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introduction

The study of plasmas applies to a variety of fields, from plasma astrophysics to the physics
of magnetospheres, including practical applications such as controlled thermonuclear fu-
sion, plasma acceleration and industrial plasmas. Plasmas made of light element nuclei
(e.g., deuterons) and electrons represent the natural choice to produce exothermic fusion
reactions [73] which, being an analogue of those providing the life-sustaining energy of the
sun and the other stars, are considered to be the most fundamental energy source of the uni-
verse. Controlled nuclear fusion would represent a clean and almost inexhaustible energy for
mankind, potentially solving world’s energy problem [10]. The demonstration power plant
(DEMO1) is the final aim of the EUROfusion research plan in magnetic confinement fusion,
and targets achieving 300-500 MWe by 2050. Similar efforts are ongoing worldwide with
broadly consistent objectives2, while an international collaboration is working on the final
construction phase of the International Thermonuclear Experimental Reactor (ITER3).

Magnetized and non-collisional plasmas of space and fusion interest require non-linear
kinetic theory. In particular, "fully kinetic" (FK) simulation schemes describe both ions and
electrons by a Vlasov equation, which is often solved by particle-in-cell (PIC) techniques
[4, 24], taking into account the dynamics of individual particles with their characteristic
frequencies up to the electron cyclotron frequency ⌦e, generally lower than or comparable
to the electron plasma frequency. However, these schemes are expensive from the compu-
tational point of view and involve an extreme variety of spatiotemporal scales, explaining
why reduced models have been introduced: the gyrokinetic (GK) model [35, 51, 52] uses
an orbit-averaged description of the cyclotron motions, able to resolve physical processes
by means of a discrete time interval larger than the ion cyclotron period. Also, when
the frequencies ! are lower than or comparable to the ion cyclotron frequency ⌦i, namely
! ⌧ ⌦i ⌧ ⌦e, one can use the gyrokinetic approach for ions and simply neglect electrons

1https://www.euro-fusion.org/programme/demo/
2https://www.iaea.org/bulletin/demonstration-fusion-plants
3https://www.iter.org
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gyromotion (drift-kinetic electrons), provided the spatial scale of interest is larger than the
electron Larmor radius.

For the description of a variety of phenomena, a further, hybrid model has been recently
developed, based on a GK description for the electrons [35, 38, 5] and on a FK description
for the ions, called GeFi [54]. This model is then suitable for frequencies which are, at most,
intermediate between ion and electron cyclotron frequencies, for wavelengths perpendicular
to the magnetic field which are small with respect to the parallel wavelength, |k?/kk| � 1,
and for |k?⇢e| ⇡ 1, where the electron Larmor radius ⇢e is much smaller than the size of
the system, ⇢e ⌧ L.

The GeFi model has only been validated in simple magnetic field geometries [17]. Mean-
while, GK codes constitute the leading numerical tools for advanced simulation studies in
the complex magnetic field geometries characterizing strongly magnetized fusion plasmas
[36, 49]. The main goal of the present Ph.D. thesis research is to provide a basis for bridg-
ing over between GK codes and the innovative approach proposed by GeFi by gradually
extending the simple magnetic field geometries and nonuniform plasma equilibria that are
typically investigated with this code. To this aim, we have identified the linear and nonlin-
ear behavior of Alfvénic oscillations in a cylindrical plasma as the ideal test-bed. In fact,
transverse shear Alfvén waves are fundamental electromagnetic oscillations in magnetized
plasmas [1, 23], which can importantly contribute in heating and transport processes of
charged particles. The focus of this thesis work will be on establishing a test case to com-
pare simulation results of the TRIMEG [56, 57] gyrokinetic code and of the STRUPHY [43]
hybrid MHD-kinetic code with the linear and nonlinear theoretical predictions obtained by
both analytical as well as numerical approaches on the generation of convective cells in a
cylindrical magnetized plasma. In particular, the present thesis research will demonstrate
that this problem includes in a nutshell important fundamental physics processes that are
of relevance in both space and laboratory plasmas. Thus, the novel results presented here
provide a first step to construct a clear and well-understood test case, where a first cylindri-
cal version of GeFi could be tested against TRIMEG and STRUPHY codes. The possible
future extension of this work will lead to the implementation of GeFi in realistic toroidal fu-
sion plasmas equilibria as well as to the verification of the validity limits of the GK reduced
description, which is the foundation of TRIMEG and of other GK codes.

Under Prof. Fulvio Zonca’s supervision, this research work has been done at the Roma
Tre University and at the ENEA center in Frascati (RM), has been supported by an inter-
national collaboration within the framework of CNPS4, and is connected with DTT5.

The plan of the manuscript is as follows:

• Chapter 1 gives a general introduction to the plasma state, to the gyrokinetic model
and to waves and oscillations in plasmas.

• Chapter 2 focuses on Alfvén waves, which are the fundamental topic of this thesis
work. To gradually introduce the underlying physics concepts, hydrodynamic waves

4Center for Nonlinear Plasma Science, https://www.afs.enea.it/zonca/CNPS/
5Divertor Tokamak Test facility, https://www.dtt-project.it
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in uniform plasmas are presented first and, then, the effect of plasma nonuniformity
is discussed. In particular, we introduce the concept of spatial phase mixing and
of resonant absorption, which naturally occur in nonuniform plasmas where shear
Alfvén waves are characterized by a continuous spectrum and radial wavelength that
decreases in time as t�1. The spontaneous generation of increasingly shorter wave-
lengths leads us to introducing and discussing the gyrokinetic description that is
necessary for analyzing kinetic Alfvén waves.

• Chapter 3 introduces the cylindrical nonuniform magnetized plasma equilibrium that
will be used throughout the rest of this work. In particular, we follow well-known
existing literature to contextualize the behavior of shear Alfvén waves in the considered
model plasma equilibrium. The properties of shear Alfvén waves launched by an
external antenna are presented and the power transfer from the launched wave to the
thermal plasma via resonant absorption is discussed in detail.

• Chapter 4 revisits the ideal magneto-hydro-dynamic (MHD) analysis of chapter 3
using gyrokinetic theory. This illuminates the microscale phenomena that underlie the
resonant absorption of the shear Alfvén wave launched by the external antenna at the
radial location where the imposed antenna frequency matches the continuously varying
frequency spectrum of the shear Alfvén wave in the considered nonuniform cylindrical
plasma equilibrium. Consistent with earlier analyses [40, 41], resonant absorption
consists in the mode conversion to the short wavelength kinetic Alfvén wave, which is
typically absorbed within a short distance from the resonant layer and within a few
spatial oscillation period of the mode converted wave. This case of strong absorption
was and has been the focus of existing studies so far due to its direct relevance for
plasma heating [40, 41, 44, 45]. In this work, we also consider the opposite weak
absorption case, where, even with a modest amplitude shear Alfvén wave launched
by the antenna, large kinetic Alfvén waves can be excited inside the resonant (mode
conversion) layer and yield a number of interesting nonlinear behaviors. As new novel
results of the present work, it is demonstrated that the plasma region inside the mode
conversion layer behaves as a "resonant cavity"; that is, when the antenna frequency
matches a given discrete spectrum, the plasma response is stronger, exhibiting the
clear behavior of a resonantly driven and weakly damped oscillator. This behavior is
of particular interest for our scope to investigate nonlinear behaviors induced by large
amplitude kinetic Alfvén waves, which can be fine-tuned in phase and amplitude by
the external antenna.

• Chapter 5 contains the theoretical analysis of nonlinear behaviors of kinetic Alfvén
waves in the considered model plasma equilibrium and corresponding numerical solu-
tions. The focus is on the spontaneous generation of convective cells by a large kinetic
Alfvén wave. However, since the underlying physics is connected with the so-called
parametric decay instability, this process is introduced first, following a recent review
work [17] that allows us to qualitatively describe its essential elements. The impor-
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tance of convective cells is then presented, along with a systematic derivation of the
equations governing their nonlinear interaction with kinetic Alfvén waves. Maximiza-
tion of nonlinear coupling demonstrates that optimal conditions for convective cell
generation in cylindrical plasmas are those of a "theta pinch" (or "✓-pinch") equilib-
rium, where the nonuniform magnetic field is directed along the symmetry axis only.
This allows a short azimuthal wavelength convective cell to be excited most easily.
Meanwhile, electron Landau damping can also be minimized by the possibility to
achieve relatively high ratio of electron plasma kinetic energy density normalized to
the magnetic energy density (in the order of 10% or more), due to the intrinsic stabil-
ity of this configuration. Earlier results of convective cell excitation by kinetic Alfvén
waves in uniform plasmas [85] are recovered in the proper limiting case. The effect of
plasma nonuniformity is shown to importantly affect the convective cell stability both
qualitatively and quantitatively via the diamagnetic response [13, 47]. As new novel
result of this thesis work, it is shown that the convective cell rotates in the electron
diamagnetic direction near the critical excitation threshold. Meanwhile, the convec-
tive cell growth is significantly stronger (typically up to an order of magnitude) than
in uniform plasmas; and the unstable parameter region is significantly broader. Fur-
thermore, the subtle interplay between nonlinearity and plasma nonuniformity shows
that the plasma self-organization can be controlled by fine-tuning the amplitude of the
antenna driven mode converted kinetic Alfvén wave. The convective cell (generally
mixed) polarization and radial structure of the generated inductive parallel electric
field are also computed self-consistently.

• Chapter 6, finally, presents concluding remarks as well as a discussion of possible
applications and outlook of the present Ph.D. thesis work.
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CHAPTER 1
generalities on plasma physics

Since ancient times, mankind has been searching for the unity underlying the apparent mul-
tiplicity of things; in particular, the observation of nature suggested that the great variety
of substances and phenomena all around can be considered as a variety of manifestations
and combinations of few elementary entities, or elements. According to the Greek cultural
tradition, the basic elements are four: earth, water, air, and fire. Actually, having developed
neither an advanced chemistry nor a microscopic theory of matter, Greeks couldn’t identify
elementary substances as we mean today, i.e. chemical elements or, even further, elementary
particles. They were rather able to identify the fundamental states of matter: solid, liquid,
gas, and plasma (subsequently, Aristotle introduced, motivated by astronomical reasons, a
fifth element, the aether or quintessence, which can be thought as the "state of absolute
space", namely the spatial texture or, possibly, the cosmic vacuum). Any macroscopic ob-
ject we may find will be constituted by parts that are in one ore more of these four states,
so the reduction made by Greeks was a macroscopic one, pointing to constituent phases
rather than to constituent particles.

Fire, and lightnings, are made of plasma, in the sense that they are spectacular mani-
festations of matter when in the plasma state. However, plasmas are not that common on
Earth: on the contrary, they are almost all we can see when looking at the sky with eyes
or telescopes; in fact, stars are essentially plasma objects, and plasma is a main constituent
of interstellar medium, too. Therefore, it is no coincidence that plasma physics only began
to develop in the twentieth century, though, as mentioned above, the existence of plasma
phase had somehow been stated well before.

5



1.1 The plasma state 6

1.1 The plasma state

The reason for the plasma state to be considered the fourth state of matter is the following.
When heated up to its melting point, a solid passes to the liquid state and, if temperature
further increases up to the boiling point, a gas is obtained through evaporation. However,
that’s not the end of the story. When one insists in heating up towards very high temper-
atures, the gas molecules (not necessarily all) ionize: the result is a system which is almost
neutral both as a whole and in all its wide enough parts, but now composed of charged
particles whose collisions, i.e. gas-like, short-range interactions, though still more or less
probable, are not as important as their medium- or long-range electromagnetic (essentially,
Coulombian) interactions (and whose mean kinetic energy is greater than the mean interac-
tion energy). In short, the result is a quasineutral gas-like system with collective behavior,
or, a plasma. In the next subsections, this definition is discussed in some more detail; as we
shall see, the fundamental quantities that characterize a plasma are the density of particles,
n, and temperature, T (generally, electron temperature, Te). Fig.1.1 considers important
examples of plasmas.

Fig.1.1 A plasma phase diagram, showed as a function of (electron) density ne and (electron)

temperature kBTe. Those to the right of the red line are the strongly-interacting plasmas,

whose mean kinetic energy is lower or at most comparable to the interaction energy; to

the right of the blue line, electrons occupy the energetic levels in the "Fermi sea" (metal

electrons, white dwarfs).

(Source: UniTus Master Lectures by F. Zonca1)

1https://www.afs.enea.it/zonca/Teaching/UniTus/lecture1.pdf



1.1 The plasma state 7

1.1.1 Quasineutrality: L � �D

It has been stated that a plasma is almost neutral not only as a whole, as we expect a
ionized gas to be, but also in its little constituent parts. The fact is, though the generic
single particle is charged, in a large enough volume of plasma we expect to find a sufficient
amount of both positively and negatively charged particles such that the resulting net charge
Q is almost vanishing. Namely, if there are two species of particles, one with charge q+ and
density (particle density or probability density) function f+, and the other with charge q�
and density f�, then, for a large enough volume V , much smaller than the total volume of
the system,

Q =

Z

V
(f+q+ + f�q�) dV ⇡ 0, (1.1)

which generically expresses the condition of quasineutrality. The particles in this volume
are so many that the charge of each particle is well screened, in any direction, by sur-
rounding particles carrying opposite charge. The parameter able to describe this situation
and to study quasineutrality and collective motion (subject of the next subsection) from a
quantitative point of view is the Debye length, which is a common feature of any ionized
system in thermal equilibrium. Keeping in mind the Gauss-Maxwell equation r ·E = 4⇡�,
with � charge density, the equation for the potential � due to a charge q0 located at x0 is
Poisson’s equation

r
2� = �4⇡q0 �(x� x0), (1.2)

whose solution is � = q0/r, being r := |x � x0|. When the potential is applied to a
plasma, the particles contribute to the right-hand side with their positive and negative
charge densities, and (1.2) is extended as

r
2� = �4⇡q0 �(x� x0)� 4⇡ (q+n+ � q�n�) , (1.3)

or simply, by considering from now on the case of a plasma composed by ions of charge
qi = Ze, Z 2 N, and by electrons (of charge qe = �e),

r
2� = �4⇡q0 �(x� x0)� 4⇡e (Zni � ne) , (1.4)

where ni and ne are the ionic and electronic densities, computed as the integral over velocity
v of their Maxwell-Boltzmann distribution functions,

ni,e =

Z
Ai,ee

� 1
kBTi,e

( 1
2mi,ev2+qi,e�) dv = n1

i,ee
�

qi,e�

kBTi,e , (1.5)

where n1
i,e = ni,e(r ! 1) = ni,e(�! 0) are the densities far away from the source, namely

the densities of the plasma particles when they are free. Noting that the mean kinetic
energy of particles is larger than the mean interaction energy among particles themselves,
such that |qi,e�| ⌧ kBTi,e, the previous expression can be approximated as

ni,e ⇡ n1
i,e

✓
1�

qi,e�

kBTi,e

◆
(1.6)
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and, introducing the Debye length

�D :=

vuut
kB

4⇡e2
⇣
Zn1

i
Ti

+ n1
e
Te

⌘ , (1.7)

equation (1.4) becomes

r
2� = �4⇡q0�(x� x0) +

4⇡e2

kB

✓
Zn1

i

Ti
+

n1
e

Te

◆
� = �4⇡q0�(x� x0) +

�

�2D
, (1.8)

that is ✓
1

�2D
�r

2

◆
� = 4⇡q0�(x� x0), (1.9)

whose solution is

� =
q0
r
e
� r

�D . (1.10)

So, the bare potential, that per se decreases as the inverse of distance, is further screened
by the presence of the other charges, thus decaying at a rate regulated by the Debye length,
which represents the length over which the potential can be considered essentially screened:
this feature is known as Debye shielding. The Debye length is, in particular, a distance at
and beyond which |qi,e�| ⌧ kBTi,e holds: indeed, this was exactly the basic assumption for
obtaining (1.6) and, then, (1.10). At a shorter distance r⇤, such that

e�(r⇤) ⇡ kBTe, (1.11)

the electrons around the source charge are not enough to have complete screening efficiency,
while their kinetic energy is less important than or comparable with the particle interaction
energy. It is no surprise, then, that the Debye length increases with temperature and
decreases with density. When, in any direction, the length L of the plasma is very large
compared to the Debye length, L � �D [11], and so the volume of the system is much
larger than the Debye volume VD ⇠ �3D, the Debye scales may be considered infinitesimal
and could be ignored when studying physical processes occurring at longer length scales.
As a consequence, the charge density screening may be considered effective at any arbitrary
point and allows for the approximation ni ⇡ ne = n, where, for the simple case of singly
charged ions, n is a common density value dubbed the plasma density. Reconsidering the
quasi-neutrality condition expressed in a generic way by (1.1), where now VD is approaching
zero, V can be taken as any small but finite volume, and the quasi-neutrality condition
becomes one of the fundamental governing equations for plasma response at k2�2D ⌧ 1,
with k the relevant characteristic wave number.

Since mi � me, the motion of ions can often be neglected with respect to that of the
electrons, so one treats ions as stationary neutralizing background: ni, according to (1.5),
can be neglected and the only density entering in (1.4) is ne; still, (1.10) holds, but now
with the Debye length

�D :=

s
kBTe

4⇡e2n1
e
. (1.12)
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1.1.2 Collective motion: ND � 1 and !p⌧ � 1

As kinetic, statistical property, the screening effect holds provided [11] a high number
ND � 1 of particles is contained in a Debye sphere, that is, in other terms, provided
n�3D � 1: the mean interparticle volume, equal to n�1, is much smaller than Debye sphere’s
volume. This huge collection of ND particles naturally organizes to (quasi)neutralize the
plasma, the small charge left giving rise, as suggested by the discussion made in the previ-
ous subsection, to potentials at most of the order kBTe and, so, to interactions on longer
distances. As a consequence, any electromagnetic field applied to a plasma produces a
perturbation in all the particles (due to their charge) quite simultaneously, and the rear-
rangement of one particle affects the redistribution of the others, resulting in a collective
response by the system: the basic example is given by electron plasma waves (see subsec-
tion 1.3.1), namely the small electron oscillations about their equilibrium position. The
fact is that plasmas are constituted by particles which are charged (ions and electrons)
and quite free to move, so most of them experience, collectively, electromagnetic long-range
interactions, rather than collisions: precisely, the relaxation time ⌧ is long when compared
with the time taken by particles to undergo a Coulomb (binary) collision, which is of the
order of the inverse of the so-called plasma frequency !p (see subsection 1.3.1), namely the
frequency of oscillation about the equilibrium position. In summary, !p⌧ � 1. Ultimately,
a plasma shows a collective behavior: this feature makes a distinction with ordinary gases
and, also, with systems which, though ionized, are strongly coupled. In fact, being globally
neutral and, at most, polar, gas molecules give rise to somewhat weak, and generally binary,
interactions: only when two molecules are close enough, they really experience intermolec-
ular forces such as van der Waals forces or hydrogen bonding and, ultimately, the repulsion
caused by their respective cohesion forces, which prevents interpenetration. So, gases are
dominated by short-range interactions, i.e. collisions, which are essentially binary, random
and independent one from the other, while the strong Coulombian and electromagnetic in-
teractions, dominant in plasmas, are only found inside molecules and, in particular, between
internal nuclei and electrons.

1.2 Plasma dynamics

Like gaseous systems, also plasmas admit a thermomechanical description both from the
macroscopic point of view, namely by means of fluid mechanics and classical thermodynam-
ics, and from the microscopic point of view, namely by means of kinetic theory. Within the
microscopic description, the use of modern supercomputers allows us to numerically simulate
plasma behavior by following up to 1010 particle trajectories by the so-called particle-in-cell
(PIC) approach [4]. Meanwhile, plasma particles carry electric charges that, even in the
absence of external interactions, may generate perturbed internal electromagnetic fields. A
first approach to study plasma physics is to build a description for ideal systems, i.e. to use
the Boltzmann equation for ideal gases or the macroscopic equations of ideal fluids, along
with Maxwell’s equations in vacuum.



1.2 Plasma dynamics 10

The two Boltzmann equations, ionic and electronic, express the time variation, due to
collisions, of the distribution functions fi,e by means of an integral collision term C (fi,e),
which computes the transition rate from initial to final state and whose expression depends
on the system under study and on the adopted mathematical model,

@fi,e
@t

+rxfi,e · v +rvfi,e ·
F

m
= C (fi,e) , (1.13)

where F is the generic force acting on the particle at (x,v). As for the left-hand side, we
can restrict F to the Lorentz force only, describing the aforementioned long-range electro-
magnetic interactions that regulate the plasma dynamics. Thus, considering, for simplicity,
a hydrogen plasma, made of ions and electrons of charge e and �e, respectively, the kinetic
description is

@fi,e
@t

+rxfi,e · vi,e ±
e

mi,e
rvfi,e ·

⇣
E+

vi,e

c
⇥B

⌘
= C (fi,e). (1.14)

The macroscopic counterpart of this description is deduced by taking the appropriate
moments of the kinetic equations [34], and is represented by the equation of continuity
for mass densities %i,e and by the cardinal dynamical equations, which together define a
two-fluid model:

@%i,e
@t

+r · %i,evi,e = 0, (1.15)

%i,e
dvi,e

dt
= �i,e

⇣
E+

vi,e

c
⇥B

⌘
�rpi,e, (1.16)

where %i,e = ni,emi,e and �i,e = ±ni,ee. However, due to quasineutrality, ionic and electronic
densities are the same (plasma density n): this further implies that ionic and electronic
charge densities are opposite, �i = ne = ��e, and, then, that the electric part of the total
Lorentz force density, FE = (�i+�e)E, vanishes; moreover, considering that mi � me, mass
density is essentially ionic mass density, % = %i, and as a consequence, although electronic
velocity ve is higher than vi, the inertial force density on electrons is negligible with respect
to the force density on ions, % dvi/dt. What’s more, assuming that the frequency of collisions
is enough to randomize all individual motions, so that positively and negatively charged
particles have the same, uniform temperature and, as a consequence, exhert the same,
uniform pressure, we can also introduce an equation of state. Ultimately, we are led to the
single-fluid model, described by only one set of equations,

@%

@t
+r · %vi = 0, (1.17)

%
dvi

dt
=

J⇥B

c
�rp, (1.18)

d
dt

✓
p

%�

◆
= 0, (1.19)

where J = ne(vi�ve) is the current density, p = pi+ pe and, as a rule, � = 5/3 is the ratio
of specific heats. Writing the derivative in (1.19) explicitly and, then, using (1.17), we also
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obtain the useful identities

dp
dt

= �
p

%

d%
dt

= ��pr · vi. (1.20)

This one fluid approach to (ideal) plasmas is also called (ideal) MHD, an acronym which
stands for MagnetoHydroDynamics.

Both kinetic model and ideal-MHD single-fluid model are closed by Maxwell’s equations
for the self-consistent evolution of the plasma electromagnetic fields,

r⇥E = �
1

c

@B

@t
, (1.21)

r⇥B =
4⇡

c
J. (1.22)

Note that Poisson’s law is replaced by the quasineutrality condition, as discussed above.
Meanwhile, the displacement current is neglected in (1.22), which holds for low-frequency
fluctuations, i.e., for |@t|2 ⌧ |cr|

2.
In section 1.1.2, we have discussed the property of low collisionality in plasmas. In

most cases, collisionality is so low that the electrical resistivity ⌘ becomes negligible, or, the
conductivity is almost infinite: from Ohm’s formula,

⌘ =
|E+ (v/c)⇥B|

|J|
⇡ 0 (1.23)

means that, because the current density is finite, the effective electric field in the plasma
moving frame can be taken as zero,

E+
v

c
⇥B = 0; (1.24)

see [34] for more detailed analyses. In the collisionless limit, the collision integral itself can
be neglected in the kinetic equation: then, (1.14) reduces to

@fi,e
@t

+rxfi,e · vi,e ±
e

mi,e
rvfi,e ·

⇣
E+

vi,e

c
⇥B

⌘
= 0; (1.25)

this equation, i.e. Boltzmann’s equation with null right-hand side and with the Lorentz
force as only force, and where, as a rule, E and B are defined in a self-consistent way
by means of (1.21) and (1.22) (with charge quasineutrality and current density J defined
through the distribution functions fi,e), is known as the Vlasov equation. Indeed, one could
wonder how both the use of a Maxwell-Boltzmann distribution and of the MHD description,
as introduced before, can work with low-collisional systems like plasmas: a partial answer
[11] is that a strong equilibrium magnetic field, when present, causes the plasma response to
be rapidly isotropized in the orthogonal plane and somehow mimics the effects of collisions.
For example, the proportionality relation v = µE for the drift velocity of electrons in
metals may be thought of as counterpart of the drift velocity vE = cE⇥B/B2 in strongly
magnetized plasmas. Moreover, electrons in plasmas experimentally show to distribute in
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a way which is essentially Maxwellian within good approximations (a situation known as
Langmuir paradox [48]) and, however, the fluid theory is often not so sensitive to deviations
from the Maxwell-Boltzmann distribution. When this is not the case, for example when
studying the motion along the magnetic field lines or when small scales play an important
role, fluid theory may fail but kinetic theory still applies in forms such as the one based
on (1.25). More in depth discussion of the deviation of the plasma equilibrium from local
thermodynamic equilibrium can be found in the recent work [31].

