
Università degli Studi Roma Tre

Dipartimento di Matematica e Fisica
Doctoral program in Physics − XXXIV cycle

A thesis presented for the degree of
Doctor of Philosophy in Physics

Reconciling weak and strong field
regimes through space missions

Author:

Lorenza Mauro

Supervisors:

Prof. Salvatore Capozziello

Prof. Wolfango Plastino

Doctoral Program Coordinator:

Prof. Giuseppe Degrassi

A.A. 2021/2022



List of publications and works

This thesis is mainly based on the results of the following research papers
and works

1. S. Capozziello, O. Luongo, L. Mauro, Traversable wormholes with van-
ishing sound speed in f(R) gravity, Eur. Phys. J. Plus 136, 167 (2021).
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Abstract

The main goal of this thesis is to test gravity theories through space missions
in order to contribute to the discovery of the most reliable and consistent
ones. The work is divided into two sections: the first analyzes theoretical
models that will be examined for astrophysical and cosmological reasons; and
the second explores experimental methods.
As starting point, the first results obtained with the so-called classical Gen-
eral Relativity tests are investigated. They established the theory’s validity
in the Solar System. However, recent discoveries on larger dimensions and in
distinct gravitational regimes need the construction of new theoretical mod-
els. As a result, the Parametrized Post-Newtonian formalism is examined
in detail. Indeed, it enables comparisons of General Relativity with alter-
native metric theories of gravity in the weak field regime. Limits on the
Post-Newtonian parameters are then illustrated using data from the Laser
Ranging missions. Due to the limitations of this formalism in stronger gravi-
tational fields and on energy domains other than the Solar System, two more
theoretical models are studied. The first step is to determine the blue and
redshifts for metrics with particular symmetries, such as spherical and axial.
In three different gravity regimes, low, intermediate and high, the findings
of the Zipoy-Voorhees and Schwarzschild-de Sitter metrics are shown. The
theoretical results obtained in the low gravity regime are compared to those
predicted by the aforementioned Laser Ranging, as well as a hypothetical
mission to Mars’ satellite Phobos. Instead, in the other two regimes, the
comparison is done by looking at the properties of a neutron star and a
white dwarf. The strong field is the topic of the second theoretical model: a
class of wormhole solutions in extended theories of gravity.
The second section of the thesis work examines the experimental setup of
space missions that were used to constrain the free parameters of the previ-
ously described theories. LARES-2 and MoonLIGHT Laser Ranging exper-
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iments are described in detail, with an emphasis on their optical character-
istics. Then, plots from optical simulations of the laser retroreflectors used
in these two missions are shown. This provides an overview of why and how
new theories of gravity should be tested.
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Introduction

General Relativity (GR) is the most well-known theory of gravitational in-
teraction. Einstein’s theory, published in 1915 [1, 2], provided the best de-
scription of space, time and gravity so far. The main hypotheses of GR fully
match experimental data, as shown from several gravitational phenomena.
The so-called “three classical tests of GR”, proposed by Einstein, certify the
goodness of GR. He demonstrated how the theory could predict the 43′′/cy
observed by Le Verrier in Mercury’s orbit precession but not explained by
Newtonian theory. Another notable achievement of GR was the estimation of
the light deflection by the Sun, which was confirmed by Eddington’s measure-
ment during the historic 1919 total eclipse [3]. Finally, Einstein’s hypothesis
of gravitational redshift was validated by tests conducted between 1959 and
1965 by Pound, Rebka, and Snider [4, 5, 6].
Even though these tests represented the beginning of a series of experimental
triumphs of GR, in 1964, Shapiro determined the time delay that happens
when a radar signal passes near a massive object. He discovered that a radar
signal sent from Earth to a planet or a satellite travelling close to the Sun
experiences a non-Newtonian delay in its round-trip travel time [7, 8]. The
Shapiro time delay is also known as “the fourth classical test of GR”. Other
tests of GR’s validity are ongoing or have been revealed recently. LIGO
(Laser Interferometer Gravitational - wave Observatory) - VIRGO collabo-
ration [9] was able to observe the gravitational waves of a binary black hole
system merging to form a single black hole, one hundred years after Ein-
stein’s field equations and Schwarzschild’s solution were published. Indeed,
technological advancements have enabled scientists to conduct increasingly
in-depth studies of the cosmos over the time. For instance, observations from
Supernovae Ia (SNe Ia) [10], Cosmic Microwave Background radiation (CMB)
[11, 12, 13], Large Scale Structure (LSS) [14], Baryon Acoustic Oscillations
(BAO) [15] and weak lensing [16] provide information about the universe’s
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INTRODUCTION 7

dynamics as well as its kinematics. Indeed, they suggest that small per-
turbations occurred in the early universe, and that the famous Friedmann
Robertson Walker (FRW) metric perturbations formed cosmic structures;
they also show an accelerated expanding universe, and with a flat spatial
curvature. The only method to account for cosmic acceleration in the frame-
work of GR is to modify the matter component of Einstein’s field equations.
This approach leads to Dark Energy (DE), which is an unclustered fluid
with negative pressure. There are numerous ways to address the DE: one of
them is to reintroduce the cosmological constant Λ1, as in the concordance
Λ Cold Dark Matter (ΛCDM) model. There is, however, a discrepancy of
about 120 orders of magnitude between the predicted value and the obser-
vational limits [17], since Λ is generally associated with the energy of the
vacuum in quantum field theory (fine-tuning problem). Additionally, it is
not clear why its current value is comparable to the matter density (coin-
cidence problem). Then other models, such as those incorporating scalar
fields, were proposed. The cosmological constant is treated as a fluid with a
constant equation of state, i.e. pΛ = −ρΛ. This is consistent with the Plank
collaboration’s data [18], assuming no temporal evolution throughout cosmic
time. Nevertheless, if we want to relax this last hypothesis, we must use
a different description that results in a time-varying equation of state, thus
the scalar fields. Again, numerous examples exist, including quintessence,
phantoms, K-essence, tachyon, ghost condensates and dilatonic dark energy
[19]. Despite its success in fitting cosmic data, this approach to DE suffers
from the coincidence problem, because DE and matter densities reach com-
parable values only for a brief period in the universe’s history, corresponding
with the present epoch. Finally, observational evidence for the Big Bang
indicates a primordial cosmos characterized by high energy scales. Increase
of gravitational energy could require the existence of a quantum theory of
gravity [20, 21, 22]. But no conclusive approaches to quantum gravity ex-
ist yet, challenging the standard puzzle of unifying fundamental forces into
a single scheme [23, 24, 25, 26]. Consequently, despite Einstein’s famous
remark “feel sorry for the dear Lord, for the theory is correct!”, these exper-
imental results today raise questions about the theoretical model that could
best describe them. In other words, is general relativity the only theory that
adequately accounts for gravitational interactions? Extensions and modifica-

1Initially proposed by Einstein himself to describe a static universe and then eliminated
after the discovery of Hubble, calling the constant his “biggest blunder”.



INTRODUCTION 8

tions of the Hilbert Einstein action may provide an answer to this question,
allowing for the treatment of these observed phenomena as curvature effects
[27, 28, 29, 30]. Probably the most well-known models of this approach are
those that extend GR including higher order terms in curvature invariants
(such as R2, RµνRµν , R

µναβRµναβ, R2R, R2
kR), generic functions of the

Ricci scalar (e.g., f(R)), minimal or non-minimal couplings between scalar
fields and geometry (such as ϕ2R). For example, these Extended Theories of
Gravity (ETGs) enable us to explain the accelerated expansion of the uni-
verse without considering DE and to justify the flatness of galaxies rotation
curves without introducing Dark Matter (DM) [31]. We refer to metric theo-
ries of gravity (such as GR) when matter and other non-gravitational fields
are coupled only to the metric, and they satisfy the Equivalence Principle
by construction. In other words, the connection is metric compatible. But
there are no theoretical reasons why connection and metric should not be
independent variables. Palatini was the first to formulate this hypothesis,
hence the name of the formalism [32]. By relaxing the torsionless and met-
ric compatible connection hypotheses, which are both GR features, another
class of theories is constructed. In Eistein Cartan’s theory, the antisymmetric
part of the Γα

µν connection is different from zero; on the other hand, in the
Teleparallel Equivalent to General Relativity (TEGR) formalism, spacetime
is characterized exclusively by the torsion T , while the curvature is zero, and
the connection is that of Weitzenböck. However, we should specify that the
teleparallel field equations are completely equivalent to Einstein’s equations.
This means that they are incapable of solving the cosmological and astro-
physical issues discussed above unless a generic function of the torsion T is
considered in the action, as is the case of the metric ETGs. The advan-
tage of employing f(T ) rather than f(R) is that the equations are of second
order in the former and fourth order in the latter. These are undoubtedly
only a few examples of theories that go beyond Einstein’s theory. In any
case, whatever the theory, to be correct, it must be self-consistent, complete
and in agreement with past experiment [33]. To be precise, the theory must
work well at all scales, at low and high energies, from quantum to cosmo-
logical, and, in terms of the gravitational field, in the weak and strong field
regime; it must also reproduce Newtonian dynamics, pass the classical Solar
System tests, and account for astrophysical and cosmological observations,
from the Big Bang to the present (Fig.1). Thus, probing gravity theories
with arbitrary accuracy at both short and long distances seems reasonable
for ensuring their validity across a range of energy scales. Since the launch
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Figure 1: Evolution diagram of the observable universe, from the Big Bang
to the present. Credits: NASA/WMAP Science Team.

of the first man into space (Russian astronaut Gagarin) 60 years ago, ex-
ploration of the universe has pushed the boundaries of deep space, reaching
realms of the universe previously unimaginable. Lunar missions Apollo and
Lunokhod, satellites LARES and LAGEOS, Planck spacecraft, Mars missions
InSight and Mars2020 represent only a small fraction of the space missions
conducted during the last several years.

Throughout the text, we use units such that c = G = 1, unless differently
specified.



Chapter 1

Low gravity tests

Reconciling high and low gravitational energy scales is one of the outstand-
ing issues in modern physics. To achieve this ambitious goal, the first step is
to determine the appropriate framework that will help to compare theoret-
ical model with experimental data. We take into account the fact that the
characteristics of the gravitational field change according to the energy scale.
This translates into a different mathematical treatment: whereas in the weak
field we can perform series developments, neglecting some terms due to their
extremely low values, this is not allowed in the strong field, where all con-
tributions must be included. This means that analyzing models in the Solar
System is easier than, say, in the neighborhood of a black hole. Of course,
the difficulty of the calculation also depends on the symmetries of the metric
which describes the spacetime generated by the gravitational object under
investigation. Theoretical model must accurately reproduce observations,
not just in the simplest way feasible. In fact, too many simplifications may
result in a theoretical model that does not match the real item. Once the
theoretical background has been determined, we use experimental data from
space missions to determine the value of the free parameters of the theory
we would like to test.
The chapter is organized as follows. We begin by reviewing the classical Solar
System tests of GR. Next, we introduce the Parametrized Post-Newtonian
(PPN) formalism, which is ideal for describing the weak gravitational field,
and then examine several alternative theories of gravity. Finally, we analyze
the frame-dragging effect, a physical phenomenon predicted by Einstein’s
theory and extensively investigated in the Solar System via the Laser Rang-
ing (LR) technique.

10



1.1. THE FOUR CLASSICAL TESTS OF GENERAL RELATIVITY 11

1.1 The four classical tests of General Rela-

tivity

The perihelion precession of Mercury, the deflection of light by the Sun, and
the gravitational redshift of light represent the first evidence of the validity of
Einstein’s theory of gravity. These are complemented by Shapiro’s calcula-
tion of the light travel time delay, and together they constitute the so-called
“four classical tests”of GR. The theoretical formulation is presented in this
section.

1.1.1 Perihelion precession of Mercury

When we consider an isolated two-body system in which one orbits around
the other in Newtonian theory, the orbiting body follows an elliptical tra-
jectory, whose focus is occupied by the system’s center of mass. The major
axis is fixed in space, which means that the periapsis (the point of closest
approach to the focus)is also fixed. However, due to the interaction with
all of the other entities in the Solar System, Newtonian theory applied to
the study of the motion of the planets around the Sun predicts a precession
of the perihelion, that is, a rotation of the major axis around the center
of mass, for each planet. In 1859, Le Verrier was the first to observe this
physical phenomenon [34]. He measured the precession of Mercury’s perihe-
lion, the planet closest to the Sun, finding a value that disagreed from the
Newtonian prediction of 43′′/cy. Several solutions were proposed to explain
this discrepancy. Le Verrier himself hypothesized the presence of another
planet, Vulcan. Only Einstein, with the publication of GR theory, was able
to definitively demonstrate the precession of Mercury’s perihelion [35]. To
analyze Einstein’s result, we now look at the geodesics of massive particles
in the Sun’s gravitational field described by the Schwarzschild metric [36]

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2, (1.1)

where dΩ2 = dθ2 + sin2 θdφ2. Let us denote by

{uµ} =

{
dt

dλ
,
dr

dλ
, 0,

dφ

dλ

}
, (1.2)
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with λ the affine parameter, the four-velocity (or the tangent to the affinely
parameterized geodesics) of a massive particle which travels in the equatorial
plane (i.e. θ = π/2). It satisfies the normalization condition

u2 = −1. (1.3)

This is a constant of motion; it does not depend on any symmetry of the
metric (1.1) but it is a general property, related only to the geodesics affine
parameterization. Specifically, Eq. (1.3) is

−
(
1− 2M

r

)
ṫ2 +

(
1− 2M

r

)−1

ṙ2 + r2φ̇2 = −1, (1.4)

where we used the dot to indicate the derivative with respect to λ.
On the other hand, the symmetries of the metric enable us to determine
two additional constant of motion. Indeed, there are two Killing fields, ∂/∂t
and ∂/∂φ, because the coordinate components of the metric do not depend
on t and φ. In general, given a Killing field ξµ and an affine parametrized
geodesic, the scalar product gµνu

µξν is constant along the geodesic itself.
Therefore, in our case, we have

gµνu
µ

(
∂

∂t

)ν

= −
(
1− 2M

r

)
ṫ
.
= −E, (1.5)

gµνu
µ

(
∂

∂φ

)ν

= r2φ̇
.
= L. (1.6)

By exploiting these two constants of motion, named E and L, into Eq. (1.4),
we get

ṙ2 +

(
1− 2M

r

)
L2

r2
+

(
1− 2M

r

)
=
E2

r2
, (1.7)

which determines the radial motion. If we divide all terms by a factor 2, we
can rewrite Eq. (1.7) as the expression for the energy of a particle moving
in a central field

1

2
ṙ2 + Veff(r) =

E2

2
, (1.8)

where

Veff(r) =
1

2

(
1− 2M

r

)(
L2

r2
+ 1

)
=

= −M
r

+
L2

2r2
− ML2

r3
+

1

2
. (1.9)
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Formally, Eq. (1.8) is the same as the classical one but the effective potential
has additional terms. As a matter of fact, the first two terms in Eq. (1.9) are
analogous to those contained in Newton’s theory. In particular, −M/r is the
classical gravitational potential generated by a body of mass M ; while L2/r2

represents the centrifugal barrier, which occurs when the particle has a non-
zero angular momentum. Instead, the last term in Eq. (1.9) is a constant
and therefore has no physical meaning; the third is the relativistic correction.
Let us see how this potential varies as a function of the radial coordinate r.
First of all we observe that it depends on the value of the angular momentum
L. For this reason, we have two plots for Veff , Fig. 1.1. Let us first analyze
the case A, Fig. (1.1a). The potential is monotone, it vanishes in r = rs
and it tends to 1/2 at infinity. What kind of motions does Veff describe?
Depending on the value assumed by E2/2, there are four possibilities.
For E2/2 > 1/2

1. if ṙ > 0, the particle moves indefinitely away without going back (this
is the case of a particle that, ejected from the Sun, travels towards the
infinity);

2. if ṙ < 0, the particle moves towards the center of the gravitational field
and falls into the origin of the coordinate system (this is the case of a
particle that comes from infinity and collapse on the Sun).

On the contrary, for E2/2 < 1/2

1. if ṙ > 0, the particle first moves away from the center of mass, reaches
a point where the motion reverses and then falls to the origin (this is
the case of a particle ejected from the Sun with a speed too low to
escape towards the infinity, so it reaches a maximum distance and then
falls again on the Sun);

2. if ṙ < 0, the particle proceeds directly towards the origin of the coor-
dinate system (this is the case of a particle that falls on the Sun).

From this analysis we understand that none of these motions describe that
of a planet. Let us now examine the case B, Fig. (1.1b).
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(a) Case A: L2 < 12M2.

(b) Case B: L2 > 12M2.

Figure 1.1: Effective potential Veff for time-like geodesics as a function of the radial
coordinate r.

By studying the first and second derivatives of the effective potential, Eq.
(1.9), we obtain R+ and R−

R± =
L2 ±

√
L4 − 12L2M2

2
, (1.10)
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which are a local minimum and maximum, respectively (see Fig. xx). At
r = R+, there are stable circular orbits (i.e. ṙ = 0), whereas at r = R−, there
are unstable circular orbits. Again, depending on the value of E2/2, we have
different possibilities. For E2/2 > 1/2, the particle travels from infinity to
the center of the gravitational field, reverses its motion, and returns to its
original location (being a non-periodic motion, it could describe, for example,
that of a non-periodic comet). For values of E2/2 greater than the maximum
of the potential, we have either a particle that falls on the Sun or a particle
that is ejected from the Sun and goes towards infinity. As a result, none of
these scenarios describes the motion of a planet. An interesting situation is
the following

Veff (R+) <
E2

2
<

1

2
. (1.11)

In this case, we have periodic motions, in the sense that the radial coordinate
periodically oscillates between two points that coincide with its minimum
value, the perihelion, and its maximum value, the aphelion. Therefore we
have finally found the range of values for E2/2 that can be used to describe
the motion of the planets.
Now let us study the orbits of these planets. When we combine Eq. (1.6)
and Eq. (1.8) together, we get

dr

dφ
= ±r

2

L

√
E2 − 2Veff , (1.12)

which integrated gives r as a function of φ. In the case of a two-body inter-
action in which the effective potential is Newtonian, the integration of Eq.
(1.12) results in an elliptical orbit, that is a closed curve in the equatorial
plane in which the radial coordinate varies in a limited interval. Instead,
when incorporating the relativistic correction, as in Eq. (1.9), the orbits are
no longer closed: instead of being fixed in space as predicted by Newton’s
theory, the perihelion moves in the direction of the planet’s motion (peri-
helion precession). It is worth noting that in Newtonian theory orbits are
closed only in the two bodies approximation. However, when we examine the
planetary orbit while also incorporating the planet’s interactions with other
bodies in the Solar System, the effect of perihelion precession appears. In-
stead, in GR, it is the shape of the potential that is modified, and this alone
causes the precession, not the interaction with other planets. Furthermore,
because the relativistic correction to Veff goes like 1/r3, the potential exer-
cises a greater influence on the planets closest to the Sun. For this reason,
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Mercury is an excellent candidate for testing this physical phenomenon.
We are unable to calculate the integral of Eq. (1.12) analytically (in terms of
elementary functions1), due to the complexity of Eq. (1.9) which describes
the effective potential. It is, nevertheless, possible to perform a perturbation
analysis. Let us consider that the orbits of the planets in the Solar System
have a small eccentricity (they are almost circular). This means that the
radial coordinate varies in a small range in proportion to its average value,
and the energy is just above the potential’s minimum. In other words, r
oscillates in a small neighborhood of R+, and in this neighborhood, we can
develop Veff in Taylor series, stopping at the second order

Veff(r) ≃ Veff(R+) +
1

2
V ′′
eff(R+)(r −R+)

2, (1.13)

valid for |r −R+|/R+ ≪ 1. From Eq. (1.9), we get

Veff(R+) = −M

R+

+
L2

2R2
+

− ML2

2R3
+

+
1

2
, (1.14)

V ′′
eff(R+) =

M

R3
+

(
R+ − 6M

R+ − 3M

)
. (1.15)

Consequently, Eq. (1.8) of the radial motion becomes that of the harmonic
motion

1

2
ṙ2 +

1

2
ω2
r (r −R+)

2 = const, (1.16)

where ω2
r = V ′′

eff(R+) is the angular velocity. Furthermore, since ωr = 2π/τr,
the period τr of the motion is

τr = 2π

√
R3

+

M

R+ − 3M

R+ − 6M
. (1.17)

To establish whether the planet’s orbit closes or not, we calculate the angle
covered by the vector radius in a time interval equal to τr

∆φ = φ̇τr. (1.18)

Because the orbit is almost circular, taking into account Eq. (1.6), we have
that φ̇ = L/R2

+ is constant, hence

∆φ = 2π
L

R2
+

√
R3

+

M

R+ − 3M

R+ − 6M
. (1.19)

1It can be solved analitically but in terms of elliptic functions.
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Moreover, from the condition

V ′
eff (R+) = 0, (1.20)

we can determine L2 in terms of R+

L2 =
MR2

+

R+ − 3M
. (1.21)

Thus, Eq. (1.19) becomes

∆φ = 2π

√
1

1− 6GM
c2R+

, (1.22)

where we reintroduced the constants c and G. We can easily see that, for
c → ∞, ∆φ = 2π: when the radial coordinate makes a complete oscillation,
the vector radius describes a turn angle, and the orbit is closed. Otherwise,
since the denominator is smaller than 1, we have that ∆φ > 2π: the perihe-
lion shifts and the orbit is not closed.
Finally, 6GM

c2R+
is a very small number because it is 3rS, with rS the Schwarzschild

radius (which for the Sun is ≃ 2.95 km), divided by the mean radius of the
planetary orbit (which is of the order of hundreds of millions of km). Ergo,
the square root in Eq. (1.22) can then be approximated, yielding

∆φ ≃ 2π +
6πGM

c2R+

. (1.23)

As already mentioned, we can easily see that the effect is less for planets with
larger orbits since R+ is in the denominator of Eq. (1.23). Let us calculate
∆φ for Mercury. From Eq. (1.23) we get

∆φ ≃ 4.90 · 10−7 rad, (1.24)

which is in perfect agreement with the value measured by Le Verrier [34]

∆φobs ≃ 5.00 · 10−7 rad = 43′′/cy. (1.25)

1.1.2 Deflection of light by the Sun

We want to study the propagation of a light ray in the gravitational field of
the Sun [36]. The equations we will employ are the same as in Sec. (1.1.1),
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with the main difference that, instead of considering massive particles and
hence the normalization condition given by Eq. (1.3), this time we will look
at a null geodesic, which satisfies the following condition

u2 = 0. (1.26)

Radial motion is always described by Eq. (1.8) but with the effective poten-
tial

Veff =
L2

2r3
(r − rS) , (1.27)

where rS = 2M is the Schwarzschild radius of the Sun.
Before going any further, let us introduce the apparent impact parameter, b

b
.
=
L

E
, (1.28)

to simplify the notation. It is the distance between the point r = 0 and that
of closest approach.

Figure 1.2: Effective potential Veff for null geodesics as a function of the radial coordinate
r.

We can now analyze the plot of the effective potential, see Fig. 1.2. First,
we can see that as r increases, Veff tends to zero as 1/r2, while it diverges as
−1/r3. Furthermore, the potential has one maximum at r = R+

R+ =
3

2
rS. (1.29)
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R+ is much smaller than the solar radius RSun, therefore it falls inside the
Sun. The plot on the left of RSun is of no physical interest.
The type of orbits is determined by the impact parameter’s value. We denote
with bc the critical value of the impact parameter corresponding to a circular
orbit around R+. To determine bc, we use Eq. (1.8) with the condition ṙ = 0,
that means

1

2b2c
= Veff (R+) , (1.30)

from which we derive

bc =
3
√
3

2
rS. (1.31)

A light beam characterized by this impact parameter value describes an un-
stable circular orbit. In fact, if we take a value of b slightly less than bc,
the light ray is either ejected from the Sun and travels to infinity or falls on
the Sun. On the other hand, if we choose a value of b much smaller than bc,
we have the case of a light ray that comes from infinity, moves towards the
Sun and reaches the solar disk because the minimum distance between the
ray and the Sun is lower than the solar ray. Consequently, a light beam that
grazes the Sun without impacting with it must have a large enough impact
parameter. For this reason, we are going to determine the trajectories in the
case b > bc. By scaling the affine parameter by a multiplicative factor

λ→ λL = λ′, (1.32)

we can rewrite Eq. (1.8) as

1

2
ṙ2 + Ṽeff(r) =

1

2b2
, (1.33)

with Ṽeff(r) =
1

2r3
(r − rS). Then, considering that, with the new parameter-

ization, φ̇ = 1/r2, we get

dφ

dr
= ± 1

r2
√

1
b2
− 1

r2

(
1− rS

r

) , (1.34)

where the + sign refers to a ray that moves away from the center of the
gravitational field, vice versa for the − sign. It is easy to show that Eq.
(1.34) is that of a straight line in the non-relativistic case, as expected: light
propagates along a straight line in a flat spacetime.
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Now we want to determine the solid angle described by the light beam during
its path, in order to calculate its deflection. To achieve this, we integrate Eq.
(1.34) by multiplying it by a factor of 2

∆φ = 2

∫
∞

R0

bdr

r2
√

1
b2
− 1

r2

(
1− rS

r

) . (1.35)

Here, R0 is the minimum value of the radial coordinate, i.e. the point where
the ray’s motion is reversed. Therefore, R0 is the solution of Eq. (1.33) when
ṙ = 0

1− b2

R2
0

(
1− rS

R0

)
= 0, (1.36)

or, equivalently

Figure 1.3: Photograph taken by Ed-
dington during the 1919 solar eclipse
and published in his famous paper [37]
in 1920.

(
R0

b

)2

= 1− rS
R0

. (1.37)

Obviously R0 > RSun, otherwise the
light beam would hit the solar disk,
preventing us from seeing it. The
integral of Eq. (1.35) is convergent
but it cannot be calculated exactly.
However, it is possible to do a se-
ries expansion of rS/R0, being a very
small quantity. As a result of the in-
tegral calculus, we get

∆φ = π + 2
rS
R0

. (1.38)

Finally, the deflection of light by the
Sun is

δφ = ∆φ− π =
4GM

c2R0

, (1.39)

where we reintroduced the constants
c and G. As we can see, the deflection is a relativistic effect (it tends to zero
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for c→ ∞), and the smaller the R0, the greater the deflection, implying that
the deflection increases as the light ray approaches the Sun. It is therefore
necessary to consider rays that pass very close to the Sun in order to observe
the phenomena of deflection. This is why it is preferable to perform the
measurement during an eclipse (see Fig.1.3), as Eddington demonstrated for
the first time in 1920 [37]. For a ray that grazes the Sun, Eq. (1.39) provides
δφ ≃ 1.75′′. Einstein was the first to calculate this correct light bending
value [35].

1.1.3 Gravitational redshift of light

The gravitational redshift prediction was verified only after Einstein’s death,
with the famous Pound, Rebka, and Snider experiments [4, 5, 6].
Let us consider the gravitational field generated by a spherically symmet-
rical body of mass M . This time-independent field is described by the
Schwarzschild metric, Eq. (1.1).

Figure 1.4: The spacetime diagram
shows the world lines of the emitting
atom and the observer, both stationary
in the gravitational field.

