d3k1d3k2d3k3

(2π)9 B(k1,k2,k3)ei(k1·r12+k2·r23+k3·r31)

× δD(k1 + k2 + k3). (4.24)

Going to the discrete tracer of the bispectrum, we obtain

⟨⟨δn(k1)δn(k2)δn(k3)⟩×⟩ = (2π)3
[
B(k1,k2,k3)+ 1

n̄
[P (k1)+P (k2)+P (k3)]+ 1

n̄2

]
× δD(k1 + k2 + k3).

(4.25)

As in the two-point case, the discrete tracer of the bispectrum brings a constant term that
contributes on all scales.

4.2 Modeling clustering statistics from perturbation theory

Correlation functions have been modelled using both perturbative and non-perturbative
methods (115; 116; 117). The focus of this thesis is on perturbative modelling, which has
been a useful tool for studying the clustering properties of celestial objects. The most
common approach is known as Standard Perturbation Theory (SPT) (see (15) for a review).
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However, more advanced approaches have been developed to address the limitations of SPT,
such as Effective Field Theory (EFT). There is typically a distinction between modelling
perturbations in dark matter and those in halos and galaxies. Research in this area is addressed
by examining the relationship between the fluctuations of luminous tracers (such as galaxies)
and dark matter perturbations. Furthermore, it is worth stressing that Perturbation Theory
provides a framework for understanding how non-Gaussianity arises from the gravitational
evolution of fluctuations. Although initial fluctuations may be Gaussian, their correlations
with nonlinear evolution can lead to higher-order statistics that are not zero.

4.2.1 Modelling two- and three- point statistics in Fourier space: the
matter case

Perturbative model for the matter power spectrum

The simplest and trivial application of Perturbation Theory is given by the linear power
spectrum, for which we do not need to consider perturbative expansions except the leading
one, i.e. when the overdensities linearly evolve (see 3.2.2). In this case, the linear power
spectrum PL(k) is usually computed throughout relativistic Boltzmann codes (118; 119),
despite analytical approaches having been developed (120). Generally, it can be decomposed
as follows:

PL(k) = knpT 2(k) (4.26)

where np is the primordial spectral index. A np = 1 value characterises the so-called Harrison-
Zel’dovich scale-invariant spectrum, and T (k) is the transfer function describing the evolution
of the density field perturbations through decoupling.

To model the power spectrum in the nonlinear regime, it is usually assumed as common
practice to deal with perturbative expansion at higher orders than the leading one. In this
context, it is useful to introduce the notion of loops defined as the contribution to the N-
point correlation function coming from considering higher perturbative expansions in the
overdensity field in Eq. 3.38 with respect to the leading one (i.e. ⟨δm

1 , .., δn
N ⟩, with m+ ..+

n = N ). To give an idea, one-loop contributions consider ⟨δm
1 , .., δn

N ⟩, with m+ ..+n = 2N ,
two-loops contributions with m+ ..+n = 3N and so on. For example, the second order in
the overdensity field is the leading order in the power spectrum. The next-to-leading order
accounts for four orders in the overdensity fields by the Wick theorem. To build four order
overdensity fields term, we do it by correlating the linear one with a third one, twice given
two different wavevectors k and k′, or by correlating two second-order overdensity fields.
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The correlation functions read as

⟨δ(k)δ(k′)⟩ = ⟨δ(1)(k)δ(1)(k′)⟩+2⟨δ(1)(k)δ(3)(k′)⟩+ ⟨δ(2)(k)δ(2)(k′)⟩+O(δ(6)) (4.27)

Actually, a popular and useful prescription to compute these terms can be found by adopting
the so-called Feynman-like rules. For the calculation of the i-th order contribution to the
n-spectrum:

1. Draw all the connected diagrams with n external lines up to the desired order i in δ(1):

(a) For each vertex V with ingoing momenta qi and outgoing momentum k, write a
Dirac delta of the form (2π)3δD(k −∑

i qi) and a coupling kernel V (q1, ...,qn).
In real space modelling, they are Fm(q1, ...,qm),

(b) Assign a term of the form (2π)3δDPL(q) - called the propagator of the diagram -
to each outgoing momenta q and q’,

(c) Integrate over loop momenta
∫

d3 qi
(2π)3 ,

(d) Multiply the symmetry factor of each diagram,

(e) Sum over possible permutations of external lines.

2. Iterate the steps for all the possible diagrams at the i-th order contribution to the
n-spectrum.

An example that clarifies how to use the Feynman rules is shown in Fig. 4.3 and Fig. 4.4.
Particularly at the so-called tree-level in Fig. 4.3, applying the Feynman rules becomes
trivial.

P11

k kPL(k)

Figure 4.3 Tree-level power spectrum diagram. P11 represents the diagrammatic term corresponding
to PL

In fact, the tree-level contribution to the power spectrum corresponds to the linear
propagator itself, i.e. the linear power spectrum

Ptree−level(k) ≡ P11(k) = PL(k). (4.28)

Concerning the one-loop expansion of the power spectrum, the two diagrams involved
in the expansion are represented in Fig. 4.4. Here, the two diagrams at one loop represent
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+

P13,m

k kPL(k) k k

P22,m

PL(|k − q|)

PL(k)

Figure 4.4 One-loop power spectrum diagrams. Left diagram refers to P13,m, right to P22,m

the two possible perturbative contributions to the two-point correlator in Eq. 4.27. The
loop in P13,m must be permuted over the two possible vertexes. Hence, a factor of two will
be accounted for when it is considered in the full evaluation at one-loop. By applying the
mentioned rules, we can write the contributions in terms of loop integrals

P one−loop(k) = PL(k)+2P13,m(k)+P22,m(k) (4.29)

where - indicating through the index m the matter contribution -,

P13,m(k) = 3PL(k)
∫ d3q

(2π)3 PL(q)F (s)
3 (k,q,−q), (4.30)

P22,m(k) =
∫ d3q

(2π)3 PL(q)PL(|k − q|)|F (s)
2 (q,k − q)|2, (4.31)

where the kernels F
(s)
2 (q,k − q) and F

(s)
3 (k,q,−q) are defined in Eqs. 3.42, 3.39 and

symmetrised over the arguments. These integrals must be evaluated numerically due to the
numerical nature of PL. However, the term P13 contains propagators that depend only on the
radial part of the loop variable q. This leads to further simplification and, in general, reduction
to a one-dimensional integration by integrating over the angular dimension. Contrary, the
P22,m term contains propagators that also depend on the one angle of the loop variable q,
meaning it can be reduced maximum to a two-dimensional integration.

The divergence properties of loop integrals depend on the power-law behaviour of
the linear power spectrum, which is summarised in Tab 4.1. Despite P13,m, P22,m being

UV-divergent IR-divergent

P13,m np > 1 np < −1
P22,m np > 1/2 np < −1

Table 4.1 Divergence conditions for one-loop terms P13,m and P22,m

convergent in a power-law cosmology respectively in the case n = 1, −1 ≤ n ≤ 1/2, their
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sum, the total contribution P 1−loop, is well defined in the range −3 ≤ np ≤ −1. The
contribution of the one-loop terms, as represented in Fig. 4.5, is sizeable in the large scale
range. In general, SPT (see (15) for a review) of clustering statistics has proved, so far, an
effective way of accessing nonlinear scales in Fourier space up to wave number as large as
kmax ∼ 0.15 hMpc−1 (60). Hence, the widespread use of perturbative expansion techniques
to investigate the clustering properties of the matter in the universe (55; 56; 57; 58; 59; 60).

Figure 4.5 Power spectrum at one-loop and single contributions, assuming ΛCDM cosmology from
Planck (3).

Furthermore, to improve the accuracy of the model at the scale of the baryonic acoustic
oscillations (BAO) feature, it is a common practice to perform the so-called infrared (IR)
resummation (68; 121; 122). This is a crucial step to correctly account for higher perturbative
order contributions, as best shown by the case of the two-point correlation function in
configuration space. In that case, neglecting resummation would generate a spurious double
peak around the BAO scale, making it impossible to use it as a standard ruler for precise
observational tests. We also include the IR resummation in our models to avoid generating
similar spurious features in the 3PCF. To include the IR resummation, we first decompose
the linear power spectrum into a smooth and wiggly component so that (123)

PL(k) = Pnw(k)+Pw(k). (4.32)

The effect is splitting the oscillating contribution from BAO imprinting into the power
spectrum from the smoothed part from the remaining non-baryonic physics ruling the shape
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of the power spectrum. Then, we damp the wiggling part to recover the infrared tree-level
power spectrum (122)

P IR
L (k) = Pnw(k)+ e−k2Σ2

Pw(k), (4.33)

where the damping factor is given by the relative displacement two-point function in the
Zel’dovich approximation at the BAO scale (121)

Σ2 =
∫ kS

0

d3q
(2π)3

Pnw(q)
3q2

[
1− j0( q0

kBAO
)+2j2( q0

kBAO
)
]
, (4.34)

where jn(x) are spherical Bessel functions and kBAO = π/ℓBAO with ℓBAO = 110Mpc/h.
The kS cutoff is commonly fixed to kS = 0.2h/Mpc (121; 124). We can finally recall the
infrared resummed power spectrum as follows

PLO,m(k) = P IR
L (k),

PNLO,m(k) = PLO,m(k)+P IR
13,m(k)+P IR

22,m(k)

where we have defined the leading and the next-to-leading order for the matter power
spectrum.

Perturbative model for the matter bispectrum

Moving to bispectrum statistics, it is possible to draw the associated diagram in Fig. 4.6 at
the tree-level order. By applying the Feynman rules, the corresponding model reads as

k1

k 2

k
3

P L
(k 1

)

P
L (k

2 )

Figure 4.6 Tree-level bispectrum diagram. B211,m represents the diagrammatic term corresponding
to Btree−level,m

Btree−level,m(k1,k2,k3) ≡ B211,m(k1,k2,k3) = 2F2(k1,k2)PL(k1)PL(k2)+cyc. (4.35)
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where “cyc” refers to cyclic permutations over the external momenta k1,k2,k3, and the factor
of two derives from the symmetry factor of the diagram. The resulting bispectrum scales as
P 2

L. In Fig. 4.7, I report the four diagrams associated with one-loop perturbative expansions.
As in the previous case, it is possible to compute the associated one-loop bispectrum as

k1

k 2

k
3

P L
(q

)

P
L (q +

k
3 )

P
L

(|
k

2
−

q
|)

+

B222,m

k1

k 2

k
3

P L
(q

)

P L
(|k

2
−

q|)

P
L (k

3 )

+

B321−I,m

k1

k 2

k
3

P L
(k 2

)

P
L (k

3 )

PL(q) +

B321−II,m

k1

k 2

k
3

P L
(k 2

)

P
L (k

3 )

PL(q)

+

B411,m

Figure 4.7 One-loop bispectrum diagrams. From right to left: B222,m, B321−I,m, B321−II,m, B411,m

follows

Bone−loop
m = Btree−level,m +B222,m +B321−I,m +B321−II,m +B411,m , (4.36)

where

B222,m = 8
∫

d3q F2(−q,k3 +q)F2 (k3 +q,k2 −q)F2(k2 −q,q)

×PL(q)PL(|k2 −q|)PL(|k3 +q|), (4.37)

B321,I,m = 6PL(k3)
∫

d3q F3(−q,− k2 +q,−k3)F2(k2 −q,q)

×PL(|k2 −q|)PL(q)+ all perms, (4.38)

B321−II,m = 6PL(k2)PL(k3)F2(k2 ,k3)
∫

d3q F3(k3,q,−q)

×PL(q)+ all perms, (4.39)

B411,m = 12PL(k2)PL(k3)
∫

d3q F4(q,−q,−k2,−k3)

×PL(q)+ cyc. (4.40)

where I denoted with “all perms” and “cyc”, respectively, permutation over all possible
exchanges and the already mentioned cyclic permutations. Similar to the power spectrum



56 Matter and galaxy clustering statistics

case, the propagators involved in the different diagrams are functions of the radial and, in
some cases, the angular part of the loop variables. In B411,m and B321−II,m diagram, they
depend only on the radial so that these integrals can be reduced to one dimension. For the
B321−I,m, the propagator depends only on one angle so that it can be reduced to a two-
dimensional integral. Finally, B222,m must be evaluated in its three dimensions due to the
dependence of the propagators on all the degrees of freedom of the loop variable. At the one-
loop level, the bispectrum comprises two distinct components: the tree-level contributions,
which involve the combination of two linear power spectra (represented by PL), and the
one-loop contributions, which are comprised of three linear power spectra (represented by
PL). This serves as a means of breaking the degeneracies between the parameters of bias and
the amplitude of the power spectra during the fitting process. As for the power spectrum case,
to reach sub-per cent accuracy on the BAO scale, an IR-resummation step is also added to the
bispectrum modelling. It simply consists of using the IR-resummed power spectrum as input
power spectrum in both the tree-level and one-loop contributions for the bispectrum This
allows using the leading and next-to-leading orders, connected with tree-level and one-loop
contributions by the infrared resummation scheme

BLO(k1,k2,k3) = BIR
tree(k1,k2,k3), (4.41)

BNLO(k1,k2,k3) = BIR
tree(k1,k2,k3)+BIR

one−loop(k1,k2,k3). (4.42)

4.2.2 The effective field theory approach for modelling for the matter
power spectrum and bispectrum: the matter case

Despite SPT providing us with a powerful description of nonlinear scales, it exhibits some
shortcomings, such as the fact that on small scales, the density is large and the power series
does not converge, and shell crossing leads to multi-streaming and departures from the
assumption of pressureless fluid. In addition to the mentioned fact that the behaviour of the
linear power spectrum determines that for certain power laws potential divergencies. Those
shortcomings represent the main basis over which the attempt to build an effective field theory
(EFT) description of small scales has been provided. Indeed, a series of works (65; 66; 67; 68)
addressed an alternative effective description of long-wavelength modes where SPT usually
fails. The EFT procedure uses an effective stress tensor expressed in terms of all operators of
long-wave-length density and velocity fields. Taylor expanding the effective stress tensor
gives us an infinite series of unconstrained parameters associated with each perturbative
expansion. These parameters can be treated as coupling constants in the Wilson approach
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to renormalisation (125). EFT coupling coefficients can be seen as counterterms that can
be used to cancel the dependence of SPT on the UV scale and to model a non-ideal stress
tensor. The remaining cutoff-independent part of the counterterms quantifies the impact
of physics that cannot be described perturbatively by introducing effective interaction on
long-wavelength modes. For the power spectrum, the EFT procedure adds a counter-term at
the one-loop level, depending on the parameter c0, that should be fitted in a cosmological
analysis

P 1−loop
EFT (k) = PL(k)+2P13,m(k)+P22,m(k)−2c0k2PL(k), (4.43)

being Pctr(k) = −2c0k2PL(k) the counter-term.
Concerning modelling bispectrum in the EFT framework at the next-to-leading order, it

is possible to express this contribution as the sum of four counterterms (60; 126; 127):

BEFT(k1,k2,k3) = BNLO(k1,k2,k3)+Bc0 +Bc1 +Bc2 +Bc3 , (4.44)

where

Bc0 = c0(z)
[
D(z)

]4[
2PL(k1)PL(k2)F̃ (s)

2 (k1,k)+2 perms (4.45)

−2k2
1PL(k1)PL(k2)F2(k1,k)+5 perms

]
,

Bc1 = −2c1(z)[D(z)]4k2
1PL(k2)PL(k3)+2 perms, (4.46)

Bc2 = −2c2(z)[D(z)]4k2
1

(k2 ·k3)2

k2
2k2

3
PL(k2)PL(k3)+2 perms, (4.47)

Bc3 = −2c3(z)[D(z)]4(k2 ·k3)[k1 ·k2
k2

2
+ k1 ·k3

k2
3

]PL(k2)PL(k3)+2 perms, (4.48)

where F̃ (s) is defined as

F̃
(s)
2 (k1,k2) = 1

(1+ ζ)(7+2ζ) [(5+ 113ζ

14 + 17ζ2

7 )(k2
1 +k2

2)

+(7+ 148ζ

7 + 48ζ2

7 )(k1 · k2)

+(2+ 59ζ

7 + 18ζ2

7 )( 1
k2

1
+ 1

k2
2

)(k1 · k2)2

+(7
2 + 9ζ

2 + ζ2)(k2
1

k2
2

+ k2
2

k2
1

)(k1 · k2)

+(20ζ

7 + 8ζ2

7 )(k1 · k2)3

k2
1k2

2
].

(4.49)
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Following (67) ζ = 3.1, but in (68) there is no evidence of different predictions from adopting
ζ = 2. In this thesis, I use the fiducial value of ζ = 3.1.

4.2.3 Modelling two- and three- point statistics in Fourier space: the
galaxy case

Perturbative model for the galaxy power spectrum and bispectrum

The perturbative modelling of two and three -point statistics for the galaxy distribution
requires a more sophisticated treatment compared to the matter case examined in the previous
section. Here, I explore the case within the framework of SPT, subsequently applied in this
Thesis, not focusing on the so-called stress-tensor contributions, which are analogous to
the EFT modelling in the galaxy case. For details, see (126). Concerning the modelling
of luminous tracers as galaxies are, model predictions of the correlation functions usually
require a relation between galaxy perturbation and matter fluctuations. Usually, it is assumed
to be described as a Taylor expansion, as presented in Eq. 3.69, that here is reported

δg(x) =
∑
n=1

bn

n! δ(x)n =
∑
n=1

1
n! (

∂nδg

∂δn
|0)δ(x)n = b̄0 + b̄1δ + b̄2

2 δ2 + b̄3
3! δ

3 +h.o. (4.50)

where I identified the bias parameters as the derivative of the overdensity computed when it
is equal to zero. This expansion, however, suffers from the fact that the bias parameters are
not observable. As an example, using Eq. 4.14 along with the expansion in Eq. 4.50 limiting
to the third order and reminding that Fourier space transforming for galaxy overdensities
works as

δg(x) =
∫

k
e−ik·xδg(k), (4.51)

where
∫

k =
∫

d3 k , so that the power spectrum and the bispectrum now read as

Pg(k) = b̄2
1PL(k)+(b̄2

1b̄2
3σ2)PL(k)+ b̄2

2
2

∫
q

PL(|k − q|)PL(q)

+higher order terms (4.52)

Bg(k1,k2,k3) = b̄2
1b̄2PL(k1)PL(k2)+

[
b̄2
1b̄2

2b̄2
3σ2 + 1

2 b̄2
1b̄4σ2

]
PL(k1)PL(k2)

+ 1
2 b̄2

1b̄2
2b̄2

3PL(k1)
∫

q
PL(k2 − q)PL(q)

+ b̄3
2

∫
q

PL(k1 − q)PL(k2 + q)PL(q)

+cyc
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+higher order terms (4.53)

where σ2 ≡ ⟨δ2(x)⟩, a quantity highly sensitive to nonlinear regime, meaning that power
spectrum and bispectrum models are affected by these terms in the large scale regime. In
these expressions, higher-order bias parameters enter the leading order terms at different
higher perturbative orders. This is because, as defined in Eq. 4.50, the linear bias is not
observable, while the observable linear bias should be defined as the coefficient in front
of PL. Redefining the linear and the quadratic biases coefficients as b1 = b̄1 + b̄3σ2/2,
b2 = b̄2 + b̄4σ2/2, we get

Pg(k) = b2
1PL(k)+ b̄22

2

∫
q

PL(|k − q|)PL(q)

+higher order terms (4.54)

Bg(k1,k2,k3) = b2
1b2PL(k1)PL(k2)+

+ 1
2 b̄2

1b̄2
2b̄2

3PL(k1)
∫

q
PL(k2 − q)PL(q)

+ b̄3
2

∫
q

PL(k1 − q)PL(k2 + q)PL(q)

+cyc
+higher order terms

The problem with this redefinition is that it depends on the perturbative order we consider. In
fact, as more bias loops are included, the expression for b1 keeps changing but, in principle,
remains the observed linear bias, defined as the coefficient in front of PL. In general,
redefinitions like this lead to possible inconsistencies between the same bias parameters
involved in the power spectrum, bispectrum and higher-order statistics. The problem has
been considered in (126; 128), which proposed a more general basis to include higher-order
local and non-local contributions. On this basis, the galaxy overdensity reads as

δg(x) = b̄1δ(x)

+ b̄2
2 δ2(x)+ γ̄2G2(Φv|x)+

+ b̄3
6 δ3(x)+ γ̄×

2 G2(Φv|x)δ(x)+ γ̄3G3(Φv|x)+ γ̄21G2(ϕ2,ϕ1|x)

+ γ̄×
21G2(ϕ2,ϕ1)δ(x)+ γ̄211G3(ϕ2,ϕ1,ϕ1)+ γ̄22G2(ϕ2,ϕ2)+ γ̄31G3(ϕ3,ϕ1).

(4.55)

Every term in this expansion combines a different operator with different associated bias
parameters. Also, some terms involve the so-called Galileian operators, already encountered
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in Sec.3.3.2 and defined in Eq. 3.54 and Eq. 3.71. The potentials ϕn are the LPT potential
introduced in Sec. 3.2.4. In this representation of bias expansions, there are two main groups
of operators: local and nonlocal. The first ones are built up throughout delta operators, and
the two Galileian operators G2(Φv|x) and G3(Φv|x). On the other hand, all the other operators
involved, such as G3(ϕ2,ϕ1,ϕ1) and G2(ϕ2,ϕ1), belong to the nonlocal group. They reflect
the fact that gravity acts over long distances, and it is evident in the LPT potentials in all
terms beyond the Zel’dovich approximation.