1.2.1 The gyrokinetic model

A kinetic equation such as the Vlasov equation (1.25) takes account of the particle motion in
long-range mean electromagnetic field and so, in principle, also of the helical motion around
the magnetic field lines, meaning that one is forced to handle a quite complicated dynamics
and to operate at different scales: the spatiotemporal scales of the particles moving along
equilibrium magnetic field lines and slowly drifting across it, the spatiotemporal scale of
ion gyromotion (ion gyrofrequency ⌦i and ion Larmor radius ⇢i) and the spatiotemporal
scale of electron gyromotion (electron gyrofrequency ⌦e � ⌦i and electron Larmor radius
⇢e ⌧ ⇢i). However, predominant perturbations that are responsible for fluctuation induced
transport in strongly magnetized plasmas are characterized by low frequencies compared to
⌦i. This often motivates the use of the gyrokinetic model, where the trajectory of charged
particles in a magnetic field, a helix winding around the field line, is decomposed into a
fast parallel motion along the magnetic field line plus a relatively slow perpendicular drift
motion of the guiding center, and a fast circular motion, the gyromotion, which for most
plasma behavior can be averaged over. Averaging over this gyromotion (that is, neglect-
ing the dependence on the gyrophase angle) eliminates one velocity coordinate from the
original 6-dimensional phase space (3 spatial coordinates and 3 velocity coordinates), so
formally describing the dynamics of charged rings with a guiding center position, instead
of the dynamics of gyrating charged particles. For this model to work, it is necessary that
⇢i ⌧ L (strong magnetization), where L is the characteristic length-scale of the system;
meanwhile, the frequencies involved are assumed to be much lower than the particles gy-
rofrequency (! ⌧ ⌦i), while the plasma behavior on perpendicular spatial scales is taken
to be comparable to the ion gyroradius (k?⇢i ⇠ 1). Gyrokinetic theory and correponding
governing equations are then obtained as asymptotic description of the plasma response in
terms of the small asymptotic expansion parameter " = ⇢i/L ⇠ |!/⌦i|: in typical magne-
tized fusion plasmas, " ⇠ O(10�2). In order to account for Landau resonance, ! ⇠ kkvk,
gyrokinetic theory assumes kk⇢i ⇠ " as well as kk/k? ⇠ "; finally, perturbations are assumed
to be of small amplitude, e�� ⌧ kBTe. Gyrokinetics has been experimentally shown to be
particularly appropriate for modeling, for example, plasma turbulence.

In the gyrokinetic framework, fluctuating electromagnetic fields are assumed small,
����
�B

B0

���� ⇠ ",

����
�E

B0

���� ⇠ "
⇢i⌦i

c
, (1.26)
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with B0 the modulus of the equilibrium magnetic field B0. As a consequence, the dis-
tribution function, fi,e = FM + �f + o(�f), is also expressed as a perturbation of the
Maxwell-Boltzmann equilibrium distribution FM , with �f/FM ⇠ O("). The gyrophase in-
dependent particle response is most conveniently represented when the spatial variable is
changed from the particle position x to the guiding center position X = X? +XkB0/B0,
being

X? = x? + ⇢, ⇢ :=
v ⇥B0

⌦i,eB0
, (1.27)

and the three components of velocity are expressed through

E :=
v2

2
, µ :=

v2?
2B0

, � := sgn
�
vk
�
. (1.28)

Here, vk := v ·B0/B0 is the parallel (to the magnetic field) velocity and µ is the magnetic
moment adiabatic invariant. The Maxwell-Boltzmann distribution reads

FM =
n0

⇡3/2v3T
e�v2/v2T , (1.29)

with n0 equilibrium particle density and vT is the thermal speed in the sense of root mean
square. The gyrokinetic equation [7, 3, 35] is derived from Vlasov’s equation and describes
the change in time of the perturbed distribution function

�g = e⇢·rX

✓
e��

T
FM + �f

◆
, (1.30)

where �� is the perturbed scalar potential and T , from now on, is expressed in energy
units in order to be consistent with the standard notation adopted in magnetized fusion
plasma literature (so, in particular, from now on, Boltzmann’s constant kB will not appear
anymore). Introducing the vector potential perturbation �A, so to define

�Lg := e⇢·rX�L := e⇢·rX

⇣
���

vk
c
�Ak

⌘
, �Ak := �A ·B0/B0, (1.31)

and denoting by h...i↵ the averaging over the gyrophase angle ↵ at fixed guiding center
position, this equation can be expressed in a quite general form as [17]

@�g

@t
+

✓
vk

B0

B0
+Vd +

c

B2
0

B0 ⇥rh�Lgi

◆
·rX�g = hC (�g)i↵ +

eFM

T

@h�Lgi↵

@t

�
c

B2
0

B0 ⇥rh�Lgi ·rFM .
(1.32)

Here, we have adopted the Coulomb gauge (r·�A = 0), consistent with the usual gyrokinetic
approach, and neglected the compressional magnetic field component �Bk. In fact [16, 17],
introducing the Alfvén speed vA := B0/(4⇡%)1/2 (see subsection 2.1.1), we can estimate

!

k?vA
⇠

!

⌦i

vT i

k?⇢ivA
< O(") (1.33)
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and the compressional Alfvén wave (see subsection 2.1.1), responsible for small but finite
�Bk fluctuations, can be neglected: this important point is further discussed in chapter
2. The left-hand side of (1.32) is the total time derivative of the non-adiabatic particle
response, �g: in particular, the first, second and third gradient term represent, respectively,
the particle streaming along the magnetic field line, the effects of cross-field particle drifts
(including the curvature drift and the grad-B drift) accounted for by the drift velocity Vd,
and the nonlinear particle drift effect due to the perturbed E⇥B drift and the perpendicular
magnetic field fluctuation �B?. On the right-hand side, the first term is the operator ac-
counting for particle collisions, the second one represents the Maxwell–Boltzmann response
to the perturbed scalar potential in the guiding center moving frame, and the last term
accounts for the E ⇥ B response in the guiding center moving frame. In particular, this
last term includes effects from the temperature and density gradients of the background
distribution function, which may drive the perturbation. These gradients are only signifi-
cant in the direction across flux surfaces, labeled by the magnetic flux function. So, once
the gyrokinetic equation is solved for �g and the corresponding particle response is deter-
mined by inversion of (1.30), the perturbed plasma densities and current can be consistently
computed, while electromagnetic fluctuations are given by (1.21) and (1.22).

1.3 Waves and oscillations in plasmas

1.3.1 Electron plasma waves

As in other physical systems, oscillations and wave propagation also occur in plasmas [74,
11]. First of all, perturbations cause disturbances in the configuration of electrons, to which
they respond with small oscillations at a particular frequency, known as plasma frequency,
already introduced in section 1.1.2. This frequency can be quite easily computed by using
a simple but significant model [11]. Let’s consider an infinite plasma with no equilibrium
electric or magnetic fields (E0 = B0 = 0), whose thermal motion is neglected (T ⇡ 0) and
electrons are at rest (v0 = 0), with ions fixed in space and electrons free to move only in
the x direction. Due to a perturbation, the quantities of interest are

n = n0 + �n, v = �v, E = �E. (1.34)

Linearizing the plasma response, and supposing the plasma is uniform (rn0 = 0), the
continuity equation for the perturbed density is derived from (1.15) for the electrons,

@n

@t
+
@(nv)

@x
⇡
@ �n

@t
+ n0

@v

@x
= 0, (1.35)

while the force balance equation is (1.16) for electrons,

me
dv
dt

+ eE +
@p

@x
= me

✓
@v

@t
+ v

@v

@x

◆
+ eE +

@p

@x
⇡ me

@ �v

@t
+ e �E = 0, (1.36)
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where we have used p = 3nT ⇡ 0 since T ⇡ 0. Finally, Poisson’s equation, keeping in mind
that ions are fixed and, thus, no perturbation in their density occurs, is

@E

@x
� 4⇡� ⇡

@ �E

@x
+ 4⇡e �n = 0. (1.37)

In this case, the divergence of the perturbed electric field is not zero, because electronic
density is changed, while ions are fixed, and, thus, quasineutrality doesn’t hold. Writing
the perturbed quantities in the form of plane waves

�n = �n ei(kx�!t), �v = �v ei(kx�!t), �E = �E ei(kx�!t), (1.38)

so that, in particular, @/@t = �i! and @/@x = ik, the above equations become

�i!�n+ ikn0�v = 0, (1.39)
�ime!�v + e�E = 0, (1.40)

ik�E + 4⇡e�n = 0. (1.41)

This readily yields the plasma frequency in the form

! = !p =

s
4⇡e2n0

me
. (1.42)

Because !p does not depend on k, the group velocity vg := d!p/dk is zero. Actually, this is
due to the fact that we have neglected electron thermal motion: if we return to (1.36) but
with

@p

@x
= 3T

@ �n

@x
, (1.43)

we easily obtain the dispersion relation

!2
p(k) = !2

p +
3T

me
k2, (1.44)

and, therefore, the group velocity

vg =
d!p(k)

dk
=

3Tk

me!p(k)
. (1.45)

Finally, when the plasma is magnetized, spiral motions around the direction of magnetic
field superimpose, and we could easily demonstrate that the frequency becomes

!h =
q
!2
p(k) + ⌦2

e, (1.46)

being

⌦e =
eB0

mec
(1.47)

the electron gyrofrequency. Here, !h is known as the upper hybrid frequency and the corre-
sponding wave upper hybrid oscillation.
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1.3.2 Ion acoustic waves

In ordinary gases, due to pressure (and then, ultimately, to temperature), propagation of
sound waves occurs, whose description can be derived from the equation of fluid motion
(cardinal equation of ideal fluids or Navier-Stokes equation). A similar phenomenon is also
typical of plasmas, with some differences mainly related to the presence of electromagnetic
fields: not simply kinetic energy but also the repulsion among positive charges causes ions
groups to expand, and then to get closer to other groups, which in turn, because of pressure
and electric repulsion, move away, so creating a game of compressions and decompressions
that is the ion sound wave in a plasma. The linearization of the ion fluid equation (1.16),
with, for the moment, B = 0, along with the equation of continuity (1.17), leads, through
analogous computations as in the case of electron oscillations, to the dispersion relation for
ion acoustic waves,

vs =
⌦s

k
=

s
(�iTi + �eTe)

mi
=

r
�ipi
%i

+
�epe
%

=
q
v2si + v2se, (1.48)

where we have used pi,e = nTi,e, so to recognize the familiar expressions for sound speed,
which here are to be considered as the ionic and electronic adiabatic sound speeds (in general,
�e = 1).

While electron plasma oscillations have a thermal correction in their dispersion relation
but also exist at zero temperature (though they cannot propagate in that case), ion waves
only exist with thermal motions, like ordinary sound waves. However, ion waves don’t need
thermal ion motion, specifically, when the dominant term in (1.48) is ⇠ Te: we can say that
ion waves essentially depend on electron thermal motion and ion mass. As in the case of
plasma oscillations, the extension for magnetized plasmas of the ion sound waves relation
can be considered, giving the frequency of the electrostatic ion cyclotron waves,

⌦C =
q
k2v2s + ⌦2

i , (1.49)

being

⌦i =
eB0

mic
(1.50)

the ion gyrofrequency.



CHAPTER 2
alfvén waves

Hydromagnetic waves are the waves propagating in an electrically conducting fluid, such as
a plasma, and in a magnetic field; among these waves, we focus on the (shear) Alfvén wave
in a non-uniform plasma. Non-uniformity is a crucial feature since it causes the wavelength
in the non-uniformity direction to decrease in time as 1/t [39] and the MHD wave equations
to exhibit a singular behavior: the kinetic description, able to investigate shorter scales,
shows that the Alfvén wave actually changes its character by evolving to a different type
of wave (the kinetic Alfvén wave [40, 41]). This fact represents an example of the process
known as wave mode conversion [74].

The general theory of Alfvén waves starts during the 1940s, when Hannes Alfvén com-
bined [1, 2] fluid mechanics and electromagnetic waves to try to solve the "coronal heating
problem", namely the problem of understanding why the solar corona is hotter than the
photosphere despite its distance from the core: a magneto-hydrodynamic wave could exist
able to carry energy from the photosphere towards the corona and the solar wind. Enrico
Fermi readily adopted this thesis for his own theory of cosmic rays [33]. Though it is still
not clear whether Alfvén waves, and in particular the mode converted short length scale ki-
netic Alfvén waves, suffice to explain the observed thermal gradient, we now actually know
that they are produced by electromagnetic fluctuations and varying pressure gradients in
the convective zone beneath the photosphere.

The first descriptions of kinetic Alfvén waves in plasmas, produced by phase mixing (see
section 2.1.2) and mode conversion, date back to 1975-76 [40, 41]. For some time, the strong
(linear) absorption of these waves has been investigated as a possible, convenient way for
plasma heating in magnetic fusion devices [44, 45], requesting quite simple antenna design
and low-frequency radio instead of higher-frequency waves; eventually, these attempts have

17
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been abandoned due to the evidence that power coupling and efficiency for a kinetic Alfvén
wave aren’t adequate. In the present work, our main interest is in the nonlinear physics
connected to the opposite case, that is weak absorption [85, 17], because the energy not
absorbed by plasma can lead to the formation of nonlinear structures such as convective
cells, with interesting novel underlying physics and applications.

2.1 Hydromagnetic waves. Shear Alfvén wave (SAW)

At the end of the first chapter, basic examples of waves originating in a plasma have
been introduced. In this chapter, we shall switch our attention to the quite general case
of electromagnetic waves in a magnetized (B0 = B0ẑ 6= 0), ideally infinite, plasma slab
at rest (v0 = J0 = 0), initially taking a uniform system, then studying some important
consequences of non-uniformity.

2.1.1 Uniform plasma slab

For a homogeneous (rp = r% = 0) plasma [34], the equation of continuity, after lineariza-
tion, is

!�% = %0k · �v, (2.1)

while (1.20) is

!�p = �p0k · �v. (2.2)

Meanwhile, the Lenz’s law can be written as, using Ohm’s law in the form of (1.24),

!�B = �k⇥ (�v ⇥B0) , (2.3)

while Ampère’s law (in the low-frequency limit dE/dt = 0, as usual) is, taking into account
(2.3),

4⇡

c
!�J = �ik⇥ (k⇥ (�v ⇥B0)) . (2.4)

Maxwell’s equations for the divergence of the fields are redundant: in particular, the first
of (1.22), namely k · �B = 0, is a consequence of (2.3). For convenience, we rotate the
(x, y) plane so that kx = 0, and, then, set k? := ky and kk := kz. The linearized cardinal
equation (1.18) is

�i!%0�v =
�J

c
⇥B0 � i�pk, (2.5)

which, by substitution of (2.4), in components reads

!%0�vx =
B2

0k
2
k

4⇡!
�vx, (2.6)

!%0�vy =
B2

0k
2

4⇡!
�vy + �pk?, (2.7)

!%0�vz = �pkk. (2.8)
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Further substitution of (2.2) in the above equations yields
⇣
!2

� k2kv
2
A

⌘
�vx = 0, (2.9)

�
!2

� k2?v
2
s � k2v2A

�
�vy � k?kkv

2
s �vz = 0, (2.10)

k?kkv
2
s �vy �

⇣
!2

� k2kv
2
s

⌘
�vz = 0, (2.11)

where

vA =
B0

p
4⇡%0

(2.12)

is the Alfvén speed, while vs = vsi =
p
�p0/%0 is the ion adiabatic sound speed, introduced

in (1.48). In order to solve the above linear system, we first set to zero the determinant of
its coefficient matrix, getting the dispersion relation in three branches, i.e. three solutions,

!2
A = k2kv

2
A (shear Alfvén wave), (2.13)

!2
FM =

k2
�
v2A + v2s

� ⇣
1 +

p
1� ↵2

⌘

2
(fast magnetosonic wave), (2.14)

!2
SM =

k2
�
v2A + v2s

� ⇣
1�

p
1� ↵2

⌘

2
(slow magnetosonic wave), (2.15)

with

↵2 :=
4k2kv

2
sv

2
A

k2
�
v2s + v2A

�2 ; (2.16)

then, we substitute these solutions in the system, obtaining the corresponding eigenvectors,
namely the components of the perturbed velocity, for each case. In particular, for shear
Alfvén waves (SAWs), the velocity is constrained to the x direction, �v = (�vx, 0, 0), from
which the name of shear waves. They only depend on kk and not on k?, and, because
k · �vx = 0, we see, from (2.1) and (2.2) and from r · �v / k · �v, that no perturbation in
density and pressure arises: i.e., they are incompressible. The perturbation of the magnetic
field is, according to (2.3) and (2.13) and, in the last step, to (1.24),

�B = �Bx = �
kkB0�vx
!A

= ⌥
B0�vx
vA

= ⌥
c�E

vA
, (2.17)

where �E = �Ey and ⌥ signs refer to ± roots of the shear Alfvén dispersion relation
!A = ±kkvA. Equation (2.17) is known as Walén relation [76]. Still from (2.13), we see
that vAẑ = (@!A/@kk)ẑ is the group velocity, which is directed along the ambient magnetic
field.

For the magnetosonic waves, the fluctuation of velocity lies in the (y, z) plane: it holds
that

!SM  !A  !FM . (2.18)
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In strongly magnetized plasmas, where ion Larmor radius is much lower than the system
size and, typically, thermal plasma pressure, p / nTi, is much lower than the magnetic
pressure, pm = B2/8⇡, one has

� :=
4⇡n0T

B2
0

=
v2si
�iv2A

⌧ 1, (2.19)

and, therefore, vs ⌧ vA. By looking at (2.15) and (2.16), in this case slow magnetosonic
waves reduce to the ion sound waves, !2

SM = k2kv
2
s , while fast waves simplify their dispersion

relation to !2
FM = k2v2A and become the so-called compressional Alfvén waves.

2.1.2 Non-uniform plasma slab

In a non-uniform plasma, whose density, and pressure, vary along a given direction, say the
x direction, orthogonal to the magnetic field B0(x) = B0(x)ẑ, the perturbation of a generic
physical quantity F will be expressed as

�F(x, y, z, t) = �F(x)ei(kyy+kkz�!t). (2.20)

So, the equation of continuity is

i!�% =
d%0
dx

�vx + %0

✓
d�vx
dx

+ iky�vy + ikz�vz
◆
, (2.21)

while (1.20) is

i!�p = �p0

✓
d�vx
dx

+ iky�vy + ikz�vz
◆
. (2.22)

Ampère’s law (1.22), taking Ohm’s law (1.24) into account, generally reads

i!�B = �r⇥ (�v ⇥B0) , (2.23)

or,

�B = r⇥ (�⇠ ⇥B0) , (2.24)

being �⇠ the plasma displacement. Meanwhile, the momentum equation becomes

%0
@2

@t2
�⇠ = �r�p̃+

1

4⇡
(B0 ·r)2 �⇠ �

1

4⇡
B0 (B0 ·r) (r · �⇠) , (2.25)

where p̃ indicates the total, kinetic plus magnetic, pressure perturbation,

�p̃ = �p+
B0�Bk
4⇡

. (2.26)

In particular, for the parallel, z-component of (2.25), we have
✓
%0!

2
�

B2
0

4⇡
k2k

◆
�⇠k = ikk�p̃+

B2
0

4⇡
ikk

✓
ikk�⇠k + iky�⇠y +

d�⇠x
dx

◆
, (2.27)
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or, multiplying by 4⇡/B2
0 ,

DA�⇠k =
4⇡

B2
0

ikk�p̃+ ikk
✓

ikk�⇠k + iky�⇠y +
d�⇠x
dx

◆
, (2.28)

where DA(x) :=
!2

v2A(x)
� k2k. Likewise, we obtain

DA�⇠x =
4⇡

B2
0

d�p̃
dx

, (2.29)

DA�⇠y =
4⇡

B2
0

iky�p̃. (2.30)

In all three components, then, the left-hand side vanishes when the shear Alfvén wave
dispersion relation is locally satisfied. Using (1.20) in the first step below, and (2.25) in the
second step, (2.26) explicitly reads

�p̃ = ��⇠x
dp0
dx

� �p0 (r · �⇠) +
B0�Bk
4⇡

=

= �ikk�p0�⇠k �
✓
�p0 +

B2
0

4⇡

◆✓
iky�⇠y +

d
dx
�⇠x

◆
.

(2.31)

Substituting (2.28) in this equation, and taking into account (2.30), we have

�⇠k = �i
��kkv

2
A

2!2 � ��k2kv
2
A

r · �⇠?; (2.32)

with the help of the same three equations, we also get

�⇠y =
i↵ky

↵k2y �DA

d�⇠x
dx

, (2.33)

with

↵ := 1 +
��!2

2!2 � ��k2kv
2
A

. (2.34)

Combining (2.33) with (2.29) and (2.30), we finally obtain the equation

d
dx

✓
B2

0DA↵

↵k2y �DA

d�⇠x
dx

◆
�B2

0DA�⇠x = 0. (2.35)

This equation, and its solutions, are singular when DA↵ = 0, namely when either ↵ = 0,
corresponding to the dispersion relation of ion sound waves,

!2 = !2
s(x) :=

k2kv
2
s(x)

1 + v2s(x)
v2A(x)

, (2.36)

or DA = 0, corresponding to

!2 = !2
A(x) := k2kv

2
A(x), (2.37)
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namely the SAW dispersion relation for a non-uniform plasma: in both cases, the spectrum
is naturally non-uniform, continuous. In a cold plasma, �� ⌧ 1, so ↵ ⇡ 1 and ion sound
waves are suppressed, as we expected; furthermore,

�⇠k = 0, (2.38)

so only the perpendicular force balance is relevant and, according to (2.25) and (2.26), is
given by

DA�⇠? = r?