The (constant) spatial coordinates
of a stationary atom placed in this
gravitational field are denoted by
x1 = (r1, θ1, φ1). This atom emits
radiation corresponding to one of
its spectral lines. The radiation is
detected by a stationary observer
O, who lies in the same field and
whose spatial coordinates2 are x2 =
(r2, θ2, φ2). Let ν1 be the frequency
relative to the spectral line of the
emitted radiation. What is the value
ν2 of the frequency seen by the ob-
server O? We should first note that
the frequency of the emitted radia-
tion is a characteristic of the atom,
not of its position in the gravita-

2Like the atom, the observer’s spatial coordinates are constant since it is stationary.
Furthermore, in both cases, the relevant coordinate is the radial one.
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tional field. In other words, gravity does not modify the atom’s spectrum;
rather, observing the radiation in a different reference system than the emit-
ter detects a different frequency, which would not happen if the observer
was in the same system reference as the atom. To determine the frequency,
we assume the atom being the source of a light vibration characterized by
specific period τ1

ν1 =
2π

τ1
. (1.40)

In general, the vibration period τ1 is not equal to the coordinate time interval
tab between events a and b (see Fig. 1.4). τ1 is, in fact, a proper time, related
to tab through

τ1 =

∫
b

a

dt

√
−gµν

dxµ

dt

dxν

dt
=

∫
b

a

dt
√

−g00(x1) =
√
1− 2M

r1
tab. (1.41)

This light radiation travels at the speed of light towards the observer. We are
not interested in determining the shape of the wave fronts that characterize
the radiation; instead, we want to note that the wave front emitted along the
atom’s world line at event b is simply translated in the temporal direction
by a quantity equal to tab with respect to that emitted at event a. Since
the gravitational field is static, this time interval is constant along the wave
front. Then we can deduce that the time interval along the observer’s world
line corresponding to events a and b of the atom’s world line is

ta′b′ = tab. (1.42)

Therefore, the proper time interval for the observer is

τ2 =

√
1− 2M

r2
ta′b′ =

√
1− 2M

r2
tab, (1.43)

and the associated frequency is

ν2 =
2π

τ2
. (1.44)

At this point, we can easily calculate the ratio between the two frequencies

ν2
ν1

=
τ1
τ2

=

√
1− 2M

r1√
1− 2M

r2

. (1.45)
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We can see from Eq.(1.45) that the frequencies ν1 and ν2 do not coincide if the
atom and the observer occupy different positions in the gravitational field. If
r2 > r1 (as in the case of an atom on the Sun’s surface with an observer placed
on Earth), ν2 < ν1 and the frequency of the observed radiation appears to
be “red-shifted”. The fractional shift in frequency is commonly used instead
of Eq.(1.45)

∆ν

ν
=
ν2 − ν1
ν1

=

√
1− 2M/r1√
1− 2M/r2

− 1. (1.46)

Because the speed of light appears in all of these equations, this is a rel-
ativistic effect. In fact, if we assume c infinite, it vanishes. Furthermore,
since Maxwell’s equations do not couple the electromagnetic and gravita-
tional fields, this effect does not occur in classical theory.
As already anticipated, Pound and Rebka experiment [4, 5], performed on
Earth, provided the first confirmation of this prediction, improved a few
years later by Pound and Snider [6]. They considered an emitter atom and
an observer inside a tower of height h ≃ 23 m. Indicating with MT and RT

the mass and the radius of the Earth respectively, we have

∆ν

ν
=

√
1− 2MT/RT

1− 2MT/(RT + h)
− 1 ≃

√√√√ 1− 2MT/RT

1− 2MT

RT

(
1− h

RT

) − 1 ≃

≃
(
1− MT

RT

)(
1 +

MT

RT

− MTh

R2
T

)
≃ −MTh

R2
T

. (1.47)

During the calculation, we performed series developments, taking into ac-
count that h ≪ RT , and 2MT/RT ≪ 1. The numerical values of Earth’s
mass and radius, MT ≃ 5.97 · 1024 kg and RT ≃ 6.371 km, are then substi-
tuted in Eq.(1.47), giving

∆ν

ν
≃ −2.30 · 10−15. (1.48)

Pound and Rebka considered the highly sharp spectral lines due to the nuclear
transitions of the iron isotope 57Fe, which emit gamma rays with an energy
of 14 keV, because the effect was too weak to observe (we are talking about
a fractional shift of one part in 1015). They achieved this by using the
characteristics of a previously discovered effect known as the Mössbauer effect.
After emitting a γ photon, the iron atom recoils, resulting in a Doppler
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effect on the emission that is substantially bigger (about 6 − 7 orders of
magnitude) than the redshift. In the Mössbauer effect the recoil is negligible.
The primary reason for this is that the atom is thought to be in a crystal. As a
result, the photon’s momentum is transferred to the entire crystal, and what
recoils is no longer the single atom but the entire crystal of which the atom is
a part. Because the crystal’s mass is macroscopic, the recoil velocity caused
by photon emission in this situation is several orders of magnitude lower
than that of the single atom. The primary source of spectral line broadening
is therefore eliminated. In practice, Pound and Rebka employed an iron
crystal that released photons that were collected by identical crystal placed
above. They then measured how many times the photons were absorbed by
this second crystal. If there were no redshift due to the gravitational field,
each emitted photon would be collected by resonant absorption. In fact, the
probability P of absorption is

P ≃ Γ2

∆ν2 + Γ2
, (1.49)

where Γ is the natural width of the spectral line, and ∆ν the gravitational
redshift.

1.1.4 Shapiro time delay

In his work of 1964 [7], Shapiro predicted the time delay of a radar signal sent
from Earth to one of the inner planets (Mercury or Venus), travelling close
to the Sun, then returning back to be detected again on Earth. To better
understand Shapiro’s result, let us start with the Schwarzschild metric, Eq.
(1.1), to represent the Sun’s gravitational field while ignoring the Earth’s
motion between pulse transmission and its reception. In order to achieve
the desired result, we can examine the physical phenomena in the equatorial
plane (i.e. θ = π/2), by using a suitable coordinate system, without losing
generality. Consequently, the metric becomes

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dφ2. (1.50)

Having fixed the geometric background, we now study the photon motion
from Earth to the inner planet. As shown in Fig. 1.5, we indicate the
Earth’s position with respect to the Sun with r1 and the planet’s one with
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Figure 1.5: Schematic representation of the positions of Earth and of the
inner planet relative to the Sun.

r2; instead, we denote the so-called closest approach distance of the light
beam from the Sun with r0. By definition, r0 is the value of the ray that
makes ṙ = 0, that is to say

ṙ0 = 0. (1.51)

The condition we have to consider for the photon motion is that of null
geodesics, ds2 = 0, therefore Eq. (1.50) gives(

1− 2M

r

)
dt2 =

(
1− 2M

r

)−1

dr2 + r2dφ2. (1.52)

By introducing the affine parameter λ and dividing each term by dλ2, we
may rewrite Eq. (1.52) as(

1− 2M

r

)(
dt

dλ

)2

=

(
1− 2M

r

)−1(
dr

dλ

)2

+ r2
(
dφ

dλ

)2

(1.53)

or (
1− 2M

r

)
ṫ2 =

(
1− 2M

r

)−1

ṙ2 + r2φ̇2. (1.54)
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If we evaluate Eq. (1.54) in r0, taking Eq. (1.51) into account, we get(
1− 2M

r0

)
ṫ2 = r20φ̇

2. (1.55)

We denote with {uµ} = {ṫ, ṙ, 0, φ̇} the four-velocity of the photon travelling
in the equatorial plane. Here, the dot indicates the derivative with respect
to the affine parameter λ. Let us observe that there are two constants of
motion associated with the photon since metric components are independent
from t and φ, the total energy E and the angular momentum L

E =

(
1− 2M

r

)
ṫ; (1.56)

L = r2φ̇. (1.57)

By substituting Eqs. (1.56) - (1.57) into Eq. (1.55) we obtain

L2

E2
=

r20
1− 2M/r0

(1.58)

which relates E and L with r0. Now, we employ Eqs. (1.56) - (1.58) to
reduce Eq. (1.54) to the following(

ṙ

ṫ

)2

=

(
1− 2M

r

)2

−
(
1− 2M

r

)3(
1− 2M

r0

)−1 (r0
r

)2
, (1.59)

and finally to get

dr

dt
= ±

(
1− 2M

r

)√
1−

(r0
r

)2 1− 2M/r

1− 2M/r0
. (1.60)

We need to integrate this differential equation, that is to solve∫
t

t0

dt′ = ±

∫
r

r0

dr′(
1− 2M

r′

)√
1−

(
r0
r′

)2 1−2M/r′

1−2M/r0

. (1.61)

Depending on whether we are dealing with t > t0 or t < t0, we will use the
+ or - sign, respectively. We will now analyze the case t > t0 and, as a
result, we will consider the + sign. Since 2M ≪ 1 along the entire photon’s
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worldline, we can develop in Taylor series with respect to M and in M = 0
the integrand on the right-hand side of Eq. (1.61), up to the first order. In
this way, Eq. (1.61) becomes∫

t

t0

dt′ =

∫
r

r0

r′√
r′2 − r20

[
1 +

M (3r0 + 2r′)

r′ (r0 + r′)

]
dr′, (1.62)

whose solution is
t− t0 = F (r), (1.63)

where

F (r) ≡
√
r2 − r20 +M

√
r − r0
r + r0

+ 2M log

(
r +

√
r2 − r20
r0

)
. (1.64)

Finally, we have all of the instruments necessary to determine the photon’s
round trip time from Earth to the planet and back, which is

∆t = 2 [F (r1) + F (r2)] , (1.65)

specifically

∆t = 2

(√
r21 − r20 +

√
r22 − r20

)
+ 2M

(√
r1 − r0
r1 + r0

+

√
r2 − r0
r2 + r0

)
+

+4M log


(
r1 +

√
r21 − r20

)(
r2 +

√
r22 − r20

)
r20

 . (1.66)

Here,

∆tN
.
= 2

(√
r21 − r20 +

√
r22 − r20

)
(1.67)

is the Newtonian term, while

∆td
.
= 2M

(√
r1 − r0
r1 + r0

+

√
r2 − r0
r2 + r0

)
+

+4M log


(
r1 +

√
r21 − r20

)(
r2 +

√
r22 − r20

)
r20

 (1.68)
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is the Shapiro time delay. Let us make some considerations. First of all,
we determined the Shapiro delay through the geodetic approach, that is, we
considered the fact that the photon follows a geodesic in the spacetime. How-
ever, a less precise approximation in which the photon travels in a straight
line (hence the name “straight path approximation”) is also conceivable. In
this case, the first term in Eq. (1.68) becomes

−2M

(√
r21 − r20
r1

+

√
r22 − r20
r2

)
. (1.69)

Some authors (Misner et al [33], Ohanian & Ruffini [38]) claim that the two
procedures provide the same result at first-order. Last we recall that, in
his original paper [7], Shapiro estimated the time delay in the straight path
approximation and in terms of the x coordinate related to the radial one
through x2i = r2i − r20, with i = 1, 2, providing

∆td = −2M

(
x2√
x22 + r20

+
2x1 + x2√
x21 + r20

)
+

+4M log

(
x2 +

√
x22 + r20

−x1 +
√
x21 + r20

)
, (1.70)

where he also considered the fact that time dilation caused by the Sun’s
gravitational field affects the overall transit time as measured by a clock on
Earth.
The value of the time delay predicted by Shapiro (and then experimentally
verified) for a radar signal that starts from the Earth, travels towards Venus
approaching the Sun, and comes back, when this three-body system is in the
best possible alignment position, is ∼ 200µs.

1.2 The Parametrized Post-Newtonian formal-

ism

In the previous sections we analyzed the classical tests of GR, all based on
the Schwarzschild solution. However, the non-linearity of Einstein’s field
equations makes it difficult to find exact solutions, unless particular symme-
tries are imposed, such as time independence and/or spherical symmetry of
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the Schwarzschild metric. The PPN formalism arises from the necessity to
determine solutions that are not strictly exact but rather do not depend on
such symmetries [39].
In the Solar System [33], gravity is weak and the potential becomes Newto-
nian

|ϕ| = |ϕN | ≲ 10−6, (1.71)

and the matter that generates the gravitational field moves with a very low
velocity v (relative to the center of mass of the Solar System)

|v2| ≲ 10−7. (1.72)

Furthermore, the ratio between the stress energy tensor Tjk and the rest-mass
density ρ0 is

|Tjk|/ρ0 ≲ 10−6, (1.73)

and the internal energy per unit of baryon mass

Π = (ρ− ρ0)/ρ0 ≲ 10−6. (1.74)

As a result, the theoretical analysis of the Solar System can be performed,
without significant loss of accuracy, by taking into account series development
in the parameters |ϕ|, v2, |Tjk|/ρ0 e Π. This approach gives the flat and empty
spacetime at zero order, the Newtonian description of the Solar System at the
first order and the post-Newtonian one at the second order. Post Newtonian
approximation or PPN formalism is the ensamble of Newtonian formalism
and post Newtonian corrections.
There are two possible formulations of the post Newtonian approximation

1. the Eddington-Robertson-Schiff (ERS);

2. the Will-Nordtvedt (WN).

In the formulation 1, spacetime is spherically symmetric and static, with the
Sun as a massive particle and planets as test particles. There are only two
parameters in the ERS approach [33, 40, 41]: γ, and β. It is therefore a
rough approximation which is not properly suited to the treatment of post-
Newtonian dynamics.
The best method to compare theoretical models with observations is through
the approach 2. In fact, the WN formulation [35, 41, 42] treats the planets of
the Solar System as objects with finite volume and density; in other words,
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it is fluid-based rather than point particle-based.
In this section we analyze this PPN formalism, starting with the first order
of the expansion, i.e. the Newtonian approximation, and then arriving at the
complete formulation with the post-Newtonian (second) order.

1.2.1 Newtonian approximation

A gravitational system can be accurately described by Newtonian theory
only in the limit of weak gravity and low velocity. The conditions for this to
happen are

1. individual velocities of all system bodies with respect to the system’s
center of mass must be much smaller than the speed of light

v ≪ 1; (1.75)

2. the Newtonian gravitational potential U must be

U ≪ 1; (1.76)

3. the system’s internal stresses must be much smaller than the mass-
energy density

|T ij|
T 00

=
|T ij|
ρ0

≪ 1. (1.77)

To understand when GR is reduced to Newtonian theory, we look at particles
geodesics. Let us first recall that in Newton’s theory, the world lines of
particles are described by the following equation

d2xi

dt2
=
∂U

∂xi
. (1.78)

Now, let us apply the low velocity and weak field limit to the GR, that means
considering

gµν = ηµν + hµν , |hµν | ≪ 1, |vj| =
∣∣∣∣dxjdt

∣∣∣∣≪ 1. (1.79)

Taking these conditions into account in the geodesic equation of GR

d2xi

dt2
= −Γi

αβ

dxα

dt

dxβ

dt
, (1.80)
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we get
d2xi

dt2
=

1

2
h00,i. (1.81)

By comparing Eq. (1.81) with Eq. (1.78), we have that GR is reduced to
Newton’s theory when

g00 = −1 + 2U. (1.82)

1.2.2 Post-Newtonian approximation

We have seen, from Eqs. (1.71) - (1.74), that the Solar System can be
described by a weak field and slow motion approximation. Indicating with ϵ2

the maximum value assumed by the gravitational potential U , we can express
the order of “smallness”of the expansion parameters as

U ∼ v2 ∼ p/ρ0 ∼ Π ∼ O(ϵ2). (1.83)

This also implies that v ∼ O(ϵ), U2 ∼ O(ϵ4), and so on. Furthermore, since
the (slow) motion of matter affects the variation over time of a quantity A,
for a fixed xj, we have ∣∣∣∣ ∂A/∂t∂A/∂xj

∣∣∣∣ ∼ |vj| ∼ O(ϵ). (1.84)

These two conditions show that quantities with an odd number of v or ∂/∂t
are odd in ϵ, and hence of the order O(ϵ), O(ϵ3), and so on. Since x0 = −x0
under time reversal, these terms likewise change sign under this transforma-
tion. As a result, the metric coefficients g0j change sign, whilst g00 and gjk
do not; in other words, the former has odd terms in ϵ, while the others have
even terms.
Thus, post-Newtonian expansion necessitates a knowledge of the metric com-
ponents at the following orders of magnitude

g00 up to O(ϵ4), (1.85)

g0j up to O(ϵ3), (1.86)

gjk up to O(ϵ2). (1.87)

Once the orders of magnitude have been established, we define the potentials
that appear in post-Newtonian approximation. To this end, Will [42] lists a
set of rules which we summarize here



1.2. THE PARAMETRIZED POST-NEWTONIAN FORMALISM 32

1. metric corrections must be at most of the post-Newtonian order;

2. denoting by |x − x′| the distance between a point x of the field and
a point x′ associated with the matter distribution, metric corrections
must tend to zero when this distance tends to infinity, i.e. the metric
must be Minkowskian at infinity;

3. a suitable coordinate system is chosen to make the metric adimensional;

4. the origin of the coordinates (spatial and temporal) is arbitrary in the
coordinate system chosen in the previous point. This condition is guar-
anteed if each functional is expressed in terms of the distance |x− x′|;

5. the metric corrections h00, h0j, and hjk should transform as a scalar,
vector, and tensor, respectively, under spatial rotations;

6. it is possible to consider only functionals created by ρ0, Π, p, T
µν , and

v, but not by their gradients, for simplicity’s sake;

7. it would be better to consider simple functionals.

At this point we have all the ingredients necessary to determine the PPN
approximation.
We start with the spatial components of the metric tensor. There are only
two possible functionals which satisfy the constraints listed above and which
cause gjk to be of the order O(ϵ2) (according to Eq. (1.87))

δjkU = δjk

∫
ρ0(x′−t)
|x−x′| d

3x′; (1.88)

Ujk =

∫
ρ0(x′−t)(xj−x′

j)(xk−x′
k)

|x−x′|3 d3x′. (1.89)

In fact, we are dealing with simple and dimensionless functionals of ρ0, which
transform as tensors and go to zero as 1/|x− x′| at infinity. As a result, the
corrections to the gjk components must be a linear combination of these
functionals. For this purpose, it might be useful to introduce a “super -
potential”χ(x, t) such that

χ(x, t)
.
= −

∫
ρ0(x

′, t)|x− x′|d3x′; (1.90)

χ,jk = −δjkU + Ujk; (1.91)

∇2χ = −2U. (1.92)
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Similarly, we observe that the mixed components g0j of the metric tensor,
whose order is defined by Eq. (1.86), must be a linear combination of the
following potentials

Vj(x, t) =

∫
ρ0(x′,t)vj(x′,t)

|x−x′| d3x′, (1.93)

Wj(x, t) =

∫
ρ0(x′,t)[(x−x′)·v(x′,t)](xj−x′

j)

|x−x′|3 d3x′, (1.94)

and in this case we have
χ,0j = Vj −Wj. (1.95)

Finally, for the g00 component of the metric tensor, whose order is defined
by Eq. (1.85), constraint 7 allows us to make a selection among all (many)
possible functionals that also satisfy the other conditions. Hence, g00 must
include a linear combination of the following potentials

A =

∫
ρ′0 [v

′ · (x− x′)]2

|x− x′|3
d3x′, (1.96)

B =

∫
ρ′0

|x− x′|
(x− x′) · dv

′

dt
d3x′, (1.97)

Φ1 =

∫
ρ′0v

′2

|x− x′|
d3x′, (1.98)

Φ2 =

∫
ρ′0U

′

|x− x′|
d3x′, (1.99)

Φ3 =

∫
ρ′0Π

′

|x− x′|
d3x′, (1.100)

Φ4 =

∫
p′

|x− x′|
d3x′, (1.101)

ΦW =

∫
ρ′0ρ

′′
0

x− x′

|x− x′|3
·
(
x′ − x′′

|x− x′′|
− x− x′′

|x′ − x′′|

)
d3x′d3x′′.(1.102)

Here we used the notation k′ = k (x′, t), for a given quantity k.
It is possible to demonstrate that the potentials that we have seen so far
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satisfy the properties listed below

∇2Vj = −4πρ0vj, Vj,j = −U,0 (1.103)

∇2Φ1 = −4πρ0v
2, (1.104)

∇2Φ2 = −4πρ0U, (1.105)

∇2Φ3 = −4πρ0Π, (1.106)

∇2Φ4 = −4πp, (1.107)

∇2
(
ΦW + 2U2 − 3Φ2

)
= 2χ,ijU,ij, (1.108)

χ,00 = A+ B − Φ1. (1.109)

Given the arbitrariness of the chosen coordinate system, we can introduce an
appropriate gauge transformation to simplify the metric components in the
PPN approximation. It is

xµ̄ = xµ + ξµ(xν), (1.110)

consequently
ḡµ̄ν̄ (x

ᾱ) = gµν (x
ᾱ)− ξµ;ν − ξν;µ. (1.111)

Anyway, this metric must satisfy Will’s conditions for the PPN formalism.
This implies that

• ξµ;ν + ξν;µ must be of the post-Newtonian order;

• ξµ;ν + ξν;µ → 0, at infinity;

• |ξµ|/|xµ| → 0, at infinity;

• ξµ;ν + ξν;µ must be constituted by simple functionals.

The superpotential χ introduced before is the functional that guarantees the
validity of these constraints, through its gradient. Therefore, we fix

ξ0 = λ1χ,0, ξj = λ2χ,j. (1.112)

Now, taking Eqs. (1.111) - (1.112) into account, and applying the properties
of the superpotential given by Eqs. (1.95) - (1.109), we get

ḡ0̄0̄ = g00 − 2λ2
(
U2 + ΦW − Φ2

)
− 2λ1 (A+ B − Φ1) , (1.113)

ḡ0̄j̄ = g0j − (λ1 + λ2) (Vj −Wj) , (1.114)

ḡj̄k̄ = gjk − 2λ2χ,jk. (1.115)
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Will then uses the so-called “standard post-Newtonian gauge”, in which the
spatial part of the metric is diagonal and isotropic, and the potential B
vanishes, to further simplify the result. Moreover, instead of the coefficients
λ1 and λ2, the author provides a parameter for each term that appears in the
expansion, for a total of ten PPN parameters (γ, β, ξ, α1, α2, α3, ζ1, ζ2, ζ3,
and ζ4.). Moreover, he combines them in such a way that each PPN acquires
a precise physical meaning (see Tab. 1.1). We thus definitively arrive at the
PPN approximation

g00 = −1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ) Φ1 +

+2 (3γ − 2β + 1 + ζ2 + ξ) Φ2 + 2 (1 + ζ3) Φ3 +

+2 (3γ + 3ζ4 − 2ξ) Φ4 − (ζ1 − 2ξ)A, (1.116)

g0j = −1

2
(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vj +

−1

2
(1 + α2 − ζ1 + 2ξ)Wj, (1.117)

gjk = (1 + 2γU) δjk. (1.118)

Parameter What it measures relative to GR
γ How much space-curvature produced by unit rest mass?
β How much “non - linearity”in the superposition law for gravity?
ξ Preferred - location effects?
α1 Preferred - frame effects?
α2

α3

α3 Violation of conservation of total momentum?
ζ1
ζ2
ζ3
ζ4

Table 1.1: Will’s table on PPN parameters and their physical meaning [42].

In the ERS formulation of the post-Newtonian approximation, the metric
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tensor components depend only on two parameters (γ, and β), as follows

g00 = −1 +
2M

r
− 2β

(
M

r

)2

, (1.119)

g0j = 0, (1.120)

gjk =

(
1 +

2γM

r

)
, (1.121)

where M is the Sun’s mass.
GR gives the same results in both formulations (WN and ERS); however,
the same may not be true, a priori, for extended and modified theories of
gravity.

1.2.3 Post-Newtonian stress-energy tensor

As already mentioned, Will and Nordtvedt’s PPN formalism is fluid-based.
A perfect fluid is characterized by the following stress-energy tensor

T µν = (ρ0 + ρ0Π+ p)uµuν + pgµν , (1.122)

where uµ = (u0,v) is the four-velocity of a fluid element.
We want to compute the post-Newtonian corrections of the stress-energy
tensor. First of all, we note that, similarly to the metric tensor, PPN ap-
proximation necessitates a knowledge of the T µν components at the following
orders of magnitude

T 00 up to ρ0O(ϵ
2), (1.123)

T 0j up to ρ0O(ϵ
3), (1.124)

T jk up to ρ0O(ϵ
4). (1.125)

Then, based on the orders of magnitude required for T µν and on Eqs. (1.116) -
(1.118), we determine the corrections of the u0 component of the four-velocity
up to the following order [43]

u0 = 1 +
1

2
v2 + U +O(ϵ4). (1.126)

Furthermore, since ui = viu0, we get

ui =

(
1 +

1

2
v2 + U

)
vi +O(ϵ4). (1.127)
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Therefore, by substituting Eqs. (1.126) - (1.127) into Eq. (1.122) and con-
sidering the metric tensor corrections up to the appropriate orders, we obtain
the PPN approximation of the stress-energy tensor

T 00 = ρ
(
1 + Π + v2 + 2U

)
, (1.128)

T oi = ρ

(
1 + Π + v2 + 2U +

p

ρ

)
vi, (1.129)

T ij = ρ

(
1 + Π + v2 + 2U +

p

ρ

)
vivj + pδij (1− 2γU) . (1.130)

1.3 PPN parameters in metric theories of grav-

ity

The value of the PPN parameters changes according to the theory under
investigation. For this reason, experiments that provide PPN parameters
can be used to test gravity theories: depending on the measured values, we
can determine which theoretical model best fits the observations.
How can the theoretical formulation of the PPN parameters be determined
in a unique way for each theory?
Again, Will [42] gives us a set of rules that we summarize here.

1. Establish the variables that characterize the theoretical model for which
the PPNs will be calculated: the dynamic geometric variables (e.g. the
metric gµν , a scalar field ϕ, a vector field Kµ, a tensor field Bµν), the
geometric background, matter, and non - gravitational field variables.

2. Fix cosmological boundary conditions and the asymptotic values of the
variables identified in the previous step. Generally, a homogeneous and
isotropic cosmological spacetime is considered. For example3

gµν → g(0)µν = diag(−c0, c1, c1, c1), (1.131)

ϕ→ ϕ0, (1.132)

Kµ → (K, 0, 0, 0), (1.133)

Bµν → B(0)
µν = diag(ω0, ω1, ω1, ω1). (1.134)

3Usually, the metric tensor is considered asymptotically Minkowskian, which means
that c0 = c1 = 1.
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3. Do the series expansion up to the post-Newtonian order of the variables
around their asymptotic value. For the dynamic geometric variables of
the previous step, this is equivalent to

gµν = g(0)µν + hµν , (1.135)

ϕ = ϕ0 + φ, (1.136)

Kµ = (K + k0, k1, k2, k3), (1.137)

Bµν = B(0)
µν + bµν , (1.138)

with

h00 ∼ O(ϵ2) +O(ϵ4), h0j ∼ O(ϵ3), hij ∼ O(ϵ2), (1.139)

φ ∼ O(ϵ2) +O(ϵ4), (1.140)

k0 ∼ O(ϵ2) +O(ϵ4), kj ∼ O(ϵ3), (1.141)

b00 ∼ O(ϵ2) +O(ϵ4), b0j ∼ O(ϵ3), bij ∼ O(ϵ2), (1.142)

4. Replace the expansions calculated in the step 3 and Eqs. (1.128) -
(1.130) for the stress-energy tensor into the field equations, assuming
the corrections always stops at the post-Newtonian order.

5. Find a solution for h00 up to O(ϵ2). It is possible to choose h00 → 0 at
infinity, so that

h00 = 2αU, (1.143)

where α is a function of the characteristic parameters of the theory.

6. Find a solution for hij up to O(ϵ2) and for h0j up to O(ϵ3). At this point,
if the theory under consideration has a gauge freedom, it is possible to
fix one that simplifies the equations.

7. Find a solution for h00 up to O(ϵ4).

8. Apply the standard PPN gauge.

9. Compare the series expansion of the metric tensor components just
obtained with the standard one of Will and Nordtvedt (see Eqs. (1.116)
- (1.118)).

Will uses the procedure outlined above to calculate PPN parameters for
numerous metric theories of gravity. In the following sections, we present his
results4.

4We refer to [42] for more details.
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1.3.1 Metric theories of gravity

Einstein’s Principle of Equivalence (EEP) is a milestone of the gravitational
theory. It can be divided into three parts [42, 44].

1. Universality of Free Fall (UFF) - or, equivalently, the Weak Equiva-
lence Principle (WEP): the trajectory of a freely falling test body is
independent of its internal structure and composition.

2. Local Lorentz Invariance (LLI): the result of any local non-gravitational
test experiment is independent of the (freely falling) apparatus’ velocity
and orientation.

3. Local Position Invariance (LPI): the result of any local non-gravitational
test experiment is independent of where and when it is performed.