Still, in the basis presented in Eq. 4.55, the bias parameters depend on the expansion
order. In order to guarantee that the expansion coefficients are observable quantities, it is
possible to expand the galaxy density contrast in Fourier space in terms of Wiener-Hermite
functionals Hn (126; 128)

δg(k) =
[
Γ(1)

g ⊗H1
]
(k)+ 1

2!
[
Γ(2)

g ⊗H2
]
(k)+ 1

3!
[
Γ(3)

g ⊗H3
]
(k)+ ... (4.56)

where

[
Γ(n)

g ⊗Hn

]
(k) ≡ (2π)3

∫
d3k1, ...,d3k1δD(k − k1...n)Γ(n)

g (k1, ...,kn)Hn(k1, ...,kn)
(4.57)

with δD being the Dirac delta, k1,...,n ≡ k1 + ...+ kN , and

H1(k) = δ∗(k), (4.58)

H1(k1,k2) = δ∗(k1)δ∗(k2)−⟨δ∗(k1)δ∗(k2)⟩, (4.59)

H1(k1,k2,k3) = δ∗(k1)δ∗(k)2δ∗(k3))− [⟨δ(k1)δ(k2)⟩δL(k3)+cyc⟩] (4.60)

In this expansion, usually known as a renormalisation basis, the functions Γ(n)
g take the role

of scale-dependent biases, and they are called galaxy multipoint propagator in renormalized
perturbation theories. In this context, the bias parameters can be seen as the ensemble-
averaged derivatives of δg with respect to the linear perturbation δL

bn ≡ ⟨ ∂nδg(k)
∂δL(k1)...∂δL(kn)⟩ ≡ (2π)3Γ(n)

g (k1, ...,kn)δD(k − k1,...,n) (4.61)

The multipoint propagators are directly related to cross-correlations between galaxy and dark
matter fluctuations, providing they are observable. For instance, on the large-scale limit,
Γg(k) plays the role of the linear bias as measured in real or simulated datasets. The scale
dependence of multipoint propagators is parameterised by the same operators introduced in
the basis represented in Eq. 4.50. It has been demonstrated in (126) that loop corrections to
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multipoint propagators are functions of only nonlinear operators. Up to the first loop order,
the first three Lagrangian multipoint propagators read as

Γ(1)
g,L(k) =

tree−level︷︸︸︷
b1,L +

one−loop︷ ︸︸ ︷
2γ21,L

∫
d3qK(k − q,q)K(k,q)PL(q), (4.62)

Γ(2)
g,L(k1,k2) =

tree−level︷ ︸︸ ︷
b2,L +2γ2,LK(k1,k2)

+

one−loop︷ ︸︸ ︷
12
∫

d3[γ×
21,LK(4,F )

δG2(ϕ2,ϕ1) +γ×
211,LK(4)

G2(ϕ2,ϕ1,ϕ1)

+γ×
22,LK(4)

G2(ϕ2,ϕ2) +γ×
31,LK(4)

G3(ϕ3,ϕ1)]PL(q), (4.63)

Γ(3)
g,L(k1,k2,k3) = b3,L +2γ×

2,L [K(k1,k2)+cyc]

+2γ21,L[K(k1,k2)K(k12,k3)+cyc]6γ3,LL(k1,k2,k3)︸ ︷︷ ︸
tree−level

(4.64)

where we have highlighted the tree-level and one-loop structures and the kernels involved are
defined in Appendix A.2. The transition from the Lagrangian to the Eulerian picture, i.e. to
the late-time galaxy fluctuations, induces corrections due to the time evolution. Then, new
contributions enter as an additional loop correction, and the constraint on nonlocal operators
involved in loop corrections breaks down at this moment. It has been demonstrated in (126)
that additional contributions take the form

∆Γ(1)
g |one−loop = 3b1

∫
d3qF3(k,q,−q)PL(q)+4γ2

∫
d3qK(k − q)G2(k,−q)PL(q),

(4.65)

∆Γ(2)
g |tree−level = 2b1F2(k1,k2), (4.66)

∆Γ(3)
g |tree−level = 6b1F3(k1,k2,k3)+2

[
b2F2(k1,k2 +2γ2K(k1 + k2,k3)G2(k1,k2)+cyc

]
.

(4.67)

While the first-order propagator is affected by nonlinear evolution at the one-loop correction
order, the second and third-order propagators are already affected at the tree level. While
multipoint propagators are presented as a function of bias parameters in the Lagrangian basis,
subscripted through the suffix L, the parameters themselves can be grouped in the Eulerian
basis, giving place to a set of coevolution relations between bias parameters (126)

γ2 = −2
7(b1 −1)+γ2,L, (4.68)
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γ×
2 = −2

7b2 +γ×
2,L, (4.69)

γ3 = 1
9(b1 −1)−γ2 +γ3,L, (4.70)

γ21 = 2
21(b1 −1)+ 6

7γ2 +γ21,L, (4.71)

γ×
21 = 2

21b2 + 6
7γ×

2 +γ21,L, (4.72)

γ211 = 5
77(b1 −1)+ 15

14γ2 − 9
7γ3 +γ21 +γ211,L, (4.73)

γ22 = 6
539(b1 −1)− 9

49γ2 +γ21,L, (4.74)

γ31 = − 4
11(b1 −1)−6γ2 +γ31,L, (4.75)

where b1 = 1+b1,L and b2 = b2,L. Particularly, bias operators that are absent in the Lagrangian
picture arise by nonlinear evolution contributions. A consequence of the peak-background
split approach, briefly described in Sec.3.3.2, led to the bias relation b2(b1) presented in Eq.
3.72 by fitting simulated dataset. Moreover, provided us with another relation between the
bias parameters b3 and the linear bias b1, reading as

b3(b1) = −1.028+7.646b1 −6.227b2
1 +0.912b3

1. (4.76)

This relation can be proven useful when used to reduce the parameter space dimensionality
at higher perturbative orders.

Power spectrum and bispectrum

The multipoint propagator approach provides us with a very effective method when modelling
correlation functions in the nonlinear regime and, in general, when investigating the bias
relation between dark matter fluctuations and their luminous tracers. In particular, addressing
the renormalisation of various operators and bias parameters involved in the expansion
basis, this theoretical framework provides us with a diagrammatic approach to compute
renormalised correlation functions. To better explain how standard Feynmann diagrams
extensively used in SPT are used in this context, I reported the diagram expansion in terms
of the general multipoint propagator. In Fig. 4.8, the multipoint propagator for n-points is
represented diagrammatically, showing it encodes various loop orders at the corresponding
vertex. In general, any loop correction can be portrayed as a diagram with a fixed number
of incoming momenta and various numbers of internal lines. In this case, the number of
internal lines is associated with the number of loops at the vertex. Particularly, I stress
the bias expansion is here written in terms of the sum over all reducible diagrams. The
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Γ(n)
g

=k1

k1

k2

kn−1

kn

Γ(n)
g,tree−level

+
k1

k1

k2

kn−1

kn

Γ(n)
g,1−loop

+
k1

k1

k2

kn−1
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g,2−loop

+ higher − order
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k1

k2
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Figure 4.8 Diagrammatic representation for the n-th multipoint propagator. The vertexes correspond
to the n incoming momenta. The blob vertex corresponds to the diagrammatic representation of a
vertex in a renormalised perturbation theory. The represented diagrams show the multipoint propagator
involved in a generic correlation function up to two-loop plus higher order corrections.

multipoint propagator diagram representation is particularly powerful because of its ability to
describe easily and uniquely any complicated loop diagram. More specifically, the reducible
subdiagrams are absorbed into the multipoint propagators, while the subset of irreducible
diagrams is recovered by connecting multipoint propagators between themselves. The
multipoint propagator approach provides us with a powerful tool to recover loop expansions
of correlation functions in a renormalised perturbation theory. In order to explain how
multipoint propagators are involved in the computation of correlation functions, I report the
case for the power spectrum at one-loop in Fig. 4.9. The diagram for the power spectrum

+

Γ(1)
g, 1−loop

tree−level
Γ(1)

g,tree−level

k kPL(k)

Γ(2)
g,tree−level Γ

(2)
g,tree−level

k k

PL(|k − q|)

PL(k)

Figure 4.9 Power spectrum at one-loop in the bias loops multipoint propagator approach. The possible
arising terms at one-loop are represented by the combination of 1-loop and tree-level one-point
propagators (left diagram) connected by one internal line, and two tree-level two-point propagators
connected by two internal lines (right diagram). The tree-level power spectrum is recovered by two
tree-level one-point propagators (left diagram) connected by one internal line.

at one-loop order is recovered by glueing together two of the multipoint propagator shown
in Fig. 4.8, fixing n, i.e. the number of external lines, to n = 1, where each combination
of the incoming lines produces an internal line, i.e. the linear power spectrum. The shaded
area represents the vertexes which are associated with the multipoint propagator, including
loop corrections at the desired order. With this prescription, it is possible to recover the
expressions for the one-loop power spectrum

Pgg(k) =
[
Γ(1)

g,one−loop(k)
]2

PL(k)+ 1
2

∫
d3q

[
Γ(2)

g,tree−level(k − q,q)
]2

PL(|k − q|)PL(q).

(4.77)
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where Γ(1)
g and Γ(2)

g are evaluated, respectively, at one-loop and tree-level order.
With the same approach, it is possible to get the one-loop bias expansion for the bispec-

trum. In Fig. 4.10, it is reported the diagrams involved in the mentioned expansion. As for

Γ(2)
g, one−loop

tree−level

Γ(1)
g, tree−level

one−loop

Γ(1)
g,tree−level

k1

k2

k3

PL
(k2)

P
L (k3 )

+

Γ(3)
g,tree−level

Γ(2)
g,tree−level

Γ(1)
g,tree−level

k1

k2

k3

PL
(q)

P
L (k1 + q)

P
L

(|
k

2
−

q
|)

+

Γ(1)
g,tree−level

Γ(1)
g,tree−level

Γ(1)
g,tree−level

k1

k2

k3

P
L (k3 )

PL
(q)

PL
(|k2 − q|)

Figure 4.10 Bispectrum at one-loop in the bias loops multipoint propagator approach. The possible
arising terms at one-loop are represented by the combination of three one-point propagators (left
diagram, two at three-level, one at one-loop) connected by two internal lines, three tree-level two-point
propagators connected by three internal lines (middle diagram) and the same but connecting tree-level
one one-point, two-point, three-point propagator (right diagram). The three-level bispectrum is
recovered by three one-point propagators at three-level connected by two internal lines (left diagram).

the power spectrum case, the one-loop bispectrum in the multipoint propagator approach is
obtained by combining different multipoint propagators at different orders connecting them
with two or three internal lines. The resulting expression for the bispectrum read as

Bggg(k1,k2,k3) = Γ(2)
g (k1,k2) Γ(1)

g (k1)Γ(1)
g (k2)PL(k1)PL(k2)+cyc

+
∫ d3q Γ(2)

g (k1 − q,q)Γ(2)
g (k1 + q,−q)Γ(2)

g (k1 + q,k2 + q)

×PL(|k1 − q|)PL(|k1 − q|)PL(|k2 + q|)

+ 1
2

∫
d3q Γ(3)

g (k3,k2 − q,q)Γ(2)
g (k2 − q,q)Γ(1)

g (k3)

×PL(|k2 − q|)PL(q)PL(k3)+cyc
 (4.78)

Let me stress, as explained in (126), that the bias loops corrections do not only affect small
scales, but they have an impact on large scales. This is because a subset of the bias loops does
not vanish in the large-scale limit. From the power spectrum, the non-vanishing contribution
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comes from the following term

lim
k→0

Pg(k) = 1
2

∫
d3q

[
Γ(2)

g (−q,q)
]2

P 2
L(q) = b2

2
2

∫
d3qPL(q)2. (4.79)

Concerning the bispectrum, the non-vanishing contributions from the large-scale limit come
from configurations in which all three triangles sides tend to zero, such as

lim
k1,k2→0

Bg(k1,k2,k3) =
∫

d3q
[
Γ(2)

g

]3
PL(q)3 = b3

2

∫
d3q PL(q)3 (4.80)

for the terms containing tree-level two-point propagators and

lim
k1,k2→0

Bg(k1,k2,k3) = b1b2

[115
42 b2 +b3 − 8

3γ×
2

]
(PL(k1)+PL(k2)+PL(k3))

∫
d3q PL(q)2

(4.81)
These effects can be interpreted as the impact of small-scale perturbations on the formation of
galaxies that perturbative approaches cannot model. To take account of these terms, usually,
they are subtracted and substituted by a posteriori shot-noise terms that have the purpose of
fitting these effects on large scales by introducing the N0, ϵ0 and η0 terms

Pshot,LO(k) = N0, (4.82)

Bshot,LO(k1,k2,k3) = ϵ0 +η0[PL(k1)+PL(k2)+PL(k3)]. (4.83)

Actually, by considering those terms as first-order terms of a general Taylor expansion of
the stochastic terms, it is possible to write the next-to-leading corrections to the stochastic
contribution that read as

Pshot,NLO(k) = N2k2, (4.84)

Bshot,NLO(k1,k2,k3) = ϵ2(k2
1 +k2

2 +k2
3)+

[
η2,1k2

1 +η2,2(k2
2 +k2

3)
]
P (k1)+cyc. (4.85)

To summarize, the comprehensive modelling in the bias loops framework involves
combining the contributions of shot noise described in Eqs. 4.85 with the modelling of
galactic bias outlined in Eqs. 4.77, 4.78. The bias loops approach enables the accurate
modelling of small scales by incorporating a thorough treatment of galaxy bias, while also
capturing the significant sources of non-Gaussianity.





5 Modelling and measuring two- and three-
point statistics in configuration space

In this Chapter, we build upon the material presented in Sec. 4.2.3, i.e. the nonlinear models
for the power spectrum and the bispectrum and present a strategy to obtain a three-point
correlation function model at the next-to-leading order. Indeed, the goal of this Thesis is to
fill the gap between configuration space and Fourier space in modelling three-point statistics
in Perturbation Theory. I will start by introducing the basic idea for the case of two-point
clustering and then move to the three-point correlation model.

Since the implementation of the model requires performing multi-dimensional numerical
integrals that I estimate using the 2D-FFTLog tool, I will discuss this technique and assess
the adequacy of its implementation in the specific case of the three-point correlation function.
To validate the three-point correlation function models, I will compare them to measure-
ments of this function performed in simulated catalogues extracted from N-body simulation
experiments. The validation tests and their results will be described in Chapters 6, 7, 8.

Here I also describe the estimator used to measure the three-point correlation function and
the techniques that we have used to estimate the uncertainties and their covariance. Finally, I
will summarise the material presented in this Chapter by presenting the pipeline that I have
implemented to model the three-point correlation function and to compare these predictions
to the actual measurements.

5.1 Configuration space vs. Fourier space

The next few years will be critical for studying the large-scale structure clustering properties
of the universe. Large amounts of data from upcoming surveys will significantly expand our
understanding of the structure and evolution of the universe from its earliest moments to
the present day. Two main probes that will be used to investigate these properties are weak
lensing and galaxy clustering. As the latter is the focus of this Thesis, there are two main
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spaces in which clustering properties can be analysed: Fourier space and configuration space.
These two spaces are equivalent, but they have some important differences. Fourier space is
the most commonly used space for clustering analyses, and it has a long history of success
in cosmological analyses (55; 56; 57; 58; 59; 60). One reason for its popularity is the ease
with which it allows for the modelling of perturbation evolution and clustering properties
in general. In fact, Fourier space allows for a relatively simple treatment of the equations
governing the motion of cosmological fluids and the use of perturbative solutions in regimes
where the data are expected to be affected by nonlinear evolution. Efficient estimators for
the main correlation functions have been developed in Fourier space, making it a reliable
space for comparing predictions to observations. However, Fourier space does have some
limitations. Survey geometries are finite and affect the observations, and it can be challenging
to model this in Fourier space. This issue can be addressed by deconvolving the correlation
signal measurements or the theory using a window function (75; 76), but this is not necessary
for configuration space, where complex survey geometries can be easily considered in the
estimator. However, although configuration space has some advantages over Fourier space,
estimators in configuration space, particularly for the three-point correlation function (3PCF),
have historically been slower and computationally intensive to be used in a cosmological
analysis. However, recent developments, such as the estimators proposed in (17; 77) for the
3PCF, have improved the efficiency and effectiveness of estimators in configuration space.
Despite these advances, the status of models in configuration space is still somewhat behind
those in Fourier space. Specifically, in the nonlinear regime, there is currently no Lagrangian
modelling in configuration space, so the corresponding models must be obtained by using
their Fourier counterparts by inverse Fourier transforming. However, it is still important to
develop models in configuration space, as it allows for the recovery of scales in the nonlinear
regime, where important cosmological information may be hidden. Additionally, modelling
the baryon acoustic oscillation (BAO) peak in configuration space can provide important
constraints on the universe’s expansion history. In configuration space, the BAO peak is a
single, distinct feature in the clustering pattern that can be isolated, modelled, and studied
in its evolution history to investigate its properties in constraining universe’s properties
(129; 130; 131; 132; 133; 134; 135). For the two-point correlation function, treatments
have been developed to the same perturbative order in the Standard Perturbation Theory
(SPT). In contrast, for the 3PCF, only a tree-level model currently exists, while several
one-loop models have been developed and tested for the bispectrum in both dark matter and
galaxy/halo perturbations. The goal of this PhD Thesis is to bridge this gap by developing a
three-point one-loop model that is equivalent to those developed for the bispectrum.
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5.2 Perturbative model for the two-point correlation func-
tion

Regarding a perturbative treatment for the two-point correlation functions, due to the lack of
a perturbative approach to fluid equations in configuration space, models are usually obtained
by inverse Fourier transforming the corresponding power spectrum. In general, by assuming
isotropy, Eq. 4.16 can be simplified in

ξm(r) =
∫ d3k

(2π)3 Pm(k)eik·r =
∫ ∞

0

dk

2π2 k2 j0(kr)Pm(k) . (5.1)

The Fourier transform can be evaluated either by direct integration or more efficiently by using
the FFTLog algorithm. The real-space, one-loop PT prediction for the matter correlation
function can be written as

ξm(r) = ξL(r)+ ξ1−loop
m (r)+ ξctr

m (r) , (5.2)

where, ignoring for the time being IR-resummation, we have

ξ1−loop
m (k) = ξ1−loop

22,m (k)+ ξ1−loop
13,m (k) (5.3)

where ξL, ξ13,m, ξ22,m, ξctr
m are the Fourier-transform pairs of PL, P13,m, P22,m, Pctr,m. To

simplify the analysis, it is possible to decompose the linear power spectrum using the FFTLog
algorithm (136). This allows us to express the linear power spectrum as a sum of power laws:

PL(kn) =
Nmax/2∑

m=−Nmax/2
cmk−2νm

n , (5.4)

where νm = ν + iηm, ν is a fixed number called bias, and ηm = 2π/ log(kmax/kmin). Us-
ing this decomposition, it is possible to express the one-loop power spectra as a matrix
multiplication:

PX(kn) = k3
n

∑
m1,m2

cm1k
−2νm1
n MX(νm1 ,νm2)k−2νm2

n cm2 , (5.5)

where X denotes 13,m or 22,m. By performing an analytical integration, the correlation
function can be expressed as a simple matrix multiplication based on the decompositions of
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the linear and one-loop power spectra:

∫ ∞

0
dxjµ(x)x2−2ν =

√
π21−2ν Γ((3+µ−2ν)/2)

Γ((µ+2ν)/2) . (5.6)

Plugging all the expressions, we have:

ξ(r) =
∑
m

cmr2νm−3 2−2νm

π3/2
Γ(3

2 −νm)
Γ(νm) (5.7)

It is important to carefully choose the boundaries kmin, kmax, and the number of sampling
points Nmax to avoid spurious oscillations in the resulting power spectrum or correlation
function. In the analysis presented in Chaps. 7, 8, I choose kmin = 10−6, kmax = 102.

5.3 Perturbative model for the three-point correlation func-
tion

Despite its importance in various fields of research, the use of the three-point correlation
function in research has been limited in the past due to the high computational cost involved
in estimating it. However, the development of a new estimator proposed in (17; 77) has
revitalized the entire field of research involving the three-point correlation function (see Sec.
5.4. In this approach, decomposing the three-point correlation function into multipoles is
deemed crucial. The multipole expansion is a mathematical technique employed to investigate
the angular dependence of the function rather than its overall magnitude. This approach
enables a more in-depth and specific examination of the relationships between variables,
thereby providing valuable insights into the statistical characteristics of the system. In our
case of interest, the aforementioned decomposition reads as

ζ(r12, r13, r23) =
∑

ℓ

ζℓ(r12, r13)Lℓ(r̂12 · r̂13), (5.8)

where the Legendre transformation gives the coefficients of the expansion

ζℓ(r12, r13) = 2l +1
2

∫ +1

−1
dµ ζ(r12, r13, r23) Lℓ(µ), (5.9)

where Lℓ(µ) are the Legendre polynomials and µ = r12·r13
r12r13

. The decomposition of the three-
point correlation function into multipoles proved not only to be a method of speeding up the
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estimation process but also an essential element in achieving the modelling of the function.
In terms of modelling, both the multipole expansion and the original form of the three-point
correlation function are equally important, albeit they adopt different perspectives of the
scientific concepts under investigation. The multipole expansion affords a more concise
and manageable representation of the function, thereby facilitating the modelling process.
Nonetheless, both methods are equivalent and hold the potential to further our comprehension
of the relationships between variables.

Compared to its Fourier space equivalent, the bispectrum, the three-point correlation
function remains a less developed area of modelling. This is due to the absence of a direct
approach for constructing a perturbative three-point model in configuration space. Hence,
the sole procedure for modelling the three-point correlation function at present is based on
Eq. 4.24, which is presented here again for clarity

ζ(r12, r13, r23) =
∫ d3k1d3k2d3k3

(2π)9 B(k1,k2,k3)ei(k1·r12+k2·r13+k3·r3)

× δD(k1 + k2 + k23). (5.10)

However, this equation, which is a 6-dimensional integral, is not particularly useful due to its
complexity. To overcome this issue, the inverse Fourier transform is often evaluated using the
multipole expansion in Eq. 5.9, which allows it to be expressed as a Hankel transform. This,
in fact, allows for a more manageable and tractable representation of the function, which
makes it easier to analyze and study. Indeed, the complexity of the problem can be reduced
by integrating the angular variables and by using the expansion of a plane wave in spherical
harmonics (see Appendix in (137) for a usage)

eik·r = 4π
+∞∑
ℓ=0

ℓ∑
m=−ℓ

iℓjℓ(kr)Yℓm(r̂)Y ∗
ℓm(k̂), (5.11)

so that Eq. 4.24 reduces to

ζℓ(r12, r13) = (−1)ℓ
∫ k2

12k2
13dk12dk13
(2π2)2 Bℓ(k12,k13)jℓ(k12r12)jℓ(k13r13). (5.12)

In (53), a simplification was proposed. The treatment was restricted to the tree level,
simplifying the expression by performing an analytical integration, leading to a 1D Hankel
transform that can be considered numerically using the FFTLog algorithm. This treatment is
only valid at the tree level - or leading order if infrared resummation is implemented -. The
modelling process is facilitated by using the 1D-Hankel transform, and its computational
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evaluation through the FFTLog algorithm (136), which allows for a more efficient and
manageable representation of the 3PCF. However, this approach is limited in considering
tree-level contributions and does not account for higher-order corrections. The model for
galaxies, reduced to its real space part considered in this Thesis, reads as

ζ(r12, r13, r23) =
ℓ=2∑
ℓ=0

ζpc,ℓ(r12, r13)Lℓ(r̂12 · r̂13), (5.13)

where

ζpc,0(r12, r13) = 34
21(b3

1 +2b2b1)
[
ξ

[0]
1 ξ

[0]
2
]
, (5.14)

ζpc,1(r12, r13) = −b3
1
[
ξ

[1+]
1 ξ

[1−]
2 + ξ

[1+]
2 ξ

[1−]
1

]
, (5.15)

ζpc,2(r12, r13) = ( 8
21b3

1 + 16
15γ2)

[
ξ

[2]
1 ξ

[2]
2
]
. (5.16)

The pre-cyc terms, referred to as pc, are intermediate stages in decomposing the three-point
correlation function into multipoles. To obtain the full multipoles, it is generally necessary
to sum the pre-cyc terms, permute them cyclically, and then perform the decomposition.
This PhD Thesis focuses on the resummed case rather than the multipole representation,
which will be clarified in the next chapters. In the tree-level treatment of the three-point
correlation function, as shown, second-order bias parameters are introduced to consider the
biases of luminous tracers. These parameters include the linear bias parameter b1, the local
bias term b2, and a term proportional to the tidal field, which has been shown to be important
for the analysis of the three-point correlation function as it captures the influence of tidal
forces on the distribution of galaxies. This term corresponds to the bias parameter γ2 in the
loop bias treatment, which considers the effects of higher-order correlations. For a complete
discussion of these three bias parameters, see Sec. 3.3.2. In the effort to compare the 3PCF
against dark matter perturbations, it is possible to recover the matter case by setting b1 = 1
and b2 = γ2 = 0.