✓
�Bk
B0

◆
. (2.39)

Note that k2y ⇠ a�2, where a is the perpendicular (to the ambient magnetic field) macro-
scopic scale-length, whereas DA can be taken of the order k2k, scaling with the longitudinal
length as L�2: since generally a < L (this is definitely the case for the cylindrical plasma
model studied in the next chapters), then |DA| ⌧ k2y, and (2.35) can be simplified to

d
dx

✓
B2

0DA

k2y

d�⇠x
dx

◆
�B2

0DA�⇠x = 0, (2.40)

that is,
✓
@

@x

�
!2

� !2
A

� @

@x
� k2y

�
!2

� !2
A

�◆
�⇠x = 0. (2.41)

By identifying !2 with �@2t , and neglecting ky with respect to @x (an assumption that will
be justified a-posteriori), this equation becomes

@

@x

✓
@2

@t2
+ !2

A

◆
@

@x
�⇠x = 0. (2.42)

Integration in t yields

@

@x
�⇠x(x, t) = C(x)e±i!A(x)t (2.43)

and it is easy to verify that, for t ! 1, the right-hand side is the derivative of

�⇠x(x, t) ⇡ ±
C(x)

i!0
A(x)t

e±i!A(x)t, (2.44)

namely �⇠x decays with time as 1/t. This result implies that, asymptotically,

@

@x
⇡ kx = ±i!0

A(x)t, (2.45)

meaning, in particular, that the modulus |kx| of the wavenumber increases in time, that
is, the wavelength decreases: any initially long-scale perturbation evolves into short scales
perturbations. Equation (2.45) justifies having neglected |ky| with respect to |kx| time
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asymptotically. Close to the resonant point x0, where the resonance condition !2
A(x0) = !2

is satisfied, we can write the Alfvén frequency as

!2
A(x) ⇡ !2 +

�
!2
A

�0
(x0) (x� x0) (2.46)

and, then, (2.42) as

(x� x0)
@2

@x2
�⇠x +

@

@x
�⇠x = 0, (2.47)

which, for x 6= x0, has solution

�⇠x = C ln (x� x0) +D, (2.48)

where C and D are constants, that is evidently singular in x0. In other words, the singularity
is logarithmic and, consistently with (2.45), it indicates that arbitrarily short scales are
generated in the time asymptotic limit. Using (2.33) still in the limit |DA| ⌧ k2y, (2.42)
and (2.43) yield

✓
@2

@t2
+ !2

A

◆
�⇠y = 0 (2.49)

and, so,

�⇠y(x, t) =
i
ky

C(x)e±i!A(x)t = �⇠y(x, 0)e
±i!A(x)t : (2.50)

the y component of the displacement shows undamped oscillations at SAW continuum
frequencies. Equation (2.50) also allows us to rewrite (2.44) as

�⇠x(x, t) ⇡ ⌥
ky

!0
A(x)t

�⇠y(x, 0)e
±i!A(x)t. (2.51)

Finally, from (2.24), magnetic field and displacement perturbations are proportional (and
"in quadrature"),

�Bx,y = iB0kk�⇠x,y, (2.52)

so, also for �Bx, the SAW equation is

@

@x

✓
@2

@t2
+ !2

A

◆
@

@x
�Bx = 0, (2.53)

with time decaying solution

�Bx(x, t) ⇡ ⌥
ky

!0
A(x)t

�By(x, 0)e
±i!A(x)t, (2.54)

and, near the resonance,

�Bx ⇡ C 0 ln (x� x0) +D0. (2.55)
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That every point in x oscillates at a different frequency !A(x) is a manifestation of phase
mixing [39, 37] and of (2.45). The (spatial) phase mixing is the fast spatial variation of the
phase i(kyy + kkz � !t) in the x direction close to the SAW resonance, that’s to say, the
fact that nearby points in the x direction decorrelate in phase, corresponding to kx ⇠ !0

At

and to the singular structures decaying in time (as 1/t). And, as we shall see, to the mode
conversion to the kinetic Alfvén wave. Meanwhile, as to the other perpendicular magnetic
field fluctuation component,

✓
@2

@t2
+ !2

A

◆
�By = 0, (2.56)

that is,

�By(x, t) = �By(x, 0)e
±i!A(x)t, (2.57)

with, time asymptotically, @x ln �By = kx, as given by (2.45): see also fig.2.1 [65, 66]. In
fact, the equations for the y components of �⇠ and �B can also be obtained from (2.41) by
neglecting k2y with respect to @2x, integrating in x and, then, using r · �⇠ ⇡ 0 by analogy
with r · �B = @x�Bx + ky�By = 0.

Fig.2.1 Snapshots of the spatial structure of �By(x, t) with respect to x at different times,

illustrating the formation of shorter scales at later times, from original figure in [65, 66].

The locality of the SAW spectrum in the case of non-uniformity and the fact that the
wavelength decreases as t�1 are responsible for the singularity of the wave equation and
imply the emergence of short scales. In particular, (2.48) and (2.55) mean that the pertur-
bations in the non-uniform direction develop a logarithmic singularity at the Alfvén resonant
layer x = x0, namely the layer such that !2(x0) = !2, with a finite resonant wave-energy
absorption rate. The existence of such a singularity naturally suggests that the microscopic
length-scale physics neglected in the ideal MHD fluid description should be included in the
long-time-scale dynamics of SAWs, and that the fluid, macroscopic description must be re-
placed by a kinetic description. For low-frequency SAWs, the relevant, and perpendicular
to B0, microscopic scales are [17] either the ion Larmor radius, ⇢i = vT i/⌦i, with vT i the



2.2 Kinetic Alfvén wave (KAW) 25

ion thermal speed, and/or ⇢s = vs/⌦i, with v2s ⇠ Te/mi the ion-sound velocity (1.48).
Including the effects of finite ⇢i and/or ⇢s in the SAW dynamics led to the discovery of the
so-called kinetic Alfvén wave (KAW) [40, 41].

2.2 Kinetic Alfvén wave (KAW)

In the previous section, we demonstrated that the existence of a continuous spectrum with
oscillation frequency varying in the non-uniformity direction implies a phase-mixing process
[39, 37], according to which any initial perturbation of SAW structures eventually evolves
into short-wavelength structures, while the singularity at the resonant surface is a manifes-
tation of the impossibility for a fluid model to provide further information about such scales.
A kinetic theory approach is needed to properly describe the dynamics of Alfvén waves and,
by including effects such as finite ion Larmor radius (FILR) and/or wave-particle interac-
tions, allows the new short-wavelength structures involved, named kinetic Alfvén waves
(KAWs) [40, 41, 79, 80], to be studied. The discovery and first discussions of KAWs (since
1975-76 [40, 41]), having come a little before the introduction of the linear (in 1978 [7, 3])
and of the nonlinear (in 1982 [35]) electromagnetic gyrokinetic theories, have often been
characterized by the complicated procedures of taking the low-frequency (! ⌧ ⌦i) limit of
the Vlasov kinetic theory and/or of employing the drift-kinetic theory approach, making
the theoretical analysis of KAW dynamics in non-uniform plasmas with realistic B0(x) in-
tractable, especially when dealing with the nonlinear physics, where either the drift-kinetic
or the two-fluid description have been adopted [59, 61, 62, 63, 64, 82]. Also, such approxi-
mations, apart from being inadequate for treating realistic plasma regimes, often leave out
important physics, forsaking for example the FILR effects, so finally motivating, in recent
years [14, 15, 85, 17], the use of the powerful nonlinear gyrokinetic theory for re-examining
both the linear and the nonlinear physics of KAWs.

Neglecting nonlinear terms (which will be reintroduced in chapter 5) and drift terms
(since the ratio of drift velocity to thermal velocity scales as ⇢i/L ⌧ 1; however, the effect
of neglecting drift terms in cylindrical plasmas is discussed in detail in section 4.1.1), as
well as collisions, the gyrokinetic equation (1.32) becomes

✓
@

@t
+ vk

B0

B0
·r

◆
�g =

q

T
FM (E )

@

@t
h�Lgi↵, (2.58)

where r = rX is the gradient operator with respect to the gyrokinetic coordinates. For
a plane-wave perturbation of frequency ! and parallel wavenumber kk, this equation has
solution

�gk = �
q

T
FMJ0(k?⇢)

!

kkvk � !
�Lk, (2.59)

where J0(k?⇢) = he�⇢·r
i, namely the first-kind Bessel function J0 accounts for the gyro-

averaging of the coordinate transformation. Since we are dealing with potential functions,
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the basic equations are Poisson’s equation for ��k, which in the regime |k�D| ⌧ 1 is the
quasineutrality condition

X

j=i,e

n0jqj

Z
�fjk dv ⇡ 0, (2.60)

where v is the particle velocity, and Ampère’s equation for the vector potential,

r
2�Akk = �

4⇡

c
�Jkk = �

4⇡

c

X

j=i,e

n0jqj

Z
vk�fjk. (2.61)

Introducing the rescaled parallel vector potential

� k =
!�Akk
ckk

, (2.62)

that is, r� ·B0/B0 := �@t�Ak/c, and such that the net parallel electric field is given by

�Ekk = �
B0

B0
·r (��� � ) = �ikk (��� � )k , (2.63)

the quasineutrality or Poisson equation (2.60) becomes

X

j

✓
n0q2

T0

◆

j

{��k + �0kj [⇠kjZkj��k � (1 + ⇠kjZkj) � k]} = 0, (2.64)

where �0kj = I0(bkj)e�bkj , with I0 the modified Bessel function and bkj := k2?⇢
2
j =

k2?Tj/(mj⌦2
j ), ⇠kj = !/(|kk|vTj) and

Zkj := Z (⇠kj) =
1
p
⇡

Z +1

�1

e�⇣
2

⇣ � ⇠kj
d⇣ (2.65)

is the plasma dispersion function [11, 34]. Meanwhile, substitution of the Ampère law (2.61)
in the relation r · �J = 0 gives the linear gyrokinetic vorticity equation

c2

4⇡!
k2kk

2
?� k �

X

j

✓
n0q2

T0

◆

j

(1� �0kj)!��k = 0. (2.66)

Note that in the ideal MHD limit �Ek = 0 (as it can be seen from (1.24)), that is, �� = � .
With a wavelength comparable to the ion Larmor radius, namely |k?⇢i| ⇠ 1, |k?⇢e| ⌧ 1

and, as a consequence, �0ke ⇡ 1, the previous equations become

✏sk��k := [1 + ⇠keZke + ⌧ (1 + �k⇠kiZki)] ��k =

= [1 + ⇠keZke + ⌧�k (1 + ⇠kiZki)] � k,
(2.67)

!2��k = k2kv
2
A

bk
1� �k

� k (2.68)
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where

✏sk = 1 + ⇠keZke + ⌧ (1 + �k⇠kiZki) (2.69)

is the dielectric constant for slow-sound ion-acoustic waves, ⌧ := T0e/T0i and �k := �0ki.
Introducing ��kk = ��k � � k as the effective parallel potential, we finally get

✏sk��kk = �⌧ (1� �k) � k, (2.70)

!2��kk = �

✓
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� k2kv
2
A

bk
1� �k

◆
� k. (2.71)

Substituting (2.70) in (2.71) we obtain
✓
!2

� k2kv
2
A

bk
1� �k

◆
� k = !2 ⌧ (1� �k)

✏sk
� k, (2.72)

from which the KAW dispersion relation can be cast as

!2

✓
1�

⌧ (1� �k)

✏sk

◆
= k2kv

2
A

bk
1� �k

. (2.73)

At the lowest order, and neglecting the algebraically small electron Landau damping and the
exponentially small ion Landau damping [17, 39, 40], we can write ✏sk ⇡ 1+⌧(1��k) =: �k,
so the KAW real frequency is given by

!2
kr ⇡ k2kv

2
Abk

1 + ⌧ (1� �k)

1� �k
= k2kv

2
A
�kbk
1� �k

. (2.74)

Assuming |k?⇢i|2 ⌧ 1 and defining ⇢̂2 := (3/4+⌧)⇢2i , we finally reduce the KAW dispersion
relation to

!2
k ⇡ k2kv

2
A

�
1 + k2?⇢̂

2
�
, (2.75)

which is a minimal extension of the SAW dispersion relation (2.13), exactly recovered in the
limit k2?⇢

2
i ! 0, that’s to say when the finite ion Larmor radius effects become negligible

(long-wavelength limit).
Letting, in (2.75), !2

k = �@2t and k2? = k2x + k2y = �@2x � @2y , we can, in the case of a
non-uniformity in the x direction, straightforwardly extend the SAW equation (2.56) as

✓
@2

@t2
+ !2

k

◆
�By(x, t) = 0, (2.76)

i.e., formally using, as definition, the SAW dispersion relation !A := kkvA,
✓
@2

@t2
+ !2

A(x)� ⇢̂2!2
A(x)

@2

@x2

◆
�By(x, t) = 0. (2.77)

These equations show that one effect of FILR is the removal of the singularity for !2 = !2
A.

According to (2.75), the kinetic wave propagates in the !2
k > !2

A region, and exponentially
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decays for !2
k < !2

A, where k2x is evidently negative (cutoff). Furthermore, (2.75) also
shows that the group velocity has, in contrast to the MHD case, non-zero perpendicular
component,

vg? ⇡
!2
A⇢̂

2

!k
k?. (2.78)

In conclusion, the kinetic description goes beyond the singular response of MHD intro-
ducing mode conversion of the shear to the kinetic Alfvén wave. In the long-wavelength
limit, the kinetic correction k2?⇢̂

2 in (2.75) provides the simplest model to quantitatively de-
scribe conversion from long-wavelength MHD perturbations to short-wavelength gyrokinetic
fluctuations, which will be further analyzed in chapter 4.

2.2.1 Observation of KAWs

The efficient energization, including heating and acceleration, of plasma particles by kinetic
Alfvén waves, pointed out by Hasegawa and Chen [41], is an ubiquitous phenomenon in
laboratory, space, and astrophysical magnetized plasmas [80], and equally important are its
implications on particle transport.

In laboratory fusion plasmas, realistic plasma non-uniformities and magnetic field ge-
ometries often play crucially important roles in determining SAW/KAW mode structures
and stability properties [16]; for example, in toroidal fusion plasmas, the Kinetic Toroidal
Alfvén Eigenmodes (KTAEs) [58] may exist within the SAW continuum and their dynamics
are intrinsically related to those of KAWs. Furthermore, laboratory plasma experiments
have shown evidence of coupling between SAW eigenmodes and KAWs [78], which may also
be externally driven by mode conversion of fast modes [32].

However, due to diagnostics constraints in laboratory plasmas, most of the KAW obser-
vations have been made by satellites in the Sun-Earth space plasma environments, which,
as mentioned at the beginning of this chapter, were a motivation for the very introduction
of Alfvén waves in physics. A good example is geomagnetic pulsations in the Earth’s mag-
netosphere: fig.2.2 shows the oscillations in the Earth’s magnetic field as observed by the
satellite AMPTE CCE [28], illustrating the three-component dynamic power spectrum of
magnetic field data from a full orbit from 02:30 to 17:30 UT March 6, 1987. The geomag-
netic BR, radially outward from the center of the Earth, BE , magnetically Eastward, and
BN , approximately along local magnetic field lines, correspond to, respectively, Bx, By, and
Bz. As the satellite moved outward from the morning side, !A should decrease due to the
decreasing |B0| and |kk| (increasing field-line length), and this was clearly exhibited in the
wave frequency of BE , the azimuthal (East-West) component of �B (i.e., the effective �By).
BE also shows that the wave frequency increases as the satellite moved inward toward the
dusk side, consistently, again, with !A. Furthermore, the observed wave frequency consisted
of several bands, which could be understood as harmonics of standing waves along the field
line, i.e., different kk.

Shear Alfvénic oscillations in the magnetosphere have been linked to excitations from
the upstream solar wind: that is, kinetic Alfvén waves are produced by the interaction
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Fig.2.2 Three-component dynamic power spectrum of magnetic field data from AMPTE

CCE satellite, from original figure in [28]. Apogee is at the center of the figure. L, MLT,

and MLAT correspond, respectively, to the equatorial distance of the magnetic field line (in

unit of the Earth radius), magnetic local time, and magnetic latitude.

between solar wind and Earth’s magnetosphere. Due to the collisionless nature of space
plasmas, kinetic effects create large-amplitude waves and pressure pulses in the foreshock
region upstream from the quasi-parallel so-called bow shock (fig.2.3), which occurs when the
magnetosphere of an astrophysical object interacts with the nearby flowing ambient plasma
such as the solar wind: for Earth and other magnetized planets, it is the boundary at which
the speed of the stellar wind abruptly drops as a result of its approach to the magnetopause,
while, for stars, this boundary is typically the edge of the astrosphere, where the stellar
wind meets the interstellar medium. The foreshock is found to be an important source of
(magnetic) pulsating continuous (Pc) magnetospheric waves [30, 29, 19, 22, 77]. The mode
conversion process associated with the compressional modes of the foreshock waves has
been suggested as a directly driven mechanism for the generation of the frequently observed
discrete harmonic frequencies of shear Alfvénic field-line resonances [42, 40, 50]. Indeed, near
the magnetopause boundary, a sharp transition is frequently found in wave polarization from
predominantly compressional waves in the magnetosheath to transverse in the boundary
layer [72, 67, 8]. THEMIS observations [8] show a direct evidence of a turbulent spectrum
of KAWs at the magnetopause with sufficient power to provide massive particle transport;
the use of coordinated observations in the foreshock and the magnetosphere [77] found direct
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evidence of pulsating continuous field line resonances driven by the foreshock perturbations.
The main mode identification method for KAWs is based on the measurement of the wave
polarization, which has to be

c�E?
�B?

= vA

s
bk

�k (1� �k)
, (2.79)

reducing to

c�E?
�B?

= vA (2.80)

for SAWs; this method is used in several kind of measurements, for example with Van Allen
Probes in the Earth’s inner magnetosphere [9] and Cluster satellites in the solar wind [69],
the two of them showing qualitative and/or quantitative agreement with the KAW value
given by (2.79).

Fig.2.3 A supersonic shock wave is created sunward of Earth: the bow shock. Most of the

solar wind particles are heated and slowed at the bow shock and detour around the Earth in

the magnetosheath. The solar wind drags out the night-side magnetosphere to possibly 1000

times Earth’s radius; its exact length is not known. This extension of the magnetosphere

is known as the magnetotail. The outer boundary of Earth’s confined geomagnetic field is

called the magnetopause.

(Credit: NASA/Goddard/Aaron Kaase1)

1https://www.nasa.gov/mission_pages/sunearth/multimedia/magnetosphere.html
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The role of KAWs in energy transport and particle acceleration in the magnetotail with
a strong parallel disturbed electric field [17],

����
c�Ek
�B?

���� = vA

����
kk
k?

���� ⌧

s
bk (1� �k)

�k
, (2.81)

has been investigated until very recently [81], suggesting that the energy enhancement of
electron beams is caused by KAWs.

The phenomena observed in the laboratory experiments show striking similarities to
what has been observed by satellites in space plasmas, motivating an increasing interest in
KAWs.



CHAPTER 3
shear alfvén waves in a cylindrical plasma

In the present and in the next chapters, our focus will be on the study of the interaction
(propagation and absorption) of Alfvén waves, whose frequency is such that |!/⌦i| ⌧ 1, in
a magnetized periodic cylindrical plasma with a non-uniformity in the radial direction.

As a first step, in this chapter we investigate the problem of the shear Alfvén wave
by using the ideal, linear MHD model. As seen in the previous chapter, the existence
of a spatial inhomogeneity, corresponding, in general, to realistic conditions, modifies the
SAW dispersion relation from a constant value to a continuous spectrum, with oscillation
frequency varying in the non-uniform (radial) direction.

3.1 Model

Let’s consider a periodic, cylindrical plasma (fig.3.1), with periodic length R and with radius
a, and whose axis is directed along ~z. The non-uniformity is in the radial direction r, so
there is axial symmetry, and the magnetic equilibrium configuration is the screw pinch [34],
namely B0(r) = (0, B0✓(r), B0z(r)). The components of the magnetic field are related to the
components of the plasma current density through the Ampère-Maxwell equation (second
of (1.22)),

dB0✓

dr
+

B0✓

r
=

4⇡J0z
c

, (3.1)

dB0z

dr
= �

4⇡J0✓
c

, (3.2)

32



3.1 Model 33

while, being the non-uniformity purely radial, J0r = 0. Since B0r = 0, the radial condition
for the momentum equilibrium is, from (1.18),

dp0
dr

= J0✓B0z � J0zB0✓, (3.3)

which, by substitution of (3.1) and (3.2), reads

d
dr

✓
4⇡p0 +

B2
0

2

◆
= �

B2
0✓

r
. (3.4)

Fig.3.1 Magnetized cylindrical plasma.

Fig.3.2 Cross-sectional view.

The plasma cylinder is surrounded (fig.3.2) by a conducting, coaxial cylindrical wall of
radius b and, in the vacuum region, at a distance d such that a < d < b, an antenna carries
an oscillating helical current density �Jh, of components

�Jrh = 0,

�J✓h = �J̃✓he
i(�m✓+kz�!0t) � (r � d) , �Jzh = �

m

kd
�J̃✓he

i(�m✓+kz�!0t) � (r � d) ,
(3.5)
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where !0 is the externally imposed antenna frequency, k is the wave number in the z-
direction and will be conventionally denoted as k = n/R to account for the periodicity of the
cylindrical equilibrium, and m is the azimuthal wave number. Meanwhile, the expression for
�Jzh is a consequence of the condition on the radial component, �Jrh = 0, and of r·�Jh = 0.
The sheet current density is

�Ih = 2⇡d�Jzh. (3.6)

This toy-model antenna launches a low-frequency wave that, for convenience, can be rep-
resented by the radial component of the fluctuating magnetic field �Brh [44, 45]. The
conducting wall ensures the perfect reflection of the wave at the boundary, �Brh(r = b) =

�Ezh(r = b) = 0. In general, the antenna current perturbations as well as the perturba-
tions of the other physical quantities F characterizing the plasma can be expressed (using
a generic !) as Fourier series

X

m,n

�Fmn(r, ✓, z, t) =
X

m,n

�Fmn(r)e
i(�m✓+ n

R z�!t). (3.7)

Since all the (m,n) components are linearly decoupled in the considered cylindrical plasma
equilibrium, we can treat them separately and, suppressing redundant m,n subscripts, write
any generic perturbation as

�F(r, ✓, z, t) = �F(r)ei(�m✓+ n
R z�!t) = �F(r)ei(rk✓(r)✓+kzz�!t). (3.8)

The wavenumber vector, then, is k = krr̂ + k✓✓̂ + kzẑ = krr̂ � ✓̂m/r + ẑn/R, and the
gradient operator for perturbed quantities is

r = r̂@r + i✓̂k✓ + iẑkz. (3.9)

For more clearly separating the parallel and perpendicular behaviors (with respect to B0)
of the perturbation of vector fields, let us introduce an orthonormal projection based on the
magnetic field lines with unit vectors

er := r̂,

e?(r) :=
1

B0(r)
(0, B0z(r),�B0✓(r)) , ek(r) :=

B0

B0
=

1

B0(r)
(0, B0✓(r), B0z(r)) ,

(3.10)

according to which the wavenumber vector decomposes as

k?(r) = k · e?(r) = �
1

B0(r)

⇣
B0z(r)

m

r
+B0✓(r)

n

R

⌘
, (3.11)

kk(r) = k · ek(r) =
1

B0(r)

⇣
B0z(r)

n

R
�B0✓(r)

m

r

⌘
=

=

✓
n�

m

q(r)

◆
B0z(r)

RB0(r)
,

(3.12)
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being

q(r) =
rB0z(r)

RB0✓(r)
(3.13)

the so-called safety factor of the plasma, and such that the gradient operator for perturbed
quantities becomes

r = er@r + ie?k? + iekkk. (3.14)

The SAW dispersion relation is, then,

!2
A(r) = k2k(r)v

2
A(r) (3.15)

with kk as defined in (3.12).
With the sole exception of the current-sheet antenna, in the vacuum region between the

plasma and the wall (a < r < b) the basic equations are Maxwell’s equations; nonetheless,
in order to avoid problems with divergent Alfvén speed, as they will be clearer in section
3.4, we assume, in this region, the existence of a nearly zero-density cold plasma.

3.1.1 Relations between fields and potentials

Equation (2.24) gives, at the lowest order,

�Br = ikkB0�⇠r, (3.16)

which is the analog of (2.52), and

�B✓ = ikkB0�⇠✓ � r
@

@r

✓
B0✓

r

◆
�⇠r. (3.17)

When, as it shall be for our model, B0✓ ⌧ B0z and B0z ⇡ B0 is almost uniform, @r(B0✓/r) ⇡

�(B0/m)@rkk and so

�B✓ ⇡ ikkB0�⇠✓ �
B0r

m

@kk
@r

�⇠r, (3.18)

and finally, since r? · ⇠? ⇡ 0,

�B✓ =
B0r

m

✓
kk
r

@

@r
(r�⇠r) +

@kk
@r

�⇠r

◆
=

=
B0

m

@

@r

�
rkk�⇠r

�
.

(3.19)

The relations between (displacement and magnetic) fields and potentials are given by first
noting that, according to (1.24), r�� = ��E = �v⇥B0/c, and so ek ⇥r�� = B0@t�⇠?/c,
from which

�⇠? =
ic
!B0

ek ⇥r��, (3.20)
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that is, in components,

r�⇠r = �
cm

!B0
��, (3.21)

�⇠✓ =
ic
!B0

@��

@r
, (3.22)

and, using (3.16),

r�Br = �
icmkk
!

��, (3.23)

�B✓ = �
c

!

@
�
kk��

�

@r
. (3.24)

So, with B0 almost uniform, the scalar potential is essentially given by r�⇠r. From the MHD
condition (1.24) it also derives that �Ek = 0 = ek · r� � (1/c)@tAk, and so the relations
involving the parallel vector potential Ak,

r�Br = �im�Ak, (3.25)

�B✓ = �
@

@r
�Ak, (3.26)

are fully consistent with (3.23) and (3.24).