The EEP is called Strong Equivalence Principle (SEP) if we include bodies
with self - gravitational interactions and experiments involving gravitational
forces. In other words, the EEP states that gravity is described by a metric
in curved spacetime; bodies follow the geodesics of the metric; and the (non-
gravitational) laws of physics are reduced to those of special relativity in any
local Lorentz frame.
All theories characterized by a metric and that satisfy the EPP are known
as “metric theories”. Moreover, from a purely mathematical point of view
[33], they are the simplest gravitational theories satisfying the criteria of

• self - consistency : propositions do not entail logical contradictions;

• completeness : all propositions can be demonstrated (or refuted);

• agreement with past experiments : the results of (earlier) performed
gravity tests are accurately replicated.

It is evident right away that GR is a metric theory. So, let us begin by
applying Will’s rules to GR to determine its PPN parameters. In this regard,
we consider the Einstein-Hilbert action

AGR =
1

16π

∫ √
−gRd4x+Am, (1.144)

with Am the matter action. It provides the field equations for GR

Rµν −
1

2
gµνR = 8πTµν , (1.145)
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through the variational principle. It is straightforward that the metric gµν is
the only variable in Eq. (1.144). Therefore, we have to choose the asymptotic
condition exclusively for gµν . Typically, we assume a metric to be asymptot-
ically Minkowskian

gµν → g(0)µν = diag(−1, 1, 1, 1). (1.146)

Further, it is possible to fix gauge conditions. The author sets

hµi,µ −
1

2
hµµ,i = 0, with i = 1, 2, 3, and hµα ≡ ηµβhβα, (1.147)

hµ0,µ −
1

2
hµµ,0 = −1

2
h00,0. (1.148)

Hence, solving order by order in perturbations, we finally arrive at

g00 = −1 + 2U − 2U2 + 4Φ1 + 4Φ2 + 2Φ3 + 6Φ4, (1.149)

g0j = −7

2
Vj −

1

2
Wj, (1.150)

gij = (1 + 2U) δij. (1.151)

By comparing these equations, term by term, with Eqs. (1.116) - (1.118), we
determine the PPN parameters for GR

γ = β = 1, (1.152)

ξ = α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0. (1.153)

Clearly, GR is not the only conceivable metric theory.
In general, metric theories are distinguished by the number and type of fields
(other than the metric) present, as well as how they evolve in space and time.
Consider a local reference frame (small enough to neglect the external inho-
mogeneities but large enough to incorporate a system of gravitating matter
and related gravitational forces). It follows that [35]

• a metric theory that is endowed only with a metric tensor gµν satisfies
all three statements of the EEP, even in strong form. This is because,
away from the local system, on the boundaries with the external one,
it is always feasible to construct a reference system in which gµν takes
the form of the Minkowski metric. An example is GR;
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• a metric theory with a metric tensor and a scalar field could violate the
LPI due to the scalar field’s dependency on the frame’s location;

• a metric theory that contains dynamic vector and tensor fields could
lead to a violation of both the LPI and the LLI.

As a result, we could use alternative metric theories to GR to verify possible
violations of some principles, such as SEP. By extension, they enable us
to describe physical phenomena that, without introducing new physics, we
would be unable to explain in the context of GR.
In the next sections, we will look at different metric theories of gravity and
how they are expressed in the PPN formalism.

1.3.2 Horndeski’s theory

The introduction of scalar fields in Einstein-Hilbert action to mediate grav-
ity was motivated by the need to explain cosmological observations like the
accelerated expansion of the universe and the homogeneity of the CMB.
Horndeski found the most general extension of GR that includes scalar fields
and involves field equations at most of the second order [45]. This theory is
described by the following action

AH =
5∑

i=2

∫
d4x

√
−gLi[gµν , ϕ] +Am, (1.154)

where the matter action is denoted by Am. The gravitational action depends
on two variables, the metric gµν and the scalar field ϕ. It is obtained from
the sum of four Lagrangians

L2 = K(ϕ,X), (1.155)

L3 = −G3(ϕ,X)2ϕ, (1.156)

L4 = G4(ϕ,X)R +G4X(ϕ,X)
[
(2ϕ)2 − (∇µ∇νϕ)

2] , (1.157)

L5 = G5(ϕ,X)Gµν∇µ∇νϕ− 1

6
G5X(ϕ,X)

[
−32ϕ (∇µ∇νϕ)

2 +(1.158)

+ (2ϕ)3 + 2 (∇µ∇νϕ)
3
]
.

Here, X = −1
2
∇µ∇µϕ is the kinetic term; K, G3, G4, and G5 are generic

functions of the scalar field and of the kinetic term; finally, Giϕ and GiX ,
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with i = 3, 4, 5, are the derivatives of the function Gi with respect to ϕ and
X respectively. Depending on the value these functions assume, we have
different theories of gravity.
We do not report all the calculations for determining the PPNs in the Horn-
deski’s model5; however we should remember that, in order to obtain the
post-Newtonian limit, a perturbative expansion of the field equations6 is
done around the asymptotic values of the gravitational variables (ηµν for the
metric tensor, and ϕ0 for the scalar field)

gµν = ηµν + hµν , ϕ = ϕ0 + ψ, (1.159)

and consequently,

X = −1

2
∇µψ∇µψ. (1.160)

In doing so, one must also consider Taylor’s expansions of the Horndeski
functions

K(ϕ,X) =
∞∑

m,n=0

K(m,n)ψ
mXn, (1.161)

with

K(m,n) =
1

m!n!

∂m+n

∂ϕm∂Xn
K(ϕ,X)

∣∣∣∣
ϕ=ϕ0,X=0

, (1.162)

and analogously for the Gi(ϕ,X) functions.
Furthermore, a gauge besides the standard one (as specified in Will’s rules,
step 8) can be set. In [45], the author chooses

hij,j −
1

2
hjj,i +

1

2
h00,i =

G4(1,0)

G4(0,0)

ψ,i, h0j,j +
1

2
hjj,0 =

G4(1,0)

G4(0,0)

ψ,0. (1.163)

Then, by applying all of Will’s rules, we obtain the following expressions for
the PPN parameters in Horndeski’s theory

γH =
ωH + 1

ωH + 2
, (1.164)

βH = 1 +
ωH + τ − 4σωH

4(ωH + 2)2(2ω + 3)
, (1.165)

α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = ξ = 0, (1.166)

5For this, we refer to [45].
6Horndeski’s field equations are entirely reported in the appendix of Ref. [46]



1.3. PPN PARAMETERS IN METRIC THEORIES OF GRAVITY 43

where

ωH =
G4(0,0)

2G2
4(1,0)

[
K(0,1) − 2G3(1,0)

]
, (1.167)

σ =
G4(0,0)G4(2,0)

G2
4(1,0)

, (1.168)

τ =
G2

4(0,0)

2G3
4(1,0)

[
K(1,1) − 4G3(2,0)

]
. (1.169)

Scalar Tensor theory

Scalar tensor theories have been introduced primarily as dark energy - free
cosmological models and in the investigation of unification schemes such as
strings. They can be treated as a limiting case of Hornedski’s, with a proper
choice of the characteristic functions. Specifically, if we select

X = −(∂ϕ)2

2
, (1.170)

K(ϕ,X) =
ω(ϕ)

ϕ
X + λ(ϕ)ϕ, (1.171)

G4(ϕ,X) =
ϕ

2
, (1.172)

G3(ϕ,X) = G5(ϕ,X) = 0, (1.173)

Eq. (1.154) becomes

AST =
1

16π

∫ [
ϕR− ϕ−1ω(ϕ)gµνϕ,µϕ,ν + 2ϕλ(ϕ)

]√
−gd4x+Am. (1.174)

Here, the metric gµν and the scalar field ϕ are two dynamic gravitational
variables; there are also two arbitrary functions of the scalar field, the cou-
pling function ω(ϕ) and the cosmological one7 λ(ϕ).
By varying with respect to gµν and ϕ, we get the following field equations,
respectively

Rµν −
1

2
gµνR− λ(ϕ)gµν = 8πϕ−1Tµν + ϕ−1 (ϕ;µν − gµν2gϕ) +

+ϕ−2ω(ϕ)

(
ϕ,µϕ,ν −

1

2
gµνϕ,λϕ

,λ

)
, (1.175)

7Will assumes λ(ϕ) = 0.
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2gϕ+
1

2
ϕ,µϕ

,µ d

dϕ
ln

(
ω(ϕ)

ϕ

)
+

1

2

ϕ

ω(ϕ)

[
R + 2

d

dϕ
(ϕλ(ϕ))

]
= 0. (1.176)

To achieve the post-Newtonian expansion, we must fix the asymptotic values
of the gravitational variables. We choose gµν asymptotically flat, while we
denote with ϕ0 the asymptotic value of ϕ, just like in Hornedski’s theory.
ϕ0 is related to the current value of G

Gtoday ≡ ϕ−1
0

(
4 + 2ω0

3 + 2ω0

)
= 1, ω0 = ω(ϕ0), (1.177)

in geometrized units. Eq. (1.177) suggests that if ϕ0 varied over time, this
could lead to a variation of G. With these considerations in mind, we imple-
ment the other Will’s rules to obtain the metric tensor corrections

g00 = −1 + 2U − 2 (1 + Λ)U2 + 4

(
3 + 2ω0

4 + 2ω0

)
Φ1 +

+4

(
1 + 2ω0

4 + 2ω0

− Λ

)
Φ2 + 2Φ3 + 6

(
1 + ω0

2 + ω0

)
Φ4, (1.178)

g0j = −1

2

(
10 + 7ω0

2 + ω0

)
Vj −

1

2
Wj, (1.179)

gij =

[
1 + 2

(
1 + ω0

2 + ω0

)]
, (1.180)

where

Λ =
ω′
0

(3 + 2ω0)2(4 + 2ω0)
, ω′

0 =
dω

dϕ

∣∣∣∣
ϕ0

. (1.181)

By applying the step 9, we finally get the PPN parameters for a scalar tensor
theory

γ =
1 + ω0

2 + ω0

, β = 1 + Λ, ξ = 0,

α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0, (1.182)

Brans-Dicke theory

Brans-Dicke theory is a particular scalar tensor theory with ω ≡ ωBD =
constant and λ(ϕ) = 0. Consequently, it can also be considered as a subclass
of the broader Horndeski model. In fact, if we choose

K(ϕ,X) =
ωBD

ϕ
X, G4(ϕ,X) =

ϕ

2
, G3(ϕ,X) = G5(ϕ,X) = 0 (1.183)
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we get, from Eq. (1.154), the Brans-Dicke action

A =
1

16π

∫ [
ϕR− ϕ−1ωBDg

µνϕ,µϕ,ν

]√
−gd4x+Am. (1.184)

While Horndeski and scalar tensor theories are among the most general ap-
proaches to generalize Einstein’s gravity, the Brans-Dicke model was initially
proposed to include the Mach principle within GR. Even though the model is
theoretically significant, it seems to fail within experimental considerations.
Besides experimental considerations, we work out, in this case, with Λ = 0,
having the PPN parameters as

γ = 1+ωBD

2+ωBD
, β = 1, ξ = 0,

α1 = α2 = α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0. (1.185)

f(R) theory

Extended theories of gravity are built up through effective Lagrangians and
can present higher-order terms in curvature invariants that could mimic the
exotic behavior of matter [47, 48, 49, 50, 51, 52, 53]. In principle, they are
extensions of Einstein’s theory where GR is a particular case or it is recovered
as soon as higher-order terms reduce to R. Here we consider a straightforward
extension which is f(R) gravity in the metric formalism [47, 54]. This theory
might be considered as a limiting case of the Horndeski’s model as well. It
is easy to show that by taking

ϕ = ∂Rf(R), (1.186)

K = −1

2
(ϕR− f(R)), (1.187)

G4(ϕ,X) =
ϕ

2
, (1.188)

G3(ϕ,X) = G5(ϕ,X) = 0, (1.189)

we get, from Eq. (1.154), the f(R) action

Af(R) =

∫
d4x

√
−gf(R) +Am, (1.190)

where f(R) is a generic function of the curvature scalar R, g is the determi-
nant of the metric tensor and Am is the action of standard matter minimally
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coupled to gravity.
Varying with respect to the metric implies the following fourth-order field
equations [55, 56]

Gµν =
1

fR(R)

{
1

2
gµν

[
f(R)−RfR(R)

]
+ fR(R);µν − gµν2fR(R)

}
+

T
(m)
µν

fR(R)
,

(1.191)

where T
(m)
µν is the stress-energy tensor of ordinary matter. The right hand

side of (1.191) can be regarded as an effective stress-energy tensor T
(eff)
µν ,

given by the sum of T
(m)
µν and a curvature fluid energy-momentum tensor

T
(curv)
µν , sourcing the effective Einstein equations8.

However, one of the simplest techniques for obtaining PPN parameters in
metric theory f(R) is to avoid perturbing these equations and instead to
apply the analogy to scalar-tensor theories via conformal transformations.
[42, 57]. Indeed, the two different approaches, i.e. the standard one in Ref.
[42] and the alternative in Ref. [57], appear equivalent. Thus, following this
approach, one reaches the advantage of avoiding complicated manipulations,
by means of conformal transformations only.
Particularly, one can start with the following action

A =

∫ [
ϕR− ϕ−1ω(ϕ)gµνϕ;µϕ;ν − ϕ2V (ϕ)

]√
−gdx4 +Am, (1.192)

A =

∫ [
ϕR− ϕ−1ω(ϕ)gµνϕ;µϕ;ν − ϕ2V (ϕ)

]√
−gdx4 +Am, (1.193)

where ϕ is the scalar field, ω(ϕ) the coupling function, V (ϕ) the scalar po-
tential and Am the matter action. It is analogous to the scalar field action

A =

∫ [
F (ϕ̃)R +

1

2
gµνϕ̃;µϕ̃;ν − V (ϕ̃)

]√
−gdx4 +Am, (1.194)

if we perform the following transformation

ϕ = F (ϕ̃), (1.195)

ω(ϕ) = − F (ϕ̃)

2F ′2(ϕ̃)
. (1.196)

8This interpretation is based on the fact that further degrees of freedom coming from
higher-order gravity can be recast as an effective perfect fluid which reduces to the standard
energy-matter one as soon as GR is recovered. For a rigorous demonstration, see [58, 59].
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Once clarified this point, from now on we indicate with ϕ the scalar field
for both the two formalisms. It is straightforward to obtain the following
equations for the PPN parameters

γW =
1 + ω

2 + ω
, (1.197)

βW = 1 +
λ

(4 + 2ω)
, (1.198)

where ω = ω(ϕ) and

λ =
ϕdω/dϕ

(3 + 2ω)(4 + 2ω)
. (1.199)

Instead, using the second Lagrangian, we have

γCT = − F ′2(ϕ)

F (ϕ) + 2F ′2(ϕ)
+ 1, (1.200)

βCT =
1

4

F (ϕ)F ′(ϕ)

(2F (ϕ) + 3F ′2(ϕ))

dγCT

dϕ
+ 1. (1.201)

To verify that these PPN parameters are the same, let us go into the Ein-
stein frame, where matter is coupled to geometry through a function (called
“coupling function”)9 A(ψ). Let us define the following function

α(ψ) =
d lnA(ψ)

dψ
, (1.202)

establishing a measure of the coupling in the Einstein frame between the
scalar field and matter as an effect of the conformal transformation.
PPN parameters can be written in terms of α as

γCT = − 2α2

(1 + α2)2
+ 1 =

1− α2

1 + α2
, (1.203)

βCT =
1

2

α2

(1 + α2)2
dα

dψ
+ 1, (1.204)

where α = α(ψ).
On the other hand, it is possible to only define the conformal transformations

9In the Einstein frame we denote the scalar field with ψ to distinguish it from the
Jordan frame.
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between the Jordan frame and the Einstein frame by

ϕ = A(ψ)−2, (1.205)

3 + 2ω(ϕ) = α(ψ)−1. (1.206)

By substituting Eq. (1.206) into Eq. (1.197) we get

γW =
1 + ω

2 + ω
=

1
2α2 − 3

2
+ 1

1
2α2 − 3

2
+ 2

=
1− α2

1 + α2
, (1.207)

where ω = ω(ϕ) and α = α(ψ). Therefore, γW ≡ γCT . To calculate βW , let
us start by replacing Eq. (1.206) into Eq. (1.198), obtaining

βW =
α6

(1 + α2)2
ϕ
dω

dϕ
+ 1. (1.208)

But, observing that, from Eq. (1.205), we have

dψ

dϕ
= −A(ψ)

3

2

(
dA(ψ)

dψ

)−1

, (1.209)

and that we can rewrite Eq. (1.202) as

α(ψ) =
1

A(ψ)

dA(ψ)

dψ
, (1.210)

we get

dω(ϕ)

dϕ
=

d

dϕ

(
1

2α(ψ)2
− 3

2

)
=

1

2

dψ

dϕ

d

dψ

(
α(ψ)−2

)
=

=
A(ψ)3

2α(ψ)3
dα(ψ)

dψ

(
dA(ψ)

dψ

)−1

. (1.211)

Thus

ϕ
dω(ϕ)

dϕ
=

1

2α(ψ)3
A(ψ)

(
dA(ψ)

dψ

)−1
dα(ψ)

dψ
=

1

2α(ψ)4
dα(ψ)

dψ
, (1.212)

and

βW =
α6

(1 + α2)2
ϕ
dω

dϕ
+ 1 =

1

2

α2

(1 + α2)2
dα

dψ
(1.213)
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which coincides with βCT .
Finally, a further transformation to rewrite the PPN parameters of Eqs.
(1.200) - (1.201) in terms of df(R)/dR gives us

γ − 1 = − f ′′(R)2

f ′(R) + 2f ′′(R)2
, (1.214)

β − 1 =
1

4

f ′(R)f ′′(R)

2f ′(R) + 3f ′′(R)2
dγ

dR
, (1.215)

and with all the other PPN parameters fix to zero.
These are the expressions for the PPN parameters in metric f(R) theory
[57, 60].

1.3.3 Vector Tensor theory

One of the main goals of modern physics is to unify all nature’s forces into a
single scheme. The Standard Model Extension (SME) is a field theory that
combines the Standard Model (SM) of particle physics and GR. The spon-
taneous Lorentz symmetry breaking is a key aspect of the SME. The vector
tensor theories were developed to explain how the LLI could be violated in
the gravitational scenario.
A general vector tensor theory can be described by the following action

AVT =
1

16π

∫
[R + ωKµK

µR + ηKµKνRµν − ϵFµνF
µν + (1.216)

+τKµ;νK
µ;ν ]

√
−gd4 +Am,

with
Fµν = Kν;µ −Kµ;ν , (1.217)

and Am the matter action, as always. Here, we have two gravitational vari-
ables, the metric gµν and the dynamical (time-like) vector field Kµ. Fur-
thermore, ω, η, ϵ, and τ are arbitrary parameters; while K is a cosmological
parameter.
The field equations, obtained through the variational principle, are

Rµν −
1

2
gµνR + ωΘ(ω)

µν + ϵΘ(ϵ)
µν + ηΘ(η)

µν + τΘ(τ)
µν = 8πTµν , (1.218)

ϵF µν
;ν +

1

2
τKµ;ν

;ν − 1

2
ωKµR− 1

2
ηKνRµ

ν = 0, (1.219)
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where

Θ(ω)
µν = KµKνR +K2Rµν −

1

2
gµνK

2R− (K2);µν + gµν2gK
2,(1.220)

Θ(ϵ)
µν = −2(Fα

µ Fνα)−
1

4
gµν(FαβF

αβ), (1.221)

Θ(η)
µν = 2KαK(µRν)α − 1

2
gµνK

αKβRαβ − (KαK(µ);ν)α + (1.222)

+
1

2
2g(KµKν) +

1

2
gµν(K

αKβ);αβ,

Θ(τ)
µν = Kµ;αK

;α
ν +Kα;µK

α
;ν −

1

2
gµνKα;βK

α;β + (1.223)

+(KαK(µ;ν) −Kα
;(µKν) −K(µK

;α
ν );α,

and

K2 = KµK
µ. (1.224)

Despite the complexity of Eq. (1.218), the stress-energy conservation can
be verified. However, by taking the divergence of Eq. (1.219), we get the
restriction

τKµ;ν
;νµ − (ωKµR + ηKνRµ

ν );µ = 0, (1.225)

which tells us that the vector field solution is constrained. This is attributable
to the fact that the action is not invariant under the transformation

Kµ → Kµ + λ,µ, (1.226)

with λ scalar function.
Taking these constraints into account, we follow Will’s procedure for calcu-
lating the PPN parameters. Specifically, we first adapt Eqs. (1.135) - (1.137)
from step 3 to this case

gµν = ηµν + hµν , Kµ = Kδ0µ + kµ. (1.227)

As in the theories analyzed above, Minkowski’s metric is the asymptotic
value for gµν ; whereas, for the vector field Kµ, we denote this value with
Kδ0µ, where K can vary on cosmological time scales.
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Within the limitations of an action that is not fully gauge invariant, we
choose10

hαν,ν − 1

2
h,α = 0. (1.228)

Then, as is usual, we perturbatively solve field equations up to the post-
Newtonian order to derive the PPN parameters for the vector tensor theory

γ =
1 +K2[ω − 2ω(2ω + η − τ)/(2ϵ− τ)]

1−K2[ω + 8ω2/(2ϵ− τ)]
, (1.229)

β =
1

4
(3 + γ) +

1

2
σ[1 + γ(γ − 2)/G], (1.230)

ξ = 0, (1.231)

α1 = 4(1− γ)[1− (2ϵ− τ)∆] + 4ωK2∆a, (1.232)

α2 = 3(1− γ)

[
1− 2

3
(2ϵ− τ)∆

]
+ 2ωK2∆a− 1

2
bK2/G, (1.233)

α3 = ζ1 = ζ2 = ζ3 = ζ4 = 0. (1.234)

Here

σ =
(1− ωK2)(2ω − η + 2ϵ)

(1− ωK2)(2ϵ− τ)− 8ω2K2
, (1.235)

∆ =

{
(2ϵ− τ)[1−K2(ω + η − τ)] +

1

2
(η − τ)2K2

}−1

, (1.236)

a = (2ϵ− τ)(3γ − 1)− 2(η − τ)(2γ − 1), (1.237)

b =


(2ω + η − τ)[(2γ − 1)(γ + 1) + σ(γ − 2)],

−(2γ − 1)2(2ω + η)[1− τ−1(2ω + η)], if τ ̸= 0,

0, if τ = 0,

(1.238)

and G is related to the present value of the gravitational constant

Gtoday ≡ G

[
1

2
(γ + 1) +

3

2
ωK2(γ − 1)− 1

2
(η − τ)K2(1 + σ)

]−1

= 1(1.239)

in geometrized units.

10Again, we use ηµν to lower and raise the indices of the corrective terms hµν and kµ.
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1.3.4 Final remarks

Each PPN parameter has a specific meaning (see Tab. 1.1 in Sec. 1.2.2).
By examining the values of a theory’s PPN parameters, we may determine
both its physical properties and whether or not it deviates from GR (which
is characterized by γ = β = 1, with all the others equal to zero).
In particular, α1, α2, and α3 show the presence of preferred - frame effects.
As a result, if at least one of these αi is non-zero, the theory is a preferred -
frame theory. Rather, the parameters ζ1, ζ2, ζ3, ζ4, and α3 indicate possible
violations of total momentum conservation. The theory is conservative if all
of these parameters are null. If there are five free PPN parameters (γ, β, ξ,
α1, α2), conservative theories are classified as semi - conservative; if there are
three free PPN parameters (γ, β, ξ), they are classified as fully conservative.
Based on these considerations, we can conclude that GR and scalar tensor
theories are fully conservative and do not exhibit any preferred - frame effects
((αi = ζi = 0)). These theories hence satisfy the SEP and can be tested, for
example, to confirm its validity in the Solar System.
The same cannot be said a priori for vector tensor theories. They are semi-
conservative (α3 = ζi = 0) and can have preferred - frame effects since at
least one amongst α1 and α2 is different from zero. This suggests that we
might use vector tensor theories to detect SEP violations even in the Solar
System (albeit unlikely).
The experimental measurement of PPN parameters, for example, via LR
missions (see Sec. 4.1), would allow us to constrain some free parameters
of the theory under investigation and “fit”it to the weak field, specifically
the Solar System. However, in order to carry out a rigorous and complete
test of the theoretical model, further constraints must be imposed using the
strong field conditions. But, as we will show in the next sections, this is not
achievable using the post-Newtonian approximation.