5.4 Measuring the three-point correlation function

A direct estimate of the 3PCF would scale as N(nVRmax)2, where N is the number of objects
in the survey, n is the survey number density, and Rmax is the maximum scale.

Recently, a new estimator has been introduced that significantly reduces the computational
time required for estimating the three-point correlation function. This has revitalized research
in this area, allowing for a more efficient study of the relationships between variables. The
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development of this estimator has opened up new possibilities for research and has the
potential to greatly provides us with cosmological information coming from higher order
statistics. To explain how the estimator presented in (17) let me introduce the expansion of
the three-point correlation function in multipoles that is typically used to analyze the angular
dependence of the function rather than its overall magnitude. In this context, the expansion
is being introduced without considering the average over the translation. This means that the
position of the primary galaxy, denoted by s, is being used as a reference point from which
the distances between the other variables are calculated. This allows the angular dependence
of the function to be studied more specifically rather than considering the function as a whole.
This allows expanding the 3PCF into a series of multipoles, as done in (17) as follows

ζ(r12,r13, r̂12 · r̂13;s) =
∑

ℓ1,ℓ2,m1,m2

ζm1,m2
ℓ1,ℓ2

(r12, r13,s)Yℓ1,m1(r̂12)Y ∗
ℓ2,m2(r̂13), (5.17)

where the multipoles ζm1,m2
ℓ1,ℓ2

are defined as

ζm1,m2
ℓ1,ℓ2

(r12, r13;s) = (2ℓ1 +1)(2ℓ2 +1)
(4π)2

∫
d2r̂12

∫
d2r̂13 ζ(r12,r13, r̂12 · r̂13;s)

×Yℓ1,m1(r̂12)Y ∗
ℓ2,m2(r̂13) (5.18)

where ri represents the norm |ri|. Let me define the quantity

ζℓ(r12,r13, r̂12 · r̂13;s) = 2π
∑
m

ζm,m
ℓ,ℓ (r12, r13;s) (5.19)

and its average over translations

ζℓ(r12,r13) = 1
V

∫
d3ζℓ(r12,r13, r̂12 · r̂13;s) (5.20)

where V is the survey volume. Now, considering a primary galaxy located at the generic
position s and the local contribution of an overdensity averaged on a bin-shell, this latter
reads as

δ̄(ri,s) =
∫

drr2ϕ(r,ri)δ(r + s) (5.21)

where ri represents the i-th radial bin and ϕ(|r|) is the binning function demanding that we
are in the bin by its second argument. Throughout the process of radial binning, it is possible
to rewrite the multipole decomposition as follows

ζ̂ℓ(r12, r13,s) = 2ℓ+1
(4π)2 δ(s)

∫
dΩ1dΩ2δ̄(r12;s)δ̄(r13;s)Lℓ(r̂12 · r̂13). (5.22)
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where Lℓ(r̂12 · r̂13) are the Legendre polynomials and the hat denotes an estimate. Defining
the coefficients

aℓm(ri,s) =
∫

dΩ δ̄(ri,s)Y ∗
ℓ,m =

∫
dΩ Y ∗

ℓ,m

∫
dr′r′2ϕ(r′, ri)δ(r′ + s), (5.23)

and combining the equations, Eq. 5.22 becomes

ζ̂ℓ(r12, r13,s) = 1
4π

δ(s)
ℓ∑

m=−ℓ

aℓ,m(r12,s) aℓ,m(r13,s). (5.24)

From Eq. 5.24, it is clear why radial binning is crucial for speeding up the algorithm. By
splitting the integral in Eq. 5.22, it is now possible to directly compute the pre-coefficient aℓm

for every bin and then combine them to compute the associated multipole. The computational
time-scaling of evaluating the coefficient aℓm is an order of O(nVmax), where n is the average
number of galaxies in a given volume Vmax, and represents the main computational cost of
the algorithm. Furthermore, one might think that the spherical harmonic transform involved
in the computation of aℓm coefficients represent the main computational cost, scaling as
N

3/2
g , being Ng the number of spatial cells of a spherical grid. Actually, because of the low

number of multipoles usually required, these coefficients are commonly evaluated in a direct
way; i.e. spherical harmonics evaluated at angles given by a galaxy’s location are computed.
The final step of the algorithm is to get the final estimate of the multipoles by averaging over
the possible direction of the displacement vector s applying the averaging over translation in
Eq. 5.24. To understand the algorithm described in the text, it is helpful to refer to Fig. 5.1.

Figure 5.1 Figurative description of the algorithmic approach presented in (17). The primary galaxy
is positioned at X, and around it, spherical shells are used to divide the secondary galaxies into radial
bins. The coefficients in Eq. 5.23 are then calculated through these radial bins.

Summarising, the algorithm begins by fixing a primary galaxy as the center of the coordinate
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system and creating spherical shells around it. The second galaxies in the group are then
divided into radial bins, or groups, based on their distance from the primary galaxy. Next,
the coefficients defined in Eq. 5.23 are computed and averaged over the entire survey volume
being studied. The primary galaxy’s location is then changed, and the process is repeated.
This step allows the algorithm to analyze the average properties of the group of galaxies from
different perspectives rather than just from the viewpoint of the primary galaxy. Finally, the
multipoles calculated in each iteration are averaged together to provide the final estimation of
the average properties of the group of galaxies. This final result can then be used to provide a
fast estimation of the three-point correlation function.

5.5 Modelling the three-point correlation function in the
small-scale regime: the 2D-FFTLog algorithm

In order to bridge the gap between Fourier space and configuration space three-point statistics
models, as outlined as the objective of this Thesis, it is now legitimate and necessary to
ask: what strategy should we use to bridge this gap between Fourier space and configuration
space three-point statistics models? It will be necessary to consider the relationship between
the bispectrum and the 3PCF. As previously mentioned, the two quantities are theoretically
linked through a 6D integral, as expressed in Eq. 4.24. However, in practice, it is common to
decompose this integral into multipoles, as shown in Eq. 5.8 and Eq. 5.9. The complexity
of the problem of developing a three-point model for the 3PCF in configuration space can
be reduced by integrating the angular variables and expanding plane waves in spherical
harmonics.

eik·r = 4π
+∞∑
l=0

l∑
m=−l

iljl(kr)Ylm(r̂)Y ∗
lm(k̂). (5.25)

This approach has been demonstrated to be effective in previous work (53). By simplifying
the problem in this way, it may be possible to develop an accurate and efficient link between
models

ζℓ(r12, r13) = (−1)ℓ
∫ k2

12k2
13dk12dk13
(2π2)2 Bℓ(k12,k13)jℓ(k12r12)jℓ(k13r13). (5.26)

Generally speaking, this mathematical relationship provides us with a means of bridging
the gap with Fourier space. Nonetheless, the integral in Eq. 5.26, while being theoretically
significant for comprehending the relationship between the bispectrum and the 3PCF, still
poses computational burdens that have made its direct computation challenging. Actually,



76 Modelling and measuring two- and three- point statistics in configuration space

evaluating the integral from a Nr ×Nr grid by employing the standard quadrature method to
compute Eq. (5.26) needs an order of N2

r N2
k steps, where Nr and Nk represent the number of

sampled points in k and r. Additionally, the rapid and oscillatory nature of Bessel functions
necessitates performing a great many integration steps, making the precise evaluation of
the integrals computationally challenging. To counteract these difficulties, the FFTLog
algorithms - also known as Fast Fourier Transform with a Logarithmic transform - have
arisen as an effective tool for efficiently and accurately evaluating Hankel transforms. By
using FFTLog algorithms, it is feasible to overcome the computational challenges associated
with computing the integral in 5.26 and develop an effucient implementation of the model
for the 3PCF.

5.5.1 2D-FFTLog technique

A common problem in physics is the numerical evaluation of integrals involving the product
of two or more Bessel functions as in Eq. 5.26. Evaluating these integrals represents the
main computational burden of our 3PCF modelling procedure. Evaluating the integral from a
grid Nr ×Nr using the standard quadrature method to compute Eq (5.26) requires an order
of N2

r N2
k steps where Nr and Nk are the number of k and r sampled points. Furthermore,

the rapid and oscillatory behaviour of Bessel functions requires performing many integration
steps, making the accurate evaluation of the integrals computationally challenging. The
1D-FFTLog method, originally conceived to address atomic physics problems (138) and
then applied to cosmology by (136), has been used over the years to efficiently evaluate
Fourier transform with logarithmic variables involving single Bessel integration of the form∫∞
0 dkf(k)jℓ(kr) where f(k) is a generic smooth function. The main idea of the 1D-FFTLog

algorithm is using the expansion f(k) =∑
m cmkzm with zm, in general, a complex number

to obtain a term that can be integrated analytically to speed up the computation by evaluating
a sum over cm Fourier coefficients instead of a 1D-integral. The FFTLog approach has
proven to be useful, as can be seen by three notable and quite different applications of
the method. The first one is the evaluation of the Bessel integrals in the angular power
spectra and bispectra expressions (139; 140; 141). The second one by (142) consists of using
1D-FFTLog to evaluate Bessel integrals coming from the deconvolution of multi-dimensional
integrations. Finally, FFTLog has been used to model higher-order statistics in Fourier
space. In this latter case, there is no Bessel integral involved. Instead, the idea is to obtain
integrable expressions to which the FFTLog tool can be applied. Examples include one-loop
(143; 144) and two-loop (77; 145; 146) perturbation models. Furthermore, an application of
the 2D-FFTLog algorithm to the tree-level anisotropic 3PCF can be found in (147).
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For the 3PCF model, in general, one has to consider the 2D-dimensional integral in
Eq. 5.26, which involves Bessel functions. In this case, the usual 1D-FFTLog approach is
useless since one cannot separate terms involving k12 and k13. (148) has recently proposed
an extension of 1D-FFTLog that can be adapted to perform fast and accurate evaluations of
integrals involving the product of two Bessel functions. This work was originally addressed
to the computation of real-space 3PCF covariances, similar to Eq. 5.26. The 2D extension of
the FFTLog algorithm is sensitive, as the 1D version, to all sources of aliasing and ringing
(136). The grid we use is 2D, parametrised by two k1, k2 after integrating over the angle
between the two, θ. In general, grid spacing ∆k, regulates the integration accuracy. The
choice of kmin and kmax is crucial to avoid aliasing and ringing effects. Zero padding is also
advised to reduce the possibility of generating spurious wiggles.

In this Thesis, we aim to use and adapt the 2D-FFTLog to inverse Fourier transform
a general bispectrum model, focusing on the one-loop perturbative expansion. In order to
present how the algorithm works, let me start by considering the main input object, the
dimensionless bispectrum multipoles defined as:

∆ℓ(k12,k13) = k3
12k3

13
(2π2)2 Bℓ(k12,k13). (5.27)

The dimensionless bispectrum multipoles can be decomposed so into a series of products of
two-power laws, assuming that k1 and k2 are the same and logarithmically sampled

∆ℓ(kp,kq) = 1
N2

N/2∑
m=− N

2

N/2∑
n=− N

2

c̃ℓ,mnk−iηn
0 k−iηm

0 kν1+iηm
p kν2+iηm

q (5.28)

where ηm = 2π m
N∆lnk

, N is the size of k-array, ν1, ν2are the so-called bias parameters, i.e.
the real part of the power laws, ∆lnk is the logarithmic spacing in k, coefficients cℓ,mn are
given by the discrete Fourier transform.

c̃ℓ,mn =
N−1∑
p=0

N−1∑
q=0

∆ℓ(kp,kq)
kν1

p kν1
q

e−2πi(mp+nq)/N . (5.29)

To remove sharp edges at the boundary of cℓ,mn a filtering process of the form

cℓ,mn = WmWnc̃ℓ,mn (5.30)
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is usually applied, where W is a one-dimensional window function (for details, see (149)).
Using the decomposition in 5.26, with the following mathematical steps, becomes

ζℓ(r12, r13) = (−1)ℓ
N/2∑

m,n=−N/2
cℓ,mn

1
kiνm

1,0

1
kiνn

2,0
(5.31)

×
∫ dk

k1
kν1+iνm

1 jℓ(k1r1)
∫ dk

k2
kν2+iνm

2 jℓ(k2r2) (5.32)

= (−1)ℓ π

16rν1
12rν2

13

N/2∑
m,n=−N/2

cℓ,mnk
−i(ηm+ηn)
0 r−iηm

12 r−iηm
13 (5.33)

×gℓ(ν1 + iηm)gℓ(ν2 + iηn) (5.34)

where gℓ(ω) = 2ω Γ( ℓ+ω
2 )

Γ( 3+ℓ−ω
2 ) . The range of validity of ν1 and ν2 are −ℓ < ν1,ν2 < 2. The

2D-FFTLog method uses 2D-FFT twice, and thus, it is an O(N2logN)
Actually, when dealing with data, they are usually bin averaged, i.e. multipoles are

obtained by considering the following integral for every pair (r12, r13)

ζℓ(r̄i, r̄j) =
∫ r̄i,max
r̄i,min dr1

∫ r̄i,max
r̄i,min dr2r2

1r2
2ζℓ(r1, r2)∫ r̄i,max

r̄i,min dr1r2
1
∫ r̄i,max
r̄i,min dr2r2

2
. (5.35)

Using (5.35) into (5.31) and recalling the denominator as A it is possible to get the bin-
averaged expression for the 2D-FFTLog algorithm in Eq. (5.36)

ζℓ(r̄i, r̄j) =
πr̄2−ν1

i,minr̄2−ν2
j,min

16AN2

N/2∑
m,n=−N/2

cℓ,mnk
−i(ηm+ηn)
0 r−iηm

12 r−iηm
13

×gℓ(ν1 + iηm)gℓ(ν2 + iηn)s(D −ν1 − iηm,λ)s(D −ν2 − iηn,n) (5.36)

where
s(D,n) = n−1

D
, (5.37)

where r̄i,max
r̄i,min

= n is the linear bin width, and

A =
∫ r̄i,max

r̄i,min
dr1r2

1

∫ r̄i,max

r̄i,min
dr2r2

2 = r̄2
i,minr̄2

j,min[s(2,n)]2. (5.38)

The 2D-FFTLog machinery described above provides an important calculation tool for
evaluating the mathematical relationship between Fourier space and configuration space at
the level of three-point statistics. However, it relies on certain input parameters, which are



5.5 Modelling the three-point correlation function in the small-scale regime: the 2D-FFTLog
algorithm 79

crucial to its accuracy and must be carefully considered. These parameters must be carefully
studied to ensure the accuracy of the 2D-FFTLog algorithm.

5.5.2 2D-FFTLog calibration

In (150), we studied the algorithm as a function of input parameters. We considered the
parameters kmin,kmax, the minimum and maximum values over we perform Eq 5.26, a
damping factor k0, i.e.

Pk0(k) = PL(k)e−k2/k2
0 , (5.39)

we used to study convergence properties and ringing sensibility of 1D and 2D-FFTLog
algorithms, Nk and Nµ numbers of point in k-direction (1D and 2D) in θ-direction (only 2D),
with PL(k) generated throughout the Boltzmann code CAMB (118). In Fig. 5.2, we tested,
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Figure 5.2 Different computation of ζ for equilateral computation with different grid parameters
using 1D-FFTLog. Left: plot of different evaluations. Middle: ratio of previous computations. Right:
residuals of previous evaluations.

for an equilateral configuration at z = 0.5, different usage of parameters reproducing the LO-
1D model at the centre of the bin and considering an extended k-range from kmin = 5×10−6

and kmax = 5×101 as a reference model. An incorrect using of damping k0 over a shorter
grid implies a source of ringing effect. Using k0 = 1.5hMpc−1 is the best solution to mimic
a usage of a larger grid and minimise ringing effects. In Fig. 5.3, we did the same test
but using the 2D version of the FFTLog algorithm, considering the leading-order model
computed through the 2D-FFTLog algorithm, from now dubbed LO-2D, including several
sample points in θ-direction but, differently from the previous case, considering the bin-
averaged model. In this case, we fix the damping factor according to the previous case
k0 = 1.5hMpc−1 where

Bk0(k1,k2,k3) = B(k1,k2,k3)e−(k2
1+k2

2+k2
3)/k2

0 , (5.40)
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Figure 5.3 Different computation of ζ for equilateral computation with different grid parameters
using 2D-FFTLog. Left: plot of different evaluations. Middle: residuals of previous computations.
Right: difference between previous evaluations compared to theoretical error assuming theoretical
covariance.

We found Nθ needs to be at least equal to 51 to minimise the difference with the reference
model (1D-FFTlog evaluation). We use Nθ = 51, Nk = 256, kmin = 5 × 10−6 and kmax =
5×101 in our computations.

5.6 Model vs. simulated data: evaluating statistical errors

Accurately estimating uncertainty is essential in any cosmological analysis, including those
that use the three-point correlation function to study the clustering of galaxies. There are two
main approaches for estimating the covariance matrix, which represents the uncertainty in
the measurement: theoretical estimates and numerical estimates based on mock analyses of
simulated data sets. Theoretical estimates are typically based on measures of higher-order
statistics if non-Gaussian signals are considered, while numerical estimates are obtained by
analysing mock catalogues. Both of these approaches have their own benefits and limitations,
and it is important to carefully consider which method is most appropriate for a given
analysis.

5.6.1 Numerical covariance

One common way to use mock data sets is to estimate the covariance matrix, which is a
measure of how much data are expected to vary from one sample to another. To estimate the
covariance matrix from a mock data set, one typically follows a specific set of steps. These
steps may involve analysing the mock data in a manner similar to how the real data will be
analysed and using statistical techniques to calculate the covariance matrix from the results
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of this analysis. The exact steps involved in this process will depend on the specific statistical
methods used and the specific characteristics of the data being analysed.

Once the covariance matrix has been estimated from the mock data set, it can be used
to quantify the uncertainties in real data analysis. For example, the covariance matrix can
be used to calculate the standard errors of the estimates or to construct confidence intervals
around the estimates. This information can be used to assess the reliability of the results
of the analysis and to make more informed decisions based on the data. Covariances from
mocks are usually estimated as follows.

Cij = 1
Nm −1

Nm∑
k=0

(
ζ̂n

i − ζ̄i

)(
ζ̂n

j − ζ̄j

)
(5.41)

where Nm is refers to the number of mock, i and j identify any two triangles in the samples,
ζ̂ and ζ̄ refer, respectively, to the measured 3PCF in the n-th mock and the average among
the mocks. computing the covariance matrix from a set of mocks (simulated data sets used
to represent the statistical properties of the real data) can be computationally expensive,
especially if a large number of mocks is needed to achieve statistical significance. (151)
investigated the impact of using different estimates of covariance based on different sets of
mocks and also compared these estimates to a theoretical estimate of the covariance matrix,
which is presented in the following Sec.

Due to the high computational cost deriving from the computation of several mocks,
some alternative approaches to estimating covariances matrices have been provided. It is
worth highlighting the jackknife and bootstrap techniques which are internal error estimators
that involve subsampling the original catalogue and computing the correlation function in
all but one subsample (jackknife) or in a random selection of subsamples (bootstrap). This
approach has the advantage of being fast and accounting for possible systematic effects
and biases, as well as contributions from higher-order correlations. However, it may not
provide an accurate estimate of the variance due to its reliance on the survey volume, and the
off-diagonal terms may be noisy, which can affect the analysis of the correlation function in
configuration space.

5.6.2 Theoretical covariance

An alternative approach in estimating covariance matrices has been proven in the theoretical
estimates. These latter bring computational benefits, avoiding the computation of a large
number of mocks from an N-body simulation. Several works addressed two and three- point
cases (76; 152; 153; 154).
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Regarding the two-point correlation function, it has been shown in (155) that, under the
Gaussian hypothesis, the computation of the covariance matrix reduces to

Cov(ξ̂a, ξ̂b) = 1
2π2

∫ ∞

0
dk k2σ(k)j̄0(kra)j̄0(krb) (5.42)

where

j̄0(kra) = 4π

Vra

∫ ra−∆r/2

ra−∆s/2
r2j0(kr)dr, (5.43)

σ(k) = 2
Vs

(
P (k)2 + 1

n̂

)2
, (5.44)

where it has been defined the bin-averaged Bessel function over the volume encapsulated
between ra,max and ra,min.