3.2 Field equation and antenna conditions

In this section we first derive the external antenna field, and subsequently the internal,
SAW master equation. The matching conditions between the two fields are the boundary
conditions for the internal solution.

3.2.1 Antenna equation

The wave equation in vacuum is obtained, as usual, from Maxwell’s equations in this way:

r
2�B = �r⇥r⇥ �B = �

4⇡

c
r⇥ �J�

1

c

@

@t
r⇥ �E = �

4⇡

c
r⇥ �J+

1

c2
@2

@t2
�B; (3.27)

since [r⇥ (r�B)]r = [rr ⇥ �B]r + r[r⇥ �B]r = r[r⇥ �B]r, we obtain

1

r
@r [r@r (r�Br)] +

@2✓ (r�Br)

r2
+ @2z (r�Br)�

@2t (r�Br)

c2
= �

4⇡r

c

✓
@✓�Jz
r

� @z�J✓

◆
=

=
4⇡ir
k✓c

✓
@2✓�Jz
r2

+ @2z�Jz

◆
.

(3.28)

Here, we have used that (1/r)@✓�J✓ + @z�Jz = 0 for the antenna current density. For our
model of plasma of radius a with antenna located at d and carrying current �Ih, and external
conducting shell in b, and with the definition ⌫ :=

p
k2z � !2

0/c
2, the solution to (3.28) is,
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for a  r < d (see also [44, 45]) and introducing the |m|-th order modified Bessel functions
of the first and of the second kind, I|m| and K|m| respectively,

r�Br = ↵0
⇥
I|m|(⌫r)K|m|(⌫b)�K|m|(⌫r)I|m|(⌫b)

⇤

�
2im�Ih

c⌫

✓
1 +

k2zd
2

m2

◆⇥
I|m|(⌫r)K|m|(⌫d)�K|m|(⌫)I|m|(⌫d)

⇤
,

(3.29)

where ↵0 is a constant depending on the antenna frequency, and having used

I|m|(⌫d)K
0
|m|(⌫d)�K|m|(⌫d)I

0
|m|(⌫d) = �

1

⌫d
, (3.30)

while, for d < r  b, only the homogeneous solution survives,

r�Br = ↵0
⇥
I|m|(⌫r)K|m|(⌫b)�K|m|(⌫r)I|m|(⌫b)

⇤
. (3.31)

With the definition

�B̂rh :=
2m�Ih
ca⌫

✓
1 +

k2zd
2

m2

◆
, (3.32)

solution (3.29) can be rewritten as

r

a

�Br

B0
= �i

�B̂rh

B0

⇢⇥
I|m|(⌫r)K|m|(⌫d)�K|m|(⌫r)I|m|(⌫d)

⇤

+ ↵
⇥
I|m|(⌫r)K|m|(⌫b)�K|m|(⌫r)I|m|(⌫b)

⇤�
=

=: �i
�B̂rh

B0
(y1⌫(r) + ↵y2⌫(r)) ,

(3.33)

or, also,

y :=
r�⇠r
a2

=
x�⇠r
a

= �
1

kka

�B̂rh

B0
(y1⌫ + ↵y2⌫) , (3.34)

having introduced for convenience the normalized variable x := r/a. The complex parame-
ter ↵, depending on the antenna frequency, is the characteristic ratio of the solution of the
homogeneous equation to the particular solution with forcing term, or antenna solution,
namely a kind of field/perturbation ratio, and, as we shall examine in section 3.3, is a
measure of the Poynting flux launched by the antenna from outside into the inner region.

3.2.2 SAW equation

The curvature of the magnetic field modifies the momentum equation (2.25) through an
additional term,

%0
@2

@t2
�⇠ = �r�p̃+

1

4⇡
(B0 ·r)2 �⇠ �

1

4⇡
B0 (B0 ·r) (r · �⇠)

� (2r · �⇠ + �⇠ ·r)

✓
B0 ·rB0

4⇡

◆
,

(3.35)
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which readily yields �⇠k = 0 in the low-� limit, � being the ratio between kinetic and
magnetic pressures (see subsection 2.1.2 and equation (2.38)). Meanwhile,

�Bk
B0

= �r · �⇠? �

✓
+

r?B0

B0

◆
· �⇠? =

= �r · �⇠? + 2
B2

0✓

B2
0r
�⇠r,

(3.36)

where  := B0 · rB0/B2
0 is the magnetic curvature. The perpendicular force balance

equation (2.39) is then modified to

DA�⇠? = r?

✓
�Bk
B0

◆
� r̂

@

@r

✓
B2

0✓

r2B2
0

◆
r�⇠r +

2ikkB0✓

rB0

⇣
r̂�⇠✓ � ✓̂�⇠r

⌘
. (3.37)

In the limit |DA| ⌧ k2✓ (see subsection 2.1.2) and considering that
✓
1�

DA

k2✓

◆�1

⇡

✓
1 +

DA

k2✓

◆
, (3.38)

the ✓ component of (3.37) is

�⇠✓ ⇡

✓
1 +

DA

k2✓

◆
i

k✓r

@

@r
(r�⇠r) +

2i
k2✓r

✓
kk

B0✓

B0
� k✓

B2
0✓

B2
0

◆
�⇠r. (3.39)

Substituting this equation into (3.36) and into the r-component of (3.35) one arrives, re-
spectively, at

�Bk
B0

=
DA

k2✓r

@

@r
(r�⇠r) +

2kk�⇠r
k✓r

B0✓

B0
(3.40)

and at the wave equation

@

@r

✓
rDA

@

@r
(r�⇠r)

◆
�m2DA�⇠r + r

d
dr

✓
2kk

B0✓

B0
� k✓

B2
0✓

B2
0

◆
k✓

�
�⇠r = 0. (3.41)

Note that, in the typical case B0✓ ⌧ B0z,

kk ⇡
n

R
+ k✓

B0✓

B0z
; (3.42)

accordingly, (3.41) becomes

@

@r

✓
rDA

@

@r
(r�⇠r)

◆
�

✓
m2DA � r

d
dr

k2k

◆
�⇠r = 0. (3.43)

Near the resonance, and taking |k✓| ⌧ |@r| as the analogue to |ky| ⌧ |@x| in subsection
2.1.2, we find that, approaching r0,

�⇠r ⇡ C ln (r � r0) +D, (3.44)
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for some constants C and D. Equation (3.44) describes, thus, the radial singular structures
of the SAW continuous spectrum similar to what was discussed in the simpler slab case.
Equation (3.43) describes SAW oscillation in a nonuniform cylindrical plasma. In the limit
of a cold tenuous plasma, such as that occupying the "vacuum" region in the present case,
!2
0/!

2
A ⌧ 1 and, so, DA ⇡ �k2k, yielding

@

@r

✓
rk2k

@

@r
(r�⇠r)

◆
�

✓
m2k2k + r

d
dr

k2k

◆
�⇠r = 0. (3.45)

When B0z ⇡ B0 is (almost) uniform, and invoking (3.16), we obtain

@

@r

✓
rk2k

@

@r

✓
r�Br

kk

◆◆
�

 
m2kk
r

+
@rk2k
kk

!
r�Br = 0, (3.46)

or, using (3.1) and (3.42), the equation [44, 45]

1

r

@

@r

✓
r
@

@r
(r�Br)

◆
�

m2

r2
r�Br �

4⇡k✓@rJ0z
cB0kk

r�Br = 0. (3.47)

Equations (3.41) or (3.43) may also be extended, assuming that there is an external force
adding to the right-hand side, in the form

�
4⇡

B2
0c

k2✓r
2 (�J⇥B0)r . (3.48)

Since �Jr = 0 and 0 = r · �J = k✓�J✓ + kz�Jz,

4⇡k2✓r
2

B2
0c

(B0✓�Jz �B0�J✓) = �
4⇡k2✓r

2�J✓B0

B2
0ckz

✓
kz + k✓

B0✓

B0

◆
=

4⇡k✓r2

B2
0c

�JzB0kk. (3.49)

Correspondingly, (3.47) can be extended as

1

r

@

@r

✓
r
@

@r
(r�Br)

◆
�

m2

r2
r�Br �

4⇡k✓@rJ0z
cB0kk

r�Br = �
4⇡ik✓r

c
�Jz. (3.50)

The vacuum limit of (3.50) is taken for @rJ0z = 0, and corresponds to the limit !2
0 ⌧

k2zc
2
⌧ k2?c

2 of (3.28).

3.2.3 Matching conditions

The "vacuum" region solution (3.34) must be smoothly connected at the plasma boundary
with the internal plasma solution, namely with the solution to (3.41) or to (3.43); in both
cases, with the solution of a 2nd-order ordinary differential equation, which is a linear
combination of two independent solutions. Since, as we have seen, near the resonant layer
this linear combination becomes D+C ln(r� r0), the two independent solutions y1 and y2
can be taken in general as those which, approaching the resonance, respectively behave as
(remember that x := r/a)

y1(x ! r0/a) ⇡ 1, y2(x ! r0/a) ⇡
ln (x� x0)

R2@x (xDA)
. (3.51)
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The two solutions are independent since the wronskian is

y1y
0
2 � y01y2 =

1

R2xDA
6= 0. (3.52)

The inner solution expressed as linear combination of y1 and y2 matches, with different
constants, each of the two external solutions y1⌫ and y2⌫ in (3.34),

8
<

:
Y1(a) := �

1
kka

�B̂r
B0

y1⌫(a) = C1y2(a) +D1y1(a),

Y2(a) := �
1

kka
�B̂r
B0

y2⌫(a) = C2y2(a) +D2y1(a),
(3.53)

and so it can also be written as

y = x
�⇠r
a

= D1y1 + C1y2 + ↵ (D2y1 + C2y2) =

= (C1 + ↵C2) y2 + (D1 + ↵D2) y1.
(3.54)

The boundary conditions are to be completed by the matching of the derivatives,
⇢

Y 0
1(a) = C1y02(a) +D1y01(a),

Y 0
2(a) = C2y02(a) +D2y01(a),

(3.55)

in order to give the four constants as functions of y1,2(a) and y01,2(a),

C1,2 =
Y1,2y01(a)� Y 0

1,2y1(a)

y1y02(a)� y01y2(a)
, (3.56)

D1,2 =
Y1,2y02(a)� Y 0

1,2y2(a)

y1y02(a)� y01y2(a)
. (3.57)

The last member of (3.54) also defines the matching conditions with the internal region,

C = C1 + ↵C2, (3.58)
D = D1 + ↵D2. (3.59)

In conclusion, after rescaling the linear solution by the strength of the antenna perturba-
tion as in (3.34), the internal region solution approaching the singular layer at r = r0 is
determined up to the constant ↵, which, as specified earlier, represents the ratio between
the homogeneous solution and the antenna solution.

3.3 Poynting flux analysis

Poynting’s theorem reads

@

@t

✓
|�E|

2 + |�B|
2

8⇡

◆
= �

c

4⇡
r · (�E⇥ �B)� �J · �E, (3.60)

but considering that, in ideal MHD and with negligible diamagnetic current,

�J? =
c2

4⇡v2A

@

@t
�E?, (3.61)
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it becomes

@

@t

0

@

⇣
1 + c2

v2A

⌘
|�E|

2 + |�B|
2

8⇡

1

A = �r ·
c

4⇡
(�E⇥ �B). (3.62)

Finally, writing the fields as

�E =
1

2

⇣
�Emn(r)e

�i(�m✓+ n
R z�!0t) + c.c.

⌘
, (3.63)

�B =
1

2

⇣
�Bmn(r)e

�i(�m✓+ n
R z�!0t) + c.c.

⌘
, (3.64)

and mediating over the wave period and the cylindrical surface flux, we get

@

@t

0

@

⇣
1 + c2

v2A

⌘
|�Emn|

2 + |�Bmn|
2

16⇡

1

A = �
c

8⇡r
@r [rRe(�Emn ⇥ �B⇤

mn)r] , (3.65)

where a sum over the mode numbers m,n is assumed implicitly in the case of multiple
Fourier components. Since �Ek = 0, we have 0 = �E · �B = �E✓�B✓ + �Ez�Bz and
(�Emn ⇥ �B⇤

mn)r = �Emn✓�B⇤
mnk, so, using (3.40), we also have

@

@t

0

@

⇣
1 + c2

v2A

⌘
|�Emn|

2 + |�Bmn|
2

16⇡

1

A =
c

8⇡r
@r


rIm

✓
!0B2

0DA

ck2✓r
�⇠⇤r@r(r�⇠r)

◆�
, (3.66)

having dropped the mn subscript to the radial plasma displacement �⇠r, consistently with
the present notation. This formula implies that the Poynting flux vanishes when �⇠r is
a real quantity. Since, due to the discussion in 2.1.2 and to (2.48), near the resonance
�⇠r = Cm ln(r � r0) + Dm for r > r0 (r = r0 is the equation of the resonant layer), it
holds that (keeping track, from now on, only of the subscript m to Cm to avoid possible
confusion) [39]

�⇠r = Cm


ln(r0 � r)� i⇡sgn

✓
!0

(!2
A)

0

◆�
+Dm, for r < r0. (3.67)

The imaginary part is then connected with the existence of the resonance and of the loga-
rithmic singularity as manifestation of phase mixing [39, 37]. The imaginary part in (3.67)
is selected according to the "causality constraint" that, in the real space, corresponds to
the modification of the Landau contour in the velocity space for the description of Landau
damping. In this respect, spatial phase mixing has deep common roots with velocity space
phase mixing in wave-particle resonances [37]. Clearly, the resonance has to exist inside the
plasma so that the wave can lose energy to the plasma itself. The coefficients Cm and Dm

or, more precisely, their ratio, since the present problem is linear, have to be found from the
conditions at the plasma boundary, as illustrated in the previous section. Then, solution
(3.67) must be continued up to the plasma center, where regularity conditions must apply.
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These will ultimately determine the constant ↵ and the overall radial structure of the fluc-
tuation generated by the external antenna. Integrating (3.66) one obtains the absorption
rate of the total energy (in the components m,n of the wave spectrum),

W = 4⇡2R

Z a

0

r dr

2

4

⇣
1 + c2

v2A

⌘
|�Em|

2 + |�Bm|
2

16⇡

3

5 . (3.68)

In fact, if we integrate over the plasma cylinder and apply Stokes’ theorem, we obtain

dW
dt

=
⇡2

2
r0R

|Cm|
2B2

0

(k2✓v
2
A)r=r0

|(!2
A)

0!0|. (3.69)

From (3.40) and (3.66), we see that

�Bk
B0

=
DA

k2✓r
@r (r�⇠r) +

2kk�⇠r
k✓r

B0✓

B0
(3.70)

and that only the first term on the right-hand side contributes to (3.66) through its imagi-
nary part. Expanding DA = (!2

0 � !2
A)/v

2
A near the resonance,

DA ⇡ �

�
!2
A

�0

v2A
(r � r0) , (3.71)

this term is, ignoring the part not giving imaginary contribution,

�
!20
A

v2A

r20
m2

Cm, (3.72)

namely the resonant absorption only depends on Cm and not on Dm. Substituting the
external solution (3.33) in the Poynting flux and the expression of power, we obtain, only
considering the contributions that lead to finite power flux,
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�
, (3.73)

and the time and surface averaged power flux
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⇤
,

(3.74)
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having used in the last step the wronskian identity

y1⌫(r)y
0
2⌫(r)� y01⌫(r)y2⌫(r) =

1

⌫r

⇥
(K|m|(⌫d)I|m|(⌫b)�K|m|(⌫b)I|m|(⌫d)

⇤
(3.75)

and assumed DA ⇡ �k2k in "vacuum". The flux is nonzero only when Im↵ 6= 0: so
(the inverse of) ↵ is a measure of the plasma response at fixed antenna perturbation, and
its imaginary part gives information on the plasma absorption rate by phase mixing. In
conclusion,

Sr = �Srh (d/r) , (3.76)

as expected, being, for the (modulus of the) Poynting flux calculated at the antenna,

Srh := �
B2

0!0

8⇡m2d

 
�B̂rh

B0

!2

Im↵
⇥
(K|m|(⌫d)I|m|(⌫b)�K|m|(⌫b)I|m|(⌫d)

⇤
. (3.77)

Similarly, for the plasma solution (3.54), we also have

Sr = �S0DAIm [(C1 + ↵C2)
⇤ y2 + (D1 + ↵D2)

⇤ y1]
⇥
(C1 + ↵C2) y

0
2 + (D1 + ↵D2) y

0
1

⇤
=

= �S0DA
�
y1y

0
2 � y2y

0
1

�
Im [(C1 + ↵C2) (D1 + ↵D2)

⇤] = (3.78)

=
S0a

Rr
Im↵ (C1D2 �D1C2) ,

where S0 := !0B2
0a

3/(8⇡m2). By comparison with the power flux in vacuum,

(C1D2 �D1C2)
a2

R2
=

 
�B̂rh

B0

!2 ⇥
K|m|(⌫d)I|m|(⌫b)�K|m|(⌫b)I|m|(⌫d)

⇤
, (3.79)

which is an identity, as expected. These equations essentially say that there is a power flux
directed inside which goes, both in vacuum and in the plasma (up to r0), as 1/r; meanwhile,
it suddenly goes to zero for r < r0 and for r > d, as it must be for the conservation of
the power flux generated by the antenna in stationary regime and for its absorption at
the resonant surface. This holds in the present, MHD limit; in the next chapter, we shall
see that the Poynting flux apparently vanishing at r = r0 actually describes the mode
conversion to the kinetic Alfvén wave.

3.4 Equilibrium configuration and numerical results

In order to solve the field equation, we assign the plasma equilibrium profiles, namely
density, temperature, current, magnetic field, and pressure, and choose antenna parameters
controlling the excitation of SAW.
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3.4.1 Equilibrium profile

We assume a mass density profile

%0 = min0 = min0(0)
⇥�
1� x2

�↵n + n"
⇤
; (3.80)

the last term lets a negligible number of plasma particles to exist at a distance r > a from
the axis, the practical reason for this (definitely realistic) choice being that, otherwise, with
an infinitesimal density, the Alfvén velocity would diverge and cause difficulties with the
numerical analysis. The temperature profile is given by

T0e,i = T0e,i(0)
�
1� x2

�↵T , (3.81)

with T0e(0)/T0i(0) = ⌧ = 7/3 and T0e = T0i = 0 in the vacuum region. The current density,

J0z = J0z(0)
�
1� x2

�↵J , (3.82)

goes to zero at the boundary and remains zero throughout the vacuum region. This current
determines the component B0✓ of the magnetic field through (3.1), that is,

B0✓ =

8
<

:

2⇡aJ0z(0)
c(↵J+1)x

h
1�

�
1� x2

�↵J+1
i

for x < 1,
2⇡aJ0z(0)
c(↵J+1)x for x � 1.

(3.83)

Given the definition

p0 := p0 +
B2

0z �B2
0z(1)

8⇡
, (3.84)

the equilibrium condition (3.4) yields

4⇡
dp0
dx

= �
1

2

dB2
0✓

dx
�

B2
0✓

x
=

= �
4⇡2a2J2

0z(0)

c2 (↵J + 1)2 x2
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⇣
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�
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�
1� x2

�↵J
i
.

(3.85)

The p0 field can be integrated analytically by using the confluent hypergeometric function;
namely, for x  1,

p0 =
2⇡a2J2

0z(0)

c2 (↵J + 1)

"�
1� x2

�↵J+1

2 (↵J + 1)
2F1

�
1,↵J + 1,↵J + 2, 1� x2

�

�

�
1� x2

�2↵J+2

4 (↵J + 1)
2F1

�
1, 2↵J + 2, 2↵J + 3, 1� x2

�
#
,

(3.86)

automatically vanishing at the border: more generally, we set p0 = 0 for x � 1. In our case,

p0 = n0(0)T0(0)
�
1� x2

�↵n+↵T , (3.87)

with T0(0) = T0i(0)+T0e(0), which ultimately gives B0z as a function of x by direct solution
of (3.84). In particular, p0 � p0 > 0: as a consequence (and as it can be seen from the first
plot of fig.3.3), B0z is slightly larger than B0z(1), corresponding to a small paramagnetic
effect. In our model also B2

0z � B2
0✓ holds, so that B0z(1) ⇡ B0.
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Fig.3.3 Plasma equilibrium (B0 is the vacuum field, while !A0 := B0(0)(4⇡n0mi)�1/2/R).
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3.4.2 Parameters

The values chosen for the several parameters are realistic but mostly indicative and don’t
correspond to any kind of optimization. The major radius of the cylinder is R = 2 m, the
minor radius is a = 0.5 m, the antenna is located at d = 0.65 m and the wall at b = 0.8

m. The antenna frequency is !0 = 3.14 MHz, and the azimuthal and axial mode numbers
are (m,n) = (2, 2). The remaining parameters are listed below (B0 is the vacuum magnetic
field).

n0(0) = 1014 cm�3

n" = 4 · 10�9 cm�3

↵n = 1

T0e(0) = 5 keV
T0i(0) = 1.5 keV

↵T = 2

J0z(0) = 0.7 · 1012 statA
↵J = 2

B0 = 4 · 104 G

The equilibrium functions and parameters set the resonant layer at about x0 = 0.509.

3.4.3 Numerical solution

Fig.3.4 Radial displacement (connected to the radial variation of the magnetic field), in

units of (��B̂rh/B0).

In the cylindrical plasma equilibrium described so far and illustrated by the plots of
fig.3.3, with the listed plasma equilibrium parameters, and boundary and regularity condi-
tions on the magnetic axis discussed in subsection 3.2.3, the problem has been numerically
formulated and then solved, for the wave equation in the form (3.43), by means of a self-
designed python script which uses a standard library integrator1. Fig.3.4 shows the plot of
the solution expressed as normalized (to the imposed antenna perturbation ��B̂rh/B0, see
(3.34)) plasma radial displacement y := x�⇠r/a, as a function of the normalized distance
x := r/a from the axis. The discontinuity is at the resonant surface, where the antenna

1In particular, the solution is obtained by shooting method using the solve_ivp package from the
scipy.integrate library based on the 4th-oder Runge-Kutta-Fehlberg method (RK45).
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Fig.3.5 Poynting flux. The flux directed inside goes, both in vacuum and in the plasma

(up to the SAW resonant layer), as 1/r; it is zero in the region on the left (due to wave

absorption) and in the region between the antenna and the external wall (due to wave

reflection).

frequency satisfies the local SAW dispersion relation and Alfvén waves develop a radial
(logarithmic) singular structure; at the antenna, the discontinuity is on the first derivative
(cusp) and simply corresponds to the crossing of the antenna current sheet, viz. to the
Poynting flux launched by the antenna, treated as a point source, at steady state (time
asymptotically); what the antenna launches towards the outside is completely reflected at
the wall, so the net flux for d < r < b is zero. The flux determines the finite energy absorp-
tion rate (fig.3.5). The MHD solution gives, stopping at the numerical truncation error,
Re↵ = �0.65052655 and Im↵ = �0.00075303.



CHAPTER 4
kinetic alfvén waves in a cylindrical plasma:

linear description

The existence of a continuous spectrum with oscillation frequency varying in the non-
uniformity direction determines the singularity of shear Alfvén wave radial structure at
the resonance surface, which is due to a spatial phase mixing process. Kinetic analysis
modifies this picture at scales comparable with the ion Larmor radius (beyond the MHD
resolution), and shows that the shear Alfvén wave evolves into the kinetic Alfvén wave
(KAW). As a consequence, further investigations demand a gyrokinetic approach.

As a matter of fact, detailed descriptions of shear Alfvén wave resonant absorption in-
volve processes that are not accounted for by the linear MHD description and are both of
kinetic and of nonlinear kind: in this chapter, we present the liner gyrokinetic analysis of ki-
netic Alfvén waves in cylindrical plasmas, while descriptions based on nonlinear gyrokinetics
are provided in chapter 5. For understanding how the radial singular structure is removed,
the linear gyrokinetic approach can be adopted for our problem assuming k2?⇢

2
i ⌧ 1 [40, 41].