1.4 Equations of motion in the PPN formal-

ism

We have seen that the final step in determining the PPN parameters of
a theory is to compare the perturbative expansion of its metric tensor to
the standard one of the WN formalism by equating the coefficients of equal
potentials. However, it is possible that the metric tensor expansion of the new
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theory has more potentials than those of the WN formalism. This occurs,
for example, in the f(R) theory but, in this case, the PPN parameters were
computed using the analogy with the scalar tensor theory. Other theoretical
models, such as f(R) theory in Palatini formalism, cannot be treated in the
same way [41]. Hence, what are our possible alternatives? Since we do not
know how to deal with these new potentials, we proceed to the equations of
motion calculation in the PPN formalism, as we did previously for the field
equations.
Let us consider a system consisting of massive bodies. From now on, we
denote with the subscript a all the quantities relating to the ath body.
The starting point is the conservation of the rest - mass (or baryon number)
density11

(ρ0u
α);α = (1−

√
−g)(1−

√
−gρ0uα),α = 0. (1.240)

If we define a new density ρ∗ (called “conserved density”), we can reformulate
Eq. (1.240) as the continuity equation

ρ∗ ≡ ρ0
(
1 + 1

2
v2 + 3γU

)
=

= ρ0u
0
√
−g +O(ρ0ϵ

4). (1.241)

Now we can introduce the inertial mass of the body

ma
.
=

∫
a

ρ∗
(
1 +

1

2
v̄2 − 1

2
U +Π

)
d3x, (1.242)

where

v̄ ≡ v − va(0), va(0) ≡
∫
a

ρ∗vd3x, (1.243)

and, consequently, the center of inertial mass

xa
.
=

1

ma

∫
a

ρ∗
(
1 +

1

2
v̄2 − 1

2
U +Π

)
xd3x. (1.244)

This last equation enables us to determine the body’s velocity and acceler-
ation. Specifically, using Eq. (1.241) and the conservation of local stress-
energy

T µν
;ν = 0, (1.245)

11Remember that it is constituted by a perfect fluid in the WN formalism.
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we get

va ≡
xa

dt
=

1

ma

∫
a

[
ρ∗
(
1 +

1

2
v̄2 − 1

2
U +Π

)
v + pv̄ − 1

2
ρ∗W̄

]
d3x,(1.246)

with

W̄j =

∫
a

ρ′
v̄′ · (x− x′)(xj − x′j)

|x− x′|3
d3x′. (1.247)

Therefore

aa ≡
va

dt
=

1

ma

{∫
a

ρ∗
(
1 +

1

2
v̄2 − 1

2
U +Π

)(
dv

dt

)
d3x+

vja

∫
a

pjv̄d
3x+

∫
a

[p,0v̄ − (p/ρ∗)∇p]d3x+

−1

2

(
d

dt

)∫
a

ρ∗W̄d3x+
1

2
Ta −

1

2
T ∗
a + Pa

}
. (1.248)

The last three terms

T j
a =

∫
a

ρ∗ρ∗
′
v̄′jv̄′(x− x′)

|x− x′|3
d3xd3x′, (1.249)

T ∗j
a =

∫
a

ρ∗ρ∗
′
v̄jv̄′(x− x′)

|x− x′|3
d3xd3x′, (1.250)

Pj
a =

∫
a

ρ∗ρ′(x− x′)j

|x− x′|3
d3xd3x′ (1.251)

depend only by the internal structure of the ath body.
To obtain the final expression of acceleration, we must solve the integrals in
Eq. (1.248). We can make some simplifications. In the Solar System, internal
structure variations of the Sun and planets occur in time scales significantly
longer than their orbital periods. As a result, we can set equal to zero
the total time derivatives of those terms that depend only on the internal
structure of the body. Furthermore, by using the PPN approximations of the
stress-energy tensor, Eqs. (1.128) - (1.130), we can derive the post-Newtonian



1.4. EQUATIONS OF MOTION IN THE PPN FORMALISM 55

Euler equation from Eq. (1.245)

ρ∗
dvj

dt
= ρ∗U,j − [p(1 + 3γU)],j + p,j

(
1

2
v2 +Π+

p

ρ∗

)
+

−ρ∗ d
dt

[
(2γ + 2)Uvj − 1

2
(4γ + 4 + α1)V

j − 1

2
α1Uw

j

]
+

vj(ρ∗U,0 − p,0)−
1

2
(1 + α2 + ζ1 + 2ξ)ρ∗(V j −W j),0 +

−1

2
ρ∗[(4γ + 4 + α1)v

k + (α1 − 2α3)w
k]Vk,j +

+ρ∗
∂

∂xj

[
Φ− ξΦW − 1

2
(ζ1 − 2ξ)A− 1

2
α2w

iwkUik +

+α2w
k(Vk −Wk)

]
+

+ρ∗U,j

[
γv2 − 1

2
α1w · v +

1

2
(α2 + α3 − α1)w

2 +

−(2β − 2)U +
3γp

ρ∗

]
, (1.252)

where w is the relative velocity between two different frames, and

Φ =
1

2
(2γ + 2 + α3 + ζ1 − 2ξ)Φ1 + (3γ − 2β + 1 + ζ2 + ξ)Φ2 +

+(1 + ζ3)Φ3 + (3γ + 3ζ4 − 2ξ)Φ4. (1.253)

Therefore, applying the appropriate simplifications and considering Eq. (1.252),
we have the equations of motion for a body of mass ma

aa = aa,self + aa,Newt + aa,nbody, (1.254)
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with

aja,self = − 1

ma

[1
2
(α3 + ζ1) t

j
a + ζ1

(
T j
a − 3

2
T ∗∗j
a

)
+

+ζ2Ω
j
a + ζ3E j

a + 3ζ4Pj
a

]
− α3

ma

(w + va)
kHkj

a , (1.255)

aja,Newt =
(mP )

jk
a

ma

U,k, (1.256)

aja,nbody =
∑
b ̸=a

mbx
j
ab

r3ab

{
(2γ + 2β)

mb

rab
+
(
2γ + 2β + 1 +

α1

2
− ζ2

) ma

rab
+

+(2β − 1− 2ξ − ζ2)
∑
c ̸=ab

mc

rbc
+ (2γ + 2β − 2ξ)

∑
c ̸=ab

mc

rac
− 1

2
(1 +

+2ξ + α2 − ζ1)
∑
c ̸=ab

mc
xab · xbc

r3bc
− ξ

∑
c ̸=ab

mc
xbc · xac

r3ac
− γv2a +

+
1

2
(4γ + 4 + α1)va · vb −

1

2
(2γ + 2 + α2 + α3) v

2
b +

1

2
(α1 − α2 +

−α3)w
2 +

1

2
α1w · va +

3

2
α2 (w · n̂ab)

2 +
1

2
(α1 − 2α2 +

−2α3)w · vb +
3

2
(1 + α2) (vb · n̂ab)

2 + 3α2 (w · n̂ab) (vb · n̂ab)
}
+

−1

2
(4γ + 3− 2ξ + α1 − α2 + ζ1)

∑
b̸=a

mb

rab

∑
c ̸=ab

mcx
j
bc

r3bc
+

−ξ
∑
b̸=a

mb

r3ab
(δjk − 3n̂j

abn̂
k
ab)
∑
c ̸=ba

mc

(
xkac
rac

− xkbc
rbc

)
+

+
∑
b ̸=a

mb

r3ab
xab · [(2γ + 2)va − (2γ + 1)vb] v

j
a +

−1

2

∑
b ̸=a

mb

r3ab
xab · [(4γ + 4 + α1)va − (4γ + 2 + α1 − 2α2)vb + 2α2w] vjb +

−1

2

∑
b ̸=a

mb

r3ab
xab · [α1va − (α1 − 2α2)vb + 2α2w]wj. (1.257)
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Here

xab = xa − xb, (1.258)

n̂ab =
xab

rab
, (1.259)

rab = |xab|, (1.260)

tja =

∫
a

ρ∗ρ∗
′
v̄′2(x− x′)j

|x− x′|3
d3xd3x′, (1.261)

T j∗∗
a =

∫
a

ρ∗ρ∗
′
[v̄′ · (x− x′)]2 (x− x′)j

|x− x′|5
d3xd3x′, (1.262)

Ωj
a =

∫
a

ρ∗ρ∗
′
ρ∗

′′
(x− x′)j

|x′ − x′′||x− x′|3
d3xd3x′d3x′′, (1.263)

E j
a =

∫
a

ρ∗ρ∗
′
Π′(x− x′)j

|x− x′|3
d3xd3x′, (1.264)

Hkj
a =

∫
a

ρ∗ρ∗
′
v̄′k(x− x′)j

|x− x′|3
d3xd3x′, (1.265)

Qij
a =

∫
b

ρ
(
3x̄ix̄j − |x̄|2δij

)
d3x. (1.266)

The first six terms in Eq. (1.255), involving terms such as tja, T j
a and so on,

depend only on the internal structure of the athmassive body and thus repre-
sent “self-accelerations”of the body’s center of mass. Such self-accelerations
are associated with breakdowns in conservation of total momentum, since
they depend on the PPN conservation-law parameters α3, ζ1, ζ2, ζ3 and ζ4.
In any semiconservative theory of gravity α1 = ζ1 = ζ2 = ζ3 = ζ4 = 0 and
these self-accelerations are absent. Also note that spherically symmetric bod-
ies suffer no acceleration regardless of the theory of gravity, since for them
the terms tja, T j

a , T ∗∗j
a , Ωj

a, E j
a and Pj

a are identically zero. The same is true
for a composite massive body made up of two bodies in a nearly circular
orbit, when the self-acceleration is averaged over an orbital period. Thus,
there is little hope of testing the existence of these terms in the Solar Sys-
tem. The next term in Eq. (1.255), −m−1

a α3(w+va)H
kj
a is a self acceleration

which involves the massive body’s motion relative to the universe rest frame.
It depends on the conservation-law/preferred-frame parameter α3, which is
zero in any semiconservative theory of gravity.
The next term, Eq. (1.256) is the quasi-Newtonian acceleration of the mas-
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sive body. Here (mP )
jk
a is the “passive gravitational mass tensor”given by

(mP )
jk
a = ma

{
δjk
[
1 + (4β − γ − 3− 3ξ − α1 + α2 − ζ1)

Ωa

ma

+

−3ξn̂l
abn̂

m
ab

Ωlm
a

ma

]
+ (2ξ − α2 + ζ1 − ζ2)

Ωjk
a

ma

}
(1.267)

where

Ωa = −1

2

∫
a

ρ∗ρ∗
′

|x− x′|
d3xd3x′. (1.268)

Furthermore, U(xa) is the quasi-Newtonian potential, given by

U(xa) =
∑
b̸=a

[mA(n̂ab)]b
rab

, (1.269)

where [mA(n̂ab)]b is the “active gravitational mass”of the bth body, given by

[mA(n̂ab)]b = mb

{
1 +

(
4β − γ − 3− 3ξ − α3

2
− ζ1

2
− 2ζ2

)
Ωb

mb

+

+ζ3
Eb

mb

(
3

2
α3 + ζ1 − 3ζ4

)
Pb

mb

+

+
1

2
(ζ1 − 2ξ)n̂j

abn̂
k
ab

Ωjk
b

mb

}
, (1.270)

with

Pa =

∫
a

pd3x, Eb =

∫
a

ρ∗Πd3x. (1.271)

In Newtonian theory, the active gravitational mass, the passive gravitational
mass and the inertial mass are the same, hence each massive body’s accelera-
tion is independent of its mass or structure12. However, passive gravitational
mass could not be exactly equal to inertial mass in a given metric theory of
gravity; their difference depends on the PPN parameters and on the gravita-
tional self energy (Ω and Ωjk) of the body. This is interpreted as some sort of
gravitational Weak Equivalence Principle breakdown, baptized “Nordtvedt
effect”.
The remaining term, Eq. (1.257), is called the n-body term. It contains

12Clearly this is the “Equivalence Principle”.
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the post-Newtonian corrections to the Newtonian equations of motion which
would result from treating each body as a “point mass”moving along a
geodesic of the PPN metric produced by all the other bodies, assumed to
be point masses, taking account of certain post-Newtonian terms generated
by the gravitational field of the body itself. It is the n-body acceleration
which produces the “classical”perihelion shift of the planets, as well as a
host of other effects. Let us now focus in detail what we expect for the
classes of scalar tensor theories that extend GR, analyzed in Sec. 1.3. We
will replace the PPNs of these theories into the just-determined Eqs. (1.255)
- (1.257). In this way, we get the equations of motion for a body of mass ma

in every theoretical model.

Horndeski’s theory

aja,self = 0, (1.272)

aja,Newt =
(mP )

jk
a

ma

U,k, (1.273)

aja,nbody =
∑
b ̸=a

mbx
j
ab

r3ab

{
2

(
3 + 2ωH

2 + ωH

+
ωH + τ − 4σωH

4(ωH + 2)2(2ω + 3)

)
mb

rab
+

(
7 + 4ωH

2 + ωH

+

+
ωH + τ − 4σωH

2(ωH + 2)2(2ω + 3)

)
ma

rab
+

(
1 + ωH + τ − 4σωH

2(ωH + 2)2(2ω + 3)
+ 1

)∑
c ̸=ab

mc

rbc
+

+2

(
3 + 2ωH

2 + ωH

+
ωH + τ − 4σωH

4(ωH + 2)2(2ω + 3)

)∑
c ̸=ab

mc

rac
− 1

2

∑
c ̸=ab

mc
xab · xbc

r3bc
+

−1 + ωH

2 + ωH

v2a + 2

(
3 + 2ωH

2 + ωH

)
va · vb −

3 + 2ωH

2 + ωH

v2b +
3

2
(vb · n̂ab)

2
}
+

−1

2

(
10 + 7ωH

2 + ωH

)∑
b ̸=a

mb

rab

∑
c ̸=ab

mcx
j
bc

r3bc
+
∑
b ̸=a

mb

r3ab
xab ·

[
2

(
3 + 2ωH

2 + ωH

)
va +

−4 + 3ωH

2 + ωH

vb

]
(vja − vjb), (1.274)



1.4. EQUATIONS OF MOTION IN THE PPN FORMALISM 60

with

(mP )
jk
a = maδ

jk
[
1 +

(
ωH+τ−4σωH

(ωH+2)2(2ωH+3)
+ 1

2+ωH

)
Ωa

ma

]
, (1.275)

[mA(n̂ab)]b = mb

[
1 +

(
ωH+τ−4σωH

(ωH+2)2(2ωH+3)
+ 1

2+ωH

)
Ωb

mb

]
. (1.276)

Scalar tensor theory

aja,self = 0, (1.277)

aja,Newt =
(mP )

jk
a

ma

U,k, (1.278)

aja,nbody =
∑
b ̸=a

mbx
j
ab

r3ab

{
2

(
3 + 2ω

2 + ω
+ Λ

)
mb

rab
+

(
8 + 5ω

2 + ω
+ 2Λ

)
ma

rab
+

+(1 + 2Λ)
∑
c ̸=ab

mc

rbc
+ 2

(
3 + 2ω

2 + ω
+ Λ

)∑
c ̸=ab

mc

rac
+

−1

2

∑
c̸=ab

mc
xab · xbc

r3bc
− 1 + ω

2 + ω
v2a + 2

(
3 + 2ω

2 + ω

)
va · vb +

−3 + 2ω

2 + ω
v2b +

3

2
(vb · n̂ab)

2
}
− 1

2

(
10 + 7ω

2 + ω

)∑
b̸=a

mb

rab

∑
c̸=ab

mcx
j
bc

r3bc
+

+
∑
b ̸=a

mb

r3ab
xab ·

[
2

(
3 + 2ω

2 + ω

)
va −

4 + 3ω

2 + ω
vb

]
(vja − vjb), (1.279)

where

(mP )
jk
a = maδ

jk

[
1 +

(
1 + 4Λ− 1 + ω

2 + ω

)
Ωa

ma

]
, (1.280)

[mA(n̂ab)]b = mb

[
1 +

(
1 + 4Λ− 1 + ω

2 + ω

)
Ωb

mb

]
. (1.281)
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Brans-Dicke theory

aja,self = 0, (1.282)

aja,Newt =
(mP )

jk
a

ma

U,k, (1.283)

aja,nbody =
∑
b ̸=a

mbx
j
ab

r3ab

{
6 + 4ωBD

2 + ωBD

mb

rab
+

8 + 5ωBD

2 + ωBD

ma

rab
+
∑
c ̸=ab

mc

rbc
+

+
6 + 4ωBD

2 + ωBD

∑
c ̸=ab

mc

rac
− 1

2

∑
c ̸=ab

mc
xab · xbc

r3bc
− 1 + ωBD

2 + ωBD

v2a +

+
6 + 4ωBD

2 + ωBD

va · vb −
3 + 2ωBD

2 + ωBD

v2b +
3

2
(vb · n̂ab)

2

}
+

−1

2

(
10 + 7ωBD

2 + ωBD

)∑
b̸=a

mb

rab

∑
c̸=ab

mcx
j
bc

r3bc
+

+
∑
b̸=a

mb

r3ab
xab ·

[6 + 4ωBD

2 + ωBD

va +

−4 + 3ωBD

2 + ωBD

vb

]
(vja − vjb), (1.284)

with

(mP )
jk
a = maδ

jk

(
1 +

1

2 + ωBD

Ωa

ma

)
, (1.285)

[mA(n̂ab)]b = mb

(
1 +

1

2 + ωBD

Ωb

mb

)
. (1.286)
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f(R) theory

aja,self = 0, (1.287)

aja,Newt =
(mP )

jk
a

ma

U,k, (1.288)

aja,nbody =
∑
b ̸=a

mbx
j
ab

r3ab

{(
mb

rab
+
ma

rab
+
∑
c ̸=ab

mc

rac

)
×

×

(
120f ′′(R)6 + 16f ′(R)3 + 187f ′(R)f ′′(R)4 + 2

(
f (3)(R) + 48

)
f ′(R)2f ′′(R)2

2 (2f ′′(R)2 + f ′(R))2 (3f ′′(R)2 + 2f ′(R))

)
+

+
ma

rab
+

[
f ′(R)f ′′(R)2

(
2f (3)(R)f ′(R)− f ′′(R)2

)
2 (2f ′′(R)2 + f ′(R))2 (3f ′′(R)2 + 2f ′(R))

+ 1

]∑
c ̸=ab

mc

rbc
+

−1

2

∑
c ̸=ab

mc
xab · xbc

r3bc
−
(

f ′′(R)2

2f ′′(R)2 + f ′(R)
+ 1

)
v2a +

+

(
f ′′(R)2

2f ′′(R)2 + f ′(R)
+ 2

)(
2va · vb − v2b

)
+

3

2
(vb · n̂ab)

2

}
+

−1

2

(
9− 2f ′(R)

2f ′′(R)2 + f ′(R)

)∑
b ̸=a

mb

rab

∑
c ̸=ab

mcx
j
bc

r3bc
+ (vja − vjb)×

×
∑
b̸=a

mb

r3ab
xab ·

[
2

(
f ′′(R)2

2f ′′(R)2 + f ′(R)
+ 2

)
va +

−
(
4− f ′(R)

2f ′′(R)2 + f ′(R)

)
vb

]
, (1.289)

with

(mP )
jk
a = maδ

jk

[
1−

2f ′′(R)2
(
3f ′′(R)4 −

(
f (3)(R)− 1

)
f ′(R)2 + 4f ′(R)f ′′(R)2

)
(2f ′′(R)2 + f ′(R))2 (3f ′′(R)2 + 2f ′(R))

Ωa

ma

]
, (1.290)

[mA(n̂ab)]b = mb

[
1−

2f ′′(R)2
(
3f ′′(R)4 −

(
f (3)(R)− 1

)
f ′(R)2 + 4f ′(R)f ′′(R)2

)
(2f ′′(R)2 + f ′(R))2 (3f ′′(R)2 + 2f ′(R))

Ωb

mb

]
.(1.291)
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1.4.1 Final remarks

Fixing the free parameters through the equations of motion provides an alter-
native technique to test gravity theories in the weak field, without exploiting
the numerical values of the PPN parameters. Planetary Ephemeris Program
(PEP) is a software that allows us to evaluate the orbital motion of planets,
see Sec. 4.4. Our plan is to use PEP to enter the alternative theories equa-
tions of motion calculated above. However, this requires a revision of the
FORTRAN code used to write the software, which is currently set on GR.

1.5 The frame dragging

When Einstein began formulating his theory of GR, he attempted to incorpo-
rate Mach’s principle, which states that rotations and accelerations relative
to fixed and distant masses in the universe (“distant stars”) cause the ap-
pearance of inertial forces. For instance, a clock that co-rotates at a constant
distance around a spinning body will result forward in the starting point rel-
ative to a second clock at rest there; contrariwise, a counter-rotating clock
will be behind the other one in that same point [61]. Thus, a particle orbiting
a rotating body undergoes precession.
Numerous experiments conducted in the Solar System aim to quantify this
effect, even though it is minimal in the weak field. Today, the goal of new
space missions is to improve the accuracy of previous missions’ measurements
as well as to test the precession also in alternative theories of gravity. As is
usual, the theoretical framework is essential. In the case of the Solar System,
we employ PPN formalism to analyze the phenomenon.
Let xµ(τ) be the world line of a gyroscope orbiting a rotating body and let
uµ be its tangent (time-like) four-vector. We denote by Sµ the spin of the
gyroscope, which is a space-like four-vector defined at each point of the gyro-
scope’s world line. From these definitions, we immediately find that Sµuµ = 0
[62]. Along the curve, Sµ obeys to Fermi - Walker (FW) transport law [42]

uνSµ
;ν = uµ(aνSν), (1.292)

where aµ = uνuµ;ν is the gyroscope’s four-acceleration.
Let us observe that, if the word line is a geodesic, the acceleration is null and
the FW transport becomes the parallel transport.
To evaluate the variation in spin orientation, we introduce an orthonormal
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local frame at each point along the gyroscope’s trajectory

gαβe
α
µ̂e

β
ν̂ = ηµν . (1.293)

Here, µ̂, ν̂ = (0, 1, 2, 3) label the tetrad vectors; this indices are raised or
lowered through the Minkowski’s metric ηµν . By construction

eµ
0̂
= uµ. (1.294)

The spatial part of this vector base is non-rotating, therefore it is obtained
with a Lorentz boost plus a renormalization of the lengths, and does not
satisfy the FW law [33, 42, 62]

e0
ĵ
= vj +O(ϵ3), (1.295)

ek
ĵ
= (1− γU)δkj +

1

2
vjvk +O(ϵ4). (1.296)

Now, we will determine the components of the spin four-vector in this new
frame. It is straightforward to demonstrate that spin is a purely spatial
vector also in this new base; in fact,

S0̂ ≡ eµ
0̂
Sµ = uµSµ = 0. (1.297)

Instead, for the Sĵ components, we use Eq. (1.292) and the fact that eµ
ĵ
uµ =

0, obtaining
0 = eµ

ĵ
uνSµ;ν = uνSĵ;ν − Sµu

νeµ
ĵ;ν
. (1.298)

The first term is nothing but13

uνS;ν =
dSj

dτ
. (1.299)

To evaluate the second term in Eq. (1.298), we use Eqs.(1.295) - (1.296).
Specifically, from Eq.(1.295), we have

S0 = vjSĵ +O(ϵ3)Sj; (1.300)

while from Eq.(1.296)

Sk = (1− γU)Sk̂ +
1

2
vkvjSĵ +O(ϵ4)Sj. (1.301)

13u0 = dx0/dτ .
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Therefore, considering also the PPN expansion of the metric tensor (see Eqs.
(1.116) - (1.118)), Eq. (1.298) becomes

dSĵ

dτ
= Sk̂

[
v[jak] + g0[k,j] − (2γ + 1)v[jU,k]

]
, (1.302)

Equivalently, in vector form

dS

dτ
= Ω× S, (1.303)

where

Ω = −1

2
v × a− 1

2
∇× g +

(
γ +

1

2

)
v ×∇U, (1.304)

and
g ≡ gojeĵ. (1.305)

As shown in Eq. (1.304), Ω is the sum of three terms. The first

ΩTh = −1

2
v × a (1.306)

is the Thomas precession, which is particularly important in the fine structure
of the atomic spectrum. The last term

ΩdS =

(
γ +

1

2

)
v ×∇U (1.307)

is the de Sitter precession, which is caused by the gyroscope’s rotational
velocity relative to the static component of the gravitational field generated
by the central body. It was determined for the first time by de Sitter in 1916,
in the context of GR, who obtained 3

2
v ×∇U , which is perfectly consistent

with Eq. (1.307) when γ = 1.
Finally, the second term in Eq. (1.304) is the Lense-Thirring precession

ΩLT = −1

2
∇× g =

1

2

(α1

4
+ γ + 1

) 3(J · r̂)r̂− J

r3
. (1.308)

In GR, it becomes

ΩGR
LT = −1

2
∇× g =

3(J · r̂)r̂− J

r3
. (1.309)

Since in the previous sections we determined the PPN parameters for several
alternative metric theories of gravity, we can write the analytical expression
of the Lense-Thirring precession in each of these models.
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Horndeski’s theory

ΩH
LT =

(
3 + 2ωH

4 + 2ωH

)
3(J · r̂)r̂− J

r3
. (1.310)

Scalar tensor theory

ΩST
LT =

(
3 + 2ω

4 + 2ω

)
3(J · r̂)r̂− J

r3
. (1.311)

Brans-Dicke theory

ΩBD
LT =

(
3 + 2ωBD

4 + 2ωBD

)
3(J · r̂)r̂− J

r3
. (1.312)

f(R) theory

Ω
f(R)
LT =

[
2f ′(R) + 5f ′′(R)2

2f ′(R) + 4f ′′(R)2

]
3(J · r̂)r̂− J

r3
. (1.313)



Chapter 2

Astrophysical constraints of low
and high gravity tests

The adimensional quantity that allows us to easily distinguish the weak field
regime from the strong field one is1 ϵ

ϵ ∼ GM

Rc2
, (2.1)

where we reintroduced Newton’s gravitational constant G and the speed
of light c, while M and R are the mass and radius of the source of the
gravitational field, respectively. We know that ϵ2 ∼ 10−5 in the Solar System,
that is, in the weak field. This enables us to perform series expansions in the
variables U , v2, p/ρ, and Π; in other words, we may use the PPN formalism
to describe gravity. The same is not true in strong fields, where ϵ takes on
greater values; for example, ϵ ∼ 1 in the region of a non-rotating black hole,
and ϵ ∼ 0.2 for a neutron star. Therefore, it is clear that we cannot employ
post-Newtonian expansion to test a theory even in the strong field regime.
In this chapter, we present an alternative method for testing theories at both
low and high gravity domains: the red and blue shift measure. It is based on
local position invariance and precision test, along which red and blue shift
measures between two identical clocks, regardless the clock structures, plays a
crucial role in bounding how time intervals change in presence of gravity [63].
In practice, we evaluate the frequency modifications observed in the exchange

1Alternatively, we can evaluate the quantity GM/R3c2 ∼ ℓ−2, where ℓ is a scale length.
When ℓ coincides with the Planck length, the regime will be characterized by quantum
gravity effects. The strong field is that of Planck’s time.
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of a photon between two observers. This technique does not involve the field
equations but only the spacetime symmetries. In this section, we compute the
red and blue shift in the three distinct contexts of low, intermediate and high
gravity, by considering astrophysical and cosmological sources. Specifically,
we handle the binary system Earth-Mars as low energy landscape whereas
white dwarfs and neutron stars as higher energy sources. To this end, we
take into account a spherical Schwarzschild-de Sitter spacetime and an axially
symmetric Zipoy-Voorhees metric to model all the aforementioned systems.
By varying the free parameters that enter the two metrics, we got feasible red
and blue shift intervals and interpreted our expectations in view of current
experiments and limits.

2.1 The photon red and blue shift

First of all, let us analyze the general method used to determine the frequency
shift which occurs when a photon is emitted by a massive particle (e.g. a
planet or a star) and received by a distant observer. Here we follow the
mathematical procedure described in [64, 65].
We start with the simplest metric describing a rotating axially symmetric
spacetime (in spherical coordinates)

ds2 = gttdt
2 + 2gtφdtdφ+ gφφdφ

2 + grrdr
2 + gθθdθ

2, (2.2)

where gµν = gµν(r, θ), in the gauge grθ = 0. Let us now indicate with re and
rd the photon’s emitter and photon’s detector positions, respectively2, and so
uµp = (utp, u

r
p, u

θ
p, u

φ
p ) is the four-velocity of the photon’s emitter (when p = e)

or of the photon’s detector (when p = d). We should remark that d and e
do not have a priori the meaning of distance from the central mass which
generates the gravitational field. Rather, these positions are calculated with
respect to a suitable reference system, whose origin could coincide with the
object’s center of mass. Since the above relation refers to a massive object,
the following normalization condition holds

uµpup,µ = −1 , (2.3)

2From now on, to simplify the notation, we will denote these two positions with rp,
where the subscript p can be e or d depending on whether it refers to the emitter or the
detector respectively.
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which explicitly reads

[gtt(u
t)2 + grr(u

r)2 + gφφ(u
φ)2 + gθθ(u

θ)2 + gtφu
tuφ]

∣∣
r=rp

= −1 . (2.4)

Similarly, we indicate with kµ = (kt, kr, kθ, kφ) the four-velocity of the pho-
ton, albeit normalization condition is now

kµkµ = 0 , (2.5)

to explicitly give

gtt(k
t)2 + grr(k

r)2 + gφφ(k
φ)2 +

+gθθ(k
θ)2 + gtφk

tkφ = 0. (2.6)

Metric components are independent from the variables t and φ, therefore
there are two commuting Killing vector fields, respectively time-like and ro-
tational ones as follow

ξµ = (1, 0, 0, 0) , (2.7)

ψµ = (0, 0, 0, 1) . (2.8)

These two Killing fields imply the existence of two conserved quantities for
the massive particle

E
.
= −gµνξµuν = −gttut − gtφu

φ , (2.9)

L
.
= gµνψ

µuν = gφφu
φ + gtφu

t , (2.10)

that are the total energy, E, and angular momentum, L. We now evaluate
uφ and ut in function of the energy, E, and angular momentum, L, from Eqs.
(2.9) and (2.10), to give

uφ = −Egtφ + Lgtt
g2tφ − gφφgtt

, (2.11)

ut =
Egφφ + Lgtφ
g2tφ − gφφgtt

, (2.12)

and plugging the above expressions into Eq. (2.3), we get[
grr(u

r)2 + gθθ(u
θ)2 + 1− E2gφφ + L2gtt + 2ELgtφ

g2tφ − gφφgtt

]∣∣∣∣
r=rp

= 0. (2.13)
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Even though the four-vector components for velocity and momentum do not
vanish, rotating the polar coordinate system, the metric, Eq. (2.2), does
not change. Hence, this intrinsic symmetry implies that we can limit to the
equatorial plane, where θ = π/2, leading to uθ = kθ = 0.
Further, since we hereafter on circular orbits only, we even require ur = 0,
providing Eq. (2.13) becomes[

1− E2gφφ + L2gtt + 2ELgtφ
g2tφ − gφφgtt

]∣∣∣∣
r=rp

= 0, (2.14)

that reduces to
Veff(rp) = 0. (2.15)

The former is the energy conservation law, clearly valid for circular orbits.
In addition, these orbits require [65, 66]

V ′
eff(rp) = 0 , (2.16)

V ′′
eff(rp) ≥ 0 , (2.17)

guaranteeing orbit stability [67] and the existence of the potential minimum3.
Analogously, the two Killing fields, Eqs. (2.7) and (2.8), imply the existence
of two conserved quantities for the photon, the total energy Eγ and the
angular momentum Lγ

Eγ
.
= −gµνξµkν = −gttkt − gtφk

φ, (2.18)

Lγ
.
= gµνψ

µkν = gφφk
φ + gtφk

t. (2.19)

Now we have all the ingredients to determine the red and blue shift of the
emitted photon. Thus, the photon frequency at given point p is defined as
[36]

ωp = − (kµu
µ) |p. (2.20)

Since we consider time-like orbits that are both circular and equatorial, de-
pending on whether we use Eqs. (2.9)-(2.10) or Eqs. (2.18)-(2.19), we can
rewrite ωp in two ways, respectively

ωp =
(
Ekt − Lkφ

)
|p, (2.21)

ωp =
(
Eγu

t − Lγu
φ
)
|p. (2.22)

3For the sake of completeness, the equality only holds for spherical symmetry.