Similarly, theoretical estimates have been proved useful for providing uncertainties for
higher-order statistics (76; 152; 154). Even in this case, under the Gaussian hypothesis, it is
possible to derive simplified expressions for the three-point correlation function multipoles
(17) as follows

Cov(ζ̂ab
ℓ1 , ζ̂cd

ℓ2 ) = 4π

V
(2ℓ1 +1)

(
2ℓ2 +1

)
(−1)ℓ1+ℓ2

×
∫

r2drMℓ1ℓ2 ×
{

(−1)2ξ0(r)
[
fℓ′ℓ1ℓ2

(
r;ra, r′

a

)
fℓ′ℓ1ℓ2

(
r;rb, r

′
b

)

+(−1)

(
ℓ1+ℓ2+ℓ′

)
/2[

fℓ1ℓ1

(
r;ra

)
fℓ2ℓ2

(
r;r′

a

)
fℓ′ℓ1ℓ2

(
r;rb, r

′
b

)
+fℓ1ℓ1

(
r;ra

)
fℓ2ℓ2

(
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b

)
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(
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′
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)
+fℓ1ℓ1

(
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)
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)]}
, (5.45)

where

Mℓ1ℓ2 =
∑
ℓ′

(
2ℓ′ +1

)(
ℓ1 ℓ2 ℓ′,

0 0 0

)2
(5.46)

and

fℓℓ(r;ra) =
∫ k2dk

2π2 P (k)jℓ(kra)jℓ(kr), (5.47)

fℓ′ℓ1ℓ2(r;ra, r′
a) =

∫ k2dk

2π2 P (k)jℓ1(kra)jℓ2(kr′
a)jℓ′(kr) (5.48)
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It is worth stressing that this expression was derived assuming Gaussian assumptions. One
advantage is that it makes it relatively easy to compute the theoretical covariance of the
three-point correlation function. However, this assumption also means that the three-point
correlation function covariance may bias the true underlying relationship between variables in
the data, as it does not consider any non-Gaussian contributions. Non-Gaussian contributions
refer to deviations from the Gaussian distribution that usually significantly affect the data’s
analysis, and ignoring them can lead to inaccurate estimates. Therefore, when using the
three-point correlation function to analyse mock or real data, it is important to consider the
potential underestimation caused by excluding non-Gaussian contributions (151).

5.7 The three-point correlation function pipeline

The goal of this Thesis is to bridge the gap between configuration and Fourier spaces in
modelling three-point statistics. The machinery over which next-to-leading order 3PCF
models are evaluated is based on the 2D-FFTLog algorithm, which allows generating any
3PCF model from a given bispectrum model. This represents a significant improvement over
the previous approach - limited to the first perturbative order - of predicting 3PCF models.
However, the computational cost of this procedure is not prohibitive but still significant. This
thesis uses this procedure to compare high-order perturbative 3PCF models with simulated
clustering measurements, focusing on dark matter and galaxy/haloes perturbations. The
strategy used in this Thesis can be illustrated in Fig. 5.4 and resumed in the following steps:

l

Figure 5.4 Flow chart describing the strategy assumed in this Thesis.
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• Step 1: Generating an input bispectrum. In this step, the focus is on modelling the
bispectrum at the next-to-leading order (i.e. the one-loop level using infrared resumma-
tion). The bispectrum at the leading order will also be used, with the understanding that
the corresponding 3PCF is equivalent to that presented in (53). In terms of modelling
at the next-to-leading order, the focus will initially be on dark matter perturbations and
then on galaxy perturbations (126; 128). To obtain the respective bispectrum models, a
code written in a combination of C++ and Fortran90 was implemented to efficiently
calculate the individual loop terms involved in this modelling. The integrals involved in
the next-to-leading order bispectrum model are typically three-dimensional. However,
some of these integrals can be simplified into two-dimensional or one-dimensional
integrals. The multidimensional integrals will be computed using the integration pack-
age CUBA 1, while the one-dimensional integrals will be computed using the GSL-Gnu
Scientific Library2. The input grid in which the bispectrum model has computed
consists of a 256×256×51, where the first two dimensions refer to k1, k2 and the last
one to the angle θ, the angle between them.

• Step 2: Computing the multipoles of the bispectrum model using the Gauss-Legendre
procedure throughout the numpy specific package. The angular dimension is sampled
at 51 equally spaced points within the interval determined by the Gauss-Legendre
procedure.

• Step 3: Using the 2D-FFTLog algorithm to generate the multipoles of the 3PCF.
The algorithm’s input is the bispectrum multipoles calculated in the previous step.
The algorithm has two parameters, ν1 and ν2, which control its accuracy. The grid
dimensions also affect the algorithm’s accuracy and were discussed in the previous
section.

• Step 4: The multipoles produced by the output of the 2D-FFTLog algorithm are
summed to obtain the 3PCF. In general, the sum is infinite, but it is, in practice,
truncated at ℓmax = 10. While this may have some consequences that will be discussed
later, it is consistent with the approach used in the measurements.

• Step 5: Measurements are performed on a catalogue of input objects. This Thesis
will examine three catalogues: one containing only dark matter perturbations and
two containing galaxies and halos. An estimator is used to obtain the measurements
based on the procedure introduced in (17; 77). Due to the computational cost of the
measurements, the maximum number of multipoles is set to ℓmax = 10. This impact the

1feynarts.de/cuba
2gnu/software/gsl

https://feynarts.de/cuba/
https://www.gnu.org/software/gsl/
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3PCF in most isosceles configurations, for which the higher multipoles are expected to
have a significant weight in the Legendre resummation. The uncertainties associated
with the measurements will be computed, including both Gaussian uncertainties from
the theoretical covariance matrix 5.45 and those from a covariance matrix reconstructed
from different mock catalogues.

• Step 6: The generated models are compared with measurements extracted at different
redshifts, where different perturbative order models are expected to provide slightly
different predictions. Initially, the comparison will focus on the data-model comparison
of dark matter perturbations only and then move on to the more challenging case of the
galaxy/haloes model. In this case, the inferred values of the bias parameters involved
in the model will be investigated. The constraining power of a joint 2PCF and 3PCF
analysis at both leading and next-to-leading orders will be studied.





6 Testing the next-to-leading order model for
the matter

In Chapter 5 we presented the theory behind the next-to-leading order model for the matter
or galaxy/halos 3PCF and the pipeline for its numerical implementation and comparison
with the data. In this Chapter we make use of that pipeline to generate several matter 3PCF
models, compare their performances and, finally, to gauge their accuracy by comparing
their predictions with the measurements performed on a set of simulated data. The results
presented in this chapter have been taken from the article Modelling the next-to-leading
order matter three-point correlation function using FFTLog by M. Guidi, A. Veropalumbo,
E. Branchini, A. Eggemeier and C. Carbone, currently submitted to JCAP for publication
(150).

6.1 3PCF matter models

In my study, I have generated four different models for the matter 3PCF, each of them
identified by a different acronym listed in the first column of Tab. 6.1. The first model,
dubbed LO-1D, only uses leading order perturbation theory, equivalent to the leading order
matter bispectrum (see (15)). Since it relies on the analytic simplification presented in (53)
is implemented using the 1D-FFTLog algorithm. The LO-2D also relies on leading order
treatment but drops the analytic simplification and, therefore, makes use of 2D-FFTLog for its
implementation. Since these two models are expected to provide identical predictions, their
comparison will constitute a sanity check for the correct implementation of the 2D-FFTLog
procedure. The third model, dubbed SPT-NLO, is based on the next-to-leading order model
for the matter bispectrum presented in Sec. 4.2.1 and uses 2D-FFTLog for the 3PCF model
implementation. Finally, EFT-NLO relies on the next-to-leading order bispectrum model
implemented within the EFT framework presented in Sec. 4.2.2 and on the 2D-FFTLog
algorithm. All these 3PCF models assume the same cosmology of the DEMNUni simulation
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described in the next section. As a result they do not have free parameters apart from
EFT-NLO that has four of them.

A full 3PCF model specifies the amplitude of the correlation for all triangle configurations
and its representation requires some convention for the ordering of the triangle sides. In this
Thesis we use the following convention: r12 ≤ r13 ≤ r23.

3PCF model name Method Degrees of freedom

LO-1D 1D-FFTLog 0

LO-2D 2D-FFTLog 0

SPT-NLO 2D-FFTLog 0

EFT-NLO 2D-FFTLog 4

Table 6.1 Summary of models used in this paper, methods used to compute them and their degrees of
freedom.

6.2 The DEMNUni simulations

The models presented above have been tested against measurements extracted from the
“Dark Energy and Massive Neutrinos Universe” (DEMNUni) N-body simulations (156).
The DEMNUni simulations have been produced with the aim of investigating large-scale
structures in the presence of massive neutrinos and dynamical dark energy, and they were
conceived for the nonlinear analysis and modelling of different probes, including dark matter,
halo, and galaxy clustering (70; 157; 158; 159; 160; 161; 162; 163), CMB lensing, Sunyaev-
Zel’dovich (SZ) and Integrated Sachs–Wolfe (ISW) effects (156; 164; 165), cosmic void
statistics (166; 167; 168; 169), and cross-correlations among these probes (170; 171). To this
end, they combine a good mass resolution with a large volume to include perturbations both
at large and small scales. In fact, these simulations follow the evolution of 20483 cold dark
matter (CDM) and, when present, 20483 neutrino particles in a box of side L = 2 Gpc/h. The
fundamental frequency of the comoving particle snapshot is, therefore, kF ≈ 3×10−3 h/Mpc,
while the chosen softening length is 20 kpc/h. The simulations are initialized at zini = 99
with Zel’dovich initial conditions. The initial power spectrum is rescaled to the initial redshift
via the rescaling method developed in Ref. (172). Initial conditions are then generated with
a modified version of the N-GenIC software, assuming Rayleigh random amplitudes and
uniform random phases.

https://www.researchgate.net/project/DEMN-Universe-DEMNUni
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In this Thesis, I have only considered the set of standard ΛCDM model simulation with
no neutrinos. From this I have selected two snapshots, at z = 0.49 and z = 1 out of the 63
available, to match the typical redshifts that will be sampled by next generation spectroscopic
surveys like DESI (42), Euclid (41) and Nancy Grace Roman Space telescope (44). Since the
number of dark matter particles is far too large for quick and efficient estimates of the matter
3-point correlation function and since the scale at which our 3PCF model is expected to break
down is much larger than the inter-particle separation, we decided to random downsample
the particle distribution to a dilution factor 2.5‰. The corresponding shot-noise error level
matches that of the BOSS galaxy sample at z ∼ 0.5 and the one expected for Euclid at z ∼ 1.
The volume of the box is also comparable to that of the above mentioned catalogs at the
corresponding redshifts. As a result, the shot-noise and cosmic variance terms adopted in
the Gaussian covariance matrix described in Sec. 5.6.2 are realistic and comparable to those
expected for the real galaxy surveys. Finally, the cosmological model adopted in the 3PCF
model and to measure the matter 3PCF is the same adopted in the simulation, i.e. the Planck
2013 cosmology with Ωb = 0.05, ΩM = 0.32, h = 0.67, ns = 0.96 and σ8 = 0.846.

6.2.1 Dark matter clustering measurements

For an efficient triplet counting procedure, we use the Szapudi-Szalay estimator comple-
mented with the Spherical Harmonics Decomposition (SHD) technique presented in Sec.
5.4 (17; 74). This technique allows to estimate the Legendre coefficients, ζ̂ℓ(r12, r13), up to
ℓmax = 10 and then obtaining the approximate estimate of the triangle-binned 3PCF:

ζ̂(r12, r13, r23) =
ℓmax∑
ℓ=0

ζ̂ℓ(r12, r13)P̃ℓ(r12, r13, r23); (6.1)

where P̃ℓ(r12, r13, r23) is the Legendre polynomial of order ℓ weighted over the triangle

P̃ℓ(r12, r13, r23) =

∫ r12+∆r/2

r12−∆r/2
dpp2

∫ r13+∆r/2

r13−∆r/2
dqq2

∫ r23+∆r/2

r23−∆r/2
dss2Θ(p,q,s)Pℓ(p,q,s)∫ r12+∆r/2

r12−∆r/2
dpp2

∫ r13+∆r/2

r13−∆r/2
dqq2

∫ r23+∆r/2

r23−∆r/2
dss2Θ(p,q,s)

(6.2)
with

Θ(r12, r13, r23) =

 1 if
∣∣∣∣r2

12+r2
13−r2

23
2r12r13

∣∣∣∣≤ 1

0 otherwise
(6.3)
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where P̃ℓ(r12, r13, r23) is the Legendre polynomial of order ℓ integrated over the triangle (see
Appendix A of (74)), with Pℓ(r12, r13, r23) being the Legendre polynomial computed at a
fixed triangle configuration. This estimator is known to be difficult in handling isosceles
triangle configurations (r12 = r13) using a reasonably small number of multipoles ℓmax

(74). This problem also extends to nearly isosceles triangles for which r13 ≃ r12. For this
reason, and to separate these cases from the results obtained for all other configurations,
we characterise measurements using two parameters the minimum separation, rmin, and the
minimum value, ηmin, for the relative difference

η ≡ r13 − r12
∆r

. (6.4)

For a given set ∆r - i.e. the bin-width -, rmin and rmax the case ηmin = 0 includes all
triangles. The case ηmin = 1 includes all triangles with |r13 − r12| > ∆r. And so on. Inputs
to the 3PCF estimator are the spatial distribution of the objects and the spatial distribution
of a random set of unclustered objects distributed in the same volume and with the same
selection function as the data. Since we are considering snapshots of an N-body simulation
our triplet counting algorithm accounts for periodicity in the boundary conditions.

Input to the estimator is a catalog of synthetic objects randomly distributed in the same
volume as the real sample and with the same selection criteria, i.e. the so-called random
catalog. Comparing the triplets counts in the real and random catalog accounts for sample
geometry and selection effects. To reduce the impact of this additional source of shot-noise
error we use 20 times more objects in the random than in the real catalog. And to reduce
the computational cost we adopt the random splitting technique (173): we repeat the 3PCF
measurement of the same sample 20 time with a different random catalogue the same size of
the data, and then we average the estimates. This also allows us to explicitly determine the
error coming from this procedure.

6.2.2 Gaussian covariance

The final ingredient to compare models with simulated data is the 3PCF covariance matrix
C. Since a numerical estimate of C is too computationally demanding, we use the Gaussian
model of (154) to obtain a theoretical expression for the 3PCF covariance matrix T. Thanks
to the periodic boundary condition, we can further simplify the model expression and ignore
mode coupling due to the sample geometry. We also consider the effect of binning in the
computation. With these assumptions, we can obtain a simplified expression for the Gaussian
3PCF covariance matrix for each Legendre coefficient, Tℓ,ℓ′(r12, r13;r′

12, r′
13) and use it to
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form the triangle-binned 3PCF covariance matrix:

T (r12, r13, r23;r′
12, r′

13, r′
23) =

ℓmax∑
ℓ,ℓ′=0

Tℓ,ℓ′(r12, r13;r′
12, r′

13) (6.5)

Pℓ(µ)Pℓ′(µ′),

where Pℓ are the Legendre polynomials of degree ℓ and µ is the cosine angle between r12

and r13. The expression for Tℓ,ℓ′(r12, r13;r′
12, r′

13) and the details of each estimate can be
found in (17). Its value is contributed by cosmic variance, which in turn depends on the
volume of the sample V and on the matter power spectrum P (k), and by the shot-noise of the
discrete tracers with mean density n̄. The values of V and n̄ are taken from the simulation
box whereas we use one-loop SPT to model the power spectrum.

The use of the splitting method to estimate the 3PCF introduces an additional error, σr,
on top of the shot-noise one. We model its contribution as an additional diagonal term to the
theoretical covariance, i.e.

C = T+σr
2I (6.6)

and use C in the χ2 analysis.
The accuracy of the Gaussian approximation for the 3PCF covariance matrix has been

assessed by (17; 151). Based on their results, we expect that the Gaussian model provides
an unbiased estimate of the covariance matrix for separations r ≥ 40h−1Mpc whereas it
underestimates the uncertainties and their correlation on smaller scales. To correctly evaluate
the error budget, we renormalise the covariance matrix C by the factor α = 1.4 to get a
meaningful value of χ2 around unity at sufficient large separations for the LO model.

C′ = C
α

(6.7)

We will use C′ throughout the rest of the paper. The impact of the treatment of uncertainties
will be discussed in the framework of our χ2 analysis, see Sec. 6.4.

6.3 Comparing models to data

To assess the goodness of the model, we perform a χ2 comparison with the data. We estimate

χ2 =
∑
i,j

(Mi −Di)C−1
ij (Mj −Dj) (6.8)
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where Mi is the model vector, Di is the data vector and Cij is the Gaussian covariance
described in the previous section. The Gaussian hypothesis may fail on scales as small as
those considered in our analysis. However, any inaccuracy introduced in the error estimate
will affect all χ2 analyses in a similar fashion and, therefore, will not bias the comparison
between models.

We estimate the χ2 statistics in the eigenspace, in order to diagonalize the covariance
matrix, i.e.

χ2 =
∑

i

(ΛijMj −ΛijDj)2

λi
(6.9)

where Λij are the coefficients of the eigen-matrix and λi are the positive eigenvalues. In our
analysis, we use the reduced chi-square χ2

r = χ2/ν, where ν indicates the number of degrees
of freedom.

To quantify the relative performance of models such as SPT-NLO and EFT-NLO we use
the cumulative chi-square difference normalised by the degree of freedom of the SPT-NLO
(i.e. the number of triangle configurations given the set ∆r, rmin and η)

∆χ2

νSPT−NLO
=

χ2
SPT−NLO −χ2

EFT−NLO
νSPT−NLO

. (6.10)

We will also consider the residuals between models and data normalised to the statistical
errors:

Ri = Mi −Di

σi
(6.11)

where σi are the errors extracted from the diagonal elements of Cij . The level of agreement
between models and data is expected to vary with scale. To assess the relative goodness of
the LO and NLO models and how it changes with scale we compute the average residuals
on all triangle configurations and some selected ones, and compare them in the summary
statistics

⟨∆R⟩ = 1
N

N∑
i

|RNLO
i |− |RLO

i | (6.12)

- where N is the number of configurations examined.

6.4 Results

We now compare the different 3PCF models introduced in Sec. 6.1 with the measurements
performed on the DEMNUni simulations. In doing so, we distinguish, somewhat arbitrarily,
between large (> 40h−1Mpc) and small (< 40h−1Mpc) separations to indicate the scales
on which leading and next-to-leading 3PCF models are expected to provide matching and
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different predictions, respectively. In addition, we will focus on triplets in which at least one
of the sides matches the BAO scale of ≃ 110h−1Mpc. We call these the BAO configurations.

6.4.1 Comparisons among 3PCF models

We now compare LO-2D and SPT-NLO 3PCF models with the LO-1D one. In Fig. 6.2,
we show the difference between the LO-2D and LO-1D 3PCFs, ∆ζ, as a function of the
various triplets configuration, labelled and ordered as described in Sec. 6.1. The top and
bottom panels show the results obtained for z = 1.05 and z = 0.49, respectively. In both
cases, the magnitude of the difference is small compared to the expected 1-σ Gaussian error
represented by the grey band. The largest discrepancies, the spikes in the blue curve, are
found for the isosceles configurations ηmin = 0. The angular sampling needed to compute
bispectrum multipoles in Eq. 5.26 represents the source of the peaks at quasi-isosceles
nonlinear configurations (see Fig. 5.2, and Fig. 5.3). The amplitude of these peaks increases
when decreasing the size of the triangles but never exceeds the Gaussian uncertainty.
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Figure 6.1 Difference between LO-1D, considered as a benchmark, and LO-2D 3PCF models,
∆ζ = ζLO−2D − ζLO−1D (blue curve), as a function of the triangle configurations identified by the
side lengths. Top and central panels show the model predictions at z = 1.05 and at z = 0.49. The
grey band represents the 1-σ Gaussian uncertainty. The bottom panel shows the different sides of the
triangles as a function of the Triangle Index, using logarithmic y-axis. The boxed plot represents,
using logarithmic x- and y- axes, a zoomed-in area of the bottom panel including only separation
distances r12 ≤ 17.5h−1Mpc, providing a closer look at the region of very small scales.
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We conclude that our implementation, or the LO-2D model, which uses the 2D-FFTLog
tool, fully agrees with the standard one, LO-1D, used as a benchmark. These results validate
the 2D-FFTLog implementation and justify the adoption of this tool to generate a nonlinear
3PCF model.
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Figure 6.2 Same as figure 6.1 showing the difference between 3PCF models LO-1D and NLO-SPT
(red curves).

Fig. 6.2 compares the difference between the SPT-NLO and the LO-1D 3PCF models
(red points) to the expected 1-σ Gaussian uncertainty (grey band). On large scales (i.e. to the
right part of the plots), the differences are about ten times larger than in the LO-1D vs LO-2D
case but still well below the expected Gaussian uncertainty, showing that nonlinear effects
are small in this regime. Differences increase when moving to the left of the panels, i.e. on
small scales, as expected. Differences between the models increase by up to two orders of
magnitudes, indicating the importance of nonlinear contributions to the 3PCF signal.
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Figure 6.3 Relative difference between LO-1D, considered as a benchmark, and LO-2D 3PCF models,
∆ζ = (ζLO−2D −ζLO−1D)/ζLO−1D (blue curve), as a function of the triangle configurations identified
by the side lengths. Top and central panels show the relative errors between model predictions at
z = 1.05 and at z = 0.49. The grey band represents the 1-σ propagated Gaussian uncertainty. The
bottom panel shows the different sides of the triangles as a function of the Triangle Index, using
logarithmic y-axis. The boxed plot represents, using logarithmic x- and y- axes, a zoomed-in area of
the bottom panel including only separation distances r12 ≤ 17.5h−1Mpc, providing a closer look at
the region of very small scales.

Moreover, the magnitude of the discrepancy increases at lower redshift for the same
reason. Superimposed on this trend, we still see peaks in correspondence of isosceles triangle
configurations, confirming not only that the different techniques that reproduce the same
model exhibit most differences on those configurations but also that differences between
3PCF models at different perturbative orders peak on small scales toward ηmin = 0.

We conclude that the SPT-NLO model significantly differs from the LO-1D on small
scales. Which, however, does not guarantee that SPT-NLO is a better model. A point that
we will address by comparing models with data in the next Sections. These observations
are confirmed by visually inspecting Fig. 6.3, which illustrates the relative error between
the examined models (NLO-SPT and LO-2D) and the benchmark model (LO-1D). The
relative differences in the LO-2D model demonstrate a decreasing trend as the minimum
scale decreases. This indicates that the numerical approximation error inherent in the 2D-
FFTLog algorithm, applied with the given input grid, impacts the model’s predictions more
prominently at larger scales, where the signal-to-noise ratio is lower. On the other hand,
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the NLO-SPT model exhibits greater per-cent differences on smaller scales, as expected. It
is worth noting that the noise introduced on large scales by the 2D-FFTLog algorithm is
model-independent.

The fact that the differences between models are larger than statistical errors for small
triangle configurations indicates that model nonlinearities would dominate the error budget
on small scales. And clearly illustrates the importance of going beyond the linear order 3PCF
model.