This allows us to derive a fourth-order ordinary differential equation, which reduces to the
MHD equations for k2?⇢

2
i ! 0 and whose kinetic solutions match the MHD long-wavelength

solutions outside the radial singular layer at resonance radius. This analysis will be pre-
sented first in the following. Afterwards, and as a comparison for the long-wavelength limit,
both WKB and wave packet studies will be presented, valid for arbitrary values of k2?⇢

2
i .

In the strong damping limit, when the kinetic Alfvén wave is completely absorbed before
it travels too far away from the shear Alfvén wave resonance/mode conversion layer, earlier
results by Hasegawa and Chen [40, 41] and by Itoh and coworkers [44, 45] are recovered.
This is the case that attracted all attention in the past, due to its possible application to
wave-induced heating in fusion plasmas.

48



4.1 Model and KAW equation 49

As novel result of the present work, also the weak damping limit is discussed: despite its
irrelevance for plasma heating, this case is of major interest here, since the mode converted
kinetic Alfvén wave can give rise to the variety of nonlinear behaviors that will be presented
in the next chapter. Interestingly, the present analysis illustrates how the plasma region
inside the mode conversion layer acts as a resonant cavity, where the external antenna can
excite large amplitude standing waves at given frequencies.

4.1 Model and KAW equation

The model is the one introduced in section 3.1, namely the periodic cylindrical plasma
of 2⇡R length and radius a, axis directed along ~z, non-uniformity in the radial direction,
and equilibrium magnetic field in the screw pinch configuration B0 = (0, B0✓(r), B0z(r)).
The plasma is surrounded by a conducting wall of radius b and perturbed by an antenna
launched wave with the model antenna (see (3.5)) located at a distance d.

The essential results of chapter 3 are of general validity; however, for the plasma wave
equation, we now have to introduce a KAW equation in place of the SAW equation (3.43).
The starting point is the linear gyrokinetic equation (2.58): we have obtained this equation
from (1.32) neglecting collisionality as well as magnetic and diamagnetic drift and nonlinear
terms. Let’s see in more detail, and in cylindrical geometry, if and to what extent the drift
terms can actually be neglected in our linear description.

4.1.1 Linear gyrokinetic equation and ordering of drift terms

Let’s start from the (ion) gyrokinetic equation with drift contributions

�
@t + vkrk +Vd ·r?

�
�g =

eFM

T

@h�Lgi↵

@t
�

c

B0
ek ⇥rh�Lgi ·rFM . (4.1)

From the macroscopic point of view, the drift contributions drop out since, in general, the
magnetic drift velocity is of order ⇢i/R with respect to the thermal velocity; however, for
the purposes of a more detailed analysis, we must also consider the microscopic fluctuations
involved. So, let’s concentrate on the third term on the left-hand side: the magnetic drift
velocity, at low �, is given by

Vd ⇡

µB0 + v2k
⌦i

ek ⇥ , (4.2)

where the curvature  can be expressed as

 = �
B2

0✓

B2
0r

r̂ (4.3)

and, keeping in mind that B0 ⇡ B0z, scales as

 ⇠
r

R2
, (4.4)
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while ⌦i ⇠ v/⇢i, where implicitly v = vi. Because of the vector product in (4.2), r? only
enters through the component k✓, and we conclude that the third term of (4.1) is of the
order

⇢ik✓vr

R2
. (4.5)

Now, the second term is of the order v/R, and, according to the "optimal" frequency
ordering in gyrokinetics, to be investigated more in detail in the following, the same can be
assumed for the first term, i.e. ! ⇠ v/R. So, the order of the drift term with respect to
both the first and the second velocity term is

⇢ik✓r

R
⌧ 1 : (4.6)

in gyrokinetics, this is typically true since r ⌧ R, a condition the resonant layer r0 generally
satisfies, unless it gets very close to the boundary; meanwhile, the result (4.6) still holds near
the boundary in the long-wavelength limit, where |k✓⇢i| ⌧ 1 (unless m is very high). Here,
it is important to note that these results rely on (4.3), which expresses the proportionality
relation between  and r̂: in a cylinder the curvature is purely radial, and orthogonal
to the flux surface, implying that the radial singularities of the fluctuations due to the
mode conversion of SAW to KAW do not enter, ultimately allowing the drift motion to
be neglected. Things are different in a toroidal fusion plasma, whose geodesic curvature is
different from zero.

While we have made the estimate above based on the typical gyrokinetic ordering for
plasma ions, the relative importance of magnetic drift with respect to the parallel free
streaming term in (4.6) holds for electrons as well. In fact, particle mass does not enter
explicitly except in the Larmor radius; thus, because of (4.6), magnetic drift correction can
be neglected a fortiori. What will be different, between the cases of ions and electrons, is
the relative ordering of the free streaming term with respect to the explicit time variation.
Both terms, however, are kept on the same footing in our analysis, which, therefore, allows
us to analyze the effect of (Landau) damping for both electrons and ions, as reported below.

As far as the diamagnetic term (second term on the right-hand side) is concerned, it
scales as

ck✓r

B0a2
, (4.7)

while the order of first term on the right-hand side, assuming a typical Maxwellian distri-
bution for plasma particles, is

e

T
! ⇡

e

T

vT i

R�1/2i

, (4.8)

having denoted by T the thermal energy and estimated ! ⇠ vA/R ⇠ ��1/2
i vT i/R for typical

SAW frequency launched as antenna spectrum. So, dividing by this quantity, we obtain the
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relative order of the diamagnetic contribution with respect to the first term on the right-
hand side,

TR�1/2i c

evT i

k✓r

B0a2
=

vT i�
1/2
i

⌦i

k✓rR

B0a2
= ⇢ik✓

rR�1/2i

a2
; (4.9)

according to the realistic parameters chosen for our model, �i ⇠ 10�2, r/a ⇠ 1/60 and
R/a ⇠ 3, so rR/a2 ⇠ 1/20 < a2

R2 ⇠ 1/10. Thus, similar to the analysis of the relevance
of the magnetic drift term, we conclude that diamagnetic corrections can be neglected
for investigating the mode converted KAW excited by the antenna unless the |k✓⇢i| ⌧ 1

condition is violated. In chapter 5, when investigating the nonlinear physics induced by
KAW launched by the external antenna, we will see that this condition can indeed be
violated by the nonlinearly generated spectrum, and that diamagnetic effects can have
a crucially important role in the dynamics. Because diamagnetic effects are typically ⇠

(R2/a2)�1/2i larger than magnetic drift effects, as evident by inspection from a comparison
of (4.6) and (4.9), only the former will be kept into account (see chapter 5).

4.1.2 Vorticity equation

From the gyrokinetic equation (2.58), the vorticity equation (2.71) follows, which we write
in the form

r ·


!2
k

v2A

(1� �k)

bk
r?��k � k2kr?� k

�
+

✓
1

r
@rk

2
k

◆
��k = 0. (4.10)

This equation is linear in general, and has been written in such a way that the long wave-
length MHD limit of (3.43) is readily recovered. At the same time, the WKB expression of
(2.71) is also reproduced for bk ⇡ 1. Let us first approach (4.10) it in the limit k2?⇢

2
i ⌧ 1;

in this limit

�k = I0e
�bk ⇡ 1� bk +

3

4
b2k (4.11)

and so the quasineutrality equation (2.70) becomes

��k =

✓
1�

⌧(1� �k)

✏sk

◆
� k ⇡

✓
1 +

⌧bk
✏sk

◆
� k, (4.12)

transforming (4.10) in

r ·


!2
k

v2A

✓
1�

3

4
bk

◆
� k2k

✓
1 +

⌧bk
✏sk

◆�
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✓
1

r

@

@r
k2k

◆
��k = 0, (4.13)

or, also, keeping in mind that bk := ⇢2i k
2
? and further defining

fk(r) := ⇢2i

 
3!2

k

4v2A(r)
+
⌧k2k(r)

✏sk

!
, (4.14)
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in

r ·
�
DA � fkk

2
?
�
r?��k +

✓
1

r

@

@r
k2k

◆
��k = 0. (4.15)

Thus, a fourth-order, ordinary linear differential equation, which describes our problem
including kinetic effects, is obtained for bk ⌧ 1, as well as neglecting diamagnetic and
magnetic drift effects. The dielectric constant ✏sk is responsible for wave absorption and
becomes ✏sk = 1 in the ideal no-absorption (no-damping) limit. As in chapter 3, we can
identify �� with r�⇠r. In the MHD limit bk ! 0 and the quasineutrality equation (4.12)
gives again the result �� = � we already derived from the assumption �Ek = 0 in section
2.2; conversely, finite �Ek is connected with finite ion Larmor radius. Also, combining (2.63)
and (4.12) one sees that �Ek and �� are in quadrature unless complex behavior is brought
about by the plasma dispersion function Z (on which ✏sk depends). With bk = 0, (4.13)
reduces to the 2nd-order equation

r · (DAr?��k) +
@rk2k
r

��k = 0, (4.16)

which exactly is the MHD master equation (3.43). Taking into account that

r? = r̂
@

@r
� i✓̂

m

r
, (4.17)

as well as that

k2?(r) = �
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r
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, (4.18)

equation (4.15) explicitly reads
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(4.19)

4.1.3 Reduced equation

At r = r0, DA vanishes, so, approaching the resonance radius, we can write

!2
k

v2A
� k2k = �a1 (r � r0) , (4.20)

where the minus sign is due to the fact that !2
k > k2kv

2
A for r < r0; also, with a2 :=

!2
k/v

2
A ⇡ k2k, we obtain that fkbk ⇡ a2⇢̂2k2? and that the variation of k2k is negligible
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in a narrow layer around r = r0. The dielectric constant in ⇢̂2 can be approximated
by ✏sk ⇡ 1 + ⌧ (1� �k) + i

p
⇡⇠ke, where we used |⇠ki| = |!k/(kkvT i)| � 1 to neglect

exponentially small ion Landau damping, and |⇠ke| = |!k/(|kk|vTe)| ⌧ 1 to keep into
account algebraically small but finite electron Landau damping [40, 41, 44, 45]. We will see
this point more in detail in the wave-packet analysis of KAW. For the time being, we simply
note that the corresponding expression of ⇢̂2 can be used to describe the strong (damping)
absorption of KAWs, which is accounted for by its small but finite negative imaginary part.
Meanwhile, in the weak-damping/long-wavelength limit, ✏sk can be further simplified to

✏sk ⇡ 1. (4.21)

So, for r � r0 ⌧ r0 and with the definition â := a1/a2 > 0, (4.13) reduces to

@

@r


⇢̂2
@2

@r2
� â (r � r0)

�
@

@r
��k = 0. (4.22)

Noting (3.21) with B0 taken as constant, and (3.34) to connect physical scalar fields with
dimensionless quantities, we can switch from �� to y and, defining z := @xy and introducing
an integration constant C, we can also rewrite the above equation as the Airy equation with
a non-homogeneous term


⇢̂2
@2

@r2
� â (r � r0)

�
z = �âC. (4.23)

We can scale (4.23) by introducing s := (r � r0)/(⇢̂2/â)1/3 and K := �C/(⇢̂2/â)1/3 and
finally obtain

✓
@2

@s2
� s

◆
z = K. (4.24)

The s variable is adimensional, and linked with the adimensional variable x through

s =

✓
⇢2

a

◆�1/3

(x� x0) , (4.25)

being ⇢ := ⇢̂/a and a := âa. An equation of the same kind as (4.24) is satisfied, near
the resonance, by the azimuthal magnetic field: in fact, in this case the spatio-temporal
evolution of KAWs is regulated by the analog of (2.77), i.e.,

✓
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@r
r
@
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1

!2
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◆
�B✓(r, t) = 0, (4.26)

which in the steady state also gives, using Laplace transform with s = �i!, the equation
✓
⇢̂2

r

@

@r
r
@

@r
� 1 +
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!2
A(r)

◆
�B✓(r) = �B✓0. (4.27)
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Near r0, we are allowed to perform the series expansion !2
A ⇡ !2

0 + (!2
A)

0(r � r0) ⇠ !2
0 �

(!2
0/LA)(r � r0), being LA the scale length of !A, and, considering that r � r0 ⌧ LA, to

transform this equation into
✓
⇢̂2

r
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r
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@r
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r � r0
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◆
�B✓(r) = �B✓0. (4.28)

Now, we can scale this equation by introducing s0 := �(r � r0)/(⇢̂2LA)1/3 and K 0 :=

LA�B✓0/(⇢̂2LA)1/3 so to finally obtain [40, 41, 17] the Airy equation
✓
@2

@s02
� s0

◆
�B✓ = K 0. (4.29)

We summarize in the following the strategy of analytic solution for equation (4.24), also
taking into account [17, 40, 41]. First of all, we know that the general solution can be
expressed as a linear combination of Airy’s functions Ai(s) and Bi(s) (which solves the
associated homogeneous equation) plus a particular solution, which is to be found in the
form

z = c1(s)Ai(s) + c2(s)Bi(s); (4.30)

applying the method of variation of arbitrary constants, the conditions we must impose are

c01Ai + c02Bi = 0,

c01Ai0 + c02Bi0 = K,
(4.31)

and, given the wronskian W = AiBi0 � Ai0Bi = 1/⇡, yield

c01 = �K
Bi
W

= �⇡KBi,

c02 = K
Ai
W

= ⇡KAi,
(4.32)

that is,

c1 = ⇡K

✓
d�

Z s

0
Bi(s0) ds0

◆
, (4.33)

c2 = ⇡K

✓Z s

0
Ai(s0) ds0 �

1

3

◆
. (4.34)

The choice of the integration constants depends on the boundary conditions one has to
satisfy: in our case, (4.34) has been adjusted such that c2 ! 0 as s ! 1 (keep in mind thatR1
0 Ai(s) = 1/3), in other words, such to asymptotically eliminate the divergent / Bi part

in the solution (4.30), which is thus allowed to correctly match the MHD one (for his part,
Ai is exponentially infinitesimal). The constant K is derived from C and so it is known,
as a function of ↵, from the external MHD solution, according to (3.58). Defining Scorer’s
function Gi(s) as

Gi(s) := Bi(s)
Z 1

s
Ai(s0) ds0 + Ai(s)

Z s

0
Bi(s0) ds0, (4.35)
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the general (homogeneous plus particular) solution to (4.24) is

z = K⇡ (dAi(s)� Gi(s)) . (4.36)

Due to (3.51), the derivative of the MHD solution near the resonance goes as �Ĉ/x, so it
remains to verify that z ⇠ �K/s for s � 1. In the region s > 0, the asymptotic behaviors
of Airy’s functions for s � 1 are

Ai(s) ⇠
1

2
p
⇡
s�1/4e�

2
3 s

3
2 , (4.37)

Z s

1
Ai(s0) ds0 ⇡

1

2
p
⇡
s�3/4e�

2
3 s

3
2 , (4.38)

Bi(s) ⇠
1
p
⇡
s�1/4e

2
3 s

3
2 , (4.39)

Z s

0
Bi(s0) ds0 ⇡

1
p
⇡
s�

3
4 e

2
3 s

3
2 , (4.40)

from which, looking at the definition (4.35), the asymptotic behavior of Scorer’s function is

Gi(s) ⇡
1

⇡s
; (4.41)

furthermore, the above expansions also show that the asymptotic contribution of Ai(s) is
exponentially small with respect to the contribution of Scorer’s function, so, for large s,
(4.36) behaves as

z ⇡ �
K

s
= �

Ĉ

x
, (4.42)

representing the correct boundary condition matching the MHD solution. In conclusion,
for r ⌧ r0 the solutions are short-wavelength functions which grow or decay exponentially
in space because the KAW is "cut-off" (not propagating) for !2

k < k2kv
2
A. Due to Landau

damping, the exponentially growing mode (in space) corresponds to incoming short wave-
length, while the decaying mode is outgoing short wavelength, consistently with causality.
In fact, for r > r0 we recover the long-wavelength solution connecting to MHD: no short-
wavelength mode is entering the SAW resonance layer from the outer region since no such
mode is generated by the antenna, and, at the same time, no short-wavelength mode can
propagate from within the plasma region surrounded by the resonance layer. This confirms
the fact that at r = r0 there is mode conversion of the long wavelength fluctuation generated
by the external antenna.

Having clarified how the MHD-like wave (solution) passes through the SAW resonance
and undergoes mode conversion, there remains to extend this solution to the whole region
s < 0, where both Gi and Ai are oscillatory, up to the magnetic axis, where a regularity
conditions must be applied. We shall examine the solution in this region for two limiting
cases: strong and no (or weak) damping.
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4.1.4 Strong damping limit

The strong damping limit means that the propagating solution inside r = r0 (s < 0) is
entirely absorbed (decays exponentially because of Landau damping) without reaching the
magnetic axis:

y(s�1) = y(s � 1) +

Z s⌧�1

s�1
z(s0) ds0 = 0. (4.43)

Here, y(s � 1) = D � Ĉ lnx(s) is the MHD solution approaching the resonance, and z for
s ⌧ �1 represents a wave traveling towards the magnetic axis, since the KAW is completely
absorbed by the plasma by electron Landau damping before it reaches x = 0 and is reflected
back. As anticipated in the discussion above (4.21), the absorption is due to the small but
finite negative imaginary part of ⇢̂2, which, for real x < x0, results in a small but finite
negative imaginary part of s for s < 0. Using the relation between x and s given by (4.25),
condition (4.43) reads

0 = D +
Ĉ ln

�
a/⇢2

�

3
� Ĉ ln s+

✓
a

⇢2

◆�1/3 Z 0

s�1
z(s0)ds0 +

✓
a

⇢2

◆�1/3 Z �1

0
z(s)ds. (4.44)

Since the asymptotic form in the region s ⌧ �1 of the Airy functions is

Ai(s) ⇡
sin

⇣
2
3 (�s)

3
2 + ⇡

4

⌘

p
⇡ (�s)

1
4

, Bi(s) ⇡
cos

⇣
2
3 (�s)

3
2 + ⇡

4

⌘

p
⇡ (�s)

1
4

, (4.45)

and since
Z +1

�1
Ai(s)ds = 1 and

Z �1

0
Bi(s)ds = 0, (4.46)

we see that Gi(s) ⇡ Bi(s) for s ! �1: this suggests d = �i in (4.36) as the right choice to
have an asymptotic z of the type

z ⇡ �
k
p
⇡

(�s)1/4
ei[ 23 (�s)3/2+⇡

4 ], (4.47)

which represents a wave traveling towards the magnetic axis. From this expression, it is
also clear that, with s characterized by a small but finite negative imaginary part for s < 0

as anticipated above, the value of z will be exponentially decaying while traveling inward.
Using the definition of K, we have

0 = D + Ĉ

 
ln
�
a/⇢2

�

3
� ln s+ ⇡

Z 0

s�1

�
dAi(s)� Gi(s0)

�
ds0

!

+ ⇡Ĉ

Z �1

0
(dAi(s)� Gi(s))ds, (4.48)
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or, for convenience,

0 = D +
Ĉ ln

�
a/⇢2

�

3
+ ⇡Ĉ

"
i
Z +1

�1
Ai(s)ds+

Z 0

�1
Gi(s)ds
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s!+1

✓Z s

0
Gi(s0)ds0 �
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⇡
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◆#
. (4.49)

The first integral is 1, while the second integral can be rewritten and numerically computed
as

Z 0

�1
Gi(s)ds =

Z 0

�1
Bi(s)ds�

Z 0

�1
Hi(s)ds ⇡ �1.36554� 1.12654. (4.50)

Finally, the last term can be numerically estimated as ⇡ 0.239 (note that the two functions
in the argument are both divergent when taken individually). As a consequence, (4.49)
reads

0 = D +
Ĉ ln

�
a/⇢2

�

3
+ ⇡Ĉ (i + ⇤) , (4.51)

where ⇤ ⇡ �2.25308. This is a relation among constants ultimately giving a value for ↵,
since both Ĉ and D have been defined as known linear combinations of ↵ once the solution
for r > r0 is scaled by (��B̂rh/B0) and boundary conditions are applied on the conducting
wall. In conclusion, the case of strong damping or total absorption implies two conditions:
only inward propagating wave for r < r0 and boundary conditions at the conducting wall at
r = b. These completely determine the 2nd-order problem, giving the two constants d and
↵ a value. In section 4.2, we will show that the value of ↵ determined in this way is very
close to that determined within the ideal MHD model, consistent with the original findings
of [41], demonstrating that the plasma impedance is essentially the same in the MHD and
kinetic analysis. This is a consequence of the fact that, in the strong damping case, the
inward propagating mode converted KAW is fully absorbed by electron Landau damping
after propagating over a few wavelengths; that is, locally.

4.1.5 No-damping limit

A no- (or weak-)damping limit, as opposite to the strong damping limit studied so far, is ob-
tained for ✏sk ⇡ 1, which is the consequence of ⇠ke ⌧ 1 (algebraically small electron-Landau
damping) and ⇠ki � 1 (exponentially small ion-Landau damping). In this case, the wave
can propagate further inward and the local expansion for analyzing the KAW propagation
near the SAW resonance, adopted in (4.23) and (4.24), is no longer valid. More generally,
the wave is allowed to reach the magnetic axis and to be possibly reflected. Nonetheless, the
general solution to (4.24) is still needed because it gives the correct boundary conditions at
the resonance layer s = 0 and matches the external MHD antenna solution. Denoting with
s1 a s � 1 where MHD holds, the solution around the resonance, namely the solution to
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(4.24), is, in general,

y(s) = y(s1) +

✓
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⇢2

◆�1/3 Z s

s1

z(s0) ds0, (4.52)

or, more explicitly,

y(s) = D +
Ĉ ln(a/⇢2)
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(4.53)

from which

y(0) = D +
Ĉ ln(a/⇢2)

3
+ ⇡Ĉ

✓
0.239�

d

3

◆
, (4.54)

y0(0) = z(0) = ⇡Ĉ

✓
a

⇢2

◆1/3

(dAi(0)� Gi(0)) , (4.55)

and so for the second and third derivative,

y00(0) = ⇡Ĉ

✓
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⇢2

◆2/3 �
dAi0(0)� Gi0(0)

�
, (4.56)

y000(0) = ⇡Ĉ
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◆�
dAi00(0)� Gi00(0)

�
= ⇡Ĉ

✓
a

⇢2

◆
. (4.57)

Thus, we have the four boundary conditions needed by the fourth-order equation (4.19),
whose solution can be obtained numerically between the magnetic axis and the resonant
layer; these conditions are functions of d and ↵, which are given by the two axial regularity
conditions

y(r = 0+) = y0(r = 0+) = 0 (4.58)

on the solution to (4.19).
Actually, no-damping is an ideal limit case of weak damping, for which, in general,

nonlinearities are expected to play an important role, due to the nature of the interesting
phenomena connected to weak absorption, so the general (nonlinear) gyrokinetic formulation
is needed (chapter 5).

4.1.6 Weak damping: wave-packet analysis

For our purposes, the most interesting case is weak damping, for which, in the previous
subsection, we discussed the solution of the vorticity equation reduced to a 4th-order ordi-
nary differential equation in the long-wavelength limit. Let us now return to (4.10) without
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the assumption bk ⌧ 1, and with the dielectric constant (2.69) approximated as

✏sk ⇡ 1 + ⌧ (1� �k) + i
p
⇡⇠ek, (4.59)

where we have used ⇠ikZ(⇠ik) ⇡ �1 for |⇠ik| � 1 and, for the plasma dispersion function
Z(⇠ek) introduced by (2.65), we have adopted the power series expansion for |⇠ek| ⌧ 1 [11]

Z(⇠ek) = i
p
⇡e�⇠

2
ek � 2⇠ek

✓
1�

2

3
⇠2ek + ...

◆
⇡ i

p
⇡. (4.60)

By direct substitution into (4.12), the relation between the perturbations � k and ��k is

� k ⇡
⇥
1 + ⌧ (1� �k)

�
1� i

p
⇡⇠ek

�⇤
��k. (4.61)

So, (2.68) implies (also see [41]) the dispersion relation

!2
k

k2kv
2
A

=
bk

1� �k
+ bk⌧

�
1� i

p
⇡⇠ek

�
, (4.62)

and, in itself, reads
�
D0

R + iD1
A

�
��k = 0, (4.63)

being

D0
R :=

!2
k

k2kv
2
A

�
bk

1� �k
� bk⌧, (4.64)

D1
A := bk⌧

p
⇡⇠ek; (4.65)

meanwhile, (4.10) can be cast as
�
DR + iD1

A

�
��k = 0, (4.66)

with

DR := D0
R +D1

R, D1
R := �

⇢2i
r (1� �k)

@rk2k
k2k

. (4.67)

At the leading order, DR = 0 and

k2?⇢
2
i = k?(!k, x), (4.68)

whereas, at the next order, and for a wave packet

��k ⇡ e
�i!kt+i

R r
r0

krdr0A(r, t), (4.69)

(4.66) yields [16, 83, 84, 86]
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A = 0. (4.70)
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This equation can be solved as a fixed boundary eigenvalue problem, that is for @t = 0: the
corresponding solution or eigenvalue provides the radial mode envelope A(r). In the next
chapter, this equation is extended to non-linear interactions.