2.1. THE PHOTON RED AND BLUE SHIFT 71

In particular, the frequency of the photon at the emission point is

ωe = − (kµu
µ) |e =

=
(
Ekt − Lkφ

)
|e = (2.23)

=
(
Eγu

t − Lγu
φ
)
|e,

whereas the frequency of the photon at the detection point is

ωd = − (kµu
µ) |d =

=
(
Ekt − Lkφ

)
|d = (2.24)

=
(
Eγu

t − Lγu
φ
)
|d.

Thus, we define the frequency shift associated with the emission and detec-
tion of photons as

1 + z =
ωe

ωd

=
(Eγu

t − Lγu
φ) |e

(Eγut − Lγuφ) |d
=

=
(ut − buφ) |e
(ut − buφ) |d

, (2.25)

where4

b ≡ Lγ

Eγ

. (2.26)

It will also be convenient to introduce the redshift zc corresponding to a
photon emitted by a particle located at the center observed by a faraway
detector, i.e. b = 0

zc =
ute
utd

− 1, (2.27)

since astronomical data are generally collected in terms of the kinematic
redshift, defined as

zkin
.
= z − zc =

(ute u
φ
d − utdu

φ
e )b

utd(ut − buφ)d
=

=
(uteΩd − uφe )b

utd(1− Ωdb)
, (2.28)

4Let us observe here that b is the same both at the numerator and the denominator of
(2.25), since Eγ and Lγ are determined by the same photon path.
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where the angular velocity of a detector located far away from the photons
source

Ωd ≡
uφd
utd

(2.29)

has been introduced as well. Of course, b varies with the photon path. Then
a value of b as a function of the circular orbit of the emitting source (i.e.,
as a function of r) must be determined, in such a way that its absolute
value represents the observed radial distance on either side of the observed
center (b = 0) by a faraway observer. The idea is that frequency shifts
yielding maximum and minimum values correspond to photons emitted with
initial velocities collinear to the source velocity [68]. This amounts to require
kr = kθ = 0 at p = e, and therefore these photons paths, recalling (2.18),
(2.19), are such that

−Eγk
t
e + Lγk

φ
e = (kµ k

µ)e = 0, (2.30)

that gives, using (2.26), two possible solutions for the so called apparent
impact parameter b

b± = −
gtφ ±

√
g2tφ − gφφgtt

gtt
, (2.31)

depending on whether the photon is emitted by a receding, b−, or an ap-
proaching, b+, object with respect to a distant observer. Hence, the b− and
b+ solutions are related to the red and the blue shift once we substitute them
in Eq. (2.25), respectively

Red shift zred =
ute − b−u

φ
e

utd (1− b−Ωd)
− 1, (2.32)

Blue shift zblue =
ute − b+u

φ
e

utd (1− b+Ωd)
− 1. (2.33)

Finally, given b+ and b−, from Eq. (2.28), we get two possible zkin values,
namely z1 and z2

z1 =
(uteΩd − uφe )b−
utd(1− Ωdb−)

, (2.34)

z2 =
(uteΩd − uφe )b+
utd(1− Ωdb+)

, (2.35)
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that correspond to the cases in which the photon is emitted by a receding or
an approaching source, respectively5.

2.1.1 Non rotating spacetime

As special case, we limit to non rotating spacetimes, i.e. the ones for which
gtφ = 0. This will be the case of Schwarzschild-de Sitter and Zipoy-Voorhees
metrics that we analyze in the next sections. Thus, Eq. (2.2) simply reduces
to

ds2 = gttdt
2 + gφφdφ

2 + grrdr
2 + gθθdθ

2, (2.38)

with gauge condition, grθ = 0. Clearly, all the previous equations before
determined are accordingly simplified and so the conserved quantities asso-
ciated to the massive particles (observes) now become

E = −gttut, (2.39)

L = gφφu
φ, (2.40)

and so the velocities are ut = − E
gtt
, uφ = L

gφφ
, while the equation Veff(rp) = 0

for the effective potential becomes[
1 +

E2gφφ + L2gtt
gφφgtt

]∣∣∣∣
r=rp

= 0. (2.41)

Similarly, the conserved quantities associated to the photon are

Eγ = −gttkt, (2.42)

Lγ = gφφk
φ, (2.43)

from which kt = −Eγ

gtt
, kφ = Lγ

gφφ
, so that the apparent impact parameter

finally reads

b± = ∓
√
−gφφ
gtt

. (2.44)

5It is remarkable to underline the relation between zred, or zblue, and zkin. In particular,
from Eq. (2.28), it reads

zred = (zkin + zc)|b=b−
, (2.36)

zblue = (zkin + zc)|b=b+
. (2.37)
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The functional forms of z1 and z2 are identical to Eqs. (2.34) and (2.35) since
assuming gtφ = 0 modifies only the apparent impact parameters rather than
zkin. We here observe that b+ = −b−, implying z1 = −z2. With the above
recipe in our hand we are now in condition to handle spacetime symmetries to
model astrophysical landscapes. We therefore report below the two metrics
involved in our computation.

2.2 Spacetime solutions

As stated above, our purpose is to test gravity theories on different energy
domains, evaluating the red and blue shift of astrophysical and cosmological
objects. Thereby, we first handle the simplest axisymmetric spacetime based
on the Zipoy-Voorhees metric to model astrophysical objects, such as neutron
stars and white dwarfs. Afterwards, we switch to the spherical symmetry
based on the Schwarzschild-de Sitter metric. In such a case, differently of
the astrophysical case, we intend to work out cosmological scenarios and to
compute red and blue shifts by fixing the cosmological constant from Planck’s
measurements [18].
Clearly, these two regimes, based on two different spacetime symmetries, are
profoundly different from each other. The first is a regime of high gravity,
since it deals with neutron stars and white dwarfs. The second is purely
cosmological, involving infrared scales of energy. Below we first summarize
each metric formalism and then we argue bounds over the free coefficients.

2.2.1 The Zipoy-Voorhees metric

The strategy of getting red and blue shift is here applied to the Zipoy-
Voorhees metric [69]. The metric, in spherical coordinates, reads

ds2 = −Fdt2 + 1

F

[
Gdr2 +Hdθ2 + (r2 − 2kr) sin2 θdφ2

]
, (2.45)
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where

F =

(
1− 2k

r

)δ

, (2.46)

G =

(
r2 − 2kr

r2 − 2kr + k2 sin2 θ

)δ2−1

, (2.47)

H =
(r2 − 2kr)

δ2(
r2 − 2kr + k2 sin2 θ

)δ2−1
. (2.48)

Here, δ is a free parameter which can vary into three possible ranges

• δ > 1: tidal forces diverge at the singularity, particles are crushed;

• 1
2
< δ < 1: the singularity is mild, i.e. particles reach it with zero

velocity;

• δ < 1
2
: the singularity is repulsive, particles are ejected.

It is remarkable to notice the limiting case δ → 1 provides the Schwarzschild
metric, whereas δ → 1/2 could show likely critical effects. For example,
in Ref. [70] the authors worked out naked singularity configuration to get
regions of repulsive gravity, using eigenvalue method [71, 72] and showing
this interval as critical. However, we here focus on regular objects, such as
NS, WD and/or Solar System configurations, and so we do not expect any
critical region over δ and/or red or blue shifts, as we effectively get later.
Furthermore, k = m/δ is the ratio between the mass m of the gravitational
field and the δ parameter. As underlined before, we are limiting to the
equatorial plane, i.e., θ = π/2. The Zipoy-Voorhees metric describes a non
rotating spacetime (gtφ = 0), thus we can consider Eq. (2.41) that reads

1−
E2 (r2 − 2kr)

(
1− 2k

r

)−δ − L2
(
1− 2k

r

)δ
r2 − 2kr

∣∣∣∣∣
r=rp

= 0 (2.49)

Its derivative with respect to r gives the condition for circular orbits, say Eq.
(2.16)(

1− 2k
r

)−δ
[
2δkrE2(r − 2k) + 2L2(δk + k − r)

(
1− 2k

r

)2δ]
r2(r − 2k)2

∣∣∣∣∣∣
r=rp

= 0,

(2.50)
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with rp = re, rd, as before. Solving the system given by the two last relations,
we obtain the total energy and the angular momentum

E =

√(
1− 2k

r

)δ
(δk + k − r)

2δk + k − r

∣∣∣∣∣∣
r=rp

, (2.51)

L = ±

√
δkr(2k − r)

(
1− 2k

r

)−δ

2δk + k − r

∣∣∣∣∣∣
r=rp

. (2.52)

Consequently, we immediately get

ut
∣∣
r=rp

= −

√(
1− 2k

r

)−δ
(δk + k − r)

2δk + k − r

∣∣∣∣∣∣
r=rp

, (2.53)

uφ|r=rp
= ±

√
δk(2k − r)

(
1− 2k

r

)δ
r(k − r)2(2δk + k − r)

∣∣∣∣∣∣
r=rp

. (2.54)

Furthermore, from Eq. (2.44), we have

b± = ∓
√
r2 − 2kr(
1− 2k

r

)δ , (2.55)

Finally, substituting Eqs. (2.53) - (2.54) evaluated in r = rd into Eq. (2.29),
we get the angular velocity

Ωd± = ∓

√√√√ δk(2k − rd)
(
1− 2k

rd

)2δ
rd(k − rd)2(δk + k − rd)

, (2.56)

where Ωd+ and Ωd− are respectively referred to a co-rotating and to a counter-
rotating photons source with respect to the angular velocity of the gravita-
tional field source. In conclusion, substituting all these equations into Eqs.
(2.34) - (2.35), we get the expressions for z1 and z2 for the Zipoy-Voorhees
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metric

z1± = ±

{[
re(rd − 2k)

rd(re − 2k)

]δ[(
1− 2k

rd

)δ

√√√√(
1− 2k

re

)δ
(2k − re)2kδ

(k − re)2(re − k − 2kδ)
+

−

√√√√(1− 2k
re

)δ (
1− 2k

rd

)2δ
(rd − 2k)2(k − re + kδ)kδ

(rd − k)2(k − re + 2kδ)(rd − k − kδ)

]}
×

×

{√√√√(1− 2k
rd

)δ
(k − rd + kδ)

k − rd + 2kδ

[(
1− 2k

rd

)δ

+

±

√√√√(rd − 2k)2
(
1− 2k

rd

)2δ
kδ

(rd − k)2(rd − k − kδ)

]}−1

, (2.57)

z2± = ±

{[
re(rd − 2k)

rd(re − 2k)

]δ[
−
(
1− 2k

rd

)δ

√√√√(
1− 2k

re

)δ
(2k − re)2kδ

(k − re)2(re − k − 2kδ)
+

+

√√√√(1− 2k
re

)δ (
1− 2k

rd

)2δ
(rd − 2k)2(k − re + kδ)kδ

(rd − k)2(k − re + 2kδ)(rd − k − kδ)

]}
×

×

{√√√√(1− 2k
rd

)δ
(k − rd + kδ)

k − rd + 2kδ

[(
1− 2k

rd

)δ

+

∓

√√√√(rd − 2k)2
(
1− 2k

rd

)2δ
kδ

(rd − k)2(rd − k − kδ)

]}−1

, (2.58)

where the subscript ± is again referred to a co-rotating and counter-rotating
source with respect to the angular velocity of the gravitational field source.
Let us observe that z1 = −z2, in both the co-rotating and counter-rotating
cases, regardless of the mass that generates the gravitational field. Above
we put forward that the z1 and z2 variations can be expressed in terms of rd
for both a rotating and counter-rotating configurations. This would help to
argue the intervals of validity for the Zipoy-Voorhees free parameters when
this metric is applied to astrophysical situations.
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2.2.2 Gravitational field sources for the Zipoy-Voorhees
metric

We analyze the variation of z1 and z2 as function of the position of the
detector rd, in the co-rotating and in the counter-rotating configurations.
The analysis is based on different gravitational field sources

• a neutron star in the maximally - rotating configuration [73], corre-
sponding to a high gravity regime,

• a white dwarf in the maximally - rotating configuration [73], correspod-
ing to an intemediate gravity regime,

• Earth and Mars for the Solar System, corresponding to a low gravity
regime.

We report the plots 2.1, 2.3 and 2.5 in which we infer the availability intervals
for each term.
For the neutron star, the variation of z1 and z2 as function of rd depend
stronger on δ. For this reason, we choose three value of δ, one for each range,
Fig. 2.1

1. δ = 1000, i.e., where we take an arbitrary large value to address the
condition δ ≫ 1 ,

2. δ = 3
4
, as arbitrary close value to δ = 1, obtained as mean value of the

interval 1
2
< δ < 1,

3. δ = 1
4
, as arbitrary close value to δ = 0, obtained as mean value of the

interval 0 < δ < 1
2
.

However, for WDs, see Fig. 2.3, the increase or decrease of δ do not seem to
modify the overall evolution. The same happens for the binary configuration
constituted by the Earth and Mars: one can notice from Fig. 2.5 that they
very weakly depend upon δ variation. The above configuration is built up
assuming the Earth and Mars as distinct gravitational sources as separate
cases. For the sake of clearness, the δ variation is not so evident from the
plots since those variations are extremely small and not particularly visible.
The corresponding values have been evaluated for WDs, Earth and Mars,
noticing a slight difference that permits one to fix δ to portray the examples
we showed in the aforementioned figures. Even though not so evident from
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the plots, the above occurrence for which δ is as larger as one approaches
higher gravity regimes turns out to be clear even from a theoretical view-
point. As one approaches regimes of low gravity any quadrupole deviation is
negligibly small and so one can approximate with a spherical symmetry those
configurations, without losing generality. Furthermore, in the low and inter-
mediate gravity regimes the symmetries z1+ = z2− and z1− = z2+ emerge,
together with z1± = −z2±, being valid for any gravitational sources. The
pending caveat to check would be represented by orbit stability, i.e. Eq.
(2.17). For the Zipoy-Voorhees metric, the second derivative with respect to
r of Eq. (2.49) is always zero: since this is a quasi-spherical spacetime, we
can assert that all orbits are stable.
Finally, let us observe that, for δ = 1 and, consequently, k = m, all these
equations reduce to those obtained in the Schwarzschild metric. It is now
remarkable to stress that for δ = 1/2, in all the analyzed gravity regimes, we
do not obtain critical values of z, as expected.

2.2.3 The Schwarzschild-de Sitter metric

In this subsection, we apply the method described above to the Schwarzschild-
de Sitter metric, corresponding to a spherical symmetric spacetime with an
effective cosmological constant, Λ [75, 76, 77]. For this fundamental property,
the metric can be used for cosmological applications, to infer bounds on red
and blue shifts, fixing Λ. In spherical coordinates, we have

ds2 = −
(
1− 2m

r
+

Λr2

3

)
dt2 +

1(
1− 2m

r
+ Λr2

3

)dr2 + r2dθ2 + r2 sin2 θdφ2.

(2.59)
We again stress, we study the phenomenon in the equatorial plane, namely
θ = π/2. Even this metric is clearly non-rotating and so Eq. (2.41) becomes1− E2r2 − L2

(
1− 2m

r
+ Λr2

3

)
r2
(
1− 2m

r
+ Λr2

3

)
∣∣∣∣∣∣

r=rp

= 0 , (2.60)

and its derivative with respect to r[
6(3m+ Λr3)E2

(Λr3 + 3r − 6m)
− 2L2

r3

]∣∣∣∣
r=rp

= 0. (2.61)
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with rp = {re, rd}, as before. Solving the system given by the former two
equations, we obtain

E2 =
(Λr3 + 3r − 6m)2

9r(r − 3m)

∣∣∣∣
r=rp

, (2.62)

L2 =
r2(3m+ Λr3)

3(r − 3m)

∣∣∣∣
r=rp

, (2.63)

from which we get the total energy and the angular momentum

E =
Λr3 + 3r − 6m√

9r(r − 3m)

∣∣∣∣∣
r=rp

, (2.64)

L = ±r

√
3m+ Λr3

3(r − 3m)

∣∣∣∣∣
r=rp

. (2.65)

Thus, we again find

ut
∣∣
r=rp

=

√
r

r − 3m

∣∣∣∣
r=rp

, (2.66)

uφ|r=rp
= ±

√
3m+ Λr3

3r2(r − 3m)

∣∣∣∣∣
r=rp

. (2.67)

Furthermore, we have

b± = ∓
√

r2(
1− 2m

r
+ Λr2

3

) , (2.68)

Ωd± = ±

√
3m+ Λr3d

3r3d
, (2.69)

where Ωd+ and Ωd− are respectively referred to a co-rotating and to a counter-
rotating photons source with respect to the angular velocity of the gravita-
tional field source, as before. Hence, plugging all these relations within Eqs.
(2.34)-(2.35), we get the expressions for z1 and z2 for the Schwarzschild-de
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Sitter metric

z1± = ±

√
re

re−3m

(√
3m+Λr3d

3rd−6m+Λr3d
−
√

3m+Λr3e
3re−6m+Λr3e

)
√

rd
rd−3m

(
1∓

√
3m+Λr3d

3rd−6m+Λr3d

) , (2.70)

z2± = ∓

√
re

re−3m

(√
3m+Λr3d

3rd−6m+Λr3d
−
√

3m+Λr3e
3re−6m+Λr3e

)
√

rd
rd−3m

(
1±

√
3m+Λr3d

3rd−6m+Λr3d

) , (2.71)

where the subscript ± is again referred to a co-rotating and counter-rotating
source with respect to the angular velocity of the gravitational field source.
Let us observe that z1 = −z2, in both the co-rotating and counter-rotating
cases, regardless of the mass that generates the gravitational field.

2.2.4 Gravitational field sources for the Schwarzschild-
de Sitter metric

In analogy to the previous treatment, for the Schwarzschild-de Sitter metric
we analyze the variation of z1 and z2 as function of the position of the detec-
tor rd, in the co-rotating and in the counter-rotating cases. As before, the
analysis is based on different gravitational field sources

• a neutron star in the maximally - rotating configuration [73], see Fig.
2.2. Here the employed field is strong,

• a white dwarf in the maximally - rotating configuration [73], see Fig.
2.4. Here we consider an intermediate field,

• Earth and Mars for the Solar System, see Fig. 2.6.

Furthermore, we consider Λ as the cosmological constant, whose value is
Λ = 1.1056 × 10−52m−2 [18]. As for the Zipoy-Voorhees metric, in the low
and intermediate gravity regimes we again find z1+ = z2− and z1− = z2+, in
addition to z1± = −z2±. The last thing to check is the orbits stability, i.e.
Eq. (2.17). For the Schwarzschild-de Sitter metric, the second derivative of
Eq. (2.60) is [

8Λr4 + 6mr(1− 5Λr2)− 36m2

r2(r − 3m)(Λr3 + 3r − 6m)

]∣∣∣∣
r=rp

≥ 0. (2.72)
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Thus, we study Eq. (2.72) for every gravitational field source.
By considering the photons emitter placed on the neutron star, i.e. re = R,
with R the neutron star radius, we get that the emitter orbit is stable

V ′′
eff(re) = 7.61641× 10−4 > 0, (2.73)

while the detector orbit is stable for

rd ≥ 9.4374 km. (2.74)

Analogously, by considering the photons emitter placed on the white dwarf,
i.e. re = R, with R the white dwarf radius, we get that the emitter orbit is
stable

V ′′
eff(re) = 8.62859× 10−14 > 0, (2.75)

while the detector orbit is stable for

rd ≥ 1.5876 km. (2.76)

Finally, by considering the photons emitter placed on the planet, i.e. re =
rEarth and re = rMars, with rEarth and rMars the Earth and Mars radius re-
spectively, we get that the emitters orbits are stable

V ′′
eff(re) = 3.42303× 10−17 > 0 for Earth, (2.77)

V ′′
eff(re) = 2.43224× 10−17 > 0 for Mars, (2.78)

while the detectors orbits are stable for

rd ≥ 2.65555× 10−5 km for Earth, (2.79)

rd ≥ 2.84142× 10−6 km for Mars. (2.80)

As before, let us observe that, for Λ → 0, all these equations reduce to those
obtained in the Schwarzschild metric.

2.3 Results

In this section, we compare these theoretical predictions with current ex-
perimental bounds, got from experiments. Finally, we propose how to build
up plausible experiments and develop technical configurations to check the
validity of these methods.
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2.3.1 High and intermediate gravity regimes

The increase or decrease of the red and blue shift bounds depend upon the
choice of the free parameters. The possible underlying configuration is crucial
in understanding how to single out the most feasible interval of redshifts or
blue shifts.We then split the involved two symmetries below, commenting
separately on findings and comparing the obtained bounds with previous
expectations got from the literature.

Numerical values got during computation

M R
(M⊙) (103m)

WD 0.18 18304.5
NS 1.07 13.61

Table 2.1: Table of astrophysical values adopted during the computation for
high and intermediate gravity regimes. We only consider the maximally rotat-
ing configurations for NS and WD, where gravitational effects are stringent.

NS case

In the case of NS, we compute expectations over z1(r) and z2(r) in the max-
imally - rotating configuration, with the ranges of masses and radii respec-
tively given by M ∈ [1.07; 1.47]M⊙ and r ≃ 13.61. The values got by z1
and z2 reach a plateau as d ≳ 0, i.e., as d becomes larger than zero. This
indicates the strong gravity regime of NS, as expected, and happens for both
the setups of Schwarzschild-de Sitter and Zipoy-Voorhees spacetimes, when
the former is computed for very large δ values.
Particularly, the Zipoy-Voorhees metric seems to match the Schwarzschild-de
Sitter solution as the quadrupole increases, in agreement with the fact that
NS are described as rotating objects. Further, this indicates the Schwarzshild
- de Sitter spacetime is a suitable approximation for determining the NS red
and blue shifts, although the metric itself does not describe a rotating object.
The very impressive fact is that one underlines very small changes within the
interval δ ∈ [0.75; 103]. This suggests a limiting regime between the above
interval, being compatible with the theoretical bounds over δ that exclude
repulsive effects of gravity.



2.3. RESULTS 84

0 1 2 3 4

-4

-2

0

2

4

d

z
1(
r
)

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

-1.0

-0.5

0.0

0.5

1.0

d

z
1
(r
)

δ 
1

4

δ 
3

4

δ  1000

0 1 2 3 4

-4

-2

0

2

4

d

z
2(
r
)

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

-1.0

-0.5

0.0

0.5

1.0

d

z
2
(r
)

δ 
1

4

δ 
3

4

δ  1000

Figure 2.1: z1(r) and z2(r) as function of d = rd − re within the Zipoy-
Voorhees spacetime. The gravitational field source is a neutron star of mass
M = 1.07M⊙, with M⊙ = 1.47 km the solar mass, and radius R = 13.61
km, in the maximally - rotating configuration [73]. Here, d ∈ [0; 4 · 105] km,
whereas z1 and z2 are in power of 10−1. In the small zoom, we report z1 and
z2 up to d = 40 km.
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Figure 2.2: z1(r) and z2(r) as function of d = rd−re within the Schwarzschild-
de Sitter spacetime. The gravitational field source is a neutron star of mass
M = 1.07M⊙, with M⊙ = 1.47 km the solar mass, and radius R = 13.61
km, in the maximally - rotating configuration [73]. Here, d ∈ [0; 4 · 105] km,
whereas z1 and z2 are in power of 10−1. In the small zoom, we report z1 and
z2 up to d = 40 km.
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WD case

In the case of WD, we have regimes of intermediate gravity. We therefore
compute our expectations over z1(r) and z2(r) in the maximally - rotating
configuration, with the ranges of masses and radii respectively given by M ∈
[0.18; 1.47]M⊙ and r ≃ 18304.5 km. The values got by z1 and z2 reach a
plateau as d ≳ 3, i.e., as d becomes larger than zero. As well as NS regime for
both the setups of Schwarzschild-de Sitter and Zipoy-Voorhees spacetimes,
with very large δ, we encounter the same behaviors. As for the NS, we can
deduce that the Schwarzshild - de Sitter metric is even a good approximation
for WDs in determining the red and the blue shift. Finally, from Figs. (2.3)
- (2.4) we immediately get

z1+,ZV = z2−,ZV = z1−, SdS = z2+, SdS , (2.81)

z1−,ZV = z2+,ZV = z1+,SdS = z2−, SdS , (2.82)

where the subscripts ZV and SdS indicate Zipoy-Voorhees and Schwarzschild-
de Sitter spacetimes respectively.
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Figure 2.3: z1(r) and z2(r) as function of d = rd − re within the Zipoy-
Voorhees spacetime. The gravitational field source is a white dwarf of mass
M = 0.18M⊙, with M⊙ = 1.47 km the solar mass, and radius R = 18304.5
km, in the maximally - rotating configuration [73]. Here, d ∈ [0; 4 · 105] km,
whereas z1 and z2 are in power of 10−3. In the small zoom, we report z1 and
z2 up to d = 104 km.
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Figure 2.4: z1(r) and z2(r) as function of d = rd−re within the Schwarzschild-
de Sitter spacetime. The gravitational field source is a white dwarf of mass
M = 0.18M⊙, with M⊙ = 1.47 km the solar mass, and radius R = 18304.5
km, in the maximally - rotating configuration [73]. Here, d ∈ [0; 4 · 105] km,
whereas z1 and z2 are in power of 10−3. In the small zoom, we report z1 and
z2 up to d = 104 km.
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2.3.2 Regime of low gravity

The use of lunar LR is commonly got using powerful pulsed searchlight,
from the Earth to lunar Cube Corner Retroreflectors6 (CCRs) [78, 79]. More
generally, LR is a technique that gets a measure of the round - trip time of a
laser fired by a ground station on Earth, received by a CCR on a satellite and
reflected back to the station. If the satellite is not the Moon, we refer to as
satellite LR [80]. We follow here both the lunar and satellite LR approaches
to face the low gravity regime.
For every LR experiment is performed, it is important to take into account
the relative motion between the laser source and the retroreflector. This
causes an angular deflection of the laser beam. In fact, in absence of a
relative motion, the laser would exactly return back to the station. The
angular deflection is also called velocity aberration (VA) and it is defined as

V A =
2

c
[∆vd − ve cosϕ] , (2.83)

where ∆vd is the difference between the orbital velocity and rotational ve-
locity at the equator of the satellite or planet on which is placed the retrore-
flector, ve the rotational velocity of the satellite or planet on which is placed
the laser source at the equator and ϕ the laser source latitude. Consequently,
the term in the square brackets in Eq. (2.83) represents the relative velocity
between the involved two objects. We are going to use the VA and the laser
wavelength to determine the red and blue shifts through relativistic Doppler
effect in the equatorial plane, i.e.,

λ′ = λ

√
1 + V A/2

1− V A/2
(2.84)

where, instead of the ratio between the relative velocity and c, we used the
VA through Eq. (2.83). Thus, one immediately computes the required z
through the standard formula z = λ′−λ

λ
.

We study the theoretical models by considering Earth and Mars as sources
of the gravitational field in the Solar System, see Figs. 2.5-2.6.
We want to compare the theoretical results with the experimental ones de-
riving from the LR missions.

6Device made up of three perpendicular reflective surfaces which retro-reflect the signal
in the same direction in which it arrived. For more details, see Sec. 4.2.
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Figure 2.5: z1(r) and z2(r) as function of d = rd − re within the Zipoy-
Voorhees spacetime. We analyzed the two cases, i.e. emitter on Mars and
Earth respectively, with d ∈ [0; 4 · 105] km, whereas z1 and z2 are in power
of 10−5. In the small zoom, we report z1 and z2 up to d = 6 · 103 km. This
choice enables to get feasible intervals for Phobos, where d ≃ 5986.5 km, with
Mars as source, and intervals for LARES-2 [74], where d ≃ 5899 km, with
Earth as source.
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Figure 2.6: z1(r) and z2(r) as function of d = rd−re within the Schwarzschild-
de Sitter spacetime. We analyzed the two cases, i.e. emitter on Mars and
Earth respectively, with d ∈ [0; 4 · 105] km, whereas z1 and z2 are in power
of 10−5. In the small zoom, we report z1 and z2 up to d = 6 · 103 km. This
choice enables to get feasible intervals for Phobos, where d ≃ 5986.5 km, with
Mars as source, and intervals for LARES-2 [74], where d ≃ 5899 km, with
Earth as source.
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We thus analyze three particular configurations

• Earth-Moon system. Here, we model the two astrophysical objects and
involve the lunar LR.