6.4.2 3PCF measurements

We performed 3PCF measurements on the DEMNUni simulation snapshots z = 0.49
and z = 1.05 using the estimators presented in Sec. 6.2.1 over a wide range of scales:
rij = [17.5,152.5]h−1Mpc using the bin-width ∆r = 5h−1Mpc. Every symbol in Fig. 6.4
represents a 3PCF measurement for triangles of all sizes, labelled in the X-axis, in the allowed
range. From top to bottom, the first and third plots show the 3PCF amplitude multiplied by
the triangle side lengths. The second and fourth plot shows the signal to noise, i.e. the 3PCF
amplitude in units of the Gaussian error: ζ/σ. Different symbols (and colours) are used for
different triplet types. Green dots indicate small-scale triplets, defined as configurations for
which r12 ≤ 40h−1Mpc. Red triangles identify BAO triplets that encompass the BAO scale,
the latter defined as the scale in which BAOs provide their typical wiggling features to the
correlation functions. Practically, for BAO configurations, we consider triangle configura-
tions with at least one side in the range [17.5 − 117.5h−1Mpc]. Yellow stars indicate the
squeezed BAO configurations, i.e. triplets with one side much smaller than the other two,
whose at least one is in the BAO regime. The grey dot symbol is used for all other cases. The
signal to noise is typically above unity, quite insensitive to the triangle size except on small
scales where it peaks.

6.4.3 3PCF models vs. data: overview

We compare the SPT-NLO and the LO-2D 3PCF models to the same set of measurements
performed on the DEMNUni datasets. The scatterplot in Fig. 6.5 compares the absolute
values of normalised residuals in Eq. (6.12) of both models for each triangle configuration
for the SPT-NLO (Y-axis) and LO-2D (X-axis) models in the two snapshots. We use the
same symbols and colors as in Fig. 6.4 to identify different types of triangle configurations.
In Fig. 6.5, we show the normalised absolute value of residuals of SPT-NLO on the Y-axis
and LO-2D on the X-axis for both redshift cases. In the left and right panels, respectively
z = 0.49 and z = 1.05, different symbols and colours are used to represent the different
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Figure 6.4 Measurements of 3PCF from the DEMNUni snapshots at z = 0.49 (top plots) and z = 1.05
(bottom plots). In each figure for different redshifts, the upper panel shows the 3PCF amplitude
multiplied by the size of the sides of the triangles as a function of the triangle configuration, indicated
on the X-axis. The bottom panel shows the signal-to-noise, assuming Gaussian errors. Different
colours and symbols are used for different triangle types, as indicated in the labels. In our classification
scheme, as described in the text, it is possible for a triangle to have multiple classifications. For
instance, a triangle classified as squeezed BAO would also fall into the category of small-scale triangles.
First and second panels refer to z = 0.49, while third and fourth panels z = 1.05. Bottom plot shows
the sides of the triangles as a function of the Triangle Index, ranging from rmin = 17.5h−1Mpc and
rmax = 132.5h−1Mpc. The bin-width is ∆r = 5h−1Mpc.

configurations shown in Fig. 6.4. Deviations under the diagonal indicate the SPT-NLO model
behaves better with respect to the LO-2D model. Deviations above the diagonal indicate the
opposite case.

We stress that a clear and expected feature is the redshift dependence: the matching
between model and data improves with the redshift for both the SPT-NLO and the LO-
2D cases. At z = 1.05 only for a handful of small triangle configurations, the difference
between the model and the measured 3PCF exceeds 3-σ significance. And these are mostly
LO-2D predictions. At z = 0.49, the number of 3-σ outliers increases significantly, and,
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Figure 6.5 Comparison between normalised absolute values of residuals of SPT-NLO and LO-2D
models. The LO-2D residuals are displaced in the X-axis, while the SPT-NLO case is displaced in
the Y-axis. The left plot refers to z = 0.49, while the right plot refers to z = 1.05. Different symbols
focus on BAO scales (red triangles), small scales (green rhombuses) and small BAO scales (yellow
stars).

more generally, the amplitude of the data-model mismatch systematically increases on
all scales. We also represented different sub-sets of configurations with different colours
and symbols: small scales, BAO configurations, and squeezed BAO scales. To quantify
the relative agreement between the LO-2D and SPT-NLO models, we report the average
difference between the absolute value of normalised residuals (see Eq. 6.12) - for each
considered sub-set - in Tab. 6.2. Negative values of the average difference of the absolute
values of normalised residuals indicate the SPT-NLO’s predictions are closer to the simulated
dataset with respect to the LO-2D’s case; positive values indicate the opposite. The whole set
of measured triangle configurations shows negative values of ⟨∆R⟩. Small scales indicate an
even more negative value of that quantity, showing the SPT-NLO model exhibits a smaller
difference with the data compared to the LO-2D case. Similarly, for the BAO scales, for
which the cited difference assumes a slightly negative value despite being consistent with
zero. As a preliminary overview, these cases indicate the contribution of the SPT-NLO
model better matches the simulated dataset. Considering the squeezed BAO scales, ⟨∆R⟩
is negative, and it represents the most significant deviation from the zero value considering
the error, meaning the SPT-NLO model improves the match with the dataset concerning the
LO-2D model. At this stage, we did not consider the correlation between measurements,
ignoring the effect of the non-diagonal terms in the covariance matrix. We will properly
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quantify the performance of models in Sec 6.4.5. We will focus on the particular squeezed
isosceles configurations in the next Sec.

Configurations z = 0.49 z = 1.05

All configurations ⟨∆R⟩ = −0.129±0.038 ⟨∆R⟩ = −0.059±0.039

BAO scales ⟨∆R⟩ = −0.009±0.045 ⟨∆R⟩ = −0.006±0.045

Small scales ⟨∆R⟩ = −0.431±0.076 ⟨∆R⟩ = −0.188±0.076

Squeezed BAO ⟨∆R⟩ = −0.262±0.163 ⟨∆R⟩ = −0.132±0.163

Table 6.2 Average difference between the absolute values of normalised residuals of SPT-NLO and
LO-2D models. Redshifts are listed in columns two to three, while all configurations, BAO, small
scales and squeezed BAO scales are listed in rows two to five.

6.4.4 3PCF models vs. data: the BAO scale

A key feature in clustering statistics is represented by the imprint of the baryons, the large-
scale imprinting of primordial baryonic fluctuations that can be used to trace the expansion
history of the Universe with per cent precision. BAOs in two-point statistics have become
a standard and very effective cosmological probe. However, the BAO feature can be and
has been, detected in the galaxy 3-point correlation function, too (72; 174). As for the
2-point statistics, its use for precision cosmology depends on the ability to model nonlinear
effects, i.e. to go beyond linear order-based models. Indeed, correct modelling of the BAO is
important in full shape fits, as throughout, we are able to get cosmological information.

In this Sec., we, therefore, focus on the BAO scale, and more precisely on squeezed
isosceles triangle configurations encompassing the BAO scale, to assess the performance of
the NLO-SPT and NLO-EFT models in comparison to LO’s predictions.

In Fig.6.6, we compare the measured and the predicted 3PCFs for isosceles triangles
with one side length fixed to δr = 22.5 h−1Mpc, well within the nonlinear regime, and
the other two equal side of increasing length r, shown on the X-axis. 3PCF estimated are
represented by the black dots with their 1 σ-Gaussian error bars. Models’ predictions are
shown by the two curves: dashed blue for the LO-2D case, continuous red for the NLO-SPT
and dashed-dot green for the NLO-EFT. At low redshift (left panel), the NLO-SPT and
NLO-EFT models outperform LO-2D on all scales. In particular, they reproduce the shape of
the BAO peak much better, indicating that the nonlinear effects responsible for the widening
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Redshift c0
[
h−2Mpc2

]
c1
[
h−2Mpc2

]
c2
[
h−2Mpc2

]
c3
[
h−2Mpc2

]
z = 0.49 2.25±1.68 −4.20±1.73 −1.91±2.37 1.65±3.25
z = 1.05 3.68±1.90 −4.81±1.96 −7.38±2.68 11.45±3.65

Table 6.3 Best fit values for the four parameters of the NLO-EFT model for the squeezed BAO
configurations, as depicted in Fig. 6.6.
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Figure 6.6 Top: 3PCF as a function of the two side lengths r of a set of isosceles triangles, with
the third side of length δr = 22.5h−1Mpc. The 3PCF measurements are shown as black dots, and
the error bars indicate the 1 σ Gaussian uncertainty. The continuous red curve and the dashed blue
ones show the predictions of the NLO-SPT of the LO-2D models, respectively. Left and right panels
illustrate the results at z = 0.49 and at z = 1.05. Bottom: normalised residuals for z = 0.49 (left),
z = 1.05 (right), as defined in Eq. 6.11, for the three models depicted by the same colours and shapes
of the top panel.

of the peak are correctly accounted for. At larger redshifts, the three models behave almost
identically - particularly on larger sides -, which does not come as a surprise. In regard to
the comparison between the NLO-EFT model and the NLO-SPT model, incorporating four
parameters leads to a significant improvement in data matching, particularly at small scales,
as shown by the normalised residual depicted in the bottom panel of Fig. 6.6. We notice that
at this redshift and on these scales, the 3PCF signal is very small (notice the difference in
the Y-axis scale) and highly correlated, which explains why, as shown in the next Sec., the
statistical significance of the mismatch as quantified by the χ2 analysis is rather small.
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6.4.5 3PCF models vs. data: quantitative analysis

We now present the results of the χ2 analysis introduced in Section 6.3. In addition to
LO-2D and NLO-SPT, we also consider the nonlinear NLO-EFT. In these analyses, we have
considered all triangles with side length r12 in the range [17.5,132.5]h−1Mpc, splitting our
analysis in two cases: ηmin = 2 and ηmin = 0.
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Figure 6.7 Best fit values for the four NLO-EFT free parameters (left to right) from the reduced
χ2 analysis, as a function of rmin. The red continuous band refers to ηmin = 2, the blue dotted
band to ηmin = 0. Top and bottom panels show the results for the z = 0.49 and z = 1.05 snapshots,
respectively.

The reason why we ran the analysis with different values of η is motivated by the
measurement technique adopted. Indeed, we measure the 3PCF multipoles first, up to
ℓmax = 10, and then combine them. This is not a problem in principle as long as we repeat
the same operation consistently in the model. The complication arises for those combinations
{r12, r13} that allows the third side r23 to span from very large to very small, highly nonlinear
scales. For such cases, corresponding to the choice of η = 0,1, the multipole series is slowly
convergent due to the steep shape of the 3PCF as r23 → 0. All the resummed 3PCFs
coming from these multipoles are then dominated by the contribution of these squeezed
configurations, which are extremely difficult to properly model. In principle, a standard
estimator of the 3PCF would allow to filter out these contributions more efficiently. In
order to compare EFT-NLO predictions with the ones from other models, we inferred
the four model parameters for both cases of choice of ηmin and redshifts as a fixing the
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maximum scale to rmax = 122.5 and varying the minimum scale of the fit rmin in the interval
[17.5,62.5]h−1Mpc, i.e. the range from mild to strong nonlinear scales in which EFT
contributions are supposed to be relevant. The results are shown in Fig. 6.7. The ηmin = 0
case, due to the larger number of triangle configurations, exhibits tighter bands with respect
to the ηmin = 2 case. This plot is to be interpreted cumulatively from right to left: on large
scales where the nonlinear effects are small, the best-fit values are consistent with zero within
the error bars. Moving towards smaller scales and considering an increasingly large number
of progressively smaller triangles, the parameters of the best-fitting models significantly
depart from zero at both redshifts and ηmin choice. The estimation of c2 benefits from the
larger number of configurations in the case ηmin = 0. Using the inferred EFT parameters at
each rmin for the EFT-NLO model, we present the performance of the goodness-of-fit of all
the models listed in Tab. 6.1. The results are shown in Fig. 6.8 in the form of cumulative
χ2: from right to left, each point of the curves indicates the reduced χ2 value obtained by
including all triangles with ηmin = 2 and r12 in the range [rmin,132.5]h−1Mpc, where the
rmin value is to be read on the X-axis.
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Figure 6.8 Cumulative reduced chi-square χ2
r in the range [rmin,112.5]h−1Mpc, as a function of

rmin for the case ηmin = 2. continuous red and dashed blue curves refer, respectively, to the NLO-SPT
and LO-2D models. The grey band represents a 99.7% confidence level assuming Gaussian statistics.
The left and the right panels refer, respectively, to redshift z = 0.49 and z = 1.05

The leftmost point of the curves indicates the χ2 value obtained when considering all
triangle configurations with η ≥ 2. The cumulative χ2

r value of each model can be compared
with the corresponding 99.7% confidence interval for Gaussian statistics, represented by
the grey band. The reduced χ2 is well within the grey strip for most of the scales above
40h−1Mpc, indicating those model uncertainties provide a minor contribution to the 3PCF
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total error budget. For this purpose, we normalised the covariance matrix in Eq. 6.7 to have
a meaningful goodness-of-fit around unity on large scales in which models are expected
to work well. This is not the case for scales below 40h−1Mpc, where nonlinear effects
are large and cannot be fully captured by perturbative models. We observe that for scales
below 30h−1Mpc at both redshifts, the difference between the NLOs models and the LO-2D
model is appreciable, particularly for z = 0.49, but limited to scales in which uncertainties
are known to be underestimated, and the goodness-of-fit is far from being close to unity.
These are also the scales, however, on which the SPT-NLO and EFT-NLO provide a better
fit to the data than the LO-2D one. The small difference between the models is slightly
deceptive, and partly due to the fact that having considered cumulative statistics, the χ2

r is
significantly contributed by those large triangles in which the two models provide similar
(good) predictions. The fact that LO and NLO models perform similarly in the ηmin = 2 case
reflects the fact that these are triangle configurations for which the number of scales in the
small-scale regime is limited by the constraint on the sides of the triangle.

Therefore we decided to explore the more challenging case of ηmin = 0 for which
the number of triangle sides in the small scale range is as large as possible, ranging in
[rmin,132.5h−1Mpc].
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Figure 6.9 Same as Fig. 6.8 fore the case ηmin = 0. Model predictions for NLO-EFT, NLO-SPT and
LO-2D are shown with green dot-dashed, reds continuous and blue dashed curves, respectively.

Fig. 6.9, in which cumulative χ2
r of all models are represented, shows that while the good-

ness of the fit for both next-to-leading models, SPT-NLO and EFT-NLO, have significantly
worsened with respect to the ηmin = 2 configuration case. And yet they both outperform the
LO-2D model on small scales at both redshifts. Here, the improvement coming from the
SPT-NLO is more significant and, as in the previous case at ηmin = 2, bounded at scales below



104 Testing the next-to-leading order model for the matter

60h−1Mpc, and where goodness-of-fit is far from being close to the expected value. This
difference is probably less significant than it appears since model uncertainties are probably
underestimated by the Gaussian assumption. The comparison between these different models
informs us that the use of nonlinear models is mandatory to analyse the 3PCF signal from
ηmin < 2 triangle configurations. And that even on small scales, where the quality of the fit
degrades, the systematic errors they introduce are significantly smaller than bias of the LO
models.

Although the goodness of the EFT-NLO fit is bound to be superior to the SPT-NLO one,
the corresponding reduced χ2 values are quite similar in the two cases.

In order to quantify the improvement coming from the adoption of the EFT-NLO model
with respect to SPT-NLO, we studied the cumulative chi-square difference normalised by
SPT-NLO degrees of freedom as presented in Eq. 6.10. Results are shown in Fig. 6.10.
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Figure 6.10 Cumulative chi-square difference between NLO-SPT and NLO-EFT models divided by
the NLO-SPT degree of freedom. Dotted lime line refers to z = 1.05, the solid green one refers to
z = 0.49. From left to right, respectively, the case ηmin = 2 and ηmin = 0. The grey band represents a
99.7% confidence level coming from the propagation of errors on Eq. 6.10.

Differences above the grey band mean the improvement coming from NLO-EFT is
significant. None of the differences is below the grey band, meaning the model benefits or -
at least - is not worsened by the adoption of four extra fitting parameters, as expected. The
case ηmin = 2 shows the NLO-EFT models show an almost non-significant improvement
over the NLO-SPT model, at both redshifts. On the other hand, the case ηmin = 0 shows the
improvement coming from NLO-EFT model is significant in the small-scale regime, confined
to scales below 60,40h−1Mpc, respectively at z = 0.49,1.05. However, the improvement
holds in the regime in which Gaussian uncertainties are supposed to be underestimated (151)
so that the goodness of fit is far from being close to the expected value in this regime. What
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is surprising is the contribution from the adoption of EFT counterterms in a configuration
space analysis as we focused on this work, and in a Fourier space analysis as done in (60).
Bispectrum analyses at next-to-leading order have shown that EFT models are crucial to
model the matter signal up to k = 0.16−0.19Mpc−1h depending on the binning of the data,
being a significant improvement with respect to the SPT model (see Fig. 7 of (60)). In
our analysis, the improvement of the EFT-NLO model compared to SPT-NLO is much less
significant, although the quantification of the improvement is affected by the estimation of
the uncertainties that differ in both analyses. This seems to reflect that departures from the
SPT model parametrised by adding four extra EFT terms in Fourier space are converted into
very small-scale contributions in configuration space, for which both models fail to give a
clear representation of the data.

To summarize our results we list, in Tab. 6.4 and 6.5 , the signal-to-noise values obtained
by comparing the model 3PCF to the data (column 5) at 1) rmin = 40h−1Mpc for ηmin = 0
and 2) rmin = 20h−1Mpc for ηmin = 2. For both choices, the NLOs models exhibit smaller
χ2 values and therefore better fit, meaning in the small scale range, the adoption of NLOs
models is required to model the dataset properly. Comparing both choices, smaller χ2

corresponds to smaller S/N values, even if choice 2) considers smaller minimum scales than
1). We stress the agreement between models and data, for all the models considered in this
work in the nonlinear regime, is affected by the estimation of uncertainties (151).

Model Redsfhit χ2
r S/N

LO-2D 0.49 2.73 19.58

EFT/SPT-NLO 0.49 2.09 19.58

LO-2D 1.05 1.82 13.07

EFT/SPT-NLO 1.05 1.66 13.07

Table 6.4 Signal-to-noise [S/N ] at rmin = 40h−1Mpc and ηmin = 0 and the χ2 comparison between
the model 3PCFs considered in this work, and listed in column 1, and the measurements performed
on two snapshots of the DEMNUni simulations at the redshifts listed in column 2.

Focusing on the BAO scales, the differences between the leading and next-to-leading order
models are also significant. The comparison, described in the previous Section, considers a
wide range of scales r = [22.5,152.5]h−1Mpc and it is summarised in Tab 6.6. Especially at
z = 0.49, for the configuration we used as a test, the chi-square value is high, but, along with
the case at z = 1.05, it is shown that the SPT-NLO model provides a significant improvement
on squeezed BAO configuration. We stress the significance of the mismatch between models
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Model Redsfhit χ2
r S/N

LO-2D 0.49 2.24 9.55

EFT/SPT-NLO 0.49 2.06 9.55

LO-2D 1.05 1.67 12.05

EFT/SPT-NLO 1.05 1.61 12.05

Table 6.5 Same as Tab. 6.4, but rmin = 20h−1Mpc and ηmin = 2

and data depends on the adopted model, and it is affected by having adopted a Gaussian
model for the errors and their covariance.

Model Redshift χ2
r

LO-2D 0.49 27.6

NLO-SPT 0.49 11.9

NLO-EFT 0.49 2.9

LO-2D 1.05 4.4

NLO-SPT 1.05 2.3

NLO-EFT 1.05 1.0

Table 6.6 Reduced χ2 values obtained when comparing measured and model 3PCF for triangle
configurations that encompass the BAO scale (column 3). The models are listed in column 1, and the
redshift of the simulation snapshot is shown in column 2. The analysis is described in Sec. 6.4.4.



7 Constraining galaxy bias with the Euclid
Spectroscopic Survey

In this Chapter, I illustrate an application of the 3PCF model focusing on its fundamental role
in breaking the degeneracy among cosmological parameters that affect clustering analyses
based on the use of two-point clustering statistics only. For that, I need to move from the
3PCF model for the matter presented in the previous chapter to a 3PCF model for the galaxies
since these are the objects that can actually be observed. Galaxies’ positions are typically
determined from their measured redshift without accounting for their peculiar velocities. As
a result, anisotropic distortions are induced in the 3D mapping of their spatial positions that,
however, I will ignore in this chapter and throughout its thesis, limiting my analysis to the
real-space case, i.e. assuming that redshift distortions have been somehow removed.

Modelling clustering statistics for galaxies rather than for matter means explicitly ac-
counting for the galaxy bias, i.e. the mapping between their two density fields. Since my goal
is to include scales where linear theory does not apply anymore, I will account for nonlinear
effects both in the 2PCF model and in the biasing relation. But assume linear order to model
3PCF. The new, next-to-leading order, 3PCF model will be presented in the next Chapter.

7.1 Modeling galaxy bias and clustering statistics

In the analysis presented in this Chapter, I will use the next-to-leading order 2PCF model
described in Sec. 5.2. The method I used to implement the model relies on performing the
inverse Fourier transform of the matter power spectrum through the 1D-FFTLog algorithm.
The method is used to compute the loop terms involved in the power spectrum computation at
the next-to-leading order, following (146). This approach represents an efficient and accurate
technique to mitigate the computational cost of computing the two-point correlation function
model. Having fixed all cosmological parameters, the galaxy two-point correlation function
depends on five free parameters to describe the galaxy bias:
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{b1, b2, γ2, γ21, c0} (7.1)

The first four parameters derive from the adoption of Standard Perturbation Theory formula-
tion (SPT) (see Secs 3.3.2, 4.2.3), while the last one, c0, is the counterterm included in the
Effective Field Theory formulation in Sec. 4.2.2.

For the galaxy 3PCF, I use the leading order model described in Sec. 5.3. This model is
the equivalent to that of (53) but is implemented using a more general 2D-FFTLog procedure,
which was previously validated in the context of clustering of dark matter perturbations in
the chapter 6. The 3PCF model has three free bias parameters:

{b1, b2, γ2} (7.2)

In this analysis, I do not consider the EFT model for the 3PCF. Instead, I rely on 2PCF to
constrain the c0 ETF parameter. The bias model adopted in this Chapter and its parameters
have been presented and discussed in Sec. 3.3.2, whereas the parameters of the EFT model
have been introduced in Sec. 4.2.2.