Before providing the numerical solution of (4.70), we can find the approximate dispersion
relation generated by (4.70) by WKB analysis. Neglecting the second-order derivative in r,
only important near turning points, the solution is

A ⇡
constantp
@krDR

. (4.71)

Furthermore, near magnetic axis,

k2? = k2?0 � gr, (4.72)

with g a constant that can be determined by solving (4.68) numerically. As a consequence,
the equation for ��k as r ! 0 is
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@r

✓
r
@
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◆
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�
��k = �k2?0��k. (4.73)

Imposing regularity (no divergence) at r = 0, this equation has the solution

��k = A0J|m|(k?0r) (4.74)

which, for k?0r � 1, gives
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r
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and
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◆
. (4.76)

At the resonance layer x = x0, this solution must match (4.53) and its derivative z. Ne-
glecting D1

R for simplicity, we note that
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k2?a
2⇢2 ⇡ k2ra

2⇢2 ⇡ �a (x� x0) , (4.78)

from which
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hence, the WKB solution matching the mode converted KAW at resonance is given by
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(4.80)
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where, in the linear limit, the constant K controls the (arbitrary) amplitude of the solution,
which, in turn, is controlled by the amplitude of the antenna solution. Matching between
this equation and (4.76) yields

� (d� i) = e
i
⇣

|m|⇡
2 ��

⌘

,

� (d+ i) = e
�i

⇣
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,

(4.81)

where
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⇡K
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�1/6
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p
�k?0@krDR

|x!r0/a,

� :=

Z r0

r0

kr dr + kr0r0 = �R + i�I ,

(4.82)

being r0 ⌧ r0 and denoting the maximum value for kr. In fact,

k2r =
bk
⇢2i

�
m2

r2
; (4.83)

thus, kr increases for decreasing r, due to the behavior of bk(r), and, after reaching its
maximum near the axis, it sharply decreases becoming very large, and complex, approaching
r ! 0. This embeds the expected Bessel function behavior for r ! 0, represented by (4.75).
To avoid needless complications with WKB representation, it is reasonable to interpret
(4.75) with the local kr near r0 where the matching between (4.75) and (4.80) is made: this
naturally yields the expression for � as in (4.82). Also, note that � ! 0 and �I > 0 as a
consequence of finite dissipation (due to electron Landau damping). Because of (4.81) and
(4.82), and, in particular, of the fact that the second of (4.81) is exponentially small, the
strong damping limit is recovered for d = �i, as expected [41]. Equations (4.81) and (4.82)
give

d = �i
e�2i�R + (�1)|m|e�2�I

e�2i�R � (�1)|m|e�2�I
,

� =
i|m|+1ei�R+�I

2

⇣
e�2i�R � (�1)|m|e�2�I

⌘ (4.84)

and yield the strong damping limit for d = �i and � � 1 (|A0| ⌧ |K|, fluctuation on axis
exponentially small).

In summary, solving (4.70) by WKB yields A0 (fluctuation strength on axis) by means of
�, and d, that is the mix of in- and out- going KAW inside the resonance radius. The same
can be solved more exactly by means of (4.70) itself. The wave-packet KAW structure,
similarly, can be compared with the WKB envelope, given by (4.71), (4.74), (4.76) and
(4.80) in the different regions.

The value of d being determined, one can calculate ↵ from the same equation as in the
strong damping case. To see this more clearly, let us consider again (4.53) and note that,
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for s large and positive,

y ⇡ �Ĉ ln s+
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✓
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must match

y = y�1 + ⇡Ĉ

✓
d�
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�1
Gi(s0) ds0

◆
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where y�1 is the value of the solution propagating from the magnetic axis toward the
resonance. Typically, such value is negligible, while the corresponding derivatives are not:
thus, it can be neglected in the WKB calculation of ↵, which reflects only the value of d.
The matching with outer region, that is with the ideal MHD solution, is the same as (4.51),
except for d, namely

0 = D +
Ĉ ln

�
a/⇢2

�

3
� ⇡Ĉ (d+ ⇤) , (4.87)

and for the fact that now ⇤ ⇡ �1.431, due to the different numerical value of (4.50). The
choice of where y�1 actually goes to zero gives an uncertainty that may shift in frequency
the position of "resonant cavity modes": the reasonable solution is to control the s�1 value
where y�1 ! 0 to physically match where the solution actually goes to 0. Considering the
limit of negligible Landau damping, ⇢2 is real and �I = 0, and, as an example, |m| = 2 and
d = ctg�R, we get

↵ =
⇡Ĉ1

⇥
ctg�R � ⇤� (1/3⇡) ln

�
a/⇢2

�⇤
�D1

D2 � ⇡Ĉ2
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�
a/⇢2

�⇤ . (4.88)

We recall that ↵ is the ratio of the solution to the homogeneous equation to the particular
forced solution (say, plasma solution to antenna solution), namely a kind of field/perturba-
tion ratio, and expresses the Poynting flux the antenna launches from outside into the inner
region. The imaginary part of ↵ is related to absorption (it is proportional to Poynting
flux) and so vanishes in the no-damping limit. The real part of ↵ going to infinity means
a resonance, occurring at natural frequencies where the plasma core responds to the mode
converted KAW as a cavity resonator. Weak damping means, thus, that the wave can
propagate back and forth inside the SAW resonance sufficiently many times to set up a
standing wave, in contrast to the strong damping case, where the mode converted KAW
is absorbed locally. For this reason, the radial mode structure is expected to be nearly
independent on the actual absorption in the weak damping limit, while the fluctuation
amplitude will increase for decreasing absorption (increasing gain) as in a typical resonant
cavity. A frequency shift �!k in the antenna frequency brings a relative modification in
C1, C2, D1, and D2 of the order �!k/!k and similarly in �x0/x0. Note that the dominant
shift in (4.88) is due to ctg�R since

�R = Re
Z r

0
kr dr. (4.89)
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From (4.62) it is clear that �kr/kr ⇠ �!k/!k and, then,

��R = krr0
�!k

!k
,

�!k

!k
⇠

��R

krr0
⇠

⇡

krr0
, (4.90)

where �!k expresses the typical distance between two subsequent resonances in ↵.

4.1.7 Weak damping: solution of the Schrödinger envelope equation

Let’s rewrite (4.70) as

!0
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, (4.91)

where we have introduced the time normalization ⌧ = !0t and !0 represents the reference
antenna frequency, which we consider as a monochromatic spectrum. When comparing this
equation with (4.70), we need to consider that the anti-Hermitian response is

DA := DI +
1

2a

@2DR

@x@kr
, (4.92)

instead of the simpler DA = DI of (4.65) at the leading order. Equation (4.91) can be made
even simpler noting that it is written for the slowly varying envelope behavior only, having
extracted ⇠ ei

R
krdr0 . To better examine the connection with the antenna solution, let us

introduce the normalized solution z := dy/dx, with

A := ze
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R x
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, (4.93)

so that
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where the superscripts 0 and 00 mean, respectively, the first and second derivative with
respect to x. In order to exploit the bk dependence of DR, we can write
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Substituting (4.94) and (4.95) back into (4.91), we obtain
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if z is a WKB solution, namely a solution ⇠ e
i
R x
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akrdx0
, this equation is identically satisfied

as it should be for @⌧A ⇠ @⌧z = 0. Now note that, for the problem of interest,
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Thus, equation (4.91), via (4.96), can be simplified to
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with bk0(!0, x) satisfying the WKB dispersion relation. However, note that this equation is
still missing the antenna drive. Integrating (4.10) in radius near the SAW resonance, where
radial singular structure dominates, it is readily shown that (4.98) is modified into
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having further assumed that the solution z is normalized to Ĉ. In fact, the last equation
reduces to (4.23) considering

bk0
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as x ! x0.

4.2 Numerical solution

In the cylindrical plasma equilibrium described in subsection 3.4.1, and with the plasma
equilibrium parameters listed in subsection 3.4.2, the problem has been solved both in the
case of strong damping and in the case of weak damping. The ion Larmor frequency is nearly
two orders of magnitude higher than the antenna frequency, so the use of the gyrokinetic
approach is justified. In the following subsections, we discuss the numerical solution for the
KAW wave equation in its general form and in the various limits discussed theoretically in
the previous section.

The numerical method remains the same as in chapter 31; what changes in this chapter
are the various forms of the governing wave equations. The first model is (4.19), where the
long-wavelength limit is adopted and the leading order correction in finite Larmor radius to
the ideal MHD model is used. This model still contains all equilibrium non-uniformity and
geometry effects. We speculate that this model must reduce to that of (4.23), proposed by
Hasegawa and Chen [40, 41], in the local limit that is justified for strong absorption. For
weak absorption, the wave packet can travel far away (in wavelength units) and bk = k2?⇢

2
i

may become of order unity. In order to account for this important change, we cast the
1That is, the solution is obtained by shooting method using the solve_ivp package from the scipy.integrate

library based on the 4th-order Runge-Kutta-Fehlberg method (RK45).



4.2 Numerical solution 65

wave equation in the form of the wave packet intensity equation (4.70), which we solve
analytically by WKB method as well as numerically, after casting it in the form of (4.99).
In particular, (4.99) reduces to (4.23) near the mode conversion layer. Thus, all various
wave equations used in Chapter 3 are consistent for strong damping. Meanwhile, for weak
damping, they account for cylindrical geometry and equilibrium nonuniformity, see (4.19),
but still in the long-wavelength limit, or also address the finite-wavelength wave-packet
response, see (4.70) and (4.99), which is necessary when KAWs propagate away from the
mode conversion layer.

4.2.1 Strong damping

Fig.4.1 Radial displacement, normalized to (��B̂rh/B0), according to the linear gyrokinetic

solution for strong damping. The normalized distance r/a goes from the axis to just beyond

the SAW resonance.

In this case, the problem is essentially solved analytically as explained in subsection 4.1.4,
the numerical part being devoted to the computation of the integrals over the Airy functions
and to the plotting of the solution, expressed as normalized plasma radial displacement
y := x�⇠r/a as a function of the normalized distance x := r/a from the magnetic axis
(fig.4.1). Results show that the Poynting flux isn’t absorbed at a given singular point,
rather, it is converted in a kinetic Alfvén wave and absorbed by thermal electrons (through
Landau damping) in a spatial interval whose width depends on the wavelength and on the
damping coefficient: in practice, within few oscillations, in the radial direction, of the radial
electric field. The linear gyrokinetic solution removes the singularity and slightly reduces
the amplitude, giving a correspondingly slightly larger absorption with respect to the MHD
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Fig.4.2 Matching between the linear gyrokinetic solution for strong damping (solid blue

line) and the rescaled MHD solution (dashed red line) computed with the proper kinetic

value of ↵.

Fig.4.3 Matching between the linear gyrokinetic solution for strong damping (solid red line)

and the rescaled MHD solution (dashed blue line) computed with the proper kinetic value

of ↵.
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estimate, with, from (4.51), Re↵ = �0.65033704 and Im↵ = �0.00127338 (stopping at the
numerical truncation error). The internal KAW solution in terms of Airy functions matches
by construction the external MHD solution (fig.4.2 and fig.4.3), namely the MHD solution
with the appropriate kinetic ↵. Clearly, the plotted kinetic solution is valid around the
resonance and would not be accurate for the long-wavelength branch.

4.2.2 Weak damping

In the weak/no damping case, we start with the numerical solution of the wave equation
(4.19), which is valid in the long-wavelength limit. We solve this equation between the
axis and the resonant layer as a boundary eigenvalue problem. Switching from ��k to the
dimensionless field variable y (and dropping the subscript k for brevity), the fourth-order
equation (4.19) is written as the equivalent system of four first-order equations

8
>>>>>><

>>>>>>:

y0 = yI, (yI)0 = yII, (yII)0 = yIII,
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(4.101)

The boundary conditions are the matching conditions (4.54), (4.55), (4.56), (4.57) at the
resonant layer, where the integration starts, and the regularity conditions (4.58) close to
the magnetic axis. In order to make the dependence on ↵ and d explicit, based on (4.54),
we write y as the following superposition of two independent solutions of the homogeneous
problem, y1 and y2, plus a particular non-homogeneous solution y3:

y = Dy1 + ⇡dĈy2 � Ĉy3. (4.102)

Note that the further independent solution of the homogeneous problem is eliminated by
construction, imposing the matching condition with the external antenna solution at the
SAW resonance layer. These solutions evidently satisfy the initial conditions

y1(0) = 1, yI
1(0) = 0, yII

1 (0) = 0, yIII
1 (0) = 0, (4.103)
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With these conditions, we do three distinct integrations of (4.101) to obtain y1, y2, and y3;
then, we compute the parameters ↵ and d applying (4.58), which can be suitably rewritten
as

(
k1y1(r = 0+) + k2y2(r = 0+)� y3(r = 0+) = 0,

k1yI
1(r = 0+) + k2yI

2(r = 0+)� yI
3(r = 0+) = 0,

(4.106)

where k1 := D/Ĉ and k2 := ⇡d. Having determined k1 and k2, where ↵ and d can be
reconstructed from, the general solution (4.102) is finally obtained and displayed in figs.4.4-
4.5. Meanwhile, the analytic solution (4.53) for the mode converted KAW, expressed as
linear superposition of Airy functions integrals, is also smoothly connected with the external
MHD solution by construction, but is valid only in proximity of the mode conversion layer.
This is made visible in fig.4.4 and fig.4.5 by the comparison of blue and red curves.

Fig.4.4 Radial displacement, normalized to (��B̂rh/B0), for the linear gyrokinetic case in

the no-damping limit (blue line). The red line represents the local solution, equation (4.53),
which clearly deviates from the complete solution in the long-wavelength limit away from

the SAW resonance layer. For this plot, B0 = 5 · 105 G and J0z(0) = 1012 statA. The

normalized distance r/a goes from the axis to just beyond the SAW resonance.

We have solved the problem also for the general weak damping case with bk ⇠ 1 using the
wave-packet formalism, see (4.70) and/or (4.99). Results of numerical solutions of (4.99) are
shown in fig.4.6 for 1% of the nominal electron Landau damping that causes the strong local
absorption of the mode converted KAW in fig.4.1. At the resonant layer there is, similarly
to the strong damping case, a mode conversion from MHD-antenna solution to KAW,
but now the KAW is only weakly absorbed and propagates inside, leading to "resonant
cavity" modes that are of crucial importance for the discussion of nonlinear phenomena,
presented in chapter 5. Also in this case, the external MHD solution is exactly matched
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Fig.4.5 First derivative of the radial displacement, normalized to (��B̂rh/B0), for the linear

gyrokinetic case in the no-damping limit (blue line). The red line represents the local

solution, namely the solution z of the inhomogenous Airy equation. For this plot, B0 = 5·105

G and J0z(0) = 1012 statA. The normalized distance r/a goes from the axis to just beyond

the SAW resonance.

by construction with the gyrokinetic solution when the kinetic absorption coefficients are
used, consistently with [41], predicting plasma impedance remains unchanged at leading
order. The results of numerical solutions of (4.99) are compared with those obtained in
the WKB approximation, see (4.80). In particular, we have solved the WKB dispersion
relation (see section 4.1.6), plotting ↵, d and D/Ĉ vs. the normalized frequency shift
externally imposed at the antenna, �!/!0 (see figs. 4.7-4.8) using nominal electron Landau
damping first. Recall that the (negative) imaginary part of ↵ (red line in fig.4.7) gives us
information on wave absorption (Poynting flux); fig.4.8, in particular, demonstrates, thus,
the existence of a discrete spectrum of closely spaced antenna frequencies that cause a
particularly strong plasma response for fixed applied antenna perturbation amplitude. The
closely spaced spectrum is consistent with the estimated frequency separation of (4.90).
The KAW spectra, namely ↵ in its real and imaginary parts, and of d and D/Ĉ, have been
plotted as functions of the normalized frequency shift �!/!0 both for the WKB solution
and for the wave-packet solution (fig.4.9). Wave-packet solution and WKB approximation
are consistent except for the slightly different amplitude of the peaks, which suggests that
WKB approximation more easily breaks down near magnetic axis for every second radial
eigenstate. The peaks correspond to "resonant cavity" excitations, which are very mild for
the nominal value of electron Landau damping. In order to illustrate how a very small
antenna perturbation may generate a finite wave amplitude response inside the plasma,
we have repeated the solution of (4.99) for 1% of the nominal electron Landau damping,
resulting in the KAW radial mode structure of fig.4.6, to be compared with that of fig.4.1.
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So, fig.4.10 is the same as fig.4.9 but specialized for this reduced damping case. By direct
comparison, it is clear that excitation of "resonant cavity" modes in the KAW spectrum is
more pronounced in this case and that this is the explanation of the much stronger plasma
response obtained for selected frequencies. In order to better appreciate the robustness
of this "resonant cavity" phenomenon, in fig.4.11, there’s a zoom about the third natural
frequency of fig.4.9, also including the limiting case of no-damping. The small shift of the
green peak is due to the more stringent assumptions in the no-damping case, in particular
to the fact that we assumed the long-wavelength limit for reducing the KAW equation to
the 4th-order ordinary differential equation form (4.19) or (4.101).

Fig.4.6 Radial displacement, normalized to (��B̂rh/B0), from the solution of equation (4.99)
and reduced damping (1% of the nominal electron Landau damping) with respect to the

case of fig.4.1. The mode conversion from MHD-antenna solution to KAW is evident.

The last plots (figs.4.12-4.14) represent the normalized components of the electric field,
given by the relations
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and their ratio.
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Fig.4.7 Re↵ (blue line) and Im↵ (red line) from the WKB solution.

Fig.4.8 Real (blue lines) and imaginary (red lines) parts of d and D/Ĉ from the WKB

solution.

4.3 Summary

In this chapter, we have revisited the ideal MHD analysis of chapter 3 using gyrokinetic
theory, highlighting the microscale phenomena that underlie the resonant absorption of the
SAW at the radial location where the imposed antenna frequency matches the continuously
varying SAW frequency spectrum; consistent with earlier analyses [40, 41], the resonant
absorption consists in the mode conversion to the short wavelength kinetic Alfvén wave,
which is typically absorbed within a short distance from the resonant layer and within
a few spatial oscillation period of the mode converted wave (strong absorption or strong
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Fig.4.9 Comparison between the WKB ↵ (blue line) and the wave-packet ↵ (red line) for

the nominal value of electron Landau damping, as functions of the antenna frequency in a

neighborhood of the reference frequency !0.

Fig.4.10 Comparison between the WKB ↵ (blue line) and the wave-packet ↵ (red line), for

reduced (by a factor 102) electron Landau damping, as functions of the antenna frequency

in a neighborhood of the reference frequency !0.

Fig.4.11 Dispersion relation about a "resonant cavity" mode: wave-packet solution (red),

WKB solution (blue) and no-damping bk ⌧ 1 solution (green).
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Fig.4.12 Normalized KAW radial electric field �Er (for reduced electron Landau damping).

Fig.4.13 Normalized KAW parallel electric field �Ek (for reduced electron Landau damping).
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Fig.4.14 Modulus of KAW electric field ratio �Ek/�E? (for reduced electron Landau damp-

ing).

damping). Despite this case was and has been of interest for existing studies so far due
to its direct relevance in plasma heating [40, 41, 44, 45], here we have rather focused on
the opposite weak absorption case, where, even with a modest amplitude SAW launched by
the antenna, large KAWs can be excited inside the resonant (mode conversion) layer and
yield a number of interesting nonlinear behaviors. As new novel results of chapter 4, it has
been demonstrated that the plasma region inside the mode conversion layer behaves as a
"resonant cavity"; that is, when the antenna frequency matches a given discrete spectrum,
the plasma response is stronger, exhibiting the clear behavior of a resonantly driven and
weakly damped oscillator. This is a result of relevance for chapter 5, in which we shall
investigate nonlinear behaviors induced by large amplitude kinetic Alfvén waves, fine-tuned
in phase and amplitude by the external antenna.



CHAPTER 5
kinetic alfvén waves in a cylindrical plasma:

nonlinear description

Within the MHD description, the shear Alfvén wave launched by the antenna develops
radial singular structures at the radial position where the antenna frequency matches the
local shear Alfvén continuous spectrum frequency. Correspondingly, the incoming Poynt-
ing flux vanishes at the resonant surface, suggesting that the long wavelength fluctuation
is completely absorbed at that very position. Within the linear gyrokinetic analysis, we
have shown how the power flux actually transfers to the kinetic Alfvén wave by the mode
conversion process. The new kinetic wave is damped and, for typical parameters, absorbed
by thermal plasma electrons via Landau damping. This process was extensively studied in
the literature from the discovery of kinetic Alfvén waves [40, 41] to the many application
studies looking at plasma heating by Alfvén waves, e.g., in [44, 45]. The scope of this thesis
work is to investigate the exactly opposite limit, where the mode converted kinetic Alfvén
wave is weakly absorbed. While it was shown in chapter 4 that this case is of little interest
for Alfvén wave heating, we also noted that it is characterized by the plasma behavior as
a "resonant cavity" inside the mode conversion layer. Thus, with a relatively small pertur-
bation amplitude imposed at the antenna, a significantly large kinetic Alfvén wave can be
excited with consequences on the nonlinear plasma behaviors. In the following, we adopt
the nonlinear gyrokinetic description and show that the power that is mode converted to
kinetic Alfvén waves is only partly absorbed by electrons through Landau damping, while
the dominant fraction forms a nonlinear convective cell which is characterized by kk ⌘ 0.
Our study of the generation of convective cells by modulational instability, summarized in
this chapter, generalizes a previous work in uniform magnetized plasmas [85], and a local
analysis of magnetostatic convective cells in non-uniform plasmas [47]. This problem is of

75
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interest both for the physics of planetary magnetospheres and for the production of longi-
tudinal electric fields in laboratory plasmas by external excitation of high-frequency waves
(particle acceleration). The present theoretical analyses, yielding both analytical as well as
numerical new original results, can be the basis for the proposal of a small table-top experi-
ment as well as the test-bed for novel numerical simulation codes, such as TRIMEG [56, 57],
STRUPHY [43] and GeFi [54], addressing the same fundamental nonlinear interactions.

Since the modulational instability that underlies the formation of convective cells has
similarities with the parametric decay instability, we start introducing the qualitative fea-
tures of this universal process. The concept of convective cells is then introduced, explaining
their role in cross-field transport in magnetized plasmas as a reason that has attracted sig-
nificant attention in plasma research. We also explain the excitation of convective cells by
modulational instability and the special role played by kinetic Alfvén waves in this pro-
cess. After this first general preamble, we carry out a systematic analysis of the nonlinear
interplay of kinetic Alfvén waves and convective cells in cylindrical plasmas. In the more
general, nonlinear regime, fluctuations are allowed to be of finite amplitude with, however,
the constraint that the corresponding nonlinear frequencies, !nl, be much less than the
cyclotron frequency. In other words, consistent with the linear gyrokinetic orderings,

|!nl| ⇠ |�u? ·r?| ⇠ |!| ⇠ O(") |⌦i| , (5.1)

with �u? representing the fluctuation-induced particle (guiding-center) jiggling velocity, for
example �u? ⇡ vk�B?/B0 or �u? ⇡ (c/B2

0)(�E? ⇥B0) [17], and with " = ⇢i/L ⇠ |!/⌦i|

the small parameter introduced in subsection 1.2.1.
As a result of our nonlinear gyrokinetic analysis, we demonstrate that optimal conditions

for convective cell generation in cylindrical plasmas are those of a "✓-pinch" equilibrium,
that is, with an azimuthal magnetic field only and no magnetic curvature. Earlier results
of convective cell excitation by kinetic Alfvén waves in uniform plasmas [85] are recovered
in the proper limiting case. Meanwhile, the new original results of this thesis work are pre-
sented. In particular, the effect of plasma nonuniformity is shown to importantly affect the
convective cell stability both qualitatively and quantitatively via the diamagnetic response
[13, 47]. In fact, the convective cell growth is significantly stronger (typically up to an order
of magnitude) than in uniform plasmas, and the unstable parameter region is significantly
broader. Another element of crucial importance is the subtle interplay between nonlinearity
and plasma nonuniformity, which ultimately impacts the plasma self-organization that can
be controlled by fine-tuning the amplitude of the antenna driven mode converted kinetic
Alfvén wave.