• Earth-satellite system. Here, the configuration is analogous to the stan-
dard lunar LR, but using an artificial satellite instead of the Moon. This
second case is therefore similar to the previous one7.

• Mars-Phobos system. Here we propose ex novo an architecture to get
feasible red and blue shift ranges. It involves a laser source placed
on Mars, considered as the gravitational source, modeled through the
spacetime approach described before. The CCRs could be placed on
Phobos, i.e. a natural Mars satellite8. A similar approach has been
developed by [81], where the authors proposed a system constituted by
Earth and Phobos. The procedure we here develop permits to extend
previous results through the use of alternative technologies of LR.

The predicted values, got from the theoretical models under exam for these
three configurations, are portrayed in Tabs. 2.2-2.3. Here, we again observe
the same symmetries reported in Eqs. (2.81,2.82). On the other hand, the
indirect measurements of z, obtained starting from the experimental data
of the LR, are instead reported in Tabs. 2.4-2.6. The slight differences be-
tween experimental and predicted outcomes are due to several facts. First,
experimentally speaking, we are handling the VA technique only. In fact,
although different types of CCRs used in space missions, to calculate z we
only require the VAs depending on the orbital and rotational involved objects
velocities, the local position of the laser source on the planet and the laser
beam wavelength, generally 532 nm. Second, the accuracy can be refined
adopting more than the configurations here investigated. Below, we summa-
rize how to heal such issues adopting direct measure methods, by proposing
novel experimental configurations.

7We here refer to the LARES-2 expectations. For us, LARES-2 is the acronym of Laser
RElativity Satellite No. 2 and makes use of the Earth-satellite LR prerogative that we
need. For more details, see Sec. 4.3.1.

8This prerogative goes beyond the binary system Earth-Moon, with the advantage of
being closer to each other, i.e. guaranteeing a more precise pulse measure.
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z ± δz lunar LR (10−5) Satellite LR (10−6) Phobos LR (10−6)

z1+ ≡ z2− 2.298042 7.36990 4.72646

δz1+ ≡ δz2− ±0.000005 ±0.01551 ±0.00046

z1− ≡ z2+ −2.298057 −7.37018 −4.72653

δz1− ≡ δz2+ ±0.000005 ±0.01551 ±0.00046

Table 2.2: Table of red and blue shift values, predicted by means of the Zipoy-
Voorhees metric. We also report the corresponding error bars, namely δz1,2±,
evaluated by the standard logarithmic error propagation. Since for low grav-
ity, the predictions over z do not significantly change by varying δ, with an
accuracy smaller than one part over 106, we arbitrarily select δ = 0.5. Here
we consider lunar LR for the system Earth-Moon, satellite LR for the system
Earth - LARES-2 [74] and finally Phobos LR for the proposed experiment that
employs Mars and its satellite, Phobos.
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z ± δz lunar LR (10−5) Satellite LR (10−6) Phobos LR (10−6)

z1+ ≡ z2− −2.298057 −7.37018 −4.72653

δz1+ ≡ δz2− ±0.000005 ±0.01551 ±0.00046

z1− ≡ z2+ 2.298057 7.37018 4.72653

δz1− ≡ δz2+ ±0.000005 ±0.01551 ±0.00046

Table 2.3: Table of red and blue shift values, predicted by means of the
Schwarzschild-de Sitter metric. We also report the corresponding error bars,
namely δz1,2±, evaluated by the standard logarithmic error propagation. Here
we consider lunar LR for the system Earth-Moon, satellite LR for the system
Earth - LARES-2 [74] and finally Phobos LR for the proposed experiment that
employs Mars and its satellite, Phobos.
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Station ϕ VA (10−6) z ± δz (10−6)

McDonald 30°.68 N 4.051 2.025629± 0.000007

Apollo 32°.78 N 4.112 2.055989± 0.000007

Matera 40°.65 N 4.370 2.185235± 0.000007

Grasse 43°.75 N 4.485 2.242475± 0.000007

Table 2.4: z value for four different operational LR stations placed on Earth
and retroreflectors placed on the Moon. The velocities are expressed in units
of radiant. We also report the corresponding errors, namely δz, evaluated by
the standard logarithmic error propagation. The table is split into ϕ < 40
and ϕ > 40. The increase of z in function of ϕ is more than 10% for largest
ϕ here reported. The mean value is: (2.127332± 0.000007) · 10−6.
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Station ϕ VA (10−6) z ± δz (10−5)

McDonald 30°.68 N 35.30 1.76428± 0.00159

Apollo 32°.78 N 35.36 1.76826± 0.00159

Matera 40°.65 N 35.62 1.78118± 0.00159

Grasse 43°.75 N 35.74 1.78690± 0.00159

Table 2.5: z value for four different operational LR stations placed on Earth
and retroreflectors placed on LARES-2 satellite [74]. The velocities are ex-
pressed in units of radiant. We also report the corresponding errors, namely
δz, evaluated by the standard logarithmic error propagation. The table is split
into ϕ < 40 and ϕ > 40. The increase of z in function of ϕ is more than 10%
for largest ϕ here reported. The mean value is: (1.775155± 0.00159) · 10−5.

Station ϕ VA (10−6) z ± δz (10−6)

Mars 0° 12.63 6.314072± 0.000052

Table 2.6: In this table, we report a plausible z value for a station placed on
Mars equator, with the ansatz that a few retroreflectors will be placed on Pho-
bos, as we proposed above. We also report the corresponding errors, namely
δz, evaluated by the standard logarithmic error propagation. In particular,
we figure out a laser station placed on Mars equator, i.e., the position in
which satellite views got from Mars leads to the best configuration.
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Designs of proposed experimental setups

In view of the overall results, we summarize the following consequences.

• At high gravity regimes δ values, using axisymmetric spacetime, agree
with the Schwarzschild-de Sitter prediction, making use of the Planck
satellite bounds.

• As well as NS, the regimes of intermediate gravity, here investigated
employing WD, behave in analogy.

• At low gravity, in the Solar System, the adopted spacetime metrics
are clearly unadequate to fix stringent limits over the free parameters
as well as the red and blue shift intervals that slightly disagree with
observations (see Tabs. 2.4-2.6).

• Analogously LR cannot be used to get indirect measurements for z.
Moreover, the results coming from the use of Schwarzschild metric,
without taking care about the Λ value, seem to agree with our scheme,
indicating that Λ is quite badly constrained within the Solar System.

From the above considerations, a direct measure of z would be more predic-
tive than other indirect treatments. So that, one can build up experimental
setups based on genuine wavelength measures only. To do so, let us take
the simplest configuration we could work with, based on the Earth-Moon
system. We can send a laser pulse whose wavelength is known, as well as in
the lunar LR technique. The detector is meant to measure the corresponding
wavelength and then to get possible hints on red or blue shifts. Alternatively,
another possibility is offered by a rotating orbiter around Mars or more away
planets, without excluding to take into account other configurations. The or-
biter sends signals, whose wavelength is known. The detector, again placed
on the given planet we are considering, gets the signals and provides a di-
rect measure of the pulse shift in wavelength that is converted in red and
blue shift. Last but not least, even if the astrophysical configurations of NS
and WD could in principle be adopted for future missions to better get z,
the experimental complexity to put on them instruments would be a great
limitation for the experiment itself. On the other hand, cosmological red
and blue shifts would be the key to fix the cosmological constant value. The
strategy would be to take the large scale structure of the universe, switching
the spacetime to more complicated metrics that could overcome the likely
issues related to Schwarzschild-de Sitter.
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2.3.3 Error analysis

In this subsection, we report the values of z and the respective errors obtained
when the field sources are the NS and the WD, both in the two employed
metrics. We have selected 3 values of d = rd− re within the range chosen for
the plots, d ∈ [0; 4 · 105]. In particular

• d = 0 and d = 4 · 105, i.e. the extremes of the interval;

• d = 2 · 105, which is the midpoint of the interval.

In the case of the Zipoy-Voorhees metric, we considered the δ values chosen
for the plots (δ = 1/4, δ = 3/4 and δ = 1000); while for the Schwarzschild-
de Sitter metric, we considered the Λ value of the Planck collaboration:
Λ = (1.10566± 0.022703) · 10−46 km−2.
Errors are calculated through the standard logarithmic error propagation,
considering that for NS and WD it is hard to get with high accuracy both
mass and radii. We therefore work out the following strategy: we consider
Refs. [82, 83] and there we got the maximum and minimum bounds associ-
ated to mass and radii for both NS and WD. Then, we consider the average
constraints and use for computation, in particular

• for NS: M = (1.07± 0.11)M⊙ and R = 13.61+2.18
−0.68 km,

• for WD: M =
(
0.180+0.056

−0.004

)
M⊙ and R = 18304.5+5491.3

−823.70 km,

where M⊙ = 1.47 km.
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d = 0 d = 2 · 105 d = 4 · 105
δ = 1/4 NS WD NS WD NS WD

z1+ = z2− 0.00000+0.11185
−0.03489 0.00000+0.00057

−0.00009 0.11412+0.25949
−0.15085 0.00265+0.00098

−0.00011 0.11555+0.25894
−0.15050 0.00299+0.00103

−0.00012

z1− = z2+ 0.00000+0.12958
−0.04042 0.00000+0.00057

−0.00009 −0.11477+0.26092
−0.15166 −0.00265+0.00098

−0.00012 −0.11601+0.25995
−0.15107 −0.00299+0.00104

−0.00012

δ = 3/4 NS WD NS WD NS WD

z1+ = z2− 0.00000+0.01657
−0.00517 0.00000+0.00057

−0.00009 0.40249+0.07605
−0.04408 0.00265+0.00098

−0.00011 0.40385+0.07626
−0.04423 0.00299+0.00103

−0.00012

z1− = z2+ 0.00000+0.03254
−0.01015 0.00000+0.00057

−0.00009 −0.40475+0.07659
−0.04444 −0.00265+0.00098

−0.00012 −0.40545+0.76646
−0.04449 −0.00299+0.01037

−0.00012

δ = 1000 NS WD NS WD NS WD

z1+ = z2− 0.00000+0.02404
−0.00750 0.00000+0.00057

−0.00009 0.43056+0.08699
−0.05044 0.00265+0.00098

−0.00011 0.43194+0.08719
−0.05058 0.00299+0.00103

−0.00012

z1− = z2+ 0.00000+0.05126
−0.01599 0.00000+0.00057

−0.00009 −0.43302+0.08761
−0.05085 −0.00265+0.00984

−0.00012 −0.43366+0.08762
−0.05087 −0.00299+0.00104

−0.00012

Table 2.7: z values with errors for the Zipoy-Voorhees metric, with a NS and
a WD as field sources, for 3 different values of δ, at 3 different values of d.

d = 0 d = 2 · 105 d = 4 · 105
NS WD NS WD NS WD

z1+ = z2− 0.00000+0.06596
−0.02057 0.00000+0.00057

−0.00009 −0.47754+0.11548
−0.06703 −0.00266+0.00098

−0.00012 −0.47816+0.11549
−0.06705 −0.00299+0.00104

−0.00012

z1− = z2+ 0.00000+0.06596
−0.02057 0.00000+0.00057

−0.00009 0.47754+0.11578
−0.06703 0.00266+0.00098

−0.00012 0.47816+0.11549
−0.06705 0.00299+0.00104

−0.00012

Table 2.8: z values with errors for the Schwarzschild-de Sitter metric, with a
NS and a WD as field sources, at 3 different values of d.
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2.3.4 Results for the Schwarzschild spacetime

The Schwarzschild metric reads

ds2 = −
(
1− 2m

r

)
dt2 +

1(
1− 2m

r

)dr2 + r2dΩ2, (2.85)

with dΩ2 = dθ2 + sin2 θdφ2. Below, we summarize the main results of the
general procedure, described in Sec. 2.1, applied to this metric. In partic-
ular, we find an overall agreement with the results got in [64]. We have as
conserved quantities

E =
r − 2m√
r(r − 3m)

∣∣∣∣∣
r=rp

, (2.86)

L = ±r
√

m

r − 3m

∣∣∣∣
r=rp

, (2.87)

and velocities

ut
∣∣
r=rp

=

√
r

r − 3m

∣∣∣∣
r=rp

, (2.88)

uφ|r=rp
= ±1

r

√
m

r − 3m

∣∣∣∣
r=rp

, (2.89)

and the kinematic quantities

b± = ∓ r√
1− 2m

r

, (2.90)

Ωd± = ±
√
m

r3d
. (2.91)

Finally, z1± and z2± are

z1± = ±

√
re

re−3m

(
1√

rd−2m
− 1√

re−2m

)
√

rd
rd−3m

[
1∓

√
m

rd−2m

] , (2.92)

z2± = ∓

√
re

re−3m

(
1√

rd−2m
− 1√

re−2m

)
√

rd
rd−3m

(
1±

√
m

rd−2m

) . (2.93)
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Comparing these last two equations with those obtained for the Zipoy-Voorhees
metric and for the Schwarzschild-de Sitter metric, we easily note that Eqs.
(2.57) - (2.58) reduce to Eqs. (2.92) - (2.93) for δ = 1 (that is k = m) and
Eqs. (2.70) - (2.71) reduce to Eqs. (2.92) - (2.93) for Λ = 0.

z ± δz lunar LR (10−5) Satellite LR (10−6) Phobos LR (10−6)

z1+ ≡ z2− −2.298057 −7.37018 −4.72653

δz1+ ≡ δz2− ±0.000005 ±0.01551 ±0.00046

z1− ≡ z2+ 2.298057 7.37018 4.72653

δz1− ≡ δz2+ ±0.000005 ±0.01551 ±0.00046

Table 2.9: Table of red and blue shift values, predicted by means of the
Schwarzschild metric. We also report the corresponding errors, namely
δz1,2±, evaluated by the standard logarithmic error propagation. Here we
consider lunar LR for the system Earth-Moon, satellite LR for the system
Earth - LARES-2 [74] and finally Phobos LR for the proposed experiment
that employs Mars and its satellite, Phobos.



Chapter 3

High gravity tests

One of the new frontiers of physics is undoubtedly the realization of space
missions aimed at observing the universe in regions of spacetime where rela-
tivistic effects are relevant. The study of Einstein’s equations solutions in the
strong gravity regime is an ever-evolving subject of research. In particular,
wormholes have received a lot of attention in recent years. The properties
of these mathematical solutions to the field equations encourage researchers
to investigate numerous theoretical models, both in the context of GR and
extended/modified theories, in order to gain a better understanding of grav-
itational phenomena.
After examining modified theories in the PPN formalism to test them in the
weak field regime, in this chapter we see how they can describe structures in
strong gravitational fields. Specifically, we will employ f(R) theory to find
exact solutions of traversable wormholes.

3.1 Wormholes solutions of Einstein’s equa-

tions

Wormholes can be interpreted as “short-cuts” connecting different space-
time regions [84] and so they represent hypothetical tunnels between two
asymptotic regimes of the same spacetime [85]. In the most accredited sce-
nario, the wormhole short cut path is traversable through a minimal surface
area called wormhole throat. The simplest approach showing these features
is the so called Einstein-Rosen bridge coming from the connection of two
Schwarzschild solutions [86, 87, 88, 89]. It is characterized by spherical sym-
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metry and by the presence of an event horizon. This implies that any ob-
server, trying to cross the wormhole throat, inevitably falls into the singular-
ity [90]. Hence, the metric itself a priori prevents the traversability due to the
singularity. Consequently, to heal this issue, one can consider non-singular
metrics defined for every radial coordinates [91]. However, if the Birkhoff
theorem is valid and matter fields are included in a non-vanishing energy-
momentum tensor, this approach leads to severe bounds at the wormhole
throat. There, the condition τ0 > ρ0c

2 must hold, i.e. radial tension might
be large enough to exceed the total mass-energy density [91]. Consequently
the energy-momentum tensor violates the null energy condition (NEC) at the
throat [84, 92], Tµνk

µkν < 0, in naive analogy to some cosmological contexts,
see e.g. [93, 94]. Thus, in this standard approach, i.e. in the framework of
GR, one is forced to take a negative energy density and pressure. This exotic
landscape provides a structure that can be traversable, albeit it is not clear
how matter could exhibit negative energy density and pressure [95]. In other
words, standard matter cannot be used to achieve stable wormhole solutions
in the framework of GR.
In this respect, several approaches have been proposed to alleviate the prob-
lem. They focus mainly in considering exotic forms of matter to overcome
this strange behavior. Conversely, extended and/or modified theories of grav-
ity are natural suites where this can be addressed retaining standard matter
[96, 47, 48, 49, 50]. In fact, in these scenarios, the above conditions do not
apply directly to matter and so, in lieu of imposing exotic conditions over the
energy and pressure, one can take geometry to play the role of exotic matter
[51]. This mimics the wormhole properties through higher-order curvature
terms and/or effective field theories that can be mapped into Lagrangians
extending the Einstein-Hilbert one.
In this section, in analogy to GR, we consider a spherically symmetric met-
ric with two asymptotically flat regions. In particular, we take in to account
f(R) gravity theories, in metric formalism, and we assume time-independent
metric coefficients, using the widely-consolidate Morris-Thorne spacetime.
We thus determine exact solutions of traversable wormhole, without violat-
ing the signs of energy and pressure, postulating a power-law form for f(R),
i.e. f(R) = f0R

1+ϵ where ϵ is a real number. Immediately, GR can be recov-
ered in the limit ϵ → 0. In this perspective, we can control deviations from
GR and the role of geometric terms in stabilizing the wormhole solutions.
In this context, two classes of stable and traversable wormhole can be recov-
ered.
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In the first case, the throat is assumed as an inverse power of the radial coor-
dinate. In the second case, we consider a parameter α controlling the size of
the throat. It is worth noticing that these solutions can be recovered by as-
suming simple rational series, made in terms of (0, 1) Padé polynomials. We
thus provide a physical interpretation over these choices and investigate the
physical properties associated to them. In this regard, we impose the fluid
perturbations passing through the throat are negligibly small. This condition
is achieved if the sound speed is vanishing during the fluid evolution. This
feature cannot be found in GR, albeit it gets suitable constraints over the
free coefficients of our wormhole picture. In particular, we show that if the
sound speed is zero to guarantee stability, even the Starobinsky scalaron [52]
(with ∼ R2) is not fully recovered within this scheme, leading to solutions
with ϵ ̸= 0. It means that GR cannot be trivially recovered by construction.
We thus discuss which power law intervals are allowed under this scheme and
discuss the corresponding physical implications.

3.1.1 f(R) wormholes with rational shape reconstruc-
tions

A static and spherically symmetric wormhole solution is

ds2 = e2Φ(r)dt2 − 1

1− b(r)/r
dr2 − r2dΩ2, (3.1)

which is the so-called Morris and Thorne metric [91]. Eq. (3.1) character-
izes a wormhole with the following features: (i) the spacetime is static and
spherically symmetric; (ii) the throat has a minimal surface connecting two
asymptotically flat regions; (iii) there is no Killing horizon and then two-
way travels are enabled. The physical realization of such criteria depends on
the gravitational forces, the proper time for crossing and astrophysical scales
where possible wormholes are expected [97].
In this picture, b(r) and Φ(r) are functions of the radial coordinate and they
are denoted respectively as shape and redshift functions. The radial coordi-
nate r ranges from a minimum and a positive value r0, defining the wormhole
throat, to infinity. In order to avoid the presence of event horizons, one im-
poses that Φ(r) is finite at any r. It is possible to construct asymptotically
flat spacetimes, where b(r)/r → 0 and Φ → 0 as r → ∞. A fundamental
ingredient in wormhole physics is the the so-called flare-out condition of the
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wormhole throat b(r0) = r0 [91] given by the condition (b′r − b)/2b2 < 0.
In GR, the latter condition implies that through the Einstein field equation,
the stress-energy tensor violates the NEC at the throat, i.e., Tµνk

µkν |r0 < 0.
We consider

2Φ(r) =
r0
r

(3.2)

that resembles a Newtonian potential for Φ(r) in analogy to black hole physics

[98, 99]. The ratio b(r)
r

is debated and its form is a priori unknown. Finding
out the forms of Φ(r) and b(r) from the field equations means to derive
a Morris-Thorne-like wormhole solution. Here, we follow two physically-
motivated strategies imposing

b(r)

r
=
(r0
r

)1+β

, (3.3a)

b(r)

r
=

r0
1 + α r

, (3.3b)

with β ∈ R and β + 1 > 0 and α ≡ r0−1
r0

to guarantee that at r = r0 the
wormhole is not singular.
Therefore our wormhole metric takes two possible forms

ds2 = er0/rdt2 − 1

1−
(
r0
r

)β+1
dr2 − r2dΩ2 , (3.4)

ds2 = er0/rdt2 − 1

1− r0
1+αr

dr2 − r2dΩ2 . (3.5)

In both cases, the expressions are polynomials characterizing b/r. To enable
stability, one can require that within the whole interval of r, the ratio b(r)/r
does not diverge. An intriguing proposal has been shown in [99], where a

shape function of the type b(r) = r0
(
r0
r

)β
exp

(
−δ r−r0

r0

)
has been introduced.

As r − r0 ≪ 1, it is possible to make a Taylor expansion that leads to Eq.
(3.3a) that turns out to be an extension of the cases discussed in [98, 99].
Hereafter, Eq. (3.3a) will be dubbed phenomenological shape function, to
stress that is has been argued from heuristic considerations.
At r = r0, to avoid discontinuities in the Morris-Thorne metric, we can
require the domain to be stable even before r = r0. Thus, one can imagine
to expand around r = r0 in terms of rational expansions, made by Padé
functions, widely used in recent literature [49, 100, 101]. The corresponding
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ratio, constructed by means of Padé polynomials, changes dramatically the
form of solutions or leaves it unaltered. As a prototype of our recipe, we take
into account the simplest Padé expansion [102]. To this end, we recall that
the Padé technique is built up from the standard Taylor series, being to lower
divergences or singular points. Hence, given a function f(z) =

∑∞
i=0 ciz

i,
expanded with a given set of coefficients, namely ci,it is approximated by
means of a (n,m) Padé approximant by the ratio [103]

Pn,m(z) =

n∑
κ=0

aκz
κ

1 +
m∑

σ=1

bσz
σ

, (3.6)

where the Taylor expansion matches the coefficients of the expansion up to
the highest possible order

P ′
n,m(0) = f ′(0) , (3.7)

...

P (n+m)
n,m (0) = f (n+m)(0) , (3.8)

with the additional request Pn,m(0) = f(0).
The numerator is thus constructed to have n + 1 independent coefficients,
whereas in the denominator, it is m, for a total of n+m+1 unknown terms.
For small radii, rational expressions are essentially indistinguishable from the
Taylor one, but, at larger radii, the convergence radius of rational polynomi-
als is determined by the following practical rule [104, 105]

I. The most suitable rational approximation order leads to the function
that maximizes the convergence radius.

II. The most suitable rational approximation minimizes the involved free
constants.

Consequently a small number of free parameters is essential to enable the
rational approximation to be convergent, providing the compromise between
arbitrary-order expansions and minimal number of free parameters in the
denominator.
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The lowest Padé orders are two: (1,0) and (0,1). They turn out to be the
simplest approaches to use in the framework of wormholes. We are forced to
take the (0, 1) order since it guarantees that all the other assumptions over
the stability of b/r are preserved1. In both cases, the asymptotic conditions
are automatically satisfied, i.e. er0/r → 1 and 1

1−b(r)/r
→ 1 as r → ∞.

We are now able to get the corresponding energy conditions and to check
whether the above consistency conditions are satisfied.
Let us start with the field Eqs. (1.191) in f(R) theory which can be rewritten
as

T (m)
µν = fR(R)Gµν −

{
1

2
gµν

[
f(R)−RfR(R)

]
+ fR(R);µν − gµν2fR(R)

}
.

(3.9)
In order to write energy conditions [84, 92], we can choose

T µ
ν = diag(ρ,−pr,−pt,−pt) , f(R) = f0R

1+ϵ , (3.10)

where pt is the tangential pressure, pr the radial pressure and ρ the energy
density, whereas f(R) is a power law, with f0 dimensional constant2. For
ϵ≪ 1, it can be written in the form

f(R) ∼ R + ϵR lnR +O(ϵ2) , (3.11)

corresponding to the GR plus a correction. Clearly this form is useful to
control little deviations with respect to the standard Einstein’s theory. Re-
cently, this approach revealed particularly useful to study compact objects,
like neutron stars and black holes, where deviations with respect to GR can
be useful to fit observations [106, 107].
Here, we adopt a similar approach to investigate which cases correspond to
small departures from Einstein’s gravity according to the values of ϵ. As we
will see below, ϵ is constrained in range of values providing wormhole solu-
tions with vanishing sound speed. In other words, we can state that

Stable and traversable wormhole solutions are possible for small deviations of
Einstein’s gravity in presence of standard perfect fluid matter.

1The expansion (1,0) corresponds to a first order Taylor expansion and does not work
well to guarantee that, for r → ∞, b

r → 0. We have to check this property for all cases at
the wormhole throat, namely r0, b(r0)/r0 = 1.