7.2 Dataset

The prediction of the galaxy 2PCF and 3PCF models have been compared with the mea-
surements of these statistics performed in Euclid Flagship mock galaxy catalogue. This
catalogue was generated from a high-resolution N-body simulation of two trillion dark matter
particles in a periodic box of L = 3780 h−1Mpc per side using the PKDGRAV3 algorithm
(175). The cosmological parameters used for the simulation were chosen to match those
of a flat Λ-cold dark matter (Λ-CDM) cosmology as determined by the Planck mission
(3), with Ωm = 0.319, Ωb = 0.049, Ωde = 0.681, σ8 = 0.83, ns = 0.96 and h = 0.67. The
simulation outputs were combined to build a light cone within an opening angle covering
1/8th of the full sky. Dark matter halos were identified using the Rockstar halo finder,
and galaxies were assigned to the halos using the halo occupation distribution model, whose
parameters were set to match the number of galaxies that Euclid is supposed to detect at
different redshifts. I focused on four redshift snapshots in real space in the range that will be
covered by Euclid. Particularly, two- and three- point correlation functions models will be
tested at redshift z = 1.79,1.53,1.19,0.90. These latter, along with the number of galaxies
Ng and their number density n̄, are listed in Tab. 7.1.
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Redshift Ng n̄ [10−3]
0.9 110321755 2
1.2 55563490 1
1.5 31613213 0.6
1.8 16926864 0.2

Table 7.1 List of, for each redshift, the number of galaxies Ng and the mean number density n̄ in the
Flagship galaxy catalogues.

7.2.1 Measurements

The isotropic two-point correlation function has been measured with the simple estimator
(153; 176).

ξ(r) = DD(r)
RR(r) −1, (7.3)

where DD and RR are the data-data and random-random pairs of objects, respectively. Since
the number density of objects in the box is constant, then the number of random-random
counts as a function of the separation has been estimated analytically.

The isotropic three-point correlation function has been measured through the estima-
tor presented in Sec. 5.4 and used in the context of matter perturbation in Sec. 6.2.1.
Measurements have been performed considering all configurations for which η ≥ ηmin = 1.
Furthermore, the triplet counting algorithm accounts for the periodicity of the box, and for
each snapshot, a random dataset containing NR(z) times more objects than galaxies has been
used to reduce the noise. The values of NR(z) are listed in Tab. 7.2. This random sample is
needed to consistently subtract the disconnected part of the 3PCF.

Redshift NR(z)
z = 1.78 50
z = 1.53 50
z = 1.19 50
z = 0.90 25

Table 7.2 The list of ratios NR between the random and data datasets

To reduce the computational effort, the random splitting technique has been used (17;
173), repeating the measurement of the same given sample 25 times using different random
catalogues and averaging the estimates.
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7.2.2 Gaussian covariance

To estimate errors in the measured 2PCF and their covariance, I rely on the Gaussian
covariance model Cξ defined in Eq. 5.42. To estimate Cξ I have used the next-to-leading
order power spectrum model for the matter and set the volume and the number density equal
to those of the simulations snapshots.

The covariance matrix for the measured 3PCF, Cζ , also relies on the Gaussian model
proposed in (154). The periodic boundary conditions used to run the parent N-body sim-
ulation allow us to use a simplified expression and ignore any mode coupling caused by
the sample geometry. I also considered the effect of binning in the computation. Putting it
all together I obtained the Gaussian 3PCF covariance matrix for each Legendre coefficient,
Tℓ,ℓ′(r12, r13;r′

12, r′
13), which is then used to form the triangle-binned 3PCF covariance ma-

trix. The expression for Tℓ,ℓ′(r12, r13;r′
12, r′

13) is given in Eq. 5.45 and details can be found
in (17). The 3PCF covariance of the sample depends on the matter power spectrum that I
have modelled using the SPT next-to-leading order and on the number of objects and the
volume of the sample, which I took from the simulation snapshots.

To speed up the 3PCF estimate, I have adopted the so-called splitting method, which
introduces an additional error, σr, to be added on top of the shot noise term, corresponding
to adding a term to the diagonal elements of the matrix:

Cζ = T+σr
2I (7.4)

where Cζ is the full covariance matrix considered in the likelihood analysis concerning the
3PCF.

7.3 Results

7.3.1 Clustering measurements

The measurements of 2PCF are shown in Fig. 7.1 for each snapshot. The figure also shows,
in the bottom panel, the absolute value of the signal-to-noise ratio defined as |ξ(r)/σ|, where
σ is the error from the diagonal of the covariance matrix Cξ. The monopole of the binned
(∆r = 10h−1Mpc) 2PCF as a function of the pair separation is shown in the top panel. It
has the characteristics power-law shape and the BOA peak at ℓBAO ∼ 110 h−1Mpc, The
signal-to-noise ratio decreases almost monotonically, being null at the 2PCF zero crossing
scale, and then flattens on scales in which errors are dominated by the cosmic variance.



7.3 Results 111

0 20 40 60 80 100 120 140

−5

0

5

10

15

20

25

30

r2
ξ(
r)

z = 0.90

0 20 40 60 80 100 120 140
−10

0

10

20

30

r2
ξ(
r)

z = 1.19

0 20 40 60 80 100 120 140

r [h−1Mpc]

102

|S
/N
|

0 20 40 60 80 100 120 140

r [h−1Mpc]

102

|S
/N
|

0 20 40 60 80 100 120 140

−10

0

10

20

30

r2
ξ(
r)

z = 1.53

0 20 40 60 80 100 120 140

−10

0

10

20

30

40
r2
ξ(
r)

z = 1.79

0 20 40 60 80 100 120 140

r [h−1Mpc]

102

|S
/N
|

0 20 40 60 80 100 120 140

r [h−1Mpc]

102

|S
/N
|

Figure 7.1 Measurements of 2PCF extracted from four Flasghip snapshots. For each panel, the
upper and the bottom plots refer to the measurement and the signal-to-noise ratio (S/N ). Top-left,
top-right, bottom-left, bottom-left plots refer respectively to z = 0.90,1.19,1.53,1.78, the bin-width
is ∆r = 5h−1Mpc.

The four panels of Fig. 7.2 are analogous to those of Fig. 7.1 and show the absolute
value of the 3PCF (top panels) and their corresponding signal-to-noise ratio values (bottom
panels), as a function of the triangle index. 3PCF measurements span a a wide range of
scale: rij = [5,145]h−1Mpc and were performed using the bin-width ∆r = 10h−1Mpc.
I notice that the signal-to-noise, which is larger than unit on small scale triangles with
r12 ≤ 40h−1Mpc but then drops below unit on larger scales. The relation between triangle
index and its sides is not trivial and is shown at the very bottom of the figure.



112 Constraining galaxy bias with the Euclid Spectroscopic Survey

0 50 100 150 200 250 300 350

10−6

10−5

10−4

10−3

10−2

10−1

|ζ
(r

1
2
,r

1
3
,r

2
3
)|

z = 0.90

0 50 100 150 200 250 300 350

10−7

10−5

10−3

10−1

|ζ
(r

1
2
,r

1
3
,r

2
3
)|

z = 1.19

0 50 100 150 200 250 300 350
Triangle Index

10−4

10−1

102

|S
/N
|

z = 0.90

0 50 100 150 200 250 300 350
Triangle Index

10−4

10−1

102

|S
/N
|

z = 1.19

0 50 100 150 200 250 300 350

10−6

10−4

10−2

|ζ
(r

1
2
,r

1
3
,r

2
3
)|

z = 1.53

0 50 100 150 200 250 300 350

10−6

10−4

10−2

|ζ
(r

1
2
,r

1
3
,r

2
3
)|

z = 1.79

0 50 100 150 200 250 300 350
Triangle Index

10−4

10−1

102

|S
/N
|

z = 1.53

0 50 100 150 200 250 300 350
Triangle Index

10−4

10−1

102

|S
/N
|

z = 1.79

0 50 100 150 200 250 300 350
Triangle Index

101

102

r i
j
h
−

1
M

p
c

r23

r13

r12

Figure 7.2 Measurements of 3PCF extracted from four Flasghip snapshots. Top-left, top-right,
middle-left, middle-left panels show measurements and signal-to-noise ratio (S/N ), respectively at
z = 0.90,1.19,1.53,1.78. Bottom panel shows the sides of the triangles as a function of the Triangle
Index, ranging from rmin = 5 h−1Mpc to rmax = 145 h−1Mpc. The bins-width is ∆r = 10h−1Mpc.

7.3.2 Parameter inference

To estimate the free parameters, θ, that define the bias model I used the posterior probability
P (µ(θ)|d), where µ(θ) is the model and d is the data vector, respectively. The posterior
probability is obtained by multiplying the prior probability, P (θ), and the likelihood L

lnL = −1
2χ2(µ,C) (7.5)
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where the chi-square χ2(θ) is

χ2(µ,C) = (d−µ)TC−1(d−µ) (7.6)

and C is the covariance matrix.
In this analysis, I explore three choices of data-vectors. In the first I considered only the

two-point correlation function using the likelihood

lnLξ = −1
2
[
ξ̂ − ξ(θ)

]T
C−1

ξ

[
ξ̂ − ξ(θ)

]
, (7.7)

where Cξ is the Gaussian 2PCF covariance matrix.
In the second one I considered only the three-point correlation functions, with a likelihood

lnLζ = −1
2
[
ζ̂ − ζ(θ)

]T
C−1

ζ

[
ζ̂ − ζ(θ)

]
, (7.8)

with Gaussian covariance Cζ .
Finally, I also considered a joint fit by combining the two- and the three- point correlation

functions. The corresponding likelihood, in which I did not include the cross-correlation
between the two statistics is

lnLζ+ξ = lnLζ +lnLξ = −1
2
[
ζ̂ − ζ(θ)

]T
C−1

ζ

[
ζ̂ − ζ(θ)

]
− 1

2
[
ξ̂ − ξ(θ)

]T
C−1

ξ

[
ξ̂ − ξ(θ)

]
.

(7.9)
To explore the posterior probability of each bias parameter, I used the emcee software,
a Python implementation of the Affine Invariant Markov chain Monte Carlo (MCMC)
Ensemble sampler (177). The flat prior distributions used to run the chains are listed in their
minimum and maximum values in Tab. 7.3.

Parameter Uniform prior ranges

b1 [1,6]
b2 [−8,8]
γ2 [−10,10]
γ21 [−10,10]
c0
[
h−2Mpc2

]
[−100,100]

Table 7.3 The list of assumed uniform prior ranges.

In order to assess the performance and the range of validity of the model it is useful to
consider the phenomenological relations, obtained from N-body experiments, among some of
the bias parameters. The adoption of these relations help breaking some degeneracy among
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the parameters themselves and increases the precision of their estimate. The relations I
considered are the bias relations b2(b1), γ2(b1) and b3(b1) presented in Eqs. 3.72, 3.73, 4.76:

7.3.3 Bias constraints from the next-to-leading order 2PCF and leading
order 3PCF alone

The triangle plots in Fig. 7.3 show the 2D, and 1D marginalized posterior distributions of the
bias parameters used to model the 2PCF. Different colours indicate, instead, results obtained
by considering pairs above a minimum separation rmin = 20,30,40h−1Mpc. The colour
code is indicated in the plots. Light and dark shading of the same colour indicate the 1-σ and
2-σ error intervals, respectively. The four panels show the results in the four z−snapshots.
As expected, the parameter b1 has been tightly constrained accurately at each redshift. On the
other hand, constraints on the higher-order bias parameters b2, γ2, and γ21 are considerably
weaker and degenerate, as revealed by the broad contours and even characterized, in the case
of b2, by a double peak in the 1D posterior. The EFT parameter c0(z) is consistent with zero
at all redshifts.

In the 3PCF-only analysis I focused on the bias parameters b1, b2, and γ2. Their posterior
probability has been estimated using three different minimum triangle sizes, (rmin = 20
h−1Mpc, 30 h−1Mpc, 40 h−1Mpc) but the same maximum sizer rmax = 150h−1Mpc. Also,
I did focus on the ηmin = 3 case only. The results for usual four snapshots are displayed
in Fig. 7.4. The black and orange dashed lines drawn on top of the 2D contours represent,
respectively, the relations b2(b1) and γ2(b1) in Eq. 3.72 and Eq. 3.73. We notice that
the agreement between these two relations and the probability contours increases with the
redshift, also for small rmin values. This is not surprising since the nonlinear dynamical
effects and deviations from the linear bias prescriptions increase over time. The visual
inspection of the plots reveals that the agreement with the phenomenological relation at
z = 0.90, 1.19 and 1.53 is found for rmin = 30h−1Mpc whereas at z = 1.78 the agreement
is maintained down to scale as small as = rmin = 20h−1Mpc.

I have repeated the analysis focusing on the ηmin dependence. Fig. 7.5 shows the
probability contours for different values of ηmin = 3,2,1 at a fixed value of rmin. Thermin

values in the examples shown in the plots are those that better match the phenomenological
bias relationships. Their values are shown in the plots. In Tab. 7.5 I show, instead, the
ηmin , rmin combinations that guarantee the best match to those relationships. The agreement,
especially for the γ2 parameter, is particularly good at z = 1.78 where one can push the
analysis down to rmin = 20h−1Mpc and for η = 2, i.e. for a larger number of triangle
configurations than at lower redshift.



7.3 Results 115

z = 1.78

rmin = 40h−1Mpc
rmin = 30h−1Mpc
rmin = 20h−1Mpc

−1
6

−8

0

8

16

b 2

−1
0

−5

0

5

γ
2

−1
0

0

10

20

γ
2
1

2.
25

2.
40

2.
55

2.
70

b1

−3
0

0

30

60

c 0

−1
6 −8 0 8 16

b2

−1
0 −5 0 5

γ2

−1
0 0 10 20

γ21

−3
0 0 30 60

c0

z = 1.53

rmin = 40h−1Mpc
rmin = 30h−1Mpc
rmin = 20h−1Mpc

−6

0

6

12

b 2

−8
−4

0

4

γ
2

−1
6

−8
0

8

16

γ
2
1

1.
8

1.
9

2.
0

2.
1

b1

−4
0

−2
0

0

20

c 0
−6 0 6 12

b2

−8 −4 0 4

γ2

−1
6 −8 0 8 16

γ21

−4
0
−2

0 0 20

c0

z = 1.19

rmin = 40h−1Mpc
rmin = 30h−1Mpc
rmin = 20h−1Mpc

−6
−3
0

3

6

b 2

−6
−3

0

3

6

γ
2

−1
6

−8

0

8

γ
2
1

1.
60

1.
68

1.
76

1.
84

b1

−2
0
−1

0

0

10

20

c 0

−6 −3 0 3 6

b2

−6 −3 0 3 6

γ2

−1
6 −8 0 8

γ21

−2
0
−1

0 0 10 20

c0

z = 0.90

rmin = 40h−1Mpc
rmin = 30h−1Mpc
rmin = 20h−1Mpc

−4
−2

0

2

4

b 2

−2
0

2

4

6

γ
2

−1
2

−6

0

6

γ
2
1

1.
25

1.
30

1.
35

1.
40

1.
45

b1

−1
2

−6

0

6

12

c 0

−4 −2 0 2 4

b2

−2 0 2 4 6

γ2

−1
2 −6 0 6

γ21

−1
2 −6 0 6 12

c0

Figure 7.3 Contour plots of next-to-leading order 2PCF varying rmin = 40,30,20h−1Mpc (blue,
green, red). Bottom-right, bottom-left, top-right and top-left panels refer respectively to z =
1.78,1.53,1.19,0.90. The maximum scale for 2PCF is the maximum clustering measured length, i.e.
rmax = 150h−1Mpc.

7.3.4 Bias constraints from the joint 2PCF + 3PCF analysis

Having evaluated the constraining power on galaxy biasing from a 3PCF-only and a 2PCF-
only analysis, joint modelling of both the 2PCF and 3PCF models being considered is now
explored, following what has been discussed in Sec. 7.3.2.

Fig. 7.6 displays the probability contour plots of the bias and ETF parameters inferred
from the joint 2PCF and 3PCF. The four panels refer to the same four redshift snapshots



116 Constraining galaxy bias with the Euclid Spectroscopic Survey

z = 1.78

3PCF, rmin = 40 h−1 Mpc η = 3
3PCF, rmin = 30 h−1 Mpc η = 3
3PCF, rmin = 20 h−1 Mpc η = 3

−2
.5

0.
0

2.
5

5.
0

b 2

2.
25

2.
40

2.
55

2.
70

b1

−0
.7
5

−0
.5
0

−0
.2
5

0.
00

0.
25

γ
2

−2
.5 0.

0
2.
5

5.
0

b2

−0
.9
−0
.6
−0
.3 0.

0
0.
3

γ2

z = 1.53

3PCF, rmin = 40 h−1 Mpc η = 3
3PCF, rmin = 30 h−1 Mpc η = 3
3PCF, rmin = 20 h−1 Mpc η = 3

−3
.0

−1
.5

0.
0

1.
5

3.
0

b 2
1.
9

2.
0

2.
1

2.
2

2.
3

b1

−0
.7
5

−0
.6
0

−0
.4
5

−0
.3
0

−0
.1
5

γ
2

−3
.0
−1
.5 0.

0
1.
5

3.
0

b2

−0
.8

−0
.4 0.

0
0.
4

γ2

z = 1.19

3PCF, rmin = 40 h−1 Mpc η = 3
3PCF, rmin = 30 h−1 Mpc η = 3
3PCF, rmin = 20 h−1 Mpc η = 3

−1
.6

−0
.8

0.
0

0.
8

1.
6

b 2

1.
62

1.
68

1.
74

1.
80

1.
86

b1

−0
.4

−0
.3

−0
.2

−0
.1

γ
2

−1
.6
−0
.8 0.

0
0.
8

1.
6

b2

−0
.4
−0
.3
−0
.2
−0
.1 0.

0

γ2

z = 0.90

3PCF, rmin = 40 h−1 Mpc η = 3
3PCF, rmin = 30 h−1 Mpc η = 3
3PCF, rmin = 20 h−1 Mpc η = 3

−1
.8

−1
.2

−0
.6

0.
0

0.
6

b 2

1.
32

1.
36

1.
40

1.
44

b1

−0
.3
2

−0
.2
4

−0
.1
6

−0
.0
8

γ
2

−1
.8
−1
.2
−0
.6 0.

0
0.
6

b2

−0
.3
2

−0
.2
4

−0
.1
6

−0
.0
8

0.
00

γ2

Figure 7.4 Contour plots of leading order 3PCF fixing ηmin = 3 and varying rmin = 40,30,20h−1Mpc
(blue, green, red). Bottom-right, bottom-left, top-right and top-left panels refer respectively to
z = 0.90,1.19,1.53,1.78. The maximum scale for 3PCF is the maximum clustering measured length,
i.e. rmax = 150h−1Mpc. Dashed black and orange lines refer to the bias relation presented in Eq.
3.72 and Eq. 3.73

as in the previous figures. We also show the probability contours obtained previously
from the 3PCF-only analysis (yellow contours). The colour brown is used for the 2PCF
+ 3PCF results. We have explored pairs and triplets with minimum and maximum sizes
(separations) rmin = 20 h−1Mpc and rmax = 150h−1Mpc, respectively. Dashed lines show
the two phenomenological relations among the bias parameters (Eq. 3.72 and 3.73). Tab. 7.5
compares the best-fit values inferred, at the four snapshots’ redshifts, from the 3PCF and



7.3 Results 117

z = 1.78

3PCF, rmin = 20 h−1 Mpc η = 3
3PCF, rmin = 20 h−1 Mpc η = 2
3PCF, rmin = 20 h−1 Mpc η = 1

0.
0

0.
5

1.
0

1.
5

2.
0

b 2

2.
25

2.
40

2.
55

2.
70

b1

−0
.8

−0
.6

−0
.4

−0
.2

γ
2

−1 0 1 2

b2
−0
.9
−0
.6
−0
.3 0.

0
0.
3

γ2

z = 1.53

3PCF, rmin = 30 h−1 Mpc η = 3
3PCF, rmin = 30 h−1 Mpc η = 2
3PCF, rmin = 30 h−1 Mpc η = 1

−1

0

1

2

b 2

1.
9

2.
0

2.
1

2.
2

2.
3

b1

−0
.6
0

−0
.4
5

−0
.3
0

−0
.1
5

γ
2

−1 0 1 2

b2
−0
.8
−0
.6
−0
.4
−0
.2 0.

0

γ2

z = 1.19

3PCF, rmin = 30 h−1 Mpc η = 3
3PCF, rmin = 30 h−1 Mpc η = 2
3PCF, rmin = 30 h−1 Mpc η = 1

−1
.0

−0
.5

0.
0

0.
5

1.
0

b 2

1.
65

1.
70

1.
75

1.
80

b1

−0
.4
5

−0
.3
0

−0
.1
5

γ
2

−0
.5 0.

0
0.
5

1.
0

b2

−0
.4
−0
.3
−0
.2
−0
.1 0.

0

γ2

z = 0.90

3PCF, rmin = 30 h−1 Mpc η = 3
3PCF, rmin = 30 h−1 Mpc η = 2
3PCF, rmin = 30 h−1 Mpc η = 1

−0
.7
5

−0
.5
0

−0
.2
5

0.
00

b 2

1.
32

1.
36

1.
40

1.
44

b1

−0
.3
2

−0
.2
4

−0
.1
6

−0
.0
8

0.
00

γ
2

−0
.7
5

−0
.5
0

−0
.2
5

0.
00

b2

−0
.3
2

−0
.2
4

−0
.1
6

−0
.0
8

0.
00

γ2

Figure 7.5 Contour plots of leading order 3PCF fixing rmin = 20,30,30,30h−1Mpc varying ηmin =
3,2,1 (blue, orange, purple). Bottom-right, bottom-left, top-right and top-left panels refer respectively
to z = 1.78,1.53,1.19,0.90. The maximum scale for 3PCF is the maximum clustering measured
length, i.e. rmax = 150h−1Mpc. Dashed black and orange lines refer to the bias relation presented in
Eq. 3.72 and Eq. 3.73

2PCF + 3PCF analyses. Clearly the combinations of the statistics significantly increase the
precision of the parameters’ estimates and removes some degeneracy that characterizes the
analysis that uses one statistic only, particularly the 2PCF one.

Tab. 7.6 shows the ratio of estimated errors from a joint analysis and a 3PCF-only
analysis. Results indicate that, as expected, the precision improves significantly for the
measurement if b1, especially for z = 1.53 and z = 1.78. Additionally, the better estimate
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Redshift rmin ηmin

z = 1.78 20 2
z = 1.53 30 3
z = 1.19 30 3
z = 0.90 30 3

Table 7.4 List of minimum validity scales rmin and ηmin or 3PCF models for each snapshot

of b1 improves the constraints on b2 and γ2, having removed the parameter degeneracy that
affects the 3PCF-only or a 2PCF-only analysis.