5.1 Parametric decay instabilities

The parametric decay instability (PDI) is a fundamental nonlinear process [46, 55] involving
three nonlinear coupled waves/oscillators: a large-amplitude pump ("mother") wave decays
into two daughter waves once its amplitude exceeds a nonlinear threshold. Since the pump
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wave can be either spontaneously or externally excited, PDI is an important channel for wave
energy transfer along with its associated consequences on plasma heating, acceleration and
transports. Consider, as a prototype, a system of two coupled driven harmonic oscillators
of equations

d2x1
dt2

+ !2
1x1 = c1x2E0,

d2x2
dt2

+ !2
2x2 = c2x1E0,

(5.2)

where k1,2 and !1,2 are taken to be the resonant wave vectors and frequencies, c1,2 are the
constants representing the strength of the coupling and E0 = E0 cos(k0 · x � !0t) is the
amplitude of the driver wave, namely the pump. Assuming x1 = x1 cos(k1 · x � !t) and
x2 = x2 cos(k2 · x� !0t), the second of (5.2) can be written as

�
!2
2 � !02�x2 cos

�
k0

· x� !0t
�
= c2E0x1 cos (k0 · x� !0t) cos (k · x� !t) =

=
c2E0x1

2

�
cos [(k0 + k) · x� (!0 + !) t]

+ cos [(k0 � k) · x� (!0 � !) t]
 
;

(5.3)

so, in particular, the driving terms on the right can excite oscillators x2 with frequencies
!0 = !0 ± !, and oscillators x1 and x2 constitute a couple of decay waves. Equation (5.3)
suggests that nonlinear driving terms are still effective assuming a finite frequency shift; so
!0 does not need to be exactly !2, but only approximately equal to !2. Furthermore, !0 can
be complex because there can be damping or growth, so the oscillator x2 can respond to a
range of frequencies. In conclusion, the frequency and wave-vector matching conditions are

!0 ⇡ !1 ± !2, (5.4)
k0 ⇡ k1 ± k2. (5.5)

A parametric decay instability may occur when an incident electromagnetic wave of high
frequency and large phase velocity excites two waves with k1 ⇡ �k2. Keep in mind that
even a small amount of damping (either collisional or collisionless) will prevent parametric
instability unless the pump wave is strong enough. To calculate the threshold amplitude
for wave excitation, damping rates �1 and �2 in the first and second of (5.2) are introduced
by means of damping terms 2�1,2ẋ1,2, ultimately obtaining

�
!2
1 � !2

� 2i!�1
�
x1(!) = c1x2E0, (5.6)

h
!2
2 � (! � !0)

2
� 2i (! � !0) �2

i
x2(! � !0) = c2x1E0. (5.7)

The PDI can be either resonant, if both decay waves are marginally stable or weakly damped
normal modes, or non-resonant, if one of the decay waves is a heavily damped quasi mode.
The conditions ! ⇡ !1 and !0 � ! ⇡ !2 give, from the above equations, an instability
threshold as a function of the damping coefficients, that is, expressing x1 and x2 with their
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peak amplitudes,
⇣
c1c2E

2
0

⌘

min
= 16!1!2�1�2; (5.8)

thus, the threshold goes to zero for vanishing damping.
Let now the three interacting waves be the pump KAW ⌦0 = (!0,k0), the low-frequency

daughter ion sound wave (ISW) ⌦s = (!s,ks) and the daughter KAW ⌦� = (!�,k�) with
!� = !s � !0 and k� = ks � k0, consistent with frequency and wave-vector matching
conditions. Let the small but finite pump wave amplitude be denoted as �0 = e��0/Te. As
⌦s could be a quasi mode, we then need to retain terms of order |�0|

2 in view of a proper
account of non-resonant PDI. The KAW PDI dispersion relation is [17, 14]

✏sk
⇣
✏Ak� + �(2)

A�

⌘
= Ck |�0|

2 , (5.9)

with the ISW dielectric constant linearly approximated as

✏sk = 1 + ⌧ + ⌧�s⇠sZ(⇠s), (5.10)

while ✏Ak� is the linear dielectric constant of the KAW decay wave,

✏Ak� =
1� ��
b�
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k2kv

2
A

!2
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�

, (5.11)

where ��, b� and �� are the usual functions introduced in section 2.2 and as yet expressed
with the generic subscript k; furthermore, �(2)

A�
is a function accounting for nonlinear ion

Compton scattering [68, 14, 17] and Ck is the nonlinear coupling coefficient between the
two daughter waves via the pump mode [14, 17]. It is beyond the illustrative scope of PDI
given in this section to provide detailed derivation of the �(2)

A� and Ck terms. So, they will
be omitted here. In the case of resonant decay, for a frequency !s = !sr + i�, and denoted
�dA� and �ds the linear damping rates of the KAW and ISW daughter waves, respectively,
relation (5.9) reduces to

�
� + �dA�

�
(� + �ds) = Ck |�0|

2

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@✏skr
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@✏Ak�r
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. (5.12)

We see that the parametric decay instability growth rates increase with |Ck|�0|
2
|, which

scales with |k?⇢i|
4
|�B?0/B0|

2 for |k?⇢i|2 ⌧ 1 and |�B?0/B0|
2 / |k?⇢i| for |k?⇢i|2 � 1 [17,

14]. The decay instabilities are, thus, strongest when |k?⇢i| ⇠ 1, and it clearly demonstrates
the necessity of keeping finite ion Larmor radius kinetic effects in dealing with the decay
instabilities of KAWs.

Finally, it is illuminating to compare the decay instabilities of KAWs versus those of
SAWs in the MHD regime. Essentially, by employing the ideal MHD fluid theory the PDI
dispersion relation takes the form similar to the KAW PDI dispersion relation (5.9), with
KAW terms replaced by corresponding SAW terms. The more fundamental change lies in
the nonlinear coupling term, that is, Ck replaced by CI , with [17]

CI / cos2 ✓0, Ck / sin2 ✓0, (5.13)
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where ✓0 is the angle between k?0 and k?�; in particular,

Ck

CI
⇠ O

⇣
|⌦i/!0|

2
⌘
|k?⇢i|

4 , (5.14)

for |k?⇢i|
2
⌧ 1, and

Ck

CI
⇠ O

⇣
|⌦i/!0|

2
⌘
, (5.15)

for |k?⇢i|
2
⇠ 1. The formula (5.14) indicates that, for 1 > |k?⇢i|

2 > |!0/⌦i|, nonlinear
couplings via kinetic effects dominate. Noting that |!0/⌦i| ⇠ 10�3 in typical laboratory
plasmas, the validity regime of MHD fluid theory for the SAW nonlinear physics is rather
limited. Furthermore, at the |k?⇢i| ⇠ 1 regime where KAW nonlinear effects maximize,
we have |Ck| / |CI | ⇠ |⌦i/!0|

2 for typical parameters. In summary, in addition to the
significantly enhanced PDI growth rates, there is, perhaps, more significant qualitative
difference between KAW and SAW PDI in terms of the wave vector of the scattered daughter
wave with respect to that of the pump wave. Indeed, since CI / cos2 ✓0 according to
(5.13), the SAW scattering maximizes around ✓0 = 0,⇡, i.e., when k?� is parallel or anti-
parallel to k?0. In contrast, the behavior of Ck implies that the KAW scattering maximizes
around ✓0 = ±⇡/2, i.e., k?0 and k?� are orthogonal. This difference affects the nonlinear
evolution of KAW turbulence and the charged particle transports induced by the KAW
decay processes [17]. In fact, assuming the pump wave is a mode converted KAW and k?0

is predominantly radial, the daughter KAW will also have k?� predominantly radial in the
ideal MHD analysis, with little effect on plasma transport. Meanwhile, k?� of the daughter
KAW will be predominantly azimuthal in the kinetic regime, with important consequences
on plasma transport.

5.2 Convective cells

When, along with the confining magnetic field, an electric field is present, the motion of
particles is the sum of the usual circular Larmor gyration plus a drift of the guiding center,
resulting in an additional transverse component of velocity [14],

vE =
cE⇥B

B2
. (5.16)

For long wavelengths, electron and ions have similar responses; however, on shorter scales of
the order of the ion Larmor radius, electron and ion responses become unbalanced and this,
in turn, generates local charge separation and therefore strong radial electric fields. The ion
flow forms two-dimensional (in the plane perpendicular to the ambient magnetic field) drift
patterns named convective cells [75, 60, 18, 20, 53, 70, 71, 27], namely perturbations which
are constant along the field line but change in the perpendicular direction; as a consequence,
these perturbations play an important role in the vortex dynamics and in the diffusion
and transport of plasma across the confining magnetic field. A classification scheme for
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convective cells (CCs) can be made between electrostatic convective cells (ESCCs), where
�E = �E? [60, 75], and magnetostatic convective cells (MSCCs), with �B = �B? [20]. Two-
dimensionality means, for convective cells, kk = 0, with typically Re(!) ⇡ 0. Convective-cell
motion is therefore similar to that of two-dimensional vortexes in an incompressible fluid,
both motions being divergence free. In the presence of collisions, the cells are damped
because of ion viscosity, leading to a normal mode with purely imaginary frequency. Their
slow motion can lead to anomalously rapid plasma transport across the magnetic field even
in thermal equilibrium, mostly when they are connected to instability mechanisms such
as a turbulence in an inhomogeneous plasma: initially given linearly unstable drift-waves,
namely the waves or collective excitations driven by a pressure gradient destabilized by
differences between ion and electron motion, can nonlinearly interact and excite them.
Another nonlinear route leading to the formation of convective cells, which is of central
importance for the present work, is through Alfvén waves and the modulational instability
mechanism discussed in the following.

It is worthwhile recalling, here, the connection of the modulational instability with the
parametric decay instability, which was discussed in Sec. 5.1 and is the first example that
was historically studied, where the importance of wave scattering in plasmas was recognized
and explained [45, 54]. This connection between modulational instability and parametric
deday instability will be further elaborated in the following.

5.2.1 Modulational instability

In laboratory fusion plasmas, nonlinear excitations of convective cells usually occur via
mode-mode couplings of ambient drift-wave and/or Alfvén-wave instabilities. Since con-
vective cells have no parallel wavenumber, their nonlinear interactions involve couplings
between co-propagating Alfvén waves with the same kk, which vanishes for SAWs in the
ideal MHD limit. Thus, it has long been recognized that only non-ideal MHD fluctuations,
such as KAWs, can nonlinearly excite convective cells. Furthermore, since convective cells
are excited at ! = 0, it is also recognized that their nonlinear excitation takes the form of a
modulational instability. In general, a modulational instability is a deviation from the wave
periodic behavior further reinforced by nonlinearity: a weakly modulated continuous wave
in a nonlinear medium grows and leads to spectral sidebands and possibly to the breaking
of the periodic fluctuation into modulated pulses. In space, it transforms weakly modulated
plane waves into spatially periodic patterns. So, modulational instability is formally quite
similar to a PDI, where the carrier wave is the pump, and the two sidebands behave as
analogs of the daughter waves. Previous theoretical studies about convective cells excited
by KAWs via modulational instability suffer from being restricted to the two-fluid or drift-
kinetic descriptions (ignoring finite Larmor radius effects), and/or the limiting assumption
that ESCCs and MSCCs are decoupled. These hypotheses have been adopted in order to
simplify the theoretical analysis but lead to erroneous conclusions on the nonlinear excita-
tion mechanisms. Notably, spontaneous excitation of CCs can only occur when one keeps
the crucial finite ion Larmor radius (FILR) effects, |k?⇢i| ⇠ 1; and in this regime one finds
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that ESCCs and MSCCs are, in general, intrinsically coupled [85]. As new original element
with respect to previous works [47, 85], we will adopt nonuniform cylindrical plasma geom-
etry. Meanwhile, we will employ the nonlinear gyrokinetic equations and demonstrate that
both the FILR as well as the finite coupling between ESCCs and MSCCs play qualitatively
crucial roles in the dynamics of the modulational excitations of convective cells.

5.3 Nonlinear gyrokinetic equations

In the cylindrical plasma equilibrium of interest here, which was introduced in chapter 3,
the vorticity equation can be written as (see also [85])
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here k = k0+k00, where k0 and k00 are two wave vectors involved in the three-wave interaction
with k (similar to parametric decay instability), and !k = !k0 + !k00 from the frequency
matching condition. Furthermore, ⇤k00

k0 = (k0
⇥ k00) · ẑ, while �k := I0(bk)e�bk with I0 the

modified Bessel function. The KAW generated by the external antenna via mode conversion
interacts with low-amplitude convective cells and generates sidebands. In particular, as we
show in the following, an externally excited KAW pump of sufficiently high amplitude can
spontaneously generate a convective cell and the two coupling sidebands which are due to
the beat between convective cell and pump mode. As already mentioned in the previous
section, we know [85] that spontaneous excitation of CCs can only occur when one keeps
the crucial finite ion Larmor radius (FILR) effects, i.e., in the |k?⇢i| ⇠ 1 regime, and that
ESCCs and MSCCs are intrinsically coupled. Also note that (5.17) readily reduces to the
already discussed linear limit. In WKB form, (5.17) can be cast as
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The mode decomposition is made by writing explicitly the expressions for ��:

��0 :=
Ti
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h
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i( n
R z�m✓�!0t)

i
+ c.c. (KAW pump), (5.19)
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so the subscript 0 is for the pump, the subscripts ± are for the two sidebands and the
subscript z is for the convective cell. The expressions for � follow consistently. Note that



5.3 Nonlinear gyrokinetic equations 82

the normalization used here is fully consistent with [12] and slightly different from [85]. The
fields ��̂0, ��̂±, ��̂z are dimensionless: the corresponding magnetic stream functions are

� ̂0 =
!0
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�Âk0, � ̂± = ±
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kkc
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!0

kkc
�Âkz, (5.22)

where kk = kk0 and  0,±,z are the components of the effective induced parallel potential
(they are proportional to the vector potential). Direct substitution of (5.19), (5.20), (5.21),
and (5.22) into (5.18) gives the following coupled nonlinear vorticity equations for KAW
pump, sidebands and CC:
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Note that, in the ideal MHD limit, the right-hand sides of these equations go to 0 since the
differences involving �k functions and the terms with bk vanish. On the other hand, the
measure of nonlinear behavior is given by the coupling coefficients ⇤k00

k0 , which are maximized
when the pump wavenumber is orthogonal to the sidebands wavenumbers. These equations
must be closed by the quasineutrality conditions

✓
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hJk�gki � �gkei, (5.26)

where �gk satisfies the Frieman-Chen nonlinear gyrokinetic equation for electrons and ions
[35, 85] which, in uniform plasma, reads
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Solving (5.26) for kk 6= 0 we obtain [85], at the lowest (linear) order,

�g(1)ki ⇡
eFMiJk

Ti
�Lk, �g(1)ke ⇡ �

eFMe

Te
� k, (5.28)
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with �Lk = ��k � (vk/c)�Ak. Substitution back into (5.26) yields
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with �k as defined in 2.2; however, including Landau damping gives �k a negative complex
imaginary part, �k = 1+⌧(1��k)(1�i

p
⇡⇠e). The anti-Hermitian response is predominantly

due to electron-Landau damping. At the next order,
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Noting (keep in mind (5.22))

�g(1)ze ⇡ �
e

Te
FMe

⇣
��z �

vk
c
�Akz

⌘
(5.31)

and substituting back into (5.29), we obtain
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and
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In order to close the system, the equation for � ̂z must be determined independently of
(5.29), which is degenerate with (5.25) for the CC. For wavelength longer than the col-
lisionless skin depth, the equation for � ̂z is obtained imposing the vanishing of �Jkz for
electrons:
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For kk = 0, the nonlinear gyrokinetic equation becomes [85]
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from which (5.31) readily follows. By substitution of (5.35) into (5.34) we finally obtain
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that is,
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The nonlinear gyrokinetic vorticity equations (5.23), (5.24) and (5.25) and the electron
parallel force balance/quasineutrality equations (5.32), (5.33) and (5.37) provide a complete
set of nonlinear equations that describe the formation of CCs by KAW decay in uniform
plasmas. They extend the results of [85] since they include, with (5.23) and (5.32), the
feedback of CC and sideband onto the KAW pump. These equations will be further extended
to nonuniform plasmas in the next section. So we have six equations for 6 unknowns, to
be resolved in time-dependent or time-independent way: for assigned � 0 and ��0, that
is for an assigned pump, we reduce to 4 algebraic equations. Parametric decay instability
can be investigated by (5.24) and (5.25) coupled with (5.33) and (5.37), assuming a fixed
amplitude KAW pump. After determining the nonlinear threshold, the further nonlinear
evolution of the system can be studied by exploring the whole set of equations.

Varying the NL coupling coefficients ⇤k00
k0 , as a function of k0 and kz (with k± = kz±k0),

we can study the local growth rate of modulational instability as a function of wavenumber
and amplitude. Since for a CC kk = 0, with kk given by (3.12), we see that, in general screw
pinch cylindrical plasma equilibria, CC existence implies a strong constraint: n = m = 0.
Our interest, meanwhile, is to maximize nonlinear coupling. Thus, it seems reasonable to
consider a ✓-pinch equilibrium as a special case of the general screw pinch equilibrium with
vanishing azimuthal magnetic field and q ! 1. In this way, the CC existence imposes n = 0

and we are allowed to freely choose mz to maximize nonlinear coupling. Meanwhile, due
to the intrinsic stability of the screw pinch configuration, we can properly choose electron
and ion temperature profiles to minimize Landau damping. In other words, this special
case of cylindrical plasma equilibrium is particularly suitable for our studies intended at
investigating CC generation by high amplitude mode converted KAW excited by an external
antenna.

5.3.1 Nonuniform plasma in ✓-pinch configuration

Considering that |kkvT i| ⌧ ! ⌧ |kkvTe|, drifts effects are possibly changing ion gyrokinetic
response in the short-wavelength limit. However, from equilibrium condition (3.3) in a
✓-pinch magnetic field configuration, that is,

r?

✓
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0

8⇡
+ p0

◆
= 0, (5.38)

one readily shows that vd ⇠ (�/2)v⇤ for thermal ions. Thus, the characteristic ion magnetic
drift velocity, vd, is typically much smaller that the corresponding ion magnetic drift, v⇤.
Therefore, we may include plasma nonuniformity only via ions and electrons diamagnetic
responses. In particular, for the sake of simplicity, let us consider the effect of density



5.3 Nonlinear gyrokinetic equations 85

gradient only, while ion and temperature profiles are taken as constants; see also [13]. The
former equation can be solved, with kk 6= 0, at the lowest linear order given by
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with the diamagnetic frequencies defined as
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This modifies the quasineutrality condition (see (5.29)) of kk 6= 0 modes as
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for electrons, this equation follows the solution of (5.30), and yields
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Meanwhile, �g(2)ki contribution does not vanish (it vanishes for !⇤i = 0) and becomes
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where F1+ = hJzJk0Jk+FMi/n0i, F1� = hJzJk0⇤Jk�FMi/n0i and where terms proportional
to �Ak have been neglected as they are O(�i). Equation (5.33) is modified into the following
sidebands quasineutrality condition
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with �̂± = [1 + ⌧ � ⌧�±(1� !⇤i/!)±] /(1�!⇤e/!)±, as shown by [13]. A similar procedure
can be adopted for computing the parallel force balance for electrons, keeping in mind, in
massless approximation for electrons, (5.30),
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Following the same procedure delineated after (5.30), and looking for a solution to �Jkze = 0,
one can verify that (5.45) and (5.46) yield to a simplification of electron diamagnetic effects
and that (5.37) still applies,
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So, closing equations by means of vorticity equations, we get
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which can be specialized to both KAW sideband,
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and convective cells,
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In summary, (5.45), (5.47), (5.49), and (5.50) are the complete set of equations to solve
for computing CC modulational instability growth. They include diamagnetic effects (sym-
metry breaking), reducing to the previous ones for !⇤i,e ! 0, and are consistent with the
analysis in [13]. These theoretical analyses are an original novel contribution of the present
thesis work together with the corresponding numerical solutions that will be presented in
the next sections.

5.4 Solution of the modulational instability

For a more focused study, let us introduce the following simplifications that are aimed at
maximizing the non-linear interactions, given that the pump KAW is the mode converted
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wave generated by the external antenna drive with prescribed frequency !0 as well as (low)
poloidal and azimuthal mode numbers (n,m):
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ẑ,

(5.51)

in addition to the general request kkz = 0. Note that the underlying assumption here is
that the pump KAW has k? predominantly in the radial direction (as we expect, since we
construct the pump/mother KAW by mode conversion at the SAW resonance) and that its
behavior is predominantly oscillatory with a modulation in amplitude occurring on a scale
longer than ⇢i. Meanwhile, the CC is characterized by a macroscale radial structure with
a predominant short poloidal scale that is connected with |mz| � |m|. This feature clearly
maximizes the nonlinear coupling coefficient ⇤kz

k0
. It will be shown in the following that this

condition is also consistent with the maximization of the CC excitation rate. Thanks to
these assumptions, we have

b± ⇡ b0 + bz, bz ⇡
m2

z⇢
2
i

r2
, b0 ⇡ k20r⇢

2
i , (5.52)

and so
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Finally, in order to more easily manipulate equations, let us introduce the symbolic notations
R±

1 and R±
2 to denote, respectively, the right-hand side of (5.45) and of (5.49) for the ±

sign. So, from (5.45) and (5.49) we obtain
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where, considering (5.51), and noting that ⇤kz
k⇤0
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,
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and
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Introducing the KAW dielectric constants for sidebands
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and collecting terms, equations (5.54) and (5.55) can be cast as
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where
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With (5.59), (5.60), (5.61), (5.62), (5.63) we can compute the modulational instability
dispersion relation. First note that
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, (5.64)

!⇤i being the CC diamagnetic frequency (5.40). Meanwhile, using the notation �± for �̂±
with no !⇤i, we can write
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from which we obtain
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with
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(5.67)

being the leading-order frequency mismatch between the sideband frequency and the ex-
pected normal mode frequency. In fact, (5.66) and (5.67) express that KAW sidebands are
not normal mode of the system and, thus, ✏̂A± 6= 0.

In order to simplify notation, let us adopt from now on the subscript + for denoting both
upper and lower KAW sidebands. Collecting terms and noting that �± = �+, b± = b+,
�± = �+ and �± = �+, we can write
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Meanwhile, equations (5.59) become
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where, from (5.60), (5.61), (5.62), (5.63), we have
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and
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Considering now (5.47), we write
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then, using the second of the (5.70),
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This equation reduces to those in [85] and [17] in the uniform plasma limit. The same
procedure can be adopted for the CC vorticity equation, which, from (5.50), can be rewritten
as
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Again, using the first of the (5.70), this equation becomes
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(5.82)

Also this equation reduces to those in [85] and [17] in the uniform plasma limit. Equations
(5.80) and (5.82) are two coupled equations that, for a given power spectrum and k?z

give, as a solution, !z and the ratio � ̂z/��̂z. That is, they fully solve the modulational
instability problem and CC polarization, which is generally mixed. In fact, it is not possible
to postulate a priori a magnetostatic and/or electrostatic CC, and the polarization has to be
computed self-consistently (the polarization issue is discussed in [85] and [17]). Given this,
the present analysis has some common features with [47], in particular the consideration
of the important role of plasma nonuniformity, which will be further discussed in the next
section. Compared with [47], the present work is not limited to magnetostatic CCs and is
extended to cylindrical plasmas. The standard form of CC equations, by analogy with the
analyses of [85, 17], can be cast as
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with ↵�, and ��, defined by inspection comparing (5.83) with (5.80) and (5.82). In the
uniform plasma limit, equations (5.83) represent the counterpart of equation (16) in [85]
and equation (120) in [17]. In nonuniform plasmas, meanwhile, the symmetry breaking
is evident by transforming !⇤i 7! �!⇤i. This clearly impacts the modulational instability
process, which is no longer characterized by !z = 0 at the critical threshold of pump KAW
amplitude for CC excitation [85, 17]. In fact, marginally unstable CCs typically rotates
in the electron diamagnetic direction, opposite to !⇤i, consistent with [47], and this fact is
expected to influence the CC effect on plasma transport. However, the symmetry breaking
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effect connected with finite !⇤i does not violate the overall cylindrical symmetry property
of the system, which is reflected by the invariance of the CC dispersion relation under the
transformation !⇤i 7! �!⇤i and !z 7! �!z.