2From now on we set this constant equal to 1.
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Starting from (3.9) and (3.10), we get the components of the energy-momentum
tensor for the generic metric (3.1)

pr(r) =
1

2

[
r (r20 + r(r0 − 4r)b′(r))− r0(r0 + r)b(r)

2r5

]1+ϵ

×{[
−ϵ+ 4(1 + ϵ)r((r − r0)b(r) + r0r)

r (r(4r − r0)b′(r)− r20) + r0(r0 + r)b(r)
+

+
(
2ϵ(1 + ϵ)r(r0 − 4r)(r − b(r))

(
r
(
r20 + 4r0r − 8r2

)
b′(r) +

4r20r + r3(4r − r0)b
′′(r)− r0(5r0 + 4r)b(r)

))]
×

×

[(
r0(r0 + r)b(r)− r

(
r20 + r(r0 − 4r)b′(r)

))2]−1}
, (3.12)



3.1. WORMHOLES SOLUTIONS OF EINSTEIN’S EQUATIONS 109

pt(r) =
1

2

[
r (r20 + r(r0 − 4r)b′(r))− r0(r0 + r)b(r)

2r5

]1+ϵ

×

×

{[
(1 + ϵ)

((
r20 + r0r + 2r2

)
b(r) + r (r(r0 − 2r)b′(r)− r0(r0 + 2r))

)]
×

×
[
r
(
r20 + r(r0 − 4r)b′(r)

)
− r0(r0 + r)b(r)

]−1

−ϵ+

+

[
2ϵ(1 + ϵ)r2 (b(r)− rb′(r))

(
r
(
−r20 − 4r0r + 8r2

)
b′(r) +

−4r20r + r3(r0 − 4r)b′′(r) + r0(5r0 + 4r)b(r)
)]

×

×
[(
r0(r0 + r)b(r)− r

(
r20 + r(r0 − 4r)b′(r)

))2]−1

+

+
[
r
(
r20 + r(r0 − 4r)b′(r)

)
− r0(r0 + r)b(r)

]−3 ×[
2ϵ(1 + ϵ)r(r − b(r))

[
r20(r0 + r)

(
5r20 + 54r0r + 32r2

)
b(r)2 +

+r0rb(r)
(
−r20

(
9r20 + 90r0r + 64r2

)
+

−
(
r40 + 28r30r + 80r20r

2 − 192r0r
3 − 160r4

)
b′(r) +

+r2(r0 + r)
((
3r20 + 8r0r − 24r2

)
b′′(r)− 2r2(r0 − 4r)b(3)(r)

))
+

+r2
(
4
(
r50 + 8r40r + 2(ϵ− 1)r13

)
+

+r(r0 − 4r)(r0 + 2r)
(
r20 + 20r0r − 16r2

)
b′(r)2 +

+r20r
2
((
−3r20 − 8r0r + 24r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)
+

b′(r)
(
r3(r0 − 4r)

((
−3r20 − 8r0r + 24r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)
+

+r20
(
r30 + 26r20r + 40r0r

2 − 160r3
)))]]}

. (3.13)
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ρ(r) =
1

2

[
r (r20 + r(r0 − 4r)b′(r))− r0(r0 + r)b(r)

2r5

]1+ϵ

×

×

{
ϵ− 4(1 + ϵ)r3b′(r)

r (r(4r − r0)b′(r)− r20) + r0(r0 + r)b(r)
+

+

[
2ϵ(1 + ϵ)r2 (rb′(r)− b(r))

(
r
(
−r20 − 4r0r + 8r2

)
b′(r) +

−4r20r + r3(r0 − 4r)b′′(r) + r0(5r0 + 4r)b(r)
)]

×

×

[(
r0(r0 + r)b(r)− r

(
r20 + r(r0 − 4r)b′(r)

))2]−1

+

−
[
r
(
r20 + r(r0 − 4r)b′(r)

)
− r0(r0 + r)b(r)

]−3 ×

×

[
2ϵ(1 + ϵ)r(r − b(r))

[
r20(r0 + r)

(
5r20 + 44r0r + 24r2

)
b(r)2 +

+r0rb(r)
(
r2(r0 + r)

((
3r20 + 6r0r − 16r2

)
b′′(r)− 2r2(r0 − 4r)b(3)(r)

)
+

−3r20
(
3r20 + 24r0r + 16r2

)
+ r2

(
4
(
r50 + 6r40r + 2(ϵ− 1)r13

)
+

−
(
r40 + 26r30r + 60r20r

2 − 152r0r
3 − 112r4

)
b′(r)

)
+

+r(r0 − 4r)
(
r30 + 20r20r + 16r0r

2 − 16r3
)
b′(r)2 +

+r20r
2
((
−3r20 − 6r0r + 16r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)
+

+b′(r)
(
r3(r0 − 4r)

((
−3r20 − 6r0r + 16r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)
+

+r20
(
r30 + 24r20r + 24r0r

2 − 112r3
)))]]}

, (3.14)

Here, the form of b(r) is not specified. If we consider the energy-momentum
tensor for perfect fluids written in the form T µ

ν = diag(ρ,−p,−p,−p), the
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average pressure is p(r) = 1
3
[pr(r) + 2pt(r)], and then

p(r) =
1

6

[
r (r20 + r(r0 − 4r)b′(r))− r0(r0 + r)b(r)

2r5

]1+ϵ

×

×

{
4(1 + ϵ)r((r − r0)b(r) + r0r)

r (r(4r − r0)b′(r)− r20) + r0(r0 + r)b(r)
− ϵ+

+
[
2ϵ(1 + ϵ)r(r0 − 4r)(r − b(r))

(
r
(
r20 + 4r0r − 8r2

)
b′(r) +

+4r20r + r3(4r − r0)b
′′(r)− r0(5r0 + 4r)b(r)

)]
×

×
[(
r0(r0 + r)b(r)− r

(
r20 + r(r0 − 4r)b′(r)

))2]−1

+

+2

[
−ϵ+

[
(1 + ϵ)

((
r20 + r0r + 2r2

)
b(r) +

+r (r(r0 − 2r)b′(r)− r0(r0 + 2r))
)]

×

×
[
r
(
r20 + r(r0 − 4r)b′(r)

)
− r0(r0 + r)b(r)

]−1

+

+
[
2ϵ(1 + ϵ)r2 (b(r)− rb′(r))

(
r
(
−r20 − 4r0r + 8r2

)
b′(r) +

−4r20r + r3(r0 − 4r)b′′(r) + r0(5r0 + 4r)b(r)
)]

×

×
[(
r0(r0 + r)b(r)− r

(
r20 + r(r0 − 4r)b′(r)

))2]−1

+

+
[
r
(
r20 + r(r0 − 4r)b′(r)

)
− r0(r0 + r)b(r)

]−3 ×

×
[
2ϵ(1 + ϵ)r(r − b(r))

(
r20(r0 + r)

(
5r20 + 54r0r + 32r2

)
b(r)2 +

+r0rb(r)
(
r2(r0 + r)

((
3r20 + 8r0r − 24r2

)
b′′(r)− 2r2(r0 − 4r)b(3)(r)

)
+

−r20
(
9r20 + 90r0r + 64r2

)
+

−
(
r40 + 28r30r + 80r20r

2 − 192r0r
3 − 160r4

)
b′(r)

)
+

+r2
(
4
(
r50 + 8r40r + 2(ϵ− 1)r13

)
+

+r(r0 − 4r)(r0 + 2r)
(
r20 + 20r0r − 16r2

)
b′(r)2 +

+r20r
2
((
−3r20 − 8r0r + 24r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)
+

+b′(r)
(
r3(r0 − 4r)

((
−3r20 − 8r0r + 24r2

)
b′′(r) + 2r2(r0 − 4r)b(3)(r)

)
+

+r20
(
r30 + 26r20r + 40r0r

2 − 160r3
))))]]}

. (3.15)
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In this way, the null energy condition [84, 92] at the throat, for the metric

(3.4), that is for b(r)
r

=
(
r0
r

)β+1
, is expressed as

ρ+ p|r0 =
[
3(1− 3β)2

]−1

{
(1 + ϵ)

(
3β − 1

2r20

)1+ϵ [
6 + β − 3β2(8 + β) +

+(1 + ϵ) [−5 + β(1 + 3β(3 + β))]
]}

≥ 0 , (3.16)

while, for the metric (3.5), i.e. for b(r)
r

= r0
1+αr

, it is

ρ+ p|r0 = −

{
(1 + ϵ)

(
−r0 + 3

2r30

)1+ϵ [
(r0 − 1) [r0(5r0 + 9)− 6] (1 + ϵ) +

−2
[
r0
(
3r20 + r0 − 15

)
+ 3
]]}[

3r0(r0 + 3)2
]−1 ≥ 0 . (3.17)

Another aspect to check is the flare-out condition [108]

b′(r)r − b(r)

2b(r)2

∣∣∣∣∣
r0

< 0 , (3.18)

which becomes, for the metric (3.4) at the throat

−1 + β

2r0
< 0 → β > −1 . (3.19)

In the other case, it is fulfilled for

−r0 − 1

2r20
< 0 → r0 > 1 , (3.20)

provided that r0 > 0. The consistency of our model is guaranteed in both
cases. These results allow to give necessary conditions on the function b(r)/r
but they are not sufficient to show that the form of b(r) is of the form of a
polynomial. To ensure this hypothesis, we assume that the sound speed, i.e.
the variation of the pressure with respect to the density, is negligibly small
[109]. Combining this additional requirement, we stabilize the solution as we
shall show below.
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3.1.2 The stability condition and the sound speed

We require the solutions to be stable, besides being traversable. This reflects
to the stability of fluids inside the throat, with the hypothesis of satisfying
the above energy conditions.
Thus, let us consider the perturbation condition by means of the adiabatic
sound speed, cs, i.e. we assume the sound speed definition in adiabatic
perturbations, in analogy to what happens in fluid dynamics [110, 111]. So,
defining the adiabatic sound speed by [112, 113, 114]

c2s =

(
∂p

∂ρ

)
S

, (3.21)

we can guarantee how perturbations affect solutions analyzing its value within
the throat. Hence, the sound speed is essential to guarantee the viability of
our approximated versions of b/r. The above expression for cs can be speci-
fied as

dp

dρ

∣∣∣∣∣
r0

= 0 . (3.22)

Plugging Eqs. (3.14) and (3.15) in Eq. (3.22) and considering
b(r)

r
=
(r0
r

)β+1

,

we get the following stability condition for the metric (3.4)

147− 32r80ϵ(ϵ− 1)(1 + β)− 4(1 + ϵ)2(1 + β)[5− 3β(2 + β)]2 +

+β{−428 + β[−926 + 3β(148 + β(161 + 24β))]}+
−(1 + ϵ){45 + β[−288 + β(−658 + 3β(60 + β(95 + 12β)))]} ×

×
{
3
[
16r80ϵ(ϵ− 1)(1 + β) + 2(1 + ϵ)2(1 + β)[5− 3β(2 + β)]2 +

−55 + (1 + ϵ)(1 + β)[5 + β(−113 + 3β(−37 + β(19 + 6β)))] +

+β[166− β(−400 + 3β(38 + β(67 + 12β)))]
]}−1

= 0 . (3.23)
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Similarly, by considering
b(r)

r
=

r0
1 + αr

, we get the stability condition for

the metric (3.5)

1

3

{
−2− r0(r0 + 3)

[
r0
(
r20(35(1 + ϵ)− 37)− 12r0(ϵ+ 2)− 177(1 + ϵ) +

+135
)
+ 90(1 + ϵ)− 54

][
r0 + 36(7− 5(1 + ϵ)) +

(
−714 + r0(393 +

+r0(389 + r0(−137 + r0(32(r0 − 1)r70 − 55))))) + r0(1 + ϵ)(354 +

+r0(−39 + r0(−163 + r0(−48r90 + 48r80 + 5r0 + 23)))) + 2(r0 − 1)(1 + ϵ)2 ×

×(36 + r0(−108 + r0(21 + r0(8r
9
0 + 25r0 + 90))))

]−1}
= 0 . (3.24)

We can therefore analyze the consequence of such conditions for our wormhole
solutions as reported in the next subsection. The corresponding results are
clearly numerical since no analytical solutions can be obtained integrating
the above stability conditions3 coming from cs = 0.

3.1.3 The wormhole solutions

In the case of metric (3.4), we have determined a class of wormhole solutions
satisfying the three above conditions, namely the null energy condition (3.16),
the flare-out condition (3.19) and the stability condition (3.23). In particular,
once the value of the β parameter is fixed, we determine the wormhole throat
(as a function of ϵ) and the values of ϵ that satisfy Eqs. (3.16), (3.19), (3.23)
and the condition r0 > 0. We have summarized the results obtained in Table
3.1. In particular, we note that ϵ = 1

2
, i.e. f(R) = R3/2, is obtained in three

cases4

1. β = 7 ⇒ r0 ≃ 3.632;

2. β = 8 ⇒ r0 ≃ 3.862;

3. β = 9 ⇒ r0 ≃ 4.078.

3The assumption cs = 0 is also used in astrophysics to guarantee stability of virialized
structures. See e.g. [115].

4f(R) gravity with 1+ϵ = 3/2 is particularly relevant for cosmological and astrophysical
applications. It is related to invertible conformal transformation [55]. It allows a curvature
interpretation of dark matter phenomena according to MOND [116] and the transition from
decelerated to accelerated regimes in cosmology [117].
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Figure 3.1: Interpolations of r0 vs β and of r0 vs ϵ. The curves have been
obtained through Wolfram Mathematica and represent an extrapolation based
on the fitting functions 3.03 · 10−5x4 + 1.13 · 10−3x3 − 4.65 · 10−2x2 + 8.01 ·
10−1x+1.79 and 2.43·10−6x4−1.43·10−4x3+3.30·10−3x2−3.80·10−2x+1.24
respectively for the left and right plots.
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Figure 3.2: Comparison between the shape functions of our models (red and
blue lines), the standard approach proposed in [91] (grey line) and the model
proposed in [99] (green line). The value of the β parameter chosen for our
model (3.3a) is β = 2. Our Padé expansion better adapts to the standard
approach than other phenomenological ansatz.
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1 no solution no solution

2 8

√
5332ϵ2+14653ϵ+150

96ϵ−96ϵ2
−2.986 ≲ ϵ < −1 ∪ 0.965 ≲ ϵ < 1

3 8

√
2(100ϵ2+317ϵ−14)

(1−ϵ)ϵ
−3.213 ≲ ϵ < −1 ∪ 0.800 ≲ ϵ < 1

4 8

√
89780ϵ2+289269ϵ−9922

160(1−ϵ)ϵ
−3.256 ≲ ϵ < −1 ∪ 0.689 ≲ ϵ < 1

5 8

√
15000ϵ2+48455ϵ−1372

12(1−ϵ)ϵ
−3.258 ≲ ϵ < −1 ∪ 0.607 ≲ ϵ < 1

6 8

√
540988ϵ2+1744781ϵ−42194

224(1−ϵ)ϵ
−3.249 ≲ ϵ < −1 ∪ 0.542 ≲ ϵ < 1

7 8

√
8464ϵ2+27216ϵ−575

2(1−ϵ)ϵ
−3.236 ≲ ϵ < −1 ∪ 0.489 ≲ ϵ < 1

8 8

√
1988100ϵ2+6370997ϵ−119554

288(1−ϵ)ϵ
−3.223 ≲ ϵ < −1 ∪ 0.446 ≲ ϵ < 1

9 8

√
213160ϵ2+680759ϵ−11492

20(1−ϵ)ϵ
−3.210 ≲ ϵ < −1 ∪ 0.409 ≲ ϵ < 1

Table 3.1: Wormhole solutions for different values of the β parameter. Here
we adopted the parametrization given in Eq. (3.3a). The allowed range values
of ϵ are also reported.
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ϵ r0

0 no solution
2 1.150
4 1.114
6 1.090
8 1.075
10 1.064
12 1.056
14 1.050
16 1.045
18 1.040

Table 3.2: Wormhole solutions for different values of ϵ. Here we adopted the
parametrization given in Eq. (3.3b).

These correspond to three wormhole metrics, respectively

1. ds2 = er0/rdt2 − 1

1−
(

r0
r

)8dr2 − r2dΩ2 ;

2. ds2 = er0/rdt2 − 1

1−
(

r0
r

)9dr2 − r2dΩ2 ;

3. ds2 = er0/rdt2 − 1

1−
(

r0
r

)10dr2 − r2dΩ2 .

In the case of metric (3.5), the validity of NEC (3.17) points out that 1 + ϵ
must be an integer. For ϵ integer and odd, we found no solutions satisfying
also the flare-out condition (3.20). Consequently the only solutions that sat-
isfy all three conditions (3.17), (3.20) and (3.24) are those with ϵ integer and
even. Therefore, once the value of ϵ is fixed, we determine the corresponding
wormhole throat. The results are summarized in Table 3.2. We note that
ϵ = 0, implying GR, leads to no solutions as the NEC is not satisfied. The
theoretical consequences of our approach are summarized below.

3.2 Theoretical considerations

We assumed a power-law form for f(R), where GR is recovered for ϵ = 0.
From our analyses, it is possible to provide two classes of the shape function
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b(r)/r. The first possibility, already adopted in literature, represents a class
of inverse powers with respect to r [98, 99]. This approach departs signifi-
cantly from the one provided in the original work by Morris and Thorne [91]
as it appears evident from Fig. 3.1. Even though appealing, these possibili-
ties are therefore disfavored than the Padé expansion that we proposed above.
The (0, 1) Padé polynomial resembles much more the Morris-Thorne shape
function and candidates as a suitable approach that turns out to be model-
independent in reconstructing b/r. The expansion of b/r is constructed by
means of rational series. The only dependence from the model occurs as one
chooses the order (n,m). This approach is significantly better than ad hoc
functions postulated at the beginning over b. In this respect, it is possible to
provide two cases summarized in Tabs. I and II. In Tab. I, we consider the
case of inverse power law approximation. It appears evident that the case
f ∼ R2 is not recovered indicating small departures from the Starobinsky
scalaron model [52]. The inverse solution, i.e. 1+ ϵ negative, is not excluded.
In this case the repulsive effects are stronger than the case of positive 1 + ϵ.
On the other hand, the Padé approximation excludes GR as well as the pre-
vious case but shows very small departures from r0, indicating moreover that
the Starobinsky scalaron is excluded again. In particular, the energy con-
ditions are not fulfilled in the case of odd ϵ. The results are well-suited in
the Padé scenario and candidate to reconstruct the shape function without
imposing any ad hoc functions. In all the aforementioned cases, it is possible
to notice that ϵ is quite small, confirming that only small deviations from
GR are permitted as soon as one considers wormholes in extended theories
of gravity with vanishing sound speed.

3.2.1 Final remarks

We discovered a class of exact traversable wormhole solutions. There are
currently no experiments that can directly observe a wormhole. However,
possible tests, similar to those discussed in the previous sections, are being
investigated, particularly time delay and gravitational redshift. Our idea
is to use the approaches discussed in Ref. [118] to our wormhole solution.
Considering that this solution was found in a specific f(R) theory (power -
law type), such a test would allow us to fix the f(R) theory constraints in the
strong field. As a result, we would be able to conduct a comprehensive test of
the theory on every energy scale, combining the results obtainable in the weak
field (see Sec. 1.3.2 and Sec. 1.4) with those obtainable in the strong field.



Chapter 4

Experimental tests of gravity

Galileo Galilei described the so-called “scientific method”for the first time
in the history of science and philosophy in his 1632 work [119]. Today re-
searchers are still guided by “sensible experiences and necessary demonstra-
tions”to understand natural phenomena. Events observation is the first step
toward knowledge, followed by mathematical hypothesis formulation. The
process culminates in the experimental tests of the theoretical model, allow-
ing for its definitive validation and, therefore, its conversion from hypothesis
to natural law. Theory and experiment are, in this sense, two sides of the
same coin, two aspects of scientific research that are inextricably intertwined.
In other words, one cannot exist without the other.
In this chapter, we look at the final step of the scientific method, focusing
on a widely employed technique, in the weak field, in testing the previously
examined theoretical models. It is organized as follows. We begin by intro-
ducing the LR, which has been for years and still is one of the most reliable
methods for getting measurements of theoretical parameters in the Solar Sys-
tem. Following that, we lay a particular emphasis on the optical components
of the LR system. We show the last results of optical simulations of the
laser retroreflectors implemented in this technique, focusing on two space
missions, LARES-2 and MoonLIGHT. Finally, we analyze the data collected
so far, which are currently being processed with PEP.

119
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4.1 The Laser Ranging

At the end of the 1950s, a gravitational research group led by R. H. Dicke
at Princeton University was developing an experiment to measure possible
variations in the gravitational constant G [120]. Thus, the concept of sending
laser pulses from ground stations to optical retroreflectors on Earth-orbiting
satellites was born. When NASA used ruby lasers to point towards the Bea-
con Explorer 22 (BE-B) satellite for the first time in 1964, it was clear that
this technique, known as LR, could have provided a lot of information if used
with artificial satellites as well as natural ones, like the Moon.

Figure 4.1: Matera LR Observatory of the Italian Space Agency (ASI).
Credits: Dr. G. Bianco (ASI - Space Geodesy Center (CGS)).

In general, the LR technique involves the measurements of the time of flight
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(ToF) of short laser pulses fired from International Laser Ranging Service1

(ILRS) stations on Earth to CCRs placed on a satellite and then retrore-
flected back to Earth. If the satellite is the Moon, we refer to it as Lunar
Laser Ranging (LLR); otherwise, we refer to it as Satellite Laser Ranging
(SLR). LR, then, provides an indirect measure of the distance between the
station and the satellite.
We must consider several factors when performing LF measurements. First of
all, the atmosphere diverts the laser by a few arcseconds, resulting in a beam
that is many kilometers wide when it reaches the satellite. For example, 1
arcsec corresponds to approximately 1.8 km on the Moon. Additionally, the
laser beam diverges as it returns to Earth, both due to the atmosphere and
the diffraction caused by the CCRs. All of this causes a total enlargement of
the order of ten kilometers (in the case of the Earth-Moon, the laser beam
will have a diameter of about 15 km, see Fig. 4.2). Furthermore, each laser
pulse sent by the stations contains approximately 300 quadrillion photons,
but only a fraction will hit the retroreflectors and then return to Earth (about
1 part in 30 million).

Figure 4.2: LLR operation diagram.

1ILRS was founded in September 1998 to support geodesy, geophysics, and lunar science
research programs. It collaborates on the design and construction of retroreflectors for new
satellite missions in order to maximize the quality and quantity of data collected, as well
as on scientific programs to optimize data collection.
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Moreover, if the satellite is natural, its physical characteristics must be con-
sidered, such as the effects of librations and regolith motion on the Moon.
Finally, the relative motion between the Earth and the satellite causes the
VA, see Eq. (2.83). Therefore, improving the accuracy of LR measurements
is a challenging but ambitious goal.

4.2 Cube Corner Retroreflectors

In this section, we analyze, in detail, one of the fundamental optical compo-
nents in realizing the LR: the CCR.
CCRs are devices made up of three perpendicular reflecting surfaces (making
a cube angle) that retroreflect light back in the same direction it came. Each
reflection inverts a component of the incoming light’s velocity vector, with
components Vx, Vy, and Vz. After three reflections, the velocity components
are −Vx, −Vy, and −Vz, and the light returns to the source (see Fig. 4.3).

Figure 4.3: Operation diagram of the light reflection inside the CCR. Credits:
SCF Lab group (INFN - LNF).

However, we have to emphasize that the reflected beam is precisely (anti)
parallel to the incident one only if the CCR is perfect, that is, if the an-
gles between the reflecting surfaces are exactly 90◦ or, alternatively, if all
Dihedral Angle Offsets are zero (DAOs = (0, 0, 0) arcsec). Otherwise, if any
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of the DAOs is even slightly different from zero, it will split into two, four,
or six beams depending on whether one, two, or all three angles are not
90◦ [121]. Furthermore, we observe that since a CCR is made up of three
reflective faces, a ray must hit each face at least once to be retroreflected,
and there are six possible ways to achieve it. This results in six possible
ray paths within the CCR, each of which could have different polarization
properties [122]. CCRs are typically made of fused silica and are installed in
passive, lightweight, maintenance-free, and long-lasting Laser Retroreflector
Arrays (LRAs). There are different types of CCRs; however, we will focus
on uncoated and coated CCRs. The term uncoated CCRs refers to those
that do not have a metallic coating on the inside. Their functionality is
based on Total Internal Reflection (TIR) since the angle of incidence of a
light beam on the CCR’s back face exceeds the critical angle between glass
and air (or glass and vacuum), which is approximately 45◦. This minimizes
the possibility of thermal effects that would occur in the absence of TIR, as
some of the energy carried by the light would pass through the back faces
of the CCR, causing perturbations. Uncoated CCRs have an approximately
17◦ field of view. The effects of polarization are significant for them: if the
incident beam has only one type of polarization, either vertical or horizontal,
the one that emerges from the CCR will have both types of polarization.
Due to their properties, uncoated CCRs are well-suited for high orbits (as
in the Earth-Moon system). Conversely, the CCRs coated ’s main feature is
the reflective metallic film that covers their back. As a result, they operate
via metallic reflection. This internal coating can absorb some of the laser
beam’s energy and convert it into heat. Consequently, they are subject to
thermal gradients, unlike the previous ones. Coated CCRs have a field of
view of approximately 56◦, therefore greater than uncoated ones. Addition-
ally, polarization has no effect: the outgoing beam’s polarization is identical
to that of the incoming laser. Due to these characteristics, coated CCRs are
primarily employed in low orbits.

To analyze the optical response of a CCR when hit by a laser beam, we
must first introduce some quantities, such as its peak cross-section, and its
Far Field Diffraction Pattern (FFDP).
The Optical Cross-section (OCS) of a CCR provides a measure of the max-
imum amount of radiant energy reflected by the device towards the source.
For a CCR with a circular section of area A, illuminated by a laser at a
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wavelength λ, the OCS is defined as

OCS =
A2

π (1.22λ)2
. (4.1)

It, therefore, has the dimensions of an area; typically, we express it in million
square meters.
Let us consider a λ-wavelength light beam incident perpendicularly on the
circular surface of a CCR with a diameter2 of D.

Figure 4.4: Normal incidence on the
circular surface of the CCR [123].
Here, D is the diameter of the CCR,
H its height. H is related to D by
H =

√
2
2
D.

Credits: J. J. Degnan.

The cross-section peak [123] is de-
fined as

σcc =
π3ρD4

4λ2
, (4.2)

where ρ denotes the reflectivity,
which varies depending on the type
of CCR considered. To be precise,
ρ = 0.78 for a coated CCR, and ρ =
0.93 for an uncoated one. According
to Eq. (4.2), the peak intensity is
proportional to the fourth power of
the diameter and to the reflectivity
for normal incidence. Additionally,
it is inversely proportional to the
wavelength’s square root. This im-
plies that, fixed the reflectivity and
the laser beam wavelength, the peak

intensity of CCRs with larger diameters should be much higher.
However, in the case of non-normal incidence, the peak cross-section is re-
duced by an amount

η(θinc) =
2

π

(
sin−1

√
1− tan2 θref −

√
2 tan θref

)
cos θinc. (4.3)

Here, θinc is the incidence angle of the laser beam, while θref is the angle of
refraction, which is related to the first by Snell’s law

θref = sin−1

(
sin θinc
n

)
, (4.4)

2D is also known as the CCR’s aperture.
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with n the cube index of refraction. In other words,

σeff (θinc) = η2(θinc)σcc. (4.5)

The FFDP is the angular distribution of the intensity of the returning light
(from the CCR towards the source). Since the retroreflector has a circular
aperture, the FFDP approaches that of the Airy disk pattern

σ(x) = σcc

[
2J1(x)

x

]2
, (4.6)

where the argument x is related to the off-axis angle3 θ by

x =
πD

λ
sin θ. (4.7)

Instead, J1(x) is the Bessel function of order 1

J1(x) =
x

2

∞∑
m=0

(−1)m

m!(m+ 1)!

(x
2

)2m
. (4.8)

In general, the FFDP of an uncoated CCR differs from that of a coated
CCR. In fact, we should remember that polarization effects are significant
for the former. These effects involve a phase shift between the six paths of the
light ray inside the CCR. As a result, the FFDP consists of a central circle
surrounded by six lesser-intensity lateral lobes. Indeed, the peak cross-section
of each lateral lobe is proportional to σcc by a factor equal to 1/(2N)2, with
N the number of cubic angles [123]. Additionally, when a CCR is uncoated,
the intensity of the central peak is reduced by 26% compared to the case of
a perfectly circular aperture (Airy disk) [124]. A coated CCR, on the other
hand, is not sensitive to polarization, hence its FFDP is very similar to that
of an Airy disk, with only a central lobe (at most surrounded by rings of
lesser intensity).
In conclusion, OCS plot and FFDP are essential for understanding the return
of light observed when the laser comes back to the station. However, these
must be examined in light of the VA. Indeed, to ensure that as much signal
as possible reaches the station, which has moved relative to the satellite by
an angle equal to the VA since the laser was sent, we must ensure that there
is an optical return to the central peak or at least to the outer rings of the
diffraction pattern.

3The off-axis angle of a mirror is the angle between its optical and focal axes.



4.3. OPTICAL SIMULATIONS WITH CODE V 126

4.3 Optical simulations with Code V

Optical simulations of CCR response are performed with Code V, a software
developed by the American company Synopsys. It is used to model, opti-
mize, and investigate optical systems in a multitude of applications. It is
particularly useful in the aerospace section, where it provides analyses on
the characteristics of

• retroreflectors,

• mirrors,

• IR spectrometers,

• telescopes,

• coronographs,

• catadioptrics,

• stellar interferometers,

• optics for CMB experiments.

Besides, one of its most important aerospace applications was the lens cor-
rection for the Hubble Space Telescope. Code V features a graphical user
interface that enables command entry and simulation execution. However,
the software also supports the use of macros written in Macro PLUS pro-
gramming language4. In this way, his basic capabilities can be “expanded”,
allowing Code V to investigate many other physical situations.
With the SCF Lab5 group of the Frascati National Laboratories, we specif-
ically deal with the optical simulations of those CCRs implemented in the
LR space missions, on which we are currently working. In order to achieve
this, we employ the Macro programming language. We initialize each macro
by inserting the specifications of the CCR we want to analyze, that is

• diameter (or aperture),

• DAOs,

4Macros are written on a text editor and then interpreted by the software.
5Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization

Facilities Laboratory.
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• type of polarization,

• laser beam wavelength,

• incidence angle of the laser beam on the CCR’s circular surface,

• material,

• reflectivity.

Additionally, the grid’s dimensions and spacing are appropriately entered to
produce an image with the desired resolution and size. After that, we imple-
ment Eqs. (4.2) - (4.6), described in the previous section, in the programming
language. Thus, each run produces three plots

1. the average energy distribution,

2. the energy distribution of the total pattern as a function of the VA,
integrated over the azimuth6,

3. the energy distribution of the total pattern as a function of the azimuth,
fixed the VA,

in other words, the OCS plot and the FFDP. This enables us to compare the
simulated results, which are based on theoretical predictions, with the exper-
imental tests obtained at the SCF Lab group laboratory. The combination
of optical simulations and laboratory tests enables us to fully understand the
CCR’s behavior once launched into space.
All simulations performed are summarized in Tab. 4.1 and are available
at the SCF Lab group. In the next sections, we show only some of these,
focusing on LARES-2 and MoonLIGHT missions.