Analysis Redshift b1 b2 γ2
3PCF z = 0.90 1.370+0.020

−0.019 −0.40±0.19 −0.182+0.039
−0.041

2PCF + 3PCF z = 0.90 1.370+0.006
−0.005 −0.43+0.14

−0.15 −0.181+0.022
−0.023

3PCF z = 1.19 1.699±0.031 0.11+0.33
−0.31 −0.261+0.065

−0.066
2PCF + 3PCF z = 1.19 1.733+0.012

−0.095 −0.18+0.24
−0.23 −0.336+0.059

−0.046

3PCF z = 1.53 1.990+0.046
−0.044 0.61+0.50

−0.47 −0.378+0.090
−0.089

2PCF + 3PCF z = 1.53 2.015+0.016
−0.014 0.49+0.39

−0.35 −0.421+0.049
−0.046

3PCF z = 1.78 2.432+0.050
−0.049 0.97±0.29 −0.507+0.119

−0.099
2PCF + 3PCF z = 1.78 2.474+0.019

−0.025 0.77+0.18
−0.17 −0.561+0.082

−0.094
Table 7.5 List of inferred values of bias parameters of the leading order 3PCF model estimated
throughout a 3PCF-only and a joint 2PCF and 3PCF analysis.

Redshift σjoint/σ3PCF(b1) σjoint/σ3PCF(b2) σjoint/σ3PCF(γ2)
z = 0.90 0.282 0.763 0.501
z = 1.19 0.579 0.734 0.824
z = 1.53 0.334 0.763 0.531
z = 1.78 0.445 0.603 0.807

Table 7.6 List of ratios between errors on bias parameters of the leading order 3PCF model estimated
throughout a 3PCF and a joint 2PCF and 3PCF analysis.
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Figure 7.6 Contour plots from a 3PCF-only (yellow) and a joint 2PCF and 3PCF analysis (brown).
The minimum scales for the 3PCF are the one listed in Tab. 7.5. For the 2PCF, it is fixed to
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measured lengths, i.e. rmax = 150h−1Mpc. Dashed black and orange lines refer to the bias relation
presented in Eq. 3.72 and Eq. 3.73





8 Bias loop corrections in configuration
space: a joint 2PCF + 3PCF analysis

In previous chapters, I have presented the next-to-leading order model for the 3PCF of the
matter and haloes and compared them with measurements obtained from simulated data. In
this Chapter, I will instead consider the next-to-leading order model for the 3PCF of the
galaxies in a joint analysis with the analogous 2PCF model for galaxies. This represents a
step forward with respect to current joint analyses that, as we did in the last Chapter, only
consider the leading order model for the 3PCF. Our ability to estimate them well into the
nonlinear regime against prediction from halos from N-body simulations is the focus of this
Chapter.

8.1 Models

For the halo 2PCF, I have used the same next-to-leading order model as in Chapter 7, which
is obtained by 1D-FFTLog transforming the analogous one-loop power spectrum model from
Fourier space. This model has four free parameters that specify the biasing relation:

{b1, b2, γ2, γ21}. (8.1)

For the 3PCF, I have used two models. The first one is the same leading-order model
used in 7 and is characterized by three free parameters:

{b1, b2, γ2}. (8.2)

Then I also considered the new, considerably more elaborated, galaxy 3PCF model
based on next-to-leading order expansion. This model is built upon the bispectrum model
of (126) described in Sec. 4.2.3, and is meant to provide a more accurate description of
the relation between galaxy/haloes distribution and the underlying dark matter fluctuations
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in the small scale regime. Its implementation relies on the 2D-FFTLog, applied, however,
much more intensively due to the larger number of loop terms in the bispectrum model (see
Appendix A.2 for details). It is worth noting that, compared to Fourier space modelling,
the computational burden is much higher due to the large number of points used to sample
Fourier space quantities before 2D-FFTLog transforming them to configuration space. The
actual computational cost is a trade-off between computing memory and speed on one end
and precision and accuracy on the other. The number of free bias parameters for this 3PCF
model is also larger:

{ b1︸︷︷︸
1st

;b2,γ2︸ ︷︷ ︸
2nd

;b3,γ×
2 ,γ3,γ21︸ ︷︷ ︸
3rd

;γ×
21,γ211,γ22,γ31︸ ︷︷ ︸

4th

}. (8.3)

where I have labelled the parameters as first, second third and fourth order in the associated
perturbative expansion. First and second-order bias parameters are in common with the
leading-order model. The third and fourth-order bias parameters only appear at this level of
the expansion, apart from for γ21, which is also included in the next-to-leading order 2PCF
model. The bias parameters listed in Eq. 8.3 represents a subset of those used to model
3-point statistics in Fourier space (126) since I have neglected all the stress-tensor parameters,
which are specific to the EFT treatment and that we did not consider in this analysis. The
EFT parameter c0 that was part of the 2PCF model in the previous Chapter is not included in
the next-to-leading 2PCF model either to avoid sampling too high-dimensional space in the
likelihood analysis. When it comes to comparing models with real data, though, all the boas
parameters are free to vary and may absorb some of the nonlinear dynamics that are present
on nonlinear scales. The rationale for introducing this sophisticated 3PCF next-to-leading
order model is to probe deeper into the nonlinear regime and to improve the match between
modelling and data on smaller scales for better precision and accuracy in estimating the
cosmological parameters.

8.2 Dataset

For our measurements, we use the MINERVA set of 298 N-body simulations (155) performed
with the GADGET-2 code (178). Each experiment follows the evolution of 10003 dark matter
particles, each one with a mass 2.67 × 1011h−1M⊙, in a periodic cubic box of side length
L = 1500 h−1 Mpc, assuming a flat background cosmology with h = 0.695, Ωm = 0.285, and
Ωb = 0.046, matching the results obtained by combining the analyses of the WMAP CMB
maps and the spatial distribution of galaxies in the BOSS DR9 survey (see Table I of (179)
for details). The initial density and velocity fields were generated at a redshift of zin = 63
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by displacing the simulation particles from a regular grid using second-order Lagrangian
perturbation theory. The transfer function for the Gaussian linear fluctuations in the matter
density was computed using the CAMB code (118) with a primordial scalar spectral index of
ns = 0.9632 and an rms matter density fluctuation of σ8 = 0.828. Dark matter halos were
identified using a standard friends-of-friends algorithm with a linking length of 0.2 times
the mean one-dimensional inter-particle separation. Gravitationally unbound particles were
removed using the SUBFIND code (178). I only considered halos that contained at least 42
particles, corresponding to a minimum mass of M ≃ 1.12×1013h−1M⊙. Also, I focus here
on the z = 1 snapshot only, which overlaps with the redshift range probed by spectroscopic
galaxy surveys such as Euclid (40; 41) or DESI (42). The mean number density for the
resulting halo in z = 1 box is 2.13×10−4h3Mpc−3.

8.2.1 Measurements

To estimate the isotropic two-point correlation function, the natural estimator presented in
Sec. 7.2.1 has been used.

Concerning the three-point correlation function, it has been used the estimator presented
in Sec. 5.4 and used in Sec. 6.2.1, 7.2.1. The estimator uses two catalogues as input:
one containing haloes and the other containing randomly distributed objects, which lack
clustering properties. To measure the 3PCF, it has been employed the random splitting
method, in which data are divided into small random samples, measured the 3PCF for each
sample, and then took the average. To ensure that the data-random ratio is consistent, we set
NR = 1 after splitting. Since the number of objects in each sample varies, we adjusted the
number of random objects accordingly. For the 3PCF measurements, I used 50 times more
random objects than haloes to ensure that the estimation of the 3PCF is not biased but only
contributes to its variance. However, this has a negligible impact on the overall error budget.

8.2.2 Covariance

Unlike in the previous analyses presented in this Thesis, the covariance matrix that I use in
the likelihood analysis is not based on the Gaussian model, but it is estimated directly from
the halo two- and three- point correlation functions measured in the 298 MINERVA boxes:

Ĉi,j = 1
Nmocks −1

Nmocks∑
n=1

(
d̂n

i −di

)(
d̂n

j −dj

)
(8.4)

where dn
i is the data vector containing the estimates of ξ and ζ, i and j identify data vector

bins, while n identifies the n-th halo catalog. d represents the average among the mocks’
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data vectors i.e.

di = 1
Nmocks

Nmocks∑
n=1

d̂n
i (8.5)

The precision of this numerically derived covariance matrix has been analysed and
discussed in (151). In this work, the matrix was applied in an analysis focused on the
leading-order 3PCF of halo distributions. The 3PCF model predictions were compared
with the same dataset at the redshift described in this Chapter. The numerical covariance
derived from a single mock was compared with its theoretical counterpart, revealing that
the latter underestimated the uncertainties compared to the numerical estimate. Moreover,
using the numerical covariance, the minimum scale of validity at which the predictions of
the leading-order 3PCF model match the dataset was determined to be rmin = 40 h−1Mpc,
η = 3.

8.3 Results

8.3.1 Clustering measurements

Fig. 8.1 shows the average halo 2PCF measured, at z = 1, over the separation range
[5,145h−1Mpc in a bin width of 10h−1Mpc. The bottom panel shows the signal-to-noise
ratio, previously defined, calculated using the diagonal terms of the covariance matrix Cξ

estimated from the mocks.
It is worth noting that the signal-to-noise ratio is higher than in the galaxy 2PCF Flagship

case considered in the previous Chapter since we are computing it using the error on the
mean 2PCF rather than that on the 2PCF of the individual simulation box. And possibly, also
because we are using a numerical covariance instead of adopting the Gaussian model.

The measurements of the 3PCF at a z = 1 are displayed in Fig 8.2. They have been
obtained by considering triangles with sizes ranging from 5h−1 to 145h−1Mpc. The corre-
sponding signal-to-noise ratio, shown in the middle panel, is also larger than in the Flagship
case explored in the previous Chapter, due to the same reason advocated for the 2PCF. The
mapping between the triangle index and sides is shown in the bottom panel.

8.3.2 Parameter inference

Similarly to what I have presented in Sec. 7.3.2, to estimate the bias parameters of the models,
collectively grouped in the vector θ, I estimate their posterior probability P (µ(θ)|dα). This
probability takes into account the model prediction, represented by µ(θ), and the data vector,
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represented by dα. It is calculated by multiplying the prior probability, P (θ), with the
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likelihood Lα where α identifies the mock index.

lnLα = −1
2χ2(µ,C) (8.6)

where the chi-square χ2(θ) is given by

χ2(µ,C) = (dα −µ)TC−1(dα −µ) (8.7)

where C is the numerical covariance. The product of all individual likelihood of mocks
obtains the total likelihood adopted in my evaluation

logLtot =
Nmock∑
α=1

logLα. (8.8)

In this study, I investigate three kinds of analyses. The first one focuses solely on 2PCF,
examining the next-to-leading order model for galaxy using the likelihood presented in Eq.
7.7. The second one focuses solely on 3PCF, examining both the leading and next-to-leading
order models for galaxy using the likelihood presented in Eq. 7.8. Last, I also consider a
joint fit considering the combination of two- and three- point correlation functions, using
the likelihood discussed in Eq. 7.9. I used the emcee software, a Python implementation
of the Affine Invariant Markov chain Monte Carlo (MCMC) Ensemble sampler (177), to
explore the posterior probability of each bias parameter. I defined flat prior distributions for
the parameters, with their minimum and maximum values listed in Tab.8.1.

Parameter Uniform prior ranges

b1 [1,6]
b2 [−8,8]
γ2 [−10,10]
γ21 [−10,10]
b3 [−80,80]
γ×

2 [−80,80]
γ3 [−60,60]
γ×

21 [−50,50]
γ211 [−50,50]
γ22 [−50,50]
γ31 [−150,150]

Table 8.1 The list of assumed uniform prior ranges.
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As in the previous Chapter, I will adopt, in some steps of the analysis, the same bias
relation b2(b1), γ2(b1) presented in Eqs. 3.72, 3.73. However, since I am now considering
third-order bias parameters, I also consider the relation the bias relation b3(b1) presented in
Eq. 4.76 and calibrated, like the others, on N-body data (100).

8.3.3 Bias constraints from 2PCF and 3PCF measurements alone

Let us start the analysis with the case in which only the 2PCF measurements are available.
Fig 8.3 displays the probability contour plots for the bias parameters of the 2PCF model (Eq.
8.1) obtained by progressively increasing the minimum pair separation considered in the
analysis: from rmin = 20 h−1Mpc to 30 h−1Mpc and finally 40 h−1Mpc, represented by red,
green, and blue, respectively. The maximum separation was set equal to rmax = 145 h−1Mpc
in all cases. The black and orange dashed lines in the figure represent the bias relationships
b2(b1) and γ2(b1) specified by Eqs 3.72 , 3.73, respectively. The comparison between the
contours and the lines shows that when the analysis is pushed down to rmin = 20 h−1Mpc,
then one underestimates the parameter γ2. The mismatch is progressively reduced by
increasing the minimum scale and disappears for rmin = 40 h−1Mpc. We use this result to
set rmin = 40 h−1Mpc as the minimum pair separation considered in this analysis presented
in this Chapter that uses the halo 2PCF.

Next, I have considered the 3PCF case only. In this case, I do not only vary the value of
rmax, the minimum size of the triangles used in the analysis, but I also consider two different
3PCF models, the leading-order and the next-to-leading-order ones, each one characterized
by its own set of bias parameters. In Fig 8.4, I show results obtained using the leading-order
3PCF model with rmin = 40h−1Mpc and ηmin = 3 (blue contours) and with the next-to-
leading-order 3PCF model with ηmin = 3 and rmin = 40,30,20h−1Mpc (purple, red, and
green, respectively). The choice of limiting the analysis to triangle configurations ηmin = 3
is a conservative one and inspired by the results of the (151) analysis. Indeed, as I have
checked, the results obtained with my leading-order model obtained via 2D-FFTLog match
those of the 3PCF model of (151) generated using 1D-FFTLog. In addition to the black
and orange dashed lines, we add the green dashed line that represents the third bias relation
adopted in the analysis (Eq 4.76).

The visual inspection of the figure reveals that

• The relation b2(b1) intersects with all contours except the next-to-leading-order one
with rmin = 20h−1Mpc;

• The relation γ2(b1) intersects the contour of the next-to-leading-order 3PCF with
rmin = 30h−1Mpc and is barely consistent with the rmin = 40h−1Mpc case. It is
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Figure 8.3 Contour plots of next-to-leading order 2PCF varying rmin = 40,30,20h−1Mpc (blue,
green, red). The maximum scale for 2PCF is the maximum clustering measured length, i.e. rmax =
150h−1Mpc. Dashed black and orange lines refer to the bias relation reported in Eq. 3.72 and Eq.
3.73.

inconsistent with both the 3PCF leading-order model result and the next-to-leading-
order 3PCF case with rmin = 20h−1Mpc,

• The relation b3(b1) intersects all next-to-leading-order 3PCF models but the rmin =
20h−1Mpc one.

To summarize, the next-to-leading order model does not seem to be able to reproduce
the halo 3PCF down to rmin = 20h−1Mpc. It does, instead, fit the data reasonably well
(assuming that the phenomenological biasing relations are an accurate description of the
halo bias on all scales) for rmin ≥ 30h−1Mpc. Both these models perform better than the
leading-order one with rmin = 40h−1Mpc, although their constraining power is weaker due
to the larger number of free parameters. This is not always the case, though. The peak in the
1D posterior distribution for b2 is sharper in the next-to-leading case that in the leading order
one, suggesting that its ability to constrain that parameter is intrinsically better.
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Figure 8.4 Contour plots of next-to-leading order 3PCF varying rmin = 40,30,20h−1Mpc (green,
red, purple) and the leading order 3PCF at rmin = 20h−1Mpc (blue) fixing ηmin = 3. The maximum
scale for 3PCF is the maximum clustering measured length, i.e. rmax = 150h−1Mpc. Dashed black,
orange and green lines refer to the bias relation reported in Eqs. 3.72 , 3.73, 4.76.

To increase the precision in estimating the bias parameters of the next-to-leading order
3PCF model, we can use the Lagrangian bias relations that exist among the bias parameters
(126) to reduce the dimension of the parameter space. The outcome of this exercise is shown
in Fig 8.5 for the conservative case rmin = 40h−1Mpc and ηmin = 3. The blue contour shows
the leading-order 3PCF model results, plotted for reference. The green contour represents the
probability contours obtained when all the bias parameters are free to vary. The red contours
show the same case in which, however, the Lagrangian relations γ31(b1) and γ22(b1) have
been adopted. Finally, the purple contours represent the same model but with the additional
inclusion of Lagrangian relations γ211(b1), γ×

21(b1), γ21(b1), and γ3(b1).
The visual inspection of Fig 8.5 shows that adopting six Lagrangian bias relations

significantly reduces the uncertainty on the parameter b3, whose value is consistent with
that expected from the phenomenological relations. The parameters b1, b2, and γ2 are also
measured more precisely. However, the best fit values of b2, and, especially, γ2, do not appear
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Figure 8.5 Contour plots of leading and next-to-leading order 3PCF fixing rmin = 40h−1Mpc. The
blue contour represents constraints from the leading order 3PCF. Green from the next-to-leading order
3PCF with free parameters. Purple and red from the next-to-leading order 3PCF model using the
Lagrangian bias relation specified in the legend. The maximum scale is the maximum clustering
measured length, i.e. rmax = 150h−1Mpc. Dashed black, orange and green lines refer to the bias
relation reported in Eqs. 3.72 , 3.73, 4.76.

to be consistent with the expected relations, suggesting that the Lagrangian relations may not
accurately describe all aspects of the bias relation.

I stress that when the next-to-leading order model does not perform well, there is a notice-
able increase in the discrepancy between the inferred values of the linear bias parameter b1.
This suggests an internal degeneracy of the parameters that must be closely monitored. The
presence of degeneracy between parameters can lead to difficulties in accurately constraining
them individually, as well as in interpreting the results. To address this issue, we perform, in
the next section, a joint 3PCF and the 2PCF analysis that adopts the next-to-leading order
models for both statistics.
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8.3.4 Bias constraints from the joint 2PCF and 3PCF analysis: next-to-
leading order models

In Fig. 8.6, I show the constraints on the bias parameters b1, b2, and γ2 obtained from the joint
two- and three- point correlation function analysis with rmin = 40h−1Mpc and ηmin = 3.
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Figure 8.6 Contour plots from the next-to-leading order 2PCF (grey), the next-to-leading order 3PCF
(blue) and the joint 2PCF + 3PCF (red) at rmin = 40h−1Mpc at ηmin = 3. The maximum scale is the
maximum clustering measured length, i.e. rmax = 150h−1Mpc. Dashed black and orange lines refer
to the bias relation reported in Eq. 3.72 and Eq. 3.73.

The grey and blue probability contours represent, respectively, the results obtained by
considering the 2PCF and the 3PCF measurements alone and their next-to-leading order
models. The red contours are obtained from the joint analysis. The ability of the 2PCF to
estimate b1 is combined with that of the 3PCF to constrain b2 and γ2 to obtain a precise
estimate for all of them that are consistent with the phenomenological relations (dashed
lines). There is a mild tension between the b2 values obtained from the joint (red) and from
the 3PCF-only (blue) analysis.
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Next, I have compared the results just described and obtained using next-to-leading order
models for both functions, two- and three- point correlation function, to those obtained from
an analogous joint analysis that, however, adopts leading order to model the 3PCF.
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Figure 8.7 Contour plots from the joint 2PCF (next-to-leading order) + 3PCF (leading order) at
rmin = 40h−1Mpc for ηmin = 3,2,1 (brown, green, blue). The maximum scale is the maximum
clustering measured length, i.e. rmax = 150h−1Mpc. Dashed black and orange lines refer to the bias
relation reported in Eq. 3.72 and Eq. 3.73.

Fig. 8.7 shows the results obtained using the leading order model for the 3PCF. In all
analyses I set rmin = 40h−1Mpc. Probability contours with different colours are used for
different choices of triangle configurations: brown, green, and violet indicate ηmin = 3,2,1,
respectively. In no case do the results match expectations for γ2, whereas for b2 the only
case in which the measured value agrees with the phenomenological relation is ηmin = 3.
Moreover, the results obtained when the quasi-isosceles configurations ηmin = 1 are included
in the analysis are inconsistent with those obtained for all the other configurations.

A more explicit comparison between leading order and next-to-leading order results is
shown in Fig. 8.8. The brown contours represent the leading order case with ηmin = 3 and
rmin = 40h−1Mpc (the value of rmin is the same in all case considered). The dark orange
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Figure 8.8 Contour plots from the joint 2PCF (next-to-leading order) + 3PCF (nex-to-leading order)
at rmin = 40h−1Mpc for ηmin = 3,2,1 (red, orange, yellow) and the joint 2PCF (next-to-leading
order) + 3PCF (leading order) at rmin = 40h−1Mpc at ηmin = 3 (red, orange, yellow). The maximum
scale is the maximum clustering measured length, i.e. rmax = 150h−1Mpc. Dashed black and orange
lines refer to the bias relation reported in Eq. 3.72 and Eq. 3.73.

contours show the results obtained using the next-to-leading model and the same set of
triangles ηmin = 3. The number of triangle configurations has been progressively increased
by setting ηmin = 2 (light orange) and ηmin = 1 (yellow). The main results of this comparison
are:

• The results obtained with ηmin = 3 using the leading order model are consistent with
those obtained using the next-to-leading model. The adoption of the next-to-leading
order model increases the magnitude of the uncertainty for γ2 because of the larger
number of free parameters involved. However, it also eliminates the tension with the
phenomenological relation (orange dashed line). Errors on b1 and b2 are quite similar
for both models.

• Increasing the number of triangle configurations by setting ηmin = 2 improves the
precision but generates a systematic mismatch with the expected values.
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• Like in the leading order case, setting ηmin = 1 produces results that are inconsistent
with this obtained with higher η values.
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Figure 8.9 Inferred bias parameters b1, b2 and γ2 as a function of the minimum scale rmin and
parameter ηmin. Solid red and dashed blue lines refer respectively to the 3PCF next-to-leading and
leading order.

In Fig. 8.9, I show the trends of the three bias parameters of Fig.8.8 (Y-axis) as a function
of rmin (X-axis) for different sets of triangles ηmin = 3,2,1 (left, middle and central column
panel, respectively). The blue and red colours indicate the results obtained with the leading
order and the next-to-leading order moments. The two models generally provide consistent
prediction except in the case of γ2 for almost all rmin values and η choices. For ηmin = 1, the
two models provide different results also for b2 but consistent results for b1 (except when
scales smaller than 30h−1Mpc are included in the analysis. It is remarkable that, despite
having many more free parameters, the next-to-leading order model provides constraints for
b2 that are tighter than those obtained with the leading order model.
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This PhD Thesis has addressed the modelling of three-point statistics of Large Scale Structure
(LSS) in configuration space, the three-point correlation function. Over the years, high-order
statistics have been recognized as a fundamental tool, when used jointly with two-point
statistics, in inferring cosmological parameters and removing their degeneracy from the
spatial distribution of galaxies observed in spectroscopic redshift surveys. The analysis of the
galaxy clustering properties is performed either in configuration space or in Fourier space,
the latter approach being so far more popular for higher-order statistics. Measurements of
the power spectrum and the bispectrum of galaxies in the BOSS surveys confronted with
theoretical predictions have been used to increase the precision of the estimated cosmological
parameters (180; 181; 182). Furthermore, the BAO signature has been detected in bispectrum
analyses with high (4.1σ) statistical significance (183).