5.5 Equilibrium configuration and numerical solution

The plasma equilibrium profiles and parameters introduced in section 3.4 define a generic
screw pinch configuration, with the axial component of the magnetic field dominant with
respect to the azimuthal one. Meanwhile, in section 5.3 we have demonstrated that, in order
to maximize nonlinear coupling and the generation of CCs by modulational instability, the
preferred cylindrical plasma equilibrium is a ✓-pinch, which can be seen as a limiting case
of a screw pinch with vanishing azimuthal magnetic field and/or q ! 1. This situation can
be achieved by lowering the value of J0z by several orders of magnitude so that, according
to (3.83), the azimuthal component becomes zero in any practical respect. We also adjust
the value of B0z(0) and n0(0) for further convenience. The novel equilibrium considered
hereafter is characterized by significant diamagnetic plasma response (smaller B0z inside
the plasma) and, at the center, � reaches up to nearly 0.4 (higher than in the previous case)
to keep KAW electron Landau damping small. The antenna frequency is !0 = 1.53 MHz,
and, for the sake of simplicity, we assume n0 = m0 = 2. These choices move the resonant
layer to x0 = 0.746. In the following, we also assume

n0(0) = 5 · 1014 cm�3 J0z(0) = 0.7 · 104 statA B0z(0) = 1.6 · 104 G

while other parameters remain the same as in section 3.4. As in chapter 4, with the present
launched antenna spectrum, diamagnetic effects can be neglected for the mode converted
KAW pump. However, they are generally important for both CC and KAW sidebands. For
the present application, we arbitrarily choose �B̂rh/B0 = 0.01, corresponding, for the KAW
pump (on the slow radial scale), to �B✓0/B0 ⇡ 0.003. The radial behavior of CC frequency
and growth rate and the polarization are obtained with these parameters.

The normalized radial displacement and radial electric field are computed for a nominal
value of damping (fig.5.1), for 10% of nominal value (fig.5.2), and for 1% of nominal value
(fig.5.3), all at the same frequency !0 = 1.53 MHz: the second and third couple of figures are
qualitatively identical, showing that the mode structure becomes essentially independent
from damping (except for amplitude and phase effects) at about 10% of the nominal value.
In the following, we will adopt the aforementioned plasma parameters, corresponding to a
✓-pinch equilibrium, assuming the reduced damping case with 10�2 of the nominal damping
to better illustrate the effects of nonlinear excitations of CCs.

Hereafter, we study the problem of the generation of a convective cell by modulational
instability, due to nonlinear excitation by a mode converted KAW pump mode. As regards
the dispersion relation, the equation that is solved is (5.83), with (5.80) and (5.82) that only
provide the definition of the coefficients entering in (5.83). Correspondingly, the polarization
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Fig.5.1 Radial displacement, normalized to (��B̂rh/B0), and normalized radial electric field,

for the ✓-pinch case (nominal damping).

Fig.5.2 Radial displacement, normalized to (��B̂rh/B0), and normalized radial electric field,

for the ✓-pinch case (10% of nominal damping).

Fig.5.3 Radial displacement, normalized to (��B̂rh/B0), and normalized radial electric field,

for the ✓-pinch case (1% of nominal damping).
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vector is computed as solution of (5.83) at the obtained eigenvalue !z
1. We can restrict our

analysis to a conventionally positive !0 and a positive !⇤i (the ion diamagnetic frequency
(5.40)) due to the fact that the CC dispersion relation is symmetric under the transformation
!⇤i 7! �!⇤i and !z 7! �!z. As a first test for our theoretical approach, we take the uniform
plasma limit, that is !⇤i = 0, and recover the marginal stability curves obtained in [85] (here
in fig.5.4). Direct connection with the uniform plasma slab of [85] is obtained, identifying the
radial direction with x and the azimuthal direction with y. Remember that !⇤i, according
to its definition (5.40), depends on the CC azimuthal wave vector but also on the density
gradient: so, for finite ky⇢i, !⇤i = 0 if we take the uniform plasma limit. Fig.5.4 assumes
kk0⇢i = kk⇢i = 0.02, consistent with [85], and previous results are exactly reproduced as
expected. Fig.5.5, meanwhile, assumes kk0⇢i = kk⇢i = 0.003, consistent with typical values
of the ✓-pinch equilibrium considered in the present analysis and with the aforementioned
wave spectrum launched by the external antenna. It is evident that the behavior of the
modulational instability is qualitatively the same as in [85] in the uniform plasma limit,
upon replacing kx⇢i 7! k0⇢i and ky⇢i 7! kz⇢i, the main quantitative difference being due
to the different values of kk⇢i. The plots in figs.5.4-5.5 show the upper and low limits of
instability domain: the upper limit is given by |k0| ⇡ |kz| (or, in the first figure, |kx| ⇡ |ky|),
namely, in the uniform limit, modulational instability can’t generate a CC whose wavelength
is shorter than the pump wavelength (see [85] for further discussion about this point). This
result is the main motivation for the conditions maximizing the modulational instability
given by (5.51), (5.52) and (5.53). In fact, kz must simultaneously satisfy the condition
|kz| < |k0| as well as of being perpendicular to k0 (predominantly radial, consistent with
the mode converted KAW pump) and to the ambient magnetic field. In what follows, we
demonstrate that this condition is not qualitatively modified by the inclusion of diamagnetic
effects.

Let us now focus on the more general non-uniform plasma case, looking at the diamag-
netic effect on marginal stability curves, CC real frequency and modulational instability
growth rate, and at the related symmetry breaking effects. In fig.5.6 we see the result
for different values of !⇤i, showing the crucial quantitative effect of equilibrium plasma
non-uniformity. Note that, similar to previous considerations made for taking the proper
physically meaningful uniform plasma limit, we can vary independently kz⇢i and !⇤i by
acting on the density gradient. For the present ✓-pinch cylindrical plasma equilibrium, the
range of !⇤i values corresponds to |mz| = O(10) � |m0|. Thus, as anticipated above, dia-
magnetic effects are important for CC and KAW sidebands but not for the KAW pump,
consistent with equations (5.51), (5.52) and (5.53). Looking at the upper part of the dia-
gram, we see that, differently from the uniform case, CC modulational instability can occur
at wavelengths shorter than that of the pump KAW: in fact, part of the region |kz| > |k0|

gives access to instability. Actually, non-uniformity also affects the lower bound; thus, in
1Bessel functions are computed by means of the scipy.special python library, while the function F1

from (5.53) is computed by quadrature using the integrate package from scipy. Finally, the roots of the
dispersion function are obtained by the fmin routine from scipy.optimize, minimizing the absolute value of
the dispersion function nearby a guess in the complex plane.
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Fig.5.4 Marginal stability curves in the (kx⇢i, ky⇢i)-plane obtained from the present analysis

in the uniform plasma limit and for kk⇢i = 0.02, consistently reproducing the original results

for different values of �By/B0 studied in [85, 17].

Fig.5.5 Plot of marginal stability for the uniform case. Here kz is the wave number (predom-

inantly in the ✓-direction) of the CC, while k0 is that of the pump KAW (predominantly

in the radial direction). Results are consistent with [85], while quantitative differences are

due to the value of kk⇢i = 0.003. Note that the azimuthal KAW pump magnetic field

fluctuation, �B✓0/B0, replaces �By/B0 in fig.5.4.
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general, it extends the region of modulational instability both for lower and for higher CC
wavelengths.

Next, we discuss the dependence of the CC real frequency, growth rate and polariza-
tion on the amplitude of the KAW pump, �B✓0/B0, which is connected with the radial
electric field as �B✓0/B0 = (kk0/!0)�0(c/B0)�Er0. The input quantities for the nonlinear
local dispersion relation are k0⇢i and kz⇢i, the amplitude of the pump wave �B✓0, the CC
diamagnetic frequency !⇤i/!0, and kk0⇢i = kk. The solution of the dispersion relation is
the CC frequency !z/!0 and polarization � ̂z/��̂z. In the very low dissipation limit that
we are studying the dispersion relation is polynomial with real coefficients, so with real or
complex conjugate roots: a conjugate couple is made by a stable solution and an unstable
solution which is the one of our interest. Notably, from fig.5.7, representing the growth
rate Im(!z/!0), we see that for low diamagnetic frequency we actually have two thresh-
olds, represented by two "elbows" of the curves, due to different branches of the dispersion
relation and to the complex interplay of nonlinearity and nonuniformity; these elbows fade
into flexes for higher diamagnetic frequencies (orange and red lines). For !⇤i/!0 = 0.3 the
change in slope of the growth rate vs. pump amplitude is almost inappreciable. Fig.5.8,
meanwhile, shows that the CC near marginal stability rotates in the electron diamagnetic
direction (whose sign is opposite with respect to the ion diamagnetic frequency, taken here
as positive), consistently with the results in [47]. However, for increasing instability the CC
tends to rotate in the ion diamagnetic direction. This confirms the complex interplay of
nonlinearity and nonuniformity, and that the KAW and drift-wave branches mix and couple
in the nonlinear regime.

Finally, we compute the radial dependence of modulational instability, that is, the
growth rate and frequency vs. the radial position, along with the polarization of the CC.
From fig.5.3 it is clear that the pump KAW is dominated by its short radial scale, typical of
the mode converted fluctuation structure. However, it is also clear that the most "effective"
CC excitation is characterized by relatively short azimuthal wavelength and relatively long
radial scale, as argued above. Thus, the "effective" KAW amplitude at long radial scale
is that shown in fig.5.9, obtained from fig.5.3 for reduced dissipation (1% of the nominal
value). For the KAW pump, bk is almost purely real, as we expected, and in the range of
interest for the CC modulational excitation, in agreement with previous results. In fig.5.10
we can recognize the location of the resonant surface, where the value of b0 becomes neg-
ative. The behavior of b0 is essentially linear until close to the magnetic axis, where the
effect of cylindrical geometry becomes important. In fig.5.11, bz goes as 1/r2, as it reflects
the dominant behavior of the azimuthal wave number. Meanwhile, the normalized parallel
wave number, bk = k2k⇢

2
i , is shown in fig.5.12. As a result, going from the resonant layer

to the magnetic axis, we have a first zone where b0 > bz, namely the pump KAW radial
wavelength is shorter than the CC azimuthal wavelength. Then, starting at r/a ⇡ 0.2,
the situation is already reversed and bz dominates. In the light of the stability diagram of
fig.5.6, we expect this fact to have important consequences on the radial dependence of the
CC growth rate. It is essentially in the region b0 & bz that we expect the strongest growth
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Fig.5.6 Marginal stability curves for the CC modulational instability as a function of plasma

nonuniformity, accounted for by the local value of !⇤i/!0; in particular, !⇤i/!0 = 0 (black

line) represents the uniform plasma limit. �B✓0/B0 = 0.005 is fixed and the black curve is

consistent with the iso-lines displayed in fig.5.4.

rate, as we see from fig.5.13 (between r/a = 0.2 and r/a = 0.4, approximately). Ultimately,
fig.5.6 suggests that CC growth rate should be suppressed near axis, because of increasing
bz and decreasing !⇤i. Growth rate should also be reduced while approaching the resonant
layer since bk goes to zero (even though !⇤i is increasing) and we need FLR to excite CCs.
The polarization of the CC is shown in fig.5.14 and confirms the finding of [85, 17] that, in
general, electrostatic and/or magnetostatic CCs are not self-consistent nonlinear solutions
produced by modulational instability and the polarization state must be properly accounted
for and determined case by case.

In order to understand how the CC radial structure can be controlled externally, let
us analyze the behavior of the local CC frequency, growth rate and polarization vs. the
amplitude of the KAW pump at different radial locations. Figs.5.15 and 5.16 illustrate
these behaviors at r/a = 0.2, thus, in a region where b0 . bz. Consistent with previous
findings in figs.5.7-5.8, the CC is effectively excited only in a limited range of KAW pump
strength. Meanwhile, figs.5.17-5.18 show the same behaviors at r/a = 0.4, where the CC
growth vs. KAW pump strength monotonically increases as expected for b0 > bz. Again,
these results demonstrate the complex interplay of nonlinearity and plasma nonuniformity
and suggest that controlling the external antenna perturbation amplitude is a very efficient
way to control the CC radial structure.

The excitation of CCs is accompanied by the formation of inductive parallel electric



5.5 Equilibrium configuration and numerical solution 99

Fig.5.7 Imaginary CC frequency vs. pump KAW amplitude.

Fig.5.8 Real CC frequency vs. pump KAW amplitude.
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field structures, which are readily derived in the form

�Ekz = i
Tikk0!z

e!0
� ̂z. (5.84)

For the present case, the radial structure of �Ekz in units of kV/m and normalized to � ̂z

is given in fig.5.19. The role of parallel electric field is very important in space physics, viz.
in Earth’s magnetosphere, where it can significantly impact particle acceleration [85, 17].
The present study suggests that the parallel electric field values that are typically produced
in laboratory plasmas for present parameters are rather small, in the order of a few tens
of V/m, consistent with the typically low values observed in high-temperature magnetized
plasmas of fusion interest; nonetheless, our study also suggests typical scalings with plasma
parameters, which could be used for generating stronger electric fields; e.g., higher electron
temperature and shorter parallel wavelength of the launched antenna wave spectrum.

5.6 Summary

In this chapter we have performed a theoretical nonlinear analysis of KAWs in a cylindrical
plasma equilibrium, focusing on the spontaneous generation of convective cells by a large
KAW and examining a configuration which maximizes nonlinear coupling and minimizes
Landau damping; then, we have computed the numerical solutions. Earlier results of con-
vective cell excitation by KAWs in uniform plasmas [85] have been recovered in the proper
limiting case. The effect of plasma nonuniformity has been shown to importantly affect the
convective cell stability both qualitatively and quantitatively via the diamagnetic response
[13, 47]. As new novel results, we have shown that the convective cell rotates in the electron
diamagnetic direction near the critical excitation threshold, that the convective cell growth
is significantly stronger (typically up to an order of magnitude) than in uniform plasmas,
and that the unstable parameter region is significantly broader. Furthermore, we have
shown the subtle interplay between nonlinearity and plasma nonuniformity. As a result,
the plasma self-organization can be controlled by fine-tuning the amplitude of the antenna
driven mode converted KAW. Finally, we have computed self-consistently the convective
cell (generally mixed) polarization and radial structure of the generated inductive parallel
electric field.
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Fig.5.9 Normalized effective KAW azimuthal magnetic field vs. the radial coordinate r/a.

Fig.5.10 Normalized pump KAW radial wavenumber as a function of radial position.
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Fig.5.11 Normalized CC azimuthal wavenumber and diamagnetic frequency as a function

of radial position.

Fig.5.12 Normalized KAW parallel wavenumber as a function of radial position.
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Fig.5.13 Normalized CC frequency and growth rate as a function or radial position.

Fig.5.14 Normalized CC polarization as a function or radial position.
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Fig.5.15 Normalized CC frequency and growth rate vs. KAW pump strength at r/a = 0.2.

Fig.5.16 Convective cell polarization vs. KAW pump strength at r/a = 0.2.
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Fig.5.17 Normalized CC frequency and growth rate vs. KAW pump strength at r/a = 0.4.

Fig.5.18 Convective cell polarization vs. KAW pump strength at r/a = 0.4.
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Fig.5.19 Normalized CC parallel electric field as a function of r/a expressed in units of

kV/m.



CHAPTER 6
conclusions and outlook

In this Ph.D. thesis work we have studied the physics of shear and kinetic Alfvén waves
(SAWs and KAWs) in a cylindrical non-uniform magnetized plasma. This is a well-known
classical problem of fusion plasma physics, which we have revisited and proposed under new
light and with new results.

In the first part, we have presented an in-depth review of the linear ideal magneto-
hydro-dynamic (MHD) and gyrokinetic (GK) analyses of propagation and absorption of
waves launched by an external antenna. The process of resonant wave absorption, at the
radial position of the nonuniform plasma where the launched wave frequency matches that of
the local SAW continuous spectrum, has been illustrated as the time asymptotic generation
of increasingly shorter wavelengths (consistent with the classical approach of existing litera-
ture [37, 39]), eventually breaking the MHD long wavelength assumption and requiring a GK
analysis. This natural tendency of a SAW to generate localized radial singular structures in
the ideal MHD model corresponds, in the GK description, to a complete transformation of
the wave nature from a macroscopic (SAW) to a microscopic (KAW) fluctuation, which ex-
ists on the typical spatial scale of the thermal ion Larmor radius [40, 41, 17]. In particular,
we have shown that the SAW Poynting flux is progressively and wholly converted to the
KAW Poynting flux on the Airy scale, intermediate between the system macro-scale and the
ion Larmor radius [41]. This explains why, when the mode converted KAW is strongly ab-
sorbed within a few radial wavelengths from the mode conversion layer, the power absorbed
by the plasma in the GK description is essentially the same as that calculated using ideal
MHD. In other words, the antenna impedance remains the same, as noted in [41, 44, 45],
regardless of the model adopted for computing it.

The second part of this work focused on the linear and nonlinear behaviors of weakly
damped mode converted KAW, that is on the case where the micro-scale fluctuation may
propagate up to the magnetic axis without significant absorption. This case has little rel-
evance, if any, for the classical problem of plasma heating, but it has great interest for
analyzing the nonlinear behaviors of KAWs in non-uniform cylindrical plasmas. As such,
this problem is the core of the novel contribution of the present Ph.D. thesis research. In
the linear limit, we have demonstrated that the plasma region inside the mode conversion
layer behaves as a "resonant cavity"; that is, when the antenna frequency matches a given
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discrete spectrum, the plasma response is stronger, exhibiting the clear behavior of a reso-
nantly driven and weakly damped oscillator. Not surprisingly, this behavior, demonstrated
here for the first time for the KAW spectrum, is qualitatively similar to that of mode con-
verted electron Bernstein waves, described in [6]. This behavior also is of particular interest
for our scope of investigating nonlinear behaviors induced by large amplitude KAWs. In
fact, by proper tuning of the antenna frequency, mode converted KAW can be pumped
at significantly high amplitude, time asymptotically, even with a relatively small antenna
power. Thus, after a brief review of the parametric decay process underlying nonlinear
wave excitation, we have focused on the spontaneous generation of convective cells (CCs)
by modulational instability of a weakly damped large amplitude mode converted KAW in
a non-uniform cylindrical plasma equilibrium; in particular, we have focused on a ✓-pinch
equilibrium, with purely axial ambient magnetic field, in order to maximize nonlinear wave-
wave couplings. Earlier results have been recovered in the limiting case of uniform plasmas
[85]. Meanwhile, as new novel results, we have discussed and demonstrated qualitative and
quantitative effects of equilibrium non-uniformity, accounted for by the diamagnetic plasma
response. First of all, the convective cell preferentially rotates in the electron diamagnetic
direction near the critical excitation threshold, consistent with the prediction for magne-
tostatic CCs [47]: this means that the parity is broken for rotations about the symmetry
axis of the cylindrical equilibrium, and that plasma rotation of the self-organized nonlinear
plasma equilibrium can be controlled by the choice of the antenna launched wave spectrum.
Furthermore, the modulational instability growth rate is significantly stronger (typically up
to an order of magnitude) than in uniform plasmas, and the unstable parameter region is
significantly broader: this is analogous to the similar effect discussed recently in [13] for
KAW parametric decay instability and, thus, confirms the crucial role of symmetry breaking
wave-wave couplings in reactor-relevant fusion plasmas. As a novel result of this work, we
have also shown that, due to the subtle interplay between nonlinearity and plasma non-
uniformity, the self-organized nonlinear plasma equilibrium can be controlled by fine-tuning
the amplitude of the mode converted KAW; in fact, local CC rotation frequency, growth
rate and polarization crucially depend on diamagnetic plasma response as well as on the
spectrum of both pump KAW and CC. This is a consequence of cylindrical geometry and
causes, e.g., the CC growth rate not to generally have a monotonic behavior vs. the mode
converted KAW amplitude. Finally, we have self-consistently computed the convective cell
polarization, which is generally mixed, and the radial structure of the generated inductive
parallel electric field.

The implications of the novel findings of this Ph.D. thesis work are diverse [25, 26] and
all connected with the fact that Alfvén waves, as fundamental electromagnetic oscillations
in magnetized plasmas, can importantly contribute to heating and transport processes of
charged particles. Having adopted a nonuniform magnetized plasma equilibrium in cylindri-
cal geometry is of fundamental importance since it addresses the essential physics elements
that must be included into realistic models. In particular, our analytical and numerical
results on the generation of convective cells can serve as test-bed for gyrokinetic and fully
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kinetic or hybrid codes. In fact, the present work shows the importance of accurately ac-
counting for multiple spatiotemporal scales on the same footing for the correct description
of the underlying physics, which can serve as precious verification test. At present, com-
parisons are in progress within the CNPS1 collaboration network of our findings against
TRIMEG [56, 57] and STRUPHY [43] numerical simulation results. As a further and fu-
ture step, comparisons will be extended to the gyrokinetic electron and fully kinetic ion
description of GeFi code [54]. This effort will imply the first step in the implementation of
GeFi in realistic toroidal fusion plasmas equilibria as well as the verification of the validity
limits of the GK reduced description, which is the foundation of TRIMEG and of other GK
codes.

Despite the simplified cylindrical geometry, adopted in this work, the novel results dis-
cussed here bear important implications for toroidal fusion plasmas applications. We intro-
duced the key assumption of weak KAW absorption to investigate the properties of wave
structures propagating farther away from the mode conversion layer and to shed light into
the corresponding nonlinear physics in nonuniform plasmas. In toroidal plasmas, similar
conditions could be realized and externally controlled, viz. in the weak magnetic shear
core regions of tokamaks and stellarators [21]. Controlling the finite parallel electric field
by magnetic field configuration would allow KAWs to reach magnetic axis and efficiently
drive plasma current in the near-axis region by electron Landau damping of non-symmetric
fluctuation spectrum.

Furthermore, it is worth noting that KAW spectrum in the toroidal fusion plasma core
is expected to be nearly isotropic due to parametric decay processes enhanced by plasma
nonuniformity [13] and strongly excited by energetic particles [16, 82, 83]. Thus, zonal
field structures predominantly depending on the radial flux coordinate could be readily
excited, while poloidally varying CCs would be suppressed due to the incompatibility of
kk = 0 with finite magnetic shear. In other words, the situation would be opposite than
here, where CCs dominate in the simplified ✓-pinch configuration and nonlinear excitation
of zonal field structures is weaker. However, other than these notable but not so crucial
differences, similarities of the case discussed in this work with the near-axis region in the
core of toroidal plasmas is evident, as evident is the relevance of symmetry-breaking effects,
connected with plasma nonuniformity, on convective transport and current drive [13].

Looking further ahead, it is worthwhile making a further comment on possible appli-
cations of the present findings due to the remarkable applications of KAWs in laboratory,
space, and astrophysical plasmas. Our research results suggest an ideal "table-top" plasma
experiment where, by means of an external antenna, one can control the formation of
self-organized plasma states resulting from the nonlinear interaction between KAW and
CC. Given the relatively simple cylindrical geometry, a proper set of diagnostics could be
conceived with the proper spatiotemporal resolutions to actually measure the underlying
physical processes and the corresponding characteristic spatial and temporal scales. In
particular, this approach may apply to the generation of parallel electric fields with appli-

1Center for Nonlinear Plasma Science, https://www.afs.enea.it/zonca/CNPS/
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cations to particle acceleration and transport. In other words, the study proposed in this
Ph.D. thesis work could result into a simple and useful paradigm for verifying and validat-
ing nonlinear physics, supported by theory, by use of advanced kinetic (GeFi), gyrokinetic
(TRIMEG), and hybrid (STRUPHY) codes as well as of experimental measurements.
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