6The plot is the result of the integration of the intensity plots as a function of the VA
for each azimuth angle value θ ∈ [0, 2π].
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CCRs diameters (mm) 7.16 (Asteroids/Phobos),
and corresponding space missions 10/12.7 (Earth observations),

25.4 (LARES-2), 38.1 (LAGEOS/LARES),
50/50.8/63.5 (of purely academic interest),

75/76.2 (Earth-Moon L1),
100 (MoonLIGHT).

CCRs Dihedral Angle Offsets (arcsec) (0.1, 0.1, 0.5), (0.1, 0.5, 0.1),
(0.5, 0.1, 0.1), (0.5, 0.5, 0.5),

(0.25, 0.25, 0.25), (0.75, 0.75, 0.75),
(−0.5,−0.5,−0.5), (−0.25,−0.25,−0.25),

(−0.75,−0.75,−0.75), (1, 1, 1), (−1,−1,−1).
CCRs coating Uncoated, coated.

Laser beam polarization Linear, circular.
Laser beam wavelenght (nm) 532, 1064.

Table 4.1: List of simulations available at the SCF Lab group (INFN - LNF).

4.3.1 LARES-2

LARES-2 is a new satellite that will be launched into orbit around the Earth.
It is an improved version of the previous LARES, LAGEOS7, and LAGEOS2
missions. The main goal of LARES-2 is to provide tests of gravitational
theories in the Solar System. It was specifically designed, like the previous
ones, to measure the Lense-Thirring effect (see Sec. 1.5). Since it is a weak
phenomenon in the Solar System, observing it requires a high level of ac-
curacy. LARES-2 has been designed with specific characteristics to achieve
this. It is a spherical passive satellite made of a single block of nickel alloy
of high density. It is covered with 303 uncoated CCRs of 25.4 mm diameter.
The satellite has a diameter of 420 mm and a mass of ∼ 395 kg. It will
be launched into a nearly circular orbit (eccentricity approximately 0.0025),
at an altitude of 5890 km. All of these characteristics aim to minimize the
surface to mass ratio and thus the effects of radiation pressure, atmospheric
resistance, and thermal anisotropies.
However, perturbations caused by the Earth’s deviance from spherical sym-
metry must be considered as well. The gravitational potential of the Earth

7LAser GEOdynamics Satellites.
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Figure 4.5: LARES-2. Credits: SCF Lab group (INFN - LNF).

can be expressed in zonal spherical harmonics [125, 126],

U =
M

r

[
1−

∞∑
n=2

Jn

(
RE

r

)n

Pn(sin θ)

]
, (4.9)

where RE is the mean radius of the Earth, Pn the Legendre polynomial of
degree n and argument sin θ, with θ the latitude, and Jn the gravitational
field’s zonal harmonic coefficients.
Assuming axial symmetry, the precession caused by the first two even terms8

of Eq. (4.9) is [127]

Ω̇class = −3

2

2π

P

(
RE

a

)2
cos I

(1− e2)2

{
J2 +

+J4

[
5

8

(
RE

a

)2 (
7 sin2 I − 4

) 1 + 3
2
e2

(1− e2)2

]
+ ...

}
+ ..., (4.10)

8Remember that only the even terms contribute to the precession
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where a is the orbit’s major semiaxis, e is the eccentricity, I is the orbital
inclination, P is the orbital period, and J2n are the even zonal harmonic
coefficients.
A satellite such as LAGEOS has Ω̇class ≃ 126◦/year, compared to only
Ω̇LT ≃ 31milliarcsec/year. As a result, the Lense-Thirring phenomenon can-
not be observed. Consequently, LARES-2 was designed, which has similar
dimensions to LAGEOS but has an additional inclination that causes its clas-
sical precession to be the same in magnitude but in the opposite direction.
In contrast, the magnitude, and direction of the Lense-Thirring precession
will be identical for both satellites. Thus, the Lense-Thirring effect will be
quantifiable.
Concerning optics, let us compare the OCS plot and FFDP of a 25.4 mm
uncoated CCR (Figs. 4.6 - 4.8) to those of a 38.1 mm uncoated CCR (Figs.
4.9 - 4.11), both under the following conditions

• uncoated,

• null DAOs (perfect retroreflectors),

• linear polarization,

• 532 nm laser,

• normal incidence.

As expected from Eq. (4.2), the central peak intensity is greater for a CCR
with a larger diameter. However, in the case of LARES-2, the first local
minimum shifts closer to 35µrad, which is the VA value of both satellites,
see Eq. (2.83). This is critical as we require a return of light also and above all
around the VA value since the station experienced an angular displacement
of 35µrad relative to the satellite’s position during the laser’s trip.
In addition to the optical analysis, thermal analysis is required9. Thermal
gradients within a CCR are generally dependent on the average free path
of the light rays: the smaller the dimensions, the less thermal degradation
occurs. However, it is necessary to consider the orbit into which the satellite
carrying the CCR is launched, since overheating effects may occur if the
retroreflector’s dimensions are too small.

9Thermal simulations are available at the SCF Lab group. It is not a subject of analysis
in this thesis.
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In conclusion, optimization is required from both an optical and thermal
standpoint. The comprehensive analysis revealed that the 25.4 mm CCRs
outperform the 38.1 mm CCRs for this specific mission.

Figure 4.6: LARES-2. The FFDP of an uncoated 25.4 mm CCR with null
DAOs shows a central lobe with the six lateral ones of lower intensity. The
peak intensity turns out to be at 2.78 msm, in perfect agreement with the
theoretical expected value of 2.79 msm predicted by Eq. (4.2).
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Figure 4.7: LARES-2. Intensity vs VA plot. Besides the central peak inten-
sity, we see a first minimum (the first dark ring in the diffraction pattern)
nearby to 20µrad. Additionally, there is a first local maximum at 30µrad,
that is, at a value close to the VA. In particular, for VA = 35µrad, the in-
tensity is ∼ 0.56 msm.

Figure 4.8: LARES-2. Intensity at VA plot. This is the section of the
FFDP that corresponds to VA = 35µrad. Therefore, we can observe how the
intensity changes as the azimuth angle θ varies in the interval [0, 2π], when
VA = 35µrad.
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Figure 4.9: LAGEOS/LARES. The FFDP of an uncoated 38.1 mm CCR
with null DAOs shows a central lobe with the six lateral ones of lower inten-
sity. The peak intensity turns out to be at 14.1 msm, in perfect agreement
with the theoretical expected value of 14.2 msm predicted by Eq. (4.2).

Figure 4.10: LAGEOS/LARES. Intensity vs VA plot. Besides the central
peak intensity, we see a first minimum (the first dark ring in the diffraction
pattern) nearby to 14µrad. Additionally, there is a first local maximum at
27.5µrad. In particular, for VA = 35µrad, the intensity is ∼ 0.29 msm.
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Figure 4.11: LAGEOS/LARES. Intensity at VA plot. This is the section of
the FFDP that corresponds to VA = 35µrad. Therefore, we can observe how
the intensity changes as the azimuth angle θ varies in the interval [0, 2π],
when VA = 35µrad.

4.3.2 MoonLIGHT

Since 1969, when the first Apollo mission was launched, LLR has been used
to determine the distance between an Earth-based laser station and the lunar
surface [128]. With laser tracking of the Moon, it is possible to investigate
the dynamics of the Earth-Moon system, gravitational physics, geodesy, and
the lunar interior. The early experiments used CCRs mounted on LRAs.
Currently, there are five of them on the lunar surface: Apollo 11, Apollo 14,
Apollo 15, Luna 17, and Luna 21. The first two are made up of 100 CCRs
with a 38 mm diameter. Apollo 15 array is larger than the previous ones;
it is hexagonal in shape and contains 300 CCRs with a diameter of 38 mm.
Due to its dimensions, it is primarily used for LLR measurements. Finally,
the two Lunokhod rovers were equipped with small arrays consisting of 14
CCRs organized in a triangular configuration.
As stated in Sec. 4.1, the first issue that must be addressed when conduct-
ing these types of measurements is the requirement for a collimated laser
beam. Indeed, the atmosphere’s turbulence distorts the beam (see Fig. 4.2),
resulting in a divergence of about 1 arcsec. On the Moon, since 1 arcsec
corresponds to 1.8 km, it has a diameter of about 2 km. The reflected laser,
in turn, exhibits a divergence (for Apollo CCRs it is of about 8 arcsec).
Thus, the beam’s diameter when it reaches the Earth station is approxi-
mately 15 km.
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Another issue with Apollo arrays is that they are subject to longitudinal
lunar librations. During the lunar phase (27 days), the Moon rotates at a
slower or faster rate than its orbital motion, depending on whether it is at
perigee or apogee, revealing up to 8 degrees of longitude on the opposite side,
eastern or western. As a result of this phenomenon, the Apollo arrays are
moved so that a corner is several centimeters away from the opposite one,
increasing the size of the pulse returning to Earth. The pulse’s expansion
will be proportional to the array’s physical size and to the increase in the
Moon - Earth distance (in the position where the libration phenomena are
at their maximum). Consequently, the precision of distance measurements
cannot be less than a few centimeters (for a single normal point).
To solve these problems, a new CCR was developed whose performance
is unaffected by either the lunar librations or the regolith’s motion. The
SCF Lab’s collaboration with the University of Maryland resulted in the
idea of replacing arrays made up of numerous small CCRs with a series of
single larger CCRs having a diameter of 100 mm and positioned separately
on the lunar surface [129, 130]. MoonLIGHT (Moon Laser Instrumentation
for General Relativity High Accuracy Tests) CCR has the same design as the
Apollo cubes (circular front face) but is larger in diameter.

Figure 4.12: Comparison between MoonLIGHT CCR (on the left) and Apollo
CCR (on the right). Credits: SCF Lab group (INFN - LNF).

Instead of a single pulse, several short pulses returned with the same dimen-
sions as the incident ones, achieving an accuracy of tens of microns (see Fig.
4.13): the objective is to have a retroreflector with the same optical response
as half of the Apollo 15 array.
Each MoonLIGHT CCR is integrated into a protective case. The first model
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Figure 4.13: Diagram of the operation laser pulses return towards Earth
station for the 1st generation LLR (Apollo), on the left, and for the 2nd

generation LLR (MoonLIGHT), on the right. Credits: SCF Lab group (INFN
- LNF).
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designed is that of “fixed pointing”. A metal case encloses the CCR with the
central face facing the Earth. The structure is attached to the host lander.
The position of the CCR relative to the expected average flatness of the local
landing site is fixed before the launch and cannot be changed. This method,
however, is only effective if the landing is very accurate, which is rather un-
likely. Therefore, this method is highly dependent on the landing accuracy.
Due to the difficulty of landing with high precision, the SCF Lab group and
ESA (European Space Agency) are developing and building MPac (Moon-
LIGHT Pointing actuator). An electronic system controls the movement of
the structure in this new model of the CCR cover. Thus, the retroreflector
pointing is adjusted appropriately each time based on the position of the
CCR central face relative to the Earth.
MoonLIGHT CCRs, like for LARES-2, are subjected to laboratory tests and
optical simulations before being launched into orbit. As is usual, simulations
are performed with Code V and every macro’s run generates the FFDP and
OCS plots. The simulated results for a 100 mm diameter uncoated CCR
with null DAOs, 532 nm laser with linear polarization, and normal incidence
are shown in Figs. 4.14 - 4.16. Let us observe that, according to Eq. (2.83),
VA = 4.3µrad in the case of the Earth-Moon system.

Figure 4.14: The FFDP of an uncoated 100 mm CCR with null DAOs shows
a central lobe with the six lateral ones of lower intensity. The peak intensity
turns out to be at 669 msm, in agreement with the theoretical expected value
of 672 msm predicted by Eq. (4.2).
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Figure 4.15: Intensity vs VA plot. Besides the central peak intensity, we
see a first local maximum at 7.2µrad. In particular, for VA = 4.3µrad, the
intensity is ∼ 191 msm.

Figure 4.16: Intensity at VA plot. This is the section of the FFDP that
corresponds to VA = 4.3µrad. Therefore, we can observe how the intensity
changes as the azimuth angle θ varies in the interval [0, 2π], when VA =
4.3µrad.
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4.4 Planetary Ephemeris Program

PEP is a software developed by I. Shapiro in the 1960s at the Harvard’s Cen-
ter for Astrophysics (CfA). Originally designed to generate lunar ephemerids,
it was shortly after used for other applications, including comparing GR pre-
dictions to observations and predicting the variability of the gravitational
constant in the weak field regime.

4.4.1 Installation and Big Test

PEP is written in FORTRAN programming language and can be installed
on any POSIX-compliant operating system (such as UNIX, Linux, macOS).
To install PEP, we need to download a package of files and copy these files
into a new directory called peptop. Following that, we create the bin direc-
tory outside of peptop, which will contain the executable files (or links to
them). At this point, we execute a series of instructions well reported in Ref
[131]. We then proceed with the code setting to ensure that the installation
was successful. This setting is accomplished through a procedure known as
“Big Test”. This can be achieved using the commands

make bigtest

./bigtest

After that, we move to the bigtest directory and run

ls -ln*.verout.

This command checks that all files with the extension .verout have a size
that is compatible with the minimum allowed, which is 1116 bytes [131].

4.4.2 PEP operational method

PEP already contains a set of GR mathematical models for the Solar System,
each with its own set of free parameters that can be constrained through the
experimental data.
We are particularly interested in using PEP to estimate the parameters
achievable via the LR. Since the Cassini spacecraft has already provided
an estimate of γ [132], we are only concerned with the β PPN parameter.
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Furthermore, we focus on the LLR because it is the only mission for which
data is currently available among the LR missions.
To compute the observables, PEP

• integrates and solves the equations of motion to determine position and
velocity of the Sun, planets, and the Earth-Moon system barycenter;

• determines the displacement of the lunar reflector relative to the Moon’s
center of mass;

• determines the ranging station’s displacement relative to the Earth’s
center of mass.

Moreover, PEP calculates all these quantities in the Solar System Barycenter,
chosen as the reference frame by the software itself.
These estimates are based on data provided as normal points10. A normal
point (NP) is an alphanumeric string that contains information such as

• date (day, month, year, hour, minute, and second);

• ToF (in 10−13 s);

• ToF error (in ps);

• array (Apollo 11, Apollo 14, Apollo 15, Luna 1, Luna 2);

• LR station;

• number of photons;

• laser wavelength.

Each run of PEP generates three upper bounds for the β parameter, which
are inherent to the maximum sensitivity that the software can determine11.
These bounds values are conventionally denoted by δ1, δ2, and δ3.
δ1 is the sensitivity of the first convergent systematic run after the Big Test.
δ2 takes the results of the first simulation and improves them and, finally, δ3
takes the results of the second simulation and improves them again.
We calculate the mean value, the standard deviation, the maximum value,

10In the standard version provided by Nasa JPL.
11PEP does not yet provide the mean values.
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the minimum value, and the normal error for these bounds.
The mean value µi of δi for β is given by

µi =
1

N

N∑
j=1

δij, (4.11)

where N denotes the total number of available data for each run, while δij
are the values of δi (i = 1, 2, 3) obtained for each run j = 1, ... , N .
After calculating the mean value, we can determine the standard deviation
σi

σi =

√∑N
j=1

(
δij − µ

)2
N

. (4.12)

As a result, we calculate the normal error ϵi using

ϵi =

√∑N
j=1

(
δij − µ

)2
N − 1

. (4.13)

In this case, N − 1 appears in the denominator, rather than N as in the
standard deviation, because we cannot get an estimate from a sample with
length N = 1 since it has no internal variation. The presence of N − 1 in the
denominator reflects this impossibility, and thus we require at least N = 2
data for the equation to work correctly.

4.4.3 Results

In this section, we present the latest upper bounds that we have obtained for
β. These were achieved through the data provided by the LLR Astronomical
Observatories at McDonald, Haleakala, Grasse, Apollo, Wettzell, and Mat-
era, see Fig 4.17. Most of this data spans the years 1969 to 2016; only a
small part is dated until 2018, therefore not much significant in calculating
the upper bounds. The final results are summarized in Tab. 4.2, where we
report the mean value, the maximum value M , the minimum value m, the
standard deviation, and the normal error for δ1, δ2, and δ3.
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Figure 4.17: LLR data from 1969 to 2018. The plot represents the ToF as a
function of time. Here, ToF is expressed in units of 10−13 s, while time in
Julian Date. Each marker denotes a distinct Astronomical Observatory from
which data are collected.

δ1 δ2 δ3
µ 1.39 · 10−5 1.36 · 10−5 1.29 · 10−5

σ 1.63 · 10−7 4.23 · 10−7 5.93 · 10−7

M 1.42 · 10−5 1.41 · 10−5 1.40 · 10−5

m 1.37 · 10−5 1.30 · 10−5 1.21 · 10−5

ϵ 1.79 · 10−7 4.63 · 10−7 6.50 · 10−7

Table 4.2: Upper bounds δ1, δ2, and δ3 for the β PPN parameter.



Conclusions

A rigorous test of a gravitational theory requires the formulation of a the-
oretical framework, followed by the realization of experimental verification.
For this reason, the thesis work has been divided mainly into two parts: the
mathematical treatment of the physical phenomenon and the experimental
setting. An accurate theoretical model must take into account that gravity
manifests itself differently according to the gravitational scales. Therefore,
to provide an adequate phenomenological examination, we divided the the-
oretical treatment into three chapters, each of which proposes tests suitable
for distinct regimes.
The first concerns low gravity. This is undoubtedly the most explored regime,
given that the earliest proofs of the GR’s validity came from measurements
within the Solar System. Not only that but most of the satellites orbiting the
Earth were designed with the primary goal of measuring frame-dragging, one
of Einstein’s predicted effects. Nevertheless, so far only GR was extensively
tested in the weak field. Therefore, our aim is to begin studying weak effects
even in alternative gravity theories. To do this, we reviewed the PPN formal-
ism, which is the most suitable in the description of low gravity, and applied
it to a number of alternative metric theories. We started with Hornedski’s
theory, the most general extension of GR with scalar fields and second-order
equations. Indeed, the scalar-tensor theory, as well as the Brans-Dicke and
f(R) theories, can be reproduced from it. The PPN formalism of vector
tensor theories was also studied after that. Then, we determined the equa-
tions of motion for these new theoretical models in the PPN formalism using
Will’s rules. This is an important step in the testing process because most
of the software used to analyze data from the Solar System’s space missions,
including PEP, is based on integrations of the equations of motion. Finally,
for each of the different (non-vector) theories presented, we estimated the
Lense-Thirring precession in order to take advantage of the already planned
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space missions. This framework is only appropriate for the weak field. The
goal, however, should be to find a theory that can be used on any scale.
Thus, in the second chapter of the thesis, we suggest a test that is appli-
cable in three different gravity regimes: low, intermediate, and high. We
evaluated the red and blue shifts for distinct astrophysical and cosmological
sources. Specifically, we characterized two spacetimes, the first inspired by as-
trophysical configuration, exploring the consequences of the Zipoy-Voorhees
metric on NS and WD. The second based on cosmological consideration, us-
ing the Schwarzschild-de Sitter spacetime. By varying the free parameters
that enter the two metrics, we got feasible red and blue shift intervals and
interpreted our expectations in view of current experiments and limits. The
Zipoy-Voorhees metric, used to characterize NS and WD, showed that at
the level of Solar System, the δ free term is unbounded. Analogously, the
Schwarzschild-de Sitter solution, where we fixed the Λ Planck’s value, indi-
cated that general relativistic effects are clearly disfavored. In fact, even the
Λ value predicted by the Planck satellite cannot fully reproduce the expected
intervals of z1,2± that LR experiments estimate. On the other side, bearing
in mind the maximally - rotating configurations for NS and WD, we got suit-
able red and blue shift intervals. We therefore concluded the most suitable
approximations for NS and WD objects could be performed involving high
quadrupole moments. The same happened for the cosmological constant,
besides the Solar System regime, showing a good agreement with current
bounds and indicating the goodness of Planck Λ measurements. Moreover,
possible experimental designs for improving the quality of our results have
been naively proposed. We discussed coarse - grained approaches to build
up likely experimental configurations and setups with the aim of refining the
current accuracy over the red and blue shift. To this end, we propose to
adopt the binary system composed by Mars-Phobos to improve z1,2± mea-
surements using the satellite LR technique. As red and blue shifts can be
used to test the equivalence principle and/or sometimes to check the validity
of particular classes of models, we intend to contrive new experiments that
will be able to construct bounds over Λ, instead of postulating it. In so doing,
as perspective we expect to work out a back - scattering procedure, different
from the one here developed.
In the third chapter, we focused on the high gravity regime, examining worm-
holes, one of the most intriguing structures in the Universe. It is a theoretical
model that enables us to investigate the properties of alternative theories of
gravity in the strong field.
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We here considered the class of f(R) theories. Postulating a generic power-
law form f(R) = f0R

1+ϵ, we investigated two possible approaches to char-
acterize the shape function and in particular the ratio b(r)/r. The first
attempt was a phenomenological inverse power law, recovered from widely-
investigated approaches in the literature. The second has been proposed
considering the numerical pathology of the ratio b(r)/r within the throat.
We thus introduced the use of Padé approximant to characterize the shape
function in a model-independent way. Our strategy to decide the Padé orders
was straightforward: we singled out the simplest approximant that resembles
a first order Taylor expansion. To do so, we encountered two possibilities, i.e.
the (1,0) and (0,1) expansions. The first coincides with pure Taylor expansion
and was unable to guarantee that b → 0 as r → ∞. The second possibility,
namely (0,1), fulfilled our requirement. Thus, we worked out the wormhole
solution under this ansatz, adding the additional requirement of stable geo-
metrical fluids, whose perturbations are negligible inside the throat. To do
so, we employed the sound speed to vanish in analogy to cosmological con-
texts in which the sound speed is associated to the fluid evolution for a given
system. Finally, we constrained the set of coefficients (β, ϵ, r0). We noticed
that in all the analyzed cases as GR is recovered, exotic matter is still need-
ful as expected. Future works will extend such a scenario. In particular, we
will wonder whether extended versions of Padé approximants can be used to
characterize the shape function. We will therefore show what would happen
by changing the background theory of gravity, involving different paradigms
with respect to the f(R) case. In particular, we would like to extend this
analysis to the Horndeski model, which we have only looked at so far in the
weak field. In this way, we might be able to find the theory’s constraints in
both low and high gravity.
The concluding chapter of the thesis is dedicated to the experimental method.
We concentrated on LR, which has been used for years to estimate the param-
eters characterizing the theoretical models of the weak field. Before launching
a space mission, it is crucial to conduct a series of tests to ensure its success;
one of these concerns the optical component of the experiment, namely the
CCR. In particular, we attempt to understand what a CCR’s light return
will be once in orbit by running optical simulations with the Code V soft-
ware. To get a survey that is as broad as possible and representative of real
conditions, we generally investigate several situations. However, here, we
have shown just the simulations of the CCRs employed in the two space mis-
sions on which we are currently working with the SCF Lab group in Frascati.



CONCLUSIONS 146

We are talking about perfect uncoated CCRs (null DAOs), with a normal
incidence of the laser beam (at 532 nm, since this is the most often uti-
lized wavelength by Earth stations) and linear polarization. Other optical
simulations, which take into account non-zero DAOs, non-normal incidence,
lasers with different wavelength values, circular polarization, and coatings,
are available at the SCF Lab group. We have been working on improving the
code in recent years, and it now allows us to get accurate results that match
the theoretical values. We are now extending the code in order to simulate a
CCRs array, as LARES-2. Finally, we presented the PEP software results in
analyzing LR data from several ground stations. Our future work will first
be to improve the FORTRAN code to ensure the accuracy of these results.
Furthermore, we would like to modify it to include the equations of motion of
the alternative metric theories of gravity, calculated in the previous sections.
This would be an important step in testing gravitational models beyond GR
in the Solar System’s context, i.e. in the weak field.
In the meantime, we look forward to the launch of LARES-2, which will pre-
sumably take place in the spring of 2022, and that of MoonLIGHT scheduled
for 2024. Not by chance, when he landed on the Moon, Neil Armstrong said
“that’s one small step for [a] man, but a giant leap for mankind”.
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[72] R. Giambò, O. Luongo, H. Quevedo, Phys. dark univ. 30, 100721 (2020);
O. Luongo, H. Quevedo, Found. Phys. 48, 1, 17-26 (2018).

[73] K. Boshkayev, O. Luongo, M. Muccino, Eur. Phys. Jour. C, 80, 964
(2020).

[74] I. Ciufolini et al, Eur. Phys. J. Plus 132, 336 (2017); A. Paolozzi et al,
Journ. of Geod. 93, 2437–2446, (2019).

[75] G. Allemandi, M. Francaviglia, M. L. Ruggiero, A. Tartaglia, Gen. Rel.
Grav. 37, 1891-1904 (2005).

[76] V. Kagramanova, J. Kunz, C. Lämmerzahl, Phys. Lett. B 634, 465-470
(2006).



BIBLIOGRAPHY 152

[77] G. Allemandi, M. L. Ruggiero, Gen. Rel. Grav. 39, 1381 (2007).

[78] P. L. Bender et al, Science 182, 229-238 (1973).

[79] J. G. Williams, S. G. Turyshev, D. H. Boggs, Int. J. Mod. Phys. D 18,
1129-1175 (2009).

[80] I. Ciufolini et al, Eur. Phys. J. Plus 126, 72 (2011).

[81] S. G. Turyshev et al, Exp. Astron. 28, 209–249 (2010).

[82] J. M. Lattimer, M. Prakash, Phys. Rept. 442, 109-165 (2007).

[83] J. B. Holberg, T. D. Oswalt, M. A. Barstow, The Astron. Jour. 143, 68
(2012).

[84] M. Visser, Lorentzian wormholes: from Einstein to Hawking. (AIP
Press., 1996).

[85] D. C. Dai, D. Stojkovic, Phys. Rev. D 100, 083513 (2019).

[86] J. Maldacena, L. Susskind, Fortsch. Phys. 61, 781 (2013).

[87] J. Gratus, P. Kinsler, M. W. McCall, Found. Phys. 49, 330-350 (2019).

[88] A. Ovgun, K. Jusufi, I. Sakalli, Phys. Rev. D 99, 024042 (2019).

[89] K. Jusufi, A. Ovgun, Phys. Rev. D 97, 024042 (2018).

[90] A. Einstein, N. Rosen, Phys. Rev. 48, 73-77 (1935).

[91] M. S. Morris, K. S. Thorne, Am. J. Phys. 56, 395 (1987).

[92] S. Capozziello, F. S. N. Lobo, J. P. Mimoso, Phys. Rev. D 91, (2015).

[93] M. Li, Li X.D., S. Wang, Y. Wang, Front. Phys. 8, 828-846 (2013).

[94] E. J. Copeland, M. Sami, S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753
(2006).

[95] D. Hochberg, T. W. Kephart, Phys. Rev. Lett. 70, 2665-2668 (1993).

[96] K. Bamba, S. Capozziello, S. Nojiri, S. O. Odintsov, Astrophys. Space
Sci. 342, 155 (2012).



BIBLIOGRAPHY 153

[97] V. De Falco, E. Battista, S. Capozziello, M. De Laurentis, Phys. Rev.
D 101, 104037 (2020).

[98] S. Capozziello, T. Harko, T. S. Koivisto, F. S. N. Lobo, G. J. Olmo,
Phys. Rev. D 86, 127504 (2012).

[99] J. L. Rosa, J. P. S. Lemos, F. S. N. Lobo, Phys. Rev. D 98, 064054
(2018).

[100] C. Gruber, O. Luongo, Phys. Rev. D 89, 103506 (2014).

[101] H. Wei, X. P. Yan, Y. N. Zhou, J. Cosm. Astrop. Phys. 1401, 045
(2014).

[102] S. G. Krantz, H. R. Parks, A primer of real analytic functions
(Birkhauser, 1992).
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