On the other hand, analyses in configuration space are less advanced. The BAO feature
has indeed be detected in the galaxy 3PCF and used to derive cosmological parameters by
considering scales that are evolving in the quasi-linear regime (72; 174). However, to fully
exploit the potential of the analysis, one should really compare the measured 3PCF with
the theoretical predictions on nonlinear scales. And these were not available yet before this
Thesis project. This is regrettable since performing clustering analysis in configuration space
offers some advantage over Fourier space since survey geometry and selection effects can
be accounted for at the estimator level, with no need to perform difficult 3D convolution
integrals. On the other hand, modelling higher-order statistics in configuration space is
more challenging than in Fourier space due to the lack of a modelling approach directly
in configuration space, given the operators that rule the equations of motions. Lacking
this, modelling in configuration space can be done by inverse Fourier transforming existing
models in Fourier space. These were precisely the goal and the strategy adopted in this
Thesis, which aims at closing the gap between bispectrum and 3PCF models.

For this, I relied on the 2D-FFTLog algorithm (148) to evaluate the two-dimensional
Hankel transform between the models of the bispectrum multipoles and the three-point
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correlation function multipoles. Performing 2D-FFTLog transform is feasible but compu-
tationally intensive since functions must be evaluated on a large 2D grid for the resulting
3PCF multipole models to match the accuracy of the bispectrum multipoles. To assess
the adequacy of my approach and assess the accuracy of the 3PCF model, I compared the
tree-level 3PCF model obtained using the 2D-FFTLog technique to the reference tree-level
model of (53) that only uses 1D-FFTLog making use of analytical simplifications. I found
that using a 256×256 2D-grid for the 2D-FFTLog transform guarantees a remarkably good
match between the two techniques, leading to a percentage error around 10−5.

The 2D-FFTLog represents a general method to convert any bispectrum into the corre-
sponding counterpart in configuration space. In Chapter 6, this method has been applied
to map the next-to-leading order matter bispectrum model into the new next-to-leading
order three-point correlation function of dark matter fluctuations in real space. These model
predictions have been tested against measurements extracted from the DEMNUni simulation
(156) at z = 0.49 and z = 1.05 associated with Gaussian theoretical uncertainties. The main
results of this analysis are:

• The differences between the next-lo-leading and the leading order 3PCF model - dubbed
SPT-NLO and LO, respectively - depend on the scale and the redshifts, as expected.
The two models agree with each other on large scales, as they should. The matching
scale, defined as the one in which the differences between model predictions are smaller
than the expected Gaussian error, decreases with the redshift, as we have verified by
considering the two DEMNUni snapshots at z = 0.49 and z = 1.05. Below this scale,
the SPT-NLO model outperforms better than the LO one. To quantify the significance
of the improvement, I have estimated the residuals of the two model predictions
with respect to the 3PCF measured in the DEMNUni snapshots and compared them.
At z = 0.49, the SPT-NLO residuals, averaged over all triangle configurations, are
significantly smaller, at the 4-σ level, than the LO ones. A similar improvement is seen
at z = 1.05, though with a lower (2-σ) statistical significance. The superiority of the
SPT-NLO model over LO increases when moving toward smaller scales. For example,
when considering triplets in which r12 ≤ 40h−1Mpc the improvement is as large as
6-σ at z = 0.49,

• The 3PCF next-to-leading model outperforms the leading-order one also on the BAO
scale, whose importance for cosmological analyses cannot be overstressed. In particu-
lar, I focused on isosceles squeezed BAO configurations in which the smallest triangle
side is r12 = 17.5h−1Mpc that are sensitive to nonlinear effects. The reduced χ2 of
the LO-2D model vs. simulated data is 6(7) times larger than the SPT-NLO one at
z = 0.49(1.05). ,
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• The 3PCF NLO-SPT and NLO-EFT models outperform the LO one also on the
BAO scale, whose importance for cosmological analyses cannot be overstressed. In
particular, we focused on isosceles squeezed BAO configurations in which the smallest
triangle side is r12 = 22.5 h−1Mpc to probe the nonlinear regime. The quantitative
comparison reveals that the reduced χ2 of the LO model is 2 times larger than the
NLO-SPT one at z = 0.49,1.05 , and 4 and 10 at z = 0.49,1.05, respectively. However,
from a visual inspection, neither models seem to perfectly match the shape (and the
position) of the BAO peak in the 3PCF, but the correlation between measurements and
errors makes it difficult to quantify the significance of the mismatch

• Two kinds of next-to-leading order models have been considered. The first one is based
on standard perturbation theory (SPT-NLO). The second one is based instead on the
effective field theory of the large-scale structure (EFT-NLO). This second model de-
pends on four free parameters that have been estimated by minimizing the χ2 function
separately for both snapshots and for each choice of rmin, the smallest size in each
triangle configuration where the other two sizes span the range [17.5,132.5]h−1Mpc.
Moreover, in our analysis, two sets of triangle configurations have been explored: the
first one labelled ηmin = 0 includes all triangles, and the second one, ηmin = 2, in
which |r13 −r12| ≥ 10h−1Mpc. EFT-free parameters are estimated for these two cases
separately too. It turns out that the best-fit EFT parameters are significantly different
from zero only on the small scales range and larger scales starting approaching the
BAO regime, and the precision of their estimate improves from ηmin = 2 to ηmin = 0,

• To assess the relative performance of the three models, SPT-NLO, EFT-NLO, and
LO-SPT, we have estimated and compared their reduced χ2 difference with respect to
the DEMNUni measurements as a function of rmin. For ηmin = 2 configurations, all
models perform similarly on scales larger than 30h−1Mpc, whereas on smaller scales,
both next-lo-leading order models, SPT-NLO and EFT-NLO, outperform LO-SPT.
However, this occurs on scales in which no model seems to provide a satisfactory good
fit to the data, although the validity of this statement relies on the errors that, in the
analysis, are assumed to be Gaussian. This hypothesis, valid on large scales, probably
breaks down on the scales of the analysis, leading to an underestimate of the actual
errors. A similar conclusion holds true for ηmin = 0, although in this case, the scale at
which the linear order model under-performs with respect to the NLO ones is as large
as 40h−1Mpc,

• Focusing on the relative performance of NLO-SPT and NLO-EFT, we find that the
two models perform almost identically at ηmin = 2. For ηmin = 0, when all triangle
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configurations are considered, the NLO-EFT model provides a better fit to the data
than NLO-SPT in the range below rmin = 50h−1Mpc.

In Chapter 7, the focus of the project has been shifted to the distribution of luminous
tracers and their biasing relation with the underlying matter. The same 2D-FFTLog transform
strategy has been applied to model the leading-order three-point correlation function of
the galaxies. The ability of these 3PCF models to constrain the bias parameters in a joint
analysis with the next-to-leading order 2PCF models has been gauged against measurements
performed in different snapshots extracted from the proprietary Euclid Flagship simulation
mimicking the property of the upcoming Euclid galaxy survey at z = 1.79,1.53,1.19,0.90.
Gaussian errors were assumed in the comparison. . The main results of the analysis are:

• The use of the galaxy 2PCF alone provides accurate estimates on the linear bias
parameter b1 only (having fixed the rms amplitude of the matter density fluctuations,
σ8) whose accuracy increases when decreasing the minimum scale of the analysis
rmin. However, the other bias parameters are weakly constrained and, in some cases,
highly degenerate. The only one EFT parameter c0 involved in the 2PCF model in this
analysis is found to be well constrained, despite being consistent with zero,

• Constraining galaxy bias using the three-point correlation function alone provides one
to constrain the higher-order bias parameters b2, γ2. As expected, the agreement with
bias relations being considered holds a larger number of triangle configurations as
redshift increases,

• The combination of the two-point correlation function with the three-point correla-
tion function in a joint analysis helps breaking degeneracy among some of the bias
parameters in addition to improving the precision of their measurement. The expected
agreement with theoretical expectations is verified on large scales. It is particularly
good for γ2(b1) and when the redshift increases.

Chapter 8 is dedicated to validating the new next-to-leading order 3PCF model for the
halos rather than matter. Validation tests consisted in comparing the leading order and the
next-to-leading order model predictions and in comparing both to the measured 3PCF of the
dark matter halos extracted from the z = 1 snapshots extracted from the suite of MINERVA
N-body simulations. To build the model, we have used the same 2D-FFTLog transform
approach adopted for the matter case used, this time, to map the bias loops halos bispectrum
model into the 3PCF. The accuracy of the bispectrum model we started with has been verified
by comparing it to the reference model of (126) (details of the comparison are provided in
Appendix A.2). We also included the next-to-leading order 2PCF model in the analysis since
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it comes as a byproduct of the 3PCF one. Unlike in the other validation tests, we did not
assume Gaussian errors. Instead, we have computed it numerically from the halo 2- and
3PCF measurements performed in all 298 MINERVA mocks. The main results of the analysis
are:

• Like in the previous case, the 2PCF successfully constrain the linear bias parameters
but not the higher-order bias parameters. The adoption of a large number of mocks
together with the usage of numerical uncertainties associated to the average of the
2PCF estimates provide us with a better constraining power with respect to the case
explored in Chapter 7, where the analytical covariance was adopted for considering
uncertainties of a single mock. Scales such as rmin = 20,30 h−1Mpc affect the quality
of the agreement between bias constraints and bias relations, which is conservatively
assumed to be up rmin = 40 h−1Mpc,

• The value of the bias parameter γ2(b1) inferred from the analysis that adopts next-to-
leading order 3PCF model is in better agreement with expectations than the leading-
order one on the scales in which both are reliable (151). Similarly, the precision with
which the b2 is measured is higher in the next-to-leading order case than is the leading
order one, since it exhibits a narrower peak in the marginalized posterior distributions
of b2, despite the large number of bias parameters that are left free to vary in the
analysis. In the nonlinear regime (rmin ≤ 30 h−1Mpc, ηmin = 1), the degeneracy
among the parameters significantly reduces the benefit of using a next-to-leading order
model,

• Lagrangian bias relations on the third and the four-order bias parameters allow us to
reduce the dimensions of the parameter space and to break some degeneracy. Despite
of this, the quality of the matching between γ2(b1) and its expected value is degraded
to a level similar to that obtained with the leading order model. On the other hand,
their adoption helps tighten the constraints on the third order bias parameter b3, which
turns out to be in agreement with the expected relation with b1 b3(b1),

• The combination of next-to-leading order two- and three- point correlation function
models, as we have seen, breaks some degeneracy among the bias parameters. The
analysis confirms the expectations and shows that b1 can be measured with good
precision, and definitively outperforms the leading order model when it comes to
measuring γ2(b1). It is a firm conclusion that a joint analysis provides significantly
better constraints than using 2PCF and 3PCF alone.

The results presented in this Thesis represent an important step towards a nonlinear
model for higher-order clustering statistics in configuration space, matching the quality of the
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analogous models already available in Fourier space and precious tools to extract scientific
information from next-generation spectroscopic galaxy catalogues containing tens of millions
of objects. The 2D-FFTlog technique has been shown to be a fundamental tool for modelling
the 3PCF of matter and galaxies. Its application is computationally intensive but can be dealt
with by using standard computing facilities.

The expansion of the existing 3PCF models to the next-to-leading order of the perturbation
expansion allows us to access small scales where precious information on the cosmological
parameters and on the galaxy biasing is there to be collected. It also opens up the possibility
to perform joint analyses in configuration space as well as in Fourier space also for 3-point
statistics in order to mitigate the impact of systematic errors that affect either approach.

Moreover, clustering analyses based on spectroscopic galaxy catalogues use measured
redshifts as a distant proxy. This generates "redshift space distortions" in the spatial mapping
of the galaxies that, in turn, induces anisotropy in clustering statistics, including the 3PCF.

Finally, even with the availability of efficient estimators and, now, accurate nonlinear
models, the use of the 3PCF for clustering analysis remains computationally challenging,
preventing us from rapidly exploring the multidimensional space of the free parameters. For
this, the usual strategy of probing the likelihood function using Monte Carlo Markov Chain
techniques is too inefficient and will have to be complemented with emulators. Alternatively,
a full machine learning approach, similar to the ones that are currently being implemented
for two-point clustering analyses, should be explored.

These latter represent a very challenging aspect that needs to be properly accounted for
and included in the 3PCF model proposed in this Thesis.



A Appendix

A.1 Theoretical covariance: two- and three- point correla-
tion functions

Let D be a catalogue of data points and R a random set of points over the same volume. A
general estimator can be defined as

DpRq =
∑
i!=j

Φ(x1, ...,xp,y1, ..,yp) (A.1)

where Φ is a generic function symmetric in its arguments and p + q = N with N refers
to the N -point statistics taken into consideration. For instance, taking the two-point case
corresponds to

Φ(x,y) = [x,y ∈ D,r ≤ d(x,y) ≤ r +dr], (A.2)

where d(x,y) is the distance between two points. The general covariance of a pair of
estimators is (153)
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)
j!Si+jλ

p1+p2−iρq1+q2−j , (A.3)

where
Sk =

∫
Φa(x1, ...,xk,yk+1, ...,yN )Φb(x1, ...,xk, zk+1, ..., zN )µ2N−k (A.4)

where a and b denote two possible different radial bins or even different statistics, and µs

is the s dimensional Lebesgue measure. It has been shown (76; 152; 154) that the binned
covariance matrix for the two-point correlation function, reducing the result to real space
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monopole - our case of interest -, can be expressed as follows

cov(ξ̂a, ξ̂b) = Cab = ⟨ξ̂a, ξ̂b⟩−⟨ξ̂a⟩⟨ξ̂b⟩
= 4Cab + 3Cab + 2Cab (A.5)

where the single terms read as

4Cab
cd = 1

RRa
c RRb

d

∑
i̸=j ̸=k ̸=l

ninjnknlwiwjwkwlΘa (rij)Θc (µij)Θb (rkl)Θd (µkl) ,

×
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ξ

(4)
ijkl +2ξikξjl

]
(A.6)
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c RRb
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(
rjk

)
Θd
(
µjk

)
,

×
[
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RRa
c RRb

d

∑
i̸=j

ninj (wiwj)2 Θa (rij)Θc (µij) [1+ ξij ] , (A.7)

with ni, wi the mean number density and weight and Θa being a binning function, i.e. unity
if rij = |ri − rj | is inside the bin a and zero elsewhere. Also, the pre-factor involves the
following quantities

RRa =
∑
i̸=j

Rij , (A.8)

Rij
a = Θa(rij)ninjwiwj , (A.9)

and the Gaussian terms have been highlighted in red. It has been shown in (155) that,
under the Gaussian hypothesis, the computation of two-point correlation function covariance
reduces to Eq. 5.42.

Concerning the three-point correlation function case, similarly to the previous case, it has
been shown (184) that 3PCF covariance can be expressed as

cov(ζ̂ab
ℓ1 , ζ̂cd

ℓ2 ) = Cab,dc
ℓ1,ℓ2

= ⟨ζ̂ab, ζ̂cd⟩−⟨ζ̂ab⟩⟨ζ̂cd⟩

= 6Cab,cd + 5Cab,cd + 4Cab,cd + 3Cab,cd, (A.10)

where
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where, again, the terms highlighted in red are the Gaussian ones, and they contribute to all
terms. The quantity (nw)3 is the survey-averaged value of (nw)3, va = 4π(r3

a,max − r3
a,min)

and the kernels involved are defined as

Kab,ℓ
ijk =

[
Θa (rij)Θb (rik)Lℓ

(
χjk

)
Φ
(
ra, rb,χjk

)
+5 perms.

]
(A.15)

with χjk being the opening angle of a triangle of sides in bin i and j, and Φ
(
ra, rb,χjk

)
being

the so-called survey correction factor, a function for each radial bin being able to encapsulate
the effects of non-uniform sampling and the survey boundaries, usually approximated as a
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two-dimensional smooth function (185). Under the Gaussian hypothesis, it is possible to
derive simplified expressions as presented in Eq. 5.45.

A.2 Bias loop corrections to the Bispectrum: kernels

The kernels involved in the loop terms presented in Eqs 4.62, 4.63, and 4.64 are shown below

K(k1,k2) = µ2
12 −1, (A.16)

L(k1,k2,k3) = 2µ12µ23µ31 −µ2
12 −µ2

23 −µ2
31 +1, (A.17)

where
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1
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)
K(k2,k3)+sym(12)

]
,

(A.23)

where sym(n) denoted the number of terms to be symmetrised.

A.3 Bias loop corrections to the Bispectrum: numerical
integration

The next-to-leading order galaxy bispectrum model employed to calculate the corresponding
3PCF model in Chapter 8 was derived through the numerical implementation of loop integrals.
The model comprises 46 integrals, each corresponding to a bias parameter triplet. These
integrals are typically divided into four classes of integrals, as explained in Secs 4.2.1,
4.2.3. These classes of integrals exhibit a structural difference in the way they depend on
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the linear power spectrum PL. The PL in B222 depends on both angular coordinates in a
three-dimensional reference system. The PL in B321−I is dependent upon a single angle,
and by analytically integrating along one angular coordinate, the integral to be numerically
evaluated is reduced to two dimensions. Similarly, the PL in B321−I and B411 do not depend
upon any angles. It is thus possible to analytically integrate along the two angular coordinates,
resulting in one-dimensional integrals that can be numerically evaluated. In Figs A.1 A.2,
A.3, and A.4, I show the computations of the aforementioned integrals, which have been
computed using CUBA 1 and GSL-Gnu Scientific Library2, and compared against
a bispectrum reference (126) at the z = 0 for cosmology, as determined by the Planck mission
citePlanck2020, with Ωm = 0.319, Ωb = 0.049, Ωde = 0.681, σ8 = 0.83, ns = 0.96 and
h = 0.67. Values of k1, k2 and k3 as a function of the Index are shown in A.1.
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Figure A.1 k1, k2 and k3 - where k1 ≤ k2 ≤ k3 - as a function of the Index.

1feynarts.de/cuba
2gnu/software/gsl

https://feynarts.de/cuba/
https://www.gnu.org/software/gsl/


146 Appendix

0 500 1000 1500 2000 2500

103

105

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−7

10−5

10−3

10−1

|B
/B

re
f
−

1|

b3
1

0 500 1000 1500 2000 2500
104

105

106

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−7

10−6

10−5

10−4

10−3

|B
/B

re
f
−

1|

b2
1b2

0 500 1000 1500 2000 2500
103

104

105

106

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−7

10−5

10−3

|B
/B

re
f
−

1|

b1b
2
2

0 500 1000 1500 2000 2500

106

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−7

10−6

10−5

10−4

10−3

|B
/B

re
f
−

1|

b3
2

0 500 1000 1500 2000 2500

104

105

106

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−7

10−5

10−3

|B
/B

re
f
−

1|

b2
1γ2

0 500 1000 1500 2000 2500

105

106

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−7

10−6

10−5

10−4

10−3

|B
/B

re
f
−

1|

b1γ
2
2



A.3 Bias loop corrections to the Bispectrum: numerical integration 147

0 500 1000 1500 2000 2500

105

106

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−9

10−7

10−5

10−3

|B
/B

re
f
−

1|

γ3
2

0 500 1000 1500 2000 2500

105

106

107

108

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−8

10−7

10−6

10−5

10−4

|B
/B

re
f
−

1|

b1b2γ2

0 500 1000 1500 2000 2500

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−7

10−6

10−5

10−4

|B
/B

re
f
−

1|

b2
2γ2

0 500 1000 1500 2000 2500

106

107

|B
(k

1
,k

2
,k

3
)|

Our library

Reference

0 500 1000 1500 2000 2500
Index

10−7

10−6

10−5

10−4

|B
/B

re
f
−

1|

b2γ
2
2

Figure A.1 Computation of individual contributions B222 of galaxy bispectrum at the next-to-leading
order. For each plot: top plot refers to the absolute value of the individual contribution, where the
blue line represents our computation, and the orange line represents the reference, while bottom plot
displays in blue the percentage differences between the two evaluations.
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Figure A.2 Computation of individual contributions B321−I of galaxy bispectrum at the next-to-
leading order. For each plot: top plot refers to the absolute value of the individual contribution, where
the blue line represents our computation, and the orange line represents the reference, while bottom
plot displays in blue the percentage differences between the two evaluations.
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Figure A.3 Computation of individual contributions B321−II of galaxy bispectrum at the next-to-
leading order. For each plot: the top plot refers to the absolute value of the individual contribution,
where the blue line represents our computation, and the orange line represents the reference, while the
bottom plot displays in blue the percentage differences between the two evaluations.



154 Appendix

0 500 1000 1500 2000 2500

106

107

108

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−5

10−4

10−3

|B
/B

re
f
−

1|

0 500 1000 1500 2000 2500

106

107

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−7

10−5

10−3

10−1

|B
/B

re
f
−

1|

b2
1b2

0 500 1000 1500 2000 2500

107

108

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−7

10−5

10−3

|B
/B

re
f
−

1|

b2
1γ2

0 500 1000 1500 2000 2500

106

107

108

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−8

10−6

10−4

10−2

|B
/B

re
f
−

1|

b2
1γ21

0 500 1000 1500 2000 2500

107

108

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−8

10−7

10−6

10−5

|B
/B

re
f
−

1|

b2
1γ3

0 500 1000 1500 2000 2500

107

108

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−9

10−8

10−7

10−6

10−5

|B
/B

re
f
−

1|

b2
1γ2x



A.3 Bias loop corrections to the Bispectrum: numerical integration 155

0 500 1000 1500 2000 2500

107

108

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−8

10−7

10−6

10−5

|B
/B

re
f
−

1|

b2
1γ21x

0 500 1000 1500 2000 2500

107

108

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−8

10−7

10−6

10−5

|B
/B

re
f
−

1|

b2
1γ211

0 500 1000 1500 2000 2500

107

108

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−7

10−5

10−3

|B
/B

re
f
−

1|

b2
1γ22

0 500 1000 1500 2000 2500

106

107

|B
(k

1
,k

2
,k

3
)|

0 500 1000 1500 2000 2500
Index

10−8

10−6

10−4

|B
/B

re
f
−

1|

b2
1γ31

Figure A.4 Computation of individual contributions B411 of galaxy bispectrum at the next-to-leading
order. For each plot: top plot refers to the absolute value of the individual contribution, where the
blue line represents our computation, and the orange line represents the reference, while bottom plot
displays in blue the percentage differences between the two evaluations.
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